-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVAlgorithm.c++
687 lines (615 loc) · 16.9 KB
/
VAlgorithm.c++
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
#include "VAlgorithm.h"
// #define NDEBUG // Disable assert().
#include <algorithm>
#include <cassert>
// csampChunk is how often amplitudes are updated due to setAmp, setElev, setDistance etc.
#ifdef VSS_WINDOWS
constexpr auto csampChunk = 64;
constexpr auto cChunk = MaxSampsPerBuffer / csampChunk;
#else
constexpr auto csampChunk = 4;
constexpr auto cChunk = 32;
//constexpr int csampChunk = 1;
//constexpr int cChunk = 128;
#endif
// howMany, passed into outputSamples(), is assumed to be a multiple of cChunk.
// As howMany is now always 128,
// that means updateAmps() is called every 128/32 = 4 samples.
// Instances of algorithms.
VAlgorithmList VAlgorithm::Generators;
VAlgorithm::VAlgorithm() :
mute(false),
pause(false),
nchan(1),
// set initial amps
the_gain(-100.0), // -infinity? but you can't lerp from there.
the_amp(0.),
the_gainScale(0.),
the_ampScale(1.),
fInvertAmp(0),
the_inputgain(0.),
the_inputamp(1.),
pan(0),
elev(0),
a_d(1.0),
distance(0.),
distanceHorizon(70.),
dist01(0.),
fDistanceEnabled(0),
fSetAmplsDirectly(0),
dGain(0.),
dScale(0.),
dPan(0),
dElev(0),
dDistance(0),
dInputGain(0),
modGain(0L),
modScale(0L),
modPan(0L),
modElev(0L),
modDistance(0L),
modInputGain(0L),
destGain(0.),
destScale(0.),
destPan(0.),
destElev(0.),
destDistance(0.),
destInputGain(0.),
fLinearEnv(0),
fDebug(0),
source(NULL),
position(Generators.insert(Generators.end(), this))
{
Nchan(1); // set default # of channels of sample stream
for (int i=0; i<MaxNumChannels; i++)
panAmps[i] = 1.0;
// Distance stuff.
// 90% Nyquist lowpass
lpf_d.setFrequency(globs.SampleRate/2.2);
lpf_d.setHiAllLopassGain(0., 0., 1.);
// Subaudio highpass
hpf_d.setFrequency(10.0);
hpf_d.setHiAllLopassGain(1., 0., 0.);
}
VAlgorithm::~VAlgorithm() {
// remove the dead generator from the list
Generators.erase(position);
}
void VAlgorithm::invertAmp(int fInvert) {
fInvertAmp = fInvert;
}
void VAlgorithm::setAmp(float a, float t) {
if (!fLinearEnv)
{
setGain(dBFromScalar(a), t);
return;
}
if (t <= 0.) // set gain immediately
{
the_amp = a;
the_gain = dBFromScalar(the_amp);
modGain = 0L; // in case a slower setGain was in progress
dGain = 0;
//printf("WE ARE LIN SUDDEN: a=%.3g g=%.3g\n", the_amp, the_gain);;
}
else // modulate to new value
{
modGain = std::max(1L, (long)(t * globs.SampleRate / csampChunk));
dGain = (a - the_amp) / modGain;
destGain = a;
//printf("WE ARE LIN %.3g : a=%.3g g=%.3g\n", t, a, dBFromScalar(a));;
}
}
void VAlgorithm::setGain(float a, float t) {
if (fLinearEnv)
{
setAmp(ScalarFromdB(a), t);
return;
}
if (t <= 0.) // set gain immediately
{
//printf("we are log sudden: %.3g \n", t);;
the_gain = a;
the_amp = ScalarFromdB(the_gain);
modGain = 0L; // in case a slower setGain was in progress
dGain = 0;
}
else // modulate to new value
{
//printf("we are log: %.3g : a=%.3g g=%.3g\n", t, a, ScalarFromdB(a));;
modGain = std::max(1L, (long)(t * globs.SampleRate / csampChunk));
dGain = (a - the_gain) / (float)modGain;
destGain = a;
}
}
void VAlgorithm::scaleAmp(float a, float t) {
if (!fLinearEnv)
{
scaleGain(dBFromScalar(a), t);
return;
}
if (t <= 0.) // scale immediately
{
the_ampScale = a;
the_gainScale = dBFromScalar(the_ampScale);
modScale = 0L; // in case a slower scaleAmp was in progress
dScale = 0;
}
else
{
modScale = std::max(1L, (long)(t * globs.SampleRate / csampChunk));
dScale = (a - the_ampScale) / (float)modScale;
destScale = a;
}
}
void VAlgorithm::scaleGain(float a, float t) {
if (fLinearEnv)
{
scaleAmp(ScalarFromdB(a), t);
return;
}
if (t <= 0.) // scale immediately
{
the_gainScale = a;
the_ampScale = ScalarFromdB(the_gainScale);
modScale = 0L; // in case a slower scaleAmp was in progress
dScale = 0;
}
else
{
modScale = std::max(1L, (long)(t * globs.SampleRate / csampChunk));
dScale = (a - the_gainScale) / (float)modScale;
destScale = a;
}
}
void VAlgorithm::setInputAmp(float a, float t) {
if (!fLinearEnv)
{
setInputGain(dBFromScalar(a), t);
return;
}
if (t <= 0.) // set gain immediately
{
the_inputamp = a;
the_inputgain = dBFromScalar(the_inputamp);
modInputGain = 0L; // in case a slower setGain was in progress
dInputGain = 0;
}
else // modulate to new value
{
modInputGain = std::max(1L, (long)(t * globs.SampleRate / csampChunk));
dInputGain = (a - the_inputamp) / (float)modInputGain;
destInputGain = a;
}
}
void VAlgorithm::setInputGain(float a, float t) {
if (fLinearEnv)
{
setInputAmp(ScalarFromdB(a), t);
return;
}
if (t <= 0.) // set gain immediately
{
the_inputgain = a;
the_inputamp = ScalarFromdB(the_inputgain);
modInputGain = 0L; // in case a slower setInputGain was in progress
dInputGain = 0;
}
else // modulate to new value
{
modInputGain = std::max(1L, (long)(t * globs.SampleRate / csampChunk));
dInputGain = (a - the_inputgain) / (float)modInputGain;
destInputGain = a;
}
}
static double NormalizePan(double a) {
if (Nchans() < 4)
return std::clamp(a, -1.0, 1.0);
const auto _ = fmod(a, 2.0); // 0 to 1.999 if a>0, -1.999 to 0 if a<0.
return _<-1.0 ? _+2.0 : _>1.0 ? _-2.0 : _;
}
// Quad: -1 to 1 is left-rear through left, front, right, right-rear.
//
// A _/\_ waveform peaking at -.75 -.25 .25 .75, generalizing linear pan
// to 4 pairs of speakers. The sqrt then makes the pan classic constant-power
// (thanks to Carlos Ricci for the sqrt idea).
// Compute the sqrt lazily (don't bother, if we were going to return 0 anyway).
static double PanIt(double _, double __) {
const auto x = 1.0 - 2.0*fabs(NormalizePan(_) - __);
return x > 0.0 ? sqrt(x) : 0.0;
}
static double PanFL(double _) { return PanIt(_, -.25); }
static double PanFR(double _) { return PanIt(_, .25); }
static double PanRL(double _) { return PanIt(_, -.75) + PanIt(_, 1.25); }
static double PanRR(double _) { return PanIt(_, .75) + PanIt(_, -1.25); }
// the 2 cases for RL and RR are to handle both sheets of the multiple covering
// Set panAmps[] from pan.
void VAlgorithm::setPanImmediately(int nchans) {
if (fSetAmplsDirectly)
return;
switch (nchans)
{
case 1:
// Mono: no panning.
panAmps[0] = 1.;
break;
case 2:
// Stereo: -1 to 1 is left-to-right.
panAmps[0] = fabs(pan - 1) * .5;
panAmps[1] = 1. - panAmps[0];
break;
case 4:
panAmps[0] = PanFL(pan);
panAmps[1] = PanFR(pan);
panAmps[2] = PanRL(pan);
panAmps[3] = PanRR(pan);
break;
case 8:
// Like Quad, where pan is azimuth, and elev is elevation.
setElevImmediately(nchans);
}
}
void VAlgorithm::setElevImmediately(int nchans) {
if (fSetAmplsDirectly || nchans != 8)
return;
// Like Quad, where pan is azimuth, and elev is elevation.
const auto FL = PanFL(pan);
const auto FR = PanFR(pan);
const auto RL = PanRL(pan);
const auto RR = PanRR(pan);
const auto elevBot = fabs(elev - 1) * 0.5;
const auto elevTop = 1.0 - elevBot;
panAmps[0] = FL * elevTop;
panAmps[1] = FR * elevTop;
panAmps[2] = RL * elevTop;
panAmps[3] = RR * elevTop;
panAmps[4] = FL * elevBot;
panAmps[5] = FR * elevBot;
panAmps[6] = RL * elevBot;
panAmps[7] = RR * elevBot;
}
void VAlgorithm::setDistanceImmediately() {
dist01 = std::max(0.0f, distance / distanceHorizon);
#ifdef ONE_WAY_TO_DO_IT
// inverse-1.2 law
float distAmpl = pow(dist01, 1.2);
#else
// inverse-square law halfway to the horizon,
// linear after that.
float distAmpl = (dist01 < .5) ? dist01*dist01 : dist01 - 0.25;
#endif
if (dist01 > 1.)
dist01 = 1.;
if (dist01 > 0.)
{
// printf("distancing (%.3f = %.3f/%.3f)\n", dist01, d, distanceHorizon);;
fDistanceEnabled = 1;
}
else
{
fDistanceEnabled = 0;
return;
}
// map dist01 to a_d=[0dB,-50dB]
a_d = pow(10.0, -(50./20.)*distAmpl);
// printf("a_d = %.3f\n", a_d);;
// map dist01 to lowpass fc=[fHigh,fLow]
float fHigh = globs.SampleRate / 2.2; // Nyquist frequency
const float fLow = 1000.f; // 1 kHz
float Kf = log(fLow/fHigh) / log(2.0);
lpf_d.setFrequency(fHigh * pow(2.0f, (float)(Kf*dist01)));
// map dist01 to highpass fc=[10,160] Hz
hpf_d.setFrequency(10.0 * pow(2.0, 4.0*dist01));
}
void VAlgorithm::setPan(float a, float t) {
if (fSetAmplsDirectly)
return;
if (t <= 0.) // set pan immediately
{
pan = NormalizePan(a);
modPan = 0L; // in case a slower setPan was in progress
setPanImmediately(Nchans());
}
else
{
// If we're 4- or 8-channel, when pan wraps -1 to 1,
// choose the destPan value which is nearest to the current pan value:
// itself, itself+2, or itself-2.
pan = NormalizePan(pan);
if (Nchans() < 4)
destPan = a;
else
{
destPan = NormalizePan(a);
float d1 = fabs(destPan - pan);
float d2 = fabs(destPan+2. - pan);
float d3 = fabs(destPan-2. - pan);
if (d1<d2)
{
if (d3<d1)
destPan -= 2.; // d3<d1<d2
else
/* noop */; // d1<d2, d1<d3
}
else
{
if (d3<d2)
destPan -= 2.; // d3<d2<d1
else
destPan += 2.; // d2<d3, d2<d1
}
}
modPan = t * globs.SampleRate / csampChunk;
dPan = (destPan - pan) / (float)modPan;
if (dPan == 0.)
modPan = 0; // nothing to do, we're there already!
}
}
void VAlgorithm::setElev(float a, float t) {
if (fSetAmplsDirectly)
return;
if (t <= 0.) // set elev immediately
{
elev = a;
modElev = 0L; // in case a slower one was in progress
setElevImmediately(Nchans());
}
else if (a == elev)
modElev = 0L; // in case a slower one was in progress
else
{
modElev = t * globs.SampleRate / csampChunk;
dElev = (a - elev) / (float)modElev;
destElev = a;
}
}
void VAlgorithm::setDistance(float a, float t) {
if (fSetAmplsDirectly)
return;
if (t <= 0.) // set distance immediately
{
distance = a;
modDistance = 0L; // in case a slower one was in progress
setDistanceImmediately();
}
else if (a == distance)
modDistance = 0L; // in case a slower one was in progress
else
{
modDistance = t * globs.SampleRate / csampChunk;
dDistance = (a - distance) / (float)modDistance;
destDistance = a;
}
}
void VAlgorithm::setDistanceHorizon(float a) {
distanceHorizon = std::max(0.0001f, a);
}
// Computes the new (modulated) amplitude values
// in place, and halts modulation if necessary.
void VAlgorithm::updateAmps(int nchans) {
assert(!getPause());
if (fLinearEnv)
{
if (modGain > 0L)
{
the_amp += dGain;
if (--modGain == 0L)
{
// modulation ended
/* this isn't really necessary: */ dGain = 0;
the_amp = destGain;
}
the_gain = dBFromScalar(the_amp);
}
if (modInputGain > 0L)
{
the_inputamp += dInputGain;
if (--modInputGain == 0L)
{
// modulation ended
/* this isn't really necessary: */ dInputGain = 0;
the_inputamp = destInputGain;
}
the_inputgain = dBFromScalar(the_inputamp);
}
if (modScale > 0L)
{
the_ampScale += dScale;
if (--modScale == 0L)
{
dScale = 0;
the_ampScale = destScale;
}
the_gainScale = dBFromScalar(the_ampScale);
}
}
else
{
if (modGain > 0L)
{
the_gain += dGain;
if (--modGain == 0L)
{
dGain = 0;
the_gain = destGain;
}
the_amp = ScalarFromdB(the_gain);
}
if (modInputGain > 0L)
{
the_inputgain += dInputGain;
if (--modInputGain == 0L)
{
dInputGain = 0;
the_inputgain = destInputGain;
}
the_inputamp = ScalarFromdB(the_inputgain);
}
if (modScale > 0L)
{
the_gainScale += dScale;
if (--modScale == 0L)
{
dScale = 0;
the_gainScale = destScale;
}
the_ampScale = ScalarFromdB(the_gainScale);
}
}
if (fSetAmplsDirectly)
return;
if (modPan > 0L)
{
// update pan
pan += dPan;
if (--modPan == 0L)
pan = destPan;
// If elev is still changing, don't bother computing panAmps[] here
// as it'll be recomputed by setElevImmediately() in a moment anyways.
// (But setElevImmediately() does nothing if nchans != 8.)
if (modElev <= 0L || nchans != 8)
setPanImmediately(nchans);
}
if (modElev > 0L)
{
// update elev
// Even if nchans != 8, because it might get changed to 8 on the fly.
elev += dElev;
if (--modElev == 0L)
elev = destElev;
setElevImmediately(nchans);
}
}
void VAlgorithm::updateDistance() {
assert(!getPause());
if (modDistance > 0L)
{
distance += dDistance;
if (--modDistance == 0L)
distance = destDistance;
setDistanceImmediately();
}
}
//===========================================================================
//===================== The final mixing bus of VSS ========================
//===========================================================================
// FOutputSamples1,2() handle pause and mute for classes that override outputSamples().
// ProcessorActors commonly set fValidForOutput to (source != NULL).
int VAlgorithm::FOutputSamples1(int howMany, int fValidForOutput) {
if (!fValidForOutput || getPause()) {
ClearBuffer(howMany);
return 0;
}
return 1;
}
int VAlgorithm::FOutputSamples2(int /*howMany*/, int nchans) {
if (getMute() && !fSetAmplsDirectly) {
for (auto iChunk = 0; iChunk < cChunk; ++iChunk) {
updateDistance();
updateAmps(nchans);
}
return 0;
}
return 1;
}
// OutputSamples 3,4
// Functions to map the computed buffer of samples to the vss output channels,
// then fade, scale, and pan the mapped result onto the vss output busses
void VAlgorithm::OutputSamples3(int howMany, float* dst, int nchans) {
auto nchansAlgorithm = Nchan();
VCircularBuffer bufferMono;
assert(fDistanceEnabled==0 || fDistanceEnabled==1);
const bool fToMono = nchansAlgorithm != 1 && fDistanceEnabled;
if (fToMono) {
// Sum all channels into mono. Yuk, slow.
MapBuffer(bufferMono, howMany, nchansAlgorithm, 1);
nchansAlgorithm = 1;
}
VCircularBuffer& buf = fToMono ? bufferMono : buffer;
if (fDistanceEnabled) {
// Do the distance filtering thing on the (by now) mono source.
// Distance should be done in this separate pass before pan and elev,
// because it crunches the stream into mono first.
// We therefore need a mechanism parallel to that of updateAmps
// to smoothly ramp the distance state.
assert(nchansAlgorithm == 1);
auto s1 = 0; // Doesn't rezero for each chunk.
for (auto iChunk = 0; iChunk < cChunk; ++iChunk) {
updateDistance();
for (auto s=0; s<csampChunk; ++s,++s1) {
lpf_d.setInput(a_d * buf[s1][0]);
lpf_d.computeSamp();
hpf_d.setInput(lpf_d.getOutput());
hpf_d.computeSamp();
buf[s1][0] = hpf_d.getOutput();
}
}
}
if (nchansAlgorithm == nchans || (nchansAlgorithm == 1 && nchans == 2)) {
// Direct copy, or hand-optimized mono to stereo.
OutputSamples4(howMany, dst, nchansAlgorithm, nchans, buf);
} else {
// Convert # of channels to vss's width.
auto tmp = buf;
tmp.Map(howMany, nchansAlgorithm, nchans);
OutputSamples4(howMany, dst, nchansAlgorithm, nchans, tmp);
}
}
//;;;; dynamically variable cChunk and csampChunk.
//;;;; if (nothing's changing /*updateAmps isn't doing anything*/)
//;;;; { cChunk=1; csampChunk=howMany; }
void VAlgorithm::OutputSamples4(int howMany, float* dst, int nchansAlgorithm, int nchans, VCircularBuffer& bufArg) {
assert(howMany == MaxSampsPerBuffer);
assert(howMany == cChunk * csampChunk);
const auto tmp = 32767.0f * the_amp * the_ampScale;
const auto ampRaw = fInvertAmp ? -tmp : tmp;
auto s1 = 0; // Doesn't rezero for each chunk.
for (auto iChunk=0; iChunk < cChunk; ++iChunk) {
updateAmps(nchans);
if (nchansAlgorithm == 1 && nchans == 1) {
// Common case: mono to mono.
for (auto s=0; s < csampChunk; ++s,++s1)
*dst++ += bufArg[s1][0] * ampRaw;
} else if (nchansAlgorithm == 1 && nchans == 2) {
// Common case: mono to stereo.
const auto amp0 = ampRaw * panAmps[0];
const auto amp1 = ampRaw * panAmps[1];
for (auto s=0; s < csampChunk; ++s,++s1) {
const auto unpanned = bufArg[s1][0];
*dst++ += unpanned * amp0;
*dst++ += unpanned * amp1;
}
} else {
// General case. Would work for the previous two, too.
float amp[nchans];
for (auto c=0; c < nchans; ++c)
amp[c] = ampRaw * panAmps[c];
for (auto s=0; s < csampChunk; ++s,++s1)
for (auto c=0; c < nchans; ++c)
*dst++ += bufArg[s1][c] * amp[c]; // dst[s1*nchans + c]
}
}
}
// Called for each algorithm in the list.
// This in turn calls generateSamples() if necessary.
//
// Derived algorithms may override this member,
// as in the case of algorithms that generate stereo samples,
// for example (such algorithms need some other prescription
// for copying and scaling their samples into dst[]).
//
// Update amplitudes every sample.
void VAlgorithm::outputSamples(int howMany, float* dst, int nchans) {
if (!FOutputSamples1(howMany, FValidForOutput()))
return;
// fill local output buffer using whatever algorithm
generateSamples(howMany);
if (!FOutputSamples2(howMany, nchans))
return;
// Now we have buffer[samps][chans] of some number of channels.
// Map this # of channels to nchans, the output width of vss.
// Also scale the amplitudes by VAlgorithm::the_amp and the_ampScale.
// Also pan with data provided by SetPan(), SetElev(), SetDistance().
// Store the result in the output buffer dst[].
OutputSamples3(howMany, dst, nchans);
}