Skip to content

Latest commit

 

History

History
128 lines (111 loc) · 6.4 KB

README.md

File metadata and controls

128 lines (111 loc) · 6.4 KB

Stochastic Kinematically Informed Earthquake Sequences

Kinematic / statistical earthquake sequence generation

skies is a python-based package designed to model three-dimensional earthquake sequences in time across geometrically complex fault systems. It's the code advertised by the paper, "Meade, B. J., (2024) A kinematic method for generating earthquake sequences, Computers and Geosciences"

Getting started

To set up a development conda environment, run the following commands in the skies folder.

conda config --prepend channels conda-forge
conda env create
conda activate skies
pip install --no-use-pep517 -e .

A model run can be started with something like:

python ./../skies/skies_generate_sequence.py ./data/cascadia_params.json --n_time_steps 100000 --omori_rate_perturbation_exponent 2.0 --repl 1

Input parameters:

parameter name example value description
area_scaling 1.25 Factor that expands rupture area from empirical rupture area
b_value -1 Gutenberg-Ricter $b$-value
default_omori_decay_time 10 Controls length of Omori decay following earthquakes (smaller is longer Omori decay time)
geometric_moment_rate_scale_factor 1 Scales rates of moment accumulation. Should always be 1 except for debugging
initial_mesh_slip_deficit_scaling 0 UNSURE
initial_slip_deficit_rate_file "rates.npy" Geometric moment accumulation rates on a single mesh. This is just a single numpy array with one geometric moment rate component, generally dip-slip or strike-slip
location_probability_amplitude_scale_factor 1 Location probability amplitude scale factor (leading coefficient in front of $\tanh$ for location probability, $\gamma^h_a$ in the paper)
location_probability_data_scale_factor 0.00001 Location probability amplitude scale factor (coefficient that multiplies arguments to $\tanh$ for location probability, $\gamma^h_d$ in the paper)
max_latitude 52 Plotting
max_longitude 231 Plotting
maximum_event_moment_magnitude 9.5 Maximum event magnitude (could also be limited by total mesh area)
mesh_index 0 If the mesh_parameters_file_name file points to more than one mesh select the one specified by the index here
mesh_parameters_file_name "mesh_parameters.json" celeri style mesh parameters file
min_contour_value 0.1 Plotting
min_latitude 38 Plotting
min_longitude 239 Plotting
minimum_event_moment_magnitude 5.0 Minimum event magnitude (could also be limited by minimum mesh element area)
minimum_probability 1e-10 Minimum event probability in time
n_contour_levels 10 Plotting
n_events_omori_history_effect 100 Number of more recent events that contribute to cumulative Omori effect (UNUSED?)
n_grid_latitude 500 Plotting
n_grid_longitude 500 Plotting
n_time_steps 1000000 Number of time steps (not real time)
omori_amplitude_scale_factor 1e-8 Omori numerator amplitude, $\beta_j$ in the paper
omori_rate_perturbation_scale_factor 1e-1 Divides Omori time difference, $\tau_j$ in the paper (UNSURE)
omori_rate_perturbation_exponent 1.0 Omori time difference exponent, $p_j$ in the paper
plot_events_in_loop False Plotting
shear_modulus 3e10 Shear modulus
time_probability_amplitude_scale_factor 0.15 Time probability amplitude scale factor (leading coefficient in front of $\tanh$ for time probability), $\gamma^t_a$ in the paper
time_probability_data_scale_factor 1e-12 Time probability amplitude scale factor (coefficient that multiplies arguments to $\tanh$ for time probability), $\gamma^t_d$ in the paper
time_probability_history_scale_factor 1e12 UNSURE
time_step 5e-5 Time step duration (not real time)
write_event_pickle_files 0 Write a pickle file for each earthquake
repl 0 Drop into iPython REPL at end of run
base_runs_folder "./runs" Base output folder
geometric_moment_nucleation_probability "low" Should earthquake nucleate in regions of "high" or "low" geometric moment (NEED TO REVISE)

Parameters that most directly control model

  • Time probability equation:
    • $\gamma_a^t$: time_probability_amplitude_scale_factor
    • $\gamma_d^t$: time_probability_data_scale_factor

$$ p^t = \gamma_a^t \tanh \left( \gamma_d^t \left[r^\mathrm{a} + \sum\nolimits_j^{n(t_j \leq t)} { r^\mathrm{o} + r^\mathrm{r} } + \mathcal{A} \right] \right). $$

  • Location probability equation:
    • $\gamma_a^h$: location_probability_amplitude_scale_factor
    • $\gamma_d^h$: location_probability_data_scale_factor

$$ p_i^h(t_k) = \gamma_a^h \tanh ( \gamma_d^h \left[m^\mathrm{a}_i - m^\mathrm{r}_i\right] ) $$

  • Omori time decay equation:
    • $\beta$: omori_amplitude_scale_factor
    • $p$: Currently set to 1
    • $\tau$: default_omori_decay_time

$$ r^\mathrm{o}_j(t) = \frac{\beta_j}{1 + \frac{(t - t_j)^{p_j}}{\tau_j}} $$

  • Moment reduction following slip events
    • $\omega'$: time_probability_history_scale_factor
    • $\beta'$: omori_rate_perturbation_scale_factor
    • $\psi'$: omori_rate_perturbation_exponent

$$ r^\mathrm{r} = -\omega' \beta' \left[ \sum\nolimits_i m_i(t_j) \right] ^{\psi'} $$

Folder structure and file locations for applications

We assume that a project is arranged using the following folder structure:

project_name/
|
├── data/
|   ├── mesh_parameters.json
│   ├── mesh_001.msh
│   ├── mesh_002.msh
│   └── mesh_NNN.msh
|
└── runs/
    └── 2022_12_11_20_38_21/
       ├── 2022_12_11_20_38_21.hdf
       ├── probability_magnitude.png
       ├── probability_magnitude.pdf
       ├── random_state.pickle
       ├── mesh.pickle
       ├── time_series.pickle
       ├── initial_mesh_data.png
       ├── initial_mesh_data.pdf
       ├── 2022_12_11_20_38_21_mesh_geometry.vtk
       ├── params.json
       ├── 2022_12_11_20_38_21.log    
       ├── model_segment.csv
       ├── model_block.csv
       └── model_station.csv

DOI