-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_02-05_memory.qmd
executable file
·372 lines (342 loc) · 9.75 KB
/
_02-05_memory.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
## Memory {#sec-memory}
{{< include _02-05_memory_text.qmd >}}
```{r}
#| label: setup-memory
#| include: false
# domain
domains <- c("Memory")
# phenotype
pheno <- "memory"
```
```{r}
#| label: export-memory
#| include: false
# Read the CSV file into a data frame
memory <- vroom::vroom("neurocog.csv")
# Filter the data frame based on certain conditions
# Keep only the rows where 'domain' equals 'domains' and 'z_mean_domain' is not NA
memory <- memory |>
dplyr::filter(domain %in% domains)
# Select specific columns from the data frame
memory <- memory |>
dplyr::select(
test,
test_name,
scale,
raw_score,
score,
ci_95,
percentile,
range,
domain,
subdomain,
narrow,
pass,
verbal,
timed,
description,
result,
z,
z_mean_domain,
z_sd_domain,
z_mean_subdomain,
z_sd_subdomain,
z_mean_narrow,
z_sd_narrow,
z_mean_pass,
z_sd_pass,
z_mean_verbal,
z_sd_verbal,
z_mean_timed,
z_sd_timed
)
# Write the 'memory' data frame to a CSV file
# The file name is derived from the 'pheno' variable
readr::write_excel_csv(memory, paste0(pheno, ".csv"), na = "", col_names = TRUE, append = FALSE)
```
```{r}
#| label: data-memory
#| include: false
# read and filter data
data <- memory
# Memory scales
scales <- c(
"CVLT-3 Forced-Choice Recognition Hits",
"CVLT-3 Total Intrusions",
"CVLT-3 Total Repetitions",
"Daily Living Memory Delayed Recall",
"Daily Living Memory Immediate Recall",
"Delayed Memory Index",
"Designs I",
"Designs II",
"Figure Recall",
"Immediate Memory Index",
"List B Correct",
"List B Free Recall Correct",
"List Learning Immediate Recall",
"List Learning Long Delayed Recall",
"List Learning Short Delayed Recall",
"List Learning",
"List Memory Delay Effect",
"List Memory Interference Effect",
"List Memory Intrusions",
"List Memory Learning Effect",
"List Memory Repetitions",
"List Memory Total and Delayed Recall",
"List Memory Total Trials 1-5",
"List Recall",
"List Recognition",
"Logical Memory I",
"Logical Memory II",
"Long Delay Cued Recall",
"Long Delay Free Recall",
"Long-Delay Cued Recall",
"Long-Delay Free Recall",
"Long-Delay Recognition Discriminability",
"Long-Delay Recognition Response Bias",
"Memory Domain",
"Memory for Designs Content",
"Memory for Designs Delayed Content",
"Memory for Designs Delayed Spatial",
"Memory for Designs Delayed",
"Memory for Designs Spatial",
"Memory for Designs",
"Memory for Faces Delayed",
"Memory for Faces",
"NAB Memory Index",
"Narrative Memory Free and Cued Recall",
"Narrative Memory Free Recall",
"Narrative Memory Recall",
"Narrative Memory Recognition",
"Recognition Discriminability (d')",
"Recognition Discriminability Nonparametric",
"ROCFT Delayed Recall",
"Sentence Repetition",
"Shape Learning Delayed Recognition",
"Shape Learning Immediate Recognition",
"Shape Learning Percent Retention",
"Short Delay Cued Recall",
"Short Delay Free Recall",
"Short-Delay Cued Recall",
"Short-Delay Free Recall",
"Story Learning Delayed Recall",
"Story Learning Immediate Recall",
"Story Learning Percent Retention",
"Story Memory",
"Story Recall",
"Total False Positives",
"Total Hits",
"Total Intrusions",
"Total Repetitions",
"Trial 1 Correct",
"Trial 1 Free Recall Correct",
"Trial 2 Correct",
"Trial 3 Correct",
"Trial 4 Correct",
"Trial 5 Correct",
"Trial 5 Free Recall Correct",
"Trials 1-4 Correct",
"Trials 1-5 Correct",
"Trials 1-5 Free Recall Correct",
"Visual Reproduction I",
"Visual Reproduction II",
"Word List Interference-Recall",
"Word List Interference-Repetition"
)
# Filter the data using the filter_data function from the bwu library
# The domain is specified by the 'domains' variable
# The scale is specified by the 'scales' variable
data_memory <- bwu::filter_data(data, domain = domains, scale = scales)
```
```{r}
#| label: text-memory
#| cache: true
#| include: false
# Generate the text for the memory domain
bwu::cat_neuropsych_results(data = data_memory, file = "_02-05_memory_text.qmd")
```
```{r}
#| label: qtbl-memory
#| dev: tikz
#| fig-process: pdf2png
#| include: false
# Set the default engine for tikz to "xetex"
options(tikzDefaultEngine = "xetex")
# more filtering for exe tables
data_memory <-
data_memory |>
dplyr::filter(scale %in% c(
"CVLT-3 Forced-Choice Recognition Hits",
"CVLT-3 Total Intrusions",
"CVLT-3 Total Repetitions",
"Daily Living Memory Delayed Recall",
"Daily Living Memory Immediate Recall",
"Delayed Memory Index",
"Designs I",
"Designs II",
"Figure Recall",
"Immediate Memory Index",
# "List B Correct",
# "List B Free Recall Correct",
"List Learning Immediate Recall",
"List Learning Long Delayed Recall",
"List Learning Short Delayed Recall",
"List Learning",
"List Memory Delay Effect",
"List Memory Interference Effect",
"List Memory Intrusions",
"List Memory Learning Effect",
"List Memory Repetitions",
"List Memory Total and Delayed Recall",
"List Memory Total Trials 1-5",
"List Recall",
"List Recognition",
"Logical Memory I",
"Logical Memory II",
"Long Delay Cued Recall",
"Long Delay Free Recall",
"Long-Delay Cued Recall",
"Long-Delay Free Recall",
"Long-Delay Recognition Discriminability",
"Long-Delay Recognition Response Bias",
"Memory Domain",
"Memory for Designs Content",
"Memory for Designs Delayed Content",
"Memory for Designs Delayed Spatial",
"Memory for Designs Delayed",
"Memory for Designs Spatial",
"Memory for Designs",
"Memory for Faces Delayed",
"Memory for Faces",
"NAB Memory Index",
"Narrative Memory Free and Cued Recall",
"Narrative Memory Free Recall",
"Narrative Memory Recall",
"Narrative Memory Recognition",
"Recognition Discriminability (d')",
# "Recognition Discriminability Nonparametric",
"ROCFT Delayed Recall",
"Sentence Repetition",
"Shape Learning Delayed Recognition",
"Shape Learning Immediate Recognition",
"Shape Learning Percent Retention",
"Short Delay Cued Recall",
"Short Delay Free Recall",
"Short-Delay Cued Recall",
"Short-Delay Free Recall",
"Story Learning Delayed Recall",
"Story Learning Immediate Recall",
"Story Learning Percent Retention",
"Story Memory",
"Story Recall",
"Total False Positives",
"Total Hits",
"Total Intrusions",
"Total Repetitions",
"Trial 1 Correct",
"Trial 1 Free Recall Correct",
"Trial 2 Correct",
"Trial 3 Correct",
"Trial 4 Correct",
"Trial 5 Correct",
"Trial 5 Free Recall Correct",
"Trials 1-4 Correct",
"Trials 1-5 Correct",
"Trials 1-5 Free Recall Correct",
"Visual Reproduction I",
"Visual Reproduction II",
"Word List Interference-Recall",
"Word List Interference-Repetition"
))
# table arguments
table_name <- "table_memory"
vertical_padding <- 0
multiline <- TRUE
# footnotes
fn_scaled_score <- gt::md("Scaled score: Mean = 10 [50th‰], SD ± 3 [16th‰, 84th‰]")
fn_standard_score <- gt::md("Index score: Mean = 100 [50th‰], SD ± 15 [16th‰, 84th‰]")
fn_t_score <- gt::md("_T_-score: Mean = 50 [50th‰], SD ± 10 [16th‰, 84th‰]")
fn_z_score <- gt::md("_z_-score: Mean = 0 [50th‰], SD ± 1 [16th‰, 84th‰]")
# groupings
grp_memory <- list(
standard_score = c("CVLT-3", "CVLT-3 Brief", "NAB", "NAB-S", "CVLT-C"), # Also NAB if decide to keep here
t_score = c("NAB", "Rey Complex Figure", "NAB-S"),
scaled_score = c("CVLT-3 Brief", "NEPSY-2", "CVLT-C", "CVLT-3")
)
# make `gt` table
bwu::tbl_gt(
data = data_memory,
pheno = pheno,
table_name = table_name,
vertical_padding = vertical_padding,
fn_standard_score = fn_standard_score,
fn_t_score = fn_t_score,
fn_scaled_score = fn_scaled_score,
grp_standard_score = grp_memory[["standard_score"]],
grp_t_score = grp_memory[["t_score"]],
grp_scaled_score = grp_memory[["scaled_score"]],
dynamic_grp = grp_memory,
multiline = multiline
)
```
```{r}
#| label: fig-memory
#| include: false
#| fig-cap: "Learning and memory refer to the rate and ease with which new information (e.g., facts, stories, lists, faces, names) can be encoded, stored, and later recalled from long-term memory."
# dotplot arguments
x <- data_memory$z_mean_narrow
y <- data_memory$narrow
colors <- NULL
return_plot <- Sys.getenv("RETURN_PLOT")
filename <- "fig_memory.svg"
# Suppress warnings from being converted to errors
options(warn = 1) # Set warn to 1 to make warnings not halt execution
# Make dotplot
bwu::dotplot(
data = data_memory,
x = x,
y = y,
colors = colors,
return_plot = return_plot,
filename = filename,
na.rm = TRUE
)
# Reset warning options to default if needed
options(warn = 0) # Reset to default behavior
```
```{=typst}
#let domain(title: none, file_qtbl, file_fig) = {
let font = (font: "Roboto Slab", size: 0.5em)
set text(..font)
pad(top: 0.5em)[]
grid(
columns: (50%, 50%),
gutter: 8pt,
figure([#image(file_qtbl)],
caption: figure.caption(position: top, [#title]),
kind: "qtbl",
supplement: [Table],
),
figure([#image(file_fig, width: auto)],
caption: figure.caption(position: bottom,
[Learning and memory refer to the rate and ease with which new
information (e.g., facts, stories, lists, faces, names) can be
encoded, stored, and later recalled from long-term memory.]),
placement: none,
kind: "image",
supplement: [Figure],
gap: 0.5em,
),
)
}
```
```{=typst}
#let title = "Learning and Memory"
#let file_qtbl = "table_memory.png"
#let file_fig = "fig_memory.svg"
#domain(
title: [#title Scores],
file_qtbl,
file_fig
)
```