forked from lengstrom/defensive-distillation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
109 lines (83 loc) · 4.35 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
## model.py -- an 8 layer neural network with 726k paramaters
##
## Copyright (C) 2016, Nicholas Carlini <[email protected]>.
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
import tensorflow as tf
import pickle
import numpy as np
def make_model(restore, is_train=tf.constant(False), NUM_CHANNELS=1, IMAGE_SIZE=28, NUM_LABELS=10):
if restore == None:
conv1_weights = tf.Variable(
tf.truncated_normal([3, 3, NUM_CHANNELS, 32], stddev=0.1))
conv1_beta = tf.Variable(tf.zeros(32))
conv2_weights = tf.Variable(
tf.truncated_normal([3, 3, 32, 32], stddev=0.1))
conv2_beta = tf.Variable(tf.zeros(32))
conv3_weights = tf.Variable(
tf.truncated_normal([3, 3, 32, 64], stddev=0.1))
conv3_beta = tf.Variable(tf.zeros(64))
conv4_weights = tf.Variable(
tf.truncated_normal([3, 3, 64, 64], stddev=0.1))
conv4_beta = tf.Variable(tf.zeros(64))
fc1_weights = tf.Variable(
tf.truncated_normal([7 * 7 * 64, 200], stddev=0.1))
fc1_beta = tf.Variable(tf.zeros(200))
fc2_weights = tf.Variable(
tf.truncated_normal([200, 200], stddev=0.1))
fc2_beta = tf.Variable(tf.zeros(200))
fc3_weights = tf.Variable(
tf.truncated_normal([200, NUM_LABELS], stddev=0.1))
fc3_beta = tf.Variable(tf.zeros(NUM_LABELS))
else:
conv1_weights, conv1_beta, conv2_weights, conv2_beta, conv3_weights, conv3_beta, conv4_weights, conv4_beta, fc1_weights, fc1_beta, fc2_weights, fc2_beta, fc3_weights, fc3_beta = [tf.constant(np.array(x,dtype=np.float32)) for x in pickle.load(open(restore,"rb"))]
# This model and the paramaters are the same as those defined in
# Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
# Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami
# Available at
# https://arxiv.org/pdf/1511.04508.pdf
def model(data, train=False):
conv = tf.nn.conv2d(data, conv1_weights, strides=[1, 1, 1, 1], padding='SAME')
relu = tf.nn.relu(conv+conv1_beta)
conv = tf.nn.conv2d(relu, conv2_weights, strides=[1, 1, 1, 1], padding='SAME')
relu = tf.nn.relu(conv+conv2_beta)
pool = tf.nn.max_pool(relu, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME')
conv = tf.nn.conv2d(pool, conv3_weights, strides=[1, 1, 1, 1], padding='SAME')
relu = tf.nn.relu(conv+conv3_beta)
conv = tf.nn.conv2d(relu, conv4_weights, strides=[1, 1, 1, 1], padding='SAME')
relu = tf.nn.relu(conv+conv4_beta)
pool = tf.nn.max_pool(relu, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME')
pool_shape = pool.get_shape().as_list()
reshape = tf.reshape(pool,
[-1, pool_shape[1] * pool_shape[2] * pool_shape[3]])
hidden = tf.nn.relu(tf.matmul(reshape, fc1_weights)+fc1_beta)
hidden = tf.nn.relu(tf.matmul(hidden, fc2_weights)+fc2_beta)
if train:
hidden = tf.nn.dropout(hidden, .5)
return tf.matmul(hidden, fc3_weights) + fc3_beta
def saver(s, nn):
def deeplist(x):
try:
x[0]
return list(map(deeplist,x))
except:
return x
dd = [deeplist(s.run(x)) for x in [conv1_weights, conv1_beta, conv2_weights, conv2_beta, conv3_weights, conv3_beta, conv4_weights, conv4_beta, fc1_weights, fc1_beta, fc2_weights, fc2_beta, fc3_weights, fc3_beta]]
pickle.dump(dd,open(nn,"wb"),pickle.HIGHEST_PROTOCOL)
if restore:
return model
else:
return model, saver
def preprocess(x):
return x