-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathword2vec_helper.py
39 lines (30 loc) · 1.25 KB
/
word2vec_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import numpy as np
import word2vec
class Word2Vec():
def __init__(self,file_path):
# w2v_file = os.path.join(base_path, "vectors_poem.bin")
self.model = word2vec.load(file_path)
self.add_word('<unknown>')
self.add_word('<pad>')
# self.vocab_size = len(self.model.vocab)
def add_word(self,word):
if word not in self.model.vocab_hash:
w_vec = np.random.uniform(-0.1,0.1,size=128)
self.model.vocab_hash[word] = len(self.model.vocab)
self.model.vectors = np.row_stack((self.model.vectors,w_vec))
self.model.vocab = np.concatenate((self.model.vocab,np.array([word])))
# vocab = np.empty(1, dtype='<U%s' % 78)
# vocab[0] =word
#
# self.model.vocab = np.concatenate((self.model.vocab,vocab))
def get(self, word):
if word not in self.model.vocab_hash:
word = 'unknown'
return self.model[word]
if __name__ == '__main__':
# w2vpath = './corpus/vectors_xhj_shj.bin' #分字
w2vpath = './corpus/vectors_qa_word.bin' #分词
w2v = Word2Vec(w2vpath)
with open( './corpus/vocab_word.txt','w',encoding='utf-8') as fw:
for w in w2v.model.vocab:
fw.writelines(w + '\n')