-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
83 lines (63 loc) · 2.53 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from transformers import AutoTokenizer, BertForSequenceClassification, Trainer, TrainingArguments, BertConfig, BertTokenizer, XLMRobertaConfig, XLMRobertaTokenizer, XLMRobertaForSequenceClassification
from torch.utils.data import DataLoader
from load_data import *
import pandas as pd
import torch
import pickle as pickle
import numpy as np
import argparse
from pororo import Pororo
def inference(model, tokenized_sent, device):
dataloader = DataLoader(tokenized_sent, batch_size=40, shuffle=False)
model.eval()
output_pred = []
for i, data in enumerate(dataloader):
with torch.no_grad():
outputs = model(
input_ids=data['input_ids'].to(device),
attention_mask=data['attention_mask'].to(device),
# token_type_ids=data['token_type_ids'].to(device)
)
logits = outputs[0]
logits = logits.detach().cpu().numpy()
result = np.argmax(logits, axis=-1)
output_pred.append(result)
return np.array(output_pred).flatten()
def load_test_dataset(dataset_dir, tokenizer):
test_dataset = load_data(dataset_dir)
test_label = test_dataset['label'].values
# pororo ner
ner = Pororo(task="ner", lang="ko")
# tokenizing dataset
tokenized_test = tokenized_dataset(test_dataset, tokenizer, ner)
return tokenized_test, test_label
def main(args):
"""
주어진 dataset tsv 파일과 같은 형태일 경우 inference 가능한 코드입니다.
"""
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# load tokenizer
TOK_NAME = "xlm-roberta-large"
tokenizer = XLMRobertaTokenizer.from_pretrained(TOK_NAME)
special_tokens_dict = {'additional_special_tokens': ["#", "@", '₩', '^']}
num_added_toks = tokenizer.add_special_tokens(special_tokens_dict)
# load my model
MODEL_NAME = args.model_dir # model dir.
model = XLMRobertaForSequenceClassification.from_pretrained(MODEL_NAME)
model.resize_token_embeddings(len(tokenizer))
model.to(device)
# load test datset
test_dataset_dir = "/opt/ml/input/data/test/test.tsv"
test_dataset, test_label = load_test_dataset(test_dataset_dir, tokenizer)
test_dataset = RE_Dataset(test_dataset ,test_label)
# predict answer
pred_answer = inference(model, test_dataset, device)
output = pd.DataFrame(pred_answer, columns=['pred'])
output.to_csv('./prediction/submission.csv', index=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# model dir
parser.add_argument('--model_dir', type=str, default="./results/checkpoint-500")
args = parser.parse_args()
print(args)
main(args)