-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
78 lines (68 loc) · 3.78 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
import tensorflow as tf
from config import Config
from activations import Activations
def resolve_model(name):
models = {
"FeedForwardNeuralNetwork": FeedForwardNeuralNetwork
}
return models[name]()
class FeedForwardNeuralNetwork():
def __init__(self):
self.config = Config().config
self.activations = Activations()
self.inputs = tf.placeholder(tf.float32, shape=(1, self.config['input_size']))
params_size = (self.config['input_size'] * self.config['n_nodes_per_layer']) + self.config['n_nodes_per_layer'] + self.config['n_hidden_layers'] * (self.config['n_nodes_per_layer']**2 + self.config['n_nodes_per_layer']) + (self.config['n_nodes_per_layer'] * self.config['output_size']) + self.config['output_size']
self.params = tf.placeholder(tf.float32)
def model(self):
"""
Builds Tensorflow graph
Returns:
(tensor): Output Tensor for the graph
"""
start = 0
weights = tf.reshape(self.params[start : self.config['input_size'] * self.config['n_nodes_per_layer']], [self.config['input_size'], self.config['n_nodes_per_layer']])
start += self.config['input_size'] * self.config['n_nodes_per_layer']
biases = tf.reshape(self.params[start : start + self.config['n_nodes_per_layer']], [self.config['n_nodes_per_layer']])
start += self.config['n_nodes_per_layer']
hidden_layer = self.activations.resolve_activation(self.config['hidden_layer_activation'])(tf.add(tf.matmul(self.inputs, weights), biases))
for i in range(self.config['n_hidden_layers']):
weights = tf.reshape(self.params[start : start + self.config['n_nodes_per_layer'] * self.config['n_nodes_per_layer']], [self.config['n_nodes_per_layer'], self.config['n_nodes_per_layer']])
start += self.config['n_nodes_per_layer'] * self.config['n_nodes_per_layer']
biases = tf.reshape(self.params[start : start + self.config['n_nodes_per_layer']], [self.config['n_nodes_per_layer']])
start += self.config['n_nodes_per_layer']
hidden_layer = self.activations.resolve_activation(self.config['hidden_layer_activation'])(tf.add(tf.matmul(hidden_layer, weights), biases))
weights = tf.reshape(self.params[start : start + self.config['n_nodes_per_layer'] * self.config['output_size']], [self.config['n_nodes_per_layer'], self.config['output_size']])
start += self.config['n_nodes_per_layer'] * self.config['output_size']
biases = tf.reshape(self.params[start : start + self.config['output_size']], [self.config['output_size']])
start += self.config['output_size']
output_layer = self.activations.resolve_activation(self.config['output_activation'])(tf.add(tf.matmul(hidden_layer, weights), biases))
return output_layer
def init_master_params(self):
"""
Computes initial random gaussian values for master weights and biases
Returns:
(float array): Random gaussian values for neural network weights and biases
"""
master_params = []
weights = np.random.normal(0, 1, self.config['input_size'] * self.config['n_nodes_per_layer'])
master_params += list(weights)
biases = np.random.normal(0, 1, self.config['n_nodes_per_layer'])
master_params += list(biases)
for i in range(self.config['n_hidden_layers']):
weights = np.random.normal(0, 1, self.config['n_nodes_per_layer'] * self.config['n_nodes_per_layer'])
master_params += list(weights)
biases = np.random.normal(0, 1, self.config['n_nodes_per_layer'])
master_params += list(biases)
weights = np.random.normal(0, 1, self.config['n_nodes_per_layer'] * self.config['output_size'])
master_params += list(weights)
biases = np.random.normal(0, 1, self.config['output_size'])
master_params += list(biases)
return master_params
def feed_dict(self, inputs, params):
"""
Fills the feed_dict for the Tensorflow graph
Returns:
(dict): Feed_dict filled with given values for placeholders
"""
return {self.inputs: inputs, self.params: params}