Skip to content

Latest commit

 

History

History
58 lines (45 loc) · 2.51 KB

README.md

File metadata and controls

58 lines (45 loc) · 2.51 KB

DNA-Depth

This project is for Deep Neighbor Layer Aggregation for Lightweight Self-Supervised Monocular Depth Estimation ICASSP 2024

This code uses PyTorch implementation for training and testing depth estimation models. The schematic of the network is shown below:

example input output gif

Setup

Assuming a fresh Anaconda distribution, you can install the dependencies with:

conda create -n dna python=3.6
conda activate dna
conda install six matplotlib scikit-image ipython 
conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=11.0 -c pytorch
pip install tensorboardX==2.2 opencv-python==4.5.3.56

Our results

example input output gif

example input output gif

Train

python train.py 

Test

python evaluate_depth.py --load_weights_folder mono_640m_b0 --eval_mono --png

Trained models on KITTI

--model_name Model resolution KITTI abs. rel. error delta < 1.25 FLops params
mono_640m_b0 640 x 192 0.105 0.892 9.87 4.15
mono_640m_b1 640 x 192 0.102 0.896 10.35 6.66
mono_1024m_b0 1024 x 320 0.100 0.898 26.35 4.15
mono_1024m_b1 1024 x 320 0.097 0.902 27.58 6.66

Acknowledgement

Thanks the authors for their works: