-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
308 lines (250 loc) · 11.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import torch
import numpy as np
import matplotlib.pyplot as plt
import cv2
import json
import re
import os
class Grader:
def __init__(self):
self.count_correct = 0
self.count_incorrect = 0
self.count_correct_baseline = 0
self.count_incorrect_baseline = 0
self.count_total = 0
def average_score(self):
"""Calculate and return the average score of the grades."""
if self.count_total == 0:
return 0, 0, None # Return 0 if there are no grades to avoid division by zero
accuracy_baseline = self.count_correct_baseline / self.count_total
accuracy = self.count_correct / self.count_total
stat = {
'count_correct': self.count_correct,
'count_incorrect': self.count_incorrect,
'count_correct_baseline': self.count_correct_baseline,
'count_incorrect_baseline': self.count_incorrect_baseline,
'count_total': self.count_total
}
return accuracy_baseline, accuracy, stat
def average_score_simple(self):
"""Calculate and return the average score of the grades."""
if self.count_total == 0:
return 0, 0, None # Return 0 if there are no grades to avoid division by zero
accuracy = self.count_correct / self.count_total
stat = {
'count_correct': self.count_correct,
'count_incorrect': self.count_incorrect,
'count_total': self.count_total
}
return accuracy, stat
def accumulate_grades(self, args, grades, match_baseline_failed):
# accumulate the grades
count_match_correct = 0
for grade in grades:
# if re.search(r'\[Correct\]', grade):
# count_match_correct += 1
# A match pattern to avoid no [correct] but still correct judgement
grade = grade.lower()
if re.search(r'\[correct]', grade) or (re.search("correct", grade) and not re.search("incorrect", grade)):
count_match_correct += 1
match_correct = True if count_match_correct >= 2 else False # majority vote: if at least 2 out of 3 graders agree, the answer is correct
if match_correct:
majority_vote = 'Majority vote is [Correct] with a score of ' + str(count_match_correct)
if args['inference']['verbose']:
print(f'{Colors.OKBLUE}{majority_vote}{Colors.ENDC}')
else:
majority_vote = 'Majority vote is [Incorrect] with a score of ' + str(count_match_correct)
if args['inference']['verbose']:
print(f'{Colors.FAIL}{majority_vote}{Colors.ENDC}')
self.count_total += 1
if not match_baseline_failed: # if the baseline does not fail
if match_correct:
self.count_correct_baseline += 1
self.count_correct += 1 # no need to reattempt the answer
else:
self.count_incorrect_baseline += 1
self.count_incorrect += 1 # still didn't reattempt the answer in this case
else: # if the baseline fails, reattempt the answer
self.count_incorrect_baseline += 1
if match_correct:
self.count_correct += 1
else:
self.count_incorrect += 1
return majority_vote
def accumulate_grades_simple(self, args, grades):
# accumulate the grades
count_match_correct = 0
for grade in grades:
if re.search(r'\[Correct\]', grade):
count_match_correct += 1
match_correct = True if count_match_correct >= 2 else False # majority vote: if at least 2 out of 3 graders agree, the answer is correct
if match_correct:
majority_vote = 'Majority vote is [Correct] with a score of ' + str(count_match_correct)
if args['inference']['verbose']:
print(f'{Colors.OKBLUE}{majority_vote}{Colors.ENDC}')
else:
majority_vote = 'Majority vote is [Incorrect] with a score of ' + str(count_match_correct)
if args['inference']['verbose']:
print(f'{Colors.FAIL}{majority_vote}{Colors.ENDC}')
self.count_total += 1
if match_correct:
self.count_correct_baseline += 1
self.count_correct += 1 # no need to reattempt the answer
else:
self.count_incorrect_baseline += 1
self.count_incorrect += 1 # still didn't reattempt the answer in this case
return majority_vote
def calculate_iou_batch(a, b):
"""
Vectorized calculation of IoU for pairs of bounding boxes in a and b.
Parameters:
- a: PyTorch tensor of shape (N, 4), representing bounding boxes.
- b: PyTorch tensor of shape (M, 4), representing bounding boxes.
Returns:
- iou: PyTorch tensor of shape (M, N), IoU values.
"""
# Expand dimensions to support broadcasting: (N, 1, 4) with (1, M, 4)
a = a.unsqueeze(1) # Shape: (N, 1, 4)
b = b.unsqueeze(0) # Shape: (1, M, 4)
print('a', a.shape, a, 'b', b.shape, b)
# Calculate intersection coordinates
max_xy = torch.min(a[..., 2:], b[..., 2:])
min_xy = torch.max(a[..., :2], b[..., :2])
inter = torch.clamp((max_xy - min_xy), min=0)
intersection = inter[..., 0] * inter[..., 1]
# Calculate areas
a_area = (a[..., 2] - a[..., 0]) * (a[..., 3] - a[..., 1])
b_area = (b[..., 2] - b[..., 0]) * (b[..., 3] - b[..., 1])
# Calculate union
union = a_area + b_area - intersection
# Compute IoU
iou = intersection / union
print('iou', iou.shape)
return iou
def filter_boxes_pytorch(a, b, iou_threshold=0.5):
"""
Filters boxes in b based on IoU threshold with boxes in a using PyTorch.
Parameters:
- a, b: PyTorch tensors of shapes (N, 4) and (M, 4) respectively.
- iou_threshold: float, threshold for filtering.
Returns:
- filtered_b: PyTorch tensor of filtered bounding boxes from b.
"""
iou = calculate_iou_batch(a, b) # Shape: (M, N)
# Check if any IoU value exceeds the threshold for each box in b
max_iou, _ = torch.max(iou, dim=0)
keep = max_iou > iou_threshold
print('b', b.shape, 'keep', keep.shape, keep, 'iou', max_iou)
return b[keep]
def show_anns(anns):
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
# ax = plt.gca()
# ax.set_autoscale_on(False)
img = np.ones((sorted_anns[0]['segmentation'].shape[0], sorted_anns[0]['segmentation'].shape[1], 4))
img[:,:,3] = 0
for ann in sorted_anns:
m = ann['segmentation']
color_mask = np.concatenate([np.random.random(3), [0.35]])
img[m] = color_mask
# ax.imshow(img)
plt.imsave('test_images/masks.jpg', img)
def plot_grounding_dino_bboxes(image_source, boxes, logits, phrases, filename):
from groundingdino.util.inference import annotate
annotated_frame = annotate(image_source=image_source, boxes=boxes, logits=logits, phrases=phrases)
annotated_frame = annotated_frame[:, :, [2, 1, 0]] # BGR2RGB
plt.imsave('test_images/bboxes' + filename + '.jpg', annotated_frame)
class Colors:
HEADER = '\033[95m' # Purple
OKBLUE = '\033[94m' # Blue
OKGREEN = '\033[92m' # Green
WARNING = '\033[93m' # Yellow
FAIL = '\033[91m' # Red
ENDC = '\033[0m' # Reset color
def load_answer_list(file_path):
"""
This function contains all the possible words in ground-truth answers in the VQA v2 dataset.
"""
# Load the answer list from the JSON file
with open(file_path, 'r') as file:
answer_list = json.load(file)
return answer_list
def save_output_predictions_vqav2(question_id, model_answer, answer_list, split='test', verbose=False):
"""
This function formats the model answers to the VQA-v2 required format
for close-sourced evaluation on test and test-dev datasets
"""
def filter_response(response, answer_list):
"""
Filters a response from an LLM to only include words that are in the provided answer list.
Parameters:
- response (str): The text response from the LLM.
- answer_list (list): A list of strings containing acceptable answers.
Returns:
- str: A filtered response containing only words from the answer_list.
"""
# Tokenize the response into words
response_words = response.split()
# Filter words based on the answer list
filtered_words = [word for word in response_words if word in answer_list]
# Join the filtered words back into a string
filtered_response = ' '.join(filtered_words)
return filtered_response
# Regular expression to find sentences after '[Answer]' or '[Reattempted Answer]'
extracted_answer = re.search(r"\s*\[Answer\](.*)|\s*\[Reattempted Answer\](.*)", model_answer, re.DOTALL)
if extracted_answer:
extracted_answer = extracted_answer.group()
# Handling both '[Answer]' and '[Reattempted Answer]'
if "[Answer]" in extracted_answer:
extracted_answer = extracted_answer.replace("[Answer]", "").strip()
elif "[Reattempted Answer]" in extracted_answer:
extracted_answer = extracted_answer.replace("[Reattempted Answer]", "").strip()
# Filter the extracted response using the answer list
try:
filtered_response = filter_response(extracted_answer, answer_list)
except:
filtered_response = ""
result = {
"question_id": question_id.item(),
"answer": filtered_response if filtered_response else extracted_answer
}
if verbose:
print(result)
saved_file_name = 'outputs/submit_vqav2_' + split + '_4.json'
# Check if the file exists and is not empty
if os.path.exists(saved_file_name) and os.path.getsize(saved_file_name) > 0:
# Read the existing data
with open(saved_file_name, 'r') as f:
data = json.load(f)
data.append(result) # Append the new result
else:
data = [result] # Start a new list if the file doesn't exist or is empty
# Write back the updated data list
with open(saved_file_name, 'w') as f:
json.dump(data, f, indent=2)
def write_response_to_json(question_id, response_dict, output_response_filename):
# Check if the JSON file already exists
if os.path.exists(output_response_filename):
# Read the existing content
with open(output_response_filename, 'r') as file:
data = json.load(file)
else:
# Initialize an empty list if the file doesn't exist
data = {}
# Append the new response
data[str(question_id.item())] = response_dict
# Write the updated data back to the file
with open(output_response_filename, 'w') as file:
json.dump(data, file, indent=4)
def record_final_accuracy(baseline_accuracy, final_accuracy, stats, output_response_filename):
# Assuming the JSON file exists at this point
with open(output_response_filename, 'r') as file:
data = json.load(file)
# Add the accuracy to the JSON data
data['baseline_accuracy'] = str(baseline_accuracy)
data['final_accuracy'] = str(final_accuracy)
data['stats'] = stats
# Write the updated data back to the file
with open(output_response_filename, 'w') as file:
json.dump(data, file, indent=4)