-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathLDA-results.py
99 lines (68 loc) · 3.22 KB
/
LDA-results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import h5py
import pickle
import numpy as np
from handle_pp_objects import *
def load_bag_of_words(infile):
with open(infile, 'rb') as f:
w = pickle.load(f)
return w
def load_nkw_counters(infile):
h5f = h5py.File(infile, 'r')
nkw_gl = h5f['nkw_gl'][:]
nkw_loc = h5f['nkw_loc'][:]
h5f.close()
return nkw_gl, nkw_loc
def show_topics(phi, topic_type, l_vocab):
for topic in range(phi.shape[0]):
ind = sorted(xrange(len(phi[topic, :])), key=lambda x: phi[topic, x], reverse=True)
print "================ " + topic_type + " %d ================" % (topic + 1)
print [l_vocab[word] for word in ind[0: 20]]
def show_results(dir_path, product, num_of_iters):
mem_file_results = dir_path + "mglda_" + product+ "_" + num_of_iters + ".mem"
mem_file_counter = dir_path + product + "_counters_" + num_of_iters + ".mem"
lda_results = h5py.File(mem_file_results, 'r')
phi_global = lda_results['phi_global'][:]
phi_local = lda_results['phi_local'][:]
lda_results.close()
reviews, d_vocab, l_bag_of_words, m_doc_words, m_docs_sentence_words = load_objects(dir_path, product)
nkw_gl, nkw_loc = load_nkw_counters(mem_file_counter)
# d_vocab = load_bag_of_words(picklefile)
show_topics(phi_global, "Global", l_bag_of_words)
for k in range(phi_global.shape[0]):
print "================ Global Topic %d ==========================" % (k + 1)
for word in np.argsort(-phi_global[k])[:20]:
print "%s: %f" % (l_bag_of_words[word], phi_global[k, word])
# print "%s: %f" % (d_vocab.keys()[word], phi_global[k, word])
show_topics(phi_local, "Local", l_bag_of_words)
for k in range(phi_local.shape[0]):
print "================ Local Topic %d ==========================" % (k + 1)
for word in np.argsort(-phi_local[k])[:20]:
print "%s: %f" % (l_bag_of_words[word], phi_local[k, word])
def check_counters(infile1, infile2):
nkw_gl, nkw_loc = load_nkw_counters(infile1)
w = load_bag_of_words(infile2)
m_idx = w['magazin']
print nkw_gl[:, m_idx]
def load_accumulator_results(infile_acc, bag_w_file):
h5f = h5py.File(infile_acc, 'r')
acc_phi_dist_gl = h5f['acc_phi_dist_gl'][:]
acc_phi_dist_loc = h5f['acc_phi_dist_loc'][:]
h5f.close()
with open(bag_w_file, 'rb') as f:
w = pickle.load(f)
show_topics(acc_phi_dist_gl, "Global", w)
for k in range(acc_phi_dist_gl.shape[0]):
print "***** Global Topic %d" % (k + 1)
for word in np.argsort(-acc_phi_dist_gl[k])[:20]:
print "%s: %f" % (w.keys()[word], acc_phi_dist_gl[k, word])
show_topics(acc_phi_dist_loc, "Local", w)
for k in range(acc_phi_dist_loc.shape[0]):
print "***** Local Topic %d" % (k + 1)
for word in np.argsort(-acc_phi_dist_loc[k])[:20]:
print "%s: %f" % (w.keys()[word], acc_phi_dist_loc[k, word])
if __name__ == '__main__':
# show_results(dir_path)
# check_counters(dir_path + "magazine_counters.mem", dir_path + "magazines.pkl")
dir_path = 'F:/temp/topics/R -results/26/'
show_results(dir_path, "software", "500")
# load_accumulator_results(dir_path + "300_phi_accu.mem", dir_path + "magazines.pkl")