-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmain_gen_pseudo-data.py
142 lines (118 loc) · 5.97 KB
/
main_gen_pseudo-data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#
# Experiment Entry point
# 1. Trains model on Syn Data
# 2. Generates CelebA Data
# 3. Trains on Syn + CelebA Data
#
import torch
import torchvision
from torchvision import transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import torch.nn as nn
import argparse
import wandb
from data_loading import *
from utils import *
from shading import *
from train import *
from models import *
def main():
ON_SERVER = True
parser = argparse.ArgumentParser(description='SfSNet - Residual')
parser.add_argument('--batch_size', type=int, default=8, metavar='N',
help='input batch size for training (default: 8)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
help='learning rate (default: 0.001)')
parser.add_argument('--wt_decay', type=float, default=0.0005, metavar='W',
help='SGD momentum (default: 0.0005)')
parser.add_argument('--no_cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--read_first', type=int, default=-1,
help='read first n rows (default: -1)')
parser.add_argument('--details', type=str, default=None,
help='Explaination of the run')
if ON_SERVER:
parser.add_argument('--syn_data', type=str, default='/nfs/bigdisk/bsonawane/sfsnet_data/',
help='Synthetic Dataset path')
parser.add_argument('--celeba_data', type=str, default='/nfs/bigdisk/bsonawane/CelebA-dataset/CelebA_crop_resize_128/',
help='CelebA Dataset path')
parser.add_argument('--log_dir', type=str, default='./results/',
help='Log Path')
else:
parser.add_argument('--syn_data', type=str, default='./data/sfs-net/',
help='Synthetic Dataset path')
parser.add_argument('--celeba_data', type=str, default='./data/celeba/',
help='CelebA Dataset path')
parser.add_argument('--log_dir', type=str, default='./results/',
help='Log Path')
parser.add_argument('--load_model', type=str, default=None,
help='load model from')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
# initialization
syn_data = args.syn_data
celeba_data = args.celeba_data
batch_size = args.batch_size
lr = args.lr
wt_decay = args.wt_decay
log_dir = args.log_dir
epochs = args.epochs
model_dir = args.load_model
read_first = args.read_first
if read_first == -1:
read_first = None
# Debugging and check working
# syn_train_csv = syn_data + '/train.csv'
# train_dataset, _ = get_sfsnet_dataset(syn_dir=syn_data+'train/', read_from_csv=syn_train_csv, read_celeba_csv=None, read_first=read_first, validation_split=5)
# train_dl = DataLoader(train_dataset, batch_size=10, shuffle=False)
# validate_shading_method(train_dl)
# return
# Init WandB for logging
wandb.init(project='SfSNet-CelebA-Baseline-V3-SkipNetBased')
wandb.log({'lr':lr, 'weight decay': wt_decay})
# Initialize models
skipnet_model = SkipNet()
if use_cuda:
skipnet_model = skipnet_model.cuda()
if model_dir is not None:
skipnet_model.load_state_dict(torch.load(model_dir + 'skipnet_model.pkl'))
else:
print('Initializing weights')
skipnet_model.apply(weights_init)
os.system('mkdir -p {}'.format(args.log_dir))
with open(args.log_dir+'/details.txt', 'w') as f:
f.write(args.details)
wandb.watch(skipnet_model)
# 1. Train on Synthetic data
train_synthetic(skipnet_model, syn_data, celeba_data = celeba_data, read_first=read_first, \
batch_size=batch_size, num_epochs=epochs, log_path=log_dir+'Synthetic_Train/', use_cuda=use_cuda, wandb=wandb, \
lr=lr, wt_decay=wt_decay, training_syn=True)
# 2. Generate Pseudo-Training information for CelebA dataset
# Load CelebA dataset
celeba_train_csv = celeba_data + '/train.csv'
celeba_test_csv = celeba_data + '/test.csv'
train_dataset, _ = get_celeba_dataset(read_from_csv=celeba_train_csv, read_first=read_first, validation_split=0)
test_dataset, _ = get_celeba_dataset(read_from_csv=celeba_test_csv, read_first=read_first, validation_split=0)
celeba_train_dl = DataLoader(train_dataset, batch_size=1, shuffle=True)
celeba_test_dl = DataLoader(test_dataset, batch_size=1, shuffle=True)
out_celeba_images_dir = celeba_data + 'synthesized_data_skip_net/'
out_train_celeba_images_dir = out_celeba_images_dir + 'train/'
out_test_celeba_images_dir = out_celeba_images_dir + 'test/'
os.system('mkdir -p {}'.format(out_train_celeba_images_dir))
os.system('mkdir -p {}'.format(out_test_celeba_images_dir))
# Dump normal, albedo, shading, face and sh for celeba dataset
generate_celeba_synthesize(skipnet_model, celeba_train_dl, train_epoch_num=epochs, use_cuda=use_cuda,
out_folder=out_train_celeba_images_dir, wandb=wandb)
generate_celeba_synthesize(skipnet_model, celeba_test_dl, train_epoch_num=epochs, use_cuda=use_cuda,
out_folder=out_test_celeba_images_dir, wandb=wandb)
# generate CSV for images generated above
generate_celeba_synthesize_data_csv(out_train_celeba_images_dir, out_celeba_images_dir + '/train.csv')
generate_celeba_synthesize_data_csv(out_test_celeba_images_dir, out_celeba_images_dir + '/test.csv')
if __name__ == '__main__':
main()