Skip to content

Latest commit

 

History

History
276 lines (224 loc) · 8.38 KB

README.md

File metadata and controls

276 lines (224 loc) · 8.38 KB

doc2vec

This repository contains an R package allowing to build Paragraph Vector models also known as doc2vec models. You can train the distributed memory ('PV-DM') and the distributed bag of words ('PV-DBOW') models. Next to that, it also allows to build a top2vec model allowing to cluster documents based on these embeddings.

  • doc2vec is based on the paper Distributed Representations of Sentences and Documents Mikolov et al. while top2vec is based on the paper Distributed Representations of Topics Angelov
  • The doc2vec part is an Rcpp wrapper around https://github.com/hiyijian/doc2vec
  • The package allows one
    • to train paragraph embeddings (also known as document embeddings) on character data or data in a text file
    • use the embeddings to find similar documents, paragraphs, sentences or words
    • cluster document embeddings using top2vec
  • Note. For getting word vectors in R: look at package https://github.com/bnosac/word2vec, details here, for Starspace embeddings: look at package https://github.com/bnosac/ruimtehol, details here

Installation

  • For regular users, install the package from your local CRAN mirror install.packages("doc2vec")
  • For installing the development version of this package: remotes::install_github("bnosac/doc2vec")

Look to the documentation of the functions

help(package = "doc2vec")

Example on doc2vec

  • Take some data and standardise it a bit.
    • Make sure it has columns doc_id and text
    • Make sure that each text has less than 1000 words (a word is considered separated by a single space)
    • Make sure that each text does not contain newline symbols
library(doc2vec)
library(tokenizers.bpe)
library(udpipe)
data(belgium_parliament, package = "tokenizers.bpe")
x <- subset(belgium_parliament, language %in% "dutch")
x <- data.frame(doc_id = sprintf("doc_%s", 1:nrow(x)), 
                text   = x$text, 
                stringsAsFactors = FALSE)
x$text   <- tolower(x$text)
x$text   <- gsub("[^[:alpha:]]", " ", x$text)
x$text   <- gsub("[[:space:]]+", " ", x$text)
x$text   <- trimws(x$text)
x$nwords <- txt_count(x$text, pattern = " ")
x        <- subset(x, nwords < 1000 & nchar(text) > 0)
  • Build the model
## Low-dimensional model using DM, low number of iterations, for speed and display purposes
model <- paragraph2vec(x = x, type = "PV-DM", dim = 5, iter = 3,  
                       min_count = 5, lr = 0.05, threads = 1)
str(model)
## List of 3
##  $ model  :<externalptr> 
##  $ data   :List of 4
##   ..$ file        : chr "C:\\Users\\Jan\\AppData\\Local\\Temp\\Rtmpk9Npjg\\textspace_1c446bffa0e.txt"
##   ..$ n           : num 170469
##   ..$ n_vocabulary: num 3867
##   ..$ n_docs      : num 1000
##  $ control:List of 9
##   ..$ min_count: int 5
##   ..$ dim      : int 5
##   ..$ window   : int 5
##   ..$ iter     : int 3
##   ..$ lr       : num 0.05
##   ..$ skipgram : logi FALSE
##   ..$ hs       : int 0
##   ..$ negative : int 5
##   ..$ sample   : num 0.001
##  - attr(*, "class")= chr "paragraph2vec_trained"
## More realistic model
model <- paragraph2vec(x = x, type = "PV-DBOW", dim = 100, iter = 20, 
                       min_count = 5, lr = 0.05, threads = 4)
  • Get the embedding of the documents or words and get the vocabulary
embedding <- as.matrix(model, which = "words")
embedding <- as.matrix(model, which = "docs")
vocab     <- summary(model,   which = "docs")
vocab     <- summary(model,   which = "words")
  • Get the embedding of specific documents / words or sentences.
sentences <- list(
  sent1 = c("geld", "diabetes"),
  sent2 = c("frankrijk", "koning", "proximus"))
embedding <- predict(model, newdata = sentences,                     type = "embedding")
embedding <- predict(model, newdata = c("geld", "koning"),           type = "embedding", which = "words")
embedding <- predict(model, newdata = c("doc_1", "doc_10", "doc_3"), type = "embedding", which = "docs")
ncol(embedding)
## [1] 100
embedding[, 1:4]
##              [,1]        [,2]       [,3]        [,4]
## doc_1  0.05721277 -0.10298843  0.1089350 -0.03075439
## doc_10 0.09553983  0.05211980 -0.0513489 -0.11847925
## doc_3  0.08008177 -0.03324692  0.1563442  0.06585038
  • Get similar documents or words when providing sentences, documents or words
nn <- predict(model, newdata = c("proximus", "koning"), type = "nearest", which = "word2word", top_n = 5)
nn
## [[1]]
##      term1              term2 similarity rank
## 1 proximus telefoontoestellen  0.5357178    1
## 2 proximus            belfius  0.5169221    2
## 3 proximus                ceo  0.4839031    3
## 4 proximus            klanten  0.4819543    4
## 5 proximus               taal  0.4590944    5
## 
## [[2]]
##    term1          term2 similarity rank
## 1 koning     ministerie  0.5615162    1
## 2 koning verplaatsingen  0.5484987    2
## 3 koning        familie  0.4911003    3
## 4 koning       grondwet  0.4871097    4
## 5 koning       gedragen  0.4694150    5
nn <- predict(model, newdata = c("proximus", "koning"), type = "nearest", which = "word2doc",  top_n = 5)
nn
## [[1]]
##      term1   term2 similarity rank
## 1 proximus doc_105  0.6684639    1
## 2 proximus doc_863  0.5917463    2
## 3 proximus doc_186  0.5233522    3
## 4 proximus doc_620  0.4919243    4
## 5 proximus doc_862  0.4619178    5
## 
## [[2]]
##    term1   term2 similarity rank
## 1 koning  doc_44  0.6686417    1
## 2 koning  doc_45  0.5616031    2
## 3 koning doc_583  0.5379452    3
## 4 koning doc_943  0.4855201    4
## 5 koning doc_797  0.4573555    5
nn <- predict(model, newdata = c("doc_198", "doc_285"), type = "nearest", which = "doc2doc",   top_n = 5)
nn
## [[1]]
##     term1   term2 similarity rank
## 1 doc_198 doc_343  0.5522854    1
## 2 doc_198 doc_899  0.4902798    2
## 3 doc_198 doc_983  0.4847047    3
## 4 doc_198 doc_642  0.4829021    4
## 5 doc_198 doc_336  0.4674844    5
## 
## [[2]]
##     term1   term2 similarity rank
## 1 doc_285 doc_319  0.5318567    1
## 2 doc_285 doc_286  0.5100293    2
## 3 doc_285 doc_113  0.5056069    3
## 4 doc_285 doc_526  0.4840761    4
## 5 doc_285 doc_488  0.4805686    5
sentences <- list(
  sent1 = c("geld", "frankrijk"),
  sent2 = c("proximus", "onderhandelen"))
nn <- predict(model, newdata = sentences, type = "nearest", which = "sent2doc", top_n = 5)
nn
## $sent1
##   term1   term2 similarity rank
## 1 sent1 doc_742  0.4830917    1
## 2 sent1 doc_151  0.4340138    2
## 3 sent1 doc_825  0.4263285    3
## 4 sent1 doc_740  0.4059283    4
## 5 sent1 doc_776  0.4024554    5
## 
## $sent2
##   term1   term2 similarity rank
## 1 sent2 doc_105  0.5497447    1
## 2 sent2 doc_863  0.5061581    2
## 3 sent2 doc_862  0.4973840    3
## 4 sent2 doc_620  0.4793786    4
## 5 sent2 doc_186  0.4755909    5
sentences <- strsplit(setNames(x$text, x$doc_id), split = " ")
nn <- predict(model, newdata = sentences, type = "nearest", which = "sent2doc", top_n = 5)

Example on top2vec

Top2vec clusters document semantically and finds most semantically relevant terms for each topic

library(doc2vec)
library(word2vec)
library(uwot)
library(dbscan)
data(be_parliament_2020, package = "doc2vec")
x      <- data.frame(doc_id = be_parliament_2020$doc_id,
                     text   = be_parliament_2020$text_nl,
                     stringsAsFactors = FALSE)
x$text <- txt_clean_word2vec(x$text)
x      <- subset(x, txt_count_words(text) < 1000)

d2v    <- paragraph2vec(x, type = "PV-DBOW", dim = 50, 
                        lr = 0.05, iter = 10,
                        window = 15, hs = TRUE, negative = 0,
                        sample = 0.00001, min_count = 5, 
                        threads = 1)
model  <- top2vec(d2v, 
                  control.dbscan = list(minPts = 50), 
                  control.umap = list(n_neighbors = 15L, n_components = 3), umap = tumap, 
                  trace = TRUE)
info   <- summary(model, top_n = 7)
info$topwords

Note

The package has some hard limits namely

  • Each document should contain less than 1000 words
  • Each word has a maximum length of 100 letters

Support in text mining

Need support in text mining? Contact BNOSAC: http://www.bnosac.be