forked from nf-core/deepmodeloptim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnextflow_schema.json
237 lines (237 loc) · 8.33 KB
/
nextflow_schema.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
{
"$schema": "http://json-schema.org/draft-07/schema",
"$id": "https://raw.githubusercontent.com/nextflow-io/rnaseq-nf/master/nextflow_schema.json",
"title": "stimulus pipeline parameters",
"description": "Pipeline for statistically testing training procedures of machine learning models",
"type": "object",
"definitions": {
"input_files_options": {
"title": "Input files options",
"type": "object",
"fa_icon": "fas fa-terminal",
"description": "Define where the pipeline should find input data.",
"properties": {
"csv": {
"type": "string",
"format": "file-path",
"description": "Test data as CSV file",
"fa_icon": "fas fa-folder-open",
"mimetype": "tesxt/csv",
"help_text": "the input file containing all input data"
},
"exp_conf": {
"type": "string",
"format": "file-path",
"description": "Experiment config as JSON format",
"fa_icon": "fas fa-folder-open",
"help_text": "the json config file that specifies all the parameters relative to the data manipulation."
},
"model": {
"type": "string",
"format": "file-path",
"description": "Model file in Python",
"fa_icon": "fas fa-folder-open",
"mimetype": "text/py",
"help_text": "the model file in python, the model that will be tested by this pipeline."
},
"tune_conf": {
"type": "string",
"format": "file-path",
"description": "Tuning config in yaml format",
"fa_icon": "fas fa-folder-open",
"mimetype": "text/yaml",
"help_text": "the config file with all the hyperparameter directives (choiches) and all ray tune specs."
}
},
"required": ["csv", "exp_conf", "model", "tune_conf"]
},
"optional_inputs": {
"title": "Optional inputs",
"type": "object",
"description": "files that can be omitted",
"default": "",
"fa_icon": "fas fa-terminal",
"properties": {
"initial_weights": {
"type": "string",
"fa_icon": "fas fa-folder-open",
"help_text": "the initial weights of the model. These files can be used to start the training instead of random initialization. One can provide several files, each of them will be used for a different run.",
"description": "file to be used to initialize the miodel in tuning",
"format": "path"
}
}
},
"output_options": {
"title": "Output options",
"type": "object",
"description": "Define where and how to publish",
"default": "",
"fa_icon": "fas fa-terminal",
"properties": {
"outdir": {
"type": "string",
"default": "./results/",
"description": "output directory",
"help_text": "The directory will contain a subdirectory with a name unique to each stimulus pipeline run.",
"fa_icon": "fas fa-folder-open"
},
"publish_dir_mode": {
"type": "string",
"default": "copy",
"description": "publish miode"
}
}
},
"resorces_options": {
"title": "Resorces options",
"type": "object",
"description": "Specify maximun processes resources",
"default": "",
"properties": {
"max_cpus": {
"type": "integer",
"default": 12,
"minimum": 1,
"description": "set maximum CPU limit"
},
"max_gpus": {
"type": "integer",
"default": 1,
"minimum": 0,
"help_text": "requesting the gpus for the tuning steps.",
"description": "set maximum GPU limit"
},
"max_memory": {
"type": "string",
"default": "32 GB",
"description": "set maximum memory"
},
"max_time": {
"type": "string",
"default": "72.h",
"description": "set maximum running time"
}
},
"help_text": "The process specify the resources through the label and the config. But each resource type is then checked against the max value specified here, if it is bigger then the value specified in the corresponding max_ is used instead. This happens through the check_max custom function present in the main nextflow.config.",
"fa_icon": "fas fa-terminal"
},
"on_error_options": {
"title": "On error options",
"type": "object",
"description": "What to do and how to handle errors",
"default": "",
"fa_icon": "fas fa-terminal",
"properties": {
"err_start": {
"type": "string",
"default": "finish",
"description": "Tells the pipeline how to behave on error",
"help_text": "refer to nextflow errorStrategy documentation for more details."
},
"max_retries": {
"type": "integer",
"default": 0,
"description": "number of time to retry if err_strat is\u00a0set to retry",
"help_text": "this also acts as a multiplier for recources request. If it failed for lack of resources it automaticly asks more the second time. take a look at test.conf for more details."
}
}
},
"skip_options": {
"title": "Skip options",
"type": "object",
"description": "options to skip or change bhaviour of pipeline",
"default": "",
"fa_icon": "fas fa-terminal",
"properties": {
"check_model": {
"type": "boolean",
"default": true,
"description": "checks if all input are comatible and the model can be tuned.",
"help_text": "flag to tell whether to check or not if the model can be tuned and trained. It does one call of the batch function, (predicting), of the model importing and using everything needed for that. Default run such a check."
},
"check_model_num_samples": {
"type": "string",
"description": "optional flag to do a more/less extensive check during check_model.",
"help_text": "This will override user given num_sample value for the tune run. This will give the user control on how extensive it wants the check to be. by default is going to be set to 3."
},
"shuffle": {
"type": "boolean",
"default": true,
"description": "run the shuffle sanity check",
"help_text": "flag to tell wether to shuffle or not the data and run a train on it. Sanity check always run on default. "
},
"debug_mode": {
"type": "boolean",
"description": "developer flag",
"help_text": "flag used to switch to debug mode for the pipeline. more verbose outputs."
}
}
},
"general_options": {
"title": "General options",
"type": "object",
"description": "generic options",
"default": "",
"fa_icon": "fas fa-terminal",
"properties": {
"singularity_cache_dir": {
"type": "string",
"default": "singularity_cache",
"description": "the directory where singularity images will be placed"
},
"help": {
"type": "boolean",
"description": "prints this help section"
},
"validate_params": {
"type": "boolean",
"description": "to validate or not the input params",
"default": true
}
}
},
"config_options": {
"title": "Config options",
"type": "object",
"description": "options specific for config files",
"default": "",
"properties": {
"config_profile_name": {
"type": "string",
"description": "the name of the config used"
},
"config_profile_description": {
"type": "string",
"description": "the description of the config fil,e"
}
},
"fa_icon": "fas fa-terminal"
}
},
"allOf": [
{
"$ref": "#/definitions/input_files_options"
},
{
"$ref": "#/definitions/optional_inputs"
},
{
"$ref": "#/definitions/output_options"
},
{
"$ref": "#/definitions/resorces_options"
},
{
"$ref": "#/definitions/on_error_options"
},
{
"$ref": "#/definitions/skip_options"
},
{
"$ref": "#/definitions/general_options"
},
{
"$ref": "#/definitions/config_options"
}
]
}