-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
299 lines (234 loc) · 17.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
from gym.wrappers import Monitor
import tensorflow as tf
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.regularizers import L2
from tensorflow.keras.losses import binary_crossentropy,mean_squared_error
import numpy as np
import pickle
import time
from classes import *
def self_play(network_model,config):
"""
This is the main function to call.
Iteratively perform self-play via Monte Carlo Tree Search (MCTS), and then train the network_model.
Every config['self_play']['save_interval'], test the network_model and record the game rendering.
Args:
network_model (NetworkModel): The network model to be trained
config (dict): A dictionary specifying parameter configurations
Returns: None
"""
# test initial network_model
test(network_model,config)
optimizer = Adam(learning_rate=config['train']['learning_rate'],beta_1=config['train']['beta_1'],beta_2=config['train']['beta_2'])
replay_buffer = ReplayBuffer(config)
start_time = time.time()
for num_iter in range( 1 , int(config['self_play']['num_games'])+1 ):
game = Game(config)
# self-play
while not game.at_terminal_state:
action_index = mcts(game,network_model,get_temperature(num_iter),config)
game.apply_action(action_index)
print(f'Iteration: {num_iter}\tTotal reward: {sum(game.reward_history)}\tTime elapsed: {(time.time()-start_time)/60} minutes')
# training
replay_buffer.add(game)
train(network_model,replay_buffer,optimizer,config)
# save progress
if (num_iter % config['self_play']['save_interval']) == 0:
timestamp = str(time.time()).replace('.','_')
with open(f"replay_buffers/{config['env']['env_name']}_{timestamp}.pkl",'wb') as file: pickle.dump(replay_buffer,file)
network_model.save(f"{config['env']['env_name']}_{timestamp}")
# test current network_model
test(network_model,config)
def mcts(game,network_model,temperature,config):
"""
Perform Monte Carlo Tree Search (MCTS) on the current game state, and return an action index that indicates what action to take.
Args:
game (Game): The game object, containing the current state of the game
network_model (NetworkModel): The network model will be used for inference to conduct MCTS
temperature (float): Controls the level of exploration of MCTS (the lower the number, the greedier the action selection)
config (dict): A dictionary specifying parameter configurations
Returns:
action_index (int): Represents an action in the game's action space
"""
root_node = Node(0)
root_node.expand_root_node(game.current_state,network_model)
min_q_value,max_q_value = root_node.value,root_node.value # keep track of min and max mean-Q values to normalize them during selection phase
# this is for environments that have unbounded Q-values, otherwise the prior could potentially have very little influence over selection, if Q-values are large
for _ in range(int(config['mcts']['num_simulations'])):
current_node = root_node
# SELECT a leaf node
search_path = [root_node] # node0, ... (includes the final leaf node)
action_history = [] # action0, ...
while current_node.is_expanded:
# total_num_visits need to be at least 1
# otherwise when selecting for child nodes that haven't been visited, their priors won't be taken into account, because it'll be multiplied by total_num_visits in the UCB score, which is zero
total_num_visits = max( 1 , sum([ current_node.children[i].num_visits for i in range(len(current_node.children)) ]) )
action_index = np.argmax([ current_node.children[i].get_ucb_score(total_num_visits,min_q_value,max_q_value,config) for i in range(len(current_node.children)) ])
current_node = current_node.children[action_index]
search_path.append(current_node)
action_history.append( np.array([1 if i==action_index else 0 for i in range(config['env']['action_size'])]).reshape(1,-1) )
# EXPAND selected leaf node
current_node.expand_node( search_path[-2].hidden_state, action_history[-1] , network_model )
# BACKPROPAGATE the bootstrapped value (approximated by the network_model.prediction_function) to all nodes in the search_path
value = current_node.value
for node in reversed(search_path):
node.cumulative_value += value
node.num_visits += 1
node_q_value = node.cumulative_value / node.num_visits
min_q_value , max_q_value = min(min_q_value,node_q_value) , max(max_q_value,node_q_value) # update min and max values
value = node.transition_reward + config['self_play']['discount_factor'] * value # updated for parent node in next iteration of the loop
# SAMPLE an action proportional to the visit count of the child nodes of the root node
total_num_visits = sum([ root_node.children[i].num_visits for i in range(len(root_node.children)) ])
policy = np.array( [ root_node.children[i].num_visits/total_num_visits for i in range(len(root_node.children)) ] )
if temperature == None: # take the greedy action (to be used during test time)
action_index = np.argmax(policy)
else: # otherwise sample (to be used during training)
policy = (policy**(1/temperature)) / (policy**(1/temperature)).sum()
action_index = np.random.choice( range(network_model.action_size) , p=policy )
# update Game search statistics
game.value_history.append( root_node.cumulative_value/root_node.num_visits ) # use the root node's MCTS value as the ground truth value when training
game.policy_history.append(policy.reshape(1,-1)) # use the MCTS policy as the ground truth value when training
return action_index
def train(network_model,replay_buffer,optimizer,config):
"""
Train the network_model by sampling games from the replay_buffer.
Args:
network_model (NetworkModel): The network model will be used for inference to conduct MCTS
replay_buffer (ReplayBuffer): Contains a history of the most recent games of self-play
optimizer (tensorflow.python.keras.optimizer_v2.adam.Adam): The optimizer used to update the network_model weights
config (dict): A dictionary specifying parameter configurations
Returns: None
"""
# for every game in sample batch, unroll and update network_model weights for config['train']['num_unroll_steps'] time steps
with tf.GradientTape() as tape:
loss = 0
for game in replay_buffer.sample():
game_length = len(game.reward_history)
sampled_index = np.random.choice( range(game_length) ) # sample an index position from the length of reward_history
hidden_state = network_model.representation_function(game.state_history[sampled_index])
# first we get the hidden state representation using the representation function
# then we iteratively feed the hidden state into the dynamics function with the corresponding action, as well as feed the hidden state into the prediction function
# we then match these predicted values to the true values
# note we don't call the prediction function on the initial hidden state representation given by the representation function, since there's no associating predicted transition reward to match the true transition reward
# this is because we don't / shouldn't have access to the previous action that lead to the initial state
if (sampled_index+config['train']['num_unroll_steps']) < game_length: num_unroll_steps = int(config['train']['num_unroll_steps'])
else: num_unroll_steps = game_length-1-sampled_index
for start_index in range( sampled_index , sampled_index+num_unroll_steps ):
# can only be unrolled up to the second-last time step, since every time step (start_index), we are predicting and matching values that are one time step into the future (start_index+1)
### get predictions ###
hidden_state,pred_reward = network_model.dynamics_function([ hidden_state , game.action_history[start_index] ])
pred_policy,pred_value = network_model.prediction_function(hidden_state)
# the new hidden_state outputted by the dynamics function is at time step (start_index+1)
# pred_reward is the transition reward outputted by the dynamics function by taking action_(start_index) at state_(start_index)
# pred_policy and pred_value are the predicted values of state_(start_index+1), using the prediction function
# therefore, pred_reward, pred_policy and pred_value are all at time step (start_index+1)
### make targets ###
if (game_length - start_index - 1) >= config['train']['num_bootstrap_timesteps']: # bootstrap using transition rewards and mcts value for final bootstrapped time step
true_value = sum([ game.reward_history[i] * ( config['self_play']['discount_factor']**(i-start_index) ) for i in range( start_index, int( start_index+config['train']['num_bootstrap_timesteps'] ) ) ]) + \
game.value_history[ start_index + int(config['train']['num_bootstrap_timesteps']) ] * ( config['self_play']['discount_factor']**(config['train']['num_bootstrap_timesteps']) )
# using game.reward_history[start_index] actually refers to reward_(start_index+1), since game.reward_history is shifted by 1 time step forward
# if the last reward we use is at game.reward_history[end_index], then the value we use to bootstrap is game.value_history[end_index+1]
# but since game.reward_history is shifted, we end up actually using reward_(end_index+1) and value_(end_index+1)
# this means we get the transition reward going into state_(end_index+1) and the bootstrapped value at state_(end_index+1)
# therefore the variable true_value is at time step (start_index+1)
else: # don't bootstrap; use only transition rewards until termination
true_value = sum([ game.reward_history[i] * ( config['self_play']['discount_factor']**(i-start_index) ) for i in range(start_index,game_length) ])
true_reward = game.reward_history[start_index] # since game.reward_history is shifted, this transition reward is actually at time step (start_index+1)
true_policy = game.policy_history[start_index+1] # we need to match the pred_policy at time step (start_index+1) so we need to actually index game.policy_history at (start_index+1)
### calculate loss ###
loss += (1/num_unroll_steps) * ( mean_squared_error(true_reward,pred_reward) + mean_squared_error(true_value,pred_value) + binary_crossentropy(true_policy,pred_policy) ) # take the average loss among all unroll steps
loss += tf.reduce_sum(network_model.representation_function.losses) + tf.reduce_sum(network_model.dynamics_function.losses) + tf.reduce_sum(network_model.prediction_function.losses) # regularization loss
### update network_model weights ###
grads = tape.gradient( loss, [ network_model.representation_function.trainable_variables, network_model.dynamics_function.trainable_variables, network_model.prediction_function.trainable_variables ] )
optimizer.apply_gradients( zip( grads[0], network_model.representation_function.trainable_variables ) )
optimizer.apply_gradients( zip( grads[1], network_model.dynamics_function.trainable_variables ) )
optimizer.apply_gradients( zip( grads[2], network_model.prediction_function.trainable_variables ) )
def get_temperature(num_iter):
"""
This function regulates exploration vs exploitation when selecting actions during self-play.
Given the current interation number of the learning algorithm, return the temperature value to be used by MCTS.
Args:
num_iter (int): The number of iterations that have passed for the learning algorithm
Returns:
temperature (float): Controls the level of exploration of MCTS (the lower the number, the greedier the action selection)
"""
# as num_iter increases, temperature decreases, and actions become greedier
if num_iter < 100: return 3
elif num_iter < 200: return 2
elif num_iter < 300: return 1
elif num_iter < 400: return .5
elif num_iter < 500: return .25
elif num_iter < 600: return .125
else: return .0625
def test(network_model,config):
"""
Using a trained network_model, greedily play config['test']['num_test_games'] games, and return a list of the game histories.
If config['test']['record'] is True, record the game renderings.
Args:
network_model (NetworkModel): The network model will be used for inference to conduct MCTS
config (dict): A dictionary specifying parameter configurations
Returns:
game_list (list[Game]): The list of games that were played by the network_model
"""
print('\n=========== TESTING ===========')
game_list = []
for _ in range( int(config['test']['num_test_games']) ):
game = Game(config)
if config['test']['record']: # we need to wrap the game.env in a Monitor, so reset the seed and initial current_state after
game.env = Monitor( gym.make(config['env']['env_name']) , f"recordings/{config['env']['env_name']}_{str(time.time()).replace('.','_')}" )
game.env.seed( int( np.random.choice( range(int(1e5)) ) ) )
game.current_state = game.env.reset()
while not game.at_terminal_state:
if config['test']['record']: game.env.render()
action_index = mcts(game,network_model,None,config) # set temperature value to None, so MCTS always returns the greedy action
game.apply_action(action_index)
print(f'Total reward: {sum(game.reward_history)}')
game_list.append(game)
print()
return game_list
if __name__ == '__main__':
# dictionary defining gym environment attributes
env_attributes = { 'cartpole': { 'env_name': 'CartPole-v1',
'state_shape': (4,),
'action_size': 2 }
}
env_key_name = 'cartpole'
config = { 'env': { 'env_name': env_attributes[env_key_name]['env_name'], # this string gets passed on to the gym.make() function to make the gym environment
'state_shape': env_attributes[env_key_name]['state_shape'], # used to define input shape for representation function
'action_size': env_attributes[env_key_name]['action_size'] }, # used to define output size for prediction function
'model': { 'representation_function': { 'num_layers': 2, # number of hidden layers
'num_neurons': 256, # number of hidden units per layer
'activation_function': 'relu', # activation function for every hidden layer
'regularizer': L2(1e-3) }, # regularizer for every layer
'dynamics_function': { 'num_layers': 2,
'num_neurons': 256,
'activation_function': 'relu',
'regularizer': L2(1e-3) },
'prediction_function': { 'num_layers': 2,
'num_neurons': 256,
'activation_function': 'relu',
'regularizer': L2(1e-3) },
'hidden_state_size': 256 }, # size of hidden state representation
'mcts': { 'num_simulations': 1e2, # number of simulations to conduct, every time we call MCTS
'c1': 1.25, # for regulating MCTS search exploration (higher value = more emphasis on prior value and visit count)
'c2': 19625 }, # for regulating MCTS search exploration (higher value = lower emphasis on prior value and visit count)
'self_play': { 'num_games': 700, # number of games the agent plays to train on
'discount_factor': 1.0, # used when backpropagating values up mcts, and when calculating bootstrapped value during training
'save_interval': 100 }, # how often to save network_model weights and replay_buffer
'replay_buffer': { 'buffer_size': 1e3, # size of the buffer
'sample_size': 1e2 }, # how many games we sample from the buffer when training the agent
'train': { 'num_bootstrap_timesteps': 500, # number of timesteps in the future to bootstrap true value
'num_unroll_steps': 1e1, # number of timesteps to unroll to match action trajectories for each game sample
'learning_rate': 1e-3, # learning rate for Adam optimizer
'beta_1': 0.9, # parameter for Adam optimizer
'beta_2': 0.999 }, # parameter for Adam optimizer
'test': { 'num_test_games': 10, # number of times to test the agent using greedy actions
'record': False }, # True if you want to record the game renders, False otherwise
'seed': 0
}
tf.random.set_seed(config['seed'])
np.random.seed(config['seed'])
with tf.device('/CPU:0'):
network_model = NetworkModel(config)
self_play(network_model,config)
game_list = test(network_model,config)