forked from XPixelGroup/DiffBIR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_face.py
259 lines (226 loc) · 12.1 KB
/
inference_face.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os
import math
import torch
import numpy as np
from PIL import Image
from omegaconf import OmegaConf
import pytorch_lightning as pl
from argparse import ArgumentParser, Namespace
from ldm.xformers_state import auto_xformers_status
from model.cldm import ControlLDM
from utils.common import instantiate_from_config, load_state_dict
from utils.file import list_image_files, get_file_name_parts
from utils.image import auto_resize, pad
from utils.file import load_file_from_url
from utils.face_restoration_helper import FaceRestoreHelper
from inference import process, check_device
pretrained_models = {
'general_v1': {
'ckpt_url': 'https://huggingface.co/lxq007/DiffBIR/resolve/main/general_full_v1.ckpt',
'swinir_url': 'https://huggingface.co/lxq007/DiffBIR/resolve/main/general_swinir_v1.ckpt'
},
'face_v1': {
'ckpt_url': 'https://huggingface.co/lxq007/DiffBIR/resolve/main/face_full_v1.ckpt'
}
}
def parse_args() -> Namespace:
parser = ArgumentParser()
# model
# Specify the model ckpt path, and the official model can be downloaded direclty.
parser.add_argument("--ckpt", type=str, help='Model checkpoint.', default='weights/face_full_v1.ckpt')
parser.add_argument("--config", type=str, default='configs/model/cldm.yaml', help='Model config file.')
parser.add_argument("--reload_swinir", action="store_true")
parser.add_argument("--swinir_ckpt", type=str, default=None)
# input and preprocessing
parser.add_argument("--input", type=str, required=True)
parser.add_argument("--steps", type=int, default=50)
parser.add_argument("--sr_scale", type=float, default=2, help='An upscale factor.')
parser.add_argument("--image_size", type=int, default=512, help='Image size as the model input.')
parser.add_argument("--repeat_times", type=int, default=1, help='To generate multiple results for each input image.')
parser.add_argument("--disable_preprocess_model", action="store_true")
# face related
parser.add_argument('--has_aligned', action='store_true', help='Input are cropped and aligned faces. Default: False')
parser.add_argument('--only_center_face', action='store_true', help='Only restore the center face. Default: False')
parser.add_argument('--detection_model', type=str, default='retinaface_resnet50',
help='Face detector. Optional: retinaface_resnet50, retinaface_mobile0.25, YOLOv5l, YOLOv5n, dlib. \
Default: retinaface_resnet50')
# Loading two DiffBIR models requires huge GPU memory capacity. Choose RealESRGAN as an alternative.
parser.add_argument('--bg_upsampler', type=str, default='RealESRGAN', choices=['DiffBIR', 'RealESRGAN'], help='Background upsampler.')
# TODO: support tiled for DiffBIR background upsampler
parser.add_argument('--bg_tile', type=int, default=400, help='Tile size for background sampler.')
parser.add_argument('--bg_tile_stride', type=int, default=200, help='Tile stride for background sampler.')
# postprocessing and saving
parser.add_argument("--color_fix_type", type=str, default="wavelet", choices=["wavelet", "adain", "none"])
parser.add_argument("--output", type=str, required=True)
parser.add_argument("--show_lq", action="store_true")
parser.add_argument("--skip_if_exist", action="store_true")
# change seed to finte-tune your restored images! just specify another random number.
parser.add_argument("--seed", type=int, default=231)
parser.add_argument("--device", type=str, default="cuda", choices=["cpu", "cuda", "mps"])
return parser.parse_args()
def build_diffbir_model(model_config, ckpt, swinir_ckpt=None):
''''
model_config: model architecture config file.
ckpt: checkpoint file path of the main model.
swinir_ckpt: checkpoint file path of the swinir model.
load swinir from the main model if set None.
'''
weight_root = os.path.dirname(ckpt)
# download ckpt automatically if ckpt not exist in the local path
if 'general_full_v1' in ckpt:
ckpt_url = pretrained_models['general_v1']['ckpt_url']
if swinir_ckpt is None:
swinir_ckpt = f'{weight_root}/general_swinir_v1.ckpt'
swinir_url = pretrained_models['general_v1']['swinir_url']
elif 'face_full_v1' in ckpt:
# swinir ckpt is already included in the main model
ckpt_url = pretrained_models['face_v1']['ckpt_url']
else:
# define a custom diffbir model
raise NotImplementedError('undefined diffbir model type!')
if not os.path.exists(ckpt):
ckpt = load_file_from_url(ckpt_url, weight_root)
if swinir_ckpt is not None and not os.path.exists(swinir_ckpt):
swinir_ckpt = load_file_from_url(swinir_url, weight_root)
model: ControlLDM = instantiate_from_config(OmegaConf.load(model_config))
load_state_dict(model, torch.load(ckpt), strict=True)
# reload preprocess model if specified
if swinir_ckpt is not None:
if not hasattr(model, "preprocess_model"):
raise ValueError(f"model don't have a preprocess model.")
print(f"reload swinir model from {swinir_ckpt}")
load_state_dict(model.preprocess_model, torch.load(swinir_ckpt), strict=True)
model.freeze()
return model
def main() -> None:
args = parse_args()
img_save_ext = 'png'
pl.seed_everything(args.seed)
assert os.path.isdir(args.input)
args.device = check_device(args.device)
model = build_diffbir_model(args.config, args.ckpt, args.swinir_ckpt).to(args.device)
# ------------------ set up FaceRestoreHelper -------------------
face_helper = FaceRestoreHelper(
device=args.device,
upscale_factor=1,
face_size=args.image_size,
use_parse=True,
det_model = args.detection_model
)
# set up the backgrouns upsampler
if args.bg_upsampler == 'DiffBIR':
# Loading two DiffBIR models consumes huge GPU memory capacity.
bg_upsampler = build_diffbir_model(args.config, 'weights/general_full_v1.pth')
bg_upsampler = bg_upsampler.to(args.device)
elif args.bg_upsampler == 'RealESRGAN':
from utils.realesrgan.realesrganer import set_realesrgan
# support official RealESRGAN x2 & x4 upsample model.
# Using x2 upsampler as default if scale is not specified as 4.
bg_upscale = int(args.sr_scale) if int(args.sr_scale) in [2, 4] else 2
print(f'Loading RealESRGAN_x{bg_upscale}plus.pth for background upsampling...')
bg_upsampler = set_realesrgan(args.bg_tile, args.device, bg_upscale)
else:
bg_upsampler = None
for file_path in list_image_files(args.input, follow_links=True):
# read image
lq = Image.open(file_path).convert("RGB")
if args.sr_scale != 1:
lq = lq.resize(
tuple(math.ceil(x * args.sr_scale) for x in lq.size),
Image.BICUBIC
)
lq_resized = auto_resize(lq, args.image_size)
x = pad(np.array(lq_resized), scale=64)
face_helper.clean_all()
if args.has_aligned:
# the input faces are already cropped and aligned
face_helper.cropped_faces = [x]
else:
face_helper.read_image(x)
# get face landmarks for each face
face_helper.get_face_landmarks_5(only_center_face=args.only_center_face, resize=640, eye_dist_threshold=5)
face_helper.align_warp_face()
parent_dir, img_basename, _ = get_file_name_parts(file_path)
rel_parent_dir = os.path.relpath(parent_dir, args.input)
output_parent_dir = os.path.join(args.output, rel_parent_dir)
cropped_face_dir = os.path.join(output_parent_dir, 'cropped_faces')
restored_face_dir = os.path.join(output_parent_dir, 'restored_faces')
restored_img_dir = os.path.join(output_parent_dir, 'restored_imgs')
if not args.has_aligned:
os.makedirs(cropped_face_dir, exist_ok=True)
os.makedirs(restored_img_dir, exist_ok=True)
os.makedirs(restored_face_dir, exist_ok=True)
for i in range(args.repeat_times):
basename = f'{img_basename}_{i}' if i else img_basename
restored_img_path = os.path.join(restored_img_dir, f'{basename}.{img_save_ext}')
if os.path.exists(restored_img_path) or os.path.exists(os.path.join(restored_face_dir, f'{basename}.{img_save_ext}')):
if args.skip_if_exist:
print(f"Exists, skip face image {basename}...")
continue
else:
raise RuntimeError(f"Image {basename} already exist")
try:
preds, stage1_preds = process(
model, face_helper.cropped_faces, steps=args.steps,
strength=1,
color_fix_type=args.color_fix_type,
disable_preprocess_model=args.disable_preprocess_model,
cond_fn=None, tiled=False, tile_size=None, tile_stride=None
)
except RuntimeError as e:
# Avoid cuda_out_of_memory error.
print(f"{file_path}, error: {e}")
continue
for restored_face in preds:
# unused stage1 preds
# face_helper.add_restored_face(np.array(stage1_restored_face))
face_helper.add_restored_face(np.array(restored_face))
# paste face back to the image
if not args.has_aligned:
# upsample the background
if bg_upsampler is not None:
print(f'upsampling the background image using {args.bg_upsampler}...')
if args.bg_upsampler == 'DiffBIR':
bg_img, _ = process(
bg_upsampler, [x], steps=args.steps,
color_fix_type=args.color_fix_type,
strength=1, disable_preprocess_model=args.disable_preprocess_model,
cond_fn=None, tiled=False, tile_size=None, tile_stride=None)
bg_img= bg_img[0]
elif args.bg_upsampler == 'RealESRGAN':
# resize back to the original size
w, h = x.shape[:2]
input_size = (int(w/args.sr_scale), int(h/args.sr_scale))
x = Image.fromarray(x).resize(input_size, Image.LANCZOS)
bg_img = bg_upsampler.enhance(np.array(x), outscale=args.sr_scale)[0]
else:
bg_img = None
face_helper.get_inverse_affine(None)
# paste each restored face to the input image
restored_img = face_helper.paste_faces_to_input_image(
upsample_img=bg_img
)
# save faces
for idx, (cropped_face, restored_face) in enumerate(zip(face_helper.cropped_faces, face_helper.restored_faces)):
# save cropped face
if not args.has_aligned:
save_crop_path = os.path.join(cropped_face_dir, f'{basename}_{idx:02d}.{img_save_ext}')
Image.fromarray(cropped_face).save(save_crop_path)
# save restored face
if args.has_aligned:
save_face_name = f'{basename}.{img_save_ext}'
# remove padding
restored_face = restored_face[:lq_resized.height, :lq_resized.width, :]
else:
save_face_name = f'{basename}_{idx:02d}.{img_save_ext}'
save_restore_path = os.path.join(restored_face_dir, save_face_name)
Image.fromarray(restored_face).save(save_restore_path)
# save restored whole image
if not args.has_aligned:
# remove padding
restored_img = restored_img[:lq_resized.height, :lq_resized.width, :]
# save restored image
Image.fromarray(restored_img).resize(lq.size, Image.LANCZOS).convert("RGB").save(restored_img_path)
print(f"Face image {basename} saved to {output_parent_dir}")
if __name__ == "__main__":
main()