diff --git a/README.md b/README.md
index b38c9f4ea8f..d15c995c29b 100644
--- a/README.md
+++ b/README.md
@@ -3,7 +3,11 @@
---
-# 💫 Intel® LLM Library for PyTorch*
+# 💫 Intel® LLM Library for PyTorch*
+
+ < English | 中文 >
+
+
**`IPEX-LLM`** is a PyTorch library for running **LLM** on Intel CPU and GPU *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)* with very low latency[^1].
> [!NOTE]
> - *It is built on top of the excellent work of **`llama.cpp`**, **`transformers`**, **`bitsandbytes`**, **`vLLM`**, **`qlora`**, **`AutoGPTQ`**, **`AutoAWQ`**, etc.*
diff --git a/README.zh-CN.md b/README.zh-CN.md
new file mode 100644
index 00000000000..b5365508d26
--- /dev/null
+++ b/README.zh-CN.md
@@ -0,0 +1,329 @@
+> [!IMPORTANT]
+> `bigdl-llm` 现已更名为 `ipex-llm` (请参阅[此处](docs/mddocs/Quickstart/bigdl_llm_migration.md)的迁移指南); 你可以在[此处](https://github.com/intel-analytics/BigDL-2.x)找到原始的 BigDL 项目。
+
+---
+
+# Intel® LLM Library for PyTorch*
+
+ < English | 中文 >
+
+
+**`ipex-llm`** 是一个将大语言模型高效地运行于 Intel CPU 和 GPU(如搭载集成显卡的个人电脑,配有 Arc 独立显卡的台式机等)上的大模型 XPU 加速库[^1]。
+> [!NOTE]
+> - *它构建在 **`llama.cpp`**, **`transformers`**, **`bitsandbytes`**, **`vLLM`**, **`qlora`**, **`AutoGPTQ`**, **`AutoAWQ`** 等优秀工作之上。*
+> - *它可以与 [llama.cpp](docs/mddocs/Quickstart/llama_cpp_quickstart.md), [Ollama](docs/mddocs/Quickstart/ollama_quickstart.md), [Text-Generation-WebUI](docs/mddocs/Quickstart/webui_quickstart.md), [HuggingFace transformers](python/llm/example/GPU/HuggingFace), [LangChain](python/llm/example/GPU/LangChain), [LlamaIndex](python/llm/example/GPU/LlamaIndex), [DeepSpeed-AutoTP](python/llm/example/GPU/Deepspeed-AutoTP), [vLLM](docs/mddocs/Quickstart/vLLM_quickstart.md), [FastChat](docs/mddocs/Quickstart/fastchat_quickstart.md), [Axolotl](docs/mddocs/Quickstart/axolotl_quickstart.md), [HuggingFace PEFT](python/llm/example/GPU/LLM-Finetuning), [HuggingFace TRL](python/llm/example/GPU/LLM-Finetuning/DPO), [AutoGen](python/llm/example/CPU/Applications/autogen), [ModeScope](python/llm/example/GPU/ModelScope-Models)等无缝衔接。*
+> - ***50+** 模型已经在 `ipex-llm` 上得到优化和验证(包括 LLaMA2, Mistral, Mixtral, Gemma, LLaVA, Whisper, ChatGLM, Baichuan, Qwen, RWKV, 等等);更多信息请参阅[这里](#模型验证).。*
+
+## 最近更新 🔥
+- [2024/07] 新增 Microsoft **GraphRAG** 的支持(使用运行在本地 Intel GPU 上的 LLM),详情参考[快速入门指南](docs/mddocs/Quickstart/graphrag_quickstart.md)。
+- [2024/07] 全面增强了对多模态大模型的支持,包括 [StableDiffusion](https://github.com/jason-dai/ipex-llm/tree/main/python/llm/example/GPU/HuggingFace/Multimodal/StableDiffusion), [Phi-3-Vision](python/llm/example/GPU/HuggingFace/Multimodal/phi-3-vision), [Qwen-VL](python/llm/example/GPU/HuggingFace/Multimodal/qwen-vl),更多详情请点击[这里](python/llm/example/GPU/HuggingFace/Multimodal)。
+- [2024/07] 新增 Intel GPU 上 **FP6** 的支持,详情参考[更多数据类型样例](python/llm/example/GPU/HuggingFace/More-Data-Types)。
+- [2024/06] 新增对 Intel Core Ultra 处理器中 **NPU** 的实验性支持,详情参考[相关示例](python/llm/example/NPU/HF-Transformers-AutoModels)。
+- [2024/06] 增加了对[流水线并行推理](python/llm/example/GPU/Pipeline-Parallel-Inference)的全面支持,使得用两块或更多 Intel GPU(如 Arc)上运行 LLM 变得更容易。
+- [2024/06] 新增在 Intel GPU 上运行 **RAGFlow** 的支持,详情参考[快速入门指南](docs/mddocs/Quickstart/ragflow_quickstart.md)。
+- [2024/05] 新增 **Axolotl** 的支持,可以在 Intel GPU 上进行LLM微调,详情参考[快速入门指南](docs/mddocs/Quickstart/axolotl_quickstart.md)。
+
+更多更新
+
+
+- [2024/05] 你可以使用 **Docker** [images](#docker) 很容易地运行 `ipex-llm` 推理、服务和微调。
+- [2024/05] 你能够在 Windows 上仅使用 "*[one command](docs/mddocs/Quickstart/install_windows_gpu.md#install-ipex-llm)*" 来安装 `ipex-llm`。
+- [2024/04] 你现在可以在 Intel GPU 上使用 `ipex-llm` 运行 **Open WebUI** ,详情参考[快速入门指南](docs/mddocs/Quickstart/open_webui_with_ollama_quickstart.md)。
+- [2024/04] 你现在可以在 Intel GPU 上使用 `ipex-llm` 以及 `llama.cpp` 和 `ollama` 运行 **Llama 3** ,详情参考[快速入门指南](docs/mddocs/Quickstart/llama3_llamacpp_ollama_quickstart.md)。
+- [2024/04] `ipex-llm` 现在在Intel [GPU](python/llm/example/GPU/HuggingFace/LLM/llama3) 和 [CPU](python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama3) 上都支持 **Llama 3** 了。
+- [2024/04] `ipex-llm` 现在提供 C++ 推理, 在 Intel GPU 上它可以用作运行 [llama.cpp](docs/mddocs/Quickstart/llama_cpp_quickstart.md) 和 [ollama](docs/mddocs/Quickstart/ollama_quickstart.md) 的加速后端。
+- [2024/03] `bigdl-llm` 现已更名为 `ipex-llm` (请参阅[此处](docs/mddocs/Quickstart/bigdl_llm_migration.md)的迁移指南),你可以在[这里](https://github.com/intel-analytics/bigdl-2.x)找到原始BigDL项目。
+- [2024/02] `ipex-llm` 现在支持直接从 [ModelScope](python/llm/example/GPU/ModelScope-Models) ([魔搭](python/llm/example/CPU/ModelScope-Models)) loading 模型。
+- [2024/02] `ipex-llm` 增加 **INT2** 的支持 (基于 llama.cpp [IQ2](python/llm/example/GPU/HuggingFace/Advanced-Quantizations/GGUF-IQ2) 机制), 这使得在具有 16GB VRAM 的 Intel GPU 上运行大型 LLM(例如 Mixtral-8x7B)成为可能。
+- [2024/02] 用户现在可以通过 [Text-Generation-WebUI](https://github.com/intel-analytics/text-generation-webui) GUI 使用 `ipex-llm`。
+- [2024/02] `ipex-llm` 现在支持 *[Self-Speculative Decoding](docs/mddocs/Inference/Self_Speculative_Decoding.md)*,这使得在 Intel [GPU](python/llm/example/GPU/Speculative-Decoding) 和 [CPU](python/llm/example/CPU/Speculative-Decoding) 上为 FP16 和 BF16 推理带来 **~30% 加速** 。
+- [2024/02] `ipex-llm` 现在支持在 Intel GPU 上进行各种 LLM 微调(包括 [LoRA](python/llm/example/GPU/LLM-Finetuning/LoRA), [QLoRA](python/llm/example/GPU/LLM-Finetuning/QLoRA), [DPO](python/llm/example/GPU/LLM-Finetuning/DPO), [QA-LoRA](python/llm/example/GPU/LLM-Finetuning/QA-LoRA) 和 [ReLoRA](python/llm/example/GPU/LLM-Finetuning/ReLora))。
+- [2024/01] 使用 `ipex-llm` [QLoRA](python/llm/example/GPU/LLM-Finetuning/QLoRA),我们成功地在 8 个 Intel Max 1550 GPU 上使用 [Standford-Alpaca](python/llm/example/GPU/LLM-Finetuning/QLoRA/alpaca-qlora) 数据集分别对 LLaMA2-7B(**21 分钟内**)和 LLaMA2-70B(**3.14 小时内**)进行了微调,具体详情参阅[博客](https://www.intel.com/content/www/us/en/developer/articles/technical/finetuning-llms-on-intel-gpus-using-bigdl-llm.html)。
+- [2023/12] `ipex-llm` 现在支持 [ReLoRA](python/llm/example/GPU/LLM-Finetuning/ReLora) (具体内容请参阅 *["ReLoRA: High-Rank Training Through Low-Rank Updates"](https://arxiv.org/abs/2307.05695)*).
+- [2023/12] `ipex-llm` 现在在 Intel [GPU](python/llm/example/GPU/HuggingFace/LLM/mixtral) 和 [CPU](python/llm/example/CPU/HF-Transformers-AutoModels/Model/mixtral) 上均支持 [Mixtral-8x7B](python/llm/example/GPU/HuggingFace/LLM/mixtral)。
+- [2023/12] `ipex-llm` 现在支持 [QA-LoRA](python/llm/example/GPU/LLM-Finetuning/QA-LoRA) (具体内容请参阅 *["QA-LoRA: Quantization-Aware Low-Rank Adaptation of Large Language Models"](https://arxiv.org/abs/2309.14717)*).
+- [2023/12] `ipex-llm` 现在在 Intel ***GPU*** 上支持 [FP8 and FP4 inference](python/llm/example/GPU/HuggingFace/More-Data-Types)。
+- [2023/11] 初步支持直接将 [GGUF](python/llm/example/GPU/HuggingFace/Advanced-Quantizations/GGUF),[AWQ](python/llm/example/GPU/HuggingFace/Advanced-Quantizations/AWQ) 和 [GPTQ](python/llm/example/GPU/HuggingFace/Advanced-Quantizations/GPTQ) 模型加载到 `ipex-llm` 中。
+- [2023/11] `ipex-llm` 现在在 Intel [GPU](python/llm/example/GPU/vLLM-Serving) 和 [CPU](python/llm/example/CPU/vLLM-Serving) 上都支持 [vLLM continuous batching](python/llm/example/GPU/vLLM-Serving) 。
+- [2023/10] `ipex-llm` 现在在 Intel [GPU](python/llm/example/GPU/LLM-Finetuning/QLoRA) 和 [CPU](python/llm/example/CPU/QLoRA-FineTuning) 上均支持 [QLoRA finetuning](python/llm/example/GPU/LLM-Finetuning/QLoRA) 。
+- [2023/10] `ipex-llm` 现在在 Intel GPU 和 CPU 上都支持 [FastChat serving](python/llm/src/ipex_llm/llm/serving) 。
+- [2023/09] `ipex-llm` 现在支持 [Intel GPU](python/llm/example/GPU) (包括 iGPU, Arc, Flex 和 MAX)。
+- [2023/09] `ipex-llm` [教程](https://github.com/intel-analytics/ipex-llm-tutorial) 已发布。
+
+
+
+## `ipex-llm` 性能
+下图展示了在 Intel Core Ultra 和 Intel Arc GPU 上的 **Token 生成速度**[^1](更多详情可点击 [[2]](https://www.intel.com/content/www/us/en/developer/articles/technical/accelerate-meta-llama3-with-intel-ai-solutions.html)[[3]](https://www.intel.com/content/www/us/en/developer/articles/technical/accelerate-microsoft-phi-3-models-intel-ai-soln.html)[[4]](https://www.intel.com/content/www/us/en/developer/articles/technical/intel-ai-solutions-accelerate-alibaba-qwen2-llms.html))。
+
+
+
+如果需要自己进行 `ipex-llm` 性能基准测试,可参考[基准测试指南](docs/mddocs/Quickstart/benchmark_quickstart.md)。
+
+## `ipex-llm` Demo
+
+以下分别是使用 `ipex-llm` 在 Intel Iris iGPU,Intel Core Ultra iGPU,单卡 Arc GPU 或双卡 Arc GPU 上运行本地 LLM 的 DEMO 演示,
+
+
+
+
+
+## 模型准确率
+部分模型的 **Perplexity** 结果如下所示(使用 Wikitext 数据集和[此处](https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/dev/benchmark/perplexity)的脚本进行测试)。
+|Perplexity |sym_int4 |q4_k |fp6 |fp8_e5m2 |fp8_e4m3 |fp16 |
+|---------------------------|---------|-------|-------|---------|---------|-------|
+|Llama-2-7B-chat-hf |6.364 |6.218 |6.092 |6.180 |6.098 |6.096 |
+|Mistral-7B-Instruct-v0.2 |5.365 |5.320 |5.270 |5.273 |5.246 |5.244 |
+|Baichuan2-7B-chat |6.734 |6.727 |6.527 |6.539 |6.488 |6.508 |
+|Qwen1.5-7B-chat |8.865 |8.816 |8.557 |8.846 |8.530 |8.607 |
+|Llama-3.1-8B-Instruct |6.705 |6.566 |6.338 |6.383 |6.325 |6.267 |
+|gemma-2-9b-it |7.541 |7.412 |7.269 |7.380 |7.268 |7.270 |
+|Baichuan2-13B-Chat |6.313 |6.160 |6.070 |6.145 |6.086 |6.031 |
+|Llama-2-13b-chat-hf |5.449 |5.422 |5.341 |5.384 |5.332 |5.329 |
+|Qwen1.5-14B-Chat |7.529 |7.520 |7.367 |7.504 |7.297 |7.334 |
+
+[^1]: Performance varies by use, configuration and other factors. `ipex-llm` may not optimize to the same degree for non-Intel products. Learn more at www.Intel.com/PerformanceIndex
+
+## `ipex-llm` 快速入门
+
+### Docker
+- [GPU Inference in C++](docs/mddocs/DockerGuides/docker_cpp_xpu_quickstart.md): 在 Intel GPU 上使用 `ipex-llm` 运行 `llama.cpp`, `ollama`, `OpenWebUI`,等
+- [GPU Inference in Python](docs/mddocs/DockerGuides/docker_pytorch_inference_gpu.md) : 在 Intel GPU 上使用 `ipex-llm` 运行 HuggingFace `transformers`, `LangChain`, `LlamaIndex`, `ModelScope`,等
+- [vLLM on GPU](docs/mddocs/DockerGuides/vllm_docker_quickstart.md): 在 Intel GPU 上使用 `ipex-llm` 运行 `vLLM` 推理服务
+- [vLLM on CPU](docs/mddocs/DockerGuides/vllm_cpu_docker_quickstart.md): 在 Intel CPU 上使用 `ipex-llm` 运行 `vLLM` 推理服务
+- [FastChat on GPU](docs/mddocs/DockerGuides/fastchat_docker_quickstart.md): 在 Intel GPU 上使用 `ipex-llm` 运行 `FastChat` 推理服务
+- [VSCode on GPU](docs/mddocs/DockerGuides/docker_run_pytorch_inference_in_vscode.md): 在 Intel GPU 上使用 VSCode 开发并运行基于 Python 的 `ipex-llm` 应用
+
+### 使用
+- [llama.cpp](docs/mddocs/Quickstart/llama_cpp_quickstart.md): 在 Intel GPU 上运行 **llama.cpp** (*使用 `ipex-llm` 的 C++ 接口作为 `llama.cpp` 的加速后端*)
+- [Ollama](docs/mddocs/Quickstart/ollama_quickstart.md): 在 Intel GPU 上运行 **ollama** (*使用 `ipex-llm` 的 C++ 接口作为 `ollama` 的加速后端*)
+- [Llama 3 with `llama.cpp` and `ollama`](docs/mddocs/Quickstart/llama3_llamacpp_ollama_quickstart.md): 使用 `ipex-llm` 在 Intel GPU 上运行 **Llama 3**(通过 `llama.cpp` 和 `ollama` )
+- [vLLM](docs/mddocs/Quickstart/vLLM_quickstart.md): 在 Intel [GPU](docs/mddocs/DockerGuides/vllm_docker_quickstart.md) 和 [CPU](docs/mddocs/DockerGuides/vllm_cpu_docker_quickstart.md) 上使用 `ipex-llm` 运行 **vLLM**
+- [FastChat](docs/mddocs/Quickstart/fastchat_quickstart.md): 在 Intel GPU 和 CPU 上使用 `ipex-llm` 运行 **FastChat** 服务
+- [Serving on multiple Intel GPUs](docs/mddocs/Quickstart/deepspeed_autotp_fastapi_quickstart.md): 利用 DeepSpeed AutoTP 和 FastAPI 在 **多个 Intel GPU** 上运行 `ipex-llm` 推理服务
+- [Text-Generation-WebUI](docs/mddocs/Quickstart/webui_quickstart.md): 使用 `ipex-llm` 运行 `oobabooga` **WebUI**
+- [Axolotl](docs/mddocs/Quickstart/axolotl_quickstart.md): 使用 **Axolotl** 和 `ipex-llm` 进行 LLM 微调
+- [Benchmarking](docs/mddocs/Quickstart/benchmark_quickstart.md): 在 Intel GPU 和 CPU 上运行**性能基准测试**(延迟和吞吐量)
+
+### 应用
+- [GraphRAG](docs/mddocs/Quickstart/graphrag_quickstart.md): 基于 `ipex-llm` 使用本地 LLM 运行 Microsoft 的 `GraphRAG`
+- [RAGFlow](docs/mddocs/Quickstart/ragflow_quickstart.md): 基于 `ipex-llm` 运行 `RAGFlow` (*一个开源的 RAG 引擎*)
+- [LangChain-Chatchat](docs/mddocs/Quickstart/chatchat_quickstart.md): 基于 `ipex-llm` 运行 `LangChain-Chatchat` (*使用 RAG pipline 的知识问答库*)
+- [Coding copilot](docs/mddocs/Quickstart/continue_quickstart.md): 基于 `ipex-llm` 运行 `Continue` (VSCode 里的编码智能助手)
+- [Open WebUI](docs/mddocs/Quickstart/open_webui_with_ollama_quickstart.md): 基于 `ipex-llm` 运行 `Open WebUI`
+- [PrivateGPT](docs/mddocs/Quickstart/privateGPT_quickstart.md): 基于 `ipex-llm` 运行 `PrivateGPT` 与文档进行交互
+- [Dify platform](docs/mddocs/Quickstart/dify_quickstart.md): 在`Dify`(*一款开源的大语言模型应用开发平台*) 里接入 `ipex-llm` 加速本地 LLM
+
+### 安装
+- [Windows GPU](docs/mddocs/Quickstart/install_windows_gpu.md): 在带有 Intel GPU 的 Windows 系统上安装 `ipex-llm`
+- [Linux GPU](docs/mddocs/Quickstart/install_linux_gpu.md): 在带有 Intel GPU 的Linux系统上安装 `ipex-llm`
+- *更多内容, 请参考[完整安装指南](docs/mddocs/Overview/install.md)*
+
+### 代码示例
+- #### 低比特推理
+ - [INT4 inference](python/llm/example/GPU/HuggingFace/LLM): 在 Intel [GPU](python/llm/example/GPU/HuggingFace/LLM) 和 [CPU](python/llm/example/CPU/HF-Transformers-AutoModels/Model) 上进行 **INT4** LLM 推理
+ - [FP8/FP6/FP4 inference](python/llm/example/GPU/HuggingFace/More-Data-Types): 在 Intel [GPU](python/llm/example/GPU/HuggingFace/More-Data-Types) 上进行 **FP8**,**FP6** 和 **FP4** LLM 推理
+ - [INT8 inference](python/llm/example/GPU/HuggingFace/More-Data-Types): 在 Intel [GPU](python/llm/example/GPU/HuggingFace/More-Data-Types) 和 [CPU](python/llm/example/CPU/HF-Transformers-AutoModels/More-Data-Types) 上进行 **INT8** LLM 推理
+ - [INT2 inference](python/llm/example/GPU/HuggingFace/Advanced-Quantizations/GGUF-IQ2): 在 Intel [GPU](python/llm/example/GPU/HuggingFace/Advanced-Quantizations/GGUF-IQ2) 上进行 **INT2** LLM 推理 (基于 llama.cpp IQ2 机制)
+- #### FP16/BF16 推理
+ - 在 Intel [GPU](python/llm/example/GPU/Speculative-Decoding) 上进行 **FP16** LLM 推理(并使用 [self-speculative decoding](docs/mddocs/Inference/Self_Speculative_Decoding.md) 优化)
+ - 在 Intel [CPU](python/llm/example/CPU/Speculative-Decoding) 上进行 **BF16** LLM 推理(并使用 [self-speculative decoding](docs/mddocs/Inference/Self_Speculative_Decoding.md) 优化)
+- #### 分布式推理
+ - 在 Intel [GPU](python/llm/example/GPU/Pipeline-Parallel-Inference) 上进行 **流水线并行** 推理
+ - 在 Intel [GPU](python/llm/example/GPU/Deepspeed-AutoTP) 上进行 **DeepSpeed AutoTP** 推理
+- #### 保存和加载
+ - [Low-bit models](python/llm/example/CPU/HF-Transformers-AutoModels/Save-Load): 保存和加载 `ipex-llm` 低比特模型 (INT4/FP4/FP6/INT8/FP8/FP16/etc.)
+ - [GGUF](python/llm/example/GPU/HuggingFace/Advanced-Quantizations/GGUF): 直接将 GGUF 模型加载到 `ipex-llm` 中
+ - [AWQ](python/llm/example/GPU/HuggingFace/Advanced-Quantizations/AWQ): 直接将 AWQ 模型加载到 `ipex-llm` 中
+ - [GPTQ](python/llm/example/GPU/HuggingFace/Advanced-Quantizations/GPTQ): 直接将 GPTQ 模型加载到 `ipex-llm` 中
+- #### 微调
+ - 在 Intel [GPU](python/llm/example/GPU/LLM-Finetuning) 进行 LLM 微调,包括 [LoRA](python/llm/example/GPU/LLM-Finetuning/LoRA),[QLoRA](python/llm/example/GPU/LLM-Finetuning/QLoRA),[DPO](python/llm/example/GPU/LLM-Finetuning/DPO),[QA-LoRA](python/llm/example/GPU/LLM-Finetuning/QA-LoRA) 和 [ReLoRA](python/llm/example/GPU/LLM-Finetuning/ReLora)
+ - 在 Intel [CPU](python/llm/example/CPU/QLoRA-FineTuning) 进行 QLoRA 微调
+- #### 与社区库集成
+ - [HuggingFace transformers](python/llm/example/GPU/HuggingFace)
+ - [Standard PyTorch model](python/llm/example/GPU/PyTorch-Models)
+ - [LangChain](python/llm/example/GPU/LangChain)
+ - [LlamaIndex](python/llm/example/GPU/LlamaIndex)
+ - [DeepSpeed-AutoTP](python/llm/example/GPU/Deepspeed-AutoTP)
+ - [Axolotl](docs/mddocs/Quickstart/axolotl_quickstart.md)
+ - [HuggingFace PEFT](python/llm/example/GPU/LLM-Finetuning/HF-PEFT)
+ - [HuggingFace TRL](python/llm/example/GPU/LLM-Finetuning/DPO)
+ - [AutoGen](python/llm/example/CPU/Applications/autogen)
+ - [ModeScope](python/llm/example/GPU/ModelScope-Models)
+- [教程](https://github.com/intel-analytics/ipex-llm-tutorial)
+
+## API 文档
+- [HuggingFace Transformers 兼容的 API (Auto Classes)](docs/mddocs/PythonAPI/transformers.md)
+- [适用于任意 Pytorch 模型的 API](https://github.com/intel-analytics/ipex-llm/blob/main/docs/mddocs/PythonAPI/optimize.md)
+
+## FAQ
+- [常见问题解答](docs/mddocs/Overview/FAQ/faq.md)
+
+## 模型验证
+50+ 模型已经在 `ipex-llm` 上得到优化和验证,包括 *LLaMA/LLaMA2, Mistral, Mixtral, Gemma, LLaVA, Whisper, ChatGLM2/ChatGLM3, Baichuan/Baichuan2, Qwen/Qwen-1.5, InternLM,* 更多模型请参看下表,
+
+| 模型 | CPU 示例 | GPU 示例 |
+|------------|----------------------------------------------------------------|-----------------------------------------------------------------|
+| LLaMA *(such as Vicuna, Guanaco, Koala, Baize, WizardLM, etc.)* | [link1](python/llm/example/CPU/Native-Models), [link2](python/llm/example/CPU/HF-Transformers-AutoModels/Model/vicuna) |[link](python/llm/example/GPU/HuggingFace/LLM/vicuna)|
+| LLaMA 2 | [link1](python/llm/example/CPU/Native-Models), [link2](python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama2) | [link](python/llm/example/GPU/HuggingFace/LLM/llama2) |
+| LLaMA 3 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama3) | [link](python/llm/example/GPU/HuggingFace/LLM/llama3) |
+| LLaMA 3.1 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/llama3.1) | [link](python/llm/example/GPU/HuggingFace/LLM/llama3.1) |
+| ChatGLM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm) | |
+| ChatGLM2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm2) | [link](python/llm/example/GPU/HuggingFace/LLM/chatglm2) |
+| ChatGLM3 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/chatglm3) | [link](python/llm/example/GPU/HuggingFace/LLM/chatglm3) |
+| GLM-4 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/glm4) | [link](python/llm/example/GPU/HuggingFace/LLM/glm4) |
+| GLM-4V | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/glm-4v) | [link](python/llm/example/GPU/HuggingFace/Multimodal/glm-4v) |
+| Mistral | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/mistral) | [link](python/llm/example/GPU/HuggingFace/LLM/mistral) |
+| Mixtral | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/mixtral) | [link](python/llm/example/GPU/HuggingFace/LLM/mixtral) |
+| Falcon | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/falcon) | [link](python/llm/example/GPU/HuggingFace/LLM/falcon) |
+| MPT | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/mpt) | [link](python/llm/example/GPU/HuggingFace/LLM/mpt) |
+| Dolly-v1 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/dolly_v1) | [link](python/llm/example/GPU/HuggingFace/LLM/dolly-v1) |
+| Dolly-v2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/dolly_v2) | [link](python/llm/example/GPU/HuggingFace/LLM/dolly-v2) |
+| Replit Code| [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/replit) | [link](python/llm/example/GPU/HuggingFace/LLM/replit) |
+| RedPajama | [link1](python/llm/example/CPU/Native-Models), [link2](python/llm/example/CPU/HF-Transformers-AutoModels/Model/redpajama) | |
+| Phoenix | [link1](python/llm/example/CPU/Native-Models), [link2](python/llm/example/CPU/HF-Transformers-AutoModels/Model/phoenix) | |
+| StarCoder | [link1](python/llm/example/CPU/Native-Models), [link2](python/llm/example/CPU/HF-Transformers-AutoModels/Model/starcoder) | [link](python/llm/example/GPU/HuggingFace/LLM/starcoder) |
+| Baichuan | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan) | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan) |
+| Baichuan2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/baichuan2) | [link](python/llm/example/GPU/HuggingFace/LLM/baichuan2) |
+| InternLM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm) | [link](python/llm/example/GPU/HuggingFace/LLM/internlm) |
+| Qwen | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen) |
+| Qwen1.5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen1.5) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen1.5) |
+| Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) |
+| Qwen-VL | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl) | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen-vl) |
+| Aquila | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila) | [link](python/llm/example/GPU/HuggingFace/LLM/aquila) |
+| Aquila2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila2) | [link](python/llm/example/GPU/HuggingFace/LLM/aquila2) |
+| MOSS | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/moss) | |
+| Whisper | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/whisper) | [link](python/llm/example/GPU/HuggingFace/Multimodal/whisper) |
+| Phi-1_5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-1_5) | [link](python/llm/example/GPU/HuggingFace/LLM/phi-1_5) |
+| Flan-t5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/flan-t5) | [link](python/llm/example/GPU/HuggingFace/LLM/flan-t5) |
+| LLaVA | [link](python/llm/example/CPU/PyTorch-Models/Model/llava) | [link](python/llm/example/GPU/PyTorch-Models/Model/llava) |
+| CodeLlama | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/codellama) | [link](python/llm/example/GPU/HuggingFace/LLM/codellama) |
+| Skywork | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/skywork) | |
+| InternLM-XComposer | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm-xcomposer) | |
+| WizardCoder-Python | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/wizardcoder-python) | |
+| CodeShell | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/codeshell) | |
+| Fuyu | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/fuyu) | |
+| Distil-Whisper | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/distil-whisper) | [link](python/llm/example/GPU/HuggingFace/Multimodal/distil-whisper) |
+| Yi | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/yi) | [link](python/llm/example/GPU/HuggingFace/LLM/yi) |
+| BlueLM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/bluelm) | [link](python/llm/example/GPU/HuggingFace/LLM/bluelm) |
+| Mamba | [link](python/llm/example/CPU/PyTorch-Models/Model/mamba) | [link](python/llm/example/GPU/PyTorch-Models/Model/mamba) |
+| SOLAR | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/solar) | [link](python/llm/example/GPU/HuggingFace/LLM/solar) |
+| Phixtral | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/phixtral) | [link](python/llm/example/GPU/HuggingFace/LLM/phixtral) |
+| InternLM2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm2) | [link](python/llm/example/GPU/HuggingFace/LLM/internlm2) |
+| RWKV4 | | [link](python/llm/example/GPU/HuggingFace/LLM/rwkv4) |
+| RWKV5 | | [link](python/llm/example/GPU/HuggingFace/LLM/rwkv5) |
+| Bark | [link](python/llm/example/CPU/PyTorch-Models/Model/bark) | [link](python/llm/example/GPU/PyTorch-Models/Model/bark) |
+| SpeechT5 | | [link](python/llm/example/GPU/PyTorch-Models/Model/speech-t5) |
+| DeepSeek-MoE | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/deepseek-moe) | |
+| Ziya-Coding-34B-v1.0 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/ziya) | |
+| Phi-2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-2) | [link](python/llm/example/GPU/HuggingFace/LLM/phi-2) |
+| Phi-3 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-3) | [link](python/llm/example/GPU/HuggingFace/LLM/phi-3) |
+| Phi-3-vision | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/phi-3-vision) | [link](python/llm/example/GPU/HuggingFace/Multimodal/phi-3-vision) |
+| Yuan2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/yuan2) | [link](python/llm/example/GPU/HuggingFace/LLM/yuan2) |
+| Gemma | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/gemma) | [link](python/llm/example/GPU/HuggingFace/LLM/gemma) |
+| Gemma2 | | [link](python/llm/example/GPU/HuggingFace/LLM/gemma2) |
+| DeciLM-7B | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/deciLM-7b) | [link](python/llm/example/GPU/HuggingFace/LLM/deciLM-7b) |
+| Deepseek | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/deepseek) | [link](python/llm/example/GPU/HuggingFace/LLM/deepseek) |
+| StableLM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/stablelm) | [link](python/llm/example/GPU/HuggingFace/LLM/stablelm) |
+| CodeGemma | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegemma) | [link](python/llm/example/GPU/HuggingFace/LLM/codegemma) |
+| Command-R/cohere | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/cohere) | [link](python/llm/example/GPU/HuggingFace/LLM/cohere) |
+| CodeGeeX2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegeex2) | [link](python/llm/example/GPU/HuggingFace/LLM/codegeex2) |
+| MiniCPM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm) | [link](python/llm/example/GPU/HuggingFace/LLM/minicpm) |
+| MiniCPM-V | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V) |
+| MiniCPM-V-2 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2) |
+| MiniCPM-Llama3-V-2_5 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5) |
+| MiniCPM-V-2_6 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6) |
+
+## 官方支持
+- 如果遇到问题,或者请求新功能支持,请提交 [Github Issue](https://github.com/intel-analytics/ipex-llm/issues) 告诉我们
+- 如果发现漏洞,请在 [GitHub Security Advisory](https://github.com/intel-analytics/ipex-llm/security/advisories) 提交漏洞报告