-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathCLI.py
134 lines (107 loc) · 5.25 KB
/
CLI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import pandas as pd
from sentence_transformers import SentenceTransformer, util
import argparse
# Define constants for file paths
MITRE_FILE_PATH = r'C:\Users\ADMIN\Desktop\bug-connector\mitre_allitems.csv'
NIST_FILE_PATH = r'C:\Users\ADMIN\Desktop\bug-connector\Datasets\NIST_cve_data.csv'
COMMIT_FILE_PATH = r'C:\Users\ADMIN\Desktop\bug-connector\Datasets\Mapped_CVE_file.csv'
# Function to load CSV and handle errors
def load_csv(file_path, skip_rows=None):
try:
if skip_rows:
df = pd.read_csv(file_path, encoding='latin1', on_bad_lines='skip', skiprows=skip_rows)
else:
df = pd.read_csv(file_path, encoding='latin1', on_bad_lines='skip')
print(f"Successfully loaded {file_path}")
print(f"Columns in {file_path}: {df.columns.tolist()}")
return df
except pd.errors.ParserError as e:
print(f"Error loading CSV file at {file_path}: {e}")
return pd.DataFrame()
except Exception as e:
print(f"An unexpected error occurred: {e}")
return pd.DataFrame()
# Function to extract commit descriptions and SHA from 'title/message'
def extract_commit_data(commit_df):
# No need to extract 'CVE_ID' from 'title/message' since it's already provided
commit_df['Commit_Message'] = commit_df['Commit_Message']
commit_df['Commit_SHA'] = commit_df['Commit_SHA']
return commit_df
# Function to remove duplicate entries
def remove_duplicates(df):
return df.drop_duplicates()
# Function to map CVEs to commit messages using semantic similarity
def map_cves_to_commits(cve_df, commit_df, model, threshold=0.5):
cve_descriptions = cve_df['Description'].tolist()
commit_messages = commit_df['Commit_Message'].tolist()
print("Encoding commit messages and CVE descriptions...")
commit_embeddings = model.encode(commit_messages, convert_to_tensor=True)
cve_embeddings = model.encode(cve_descriptions, convert_to_tensor=True)
print(f"Number of CVE embeddings: {len(cve_embeddings)}")
print(f"Number of commit embeddings: {len(commit_embeddings)}")
mapped_data = []
seen_combinations = set() # Track unique combinations
try:
print("Computing cosine similarities between commits and CVEs...")
cosine_scores = util.cos_sim(cve_embeddings, commit_embeddings)
print("Similarity computation completed.")
except Exception as e:
print(f"Error during similarity computation: {e}")
return pd.DataFrame()
print("Analyzing mappings...")
for cve_idx in range(len(cve_df)):
cve_row = cve_df.iloc[cve_idx]
cve_id = cve_row.get('CVE ID', '')
cve_description = cve_row.get('Description', '')
scores = cosine_scores[cve_idx]
for commit_idx, score in enumerate(scores):
if score >= threshold:
commit_row = commit_df.iloc[commit_idx]
commit_message = commit_row.get('Commit_Message', '')
commit_sha = commit_row.get('Commit_SHA', '')
combination = (cve_id, commit_sha, commit_message, score.item())
if combination not in seen_combinations:
seen_combinations.add(combination)
mapped_data.append({
'CVE_ID': cve_id,
'Commit_Message': commit_message,
'Commit_SHA': commit_sha,
'Similarity_Score': score.item(),
})
return pd.DataFrame(mapped_data)
# Function to search for a specific CVE ID in both MITRE and NIST datasets
def search_cve(cve_id, mitre_df, nist_df, commit_df, model, threshold=0.5):
mitre_cve_data = mitre_df[mitre_df['Name'] == cve_id]
nist_cve_data = nist_df[nist_df['CVE ID'] == cve_id]
combined_cve_data = pd.concat([mitre_cve_data, nist_cve_data])
if combined_cve_data.empty:
print(f"CVE ID {cve_id} not found in MITRE or NIST datasets.")
return pd.DataFrame()
mapped_df = map_cves_to_commits(combined_cve_data, commit_df, model, threshold)
return mapped_df
# Main function for the CLI
def main():
parser = argparse.ArgumentParser(description="CVE and Commit Mapping CLI")
parser.add_argument('--output_file', type=str, help="Output file for mapped data", required=True)
args = parser.parse_args()
model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
# Load data
mitre_df = load_csv(MITRE_FILE_PATH, skip_rows=2)
nist_df = load_csv(NIST_FILE_PATH)
commit_df = load_csv(COMMIT_FILE_PATH)
commit_df = extract_commit_data(commit_df)
# Remove duplicates
mitre_df = remove_duplicates(mitre_df)
nist_df = remove_duplicates(nist_df)
commit_df = remove_duplicates(commit_df)
# Prompt user for CVE ID
cve_id = input("Enter CVE ID to search for: ").strip()
if cve_id:
mapped_df = search_cve(cve_id, mitre_df, nist_df, commit_df, model)
if not mapped_df.empty:
mapped_df.to_csv(args.output_file, index=False)
print(f"Results for CVE ID {cve_id} have been saved to {args.output_file}")
else:
print(f"No mappings found for CVE ID {cve_id}.")
if __name__ == "__main__":
main()