forked from AaronJackson/vrn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.sh
executable file
·92 lines (82 loc) · 2.58 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#!/usr/bin/env bash
# Some values you may adjust
INPUT="examples/" # Place to find input images
OUTPUT="output/" # Place to dump raw volumes
VRN_MODEL="vrn-unguided.t7" # Reconstruction model
CUDA_VISIBLE_DEVICES=0 # GPU number
######################################################################
# The rest of the code
mkdir -p $OUTPUT
mkdir -p $INPUT/scaled
#find $INPUT/scaled -type f -delete
#find $OUTPUT -type f -delete
# We will start by jumping to the face alignment code, processing the
# images to extract the landmarks, and then popping back to the vrn
# code. You might want to remove the /dev/null redirect if something
# goes wrong. Adrian's landmark detector may give warnings about
# certain packages being unavailable (e.g. libmatio), but they are not
# required.
pushd face-alignment > /dev/null
th main.lua -model 2D-FAN-300W.t7 \
-input ../$INPUT/ \
-detectFaces true \
-mode generate \
-output ../$INPUT/ \
-device gpu \
-outputFormat txt
popd > /dev/null
# Using awk we will find the bounding boxes from the detected points.
pushd $INPUT > /dev/null
ls -1 *.txt | \
while read fname; do
awk -F, 'BEGIN {
minX=1000;
maxX=0;
minY=1000;
maxY=0;
}
$1 > maxX { maxX=$1 }
$1 < minX { minX=$1 }
$2 > maxY { maxY=$2 }
$2 < minY { minY=$2 }
END {
scale=90/sqrt((minX-maxX)*(minY-maxY));
width=maxX-minX;
height=maxY-minY;
cenX=width/2;
cenY=height/2;
printf "%s %s %s %s\n",
FILENAME,
(minX-cenX)*scale,
(minY-cenY)*scale,
(scale)*100
}' $fname
done > crop.tmp
# And now using ImageMagick convert we will crop the faces.
cat crop.tmp | sed 's/.txt/.jpg/' | \
while read fname x y scale; do
convert $fname \
-scale $scale% \
-crop 192x192+$x+$y \
-background white \
-gravity center \
-extent 192x192 \
scaled/$fname
echo "Cropped and scaled $fname"
done
rm crop.tmp
popd > /dev/null
# Pass the cropped image through VRN.
th process.lua \
--model $VRN_MODEL \
--input $INPUT/scaled \
--output $OUTPUT \
--device gpu
# Visualise the rendered model.
pushd output > /dev/null
ls -1 *.raw | sed 's/.raw//' | while read fname ; do
python ../vis.py \
--image ../$INPUT/scaled/$fname.jpg \
--volume $fname.raw
done
popd > /dev/null