-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy path3_CNN_MNIST.py
103 lines (80 loc) · 3.04 KB
/
3_CNN_MNIST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torchvision import datasets, transforms
# Training settings
batch_size = 64
# MNIST Dataset
dataset_path = "../data/mnist"
train_dataset = datasets.MNIST(root=dataset_path,
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = datasets.MNIST(root=dataset_path,
train=False,
transform=transforms.ToTensor())
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
# Define the network
class Net_CNN(nn.Module):
def __init__(self):
super(Net_CNN, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16*4*4, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), (2, 2))
x = x.view(x.size()[0], -1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# define optimizer & criterion
model = Net_CNN()
optim = torch.optim.Adam(model.parameters(), 0.01)
criterion = nn.CrossEntropyLoss()
# train the network
for e in range(100):
# train
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = Variable(data), Variable(target)
# inference, loss calculation
out = model(data)
loss = criterion(out, target)
# backward, optimize
optim.zero_grad()
loss.backward()
optim.step()
# print loss, acc
if batch_idx % 100 == 0:
pred = out.data.max(1, keepdim=True)[1]
c = float(pred.eq(target.data.view_as(pred)).cpu().sum() ) /out.size(0)
print("epoch: %5d, loss: %f, acc: %f" %
( e +1, loss.data.item(), c))
# test
model.eval()
test_loss = 0.0
correct = 0.0
for data, target in test_loader:
data, target = Variable(data), Variable(target)
output = model(data)
# sum up batch loss
test_loss += criterion(output, target).item()
# get the index of the max
pred = output.data.max(1, keepdim=True)[1]
correct += float(pred.eq(target.data.view_as(pred)).cpu().sum())
test_loss /= len(test_loader.dataset)
print("\nTest set: Average loss: %.4f, Accuracy: %6d/%6d (%4.2f %%)\n" %
(test_loss,
correct, len(test_loader.dataset),
100.0*correct / len(test_loader.dataset)) )