-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.sh
executable file
·62 lines (51 loc) · 2.12 KB
/
train.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
source common.sh
# 1: CNNr with default parameters
# python train.py --phase_path "$phase_path" --captured_path "$captured_path" --experiment test_shape
# 2: CNNr with no outer_skip
# python train.py --phase_path "$phase_path" --captured_path "$captured_path" --outer_skip false
# 3: CNNcStacked with default parameters
# python train.py --phase_path "$phase_path" --captured_path "$captured_path" --target_network "stackedcnnc"
# 4: Complex
# python train.py --phase_path "$phase_path" --captured_path "$captured_path" --target_network "complexcnnc" --experiment complex2
# Real Adam, complex cardiod
# python train.py --phase_path "$phase_path" --captured_path "$captured_path" \
# --target_network "complexcnnc" \
# --experiment exp5 \
# --activation complex_cardiod \
# --optimizer real_adam
# --lr_model 5e-5
# Complex Adam, real_relu
python train.py --phase_path "$phase_path" --captured_path "$captured_path" \
--target_network "complexcnnc" \
--experiment exp6_trial2 \
--activation real_relu \
--optimizer complex_adam
--lr_model 5e-5
# # Complex Adam, complex relu
# python train.py --phase_path "$phase_path" --captured_path "$captured_path" \
# --target_network "complexcnnc" \
# --experiment exp7 \
# --activation complex_relu \
# --optimizer complex_adam
# --lr_model 5e-5
# # Complex Adam, complex cardiod
# python train.py --phase_path "$phase_path" --captured_path "$captured_path" \
# --target_network "complexcnnc" \
# --experiment exp8 \
# --activation complex_cardiod \
# --optimizer complex_adam
# --lr_model 5e-5
# # Complex Adam, fixed_mod_relu
# python train.py --phase_path "$phase_path" --captured_path "$captured_path" \
# --target_network "complexcnnc" \
# --experiment exp9 \
# --activation fixed_mod_relu \
# --optimizer complex_adam
# --lr_model 5e-5
# # Complex Adam, learnable_mod_relu
# python train.py --phase_path "$phase_path" --captured_path "$captured_path" \
# --target_network "complexcnnc" \
# --experiment exp10 \
# --activation learnable_mod_relu \
# --optimizer complex_adam
# --lr_model 5e-5