-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathtrain_dynamic.py
226 lines (196 loc) · 10.8 KB
/
train_dynamic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import os
import torch
import torch.nn as nn
import argparse
import time
import pickle
import tensorboard_logger as tb_logger
from datasets.datasets_loader import get_loaders_new
from helper.loops import train_one_epoch_dynamic, validate
from models.backbone.Signal import model_dict
from datasets import datasets_dict
from helper.create import create_optimizer, create_scheduler
def parse_args():
parser = argparse.ArgumentParser('the argument for training')
# regular parameters
parser.add_argument("--print_freq", type=int, default=10, help="the frequency to print")
parser.add_argument("--save_freq", type=int, default=100, help="the frequency to save")
parser.add_argument('--batch_size', type=int, default=32, help="the batch size")
parser.add_argument("--num_workers", type=int, default=0, help="the num of workers to load data")
parser.add_argument("--epochs", type=int, default=500, help="the total train epoch")
# optimizer parameters
parser.add_argument("--optimizer_name", type=str, default="adam", choices=["adam", "sgd", "adamw", "rmsprop"],
help='Optimizer name')
parser.add_argument("--opt_eps", type=float, default=1e-8, help="Optimizer Epsilon")
parser.add_argument("--opt_betas", type=str, default=None, help="Optimizer Betas, use opt default")
parser.add_argument("--momentum", type=float, default=0.9, help="Optimizer momentum")
parser.add_argument("--weight_decay", type=float, default=5e-5, help="the norm to weight")
parser.add_argument("--lr", type=float, default=1e-3, help="the init learning rate")
parser.add_argument("--amp", type=int, default=0, choices=[0, 1], help="using amp to train or not")
# schedule parameters
parser.add_argument("--lr_scheduler", type=str, default="step", choices=["step", "mstep", "exp", "cos", "reduce"],
help="the learning rate scheduler")
parser.add_argument("--lr_decay_epochs", type=str, default="150,250,350", help="the epoch to adjust the lr")
parser.add_argument("--lr_decay_rate", type=float, default=0.9, help="decay rate for learning rate")
parser.add_argument("--patience", type=int, default=20, help="the metric to adjust ReduceLROnPlateau")
# loss parameters
parser.add_argument("--loss_name", type=str, default="cross_entropy",
choices=["cross_entropy", "smooth_cross_entropy", "jsd_loss", "enhanced_loss"])
# dataset parameters
parser.add_argument("--work_dir", type=str, default=r'D:\深度学习\测试数据\湖大螺旋锥齿轮新箱体test\测试数据集',
help="the path root of data")
parser.add_argument("--datasets", type=str, default="hnu_datasets", choices=["hnu_dataset",
"xjtu_dataset",
"dds_dataset",
],
help="the dataset for training")
parser.add_argument("--size", type=int, default=100, help="Number of all samples")
parser.add_argument('--train_size_use', type=str, default="300,20",
help="the dataset size of each type during training preprocess")
parser.add_argument('--test_size', type=int, default=100,
help="the dataset size of each type during testing preprocess")
parser.add_argument("--step", type=int, default=500, help="the overlap of two samples")
parser.add_argument("--length", type=int, default=1024, help="the length of each sample")
parser.add_argument("--use_ratio", type=int, default=0, choices=[0, 1],
help=" Whether to specify the proportion of training samples")
parser.add_argument("--ratio", type=float, default=0.5,
help=" Ratio of training samples, should be (0,1) and only works when opt.use_ratio is True")
parser.add_argument("-t", "--trail", type=int, default=0, help="the experiment id")
# model parameters
parser.add_argument("--model", type=str, default="convformer_s",
choices=["convformer_s", "convformer_m", "convformer_l",
"resnet18", "resnet34", "resnet50", "resnet101", "resnet152",
"vgg11", "vgg13", "vgg16", "vgg19",
"ehcnn_24_16", "ehcnn_30_32", "ehcnn_24_16_dilation",
"vit_base", "vit_middle_16", 'vit_middle_32',
'max_vit_tiny_16', 'max_vit_tiny_32', 'max_vit_small_16', 'max_vit_small_32',
'localvit_base_patch16_type1', 'localvit_base_patch16_type2',
' localvit_middle1_patch16_type1', 'localvit_middle12_patch16_type1'],
help="the name of model")
parser.add_argument("--num_cls", type=int, default=8, help="the classification classes")
parser.add_argument("-ic", "--input_channel", type=int, default=3, help="the input channel of input data")
parser.add_argument("--layer_args", type=str, default='100,64,32', help="the hidden layer neurons")
opt = parser.parse_args()
# add lr_decay_epochs for lr scheduler
decay_iterations = opt.lr_decay_epochs.split(",")
opt.lr_decay_epochs = list([])
for it in decay_iterations:
opt.lr_decay_epochs.append(int(it))
# add h_args for classifier
if not opt.layer_args:
opt.h_args = None
else:
h_layer_args = opt.layer_args.split(",")
opt.h_args = list([])
for it in h_layer_args:
opt.h_args.append(int(it))
# add opt betas for optimizer(like adam)
if opt.opt_betas:
opt.betas = []
for it in opt.opt_betas.split(","):
opt.betas.append(float(it))
if not opt.opt_betas:
opt.betas = None
# add train_size for imbalanced sample training
list_ = opt.train_size_use.split(",")
if len(list_) == 1:
train_size = int(list_[0])
opt.train_size = [train_size] * opt.num_cls
else:
if len(list_) == 2:
opt.train_size = [int(list_[0])] + [int(list_[1])] * (opt.num_cls - 1)
elif len(list_) == opt.num_cls:
opt.train_size = []
for it in list_:
opt.train_size.append(int(it))
else:
raise ValueError('the train size should be 2 or num classes')
opt.model_name = '{}_{}_lr_{}_decay_{}_trial_{}_train_ratio{}_amp_use_{}'.format(opt.model, opt.datasets, opt.lr,
opt.weight_decay,
opt.trail, opt.ratio,
bool(opt.amp))
opt.save_path = './save'
opt.save_folder = os.path.join(opt.save_path, opt.model_name)
if not os.path.isdir(opt.save_folder):
os.makedirs(opt.save_folder)
return opt
def main():
train_result = {'accuracy': [],
'loss': [],
'lr': [],
'sample_weight': []}
test_result = {'accuracy': [],
'loss': []}
best_acc = 0
best_epoch = 0
opt = parse_args()
model = model_dict[opt.model](h_args=opt.h_args, in_c=opt.input_channel, num_cls=opt.num_cls)
datasets_using = datasets_dict[opt.datasets]
print("==>Loading data...")
train_loader, test_loader = get_loaders_new(opt, MyDatasets=datasets_using)
# create optimizer, lr_scheduler, loss_function, scaler
optimizer = create_optimizer(model, opt)
lr_scheduler = create_scheduler(optimizer, opt)
sample_weight = torch.tensor(opt.train_size, dtype=torch.float)
sample_weight = (sample_weight.max() / sample_weight).cuda()
criterion = nn.CrossEntropyLoss()
if torch.cuda.is_available():
model = model.cuda()
criterion = criterion.cuda()
for epoch in range(1, opt.epochs + 1):
print("==>the training is going ")
time_1 = time.time()
train_acc, train_loss, cur_lr, sample_weight = train_one_epoch_dynamic(epoch, train_loader, model, criterion,
optimizer, opt, sample_weight)
criterion.weight = sample_weight.cuda()
lr_scheduler.step()
time_2 = time.time()
train_result["accuracy"].append(train_acc)
train_result["loss"].append(train_loss)
train_result["lr"].append(cur_lr)
train_result["sample_weight"].extend(sample_weight.cpu().detach().numpy())
print("the {} epoch, total train time{:.2f}".format(epoch, time_2 - time_1))
test_acc, test_loss = validate(test_loader, model, criterion, opt)
test_result["accuracy"].append(test_acc)
test_result['loss'].append(test_loss)
if test_acc > best_acc:
best_acc = test_acc
best_state = {'epoch': epoch,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'best_acc': best_acc}
best_epoch = epoch
if epoch % opt.save_freq == 0:
print("==>Saving the regular model")
regular_stare = {'epoch': epoch,
'model': model.state_dict(),
'optimizer': optimizer.state_dict()}
regular_save_file = os.path.join(opt.save_folder, 'checkpoint_epoch_{epoch}.pth'.format(epoch=epoch))
torch.save(regular_stare, regular_save_file)
final_state = {'opt': opt,
'model': model.state_dict(),
'optimizer': optimizer.state_dict()}
# save the last checkpoint file
print("==> Saving the last model")
final_save_file = os.path.join(opt.save_folder, 'last_checkpoint_{epoch}.pth'.format(epoch=opt.epochs))
torch.save(final_state, final_save_file)
# save the best checkpoint file
print("==> Saving the best model")
best_save_file = os.path.join(opt.save_folder, 'best_checkpoint_{epoch}.pth'.format(epoch=best_epoch))
torch.save(best_state, best_save_file)
# save the train_result and test_result by using pickle
print('==> Saving the acc, loss and lr during training')
train_save_pkl = os.path.join(opt.save_folder, 'train_result.pkl')
with open(train_save_pkl, "wb") as tf:
pickle.dump(train_result, tf)
'''
load pkl
with oepn(train_save_pkl, "rb") as tf:
dict_ = pickle.load(tf)
'''
print('==> Saving the test acc and loss')
test_save_pkl = os.path.join(opt.save_folder, "test_result.pkl")
with open(test_save_pkl, "wb") as tf:
pickle.dump(test_save_pkl, tf)
if __name__ == "__main__":
main()