This repository has been archived by the owner on Sep 11, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathDeflate.cpp
242 lines (207 loc) · 7.19 KB
/
Deflate.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
/*
This file is part of duckOS.
duckOS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
duckOS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with duckOS. If not, see <https://www.gnu.org/licenses/>.
Copyright (c) Byteduck 2016-2021. All rights reserved.
*/
#include "Deflate.h"
#include <stdlib.h>
unsigned int read_bits(DEFLATE* def, size_t num_bits) {
unsigned int ret = 0;
for(size_t i = 0; i < num_bits; i++) {
if(def->bit_pos == 8) { //We've read all 8 bits from the current byte, read a new one
def->bit_buf = def->read(def->arg);
def->bit_pos = 0;
}
ret |= (def->bit_buf & 0x1u) << i;
def->bit_buf >>= 1;
def->bit_pos++;
}
return ret;
}
void create_huffman(const uint8_t lengths[], uint32_t size, huffman* huff) {
//Zero out code length counts
for(size_t i = 0; i < 16; i++)
huff->counts[i] = 0;
//Count the number of symbols with each code length
for(size_t i = 0; i < size; i++)
huff->counts[lengths[i]]++;
huff->counts[0] = 0;
//Figure out the starting indexes into the final symbol array for each code length
uint32_t count = 0;
uint16_t indexes[16];
for(uint16_t i = 0; i < 16; i++) {
indexes[i] = count;
count += huff->counts[i];
}
//Create the final symbol array which we can index into using codes
for (uint16_t i = 0; i < size; i++) {
if (lengths[i])
huff->symbols[indexes[lengths[i]]++] = i;
}
}
uint16_t huffman_decode(DEFLATE* def, huffman* huff) {
int count = 0;
int cur = 0;
for(int i = 1; cur >= 0; i++) {
cur = read_bits(def, 1) | (cur << 1);
count += huff->counts[i];
cur -= huff->counts[i];
}
return huff->symbols[count + cur];
}
void def_write(DEFLATE* def, uint8_t byte) {
if(def->frame_pointer == 0x8000)
def->frame_pointer = 0;
def->reading_frame[def->frame_pointer++] = byte;
def->write(byte, def->arg);
}
void inflate(DEFLATE* def, huffman* len_huff, huffman* dist_huff) {
//The lengths corresponding to symbols > 256
static const uint16_t lengths[] = { 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258 };
//The number of extra bits to read and add to the lengths corresponding to symbols > 256
static const uint16_t lengths_extrabits[] = { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0 };
//The distances for decoded symbols after the symbols > 256
static const uint16_t distances[] = { 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577 };
//The number of extra bits to read and add to the distances above
static const uint16_t distances_extrabits[] = { 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13 };
while(1) {
uint16_t sym = huffman_decode(def, len_huff);
if(sym < 256) {
def_write(def, sym);
} else {
if(sym == 256)
break;
uint16_t length = read_bits(def, lengths_extrabits[sym - 257]) + lengths[sym - 257];
uint16_t distance_index = huffman_decode(def, dist_huff);
uint16_t distance = distances[distance_index] + read_bits(def, distances_extrabits[distance_index]);
//If sym > 256, write length bytes to the output from distance bytes behind the current position
for(uint16_t i = 0; i < length; i++) {
uint8_t byte = def->reading_frame[(def->frame_pointer - distance) % 0x8000];
def_write(def, byte);
}
}
}
}
void inflate_dynamic(DEFLATE* def) {
//The code lengths for the dynamic huffman alphabet
static const uint8_t codelen_alphabet[] = {
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
};
uint16_t hlit = read_bits(def, 5) + 257; //# of Literal/Length codes
uint8_t hdist = read_bits(def, 5) + 1; //# of Distance codes
uint8_t hclen = read_bits(def, 4) + 4; //# of Code Length codes
//Get the code lengths for each entry in the code length alphabet
uint8_t alphabet_codelens[19] = {0};
for(uint32_t i = 0; i < hclen; i++)
alphabet_codelens[codelen_alphabet[i]] = read_bits(def, 3);
//Build the huffman code table for the literal/length alphabet
huffman codes_huff;
create_huffman(alphabet_codelens, 19, &codes_huff);
//Get the lengths for the literal/length alphabet
uint16_t i = 0;
uint8_t lengths[320];
while(i < hdist + hlit) {
uint16_t sym = huffman_decode(def, &codes_huff);
if(sym < 16) { //0-15: Represent code lengths of 0 - 15
lengths[i++] = sym;
} else {
uint8_t num_repeats = 0;
uint8_t to_repeat = 0;
switch(sym) {
case 16: //16: Copy the previous code length 3 - 6 times.
to_repeat = lengths[i - 1];
num_repeats = read_bits(def, 2) + 3;
break;
case 17: //17: Repeat a code length of 0 for 3 - 10 times.
num_repeats = read_bits(def, 3) + 3;
break;
case 18: //18: Repeat a code length of 0 for 11 - 138 times
num_repeats = read_bits(def, 7) + 11;
break;
default:
//Shouldn't happen...
break;
}
for(uint8_t j = 0; j < num_repeats; j++)
lengths[i++] = to_repeat;
}
}
//Build the length/dist tables
huffman length_huff;
create_huffman(lengths, hlit, &length_huff);
huffman dist_huff;
create_huffman(lengths + hlit, hdist, &dist_huff);
inflate(def, &length_huff, &dist_huff);
}
int inflate_uncompressed(DEFLATE* def) {
def->bit_buf = 0;
def->bit_pos = 8;
uint16_t len_a = def->read(def->arg);
uint16_t len_b = def->read(def->arg);
uint16_t len = len_a | (len_b << 8);
uint16_t lencomp_a = def->read(def->arg);
uint16_t lencomp_b = def->read(def->arg);
uint16_t lencomp = lencomp_a | (lencomp_b << 8);
//Make sure lencomp is actually the ones complement of length
if((lencomp & 0xFFFF) != (~len & 0xFFFF))
return -1;
for(uint16_t i = 0; i < len; i++)
def_write(def, def->read(def->arg));
return 0;
}
huffman fixed_len_huff;
huffman fixed_dist_huff;
int made_fixed = 0;
int decompress(DEFLATE* def) {
def->bit_pos = 8;
def->frame_pointer = 0;
def->bit_buf = 0;
uint8_t bfinal = 0;
//Make the huffman code tables for fixed code inflation if they don't exist already
if(!made_fixed) {
made_fixed = 1;
uint8_t len_lengths[288];
for(uint16_t i = 0; i < 288; i++) {
if(i < 144 || i >= 280)
len_lengths[i] = 8;
else if(i < 256)
len_lengths[i] = 9;
else if(i < 280)
len_lengths[i] = 7;
}
create_huffman(len_lengths, 288, &fixed_len_huff);
uint8_t dist_lengths[30];
for(uint8_t i = 0; i < 30; i++)
dist_lengths[i] = 5;
create_huffman(dist_lengths, 30, &fixed_dist_huff);
}
while(!bfinal) {
bfinal = read_bits(def, 1);
uint8_t btype = read_bits(def, 2);
switch(btype) {
case 0b00:
if(inflate_uncompressed(def) < 0)
return -1;
break;
case 0b01:
inflate(def, &fixed_len_huff, &fixed_dist_huff);
break;
case 0b10:
inflate_dynamic(def);
break;
default:
fprintf(stderr, "deflate: Invalid btype 0b11\n");
return -1;
}
}
return 0;
}