-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
141 lines (125 loc) · 4.2 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
import os
from train import id_to_string
from metrics import word_error_rate, sentence_acc
from checkpoint import load_checkpoint
from torchvision import transforms
from dataset import LoadEvalDataset, collate_eval_batch, START, PAD
from flags import Flags
from utils import get_network, get_optimizer
import csv
from torch.utils.data import DataLoader
import argparse
import random
from tqdm import tqdm
def main(parser):
is_cuda = torch.cuda.is_available()
checkpoint = load_checkpoint(parser.checkpoint, cuda=is_cuda)
options = Flags(checkpoint["configs"]).get()
torch.manual_seed(options.seed)
random.seed(options.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
hardware = "cuda" if is_cuda else "cpu"
device = torch.device(hardware)
print("--------------------------------")
print("Running {} on device {}\n".format(options.network, device))
model_checkpoint = checkpoint["model"]
if model_checkpoint:
print(
"[+] Checkpoint\n",
"Resuming from epoch : {}\n".format(checkpoint["epoch"]),
)
print(options.input_size.height)
transformed = transforms.Compose(
[
transforms.Resize((options.input_size.height, options.input_size.width)),
transforms.ToTensor(),
]
)
dummy_gt = "\sin " * parser.max_sequence # set maximum inference sequence
root = os.path.join(os.path.dirname(parser.file_path), "images")
with open(parser.file_path, "r") as fd:
reader = csv.reader(fd, delimiter="\t")
data = list(reader)
test_data = [[os.path.join(root, x[0]), x[0], dummy_gt] for x in data]
test_dataset = LoadEvalDataset(
test_data, checkpoint["token_to_id"], checkpoint["id_to_token"], crop=False, transform=transformed,
rgb=options.data.rgb
)
test_data_loader = DataLoader(
test_dataset,
batch_size=parser.batch_size,
shuffle=False,
num_workers=options.num_workers,
collate_fn=collate_eval_batch,
)
print(
"[+] Data\n",
"The number of test samples : {}\n".format(len(test_dataset)),
)
model = get_network(
options.network,
options,
model_checkpoint,
device,
test_dataset,
)
model.eval()
results = []
for d in tqdm(test_data_loader):
input = d["image"].to(device)
expected = d["truth"]["encoded"].to(device)
output = model(input, expected, False, 0.0)
decoded_values = output.transpose(1, 2)
_, sequence = torch.topk(decoded_values, 1, dim=1)
sequence = sequence.squeeze(1)
sequence_str = id_to_string(sequence, test_data_loader, do_eval=1)
for path, predicted in zip(d["file_path"], sequence_str):
results.append((path, predicted))
os.makedirs(parser.output_dir, exist_ok=True)
with open(os.path.join(parser.output_dir, "output.csv"), "w") as w:
for path, predicted in results:
w.write(path + "\t" + predicted + "\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint",
dest="checkpoint",
default="./log/satrn_v4/checkpoints/0050.pth",
type=str,
help="Path of checkpoint file",
)
parser.add_argument(
"--max_sequence",
dest="max_sequence",
default=230,
type=int,
help="maximun sequence when doing inference",
)
parser.add_argument(
"--batch_size",
dest="batch_size",
default=8,
type=int,
help="batch size when doing inference",
)
eval_dir = os.environ.get('SM_CHANNEL_EVAL', '/opt/ml/input/data/')
file_path = os.path.join(eval_dir, 'eval_dataset/input.txt')
parser.add_argument(
"--file_path",
dest="file_path",
default=file_path,
type=str,
help="file path when doing inference",
)
output_dir = os.environ.get('SM_OUTPUT_DATA_DIR', 'submit')
parser.add_argument(
"--output_dir",
dest="output_dir",
default=output_dir,
type=str,
help="output directory",
)
parser = parser.parse_args()
main(parser)