To get started, please first set up the environment:
# If you want to use the evaluate locally, you need to install the requirements in an isolated environment
pip install -I -r https://raw.githubusercontent.com/bigcode-project/bigcodebench/main/Requirements/requirements-eval.txt
# You are strongly recommended to install the bigcodebench dependencies in another environment
pip install bigcodebench --upgrade
⏬ Install nightly version :: click to expand ::
# Install to use bigcodebench
pip install "git+https://github.com/bigcode-project/bigcodebench.git" --upgrade
⏬ Using BigCodeBench as a local repo? :: click to expand ::
git clone https://github.com/bigcode-project/bigcodebench.git
cd bigcodebench
export PYTHONPATH=$PYTHONPATH:$(pwd)
# Install to use bigcodebench
pip install -e .
Below are all the arguments for bigcodebench.evaluate
for the remote evaluation:
--model
: The model to evaluate--split
: The split of the dataset to evaluate--subset
: The subset of the dataset to evaluate
--root
: The root directory to store the results, default tobcb_results
--bs
: The batch size, default to1
--n_samples
: The number of samples, default to1
--temperature
: The temperature, default to0.0
--max_new_tokens
: The length of max new tokens, default to1280
--greedy
: Whether to use greedy decoding, default toFalse
--strip_newlines
: Whether to strip newlines, default toFalse
, set toTrue
to strip newlines for some model series like StarCoder2--direct_completion
: Whether to use direct completion, default toFalse
--resume
: Whether to resume the evaluation, default toTrue
, set toFalse
to re-run the evaluation--id_range
: The range of the tasks to evaluate, default toNone
, e.g.--id_range 10-20
will evaluate the tasks from 10 to 20--backend
: The backend to use, default tovllm
--base_url
: The base URL of the backend for OpenAI-compatible APIs, default toNone
--instruction_prefix
: The instruction prefix for the Anthropic backend, default toNone
--response_prefix
: The response prefix for the Anthropic backend, default toNone
--revision
: The revision of the model with the vLLM or HF backend, default tomain
--tp
: The tensor parallel size for the vLLM backend, default to1
--trust_remote_code
: Whether to trust the remote code, default toFalse
--tokenizer_name
: The name of the customized tokenizer, default toNone
--tokenizer_legacy
: Whether to use the legacy tokenizer, default toFalse
--samples
: The path to the generated samples file, default toNone
--no_execute
: Whether to not execute the samples, default toFalse
--local_execute
: Whether to execute the samples locally, default toFalse
--remote_execute_api
: The API endpoint for remote execution, default tohttps://bigcode-bigcodebench-evaluator.hf.space/
, you can also use your own Gradio API endpoint by cloning the bigcodebench-evaluator repo and checkUse via API
at the bottom of the HF space page.--pass_k
: Thek
inPass@k
, default to[1, 5, 10]
, e.g.--pass_k 1,5,10
will evaluatePass@1
,Pass@5
andPass@10
--calibrated
: Whether to use the calibrated samples, default toTrue
--save_pass_rate
: Whether to save the pass rate to a file, default toTrue
--parallel
: The number of parallel processes, default to-1
, e.g.--parallel 10
will evaluate 10 samples in parallel--min_time_limit
: The minimum time limit for the execution, default to1
, e.g.--min_time_limit 10
will evaluate the samples with at least 10 seconds--max_as_limit
: The maximum address space limit for the execution, default to30*1024
(30 GB), e.g.--max_as_limit 20*1024
will evaluate the samples with at most 20 GB--max_data_limit
: The maximum data segment limit for the execution, default to30*1024
(30 GB), e.g.--max_data_limit 20*1024
will evaluate the samples with at most 20 GB--max_stack_limit
: The maximum stack limit for the execution, default to10
, e.g.--max_stack_limit 20
will evaluate the samples with at most 20 MB--check_gt_only
: Whether to only check the ground truths, default toFalse
--no_gt
: Whether to not check the ground truths, default toFalse
We provide an example script to run the full pipeline for the remote evaluation:
bash run.sh
# when greedy, there is no need for temperature and n_samples
bigcodebench.generate \
--model [model_name] \
--split [complete|instruct] \
--subset [full|hard] \
[--greedy] \
--bs [bs] \
--temperature [temp] \
--n_samples [n_samples] \
--resume \
--backend [vllm|openai|mistral|anthropic|google|hf] \
--tp [TENSOR_PARALLEL_SIZE] \
[--trust_remote_code] \
[--base_url [base_url]] \
[--tokenizer_name [tokenizer_name]]
The generated code samples will be stored in a file named [model_name]--bigcodebench-[instruct|complete]--[backend]-[temp]-[n_samples]-sanitized_calibrated.jsonl
. Alternatively, you can use the following command to utilize our pre-built docker images for generating code samples:
# If you are using GPUs
docker run --gpus '"device=$CUDA_VISIBLE_DEVICES"' -v $(pwd):/app -t bigcodebench/bigcodebench-generate:latest \
--model [model_name] \
--split [complete|instruct] \
--subset [full|hard] \
[--greedy] \
--bs [bs] \
--temperature [temp] \
--n_samples [n_samples] \
--resume \
--backend [vllm|openai|mistral|anthropic|google|hf] \
--tp [TENSOR_PARALLEL_SIZE]
# ...Or if you are using CPUs
docker run -v $(pwd):/app -t bigcodebench/bigcodebench-generate:latest \
--model [model_name] \
--split [complete|instruct] \
--subset [full|hard] \
[--greedy] \
--bs [bs] \
--temperature [temp] \
--n_samples [n_samples] \
--resume \
--backend [vllm|hf|openai|mistral|anthropic|google]
# If you wish to use gated or private HuggingFace models and datasets
docker run -e HUGGING_FACE_HUB_TOKEN=$token -v $(pwd):/app -t bigcodebench/bigcodebench-generate:latest # omit other arguments4
# Similarly, to use other backends that require authentication
docker run -e OPENAI_API_KEY=$OPENAI_API_KEY -v $(pwd):/app -t bigcodebench/bigcodebench-generate:latest # omit other arguments
docker run -e ANTHROPIC_KEY=$ANTHROPIC_KEY -v $(pwd):/app -t bigcodebench/bigcodebench-generate:latest # omit other arguments
docker run -e MISTRAL_KEY=$MISTRAL_KEY -v $(pwd):/app -t bigcodebench/bigcodebench-generate:latest # omit other arguments
docker run -e GOOGLE_API_KEY=$OPENAI_API_KEY -v $(pwd):/app -t bigcodebench/bigcodebench-generate:latest # omit other arguments
Following which, you can run the built container as shown in above.
🤔 Structure of `problem`? :: click to expand ::
task_id
is the identifier string for the taskentry_point
is the name of the functioncomplete_prompt
is the prompt for BigCodeBench-Completeinstruct_prompt
is the prompt for BigCodeBench-Instruct
canonical_solution
is the ground-truth implementationtest
is theunittest.TestCase
class
Note
Expected Schema of [model_name]--bigcodebench-[task]--[backend]-[temp]-[n_samples].jsonl
task_id
: Task ID, which are the keys ofget_bigcodebench()
solution
(optional): Self-contained solution (usually including the prompt)raw_solution
(optional): The raw solution generated by the LLM- Example:
{"task_id": "BigCodeBench/?", "solution": "def f():\n return 1", "raw_solution": "def f():\n return 1\nprint(f())"}
- Example:
🔎 Checking the compatibility of post-processed code:: click to expand ::
To double-check the post-processing results, you can use bigcodebench.syncheck
to check the code validity before and after sanitization, which will print erroneous code snippets and why they are wrong:
# 💡 If you are storing codes in jsonl:
bigcodebench.syncheck --samples samples.jsonl
# 💡 If you are storing codes in directories:
bigcodebench.syncheck --samples /path/to/vicuna-[??]b_temp_[??]
# 💡 Or change the entrypoint to bigcodebench.syncheck in any pre-built docker image, like
docker run -it --entrypoint bigcodebench.syncheck -v $(pwd):/app bigcodebench/bigcodebench-evaluate:latest --samples samples.jsonl
You are strongly recommended to use a sandbox such as docker:
# Mount the current directory to the container
# If you want to change the RAM address space limit (in MB, 30 GB by default): `--max-as-limit XXX`
# If you want to change the RAM data segment limit (in MB, 30 GB by default): `--max-data-limit`
# If you want to change the RAM stack limit (in MB, 10 MB by default): `--max-stack-limit`
# If you want to increase the execution time limit (in seconds, 240 seconds by default): `--min-time-limit`
docker run -v $(pwd):/app bigcodebench/bigcodebench-evaluate:latest --local_execute --split [complete|instruct] --subset [full|hard] --samples samples-sanitized-calibrated.jsonl
# If you only want to check the ground truths
docker run -v $(pwd):/app bigcodebench/bigcodebench-evaluate:latest --local_execute --split [complete|instruct] --subset [full|hard] --samples samples-sanitized-calibrated.jsonl --check-gt-only
...Or if you want to try it locally regardless of the risks
First, install the dependencies for BigCodeBench:
pip install -r https://raw.githubusercontent.com/bigcode-project/bigcodebench/main/Requirements/requirements-eval.txt
Then, run the evaluation:
# ...Or locally ⚠️
bigcodebench.evaluate --local_execute --split [complete|instruct] --subset [full|hard] --samples samples-sanitized-calibrated.jsonl
# ...If you really don't want to check the ground truths
bigcodebench.evaluate --local_execute --split [complete|instruct] --subset [full|hard] --samples samples-sanitized-calibrated.jsonl --no-gt
# If you want to save the pass rate to a file
bigcodebench.evaluate --local_execute --split [complete|instruct] --subset [full|hard] --samples samples-sanitized-calibrated.jsonl --save_pass_rate
# You are strongly recommended to use the following command to clean up the environment after evaluation:
pids=$(ps -u $(id -u) -o pid,comm | grep 'bigcodebench' | awk '{print $1}'); if [ -n \"$pids\" ]; then echo $pids | xargs -r kill; fi;
rm -rf /tmp/*
Tip
If you want to customize the k
in Pass@k
, please pass --pass_k
with a comma-separated string.
For example, if you want to use Pass@1
and Pass@100
, you can pass --pass_k 1,100
.
Tip
Do you use a very slow machine?
LLM solutions are regarded as failed on timeout (and OOM etc.). Specifically, we set the dynamic timeout based on the ground-truth solution's runtime.
Additionally, you are NOT encouraged to make your test-bed over stressed while running evaluation.
For example, using --parallel 64
on a 4-core machine or doing something else during evaluation are bad ideas...
⌨️ More command-line flags :: click to expand ::
--parallel
: by default half of the cores
The output should be like (below is GPT-4 greedy decoding example):
Asserting the groundtruth...
Expected outputs computed in 1200.0 seconds
Reading samples...
1140it [00:00, 1901.64it/s]
Evaluating samples...
100%|██████████████████████████████████████████| 1140/1140 [19:53<00:00, 6.75it/s]
BigCodeBench-Instruct-calibrated
Groundtruth pass rate: 1.000
pass@1: 0.568
- A cache file named like
samples_eval_results.json
will be cached. Remove it to re-run the evaluation
🤔 How long it would take? :: click to expand ::
If you do greedy decoding where there is only one sample for each task, the evaluation should take just a few minutes on Intel(R) Xeon(R) Gold 6150 CPU @ 2.70GHz, composed of 2 sockets, with 18 cores per socket. However, if you have multiple samples for each task, the evaluation will take longer. Here are some tips to speed up the evaluation:
- Use
--parallel $(nproc)
- Use our pre-evaluated results (see LLM-generated code)
You can inspect the failed samples by using the following command:
# Inspect the failed samples and save the results to `inspect/`
bigcodebench.inspect --eval_results sample-sanitized-calibrated_eval_results.json --split complete --subset hard
# Re-run the inspection in place
bigcodebench.inspect --eval_results sample-sanitized-calibrated_eval_results.json --split complete --subset hard --in_place
We provide a script to replicate the analysis like Elo Rating and Task Solve Rate, which helps you understand the performance of the models further.
To run the analysis, you need to put all the `samples_eval_results.json` files in a `results` folder, which is in the same directory as the script.
```bash
cd analysis
python get_results.py
-
Due to the Hugging Face tokenizer update, some tokenizers may be broken and will degrade the performance of the evaluation. Therefore, we set up with
legacy=False
for the initialization. If you notice the unexpected behaviors, please try--tokenizer_legacy
during the generation. -
Due to the flakiness in the evaluation, the execution results may vary slightly (~0.2% for Full set, and ~0.6% for Hard set) between runs. We are working on improving the evaluation stability.
-
You may get errors like
ImportError: /usr/local/lib/python3.10/site-packages/matplotlib/_c_internal_utils.cpython-310-x86_64-linux-gnu.so: failed to map segment from shared object
when running the evaluation. This is due to the memory limit of the docker container. You can increase the memory limit of the docker container to solve this issue. If the issue persists ,please use the real-time code execution session to evaluate the code in the leaderboard. -
We are aware of the issue of some users needing to use a proxy to access the internet. Please use Remote Evaluation to get the accurate results.
@article{zhuo2024bigcodebench,
title={BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions},
author={Zhuo, Terry Yue and Vu, Minh Chien and Chim, Jenny and Hu, Han and Yu, Wenhao and Widyasari, Ratnadira and Yusuf, Imam Nur Bani and Zhan, Haolan and He, Junda and Paul, Indraneil and others},
journal={arXiv preprint arXiv:2406.15877},
year={2024}
}