-
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathic_pfor.h
700 lines (542 loc) · 16.3 KB
/
ic_pfor.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
// ic_pfor v1.0 - Ignacio Castano <[email protected]>
// LICENSE:
// MIT License at the end of this file.
#ifndef IC_PFOR_H
#define IC_PFOR_H
// Allow disabling C++11 lambdas.
#ifndef IC_CC_LAMBDAS
#if defined(__GNUC__)
#define IC_CC_LAMBDAS __cplusplus>=201103L
#elif defined(__clang__)
#define IC_CC_LAMBDAS __has_feature(cxx_lambdas)
#else
#define IC_CC_LAMBDAS (_MSC_VER >= 1800)
#endif
#endif
namespace ic {
// Init and destroy this library. Returns number of threads.
int init_pfor(int worker_count = 0, bool use_calling_thread = true);
void shut_pfor();
// Invoke the given function pointer in parallel with idx values in the [0,count) range.
typedef void ForTask(void * context, int idx);
void pfor_run (ForTask * task, void * context, unsigned int count, unsigned int step = 1);
#if IC_CC_LAMBDAS
// The lambda based body declaration is much nicer:
// ic::pfor(count, step, [&](int i){ ... });
template <typename F>
void pfor(unsigned int count, unsigned int step, F f) {
// Transform lambda into function pointer.
auto lambda = [](void* context, int idx) {
F & f = *reinterpret_cast<F *>(context);
f(idx);
};
pfor_run(lambda, &f, count, step);
}
// Some shenanigas for a slightly better syntax:
// ic_pfor(idx, count, step) { ... }
template<typename F>
struct PForRun {
F f;
unsigned int count;
unsigned int step;
PForRun(unsigned int count, unsigned int step, F f):f(f) {
pfor(count, step, f);
}
private:
PForRun& operator=(const PForRun&);
};
struct PForHelp {
unsigned int count;
unsigned int step;
PForHelp(unsigned int count, unsigned int step) : count(count), step(step) {}
template<typename F> PForRun<F> operator+(F f) { return PForRun<F>(count, step, f); }
};
//#define ic_pfor(IDX, COUNT) const auto& CONCAT(pfor__, __LINE__) = ic::PForHelp(COUNT, 1) + [&](int IDX)
#define ic_pfor(IDX, COUNT, STEP) const auto& CONCAT(pfor__, __LINE__) = ic::PForHelp(COUNT, STEP) + [&](int IDX)
#endif // IC_CC_LAMBDAS
} // ic
#endif // IC_PFOR_H
#ifdef IC_PFOR_IMPLEMENTATION
// Maximum thread count is fixed, but can be tweaked with this definition:
#ifndef IC_MAX_THREAD_COUNT
#define IC_MAX_THREAD_COUNT 64
#endif
#ifndef IC_THREAD_STACK_SIZE
#define IC_THREAD_STACK_SIZE 0 // Use default size.
#endif
// Set this to 1 to use the Windows CRT safely inside the threads.
#ifndef IC_INIT_THREAD_CRT
#define IC_INIT_THREAD_CRT 0
#endif
#ifndef IC_ASSERT
#define IC_ASSERT assert
#include <assert.h>
#endif
#define IC_STATIC_ASSERT(x) static_assert(x, #x)
#if ((defined(_WIN32) || defined WIN32 || defined __NT__ || defined __WIN32__) && !defined __CYGWIN__)
#define IC_OS_WINDOWS 1
#endif
#if (defined linux || defined __linux__)
#define IC_OS_LINUX 1
#endif
#if defined(__NetBSD__)
#define IC_OS_NETBSD 1
#endif
#if defined(__APPLE__) || defined (__MACH__)
#define IC_OS_DARWIN 1
#endif
#if defined(__FreeBSD__)
#define IC_OS_FREEBSD 1
#endif
#if defined(__OpenBSD__)
#define IC_OS_OPENBSD 1
#endif
#if defined(__CYGWIN__)
#define IC_OS_CYGWIN 1
#endif
#if defined(__EMSCRIPTEN_PTHREADS__)
#define IC_OS_EMSCRIPTEN 1
#endif
#if IC_OS_WINDOWS || IC_OS_CYGWIN
#define WIN32_LEAN_AND_MEAN
#define VC_EXTRALEAN
#define NOMINMAX
#include <windows.h>
#if IC_INIT_THREAD_CRT
#include <process.h>
#endif
#endif
#if !IC_OS_WINDOWS
#include <pthread.h>
#include <unistd.h> // sysconf
#endif
#if IC_OS_DARWIN
#import <mach/mach_host.h>
#import <sys/sysctl.h>
#endif
#if IC_OS_EMSCRIPTEN
#include <emscripten/threading.h>
#endif
#include <stdint.h>
#include <stdio.h> // snprintf
#define IC_MAX_THREAD_NAME_LENGTH 32
namespace ic {
typedef uint32_t uint;
typedef uint32_t uint32;
/// Return the minimum of two values.
template <typename T>
//inline const T & min(const T & a, const T & b)
inline T min(const T & a, const T & b)
{
return (a < b) ? a : b;
}
////////////////////////////////////////////////////////
// Atomics
#if _MSC_VER
#include <intrin.h>
#pragma intrinsic(__cpuid)
#pragma intrinsic(_WriteBarrier)
#define compiler_write_barrier _WriteBarrier
#pragma intrinsic(_ReadWriteBarrier)
#define compiler_rw_barrier _ReadWriteBarrier
#if _MSC_VER >= 1400 // ReadBarrier is VC2005
#pragma intrinsic(_ReadBarrier)
#define compiler_read_barrier _ReadBarrier
#else
#define compiler_read_barrier _ReadWriteBarrier
#endif
#else // GCC
#define compiler_rw_barrier() asm volatile("" ::: "memory")
#define compiler_read_barrier compiler_rw_barrier
#define compiler_write_barrier compiler_rw_barrier
#endif
template <typename T>
inline void store_release_pointer(volatile T * pTo, T from) {
IC_STATIC_ASSERT(sizeof(T) == sizeof(intptr_t));
IC_ASSERT((((intptr_t)pTo) % sizeof(intptr_t)) == 0);
IC_ASSERT((((intptr_t)&from) % sizeof(intptr_t)) == 0);
compiler_write_barrier();
*pTo = from; // on x86, stores are Release
}
template <typename T>
inline T load_acquire_pointer(volatile T * ptr) {
IC_STATIC_ASSERT(sizeof(T) == sizeof(intptr_t));
IC_ASSERT((((intptr_t)ptr) % sizeof(intptr_t)) == 0);
T ret = *ptr; // on x86, loads are Acquire
compiler_read_barrier();
return ret;
}
#undef compiler_rw_barrier
#undef compiler_read_barrier
#undef compiler_write_barrier
#if IC_OS_WINDOWS
// Returns original value before addition.
inline uint32 atomic_fetch_and_add(uint32 * value, uint32 value_to_add) {
IC_ASSERT((intptr_t(value) & 3) == 0);
return uint32(_InterlockedExchangeAdd((long*)value, (long)value_to_add));
}
#else
// Returns original value before addition.
inline uint32 atomic_fetch_and_add(uint32 * value, uint32 value_to_add) {
IC_ASSERT((intptr_t(value) & 3) == 0);
return __sync_fetch_and_add(value, value_to_add);
}
#endif
////////////////////////////////////////////////////////
// System
#if IC_OS_WINDOWS || IC_OS_CYGWIN
typedef BOOL (WINAPI *LPFN_GSI)(LPSYSTEM_INFO);
typedef BOOL (WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
static bool isWow64() {
LPFN_ISWOW64PROCESS fnIsWow64Process = (LPFN_ISWOW64PROCESS)GetProcAddress(GetModuleHandle(TEXT("kernel32")), "IsWow64Process");
BOOL wow64 = FALSE;
if (NULL != fnIsWow64Process) {
if (!fnIsWow64Process(GetCurrentProcess(), &wow64)) {
// If error, assume false.
}
}
return wow64 != 0;
}
static void getSystemInfo(SYSTEM_INFO * sysinfo) {
BOOL success = FALSE;
if (isWow64()) {
LPFN_GSI fnGetNativeSystemInfo = (LPFN_GSI)GetProcAddress(GetModuleHandle(TEXT("kernel32")), "GetNativeSystemInfo");
if (fnGetNativeSystemInfo != NULL) {
success = fnGetNativeSystemInfo(sysinfo);
}
}
if (!success) {
GetSystemInfo(sysinfo);
}
}
#endif
// Find the number of logical processors in the system.
// Based on: http://stackoverflow.com/questions/150355/programmatically-find-the-number-of-cores-on-a-machine
static int get_processor_count() {
#if IC_OS_WINDOWS || IC_OS_CYGWIN
SYSTEM_INFO sysinfo;
getSystemInfo(&sysinfo);
return sysinfo.dwNumberOfProcessors;
// Respect process affinity mask?
DWORD_PTR pam, sam;
GetProcessAffinityMask(GetCurrentProcess(), &pam, &sam);
// Count number of bits set in the processor affinity mask.
int count = 0;
for (int i = 0; i < sizeof(DWORD_PTR) * 8; i++) {
if (pam & (DWORD_PTR(1) << i)) count += 1;
}
IC_ASSERT((DWORD)count <= sysinfo.dwNumberOfProcessors);
return count;
#elif IC_OS_LINUX || IC_OS_NETBSD // Linux, Solaris, & AIX
return sysconf(_SC_NPROCESSORS_ONLN);
#elif IC_OS_DARWIN || IC_OS_FREEBSD || IC_OS_OPENBSD
int numCPU;
int mib[4];
size_t len = sizeof(numCPU);
// set the mib for hw.ncpu
mib[0] = CTL_HW;
#if IC_OS_OPENBSD || IC_OS_FREEBSD
mib[1] = HW_NCPU;
#else
mib[1] = HW_AVAILCPU;
#endif
// get the number of CPUs from the system
sysctl(mib, 2, &numCPU, &len, NULL, 0);
if (numCPU < 1) {
mib[1] = HW_NCPU;
sysctl( mib, 2, &numCPU, &len, NULL, 0 );
if (numCPU < 1) {
return 1; // Assume single core.
}
}
return numCPU;
#elif IC_OS_EMSCRIPTEN
if (!emscripten_has_threading_support()) return 1;
return emscripten_num_logical_cores();
#else
return 1; // Assume single core.
#endif
}
////////////////////////////////////////////////////////
// Thread
typedef void ThreadFunc(void * arg);
struct Thread {
#if IC_OS_WINDOWS
HANDLE handle;
#else // POSIX
pthread_t handle;
#endif
char name[IC_MAX_THREAD_NAME_LENGTH];
ThreadFunc * func;
void * arg;
};
#if IC_OS_WINDOWS
// SetThreadName implementation from msdn:
// http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
#pragma pack(push,8)
struct THREADNAME_INFO
{
DWORD dwType; // Must be 0x1000.
LPCSTR szName; // Pointer to name (in user addr space).
DWORD dwThreadID; // Thread ID (-1=caller thread).
DWORD dwFlags; // Reserved for future use, must be zero.
};
#pragma pack(pop)
static void setThreadName(DWORD dwThreadID, const char* threadName)
{
static const DWORD MS_VC_EXCEPTION = 0x406D1388;
THREADNAME_INFO info;
info.dwType = 0x1000;
info.szName = threadName;
info.dwThreadID = dwThreadID;
info.dwFlags = 0;
__try
{
RaiseException(MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(ULONG_PTR), (ULONG_PTR*)&info);
}
__except(EXCEPTION_EXECUTE_HANDLER)
{
}
}
#if IC_INIT_THREAD_CRT
static unsigned __cdecl threadFunc(void * arg)
#else
static unsigned long __stdcall threadFunc(void * arg)
#endif
{
Thread * thread = (Thread *)arg;
DWORD id = GetCurrentThreadId();
setThreadName(id, thread->name);
#ifdef IC_THREAD_NAME
IC_THREAD_NAME(id, thread->name);
#endif
thread->func(thread->arg);
return 0;
}
static void thread_start(Thread * thread, ThreadFunc * func, void * arg)
{
thread->func = func;
thread->arg = arg;
#if IC_INIT_THREAD_CRT
thread->handle = (HANDLE)_beginthreadex(NULL, IC_THREAD_STACK_SIZE, threadFunc, thread, 0, NULL);
#else
thread->handle = CreateThread(NULL, IC_THREAD_STACK_SIZE, threadFunc, thread, 0, NULL);
#endif
IC_ASSERT(thread->handle != NULL);
}
static void thread_wait(Thread * thread)
{
DWORD status = WaitForSingleObject (thread->handle, INFINITE);
IC_ASSERT (status == WAIT_OBJECT_0);
BOOL ok = CloseHandle (thread->handle);
IC_ASSERT (ok);
thread->handle = NULL;
}
#else // POSIX
static void * threadFunc(void * arg)
{
Thread * thread = (Thread *)arg;
thread->func(thread->arg);
pthread_exit(0);
}
static void thread_start(Thread * thread, ThreadFunc * func, void * arg)
{
thread->func = func;
thread->arg = arg;
int result = pthread_create(&thread->handle, NULL, threadFunc, thread);
IC_ASSERT(result == 0);
}
static void thread_wait(Thread * thread)
{
int result = pthread_join(thread->handle, NULL);
thread->handle = 0;
IC_ASSERT(result == 0);
}
#endif
static void thread_wait(Thread threads[], uint count)
{
for (uint i = 0; i < count; i++) {
thread_wait(&threads[i]);
}
}
////////////////////////////////////////////////////////
// Event
#if IC_OS_WINDOWS
struct Event {
HANDLE handle;
};
static void event_create(Event * event)
{
event->handle = CreateEvent(/*lpEventAttributes=*/NULL, /*bManualReset=*/FALSE, /*bInitialState=*/FALSE, /*lpName=*/NULL);
}
static void event_destroy(Event * event)
{
CloseHandle(event->handle);
event->handle = NULL;
}
static void event_post(Event * event)
{
SetEvent(event->handle);
}
static void event_wait(Event * event)
{
WaitForSingleObject(event->handle, INFINITE);
}
#else // POSIX
struct Event {
pthread_cond_t pt_cond;
pthread_mutex_t pt_mutex;
int count = 0;
int wait_count = 0;
};
static void event_create(Event * event)
{
event->count = 0;
event->wait_count = 0;
pthread_mutex_init(&event->pt_mutex, NULL);
pthread_cond_init(&event->pt_cond, NULL);
}
static void event_destroy(Event * event)
{
pthread_cond_destroy(&event->pt_cond);
pthread_mutex_destroy(&event->pt_mutex);
}
static void event_post(Event * event)
{
pthread_mutex_lock(&event->pt_mutex);
event->count += 1;
if (event->wait_count > 0) {
pthread_cond_signal(&event->pt_cond);
}
pthread_mutex_unlock(&event->pt_mutex);
}
static void event_wait(Event * event)
{
pthread_mutex_lock(&event->pt_mutex);
while (event->count == 0) {
event->wait_count += 1;
pthread_cond_wait(&event->pt_cond, &event->pt_mutex);
event->wait_count -= 1;
}
event->count -= 1;
pthread_mutex_unlock(&event->pt_mutex);
}
#endif
static void event_post(Event threads[], uint count)
{
for (uint i = 0; i < count; i++) {
event_post(&threads[i]);
}
}
static void event_wait(Event threads[], uint count)
{
for (uint i = 0; i < count; i++) {
event_wait(&threads[i]);
}
}
////////////////////////////////////////////////////////
// Thread Pool
typedef void ThreadTask(void * context, int id);
struct ThreadPool {
bool use_calling_thread;
int worker_count;
Thread workers[IC_MAX_THREAD_COUNT];
Event startEvents[IC_MAX_THREAD_COUNT];
Event finishEvents[IC_MAX_THREAD_COUNT];
ThreadTask * func;
void * arg;
};
static ThreadPool pool;
static void pool_func(void * arg) {
uint i = uint((uintptr_t)arg); // This is OK, because workerCount should always be much smaller than 2^32
while (true)
{
event_wait(&pool.startEvents[i]);
ThreadTask * func = load_acquire_pointer(&pool.func);
if (func == NULL) {
return;
}
func(pool.arg, i + pool.use_calling_thread);
event_post(&pool.finishEvents[i]);
}
}
void thread_pool_run(ThreadTask * func, void * arg)
{
// Set our desired function.
store_release_pointer(&pool.func, func);
store_release_pointer(&pool.arg, arg);
// Resume threads.
event_post(pool.startEvents, pool.worker_count - pool.use_calling_thread);
if (pool.use_calling_thread) {
func(arg, 0);
}
// Wait for threads to complete.
event_wait(pool.finishEvents, pool.worker_count - pool.use_calling_thread);
}
int init_pfor(int worker_count, bool use_calling_thread) {
if (worker_count <= 0) {
worker_count = get_processor_count();
}
if (worker_count - use_calling_thread > IC_MAX_THREAD_COUNT) {
worker_count = IC_MAX_THREAD_COUNT + use_calling_thread;
}
pool.worker_count = worker_count;
pool.use_calling_thread = use_calling_thread;
for (int i = 0; i < worker_count - use_calling_thread; i++) {
event_create(&pool.startEvents[i]);
event_create(&pool.finishEvents[i]);
}
for (int i = 0; i < worker_count - use_calling_thread; i++) {
snprintf(pool.workers[i].name, IC_MAX_THREAD_NAME_LENGTH, "ic_pfor_worker %d", i);
thread_start(&pool.workers[i], pool_func, (void*)(uintptr_t)(i));
}
return worker_count;
}
void shut_pfor() {
// Set threads to terminate.
store_release_pointer(&pool.func, (ThreadTask *)NULL);
store_release_pointer(&pool.arg, (void *)NULL);
// Resume threads.
event_post(pool.startEvents, pool.worker_count - pool.use_calling_thread);
// Wait until threads actually exit.
thread_wait(pool.workers, pool.worker_count - pool.use_calling_thread);
for (int i = 0; i < pool.worker_count - pool.use_calling_thread; i++) {
event_destroy(&pool.startEvents[i]);
event_destroy(&pool.finishEvents[i]);
}
}
////////////////////////////////////////////////////////
// Parallel For
struct ParallelFor {
ForTask * func;
void * ctx;
uint count;
uint step;
/*atomic*/ uint idx;
};
static ParallelFor pf;
static void pf_func(void * arg, int tid) {
while (true) {
uint new_idx = atomic_fetch_and_add(&pf.idx, pf.step);
if (new_idx >= pf.count) {
break;
}
const uint count = min(pf.count, new_idx + pf.step);
for (uint i = new_idx; i < count; i++) {
pf.func(pf.ctx, i);
}
}
}
void pfor_run(ForTask * task, void * context, uint count, uint step/*= 1*/) {
pf.func = task;
pf.ctx = context;
// Init for loop state.
pf.count = count;
pf.step = step;
pf.idx = 0;
// Start pool threads.
thread_pool_run(pf_func, NULL);
IC_ASSERT(pf.idx >= pf.count);
}
} // ic
#endif // IC_PFOR_IMPLEMENTATION