-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
200 lines (166 loc) · 6.53 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#!/usr/bin/env python
"""Train models."""
import os
import signal
import torch
import onmt.opts as opts
import onmt.utils.distributed
from onmt.utils.misc import set_random_seed
from onmt.utils.logging import init_logger, logger
from onmt.train_single import main as single_main
from onmt.utils.parse import ArgumentParser
from onmt.inputters.inputter import build_dataset_iter, \
load_old_vocab, old_style_vocab, build_dataset_iter_multiple
from itertools import cycle
def main(opt):
ArgumentParser.validate_train_opts(opt)
ArgumentParser.update_model_opts(opt)
ArgumentParser.validate_model_opts(opt)
# Load checkpoint if we resume from a previous training.
if opt.train_from:
logger.info('Loading checkpoint from %s' % opt.train_from)
checkpoint = torch.load(opt.train_from,
map_location=lambda storage, loc: storage)
logger.info('Loading vocab from checkpoint at %s.' % opt.train_from)
vocab = checkpoint['vocab']
else:
vocab = torch.load(opt.data + '.vocab.pt')
# check for code where vocab is saved instead of fields
# (in the future this will be done in a smarter way)
if old_style_vocab(vocab):
fields = load_old_vocab(
vocab, opt.model_type, dynamic_dict=opt.copy_attn)
else:
fields = vocab
if len(opt.data_ids) > 1:
train_shards = []
for train_id in opt.data_ids:
shard_base = "train_" + train_id
train_shards.append(shard_base)
train_iter = build_dataset_iter_multiple(train_shards, fields, opt)
else:
if opt.data_ids[0] is not None:
shard_base = "train_" + opt.data_ids[0]
else:
shard_base = "train"
train_iter = build_dataset_iter(shard_base, fields, opt)
nb_gpu = len(opt.gpu_ranks)
if opt.world_size > 1:
queues = []
mp = torch.multiprocessing.get_context('spawn')
semaphore = mp.Semaphore(opt.world_size * opt.queue_size)
# Create a thread to listen for errors in the child processes.
error_queue = mp.SimpleQueue()
error_handler = ErrorHandler(error_queue)
# Train with multiprocessing.
procs = []
for device_id in range(nb_gpu):
q = mp.Queue(opt.queue_size)
queues += [q]
procs.append(mp.Process(target=run, args=(
opt, device_id, error_queue, q, semaphore), daemon=True))
procs[device_id].start()
logger.info(" Starting process pid: %d " % procs[device_id].pid)
error_handler.add_child(procs[device_id].pid)
producer = mp.Process(target=batch_producer,
args=(train_iter, queues, semaphore, opt,),
daemon=True)
producer.start()
error_handler.add_child(producer.pid)
for p in procs:
p.join()
producer.terminate()
elif nb_gpu == 1: # case 1 GPU only
single_main(opt, 0)
else: # case only CPU
single_main(opt, -1)
def batch_producer(generator_to_serve, queues, semaphore, opt):
init_logger(opt.log_file)
set_random_seed(opt.seed, False)
# generator_to_serve = iter(generator_to_serve)
def pred(x):
"""
Filters batches that belong only
to gpu_ranks of current node
"""
for rank in opt.gpu_ranks:
if x[0] % opt.world_size == rank:
return True
generator_to_serve = filter(
pred, enumerate(generator_to_serve))
def next_batch(device_id):
new_batch = next(generator_to_serve)
semaphore.acquire()
return new_batch[1]
b = next_batch(0)
for device_id, q in cycle(enumerate(queues)):
b.dataset = None
if isinstance(b.src, tuple):
b.src = tuple([_.to(torch.device(device_id))
for _ in b.src])
else:
b.src = b.src.to(torch.device(device_id))
b.tgt = b.tgt.to(torch.device(device_id))
b.indices = b.indices.to(torch.device(device_id))
b.alignment = b.alignment.to(torch.device(device_id)) \
if hasattr(b, 'alignment') else None
b.src_map = b.src_map.to(torch.device(device_id)) \
if hasattr(b, 'src_map') else None
# hack to dodge unpicklable `dict_keys`
b.fields = list(b.fields)
q.put(b)
b = next_batch(device_id)
def run(opt, device_id, error_queue, batch_queue, semaphore):
""" run process """
try:
gpu_rank = onmt.utils.distributed.multi_init(opt, device_id)
if gpu_rank != opt.gpu_ranks[device_id]:
raise AssertionError("An error occurred in \
Distributed initialization")
single_main(opt, device_id, batch_queue, semaphore)
except KeyboardInterrupt:
pass # killed by parent, do nothing
except Exception:
# propagate exception to parent process, keeping original traceback
import traceback
error_queue.put((opt.gpu_ranks[device_id], traceback.format_exc()))
class ErrorHandler(object):
"""A class that listens for exceptions in children processes and propagates
the tracebacks to the parent process."""
def __init__(self, error_queue):
""" init error handler """
import signal
import threading
self.error_queue = error_queue
self.children_pids = []
self.error_thread = threading.Thread(
target=self.error_listener, daemon=True)
self.error_thread.start()
signal.signal(signal.SIGUSR1, self.signal_handler)
def add_child(self, pid):
""" error handler """
self.children_pids.append(pid)
def error_listener(self):
""" error listener """
(rank, original_trace) = self.error_queue.get()
self.error_queue.put((rank, original_trace))
os.kill(os.getpid(), signal.SIGUSR1)
def signal_handler(self, signalnum, stackframe):
""" signal handler """
for pid in self.children_pids:
os.kill(pid, signal.SIGINT) # kill children processes
(rank, original_trace) = self.error_queue.get()
msg = """\n\n-- Tracebacks above this line can probably
be ignored --\n\n"""
msg += original_trace
raise Exception(msg)
def _get_parser():
parser = ArgumentParser(description='train.py')
opts.config_opts(parser)
opts.model_opts(parser)
opts.train_opts(parser)
return parser
if __name__ == "__main__":
parser = _get_parser()
opt = parser.parse_args()
main(opt)