forked from PaddlePaddle/PaddleX
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpicodet.py
59 lines (52 loc) · 2.11 KB
/
picodet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import paddlex as pdx
from paddlex import transforms as T
# 下载和解压昆虫检测数据集
dataset = 'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz'
pdx.utils.download_and_decompress(dataset, path='./')
# 定义训练和验证时的transforms
# API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/transforms/transforms.md
train_transforms = T.Compose([
T.RandomCrop(), T.RandomHorizontalFlip(), T.RandomDistort(),
T.BatchRandomResize(
target_sizes=[576, 608, 640, 672, 704], interp='RANDOM'), T.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
eval_transforms = T.Compose([
T.Resize(
target_size=640, interp='CUBIC'), T.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 定义训练和验证所用的数据集
# API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/datasets.md
train_dataset = pdx.datasets.VOCDetection(
data_dir='insect_det',
file_list='insect_det/train_list.txt',
label_list='insect_det/labels.txt',
transforms=train_transforms,
shuffle=True)
eval_dataset = pdx.datasets.VOCDetection(
data_dir='insect_det',
file_list='insect_det/val_list.txt',
label_list='insect_det/labels.txt',
transforms=eval_transforms,
shuffle=False)
# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/visualdl.md
num_classes = len(train_dataset.labels)
model = pdx.det.PicoDet(num_classes=num_classes, backbone='ESNet_l')
# API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/models/detection.md
# 各参数介绍与调整说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/parameters.md
model.train(
num_epochs=20,
train_dataset=train_dataset,
train_batch_size=14,
eval_dataset=eval_dataset,
pretrain_weights='COCO',
learning_rate=.05,
warmup_steps=24,
warmup_start_lr=0.005,
save_interval_epochs=1,
lr_decay_epochs=[6, 8, 11],
use_ema=True,
save_dir='output/picodet_esnet_l',
use_vdl=True)