-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathbvh.py
199 lines (165 loc) · 6 KB
/
bvh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import taichi as ti
import copy
import random
def surrounding_box(box1, box2):
''' Calculates the surround bbox of two bboxes '''
box1_min, box1_max = box1
box2_min, box2_max = box2
small = [
min(box1_min[0], box2_min[0]),
min(box1_min[1], box2_min[1]),
min(box1_min[2], box2_min[2])
]
big = [
max(box1_max[0], box2_max[0]),
max(box1_max[1], box2_max[1]),
max(box1_max[2], box2_max[2])
]
return small, big
def sort_obj_list(obj_list):
''' Sort the list of objects along the longest directional span '''
def get_x(e):
return e.center[0]
def get_y(e):
return e.center[1]
def get_z(e):
return e.center[2]
centers = [obj.center for obj in obj_list]
min_center = [
min([center[0] for center in centers]),
min([center[1] for center in centers]),
min([center[2] for center in centers])
]
max_center = [
max([center[0] for center in centers]),
max([center[1] for center in centers]),
max([center[2] for center in centers])
]
span_x, span_y, span_z = (max_center[0] - min_center[0],
max_center[1] - min_center[1],
max_center[2] - min_center[2])
if span_x >= span_y and span_x >= span_z:
obj_list.sort(key=get_x)
elif span_y >= span_z:
obj_list.sort(key=get_y)
else:
obj_list.sort(key=get_z)
return obj_list
class BVHNode:
''' A bvh node for constructing the bvh tree. Note this is done on CPU '''
left = None
right = None
obj = None
box_min = box_max = []
id = 0
parent = None
total = 0
def __init__(self, object_list, parent):
self.parent = parent
obj_list = copy.copy(object_list)
span = len(object_list)
if span == 1:
# one obj, set to sphere bbox
self.obj = obj_list[0]
self.box_min, self.box_max = obj_list[0].bounding_box
self.total = 1
else:
# set left and right child and this bbox is the sum of two
sorted_list = sort_obj_list(obj_list)
mid = int(span / 2)
self.left = BVHNode(obj_list[:mid], self)
self.right = BVHNode(obj_list[mid:], self)
self.box_min, self.box_max = surrounding_box(
self.left.bounding_box, self.right.bounding_box)
self.total = self.left.total + self.right.total + 1
@property
def bounding_box(self):
return self.box_min, self.box_max
@property
def next(self):
''' Returns the next node to walk '''
node = self
while True:
if node.parent is not None and node.parent.right is not node:
return node.parent.right
elif node.parent is None:
return None
else:
node = node.parent
return None
@ti.data_oriented
class BVH:
''' The BVH class takes a list of objects and creates a bvh from them.
The bvh structure contains a "next" pointer for walking the tree. '''
def __init__(self, object_list):
self.root = BVHNode(object_list, None)
total = self.root.total
self.bvh_obj_id = ti.field(ti.i32)
self.bvh_left_id = ti.field(ti.i32)
self.bvh_right_id = ti.field(ti.i32)
self.bvh_next_id = ti.field(ti.i32)
self.bvh_min = ti.Vector.field(3, dtype=ti.f32)
self.bvh_max = ti.Vector.field(3, dtype=ti.f32)
ti.root.dense(ti.i, total).place(self.bvh_obj_id, self.bvh_left_id,
self.bvh_right_id, self.bvh_next_id,
self.bvh_min, self.bvh_max)
def build(self):
''' building function. Compress the object list to structure'''
i = 0
# first walk tree and give ids
def walk_bvh(node):
nonlocal i
node.id = i
i += 1
if node.left:
walk_bvh(node.left)
if node.right:
walk_bvh(node.right)
walk_bvh(self.root)
def save_bvh(node):
id = node.id
self.bvh_obj_id[id] = node.obj.id if node.obj is not None else -1
self.bvh_left_id[
id] = node.left.id if node.left is not None else -1
self.bvh_right_id[
id] = node.right.id if node.right is not None else -1
self.bvh_next_id[
id] = node.next.id if node.next is not None else -1
self.bvh_min[id] = node.box_min
self.bvh_max[id] = node.box_max
if node.left is not None:
save_bvh(node.left)
if node.right is not None:
save_bvh(node.right)
save_bvh(self.root)
self.bvh_root = 0
dooo = 0
@ti.func
def get_id(self, bvh_id):
''' Get the obj id for a bvh node '''
return self.bvh_obj_id[bvh_id]
@ti.func
def hit_aabb(self, bvh_id, ray_origin, ray_direction, t_min, t_max):
''' Use the slab method to do aabb test'''
intersect = 1
min_aabb = self.bvh_min[bvh_id]
max_aabb = self.bvh_max[bvh_id]
for i in ti.static(range(3)):
if ray_direction[i] == 0:
if ray_origin[i] < min_aabb[i] or ray_origin[i] > max_aabb[i]:
intersect = 0
else:
i1 = (min_aabb[i] - ray_origin[i]) / ray_direction[i]
i2 = (max_aabb[i] - ray_origin[i]) / ray_direction[i]
new_t_max = ti.max(i1, i2)
new_t_min = ti.min(i1, i2)
t_max = ti.min(new_t_max, t_max)
t_min = ti.max(new_t_min, t_min)
if t_min > t_max:
intersect = 0
return intersect
@ti.func
def get_full_id(self, i):
''' Gets the obj id, left_id, right_id, next_id for a bvh node '''
return self.bvh_obj_id[i], self.bvh_left_id[i], self.bvh_right_id[
i], self.bvh_next_id[i]