-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinference.py
214 lines (178 loc) · 8.07 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import sys
import os
import os.path
import glob
import logging
import argparse
import numpy as np
import torch
import math
from load_data import Preprocess, Preprocess_elo, DATA
from utils import load_model, setSeeds, model_isPid_type
from sklearn.model_selection import ShuffleSplit
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
transpose_data_model = {'akt'}
def test(net, params, q_data, qa_data, pid_data):
# dataArray: [ array([[],[],..])]
pid_flag, model_type = model_isPid_type(params.model)
net.eval()
N = int(math.ceil(float(len(q_data)) / float(params.batch_size)))
q_data = q_data.T
qa_data = qa_data.T
if pid_flag:
pid_data = pid_data.T
pred_list = []
for idx in range(N):
q_one_seq = q_data[:, idx*params.batch_size:(idx+1)*params.batch_size]
if pid_flag:
pid_one_seq = pid_data[:, idx *
params.batch_size:(idx+1) * params.batch_size]
input_q = q_one_seq[:, :] # Shape (seqlen, batch_size)
qa_one_seq = qa_data[:, idx *
params.batch_size:(idx+1) * params.batch_size]
input_qa = qa_one_seq[:, :] # Shape (seqlen, batch_size)
# print 'seq_num', seq_num
if model_type in transpose_data_model:
# Shape (seqlen, batch_size)
input_q = np.transpose(q_one_seq[:, :])
# Shape (seqlen, batch_size)
input_qa = np.transpose(qa_one_seq[:, :])
target = np.transpose(qa_one_seq[:, :])
if pid_flag:
input_pid = np.transpose(pid_one_seq[:, :])
else:
input_q = (q_one_seq[:, :]) # Shape (seqlen, batch_size)
input_qa = (qa_one_seq[:, :]) # Shape (seqlen, batch_size)
target = (qa_one_seq[:, :])
if pid_flag:
input_pid = (pid_one_seq[:, :])
target = (target - 1) / params.n_question
target_1 = np.floor(target)
input_q = torch.from_numpy(input_q).long().to(device)
input_qa = torch.from_numpy(input_qa).long().to(device)
target = torch.from_numpy(target_1).float().to(device)
if pid_flag:
input_pid = torch.from_numpy(input_pid).long().to(device)
with torch.no_grad():
if pid_flag:
loss, pred, ct = net(input_q, input_qa, target, input_pid)
else:
loss, pred, ct = net(input_q, input_qa, target)
pred = pred.cpu().numpy() # (seqlen * batch_size, 1)
pred_list.append(pred)
return pred_list
def inference(params, test_q_data,test_qa_data, test_pid):
print("\n\nStart testing ......................\n ")
model = load_model(params)
test_qa = test_qa_data.copy()
test_qa[test_qa_data<0]=0 # test idx
if params.mode == 'ensemble':
path = os.path.join('model', params.model,params.save) + '/*'
count = 0
for model_path in glob.glob(path):
count += 1
print("model path: ", model_path)
print("count: ", count)
checkpoint = torch.load(model_path)
model.load_state_dict(checkpoint['model_state_dict'])
pred_list = test(
model, params, test_q_data, test_qa, test_pid)
print("\ntest is done\t")
all_qa = np.concatenate(test_qa_data, axis=0)
all_pred = np.concatenate(pred_list, axis=0)
if count ==1:
preds=all_pred[all_qa<0]
else:
preds+=all_pred[all_qa<0]
preds=preds/count
else:
checkpoint = torch.load(os.path.join('model', params.model, params.save) + params.mode)
model.load_state_dict(checkpoint['model_state_dict'])
pred_list = test(
model, params, test_q_data, test_qa_data, test_pid)
print("\ntest is done\t")
all_qa = np.concatenate(test_qa_data, axis=0)
all_pred = np.concatenate(pred_list, axis=0)
preds=all_pred[all_qa<0]
write_path = os.path.join(params.output_dir, f"{params.project}_{params.mode}.csv")
if not os.path.exists(params.output_dir):
os.makedirs(params.output_dir)
with open(write_path, 'w', encoding='utf8') as w:
print("writing prediction : {}".format(write_path))
w.write("id,prediction\n")
for id, p in enumerate(preds):
w.write('{},{}\n'.format(id,p))
if __name__ == '__main__':
# Parse Arguments
parser = argparse.ArgumentParser(description='Script to test KT')
# Basic Parameters
parser.add_argument('--seed', type=int, default=42, help='default seed')
# Common parameters
parser.add_argument('--batch_size', type=int,
default=1, help='the batch size')
parser.add_argument('--maxgradnorm', type=float,
default=-1, help='maximum gradient norm')
# AKT Specific Parameter
parser.add_argument('--seqlen', type=int, default=200, help='default sequence length')
parser.add_argument('--d_model', type=int, default=256,
help='Transformer d_model shape')
parser.add_argument('--d_ff', type=int, default=1024,
help='Transformer d_ff shape')
parser.add_argument('--dropout', type=float,
default=0.05, help='Dropout rate')
parser.add_argument('--n_block', type=int, default=1,
help='number of blocks')
parser.add_argument('--n_head', type=int, default=8,
help='number of heads in multihead attention')
parser.add_argument('--kq_same', type=int, default=1)
# AKT-R Specific Parameter
parser.add_argument('--l2', type=float,
default=1e-5, help='l2 penalty for difficulty')
# DKVMN Specific Parameter
parser.add_argument('--q_embed_dim', type=int, default=50,
help='question embedding dimensions')
parser.add_argument('--qa_embed_dim', type=int, default=256,
help='answer and question embedding dimensions')
parser.add_argument('--memory_size', type=int,
default=50, help='memory size')
parser.add_argument('--init_std', type=float, default=0.1,
help='weight initialization std')
# DKT Specific Parameter
parser.add_argument('--hidden_dim', type=int, default=512)
parser.add_argument('--lamda_r', type=float, default=0.1)
parser.add_argument('--lamda_w1', type=float, default=0.1)
parser.add_argument('--lamda_w2', type=float, default=0.1)
# Datasets and Model
parser.add_argument('--model', type=str, default='akt_pid')
parser.add_argument('--data_dir', type=str, default="/opt/ml/input/data/train_dataset")
parser.add_argument('--asset_dir', type=str, default="asset")
parser.add_argument('--output_dir', type=str, default="output")
parser.add_argument('--test_file', type=str, default="test_data.csv")
parser.add_argument('--project', type=str, default="AKT_elo")
parser.add_argument('--fe_mode', type=str, default="elo", help="defualt or elo")
parser.add_argument('--mode', type=str, default="ensemble", help="ensemble or model_ckpt name")
params = parser.parse_args()
params.save = params.project
params.load = params.project
# preprocess
setSeeds(params.seed)
if params.fe_mode == 'elo':
preprocess = Preprocess_elo(params)
else:
preprocess = Preprocess(params)
preprocess.load_test_data(params.test_file)
test_data = preprocess.get_test_data()
print("\n")
print("Preprocessing is done.")
print("\n")
# setup
params.n_question = preprocess.args.n_questions
params.n_pid = preprocess.args.n_tag
dat = DATA(n_question=params.n_question,
seqlen=params.seqlen)
test_q_data, test_qa_data, test_pid = dat.load_data(test_data)
print("inference start!")
print("test_q_data.shape", test_q_data.shape)
print("test_qa_data.shape", test_qa_data.shape)
###Train- Test
inference(params, test_q_data,test_qa_data, test_pid)