diff --git a/master/.buildinfo b/master/.buildinfo index 9632407f2..642edf333 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 018939f57eb092663e733379d20c8641 +config: 70219fb773d5717ef69f78da6129f050 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 1c718c0d7..4c2b150ce 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/index.doctree and b/master/.doctrees/cleanlab/benchmarking/index.doctree differ diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index 643edda24..96008a0db 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree and b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree differ diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree index b9430ca33..49ffc40d7 100644 Binary files a/master/.doctrees/cleanlab/classification.doctree and b/master/.doctrees/cleanlab/classification.doctree differ diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index de08b5d3e..9718d1973 100644 Binary files a/master/.doctrees/cleanlab/count.doctree and b/master/.doctrees/cleanlab/count.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index 6b41b5503..e06ac2752 100644 Binary files a/master/.doctrees/cleanlab/datalab/datalab.doctree and b/master/.doctrees/cleanlab/datalab/datalab.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index eadf04a9e..3f45c7360 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index 280fd5935..8c540a267 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree and b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index 619c4cee7..52f562ea3 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/index.doctree and b/master/.doctrees/cleanlab/datalab/guide/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index b1bbef138..002d1030e 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree and b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index c24ab470e..b5a98c396 100644 Binary files a/master/.doctrees/cleanlab/datalab/index.doctree and b/master/.doctrees/cleanlab/datalab/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index fe0d0d706..00f5cec2c 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data.doctree and b/master/.doctrees/cleanlab/datalab/internal/data.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index 47db8406d..f910cc16d 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree and b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index cd9ae679e..45b42f9f8 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/factory.doctree and b/master/.doctrees/cleanlab/datalab/internal/factory.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 3b1540e7b..faa7c1ff7 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index 656d4ac4a..3a15ea25f 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 386328db8..52edca1fe 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree index e7ae824f6..de0e68f70 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index a2c333b4f..9d0cfd28c 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index 4c3fa9d1c..498a1ed15 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index df70676af..ebad028be 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index 641ee77e2..7b90d7540 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index cf294ccc5..0c530a6af 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index c70d35868..c2ac39270 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index a8723c4bd..f2ac83593 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index 461fde67b..0ec2db06b 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index 62edb7da5..70bff9365 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index aacf7cb93..4e823b484 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index d89f6e850..c7a2654f7 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index ff1801344..78c4bd71f 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index ad795d3b4..1c1b364b7 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index 1e251bd46..79e3aaf88 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/report.doctree and b/master/.doctrees/cleanlab/datalab/internal/report.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/task.doctree b/master/.doctrees/cleanlab/datalab/internal/task.doctree index 9815ba1a6..82c0a0473 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/task.doctree and b/master/.doctrees/cleanlab/datalab/internal/task.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index 6ab1e3c6f..08a8f5852 100644 Binary files a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree and b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree differ diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index e450f082c..a43049bd5 100644 Binary files a/master/.doctrees/cleanlab/dataset.doctree and b/master/.doctrees/cleanlab/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index f59f6e022..2b33f218d 100644 Binary files a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree and b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index 19884bd8d..2840d912d 100644 Binary files a/master/.doctrees/cleanlab/experimental/coteaching.doctree and b/master/.doctrees/cleanlab/experimental/coteaching.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index d1998361c..626eff496 100644 Binary files a/master/.doctrees/cleanlab/experimental/index.doctree and b/master/.doctrees/cleanlab/experimental/index.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index f6dd826c8..8073c0b9b 100644 Binary files a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree and b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index d2077ccad..3c12560ed 100644 Binary files a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree and b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree differ diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index 7f05b46ba..1defb11cd 100644 Binary files a/master/.doctrees/cleanlab/filter.doctree and b/master/.doctrees/cleanlab/filter.doctree differ diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index 7ac855d39..6cf762732 100644 Binary files a/master/.doctrees/cleanlab/internal/index.doctree and b/master/.doctrees/cleanlab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 905a25fdf..44f890dbb 100644 Binary files a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree and b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree index 4883fa6b0..1293ab31e 100644 Binary files a/master/.doctrees/cleanlab/internal/latent_algebra.doctree and b/master/.doctrees/cleanlab/internal/latent_algebra.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index e3ddc947f..174c35baf 100644 Binary files a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree and b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree index b4b072484..c7707adb7 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree and b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index 16fbba266..aa47a7b31 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree and b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index d70ffdc2e..33a42c2dc 100644 Binary files a/master/.doctrees/cleanlab/internal/outlier.doctree and b/master/.doctrees/cleanlab/internal/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree index 28230d1f1..978195537 100644 Binary files a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree and b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index 3d6129075..169d11087 100644 Binary files a/master/.doctrees/cleanlab/internal/util.doctree and b/master/.doctrees/cleanlab/internal/util.doctree differ diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index 6ae0e88ce..f0e621ab9 100644 Binary files a/master/.doctrees/cleanlab/internal/validation.doctree and b/master/.doctrees/cleanlab/internal/validation.doctree differ diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree index 6cd53f06b..77b445544 100644 Binary files a/master/.doctrees/cleanlab/models/fasttext.doctree and b/master/.doctrees/cleanlab/models/fasttext.doctree differ diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index df68812f5..c34cd85a5 100644 Binary files a/master/.doctrees/cleanlab/models/index.doctree and b/master/.doctrees/cleanlab/models/index.doctree differ diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index 36ccd17f4..df6485e7d 100644 Binary files a/master/.doctrees/cleanlab/models/keras.doctree and b/master/.doctrees/cleanlab/models/keras.doctree differ diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index cf4acd51d..2a396fe44 100644 Binary files a/master/.doctrees/cleanlab/multiannotator.doctree and b/master/.doctrees/cleanlab/multiannotator.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index 9ebe5fc2c..b8d9e0493 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree and b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 440b9b3e1..792a9029c 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree and b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index 281938435..c5808821f 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/index.doctree and b/master/.doctrees/cleanlab/multilabel_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index 1af54fd3d..36bc5ec7c 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree and b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 4a51eb454..9569c4baa 100644 Binary files a/master/.doctrees/cleanlab/object_detection/filter.doctree and b/master/.doctrees/cleanlab/object_detection/filter.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index 5133cd73e..96fb9d4a7 100644 Binary files a/master/.doctrees/cleanlab/object_detection/index.doctree and b/master/.doctrees/cleanlab/object_detection/index.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 374fcc5b4..248546404 100644 Binary files a/master/.doctrees/cleanlab/object_detection/rank.doctree and b/master/.doctrees/cleanlab/object_detection/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index 64ad3e6ad..9c99ed084 100644 Binary files a/master/.doctrees/cleanlab/object_detection/summary.doctree and b/master/.doctrees/cleanlab/object_detection/summary.doctree differ diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 99529a89c..84dc9dab4 100644 Binary files a/master/.doctrees/cleanlab/outlier.doctree and b/master/.doctrees/cleanlab/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index 3f548d51c..08bcb5bb7 100644 Binary files a/master/.doctrees/cleanlab/rank.doctree and b/master/.doctrees/cleanlab/rank.doctree differ diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index fb3f0fb63..4cb532bc0 100644 Binary files a/master/.doctrees/cleanlab/regression/index.doctree and b/master/.doctrees/cleanlab/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index 06b2914a9..93542b7df 100644 Binary files a/master/.doctrees/cleanlab/regression/learn.doctree and b/master/.doctrees/cleanlab/regression/learn.doctree differ diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index 73b5651fa..5bac55e4c 100644 Binary files a/master/.doctrees/cleanlab/regression/rank.doctree and b/master/.doctrees/cleanlab/regression/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index c259d482d..d2b0ceb54 100644 Binary files a/master/.doctrees/cleanlab/segmentation/filter.doctree and b/master/.doctrees/cleanlab/segmentation/filter.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index a7d15e913..bcc40f593 100644 Binary files a/master/.doctrees/cleanlab/segmentation/index.doctree and b/master/.doctrees/cleanlab/segmentation/index.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index d110bbde7..b37fc44c4 100644 Binary files a/master/.doctrees/cleanlab/segmentation/rank.doctree and b/master/.doctrees/cleanlab/segmentation/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index 5e30ac460..8b63aed2e 100644 Binary files a/master/.doctrees/cleanlab/segmentation/summary.doctree and b/master/.doctrees/cleanlab/segmentation/summary.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index 4573bc057..99989908b 100644 Binary files a/master/.doctrees/cleanlab/token_classification/filter.doctree and b/master/.doctrees/cleanlab/token_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index c6184e437..8ea06ffb5 100644 Binary files a/master/.doctrees/cleanlab/token_classification/index.doctree and b/master/.doctrees/cleanlab/token_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index a44057205..9bfe0ca0c 100644 Binary files a/master/.doctrees/cleanlab/token_classification/rank.doctree and b/master/.doctrees/cleanlab/token_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index 0dd5236d1..d1bef808d 100644 Binary files a/master/.doctrees/cleanlab/token_classification/summary.doctree and b/master/.doctrees/cleanlab/token_classification/summary.doctree differ diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index 23c68b7d6..8b1de30f7 100644 Binary files a/master/.doctrees/environment.pickle and b/master/.doctrees/environment.pickle differ diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index 7f1a29de6..5a9aeb45d 100644 Binary files a/master/.doctrees/index.doctree and b/master/.doctrees/index.doctree differ diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index 45492cd72..020744535 100644 Binary files a/master/.doctrees/migrating/migrate_v2.doctree and b/master/.doctrees/migrating/migrate_v2.doctree differ diff --git a/master/.doctrees/nbsphinx/tutorials/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/audio.ipynb index 99fe86884..dcc3c2905 100644 --- a/master/.doctrees/nbsphinx/tutorials/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:43:42.049576Z", - "iopub.status.busy": "2024-02-13T04:43:42.049393Z", - "iopub.status.idle": "2024-02-13T04:43:47.154321Z", - "shell.execute_reply": "2024-02-13T04:43:47.153727Z" + "iopub.execute_input": "2024-02-13T22:13:36.682436Z", + "iopub.status.busy": "2024-02-13T22:13:36.681970Z", + "iopub.status.idle": "2024-02-13T22:13:41.662708Z", + "shell.execute_reply": "2024-02-13T22:13:41.662164Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:43:47.157310Z", - "iopub.status.busy": "2024-02-13T04:43:47.156887Z", - "iopub.status.idle": "2024-02-13T04:43:47.160543Z", - "shell.execute_reply": "2024-02-13T04:43:47.160050Z" + "iopub.execute_input": "2024-02-13T22:13:41.665520Z", + "iopub.status.busy": "2024-02-13T22:13:41.664983Z", + "iopub.status.idle": "2024-02-13T22:13:41.668233Z", + "shell.execute_reply": "2024-02-13T22:13:41.667807Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:43:47.162695Z", - "iopub.status.busy": "2024-02-13T04:43:47.162474Z", - "iopub.status.idle": "2024-02-13T04:43:47.167982Z", - "shell.execute_reply": "2024-02-13T04:43:47.167403Z" + "iopub.execute_input": "2024-02-13T22:13:41.670213Z", + "iopub.status.busy": "2024-02-13T22:13:41.669895Z", + "iopub.status.idle": "2024-02-13T22:13:41.674365Z", + "shell.execute_reply": "2024-02-13T22:13:41.673970Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-13T04:43:47.170549Z", - "iopub.status.busy": "2024-02-13T04:43:47.170297Z", - "iopub.status.idle": "2024-02-13T04:43:49.081289Z", - "shell.execute_reply": "2024-02-13T04:43:49.080568Z" + "iopub.execute_input": "2024-02-13T22:13:41.676386Z", + "iopub.status.busy": "2024-02-13T22:13:41.676060Z", + "iopub.status.idle": "2024-02-13T22:13:43.392751Z", + "shell.execute_reply": "2024-02-13T22:13:43.392131Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-13T04:43:49.084139Z", - "iopub.status.busy": "2024-02-13T04:43:49.083764Z", - "iopub.status.idle": "2024-02-13T04:43:49.094338Z", - "shell.execute_reply": "2024-02-13T04:43:49.093772Z" + "iopub.execute_input": "2024-02-13T22:13:43.395442Z", + "iopub.status.busy": "2024-02-13T22:13:43.395237Z", + "iopub.status.idle": "2024-02-13T22:13:43.406008Z", + "shell.execute_reply": "2024-02-13T22:13:43.405466Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:43:49.125739Z", - "iopub.status.busy": "2024-02-13T04:43:49.125218Z", - "iopub.status.idle": "2024-02-13T04:43:49.131051Z", - "shell.execute_reply": "2024-02-13T04:43:49.130544Z" + "iopub.execute_input": "2024-02-13T22:13:43.437733Z", + "iopub.status.busy": "2024-02-13T22:13:43.437305Z", + "iopub.status.idle": "2024-02-13T22:13:43.443074Z", + "shell.execute_reply": "2024-02-13T22:13:43.442496Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-13T04:43:49.133191Z", - "iopub.status.busy": "2024-02-13T04:43:49.132852Z", - "iopub.status.idle": "2024-02-13T04:43:49.578148Z", - "shell.execute_reply": "2024-02-13T04:43:49.577577Z" + "iopub.execute_input": "2024-02-13T22:13:43.445013Z", + "iopub.status.busy": "2024-02-13T22:13:43.444841Z", + "iopub.status.idle": "2024-02-13T22:13:43.876137Z", + "shell.execute_reply": "2024-02-13T22:13:43.875610Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:43:49.580520Z", - "iopub.status.busy": "2024-02-13T04:43:49.580161Z", - "iopub.status.idle": "2024-02-13T04:43:51.382186Z", - "shell.execute_reply": "2024-02-13T04:43:51.381653Z" + "iopub.execute_input": "2024-02-13T22:13:43.878442Z", + "iopub.status.busy": "2024-02-13T22:13:43.878024Z", + "iopub.status.idle": "2024-02-13T22:13:44.733838Z", + "shell.execute_reply": "2024-02-13T22:13:44.733359Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-02-13T04:43:51.384682Z", - "iopub.status.busy": "2024-02-13T04:43:51.384319Z", - "iopub.status.idle": "2024-02-13T04:43:51.403028Z", - "shell.execute_reply": "2024-02-13T04:43:51.402467Z" + "iopub.execute_input": "2024-02-13T22:13:44.736245Z", + "iopub.status.busy": "2024-02-13T22:13:44.736058Z", + "iopub.status.idle": "2024-02-13T22:13:44.754516Z", + "shell.execute_reply": "2024-02-13T22:13:44.754056Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:43:51.405148Z", - "iopub.status.busy": "2024-02-13T04:43:51.404825Z", - "iopub.status.idle": "2024-02-13T04:43:51.408117Z", - "shell.execute_reply": "2024-02-13T04:43:51.407574Z" + "iopub.execute_input": "2024-02-13T22:13:44.756743Z", + "iopub.status.busy": "2024-02-13T22:13:44.756321Z", + "iopub.status.idle": "2024-02-13T22:13:44.759619Z", + "shell.execute_reply": "2024-02-13T22:13:44.759193Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:43:51.410210Z", - "iopub.status.busy": "2024-02-13T04:43:51.409793Z", - "iopub.status.idle": "2024-02-13T04:44:07.597857Z", - "shell.execute_reply": "2024-02-13T04:44:07.597246Z" + "iopub.execute_input": "2024-02-13T22:13:44.761544Z", + "iopub.status.busy": "2024-02-13T22:13:44.761183Z", + "iopub.status.idle": "2024-02-13T22:13:59.418699Z", + "shell.execute_reply": "2024-02-13T22:13:59.418099Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-13T04:44:07.600627Z", - "iopub.status.busy": "2024-02-13T04:44:07.600230Z", - "iopub.status.idle": "2024-02-13T04:44:07.603929Z", - "shell.execute_reply": "2024-02-13T04:44:07.603397Z" + "iopub.execute_input": "2024-02-13T22:13:59.421337Z", + "iopub.status.busy": "2024-02-13T22:13:59.421006Z", + "iopub.status.idle": "2024-02-13T22:13:59.424675Z", + "shell.execute_reply": "2024-02-13T22:13:59.424178Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:07.606144Z", - "iopub.status.busy": "2024-02-13T04:44:07.605751Z", - "iopub.status.idle": "2024-02-13T04:44:08.351968Z", - "shell.execute_reply": "2024-02-13T04:44:08.351407Z" + "iopub.execute_input": "2024-02-13T22:13:59.426726Z", + "iopub.status.busy": "2024-02-13T22:13:59.426429Z", + "iopub.status.idle": "2024-02-13T22:14:00.116928Z", + "shell.execute_reply": "2024-02-13T22:14:00.116370Z" }, "id": "i_drkY9YOcw4" }, @@ -727,10 +727,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-13T04:44:08.354750Z", - "iopub.status.busy": "2024-02-13T04:44:08.354343Z", - "iopub.status.idle": "2024-02-13T04:44:08.359382Z", - "shell.execute_reply": "2024-02-13T04:44:08.358879Z" + "iopub.execute_input": "2024-02-13T22:14:00.120585Z", + "iopub.status.busy": "2024-02-13T22:14:00.119660Z", + "iopub.status.idle": "2024-02-13T22:14:00.126287Z", + "shell.execute_reply": "2024-02-13T22:14:00.125821Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -777,10 +777,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:08.361823Z", - "iopub.status.busy": "2024-02-13T04:44:08.361436Z", - "iopub.status.idle": "2024-02-13T04:44:08.473680Z", - "shell.execute_reply": "2024-02-13T04:44:08.473088Z" + "iopub.execute_input": "2024-02-13T22:14:00.129758Z", + "iopub.status.busy": "2024-02-13T22:14:00.128862Z", + "iopub.status.idle": "2024-02-13T22:14:00.244961Z", + "shell.execute_reply": "2024-02-13T22:14:00.244412Z" } }, "outputs": [ @@ -817,10 +817,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:08.476272Z", - "iopub.status.busy": "2024-02-13T04:44:08.475830Z", - "iopub.status.idle": "2024-02-13T04:44:08.488458Z", - "shell.execute_reply": "2024-02-13T04:44:08.487974Z" + "iopub.execute_input": "2024-02-13T22:14:00.247370Z", + "iopub.status.busy": "2024-02-13T22:14:00.246986Z", + "iopub.status.idle": "2024-02-13T22:14:00.259116Z", + "shell.execute_reply": "2024-02-13T22:14:00.258624Z" }, "scrolled": true }, @@ -875,10 +875,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:08.490812Z", - "iopub.status.busy": "2024-02-13T04:44:08.490417Z", - "iopub.status.idle": "2024-02-13T04:44:08.498649Z", - "shell.execute_reply": "2024-02-13T04:44:08.498178Z" + "iopub.execute_input": "2024-02-13T22:14:00.261193Z", + "iopub.status.busy": "2024-02-13T22:14:00.260850Z", + "iopub.status.idle": "2024-02-13T22:14:00.268547Z", + "shell.execute_reply": "2024-02-13T22:14:00.268121Z" } }, "outputs": [ @@ -982,10 +982,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:08.500802Z", - "iopub.status.busy": "2024-02-13T04:44:08.500480Z", - "iopub.status.idle": "2024-02-13T04:44:08.504584Z", - "shell.execute_reply": "2024-02-13T04:44:08.504052Z" + "iopub.execute_input": "2024-02-13T22:14:00.270609Z", + "iopub.status.busy": "2024-02-13T22:14:00.270283Z", + "iopub.status.idle": "2024-02-13T22:14:00.274301Z", + "shell.execute_reply": "2024-02-13T22:14:00.273774Z" } }, "outputs": [ @@ -1023,10 +1023,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-02-13T04:44:08.506742Z", - "iopub.status.busy": "2024-02-13T04:44:08.506409Z", - "iopub.status.idle": "2024-02-13T04:44:08.512341Z", - "shell.execute_reply": "2024-02-13T04:44:08.511845Z" + "iopub.execute_input": "2024-02-13T22:14:00.276420Z", + "iopub.status.busy": "2024-02-13T22:14:00.276099Z", + "iopub.status.idle": "2024-02-13T22:14:00.281615Z", + "shell.execute_reply": "2024-02-13T22:14:00.281154Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1153,10 +1153,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-13T04:44:08.514463Z", - "iopub.status.busy": "2024-02-13T04:44:08.514144Z", - "iopub.status.idle": "2024-02-13T04:44:08.628126Z", - "shell.execute_reply": "2024-02-13T04:44:08.627586Z" + "iopub.execute_input": "2024-02-13T22:14:00.283729Z", + "iopub.status.busy": "2024-02-13T22:14:00.283410Z", + "iopub.status.idle": "2024-02-13T22:14:00.394392Z", + "shell.execute_reply": "2024-02-13T22:14:00.393842Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1210,10 +1210,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-13T04:44:08.630382Z", - "iopub.status.busy": "2024-02-13T04:44:08.629977Z", - "iopub.status.idle": "2024-02-13T04:44:08.738336Z", - "shell.execute_reply": "2024-02-13T04:44:08.737747Z" + "iopub.execute_input": "2024-02-13T22:14:00.396484Z", + "iopub.status.busy": "2024-02-13T22:14:00.396290Z", + "iopub.status.idle": "2024-02-13T22:14:00.501578Z", + "shell.execute_reply": "2024-02-13T22:14:00.501007Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1258,10 +1258,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-13T04:44:08.740544Z", - "iopub.status.busy": "2024-02-13T04:44:08.740187Z", - "iopub.status.idle": "2024-02-13T04:44:08.849302Z", - "shell.execute_reply": "2024-02-13T04:44:08.848786Z" + "iopub.execute_input": "2024-02-13T22:14:00.503584Z", + "iopub.status.busy": "2024-02-13T22:14:00.503400Z", + "iopub.status.idle": "2024-02-13T22:14:00.606658Z", + "shell.execute_reply": "2024-02-13T22:14:00.606091Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1302,10 +1302,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:08.851399Z", - "iopub.status.busy": "2024-02-13T04:44:08.851199Z", - "iopub.status.idle": "2024-02-13T04:44:08.956948Z", - "shell.execute_reply": "2024-02-13T04:44:08.956480Z" + "iopub.execute_input": "2024-02-13T22:14:00.609018Z", + "iopub.status.busy": "2024-02-13T22:14:00.608530Z", + "iopub.status.idle": "2024-02-13T22:14:00.710967Z", + "shell.execute_reply": "2024-02-13T22:14:00.710410Z" } }, "outputs": [ @@ -1353,10 +1353,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:08.959323Z", - "iopub.status.busy": "2024-02-13T04:44:08.958823Z", - "iopub.status.idle": "2024-02-13T04:44:08.962403Z", - "shell.execute_reply": "2024-02-13T04:44:08.961826Z" + "iopub.execute_input": "2024-02-13T22:14:00.713079Z", + "iopub.status.busy": "2024-02-13T22:14:00.712741Z", + "iopub.status.idle": "2024-02-13T22:14:00.715919Z", + "shell.execute_reply": "2024-02-13T22:14:00.715494Z" }, "nbsphinx": "hidden" }, @@ -1397,60 +1397,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "020ca564a17a4b1185a878c6db3b4b4c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "022802a8c75a4ce58d06dcfaf24dcec2": { + "0227722ef3a94497bd415e644b8dd5df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1465,31 +1412,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c9d371e5899740349104c167be796d57", + "layout": "IPY_MODEL_bec850fda40e46869a492b50d7af2fba", "placeholder": "​", - "style": "IPY_MODEL_b8f217822cb241c89e6e758f982a0940", + "style": "IPY_MODEL_e399663b65d94f718e927284a06e0401", "tabbable": null, "tooltip": null, - "value": "classifier.ckpt: 100%" - } - }, - "0cc39ecc236b4c96b99a0c6129704098": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 3.20k/3.20k [00:00<00:00, 730kB/s]" } }, - "179a4e968732450fa197521fd6f022c4": { + "06b40034d3204eb3b784996b4002066d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1504,54 +1435,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_57f937f07aeb40beb2b96011ef7289ad", + "layout": "IPY_MODEL_d405ba37fe154a45ac131ebb25c47e3a", "placeholder": "​", - "style": "IPY_MODEL_ee2170c5344c462bb262eda24f3893d3", + "style": "IPY_MODEL_ba5de7b2afe94e53ac6a3f80c89401cd", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 476kB/s]" + "value": " 16.9M/16.9M [00:00<00:00, 199MB/s]" } }, - "19b161ceccf043a1b297bb1bd00cb39f": { + "08ac7b8e69ea41f09cfb6d0612bc3583": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2532e016abf946a09d5b097502eadace": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b9e63d50743a4f1fae2871c254e244c5", - "placeholder": "​", - "style": "IPY_MODEL_754538a10a46471cabcc8b864b8346e7", - "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 285MB/s]" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2f3b9c71fd8743caa67c88b66466f5cd": { + "098bae17a37846bc842695a528076153": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1604,7 +1514,65 @@ "width": null } }, - "31e7e7b6da874e49b5c84c74dc4a24e7": { + "09cb65c11839410ba67aca2611b1a901": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0eaa1261dbc941f48903f7019af30d56": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_afa7f929482f4d84b82c83949f74d2f0", + "IPY_MODEL_e3203b4e36e54c59a95cd62f1e2ee061", + "IPY_MODEL_06b40034d3204eb3b784996b4002066d" + ], + "layout": "IPY_MODEL_098bae17a37846bc842695a528076153", + "tabbable": null, + "tooltip": null + } + }, + "0fe309ae2b20491abc8ba38f74325099": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "161d951c627b49a5a491c5408294bd52": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1657,33 +1625,25 @@ "width": null } }, - "3212636ea82b48bfba9ca070df0a3758": { + "2091a40671184e7a8041c3ee27b91669": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f033e1d6698f4259810a69b7b3fa1def", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0cc39ecc236b4c96b99a0c6129704098", - "tabbable": null, - "tooltip": null, - "value": 2041.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "35732a57f5bc4831b7336ba8c6562d4e": { + "21161a0a60b845509f567de9b94d2764": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1698,33 +1658,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e5b710ae8f814d46ac58d084b1674985", + "layout": "IPY_MODEL_6f84700b36d9491e9e48b0ce35629fcf", "placeholder": "​", - "style": "IPY_MODEL_4ae47f87ca9349a4ab8d4b6b60ce08e8", + "style": "IPY_MODEL_6323c2c2cf944fa9a65731ef1cd9394f", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 1.65MB/s]" - } - }, - "412fa3739e2a4fd984cb1d80489eb643": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "hyperparams.yaml: 100%" } }, - "439f24b7a4b74b3d9f4f8b34edac8202": { + "2635b49d19324851bd5caffad77908c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1777,82 +1719,75 @@ "width": null } }, - "4ae47f87ca9349a4ab8d4b6b60ce08e8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "511c474f3a1b443eb9c080b677b4016e": { + "2965a9f7ab7243b49cff1ff6b0661d70": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_70abb7186c244025a48e9d6caba3847b", - "placeholder": "​", - "style": "IPY_MODEL_dac91efd93664bbd95456e0b8122a601", + "layout": "IPY_MODEL_b4fbfc51f3ec4e20a4a7f9d3396b6ad3", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7cd06ea0ffb741d9a9165bfe6b9af017", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "value": 2041.0 } }, - "519fb35ecb8e46cda4be73d7bbb3b814": { + "2f475057453041809112dc2db365ce3d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "522fd9f8aac340aca8c7589b6d20a620": { + "3111fbddea5140008c9bff401aaf2375": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8a4d7c48c9ac4e3484435c38ae6737d4", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bca0b902b4fc4ae3828fdef5a2a726d0", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 } }, - "57f937f07aeb40beb2b96011ef7289ad": { + "31b946b0b4b84126830498e76ae5f028": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1905,7 +1840,7 @@ "width": null } }, - "58fe2e5a904f46df9cecb1c126ba9dbf": { + "31cfb173fdae4a278bfc88dea6bdb576": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1958,49 +1893,70 @@ "width": null } }, - "6429bceac2be4fd098fec3c2cedb4e35": { + "35ce8643c5c54f12a2c46388f7ad804f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4d37318ee9a449dda132db17c0ce48f9", + "IPY_MODEL_5880e383714b4706baf08f6fee11795a", + "IPY_MODEL_0227722ef3a94497bd415e644b8dd5df" + ], + "layout": "IPY_MODEL_31b946b0b4b84126830498e76ae5f028", + "tabbable": null, + "tooltip": null + } + }, + "425f15f25913426ba476fbcb9e2f9494": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "66a137500e93408baccbf19c43640886": { + "4c7d1da0078540fd8cba29b98f81d792": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dd98fb54f38d4cccac87d4f254bfc6db", - "IPY_MODEL_a04063553fe1463895971a3e39c2731e", - "IPY_MODEL_35732a57f5bc4831b7336ba8c6562d4e" - ], - "layout": "IPY_MODEL_31e7e7b6da874e49b5c84c74dc4a24e7", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_843947e4f66c4e86a343237548aa03cf", + "placeholder": "​", + "style": "IPY_MODEL_2091a40671184e7a8041c3ee27b91669", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 237MB/s]" } }, - "6a6a5db6eb704f738f39a3b00bfd465e": { + "4d37318ee9a449dda132db17c0ce48f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2015,15 +1971,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9aede1a76e1e48329e39c1d61b9e936a", + "layout": "IPY_MODEL_c96fe962d2054cb3931b2f72b5819229", "placeholder": "​", - "style": "IPY_MODEL_a52d8cb40b8a42de85283d6904cc0368", + "style": "IPY_MODEL_c07b09ae215f45dfb5def489424c48f8", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 59.6MB/s]" + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "70abb7186c244025a48e9d6caba3847b": { + "4e62a5dc5e8c4e438a83eec55da4cc29": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "51623086acd345cf94bc784c05afc160": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2076,25 +2050,33 @@ "width": null } }, - "754538a10a46471cabcc8b864b8346e7": { + "5880e383714b4706baf08f6fee11795a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f0b6b95a4a004d818d2a0ed600298405", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_425f15f25913426ba476fbcb9e2f9494", + "tabbable": null, + "tooltip": null, + "value": 3201.0 } }, - "7681287bf6b048bda2a45ee2c38a0495": { + "5beaa0fdc8554932ad9a63c9f1acaf00": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2147,57 +2129,78 @@ "width": null } }, - "787dc735293f40778c6d4c42da6a0454": { - "model_module": "@jupyter-widgets/controls", + "5e81a327c4574aeda90d8ac93713e677": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_022802a8c75a4ce58d06dcfaf24dcec2", - "IPY_MODEL_94044232845749bb8b3666a8c455e305", - "IPY_MODEL_2532e016abf946a09d5b097502eadace" - ], - "layout": "IPY_MODEL_d5c57c5da5014e5e940332eaa2117b31", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "8b0be779dc2b46ec807f170b51f7eac7": { + "6323c2c2cf944fa9a65731ef1cd9394f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d524ee89928c42428f93aedd308f5ea1", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_19b161ceccf043a1b297bb1bd00cb39f", - "tabbable": null, - "tooltip": null, - "value": 16887676.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8dcc8e0f4fb740b4b68d16a2ac3c809b": { + "6f84700b36d9491e9e48b0ce35629fcf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2250,33 +2253,7 @@ "width": null } }, - "94044232845749bb8b3666a8c455e305": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_58fe2e5a904f46df9cecb1c126ba9dbf", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_522fd9f8aac340aca8c7589b6d20a620", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 - } - }, - "9aede1a76e1e48329e39c1d61b9e936a": { + "713e314d20644de4803a7d2e5f9aa7ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2329,33 +2306,41 @@ "width": null } }, - "a04063553fe1463895971a3e39c2731e": { + "79e34a6009d54a5cb6d7df971245836d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c76dfb3da90949a89db96d8981096a98", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b2e51e41c2764e09a42b57d9c1ea2487", - "tabbable": null, - "tooltip": null, - "value": 128619.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7cd06ea0ffb741d9a9165bfe6b9af017": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a2b5057c23bb490db02f78b15b8502a9": { + "843947e4f66c4e86a343237548aa03cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2408,25 +2393,7 @@ "width": null } }, - "a52d8cb40b8a42de85283d6904cc0368": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a708c364291448b8b403e2d5f566fc01": { + "8a4d7c48c9ac4e3484435c38ae6737d4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2479,83 +2446,53 @@ "width": null } }, - "a98f48b392d4473eb264510b46a3e15a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "aedfcf53155a4f4bacf95c551835c617": { + "8e3d1debce7b495dbcce011c04bbcfcf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_511c474f3a1b443eb9c080b677b4016e", - "IPY_MODEL_8b0be779dc2b46ec807f170b51f7eac7", - "IPY_MODEL_6a6a5db6eb704f738f39a3b00bfd465e" - ], - "layout": "IPY_MODEL_7681287bf6b048bda2a45ee2c38a0495", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5beaa0fdc8554932ad9a63c9f1acaf00", + "placeholder": "​", + "style": "IPY_MODEL_4e62a5dc5e8c4e438a83eec55da4cc29", "tabbable": null, - "tooltip": null - } - }, - "b2e51e41c2764e09a42b57d9c1ea2487": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null, + "value": "label_encoder.txt: 100%" } }, - "b8f217822cb241c89e6e758f982a0940": { + "948b3e58b39f4a349ec4d95ab3f9c1de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_713e314d20644de4803a7d2e5f9aa7ca", + "placeholder": "​", + "style": "IPY_MODEL_0fe309ae2b20491abc8ba38f74325099", + "tabbable": null, + "tooltip": null, + "value": "classifier.ckpt: 100%" } }, - "b9e63d50743a4f1fae2871c254e244c5": { + "a2ec222866634de9adad824880ac0ca4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2608,31 +2545,53 @@ "width": null } }, - "bbe7fc9571c44ef0a2129e934819701e": { + "a7b5831a847346b58b1140b4b6e83b06": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ec1966f6e6cb4dee911cf628968d77d8", - "IPY_MODEL_e6894d3a68b841e690747856e8706a7b", - "IPY_MODEL_f06c68891e914f5dbfeb0205cf1f5105" - ], - "layout": "IPY_MODEL_8dcc8e0f4fb740b4b68d16a2ac3c809b", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_51623086acd345cf94bc784c05afc160", + "placeholder": "​", + "style": "IPY_MODEL_ca59cc8020274fe08427f4f62c202a60", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 484kB/s]" + } + }, + "afa7f929482f4d84b82c83949f74d2f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5e81a327c4574aeda90d8ac93713e677", + "placeholder": "​", + "style": "IPY_MODEL_79e34a6009d54a5cb6d7df971245836d", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" } }, - "c76dfb3da90949a89db96d8981096a98": { + "afc168471c944570bb81dc089a8a2810": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2685,30 +2644,31 @@ "width": null } }, - "c91886bb27cd46549946341c72b71994": { + "b3db053977814d8aa2759b674ef5f4f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_439f24b7a4b74b3d9f4f8b34edac8202", - "placeholder": "​", - "style": "IPY_MODEL_6429bceac2be4fd098fec3c2cedb4e35", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_21161a0a60b845509f567de9b94d2764", + "IPY_MODEL_2965a9f7ab7243b49cff1ff6b0661d70", + "IPY_MODEL_a7b5831a847346b58b1140b4b6e83b06" + ], + "layout": "IPY_MODEL_2635b49d19324851bd5caffad77908c9", "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" + "tooltip": null } }, - "c9d371e5899740349104c167be796d57": { + "b4fbfc51f3ec4e20a4a7f9d3396b6ad3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2761,31 +2721,48 @@ "width": null } }, - "cb19edae57564bbf86d43e38fffae673": { + "b8899e0ef9174599a2d357b7beb552dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c91886bb27cd46549946341c72b71994", - "IPY_MODEL_3212636ea82b48bfba9ca070df0a3758", - "IPY_MODEL_179a4e968732450fa197521fd6f022c4" - ], - "layout": "IPY_MODEL_020ca564a17a4b1185a878c6db3b4b4c", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_161d951c627b49a5a491c5408294bd52", + "placeholder": "​", + "style": "IPY_MODEL_08ac7b8e69ea41f09cfb6d0612bc3583", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 3.28MB/s]" + } + }, + "ba5de7b2afe94e53ac6a3f80c89401cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d42dd987c0f64d5488972b6ac1599104": { + "bca0b902b4fc4ae3828fdef5a2a726d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2801,7 +2778,7 @@ "description_width": "" } }, - "d524ee89928c42428f93aedd308f5ea1": { + "beb6ee7cdde94e3eb2b8f2a3fabb90b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2854,7 +2831,7 @@ "width": null } }, - "d5c57c5da5014e5e940332eaa2117b31": { + "bec850fda40e46869a492b50d7af2fba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2907,7 +2884,7 @@ "width": null } }, - "dac91efd93664bbd95456e0b8122a601": { + "c07b09ae215f45dfb5def489424c48f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2925,30 +2902,33 @@ "text_color": null } }, - "dd98fb54f38d4cccac87d4f254bfc6db": { + "c430bd7bc7844d0cbbea230c765c462f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a2b5057c23bb490db02f78b15b8502a9", - "placeholder": "​", - "style": "IPY_MODEL_412fa3739e2a4fd984cb1d80489eb643", + "layout": "IPY_MODEL_31cfb173fdae4a278bfc88dea6bdb576", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2f475057453041809112dc2db365ce3d", "tabbable": null, "tooltip": null, - "value": "label_encoder.txt: 100%" + "value": 128619.0 } }, - "e2e11b9eb261402fbd4f58edd8042c41": { + "c96fe962d2054cb3931b2f72b5819229": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3001,7 +2981,49 @@ "width": null } }, - "e5b710ae8f814d46ac58d084b1674985": { + "ca59cc8020274fe08427f4f62c202a60": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d35e92617b7044408b661764f9288535": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8e3d1debce7b495dbcce011c04bbcfcf", + "IPY_MODEL_c430bd7bc7844d0cbbea230c765c462f", + "IPY_MODEL_b8899e0ef9174599a2d357b7beb552dd" + ], + "layout": "IPY_MODEL_a2ec222866634de9adad824880ac0ca4", + "tabbable": null, + "tooltip": null + } + }, + "d405ba37fe154a45ac131ebb25c47e3a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3054,7 +3076,7 @@ "width": null } }, - "e6894d3a68b841e690747856e8706a7b": { + "e3203b4e36e54c59a95cd62f1e2ee061": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3070,40 +3092,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e2e11b9eb261402fbd4f58edd8042c41", - "max": 3201.0, + "layout": "IPY_MODEL_afc168471c944570bb81dc089a8a2810", + "max": 16887676.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_d42dd987c0f64d5488972b6ac1599104", - "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "ec1966f6e6cb4dee911cf628968d77d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a708c364291448b8b403e2d5f566fc01", - "placeholder": "​", - "style": "IPY_MODEL_519fb35ecb8e46cda4be73d7bbb3b814", + "style": "IPY_MODEL_09cb65c11839410ba67aca2611b1a901", "tabbable": null, "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "value": 16887676.0 } }, - "ee2170c5344c462bb262eda24f3893d3": { + "e399663b65d94f718e927284a06e0401": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3121,7 +3120,7 @@ "text_color": null } }, - "f033e1d6698f4259810a69b7b3fa1def": { + "f0b6b95a4a004d818d2a0ed600298405": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3174,27 +3173,28 @@ "width": null } }, - "f06c68891e914f5dbfeb0205cf1f5105": { + "f8c3aa561c4342df9116481f69bc9c8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2f3b9c71fd8743caa67c88b66466f5cd", - "placeholder": "​", - "style": "IPY_MODEL_a98f48b392d4473eb264510b46a3e15a", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_948b3e58b39f4a349ec4d95ab3f9c1de", + "IPY_MODEL_3111fbddea5140008c9bff401aaf2375", + "IPY_MODEL_4c7d1da0078540fd8cba29b98f81d792" + ], + "layout": "IPY_MODEL_beb6ee7cdde94e3eb2b8f2a3fabb90b1", "tabbable": null, - "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 805kB/s]" + "tooltip": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index 4e130cf18..91765a74b 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:13.403226Z", - "iopub.status.busy": "2024-02-13T04:44:13.402880Z", - "iopub.status.idle": "2024-02-13T04:44:14.565097Z", - "shell.execute_reply": "2024-02-13T04:44:14.564557Z" + "iopub.execute_input": "2024-02-13T22:14:04.090335Z", + "iopub.status.busy": "2024-02-13T22:14:04.089878Z", + "iopub.status.idle": "2024-02-13T22:14:05.181077Z", + "shell.execute_reply": "2024-02-13T22:14:05.180528Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:14.567745Z", - "iopub.status.busy": "2024-02-13T04:44:14.567438Z", - "iopub.status.idle": "2024-02-13T04:44:14.570768Z", - "shell.execute_reply": "2024-02-13T04:44:14.570319Z" + "iopub.execute_input": "2024-02-13T22:14:05.183625Z", + "iopub.status.busy": "2024-02-13T22:14:05.183280Z", + "iopub.status.idle": "2024-02-13T22:14:05.186860Z", + "shell.execute_reply": "2024-02-13T22:14:05.186423Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:14.572826Z", - "iopub.status.busy": "2024-02-13T04:44:14.572642Z", - "iopub.status.idle": "2024-02-13T04:44:14.581259Z", - "shell.execute_reply": "2024-02-13T04:44:14.580833Z" + "iopub.execute_input": "2024-02-13T22:14:05.188919Z", + "iopub.status.busy": "2024-02-13T22:14:05.188599Z", + "iopub.status.idle": "2024-02-13T22:14:05.196980Z", + "shell.execute_reply": "2024-02-13T22:14:05.196559Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:14.583160Z", - "iopub.status.busy": "2024-02-13T04:44:14.582972Z", - "iopub.status.idle": "2024-02-13T04:44:14.587902Z", - "shell.execute_reply": "2024-02-13T04:44:14.587488Z" + "iopub.execute_input": "2024-02-13T22:14:05.199006Z", + "iopub.status.busy": "2024-02-13T22:14:05.198683Z", + "iopub.status.idle": "2024-02-13T22:14:05.203391Z", + "shell.execute_reply": "2024-02-13T22:14:05.203011Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:14.590008Z", - "iopub.status.busy": "2024-02-13T04:44:14.589725Z", - "iopub.status.idle": "2024-02-13T04:44:14.778226Z", - "shell.execute_reply": "2024-02-13T04:44:14.777590Z" + "iopub.execute_input": "2024-02-13T22:14:05.205394Z", + "iopub.status.busy": "2024-02-13T22:14:05.205073Z", + "iopub.status.idle": "2024-02-13T22:14:05.386592Z", + "shell.execute_reply": "2024-02-13T22:14:05.386129Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:14.780774Z", - "iopub.status.busy": "2024-02-13T04:44:14.780425Z", - "iopub.status.idle": "2024-02-13T04:44:15.162745Z", - "shell.execute_reply": "2024-02-13T04:44:15.162147Z" + "iopub.execute_input": "2024-02-13T22:14:05.388928Z", + "iopub.status.busy": "2024-02-13T22:14:05.388586Z", + "iopub.status.idle": "2024-02-13T22:14:05.757842Z", + "shell.execute_reply": "2024-02-13T22:14:05.757322Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:15.165379Z", - "iopub.status.busy": "2024-02-13T04:44:15.164923Z", - "iopub.status.idle": "2024-02-13T04:44:15.190156Z", - "shell.execute_reply": "2024-02-13T04:44:15.189651Z" + "iopub.execute_input": "2024-02-13T22:14:05.760226Z", + "iopub.status.busy": "2024-02-13T22:14:05.759890Z", + "iopub.status.idle": "2024-02-13T22:14:05.783561Z", + "shell.execute_reply": "2024-02-13T22:14:05.783163Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:15.192620Z", - "iopub.status.busy": "2024-02-13T04:44:15.192415Z", - "iopub.status.idle": "2024-02-13T04:44:15.204349Z", - "shell.execute_reply": "2024-02-13T04:44:15.203899Z" + "iopub.execute_input": "2024-02-13T22:14:05.785642Z", + "iopub.status.busy": "2024-02-13T22:14:05.785319Z", + "iopub.status.idle": "2024-02-13T22:14:05.796240Z", + "shell.execute_reply": "2024-02-13T22:14:05.795850Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:15.206703Z", - "iopub.status.busy": "2024-02-13T04:44:15.206425Z", - "iopub.status.idle": "2024-02-13T04:44:16.949151Z", - "shell.execute_reply": "2024-02-13T04:44:16.948527Z" + "iopub.execute_input": "2024-02-13T22:14:05.798283Z", + "iopub.status.busy": "2024-02-13T22:14:05.797961Z", + "iopub.status.idle": "2024-02-13T22:14:07.456729Z", + "shell.execute_reply": "2024-02-13T22:14:07.456135Z" } }, "outputs": [ @@ -709,10 +709,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:16.951836Z", - "iopub.status.busy": "2024-02-13T04:44:16.951356Z", - "iopub.status.idle": "2024-02-13T04:44:16.974966Z", - "shell.execute_reply": "2024-02-13T04:44:16.974413Z" + "iopub.execute_input": "2024-02-13T22:14:07.459070Z", + "iopub.status.busy": "2024-02-13T22:14:07.458646Z", + "iopub.status.idle": "2024-02-13T22:14:07.480031Z", + "shell.execute_reply": "2024-02-13T22:14:07.479599Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:16.977285Z", - "iopub.status.busy": "2024-02-13T04:44:16.976988Z", - "iopub.status.idle": "2024-02-13T04:44:16.998053Z", - "shell.execute_reply": "2024-02-13T04:44:16.997406Z" + "iopub.execute_input": "2024-02-13T22:14:07.482209Z", + "iopub.status.busy": "2024-02-13T22:14:07.481899Z", + "iopub.status.idle": "2024-02-13T22:14:07.500970Z", + "shell.execute_reply": "2024-02-13T22:14:07.500395Z" } }, "outputs": [ @@ -910,7 +910,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:329: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:329: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:359: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -936,10 +936,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:17.000226Z", - "iopub.status.busy": "2024-02-13T04:44:16.999861Z", - "iopub.status.idle": "2024-02-13T04:44:17.015155Z", - "shell.execute_reply": "2024-02-13T04:44:17.014699Z" + "iopub.execute_input": "2024-02-13T22:14:07.503057Z", + "iopub.status.busy": "2024-02-13T22:14:07.502798Z", + "iopub.status.idle": "2024-02-13T22:14:07.516730Z", + "shell.execute_reply": "2024-02-13T22:14:07.516317Z" } }, "outputs": [ @@ -1069,17 +1069,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:17.017369Z", - "iopub.status.busy": "2024-02-13T04:44:17.017018Z", - "iopub.status.idle": "2024-02-13T04:44:17.039865Z", - "shell.execute_reply": "2024-02-13T04:44:17.039300Z" + "iopub.execute_input": "2024-02-13T22:14:07.518833Z", + "iopub.status.busy": "2024-02-13T22:14:07.518507Z", + "iopub.status.idle": "2024-02-13T22:14:07.539612Z", + "shell.execute_reply": "2024-02-13T22:14:07.539072Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ec4478ce6216448aab8dcd0968cc8ae8", + "model_id": "2be2bc6a7ee74efc998c82d1df625472", "version_major": 2, "version_minor": 0 }, @@ -1115,10 +1115,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:17.042289Z", - "iopub.status.busy": "2024-02-13T04:44:17.041841Z", - "iopub.status.idle": "2024-02-13T04:44:17.058128Z", - "shell.execute_reply": "2024-02-13T04:44:17.057534Z" + "iopub.execute_input": "2024-02-13T22:14:07.541783Z", + "iopub.status.busy": "2024-02-13T22:14:07.541417Z", + "iopub.status.idle": "2024-02-13T22:14:07.555895Z", + "shell.execute_reply": "2024-02-13T22:14:07.555492Z" } }, "outputs": [ @@ -1236,10 +1236,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:17.060352Z", - "iopub.status.busy": "2024-02-13T04:44:17.060021Z", - "iopub.status.idle": "2024-02-13T04:44:17.066076Z", - "shell.execute_reply": "2024-02-13T04:44:17.065499Z" + "iopub.execute_input": "2024-02-13T22:14:07.557904Z", + "iopub.status.busy": "2024-02-13T22:14:07.557590Z", + "iopub.status.idle": "2024-02-13T22:14:07.563244Z", + "shell.execute_reply": "2024-02-13T22:14:07.562800Z" } }, "outputs": [], @@ -1296,10 +1296,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:17.068258Z", - "iopub.status.busy": "2024-02-13T04:44:17.067907Z", - "iopub.status.idle": "2024-02-13T04:44:17.086390Z", - "shell.execute_reply": "2024-02-13T04:44:17.085845Z" + "iopub.execute_input": "2024-02-13T22:14:07.565305Z", + "iopub.status.busy": "2024-02-13T22:14:07.564896Z", + "iopub.status.idle": "2024-02-13T22:14:07.582787Z", + "shell.execute_reply": "2024-02-13T22:14:07.582367Z" } }, "outputs": [ @@ -1431,72 +1431,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01a68e5659354bf095b6a2d69b6ac1b0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_920d3b6eb6a14892b8b487b77b46113d", - "placeholder": "​", - "style": "IPY_MODEL_d6b92e1715544df0b0b31a3a94252c8c", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 10440.87 examples/s]" - } - }, - "0a118ddf21944c1286ae1de466380262": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "45847275cb1f439d90df3460f8f43a93": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_da5fe986bcdb4852ac566bbaf59cb904", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0a118ddf21944c1286ae1de466380262", - "tabbable": null, - "tooltip": null, - "value": 132.0 - } - }, - "823ca67b5e0e49f09b514568e2e12aab": { + "086769d8dd724ee4ae991894d5b1638c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1549,7 +1484,7 @@ "width": null } }, - "920d3b6eb6a14892b8b487b77b46113d": { + "0f0798a2e4a640ac99545cf963558f27": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1602,7 +1537,98 @@ "width": null } }, - "ce7de2a02d0f4e09bbe38f0bf3338621": { + "0f9727c600714b0c9a90a7ac6444f573": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_086769d8dd724ee4ae991894d5b1638c", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ca4222be103342b59c007fc2f0a1bb1c", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } + }, + "2be2bc6a7ee74efc998c82d1df625472": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8848dbbfcbf045679df9d89c70836a4a", + "IPY_MODEL_0f9727c600714b0c9a90a7ac6444f573", + "IPY_MODEL_2f2711b7cd724b62b52383790e9b574b" + ], + "layout": "IPY_MODEL_b46160578fbc44799b7d204bae66bd27", + "tabbable": null, + "tooltip": null + } + }, + "2f2711b7cd724b62b52383790e9b574b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3eeb1ec92b0c4efc950afd1e74e97e92", + "placeholder": "​", + "style": "IPY_MODEL_3dfe60972562446ebbd8ae40ba8739ab", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 10800.57 examples/s]" + } + }, + "3dfe60972562446ebbd8ae40ba8739ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3eeb1ec92b0c4efc950afd1e74e97e92": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1655,25 +1681,30 @@ "width": null } }, - "d6b92e1715544df0b0b31a3a94252c8c": { + "8848dbbfcbf045679df9d89c70836a4a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0f0798a2e4a640ac99545cf963558f27", + "placeholder": "​", + "style": "IPY_MODEL_c9b8a16ab6a640cfb5e14a4149db48f6", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" } }, - "da5fe986bcdb4852ac566bbaf59cb904": { + "b46160578fbc44799b7d204bae66bd27": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1726,69 +1757,38 @@ "width": null } }, - "dc821216a67e4e6c80ace8231090cc4a": { + "c9b8a16ab6a640cfb5e14a4149db48f6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_823ca67b5e0e49f09b514568e2e12aab", - "placeholder": "​", - "style": "IPY_MODEL_fa7616d10c144385beb99d103d4f6b9a", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "ec4478ce6216448aab8dcd0968cc8ae8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dc821216a67e4e6c80ace8231090cc4a", - "IPY_MODEL_45847275cb1f439d90df3460f8f43a93", - "IPY_MODEL_01a68e5659354bf095b6a2d69b6ac1b0" - ], - "layout": "IPY_MODEL_ce7de2a02d0f4e09bbe38f0bf3338621", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fa7616d10c144385beb99d103d4f6b9a": { + "ca4222be103342b59c007fc2f0a1bb1c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index 65035ba49..98d493632 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:19.868241Z", - "iopub.status.busy": "2024-02-13T04:44:19.868060Z", - "iopub.status.idle": "2024-02-13T04:44:21.030937Z", - "shell.execute_reply": "2024-02-13T04:44:21.030373Z" + "iopub.execute_input": "2024-02-13T22:14:10.203367Z", + "iopub.status.busy": "2024-02-13T22:14:10.202904Z", + "iopub.status.idle": "2024-02-13T22:14:11.283912Z", + "shell.execute_reply": "2024-02-13T22:14:11.283377Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:21.033419Z", - "iopub.status.busy": "2024-02-13T04:44:21.033040Z", - "iopub.status.idle": "2024-02-13T04:44:21.036232Z", - "shell.execute_reply": "2024-02-13T04:44:21.035781Z" + "iopub.execute_input": "2024-02-13T22:14:11.286402Z", + "iopub.status.busy": "2024-02-13T22:14:11.286042Z", + "iopub.status.idle": "2024-02-13T22:14:11.289006Z", + "shell.execute_reply": "2024-02-13T22:14:11.288590Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:21.038412Z", - "iopub.status.busy": "2024-02-13T04:44:21.038139Z", - "iopub.status.idle": "2024-02-13T04:44:21.047212Z", - "shell.execute_reply": "2024-02-13T04:44:21.046723Z" + "iopub.execute_input": "2024-02-13T22:14:11.291148Z", + "iopub.status.busy": "2024-02-13T22:14:11.290842Z", + "iopub.status.idle": "2024-02-13T22:14:11.299505Z", + "shell.execute_reply": "2024-02-13T22:14:11.299075Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:21.049263Z", - "iopub.status.busy": "2024-02-13T04:44:21.048933Z", - "iopub.status.idle": "2024-02-13T04:44:21.053594Z", - "shell.execute_reply": "2024-02-13T04:44:21.053176Z" + "iopub.execute_input": "2024-02-13T22:14:11.301483Z", + "iopub.status.busy": "2024-02-13T22:14:11.301167Z", + "iopub.status.idle": "2024-02-13T22:14:11.305847Z", + "shell.execute_reply": "2024-02-13T22:14:11.305460Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:21.055733Z", - "iopub.status.busy": "2024-02-13T04:44:21.055402Z", - "iopub.status.idle": "2024-02-13T04:44:21.241590Z", - "shell.execute_reply": "2024-02-13T04:44:21.241041Z" + "iopub.execute_input": "2024-02-13T22:14:11.307920Z", + "iopub.status.busy": "2024-02-13T22:14:11.307553Z", + "iopub.status.idle": "2024-02-13T22:14:11.490421Z", + "shell.execute_reply": "2024-02-13T22:14:11.489836Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:21.244068Z", - "iopub.status.busy": "2024-02-13T04:44:21.243717Z", - "iopub.status.idle": "2024-02-13T04:44:21.623052Z", - "shell.execute_reply": "2024-02-13T04:44:21.622466Z" + "iopub.execute_input": "2024-02-13T22:14:11.492886Z", + "iopub.status.busy": "2024-02-13T22:14:11.492696Z", + "iopub.status.idle": "2024-02-13T22:14:11.857767Z", + "shell.execute_reply": "2024-02-13T22:14:11.857234Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:21.625480Z", - "iopub.status.busy": "2024-02-13T04:44:21.625115Z", - "iopub.status.idle": "2024-02-13T04:44:21.628101Z", - "shell.execute_reply": "2024-02-13T04:44:21.627543Z" + "iopub.execute_input": "2024-02-13T22:14:11.859858Z", + "iopub.status.busy": "2024-02-13T22:14:11.859680Z", + "iopub.status.idle": "2024-02-13T22:14:11.862323Z", + "shell.execute_reply": "2024-02-13T22:14:11.861909Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:21.630313Z", - "iopub.status.busy": "2024-02-13T04:44:21.629985Z", - "iopub.status.idle": "2024-02-13T04:44:21.666528Z", - "shell.execute_reply": "2024-02-13T04:44:21.665945Z" + "iopub.execute_input": "2024-02-13T22:14:11.864424Z", + "iopub.status.busy": "2024-02-13T22:14:11.864110Z", + "iopub.status.idle": "2024-02-13T22:14:11.899189Z", + "shell.execute_reply": "2024-02-13T22:14:11.898662Z" } }, "outputs": [ @@ -647,10 +647,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:21.668703Z", - "iopub.status.busy": "2024-02-13T04:44:21.668525Z", - "iopub.status.idle": "2024-02-13T04:44:23.400164Z", - "shell.execute_reply": "2024-02-13T04:44:23.399490Z" + "iopub.execute_input": "2024-02-13T22:14:11.901212Z", + "iopub.status.busy": "2024-02-13T22:14:11.900906Z", + "iopub.status.idle": "2024-02-13T22:14:13.544813Z", + "shell.execute_reply": "2024-02-13T22:14:13.544268Z" } }, "outputs": [ @@ -703,10 +703,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:23.402748Z", - "iopub.status.busy": "2024-02-13T04:44:23.402241Z", - "iopub.status.idle": "2024-02-13T04:44:23.421968Z", - "shell.execute_reply": "2024-02-13T04:44:23.421430Z" + "iopub.execute_input": "2024-02-13T22:14:13.547395Z", + "iopub.status.busy": "2024-02-13T22:14:13.546715Z", + "iopub.status.idle": "2024-02-13T22:14:13.565253Z", + "shell.execute_reply": "2024-02-13T22:14:13.564794Z" } }, "outputs": [ @@ -834,10 +834,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:23.423995Z", - "iopub.status.busy": "2024-02-13T04:44:23.423812Z", - "iopub.status.idle": "2024-02-13T04:44:23.430537Z", - "shell.execute_reply": "2024-02-13T04:44:23.430072Z" + "iopub.execute_input": "2024-02-13T22:14:13.567256Z", + "iopub.status.busy": "2024-02-13T22:14:13.566942Z", + "iopub.status.idle": "2024-02-13T22:14:13.572952Z", + "shell.execute_reply": "2024-02-13T22:14:13.572543Z" } }, "outputs": [ @@ -948,10 +948,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:23.432605Z", - "iopub.status.busy": "2024-02-13T04:44:23.432296Z", - "iopub.status.idle": "2024-02-13T04:44:23.438157Z", - "shell.execute_reply": "2024-02-13T04:44:23.437615Z" + "iopub.execute_input": "2024-02-13T22:14:13.574812Z", + "iopub.status.busy": "2024-02-13T22:14:13.574542Z", + "iopub.status.idle": "2024-02-13T22:14:13.580153Z", + "shell.execute_reply": "2024-02-13T22:14:13.579719Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:23.440228Z", - "iopub.status.busy": "2024-02-13T04:44:23.439931Z", - "iopub.status.idle": "2024-02-13T04:44:23.450317Z", - "shell.execute_reply": "2024-02-13T04:44:23.449760Z" + "iopub.execute_input": "2024-02-13T22:14:13.582126Z", + "iopub.status.busy": "2024-02-13T22:14:13.581818Z", + "iopub.status.idle": "2024-02-13T22:14:13.592065Z", + "shell.execute_reply": "2024-02-13T22:14:13.591635Z" } }, "outputs": [ @@ -1213,10 +1213,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:23.452537Z", - "iopub.status.busy": "2024-02-13T04:44:23.452222Z", - "iopub.status.idle": "2024-02-13T04:44:23.461629Z", - "shell.execute_reply": "2024-02-13T04:44:23.461075Z" + "iopub.execute_input": "2024-02-13T22:14:13.593920Z", + "iopub.status.busy": "2024-02-13T22:14:13.593624Z", + "iopub.status.idle": "2024-02-13T22:14:13.602221Z", + "shell.execute_reply": "2024-02-13T22:14:13.601713Z" } }, "outputs": [ @@ -1332,10 +1332,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:23.463774Z", - "iopub.status.busy": "2024-02-13T04:44:23.463472Z", - "iopub.status.idle": "2024-02-13T04:44:23.470491Z", - "shell.execute_reply": "2024-02-13T04:44:23.469952Z" + "iopub.execute_input": "2024-02-13T22:14:13.604288Z", + "iopub.status.busy": "2024-02-13T22:14:13.603887Z", + "iopub.status.idle": "2024-02-13T22:14:13.610558Z", + "shell.execute_reply": "2024-02-13T22:14:13.610031Z" }, "scrolled": true }, @@ -1460,10 +1460,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:23.472661Z", - "iopub.status.busy": "2024-02-13T04:44:23.472263Z", - "iopub.status.idle": "2024-02-13T04:44:23.481790Z", - "shell.execute_reply": "2024-02-13T04:44:23.481334Z" + "iopub.execute_input": "2024-02-13T22:14:13.612575Z", + "iopub.status.busy": "2024-02-13T22:14:13.612280Z", + "iopub.status.idle": "2024-02-13T22:14:13.621042Z", + "shell.execute_reply": "2024-02-13T22:14:13.620633Z" } }, "outputs": [ diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 36d1d5e6e..9d0048b50 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:26.273369Z", - "iopub.status.busy": "2024-02-13T04:44:26.272811Z", - "iopub.status.idle": "2024-02-13T04:44:27.373057Z", - "shell.execute_reply": "2024-02-13T04:44:27.372498Z" + "iopub.execute_input": "2024-02-13T22:14:16.280470Z", + "iopub.status.busy": "2024-02-13T22:14:16.280314Z", + "iopub.status.idle": "2024-02-13T22:14:17.343602Z", + "shell.execute_reply": "2024-02-13T22:14:17.343045Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:27.375664Z", - "iopub.status.busy": "2024-02-13T04:44:27.375204Z", - "iopub.status.idle": "2024-02-13T04:44:27.394553Z", - "shell.execute_reply": "2024-02-13T04:44:27.394053Z" + "iopub.execute_input": "2024-02-13T22:14:17.346499Z", + "iopub.status.busy": "2024-02-13T22:14:17.345891Z", + "iopub.status.idle": "2024-02-13T22:14:17.366385Z", + "shell.execute_reply": "2024-02-13T22:14:17.365896Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:27.396994Z", - "iopub.status.busy": "2024-02-13T04:44:27.396610Z", - "iopub.status.idle": "2024-02-13T04:44:27.684887Z", - "shell.execute_reply": "2024-02-13T04:44:27.684384Z" + "iopub.execute_input": "2024-02-13T22:14:17.368851Z", + "iopub.status.busy": "2024-02-13T22:14:17.368558Z", + "iopub.status.idle": "2024-02-13T22:14:17.562058Z", + "shell.execute_reply": "2024-02-13T22:14:17.561484Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:27.687113Z", - "iopub.status.busy": "2024-02-13T04:44:27.686745Z", - "iopub.status.idle": "2024-02-13T04:44:27.690282Z", - "shell.execute_reply": "2024-02-13T04:44:27.689819Z" + "iopub.execute_input": "2024-02-13T22:14:17.564103Z", + "iopub.status.busy": "2024-02-13T22:14:17.563905Z", + "iopub.status.idle": "2024-02-13T22:14:17.567668Z", + "shell.execute_reply": "2024-02-13T22:14:17.567236Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:27.692295Z", - "iopub.status.busy": "2024-02-13T04:44:27.691964Z", - "iopub.status.idle": "2024-02-13T04:44:27.699797Z", - "shell.execute_reply": "2024-02-13T04:44:27.699336Z" + "iopub.execute_input": "2024-02-13T22:14:17.569785Z", + "iopub.status.busy": "2024-02-13T22:14:17.569416Z", + "iopub.status.idle": "2024-02-13T22:14:17.577706Z", + "shell.execute_reply": "2024-02-13T22:14:17.577101Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:27.701832Z", - "iopub.status.busy": "2024-02-13T04:44:27.701506Z", - "iopub.status.idle": "2024-02-13T04:44:27.703987Z", - "shell.execute_reply": "2024-02-13T04:44:27.703543Z" + "iopub.execute_input": "2024-02-13T22:14:17.580331Z", + "iopub.status.busy": "2024-02-13T22:14:17.579972Z", + "iopub.status.idle": "2024-02-13T22:14:17.582660Z", + "shell.execute_reply": "2024-02-13T22:14:17.582208Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:27.705974Z", - "iopub.status.busy": "2024-02-13T04:44:27.705639Z", - "iopub.status.idle": "2024-02-13T04:44:30.719784Z", - "shell.execute_reply": "2024-02-13T04:44:30.719244Z" + "iopub.execute_input": "2024-02-13T22:14:17.584677Z", + "iopub.status.busy": "2024-02-13T22:14:17.584374Z", + "iopub.status.idle": "2024-02-13T22:14:20.561628Z", + "shell.execute_reply": "2024-02-13T22:14:20.561074Z" } }, "outputs": [], @@ -402,10 +402,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:30.722615Z", - "iopub.status.busy": "2024-02-13T04:44:30.722225Z", - "iopub.status.idle": "2024-02-13T04:44:30.732232Z", - "shell.execute_reply": "2024-02-13T04:44:30.731772Z" + "iopub.execute_input": "2024-02-13T22:14:20.564234Z", + "iopub.status.busy": "2024-02-13T22:14:20.563839Z", + "iopub.status.idle": "2024-02-13T22:14:20.573731Z", + "shell.execute_reply": "2024-02-13T22:14:20.573283Z" } }, "outputs": [], @@ -437,10 +437,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:30.734440Z", - "iopub.status.busy": "2024-02-13T04:44:30.734102Z", - "iopub.status.idle": "2024-02-13T04:44:32.611906Z", - "shell.execute_reply": "2024-02-13T04:44:32.611293Z" + "iopub.execute_input": "2024-02-13T22:14:20.575706Z", + "iopub.status.busy": "2024-02-13T22:14:20.575532Z", + "iopub.status.idle": "2024-02-13T22:14:22.290155Z", + "shell.execute_reply": "2024-02-13T22:14:22.289550Z" } }, "outputs": [ @@ -477,10 +477,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:32.616276Z", - "iopub.status.busy": "2024-02-13T04:44:32.614962Z", - "iopub.status.idle": "2024-02-13T04:44:32.641210Z", - "shell.execute_reply": "2024-02-13T04:44:32.640686Z" + "iopub.execute_input": "2024-02-13T22:14:22.293189Z", + "iopub.status.busy": "2024-02-13T22:14:22.292444Z", + "iopub.status.idle": "2024-02-13T22:14:22.315043Z", + "shell.execute_reply": "2024-02-13T22:14:22.314542Z" }, "scrolled": true }, @@ -605,10 +605,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:32.644981Z", - "iopub.status.busy": "2024-02-13T04:44:32.644058Z", - "iopub.status.idle": "2024-02-13T04:44:32.656244Z", - "shell.execute_reply": "2024-02-13T04:44:32.655720Z" + "iopub.execute_input": "2024-02-13T22:14:22.317408Z", + "iopub.status.busy": "2024-02-13T22:14:22.317049Z", + "iopub.status.idle": "2024-02-13T22:14:22.325952Z", + "shell.execute_reply": "2024-02-13T22:14:22.325496Z" } }, "outputs": [ @@ -712,10 +712,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:32.660001Z", - "iopub.status.busy": "2024-02-13T04:44:32.659066Z", - "iopub.status.idle": "2024-02-13T04:44:32.674400Z", - "shell.execute_reply": "2024-02-13T04:44:32.673871Z" + "iopub.execute_input": "2024-02-13T22:14:22.329007Z", + "iopub.status.busy": "2024-02-13T22:14:22.328101Z", + "iopub.status.idle": "2024-02-13T22:14:22.342641Z", + "shell.execute_reply": "2024-02-13T22:14:22.342136Z" } }, "outputs": [ @@ -844,10 +844,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:32.678192Z", - "iopub.status.busy": "2024-02-13T04:44:32.677252Z", - "iopub.status.idle": "2024-02-13T04:44:32.687435Z", - "shell.execute_reply": "2024-02-13T04:44:32.686875Z" + "iopub.execute_input": "2024-02-13T22:14:22.346214Z", + "iopub.status.busy": "2024-02-13T22:14:22.345307Z", + "iopub.status.idle": "2024-02-13T22:14:22.356416Z", + "shell.execute_reply": "2024-02-13T22:14:22.355954Z" } }, "outputs": [ @@ -961,10 +961,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:32.689734Z", - "iopub.status.busy": "2024-02-13T04:44:32.689547Z", - "iopub.status.idle": "2024-02-13T04:44:32.699719Z", - "shell.execute_reply": "2024-02-13T04:44:32.699146Z" + "iopub.execute_input": "2024-02-13T22:14:22.359818Z", + "iopub.status.busy": "2024-02-13T22:14:22.358924Z", + "iopub.status.idle": "2024-02-13T22:14:22.368271Z", + "shell.execute_reply": "2024-02-13T22:14:22.367803Z" } }, "outputs": [ @@ -1075,10 +1075,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:32.701939Z", - "iopub.status.busy": "2024-02-13T04:44:32.701516Z", - "iopub.status.idle": "2024-02-13T04:44:32.708434Z", - "shell.execute_reply": "2024-02-13T04:44:32.707886Z" + "iopub.execute_input": "2024-02-13T22:14:22.370127Z", + "iopub.status.busy": "2024-02-13T22:14:22.369848Z", + "iopub.status.idle": "2024-02-13T22:14:22.375961Z", + "shell.execute_reply": "2024-02-13T22:14:22.375491Z" } }, "outputs": [ @@ -1162,10 +1162,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:32.710582Z", - "iopub.status.busy": "2024-02-13T04:44:32.710239Z", - "iopub.status.idle": "2024-02-13T04:44:32.717503Z", - "shell.execute_reply": "2024-02-13T04:44:32.717038Z" + "iopub.execute_input": "2024-02-13T22:14:22.377871Z", + "iopub.status.busy": "2024-02-13T22:14:22.377572Z", + "iopub.status.idle": "2024-02-13T22:14:22.383635Z", + "shell.execute_reply": "2024-02-13T22:14:22.383152Z" } }, "outputs": [ @@ -1258,10 +1258,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:32.719761Z", - "iopub.status.busy": "2024-02-13T04:44:32.719450Z", - "iopub.status.idle": "2024-02-13T04:44:32.726548Z", - "shell.execute_reply": "2024-02-13T04:44:32.725956Z" + "iopub.execute_input": "2024-02-13T22:14:22.385586Z", + "iopub.status.busy": "2024-02-13T22:14:22.385288Z", + "iopub.status.idle": "2024-02-13T22:14:22.392056Z", + "shell.execute_reply": "2024-02-13T22:14:22.391395Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 90c344319..03e72b9f1 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:35.587485Z", - "iopub.status.busy": "2024-02-13T04:44:35.587316Z", - "iopub.status.idle": "2024-02-13T04:44:38.790121Z", - "shell.execute_reply": "2024-02-13T04:44:38.789463Z" + "iopub.execute_input": "2024-02-13T22:14:25.088197Z", + "iopub.status.busy": "2024-02-13T22:14:25.087736Z", + "iopub.status.idle": "2024-02-13T22:14:27.873932Z", + "shell.execute_reply": "2024-02-13T22:14:27.873308Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:38.793037Z", - "iopub.status.busy": "2024-02-13T04:44:38.792411Z", - "iopub.status.idle": "2024-02-13T04:44:38.795890Z", - "shell.execute_reply": "2024-02-13T04:44:38.795469Z" + "iopub.execute_input": "2024-02-13T22:14:27.876612Z", + "iopub.status.busy": "2024-02-13T22:14:27.876313Z", + "iopub.status.idle": "2024-02-13T22:14:27.879559Z", + "shell.execute_reply": "2024-02-13T22:14:27.879117Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:38.797766Z", - "iopub.status.busy": "2024-02-13T04:44:38.797587Z", - "iopub.status.idle": "2024-02-13T04:44:38.801104Z", - "shell.execute_reply": "2024-02-13T04:44:38.800689Z" + "iopub.execute_input": "2024-02-13T22:14:27.881496Z", + "iopub.status.busy": "2024-02-13T22:14:27.881157Z", + "iopub.status.idle": "2024-02-13T22:14:27.884163Z", + "shell.execute_reply": "2024-02-13T22:14:27.883740Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:38.802976Z", - "iopub.status.busy": "2024-02-13T04:44:38.802800Z", - "iopub.status.idle": "2024-02-13T04:44:38.957294Z", - "shell.execute_reply": "2024-02-13T04:44:38.956789Z" + "iopub.execute_input": "2024-02-13T22:14:27.886084Z", + "iopub.status.busy": "2024-02-13T22:14:27.885757Z", + "iopub.status.idle": "2024-02-13T22:14:27.941089Z", + "shell.execute_reply": "2024-02-13T22:14:27.940624Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:38.959359Z", - "iopub.status.busy": "2024-02-13T04:44:38.959171Z", - "iopub.status.idle": "2024-02-13T04:44:38.963120Z", - "shell.execute_reply": "2024-02-13T04:44:38.962610Z" + "iopub.execute_input": "2024-02-13T22:14:27.942931Z", + "iopub.status.busy": "2024-02-13T22:14:27.942726Z", + "iopub.status.idle": "2024-02-13T22:14:27.946875Z", + "shell.execute_reply": "2024-02-13T22:14:27.946403Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_payment_fee_charged', 'card_about_to_expire', 'beneficiary_not_allowed', 'getting_spare_card', 'lost_or_stolen_phone', 'cancel_transfer', 'visa_or_mastercard', 'supported_cards_and_currencies', 'change_pin', 'apple_pay_or_google_pay'}\n" + "Classes: {'change_pin', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'card_about_to_expire', 'lost_or_stolen_phone', 'visa_or_mastercard', 'getting_spare_card', 'cancel_transfer', 'card_payment_fee_charged'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:38.965076Z", - "iopub.status.busy": "2024-02-13T04:44:38.964771Z", - "iopub.status.idle": "2024-02-13T04:44:38.968020Z", - "shell.execute_reply": "2024-02-13T04:44:38.967566Z" + "iopub.execute_input": "2024-02-13T22:14:27.948829Z", + "iopub.status.busy": "2024-02-13T22:14:27.948487Z", + "iopub.status.idle": "2024-02-13T22:14:27.951413Z", + "shell.execute_reply": "2024-02-13T22:14:27.950900Z" } }, "outputs": [ @@ -365,17 +365,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:38.970166Z", - "iopub.status.busy": "2024-02-13T04:44:38.969728Z", - "iopub.status.idle": "2024-02-13T04:44:44.619483Z", - "shell.execute_reply": "2024-02-13T04:44:44.618961Z" + "iopub.execute_input": "2024-02-13T22:14:27.953431Z", + "iopub.status.busy": "2024-02-13T22:14:27.953137Z", + "iopub.status.idle": "2024-02-13T22:14:32.416923Z", + "shell.execute_reply": "2024-02-13T22:14:32.416394Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b8aca08a689948288df537af46a20d0d", + "model_id": "c774b0a4c9304d858771c224f32cfc90", "version_major": 2, "version_minor": 0 }, @@ -389,7 +389,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b5f3627421dc44c7940e67df11755b0e", + "model_id": "ae265ce8d29d4bcfad6809b750ee2c45", "version_major": 2, "version_minor": 0 }, @@ -403,7 +403,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "153a1ac8d73a41a785a3357f72d1a465", + "model_id": "d8ae9174c21a43f485031d7cf98ff879", "version_major": 2, "version_minor": 0 }, @@ -417,7 +417,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "32d515c7b291422b9c81213cffea15bb", + "model_id": "df6b06df51354a549bc7969f13ec0440", "version_major": 2, "version_minor": 0 }, @@ -431,7 +431,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8962cfc9352b46d9b5a079451feb0ac2", + "model_id": "77ecc08db5ff4962af6a0cef4d1dee71", "version_major": 2, "version_minor": 0 }, @@ -445,7 +445,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2f34745861044a05a1f9adc4802a31c9", + "model_id": "9ade5ca6a7704ccfba3391c5a1602b5f", "version_major": 2, "version_minor": 0 }, @@ -459,7 +459,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "098c04af504c4bd4b885ac1d1c54200c", + "model_id": "2dba66fd0fa34b4ab51b3dad76e0a5e6", "version_major": 2, "version_minor": 0 }, @@ -522,10 +522,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:44.622143Z", - "iopub.status.busy": "2024-02-13T04:44:44.621741Z", - "iopub.status.idle": "2024-02-13T04:44:45.506361Z", - "shell.execute_reply": "2024-02-13T04:44:45.505735Z" + "iopub.execute_input": "2024-02-13T22:14:32.419976Z", + "iopub.status.busy": "2024-02-13T22:14:32.419479Z", + "iopub.status.idle": "2024-02-13T22:14:33.305993Z", + "shell.execute_reply": "2024-02-13T22:14:33.305392Z" }, "scrolled": true }, @@ -557,10 +557,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:45.509245Z", - "iopub.status.busy": "2024-02-13T04:44:45.508863Z", - "iopub.status.idle": "2024-02-13T04:44:45.511931Z", - "shell.execute_reply": "2024-02-13T04:44:45.511453Z" + "iopub.execute_input": "2024-02-13T22:14:33.309152Z", + "iopub.status.busy": "2024-02-13T22:14:33.308748Z", + "iopub.status.idle": "2024-02-13T22:14:33.311716Z", + "shell.execute_reply": "2024-02-13T22:14:33.311221Z" } }, "outputs": [], @@ -580,10 +580,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:45.514298Z", - "iopub.status.busy": "2024-02-13T04:44:45.513897Z", - "iopub.status.idle": "2024-02-13T04:44:47.125855Z", - "shell.execute_reply": "2024-02-13T04:44:47.125224Z" + "iopub.execute_input": "2024-02-13T22:14:33.314202Z", + "iopub.status.busy": "2024-02-13T22:14:33.313835Z", + "iopub.status.idle": "2024-02-13T22:14:34.897186Z", + "shell.execute_reply": "2024-02-13T22:14:34.896520Z" }, "scrolled": true }, @@ -628,10 +628,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:47.130313Z", - "iopub.status.busy": "2024-02-13T04:44:47.128934Z", - "iopub.status.idle": "2024-02-13T04:44:47.155939Z", - "shell.execute_reply": "2024-02-13T04:44:47.155422Z" + "iopub.execute_input": "2024-02-13T22:14:34.900389Z", + "iopub.status.busy": "2024-02-13T22:14:34.899543Z", + "iopub.status.idle": "2024-02-13T22:14:34.923503Z", + "shell.execute_reply": "2024-02-13T22:14:34.922988Z" }, "scrolled": true }, @@ -756,10 +756,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:47.159643Z", - "iopub.status.busy": "2024-02-13T04:44:47.158717Z", - "iopub.status.idle": "2024-02-13T04:44:47.169220Z", - "shell.execute_reply": "2024-02-13T04:44:47.168804Z" + "iopub.execute_input": "2024-02-13T22:14:34.926971Z", + "iopub.status.busy": "2024-02-13T22:14:34.926037Z", + "iopub.status.idle": "2024-02-13T22:14:34.937657Z", + "shell.execute_reply": "2024-02-13T22:14:34.937110Z" }, "scrolled": true }, @@ -869,10 +869,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:47.171614Z", - "iopub.status.busy": "2024-02-13T04:44:47.171424Z", - "iopub.status.idle": "2024-02-13T04:44:47.176071Z", - "shell.execute_reply": "2024-02-13T04:44:47.175609Z" + "iopub.execute_input": "2024-02-13T22:14:34.939793Z", + "iopub.status.busy": "2024-02-13T22:14:34.939621Z", + "iopub.status.idle": "2024-02-13T22:14:34.944622Z", + "shell.execute_reply": "2024-02-13T22:14:34.944063Z" } }, "outputs": [ @@ -910,10 +910,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:47.178175Z", - "iopub.status.busy": "2024-02-13T04:44:47.177821Z", - "iopub.status.idle": "2024-02-13T04:44:47.184818Z", - "shell.execute_reply": "2024-02-13T04:44:47.184293Z" + "iopub.execute_input": "2024-02-13T22:14:34.946691Z", + "iopub.status.busy": "2024-02-13T22:14:34.946513Z", + "iopub.status.idle": "2024-02-13T22:14:34.954229Z", + "shell.execute_reply": "2024-02-13T22:14:34.953689Z" } }, "outputs": [ @@ -1030,10 +1030,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:47.187068Z", - "iopub.status.busy": "2024-02-13T04:44:47.186732Z", - "iopub.status.idle": "2024-02-13T04:44:47.193939Z", - "shell.execute_reply": "2024-02-13T04:44:47.193368Z" + "iopub.execute_input": "2024-02-13T22:14:34.956382Z", + "iopub.status.busy": "2024-02-13T22:14:34.956215Z", + "iopub.status.idle": "2024-02-13T22:14:34.962391Z", + "shell.execute_reply": "2024-02-13T22:14:34.961864Z" } }, "outputs": [ @@ -1116,10 +1116,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:47.195949Z", - "iopub.status.busy": "2024-02-13T04:44:47.195749Z", - "iopub.status.idle": "2024-02-13T04:44:47.202086Z", - "shell.execute_reply": "2024-02-13T04:44:47.201620Z" + "iopub.execute_input": "2024-02-13T22:14:34.964293Z", + "iopub.status.busy": "2024-02-13T22:14:34.963934Z", + "iopub.status.idle": "2024-02-13T22:14:34.969863Z", + "shell.execute_reply": "2024-02-13T22:14:34.969376Z" } }, "outputs": [ @@ -1227,10 +1227,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:47.204103Z", - "iopub.status.busy": "2024-02-13T04:44:47.203915Z", - "iopub.status.idle": "2024-02-13T04:44:47.213213Z", - "shell.execute_reply": "2024-02-13T04:44:47.212661Z" + "iopub.execute_input": "2024-02-13T22:14:34.972026Z", + "iopub.status.busy": "2024-02-13T22:14:34.971669Z", + "iopub.status.idle": "2024-02-13T22:14:34.981277Z", + "shell.execute_reply": "2024-02-13T22:14:34.980745Z" } }, "outputs": [ @@ -1341,10 +1341,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:47.215349Z", - "iopub.status.busy": "2024-02-13T04:44:47.215055Z", - "iopub.status.idle": "2024-02-13T04:44:47.220530Z", - "shell.execute_reply": "2024-02-13T04:44:47.220006Z" + "iopub.execute_input": "2024-02-13T22:14:34.983251Z", + "iopub.status.busy": "2024-02-13T22:14:34.982930Z", + "iopub.status.idle": "2024-02-13T22:14:34.988301Z", + "shell.execute_reply": "2024-02-13T22:14:34.987778Z" } }, "outputs": [ @@ -1412,10 +1412,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:47.222430Z", - "iopub.status.busy": "2024-02-13T04:44:47.222234Z", - "iopub.status.idle": "2024-02-13T04:44:47.227796Z", - "shell.execute_reply": "2024-02-13T04:44:47.227359Z" + "iopub.execute_input": "2024-02-13T22:14:34.990404Z", + "iopub.status.busy": "2024-02-13T22:14:34.990002Z", + "iopub.status.idle": "2024-02-13T22:14:34.995466Z", + "shell.execute_reply": "2024-02-13T22:14:34.994952Z" } }, "outputs": [ @@ -1494,10 +1494,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:47.229757Z", - "iopub.status.busy": "2024-02-13T04:44:47.229581Z", - "iopub.status.idle": "2024-02-13T04:44:47.233092Z", - "shell.execute_reply": "2024-02-13T04:44:47.232585Z" + "iopub.execute_input": "2024-02-13T22:14:34.997306Z", + "iopub.status.busy": "2024-02-13T22:14:34.997136Z", + "iopub.status.idle": "2024-02-13T22:14:35.000688Z", + "shell.execute_reply": "2024-02-13T22:14:35.000270Z" } }, "outputs": [ @@ -1545,10 +1545,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:47.235064Z", - "iopub.status.busy": "2024-02-13T04:44:47.234887Z", - "iopub.status.idle": "2024-02-13T04:44:47.240251Z", - "shell.execute_reply": "2024-02-13T04:44:47.239806Z" + "iopub.execute_input": "2024-02-13T22:14:35.002506Z", + "iopub.status.busy": "2024-02-13T22:14:35.002339Z", + "iopub.status.idle": "2024-02-13T22:14:35.007443Z", + "shell.execute_reply": "2024-02-13T22:14:35.007005Z" }, "nbsphinx": "hidden" }, @@ -1598,78 +1598,82 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "026c86bd27bc4dc19fe1c1c899c5be5a": { + "004e35506c914146b2dcf454f74a3e24": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_380dab02042c4154b2f4bc8dc6fe45f4", - "placeholder": "​", - "style": "IPY_MODEL_4cd20d813b4a44439e1517d4f6298fae", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 438kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "098c04af504c4bd4b885ac1d1c54200c": { + "00a591d326424fd6bd0da30dda6c5477": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e53a8a3e93694038864ad173e124c15e", - "IPY_MODEL_604ed7aeaeb5488499fe94c393bdd4c1", - "IPY_MODEL_7d97bd733a094ef3a54a87ef3f6cbfa1" - ], - "layout": "IPY_MODEL_b296a9815f794ec4a79f36e7b1d7418b", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "153a1ac8d73a41a785a3357f72d1a465": { + "040a9bc4b9a14be49ae89e3aff35066a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "07da339453c64bfc8853cfc5a26b9fc4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a467a3d21d644c8a8cb5d2a51c4af8bb", - "IPY_MODEL_c1d703995efb45c59fe8187aa38dfe1e", - "IPY_MODEL_551cab051e954363b445219b54b4a82e" - ], - "layout": "IPY_MODEL_e6d76c5d9b3640318e146d24ecec87b1", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c92bf1ae16c34e00a2919210d6014be8", + "placeholder": "​", + "style": "IPY_MODEL_c041908be7824bfb930efbdb18f0ec31", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "config.json: 100%" } }, - "15afe00105bf47db9b97adcf1c436ee7": { + "0e89bdd71ac249ef9c05731d37d352a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1722,129 +1726,161 @@ "width": null } }, - "1727c7a41a694f45ac62fff0d829ff8e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1885555b3b2e48f0bdf9397ee4081b75": { + "189041b1c68746b1a19cf8426e5090b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_380e1b8bf3634823a29680d0391de60c", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7ddd9eba8bb54c8d9caa9593184987b3", + "tabbable": null, + "tooltip": null, + "value": 231508.0 } }, - "268ca702d4f84196969873fda356eeab": { + "229d0872e3114208bcefaccff0f1da25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8c48c2b3b0a949ef9b7c5839328974e1", - "placeholder": "​", - "style": "IPY_MODEL_8c2d5720e59246d5a9e9d93589c7b805", + "layout": "IPY_MODEL_6e47810532df438bbec3c4c80c02e128", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7c5057f4e4164d3dbd67e0e62a0c91e2", "tabbable": null, "tooltip": null, - "value": ".gitattributes: 100%" + "value": 466062.0 } }, - "26a4108d0a21425a898ddfd5b803852c": { + "26617234c504442bacacf57fbe4be7fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d72ada4ba08b4449b815e9377f2936a3", - "placeholder": "​", - "style": "IPY_MODEL_d8867a17cbe8440d9b839dc8b2b35fe4", + "layout": "IPY_MODEL_a13dc179f85048259b11ac8c0d03aaa5", + "max": 29.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f0fa797f4f524706bb8328e76ad3a369", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" + "value": 29.0 } }, - "29890d4ea74c4395ad3d63d174a7b583": { - "model_module": "@jupyter-widgets/controls", + "2d15a96321e54bbab2ae84509381ccb5": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2f34745861044a05a1f9adc4802a31c9": { + "2d3079bc733a4c09bef12c577e5c901d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f08c3222f2084fef82c013488604cc71", - "IPY_MODEL_f63b809522104f858ff960be5f3d1af7", - "IPY_MODEL_f7833e195f59434491c8c93292c51528" - ], - "layout": "IPY_MODEL_ae778c6b041b42df8bafadc6b43c29c6", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d550e2a7f246407697728e8a11999345", + "placeholder": "​", + "style": "IPY_MODEL_9bbb5bda5c3640988e6c0394ede429e9", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 422kB/s]" } }, - "32d515c7b291422b9c81213cffea15bb": { + "2dba66fd0fa34b4ab51b3dad76e0a5e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1859,34 +1895,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_deba86ef119f4f98a414d1aff29f05ad", - "IPY_MODEL_e42c09e35fa746b8aae318021abc013f", - "IPY_MODEL_9d84d3180c734a00960557f4298230f7" + "IPY_MODEL_56b7c6565e5d4d29b7a9e86840c87abf", + "IPY_MODEL_189041b1c68746b1a19cf8426e5090b0", + "IPY_MODEL_fb639536293a447bb6afca22f8941b25" ], - "layout": "IPY_MODEL_6dcf92a711aa477fa345f38d22b11eb7", + "layout": "IPY_MODEL_4772d903a97b4e3b8900574edcbe22ea", "tabbable": null, "tooltip": null } }, - "32e4d385aef64a499f934438ab665f7f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "380dab02042c4154b2f4bc8dc6fe45f4": { + "380e1b8bf3634823a29680d0391de60c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1939,23 +1957,25 @@ "width": null } }, - "3c4ded2052984f24bbf90c129cc27cd1": { + "3f5a64a3138a4115ba9fa2242e607d84": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "41fedb1a22ac411e8e3c2ddcf3cc58a4": { + "4772d903a97b4e3b8900574edcbe22ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2008,7 +2028,7 @@ "width": null } }, - "43983a81175146b2aad954ac078bd203": { + "4cba3f7f4b3345dfb512e202293e692e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2061,7 +2081,25 @@ "width": null } }, - "44adf0c5b49e432ba2974f5696969c24": { + "4d70d50b9bce40e3b6b3dd5c84bcc57d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4de6ea8ae0814482aadf0d4ee94013e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2114,7 +2152,7 @@ "width": null } }, - "4849bee0d66e4d93987c457533684d8b": { + "56b7c6565e5d4d29b7a9e86840c87abf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2129,40 +2167,22 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7b96967cf7ec4340895a7fd2e487f570", + "layout": "IPY_MODEL_5779b9664a5e4ca387447b066c31056c", "placeholder": "​", - "style": "IPY_MODEL_7c5990b5f579419b93b78a798bf1fdf5", + "style": "IPY_MODEL_6e05a331db94429d8e2db32a8db6627c", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 3.55MB/s]" + "value": "vocab.txt: 100%" } }, - "4cd20d813b4a44439e1517d4f6298fae": { - "model_module": "@jupyter-widgets/controls", + "5779b9664a5e4ca387447b066c31056c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4f2c873fd50f47d1a8e099a756853947": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -2208,7 +2228,7 @@ "width": null } }, - "506c51e355024187b3a287a87dec2293": { + "6cdd3b62c14840feb984a042b353b614": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2261,30 +2281,7 @@ "width": null } }, - "551cab051e954363b445219b54b4a82e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_be48061ec2fa4646a767f45be6ce1d71", - "placeholder": "​", - "style": "IPY_MODEL_f95ac1ecf08343c8ad79b513f3bdfbc8", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 118kB/s]" - } - }, - "58f206c1549e464fa27a324083aedb45": { + "6e05a331db94429d8e2db32a8db6627c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2302,49 +2299,7 @@ "text_color": null } }, - "5efa6aab876847adab817e3c52c4a44f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "604ed7aeaeb5488499fe94c393bdd4c1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_506c51e355024187b3a287a87dec2293", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3c4ded2052984f24bbf90c129cc27cd1", - "tabbable": null, - "tooltip": null, - "value": 231508.0 - } - }, - "6b7a91ff0de44af697098734690996db": { + "6e47810532df438bbec3c4c80c02e128": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2397,7 +2352,7 @@ "width": null } }, - "6dcf92a711aa477fa345f38d22b11eb7": { + "733f6038da08467ab4f0b6f5458e2098": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2450,49 +2405,31 @@ "width": null } }, - "763a148dcef24efd8ff547aaa7e5e80f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7a4e43e813134c82a7cdb21b62a0821a": { + "77ecc08db5ff4962af6a0cef4d1dee71": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9cfd628438b8431baf0f89e8de6c796e", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_763a148dcef24efd8ff547aaa7e5e80f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f165e76991f34ad3973995e735ec96e1", + "IPY_MODEL_229d0872e3114208bcefaccff0f1da25", + "IPY_MODEL_95e6925056894e6baf091e4f2c74e901" + ], + "layout": "IPY_MODEL_fa7f56ece0f44256877874ff1fdc8e80", "tabbable": null, - "tooltip": null, - "value": 2211.0 + "tooltip": null } }, - "7b96967cf7ec4340895a7fd2e487f570": { + "7aa6393552e340e4bc37ce137afe9421": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2545,7 +2482,80 @@ "width": null } }, - "7bc01c1845664080bd60249dcaacb6d6": { + "7c5057f4e4164d3dbd67e0e62a0c91e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7c5b24ef952a44cda7b7f452ffaa53e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7ddd9eba8bb54c8d9caa9593184987b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7f9c8d7eeea74d818ecca31f9c50581a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f232ca97006549ac890517d43be9e563", + "placeholder": "​", + "style": "IPY_MODEL_bb149c09340e4fdfbabd2fc31512e719", + "tabbable": null, + "tooltip": null, + "value": " 29.0/29.0 [00:00<00:00, 5.50kB/s]" + } + }, + "821720644f8e4e90b7acf56f70757db2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2598,7 +2608,7 @@ "width": null } }, - "7c5990b5f579419b93b78a798bf1fdf5": { + "85723554378142bf8814de7943aa272e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2616,30 +2626,23 @@ "text_color": null } }, - "7cbb8a32232646a791c02fb18484eec2": { + "87b5d7f8f8de42f7aaaaa5885df9aaa3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7bc01c1845664080bd60249dcaacb6d6", - "placeholder": "​", - "style": "IPY_MODEL_9990fe4a1879453d8594922bec6ab6f8", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "7d97bd733a094ef3a54a87ef3f6cbfa1": { + "8805b3cbdfab4f4eb96a91dca63a53cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2654,15 +2657,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a99c3e54d657455e96140e2f71fb2445", + "layout": "IPY_MODEL_6cdd3b62c14840feb984a042b353b614", "placeholder": "​", - "style": "IPY_MODEL_58f206c1549e464fa27a324083aedb45", + "style": "IPY_MODEL_00a591d326424fd6bd0da30dda6c5477", "tabbable": null, "tooltip": null, - "value": " 232k/232k [00:00<00:00, 1.96MB/s]" + "value": "README.md: 100%" } }, - "82eeb2156bc44cd290eba8e31b90ba33": { + "88af6f8b8e204fe08898c7af371b3599": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2715,31 +2718,23 @@ "width": null } }, - "8962cfc9352b46d9b5a079451feb0ac2": { + "897280dc42c243a7aab7a7cff0648bf7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_26a4108d0a21425a898ddfd5b803852c", - "IPY_MODEL_a031e5ee5bb54d308ffe1f286fe8c8dd", - "IPY_MODEL_4849bee0d66e4d93987c457533684d8b" - ], - "layout": "IPY_MODEL_44adf0c5b49e432ba2974f5696969c24", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8974f699d1cf43319700b49e192c8805": { + "9384a143b5c24bf48aae5f78de633087": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2792,23 +2787,30 @@ "width": null } }, - "8c0282313bbb46fe8f57d0f1f8f3af9b": { + "95e6925056894e6baf091e4f2c74e901": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2d15a96321e54bbab2ae84509381ccb5", + "placeholder": "​", + "style": "IPY_MODEL_4d70d50b9bce40e3b6b3dd5c84bcc57d", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 33.5MB/s]" } }, - "8c2d5720e59246d5a9e9d93589c7b805": { + "95e97a7e02cc4c3d8954168c0a66c0fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2826,7 +2828,7 @@ "text_color": null } }, - "8c48c2b3b0a949ef9b7c5839328974e1": { + "9903c55df2c64113807587d41e300592": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2879,7 +2881,49 @@ "width": null } }, - "8e0aed21c29540119c6e3270eebbf80e": { + "9ade5ca6a7704ccfba3391c5a1602b5f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dea3c770da2545548a1084087655b211", + "IPY_MODEL_26617234c504442bacacf57fbe4be7fc", + "IPY_MODEL_7f9c8d7eeea74d818ecca31f9c50581a" + ], + "layout": "IPY_MODEL_c5b41331c0db440997248fe6747bad65", + "tabbable": null, + "tooltip": null + } + }, + "9bbb5bda5c3640988e6c0394ede429e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9c7e6a4546a9486082897ba5e7da0c1a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2932,41 +2976,60 @@ "width": null } }, - "9332f2ae63884d799895fbe296a11069": { - "model_module": "@jupyter-widgets/controls", + "a13dc179f85048259b11ac8c0d03aaa5": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9990fe4a1879453d8594922bec6ab6f8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "9cfd628438b8431baf0f89e8de6c796e": { + "a41798e90bd041fcbdb6c53ef25187b8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3019,7 +3082,114 @@ "width": null } }, - "9d84d3180c734a00960557f4298230f7": { + "a72e2b8a666c4e79b500c8347cbc2f3f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4cba3f7f4b3345dfb512e202293e692e", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ad360f1cf7684a6290585447e8a982bb", + "tabbable": null, + "tooltip": null, + "value": 665.0 + } + }, + "ad360f1cf7684a6290585447e8a982bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ae265ce8d29d4bcfad6809b750ee2c45": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8805b3cbdfab4f4eb96a91dca63a53cb", + "IPY_MODEL_f3ca2c6a05ee4139af28f65b0eeb1ae8", + "IPY_MODEL_2d3079bc733a4c09bef12c577e5c901d" + ], + "layout": "IPY_MODEL_9c7e6a4546a9486082897ba5e7da0c1a", + "tabbable": null, + "tooltip": null + } + }, + "b7026c968c734e77865783f711c15b1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_733f6038da08467ab4f0b6f5458e2098", + "placeholder": "​", + "style": "IPY_MODEL_c089b9f67bcf46968bfcd8824e1a53a2", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 127kB/s]" + } + }, + "bb149c09340e4fdfbabd2fc31512e719": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bb42cb58ee564c87b7116aa796f9627b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3034,15 +3204,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f47f59d7a4e04cac9f32b03e0904f84f", + "layout": "IPY_MODEL_7aa6393552e340e4bc37ce137afe9421", "placeholder": "​", - "style": "IPY_MODEL_ab33a926066f434f91e75e8517475480", + "style": "IPY_MODEL_3f5a64a3138a4115ba9fa2242e607d84", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 131MB/s]" + "value": " 391/391 [00:00<00:00, 65.4kB/s]" } }, - "a031e5ee5bb54d308ffe1f286fe8c8dd": { + "bef8a949bb824fe28ac968a4d077ee09": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3058,17 +3228,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4f2c873fd50f47d1a8e099a756853947", - "max": 466062.0, + "layout": "IPY_MODEL_88af6f8b8e204fe08898c7af371b3599", + "max": 54245363.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_8c0282313bbb46fe8f57d0f1f8f3af9b", + "style": "IPY_MODEL_040a9bc4b9a14be49ae89e3aff35066a", "tabbable": null, "tooltip": null, - "value": 466062.0 + "value": 54245363.0 } }, - "a21b5d2d6ef849628514d72e7f4f360c": { + "c033c2ab0a4f4d429bba70326cdb0cca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3121,7 +3291,43 @@ "width": null } }, - "a3d9976bafc345ebb0d09bf47bc98b5c": { + "c041908be7824bfb930efbdb18f0ec31": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c089b9f67bcf46968bfcd8824e1a53a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c4f366a5432c432bbfdf0d38931ed91e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3174,30 +3380,7 @@ "width": null } }, - "a467a3d21d644c8a8cb5d2a51c4af8bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a3d9976bafc345ebb0d09bf47bc98b5c", - "placeholder": "​", - "style": "IPY_MODEL_c41b39f1c5134912b66b677ff920e3e2", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" - } - }, - "a99c3e54d657455e96140e2f71fb2445": { + "c5b41331c0db440997248fe6747bad65": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3250,7 +3433,31 @@ "width": null } }, - "ab2678daf516428abd9d5435c181580c": { + "c774b0a4c9304d858771c224f32cfc90": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e10e0f3547464c46809df0bf3b3a9998", + "IPY_MODEL_da0ffa88d0c7402da3c1152c80488706", + "IPY_MODEL_bb42cb58ee564c87b7116aa796f9627b" + ], + "layout": "IPY_MODEL_821720644f8e4e90b7acf56f70757db2", + "tabbable": null, + "tooltip": null + } + }, + "c92bf1ae16c34e00a2919210d6014be8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3303,25 +3510,30 @@ "width": null } }, - "ab33a926066f434f91e75e8517475480": { + "cc018232d1524b1b8610d939dd6292b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9384a143b5c24bf48aae5f78de633087", + "placeholder": "​", + "style": "IPY_MODEL_f21f8c6b31b6492e9bab669fd8137db8", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 231MB/s]" } }, - "abac78be723d40bc923a9ffcd9517695": { + "d550e2a7f246407697728e8a11999345": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3374,7 +3586,7 @@ "width": null } }, - "ae778c6b041b42df8bafadc6b43c29c6": { + "d89dee8aedbf49d38043b4cecbf6363d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3427,63 +3639,10 @@ "width": null } }, - "b296a9815f794ec4a79f36e7b1d7418b": { - "model_module": "@jupyter-widgets/base", + "d8ae9174c21a43f485031d7cf98ff879": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b5f3627421dc44c7940e67df11755b0e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -3495,137 +3654,112 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_7cbb8a32232646a791c02fb18484eec2", - "IPY_MODEL_7a4e43e813134c82a7cdb21b62a0821a", - "IPY_MODEL_026c86bd27bc4dc19fe1c1c899c5be5a" + "IPY_MODEL_07da339453c64bfc8853cfc5a26b9fc4", + "IPY_MODEL_a72e2b8a666c4e79b500c8347cbc2f3f", + "IPY_MODEL_b7026c968c734e77865783f711c15b1c" ], - "layout": "IPY_MODEL_43983a81175146b2aad954ac078bd203", + "layout": "IPY_MODEL_c033c2ab0a4f4d429bba70326cdb0cca", "tabbable": null, "tooltip": null } }, - "b8aca08a689948288df537af46a20d0d": { + "da0ffa88d0c7402da3c1152c80488706": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_268ca702d4f84196969873fda356eeab", - "IPY_MODEL_de0ba6f3e6c348379bd0d334af07397d", - "IPY_MODEL_c32b5691668c4e6ca4798504a491e405" - ], - "layout": "IPY_MODEL_ab2678daf516428abd9d5435c181580c", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a41798e90bd041fcbdb6c53ef25187b8", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_897280dc42c243a7aab7a7cff0648bf7", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 391.0 } }, - "bd832ea356a543f7a3b126a08d0ad4c0": { + "dd2b2ce609794152b4190ce546a84196": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ef54c08451f14e2da2b8aa7542e8495e", + "placeholder": "​", + "style": "IPY_MODEL_85723554378142bf8814de7943aa272e", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" } }, - "be48061ec2fa4646a767f45be6ce1d71": { - "model_module": "@jupyter-widgets/base", + "dea3c770da2545548a1084087655b211": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9903c55df2c64113807587d41e300592", + "placeholder": "​", + "style": "IPY_MODEL_004e35506c914146b2dcf454f74a3e24", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" } }, - "c1d703995efb45c59fe8187aa38dfe1e": { + "df6b06df51354a549bc7969f13ec0440": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_41fedb1a22ac411e8e3c2ddcf3cc58a4", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1727c7a41a694f45ac62fff0d829ff8e", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dd2b2ce609794152b4190ce546a84196", + "IPY_MODEL_bef8a949bb824fe28ac968a4d077ee09", + "IPY_MODEL_cc018232d1524b1b8610d939dd6292b3" + ], + "layout": "IPY_MODEL_c4f366a5432c432bbfdf0d38931ed91e", "tabbable": null, - "tooltip": null, - "value": 665.0 + "tooltip": null } }, - "c32b5691668c4e6ca4798504a491e405": { + "e10e0f3547464c46809df0bf3b3a9998": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3640,33 +3774,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fc34c3013367477aadf709afe44ed394", + "layout": "IPY_MODEL_4de6ea8ae0814482aadf0d4ee94013e3", "placeholder": "​", - "style": "IPY_MODEL_1885555b3b2e48f0bdf9397ee4081b75", + "style": "IPY_MODEL_95e97a7e02cc4c3d8954168c0a66c0fb", "tabbable": null, "tooltip": null, - "value": " 391/391 [00:00<00:00, 62.9kB/s]" - } - }, - "c41b39f1c5134912b66b677ff920e3e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": ".gitattributes: 100%" } }, - "d2e6ae31f1024a9588fd20802e08bd99": { + "e2f862828ac0442d91ba9d87655ee91f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3684,7 +3800,7 @@ "text_color": null } }, - "d72ada4ba08b4449b815e9377f2936a3": { + "e7ea247f24b74d788c82fa3fe13ed652": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3737,139 +3853,7 @@ "width": null } }, - "d8867a17cbe8440d9b839dc8b2b35fe4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dd2688e2db9947379c4fe85857e38d4c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "de0ba6f3e6c348379bd0d334af07397d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_abac78be723d40bc923a9ffcd9517695", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5efa6aab876847adab817e3c52c4a44f", - "tabbable": null, - "tooltip": null, - "value": 391.0 - } - }, - "deba86ef119f4f98a414d1aff29f05ad": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8e0aed21c29540119c6e3270eebbf80e", - "placeholder": "​", - "style": "IPY_MODEL_d2e6ae31f1024a9588fd20802e08bd99", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "e42c09e35fa746b8aae318021abc013f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_82eeb2156bc44cd290eba8e31b90ba33", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_dd2688e2db9947379c4fe85857e38d4c", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "e53a8a3e93694038864ad173e124c15e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8974f699d1cf43319700b49e192c8805", - "placeholder": "​", - "style": "IPY_MODEL_32e4d385aef64a499f934438ab665f7f", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "e6d76c5d9b3640318e146d24ecec87b1": { + "ef54c08451f14e2da2b8aa7542e8495e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3922,7 +3906,23 @@ "width": null } }, - "f08c3222f2084fef82c013488604cc71": { + "f0fa797f4f524706bb8328e76ad3a369": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f165e76991f34ad3973995e735ec96e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3937,15 +3937,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6b7a91ff0de44af697098734690996db", + "layout": "IPY_MODEL_d89dee8aedbf49d38043b4cecbf6363d", "placeholder": "​", - "style": "IPY_MODEL_29890d4ea74c4395ad3d63d174a7b583", + "style": "IPY_MODEL_7c5b24ef952a44cda7b7f452ffaa53e3", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" + "value": "tokenizer.json: 100%" } }, - "f47f59d7a4e04cac9f32b03e0904f84f": { + "f21f8c6b31b6492e9bab669fd8137db8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f232ca97006549ac890517d43be9e563": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3998,7 +4016,7 @@ "width": null } }, - "f63b809522104f858ff960be5f3d1af7": { + "f3ca2c6a05ee4139af28f65b0eeb1ae8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4014,58 +4032,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a21b5d2d6ef849628514d72e7f4f360c", - "max": 29.0, + "layout": "IPY_MODEL_e7ea247f24b74d788c82fa3fe13ed652", + "max": 2211.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9332f2ae63884d799895fbe296a11069", - "tabbable": null, - "tooltip": null, - "value": 29.0 - } - }, - "f7833e195f59434491c8c93292c51528": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_15afe00105bf47db9b97adcf1c436ee7", - "placeholder": "​", - "style": "IPY_MODEL_bd832ea356a543f7a3b126a08d0ad4c0", + "style": "IPY_MODEL_87b5d7f8f8de42f7aaaaa5885df9aaa3", "tabbable": null, "tooltip": null, - "value": " 29.0/29.0 [00:00<00:00, 5.58kB/s]" - } - }, - "f95ac1ecf08343c8ad79b513f3bdfbc8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 2211.0 } }, - "fc34c3013367477aadf709afe44ed394": { + "fa7f56ece0f44256877874ff1fdc8e80": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4117,6 +4094,29 @@ "visibility": null, "width": null } + }, + "fb639536293a447bb6afca22f8941b25": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0e89bdd71ac249ef9c05731d37d352a7", + "placeholder": "​", + "style": "IPY_MODEL_e2f862828ac0442d91ba9d87655ee91f", + "tabbable": null, + "tooltip": null, + "value": " 232k/232k [00:00<00:00, 40.8MB/s]" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index d29a5e4a8..4eedb8b98 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:50.575768Z", - "iopub.status.busy": "2024-02-13T04:44:50.575354Z", - "iopub.status.idle": "2024-02-13T04:44:51.651620Z", - "shell.execute_reply": "2024-02-13T04:44:51.651003Z" + "iopub.execute_input": "2024-02-13T22:14:38.219955Z", + "iopub.status.busy": "2024-02-13T22:14:38.219463Z", + "iopub.status.idle": "2024-02-13T22:14:39.272752Z", + "shell.execute_reply": "2024-02-13T22:14:39.272134Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:51.654465Z", - "iopub.status.busy": "2024-02-13T04:44:51.654070Z", - "iopub.status.idle": "2024-02-13T04:44:51.656947Z", - "shell.execute_reply": "2024-02-13T04:44:51.656440Z" + "iopub.execute_input": "2024-02-13T22:14:39.275332Z", + "iopub.status.busy": "2024-02-13T22:14:39.275041Z", + "iopub.status.idle": "2024-02-13T22:14:39.277954Z", + "shell.execute_reply": "2024-02-13T22:14:39.277446Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:51.659087Z", - "iopub.status.busy": "2024-02-13T04:44:51.658917Z", - "iopub.status.idle": "2024-02-13T04:44:51.670819Z", - "shell.execute_reply": "2024-02-13T04:44:51.670248Z" + "iopub.execute_input": "2024-02-13T22:14:39.280051Z", + "iopub.status.busy": "2024-02-13T22:14:39.279889Z", + "iopub.status.idle": "2024-02-13T22:14:39.291600Z", + "shell.execute_reply": "2024-02-13T22:14:39.291162Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:51.672875Z", - "iopub.status.busy": "2024-02-13T04:44:51.672548Z", - "iopub.status.idle": "2024-02-13T04:44:58.571995Z", - "shell.execute_reply": "2024-02-13T04:44:58.571422Z" + "iopub.execute_input": "2024-02-13T22:14:39.293627Z", + "iopub.status.busy": "2024-02-13T22:14:39.293361Z", + "iopub.status.idle": "2024-02-13T22:14:43.908751Z", + "shell.execute_reply": "2024-02-13T22:14:43.908179Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index 126fb6ee2..fef9ac3ed 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:00.775232Z", - "iopub.status.busy": "2024-02-13T04:45:00.775052Z", - "iopub.status.idle": "2024-02-13T04:45:01.857300Z", - "shell.execute_reply": "2024-02-13T04:45:01.856701Z" + "iopub.execute_input": "2024-02-13T22:14:45.998303Z", + "iopub.status.busy": "2024-02-13T22:14:45.998123Z", + "iopub.status.idle": "2024-02-13T22:14:47.040230Z", + "shell.execute_reply": "2024-02-13T22:14:47.039676Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:01.859954Z", - "iopub.status.busy": "2024-02-13T04:45:01.859671Z", - "iopub.status.idle": "2024-02-13T04:45:01.863074Z", - "shell.execute_reply": "2024-02-13T04:45:01.862567Z" + "iopub.execute_input": "2024-02-13T22:14:47.042951Z", + "iopub.status.busy": "2024-02-13T22:14:47.042483Z", + "iopub.status.idle": "2024-02-13T22:14:47.045660Z", + "shell.execute_reply": "2024-02-13T22:14:47.045251Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:01.865105Z", - "iopub.status.busy": "2024-02-13T04:45:01.864803Z", - "iopub.status.idle": "2024-02-13T04:45:04.931702Z", - "shell.execute_reply": "2024-02-13T04:45:04.931098Z" + "iopub.execute_input": "2024-02-13T22:14:47.047785Z", + "iopub.status.busy": "2024-02-13T22:14:47.047461Z", + "iopub.status.idle": "2024-02-13T22:14:50.039751Z", + "shell.execute_reply": "2024-02-13T22:14:50.039128Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:04.934633Z", - "iopub.status.busy": "2024-02-13T04:45:04.934014Z", - "iopub.status.idle": "2024-02-13T04:45:04.970390Z", - "shell.execute_reply": "2024-02-13T04:45:04.969615Z" + "iopub.execute_input": "2024-02-13T22:14:50.042605Z", + "iopub.status.busy": "2024-02-13T22:14:50.042028Z", + "iopub.status.idle": "2024-02-13T22:14:50.073809Z", + "shell.execute_reply": "2024-02-13T22:14:50.073244Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:04.973300Z", - "iopub.status.busy": "2024-02-13T04:45:04.972891Z", - "iopub.status.idle": "2024-02-13T04:45:05.004998Z", - "shell.execute_reply": "2024-02-13T04:45:05.004393Z" + "iopub.execute_input": "2024-02-13T22:14:50.076281Z", + "iopub.status.busy": "2024-02-13T22:14:50.076049Z", + "iopub.status.idle": "2024-02-13T22:14:50.104349Z", + "shell.execute_reply": "2024-02-13T22:14:50.103666Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:05.007855Z", - "iopub.status.busy": "2024-02-13T04:45:05.007441Z", - "iopub.status.idle": "2024-02-13T04:45:05.010632Z", - "shell.execute_reply": "2024-02-13T04:45:05.010152Z" + "iopub.execute_input": "2024-02-13T22:14:50.107135Z", + "iopub.status.busy": "2024-02-13T22:14:50.106619Z", + "iopub.status.idle": "2024-02-13T22:14:50.109702Z", + "shell.execute_reply": "2024-02-13T22:14:50.109269Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:05.012688Z", - "iopub.status.busy": "2024-02-13T04:45:05.012389Z", - "iopub.status.idle": "2024-02-13T04:45:05.015047Z", - "shell.execute_reply": "2024-02-13T04:45:05.014592Z" + "iopub.execute_input": "2024-02-13T22:14:50.111739Z", + "iopub.status.busy": "2024-02-13T22:14:50.111331Z", + "iopub.status.idle": "2024-02-13T22:14:50.113848Z", + "shell.execute_reply": "2024-02-13T22:14:50.113440Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:05.016965Z", - "iopub.status.busy": "2024-02-13T04:45:05.016705Z", - "iopub.status.idle": "2024-02-13T04:45:05.040728Z", - "shell.execute_reply": "2024-02-13T04:45:05.040212Z" + "iopub.execute_input": "2024-02-13T22:14:50.116006Z", + "iopub.status.busy": "2024-02-13T22:14:50.115587Z", + "iopub.status.idle": "2024-02-13T22:14:50.140945Z", + "shell.execute_reply": "2024-02-13T22:14:50.140399Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8f990951a8a645829cead1a86444f37f", + "model_id": "97b173d3f64446ec83392d04655319d8", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "371684a8599f4e53908b224e4d4c7ccd", + "model_id": "9e8ff64180df4ac58c1e79b17db791b1", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:05.046194Z", - "iopub.status.busy": "2024-02-13T04:45:05.045885Z", - "iopub.status.idle": "2024-02-13T04:45:05.052274Z", - "shell.execute_reply": "2024-02-13T04:45:05.051838Z" + "iopub.execute_input": "2024-02-13T22:14:50.145640Z", + "iopub.status.busy": "2024-02-13T22:14:50.145458Z", + "iopub.status.idle": "2024-02-13T22:14:50.151757Z", + "shell.execute_reply": "2024-02-13T22:14:50.151361Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:05.054320Z", - "iopub.status.busy": "2024-02-13T04:45:05.053979Z", - "iopub.status.idle": "2024-02-13T04:45:05.057314Z", - "shell.execute_reply": "2024-02-13T04:45:05.056889Z" + "iopub.execute_input": "2024-02-13T22:14:50.153664Z", + "iopub.status.busy": "2024-02-13T22:14:50.153367Z", + "iopub.status.idle": "2024-02-13T22:14:50.156751Z", + "shell.execute_reply": "2024-02-13T22:14:50.156324Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:05.059401Z", - "iopub.status.busy": "2024-02-13T04:45:05.059083Z", - "iopub.status.idle": "2024-02-13T04:45:05.065239Z", - "shell.execute_reply": "2024-02-13T04:45:05.064810Z" + "iopub.execute_input": "2024-02-13T22:14:50.158526Z", + "iopub.status.busy": "2024-02-13T22:14:50.158356Z", + "iopub.status.idle": "2024-02-13T22:14:50.164640Z", + "shell.execute_reply": "2024-02-13T22:14:50.164217Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:05.067233Z", - "iopub.status.busy": "2024-02-13T04:45:05.066917Z", - "iopub.status.idle": "2024-02-13T04:45:05.097558Z", - "shell.execute_reply": "2024-02-13T04:45:05.096960Z" + "iopub.execute_input": "2024-02-13T22:14:50.166382Z", + "iopub.status.busy": "2024-02-13T22:14:50.166214Z", + "iopub.status.idle": "2024-02-13T22:14:50.199212Z", + "shell.execute_reply": "2024-02-13T22:14:50.198602Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:05.100090Z", - "iopub.status.busy": "2024-02-13T04:45:05.099711Z", - "iopub.status.idle": "2024-02-13T04:45:05.132775Z", - "shell.execute_reply": "2024-02-13T04:45:05.132183Z" + "iopub.execute_input": "2024-02-13T22:14:50.201572Z", + "iopub.status.busy": "2024-02-13T22:14:50.201347Z", + "iopub.status.idle": "2024-02-13T22:14:50.236338Z", + "shell.execute_reply": "2024-02-13T22:14:50.235663Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:05.135669Z", - "iopub.status.busy": "2024-02-13T04:45:05.135288Z", - "iopub.status.idle": "2024-02-13T04:45:05.260452Z", - "shell.execute_reply": "2024-02-13T04:45:05.259828Z" + "iopub.execute_input": "2024-02-13T22:14:50.239309Z", + "iopub.status.busy": "2024-02-13T22:14:50.238898Z", + "iopub.status.idle": "2024-02-13T22:14:50.362085Z", + "shell.execute_reply": "2024-02-13T22:14:50.361445Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:05.263456Z", - "iopub.status.busy": "2024-02-13T04:45:05.262636Z", - "iopub.status.idle": "2024-02-13T04:45:08.327835Z", - "shell.execute_reply": "2024-02-13T04:45:08.327191Z" + "iopub.execute_input": "2024-02-13T22:14:50.364977Z", + "iopub.status.busy": "2024-02-13T22:14:50.364259Z", + "iopub.status.idle": "2024-02-13T22:14:53.408785Z", + "shell.execute_reply": "2024-02-13T22:14:53.408183Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:08.330178Z", - "iopub.status.busy": "2024-02-13T04:45:08.329831Z", - "iopub.status.idle": "2024-02-13T04:45:08.390619Z", - "shell.execute_reply": "2024-02-13T04:45:08.390039Z" + "iopub.execute_input": "2024-02-13T22:14:53.411293Z", + "iopub.status.busy": "2024-02-13T22:14:53.410936Z", + "iopub.status.idle": "2024-02-13T22:14:53.465028Z", + "shell.execute_reply": "2024-02-13T22:14:53.464472Z" } }, "outputs": [ @@ -1206,7 +1206,7 @@ }, { "cell_type": "markdown", - "id": "97271f63", + "id": "d91cd6f5", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1214,7 +1214,7 @@ }, { "cell_type": "markdown", - "id": "09763c61", + "id": "a3523252", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1227,13 +1227,13 @@ { "cell_type": "code", "execution_count": 17, - "id": "e98d3c3e", + "id": "85a95966", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:08.393046Z", - "iopub.status.busy": "2024-02-13T04:45:08.392655Z", - "iopub.status.idle": "2024-02-13T04:45:08.497796Z", - "shell.execute_reply": "2024-02-13T04:45:08.497186Z" + "iopub.execute_input": "2024-02-13T22:14:53.467144Z", + "iopub.status.busy": "2024-02-13T22:14:53.466807Z", + "iopub.status.idle": "2024-02-13T22:14:53.567187Z", + "shell.execute_reply": "2024-02-13T22:14:53.566633Z" } }, "outputs": [ @@ -1274,7 +1274,7 @@ }, { "cell_type": "markdown", - "id": "6cb09354", + "id": "83823d3f", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1283,13 +1283,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "354730c3", + "id": "af2ddd93", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:08.501000Z", - "iopub.status.busy": "2024-02-13T04:45:08.500135Z", - "iopub.status.idle": "2024-02-13T04:45:08.579084Z", - "shell.execute_reply": "2024-02-13T04:45:08.578496Z" + "iopub.execute_input": "2024-02-13T22:14:53.570245Z", + "iopub.status.busy": "2024-02-13T22:14:53.569558Z", + "iopub.status.idle": "2024-02-13T22:14:53.648234Z", + "shell.execute_reply": "2024-02-13T22:14:53.647684Z" } }, "outputs": [ @@ -1325,7 +1325,7 @@ }, { "cell_type": "markdown", - "id": "f9a433d4", + "id": "878c6928", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -1336,13 +1336,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "e23f2b30", + "id": "5f5fdb6e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:08.581519Z", - "iopub.status.busy": "2024-02-13T04:45:08.581322Z", - "iopub.status.idle": "2024-02-13T04:45:08.589772Z", - "shell.execute_reply": "2024-02-13T04:45:08.589273Z" + "iopub.execute_input": "2024-02-13T22:14:53.650279Z", + "iopub.status.busy": "2024-02-13T22:14:53.649997Z", + "iopub.status.idle": "2024-02-13T22:14:53.658521Z", + "shell.execute_reply": "2024-02-13T22:14:53.657984Z" } }, "outputs": [], @@ -1444,7 +1444,7 @@ }, { "cell_type": "markdown", - "id": "0a4b72ce", + "id": "e8b636c9", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1459,13 +1459,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "7a61645f", + "id": "981d8711", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:08.591978Z", - "iopub.status.busy": "2024-02-13T04:45:08.591644Z", - "iopub.status.idle": "2024-02-13T04:45:08.610540Z", - "shell.execute_reply": "2024-02-13T04:45:08.609950Z" + "iopub.execute_input": "2024-02-13T22:14:53.660611Z", + "iopub.status.busy": "2024-02-13T22:14:53.660307Z", + "iopub.status.idle": "2024-02-13T22:14:53.679261Z", + "shell.execute_reply": "2024-02-13T22:14:53.678709Z" } }, "outputs": [ @@ -1482,7 +1482,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_6149/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_6180/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1516,13 +1516,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "87baf697", + "id": "fd85409a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:08.612895Z", - "iopub.status.busy": "2024-02-13T04:45:08.612552Z", - "iopub.status.idle": "2024-02-13T04:45:08.615808Z", - "shell.execute_reply": "2024-02-13T04:45:08.615267Z" + "iopub.execute_input": "2024-02-13T22:14:53.681184Z", + "iopub.status.busy": "2024-02-13T22:14:53.680881Z", + "iopub.status.idle": "2024-02-13T22:14:53.684159Z", + "shell.execute_reply": "2024-02-13T22:14:53.683645Z" } }, "outputs": [ @@ -1617,23 +1617,48 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "15304aedf88441638584cc268654d25c": { + "1f058a4261804c5eaaeb9e282bebc8d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_606f08b87c014ed7a6e0b44d4bd19e8d", + "placeholder": "​", + "style": "IPY_MODEL_b868a1a5c7b64532983cd4830c97f6aa", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "26aee9c0c8a3435f9fa4b1e322113c8c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "24f1be2cbcfd4936abefd2992cce3dda": { + "2d7e87e297a14667a0db1bcd0e503b52": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1686,7 +1711,7 @@ "width": null } }, - "2ba9ddaddfe741d8819bd34fe5a37144": { + "31294fa4b2c148e2a92df66dec3ba088": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1739,31 +1764,7 @@ "width": null } }, - "371684a8599f4e53908b224e4d4c7ccd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f889113fd3134186b4dfd166e7e99981", - "IPY_MODEL_e2fffd98b8e440cdbb2dc450aa606e45", - "IPY_MODEL_8e5de70a79e64b68a6550c2be95de0b7" - ], - "layout": "IPY_MODEL_24f1be2cbcfd4936abefd2992cce3dda", - "tabbable": null, - "tooltip": null - } - }, - "4a63047326124e819011db4680884ea1": { + "3fa7a98292314e07b6bbb9adc1b023fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1779,33 +1780,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4e84f75f4e9b43c6b95faa0e6e577368", + "layout": "IPY_MODEL_2d7e87e297a14667a0db1bcd0e503b52", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_15304aedf88441638584cc268654d25c", + "style": "IPY_MODEL_d09f249b54fd4520adc263902331da2d", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "4cfd644d9fa441c5ae21068b4971525d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4e84f75f4e9b43c6b95faa0e6e577368": { + "4019500ee1464d1eb7ee2c9fb95509a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1858,7 +1843,7 @@ "width": null } }, - "5497e1c6aa954064927a219c2e0bc433": { + "606f08b87c014ed7a6e0b44d4bd19e8d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1911,7 +1896,7 @@ "width": null } }, - "5720134c8458441da703ebc287e9c9ac": { + "772c582ef2e848b69f6f5c27d7c30dfe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1929,7 +1914,7 @@ "text_color": null } }, - "5e5a619cf574409883c49a635665e9db": { + "8790e3c31b9d4bd086dd3b585ab28307": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1982,7 +1967,7 @@ "width": null } }, - "7664381fb04b486fa33c3113559f5742": { + "91080112e91545cea76f96ca17e7cf54": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1997,33 +1982,142 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5497e1c6aa954064927a219c2e0bc433", + "layout": "IPY_MODEL_4019500ee1464d1eb7ee2c9fb95509a1", "placeholder": "​", - "style": "IPY_MODEL_7db090840c474073a402926ff0effd86", + "style": "IPY_MODEL_26aee9c0c8a3435f9fa4b1e322113c8c", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: " + "value": " 10000/? [00:00<00:00, 1225580.46it/s]" } }, - "790e3eb0888a4fc3a8a99c73e6d5ba68": { + "97b173d3f64446ec83392d04655319d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e16e5fbb57bb41bf991fdf3a1a9c1d0e", + "IPY_MODEL_3fa7a98292314e07b6bbb9adc1b023fb", + "IPY_MODEL_c86ddce8010d492c9711e333fd641be5" + ], + "layout": "IPY_MODEL_8790e3c31b9d4bd086dd3b585ab28307", + "tabbable": null, + "tooltip": null + } + }, + "9892fd592e2448558a8916d099c20cd0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9e8ff64180df4ac58c1e79b17db791b1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1f058a4261804c5eaaeb9e282bebc8d7", + "IPY_MODEL_a27e18d31d814116b6b99fbe9d19e111", + "IPY_MODEL_91080112e91545cea76f96ca17e7cf54" + ], + "layout": "IPY_MODEL_31294fa4b2c148e2a92df66dec3ba088", + "tabbable": null, + "tooltip": null + } + }, + "a27e18d31d814116b6b99fbe9d19e111": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d928f805146c481b99bd4a131eec5917", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c9dbe135d2eb4ac6a459511fe483a695", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "7db090840c474073a402926ff0effd86": { + "b868a1a5c7b64532983cd4830c97f6aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2041,7 +2135,7 @@ "text_color": null } }, - "8e5de70a79e64b68a6550c2be95de0b7": { + "c86ddce8010d492c9711e333fd641be5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2056,57 +2150,47 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2ba9ddaddfe741d8819bd34fe5a37144", + "layout": "IPY_MODEL_9892fd592e2448558a8916d099c20cd0", "placeholder": "​", - "style": "IPY_MODEL_5720134c8458441da703ebc287e9c9ac", + "style": "IPY_MODEL_772c582ef2e848b69f6f5c27d7c30dfe", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1573198.30it/s]" + "value": " 10000/? [00:00<00:00, 1078532.23it/s]" } }, - "8f990951a8a645829cead1a86444f37f": { + "c9dbe135d2eb4ac6a459511fe483a695": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7664381fb04b486fa33c3113559f5742", - "IPY_MODEL_4a63047326124e819011db4680884ea1", - "IPY_MODEL_f7b726aca564466ebdcf10dee0abfee4" - ], - "layout": "IPY_MODEL_ed6b461ba401417abe4c6d7bd03d59c0", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8fbdb741ea8f44b7a5d24d6b20242317": { + "d09f249b54fd4520adc263902331da2d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "a1cd19130552446fa35cf13685e09377": { + "d928f805146c481b99bd4a131eec5917": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2159,86 +2243,48 @@ "width": null } }, - "a31851cab6a842b5b7de46afe470f520": { - "model_module": "@jupyter-widgets/base", + "dd6fe6b511714fc5827a240ac41a8964": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e2fffd98b8e440cdbb2dc450aa606e45": { + "e16e5fbb57bb41bf991fdf3a1a9c1d0e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a31851cab6a842b5b7de46afe470f520", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4cfd644d9fa441c5ae21068b4971525d", + "layout": "IPY_MODEL_fabdf3478d794abbaa5a03ccb57487c3", + "placeholder": "​", + "style": "IPY_MODEL_dd6fe6b511714fc5827a240ac41a8964", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": "number of examples processed for estimating thresholds: " } }, - "ed6b461ba401417abe4c6d7bd03d59c0": { + "fabdf3478d794abbaa5a03ccb57487c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2290,52 +2336,6 @@ "visibility": null, "width": null } - }, - "f7b726aca564466ebdcf10dee0abfee4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a1cd19130552446fa35cf13685e09377", - "placeholder": "​", - "style": "IPY_MODEL_8fbdb741ea8f44b7a5d24d6b20242317", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1038965.57it/s]" - } - }, - "f889113fd3134186b4dfd166e7e99981": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5e5a619cf574409883c49a635665e9db", - "placeholder": "​", - "style": "IPY_MODEL_790e3eb0888a4fc3a8a99c73e6d5ba68", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/image.ipynb b/master/.doctrees/nbsphinx/tutorials/image.ipynb index d1f4477c2..8794e56aa 100644 --- a/master/.doctrees/nbsphinx/tutorials/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:11.903411Z", - "iopub.status.busy": "2024-02-13T04:45:11.902872Z", - "iopub.status.idle": "2024-02-13T04:45:14.879495Z", - "shell.execute_reply": "2024-02-13T04:45:14.878923Z" + "iopub.execute_input": "2024-02-13T22:14:56.927966Z", + "iopub.status.busy": "2024-02-13T22:14:56.927793Z", + "iopub.status.idle": "2024-02-13T22:14:59.704829Z", + "shell.execute_reply": "2024-02-13T22:14:59.704297Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:14.881977Z", - "iopub.status.busy": "2024-02-13T04:45:14.881650Z", - "iopub.status.idle": "2024-02-13T04:45:14.885469Z", - "shell.execute_reply": "2024-02-13T04:45:14.885028Z" + "iopub.execute_input": "2024-02-13T22:14:59.707280Z", + "iopub.status.busy": "2024-02-13T22:14:59.706980Z", + "iopub.status.idle": "2024-02-13T22:14:59.710555Z", + "shell.execute_reply": "2024-02-13T22:14:59.710124Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:14.887348Z", - "iopub.status.busy": "2024-02-13T04:45:14.887165Z", - "iopub.status.idle": "2024-02-13T04:45:19.374786Z", - "shell.execute_reply": "2024-02-13T04:45:19.374233Z" + "iopub.execute_input": "2024-02-13T22:14:59.712525Z", + "iopub.status.busy": "2024-02-13T22:14:59.712163Z", + "iopub.status.idle": "2024-02-13T22:15:02.758405Z", + "shell.execute_reply": "2024-02-13T22:15:02.757909Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0e0037cdb0e84b46b705b94d92cdb3c1", + "model_id": "b4b144c72af24136b9fb812c8f6be9bc", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9941def6fe7e41dc90e45a05b13ed47b", + "model_id": "78c74f56872849bd9fec91216fb1d9d8", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "09173e07625643ba888e38d5cee7eac1", + "model_id": "2716f1b917a3428498d311cd3719321e", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "03852962b5494c8da91da182fcd82736", + "model_id": "a7a5b61cf35b427f97e5c722f9b3203f", "version_major": 2, "version_minor": 0 }, @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:19.376839Z", - "iopub.status.busy": "2024-02-13T04:45:19.376623Z", - "iopub.status.idle": "2024-02-13T04:45:19.380408Z", - "shell.execute_reply": "2024-02-13T04:45:19.379898Z" + "iopub.execute_input": "2024-02-13T22:15:02.760600Z", + "iopub.status.busy": "2024-02-13T22:15:02.760174Z", + "iopub.status.idle": "2024-02-13T22:15:02.763840Z", + "shell.execute_reply": "2024-02-13T22:15:02.763423Z" } }, "outputs": [ @@ -274,17 +274,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:19.382420Z", - "iopub.status.busy": "2024-02-13T04:45:19.382117Z", - "iopub.status.idle": "2024-02-13T04:45:30.494407Z", - "shell.execute_reply": "2024-02-13T04:45:30.493754Z" + "iopub.execute_input": "2024-02-13T22:15:02.765730Z", + "iopub.status.busy": "2024-02-13T22:15:02.765551Z", + "iopub.status.idle": "2024-02-13T22:15:13.682562Z", + "shell.execute_reply": "2024-02-13T22:15:13.682045Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2ac30149fc4c458f82aa055e33a3ea5b", + "model_id": "b04b7e304a4743a1b238e56726ee40f1", "version_major": 2, "version_minor": 0 }, @@ -322,10 +322,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:30.497259Z", - "iopub.status.busy": "2024-02-13T04:45:30.496800Z", - "iopub.status.idle": "2024-02-13T04:45:49.205438Z", - "shell.execute_reply": "2024-02-13T04:45:49.204824Z" + "iopub.execute_input": "2024-02-13T22:15:13.685343Z", + "iopub.status.busy": "2024-02-13T22:15:13.684905Z", + "iopub.status.idle": "2024-02-13T22:15:32.411997Z", + "shell.execute_reply": "2024-02-13T22:15:32.411410Z" } }, "outputs": [], @@ -358,10 +358,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:49.208134Z", - "iopub.status.busy": "2024-02-13T04:45:49.207931Z", - "iopub.status.idle": "2024-02-13T04:45:49.212908Z", - "shell.execute_reply": "2024-02-13T04:45:49.212428Z" + "iopub.execute_input": "2024-02-13T22:15:32.414776Z", + "iopub.status.busy": "2024-02-13T22:15:32.414311Z", + "iopub.status.idle": "2024-02-13T22:15:32.419279Z", + "shell.execute_reply": "2024-02-13T22:15:32.418721Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:49.215006Z", - "iopub.status.busy": "2024-02-13T04:45:49.214686Z", - "iopub.status.idle": "2024-02-13T04:45:49.218865Z", - "shell.execute_reply": "2024-02-13T04:45:49.218341Z" + "iopub.execute_input": "2024-02-13T22:15:32.421444Z", + "iopub.status.busy": "2024-02-13T22:15:32.421030Z", + "iopub.status.idle": "2024-02-13T22:15:32.425198Z", + "shell.execute_reply": "2024-02-13T22:15:32.424804Z" }, "nbsphinx": "hidden" }, @@ -539,10 +539,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:49.221004Z", - "iopub.status.busy": "2024-02-13T04:45:49.220672Z", - "iopub.status.idle": "2024-02-13T04:45:49.229730Z", - "shell.execute_reply": "2024-02-13T04:45:49.229248Z" + "iopub.execute_input": "2024-02-13T22:15:32.427226Z", + "iopub.status.busy": "2024-02-13T22:15:32.426824Z", + "iopub.status.idle": "2024-02-13T22:15:32.435593Z", + "shell.execute_reply": "2024-02-13T22:15:32.435085Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:49.231811Z", - "iopub.status.busy": "2024-02-13T04:45:49.231625Z", - "iopub.status.idle": "2024-02-13T04:45:49.258319Z", - "shell.execute_reply": "2024-02-13T04:45:49.257825Z" + "iopub.execute_input": "2024-02-13T22:15:32.437637Z", + "iopub.status.busy": "2024-02-13T22:15:32.437250Z", + "iopub.status.idle": "2024-02-13T22:15:32.463878Z", + "shell.execute_reply": "2024-02-13T22:15:32.463299Z" } }, "outputs": [], @@ -707,10 +707,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:49.260639Z", - "iopub.status.busy": "2024-02-13T04:45:49.260450Z", - "iopub.status.idle": "2024-02-13T04:46:23.088104Z", - "shell.execute_reply": "2024-02-13T04:46:23.087366Z" + "iopub.execute_input": "2024-02-13T22:15:32.466344Z", + "iopub.status.busy": "2024-02-13T22:15:32.465888Z", + "iopub.status.idle": "2024-02-13T22:16:05.185348Z", + "shell.execute_reply": "2024-02-13T22:16:05.184740Z" } }, "outputs": [ @@ -726,14 +726,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.978\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.851\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.806\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.702\n", "Computing feature embeddings ...\n" ] }, @@ -750,7 +750,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:05, 7.73it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 8.69it/s]" ] }, { @@ -758,7 +758,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 38.13it/s]" + " 18%|█▊ | 7/40 [00:00<00:00, 37.06it/s]" ] }, { @@ -766,7 +766,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 14/40 [00:00<00:00, 46.37it/s]" + " 35%|███▌ | 14/40 [00:00<00:00, 47.32it/s]" ] }, { @@ -774,7 +774,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 20/40 [00:00<00:00, 50.53it/s]" + " 52%|█████▎ | 21/40 [00:00<00:00, 53.38it/s]" ] }, { @@ -782,7 +782,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 52.89it/s]" + " 70%|███████ | 28/40 [00:00<00:00, 57.85it/s]" ] }, { @@ -790,7 +790,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 53.26it/s]" + " 90%|█████████ | 36/40 [00:00<00:00, 64.11it/s]" ] }, { @@ -798,7 +798,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 50.70it/s]" + "100%|██████████| 40/40 [00:00<00:00, 55.19it/s]" ] }, { @@ -828,7 +828,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.68it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.61it/s]" ] }, { @@ -836,7 +836,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 7/40 [00:00<00:00, 36.05it/s]" + " 20%|██ | 8/40 [00:00<00:00, 40.80it/s]" ] }, { @@ -844,7 +844,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▎ | 13/40 [00:00<00:00, 45.40it/s]" + " 35%|███▌ | 14/40 [00:00<00:00, 47.50it/s]" ] }, { @@ -852,7 +852,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 20/40 [00:00<00:00, 53.84it/s]" + " 52%|█████▎ | 21/40 [00:00<00:00, 55.79it/s]" ] }, { @@ -860,7 +860,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 27/40 [00:00<00:00, 58.90it/s]" + " 70%|███████ | 28/40 [00:00<00:00, 58.15it/s]" ] }, { @@ -868,7 +868,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 35/40 [00:00<00:00, 63.36it/s]" + " 90%|█████████ | 36/40 [00:00<00:00, 61.68it/s]" ] }, { @@ -876,7 +876,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 55.32it/s]" + "100%|██████████| 40/40 [00:00<00:00, 54.95it/s]" ] }, { @@ -898,14 +898,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.064\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.896\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.813\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.527\n", "Computing feature embeddings ...\n" ] }, @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 42.65it/s]" + " 20%|██ | 8/40 [00:00<00:00, 40.84it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 15/40 [00:00<00:00, 52.89it/s]" + " 38%|███▊ | 15/40 [00:00<00:00, 50.75it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 22/40 [00:00<00:00, 57.42it/s]" + " 55%|█████▌ | 22/40 [00:00<00:00, 56.87it/s]" ] }, { @@ -954,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▎ | 29/40 [00:00<00:00, 61.09it/s]" + " 70%|███████ | 28/40 [00:00<00:00, 57.33it/s]" ] }, { @@ -962,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▎| 37/40 [00:00<00:00, 66.05it/s]" + " 90%|█████████ | 36/40 [00:00<00:00, 62.74it/s]" ] }, { @@ -970,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 57.39it/s]" + "100%|██████████| 40/40 [00:00<00:00, 56.13it/s]" ] }, { @@ -1000,7 +1000,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.85it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 8.82it/s]" ] }, { @@ -1008,7 +1008,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 7/40 [00:00<00:00, 36.77it/s]" + " 20%|██ | 8/40 [00:00<00:00, 41.38it/s]" ] }, { @@ -1016,7 +1016,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 14/40 [00:00<00:00, 50.48it/s]" + " 35%|███▌ | 14/40 [00:00<00:00, 48.06it/s]" ] }, { @@ -1024,7 +1024,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▎ | 21/40 [00:00<00:00, 57.34it/s]" + " 50%|█████ | 20/40 [00:00<00:00, 51.71it/s]" ] }, { @@ -1032,7 +1032,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 28/40 [00:00<00:00, 61.54it/s]" + " 68%|██████▊ | 27/40 [00:00<00:00, 57.87it/s]" ] }, { @@ -1040,7 +1040,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 36/40 [00:00<00:00, 64.99it/s]" + " 88%|████████▊ | 35/40 [00:00<00:00, 63.69it/s]" ] }, { @@ -1048,7 +1048,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 56.23it/s]" + "100%|██████████| 40/40 [00:00<00:00, 55.67it/s]" ] }, { @@ -1070,14 +1070,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.068\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.772\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.795\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.619\n", "Computing feature embeddings ...\n" ] }, @@ -1094,7 +1094,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.46it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 17.80it/s]" ] }, { @@ -1102,7 +1102,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 42.70it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 42.89it/s]" ] }, { @@ -1110,7 +1110,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 15/40 [00:00<00:00, 54.22it/s]" + " 38%|███▊ | 15/40 [00:00<00:00, 49.56it/s]" ] }, { @@ -1118,7 +1118,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 22/40 [00:00<00:00, 59.17it/s]" + " 55%|█████▌ | 22/40 [00:00<00:00, 55.27it/s]" ] }, { @@ -1126,7 +1126,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▎ | 29/40 [00:00<00:00, 62.47it/s]" + " 72%|███████▎ | 29/40 [00:00<00:00, 57.90it/s]" ] }, { @@ -1134,7 +1134,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▎| 37/40 [00:00<00:00, 67.62it/s]" + " 90%|█████████ | 36/40 [00:00<00:00, 60.37it/s]" ] }, { @@ -1142,7 +1142,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 58.81it/s]" + "100%|██████████| 40/40 [00:00<00:00, 55.41it/s]" ] }, { @@ -1172,7 +1172,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 18.81it/s]" + " 2%|▎ | 1/40 [00:00<00:03, 9.85it/s]" ] }, { @@ -1180,7 +1180,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 41.95it/s]" + " 18%|█▊ | 7/40 [00:00<00:00, 36.91it/s]" ] }, { @@ -1188,7 +1188,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 56.00it/s]" + " 35%|███▌ | 14/40 [00:00<00:00, 51.14it/s]" ] }, { @@ -1196,7 +1196,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▊ | 23/40 [00:00<00:00, 59.83it/s]" + " 55%|█████▌ | 22/40 [00:00<00:00, 55.32it/s]" ] }, { @@ -1204,7 +1204,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 31/40 [00:00<00:00, 64.01it/s]" + " 72%|███████▎ | 29/40 [00:00<00:00, 58.64it/s]" ] }, { @@ -1212,7 +1212,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 72.00it/s]" + " 92%|█████████▎| 37/40 [00:00<00:00, 64.77it/s]" ] }, { @@ -1220,7 +1220,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 60.50it/s]" + "100%|██████████| 40/40 [00:00<00:00, 56.55it/s]" ] }, { @@ -1298,10 +1298,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:46:23.090642Z", - "iopub.status.busy": "2024-02-13T04:46:23.090219Z", - "iopub.status.idle": "2024-02-13T04:46:23.106143Z", - "shell.execute_reply": "2024-02-13T04:46:23.105657Z" + "iopub.execute_input": "2024-02-13T22:16:05.187847Z", + "iopub.status.busy": "2024-02-13T22:16:05.187436Z", + "iopub.status.idle": "2024-02-13T22:16:05.203454Z", + "shell.execute_reply": "2024-02-13T22:16:05.203016Z" } }, "outputs": [], @@ -1326,10 +1326,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:46:23.108404Z", - "iopub.status.busy": "2024-02-13T04:46:23.108070Z", - "iopub.status.idle": "2024-02-13T04:46:23.588277Z", - "shell.execute_reply": "2024-02-13T04:46:23.587753Z" + "iopub.execute_input": "2024-02-13T22:16:05.205544Z", + "iopub.status.busy": "2024-02-13T22:16:05.205280Z", + "iopub.status.idle": "2024-02-13T22:16:05.693054Z", + "shell.execute_reply": "2024-02-13T22:16:05.692524Z" } }, "outputs": [], @@ -1349,10 +1349,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:46:23.590715Z", - "iopub.status.busy": "2024-02-13T04:46:23.590373Z", - "iopub.status.idle": "2024-02-13T04:49:51.222139Z", - "shell.execute_reply": "2024-02-13T04:49:51.221560Z" + "iopub.execute_input": "2024-02-13T22:16:05.695527Z", + "iopub.status.busy": "2024-02-13T22:16:05.695108Z", + "iopub.status.idle": "2024-02-13T22:19:30.718163Z", + "shell.execute_reply": "2024-02-13T22:19:30.717507Z" } }, "outputs": [ @@ -1398,7 +1398,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5d115934aff749e882f23b771c08ba39", + "model_id": "d0d70be349a64bbca45dc6828385e006", "version_major": 2, "version_minor": 0 }, @@ -1437,10 +1437,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:51.224605Z", - "iopub.status.busy": "2024-02-13T04:49:51.224062Z", - "iopub.status.idle": "2024-02-13T04:49:51.925858Z", - "shell.execute_reply": "2024-02-13T04:49:51.925319Z" + "iopub.execute_input": "2024-02-13T22:19:30.720815Z", + "iopub.status.busy": "2024-02-13T22:19:30.720171Z", + "iopub.status.idle": "2024-02-13T22:19:31.385825Z", + "shell.execute_reply": "2024-02-13T22:19:31.385335Z" } }, "outputs": [ @@ -1581,10 +1581,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:51.928614Z", - "iopub.status.busy": "2024-02-13T04:49:51.928103Z", - "iopub.status.idle": "2024-02-13T04:49:51.990166Z", - "shell.execute_reply": "2024-02-13T04:49:51.989547Z" + "iopub.execute_input": "2024-02-13T22:19:31.388273Z", + "iopub.status.busy": "2024-02-13T22:19:31.387855Z", + "iopub.status.idle": "2024-02-13T22:19:31.425501Z", + "shell.execute_reply": "2024-02-13T22:19:31.425019Z" } }, "outputs": [ @@ -1688,10 +1688,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:51.992188Z", - "iopub.status.busy": "2024-02-13T04:49:51.992007Z", - "iopub.status.idle": "2024-02-13T04:49:52.000363Z", - "shell.execute_reply": "2024-02-13T04:49:51.999932Z" + "iopub.execute_input": "2024-02-13T22:19:31.427654Z", + "iopub.status.busy": "2024-02-13T22:19:31.427377Z", + "iopub.status.idle": "2024-02-13T22:19:31.435590Z", + "shell.execute_reply": "2024-02-13T22:19:31.435142Z" } }, "outputs": [ @@ -1821,10 +1821,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:52.002234Z", - "iopub.status.busy": "2024-02-13T04:49:52.002057Z", - "iopub.status.idle": "2024-02-13T04:49:52.006784Z", - "shell.execute_reply": "2024-02-13T04:49:52.006262Z" + "iopub.execute_input": "2024-02-13T22:19:31.437611Z", + "iopub.status.busy": "2024-02-13T22:19:31.437344Z", + "iopub.status.idle": "2024-02-13T22:19:31.441752Z", + "shell.execute_reply": "2024-02-13T22:19:31.441305Z" }, "nbsphinx": "hidden" }, @@ -1870,10 +1870,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:52.008786Z", - "iopub.status.busy": "2024-02-13T04:49:52.008398Z", - "iopub.status.idle": "2024-02-13T04:49:52.494424Z", - "shell.execute_reply": "2024-02-13T04:49:52.493892Z" + "iopub.execute_input": "2024-02-13T22:19:31.443992Z", + "iopub.status.busy": "2024-02-13T22:19:31.443527Z", + "iopub.status.idle": "2024-02-13T22:19:31.919030Z", + "shell.execute_reply": "2024-02-13T22:19:31.918409Z" } }, "outputs": [ @@ -1908,10 +1908,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:52.496521Z", - "iopub.status.busy": "2024-02-13T04:49:52.496204Z", - "iopub.status.idle": "2024-02-13T04:49:52.504600Z", - "shell.execute_reply": "2024-02-13T04:49:52.504059Z" + "iopub.execute_input": "2024-02-13T22:19:31.921302Z", + "iopub.status.busy": "2024-02-13T22:19:31.920897Z", + "iopub.status.idle": "2024-02-13T22:19:31.929471Z", + "shell.execute_reply": "2024-02-13T22:19:31.928957Z" } }, "outputs": [ @@ -2078,10 +2078,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:52.506688Z", - "iopub.status.busy": "2024-02-13T04:49:52.506377Z", - "iopub.status.idle": "2024-02-13T04:49:52.513473Z", - "shell.execute_reply": "2024-02-13T04:49:52.513022Z" + "iopub.execute_input": "2024-02-13T22:19:31.931712Z", + "iopub.status.busy": "2024-02-13T22:19:31.931373Z", + "iopub.status.idle": "2024-02-13T22:19:31.938878Z", + "shell.execute_reply": "2024-02-13T22:19:31.938376Z" }, "nbsphinx": "hidden" }, @@ -2157,10 +2157,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:52.515413Z", - "iopub.status.busy": "2024-02-13T04:49:52.515089Z", - "iopub.status.idle": "2024-02-13T04:49:52.989173Z", - "shell.execute_reply": "2024-02-13T04:49:52.988610Z" + "iopub.execute_input": "2024-02-13T22:19:31.940934Z", + "iopub.status.busy": "2024-02-13T22:19:31.940632Z", + "iopub.status.idle": "2024-02-13T22:19:32.412299Z", + "shell.execute_reply": "2024-02-13T22:19:32.411788Z" } }, "outputs": [ @@ -2197,10 +2197,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:52.991439Z", - "iopub.status.busy": "2024-02-13T04:49:52.991233Z", - "iopub.status.idle": "2024-02-13T04:49:53.007430Z", - "shell.execute_reply": "2024-02-13T04:49:53.006890Z" + "iopub.execute_input": "2024-02-13T22:19:32.414611Z", + "iopub.status.busy": "2024-02-13T22:19:32.414275Z", + "iopub.status.idle": "2024-02-13T22:19:32.429702Z", + "shell.execute_reply": "2024-02-13T22:19:32.429147Z" } }, "outputs": [ @@ -2357,10 +2357,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:53.009633Z", - "iopub.status.busy": "2024-02-13T04:49:53.009315Z", - "iopub.status.idle": "2024-02-13T04:49:53.014772Z", - "shell.execute_reply": "2024-02-13T04:49:53.014348Z" + "iopub.execute_input": "2024-02-13T22:19:32.431869Z", + "iopub.status.busy": "2024-02-13T22:19:32.431552Z", + "iopub.status.idle": "2024-02-13T22:19:32.437049Z", + "shell.execute_reply": "2024-02-13T22:19:32.436527Z" }, "nbsphinx": "hidden" }, @@ -2405,10 +2405,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:53.016977Z", - "iopub.status.busy": "2024-02-13T04:49:53.016516Z", - "iopub.status.idle": "2024-02-13T04:49:53.417404Z", - "shell.execute_reply": "2024-02-13T04:49:53.416829Z" + "iopub.execute_input": "2024-02-13T22:19:32.439177Z", + "iopub.status.busy": "2024-02-13T22:19:32.438786Z", + "iopub.status.idle": "2024-02-13T22:19:32.895159Z", + "shell.execute_reply": "2024-02-13T22:19:32.894576Z" } }, "outputs": [ @@ -2490,10 +2490,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:53.419835Z", - "iopub.status.busy": "2024-02-13T04:49:53.419633Z", - "iopub.status.idle": "2024-02-13T04:49:53.429025Z", - "shell.execute_reply": "2024-02-13T04:49:53.428468Z" + "iopub.execute_input": "2024-02-13T22:19:32.897659Z", + "iopub.status.busy": "2024-02-13T22:19:32.897458Z", + "iopub.status.idle": "2024-02-13T22:19:32.906484Z", + "shell.execute_reply": "2024-02-13T22:19:32.905952Z" } }, "outputs": [ @@ -2621,10 +2621,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:53.431390Z", - "iopub.status.busy": "2024-02-13T04:49:53.431212Z", - "iopub.status.idle": "2024-02-13T04:49:53.436848Z", - "shell.execute_reply": "2024-02-13T04:49:53.436296Z" + "iopub.execute_input": "2024-02-13T22:19:32.908861Z", + "iopub.status.busy": "2024-02-13T22:19:32.908665Z", + "iopub.status.idle": "2024-02-13T22:19:32.914295Z", + "shell.execute_reply": "2024-02-13T22:19:32.913747Z" }, "nbsphinx": "hidden" }, @@ -2661,10 +2661,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:53.439026Z", - "iopub.status.busy": "2024-02-13T04:49:53.438847Z", - "iopub.status.idle": "2024-02-13T04:49:53.619466Z", - "shell.execute_reply": "2024-02-13T04:49:53.618997Z" + "iopub.execute_input": "2024-02-13T22:19:32.916573Z", + "iopub.status.busy": "2024-02-13T22:19:32.916383Z", + "iopub.status.idle": "2024-02-13T22:19:33.118180Z", + "shell.execute_reply": "2024-02-13T22:19:33.117696Z" } }, "outputs": [ @@ -2706,10 +2706,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:53.621851Z", - "iopub.status.busy": "2024-02-13T04:49:53.621529Z", - "iopub.status.idle": "2024-02-13T04:49:53.630200Z", - "shell.execute_reply": "2024-02-13T04:49:53.629633Z" + "iopub.execute_input": "2024-02-13T22:19:33.120250Z", + "iopub.status.busy": "2024-02-13T22:19:33.120089Z", + "iopub.status.idle": "2024-02-13T22:19:33.127332Z", + "shell.execute_reply": "2024-02-13T22:19:33.126903Z" } }, "outputs": [ @@ -2795,10 +2795,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:53.632712Z", - "iopub.status.busy": "2024-02-13T04:49:53.632322Z", - "iopub.status.idle": "2024-02-13T04:49:53.831668Z", - "shell.execute_reply": "2024-02-13T04:49:53.831159Z" + "iopub.execute_input": "2024-02-13T22:19:33.129131Z", + "iopub.status.busy": "2024-02-13T22:19:33.128977Z", + "iopub.status.idle": "2024-02-13T22:19:33.323962Z", + "shell.execute_reply": "2024-02-13T22:19:33.323407Z" } }, "outputs": [ @@ -2838,10 +2838,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:53.834038Z", - "iopub.status.busy": "2024-02-13T04:49:53.833625Z", - "iopub.status.idle": "2024-02-13T04:49:53.838307Z", - "shell.execute_reply": "2024-02-13T04:49:53.837756Z" + "iopub.execute_input": "2024-02-13T22:19:33.326098Z", + "iopub.status.busy": "2024-02-13T22:19:33.325766Z", + "iopub.status.idle": "2024-02-13T22:19:33.330031Z", + "shell.execute_reply": "2024-02-13T22:19:33.329590Z" }, "nbsphinx": "hidden" }, @@ -2878,7 +2878,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00a81cfb652e4161af17b66da497fa18": { + "0a4dae9997634e32bad60815aac1a220": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0bd752be93eb409d8bd6eb055e6d98d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2931,118 +2949,7 @@ "width": null } }, - "0100eb87e8e24545930c69c94876b011": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "02a7d52c3b384397ae37d60f05b9be70": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b8f85e3afdc742749c72249d328af602", - "placeholder": "​", - "style": "IPY_MODEL_94a52c43134b442ca54800d14105a36a", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "03852962b5494c8da91da182fcd82736": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6050a2c1d1d54caf859f3b27e1a6577b", - "IPY_MODEL_51ed663c61db4f30b892b63577f89313", - "IPY_MODEL_95b171356e914cbea98cb74b0e0db2a8" - ], - "layout": "IPY_MODEL_3a12b467da2545da832f1dc9f2ea26a0", - "tabbable": null, - "tooltip": null - } - }, - "09173e07625643ba888e38d5cee7eac1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6bc6bf8158a34d48bb547396a02fe3e2", - "IPY_MODEL_c75fdb88303f48a0bab0f3d1bb4b61a7", - "IPY_MODEL_c36f9cfcfd9446db869ce023e567b074" - ], - "layout": "IPY_MODEL_61ef78b060524781a428166569aae1bf", - "tabbable": null, - "tooltip": null - } - }, - "0e0037cdb0e84b46b705b94d92cdb3c1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bac429d41abd43dd930c199cdcefc81f", - "IPY_MODEL_3451d6528c0c4fcc9b05e20efbf027c6", - "IPY_MODEL_17c47372340847578d7ce0d673aff17c" - ], - "layout": "IPY_MODEL_7cf14493a17f4005975b8af322994911", - "tabbable": null, - "tooltip": null - } - }, - "0e7f09f4029041cf9e58917522c4e1e5": { + "0eae112e69984cab991a796815e27393": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3060,71 +2967,60 @@ "text_color": null } }, - "12c9496c08ba4c3d9fccbff0085f1846": { - "model_module": "@jupyter-widgets/controls", + "1056c1488fdc49c3ad8ba10d4a27487c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "17c47372340847578d7ce0d673aff17c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3ff65f76f35e460db5aa62eb01787402", - "placeholder": "​", - "style": "IPY_MODEL_eb2344da9c554d449fe19704e7c0003b", - "tabbable": null, - "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 48.6MB/s]" - } - }, - "18024d84b7f24387b05b2e197c01c264": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aea401d33e6c4ad586e260a7d35383e1", - "placeholder": "​", - "style": "IPY_MODEL_b3141274c7764bd68f3744cf25e7d509", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 7557.23 examples/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2750ea3096654a71b47dea528d65fe49": { + "11c9603c99d54bfabec0a822c0e3ca5f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3140,57 +3036,25 @@ "description_width": "" } }, - "2ac30149fc4c458f82aa055e33a3ea5b": { + "14b24631cbf74b49bab541887c6fdda8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_02a7d52c3b384397ae37d60f05b9be70", - "IPY_MODEL_2c781af92dd04b3d85f430b4fbd60814", - "IPY_MODEL_18024d84b7f24387b05b2e197c01c264" - ], - "layout": "IPY_MODEL_b5bbac09f44c4c518b8445796540d1b1", - "tabbable": null, - "tooltip": null - } - }, - "2c781af92dd04b3d85f430b4fbd60814": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b0c287f1fd9b47f48c8e64b36adf7151", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0100eb87e8e24545930c69c94876b011", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3451d6528c0c4fcc9b05e20efbf027c6": { + "18fa04c8bee94dc7a364a2ac67b92ebe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3206,35 +3070,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_463c57e7a59547dab02563a5696ad39f", - "max": 30931277.0, + "layout": "IPY_MODEL_3fc7f6d5f19743bd947ecc39556712d6", + "max": 5175617.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_64b7f223376548a3bf1da3be3cfadb49", + "style": "IPY_MODEL_3fdfb98eb09044498890dcdc26d0900c", "tabbable": null, "tooltip": null, - "value": 30931277.0 - } - }, - "34752300f48449e58ca75780fd122add": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 5175617.0 } }, - "3a12b467da2545da832f1dc9f2ea26a0": { + "1940bf6b76a043fcb809af50f4b897e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3287,7 +3133,7 @@ "width": null } }, - "3fa61c973fe54b348bb4d2fb93dc0a9e": { + "1cb6fa6bd32a428a93a177395c294e5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3340,7 +3186,72 @@ "width": null } }, - "3ff65f76f35e460db5aa62eb01787402": { + "1efe9858ace045609ca234c55983d437": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1f2b4f19cc00430e92438fdd9bd1c653": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c045f4fec4e24f7e92f652292c54e6f7", + "IPY_MODEL_95a465c3ba234b5dae82430d148977e6", + "IPY_MODEL_d3f500167f92488db6154e1d5b3fe4fe" + ], + "layout": "IPY_MODEL_324317c35b9a44938ac6a05cf099e0a3", + "tabbable": null, + "tooltip": null + } + }, + "2066206c9816433ebe956ad2ddc1cbda": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_97df32738e0d4e64957863f771076a94", + "placeholder": "​", + "style": "IPY_MODEL_c15671dacb3a4225b49f65c98061fc55", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:35<00:00, 1724.77it/s]" + } + }, + "2083f2e96bf04d2e805ab2d7e84d7d22": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3393,25 +3304,7 @@ "width": null } }, - "4184ab102ef743b4bfc89f97d78567d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "42c9c906f2f340468f542b62923734d5": { + "20c6cd1ad7bd414d90ac322ac4a1ec60": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3464,31 +3357,7 @@ "width": null } }, - "44dcd2bb8a6c486ab76a5549120d3e8c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d90522159a634f03b2fed67f6c1b2d2a", - "IPY_MODEL_dcfe23732122499baacc1e7909905d73", - "IPY_MODEL_8f1bb25b9bf94467ac9f7473449bb88b" - ], - "layout": "IPY_MODEL_00a81cfb652e4161af17b66da497fa18", - "tabbable": null, - "tooltip": null - } - }, - "45ef05251b114dc0963213dda34c78c8": { + "229bf29fc46d471596f276ee31670e75": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3541,7 +3410,77 @@ "width": null } }, - "463c57e7a59547dab02563a5696ad39f": { + "2716f1b917a3428498d311cd3719321e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3ad5edcc061e450ca2ab885a1baaccac", + "IPY_MODEL_c9d8b44efb2a49b1a9a20480a4002da7", + "IPY_MODEL_2ef9c652a9b9422498560a4a032ba047" + ], + "layout": "IPY_MODEL_759f0294cf9845a9b07de1c11dc81794", + "tabbable": null, + "tooltip": null + } + }, + "29a92e4a125f4ab8b1b09bd7352f701b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_40b3e569304147df9431b32162e6d9f3", + "placeholder": "​", + "style": "IPY_MODEL_571efba7e1f344f5918f747cc71fb304", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:10<00:00, 7756.98 examples/s]" + } + }, + "2ef9c652a9b9422498560a4a032ba047": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_be87d7530120454db0c423958aab2043", + "placeholder": "​", + "style": "IPY_MODEL_38da2c8230a34cf49ed2e016dcbc4696", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:00<00:00, 950381.76 examples/s]" + } + }, + "2f8c65b10aba4406ab2295f995681db8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3594,53 +3533,23 @@ "width": null } }, - "47b0b0d84ae549b78ac2c645fbc17c86": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_94cf5d86060645909bc253817fcc221f", - "placeholder": "​", - "style": "IPY_MODEL_e0bf989ef7fb46aaba54d6a87f1cfdd9", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "492e5b2554924914832a058e1e677bda": { + "30e3bd816e954002afe25e8cdc96c0af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ca0e42fefa4b463b89d0e0894757cd4c", - "placeholder": "​", - "style": "IPY_MODEL_e873376358504a109e35d30d42f1d8a3", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "4d6389d7d50a4ed5b037f420de744d13": { + "324317c35b9a44938ac6a05cf099e0a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3693,7 +3602,23 @@ "width": null } }, - "51ed663c61db4f30b892b63577f89313": { + "33ea9df613334aabb14a78a4c43ecc19": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3879560cea3c4987b44be1fc876c2243": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3709,17 +3634,58 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4d6389d7d50a4ed5b037f420de744d13", + "layout": "IPY_MODEL_f5dd014fb77044539c61612dfe4b6d15", "max": 10000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_2750ea3096654a71b47dea528d65fe49", + "style": "IPY_MODEL_6e4c96d7ebfd49269f247b245f9f2a7a", "tabbable": null, "tooltip": null, "value": 10000.0 } }, - "564607043da54438b11f000ef01d649a": { + "38da2c8230a34cf49ed2e016dcbc4696": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3ad5edcc061e450ca2ab885a1baaccac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_92b4c48e2eba4173a35f03baeb92c562", + "placeholder": "​", + "style": "IPY_MODEL_dd296e603e23401099e58619eee2def4", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "3c2d0c7d680742d0afda45b19909c4f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3772,25 +3738,7 @@ "width": null } }, - "5690b7e216064681bb125e25a83acf6c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "57d7b21768034a3fb6ddb82ae1e43594": { + "3fc7f6d5f19743bd947ecc39556712d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3843,31 +3791,23 @@ "width": null } }, - "5d115934aff749e882f23b771c08ba39": { + "3fdfb98eb09044498890dcdc26d0900c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_492e5b2554924914832a058e1e677bda", - "IPY_MODEL_ca935150916f400c8f20db71b260fe30", - "IPY_MODEL_c0942f6b880a42d4aa8634f038407126" - ], - "layout": "IPY_MODEL_564607043da54438b11f000ef01d649a", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "60338fe090854c2ea8a2300278faaae3": { + "40b3e569304147df9431b32162e6d9f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3920,7 +3860,7 @@ "width": null } }, - "6050a2c1d1d54caf859f3b27e1a6577b": { + "413c1e145eb24c9d9b506e2eb52c1ad4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3935,15 +3875,90 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9f26675b672f4b69b1caacf0738614d7", + "layout": "IPY_MODEL_20c6cd1ad7bd414d90ac322ac4a1ec60", "placeholder": "​", - "style": "IPY_MODEL_12c9496c08ba4c3d9fccbff0085f1846", + "style": "IPY_MODEL_cdecde7de88a4defbcd98f7a547c8b91", "tabbable": null, "tooltip": null, "value": "Generating test split: 100%" } }, - "61ef78b060524781a428166569aae1bf": { + "41bb6c864be14ef8894e35f022dd3c2b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bcfdbd5457d14796b2e58b1f96c06e2c", + "placeholder": "​", + "style": "IPY_MODEL_8de5b322067b4d0b9335afa97842d3dd", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" + } + }, + "48391842028445ca88ca120306136f9b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "571efba7e1f344f5918f747cc71fb304": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "595a7e8885774f50b285cc31defd2969": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5cbb86781983450bb16e03b8bbef7902": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3996,69 +4011,7 @@ "width": null } }, - "64b7f223376548a3bf1da3be3cfadb49": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6bc6bf8158a34d48bb547396a02fe3e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_78a2a372df9c483ebaa4b00c288c2688", - "placeholder": "​", - "style": "IPY_MODEL_fae1a0fd8a6d4b5db6bab2833030e36f", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" - } - }, - "767919ec795b4b40b41e3b1f9116c45e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_57d7b21768034a3fb6ddb82ae1e43594", - "placeholder": "​", - "style": "IPY_MODEL_d8830a7af2ee46a7841aaef0b252377b", - "tabbable": null, - "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 28.5MB/s]" - } - }, - "78a2a372df9c483ebaa4b00c288c2688": { + "5eb259ed793943ef8aad6d298c193a6f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4111,7 +4064,7 @@ "width": null } }, - "7cf14493a17f4005975b8af322994911": { + "5feba688cb21403087ad67983a45f807": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4164,7 +4117,23 @@ "width": null } }, - "8e65ccc0a0f54c16b91938b70f067ae5": { + "6e4c96d7ebfd49269f247b245f9f2a7a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "759f0294cf9845a9b07de1c11dc81794": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4217,48 +4186,80 @@ "width": null } }, - "8f1bb25b9bf94467ac9f7473449bb88b": { + "78c74f56872849bd9fec91216fb1d9d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fae52f08e881419b97ed26312b87134a", + "IPY_MODEL_18fa04c8bee94dc7a364a2ac67b92ebe", + "IPY_MODEL_d8a87a94ad1c48ed8ca6c65f671173c9" + ], + "layout": "IPY_MODEL_fb21e046e2334843a45957abca478ea8", + "tabbable": null, + "tooltip": null + } + }, + "7f67762eb7f4421aa72f78242e8bc2d6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9808ca93633242a3b53f4cac21f4217b", - "placeholder": "​", - "style": "IPY_MODEL_0e7f09f4029041cf9e58917522c4e1e5", + "layout": "IPY_MODEL_5eb259ed793943ef8aad6d298c193a6f", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_33ea9df613334aabb14a78a4c43ecc19", "tabbable": null, "tooltip": null, - "value": " 2/2 [00:00<00:00, 587.27it/s]" + "value": 60000.0 } }, - "94a52c43134b442ca54800d14105a36a": { + "83fce3af13d54bc2a2873379cb1ea0ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_89a87477517d490bbeecbbd6565c5259", + "placeholder": "​", + "style": "IPY_MODEL_14b24631cbf74b49bab541887c6fdda8", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "94cf5d86060645909bc253817fcc221f": { + "89a87477517d490bbeecbbd6565c5259": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4311,7 +4312,51 @@ "width": null } }, - "95b171356e914cbea98cb74b0e0db2a8": { + "8acaf9ba28ed428ea6bab91c6975a2f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1056c1488fdc49c3ad8ba10d4a27487c", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_30e3bd816e954002afe25e8cdc96c0af", + "tabbable": null, + "tooltip": null, + "value": 30931277.0 + } + }, + "8de5b322067b4d0b9335afa97842d3dd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "919c51c3c5704059b8955d0ed4fe9510": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4326,15 +4371,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_60338fe090854c2ea8a2300278faaae3", + "layout": "IPY_MODEL_eb4dd5e860484050b7e29e7d313a9cfd", "placeholder": "​", - "style": "IPY_MODEL_aa090512beef488e80742327a96f385f", + "style": "IPY_MODEL_c5f0f72dc50b469d868a14e1b59e326d", "tabbable": null, "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 616827.55 examples/s]" + "value": "100%" } }, - "9808ca93633242a3b53f4cac21f4217b": { + "92b4c48e2eba4173a35f03baeb92c562": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4387,31 +4432,33 @@ "width": null } }, - "9941def6fe7e41dc90e45a05b13ed47b": { + "95a465c3ba234b5dae82430d148977e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_47b0b0d84ae549b78ac2c645fbc17c86", - "IPY_MODEL_e522be3c869b45c6bb7968c3f0116f3c", - "IPY_MODEL_767919ec795b4b40b41e3b1f9116c45e" - ], - "layout": "IPY_MODEL_b027fb4a87664fac8ae6207a8e1e0b93", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1cb6fa6bd32a428a93a177395c294e5f", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_595a7e8885774f50b285cc31defd2969", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 2.0 } }, - "9f26675b672f4b69b1caacf0738614d7": { + "97df32738e0d4e64957863f771076a94": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4464,7 +4511,7 @@ "width": null } }, - "a1abd0eccbe94f1ea9fd951ad0f9f889": { + "a053c60e09ab4895a3ad840efcda52ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4517,7 +4564,7 @@ "width": null } }, - "a4d5d6b9816a4d02977e10ddf741f714": { + "a49dc2cd80a44de2bd2d4ba0a310a96c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4570,23 +4617,97 @@ "width": null } }, - "a66aa5b3deff4f09ab07c4f7f356bf86": { + "a7a5b61cf35b427f97e5c722f9b3203f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_413c1e145eb24c9d9b506e2eb52c1ad4", + "IPY_MODEL_3879560cea3c4987b44be1fc876c2243", + "IPY_MODEL_d512531d6b134fb0914f89ff07bab9bd" + ], + "layout": "IPY_MODEL_c9af2593fa1a455780e34f7f830a9089", + "tabbable": null, + "tooltip": null + } + }, + "b04b7e304a4743a1b238e56726ee40f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_41bb6c864be14ef8894e35f022dd3c2b", + "IPY_MODEL_fc6e6a9393194ac398c0ed4656e82b1a", + "IPY_MODEL_29a92e4a125f4ab8b1b09bd7352f701b" + ], + "layout": "IPY_MODEL_229bf29fc46d471596f276ee31670e75", + "tabbable": null, + "tooltip": null + } + }, + "b4b144c72af24136b9fb812c8f6be9bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_83fce3af13d54bc2a2873379cb1ea0ba", + "IPY_MODEL_8acaf9ba28ed428ea6bab91c6975a2f9", + "IPY_MODEL_f60f30b199e04f299a035dffab68de33" + ], + "layout": "IPY_MODEL_2083f2e96bf04d2e805ab2d7e84d7d22", + "tabbable": null, + "tooltip": null + } + }, + "b8545852bd314b42969f95ef6e91b9ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "aa090512beef488e80742327a96f385f": { + "bc38dcc23e1e4fd7b0e60b7381331d73": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4604,7 +4725,7 @@ "text_color": null } }, - "aea401d33e6c4ad586e260a7d35383e1": { + "bcfdbd5457d14796b2e58b1f96c06e2c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4657,7 +4778,7 @@ "width": null } }, - "b027fb4a87664fac8ae6207a8e1e0b93": { + "be87d7530120454db0c423958aab2043": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4710,60 +4831,30 @@ "width": null } }, - "b0c287f1fd9b47f48c8e64b36adf7151": { - "model_module": "@jupyter-widgets/base", + "c045f4fec4e24f7e92f652292c54e6f7": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3c2d0c7d680742d0afda45b19909c4f3", + "placeholder": "​", + "style": "IPY_MODEL_48391842028445ca88ca120306136f9b", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" } }, - "b3141274c7764bd68f3744cf25e7d509": { + "c15671dacb3a4225b49f65c98061fc55": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4781,23 +4872,25 @@ "text_color": null } }, - "b442ce91a53e4530ae36d4526d545fac": { + "c5f0f72dc50b469d868a14e1b59e326d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b5bbac09f44c4c518b8445796540d1b1": { + "c9af2593fa1a455780e34f7f830a9089": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4850,7 +4943,51 @@ "width": null } }, - "b8f85e3afdc742749c72249d328af602": { + "c9d8b44efb2a49b1a9a20480a4002da7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a053c60e09ab4895a3ad840efcda52ec", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e02f1598b5c4404b86aeb8103abfeff9", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "cdecde7de88a4defbcd98f7a547c8b91": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "cdf0a444af4c424d8f2d968f3dcfcfa9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4903,7 +5040,31 @@ "width": null } }, - "bac429d41abd43dd930c199cdcefc81f": { + "d0d70be349a64bbca45dc6828385e006": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_919c51c3c5704059b8955d0ed4fe9510", + "IPY_MODEL_7f67762eb7f4421aa72f78242e8bc2d6", + "IPY_MODEL_2066206c9816433ebe956ad2ddc1cbda" + ], + "layout": "IPY_MODEL_cdf0a444af4c424d8f2d968f3dcfcfa9", + "tabbable": null, + "tooltip": null + } + }, + "d3f500167f92488db6154e1d5b3fe4fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4918,15 +5079,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d15c8f396c47417e9e2640853546255c", + "layout": "IPY_MODEL_1940bf6b76a043fcb809af50f4b897e8", "placeholder": "​", - "style": "IPY_MODEL_34752300f48449e58ca75780fd122add", + "style": "IPY_MODEL_0a4dae9997634e32bad60815aac1a220", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 2/2 [00:00<00:00, 440.37it/s]" } }, - "c0942f6b880a42d4aa8634f038407126": { + "d512531d6b134fb0914f89ff07bab9bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4941,15 +5102,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_45ef05251b114dc0963213dda34c78c8", + "layout": "IPY_MODEL_2f8c65b10aba4406ab2295f995681db8", "placeholder": "​", - "style": "IPY_MODEL_fdb8d941926d414e8fbd80b77599dd7e", + "style": "IPY_MODEL_bc38dcc23e1e4fd7b0e60b7381331d73", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:38<00:00, 1639.05it/s]" + "value": " 10000/10000 [00:00<00:00, 652170.48 examples/s]" } }, - "c36f9cfcfd9446db869ce023e567b074": { + "d8a87a94ad1c48ed8ca6c65f671173c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4964,15 +5125,49 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8e65ccc0a0f54c16b91938b70f067ae5", + "layout": "IPY_MODEL_5feba688cb21403087ad67983a45f807", "placeholder": "​", - "style": "IPY_MODEL_4184ab102ef743b4bfc89f97d78567d2", + "style": "IPY_MODEL_0eae112e69984cab991a796815e27393", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 932972.88 examples/s]" + "value": " 5.18M/5.18M [00:00<00:00, 8.22MB/s]" + } + }, + "dd296e603e23401099e58619eee2def4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e02f1598b5c4404b86aeb8103abfeff9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "c3e9354851c3433185ea6e372faabaf9": { + "eb4dd5e860484050b7e29e7d313a9cfd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5025,33 +5220,7 @@ "width": null } }, - "c75fdb88303f48a0bab0f3d1bb4b61a7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3fa61c973fe54b348bb4d2fb93dc0a9e", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cf409baca4d3402cba9ae5b91e7d11ef", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "ca0e42fefa4b463b89d0e0894757cd4c": { + "f5dd014fb77044539c61612dfe4b6d15": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5104,65 +5273,53 @@ "width": null } }, - "ca935150916f400c8f20db71b260fe30": { + "f60f30b199e04f299a035dffab68de33": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a1abd0eccbe94f1ea9fd951ad0f9f889", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b442ce91a53e4530ae36d4526d545fac", + "layout": "IPY_MODEL_a49dc2cd80a44de2bd2d4ba0a310a96c", + "placeholder": "​", + "style": "IPY_MODEL_1efe9858ace045609ca234c55983d437", "tabbable": null, "tooltip": null, - "value": 60000.0 - } - }, - "cd4bed5282574b86833b2f162592b5a5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 30.9M/30.9M [00:00<00:00, 62.0MB/s]" } }, - "cf409baca4d3402cba9ae5b91e7d11ef": { + "fae52f08e881419b97ed26312b87134a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5cbb86781983450bb16e03b8bbef7902", + "placeholder": "​", + "style": "IPY_MODEL_b8545852bd314b42969f95ef6e91b9ef", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "d15c8f396c47417e9e2640853546255c": { + "fb21e046e2334843a45957abca478ea8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5215,92 +5372,7 @@ "width": null } }, - "d8830a7af2ee46a7841aaef0b252377b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d90522159a634f03b2fed67f6c1b2d2a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a4d5d6b9816a4d02977e10ddf741f714", - "placeholder": "​", - "style": "IPY_MODEL_5690b7e216064681bb125e25a83acf6c", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "dcfe23732122499baacc1e7909905d73": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c3e9354851c3433185ea6e372faabaf9", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cd4bed5282574b86833b2f162592b5a5", - "tabbable": null, - "tooltip": null, - "value": 2.0 - } - }, - "e0bf989ef7fb46aaba54d6a87f1cfdd9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e522be3c869b45c6bb7968c3f0116f3c": { + "fc6e6a9393194ac398c0ed4656e82b1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5316,86 +5388,14 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_42c9c906f2f340468f542b62923734d5", - "max": 5175617.0, + "layout": "IPY_MODEL_0bd752be93eb409d8bd6eb055e6d98d7", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_a66aa5b3deff4f09ab07c4f7f356bf86", + "style": "IPY_MODEL_11c9603c99d54bfabec0a822c0e3ca5f", "tabbable": null, "tooltip": null, - "value": 5175617.0 - } - }, - "e873376358504a109e35d30d42f1d8a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "eb2344da9c554d449fe19704e7c0003b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "fae1a0fd8a6d4b5db6bab2833030e36f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "fdb8d941926d414e8fbd80b77599dd7e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 60000.0 } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index f63ba0fd7..7bfe9c315 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:59.016541Z", - "iopub.status.busy": "2024-02-13T04:49:59.016121Z", - "iopub.status.idle": "2024-02-13T04:50:00.173633Z", - "shell.execute_reply": "2024-02-13T04:50:00.173015Z" + "iopub.execute_input": "2024-02-13T22:19:37.392984Z", + "iopub.status.busy": "2024-02-13T22:19:37.392561Z", + "iopub.status.idle": "2024-02-13T22:19:38.520633Z", + "shell.execute_reply": "2024-02-13T22:19:38.520146Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:00.176456Z", - "iopub.status.busy": "2024-02-13T04:50:00.176014Z", - "iopub.status.idle": "2024-02-13T04:50:00.360277Z", - "shell.execute_reply": "2024-02-13T04:50:00.359673Z" + "iopub.execute_input": "2024-02-13T22:19:38.523155Z", + "iopub.status.busy": "2024-02-13T22:19:38.522778Z", + "iopub.status.idle": "2024-02-13T22:19:38.701638Z", + "shell.execute_reply": "2024-02-13T22:19:38.700997Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:00.362859Z", - "iopub.status.busy": "2024-02-13T04:50:00.362649Z", - "iopub.status.idle": "2024-02-13T04:50:00.374261Z", - "shell.execute_reply": "2024-02-13T04:50:00.373741Z" + "iopub.execute_input": "2024-02-13T22:19:38.704168Z", + "iopub.status.busy": "2024-02-13T22:19:38.703821Z", + "iopub.status.idle": "2024-02-13T22:19:38.715588Z", + "shell.execute_reply": "2024-02-13T22:19:38.715164Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:00.376137Z", - "iopub.status.busy": "2024-02-13T04:50:00.375955Z", - "iopub.status.idle": "2024-02-13T04:50:00.585876Z", - "shell.execute_reply": "2024-02-13T04:50:00.585277Z" + "iopub.execute_input": "2024-02-13T22:19:38.717531Z", + "iopub.status.busy": "2024-02-13T22:19:38.717203Z", + "iopub.status.idle": "2024-02-13T22:19:38.950640Z", + "shell.execute_reply": "2024-02-13T22:19:38.950106Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:00.588269Z", - "iopub.status.busy": "2024-02-13T04:50:00.587942Z", - "iopub.status.idle": "2024-02-13T04:50:00.616209Z", - "shell.execute_reply": "2024-02-13T04:50:00.615729Z" + "iopub.execute_input": "2024-02-13T22:19:38.952983Z", + "iopub.status.busy": "2024-02-13T22:19:38.952644Z", + "iopub.status.idle": "2024-02-13T22:19:38.980126Z", + "shell.execute_reply": "2024-02-13T22:19:38.979547Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:00.618600Z", - "iopub.status.busy": "2024-02-13T04:50:00.618235Z", - "iopub.status.idle": "2024-02-13T04:50:02.379943Z", - "shell.execute_reply": "2024-02-13T04:50:02.379274Z" + "iopub.execute_input": "2024-02-13T22:19:38.982443Z", + "iopub.status.busy": "2024-02-13T22:19:38.982260Z", + "iopub.status.idle": "2024-02-13T22:19:40.658675Z", + "shell.execute_reply": "2024-02-13T22:19:40.658026Z" } }, "outputs": [ @@ -475,10 +475,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:02.382722Z", - "iopub.status.busy": "2024-02-13T04:50:02.381962Z", - "iopub.status.idle": "2024-02-13T04:50:02.401260Z", - "shell.execute_reply": "2024-02-13T04:50:02.400758Z" + "iopub.execute_input": "2024-02-13T22:19:40.661094Z", + "iopub.status.busy": "2024-02-13T22:19:40.660633Z", + "iopub.status.idle": "2024-02-13T22:19:40.678792Z", + "shell.execute_reply": "2024-02-13T22:19:40.678350Z" }, "scrolled": true }, @@ -603,10 +603,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:02.403608Z", - "iopub.status.busy": "2024-02-13T04:50:02.403195Z", - "iopub.status.idle": "2024-02-13T04:50:03.836390Z", - "shell.execute_reply": "2024-02-13T04:50:03.835759Z" + "iopub.execute_input": "2024-02-13T22:19:40.680795Z", + "iopub.status.busy": "2024-02-13T22:19:40.680465Z", + "iopub.status.idle": "2024-02-13T22:19:42.096969Z", + "shell.execute_reply": "2024-02-13T22:19:42.096327Z" }, "id": "AaHC5MRKjruT" }, @@ -725,10 +725,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:03.839229Z", - "iopub.status.busy": "2024-02-13T04:50:03.838433Z", - "iopub.status.idle": "2024-02-13T04:50:03.852330Z", - "shell.execute_reply": "2024-02-13T04:50:03.851853Z" + "iopub.execute_input": "2024-02-13T22:19:42.100162Z", + "iopub.status.busy": "2024-02-13T22:19:42.099099Z", + "iopub.status.idle": "2024-02-13T22:19:42.112445Z", + "shell.execute_reply": "2024-02-13T22:19:42.112001Z" }, "id": "Wy27rvyhjruU" }, @@ -777,10 +777,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:03.854540Z", - "iopub.status.busy": "2024-02-13T04:50:03.854206Z", - "iopub.status.idle": "2024-02-13T04:50:03.931457Z", - "shell.execute_reply": "2024-02-13T04:50:03.930837Z" + "iopub.execute_input": "2024-02-13T22:19:42.114366Z", + "iopub.status.busy": "2024-02-13T22:19:42.114059Z", + "iopub.status.idle": "2024-02-13T22:19:42.185367Z", + "shell.execute_reply": "2024-02-13T22:19:42.184833Z" }, "id": "Db8YHnyVjruU" }, @@ -887,10 +887,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:03.933886Z", - "iopub.status.busy": "2024-02-13T04:50:03.933626Z", - "iopub.status.idle": "2024-02-13T04:50:04.143267Z", - "shell.execute_reply": "2024-02-13T04:50:04.142794Z" + "iopub.execute_input": "2024-02-13T22:19:42.187819Z", + "iopub.status.busy": "2024-02-13T22:19:42.187382Z", + "iopub.status.idle": "2024-02-13T22:19:42.400115Z", + "shell.execute_reply": "2024-02-13T22:19:42.399559Z" }, "id": "iJqAHuS2jruV" }, @@ -927,10 +927,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:04.145472Z", - "iopub.status.busy": "2024-02-13T04:50:04.145125Z", - "iopub.status.idle": "2024-02-13T04:50:04.162092Z", - "shell.execute_reply": "2024-02-13T04:50:04.161565Z" + "iopub.execute_input": "2024-02-13T22:19:42.402431Z", + "iopub.status.busy": "2024-02-13T22:19:42.402086Z", + "iopub.status.idle": "2024-02-13T22:19:42.418839Z", + "shell.execute_reply": "2024-02-13T22:19:42.418387Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1396,10 +1396,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:04.164216Z", - "iopub.status.busy": "2024-02-13T04:50:04.163880Z", - "iopub.status.idle": "2024-02-13T04:50:04.173619Z", - "shell.execute_reply": "2024-02-13T04:50:04.173195Z" + "iopub.execute_input": "2024-02-13T22:19:42.420706Z", + "iopub.status.busy": "2024-02-13T22:19:42.420530Z", + "iopub.status.idle": "2024-02-13T22:19:42.430234Z", + "shell.execute_reply": "2024-02-13T22:19:42.429712Z" }, "id": "0lonvOYvjruV" }, @@ -1546,10 +1546,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:04.175638Z", - "iopub.status.busy": "2024-02-13T04:50:04.175314Z", - "iopub.status.idle": "2024-02-13T04:50:04.266519Z", - "shell.execute_reply": "2024-02-13T04:50:04.265870Z" + "iopub.execute_input": "2024-02-13T22:19:42.432407Z", + "iopub.status.busy": "2024-02-13T22:19:42.432004Z", + "iopub.status.idle": "2024-02-13T22:19:42.517690Z", + "shell.execute_reply": "2024-02-13T22:19:42.517144Z" }, "id": "MfqTCa3kjruV" }, @@ -1630,10 +1630,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:04.268999Z", - "iopub.status.busy": "2024-02-13T04:50:04.268611Z", - "iopub.status.idle": "2024-02-13T04:50:04.402477Z", - "shell.execute_reply": "2024-02-13T04:50:04.401828Z" + "iopub.execute_input": "2024-02-13T22:19:42.520126Z", + "iopub.status.busy": "2024-02-13T22:19:42.519794Z", + "iopub.status.idle": "2024-02-13T22:19:42.635225Z", + "shell.execute_reply": "2024-02-13T22:19:42.634473Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1693,10 +1693,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:04.404675Z", - "iopub.status.busy": "2024-02-13T04:50:04.404440Z", - "iopub.status.idle": "2024-02-13T04:50:04.408460Z", - "shell.execute_reply": "2024-02-13T04:50:04.407963Z" + "iopub.execute_input": "2024-02-13T22:19:42.637443Z", + "iopub.status.busy": "2024-02-13T22:19:42.637226Z", + "iopub.status.idle": "2024-02-13T22:19:42.640926Z", + "shell.execute_reply": "2024-02-13T22:19:42.640405Z" }, "id": "0rXP3ZPWjruW" }, @@ -1734,10 +1734,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:04.410658Z", - "iopub.status.busy": "2024-02-13T04:50:04.410253Z", - "iopub.status.idle": "2024-02-13T04:50:04.414308Z", - "shell.execute_reply": "2024-02-13T04:50:04.413792Z" + "iopub.execute_input": "2024-02-13T22:19:42.642877Z", + "iopub.status.busy": "2024-02-13T22:19:42.642575Z", + "iopub.status.idle": "2024-02-13T22:19:42.646214Z", + "shell.execute_reply": "2024-02-13T22:19:42.645697Z" }, "id": "-iRPe8KXjruW" }, @@ -1792,10 +1792,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:04.416344Z", - "iopub.status.busy": "2024-02-13T04:50:04.416053Z", - "iopub.status.idle": "2024-02-13T04:50:04.454502Z", - "shell.execute_reply": "2024-02-13T04:50:04.453897Z" + "iopub.execute_input": "2024-02-13T22:19:42.648107Z", + "iopub.status.busy": "2024-02-13T22:19:42.647931Z", + "iopub.status.idle": "2024-02-13T22:19:42.684561Z", + "shell.execute_reply": "2024-02-13T22:19:42.684028Z" }, "id": "ZpipUliyjruW" }, @@ -1846,10 +1846,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:04.456912Z", - "iopub.status.busy": "2024-02-13T04:50:04.456550Z", - "iopub.status.idle": "2024-02-13T04:50:04.500248Z", - "shell.execute_reply": "2024-02-13T04:50:04.499741Z" + "iopub.execute_input": "2024-02-13T22:19:42.686434Z", + "iopub.status.busy": "2024-02-13T22:19:42.686257Z", + "iopub.status.idle": "2024-02-13T22:19:42.728063Z", + "shell.execute_reply": "2024-02-13T22:19:42.727642Z" }, "id": "SLq-3q4xjruX" }, @@ -1918,10 +1918,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:04.502518Z", - "iopub.status.busy": "2024-02-13T04:50:04.502099Z", - "iopub.status.idle": "2024-02-13T04:50:04.599155Z", - "shell.execute_reply": "2024-02-13T04:50:04.598536Z" + "iopub.execute_input": "2024-02-13T22:19:42.729911Z", + "iopub.status.busy": "2024-02-13T22:19:42.729741Z", + "iopub.status.idle": "2024-02-13T22:19:42.817953Z", + "shell.execute_reply": "2024-02-13T22:19:42.817284Z" }, "id": "g5LHhhuqFbXK" }, @@ -1953,10 +1953,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:04.602069Z", - "iopub.status.busy": "2024-02-13T04:50:04.601561Z", - "iopub.status.idle": "2024-02-13T04:50:04.698047Z", - "shell.execute_reply": "2024-02-13T04:50:04.697450Z" + "iopub.execute_input": "2024-02-13T22:19:42.820650Z", + "iopub.status.busy": "2024-02-13T22:19:42.820431Z", + "iopub.status.idle": "2024-02-13T22:19:42.897309Z", + "shell.execute_reply": "2024-02-13T22:19:42.896712Z" }, "id": "p7w8F8ezBcet" }, @@ -2013,10 +2013,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:04.700334Z", - "iopub.status.busy": "2024-02-13T04:50:04.700087Z", - "iopub.status.idle": "2024-02-13T04:50:04.920196Z", - "shell.execute_reply": "2024-02-13T04:50:04.919622Z" + "iopub.execute_input": "2024-02-13T22:19:42.899779Z", + "iopub.status.busy": "2024-02-13T22:19:42.899366Z", + "iopub.status.idle": "2024-02-13T22:19:43.108879Z", + "shell.execute_reply": "2024-02-13T22:19:43.108304Z" }, "id": "WETRL74tE_sU" }, @@ -2051,10 +2051,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:04.922457Z", - "iopub.status.busy": "2024-02-13T04:50:04.922116Z", - "iopub.status.idle": "2024-02-13T04:50:05.119882Z", - "shell.execute_reply": "2024-02-13T04:50:05.119313Z" + "iopub.execute_input": "2024-02-13T22:19:43.110963Z", + "iopub.status.busy": "2024-02-13T22:19:43.110725Z", + "iopub.status.idle": "2024-02-13T22:19:43.289217Z", + "shell.execute_reply": "2024-02-13T22:19:43.288628Z" }, "id": "kCfdx2gOLmXS" }, @@ -2216,10 +2216,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:05.122296Z", - "iopub.status.busy": "2024-02-13T04:50:05.121930Z", - "iopub.status.idle": "2024-02-13T04:50:05.127645Z", - "shell.execute_reply": "2024-02-13T04:50:05.127215Z" + "iopub.execute_input": "2024-02-13T22:19:43.291497Z", + "iopub.status.busy": "2024-02-13T22:19:43.291273Z", + "iopub.status.idle": "2024-02-13T22:19:43.297731Z", + "shell.execute_reply": "2024-02-13T22:19:43.297205Z" }, "id": "-uogYRWFYnuu" }, @@ -2273,10 +2273,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:05.129548Z", - "iopub.status.busy": "2024-02-13T04:50:05.129288Z", - "iopub.status.idle": "2024-02-13T04:50:05.346428Z", - "shell.execute_reply": "2024-02-13T04:50:05.345831Z" + "iopub.execute_input": "2024-02-13T22:19:43.299815Z", + "iopub.status.busy": "2024-02-13T22:19:43.299505Z", + "iopub.status.idle": "2024-02-13T22:19:43.525106Z", + "shell.execute_reply": "2024-02-13T22:19:43.524523Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2323,10 +2323,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:05.348541Z", - "iopub.status.busy": "2024-02-13T04:50:05.348355Z", - "iopub.status.idle": "2024-02-13T04:50:06.434438Z", - "shell.execute_reply": "2024-02-13T04:50:06.433862Z" + "iopub.execute_input": "2024-02-13T22:19:43.527363Z", + "iopub.status.busy": "2024-02-13T22:19:43.527026Z", + "iopub.status.idle": "2024-02-13T22:19:44.607924Z", + "shell.execute_reply": "2024-02-13T22:19:44.607384Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index 8ff4bdc9e..3d39c24f2 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:10.161609Z", - "iopub.status.busy": "2024-02-13T04:50:10.161425Z", - "iopub.status.idle": "2024-02-13T04:50:11.255077Z", - "shell.execute_reply": "2024-02-13T04:50:11.254534Z" + "iopub.execute_input": "2024-02-13T22:19:48.239958Z", + "iopub.status.busy": "2024-02-13T22:19:48.239787Z", + "iopub.status.idle": "2024-02-13T22:19:49.301141Z", + "shell.execute_reply": "2024-02-13T22:19:49.300614Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:11.257800Z", - "iopub.status.busy": "2024-02-13T04:50:11.257271Z", - "iopub.status.idle": "2024-02-13T04:50:11.260452Z", - "shell.execute_reply": "2024-02-13T04:50:11.260022Z" + "iopub.execute_input": "2024-02-13T22:19:49.303709Z", + "iopub.status.busy": "2024-02-13T22:19:49.303285Z", + "iopub.status.idle": "2024-02-13T22:19:49.306278Z", + "shell.execute_reply": "2024-02-13T22:19:49.305851Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:11.262757Z", - "iopub.status.busy": "2024-02-13T04:50:11.262369Z", - "iopub.status.idle": "2024-02-13T04:50:11.270270Z", - "shell.execute_reply": "2024-02-13T04:50:11.269815Z" + "iopub.execute_input": "2024-02-13T22:19:49.308132Z", + "iopub.status.busy": "2024-02-13T22:19:49.307963Z", + "iopub.status.idle": "2024-02-13T22:19:49.315510Z", + "shell.execute_reply": "2024-02-13T22:19:49.315071Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:11.272420Z", - "iopub.status.busy": "2024-02-13T04:50:11.272042Z", - "iopub.status.idle": "2024-02-13T04:50:11.321445Z", - "shell.execute_reply": "2024-02-13T04:50:11.320903Z" + "iopub.execute_input": "2024-02-13T22:19:49.317266Z", + "iopub.status.busy": "2024-02-13T22:19:49.317098Z", + "iopub.status.idle": "2024-02-13T22:19:49.363659Z", + "shell.execute_reply": "2024-02-13T22:19:49.363176Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:11.323919Z", - "iopub.status.busy": "2024-02-13T04:50:11.323722Z", - "iopub.status.idle": "2024-02-13T04:50:11.342426Z", - "shell.execute_reply": "2024-02-13T04:50:11.341944Z" + "iopub.execute_input": "2024-02-13T22:19:49.365718Z", + "iopub.status.busy": "2024-02-13T22:19:49.365534Z", + "iopub.status.idle": "2024-02-13T22:19:49.383026Z", + "shell.execute_reply": "2024-02-13T22:19:49.382581Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:11.344401Z", - "iopub.status.busy": "2024-02-13T04:50:11.344222Z", - "iopub.status.idle": "2024-02-13T04:50:11.348200Z", - "shell.execute_reply": "2024-02-13T04:50:11.347752Z" + "iopub.execute_input": "2024-02-13T22:19:49.384968Z", + "iopub.status.busy": "2024-02-13T22:19:49.384795Z", + "iopub.status.idle": "2024-02-13T22:19:49.388588Z", + "shell.execute_reply": "2024-02-13T22:19:49.388144Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:11.350097Z", - "iopub.status.busy": "2024-02-13T04:50:11.349910Z", - "iopub.status.idle": "2024-02-13T04:50:11.381874Z", - "shell.execute_reply": "2024-02-13T04:50:11.381252Z" + "iopub.execute_input": "2024-02-13T22:19:49.390547Z", + "iopub.status.busy": "2024-02-13T22:19:49.390248Z", + "iopub.status.idle": "2024-02-13T22:19:49.417011Z", + "shell.execute_reply": "2024-02-13T22:19:49.416606Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:11.384489Z", - "iopub.status.busy": "2024-02-13T04:50:11.384074Z", - "iopub.status.idle": "2024-02-13T04:50:11.411513Z", - "shell.execute_reply": "2024-02-13T04:50:11.411049Z" + "iopub.execute_input": "2024-02-13T22:19:49.418930Z", + "iopub.status.busy": "2024-02-13T22:19:49.418739Z", + "iopub.status.idle": "2024-02-13T22:19:49.445201Z", + "shell.execute_reply": "2024-02-13T22:19:49.444761Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:11.413866Z", - "iopub.status.busy": "2024-02-13T04:50:11.413518Z", - "iopub.status.idle": "2024-02-13T04:50:13.213134Z", - "shell.execute_reply": "2024-02-13T04:50:13.212579Z" + "iopub.execute_input": "2024-02-13T22:19:49.447185Z", + "iopub.status.busy": "2024-02-13T22:19:49.447013Z", + "iopub.status.idle": "2024-02-13T22:19:51.198820Z", + "shell.execute_reply": "2024-02-13T22:19:51.198242Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:13.215831Z", - "iopub.status.busy": "2024-02-13T04:50:13.215320Z", - "iopub.status.idle": "2024-02-13T04:50:13.222261Z", - "shell.execute_reply": "2024-02-13T04:50:13.221803Z" + "iopub.execute_input": "2024-02-13T22:19:51.201527Z", + "iopub.status.busy": "2024-02-13T22:19:51.200994Z", + "iopub.status.idle": "2024-02-13T22:19:51.207956Z", + "shell.execute_reply": "2024-02-13T22:19:51.207509Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:13.224392Z", - "iopub.status.busy": "2024-02-13T04:50:13.224072Z", - "iopub.status.idle": "2024-02-13T04:50:13.236917Z", - "shell.execute_reply": "2024-02-13T04:50:13.236431Z" + "iopub.execute_input": "2024-02-13T22:19:51.209979Z", + "iopub.status.busy": "2024-02-13T22:19:51.209659Z", + "iopub.status.idle": "2024-02-13T22:19:51.222058Z", + "shell.execute_reply": "2024-02-13T22:19:51.221519Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:13.239164Z", - "iopub.status.busy": "2024-02-13T04:50:13.238719Z", - "iopub.status.idle": "2024-02-13T04:50:13.245372Z", - "shell.execute_reply": "2024-02-13T04:50:13.244951Z" + "iopub.execute_input": "2024-02-13T22:19:51.224089Z", + "iopub.status.busy": "2024-02-13T22:19:51.223756Z", + "iopub.status.idle": "2024-02-13T22:19:51.229990Z", + "shell.execute_reply": "2024-02-13T22:19:51.229568Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:13.247613Z", - "iopub.status.busy": "2024-02-13T04:50:13.247282Z", - "iopub.status.idle": "2024-02-13T04:50:13.249975Z", - "shell.execute_reply": "2024-02-13T04:50:13.249520Z" + "iopub.execute_input": "2024-02-13T22:19:51.231967Z", + "iopub.status.busy": "2024-02-13T22:19:51.231646Z", + "iopub.status.idle": "2024-02-13T22:19:51.234237Z", + "shell.execute_reply": "2024-02-13T22:19:51.233807Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:13.252042Z", - "iopub.status.busy": "2024-02-13T04:50:13.251637Z", - "iopub.status.idle": "2024-02-13T04:50:13.255441Z", - "shell.execute_reply": "2024-02-13T04:50:13.254993Z" + "iopub.execute_input": "2024-02-13T22:19:51.236150Z", + "iopub.status.busy": "2024-02-13T22:19:51.235837Z", + "iopub.status.idle": "2024-02-13T22:19:51.239372Z", + "shell.execute_reply": "2024-02-13T22:19:51.238926Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:13.257518Z", - "iopub.status.busy": "2024-02-13T04:50:13.257122Z", - "iopub.status.idle": "2024-02-13T04:50:13.259870Z", - "shell.execute_reply": "2024-02-13T04:50:13.259332Z" + "iopub.execute_input": "2024-02-13T22:19:51.241376Z", + "iopub.status.busy": "2024-02-13T22:19:51.241079Z", + "iopub.status.idle": "2024-02-13T22:19:51.243627Z", + "shell.execute_reply": "2024-02-13T22:19:51.243200Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:13.262000Z", - "iopub.status.busy": "2024-02-13T04:50:13.261733Z", - "iopub.status.idle": "2024-02-13T04:50:13.266015Z", - "shell.execute_reply": "2024-02-13T04:50:13.265479Z" + "iopub.execute_input": "2024-02-13T22:19:51.245553Z", + "iopub.status.busy": "2024-02-13T22:19:51.245253Z", + "iopub.status.idle": "2024-02-13T22:19:51.249512Z", + "shell.execute_reply": "2024-02-13T22:19:51.249074Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:13.268271Z", - "iopub.status.busy": "2024-02-13T04:50:13.267824Z", - "iopub.status.idle": "2024-02-13T04:50:13.298493Z", - "shell.execute_reply": "2024-02-13T04:50:13.297870Z" + "iopub.execute_input": "2024-02-13T22:19:51.251463Z", + "iopub.status.busy": "2024-02-13T22:19:51.251149Z", + "iopub.status.idle": "2024-02-13T22:19:51.280045Z", + "shell.execute_reply": "2024-02-13T22:19:51.279641Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:13.301086Z", - "iopub.status.busy": "2024-02-13T04:50:13.300631Z", - "iopub.status.idle": "2024-02-13T04:50:13.305579Z", - "shell.execute_reply": "2024-02-13T04:50:13.305029Z" + "iopub.execute_input": "2024-02-13T22:19:51.282073Z", + "iopub.status.busy": "2024-02-13T22:19:51.281772Z", + "iopub.status.idle": "2024-02-13T22:19:51.286931Z", + "shell.execute_reply": "2024-02-13T22:19:51.286484Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 1bf441475..a86822803 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:16.134926Z", - "iopub.status.busy": "2024-02-13T04:50:16.134736Z", - "iopub.status.idle": "2024-02-13T04:50:17.297645Z", - "shell.execute_reply": "2024-02-13T04:50:17.297021Z" + "iopub.execute_input": "2024-02-13T22:19:54.063046Z", + "iopub.status.busy": "2024-02-13T22:19:54.062694Z", + "iopub.status.idle": "2024-02-13T22:19:55.181665Z", + "shell.execute_reply": "2024-02-13T22:19:55.181128Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:17.300365Z", - "iopub.status.busy": "2024-02-13T04:50:17.300046Z", - "iopub.status.idle": "2024-02-13T04:50:17.505356Z", - "shell.execute_reply": "2024-02-13T04:50:17.504795Z" + "iopub.execute_input": "2024-02-13T22:19:55.184194Z", + "iopub.status.busy": "2024-02-13T22:19:55.183797Z", + "iopub.status.idle": "2024-02-13T22:19:55.378378Z", + "shell.execute_reply": "2024-02-13T22:19:55.377783Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:17.508089Z", - "iopub.status.busy": "2024-02-13T04:50:17.507653Z", - "iopub.status.idle": "2024-02-13T04:50:17.520953Z", - "shell.execute_reply": "2024-02-13T04:50:17.520358Z" + "iopub.execute_input": "2024-02-13T22:19:55.381096Z", + "iopub.status.busy": "2024-02-13T22:19:55.380756Z", + "iopub.status.idle": "2024-02-13T22:19:55.393706Z", + "shell.execute_reply": "2024-02-13T22:19:55.393178Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:17.523473Z", - "iopub.status.busy": "2024-02-13T04:50:17.523028Z", - "iopub.status.idle": "2024-02-13T04:50:20.279663Z", - "shell.execute_reply": "2024-02-13T04:50:20.279081Z" + "iopub.execute_input": "2024-02-13T22:19:55.395869Z", + "iopub.status.busy": "2024-02-13T22:19:55.395555Z", + "iopub.status.idle": "2024-02-13T22:19:58.073348Z", + "shell.execute_reply": "2024-02-13T22:19:58.072776Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:20.282238Z", - "iopub.status.busy": "2024-02-13T04:50:20.281764Z", - "iopub.status.idle": "2024-02-13T04:50:21.664143Z", - "shell.execute_reply": "2024-02-13T04:50:21.663484Z" + "iopub.execute_input": "2024-02-13T22:19:58.075634Z", + "iopub.status.busy": "2024-02-13T22:19:58.075289Z", + "iopub.status.idle": "2024-02-13T22:19:59.419117Z", + "shell.execute_reply": "2024-02-13T22:19:59.418467Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:21.666710Z", - "iopub.status.busy": "2024-02-13T04:50:21.666482Z", - "iopub.status.idle": "2024-02-13T04:50:21.670850Z", - "shell.execute_reply": "2024-02-13T04:50:21.670279Z" + "iopub.execute_input": "2024-02-13T22:19:59.421753Z", + "iopub.status.busy": "2024-02-13T22:19:59.421383Z", + "iopub.status.idle": "2024-02-13T22:19:59.425221Z", + "shell.execute_reply": "2024-02-13T22:19:59.424729Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:21.672865Z", - "iopub.status.busy": "2024-02-13T04:50:21.672562Z", - "iopub.status.idle": "2024-02-13T04:50:23.587199Z", - "shell.execute_reply": "2024-02-13T04:50:23.586538Z" + "iopub.execute_input": "2024-02-13T22:19:59.427249Z", + "iopub.status.busy": "2024-02-13T22:19:59.426927Z", + "iopub.status.idle": "2024-02-13T22:20:01.257632Z", + "shell.execute_reply": "2024-02-13T22:20:01.257000Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:23.590375Z", - "iopub.status.busy": "2024-02-13T04:50:23.589414Z", - "iopub.status.idle": "2024-02-13T04:50:23.597849Z", - "shell.execute_reply": "2024-02-13T04:50:23.597351Z" + "iopub.execute_input": "2024-02-13T22:20:01.260308Z", + "iopub.status.busy": "2024-02-13T22:20:01.259738Z", + "iopub.status.idle": "2024-02-13T22:20:01.267565Z", + "shell.execute_reply": "2024-02-13T22:20:01.267054Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:23.599981Z", - "iopub.status.busy": "2024-02-13T04:50:23.599793Z", - "iopub.status.idle": "2024-02-13T04:50:26.279225Z", - "shell.execute_reply": "2024-02-13T04:50:26.278733Z" + "iopub.execute_input": "2024-02-13T22:20:01.269551Z", + "iopub.status.busy": "2024-02-13T22:20:01.269233Z", + "iopub.status.idle": "2024-02-13T22:20:03.834688Z", + "shell.execute_reply": "2024-02-13T22:20:03.834232Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:26.281564Z", - "iopub.status.busy": "2024-02-13T04:50:26.281116Z", - "iopub.status.idle": "2024-02-13T04:50:26.284963Z", - "shell.execute_reply": "2024-02-13T04:50:26.284390Z" + "iopub.execute_input": "2024-02-13T22:20:03.836670Z", + "iopub.status.busy": "2024-02-13T22:20:03.836492Z", + "iopub.status.idle": "2024-02-13T22:20:03.839817Z", + "shell.execute_reply": "2024-02-13T22:20:03.839298Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:26.287102Z", - "iopub.status.busy": "2024-02-13T04:50:26.286711Z", - "iopub.status.idle": "2024-02-13T04:50:26.291110Z", - "shell.execute_reply": "2024-02-13T04:50:26.290566Z" + "iopub.execute_input": "2024-02-13T22:20:03.841837Z", + "iopub.status.busy": "2024-02-13T22:20:03.841501Z", + "iopub.status.idle": "2024-02-13T22:20:03.845501Z", + "shell.execute_reply": "2024-02-13T22:20:03.845070Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:26.293197Z", - "iopub.status.busy": "2024-02-13T04:50:26.292823Z", - "iopub.status.idle": "2024-02-13T04:50:26.296060Z", - "shell.execute_reply": "2024-02-13T04:50:26.295586Z" + "iopub.execute_input": "2024-02-13T22:20:03.847442Z", + "iopub.status.busy": "2024-02-13T22:20:03.847120Z", + "iopub.status.idle": "2024-02-13T22:20:03.849974Z", + "shell.execute_reply": "2024-02-13T22:20:03.849537Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index e2f8d7fdd..fe9344edf 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:28.932570Z", - "iopub.status.busy": "2024-02-13T04:50:28.932395Z", - "iopub.status.idle": "2024-02-13T04:50:30.115133Z", - "shell.execute_reply": "2024-02-13T04:50:30.114619Z" + "iopub.execute_input": "2024-02-13T22:20:06.167414Z", + "iopub.status.busy": "2024-02-13T22:20:06.167228Z", + "iopub.status.idle": "2024-02-13T22:20:07.248040Z", + "shell.execute_reply": "2024-02-13T22:20:07.247452Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:30.118025Z", - "iopub.status.busy": "2024-02-13T04:50:30.117377Z", - "iopub.status.idle": "2024-02-13T04:50:32.461885Z", - "shell.execute_reply": "2024-02-13T04:50:32.461193Z" + "iopub.execute_input": "2024-02-13T22:20:07.250700Z", + "iopub.status.busy": "2024-02-13T22:20:07.250294Z", + "iopub.status.idle": "2024-02-13T22:20:09.120223Z", + "shell.execute_reply": "2024-02-13T22:20:09.119629Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:32.464516Z", - "iopub.status.busy": "2024-02-13T04:50:32.464133Z", - "iopub.status.idle": "2024-02-13T04:50:32.467277Z", - "shell.execute_reply": "2024-02-13T04:50:32.466844Z" + "iopub.execute_input": "2024-02-13T22:20:09.122733Z", + "iopub.status.busy": "2024-02-13T22:20:09.122528Z", + "iopub.status.idle": "2024-02-13T22:20:09.125862Z", + "shell.execute_reply": "2024-02-13T22:20:09.125413Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:32.469419Z", - "iopub.status.busy": "2024-02-13T04:50:32.469097Z", - "iopub.status.idle": "2024-02-13T04:50:32.475773Z", - "shell.execute_reply": "2024-02-13T04:50:32.475354Z" + "iopub.execute_input": "2024-02-13T22:20:09.127714Z", + "iopub.status.busy": "2024-02-13T22:20:09.127539Z", + "iopub.status.idle": "2024-02-13T22:20:09.133716Z", + "shell.execute_reply": "2024-02-13T22:20:09.133327Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:32.477852Z", - "iopub.status.busy": "2024-02-13T04:50:32.477509Z", - "iopub.status.idle": "2024-02-13T04:50:32.973878Z", - "shell.execute_reply": "2024-02-13T04:50:32.973255Z" + "iopub.execute_input": "2024-02-13T22:20:09.135694Z", + "iopub.status.busy": "2024-02-13T22:20:09.135380Z", + "iopub.status.idle": "2024-02-13T22:20:09.616827Z", + "shell.execute_reply": "2024-02-13T22:20:09.616273Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:32.976962Z", - "iopub.status.busy": "2024-02-13T04:50:32.976571Z", - "iopub.status.idle": "2024-02-13T04:50:32.982058Z", - "shell.execute_reply": "2024-02-13T04:50:32.981541Z" + "iopub.execute_input": "2024-02-13T22:20:09.619787Z", + "iopub.status.busy": "2024-02-13T22:20:09.619357Z", + "iopub.status.idle": "2024-02-13T22:20:09.624472Z", + "shell.execute_reply": "2024-02-13T22:20:09.624055Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:32.984219Z", - "iopub.status.busy": "2024-02-13T04:50:32.983898Z", - "iopub.status.idle": "2024-02-13T04:50:32.987905Z", - "shell.execute_reply": "2024-02-13T04:50:32.987371Z" + "iopub.execute_input": "2024-02-13T22:20:09.626461Z", + "iopub.status.busy": "2024-02-13T22:20:09.626129Z", + "iopub.status.idle": "2024-02-13T22:20:09.629776Z", + "shell.execute_reply": "2024-02-13T22:20:09.629331Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:32.990222Z", - "iopub.status.busy": "2024-02-13T04:50:32.989785Z", - "iopub.status.idle": "2024-02-13T04:50:33.730947Z", - "shell.execute_reply": "2024-02-13T04:50:33.730399Z" + "iopub.execute_input": "2024-02-13T22:20:09.631777Z", + "iopub.status.busy": "2024-02-13T22:20:09.631446Z", + "iopub.status.idle": "2024-02-13T22:20:10.321879Z", + "shell.execute_reply": "2024-02-13T22:20:10.321260Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:33.733419Z", - "iopub.status.busy": "2024-02-13T04:50:33.733046Z", - "iopub.status.idle": "2024-02-13T04:50:33.901030Z", - "shell.execute_reply": "2024-02-13T04:50:33.900485Z" + "iopub.execute_input": "2024-02-13T22:20:10.324355Z", + "iopub.status.busy": "2024-02-13T22:20:10.323994Z", + "iopub.status.idle": "2024-02-13T22:20:10.494877Z", + "shell.execute_reply": "2024-02-13T22:20:10.494448Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:33.903374Z", - "iopub.status.busy": "2024-02-13T04:50:33.903025Z", - "iopub.status.idle": "2024-02-13T04:50:33.907423Z", - "shell.execute_reply": "2024-02-13T04:50:33.906873Z" + "iopub.execute_input": "2024-02-13T22:20:10.497067Z", + "iopub.status.busy": "2024-02-13T22:20:10.496883Z", + "iopub.status.idle": "2024-02-13T22:20:10.500885Z", + "shell.execute_reply": "2024-02-13T22:20:10.500465Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:33.909405Z", - "iopub.status.busy": "2024-02-13T04:50:33.909227Z", - "iopub.status.idle": "2024-02-13T04:50:34.378851Z", - "shell.execute_reply": "2024-02-13T04:50:34.378235Z" + "iopub.execute_input": "2024-02-13T22:20:10.502775Z", + "iopub.status.busy": "2024-02-13T22:20:10.502587Z", + "iopub.status.idle": "2024-02-13T22:20:10.971026Z", + "shell.execute_reply": "2024-02-13T22:20:10.970430Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:34.381762Z", - "iopub.status.busy": "2024-02-13T04:50:34.381552Z", - "iopub.status.idle": "2024-02-13T04:50:34.721138Z", - "shell.execute_reply": "2024-02-13T04:50:34.720661Z" + "iopub.execute_input": "2024-02-13T22:20:10.973615Z", + "iopub.status.busy": "2024-02-13T22:20:10.973200Z", + "iopub.status.idle": "2024-02-13T22:20:11.304082Z", + "shell.execute_reply": "2024-02-13T22:20:11.303567Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:34.723331Z", - "iopub.status.busy": "2024-02-13T04:50:34.723120Z", - "iopub.status.idle": "2024-02-13T04:50:35.096201Z", - "shell.execute_reply": "2024-02-13T04:50:35.095584Z" + "iopub.execute_input": "2024-02-13T22:20:11.306506Z", + "iopub.status.busy": "2024-02-13T22:20:11.306328Z", + "iopub.status.idle": "2024-02-13T22:20:11.665937Z", + "shell.execute_reply": "2024-02-13T22:20:11.665389Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:35.099472Z", - "iopub.status.busy": "2024-02-13T04:50:35.099051Z", - "iopub.status.idle": "2024-02-13T04:50:35.551938Z", - "shell.execute_reply": "2024-02-13T04:50:35.551343Z" + "iopub.execute_input": "2024-02-13T22:20:11.668931Z", + "iopub.status.busy": "2024-02-13T22:20:11.668742Z", + "iopub.status.idle": "2024-02-13T22:20:12.111237Z", + "shell.execute_reply": "2024-02-13T22:20:12.110629Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:35.556000Z", - "iopub.status.busy": "2024-02-13T04:50:35.555621Z", - "iopub.status.idle": "2024-02-13T04:50:36.015032Z", - "shell.execute_reply": "2024-02-13T04:50:36.014409Z" + "iopub.execute_input": "2024-02-13T22:20:12.115063Z", + "iopub.status.busy": "2024-02-13T22:20:12.114876Z", + "iopub.status.idle": "2024-02-13T22:20:12.532418Z", + "shell.execute_reply": "2024-02-13T22:20:12.531847Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:36.017943Z", - "iopub.status.busy": "2024-02-13T04:50:36.017721Z", - "iopub.status.idle": "2024-02-13T04:50:36.239803Z", - "shell.execute_reply": "2024-02-13T04:50:36.239237Z" + "iopub.execute_input": "2024-02-13T22:20:12.535457Z", + "iopub.status.busy": "2024-02-13T22:20:12.535040Z", + "iopub.status.idle": "2024-02-13T22:20:12.725708Z", + "shell.execute_reply": "2024-02-13T22:20:12.725048Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:36.242281Z", - "iopub.status.busy": "2024-02-13T04:50:36.241791Z", - "iopub.status.idle": "2024-02-13T04:50:36.443320Z", - "shell.execute_reply": "2024-02-13T04:50:36.442786Z" + "iopub.execute_input": "2024-02-13T22:20:12.728396Z", + "iopub.status.busy": "2024-02-13T22:20:12.727842Z", + "iopub.status.idle": "2024-02-13T22:20:12.911299Z", + "shell.execute_reply": "2024-02-13T22:20:12.910707Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:36.445980Z", - "iopub.status.busy": "2024-02-13T04:50:36.445593Z", - "iopub.status.idle": "2024-02-13T04:50:36.448689Z", - "shell.execute_reply": "2024-02-13T04:50:36.448212Z" + "iopub.execute_input": "2024-02-13T22:20:12.913697Z", + "iopub.status.busy": "2024-02-13T22:20:12.913391Z", + "iopub.status.idle": "2024-02-13T22:20:12.916330Z", + "shell.execute_reply": "2024-02-13T22:20:12.915796Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:36.450754Z", - "iopub.status.busy": "2024-02-13T04:50:36.450418Z", - "iopub.status.idle": "2024-02-13T04:50:37.462400Z", - "shell.execute_reply": "2024-02-13T04:50:37.461778Z" + "iopub.execute_input": "2024-02-13T22:20:12.918214Z", + "iopub.status.busy": "2024-02-13T22:20:12.917919Z", + "iopub.status.idle": "2024-02-13T22:20:13.859385Z", + "shell.execute_reply": "2024-02-13T22:20:13.858811Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:37.465426Z", - "iopub.status.busy": "2024-02-13T04:50:37.465005Z", - "iopub.status.idle": "2024-02-13T04:50:37.583446Z", - "shell.execute_reply": "2024-02-13T04:50:37.582848Z" + "iopub.execute_input": "2024-02-13T22:20:13.861751Z", + "iopub.status.busy": "2024-02-13T22:20:13.861367Z", + "iopub.status.idle": "2024-02-13T22:20:13.989224Z", + "shell.execute_reply": "2024-02-13T22:20:13.988781Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:37.585813Z", - "iopub.status.busy": "2024-02-13T04:50:37.585446Z", - "iopub.status.idle": "2024-02-13T04:50:37.757237Z", - "shell.execute_reply": "2024-02-13T04:50:37.756719Z" + "iopub.execute_input": "2024-02-13T22:20:13.991325Z", + "iopub.status.busy": "2024-02-13T22:20:13.991010Z", + "iopub.status.idle": "2024-02-13T22:20:14.116056Z", + "shell.execute_reply": "2024-02-13T22:20:14.115522Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:37.759281Z", - "iopub.status.busy": "2024-02-13T04:50:37.759098Z", - "iopub.status.idle": "2024-02-13T04:50:38.545018Z", - "shell.execute_reply": "2024-02-13T04:50:38.544545Z" + "iopub.execute_input": "2024-02-13T22:20:14.118064Z", + "iopub.status.busy": "2024-02-13T22:20:14.117762Z", + "iopub.status.idle": "2024-02-13T22:20:14.777732Z", + "shell.execute_reply": "2024-02-13T22:20:14.777193Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:38.547366Z", - "iopub.status.busy": "2024-02-13T04:50:38.546995Z", - "iopub.status.idle": "2024-02-13T04:50:38.550764Z", - "shell.execute_reply": "2024-02-13T04:50:38.550278Z" + "iopub.execute_input": "2024-02-13T22:20:14.779889Z", + "iopub.status.busy": "2024-02-13T22:20:14.779589Z", + "iopub.status.idle": "2024-02-13T22:20:14.783106Z", + "shell.execute_reply": "2024-02-13T22:20:14.782571Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index 2ff39ede6..0a8417d3e 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:40.797102Z", - "iopub.status.busy": "2024-02-13T04:50:40.796728Z", - "iopub.status.idle": "2024-02-13T04:50:43.625253Z", - "shell.execute_reply": "2024-02-13T04:50:43.624682Z" + "iopub.execute_input": "2024-02-13T22:20:17.088154Z", + "iopub.status.busy": "2024-02-13T22:20:17.087983Z", + "iopub.status.idle": "2024-02-13T22:20:19.741741Z", + "shell.execute_reply": "2024-02-13T22:20:19.741216Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:43.628120Z", - "iopub.status.busy": "2024-02-13T04:50:43.627558Z", - "iopub.status.idle": "2024-02-13T04:50:43.970955Z", - "shell.execute_reply": "2024-02-13T04:50:43.970356Z" + "iopub.execute_input": "2024-02-13T22:20:19.744199Z", + "iopub.status.busy": "2024-02-13T22:20:19.743919Z", + "iopub.status.idle": "2024-02-13T22:20:20.069677Z", + "shell.execute_reply": "2024-02-13T22:20:20.069144Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:43.973633Z", - "iopub.status.busy": "2024-02-13T04:50:43.973311Z", - "iopub.status.idle": "2024-02-13T04:50:43.977777Z", - "shell.execute_reply": "2024-02-13T04:50:43.977244Z" + "iopub.execute_input": "2024-02-13T22:20:20.072295Z", + "iopub.status.busy": "2024-02-13T22:20:20.071848Z", + "iopub.status.idle": "2024-02-13T22:20:20.075893Z", + "shell.execute_reply": "2024-02-13T22:20:20.075385Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:43.980131Z", - "iopub.status.busy": "2024-02-13T04:50:43.979734Z", - "iopub.status.idle": "2024-02-13T04:50:51.494430Z", - "shell.execute_reply": "2024-02-13T04:50:51.493935Z" + "iopub.execute_input": "2024-02-13T22:20:20.078052Z", + "iopub.status.busy": "2024-02-13T22:20:20.077636Z", + "iopub.status.idle": "2024-02-13T22:20:24.278824Z", + "shell.execute_reply": "2024-02-13T22:20:24.278323Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 32768/170498071 [00:00<11:43, 242191.71it/s]" + " 1%|▏ | 2162688/170498071 [00:00<00:07, 21622724.86it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 196608/170498071 [00:00<03:31, 805516.69it/s]" + " 8%|▊ | 13828096/170498071 [00:00<00:02, 77484805.71it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 819200/170498071 [00:00<01:07, 2515336.98it/s]" + " 15%|█▍ | 25231360/170498071 [00:00<00:01, 93998799.87it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 3244032/170498071 [00:00<00:19, 8505103.87it/s]" + " 22%|██▏ | 36732928/170498071 [00:00<00:01, 100935739.19it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 9502720/170498071 [00:00<00:07, 21809878.42it/s]" + " 28%|██▊ | 47972352/170498071 [00:00<00:01, 104982488.85it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 15138816/170498071 [00:00<00:04, 31208350.13it/s]" + " 35%|███▍ | 59310080/170498071 [00:00<00:01, 107768381.63it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 18776064/170498071 [00:00<00:04, 32376726.44it/s]" + " 42%|████▏ | 70844416/170498071 [00:00<00:00, 110194171.75it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▎ | 23068672/170498071 [00:00<00:04, 35369377.47it/s]" + " 48%|████▊ | 82411520/170498071 [00:00<00:00, 111925975.92it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▋ | 28114944/170498071 [00:01<00:03, 39025802.79it/s]" + " 55%|█████▌ | 93913088/170498071 [00:00<00:00, 112827006.65it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 32145408/170498071 [00:01<00:03, 38585451.64it/s]" + " 62%|██████▏ | 105218048/170498071 [00:01<00:00, 112706943.38it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37519360/170498071 [00:01<00:03, 42851052.41it/s]" + " 68%|██████▊ | 116588544/170498071 [00:01<00:00, 112841304.38it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 41910272/170498071 [00:01<00:03, 40924153.13it/s]" + " 75%|███████▌ | 128057344/170498071 [00:01<00:00, 113396359.93it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 47185920/170498071 [00:01<00:02, 44084786.35it/s]" + " 82%|████████▏ | 139591680/170498071 [00:01<00:00, 113905134.49it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 51675136/170498071 [00:01<00:02, 42164629.48it/s]" + " 89%|████████▊ | 151093248/170498071 [00:01<00:00, 114199749.50it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 56786944/170498071 [00:01<00:02, 44239731.31it/s]" + " 95%|█████████▌| 162594816/170498071 [00:01<00:00, 114403067.43it/s]" ] }, { @@ -372,191 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 61276160/170498071 [00:01<00:02, 42668530.48it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 39%|███▉ | 66224128/170498071 [00:01<00:02, 44216856.45it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 41%|████▏ | 70713344/170498071 [00:02<00:02, 42753642.41it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 44%|████▍ | 75628544/170498071 [00:02<00:02, 44491349.83it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 47%|████▋ | 80117760/170498071 [00:02<00:02, 42704990.20it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 50%|████▉ | 85065728/170498071 [00:02<00:01, 44574577.07it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 53%|█████▎ | 89587712/170498071 [00:02<00:01, 42724867.37it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 56%|█████▌ | 94633984/170498071 [00:02<00:01, 44700899.96it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 58%|█████▊ | 99155968/170498071 [00:02<00:01, 42882283.58it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 61%|██████ | 104333312/170498071 [00:02<00:01, 44771108.59it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 64%|██████▍ | 108855296/170498071 [00:02<00:01, 43221947.72it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 67%|██████▋ | 113803264/170498071 [00:03<00:01, 44095950.61it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 69%|██████▉ | 118259712/170498071 [00:03<00:01, 43110487.70it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 72%|███████▏ | 123240448/170498071 [00:03<00:01, 44517047.11it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 75%|███████▍ | 127729664/170498071 [00:03<00:00, 43014942.00it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 78%|███████▊ | 132808704/170498071 [00:03<00:00, 45126467.29it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 81%|████████ | 137363456/170498071 [00:03<00:00, 42978573.26it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 84%|████████▎ | 142508032/170498071 [00:03<00:00, 44995468.75it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 86%|████████▋ | 147062784/170498071 [00:03<00:00, 43213693.07it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 89%|████████▉ | 152043520/170498071 [00:03<00:00, 44769587.32it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 156565504/170498071 [00:04<00:00, 43058934.65it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▍| 161447936/170498071 [00:04<00:00, 44628359.61it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 165969920/170498071 [00:04<00:00, 42685291.58it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:04<00:00, 39295081.80it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 108293723.13it/s]" ] }, { @@ -674,10 +490,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:51.496668Z", - "iopub.status.busy": "2024-02-13T04:50:51.496384Z", - "iopub.status.idle": "2024-02-13T04:50:51.501099Z", - "shell.execute_reply": "2024-02-13T04:50:51.500687Z" + "iopub.execute_input": "2024-02-13T22:20:24.281047Z", + "iopub.status.busy": "2024-02-13T22:20:24.280701Z", + "iopub.status.idle": "2024-02-13T22:20:24.285561Z", + "shell.execute_reply": "2024-02-13T22:20:24.285013Z" }, "nbsphinx": "hidden" }, @@ -728,10 +544,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:51.503206Z", - "iopub.status.busy": "2024-02-13T04:50:51.502871Z", - "iopub.status.idle": "2024-02-13T04:50:52.064895Z", - "shell.execute_reply": "2024-02-13T04:50:52.064299Z" + "iopub.execute_input": "2024-02-13T22:20:24.287559Z", + "iopub.status.busy": "2024-02-13T22:20:24.287387Z", + "iopub.status.idle": "2024-02-13T22:20:24.824224Z", + "shell.execute_reply": "2024-02-13T22:20:24.823678Z" } }, "outputs": [ @@ -764,10 +580,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:52.067171Z", - "iopub.status.busy": "2024-02-13T04:50:52.066959Z", - "iopub.status.idle": "2024-02-13T04:50:52.598463Z", - "shell.execute_reply": "2024-02-13T04:50:52.597895Z" + "iopub.execute_input": "2024-02-13T22:20:24.826346Z", + "iopub.status.busy": "2024-02-13T22:20:24.826161Z", + "iopub.status.idle": "2024-02-13T22:20:25.343804Z", + "shell.execute_reply": "2024-02-13T22:20:25.343235Z" } }, "outputs": [ @@ -805,10 +621,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:52.600566Z", - "iopub.status.busy": "2024-02-13T04:50:52.600375Z", - "iopub.status.idle": "2024-02-13T04:50:52.603848Z", - "shell.execute_reply": "2024-02-13T04:50:52.603426Z" + "iopub.execute_input": "2024-02-13T22:20:25.345983Z", + "iopub.status.busy": "2024-02-13T22:20:25.345586Z", + "iopub.status.idle": "2024-02-13T22:20:25.349090Z", + "shell.execute_reply": "2024-02-13T22:20:25.348562Z" } }, "outputs": [], @@ -831,17 +647,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:52.605713Z", - "iopub.status.busy": "2024-02-13T04:50:52.605537Z", - "iopub.status.idle": "2024-02-13T04:51:05.468666Z", - "shell.execute_reply": "2024-02-13T04:51:05.468060Z" + "iopub.execute_input": "2024-02-13T22:20:25.350941Z", + "iopub.status.busy": "2024-02-13T22:20:25.350754Z", + "iopub.status.idle": "2024-02-13T22:20:37.941208Z", + "shell.execute_reply": "2024-02-13T22:20:37.940679Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "00aa397df6b04e10b15ac7fe6eacaeeb", + "model_id": "f1334d8594c7430b9c801c6b0cbbf360", "version_major": 2, "version_minor": 0 }, @@ -900,10 +716,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:05.471113Z", - "iopub.status.busy": "2024-02-13T04:51:05.470905Z", - "iopub.status.idle": "2024-02-13T04:51:07.049511Z", - "shell.execute_reply": "2024-02-13T04:51:07.048865Z" + "iopub.execute_input": "2024-02-13T22:20:37.943664Z", + "iopub.status.busy": "2024-02-13T22:20:37.943259Z", + "iopub.status.idle": "2024-02-13T22:20:39.512538Z", + "shell.execute_reply": "2024-02-13T22:20:39.511970Z" } }, "outputs": [ @@ -947,10 +763,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:07.052356Z", - "iopub.status.busy": "2024-02-13T04:51:07.051899Z", - "iopub.status.idle": "2024-02-13T04:51:07.501552Z", - "shell.execute_reply": "2024-02-13T04:51:07.500941Z" + "iopub.execute_input": "2024-02-13T22:20:39.515141Z", + "iopub.status.busy": "2024-02-13T22:20:39.514935Z", + "iopub.status.idle": "2024-02-13T22:20:39.943624Z", + "shell.execute_reply": "2024-02-13T22:20:39.943057Z" } }, "outputs": [ @@ -986,10 +802,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:07.504502Z", - "iopub.status.busy": "2024-02-13T04:51:07.504022Z", - "iopub.status.idle": "2024-02-13T04:51:08.166833Z", - "shell.execute_reply": "2024-02-13T04:51:08.166267Z" + "iopub.execute_input": "2024-02-13T22:20:39.946058Z", + "iopub.status.busy": "2024-02-13T22:20:39.945851Z", + "iopub.status.idle": "2024-02-13T22:20:40.631972Z", + "shell.execute_reply": "2024-02-13T22:20:40.631399Z" } }, "outputs": [ @@ -1039,10 +855,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:08.169702Z", - "iopub.status.busy": "2024-02-13T04:51:08.169393Z", - "iopub.status.idle": "2024-02-13T04:51:08.515046Z", - "shell.execute_reply": "2024-02-13T04:51:08.514438Z" + "iopub.execute_input": "2024-02-13T22:20:40.634949Z", + "iopub.status.busy": "2024-02-13T22:20:40.634720Z", + "iopub.status.idle": "2024-02-13T22:20:40.970458Z", + "shell.execute_reply": "2024-02-13T22:20:40.969981Z" } }, "outputs": [ @@ -1090,10 +906,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:08.517355Z", - "iopub.status.busy": "2024-02-13T04:51:08.517152Z", - "iopub.status.idle": "2024-02-13T04:51:08.751486Z", - "shell.execute_reply": "2024-02-13T04:51:08.750748Z" + "iopub.execute_input": "2024-02-13T22:20:40.972627Z", + "iopub.status.busy": "2024-02-13T22:20:40.972448Z", + "iopub.status.idle": "2024-02-13T22:20:41.213268Z", + "shell.execute_reply": "2024-02-13T22:20:41.212645Z" } }, "outputs": [ @@ -1149,10 +965,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:08.755254Z", - "iopub.status.busy": "2024-02-13T04:51:08.754598Z", - "iopub.status.idle": "2024-02-13T04:51:08.853006Z", - "shell.execute_reply": "2024-02-13T04:51:08.852526Z" + "iopub.execute_input": "2024-02-13T22:20:41.215958Z", + "iopub.status.busy": "2024-02-13T22:20:41.215502Z", + "iopub.status.idle": "2024-02-13T22:20:41.302731Z", + "shell.execute_reply": "2024-02-13T22:20:41.302260Z" } }, "outputs": [], @@ -1173,10 +989,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:08.855645Z", - "iopub.status.busy": "2024-02-13T04:51:08.855300Z", - "iopub.status.idle": "2024-02-13T04:51:19.165693Z", - "shell.execute_reply": "2024-02-13T04:51:19.165104Z" + "iopub.execute_input": "2024-02-13T22:20:41.305247Z", + "iopub.status.busy": "2024-02-13T22:20:41.304912Z", + "iopub.status.idle": "2024-02-13T22:20:51.494431Z", + "shell.execute_reply": "2024-02-13T22:20:51.493817Z" } }, "outputs": [ @@ -1213,10 +1029,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:19.168285Z", - "iopub.status.busy": "2024-02-13T04:51:19.167864Z", - "iopub.status.idle": "2024-02-13T04:51:20.981784Z", - "shell.execute_reply": "2024-02-13T04:51:20.981216Z" + "iopub.execute_input": "2024-02-13T22:20:51.496886Z", + "iopub.status.busy": "2024-02-13T22:20:51.496509Z", + "iopub.status.idle": "2024-02-13T22:20:53.212852Z", + "shell.execute_reply": "2024-02-13T22:20:53.212227Z" } }, "outputs": [ @@ -1247,10 +1063,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:20.984398Z", - "iopub.status.busy": "2024-02-13T04:51:20.983935Z", - "iopub.status.idle": "2024-02-13T04:51:21.184714Z", - "shell.execute_reply": "2024-02-13T04:51:21.184218Z" + "iopub.execute_input": "2024-02-13T22:20:53.215700Z", + "iopub.status.busy": "2024-02-13T22:20:53.215185Z", + "iopub.status.idle": "2024-02-13T22:20:53.411598Z", + "shell.execute_reply": "2024-02-13T22:20:53.410987Z" } }, "outputs": [], @@ -1264,10 +1080,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:21.187120Z", - "iopub.status.busy": "2024-02-13T04:51:21.186800Z", - "iopub.status.idle": "2024-02-13T04:51:21.189948Z", - "shell.execute_reply": "2024-02-13T04:51:21.189420Z" + "iopub.execute_input": "2024-02-13T22:20:53.413921Z", + "iopub.status.busy": "2024-02-13T22:20:53.413569Z", + "iopub.status.idle": "2024-02-13T22:20:53.416600Z", + "shell.execute_reply": "2024-02-13T22:20:53.416175Z" } }, "outputs": [], @@ -1289,10 +1105,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:21.192041Z", - "iopub.status.busy": "2024-02-13T04:51:21.191636Z", - "iopub.status.idle": "2024-02-13T04:51:21.199711Z", - "shell.execute_reply": "2024-02-13T04:51:21.199172Z" + "iopub.execute_input": "2024-02-13T22:20:53.418634Z", + "iopub.status.busy": "2024-02-13T22:20:53.418324Z", + "iopub.status.idle": "2024-02-13T22:20:53.426433Z", + "shell.execute_reply": "2024-02-13T22:20:53.425901Z" }, "nbsphinx": "hidden" }, @@ -1337,31 +1153,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00aa397df6b04e10b15ac7fe6eacaeeb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bf6a836e52384f6a9ffc4cee82fa2a93", - "IPY_MODEL_45bd7172db5041bdbbc48032651c1904", - "IPY_MODEL_2afc57154736423eb7f7ff675a3a5c36" - ], - "layout": "IPY_MODEL_745577aac87f46cc9c64f65a91723157", - "tabbable": null, - "tooltip": null - } - }, - "10f1b614aabf47beb97e72a7a76d6ea5": { + "02b94e26f61b40daa3d97e50279cd6f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1379,56 +1171,7 @@ "text_color": null } }, - "2afc57154736423eb7f7ff675a3a5c36": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_df84d2959655484b81b615333136a429", - "placeholder": "​", - "style": "IPY_MODEL_10f1b614aabf47beb97e72a7a76d6ea5", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 170MB/s]" - } - }, - "45bd7172db5041bdbbc48032651c1904": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bcd03ef08d4f4a0e8419278c06ae781c", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_db14d8d8cc0d4d09a6dcd26607711ffb", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "745577aac87f46cc9c64f65a91723157": { + "03b046cfd2694c2d9e3f3a13cb7659bb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1481,25 +1224,7 @@ "width": null } }, - "869928d6e2704863b8a2eaab662f735b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bcd03ef08d4f4a0e8419278c06ae781c": { + "174d68d41f0e40c399d1e3a82bd6996c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1552,46 +1277,7 @@ "width": null } }, - "bf6a836e52384f6a9ffc4cee82fa2a93": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f7c2d3e5711d49e4b5f2cbbd296eb8a7", - "placeholder": "​", - "style": "IPY_MODEL_869928d6e2704863b8a2eaab662f735b", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "db14d8d8cc0d4d09a6dcd26607711ffb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "df84d2959655484b81b615333136a429": { + "22f5f812d1584c61a18cd261c1746f3b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1644,7 +1330,137 @@ "width": null } }, - "f7c2d3e5711d49e4b5f2cbbd296eb8a7": { + "30cc7e7e74134609ac8d894ef806e6eb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "60920ac5bc034615956b205a60c6d407": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_174d68d41f0e40c399d1e3a82bd6996c", + "placeholder": "​", + "style": "IPY_MODEL_ec0125af9fba442bacc83780053c219f", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } + }, + "7cae5e1d144a4c5d9c60b98b69c7eb81": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_22f5f812d1584c61a18cd261c1746f3b", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_30cc7e7e74134609ac8d894ef806e6eb", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "d91f8d29d89b4f59ba1da8ec762f2755": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_03b046cfd2694c2d9e3f3a13cb7659bb", + "placeholder": "​", + "style": "IPY_MODEL_02b94e26f61b40daa3d97e50279cd6f2", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 243MB/s]" + } + }, + "ec0125af9fba442bacc83780053c219f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f1334d8594c7430b9c801c6b0cbbf360": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_60920ac5bc034615956b205a60c6d407", + "IPY_MODEL_7cae5e1d144a4c5d9c60b98b69c7eb81", + "IPY_MODEL_d91f8d29d89b4f59ba1da8ec762f2755" + ], + "layout": "IPY_MODEL_f17fc9d4e6774bc8a3e17ec8d9c64f00", + "tabbable": null, + "tooltip": null + } + }, + "f17fc9d4e6774bc8a3e17ec8d9c64f00": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index dd40d3f0f..6f5d58edc 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:25.670456Z", - "iopub.status.busy": "2024-02-13T04:51:25.670260Z", - "iopub.status.idle": "2024-02-13T04:51:26.818204Z", - "shell.execute_reply": "2024-02-13T04:51:26.817559Z" + "iopub.execute_input": "2024-02-13T22:20:57.792740Z", + "iopub.status.busy": "2024-02-13T22:20:57.792345Z", + "iopub.status.idle": "2024-02-13T22:20:58.865217Z", + "shell.execute_reply": "2024-02-13T22:20:58.864683Z" }, "nbsphinx": "hidden" }, @@ -117,7 +117,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:26.820791Z", - "iopub.status.busy": "2024-02-13T04:51:26.820483Z", - "iopub.status.idle": "2024-02-13T04:51:26.839842Z", - "shell.execute_reply": "2024-02-13T04:51:26.839244Z" + "iopub.execute_input": "2024-02-13T22:20:58.867853Z", + "iopub.status.busy": "2024-02-13T22:20:58.867414Z", + "iopub.status.idle": "2024-02-13T22:20:58.885731Z", + "shell.execute_reply": "2024-02-13T22:20:58.885292Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:26.842689Z", - "iopub.status.busy": "2024-02-13T04:51:26.842102Z", - "iopub.status.idle": "2024-02-13T04:51:26.845444Z", - "shell.execute_reply": "2024-02-13T04:51:26.844991Z" + "iopub.execute_input": "2024-02-13T22:20:58.888183Z", + "iopub.status.busy": "2024-02-13T22:20:58.887747Z", + "iopub.status.idle": "2024-02-13T22:20:58.890830Z", + "shell.execute_reply": "2024-02-13T22:20:58.890384Z" }, "nbsphinx": "hidden" }, @@ -199,10 +199,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:26.847534Z", - "iopub.status.busy": "2024-02-13T04:51:26.847214Z", - "iopub.status.idle": "2024-02-13T04:51:27.220773Z", - "shell.execute_reply": "2024-02-13T04:51:27.220185Z" + "iopub.execute_input": "2024-02-13T22:20:58.892771Z", + "iopub.status.busy": "2024-02-13T22:20:58.892503Z", + "iopub.status.idle": "2024-02-13T22:20:59.009313Z", + "shell.execute_reply": "2024-02-13T22:20:59.008739Z" } }, "outputs": [ @@ -375,10 +375,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:27.223213Z", - "iopub.status.busy": "2024-02-13T04:51:27.222855Z", - "iopub.status.idle": "2024-02-13T04:51:27.412795Z", - "shell.execute_reply": "2024-02-13T04:51:27.412204Z" + "iopub.execute_input": "2024-02-13T22:20:59.011536Z", + "iopub.status.busy": "2024-02-13T22:20:59.011219Z", + "iopub.status.idle": "2024-02-13T22:20:59.195158Z", + "shell.execute_reply": "2024-02-13T22:20:59.194515Z" }, "nbsphinx": "hidden" }, @@ -418,10 +418,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:27.415380Z", - "iopub.status.busy": "2024-02-13T04:51:27.415086Z", - "iopub.status.idle": "2024-02-13T04:51:27.667778Z", - "shell.execute_reply": "2024-02-13T04:51:27.667178Z" + "iopub.execute_input": "2024-02-13T22:20:59.197489Z", + "iopub.status.busy": "2024-02-13T22:20:59.197296Z", + "iopub.status.idle": "2024-02-13T22:20:59.447263Z", + "shell.execute_reply": "2024-02-13T22:20:59.446668Z" } }, "outputs": [ @@ -457,10 +457,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:27.670053Z", - "iopub.status.busy": "2024-02-13T04:51:27.669701Z", - "iopub.status.idle": "2024-02-13T04:51:27.674216Z", - "shell.execute_reply": "2024-02-13T04:51:27.673651Z" + "iopub.execute_input": "2024-02-13T22:20:59.449644Z", + "iopub.status.busy": "2024-02-13T22:20:59.449235Z", + "iopub.status.idle": "2024-02-13T22:20:59.453665Z", + "shell.execute_reply": "2024-02-13T22:20:59.453211Z" } }, "outputs": [], @@ -478,10 +478,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:27.676336Z", - "iopub.status.busy": "2024-02-13T04:51:27.675926Z", - "iopub.status.idle": "2024-02-13T04:51:27.682404Z", - "shell.execute_reply": "2024-02-13T04:51:27.681816Z" + "iopub.execute_input": "2024-02-13T22:20:59.455466Z", + "iopub.status.busy": "2024-02-13T22:20:59.455288Z", + "iopub.status.idle": "2024-02-13T22:20:59.461419Z", + "shell.execute_reply": "2024-02-13T22:20:59.461010Z" } }, "outputs": [], @@ -528,10 +528,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:27.684676Z", - "iopub.status.busy": "2024-02-13T04:51:27.684344Z", - "iopub.status.idle": "2024-02-13T04:51:27.686834Z", - "shell.execute_reply": "2024-02-13T04:51:27.686377Z" + "iopub.execute_input": "2024-02-13T22:20:59.463263Z", + "iopub.status.busy": "2024-02-13T22:20:59.463093Z", + "iopub.status.idle": "2024-02-13T22:20:59.465734Z", + "shell.execute_reply": "2024-02-13T22:20:59.465294Z" } }, "outputs": [], @@ -546,10 +546,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:27.688884Z", - "iopub.status.busy": "2024-02-13T04:51:27.688565Z", - "iopub.status.idle": "2024-02-13T04:51:36.185649Z", - "shell.execute_reply": "2024-02-13T04:51:36.185116Z" + "iopub.execute_input": "2024-02-13T22:20:59.467786Z", + "iopub.status.busy": "2024-02-13T22:20:59.467482Z", + "iopub.status.idle": "2024-02-13T22:21:07.713910Z", + "shell.execute_reply": "2024-02-13T22:21:07.713273Z" } }, "outputs": [], @@ -573,10 +573,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:36.188498Z", - "iopub.status.busy": "2024-02-13T04:51:36.188072Z", - "iopub.status.idle": "2024-02-13T04:51:36.195442Z", - "shell.execute_reply": "2024-02-13T04:51:36.194989Z" + "iopub.execute_input": "2024-02-13T22:21:07.716591Z", + "iopub.status.busy": "2024-02-13T22:21:07.716202Z", + "iopub.status.idle": "2024-02-13T22:21:07.723402Z", + "shell.execute_reply": "2024-02-13T22:21:07.722954Z" } }, "outputs": [ @@ -679,10 +679,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:36.197421Z", - "iopub.status.busy": "2024-02-13T04:51:36.197238Z", - "iopub.status.idle": "2024-02-13T04:51:36.201066Z", - "shell.execute_reply": "2024-02-13T04:51:36.200617Z" + "iopub.execute_input": "2024-02-13T22:21:07.725474Z", + "iopub.status.busy": "2024-02-13T22:21:07.725141Z", + "iopub.status.idle": "2024-02-13T22:21:07.728674Z", + "shell.execute_reply": "2024-02-13T22:21:07.728262Z" } }, "outputs": [], @@ -697,10 +697,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:36.203140Z", - "iopub.status.busy": "2024-02-13T04:51:36.202831Z", - "iopub.status.idle": "2024-02-13T04:51:36.206183Z", - "shell.execute_reply": "2024-02-13T04:51:36.205605Z" + "iopub.execute_input": "2024-02-13T22:21:07.730731Z", + "iopub.status.busy": "2024-02-13T22:21:07.730405Z", + "iopub.status.idle": "2024-02-13T22:21:07.733393Z", + "shell.execute_reply": "2024-02-13T22:21:07.732883Z" } }, "outputs": [ @@ -735,10 +735,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:36.208157Z", - "iopub.status.busy": "2024-02-13T04:51:36.207851Z", - "iopub.status.idle": "2024-02-13T04:51:36.210914Z", - "shell.execute_reply": "2024-02-13T04:51:36.210384Z" + "iopub.execute_input": "2024-02-13T22:21:07.735450Z", + "iopub.status.busy": "2024-02-13T22:21:07.735145Z", + "iopub.status.idle": "2024-02-13T22:21:07.738219Z", + "shell.execute_reply": "2024-02-13T22:21:07.737692Z" } }, "outputs": [], @@ -757,10 +757,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:36.212994Z", - "iopub.status.busy": "2024-02-13T04:51:36.212682Z", - "iopub.status.idle": "2024-02-13T04:51:36.221310Z", - "shell.execute_reply": "2024-02-13T04:51:36.220789Z" + "iopub.execute_input": "2024-02-13T22:21:07.740357Z", + "iopub.status.busy": "2024-02-13T22:21:07.739975Z", + "iopub.status.idle": "2024-02-13T22:21:07.748531Z", + "shell.execute_reply": "2024-02-13T22:21:07.747948Z" } }, "outputs": [ @@ -884,10 +884,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:36.223479Z", - "iopub.status.busy": "2024-02-13T04:51:36.223053Z", - "iopub.status.idle": "2024-02-13T04:51:36.225682Z", - "shell.execute_reply": "2024-02-13T04:51:36.225258Z" + "iopub.execute_input": "2024-02-13T22:21:07.750689Z", + "iopub.status.busy": "2024-02-13T22:21:07.750297Z", + "iopub.status.idle": "2024-02-13T22:21:07.753015Z", + "shell.execute_reply": "2024-02-13T22:21:07.752502Z" }, "nbsphinx": "hidden" }, @@ -922,10 +922,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:36.227596Z", - "iopub.status.busy": "2024-02-13T04:51:36.227419Z", - "iopub.status.idle": "2024-02-13T04:51:36.363272Z", - "shell.execute_reply": "2024-02-13T04:51:36.362639Z" + "iopub.execute_input": "2024-02-13T22:21:07.755131Z", + "iopub.status.busy": "2024-02-13T22:21:07.754733Z", + "iopub.status.idle": "2024-02-13T22:21:07.877227Z", + "shell.execute_reply": "2024-02-13T22:21:07.876665Z" } }, "outputs": [ @@ -964,10 +964,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:36.365686Z", - "iopub.status.busy": "2024-02-13T04:51:36.365302Z", - "iopub.status.idle": "2024-02-13T04:51:36.471965Z", - "shell.execute_reply": "2024-02-13T04:51:36.471336Z" + "iopub.execute_input": "2024-02-13T22:21:07.879470Z", + "iopub.status.busy": "2024-02-13T22:21:07.879255Z", + "iopub.status.idle": "2024-02-13T22:21:07.984458Z", + "shell.execute_reply": "2024-02-13T22:21:07.983894Z" } }, "outputs": [ @@ -1023,10 +1023,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:36.474556Z", - "iopub.status.busy": "2024-02-13T04:51:36.474077Z", - "iopub.status.idle": "2024-02-13T04:51:36.974279Z", - "shell.execute_reply": "2024-02-13T04:51:36.973685Z" + "iopub.execute_input": "2024-02-13T22:21:07.987123Z", + "iopub.status.busy": "2024-02-13T22:21:07.986569Z", + "iopub.status.idle": "2024-02-13T22:21:08.478445Z", + "shell.execute_reply": "2024-02-13T22:21:08.477843Z" } }, "outputs": [], @@ -1042,10 +1042,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:36.976861Z", - "iopub.status.busy": "2024-02-13T04:51:36.976511Z", - "iopub.status.idle": "2024-02-13T04:51:37.067853Z", - "shell.execute_reply": "2024-02-13T04:51:37.067262Z" + "iopub.execute_input": "2024-02-13T22:21:08.481155Z", + "iopub.status.busy": "2024-02-13T22:21:08.480704Z", + "iopub.status.idle": "2024-02-13T22:21:08.569457Z", + "shell.execute_reply": "2024-02-13T22:21:08.568878Z" } }, "outputs": [ @@ -1080,10 +1080,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:37.070178Z", - "iopub.status.busy": "2024-02-13T04:51:37.069840Z", - "iopub.status.idle": "2024-02-13T04:51:37.078761Z", - "shell.execute_reply": "2024-02-13T04:51:37.078216Z" + "iopub.execute_input": "2024-02-13T22:21:08.571981Z", + "iopub.status.busy": "2024-02-13T22:21:08.571532Z", + "iopub.status.idle": "2024-02-13T22:21:08.579880Z", + "shell.execute_reply": "2024-02-13T22:21:08.579430Z" } }, "outputs": [ @@ -1190,10 +1190,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:37.080852Z", - "iopub.status.busy": "2024-02-13T04:51:37.080507Z", - "iopub.status.idle": "2024-02-13T04:51:37.083158Z", - "shell.execute_reply": "2024-02-13T04:51:37.082722Z" + "iopub.execute_input": "2024-02-13T22:21:08.581882Z", + "iopub.status.busy": "2024-02-13T22:21:08.581554Z", + "iopub.status.idle": "2024-02-13T22:21:08.584244Z", + "shell.execute_reply": "2024-02-13T22:21:08.583820Z" }, "nbsphinx": "hidden" }, @@ -1218,10 +1218,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:37.085108Z", - "iopub.status.busy": "2024-02-13T04:51:37.084924Z", - "iopub.status.idle": "2024-02-13T04:51:42.608752Z", - "shell.execute_reply": "2024-02-13T04:51:42.608158Z" + "iopub.execute_input": "2024-02-13T22:21:08.586275Z", + "iopub.status.busy": "2024-02-13T22:21:08.585955Z", + "iopub.status.idle": "2024-02-13T22:21:14.083843Z", + "shell.execute_reply": "2024-02-13T22:21:14.083243Z" } }, "outputs": [ @@ -1265,10 +1265,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:42.611221Z", - "iopub.status.busy": "2024-02-13T04:51:42.610853Z", - "iopub.status.idle": "2024-02-13T04:51:42.619084Z", - "shell.execute_reply": "2024-02-13T04:51:42.618632Z" + "iopub.execute_input": "2024-02-13T22:21:14.086297Z", + "iopub.status.busy": "2024-02-13T22:21:14.085848Z", + "iopub.status.idle": "2024-02-13T22:21:14.094140Z", + "shell.execute_reply": "2024-02-13T22:21:14.093671Z" } }, "outputs": [ @@ -1377,10 +1377,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:42.621172Z", - "iopub.status.busy": "2024-02-13T04:51:42.620829Z", - "iopub.status.idle": "2024-02-13T04:51:42.686333Z", - "shell.execute_reply": "2024-02-13T04:51:42.685699Z" + "iopub.execute_input": "2024-02-13T22:21:14.096397Z", + "iopub.status.busy": "2024-02-13T22:21:14.095978Z", + "iopub.status.idle": "2024-02-13T22:21:14.161204Z", + "shell.execute_reply": "2024-02-13T22:21:14.160719Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 4a0ab7992..4a2b078bb 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:46.846489Z", - "iopub.status.busy": "2024-02-13T04:51:46.846326Z", - "iopub.status.idle": "2024-02-13T04:51:48.836619Z", - "shell.execute_reply": "2024-02-13T04:51:48.835884Z" + "iopub.execute_input": "2024-02-13T22:21:17.131886Z", + "iopub.status.busy": "2024-02-13T22:21:17.131710Z", + "iopub.status.idle": "2024-02-13T22:21:18.593046Z", + "shell.execute_reply": "2024-02-13T22:21:18.592386Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:48.839299Z", - "iopub.status.busy": "2024-02-13T04:51:48.839119Z", - "iopub.status.idle": "2024-02-13T04:52:36.158083Z", - "shell.execute_reply": "2024-02-13T04:52:36.157412Z" + "iopub.execute_input": "2024-02-13T22:21:18.595562Z", + "iopub.status.busy": "2024-02-13T22:21:18.595362Z", + "iopub.status.idle": "2024-02-13T22:22:12.098648Z", + "shell.execute_reply": "2024-02-13T22:22:12.097945Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:52:36.160808Z", - "iopub.status.busy": "2024-02-13T04:52:36.160383Z", - "iopub.status.idle": "2024-02-13T04:52:37.293678Z", - "shell.execute_reply": "2024-02-13T04:52:37.293126Z" + "iopub.execute_input": "2024-02-13T22:22:12.101231Z", + "iopub.status.busy": "2024-02-13T22:22:12.101037Z", + "iopub.status.idle": "2024-02-13T22:22:13.188674Z", + "shell.execute_reply": "2024-02-13T22:22:13.188138Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:52:37.296221Z", - "iopub.status.busy": "2024-02-13T04:52:37.295867Z", - "iopub.status.idle": "2024-02-13T04:52:37.299603Z", - "shell.execute_reply": "2024-02-13T04:52:37.299155Z" + "iopub.execute_input": "2024-02-13T22:22:13.191357Z", + "iopub.status.busy": "2024-02-13T22:22:13.190839Z", + "iopub.status.idle": "2024-02-13T22:22:13.193931Z", + "shell.execute_reply": "2024-02-13T22:22:13.193522Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:52:37.302029Z", - "iopub.status.busy": "2024-02-13T04:52:37.301545Z", - "iopub.status.idle": "2024-02-13T04:52:37.305489Z", - "shell.execute_reply": "2024-02-13T04:52:37.304961Z" + "iopub.execute_input": "2024-02-13T22:22:13.196005Z", + "iopub.status.busy": "2024-02-13T22:22:13.195641Z", + "iopub.status.idle": "2024-02-13T22:22:13.199308Z", + "shell.execute_reply": "2024-02-13T22:22:13.198877Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:52:37.307515Z", - "iopub.status.busy": "2024-02-13T04:52:37.307217Z", - "iopub.status.idle": "2024-02-13T04:52:37.311383Z", - "shell.execute_reply": "2024-02-13T04:52:37.310886Z" + "iopub.execute_input": "2024-02-13T22:22:13.201303Z", + "iopub.status.busy": "2024-02-13T22:22:13.201034Z", + "iopub.status.idle": "2024-02-13T22:22:13.204528Z", + "shell.execute_reply": "2024-02-13T22:22:13.204089Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:52:37.313395Z", - "iopub.status.busy": "2024-02-13T04:52:37.313105Z", - "iopub.status.idle": "2024-02-13T04:52:37.315927Z", - "shell.execute_reply": "2024-02-13T04:52:37.315413Z" + "iopub.execute_input": "2024-02-13T22:22:13.206424Z", + "iopub.status.busy": "2024-02-13T22:22:13.206113Z", + "iopub.status.idle": "2024-02-13T22:22:13.208735Z", + "shell.execute_reply": "2024-02-13T22:22:13.208336Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:52:37.317985Z", - "iopub.status.busy": "2024-02-13T04:52:37.317574Z", - "iopub.status.idle": "2024-02-13T04:53:54.285829Z", - "shell.execute_reply": "2024-02-13T04:53:54.285234Z" + "iopub.execute_input": "2024-02-13T22:22:13.210554Z", + "iopub.status.busy": "2024-02-13T22:22:13.210293Z", + "iopub.status.idle": "2024-02-13T22:23:30.135411Z", + "shell.execute_reply": "2024-02-13T22:23:30.134800Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "88aabd8f77df4029b94e7832f7b660a8", + "model_id": "a2274f8c72ee4d14ba6da81202b02e53", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d029c1c5efc94a628a305425e046d81c", + "model_id": "b77e5bc485904561983937a4e95cf83c", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:53:54.288507Z", - "iopub.status.busy": "2024-02-13T04:53:54.288130Z", - "iopub.status.idle": "2024-02-13T04:53:54.970593Z", - "shell.execute_reply": "2024-02-13T04:53:54.970050Z" + "iopub.execute_input": "2024-02-13T22:23:30.138060Z", + "iopub.status.busy": "2024-02-13T22:23:30.137691Z", + "iopub.status.idle": "2024-02-13T22:23:30.805219Z", + "shell.execute_reply": "2024-02-13T22:23:30.804696Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:53:54.973097Z", - "iopub.status.busy": "2024-02-13T04:53:54.972558Z", - "iopub.status.idle": "2024-02-13T04:53:57.733466Z", - "shell.execute_reply": "2024-02-13T04:53:57.732876Z" + "iopub.execute_input": "2024-02-13T22:23:30.807658Z", + "iopub.status.busy": "2024-02-13T22:23:30.807201Z", + "iopub.status.idle": "2024-02-13T22:23:33.509032Z", + "shell.execute_reply": "2024-02-13T22:23:33.508456Z" } }, "outputs": [ @@ -519,10 +519,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:53:57.735751Z", - "iopub.status.busy": "2024-02-13T04:53:57.735399Z", - "iopub.status.idle": "2024-02-13T04:54:30.508387Z", - "shell.execute_reply": "2024-02-13T04:54:30.507858Z" + "iopub.execute_input": "2024-02-13T22:23:33.511167Z", + "iopub.status.busy": "2024-02-13T22:23:33.510959Z", + "iopub.status.idle": "2024-02-13T22:24:07.417820Z", + "shell.execute_reply": "2024-02-13T22:24:07.417271Z" } }, "outputs": [ @@ -539,7 +539,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 15268/4997817 [00:00<00:32, 152663.77it/s]" + " 0%| | 14686/4997817 [00:00<00:33, 146852.09it/s]" ] }, { @@ -547,7 +547,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 30573/4997817 [00:00<00:32, 152883.32it/s]" + " 1%| | 29379/4997817 [00:00<00:33, 146826.75it/s]" ] }, { @@ -555,7 +555,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 45862/4997817 [00:00<00:32, 152608.50it/s]" + " 1%| | 44082/4997817 [00:00<00:33, 146917.20it/s]" ] }, { @@ -563,7 +563,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 61123/4997817 [00:00<00:32, 152455.06it/s]" + " 1%| | 58873/4997817 [00:00<00:33, 147306.50it/s]" ] }, { @@ -571,7 +571,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 76369/4997817 [00:00<00:32, 152398.67it/s]" + " 1%|▏ | 73624/4997817 [00:00<00:33, 147376.50it/s]" ] }, { @@ -579,7 +579,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 91653/4997817 [00:00<00:32, 152543.78it/s]" + " 2%|▏ | 88375/4997817 [00:00<00:33, 147418.95it/s]" ] }, { @@ -587,7 +587,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 106908/4997817 [00:00<00:32, 152112.15it/s]" + " 2%|▏ | 103117/4997817 [00:00<00:33, 146398.59it/s]" ] }, { @@ -595,7 +595,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 122247/4997817 [00:00<00:31, 152513.02it/s]" + " 2%|▏ | 117858/4997817 [00:00<00:33, 146717.08it/s]" ] }, { @@ -603,7 +603,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 137535/4997817 [00:00<00:31, 152624.75it/s]" + " 3%|▎ | 132531/4997817 [00:00<00:33, 146652.84it/s]" ] }, { @@ -611,7 +611,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 152798/4997817 [00:01<00:31, 152605.77it/s]" + " 3%|▎ | 147198/4997817 [00:01<00:33, 146511.78it/s]" ] }, { @@ -619,7 +619,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 168059/4997817 [00:01<00:31, 152403.35it/s]" + " 3%|▎ | 161850/4997817 [00:01<00:33, 146359.65it/s]" ] }, { @@ -627,7 +627,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▎ | 183300/4997817 [00:01<00:31, 152113.29it/s]" + " 4%|▎ | 176487/4997817 [00:01<00:33, 146080.12it/s]" ] }, { @@ -635,7 +635,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 198650/4997817 [00:01<00:31, 152530.19it/s]" + " 4%|▍ | 191096/4997817 [00:01<00:32, 146061.90it/s]" ] }, { @@ -643,7 +643,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 214047/4997817 [00:01<00:31, 152960.10it/s]" + " 4%|▍ | 205812/4997817 [00:01<00:32, 146388.88it/s]" ] }, { @@ -651,7 +651,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 229458/4997817 [00:01<00:31, 153304.57it/s]" + " 4%|▍ | 220605/4997817 [00:01<00:32, 146848.72it/s]" ] }, { @@ -659,7 +659,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 244869/4997817 [00:01<00:30, 153543.54it/s]" + " 5%|▍ | 235402/4997817 [00:01<00:32, 147184.62it/s]" ] }, { @@ -667,7 +667,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 260224/4997817 [00:01<00:30, 153507.14it/s]" + " 5%|▌ | 250251/4997817 [00:01<00:32, 147572.75it/s]" ] }, { @@ -675,7 +675,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 275575/4997817 [00:01<00:30, 153192.48it/s]" + " 5%|▌ | 265009/4997817 [00:01<00:32, 147492.49it/s]" ] }, { @@ -683,7 +683,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 290978/4997817 [00:01<00:30, 153441.52it/s]" + " 6%|▌ | 279759/4997817 [00:01<00:31, 147452.90it/s]" ] }, { @@ -691,7 +691,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 306323/4997817 [00:02<00:30, 153313.02it/s]" + " 6%|▌ | 294505/4997817 [00:02<00:31, 147319.46it/s]" ] }, { @@ -699,7 +699,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 321655/4997817 [00:02<00:30, 153242.01it/s]" + " 6%|▌ | 309330/4997817 [00:02<00:31, 147596.91it/s]" ] }, { @@ -707,7 +707,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 336980/4997817 [00:02<00:30, 153203.40it/s]" + " 6%|▋ | 324110/4997817 [00:02<00:31, 147655.95it/s]" ] }, { @@ -715,7 +715,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 352376/4997817 [00:02<00:30, 153426.27it/s]" + " 7%|▋ | 338876/4997817 [00:02<00:31, 147094.72it/s]" ] }, { @@ -723,7 +723,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 367782/4997817 [00:02<00:30, 153611.81it/s]" + " 7%|▋ | 353620/4997817 [00:02<00:31, 147195.32it/s]" ] }, { @@ -731,7 +731,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 383144/4997817 [00:02<00:30, 153175.07it/s]" + " 7%|▋ | 368340/4997817 [00:02<00:31, 146717.43it/s]" ] }, { @@ -739,7 +739,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 398484/4997817 [00:02<00:30, 153238.06it/s]" + " 8%|▊ | 383097/4997817 [00:02<00:31, 146969.26it/s]" ] }, { @@ -747,7 +747,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 413809/4997817 [00:02<00:30, 152354.16it/s]" + " 8%|▊ | 397904/4997817 [00:02<00:31, 147295.61it/s]" ] }, { @@ -755,7 +755,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▊ | 429046/4997817 [00:02<00:29, 152347.55it/s]" + " 8%|▊ | 412710/4997817 [00:02<00:31, 147521.49it/s]" ] }, { @@ -763,7 +763,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 444384/4997817 [00:02<00:29, 152653.57it/s]" + " 9%|▊ | 427463/4997817 [00:02<00:30, 147519.24it/s]" ] }, { @@ -771,7 +771,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 459713/4997817 [00:03<00:29, 152840.12it/s]" + " 9%|▉ | 442348/4997817 [00:03<00:30, 147916.97it/s]" ] }, { @@ -779,7 +779,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 475034/4997817 [00:03<00:29, 152948.30it/s]" + " 9%|▉ | 457175/4997817 [00:03<00:30, 148019.57it/s]" ] }, { @@ -787,7 +787,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 490409/4997817 [00:03<00:29, 153184.82it/s]" + " 9%|▉ | 471978/4997817 [00:03<00:30, 147976.72it/s]" ] }, { @@ -795,7 +795,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 505728/4997817 [00:03<00:29, 153110.81it/s]" + " 10%|▉ | 486776/4997817 [00:03<00:30, 147710.39it/s]" ] }, { @@ -803,7 +803,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 521040/4997817 [00:03<00:29, 153105.08it/s]" + " 10%|█ | 501630/4997817 [00:03<00:30, 147954.47it/s]" ] }, { @@ -811,7 +811,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 536416/4997817 [00:03<00:29, 153297.84it/s]" + " 10%|█ | 516616/4997817 [00:03<00:30, 148524.22it/s]" ] }, { @@ -819,7 +819,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 551746/4997817 [00:03<00:29, 153133.56it/s]" + " 11%|█ | 531469/4997817 [00:03<00:30, 148246.09it/s]" ] }, { @@ -827,7 +827,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 567060/4997817 [00:03<00:29, 152739.95it/s]" + " 11%|█ | 546346/4997817 [00:03<00:29, 148399.08it/s]" ] }, { @@ -835,7 +835,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 582524/4997817 [00:03<00:28, 153305.47it/s]" + " 11%|█ | 561187/4997817 [00:03<00:29, 148303.25it/s]" ] }, { @@ -843,7 +843,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 597920/4997817 [00:03<00:28, 153498.11it/s]" + " 12%|█▏ | 576018/4997817 [00:03<00:29, 147757.16it/s]" ] }, { @@ -851,7 +851,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 613271/4997817 [00:04<00:28, 153405.18it/s]" + " 12%|█▏ | 590920/4997817 [00:04<00:29, 148133.12it/s]" ] }, { @@ -859,7 +859,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 628612/4997817 [00:04<00:28, 153256.80it/s]" + " 12%|█▏ | 605734/4997817 [00:04<00:29, 147627.97it/s]" ] }, { @@ -867,7 +867,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 643938/4997817 [00:04<00:28, 152729.72it/s]" + " 12%|█▏ | 620498/4997817 [00:04<00:29, 147479.08it/s]" ] }, { @@ -875,7 +875,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 659212/4997817 [00:04<00:28, 152490.37it/s]" + " 13%|█▎ | 635247/4997817 [00:04<00:29, 146720.55it/s]" ] }, { @@ -883,7 +883,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 674462/4997817 [00:04<00:28, 152140.36it/s]" + " 13%|█▎ | 650152/4997817 [00:04<00:29, 147411.77it/s]" ] }, { @@ -891,7 +891,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 689677/4997817 [00:04<00:28, 152020.81it/s]" + " 13%|█▎ | 664980/4997817 [00:04<00:29, 147667.36it/s]" ] }, { @@ -899,7 +899,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 704893/4997817 [00:04<00:28, 152059.98it/s]" + " 14%|█▎ | 680008/4997817 [00:04<00:29, 148444.04it/s]" ] }, { @@ -907,7 +907,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 720119/4997817 [00:04<00:28, 152117.38it/s]" + " 14%|█▍ | 694854/4997817 [00:04<00:29, 147854.75it/s]" ] }, { @@ -915,7 +915,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 735331/4997817 [00:04<00:28, 151521.22it/s]" + " 14%|█▍ | 709641/4997817 [00:04<00:29, 147711.76it/s]" ] }, { @@ -923,7 +923,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 750688/4997817 [00:04<00:27, 152129.46it/s]" + " 14%|█▍ | 724413/4997817 [00:04<00:29, 146962.76it/s]" ] }, { @@ -931,7 +931,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 766110/4997817 [00:05<00:27, 152751.32it/s]" + " 15%|█▍ | 739111/4997817 [00:05<00:29, 146576.91it/s]" ] }, { @@ -939,7 +939,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 781473/4997817 [00:05<00:27, 153012.04it/s]" + " 15%|█▌ | 753802/4997817 [00:05<00:28, 146673.13it/s]" ] }, { @@ -947,7 +947,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 796775/4997817 [00:05<00:27, 153005.95it/s]" + " 15%|█▌ | 768561/4997817 [00:05<00:28, 146944.21it/s]" ] }, { @@ -955,7 +955,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 812109/4997817 [00:05<00:27, 153103.15it/s]" + " 16%|█▌ | 783527/4997817 [00:05<00:28, 147753.96it/s]" ] }, { @@ -963,7 +963,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 827420/4997817 [00:05<00:27, 152861.06it/s]" + " 16%|█▌ | 798376/4997817 [00:05<00:28, 147970.64it/s]" ] }, { @@ -971,7 +971,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 842707/4997817 [00:05<00:27, 152618.89it/s]" + " 16%|█▋ | 813194/4997817 [00:05<00:28, 148030.01it/s]" ] }, { @@ -979,7 +979,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 858003/4997817 [00:05<00:27, 152679.53it/s]" + " 17%|█▋ | 828109/4997817 [00:05<00:28, 148363.35it/s]" ] }, { @@ -987,7 +987,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 873374/4997817 [00:05<00:26, 152984.23it/s]" + " 17%|█▋ | 842946/4997817 [00:05<00:28, 148197.93it/s]" ] }, { @@ -995,7 +995,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 888714/4997817 [00:05<00:26, 153106.77it/s]" + " 17%|█▋ | 858002/4997817 [00:05<00:27, 148904.38it/s]" ] }, { @@ -1003,7 +1003,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 904173/4997817 [00:05<00:26, 153547.33it/s]" + " 17%|█▋ | 872977/4997817 [00:05<00:27, 149155.31it/s]" ] }, { @@ -1011,7 +1011,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 919528/4997817 [00:06<00:26, 153446.17it/s]" + " 18%|█▊ | 887982/4997817 [00:06<00:27, 149420.16it/s]" ] }, { @@ -1019,7 +1019,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▊ | 934896/4997817 [00:06<00:26, 153512.24it/s]" + " 18%|█▊ | 902926/4997817 [00:06<00:27, 149424.12it/s]" ] }, { @@ -1027,7 +1027,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 950248/4997817 [00:06<00:26, 152181.55it/s]" + " 18%|█▊ | 917869/4997817 [00:06<00:27, 149340.29it/s]" ] }, { @@ -1035,7 +1035,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 965736/4997817 [00:06<00:26, 152981.80it/s]" + " 19%|█▊ | 932804/4997817 [00:06<00:27, 148960.57it/s]" ] }, { @@ -1043,7 +1043,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 981306/4997817 [00:06<00:26, 153791.24it/s]" + " 19%|█▉ | 947701/4997817 [00:06<00:27, 146116.39it/s]" ] }, { @@ -1051,7 +1051,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 996719/4997817 [00:06<00:25, 153889.51it/s]" + " 19%|█▉ | 962883/4997817 [00:06<00:27, 147800.15it/s]" ] }, { @@ -1059,7 +1059,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1012110/4997817 [00:06<00:25, 153467.80it/s]" + " 20%|█▉ | 977914/4997817 [00:06<00:27, 148542.14it/s]" ] }, { @@ -1067,7 +1067,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1027528/4997817 [00:06<00:25, 153678.34it/s]" + " 20%|█▉ | 992777/4997817 [00:06<00:26, 148520.27it/s]" ] }, { @@ -1075,7 +1075,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1042897/4997817 [00:06<00:25, 153355.60it/s]" + " 20%|██ | 1007881/4997817 [00:06<00:26, 149267.97it/s]" ] }, { @@ -1083,7 +1083,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1058375/4997817 [00:06<00:25, 153778.95it/s]" + " 20%|██ | 1022869/4997817 [00:06<00:26, 149446.77it/s]" ] }, { @@ -1091,7 +1091,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1073754/4997817 [00:07<00:25, 153340.54it/s]" + " 21%|██ | 1037958/4997817 [00:07<00:26, 149876.15it/s]" ] }, { @@ -1099,7 +1099,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1089089/4997817 [00:07<00:25, 153232.57it/s]" + " 21%|██ | 1052961/4997817 [00:07<00:26, 149917.76it/s]" ] }, { @@ -1107,7 +1107,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1104457/4997817 [00:07<00:25, 153362.93it/s]" + " 21%|██▏ | 1067976/4997817 [00:07<00:26, 149983.85it/s]" ] }, { @@ -1115,7 +1115,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1119796/4997817 [00:07<00:25, 153368.89it/s]" + " 22%|██▏ | 1083120/4997817 [00:07<00:26, 150417.41it/s]" ] }, { @@ -1123,7 +1123,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1135134/4997817 [00:07<00:25, 152939.62it/s]" + " 22%|██▏ | 1098163/4997817 [00:07<00:25, 150159.03it/s]" ] }, { @@ -1131,7 +1131,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1150458/4997817 [00:07<00:25, 153021.87it/s]" + " 22%|██▏ | 1113255/4997817 [00:07<00:25, 150385.04it/s]" ] }, { @@ -1139,7 +1139,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1165800/4997817 [00:07<00:25, 153137.48it/s]" + " 23%|██▎ | 1128295/4997817 [00:07<00:25, 150272.23it/s]" ] }, { @@ -1147,7 +1147,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▎ | 1181114/4997817 [00:07<00:24, 153104.06it/s]" + " 23%|██▎ | 1143449/4997817 [00:07<00:25, 150647.13it/s]" ] }, { @@ -1155,7 +1155,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1196425/4997817 [00:07<00:25, 146510.48it/s]" + " 23%|██▎ | 1158515/4997817 [00:07<00:25, 150266.53it/s]" ] }, { @@ -1163,7 +1163,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1211763/4997817 [00:07<00:25, 148502.05it/s]" + " 23%|██▎ | 1173566/4997817 [00:07<00:25, 150337.39it/s]" ] }, { @@ -1171,7 +1171,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1227163/4997817 [00:08<00:25, 150111.29it/s]" + " 24%|██▍ | 1188700/4997817 [00:08<00:25, 150635.43it/s]" ] }, { @@ -1179,7 +1179,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1242483/4997817 [00:08<00:24, 151020.13it/s]" + " 24%|██▍ | 1203856/4997817 [00:08<00:25, 150908.62it/s]" ] }, { @@ -1187,7 +1187,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1257923/4997817 [00:08<00:24, 152021.01it/s]" + " 24%|██▍ | 1218984/4997817 [00:08<00:25, 151018.15it/s]" ] }, { @@ -1195,7 +1195,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1273251/4997817 [00:08<00:24, 152392.90it/s]" + " 25%|██▍ | 1234156/4997817 [00:08<00:24, 151227.32it/s]" ] }, { @@ -1203,7 +1203,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1288667/4997817 [00:08<00:24, 152916.70it/s]" + " 25%|██▍ | 1249279/4997817 [00:08<00:25, 148223.79it/s]" ] }, { @@ -1211,7 +1211,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1304131/4997817 [00:08<00:24, 153428.36it/s]" + " 25%|██▌ | 1264309/4997817 [00:08<00:25, 148833.27it/s]" ] }, { @@ -1219,7 +1219,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1319493/4997817 [00:08<00:23, 153483.77it/s]" + " 26%|██▌ | 1279385/4997817 [00:08<00:24, 149402.13it/s]" ] }, { @@ -1227,7 +1227,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1334923/4997817 [00:08<00:23, 153725.80it/s]" + " 26%|██▌ | 1294573/4997817 [00:08<00:24, 150136.53it/s]" ] }, { @@ -1235,7 +1235,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1350480/4997817 [00:08<00:23, 154277.37it/s]" + " 26%|██▌ | 1309815/4997817 [00:08<00:24, 150814.55it/s]" ] }, { @@ -1243,7 +1243,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1365987/4997817 [00:08<00:23, 154513.65it/s]" + " 27%|██▋ | 1324929/4997817 [00:08<00:24, 150910.27it/s]" ] }, { @@ -1251,7 +1251,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1381441/4997817 [00:09<00:23, 154510.11it/s]" + " 27%|██▋ | 1340124/4997817 [00:09<00:24, 151219.95it/s]" ] }, { @@ -1259,7 +1259,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1396963/4997817 [00:09<00:23, 154719.47it/s]" + " 27%|██▋ | 1355369/4997817 [00:09<00:24, 151584.36it/s]" ] }, { @@ -1267,7 +1267,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1412436/4997817 [00:09<00:23, 154630.91it/s]" + " 27%|██▋ | 1370530/4997817 [00:09<00:23, 151447.11it/s]" ] }, { @@ -1275,7 +1275,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 1427900/4997817 [00:09<00:23, 154395.75it/s]" + " 28%|██▊ | 1385676/4997817 [00:09<00:23, 151206.21it/s]" ] }, { @@ -1283,7 +1283,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1443456/4997817 [00:09<00:22, 154743.31it/s]" + " 28%|██▊ | 1400798/4997817 [00:09<00:23, 150249.39it/s]" ] }, { @@ -1291,7 +1291,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1458931/4997817 [00:09<00:22, 154061.91it/s]" + " 28%|██▊ | 1415882/4997817 [00:09<00:23, 150423.63it/s]" ] }, { @@ -1299,7 +1299,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1474392/4997817 [00:09<00:22, 154224.54it/s]" + " 29%|██▊ | 1430947/4997817 [00:09<00:23, 150488.94it/s]" ] }, { @@ -1307,7 +1307,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1489908/4997817 [00:09<00:22, 154502.37it/s]" + " 29%|██▉ | 1446038/4997817 [00:09<00:23, 150610.84it/s]" ] }, { @@ -1315,7 +1315,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1505359/4997817 [00:09<00:22, 154477.79it/s]" + " 29%|██▉ | 1461100/4997817 [00:09<00:23, 150351.35it/s]" ] }, { @@ -1323,7 +1323,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1520808/4997817 [00:09<00:22, 152316.75it/s]" + " 30%|██▉ | 1476136/4997817 [00:09<00:23, 150351.62it/s]" ] }, { @@ -1331,7 +1331,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1536092/4997817 [00:10<00:22, 152469.90it/s]" + " 30%|██▉ | 1491172/4997817 [00:10<00:23, 150194.73it/s]" ] }, { @@ -1339,7 +1339,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1551490/4997817 [00:10<00:22, 152918.43it/s]" + " 30%|███ | 1506211/4997817 [00:10<00:23, 150251.52it/s]" ] }, { @@ -1347,7 +1347,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 1566786/4997817 [00:10<00:22, 152765.47it/s]" + " 30%|███ | 1521237/4997817 [00:10<00:23, 150109.15it/s]" ] }, { @@ -1355,7 +1355,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1582334/4997817 [00:10<00:22, 153574.00it/s]" + " 31%|███ | 1536249/4997817 [00:10<00:23, 150096.26it/s]" ] }, { @@ -1363,7 +1363,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1597792/4997817 [00:10<00:22, 153872.91it/s]" + " 31%|███ | 1551259/4997817 [00:10<00:23, 149462.26it/s]" ] }, { @@ -1371,7 +1371,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1613183/4997817 [00:10<00:21, 153880.54it/s]" + " 31%|███▏ | 1566267/4997817 [00:10<00:22, 149644.24it/s]" ] }, { @@ -1379,7 +1379,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1628632/4997817 [00:10<00:21, 154059.84it/s]" + " 32%|███▏ | 1581276/4997817 [00:10<00:22, 149776.05it/s]" ] }, { @@ -1387,7 +1387,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1644039/4997817 [00:10<00:21, 153950.08it/s]" + " 32%|███▏ | 1596406/4997817 [00:10<00:22, 150229.40it/s]" ] }, { @@ -1395,7 +1395,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1659435/4997817 [00:10<00:21, 153931.54it/s]" + " 32%|███▏ | 1611430/4997817 [00:10<00:22, 149875.17it/s]" ] }, { @@ -1403,7 +1403,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 1674829/4997817 [00:10<00:22, 150891.72it/s]" + " 33%|███▎ | 1626457/4997817 [00:10<00:22, 149991.96it/s]" ] }, { @@ -1411,7 +1411,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1690263/4997817 [00:11<00:21, 151909.20it/s]" + " 33%|███▎ | 1641457/4997817 [00:11<00:22, 149842.61it/s]" ] }, { @@ -1419,7 +1419,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1705712/4997817 [00:11<00:21, 152672.06it/s]" + " 33%|███▎ | 1656442/4997817 [00:11<00:22, 149178.88it/s]" ] }, { @@ -1427,7 +1427,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1721010/4997817 [00:11<00:21, 152762.19it/s]" + " 33%|███▎ | 1671433/4997817 [00:11<00:22, 149395.57it/s]" ] }, { @@ -1435,7 +1435,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1736392/4997817 [00:11<00:21, 153075.13it/s]" + " 34%|███▎ | 1686374/4997817 [00:11<00:22, 149138.56it/s]" ] }, { @@ -1443,7 +1443,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1751706/4997817 [00:11<00:21, 153091.95it/s]" + " 34%|███▍ | 1701289/4997817 [00:11<00:22, 148918.26it/s]" ] }, { @@ -1451,7 +1451,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1767064/4997817 [00:11<00:21, 153236.18it/s]" + " 34%|███▍ | 1716213/4997817 [00:11<00:22, 149012.69it/s]" ] }, { @@ -1459,7 +1459,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1782413/4997817 [00:11<00:20, 153308.29it/s]" + " 35%|███▍ | 1731115/4997817 [00:11<00:21, 148944.14it/s]" ] }, { @@ -1467,7 +1467,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1797837/4997817 [00:11<00:20, 153583.66it/s]" + " 35%|███▍ | 1746194/4997817 [00:11<00:21, 149493.82it/s]" ] }, { @@ -1475,7 +1475,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▋ | 1813334/4997817 [00:11<00:20, 153997.58it/s]" + " 35%|███▌ | 1761144/4997817 [00:11<00:21, 149208.94it/s]" ] }, { @@ -1483,7 +1483,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1828735/4997817 [00:11<00:20, 153903.11it/s]" + " 36%|███▌ | 1776121/4997817 [00:11<00:21, 149375.63it/s]" ] }, { @@ -1491,7 +1491,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1844126/4997817 [00:12<00:20, 153676.13it/s]" + " 36%|███▌ | 1791134/4997817 [00:12<00:21, 149598.30it/s]" ] }, { @@ -1499,7 +1499,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1859495/4997817 [00:12<00:20, 152434.24it/s]" + " 36%|███▌ | 1806122/4997817 [00:12<00:21, 149681.04it/s]" ] }, { @@ -1507,7 +1507,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1875037/4997817 [00:12<00:20, 153321.04it/s]" + " 36%|███▋ | 1821194/4997817 [00:12<00:21, 149989.51it/s]" ] }, { @@ -1515,7 +1515,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1890580/4997817 [00:12<00:20, 153947.98it/s]" + " 37%|███▋ | 1836194/4997817 [00:12<00:21, 149437.65it/s]" ] }, { @@ -1523,7 +1523,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1906123/4997817 [00:12<00:20, 154387.38it/s]" + " 37%|███▋ | 1851139/4997817 [00:12<00:21, 148984.44it/s]" ] }, { @@ -1531,7 +1531,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1921567/4997817 [00:12<00:19, 154402.18it/s]" + " 37%|███▋ | 1866038/4997817 [00:12<00:21, 147246.22it/s]" ] }, { @@ -1539,7 +1539,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1937009/4997817 [00:12<00:19, 154180.77it/s]" + " 38%|███▊ | 1881056/4997817 [00:12<00:21, 148114.68it/s]" ] }, { @@ -1547,7 +1547,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1952511/4997817 [00:12<00:19, 154429.05it/s]" + " 38%|███▊ | 1896131/4997817 [00:12<00:20, 148896.05it/s]" ] }, { @@ -1555,7 +1555,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1968011/4997817 [00:12<00:19, 154598.02it/s]" + " 38%|███▊ | 1911091/4997817 [00:12<00:20, 149102.93it/s]" ] }, { @@ -1563,7 +1563,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1983472/4997817 [00:12<00:19, 154462.27it/s]" + " 39%|███▊ | 1926116/4997817 [00:12<00:20, 149442.99it/s]" ] }, { @@ -1571,7 +1571,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1998919/4997817 [00:13<00:19, 154309.22it/s]" + " 39%|███▉ | 1941063/4997817 [00:13<00:20, 149128.38it/s]" ] }, { @@ -1579,7 +1579,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2014351/4997817 [00:13<00:19, 153760.57it/s]" + " 39%|███▉ | 1956036/4997817 [00:13<00:20, 149306.16it/s]" ] }, { @@ -1587,7 +1587,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2029728/4997817 [00:13<00:19, 153539.57it/s]" + " 39%|███▉ | 1970971/4997817 [00:13<00:20, 149316.34it/s]" ] }, { @@ -1595,7 +1595,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2045083/4997817 [00:13<00:19, 153305.75it/s]" + " 40%|███▉ | 1985952/4997817 [00:13<00:20, 149462.31it/s]" ] }, { @@ -1603,7 +1603,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2060414/4997817 [00:13<00:19, 153086.13it/s]" + " 40%|████ | 2000899/4997817 [00:13<00:20, 149362.33it/s]" ] }, { @@ -1611,7 +1611,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2075813/4997817 [00:13<00:19, 153327.75it/s]" + " 40%|████ | 2015836/4997817 [00:13<00:20, 145896.07it/s]" ] }, { @@ -1619,7 +1619,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2091146/4997817 [00:13<00:18, 153295.44it/s]" + " 41%|████ | 2030712/4997817 [00:13<00:20, 146737.35it/s]" ] }, { @@ -1627,7 +1627,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2106476/4997817 [00:13<00:18, 153241.39it/s]" + " 41%|████ | 2045591/4997817 [00:13<00:20, 147344.64it/s]" ] }, { @@ -1635,7 +1635,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2121835/4997817 [00:13<00:18, 153342.12it/s]" + " 41%|████ | 2060460/4997817 [00:13<00:19, 147741.07it/s]" ] }, { @@ -1643,7 +1643,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2137170/4997817 [00:13<00:18, 153094.39it/s]" + " 42%|████▏ | 2075716/4997817 [00:13<00:19, 149174.37it/s]" ] }, { @@ -1651,7 +1651,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2152549/4997817 [00:14<00:18, 153299.75it/s]" + " 42%|████▏ | 2090987/4997817 [00:14<00:19, 150227.50it/s]" ] }, { @@ -1659,7 +1659,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2167938/4997817 [00:14<00:18, 153474.65it/s]" + " 42%|████▏ | 2106142/4997817 [00:14<00:19, 150621.82it/s]" ] }, { @@ -1667,7 +1667,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2183398/4997817 [00:14<00:18, 153807.90it/s]" + " 42%|████▏ | 2121208/4997817 [00:14<00:19, 150367.55it/s]" ] }, { @@ -1675,7 +1675,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2198824/4997817 [00:14<00:18, 153939.96it/s]" + " 43%|████▎ | 2136392/4997817 [00:14<00:18, 150804.48it/s]" ] }, { @@ -1683,7 +1683,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2214219/4997817 [00:14<00:18, 153921.45it/s]" + " 43%|████▎ | 2151475/4997817 [00:14<00:18, 150361.22it/s]" ] }, { @@ -1691,7 +1691,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2229612/4997817 [00:14<00:18, 153428.14it/s]" + " 43%|████▎ | 2166513/4997817 [00:14<00:19, 143788.49it/s]" ] }, { @@ -1699,7 +1699,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2245047/4997817 [00:14<00:17, 153701.95it/s]" + " 44%|████▎ | 2181424/4997817 [00:14<00:19, 145330.67it/s]" ] }, { @@ -1707,7 +1707,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2260418/4997817 [00:14<00:17, 153296.17it/s]" + " 44%|████▍ | 2196325/4997817 [00:14<00:19, 146407.42it/s]" ] }, { @@ -1715,7 +1715,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2275749/4997817 [00:14<00:17, 152857.85it/s]" + " 44%|████▍ | 2211331/4997817 [00:14<00:18, 147481.67it/s]" ] }, { @@ -1723,7 +1723,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2291094/4997817 [00:14<00:17, 153029.88it/s]" + " 45%|████▍ | 2226301/4997817 [00:14<00:18, 148136.89it/s]" ] }, { @@ -1731,7 +1731,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2306398/4997817 [00:15<00:17, 152930.66it/s]" + " 45%|████▍ | 2241232/4997817 [00:15<00:18, 148482.48it/s]" ] }, { @@ -1739,7 +1739,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2321735/4997817 [00:15<00:17, 153058.78it/s]" + " 45%|████▌ | 2256259/4997817 [00:15<00:18, 149014.50it/s]" ] }, { @@ -1747,7 +1747,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2337094/4997817 [00:15<00:17, 153214.07it/s]" + " 45%|████▌ | 2271171/4997817 [00:15<00:18, 149017.51it/s]" ] }, { @@ -1755,7 +1755,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2352422/4997817 [00:15<00:17, 153231.13it/s]" + " 46%|████▌ | 2286080/4997817 [00:15<00:18, 148999.28it/s]" ] }, { @@ -1763,7 +1763,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2367922/4997817 [00:15<00:17, 153757.51it/s]" + " 46%|████▌ | 2301089/4997817 [00:15<00:18, 149322.38it/s]" ] }, { @@ -1771,7 +1771,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2383385/4997817 [00:15<00:16, 154015.83it/s]" + " 46%|████▋ | 2316050/4997817 [00:15<00:17, 149405.58it/s]" ] }, { @@ -1779,7 +1779,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2398830/4997817 [00:15<00:16, 154143.64it/s]" + " 47%|████▋ | 2330994/4997817 [00:15<00:17, 148813.12it/s]" ] }, { @@ -1787,7 +1787,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2414296/4997817 [00:15<00:16, 154294.90it/s]" + " 47%|████▋ | 2345878/4997817 [00:15<00:17, 148395.95it/s]" ] }, { @@ -1795,7 +1795,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▊ | 2429726/4997817 [00:15<00:16, 153837.75it/s]" + " 47%|████▋ | 2360762/4997817 [00:15<00:17, 148526.38it/s]" ] }, { @@ -1803,7 +1803,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2445111/4997817 [00:15<00:16, 153667.86it/s]" + " 48%|████▊ | 2375616/4997817 [00:15<00:17, 148159.93it/s]" ] }, { @@ -1811,7 +1811,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2460479/4997817 [00:16<00:16, 151890.70it/s]" + " 48%|████▊ | 2390532/4997817 [00:16<00:17, 148457.00it/s]" ] }, { @@ -1819,7 +1819,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2475988/4997817 [00:16<00:16, 152837.34it/s]" + " 48%|████▊ | 2405379/4997817 [00:16<00:17, 148196.15it/s]" ] }, { @@ -1827,7 +1827,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2491431/4997817 [00:16<00:16, 153308.51it/s]" + " 48%|████▊ | 2420238/4997817 [00:16<00:17, 148312.28it/s]" ] }, { @@ -1835,7 +1835,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2506866/4997817 [00:16<00:16, 153615.55it/s]" + " 49%|████▊ | 2435107/4997817 [00:16<00:17, 148423.16it/s]" ] }, { @@ -1843,7 +1843,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2522412/4997817 [00:16<00:16, 154163.30it/s]" + " 49%|████▉ | 2450070/4997817 [00:16<00:17, 148780.43it/s]" ] }, { @@ -1851,7 +1851,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2537871/4997817 [00:16<00:15, 154287.08it/s]" + " 49%|████▉ | 2464991/4997817 [00:16<00:17, 148906.54it/s]" ] }, { @@ -1859,7 +1859,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2553303/4997817 [00:16<00:15, 154293.90it/s]" + " 50%|████▉ | 2479882/4997817 [00:16<00:17, 146441.13it/s]" ] }, { @@ -1867,7 +1867,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2568816/4997817 [00:16<00:15, 154541.27it/s]" + " 50%|████▉ | 2494748/4997817 [00:16<00:17, 147095.48it/s]" ] }, { @@ -1875,7 +1875,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2584304/4997817 [00:16<00:15, 154640.86it/s]" + " 50%|█████ | 2509636/4997817 [00:16<00:16, 147622.93it/s]" ] }, { @@ -1883,7 +1883,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2599855/4997817 [00:16<00:15, 154898.61it/s]" + " 51%|█████ | 2524564/4997817 [00:16<00:16, 148114.56it/s]" ] }, { @@ -1891,7 +1891,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2615346/4997817 [00:17<00:15, 154665.43it/s]" + " 51%|█████ | 2539380/4997817 [00:17<00:16, 148115.30it/s]" ] }, { @@ -1899,7 +1899,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2630881/4997817 [00:17<00:15, 154867.02it/s]" + " 51%|█████ | 2554354/4997817 [00:17<00:16, 148597.46it/s]" ] }, { @@ -1907,7 +1907,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2646404/4997817 [00:17<00:15, 154973.97it/s]" + " 51%|█████▏ | 2569216/4997817 [00:17<00:16, 148374.13it/s]" ] }, { @@ -1915,7 +1915,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2661935/4997817 [00:17<00:15, 155072.43it/s]" + " 52%|█████▏ | 2584164/4997817 [00:17<00:16, 148703.27it/s]" ] }, { @@ -1923,7 +1923,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 2677443/4997817 [00:17<00:14, 154974.92it/s]" + " 52%|█████▏ | 2599036/4997817 [00:17<00:16, 148635.63it/s]" ] }, { @@ -1931,7 +1931,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2692941/4997817 [00:17<00:14, 154515.55it/s]" + " 52%|█████▏ | 2613901/4997817 [00:17<00:16, 148378.58it/s]" ] }, { @@ -1939,7 +1939,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2708393/4997817 [00:17<00:14, 154276.13it/s]" + " 53%|█████▎ | 2628767/4997817 [00:17<00:15, 148459.78it/s]" ] }, { @@ -1947,7 +1947,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2723821/4997817 [00:17<00:14, 154178.04it/s]" + " 53%|█████▎ | 2643614/4997817 [00:17<00:15, 147791.28it/s]" ] }, { @@ -1955,7 +1955,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2739259/4997817 [00:17<00:14, 154235.88it/s]" + " 53%|█████▎ | 2658460/4997817 [00:17<00:15, 147989.27it/s]" ] }, { @@ -1963,7 +1963,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2754683/4997817 [00:17<00:14, 153926.57it/s]" + " 53%|█████▎ | 2673393/4997817 [00:17<00:15, 148387.24it/s]" ] }, { @@ -1971,7 +1971,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2770076/4997817 [00:18<00:14, 153820.44it/s]" + " 54%|█████▍ | 2688233/4997817 [00:18<00:15, 148384.85it/s]" ] }, { @@ -1979,7 +1979,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2785459/4997817 [00:18<00:14, 152499.22it/s]" + " 54%|█████▍ | 2703072/4997817 [00:18<00:15, 148257.58it/s]" ] }, { @@ -1987,7 +1987,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2800824/4997817 [00:18<00:14, 152839.13it/s]" + " 54%|█████▍ | 2717899/4997817 [00:18<00:15, 148209.80it/s]" ] }, { @@ -1995,7 +1995,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2816235/4997817 [00:18<00:14, 153215.33it/s]" + " 55%|█████▍ | 2732721/4997817 [00:18<00:15, 147973.31it/s]" ] }, { @@ -2003,7 +2003,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2831689/4997817 [00:18<00:14, 153607.76it/s]" + " 55%|█████▍ | 2747595/4997817 [00:18<00:15, 148200.33it/s]" ] }, { @@ -2011,7 +2011,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2847052/4997817 [00:18<00:14, 153491.72it/s]" + " 55%|█████▌ | 2762416/4997817 [00:18<00:15, 146973.80it/s]" ] }, { @@ -2019,7 +2019,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2862403/4997817 [00:18<00:13, 153419.95it/s]" + " 56%|█████▌ | 2777116/4997817 [00:18<00:15, 146789.58it/s]" ] }, { @@ -2027,7 +2027,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2877746/4997817 [00:18<00:13, 153366.30it/s]" + " 56%|█████▌ | 2791931/4997817 [00:18<00:14, 147194.26it/s]" ] }, { @@ -2035,7 +2035,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2893133/4997817 [00:18<00:13, 153514.67it/s]" + " 56%|█████▌ | 2806715/4997817 [00:18<00:14, 147384.30it/s]" ] }, { @@ -2043,7 +2043,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2908594/4997817 [00:18<00:13, 153841.38it/s]" + " 56%|█████▋ | 2821480/4997817 [00:18<00:14, 147462.46it/s]" ] }, { @@ -2051,7 +2051,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▊ | 2923979/4997817 [00:19<00:13, 153498.35it/s]" + " 57%|█████▋ | 2836227/4997817 [00:19<00:14, 147406.15it/s]" ] }, { @@ -2059,7 +2059,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2939330/4997817 [00:19<00:13, 153391.86it/s]" + " 57%|█████▋ | 2851060/4997817 [00:19<00:14, 147680.88it/s]" ] }, { @@ -2067,7 +2067,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2954670/4997817 [00:19<00:13, 153220.33it/s]" + " 57%|█████▋ | 2865829/4997817 [00:19<00:14, 147480.31it/s]" ] }, { @@ -2075,7 +2075,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2969993/4997817 [00:19<00:13, 153075.79it/s]" + " 58%|█████▊ | 2880627/4997817 [00:19<00:14, 147625.88it/s]" ] }, { @@ -2083,7 +2083,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2985358/4997817 [00:19<00:13, 153246.40it/s]" + " 58%|█████▊ | 2895450/4997817 [00:19<00:14, 147805.34it/s]" ] }, { @@ -2091,7 +2091,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3000894/4997817 [00:19<00:12, 153877.45it/s]" + " 58%|█████▊ | 2910289/4997817 [00:19<00:14, 147977.98it/s]" ] }, { @@ -2099,7 +2099,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3016305/4997817 [00:19<00:12, 153943.55it/s]" + " 59%|█████▊ | 2925087/4997817 [00:19<00:14, 147773.60it/s]" ] }, { @@ -2107,7 +2107,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3031700/4997817 [00:19<00:12, 153840.86it/s]" + " 59%|█████▉ | 2939865/4997817 [00:19<00:13, 147432.38it/s]" ] }, { @@ -2115,7 +2115,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3047085/4997817 [00:19<00:12, 153735.99it/s]" + " 59%|█████▉ | 2954609/4997817 [00:19<00:13, 147384.87it/s]" ] }, { @@ -2123,7 +2123,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████▏ | 3062478/4997817 [00:19<00:12, 153789.99it/s]" + " 59%|█████▉ | 2969435/4997817 [00:19<00:13, 147643.11it/s]" ] }, { @@ -2131,7 +2131,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3077886/4997817 [00:20<00:12, 153873.44it/s]" + " 60%|█████▉ | 2984444/4997817 [00:20<00:13, 148372.54it/s]" ] }, { @@ -2139,7 +2139,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3093381/4997817 [00:20<00:12, 154194.60it/s]" + " 60%|██████ | 2999282/4997817 [00:20<00:13, 148224.96it/s]" ] }, { @@ -2147,7 +2147,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3108801/4997817 [00:20<00:12, 154044.06it/s]" + " 60%|██████ | 3014327/4997817 [00:20<00:13, 148889.21it/s]" ] }, { @@ -2155,7 +2155,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3124206/4997817 [00:20<00:12, 153851.19it/s]" + " 61%|██████ | 3029217/4997817 [00:20<00:13, 148573.27it/s]" ] }, { @@ -2163,7 +2163,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3139592/4997817 [00:20<00:12, 153641.46it/s]" + " 61%|██████ | 3044247/4997817 [00:20<00:13, 149086.67it/s]" ] }, { @@ -2171,7 +2171,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3154957/4997817 [00:20<00:12, 153372.79it/s]" + " 61%|██████ | 3059183/4997817 [00:20<00:12, 149166.56it/s]" ] }, { @@ -2179,7 +2179,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3170295/4997817 [00:20<00:11, 153270.58it/s]" + " 62%|██████▏ | 3074155/4997817 [00:20<00:12, 149330.96it/s]" ] }, { @@ -2187,7 +2187,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 3185782/4997817 [00:20<00:11, 153747.89it/s]" + " 62%|██████▏ | 3089110/4997817 [00:20<00:12, 149393.56it/s]" ] }, { @@ -2195,7 +2195,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3201183/4997817 [00:20<00:11, 153822.92it/s]" + " 62%|██████▏ | 3104210/4997817 [00:20<00:12, 149873.45it/s]" ] }, { @@ -2203,7 +2203,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3216566/4997817 [00:20<00:11, 153750.28it/s]" + " 62%|██████▏ | 3119202/4997817 [00:20<00:12, 149884.34it/s]" ] }, { @@ -2211,7 +2211,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3231942/4997817 [00:21<00:11, 153486.01it/s]" + " 63%|██████▎ | 3134198/4997817 [00:21<00:12, 149905.04it/s]" ] }, { @@ -2219,7 +2219,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3247291/4997817 [00:21<00:11, 153010.94it/s]" + " 63%|██████▎ | 3149189/4997817 [00:21<00:12, 149467.49it/s]" ] }, { @@ -2227,7 +2227,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3262633/4997817 [00:21<00:11, 153131.08it/s]" + " 63%|██████▎ | 3164137/4997817 [00:21<00:12, 149307.28it/s]" ] }, { @@ -2235,7 +2235,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3277947/4997817 [00:21<00:11, 152734.43it/s]" + " 64%|██████▎ | 3179123/4997817 [00:21<00:12, 149468.60it/s]" ] }, { @@ -2243,7 +2243,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3293236/4997817 [00:21<00:11, 152779.12it/s]" + " 64%|██████▍ | 3194121/4997817 [00:21<00:12, 149619.67it/s]" ] }, { @@ -2251,7 +2251,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3308515/4997817 [00:21<00:11, 152733.82it/s]" + " 64%|██████▍ | 3209107/4997817 [00:21<00:11, 149688.95it/s]" ] }, { @@ -2259,7 +2259,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3323806/4997817 [00:21<00:10, 152783.67it/s]" + " 65%|██████▍ | 3224077/4997817 [00:21<00:11, 149601.75it/s]" ] }, { @@ -2267,7 +2267,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3339146/4997817 [00:21<00:10, 152966.93it/s]" + " 65%|██████▍ | 3239038/4997817 [00:21<00:12, 145384.73it/s]" ] }, { @@ -2275,7 +2275,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3354462/4997817 [00:21<00:10, 153022.87it/s]" + " 65%|██████▌ | 3253832/4997817 [00:21<00:11, 146133.31it/s]" ] }, { @@ -2283,7 +2283,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3369765/4997817 [00:21<00:10, 152962.73it/s]" + " 65%|██████▌ | 3268741/4997817 [00:22<00:11, 147004.99it/s]" ] }, { @@ -2291,7 +2291,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3385062/4997817 [00:22<00:10, 152894.80it/s]" + " 66%|██████▌ | 3283745/4997817 [00:22<00:11, 147902.87it/s]" ] }, { @@ -2299,7 +2299,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3400352/4997817 [00:22<00:10, 152666.42it/s]" + " 66%|██████▌ | 3298633/4997817 [00:22<00:11, 148190.05it/s]" ] }, { @@ -2307,7 +2307,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3415645/4997817 [00:22<00:10, 152708.55it/s]" + " 66%|██████▋ | 3313596/4997817 [00:22<00:11, 148619.05it/s]" ] }, { @@ -2315,7 +2315,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▊ | 3430980/4997817 [00:22<00:10, 152898.91it/s]" + " 67%|██████▋ | 3328645/4997817 [00:22<00:11, 149176.15it/s]" ] }, { @@ -2323,7 +2323,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3446327/4997817 [00:22<00:10, 153067.61it/s]" + " 67%|██████▋ | 3343578/4997817 [00:22<00:11, 149218.29it/s]" ] }, { @@ -2331,7 +2331,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3461646/4997817 [00:22<00:10, 153102.05it/s]" + " 67%|██████▋ | 3358612/4997817 [00:22<00:10, 149551.05it/s]" ] }, { @@ -2339,7 +2339,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3476976/4997817 [00:22<00:09, 153158.49it/s]" + " 68%|██████▊ | 3373570/4997817 [00:22<00:10, 149033.52it/s]" ] }, { @@ -2347,7 +2347,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3492292/4997817 [00:22<00:09, 153120.01it/s]" + " 68%|██████▊ | 3388476/4997817 [00:22<00:10, 146528.29it/s]" ] }, { @@ -2355,7 +2355,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3507605/4997817 [00:22<00:09, 152890.11it/s]" + " 68%|██████▊ | 3403462/4997817 [00:22<00:10, 147511.06it/s]" ] }, { @@ -2363,7 +2363,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3522908/4997817 [00:22<00:09, 152929.55it/s]" + " 68%|██████▊ | 3418495/4997817 [00:23<00:10, 148345.08it/s]" ] }, { @@ -2371,7 +2371,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3538202/4997817 [00:23<00:09, 152891.32it/s]" + " 69%|██████▊ | 3433544/4997817 [00:23<00:10, 148981.12it/s]" ] }, { @@ -2379,7 +2379,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3553492/4997817 [00:23<00:09, 152523.70it/s]" + " 69%|██████▉ | 3448517/4997817 [00:23<00:10, 149201.74it/s]" ] }, { @@ -2387,7 +2387,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████▏ | 3568866/4997817 [00:23<00:09, 152854.30it/s]" + " 69%|██████▉ | 3463463/4997817 [00:23<00:10, 149277.82it/s]" ] }, { @@ -2395,7 +2395,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3584239/4997817 [00:23<00:09, 153113.31it/s]" + " 70%|██████▉ | 3478486/4997817 [00:23<00:10, 149559.40it/s]" ] }, { @@ -2403,7 +2403,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3599641/4997817 [00:23<00:09, 153382.50it/s]" + " 70%|██████▉ | 3493500/4997817 [00:23<00:10, 149731.40it/s]" ] }, { @@ -2411,7 +2411,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3614980/4997817 [00:23<00:09, 153219.90it/s]" + " 70%|███████ | 3508475/4997817 [00:23<00:09, 149355.57it/s]" ] }, { @@ -2419,7 +2419,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3630303/4997817 [00:23<00:08, 153103.44it/s]" + " 70%|███████ | 3523448/4997817 [00:23<00:09, 149463.06it/s]" ] }, { @@ -2427,7 +2427,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3645666/4997817 [00:23<00:08, 153258.04it/s]" + " 71%|███████ | 3538396/4997817 [00:23<00:09, 148811.09it/s]" ] }, { @@ -2435,7 +2435,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3661037/4997817 [00:23<00:08, 153391.00it/s]" + " 71%|███████ | 3553386/4997817 [00:23<00:09, 149134.03it/s]" ] }, { @@ -2443,7 +2443,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▎ | 3676396/4997817 [00:23<00:08, 153447.74it/s]" + " 71%|███████▏ | 3568325/4997817 [00:24<00:09, 149206.80it/s]" ] }, { @@ -2451,7 +2451,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3691779/4997817 [00:24<00:08, 153559.00it/s]" + " 72%|███████▏ | 3583404/4997817 [00:24<00:09, 149679.49it/s]" ] }, { @@ -2459,7 +2459,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3707135/4997817 [00:24<00:08, 153499.64it/s]" + " 72%|███████▏ | 3598373/4997817 [00:24<00:09, 149631.28it/s]" ] }, { @@ -2467,7 +2467,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3722486/4997817 [00:24<00:08, 153335.52it/s]" + " 72%|███████▏ | 3613551/4997817 [00:24<00:09, 150271.66it/s]" ] }, { @@ -2475,7 +2475,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3737911/4997817 [00:24<00:08, 153606.19it/s]" + " 73%|███████▎ | 3628626/4997817 [00:24<00:09, 150412.06it/s]" ] }, { @@ -2483,7 +2483,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3753366/4997817 [00:24<00:08, 153887.83it/s]" + " 73%|███████▎ | 3643668/4997817 [00:24<00:09, 150397.28it/s]" ] }, { @@ -2491,7 +2491,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3768778/4997817 [00:24<00:07, 153954.62it/s]" + " 73%|███████▎ | 3658708/4997817 [00:24<00:08, 150269.23it/s]" ] }, { @@ -2499,7 +2499,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3784257/4997817 [00:24<00:07, 154203.63it/s]" + " 74%|███████▎ | 3673736/4997817 [00:24<00:08, 150258.33it/s]" ] }, { @@ -2507,7 +2507,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3799678/4997817 [00:24<00:07, 154022.21it/s]" + " 74%|███████▍ | 3688762/4997817 [00:24<00:08, 149854.99it/s]" ] }, { @@ -2515,7 +2515,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▋ | 3815093/4997817 [00:24<00:07, 154058.13it/s]" + " 74%|███████▍ | 3703809/4997817 [00:24<00:08, 150024.53it/s]" ] }, { @@ -2523,7 +2523,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3830531/4997817 [00:24<00:07, 154154.11it/s]" + " 74%|███████▍ | 3718812/4997817 [00:25<00:08, 149963.47it/s]" ] }, { @@ -2531,7 +2531,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3845947/4997817 [00:25<00:07, 153835.24it/s]" + " 75%|███████▍ | 3733809/4997817 [00:25<00:08, 147131.86it/s]" ] }, { @@ -2539,7 +2539,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3861331/4997817 [00:25<00:07, 152363.39it/s]" + " 75%|███████▌ | 3748534/4997817 [00:25<00:08, 144968.10it/s]" ] }, { @@ -2547,7 +2547,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3876571/4997817 [00:25<00:07, 148257.54it/s]" + " 75%|███████▌ | 3763502/4997817 [00:25<00:08, 146351.45it/s]" ] }, { @@ -2555,7 +2555,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3892073/4997817 [00:25<00:07, 150233.03it/s]" + " 76%|███████▌ | 3778452/4997817 [00:25<00:08, 147280.93it/s]" ] }, { @@ -2563,7 +2563,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3907535/4997817 [00:25<00:07, 151525.34it/s]" + " 76%|███████▌ | 3793500/4997817 [00:25<00:08, 148227.46it/s]" ] }, { @@ -2571,7 +2571,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3923032/4997817 [00:25<00:07, 152544.53it/s]" + " 76%|███████▌ | 3808551/4997817 [00:25<00:07, 148904.08it/s]" ] }, { @@ -2579,7 +2579,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3938584/4997817 [00:25<00:06, 153428.34it/s]" + " 77%|███████▋ | 3823448/4997817 [00:25<00:07, 148893.18it/s]" ] }, { @@ -2587,7 +2587,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3954145/4997817 [00:25<00:06, 154078.27it/s]" + " 77%|███████▋ | 3838405/4997817 [00:25<00:07, 149091.59it/s]" ] }, { @@ -2595,7 +2595,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3969685/4997817 [00:25<00:06, 154471.17it/s]" + " 77%|███████▋ | 3853321/4997817 [00:25<00:07, 149108.91it/s]" ] }, { @@ -2603,7 +2603,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3985282/4997817 [00:25<00:06, 154916.43it/s]" + " 77%|███████▋ | 3868424/4997817 [00:26<00:07, 149683.15it/s]" ] }, { @@ -2611,7 +2611,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4000824/4997817 [00:26<00:06, 155065.13it/s]" + " 78%|███████▊ | 3883394/4997817 [00:26<00:07, 149463.82it/s]" ] }, { @@ -2619,7 +2619,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4016398/4997817 [00:26<00:06, 155265.45it/s]" + " 78%|███████▊ | 3898342/4997817 [00:26<00:07, 149433.72it/s]" ] }, { @@ -2627,7 +2627,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4031927/4997817 [00:26<00:06, 155263.31it/s]" + " 78%|███████▊ | 3913287/4997817 [00:26<00:07, 149158.69it/s]" ] }, { @@ -2635,7 +2635,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4047504/4997817 [00:26<00:06, 155411.91it/s]" + " 79%|███████▊ | 3928270/4997817 [00:26<00:07, 149356.03it/s]" ] }, { @@ -2643,7 +2643,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4063142/4997817 [00:26<00:06, 155701.11it/s]" + " 79%|███████▉ | 3943329/4997817 [00:26<00:07, 149723.39it/s]" ] }, { @@ -2651,7 +2651,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4078784/4997817 [00:26<00:05, 155914.73it/s]" + " 79%|███████▉ | 3958457/4997817 [00:26<00:06, 150186.21it/s]" ] }, { @@ -2659,7 +2659,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4094376/4997817 [00:26<00:05, 155609.03it/s]" + " 80%|███████▉ | 3973535/4997817 [00:26<00:06, 150362.74it/s]" ] }, { @@ -2667,7 +2667,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4109938/4997817 [00:26<00:05, 155507.75it/s]" + " 80%|███████▉ | 3988572/4997817 [00:26<00:06, 150215.59it/s]" ] }, { @@ -2675,7 +2675,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4125523/4997817 [00:26<00:05, 155609.64it/s]" + " 80%|████████ | 4003594/4997817 [00:26<00:06, 150138.97it/s]" ] }, { @@ -2683,7 +2683,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4141085/4997817 [00:27<00:05, 155552.22it/s]" + " 80%|████████ | 4018609/4997817 [00:27<00:06, 149672.46it/s]" ] }, { @@ -2691,7 +2691,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4156641/4997817 [00:27<00:05, 155421.11it/s]" + " 81%|████████ | 4033577/4997817 [00:27<00:06, 149505.88it/s]" ] }, { @@ -2699,7 +2699,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4172184/4997817 [00:27<00:05, 155117.46it/s]" + " 81%|████████ | 4048528/4997817 [00:27<00:06, 149125.02it/s]" ] }, { @@ -2707,7 +2707,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4187696/4997817 [00:27<00:05, 154534.79it/s]" + " 81%|████████▏ | 4063484/4997817 [00:27<00:06, 149230.93it/s]" ] }, { @@ -2715,7 +2715,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4203150/4997817 [00:27<00:05, 154184.66it/s]" + " 82%|████████▏ | 4078408/4997817 [00:27<00:06, 148972.40it/s]" ] }, { @@ -2723,7 +2723,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4218595/4997817 [00:27<00:05, 154242.53it/s]" + " 82%|████████▏ | 4093306/4997817 [00:27<00:06, 148888.41it/s]" ] }, { @@ -2731,7 +2731,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4234020/4997817 [00:27<00:04, 154099.47it/s]" + " 82%|████████▏ | 4108195/4997817 [00:27<00:05, 148605.24it/s]" ] }, { @@ -2739,7 +2739,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4249431/4997817 [00:27<00:04, 153957.74it/s]" + " 82%|████████▏ | 4123096/4997817 [00:27<00:05, 148724.20it/s]" ] }, { @@ -2747,7 +2747,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4264935/4997817 [00:27<00:04, 154279.92it/s]" + " 83%|████████▎ | 4137986/4997817 [00:27<00:05, 148775.81it/s]" ] }, { @@ -2755,7 +2755,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4280381/4997817 [00:27<00:04, 154332.23it/s]" + " 83%|████████▎ | 4152864/4997817 [00:27<00:05, 147916.84it/s]" ] }, { @@ -2763,7 +2763,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4295885/4997817 [00:28<00:04, 154541.78it/s]" + " 83%|████████▎ | 4168079/4997817 [00:28<00:05, 149178.91it/s]" ] }, { @@ -2771,7 +2771,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▋ | 4311340/4997817 [00:28<00:04, 154233.71it/s]" + " 84%|████████▎ | 4182999/4997817 [00:28<00:05, 148754.10it/s]" ] }, { @@ -2779,7 +2779,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4326764/4997817 [00:28<00:04, 153934.37it/s]" + " 84%|████████▍ | 4197876/4997817 [00:28<00:05, 148338.85it/s]" ] }, { @@ -2787,7 +2787,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4342158/4997817 [00:28<00:04, 153797.99it/s]" + " 84%|████████▍ | 4212711/4997817 [00:28<00:05, 148033.59it/s]" ] }, { @@ -2795,7 +2795,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4357619/4997817 [00:28<00:04, 154038.91it/s]" + " 85%|████████▍ | 4227532/4997817 [00:28<00:05, 148084.81it/s]" ] }, { @@ -2803,7 +2803,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4373121/4997817 [00:28<00:04, 154329.55it/s]" + " 85%|████████▍ | 4242341/4997817 [00:28<00:05, 147336.76it/s]" ] }, { @@ -2811,7 +2811,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4388575/4997817 [00:28<00:03, 154391.98it/s]" + " 85%|████████▌ | 4257276/4997817 [00:28<00:05, 147934.28it/s]" ] }, { @@ -2819,7 +2819,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4404026/4997817 [00:28<00:03, 154426.41it/s]" + " 85%|████████▌ | 4272071/4997817 [00:28<00:04, 147925.43it/s]" ] }, { @@ -2827,7 +2827,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4419469/4997817 [00:28<00:03, 154210.38it/s]" + " 86%|████████▌ | 4286975/4997817 [00:28<00:04, 148255.65it/s]" ] }, { @@ -2835,7 +2835,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▊ | 4434891/4997817 [00:28<00:03, 154138.11it/s]" + " 86%|████████▌ | 4301802/4997817 [00:28<00:04, 148247.61it/s]" ] }, { @@ -2843,7 +2843,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4450305/4997817 [00:29<00:03, 154134.10it/s]" + " 86%|████████▋ | 4316680/4997817 [00:29<00:04, 148405.11it/s]" ] }, { @@ -2851,7 +2851,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4465719/4997817 [00:29<00:03, 154121.48it/s]" + " 87%|████████▋ | 4331521/4997817 [00:29<00:04, 148218.44it/s]" ] }, { @@ -2859,7 +2859,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4481174/4997817 [00:29<00:03, 154247.34it/s]" + " 87%|████████▋ | 4346405/4997817 [00:29<00:04, 148402.52it/s]" ] }, { @@ -2867,7 +2867,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4496599/4997817 [00:29<00:03, 154208.17it/s]" + " 87%|████████▋ | 4361268/4997817 [00:29<00:04, 148468.29it/s]" ] }, { @@ -2875,7 +2875,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4512066/4997817 [00:29<00:03, 154345.14it/s]" + " 88%|████████▊ | 4376190/4997817 [00:29<00:04, 148692.17it/s]" ] }, { @@ -2883,7 +2883,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4527501/4997817 [00:29<00:03, 153705.84it/s]" + " 88%|████████▊ | 4391060/4997817 [00:29<00:04, 148605.96it/s]" ] }, { @@ -2891,7 +2891,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4542978/4997817 [00:29<00:02, 154023.13it/s]" + " 88%|████████▊ | 4405921/4997817 [00:29<00:03, 148210.23it/s]" ] }, { @@ -2899,7 +2899,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4558492/4997817 [00:29<00:02, 154356.16it/s]" + " 88%|████████▊ | 4420946/4997817 [00:29<00:03, 148818.58it/s]" ] }, { @@ -2907,7 +2907,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4573936/4997817 [00:29<00:02, 154379.11it/s]" + " 89%|████████▉ | 4435904/4997817 [00:29<00:03, 149042.50it/s]" ] }, { @@ -2915,7 +2915,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4589375/4997817 [00:29<00:02, 153899.17it/s]" + " 89%|████████▉ | 4450809/4997817 [00:29<00:03, 148696.48it/s]" ] }, { @@ -2923,7 +2923,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4604778/4997817 [00:30<00:02, 153936.92it/s]" + " 89%|████████▉ | 4465679/4997817 [00:30<00:03, 148391.39it/s]" ] }, { @@ -2931,7 +2931,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4620173/4997817 [00:30<00:02, 153820.99it/s]" + " 90%|████████▉ | 4480592/4997817 [00:30<00:03, 148609.55it/s]" ] }, { @@ -2939,7 +2939,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4635556/4997817 [00:30<00:02, 153371.69it/s]" + " 90%|████████▉ | 4495454/4997817 [00:30<00:03, 148415.61it/s]" ] }, { @@ -2947,7 +2947,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4650894/4997817 [00:30<00:02, 153092.36it/s]" + " 90%|█████████ | 4510296/4997817 [00:30<00:03, 148236.01it/s]" ] }, { @@ -2955,7 +2955,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4666439/4997817 [00:30<00:02, 153793.34it/s]" + " 91%|█████████ | 4525201/4997817 [00:30<00:03, 148476.86it/s]" ] }, { @@ -2963,7 +2963,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▎| 4682119/4997817 [00:30<00:02, 154691.04it/s]" + " 91%|█████████ | 4540137/4997817 [00:30<00:03, 148739.87it/s]" ] }, { @@ -2971,7 +2971,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4697589/4997817 [00:30<00:01, 154604.14it/s]" + " 91%|█████████ | 4555012/4997817 [00:30<00:02, 148724.36it/s]" ] }, { @@ -2979,7 +2979,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4713125/4997817 [00:30<00:01, 154828.68it/s]" + " 91%|█████████▏| 4569885/4997817 [00:30<00:02, 148218.47it/s]" ] }, { @@ -2987,7 +2987,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4728632/4997817 [00:30<00:01, 154898.93it/s]" + " 92%|█████████▏| 4584708/4997817 [00:30<00:02, 148107.90it/s]" ] }, { @@ -2995,7 +2995,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4744143/4997817 [00:30<00:01, 154959.25it/s]" + " 92%|█████████▏| 4599520/4997817 [00:30<00:02, 147382.48it/s]" ] }, { @@ -3003,7 +3003,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4759678/4997817 [00:31<00:01, 155073.46it/s]" + " 92%|█████████▏| 4614260/4997817 [00:31<00:02, 147171.43it/s]" ] }, { @@ -3011,7 +3011,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4775186/4997817 [00:31<00:01, 154917.52it/s]" + " 93%|█████████▎| 4628978/4997817 [00:31<00:02, 146910.50it/s]" ] }, { @@ -3019,7 +3019,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4790721/4997817 [00:31<00:01, 155045.85it/s]" + " 93%|█████████▎| 4643877/4997817 [00:31<00:02, 147529.63it/s]" ] }, { @@ -3027,7 +3027,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4806226/4997817 [00:31<00:01, 154851.24it/s]" + " 93%|█████████▎| 4658676/4997817 [00:31<00:02, 147663.65it/s]" ] }, { @@ -3035,7 +3035,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▋| 4821712/4997817 [00:31<00:01, 154804.70it/s]" + " 94%|█████████▎| 4673466/4997817 [00:31<00:02, 147733.38it/s]" ] }, { @@ -3043,7 +3043,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4837193/4997817 [00:31<00:01, 154721.44it/s]" + " 94%|█████████▍| 4688278/4997817 [00:31<00:02, 147847.75it/s]" ] }, { @@ -3051,7 +3051,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4852747/4997817 [00:31<00:00, 154964.32it/s]" + " 94%|█████████▍| 4703187/4997817 [00:31<00:01, 148218.46it/s]" ] }, { @@ -3059,7 +3059,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4868310/4997817 [00:31<00:00, 155162.34it/s]" + " 94%|█████████▍| 4718010/4997817 [00:31<00:01, 148126.26it/s]" ] }, { @@ -3067,7 +3067,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4883827/4997817 [00:31<00:00, 155073.23it/s]" + " 95%|█████████▍| 4732860/4997817 [00:31<00:01, 148236.19it/s]" ] }, { @@ -3075,7 +3075,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4899377/4997817 [00:31<00:00, 155200.09it/s]" + " 95%|█████████▍| 4747684/4997817 [00:31<00:01, 147668.07it/s]" ] }, { @@ -3083,7 +3083,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4914979/4997817 [00:32<00:00, 155442.29it/s]" + " 95%|█████████▌| 4762518/4997817 [00:32<00:01, 147866.52it/s]" ] }, { @@ -3091,7 +3091,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▊| 4930524/4997817 [00:32<00:00, 155279.46it/s]" + " 96%|█████████▌| 4777306/4997817 [00:32<00:01, 147807.41it/s]" ] }, { @@ -3099,7 +3099,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4946053/4997817 [00:32<00:00, 155209.47it/s]" + " 96%|█████████▌| 4792088/4997817 [00:32<00:01, 147635.94it/s]" ] }, { @@ -3107,7 +3107,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4961574/4997817 [00:32<00:00, 155197.03it/s]" + " 96%|█████████▌| 4806931/4997817 [00:32<00:01, 147869.15it/s]" ] }, { @@ -3115,7 +3115,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4977094/4997817 [00:32<00:00, 154982.09it/s]" + " 96%|█████████▋| 4821719/4997817 [00:32<00:01, 147691.24it/s]" ] }, { @@ -3123,7 +3123,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4992593/4997817 [00:32<00:00, 154638.39it/s]" + " 97%|█████████▋| 4836489/4997817 [00:32<00:01, 147414.71it/s]" ] }, { @@ -3131,7 +3131,87 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 4997817/4997817 [00:32<00:00, 153550.25it/s]" + " 97%|█████████▋| 4851231/4997817 [00:32<00:00, 147350.64it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 97%|█████████▋| 4865967/4997817 [00:32<00:00, 147151.74it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 4880683/4997817 [00:32<00:00, 147009.40it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 4895417/4997817 [00:32<00:00, 147105.65it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 4910128/4997817 [00:33<00:00, 146428.75it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▊| 4924962/4997817 [00:33<00:00, 146996.28it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4939828/4997817 [00:33<00:00, 147491.15it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4954680/4997817 [00:33<00:00, 147795.26it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4969461/4997817 [00:33<00:00, 147565.24it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 4984333/4997817 [00:33<00:00, 147910.00it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 4997817/4997817 [00:33<00:00, 148534.64it/s]" ] }, { @@ -3370,10 +3450,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:54:30.510349Z", - "iopub.status.busy": "2024-02-13T04:54:30.510170Z", - "iopub.status.idle": "2024-02-13T04:54:45.091845Z", - "shell.execute_reply": "2024-02-13T04:54:45.091209Z" + "iopub.execute_input": "2024-02-13T22:24:07.420143Z", + "iopub.status.busy": "2024-02-13T22:24:07.419809Z", + "iopub.status.idle": "2024-02-13T22:24:22.126575Z", + "shell.execute_reply": "2024-02-13T22:24:22.126009Z" } }, "outputs": [], @@ -3387,10 +3467,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:54:45.094516Z", - "iopub.status.busy": "2024-02-13T04:54:45.094261Z", - "iopub.status.idle": "2024-02-13T04:54:48.897209Z", - "shell.execute_reply": "2024-02-13T04:54:48.896632Z" + "iopub.execute_input": "2024-02-13T22:24:22.129620Z", + "iopub.status.busy": "2024-02-13T22:24:22.128964Z", + "iopub.status.idle": "2024-02-13T22:24:25.825602Z", + "shell.execute_reply": "2024-02-13T22:24:25.825094Z" } }, "outputs": [ @@ -3459,17 +3539,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:54:48.899389Z", - "iopub.status.busy": "2024-02-13T04:54:48.899202Z", - "iopub.status.idle": "2024-02-13T04:54:50.249242Z", - "shell.execute_reply": "2024-02-13T04:54:50.248687Z" + "iopub.execute_input": "2024-02-13T22:24:25.827606Z", + "iopub.status.busy": "2024-02-13T22:24:25.827425Z", + "iopub.status.idle": "2024-02-13T22:24:27.189432Z", + "shell.execute_reply": "2024-02-13T22:24:27.188894Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b835fe8352304ba6a89408d78f3e2b64", + "model_id": "cc23ec16dd704778a8d6099da2a0a4ce", "version_major": 2, "version_minor": 0 }, @@ -3499,10 +3579,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:54:50.251926Z", - "iopub.status.busy": "2024-02-13T04:54:50.251455Z", - "iopub.status.idle": "2024-02-13T04:54:50.809205Z", - "shell.execute_reply": "2024-02-13T04:54:50.808731Z" + "iopub.execute_input": "2024-02-13T22:24:27.191707Z", + "iopub.status.busy": "2024-02-13T22:24:27.191529Z", + "iopub.status.idle": "2024-02-13T22:24:27.750910Z", + "shell.execute_reply": "2024-02-13T22:24:27.750360Z" } }, "outputs": [], @@ -3516,10 +3596,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:54:50.811713Z", - "iopub.status.busy": "2024-02-13T04:54:50.811259Z", - "iopub.status.idle": "2024-02-13T04:54:56.842152Z", - "shell.execute_reply": "2024-02-13T04:54:56.841543Z" + "iopub.execute_input": "2024-02-13T22:24:27.753288Z", + "iopub.status.busy": "2024-02-13T22:24:27.753109Z", + "iopub.status.idle": "2024-02-13T22:24:33.731175Z", + "shell.execute_reply": "2024-02-13T22:24:33.730574Z" } }, "outputs": [ @@ -3592,10 +3672,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:54:56.844334Z", - "iopub.status.busy": "2024-02-13T04:54:56.843952Z", - "iopub.status.idle": "2024-02-13T04:54:56.899795Z", - "shell.execute_reply": "2024-02-13T04:54:56.899197Z" + "iopub.execute_input": "2024-02-13T22:24:33.733163Z", + "iopub.status.busy": "2024-02-13T22:24:33.732982Z", + "iopub.status.idle": "2024-02-13T22:24:33.789654Z", + "shell.execute_reply": "2024-02-13T22:24:33.789130Z" }, "nbsphinx": "hidden" }, @@ -3639,33 +3719,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01444347398a4ae58282102169d8be02": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2925f3b151034a51872a028958845534", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e450a26b5c574b36ae507ceaeeaefcf0", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "0807d75c8c804c90aef25f73bbd613f6": { + "005a55bdbad346ce8eaf6df819db11fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3680,38 +3734,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ceea4ef73ad14c6887d59a1dca3c282e", + "layout": "IPY_MODEL_09b9ecf2442d49928ca61553dd4afaab", "placeholder": "​", - "style": "IPY_MODEL_364cee12777c43bcb0bbc72a61d6c244", + "style": "IPY_MODEL_fa1cdb07e6a344feb2871422a98c1b87", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "value": " 30/30 [00:00<00:00, 443.23it/s]" } }, - "08ecc2e77eec4ec9ab643b6c0222fe5c": { - "model_module": "@jupyter-widgets/controls", + "09b9ecf2442d49928ca61553dd4afaab": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_32e2845c1b6848cd914870bc2d2c7cc2", - "placeholder": "​", - "style": "IPY_MODEL_2312360348aa400d854939756dab8d29", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "0979b21fc165433c855265f60522025a": { + "0c167a300f2c4b9abfd76fd76c9d52fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3726,15 +3810,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cd047bfc61394dbbb8b31457c29cb1c9", + "layout": "IPY_MODEL_59e71c245a3c4da6bcc757fbf70cf9df", "placeholder": "​", - "style": "IPY_MODEL_1e25939cf1414c95b3528ccd7288b988", + "style": "IPY_MODEL_ac36553f6332490ca7a852120b2777ff", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:22<00:00,  1.40it/s]" + "value": "number of examples processed for estimating thresholds: 100%" } }, - "0f6f1287cc33482688640c69a23e0a36": { + "1627a6b0fca94386b4768ca281cb03cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3787,7 +3871,25 @@ "width": null } }, - "14d284f39dda4ac29e60acdfd695d53b": { + "296051a74dea42e8be53c000b2fa748d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "332fa78429f14fa89d9c8c87c1d7b861": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3840,7 +3942,7 @@ "width": null } }, - "1e25939cf1414c95b3528ccd7288b988": { + "44cb9d28b1cb45e493256824503d1a91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3858,7 +3960,7 @@ "text_color": null } }, - "2312360348aa400d854939756dab8d29": { + "50563a5f0f2e461fbd41a6dbad3a6de8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3876,7 +3978,30 @@ "text_color": null } }, - "2925f3b151034a51872a028958845534": { + "55d8d324b03b42a0ab03d77586fc52b5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_691394abc910417c9081aed5d0e43b3b", + "placeholder": "​", + "style": "IPY_MODEL_50563a5f0f2e461fbd41a6dbad3a6de8", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 22.57it/s]" + } + }, + "59e71c245a3c4da6bcc757fbf70cf9df": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3929,7 +4054,33 @@ "width": null } }, - "2c3b0d14e35743acb62625c8900d605b": { + "5c596b0500d6405c84cb1f654469940c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7e7146c57bcc4ab293c933a3a6366ffa", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f19f320b531540ed99408c3e2da28da9", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "691394abc910417c9081aed5d0e43b3b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3982,7 +4133,7 @@ "width": null } }, - "32e2845c1b6848cd914870bc2d2c7cc2": { + "7e7146c57bcc4ab293c933a3a6366ffa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4035,78 +4186,62 @@ "width": null } }, - "364cee12777c43bcb0bbc72a61d6c244": { + "88091181eb784c8bbccb8a4979196ec2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "4c548a90640044b2afb2285e559cb3cc": { - "model_module": "@jupyter-widgets/base", + "984ae48f301546b985cd4cbd2abb7918": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "98e69acf55e14607a3e61e54bd2f4425": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d851112a71aa4e739ed90314e9b98945", + "placeholder": "​", + "style": "IPY_MODEL_44cb9d28b1cb45e493256824503d1a91", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" } }, - "514f5092bf4e495f8ffa9db289302663": { + "9c1f05a1400d483fb05ea538c1f077b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4159,25 +4294,31 @@ "width": null } }, - "594871020e0a4853804349e45634c56d": { + "a2274f8c72ee4d14ba6da81202b02e53": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0c167a300f2c4b9abfd76fd76c9d52fd", + "IPY_MODEL_a752642ad113449683aa8e41e5e7a2cf", + "IPY_MODEL_005a55bdbad346ce8eaf6df819db11fb" + ], + "layout": "IPY_MODEL_dfb28ff768824357abde03dbcf41ecf9", + "tabbable": null, + "tooltip": null } }, - "5d399539bb0f47d99b4c556256877eb6": { + "a56c4946466c4ad0929f6308d8e5bcfc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4230,23 +4371,33 @@ "width": null } }, - "66fa00b672df4fd1aa720bf5c332b887": { + "a752642ad113449683aa8e41e5e7a2cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_332fa78429f14fa89d9c8c87c1d7b861", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_984ae48f301546b985cd4cbd2abb7918", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "76dd508d8b864642ae33a7b538ef5be1": { + "ac36553f6332490ca7a852120b2777ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4264,7 +4415,104 @@ "text_color": null } }, - "82150ee2af1e47e5a67d5ab9e6390086": { + "b77e5bc485904561983937a4e95cf83c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_98e69acf55e14607a3e61e54bd2f4425", + "IPY_MODEL_5c596b0500d6405c84cb1f654469940c", + "IPY_MODEL_e78c89e4d5c542938735e963726f1133" + ], + "layout": "IPY_MODEL_a56c4946466c4ad0929f6308d8e5bcfc", + "tabbable": null, + "tooltip": null + } + }, + "b96327c2082a44beb94001617121ec26": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e4e538a3205e47949d0129598e89f5c5", + "placeholder": "​", + "style": "IPY_MODEL_296051a74dea42e8be53c000b2fa748d", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" + } + }, + "bf980ac758df4590bbeabfa9c6ded8f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9c1f05a1400d483fb05ea538c1f077b2", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_88091181eb784c8bbccb8a4979196ec2", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "cc23ec16dd704778a8d6099da2a0a4ce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b96327c2082a44beb94001617121ec26", + "IPY_MODEL_bf980ac758df4590bbeabfa9c6ded8f9", + "IPY_MODEL_55d8d324b03b42a0ab03d77586fc52b5" + ], + "layout": "IPY_MODEL_cc3e1ca03f874d159312e1074f3b240f", + "tabbable": null, + "tooltip": null + } + }, + "cc3e1ca03f874d159312e1074f3b240f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4317,57 +4565,7 @@ "width": null } }, - "88aabd8f77df4029b94e7832f7b660a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fc26249c79164f439768fae6de62089e", - "IPY_MODEL_dce16ba16de44874b970d13dcee8ee7c", - "IPY_MODEL_f1eb1ead5b7242d29078e9399f8cb029" - ], - "layout": "IPY_MODEL_82150ee2af1e47e5a67d5ab9e6390086", - "tabbable": null, - "tooltip": null - } - }, - "a4b951693edd4ae8a0e2121a2f061550": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_14d284f39dda4ac29e60acdfd695d53b", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_66fa00b672df4fd1aa720bf5c332b887", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "ab5bb7a6adad4a29881d5db0c88524a3": { + "d851112a71aa4e739ed90314e9b98945": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4420,65 +4618,7 @@ "width": null } }, - "b5d25f6589924d72a4b940d9793c3743": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b835fe8352304ba6a89408d78f3e2b64": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_08ecc2e77eec4ec9ab643b6c0222fe5c", - "IPY_MODEL_a4b951693edd4ae8a0e2121a2f061550", - "IPY_MODEL_f37a6b7a87544390a87d2517a21cf017" - ], - "layout": "IPY_MODEL_5d399539bb0f47d99b4c556256877eb6", - "tabbable": null, - "tooltip": null - } - }, - "bbd880c7829942308d6000c8671cb0c8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cd047bfc61394dbbb8b31457c29cb1c9": { + "dfb28ff768824357abde03dbcf41ecf9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4531,7 +4671,7 @@ "width": null } }, - "ceea4ef73ad14c6887d59a1dca3c282e": { + "e4e538a3205e47949d0129598e89f5c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4584,57 +4724,30 @@ "width": null } }, - "d029c1c5efc94a628a305425e046d81c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0807d75c8c804c90aef25f73bbd613f6", - "IPY_MODEL_01444347398a4ae58282102169d8be02", - "IPY_MODEL_0979b21fc165433c855265f60522025a" - ], - "layout": "IPY_MODEL_0f6f1287cc33482688640c69a23e0a36", - "tabbable": null, - "tooltip": null - } - }, - "dce16ba16de44874b970d13dcee8ee7c": { + "e78c89e4d5c542938735e963726f1133": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4c548a90640044b2afb2285e559cb3cc", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b5d25f6589924d72a4b940d9793c3743", + "layout": "IPY_MODEL_1627a6b0fca94386b4768ca281cb03cf", + "placeholder": "​", + "style": "IPY_MODEL_f9a14dfed9334abf9181372b65df194a", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": " 30/30 [00:22<00:00,  1.34it/s]" } }, - "e450a26b5c574b36ae507ceaeeaefcf0": { + "f19f320b531540ed99408c3e2da28da9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4650,73 +4763,40 @@ "description_width": "" } }, - "f1eb1ead5b7242d29078e9399f8cb029": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_514f5092bf4e495f8ffa9db289302663", - "placeholder": "​", - "style": "IPY_MODEL_bbd880c7829942308d6000c8671cb0c8", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 428.96it/s]" - } - }, - "f37a6b7a87544390a87d2517a21cf017": { + "f9a14dfed9334abf9181372b65df194a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2c3b0d14e35743acb62625c8900d605b", - "placeholder": "​", - "style": "IPY_MODEL_76dd508d8b864642ae33a7b538ef5be1", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 22.20it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fc26249c79164f439768fae6de62089e": { + "fa1cdb07e6a344feb2871422a98c1b87": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ab5bb7a6adad4a29881d5db0c88524a3", - "placeholder": "​", - "style": "IPY_MODEL_594871020e0a4853804349e45634c56d", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb index 0b071913f..b89a48c86 100644 --- a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:00.717499Z", - "iopub.status.busy": "2024-02-13T04:55:00.717322Z", - "iopub.status.idle": "2024-02-13T04:55:01.854877Z", - "shell.execute_reply": "2024-02-13T04:55:01.854271Z" + "iopub.execute_input": "2024-02-13T22:24:37.695996Z", + "iopub.status.busy": "2024-02-13T22:24:37.695819Z", + "iopub.status.idle": "2024-02-13T22:24:38.867693Z", + "shell.execute_reply": "2024-02-13T22:24:38.867188Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:01.857481Z", - "iopub.status.busy": "2024-02-13T04:55:01.857033Z", - "iopub.status.idle": "2024-02-13T04:55:01.880310Z", - "shell.execute_reply": "2024-02-13T04:55:01.879895Z" + "iopub.execute_input": "2024-02-13T22:24:38.870168Z", + "iopub.status.busy": "2024-02-13T22:24:38.869888Z", + "iopub.status.idle": "2024-02-13T22:24:38.892770Z", + "shell.execute_reply": "2024-02-13T22:24:38.892347Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:01.882522Z", - "iopub.status.busy": "2024-02-13T04:55:01.882132Z", - "iopub.status.idle": "2024-02-13T04:55:02.017723Z", - "shell.execute_reply": "2024-02-13T04:55:02.017253Z" + "iopub.execute_input": "2024-02-13T22:24:38.894921Z", + "iopub.status.busy": "2024-02-13T22:24:38.894444Z", + "iopub.status.idle": "2024-02-13T22:24:38.945913Z", + "shell.execute_reply": "2024-02-13T22:24:38.945406Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:02.019751Z", - "iopub.status.busy": "2024-02-13T04:55:02.019365Z", - "iopub.status.idle": "2024-02-13T04:55:02.022765Z", - "shell.execute_reply": "2024-02-13T04:55:02.022269Z" + "iopub.execute_input": "2024-02-13T22:24:38.947927Z", + "iopub.status.busy": "2024-02-13T22:24:38.947744Z", + "iopub.status.idle": "2024-02-13T22:24:38.950935Z", + "shell.execute_reply": "2024-02-13T22:24:38.950504Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:02.024729Z", - "iopub.status.busy": "2024-02-13T04:55:02.024344Z", - "iopub.status.idle": "2024-02-13T04:55:02.033719Z", - "shell.execute_reply": "2024-02-13T04:55:02.033228Z" + "iopub.execute_input": "2024-02-13T22:24:38.952803Z", + "iopub.status.busy": "2024-02-13T22:24:38.952628Z", + "iopub.status.idle": "2024-02-13T22:24:38.960649Z", + "shell.execute_reply": "2024-02-13T22:24:38.960235Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:02.036007Z", - "iopub.status.busy": "2024-02-13T04:55:02.035608Z", - "iopub.status.idle": "2024-02-13T04:55:02.038726Z", - "shell.execute_reply": "2024-02-13T04:55:02.038306Z" + "iopub.execute_input": "2024-02-13T22:24:38.962560Z", + "iopub.status.busy": "2024-02-13T22:24:38.962385Z", + "iopub.status.idle": "2024-02-13T22:24:38.964963Z", + "shell.execute_reply": "2024-02-13T22:24:38.964531Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:02.040534Z", - "iopub.status.busy": "2024-02-13T04:55:02.040366Z", - "iopub.status.idle": "2024-02-13T04:55:02.559556Z", - "shell.execute_reply": "2024-02-13T04:55:02.558945Z" + "iopub.execute_input": "2024-02-13T22:24:38.966754Z", + "iopub.status.busy": "2024-02-13T22:24:38.966587Z", + "iopub.status.idle": "2024-02-13T22:24:39.482791Z", + "shell.execute_reply": "2024-02-13T22:24:39.482289Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:02.561996Z", - "iopub.status.busy": "2024-02-13T04:55:02.561790Z", - "iopub.status.idle": "2024-02-13T04:55:04.191992Z", - "shell.execute_reply": "2024-02-13T04:55:04.191356Z" + "iopub.execute_input": "2024-02-13T22:24:39.485114Z", + "iopub.status.busy": "2024-02-13T22:24:39.484914Z", + "iopub.status.idle": "2024-02-13T22:24:41.102959Z", + "shell.execute_reply": "2024-02-13T22:24:41.102333Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:04.194681Z", - "iopub.status.busy": "2024-02-13T04:55:04.194137Z", - "iopub.status.idle": "2024-02-13T04:55:04.204355Z", - "shell.execute_reply": "2024-02-13T04:55:04.203913Z" + "iopub.execute_input": "2024-02-13T22:24:41.105931Z", + "iopub.status.busy": "2024-02-13T22:24:41.105016Z", + "iopub.status.idle": "2024-02-13T22:24:41.115228Z", + "shell.execute_reply": "2024-02-13T22:24:41.114793Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:04.206414Z", - "iopub.status.busy": "2024-02-13T04:55:04.206158Z", - "iopub.status.idle": "2024-02-13T04:55:04.209940Z", - "shell.execute_reply": "2024-02-13T04:55:04.209484Z" + "iopub.execute_input": "2024-02-13T22:24:41.117214Z", + "iopub.status.busy": "2024-02-13T22:24:41.116914Z", + "iopub.status.idle": "2024-02-13T22:24:41.120670Z", + "shell.execute_reply": "2024-02-13T22:24:41.120253Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:04.211992Z", - "iopub.status.busy": "2024-02-13T04:55:04.211689Z", - "iopub.status.idle": "2024-02-13T04:55:04.218970Z", - "shell.execute_reply": "2024-02-13T04:55:04.218438Z" + "iopub.execute_input": "2024-02-13T22:24:41.122668Z", + "iopub.status.busy": "2024-02-13T22:24:41.122271Z", + "iopub.status.idle": "2024-02-13T22:24:41.128821Z", + "shell.execute_reply": "2024-02-13T22:24:41.128425Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:04.221312Z", - "iopub.status.busy": "2024-02-13T04:55:04.220885Z", - "iopub.status.idle": "2024-02-13T04:55:04.332135Z", - "shell.execute_reply": "2024-02-13T04:55:04.331569Z" + "iopub.execute_input": "2024-02-13T22:24:41.130731Z", + "iopub.status.busy": "2024-02-13T22:24:41.130561Z", + "iopub.status.idle": "2024-02-13T22:24:41.241808Z", + "shell.execute_reply": "2024-02-13T22:24:41.241243Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:04.334466Z", - "iopub.status.busy": "2024-02-13T04:55:04.334026Z", - "iopub.status.idle": "2024-02-13T04:55:04.336733Z", - "shell.execute_reply": "2024-02-13T04:55:04.336314Z" + "iopub.execute_input": "2024-02-13T22:24:41.243833Z", + "iopub.status.busy": "2024-02-13T22:24:41.243656Z", + "iopub.status.idle": "2024-02-13T22:24:41.246452Z", + "shell.execute_reply": "2024-02-13T22:24:41.246019Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:04.338718Z", - "iopub.status.busy": "2024-02-13T04:55:04.338394Z", - "iopub.status.idle": "2024-02-13T04:55:06.350466Z", - "shell.execute_reply": "2024-02-13T04:55:06.349800Z" + "iopub.execute_input": "2024-02-13T22:24:41.248657Z", + "iopub.status.busy": "2024-02-13T22:24:41.248129Z", + "iopub.status.idle": "2024-02-13T22:24:43.211053Z", + "shell.execute_reply": "2024-02-13T22:24:43.210398Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:06.353483Z", - "iopub.status.busy": "2024-02-13T04:55:06.352806Z", - "iopub.status.idle": "2024-02-13T04:55:06.364456Z", - "shell.execute_reply": "2024-02-13T04:55:06.364002Z" + "iopub.execute_input": "2024-02-13T22:24:43.214087Z", + "iopub.status.busy": "2024-02-13T22:24:43.213341Z", + "iopub.status.idle": "2024-02-13T22:24:43.224722Z", + "shell.execute_reply": "2024-02-13T22:24:43.224271Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:06.366504Z", - "iopub.status.busy": "2024-02-13T04:55:06.366183Z", - "iopub.status.idle": "2024-02-13T04:55:06.497327Z", - "shell.execute_reply": "2024-02-13T04:55:06.496858Z" + "iopub.execute_input": "2024-02-13T22:24:43.226908Z", + "iopub.status.busy": "2024-02-13T22:24:43.226465Z", + "iopub.status.idle": "2024-02-13T22:24:43.306566Z", + "shell.execute_reply": "2024-02-13T22:24:43.306169Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/text.ipynb b/master/.doctrees/nbsphinx/tutorials/text.ipynb index 6399cdddd..d727a6e93 100644 --- a/master/.doctrees/nbsphinx/tutorials/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:09.224502Z", - "iopub.status.busy": "2024-02-13T04:55:09.224314Z", - "iopub.status.idle": "2024-02-13T04:55:11.806283Z", - "shell.execute_reply": "2024-02-13T04:55:11.805719Z" + "iopub.execute_input": "2024-02-13T22:24:46.062313Z", + "iopub.status.busy": "2024-02-13T22:24:46.062136Z", + "iopub.status.idle": "2024-02-13T22:24:48.653383Z", + "shell.execute_reply": "2024-02-13T22:24:48.652839Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:11.808863Z", - "iopub.status.busy": "2024-02-13T04:55:11.808411Z", - "iopub.status.idle": "2024-02-13T04:55:11.811658Z", - "shell.execute_reply": "2024-02-13T04:55:11.811224Z" + "iopub.execute_input": "2024-02-13T22:24:48.655813Z", + "iopub.status.busy": "2024-02-13T22:24:48.655521Z", + "iopub.status.idle": "2024-02-13T22:24:48.659009Z", + "shell.execute_reply": "2024-02-13T22:24:48.658549Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:11.813719Z", - "iopub.status.busy": "2024-02-13T04:55:11.813409Z", - "iopub.status.idle": "2024-02-13T04:55:11.816924Z", - "shell.execute_reply": "2024-02-13T04:55:11.816525Z" + "iopub.execute_input": "2024-02-13T22:24:48.660942Z", + "iopub.status.busy": "2024-02-13T22:24:48.660613Z", + "iopub.status.idle": "2024-02-13T22:24:48.664051Z", + "shell.execute_reply": "2024-02-13T22:24:48.663548Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:11.818860Z", - "iopub.status.busy": "2024-02-13T04:55:11.818604Z", - "iopub.status.idle": "2024-02-13T04:55:11.966300Z", - "shell.execute_reply": "2024-02-13T04:55:11.965808Z" + "iopub.execute_input": "2024-02-13T22:24:48.666083Z", + "iopub.status.busy": "2024-02-13T22:24:48.665777Z", + "iopub.status.idle": "2024-02-13T22:24:48.714184Z", + "shell.execute_reply": "2024-02-13T22:24:48.713684Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:11.968451Z", - "iopub.status.busy": "2024-02-13T04:55:11.968095Z", - "iopub.status.idle": "2024-02-13T04:55:11.971636Z", - "shell.execute_reply": "2024-02-13T04:55:11.971204Z" + "iopub.execute_input": "2024-02-13T22:24:48.716183Z", + "iopub.status.busy": "2024-02-13T22:24:48.715879Z", + "iopub.status.idle": "2024-02-13T22:24:48.719289Z", + "shell.execute_reply": "2024-02-13T22:24:48.718790Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:11.973598Z", - "iopub.status.busy": "2024-02-13T04:55:11.973271Z", - "iopub.status.idle": "2024-02-13T04:55:11.976797Z", - "shell.execute_reply": "2024-02-13T04:55:11.976340Z" + "iopub.execute_input": "2024-02-13T22:24:48.721166Z", + "iopub.status.busy": "2024-02-13T22:24:48.720857Z", + "iopub.status.idle": "2024-02-13T22:24:48.723984Z", + "shell.execute_reply": "2024-02-13T22:24:48.723515Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'beneficiary_not_allowed', 'cancel_transfer', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'card_about_to_expire', 'visa_or_mastercard', 'change_pin', 'getting_spare_card'}\n" + "Classes: {'supported_cards_and_currencies', 'lost_or_stolen_phone', 'getting_spare_card', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'visa_or_mastercard', 'change_pin', 'cancel_transfer', 'card_about_to_expire', 'apple_pay_or_google_pay'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:11.978725Z", - "iopub.status.busy": "2024-02-13T04:55:11.978473Z", - "iopub.status.idle": "2024-02-13T04:55:11.981617Z", - "shell.execute_reply": "2024-02-13T04:55:11.981167Z" + "iopub.execute_input": "2024-02-13T22:24:48.725749Z", + "iopub.status.busy": "2024-02-13T22:24:48.725579Z", + "iopub.status.idle": "2024-02-13T22:24:48.728530Z", + "shell.execute_reply": "2024-02-13T22:24:48.728031Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:11.983727Z", - "iopub.status.busy": "2024-02-13T04:55:11.983402Z", - "iopub.status.idle": "2024-02-13T04:55:11.986469Z", - "shell.execute_reply": "2024-02-13T04:55:11.986015Z" + "iopub.execute_input": "2024-02-13T22:24:48.730412Z", + "iopub.status.busy": "2024-02-13T22:24:48.730236Z", + "iopub.status.idle": "2024-02-13T22:24:48.733662Z", + "shell.execute_reply": "2024-02-13T22:24:48.733230Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:11.988548Z", - "iopub.status.busy": "2024-02-13T04:55:11.988232Z", - "iopub.status.idle": "2024-02-13T04:55:16.248798Z", - "shell.execute_reply": "2024-02-13T04:55:16.248269Z" + "iopub.execute_input": "2024-02-13T22:24:48.735704Z", + "iopub.status.busy": "2024-02-13T22:24:48.735349Z", + "iopub.status.idle": "2024-02-13T22:24:52.616910Z", + "shell.execute_reply": "2024-02-13T22:24:52.616284Z" } }, "outputs": [ @@ -510,10 +510,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:16.251442Z", - "iopub.status.busy": "2024-02-13T04:55:16.251058Z", - "iopub.status.idle": "2024-02-13T04:55:16.254089Z", - "shell.execute_reply": "2024-02-13T04:55:16.253581Z" + "iopub.execute_input": "2024-02-13T22:24:52.619481Z", + "iopub.status.busy": "2024-02-13T22:24:52.619160Z", + "iopub.status.idle": "2024-02-13T22:24:52.621911Z", + "shell.execute_reply": "2024-02-13T22:24:52.621370Z" } }, "outputs": [], @@ -535,10 +535,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:16.256122Z", - "iopub.status.busy": "2024-02-13T04:55:16.255803Z", - "iopub.status.idle": "2024-02-13T04:55:16.258546Z", - "shell.execute_reply": "2024-02-13T04:55:16.257977Z" + "iopub.execute_input": "2024-02-13T22:24:52.623880Z", + "iopub.status.busy": "2024-02-13T22:24:52.623590Z", + "iopub.status.idle": "2024-02-13T22:24:52.626202Z", + "shell.execute_reply": "2024-02-13T22:24:52.625745Z" } }, "outputs": [], @@ -553,10 +553,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:16.260996Z", - "iopub.status.busy": "2024-02-13T04:55:16.260627Z", - "iopub.status.idle": "2024-02-13T04:55:18.560132Z", - "shell.execute_reply": "2024-02-13T04:55:18.559514Z" + "iopub.execute_input": "2024-02-13T22:24:52.627951Z", + "iopub.status.busy": "2024-02-13T22:24:52.627783Z", + "iopub.status.idle": "2024-02-13T22:24:54.898215Z", + "shell.execute_reply": "2024-02-13T22:24:54.897495Z" }, "scrolled": true }, @@ -579,10 +579,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:18.563257Z", - "iopub.status.busy": "2024-02-13T04:55:18.562572Z", - "iopub.status.idle": "2024-02-13T04:55:18.570320Z", - "shell.execute_reply": "2024-02-13T04:55:18.569652Z" + "iopub.execute_input": "2024-02-13T22:24:54.901247Z", + "iopub.status.busy": "2024-02-13T22:24:54.900654Z", + "iopub.status.idle": "2024-02-13T22:24:54.908327Z", + "shell.execute_reply": "2024-02-13T22:24:54.907815Z" } }, "outputs": [ @@ -683,10 +683,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:18.572203Z", - "iopub.status.busy": "2024-02-13T04:55:18.572013Z", - "iopub.status.idle": "2024-02-13T04:55:18.576009Z", - "shell.execute_reply": "2024-02-13T04:55:18.575587Z" + "iopub.execute_input": "2024-02-13T22:24:54.910345Z", + "iopub.status.busy": "2024-02-13T22:24:54.910034Z", + "iopub.status.idle": "2024-02-13T22:24:54.913839Z", + "shell.execute_reply": "2024-02-13T22:24:54.913337Z" } }, "outputs": [], @@ -700,10 +700,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:18.577936Z", - "iopub.status.busy": "2024-02-13T04:55:18.577587Z", - "iopub.status.idle": "2024-02-13T04:55:18.580844Z", - "shell.execute_reply": "2024-02-13T04:55:18.580386Z" + "iopub.execute_input": "2024-02-13T22:24:54.915829Z", + "iopub.status.busy": "2024-02-13T22:24:54.915523Z", + "iopub.status.idle": "2024-02-13T22:24:54.918616Z", + "shell.execute_reply": "2024-02-13T22:24:54.918109Z" } }, "outputs": [ @@ -738,10 +738,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:18.582818Z", - "iopub.status.busy": "2024-02-13T04:55:18.582496Z", - "iopub.status.idle": "2024-02-13T04:55:18.585392Z", - "shell.execute_reply": "2024-02-13T04:55:18.584949Z" + "iopub.execute_input": "2024-02-13T22:24:54.920647Z", + "iopub.status.busy": "2024-02-13T22:24:54.920281Z", + "iopub.status.idle": "2024-02-13T22:24:54.923159Z", + "shell.execute_reply": "2024-02-13T22:24:54.922689Z" } }, "outputs": [], @@ -761,10 +761,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:18.587304Z", - "iopub.status.busy": "2024-02-13T04:55:18.586985Z", - "iopub.status.idle": "2024-02-13T04:55:18.594246Z", - "shell.execute_reply": "2024-02-13T04:55:18.593699Z" + "iopub.execute_input": "2024-02-13T22:24:54.925093Z", + "iopub.status.busy": "2024-02-13T22:24:54.924777Z", + "iopub.status.idle": "2024-02-13T22:24:54.931706Z", + "shell.execute_reply": "2024-02-13T22:24:54.931272Z" } }, "outputs": [ @@ -889,10 +889,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:18.596263Z", - "iopub.status.busy": "2024-02-13T04:55:18.595927Z", - "iopub.status.idle": "2024-02-13T04:55:18.820657Z", - "shell.execute_reply": "2024-02-13T04:55:18.820106Z" + "iopub.execute_input": "2024-02-13T22:24:54.933656Z", + "iopub.status.busy": "2024-02-13T22:24:54.933483Z", + "iopub.status.idle": "2024-02-13T22:24:55.157525Z", + "shell.execute_reply": "2024-02-13T22:24:55.157001Z" }, "scrolled": true }, @@ -931,10 +931,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:18.823990Z", - "iopub.status.busy": "2024-02-13T04:55:18.822917Z", - "iopub.status.idle": "2024-02-13T04:55:19.000760Z", - "shell.execute_reply": "2024-02-13T04:55:19.000241Z" + "iopub.execute_input": "2024-02-13T22:24:55.160594Z", + "iopub.status.busy": "2024-02-13T22:24:55.159683Z", + "iopub.status.idle": "2024-02-13T22:24:55.340146Z", + "shell.execute_reply": "2024-02-13T22:24:55.339575Z" }, "scrolled": true }, @@ -967,10 +967,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:19.004499Z", - "iopub.status.busy": "2024-02-13T04:55:19.003571Z", - "iopub.status.idle": "2024-02-13T04:55:19.008440Z", - "shell.execute_reply": "2024-02-13T04:55:19.007968Z" + "iopub.execute_input": "2024-02-13T22:24:55.344164Z", + "iopub.status.busy": "2024-02-13T22:24:55.343195Z", + "iopub.status.idle": "2024-02-13T22:24:55.348294Z", + "shell.execute_reply": "2024-02-13T22:24:55.347794Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index a54a9380c..d284de77b 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:22.052599Z", - "iopub.status.busy": "2024-02-13T04:55:22.052420Z", - "iopub.status.idle": "2024-02-13T04:55:23.890312Z", - "shell.execute_reply": "2024-02-13T04:55:23.889747Z" + "iopub.execute_input": "2024-02-13T22:24:58.553423Z", + "iopub.status.busy": "2024-02-13T22:24:58.553070Z", + "iopub.status.idle": "2024-02-13T22:24:59.982798Z", + "shell.execute_reply": "2024-02-13T22:24:59.982101Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-02-13 04:55:22-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-02-13 22:24:58-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,16 +94,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.249.163, 2400:52e0:1a01::1114:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.249.163|:443... connected.\r\n", - "HTTP request sent, awaiting response... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "200 OK\r\n", + "185.93.1.250, 2400:52e0:1a00::894:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.250|:443... connected.\r\n", + "HTTP request sent, awaiting response... 200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -116,9 +109,10 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.05s \r\n", + "conll2003.zip 94%[=================> ] 903.30K 3.87MB/s \r", + "conll2003.zip 100%[===================>] 959.94K 4.11MB/s in 0.2s \r\n", "\r\n", - "2024-02-13 04:55:22 (19.3 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-02-13 22:24:59 (4.11 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -138,16 +132,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-02-13 04:55:22-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.111.212, 52.217.130.97, 3.5.28.238, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.111.212|:443... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "connected.\r\n" + "--2024-02-13 22:24:59-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.25.223, 52.216.53.185, 3.5.29.190, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.25.223|:443... connected.\r\n" ] }, { @@ -174,23 +161,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 1%[ ] 249.53K 1.07MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 26%[====> ] 4.33M 9.51MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 78%[==============> ] 12.81M 18.7MB/s " + "pred_probs.npz 62%[===========> ] 10.12M 50.6MB/s " ] }, { @@ -198,9 +169,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 21.9MB/s in 0.7s \r\n", + "pred_probs.npz 100%[===================>] 16.26M 65.9MB/s in 0.2s \r\n", "\r\n", - "2024-02-13 04:55:23 (21.9 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-02-13 22:24:59 (65.9 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -217,10 +188,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:23.892505Z", - "iopub.status.busy": "2024-02-13T04:55:23.892319Z", - "iopub.status.idle": "2024-02-13T04:55:24.932652Z", - "shell.execute_reply": "2024-02-13T04:55:24.932135Z" + "iopub.execute_input": "2024-02-13T22:24:59.985292Z", + "iopub.status.busy": "2024-02-13T22:24:59.985102Z", + "iopub.status.idle": "2024-02-13T22:25:01.061767Z", + "shell.execute_reply": "2024-02-13T22:25:01.061223Z" }, "nbsphinx": "hidden" }, @@ -231,7 +202,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -257,10 +228,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:24.934999Z", - "iopub.status.busy": "2024-02-13T04:55:24.934722Z", - "iopub.status.idle": "2024-02-13T04:55:24.938095Z", - "shell.execute_reply": "2024-02-13T04:55:24.937638Z" + "iopub.execute_input": "2024-02-13T22:25:01.064443Z", + "iopub.status.busy": "2024-02-13T22:25:01.064023Z", + "iopub.status.idle": "2024-02-13T22:25:01.067462Z", + "shell.execute_reply": "2024-02-13T22:25:01.066930Z" } }, "outputs": [], @@ -310,10 +281,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:24.940142Z", - "iopub.status.busy": "2024-02-13T04:55:24.939743Z", - "iopub.status.idle": "2024-02-13T04:55:24.942611Z", - "shell.execute_reply": "2024-02-13T04:55:24.942197Z" + "iopub.execute_input": "2024-02-13T22:25:01.069634Z", + "iopub.status.busy": "2024-02-13T22:25:01.069335Z", + "iopub.status.idle": "2024-02-13T22:25:01.072360Z", + "shell.execute_reply": "2024-02-13T22:25:01.071828Z" }, "nbsphinx": "hidden" }, @@ -331,10 +302,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:24.944409Z", - "iopub.status.busy": "2024-02-13T04:55:24.944236Z", - "iopub.status.idle": "2024-02-13T04:55:34.005653Z", - "shell.execute_reply": "2024-02-13T04:55:34.005121Z" + "iopub.execute_input": "2024-02-13T22:25:01.074414Z", + "iopub.status.busy": "2024-02-13T22:25:01.074045Z", + "iopub.status.idle": "2024-02-13T22:25:10.175626Z", + "shell.execute_reply": "2024-02-13T22:25:10.175081Z" } }, "outputs": [], @@ -408,10 +379,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:34.008337Z", - "iopub.status.busy": "2024-02-13T04:55:34.007816Z", - "iopub.status.idle": "2024-02-13T04:55:34.013412Z", - "shell.execute_reply": "2024-02-13T04:55:34.012957Z" + "iopub.execute_input": "2024-02-13T22:25:10.178078Z", + "iopub.status.busy": "2024-02-13T22:25:10.177696Z", + "iopub.status.idle": "2024-02-13T22:25:10.183170Z", + "shell.execute_reply": "2024-02-13T22:25:10.182635Z" }, "nbsphinx": "hidden" }, @@ -451,10 +422,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:34.015415Z", - "iopub.status.busy": "2024-02-13T04:55:34.015096Z", - "iopub.status.idle": "2024-02-13T04:55:34.353171Z", - "shell.execute_reply": "2024-02-13T04:55:34.352641Z" + "iopub.execute_input": "2024-02-13T22:25:10.185173Z", + "iopub.status.busy": "2024-02-13T22:25:10.184886Z", + "iopub.status.idle": "2024-02-13T22:25:10.531182Z", + "shell.execute_reply": "2024-02-13T22:25:10.530540Z" } }, "outputs": [], @@ -491,10 +462,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:34.355696Z", - "iopub.status.busy": "2024-02-13T04:55:34.355356Z", - "iopub.status.idle": "2024-02-13T04:55:34.359545Z", - "shell.execute_reply": "2024-02-13T04:55:34.359032Z" + "iopub.execute_input": "2024-02-13T22:25:10.533858Z", + "iopub.status.busy": "2024-02-13T22:25:10.533555Z", + "iopub.status.idle": "2024-02-13T22:25:10.538148Z", + "shell.execute_reply": "2024-02-13T22:25:10.537599Z" } }, "outputs": [ @@ -566,10 +537,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:34.361581Z", - "iopub.status.busy": "2024-02-13T04:55:34.361240Z", - "iopub.status.idle": "2024-02-13T04:55:36.647980Z", - "shell.execute_reply": "2024-02-13T04:55:36.647342Z" + "iopub.execute_input": "2024-02-13T22:25:10.540202Z", + "iopub.status.busy": "2024-02-13T22:25:10.539926Z", + "iopub.status.idle": "2024-02-13T22:25:12.956868Z", + "shell.execute_reply": "2024-02-13T22:25:12.956108Z" } }, "outputs": [], @@ -591,10 +562,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:36.650910Z", - "iopub.status.busy": "2024-02-13T04:55:36.650361Z", - "iopub.status.idle": "2024-02-13T04:55:36.654474Z", - "shell.execute_reply": "2024-02-13T04:55:36.653933Z" + "iopub.execute_input": "2024-02-13T22:25:12.960159Z", + "iopub.status.busy": "2024-02-13T22:25:12.959329Z", + "iopub.status.idle": "2024-02-13T22:25:12.963413Z", + "shell.execute_reply": "2024-02-13T22:25:12.962885Z" } }, "outputs": [ @@ -630,10 +601,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:36.656287Z", - "iopub.status.busy": "2024-02-13T04:55:36.656108Z", - "iopub.status.idle": "2024-02-13T04:55:36.661341Z", - "shell.execute_reply": "2024-02-13T04:55:36.660807Z" + "iopub.execute_input": "2024-02-13T22:25:12.965295Z", + "iopub.status.busy": "2024-02-13T22:25:12.965122Z", + "iopub.status.idle": "2024-02-13T22:25:12.970427Z", + "shell.execute_reply": "2024-02-13T22:25:12.969922Z" } }, "outputs": [ @@ -811,10 +782,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:36.663245Z", - "iopub.status.busy": "2024-02-13T04:55:36.663070Z", - "iopub.status.idle": "2024-02-13T04:55:36.688385Z", - "shell.execute_reply": "2024-02-13T04:55:36.687955Z" + "iopub.execute_input": "2024-02-13T22:25:12.972448Z", + "iopub.status.busy": "2024-02-13T22:25:12.972190Z", + "iopub.status.idle": "2024-02-13T22:25:12.999023Z", + "shell.execute_reply": "2024-02-13T22:25:12.998453Z" } }, "outputs": [ @@ -916,10 +887,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:36.690260Z", - "iopub.status.busy": "2024-02-13T04:55:36.690089Z", - "iopub.status.idle": "2024-02-13T04:55:36.693947Z", - "shell.execute_reply": "2024-02-13T04:55:36.693400Z" + "iopub.execute_input": "2024-02-13T22:25:13.001031Z", + "iopub.status.busy": "2024-02-13T22:25:13.000765Z", + "iopub.status.idle": "2024-02-13T22:25:13.005424Z", + "shell.execute_reply": "2024-02-13T22:25:13.004951Z" } }, "outputs": [ @@ -993,10 +964,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:36.695807Z", - "iopub.status.busy": "2024-02-13T04:55:36.695637Z", - "iopub.status.idle": "2024-02-13T04:55:38.103543Z", - "shell.execute_reply": "2024-02-13T04:55:38.102953Z" + "iopub.execute_input": "2024-02-13T22:25:13.007482Z", + "iopub.status.busy": "2024-02-13T22:25:13.007105Z", + "iopub.status.idle": "2024-02-13T22:25:14.450823Z", + "shell.execute_reply": "2024-02-13T22:25:14.450299Z" } }, "outputs": [ @@ -1168,10 +1139,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:38.105746Z", - "iopub.status.busy": "2024-02-13T04:55:38.105552Z", - "iopub.status.idle": "2024-02-13T04:55:38.109654Z", - "shell.execute_reply": "2024-02-13T04:55:38.109122Z" + "iopub.execute_input": "2024-02-13T22:25:14.452751Z", + "iopub.status.busy": "2024-02-13T22:25:14.452576Z", + "iopub.status.idle": "2024-02-13T22:25:14.456548Z", + "shell.execute_reply": "2024-02-13T22:25:14.456118Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/audio.doctree b/master/.doctrees/tutorials/audio.doctree index 82906cc51..f2d7dc9d7 100644 Binary files a/master/.doctrees/tutorials/audio.doctree and b/master/.doctrees/tutorials/audio.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index 927a4e8ec..c4d025b80 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree and b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index 79e5d1f01..b4a2de0fd 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree and b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree differ diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index 2cca37acc..c1a8f9acc 100644 Binary files a/master/.doctrees/tutorials/datalab/index.doctree and b/master/.doctrees/tutorials/datalab/index.doctree differ diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index 8500ea5f7..df68a98a3 100644 Binary files a/master/.doctrees/tutorials/datalab/tabular.doctree and b/master/.doctrees/tutorials/datalab/tabular.doctree differ diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index b096d362a..fbc274819 100644 Binary files a/master/.doctrees/tutorials/datalab/text.doctree and b/master/.doctrees/tutorials/datalab/text.doctree differ diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index 74cfb1664..6b3317e4d 100644 Binary files a/master/.doctrees/tutorials/dataset_health.doctree and b/master/.doctrees/tutorials/dataset_health.doctree differ diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index 6bff8a700..a17dee0f3 100644 Binary files a/master/.doctrees/tutorials/faq.doctree and b/master/.doctrees/tutorials/faq.doctree differ diff --git a/master/.doctrees/tutorials/image.doctree b/master/.doctrees/tutorials/image.doctree index f0363a072..059e0d315 100644 Binary files a/master/.doctrees/tutorials/image.doctree and b/master/.doctrees/tutorials/image.doctree differ diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index 12cae5ddc..e2ef234c6 100644 Binary files a/master/.doctrees/tutorials/indepth_overview.doctree and b/master/.doctrees/tutorials/indepth_overview.doctree differ diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index 73a4c8dbe..2104c490c 100644 Binary files a/master/.doctrees/tutorials/index.doctree and b/master/.doctrees/tutorials/index.doctree differ diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index b71e65ded..c84405943 100644 Binary files a/master/.doctrees/tutorials/multiannotator.doctree and b/master/.doctrees/tutorials/multiannotator.doctree differ diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index d9a70ecdb..9dd07f787 100644 Binary files a/master/.doctrees/tutorials/multilabel_classification.doctree and b/master/.doctrees/tutorials/multilabel_classification.doctree differ diff --git a/master/.doctrees/tutorials/object_detection.doctree b/master/.doctrees/tutorials/object_detection.doctree index d4b1b28c2..f6440f1fa 100644 Binary files a/master/.doctrees/tutorials/object_detection.doctree and b/master/.doctrees/tutorials/object_detection.doctree differ diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index 37db252a1..037c493ac 100644 Binary files a/master/.doctrees/tutorials/outliers.doctree and b/master/.doctrees/tutorials/outliers.doctree differ diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index 0aa2e1c10..0b2fb44f7 100644 Binary files a/master/.doctrees/tutorials/pred_probs_cross_val.doctree and b/master/.doctrees/tutorials/pred_probs_cross_val.doctree differ diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index c156df51c..13ad71f65 100644 Binary files a/master/.doctrees/tutorials/regression.doctree and b/master/.doctrees/tutorials/regression.doctree differ diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index 255e2dfa5..95381f2bf 100644 Binary files a/master/.doctrees/tutorials/segmentation.doctree and b/master/.doctrees/tutorials/segmentation.doctree differ diff --git a/master/.doctrees/tutorials/tabular.doctree b/master/.doctrees/tutorials/tabular.doctree index f085b42c9..71a164404 100644 Binary files a/master/.doctrees/tutorials/tabular.doctree and b/master/.doctrees/tutorials/tabular.doctree differ diff --git a/master/.doctrees/tutorials/text.doctree b/master/.doctrees/tutorials/text.doctree index 65e58c8e3..c284267e7 100644 Binary files a/master/.doctrees/tutorials/text.doctree and b/master/.doctrees/tutorials/text.doctree differ diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index 8e4f26365..d6d998832 100644 Binary files a/master/.doctrees/tutorials/token_classification.doctree and b/master/.doctrees/tutorials/token_classification.doctree differ diff --git a/master/_sources/tutorials/audio.ipynb b/master/_sources/tutorials/audio.ipynb index 61a56c2dd..6b5d66faa 100644 --- a/master/_sources/tutorials/audio.ipynb +++ b/master/_sources/tutorials/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index 9fa67120d..a57536490 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index 2aacb8a66..0fb8cefab 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index fa790d6b8..34aef5723 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -81,7 +81,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index fa24f2312..5fb3d5814 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index 14ae5a1de..d683e72ad 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index 05e28f78a..b16b3ff47 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index 36f1a8b00..033e88f67 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -96,7 +96,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 05b00398e..c22ebe49f 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index 7a6f8711d..285787ab1 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index b428ec8f3..dd8a4dc9b 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index 5aa297235..06856123f 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index d895f9f0a..f42cb5b40 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/tabular.ipynb b/master/_sources/tutorials/tabular.ipynb index 124dd0ae0..5820ce898 100644 --- a/master/_sources/tutorials/tabular.ipynb +++ b/master/_sources/tutorials/tabular.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/text.ipynb b/master/_sources/tutorials/text.ipynb index df7a5a7d1..b3caab8fa 100644 --- a/master/_sources/tutorials/text.ipynb +++ b/master/_sources/tutorials/text.ipynb @@ -128,7 +128,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index b4de7d24a..f4aa1d17f 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/searchindex.js b/master/searchindex.js index aea4751d7..a3dd30acc 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 76, 78, 79, 86, 88, 89], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 78, 79, 86, 88, 89], "generate_noise_matrix_from_trac": [0, 1, 78, 79, 86, 88, 89], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 14, 37, 41, 43, 44, 45, 46, 47, 48, 60, 83, 85, 97], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 81, 82, 84, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 24, 27, 28, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97], "us": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 75, 76, 78, 83, 87, 92], "benchmark": [1, 34, 75, 76, 78, 79, 86, 88, 89], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 76, 78, 79, 83, 87, 92], "": [1, 2, 3, 8, 16, 33, 34, 38, 41, 44, 46, 48, 53, 54, 58, 60, 61, 62, 63, 65, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "core": [1, 4, 37, 39, 67, 69], "algorithm": [1, 2, 6, 8, 29, 35, 48, 53, 62, 71, 73, 75, 84, 86, 88, 97], "These": [1, 2, 3, 6, 8, 19, 34, 36, 38, 39, 40, 51, 53, 54, 57, 61, 62, 66, 70, 71, 73, 74, 77, 79, 81, 82, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "introduc": [1, 77, 84, 86], "synthet": [1, 88, 89, 94], "nois": [1, 2, 3, 33, 39, 42, 48, 54, 78, 79, 83, 88, 93], "label": [1, 2, 3, 4, 5, 6, 7, 10, 12, 13, 14, 18, 19, 20, 22, 27, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 78, 83, 87, 91, 92], "classif": [1, 3, 4, 5, 8, 10, 12, 14, 31, 33, 37, 39, 42, 44, 45, 48, 53, 54, 55, 56, 57, 62, 63, 71, 72, 73, 74, 75, 76, 78, 79, 87, 88, 91, 92, 93, 94], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 23, 24, 25, 26, 28, 29, 36, 37, 38, 39, 42, 44, 48, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 80, 81, 87, 88, 92, 95], "specif": [1, 3, 4, 7, 12, 13, 14, 25, 30, 36, 51, 55, 58, 61, 70, 74, 81, 82, 85, 86, 90, 97], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 44, 45, 47, 48, 49, 51, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "modul": [1, 3, 11, 12, 13, 14, 19, 22, 27, 30, 31, 33, 34, 35, 36, 37, 38, 39, 44, 46, 48, 51, 53, 58, 61, 62, 63, 75, 84, 85, 89], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 16, 21, 28, 31, 33, 34, 35, 37, 38, 39, 42, 48, 52, 53, 54, 55, 60, 61, 62, 63, 65, 67, 69, 70, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 91, 92, 93, 94, 95, 96, 97], "gener": [1, 2, 3, 5, 8, 16, 21, 23, 30, 33, 44, 48, 49, 62, 63, 65, 70, 77, 78, 79, 82, 83, 84, 85, 86, 88, 89, 91, 92, 94, 96, 97], "valid": [1, 2, 3, 4, 8, 10, 31, 33, 39, 40, 42, 43, 44, 46, 48, 53, 55, 58, 61, 63, 65, 66, 74, 76, 77, 78, 79, 81, 82, 83, 84, 86, 87, 89, 90, 93, 94, 95, 96, 97], "matric": [1, 3, 42, 84], "which": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 20, 24, 30, 33, 34, 38, 39, 42, 44, 47, 48, 53, 54, 55, 58, 60, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 76, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97], "learn": [1, 2, 3, 4, 8, 12, 14, 20, 28, 30, 35, 36, 37, 38, 39, 41, 43, 48, 51, 53, 55, 62, 64, 66, 69, 73, 75, 77, 78, 81, 82, 83, 85, 87, 88, 89, 93, 96], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 85, 88, 89, 90, 91, 93, 94, 95, 96, 97], "possibl": [1, 2, 3, 5, 8, 33, 34, 38, 39, 41, 42, 44, 55, 56, 57, 58, 60, 61, 62, 63, 65, 71, 73, 74, 79, 84, 86, 88, 89, 90, 93, 94, 97], "noisi": [1, 2, 3, 8, 33, 35, 38, 39, 42, 48, 54, 55, 57, 63, 65, 66, 67, 69, 70, 76, 78, 79, 81, 82, 84, 87, 88], "given": [1, 2, 3, 8, 12, 28, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 47, 48, 53, 54, 55, 58, 60, 61, 62, 63, 65, 66, 70, 71, 73, 74, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 90, 91, 93, 94, 95, 96, 97], "matrix": [1, 2, 3, 4, 8, 14, 16, 29, 33, 39, 41, 42, 45, 48, 49, 55, 58, 60, 61, 62, 63, 81, 90, 91], "trace": [1, 78, 79, 86, 88, 89], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 16, 20, 24, 25, 31, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 48, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 74, 77, 79, 81, 82, 84, 85, 86, 88, 89, 90, 91, 93, 94, 96, 97], "more": [1, 2, 3, 4, 5, 8, 11, 12, 14, 16, 24, 33, 34, 37, 38, 41, 44, 46, 48, 53, 54, 55, 56, 57, 58, 60, 61, 63, 65, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 84, 85, 88, 89, 90, 91, 94, 97], "function": [1, 2, 3, 4, 5, 11, 12, 14, 21, 24, 28, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 77, 79, 83, 84, 86, 88, 89, 90, 94, 95, 96, 97], "noise_matrix": [1, 2, 3, 8, 42, 48, 78, 79, 86, 88, 89], "py": [1, 3, 30, 34, 35, 39, 42, 44, 77, 78, 79, 82, 84, 86, 88, 89, 96], "verbos": [1, 2, 4, 5, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 33, 37, 39, 53, 54, 55, 60, 62, 63, 65, 67, 69, 70, 74, 78, 86, 88], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 30, 31, 33, 34, 37, 38, 39, 43, 47, 48, 49, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 67, 69, 70, 71, 77, 78, 79, 81, 82, 84, 85, 86, 88, 90, 91, 93, 94, 96], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74], "prior": [1, 2, 3, 33, 39, 42, 44], "repres": [1, 2, 3, 5, 8, 10, 14, 16, 24, 31, 33, 37, 39, 42, 45, 46, 48, 53, 54, 55, 58, 60, 61, 62, 63, 65, 67, 69, 70, 74, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 90, 91, 93, 95, 96, 97], "p": [1, 2, 3, 8, 33, 39, 41, 42, 48, 53, 61, 62, 63, 67, 81, 82, 86, 88, 97], "true_label": [1, 2, 3, 33, 42, 48, 86, 88], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 17, 21, 24, 26, 29, 33, 37, 39, 41, 42, 43, 44, 45, 46, 47, 48, 53, 54, 55, 56, 57, 58, 61, 62, 63, 65, 67, 69, 70, 71, 73, 74, 77, 78, 79, 84, 86, 88, 89, 90, 91, 94, 95, 97], "check": [1, 2, 4, 7, 8, 10, 14, 25, 31, 34, 37, 38, 43, 49, 52, 58, 61, 65, 75, 77, 78, 79, 84, 85, 86, 88, 89, 93, 95, 96], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 20, 24, 35, 38, 42, 44, 46, 60, 65, 79, 82, 84, 86, 88, 89, 90, 91, 93, 96], "achiev": [1, 2, 34, 35, 38, 65, 84, 88, 97], "better": [1, 4, 39, 53, 55, 63, 65, 66, 75, 77, 79, 81, 82, 84, 86, 89, 90, 91, 96, 97], "than": [1, 2, 3, 5, 8, 24, 26, 29, 33, 39, 48, 52, 53, 58, 60, 62, 63, 65, 69, 73, 77, 79, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 97], "random": [1, 2, 3, 5, 8, 16, 29, 37, 44, 53, 63, 65, 77, 78, 79, 81, 84, 85, 86, 88, 89, 91, 95], "perform": [1, 2, 5, 8, 24, 26, 29, 34, 38, 44, 61, 65, 75, 78, 84, 86, 88, 89, 92, 93, 95, 96], "averag": [1, 3, 8, 20, 26, 33, 34, 38, 44, 46, 53, 54, 61, 62, 63, 84, 88, 91], "amount": [1, 3, 85], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 77, 79, 82, 85, 95, 96], "np": [1, 2, 3, 4, 5, 14, 16, 29, 33, 35, 37, 39, 41, 42, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "ndarrai": [1, 2, 3, 4, 14, 21, 23, 24, 28, 29, 33, 35, 37, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 73, 97], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 48, 49, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 67, 69, 70, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 16, 24, 33, 35, 37, 38, 39, 42, 43, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "shape": [1, 2, 3, 4, 14, 16, 33, 35, 37, 39, 41, 42, 43, 44, 46, 47, 48, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 77, 83, 84, 86, 89, 90, 91, 94, 97], "condit": [1, 2, 3, 42, 47, 48, 63, 85, 86, 97], "probabl": [1, 2, 3, 4, 6, 8, 14, 21, 23, 26, 33, 37, 38, 39, 41, 42, 44, 45, 47, 48, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 67, 69, 70, 71, 73, 74, 75, 76, 83, 84, 86, 87, 89, 90, 91, 94, 97], "k_": [1, 2, 3, 42, 48], "k_y": [1, 2, 3, 42, 48], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 33, 34, 35, 37, 38, 39, 41, 42, 47, 48, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 69, 70, 71, 73, 74, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96], "fraction": [1, 2, 3, 8, 18, 35, 42, 48, 53, 65, 81, 84], "exampl": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 44, 45, 46, 47, 48, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 88, 89, 90, 92, 93, 94, 95, 96, 97], "everi": [1, 2, 3, 4, 14, 34, 38, 39, 42, 47, 48, 55, 63, 65, 66, 77, 78, 79, 81, 82, 84, 85, 88, 90, 92, 94, 95, 97], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97], "other": [1, 2, 3, 4, 8, 14, 20, 25, 33, 34, 36, 37, 38, 39, 42, 45, 48, 49, 51, 53, 54, 57, 61, 62, 63, 65, 70, 77, 78, 79, 81, 82, 84, 85, 86, 89, 91, 94, 97], "assum": [1, 2, 3, 10, 39, 42, 47, 48, 63, 67, 70, 84, 89, 91, 93, 94, 97], "column": [1, 2, 3, 4, 8, 10, 11, 28, 33, 37, 39, 42, 44, 45, 47, 48, 53, 54, 55, 57, 58, 61, 62, 63, 65, 70, 71, 73, 74, 77, 78, 79, 82, 83, 84, 85, 86, 88, 89, 90, 93, 94, 95, 96, 97], "sum": [1, 2, 3, 24, 29, 33, 42, 44, 48, 54, 55, 57, 60, 65, 78, 79, 84, 85, 86, 88, 89, 94, 97], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 83, 84, 92], "each": [1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 14, 18, 20, 21, 23, 24, 29, 30, 33, 34, 35, 37, 38, 39, 41, 42, 44, 45, 46, 48, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 42, 44, 47, 48, 49, 52, 53, 54, 55, 58, 60, 61, 62, 63, 65, 67, 69, 70, 74, 77, 78, 79, 81, 82, 83, 84, 85, 88, 89, 90, 91, 93, 94, 95, 96, 97], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 96, 97], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 76, 77, 78, 79, 80, 81, 82, 84, 85, 89, 90, 93, 94, 95, 97], "bool": [1, 2, 3, 4, 10, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 30, 31, 33, 34, 37, 38, 39, 44, 47, 48, 53, 55, 57, 58, 60, 61, 62, 63, 65, 67, 69, 70, 74], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 30, 34, 37, 38, 39, 48, 53, 54, 55, 57, 58, 74, 77, 79, 81, 82, 83, 84, 85, 86, 93, 96, 97], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20, 21, 25, 28, 29, 30, 32, 33, 34, 35, 37, 38, 39, 42, 44, 45, 46, 47, 48, 53, 55, 57, 60, 61, 62, 63, 65, 66, 71, 73, 74, 75, 77, 81, 82, 83, 84, 85, 88, 89, 90, 91, 92, 94, 97], "perfect": [1, 2, 33, 65, 86, 90], "exactli": [1, 3, 8, 33, 34, 38, 39, 56, 62, 78, 79, 81, 82, 85, 86], "yield": [1, 34, 38], "between": [1, 4, 8, 13, 14, 19, 20, 22, 24, 27, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 46, 51, 53, 54, 57, 60, 62, 63, 65, 66, 69, 73, 74, 76, 77, 78, 79, 81, 82, 85, 86, 88, 89, 90, 91, 93, 94, 96, 97], "below": [1, 3, 4, 8, 33, 34, 37, 38, 39, 41, 44, 53, 54, 55, 60, 61, 69, 73, 76, 77, 78, 79, 81, 82, 83, 84, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "we": [1, 2, 3, 4, 5, 8, 11, 20, 34, 37, 38, 39, 44, 48, 49, 53, 60, 61, 63, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "loop": [1, 3, 42, 48, 85, 90], "implement": [1, 2, 3, 4, 7, 12, 20, 34, 35, 37, 38, 42, 48, 65, 75, 77, 78, 81, 91, 92, 95], "what": [1, 4, 7, 8, 14, 30, 33, 35, 37, 39, 53, 54, 58, 60, 77, 78, 79, 81, 82, 85, 88, 89, 90, 91, 93, 94, 95, 96, 97], "doe": [1, 2, 3, 5, 8, 37, 38, 39, 44, 49, 60, 61, 65, 67, 69, 73, 77, 78, 79, 81, 82, 85, 89, 93, 94, 96], "do": [1, 2, 4, 8, 33, 37, 38, 48, 49, 62, 63, 67, 77, 78, 79, 81, 82, 85, 88, 89, 90, 91, 93, 94, 95, 96, 97], "fast": 1, "explain": [1, 8], "python": [1, 2, 38, 52, 65, 77, 78, 79, 82, 83, 91, 96], "pseudocod": [1, 92], "happen": [1, 8, 39, 55, 82, 88, 94], "n": [1, 2, 3, 4, 5, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 73, 77, 82, 83, 84, 85, 88, 89, 90, 93, 94, 95, 96, 97], "without": [1, 2, 4, 8, 10, 12, 18, 34, 38, 57, 65, 75, 77, 82, 86, 90, 91, 96], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 33, 34, 37, 38, 39, 41, 43, 46, 47, 48, 52, 53, 55, 57, 58, 60, 61, 63, 65, 67, 69, 70, 75, 77, 78, 79, 81, 82, 84, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96], "distinct": [1, 16, 48, 97], "natur": [1, 8, 88, 91], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 42, 43, 44, 45, 46, 47, 48, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 76, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 90, 94, 97], "0": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "count_joint": 1, "len": [1, 2, 3, 5, 33, 37, 42, 47, 48, 49, 62, 63, 65, 78, 79, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 95, 96, 97], "y": [1, 2, 3, 4, 6, 16, 28, 29, 38, 42, 44, 48, 49, 52, 61, 65, 66, 77, 78, 79, 81, 84, 86, 88, 89, 91, 93, 96], "round": [1, 37, 39, 48, 65, 84, 93], "astyp": [1, 88], "int": [1, 2, 3, 4, 5, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 33, 34, 35, 37, 38, 39, 44, 45, 46, 47, 48, 49, 54, 55, 57, 61, 62, 63, 65, 67, 69, 70, 71, 74, 77, 78, 85, 90, 91], "rang": [1, 3, 4, 5, 10, 42, 44, 46, 48, 61, 65, 66, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 97], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 20, 33, 37, 39, 42, 43, 44, 45, 46, 47, 48, 49, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 77, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 96, 97], "pragma": 1, "cover": [1, 3, 76, 83], "choic": [1, 6, 39, 46, 84, 85, 89, 91], "replac": [1, 47, 52, 63, 78, 79, 82, 83, 84, 85, 88, 91, 95, 96], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 63, 77, 78, 79], "05": [1, 8, 24, 28, 47, 61, 65, 71, 73, 81, 83, 84, 85, 86, 90, 94, 97], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 78, 79, 86, 88, 89], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 49, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 67, 69, 70, 73, 74, 78, 79, 84, 85, 86, 88, 89, 94], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 24, 36, 38, 44, 65, 77, 78, 79, 81, 83, 86, 88, 89, 95], "max_it": [1, 77, 82, 91, 96], "10000": [1, 37, 83, 84], "x": [1, 2, 3, 4, 8, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 33, 34, 35, 38, 39, 41, 42, 44, 47, 48, 49, 52, 53, 55, 61, 62, 63, 65, 67, 77, 78, 79, 81, 83, 84, 85, 86, 88, 89, 91, 93, 95, 96], "diagon": [1, 3, 4, 39, 42, 48], "equal": [1, 3, 8, 10, 55, 60, 70, 92], "creat": [1, 2, 7, 14, 16, 34, 37, 38, 39, 48, 65, 75, 77, 81, 82, 84, 85, 94, 96, 97], "impli": [1, 8, 33, 54, 61], "float": [1, 2, 8, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 33, 34, 35, 36, 37, 38, 39, 41, 43, 44, 46, 47, 48, 53, 54, 55, 57, 60, 61, 65, 69, 73, 77, 78, 79, 86, 88, 89], "entri": [1, 3, 4, 33, 34, 38, 39, 41, 45, 46, 48, 53, 54, 55, 58, 81, 82, 86, 89, 90, 93, 95, 96], "maximum": [1, 8, 62, 70, 74, 94], "minimum": [1, 6, 8, 18, 39, 41, 55, 60, 73], "noise_r": 1, "non": [1, 2, 3, 4, 5, 7, 14, 24, 34, 38, 39, 60, 65, 78, 84, 86, 88, 90, 91], "default": [1, 2, 3, 4, 5, 8, 12, 14, 26, 28, 30, 33, 34, 35, 37, 38, 39, 41, 42, 44, 48, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 78, 84, 85, 93, 94], "If": [1, 2, 3, 4, 8, 10, 11, 14, 24, 26, 31, 33, 34, 37, 38, 39, 41, 42, 44, 47, 48, 52, 53, 54, 55, 58, 60, 61, 62, 65, 66, 67, 69, 70, 73, 74, 75, 76, 77, 78, 81, 82, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "have": [1, 2, 3, 4, 5, 8, 14, 19, 22, 24, 27, 33, 34, 36, 37, 38, 39, 42, 44, 48, 52, 53, 54, 55, 58, 60, 61, 62, 63, 65, 66, 70, 74, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 20, 30, 33, 34, 37, 38, 39, 42, 44, 45, 47, 48, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 81, 82, 83, 84, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "necessari": [1, 2, 3, 5, 8, 10, 47, 78], "In": [1, 2, 3, 8, 33, 34, 37, 38, 53, 54, 56, 77, 78, 79, 81, 82, 83, 84, 85, 86, 89, 90, 91, 92, 93, 94, 95, 96, 97], "particular": [1, 4, 8, 11, 12, 14, 17, 18, 20, 24, 25, 26, 29, 34, 38, 48, 53, 57, 61, 65, 70, 74, 75, 77, 79, 82, 84, 88, 89, 91, 93, 95, 96], "satisfi": [1, 3, 33], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 28, 32, 34, 35, 36, 37, 38, 39, 42, 48, 51, 52, 55, 62, 63, 65, 67, 75, 76, 77, 83, 84, 86, 92], "argument": [1, 2, 3, 4, 8, 14, 21, 25, 28, 29, 34, 37, 38, 39, 44, 49, 52, 53, 54, 55, 57, 60, 61, 62, 63, 65, 69, 70, 71, 73, 79, 82, 83, 84, 85, 89, 90, 93, 96, 97], "when": [1, 2, 3, 4, 8, 10, 12, 21, 24, 34, 38, 39, 42, 44, 48, 52, 55, 57, 58, 60, 62, 63, 65, 66, 78, 79, 81, 82, 85, 88, 92, 93, 94, 95, 96, 97], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 37, 38, 39, 41, 42, 43, 44, 45, 46, 48, 52, 53, 54, 55, 58, 60, 61, 62, 63, 65, 67, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "rate": [1, 2, 3, 8, 35, 48, 77, 97], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 33, 34, 37, 38, 39, 43, 44, 46, 48, 52, 53, 55, 58, 60, 61, 62, 63, 65, 67, 69, 70, 78, 79, 81, 82, 84, 88, 89, 91, 92, 93, 94, 95, 96, 97], "note": [1, 2, 3, 5, 6, 8, 10, 25, 29, 31, 34, 37, 38, 39, 44, 48, 53, 58, 60, 61, 62, 63, 65, 66, 70, 76, 77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "you": [1, 2, 3, 4, 5, 8, 12, 14, 33, 34, 36, 37, 38, 39, 44, 51, 52, 53, 55, 58, 60, 61, 62, 63, 65, 66, 67, 70, 71, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "high": [1, 2, 14, 37, 39, 48, 60, 63, 65, 78, 79, 83, 85, 86, 90, 93, 94, 95, 96, 97], "mai": [1, 2, 3, 4, 8, 11, 19, 20, 22, 27, 33, 34, 36, 37, 38, 39, 42, 44, 48, 53, 54, 58, 60, 61, 62, 63, 65, 67, 70, 74, 76, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 92, 93, 94, 96, 97], "imposs": [1, 8, 86], "also": [1, 2, 3, 4, 5, 8, 20, 31, 33, 34, 37, 38, 39, 44, 47, 52, 53, 62, 65, 70, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93, 94, 95, 96, 97], "low": [1, 8, 48, 53, 75, 78, 79, 82, 86, 90, 94], "zero": [1, 3, 4, 34, 38, 41, 48, 49, 78, 85, 89, 90, 91], "forc": [1, 2, 3, 4, 38, 78, 97], "instead": [1, 2, 3, 8, 11, 14, 30, 33, 34, 37, 38, 39, 42, 48, 52, 53, 55, 57, 61, 62, 63, 65, 66, 69, 71, 73, 76, 77, 81, 82, 84, 85, 86, 89, 90, 91, 93, 94, 95, 96, 97], "onli": [1, 2, 3, 4, 5, 8, 14, 21, 24, 28, 33, 34, 37, 38, 39, 41, 42, 47, 48, 49, 52, 53, 62, 63, 65, 67, 69, 73, 74, 75, 77, 78, 79, 82, 85, 88, 89, 90, 91, 92, 93, 94, 96, 97], "guarante": [1, 3, 4, 13, 19, 22, 27, 34, 36, 38, 40, 42, 51, 76], "produc": [1, 2, 4, 8, 14, 44, 53, 63, 65, 67, 69, 75, 77, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97], "higher": [1, 4, 8, 33, 39, 41, 42, 44, 46, 53, 54, 65, 79, 82, 84, 90], "opposit": [1, 97], "occur": [1, 3, 8, 33, 47, 60, 78, 79, 84, 85, 91], "small": [1, 3, 8, 33, 37, 44, 48, 54, 61, 82, 83, 85, 89, 91, 96], "numpi": [1, 3, 4, 5, 8, 10, 16, 29, 37, 38, 44, 46, 47, 49, 52, 57, 60, 65, 66, 71, 73, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "max": [1, 39, 62, 63, 79, 85, 91], "tri": [1, 34, 38, 92], "befor": [1, 2, 3, 34, 38, 46, 48, 62, 65, 70, 82, 84, 86, 88, 91, 93, 95, 96], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 21, 24, 28, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 67, 69, 70, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 89, 93, 94, 95], "left": [1, 2, 39, 41, 46, 48, 55, 58, 61, 78, 79, 89, 90, 91, 94], "stochast": 1, "exceed": 1, "m": [1, 4, 34, 38, 43, 44, 53, 58, 60, 61, 62, 78, 79, 83, 88, 89, 90, 97], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 34, 38, 52, 84, 86, 94], "length": [1, 4, 10, 24, 25, 33, 35, 39, 48, 55, 58, 62, 63, 65, 67, 70, 74, 77, 89, 91, 94, 95, 97], "must": [1, 2, 3, 4, 5, 14, 33, 34, 35, 36, 38, 39, 42, 44, 45, 48, 51, 52, 53, 54, 55, 62, 63, 65, 67, 69, 70, 71, 73, 74, 77, 88, 92, 94, 97], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 33, 37, 39, 45, 48, 49, 53, 55, 61, 67, 69, 70, 71, 73, 74, 77, 84, 88, 89, 90, 94, 95, 96, 97], "ball": [1, 83], "bin": [1, 3, 55, 78, 79, 91], "ensur": [1, 2, 8, 34, 38, 48, 49, 60, 63, 65, 77, 78, 79, 82, 84, 85, 86, 91, 92, 93, 95, 96], "most": [1, 3, 4, 5, 8, 14, 33, 37, 39, 44, 52, 53, 54, 55, 58, 60, 61, 62, 63, 66, 69, 73, 74, 75, 76, 77, 78, 79, 81, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96], "least": [1, 8, 16, 29, 33, 37, 53, 54, 60, 63, 73, 79, 84, 85, 88, 91, 94], "int_arrai": [1, 48], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 30, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 70, 71, 74, 75, 76, 77, 78, 81, 82, 85, 89, 90, 91, 92, 93, 94, 95, 96, 97], "model": [2, 3, 4, 8, 14, 16, 28, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 47, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 76, 78, 79, 83, 87, 92, 94, 97], "For": [2, 3, 4, 5, 7, 8, 9, 14, 20, 32, 33, 34, 37, 38, 39, 42, 44, 48, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 67, 69, 71, 73, 74, 75, 77, 79, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97], "regular": [2, 3, 37, 52], "multi": [2, 3, 8, 33, 34, 37, 38, 39, 43, 44, 45, 48, 49, 54, 55, 56, 57, 62, 63, 75, 84, 86, 87], "task": [2, 4, 5, 8, 9, 10, 12, 13, 14, 23, 28, 30, 33, 37, 42, 44, 45, 46, 48, 53, 55, 63, 65, 75, 77, 82, 83, 84, 86, 89, 91, 93, 94, 96, 97], "cleanlearn": [2, 3, 8, 21, 28, 34, 48, 52, 64, 65, 66, 75, 76, 93, 95, 96], "wrap": [2, 34, 38, 52, 62, 65, 75, 78, 79, 81, 82, 86, 93, 95, 96], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 34, 38, 44, 52, 61, 62, 65, 70, 77, 78, 79, 81, 82, 85, 86, 90, 95, 96], "sklearn": [2, 3, 4, 6, 8, 16, 29, 33, 38, 44, 48, 52, 62, 65, 66, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 91, 92, 93, 95, 96], "classifi": [2, 3, 38, 44, 48, 53, 56, 62, 63, 75, 76, 77, 81, 82, 84, 88, 89, 91, 92, 94, 95, 96, 97], "adher": [2, 38, 65], "estim": [2, 3, 4, 7, 11, 20, 33, 37, 38, 39, 42, 48, 53, 54, 55, 60, 62, 65, 67, 69, 73, 75, 76, 77, 78, 79, 81, 82, 84, 85, 87, 90, 91, 92, 93, 94, 97], "api": [2, 3, 12, 52, 58, 61, 62, 65, 76, 84, 93], "defin": [2, 3, 4, 5, 8, 12, 20, 33, 34, 35, 37, 38, 39, 63, 65, 67, 77, 78, 79, 81, 84, 88, 91, 97], "four": [2, 8, 83, 86, 97], "clf": [2, 3, 4, 44, 65, 75, 81, 84, 86, 89, 95], "fit": [2, 3, 4, 6, 8, 16, 36, 38, 51, 52, 62, 64, 65, 75, 78, 79, 81, 82, 84, 85, 86, 88, 89, 91, 92, 93, 95, 96, 97], "sample_weight": [2, 38, 65, 86], "predict_proba": [2, 4, 33, 36, 38, 44, 51, 52, 77, 78, 79, 81, 82, 84, 86, 88, 89, 91, 95], "predict": [2, 3, 4, 6, 8, 14, 20, 21, 23, 26, 28, 31, 33, 36, 37, 38, 39, 41, 42, 44, 45, 47, 48, 51, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 83, 84, 86, 87, 91, 93, 94, 96, 97], "score": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 33, 37, 39, 41, 44, 46, 53, 54, 55, 57, 58, 60, 61, 62, 63, 64, 65, 66, 69, 71, 73, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 91, 93, 95, 96], "data": [2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 33, 35, 36, 37, 38, 39, 44, 45, 48, 51, 52, 53, 54, 55, 56, 60, 62, 63, 64, 65, 70, 71, 72, 73, 74, 76, 80, 85, 87, 92, 96], "e": [2, 3, 4, 8, 10, 20, 33, 34, 37, 38, 39, 42, 44, 45, 48, 49, 53, 54, 55, 56, 58, 61, 62, 63, 65, 67, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96], "featur": [2, 3, 4, 6, 8, 14, 17, 21, 24, 25, 26, 28, 29, 44, 48, 62, 65, 75, 78, 79, 81, 82, 84, 86, 88, 89, 93, 95], "element": [2, 3, 4, 33, 39, 41, 48, 53, 55, 63, 70, 71, 73, 77, 82, 84, 96, 97], "first": [2, 4, 8, 15, 24, 25, 33, 37, 44, 48, 53, 54, 58, 61, 63, 65, 77, 78, 81, 84, 85, 88, 89, 90, 91, 93, 94, 95, 96, 97], "index": [2, 8, 24, 33, 39, 47, 48, 49, 54, 63, 65, 70, 73, 74, 77, 78, 79, 81, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 96, 97], "should": [2, 3, 4, 5, 8, 12, 20, 24, 29, 33, 34, 37, 38, 39, 41, 42, 44, 46, 47, 48, 52, 53, 54, 57, 58, 60, 61, 62, 63, 65, 66, 70, 71, 73, 74, 77, 78, 79, 81, 82, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 31, 33, 34, 37, 38, 39, 41, 42, 44, 47, 48, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 67, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "differ": [2, 4, 5, 8, 11, 13, 19, 22, 24, 25, 27, 33, 34, 36, 37, 38, 39, 40, 44, 48, 49, 51, 53, 58, 60, 62, 65, 77, 78, 79, 81, 82, 85, 86, 88, 89, 91, 92, 93, 95], "sampl": [2, 3, 4, 6, 8, 14, 18, 39, 41, 44, 55, 58, 61, 63, 65, 66, 75, 76, 83, 84, 86, 87, 89, 90, 93, 94, 96, 97], "size": [2, 8, 29, 34, 37, 38, 39, 44, 55, 60, 61, 65, 67, 69, 81, 84, 85, 86, 88, 89, 90, 92, 94, 96], "here": [2, 4, 5, 8, 12, 37, 39, 42, 52, 53, 54, 55, 57, 58, 61, 62, 73, 75, 76, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "re": [2, 4, 34, 38, 47, 53, 65, 75, 77, 78, 81, 82, 84, 93, 94, 95, 96, 97], "weight": [2, 8, 34, 35, 38, 44, 53, 60, 63, 65, 77, 78, 79, 82, 96], "loss": [2, 35, 52, 63, 65, 85], "while": [2, 3, 8, 34, 37, 38, 43, 44, 48, 65, 75, 84, 85, 86, 88, 89, 93], "train": [2, 3, 4, 8, 14, 16, 34, 35, 36, 38, 44, 48, 52, 53, 58, 61, 62, 65, 66, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 92, 94, 97], "support": [2, 3, 4, 10, 12, 30, 31, 37, 44, 48, 49, 62, 63, 73, 75, 76, 77, 78, 79, 84, 85], "your": [2, 3, 4, 7, 8, 14, 33, 34, 36, 37, 38, 39, 44, 48, 51, 52, 53, 54, 55, 57, 62, 63, 65, 66, 67, 69, 70, 76, 77, 81, 83, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "recommend": [2, 4, 5, 8, 11, 14, 37, 39, 53, 78, 79, 84, 85, 92, 93], "furthermor": 2, "correctli": [2, 3, 8, 33, 34, 38, 39, 42, 49, 54, 55, 60, 61, 65, 67, 82, 84, 89, 90, 93, 94, 96], "clonabl": [2, 65], "via": [2, 4, 5, 8, 11, 14, 16, 20, 33, 35, 37, 38, 44, 48, 53, 58, 61, 62, 63, 65, 66, 69, 73, 77, 78, 79, 81, 82, 83, 84, 85, 89, 90, 91, 92, 93, 94, 95, 96, 97], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 34, 37, 38, 39, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 57, 60, 62, 63, 65, 66, 69, 71, 73, 77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 94, 95, 97], "clone": [2, 65, 89], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 37, 41, 42, 43, 44, 45, 46, 47, 48, 49, 57, 61, 65, 71, 76, 77, 78, 84, 86, 88, 89, 90, 91, 93, 97], "multipl": [2, 3, 4, 10, 11, 31, 33, 39, 47, 53, 54, 55, 57, 60, 61, 65, 75, 78, 79, 84, 85, 87, 89, 90, 93], "g": [2, 3, 4, 8, 10, 20, 33, 34, 38, 39, 45, 48, 55, 56, 58, 61, 62, 63, 65, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96], "manual": [2, 65, 77, 84, 91, 92, 93, 95, 96, 97], "pytorch": [2, 34, 35, 38, 65, 75, 77, 84, 87, 89, 94], "call": [2, 3, 4, 8, 11, 12, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 34, 38, 44, 48, 52, 62, 65, 77, 78, 79, 82, 84, 86, 89, 91, 92, 93, 94, 96, 97], "__init__": [2, 35, 65, 85], "independ": [2, 3, 8, 54, 65, 82, 92, 93, 97], "compat": [2, 34, 37, 38, 52, 65, 66, 69, 73, 75, 84, 92, 93, 95, 96], "neural": [2, 35, 52, 62, 65, 77, 84, 85, 89, 91, 93], "network": [2, 34, 35, 38, 52, 62, 65, 77, 82, 84, 85, 89, 91, 93, 96], "typic": [2, 34, 38, 62, 65, 77, 79, 81, 82, 85, 91, 92, 95, 96], "initi": [2, 3, 11, 16, 34, 38, 53, 65, 82, 84, 95], "insid": [2, 38, 65, 84, 86], "There": [2, 3, 5, 75, 86, 88], "two": [2, 3, 8, 16, 24, 33, 34, 37, 38, 45, 48, 58, 60, 61, 76, 78, 79, 81, 82, 84, 85, 86, 89, 93, 94, 96, 97], "new": [2, 5, 12, 20, 34, 37, 38, 43, 47, 48, 53, 65, 77, 78, 82, 83, 84, 91, 92, 96, 97], "notion": 2, "confid": [2, 3, 8, 20, 33, 37, 39, 42, 44, 48, 53, 54, 55, 58, 60, 61, 62, 63, 65, 69, 73, 75, 81, 82, 85, 86, 88, 89, 90, 92, 94, 95, 97], "packag": [2, 4, 5, 7, 8, 9, 13, 32, 36, 39, 40, 48, 51, 58, 61, 65, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "prune": [2, 3, 39, 55, 65, 76, 90], "everyth": [2, 61, 86], "els": [2, 61, 78, 83, 84, 85, 88, 89, 90], "mathemat": [2, 3, 8, 42, 89], "keep": [2, 11, 12, 48, 75, 78, 83, 84, 94], "belong": [2, 3, 8, 33, 39, 41, 42, 54, 55, 56, 57, 62, 63, 67, 71, 73, 74, 79, 85, 86, 89, 91, 94, 97], "2": [2, 3, 4, 5, 10, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 52, 54, 55, 57, 58, 61, 62, 63, 65, 66, 70, 71, 73, 74, 83, 84, 92], "error": [2, 3, 4, 8, 34, 38, 39, 41, 42, 48, 54, 55, 57, 58, 60, 61, 63, 65, 67, 69, 70, 73, 76, 77, 78, 79, 81, 82, 83, 87, 95], "erron": [2, 3, 33, 39, 42, 48, 54, 55, 63, 65, 66, 67, 91, 93], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 30, 33, 37, 44, 46, 47, 53, 57, 60, 65, 66, 71, 73, 74, 75, 81, 82, 84, 89, 90, 91, 93, 94, 95, 96, 97], "linear_model": [2, 4, 33, 48, 65, 75, 77, 78, 79, 82, 84, 86, 88, 91, 96], "logisticregress": [2, 3, 4, 33, 48, 75, 77, 78, 79, 82, 84, 86, 88, 91, 96], "logreg": 2, "cl": [2, 12, 28, 65, 75, 84, 86, 93, 95, 96], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 21, 28, 30, 34, 37, 38, 39, 43, 44, 48, 52, 53, 55, 62, 63, 65, 71, 75, 77, 78, 79, 82, 83, 84, 86, 88, 90, 91, 93, 96], "x_train": [2, 78, 79, 86, 88, 89, 93, 95], "labels_maybe_with_error": 2, "had": [2, 3, 65, 90], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 33, 34, 36, 37, 38, 39, 51, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 80, 87, 88, 92, 93, 96], "pred": [2, 39, 48, 92, 93, 95, 96], "x_test": [2, 78, 79, 86, 89, 93, 95], "might": [2, 53, 65, 70, 78, 79, 84, 85, 90, 95, 96], "case": [2, 3, 11, 33, 44, 53, 65, 77, 78, 79, 81, 83, 84, 85, 86, 91, 93, 95, 96, 97], "standard": [2, 3, 4, 28, 33, 39, 52, 54, 55, 57, 63, 65, 75, 78, 79, 81, 83, 86, 90, 95], "adapt": [2, 34, 36, 48, 51, 65, 91], "skorch": [2, 65, 75, 84], "kera": [2, 51, 58, 61, 65, 75, 84, 90], "scikera": [2, 52, 65, 84], "open": [2, 37, 83, 90, 97], "doesn": [2, 65, 75], "t": [2, 3, 5, 8, 15, 25, 34, 35, 37, 38, 39, 44, 46, 47, 57, 62, 63, 65, 71, 73, 74, 75, 78, 79, 81, 82, 83, 85, 86, 89, 90, 93, 97], "alreadi": [2, 4, 8, 14, 34, 37, 38, 42, 52, 53, 65, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 90, 91, 93, 95, 96], "exist": [2, 4, 8, 10, 16, 34, 37, 38, 47, 52, 58, 60, 62, 65, 75, 76, 78, 79, 82, 88, 96, 97], "made": [2, 4, 14, 34, 38, 65, 82, 84, 85, 88, 90, 92, 93, 95, 96], "easi": [2, 42, 65, 78, 79, 83, 84, 86, 89], "inherit": [2, 5, 35, 65], "baseestim": [2, 38, 65], "yourmodel": [2, 65], "def": [2, 5, 12, 34, 38, 52, 65, 77, 78, 79, 83, 84, 85, 86, 88, 89, 91, 93, 96, 97], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 29, 34, 35, 37, 38, 39, 44, 62, 63, 65, 78, 82, 83, 85, 89, 94, 95, 96, 97], "refer": [2, 8, 14, 34, 38, 54, 55, 57, 58, 60, 61, 65, 69, 70, 78, 79, 81, 82, 84, 85, 86, 89, 92, 93], "origin": [2, 4, 8, 38, 39, 47, 48, 52, 54, 55, 58, 61, 62, 65, 66, 69, 71, 73, 78, 81, 82, 84, 85, 86, 90, 91, 93, 95, 96, 97], "total": [2, 3, 33, 37, 48, 54, 74, 84, 85, 94], "state": [2, 3, 4, 34, 35, 38, 43, 65, 86, 89, 90, 97], "art": [2, 35, 86, 89], "northcutt": [2, 3, 33, 62, 63], "et": [2, 3, 33, 35, 62, 63], "al": [2, 3, 33, 35, 62, 63], "2021": [2, 3, 33, 62, 63], "weak": [2, 61], "supervis": [2, 8, 78, 79, 84, 88], "find": [2, 4, 8, 11, 12, 14, 17, 18, 20, 21, 23, 24, 25, 26, 29, 33, 34, 36, 37, 38, 39, 43, 47, 48, 51, 58, 61, 62, 63, 65, 67, 71, 73, 76, 78, 87, 92], "uncertainti": [2, 8, 41, 62, 65, 84, 91, 93], "It": [2, 3, 4, 5, 8, 10, 11, 14, 20, 25, 28, 30, 31, 34, 38, 39, 42, 44, 53, 60, 61, 65, 75, 78, 79, 82, 84, 85, 86, 89, 92, 96], "work": [2, 3, 5, 8, 10, 28, 33, 34, 37, 38, 39, 42, 47, 48, 49, 52, 53, 63, 65, 75, 76, 78, 79, 83, 91, 93, 96], "includ": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 30, 33, 34, 36, 37, 38, 47, 48, 51, 53, 54, 57, 58, 62, 63, 65, 69, 70, 71, 73, 75, 76, 78, 79, 81, 82, 84, 85, 86, 89, 90, 91, 97], "deep": [2, 36, 38, 51, 52, 65, 82], "see": [2, 3, 4, 5, 11, 12, 30, 33, 34, 37, 38, 39, 44, 48, 52, 54, 55, 57, 58, 61, 62, 63, 65, 71, 73, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 88, 89, 90, 91, 93, 94, 95, 96, 97], "subfield": 2, "theori": [2, 86], "machin": [2, 4, 12, 14, 30, 36, 51, 65, 78, 79, 83, 88], "across": [2, 3, 4, 5, 8, 11, 20, 33, 37, 44, 54, 61, 62, 78, 79, 81, 82, 83, 84, 85, 86, 89, 90, 92, 93], "varieti": [2, 84, 95, 96], "like": [2, 3, 4, 5, 8, 12, 33, 34, 37, 38, 39, 42, 48, 52, 53, 54, 57, 58, 60, 63, 65, 66, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "pu": [2, 48], "input": [2, 3, 4, 8, 14, 24, 33, 34, 37, 38, 42, 44, 47, 48, 49, 52, 61, 65, 75, 76, 77, 79, 82, 83, 84, 85, 86, 88, 89, 90, 93, 94, 96, 97], "discret": [2, 31, 39, 42, 48, 62, 63, 67, 69, 70], "vector": [2, 3, 4, 8, 14, 39, 42, 44, 45, 48, 62, 63, 75, 77, 78, 79, 81, 82, 85, 86, 89, 90, 91, 94, 96, 97], "would": [2, 3, 4, 34, 37, 38, 39, 48, 55, 65, 75, 78, 84, 85, 86, 91, 93, 96, 97], "obtain": [2, 4, 6, 8, 14, 39, 53, 55, 58, 61, 63, 66, 77, 79, 82, 84, 88, 90, 92, 94, 97], "been": [2, 33, 39, 42, 47, 48, 53, 54, 58, 60, 62, 63, 65, 77, 78, 81, 84, 86, 88, 89, 90, 91, 94, 97], "dure": [2, 8, 14, 62, 65, 77, 81, 82, 84, 86, 89, 92, 93, 95, 96, 97], "denot": [2, 3, 42, 44, 48, 55, 62, 63, 73], "tild": 2, "paper": [2, 8, 53, 62, 71, 73, 83, 86, 88, 91, 93, 97], "cv_n_fold": [2, 3, 65, 96], "5": [2, 3, 4, 6, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 30, 33, 38, 39, 41, 43, 44, 48, 53, 54, 57, 58, 61, 65, 66, 73, 78, 82, 83, 84, 89, 90, 91, 92, 94, 96, 97], "converge_latent_estim": [2, 3], "pulearn": [2, 48], "find_label_issues_kwarg": [2, 8, 65, 76, 84, 86], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 55, 71, 84], "clean": [2, 60, 63, 65, 66, 75, 78, 79, 83, 93, 95, 96], "even": [2, 3, 5, 33, 37, 41, 42, 48, 65, 77, 84, 86, 88, 89, 90], "messi": [2, 65, 86], "ridden": [2, 65], "autom": [2, 65, 75, 79, 83, 84], "robust": [2, 42, 65, 79, 84], "prone": [2, 65], "out": [2, 3, 4, 8, 14, 26, 34, 38, 39, 44, 52, 55, 56, 58, 61, 62, 63, 65, 66, 74, 75, 76, 83, 84, 86, 87, 89, 90, 91, 93, 94, 96, 97], "current": [2, 3, 5, 8, 11, 12, 20, 34, 38, 39, 44, 53, 60, 65, 78, 79, 84, 88, 90], "intend": [2, 11, 12, 13, 14, 30, 31, 40, 53, 69, 73, 77, 78, 79, 82, 86], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 33, 34, 35, 38, 39, 42, 43, 44, 45, 46, 47, 48, 52, 53, 54, 57, 60, 61, 62, 63, 65, 67, 69, 70, 74, 76, 77, 78, 81, 82, 83, 84, 85, 86, 88, 90, 92, 95, 96, 97], "follow": [2, 3, 8, 12, 28, 31, 33, 34, 37, 38, 44, 46, 53, 54, 58, 60, 61, 62, 65, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "experiment": [2, 34, 35, 37, 38, 55, 76, 84], "wrapper": [2, 4, 52, 77, 93, 95, 96], "around": [2, 4, 60, 78, 79, 90, 91, 97], "fasttext": [2, 51], "store": [2, 4, 8, 10, 11, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 34, 37, 38, 62, 65, 81, 82, 83, 84, 94, 95, 96, 97], "along": [2, 44, 55, 73, 78, 79, 84, 85, 91], "dimens": [2, 48, 67, 70, 84, 85, 91, 94], "select": [2, 7, 8, 24, 53, 63, 84, 85, 88, 91], "split": [2, 3, 4, 8, 10, 37, 44, 47, 48, 65, 77, 78, 79, 81, 82, 83, 85, 86, 89, 92, 95, 97], "cross": [2, 3, 8, 33, 39, 42, 43, 44, 55, 58, 61, 63, 65, 66, 76, 77, 78, 79, 81, 82, 83, 84, 86, 87, 89, 90, 93, 94, 95, 96, 97], "fold": [2, 3, 33, 39, 42, 65, 77, 81, 83, 84, 90, 94, 95], "By": [2, 33, 54, 55, 65, 78, 84, 94], "need": [2, 3, 8, 33, 34, 37, 38, 39, 54, 55, 57, 62, 65, 75, 77, 78, 79, 82, 84, 86, 88, 89, 90, 94, 96], "holdout": [2, 3, 65], "comput": [2, 3, 4, 5, 6, 8, 17, 18, 20, 21, 24, 25, 26, 29, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 48, 53, 54, 55, 57, 60, 61, 62, 63, 65, 66, 67, 69, 75, 76, 78, 79, 83, 86, 87, 90, 91, 93, 94, 96], "them": [2, 3, 4, 5, 7, 8, 9, 10, 25, 32, 34, 36, 37, 38, 39, 51, 53, 62, 65, 76, 78, 79, 81, 82, 84, 85, 88, 89, 91, 93, 94, 95, 96, 97], "numer": [2, 3, 4, 8, 11, 20, 28, 31, 44, 60, 62, 65, 70, 75, 76, 77, 78, 79, 80, 82, 85, 86, 88, 89, 91, 93, 95, 96], "consist": [2, 3, 34, 38, 48, 53, 94, 97], "latent": [2, 3, 42], "thei": [2, 3, 4, 13, 19, 22, 24, 27, 34, 35, 36, 38, 39, 40, 46, 48, 52, 55, 60, 63, 65, 66, 69, 73, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 91, 93, 96, 97], "relat": [2, 3, 11, 17, 18, 24, 25, 26, 29, 42, 48, 54, 65, 79, 82], "close": [2, 3, 8, 37, 42, 62, 77, 78, 79, 81, 82, 84, 85, 86, 90], "form": [2, 3, 8, 34, 35, 38, 42, 47, 48, 63, 65, 84], "equival": [2, 3, 34, 38, 42, 62, 91, 93], "iter": [2, 3, 33, 34, 38, 39, 48, 54, 55, 65, 84, 88, 94], "enforc": [2, 34, 38, 48], "perfectli": [2, 33, 54, 86], "certain": [2, 3, 4, 34, 38, 52, 61, 65, 78, 79, 83, 90, 91], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 33, 34, 37, 38, 39, 43, 44, 48, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 73, 78, 79, 84, 85, 97], "keyword": [2, 3, 4, 8, 14, 21, 25, 28, 34, 37, 38, 39, 41, 44, 47, 52, 53, 55, 62, 63, 65, 71, 73, 78], "filter": [2, 3, 8, 37, 47, 54, 56, 57, 59, 61, 68, 69, 70, 72, 73, 74, 75, 76, 77, 79, 82, 83, 84, 85, 89, 90, 93, 94, 95, 96, 97], "find_label_issu": [2, 3, 8, 28, 37, 39, 54, 55, 56, 57, 58, 59, 60, 61, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 84, 89, 90, 93, 94, 95, 96, 97], "particularli": [2, 75, 88, 91], "filter_bi": [2, 3, 37, 39, 55, 76, 84], "frac_nois": [2, 39, 55, 71, 84], "min_examples_per_class": [2, 39, 55, 79, 84, 86], "impact": [2, 8, 78, 79, 85], "ml": [2, 4, 8, 13, 65, 75, 78, 79, 81, 82, 85, 88, 89, 93, 95, 96], "accuraci": [2, 35, 63, 77, 84, 85, 86, 88, 91, 93, 94, 95, 96], "n_job": [2, 37, 39, 55, 67, 69, 71, 84, 91, 94], "disabl": [2, 34, 38, 39, 91], "process": [2, 3, 5, 11, 14, 34, 37, 38, 39, 47, 53, 55, 61, 67, 69, 71, 77, 78, 84, 88, 92, 96], "caus": [2, 39, 44, 78, 79, 84], "rank": [2, 3, 8, 33, 37, 39, 44, 54, 55, 56, 58, 59, 61, 62, 64, 68, 70, 71, 72, 74, 75, 76, 78, 79, 83, 84, 89, 90, 91, 94, 95, 96, 97], "get_label_quality_scor": [2, 37, 39, 40, 44, 53, 55, 56, 57, 58, 59, 60, 63, 64, 66, 68, 69, 71, 72, 73, 76, 86, 89, 90, 94, 97], "adjust_pred_prob": [2, 8, 57, 62, 63, 86], "control": [2, 4, 7, 8, 14, 37, 39, 53, 61, 62, 65, 71, 73, 78, 79, 83, 84], "how": [2, 3, 4, 8, 10, 11, 12, 14, 20, 33, 34, 35, 37, 38, 42, 48, 53, 54, 57, 58, 60, 62, 63, 65, 69, 73, 75, 78, 79, 81, 82, 83, 85, 90, 91, 92, 93, 94, 95, 96], "much": [2, 8, 33, 37, 39, 65, 84, 86, 88, 91], "output": [2, 3, 4, 8, 14, 34, 35, 38, 42, 48, 52, 53, 54, 58, 60, 61, 62, 65, 69, 70, 73, 74, 75, 76, 77, 78, 82, 83, 84, 85, 90, 91, 92, 93, 96], "print": [2, 4, 5, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 37, 38, 39, 48, 53, 54, 55, 60, 62, 63, 65, 67, 69, 70, 74, 76, 77, 79, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "suppress": [2, 37, 53, 60, 62, 63, 65, 67, 69, 70, 94, 97], "statement": [2, 37, 53, 60, 62, 63, 65, 67, 69, 70], "big": [2, 37, 55, 61, 65, 86], "limit": [2, 4, 14, 37, 55, 90, 94, 97], "memori": [2, 34, 37, 38, 55, 61, 67, 69, 78, 94], "label_issues_batch": [2, 36, 55, 84], "find_label_issues_batch": [2, 36, 37, 55, 84], "pred_prob": [2, 3, 4, 6, 8, 14, 21, 23, 24, 26, 29, 33, 37, 39, 41, 42, 43, 44, 45, 48, 49, 53, 54, 55, 57, 58, 61, 62, 63, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 93, 95, 96], "threshold": [2, 3, 5, 8, 16, 17, 18, 20, 26, 28, 29, 37, 60, 61, 62, 63, 69, 73, 78, 90, 91, 94, 97], "inverse_noise_matrix": [2, 3, 8, 42, 48, 76, 86], "label_issu": [2, 37, 39, 55, 58, 65, 67, 76, 77, 82, 84, 85, 86, 89, 93, 95, 96], "clf_kwarg": [2, 3, 8, 65], "clf_final_kwarg": [2, 65], "validation_func": [2, 3, 8], "correct": [2, 4, 8, 33, 37, 39, 41, 53, 54, 55, 57, 58, 60, 61, 63, 65, 66, 69, 73, 75, 77, 81, 82, 85, 86, 88, 90, 92, 93], "result": [2, 3, 8, 11, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 34, 37, 38, 39, 41, 46, 48, 55, 57, 58, 61, 63, 65, 66, 67, 69, 73, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 93, 94, 95, 96, 97], "identifi": [2, 3, 4, 5, 8, 10, 14, 25, 30, 33, 37, 39, 55, 58, 61, 63, 65, 66, 67, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 89, 91, 93, 94, 95, 96, 97], "final": [2, 8, 65, 81, 90, 92, 93, 95], "remain": [2, 65, 76, 85, 89, 93, 95, 96, 97], "datasetlik": [2, 48, 65], "beyond": [2, 4, 5, 7, 9, 32, 75, 93, 94], "pd": [2, 3, 4, 5, 11, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 33, 43, 52, 53, 54, 65, 73, 77, 78, 79, 81, 82, 84, 86, 88, 93, 95, 96, 97], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 33, 37, 43, 48, 49, 52, 53, 54, 65, 70, 74, 76, 77, 78, 79, 81, 82, 84, 85, 86, 88, 93, 94, 96, 97], "scipi": [2, 4, 11, 48], "spars": [2, 4, 8, 11, 14, 16, 29, 48, 49, 81], "csr_matrix": [2, 4, 11, 14, 16, 29], "torch": [2, 34, 35, 38, 77, 82, 83, 85, 91, 96], "util": [2, 4, 8, 14, 30, 34, 35, 38, 40, 53, 58, 61, 65, 75, 76, 77, 78, 79, 84, 85, 86, 91], "tensorflow": [2, 48, 52, 75, 77, 84], "object": [2, 4, 8, 10, 11, 14, 30, 34, 35, 37, 38, 44, 48, 49, 52, 55, 58, 59, 60, 61, 62, 65, 73, 75, 77, 79, 81, 85, 86, 87, 89, 93, 96], "list": [2, 3, 4, 10, 12, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 33, 34, 35, 37, 38, 39, 45, 47, 48, 49, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 69, 70, 71, 73, 74, 76, 77, 78, 79, 83, 84, 85, 86, 89, 90, 93, 96, 97], "index_list": 2, "subset": [2, 3, 4, 14, 33, 37, 39, 48, 63, 70, 74, 77, 81, 82, 84, 85, 89, 90, 91, 92, 93, 95, 96, 97], "wa": [2, 3, 10, 12, 37, 48, 53, 54, 60, 62, 74, 77, 78, 79, 81, 82, 84, 86, 89, 90, 92, 94, 95, 96, 97], "abl": [2, 3, 8, 65, 77, 84, 86, 88, 89], "format": [2, 3, 4, 8, 10, 34, 37, 38, 39, 42, 43, 44, 45, 48, 49, 52, 53, 54, 55, 58, 61, 62, 63, 65, 67, 69, 70, 73, 74, 77, 78, 79, 81, 83, 85, 88, 93, 94, 95, 97], "make": [2, 3, 4, 16, 34, 37, 38, 44, 52, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 95, 96], "sure": [2, 4, 37, 39, 44, 77, 78, 79, 81, 82, 83, 85, 88, 89, 90, 91, 93, 95, 96], "shuffl": [2, 8, 48, 77, 82, 85, 89, 91], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 28, 29, 34, 38, 42, 44, 47, 48, 53, 58, 60, 65, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97], "batch": [2, 37, 48, 52, 53, 67, 69, 84, 85, 91], "order": [2, 4, 8, 31, 33, 34, 38, 39, 42, 43, 44, 48, 53, 54, 55, 58, 61, 62, 63, 67, 70, 71, 73, 74, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 89, 90, 93, 94, 96, 97], "destroi": [2, 48], "oper": [2, 34, 37, 38, 48, 52, 63, 75, 82, 84, 91, 95, 96], "eg": [2, 8, 48, 58, 61, 78, 79, 84], "repeat": [2, 48, 53, 88, 91], "appli": [2, 34, 36, 38, 39, 44, 45, 47, 48, 57, 62, 71, 77, 78, 79, 81, 84, 85, 88, 89, 91, 92, 93, 94, 95, 96], "array_lik": [2, 3, 33, 39, 48, 55, 62, 66], "some": [2, 3, 4, 8, 12, 20, 33, 34, 36, 38, 39, 42, 47, 48, 51, 53, 54, 55, 57, 58, 61, 62, 63, 65, 67, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 92, 93, 94, 95, 96, 97], "seri": [2, 3, 37, 48, 49, 65, 73, 84], "row": [2, 3, 4, 8, 11, 25, 33, 37, 39, 41, 42, 48, 53, 54, 55, 57, 62, 63, 65, 70, 71, 73, 74, 77, 78, 81, 82, 83, 84, 85, 88, 89, 91, 95, 97], "rather": [2, 3, 24, 33, 48, 52, 53, 60, 69, 73, 88, 92, 93, 94, 96, 97], "leav": [2, 39], "per": [2, 3, 5, 11, 33, 37, 39, 44, 47, 53, 54, 55, 57, 60, 61, 63, 66, 67, 69, 73, 79, 84, 90, 97], "determin": [2, 3, 8, 10, 14, 20, 24, 28, 33, 37, 39, 44, 48, 53, 55, 58, 60, 63, 69, 73, 78, 84, 88, 90, 91, 93], "cutoff": [2, 3, 91], "consid": [2, 3, 4, 8, 11, 14, 21, 24, 26, 29, 33, 34, 38, 39, 48, 53, 60, 62, 63, 66, 69, 73, 77, 81, 82, 84, 85, 86, 90, 91, 92, 93, 94, 95, 96], "section": [2, 3, 5, 8, 76, 81, 85, 90], "3": [2, 3, 4, 5, 8, 31, 33, 34, 38, 39, 42, 43, 44, 45, 46, 47, 48, 52, 55, 62, 63, 65, 66, 71, 73, 83, 84, 92], "equat": [2, 3, 42], "advanc": [2, 3, 4, 7, 8, 14, 60, 62, 73, 76, 79, 80, 86], "user": [2, 3, 4, 8, 12, 14, 25, 30, 31, 34, 38, 39, 60, 62, 63, 65, 69, 73, 86], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 16, 29, 30, 34, 37, 38, 39, 44, 47, 53, 54, 55, 58, 60, 62, 63, 65, 66, 74, 76, 77, 79, 82, 85, 88, 90, 93, 96], "automat": [2, 3, 4, 24, 33, 75, 81, 82, 83, 84, 85, 88, 89, 90, 93, 94, 95, 96, 97], "greater": [2, 3, 4, 5, 7, 8, 26, 37, 48, 60, 79, 83, 84, 97], "count": [2, 20, 24, 33, 37, 39, 42, 48, 54, 55, 61, 76, 84, 85, 90], "observ": [2, 3, 42, 77, 78, 79, 88, 91, 93], "mislabel": [2, 8, 33, 37, 39, 42, 53, 54, 55, 58, 60, 63, 69, 71, 73, 75, 77, 81, 82, 84, 85, 86, 90, 93, 95, 96], "one": [2, 3, 4, 5, 8, 24, 33, 34, 37, 38, 39, 44, 48, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 85, 88, 91, 92, 93, 95, 96, 97], "get_label_issu": [2, 36, 37, 64, 65, 86, 93, 95, 96], "either": [2, 3, 5, 8, 34, 37, 38, 39, 53, 55, 60, 62, 63, 67, 69, 79, 84, 89, 90], "boolean": [2, 5, 8, 20, 37, 39, 47, 53, 55, 58, 63, 65, 67, 69, 70, 75, 77, 79, 82, 84, 85, 90, 93, 94, 96], "label_issues_mask": [2, 39, 63, 65, 76], "indic": [2, 3, 4, 5, 8, 11, 20, 33, 37, 38, 39, 41, 44, 48, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 69, 71, 73, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "its": [2, 4, 5, 7, 8, 14, 34, 37, 38, 39, 46, 47, 55, 58, 61, 62, 63, 65, 67, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 90, 91, 92, 93, 94, 96, 97], "return_indices_ranked_bi": [2, 37, 39, 55, 71, 76, 84, 86, 95, 96], "significantli": [2, 85, 86, 88, 92], "reduc": [2, 37, 39, 48, 77, 84], "time": [2, 8, 34, 37, 38, 48, 53, 76, 78, 83, 84, 85, 86, 90, 91, 93, 94, 95, 96, 97], "take": [2, 4, 8, 33, 34, 38, 43, 44, 48, 52, 63, 81, 85, 88, 89, 90, 95, 97], "run": [2, 4, 5, 7, 9, 12, 14, 24, 25, 32, 34, 37, 38, 65, 77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 95, 96, 97], "skip": [2, 8, 34, 38, 65, 77, 84, 89, 97], "slow": [2, 3], "step": [2, 5, 24, 44, 61, 84, 85, 86, 88, 92], "caution": [2, 4, 84], "previous": [2, 4, 11, 48, 62, 65, 76, 77, 78, 81, 82, 88, 92, 95], "assign": [2, 5, 8, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 34, 38, 43, 44, 48, 65, 78, 81, 84, 85, 93, 94, 95, 97], "individu": [2, 5, 8, 11, 24, 34, 38, 53, 57, 60, 63, 65, 71, 73, 76, 79, 81, 84, 88, 89, 90, 95, 97], "still": [2, 37, 38, 48, 62, 77, 84, 85, 91, 95], "extra": [2, 34, 38, 48, 52, 53, 54, 65, 82, 84, 85, 88, 91], "receiv": [2, 8, 34, 38, 54, 57, 58, 65, 67, 71, 79, 90], "overwritten": [2, 65], "callabl": [2, 3, 34, 38, 44, 47, 52, 57, 84], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 37, 38, 40, 43, 47, 48, 61, 63, 65, 70, 77, 78, 79, 84, 85, 86, 89, 97], "appropri": [2, 8, 14, 55, 63, 78, 81, 89, 90], "earli": [2, 85], "stop": [2, 85], "x_valid": 2, "y_valid": 2, "could": [2, 5, 8, 20, 33, 48, 62, 78, 81, 85, 89, 93, 95, 97], "f": [2, 5, 77, 78, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 95, 96], "ignor": [2, 34, 38, 47, 52, 65, 70, 74, 77, 78, 79, 83, 85, 86, 88, 89, 91, 93, 97], "allow": [2, 33, 34, 37, 38, 41, 48, 53, 61, 62, 65, 67, 69, 77, 84, 85, 92, 94, 96], "access": [2, 8, 11, 34, 38, 65, 79, 82, 85, 89, 96], "hyperparamet": [2, 57, 62, 85], "purpos": [2, 78, 79, 84, 89, 93], "want": [2, 4, 8, 33, 37, 49, 53, 55, 65, 78, 82, 83, 85, 88, 90, 91, 92, 94, 96, 97], "explicitli": [2, 6, 8, 38, 65, 84], "yourself": [2, 4, 37, 79], "altern": [2, 5, 8, 44, 48, 52, 53, 63, 76, 77, 81, 82, 84, 85, 86, 88, 89, 91, 93, 96], "same": [2, 3, 4, 5, 8, 10, 12, 14, 24, 28, 34, 37, 38, 39, 48, 52, 53, 55, 62, 63, 65, 69, 70, 73, 74, 75, 78, 79, 81, 82, 84, 85, 89, 90, 91, 92, 93, 94, 95, 96], "effect": [2, 8, 25, 34, 38, 53, 62, 65, 81, 82, 84, 85, 91], "offer": [2, 4, 77, 78, 79, 82, 84, 86, 89, 96], "after": [2, 3, 4, 11, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 34, 38, 48, 53, 65, 78, 82, 84, 85, 86, 88, 90, 91, 92, 93, 94, 96], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 34, 37, 38, 44, 62, 65, 78, 95], "label_issues_df": [2, 65, 85], "similar": [2, 8, 33, 34, 38, 48, 53, 57, 58, 60, 62, 65, 69, 73, 78, 79, 81, 82, 84, 85, 86, 90, 91, 94], "document": [2, 3, 4, 8, 12, 14, 33, 34, 37, 38, 39, 44, 47, 52, 54, 55, 57, 60, 61, 62, 65, 69, 70, 71, 73, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 95, 96, 97], "descript": [2, 4, 5, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 33, 48, 58, 65, 78, 79], "were": [2, 3, 4, 33, 38, 54, 60, 73, 77, 81, 84, 86, 88, 90, 92, 94, 95], "present": [2, 3, 4, 8, 10, 11, 18, 33, 48, 62, 70, 75, 81, 84, 85, 91], "actual": [2, 3, 4, 33, 53, 54, 63, 79, 84, 86, 97], "num_class": [2, 33, 37, 48, 52, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 91, 95, 96], "uniqu": [2, 29, 48, 70, 78, 84, 89, 91], "given_label": [2, 4, 23, 28, 33, 42, 65, 70, 74, 77, 78, 79, 81, 82, 85, 86, 93, 94, 96, 97], "normal": [2, 3, 16, 24, 29, 39, 41, 44, 46, 47, 48, 63, 84, 86, 91], "trick": [2, 84], "distribut": [2, 3, 4, 8, 24, 26, 33, 38, 39, 43, 46, 53, 61, 62, 63, 75, 78, 79, 81, 82, 85, 90, 91], "account": [2, 33, 53, 57, 62, 63, 82, 84, 86, 88, 89, 91, 93, 96], "word": [2, 3, 47, 73, 74, 84], "remov": [2, 8, 29, 33, 34, 38, 39, 65, 75, 82, 83, 84, 85, 89, 91, 93, 95, 96], "so": [2, 3, 4, 5, 8, 12, 24, 33, 34, 37, 38, 39, 48, 53, 54, 60, 63, 65, 69, 73, 77, 78, 79, 82, 85, 86, 89, 91, 94], "proportion": [2, 8, 39], "just": [2, 3, 4, 8, 11, 33, 35, 37, 48, 52, 63, 65, 67, 75, 76, 77, 79, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93, 94, 95, 96], "procedur": 2, "get": [2, 3, 4, 6, 11, 29, 34, 35, 38, 39, 44, 47, 48, 53, 55, 57, 62, 63, 65, 66, 67, 75, 77, 82, 83, 84, 85, 86, 91, 92, 93, 95, 96], "detect": [2, 4, 5, 7, 11, 12, 14, 16, 20, 26, 46, 56, 58, 59, 60, 61, 62, 63, 64, 65, 68, 72, 75, 78, 80, 85, 87, 89, 93, 94, 95, 96, 97], "arg": [2, 10, 20, 25, 29, 34, 35, 38, 44, 48, 63, 65], "kwarg": [2, 5, 8, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 34, 37, 38, 44, 52, 65, 67, 69, 71, 84], "test": [2, 8, 24, 38, 44, 52, 65, 75, 78, 79, 81, 82, 85, 92, 93, 95, 96, 97], "expect": [2, 3, 34, 38, 39, 44, 53, 62, 63, 65, 84, 86, 88, 89, 90, 93, 95, 96, 97], "class_predict": 2, "evalu": [2, 8, 34, 35, 36, 37, 38, 61, 65, 77, 78, 79, 84, 85, 86, 88, 92, 93, 94, 95, 96], "simpli": [2, 33, 63, 78, 79, 81, 82, 84, 86, 89, 93, 94, 96, 97], "quantifi": [2, 4, 5, 8, 11, 39, 57, 62, 65, 75, 79, 81, 82, 85, 86, 90], "save_spac": [2, 8, 64, 65], "potenti": [2, 8, 33, 39, 47, 55, 58, 61, 63, 65, 67, 69, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 89, 90, 94, 95, 97], "cach": [2, 82, 96], "panda": [2, 4, 5, 10, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 33, 48, 49, 52, 53, 54, 76, 77, 78, 79, 81, 82, 83, 84, 86, 88, 93, 94, 95, 96], "unlik": [2, 8, 39, 41, 44, 52, 54, 55, 57, 73, 78, 88, 89, 91, 93], "both": [2, 4, 8, 14, 24, 33, 34, 38, 39, 48, 53, 55, 63, 67, 69, 74, 75, 78, 84, 85, 86, 88, 97], "mask": [2, 37, 39, 47, 48, 55, 58, 63, 65, 67, 69, 70, 75, 83, 84, 88, 90, 94, 97], "prefer": [2, 63, 71, 89], "plan": 2, "subsequ": [2, 3, 34, 38, 82, 84, 86, 90, 96], "invok": [2, 34, 38, 86, 92], "scratch": [2, 65], "To": [2, 4, 5, 7, 8, 9, 11, 14, 24, 32, 34, 37, 38, 39, 52, 53, 55, 57, 61, 62, 63, 65, 66, 67, 69, 75, 77, 78, 79, 81, 82, 84, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "share": [2, 63, 65], "mostli": [2, 48, 60, 65, 89, 93], "longer": [2, 31, 43, 44, 47, 65, 76, 82, 84, 90, 96], "info": [2, 4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 33, 54, 65, 73, 78, 79, 83, 84, 97], "about": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 33, 35, 37, 41, 53, 54, 57, 61, 65, 70, 73, 77, 78, 81, 82, 83, 84, 85, 86, 88, 91], "docstr": [2, 33, 34, 38, 48, 65, 83, 86], "unless": [2, 34, 38, 65, 84], "our": [2, 3, 8, 52, 53, 63, 65, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "is_label_issu": [2, 28, 65, 77, 78, 79, 81, 82, 85, 86, 89, 93, 96], "entir": [2, 8, 24, 37, 39, 42, 54, 55, 60, 63, 65, 67, 69, 70, 75, 78, 79, 84, 90, 91, 92, 94, 97], "accur": [2, 3, 4, 8, 14, 33, 37, 39, 53, 54, 55, 58, 61, 63, 65, 66, 67, 69, 70, 76, 79, 81, 82, 84, 85, 88, 93], "label_qu": [2, 53, 65, 86, 88, 93, 96], "measur": [2, 33, 53, 54, 65, 75, 83, 84, 86, 88, 89, 93, 94, 95, 97], "qualiti": [2, 3, 4, 5, 8, 11, 28, 29, 33, 37, 39, 41, 44, 53, 54, 55, 57, 58, 60, 63, 65, 66, 69, 71, 73, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 87, 93, 95, 96], "lower": [2, 4, 5, 8, 11, 26, 37, 44, 46, 53, 54, 57, 60, 61, 63, 65, 66, 69, 73, 77, 79, 81, 82, 85, 88, 89, 90, 91, 93, 94, 96, 97], "eas": 2, "comparison": [2, 34, 38, 61, 86, 88], "against": [2, 34, 38, 78, 81, 84, 88, 89], "predicted_label": [2, 4, 23, 28, 65, 70, 74, 77, 78, 79, 81, 82, 85, 86, 93, 94, 96], "ad": [2, 34, 38, 79, 88, 93], "precis": [2, 55, 58, 61, 84, 86, 94, 97], "definit": [2, 5, 31, 44, 65, 81, 95], "accessor": [2, 65], "describ": [2, 8, 16, 53, 62, 63, 65, 71, 73, 86, 88, 89, 90, 92, 97], "precomput": [2, 4, 42, 65, 83], "clear": [2, 34, 38, 65, 82, 93, 96], "save": [2, 4, 14, 34, 37, 38, 61, 65, 84, 90, 94, 97], "space": [2, 8, 62, 65, 81, 83, 85], "place": [2, 34, 38, 48, 65, 88, 95], "larg": [2, 37, 65, 81, 82, 84, 85, 90, 91, 94, 97], "deploi": [2, 65, 81, 82, 84, 85], "care": [2, 8, 34, 38, 65, 82, 84, 86], "avail": [2, 4, 5, 10, 12, 30, 38, 65, 84, 86, 88, 90, 93], "cannot": [2, 4, 10, 12, 48, 92, 97], "anymor": 2, "classmethod": [2, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 31, 38, 44, 65], "__init_subclass__": [2, 36, 38, 64, 65], "set_": [2, 38, 65], "_request": [2, 38, 65], "pep": [2, 38, 65], "487": [2, 38, 65], "look": [2, 4, 5, 14, 34, 38, 48, 65, 70, 78, 79, 81, 82, 84, 86, 88, 89, 90, 91, 94, 95, 97], "inform": [2, 4, 5, 8, 11, 14, 30, 34, 38, 48, 53, 54, 58, 61, 65, 70, 73, 74, 75, 77, 78, 81, 82, 86, 88, 91, 94, 97], "__metadata_request__": [2, 38, 65], "infer": [2, 38, 48, 65, 70, 74, 85, 88, 89, 95, 96], "signatur": [2, 34, 38, 65], "accept": [2, 34, 38, 63, 65, 78, 79], "metadata": [2, 38, 65, 81, 82, 85, 97], "through": [2, 4, 5, 38, 65, 77, 79, 82, 83, 84, 88, 90, 91, 96], "develop": [2, 7, 38, 65, 84, 86, 97], "request": [2, 38, 65, 79, 82, 83, 89, 95, 96, 97], "those": [2, 3, 8, 37, 38, 39, 52, 53, 55, 61, 65, 69, 73, 74, 75, 77, 84, 85, 90, 94], "http": [2, 4, 5, 7, 8, 9, 16, 32, 34, 35, 37, 38, 41, 48, 58, 61, 62, 65, 75, 77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "www": [2, 38, 65, 91], "org": [2, 16, 34, 35, 38, 48, 62, 65, 84, 86, 97], "dev": [2, 38, 65], "0487": [2, 38, 65], "get_metadata_rout": [2, 36, 38, 64, 65], "rout": [2, 38, 65], "pleas": [2, 34, 38, 52, 65, 75, 77, 78, 79, 82, 83, 84, 85, 86, 88, 89, 91, 93, 96, 97], "guid": [2, 5, 38, 65, 76, 80, 85], "mechan": [2, 34, 38, 65], "metadatarequest": [2, 38, 65], "encapsul": [2, 14, 38, 60, 65], "get_param": [2, 36, 38, 51, 52, 64, 65], "subobject": [2, 38, 65], "param": [2, 8, 34, 38, 52, 62, 65, 84], "name": [2, 4, 5, 8, 10, 11, 31, 33, 34, 38, 43, 44, 48, 52, 53, 54, 61, 65, 70, 74, 77, 78, 79, 81, 82, 83, 84, 85, 86, 89, 93, 94, 96, 97], "set_fit_request": [2, 36, 38, 64, 65], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 37, 38, 39, 42, 44, 47, 48, 52, 53, 54, 58, 60, 61, 63, 65, 70, 74, 77, 78, 84, 88, 89, 90, 97], "unchang": [2, 34, 38, 65, 97], "relev": [2, 14, 24, 38, 65, 85], "enable_metadata_rout": [2, 38, 65], "set_config": [2, 38, 65], "meta": [2, 38, 65], "rais": [2, 4, 10, 11, 31, 34, 38, 41, 44, 65, 77, 84], "alia": [2, 34, 38, 65], "metadata_rout": [2, 38, 65], "retain": [2, 38, 48, 65], "chang": [2, 34, 37, 38, 41, 65, 73, 77, 78, 82, 84, 90, 91, 96, 97], "version": [2, 4, 5, 7, 8, 9, 13, 19, 22, 27, 32, 34, 36, 38, 40, 41, 48, 51, 52, 63, 65, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 95, 96, 97], "sub": [2, 38, 60, 65], "pipelin": [2, 38, 65, 93], "otherwis": [2, 5, 8, 31, 33, 34, 37, 38, 39, 45, 47, 48, 55, 62, 65, 67, 69, 70, 74, 82, 84, 96], "updat": [2, 11, 34, 37, 38, 65, 76, 78, 85], "set_param": [2, 36, 38, 51, 52, 64, 65], "simpl": [2, 34, 38, 39, 53, 63, 65, 78, 79, 81, 82, 85, 88, 91, 93, 95, 96], "well": [2, 3, 8, 34, 38, 41, 42, 53, 55, 61, 63, 65, 70, 73, 74, 76, 78, 79, 81, 82, 84, 85, 86, 88, 90, 91], "nest": [2, 34, 38, 49, 65, 71, 73, 74, 97], "latter": [2, 34, 38, 65, 91], "compon": [2, 38, 65], "__": [2, 38, 65], "set_score_request": [2, 64, 65], "structur": [3, 62, 81, 95], "unobserv": 3, "less": [3, 4, 8, 29, 37, 44, 53, 62, 63, 67, 69, 73, 79, 81, 83, 84, 85, 86, 90, 97], "channel": [3, 77, 86], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 33, 42, 48, 54, 79, 83, 96], "inv": 3, "confident_joint": [3, 20, 33, 39, 48, 54, 55, 76, 84, 86], "un": 3, "under": [3, 8, 34, 38, 54, 61, 62, 79, 91], "joint": [3, 33, 39, 42, 48, 54, 55, 83], "num_label_issu": [3, 37, 39, 55, 70, 74, 76], "estimation_method": [3, 37], "off_diagon": 3, "multi_label": [3, 33, 39, 48, 49, 55, 89], "don": [3, 75, 79, 81, 82, 85, 86, 90, 93], "statis": 3, "compute_confident_joint": [3, 33, 39, 48, 55, 86], "off": [3, 39, 48, 60, 85, 86, 90, 91], "j": [3, 4, 33, 34, 38, 39, 55, 58, 61, 62, 71, 73, 74, 78, 79, 86, 94, 97], "confident_learn": [3, 39, 55, 86], "off_diagonal_calibr": 3, "calibr": [3, 39, 48, 53, 88], "cj": [3, 42, 48], "axi": [3, 29, 42, 44, 46, 67, 70, 77, 78, 79, 84, 85, 86, 88, 89, 91, 93, 94], "bincount": [3, 78, 79, 86, 88, 89], "alwai": [3, 8, 34, 38, 48, 77, 86, 93, 95, 96], "estimate_issu": 3, "over": [3, 8, 34, 37, 38, 60, 61, 67, 69, 79, 81, 83, 84, 85, 86, 91, 93, 95], "As": [3, 5, 75, 78, 79, 82, 86, 93, 97], "add": [3, 4, 5, 10, 11, 34, 38, 52, 61, 77, 78, 79, 82, 84, 85, 86, 89, 96], "approach": [3, 33, 37, 39, 81, 86, 89, 91, 93, 95], "custom": [3, 5, 8, 9, 28, 34, 37, 38, 44, 47, 63, 79, 82, 86, 93, 96], "know": [3, 78, 79, 81, 82, 84, 85, 86, 88, 93], "cut": [3, 60, 75, 86], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 90, 91, 97], "underestim": 3, "few": [3, 61, 75, 79, 84, 88, 89, 90, 91, 97], "4": [3, 4, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 43, 44, 47, 57, 58, 60, 61, 63, 66, 73, 83, 84, 89, 94, 97], "detail": [3, 4, 8, 12, 14, 30, 33, 34, 38, 44, 48, 52, 53, 54, 55, 57, 58, 60, 61, 62, 69, 70, 71, 75, 76, 77, 89, 91, 97], "num_issu": [3, 5, 37, 77, 78, 79, 81, 82, 85, 86], "calibrate_confident_joint": 3, "up": [3, 5, 8, 15, 24, 25, 28, 39, 44, 53, 83, 84, 90, 93, 96, 97], "p_": [3, 33, 39], "pair": [3, 4, 8, 33, 39, 86], "v": [3, 8, 37, 54, 55, 57, 63, 78, 79, 89, 90, 91, 92], "rest": [3, 4, 5, 7, 8, 9, 32, 54, 55, 57, 65, 78, 79, 81, 82, 84, 85, 86, 88, 93, 95, 96], "fashion": [3, 4, 67, 95], "2x2": 3, "incorrectli": [3, 33, 54, 55, 58, 81, 97], "calibrated_cj": 3, "c": [3, 8, 47, 55, 63, 75, 77, 78, 79, 81, 82, 84, 86, 89, 90, 91, 92, 93, 95], "whose": [3, 4, 8, 26, 34, 38, 42, 47, 53, 57, 60, 66, 69, 73, 74, 77, 78, 79, 81, 82, 84, 85, 86, 89, 90, 91, 94, 97], "truli": [3, 91, 94], "estimate_joint": [3, 33, 86], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 55, 61, 86, 90, 92, 94, 97], "return_indices_of_off_diagon": 3, "frequenc": [3, 24, 53, 54, 61, 70, 90, 91], "done": [3, 8, 65, 78, 84, 86, 89, 91, 92], "overfit": [3, 8, 58, 61, 77, 78, 79, 81, 82, 85, 92, 95], "classifict": 3, "singl": [3, 4, 10, 24, 33, 34, 38, 44, 45, 48, 53, 54, 60, 61, 62, 63, 73, 77, 78, 84, 86, 89, 90, 95], "baselin": [3, 34, 39, 91, 93, 96], "proxi": 3, "union": [3, 4, 10, 44, 48, 49, 55, 61, 65, 69, 73, 84], "tupl": [3, 29, 34, 38, 42, 43, 45, 47, 48, 53, 55, 61, 69, 71, 73, 74, 77, 97], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 8, 37, 42, 53, 67, 69, 75, 84, 85, 94, 96], "practic": [3, 79, 85, 86, 91, 93, 95, 96], "complet": [3, 77, 78, 79, 81, 82, 84, 85, 86, 89, 90, 93], "gist": 3, "cj_ish": 3, "guess": [3, 42, 86, 88], "8": [3, 4, 5, 6, 43, 44, 45, 47, 57, 71, 73, 77, 78, 79, 81, 82, 84, 85, 88, 89, 90, 91, 93, 94, 95, 96, 97], "parallel": [3, 39, 61, 71, 83], "again": [3, 52, 84, 91, 95], "simplifi": [3, 12], "understand": [3, 7, 33, 54, 61, 79, 86, 93, 94, 97], "100": [3, 34, 38, 63, 78, 79, 81, 83, 84, 85, 86, 89, 90, 91, 94, 95, 96, 97], "optim": [3, 34, 35, 38, 52, 85, 88], "speed": [3, 39, 83, 84, 93, 96], "dtype": [3, 21, 23, 24, 29, 34, 38, 47, 48, 57, 73, 77, 90], "enumer": [3, 34, 38, 77, 78, 79, 85, 97], "s_label": 3, "confident_bin": 3, "6": [3, 4, 38, 44, 48, 73, 77, 78, 79, 81, 82, 83, 84, 85, 88, 89, 90, 91, 93, 94, 95, 96, 97], "num_confident_bin": 3, "argmax": [3, 39, 63, 67, 70, 77, 84, 86, 90, 91, 94], "elif": 3, "estimate_lat": 3, "py_method": [3, 42], "cnt": [3, 42], "1d": [3, 4, 10, 14, 37, 39, 44, 45, 48, 49, 57, 66, 77, 95], "eqn": [3, 42], "margin": [3, 39, 42, 44, 63], "marginal_p": [3, 42], "shorthand": [3, 11], "proport": [3, 8, 33, 54, 86, 92], "poorli": [3, 42, 95], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 86], "variabl": [3, 5, 12, 25, 48, 65, 66, 77, 78, 81, 86, 89, 93], "exact": [3, 42, 78, 79, 81, 85, 95], "within": [3, 4, 8, 13, 34, 35, 38, 40, 55, 60, 69, 71, 73, 78, 79, 84, 85, 90, 94], "percent": 3, "often": [3, 33, 42, 54, 84, 86, 92, 94], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 48, 49, 61, 77, 78, 81, 82, 84, 85, 89, 90, 91, 93, 96], "wai": [3, 4, 52, 75, 76, 77, 78, 79, 81, 82, 84, 86, 88, 89, 90, 92, 95, 96], "pro": 3, "con": 3, "pred_proba": [3, 92], "combin": [3, 33, 78, 83, 84, 85, 86, 92, 93], "becaus": [3, 42, 48, 60, 82, 84, 86, 88, 90], "littl": [3, 37, 83, 90, 97], "uniform": [3, 63, 83, 84, 86], "20": [3, 5, 74, 77, 82, 83, 84, 85, 86, 90, 93, 94, 97], "Such": [3, 85, 91], "bound": [3, 21, 23, 34, 38, 47, 57, 58, 60, 61, 90], "reason": [3, 20, 34, 38], "comment": [3, 47, 97], "end": [3, 4, 34, 38, 61, 85, 91, 94, 97], "file": [3, 4, 10, 36, 37, 51, 61, 77, 78, 81, 82, 83, 84, 90, 91, 94, 95, 97], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 86], "handl": [3, 4, 5, 8, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 34, 37, 38, 76, 78, 79, 81, 82, 85, 86, 94, 95, 97], "five": [3, 58, 61, 86, 90], "estimate_cv_predicted_prob": [3, 86], "estimate_noise_matric": 3, "get_confident_threshold": [3, 36, 37], "amongst": [3, 8, 90], "confident_threshold": [3, 8, 20, 37, 62], "unifi": 4, "audit": [4, 7, 10, 11, 14, 77, 80, 81, 82, 84, 85, 86, 89, 90, 93], "kind": [4, 5, 77, 78, 81, 82, 83, 85, 86], "addit": [4, 5, 7, 8, 9, 11, 30, 32, 34, 38, 44, 49, 53, 61, 71, 77, 78, 81, 82, 86, 88, 91, 92, 95, 96], "depend": [4, 5, 7, 8, 9, 10, 11, 32, 36, 39, 41, 48, 51, 55, 62, 65, 66, 75], "instal": [4, 5, 7, 8, 9, 32, 34, 36, 37, 38, 39, 51, 52, 67, 69], "pip": [4, 5, 7, 9, 32, 75, 77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "development": [4, 5, 7, 9, 32], "git": [4, 5, 7, 9, 32, 75, 77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 95, 96], "github": [4, 5, 7, 9, 32, 34, 35, 48, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 95, 96], "com": [4, 5, 7, 9, 32, 34, 35, 37, 41, 48, 62, 75, 77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "egg": [4, 5, 7, 9, 32, 75, 83], "label_nam": [4, 5, 6, 8, 10, 16, 29, 75, 77, 78, 79, 81, 82, 84, 85, 86, 89, 90, 93], "image_kei": [4, 85], "interfac": [4, 75, 84, 86], "librari": [4, 8, 38, 58, 61, 62, 75, 78, 82, 83, 84, 96], "goal": [4, 93], "track": [4, 5, 11, 12, 75, 78, 83, 84, 86], "intermedi": [4, 7, 79], "statist": [4, 8, 11, 20, 24, 33, 53, 54, 61, 79, 81, 82, 86], "convert": [4, 10, 31, 34, 38, 45, 46, 49, 53, 60, 69, 73, 76, 77, 82, 83, 84, 85, 88, 89, 90, 96], "hug": [4, 10, 85], "face": [4, 10, 14, 83, 85, 89], "kei": [4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 33, 34, 38, 44, 53, 54, 60, 62, 78, 79, 82, 84, 85, 86, 88, 90], "string": [4, 8, 10, 12, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 38, 48, 53, 54, 66, 70, 73, 74, 81, 82, 84, 88, 89, 96, 97], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 33, 34, 38, 43, 48, 53, 54, 57, 58, 60, 61, 78, 79, 81, 82, 86, 88, 89, 90], "path": [4, 10, 34, 37, 38, 61, 77, 78, 84, 90], "local": [4, 5, 10, 34, 35, 38, 77, 78, 79, 83, 84, 85, 86, 88, 89, 91, 93, 97], "text": [4, 5, 8, 10, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 44, 62, 71, 73, 74, 75, 78, 79, 80, 83, 84, 86, 87, 88, 91], "txt": [4, 10, 97], "csv": [4, 10, 81, 82, 93, 95, 96], "json": [4, 10], "hub": [4, 10], "multiclass": [4, 10, 13, 44, 48, 53, 89], "regress": [4, 5, 10, 12, 14, 19, 28, 31, 78, 79, 82, 87, 88, 91, 96], "multilabel": [4, 10, 12, 13, 19, 23, 31, 45, 89], "imag": [4, 7, 33, 38, 58, 60, 61, 62, 67, 69, 70, 75, 78, 79, 83, 84, 87, 88, 89, 90, 92, 94], "point": [4, 5, 8, 16, 24, 34, 38, 78, 79, 81, 82, 84, 85, 86, 88], "field": [4, 8, 34, 38], "themselv": [4, 93, 95, 96], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 33, 47, 71, 73, 79, 85, 87, 89, 94], "load_dataset": [4, 10, 85], "glue": 4, "sst2": 4, "properti": [4, 10, 11, 31, 34, 38], "has_label": [4, 10], "class_nam": [4, 10, 18, 33, 54, 61, 70, 74, 75, 83, 86, 90, 94, 97], "empti": [4, 10, 42, 53, 79, 84, 89], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 75, 77, 78, 79, 81, 82, 84, 85, 86, 89, 93], "knn_graph": [4, 8, 14, 16, 17, 24, 26, 29, 81], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 77, 78, 79, 81, 82, 84, 85, 86, 89, 93], "sort": [4, 14, 37, 39, 44, 53, 55, 58, 60, 61, 63, 69, 71, 73, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 90, 93, 94, 95, 96, 97], "common": [4, 11, 14, 79, 80, 83, 84, 86, 89, 90, 94], "real": [4, 14, 75, 78, 79, 84, 86, 88, 93, 94], "world": [4, 14, 75, 78, 79, 84, 86, 88, 93, 94], "interact": [4, 14, 82, 84], "embed": [4, 8, 14, 62, 75, 77, 78, 79, 81, 82, 86, 89, 93, 96], "thereof": [4, 14], "insight": [4, 14, 61, 88], "act": [4, 8, 60, 78], "issuefind": [4, 13, 14, 30], "logic": [4, 12, 37, 39, 67, 69], "best": [4, 14, 43, 53, 63, 78, 79, 81, 82, 84, 85, 88, 89, 91, 93, 95, 96, 97], "2d": [4, 14, 37, 44, 45, 47, 48, 53, 77, 89, 95], "num_exampl": [4, 14, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 30, 33, 54, 77, 78, 79, 81, 82, 85, 86], "properli": [4, 8, 37, 43, 48, 49, 67, 77, 78, 79, 81, 82, 84, 85, 86, 89, 91, 93, 94], "respect": [4, 34, 38, 58, 61, 77, 78, 79, 81, 82, 85, 86, 89, 90], "lexicograph": [4, 43, 48, 77, 78, 79, 81, 82, 85, 86, 89], "represent": [4, 8, 14, 31, 34, 38, 45, 55, 75, 77, 78, 79, 82, 84, 85, 86, 91, 96], "num_featur": [4, 14, 34, 38, 52], "distanc": [4, 8, 14, 16, 24, 26, 29, 46, 60, 62, 81, 91], "nearest": [4, 8, 14, 21, 24, 26, 46, 62, 79, 82, 91], "neighbor": [4, 8, 14, 16, 21, 24, 26, 46, 62, 78, 79, 81, 82, 84, 85, 91], "graph": [4, 8, 11, 14, 16, 24, 29], "squar": [4, 48, 65, 83, 93], "csr": 4, "evenli": 4, "omit": [4, 60, 61, 85, 90], "itself": [4, 34, 38, 90], "three": [4, 8, 33, 53, 54, 65, 70, 77, 78, 79, 81, 83, 86, 88, 92, 93, 94, 95, 97], "indptr": 4, "wise": 4, "start": [4, 5, 8, 31, 34, 35, 38, 44, 75, 81, 89, 97], "th": [4, 43, 47, 48, 53, 55, 58, 60, 61, 62, 71, 73, 74, 82, 89, 90, 97], "ascend": [4, 33, 54, 85, 86], "segment": [4, 67, 69, 70, 87], "reflect": [4, 81, 82, 88, 90, 91, 93, 95, 96], "maintain": 4, "posit": [4, 34, 38, 46, 48, 61, 83, 91], "nearestneighbor": [4, 8, 16, 62, 81, 91], "kneighbors_graph": [4, 16, 81], "illustr": 4, "todens": 4, "second": [4, 44, 48, 61, 63, 78, 84, 86, 97], "duplic": [4, 7, 19, 20, 34, 38, 75, 78, 86, 93], "explicit": 4, "precend": 4, "construct": [4, 5, 8, 12, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 34, 38, 44, 52], "neither": [4, 8, 12, 90], "nor": [4, 8, 12], "collect": [4, 8, 11, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 53, 84, 88, 97], "unspecifi": [4, 14, 39, 55], "interest": [4, 14, 20, 70, 74, 82, 86, 93, 94, 95, 96, 97], "constructor": [4, 8, 14, 21, 28], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 28, 29, 30], "respons": [4, 14, 20, 65, 66, 83, 93, 97], "random_st": [4, 77, 78, 79, 85, 86, 89, 91, 95], "lab": [4, 6, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 37, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86, 89, 93], "comprehens": [4, 75, 85, 89, 93], "nbr": 4, "n_neighbor": [4, 8, 16, 62], "metric": [4, 8, 17, 24, 29, 48, 52, 61, 62, 77, 81, 82, 85, 86, 93, 95, 96], "euclidean": [4, 8, 60, 62, 81], "mode": [4, 16, 34, 37, 38, 91], "4x4": 4, "float64": [4, 24, 34, 38, 73], "compress": [4, 8, 48, 67, 69], "toarrai": 4, "NOT": [4, 37, 82], "23606798": 4, "41421356": 4, "configur": [4, 14, 44, 79], "suppos": [4, 8, 58, 91, 93, 95, 96], "who": [4, 60, 81, 86, 95, 97], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 78], "clean_learning_kwarg": [4, 8, 21, 28, 93], "labelissuemanag": [4, 8, 12, 19, 21], "prune_method": [4, 76], "prune_by_noise_r": [4, 39, 55, 86], "report": [4, 5, 9, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 33, 54, 74, 75, 77, 78, 79, 81, 82, 86, 89, 93, 97], "include_descript": [4, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 30], "show_summary_scor": [4, 30], "show_all_issu": [4, 30], "summari": [4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 33, 51, 52, 54, 59, 68, 69, 71, 72, 73, 76, 77, 78, 79, 81, 82, 83, 85, 86, 90, 93, 94, 97], "show": [4, 5, 24, 34, 38, 43, 48, 61, 70, 74, 79, 81, 82, 83, 84, 85, 86, 88, 91, 93, 94, 95, 97], "top": [4, 8, 33, 37, 39, 48, 55, 58, 61, 63, 70, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 90, 91, 93, 96, 97], "suffer": [4, 8, 11, 20, 55, 63, 74, 97], "onc": [4, 20, 33, 34, 38, 78, 84, 86, 89, 90, 95], "familiar": 4, "overal": [4, 5, 8, 11, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 33, 44, 53, 54, 57, 60, 61, 65, 69, 70, 71, 73, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 88, 90, 97], "sever": [4, 5, 8, 10, 11, 20, 34, 37, 38, 39, 57, 60, 62, 63, 69, 73, 75, 77, 78, 79, 81, 82, 83, 84, 86, 90, 91, 95, 96, 97], "found": [4, 5, 8, 11, 12, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 34, 38, 48, 75, 77, 78, 79, 81, 82, 84, 85, 89, 91, 93, 95, 96, 97], "With": [4, 37, 82, 86, 88, 93, 94, 96, 97], "usag": [4, 37, 52], "issue_summari": [4, 5, 8, 11, 78], "dataissu": [4, 11, 13, 14, 30], "outlier": [4, 7, 12, 19, 20, 29, 40, 63, 75, 78, 79, 86, 87, 93], "someth": [4, 5, 34, 38, 63, 90], "123": [4, 78, 79], "456": [4, 77, 95, 96], "nearest_neighbor": 4, "7": [4, 44, 45, 52, 71, 73, 77, 78, 79, 81, 82, 83, 84, 88, 89, 90, 91, 93, 94, 95, 96, 97], "9": [4, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 44, 45, 57, 71, 73, 77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "distance_to_nearest_neighbor": [4, 78, 79, 81, 82, 85, 86], "789": 4, "get_issu": [4, 8, 11, 77, 79, 81, 82, 84, 85, 89, 93], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 78, 79], "focu": [4, 11, 82, 94, 97], "full": [4, 8, 11, 37, 61, 85, 97], "summar": [4, 11, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 33, 54, 70, 74, 75, 94], "valueerror": [4, 10, 11, 31, 41, 44, 84], "specific_issu": [4, 11], "exhibit": [4, 5, 8, 11, 70, 79, 81, 82, 85, 86, 90], "lie": [4, 8, 62, 63, 77, 78, 79, 81, 82, 85, 86, 96], "directli": [4, 12, 14, 30, 31, 37, 52, 53, 79, 82, 89, 90, 93, 96], "compar": [4, 53, 62, 73, 78, 79, 81, 86, 90], "get_issue_summari": [4, 11, 79], "get_info": [4, 11, 79, 82], "yet": [4, 15, 19, 25, 83, 88], "list_possible_issue_typ": [4, 12, 13], "regist": [4, 5, 12, 13, 15, 25, 34, 38, 78], "rtype": [4, 12, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 34, 38], "registri": [4, 12, 13], "list_default_issue_typ": [4, 12, 13], "folder": [4, 77, 78, 85], "load": [4, 10, 37, 61, 83, 84, 85, 86, 90, 91, 94, 97], "futur": [4, 8, 20, 34, 38, 53, 75, 77, 78, 82, 84, 96], "overwrit": [4, 78], "separ": [4, 33, 44, 57, 78, 79, 84, 85, 90, 92], "static": 4, "rememb": [4, 82, 84, 86], "part": [4, 8, 34, 38, 39, 58, 60, 61, 77, 78, 83, 94, 97], "ident": [4, 8, 20, 48, 82], "walk": 5, "alongsid": [5, 34, 38, 78, 84], "pre": [5, 6, 8, 34, 38, 78, 79, 85, 93, 94, 97], "runtim": [5, 34, 37, 38, 65, 67, 69, 77, 84, 85], "issue_manager_factori": [5, 12, 78], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "ll": [5, 44, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97], "thing": [5, 38, 86, 93, 96], "next": [5, 53, 75, 77, 81, 82, 84, 88, 90, 93, 95, 96, 97], "dummi": 5, "randint": [5, 29, 44, 78, 79, 84], "mark": [5, 8, 76, 90, 91, 93], "regard": [5, 79, 86], "rand": [5, 44, 78, 79], "is_": [5, 8, 78], "_issu": [5, 8, 78], "issue_score_kei": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 78], "whole": [5, 24, 34, 38, 79], "make_summari": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 78], "popul": [5, 79, 82], "verbosity_level": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29], "std": [5, 90], "raw_scor": 5, "bit": 5, "involv": [5, 37, 70, 74, 84, 89], "intermediate_arg": 5, "min": [5, 44, 60, 73, 78, 84, 91], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "affect": [5, 8, 34, 38, 67, 73, 82, 84], "global": [5, 20, 34, 38], "easili": [5, 42, 76, 77, 79, 81, 82, 86, 88, 89, 91, 92, 93, 94, 95, 96], "hard": [5, 38, 83, 91], "sai": [5, 8, 34, 38, 89, 94], "anoth": [5, 20, 33, 37, 47, 60, 63, 81, 82, 84, 86, 88, 91, 96], "try": [5, 8, 37, 39, 52, 53, 67, 69, 75, 79, 81, 82, 84, 85, 86, 94], "iid": [5, 7, 24, 81, 86], "won": [5, 34, 38, 78, 79, 84, 89], "issue_manag": [5, 8, 9, 11, 13, 16, 17, 18, 21, 23, 24, 25, 26, 28, 29, 78], "instanti": [5, 14, 37, 52, 62, 77, 79, 81, 96], "477762": 5, "286455": 5, "term": [5, 8, 42, 48, 61, 77, 78, 79, 81, 82, 85, 86], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 17, 26, 77, 78, 79, 81, 82, 83, 85, 86, 88, 90, 91, 93, 94, 95, 96, 97], "003042": 5, "058117": 5, "11": [5, 52, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "121908": 5, "15": [5, 46, 65, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 90, 91, 93, 94, 95, 96, 97], "169312": 5, "17": [5, 77, 79, 81, 82, 83, 84, 85, 86, 88, 90, 91, 93, 94, 96, 97], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 78, 79, 83, 86], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 29], "group": [6, 7, 24, 29, 83, 90, 97], "dbscan": [6, 8, 29, 84], "hdbscan": [6, 84], "etc": [6, 8, 20, 34, 38, 42, 52, 53, 71, 75, 78, 79, 81, 82, 84, 86, 89, 93], "sensit": [6, 8, 46], "ep": [6, 29, 61], "radiu": 6, "min_sampl": [6, 29], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 75, 77, 84, 85, 88, 93, 95, 96], "kmean": [6, 84], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 29, 84], "cluster_id": [6, 8, 29, 84], "labels_": 6, "underperforming_group": [6, 8, 12, 19, 79, 81, 82, 84, 85, 86], "search": [7, 8, 18, 24, 25, 47, 65, 84, 92], "nondefault": 7, "Near": [7, 84], "imbal": [7, 19, 57, 62, 63, 79], "null": [7, 12, 19, 79, 82, 85, 86], "valuat": [7, 16], "togeth": [7, 8, 42, 78, 79, 81, 82, 85, 86, 93, 96, 97], "built": [7, 44], "own": [7, 34, 36, 38, 51, 57, 58, 61, 67, 71, 77, 79, 81, 82, 84, 85, 88, 89, 93, 94, 95, 96, 97], "prerequisit": 7, "basic": [7, 38, 52, 81, 82, 91], "page": [8, 79, 84, 86], "variou": [8, 11, 28, 36, 49, 51, 75, 78, 79, 81, 82, 83, 86, 88, 90, 95], "why": [8, 82], "matter": [8, 33, 54, 82, 96], "_score": 8, "flag": [8, 20, 24, 39, 44, 54, 55, 58, 65, 75, 77, 78, 79, 81, 82, 83, 85, 86, 90, 91, 93, 94, 96], "badli": [8, 60, 97], "code": [8, 34, 38, 42, 48, 52, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 88, 89, 90, 91, 93, 94, 95, 96, 97], "issue_scor": 8, "outlier_scor": [8, 26, 78, 79, 81, 82, 85, 86, 91], "atyp": [8, 62, 78, 79, 81, 82, 85, 86, 91], "datapoint": [8, 29, 39, 44, 48, 63, 66, 75, 77, 78, 79, 81, 82, 84, 92, 93, 95, 96], "is_issu": [8, 20], "is_outlier_issu": [8, 78, 79, 81, 82, 85, 86], "annot": [8, 33, 43, 53, 54, 55, 57, 58, 60, 61, 70, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 90, 94], "transform": [8, 44, 46, 48, 62, 63, 79, 82, 85, 91, 95, 96, 97], "dissimilar": [8, 81, 82], "preced": 8, "cosin": [8, 62, 91], "incorrect": [8, 60, 63, 66, 77, 78, 79, 81, 82, 85, 86, 90, 93, 95], "due": [8, 37, 39, 63, 67, 69, 77, 78, 79, 81, 82, 85, 86, 93], "appear": [8, 33, 43, 54, 55, 58, 66, 79, 81, 82, 85, 93, 94], "likelihood": [8, 37, 39, 55, 60, 62, 63, 67, 71], "now": [8, 37, 76, 77, 79, 88, 90, 91, 93, 95, 96, 97], "u": [8, 77, 78, 81, 84, 85, 86, 88, 89, 92, 93, 94, 95, 96, 97], "token": [8, 47, 69, 70, 71, 72, 73, 74, 84, 86, 87], "calcul": [8, 16, 24, 37, 44, 53, 57, 58, 60, 61, 62, 65, 69, 83, 85], "hamper": [8, 83, 85], "analyt": [8, 75, 84, 88], "lead": [8, 60, 63, 85, 90], "draw": [8, 78, 79], "conclus": [8, 82], "veri": [8, 33, 54, 58, 60, 78, 79, 81, 82, 84, 85, 86, 88, 91, 93, 96], "rare": [8, 39, 61, 78, 79, 81, 82, 84, 85, 86], "anomal": [8, 63, 78, 79, 81, 82, 85, 86], "articl": [8, 37, 84], "ai": [8, 75, 77, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 91, 93, 95, 96, 97], "blog": 8, "unexpect": [8, 34, 38, 82], "consequ": 8, "inspect": [8, 77, 79, 85, 86, 90, 93, 96], "neg": [8, 60, 61, 78, 79, 83], "extrem": [8, 78, 79, 81, 82, 84, 85, 86], "rel": [8, 33, 53, 54, 62, 78, 79, 81, 82, 85, 86, 91], "record": [8, 34, 38, 77, 81, 93], "abbrevi": 8, "misspel": 8, "typo": [8, 74], "resolut": 8, "video": [8, 83], "audio": [8, 78, 79, 84, 87], "minor": [8, 47], "variat": 8, "translat": 8, "d": [8, 46, 81, 82, 86, 89, 93, 95, 97], "constant": [8, 29, 65], "median": [8, 28, 46], "question": [8, 20, 75, 86], "nearli": [8, 20, 79, 81, 82, 85], "awar": [8, 76, 86], "presenc": [8, 86], "signific": [8, 81, 82, 86], "violat": [8, 81, 82, 86], "assumpt": [8, 81, 82, 86], "changepoint": [8, 81, 82, 86], "shift": [8, 81, 82, 86], "drift": [8, 79, 81, 86], "autocorrel": [8, 81, 82, 86], "almost": [8, 81, 82, 86], "adjac": [8, 81, 82, 86], "tend": [8, 33, 42, 81, 82, 86, 94, 97], "sequenti": [8, 34, 38, 52, 85], "gap": 8, "b": [8, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 33, 47, 48, 73, 81, 82, 83, 86, 92, 95, 97], "x1": [8, 58, 61, 90], "x2": [8, 58, 61, 90], "10th": 8, "100th": 8, "90": [8, 73, 81, 85, 86, 92, 93, 94, 95], "similarli": [8, 34, 38, 78, 81, 84, 85, 90], "math": [8, 85], "behind": [8, 62, 86], "fundament": 8, "proper": [8, 48, 53, 58, 61, 82, 85, 88, 90, 95], "closer": [8, 60, 90], "scenario": [8, 63, 78, 79], "underli": [8, 62, 71, 73, 97], "stem": [8, 62, 91], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 89, 91], "partit": [8, 92], "ahead": 8, "good": [8, 34, 38, 46, 52, 54, 60, 63, 67, 69, 70, 75, 81, 82, 85], "fix": [8, 53, 82, 86, 93, 96], "problem": [8, 37, 44, 70, 75, 78, 79, 82, 84, 85], "deploy": [8, 86, 93, 95, 96], "overlook": [8, 60, 90], "fact": 8, "thu": [8, 33, 38, 54, 77, 81, 82, 86, 92, 95, 97], "diagnos": [8, 79, 84], "rarest": [8, 79], "q": [8, 90], "fall": [8, 60, 69, 73, 86, 91], "subpar": 8, "special": [8, 47], "techniqu": [8, 90], "smote": 8, "asymmetr": [8, 33], "too": [8, 39, 44, 62, 79, 84, 85, 90], "dark": [8, 94], "bright": [8, 97], "blurri": [8, 85], "abnorm": [8, 61, 85, 90], "cluster": [8, 16, 29], "slice": 8, "poor": 8, "subpopul": 8, "lowest": [8, 53, 61, 79, 84, 85, 88, 89, 90, 94], "get_self_confidence_for_each_label": [8, 44, 63], "power": [8, 81, 82, 83, 85, 86, 97], "r": [8, 37, 65, 78, 79, 93, 94], "tabular": [8, 75, 78, 79, 80, 84, 87, 88], "categor": [8, 62, 78, 79, 80, 84, 93, 95], "encod": [8, 45, 61, 67, 70, 81, 82, 84, 93, 94, 95, 96], "miss": [8, 25, 34, 38, 48, 58, 60, 81, 84, 90, 93], "pattern": 8, "contribut": [8, 16, 90], "isn": [8, 15, 25], "approxim": [8, 16, 37, 62, 88], "shaplei": [8, 16], "knn": [8, 11, 16, 24, 29, 62, 81, 91], "scalabl": 8, "sacrific": 8, "One": [8, 48, 62, 84], "quantif": 8, "exert": [8, 79], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 17, 78, 79, 81, 82, 84, 85, 86], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 24, 79, 81, 82, 85, 86], "non_iid_kwarg": 8, "class_imbal": [8, 12, 18, 79, 81, 82, 85, 86], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "null_kwarg": 8, "health_summary_paramet": [8, 19, 21, 28], "health_summari": [8, 21, 33, 75, 83], "health_summary_kwarg": 8, "tandem": [8, 83], "view": [8, 34, 38, 39, 69, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97], "ood_kwarg": 8, "outofdistribut": [8, 26, 62, 91], "outsid": [8, 89], "outlierissuemanag": [8, 12, 19, 26, 78], "nearduplicateissuemanag": [8, 12, 17, 19], "noniidissuemanag": [8, 12, 19, 24], "num_permut": [8, 24], "permut": [8, 24], "significance_threshold": [8, 24], "signic": 8, "noniid": [8, 19], "classimbalanceissuemanag": [8, 12, 18, 19], "underperforminggroupissuemanag": [8, 12, 19, 29], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 29], "filter_cluster_id": [8, 19, 29], "clustering_kwarg": [8, 29], "faq": [8, 75, 79, 81, 82, 85, 87], "nullissuemanag": [8, 12, 19, 25], "data_valuation_kwarg": 8, "data_valu": [8, 12, 19], "datavaluationissuemanag": [8, 12, 16, 19], "codeblock": 8, "demonstr": [8, 37, 78, 79, 82, 84, 85, 86, 88, 89, 90, 93, 94], "howev": [8, 34, 38, 48, 77, 81, 82, 85, 88, 92, 94, 95, 96], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 77, 78, 83, 85, 88, 90, 94], "fewer": [8, 39, 48, 90], "vice": [8, 54], "versa": [8, 54], "light": [8, 83, 85, 90, 94], "29": [8, 83, 85, 88, 89, 90, 94, 97], "low_inform": [8, 85], "odd_aspect_ratio": [8, 85], "35": [8, 78, 83, 85, 88, 89, 90, 94], "odd_siz": [8, 85], "10": [8, 16, 17, 21, 24, 29, 34, 35, 61, 62, 63, 74, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "doc": [8, 34, 38, 75, 77, 78, 79, 83, 85, 86, 88, 89, 91, 93, 97], "data_issu": [9, 13, 14, 30, 78], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 34, 38, 52, 63, 78, 79, 85, 88], "dataformaterror": [10, 13], "add_not": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": [10, 13], "datasetdict": 10, "usual": [10, 30, 85, 88, 93], "datasetloaderror": [10, 13], "dataset_typ": 10, "fail": 10, "hold": 10, "associ": [10, 14, 34, 38, 61, 88], "sublist": 10, "map_to_int": 10, "abc": [10, 20], "is_avail": [10, 85], "serv": [11, 14, 88], "central": [11, 97], "repositori": 11, "strategi": [11, 44, 84], "being": [11, 33, 34, 38, 39, 44, 47, 48, 63, 81, 84, 86, 93, 94, 95], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 20], "avoid": [11, 34, 37, 38, 39, 48, 55, 58, 61, 65, 67, 69, 78, 79, 84], "recomput": [11, 96], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 21, 33, 54, 75], "get_data_statist": [11, 13], "concret": 12, "subclass": [12, 34, 38, 62, 78], "regressionlabelissuemanag": [12, 19, 27, 28], "multilabelissuemanag": [12, 19, 22, 23], "from_str": [12, 31, 40, 44], "my_issu": 12, "stabl": [13, 19, 22, 27, 36, 40, 48, 51, 62, 76], "unregist": 13, "instati": 14, "public": [14, 86, 90, 94, 97], "creation": [14, 38], "execut": [14, 34, 38, 78, 84, 90], "coordin": [14, 58, 60, 61, 90, 97], "behavior": [14, 33, 34, 38, 61, 84], "At": [14, 61, 84], "get_available_issue_typ": 14, "direct": [15, 25, 34, 38], "valuabl": 16, "vstack": [16, 48, 83, 84, 85, 86, 88, 89], "25": [16, 24, 34, 44, 46, 79, 83, 85, 86, 88, 89, 90, 91, 94, 97], "classvar": [16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29], "short": [16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 47, 48], "data_valuation_scor": 16, "item": [16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 34, 38, 48, 78, 79, 84, 85, 86, 88, 89], "some_info_kei": [16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29], "additional_info_kei": [16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29], "default_threshold": [16, 19, 26], "arxiv": [16, 86], "ab": [16, 86, 90], "1911": 16, "07128": 16, "larger": [16, 65, 67, 69, 82, 83, 84, 85], "collect_info": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29], "info_to_omit": [16, 17, 18, 20, 21, 23, 24, 26, 28, 29], "compos": [16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 34, 38, 82, 91, 96], "is_x_issu": [16, 17, 18, 20, 21, 23, 24, 26, 28, 29], "x_score": [16, 17, 18, 20, 21, 23, 24, 26, 28, 29], "val_a": [16, 17, 18, 20, 21, 23, 24, 26, 28, 29], "val_b1": [16, 17, 18, 20, 21, 23, 24, 26, 28, 29], "val_b2": [16, 17, 18, 20, 21, 23, 24, 26, 28, 29], "report_str": [16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30], "_": [17, 20, 21, 23, 24, 25, 28, 29, 44, 47, 48, 77, 78, 83, 85, 86, 89, 95], "near_duplicate_set": [17, 19, 78, 79, 81, 82, 84, 85, 86], "occurr": [17, 18, 20, 24, 25, 26, 29, 47], "median_nn_dist": 17, "near_duplicate_scor": [17, 78, 79, 81, 82, 84, 85, 86], "class_imbalance_scor": [18, 79], "bleed": [19, 22, 27, 36], "edg": [19, 22, 27, 36, 60, 75, 86, 97], "sharp": [19, 22, 27, 36], "get_health_summari": [19, 21], "ood": [19, 26, 62, 63, 78, 79, 82, 85, 86, 91], "simplified_kolmogorov_smirnov_test": [19, 24], "outlier_cluster_label": [19, 29], "no_underperforming_cluster_id": [19, 29], "set_knn_graph": [19, 29], "perform_clust": [19, 29], "get_worst_clust": [19, 29], "find_issues_with_predict": [19, 27, 28], "find_issues_with_featur": [19, 27, 28], "believ": [20, 94], "priori": [20, 86], "abstract": 20, "applic": [21, 53, 84, 86, 88, 97], "typevar": [21, 23, 34, 38, 47, 57, 60, 61], "scalartyp": [21, 23], "covari": [21, 23, 65, 93], "summary_dict": 21, "label_scor": [21, 23, 28, 77, 78, 79, 81, 82, 85, 86, 89, 93], "neighbor_histogram": 24, "non_neighbor_histogram": 24, "kolmogorov": 24, "smirnov": 24, "largest": [24, 37, 44, 63, 67, 69, 90, 94], "empir": [24, 43, 53], "cumul": 24, "ecdf": 24, "histogram": [24, 81, 93], "absolut": [24, 28], "dimension": [24, 48, 77, 86, 91], "trial": 24, "non_iid_scor": [24, 79, 81, 82, 86], "null_track": 25, "extend": [25, 45, 85, 90, 91, 97], "superclass": 25, "arbitrari": [25, 33, 69, 73, 78, 91, 93], "prompt": 25, "address": [25, 78, 79, 82, 84, 96], "enabl": [25, 38], "null_scor": [25, 79], "37037": 26, "q3_avg_dist": 26, "iqr_avg_dist": 26, "median_outlier_scor": 26, "multipli": 28, "deleg": 28, "confus": [29, 33, 34, 38, 39, 48, 61, 96, 97], "50": [29, 38, 84, 85, 86, 88, 90, 91, 93, 94], "keepdim": [29, 84], "signifi": 29, "absenc": 29, "find_issues_kwarg": 29, "int64": [29, 77, 88], "npt": 29, "int_": 29, "id": [29, 53, 78, 84, 85, 88], "unique_cluster_id": 29, "_description_": 29, "performed_clust": 29, "worst_cluster_id": 29, "underperforming_group_scor": [29, 79], "datset": 30, "exclud": [30, 70, 74, 78, 84, 97], "get_report": 30, "qualnam": [31, 44], "boundari": [31, 44, 78, 79], "enum": [31, 44], "continu": [31, 82, 84, 85, 88, 90, 93, 95, 96, 97], "binari": [31, 44, 48, 55, 57, 86, 97], "simultan": [31, 93], "task_str": 31, "is_classif": 31, "__contains__": [31, 40, 44], "member": [31, 34, 38, 44, 78, 79], "typeerror": [31, 44], "12": [31, 44, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 90, 91, 93, 94, 95, 96, 97], "__getitem__": [31, 40, 44], "match": [31, 33, 34, 38, 39, 44, 53, 54, 63, 78, 79, 83, 85, 90, 92, 94], "__iter__": [31, 40, 44], "__len__": [31, 40, 44], "alias": [31, 44], "is_regress": 31, "is_multilabel": 31, "overview": [33, 77, 79, 81, 82, 85, 88, 90, 91, 93, 95, 96, 97], "modifi": [33, 34, 37, 38, 48, 84, 86], "help": [33, 34, 38, 61, 75, 76, 77, 78, 81, 82, 83, 84, 85, 88, 89, 93, 94, 95, 96, 97], "rank_classes_by_label_qu": [33, 79], "merg": [33, 47, 75, 83, 84, 97], "find_overlapping_class": [33, 84, 86], "problemat": [33, 54, 70, 74, 77, 90, 97], "unnorm": [33, 54, 86], "abov": [33, 34, 37, 38, 48, 53, 60, 61, 63, 69, 73, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93, 94, 95, 96, 97], "model_select": [33, 44, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 91, 93, 95, 96], "cross_val_predict": [33, 38, 77, 78, 79, 81, 82, 84, 86, 88, 92, 93, 95, 96], "get_data_labels_from_dataset": 33, "yourfavoritemodel": [33, 86], "cv": [33, 44, 77, 78, 79, 81, 86, 88, 95], "df": [33, 48, 74, 77, 84], "overall_label_qu": [33, 54], "col": 33, "prob": [33, 47, 86, 92], "divid": [33, 54, 63], "label_nois": [33, 54], "human": [33, 83, 94, 97], "clearli": [33, 63, 85, 90, 94], "num": [33, 54, 83, 86], "overlap": [33, 75, 83, 84, 86], "ontolog": 33, "publish": [33, 97], "therefor": [33, 63], "vehicl": [33, 83], "truck": [33, 83, 91, 94], "intuit": [33, 54], "car": [33, 83, 90, 94], "frequent": [33, 53, 81, 84, 93], "characterist": 33, "l": [33, 34, 38, 58, 60, 61], "class1": 33, "class2": 33, "relationship": 33, "dog": [33, 48, 54, 56, 70, 83, 84, 91, 92, 97], "cat": [33, 48, 54, 56, 83, 84, 91, 92], "captur": [33, 77, 90, 91, 94], "co": [33, 34, 35], "noisy_label": [33, 78, 79, 89], "overlapping_class": 33, "descend": [33, 34, 38, 44, 54, 61], "overall_label_health_scor": [33, 54, 86], "suggest": [33, 53, 54, 60, 82, 84, 85, 93, 96], "half": [33, 34, 36, 38, 54, 83, 97], "health_scor": [33, 54], "classes_by_label_qu": [33, 79], "cnn": [34, 36, 38, 85], "cifar": [34, 35, 83, 91], "teach": [34, 35], "bhanml": 34, "blob": 34, "master": [34, 77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 95, 96], "call_bn": [34, 36], "bn": 34, "input_channel": 34, "n_output": 34, "dropout_r": 34, "top_bn": 34, "architectur": [34, 38], "shown": [34, 61, 78, 84, 88, 91, 92, 94, 97], "forward": [34, 35, 36, 38, 85, 88], "overridden": [34, 38], "although": [34, 38, 62, 81, 95], "recip": [34, 38], "afterward": [34, 38], "sinc": [34, 38, 41, 49, 54, 61, 69, 73, 84, 88, 89, 90, 92, 97], "former": [34, 38], "hook": [34, 38, 83], "silent": [34, 37, 38], "t_destin": [34, 36, 38], "__call__": [34, 36, 38, 40, 44], "add_modul": [34, 36, 38], "child": [34, 38], "fn": [34, 38, 61], "recurs": [34, 38, 44], "submodul": [34, 38], "children": [34, 36, 38, 97], "nn": [34, 35, 38, 85], "init": [34, 38, 86], "no_grad": [34, 38, 85, 91], "init_weight": [34, 38], "linear": [34, 38, 82, 85, 96], "fill_": [34, 38], "net": [34, 38, 77, 83, 85], "in_featur": [34, 38], "out_featur": [34, 38], "bia": [34, 38, 85], "tensor": [34, 35, 38, 77, 82, 85, 91, 96], "requires_grad": [34, 38], "bfloat16": [34, 36, 38], "cast": [34, 38, 77], "buffer": [34, 36, 38], "datatyp": [34, 38], "xdoctest": [34, 38], "undefin": [34, 38], "var": [34, 38], "buf": [34, 38], "20l": [34, 38], "1l": [34, 38], "5l": [34, 38], "call_super_init": [34, 36, 38], "immedi": [34, 38, 91], "compil": [34, 36, 38, 52], "cpu": [34, 36, 38, 39, 77, 85], "move": [34, 38, 44, 76, 83], "cuda": [34, 36, 38, 77, 85], "devic": [34, 38, 77, 85], "gpu": [34, 38, 77, 82, 96], "live": [34, 38], "copi": [34, 38, 65, 77, 78, 79, 81, 84, 89, 92, 93, 95], "doubl": [34, 36, 38], "dump_patch": [34, 36, 38], "eval": [34, 36, 38, 85, 89, 91], "dropout": [34, 38], "batchnorm": [34, 38], "grad": [34, 38], "extra_repr": [34, 36, 38], "line": [34, 38, 75, 78, 83, 88, 91, 97], "get_buff": [34, 36, 38], "target": [34, 35, 38, 65, 66, 91, 93], "throw": [34, 38], "get_submodul": [34, 36, 38], "explan": [34, 38], "fulli": [34, 38, 52, 84], "qualifi": [34, 38], "referenc": [34, 38], "attributeerror": [34, 38], "invalid": [34, 38, 82], "resolv": [34, 38, 97], "get_extra_st": [34, 36, 38], "state_dict": [34, 36, 38], "set_extra_st": [34, 36, 38], "build": [34, 38, 85, 94], "picklabl": [34, 38], "serial": [34, 38], "backward": [34, 38, 85], "break": [34, 38, 85, 90], "pickl": [34, 38, 90], "get_paramet": [34, 36, 38], "let": [34, 38, 62, 63, 77, 79, 81, 82, 84, 85, 88, 89, 90, 91, 93, 94, 95, 96, 97], "net_b": [34, 38], "net_c": [34, 38], "conv": [34, 38], "conv2d": [34, 38, 85], "16": [34, 38, 44, 69, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 90, 91, 94, 96, 97], "33": [34, 38, 83, 90, 91, 94], "kernel_s": [34, 38], "stride": [34, 38], "200": [34, 38, 63, 83, 90, 97], "diagram": [34, 38, 92], "degre": [34, 38], "queri": [34, 38, 79, 84, 85, 89], "named_modul": [34, 36, 38], "o": [34, 38, 46, 47, 77, 78, 79, 83, 84, 86, 89, 90, 97], "transit": [34, 38], "ipu": [34, 36, 38], "load_state_dict": [34, 36, 38], "strict": [34, 38, 44], "persist": [34, 38], "strictli": [34, 38], "inplac": [34, 38, 88], "preserv": [34, 38, 48], "namedtupl": [34, 38], "missing_kei": [34, 38], "unexpected_kei": [34, 38], "runtimeerror": [34, 38], "idx": [34, 38, 48, 49, 61, 78, 84, 85, 86, 88, 90, 91], "named_buff": [34, 36, 38], "prefix": [34, 38, 77, 97], "remove_dupl": [34, 38], "prepend": [34, 38], "running_var": [34, 38], "named_children": [34, 36, 38], "conv4": [34, 38], "conv5": [34, 38], "memo": [34, 38], "named_paramet": [34, 36, 38], "register_backward_hook": [34, 36, 38], "deprec": [34, 38, 41, 77, 82, 84, 96], "favor": [34, 38], "register_full_backward_hook": [34, 36, 38], "removablehandl": [34, 38], "register_buff": [34, 36, 38], "running_mean": [34, 38], "register_forward_hook": [34, 36, 38], "with_kwarg": [34, 38], "always_cal": [34, 38], "possibli": [34, 38, 81, 95], "fire": [34, 38, 83], "register_module_forward_hook": [34, 38], "regardless": [34, 38, 78, 79], "register_forward_pre_hook": [34, 36, 38], "And": [34, 38], "forward_pr": [34, 38], "register_module_forward_pre_hook": [34, 38], "gradient": [34, 38, 81, 85, 93], "grad_input": [34, 38], "grad_output": [34, 38], "technic": [34, 38], "caller": [34, 38], "register_module_full_backward_hook": [34, 38], "register_full_backward_pre_hook": [34, 36, 38], "backward_pr": [34, 38], "register_module_full_backward_pre_hook": [34, 38], "register_load_state_dict_post_hook": [34, 36, 38], "post": [34, 38], "incompatible_kei": [34, 38], "modif": [34, 38], "thrown": [34, 38], "register_modul": [34, 36, 38], "register_paramet": [34, 36, 38], "register_state_dict_pre_hook": [34, 36, 38], "keep_var": [34, 38], "requires_grad_": [34, 36, 38], "autograd": [34, 38], "freez": [34, 38, 77, 82, 96], "finetun": [34, 38], "gan": [34, 38], "share_memori": [34, 36, 38], "share_memory_": [34, 38], "destin": [34, 38], "shallow": [34, 38], "releas": [34, 38, 76, 77, 84], "design": [34, 38], "ordereddict": [34, 38], "detach": [34, 38, 85], "non_block": [34, 38], "memory_format": [34, 38], "channels_last": [34, 38], "Its": [34, 38, 44, 54, 60], "complex": [34, 38, 77], "integr": [34, 38, 75], "asynchron": [34, 38], "host": [34, 38], "pin": [34, 38, 82, 83, 96], "desir": [34, 38, 47, 61], "4d": [34, 38], "ignore_w": [34, 38], "determinist": [34, 38, 77], "1913": [34, 38], "3420": [34, 38], "5113": [34, 38], "2325": [34, 38], "env": [34, 38], "torch_doctest_cuda1": [34, 38], "gpu1": [34, 38], "1914": [34, 38], "5112": [34, 38], "2324": [34, 38], "float16": [34, 38], "cdoubl": [34, 38], "3741": [34, 38], "2382": [34, 38], "5593": [34, 38], "4443": [34, 38], "complex128": [34, 38], "6122": [34, 38], "1150": [34, 38], "to_empti": [34, 36, 38], "storag": [34, 38, 82, 96], "dst_type": [34, 38], "xpu": [34, 36, 38], "zero_grad": [34, 36, 38, 85], "set_to_non": [34, 38], "reset": [34, 38], "context": [34, 38, 90], "noisili": [35, 86], "han": 35, "2018": 35, "cifar_cnn": [35, 36], "loss_coteach": [35, 36], "y_1": 35, "y_2": 35, "forget_r": 35, "class_weight": 35, "logit": [35, 52, 85], "decim": [35, 48], "quickli": [35, 77, 81, 82, 84, 85, 89, 91, 94, 95, 97], "forget": [35, 44, 97], "rate_schedul": 35, "epoch": [35, 36, 38, 84, 85], "initialize_lr_schedul": [35, 36], "lr": [35, 36, 38], "001": [35, 63, 84], "250": [35, 78, 79, 86, 90], "epoch_decay_start": 35, "80": [35, 81, 85, 89, 93, 94, 95], "schedul": 35, "adjust": [35, 39, 57, 62, 63, 75, 86], "beta": 35, "adam": 35, "adjust_learning_r": [35, 36], "alpha_plan": 35, "beta1_plan": 35, "forget_rate_schedul": [35, 36], "num_gradu": 35, "expon": 35, "tell": [35, 82, 85, 86, 96], "train_load": [35, 38], "model1": [35, 86], "optimizer1": 35, "model2": [35, 86], "optimizer2": 35, "dataload": [35, 85, 91], "parser": 35, "parse_arg": 35, "num_iter_per_epoch": 35, "print_freq": 35, "topk": 35, "top1": 35, "top5": 35, "test_load": 35, "offici": [36, 51, 97], "wish": [36, 51, 91, 94, 97], "adj_confident_thresholds_shar": [36, 37], "labels_shar": [36, 37], "pred_probs_shar": [36, 37], "labelinspector": [36, 37, 84], "get_num_issu": [36, 37], "get_quality_scor": [36, 37], "update_confident_threshold": [36, 37], "score_label_qu": [36, 37], "split_arr": [36, 37], "mnist_pytorch": 36, "get_mnist_dataset": [36, 38], "get_sklearn_digits_dataset": [36, 38], "simplenet": [36, 38], "batch_siz": [36, 37, 38, 67, 69, 84, 85, 91, 94], "log_interv": [36, 38], "momentum": [36, 38], "no_cuda": [36, 38], "test_batch_s": [36, 38, 85], "loader": [36, 38, 85], "set_predict_proba_request": [36, 38], "set_predict_request": [36, 38], "coteach": [36, 76], "mini": [37, 67, 69, 84], "low_self_confid": [37, 39, 55], "self_confid": [37, 39, 40, 44, 55, 57, 63, 71, 73, 84, 86, 95, 96], "conveni": [37, 77, 82, 96], "script": 37, "labels_fil": [37, 84], "pred_probs_fil": [37, 84], "quality_score_kwarg": 37, "num_issue_kwarg": 37, "return_mask": 37, "variant": [37, 53, 94], "read": [37, 41, 79, 84, 86, 91, 97], "zarr": [37, 84], "memmap": [37, 94], "pythonspe": 37, "mmap": [37, 84], "hdf5": 37, "further": [37, 54, 55, 57, 60, 61, 69, 70, 77, 84], "yourfil": 37, "npy": [37, 83, 84, 94], "mmap_mod": [37, 94], "tip": [37, 39, 52, 84], "save_arrai": 37, "your_arrai": 37, "disk": [37, 83, 84], "npz": [37, 97], "maxim": [37, 53, 67, 69, 94], "multiprocess": [37, 39, 55, 67, 69, 84, 85], "linux": [37, 67, 69], "physic": [37, 39, 67, 69, 90], "psutil": [37, 39, 67, 69], "labels_arrai": [37, 49], "predprob": 37, "pred_probs_arrai": 37, "back": [37, 61, 78, 84, 90, 91], "store_result": 37, "becom": [37, 91], "verifi": [37, 84, 88, 91], "long": [37, 53, 62, 88], "enough": [37, 48, 84], "chunk": [37, 92], "ram": [37, 83], "faster": [37, 62, 65, 67, 69, 84, 86], "end_index": 37, "labels_batch": 37, "pred_probs_batch": 37, "batch_result": 37, "indices_of_examples_with_issu": [37, 84], "shortcut": 37, "encount": [37, 39, 67], "1000": [37, 77, 82, 84, 91], "aggreg": [37, 40, 44, 53, 57, 60, 63, 73, 84, 86, 88], "fetch": [37, 77, 79], "seen": [37, 84, 91, 97], "far": [37, 53], "label_quality_scor": [37, 57, 60, 63, 66, 86, 90], "method1": 37, "method2": 37, "normalized_margin": [37, 39, 40, 44, 55, 57, 63, 71, 73], "low_normalized_margin": [37, 39, 55], "issue_indic": [37, 60, 85], "update_num_issu": 37, "arr": [37, 84], "chunksiz": 37, "convnet": 38, "bespok": [38, 52], "download": [38, 77, 84, 91], "mnist": [38, 75, 77, 83], "handwritten": 38, "digit": [38, 77, 83], "last": [38, 44, 58, 61, 78, 79, 84, 88, 90, 97], "sklearn_digits_test_s": 38, "64": [38, 81, 85, 86, 90, 91, 94, 95], "01": [38, 63, 65, 77, 86, 89, 90, 91, 94], "templat": 38, "flexibli": 38, "among": [38, 53, 86], "test_set": 38, "Be": 38, "overrid": 38, "train_idx": [38, 48, 91], "train_label": [38, 91, 96], "scikit": [38, 48, 62, 75, 77, 78, 79, 81, 82, 84, 87, 93, 96], "encourag": [39, 55, 63, 66], "multilabel_classif": [39, 54, 55, 57, 63, 84, 89], "pred_probs_by_class": 39, "prune_count_matrix_col": 39, "rank_by_kwarg": [39, 55, 63, 86], "num_to_remove_per_class": [39, 55], "bad": [39, 55, 60, 63, 82, 84, 96], "seem": [39, 86, 89], "aren": 39, "confidence_weighted_entropi": [39, 40, 44, 55, 57, 63, 71, 73], "label_issues_idx": [39, 63], "entropi": [39, 41, 43, 44, 62, 63], "prune_by_class": [39, 55, 86], "predicted_neq_given": [39, 55, 86], "prune_counts_matrix": 39, "smallest": [39, 63], "unus": 39, "number_of_mislabeled_examples_in_class_k": 39, "delet": [39, 75, 84, 96], "thread": [39, 55], "window": [39, 77, 83], "shorter": [39, 58], "find_predicted_neq_given": 39, "find_label_issues_using_argmax_confusion_matrix": 39, "remove_noise_from_class": [40, 48], "clip_noise_r": [40, 48], "clip_valu": [40, 48], "value_count": [40, 48, 84], "value_counts_fill_missing_class": [40, 48], "get_missing_class": [40, 48], "round_preserving_sum": [40, 48], "round_preserving_row_tot": [40, 48], "estimate_pu_f1": [40, 48], "confusion_matrix": [40, 48], "print_square_matrix": [40, 48], "print_noise_matrix": [40, 48, 86], "print_inverse_noise_matrix": [40, 48], "print_joint_matrix": [40, 48, 86], "compress_int_arrai": [40, 48], "train_val_split": [40, 48], "subset_x_i": [40, 48], "subset_label": [40, 48], "subset_data": [40, 48], "extract_indices_tf": [40, 48], "unshuffle_tensorflow_dataset": [40, 48], "is_torch_dataset": [40, 48], "is_tensorflow_dataset": [40, 48], "csr_vstack": [40, 48], "append_extra_datapoint": [40, 48], "get_num_class": [40, 48], "num_unique_class": [40, 48], "get_unique_class": [40, 48], "format_label": [40, 48], "smart_display_datafram": [40, 48], "force_two_dimens": [40, 48], "latent_algebra": [40, 76], "compute_ps_py_inv_noise_matrix": [40, 42], "compute_py_inv_noise_matrix": [40, 42], "compute_inv_noise_matrix": [40, 42], "compute_noise_matrix_from_invers": [40, 42], "compute_pi": [40, 42], "compute_pyx": [40, 42], "label_quality_util": 40, "get_normalized_entropi": [40, 41], "multilabel_util": [40, 89], "stack_compl": [40, 45], "get_onehot_num_class": [40, 45], "int2onehot": [40, 45, 89], "onehot2int": [40, 45, 89], "multilabel_scor": [40, 57], "classlabelscor": [40, 44], "exponential_moving_averag": [40, 44, 57], "softmin": [40, 44, 57, 60, 69, 73], "possible_method": [40, 44], "multilabelscor": [40, 44], "get_class_label_quality_scor": [40, 44], "multilabel_pi": [40, 44], "get_cross_validated_multilabel_pred_prob": [40, 44], "transform_distances_to_scor": [40, 46], "token_classification_util": [40, 97], "get_sent": [40, 47, 97], "filter_sent": [40, 47, 97], "process_token": [40, 47], "merge_prob": [40, 47], "color_sent": [40, 47], "assert_valid_input": [40, 49], "assert_valid_class_label": [40, 49], "assert_nonempty_input": [40, 49], "assert_indexing_work": [40, 49], "labels_to_arrai": [40, 49], "labels_to_list_multilabel": [40, 49], "min_allowed_prob": 41, "wikipedia": 41, "activ": [41, 43, 53, 75, 88], "towardsdatasci": 41, "cheatsheet": 41, "ec57bc067c0b": 41, "clip": [41, 48, 77], "behav": 41, "unnecessari": [41, 84], "slightli": [41, 95, 96], "interv": [41, 44, 91], "herein": 42, "inexact": 42, "cours": 42, "propag": 42, "throughout": [42, 48, 65, 77, 88, 94, 97], "increas": [42, 60, 62, 63, 77, 78, 84, 88, 89, 97], "dot": [42, 73, 84], "true_labels_class_count": 42, "pyx": 42, "multiannot": 43, "assert_valid_inputs_multiannot": 43, "labels_multiannot": [43, 53], "ensembl": [43, 44, 53, 63, 81, 84, 89, 91, 93, 95], "allow_single_label": 43, "annotator_id": 43, "assert_valid_pred_prob": 43, "pred_probs_unlabel": [43, 53], "format_multiannotator_label": [43, 53, 88], "formatted_label": [43, 48], "old": [43, 48, 76, 77, 83], "check_consensus_label_class": 43, "consensus_label": [43, 53, 88], "consensus_method": [43, 53], "consensu": [43, 53, 75, 87, 97], "establish": [43, 93, 96], "compute_soft_cross_entropi": 43, "soft": [43, 83], "find_best_temp_scal": 43, "coarse_search_rang": [43, 65, 84], "fine_search_s": [43, 65, 84], "temperatur": [43, 44, 60, 69, 73], "scale": [43, 46, 83, 84, 91, 94, 95], "factor": [43, 44, 46, 67, 69], "minim": [43, 60, 91], "temp_scale_pred_prob": 43, "temp": 43, "sharpen": [43, 83], "smoothen": 43, "get_normalized_margin_for_each_label": [44, 63], "get_confidence_weighted_entropy_for_each_label": [44, 63], "75": [44, 78, 79, 83, 88, 89, 90, 91, 93, 94, 97], "scorer": 44, "alpha": [44, 57, 60, 78, 79, 86, 89, 93], "exponenti": 44, "ema": 44, "s_1": 44, "s_k": 44, "ema_k": 44, "accord": [44, 55, 81, 82, 86, 97], "formula": [44, 46], "_t": 44, "cdot": 44, "s_t": 44, "qquad": 44, "leq": 44, "_1": 44, "give": [44, 63, 86, 88, 94], "recent": [44, 97], "success": 44, "previou": [44, 84, 85, 90], "discount": 44, "s_ema": 44, "175": [44, 85, 86, 90], "underflow": 44, "nan": [44, 53, 81, 88, 93, 95], "aggregated_scor": 44, "base_scor": 44, "base_scorer_kwarg": 44, "aggregator_kwarg": [44, 57], "n_sampl": 44, "n_label": 44, "worst": [44, 88], "class_label_quality_scor": 44, "42": [44, 82, 83, 85, 90, 94, 97], "452": 44, "new_scor": 44, "575": 44, "get_label_quality_scores_per_class": [44, 56, 57], "ml_scorer": 44, "binar": [44, 45], "reformat": [44, 77], "wider": 44, "splitter": 44, "kfold": [44, 85], "onevsrestclassifi": [44, 89], "randomforestclassifi": [44, 86, 89], "n_split": [44, 79, 85, 89], "pred_prob_slic": 45, "onehot": 45, "hot": [45, 55, 61, 67, 70, 81, 83, 84, 93, 94, 95], "onehot_matrix": 45, "avg_dist": 46, "scaling_factor": 46, "exp": [46, 62, 63, 78], "dt": 46, "right": [46, 58, 61, 82, 89, 90, 91, 96], "strength": [46, 61], "pronounc": 46, "differenti": 46, "ly": 46, "rule": [46, 47, 83], "thumb": 46, "ood_features_scor": [46, 62, 91], "88988177": 46, "80519832": 46, "token_classif": [47, 71, 73, 74, 84], "sentenc": [47, 71, 73, 74, 82, 96], "readabl": 47, "lambda": [47, 77, 78, 84, 88], "long_sent": 47, "headlin": 47, "charact": [47, 48], "s1": 47, "s2": 47, "processed_token": 47, "alecnlcb": 47, "entiti": [47, 75, 84, 97], "mapped_ent": 47, "unique_ident": 47, "loc": [47, 78, 79, 85, 97], "nbitbas": [47, 57], "probs_merg": 47, "55": [47, 83, 85, 90, 93, 94, 97], "0125": [47, 73], "0375": 47, "075": 47, "025": 47, "color": [47, 70, 78, 79, 81, 86, 89, 91, 93, 94], "red": [47, 61, 78, 79, 83, 86, 89, 90, 91, 94], "colored_sent": 47, "termcolor": 47, "31msentenc": 47, "0m": 47, "ancillari": 48, "class_without_nois": 48, "any_other_class": 48, "choos": [48, 63, 81, 84, 86, 93, 95], "tradition": 48, "new_sum": 48, "fill": 48, "wherea": [48, 55, 92], "come": [48, 78, 79, 84, 85, 91, 94], "major": [48, 53, 76, 85, 91], "versu": [48, 86], "obviou": 48, "cgdeboer": 48, "iteround": 48, "reach": 48, "prob_s_eq_1": 48, "claesen": 48, "f1": [48, 61, 82, 86], "BE": 48, "left_nam": 48, "top_nam": 48, "titl": [48, 78, 79, 86, 89, 91], "short_titl": 48, "round_plac": 48, "pretti": [48, 86], "joint_matrix": 48, "num_possible_valu": 48, "holdout_idx": 48, "extract": [48, 62, 77, 82, 88, 91, 94, 96], "allow_shuffl": 48, "turn": [48, 75, 90], "shuffledataset": 48, "histori": 48, "pre_x": 48, "buffer_s": 48, "csr_matric": 48, "append": [48, 77, 83, 84, 85, 86, 88, 89, 90, 91, 97], "bottom": [48, 58, 61, 90], "to_data": 48, "from_data": 48, "taken": 48, "label_matrix": 48, "canon": 48, "displai": [48, 61, 70, 74, 77, 82, 86, 96, 97], "jupyt": [48, 77, 78, 79, 83, 84, 85, 86, 88, 89, 91, 93, 97], "notebook": [48, 53, 77, 79, 83, 84, 86, 88, 89, 90, 94, 97], "consol": 48, "html": [48, 58, 61, 62, 81, 84, 86], "allow_missing_class": 49, "allow_one_class": 49, "length_x": 49, "labellik": 49, "labels_list": [49, 55], "keraswrappermodel": [51, 52, 75], "keraswrappersequenti": [51, 52], "tf": [52, 77], "legaci": 52, "lack": 52, "keraswrapp": 52, "huggingface_keras_imdb": 52, "unit": [52, 97], "model_kwarg": [52, 65], "compile_kwarg": 52, "sparsecategoricalcrossentropi": 52, "layer": [52, 77, 82, 91, 96], "dens": 52, "my_keras_model": 52, "from_logit": 52, "declar": 52, "apply_softmax": 52, "analysi": 53, "analyz": [53, 75, 86, 88, 89], "get_label_quality_multiannot": [53, 88], "vote": 53, "crowdsourc": [53, 75, 88], "dawid": [53, 88], "skene": [53, 88], "analog": [53, 83, 88], "chosen": [53, 63, 84, 88], "crowdlab": [53, 88], "unlabel": [53, 81, 82, 85, 88, 91, 94], "decid": [53, 82, 83, 88, 93, 96, 97], "get_active_learning_scor": [53, 88], "activelab": [53, 88], "priorit": [53, 60, 90, 94, 97], "showcas": 53, "main": 53, "best_qual": 53, "quality_method": 53, "calibrate_prob": 53, "return_detailed_qu": 53, "return_annotator_stat": 53, "return_weight": 53, "label_quality_score_kwarg": 53, "necessarili": [53, 61, 82, 86], "did": [53, 54, 77, 81, 86, 88, 93, 95, 96], "majority_vot": 53, "ti": 53, "broken": [53, 61, 83, 93], "highest": [53, 61, 78, 85, 92], "0th": 53, "consensus_quality_scor": [53, 88], "annotator_agr": [53, 88], "reman": 53, "1st": 53, "2nd": [53, 67], "3rd": 53, "consensus_label_suffix": 53, "consensus_quality_score_suffix": 53, "suffix": 53, "emsembl": 53, "weigh": [53, 83], "agreement": [53, 88], "agre": 53, "prevent": [53, 84], "overconfid": [53, 92], "wrong": [53, 58, 60, 76, 78, 79, 82, 84, 86, 90, 96], "detailed_label_qu": [53, 88], "annotator_stat": [53, 88], "model_weight": 53, "annotator_weight": 53, "warn": [53, 78, 79, 84], "labels_info": 53, "num_annot": [53, 88], "deriv": [53, 88], "quality_annotator_1": 53, "quality_annotator_2": 53, "quality_annotator_m": 53, "annotator_qu": [53, 88], "num_examples_label": [53, 88], "agreement_with_consensu": [53, 88], "worst_class": [53, 88], "trustworthi": [53, 88, 93], "get_label_quality_multiannotator_ensembl": 53, "weigtht": 53, "budget": 53, "retrain": [53, 93, 96], "active_learning_scor": 53, "improv": [53, 79, 83, 84, 85, 86, 93, 94, 95, 96], "active_learning_scores_unlabel": 53, "get_active_learning_scores_ensembl": 53, "henc": [53, 77, 78, 88], "get_majority_vote_label": [53, 88], "event": 53, "lastli": [53, 81], "convert_long_to_wide_dataset": 53, "labels_multiannotator_long": 53, "wide": [53, 77, 95, 96], "suitabl": [53, 81, 95], "labels_multiannotator_wid": 53, "common_multilabel_issu": [54, 56], "mutual": [54, 89], "exclus": [54, 89], "rank_classes_by_multilabel_qu": [54, 56], "overall_multilabel_health_scor": [54, 56], "multilabel_health_summari": [54, 56], "classes_by_multilabel_qu": 54, "inner": [55, 69], "find_multilabel_issues_per_class": [55, 56], "per_class_label_issu": 55, "label_issues_list": 55, "pred_probs_list": [55, 63, 85, 86], "anim": [56, 91], "rat": 56, "predat": 56, "pet": 56, "reptil": 56, "manner": [57, 88, 93, 95, 96], "box": [58, 60, 61, 83, 90], "object_detect": [58, 60, 61, 90], "return_indices_ranked_by_scor": [58, 90], "overlapping_label_check": [58, 60], "suboptim": [58, 60], "locat": [58, 60, 90, 94, 97], "bbox": [58, 61, 90], "image_nam": [58, 61], "y1": [58, 61, 90], "y2": [58, 61, 90], "later": [58, 61, 62, 96, 97], "corner": [58, 61, 90], "xyxi": [58, 61, 90], "io": [58, 61, 77, 83], "keras_cv": [58, 61], "bounding_box": [58, 61, 90], "detectron": [58, 61, 90], "detectron2": [58, 61, 90], "readthedoc": [58, 61], "en": [58, 61], "latest": [58, 61], "visual": [58, 59, 61, 78, 79, 85, 93, 95, 97], "draw_box": [58, 61], "mmdetect": [58, 61, 90], "swap": [58, 60, 70, 74], "penal": [58, 60], "concern": [58, 60, 75, 79], "issues_from_scor": [59, 60, 68, 69, 70, 72, 73, 74, 90, 94, 97], "compute_overlooked_box_scor": [59, 60], "compute_badloc_box_scor": [59, 60], "compute_swap_box_scor": [59, 60], "pool_box_scores_per_imag": [59, 60], "object_counts_per_imag": [59, 61, 90], "bounding_box_size_distribut": [59, 61, 90], "class_label_distribut": [59, 61, 90], "get_sorted_bbox_count_idx": [59, 61], "plot_class_size_distribut": [59, 61], "plot_class_distribut": [59, 61], "get_average_per_class_confusion_matrix": [59, 61], "calculate_per_class_metr": [59, 61], "aggregation_weight": 60, "imperfect": [60, 84], "chose": [60, 88, 90], "imperfectli": [60, 90], "dirti": [60, 63, 66, 93], "subtyp": 60, "badloc": 60, "nonneg": 60, "high_probability_threshold": 60, "auxiliary_input": [60, 61], "vari": [60, 79], "iou": [60, 61], "heavili": 60, "auxiliarytypesdict": 60, "pred_label": [60, 96], "pred_label_prob": 60, "pred_bbox": 60, "lab_label": 60, "lab_bbox": 60, "similarity_matrix": 60, "min_possible_similar": 60, "scores_overlook": 60, "low_probability_threshold": 60, "scores_badloc": 60, "accident": [60, 81, 82, 84, 96], "scores_swap": 60, "box_scor": 60, "image_scor": [60, 69, 94], "discov": [61, 79, 97], "auxiliari": [61, 91, 94], "_get_valid_inputs_for_compute_scor": 61, "object_count": 61, "down": 61, "bbox_siz": 61, "class_distribut": 61, "plot": [61, 78, 79, 86, 89, 91, 93, 94], "sorted_idx": [61, 91], "class_to_show": 61, "hidden": [61, 91], "max_class_to_show": 61, "prediction_threshold": 61, "overlai": [61, 90], "figsiz": [61, 78, 79, 85, 86, 89, 91], "save_path": [61, 90], "blue": [61, 83, 86, 90], "overlaid": 61, "side": [61, 83, 90], "figur": [61, 86, 89, 91, 93], "extens": [61, 86, 88], "png": [61, 90], "pdf": [61, 62], "svg": 61, "matplotlib": [61, 78, 79, 85, 86, 89, 90, 91, 93], "num_proc": [61, 85], "intersect": [61, 84], "tp": 61, "fp": 61, "ground": [61, 83, 86, 88, 93], "truth": [61, 86, 88, 93], "bias": 61, "avg_metr": 61, "distionari": 61, "95": [61, 71, 73, 81, 83, 86, 91, 93, 94], "per_class_metr": 61, "Of": 62, "li": 62, "smaller": [62, 89, 90], "find_top_issu": [62, 63, 91], "reli": [62, 77, 78, 79, 82, 90, 91, 93, 96], "dist_metr": 62, "dim": [62, 85, 94], "subtract": [62, 63], "renorm": [62, 63, 84], "least_confid": 62, "sum_": 62, "log": [62, 63, 76], "softmax": [62, 69, 73, 85], "literatur": 62, "gen": 62, "liu": 62, "lochman": 62, "zach": 62, "openaccess": 62, "thecvf": 62, "content": [62, 77, 78, 79, 83, 85, 86, 88, 89, 91, 93, 97], "cvpr2023": 62, "liu_gen_pushing_the_limits_of_softmax": 62, "based_out": 62, "distribution_detection_cvpr_2023_pap": 62, "fit_scor": [62, 91], "ood_predictions_scor": 62, "pretrain": [62, 77, 82, 91, 96], "adjust_confident_threshold": 62, "probabilist": [62, 77, 78, 79, 81, 82, 91, 92, 95], "order_label_issu": [63, 76], "whichev": [63, 92], "argsort": [63, 82, 85, 86, 90, 91, 93, 96], "max_": 63, "get_label_quality_ensemble_scor": [63, 84, 86], "weight_ensemble_members_bi": 63, "custom_weight": 63, "log_loss_search_t_valu": 63, "0001": [63, 83], "scheme": 63, "log_loss_search": 63, "log_loss": [63, 82], "1e0": 63, "1e1": 63, "1e2": 63, "2e2": 63, "quality_scor": [63, 91], "forth": 63, "top_issue_indic": 63, "rank_bi": [63, 76], "weird": [63, 74], "minu": 63, "prob_label": 63, "max_prob_not_label": 63, "idea": [63, 90], "AND": [63, 82], "get_epistemic_uncertainti": [64, 65], "get_aleatoric_uncertainti": [64, 65], "corrupt": [65, 93], "linearregress": [65, 84, 93], "y_with_nois": 65, "n_boot": [65, 84], "include_aleatoric_uncertainti": [65, 84], "sole": [65, 78, 88, 91, 95], "bootstrap": [65, 84, 93], "resampl": [65, 77, 84], "epistem": [65, 84, 91, 93], "aleator": [65, 84, 93], "model_final_kwarg": 65, "coars": 65, "thorough": [65, 84], "fine": [65, 77, 82, 91, 96], "grain": 65, "grid": 65, "varianc": [65, 86], "epistemic_uncertainti": 65, "residu": [65, 66, 84], "deviat": [65, 90, 93], "ie": 65, "aleatoric_uncertainti": 65, "outr": 66, "contin": 66, "raw": [66, 75, 76, 79, 83, 85, 88, 90, 91, 93], "aka": [66, 77, 86, 90, 93, 97], "00323821": 66, "33692597": 66, "00191686": 66, "semant": [67, 69, 70, 87], "pixel": [67, 69, 70, 91, 94], "h": [67, 69, 70, 94], "height": [67, 69, 70, 94], "w": [67, 69, 70, 94], "width": [67, 69, 70, 94], "labels_one_hot": [67, 70, 94], "stream": [67, 91, 97], "downsampl": [67, 69, 94], "shrink": [67, 69], "divis": [67, 69, 78], "display_issu": [68, 69, 70, 71, 72, 73, 74, 94, 97], "common_label_issu": [68, 70, 72, 74, 94, 97], "filter_by_class": [68, 70, 94], "segmant": [69, 70], "num_pixel_issu": [69, 94], "product": [69, 84, 85], "pixel_scor": [69, 94], "highlight": [70, 74, 78, 79, 81, 94], "enter": 70, "legend": [70, 78, 79, 89, 90, 93, 94], "colormap": 70, "background": 70, "person": [70, 84, 90, 94, 97], "ambigu": [70, 74, 77, 82, 83, 86, 96, 97], "systemat": [70, 74, 88], "misunderstood": [70, 74], "issues_df": [70, 85], "class_index": 70, "issues_subset": [70, 74], "filter_by_token": [72, 74, 97], "token_score_method": 73, "sentence_score_method": 73, "sentence_score_kwarg": 73, "compris": [73, 74], "token_scor": [73, 97], "converg": 73, "toward": 73, "_softmin_sentence_scor": 73, "sentence_scor": [73, 97], "token_info": 73, "70": [73, 81, 85, 94], "02": [73, 78, 79, 85, 86, 90, 91, 94, 97], "03": [73, 81, 83, 86, 90, 91, 94, 97], "04": [73, 81, 85, 90, 91, 94, 97], "08": [73, 86, 90, 93, 94, 97], "commonli": [74, 76, 78, 79, 89, 97], "But": [74, 82, 86, 93, 97], "restrict": [74, 84], "reliabl": [75, 77, 84, 88, 94, 95], "thousand": 75, "imagenet": [75, 83], "popular": [75, 88, 90], "centric": [75, 81, 82, 85, 87], "capabl": 75, "minut": [75, 77, 81, 82, 83, 88, 89, 90, 93, 94, 95, 96, 97], "conda": 75, "feature_embed": [75, 91], "Then": [75, 84, 85, 95, 96], "your_dataset": [75, 77, 78, 79, 81, 82, 84, 85], "column_name_of_label": [75, 77, 78, 79, 81, 82, 85], "plagu": [75, 79], "untrain": 75, "\u30c4": 75, "label_issues_info": [75, 79], "sklearn_compatible_model": 75, "framework": [75, 89, 90], "complianc": 75, "tag": [75, 89, 97], "sequenc": 75, "recognit": [75, 77, 84, 97], "train_data": [75, 91, 93, 95, 96], "gotten": 75, "test_data": [75, 86, 89, 91, 93, 95, 96], "deal": [75, 79], "tutori": [75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "feel": [75, 77, 79, 84], "free": [75, 77, 79, 81, 82, 84, 85, 86], "ask": [75, 84], "slack": [75, 84], "project": [75, 93], "welcom": 75, "commun": [75, 84], "guidelin": [75, 90], "piec": 75, "studio": [75, 79, 81, 82, 84, 85], "platform": [75, 81, 82, 84, 85], "automl": [75, 84], "foundat": 75, "smart": [75, 81, 82, 84, 85], "edit": [75, 84], "easier": [75, 86], "unreli": [75, 77, 81, 82, 95], "link": [75, 77, 83, 90], "older": 76, "outlin": 76, "substitut": 76, "v2": [76, 81, 95], "get_noise_indic": 76, "psx": 76, "sorted_index_method": 76, "order_label_error": 76, "label_errors_bool": 76, "latent_estim": 76, "num_label_error": 76, "learningwithnoisylabel": 76, "neatli": 76, "organ": [76, 81, 83, 95, 97], "reorgan": 76, "baseline_method": 76, "incorpor": [76, 86], "research": [76, 86], "polyplex": 76, "terminologi": 76, "label_error": 76, "quickstart": [77, 78, 79, 81, 82, 83, 85, 88, 89, 90, 91, 93, 94, 95, 96, 97], "spoken": 77, "500": [77, 91, 97], "english": [77, 83], "pronunci": 77, "wav": 77, "huggingfac": [77, 78, 79, 85], "voxceleb": 77, "speech": [77, 97], "your_pred_prob": [77, 78, 79, 81, 82], "tensorflow_io": 77, "huggingface_hub": 77, "branch": [77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 95, 96], "reproduc": [77, 81, 86, 88], "command": 77, "wget": [77, 90, 94, 97], "navig": 77, "browser": 77, "jakobovski": 77, "archiv": [77, 97], "v1": 77, "tar": [77, 91], "gz": [77, 91], "mkdir": [77, 97], "spoken_digit": 77, "xf": 77, "6_nicolas_32": 77, "data_path": 77, "listdir": 77, "nondeterminist": 77, "file_nam": 77, "endswith": 77, "file_path": 77, "join": [77, 84, 85], "39": [77, 78, 82, 83, 84, 85, 90, 91, 93, 94, 96, 97], "7_george_26": 77, "0_nicolas_24": 77, "0_nicolas_6": 77, "listen": 77, "display_exampl": 77, "click": [77, 78, 79, 83, 85, 86, 88, 89, 91, 93, 97], "expand": [77, 78, 79, 83, 85, 86, 88, 89, 91, 93, 97], "pulldown": [77, 78, 79, 83, 85, 86, 88, 89, 91, 93, 97], "colab": [77, 78, 79, 83, 84, 85, 86, 88, 89, 91, 93, 97], "tfio": 77, "pathlib": 77, "ipython": 77, "load_wav_16k_mono": 77, "filenam": 77, "khz": 77, "file_cont": 77, "read_fil": 77, "sample_r": 77, "decode_wav": 77, "desired_channel": 77, "squeez": 77, "rate_in": 77, "rate_out": 77, "16000": 77, "wav_file_nam": 77, "audio_r": 77, "wav_file_exampl": 77, "plai": [77, 83, 84], "button": 77, "wav_file_name_exampl": 77, "7_jackson_43": 77, "hear": 77, "extractor": 77, "encoderclassifi": 77, "spkrec": 77, "xvect": 77, "feature_extractor": 77, "from_hparam": 77, "run_opt": 77, "uncom": 77, "ffmpeg": 77, "system": [77, 81, 82, 85, 94], "backend": 77, "wav_audio_file_path": 77, "head": [77, 79, 81, 82, 83, 85, 86, 88, 93, 95, 96], "torchaudio": 77, "extract_audio_embed": 77, "emb": [77, 85], "signal": 77, "encode_batch": 77, "embeddings_list": [77, 85], "embeddings_arrai": 77, "opt": [77, 79, 82, 96], "hostedtoolcach": [77, 79, 82, 96], "x64": [77, 79, 82, 96], "lib": [77, 79, 82, 96], "python3": [77, 79, 82, 96], "site": [77, 79, 82, 96], "650": 77, "userwarn": [77, 78, 79, 82, 96], "stft": 77, "return_complex": 77, "view_as_r": 77, "recov": 77, "trigger": 77, "aten": 77, "src": 77, "nativ": 77, "spectralop": 77, "cpp": 77, "863": [77, 96], "_vf": 77, "n_fft": 77, "hop_length": 77, "win_length": 77, "attr": 77, "512": [77, 85], "14": [77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "196311": 77, "319459": 77, "478975": 77, "2890875": 77, "8170238": 77, "89265": 77, "24": [77, 83, 86, 88, 90, 93, 94], "898056": 77, "256195": 77, "559641": 77, "559721": 77, "62067": 77, "285245": 77, "21": [77, 78, 83, 84, 85, 86, 90, 93, 94, 97], "709627": 77, "5033693": 77, "913803": 77, "819831": 77, "1831515": 77, "208763": 77, "084257": 77, "3210397": 77, "005453": 77, "216152": 77, "478235": 77, "6821785": 77, "053807": 77, "242471": 77, "091424": 77, "78334856": 77, "03954": 77, "23": [77, 83, 85, 86, 90, 93, 94, 97], "569176": 77, "19": [77, 82, 83, 84, 85, 86, 90, 91, 93, 94, 96, 97], "761097": 77, "1258295": 77, "753237": 77, "3508866": 77, "598274": 77, "23712": 77, "2500": 77, "leverag": [77, 82, 84, 86, 88, 96], "tune": [77, 82, 83, 91, 96], "computation": [77, 82, 96], "intens": [77, 82, 96], "held": [77, 81, 82, 83, 90, 91, 92, 95], "straightforward": [77, 81, 95], "benefit": [77, 92, 94, 95], "tol": 77, "num_crossval_fold": [77, 81, 88, 95], "decreas": [77, 84], "never": [77, 86, 89, 91, 92], "accuracy_scor": [77, 82, 86, 95, 96], "cv_accuraci": 77, "9708": 77, "probabilit": [77, 96], "9976": 77, "986": 77, "002161": 77, "176": [77, 83, 86, 89], "002483": 77, "2318": 77, "004411": 77, "1005": 77, "004857": 77, "1871": 77, "007494": 77, "investig": 77, "040587": 77, "999207": 77, "999377": 77, "975220": 77, "999367": 77, "18": [77, 82, 83, 84, 85, 86, 90, 91, 93, 94, 96, 97], "identified_label_issu": [77, 82], "lowest_quality_label": [77, 82, 86, 93, 96], "sort_valu": [77, 79, 81, 82, 84, 85, 86, 88, 89, 93], "516": 77, "1946": 77, "469": 77, "2132": 77, "worth": [77, 86], "iloc": [77, 81, 82, 93, 95, 96], "6_yweweler_25": 77, "7_nicolas_43": 77, "6_theo_27": 77, "6_yweweler_36": 77, "6_yweweler_14": 77, "6_yweweler_35": 77, "6_nicolas_8": 77, "sound": 77, "quit": [77, 91], "22": [77, 78, 83, 85, 86, 89, 90, 91, 94, 97], "blindli": [77, 84, 93, 95, 96], "trust": [77, 84, 86, 88, 92, 93, 95, 96], "underneath": 78, "hood": 78, "alert": 78, "introduct": 78, "mayb": [78, 79, 82], "examin": [78, 79, 81, 90, 95], "your_feature_matrix": [78, 79], "toi": [78, 79, 83, 85, 86, 88], "train_test_split": [78, 79, 91, 95, 96], "inf": [78, 79], "mid": [78, 79], "bins_map": [78, 79], "create_data": [78, 79], "y_bin": [78, 79], "y_i": [78, 79], "y_bin_idx": [78, 79], "y_train": [78, 79, 86, 93], "y_test": [78, 79, 86, 93], "y_train_idx": [78, 79], "y_test_idx": [78, 79], "test_siz": [78, 79, 95, 96], "slide": [78, 79, 83], "decis": [78, 79, 95], "frame": [78, 79], "x_out": [78, 79], "tini": [78, 79], "concaten": [78, 79, 84, 92], "y_out": [78, 79], "y_out_bin": [78, 79], "y_out_bin_idx": [78, 79], "exact_duplicate_idx": [78, 79], "x_duplic": [78, 79], "y_duplic": [78, 79], "y_duplicate_idx": [78, 79], "noisy_labels_idx": [78, 79, 89], "scatter": [78, 79, 86, 89, 93], "black": [78, 79, 83, 93], "cyan": [78, 79], "pyplot": [78, 79, 85, 86, 89, 91, 93], "plt": [78, 79, 85, 86, 89, 91, 93], "plot_data": [78, 79, 86, 89, 93], "fig": [78, 79, 83, 85, 91, 93], "ax": [78, 79, 85, 91, 93], "subplot": [78, 79, 85, 91], "set_titl": [78, 79, 85, 91], "set_xlabel": [78, 79], "x_1": [78, 79], "fontsiz": [78, 79, 85, 86, 89], "set_ylabel": [78, 79], "x_2": [78, 79], "set_xlim": [78, 79], "set_ylim": [78, 79], "linestyl": [78, 79], "circl": [78, 79, 86, 89], "misclassifi": [78, 79], "zip": [78, 79, 85, 90, 97], "label_err": [78, 79], "180": [78, 79, 90], "marker": [78, 79], "facecolor": [78, 79], "edgecolor": [78, 79], "linewidth": [78, 79, 91], "dup": [78, 79], "first_legend": [78, 79], "align": [78, 79], "title_fontproperti": [78, 79], "semibold": [78, 79], "second_legend": [78, 79], "45": [78, 79, 83, 85, 86, 90, 94], "gca": [78, 79], "add_artist": [78, 79], "tight_layout": [78, 79], "ideal": [78, 79], "logist": [78, 79, 82, 88, 91, 96], "remaind": 78, "modal": [78, 79, 84, 88], "132": [78, 79, 86, 90], "9318": 78, "77": [78, 79, 81, 90, 94, 95], "006940": 78, "007830": 78, "40": [78, 79, 82, 83, 85, 94], "014828": 78, "107": [78, 79, 86, 89], "021241": 78, "120": [78, 79, 95], "026407": 78, "notic": [78, 86, 88, 90], "3558": [78, 79], "126": [78, 79, 86, 90], "006636": [78, 79], "130": [78, 79, 97], "012571": [78, 79], "129": [78, 79], "127": [78, 79], "014909": [78, 79], "128": [78, 79, 85], "017443": [78, 79], "6160": [78, 79], "is_near_duplicate_issu": [78, 79, 81, 82, 84, 85, 86], "131": [78, 79, 94], "000000e": [78, 79], "00": [78, 79, 81, 83, 85, 91, 94, 95], "000002": [78, 79], "463180e": [78, 79], "07": [78, 79, 81, 85, 86, 90, 91, 93, 94], "51": [78, 79, 81, 83, 86, 90, 94], "161148": [78, 79], "859087e": [78, 79], "30": [78, 79, 83, 84, 85, 89, 91, 94, 97], "3453": 78, "029542": 78, "031182": 78, "057961": 78, "058244": 78, "home": [78, 79, 82, 83, 96], "runner": [78, 79, 82, 96], "329": [78, 85, 90], "359": 78, "338": 78, "34": [78, 83, 86, 88, 90, 94, 97], "54": [78, 83, 85, 86, 90, 94], "039122": 78, "53": [78, 79, 81, 83, 85, 89, 90, 91, 94, 95], "044598": 78, "105": [78, 90], "105196": 78, "133654": 78, "43": [78, 83, 86, 90, 91, 94], "168033": 78, "125": 78, "101107": 78, "37": [78, 83, 85, 94], "183382": 78, "109": [78, 83, 90], "209259": 78, "211042": 78, "221316": 78, "average_ood_scor": 78, "34530442089193386": 78, "52": [78, 83, 85, 90, 94, 97], "169820": 78, "087324e": 78, "89": [78, 81, 90, 91, 93, 94, 96], "92": [78, 85, 86, 90, 91, 94, 95], "259024": 78, "583757e": 78, "91": [78, 90, 94], "346458": 78, "341292e": 78, "specfi": 78, "new_lab": 78, "scoring_funct": 78, "div": 78, "rem": 78, "inv_scal": 78, "49": [78, 83, 86, 90, 94], "superstitionissuemanag": 78, "unlucki": 78, "superstit": 78, "to_seri": 78, "issues_mask": 78, "summary_scor": 78, "9242": 78, "is_superstition_issu": 78, "superstition_scor": 78, "26": [78, 83, 85, 86, 88, 90, 94, 97], "047581": 78, "090635": 78, "129591": 78, "65": [78, 85, 90, 94, 95], "164840": 78, "demo": [79, 81, 89, 95], "lurk": [79, 85, 86], "_split": 79, "737": 79, "thoroughli": 79, "preprocess": [79, 81, 91, 93, 95, 96], "904": 79, "review": [79, 81, 82, 83, 84, 86, 90, 93, 94, 95, 96, 97], "8561": 79, "001908": 79, "58": [79, 81, 83, 85, 86, 90, 91, 94, 95], "003564": 79, "007331": 79, "008963": 79, "009664": 79, "0227": 79, "is_class_imbalance_issu": 79, "022727": 79, "86": [79, 81, 85, 86, 90, 91, 93, 94, 95], "87": [79, 85, 90, 93, 94, 96], "auto": [79, 83, 84, 93, 95, 96], "conceptu": 79, "856061": 79, "355772": 79, "616034": 79, "821750": 79, "901562": 79, "betweeen": 79, "is_null_issu": 79, "is_non_iid_issu": [79, 81, 82, 86], "is_underperforming_group_issu": 79, "859131": 79, "417707": 79, "664083": 79, "970324": 79, "816953": 79, "375317": 79, "641516": 79, "890575": 79, "531021": 79, "460593": 79, "601188": 79, "826147": 79, "752808": 79, "321635": 79, "562539": 79, "948362": 79, "090243": 79, "472909": 79, "746763": 79, "878267": 79, "examples_w_issu": [79, 84], "013445": 79, "025184": 79, "026376": 79, "inde": [79, 82], "miscellan": [79, 97], "428571": 79, "111111": 79, "571429": 79, "407407": 79, "592593": 79, "337838": 79, "092593": 79, "662162": 79, "333333": [79, 83], "952381": 79, "666667": 79, "portion": 79, "huge": [79, 86], "worri": [79, 82], "critic": 79, "highli": [79, 85], "sql": [81, 95], "databas": [81, 95], "excel": [81, 95], "parquet": [81, 95], "student": [81, 93, 95, 97], "grade": [81, 93, 95], "900": [81, 93, 95], "exam": [81, 93, 95], "letter": [81, 95, 97], "hundr": [81, 95], "histgradientboostingclassifi": 81, "standardscal": [81, 91, 95], "grades_data": [81, 95], "read_csv": [81, 82, 93, 95, 96], "stud_id": [81, 95], "exam_1": [81, 93, 95], "exam_2": [81, 93, 95], "exam_3": [81, 93, 95], "letter_grad": [81, 95], "f48f73": [81, 95], "0bd4e7": [81, 95], "81": [81, 82, 90, 91, 93, 94, 95, 97], "great": [81, 83, 95], "particip": [81, 95], "cb9d7a": [81, 95], "61": [81, 85, 86, 90, 91, 93, 94, 95], "94": [81, 83, 86, 90, 93, 94, 95], "78": [81, 83, 85, 86, 90, 91, 93, 94, 95, 97], "9acca4": [81, 95], "48": [81, 83, 86, 90, 94, 95], "x_raw": [81, 95], "cat_featur": 81, "x_encod": [81, 95], "get_dummi": [81, 93, 95], "drop_first": [81, 95], "numeric_featur": [81, 95], "scaler": [81, 91, 95], "x_process": [81, 95], "fit_transform": [81, 95], "bring": [81, 82, 85, 88, 93, 95, 96], "byod": [81, 82, 85, 88, 93, 95, 96], "boost": [81, 84, 88, 93], "xgboost": [81, 84, 93], "think": [81, 82, 84, 89, 94, 97], "carefulli": [81, 82, 85, 95], "nonzero": 81, "suspici": [81, 95], "tabl": [81, 83, 88, 95], "358": 81, "294": [81, 90], "46": [81, 83, 85, 86, 90, 94], "941": 81, "7109": 81, "000005": [81, 82, 93], "886": 81, "000059": 81, "709": 81, "000104": 81, "723": 81, "000169": 81, "689": 81, "000181": 81, "3590": 81, "051882e": 81, "683133e": 81, "536582e": 81, "406589e": 81, "324246e": 81, "6165": 81, "582": 81, "185": [81, 83, 90], "187": [81, 83], "27": [81, 83, 85, 86, 90, 94, 97], "898": 81, "637": [81, 95], "0014": [81, 83], "595": 81, "702427": 81, "147": [81, 86, 90], "711186": 81, "157": [81, 86], "721394": 81, "771": 81, "731979": 81, "740335": 81, "0014153602099278074": 81, "issue_result": 81, "000842": 81, "555944": 81, "004374": 81, "sorted_issu": 81, "73": [81, 83, 89, 90, 93, 94], "deserv": 81, "outlier_result": 81, "sorted_outli": 81, "56": [81, 83, 85, 91, 93, 94], "96": [81, 83, 86, 89, 90, 93, 94], "lt": [81, 82, 83, 85, 88, 91, 94], "style": [81, 94], "font": 81, "18px": 81, "ff00ff": 81, "bac": 81, "unintend": [81, 82], "mistak": [81, 82, 85, 95, 96], "duplicate_result": 81, "690": 81, "246": [81, 90], "perhap": [81, 86, 88], "twice": 81, "67": [81, 83, 85, 90, 91, 93, 94], "wari": [81, 82, 84], "super": [81, 82, 85], "intent": [82, 96], "servic": [82, 84, 96], "onlin": [82, 96], "bank": [82, 83, 96], "banking77": [82, 96], "oo": [82, 96], "000": [82, 83, 85, 96, 97], "categori": [82, 85, 96], "scope": [82, 96], "dive": 82, "your_featur": 82, "sentence_transform": [82, 96], "sentencetransform": [82, 96], "payment": [82, 96], "cancel_transf": [82, 96], "transfer": [82, 96], "fund": [82, 96], "cancel": [82, 96], "transact": [82, 96], "my": [82, 96], "revert": [82, 96], "morn": [82, 96], "realis": [82, 96], "yesterdai": [82, 96], "rent": [82, 96], "realli": [82, 88, 94, 96], "tomorrow": [82, 96], "raw_text": [82, 96], "card_payment_fee_charg": [82, 96], "card_about_to_expir": [82, 96], "beneficiary_not_allow": [82, 96], "getting_spare_card": [82, 96], "lost_or_stolen_phon": [82, 96], "visa_or_mastercard": [82, 96], "supported_cards_and_curr": [82, 96], "change_pin": [82, 96], "apple_pay_or_google_pai": [82, 96], "utter": [82, 96], "suit": [82, 83, 84, 96], "electra": [82, 96], "discrimin": [82, 96], "googl": [82, 96], "text_embed": 82, "No": [82, 84, 96], "google_electra": [82, 96], "pool": [82, 84, 91, 96], "_util": [82, 96], "831": [82, 96], "typedstorag": [82, 96], "untypedstorag": [82, 96], "untyped_storag": [82, 96], "fget": [82, 96], "__get__": [82, 96], "owner": [82, 96], "400": [82, 96], "data_dict": [82, 86, 88], "85": [82, 90, 94], "38": [82, 83, 85, 90, 94], "9710": 82, "981": 82, "974": 82, "000146": 82, "982": [82, 83], "000224": 82, "971": 82, "000507": 82, "980": [82, 83], "000960": 82, "3584": 82, "994": 82, "009642": 82, "999": 82, "013067": 82, "013841": 82, "433": 82, "014722": 82, "989": 82, "018224": 82, "6070": 82, "160": [82, 93], "095724": 82, "148": 82, "006237": 82, "546": 82, "099341": 82, "514": 82, "006485": 82, "481": 82, "123418": 82, "008165": 82, "0000": [82, 83, 86], "313": [82, 90], "564102": 82, "572258": 82, "28": [82, 83, 85, 86, 88, 91, 94, 97], "574915": 82, "31": [82, 83, 85, 86, 88, 90, 91, 94], "575507": 82, "575874": 82, "792090": 82, "257611": 82, "698710": 82, "182121": 82, "771619": 82, "to_numpi": [82, 84, 93, 96], "data_with_suggested_label": 82, "suggested_label": 82, "charg": [82, 96], "cash": [82, 96], "holidai": [82, 96], "sent": [82, 96, 97], "card": [82, 83, 96], "mine": [82, 96], "expir": [82, 96], "me": [82, 96], "withdraw": 82, "monei": 82, "whoever": [82, 96], "outlier_issu": [82, 85], "lowest_quality_outli": 82, "OR": 82, "636c65616e6c616220697320617765736f6d6521": 82, "phone": [82, 83], "gone": 82, "gt": [82, 88, 97], "samp": 82, "br": 82, "press": [82, 97], "nonsens": 82, "sens": 82, "detriment": 82, "duplicate_issu": 82, "fee": 82, "pai": 82, "go": [82, 83, 86], "strongli": 82, "p_valu": 82, "benign": 82, "shortlist": [82, 93, 96], "curat": [82, 87], "mnist_test_set": 83, "imagenet_val_set": 83, "tench": 83, "goldfish": 83, "white": [83, 97], "shark": 83, "tiger": 83, "hammerhead": 83, "electr": 83, "rai": 83, "stingrai": 83, "cock": 83, "hen": 83, "ostrich": 83, "brambl": 83, "goldfinch": 83, "hous": 83, "finch": 83, "junco": 83, "indigo": 83, "bunt": 83, "american": [83, 97], "robin": 83, "bulbul": 83, "jai": 83, "magpi": 83, "chickade": 83, "dipper": 83, "kite": 83, "bald": 83, "eagl": 83, "vultur": 83, "grei": 83, "owl": 83, "salamand": 83, "smooth": 83, "newt": 83, "spot": [83, 90], "axolotl": 83, "bullfrog": 83, "tree": 83, "frog": [83, 91], "tail": 83, "loggerhead": 83, "sea": 83, "turtl": 83, "leatherback": 83, "mud": 83, "terrapin": 83, "band": 83, "gecko": 83, "green": [83, 97], "iguana": 83, "carolina": 83, "anol": 83, "desert": 83, "grassland": 83, "whiptail": 83, "lizard": 83, "agama": 83, "frill": 83, "neck": 83, "allig": 83, "gila": 83, "monster": 83, "european": 83, "chameleon": 83, "komodo": 83, "dragon": 83, "nile": 83, "crocodil": 83, "triceratop": 83, "worm": 83, "snake": 83, "ring": 83, "eastern": 83, "hog": 83, "nose": 83, "kingsnak": 83, "garter": 83, "water": 83, "vine": 83, "night": 83, "boa": 83, "constrictor": 83, "african": 83, "rock": 83, "indian": 83, "cobra": 83, "mamba": 83, "saharan": 83, "horn": 83, "viper": 83, "diamondback": 83, "rattlesnak": 83, "sidewind": 83, "trilobit": 83, "harvestman": 83, "scorpion": 83, "yellow": 83, "garden": 83, "spider": 83, "barn": 83, "southern": 83, "widow": 83, "tarantula": 83, "wolf": 83, "tick": 83, "centiped": 83, "grous": 83, "ptarmigan": 83, "ruf": 83, "prairi": 83, "peacock": 83, "quail": 83, "partridg": 83, "parrot": 83, "macaw": 83, "sulphur": 83, "crest": 83, "cockatoo": 83, "lorikeet": 83, "coucal": 83, "bee": 83, "eater": 83, "hornbil": 83, "hummingbird": 83, "jacamar": 83, "toucan": 83, "duck": [83, 96], "breast": 83, "mergans": 83, "goos": 83, "swan": 83, "tusker": 83, "echidna": 83, "platypu": 83, "wallabi": 83, "koala": 83, "wombat": 83, "jellyfish": 83, "anemon": 83, "brain": 83, "coral": 83, "flatworm": 83, "nematod": 83, "conch": 83, "snail": 83, "slug": 83, "chiton": 83, "chamber": 83, "nautilu": 83, "dung": 83, "crab": 83, "fiddler": 83, "king": 83, "lobster": 83, "spini": 83, "crayfish": 83, "hermit": 83, "isopod": 83, "stork": 83, "spoonbil": 83, "flamingo": 83, "heron": 83, "egret": 83, "bittern": 83, "crane": 83, "bird": [83, 91], "limpkin": 83, "gallinul": 83, "coot": 83, "bustard": 83, "ruddi": 83, "turnston": 83, "dunlin": 83, "redshank": 83, "dowitch": 83, "oystercatch": 83, "pelican": 83, "penguin": 83, "albatross": 83, "whale": 83, "killer": 83, "dugong": 83, "lion": 83, "chihuahua": 83, "japanes": 83, "chin": 83, "maltes": 83, "pekinges": 83, "shih": 83, "tzu": 83, "charl": 83, "spaniel": 83, "papillon": 83, "terrier": 83, "rhodesian": 83, "ridgeback": 83, "afghan": [83, 97], "hound": 83, "basset": 83, "beagl": 83, "bloodhound": 83, "bluetick": 83, "coonhound": 83, "tan": 83, "walker": 83, "foxhound": 83, "redbon": 83, "borzoi": 83, "irish": 83, "wolfhound": 83, "italian": 83, "greyhound": 83, "whippet": 83, "ibizan": 83, "norwegian": 83, "elkhound": 83, "otterhound": 83, "saluki": 83, "scottish": 83, "deerhound": 83, "weimaran": 83, "staffordshir": 83, "bull": 83, "bedlington": 83, "border": 83, "kerri": 83, "norfolk": 83, "norwich": 83, "yorkshir": 83, "wire": 83, "fox": 83, "lakeland": 83, "sealyham": 83, "airedal": 83, "cairn": 83, "australian": 83, "dandi": 83, "dinmont": 83, "boston": 83, "miniatur": 83, "schnauzer": 83, "giant": 83, "tibetan": 83, "silki": 83, "coat": [83, 85], "wheaten": 83, "west": 83, "highland": 83, "lhasa": 83, "apso": 83, "flat": 83, "retriev": 83, "curli": 83, "golden": 83, "labrador": 83, "chesapeak": 83, "bai": 83, "german": [83, 97], "shorthair": 83, "pointer": 83, "vizsla": 83, "setter": 83, "gordon": 83, "brittani": 83, "clumber": 83, "springer": 83, "welsh": 83, "cocker": 83, "sussex": 83, "kuvasz": 83, "schipperk": 83, "groenendael": 83, "malinoi": 83, "briard": 83, "kelpi": 83, "komondor": 83, "sheepdog": 83, "shetland": 83, "colli": 83, "bouvier": 83, "de": 83, "flandr": 83, "rottweil": 83, "shepherd": 83, "dobermann": 83, "pinscher": 83, "swiss": [83, 97], "mountain": 83, "bernes": 83, "appenzel": 83, "sennenhund": 83, "entlebuch": 83, "boxer": 83, "bullmastiff": 83, "mastiff": 83, "french": 83, "bulldog": 83, "dane": 83, "st": 83, "bernard": 83, "huski": 83, "alaskan": 83, "malamut": 83, "siberian": 83, "dalmatian": 83, "affenpinsch": 83, "basenji": 83, "pug": 83, "leonberg": 83, "newfoundland": 83, "pyrenean": 83, "samoi": 83, "pomeranian": 83, "chow": 83, "keeshond": 83, "griffon": 83, "bruxelloi": 83, "pembrok": 83, "corgi": 83, "cardigan": 83, "poodl": 83, "mexican": 83, "hairless": 83, "tundra": 83, "coyot": 83, "dingo": 83, "dhole": 83, "wild": 83, "hyena": 83, "kit": 83, "arctic": 83, "tabbi": 83, "persian": 83, "siames": 83, "egyptian": 83, "mau": 83, "cougar": 83, "lynx": 83, "leopard": 83, "snow": 83, "jaguar": 83, "cheetah": 83, "brown": [83, 94], "bear": 83, "polar": 83, "sloth": 83, "mongoos": 83, "meerkat": 83, "beetl": 83, "ladybug": 83, "longhorn": 83, "leaf": 83, "rhinocero": 83, "weevil": 83, "fly": 83, "ant": 83, "grasshopp": 83, "cricket": 83, "stick": 83, "insect": 83, "cockroach": 83, "manti": 83, "cicada": 83, "leafhopp": 83, "lacew": 83, "dragonfli": 83, "damselfli": 83, "admir": 83, "ringlet": 83, "monarch": 83, "butterfli": 83, "gossam": 83, "wing": 83, "starfish": 83, "urchin": 83, "cucumb": 83, "cottontail": 83, "rabbit": 83, "hare": 83, "angora": 83, "hamster": 83, "porcupin": 83, "squirrel": 83, "marmot": 83, "beaver": 83, "guinea": 83, "pig": 83, "sorrel": 83, "zebra": 83, "boar": 83, "warthog": 83, "hippopotamu": 83, "ox": 83, "buffalo": 83, "bison": 83, "bighorn": 83, "sheep": 83, "alpin": 83, "ibex": 83, "hartebeest": 83, "impala": 83, "gazel": 83, "dromedari": 83, "llama": 83, "weasel": 83, "mink": 83, "polecat": 83, "foot": 83, "ferret": 83, "otter": 83, "skunk": 83, "badger": 83, "armadillo": 83, "toed": 83, "orangutan": 83, "gorilla": 83, "chimpanze": 83, "gibbon": 83, "siamang": 83, "guenon": 83, "pata": 83, "monkei": 83, "baboon": 83, "macaqu": 83, "langur": 83, "colobu": 83, "probosci": 83, "marmoset": 83, "capuchin": 83, "howler": 83, "titi": 83, "geoffroi": 83, "lemur": 83, "indri": 83, "asian": 83, "eleph": 83, "bush": 83, "snoek": 83, "eel": 83, "coho": 83, "salmon": 83, "beauti": 83, "clownfish": 83, "sturgeon": 83, "garfish": 83, "lionfish": 83, "pufferfish": 83, "abacu": 83, "abaya": 83, "academ": 83, "gown": 83, "accordion": 83, "acoust": 83, "guitar": 83, "aircraft": 83, "carrier": 83, "airlin": 83, "airship": 83, "altar": 83, "ambul": 83, "amphibi": 83, "clock": [83, 97], "apiari": 83, "apron": 83, "wast": 83, "assault": 83, "rifl": 83, "backpack": 83, "bakeri": 83, "balanc": 83, "beam": 83, "balloon": 83, "ballpoint": 83, "pen": 83, "aid": 83, "banjo": 83, "balust": 83, "barbel": 83, "barber": 83, "chair": [83, 90], "barbershop": 83, "baromet": 83, "barrel": 83, "wheelbarrow": 83, "basebal": 83, "basketbal": 83, "bassinet": 83, "bassoon": 83, "swim": 83, "cap": 83, "bath": 83, "towel": 83, "bathtub": 83, "station": 83, "wagon": 83, "lighthous": 83, "beaker": 83, "militari": 83, "beer": 83, "bottl": 83, "glass": 83, "bell": 83, "cot": 83, "bib": 83, "bicycl": [83, 94], "bikini": 83, "binder": 83, "binocular": 83, "birdhous": 83, "boathous": 83, "bobsleigh": 83, "bolo": 83, "tie": 83, "poke": 83, "bonnet": 83, "bookcas": 83, "bookstor": 83, "bow": 83, "brass": 83, "bra": 83, "breakwat": 83, "breastplat": 83, "broom": 83, "bucket": 83, "buckl": 83, "bulletproof": 83, "vest": 83, "butcher": 83, "shop": 83, "taxicab": 83, "cauldron": 83, "candl": 83, "cannon": 83, "cano": 83, "mirror": [83, 90], "carousel": 83, "tool": [83, 86, 88], "carton": 83, "wheel": 83, "teller": 83, "cassett": 83, "player": 83, "castl": 83, "catamaran": 83, "cd": 83, "cello": 83, "mobil": [83, 97], "chain": 83, "fenc": [83, 94], "mail": 83, "chainsaw": 83, "chest": 83, "chiffoni": 83, "chime": 83, "china": 83, "cabinet": 83, "christma": 83, "stock": 83, "church": 83, "movi": 83, "theater": 83, "cleaver": 83, "cliff": 83, "dwell": 83, "cloak": 83, "clog": 83, "cocktail": 83, "shaker": 83, "coffe": 83, "mug": 83, "coffeemak": 83, "coil": 83, "lock": 83, "keyboard": 83, "confectioneri": 83, "ship": [83, 91], "corkscrew": 83, "cornet": 83, "cowboi": 83, "boot": 83, "hat": 83, "cradl": 83, "crash": 83, "helmet": 83, "crate": 83, "infant": 83, "bed": 83, "crock": 83, "pot": 83, "croquet": 83, "crutch": 83, "cuirass": 83, "dam": 83, "desk": 83, "desktop": 83, "rotari": 83, "dial": 83, "telephon": 83, "diaper": 83, "watch": 83, "dine": 83, "dishcloth": 83, "dishwash": 83, "disc": 83, "brake": 83, "dock": 83, "sled": 83, "dome": 83, "doormat": 83, "drill": 83, "rig": 83, "drum": 83, "drumstick": 83, "dumbbel": 83, "dutch": 83, "oven": 83, "fan": 83, "locomot": 83, "entertain": 83, "center": 83, "envelop": 83, "espresso": 83, "powder": 83, "feather": 83, "fireboat": 83, "engin": [83, 94], "screen": 83, "sheet": 83, "flagpol": 83, "flute": 83, "footbal": 83, "forklift": 83, "fountain": 83, "poster": 83, "freight": 83, "fry": 83, "pan": 83, "fur": 83, "garbag": 83, "ga": 83, "pump": 83, "goblet": 83, "kart": 83, "golf": 83, "cart": 83, "gondola": 83, "gong": 83, "grand": 83, "piano": 83, "greenhous": 83, "grill": 83, "groceri": 83, "guillotin": 83, "barrett": 83, "hair": 83, "sprai": 83, "hammer": 83, "dryer": 83, "hand": [83, 86], "handkerchief": 83, "drive": 83, "harmonica": 83, "harp": 83, "harvest": 83, "hatchet": 83, "holster": 83, "honeycomb": 83, "hoop": 83, "skirt": 83, "horizont": 83, "bar": 83, "hors": [83, 91, 96], "drawn": 83, "hourglass": 83, "ipod": 83, "cloth": 83, "iron": 83, "jack": 83, "lantern": 83, "jean": 83, "jeep": 83, "shirt": [83, 85], "jigsaw": 83, "puzzl": 83, "pull": 83, "rickshaw": 83, "joystick": 83, "kimono": 83, "knee": 83, "pad": 83, "knot": 83, "ladl": 83, "lampshad": 83, "laptop": 83, "lawn": 83, "mower": 83, "knife": 83, "lifeboat": 83, "lighter": 83, "limousin": 83, "ocean": 83, "liner": 83, "lipstick": 83, "slip": 83, "shoe": 83, "lotion": 83, "speaker": 83, "loup": 83, "sawmil": 83, "magnet": 83, "compass": 83, "bag": [83, 85, 91, 92], "mailbox": 83, "tight": 83, "tank": 83, "manhol": 83, "maraca": 83, "marimba": 83, "maypol": 83, "maze": 83, "cup": [83, 90], "medicin": 83, "megalith": 83, "microphon": 83, "microwav": 83, "milk": 83, "minibu": 83, "miniskirt": 83, "minivan": 83, "missil": 83, "mitten": 83, "mix": 83, "bowl": 83, "modem": 83, "monasteri": 83, "monitor": 83, "mope": 83, "mortar": 83, "mosqu": 83, "mosquito": 83, "scooter": 83, "bike": 83, "tent": 83, "mous": [83, 84], "mousetrap": 83, "van": 83, "muzzl": 83, "nail": 83, "brace": 83, "necklac": 83, "nippl": 83, "obelisk": 83, "obo": 83, "ocarina": 83, "odomet": 83, "oil": 83, "oscilloscop": 83, "overskirt": 83, "bullock": 83, "oxygen": 83, "packet": 83, "paddl": 83, "padlock": 83, "paintbrush": 83, "pajama": 83, "palac": [83, 97], "parachut": 83, "park": 83, "bench": 83, "meter": 83, "passeng": 83, "patio": 83, "payphon": 83, "pedest": 83, "pencil": 83, "perfum": 83, "petri": 83, "dish": 83, "photocopi": 83, "plectrum": 83, "pickelhaub": 83, "picket": 83, "pickup": 83, "pier": 83, "piggi": 83, "pill": 83, "pillow": 83, "ping": 83, "pong": 83, "pinwheel": 83, "pirat": 83, "pitcher": 83, "plane": 83, "planetarium": 83, "plastic": 83, "plate": 83, "rack": 83, "plow": 83, "plunger": 83, "polaroid": 83, "camera": 83, "pole": [83, 94], "polic": 83, "poncho": 83, "billiard": 83, "soda": 83, "potter": 83, "prayer": 83, "rug": 83, "printer": 83, "prison": 83, "projectil": 83, "projector": 83, "hockei": 83, "puck": 83, "punch": 83, "purs": 83, "quill": 83, "quilt": 83, "race": 83, "racket": 83, "radiat": 83, "radio": 83, "telescop": 83, "rain": 83, "recreat": 83, "reel": 83, "reflex": 83, "refriger": 83, "remot": 83, "restaur": 83, "revolv": 83, "rotisseri": 83, "eras": 83, "rugbi": 83, "ruler": 83, "safe": 83, "safeti": 83, "salt": 83, "sandal": [83, 85], "sarong": 83, "saxophon": 83, "scabbard": 83, "school": 83, "bu": [83, 94], "schooner": 83, "scoreboard": 83, "crt": 83, "screw": 83, "screwdriv": 83, "seat": 83, "belt": 83, "sew": 83, "shield": 83, "shoji": 83, "basket": 83, "shovel": 83, "shower": 83, "curtain": 83, "ski": 83, "sleep": 83, "door": 83, "slot": 83, "snorkel": 83, "snowmobil": 83, "snowplow": 83, "soap": 83, "dispens": 83, "soccer": [83, 97], "sock": 83, "solar": 83, "thermal": 83, "collector": 83, "sombrero": 83, "soup": 83, "heater": 83, "shuttl": 83, "spatula": 83, "motorboat": 83, "web": 83, "spindl": 83, "sport": [83, 97], "spotlight": 83, "stage": 83, "steam": 83, "arch": 83, "bridg": 83, "steel": 83, "stethoscop": 83, "scarf": 83, "stone": 83, "wall": [83, 94], "stopwatch": 83, "stove": 83, "strainer": 83, "tram": 83, "stretcher": 83, "couch": 83, "stupa": 83, "submarin": 83, "sundial": 83, "sunglass": 83, "sunscreen": 83, "suspens": 83, "mop": 83, "sweatshirt": 83, "swimsuit": 83, "swing": 83, "switch": 83, "syring": 83, "lamp": 83, "tape": 83, "teapot": 83, "teddi": 83, "televis": [83, 97], "tenni": 83, "thatch": 83, "roof": 83, "front": 83, "thimbl": 83, "thresh": 83, "throne": 83, "tile": 83, "toaster": 83, "tobacco": 83, "toilet": 83, "totem": 83, "tow": 83, "tractor": 83, "semi": 83, "trailer": 83, "trai": 83, "trench": 83, "tricycl": 83, "trimaran": 83, "tripod": 83, "triumphal": 83, "trolleybu": 83, "trombon": 83, "tub": 83, "turnstil": 83, "typewrit": 83, "umbrella": 83, "unicycl": 83, "upright": 83, "vacuum": 83, "cleaner": 83, "vase": 83, "vault": 83, "velvet": 83, "vend": 83, "vestment": 83, "viaduct": 83, "violin": 83, "volleybal": 83, "waffl": 83, "wallet": 83, "wardrob": 83, "sink": 83, "wash": 83, "jug": 83, "tower": 83, "whiskei": 83, "whistl": 83, "wig": 83, "shade": [83, 94], "windsor": 83, "wine": 83, "wok": 83, "wooden": 83, "spoon": 83, "wool": 83, "rail": 83, "shipwreck": 83, "yawl": 83, "yurt": 83, "websit": 83, "comic": 83, "book": 83, "crossword": 83, "traffic": [83, 90, 94], "sign": [83, 94, 97], "dust": 83, "jacket": [83, 90], "menu": 83, "guacamol": 83, "consomm": 83, "trifl": 83, "ic": 83, "cream": 83, "pop": 83, "baguett": 83, "bagel": 83, "pretzel": 83, "cheeseburg": 83, "mash": 83, "potato": 83, "cabbag": 83, "broccoli": 83, "cauliflow": 83, "zucchini": 83, "spaghetti": 83, "squash": 83, "acorn": 83, "butternut": 83, "artichok": 83, "pepper": 83, "cardoon": 83, "mushroom": 83, "granni": 83, "smith": 83, "strawberri": 83, "orang": 83, "lemon": 83, "pineappl": 83, "banana": 83, "jackfruit": 83, "custard": 83, "appl": 83, "pomegran": 83, "hai": 83, "carbonara": 83, "chocol": 83, "syrup": 83, "dough": 83, "meatloaf": 83, "pizza": 83, "pie": 83, "burrito": 83, "eggnog": 83, "alp": 83, "bubbl": 83, "reef": 83, "geyser": 83, "lakeshor": 83, "promontori": 83, "shoal": 83, "seashor": 83, "vallei": 83, "volcano": 83, "bridegroom": 83, "scuba": 83, "diver": 83, "rapese": 83, "daisi": 83, "ladi": 83, "slipper": 83, "corn": 83, "rose": 83, "hip": 83, "chestnut": 83, "fungu": 83, "agar": 83, "gyromitra": 83, "stinkhorn": 83, "earth": 83, "star": 83, "wood": 83, "bolet": 83, "ear": 83, "cifar10_test_set": 83, "airplan": [83, 91], "automobil": [83, 91], "deer": [83, 91], "cifar100_test_set": 83, "aquarium_fish": 83, "babi": 83, "boi": 83, "camel": 83, "caterpillar": 83, "cattl": [83, 97], "cloud": 83, "dinosaur": 83, "dolphin": 83, "flatfish": 83, "forest": 83, "girl": 83, "kangaroo": 83, "lawn_mow": 83, "man": 83, "maple_tre": 83, "motorcycl": [83, 94], "oak_tre": 83, "orchid": 83, "palm_tre": 83, "pear": 83, "pickup_truck": 83, "pine_tre": 83, "plain": 83, "poppi": 83, "possum": 83, "raccoon": 83, "road": [83, 94], "rocket": 83, "seal": 83, "shrew": 83, "skyscrap": 83, "streetcar": 83, "sunflow": 83, "sweet_pepp": 83, "trout": 83, "tulip": 83, "willow_tre": 83, "woman": [83, 90], "caltech256": 83, "ak47": 83, "bat": 83, "glove": 83, "birdbath": 83, "blimp": 83, "bonsai": 83, "boom": 83, "breadmak": 83, "buddha": 83, "bulldoz": 83, "cactu": 83, "cake": 83, "tire": 83, "cartman": 83, "cereal": 83, "chandeli": 83, "chess": 83, "board": 83, "chimp": 83, "chopstick": 83, "coffin": 83, "coin": 83, "comet": 83, "cormor": 83, "globe": 83, "diamond": 83, "dice": 83, "doorknob": 83, "drink": 83, "straw": 83, "dumb": 83, "eiffel": 83, "elk": 83, "ewer": 83, "eyeglass": 83, "fern": 83, "fighter": 83, "jet": [83, 93], "extinguish": 83, "hydrant": 83, "firework": 83, "flashlight": 83, "floppi": 83, "fri": 83, "frisbe": 83, "galaxi": 83, "giraff": 83, "goat": 83, "gate": 83, "grape": 83, "pick": [83, 84], "hamburg": 83, "hammock": 83, "harpsichord": 83, "hawksbil": 83, "helicopt": 83, "hibiscu": 83, "homer": 83, "simpson": 83, "horsesho": 83, "air": 83, "skeleton": 83, "ibi": 83, "cone": 83, "iri": 83, "jesu": 83, "christ": 83, "joi": 83, "kayak": 83, "ketch": 83, "ladder": 83, "lath": 83, "licens": 83, "lightbulb": 83, "lightn": 83, "mandolin": 83, "mar": 83, "mattress": 83, "megaphon": 83, "menorah": 83, "microscop": 83, "minaret": 83, "minotaur": 83, "motorbik": 83, "mussel": 83, "neckti": 83, "octopu": 83, "palm": 83, "pilot": 83, "paperclip": 83, "shredder": 83, "pci": 83, "peopl": [83, 90], "pez": 83, "picnic": 83, "pram": 83, "prai": 83, "pyramid": 83, "rainbow": 83, "roulett": 83, "saddl": 83, "saturn": 83, "segwai": 83, "propel": 83, "sextant": 83, "music": 83, "skateboard": 83, "smokestack": 83, "sneaker": 83, "boat": 83, "stain": 83, "steer": 83, "stirrup": 83, "superman": 83, "sushi": 83, "armi": [83, 97], "sword": 83, "tambourin": 83, "teepe": 83, "court": 83, "theodolit": 83, "tomato": 83, "tombston": 83, "tour": 83, "pisa": 83, "treadmil": 83, "fork": 83, "tweezer": 83, "unicorn": 83, "vcr": 83, "waterfal": 83, "watermelon": 83, "weld": 83, "windmil": 83, "xylophon": 83, "yarmulk": 83, "yo": 83, "toad": 83, "twenty_news_test_set": 83, "alt": 83, "atheism": 83, "comp": 83, "graphic": [83, 94], "misc": [83, 97], "sy": 83, "ibm": 83, "pc": 83, "hardwar": 83, "mac": 83, "forsal": 83, "rec": 83, "sci": 83, "crypt": 83, "electron": 83, "med": 83, "soc": 83, "religion": 83, "christian": [83, 97], "talk": [83, 97], "polit": 83, "gun": 83, "mideast": 83, "amazon": 83, "neutral": 83, "imdb_test_set": 83, "all_class": 83, "20news_test_set": 83, "_load_classes_predprobs_label": 83, "dataset_nam": 83, "labelerror": 83, "url_bas": 83, "5392f6c71473055060be3044becdde1cbc18284d": 83, "url_label": 83, "original_test_label": 83, "_original_label": 83, "url_prob": 83, "cross_validated_predicted_prob": 83, "_pyx": 83, "num_part": 83, "datatset": 83, "bytesio": 83, "allow_pickl": 83, "pred_probs_part": 83, "url": 83, "_of_": 83, "nload": 83, "imdb": 83, "ve": [83, 84, 86, 88, 90], "interpret": [83, 84, 86, 89, 93], "capit": 83, "29780": 83, "256": [83, 84, 90], "780": 83, "medic": [83, 97], "doctor": 83, "254": [83, 90], "359223": 83, "640777": 83, "184": [83, 86], "258427": 83, "341176": 83, "263158": 83, "658824": 83, "337349": 83, "246575": 83, "662651": 83, "248": 83, "330000": 83, "355769": 83, "670000": 83, "251": [83, 90], "167": [83, 86, 90], "252": 83, "112": 83, "253": [83, 90], "022989": 83, "255": [83, 85], "049505": 83, "190": [83, 86, 90], "66": [83, 85, 94], "002216": 83, "000974": 83, "59": [83, 85, 90, 94], "88": [83, 84, 85, 86, 89, 90, 93, 94], "000873": 83, "000739": 83, "79": [83, 90, 94, 95], "32635": 83, "32636": 83, "47": [83, 90, 91, 94], "32637": 83, "32638": 83, "32639": 83, "32640": 83, "051": 83, "93": [83, 90, 93, 94, 95], "002242": 83, "997758": 83, "002088": 83, "001045": 83, "997912": 83, "002053": 83, "997947": 83, "001980": 83, "000991": 83, "998020": 83, "001946": 83, "002915": 83, "998054": 83, "001938": 83, "002904": 83, "998062": 83, "001020": 83, "998980": 83, "001018": 83, "002035": 83, "998982": 83, "999009": 83, "0003": 83, "0002": 83, "36": [83, 85, 91, 94, 97], "41": [83, 85, 90, 91, 93, 94], "44": [83, 89, 90, 91, 94, 96], "71": [83, 86, 90, 93, 94], "071": 83, "067269": 83, "929": 83, "046": 83, "058243": 83, "954": 83, "035": 83, "032096": 83, "965": 83, "031": 83, "012232": 83, "969": 83, "022": 83, "025896": 83, "978": [83, 85], "020": [83, 86], "013092": 83, "018": 83, "013065": 83, "016": 83, "030542": 83, "984": 83, "013": 83, "020833": 83, "987": 83, "012": 83, "010020": 83, "988": 83, "0073": 83, "0020": 83, "0016": 83, "0015": 83, "0013": 83, "0012": 83, "0010": 83, "0008": 83, "0007": 83, "0006": 83, "0005": 83, "0004": 83, "244": [83, 90], "98": [83, 84, 93, 94], "452381": 83, "459770": 83, "72": [83, 85, 86, 89, 91, 93, 94], "523364": 83, "460784": 83, "446602": 83, "57": [83, 85, 86, 94], "68": [83, 85, 86, 90, 94, 95], "103774": 83, "030612": 83, "97": [83, 84, 86, 90, 91, 93, 94, 95, 97], "110092": 83, "049020": 83, "99": [83, 86, 94, 95], "0034": 83, "0032": 83, "0026": 83, "0025": 83, "4945": 83, "4946": 83, "4947": 83, "4948": 83, "4949": 83, "4950": 83, "846": 83, "82": [83, 86, 90, 93, 94], "7532": 83, "532": 83, "034483": 83, "009646": 83, "965517": 83, "030457": 83, "020513": 83, "969543": 83, "028061": 83, "035443": 83, "971939": 83, "025316": 83, "005168": 83, "974684": 83, "049751": 83, "979487": 83, "019920": 83, "042802": 83, "980080": 83, "017677": 83, "005115": 83, "982323": 83, "012987": 83, "005236": 83, "987013": 83, "012723": 83, "025126": 83, "987277": 83, "010989": 83, "008264": 83, "989011": 83, "010283": 83, "027778": 83, "989717": 83, "009677": 83, "990323": 83, "007614": 83, "010127": 83, "992386": 83, "005051": 83, "994949": 83, "005025": 83, "994975": 83, "005013": 83, "994987": 83, "001859": 83, "001328": 83, "000929": 83, "000664": 83, "186": [83, 86], "188": [83, 86, 89], "189": [83, 86], "snippet": 84, "nlp": [84, 97], "mind": [84, 86], "number_of_class": 84, "total_number_of_data_point": 84, "drop": [84, 88, 93, 96], "feed": 84, "alphabet": 84, "labels_proper_format": 84, "your_classifi": 84, "issues_datafram": 84, "class_predicted_for_flagged_exampl": 84, "class_predicted_for_all_exampl": 84, "grant": 84, "datataset": 84, "fair": [84, 86], "game": 84, "speedup": [84, 91], "flexibl": 84, "tempfil": 84, "mkdtemp": 84, "sped": 84, "anywai": 84, "pred_probs_merg": 84, "merge_rare_class": 84, "count_threshold": 84, "class_mapping_orig2new": 84, "heath_summari": 84, "num_examples_per_class": 84, "rare_class": 84, "num_classes_merg": 84, "other_class": 84, "labels_merg": 84, "new_c": 84, "merged_prob": 84, "hstack": [84, 85, 86, 88], "new_class": 84, "original_class": 84, "num_check": 84, "ones_array_ref": 84, "isclos": 84, "though": [84, 86, 97], "successfulli": 84, "meaning": [84, 91], "virtuou": [84, 88], "cycl": [84, 88], "jointli": 84, "junk": 84, "clutter": 84, "unknown": 84, "caltech": 84, "combined_boolean_mask": 84, "mask1": 84, "mask2": 84, "gradientboostingclassifi": [84, 86], "true_error": [84, 86, 89], "101": [84, 90], "102": [84, 89, 90], "104": [84, 86, 90], "model_to_find_error": 84, "model_to_return": 84, "cl0": 84, "randomizedsearchcv": 84, "expens": 84, "param_distribut": 84, "learning_r": [84, 86], "max_depth": [84, 86], "magnitud": 84, "coeffici": [84, 93], "optin": 84, "environ": [84, 86], "rerun": [84, 86], "cell": [84, 86], "On": [84, 86, 90], "unabl": [84, 86], "render": [84, 86], "nbviewer": [84, 86], "nbsp": [84, 86], "cleanlearninginot": [84, 86], "fittedcleanlearn": [84, 86], "linearregressionlinearregress": 84, "n_init": 84, "fit_predict": 84, "continuous_column": 84, "categorical_column": 84, "data_df": 84, "feature_a": 84, "feature_b": 84, "unexpectedli": 84, "emphas": 84, "especi": [84, 85, 93, 95, 96], "crucial": 84, "merge_duplicate_set": 84, "merge_kei": 84, "construct_group_kei": 84, "merged_set": 84, "consolidate_set": 84, "tolist": [84, 89], "issubset": 84, "frozenset": 84, "sets_list": 84, "mutabl": 84, "new_set": 84, "current_set": 84, "intersecting_set": 84, "lowest_score_strategi": 84, "sub_df": 84, "idxmin": 84, "filter_near_dupl": 84, "strategy_fn": 84, "strategy_kwarg": 84, "duplicate_row": 84, "group_kei": 84, "to_keep_indic": 84, "groupbi": 84, "explod": 84, "to_remov": 84, "isin": [84, 91], "kept": 84, "near_duplicate_issu": [84, 85], "ids_to_remove_seri": 84, "tmp": 84, "ipykernel_6149": 84, "1995098996": 84, "deprecationwarn": 84, "dataframegroupbi": 84, "include_group": 84, "silenc": 84, "assist": 84, "streamlin": 84, "ux": 84, "agpl": 84, "compani": 84, "commerci": 84, "alter": 84, "email": 84, "discuss": 84, "anywher": 84, "profession": 84, "expert": 84, "60": [85, 86, 93, 94], "excess": 85, "torchvis": [85, 91], "tensordataset": 85, "stratifiedkfold": [85, 89], "tqdm": 85, "fashion_mnist": 85, "num_row": 85, "60000": 85, "pil": 85, "transformed_dataset": 85, "with_format": 85, "unsqueez": 85, "cpu_count": 85, "torch_dataset": 85, "quick": [85, 89], "relu": 85, "batchnorm2d": 85, "maxpool2d": 85, "lazylinear": 85, "flatten": 85, "get_test_accuraci": 85, "testload": [85, 91], "energi": 85, "trainload": [85, 91], "n_epoch": 85, "patienc": 85, "criterion": 85, "crossentropyloss": 85, "adamw": 85, "best_test_accuraci": 85, "start_epoch": 85, "running_loss": 85, "best_epoch": 85, "end_epoch": 85, "3f": [85, 93], "acc": [85, 86], "time_taken": 85, "compute_embed": 85, "compute_pred_prob": 85, "train_batch_s": 85, "num_work": 85, "worker": [85, 97], "train_id_list": 85, "test_id_list": 85, "train_id": 85, "test_id": 85, "embeddings_model": 85, "ntrain": 85, "trainset": 85, "testset": 85, "pin_memori": 85, "fold_embed": 85, "fold_pred_prob": 85, "finish": 85, "482": 85, "720": 85, "195": 85, "806": 85, "stderr": [85, 91, 94], "sphinxverbatim": [85, 91, 94, 97], "73it": [85, 94], "13it": [85, 91, 94], "37it": [85, 91, 94], "53it": [85, 94], "89it": [85, 94], "26it": [85, 91], "70it": [85, 91, 94], "68it": [85, 94], "05it": [85, 94], "40it": [85, 94], "84it": [85, 94], "90it": [85, 94], "63": [85, 86, 90, 93, 94], "36it": [85, 94], "32it": [85, 91, 94], "493": 85, "060": 85, "064": 85, "330": [85, 90], "505": 85, "813": 85, "65it": [85, 91, 94], "42it": [85, 91, 94], "09it": [85, 94], "39it": [85, 94], "85it": [85, 94], "77it": [85, 94], "48it": [85, 91, 94], "34it": [85, 94], "54it": [85, 94], "99it": [85, 94], "23it": [85, 94], "476": 85, "340": 85, "068": 85, "328": [85, 90], "310": 85, "795": 85, "46it": [85, 94], "22it": [85, 94], "17it": [85, 94], "62": [85, 86, 90, 93, 94], "47it": [85, 91, 94], "62it": [85, 94], "81it": [85, 94], "95it": [85, 94], "00it": [85, 91, 94], "83it": [85, 91, 94], "01it": [85, 94], "50it": [85, 94], "reorder": 85, "vision": 85, "grayscal": 85, "exce": 85, "max_preval": 85, "7714": 85, "3772": 85, "3585": 85, "166": 85, "3651": 85, "27080": 85, "873833e": 85, "40378": 85, "915575e": 85, "25316": 85, "390277e": 85, "06": [85, 86, 90, 94, 97], "2090": 85, "751164e": 85, "14999": 85, "881301e": 85, "9569": 85, "11262": 85, "000003": 85, "19228": 85, "000010": 85, "dress": 85, "32657": 85, "000013": 85, "21282": 85, "000016": 85, "53564": 85, "000018": 85, "pullov": 85, "6321": 85, "30968": 85, "001267": 85, "30659": 85, "000022": [85, 97], "47824": 85, "001454": 85, "3370": 85, "000026": 85, "54565": 85, "001854": 85, "9762": 85, "258": 85, "47139": 85, "000033": 85, "166980": 85, "986195": 85, "997205": 85, "948781": 85, "999358": 85, "54078": 85, "17371": 85, "000025": 85, "plot_label_issue_exampl": 85, "ncol": [85, 91], "nrow": [85, 91], "ceil": 85, "axes_list": 85, "label_issue_indic": 85, "gl": 85, "sl": 85, "fontdict": 85, "imshow": [85, 91], "cmap": [85, 93], "grai": 85, "subplots_adjust": 85, "hspace": 85, "outsiz": 85, "outlier_issues_df": 85, "depict": [85, 89, 90, 91, 92, 94], "plot_outlier_issues_exampl": 85, "n_comparison_imag": 85, "sample_from_class": 85, "number_of_sampl": 85, "non_outlier_indic": 85, "isnul": 85, "non_outlier_indices_excluding_curr": 85, "sampled_indic": 85, "label_scores_of_sampl": 85, "top_score_indic": 85, "top_label_indic": 85, "sampled_imag": 85, "get_image_given_label_and_sampl": 85, "image_from_dataset": 85, "corresponding_label": 85, "comparison_imag": 85, "images_to_plot": 85, "idlist": 85, "iterrow": 85, "closest": 85, "counterpart": 85, "near_duplicate_issues_df": 85, "plot_near_duplicate_issue_exampl": 85, "seen_id_pair": 85, "get_image_and_given_label_and_predicted_label": 85, "duplicate_imag": 85, "nd_set": 85, "challeng": 85, "dark_issu": 85, "reveal": [85, 90, 94], "dark_scor": 85, "dark_issues_df": 85, "is_dark_issu": 85, "34848": 85, "203922": 85, "50270": 85, "204588": 85, "3936": 85, "213098": 85, "733": 85, "217686": 85, "8094": 85, "230118": 85, "plot_image_issue_exampl": 85, "difficult": 85, "disproportion": 85, "lowinfo_issu": 85, "low_information_scor": 85, "lowinfo_issues_df": 85, "is_low_information_issu": 85, "53050": 85, "067975": 85, "40875": 85, "089929": 85, "9594": 85, "092601": 85, "34825": 85, "107744": 85, "37530": 85, "108516": 85, "lot": 85, "depth": 86, "survei": [86, 97], "focus": [86, 88, 89, 93], "scienc": 86, "multivariate_norm": [86, 88, 89], "make_data": [86, 88], "cov": [86, 88, 89], "avg_trac": [86, 89], "test_label": [86, 89, 91, 96], "py_tru": 86, "noise_matrix_tru": 86, "noise_marix": 86, "s_test": 86, "noisy_test_label": 86, "purpl": 86, "val": 86, "namespac": 86, "exec": 86, "markerfacecolor": [86, 89], "markeredgecolor": [86, 89, 93], "markers": [86, 89, 93], "markeredgewidth": [86, 89, 93], "realist": 86, "7560": 86, "637318e": 86, "896262e": 86, "548391e": 86, "923417e": 86, "375075e": 86, "3454": 86, "014051": 86, "020451": 86, "249": [86, 90, 97], "042594": 86, "043859": 86, "045954": 86, "6120": 86, "023714": 86, "007136": 86, "119": [86, 90], "107266": 86, "103": [86, 90], "033738": 86, "238": [86, 90, 97], "119505": 86, "236": [86, 90], "037843": 86, "222": 86, "614915": 86, "122": [86, 90], "624422": 86, "625965": 86, "626079": 86, "118": 86, "627675": 86, "695223": 86, "323529": 86, "523015": 86, "013720": 86, "675727": 86, "646521": 86, "anyth": 86, "enhanc": [86, 88, 90], "magic": 86, "83": [86, 90, 93, 94, 95, 97], "liter": 86, "identif": 86, "x27": 86, "logisticregressionlogisticregress": 86, "ever": 86, "092": 86, "040": 86, "024": 86, "004": 86, "surpris": 86, "1705": 86, "01936": 86, "ton": 86, "yourfavoritemodel1": 86, "merged_label": 86, "merged_test_label": 86, "newli": [86, 88], "yourfavoritemodel2": 86, "yourfavoritemodel3": 86, "cl3": 86, "takeawai": 86, "That": [86, 89], "randomli": 86, "my_test_pred_prob": 86, "my_test_pr": 86, "issues_test": 86, "corrected_test_label": 86, "pretend": 86, "cl_test_pr": 86, "69": [86, 91, 93, 94], "fairli": 86, "label_acc": 86, "percentag": 86, "offset": 86, "nquestion": 86, "overestim": 86, "answer": 86, "experienc": 86, "76": [86, 89, 90, 93, 94, 95], "knowledg": 86, "quantiti": [86, 93], "prioiri": 86, "known": 86, "versatil": 86, "label_issues_indic": 86, "213": [86, 90], "212": [86, 95, 97], "218": [86, 90], "152": 86, "197": [86, 90], "196": [86, 90], "170": 86, "214": 86, "164": [86, 89], "198": [86, 90], "191": [86, 90], "121": [86, 96], "117": [86, 93], "206": [86, 90], "115": [86, 90], "193": 86, "194": 86, "201": [86, 90], "174": 86, "163": [86, 97], "150": [86, 88, 90, 97], "169": [86, 97], "151": [86, 90], "168": 86, "precision_scor": 86, "recall_scor": 86, "f1_score": 86, "true_label_issu": 86, "filter_by_list": 86, "718750": [86, 88], "807018": 86, "912": 86, "733333": 86, "800000": 86, "721311": 86, "792793": 86, "908": 86, "676923": 86, "765217": 86, "892": 86, "567901": 86, "702290": 86, "844": 86, "gaug": 86, "label_issues_count": 86, "155": [86, 90], "156": 86, "172": [86, 89], "easiest": 86, "modular": 86, "penalti": 86, "l2": 86, "model3": 86, "n_estim": 86, "cv_pred_probs_1": 86, "cv_pred_probs_2": 86, "cv_pred_probs_3": 86, "label_quality_scores_best": 86, "cv_pred_probs_ensembl": 86, "label_quality_scores_bett": 86, "superior": [86, 92], "workflow": [87, 93], "speechbrain": 87, "timm": 87, "glad": 88, "multiannotator_label": 88, "300": [88, 97], "noisier": 88, "111": [88, 93, 97], "local_data": [88, 89], "true_labels_train": [88, 89], "noise_matrix_bett": 88, "noise_matrix_wors": 88, "transpos": [88, 91], "dropna": 88, "zfill": 88, "row_na_check": 88, "notna": 88, "reset_index": 88, "a0001": 88, "a0002": 88, "a0003": 88, "a0004": 88, "a0005": 88, "a0006": 88, "a0007": 88, "a0008": 88, "a0009": 88, "a0010": 88, "a0041": 88, "a0042": 88, "a0043": 88, "a0044": 88, "a0045": 88, "a0046": 88, "a0047": 88, "a0048": 88, "a0049": 88, "a0050": 88, "na": 88, "60856743": 88, "41693214": 88, "40908785": 88, "87147629": 88, "64941785": 88, "10774851": 88, "0524466": 88, "71853246": 88, "37169848": 88, "66031048": 88, "multiannotator_util": 88, "crude": 88, "straight": 88, "majority_vote_label": 88, "736118": 88, "757751": 88, "782232": 88, "715565": 88, "824256": 88, "quality_annotator_a0001": 88, "quality_annotator_a0002": 88, "quality_annotator_a0003": 88, "quality_annotator_a0004": 88, "quality_annotator_a0005": 88, "quality_annotator_a0006": 88, "quality_annotator_a0007": 88, "quality_annotator_a0008": 88, "quality_annotator_a0009": 88, "quality_annotator_a0010": 88, "quality_annotator_a0041": 88, "quality_annotator_a0042": 88, "quality_annotator_a0043": 88, "quality_annotator_a0044": 88, "quality_annotator_a0045": 88, "quality_annotator_a0046": 88, "quality_annotator_a0047": 88, "quality_annotator_a0048": 88, "quality_annotator_a0049": 88, "quality_annotator_a0050": 88, "070564": 88, "216078": 88, "119188": 88, "alongisd": 88, "244981": 88, "208333": 88, "295979": 88, "294118": 88, "324197": 88, "310345": 88, "355316": 88, "346154": 88, "439732": 88, "480000": 88, "a0031": 88, "523205": 88, "580645": 88, "a0034": 88, "535313": 88, "607143": 88, "a0021": 88, "606999": 88, "a0015": 88, "609526": 88, "678571": 88, "a0011": 88, "621103": 88, "692308": 88, "wors": 88, "improved_consensus_label": 88, "majority_vote_accuraci": 88, "cleanlab_label_accuraci": 88, "8581081081081081": 88, "9797297297297297": 88, "besid": 88, "sorted_consensus_quality_scor": 88, "worst_qual": 88, "better_qu": 88, "worst_quality_accuraci": 88, "better_quality_accuraci": 88, "9893238434163701": 88, "improved_pred_prob": 88, "treat": [88, 89, 93, 97], "analzi": 88, "copyright": 89, "advertis": 89, "violenc": 89, "nsfw": 89, "suppli": [89, 90, 93], "celeba": 89, "make_multilabel_data": 89, "boxes_coordin": 89, "box_multilabel": 89, "make_multi": 89, "bx1": 89, "by1": 89, "bx2": 89, "by2": 89, "label_list": 89, "ur": 89, "upper": 89, "inidx": 89, "logical_and": 89, "inv_d": 89, "labels_idx": 89, "true_labels_test": 89, "dict_unique_label": 89, "get_color_arrai": 89, "dcolor": 89, "aa4400": 89, "55227f": 89, "55a100": 89, "00ff00": 89, "007f7f": 89, "386b55": 89, "0000ff": 89, "simplic": 89, "advis": 89, "y_onehot": 89, "single_class_label": 89, "stratifi": [89, 92], "kf": 89, "train_index": 89, "test_index": 89, "clf_cv": 89, "x_train_cv": 89, "x_test_cv": 89, "y_train_cv": 89, "y_test_cv": 89, "y_pred_cv": 89, "saw": 89, "num_to_displai": 89, "09": [89, 90, 93, 94], "275": 89, "267": 89, "225": 89, "171": 89, "234": 89, "165": 89, "227": [89, 90], "262": [89, 90], "263": [89, 90], "266": [89, 90], "139": 89, "143": [89, 90], "216": [89, 90], "265": 89, "159": [89, 90], "despit": [89, 97], "suspect": 89, "888": 89, "8224": 89, "9632": 89, "968": 89, "6512": 89, "0444": 89, "774": 89, "labels_binary_format": 89, "labels_list_format": 89, "surround": 90, "scene": 90, "coco": 90, "everydai": 90, "has_label_issu": 90, "insal": 90, "nc": [90, 94, 97], "s3": [90, 94, 97], "amazonaw": [90, 94, 97], "objectdetectionbenchmark": 90, "tutorial_obj": 90, "pkl": 90, "example_imag": 90, "unzip": [90, 97], "_separate_label": 90, "_separate_predict": 90, "begin": 90, "image_path": 90, "rb": 90, "image_to_visu": 90, "seg_map": 90, "334": 90, "float32": 90, "bboxes_ignor": 90, "290": 90, "286": 90, "285": 90, "224": 90, "231": 90, "293": 90, "235": 90, "289": 90, "282": 90, "74": [90, 93, 94, 95], "281": 90, "271": 90, "280": 90, "277": 90, "279": 90, "287": 90, "299": 90, "276": 90, "307": 90, "321": 90, "326": 90, "333": 90, "261": 90, "319": 90, "257": 90, "295": 90, "283": 90, "243": 90, "303": 90, "316": 90, "247": 90, "323": 90, "327": 90, "226": 90, "228": 90, "232": 90, "219": 90, "239": 90, "240": 90, "209": 90, "242": 90, "202": 90, "230": 90, "215": 90, "220": 90, "229": 90, "217": [90, 97], "237": 90, "207": 90, "204": 90, "84": [90, 91, 93, 94], "205": 90, "223": 90, "153": 90, "149": 90, "140": 90, "124": 90, "268": 90, "273": 90, "108": 90, "284": 90, "110": 90, "136": 90, "145": 90, "173": 90, "297": 90, "317": 90, "192": 90, "332": 90, "324": 90, "203": 90, "320": 90, "314": 90, "199": 90, "291": 90, "000000481413": 90, "jpg": 90, "42398": 90, "44503": 90, "337": [90, 96], "29968": 90, "336": 90, "21005": 90, "9978472": 90, "forgot": 90, "drew": 90, "label_issue_idx": 90, "num_examples_to_show": 90, "138": 90, "candid": 90, "97489622": 90, "70610878": 90, "98764951": 90, "88899237": 90, "99085805": 90, "issue_idx": 90, "95569726e": 90, "03354841e": 90, "57510169e": 90, "58447666e": 90, "39755858e": 90, "issue_to_visu": 90, "000000009483": 90, "95569726168054e": 90, "addition": [90, 94], "visibl": 90, "missmatch": 90, "likelei": 90, "agnost": 90, "vaidat": 90, "inconsist": 90, "000000395701": 90, "033548411774308e": 90, "armchair": 90, "tv": 90, "000000154004": 90, "38300759625496356": 90, "foreground": 90, "000000448410": 90, "0008575101690203273": 90, "crowd": 90, "alon": 90, "explor": [90, 91], "resembl": [90, 91], "000000499768": 90, "9748962231208227": 90, "000000521141": 90, "8889923658893665": 90, "000000143931": 90, "9876495074395956": 90, "bonu": 90, "uncov": 90, "irregular": 90, "anomali": 90, "unusu": [90, 91], "object_detection_util": 90, "calculate_bounding_box_area": 90, "num_imgs_to_show": 90, "lab_object_count": 90, "pred_object_count": 90, "000000430073": 90, "000000183709": 90, "000000189475": 90, "studi": 90, "label_norm": 90, "pred_norm": 90, "area": [90, 94], "assess": 90, "lab_area": 90, "pred_area": 90, "lab_area_mean": 90, "lab_area_std": 90, "max_deviation_valu": 90, "max_deviation_class": 90, "deviation_valu": 90, "deviation_class": 90, "mean_area": 90, "std_area": 90, "class_area": 90, "deviations_awai": 90, "max_deviation_index": 90, "num_imgs_to_show_per_class": 90, "class_num": 90, "sorted_indic": 90, "000000422886": 90, "000000341828": 90, "000000461009": 90, "train_feature_embed": 91, "ood_train_feature_scor": 91, "test_feature_embed": 91, "ood_test_feature_scor": 91, "ood_train_predictions_scor": 91, "train_pred_prob": 91, "ood_test_predictions_scor": 91, "test_pred_prob": 91, "pylab": 91, "rcparam": 91, "baggingclassifi": 91, "therebi": 91, "rescal": 91, "transform_norm": 91, "totensor": 91, "root": 91, "animal_class": 91, "non_animal_class": 91, "animal_idx": 91, "test_idx": 91, "toronto": 91, "edu": 91, "kriz": 91, "170498071": 91, "32768": 91, "242191": 91, "71it": [91, 94], "196608": 91, "805516": 91, "69it": [91, 94], "819200": 91, "2515336": 91, "98it": [91, 94], "3244032": 91, "8505103": 91, "87it": [91, 94], "9502720": 91, "21809878": 91, "15138816": 91, "31208350": 91, "18776064": 91, "32376726": 91, "44it": [91, 94], "23068672": 91, "35369377": 91, "28114944": 91, "39025802": 91, "79it": [91, 94], "32145408": 91, "38585451": 91, "64it": [91, 94], "37519360": 91, "42851052": 91, "41it": [91, 94], "41910272": 91, "40924153": 91, "47185920": 91, "44084786": 91, "35it": [91, 94], "51675136": 91, "42164629": 91, "56786944": 91, "44239731": 91, "31it": [91, 94], "61276160": 91, "42668530": 91, "66224128": 91, "44216856": 91, "45it": [91, 94], "70713344": 91, "42753642": 91, "75628544": 91, "44491349": 91, "80117760": 91, "42704990": 91, "20it": [91, 94], "85065728": 91, "44574577": 91, "07it": [91, 94], "89587712": 91, "42724867": 91, "94633984": 91, "44700899": 91, "96it": [91, 94], "99155968": 91, "42882283": 91, "58it": [91, 94], "104333312": 91, "44771108": 91, "59it": 91, "108855296": 91, "43221947": 91, "72it": [91, 94], "113803264": 91, "44095950": 91, "61it": [91, 94], "118259712": 91, "43110487": 91, "123240448": 91, "44517047": 91, "11it": [91, 94], "127729664": 91, "43014942": 91, "132808704": 91, "45126467": 91, "29it": [91, 94], "137363456": 91, "42978573": 91, "142508032": 91, "44995468": 91, "75it": [91, 94], "147062784": 91, "43213693": 91, "152043520": 91, "44769587": 91, "156565504": 91, "43058934": 91, "161447936": 91, "44628359": 91, "165969920": 91, "42685291": 91, "39295081": 91, "80it": [91, 94], "5000": 91, "plot_imag": 91, "visualize_outli": 91, "txt_class": 91, "img": [91, 93], "npimg": 91, "show_label": 91, "data_subset": 91, "resnet50": 91, "corpu": 91, "2048": 91, "embed_imag": 91, "create_model": 91, "strang": 91, "odd": 91, "train_ood_features_scor": 91, "top_train_ood_features_idx": 91, "fun": 91, "negat": 91, "homogen": 91, "bottom_train_ood_features_idx": 91, "test_ood_features_scor": 91, "top_ood_features_idx": 91, "inevit": 91, "trade": 91, "5th": 91, "percentil": 91, "fifth_percentil": 91, "plt_rang": 91, "hist": 91, "train_outlier_scor": 91, "ylabel": 91, "axvlin": 91, "test_outlier_scor": 91, "ood_features_indic": 91, "revisit": 91, "return_invers": 91, "train_feature_embeddings_sc": 91, "test_feature_embeddings_sc": 91, "train_pred_label": 91, "9702": 91, "train_ood_predictions_scor": 91, "test_ood_predictions_scor": 91, "mainli": [91, 97], "lost": 91, "unsuit": 92, "ok": [92, 97], "convention": 92, "aforement": 92, "hypothet": 92, "contrast": 92, "tradit": 92, "disjoint": 92, "out_of_sample_pred_probs_for_a": 92, "out_of_sample_pred_probs_for_b": 92, "out_of_sample_pred_probs_for_c": 92, "out_of_sample_pred_prob": 92, "price": 93, "incom": 93, "ag": 93, "sensor": 93, "histgradientboostingregressor": 93, "r2_score": 93, "student_grades_r": 93, "final_scor": 93, "true_final_scor": 93, "homework": 93, "3d": 93, "hue": 93, "mpl_toolkit": 93, "mplot3d": 93, "axes3d": 93, "errors_idx": 93, "add_subplot": 93, "z": 93, "colorbar": 93, "errors_mask": 93, "feature_column": 93, "predicted_column": 93, "x_train_raw": 93, "x_test_raw": 93, "categorical_featur": [93, 95], "randomforestregressor": 93, "636197": 93, "499503": 93, "843478": 93, "776647": 93, "350358": 93, "170547": 93, "706969": 93, "984759": 93, "812515": 93, "795928": 93, "identified_issu": [93, 96], "141": 93, "659": 93, "367": 93, "318": 93, "305": 93, "560": 93, "657": 93, "688": 93, "view_datapoint": 93, "concat": 93, "consum": [93, 96], "baseline_model": [93, 96], "preds_og": 93, "r2_og": 93, "838": 93, "robustli": [93, 95, 96], "acceler": [93, 96], "found_label_issu": 93, "preds_cl": 93, "r2_cl": 93, "926": 93, "effort": [93, 95, 96], "favorit": 93, "968627e": 93, "228799": 93, "646674e": 93, "402962": 93, "323818e": 93, "952758": 93, "422144e": 93, "456908": 93, "465815e": 93, "753968": 93, "110719": 93, "000044": 93, "670640": 93, "000060": 93, "749976": 93, "000066": 93, "947007": 93, "000314": 93, "648396": 93, "plu": 93, "synthia": 94, "imagesegment": 94, "given_mask": 94, "predicted_mask": 94, "set_printopt": [94, 97], "sky": 94, "sidewalk": 94, "veget": 94, "terrain": 94, "rider": 94, "pred_probs_filepath": 94, "1088": 94, "1920": 94, "label_filepath": 94, "synthia_class": 94, "maunal": 94, "100000": 94, "244800": 94, "leftmost": 94, "middl": [94, 97], "infact": 94, "rightmost": 94, "discrep": 94, "4997817": 94, "15268": 94, "152663": 94, "30573": 94, "152883": 94, "45862": 94, "152608": 94, "61123": 94, "152455": 94, "06it": 94, "76369": 94, "152398": 94, "67it": 94, "91653": 94, "152543": 94, "78it": 94, "106908": 94, "152112": 94, "15it": 94, "122247": 94, "152513": 94, "02it": 94, "137535": 94, "152624": 94, "152798": 94, "152605": 94, "168059": 94, "152403": 94, "183300": 94, "152113": 94, "198650": 94, "152530": 94, "19it": 94, "214047": 94, "152960": 94, "10it": 94, "229458": 94, "153304": 94, "57it": 94, "244869": 94, "153543": 94, "260224": 94, "153507": 94, "14it": 94, "275575": 94, "153192": 94, "290978": 94, "153441": 94, "52it": 94, "306323": 94, "153313": 94, "321655": 94, "153242": 94, "336980": 94, "153203": 94, "352376": 94, "153426": 94, "27it": 94, "367782": 94, "153611": 94, "383144": 94, "153175": 94, "398484": 94, "153238": 94, "413809": 94, "152354": 94, "16it": 94, "429046": 94, "152347": 94, "55it": 94, "444384": 94, "152653": 94, "459713": 94, "152840": 94, "12it": 94, "475034": 94, "152948": 94, "30it": 94, "490409": 94, "153184": 94, "82it": 94, "505728": 94, "153110": 94, "521040": 94, "153105": 94, "08it": 94, "536416": 94, "153297": 94, "551746": 94, "153133": 94, "56it": 94, "567060": 94, "152739": 94, "582524": 94, "153305": 94, "597920": 94, "153498": 94, "613271": 94, "153405": 94, "18it": 94, "628612": 94, "153256": 94, "643938": 94, "152729": 94, "659212": 94, "152490": 94, "674462": 94, "152140": 94, "689677": 94, "152020": 94, "704893": 94, "152059": 94, "720119": 94, "152117": 94, "38it": 94, "735331": 94, "151521": 94, "750688": 94, "152129": 94, "766110": 94, "152751": 94, "781473": 94, "153012": 94, "04it": 94, "796775": 94, "153005": 94, "812109": 94, "153103": 94, "827420": 94, "152861": 94, "842707": 94, "152618": 94, "858003": 94, "152679": 94, "873374": 94, "152984": 94, "888714": 94, "153106": 94, "904173": 94, "153547": 94, "33it": 94, "919528": 94, "153446": 94, "934896": 94, "153512": 94, "24it": 94, "950248": 94, "152181": 94, "965736": 94, "152981": 94, "981306": 94, "153791": 94, "996719": 94, "153889": 94, "51it": 94, "1012110": 94, "153467": 94, "1027528": 94, "153678": 94, "1042897": 94, "153355": 94, "60it": 94, "1058375": 94, "153778": 94, "1073754": 94, "153340": 94, "1089089": 94, "153232": 94, "1104457": 94, "153362": 94, "93it": 94, "1119796": 94, "153368": 94, "1135134": 94, "152939": 94, "1150458": 94, "153021": 94, "1165800": 94, "153137": 94, "1181114": 94, "153104": 94, "1196425": 94, "146510": 94, "1211763": 94, "148502": 94, "1227163": 94, "150111": 94, "1242483": 94, "151020": 94, "1257923": 94, "152021": 94, "1273251": 94, "152392": 94, "1288667": 94, "152916": 94, "1304131": 94, "153428": 94, "1319493": 94, "153483": 94, "1334923": 94, "153725": 94, "1350480": 94, "154277": 94, "1365987": 94, "154513": 94, "1381441": 94, "154510": 94, "1396963": 94, "154719": 94, "1412436": 94, "154630": 94, "91it": 94, "1427900": 94, "154395": 94, "1443456": 94, "154743": 94, "1458931": 94, "154061": 94, "1474392": 94, "154224": 94, "1489908": 94, "154502": 94, "1505359": 94, "154477": 94, "1520808": 94, "152316": 94, "1536092": 94, "152469": 94, "1551490": 94, "152918": 94, "43it": 94, "1566786": 94, "152765": 94, "1582334": 94, "153574": 94, "1597792": 94, "153872": 94, "1613183": 94, "153880": 94, "1628632": 94, "154059": 94, "1644039": 94, "153950": 94, "1659435": 94, "153931": 94, "1674829": 94, "150891": 94, "1690263": 94, "151909": 94, "1705712": 94, "152672": 94, "1721010": 94, "152762": 94, "1736392": 94, "153075": 94, "1751706": 94, "153091": 94, "1767064": 94, "153236": 94, "1782413": 94, "153308": 94, "1797837": 94, "153583": 94, "66it": 94, "1813334": 94, "153997": 94, "1828735": 94, "153903": 94, "1844126": 94, "153676": 94, "1859495": 94, "152434": 94, "1875037": 94, "153321": 94, "1890580": 94, "153947": 94, "1906123": 94, "154387": 94, "1921567": 94, "154402": 94, "1937009": 94, "154180": 94, "1952511": 94, "154429": 94, "1968011": 94, "154598": 94, "1983472": 94, "154462": 94, "1998919": 94, "154309": 94, "2014351": 94, "153760": 94, "2029728": 94, "153539": 94, "2045083": 94, "2060414": 94, "153086": 94, "2075813": 94, "153327": 94, "2091146": 94, "153295": 94, "2106476": 94, "153241": 94, "2121835": 94, "153342": 94, "2137170": 94, "153094": 94, "2152549": 94, "153299": 94, "2167938": 94, "153474": 94, "2183398": 94, "153807": 94, "2198824": 94, "153939": 94, "2214219": 94, "153921": 94, "2229612": 94, "2245047": 94, "153701": 94, "2260418": 94, "153296": 94, "2275749": 94, "152857": 94, "2291094": 94, "153029": 94, "88it": 94, "2306398": 94, "152930": 94, "2321735": 94, "153058": 94, "2337094": 94, "153214": 94, "2352422": 94, "153231": 94, "2367922": 94, "153757": 94, "2383385": 94, "154015": 94, "2398830": 94, "154143": 94, "2414296": 94, "154294": 94, "2429726": 94, "153837": 94, "2445111": 94, "153667": 94, "86it": 94, "2460479": 94, "151890": 94, "2475988": 94, "152837": 94, "2491431": 94, "2506866": 94, "153615": 94, "2522412": 94, "154163": 94, "2537871": 94, "154287": 94, "2553303": 94, "154293": 94, "2568816": 94, "154541": 94, "2584304": 94, "154640": 94, "2599855": 94, "154898": 94, "2615346": 94, "154665": 94, "2630881": 94, "154867": 94, "2646404": 94, "154973": 94, "97it": 94, "2661935": 94, "155072": 94, "2677443": 94, "154974": 94, "92it": 94, "2692941": 94, "154515": 94, "2708393": 94, "154276": 94, "2723821": 94, "154178": 94, "2739259": 94, "154235": 94, "2754683": 94, "153926": 94, "2770076": 94, "153820": 94, "2785459": 94, "152499": 94, "2800824": 94, "152839": 94, "2816235": 94, "153215": 94, "2831689": 94, "153607": 94, "76it": 94, "2847052": 94, "153491": 94, "2862403": 94, "153419": 94, "2877746": 94, "153366": 94, "2893133": 94, "153514": 94, "2908594": 94, "153841": 94, "2923979": 94, "2939330": 94, "153391": 94, "2954670": 94, "153220": 94, "2969993": 94, "2985358": 94, "153246": 94, "3000894": 94, "153877": 94, "3016305": 94, "153943": 94, "3031700": 94, "153840": 94, "3047085": 94, "153735": 94, "3062478": 94, "153789": 94, "3077886": 94, "153873": 94, "3093381": 94, "154194": 94, "3108801": 94, "154044": 94, "3124206": 94, "153851": 94, "3139592": 94, "153641": 94, "3154957": 94, "153372": 94, "3170295": 94, "153270": 94, "3185782": 94, "153747": 94, "3201183": 94, "153822": 94, "3216566": 94, "153750": 94, "28it": 94, "3231942": 94, "153486": 94, "3247291": 94, "153010": 94, "94it": 94, "3262633": 94, "153131": 94, "3277947": 94, "152734": 94, "3293236": 94, "152779": 94, "3308515": 94, "152733": 94, "3323806": 94, "152783": 94, "3339146": 94, "152966": 94, "3354462": 94, "153022": 94, "3369765": 94, "152962": 94, "3385062": 94, "152894": 94, "3400352": 94, "152666": 94, "3415645": 94, "152708": 94, "3430980": 94, "152898": 94, "3446327": 94, "153067": 94, "3461646": 94, "153102": 94, "3476976": 94, "153158": 94, "49it": 94, "3492292": 94, "153120": 94, "3507605": 94, "152890": 94, "3522908": 94, "152929": 94, "3538202": 94, "152891": 94, "3553492": 94, "152523": 94, "3568866": 94, "152854": 94, "3584239": 94, "153113": 94, "3599641": 94, "153382": 94, "3614980": 94, "153219": 94, "3630303": 94, "3645666": 94, "153258": 94, "3661037": 94, "3676396": 94, "153447": 94, "74it": 94, "3691779": 94, "153559": 94, "3707135": 94, "153499": 94, "3722486": 94, "153335": 94, "3737911": 94, "153606": 94, "3753366": 94, "153887": 94, "3768778": 94, "153954": 94, "3784257": 94, "154203": 94, "63it": 94, "3799678": 94, "154022": 94, "21it": 94, "3815093": 94, "154058": 94, "3830531": 94, "154154": 94, "3845947": 94, "153835": 94, "3861331": 94, "152363": 94, "3876571": 94, "148257": 94, "3892073": 94, "150233": 94, "03it": 94, "3907535": 94, "151525": 94, "3923032": 94, "152544": 94, "3938584": 94, "3954145": 94, "154078": 94, "3969685": 94, "154471": 94, "3985282": 94, "154916": 94, "4000824": 94, "155065": 94, "4016398": 94, "155265": 94, "4031927": 94, "155263": 94, "4047504": 94, "155411": 94, "4063142": 94, "155701": 94, "4078784": 94, "155914": 94, "4094376": 94, "155609": 94, "4109938": 94, "155507": 94, "4125523": 94, "4141085": 94, "155552": 94, "4156641": 94, "155421": 94, "4172184": 94, "155117": 94, "4187696": 94, "154534": 94, "4203150": 94, "154184": 94, "4218595": 94, "154242": 94, "4234020": 94, "154099": 94, "4249431": 94, "153957": 94, "4264935": 94, "154279": 94, "4280381": 94, "154332": 94, "4295885": 94, "4311340": 94, "154233": 94, "4326764": 94, "153934": 94, "4342158": 94, "153797": 94, "4357619": 94, "154038": 94, "4373121": 94, "154329": 94, "4388575": 94, "154391": 94, "4404026": 94, "154426": 94, "4419469": 94, "154210": 94, "4434891": 94, "154138": 94, "4450305": 94, "154134": 94, "4465719": 94, "154121": 94, "4481174": 94, "154247": 94, "4496599": 94, "154208": 94, "4512066": 94, "154345": 94, "4527501": 94, "153705": 94, "4542978": 94, "154023": 94, "4558492": 94, "154356": 94, "4573936": 94, "154379": 94, "4589375": 94, "153899": 94, "4604778": 94, "153936": 94, "4620173": 94, "4635556": 94, "153371": 94, "4650894": 94, "153092": 94, "4666439": 94, "153793": 94, "4682119": 94, "154691": 94, "4697589": 94, "154604": 94, "4713125": 94, "154828": 94, "4728632": 94, "4744143": 94, "154959": 94, "25it": 94, "4759678": 94, "155073": 94, "4775186": 94, "154917": 94, "4790721": 94, "155045": 94, "4806226": 94, "154851": 94, "4821712": 94, "154804": 94, "4837193": 94, "154721": 94, "4852747": 94, "154964": 94, "4868310": 94, "155162": 94, "4883827": 94, "4899377": 94, "155200": 94, "4914979": 94, "155442": 94, "4930524": 94, "155279": 94, "4946053": 94, "155209": 94, "4961574": 94, "155197": 94, "4977094": 94, "154982": 94, "4992593": 94, "154638": 94, "153550": 94, "3263230": 94, "783379": 94, "275110": 94, "255792": 94, "78225": 94, "55990": 94, "54427": 94, "33591": 94, "24645": 94, "21308": 94, "15045": 94, "14171": 94, "13832": 94, "13498": 94, "11490": 94, "9164": 94, "8769": 94, "6999": 94, "6031": 94, "5011": 94, "mistakenli": 94, "class_issu": 94, "aim": [94, 97], "domin": 94, "extratreesclassifi": 95, "extratre": 95, "ranked_label_issu": [95, 96], "labelencod": [95, 96], "labels_raw": 95, "interg": [95, 96], "tress": 95, "827": 95, "cheat": 95, "0pt": 95, "233": 95, "labels_train": 95, "labels_test": 95, "acc_og": [95, 96], "783068783068783": 95, "acc_cl": [95, 96], "8095238095238095": 95, "earlier": [96, 97], "raw_label": 96, "raw_train_text": 96, "raw_test_text": 96, "raw_train_label": 96, "raw_test_label": 96, "encond": 96, "train_text": 96, "test_text": 96, "858371": 96, "547274": 96, "826228": 96, "966008": 96, "792449": 96, "646": 96, "390": 96, "628": 96, "702": 96, "135": 96, "735": 96, "print_as_df": 96, "inverse_transform": 96, "fight": 96, "bunch": 97, "conll": 97, "2003": 97, "love": 97, "n_i": 97, "optional_list_of_ordered_class_nam": 97, "deepai": 97, "conll2003": 97, "rm": 97, "tokenclassif": 97, "2024": 97, "2400": 97, "52e0": 97, "1a01": 97, "1114": 97, "connect": 97, "443": 97, "await": 97, "982975": 97, "960k": 97, "kb": 97, "959": 97, "94k": 97, "mb": 97, "directori": 97, "inflat": 97, "17045998": 97, "16m": 97, "octet": 97, "53k": 97, "07mb": 97, "33m": 97, "51mb": 97, "81m": 97, "7mb": 97, "26m": 97, "9mb": 97, "bert": 97, "read_npz": 97, "filepath": 97, "corrsespond": 97, "iob2": 97, "given_ent": 97, "entity_map": 97, "readfil": 97, "sep": 97, "startswith": 97, "docstart": 97, "isalpha": 97, "isupp": 97, "indices_to_preview": 97, "nsentenc": 97, "eu": 97, "reject": 97, "boycott": 97, "british": 97, "lamb": 97, "00030412": 97, "00023826": 97, "99936208": 97, "00007009": 97, "00002545": 97, "99998795": 97, "00000401": 97, "00000218": 97, "00000455": 97, "00000131": 97, "00000749": 97, "99996115": 97, "00001371": 97, "0000087": 97, "00000895": 97, "99998936": 97, "00000382": 97, "00000178": 97, "00000366": 97, "00000137": 97, "99999101": 97, "00000266": 97, "00000174": 97, "0000035": 97, "00000109": 97, "99998768": 97, "00000482": 97, "00000202": 97, "00000438": 97, "0000011": 97, "00000465": 97, "99996392": 97, "00001105": 97, "0000116": 97, "00000878": 97, "99998671": 97, "00000364": 97, "00000213": 97, "00000472": 97, "00000281": 97, "99999073": 97, "00000211": 97, "00000159": 97, "00000442": 97, "00000115": 97, "peter": 97, "blackburn": 97, "00000358": 97, "00000529": 97, "99995623": 97, "0000129": 97, "0000024": 97, "00001812": 97, "99994141": 97, "00001645": 97, "00002162": 97, "brussel": 97, "1996": 97, "00001172": 97, "00000821": 97, "00004661": 97, "0000618": 97, "99987167": 97, "99999061": 97, "00000201": 97, "00000195": 97, "00000408": 97, "00000135": 97, "2254": 97, "2907": 97, "19392": 97, "9962": 97, "8904": 97, "19303": 97, "12918": 97, "9256": 97, "11855": 97, "18392": 97, "20426": 97, "19402": 97, "14744": 97, "19371": 97, "4645": 97, "10331": 97, "9430": 97, "6143": 97, "18367": 97, "12914": 97, "todai": 97, "weather": 97, "march": 97, "scalfaro": 97, "northern": 97, "himself": 97, "said": 97, "germani": 97, "nastja": 97, "rysich": 97, "north": 97, "spla": 97, "fought": 97, "khartoum": 97, "govern": 97, "south": 97, "1983": 97, "autonomi": 97, "animist": 97, "region": 97, "moslem": 97, "arabis": 97, "mayor": 97, "antonio": 97, "gonzalez": 97, "garcia": 97, "revolutionari": 97, "parti": 97, "wednesdai": 97, "troop": 97, "raid": 97, "farm": 97, "stole": 97, "rape": 97, "women": 97, "spring": 97, "chg": 97, "hrw": 97, "12pct": 97, "princ": 97, "photo": 97, "moment": 97, "spokeswoman": 97, "rainier": 97, "told": 97, "reuter": 97, "danila": 97, "carib": 97, "w224": 97, "equip": 97, "radiomet": 97, "earn": 97, "19996": 97, "london": 97, "denom": 97, "sale": 97, "uk": 97, "jp": 97, "fr": 97, "maccabi": 97, "hapoel": 97, "haifa": 97, "tel": 97, "aviv": 97, "hospit": 97, "rever": 97, "roman": 97, "cathol": 97, "nun": 97, "admit": 97, "calcutta": 97, "week": 97, "ago": 97, "fever": 97, "vomit": 97, "allianc": 97, "embattl": 97, "kabul": 97, "salang": 97, "highwai": 97, "mondai": 97, "tuesdai": 97, "suprem": 97, "council": 97, "led": 97, "jumbish": 97, "milli": 97, "movement": 97, "warlord": 97, "abdul": 97, "rashid": 97, "dostum": 97, "dollar": 97, "exchang": 97, "3570": 97, "12049": 97, "born": 97, "1937": 97, "provinc": 97, "anhui": 97, "dai": 97, "came": 97, "shanghai": 97, "citi": 97, "prolif": 97, "author": 97, "teacher": 97, "chines": 97, "16764": 97, "1990": 97, "historian": 97, "alan": 97, "john": 97, "percival": 97, "taylor": 97, "di": 97, "20446": 97, "pace": 97, "bowler": 97, "ian": 97, "harvei": 97, "claim": 97, "victoria": 97, "15514": 97, "cotti": 97, "osc": 97, "foreign": 97, "minist": 97, "7525": 97, "sultan": 97, "specter": 97, "met": 97, "crown": 97, "abdullah": 97, "defenc": 97, "aviat": 97, "jeddah": 97, "saudi": 97, "agenc": 97, "2288": 97, "hi": 97, "customari": 97, "outfit": 97, "champion": 97, "damp": 97, "scalp": 97, "canada": 97, "reign": 97, "olymp": 97, "donovan": 97, "bailei": 97, "1992": 97, "linford": 97, "christi": 97, "britain": 97, "1984": 97, "1988": 97, "carl": 97, "lewi": 97, "ambigi": 97, "punctuat": 97, "chicago": 97, "digest": 97, "philadelphia": 97, "usda": 97, "york": 97, "token_issu": 97, "471": 97, "kean": 97, "year": 97, "contract": 97, "manchest": 97, "19072": 97, "societi": 97, "million": 97, "bite": 97, "deliv": 97, "19910": 97, "father": 97, "clarenc": 97, "woolmer": 97, "renam": 97, "uttar": 97, "pradesh": 97, "india": 97, "ranji": 97, "trophi": 97, "nation": 97, "championship": 97, "captain": 97, "1949": 97, "15658": 97, "19879": 97, "iii": 97, "brian": 97, "shimer": 97, "randi": 97, "jone": 97, "19104": 97}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [33, 0, 0, "-", "dataset"], [36, 0, 0, "-", "experimental"], [39, 0, 0, "-", "filter"], [40, 0, 0, "-", "internal"], [51, 0, 0, "-", "models"], [53, 0, 0, "-", "multiannotator"], [56, 0, 0, "-", "multilabel_classification"], [59, 0, 0, "-", "object_detection"], [62, 0, 0, "-", "outlier"], [63, 0, 0, "-", "rank"], [64, 0, 0, "-", "regression"], [68, 0, 0, "-", "segmentation"], [72, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [30, 0, 0, "-", "report"], [31, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"], [10, 2, 1, "", "MultiClass"], [10, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "data_valuation"], [17, 0, 0, "-", "duplicate"], [18, 0, 0, "-", "imbalance"], [20, 0, 0, "-", "issue_manager"], [21, 0, 0, "-", "label"], [24, 0, 0, "-", "noniid"], [25, 0, 0, "-", "null"], [26, 0, 0, "-", "outlier"], [29, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[16, 6, 1, "", "DEFAULT_THRESHOLD"], [16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 6, 1, "", "near_duplicate_sets"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[21, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 3, 1, "", "get_health_summary"], [21, 6, 1, "", "health_summary_parameters"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[23, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[23, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[24, 2, 1, "", "NonIIDIssueManager"], [24, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[25, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[26, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[26, 6, 1, "", "DEFAULT_THRESHOLDS"], [26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 6, 1, "", "ood"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[28, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[28, 2, 1, "", "RegressionLabelIssueManager"], [28, 1, 1, "", "find_issues_with_features"], [28, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[29, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[29, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [29, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "filter_cluster_ids"], [29, 3, 1, "", "find_issues"], [29, 3, 1, "", "get_worst_cluster"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 3, 1, "", "perform_clustering"], [29, 3, 1, "", "report"], [29, 3, 1, "", "set_knn_graph"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[30, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[30, 3, 1, "", "get_report"], [30, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[31, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[31, 6, 1, "", "CLASSIFICATION"], [31, 6, 1, "", "MULTILABEL"], [31, 6, 1, "", "REGRESSION"], [31, 3, 1, "", "__contains__"], [31, 3, 1, "", "__getitem__"], [31, 3, 1, "", "__iter__"], [31, 3, 1, "", "__len__"], [31, 3, 1, "", "from_str"], [31, 4, 1, "", "is_classification"], [31, 4, 1, "", "is_multilabel"], [31, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[33, 1, 1, "", "find_overlapping_classes"], [33, 1, 1, "", "health_summary"], [33, 1, 1, "", "overall_label_health_score"], [33, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[34, 0, 0, "-", "cifar_cnn"], [35, 0, 0, "-", "coteaching"], [37, 0, 0, "-", "label_issues_batched"], [38, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[34, 2, 1, "", "CNN"], [34, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[34, 6, 1, "", "T_destination"], [34, 3, 1, "", "__call__"], [34, 3, 1, "", "add_module"], [34, 3, 1, "", "apply"], [34, 3, 1, "", "bfloat16"], [34, 3, 1, "", "buffers"], [34, 6, 1, "", "call_super_init"], [34, 3, 1, "", "children"], [34, 3, 1, "", "compile"], [34, 3, 1, "", "cpu"], [34, 3, 1, "", "cuda"], [34, 3, 1, "", "double"], [34, 6, 1, "", "dump_patches"], [34, 3, 1, "", "eval"], [34, 3, 1, "", "extra_repr"], [34, 3, 1, "", "float"], [34, 3, 1, "id0", "forward"], [34, 3, 1, "", "get_buffer"], [34, 3, 1, "", "get_extra_state"], [34, 3, 1, "", "get_parameter"], [34, 3, 1, "", "get_submodule"], [34, 3, 1, "", "half"], [34, 3, 1, "", "ipu"], [34, 3, 1, "", "load_state_dict"], [34, 3, 1, "", "modules"], [34, 3, 1, "", "named_buffers"], [34, 3, 1, "", "named_children"], [34, 3, 1, "", "named_modules"], [34, 3, 1, "", "named_parameters"], [34, 3, 1, "", "parameters"], [34, 3, 1, "", "register_backward_hook"], [34, 3, 1, "", "register_buffer"], [34, 3, 1, "", "register_forward_hook"], [34, 3, 1, "", "register_forward_pre_hook"], [34, 3, 1, "", "register_full_backward_hook"], [34, 3, 1, "", "register_full_backward_pre_hook"], [34, 3, 1, "", "register_load_state_dict_post_hook"], [34, 3, 1, "", "register_module"], [34, 3, 1, "", "register_parameter"], [34, 3, 1, "", "register_state_dict_pre_hook"], [34, 3, 1, "", "requires_grad_"], [34, 3, 1, "", "set_extra_state"], [34, 3, 1, "", "share_memory"], [34, 3, 1, "", "state_dict"], [34, 3, 1, "", "to"], [34, 3, 1, "", "to_empty"], [34, 3, 1, "", "train"], [34, 6, 1, "", "training"], [34, 3, 1, "", "type"], [34, 3, 1, "", "xpu"], [34, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[35, 1, 1, "", "adjust_learning_rate"], [35, 1, 1, "", "evaluate"], [35, 1, 1, "", "forget_rate_scheduler"], [35, 1, 1, "", "initialize_lr_scheduler"], [35, 1, 1, "", "loss_coteaching"], [35, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[37, 2, 1, "", "LabelInspector"], [37, 7, 1, "", "adj_confident_thresholds_shared"], [37, 1, 1, "", "find_label_issues_batched"], [37, 7, 1, "", "labels_shared"], [37, 7, 1, "", "pred_probs_shared"], [37, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[37, 3, 1, "", "get_confident_thresholds"], [37, 3, 1, "", "get_label_issues"], [37, 3, 1, "", "get_num_issues"], [37, 3, 1, "", "get_quality_scores"], [37, 3, 1, "", "score_label_quality"], [37, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[38, 2, 1, "", "CNN"], [38, 2, 1, "", "SimpleNet"], [38, 1, 1, "", "get_mnist_dataset"], [38, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[38, 3, 1, "", "__init_subclass__"], [38, 6, 1, "", "batch_size"], [38, 6, 1, "", "dataset"], [38, 6, 1, "", "epochs"], [38, 3, 1, "id0", "fit"], [38, 3, 1, "", "get_metadata_routing"], [38, 3, 1, "", "get_params"], [38, 6, 1, "", "loader"], [38, 6, 1, "", "log_interval"], [38, 6, 1, "", "lr"], [38, 6, 1, "", "momentum"], [38, 6, 1, "", "no_cuda"], [38, 3, 1, "id1", "predict"], [38, 3, 1, "id4", "predict_proba"], [38, 6, 1, "", "seed"], [38, 3, 1, "", "set_fit_request"], [38, 3, 1, "", "set_params"], [38, 3, 1, "", "set_predict_proba_request"], [38, 3, 1, "", "set_predict_request"], [38, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[39, 1, 1, "", "find_label_issues"], [39, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [39, 1, 1, "", "find_predicted_neq_given"], [39, 7, 1, "", "pred_probs_by_class"], [39, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[41, 0, 0, "-", "label_quality_utils"], [42, 0, 0, "-", "latent_algebra"], [43, 0, 0, "-", "multiannotator_utils"], [44, 0, 0, "-", "multilabel_scorer"], [45, 0, 0, "-", "multilabel_utils"], [46, 0, 0, "-", "outlier"], [47, 0, 0, "-", "token_classification_utils"], [48, 0, 0, "-", "util"], [49, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[41, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[42, 1, 1, "", "compute_inv_noise_matrix"], [42, 1, 1, "", "compute_noise_matrix_from_inverse"], [42, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [42, 1, 1, "", "compute_py"], [42, 1, 1, "", "compute_py_inv_noise_matrix"], [42, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[43, 1, 1, "", "assert_valid_inputs_multiannotator"], [43, 1, 1, "", "assert_valid_pred_probs"], [43, 1, 1, "", "check_consensus_label_classes"], [43, 1, 1, "", "compute_soft_cross_entropy"], [43, 1, 1, "", "find_best_temp_scaler"], [43, 1, 1, "", "format_multiannotator_labels"], [43, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[44, 2, 1, "", "Aggregator"], [44, 2, 1, "", "ClassLabelScorer"], [44, 2, 1, "", "MultilabelScorer"], [44, 1, 1, "", "exponential_moving_average"], [44, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [44, 1, 1, "", "get_label_quality_scores"], [44, 1, 1, "", "multilabel_py"], [44, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[44, 3, 1, "", "__call__"], [44, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[44, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [44, 6, 1, "", "NORMALIZED_MARGIN"], [44, 6, 1, "", "SELF_CONFIDENCE"], [44, 3, 1, "", "__call__"], [44, 3, 1, "", "__contains__"], [44, 3, 1, "", "__getitem__"], [44, 3, 1, "", "__iter__"], [44, 3, 1, "", "__len__"], [44, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[44, 3, 1, "", "__call__"], [44, 3, 1, "", "aggregate"], [44, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[45, 1, 1, "", "get_onehot_num_classes"], [45, 1, 1, "", "int2onehot"], [45, 1, 1, "", "onehot2int"], [45, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[46, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[47, 1, 1, "", "color_sentence"], [47, 1, 1, "", "filter_sentence"], [47, 1, 1, "", "get_sentence"], [47, 1, 1, "", "mapping"], [47, 1, 1, "", "merge_probs"], [47, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[48, 1, 1, "", "append_extra_datapoint"], [48, 1, 1, "", "clip_noise_rates"], [48, 1, 1, "", "clip_values"], [48, 1, 1, "", "compress_int_array"], [48, 1, 1, "", "confusion_matrix"], [48, 1, 1, "", "csr_vstack"], [48, 1, 1, "", "estimate_pu_f1"], [48, 1, 1, "", "extract_indices_tf"], [48, 1, 1, "", "force_two_dimensions"], [48, 1, 1, "", "format_labels"], [48, 1, 1, "", "get_missing_classes"], [48, 1, 1, "", "get_num_classes"], [48, 1, 1, "", "get_unique_classes"], [48, 1, 1, "", "is_tensorflow_dataset"], [48, 1, 1, "", "is_torch_dataset"], [48, 1, 1, "", "num_unique_classes"], [48, 1, 1, "", "print_inverse_noise_matrix"], [48, 1, 1, "", "print_joint_matrix"], [48, 1, 1, "", "print_noise_matrix"], [48, 1, 1, "", "print_square_matrix"], [48, 1, 1, "", "remove_noise_from_class"], [48, 1, 1, "", "round_preserving_row_totals"], [48, 1, 1, "", "round_preserving_sum"], [48, 1, 1, "", "smart_display_dataframe"], [48, 1, 1, "", "subset_X_y"], [48, 1, 1, "", "subset_data"], [48, 1, 1, "", "subset_labels"], [48, 1, 1, "", "train_val_split"], [48, 1, 1, "", "unshuffle_tensorflow_dataset"], [48, 1, 1, "", "value_counts"], [48, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[49, 1, 1, "", "assert_indexing_works"], [49, 1, 1, "", "assert_nonempty_input"], [49, 1, 1, "", "assert_valid_class_labels"], [49, 1, 1, "", "assert_valid_inputs"], [49, 1, 1, "", "labels_to_array"], [49, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[52, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[52, 2, 1, "", "KerasWrapperModel"], [52, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[52, 3, 1, "", "fit"], [52, 3, 1, "", "get_params"], [52, 3, 1, "", "predict"], [52, 3, 1, "", "predict_proba"], [52, 3, 1, "", "set_params"], [52, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[52, 3, 1, "", "fit"], [52, 3, 1, "", "get_params"], [52, 3, 1, "", "predict"], [52, 3, 1, "", "predict_proba"], [52, 3, 1, "", "set_params"], [52, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[53, 1, 1, "", "convert_long_to_wide_dataset"], [53, 1, 1, "", "get_active_learning_scores"], [53, 1, 1, "", "get_active_learning_scores_ensemble"], [53, 1, 1, "", "get_label_quality_multiannotator"], [53, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [53, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[54, 0, 0, "-", "dataset"], [55, 0, 0, "-", "filter"], [57, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[54, 1, 1, "", "common_multilabel_issues"], [54, 1, 1, "", "multilabel_health_summary"], [54, 1, 1, "", "overall_multilabel_health_score"], [54, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[55, 1, 1, "", "find_label_issues"], [55, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[57, 1, 1, "", "get_label_quality_scores"], [57, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[58, 0, 0, "-", "filter"], [60, 0, 0, "-", "rank"], [61, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[58, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[60, 1, 1, "", "compute_badloc_box_scores"], [60, 1, 1, "", "compute_overlooked_box_scores"], [60, 1, 1, "", "compute_swap_box_scores"], [60, 1, 1, "", "get_label_quality_scores"], [60, 1, 1, "", "issues_from_scores"], [60, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[61, 1, 1, "", "bounding_box_size_distribution"], [61, 1, 1, "", "calculate_per_class_metrics"], [61, 1, 1, "", "class_label_distribution"], [61, 1, 1, "", "get_average_per_class_confusion_matrix"], [61, 1, 1, "", "get_sorted_bbox_count_idxs"], [61, 1, 1, "", "object_counts_per_image"], [61, 1, 1, "", "plot_class_distribution"], [61, 1, 1, "", "plot_class_size_distributions"], [61, 1, 1, "", "visualize"]], "cleanlab.outlier": [[62, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[62, 3, 1, "", "fit"], [62, 3, 1, "", "fit_score"], [62, 3, 1, "", "score"]], "cleanlab.rank": [[63, 1, 1, "", "find_top_issues"], [63, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [63, 1, 1, "", "get_label_quality_ensemble_scores"], [63, 1, 1, "", "get_label_quality_scores"], [63, 1, 1, "", "get_normalized_margin_for_each_label"], [63, 1, 1, "", "get_self_confidence_for_each_label"], [63, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[65, 0, 0, "-", "learn"], [66, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[65, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[65, 3, 1, "", "__init_subclass__"], [65, 3, 1, "", "find_label_issues"], [65, 3, 1, "", "fit"], [65, 3, 1, "", "get_aleatoric_uncertainty"], [65, 3, 1, "", "get_epistemic_uncertainty"], [65, 3, 1, "", "get_label_issues"], [65, 3, 1, "", "get_metadata_routing"], [65, 3, 1, "", "get_params"], [65, 3, 1, "", "predict"], [65, 3, 1, "", "save_space"], [65, 3, 1, "", "score"], [65, 3, 1, "", "set_fit_request"], [65, 3, 1, "", "set_params"], [65, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[66, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[70, 1, 1, "", "common_label_issues"], [70, 1, 1, "", "display_issues"], [70, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[71, 0, 0, "-", "filter"], [73, 0, 0, "-", "rank"], [74, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[71, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[73, 1, 1, "", "get_label_quality_scores"], [73, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[74, 1, 1, "", "common_label_issues"], [74, 1, 1, "", "display_issues"], [74, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 77, 81, 82, 84, 85, 86, 89, 95, 96, 97], "count": [3, 86], "datalab": [4, 5, 7, 8, 9, 78, 79, 80, 81, 82, 86, 89], "creat": [5, 78, 79, 86, 88], "your": [5, 75, 78, 79, 82, 84, 86], "own": 5, "issu": [5, 7, 8, 19, 28, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86, 89, 90, 94, 95, 97], "manag": [5, 19], "prerequisit": 5, "implement": 5, "issuemanag": [5, 78], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 78], "us": [5, 77, 79, 81, 82, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "gener": 6, "cluster": [6, 84], "id": 6, "guid": [7, 9], "type": [7, 8, 86], "custom": [7, 78], "can": [8, 79, 83, 84, 86, 88], "detect": [8, 79, 81, 82, 84, 86, 90, 91], "estim": [8, 86, 88, 89], "each": 8, "label": [8, 21, 23, 28, 75, 77, 79, 81, 82, 84, 85, 86, 88, 89, 90, 93, 94, 95, 96, 97], "outlier": [8, 26, 46, 62, 81, 82, 85, 89, 91], "Near": [8, 79, 81, 82, 85], "duplic": [8, 17, 79, 81, 82, 84, 85, 89], "non": [8, 82], "iid": [8, 82], "class": [8, 76, 86, 94], "imbal": [8, 18], "imag": [8, 85, 91], "specif": [8, 19, 94], "underperform": [8, 84], "group": [8, 84], "null": [8, 25], "data": [8, 10, 75, 77, 78, 79, 81, 82, 83, 84, 86, 88, 89, 90, 91, 93, 94, 95, 97], "valuat": 8, "option": 8, "paramet": [8, 86], "get": [9, 78, 79, 88, 89, 90, 94, 97], "start": [9, 83], "api": 9, "refer": 9, "data_issu": 11, "factori": 12, "intern": [13, 40], "issue_find": 14, "data_valu": 16, "issue_manag": [19, 20], "regist": 19, "unregist": 19, "ml": [19, 84, 86], "task": [19, 31], "multilabel": 22, "noniid": 24, "regress": [27, 64, 65, 66, 84, 93], "prioriti": 28, "order": 28, "find": [28, 75, 77, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "underperforming_group": 29, "report": [30, 85], "dataset": [33, 54, 75, 79, 82, 83, 84, 85, 86, 89, 90, 91, 93, 94, 96, 97], "cifar_cnn": 34, "coteach": 35, "experiment": 36, "label_issues_batch": 37, "mnist_pytorch": 38, "filter": [39, 55, 58, 67, 71, 86], "label_quality_util": 41, "latent_algebra": 42, "multiannotator_util": 43, "multilabel_scor": 44, "multilabel_util": 45, "token_classification_util": 47, "util": 48, "valid": [49, 85, 92], "fasttext": 50, "model": [51, 75, 77, 81, 82, 84, 85, 86, 88, 89, 90, 91, 93, 95, 96], "kera": 52, "multiannot": [53, 88], "multilabel_classif": 56, "rank": [57, 60, 63, 66, 69, 73, 86], "object_detect": 59, "summari": [61, 70, 74], "learn": [65, 79, 84, 86, 95], "segment": [68, 94], "token_classif": [72, 97], "cleanlab": [75, 77, 81, 82, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "open": [75, 84], "sourc": [75, 84], "document": 75, "quickstart": 75, "1": [75, 76, 77, 78, 79, 81, 82, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "instal": [75, 77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "2": [75, 76, 77, 78, 79, 81, 82, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "common": [75, 76, 97], "3": [75, 77, 78, 79, 81, 82, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "handl": [75, 84], "error": [75, 84, 85, 86, 88, 89, 90, 93, 94, 96, 97], "train": [75, 77, 84, 91, 93, 95, 96], "robust": [75, 86, 93, 95, 96], "noisi": [75, 86, 93, 95, 96], "4": [75, 77, 78, 79, 81, 82, 85, 86, 88, 90, 91, 93, 95, 96], "curat": [75, 83], "fix": [75, 84], "level": [75, 83, 86, 97], "5": [75, 77, 79, 81, 85, 86, 88, 93, 95], "improv": [75, 88], "via": [75, 86, 88], "mani": [75, 86], "other": [75, 88, 90, 93], "techniqu": 75, "contribut": 75, "easi": [75, 81, 82, 85], "mode": [75, 81, 82, 85], "how": [76, 84, 86, 88, 89, 97], "migrat": 76, "version": 76, "0": 76, "from": [76, 78, 79, 86, 93, 95, 96], "pre": [76, 77, 84, 91], "function": [76, 78], "name": 76, "chang": 76, "modul": [76, 86], "new": 76, "remov": 76, "argument": [76, 78], "variabl": 76, "audio": 77, "speechbrain": 77, "depend": [77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "import": [77, 78, 79, 83, 85, 86, 88], "them": [77, 83, 86], "load": [77, 78, 79, 81, 82, 93, 95, 96], "featur": [77, 85, 91], "fit": 77, "linear": 77, "comput": [77, 81, 82, 84, 85, 88, 92, 95], "out": [77, 78, 79, 81, 82, 85, 88, 92, 95], "sampl": [77, 78, 79, 81, 82, 85, 88, 92, 95], "predict": [77, 78, 79, 81, 82, 85, 88, 89, 90, 92, 95], "probabl": [77, 78, 79, 81, 82, 85, 88, 92, 95], "workflow": [78, 86], "audit": [78, 79], "requir": [78, 79, 81, 82, 85, 88, 89, 90, 91, 93, 94, 95, 96, 97], "classifi": [78, 79], "instanti": 78, "object": [78, 90], "increment": 78, "search": 78, "specifi": [78, 84], "nondefault": 78, "save": 78, "ad": 78, "A": 79, "unifi": 79, "all": [79, 86], "kind": [79, 90], "skip": [79, 83, 86, 88], "detail": [79, 83, 86, 88], "more": [79, 86, 93, 95, 96], "about": 79, "addit": 79, "inform": [79, 85], "tutori": [80, 83, 87], "tabular": [81, 95], "numer": 81, "categor": 81, "column": 81, "process": [81, 91, 93, 95], "select": [81, 95], "construct": 81, "k": [81, 85, 92], "nearest": 81, "neighbour": 81, "graph": 81, "text": [82, 96, 97], "format": [82, 84, 89, 90, 96], "defin": [82, 85, 93, 96], "drift": [82, 89], "fetch": [83, 85], "evalu": 83, "health": [83, 86], "8": [83, 86], "popular": 83, "faq": 84, "what": [84, 86, 92], "do": [84, 86], "i": [84, 86, 92], "infer": 84, "correct": 84, "exampl": [84, 85, 86, 91], "ha": 84, "flag": 84, "should": 84, "v": 84, "test": [84, 86, 91], "big": 84, "limit": 84, "memori": 84, "why": 84, "isn": 84, "t": 84, "cleanlearn": [84, 86], "work": [84, 86, 88, 97], "me": 84, "differ": [84, 90], "clean": [84, 86], "final": 84, "hyperparamet": 84, "tune": 84, "onli": 84, "one": [84, 86, 89, 94], "doe": [84, 88, 97], "take": 84, "so": 84, "long": 84, "slice": 84, "when": [84, 86], "identifi": [84, 90], "run": 84, "licens": 84, "under": 84, "an": 84, "answer": 84, "question": 84, "pytorch": [85, 91], "normal": 85, "fashion": 85, "mnist": 85, "prepar": 85, "fold": [85, 92], "cross": [85, 92], "embed": [85, 91], "7": [85, 86], "view": 85, "most": [85, 97], "like": 85, "sever": 85, "set": [85, 86], "dark": 85, "top": [85, 94], "low": 85, "The": 86, "centric": 86, "ai": 86, "machin": 86, "find_label_issu": 86, "line": 86, "code": 86, "visual": [86, 90, 91, 94], "twenti": 86, "lowest": 86, "qualiti": [86, 88, 89, 90, 94, 97], "see": 86, "now": 86, "let": 86, "": 86, "happen": 86, "we": 86, "merg": 86, "seafoam": 86, "green": 86, "yellow": 86, "too": 86, "you": 86, "re": 86, "6": 86, "One": 86, "score": [86, 88, 89, 90, 94, 97], "rule": 86, "overal": [86, 94], "accur": 86, "thi": 86, "directli": 86, "fulli": 86, "character": 86, "nois": 86, "matrix": [86, 89], "joint": 86, "prior": 86, "true": 86, "distribut": 86, "flip": 86, "rate": 86, "ani": 86, "again": 86, "support": 86, "lot": 86, "method": 86, "filter_bi": 86, "automat": 86, "everi": 86, "uniqu": 86, "num_label_issu": 86, "threshold": 86, "found": 86, "Not": 86, "sure": 86, "ensembl": 86, "multipl": [86, 88], "predictor": 86, "consensu": 88, "annot": 88, "initi": 88, "major": 88, "vote": 88, "better": 88, "statist": 88, "compar": 88, "inspect": 88, "potenti": [88, 93, 96], "retrain": 88, "further": 88, "multi": 89, "beyond": 89, "mislabel": [89, 94, 97], "given": 89, "hot": 89, "binari": 89, "without": 89, "applic": 89, "real": 89, "download": [90, 94, 97], "objectlab": 90, "exploratori": 90, "analysi": 90, "timm": 91, "cifar10": 91, "some": 91, "pred_prob": [91, 94, 97], "wai": 93, "semant": 94, "which": 94, "ar": 94, "commonli": 94, "focus": 94, "scikit": 95, "token": 97, "word": 97, "sentenc": 97, "contain": 97, "particular": 97}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "datalab": [[4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[5, "creating-your-own-issues-manager"]], "Prerequisites": [[5, "prerequisites"]], "Implementing IssueManagers": [[5, "implementing-issuemanagers"]], "Basic Issue Check": [[5, "basic-issue-check"]], "Intermediate Issue Check": [[5, "intermediate-issue-check"]], "Advanced Issue Check": [[5, "advanced-issue-check"]], "Use with Datalab": [[5, "use-with-datalab"]], "Generating Cluster IDs": [[6, "generating-cluster-ids"]], "Datalab guides": [[7, "datalab-guides"]], "Types of issues": [[7, "types-of-issues"]], "Customizing issue types": [[7, "customizing-issue-types"]], "Datalab Issue Types": [[8, "datalab-issue-types"]], "Types of issues Datalab can detect": [[8, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[8, "estimates-for-each-issue-type"]], "Label Issue": [[8, "label-issue"]], "Outlier Issue": [[8, "outlier-issue"]], "(Near) Duplicate Issue": [[8, "near-duplicate-issue"]], "Non-IID Issue": [[8, "non-iid-issue"]], "Class Imbalance Issue": [[8, "class-imbalance-issue"]], "Image-specific Issues": [[8, "image-specific-issues"]], "Underperforming Group Issue": [[8, "underperforming-group-issue"]], "Null Issue": [[8, "null-issue"]], "Data Valuation Issue": [[8, "data-valuation-issue"]], "Optional Issue Parameters": [[8, "optional-issue-parameters"]], "Label Issue Parameters": [[8, "label-issue-parameters"]], "Outlier Issue Parameters": [[8, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[8, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[8, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[8, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[8, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[8, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[8, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[8, "image-issue-parameters"]], "Getting Started": [[9, "getting-started"]], "Guides": [[9, "guides"]], "API Reference": [[9, "api-reference"]], "data": [[10, "module-cleanlab.datalab.internal.data"]], "data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[13, "internal"], [40, "internal"]], "issue_finder": [[14, "issue-finder"]], "data_valuation": [[16, "data-valuation"]], "duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[19, "issue-manager"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[19, "registered-issue-managers"]], "Unregistered issue managers": [[19, "unregistered-issue-managers"]], "ML task-specific issue managers": [[19, "ml-task-specific-issue-managers"]], "label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"], [23, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [28, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[22, "multilabel"]], "noniid": [[24, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[25, "null"]], "outlier": [[26, "module-cleanlab.datalab.internal.issue_manager.outlier"], [46, "module-cleanlab.internal.outlier"], [62, "module-cleanlab.outlier"]], "regression": [[27, "regression"], [64, "regression"]], "Priority Order for finding issues:": [[28, null]], "underperforming_group": [[29, "underperforming-group"]], "report": [[30, "report"]], "task": [[31, "task"]], "dataset": [[33, "module-cleanlab.dataset"], [54, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[34, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[35, "module-cleanlab.experimental.coteaching"]], "experimental": [[36, "experimental"]], "label_issues_batched": [[37, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[38, "module-cleanlab.experimental.mnist_pytorch"]], "filter": [[39, "module-cleanlab.filter"], [55, "module-cleanlab.multilabel_classification.filter"], [58, "filter"], [67, "filter"], [71, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[41, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[42, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[43, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[44, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[45, "module-cleanlab.internal.multilabel_utils"]], "token_classification_utils": [[47, "module-cleanlab.internal.token_classification_utils"]], "util": [[48, "module-cleanlab.internal.util"]], "validation": [[49, "module-cleanlab.internal.validation"]], "fasttext": [[50, "fasttext"]], "models": [[51, "models"]], "keras": [[52, "module-cleanlab.models.keras"]], "multiannotator": [[53, "module-cleanlab.multiannotator"]], "multilabel_classification": [[56, "multilabel-classification"]], "rank": [[57, "module-cleanlab.multilabel_classification.rank"], [60, "module-cleanlab.object_detection.rank"], [63, "module-cleanlab.rank"], [69, "module-cleanlab.segmentation.rank"], [73, "module-cleanlab.token_classification.rank"]], "object_detection": [[59, "object-detection"]], "summary": [[61, "summary"], [70, "module-cleanlab.segmentation.summary"], [74, "module-cleanlab.token_classification.summary"]], "regression.learn": [[65, "module-cleanlab.regression.learn"]], "regression.rank": [[66, "module-cleanlab.regression.rank"]], "segmentation": [[68, "segmentation"]], "token_classification": [[72, "token-classification"]], "cleanlab open-source documentation": [[75, "cleanlab-open-source-documentation"]], "Quickstart": [[75, "quickstart"]], "1. Install cleanlab": [[75, "install-cleanlab"]], "2. Find common issues in your data": [[75, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[75, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[75, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[75, "improve-your-data-via-many-other-techniques"]], "Contributing": [[75, "contributing"]], "Easy Mode": [[75, "easy-mode"], [81, "Easy-Mode"], [82, "Easy-Mode"], [85, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[76, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[76, "function-and-class-name-changes"]], "Module name changes": [[76, "module-name-changes"]], "New modules": [[76, "new-modules"]], "Removed modules": [[76, "removed-modules"]], "Common argument and variable name changes": [[76, "common-argument-and-variable-name-changes"]], "Audio Classification with SpeechBrain and Cleanlab": [[77, "Audio-Classification-with-SpeechBrain-and-Cleanlab"]], "1. Install dependencies and import them": [[77, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[77, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[77, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[77, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[77, "5.-Use-cleanlab-to-find-label-issues"], [81, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[78, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[78, "Install-and-import-required-dependencies"]], "Create and load the data": [[78, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[78, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[78, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[78, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[78, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[78, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[78, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[79, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[79, "1.-Install-and-import-required-dependencies"], [85, "1.-Install-and-import-required-dependencies"], [88, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[79, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[79, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[79, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[79, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[79, "Get-additional-information"]], "Near duplicate issues": [[79, "Near-duplicate-issues"], [85, "Near-duplicate-issues"]], "Datalab Tutorials": [[80, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[81, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "1. Install required dependencies": [[81, "1.-Install-required-dependencies"], [82, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [96, "1.-Install-required-dependencies"]], "2. Load and process the data": [[81, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"], [95, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[81, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [95, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Construct K nearest neighbours graph": [[81, "4.-Construct-K-nearest-neighbours-graph"]], "Label issues": [[81, "Label-issues"], [82, "Label-issues"], [85, "Label-issues"]], "Outlier issues": [[81, "Outlier-issues"], [82, "Outlier-issues"], [85, "Outlier-issues"]], "Near-duplicate issues": [[81, "Near-duplicate-issues"], [82, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[82, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "2. Load and format the text dataset": [[82, "2.-Load-and-format-the-text-dataset"], [96, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[82, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[82, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[82, "Non-IID-issues-(data-drift)"]], "Find Dataset-level Issues for Dataset Curation": [[83, "Find-Dataset-level-Issues-for-Dataset-Curation"]], "Install dependencies and import them": [[83, "Install-dependencies-and-import-them"], [86, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[83, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[83, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[84, "FAQ"]], "What data can cleanlab detect issues in?": [[84, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[84, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[84, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[84, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[84, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[84, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[84, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[84, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[84, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[84, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[84, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[84, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[84, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[84, "Can't-find-an-answer-to-your-question?"]], "Image Classification with PyTorch and Cleanlab": [[85, "Image-Classification-with-PyTorch-and-Cleanlab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[85, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[85, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[85, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[85, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[85, "7.-Use-cleanlab-to-find-issues"]], "View report": [[85, "View-report"]], "View most likely examples with label errors": [[85, "View-most-likely-examples-with-label-errors"]], "View most severe outliers": [[85, "View-most-severe-outliers"]], "View sets of near duplicate images": [[85, "View-sets-of-near-duplicate-images"]], "Dark images": [[85, "Dark-images"]], "View top examples of dark images": [[85, "View-top-examples-of-dark-images"]], "Low information images": [[85, "Low-information-images"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[86, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[86, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[86, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[86, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[86, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[86, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[86, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[86, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[86, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[86, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[86, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[86, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[86, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[86, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[86, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[86, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[86, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[86, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[86, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[86, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[86, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[86, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[87, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[88, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[88, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[88, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[88, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[88, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[88, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[88, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[88, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[88, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[89, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[89, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[89, "2.-Format-data,-labels,-and-model-predictions"], [90, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[89, "3.-Use-cleanlab-to-find-label-issues"], [90, "3.-Use-cleanlab-to-find-label-issues"], [94, "3.-Use-cleanlab-to-find-label-issues"], [97, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[89, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[89, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[89, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[89, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[89, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[90, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[90, "1.-Install-required-dependencies-and-download-data"], [94, "1.-Install-required-dependencies-and-download-data"], [97, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[90, "Get-label-quality-scores"], [94, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[90, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[90, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[90, "Other-uses-of-visualize"]], "Exploratory data analysis": [[90, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[91, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[91, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[91, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[91, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[91, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[91, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[92, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[92, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[92, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[93, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[93, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[93, "4.-Train-a-more-robust-model-from-noisy-labels"], [96, "4.-Train-a-more-robust-model-from-noisy-labels"]], "5. Other ways to find noisy labels in regression datasets": [[93, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[94, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[94, "2.-Get-data,-labels,-and-pred_probs"], [97, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[94, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[94, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[94, "Focusing-on-one-specific-class"]], "Classification with Tabular Data using Scikit-Learn and Cleanlab": [[95, "Classification-with-Tabular-Data-using-Scikit-Learn-and-Cleanlab"]], "4. Use cleanlab to find label issues": [[95, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[95, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[96, "Text-Classification-with-Noisy-Labels"]], "3. Define a classification model and use cleanlab to find potential label errors": [[96, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "Find Label Errors in Token Classification (Text) Datasets": [[97, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[97, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[97, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[97, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[97, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"], [10, "module-cleanlab.datalab.internal.data"], [11, "module-cleanlab.datalab.internal.data_issues"], [12, "module-cleanlab.datalab.internal.issue_manager_factory"], [13, "module-cleanlab.datalab.internal"], [14, "module-cleanlab.datalab.internal.issue_finder"], [16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [17, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [18, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [21, "module-cleanlab.datalab.internal.issue_manager.label"], [23, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [24, "module-cleanlab.datalab.internal.issue_manager.noniid"], [25, "module-cleanlab.datalab.internal.issue_manager.null"], [26, "module-cleanlab.datalab.internal.issue_manager.outlier"], [28, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [29, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [30, "module-cleanlab.datalab.internal.report"], [31, "module-cleanlab.datalab.internal.task"], [33, "module-cleanlab.dataset"], [34, "module-cleanlab.experimental.cifar_cnn"], [35, "module-cleanlab.experimental.coteaching"], [36, "module-cleanlab.experimental"], [37, "module-cleanlab.experimental.label_issues_batched"], [38, "module-cleanlab.experimental.mnist_pytorch"], [39, "module-cleanlab.filter"], [40, "module-cleanlab.internal"], [41, "module-cleanlab.internal.label_quality_utils"], [42, "module-cleanlab.internal.latent_algebra"], [43, "module-cleanlab.internal.multiannotator_utils"], [44, "module-cleanlab.internal.multilabel_scorer"], [45, "module-cleanlab.internal.multilabel_utils"], [46, "module-cleanlab.internal.outlier"], [47, "module-cleanlab.internal.token_classification_utils"], [48, "module-cleanlab.internal.util"], [49, "module-cleanlab.internal.validation"], [51, "module-cleanlab.models"], [52, "module-cleanlab.models.keras"], [53, "module-cleanlab.multiannotator"], [54, "module-cleanlab.multilabel_classification.dataset"], [55, "module-cleanlab.multilabel_classification.filter"], [56, "module-cleanlab.multilabel_classification"], [57, "module-cleanlab.multilabel_classification.rank"], [58, "module-cleanlab.object_detection.filter"], [59, "module-cleanlab.object_detection"], [60, "module-cleanlab.object_detection.rank"], [61, "module-cleanlab.object_detection.summary"], [62, "module-cleanlab.outlier"], [63, "module-cleanlab.rank"], [64, "module-cleanlab.regression"], [65, "module-cleanlab.regression.learn"], [66, "module-cleanlab.regression.rank"], [67, "module-cleanlab.segmentation.filter"], [68, "module-cleanlab.segmentation"], [69, "module-cleanlab.segmentation.rank"], [70, "module-cleanlab.segmentation.summary"], [71, "module-cleanlab.token_classification.filter"], [72, "module-cleanlab.token_classification"], [73, "module-cleanlab.token_classification.rank"], [74, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "datalab (class in cleanlab.datalab.datalab)": [[4, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[4, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[4, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[9, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[10, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[10, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[10, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[10, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[10, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[13, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[14, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[23, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[23, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[24, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[24, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[24, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[25, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[25, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[26, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[28, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[29, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "reporter (class in cleanlab.datalab.internal.report)": [[30, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[30, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[30, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[30, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[31, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[31, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[31, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[31, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[31, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[31, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[31, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[31, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[31, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[31, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[31, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[31, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[31, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[33, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[33, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[33, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[33, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[33, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[34, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[34, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[34, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[34, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[34, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[34, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.forward"], [34, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[34, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[35, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[35, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[35, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[35, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[35, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[35, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[35, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[36, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[37, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[37, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[37, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[37, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[37, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[37, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[37, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[37, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[37, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[37, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[37, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[37, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[37, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[38, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[38, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [38, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[38, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[38, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [38, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [38, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.filter": [[39, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[39, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[39, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[39, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[39, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[39, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[40, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[41, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[41, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[42, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[42, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[42, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[42, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[42, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[42, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[42, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[43, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[43, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[43, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[43, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[43, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[43, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[43, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[43, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[44, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[44, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[44, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[44, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[44, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[44, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[44, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[44, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[44, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[44, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[44, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[44, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[44, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[44, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[44, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[44, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[44, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[44, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[44, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[44, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[44, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[44, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[44, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[45, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[45, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[45, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[45, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[45, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.outlier": [[46, "module-cleanlab.internal.outlier"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[46, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[47, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[47, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[47, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[47, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[47, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[47, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[47, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[48, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[49, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[49, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[49, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[49, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[49, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[49, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[49, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[51, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[52, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[52, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[52, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[52, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[52, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[52, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[52, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[52, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[52, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[52, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[52, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[52, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[52, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[52, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[52, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[53, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[53, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[53, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[53, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[53, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[53, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[53, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[54, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[54, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[54, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[54, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[54, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[55, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[55, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[55, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[56, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[57, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[57, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[57, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[58, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[58, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[59, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[60, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[60, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[60, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[60, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[60, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[60, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[60, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[61, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[61, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[61, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[61, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[61, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[61, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[61, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[61, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[61, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[61, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[62, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[62, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[62, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[62, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[62, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[63, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[63, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[63, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[63, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[63, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[63, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[63, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[63, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[64, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[65, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[65, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[65, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[65, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[65, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[65, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[65, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[65, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[65, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[65, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[65, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[65, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[65, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[65, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[65, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[65, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[66, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[66, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[67, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[67, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[68, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[69, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[69, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[69, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[70, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[70, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[70, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[70, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[71, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[71, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[72, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[73, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[73, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[73, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[74, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[74, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[74, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[74, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 76, 78, 79, 86, 88, 89], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 78, 79, 86, 88, 89], "generate_noise_matrix_from_trac": [0, 1, 78, 79, 86, 88, 89], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 14, 37, 41, 43, 44, 45, 46, 47, 48, 60, 83, 85, 97], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 81, 82, 84, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 24, 27, 28, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97], "us": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 75, 76, 78, 83, 87, 92], "benchmark": [1, 34, 75, 76, 78, 79, 86, 88, 89], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 76, 78, 79, 83, 87, 92], "": [1, 2, 3, 8, 16, 33, 34, 38, 41, 44, 46, 48, 53, 54, 58, 60, 61, 62, 63, 65, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "core": [1, 4, 37, 39, 67, 69], "algorithm": [1, 2, 6, 8, 29, 35, 48, 53, 62, 71, 73, 75, 84, 86, 88, 97], "These": [1, 2, 3, 6, 8, 19, 34, 36, 38, 39, 40, 51, 53, 54, 57, 61, 62, 66, 70, 71, 73, 74, 77, 79, 81, 82, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "introduc": [1, 77, 84, 86], "synthet": [1, 88, 89, 94], "nois": [1, 2, 3, 33, 39, 42, 48, 54, 78, 79, 83, 88, 93], "label": [1, 2, 3, 4, 5, 6, 7, 10, 12, 13, 14, 18, 19, 20, 22, 27, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 78, 83, 87, 91, 92], "classif": [1, 3, 4, 5, 8, 10, 12, 14, 31, 33, 37, 39, 42, 44, 45, 48, 53, 54, 55, 56, 57, 62, 63, 71, 72, 73, 74, 75, 76, 78, 79, 87, 88, 91, 92, 93, 94], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 23, 24, 25, 26, 28, 29, 36, 37, 38, 39, 42, 44, 48, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 80, 81, 87, 88, 92, 95], "specif": [1, 3, 4, 7, 12, 13, 14, 25, 30, 36, 51, 55, 58, 61, 70, 74, 81, 82, 85, 86, 90, 97], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 44, 45, 47, 48, 49, 51, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "modul": [1, 3, 11, 12, 13, 14, 19, 22, 27, 30, 31, 33, 34, 35, 36, 37, 38, 39, 44, 46, 48, 51, 53, 58, 61, 62, 63, 75, 84, 85, 89], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 16, 21, 28, 31, 33, 34, 35, 37, 38, 39, 42, 48, 52, 53, 54, 55, 60, 61, 62, 63, 65, 67, 69, 70, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 91, 92, 93, 94, 95, 96, 97], "gener": [1, 2, 3, 5, 8, 16, 21, 23, 30, 33, 44, 48, 49, 62, 63, 65, 70, 77, 78, 79, 82, 83, 84, 85, 86, 88, 89, 91, 92, 94, 96, 97], "valid": [1, 2, 3, 4, 8, 10, 31, 33, 39, 40, 42, 43, 44, 46, 48, 53, 55, 58, 61, 63, 65, 66, 74, 76, 77, 78, 79, 81, 82, 83, 84, 86, 87, 89, 90, 93, 94, 95, 96, 97], "matric": [1, 3, 42, 84], "which": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 20, 24, 30, 33, 34, 38, 39, 42, 44, 47, 48, 53, 54, 55, 58, 60, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 76, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97], "learn": [1, 2, 3, 4, 8, 12, 14, 20, 28, 30, 35, 36, 37, 38, 39, 41, 43, 48, 51, 53, 55, 62, 64, 66, 69, 73, 75, 77, 78, 81, 82, 83, 85, 87, 88, 89, 93, 96], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 85, 88, 89, 90, 91, 93, 94, 95, 96, 97], "possibl": [1, 2, 3, 5, 8, 33, 34, 38, 39, 41, 42, 44, 55, 56, 57, 58, 60, 61, 62, 63, 65, 71, 73, 74, 79, 84, 86, 88, 89, 90, 93, 94, 97], "noisi": [1, 2, 3, 8, 33, 35, 38, 39, 42, 48, 54, 55, 57, 63, 65, 66, 67, 69, 70, 76, 78, 79, 81, 82, 84, 87, 88], "given": [1, 2, 3, 8, 12, 28, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 47, 48, 53, 54, 55, 58, 60, 61, 62, 63, 65, 66, 70, 71, 73, 74, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 90, 91, 93, 94, 95, 96, 97], "matrix": [1, 2, 3, 4, 8, 14, 16, 29, 33, 39, 41, 42, 45, 48, 49, 55, 58, 60, 61, 62, 63, 81, 90, 91], "trace": [1, 78, 79, 86, 88, 89], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 16, 20, 24, 25, 31, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 48, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 74, 77, 79, 81, 82, 84, 85, 86, 88, 89, 90, 91, 93, 94, 96, 97], "more": [1, 2, 3, 4, 5, 8, 11, 12, 14, 16, 24, 33, 34, 37, 38, 41, 44, 46, 48, 53, 54, 55, 56, 57, 58, 60, 61, 63, 65, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 84, 85, 88, 89, 90, 91, 94, 97], "function": [1, 2, 3, 4, 5, 11, 12, 14, 21, 24, 28, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 77, 79, 83, 84, 86, 88, 89, 90, 94, 95, 96, 97], "noise_matrix": [1, 2, 3, 8, 42, 48, 78, 79, 86, 88, 89], "py": [1, 3, 30, 34, 35, 39, 42, 44, 77, 78, 79, 82, 84, 86, 88, 89, 96], "verbos": [1, 2, 4, 5, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 33, 37, 39, 53, 54, 55, 60, 62, 63, 65, 67, 69, 70, 74, 78, 86, 88], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 30, 31, 33, 34, 37, 38, 39, 43, 47, 48, 49, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 67, 69, 70, 71, 77, 78, 79, 81, 82, 84, 85, 86, 88, 90, 91, 93, 94, 96], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74], "prior": [1, 2, 3, 33, 39, 42, 44], "repres": [1, 2, 3, 5, 8, 10, 14, 16, 24, 31, 33, 37, 39, 42, 45, 46, 48, 53, 54, 55, 58, 60, 61, 62, 63, 65, 67, 69, 70, 74, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 90, 91, 93, 95, 96, 97], "p": [1, 2, 3, 8, 33, 39, 41, 42, 48, 53, 61, 62, 63, 67, 81, 82, 86, 88, 97], "true_label": [1, 2, 3, 33, 42, 48, 86, 88], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 17, 21, 24, 26, 29, 33, 37, 39, 41, 42, 43, 44, 45, 46, 47, 48, 53, 54, 55, 56, 57, 58, 61, 62, 63, 65, 67, 69, 70, 71, 73, 74, 77, 78, 79, 84, 86, 88, 89, 90, 91, 94, 95, 97], "check": [1, 2, 4, 7, 8, 10, 14, 25, 31, 34, 37, 38, 43, 49, 52, 58, 61, 65, 75, 77, 78, 79, 84, 85, 86, 88, 89, 93, 95, 96], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 20, 24, 35, 38, 42, 44, 46, 60, 65, 79, 82, 84, 86, 88, 89, 90, 91, 93, 96], "achiev": [1, 2, 34, 35, 38, 65, 84, 88, 97], "better": [1, 4, 39, 53, 55, 63, 65, 66, 75, 77, 79, 81, 82, 84, 86, 89, 90, 91, 96, 97], "than": [1, 2, 3, 5, 8, 24, 26, 29, 33, 39, 48, 52, 53, 58, 60, 62, 63, 65, 69, 73, 77, 79, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 97], "random": [1, 2, 3, 5, 8, 16, 29, 37, 44, 53, 63, 65, 77, 78, 79, 81, 84, 85, 86, 88, 89, 91, 95], "perform": [1, 2, 5, 8, 24, 26, 29, 34, 38, 44, 61, 65, 75, 78, 84, 86, 88, 89, 92, 93, 95, 96], "averag": [1, 3, 8, 20, 26, 33, 34, 38, 44, 46, 53, 54, 61, 62, 63, 84, 88, 91], "amount": [1, 3, 85], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 77, 79, 82, 85, 95, 96], "np": [1, 2, 3, 4, 5, 14, 16, 29, 33, 35, 37, 39, 41, 42, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "ndarrai": [1, 2, 3, 4, 14, 21, 23, 24, 28, 29, 33, 35, 37, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 73, 97], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 48, 49, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 67, 69, 70, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 16, 24, 33, 35, 37, 38, 39, 42, 43, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "shape": [1, 2, 3, 4, 14, 16, 33, 35, 37, 39, 41, 42, 43, 44, 46, 47, 48, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 77, 83, 84, 86, 89, 90, 91, 94, 97], "condit": [1, 2, 3, 42, 47, 48, 63, 85, 86, 97], "probabl": [1, 2, 3, 4, 6, 8, 14, 21, 23, 26, 33, 37, 38, 39, 41, 42, 44, 45, 47, 48, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 67, 69, 70, 71, 73, 74, 75, 76, 83, 84, 86, 87, 89, 90, 91, 94, 97], "k_": [1, 2, 3, 42, 48], "k_y": [1, 2, 3, 42, 48], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 33, 34, 35, 37, 38, 39, 41, 42, 47, 48, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 69, 70, 71, 73, 74, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96], "fraction": [1, 2, 3, 8, 18, 35, 42, 48, 53, 65, 81, 84], "exampl": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 44, 45, 46, 47, 48, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 88, 89, 90, 92, 93, 94, 95, 96, 97], "everi": [1, 2, 3, 4, 14, 34, 38, 39, 42, 47, 48, 55, 63, 65, 66, 77, 78, 79, 81, 82, 84, 85, 88, 90, 92, 94, 95, 97], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 85, 88, 89, 90, 91, 92, 93, 95, 96, 97], "other": [1, 2, 3, 4, 8, 14, 20, 25, 33, 34, 36, 37, 38, 39, 42, 45, 48, 49, 51, 53, 54, 57, 61, 62, 63, 65, 70, 77, 78, 79, 81, 82, 84, 85, 86, 89, 91, 94, 97], "assum": [1, 2, 3, 10, 39, 42, 47, 48, 63, 67, 70, 84, 89, 91, 93, 94, 97], "column": [1, 2, 3, 4, 8, 10, 11, 28, 33, 37, 39, 42, 44, 45, 47, 48, 53, 54, 55, 57, 58, 61, 62, 63, 65, 70, 71, 73, 74, 77, 78, 79, 82, 83, 84, 85, 86, 88, 89, 90, 93, 94, 95, 96, 97], "sum": [1, 2, 3, 24, 29, 33, 42, 44, 48, 54, 55, 57, 60, 65, 78, 79, 84, 85, 86, 88, 89, 94, 97], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 83, 84, 92], "each": [1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 14, 18, 20, 21, 23, 24, 29, 30, 33, 34, 35, 37, 38, 39, 41, 42, 44, 45, 46, 48, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 42, 44, 47, 48, 49, 52, 53, 54, 55, 58, 60, 61, 62, 63, 65, 67, 69, 70, 74, 77, 78, 79, 81, 82, 83, 84, 85, 88, 89, 90, 91, 93, 94, 95, 96, 97], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 96, 97], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 76, 77, 78, 79, 80, 81, 82, 84, 85, 89, 90, 93, 94, 95, 97], "bool": [1, 2, 3, 4, 10, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 30, 31, 33, 34, 37, 38, 39, 44, 47, 48, 53, 55, 57, 58, 60, 61, 62, 63, 65, 67, 69, 70, 74], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 30, 34, 37, 38, 39, 48, 53, 54, 55, 57, 58, 74, 77, 79, 81, 82, 83, 84, 85, 86, 93, 96, 97], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20, 21, 25, 28, 29, 30, 32, 33, 34, 35, 37, 38, 39, 42, 44, 45, 46, 47, 48, 53, 55, 57, 60, 61, 62, 63, 65, 66, 71, 73, 74, 75, 77, 81, 82, 83, 84, 85, 88, 89, 90, 91, 92, 94, 97], "perfect": [1, 2, 33, 65, 86, 90], "exactli": [1, 3, 8, 33, 34, 38, 39, 56, 62, 78, 79, 81, 82, 85, 86], "yield": [1, 34, 38], "between": [1, 4, 8, 13, 14, 19, 20, 22, 24, 27, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 46, 51, 53, 54, 57, 60, 62, 63, 65, 66, 69, 73, 74, 76, 77, 78, 79, 81, 82, 85, 86, 88, 89, 90, 91, 93, 94, 96, 97], "below": [1, 3, 4, 8, 33, 34, 37, 38, 39, 41, 44, 53, 54, 55, 60, 61, 69, 73, 76, 77, 78, 79, 81, 82, 83, 84, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "we": [1, 2, 3, 4, 5, 8, 11, 20, 34, 37, 38, 39, 44, 48, 49, 53, 60, 61, 63, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "loop": [1, 3, 42, 48, 85, 90], "implement": [1, 2, 3, 4, 7, 12, 20, 34, 35, 37, 38, 42, 48, 65, 75, 77, 78, 81, 91, 92, 95], "what": [1, 4, 7, 8, 14, 30, 33, 35, 37, 39, 53, 54, 58, 60, 77, 78, 79, 81, 82, 85, 88, 89, 90, 91, 93, 94, 95, 96, 97], "doe": [1, 2, 3, 5, 8, 37, 38, 39, 44, 49, 60, 61, 65, 67, 69, 73, 77, 78, 79, 81, 82, 85, 89, 93, 94, 96], "do": [1, 2, 4, 8, 33, 37, 38, 48, 49, 62, 63, 67, 77, 78, 79, 81, 82, 85, 88, 89, 90, 91, 93, 94, 95, 96, 97], "fast": 1, "explain": [1, 8], "python": [1, 2, 38, 52, 65, 77, 78, 79, 82, 83, 91, 96], "pseudocod": [1, 92], "happen": [1, 8, 39, 55, 82, 88, 94], "n": [1, 2, 3, 4, 5, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 73, 77, 82, 83, 84, 85, 88, 89, 90, 93, 94, 95, 96, 97], "without": [1, 2, 4, 8, 10, 12, 18, 34, 38, 57, 65, 75, 77, 82, 86, 90, 91, 96], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 33, 34, 37, 38, 39, 41, 43, 46, 47, 48, 52, 53, 55, 57, 58, 60, 61, 63, 65, 67, 69, 70, 75, 77, 78, 79, 81, 82, 84, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96], "distinct": [1, 16, 48, 97], "natur": [1, 8, 88, 91], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 42, 43, 44, 45, 46, 47, 48, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 76, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 90, 94, 97], "0": [1, 2, 3, 4, 5, 8, 10, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "count_joint": 1, "len": [1, 2, 3, 5, 33, 37, 42, 47, 48, 49, 62, 63, 65, 78, 79, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 95, 96, 97], "y": [1, 2, 3, 4, 6, 16, 28, 29, 38, 42, 44, 48, 49, 52, 61, 65, 66, 77, 78, 79, 81, 84, 86, 88, 89, 91, 93, 96], "round": [1, 37, 39, 48, 65, 84, 93], "astyp": [1, 88], "int": [1, 2, 3, 4, 5, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 33, 34, 35, 37, 38, 39, 44, 45, 46, 47, 48, 49, 54, 55, 57, 61, 62, 63, 65, 67, 69, 70, 71, 74, 77, 78, 85, 90, 91], "rang": [1, 3, 4, 5, 10, 42, 44, 46, 48, 61, 65, 66, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 97], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 20, 33, 37, 39, 42, 43, 44, 45, 46, 47, 48, 49, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 77, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 96, 97], "pragma": 1, "cover": [1, 3, 76, 83], "choic": [1, 6, 39, 46, 84, 85, 89, 91], "replac": [1, 47, 52, 63, 78, 79, 82, 83, 84, 85, 88, 91, 95, 96], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 63, 77, 78, 79], "05": [1, 8, 24, 28, 47, 61, 65, 71, 73, 81, 83, 84, 86, 90, 94], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 78, 79, 86, 88, 89], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 49, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 67, 69, 70, 73, 74, 78, 79, 84, 85, 86, 88, 89, 94], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 24, 36, 38, 44, 65, 77, 78, 79, 81, 83, 86, 88, 89, 95], "max_it": [1, 77, 82, 91, 96], "10000": [1, 37, 83, 84], "x": [1, 2, 3, 4, 8, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 33, 34, 35, 38, 39, 41, 42, 44, 47, 48, 49, 52, 53, 55, 61, 62, 63, 65, 67, 77, 78, 79, 81, 83, 84, 85, 86, 88, 89, 91, 93, 95, 96], "diagon": [1, 3, 4, 39, 42, 48], "equal": [1, 3, 8, 10, 55, 60, 70, 92], "creat": [1, 2, 7, 14, 16, 34, 37, 38, 39, 48, 65, 75, 77, 81, 82, 84, 85, 94, 96, 97], "impli": [1, 8, 33, 54, 61], "float": [1, 2, 8, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 33, 34, 35, 36, 37, 38, 39, 41, 43, 44, 46, 47, 48, 53, 54, 55, 57, 60, 61, 65, 69, 73, 77, 78, 79, 86, 88, 89], "entri": [1, 3, 4, 33, 34, 38, 39, 41, 45, 46, 48, 53, 54, 55, 58, 81, 82, 86, 89, 90, 93, 95, 96], "maximum": [1, 8, 62, 70, 74, 94], "minimum": [1, 6, 8, 18, 39, 41, 55, 60, 73], "noise_r": 1, "non": [1, 2, 3, 4, 5, 7, 14, 24, 34, 38, 39, 60, 65, 78, 84, 86, 88, 90, 91], "default": [1, 2, 3, 4, 5, 8, 12, 14, 26, 28, 30, 33, 34, 35, 37, 38, 39, 41, 42, 44, 48, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 78, 84, 85, 93, 94], "If": [1, 2, 3, 4, 8, 10, 11, 14, 24, 26, 31, 33, 34, 37, 38, 39, 41, 42, 44, 47, 48, 52, 53, 54, 55, 58, 60, 61, 62, 65, 66, 67, 69, 70, 73, 74, 75, 76, 77, 78, 81, 82, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "have": [1, 2, 3, 4, 5, 8, 14, 19, 22, 24, 27, 33, 34, 36, 37, 38, 39, 42, 44, 48, 52, 53, 54, 55, 58, 60, 61, 62, 63, 65, 66, 70, 74, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 20, 30, 33, 34, 37, 38, 39, 42, 44, 45, 47, 48, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 81, 82, 83, 84, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "necessari": [1, 2, 3, 5, 8, 10, 47, 78], "In": [1, 2, 3, 8, 33, 34, 37, 38, 53, 54, 56, 77, 78, 79, 81, 82, 83, 84, 85, 86, 89, 90, 91, 92, 93, 94, 95, 96, 97], "particular": [1, 4, 8, 11, 12, 14, 17, 18, 20, 24, 25, 26, 29, 34, 38, 48, 53, 57, 61, 65, 70, 74, 75, 77, 79, 82, 84, 88, 89, 91, 93, 95, 96], "satisfi": [1, 3, 33], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 28, 32, 34, 35, 36, 37, 38, 39, 42, 48, 51, 52, 55, 62, 63, 65, 67, 75, 76, 77, 83, 84, 86, 92], "argument": [1, 2, 3, 4, 8, 14, 21, 25, 28, 29, 34, 37, 38, 39, 44, 49, 52, 53, 54, 55, 57, 60, 61, 62, 63, 65, 69, 70, 71, 73, 79, 82, 83, 84, 85, 89, 90, 93, 96, 97], "when": [1, 2, 3, 4, 8, 10, 12, 21, 24, 34, 38, 39, 42, 44, 48, 52, 55, 57, 58, 60, 62, 63, 65, 66, 78, 79, 81, 82, 85, 88, 92, 93, 94, 95, 96, 97], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 37, 38, 39, 41, 42, 43, 44, 45, 46, 48, 52, 53, 54, 55, 58, 60, 61, 62, 63, 65, 67, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "rate": [1, 2, 3, 8, 35, 48, 77, 97], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 33, 34, 37, 38, 39, 43, 44, 46, 48, 52, 53, 55, 58, 60, 61, 62, 63, 65, 67, 69, 70, 78, 79, 81, 82, 84, 88, 89, 91, 92, 93, 94, 95, 96, 97], "note": [1, 2, 3, 5, 6, 8, 10, 25, 29, 31, 34, 37, 38, 39, 44, 48, 53, 58, 60, 61, 62, 63, 65, 66, 70, 76, 77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "you": [1, 2, 3, 4, 5, 8, 12, 14, 33, 34, 36, 37, 38, 39, 44, 51, 52, 53, 55, 58, 60, 61, 62, 63, 65, 66, 67, 70, 71, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "high": [1, 2, 14, 37, 39, 48, 60, 63, 65, 78, 79, 83, 85, 86, 90, 93, 94, 95, 96, 97], "mai": [1, 2, 3, 4, 8, 11, 19, 20, 22, 27, 33, 34, 36, 37, 38, 39, 42, 44, 48, 53, 54, 58, 60, 61, 62, 63, 65, 67, 70, 74, 76, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 92, 93, 94, 96, 97], "imposs": [1, 8, 86], "also": [1, 2, 3, 4, 5, 8, 20, 31, 33, 34, 37, 38, 39, 44, 47, 52, 53, 62, 65, 70, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93, 94, 95, 96, 97], "low": [1, 8, 48, 53, 75, 78, 79, 82, 86, 90, 94], "zero": [1, 3, 4, 34, 38, 41, 48, 49, 78, 85, 89, 90, 91], "forc": [1, 2, 3, 4, 38, 78, 97], "instead": [1, 2, 3, 8, 11, 14, 30, 33, 34, 37, 38, 39, 42, 48, 52, 53, 55, 57, 61, 62, 63, 65, 66, 69, 71, 73, 76, 77, 81, 82, 84, 85, 86, 89, 90, 91, 93, 94, 95, 96, 97], "onli": [1, 2, 3, 4, 5, 8, 14, 21, 24, 28, 33, 34, 37, 38, 39, 41, 42, 47, 48, 49, 52, 53, 62, 63, 65, 67, 69, 73, 74, 75, 77, 78, 79, 82, 85, 88, 89, 90, 91, 92, 93, 94, 96, 97], "guarante": [1, 3, 4, 13, 19, 22, 27, 34, 36, 38, 40, 42, 51, 76], "produc": [1, 2, 4, 8, 14, 44, 53, 63, 65, 67, 69, 75, 77, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97], "higher": [1, 4, 8, 33, 39, 41, 42, 44, 46, 53, 54, 65, 79, 82, 84, 90], "opposit": [1, 97], "occur": [1, 3, 8, 33, 47, 60, 78, 79, 84, 85, 91], "small": [1, 3, 8, 33, 37, 44, 48, 54, 61, 82, 83, 85, 89, 91, 96], "numpi": [1, 3, 4, 5, 8, 10, 16, 29, 37, 38, 44, 46, 47, 49, 52, 57, 60, 65, 66, 71, 73, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "max": [1, 39, 62, 63, 79, 85, 91], "tri": [1, 34, 38, 92], "befor": [1, 2, 3, 34, 38, 46, 48, 62, 65, 70, 82, 84, 86, 88, 91, 93, 95, 96], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 21, 24, 28, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 67, 69, 70, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 89, 93, 94, 95], "left": [1, 2, 39, 41, 46, 48, 55, 58, 61, 78, 79, 89, 90, 91, 94], "stochast": 1, "exceed": 1, "m": [1, 4, 34, 38, 43, 44, 53, 58, 60, 61, 62, 78, 79, 83, 88, 89, 90, 97], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 34, 38, 52, 84, 86, 94], "length": [1, 4, 10, 24, 25, 33, 35, 39, 48, 55, 58, 62, 63, 65, 67, 70, 74, 77, 89, 91, 94, 95, 97], "must": [1, 2, 3, 4, 5, 14, 33, 34, 35, 36, 38, 39, 42, 44, 45, 48, 51, 52, 53, 54, 55, 62, 63, 65, 67, 69, 70, 71, 73, 74, 77, 88, 92, 94, 97], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 33, 37, 39, 45, 48, 49, 53, 55, 61, 67, 69, 70, 71, 73, 74, 77, 84, 88, 89, 90, 94, 95, 96, 97], "ball": [1, 83], "bin": [1, 3, 55, 78, 79, 91], "ensur": [1, 2, 8, 34, 38, 48, 49, 60, 63, 65, 77, 78, 79, 82, 84, 85, 86, 91, 92, 93, 95, 96], "most": [1, 3, 4, 5, 8, 14, 33, 37, 39, 44, 52, 53, 54, 55, 58, 60, 61, 62, 63, 66, 69, 73, 74, 75, 76, 77, 78, 79, 81, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96], "least": [1, 8, 16, 29, 33, 37, 53, 54, 60, 63, 73, 79, 84, 85, 88, 91, 94], "int_arrai": [1, 48], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 30, 33, 34, 35, 36, 37, 38, 39, 43, 44, 45, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 70, 71, 74, 75, 76, 77, 78, 81, 82, 85, 89, 90, 91, 92, 93, 94, 95, 96, 97], "model": [2, 3, 4, 8, 14, 16, 28, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 47, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 76, 78, 79, 83, 87, 92, 94, 97], "For": [2, 3, 4, 5, 7, 8, 9, 14, 20, 32, 33, 34, 37, 38, 39, 42, 44, 48, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 67, 69, 71, 73, 74, 75, 77, 79, 81, 83, 84, 85, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97], "regular": [2, 3, 37, 52], "multi": [2, 3, 8, 33, 34, 37, 38, 39, 43, 44, 45, 48, 49, 54, 55, 56, 57, 62, 63, 75, 84, 86, 87], "task": [2, 4, 5, 8, 9, 10, 12, 13, 14, 23, 28, 30, 33, 37, 42, 44, 45, 46, 48, 53, 55, 63, 65, 75, 77, 82, 83, 84, 86, 89, 91, 93, 94, 96, 97], "cleanlearn": [2, 3, 8, 21, 28, 34, 48, 52, 64, 65, 66, 75, 76, 93, 95, 96], "wrap": [2, 34, 38, 52, 62, 65, 75, 78, 79, 81, 82, 86, 93, 95, 96], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 34, 38, 44, 52, 61, 62, 65, 70, 77, 78, 79, 81, 82, 85, 86, 90, 95, 96], "sklearn": [2, 3, 4, 6, 8, 16, 29, 33, 38, 44, 48, 52, 62, 65, 66, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 91, 92, 93, 95, 96], "classifi": [2, 3, 38, 44, 48, 53, 56, 62, 63, 75, 76, 77, 81, 82, 84, 88, 89, 91, 92, 94, 95, 96, 97], "adher": [2, 38, 65], "estim": [2, 3, 4, 7, 11, 20, 33, 37, 38, 39, 42, 48, 53, 54, 55, 60, 62, 65, 67, 69, 73, 75, 76, 77, 78, 79, 81, 82, 84, 85, 87, 90, 91, 92, 93, 94, 97], "api": [2, 3, 12, 52, 58, 61, 62, 65, 76, 84, 93], "defin": [2, 3, 4, 5, 8, 12, 20, 33, 34, 35, 37, 38, 39, 63, 65, 67, 77, 78, 79, 81, 84, 88, 91, 97], "four": [2, 8, 83, 86, 97], "clf": [2, 3, 4, 44, 65, 75, 81, 84, 86, 89, 95], "fit": [2, 3, 4, 6, 8, 16, 36, 38, 51, 52, 62, 64, 65, 75, 78, 79, 81, 82, 84, 85, 86, 88, 89, 91, 92, 93, 95, 96, 97], "sample_weight": [2, 38, 65, 86], "predict_proba": [2, 4, 33, 36, 38, 44, 51, 52, 77, 78, 79, 81, 82, 84, 86, 88, 89, 91, 95], "predict": [2, 3, 4, 6, 8, 14, 20, 21, 23, 26, 28, 31, 33, 36, 37, 38, 39, 41, 42, 44, 45, 47, 48, 51, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 83, 84, 86, 87, 91, 93, 94, 96, 97], "score": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 33, 37, 39, 41, 44, 46, 53, 54, 55, 57, 58, 60, 61, 62, 63, 64, 65, 66, 69, 71, 73, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 91, 93, 95, 96], "data": [2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 33, 35, 36, 37, 38, 39, 44, 45, 48, 51, 52, 53, 54, 55, 56, 60, 62, 63, 64, 65, 70, 71, 72, 73, 74, 76, 80, 85, 87, 92, 96], "e": [2, 3, 4, 8, 10, 20, 33, 34, 37, 38, 39, 42, 44, 45, 48, 49, 53, 54, 55, 56, 58, 61, 62, 63, 65, 67, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96], "featur": [2, 3, 4, 6, 8, 14, 17, 21, 24, 25, 26, 28, 29, 44, 48, 62, 65, 75, 78, 79, 81, 82, 84, 86, 88, 89, 93, 95], "element": [2, 3, 4, 33, 39, 41, 48, 53, 55, 63, 70, 71, 73, 77, 82, 84, 96, 97], "first": [2, 4, 8, 15, 24, 25, 33, 37, 44, 48, 53, 54, 58, 61, 63, 65, 77, 78, 81, 84, 85, 88, 89, 90, 91, 93, 94, 95, 96, 97], "index": [2, 8, 24, 33, 39, 47, 48, 49, 54, 63, 65, 70, 73, 74, 77, 78, 79, 81, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 96, 97], "should": [2, 3, 4, 5, 8, 12, 20, 24, 29, 33, 34, 37, 38, 39, 41, 42, 44, 46, 47, 48, 52, 53, 54, 57, 58, 60, 61, 62, 63, 65, 66, 70, 71, 73, 74, 77, 78, 79, 81, 82, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 31, 33, 34, 37, 38, 39, 41, 42, 44, 47, 48, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 67, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "differ": [2, 4, 5, 8, 11, 13, 19, 22, 24, 25, 27, 33, 34, 36, 37, 38, 39, 40, 44, 48, 49, 51, 53, 58, 60, 62, 65, 77, 78, 79, 81, 82, 85, 86, 88, 89, 91, 92, 93, 95], "sampl": [2, 3, 4, 6, 8, 14, 18, 39, 41, 44, 55, 58, 61, 63, 65, 66, 75, 76, 83, 84, 86, 87, 89, 90, 93, 94, 96, 97], "size": [2, 8, 29, 34, 37, 38, 39, 44, 55, 60, 61, 65, 67, 69, 81, 84, 85, 86, 88, 89, 90, 92, 94, 96], "here": [2, 4, 5, 8, 12, 37, 39, 42, 52, 53, 54, 55, 57, 58, 61, 62, 73, 75, 76, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "re": [2, 4, 34, 38, 47, 53, 65, 75, 77, 78, 81, 82, 84, 93, 94, 95, 96, 97], "weight": [2, 8, 34, 35, 38, 44, 53, 60, 63, 65, 77, 78, 79, 82, 96], "loss": [2, 35, 52, 63, 65, 85], "while": [2, 3, 8, 34, 37, 38, 43, 44, 48, 65, 75, 84, 85, 86, 88, 89, 93], "train": [2, 3, 4, 8, 14, 16, 34, 35, 36, 38, 44, 48, 52, 53, 58, 61, 62, 65, 66, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 92, 94, 97], "support": [2, 3, 4, 10, 12, 30, 31, 37, 44, 48, 49, 62, 63, 73, 75, 76, 77, 78, 79, 84, 85], "your": [2, 3, 4, 7, 8, 14, 33, 34, 36, 37, 38, 39, 44, 48, 51, 52, 53, 54, 55, 57, 62, 63, 65, 66, 67, 69, 70, 76, 77, 81, 83, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "recommend": [2, 4, 5, 8, 11, 14, 37, 39, 53, 78, 79, 84, 85, 92, 93], "furthermor": 2, "correctli": [2, 3, 8, 33, 34, 38, 39, 42, 49, 54, 55, 60, 61, 65, 67, 82, 84, 89, 90, 93, 94, 96], "clonabl": [2, 65], "via": [2, 4, 5, 8, 11, 14, 16, 20, 33, 35, 37, 38, 44, 48, 53, 58, 61, 62, 63, 65, 66, 69, 73, 77, 78, 79, 81, 82, 83, 84, 85, 89, 90, 91, 92, 93, 94, 95, 96, 97], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 34, 37, 38, 39, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 57, 60, 62, 63, 65, 66, 69, 71, 73, 77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 94, 95, 97], "clone": [2, 65, 89], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 37, 41, 42, 43, 44, 45, 46, 47, 48, 49, 57, 61, 65, 71, 76, 77, 78, 84, 86, 88, 89, 90, 91, 93, 97], "multipl": [2, 3, 4, 10, 11, 31, 33, 39, 47, 53, 54, 55, 57, 60, 61, 65, 75, 78, 79, 84, 85, 87, 89, 90, 93], "g": [2, 3, 4, 8, 10, 20, 33, 34, 38, 39, 45, 48, 55, 56, 58, 61, 62, 63, 65, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96], "manual": [2, 65, 77, 84, 91, 92, 93, 95, 96, 97], "pytorch": [2, 34, 35, 38, 65, 75, 77, 84, 87, 89, 94], "call": [2, 3, 4, 8, 11, 12, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 34, 38, 44, 48, 52, 62, 65, 77, 78, 79, 82, 84, 86, 89, 91, 92, 93, 94, 96, 97], "__init__": [2, 35, 65, 85], "independ": [2, 3, 8, 54, 65, 82, 92, 93, 97], "compat": [2, 34, 37, 38, 52, 65, 66, 69, 73, 75, 84, 92, 93, 95, 96], "neural": [2, 35, 52, 62, 65, 77, 84, 85, 89, 91, 93], "network": [2, 34, 35, 38, 52, 62, 65, 77, 82, 84, 85, 89, 91, 93, 96], "typic": [2, 34, 38, 62, 65, 77, 79, 81, 82, 85, 91, 92, 95, 96], "initi": [2, 3, 11, 16, 34, 38, 53, 65, 82, 84, 95], "insid": [2, 38, 65, 84, 86], "There": [2, 3, 5, 75, 86, 88], "two": [2, 3, 8, 16, 24, 33, 34, 37, 38, 45, 48, 58, 60, 61, 76, 78, 79, 81, 82, 84, 85, 86, 89, 93, 94, 96, 97], "new": [2, 5, 12, 20, 34, 37, 38, 43, 47, 48, 53, 65, 77, 78, 82, 83, 84, 91, 92, 96, 97], "notion": 2, "confid": [2, 3, 8, 20, 33, 37, 39, 42, 44, 48, 53, 54, 55, 58, 60, 61, 62, 63, 65, 69, 73, 75, 81, 82, 85, 86, 88, 89, 90, 92, 94, 95, 97], "packag": [2, 4, 5, 7, 8, 9, 13, 32, 36, 39, 40, 48, 51, 58, 61, 65, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "prune": [2, 3, 39, 55, 65, 76, 90], "everyth": [2, 61, 86], "els": [2, 61, 78, 83, 84, 85, 88, 89, 90], "mathemat": [2, 3, 8, 42, 89], "keep": [2, 11, 12, 48, 75, 78, 83, 84, 94], "belong": [2, 3, 8, 33, 39, 41, 42, 54, 55, 56, 57, 62, 63, 67, 71, 73, 74, 79, 85, 86, 89, 91, 94, 97], "2": [2, 3, 4, 5, 10, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 52, 54, 55, 57, 58, 61, 62, 63, 65, 66, 70, 71, 73, 74, 83, 84, 92], "error": [2, 3, 4, 8, 34, 38, 39, 41, 42, 48, 54, 55, 57, 58, 60, 61, 63, 65, 67, 69, 70, 73, 76, 77, 78, 79, 81, 82, 83, 87, 95], "erron": [2, 3, 33, 39, 42, 48, 54, 55, 63, 65, 66, 67, 91, 93], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 30, 33, 37, 44, 46, 47, 53, 57, 60, 65, 66, 71, 73, 74, 75, 81, 82, 84, 89, 90, 91, 93, 94, 95, 96, 97], "linear_model": [2, 4, 33, 48, 65, 75, 77, 78, 79, 82, 84, 86, 88, 91, 96], "logisticregress": [2, 3, 4, 33, 48, 75, 77, 78, 79, 82, 84, 86, 88, 91, 96], "logreg": 2, "cl": [2, 12, 28, 65, 75, 84, 86, 93, 95, 96], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 21, 28, 30, 34, 37, 38, 39, 43, 44, 48, 52, 53, 55, 62, 63, 65, 71, 75, 77, 78, 79, 82, 83, 84, 86, 88, 90, 91, 93, 96], "x_train": [2, 78, 79, 86, 88, 89, 93, 95], "labels_maybe_with_error": 2, "had": [2, 3, 65, 90], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 33, 34, 36, 37, 38, 39, 51, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 80, 87, 88, 92, 93, 96], "pred": [2, 39, 48, 92, 93, 95, 96], "x_test": [2, 78, 79, 86, 89, 93, 95], "might": [2, 53, 65, 70, 78, 79, 84, 85, 90, 95, 96], "case": [2, 3, 11, 33, 44, 53, 65, 77, 78, 79, 81, 83, 84, 85, 86, 91, 93, 95, 96, 97], "standard": [2, 3, 4, 28, 33, 39, 52, 54, 55, 57, 63, 65, 75, 78, 79, 81, 83, 86, 90, 95], "adapt": [2, 34, 36, 48, 51, 65, 91], "skorch": [2, 65, 75, 84], "kera": [2, 51, 58, 61, 65, 75, 84, 90], "scikera": [2, 52, 65, 84], "open": [2, 37, 83, 90, 97], "doesn": [2, 65, 75], "t": [2, 3, 5, 8, 15, 25, 34, 35, 37, 38, 39, 44, 46, 47, 57, 62, 63, 65, 71, 73, 74, 75, 78, 79, 81, 82, 83, 85, 86, 89, 90, 93, 97], "alreadi": [2, 4, 8, 14, 34, 37, 38, 42, 52, 53, 65, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 90, 91, 93, 95, 96], "exist": [2, 4, 8, 10, 16, 34, 37, 38, 47, 52, 58, 60, 62, 65, 75, 76, 78, 79, 82, 88, 96, 97], "made": [2, 4, 14, 34, 38, 65, 82, 84, 85, 88, 90, 92, 93, 95, 96], "easi": [2, 42, 65, 78, 79, 83, 84, 86, 89], "inherit": [2, 5, 35, 65], "baseestim": [2, 38, 65], "yourmodel": [2, 65], "def": [2, 5, 12, 34, 38, 52, 65, 77, 78, 79, 83, 84, 85, 86, 88, 89, 91, 93, 96, 97], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 29, 34, 35, 37, 38, 39, 44, 62, 63, 65, 78, 82, 83, 85, 89, 94, 95, 96, 97], "refer": [2, 8, 14, 34, 38, 54, 55, 57, 58, 60, 61, 65, 69, 70, 78, 79, 81, 82, 84, 85, 86, 89, 92, 93], "origin": [2, 4, 8, 38, 39, 47, 48, 52, 54, 55, 58, 61, 62, 65, 66, 69, 71, 73, 78, 81, 82, 84, 85, 86, 90, 91, 93, 95, 96, 97], "total": [2, 3, 33, 37, 48, 54, 74, 84, 85, 94], "state": [2, 3, 4, 34, 35, 38, 43, 65, 86, 89, 90, 97], "art": [2, 35, 86, 89], "northcutt": [2, 3, 33, 62, 63], "et": [2, 3, 33, 35, 62, 63], "al": [2, 3, 33, 35, 62, 63], "2021": [2, 3, 33, 62, 63], "weak": [2, 61], "supervis": [2, 8, 78, 79, 84, 88], "find": [2, 4, 8, 11, 12, 14, 17, 18, 20, 21, 23, 24, 25, 26, 29, 33, 34, 36, 37, 38, 39, 43, 47, 48, 51, 58, 61, 62, 63, 65, 67, 71, 73, 76, 78, 87, 92], "uncertainti": [2, 8, 41, 62, 65, 84, 91, 93], "It": [2, 3, 4, 5, 8, 10, 11, 14, 20, 25, 28, 30, 31, 34, 38, 39, 42, 44, 53, 60, 61, 65, 75, 78, 79, 82, 84, 85, 86, 89, 92, 96], "work": [2, 3, 5, 8, 10, 28, 33, 34, 37, 38, 39, 42, 47, 48, 49, 52, 53, 63, 65, 75, 76, 78, 79, 83, 91, 93, 96], "includ": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 30, 33, 34, 36, 37, 38, 47, 48, 51, 53, 54, 57, 58, 62, 63, 65, 69, 70, 71, 73, 75, 76, 78, 79, 81, 82, 84, 85, 86, 89, 90, 91, 97], "deep": [2, 36, 38, 51, 52, 65, 82], "see": [2, 3, 4, 5, 11, 12, 30, 33, 34, 37, 38, 39, 44, 48, 52, 54, 55, 57, 58, 61, 62, 63, 65, 71, 73, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 88, 89, 90, 91, 93, 94, 95, 96, 97], "subfield": 2, "theori": [2, 86], "machin": [2, 4, 12, 14, 30, 36, 51, 65, 78, 79, 83, 88], "across": [2, 3, 4, 5, 8, 11, 20, 33, 37, 44, 54, 61, 62, 78, 79, 81, 82, 83, 84, 85, 86, 89, 90, 92, 93], "varieti": [2, 84, 95, 96], "like": [2, 3, 4, 5, 8, 12, 33, 34, 37, 38, 39, 42, 48, 52, 53, 54, 57, 58, 60, 63, 65, 66, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "pu": [2, 48], "input": [2, 3, 4, 8, 14, 24, 33, 34, 37, 38, 42, 44, 47, 48, 49, 52, 61, 65, 75, 76, 77, 79, 82, 83, 84, 85, 86, 88, 89, 90, 93, 94, 96, 97], "discret": [2, 31, 39, 42, 48, 62, 63, 67, 69, 70], "vector": [2, 3, 4, 8, 14, 39, 42, 44, 45, 48, 62, 63, 75, 77, 78, 79, 81, 82, 85, 86, 89, 90, 91, 94, 96, 97], "would": [2, 3, 4, 34, 37, 38, 39, 48, 55, 65, 75, 78, 84, 85, 86, 91, 93, 96, 97], "obtain": [2, 4, 6, 8, 14, 39, 53, 55, 58, 61, 63, 66, 77, 79, 82, 84, 88, 90, 92, 94, 97], "been": [2, 33, 39, 42, 47, 48, 53, 54, 58, 60, 62, 63, 65, 77, 78, 81, 84, 86, 88, 89, 90, 91, 94, 97], "dure": [2, 8, 14, 62, 65, 77, 81, 82, 84, 86, 89, 92, 93, 95, 96, 97], "denot": [2, 3, 42, 44, 48, 55, 62, 63, 73], "tild": 2, "paper": [2, 8, 53, 62, 71, 73, 83, 86, 88, 91, 93, 97], "cv_n_fold": [2, 3, 65, 96], "5": [2, 3, 4, 6, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 30, 33, 38, 39, 41, 43, 44, 48, 53, 54, 57, 58, 61, 65, 66, 73, 78, 82, 83, 84, 89, 90, 91, 92, 94, 96, 97], "converge_latent_estim": [2, 3], "pulearn": [2, 48], "find_label_issues_kwarg": [2, 8, 65, 76, 84, 86], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 55, 71, 84], "clean": [2, 60, 63, 65, 66, 75, 78, 79, 83, 93, 95, 96], "even": [2, 3, 5, 33, 37, 41, 42, 48, 65, 77, 84, 86, 88, 89, 90], "messi": [2, 65, 86], "ridden": [2, 65], "autom": [2, 65, 75, 79, 83, 84], "robust": [2, 42, 65, 79, 84], "prone": [2, 65], "out": [2, 3, 4, 8, 14, 26, 34, 38, 39, 44, 52, 55, 56, 58, 61, 62, 63, 65, 66, 74, 75, 76, 83, 84, 86, 87, 89, 90, 91, 93, 94, 96, 97], "current": [2, 3, 5, 8, 11, 12, 20, 34, 38, 39, 44, 53, 60, 65, 78, 79, 84, 88, 90], "intend": [2, 11, 12, 13, 14, 30, 31, 40, 53, 69, 73, 77, 78, 79, 82, 86], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 33, 34, 35, 38, 39, 42, 43, 44, 45, 46, 47, 48, 52, 53, 54, 57, 60, 61, 62, 63, 65, 67, 69, 70, 74, 76, 77, 78, 81, 82, 83, 84, 85, 86, 88, 90, 92, 95, 96, 97], "follow": [2, 3, 8, 12, 28, 31, 33, 34, 37, 38, 44, 46, 53, 54, 58, 60, 61, 62, 65, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "experiment": [2, 34, 35, 37, 38, 55, 76, 84], "wrapper": [2, 4, 52, 77, 93, 95, 96], "around": [2, 4, 60, 78, 79, 90, 91, 97], "fasttext": [2, 51], "store": [2, 4, 8, 10, 11, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 34, 37, 38, 62, 65, 81, 82, 83, 84, 94, 95, 96, 97], "along": [2, 44, 55, 73, 78, 79, 84, 85, 91], "dimens": [2, 48, 67, 70, 84, 85, 91, 94], "select": [2, 7, 8, 24, 53, 63, 84, 85, 88, 91], "split": [2, 3, 4, 8, 10, 37, 44, 47, 48, 65, 77, 78, 79, 81, 82, 83, 85, 86, 89, 92, 95, 97], "cross": [2, 3, 8, 33, 39, 42, 43, 44, 55, 58, 61, 63, 65, 66, 76, 77, 78, 79, 81, 82, 83, 84, 86, 87, 89, 90, 93, 94, 95, 96, 97], "fold": [2, 3, 33, 39, 42, 65, 77, 81, 83, 84, 90, 94, 95], "By": [2, 33, 54, 55, 65, 78, 84, 94], "need": [2, 3, 8, 33, 34, 37, 38, 39, 54, 55, 57, 62, 65, 75, 77, 78, 79, 82, 84, 86, 88, 89, 90, 94, 96], "holdout": [2, 3, 65], "comput": [2, 3, 4, 5, 6, 8, 17, 18, 20, 21, 24, 25, 26, 29, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 48, 53, 54, 55, 57, 60, 61, 62, 63, 65, 66, 67, 69, 75, 76, 78, 79, 83, 86, 87, 90, 91, 93, 94, 96], "them": [2, 3, 4, 5, 7, 8, 9, 10, 25, 32, 34, 36, 37, 38, 39, 51, 53, 62, 65, 76, 78, 79, 81, 82, 84, 85, 88, 89, 91, 93, 94, 95, 96, 97], "numer": [2, 3, 4, 8, 11, 20, 28, 31, 44, 60, 62, 65, 70, 75, 76, 77, 78, 79, 80, 82, 85, 86, 88, 89, 91, 93, 95, 96], "consist": [2, 3, 34, 38, 48, 53, 94, 97], "latent": [2, 3, 42], "thei": [2, 3, 4, 13, 19, 22, 24, 27, 34, 35, 36, 38, 39, 40, 46, 48, 52, 55, 60, 63, 65, 66, 69, 73, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 91, 93, 96, 97], "relat": [2, 3, 11, 17, 18, 24, 25, 26, 29, 42, 48, 54, 65, 79, 82], "close": [2, 3, 8, 37, 42, 62, 77, 78, 79, 81, 82, 84, 85, 86, 90], "form": [2, 3, 8, 34, 35, 38, 42, 47, 48, 63, 65, 84], "equival": [2, 3, 34, 38, 42, 62, 91, 93], "iter": [2, 3, 33, 34, 38, 39, 48, 54, 55, 65, 84, 88, 94], "enforc": [2, 34, 38, 48], "perfectli": [2, 33, 54, 86], "certain": [2, 3, 4, 34, 38, 52, 61, 65, 78, 79, 83, 90, 91], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 33, 34, 37, 38, 39, 43, 44, 48, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 73, 78, 79, 84, 85, 97], "keyword": [2, 3, 4, 8, 14, 21, 25, 28, 34, 37, 38, 39, 41, 44, 47, 52, 53, 55, 62, 63, 65, 71, 73, 78], "filter": [2, 3, 8, 37, 47, 54, 56, 57, 59, 61, 68, 69, 70, 72, 73, 74, 75, 76, 77, 79, 82, 83, 84, 85, 89, 90, 93, 94, 95, 96, 97], "find_label_issu": [2, 3, 8, 28, 37, 39, 54, 55, 56, 57, 58, 59, 60, 61, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 84, 89, 90, 93, 94, 95, 96, 97], "particularli": [2, 75, 88, 91], "filter_bi": [2, 3, 37, 39, 55, 76, 84], "frac_nois": [2, 39, 55, 71, 84], "min_examples_per_class": [2, 39, 55, 79, 84, 86], "impact": [2, 8, 78, 79, 85], "ml": [2, 4, 8, 13, 65, 75, 78, 79, 81, 82, 85, 88, 89, 93, 95, 96], "accuraci": [2, 35, 63, 77, 84, 85, 86, 88, 91, 93, 94, 95, 96], "n_job": [2, 37, 39, 55, 67, 69, 71, 84, 91, 94], "disabl": [2, 34, 38, 39, 91], "process": [2, 3, 5, 11, 14, 34, 37, 38, 39, 47, 53, 55, 61, 67, 69, 71, 77, 78, 84, 88, 92, 96], "caus": [2, 39, 44, 78, 79, 84], "rank": [2, 3, 8, 33, 37, 39, 44, 54, 55, 56, 58, 59, 61, 62, 64, 68, 70, 71, 72, 74, 75, 76, 78, 79, 83, 84, 89, 90, 91, 94, 95, 96, 97], "get_label_quality_scor": [2, 37, 39, 40, 44, 53, 55, 56, 57, 58, 59, 60, 63, 64, 66, 68, 69, 71, 72, 73, 76, 86, 89, 90, 94, 97], "adjust_pred_prob": [2, 8, 57, 62, 63, 86], "control": [2, 4, 7, 8, 14, 37, 39, 53, 61, 62, 65, 71, 73, 78, 79, 83, 84], "how": [2, 3, 4, 8, 10, 11, 12, 14, 20, 33, 34, 35, 37, 38, 42, 48, 53, 54, 57, 58, 60, 62, 63, 65, 69, 73, 75, 78, 79, 81, 82, 83, 85, 90, 91, 92, 93, 94, 95, 96], "much": [2, 8, 33, 37, 39, 65, 84, 86, 88, 91], "output": [2, 3, 4, 8, 14, 34, 35, 38, 42, 48, 52, 53, 54, 58, 60, 61, 62, 65, 69, 70, 73, 74, 75, 76, 77, 78, 82, 83, 84, 85, 90, 91, 92, 93, 96], "print": [2, 4, 5, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 37, 38, 39, 48, 53, 54, 55, 60, 62, 63, 65, 67, 69, 70, 74, 76, 77, 79, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "suppress": [2, 37, 53, 60, 62, 63, 65, 67, 69, 70, 94, 97], "statement": [2, 37, 53, 60, 62, 63, 65, 67, 69, 70], "big": [2, 37, 55, 61, 65, 86], "limit": [2, 4, 14, 37, 55, 90, 94, 97], "memori": [2, 34, 37, 38, 55, 61, 67, 69, 78, 94], "label_issues_batch": [2, 36, 55, 84], "find_label_issues_batch": [2, 36, 37, 55, 84], "pred_prob": [2, 3, 4, 6, 8, 14, 21, 23, 24, 26, 29, 33, 37, 39, 41, 42, 43, 44, 45, 48, 49, 53, 54, 55, 57, 58, 61, 62, 63, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 93, 95, 96], "threshold": [2, 3, 5, 8, 16, 17, 18, 20, 26, 28, 29, 37, 60, 61, 62, 63, 69, 73, 78, 90, 91, 94, 97], "inverse_noise_matrix": [2, 3, 8, 42, 48, 76, 86], "label_issu": [2, 37, 39, 55, 58, 65, 67, 76, 77, 82, 84, 85, 86, 89, 93, 95, 96], "clf_kwarg": [2, 3, 8, 65], "clf_final_kwarg": [2, 65], "validation_func": [2, 3, 8], "correct": [2, 4, 8, 33, 37, 39, 41, 53, 54, 55, 57, 58, 60, 61, 63, 65, 66, 69, 73, 75, 77, 81, 82, 85, 86, 88, 90, 92, 93], "result": [2, 3, 8, 11, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 34, 37, 38, 39, 41, 46, 48, 55, 57, 58, 61, 63, 65, 66, 67, 69, 73, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 93, 94, 95, 96, 97], "identifi": [2, 3, 4, 5, 8, 10, 14, 25, 30, 33, 37, 39, 55, 58, 61, 63, 65, 66, 67, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 89, 91, 93, 94, 95, 96, 97], "final": [2, 8, 65, 81, 90, 92, 93, 95], "remain": [2, 65, 76, 85, 89, 93, 95, 96, 97], "datasetlik": [2, 48, 65], "beyond": [2, 4, 5, 7, 9, 32, 75, 93, 94], "pd": [2, 3, 4, 5, 11, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 33, 43, 52, 53, 54, 65, 73, 77, 78, 79, 81, 82, 84, 86, 88, 93, 95, 96, 97], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 33, 37, 43, 48, 49, 52, 53, 54, 65, 70, 74, 76, 77, 78, 79, 81, 82, 84, 85, 86, 88, 93, 94, 96, 97], "scipi": [2, 4, 11, 48], "spars": [2, 4, 8, 11, 14, 16, 29, 48, 49, 81], "csr_matrix": [2, 4, 11, 14, 16, 29], "torch": [2, 34, 35, 38, 77, 82, 83, 85, 91, 96], "util": [2, 4, 8, 14, 30, 34, 35, 38, 40, 53, 58, 61, 65, 75, 76, 77, 78, 79, 84, 85, 86, 91], "tensorflow": [2, 48, 52, 75, 77, 84], "object": [2, 4, 8, 10, 11, 14, 30, 34, 35, 37, 38, 44, 48, 49, 52, 55, 58, 59, 60, 61, 62, 65, 73, 75, 77, 79, 81, 85, 86, 87, 89, 93, 96], "list": [2, 3, 4, 10, 12, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 33, 34, 35, 37, 38, 39, 45, 47, 48, 49, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 69, 70, 71, 73, 74, 76, 77, 78, 79, 83, 84, 85, 86, 89, 90, 93, 96, 97], "index_list": 2, "subset": [2, 3, 4, 14, 33, 37, 39, 48, 63, 70, 74, 77, 81, 82, 84, 85, 89, 90, 91, 92, 93, 95, 96, 97], "wa": [2, 3, 10, 12, 37, 48, 53, 54, 60, 62, 74, 77, 78, 79, 81, 82, 84, 86, 89, 90, 92, 94, 95, 96, 97], "abl": [2, 3, 8, 65, 77, 84, 86, 88, 89], "format": [2, 3, 4, 8, 10, 34, 37, 38, 39, 42, 43, 44, 45, 48, 49, 52, 53, 54, 55, 58, 61, 62, 63, 65, 67, 69, 70, 73, 74, 77, 78, 79, 81, 83, 85, 88, 93, 94, 95, 97], "make": [2, 3, 4, 16, 34, 37, 38, 44, 52, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 95, 96], "sure": [2, 4, 37, 39, 44, 77, 78, 79, 81, 82, 83, 85, 88, 89, 90, 91, 93, 95, 96], "shuffl": [2, 8, 48, 77, 82, 85, 89, 91], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 28, 29, 34, 38, 42, 44, 47, 48, 53, 58, 60, 65, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97], "batch": [2, 37, 48, 52, 53, 67, 69, 84, 85, 91], "order": [2, 4, 8, 31, 33, 34, 38, 39, 42, 43, 44, 48, 53, 54, 55, 58, 61, 62, 63, 67, 70, 71, 73, 74, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 89, 90, 93, 94, 96, 97], "destroi": [2, 48], "oper": [2, 34, 37, 38, 48, 52, 63, 75, 82, 84, 91, 95, 96], "eg": [2, 8, 48, 58, 61, 78, 79, 84], "repeat": [2, 48, 53, 88, 91], "appli": [2, 34, 36, 38, 39, 44, 45, 47, 48, 57, 62, 71, 77, 78, 79, 81, 84, 85, 88, 89, 91, 92, 93, 94, 95, 96], "array_lik": [2, 3, 33, 39, 48, 55, 62, 66], "some": [2, 3, 4, 8, 12, 20, 33, 34, 36, 38, 39, 42, 47, 48, 51, 53, 54, 55, 57, 58, 61, 62, 63, 65, 67, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 92, 93, 94, 95, 96, 97], "seri": [2, 3, 37, 48, 49, 65, 73, 84], "row": [2, 3, 4, 8, 11, 25, 33, 37, 39, 41, 42, 48, 53, 54, 55, 57, 62, 63, 65, 70, 71, 73, 74, 77, 78, 81, 82, 83, 84, 85, 88, 89, 91, 95, 97], "rather": [2, 3, 24, 33, 48, 52, 53, 60, 69, 73, 88, 92, 93, 94, 96, 97], "leav": [2, 39], "per": [2, 3, 5, 11, 33, 37, 39, 44, 47, 53, 54, 55, 57, 60, 61, 63, 66, 67, 69, 73, 79, 84, 90, 97], "determin": [2, 3, 8, 10, 14, 20, 24, 28, 33, 37, 39, 44, 48, 53, 55, 58, 60, 63, 69, 73, 78, 84, 88, 90, 91, 93], "cutoff": [2, 3, 91], "consid": [2, 3, 4, 8, 11, 14, 21, 24, 26, 29, 33, 34, 38, 39, 48, 53, 60, 62, 63, 66, 69, 73, 77, 81, 82, 84, 85, 86, 90, 91, 92, 93, 94, 95, 96], "section": [2, 3, 5, 8, 76, 81, 85, 90], "3": [2, 3, 4, 5, 8, 31, 33, 34, 38, 39, 42, 43, 44, 45, 46, 47, 48, 52, 55, 62, 63, 65, 66, 71, 73, 83, 84, 92], "equat": [2, 3, 42], "advanc": [2, 3, 4, 7, 8, 14, 60, 62, 73, 76, 79, 80, 86], "user": [2, 3, 4, 8, 12, 14, 25, 30, 31, 34, 38, 39, 60, 62, 63, 65, 69, 73, 86], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 16, 29, 30, 34, 37, 38, 39, 44, 47, 53, 54, 55, 58, 60, 62, 63, 65, 66, 74, 76, 77, 79, 82, 85, 88, 90, 93, 96], "automat": [2, 3, 4, 24, 33, 75, 81, 82, 83, 84, 85, 88, 89, 90, 93, 94, 95, 96, 97], "greater": [2, 3, 4, 5, 7, 8, 26, 37, 48, 60, 79, 83, 84, 97], "count": [2, 20, 24, 33, 37, 39, 42, 48, 54, 55, 61, 76, 84, 85, 90], "observ": [2, 3, 42, 77, 78, 79, 88, 91, 93], "mislabel": [2, 8, 33, 37, 39, 42, 53, 54, 55, 58, 60, 63, 69, 71, 73, 75, 77, 81, 82, 84, 85, 86, 90, 93, 95, 96], "one": [2, 3, 4, 5, 8, 24, 33, 34, 37, 38, 39, 44, 48, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 85, 88, 91, 92, 93, 95, 96, 97], "get_label_issu": [2, 36, 37, 64, 65, 86, 93, 95, 96], "either": [2, 3, 5, 8, 34, 37, 38, 39, 53, 55, 60, 62, 63, 67, 69, 79, 84, 89, 90], "boolean": [2, 5, 8, 20, 37, 39, 47, 53, 55, 58, 63, 65, 67, 69, 70, 75, 77, 79, 82, 84, 85, 90, 93, 94, 96], "label_issues_mask": [2, 39, 63, 65, 76], "indic": [2, 3, 4, 5, 8, 11, 20, 33, 37, 38, 39, 41, 44, 48, 52, 53, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 69, 71, 73, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "its": [2, 4, 5, 7, 8, 14, 34, 37, 38, 39, 46, 47, 55, 58, 61, 62, 63, 65, 67, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 90, 91, 92, 93, 94, 96, 97], "return_indices_ranked_bi": [2, 37, 39, 55, 71, 76, 84, 86, 95, 96], "significantli": [2, 85, 86, 88, 92], "reduc": [2, 37, 39, 48, 77, 84], "time": [2, 8, 34, 37, 38, 48, 53, 76, 78, 83, 84, 85, 86, 90, 91, 93, 94, 95, 96, 97], "take": [2, 4, 8, 33, 34, 38, 43, 44, 48, 52, 63, 81, 85, 88, 89, 90, 95, 97], "run": [2, 4, 5, 7, 9, 12, 14, 24, 25, 32, 34, 37, 38, 65, 77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 95, 96, 97], "skip": [2, 8, 34, 38, 65, 77, 84, 89, 97], "slow": [2, 3], "step": [2, 5, 24, 44, 61, 84, 85, 86, 88, 92], "caution": [2, 4, 84], "previous": [2, 4, 11, 48, 62, 65, 76, 77, 78, 81, 82, 88, 92, 95], "assign": [2, 5, 8, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 34, 38, 43, 44, 48, 65, 78, 81, 84, 85, 93, 94, 95, 97], "individu": [2, 5, 8, 11, 24, 34, 38, 53, 57, 60, 63, 65, 71, 73, 76, 79, 81, 84, 88, 89, 90, 95, 97], "still": [2, 37, 38, 48, 62, 77, 84, 85, 91, 95], "extra": [2, 34, 38, 48, 52, 53, 54, 65, 82, 84, 85, 88, 91], "receiv": [2, 8, 34, 38, 54, 57, 58, 65, 67, 71, 79, 90], "overwritten": [2, 65], "callabl": [2, 3, 34, 38, 44, 47, 52, 57, 84], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 37, 38, 40, 43, 47, 48, 61, 63, 65, 70, 77, 78, 79, 84, 85, 86, 89, 97], "appropri": [2, 8, 14, 55, 63, 78, 81, 89, 90], "earli": [2, 85], "stop": [2, 85], "x_valid": 2, "y_valid": 2, "could": [2, 5, 8, 20, 33, 48, 62, 78, 81, 85, 89, 93, 95, 97], "f": [2, 5, 77, 78, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 95, 96], "ignor": [2, 34, 38, 47, 52, 65, 70, 74, 77, 78, 79, 83, 85, 86, 88, 89, 91, 93, 97], "allow": [2, 33, 34, 37, 38, 41, 48, 53, 61, 62, 65, 67, 69, 77, 84, 85, 92, 94, 96], "access": [2, 8, 11, 34, 38, 65, 79, 82, 85, 89, 96], "hyperparamet": [2, 57, 62, 85], "purpos": [2, 78, 79, 84, 89, 93], "want": [2, 4, 8, 33, 37, 49, 53, 55, 65, 78, 82, 83, 85, 88, 90, 91, 92, 94, 96, 97], "explicitli": [2, 6, 8, 38, 65, 84], "yourself": [2, 4, 37, 79], "altern": [2, 5, 8, 44, 48, 52, 53, 63, 76, 77, 81, 82, 84, 85, 86, 88, 89, 91, 93, 96], "same": [2, 3, 4, 5, 8, 10, 12, 14, 24, 28, 34, 37, 38, 39, 48, 52, 53, 55, 62, 63, 65, 69, 70, 73, 74, 75, 78, 79, 81, 82, 84, 85, 89, 90, 91, 92, 93, 94, 95, 96], "effect": [2, 8, 25, 34, 38, 53, 62, 65, 81, 82, 84, 85, 91], "offer": [2, 4, 77, 78, 79, 82, 84, 86, 89, 96], "after": [2, 3, 4, 11, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 34, 38, 48, 53, 65, 78, 82, 84, 85, 86, 88, 90, 91, 92, 93, 94, 96], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 34, 37, 38, 44, 62, 65, 78, 95], "label_issues_df": [2, 65, 85], "similar": [2, 8, 33, 34, 38, 48, 53, 57, 58, 60, 62, 65, 69, 73, 78, 79, 81, 82, 84, 85, 86, 90, 91, 94], "document": [2, 3, 4, 8, 12, 14, 33, 34, 37, 38, 39, 44, 47, 52, 54, 55, 57, 60, 61, 62, 65, 69, 70, 71, 73, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 95, 96, 97], "descript": [2, 4, 5, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 33, 48, 58, 65, 78, 79], "were": [2, 3, 4, 33, 38, 54, 60, 73, 77, 81, 84, 86, 88, 90, 92, 94, 95], "present": [2, 3, 4, 8, 10, 11, 18, 33, 48, 62, 70, 75, 81, 84, 85, 91], "actual": [2, 3, 4, 33, 53, 54, 63, 79, 84, 86, 97], "num_class": [2, 33, 37, 48, 52, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 91, 95, 96], "uniqu": [2, 29, 48, 70, 78, 84, 89, 91], "given_label": [2, 4, 23, 28, 33, 42, 65, 70, 74, 77, 78, 79, 81, 82, 85, 86, 93, 94, 96, 97], "normal": [2, 3, 16, 24, 29, 39, 41, 44, 46, 47, 48, 63, 84, 86, 91], "trick": [2, 84], "distribut": [2, 3, 4, 8, 24, 26, 33, 38, 39, 43, 46, 53, 61, 62, 63, 75, 78, 79, 81, 82, 85, 90, 91], "account": [2, 33, 53, 57, 62, 63, 82, 84, 86, 88, 89, 91, 93, 96], "word": [2, 3, 47, 73, 74, 84], "remov": [2, 8, 29, 33, 34, 38, 39, 65, 75, 82, 83, 84, 85, 89, 91, 93, 95, 96], "so": [2, 3, 4, 5, 8, 12, 24, 33, 34, 37, 38, 39, 48, 53, 54, 60, 63, 65, 69, 73, 77, 78, 79, 82, 85, 86, 89, 91, 94], "proportion": [2, 8, 39], "just": [2, 3, 4, 8, 11, 33, 35, 37, 48, 52, 63, 65, 67, 75, 76, 77, 79, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93, 94, 95, 96], "procedur": 2, "get": [2, 3, 4, 6, 11, 29, 34, 35, 38, 39, 44, 47, 48, 53, 55, 57, 62, 63, 65, 66, 67, 75, 77, 82, 83, 84, 85, 86, 91, 92, 93, 95, 96], "detect": [2, 4, 5, 7, 11, 12, 14, 16, 20, 26, 46, 56, 58, 59, 60, 61, 62, 63, 64, 65, 68, 72, 75, 78, 80, 85, 87, 89, 93, 94, 95, 96, 97], "arg": [2, 10, 20, 25, 29, 34, 35, 38, 44, 48, 63, 65], "kwarg": [2, 5, 8, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 34, 37, 38, 44, 52, 65, 67, 69, 71, 84], "test": [2, 8, 24, 38, 44, 52, 65, 75, 78, 79, 81, 82, 85, 92, 93, 95, 96, 97], "expect": [2, 3, 34, 38, 39, 44, 53, 62, 63, 65, 84, 86, 88, 89, 90, 93, 95, 96, 97], "class_predict": 2, "evalu": [2, 8, 34, 35, 36, 37, 38, 61, 65, 77, 78, 79, 84, 85, 86, 88, 92, 93, 94, 95, 96], "simpli": [2, 33, 63, 78, 79, 81, 82, 84, 86, 89, 93, 94, 96, 97], "quantifi": [2, 4, 5, 8, 11, 39, 57, 62, 65, 75, 79, 81, 82, 85, 86, 90], "save_spac": [2, 8, 64, 65], "potenti": [2, 8, 33, 39, 47, 55, 58, 61, 63, 65, 67, 69, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 89, 90, 94, 95, 97], "cach": [2, 82, 96], "panda": [2, 4, 5, 10, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 33, 48, 49, 52, 53, 54, 76, 77, 78, 79, 81, 82, 83, 84, 86, 88, 93, 94, 95, 96], "unlik": [2, 8, 39, 41, 44, 52, 54, 55, 57, 73, 78, 88, 89, 91, 93], "both": [2, 4, 8, 14, 24, 33, 34, 38, 39, 48, 53, 55, 63, 67, 69, 74, 75, 78, 84, 85, 86, 88, 97], "mask": [2, 37, 39, 47, 48, 55, 58, 63, 65, 67, 69, 70, 75, 83, 84, 88, 90, 94, 97], "prefer": [2, 63, 71, 89], "plan": 2, "subsequ": [2, 3, 34, 38, 82, 84, 86, 90, 96], "invok": [2, 34, 38, 86, 92], "scratch": [2, 65], "To": [2, 4, 5, 7, 8, 9, 11, 14, 24, 32, 34, 37, 38, 39, 52, 53, 55, 57, 61, 62, 63, 65, 66, 67, 69, 75, 77, 78, 79, 81, 82, 84, 85, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "share": [2, 63, 65], "mostli": [2, 48, 60, 65, 89, 93], "longer": [2, 31, 43, 44, 47, 65, 76, 82, 84, 90, 96], "info": [2, 4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 33, 54, 65, 73, 78, 79, 83, 84, 97], "about": [2, 3, 4, 5, 8, 11, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 33, 35, 37, 41, 53, 54, 57, 61, 65, 70, 73, 77, 78, 81, 82, 83, 84, 85, 86, 88, 91], "docstr": [2, 33, 34, 38, 48, 65, 83, 86], "unless": [2, 34, 38, 65, 84], "our": [2, 3, 8, 52, 53, 63, 65, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "is_label_issu": [2, 28, 65, 77, 78, 79, 81, 82, 85, 86, 89, 93, 96], "entir": [2, 8, 24, 37, 39, 42, 54, 55, 60, 63, 65, 67, 69, 70, 75, 78, 79, 84, 90, 91, 92, 94, 97], "accur": [2, 3, 4, 8, 14, 33, 37, 39, 53, 54, 55, 58, 61, 63, 65, 66, 67, 69, 70, 76, 79, 81, 82, 84, 85, 88, 93], "label_qu": [2, 53, 65, 86, 88, 93, 96], "measur": [2, 33, 53, 54, 65, 75, 83, 84, 86, 88, 89, 93, 94, 95, 97], "qualiti": [2, 3, 4, 5, 8, 11, 28, 29, 33, 37, 39, 41, 44, 53, 54, 55, 57, 58, 60, 63, 65, 66, 69, 71, 73, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 87, 93, 95, 96], "lower": [2, 4, 5, 8, 11, 26, 37, 44, 46, 53, 54, 57, 60, 61, 63, 65, 66, 69, 73, 77, 79, 81, 82, 85, 88, 89, 90, 91, 93, 94, 96, 97], "eas": 2, "comparison": [2, 34, 38, 61, 86, 88], "against": [2, 34, 38, 78, 81, 84, 88, 89], "predicted_label": [2, 4, 23, 28, 65, 70, 74, 77, 78, 79, 81, 82, 85, 86, 93, 94, 96], "ad": [2, 34, 38, 79, 88, 93], "precis": [2, 55, 58, 61, 84, 86, 94, 97], "definit": [2, 5, 31, 44, 65, 81, 95], "accessor": [2, 65], "describ": [2, 8, 16, 53, 62, 63, 65, 71, 73, 86, 88, 89, 90, 92, 97], "precomput": [2, 4, 42, 65, 83], "clear": [2, 34, 38, 65, 82, 93, 96], "save": [2, 4, 14, 34, 37, 38, 61, 65, 84, 90, 94, 97], "space": [2, 8, 62, 65, 81, 83, 85], "place": [2, 34, 38, 48, 65, 88, 95], "larg": [2, 37, 65, 81, 82, 84, 85, 90, 91, 94, 97], "deploi": [2, 65, 81, 82, 84, 85], "care": [2, 8, 34, 38, 65, 82, 84, 86], "avail": [2, 4, 5, 10, 12, 30, 38, 65, 84, 86, 88, 90, 93], "cannot": [2, 4, 10, 12, 48, 92, 97], "anymor": 2, "classmethod": [2, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 31, 38, 44, 65], "__init_subclass__": [2, 36, 38, 64, 65], "set_": [2, 38, 65], "_request": [2, 38, 65], "pep": [2, 38, 65], "487": [2, 38, 65], "look": [2, 4, 5, 14, 34, 38, 48, 65, 70, 78, 79, 81, 82, 84, 86, 88, 89, 90, 91, 94, 95, 97], "inform": [2, 4, 5, 8, 11, 14, 30, 34, 38, 48, 53, 54, 58, 61, 65, 70, 73, 74, 75, 77, 78, 81, 82, 86, 88, 91, 94, 97], "__metadata_request__": [2, 38, 65], "infer": [2, 38, 48, 65, 70, 74, 85, 88, 89, 95, 96], "signatur": [2, 34, 38, 65], "accept": [2, 34, 38, 63, 65, 78, 79], "metadata": [2, 38, 65, 81, 82, 85, 97], "through": [2, 4, 5, 38, 65, 77, 79, 82, 83, 84, 88, 90, 91, 96], "develop": [2, 7, 38, 65, 84, 86, 97], "request": [2, 38, 65, 79, 82, 83, 89, 95, 96, 97], "those": [2, 3, 8, 37, 38, 39, 52, 53, 55, 61, 65, 69, 73, 74, 75, 77, 84, 85, 90, 94], "http": [2, 4, 5, 7, 8, 9, 16, 32, 34, 35, 37, 38, 41, 48, 58, 61, 62, 65, 75, 77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "www": [2, 38, 65, 91], "org": [2, 16, 34, 35, 38, 48, 62, 65, 84, 86, 97], "dev": [2, 38, 65], "0487": [2, 38, 65], "get_metadata_rout": [2, 36, 38, 64, 65], "rout": [2, 38, 65], "pleas": [2, 34, 38, 52, 65, 75, 77, 78, 79, 82, 83, 84, 85, 86, 88, 89, 91, 93, 96, 97], "guid": [2, 5, 38, 65, 76, 80, 85], "mechan": [2, 34, 38, 65], "metadatarequest": [2, 38, 65], "encapsul": [2, 14, 38, 60, 65], "get_param": [2, 36, 38, 51, 52, 64, 65], "subobject": [2, 38, 65], "param": [2, 8, 34, 38, 52, 62, 65, 84], "name": [2, 4, 5, 8, 10, 11, 31, 33, 34, 38, 43, 44, 48, 52, 53, 54, 61, 65, 70, 74, 77, 78, 79, 81, 82, 83, 84, 85, 86, 89, 93, 94, 96, 97], "set_fit_request": [2, 36, 38, 64, 65], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 37, 38, 39, 42, 44, 47, 48, 52, 53, 54, 58, 60, 61, 63, 65, 70, 74, 77, 78, 84, 88, 89, 90, 97], "unchang": [2, 34, 38, 65, 97], "relev": [2, 14, 24, 38, 65, 85], "enable_metadata_rout": [2, 38, 65], "set_config": [2, 38, 65], "meta": [2, 38, 65], "rais": [2, 4, 10, 11, 31, 34, 38, 41, 44, 65, 77, 84], "alia": [2, 34, 38, 65], "metadata_rout": [2, 38, 65], "retain": [2, 38, 48, 65], "chang": [2, 34, 37, 38, 41, 65, 73, 77, 78, 82, 84, 90, 91, 96, 97], "version": [2, 4, 5, 7, 8, 9, 13, 19, 22, 27, 32, 34, 36, 38, 40, 41, 48, 51, 52, 63, 65, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 95, 96, 97], "sub": [2, 38, 60, 65], "pipelin": [2, 38, 65, 93], "otherwis": [2, 5, 8, 31, 33, 34, 37, 38, 39, 45, 47, 48, 55, 62, 65, 67, 69, 70, 74, 82, 84, 96], "updat": [2, 11, 34, 37, 38, 65, 76, 78, 85], "set_param": [2, 36, 38, 51, 52, 64, 65], "simpl": [2, 34, 38, 39, 53, 63, 65, 78, 79, 81, 82, 85, 88, 91, 93, 95, 96], "well": [2, 3, 8, 34, 38, 41, 42, 53, 55, 61, 63, 65, 70, 73, 74, 76, 78, 79, 81, 82, 84, 85, 86, 88, 90, 91], "nest": [2, 34, 38, 49, 65, 71, 73, 74, 97], "latter": [2, 34, 38, 65, 91], "compon": [2, 38, 65], "__": [2, 38, 65], "set_score_request": [2, 64, 65], "structur": [3, 62, 81, 95], "unobserv": 3, "less": [3, 4, 8, 29, 37, 44, 53, 62, 63, 67, 69, 73, 79, 81, 83, 84, 85, 86, 90, 97], "channel": [3, 77, 86], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 33, 42, 48, 54, 79, 83, 96], "inv": 3, "confident_joint": [3, 20, 33, 39, 48, 54, 55, 76, 84, 86], "un": 3, "under": [3, 8, 34, 38, 54, 61, 62, 79, 91], "joint": [3, 33, 39, 42, 48, 54, 55, 83], "num_label_issu": [3, 37, 39, 55, 70, 74, 76], "estimation_method": [3, 37], "off_diagon": 3, "multi_label": [3, 33, 39, 48, 49, 55, 89], "don": [3, 75, 79, 81, 82, 85, 86, 90, 93], "statis": 3, "compute_confident_joint": [3, 33, 39, 48, 55, 86], "off": [3, 39, 48, 60, 85, 86, 90, 91], "j": [3, 4, 33, 34, 38, 39, 55, 58, 61, 62, 71, 73, 74, 78, 79, 86, 94, 97], "confident_learn": [3, 39, 55, 86], "off_diagonal_calibr": 3, "calibr": [3, 39, 48, 53, 88], "cj": [3, 42, 48], "axi": [3, 29, 42, 44, 46, 67, 70, 77, 78, 79, 84, 85, 86, 88, 89, 91, 93, 94], "bincount": [3, 78, 79, 86, 88, 89], "alwai": [3, 8, 34, 38, 48, 77, 86, 93, 95, 96], "estimate_issu": 3, "over": [3, 8, 34, 37, 38, 60, 61, 67, 69, 79, 81, 83, 84, 85, 86, 91, 93, 95], "As": [3, 5, 75, 78, 79, 82, 86, 93, 97], "add": [3, 4, 5, 10, 11, 34, 38, 52, 61, 77, 78, 79, 82, 84, 85, 86, 89, 96], "approach": [3, 33, 37, 39, 81, 86, 89, 91, 93, 95], "custom": [3, 5, 8, 9, 28, 34, 37, 38, 44, 47, 63, 79, 82, 86, 93, 96], "know": [3, 78, 79, 81, 82, 84, 85, 86, 88, 93], "cut": [3, 60, 75, 86], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 90, 91, 97], "underestim": 3, "few": [3, 61, 75, 79, 84, 88, 89, 90, 91, 97], "4": [3, 4, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 43, 44, 47, 57, 58, 60, 61, 63, 66, 73, 83, 84, 89, 94, 97], "detail": [3, 4, 8, 12, 14, 30, 33, 34, 38, 44, 48, 52, 53, 54, 55, 57, 58, 60, 61, 62, 69, 70, 71, 75, 76, 77, 89, 91, 97], "num_issu": [3, 5, 37, 77, 78, 79, 81, 82, 85, 86], "calibrate_confident_joint": 3, "up": [3, 5, 8, 15, 24, 25, 28, 39, 44, 53, 83, 84, 90, 93, 96, 97], "p_": [3, 33, 39], "pair": [3, 4, 8, 33, 39, 86], "v": [3, 8, 37, 54, 55, 57, 63, 78, 79, 89, 90, 91, 92], "rest": [3, 4, 5, 7, 8, 9, 32, 54, 55, 57, 65, 78, 79, 81, 82, 84, 85, 86, 88, 93, 95, 96], "fashion": [3, 4, 67, 95], "2x2": 3, "incorrectli": [3, 33, 54, 55, 58, 81, 97], "calibrated_cj": 3, "c": [3, 8, 47, 55, 63, 75, 77, 78, 79, 81, 82, 84, 86, 89, 90, 91, 92, 93, 95], "whose": [3, 4, 8, 26, 34, 38, 42, 47, 53, 57, 60, 66, 69, 73, 74, 77, 78, 79, 81, 82, 84, 85, 86, 89, 90, 91, 94, 97], "truli": [3, 91, 94], "estimate_joint": [3, 33, 86], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 55, 61, 86, 90, 92, 94, 97], "return_indices_of_off_diagon": 3, "frequenc": [3, 24, 53, 54, 61, 70, 90, 91], "done": [3, 8, 65, 78, 84, 86, 89, 91, 92], "overfit": [3, 8, 58, 61, 77, 78, 79, 81, 82, 85, 92, 95], "classifict": 3, "singl": [3, 4, 10, 24, 33, 34, 38, 44, 45, 48, 53, 54, 60, 61, 62, 63, 73, 77, 78, 84, 86, 89, 90, 95], "baselin": [3, 34, 39, 91, 93, 96], "proxi": 3, "union": [3, 4, 10, 44, 48, 49, 55, 61, 65, 69, 73, 84], "tupl": [3, 29, 34, 38, 42, 43, 45, 47, 48, 53, 55, 61, 69, 71, 73, 74, 77, 97], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 8, 37, 42, 53, 67, 69, 75, 84, 85, 94, 96], "practic": [3, 79, 85, 86, 91, 93, 95, 96], "complet": [3, 77, 78, 79, 81, 82, 84, 85, 86, 89, 90, 93], "gist": 3, "cj_ish": 3, "guess": [3, 42, 86, 88], "8": [3, 4, 5, 6, 43, 44, 45, 47, 57, 71, 73, 77, 78, 79, 81, 82, 84, 85, 88, 89, 90, 91, 93, 94, 95, 96, 97], "parallel": [3, 39, 61, 71, 83], "again": [3, 52, 84, 91, 95], "simplifi": [3, 12], "understand": [3, 7, 33, 54, 61, 79, 86, 93, 94, 97], "100": [3, 34, 38, 63, 78, 79, 81, 83, 84, 85, 86, 89, 90, 91, 94, 95, 96, 97], "optim": [3, 34, 35, 38, 52, 85, 88], "speed": [3, 39, 83, 84, 93, 96], "dtype": [3, 21, 23, 24, 29, 34, 38, 47, 48, 57, 73, 77, 90], "enumer": [3, 34, 38, 77, 78, 79, 85, 97], "s_label": 3, "confident_bin": 3, "6": [3, 4, 38, 44, 48, 73, 77, 78, 79, 81, 82, 83, 84, 85, 88, 89, 90, 91, 93, 94, 95, 96, 97], "num_confident_bin": 3, "argmax": [3, 39, 63, 67, 70, 77, 84, 86, 90, 91, 94], "elif": 3, "estimate_lat": 3, "py_method": [3, 42], "cnt": [3, 42], "1d": [3, 4, 10, 14, 37, 39, 44, 45, 48, 49, 57, 66, 77, 95], "eqn": [3, 42], "margin": [3, 39, 42, 44, 63], "marginal_p": [3, 42], "shorthand": [3, 11], "proport": [3, 8, 33, 54, 86, 92], "poorli": [3, 42, 95], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 86], "variabl": [3, 5, 12, 25, 48, 65, 66, 77, 78, 81, 86, 89, 93], "exact": [3, 42, 78, 79, 81, 85, 95], "within": [3, 4, 8, 13, 34, 35, 38, 40, 55, 60, 69, 71, 73, 78, 79, 84, 85, 90, 94], "percent": 3, "often": [3, 33, 42, 54, 84, 86, 92, 94], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 48, 49, 61, 77, 78, 81, 82, 84, 85, 89, 90, 91, 93, 96], "wai": [3, 4, 52, 75, 76, 77, 78, 79, 81, 82, 84, 86, 88, 89, 90, 92, 95, 96], "pro": 3, "con": 3, "pred_proba": [3, 92], "combin": [3, 33, 78, 83, 84, 85, 86, 92, 93], "becaus": [3, 42, 48, 60, 82, 84, 86, 88, 90], "littl": [3, 37, 83, 90, 97], "uniform": [3, 63, 83, 84, 86], "20": [3, 5, 74, 77, 82, 83, 84, 85, 86, 90, 93, 94, 97], "Such": [3, 85, 91], "bound": [3, 21, 23, 34, 38, 47, 57, 58, 60, 61, 90], "reason": [3, 20, 34, 38], "comment": [3, 47, 97], "end": [3, 4, 34, 38, 61, 85, 91, 94, 97], "file": [3, 4, 10, 36, 37, 51, 61, 77, 78, 81, 82, 83, 84, 90, 91, 94, 95, 97], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 86], "handl": [3, 4, 5, 8, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 34, 37, 38, 76, 78, 79, 81, 82, 85, 86, 94, 95, 97], "five": [3, 58, 61, 86, 90], "estimate_cv_predicted_prob": [3, 86], "estimate_noise_matric": 3, "get_confident_threshold": [3, 36, 37], "amongst": [3, 8, 90], "confident_threshold": [3, 8, 20, 37, 62], "unifi": 4, "audit": [4, 7, 10, 11, 14, 77, 80, 81, 82, 84, 85, 86, 89, 90, 93], "kind": [4, 5, 77, 78, 81, 82, 83, 85, 86], "addit": [4, 5, 7, 8, 9, 11, 30, 32, 34, 38, 44, 49, 53, 61, 71, 77, 78, 81, 82, 86, 88, 91, 92, 95, 96], "depend": [4, 5, 7, 8, 9, 10, 11, 32, 36, 39, 41, 48, 51, 55, 62, 65, 66, 75], "instal": [4, 5, 7, 8, 9, 32, 34, 36, 37, 38, 39, 51, 52, 67, 69], "pip": [4, 5, 7, 9, 32, 75, 77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "development": [4, 5, 7, 9, 32], "git": [4, 5, 7, 9, 32, 75, 77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 95, 96], "github": [4, 5, 7, 9, 32, 34, 35, 48, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 95, 96], "com": [4, 5, 7, 9, 32, 34, 35, 37, 41, 48, 62, 75, 77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "egg": [4, 5, 7, 9, 32, 75, 83], "label_nam": [4, 5, 6, 8, 10, 16, 29, 75, 77, 78, 79, 81, 82, 84, 85, 86, 89, 90, 93], "image_kei": [4, 85], "interfac": [4, 75, 84, 86], "librari": [4, 8, 38, 58, 61, 62, 75, 78, 82, 83, 84, 96], "goal": [4, 93], "track": [4, 5, 11, 12, 75, 78, 83, 84, 86], "intermedi": [4, 7, 79], "statist": [4, 8, 11, 20, 24, 33, 53, 54, 61, 79, 81, 82, 86], "convert": [4, 10, 31, 34, 38, 45, 46, 49, 53, 60, 69, 73, 76, 77, 82, 83, 84, 85, 88, 89, 90, 96], "hug": [4, 10, 85], "face": [4, 10, 14, 83, 85, 89], "kei": [4, 5, 8, 10, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 33, 34, 38, 44, 53, 54, 60, 62, 78, 79, 82, 84, 85, 86, 88, 90], "string": [4, 8, 10, 12, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 38, 48, 53, 54, 66, 70, 73, 74, 81, 82, 84, 88, 89, 96, 97], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 33, 34, 38, 43, 48, 53, 54, 57, 58, 60, 61, 78, 79, 81, 82, 86, 88, 89, 90], "path": [4, 10, 34, 37, 38, 61, 77, 78, 84, 90], "local": [4, 5, 10, 34, 35, 38, 77, 78, 79, 83, 84, 85, 86, 88, 89, 91, 93, 97], "text": [4, 5, 8, 10, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 44, 62, 71, 73, 74, 75, 78, 79, 80, 83, 84, 86, 87, 88, 91], "txt": [4, 10, 97], "csv": [4, 10, 81, 82, 93, 95, 96], "json": [4, 10], "hub": [4, 10], "multiclass": [4, 10, 13, 44, 48, 53, 89], "regress": [4, 5, 10, 12, 14, 19, 28, 31, 78, 79, 82, 87, 88, 91, 96], "multilabel": [4, 10, 12, 13, 19, 23, 31, 45, 89], "imag": [4, 7, 33, 38, 58, 60, 61, 62, 67, 69, 70, 75, 78, 79, 83, 84, 87, 88, 89, 90, 92, 94], "point": [4, 5, 8, 16, 24, 34, 38, 78, 79, 81, 82, 84, 85, 86, 88], "field": [4, 8, 34, 38], "themselv": [4, 93, 95, 96], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 33, 47, 71, 73, 79, 85, 87, 89, 94], "load_dataset": [4, 10, 85], "glue": 4, "sst2": 4, "properti": [4, 10, 11, 31, 34, 38], "has_label": [4, 10], "class_nam": [4, 10, 18, 33, 54, 61, 70, 74, 75, 83, 86, 90, 94, 97], "empti": [4, 10, 42, 53, 79, 84, 89], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 75, 77, 78, 79, 81, 82, 84, 85, 86, 89, 93], "knn_graph": [4, 8, 14, 16, 17, 24, 26, 29, 81], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 77, 78, 79, 81, 82, 84, 85, 86, 89, 93], "sort": [4, 14, 37, 39, 44, 53, 55, 58, 60, 61, 63, 69, 71, 73, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 90, 93, 94, 95, 96, 97], "common": [4, 11, 14, 79, 80, 83, 84, 86, 89, 90, 94], "real": [4, 14, 75, 78, 79, 84, 86, 88, 93, 94], "world": [4, 14, 75, 78, 79, 84, 86, 88, 93, 94], "interact": [4, 14, 82, 84], "embed": [4, 8, 14, 62, 75, 77, 78, 79, 81, 82, 86, 89, 93, 96], "thereof": [4, 14], "insight": [4, 14, 61, 88], "act": [4, 8, 60, 78], "issuefind": [4, 13, 14, 30], "logic": [4, 12, 37, 39, 67, 69], "best": [4, 14, 43, 53, 63, 78, 79, 81, 82, 84, 85, 88, 89, 91, 93, 95, 96, 97], "2d": [4, 14, 37, 44, 45, 47, 48, 53, 77, 89, 95], "num_exampl": [4, 14, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 30, 33, 54, 77, 78, 79, 81, 82, 85, 86], "properli": [4, 8, 37, 43, 48, 49, 67, 77, 78, 79, 81, 82, 84, 85, 86, 89, 91, 93, 94], "respect": [4, 34, 38, 58, 61, 77, 78, 79, 81, 82, 85, 86, 89, 90], "lexicograph": [4, 43, 48, 77, 78, 79, 81, 82, 85, 86, 89], "represent": [4, 8, 14, 31, 34, 38, 45, 55, 75, 77, 78, 79, 82, 84, 85, 86, 91, 96], "num_featur": [4, 14, 34, 38, 52], "distanc": [4, 8, 14, 16, 24, 26, 29, 46, 60, 62, 81, 91], "nearest": [4, 8, 14, 21, 24, 26, 46, 62, 79, 82, 91], "neighbor": [4, 8, 14, 16, 21, 24, 26, 46, 62, 78, 79, 81, 82, 84, 85, 91], "graph": [4, 8, 11, 14, 16, 24, 29], "squar": [4, 48, 65, 83, 93], "csr": 4, "evenli": 4, "omit": [4, 60, 61, 85, 90], "itself": [4, 34, 38, 90], "three": [4, 8, 33, 53, 54, 65, 70, 77, 78, 79, 81, 83, 86, 88, 92, 93, 94, 95, 97], "indptr": 4, "wise": 4, "start": [4, 5, 8, 31, 34, 35, 38, 44, 75, 81, 89, 97], "th": [4, 43, 47, 48, 53, 55, 58, 60, 61, 62, 71, 73, 74, 82, 89, 90, 97], "ascend": [4, 33, 54, 85, 86], "segment": [4, 67, 69, 70, 87], "reflect": [4, 81, 82, 88, 90, 91, 93, 95, 96], "maintain": 4, "posit": [4, 34, 38, 46, 48, 61, 83, 91], "nearestneighbor": [4, 8, 16, 62, 81, 91], "kneighbors_graph": [4, 16, 81], "illustr": 4, "todens": 4, "second": [4, 44, 48, 61, 63, 78, 84, 86, 97], "duplic": [4, 7, 19, 20, 34, 38, 75, 78, 86, 93], "explicit": 4, "precend": 4, "construct": [4, 5, 8, 12, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30, 34, 38, 44, 52], "neither": [4, 8, 12, 90], "nor": [4, 8, 12], "collect": [4, 8, 11, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 53, 84, 88, 97], "unspecifi": [4, 14, 39, 55], "interest": [4, 14, 20, 70, 74, 82, 86, 93, 94, 95, 96, 97], "constructor": [4, 8, 14, 21, 28], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 28, 29, 30], "respons": [4, 14, 20, 65, 66, 83, 93, 97], "random_st": [4, 77, 78, 79, 85, 86, 89, 91, 95], "lab": [4, 6, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 37, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86, 89, 93], "comprehens": [4, 75, 85, 89, 93], "nbr": 4, "n_neighbor": [4, 8, 16, 62], "metric": [4, 8, 17, 24, 29, 48, 52, 61, 62, 77, 81, 82, 85, 86, 93, 95, 96], "euclidean": [4, 8, 60, 62, 81], "mode": [4, 16, 34, 37, 38, 91], "4x4": 4, "float64": [4, 24, 34, 38, 73], "compress": [4, 8, 48, 67, 69], "toarrai": 4, "NOT": [4, 37, 82], "23606798": 4, "41421356": 4, "configur": [4, 14, 44, 79], "suppos": [4, 8, 58, 91, 93, 95, 96], "who": [4, 60, 81, 86, 95, 97], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 78], "clean_learning_kwarg": [4, 8, 21, 28, 93], "labelissuemanag": [4, 8, 12, 19, 21], "prune_method": [4, 76], "prune_by_noise_r": [4, 39, 55, 86], "report": [4, 5, 9, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 33, 54, 74, 75, 77, 78, 79, 81, 82, 86, 89, 93, 97], "include_descript": [4, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 30], "show_summary_scor": [4, 30], "show_all_issu": [4, 30], "summari": [4, 5, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 33, 51, 52, 54, 59, 68, 69, 71, 72, 73, 76, 77, 78, 79, 81, 82, 83, 85, 86, 90, 93, 94, 97], "show": [4, 5, 24, 34, 38, 43, 48, 61, 70, 74, 79, 81, 82, 83, 84, 85, 86, 88, 91, 93, 94, 95, 97], "top": [4, 8, 33, 37, 39, 48, 55, 58, 61, 63, 70, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 90, 91, 93, 96, 97], "suffer": [4, 8, 11, 20, 55, 63, 74, 97], "onc": [4, 20, 33, 34, 38, 78, 84, 86, 89, 90, 95], "familiar": 4, "overal": [4, 5, 8, 11, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 33, 44, 53, 54, 57, 60, 61, 65, 69, 70, 71, 73, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 88, 90, 97], "sever": [4, 5, 8, 10, 11, 20, 34, 37, 38, 39, 57, 60, 62, 63, 69, 73, 75, 77, 78, 79, 81, 82, 83, 84, 86, 90, 91, 95, 96, 97], "found": [4, 5, 8, 11, 12, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 34, 38, 48, 75, 77, 78, 79, 81, 82, 84, 85, 89, 91, 93, 95, 96, 97], "With": [4, 37, 82, 86, 88, 93, 94, 96, 97], "usag": [4, 37, 52], "issue_summari": [4, 5, 8, 11, 78], "dataissu": [4, 11, 13, 14, 30], "outlier": [4, 7, 12, 19, 20, 29, 40, 63, 75, 78, 79, 86, 87, 93], "someth": [4, 5, 34, 38, 63, 90], "123": [4, 78, 79], "456": [4, 77, 95, 96], "nearest_neighbor": 4, "7": [4, 44, 45, 52, 71, 73, 77, 78, 79, 81, 82, 83, 84, 88, 89, 90, 91, 93, 94, 95, 96, 97], "9": [4, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 44, 45, 57, 71, 73, 77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "distance_to_nearest_neighbor": [4, 78, 79, 81, 82, 85, 86], "789": 4, "get_issu": [4, 8, 11, 77, 79, 81, 82, 84, 85, 89, 93], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 78, 79], "focu": [4, 11, 82, 94, 97], "full": [4, 8, 11, 37, 61, 85, 97], "summar": [4, 11, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 33, 54, 70, 74, 75, 94], "valueerror": [4, 10, 11, 31, 41, 44, 84], "specific_issu": [4, 11], "exhibit": [4, 5, 8, 11, 70, 79, 81, 82, 85, 86, 90], "lie": [4, 8, 62, 63, 77, 78, 79, 81, 82, 85, 86, 96], "directli": [4, 12, 14, 30, 31, 37, 52, 53, 79, 82, 89, 90, 93, 96], "compar": [4, 53, 62, 73, 78, 79, 81, 86, 90], "get_issue_summari": [4, 11, 79], "get_info": [4, 11, 79, 82], "yet": [4, 15, 19, 25, 83, 88], "list_possible_issue_typ": [4, 12, 13], "regist": [4, 5, 12, 13, 15, 25, 34, 38, 78], "rtype": [4, 12, 16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 34, 38], "registri": [4, 12, 13], "list_default_issue_typ": [4, 12, 13], "folder": [4, 77, 78, 85], "load": [4, 10, 37, 61, 83, 84, 85, 86, 90, 91, 94, 97], "futur": [4, 8, 20, 34, 38, 53, 75, 77, 78, 82, 84, 96], "overwrit": [4, 78], "separ": [4, 33, 44, 57, 78, 79, 84, 85, 90, 92], "static": 4, "rememb": [4, 82, 84, 86], "part": [4, 8, 34, 38, 39, 58, 60, 61, 77, 78, 83, 94, 97], "ident": [4, 8, 20, 48, 82], "walk": 5, "alongsid": [5, 34, 38, 78, 84], "pre": [5, 6, 8, 34, 38, 78, 79, 85, 93, 94, 97], "runtim": [5, 34, 37, 38, 65, 67, 69, 77, 84, 85], "issue_manager_factori": [5, 12, 78], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "ll": [5, 44, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97], "thing": [5, 38, 86, 93, 96], "next": [5, 53, 75, 77, 81, 82, 84, 88, 90, 93, 95, 96, 97], "dummi": 5, "randint": [5, 29, 44, 78, 79, 84], "mark": [5, 8, 76, 90, 91, 93], "regard": [5, 79, 86], "rand": [5, 44, 78, 79], "is_": [5, 8, 78], "_issu": [5, 8, 78], "issue_score_kei": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 78], "whole": [5, 24, 34, 38, 79], "make_summari": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 78], "popul": [5, 79, 82], "verbosity_level": [5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29], "std": [5, 90], "raw_scor": 5, "bit": 5, "involv": [5, 37, 70, 74, 84, 89], "intermediate_arg": 5, "min": [5, 44, 60, 73, 78, 84, 91], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "affect": [5, 8, 34, 38, 67, 73, 82, 84], "global": [5, 20, 34, 38], "easili": [5, 42, 76, 77, 79, 81, 82, 86, 88, 89, 91, 92, 93, 94, 95, 96], "hard": [5, 38, 83, 91], "sai": [5, 8, 34, 38, 89, 94], "anoth": [5, 20, 33, 37, 47, 60, 63, 81, 82, 84, 86, 88, 91, 96], "try": [5, 8, 37, 39, 52, 53, 67, 69, 75, 79, 81, 82, 84, 85, 86, 94], "iid": [5, 7, 24, 81, 86], "won": [5, 34, 38, 78, 79, 84, 89], "issue_manag": [5, 8, 9, 11, 13, 16, 17, 18, 21, 23, 24, 25, 26, 28, 29, 78], "instanti": [5, 14, 37, 52, 62, 77, 79, 81, 96], "477762": 5, "286455": 5, "term": [5, 8, 42, 48, 61, 77, 78, 79, 81, 82, 85, 86], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 17, 26, 77, 78, 79, 81, 82, 83, 85, 86, 88, 90, 91, 93, 94, 95, 96, 97], "003042": 5, "058117": 5, "11": [5, 52, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "121908": 5, "15": [5, 46, 65, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 90, 91, 93, 94, 95, 96, 97], "169312": 5, "17": [5, 77, 79, 81, 82, 83, 84, 85, 86, 88, 90, 91, 93, 94, 96, 97], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 78, 79, 83, 86], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 29], "group": [6, 7, 24, 29, 83, 90, 97], "dbscan": [6, 8, 29, 84], "hdbscan": [6, 84], "etc": [6, 8, 20, 34, 38, 42, 52, 53, 71, 75, 78, 79, 81, 82, 84, 86, 89, 93], "sensit": [6, 8, 46], "ep": [6, 29, 61], "radiu": 6, "min_sampl": [6, 29], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 75, 77, 84, 85, 88, 93, 95, 96], "kmean": [6, 84], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 29, 84], "cluster_id": [6, 8, 29, 84], "labels_": 6, "underperforming_group": [6, 8, 12, 19, 79, 81, 82, 84, 85, 86], "search": [7, 8, 18, 24, 25, 47, 65, 84, 92], "nondefault": 7, "Near": [7, 84], "imbal": [7, 19, 57, 62, 63, 79], "null": [7, 12, 19, 79, 82, 85, 86], "valuat": [7, 16], "togeth": [7, 8, 42, 78, 79, 81, 82, 85, 86, 93, 96, 97], "built": [7, 44], "own": [7, 34, 36, 38, 51, 57, 58, 61, 67, 71, 77, 79, 81, 82, 84, 85, 88, 89, 93, 94, 95, 96, 97], "prerequisit": 7, "basic": [7, 38, 52, 81, 82, 91], "page": [8, 79, 84, 86], "variou": [8, 11, 28, 36, 49, 51, 75, 78, 79, 81, 82, 83, 86, 88, 90, 95], "why": [8, 82], "matter": [8, 33, 54, 82, 96], "_score": 8, "flag": [8, 20, 24, 39, 44, 54, 55, 58, 65, 75, 77, 78, 79, 81, 82, 83, 85, 86, 90, 91, 93, 94, 96], "badli": [8, 60, 97], "code": [8, 34, 38, 42, 48, 52, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 88, 89, 90, 91, 93, 94, 95, 96, 97], "issue_scor": 8, "outlier_scor": [8, 26, 78, 79, 81, 82, 85, 86, 91], "atyp": [8, 62, 78, 79, 81, 82, 85, 86, 91], "datapoint": [8, 29, 39, 44, 48, 63, 66, 75, 77, 78, 79, 81, 82, 84, 92, 93, 95, 96], "is_issu": [8, 20], "is_outlier_issu": [8, 78, 79, 81, 82, 85, 86], "annot": [8, 33, 43, 53, 54, 55, 57, 58, 60, 61, 70, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 90, 94], "transform": [8, 44, 46, 48, 62, 63, 79, 82, 85, 91, 95, 96, 97], "dissimilar": [8, 81, 82], "preced": 8, "cosin": [8, 62, 91], "incorrect": [8, 60, 63, 66, 77, 78, 79, 81, 82, 85, 86, 90, 93, 95], "due": [8, 37, 39, 63, 67, 69, 77, 78, 79, 81, 82, 85, 86, 93], "appear": [8, 33, 43, 54, 55, 58, 66, 79, 81, 82, 85, 93, 94], "likelihood": [8, 37, 39, 55, 60, 62, 63, 67, 71], "now": [8, 37, 76, 77, 79, 88, 90, 91, 93, 95, 96, 97], "u": [8, 77, 78, 81, 84, 85, 86, 88, 89, 92, 93, 94, 95, 96, 97], "token": [8, 47, 69, 70, 71, 72, 73, 74, 84, 86, 87], "calcul": [8, 16, 24, 37, 44, 53, 57, 58, 60, 61, 62, 65, 69, 83, 85], "hamper": [8, 83, 85], "analyt": [8, 75, 84, 88], "lead": [8, 60, 63, 85, 90], "draw": [8, 78, 79], "conclus": [8, 82], "veri": [8, 33, 54, 58, 60, 78, 79, 81, 82, 84, 85, 86, 88, 91, 93, 96], "rare": [8, 39, 61, 78, 79, 81, 82, 84, 85, 86], "anomal": [8, 63, 78, 79, 81, 82, 85, 86], "articl": [8, 37, 84], "ai": [8, 75, 77, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 91, 93, 95, 96, 97], "blog": 8, "unexpect": [8, 34, 38, 82], "consequ": 8, "inspect": [8, 77, 79, 85, 86, 90, 93, 96], "neg": [8, 60, 61, 78, 79, 83], "extrem": [8, 78, 79, 81, 82, 84, 85, 86], "rel": [8, 33, 53, 54, 62, 78, 79, 81, 82, 85, 86, 91], "record": [8, 34, 38, 77, 81, 93], "abbrevi": 8, "misspel": 8, "typo": [8, 74], "resolut": 8, "video": [8, 83], "audio": [8, 78, 79, 84, 87], "minor": [8, 47], "variat": 8, "translat": 8, "d": [8, 46, 81, 82, 86, 89, 93, 95, 97], "constant": [8, 29, 65], "median": [8, 28, 46], "question": [8, 20, 75, 86], "nearli": [8, 20, 79, 81, 82, 85], "awar": [8, 76, 86], "presenc": [8, 86], "signific": [8, 81, 82, 86], "violat": [8, 81, 82, 86], "assumpt": [8, 81, 82, 86], "changepoint": [8, 81, 82, 86], "shift": [8, 81, 82, 86], "drift": [8, 79, 81, 86], "autocorrel": [8, 81, 82, 86], "almost": [8, 81, 82, 86], "adjac": [8, 81, 82, 86], "tend": [8, 33, 42, 81, 82, 86, 94, 97], "sequenti": [8, 34, 38, 52, 85], "gap": 8, "b": [8, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 33, 47, 48, 73, 81, 82, 83, 86, 92, 95, 97], "x1": [8, 58, 61, 90], "x2": [8, 58, 61, 90], "10th": 8, "100th": 8, "90": [8, 73, 81, 85, 86, 92, 93, 94, 95], "similarli": [8, 34, 38, 78, 81, 84, 85, 90], "math": [8, 85], "behind": [8, 62, 86], "fundament": 8, "proper": [8, 48, 53, 58, 61, 82, 85, 88, 90, 95], "closer": [8, 60, 90], "scenario": [8, 63, 78, 79], "underli": [8, 62, 71, 73, 97], "stem": [8, 62, 91], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 89, 91], "partit": [8, 92], "ahead": 8, "good": [8, 34, 38, 46, 52, 54, 60, 63, 67, 69, 70, 75, 81, 82, 85], "fix": [8, 53, 82, 86, 93, 96], "problem": [8, 37, 44, 70, 75, 78, 79, 82, 84, 85], "deploy": [8, 86, 93, 95, 96], "overlook": [8, 60, 90], "fact": 8, "thu": [8, 33, 38, 54, 77, 81, 82, 86, 92, 95, 97], "diagnos": [8, 79, 84], "rarest": [8, 79], "q": [8, 90], "fall": [8, 60, 69, 73, 86, 91], "subpar": 8, "special": [8, 47], "techniqu": [8, 90], "smote": 8, "asymmetr": [8, 33], "too": [8, 39, 44, 62, 79, 84, 85, 90], "dark": [8, 94], "bright": [8, 97], "blurri": [8, 85], "abnorm": [8, 61, 85, 90], "cluster": [8, 16, 29], "slice": 8, "poor": 8, "subpopul": 8, "lowest": [8, 53, 61, 79, 84, 85, 88, 89, 90, 94], "get_self_confidence_for_each_label": [8, 44, 63], "power": [8, 81, 82, 83, 85, 86, 97], "r": [8, 37, 65, 78, 79, 93, 94], "tabular": [8, 75, 78, 79, 80, 84, 87, 88], "categor": [8, 62, 78, 79, 80, 84, 93, 95], "encod": [8, 45, 61, 67, 70, 81, 82, 84, 93, 94, 95, 96], "miss": [8, 25, 34, 38, 48, 58, 60, 81, 84, 90, 93], "pattern": 8, "contribut": [8, 16, 90], "isn": [8, 15, 25], "approxim": [8, 16, 37, 62, 88], "shaplei": [8, 16], "knn": [8, 11, 16, 24, 29, 62, 81, 91], "scalabl": 8, "sacrific": 8, "One": [8, 48, 62, 84], "quantif": 8, "exert": [8, 79], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 17, 78, 79, 81, 82, 84, 85, 86], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 24, 79, 81, 82, 85, 86], "non_iid_kwarg": 8, "class_imbal": [8, 12, 18, 79, 81, 82, 85, 86], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "null_kwarg": 8, "health_summary_paramet": [8, 19, 21, 28], "health_summari": [8, 21, 33, 75, 83], "health_summary_kwarg": 8, "tandem": [8, 83], "view": [8, 34, 38, 39, 69, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 88, 89, 90, 91, 92, 93, 95, 96, 97], "ood_kwarg": 8, "outofdistribut": [8, 26, 62, 91], "outsid": [8, 89], "outlierissuemanag": [8, 12, 19, 26, 78], "nearduplicateissuemanag": [8, 12, 17, 19], "noniidissuemanag": [8, 12, 19, 24], "num_permut": [8, 24], "permut": [8, 24], "significance_threshold": [8, 24], "signic": 8, "noniid": [8, 19], "classimbalanceissuemanag": [8, 12, 18, 19], "underperforminggroupissuemanag": [8, 12, 19, 29], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 29], "filter_cluster_id": [8, 19, 29], "clustering_kwarg": [8, 29], "faq": [8, 75, 79, 81, 82, 85, 87], "nullissuemanag": [8, 12, 19, 25], "data_valuation_kwarg": 8, "data_valu": [8, 12, 19], "datavaluationissuemanag": [8, 12, 16, 19], "codeblock": 8, "demonstr": [8, 37, 78, 79, 82, 84, 85, 86, 88, 89, 90, 93, 94], "howev": [8, 34, 38, 48, 77, 81, 82, 85, 88, 92, 94, 95, 96], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 77, 78, 83, 88, 90, 94], "fewer": [8, 39, 48, 90], "vice": [8, 54], "versa": [8, 54], "light": [8, 83, 85, 90, 94], "29": [8, 83, 85, 88, 89, 90, 94, 97], "low_inform": [8, 85], "odd_aspect_ratio": [8, 85], "35": [8, 78, 83, 85, 88, 89, 90, 91, 94], "odd_siz": [8, 85], "10": [8, 16, 17, 21, 24, 29, 34, 35, 61, 62, 63, 74, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97], "doc": [8, 34, 38, 75, 77, 78, 79, 83, 85, 86, 88, 89, 91, 93, 97], "data_issu": [9, 13, 14, 30, 78], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 34, 38, 52, 63, 78, 79, 85, 88], "dataformaterror": [10, 13], "add_not": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": [10, 13], "datasetdict": 10, "usual": [10, 30, 85, 88, 93], "datasetloaderror": [10, 13], "dataset_typ": 10, "fail": 10, "hold": 10, "associ": [10, 14, 34, 38, 61, 88], "sublist": 10, "map_to_int": 10, "abc": [10, 20], "is_avail": [10, 85], "serv": [11, 14, 88], "central": [11, 97], "repositori": 11, "strategi": [11, 44, 84], "being": [11, 33, 34, 38, 39, 44, 47, 48, 63, 81, 84, 86, 93, 94, 95], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 20], "avoid": [11, 34, 37, 38, 39, 48, 55, 58, 61, 65, 67, 69, 78, 79, 84], "recomput": [11, 96], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 21, 33, 54, 75], "get_data_statist": [11, 13], "concret": 12, "subclass": [12, 34, 38, 62, 78], "regressionlabelissuemanag": [12, 19, 27, 28], "multilabelissuemanag": [12, 19, 22, 23], "from_str": [12, 31, 40, 44], "my_issu": 12, "stabl": [13, 19, 22, 27, 36, 40, 48, 51, 62, 76], "unregist": 13, "instati": 14, "public": [14, 86, 90, 94, 97], "creation": [14, 38], "execut": [14, 34, 38, 78, 84, 90], "coordin": [14, 58, 60, 61, 90, 97], "behavior": [14, 33, 34, 38, 61, 84], "At": [14, 61, 84], "get_available_issue_typ": 14, "direct": [15, 25, 34, 38], "valuabl": 16, "vstack": [16, 48, 83, 84, 85, 86, 88, 89], "25": [16, 24, 34, 44, 46, 79, 83, 85, 86, 88, 89, 90, 94, 97], "classvar": [16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29], "short": [16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 47, 48], "data_valuation_scor": 16, "item": [16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 34, 38, 48, 78, 79, 84, 85, 86, 88, 89], "some_info_kei": [16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29], "additional_info_kei": [16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29], "default_threshold": [16, 19, 26], "arxiv": [16, 86], "ab": [16, 86, 90], "1911": 16, "07128": 16, "larger": [16, 65, 67, 69, 82, 83, 84, 85], "collect_info": [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29], "info_to_omit": [16, 17, 18, 20, 21, 23, 24, 26, 28, 29], "compos": [16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 34, 38, 82, 91, 96], "is_x_issu": [16, 17, 18, 20, 21, 23, 24, 26, 28, 29], "x_score": [16, 17, 18, 20, 21, 23, 24, 26, 28, 29], "val_a": [16, 17, 18, 20, 21, 23, 24, 26, 28, 29], "val_b1": [16, 17, 18, 20, 21, 23, 24, 26, 28, 29], "val_b2": [16, 17, 18, 20, 21, 23, 24, 26, 28, 29], "report_str": [16, 17, 18, 20, 21, 23, 24, 25, 26, 28, 29, 30], "_": [17, 20, 21, 23, 24, 25, 28, 29, 44, 47, 48, 77, 78, 83, 85, 86, 89, 95], "near_duplicate_set": [17, 19, 78, 79, 81, 82, 84, 85, 86], "occurr": [17, 18, 20, 24, 25, 26, 29, 47], "median_nn_dist": 17, "near_duplicate_scor": [17, 78, 79, 81, 82, 84, 85, 86], "class_imbalance_scor": [18, 79], "bleed": [19, 22, 27, 36], "edg": [19, 22, 27, 36, 60, 75, 86, 97], "sharp": [19, 22, 27, 36], "get_health_summari": [19, 21], "ood": [19, 26, 62, 63, 78, 79, 82, 85, 86, 91], "simplified_kolmogorov_smirnov_test": [19, 24], "outlier_cluster_label": [19, 29], "no_underperforming_cluster_id": [19, 29], "set_knn_graph": [19, 29], "perform_clust": [19, 29], "get_worst_clust": [19, 29], "find_issues_with_predict": [19, 27, 28], "find_issues_with_featur": [19, 27, 28], "believ": [20, 94], "priori": [20, 86], "abstract": 20, "applic": [21, 53, 84, 86, 88, 97], "typevar": [21, 23, 34, 38, 47, 57, 60, 61], "scalartyp": [21, 23], "covari": [21, 23, 65, 93], "summary_dict": 21, "label_scor": [21, 23, 28, 77, 78, 79, 81, 82, 85, 86, 89, 93], "neighbor_histogram": 24, "non_neighbor_histogram": 24, "kolmogorov": 24, "smirnov": 24, "largest": [24, 37, 44, 63, 67, 69, 90, 94], "empir": [24, 43, 53], "cumul": 24, "ecdf": 24, "histogram": [24, 81, 93], "absolut": [24, 28], "dimension": [24, 48, 77, 86, 91], "trial": 24, "non_iid_scor": [24, 79, 81, 82, 86], "null_track": 25, "extend": [25, 45, 85, 90, 91, 97], "superclass": 25, "arbitrari": [25, 33, 69, 73, 78, 91, 93], "prompt": 25, "address": [25, 78, 79, 82, 84, 96], "enabl": [25, 38], "null_scor": [25, 79], "37037": 26, "q3_avg_dist": 26, "iqr_avg_dist": 26, "median_outlier_scor": 26, "multipli": 28, "deleg": 28, "confus": [29, 33, 34, 38, 39, 48, 61, 96, 97], "50": [29, 38, 84, 85, 86, 88, 90, 91, 93, 94, 97], "keepdim": [29, 84], "signifi": 29, "absenc": 29, "find_issues_kwarg": 29, "int64": [29, 77, 88], "npt": 29, "int_": 29, "id": [29, 53, 78, 84, 85, 88], "unique_cluster_id": 29, "_description_": 29, "performed_clust": 29, "worst_cluster_id": 29, "underperforming_group_scor": [29, 79], "datset": 30, "exclud": [30, 70, 74, 78, 84, 97], "get_report": 30, "qualnam": [31, 44], "boundari": [31, 44, 78, 79], "enum": [31, 44], "continu": [31, 82, 84, 85, 88, 90, 93, 95, 96, 97], "binari": [31, 44, 48, 55, 57, 86, 97], "simultan": [31, 93], "task_str": 31, "is_classif": 31, "__contains__": [31, 40, 44], "member": [31, 34, 38, 44, 78, 79], "typeerror": [31, 44], "12": [31, 44, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 90, 91, 93, 94, 95, 96, 97], "__getitem__": [31, 40, 44], "match": [31, 33, 34, 38, 39, 44, 53, 54, 63, 78, 79, 83, 85, 90, 92, 94], "__iter__": [31, 40, 44], "__len__": [31, 40, 44], "alias": [31, 44], "is_regress": 31, "is_multilabel": 31, "overview": [33, 77, 79, 81, 82, 85, 88, 90, 91, 93, 95, 96, 97], "modifi": [33, 34, 37, 38, 48, 84, 86], "help": [33, 34, 38, 61, 75, 76, 77, 78, 81, 82, 83, 84, 85, 88, 89, 93, 94, 95, 96, 97], "rank_classes_by_label_qu": [33, 79], "merg": [33, 47, 75, 83, 84, 97], "find_overlapping_class": [33, 84, 86], "problemat": [33, 54, 70, 74, 77, 90, 97], "unnorm": [33, 54, 86], "abov": [33, 34, 37, 38, 48, 53, 60, 61, 63, 69, 73, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93, 94, 95, 96, 97], "model_select": [33, 44, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 91, 93, 95, 96], "cross_val_predict": [33, 38, 77, 78, 79, 81, 82, 84, 86, 88, 92, 93, 95, 96], "get_data_labels_from_dataset": 33, "yourfavoritemodel": [33, 86], "cv": [33, 44, 77, 78, 79, 81, 86, 88, 95], "df": [33, 48, 74, 77, 84], "overall_label_qu": [33, 54], "col": 33, "prob": [33, 47, 86, 92], "divid": [33, 54, 63], "label_nois": [33, 54], "human": [33, 83, 94, 97], "clearli": [33, 63, 85, 90, 94], "num": [33, 54, 83, 86], "overlap": [33, 75, 83, 84, 86], "ontolog": 33, "publish": [33, 97], "therefor": [33, 63], "vehicl": [33, 83], "truck": [33, 83, 91, 94], "intuit": [33, 54], "car": [33, 83, 90, 94], "frequent": [33, 53, 81, 84, 93], "characterist": 33, "l": [33, 34, 38, 58, 60, 61], "class1": 33, "class2": 33, "relationship": 33, "dog": [33, 48, 54, 56, 70, 83, 84, 91, 92, 97], "cat": [33, 48, 54, 56, 83, 84, 91, 92], "captur": [33, 77, 90, 91, 94], "co": [33, 34, 35], "noisy_label": [33, 78, 79, 89], "overlapping_class": 33, "descend": [33, 34, 38, 44, 54, 61], "overall_label_health_scor": [33, 54, 86], "suggest": [33, 53, 54, 60, 82, 84, 85, 93, 96], "half": [33, 34, 36, 38, 54, 83, 97], "health_scor": [33, 54], "classes_by_label_qu": [33, 79], "cnn": [34, 36, 38, 85], "cifar": [34, 35, 83, 91], "teach": [34, 35], "bhanml": 34, "blob": 34, "master": [34, 77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 95, 96], "call_bn": [34, 36], "bn": 34, "input_channel": 34, "n_output": 34, "dropout_r": 34, "top_bn": 34, "architectur": [34, 38], "shown": [34, 61, 78, 84, 88, 91, 92, 94, 97], "forward": [34, 35, 36, 38, 85, 88], "overridden": [34, 38], "although": [34, 38, 62, 81, 95], "recip": [34, 38], "afterward": [34, 38], "sinc": [34, 38, 41, 49, 54, 61, 69, 73, 84, 88, 89, 90, 92, 97], "former": [34, 38], "hook": [34, 38, 83], "silent": [34, 37, 38], "t_destin": [34, 36, 38], "__call__": [34, 36, 38, 40, 44], "add_modul": [34, 36, 38], "child": [34, 38], "fn": [34, 38, 61], "recurs": [34, 38, 44], "submodul": [34, 38], "children": [34, 36, 38, 97], "nn": [34, 35, 38, 85], "init": [34, 38, 86], "no_grad": [34, 38, 85, 91], "init_weight": [34, 38], "linear": [34, 38, 82, 85, 96], "fill_": [34, 38], "net": [34, 38, 77, 83, 85], "in_featur": [34, 38], "out_featur": [34, 38], "bia": [34, 38, 85], "tensor": [34, 35, 38, 77, 82, 85, 91, 96], "requires_grad": [34, 38], "bfloat16": [34, 36, 38], "cast": [34, 38, 77], "buffer": [34, 36, 38], "datatyp": [34, 38], "xdoctest": [34, 38], "undefin": [34, 38], "var": [34, 38], "buf": [34, 38], "20l": [34, 38], "1l": [34, 38], "5l": [34, 38], "call_super_init": [34, 36, 38], "immedi": [34, 38, 91], "compil": [34, 36, 38, 52], "cpu": [34, 36, 38, 39, 77, 85], "move": [34, 38, 44, 76, 83], "cuda": [34, 36, 38, 77, 85], "devic": [34, 38, 77, 85], "gpu": [34, 38, 77, 82, 96], "live": [34, 38], "copi": [34, 38, 65, 77, 78, 79, 81, 84, 89, 92, 93, 95], "doubl": [34, 36, 38], "dump_patch": [34, 36, 38], "eval": [34, 36, 38, 85, 89, 91], "dropout": [34, 38], "batchnorm": [34, 38], "grad": [34, 38], "extra_repr": [34, 36, 38], "line": [34, 38, 75, 78, 83, 88, 91, 97], "get_buff": [34, 36, 38], "target": [34, 35, 38, 65, 66, 91, 93], "throw": [34, 38], "get_submodul": [34, 36, 38], "explan": [34, 38], "fulli": [34, 38, 52, 84], "qualifi": [34, 38], "referenc": [34, 38], "attributeerror": [34, 38], "invalid": [34, 38, 82], "resolv": [34, 38, 97], "get_extra_st": [34, 36, 38], "state_dict": [34, 36, 38], "set_extra_st": [34, 36, 38], "build": [34, 38, 85, 94], "picklabl": [34, 38], "serial": [34, 38], "backward": [34, 38, 85], "break": [34, 38, 85, 90], "pickl": [34, 38, 90], "get_paramet": [34, 36, 38], "let": [34, 38, 62, 63, 77, 79, 81, 82, 84, 85, 88, 89, 90, 91, 93, 94, 95, 96, 97], "net_b": [34, 38], "net_c": [34, 38], "conv": [34, 38], "conv2d": [34, 38, 85], "16": [34, 38, 44, 69, 77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 90, 91, 94, 96, 97], "33": [34, 38, 83, 90, 94], "kernel_s": [34, 38], "stride": [34, 38], "200": [34, 38, 63, 83, 90, 97], "diagram": [34, 38, 92], "degre": [34, 38], "queri": [34, 38, 79, 84, 85, 89], "named_modul": [34, 36, 38], "o": [34, 38, 46, 47, 77, 78, 79, 83, 84, 86, 89, 90, 97], "transit": [34, 38], "ipu": [34, 36, 38], "load_state_dict": [34, 36, 38], "strict": [34, 38, 44], "persist": [34, 38], "strictli": [34, 38], "inplac": [34, 38, 88], "preserv": [34, 38, 48], "namedtupl": [34, 38], "missing_kei": [34, 38], "unexpected_kei": [34, 38], "runtimeerror": [34, 38], "idx": [34, 38, 48, 49, 61, 78, 84, 85, 86, 88, 90, 91], "named_buff": [34, 36, 38], "prefix": [34, 38, 77, 97], "remove_dupl": [34, 38], "prepend": [34, 38], "running_var": [34, 38], "named_children": [34, 36, 38], "conv4": [34, 38], "conv5": [34, 38], "memo": [34, 38], "named_paramet": [34, 36, 38], "register_backward_hook": [34, 36, 38], "deprec": [34, 38, 41, 77, 82, 84, 96], "favor": [34, 38], "register_full_backward_hook": [34, 36, 38], "removablehandl": [34, 38], "register_buff": [34, 36, 38], "running_mean": [34, 38], "register_forward_hook": [34, 36, 38], "with_kwarg": [34, 38], "always_cal": [34, 38], "possibli": [34, 38, 81, 95], "fire": [34, 38, 83], "register_module_forward_hook": [34, 38], "regardless": [34, 38, 78, 79], "register_forward_pre_hook": [34, 36, 38], "And": [34, 38], "forward_pr": [34, 38], "register_module_forward_pre_hook": [34, 38], "gradient": [34, 38, 81, 85, 93], "grad_input": [34, 38], "grad_output": [34, 38], "technic": [34, 38], "caller": [34, 38], "register_module_full_backward_hook": [34, 38], "register_full_backward_pre_hook": [34, 36, 38], "backward_pr": [34, 38], "register_module_full_backward_pre_hook": [34, 38], "register_load_state_dict_post_hook": [34, 36, 38], "post": [34, 38], "incompatible_kei": [34, 38], "modif": [34, 38], "thrown": [34, 38], "register_modul": [34, 36, 38], "register_paramet": [34, 36, 38], "register_state_dict_pre_hook": [34, 36, 38], "keep_var": [34, 38], "requires_grad_": [34, 36, 38], "autograd": [34, 38], "freez": [34, 38, 77, 82, 96], "finetun": [34, 38], "gan": [34, 38], "share_memori": [34, 36, 38], "share_memory_": [34, 38], "destin": [34, 38], "shallow": [34, 38], "releas": [34, 38, 76, 77, 84], "design": [34, 38], "ordereddict": [34, 38], "detach": [34, 38, 85], "non_block": [34, 38], "memory_format": [34, 38], "channels_last": [34, 38], "Its": [34, 38, 44, 54, 60], "complex": [34, 38, 77], "integr": [34, 38, 75], "asynchron": [34, 38], "host": [34, 38], "pin": [34, 38, 82, 83, 96], "desir": [34, 38, 47, 61], "4d": [34, 38], "ignore_w": [34, 38], "determinist": [34, 38, 77], "1913": [34, 38], "3420": [34, 38], "5113": [34, 38], "2325": [34, 38], "env": [34, 38], "torch_doctest_cuda1": [34, 38], "gpu1": [34, 38], "1914": [34, 38], "5112": [34, 38], "2324": [34, 38], "float16": [34, 38], "cdoubl": [34, 38], "3741": [34, 38], "2382": [34, 38], "5593": [34, 38], "4443": [34, 38], "complex128": [34, 38], "6122": [34, 38], "1150": [34, 38], "to_empti": [34, 36, 38], "storag": [34, 38, 82, 96], "dst_type": [34, 38], "xpu": [34, 36, 38], "zero_grad": [34, 36, 38, 85], "set_to_non": [34, 38], "reset": [34, 38], "context": [34, 38, 90], "noisili": [35, 86], "han": 35, "2018": 35, "cifar_cnn": [35, 36], "loss_coteach": [35, 36], "y_1": 35, "y_2": 35, "forget_r": 35, "class_weight": 35, "logit": [35, 52, 85], "decim": [35, 48], "quickli": [35, 77, 81, 82, 84, 85, 89, 91, 94, 95, 97], "forget": [35, 44, 97], "rate_schedul": 35, "epoch": [35, 36, 38, 84, 85], "initialize_lr_schedul": [35, 36], "lr": [35, 36, 38], "001": [35, 63, 84], "250": [35, 78, 79, 86, 90, 97], "epoch_decay_start": 35, "80": [35, 81, 89, 93, 94, 95], "schedul": 35, "adjust": [35, 39, 57, 62, 63, 75, 86], "beta": 35, "adam": 35, "adjust_learning_r": [35, 36], "alpha_plan": 35, "beta1_plan": 35, "forget_rate_schedul": [35, 36], "num_gradu": 35, "expon": 35, "tell": [35, 82, 85, 86, 96], "train_load": [35, 38], "model1": [35, 86], "optimizer1": 35, "model2": [35, 86], "optimizer2": 35, "dataload": [35, 85, 91], "parser": 35, "parse_arg": 35, "num_iter_per_epoch": 35, "print_freq": 35, "topk": 35, "top1": 35, "top5": 35, "test_load": 35, "offici": [36, 51, 97], "wish": [36, 51, 91, 94, 97], "adj_confident_thresholds_shar": [36, 37], "labels_shar": [36, 37], "pred_probs_shar": [36, 37], "labelinspector": [36, 37, 84], "get_num_issu": [36, 37], "get_quality_scor": [36, 37], "update_confident_threshold": [36, 37], "score_label_qu": [36, 37], "split_arr": [36, 37], "mnist_pytorch": 36, "get_mnist_dataset": [36, 38], "get_sklearn_digits_dataset": [36, 38], "simplenet": [36, 38], "batch_siz": [36, 37, 38, 67, 69, 84, 85, 91, 94], "log_interv": [36, 38], "momentum": [36, 38], "no_cuda": [36, 38], "test_batch_s": [36, 38, 85], "loader": [36, 38, 85], "set_predict_proba_request": [36, 38], "set_predict_request": [36, 38], "coteach": [36, 76], "mini": [37, 67, 69, 84], "low_self_confid": [37, 39, 55], "self_confid": [37, 39, 40, 44, 55, 57, 63, 71, 73, 84, 86, 95, 96], "conveni": [37, 77, 82, 96], "script": 37, "labels_fil": [37, 84], "pred_probs_fil": [37, 84], "quality_score_kwarg": 37, "num_issue_kwarg": 37, "return_mask": 37, "variant": [37, 53, 94], "read": [37, 41, 79, 84, 86, 91, 97], "zarr": [37, 84], "memmap": [37, 94], "pythonspe": 37, "mmap": [37, 84], "hdf5": 37, "further": [37, 54, 55, 57, 60, 61, 69, 70, 77, 84], "yourfil": 37, "npy": [37, 83, 84, 94], "mmap_mod": [37, 94], "tip": [37, 39, 52, 84], "save_arrai": 37, "your_arrai": 37, "disk": [37, 83, 84], "npz": [37, 97], "maxim": [37, 53, 67, 69, 94], "multiprocess": [37, 39, 55, 67, 69, 84, 85], "linux": [37, 67, 69], "physic": [37, 39, 67, 69, 90], "psutil": [37, 39, 67, 69], "labels_arrai": [37, 49], "predprob": 37, "pred_probs_arrai": 37, "back": [37, 61, 78, 84, 90, 91], "store_result": 37, "becom": [37, 91], "verifi": [37, 84, 88, 91], "long": [37, 53, 62, 88], "enough": [37, 48, 84], "chunk": [37, 92], "ram": [37, 83], "faster": [37, 62, 65, 67, 69, 84, 86], "end_index": 37, "labels_batch": 37, "pred_probs_batch": 37, "batch_result": 37, "indices_of_examples_with_issu": [37, 84], "shortcut": 37, "encount": [37, 39, 67], "1000": [37, 77, 82, 84, 91], "aggreg": [37, 40, 44, 53, 57, 60, 63, 73, 84, 86, 88], "fetch": [37, 77, 79], "seen": [37, 84, 91, 97], "far": [37, 53], "label_quality_scor": [37, 57, 60, 63, 66, 86, 90], "method1": 37, "method2": 37, "normalized_margin": [37, 39, 40, 44, 55, 57, 63, 71, 73], "low_normalized_margin": [37, 39, 55], "issue_indic": [37, 60, 85], "update_num_issu": 37, "arr": [37, 84], "chunksiz": 37, "convnet": 38, "bespok": [38, 52], "download": [38, 77, 84, 91], "mnist": [38, 75, 77, 83], "handwritten": 38, "digit": [38, 77, 83], "last": [38, 44, 58, 61, 78, 79, 84, 88, 90, 97], "sklearn_digits_test_s": 38, "64": [38, 81, 85, 86, 90, 94, 95], "01": [38, 63, 65, 77, 86, 89, 90, 91, 94], "templat": 38, "flexibli": 38, "among": [38, 53, 86], "test_set": 38, "Be": 38, "overrid": 38, "train_idx": [38, 48, 91], "train_label": [38, 91, 96], "scikit": [38, 48, 62, 75, 77, 78, 79, 81, 82, 84, 87, 93, 96], "encourag": [39, 55, 63, 66], "multilabel_classif": [39, 54, 55, 57, 63, 84, 89], "pred_probs_by_class": 39, "prune_count_matrix_col": 39, "rank_by_kwarg": [39, 55, 63, 86], "num_to_remove_per_class": [39, 55], "bad": [39, 55, 60, 63, 82, 84, 96], "seem": [39, 86, 89], "aren": 39, "confidence_weighted_entropi": [39, 40, 44, 55, 57, 63, 71, 73], "label_issues_idx": [39, 63], "entropi": [39, 41, 43, 44, 62, 63], "prune_by_class": [39, 55, 86], "predicted_neq_given": [39, 55, 86], "prune_counts_matrix": 39, "smallest": [39, 63], "unus": 39, "number_of_mislabeled_examples_in_class_k": 39, "delet": [39, 75, 84, 96], "thread": [39, 55], "window": [39, 77, 83], "shorter": [39, 58], "find_predicted_neq_given": 39, "find_label_issues_using_argmax_confusion_matrix": 39, "remove_noise_from_class": [40, 48], "clip_noise_r": [40, 48], "clip_valu": [40, 48], "value_count": [40, 48, 84], "value_counts_fill_missing_class": [40, 48], "get_missing_class": [40, 48], "round_preserving_sum": [40, 48], "round_preserving_row_tot": [40, 48], "estimate_pu_f1": [40, 48], "confusion_matrix": [40, 48], "print_square_matrix": [40, 48], "print_noise_matrix": [40, 48, 86], "print_inverse_noise_matrix": [40, 48], "print_joint_matrix": [40, 48, 86], "compress_int_arrai": [40, 48], "train_val_split": [40, 48], "subset_x_i": [40, 48], "subset_label": [40, 48], "subset_data": [40, 48], "extract_indices_tf": [40, 48], "unshuffle_tensorflow_dataset": [40, 48], "is_torch_dataset": [40, 48], "is_tensorflow_dataset": [40, 48], "csr_vstack": [40, 48], "append_extra_datapoint": [40, 48], "get_num_class": [40, 48], "num_unique_class": [40, 48], "get_unique_class": [40, 48], "format_label": [40, 48], "smart_display_datafram": [40, 48], "force_two_dimens": [40, 48], "latent_algebra": [40, 76], "compute_ps_py_inv_noise_matrix": [40, 42], "compute_py_inv_noise_matrix": [40, 42], "compute_inv_noise_matrix": [40, 42], "compute_noise_matrix_from_invers": [40, 42], "compute_pi": [40, 42], "compute_pyx": [40, 42], "label_quality_util": 40, "get_normalized_entropi": [40, 41], "multilabel_util": [40, 89], "stack_compl": [40, 45], "get_onehot_num_class": [40, 45], "int2onehot": [40, 45, 89], "onehot2int": [40, 45, 89], "multilabel_scor": [40, 57], "classlabelscor": [40, 44], "exponential_moving_averag": [40, 44, 57], "softmin": [40, 44, 57, 60, 69, 73], "possible_method": [40, 44], "multilabelscor": [40, 44], "get_class_label_quality_scor": [40, 44], "multilabel_pi": [40, 44], "get_cross_validated_multilabel_pred_prob": [40, 44], "transform_distances_to_scor": [40, 46], "token_classification_util": [40, 97], "get_sent": [40, 47, 97], "filter_sent": [40, 47, 97], "process_token": [40, 47], "merge_prob": [40, 47], "color_sent": [40, 47], "assert_valid_input": [40, 49], "assert_valid_class_label": [40, 49], "assert_nonempty_input": [40, 49], "assert_indexing_work": [40, 49], "labels_to_arrai": [40, 49], "labels_to_list_multilabel": [40, 49], "min_allowed_prob": 41, "wikipedia": 41, "activ": [41, 43, 53, 75, 88], "towardsdatasci": 41, "cheatsheet": 41, "ec57bc067c0b": 41, "clip": [41, 48, 77], "behav": 41, "unnecessari": [41, 84], "slightli": [41, 95, 96], "interv": [41, 44, 91], "herein": 42, "inexact": 42, "cours": 42, "propag": 42, "throughout": [42, 48, 65, 77, 88, 94, 97], "increas": [42, 60, 62, 63, 77, 78, 84, 88, 89, 97], "dot": [42, 73, 84], "true_labels_class_count": 42, "pyx": 42, "multiannot": 43, "assert_valid_inputs_multiannot": 43, "labels_multiannot": [43, 53], "ensembl": [43, 44, 53, 63, 81, 84, 89, 91, 93, 95], "allow_single_label": 43, "annotator_id": 43, "assert_valid_pred_prob": 43, "pred_probs_unlabel": [43, 53], "format_multiannotator_label": [43, 53, 88], "formatted_label": [43, 48], "old": [43, 48, 76, 77, 83], "check_consensus_label_class": 43, "consensus_label": [43, 53, 88], "consensus_method": [43, 53], "consensu": [43, 53, 75, 87, 97], "establish": [43, 93, 96], "compute_soft_cross_entropi": 43, "soft": [43, 83], "find_best_temp_scal": 43, "coarse_search_rang": [43, 65, 84], "fine_search_s": [43, 65, 84], "temperatur": [43, 44, 60, 69, 73], "scale": [43, 46, 83, 84, 91, 94, 95], "factor": [43, 44, 46, 67, 69], "minim": [43, 60, 91], "temp_scale_pred_prob": 43, "temp": 43, "sharpen": [43, 83], "smoothen": 43, "get_normalized_margin_for_each_label": [44, 63], "get_confidence_weighted_entropy_for_each_label": [44, 63], "75": [44, 78, 79, 83, 88, 89, 90, 91, 93, 94, 97], "scorer": 44, "alpha": [44, 57, 60, 78, 79, 86, 89, 93], "exponenti": 44, "ema": 44, "s_1": 44, "s_k": 44, "ema_k": 44, "accord": [44, 55, 81, 82, 86, 97], "formula": [44, 46], "_t": 44, "cdot": 44, "s_t": 44, "qquad": 44, "leq": 44, "_1": 44, "give": [44, 63, 86, 88, 94], "recent": [44, 97], "success": 44, "previou": [44, 84, 85, 90], "discount": 44, "s_ema": 44, "175": [44, 85, 86, 90], "underflow": 44, "nan": [44, 53, 81, 88, 93, 95], "aggregated_scor": 44, "base_scor": 44, "base_scorer_kwarg": 44, "aggregator_kwarg": [44, 57], "n_sampl": 44, "n_label": 44, "worst": [44, 88], "class_label_quality_scor": 44, "42": [44, 82, 83, 85, 90, 91, 94, 97], "452": 44, "new_scor": 44, "575": 44, "get_label_quality_scores_per_class": [44, 56, 57], "ml_scorer": 44, "binar": [44, 45], "reformat": [44, 77], "wider": 44, "splitter": 44, "kfold": [44, 85], "onevsrestclassifi": [44, 89], "randomforestclassifi": [44, 86, 89], "n_split": [44, 79, 85, 89], "pred_prob_slic": 45, "onehot": 45, "hot": [45, 55, 61, 67, 70, 81, 83, 84, 93, 94, 95], "onehot_matrix": 45, "avg_dist": 46, "scaling_factor": 46, "exp": [46, 62, 63, 78], "dt": 46, "right": [46, 58, 61, 82, 89, 90, 91, 96], "strength": [46, 61], "pronounc": 46, "differenti": 46, "ly": 46, "rule": [46, 47, 83], "thumb": 46, "ood_features_scor": [46, 62, 91], "88988177": 46, "80519832": 46, "token_classif": [47, 71, 73, 74, 84], "sentenc": [47, 71, 73, 74, 82, 96], "readabl": 47, "lambda": [47, 77, 78, 84, 88], "long_sent": 47, "headlin": 47, "charact": [47, 48], "s1": 47, "s2": 47, "processed_token": 47, "alecnlcb": 47, "entiti": [47, 75, 84, 97], "mapped_ent": 47, "unique_ident": 47, "loc": [47, 78, 79, 85, 97], "nbitbas": [47, 57], "probs_merg": 47, "55": [47, 83, 85, 90, 91, 93, 94], "0125": [47, 73], "0375": 47, "075": 47, "025": 47, "color": [47, 70, 78, 79, 81, 86, 89, 91, 93, 94], "red": [47, 61, 78, 79, 83, 86, 89, 90, 91, 94], "colored_sent": 47, "termcolor": 47, "31msentenc": 47, "0m": 47, "ancillari": 48, "class_without_nois": 48, "any_other_class": 48, "choos": [48, 63, 81, 84, 86, 93, 95], "tradition": 48, "new_sum": 48, "fill": 48, "wherea": [48, 55, 92], "come": [48, 78, 79, 84, 85, 91, 94], "major": [48, 53, 76, 85, 91], "versu": [48, 86], "obviou": 48, "cgdeboer": 48, "iteround": 48, "reach": 48, "prob_s_eq_1": 48, "claesen": 48, "f1": [48, 61, 82, 86], "BE": 48, "left_nam": 48, "top_nam": 48, "titl": [48, 78, 79, 86, 89, 91], "short_titl": 48, "round_plac": 48, "pretti": [48, 86], "joint_matrix": 48, "num_possible_valu": 48, "holdout_idx": 48, "extract": [48, 62, 77, 82, 88, 91, 94, 96], "allow_shuffl": 48, "turn": [48, 75, 90], "shuffledataset": 48, "histori": 48, "pre_x": 48, "buffer_s": 48, "csr_matric": 48, "append": [48, 77, 83, 84, 85, 86, 88, 89, 90, 91, 97], "bottom": [48, 58, 61, 90], "to_data": 48, "from_data": 48, "taken": 48, "label_matrix": 48, "canon": 48, "displai": [48, 61, 70, 74, 77, 82, 86, 96, 97], "jupyt": [48, 77, 78, 79, 83, 84, 85, 86, 88, 89, 91, 93, 97], "notebook": [48, 53, 77, 79, 83, 84, 86, 88, 89, 90, 94, 97], "consol": 48, "html": [48, 58, 61, 62, 81, 84, 86], "allow_missing_class": 49, "allow_one_class": 49, "length_x": 49, "labellik": 49, "labels_list": [49, 55], "keraswrappermodel": [51, 52, 75], "keraswrappersequenti": [51, 52], "tf": [52, 77], "legaci": 52, "lack": 52, "keraswrapp": 52, "huggingface_keras_imdb": 52, "unit": [52, 97], "model_kwarg": [52, 65], "compile_kwarg": 52, "sparsecategoricalcrossentropi": 52, "layer": [52, 77, 82, 91, 96], "dens": 52, "my_keras_model": 52, "from_logit": 52, "declar": 52, "apply_softmax": 52, "analysi": 53, "analyz": [53, 75, 86, 88, 89], "get_label_quality_multiannot": [53, 88], "vote": 53, "crowdsourc": [53, 75, 88], "dawid": [53, 88], "skene": [53, 88], "analog": [53, 83, 88], "chosen": [53, 63, 84, 88], "crowdlab": [53, 88], "unlabel": [53, 81, 82, 85, 88, 91, 94], "decid": [53, 82, 83, 88, 93, 96, 97], "get_active_learning_scor": [53, 88], "activelab": [53, 88], "priorit": [53, 60, 90, 94, 97], "showcas": 53, "main": 53, "best_qual": 53, "quality_method": 53, "calibrate_prob": 53, "return_detailed_qu": 53, "return_annotator_stat": 53, "return_weight": 53, "label_quality_score_kwarg": 53, "necessarili": [53, 61, 82, 86], "did": [53, 54, 77, 81, 86, 88, 93, 95, 96], "majority_vot": 53, "ti": 53, "broken": [53, 61, 83, 93], "highest": [53, 61, 78, 85, 92], "0th": 53, "consensus_quality_scor": [53, 88], "annotator_agr": [53, 88], "reman": 53, "1st": 53, "2nd": [53, 67], "3rd": 53, "consensus_label_suffix": 53, "consensus_quality_score_suffix": 53, "suffix": 53, "emsembl": 53, "weigh": [53, 83], "agreement": [53, 88], "agre": 53, "prevent": [53, 84], "overconfid": [53, 92], "wrong": [53, 58, 60, 76, 78, 79, 82, 84, 86, 90, 96], "detailed_label_qu": [53, 88], "annotator_stat": [53, 88], "model_weight": 53, "annotator_weight": 53, "warn": [53, 78, 79, 84], "labels_info": 53, "num_annot": [53, 88], "deriv": [53, 88], "quality_annotator_1": 53, "quality_annotator_2": 53, "quality_annotator_m": 53, "annotator_qu": [53, 88], "num_examples_label": [53, 88], "agreement_with_consensu": [53, 88], "worst_class": [53, 88], "trustworthi": [53, 88, 93], "get_label_quality_multiannotator_ensembl": 53, "weigtht": 53, "budget": 53, "retrain": [53, 93, 96], "active_learning_scor": 53, "improv": [53, 79, 83, 84, 85, 86, 93, 94, 95, 96], "active_learning_scores_unlabel": 53, "get_active_learning_scores_ensembl": 53, "henc": [53, 77, 78, 88], "get_majority_vote_label": [53, 88], "event": 53, "lastli": [53, 81], "convert_long_to_wide_dataset": 53, "labels_multiannotator_long": 53, "wide": [53, 77, 95, 96], "suitabl": [53, 81, 95], "labels_multiannotator_wid": 53, "common_multilabel_issu": [54, 56], "mutual": [54, 89], "exclus": [54, 89], "rank_classes_by_multilabel_qu": [54, 56], "overall_multilabel_health_scor": [54, 56], "multilabel_health_summari": [54, 56], "classes_by_multilabel_qu": 54, "inner": [55, 69], "find_multilabel_issues_per_class": [55, 56], "per_class_label_issu": 55, "label_issues_list": 55, "pred_probs_list": [55, 63, 85, 86], "anim": [56, 91], "rat": 56, "predat": 56, "pet": 56, "reptil": 56, "manner": [57, 88, 93, 95, 96], "box": [58, 60, 61, 83, 90], "object_detect": [58, 60, 61, 90], "return_indices_ranked_by_scor": [58, 90], "overlapping_label_check": [58, 60], "suboptim": [58, 60], "locat": [58, 60, 90, 94, 97], "bbox": [58, 61, 90], "image_nam": [58, 61], "y1": [58, 61, 90], "y2": [58, 61, 90], "later": [58, 61, 62, 96, 97], "corner": [58, 61, 90], "xyxi": [58, 61, 90], "io": [58, 61, 77, 83], "keras_cv": [58, 61], "bounding_box": [58, 61, 90], "detectron": [58, 61, 90], "detectron2": [58, 61, 90], "readthedoc": [58, 61], "en": [58, 61], "latest": [58, 61], "visual": [58, 59, 61, 78, 79, 85, 93, 95, 97], "draw_box": [58, 61], "mmdetect": [58, 61, 90], "swap": [58, 60, 70, 74], "penal": [58, 60], "concern": [58, 60, 75, 79], "issues_from_scor": [59, 60, 68, 69, 70, 72, 73, 74, 90, 94, 97], "compute_overlooked_box_scor": [59, 60], "compute_badloc_box_scor": [59, 60], "compute_swap_box_scor": [59, 60], "pool_box_scores_per_imag": [59, 60], "object_counts_per_imag": [59, 61, 90], "bounding_box_size_distribut": [59, 61, 90], "class_label_distribut": [59, 61, 90], "get_sorted_bbox_count_idx": [59, 61], "plot_class_size_distribut": [59, 61], "plot_class_distribut": [59, 61], "get_average_per_class_confusion_matrix": [59, 61], "calculate_per_class_metr": [59, 61], "aggregation_weight": 60, "imperfect": [60, 84], "chose": [60, 88, 90], "imperfectli": [60, 90], "dirti": [60, 63, 66, 93], "subtyp": 60, "badloc": 60, "nonneg": 60, "high_probability_threshold": 60, "auxiliary_input": [60, 61], "vari": [60, 79], "iou": [60, 61], "heavili": 60, "auxiliarytypesdict": 60, "pred_label": [60, 96], "pred_label_prob": 60, "pred_bbox": 60, "lab_label": 60, "lab_bbox": 60, "similarity_matrix": 60, "min_possible_similar": 60, "scores_overlook": 60, "low_probability_threshold": 60, "scores_badloc": 60, "accident": [60, 81, 82, 84, 96], "scores_swap": 60, "box_scor": 60, "image_scor": [60, 69, 94], "discov": [61, 79, 97], "auxiliari": [61, 91, 94], "_get_valid_inputs_for_compute_scor": 61, "object_count": 61, "down": 61, "bbox_siz": 61, "class_distribut": 61, "plot": [61, 78, 79, 86, 89, 91, 93, 94], "sorted_idx": [61, 91], "class_to_show": 61, "hidden": [61, 91], "max_class_to_show": 61, "prediction_threshold": 61, "overlai": [61, 90], "figsiz": [61, 78, 79, 85, 86, 89, 91], "save_path": [61, 90], "blue": [61, 83, 86, 90], "overlaid": 61, "side": [61, 83, 90], "figur": [61, 86, 89, 91, 93], "extens": [61, 86, 88], "png": [61, 90], "pdf": [61, 62], "svg": 61, "matplotlib": [61, 78, 79, 85, 86, 89, 90, 91, 93], "num_proc": [61, 85], "intersect": [61, 84], "tp": 61, "fp": 61, "ground": [61, 83, 86, 88, 93], "truth": [61, 86, 88, 93], "bias": 61, "avg_metr": 61, "distionari": 61, "95": [61, 71, 73, 81, 83, 86, 91, 93, 94], "per_class_metr": 61, "Of": 62, "li": 62, "smaller": [62, 89, 90], "find_top_issu": [62, 63, 91], "reli": [62, 77, 78, 79, 82, 90, 91, 93, 96], "dist_metr": 62, "dim": [62, 85, 94], "subtract": [62, 63], "renorm": [62, 63, 84], "least_confid": 62, "sum_": 62, "log": [62, 63, 76], "softmax": [62, 69, 73, 85], "literatur": 62, "gen": 62, "liu": 62, "lochman": 62, "zach": 62, "openaccess": 62, "thecvf": 62, "content": [62, 77, 78, 79, 83, 85, 86, 88, 89, 91, 93, 97], "cvpr2023": 62, "liu_gen_pushing_the_limits_of_softmax": 62, "based_out": 62, "distribution_detection_cvpr_2023_pap": 62, "fit_scor": [62, 91], "ood_predictions_scor": 62, "pretrain": [62, 77, 82, 91, 96], "adjust_confident_threshold": 62, "probabilist": [62, 77, 78, 79, 81, 82, 91, 92, 95], "order_label_issu": [63, 76], "whichev": [63, 92], "argsort": [63, 82, 85, 86, 90, 91, 93, 96], "max_": 63, "get_label_quality_ensemble_scor": [63, 84, 86], "weight_ensemble_members_bi": 63, "custom_weight": 63, "log_loss_search_t_valu": 63, "0001": [63, 83], "scheme": 63, "log_loss_search": 63, "log_loss": [63, 82], "1e0": 63, "1e1": 63, "1e2": 63, "2e2": 63, "quality_scor": [63, 91], "forth": 63, "top_issue_indic": 63, "rank_bi": [63, 76], "weird": [63, 74], "minu": 63, "prob_label": 63, "max_prob_not_label": 63, "idea": [63, 90], "AND": [63, 82], "get_epistemic_uncertainti": [64, 65], "get_aleatoric_uncertainti": [64, 65], "corrupt": [65, 93], "linearregress": [65, 84, 93], "y_with_nois": 65, "n_boot": [65, 84], "include_aleatoric_uncertainti": [65, 84], "sole": [65, 78, 88, 91, 95], "bootstrap": [65, 84, 93], "resampl": [65, 77, 84], "epistem": [65, 84, 91, 93], "aleator": [65, 84, 93], "model_final_kwarg": 65, "coars": 65, "thorough": [65, 84], "fine": [65, 77, 82, 91, 96], "grain": 65, "grid": 65, "varianc": [65, 86], "epistemic_uncertainti": 65, "residu": [65, 66, 84], "deviat": [65, 90, 93], "ie": 65, "aleatoric_uncertainti": 65, "outr": 66, "contin": 66, "raw": [66, 75, 76, 79, 83, 85, 88, 90, 91, 93], "aka": [66, 77, 86, 90, 93, 97], "00323821": 66, "33692597": 66, "00191686": 66, "semant": [67, 69, 70, 87], "pixel": [67, 69, 70, 91, 94], "h": [67, 69, 70, 94], "height": [67, 69, 70, 94], "w": [67, 69, 70, 94], "width": [67, 69, 70, 94], "labels_one_hot": [67, 70, 94], "stream": [67, 91, 97], "downsampl": [67, 69, 94], "shrink": [67, 69], "divis": [67, 69, 78], "display_issu": [68, 69, 70, 71, 72, 73, 74, 94, 97], "common_label_issu": [68, 70, 72, 74, 94, 97], "filter_by_class": [68, 70, 94], "segmant": [69, 70], "num_pixel_issu": [69, 94], "product": [69, 84, 85], "pixel_scor": [69, 94], "highlight": [70, 74, 78, 79, 81, 94], "enter": 70, "legend": [70, 78, 79, 89, 90, 93, 94], "colormap": 70, "background": 70, "person": [70, 84, 90, 94, 97], "ambigu": [70, 74, 77, 82, 83, 86, 96, 97], "systemat": [70, 74, 88], "misunderstood": [70, 74], "issues_df": [70, 85], "class_index": 70, "issues_subset": [70, 74], "filter_by_token": [72, 74, 97], "token_score_method": 73, "sentence_score_method": 73, "sentence_score_kwarg": 73, "compris": [73, 74], "token_scor": [73, 97], "converg": 73, "toward": 73, "_softmin_sentence_scor": 73, "sentence_scor": [73, 97], "token_info": 73, "70": [73, 81, 85, 94], "02": [73, 78, 79, 85, 86, 90, 91, 94, 97], "03": [73, 81, 83, 85, 86, 90, 94, 97], "04": [73, 81, 85, 90, 94], "08": [73, 86, 90, 93, 94, 97], "commonli": [74, 76, 78, 79, 89, 97], "But": [74, 82, 86, 93, 97], "restrict": [74, 84], "reliabl": [75, 77, 84, 88, 94, 95], "thousand": 75, "imagenet": [75, 83], "popular": [75, 88, 90], "centric": [75, 81, 82, 85, 87], "capabl": 75, "minut": [75, 77, 81, 82, 83, 88, 89, 90, 93, 94, 95, 96, 97], "conda": 75, "feature_embed": [75, 91], "Then": [75, 84, 85, 95, 96], "your_dataset": [75, 77, 78, 79, 81, 82, 84, 85], "column_name_of_label": [75, 77, 78, 79, 81, 82, 85], "plagu": [75, 79], "untrain": 75, "\u30c4": 75, "label_issues_info": [75, 79], "sklearn_compatible_model": 75, "framework": [75, 89, 90], "complianc": 75, "tag": [75, 89, 97], "sequenc": 75, "recognit": [75, 77, 84, 97], "train_data": [75, 91, 93, 95, 96], "gotten": 75, "test_data": [75, 86, 89, 91, 93, 95, 96], "deal": [75, 79], "tutori": [75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "feel": [75, 77, 79, 84], "free": [75, 77, 79, 81, 82, 84, 85, 86], "ask": [75, 84], "slack": [75, 84], "project": [75, 93], "welcom": 75, "commun": [75, 84], "guidelin": [75, 90], "piec": 75, "studio": [75, 79, 81, 82, 84, 85], "platform": [75, 81, 82, 84, 85], "automl": [75, 84], "foundat": 75, "smart": [75, 81, 82, 84, 85], "edit": [75, 84], "easier": [75, 86], "unreli": [75, 77, 81, 82, 95], "link": [75, 77, 83, 90], "older": 76, "outlin": 76, "substitut": 76, "v2": [76, 81, 95], "get_noise_indic": 76, "psx": 76, "sorted_index_method": 76, "order_label_error": 76, "label_errors_bool": 76, "latent_estim": 76, "num_label_error": 76, "learningwithnoisylabel": 76, "neatli": 76, "organ": [76, 81, 83, 95, 97], "reorgan": 76, "baseline_method": 76, "incorpor": [76, 86], "research": [76, 86], "polyplex": 76, "terminologi": 76, "label_error": 76, "quickstart": [77, 78, 79, 81, 82, 83, 85, 88, 89, 90, 91, 93, 94, 95, 96, 97], "spoken": 77, "500": [77, 91, 97], "english": [77, 83], "pronunci": 77, "wav": 77, "huggingfac": [77, 78, 79, 85], "voxceleb": 77, "speech": [77, 97], "your_pred_prob": [77, 78, 79, 81, 82], "tensorflow_io": 77, "huggingface_hub": 77, "branch": [77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 95, 96], "reproduc": [77, 81, 86, 88], "command": 77, "wget": [77, 90, 94, 97], "navig": 77, "browser": 77, "jakobovski": 77, "archiv": [77, 97], "v1": 77, "tar": [77, 91], "gz": [77, 91], "mkdir": [77, 97], "spoken_digit": 77, "xf": 77, "6_nicolas_32": 77, "data_path": 77, "listdir": 77, "nondeterminist": 77, "file_nam": 77, "endswith": 77, "file_path": 77, "join": [77, 84, 85], "39": [77, 78, 82, 83, 84, 85, 90, 93, 94, 96, 97], "7_george_26": 77, "0_nicolas_24": 77, "0_nicolas_6": 77, "listen": 77, "display_exampl": 77, "click": [77, 78, 79, 83, 85, 86, 88, 89, 91, 93, 97], "expand": [77, 78, 79, 83, 85, 86, 88, 89, 91, 93, 97], "pulldown": [77, 78, 79, 83, 85, 86, 88, 89, 91, 93, 97], "colab": [77, 78, 79, 83, 84, 85, 86, 88, 89, 91, 93, 97], "tfio": 77, "pathlib": 77, "ipython": 77, "load_wav_16k_mono": 77, "filenam": 77, "khz": 77, "file_cont": 77, "read_fil": 77, "sample_r": 77, "decode_wav": 77, "desired_channel": 77, "squeez": 77, "rate_in": 77, "rate_out": 77, "16000": 77, "wav_file_nam": 77, "audio_r": 77, "wav_file_exampl": 77, "plai": [77, 83, 84], "button": 77, "wav_file_name_exampl": 77, "7_jackson_43": 77, "hear": 77, "extractor": 77, "encoderclassifi": 77, "spkrec": 77, "xvect": 77, "feature_extractor": 77, "from_hparam": 77, "run_opt": 77, "uncom": 77, "ffmpeg": 77, "system": [77, 81, 82, 85, 94], "backend": 77, "wav_audio_file_path": 77, "head": [77, 79, 81, 82, 83, 85, 86, 88, 93, 95, 96], "torchaudio": 77, "extract_audio_embed": 77, "emb": [77, 85], "signal": 77, "encode_batch": 77, "embeddings_list": [77, 85], "embeddings_arrai": 77, "opt": [77, 79, 82, 96], "hostedtoolcach": [77, 79, 82, 96], "x64": [77, 79, 82, 96], "lib": [77, 79, 82, 96], "python3": [77, 79, 82, 96], "site": [77, 79, 82, 96], "650": 77, "userwarn": [77, 78, 79, 82, 96], "stft": 77, "return_complex": 77, "view_as_r": 77, "recov": 77, "trigger": 77, "aten": 77, "src": 77, "nativ": 77, "spectralop": 77, "cpp": 77, "863": [77, 96], "_vf": 77, "n_fft": 77, "hop_length": 77, "win_length": 77, "attr": 77, "512": [77, 85], "14": [77, 78, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "196311": 77, "319459": 77, "478975": 77, "2890875": 77, "8170238": 77, "89265": 77, "24": [77, 83, 86, 88, 90, 93, 94, 97], "898056": 77, "256195": 77, "559641": 77, "559721": 77, "62067": 77, "285245": 77, "21": [77, 78, 83, 84, 85, 86, 90, 93, 94, 97], "709627": 77, "5033693": 77, "913803": 77, "819831": 77, "1831515": 77, "208763": 77, "084257": 77, "3210397": 77, "005453": 77, "216152": 77, "478235": 77, "6821785": 77, "053807": 77, "242471": 77, "091424": 77, "78334856": 77, "03954": 77, "23": [77, 83, 85, 86, 90, 93, 94], "569176": 77, "19": [77, 82, 83, 84, 85, 86, 90, 91, 93, 94, 96], "761097": 77, "1258295": 77, "753237": 77, "3508866": 77, "598274": 77, "23712": 77, "2500": 77, "leverag": [77, 82, 84, 86, 88, 96], "tune": [77, 82, 83, 91, 96], "computation": [77, 82, 96], "intens": [77, 82, 96], "held": [77, 81, 82, 83, 90, 91, 92, 95], "straightforward": [77, 81, 95], "benefit": [77, 92, 94, 95], "tol": 77, "num_crossval_fold": [77, 81, 88, 95], "decreas": [77, 84], "never": [77, 86, 89, 91, 92], "accuracy_scor": [77, 82, 86, 95, 96], "cv_accuraci": 77, "9708": 77, "probabilit": [77, 96], "9976": 77, "986": 77, "002161": 77, "176": [77, 83, 86, 89], "002483": 77, "2318": 77, "004411": 77, "1005": 77, "004857": 77, "1871": 77, "007494": 77, "investig": 77, "040587": 77, "999207": 77, "999377": 77, "975220": 77, "999367": 77, "18": [77, 82, 83, 84, 85, 86, 90, 91, 93, 94, 96], "identified_label_issu": [77, 82], "lowest_quality_label": [77, 82, 86, 93, 96], "sort_valu": [77, 79, 81, 82, 84, 85, 86, 88, 89, 93], "516": 77, "1946": 77, "469": 77, "2132": 77, "worth": [77, 86], "iloc": [77, 81, 82, 93, 95, 96], "6_yweweler_25": 77, "7_nicolas_43": 77, "6_theo_27": 77, "6_yweweler_36": 77, "6_yweweler_14": 77, "6_yweweler_35": 77, "6_nicolas_8": 77, "sound": 77, "quit": [77, 91], "22": [77, 78, 83, 85, 86, 89, 90, 91, 94, 97], "blindli": [77, 84, 93, 95, 96], "trust": [77, 84, 86, 88, 92, 93, 95, 96], "underneath": 78, "hood": 78, "alert": 78, "introduct": 78, "mayb": [78, 79, 82], "examin": [78, 79, 81, 90, 95], "your_feature_matrix": [78, 79], "toi": [78, 79, 83, 85, 86, 88], "train_test_split": [78, 79, 91, 95, 96], "inf": [78, 79], "mid": [78, 79], "bins_map": [78, 79], "create_data": [78, 79], "y_bin": [78, 79], "y_i": [78, 79], "y_bin_idx": [78, 79], "y_train": [78, 79, 86, 93], "y_test": [78, 79, 86, 93], "y_train_idx": [78, 79], "y_test_idx": [78, 79], "test_siz": [78, 79, 95, 96], "slide": [78, 79, 83], "decis": [78, 79, 95], "frame": [78, 79], "x_out": [78, 79], "tini": [78, 79], "concaten": [78, 79, 84, 92], "y_out": [78, 79], "y_out_bin": [78, 79], "y_out_bin_idx": [78, 79], "exact_duplicate_idx": [78, 79], "x_duplic": [78, 79], "y_duplic": [78, 79], "y_duplicate_idx": [78, 79], "noisy_labels_idx": [78, 79, 89], "scatter": [78, 79, 86, 89, 93], "black": [78, 79, 83, 93], "cyan": [78, 79], "pyplot": [78, 79, 85, 86, 89, 91, 93], "plt": [78, 79, 85, 86, 89, 91, 93], "plot_data": [78, 79, 86, 89, 93], "fig": [78, 79, 83, 85, 91, 93], "ax": [78, 79, 85, 91, 93], "subplot": [78, 79, 85, 91], "set_titl": [78, 79, 85, 91], "set_xlabel": [78, 79], "x_1": [78, 79], "fontsiz": [78, 79, 85, 86, 89], "set_ylabel": [78, 79], "x_2": [78, 79], "set_xlim": [78, 79], "set_ylim": [78, 79], "linestyl": [78, 79], "circl": [78, 79, 86, 89], "misclassifi": [78, 79], "zip": [78, 79, 85, 90, 97], "label_err": [78, 79], "180": [78, 79, 90], "marker": [78, 79], "facecolor": [78, 79], "edgecolor": [78, 79], "linewidth": [78, 79, 91], "dup": [78, 79], "first_legend": [78, 79], "align": [78, 79], "title_fontproperti": [78, 79], "semibold": [78, 79], "second_legend": [78, 79], "45": [78, 79, 83, 86, 90, 94], "gca": [78, 79], "add_artist": [78, 79], "tight_layout": [78, 79], "ideal": [78, 79], "logist": [78, 79, 82, 88, 91, 96], "remaind": 78, "modal": [78, 79, 84, 88], "132": [78, 79, 86, 90], "9318": 78, "77": [78, 79, 81, 90, 94, 95], "006940": 78, "007830": 78, "40": [78, 79, 82, 83, 85, 94], "014828": 78, "107": [78, 79, 86, 89], "021241": 78, "120": [78, 79, 95], "026407": 78, "notic": [78, 86, 88, 90], "3558": [78, 79], "126": [78, 79, 86, 90], "006636": [78, 79], "130": [78, 79], "012571": [78, 79], "129": [78, 79], "127": [78, 79], "014909": [78, 79], "128": [78, 79, 85], "017443": [78, 79], "6160": [78, 79], "is_near_duplicate_issu": [78, 79, 81, 82, 84, 85, 86], "131": [78, 79, 94], "000000e": [78, 79], "00": [78, 79, 81, 83, 85, 91, 94, 95], "000002": [78, 79], "463180e": [78, 79], "07": [78, 79, 81, 85, 86, 90, 91, 93, 94], "51": [78, 79, 81, 83, 85, 86, 90, 94], "161148": [78, 79], "859087e": [78, 79], "30": [78, 79, 83, 84, 85, 89, 94, 97], "3453": 78, "029542": 78, "031182": 78, "057961": 78, "058244": 78, "home": [78, 79, 82, 83, 96], "runner": [78, 79, 82, 96], "329": [78, 85, 90], "359": 78, "338": 78, "34": [78, 83, 86, 88, 90, 94, 97], "54": [78, 83, 85, 86, 90, 94], "039122": 78, "53": [78, 79, 81, 83, 85, 89, 90, 94, 95, 97], "044598": 78, "105": [78, 90], "105196": 78, "133654": 78, "43": [78, 83, 86, 90, 94], "168033": 78, "125": 78, "101107": 78, "37": [78, 83, 85, 94], "183382": 78, "109": [78, 83, 90], "209259": 78, "211042": 78, "221316": 78, "average_ood_scor": 78, "34530442089193386": 78, "52": [78, 83, 85, 90, 94, 97], "169820": 78, "087324e": 78, "89": [78, 81, 90, 91, 93, 94, 96], "92": [78, 85, 86, 90, 94, 95], "259024": 78, "583757e": 78, "91": [78, 90, 94], "346458": 78, "341292e": 78, "specfi": 78, "new_lab": 78, "scoring_funct": 78, "div": 78, "rem": 78, "inv_scal": 78, "49": [78, 83, 85, 86, 90, 94], "superstitionissuemanag": 78, "unlucki": 78, "superstit": 78, "to_seri": 78, "issues_mask": 78, "summary_scor": 78, "9242": 78, "is_superstition_issu": 78, "superstition_scor": 78, "26": [78, 83, 85, 86, 88, 90, 94], "047581": 78, "090635": 78, "129591": 78, "65": [78, 90, 94, 95, 97], "164840": 78, "demo": [79, 81, 89, 95], "lurk": [79, 85, 86], "_split": 79, "737": 79, "thoroughli": 79, "preprocess": [79, 81, 91, 93, 95, 96], "904": 79, "review": [79, 81, 82, 83, 84, 86, 90, 93, 94, 95, 96, 97], "8561": 79, "001908": 79, "58": [79, 81, 83, 85, 86, 90, 94, 95, 97], "003564": 79, "007331": 79, "008963": 79, "009664": 79, "0227": 79, "is_class_imbalance_issu": 79, "022727": 79, "86": [79, 81, 85, 86, 90, 93, 94, 95], "87": [79, 85, 90, 93, 94, 96], "auto": [79, 83, 84, 93, 95, 96], "conceptu": 79, "856061": 79, "355772": 79, "616034": 79, "821750": 79, "901562": 79, "betweeen": 79, "is_null_issu": 79, "is_non_iid_issu": [79, 81, 82, 86], "is_underperforming_group_issu": 79, "859131": 79, "417707": 79, "664083": 79, "970324": 79, "816953": 79, "375317": 79, "641516": 79, "890575": 79, "531021": 79, "460593": 79, "601188": 79, "826147": 79, "752808": 79, "321635": 79, "562539": 79, "948362": 79, "090243": 79, "472909": 79, "746763": 79, "878267": 79, "examples_w_issu": [79, 84], "013445": 79, "025184": 79, "026376": 79, "inde": [79, 82], "miscellan": [79, 97], "428571": 79, "111111": 79, "571429": 79, "407407": 79, "592593": 79, "337838": 79, "092593": 79, "662162": 79, "333333": [79, 83], "952381": 79, "666667": 79, "portion": 79, "huge": [79, 86], "worri": [79, 82], "critic": 79, "highli": [79, 85], "sql": [81, 95], "databas": [81, 95], "excel": [81, 95], "parquet": [81, 95], "student": [81, 93, 95, 97], "grade": [81, 93, 95], "900": [81, 93, 95], "exam": [81, 93, 95], "letter": [81, 95, 97], "hundr": [81, 95], "histgradientboostingclassifi": 81, "standardscal": [81, 91, 95], "grades_data": [81, 95], "read_csv": [81, 82, 93, 95, 96], "stud_id": [81, 95], "exam_1": [81, 93, 95], "exam_2": [81, 93, 95], "exam_3": [81, 93, 95], "letter_grad": [81, 95], "f48f73": [81, 95], "0bd4e7": [81, 95], "81": [81, 82, 90, 93, 94, 95, 97], "great": [81, 83, 95], "particip": [81, 95], "cb9d7a": [81, 95], "61": [81, 85, 86, 90, 93, 94, 95], "94": [81, 83, 86, 90, 93, 94, 95, 97], "78": [81, 83, 86, 90, 93, 94, 95], "9acca4": [81, 95], "48": [81, 83, 85, 86, 90, 91, 94, 95], "x_raw": [81, 95], "cat_featur": 81, "x_encod": [81, 95], "get_dummi": [81, 93, 95], "drop_first": [81, 95], "numeric_featur": [81, 95], "scaler": [81, 91, 95], "x_process": [81, 95], "fit_transform": [81, 95], "bring": [81, 82, 85, 88, 93, 95, 96], "byod": [81, 82, 85, 88, 93, 95, 96], "boost": [81, 84, 88, 93], "xgboost": [81, 84, 93], "think": [81, 82, 84, 89, 94, 97], "carefulli": [81, 82, 85, 95], "nonzero": 81, "suspici": [81, 95], "tabl": [81, 83, 88, 95], "358": 81, "294": [81, 90], "46": [81, 83, 86, 90, 94], "941": 81, "7109": 81, "000005": [81, 82, 93], "886": 81, "000059": 81, "709": 81, "000104": 81, "723": 81, "000169": 81, "689": 81, "000181": 81, "3590": 81, "051882e": 81, "683133e": 81, "536582e": 81, "406589e": 81, "324246e": 81, "6165": 81, "582": 81, "185": [81, 83, 90, 97], "187": [81, 83], "27": [81, 83, 85, 86, 90, 94, 97], "898": 81, "637": [81, 95], "0014": [81, 83], "595": 81, "702427": 81, "147": [81, 86, 90], "711186": 81, "157": [81, 86], "721394": 81, "771": 81, "731979": 81, "740335": 81, "0014153602099278074": 81, "issue_result": 81, "000842": 81, "555944": 81, "004374": 81, "sorted_issu": 81, "73": [81, 83, 89, 90, 93, 94], "deserv": 81, "outlier_result": 81, "sorted_outli": 81, "56": [81, 83, 85, 93, 94], "96": [81, 83, 86, 89, 90, 93, 94], "lt": [81, 82, 83, 85, 88, 91, 94], "style": [81, 94], "font": 81, "18px": 81, "ff00ff": 81, "bac": 81, "unintend": [81, 82], "mistak": [81, 82, 85, 95, 96], "duplicate_result": 81, "690": 81, "246": [81, 90], "perhap": [81, 86, 88], "twice": 81, "67": [81, 83, 90, 93, 94], "wari": [81, 82, 84], "super": [81, 82, 85], "intent": [82, 96], "servic": [82, 84, 96], "onlin": [82, 96], "bank": [82, 83, 96], "banking77": [82, 96], "oo": [82, 96], "000": [82, 83, 85, 96, 97], "categori": [82, 85, 96], "scope": [82, 96], "dive": 82, "your_featur": 82, "sentence_transform": [82, 96], "sentencetransform": [82, 96], "payment": [82, 96], "cancel_transf": [82, 96], "transfer": [82, 96], "fund": [82, 96], "cancel": [82, 96], "transact": [82, 96], "my": [82, 96], "revert": [82, 96], "morn": [82, 96], "realis": [82, 96], "yesterdai": [82, 96], "rent": [82, 96], "realli": [82, 88, 94, 96], "tomorrow": [82, 96], "raw_text": [82, 96], "change_pin": [82, 96], "supported_cards_and_curr": [82, 96], "beneficiary_not_allow": [82, 96], "apple_pay_or_google_pai": [82, 96], "card_about_to_expir": [82, 96], "lost_or_stolen_phon": [82, 96], "visa_or_mastercard": [82, 96], "getting_spare_card": [82, 96], "card_payment_fee_charg": [82, 96], "utter": [82, 96], "suit": [82, 83, 84, 96], "electra": [82, 96], "discrimin": [82, 96], "googl": [82, 96], "text_embed": 82, "No": [82, 84, 96], "google_electra": [82, 96], "pool": [82, 84, 91, 96], "_util": [82, 96], "831": [82, 96], "typedstorag": [82, 96], "untypedstorag": [82, 96], "untyped_storag": [82, 96], "fget": [82, 96], "__get__": [82, 96], "owner": [82, 96], "400": [82, 96], "data_dict": [82, 86, 88], "85": [82, 90, 94], "38": [82, 83, 85, 90, 94], "9710": 82, "981": 82, "974": 82, "000146": 82, "982": [82, 83], "000224": 82, "971": 82, "000507": 82, "980": [82, 83], "000960": 82, "3584": 82, "994": 82, "009642": 82, "999": 82, "013067": 82, "013841": 82, "433": 82, "014722": 82, "989": 82, "018224": 82, "6070": 82, "160": [82, 93], "095724": 82, "148": 82, "006237": 82, "546": 82, "099341": 82, "514": 82, "006485": 82, "481": 82, "123418": 82, "008165": 82, "0000": [82, 83, 86], "313": [82, 90], "564102": 82, "572258": 82, "28": [82, 83, 85, 86, 88, 91, 94, 97], "574915": 82, "31": [82, 83, 86, 88, 90, 94], "575507": 82, "575874": 82, "792090": 82, "257611": 82, "698710": 82, "182121": 82, "771619": 82, "to_numpi": [82, 84, 93, 96], "data_with_suggested_label": 82, "suggested_label": 82, "charg": [82, 96], "cash": [82, 96], "holidai": [82, 96], "sent": [82, 96, 97], "card": [82, 83, 96], "mine": [82, 96], "expir": [82, 96], "me": [82, 96], "withdraw": 82, "monei": 82, "whoever": [82, 96], "outlier_issu": [82, 85], "lowest_quality_outli": 82, "OR": 82, "636c65616e6c616220697320617765736f6d6521": 82, "phone": [82, 83], "gone": 82, "gt": [82, 88, 97], "samp": 82, "br": 82, "press": [82, 97], "nonsens": 82, "sens": 82, "detriment": 82, "duplicate_issu": 82, "fee": 82, "pai": 82, "go": [82, 83, 86], "strongli": 82, "p_valu": 82, "benign": 82, "shortlist": [82, 93, 96], "curat": [82, 87], "mnist_test_set": 83, "imagenet_val_set": 83, "tench": 83, "goldfish": 83, "white": [83, 97], "shark": 83, "tiger": 83, "hammerhead": 83, "electr": 83, "rai": 83, "stingrai": 83, "cock": 83, "hen": 83, "ostrich": 83, "brambl": 83, "goldfinch": 83, "hous": 83, "finch": 83, "junco": 83, "indigo": 83, "bunt": 83, "american": [83, 97], "robin": 83, "bulbul": 83, "jai": 83, "magpi": 83, "chickade": 83, "dipper": 83, "kite": 83, "bald": 83, "eagl": 83, "vultur": 83, "grei": 83, "owl": 83, "salamand": 83, "smooth": 83, "newt": 83, "spot": [83, 90], "axolotl": 83, "bullfrog": 83, "tree": 83, "frog": [83, 91], "tail": 83, "loggerhead": 83, "sea": 83, "turtl": 83, "leatherback": 83, "mud": 83, "terrapin": 83, "band": 83, "gecko": 83, "green": [83, 97], "iguana": 83, "carolina": 83, "anol": 83, "desert": 83, "grassland": 83, "whiptail": 83, "lizard": 83, "agama": 83, "frill": 83, "neck": 83, "allig": 83, "gila": 83, "monster": 83, "european": 83, "chameleon": 83, "komodo": 83, "dragon": 83, "nile": 83, "crocodil": 83, "triceratop": 83, "worm": 83, "snake": 83, "ring": 83, "eastern": 83, "hog": 83, "nose": 83, "kingsnak": 83, "garter": 83, "water": 83, "vine": 83, "night": 83, "boa": 83, "constrictor": 83, "african": 83, "rock": 83, "indian": 83, "cobra": 83, "mamba": 83, "saharan": 83, "horn": 83, "viper": 83, "diamondback": 83, "rattlesnak": 83, "sidewind": 83, "trilobit": 83, "harvestman": 83, "scorpion": 83, "yellow": 83, "garden": 83, "spider": 83, "barn": 83, "southern": 83, "widow": 83, "tarantula": 83, "wolf": 83, "tick": 83, "centiped": 83, "grous": 83, "ptarmigan": 83, "ruf": 83, "prairi": 83, "peacock": 83, "quail": 83, "partridg": 83, "parrot": 83, "macaw": 83, "sulphur": 83, "crest": 83, "cockatoo": 83, "lorikeet": 83, "coucal": 83, "bee": 83, "eater": 83, "hornbil": 83, "hummingbird": 83, "jacamar": 83, "toucan": 83, "duck": [83, 96], "breast": 83, "mergans": 83, "goos": 83, "swan": 83, "tusker": 83, "echidna": 83, "platypu": 83, "wallabi": 83, "koala": 83, "wombat": 83, "jellyfish": 83, "anemon": 83, "brain": 83, "coral": 83, "flatworm": 83, "nematod": 83, "conch": 83, "snail": 83, "slug": 83, "chiton": 83, "chamber": 83, "nautilu": 83, "dung": 83, "crab": 83, "fiddler": 83, "king": 83, "lobster": 83, "spini": 83, "crayfish": 83, "hermit": 83, "isopod": 83, "stork": 83, "spoonbil": 83, "flamingo": 83, "heron": 83, "egret": 83, "bittern": 83, "crane": 83, "bird": [83, 91], "limpkin": 83, "gallinul": 83, "coot": 83, "bustard": 83, "ruddi": 83, "turnston": 83, "dunlin": 83, "redshank": 83, "dowitch": 83, "oystercatch": 83, "pelican": 83, "penguin": 83, "albatross": 83, "whale": 83, "killer": 83, "dugong": 83, "lion": 83, "chihuahua": 83, "japanes": 83, "chin": 83, "maltes": 83, "pekinges": 83, "shih": 83, "tzu": 83, "charl": 83, "spaniel": 83, "papillon": 83, "terrier": 83, "rhodesian": 83, "ridgeback": 83, "afghan": [83, 97], "hound": 83, "basset": 83, "beagl": 83, "bloodhound": 83, "bluetick": 83, "coonhound": 83, "tan": 83, "walker": 83, "foxhound": 83, "redbon": 83, "borzoi": 83, "irish": 83, "wolfhound": 83, "italian": 83, "greyhound": 83, "whippet": 83, "ibizan": 83, "norwegian": 83, "elkhound": 83, "otterhound": 83, "saluki": 83, "scottish": 83, "deerhound": 83, "weimaran": 83, "staffordshir": 83, "bull": 83, "bedlington": 83, "border": 83, "kerri": 83, "norfolk": 83, "norwich": 83, "yorkshir": 83, "wire": 83, "fox": 83, "lakeland": 83, "sealyham": 83, "airedal": 83, "cairn": 83, "australian": 83, "dandi": 83, "dinmont": 83, "boston": 83, "miniatur": 83, "schnauzer": 83, "giant": 83, "tibetan": 83, "silki": 83, "coat": [83, 85], "wheaten": 83, "west": 83, "highland": 83, "lhasa": 83, "apso": 83, "flat": 83, "retriev": 83, "curli": 83, "golden": 83, "labrador": 83, "chesapeak": 83, "bai": 83, "german": [83, 97], "shorthair": 83, "pointer": 83, "vizsla": 83, "setter": 83, "gordon": 83, "brittani": 83, "clumber": 83, "springer": 83, "welsh": 83, "cocker": 83, "sussex": 83, "kuvasz": 83, "schipperk": 83, "groenendael": 83, "malinoi": 83, "briard": 83, "kelpi": 83, "komondor": 83, "sheepdog": 83, "shetland": 83, "colli": 83, "bouvier": 83, "de": 83, "flandr": 83, "rottweil": 83, "shepherd": 83, "dobermann": 83, "pinscher": 83, "swiss": [83, 97], "mountain": 83, "bernes": 83, "appenzel": 83, "sennenhund": 83, "entlebuch": 83, "boxer": 83, "bullmastiff": 83, "mastiff": 83, "french": 83, "bulldog": 83, "dane": 83, "st": 83, "bernard": 83, "huski": 83, "alaskan": 83, "malamut": 83, "siberian": 83, "dalmatian": 83, "affenpinsch": 83, "basenji": 83, "pug": 83, "leonberg": 83, "newfoundland": 83, "pyrenean": 83, "samoi": 83, "pomeranian": 83, "chow": 83, "keeshond": 83, "griffon": 83, "bruxelloi": 83, "pembrok": 83, "corgi": 83, "cardigan": 83, "poodl": 83, "mexican": 83, "hairless": 83, "tundra": 83, "coyot": 83, "dingo": 83, "dhole": 83, "wild": 83, "hyena": 83, "kit": 83, "arctic": 83, "tabbi": 83, "persian": 83, "siames": 83, "egyptian": 83, "mau": 83, "cougar": 83, "lynx": 83, "leopard": 83, "snow": 83, "jaguar": 83, "cheetah": 83, "brown": [83, 94], "bear": 83, "polar": 83, "sloth": 83, "mongoos": 83, "meerkat": 83, "beetl": 83, "ladybug": 83, "longhorn": 83, "leaf": 83, "rhinocero": 83, "weevil": 83, "fly": 83, "ant": 83, "grasshopp": 83, "cricket": 83, "stick": 83, "insect": 83, "cockroach": 83, "manti": 83, "cicada": 83, "leafhopp": 83, "lacew": 83, "dragonfli": 83, "damselfli": 83, "admir": 83, "ringlet": 83, "monarch": 83, "butterfli": 83, "gossam": 83, "wing": 83, "starfish": 83, "urchin": 83, "cucumb": 83, "cottontail": 83, "rabbit": 83, "hare": 83, "angora": 83, "hamster": 83, "porcupin": 83, "squirrel": 83, "marmot": 83, "beaver": 83, "guinea": 83, "pig": 83, "sorrel": 83, "zebra": 83, "boar": 83, "warthog": 83, "hippopotamu": 83, "ox": 83, "buffalo": 83, "bison": 83, "bighorn": 83, "sheep": 83, "alpin": 83, "ibex": 83, "hartebeest": 83, "impala": 83, "gazel": 83, "dromedari": 83, "llama": 83, "weasel": 83, "mink": 83, "polecat": 83, "foot": 83, "ferret": 83, "otter": 83, "skunk": 83, "badger": 83, "armadillo": 83, "toed": 83, "orangutan": 83, "gorilla": 83, "chimpanze": 83, "gibbon": 83, "siamang": 83, "guenon": 83, "pata": 83, "monkei": 83, "baboon": 83, "macaqu": 83, "langur": 83, "colobu": 83, "probosci": 83, "marmoset": 83, "capuchin": 83, "howler": 83, "titi": 83, "geoffroi": 83, "lemur": 83, "indri": 83, "asian": 83, "eleph": 83, "bush": 83, "snoek": 83, "eel": 83, "coho": 83, "salmon": 83, "beauti": 83, "clownfish": 83, "sturgeon": 83, "garfish": 83, "lionfish": 83, "pufferfish": 83, "abacu": 83, "abaya": 83, "academ": 83, "gown": 83, "accordion": 83, "acoust": 83, "guitar": 83, "aircraft": 83, "carrier": 83, "airlin": 83, "airship": 83, "altar": 83, "ambul": 83, "amphibi": 83, "clock": [83, 97], "apiari": 83, "apron": 83, "wast": 83, "assault": 83, "rifl": 83, "backpack": 83, "bakeri": 83, "balanc": 83, "beam": 83, "balloon": 83, "ballpoint": 83, "pen": 83, "aid": 83, "banjo": 83, "balust": 83, "barbel": 83, "barber": 83, "chair": [83, 90], "barbershop": 83, "baromet": 83, "barrel": 83, "wheelbarrow": 83, "basebal": 83, "basketbal": 83, "bassinet": 83, "bassoon": 83, "swim": 83, "cap": 83, "bath": 83, "towel": 83, "bathtub": 83, "station": 83, "wagon": 83, "lighthous": 83, "beaker": 83, "militari": 83, "beer": 83, "bottl": 83, "glass": 83, "bell": 83, "cot": 83, "bib": 83, "bicycl": [83, 94], "bikini": 83, "binder": 83, "binocular": 83, "birdhous": 83, "boathous": 83, "bobsleigh": 83, "bolo": 83, "tie": 83, "poke": 83, "bonnet": 83, "bookcas": 83, "bookstor": 83, "bow": 83, "brass": 83, "bra": 83, "breakwat": 83, "breastplat": 83, "broom": 83, "bucket": 83, "buckl": 83, "bulletproof": 83, "vest": 83, "butcher": 83, "shop": 83, "taxicab": 83, "cauldron": 83, "candl": 83, "cannon": 83, "cano": 83, "mirror": [83, 90], "carousel": 83, "tool": [83, 86, 88], "carton": 83, "wheel": 83, "teller": 83, "cassett": 83, "player": 83, "castl": 83, "catamaran": 83, "cd": 83, "cello": 83, "mobil": [83, 97], "chain": 83, "fenc": [83, 94], "mail": 83, "chainsaw": 83, "chest": 83, "chiffoni": 83, "chime": 83, "china": 83, "cabinet": 83, "christma": 83, "stock": 83, "church": 83, "movi": 83, "theater": 83, "cleaver": 83, "cliff": 83, "dwell": 83, "cloak": 83, "clog": 83, "cocktail": 83, "shaker": 83, "coffe": 83, "mug": 83, "coffeemak": 83, "coil": 83, "lock": 83, "keyboard": 83, "confectioneri": 83, "ship": [83, 91], "corkscrew": 83, "cornet": 83, "cowboi": 83, "boot": 83, "hat": 83, "cradl": 83, "crash": 83, "helmet": 83, "crate": 83, "infant": 83, "bed": 83, "crock": 83, "pot": 83, "croquet": 83, "crutch": 83, "cuirass": 83, "dam": 83, "desk": 83, "desktop": 83, "rotari": 83, "dial": 83, "telephon": 83, "diaper": 83, "watch": 83, "dine": 83, "dishcloth": 83, "dishwash": 83, "disc": 83, "brake": 83, "dock": 83, "sled": 83, "dome": 83, "doormat": 83, "drill": 83, "rig": 83, "drum": 83, "drumstick": 83, "dumbbel": 83, "dutch": 83, "oven": 83, "fan": 83, "locomot": 83, "entertain": 83, "center": 83, "envelop": 83, "espresso": 83, "powder": 83, "feather": 83, "fireboat": 83, "engin": [83, 94], "screen": 83, "sheet": 83, "flagpol": 83, "flute": 83, "footbal": 83, "forklift": 83, "fountain": 83, "poster": 83, "freight": 83, "fry": 83, "pan": 83, "fur": 83, "garbag": 83, "ga": 83, "pump": 83, "goblet": 83, "kart": 83, "golf": 83, "cart": 83, "gondola": 83, "gong": 83, "grand": 83, "piano": 83, "greenhous": 83, "grill": 83, "groceri": 83, "guillotin": 83, "barrett": 83, "hair": 83, "sprai": 83, "hammer": 83, "dryer": 83, "hand": [83, 86], "handkerchief": 83, "drive": 83, "harmonica": 83, "harp": 83, "harvest": 83, "hatchet": 83, "holster": 83, "honeycomb": 83, "hoop": 83, "skirt": 83, "horizont": 83, "bar": 83, "hors": [83, 91, 96], "drawn": 83, "hourglass": 83, "ipod": 83, "cloth": 83, "iron": 83, "jack": 83, "lantern": 83, "jean": 83, "jeep": 83, "shirt": [83, 85], "jigsaw": 83, "puzzl": 83, "pull": 83, "rickshaw": 83, "joystick": 83, "kimono": 83, "knee": 83, "pad": 83, "knot": 83, "ladl": 83, "lampshad": 83, "laptop": 83, "lawn": 83, "mower": 83, "knife": 83, "lifeboat": 83, "lighter": 83, "limousin": 83, "ocean": 83, "liner": 83, "lipstick": 83, "slip": 83, "shoe": 83, "lotion": 83, "speaker": 83, "loup": 83, "sawmil": 83, "magnet": 83, "compass": 83, "bag": [83, 85, 91, 92], "mailbox": 83, "tight": 83, "tank": 83, "manhol": 83, "maraca": 83, "marimba": 83, "maypol": 83, "maze": 83, "cup": [83, 90], "medicin": 83, "megalith": 83, "microphon": 83, "microwav": 83, "milk": 83, "minibu": 83, "miniskirt": 83, "minivan": 83, "missil": 83, "mitten": 83, "mix": 83, "bowl": 83, "modem": 83, "monasteri": 83, "monitor": 83, "mope": 83, "mortar": 83, "mosqu": 83, "mosquito": 83, "scooter": 83, "bike": 83, "tent": 83, "mous": [83, 84], "mousetrap": 83, "van": 83, "muzzl": 83, "nail": 83, "brace": 83, "necklac": 83, "nippl": 83, "obelisk": 83, "obo": 83, "ocarina": 83, "odomet": 83, "oil": 83, "oscilloscop": 83, "overskirt": 83, "bullock": 83, "oxygen": 83, "packet": 83, "paddl": 83, "padlock": 83, "paintbrush": 83, "pajama": 83, "palac": [83, 97], "parachut": 83, "park": 83, "bench": 83, "meter": 83, "passeng": 83, "patio": 83, "payphon": 83, "pedest": 83, "pencil": 83, "perfum": 83, "petri": 83, "dish": 83, "photocopi": 83, "plectrum": 83, "pickelhaub": 83, "picket": 83, "pickup": 83, "pier": 83, "piggi": 83, "pill": 83, "pillow": 83, "ping": 83, "pong": 83, "pinwheel": 83, "pirat": 83, "pitcher": 83, "plane": 83, "planetarium": 83, "plastic": 83, "plate": 83, "rack": 83, "plow": 83, "plunger": 83, "polaroid": 83, "camera": 83, "pole": [83, 94], "polic": 83, "poncho": 83, "billiard": 83, "soda": 83, "potter": 83, "prayer": 83, "rug": 83, "printer": 83, "prison": 83, "projectil": 83, "projector": 83, "hockei": 83, "puck": 83, "punch": 83, "purs": 83, "quill": 83, "quilt": 83, "race": 83, "racket": 83, "radiat": 83, "radio": 83, "telescop": 83, "rain": 83, "recreat": 83, "reel": 83, "reflex": 83, "refriger": 83, "remot": 83, "restaur": 83, "revolv": 83, "rotisseri": 83, "eras": 83, "rugbi": 83, "ruler": 83, "safe": 83, "safeti": 83, "salt": 83, "sandal": [83, 85], "sarong": 83, "saxophon": 83, "scabbard": 83, "school": 83, "bu": [83, 94], "schooner": 83, "scoreboard": 83, "crt": 83, "screw": 83, "screwdriv": 83, "seat": 83, "belt": 83, "sew": 83, "shield": 83, "shoji": 83, "basket": 83, "shovel": 83, "shower": 83, "curtain": 83, "ski": 83, "sleep": 83, "door": 83, "slot": 83, "snorkel": 83, "snowmobil": 83, "snowplow": 83, "soap": 83, "dispens": 83, "soccer": [83, 97], "sock": 83, "solar": 83, "thermal": 83, "collector": 83, "sombrero": 83, "soup": 83, "heater": 83, "shuttl": 83, "spatula": 83, "motorboat": 83, "web": 83, "spindl": 83, "sport": [83, 97], "spotlight": 83, "stage": 83, "steam": 83, "arch": 83, "bridg": 83, "steel": 83, "stethoscop": 83, "scarf": 83, "stone": 83, "wall": [83, 94], "stopwatch": 83, "stove": 83, "strainer": 83, "tram": 83, "stretcher": 83, "couch": 83, "stupa": 83, "submarin": 83, "sundial": 83, "sunglass": 83, "sunscreen": 83, "suspens": 83, "mop": 83, "sweatshirt": 83, "swimsuit": 83, "swing": 83, "switch": 83, "syring": 83, "lamp": 83, "tape": 83, "teapot": 83, "teddi": 83, "televis": [83, 97], "tenni": 83, "thatch": 83, "roof": 83, "front": 83, "thimbl": 83, "thresh": 83, "throne": 83, "tile": 83, "toaster": 83, "tobacco": 83, "toilet": 83, "totem": 83, "tow": 83, "tractor": 83, "semi": 83, "trailer": 83, "trai": 83, "trench": 83, "tricycl": 83, "trimaran": 83, "tripod": 83, "triumphal": 83, "trolleybu": 83, "trombon": 83, "tub": 83, "turnstil": 83, "typewrit": 83, "umbrella": 83, "unicycl": 83, "upright": 83, "vacuum": 83, "cleaner": 83, "vase": 83, "vault": 83, "velvet": 83, "vend": 83, "vestment": 83, "viaduct": 83, "violin": 83, "volleybal": 83, "waffl": 83, "wallet": 83, "wardrob": 83, "sink": 83, "wash": 83, "jug": 83, "tower": 83, "whiskei": 83, "whistl": 83, "wig": 83, "shade": [83, 94], "windsor": 83, "wine": 83, "wok": 83, "wooden": 83, "spoon": 83, "wool": 83, "rail": 83, "shipwreck": 83, "yawl": 83, "yurt": 83, "websit": 83, "comic": 83, "book": 83, "crossword": 83, "traffic": [83, 90, 94], "sign": [83, 94, 97], "dust": 83, "jacket": [83, 90], "menu": 83, "guacamol": 83, "consomm": 83, "trifl": 83, "ic": 83, "cream": 83, "pop": 83, "baguett": 83, "bagel": 83, "pretzel": 83, "cheeseburg": 83, "mash": 83, "potato": 83, "cabbag": 83, "broccoli": 83, "cauliflow": 83, "zucchini": 83, "spaghetti": 83, "squash": 83, "acorn": 83, "butternut": 83, "artichok": 83, "pepper": 83, "cardoon": 83, "mushroom": 83, "granni": 83, "smith": 83, "strawberri": 83, "orang": 83, "lemon": 83, "pineappl": 83, "banana": 83, "jackfruit": 83, "custard": 83, "appl": 83, "pomegran": 83, "hai": 83, "carbonara": 83, "chocol": 83, "syrup": 83, "dough": 83, "meatloaf": 83, "pizza": 83, "pie": 83, "burrito": 83, "eggnog": 83, "alp": 83, "bubbl": 83, "reef": 83, "geyser": 83, "lakeshor": 83, "promontori": 83, "shoal": 83, "seashor": 83, "vallei": 83, "volcano": 83, "bridegroom": 83, "scuba": 83, "diver": 83, "rapese": 83, "daisi": 83, "ladi": 83, "slipper": 83, "corn": 83, "rose": 83, "hip": 83, "chestnut": 83, "fungu": 83, "agar": 83, "gyromitra": 83, "stinkhorn": 83, "earth": 83, "star": 83, "wood": 83, "bolet": 83, "ear": 83, "cifar10_test_set": 83, "airplan": [83, 91], "automobil": [83, 91], "deer": [83, 91], "cifar100_test_set": 83, "aquarium_fish": 83, "babi": 83, "boi": 83, "camel": 83, "caterpillar": 83, "cattl": [83, 97], "cloud": 83, "dinosaur": 83, "dolphin": 83, "flatfish": 83, "forest": 83, "girl": 83, "kangaroo": 83, "lawn_mow": 83, "man": 83, "maple_tre": 83, "motorcycl": [83, 94], "oak_tre": 83, "orchid": 83, "palm_tre": 83, "pear": 83, "pickup_truck": 83, "pine_tre": 83, "plain": 83, "poppi": 83, "possum": 83, "raccoon": 83, "road": [83, 94], "rocket": 83, "seal": 83, "shrew": 83, "skyscrap": 83, "streetcar": 83, "sunflow": 83, "sweet_pepp": 83, "trout": 83, "tulip": 83, "willow_tre": 83, "woman": [83, 90], "caltech256": 83, "ak47": 83, "bat": 83, "glove": 83, "birdbath": 83, "blimp": 83, "bonsai": 83, "boom": 83, "breadmak": 83, "buddha": 83, "bulldoz": 83, "cactu": 83, "cake": 83, "tire": 83, "cartman": 83, "cereal": 83, "chandeli": 83, "chess": 83, "board": 83, "chimp": 83, "chopstick": 83, "coffin": 83, "coin": 83, "comet": 83, "cormor": 83, "globe": 83, "diamond": 83, "dice": 83, "doorknob": 83, "drink": 83, "straw": 83, "dumb": 83, "eiffel": 83, "elk": 83, "ewer": 83, "eyeglass": 83, "fern": 83, "fighter": 83, "jet": [83, 93], "extinguish": 83, "hydrant": 83, "firework": 83, "flashlight": 83, "floppi": 83, "fri": 83, "frisbe": 83, "galaxi": 83, "giraff": 83, "goat": 83, "gate": 83, "grape": 83, "pick": [83, 84], "hamburg": 83, "hammock": 83, "harpsichord": 83, "hawksbil": 83, "helicopt": 83, "hibiscu": 83, "homer": 83, "simpson": 83, "horsesho": 83, "air": 83, "skeleton": 83, "ibi": 83, "cone": 83, "iri": 83, "jesu": 83, "christ": 83, "joi": 83, "kayak": 83, "ketch": 83, "ladder": 83, "lath": 83, "licens": 83, "lightbulb": 83, "lightn": 83, "mandolin": 83, "mar": 83, "mattress": 83, "megaphon": 83, "menorah": 83, "microscop": 83, "minaret": 83, "minotaur": 83, "motorbik": 83, "mussel": 83, "neckti": 83, "octopu": 83, "palm": 83, "pilot": 83, "paperclip": 83, "shredder": 83, "pci": 83, "peopl": [83, 90], "pez": 83, "picnic": 83, "pram": 83, "prai": 83, "pyramid": 83, "rainbow": 83, "roulett": 83, "saddl": 83, "saturn": 83, "segwai": 83, "propel": 83, "sextant": 83, "music": 83, "skateboard": 83, "smokestack": 83, "sneaker": 83, "boat": 83, "stain": 83, "steer": 83, "stirrup": 83, "superman": 83, "sushi": 83, "armi": [83, 97], "sword": 83, "tambourin": 83, "teepe": 83, "court": 83, "theodolit": 83, "tomato": 83, "tombston": 83, "tour": 83, "pisa": 83, "treadmil": 83, "fork": 83, "tweezer": 83, "unicorn": 83, "vcr": 83, "waterfal": 83, "watermelon": 83, "weld": 83, "windmil": 83, "xylophon": 83, "yarmulk": 83, "yo": 83, "toad": 83, "twenty_news_test_set": 83, "alt": 83, "atheism": 83, "comp": 83, "graphic": [83, 94], "misc": [83, 97], "sy": 83, "ibm": 83, "pc": 83, "hardwar": 83, "mac": 83, "forsal": 83, "rec": 83, "sci": 83, "crypt": 83, "electron": 83, "med": 83, "soc": 83, "religion": 83, "christian": [83, 97], "talk": [83, 97], "polit": 83, "gun": 83, "mideast": 83, "amazon": 83, "neutral": 83, "imdb_test_set": 83, "all_class": 83, "20news_test_set": 83, "_load_classes_predprobs_label": 83, "dataset_nam": 83, "labelerror": 83, "url_bas": 83, "5392f6c71473055060be3044becdde1cbc18284d": 83, "url_label": 83, "original_test_label": 83, "_original_label": 83, "url_prob": 83, "cross_validated_predicted_prob": 83, "_pyx": 83, "num_part": 83, "datatset": 83, "bytesio": 83, "allow_pickl": 83, "pred_probs_part": 83, "url": 83, "_of_": 83, "nload": 83, "imdb": 83, "ve": [83, 84, 86, 88, 90], "interpret": [83, 84, 86, 89, 93], "capit": 83, "29780": 83, "256": [83, 84, 90], "780": 83, "medic": [83, 97], "doctor": 83, "254": [83, 90], "359223": 83, "640777": 83, "184": [83, 86], "258427": 83, "341176": 83, "263158": 83, "658824": 83, "337349": 83, "246575": 83, "662651": 83, "248": 83, "330000": 83, "355769": 83, "670000": 83, "251": [83, 90], "167": [83, 86, 90], "252": 83, "112": 83, "253": [83, 90], "022989": 83, "255": [83, 85], "049505": 83, "190": [83, 86, 90, 97], "66": [83, 94], "002216": 83, "000974": 83, "59": [83, 90, 94, 97], "88": [83, 84, 85, 86, 89, 90, 93, 94], "000873": 83, "000739": 83, "79": [83, 90, 94, 95], "32635": 83, "32636": 83, "47": [83, 85, 90, 94], "32637": 83, "32638": 83, "32639": 83, "32640": 83, "051": 83, "93": [83, 90, 93, 94, 95, 97], "002242": 83, "997758": 83, "002088": 83, "001045": 83, "997912": 83, "002053": 83, "997947": 83, "001980": 83, "000991": 83, "998020": 83, "001946": 83, "002915": 83, "998054": 83, "001938": 83, "002904": 83, "998062": 83, "001020": 83, "998980": 83, "001018": 83, "002035": 83, "998982": 83, "999009": 83, "0003": 83, "0002": 83, "36": [83, 85, 94, 97], "41": [83, 85, 90, 93, 94], "44": [83, 89, 90, 94, 96], "71": [83, 86, 90, 93, 94], "071": 83, "067269": 83, "929": 83, "046": 83, "058243": 83, "954": 83, "035": 83, "032096": 83, "965": 83, "031": 83, "012232": 83, "969": 83, "022": 83, "025896": 83, "978": 83, "020": [83, 86], "013092": 83, "018": 83, "013065": 83, "016": 83, "030542": 83, "984": 83, "013": 83, "020833": 83, "987": 83, "012": 83, "010020": 83, "988": 83, "0073": 83, "0020": 83, "0016": 83, "0015": 83, "0013": 83, "0012": 83, "0010": 83, "0008": 83, "0007": 83, "0006": 83, "0005": 83, "0004": 83, "244": [83, 90], "98": [83, 84, 93, 94], "452381": 83, "459770": 83, "72": [83, 85, 86, 89, 93, 94], "523364": 83, "460784": 83, "446602": 83, "57": [83, 85, 86, 94], "68": [83, 85, 86, 90, 91, 94, 95], "103774": 83, "030612": 83, "97": [83, 84, 86, 90, 93, 94, 95, 97], "110092": 83, "049020": 83, "99": [83, 86, 94, 95], "0034": 83, "0032": 83, "0026": 83, "0025": 83, "4945": 83, "4946": 83, "4947": 83, "4948": 83, "4949": 83, "4950": 83, "846": 83, "82": [83, 86, 90, 91, 93, 94], "7532": 83, "532": 83, "034483": 83, "009646": 83, "965517": 83, "030457": 83, "020513": 83, "969543": 83, "028061": 83, "035443": 83, "971939": 83, "025316": 83, "005168": 83, "974684": 83, "049751": 83, "979487": 83, "019920": 83, "042802": 83, "980080": 83, "017677": 83, "005115": 83, "982323": 83, "012987": 83, "005236": 83, "987013": 83, "012723": 83, "025126": 83, "987277": 83, "010989": 83, "008264": 83, "989011": 83, "010283": 83, "027778": 83, "989717": 83, "009677": 83, "990323": 83, "007614": 83, "010127": 83, "992386": 83, "005051": 83, "994949": 83, "005025": 83, "994975": 83, "005013": 83, "994987": 83, "001859": 83, "001328": 83, "000929": 83, "000664": 83, "186": [83, 86], "188": [83, 86, 89], "189": [83, 86], "snippet": 84, "nlp": [84, 97], "mind": [84, 86], "number_of_class": 84, "total_number_of_data_point": 84, "drop": [84, 88, 93, 96], "feed": 84, "alphabet": 84, "labels_proper_format": 84, "your_classifi": 84, "issues_datafram": 84, "class_predicted_for_flagged_exampl": 84, "class_predicted_for_all_exampl": 84, "grant": 84, "datataset": 84, "fair": [84, 86], "game": 84, "speedup": [84, 91], "flexibl": 84, "tempfil": 84, "mkdtemp": 84, "sped": 84, "anywai": 84, "pred_probs_merg": 84, "merge_rare_class": 84, "count_threshold": 84, "class_mapping_orig2new": 84, "heath_summari": 84, "num_examples_per_class": 84, "rare_class": 84, "num_classes_merg": 84, "other_class": 84, "labels_merg": 84, "new_c": 84, "merged_prob": 84, "hstack": [84, 85, 86, 88], "new_class": 84, "original_class": 84, "num_check": 84, "ones_array_ref": 84, "isclos": 84, "though": [84, 86, 97], "successfulli": 84, "meaning": [84, 91], "virtuou": [84, 88], "cycl": [84, 88], "jointli": 84, "junk": 84, "clutter": 84, "unknown": 84, "caltech": 84, "combined_boolean_mask": 84, "mask1": 84, "mask2": 84, "gradientboostingclassifi": [84, 86], "true_error": [84, 86, 89], "101": [84, 90], "102": [84, 89, 90], "104": [84, 86, 90], "model_to_find_error": 84, "model_to_return": 84, "cl0": 84, "randomizedsearchcv": 84, "expens": 84, "param_distribut": 84, "learning_r": [84, 86], "max_depth": [84, 86], "magnitud": 84, "coeffici": [84, 93], "optin": 84, "environ": [84, 86], "rerun": [84, 86], "cell": [84, 86], "On": [84, 86, 90], "unabl": [84, 86], "render": [84, 86], "nbviewer": [84, 86], "nbsp": [84, 86], "cleanlearninginot": [84, 86], "fittedcleanlearn": [84, 86], "linearregressionlinearregress": 84, "n_init": 84, "fit_predict": 84, "continuous_column": 84, "categorical_column": 84, "data_df": 84, "feature_a": 84, "feature_b": 84, "unexpectedli": 84, "emphas": 84, "especi": [84, 85, 93, 95, 96], "crucial": 84, "merge_duplicate_set": 84, "merge_kei": 84, "construct_group_kei": 84, "merged_set": 84, "consolidate_set": 84, "tolist": [84, 89], "issubset": 84, "frozenset": 84, "sets_list": 84, "mutabl": 84, "new_set": 84, "current_set": 84, "intersecting_set": 84, "lowest_score_strategi": 84, "sub_df": 84, "idxmin": 84, "filter_near_dupl": 84, "strategy_fn": 84, "strategy_kwarg": 84, "duplicate_row": 84, "group_kei": 84, "to_keep_indic": 84, "groupbi": 84, "explod": 84, "to_remov": 84, "isin": [84, 91], "kept": 84, "near_duplicate_issu": [84, 85], "ids_to_remove_seri": 84, "tmp": 84, "ipykernel_6180": 84, "1995098996": 84, "deprecationwarn": 84, "dataframegroupbi": 84, "include_group": 84, "silenc": 84, "assist": 84, "streamlin": 84, "ux": 84, "agpl": 84, "compani": 84, "commerci": 84, "alter": 84, "email": 84, "discuss": 84, "anywher": 84, "profession": 84, "expert": 84, "60": [85, 86, 93, 94], "excess": 85, "torchvis": [85, 91], "tensordataset": 85, "stratifiedkfold": [85, 89], "tqdm": 85, "fashion_mnist": 85, "num_row": 85, "60000": 85, "pil": 85, "transformed_dataset": 85, "with_format": 85, "unsqueez": 85, "cpu_count": 85, "torch_dataset": 85, "quick": [85, 89], "relu": 85, "batchnorm2d": 85, "maxpool2d": 85, "lazylinear": 85, "flatten": 85, "get_test_accuraci": 85, "testload": [85, 91], "energi": 85, "trainload": [85, 91], "n_epoch": 85, "patienc": 85, "criterion": 85, "crossentropyloss": 85, "adamw": 85, "best_test_accuraci": 85, "start_epoch": 85, "running_loss": 85, "best_epoch": 85, "end_epoch": 85, "3f": [85, 93], "acc": [85, 86], "time_taken": 85, "compute_embed": 85, "compute_pred_prob": 85, "train_batch_s": 85, "num_work": 85, "worker": [85, 97], "train_id_list": 85, "test_id_list": 85, "train_id": 85, "test_id": 85, "embeddings_model": 85, "ntrain": 85, "trainset": 85, "testset": 85, "pin_memori": 85, "fold_embed": 85, "fold_pred_prob": 85, "finish": 85, "482": 85, "720": 85, "851": 85, "195": 85, "702": [85, 96], "stderr": [85, 91, 94], "sphinxverbatim": [85, 91, 94, 97], "69it": [85, 94], "06it": [85, 94], "32it": [85, 94], "38it": [85, 91, 94], "85it": [85, 91, 94], "11it": [85, 94], "19it": [85, 91, 94], "61it": [85, 94], "80it": [85, 94], "50it": [85, 91, 94], "79it": [85, 94], "15it": [85, 94], "68it": [85, 94], "95it": [85, 94], "493": 85, "060": 85, "896": 85, "330": [85, 90], "505": 85, "527": 85, "84it": [85, 94], "75it": [85, 91, 94], "87it": [85, 91, 94], "33it": [85, 94], "62": [85, 86, 90, 91, 93, 94, 97], "74it": [85, 94], "13it": [85, 91, 94], "82it": [85, 94], "71it": [85, 91, 94], "63": [85, 86, 90, 93, 94], "67it": [85, 94], "476": 85, "340": 85, "772": 85, "328": [85, 90], "310": 85, "619": 85, "89it": [85, 94], "56it": [85, 94], "27it": [85, 94], "90it": [85, 94], "37it": [85, 94], "41it": [85, 94], "91it": [85, 94], "14it": [85, 94], "64it": [85, 94], "77it": [85, 94], "55it": [85, 94], "reorder": 85, "vision": 85, "grayscal": 85, "exce": 85, "max_preval": 85, "7714": 85, "3772": 85, "3585": 85, "166": 85, "3651": 85, "27080": 85, "873833e": 85, "40378": 85, "915575e": 85, "25316": 85, "390277e": 85, "06": [85, 86, 90, 94, 97], "2090": 85, "751164e": 85, "14999": 85, "881301e": 85, "9569": 85, "11262": 85, "000003": 85, "19228": 85, "000010": 85, "dress": 85, "32657": 85, "000013": 85, "21282": 85, "000016": 85, "53564": 85, "000018": 85, "pullov": 85, "6321": 85, "30968": 85, "001267": 85, "30659": 85, "000022": [85, 97], "47824": 85, "001454": 85, "3370": 85, "000026": 85, "54565": 85, "001854": 85, "9762": 85, "258": 85, "47139": 85, "000033": 85, "166980": 85, "986195": 85, "997205": 85, "948781": 85, "999358": 85, "54078": 85, "17371": 85, "000025": 85, "plot_label_issue_exampl": 85, "ncol": [85, 91], "nrow": [85, 91], "ceil": 85, "axes_list": 85, "label_issue_indic": 85, "gl": 85, "sl": 85, "fontdict": 85, "imshow": [85, 91], "cmap": [85, 93], "grai": 85, "subplots_adjust": 85, "hspace": 85, "outsiz": 85, "outlier_issues_df": 85, "depict": [85, 89, 90, 91, 92, 94], "plot_outlier_issues_exampl": 85, "n_comparison_imag": 85, "sample_from_class": 85, "number_of_sampl": 85, "non_outlier_indic": 85, "isnul": 85, "non_outlier_indices_excluding_curr": 85, "sampled_indic": 85, "label_scores_of_sampl": 85, "top_score_indic": 85, "top_label_indic": 85, "sampled_imag": 85, "get_image_given_label_and_sampl": 85, "image_from_dataset": 85, "corresponding_label": 85, "comparison_imag": 85, "images_to_plot": 85, "idlist": 85, "iterrow": 85, "closest": 85, "counterpart": 85, "near_duplicate_issues_df": 85, "plot_near_duplicate_issue_exampl": 85, "seen_id_pair": 85, "get_image_and_given_label_and_predicted_label": 85, "duplicate_imag": 85, "nd_set": 85, "challeng": 85, "dark_issu": 85, "reveal": [85, 90, 94], "dark_scor": 85, "dark_issues_df": 85, "is_dark_issu": 85, "34848": 85, "203922": 85, "50270": 85, "204588": 85, "3936": 85, "213098": 85, "733": 85, "217686": 85, "8094": 85, "230118": 85, "plot_image_issue_exampl": 85, "difficult": 85, "disproportion": 85, "lowinfo_issu": 85, "low_information_scor": 85, "lowinfo_issues_df": 85, "is_low_information_issu": 85, "53050": 85, "067975": 85, "40875": 85, "089929": 85, "9594": 85, "092601": 85, "34825": 85, "107744": 85, "37530": 85, "108516": 85, "lot": 85, "depth": 86, "survei": [86, 97], "focus": [86, 88, 89, 93], "scienc": 86, "multivariate_norm": [86, 88, 89], "make_data": [86, 88], "cov": [86, 88, 89], "avg_trac": [86, 89], "test_label": [86, 89, 91, 96], "py_tru": 86, "noise_matrix_tru": 86, "noise_marix": 86, "s_test": 86, "noisy_test_label": 86, "purpl": 86, "val": 86, "namespac": 86, "exec": 86, "markerfacecolor": [86, 89], "markeredgecolor": [86, 89, 93], "markers": [86, 89, 93], "markeredgewidth": [86, 89, 93], "realist": 86, "7560": 86, "637318e": 86, "896262e": 86, "548391e": 86, "923417e": 86, "375075e": 86, "3454": 86, "014051": 86, "020451": 86, "249": [86, 90], "042594": 86, "043859": 86, "045954": 86, "6120": 86, "023714": 86, "007136": 86, "119": [86, 90], "107266": 86, "103": [86, 90], "033738": 86, "238": [86, 90], "119505": 86, "236": [86, 90], "037843": 86, "222": 86, "614915": 86, "122": [86, 90], "624422": 86, "625965": 86, "626079": 86, "118": 86, "627675": 86, "695223": 86, "323529": 86, "523015": 86, "013720": 86, "675727": 86, "646521": 86, "anyth": 86, "enhanc": [86, 88, 90], "magic": 86, "83": [86, 90, 93, 94, 95, 97], "liter": 86, "identif": 86, "x27": 86, "logisticregressionlogisticregress": 86, "ever": 86, "092": 86, "040": 86, "024": 86, "004": 86, "surpris": 86, "1705": 86, "01936": 86, "ton": 86, "yourfavoritemodel1": 86, "merged_label": 86, "merged_test_label": 86, "newli": [86, 88], "yourfavoritemodel2": 86, "yourfavoritemodel3": 86, "cl3": 86, "takeawai": 86, "That": [86, 89], "randomli": 86, "my_test_pred_prob": 86, "my_test_pr": 86, "issues_test": 86, "corrected_test_label": 86, "pretend": 86, "cl_test_pr": 86, "69": [86, 93, 94], "fairli": 86, "label_acc": 86, "percentag": 86, "offset": 86, "nquestion": 86, "overestim": 86, "answer": 86, "experienc": 86, "76": [86, 89, 90, 93, 94, 95], "knowledg": 86, "quantiti": [86, 93], "prioiri": 86, "known": 86, "versatil": 86, "label_issues_indic": 86, "213": [86, 90], "212": [86, 95], "218": [86, 90], "152": 86, "197": [86, 90], "196": [86, 90], "170": 86, "214": 86, "164": [86, 89], "198": [86, 90], "191": [86, 90], "121": [86, 96], "117": [86, 93], "206": [86, 90], "115": [86, 90], "193": 86, "194": 86, "201": [86, 90], "174": 86, "163": 86, "150": [86, 88, 90], "169": 86, "151": [86, 90], "168": 86, "precision_scor": 86, "recall_scor": 86, "f1_score": 86, "true_label_issu": 86, "filter_by_list": 86, "718750": [86, 88], "807018": 86, "912": 86, "733333": 86, "800000": 86, "721311": 86, "792793": 86, "908": 86, "676923": 86, "765217": 86, "892": 86, "567901": 86, "702290": 86, "844": 86, "gaug": 86, "label_issues_count": 86, "155": [86, 90], "156": 86, "172": [86, 89], "easiest": 86, "modular": 86, "penalti": 86, "l2": 86, "model3": 86, "n_estim": 86, "cv_pred_probs_1": 86, "cv_pred_probs_2": 86, "cv_pred_probs_3": 86, "label_quality_scores_best": 86, "cv_pred_probs_ensembl": 86, "label_quality_scores_bett": 86, "superior": [86, 92], "workflow": [87, 93], "speechbrain": 87, "timm": 87, "glad": 88, "multiannotator_label": 88, "300": [88, 97], "noisier": 88, "111": [88, 93], "local_data": [88, 89], "true_labels_train": [88, 89], "noise_matrix_bett": 88, "noise_matrix_wors": 88, "transpos": [88, 91], "dropna": 88, "zfill": 88, "row_na_check": 88, "notna": 88, "reset_index": 88, "a0001": 88, "a0002": 88, "a0003": 88, "a0004": 88, "a0005": 88, "a0006": 88, "a0007": 88, "a0008": 88, "a0009": 88, "a0010": 88, "a0041": 88, "a0042": 88, "a0043": 88, "a0044": 88, "a0045": 88, "a0046": 88, "a0047": 88, "a0048": 88, "a0049": 88, "a0050": 88, "na": 88, "60856743": 88, "41693214": 88, "40908785": 88, "87147629": 88, "64941785": 88, "10774851": 88, "0524466": 88, "71853246": 88, "37169848": 88, "66031048": 88, "multiannotator_util": 88, "crude": 88, "straight": 88, "majority_vote_label": 88, "736118": 88, "757751": 88, "782232": 88, "715565": 88, "824256": 88, "quality_annotator_a0001": 88, "quality_annotator_a0002": 88, "quality_annotator_a0003": 88, "quality_annotator_a0004": 88, "quality_annotator_a0005": 88, "quality_annotator_a0006": 88, "quality_annotator_a0007": 88, "quality_annotator_a0008": 88, "quality_annotator_a0009": 88, "quality_annotator_a0010": 88, "quality_annotator_a0041": 88, "quality_annotator_a0042": 88, "quality_annotator_a0043": 88, "quality_annotator_a0044": 88, "quality_annotator_a0045": 88, "quality_annotator_a0046": 88, "quality_annotator_a0047": 88, "quality_annotator_a0048": 88, "quality_annotator_a0049": 88, "quality_annotator_a0050": 88, "070564": 88, "216078": 88, "119188": 88, "alongisd": 88, "244981": 88, "208333": 88, "295979": 88, "294118": 88, "324197": 88, "310345": 88, "355316": 88, "346154": 88, "439732": 88, "480000": 88, "a0031": 88, "523205": 88, "580645": 88, "a0034": 88, "535313": 88, "607143": 88, "a0021": 88, "606999": 88, "a0015": 88, "609526": 88, "678571": 88, "a0011": 88, "621103": 88, "692308": 88, "wors": 88, "improved_consensus_label": 88, "majority_vote_accuraci": 88, "cleanlab_label_accuraci": 88, "8581081081081081": 88, "9797297297297297": 88, "besid": 88, "sorted_consensus_quality_scor": 88, "worst_qual": 88, "better_qu": 88, "worst_quality_accuraci": 88, "better_quality_accuraci": 88, "9893238434163701": 88, "improved_pred_prob": 88, "treat": [88, 89, 93, 97], "analzi": 88, "copyright": 89, "advertis": 89, "violenc": 89, "nsfw": 89, "suppli": [89, 90, 93], "celeba": 89, "make_multilabel_data": 89, "boxes_coordin": 89, "box_multilabel": 89, "make_multi": 89, "bx1": 89, "by1": 89, "bx2": 89, "by2": 89, "label_list": 89, "ur": 89, "upper": 89, "inidx": 89, "logical_and": 89, "inv_d": 89, "labels_idx": 89, "true_labels_test": 89, "dict_unique_label": 89, "get_color_arrai": 89, "dcolor": 89, "aa4400": 89, "55227f": 89, "55a100": 89, "00ff00": 89, "007f7f": 89, "386b55": 89, "0000ff": 89, "simplic": 89, "advis": 89, "y_onehot": 89, "single_class_label": 89, "stratifi": [89, 92], "kf": 89, "train_index": 89, "test_index": 89, "clf_cv": 89, "x_train_cv": 89, "x_test_cv": 89, "y_train_cv": 89, "y_test_cv": 89, "y_pred_cv": 89, "saw": 89, "num_to_displai": 89, "09": [89, 90, 93, 94], "275": 89, "267": 89, "225": 89, "171": 89, "234": 89, "165": 89, "227": [89, 90], "262": [89, 90], "263": [89, 90], "266": [89, 90], "139": 89, "143": [89, 90], "216": [89, 90, 97], "265": 89, "159": [89, 90], "despit": [89, 97], "suspect": 89, "888": 89, "8224": 89, "9632": 89, "968": 89, "6512": 89, "0444": 89, "774": 89, "labels_binary_format": 89, "labels_list_format": 89, "surround": 90, "scene": 90, "coco": 90, "everydai": 90, "has_label_issu": 90, "insal": 90, "nc": [90, 94, 97], "s3": [90, 94, 97], "amazonaw": [90, 94, 97], "objectdetectionbenchmark": 90, "tutorial_obj": 90, "pkl": 90, "example_imag": 90, "unzip": [90, 97], "_separate_label": 90, "_separate_predict": 90, "begin": 90, "image_path": 90, "rb": 90, "image_to_visu": 90, "seg_map": 90, "334": 90, "float32": 90, "bboxes_ignor": 90, "290": 90, "286": 90, "285": 90, "224": 90, "231": 90, "293": 90, "235": 90, "289": 90, "282": 90, "74": [90, 93, 94, 95], "281": 90, "271": 90, "280": 90, "277": 90, "279": 90, "287": 90, "299": 90, "276": 90, "307": 90, "321": 90, "326": 90, "333": 90, "261": 90, "319": 90, "257": 90, "295": 90, "283": 90, "243": 90, "303": 90, "316": 90, "247": 90, "323": 90, "327": 90, "226": 90, "228": 90, "232": 90, "219": 90, "239": 90, "240": 90, "209": 90, "242": 90, "202": 90, "230": 90, "215": 90, "220": 90, "229": 90, "217": 90, "237": 90, "207": 90, "204": 90, "84": [90, 93, 94], "205": 90, "223": [90, 97], "153": 90, "149": 90, "140": 90, "124": 90, "268": 90, "273": 90, "108": 90, "284": 90, "110": 90, "136": 90, "145": 90, "173": 90, "297": 90, "317": 90, "192": 90, "332": 90, "324": 90, "203": 90, "320": 90, "314": 90, "199": 90, "291": 90, "000000481413": 90, "jpg": 90, "42398": 90, "44503": 90, "337": [90, 96], "29968": 90, "336": 90, "21005": 90, "9978472": 90, "forgot": 90, "drew": 90, "label_issue_idx": 90, "num_examples_to_show": 90, "138": 90, "candid": 90, "97489622": 90, "70610878": 90, "98764951": 90, "88899237": 90, "99085805": 90, "issue_idx": 90, "95569726e": 90, "03354841e": 90, "57510169e": 90, "58447666e": 90, "39755858e": 90, "issue_to_visu": 90, "000000009483": 90, "95569726168054e": 90, "addition": [90, 94], "visibl": 90, "missmatch": 90, "likelei": 90, "agnost": 90, "vaidat": 90, "inconsist": 90, "000000395701": 90, "033548411774308e": 90, "armchair": 90, "tv": 90, "000000154004": 90, "38300759625496356": 90, "foreground": 90, "000000448410": 90, "0008575101690203273": 90, "crowd": 90, "alon": 90, "explor": [90, 91], "resembl": [90, 91], "000000499768": 90, "9748962231208227": 90, "000000521141": 90, "8889923658893665": 90, "000000143931": 90, "9876495074395956": 90, "bonu": 90, "uncov": 90, "irregular": 90, "anomali": 90, "unusu": [90, 91], "object_detection_util": 90, "calculate_bounding_box_area": 90, "num_imgs_to_show": 90, "lab_object_count": 90, "pred_object_count": 90, "000000430073": 90, "000000183709": 90, "000000189475": 90, "studi": 90, "label_norm": 90, "pred_norm": 90, "area": [90, 94], "assess": 90, "lab_area": 90, "pred_area": 90, "lab_area_mean": 90, "lab_area_std": 90, "max_deviation_valu": 90, "max_deviation_class": 90, "deviation_valu": 90, "deviation_class": 90, "mean_area": 90, "std_area": 90, "class_area": 90, "deviations_awai": 90, "max_deviation_index": 90, "num_imgs_to_show_per_class": 90, "class_num": 90, "sorted_indic": 90, "000000422886": 90, "000000341828": 90, "000000461009": 90, "train_feature_embed": 91, "ood_train_feature_scor": 91, "test_feature_embed": 91, "ood_test_feature_scor": 91, "ood_train_predictions_scor": 91, "train_pred_prob": 91, "ood_test_predictions_scor": 91, "test_pred_prob": 91, "pylab": 91, "rcparam": 91, "baggingclassifi": 91, "therebi": 91, "rescal": 91, "transform_norm": 91, "totensor": 91, "root": 91, "animal_class": 91, "non_animal_class": 91, "animal_idx": 91, "test_idx": 91, "toronto": 91, "edu": 91, "kriz": 91, "170498071": 91, "2162688": 91, "21622724": 91, "86it": [91, 94], "13828096": 91, "77484805": 91, "25231360": 91, "93998799": 91, "36732928": 91, "100935739": 91, "47972352": 91, "104982488": 91, "59310080": 91, "107768381": 91, "63it": [91, 94], "70844416": 91, "110194171": 91, "82411520": 91, "111925975": 91, "92it": 91, "93913088": 91, "112827006": 91, "65it": [91, 94], "105218048": 91, "112706943": 91, "116588544": 91, "112841304": 91, "128057344": 91, "113396359": 91, "93it": [91, 94], "139591680": 91, "113905134": 91, "49it": [91, 94], "151093248": 91, "114199749": 91, "162594816": 91, "114403067": 91, "43it": [91, 94], "108293723": 91, "5000": 91, "plot_imag": 91, "visualize_outli": 91, "txt_class": 91, "img": [91, 93], "npimg": 91, "show_label": 91, "data_subset": 91, "resnet50": 91, "corpu": 91, "2048": 91, "embed_imag": 91, "create_model": 91, "strang": 91, "odd": 91, "train_ood_features_scor": 91, "top_train_ood_features_idx": 91, "fun": 91, "negat": 91, "homogen": 91, "bottom_train_ood_features_idx": 91, "test_ood_features_scor": 91, "top_ood_features_idx": 91, "inevit": 91, "trade": 91, "5th": 91, "percentil": 91, "fifth_percentil": 91, "plt_rang": 91, "hist": 91, "train_outlier_scor": 91, "ylabel": 91, "axvlin": 91, "test_outlier_scor": 91, "ood_features_indic": 91, "revisit": 91, "return_invers": 91, "train_feature_embeddings_sc": 91, "test_feature_embeddings_sc": 91, "train_pred_label": 91, "9702": 91, "train_ood_predictions_scor": 91, "test_ood_predictions_scor": 91, "mainli": [91, 97], "lost": 91, "unsuit": 92, "ok": [92, 97], "convention": 92, "aforement": 92, "hypothet": 92, "contrast": 92, "tradit": 92, "disjoint": 92, "out_of_sample_pred_probs_for_a": 92, "out_of_sample_pred_probs_for_b": 92, "out_of_sample_pred_probs_for_c": 92, "out_of_sample_pred_prob": 92, "price": 93, "incom": 93, "ag": 93, "sensor": 93, "histgradientboostingregressor": 93, "r2_score": 93, "student_grades_r": 93, "final_scor": 93, "true_final_scor": 93, "homework": 93, "3d": 93, "hue": 93, "mpl_toolkit": 93, "mplot3d": 93, "axes3d": 93, "errors_idx": 93, "add_subplot": 93, "z": 93, "colorbar": 93, "errors_mask": 93, "feature_column": 93, "predicted_column": 93, "x_train_raw": 93, "x_test_raw": 93, "categorical_featur": [93, 95], "randomforestregressor": 93, "636197": 93, "499503": 93, "843478": 93, "776647": 93, "350358": 93, "170547": 93, "706969": 93, "984759": 93, "812515": 93, "795928": 93, "identified_issu": [93, 96], "141": 93, "659": 93, "367": 93, "318": 93, "305": 93, "560": 93, "657": 93, "688": 93, "view_datapoint": 93, "concat": 93, "consum": [93, 96], "baseline_model": [93, 96], "preds_og": 93, "r2_og": 93, "838": 93, "robustli": [93, 95, 96], "acceler": [93, 96], "found_label_issu": 93, "preds_cl": 93, "r2_cl": 93, "926": 93, "effort": [93, 95, 96], "favorit": 93, "968627e": 93, "228799": 93, "646674e": 93, "402962": 93, "323818e": 93, "952758": 93, "422144e": 93, "456908": 93, "465815e": 93, "753968": 93, "110719": 93, "000044": 93, "670640": 93, "000060": 93, "749976": 93, "000066": 93, "947007": 93, "000314": 93, "648396": 93, "plu": 93, "synthia": 94, "imagesegment": 94, "given_mask": 94, "predicted_mask": 94, "set_printopt": [94, 97], "sky": 94, "sidewalk": 94, "veget": 94, "terrain": 94, "rider": 94, "pred_probs_filepath": 94, "1088": 94, "1920": 94, "label_filepath": 94, "synthia_class": 94, "maunal": 94, "100000": 94, "244800": 94, "leftmost": 94, "middl": [94, 97], "infact": 94, "rightmost": 94, "discrep": 94, "4997817": 94, "14686": 94, "146852": 94, "09it": 94, "29379": 94, "146826": 94, "44082": 94, "146917": 94, "20it": 94, "58873": 94, "147306": 94, "73624": 94, "147376": 94, "88375": 94, "147418": 94, "103117": 94, "146398": 94, "59it": 94, "117858": 94, "146717": 94, "08it": 94, "132531": 94, "146652": 94, "147198": 94, "146511": 94, "78it": 94, "161850": 94, "146359": 94, "176487": 94, "146080": 94, "12it": 94, "191096": 94, "146061": 94, "205812": 94, "146388": 94, "88it": 94, "220605": 94, "146848": 94, "72it": 94, "235402": 94, "147184": 94, "62it": 94, "250251": 94, "147572": 94, "265009": 94, "147492": 94, "279759": 94, "147452": 94, "294505": 94, "147319": 94, "46it": 94, "309330": 94, "147596": 94, "324110": 94, "147655": 94, "338876": 94, "147094": 94, "353620": 94, "147195": 94, "368340": 94, "383097": 94, "146969": 94, "26it": 94, "397904": 94, "147295": 94, "412710": 94, "147521": 94, "427463": 94, "147519": 94, "24it": 94, "442348": 94, "147916": 94, "97it": 94, "457175": 94, "148019": 94, "57it": 94, "471978": 94, "147976": 94, "486776": 94, "147710": 94, "39it": 94, "501630": 94, "147954": 94, "47it": 94, "516616": 94, "148524": 94, "22it": 94, "531469": 94, "148246": 94, "546346": 94, "148399": 94, "561187": 94, "148303": 94, "25it": 94, "576018": 94, "147757": 94, "16it": 94, "590920": 94, "148133": 94, "605734": 94, "147627": 94, "620498": 94, "147479": 94, "635247": 94, "146720": 94, "650152": 94, "147411": 94, "664980": 94, "147667": 94, "36it": 94, "680008": 94, "148444": 94, "04it": 94, "694854": 94, "147854": 94, "709641": 94, "147711": 94, "76it": 94, "724413": 94, "146962": 94, "739111": 94, "146576": 94, "753802": 94, "146673": 94, "768561": 94, "146944": 94, "21it": 94, "783527": 94, "147753": 94, "96it": 94, "798376": 94, "147970": 94, "813194": 94, "148030": 94, "01it": 94, "828109": 94, "148363": 94, "35it": 94, "842946": 94, "148197": 94, "858002": 94, "148904": 94, "872977": 94, "149155": 94, "31it": 94, "887982": 94, "149420": 94, "902926": 94, "149424": 94, "917869": 94, "149340": 94, "29it": 94, "932804": 94, "148960": 94, "947701": 94, "146116": 94, "962883": 94, "147800": 94, "977914": 94, "148542": 94, "992777": 94, "148520": 94, "1007881": 94, "149267": 94, "1022869": 94, "149446": 94, "1037958": 94, "149876": 94, "1052961": 94, "149917": 94, "1067976": 94, "149983": 94, "1083120": 94, "150417": 94, "1098163": 94, "150159": 94, "03it": 94, "1113255": 94, "150385": 94, "1128295": 94, "150272": 94, "23it": 94, "1143449": 94, "150647": 94, "1158515": 94, "150266": 94, "53it": 94, "1173566": 94, "150337": 94, "1188700": 94, "150635": 94, "1203856": 94, "150908": 94, "1218984": 94, "151018": 94, "1234156": 94, "151227": 94, "1249279": 94, "148223": 94, "1264309": 94, "148833": 94, "1279385": 94, "149402": 94, "1294573": 94, "150136": 94, "1309815": 94, "150814": 94, "1324929": 94, "150910": 94, "1340124": 94, "151219": 94, "1355369": 94, "151584": 94, "1370530": 94, "151447": 94, "1385676": 94, "151206": 94, "1400798": 94, "150249": 94, "1415882": 94, "150423": 94, "1430947": 94, "150488": 94, "94it": 94, "1446038": 94, "150610": 94, "1461100": 94, "150351": 94, "1476136": 94, "1491172": 94, "150194": 94, "73it": 94, "1506211": 94, "150251": 94, "52it": 94, "1521237": 94, "150109": 94, "1536249": 94, "150096": 94, "1551259": 94, "149462": 94, "1566267": 94, "149644": 94, "1581276": 94, "149776": 94, "05it": 94, "1596406": 94, "150229": 94, "40it": 94, "1611430": 94, "149875": 94, "17it": 94, "1626457": 94, "149991": 94, "1641457": 94, "149842": 94, "1656442": 94, "149178": 94, "1671433": 94, "149395": 94, "1686374": 94, "149138": 94, "1701289": 94, "148918": 94, "1716213": 94, "149012": 94, "1731115": 94, "148944": 94, "1746194": 94, "149493": 94, "1761144": 94, "149208": 94, "1776121": 94, "149375": 94, "1791134": 94, "149598": 94, "30it": 94, "1806122": 94, "149681": 94, "1821194": 94, "149989": 94, "51it": 94, "1836194": 94, "149437": 94, "1851139": 94, "148984": 94, "44it": 94, "1866038": 94, "147246": 94, "1881056": 94, "148114": 94, "1896131": 94, "148896": 94, "1911091": 94, "149102": 94, "1926116": 94, "149442": 94, "99it": 94, "1941063": 94, "149128": 94, "1956036": 94, "149306": 94, "1970971": 94, "149316": 94, "34it": 94, "1985952": 94, "2000899": 94, "149362": 94, "2015836": 94, "145896": 94, "07it": 94, "2030712": 94, "146737": 94, "2045591": 94, "147344": 94, "2060460": 94, "147741": 94, "2075716": 94, "149174": 94, "2090987": 94, "150227": 94, "2106142": 94, "150621": 94, "2121208": 94, "150367": 94, "2136392": 94, "150804": 94, "48it": 94, "2151475": 94, "150361": 94, "2166513": 94, "143788": 94, "2181424": 94, "145330": 94, "2196325": 94, "146407": 94, "42it": 94, "2211331": 94, "147481": 94, "2226301": 94, "148136": 94, "2241232": 94, "148482": 94, "2256259": 94, "149014": 94, "2271171": 94, "149017": 94, "2286080": 94, "148999": 94, "28it": 94, "2301089": 94, "149322": 94, "2316050": 94, "149405": 94, "58it": 94, "2330994": 94, "148813": 94, "2345878": 94, "148395": 94, "2360762": 94, "148526": 94, "2375616": 94, "148159": 94, "2390532": 94, "148457": 94, "00it": 94, "2405379": 94, "148196": 94, "2420238": 94, "148312": 94, "2435107": 94, "148423": 94, "2450070": 94, "148780": 94, "2464991": 94, "148906": 94, "54it": 94, "2479882": 94, "146441": 94, "2494748": 94, "147095": 94, "2509636": 94, "147622": 94, "2524564": 94, "2539380": 94, "148115": 94, "2554354": 94, "148597": 94, "2569216": 94, "148374": 94, "2584164": 94, "148703": 94, "2599036": 94, "148635": 94, "2613901": 94, "148378": 94, "2628767": 94, "148459": 94, "2643614": 94, "147791": 94, "2658460": 94, "147989": 94, "2673393": 94, "148387": 94, "2688233": 94, "148384": 94, "2703072": 94, "148257": 94, "2717899": 94, "148209": 94, "2732721": 94, "147973": 94, "2747595": 94, "148200": 94, "2762416": 94, "146973": 94, "2777116": 94, "146789": 94, "2791931": 94, "147194": 94, "2806715": 94, "147384": 94, "2821480": 94, "147462": 94, "2836227": 94, "147406": 94, "2851060": 94, "147680": 94, "2865829": 94, "147480": 94, "2880627": 94, "147625": 94, "2895450": 94, "147805": 94, "2910289": 94, "147977": 94, "98it": 94, "2925087": 94, "147773": 94, "60it": 94, "2939865": 94, "147432": 94, "2954609": 94, "2969435": 94, "147643": 94, "2984444": 94, "148372": 94, "2999282": 94, "148224": 94, "3014327": 94, "148889": 94, "3029217": 94, "148573": 94, "3044247": 94, "149086": 94, "3059183": 94, "149166": 94, "3074155": 94, "149330": 94, "3089110": 94, "149393": 94, "3104210": 94, "149873": 94, "45it": 94, "3119202": 94, "149884": 94, "3134198": 94, "149905": 94, "3149189": 94, "149467": 94, "3164137": 94, "149307": 94, "3179123": 94, "149468": 94, "3194121": 94, "149619": 94, "3209107": 94, "149688": 94, "3224077": 94, "149601": 94, "3239038": 94, "145384": 94, "3253832": 94, "146133": 94, "3268741": 94, "147004": 94, "3283745": 94, "147902": 94, "3298633": 94, "148190": 94, "3313596": 94, "148619": 94, "3328645": 94, "149176": 94, "3343578": 94, "149218": 94, "3358612": 94, "149551": 94, "3373570": 94, "149033": 94, "3388476": 94, "146528": 94, "3403462": 94, "147511": 94, "3418495": 94, "148345": 94, "3433544": 94, "148981": 94, "3448517": 94, "149201": 94, "3463463": 94, "149277": 94, "3478486": 94, "149559": 94, "3493500": 94, "149731": 94, "3508475": 94, "149355": 94, "3523448": 94, "149463": 94, "3538396": 94, "148811": 94, "3553386": 94, "149134": 94, "3568325": 94, "149206": 94, "3583404": 94, "149679": 94, "3598373": 94, "149631": 94, "3613551": 94, "150271": 94, "66it": 94, "3628626": 94, "150412": 94, "3643668": 94, "150397": 94, "3658708": 94, "150269": 94, "3673736": 94, "150258": 94, "3688762": 94, "149854": 94, "3703809": 94, "150024": 94, "3718812": 94, "149963": 94, "3733809": 94, "147131": 94, "3748534": 94, "144968": 94, "10it": 94, "3763502": 94, "146351": 94, "3778452": 94, "147280": 94, "3793500": 94, "148227": 94, "3808551": 94, "3823448": 94, "148893": 94, "18it": 94, "3838405": 94, "149091": 94, "3853321": 94, "149108": 94, "3868424": 94, "149683": 94, "3883394": 94, "3898342": 94, "149433": 94, "3913287": 94, "149158": 94, "3928270": 94, "149356": 94, "3943329": 94, "149723": 94, "3958457": 94, "150186": 94, "3973535": 94, "150362": 94, "3988572": 94, "150215": 94, "4003594": 94, "150138": 94, "4018609": 94, "149672": 94, "4033577": 94, "149505": 94, "4048528": 94, "149125": 94, "02it": 94, "4063484": 94, "149230": 94, "4078408": 94, "148972": 94, "4093306": 94, "148888": 94, "4108195": 94, "148605": 94, "4123096": 94, "148724": 94, "4137986": 94, "148775": 94, "81it": 94, "4152864": 94, "4168079": 94, "4182999": 94, "148754": 94, "4197876": 94, "148338": 94, "4212711": 94, "148033": 94, "4227532": 94, "148084": 94, "4242341": 94, "147336": 94, "4257276": 94, "147934": 94, "4272071": 94, "147925": 94, "4286975": 94, "148255": 94, "4301802": 94, "148247": 94, "4316680": 94, "148405": 94, "4331521": 94, "148218": 94, "4346405": 94, "148402": 94, "4361268": 94, "148468": 94, "4376190": 94, "148692": 94, "4391060": 94, "4405921": 94, "148210": 94, "4420946": 94, "148818": 94, "4435904": 94, "149042": 94, "4450809": 94, "148696": 94, "4465679": 94, "148391": 94, "4480592": 94, "148609": 94, "4495454": 94, "148415": 94, "4510296": 94, "148236": 94, "4525201": 94, "148476": 94, "4540137": 94, "148739": 94, "4555012": 94, "4569885": 94, "4584708": 94, "148107": 94, "4599520": 94, "147382": 94, "4614260": 94, "147171": 94, "4628978": 94, "146910": 94, "4643877": 94, "147529": 94, "4658676": 94, "147663": 94, "4673466": 94, "147733": 94, "4688278": 94, "147847": 94, "4703187": 94, "4718010": 94, "148126": 94, "4732860": 94, "4747684": 94, "147668": 94, "4762518": 94, "147866": 94, "4777306": 94, "147807": 94, "4792088": 94, "147635": 94, "4806931": 94, "147869": 94, "4821719": 94, "147691": 94, "4836489": 94, "147414": 94, "4851231": 94, "147350": 94, "4865967": 94, "147151": 94, "4880683": 94, "147009": 94, "4895417": 94, "147105": 94, "4910128": 94, "146428": 94, "4924962": 94, "146996": 94, "4939828": 94, "147491": 94, "4954680": 94, "147795": 94, "4969461": 94, "147565": 94, "4984333": 94, "147910": 94, "148534": 94, "3263230": 94, "783379": 94, "275110": 94, "255792": 94, "78225": 94, "55990": 94, "54427": 94, "33591": 94, "24645": 94, "21308": 94, "15045": 94, "14171": 94, "13832": 94, "13498": 94, "11490": 94, "9164": 94, "8769": 94, "6999": 94, "6031": 94, "5011": 94, "mistakenli": 94, "class_issu": 94, "aim": [94, 97], "domin": 94, "extratreesclassifi": 95, "extratre": 95, "ranked_label_issu": [95, 96], "labelencod": [95, 96], "labels_raw": 95, "interg": [95, 96], "tress": 95, "827": 95, "cheat": 95, "0pt": 95, "233": 95, "labels_train": 95, "labels_test": 95, "acc_og": [95, 96], "783068783068783": 95, "acc_cl": [95, 96], "8095238095238095": 95, "earlier": [96, 97], "raw_label": 96, "raw_train_text": 96, "raw_test_text": 96, "raw_train_label": 96, "raw_test_label": 96, "encond": 96, "train_text": 96, "test_text": 96, "858371": 96, "547274": 96, "826228": 96, "966008": 96, "792449": 96, "646": 96, "390": 96, "628": 96, "135": 96, "735": 96, "print_as_df": 96, "inverse_transform": 96, "fight": 96, "bunch": 97, "conll": 97, "2003": 97, "love": 97, "n_i": 97, "optional_list_of_ordered_class_nam": 97, "deepai": 97, "conll2003": 97, "rm": 97, "tokenclassif": 97, "2024": 97, "2400": 97, "52e0": 97, "1a00": 97, "894": 97, "connect": 97, "443": 97, "await": 97, "982975": 97, "960k": 97, "kb": 97, "903": 97, "30k": 97, "87mb": 97, "959": 97, "94k": 97, "11mb": 97, "mb": 97, "directori": 97, "inflat": 97, "17045998": 97, "16m": 97, "octet": 97, "12m": 97, "6mb": 97, "26m": 97, "9mb": 97, "bert": 97, "read_npz": 97, "filepath": 97, "corrsespond": 97, "iob2": 97, "given_ent": 97, "entity_map": 97, "readfil": 97, "sep": 97, "startswith": 97, "docstart": 97, "isalpha": 97, "isupp": 97, "indices_to_preview": 97, "nsentenc": 97, "eu": 97, "reject": 97, "boycott": 97, "british": 97, "lamb": 97, "00030412": 97, "00023826": 97, "99936208": 97, "00007009": 97, "00002545": 97, "99998795": 97, "00000401": 97, "00000218": 97, "00000455": 97, "00000131": 97, "00000749": 97, "99996115": 97, "00001371": 97, "0000087": 97, "00000895": 97, "99998936": 97, "00000382": 97, "00000178": 97, "00000366": 97, "00000137": 97, "99999101": 97, "00000266": 97, "00000174": 97, "0000035": 97, "00000109": 97, "99998768": 97, "00000482": 97, "00000202": 97, "00000438": 97, "0000011": 97, "00000465": 97, "99996392": 97, "00001105": 97, "0000116": 97, "00000878": 97, "99998671": 97, "00000364": 97, "00000213": 97, "00000472": 97, "00000281": 97, "99999073": 97, "00000211": 97, "00000159": 97, "00000442": 97, "00000115": 97, "peter": 97, "blackburn": 97, "00000358": 97, "00000529": 97, "99995623": 97, "0000129": 97, "0000024": 97, "00001812": 97, "99994141": 97, "00001645": 97, "00002162": 97, "brussel": 97, "1996": 97, "00001172": 97, "00000821": 97, "00004661": 97, "0000618": 97, "99987167": 97, "99999061": 97, "00000201": 97, "00000195": 97, "00000408": 97, "00000135": 97, "2254": 97, "2907": 97, "19392": 97, "9962": 97, "8904": 97, "19303": 97, "12918": 97, "9256": 97, "11855": 97, "18392": 97, "20426": 97, "19402": 97, "14744": 97, "19371": 97, "4645": 97, "10331": 97, "9430": 97, "6143": 97, "18367": 97, "12914": 97, "todai": 97, "weather": 97, "march": 97, "scalfaro": 97, "northern": 97, "himself": 97, "said": 97, "germani": 97, "nastja": 97, "rysich": 97, "north": 97, "spla": 97, "fought": 97, "khartoum": 97, "govern": 97, "south": 97, "1983": 97, "autonomi": 97, "animist": 97, "region": 97, "moslem": 97, "arabis": 97, "mayor": 97, "antonio": 97, "gonzalez": 97, "garcia": 97, "revolutionari": 97, "parti": 97, "wednesdai": 97, "troop": 97, "raid": 97, "farm": 97, "stole": 97, "rape": 97, "women": 97, "spring": 97, "chg": 97, "hrw": 97, "12pct": 97, "princ": 97, "photo": 97, "moment": 97, "spokeswoman": 97, "rainier": 97, "told": 97, "reuter": 97, "danila": 97, "carib": 97, "w224": 97, "equip": 97, "radiomet": 97, "earn": 97, "19996": 97, "london": 97, "denom": 97, "sale": 97, "uk": 97, "jp": 97, "fr": 97, "maccabi": 97, "hapoel": 97, "haifa": 97, "tel": 97, "aviv": 97, "hospit": 97, "rever": 97, "roman": 97, "cathol": 97, "nun": 97, "admit": 97, "calcutta": 97, "week": 97, "ago": 97, "fever": 97, "vomit": 97, "allianc": 97, "embattl": 97, "kabul": 97, "salang": 97, "highwai": 97, "mondai": 97, "tuesdai": 97, "suprem": 97, "council": 97, "led": 97, "jumbish": 97, "milli": 97, "movement": 97, "warlord": 97, "abdul": 97, "rashid": 97, "dostum": 97, "dollar": 97, "exchang": 97, "3570": 97, "12049": 97, "born": 97, "1937": 97, "provinc": 97, "anhui": 97, "dai": 97, "came": 97, "shanghai": 97, "citi": 97, "prolif": 97, "author": 97, "teacher": 97, "chines": 97, "16764": 97, "1990": 97, "historian": 97, "alan": 97, "john": 97, "percival": 97, "taylor": 97, "di": 97, "20446": 97, "pace": 97, "bowler": 97, "ian": 97, "harvei": 97, "claim": 97, "victoria": 97, "15514": 97, "cotti": 97, "osc": 97, "foreign": 97, "minist": 97, "7525": 97, "sultan": 97, "specter": 97, "met": 97, "crown": 97, "abdullah": 97, "defenc": 97, "aviat": 97, "jeddah": 97, "saudi": 97, "agenc": 97, "2288": 97, "hi": 97, "customari": 97, "outfit": 97, "champion": 97, "damp": 97, "scalp": 97, "canada": 97, "reign": 97, "olymp": 97, "donovan": 97, "bailei": 97, "1992": 97, "linford": 97, "christi": 97, "britain": 97, "1984": 97, "1988": 97, "carl": 97, "lewi": 97, "ambigi": 97, "punctuat": 97, "chicago": 97, "digest": 97, "philadelphia": 97, "usda": 97, "york": 97, "token_issu": 97, "471": 97, "kean": 97, "year": 97, "contract": 97, "manchest": 97, "19072": 97, "societi": 97, "million": 97, "bite": 97, "deliv": 97, "19910": 97, "father": 97, "clarenc": 97, "woolmer": 97, "renam": 97, "uttar": 97, "pradesh": 97, "india": 97, "ranji": 97, "trophi": 97, "nation": 97, "championship": 97, "captain": 97, "1949": 97, "15658": 97, "19879": 97, "iii": 97, "brian": 97, "shimer": 97, "randi": 97, "jone": 97, "19104": 97}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [33, 0, 0, "-", "dataset"], [36, 0, 0, "-", "experimental"], [39, 0, 0, "-", "filter"], [40, 0, 0, "-", "internal"], [51, 0, 0, "-", "models"], [53, 0, 0, "-", "multiannotator"], [56, 0, 0, "-", "multilabel_classification"], [59, 0, 0, "-", "object_detection"], [62, 0, 0, "-", "outlier"], [63, 0, 0, "-", "rank"], [64, 0, 0, "-", "regression"], [68, 0, 0, "-", "segmentation"], [72, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [30, 0, 0, "-", "report"], [31, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"], [10, 2, 1, "", "MultiClass"], [10, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 3, 1, "", "add_note"], [10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "data_valuation"], [17, 0, 0, "-", "duplicate"], [18, 0, 0, "-", "imbalance"], [20, 0, 0, "-", "issue_manager"], [21, 0, 0, "-", "label"], [24, 0, 0, "-", "noniid"], [25, 0, 0, "-", "null"], [26, 0, 0, "-", "outlier"], [29, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[16, 6, 1, "", "DEFAULT_THRESHOLD"], [16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 6, 1, "", "near_duplicate_sets"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[21, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 3, 1, "", "get_health_summary"], [21, 6, 1, "", "health_summary_parameters"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[23, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[23, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[24, 2, 1, "", "NonIIDIssueManager"], [24, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[25, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[26, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[26, 6, 1, "", "DEFAULT_THRESHOLDS"], [26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 6, 1, "", "ood"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[28, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[28, 2, 1, "", "RegressionLabelIssueManager"], [28, 1, 1, "", "find_issues_with_features"], [28, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[29, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[29, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [29, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "filter_cluster_ids"], [29, 3, 1, "", "find_issues"], [29, 3, 1, "", "get_worst_cluster"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 3, 1, "", "perform_clustering"], [29, 3, 1, "", "report"], [29, 3, 1, "", "set_knn_graph"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[30, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[30, 3, 1, "", "get_report"], [30, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[31, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[31, 6, 1, "", "CLASSIFICATION"], [31, 6, 1, "", "MULTILABEL"], [31, 6, 1, "", "REGRESSION"], [31, 3, 1, "", "__contains__"], [31, 3, 1, "", "__getitem__"], [31, 3, 1, "", "__iter__"], [31, 3, 1, "", "__len__"], [31, 3, 1, "", "from_str"], [31, 4, 1, "", "is_classification"], [31, 4, 1, "", "is_multilabel"], [31, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[33, 1, 1, "", "find_overlapping_classes"], [33, 1, 1, "", "health_summary"], [33, 1, 1, "", "overall_label_health_score"], [33, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[34, 0, 0, "-", "cifar_cnn"], [35, 0, 0, "-", "coteaching"], [37, 0, 0, "-", "label_issues_batched"], [38, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[34, 2, 1, "", "CNN"], [34, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[34, 6, 1, "", "T_destination"], [34, 3, 1, "", "__call__"], [34, 3, 1, "", "add_module"], [34, 3, 1, "", "apply"], [34, 3, 1, "", "bfloat16"], [34, 3, 1, "", "buffers"], [34, 6, 1, "", "call_super_init"], [34, 3, 1, "", "children"], [34, 3, 1, "", "compile"], [34, 3, 1, "", "cpu"], [34, 3, 1, "", "cuda"], [34, 3, 1, "", "double"], [34, 6, 1, "", "dump_patches"], [34, 3, 1, "", "eval"], [34, 3, 1, "", "extra_repr"], [34, 3, 1, "", "float"], [34, 3, 1, "id0", "forward"], [34, 3, 1, "", "get_buffer"], [34, 3, 1, "", "get_extra_state"], [34, 3, 1, "", "get_parameter"], [34, 3, 1, "", "get_submodule"], [34, 3, 1, "", "half"], [34, 3, 1, "", "ipu"], [34, 3, 1, "", "load_state_dict"], [34, 3, 1, "", "modules"], [34, 3, 1, "", "named_buffers"], [34, 3, 1, "", "named_children"], [34, 3, 1, "", "named_modules"], [34, 3, 1, "", "named_parameters"], [34, 3, 1, "", "parameters"], [34, 3, 1, "", "register_backward_hook"], [34, 3, 1, "", "register_buffer"], [34, 3, 1, "", "register_forward_hook"], [34, 3, 1, "", "register_forward_pre_hook"], [34, 3, 1, "", "register_full_backward_hook"], [34, 3, 1, "", "register_full_backward_pre_hook"], [34, 3, 1, "", "register_load_state_dict_post_hook"], [34, 3, 1, "", "register_module"], [34, 3, 1, "", "register_parameter"], [34, 3, 1, "", "register_state_dict_pre_hook"], [34, 3, 1, "", "requires_grad_"], [34, 3, 1, "", "set_extra_state"], [34, 3, 1, "", "share_memory"], [34, 3, 1, "", "state_dict"], [34, 3, 1, "", "to"], [34, 3, 1, "", "to_empty"], [34, 3, 1, "", "train"], [34, 6, 1, "", "training"], [34, 3, 1, "", "type"], [34, 3, 1, "", "xpu"], [34, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[35, 1, 1, "", "adjust_learning_rate"], [35, 1, 1, "", "evaluate"], [35, 1, 1, "", "forget_rate_scheduler"], [35, 1, 1, "", "initialize_lr_scheduler"], [35, 1, 1, "", "loss_coteaching"], [35, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[37, 2, 1, "", "LabelInspector"], [37, 7, 1, "", "adj_confident_thresholds_shared"], [37, 1, 1, "", "find_label_issues_batched"], [37, 7, 1, "", "labels_shared"], [37, 7, 1, "", "pred_probs_shared"], [37, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[37, 3, 1, "", "get_confident_thresholds"], [37, 3, 1, "", "get_label_issues"], [37, 3, 1, "", "get_num_issues"], [37, 3, 1, "", "get_quality_scores"], [37, 3, 1, "", "score_label_quality"], [37, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[38, 2, 1, "", "CNN"], [38, 2, 1, "", "SimpleNet"], [38, 1, 1, "", "get_mnist_dataset"], [38, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[38, 3, 1, "", "__init_subclass__"], [38, 6, 1, "", "batch_size"], [38, 6, 1, "", "dataset"], [38, 6, 1, "", "epochs"], [38, 3, 1, "id0", "fit"], [38, 3, 1, "", "get_metadata_routing"], [38, 3, 1, "", "get_params"], [38, 6, 1, "", "loader"], [38, 6, 1, "", "log_interval"], [38, 6, 1, "", "lr"], [38, 6, 1, "", "momentum"], [38, 6, 1, "", "no_cuda"], [38, 3, 1, "id1", "predict"], [38, 3, 1, "id4", "predict_proba"], [38, 6, 1, "", "seed"], [38, 3, 1, "", "set_fit_request"], [38, 3, 1, "", "set_params"], [38, 3, 1, "", "set_predict_proba_request"], [38, 3, 1, "", "set_predict_request"], [38, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[39, 1, 1, "", "find_label_issues"], [39, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [39, 1, 1, "", "find_predicted_neq_given"], [39, 7, 1, "", "pred_probs_by_class"], [39, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[41, 0, 0, "-", "label_quality_utils"], [42, 0, 0, "-", "latent_algebra"], [43, 0, 0, "-", "multiannotator_utils"], [44, 0, 0, "-", "multilabel_scorer"], [45, 0, 0, "-", "multilabel_utils"], [46, 0, 0, "-", "outlier"], [47, 0, 0, "-", "token_classification_utils"], [48, 0, 0, "-", "util"], [49, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[41, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[42, 1, 1, "", "compute_inv_noise_matrix"], [42, 1, 1, "", "compute_noise_matrix_from_inverse"], [42, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [42, 1, 1, "", "compute_py"], [42, 1, 1, "", "compute_py_inv_noise_matrix"], [42, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[43, 1, 1, "", "assert_valid_inputs_multiannotator"], [43, 1, 1, "", "assert_valid_pred_probs"], [43, 1, 1, "", "check_consensus_label_classes"], [43, 1, 1, "", "compute_soft_cross_entropy"], [43, 1, 1, "", "find_best_temp_scaler"], [43, 1, 1, "", "format_multiannotator_labels"], [43, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[44, 2, 1, "", "Aggregator"], [44, 2, 1, "", "ClassLabelScorer"], [44, 2, 1, "", "MultilabelScorer"], [44, 1, 1, "", "exponential_moving_average"], [44, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [44, 1, 1, "", "get_label_quality_scores"], [44, 1, 1, "", "multilabel_py"], [44, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[44, 3, 1, "", "__call__"], [44, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[44, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [44, 6, 1, "", "NORMALIZED_MARGIN"], [44, 6, 1, "", "SELF_CONFIDENCE"], [44, 3, 1, "", "__call__"], [44, 3, 1, "", "__contains__"], [44, 3, 1, "", "__getitem__"], [44, 3, 1, "", "__iter__"], [44, 3, 1, "", "__len__"], [44, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[44, 3, 1, "", "__call__"], [44, 3, 1, "", "aggregate"], [44, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[45, 1, 1, "", "get_onehot_num_classes"], [45, 1, 1, "", "int2onehot"], [45, 1, 1, "", "onehot2int"], [45, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[46, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[47, 1, 1, "", "color_sentence"], [47, 1, 1, "", "filter_sentence"], [47, 1, 1, "", "get_sentence"], [47, 1, 1, "", "mapping"], [47, 1, 1, "", "merge_probs"], [47, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[48, 1, 1, "", "append_extra_datapoint"], [48, 1, 1, "", "clip_noise_rates"], [48, 1, 1, "", "clip_values"], [48, 1, 1, "", "compress_int_array"], [48, 1, 1, "", "confusion_matrix"], [48, 1, 1, "", "csr_vstack"], [48, 1, 1, "", "estimate_pu_f1"], [48, 1, 1, "", "extract_indices_tf"], [48, 1, 1, "", "force_two_dimensions"], [48, 1, 1, "", "format_labels"], [48, 1, 1, "", "get_missing_classes"], [48, 1, 1, "", "get_num_classes"], [48, 1, 1, "", "get_unique_classes"], [48, 1, 1, "", "is_tensorflow_dataset"], [48, 1, 1, "", "is_torch_dataset"], [48, 1, 1, "", "num_unique_classes"], [48, 1, 1, "", "print_inverse_noise_matrix"], [48, 1, 1, "", "print_joint_matrix"], [48, 1, 1, "", "print_noise_matrix"], [48, 1, 1, "", "print_square_matrix"], [48, 1, 1, "", "remove_noise_from_class"], [48, 1, 1, "", "round_preserving_row_totals"], [48, 1, 1, "", "round_preserving_sum"], [48, 1, 1, "", "smart_display_dataframe"], [48, 1, 1, "", "subset_X_y"], [48, 1, 1, "", "subset_data"], [48, 1, 1, "", "subset_labels"], [48, 1, 1, "", "train_val_split"], [48, 1, 1, "", "unshuffle_tensorflow_dataset"], [48, 1, 1, "", "value_counts"], [48, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[49, 1, 1, "", "assert_indexing_works"], [49, 1, 1, "", "assert_nonempty_input"], [49, 1, 1, "", "assert_valid_class_labels"], [49, 1, 1, "", "assert_valid_inputs"], [49, 1, 1, "", "labels_to_array"], [49, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[52, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[52, 2, 1, "", "KerasWrapperModel"], [52, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[52, 3, 1, "", "fit"], [52, 3, 1, "", "get_params"], [52, 3, 1, "", "predict"], [52, 3, 1, "", "predict_proba"], [52, 3, 1, "", "set_params"], [52, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[52, 3, 1, "", "fit"], [52, 3, 1, "", "get_params"], [52, 3, 1, "", "predict"], [52, 3, 1, "", "predict_proba"], [52, 3, 1, "", "set_params"], [52, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[53, 1, 1, "", "convert_long_to_wide_dataset"], [53, 1, 1, "", "get_active_learning_scores"], [53, 1, 1, "", "get_active_learning_scores_ensemble"], [53, 1, 1, "", "get_label_quality_multiannotator"], [53, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [53, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[54, 0, 0, "-", "dataset"], [55, 0, 0, "-", "filter"], [57, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[54, 1, 1, "", "common_multilabel_issues"], [54, 1, 1, "", "multilabel_health_summary"], [54, 1, 1, "", "overall_multilabel_health_score"], [54, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[55, 1, 1, "", "find_label_issues"], [55, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[57, 1, 1, "", "get_label_quality_scores"], [57, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[58, 0, 0, "-", "filter"], [60, 0, 0, "-", "rank"], [61, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[58, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[60, 1, 1, "", "compute_badloc_box_scores"], [60, 1, 1, "", "compute_overlooked_box_scores"], [60, 1, 1, "", "compute_swap_box_scores"], [60, 1, 1, "", "get_label_quality_scores"], [60, 1, 1, "", "issues_from_scores"], [60, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[61, 1, 1, "", "bounding_box_size_distribution"], [61, 1, 1, "", "calculate_per_class_metrics"], [61, 1, 1, "", "class_label_distribution"], [61, 1, 1, "", "get_average_per_class_confusion_matrix"], [61, 1, 1, "", "get_sorted_bbox_count_idxs"], [61, 1, 1, "", "object_counts_per_image"], [61, 1, 1, "", "plot_class_distribution"], [61, 1, 1, "", "plot_class_size_distributions"], [61, 1, 1, "", "visualize"]], "cleanlab.outlier": [[62, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[62, 3, 1, "", "fit"], [62, 3, 1, "", "fit_score"], [62, 3, 1, "", "score"]], "cleanlab.rank": [[63, 1, 1, "", "find_top_issues"], [63, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [63, 1, 1, "", "get_label_quality_ensemble_scores"], [63, 1, 1, "", "get_label_quality_scores"], [63, 1, 1, "", "get_normalized_margin_for_each_label"], [63, 1, 1, "", "get_self_confidence_for_each_label"], [63, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[65, 0, 0, "-", "learn"], [66, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[65, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[65, 3, 1, "", "__init_subclass__"], [65, 3, 1, "", "find_label_issues"], [65, 3, 1, "", "fit"], [65, 3, 1, "", "get_aleatoric_uncertainty"], [65, 3, 1, "", "get_epistemic_uncertainty"], [65, 3, 1, "", "get_label_issues"], [65, 3, 1, "", "get_metadata_routing"], [65, 3, 1, "", "get_params"], [65, 3, 1, "", "predict"], [65, 3, 1, "", "save_space"], [65, 3, 1, "", "score"], [65, 3, 1, "", "set_fit_request"], [65, 3, 1, "", "set_params"], [65, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[66, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[70, 1, 1, "", "common_label_issues"], [70, 1, 1, "", "display_issues"], [70, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[71, 0, 0, "-", "filter"], [73, 0, 0, "-", "rank"], [74, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[71, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[73, 1, 1, "", "get_label_quality_scores"], [73, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[74, 1, 1, "", "common_label_issues"], [74, 1, 1, "", "display_issues"], [74, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 77, 81, 82, 84, 85, 86, 89, 95, 96, 97], "count": [3, 86], "datalab": [4, 5, 7, 8, 9, 78, 79, 80, 81, 82, 86, 89], "creat": [5, 78, 79, 86, 88], "your": [5, 75, 78, 79, 82, 84, 86], "own": 5, "issu": [5, 7, 8, 19, 28, 75, 77, 78, 79, 81, 82, 83, 84, 85, 86, 89, 90, 94, 95, 97], "manag": [5, 19], "prerequisit": 5, "implement": 5, "issuemanag": [5, 78], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 78], "us": [5, 77, 79, 81, 82, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "gener": 6, "cluster": [6, 84], "id": 6, "guid": [7, 9], "type": [7, 8, 86], "custom": [7, 78], "can": [8, 79, 83, 84, 86, 88], "detect": [8, 79, 81, 82, 84, 86, 90, 91], "estim": [8, 86, 88, 89], "each": 8, "label": [8, 21, 23, 28, 75, 77, 79, 81, 82, 84, 85, 86, 88, 89, 90, 93, 94, 95, 96, 97], "outlier": [8, 26, 46, 62, 81, 82, 85, 89, 91], "Near": [8, 79, 81, 82, 85], "duplic": [8, 17, 79, 81, 82, 84, 85, 89], "non": [8, 82], "iid": [8, 82], "class": [8, 76, 86, 94], "imbal": [8, 18], "imag": [8, 85, 91], "specif": [8, 19, 94], "underperform": [8, 84], "group": [8, 84], "null": [8, 25], "data": [8, 10, 75, 77, 78, 79, 81, 82, 83, 84, 86, 88, 89, 90, 91, 93, 94, 95, 97], "valuat": 8, "option": 8, "paramet": [8, 86], "get": [9, 78, 79, 88, 89, 90, 94, 97], "start": [9, 83], "api": 9, "refer": 9, "data_issu": 11, "factori": 12, "intern": [13, 40], "issue_find": 14, "data_valu": 16, "issue_manag": [19, 20], "regist": 19, "unregist": 19, "ml": [19, 84, 86], "task": [19, 31], "multilabel": 22, "noniid": 24, "regress": [27, 64, 65, 66, 84, 93], "prioriti": 28, "order": 28, "find": [28, 75, 77, 79, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "underperforming_group": 29, "report": [30, 85], "dataset": [33, 54, 75, 79, 82, 83, 84, 85, 86, 89, 90, 91, 93, 94, 96, 97], "cifar_cnn": 34, "coteach": 35, "experiment": 36, "label_issues_batch": 37, "mnist_pytorch": 38, "filter": [39, 55, 58, 67, 71, 86], "label_quality_util": 41, "latent_algebra": 42, "multiannotator_util": 43, "multilabel_scor": 44, "multilabel_util": 45, "token_classification_util": 47, "util": 48, "valid": [49, 85, 92], "fasttext": 50, "model": [51, 75, 77, 81, 82, 84, 85, 86, 88, 89, 90, 91, 93, 95, 96], "kera": 52, "multiannot": [53, 88], "multilabel_classif": 56, "rank": [57, 60, 63, 66, 69, 73, 86], "object_detect": 59, "summari": [61, 70, 74], "learn": [65, 79, 84, 86, 95], "segment": [68, 94], "token_classif": [72, 97], "cleanlab": [75, 77, 81, 82, 84, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "open": [75, 84], "sourc": [75, 84], "document": 75, "quickstart": 75, "1": [75, 76, 77, 78, 79, 81, 82, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "instal": [75, 77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "2": [75, 76, 77, 78, 79, 81, 82, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "common": [75, 76, 97], "3": [75, 77, 78, 79, 81, 82, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "handl": [75, 84], "error": [75, 84, 85, 86, 88, 89, 90, 93, 94, 96, 97], "train": [75, 77, 84, 91, 93, 95, 96], "robust": [75, 86, 93, 95, 96], "noisi": [75, 86, 93, 95, 96], "4": [75, 77, 78, 79, 81, 82, 85, 86, 88, 90, 91, 93, 95, 96], "curat": [75, 83], "fix": [75, 84], "level": [75, 83, 86, 97], "5": [75, 77, 79, 81, 85, 86, 88, 93, 95], "improv": [75, 88], "via": [75, 86, 88], "mani": [75, 86], "other": [75, 88, 90, 93], "techniqu": 75, "contribut": 75, "easi": [75, 81, 82, 85], "mode": [75, 81, 82, 85], "how": [76, 84, 86, 88, 89, 97], "migrat": 76, "version": 76, "0": 76, "from": [76, 78, 79, 86, 93, 95, 96], "pre": [76, 77, 84, 91], "function": [76, 78], "name": 76, "chang": 76, "modul": [76, 86], "new": 76, "remov": 76, "argument": [76, 78], "variabl": 76, "audio": 77, "speechbrain": 77, "depend": [77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97], "import": [77, 78, 79, 83, 85, 86, 88], "them": [77, 83, 86], "load": [77, 78, 79, 81, 82, 93, 95, 96], "featur": [77, 85, 91], "fit": 77, "linear": 77, "comput": [77, 81, 82, 84, 85, 88, 92, 95], "out": [77, 78, 79, 81, 82, 85, 88, 92, 95], "sampl": [77, 78, 79, 81, 82, 85, 88, 92, 95], "predict": [77, 78, 79, 81, 82, 85, 88, 89, 90, 92, 95], "probabl": [77, 78, 79, 81, 82, 85, 88, 92, 95], "workflow": [78, 86], "audit": [78, 79], "requir": [78, 79, 81, 82, 85, 88, 89, 90, 91, 93, 94, 95, 96, 97], "classifi": [78, 79], "instanti": 78, "object": [78, 90], "increment": 78, "search": 78, "specifi": [78, 84], "nondefault": 78, "save": 78, "ad": 78, "A": 79, "unifi": 79, "all": [79, 86], "kind": [79, 90], "skip": [79, 83, 86, 88], "detail": [79, 83, 86, 88], "more": [79, 86, 93, 95, 96], "about": 79, "addit": 79, "inform": [79, 85], "tutori": [80, 83, 87], "tabular": [81, 95], "numer": 81, "categor": 81, "column": 81, "process": [81, 91, 93, 95], "select": [81, 95], "construct": 81, "k": [81, 85, 92], "nearest": 81, "neighbour": 81, "graph": 81, "text": [82, 96, 97], "format": [82, 84, 89, 90, 96], "defin": [82, 85, 93, 96], "drift": [82, 89], "fetch": [83, 85], "evalu": 83, "health": [83, 86], "8": [83, 86], "popular": 83, "faq": 84, "what": [84, 86, 92], "do": [84, 86], "i": [84, 86, 92], "infer": 84, "correct": 84, "exampl": [84, 85, 86, 91], "ha": 84, "flag": 84, "should": 84, "v": 84, "test": [84, 86, 91], "big": 84, "limit": 84, "memori": 84, "why": 84, "isn": 84, "t": 84, "cleanlearn": [84, 86], "work": [84, 86, 88, 97], "me": 84, "differ": [84, 90], "clean": [84, 86], "final": 84, "hyperparamet": 84, "tune": 84, "onli": 84, "one": [84, 86, 89, 94], "doe": [84, 88, 97], "take": 84, "so": 84, "long": 84, "slice": 84, "when": [84, 86], "identifi": [84, 90], "run": 84, "licens": 84, "under": 84, "an": 84, "answer": 84, "question": 84, "pytorch": [85, 91], "normal": 85, "fashion": 85, "mnist": 85, "prepar": 85, "fold": [85, 92], "cross": [85, 92], "embed": [85, 91], "7": [85, 86], "view": 85, "most": [85, 97], "like": 85, "sever": 85, "set": [85, 86], "dark": 85, "top": [85, 94], "low": 85, "The": 86, "centric": 86, "ai": 86, "machin": 86, "find_label_issu": 86, "line": 86, "code": 86, "visual": [86, 90, 91, 94], "twenti": 86, "lowest": 86, "qualiti": [86, 88, 89, 90, 94, 97], "see": 86, "now": 86, "let": 86, "": 86, "happen": 86, "we": 86, "merg": 86, "seafoam": 86, "green": 86, "yellow": 86, "too": 86, "you": 86, "re": 86, "6": 86, "One": 86, "score": [86, 88, 89, 90, 94, 97], "rule": 86, "overal": [86, 94], "accur": 86, "thi": 86, "directli": 86, "fulli": 86, "character": 86, "nois": 86, "matrix": [86, 89], "joint": 86, "prior": 86, "true": 86, "distribut": 86, "flip": 86, "rate": 86, "ani": 86, "again": 86, "support": 86, "lot": 86, "method": 86, "filter_bi": 86, "automat": 86, "everi": 86, "uniqu": 86, "num_label_issu": 86, "threshold": 86, "found": 86, "Not": 86, "sure": 86, "ensembl": 86, "multipl": [86, 88], "predictor": 86, "consensu": 88, "annot": 88, "initi": 88, "major": 88, "vote": 88, "better": 88, "statist": 88, "compar": 88, "inspect": 88, "potenti": [88, 93, 96], "retrain": 88, "further": 88, "multi": 89, "beyond": 89, "mislabel": [89, 94, 97], "given": 89, "hot": 89, "binari": 89, "without": 89, "applic": 89, "real": 89, "download": [90, 94, 97], "objectlab": 90, "exploratori": 90, "analysi": 90, "timm": 91, "cifar10": 91, "some": 91, "pred_prob": [91, 94, 97], "wai": 93, "semant": 94, "which": 94, "ar": 94, "commonli": 94, "focus": 94, "scikit": 95, "token": 97, "word": 97, "sentenc": 97, "contain": 97, "particular": 97}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "datalab": [[4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[5, "creating-your-own-issues-manager"]], "Prerequisites": [[5, "prerequisites"]], "Implementing IssueManagers": [[5, "implementing-issuemanagers"]], "Basic Issue Check": [[5, "basic-issue-check"]], "Intermediate Issue Check": [[5, "intermediate-issue-check"]], "Advanced Issue Check": [[5, "advanced-issue-check"]], "Use with Datalab": [[5, "use-with-datalab"]], "Generating Cluster IDs": [[6, "generating-cluster-ids"]], "Datalab guides": [[7, "datalab-guides"]], "Types of issues": [[7, "types-of-issues"]], "Customizing issue types": [[7, "customizing-issue-types"]], "Datalab Issue Types": [[8, "datalab-issue-types"]], "Types of issues Datalab can detect": [[8, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[8, "estimates-for-each-issue-type"]], "Label Issue": [[8, "label-issue"]], "Outlier Issue": [[8, "outlier-issue"]], "(Near) Duplicate Issue": [[8, "near-duplicate-issue"]], "Non-IID Issue": [[8, "non-iid-issue"]], "Class Imbalance Issue": [[8, "class-imbalance-issue"]], "Image-specific Issues": [[8, "image-specific-issues"]], "Underperforming Group Issue": [[8, "underperforming-group-issue"]], "Null Issue": [[8, "null-issue"]], "Data Valuation Issue": [[8, "data-valuation-issue"]], "Optional Issue Parameters": [[8, "optional-issue-parameters"]], "Label Issue Parameters": [[8, "label-issue-parameters"]], "Outlier Issue Parameters": [[8, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[8, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[8, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[8, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[8, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[8, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[8, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[8, "image-issue-parameters"]], "Getting Started": [[9, "getting-started"]], "Guides": [[9, "guides"]], "API Reference": [[9, "api-reference"]], "data": [[10, "module-cleanlab.datalab.internal.data"]], "data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[13, "internal"], [40, "internal"]], "issue_finder": [[14, "issue-finder"]], "data_valuation": [[16, "data-valuation"]], "duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[19, "issue-manager"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[19, "registered-issue-managers"]], "Unregistered issue managers": [[19, "unregistered-issue-managers"]], "ML task-specific issue managers": [[19, "ml-task-specific-issue-managers"]], "label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"], [23, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [28, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[22, "multilabel"]], "noniid": [[24, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[25, "null"]], "outlier": [[26, "module-cleanlab.datalab.internal.issue_manager.outlier"], [46, "module-cleanlab.internal.outlier"], [62, "module-cleanlab.outlier"]], "regression": [[27, "regression"], [64, "regression"]], "Priority Order for finding issues:": [[28, null]], "underperforming_group": [[29, "underperforming-group"]], "report": [[30, "report"]], "task": [[31, "task"]], "dataset": [[33, "module-cleanlab.dataset"], [54, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[34, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[35, "module-cleanlab.experimental.coteaching"]], "experimental": [[36, "experimental"]], "label_issues_batched": [[37, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[38, "module-cleanlab.experimental.mnist_pytorch"]], "filter": [[39, "module-cleanlab.filter"], [55, "module-cleanlab.multilabel_classification.filter"], [58, "filter"], [67, "filter"], [71, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[41, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[42, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[43, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[44, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[45, "module-cleanlab.internal.multilabel_utils"]], "token_classification_utils": [[47, "module-cleanlab.internal.token_classification_utils"]], "util": [[48, "module-cleanlab.internal.util"]], "validation": [[49, "module-cleanlab.internal.validation"]], "fasttext": [[50, "fasttext"]], "models": [[51, "models"]], "keras": [[52, "module-cleanlab.models.keras"]], "multiannotator": [[53, "module-cleanlab.multiannotator"]], "multilabel_classification": [[56, "multilabel-classification"]], "rank": [[57, "module-cleanlab.multilabel_classification.rank"], [60, "module-cleanlab.object_detection.rank"], [63, "module-cleanlab.rank"], [69, "module-cleanlab.segmentation.rank"], [73, "module-cleanlab.token_classification.rank"]], "object_detection": [[59, "object-detection"]], "summary": [[61, "summary"], [70, "module-cleanlab.segmentation.summary"], [74, "module-cleanlab.token_classification.summary"]], "regression.learn": [[65, "module-cleanlab.regression.learn"]], "regression.rank": [[66, "module-cleanlab.regression.rank"]], "segmentation": [[68, "segmentation"]], "token_classification": [[72, "token-classification"]], "cleanlab open-source documentation": [[75, "cleanlab-open-source-documentation"]], "Quickstart": [[75, "quickstart"]], "1. Install cleanlab": [[75, "install-cleanlab"]], "2. Find common issues in your data": [[75, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[75, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[75, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[75, "improve-your-data-via-many-other-techniques"]], "Contributing": [[75, "contributing"]], "Easy Mode": [[75, "easy-mode"], [81, "Easy-Mode"], [82, "Easy-Mode"], [85, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[76, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[76, "function-and-class-name-changes"]], "Module name changes": [[76, "module-name-changes"]], "New modules": [[76, "new-modules"]], "Removed modules": [[76, "removed-modules"]], "Common argument and variable name changes": [[76, "common-argument-and-variable-name-changes"]], "Audio Classification with SpeechBrain and Cleanlab": [[77, "Audio-Classification-with-SpeechBrain-and-Cleanlab"]], "1. Install dependencies and import them": [[77, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[77, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[77, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[77, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[77, "5.-Use-cleanlab-to-find-label-issues"], [81, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[78, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[78, "Install-and-import-required-dependencies"]], "Create and load the data": [[78, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[78, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[78, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[78, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[78, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[78, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[78, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[79, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[79, "1.-Install-and-import-required-dependencies"], [85, "1.-Install-and-import-required-dependencies"], [88, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[79, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[79, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[79, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[79, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[79, "Get-additional-information"]], "Near duplicate issues": [[79, "Near-duplicate-issues"], [85, "Near-duplicate-issues"]], "Datalab Tutorials": [[80, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[81, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "1. Install required dependencies": [[81, "1.-Install-required-dependencies"], [82, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [96, "1.-Install-required-dependencies"]], "2. Load and process the data": [[81, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"], [95, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[81, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [95, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Construct K nearest neighbours graph": [[81, "4.-Construct-K-nearest-neighbours-graph"]], "Label issues": [[81, "Label-issues"], [82, "Label-issues"], [85, "Label-issues"]], "Outlier issues": [[81, "Outlier-issues"], [82, "Outlier-issues"], [85, "Outlier-issues"]], "Near-duplicate issues": [[81, "Near-duplicate-issues"], [82, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[82, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "2. Load and format the text dataset": [[82, "2.-Load-and-format-the-text-dataset"], [96, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[82, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[82, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[82, "Non-IID-issues-(data-drift)"]], "Find Dataset-level Issues for Dataset Curation": [[83, "Find-Dataset-level-Issues-for-Dataset-Curation"]], "Install dependencies and import them": [[83, "Install-dependencies-and-import-them"], [86, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[83, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[83, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[84, "FAQ"]], "What data can cleanlab detect issues in?": [[84, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[84, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[84, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[84, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[84, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[84, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[84, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[84, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[84, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[84, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[84, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[84, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[84, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[84, "Can't-find-an-answer-to-your-question?"]], "Image Classification with PyTorch and Cleanlab": [[85, "Image-Classification-with-PyTorch-and-Cleanlab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[85, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[85, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[85, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[85, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[85, "7.-Use-cleanlab-to-find-issues"]], "View report": [[85, "View-report"]], "View most likely examples with label errors": [[85, "View-most-likely-examples-with-label-errors"]], "View most severe outliers": [[85, "View-most-severe-outliers"]], "View sets of near duplicate images": [[85, "View-sets-of-near-duplicate-images"]], "Dark images": [[85, "Dark-images"]], "View top examples of dark images": [[85, "View-top-examples-of-dark-images"]], "Low information images": [[85, "Low-information-images"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[86, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[86, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[86, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[86, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[86, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[86, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[86, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[86, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[86, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[86, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[86, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[86, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[86, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[86, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[86, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[86, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[86, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[86, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[86, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[86, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[86, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[86, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[87, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[88, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[88, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[88, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[88, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[88, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[88, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[88, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[88, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[88, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[89, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[89, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[89, "2.-Format-data,-labels,-and-model-predictions"], [90, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[89, "3.-Use-cleanlab-to-find-label-issues"], [90, "3.-Use-cleanlab-to-find-label-issues"], [94, "3.-Use-cleanlab-to-find-label-issues"], [97, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[89, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[89, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[89, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[89, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[89, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[90, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[90, "1.-Install-required-dependencies-and-download-data"], [94, "1.-Install-required-dependencies-and-download-data"], [97, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[90, "Get-label-quality-scores"], [94, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[90, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[90, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[90, "Other-uses-of-visualize"]], "Exploratory data analysis": [[90, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[91, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[91, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[91, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[91, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[91, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[91, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[92, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[92, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[92, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[93, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[93, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[93, "4.-Train-a-more-robust-model-from-noisy-labels"], [96, "4.-Train-a-more-robust-model-from-noisy-labels"]], "5. Other ways to find noisy labels in regression datasets": [[93, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[94, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[94, "2.-Get-data,-labels,-and-pred_probs"], [97, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[94, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[94, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[94, "Focusing-on-one-specific-class"]], "Classification with Tabular Data using Scikit-Learn and Cleanlab": [[95, "Classification-with-Tabular-Data-using-Scikit-Learn-and-Cleanlab"]], "4. Use cleanlab to find label issues": [[95, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[95, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[96, "Text-Classification-with-Noisy-Labels"]], "3. Define a classification model and use cleanlab to find potential label errors": [[96, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "Find Label Errors in Token Classification (Text) Datasets": [[97, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[97, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[97, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[97, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[97, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.datalab.datalab"], [9, "module-cleanlab.datalab"], [10, "module-cleanlab.datalab.internal.data"], [11, "module-cleanlab.datalab.internal.data_issues"], [12, "module-cleanlab.datalab.internal.issue_manager_factory"], [13, "module-cleanlab.datalab.internal"], [14, "module-cleanlab.datalab.internal.issue_finder"], [16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [17, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [18, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [21, "module-cleanlab.datalab.internal.issue_manager.label"], [23, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [24, "module-cleanlab.datalab.internal.issue_manager.noniid"], [25, "module-cleanlab.datalab.internal.issue_manager.null"], [26, "module-cleanlab.datalab.internal.issue_manager.outlier"], [28, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [29, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [30, "module-cleanlab.datalab.internal.report"], [31, "module-cleanlab.datalab.internal.task"], [33, "module-cleanlab.dataset"], [34, "module-cleanlab.experimental.cifar_cnn"], [35, "module-cleanlab.experimental.coteaching"], [36, "module-cleanlab.experimental"], [37, "module-cleanlab.experimental.label_issues_batched"], [38, "module-cleanlab.experimental.mnist_pytorch"], [39, "module-cleanlab.filter"], [40, "module-cleanlab.internal"], [41, "module-cleanlab.internal.label_quality_utils"], [42, "module-cleanlab.internal.latent_algebra"], [43, "module-cleanlab.internal.multiannotator_utils"], [44, "module-cleanlab.internal.multilabel_scorer"], [45, "module-cleanlab.internal.multilabel_utils"], [46, "module-cleanlab.internal.outlier"], [47, "module-cleanlab.internal.token_classification_utils"], [48, "module-cleanlab.internal.util"], [49, "module-cleanlab.internal.validation"], [51, "module-cleanlab.models"], [52, "module-cleanlab.models.keras"], [53, "module-cleanlab.multiannotator"], [54, "module-cleanlab.multilabel_classification.dataset"], [55, "module-cleanlab.multilabel_classification.filter"], [56, "module-cleanlab.multilabel_classification"], [57, "module-cleanlab.multilabel_classification.rank"], [58, "module-cleanlab.object_detection.filter"], [59, "module-cleanlab.object_detection"], [60, "module-cleanlab.object_detection.rank"], [61, "module-cleanlab.object_detection.summary"], [62, "module-cleanlab.outlier"], [63, "module-cleanlab.rank"], [64, "module-cleanlab.regression"], [65, "module-cleanlab.regression.learn"], [66, "module-cleanlab.regression.rank"], [67, "module-cleanlab.segmentation.filter"], [68, "module-cleanlab.segmentation"], [69, "module-cleanlab.segmentation.rank"], [70, "module-cleanlab.segmentation.summary"], [71, "module-cleanlab.token_classification.filter"], [72, "module-cleanlab.token_classification"], [73, "module-cleanlab.token_classification.rank"], [74, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "datalab (class in cleanlab.datalab.datalab)": [[4, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[4, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[4, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[4, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[4, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[9, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[10, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[10, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[10, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[10, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[10, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[10, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[10, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[10, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[10, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[10, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[10, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[10, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[10, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[11, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[11, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[11, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[12, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[13, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[14, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[14, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[16, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[16, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[17, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[17, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[18, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[20, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[21, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[23, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[23, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[24, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[24, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[24, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[25, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[25, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[26, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[28, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[29, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "reporter (class in cleanlab.datalab.internal.report)": [[30, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[30, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[30, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[30, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[31, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[31, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[31, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[31, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[31, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[31, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[31, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[31, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[31, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[31, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[31, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[31, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[31, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[33, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[33, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[33, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[33, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[33, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[34, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[34, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[34, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[34, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[34, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[34, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.forward"], [34, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[34, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[34, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[35, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[35, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[35, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[35, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[35, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[35, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[35, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[36, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[37, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[37, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[37, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[37, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[37, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[37, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[37, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[37, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[37, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[37, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[37, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[37, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[37, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[38, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[38, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [38, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[38, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[38, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [38, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [38, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[38, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[38, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.filter": [[39, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[39, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[39, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[39, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[39, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[39, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[40, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[41, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[41, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[42, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[42, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[42, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[42, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[42, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[42, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[42, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[43, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[43, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[43, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[43, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[43, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[43, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[43, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[43, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[44, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[44, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[44, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[44, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[44, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[44, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[44, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[44, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[44, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[44, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[44, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[44, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[44, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[44, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[44, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[44, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[44, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[44, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[44, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[44, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[44, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[44, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[44, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[45, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[45, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[45, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[45, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[45, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.outlier": [[46, "module-cleanlab.internal.outlier"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[46, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[47, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[47, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[47, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[47, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[47, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[47, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[47, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[48, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[48, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[49, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[49, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[49, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[49, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[49, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[49, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[49, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[51, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[52, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[52, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[52, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[52, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[52, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[52, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[52, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[52, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[52, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[52, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[52, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[52, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[52, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[52, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[52, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[53, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[53, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[53, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[53, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[53, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[53, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[53, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[54, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[54, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[54, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[54, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[54, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[55, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[55, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[55, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[56, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[57, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[57, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[57, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[58, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[58, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[59, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[60, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[60, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[60, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[60, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[60, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[60, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[60, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[61, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[61, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[61, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[61, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[61, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[61, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[61, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[61, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[61, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[61, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[62, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[62, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[62, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[62, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[62, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[63, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[63, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[63, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[63, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[63, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[63, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[63, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[63, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[64, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[65, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[65, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[65, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[65, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[65, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[65, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[65, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[65, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[65, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[65, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[65, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[65, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[65, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[65, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[65, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[65, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[66, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[66, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[67, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[67, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[68, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[69, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[69, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[69, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[70, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[70, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[70, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[70, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[71, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[71, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[72, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[73, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[73, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[73, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[74, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[74, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[74, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[74, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/audio.html b/master/tutorials/audio.html index 4b1f66e0c..16d10d994 100644 --- a/master/tutorials/audio.html +++ b/master/tutorials/audio.html @@ -1280,7 +1280,7 @@

5. Use cleanlab to find label issues -{"state": {"f033e1d6698f4259810a69b7b3fa1def": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0cc39ecc236b4c96b99a0c6129704098": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3212636ea82b48bfba9ca070df0a3758": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f033e1d6698f4259810a69b7b3fa1def", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0cc39ecc236b4c96b99a0c6129704098", "tabbable": null, "tooltip": null, "value": 2041.0}}, "439f24b7a4b74b3d9f4f8b34edac8202": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6429bceac2be4fd098fec3c2cedb4e35": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c91886bb27cd46549946341c72b71994": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_439f24b7a4b74b3d9f4f8b34edac8202", "placeholder": "\u200b", "style": "IPY_MODEL_6429bceac2be4fd098fec3c2cedb4e35", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "57f937f07aeb40beb2b96011ef7289ad": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ee2170c5344c462bb262eda24f3893d3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "179a4e968732450fa197521fd6f022c4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_57f937f07aeb40beb2b96011ef7289ad", "placeholder": "\u200b", "style": "IPY_MODEL_ee2170c5344c462bb262eda24f3893d3", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007476kB/s]"}}, "020ca564a17a4b1185a878c6db3b4b4c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cb19edae57564bbf86d43e38fffae673": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c91886bb27cd46549946341c72b71994", "IPY_MODEL_3212636ea82b48bfba9ca070df0a3758", "IPY_MODEL_179a4e968732450fa197521fd6f022c4"], "layout": "IPY_MODEL_020ca564a17a4b1185a878c6db3b4b4c", "tabbable": null, "tooltip": null}}, "d524ee89928c42428f93aedd308f5ea1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "19b161ceccf043a1b297bb1bd00cb39f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8b0be779dc2b46ec807f170b51f7eac7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d524ee89928c42428f93aedd308f5ea1", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_19b161ceccf043a1b297bb1bd00cb39f", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "70abb7186c244025a48e9d6caba3847b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dac91efd93664bbd95456e0b8122a601": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "511c474f3a1b443eb9c080b677b4016e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_70abb7186c244025a48e9d6caba3847b", "placeholder": "\u200b", "style": "IPY_MODEL_dac91efd93664bbd95456e0b8122a601", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "9aede1a76e1e48329e39c1d61b9e936a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a52d8cb40b8a42de85283d6904cc0368": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6a6a5db6eb704f738f39a3b00bfd465e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9aede1a76e1e48329e39c1d61b9e936a", "placeholder": "\u200b", "style": "IPY_MODEL_a52d8cb40b8a42de85283d6904cc0368", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u200759.6MB/s]"}}, "7681287bf6b048bda2a45ee2c38a0495": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aedfcf53155a4f4bacf95c551835c617": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_511c474f3a1b443eb9c080b677b4016e", "IPY_MODEL_8b0be779dc2b46ec807f170b51f7eac7", "IPY_MODEL_6a6a5db6eb704f738f39a3b00bfd465e"], "layout": "IPY_MODEL_7681287bf6b048bda2a45ee2c38a0495", "tabbable": null, "tooltip": null}}, "e2e11b9eb261402fbd4f58edd8042c41": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d42dd987c0f64d5488972b6ac1599104": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e6894d3a68b841e690747856e8706a7b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e2e11b9eb261402fbd4f58edd8042c41", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d42dd987c0f64d5488972b6ac1599104", "tabbable": null, "tooltip": null, "value": 3201.0}}, "a708c364291448b8b403e2d5f566fc01": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "519fb35ecb8e46cda4be73d7bbb3b814": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ec1966f6e6cb4dee911cf628968d77d8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a708c364291448b8b403e2d5f566fc01", "placeholder": "\u200b", "style": "IPY_MODEL_519fb35ecb8e46cda4be73d7bbb3b814", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "2f3b9c71fd8743caa67c88b66466f5cd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a98f48b392d4473eb264510b46a3e15a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f06c68891e914f5dbfeb0205cf1f5105": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2f3b9c71fd8743caa67c88b66466f5cd", "placeholder": "\u200b", "style": "IPY_MODEL_a98f48b392d4473eb264510b46a3e15a", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007805kB/s]"}}, "8dcc8e0f4fb740b4b68d16a2ac3c809b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bbe7fc9571c44ef0a2129e934819701e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ec1966f6e6cb4dee911cf628968d77d8", "IPY_MODEL_e6894d3a68b841e690747856e8706a7b", "IPY_MODEL_f06c68891e914f5dbfeb0205cf1f5105"], "layout": "IPY_MODEL_8dcc8e0f4fb740b4b68d16a2ac3c809b", "tabbable": null, "tooltip": null}}, "58fe2e5a904f46df9cecb1c126ba9dbf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "522fd9f8aac340aca8c7589b6d20a620": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "94044232845749bb8b3666a8c455e305": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_58fe2e5a904f46df9cecb1c126ba9dbf", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_522fd9f8aac340aca8c7589b6d20a620", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "c9d371e5899740349104c167be796d57": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b8f217822cb241c89e6e758f982a0940": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "022802a8c75a4ce58d06dcfaf24dcec2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c9d371e5899740349104c167be796d57", "placeholder": "\u200b", "style": "IPY_MODEL_b8f217822cb241c89e6e758f982a0940", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "b9e63d50743a4f1fae2871c254e244c5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "754538a10a46471cabcc8b864b8346e7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2532e016abf946a09d5b097502eadace": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b9e63d50743a4f1fae2871c254e244c5", "placeholder": "\u200b", "style": "IPY_MODEL_754538a10a46471cabcc8b864b8346e7", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007285MB/s]"}}, "d5c57c5da5014e5e940332eaa2117b31": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "787dc735293f40778c6d4c42da6a0454": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_022802a8c75a4ce58d06dcfaf24dcec2", "IPY_MODEL_94044232845749bb8b3666a8c455e305", "IPY_MODEL_2532e016abf946a09d5b097502eadace"], "layout": "IPY_MODEL_d5c57c5da5014e5e940332eaa2117b31", "tabbable": null, "tooltip": null}}, "c76dfb3da90949a89db96d8981096a98": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b2e51e41c2764e09a42b57d9c1ea2487": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a04063553fe1463895971a3e39c2731e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c76dfb3da90949a89db96d8981096a98", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b2e51e41c2764e09a42b57d9c1ea2487", "tabbable": null, "tooltip": null, "value": 128619.0}}, "a2b5057c23bb490db02f78b15b8502a9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "412fa3739e2a4fd984cb1d80489eb643": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dd98fb54f38d4cccac87d4f254bfc6db": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a2b5057c23bb490db02f78b15b8502a9", "placeholder": "\u200b", "style": "IPY_MODEL_412fa3739e2a4fd984cb1d80489eb643", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "e5b710ae8f814d46ac58d084b1674985": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4ae47f87ca9349a4ab8d4b6b60ce08e8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "35732a57f5bc4831b7336ba8c6562d4e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e5b710ae8f814d46ac58d084b1674985", "placeholder": "\u200b", "style": "IPY_MODEL_4ae47f87ca9349a4ab8d4b6b60ce08e8", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20071.65MB/s]"}}, "31e7e7b6da874e49b5c84c74dc4a24e7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "66a137500e93408baccbf19c43640886": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_dd98fb54f38d4cccac87d4f254bfc6db", "IPY_MODEL_a04063553fe1463895971a3e39c2731e", "IPY_MODEL_35732a57f5bc4831b7336ba8c6562d4e"], "layout": "IPY_MODEL_31e7e7b6da874e49b5c84c74dc4a24e7", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"b4fbfc51f3ec4e20a4a7f9d3396b6ad3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7cd06ea0ffb741d9a9165bfe6b9af017": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2965a9f7ab7243b49cff1ff6b0661d70": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b4fbfc51f3ec4e20a4a7f9d3396b6ad3", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7cd06ea0ffb741d9a9165bfe6b9af017", "tabbable": null, "tooltip": null, "value": 2041.0}}, "6f84700b36d9491e9e48b0ce35629fcf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6323c2c2cf944fa9a65731ef1cd9394f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "21161a0a60b845509f567de9b94d2764": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6f84700b36d9491e9e48b0ce35629fcf", "placeholder": "\u200b", "style": "IPY_MODEL_6323c2c2cf944fa9a65731ef1cd9394f", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "51623086acd345cf94bc784c05afc160": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ca59cc8020274fe08427f4f62c202a60": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a7b5831a847346b58b1140b4b6e83b06": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_51623086acd345cf94bc784c05afc160", "placeholder": "\u200b", "style": "IPY_MODEL_ca59cc8020274fe08427f4f62c202a60", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007484kB/s]"}}, "2635b49d19324851bd5caffad77908c9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b3db053977814d8aa2759b674ef5f4f2": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_21161a0a60b845509f567de9b94d2764", "IPY_MODEL_2965a9f7ab7243b49cff1ff6b0661d70", "IPY_MODEL_a7b5831a847346b58b1140b4b6e83b06"], "layout": "IPY_MODEL_2635b49d19324851bd5caffad77908c9", "tabbable": null, "tooltip": null}}, "afc168471c944570bb81dc089a8a2810": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "09cb65c11839410ba67aca2611b1a901": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e3203b4e36e54c59a95cd62f1e2ee061": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_afc168471c944570bb81dc089a8a2810", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_09cb65c11839410ba67aca2611b1a901", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "5e81a327c4574aeda90d8ac93713e677": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "79e34a6009d54a5cb6d7df971245836d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "afa7f929482f4d84b82c83949f74d2f0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5e81a327c4574aeda90d8ac93713e677", "placeholder": "\u200b", "style": "IPY_MODEL_79e34a6009d54a5cb6d7df971245836d", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "d405ba37fe154a45ac131ebb25c47e3a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ba5de7b2afe94e53ac6a3f80c89401cd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "06b40034d3204eb3b784996b4002066d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d405ba37fe154a45ac131ebb25c47e3a", "placeholder": "\u200b", "style": "IPY_MODEL_ba5de7b2afe94e53ac6a3f80c89401cd", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007199MB/s]"}}, "098bae17a37846bc842695a528076153": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0eaa1261dbc941f48903f7019af30d56": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_afa7f929482f4d84b82c83949f74d2f0", "IPY_MODEL_e3203b4e36e54c59a95cd62f1e2ee061", "IPY_MODEL_06b40034d3204eb3b784996b4002066d"], "layout": "IPY_MODEL_098bae17a37846bc842695a528076153", "tabbable": null, "tooltip": null}}, "f0b6b95a4a004d818d2a0ed600298405": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "425f15f25913426ba476fbcb9e2f9494": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5880e383714b4706baf08f6fee11795a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f0b6b95a4a004d818d2a0ed600298405", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_425f15f25913426ba476fbcb9e2f9494", "tabbable": null, "tooltip": null, "value": 3201.0}}, "c96fe962d2054cb3931b2f72b5819229": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c07b09ae215f45dfb5def489424c48f8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4d37318ee9a449dda132db17c0ce48f9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c96fe962d2054cb3931b2f72b5819229", "placeholder": "\u200b", "style": "IPY_MODEL_c07b09ae215f45dfb5def489424c48f8", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "bec850fda40e46869a492b50d7af2fba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e399663b65d94f718e927284a06e0401": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0227722ef3a94497bd415e644b8dd5df": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bec850fda40e46869a492b50d7af2fba", "placeholder": "\u200b", "style": "IPY_MODEL_e399663b65d94f718e927284a06e0401", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007730kB/s]"}}, "31b946b0b4b84126830498e76ae5f028": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "35ce8643c5c54f12a2c46388f7ad804f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4d37318ee9a449dda132db17c0ce48f9", "IPY_MODEL_5880e383714b4706baf08f6fee11795a", "IPY_MODEL_0227722ef3a94497bd415e644b8dd5df"], "layout": "IPY_MODEL_31b946b0b4b84126830498e76ae5f028", "tabbable": null, "tooltip": null}}, "8a4d7c48c9ac4e3484435c38ae6737d4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bca0b902b4fc4ae3828fdef5a2a726d0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3111fbddea5140008c9bff401aaf2375": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8a4d7c48c9ac4e3484435c38ae6737d4", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bca0b902b4fc4ae3828fdef5a2a726d0", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "713e314d20644de4803a7d2e5f9aa7ca": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0fe309ae2b20491abc8ba38f74325099": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "948b3e58b39f4a349ec4d95ab3f9c1de": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_713e314d20644de4803a7d2e5f9aa7ca", "placeholder": "\u200b", "style": "IPY_MODEL_0fe309ae2b20491abc8ba38f74325099", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "843947e4f66c4e86a343237548aa03cf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2091a40671184e7a8041c3ee27b91669": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4c7d1da0078540fd8cba29b98f81d792": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_843947e4f66c4e86a343237548aa03cf", "placeholder": "\u200b", "style": "IPY_MODEL_2091a40671184e7a8041c3ee27b91669", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007237MB/s]"}}, "beb6ee7cdde94e3eb2b8f2a3fabb90b1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f8c3aa561c4342df9116481f69bc9c8c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_948b3e58b39f4a349ec4d95ab3f9c1de", "IPY_MODEL_3111fbddea5140008c9bff401aaf2375", "IPY_MODEL_4c7d1da0078540fd8cba29b98f81d792"], "layout": "IPY_MODEL_beb6ee7cdde94e3eb2b8f2a3fabb90b1", "tabbable": null, "tooltip": null}}, "31cfb173fdae4a278bfc88dea6bdb576": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2f475057453041809112dc2db365ce3d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c430bd7bc7844d0cbbea230c765c462f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_31cfb173fdae4a278bfc88dea6bdb576", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2f475057453041809112dc2db365ce3d", "tabbable": null, "tooltip": null, "value": 128619.0}}, "5beaa0fdc8554932ad9a63c9f1acaf00": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4e62a5dc5e8c4e438a83eec55da4cc29": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8e3d1debce7b495dbcce011c04bbcfcf": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5beaa0fdc8554932ad9a63c9f1acaf00", "placeholder": "\u200b", "style": "IPY_MODEL_4e62a5dc5e8c4e438a83eec55da4cc29", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "161d951c627b49a5a491c5408294bd52": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "08ac7b8e69ea41f09cfb6d0612bc3583": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b8899e0ef9174599a2d357b7beb552dd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_161d951c627b49a5a491c5408294bd52", "placeholder": "\u200b", "style": "IPY_MODEL_08ac7b8e69ea41f09cfb6d0612bc3583", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20073.28MB/s]"}}, "a2ec222866634de9adad824880ac0ca4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d35e92617b7044408b661764f9288535": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8e3d1debce7b495dbcce011c04bbcfcf", "IPY_MODEL_c430bd7bc7844d0cbbea230c765c462f", "IPY_MODEL_b8899e0ef9174599a2d357b7beb552dd"], "layout": "IPY_MODEL_a2ec222866634de9adad824880ac0ca4", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/audio.ipynb b/master/tutorials/audio.ipynb index 99fe86884..dcc3c2905 100644 --- a/master/tutorials/audio.ipynb +++ b/master/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:43:42.049576Z", - "iopub.status.busy": "2024-02-13T04:43:42.049393Z", - "iopub.status.idle": "2024-02-13T04:43:47.154321Z", - "shell.execute_reply": "2024-02-13T04:43:47.153727Z" + "iopub.execute_input": "2024-02-13T22:13:36.682436Z", + "iopub.status.busy": "2024-02-13T22:13:36.681970Z", + "iopub.status.idle": "2024-02-13T22:13:41.662708Z", + "shell.execute_reply": "2024-02-13T22:13:41.662164Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:43:47.157310Z", - "iopub.status.busy": "2024-02-13T04:43:47.156887Z", - "iopub.status.idle": "2024-02-13T04:43:47.160543Z", - "shell.execute_reply": "2024-02-13T04:43:47.160050Z" + "iopub.execute_input": "2024-02-13T22:13:41.665520Z", + "iopub.status.busy": "2024-02-13T22:13:41.664983Z", + "iopub.status.idle": "2024-02-13T22:13:41.668233Z", + "shell.execute_reply": "2024-02-13T22:13:41.667807Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:43:47.162695Z", - "iopub.status.busy": "2024-02-13T04:43:47.162474Z", - "iopub.status.idle": "2024-02-13T04:43:47.167982Z", - "shell.execute_reply": "2024-02-13T04:43:47.167403Z" + "iopub.execute_input": "2024-02-13T22:13:41.670213Z", + "iopub.status.busy": "2024-02-13T22:13:41.669895Z", + "iopub.status.idle": "2024-02-13T22:13:41.674365Z", + "shell.execute_reply": "2024-02-13T22:13:41.673970Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-13T04:43:47.170549Z", - "iopub.status.busy": "2024-02-13T04:43:47.170297Z", - "iopub.status.idle": "2024-02-13T04:43:49.081289Z", - "shell.execute_reply": "2024-02-13T04:43:49.080568Z" + "iopub.execute_input": "2024-02-13T22:13:41.676386Z", + "iopub.status.busy": "2024-02-13T22:13:41.676060Z", + "iopub.status.idle": "2024-02-13T22:13:43.392751Z", + "shell.execute_reply": "2024-02-13T22:13:43.392131Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-13T04:43:49.084139Z", - "iopub.status.busy": "2024-02-13T04:43:49.083764Z", - "iopub.status.idle": "2024-02-13T04:43:49.094338Z", - "shell.execute_reply": "2024-02-13T04:43:49.093772Z" + "iopub.execute_input": "2024-02-13T22:13:43.395442Z", + "iopub.status.busy": "2024-02-13T22:13:43.395237Z", + "iopub.status.idle": "2024-02-13T22:13:43.406008Z", + "shell.execute_reply": "2024-02-13T22:13:43.405466Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:43:49.125739Z", - "iopub.status.busy": "2024-02-13T04:43:49.125218Z", - "iopub.status.idle": "2024-02-13T04:43:49.131051Z", - "shell.execute_reply": "2024-02-13T04:43:49.130544Z" + "iopub.execute_input": "2024-02-13T22:13:43.437733Z", + "iopub.status.busy": "2024-02-13T22:13:43.437305Z", + "iopub.status.idle": "2024-02-13T22:13:43.443074Z", + "shell.execute_reply": "2024-02-13T22:13:43.442496Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-13T04:43:49.133191Z", - "iopub.status.busy": "2024-02-13T04:43:49.132852Z", - "iopub.status.idle": "2024-02-13T04:43:49.578148Z", - "shell.execute_reply": "2024-02-13T04:43:49.577577Z" + "iopub.execute_input": "2024-02-13T22:13:43.445013Z", + "iopub.status.busy": "2024-02-13T22:13:43.444841Z", + "iopub.status.idle": "2024-02-13T22:13:43.876137Z", + "shell.execute_reply": "2024-02-13T22:13:43.875610Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:43:49.580520Z", - "iopub.status.busy": "2024-02-13T04:43:49.580161Z", - "iopub.status.idle": "2024-02-13T04:43:51.382186Z", - "shell.execute_reply": "2024-02-13T04:43:51.381653Z" + "iopub.execute_input": "2024-02-13T22:13:43.878442Z", + "iopub.status.busy": "2024-02-13T22:13:43.878024Z", + "iopub.status.idle": "2024-02-13T22:13:44.733838Z", + "shell.execute_reply": "2024-02-13T22:13:44.733359Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-02-13T04:43:51.384682Z", - "iopub.status.busy": "2024-02-13T04:43:51.384319Z", - "iopub.status.idle": "2024-02-13T04:43:51.403028Z", - "shell.execute_reply": "2024-02-13T04:43:51.402467Z" + "iopub.execute_input": "2024-02-13T22:13:44.736245Z", + "iopub.status.busy": "2024-02-13T22:13:44.736058Z", + "iopub.status.idle": "2024-02-13T22:13:44.754516Z", + "shell.execute_reply": "2024-02-13T22:13:44.754056Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:43:51.405148Z", - "iopub.status.busy": "2024-02-13T04:43:51.404825Z", - "iopub.status.idle": "2024-02-13T04:43:51.408117Z", - "shell.execute_reply": "2024-02-13T04:43:51.407574Z" + "iopub.execute_input": "2024-02-13T22:13:44.756743Z", + "iopub.status.busy": "2024-02-13T22:13:44.756321Z", + "iopub.status.idle": "2024-02-13T22:13:44.759619Z", + "shell.execute_reply": "2024-02-13T22:13:44.759193Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:43:51.410210Z", - "iopub.status.busy": "2024-02-13T04:43:51.409793Z", - "iopub.status.idle": "2024-02-13T04:44:07.597857Z", - "shell.execute_reply": "2024-02-13T04:44:07.597246Z" + "iopub.execute_input": "2024-02-13T22:13:44.761544Z", + "iopub.status.busy": "2024-02-13T22:13:44.761183Z", + "iopub.status.idle": "2024-02-13T22:13:59.418699Z", + "shell.execute_reply": "2024-02-13T22:13:59.418099Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-13T04:44:07.600627Z", - "iopub.status.busy": "2024-02-13T04:44:07.600230Z", - "iopub.status.idle": "2024-02-13T04:44:07.603929Z", - "shell.execute_reply": "2024-02-13T04:44:07.603397Z" + "iopub.execute_input": "2024-02-13T22:13:59.421337Z", + "iopub.status.busy": "2024-02-13T22:13:59.421006Z", + "iopub.status.idle": "2024-02-13T22:13:59.424675Z", + "shell.execute_reply": "2024-02-13T22:13:59.424178Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:07.606144Z", - "iopub.status.busy": "2024-02-13T04:44:07.605751Z", - "iopub.status.idle": "2024-02-13T04:44:08.351968Z", - "shell.execute_reply": "2024-02-13T04:44:08.351407Z" + "iopub.execute_input": "2024-02-13T22:13:59.426726Z", + "iopub.status.busy": "2024-02-13T22:13:59.426429Z", + "iopub.status.idle": "2024-02-13T22:14:00.116928Z", + "shell.execute_reply": "2024-02-13T22:14:00.116370Z" }, "id": "i_drkY9YOcw4" }, @@ -727,10 +727,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-02-13T04:44:08.354750Z", - "iopub.status.busy": "2024-02-13T04:44:08.354343Z", - "iopub.status.idle": "2024-02-13T04:44:08.359382Z", - "shell.execute_reply": "2024-02-13T04:44:08.358879Z" + "iopub.execute_input": "2024-02-13T22:14:00.120585Z", + "iopub.status.busy": "2024-02-13T22:14:00.119660Z", + "iopub.status.idle": "2024-02-13T22:14:00.126287Z", + "shell.execute_reply": "2024-02-13T22:14:00.125821Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -777,10 +777,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:08.361823Z", - "iopub.status.busy": "2024-02-13T04:44:08.361436Z", - "iopub.status.idle": "2024-02-13T04:44:08.473680Z", - "shell.execute_reply": "2024-02-13T04:44:08.473088Z" + "iopub.execute_input": "2024-02-13T22:14:00.129758Z", + "iopub.status.busy": "2024-02-13T22:14:00.128862Z", + "iopub.status.idle": "2024-02-13T22:14:00.244961Z", + "shell.execute_reply": "2024-02-13T22:14:00.244412Z" } }, "outputs": [ @@ -817,10 +817,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:08.476272Z", - "iopub.status.busy": "2024-02-13T04:44:08.475830Z", - "iopub.status.idle": "2024-02-13T04:44:08.488458Z", - "shell.execute_reply": "2024-02-13T04:44:08.487974Z" + "iopub.execute_input": "2024-02-13T22:14:00.247370Z", + "iopub.status.busy": "2024-02-13T22:14:00.246986Z", + "iopub.status.idle": "2024-02-13T22:14:00.259116Z", + "shell.execute_reply": "2024-02-13T22:14:00.258624Z" }, "scrolled": true }, @@ -875,10 +875,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:08.490812Z", - "iopub.status.busy": "2024-02-13T04:44:08.490417Z", - "iopub.status.idle": "2024-02-13T04:44:08.498649Z", - "shell.execute_reply": "2024-02-13T04:44:08.498178Z" + "iopub.execute_input": "2024-02-13T22:14:00.261193Z", + "iopub.status.busy": "2024-02-13T22:14:00.260850Z", + "iopub.status.idle": "2024-02-13T22:14:00.268547Z", + "shell.execute_reply": "2024-02-13T22:14:00.268121Z" } }, "outputs": [ @@ -982,10 +982,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:08.500802Z", - "iopub.status.busy": "2024-02-13T04:44:08.500480Z", - "iopub.status.idle": "2024-02-13T04:44:08.504584Z", - "shell.execute_reply": "2024-02-13T04:44:08.504052Z" + "iopub.execute_input": "2024-02-13T22:14:00.270609Z", + "iopub.status.busy": "2024-02-13T22:14:00.270283Z", + "iopub.status.idle": "2024-02-13T22:14:00.274301Z", + "shell.execute_reply": "2024-02-13T22:14:00.273774Z" } }, "outputs": [ @@ -1023,10 +1023,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-02-13T04:44:08.506742Z", - "iopub.status.busy": "2024-02-13T04:44:08.506409Z", - "iopub.status.idle": "2024-02-13T04:44:08.512341Z", - "shell.execute_reply": "2024-02-13T04:44:08.511845Z" + "iopub.execute_input": "2024-02-13T22:14:00.276420Z", + "iopub.status.busy": "2024-02-13T22:14:00.276099Z", + "iopub.status.idle": "2024-02-13T22:14:00.281615Z", + "shell.execute_reply": "2024-02-13T22:14:00.281154Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1153,10 +1153,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-13T04:44:08.514463Z", - "iopub.status.busy": "2024-02-13T04:44:08.514144Z", - "iopub.status.idle": "2024-02-13T04:44:08.628126Z", - "shell.execute_reply": "2024-02-13T04:44:08.627586Z" + "iopub.execute_input": "2024-02-13T22:14:00.283729Z", + "iopub.status.busy": "2024-02-13T22:14:00.283410Z", + "iopub.status.idle": "2024-02-13T22:14:00.394392Z", + "shell.execute_reply": "2024-02-13T22:14:00.393842Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1210,10 +1210,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-13T04:44:08.630382Z", - "iopub.status.busy": "2024-02-13T04:44:08.629977Z", - "iopub.status.idle": "2024-02-13T04:44:08.738336Z", - "shell.execute_reply": "2024-02-13T04:44:08.737747Z" + "iopub.execute_input": "2024-02-13T22:14:00.396484Z", + "iopub.status.busy": "2024-02-13T22:14:00.396290Z", + "iopub.status.idle": "2024-02-13T22:14:00.501578Z", + "shell.execute_reply": "2024-02-13T22:14:00.501007Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1258,10 +1258,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-02-13T04:44:08.740544Z", - "iopub.status.busy": "2024-02-13T04:44:08.740187Z", - "iopub.status.idle": "2024-02-13T04:44:08.849302Z", - "shell.execute_reply": "2024-02-13T04:44:08.848786Z" + "iopub.execute_input": "2024-02-13T22:14:00.503584Z", + "iopub.status.busy": "2024-02-13T22:14:00.503400Z", + "iopub.status.idle": "2024-02-13T22:14:00.606658Z", + "shell.execute_reply": "2024-02-13T22:14:00.606091Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1302,10 +1302,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:08.851399Z", - "iopub.status.busy": "2024-02-13T04:44:08.851199Z", - "iopub.status.idle": "2024-02-13T04:44:08.956948Z", - "shell.execute_reply": "2024-02-13T04:44:08.956480Z" + "iopub.execute_input": "2024-02-13T22:14:00.609018Z", + "iopub.status.busy": "2024-02-13T22:14:00.608530Z", + "iopub.status.idle": "2024-02-13T22:14:00.710967Z", + "shell.execute_reply": "2024-02-13T22:14:00.710410Z" } }, "outputs": [ @@ -1353,10 +1353,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:08.959323Z", - "iopub.status.busy": "2024-02-13T04:44:08.958823Z", - "iopub.status.idle": "2024-02-13T04:44:08.962403Z", - "shell.execute_reply": "2024-02-13T04:44:08.961826Z" + "iopub.execute_input": "2024-02-13T22:14:00.713079Z", + "iopub.status.busy": "2024-02-13T22:14:00.712741Z", + "iopub.status.idle": "2024-02-13T22:14:00.715919Z", + "shell.execute_reply": "2024-02-13T22:14:00.715494Z" }, "nbsphinx": "hidden" }, @@ -1397,60 +1397,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "020ca564a17a4b1185a878c6db3b4b4c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "022802a8c75a4ce58d06dcfaf24dcec2": { + "0227722ef3a94497bd415e644b8dd5df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1465,31 +1412,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c9d371e5899740349104c167be796d57", + "layout": "IPY_MODEL_bec850fda40e46869a492b50d7af2fba", "placeholder": "​", - "style": "IPY_MODEL_b8f217822cb241c89e6e758f982a0940", + "style": "IPY_MODEL_e399663b65d94f718e927284a06e0401", "tabbable": null, "tooltip": null, - "value": "classifier.ckpt: 100%" - } - }, - "0cc39ecc236b4c96b99a0c6129704098": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 3.20k/3.20k [00:00<00:00, 730kB/s]" } }, - "179a4e968732450fa197521fd6f022c4": { + "06b40034d3204eb3b784996b4002066d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1504,54 +1435,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_57f937f07aeb40beb2b96011ef7289ad", + "layout": "IPY_MODEL_d405ba37fe154a45ac131ebb25c47e3a", "placeholder": "​", - "style": "IPY_MODEL_ee2170c5344c462bb262eda24f3893d3", + "style": "IPY_MODEL_ba5de7b2afe94e53ac6a3f80c89401cd", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 476kB/s]" + "value": " 16.9M/16.9M [00:00<00:00, 199MB/s]" } }, - "19b161ceccf043a1b297bb1bd00cb39f": { + "08ac7b8e69ea41f09cfb6d0612bc3583": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2532e016abf946a09d5b097502eadace": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b9e63d50743a4f1fae2871c254e244c5", - "placeholder": "​", - "style": "IPY_MODEL_754538a10a46471cabcc8b864b8346e7", - "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 285MB/s]" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2f3b9c71fd8743caa67c88b66466f5cd": { + "098bae17a37846bc842695a528076153": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1604,7 +1514,65 @@ "width": null } }, - "31e7e7b6da874e49b5c84c74dc4a24e7": { + "09cb65c11839410ba67aca2611b1a901": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0eaa1261dbc941f48903f7019af30d56": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_afa7f929482f4d84b82c83949f74d2f0", + "IPY_MODEL_e3203b4e36e54c59a95cd62f1e2ee061", + "IPY_MODEL_06b40034d3204eb3b784996b4002066d" + ], + "layout": "IPY_MODEL_098bae17a37846bc842695a528076153", + "tabbable": null, + "tooltip": null + } + }, + "0fe309ae2b20491abc8ba38f74325099": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "161d951c627b49a5a491c5408294bd52": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1657,33 +1625,25 @@ "width": null } }, - "3212636ea82b48bfba9ca070df0a3758": { + "2091a40671184e7a8041c3ee27b91669": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f033e1d6698f4259810a69b7b3fa1def", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0cc39ecc236b4c96b99a0c6129704098", - "tabbable": null, - "tooltip": null, - "value": 2041.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "35732a57f5bc4831b7336ba8c6562d4e": { + "21161a0a60b845509f567de9b94d2764": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1698,33 +1658,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e5b710ae8f814d46ac58d084b1674985", + "layout": "IPY_MODEL_6f84700b36d9491e9e48b0ce35629fcf", "placeholder": "​", - "style": "IPY_MODEL_4ae47f87ca9349a4ab8d4b6b60ce08e8", + "style": "IPY_MODEL_6323c2c2cf944fa9a65731ef1cd9394f", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 1.65MB/s]" - } - }, - "412fa3739e2a4fd984cb1d80489eb643": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "hyperparams.yaml: 100%" } }, - "439f24b7a4b74b3d9f4f8b34edac8202": { + "2635b49d19324851bd5caffad77908c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1777,82 +1719,75 @@ "width": null } }, - "4ae47f87ca9349a4ab8d4b6b60ce08e8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "511c474f3a1b443eb9c080b677b4016e": { + "2965a9f7ab7243b49cff1ff6b0661d70": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_70abb7186c244025a48e9d6caba3847b", - "placeholder": "​", - "style": "IPY_MODEL_dac91efd93664bbd95456e0b8122a601", + "layout": "IPY_MODEL_b4fbfc51f3ec4e20a4a7f9d3396b6ad3", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7cd06ea0ffb741d9a9165bfe6b9af017", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "value": 2041.0 } }, - "519fb35ecb8e46cda4be73d7bbb3b814": { + "2f475057453041809112dc2db365ce3d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "522fd9f8aac340aca8c7589b6d20a620": { + "3111fbddea5140008c9bff401aaf2375": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8a4d7c48c9ac4e3484435c38ae6737d4", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bca0b902b4fc4ae3828fdef5a2a726d0", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 } }, - "57f937f07aeb40beb2b96011ef7289ad": { + "31b946b0b4b84126830498e76ae5f028": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1905,7 +1840,7 @@ "width": null } }, - "58fe2e5a904f46df9cecb1c126ba9dbf": { + "31cfb173fdae4a278bfc88dea6bdb576": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1958,49 +1893,70 @@ "width": null } }, - "6429bceac2be4fd098fec3c2cedb4e35": { + "35ce8643c5c54f12a2c46388f7ad804f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4d37318ee9a449dda132db17c0ce48f9", + "IPY_MODEL_5880e383714b4706baf08f6fee11795a", + "IPY_MODEL_0227722ef3a94497bd415e644b8dd5df" + ], + "layout": "IPY_MODEL_31b946b0b4b84126830498e76ae5f028", + "tabbable": null, + "tooltip": null + } + }, + "425f15f25913426ba476fbcb9e2f9494": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "66a137500e93408baccbf19c43640886": { + "4c7d1da0078540fd8cba29b98f81d792": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dd98fb54f38d4cccac87d4f254bfc6db", - "IPY_MODEL_a04063553fe1463895971a3e39c2731e", - "IPY_MODEL_35732a57f5bc4831b7336ba8c6562d4e" - ], - "layout": "IPY_MODEL_31e7e7b6da874e49b5c84c74dc4a24e7", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_843947e4f66c4e86a343237548aa03cf", + "placeholder": "​", + "style": "IPY_MODEL_2091a40671184e7a8041c3ee27b91669", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 237MB/s]" } }, - "6a6a5db6eb704f738f39a3b00bfd465e": { + "4d37318ee9a449dda132db17c0ce48f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2015,15 +1971,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9aede1a76e1e48329e39c1d61b9e936a", + "layout": "IPY_MODEL_c96fe962d2054cb3931b2f72b5819229", "placeholder": "​", - "style": "IPY_MODEL_a52d8cb40b8a42de85283d6904cc0368", + "style": "IPY_MODEL_c07b09ae215f45dfb5def489424c48f8", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 59.6MB/s]" + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "70abb7186c244025a48e9d6caba3847b": { + "4e62a5dc5e8c4e438a83eec55da4cc29": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "51623086acd345cf94bc784c05afc160": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2076,25 +2050,33 @@ "width": null } }, - "754538a10a46471cabcc8b864b8346e7": { + "5880e383714b4706baf08f6fee11795a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f0b6b95a4a004d818d2a0ed600298405", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_425f15f25913426ba476fbcb9e2f9494", + "tabbable": null, + "tooltip": null, + "value": 3201.0 } }, - "7681287bf6b048bda2a45ee2c38a0495": { + "5beaa0fdc8554932ad9a63c9f1acaf00": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2147,57 +2129,78 @@ "width": null } }, - "787dc735293f40778c6d4c42da6a0454": { - "model_module": "@jupyter-widgets/controls", + "5e81a327c4574aeda90d8ac93713e677": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_022802a8c75a4ce58d06dcfaf24dcec2", - "IPY_MODEL_94044232845749bb8b3666a8c455e305", - "IPY_MODEL_2532e016abf946a09d5b097502eadace" - ], - "layout": "IPY_MODEL_d5c57c5da5014e5e940332eaa2117b31", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "8b0be779dc2b46ec807f170b51f7eac7": { + "6323c2c2cf944fa9a65731ef1cd9394f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d524ee89928c42428f93aedd308f5ea1", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_19b161ceccf043a1b297bb1bd00cb39f", - "tabbable": null, - "tooltip": null, - "value": 16887676.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8dcc8e0f4fb740b4b68d16a2ac3c809b": { + "6f84700b36d9491e9e48b0ce35629fcf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2250,33 +2253,7 @@ "width": null } }, - "94044232845749bb8b3666a8c455e305": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_58fe2e5a904f46df9cecb1c126ba9dbf", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_522fd9f8aac340aca8c7589b6d20a620", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 - } - }, - "9aede1a76e1e48329e39c1d61b9e936a": { + "713e314d20644de4803a7d2e5f9aa7ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2329,33 +2306,41 @@ "width": null } }, - "a04063553fe1463895971a3e39c2731e": { + "79e34a6009d54a5cb6d7df971245836d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c76dfb3da90949a89db96d8981096a98", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b2e51e41c2764e09a42b57d9c1ea2487", - "tabbable": null, - "tooltip": null, - "value": 128619.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7cd06ea0ffb741d9a9165bfe6b9af017": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a2b5057c23bb490db02f78b15b8502a9": { + "843947e4f66c4e86a343237548aa03cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2408,25 +2393,7 @@ "width": null } }, - "a52d8cb40b8a42de85283d6904cc0368": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a708c364291448b8b403e2d5f566fc01": { + "8a4d7c48c9ac4e3484435c38ae6737d4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2479,83 +2446,53 @@ "width": null } }, - "a98f48b392d4473eb264510b46a3e15a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "aedfcf53155a4f4bacf95c551835c617": { + "8e3d1debce7b495dbcce011c04bbcfcf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_511c474f3a1b443eb9c080b677b4016e", - "IPY_MODEL_8b0be779dc2b46ec807f170b51f7eac7", - "IPY_MODEL_6a6a5db6eb704f738f39a3b00bfd465e" - ], - "layout": "IPY_MODEL_7681287bf6b048bda2a45ee2c38a0495", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5beaa0fdc8554932ad9a63c9f1acaf00", + "placeholder": "​", + "style": "IPY_MODEL_4e62a5dc5e8c4e438a83eec55da4cc29", "tabbable": null, - "tooltip": null - } - }, - "b2e51e41c2764e09a42b57d9c1ea2487": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null, + "value": "label_encoder.txt: 100%" } }, - "b8f217822cb241c89e6e758f982a0940": { + "948b3e58b39f4a349ec4d95ab3f9c1de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_713e314d20644de4803a7d2e5f9aa7ca", + "placeholder": "​", + "style": "IPY_MODEL_0fe309ae2b20491abc8ba38f74325099", + "tabbable": null, + "tooltip": null, + "value": "classifier.ckpt: 100%" } }, - "b9e63d50743a4f1fae2871c254e244c5": { + "a2ec222866634de9adad824880ac0ca4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2608,31 +2545,53 @@ "width": null } }, - "bbe7fc9571c44ef0a2129e934819701e": { + "a7b5831a847346b58b1140b4b6e83b06": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ec1966f6e6cb4dee911cf628968d77d8", - "IPY_MODEL_e6894d3a68b841e690747856e8706a7b", - "IPY_MODEL_f06c68891e914f5dbfeb0205cf1f5105" - ], - "layout": "IPY_MODEL_8dcc8e0f4fb740b4b68d16a2ac3c809b", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_51623086acd345cf94bc784c05afc160", + "placeholder": "​", + "style": "IPY_MODEL_ca59cc8020274fe08427f4f62c202a60", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 484kB/s]" + } + }, + "afa7f929482f4d84b82c83949f74d2f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5e81a327c4574aeda90d8ac93713e677", + "placeholder": "​", + "style": "IPY_MODEL_79e34a6009d54a5cb6d7df971245836d", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" } }, - "c76dfb3da90949a89db96d8981096a98": { + "afc168471c944570bb81dc089a8a2810": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2685,30 +2644,31 @@ "width": null } }, - "c91886bb27cd46549946341c72b71994": { + "b3db053977814d8aa2759b674ef5f4f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_439f24b7a4b74b3d9f4f8b34edac8202", - "placeholder": "​", - "style": "IPY_MODEL_6429bceac2be4fd098fec3c2cedb4e35", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_21161a0a60b845509f567de9b94d2764", + "IPY_MODEL_2965a9f7ab7243b49cff1ff6b0661d70", + "IPY_MODEL_a7b5831a847346b58b1140b4b6e83b06" + ], + "layout": "IPY_MODEL_2635b49d19324851bd5caffad77908c9", "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" + "tooltip": null } }, - "c9d371e5899740349104c167be796d57": { + "b4fbfc51f3ec4e20a4a7f9d3396b6ad3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2761,31 +2721,48 @@ "width": null } }, - "cb19edae57564bbf86d43e38fffae673": { + "b8899e0ef9174599a2d357b7beb552dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c91886bb27cd46549946341c72b71994", - "IPY_MODEL_3212636ea82b48bfba9ca070df0a3758", - "IPY_MODEL_179a4e968732450fa197521fd6f022c4" - ], - "layout": "IPY_MODEL_020ca564a17a4b1185a878c6db3b4b4c", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_161d951c627b49a5a491c5408294bd52", + "placeholder": "​", + "style": "IPY_MODEL_08ac7b8e69ea41f09cfb6d0612bc3583", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 3.28MB/s]" + } + }, + "ba5de7b2afe94e53ac6a3f80c89401cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d42dd987c0f64d5488972b6ac1599104": { + "bca0b902b4fc4ae3828fdef5a2a726d0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2801,7 +2778,7 @@ "description_width": "" } }, - "d524ee89928c42428f93aedd308f5ea1": { + "beb6ee7cdde94e3eb2b8f2a3fabb90b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2854,7 +2831,7 @@ "width": null } }, - "d5c57c5da5014e5e940332eaa2117b31": { + "bec850fda40e46869a492b50d7af2fba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2907,7 +2884,7 @@ "width": null } }, - "dac91efd93664bbd95456e0b8122a601": { + "c07b09ae215f45dfb5def489424c48f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2925,30 +2902,33 @@ "text_color": null } }, - "dd98fb54f38d4cccac87d4f254bfc6db": { + "c430bd7bc7844d0cbbea230c765c462f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a2b5057c23bb490db02f78b15b8502a9", - "placeholder": "​", - "style": "IPY_MODEL_412fa3739e2a4fd984cb1d80489eb643", + "layout": "IPY_MODEL_31cfb173fdae4a278bfc88dea6bdb576", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2f475057453041809112dc2db365ce3d", "tabbable": null, "tooltip": null, - "value": "label_encoder.txt: 100%" + "value": 128619.0 } }, - "e2e11b9eb261402fbd4f58edd8042c41": { + "c96fe962d2054cb3931b2f72b5819229": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3001,7 +2981,49 @@ "width": null } }, - "e5b710ae8f814d46ac58d084b1674985": { + "ca59cc8020274fe08427f4f62c202a60": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d35e92617b7044408b661764f9288535": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8e3d1debce7b495dbcce011c04bbcfcf", + "IPY_MODEL_c430bd7bc7844d0cbbea230c765c462f", + "IPY_MODEL_b8899e0ef9174599a2d357b7beb552dd" + ], + "layout": "IPY_MODEL_a2ec222866634de9adad824880ac0ca4", + "tabbable": null, + "tooltip": null + } + }, + "d405ba37fe154a45ac131ebb25c47e3a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3054,7 +3076,7 @@ "width": null } }, - "e6894d3a68b841e690747856e8706a7b": { + "e3203b4e36e54c59a95cd62f1e2ee061": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3070,40 +3092,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e2e11b9eb261402fbd4f58edd8042c41", - "max": 3201.0, + "layout": "IPY_MODEL_afc168471c944570bb81dc089a8a2810", + "max": 16887676.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_d42dd987c0f64d5488972b6ac1599104", - "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "ec1966f6e6cb4dee911cf628968d77d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a708c364291448b8b403e2d5f566fc01", - "placeholder": "​", - "style": "IPY_MODEL_519fb35ecb8e46cda4be73d7bbb3b814", + "style": "IPY_MODEL_09cb65c11839410ba67aca2611b1a901", "tabbable": null, "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "value": 16887676.0 } }, - "ee2170c5344c462bb262eda24f3893d3": { + "e399663b65d94f718e927284a06e0401": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3121,7 +3120,7 @@ "text_color": null } }, - "f033e1d6698f4259810a69b7b3fa1def": { + "f0b6b95a4a004d818d2a0ed600298405": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3174,27 +3173,28 @@ "width": null } }, - "f06c68891e914f5dbfeb0205cf1f5105": { + "f8c3aa561c4342df9116481f69bc9c8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2f3b9c71fd8743caa67c88b66466f5cd", - "placeholder": "​", - "style": "IPY_MODEL_a98f48b392d4473eb264510b46a3e15a", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_948b3e58b39f4a349ec4d95ab3f9c1de", + "IPY_MODEL_3111fbddea5140008c9bff401aaf2375", + "IPY_MODEL_4c7d1da0078540fd8cba29b98f81d792" + ], + "layout": "IPY_MODEL_beb6ee7cdde94e3eb2b8f2a3fabb90b1", "tabbable": null, - "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 805kB/s]" + "tooltip": null } } }, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 5c7c05035..c6cf5c1ca 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1083,7 +1083,7 @@

Functionality 2: Specifying nondefault arguments
-
+
@@ -1479,7 +1479,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"da5fe986bcdb4852ac566bbaf59cb904": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0a118ddf21944c1286ae1de466380262": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "45847275cb1f439d90df3460f8f43a93": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_da5fe986bcdb4852ac566bbaf59cb904", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0a118ddf21944c1286ae1de466380262", "tabbable": null, "tooltip": null, "value": 132.0}}, "823ca67b5e0e49f09b514568e2e12aab": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fa7616d10c144385beb99d103d4f6b9a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dc821216a67e4e6c80ace8231090cc4a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_823ca67b5e0e49f09b514568e2e12aab", "placeholder": "\u200b", "style": "IPY_MODEL_fa7616d10c144385beb99d103d4f6b9a", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "920d3b6eb6a14892b8b487b77b46113d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d6b92e1715544df0b0b31a3a94252c8c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "01a68e5659354bf095b6a2d69b6ac1b0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_920d3b6eb6a14892b8b487b77b46113d", "placeholder": "\u200b", "style": "IPY_MODEL_d6b92e1715544df0b0b31a3a94252c8c", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200710440.87\u2007examples/s]"}}, "ce7de2a02d0f4e09bbe38f0bf3338621": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ec4478ce6216448aab8dcd0968cc8ae8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_dc821216a67e4e6c80ace8231090cc4a", "IPY_MODEL_45847275cb1f439d90df3460f8f43a93", "IPY_MODEL_01a68e5659354bf095b6a2d69b6ac1b0"], "layout": "IPY_MODEL_ce7de2a02d0f4e09bbe38f0bf3338621", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"086769d8dd724ee4ae991894d5b1638c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ca4222be103342b59c007fc2f0a1bb1c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0f9727c600714b0c9a90a7ac6444f573": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_086769d8dd724ee4ae991894d5b1638c", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ca4222be103342b59c007fc2f0a1bb1c", "tabbable": null, "tooltip": null, "value": 132.0}}, "0f0798a2e4a640ac99545cf963558f27": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c9b8a16ab6a640cfb5e14a4149db48f6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8848dbbfcbf045679df9d89c70836a4a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0f0798a2e4a640ac99545cf963558f27", "placeholder": "\u200b", "style": "IPY_MODEL_c9b8a16ab6a640cfb5e14a4149db48f6", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "3eeb1ec92b0c4efc950afd1e74e97e92": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3dfe60972562446ebbd8ae40ba8739ab": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2f2711b7cd724b62b52383790e9b574b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3eeb1ec92b0c4efc950afd1e74e97e92", "placeholder": "\u200b", "style": "IPY_MODEL_3dfe60972562446ebbd8ae40ba8739ab", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200710800.57\u2007examples/s]"}}, "b46160578fbc44799b7d204bae66bd27": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2be2bc6a7ee74efc998c82d1df625472": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8848dbbfcbf045679df9d89c70836a4a", "IPY_MODEL_0f9727c600714b0c9a90a7ac6444f573", "IPY_MODEL_2f2711b7cd724b62b52383790e9b574b"], "layout": "IPY_MODEL_b46160578fbc44799b7d204bae66bd27", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 4e130cf18..91765a74b 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:13.403226Z", - "iopub.status.busy": "2024-02-13T04:44:13.402880Z", - "iopub.status.idle": "2024-02-13T04:44:14.565097Z", - "shell.execute_reply": "2024-02-13T04:44:14.564557Z" + "iopub.execute_input": "2024-02-13T22:14:04.090335Z", + "iopub.status.busy": "2024-02-13T22:14:04.089878Z", + "iopub.status.idle": "2024-02-13T22:14:05.181077Z", + "shell.execute_reply": "2024-02-13T22:14:05.180528Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:14.567745Z", - "iopub.status.busy": "2024-02-13T04:44:14.567438Z", - "iopub.status.idle": "2024-02-13T04:44:14.570768Z", - "shell.execute_reply": "2024-02-13T04:44:14.570319Z" + "iopub.execute_input": "2024-02-13T22:14:05.183625Z", + "iopub.status.busy": "2024-02-13T22:14:05.183280Z", + "iopub.status.idle": "2024-02-13T22:14:05.186860Z", + "shell.execute_reply": "2024-02-13T22:14:05.186423Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:14.572826Z", - "iopub.status.busy": "2024-02-13T04:44:14.572642Z", - "iopub.status.idle": "2024-02-13T04:44:14.581259Z", - "shell.execute_reply": "2024-02-13T04:44:14.580833Z" + "iopub.execute_input": "2024-02-13T22:14:05.188919Z", + "iopub.status.busy": "2024-02-13T22:14:05.188599Z", + "iopub.status.idle": "2024-02-13T22:14:05.196980Z", + "shell.execute_reply": "2024-02-13T22:14:05.196559Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:14.583160Z", - "iopub.status.busy": "2024-02-13T04:44:14.582972Z", - "iopub.status.idle": "2024-02-13T04:44:14.587902Z", - "shell.execute_reply": "2024-02-13T04:44:14.587488Z" + "iopub.execute_input": "2024-02-13T22:14:05.199006Z", + "iopub.status.busy": "2024-02-13T22:14:05.198683Z", + "iopub.status.idle": "2024-02-13T22:14:05.203391Z", + "shell.execute_reply": "2024-02-13T22:14:05.203011Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:14.590008Z", - "iopub.status.busy": "2024-02-13T04:44:14.589725Z", - "iopub.status.idle": "2024-02-13T04:44:14.778226Z", - "shell.execute_reply": "2024-02-13T04:44:14.777590Z" + "iopub.execute_input": "2024-02-13T22:14:05.205394Z", + "iopub.status.busy": "2024-02-13T22:14:05.205073Z", + "iopub.status.idle": "2024-02-13T22:14:05.386592Z", + "shell.execute_reply": "2024-02-13T22:14:05.386129Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:14.780774Z", - "iopub.status.busy": "2024-02-13T04:44:14.780425Z", - "iopub.status.idle": "2024-02-13T04:44:15.162745Z", - "shell.execute_reply": "2024-02-13T04:44:15.162147Z" + "iopub.execute_input": "2024-02-13T22:14:05.388928Z", + "iopub.status.busy": "2024-02-13T22:14:05.388586Z", + "iopub.status.idle": "2024-02-13T22:14:05.757842Z", + "shell.execute_reply": "2024-02-13T22:14:05.757322Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:15.165379Z", - "iopub.status.busy": "2024-02-13T04:44:15.164923Z", - "iopub.status.idle": "2024-02-13T04:44:15.190156Z", - "shell.execute_reply": "2024-02-13T04:44:15.189651Z" + "iopub.execute_input": "2024-02-13T22:14:05.760226Z", + "iopub.status.busy": "2024-02-13T22:14:05.759890Z", + "iopub.status.idle": "2024-02-13T22:14:05.783561Z", + "shell.execute_reply": "2024-02-13T22:14:05.783163Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:15.192620Z", - "iopub.status.busy": "2024-02-13T04:44:15.192415Z", - "iopub.status.idle": "2024-02-13T04:44:15.204349Z", - "shell.execute_reply": "2024-02-13T04:44:15.203899Z" + "iopub.execute_input": "2024-02-13T22:14:05.785642Z", + "iopub.status.busy": "2024-02-13T22:14:05.785319Z", + "iopub.status.idle": "2024-02-13T22:14:05.796240Z", + "shell.execute_reply": "2024-02-13T22:14:05.795850Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:15.206703Z", - "iopub.status.busy": "2024-02-13T04:44:15.206425Z", - "iopub.status.idle": "2024-02-13T04:44:16.949151Z", - "shell.execute_reply": "2024-02-13T04:44:16.948527Z" + "iopub.execute_input": "2024-02-13T22:14:05.798283Z", + "iopub.status.busy": "2024-02-13T22:14:05.797961Z", + "iopub.status.idle": "2024-02-13T22:14:07.456729Z", + "shell.execute_reply": "2024-02-13T22:14:07.456135Z" } }, "outputs": [ @@ -709,10 +709,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:16.951836Z", - "iopub.status.busy": "2024-02-13T04:44:16.951356Z", - "iopub.status.idle": "2024-02-13T04:44:16.974966Z", - "shell.execute_reply": "2024-02-13T04:44:16.974413Z" + "iopub.execute_input": "2024-02-13T22:14:07.459070Z", + "iopub.status.busy": "2024-02-13T22:14:07.458646Z", + "iopub.status.idle": "2024-02-13T22:14:07.480031Z", + "shell.execute_reply": "2024-02-13T22:14:07.479599Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:16.977285Z", - "iopub.status.busy": "2024-02-13T04:44:16.976988Z", - "iopub.status.idle": "2024-02-13T04:44:16.998053Z", - "shell.execute_reply": "2024-02-13T04:44:16.997406Z" + "iopub.execute_input": "2024-02-13T22:14:07.482209Z", + "iopub.status.busy": "2024-02-13T22:14:07.481899Z", + "iopub.status.idle": "2024-02-13T22:14:07.500970Z", + "shell.execute_reply": "2024-02-13T22:14:07.500395Z" } }, "outputs": [ @@ -910,7 +910,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:329: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:329: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:359: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -936,10 +936,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:17.000226Z", - "iopub.status.busy": "2024-02-13T04:44:16.999861Z", - "iopub.status.idle": "2024-02-13T04:44:17.015155Z", - "shell.execute_reply": "2024-02-13T04:44:17.014699Z" + "iopub.execute_input": "2024-02-13T22:14:07.503057Z", + "iopub.status.busy": "2024-02-13T22:14:07.502798Z", + "iopub.status.idle": "2024-02-13T22:14:07.516730Z", + "shell.execute_reply": "2024-02-13T22:14:07.516317Z" } }, "outputs": [ @@ -1069,17 +1069,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:17.017369Z", - "iopub.status.busy": "2024-02-13T04:44:17.017018Z", - "iopub.status.idle": "2024-02-13T04:44:17.039865Z", - "shell.execute_reply": "2024-02-13T04:44:17.039300Z" + "iopub.execute_input": "2024-02-13T22:14:07.518833Z", + "iopub.status.busy": "2024-02-13T22:14:07.518507Z", + "iopub.status.idle": "2024-02-13T22:14:07.539612Z", + "shell.execute_reply": "2024-02-13T22:14:07.539072Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ec4478ce6216448aab8dcd0968cc8ae8", + "model_id": "2be2bc6a7ee74efc998c82d1df625472", "version_major": 2, "version_minor": 0 }, @@ -1115,10 +1115,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:17.042289Z", - "iopub.status.busy": "2024-02-13T04:44:17.041841Z", - "iopub.status.idle": "2024-02-13T04:44:17.058128Z", - "shell.execute_reply": "2024-02-13T04:44:17.057534Z" + "iopub.execute_input": "2024-02-13T22:14:07.541783Z", + "iopub.status.busy": "2024-02-13T22:14:07.541417Z", + "iopub.status.idle": "2024-02-13T22:14:07.555895Z", + "shell.execute_reply": "2024-02-13T22:14:07.555492Z" } }, "outputs": [ @@ -1236,10 +1236,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:17.060352Z", - "iopub.status.busy": "2024-02-13T04:44:17.060021Z", - "iopub.status.idle": "2024-02-13T04:44:17.066076Z", - "shell.execute_reply": "2024-02-13T04:44:17.065499Z" + "iopub.execute_input": "2024-02-13T22:14:07.557904Z", + "iopub.status.busy": "2024-02-13T22:14:07.557590Z", + "iopub.status.idle": "2024-02-13T22:14:07.563244Z", + "shell.execute_reply": "2024-02-13T22:14:07.562800Z" } }, "outputs": [], @@ -1296,10 +1296,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:17.068258Z", - "iopub.status.busy": "2024-02-13T04:44:17.067907Z", - "iopub.status.idle": "2024-02-13T04:44:17.086390Z", - "shell.execute_reply": "2024-02-13T04:44:17.085845Z" + "iopub.execute_input": "2024-02-13T22:14:07.565305Z", + "iopub.status.busy": "2024-02-13T22:14:07.564896Z", + "iopub.status.idle": "2024-02-13T22:14:07.582787Z", + "shell.execute_reply": "2024-02-13T22:14:07.582367Z" } }, "outputs": [ @@ -1431,72 +1431,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01a68e5659354bf095b6a2d69b6ac1b0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_920d3b6eb6a14892b8b487b77b46113d", - "placeholder": "​", - "style": "IPY_MODEL_d6b92e1715544df0b0b31a3a94252c8c", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 10440.87 examples/s]" - } - }, - "0a118ddf21944c1286ae1de466380262": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "45847275cb1f439d90df3460f8f43a93": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_da5fe986bcdb4852ac566bbaf59cb904", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0a118ddf21944c1286ae1de466380262", - "tabbable": null, - "tooltip": null, - "value": 132.0 - } - }, - "823ca67b5e0e49f09b514568e2e12aab": { + "086769d8dd724ee4ae991894d5b1638c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1549,7 +1484,7 @@ "width": null } }, - "920d3b6eb6a14892b8b487b77b46113d": { + "0f0798a2e4a640ac99545cf963558f27": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1602,7 +1537,98 @@ "width": null } }, - "ce7de2a02d0f4e09bbe38f0bf3338621": { + "0f9727c600714b0c9a90a7ac6444f573": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_086769d8dd724ee4ae991894d5b1638c", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ca4222be103342b59c007fc2f0a1bb1c", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } + }, + "2be2bc6a7ee74efc998c82d1df625472": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8848dbbfcbf045679df9d89c70836a4a", + "IPY_MODEL_0f9727c600714b0c9a90a7ac6444f573", + "IPY_MODEL_2f2711b7cd724b62b52383790e9b574b" + ], + "layout": "IPY_MODEL_b46160578fbc44799b7d204bae66bd27", + "tabbable": null, + "tooltip": null + } + }, + "2f2711b7cd724b62b52383790e9b574b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3eeb1ec92b0c4efc950afd1e74e97e92", + "placeholder": "​", + "style": "IPY_MODEL_3dfe60972562446ebbd8ae40ba8739ab", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 10800.57 examples/s]" + } + }, + "3dfe60972562446ebbd8ae40ba8739ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3eeb1ec92b0c4efc950afd1e74e97e92": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1655,25 +1681,30 @@ "width": null } }, - "d6b92e1715544df0b0b31a3a94252c8c": { + "8848dbbfcbf045679df9d89c70836a4a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0f0798a2e4a640ac99545cf963558f27", + "placeholder": "​", + "style": "IPY_MODEL_c9b8a16ab6a640cfb5e14a4149db48f6", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" } }, - "da5fe986bcdb4852ac566bbaf59cb904": { + "b46160578fbc44799b7d204bae66bd27": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1726,69 +1757,38 @@ "width": null } }, - "dc821216a67e4e6c80ace8231090cc4a": { + "c9b8a16ab6a640cfb5e14a4149db48f6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_823ca67b5e0e49f09b514568e2e12aab", - "placeholder": "​", - "style": "IPY_MODEL_fa7616d10c144385beb99d103d4f6b9a", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "ec4478ce6216448aab8dcd0968cc8ae8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dc821216a67e4e6c80ace8231090cc4a", - "IPY_MODEL_45847275cb1f439d90df3460f8f43a93", - "IPY_MODEL_01a68e5659354bf095b6a2d69b6ac1b0" - ], - "layout": "IPY_MODEL_ce7de2a02d0f4e09bbe38f0bf3338621", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fa7616d10c144385beb99d103d4f6b9a": { + "ca4222be103342b59c007fc2f0a1bb1c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } } }, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index 65035ba49..98d493632 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:19.868241Z", - "iopub.status.busy": "2024-02-13T04:44:19.868060Z", - "iopub.status.idle": "2024-02-13T04:44:21.030937Z", - "shell.execute_reply": "2024-02-13T04:44:21.030373Z" + "iopub.execute_input": "2024-02-13T22:14:10.203367Z", + "iopub.status.busy": "2024-02-13T22:14:10.202904Z", + "iopub.status.idle": "2024-02-13T22:14:11.283912Z", + "shell.execute_reply": "2024-02-13T22:14:11.283377Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:21.033419Z", - "iopub.status.busy": "2024-02-13T04:44:21.033040Z", - "iopub.status.idle": "2024-02-13T04:44:21.036232Z", - "shell.execute_reply": "2024-02-13T04:44:21.035781Z" + "iopub.execute_input": "2024-02-13T22:14:11.286402Z", + "iopub.status.busy": "2024-02-13T22:14:11.286042Z", + "iopub.status.idle": "2024-02-13T22:14:11.289006Z", + "shell.execute_reply": "2024-02-13T22:14:11.288590Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:21.038412Z", - "iopub.status.busy": "2024-02-13T04:44:21.038139Z", - "iopub.status.idle": "2024-02-13T04:44:21.047212Z", - "shell.execute_reply": "2024-02-13T04:44:21.046723Z" + "iopub.execute_input": "2024-02-13T22:14:11.291148Z", + "iopub.status.busy": "2024-02-13T22:14:11.290842Z", + "iopub.status.idle": "2024-02-13T22:14:11.299505Z", + "shell.execute_reply": "2024-02-13T22:14:11.299075Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:21.049263Z", - "iopub.status.busy": "2024-02-13T04:44:21.048933Z", - "iopub.status.idle": "2024-02-13T04:44:21.053594Z", - "shell.execute_reply": "2024-02-13T04:44:21.053176Z" + "iopub.execute_input": "2024-02-13T22:14:11.301483Z", + "iopub.status.busy": "2024-02-13T22:14:11.301167Z", + "iopub.status.idle": "2024-02-13T22:14:11.305847Z", + "shell.execute_reply": "2024-02-13T22:14:11.305460Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:21.055733Z", - "iopub.status.busy": "2024-02-13T04:44:21.055402Z", - "iopub.status.idle": "2024-02-13T04:44:21.241590Z", - "shell.execute_reply": "2024-02-13T04:44:21.241041Z" + "iopub.execute_input": "2024-02-13T22:14:11.307920Z", + "iopub.status.busy": "2024-02-13T22:14:11.307553Z", + "iopub.status.idle": "2024-02-13T22:14:11.490421Z", + "shell.execute_reply": "2024-02-13T22:14:11.489836Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:21.244068Z", - "iopub.status.busy": "2024-02-13T04:44:21.243717Z", - "iopub.status.idle": "2024-02-13T04:44:21.623052Z", - "shell.execute_reply": "2024-02-13T04:44:21.622466Z" + "iopub.execute_input": "2024-02-13T22:14:11.492886Z", + "iopub.status.busy": "2024-02-13T22:14:11.492696Z", + "iopub.status.idle": "2024-02-13T22:14:11.857767Z", + "shell.execute_reply": "2024-02-13T22:14:11.857234Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:21.625480Z", - "iopub.status.busy": "2024-02-13T04:44:21.625115Z", - "iopub.status.idle": "2024-02-13T04:44:21.628101Z", - "shell.execute_reply": "2024-02-13T04:44:21.627543Z" + "iopub.execute_input": "2024-02-13T22:14:11.859858Z", + "iopub.status.busy": "2024-02-13T22:14:11.859680Z", + "iopub.status.idle": "2024-02-13T22:14:11.862323Z", + "shell.execute_reply": "2024-02-13T22:14:11.861909Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:21.630313Z", - "iopub.status.busy": "2024-02-13T04:44:21.629985Z", - "iopub.status.idle": "2024-02-13T04:44:21.666528Z", - "shell.execute_reply": "2024-02-13T04:44:21.665945Z" + "iopub.execute_input": "2024-02-13T22:14:11.864424Z", + "iopub.status.busy": "2024-02-13T22:14:11.864110Z", + "iopub.status.idle": "2024-02-13T22:14:11.899189Z", + "shell.execute_reply": "2024-02-13T22:14:11.898662Z" } }, "outputs": [ @@ -647,10 +647,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:21.668703Z", - "iopub.status.busy": "2024-02-13T04:44:21.668525Z", - "iopub.status.idle": "2024-02-13T04:44:23.400164Z", - "shell.execute_reply": "2024-02-13T04:44:23.399490Z" + "iopub.execute_input": "2024-02-13T22:14:11.901212Z", + "iopub.status.busy": "2024-02-13T22:14:11.900906Z", + "iopub.status.idle": "2024-02-13T22:14:13.544813Z", + "shell.execute_reply": "2024-02-13T22:14:13.544268Z" } }, "outputs": [ @@ -703,10 +703,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:23.402748Z", - "iopub.status.busy": "2024-02-13T04:44:23.402241Z", - "iopub.status.idle": "2024-02-13T04:44:23.421968Z", - "shell.execute_reply": "2024-02-13T04:44:23.421430Z" + "iopub.execute_input": "2024-02-13T22:14:13.547395Z", + "iopub.status.busy": "2024-02-13T22:14:13.546715Z", + "iopub.status.idle": "2024-02-13T22:14:13.565253Z", + "shell.execute_reply": "2024-02-13T22:14:13.564794Z" } }, "outputs": [ @@ -834,10 +834,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:23.423995Z", - "iopub.status.busy": "2024-02-13T04:44:23.423812Z", - "iopub.status.idle": "2024-02-13T04:44:23.430537Z", - "shell.execute_reply": "2024-02-13T04:44:23.430072Z" + "iopub.execute_input": "2024-02-13T22:14:13.567256Z", + "iopub.status.busy": "2024-02-13T22:14:13.566942Z", + "iopub.status.idle": "2024-02-13T22:14:13.572952Z", + "shell.execute_reply": "2024-02-13T22:14:13.572543Z" } }, "outputs": [ @@ -948,10 +948,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:23.432605Z", - "iopub.status.busy": "2024-02-13T04:44:23.432296Z", - "iopub.status.idle": "2024-02-13T04:44:23.438157Z", - "shell.execute_reply": "2024-02-13T04:44:23.437615Z" + "iopub.execute_input": "2024-02-13T22:14:13.574812Z", + "iopub.status.busy": "2024-02-13T22:14:13.574542Z", + "iopub.status.idle": "2024-02-13T22:14:13.580153Z", + "shell.execute_reply": "2024-02-13T22:14:13.579719Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:23.440228Z", - "iopub.status.busy": "2024-02-13T04:44:23.439931Z", - "iopub.status.idle": "2024-02-13T04:44:23.450317Z", - "shell.execute_reply": "2024-02-13T04:44:23.449760Z" + "iopub.execute_input": "2024-02-13T22:14:13.582126Z", + "iopub.status.busy": "2024-02-13T22:14:13.581818Z", + "iopub.status.idle": "2024-02-13T22:14:13.592065Z", + "shell.execute_reply": "2024-02-13T22:14:13.591635Z" } }, "outputs": [ @@ -1213,10 +1213,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:23.452537Z", - "iopub.status.busy": "2024-02-13T04:44:23.452222Z", - "iopub.status.idle": "2024-02-13T04:44:23.461629Z", - "shell.execute_reply": "2024-02-13T04:44:23.461075Z" + "iopub.execute_input": "2024-02-13T22:14:13.593920Z", + "iopub.status.busy": "2024-02-13T22:14:13.593624Z", + "iopub.status.idle": "2024-02-13T22:14:13.602221Z", + "shell.execute_reply": "2024-02-13T22:14:13.601713Z" } }, "outputs": [ @@ -1332,10 +1332,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:23.463774Z", - "iopub.status.busy": "2024-02-13T04:44:23.463472Z", - "iopub.status.idle": "2024-02-13T04:44:23.470491Z", - "shell.execute_reply": "2024-02-13T04:44:23.469952Z" + "iopub.execute_input": "2024-02-13T22:14:13.604288Z", + "iopub.status.busy": "2024-02-13T22:14:13.603887Z", + "iopub.status.idle": "2024-02-13T22:14:13.610558Z", + "shell.execute_reply": "2024-02-13T22:14:13.610031Z" }, "scrolled": true }, @@ -1460,10 +1460,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:23.472661Z", - "iopub.status.busy": "2024-02-13T04:44:23.472263Z", - "iopub.status.idle": "2024-02-13T04:44:23.481790Z", - "shell.execute_reply": "2024-02-13T04:44:23.481334Z" + "iopub.execute_input": "2024-02-13T22:14:13.612575Z", + "iopub.status.busy": "2024-02-13T22:14:13.612280Z", + "iopub.status.idle": "2024-02-13T22:14:13.621042Z", + "shell.execute_reply": "2024-02-13T22:14:13.620633Z" } }, "outputs": [ diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 36d1d5e6e..9d0048b50 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:26.273369Z", - "iopub.status.busy": "2024-02-13T04:44:26.272811Z", - "iopub.status.idle": "2024-02-13T04:44:27.373057Z", - "shell.execute_reply": "2024-02-13T04:44:27.372498Z" + "iopub.execute_input": "2024-02-13T22:14:16.280470Z", + "iopub.status.busy": "2024-02-13T22:14:16.280314Z", + "iopub.status.idle": "2024-02-13T22:14:17.343602Z", + "shell.execute_reply": "2024-02-13T22:14:17.343045Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:27.375664Z", - "iopub.status.busy": "2024-02-13T04:44:27.375204Z", - "iopub.status.idle": "2024-02-13T04:44:27.394553Z", - "shell.execute_reply": "2024-02-13T04:44:27.394053Z" + "iopub.execute_input": "2024-02-13T22:14:17.346499Z", + "iopub.status.busy": "2024-02-13T22:14:17.345891Z", + "iopub.status.idle": "2024-02-13T22:14:17.366385Z", + "shell.execute_reply": "2024-02-13T22:14:17.365896Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:27.396994Z", - "iopub.status.busy": "2024-02-13T04:44:27.396610Z", - "iopub.status.idle": "2024-02-13T04:44:27.684887Z", - "shell.execute_reply": "2024-02-13T04:44:27.684384Z" + "iopub.execute_input": "2024-02-13T22:14:17.368851Z", + "iopub.status.busy": "2024-02-13T22:14:17.368558Z", + "iopub.status.idle": "2024-02-13T22:14:17.562058Z", + "shell.execute_reply": "2024-02-13T22:14:17.561484Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:27.687113Z", - "iopub.status.busy": "2024-02-13T04:44:27.686745Z", - "iopub.status.idle": "2024-02-13T04:44:27.690282Z", - "shell.execute_reply": "2024-02-13T04:44:27.689819Z" + "iopub.execute_input": "2024-02-13T22:14:17.564103Z", + "iopub.status.busy": "2024-02-13T22:14:17.563905Z", + "iopub.status.idle": "2024-02-13T22:14:17.567668Z", + "shell.execute_reply": "2024-02-13T22:14:17.567236Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:27.692295Z", - "iopub.status.busy": "2024-02-13T04:44:27.691964Z", - "iopub.status.idle": "2024-02-13T04:44:27.699797Z", - "shell.execute_reply": "2024-02-13T04:44:27.699336Z" + "iopub.execute_input": "2024-02-13T22:14:17.569785Z", + "iopub.status.busy": "2024-02-13T22:14:17.569416Z", + "iopub.status.idle": "2024-02-13T22:14:17.577706Z", + "shell.execute_reply": "2024-02-13T22:14:17.577101Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:27.701832Z", - "iopub.status.busy": "2024-02-13T04:44:27.701506Z", - "iopub.status.idle": "2024-02-13T04:44:27.703987Z", - "shell.execute_reply": "2024-02-13T04:44:27.703543Z" + "iopub.execute_input": "2024-02-13T22:14:17.580331Z", + "iopub.status.busy": "2024-02-13T22:14:17.579972Z", + "iopub.status.idle": "2024-02-13T22:14:17.582660Z", + "shell.execute_reply": "2024-02-13T22:14:17.582208Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:27.705974Z", - "iopub.status.busy": "2024-02-13T04:44:27.705639Z", - "iopub.status.idle": "2024-02-13T04:44:30.719784Z", - "shell.execute_reply": "2024-02-13T04:44:30.719244Z" + "iopub.execute_input": "2024-02-13T22:14:17.584677Z", + "iopub.status.busy": "2024-02-13T22:14:17.584374Z", + "iopub.status.idle": "2024-02-13T22:14:20.561628Z", + "shell.execute_reply": "2024-02-13T22:14:20.561074Z" } }, "outputs": [], @@ -402,10 +402,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:30.722615Z", - "iopub.status.busy": "2024-02-13T04:44:30.722225Z", - "iopub.status.idle": "2024-02-13T04:44:30.732232Z", - "shell.execute_reply": "2024-02-13T04:44:30.731772Z" + "iopub.execute_input": "2024-02-13T22:14:20.564234Z", + "iopub.status.busy": "2024-02-13T22:14:20.563839Z", + "iopub.status.idle": "2024-02-13T22:14:20.573731Z", + "shell.execute_reply": "2024-02-13T22:14:20.573283Z" } }, "outputs": [], @@ -437,10 +437,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:30.734440Z", - "iopub.status.busy": "2024-02-13T04:44:30.734102Z", - "iopub.status.idle": "2024-02-13T04:44:32.611906Z", - "shell.execute_reply": "2024-02-13T04:44:32.611293Z" + "iopub.execute_input": "2024-02-13T22:14:20.575706Z", + "iopub.status.busy": "2024-02-13T22:14:20.575532Z", + "iopub.status.idle": "2024-02-13T22:14:22.290155Z", + "shell.execute_reply": "2024-02-13T22:14:22.289550Z" } }, "outputs": [ @@ -477,10 +477,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:32.616276Z", - "iopub.status.busy": "2024-02-13T04:44:32.614962Z", - "iopub.status.idle": "2024-02-13T04:44:32.641210Z", - "shell.execute_reply": "2024-02-13T04:44:32.640686Z" + "iopub.execute_input": "2024-02-13T22:14:22.293189Z", + "iopub.status.busy": "2024-02-13T22:14:22.292444Z", + "iopub.status.idle": "2024-02-13T22:14:22.315043Z", + "shell.execute_reply": "2024-02-13T22:14:22.314542Z" }, "scrolled": true }, @@ -605,10 +605,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:32.644981Z", - "iopub.status.busy": "2024-02-13T04:44:32.644058Z", - "iopub.status.idle": "2024-02-13T04:44:32.656244Z", - "shell.execute_reply": "2024-02-13T04:44:32.655720Z" + "iopub.execute_input": "2024-02-13T22:14:22.317408Z", + "iopub.status.busy": "2024-02-13T22:14:22.317049Z", + "iopub.status.idle": "2024-02-13T22:14:22.325952Z", + "shell.execute_reply": "2024-02-13T22:14:22.325496Z" } }, "outputs": [ @@ -712,10 +712,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:32.660001Z", - "iopub.status.busy": "2024-02-13T04:44:32.659066Z", - "iopub.status.idle": "2024-02-13T04:44:32.674400Z", - "shell.execute_reply": "2024-02-13T04:44:32.673871Z" + "iopub.execute_input": "2024-02-13T22:14:22.329007Z", + "iopub.status.busy": "2024-02-13T22:14:22.328101Z", + "iopub.status.idle": "2024-02-13T22:14:22.342641Z", + "shell.execute_reply": "2024-02-13T22:14:22.342136Z" } }, "outputs": [ @@ -844,10 +844,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:32.678192Z", - "iopub.status.busy": "2024-02-13T04:44:32.677252Z", - "iopub.status.idle": "2024-02-13T04:44:32.687435Z", - "shell.execute_reply": "2024-02-13T04:44:32.686875Z" + "iopub.execute_input": "2024-02-13T22:14:22.346214Z", + "iopub.status.busy": "2024-02-13T22:14:22.345307Z", + "iopub.status.idle": "2024-02-13T22:14:22.356416Z", + "shell.execute_reply": "2024-02-13T22:14:22.355954Z" } }, "outputs": [ @@ -961,10 +961,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:32.689734Z", - "iopub.status.busy": "2024-02-13T04:44:32.689547Z", - "iopub.status.idle": "2024-02-13T04:44:32.699719Z", - "shell.execute_reply": "2024-02-13T04:44:32.699146Z" + "iopub.execute_input": "2024-02-13T22:14:22.359818Z", + "iopub.status.busy": "2024-02-13T22:14:22.358924Z", + "iopub.status.idle": "2024-02-13T22:14:22.368271Z", + "shell.execute_reply": "2024-02-13T22:14:22.367803Z" } }, "outputs": [ @@ -1075,10 +1075,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:32.701939Z", - "iopub.status.busy": "2024-02-13T04:44:32.701516Z", - "iopub.status.idle": "2024-02-13T04:44:32.708434Z", - "shell.execute_reply": "2024-02-13T04:44:32.707886Z" + "iopub.execute_input": "2024-02-13T22:14:22.370127Z", + "iopub.status.busy": "2024-02-13T22:14:22.369848Z", + "iopub.status.idle": "2024-02-13T22:14:22.375961Z", + "shell.execute_reply": "2024-02-13T22:14:22.375491Z" } }, "outputs": [ @@ -1162,10 +1162,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:32.710582Z", - "iopub.status.busy": "2024-02-13T04:44:32.710239Z", - "iopub.status.idle": "2024-02-13T04:44:32.717503Z", - "shell.execute_reply": "2024-02-13T04:44:32.717038Z" + "iopub.execute_input": "2024-02-13T22:14:22.377871Z", + "iopub.status.busy": "2024-02-13T22:14:22.377572Z", + "iopub.status.idle": "2024-02-13T22:14:22.383635Z", + "shell.execute_reply": "2024-02-13T22:14:22.383152Z" } }, "outputs": [ @@ -1258,10 +1258,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:32.719761Z", - "iopub.status.busy": "2024-02-13T04:44:32.719450Z", - "iopub.status.idle": "2024-02-13T04:44:32.726548Z", - "shell.execute_reply": "2024-02-13T04:44:32.725956Z" + "iopub.execute_input": "2024-02-13T22:14:22.385586Z", + "iopub.status.busy": "2024-02-13T22:14:22.385288Z", + "iopub.status.idle": "2024-02-13T22:14:22.392056Z", + "shell.execute_reply": "2024-02-13T22:14:22.391395Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index 736c3fa61..20d44a7d3 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -712,7 +712,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'card_payment_fee_charged', 'card_about_to_expire', 'beneficiary_not_allowed', 'getting_spare_card', 'lost_or_stolen_phone', 'cancel_transfer', 'visa_or_mastercard', 'supported_cards_and_currencies', 'change_pin', 'apple_pay_or_google_pay'}
+Classes: {'change_pin', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'card_about_to_expire', 'lost_or_stolen_phone', 'visa_or_mastercard', 'getting_spare_card', 'cancel_transfer', 'card_payment_fee_charged'}
 

Let’s view the i-th example in the dataset:

@@ -759,43 +759,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1528,7 +1528,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 90c344319..03e72b9f1 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:35.587485Z", - "iopub.status.busy": "2024-02-13T04:44:35.587316Z", - "iopub.status.idle": "2024-02-13T04:44:38.790121Z", - "shell.execute_reply": "2024-02-13T04:44:38.789463Z" + "iopub.execute_input": "2024-02-13T22:14:25.088197Z", + "iopub.status.busy": "2024-02-13T22:14:25.087736Z", + "iopub.status.idle": "2024-02-13T22:14:27.873932Z", + "shell.execute_reply": "2024-02-13T22:14:27.873308Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:38.793037Z", - "iopub.status.busy": "2024-02-13T04:44:38.792411Z", - "iopub.status.idle": "2024-02-13T04:44:38.795890Z", - "shell.execute_reply": "2024-02-13T04:44:38.795469Z" + "iopub.execute_input": "2024-02-13T22:14:27.876612Z", + "iopub.status.busy": "2024-02-13T22:14:27.876313Z", + "iopub.status.idle": "2024-02-13T22:14:27.879559Z", + "shell.execute_reply": "2024-02-13T22:14:27.879117Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:38.797766Z", - "iopub.status.busy": "2024-02-13T04:44:38.797587Z", - "iopub.status.idle": "2024-02-13T04:44:38.801104Z", - "shell.execute_reply": "2024-02-13T04:44:38.800689Z" + "iopub.execute_input": "2024-02-13T22:14:27.881496Z", + "iopub.status.busy": "2024-02-13T22:14:27.881157Z", + "iopub.status.idle": "2024-02-13T22:14:27.884163Z", + "shell.execute_reply": "2024-02-13T22:14:27.883740Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:38.802976Z", - "iopub.status.busy": "2024-02-13T04:44:38.802800Z", - "iopub.status.idle": "2024-02-13T04:44:38.957294Z", - "shell.execute_reply": "2024-02-13T04:44:38.956789Z" + "iopub.execute_input": "2024-02-13T22:14:27.886084Z", + "iopub.status.busy": "2024-02-13T22:14:27.885757Z", + "iopub.status.idle": "2024-02-13T22:14:27.941089Z", + "shell.execute_reply": "2024-02-13T22:14:27.940624Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:38.959359Z", - "iopub.status.busy": "2024-02-13T04:44:38.959171Z", - "iopub.status.idle": "2024-02-13T04:44:38.963120Z", - "shell.execute_reply": "2024-02-13T04:44:38.962610Z" + "iopub.execute_input": "2024-02-13T22:14:27.942931Z", + "iopub.status.busy": "2024-02-13T22:14:27.942726Z", + "iopub.status.idle": "2024-02-13T22:14:27.946875Z", + "shell.execute_reply": "2024-02-13T22:14:27.946403Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_payment_fee_charged', 'card_about_to_expire', 'beneficiary_not_allowed', 'getting_spare_card', 'lost_or_stolen_phone', 'cancel_transfer', 'visa_or_mastercard', 'supported_cards_and_currencies', 'change_pin', 'apple_pay_or_google_pay'}\n" + "Classes: {'change_pin', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'card_about_to_expire', 'lost_or_stolen_phone', 'visa_or_mastercard', 'getting_spare_card', 'cancel_transfer', 'card_payment_fee_charged'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:38.965076Z", - "iopub.status.busy": "2024-02-13T04:44:38.964771Z", - "iopub.status.idle": "2024-02-13T04:44:38.968020Z", - "shell.execute_reply": "2024-02-13T04:44:38.967566Z" + "iopub.execute_input": "2024-02-13T22:14:27.948829Z", + "iopub.status.busy": "2024-02-13T22:14:27.948487Z", + "iopub.status.idle": "2024-02-13T22:14:27.951413Z", + "shell.execute_reply": "2024-02-13T22:14:27.950900Z" } }, "outputs": [ @@ -365,17 +365,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:38.970166Z", - "iopub.status.busy": "2024-02-13T04:44:38.969728Z", - "iopub.status.idle": "2024-02-13T04:44:44.619483Z", - "shell.execute_reply": "2024-02-13T04:44:44.618961Z" + "iopub.execute_input": "2024-02-13T22:14:27.953431Z", + "iopub.status.busy": "2024-02-13T22:14:27.953137Z", + "iopub.status.idle": "2024-02-13T22:14:32.416923Z", + "shell.execute_reply": "2024-02-13T22:14:32.416394Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b8aca08a689948288df537af46a20d0d", + "model_id": "c774b0a4c9304d858771c224f32cfc90", "version_major": 2, "version_minor": 0 }, @@ -389,7 +389,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b5f3627421dc44c7940e67df11755b0e", + "model_id": "ae265ce8d29d4bcfad6809b750ee2c45", "version_major": 2, "version_minor": 0 }, @@ -403,7 +403,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "153a1ac8d73a41a785a3357f72d1a465", + "model_id": "d8ae9174c21a43f485031d7cf98ff879", "version_major": 2, "version_minor": 0 }, @@ -417,7 +417,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "32d515c7b291422b9c81213cffea15bb", + "model_id": "df6b06df51354a549bc7969f13ec0440", "version_major": 2, "version_minor": 0 }, @@ -431,7 +431,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8962cfc9352b46d9b5a079451feb0ac2", + "model_id": "77ecc08db5ff4962af6a0cef4d1dee71", "version_major": 2, "version_minor": 0 }, @@ -445,7 +445,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2f34745861044a05a1f9adc4802a31c9", + "model_id": "9ade5ca6a7704ccfba3391c5a1602b5f", "version_major": 2, "version_minor": 0 }, @@ -459,7 +459,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "098c04af504c4bd4b885ac1d1c54200c", + "model_id": "2dba66fd0fa34b4ab51b3dad76e0a5e6", "version_major": 2, "version_minor": 0 }, @@ -522,10 +522,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:44.622143Z", - "iopub.status.busy": "2024-02-13T04:44:44.621741Z", - "iopub.status.idle": "2024-02-13T04:44:45.506361Z", - "shell.execute_reply": "2024-02-13T04:44:45.505735Z" + "iopub.execute_input": "2024-02-13T22:14:32.419976Z", + "iopub.status.busy": "2024-02-13T22:14:32.419479Z", + "iopub.status.idle": "2024-02-13T22:14:33.305993Z", + "shell.execute_reply": "2024-02-13T22:14:33.305392Z" }, "scrolled": true }, @@ -557,10 +557,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:45.509245Z", - "iopub.status.busy": "2024-02-13T04:44:45.508863Z", - "iopub.status.idle": "2024-02-13T04:44:45.511931Z", - "shell.execute_reply": "2024-02-13T04:44:45.511453Z" + "iopub.execute_input": "2024-02-13T22:14:33.309152Z", + "iopub.status.busy": "2024-02-13T22:14:33.308748Z", + "iopub.status.idle": "2024-02-13T22:14:33.311716Z", + "shell.execute_reply": "2024-02-13T22:14:33.311221Z" } }, "outputs": [], @@ -580,10 +580,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:45.514298Z", - "iopub.status.busy": "2024-02-13T04:44:45.513897Z", - "iopub.status.idle": "2024-02-13T04:44:47.125855Z", - "shell.execute_reply": "2024-02-13T04:44:47.125224Z" + "iopub.execute_input": "2024-02-13T22:14:33.314202Z", + "iopub.status.busy": "2024-02-13T22:14:33.313835Z", + "iopub.status.idle": "2024-02-13T22:14:34.897186Z", + "shell.execute_reply": "2024-02-13T22:14:34.896520Z" }, "scrolled": true }, @@ -628,10 +628,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:47.130313Z", - "iopub.status.busy": "2024-02-13T04:44:47.128934Z", - "iopub.status.idle": "2024-02-13T04:44:47.155939Z", - "shell.execute_reply": "2024-02-13T04:44:47.155422Z" + "iopub.execute_input": "2024-02-13T22:14:34.900389Z", + "iopub.status.busy": "2024-02-13T22:14:34.899543Z", + "iopub.status.idle": "2024-02-13T22:14:34.923503Z", + "shell.execute_reply": "2024-02-13T22:14:34.922988Z" }, "scrolled": true }, @@ -756,10 +756,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:47.159643Z", - "iopub.status.busy": "2024-02-13T04:44:47.158717Z", - "iopub.status.idle": "2024-02-13T04:44:47.169220Z", - "shell.execute_reply": "2024-02-13T04:44:47.168804Z" + "iopub.execute_input": "2024-02-13T22:14:34.926971Z", + "iopub.status.busy": "2024-02-13T22:14:34.926037Z", + "iopub.status.idle": "2024-02-13T22:14:34.937657Z", + "shell.execute_reply": "2024-02-13T22:14:34.937110Z" }, "scrolled": true }, @@ -869,10 +869,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:47.171614Z", - "iopub.status.busy": "2024-02-13T04:44:47.171424Z", - "iopub.status.idle": "2024-02-13T04:44:47.176071Z", - "shell.execute_reply": "2024-02-13T04:44:47.175609Z" + "iopub.execute_input": "2024-02-13T22:14:34.939793Z", + "iopub.status.busy": "2024-02-13T22:14:34.939621Z", + "iopub.status.idle": "2024-02-13T22:14:34.944622Z", + "shell.execute_reply": "2024-02-13T22:14:34.944063Z" } }, "outputs": [ @@ -910,10 +910,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:47.178175Z", - "iopub.status.busy": "2024-02-13T04:44:47.177821Z", - "iopub.status.idle": "2024-02-13T04:44:47.184818Z", - "shell.execute_reply": "2024-02-13T04:44:47.184293Z" + "iopub.execute_input": "2024-02-13T22:14:34.946691Z", + "iopub.status.busy": "2024-02-13T22:14:34.946513Z", + "iopub.status.idle": "2024-02-13T22:14:34.954229Z", + "shell.execute_reply": "2024-02-13T22:14:34.953689Z" } }, "outputs": [ @@ -1030,10 +1030,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:47.187068Z", - "iopub.status.busy": "2024-02-13T04:44:47.186732Z", - "iopub.status.idle": "2024-02-13T04:44:47.193939Z", - "shell.execute_reply": "2024-02-13T04:44:47.193368Z" + "iopub.execute_input": "2024-02-13T22:14:34.956382Z", + "iopub.status.busy": "2024-02-13T22:14:34.956215Z", + "iopub.status.idle": "2024-02-13T22:14:34.962391Z", + "shell.execute_reply": "2024-02-13T22:14:34.961864Z" } }, "outputs": [ @@ -1116,10 +1116,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:47.195949Z", - "iopub.status.busy": "2024-02-13T04:44:47.195749Z", - "iopub.status.idle": "2024-02-13T04:44:47.202086Z", - "shell.execute_reply": "2024-02-13T04:44:47.201620Z" + "iopub.execute_input": "2024-02-13T22:14:34.964293Z", + "iopub.status.busy": "2024-02-13T22:14:34.963934Z", + "iopub.status.idle": "2024-02-13T22:14:34.969863Z", + "shell.execute_reply": "2024-02-13T22:14:34.969376Z" } }, "outputs": [ @@ -1227,10 +1227,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:47.204103Z", - "iopub.status.busy": "2024-02-13T04:44:47.203915Z", - "iopub.status.idle": "2024-02-13T04:44:47.213213Z", - "shell.execute_reply": "2024-02-13T04:44:47.212661Z" + "iopub.execute_input": "2024-02-13T22:14:34.972026Z", + "iopub.status.busy": "2024-02-13T22:14:34.971669Z", + "iopub.status.idle": "2024-02-13T22:14:34.981277Z", + "shell.execute_reply": "2024-02-13T22:14:34.980745Z" } }, "outputs": [ @@ -1341,10 +1341,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:47.215349Z", - "iopub.status.busy": "2024-02-13T04:44:47.215055Z", - "iopub.status.idle": "2024-02-13T04:44:47.220530Z", - "shell.execute_reply": "2024-02-13T04:44:47.220006Z" + "iopub.execute_input": "2024-02-13T22:14:34.983251Z", + "iopub.status.busy": "2024-02-13T22:14:34.982930Z", + "iopub.status.idle": "2024-02-13T22:14:34.988301Z", + "shell.execute_reply": "2024-02-13T22:14:34.987778Z" } }, "outputs": [ @@ -1412,10 +1412,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:47.222430Z", - "iopub.status.busy": "2024-02-13T04:44:47.222234Z", - "iopub.status.idle": "2024-02-13T04:44:47.227796Z", - "shell.execute_reply": "2024-02-13T04:44:47.227359Z" + "iopub.execute_input": "2024-02-13T22:14:34.990404Z", + "iopub.status.busy": "2024-02-13T22:14:34.990002Z", + "iopub.status.idle": "2024-02-13T22:14:34.995466Z", + "shell.execute_reply": "2024-02-13T22:14:34.994952Z" } }, "outputs": [ @@ -1494,10 +1494,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:47.229757Z", - "iopub.status.busy": "2024-02-13T04:44:47.229581Z", - "iopub.status.idle": "2024-02-13T04:44:47.233092Z", - "shell.execute_reply": "2024-02-13T04:44:47.232585Z" + "iopub.execute_input": "2024-02-13T22:14:34.997306Z", + "iopub.status.busy": "2024-02-13T22:14:34.997136Z", + "iopub.status.idle": "2024-02-13T22:14:35.000688Z", + "shell.execute_reply": "2024-02-13T22:14:35.000270Z" } }, "outputs": [ @@ -1545,10 +1545,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:47.235064Z", - "iopub.status.busy": "2024-02-13T04:44:47.234887Z", - "iopub.status.idle": "2024-02-13T04:44:47.240251Z", - "shell.execute_reply": "2024-02-13T04:44:47.239806Z" + "iopub.execute_input": "2024-02-13T22:14:35.002506Z", + "iopub.status.busy": "2024-02-13T22:14:35.002339Z", + "iopub.status.idle": "2024-02-13T22:14:35.007443Z", + "shell.execute_reply": "2024-02-13T22:14:35.007005Z" }, "nbsphinx": "hidden" }, @@ -1598,78 +1598,82 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "026c86bd27bc4dc19fe1c1c899c5be5a": { + "004e35506c914146b2dcf454f74a3e24": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_380dab02042c4154b2f4bc8dc6fe45f4", - "placeholder": "​", - "style": "IPY_MODEL_4cd20d813b4a44439e1517d4f6298fae", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 438kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "098c04af504c4bd4b885ac1d1c54200c": { + "00a591d326424fd6bd0da30dda6c5477": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e53a8a3e93694038864ad173e124c15e", - "IPY_MODEL_604ed7aeaeb5488499fe94c393bdd4c1", - "IPY_MODEL_7d97bd733a094ef3a54a87ef3f6cbfa1" - ], - "layout": "IPY_MODEL_b296a9815f794ec4a79f36e7b1d7418b", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "153a1ac8d73a41a785a3357f72d1a465": { + "040a9bc4b9a14be49ae89e3aff35066a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "07da339453c64bfc8853cfc5a26b9fc4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a467a3d21d644c8a8cb5d2a51c4af8bb", - "IPY_MODEL_c1d703995efb45c59fe8187aa38dfe1e", - "IPY_MODEL_551cab051e954363b445219b54b4a82e" - ], - "layout": "IPY_MODEL_e6d76c5d9b3640318e146d24ecec87b1", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c92bf1ae16c34e00a2919210d6014be8", + "placeholder": "​", + "style": "IPY_MODEL_c041908be7824bfb930efbdb18f0ec31", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "config.json: 100%" } }, - "15afe00105bf47db9b97adcf1c436ee7": { + "0e89bdd71ac249ef9c05731d37d352a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1722,129 +1726,161 @@ "width": null } }, - "1727c7a41a694f45ac62fff0d829ff8e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1885555b3b2e48f0bdf9397ee4081b75": { + "189041b1c68746b1a19cf8426e5090b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_380e1b8bf3634823a29680d0391de60c", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7ddd9eba8bb54c8d9caa9593184987b3", + "tabbable": null, + "tooltip": null, + "value": 231508.0 } }, - "268ca702d4f84196969873fda356eeab": { + "229d0872e3114208bcefaccff0f1da25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8c48c2b3b0a949ef9b7c5839328974e1", - "placeholder": "​", - "style": "IPY_MODEL_8c2d5720e59246d5a9e9d93589c7b805", + "layout": "IPY_MODEL_6e47810532df438bbec3c4c80c02e128", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7c5057f4e4164d3dbd67e0e62a0c91e2", "tabbable": null, "tooltip": null, - "value": ".gitattributes: 100%" + "value": 466062.0 } }, - "26a4108d0a21425a898ddfd5b803852c": { + "26617234c504442bacacf57fbe4be7fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d72ada4ba08b4449b815e9377f2936a3", - "placeholder": "​", - "style": "IPY_MODEL_d8867a17cbe8440d9b839dc8b2b35fe4", + "layout": "IPY_MODEL_a13dc179f85048259b11ac8c0d03aaa5", + "max": 29.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f0fa797f4f524706bb8328e76ad3a369", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" + "value": 29.0 } }, - "29890d4ea74c4395ad3d63d174a7b583": { - "model_module": "@jupyter-widgets/controls", + "2d15a96321e54bbab2ae84509381ccb5": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2f34745861044a05a1f9adc4802a31c9": { + "2d3079bc733a4c09bef12c577e5c901d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f08c3222f2084fef82c013488604cc71", - "IPY_MODEL_f63b809522104f858ff960be5f3d1af7", - "IPY_MODEL_f7833e195f59434491c8c93292c51528" - ], - "layout": "IPY_MODEL_ae778c6b041b42df8bafadc6b43c29c6", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d550e2a7f246407697728e8a11999345", + "placeholder": "​", + "style": "IPY_MODEL_9bbb5bda5c3640988e6c0394ede429e9", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 422kB/s]" } }, - "32d515c7b291422b9c81213cffea15bb": { + "2dba66fd0fa34b4ab51b3dad76e0a5e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1859,34 +1895,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_deba86ef119f4f98a414d1aff29f05ad", - "IPY_MODEL_e42c09e35fa746b8aae318021abc013f", - "IPY_MODEL_9d84d3180c734a00960557f4298230f7" + "IPY_MODEL_56b7c6565e5d4d29b7a9e86840c87abf", + "IPY_MODEL_189041b1c68746b1a19cf8426e5090b0", + "IPY_MODEL_fb639536293a447bb6afca22f8941b25" ], - "layout": "IPY_MODEL_6dcf92a711aa477fa345f38d22b11eb7", + "layout": "IPY_MODEL_4772d903a97b4e3b8900574edcbe22ea", "tabbable": null, "tooltip": null } }, - "32e4d385aef64a499f934438ab665f7f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "380dab02042c4154b2f4bc8dc6fe45f4": { + "380e1b8bf3634823a29680d0391de60c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1939,23 +1957,25 @@ "width": null } }, - "3c4ded2052984f24bbf90c129cc27cd1": { + "3f5a64a3138a4115ba9fa2242e607d84": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "41fedb1a22ac411e8e3c2ddcf3cc58a4": { + "4772d903a97b4e3b8900574edcbe22ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2008,7 +2028,7 @@ "width": null } }, - "43983a81175146b2aad954ac078bd203": { + "4cba3f7f4b3345dfb512e202293e692e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2061,7 +2081,25 @@ "width": null } }, - "44adf0c5b49e432ba2974f5696969c24": { + "4d70d50b9bce40e3b6b3dd5c84bcc57d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4de6ea8ae0814482aadf0d4ee94013e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2114,7 +2152,7 @@ "width": null } }, - "4849bee0d66e4d93987c457533684d8b": { + "56b7c6565e5d4d29b7a9e86840c87abf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2129,40 +2167,22 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7b96967cf7ec4340895a7fd2e487f570", + "layout": "IPY_MODEL_5779b9664a5e4ca387447b066c31056c", "placeholder": "​", - "style": "IPY_MODEL_7c5990b5f579419b93b78a798bf1fdf5", + "style": "IPY_MODEL_6e05a331db94429d8e2db32a8db6627c", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 3.55MB/s]" + "value": "vocab.txt: 100%" } }, - "4cd20d813b4a44439e1517d4f6298fae": { - "model_module": "@jupyter-widgets/controls", + "5779b9664a5e4ca387447b066c31056c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4f2c873fd50f47d1a8e099a756853947": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -2208,7 +2228,7 @@ "width": null } }, - "506c51e355024187b3a287a87dec2293": { + "6cdd3b62c14840feb984a042b353b614": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2261,30 +2281,7 @@ "width": null } }, - "551cab051e954363b445219b54b4a82e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_be48061ec2fa4646a767f45be6ce1d71", - "placeholder": "​", - "style": "IPY_MODEL_f95ac1ecf08343c8ad79b513f3bdfbc8", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 118kB/s]" - } - }, - "58f206c1549e464fa27a324083aedb45": { + "6e05a331db94429d8e2db32a8db6627c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2302,49 +2299,7 @@ "text_color": null } }, - "5efa6aab876847adab817e3c52c4a44f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "604ed7aeaeb5488499fe94c393bdd4c1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_506c51e355024187b3a287a87dec2293", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3c4ded2052984f24bbf90c129cc27cd1", - "tabbable": null, - "tooltip": null, - "value": 231508.0 - } - }, - "6b7a91ff0de44af697098734690996db": { + "6e47810532df438bbec3c4c80c02e128": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2397,7 +2352,7 @@ "width": null } }, - "6dcf92a711aa477fa345f38d22b11eb7": { + "733f6038da08467ab4f0b6f5458e2098": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2450,49 +2405,31 @@ "width": null } }, - "763a148dcef24efd8ff547aaa7e5e80f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7a4e43e813134c82a7cdb21b62a0821a": { + "77ecc08db5ff4962af6a0cef4d1dee71": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9cfd628438b8431baf0f89e8de6c796e", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_763a148dcef24efd8ff547aaa7e5e80f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f165e76991f34ad3973995e735ec96e1", + "IPY_MODEL_229d0872e3114208bcefaccff0f1da25", + "IPY_MODEL_95e6925056894e6baf091e4f2c74e901" + ], + "layout": "IPY_MODEL_fa7f56ece0f44256877874ff1fdc8e80", "tabbable": null, - "tooltip": null, - "value": 2211.0 + "tooltip": null } }, - "7b96967cf7ec4340895a7fd2e487f570": { + "7aa6393552e340e4bc37ce137afe9421": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2545,7 +2482,80 @@ "width": null } }, - "7bc01c1845664080bd60249dcaacb6d6": { + "7c5057f4e4164d3dbd67e0e62a0c91e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7c5b24ef952a44cda7b7f452ffaa53e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7ddd9eba8bb54c8d9caa9593184987b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7f9c8d7eeea74d818ecca31f9c50581a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f232ca97006549ac890517d43be9e563", + "placeholder": "​", + "style": "IPY_MODEL_bb149c09340e4fdfbabd2fc31512e719", + "tabbable": null, + "tooltip": null, + "value": " 29.0/29.0 [00:00<00:00, 5.50kB/s]" + } + }, + "821720644f8e4e90b7acf56f70757db2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2598,7 +2608,7 @@ "width": null } }, - "7c5990b5f579419b93b78a798bf1fdf5": { + "85723554378142bf8814de7943aa272e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2616,30 +2626,23 @@ "text_color": null } }, - "7cbb8a32232646a791c02fb18484eec2": { + "87b5d7f8f8de42f7aaaaa5885df9aaa3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7bc01c1845664080bd60249dcaacb6d6", - "placeholder": "​", - "style": "IPY_MODEL_9990fe4a1879453d8594922bec6ab6f8", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "7d97bd733a094ef3a54a87ef3f6cbfa1": { + "8805b3cbdfab4f4eb96a91dca63a53cb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2654,15 +2657,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a99c3e54d657455e96140e2f71fb2445", + "layout": "IPY_MODEL_6cdd3b62c14840feb984a042b353b614", "placeholder": "​", - "style": "IPY_MODEL_58f206c1549e464fa27a324083aedb45", + "style": "IPY_MODEL_00a591d326424fd6bd0da30dda6c5477", "tabbable": null, "tooltip": null, - "value": " 232k/232k [00:00<00:00, 1.96MB/s]" + "value": "README.md: 100%" } }, - "82eeb2156bc44cd290eba8e31b90ba33": { + "88af6f8b8e204fe08898c7af371b3599": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2715,31 +2718,23 @@ "width": null } }, - "8962cfc9352b46d9b5a079451feb0ac2": { + "897280dc42c243a7aab7a7cff0648bf7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_26a4108d0a21425a898ddfd5b803852c", - "IPY_MODEL_a031e5ee5bb54d308ffe1f286fe8c8dd", - "IPY_MODEL_4849bee0d66e4d93987c457533684d8b" - ], - "layout": "IPY_MODEL_44adf0c5b49e432ba2974f5696969c24", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8974f699d1cf43319700b49e192c8805": { + "9384a143b5c24bf48aae5f78de633087": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2792,23 +2787,30 @@ "width": null } }, - "8c0282313bbb46fe8f57d0f1f8f3af9b": { + "95e6925056894e6baf091e4f2c74e901": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2d15a96321e54bbab2ae84509381ccb5", + "placeholder": "​", + "style": "IPY_MODEL_4d70d50b9bce40e3b6b3dd5c84bcc57d", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 33.5MB/s]" } }, - "8c2d5720e59246d5a9e9d93589c7b805": { + "95e97a7e02cc4c3d8954168c0a66c0fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2826,7 +2828,7 @@ "text_color": null } }, - "8c48c2b3b0a949ef9b7c5839328974e1": { + "9903c55df2c64113807587d41e300592": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2879,7 +2881,49 @@ "width": null } }, - "8e0aed21c29540119c6e3270eebbf80e": { + "9ade5ca6a7704ccfba3391c5a1602b5f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dea3c770da2545548a1084087655b211", + "IPY_MODEL_26617234c504442bacacf57fbe4be7fc", + "IPY_MODEL_7f9c8d7eeea74d818ecca31f9c50581a" + ], + "layout": "IPY_MODEL_c5b41331c0db440997248fe6747bad65", + "tabbable": null, + "tooltip": null + } + }, + "9bbb5bda5c3640988e6c0394ede429e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9c7e6a4546a9486082897ba5e7da0c1a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2932,41 +2976,60 @@ "width": null } }, - "9332f2ae63884d799895fbe296a11069": { - "model_module": "@jupyter-widgets/controls", + "a13dc179f85048259b11ac8c0d03aaa5": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9990fe4a1879453d8594922bec6ab6f8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "9cfd628438b8431baf0f89e8de6c796e": { + "a41798e90bd041fcbdb6c53ef25187b8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3019,7 +3082,114 @@ "width": null } }, - "9d84d3180c734a00960557f4298230f7": { + "a72e2b8a666c4e79b500c8347cbc2f3f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4cba3f7f4b3345dfb512e202293e692e", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ad360f1cf7684a6290585447e8a982bb", + "tabbable": null, + "tooltip": null, + "value": 665.0 + } + }, + "ad360f1cf7684a6290585447e8a982bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ae265ce8d29d4bcfad6809b750ee2c45": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8805b3cbdfab4f4eb96a91dca63a53cb", + "IPY_MODEL_f3ca2c6a05ee4139af28f65b0eeb1ae8", + "IPY_MODEL_2d3079bc733a4c09bef12c577e5c901d" + ], + "layout": "IPY_MODEL_9c7e6a4546a9486082897ba5e7da0c1a", + "tabbable": null, + "tooltip": null + } + }, + "b7026c968c734e77865783f711c15b1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_733f6038da08467ab4f0b6f5458e2098", + "placeholder": "​", + "style": "IPY_MODEL_c089b9f67bcf46968bfcd8824e1a53a2", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 127kB/s]" + } + }, + "bb149c09340e4fdfbabd2fc31512e719": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bb42cb58ee564c87b7116aa796f9627b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3034,15 +3204,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f47f59d7a4e04cac9f32b03e0904f84f", + "layout": "IPY_MODEL_7aa6393552e340e4bc37ce137afe9421", "placeholder": "​", - "style": "IPY_MODEL_ab33a926066f434f91e75e8517475480", + "style": "IPY_MODEL_3f5a64a3138a4115ba9fa2242e607d84", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 131MB/s]" + "value": " 391/391 [00:00<00:00, 65.4kB/s]" } }, - "a031e5ee5bb54d308ffe1f286fe8c8dd": { + "bef8a949bb824fe28ac968a4d077ee09": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3058,17 +3228,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4f2c873fd50f47d1a8e099a756853947", - "max": 466062.0, + "layout": "IPY_MODEL_88af6f8b8e204fe08898c7af371b3599", + "max": 54245363.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_8c0282313bbb46fe8f57d0f1f8f3af9b", + "style": "IPY_MODEL_040a9bc4b9a14be49ae89e3aff35066a", "tabbable": null, "tooltip": null, - "value": 466062.0 + "value": 54245363.0 } }, - "a21b5d2d6ef849628514d72e7f4f360c": { + "c033c2ab0a4f4d429bba70326cdb0cca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3121,7 +3291,43 @@ "width": null } }, - "a3d9976bafc345ebb0d09bf47bc98b5c": { + "c041908be7824bfb930efbdb18f0ec31": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c089b9f67bcf46968bfcd8824e1a53a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c4f366a5432c432bbfdf0d38931ed91e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3174,30 +3380,7 @@ "width": null } }, - "a467a3d21d644c8a8cb5d2a51c4af8bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a3d9976bafc345ebb0d09bf47bc98b5c", - "placeholder": "​", - "style": "IPY_MODEL_c41b39f1c5134912b66b677ff920e3e2", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" - } - }, - "a99c3e54d657455e96140e2f71fb2445": { + "c5b41331c0db440997248fe6747bad65": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3250,7 +3433,31 @@ "width": null } }, - "ab2678daf516428abd9d5435c181580c": { + "c774b0a4c9304d858771c224f32cfc90": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e10e0f3547464c46809df0bf3b3a9998", + "IPY_MODEL_da0ffa88d0c7402da3c1152c80488706", + "IPY_MODEL_bb42cb58ee564c87b7116aa796f9627b" + ], + "layout": "IPY_MODEL_821720644f8e4e90b7acf56f70757db2", + "tabbable": null, + "tooltip": null + } + }, + "c92bf1ae16c34e00a2919210d6014be8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3303,25 +3510,30 @@ "width": null } }, - "ab33a926066f434f91e75e8517475480": { + "cc018232d1524b1b8610d939dd6292b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9384a143b5c24bf48aae5f78de633087", + "placeholder": "​", + "style": "IPY_MODEL_f21f8c6b31b6492e9bab669fd8137db8", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 231MB/s]" } }, - "abac78be723d40bc923a9ffcd9517695": { + "d550e2a7f246407697728e8a11999345": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3374,7 +3586,7 @@ "width": null } }, - "ae778c6b041b42df8bafadc6b43c29c6": { + "d89dee8aedbf49d38043b4cecbf6363d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3427,63 +3639,10 @@ "width": null } }, - "b296a9815f794ec4a79f36e7b1d7418b": { - "model_module": "@jupyter-widgets/base", + "d8ae9174c21a43f485031d7cf98ff879": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b5f3627421dc44c7940e67df11755b0e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -3495,137 +3654,112 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_7cbb8a32232646a791c02fb18484eec2", - "IPY_MODEL_7a4e43e813134c82a7cdb21b62a0821a", - "IPY_MODEL_026c86bd27bc4dc19fe1c1c899c5be5a" + "IPY_MODEL_07da339453c64bfc8853cfc5a26b9fc4", + "IPY_MODEL_a72e2b8a666c4e79b500c8347cbc2f3f", + "IPY_MODEL_b7026c968c734e77865783f711c15b1c" ], - "layout": "IPY_MODEL_43983a81175146b2aad954ac078bd203", + "layout": "IPY_MODEL_c033c2ab0a4f4d429bba70326cdb0cca", "tabbable": null, "tooltip": null } }, - "b8aca08a689948288df537af46a20d0d": { + "da0ffa88d0c7402da3c1152c80488706": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_268ca702d4f84196969873fda356eeab", - "IPY_MODEL_de0ba6f3e6c348379bd0d334af07397d", - "IPY_MODEL_c32b5691668c4e6ca4798504a491e405" - ], - "layout": "IPY_MODEL_ab2678daf516428abd9d5435c181580c", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a41798e90bd041fcbdb6c53ef25187b8", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_897280dc42c243a7aab7a7cff0648bf7", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 391.0 } }, - "bd832ea356a543f7a3b126a08d0ad4c0": { + "dd2b2ce609794152b4190ce546a84196": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ef54c08451f14e2da2b8aa7542e8495e", + "placeholder": "​", + "style": "IPY_MODEL_85723554378142bf8814de7943aa272e", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" } }, - "be48061ec2fa4646a767f45be6ce1d71": { - "model_module": "@jupyter-widgets/base", + "dea3c770da2545548a1084087655b211": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9903c55df2c64113807587d41e300592", + "placeholder": "​", + "style": "IPY_MODEL_004e35506c914146b2dcf454f74a3e24", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" } }, - "c1d703995efb45c59fe8187aa38dfe1e": { + "df6b06df51354a549bc7969f13ec0440": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_41fedb1a22ac411e8e3c2ddcf3cc58a4", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1727c7a41a694f45ac62fff0d829ff8e", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_dd2b2ce609794152b4190ce546a84196", + "IPY_MODEL_bef8a949bb824fe28ac968a4d077ee09", + "IPY_MODEL_cc018232d1524b1b8610d939dd6292b3" + ], + "layout": "IPY_MODEL_c4f366a5432c432bbfdf0d38931ed91e", "tabbable": null, - "tooltip": null, - "value": 665.0 + "tooltip": null } }, - "c32b5691668c4e6ca4798504a491e405": { + "e10e0f3547464c46809df0bf3b3a9998": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3640,33 +3774,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fc34c3013367477aadf709afe44ed394", + "layout": "IPY_MODEL_4de6ea8ae0814482aadf0d4ee94013e3", "placeholder": "​", - "style": "IPY_MODEL_1885555b3b2e48f0bdf9397ee4081b75", + "style": "IPY_MODEL_95e97a7e02cc4c3d8954168c0a66c0fb", "tabbable": null, "tooltip": null, - "value": " 391/391 [00:00<00:00, 62.9kB/s]" - } - }, - "c41b39f1c5134912b66b677ff920e3e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": ".gitattributes: 100%" } }, - "d2e6ae31f1024a9588fd20802e08bd99": { + "e2f862828ac0442d91ba9d87655ee91f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3684,7 +3800,7 @@ "text_color": null } }, - "d72ada4ba08b4449b815e9377f2936a3": { + "e7ea247f24b74d788c82fa3fe13ed652": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3737,139 +3853,7 @@ "width": null } }, - "d8867a17cbe8440d9b839dc8b2b35fe4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dd2688e2db9947379c4fe85857e38d4c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "de0ba6f3e6c348379bd0d334af07397d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_abac78be723d40bc923a9ffcd9517695", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5efa6aab876847adab817e3c52c4a44f", - "tabbable": null, - "tooltip": null, - "value": 391.0 - } - }, - "deba86ef119f4f98a414d1aff29f05ad": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8e0aed21c29540119c6e3270eebbf80e", - "placeholder": "​", - "style": "IPY_MODEL_d2e6ae31f1024a9588fd20802e08bd99", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "e42c09e35fa746b8aae318021abc013f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_82eeb2156bc44cd290eba8e31b90ba33", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_dd2688e2db9947379c4fe85857e38d4c", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "e53a8a3e93694038864ad173e124c15e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8974f699d1cf43319700b49e192c8805", - "placeholder": "​", - "style": "IPY_MODEL_32e4d385aef64a499f934438ab665f7f", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "e6d76c5d9b3640318e146d24ecec87b1": { + "ef54c08451f14e2da2b8aa7542e8495e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3922,7 +3906,23 @@ "width": null } }, - "f08c3222f2084fef82c013488604cc71": { + "f0fa797f4f524706bb8328e76ad3a369": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f165e76991f34ad3973995e735ec96e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3937,15 +3937,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6b7a91ff0de44af697098734690996db", + "layout": "IPY_MODEL_d89dee8aedbf49d38043b4cecbf6363d", "placeholder": "​", - "style": "IPY_MODEL_29890d4ea74c4395ad3d63d174a7b583", + "style": "IPY_MODEL_7c5b24ef952a44cda7b7f452ffaa53e3", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" + "value": "tokenizer.json: 100%" } }, - "f47f59d7a4e04cac9f32b03e0904f84f": { + "f21f8c6b31b6492e9bab669fd8137db8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f232ca97006549ac890517d43be9e563": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3998,7 +4016,7 @@ "width": null } }, - "f63b809522104f858ff960be5f3d1af7": { + "f3ca2c6a05ee4139af28f65b0eeb1ae8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4014,58 +4032,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a21b5d2d6ef849628514d72e7f4f360c", - "max": 29.0, + "layout": "IPY_MODEL_e7ea247f24b74d788c82fa3fe13ed652", + "max": 2211.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9332f2ae63884d799895fbe296a11069", - "tabbable": null, - "tooltip": null, - "value": 29.0 - } - }, - "f7833e195f59434491c8c93292c51528": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_15afe00105bf47db9b97adcf1c436ee7", - "placeholder": "​", - "style": "IPY_MODEL_bd832ea356a543f7a3b126a08d0ad4c0", + "style": "IPY_MODEL_87b5d7f8f8de42f7aaaaa5885df9aaa3", "tabbable": null, "tooltip": null, - "value": " 29.0/29.0 [00:00<00:00, 5.58kB/s]" - } - }, - "f95ac1ecf08343c8ad79b513f3bdfbc8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 2211.0 } }, - "fc34c3013367477aadf709afe44ed394": { + "fa7f56ece0f44256877874ff1fdc8e80": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4117,6 +4094,29 @@ "visibility": null, "width": null } + }, + "fb639536293a447bb6afca22f8941b25": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0e89bdd71ac249ef9c05731d37d352a7", + "placeholder": "​", + "style": "IPY_MODEL_e2f862828ac0442d91ba9d87655ee91f", + "tabbable": null, + "tooltip": null, + "value": " 232k/232k [00:00<00:00, 40.8MB/s]" + } } }, "version_major": 2, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index d29a5e4a8..4eedb8b98 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:50.575768Z", - "iopub.status.busy": "2024-02-13T04:44:50.575354Z", - "iopub.status.idle": "2024-02-13T04:44:51.651620Z", - "shell.execute_reply": "2024-02-13T04:44:51.651003Z" + "iopub.execute_input": "2024-02-13T22:14:38.219955Z", + "iopub.status.busy": "2024-02-13T22:14:38.219463Z", + "iopub.status.idle": "2024-02-13T22:14:39.272752Z", + "shell.execute_reply": "2024-02-13T22:14:39.272134Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:51.654465Z", - "iopub.status.busy": "2024-02-13T04:44:51.654070Z", - "iopub.status.idle": "2024-02-13T04:44:51.656947Z", - "shell.execute_reply": "2024-02-13T04:44:51.656440Z" + "iopub.execute_input": "2024-02-13T22:14:39.275332Z", + "iopub.status.busy": "2024-02-13T22:14:39.275041Z", + "iopub.status.idle": "2024-02-13T22:14:39.277954Z", + "shell.execute_reply": "2024-02-13T22:14:39.277446Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:51.659087Z", - "iopub.status.busy": "2024-02-13T04:44:51.658917Z", - "iopub.status.idle": "2024-02-13T04:44:51.670819Z", - "shell.execute_reply": "2024-02-13T04:44:51.670248Z" + "iopub.execute_input": "2024-02-13T22:14:39.280051Z", + "iopub.status.busy": "2024-02-13T22:14:39.279889Z", + "iopub.status.idle": "2024-02-13T22:14:39.291600Z", + "shell.execute_reply": "2024-02-13T22:14:39.291162Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:44:51.672875Z", - "iopub.status.busy": "2024-02-13T04:44:51.672548Z", - "iopub.status.idle": "2024-02-13T04:44:58.571995Z", - "shell.execute_reply": "2024-02-13T04:44:58.571422Z" + "iopub.execute_input": "2024-02-13T22:14:39.293627Z", + "iopub.status.busy": "2024-02-13T22:14:39.293361Z", + "iopub.status.idle": "2024-02-13T22:14:43.908751Z", + "shell.execute_reply": "2024-02-13T22:14:43.908179Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 41147208f..a599bbf16 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -706,13 +706,13 @@

How can I find label issues in big datasets with limited memory?

-
+
-
+
@@ -1626,7 +1626,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: info@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index 126fb6ee2..fef9ac3ed 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:00.775232Z", - "iopub.status.busy": "2024-02-13T04:45:00.775052Z", - "iopub.status.idle": "2024-02-13T04:45:01.857300Z", - "shell.execute_reply": "2024-02-13T04:45:01.856701Z" + "iopub.execute_input": "2024-02-13T22:14:45.998303Z", + "iopub.status.busy": "2024-02-13T22:14:45.998123Z", + "iopub.status.idle": "2024-02-13T22:14:47.040230Z", + "shell.execute_reply": "2024-02-13T22:14:47.039676Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:01.859954Z", - "iopub.status.busy": "2024-02-13T04:45:01.859671Z", - "iopub.status.idle": "2024-02-13T04:45:01.863074Z", - "shell.execute_reply": "2024-02-13T04:45:01.862567Z" + "iopub.execute_input": "2024-02-13T22:14:47.042951Z", + "iopub.status.busy": "2024-02-13T22:14:47.042483Z", + "iopub.status.idle": "2024-02-13T22:14:47.045660Z", + "shell.execute_reply": "2024-02-13T22:14:47.045251Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:01.865105Z", - "iopub.status.busy": "2024-02-13T04:45:01.864803Z", - "iopub.status.idle": "2024-02-13T04:45:04.931702Z", - "shell.execute_reply": "2024-02-13T04:45:04.931098Z" + "iopub.execute_input": "2024-02-13T22:14:47.047785Z", + "iopub.status.busy": "2024-02-13T22:14:47.047461Z", + "iopub.status.idle": "2024-02-13T22:14:50.039751Z", + "shell.execute_reply": "2024-02-13T22:14:50.039128Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:04.934633Z", - "iopub.status.busy": "2024-02-13T04:45:04.934014Z", - "iopub.status.idle": "2024-02-13T04:45:04.970390Z", - "shell.execute_reply": "2024-02-13T04:45:04.969615Z" + "iopub.execute_input": "2024-02-13T22:14:50.042605Z", + "iopub.status.busy": "2024-02-13T22:14:50.042028Z", + "iopub.status.idle": "2024-02-13T22:14:50.073809Z", + "shell.execute_reply": "2024-02-13T22:14:50.073244Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:04.973300Z", - "iopub.status.busy": "2024-02-13T04:45:04.972891Z", - "iopub.status.idle": "2024-02-13T04:45:05.004998Z", - "shell.execute_reply": "2024-02-13T04:45:05.004393Z" + "iopub.execute_input": "2024-02-13T22:14:50.076281Z", + "iopub.status.busy": "2024-02-13T22:14:50.076049Z", + "iopub.status.idle": "2024-02-13T22:14:50.104349Z", + "shell.execute_reply": "2024-02-13T22:14:50.103666Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:05.007855Z", - "iopub.status.busy": "2024-02-13T04:45:05.007441Z", - "iopub.status.idle": "2024-02-13T04:45:05.010632Z", - "shell.execute_reply": "2024-02-13T04:45:05.010152Z" + "iopub.execute_input": "2024-02-13T22:14:50.107135Z", + "iopub.status.busy": "2024-02-13T22:14:50.106619Z", + "iopub.status.idle": "2024-02-13T22:14:50.109702Z", + "shell.execute_reply": "2024-02-13T22:14:50.109269Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:05.012688Z", - "iopub.status.busy": "2024-02-13T04:45:05.012389Z", - "iopub.status.idle": "2024-02-13T04:45:05.015047Z", - "shell.execute_reply": "2024-02-13T04:45:05.014592Z" + "iopub.execute_input": "2024-02-13T22:14:50.111739Z", + "iopub.status.busy": "2024-02-13T22:14:50.111331Z", + "iopub.status.idle": "2024-02-13T22:14:50.113848Z", + "shell.execute_reply": "2024-02-13T22:14:50.113440Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:05.016965Z", - "iopub.status.busy": "2024-02-13T04:45:05.016705Z", - "iopub.status.idle": "2024-02-13T04:45:05.040728Z", - "shell.execute_reply": "2024-02-13T04:45:05.040212Z" + "iopub.execute_input": "2024-02-13T22:14:50.116006Z", + "iopub.status.busy": "2024-02-13T22:14:50.115587Z", + "iopub.status.idle": "2024-02-13T22:14:50.140945Z", + "shell.execute_reply": "2024-02-13T22:14:50.140399Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8f990951a8a645829cead1a86444f37f", + "model_id": "97b173d3f64446ec83392d04655319d8", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "371684a8599f4e53908b224e4d4c7ccd", + "model_id": "9e8ff64180df4ac58c1e79b17db791b1", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:05.046194Z", - "iopub.status.busy": "2024-02-13T04:45:05.045885Z", - "iopub.status.idle": "2024-02-13T04:45:05.052274Z", - "shell.execute_reply": "2024-02-13T04:45:05.051838Z" + "iopub.execute_input": "2024-02-13T22:14:50.145640Z", + "iopub.status.busy": "2024-02-13T22:14:50.145458Z", + "iopub.status.idle": "2024-02-13T22:14:50.151757Z", + "shell.execute_reply": "2024-02-13T22:14:50.151361Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:05.054320Z", - "iopub.status.busy": "2024-02-13T04:45:05.053979Z", - "iopub.status.idle": "2024-02-13T04:45:05.057314Z", - "shell.execute_reply": "2024-02-13T04:45:05.056889Z" + "iopub.execute_input": "2024-02-13T22:14:50.153664Z", + "iopub.status.busy": "2024-02-13T22:14:50.153367Z", + "iopub.status.idle": "2024-02-13T22:14:50.156751Z", + "shell.execute_reply": "2024-02-13T22:14:50.156324Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:05.059401Z", - "iopub.status.busy": "2024-02-13T04:45:05.059083Z", - "iopub.status.idle": "2024-02-13T04:45:05.065239Z", - "shell.execute_reply": "2024-02-13T04:45:05.064810Z" + "iopub.execute_input": "2024-02-13T22:14:50.158526Z", + "iopub.status.busy": "2024-02-13T22:14:50.158356Z", + "iopub.status.idle": "2024-02-13T22:14:50.164640Z", + "shell.execute_reply": "2024-02-13T22:14:50.164217Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:05.067233Z", - "iopub.status.busy": "2024-02-13T04:45:05.066917Z", - "iopub.status.idle": "2024-02-13T04:45:05.097558Z", - "shell.execute_reply": "2024-02-13T04:45:05.096960Z" + "iopub.execute_input": "2024-02-13T22:14:50.166382Z", + "iopub.status.busy": "2024-02-13T22:14:50.166214Z", + "iopub.status.idle": "2024-02-13T22:14:50.199212Z", + "shell.execute_reply": "2024-02-13T22:14:50.198602Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:05.100090Z", - "iopub.status.busy": "2024-02-13T04:45:05.099711Z", - "iopub.status.idle": "2024-02-13T04:45:05.132775Z", - "shell.execute_reply": "2024-02-13T04:45:05.132183Z" + "iopub.execute_input": "2024-02-13T22:14:50.201572Z", + "iopub.status.busy": "2024-02-13T22:14:50.201347Z", + "iopub.status.idle": "2024-02-13T22:14:50.236338Z", + "shell.execute_reply": "2024-02-13T22:14:50.235663Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:05.135669Z", - "iopub.status.busy": "2024-02-13T04:45:05.135288Z", - "iopub.status.idle": "2024-02-13T04:45:05.260452Z", - "shell.execute_reply": "2024-02-13T04:45:05.259828Z" + "iopub.execute_input": "2024-02-13T22:14:50.239309Z", + "iopub.status.busy": "2024-02-13T22:14:50.238898Z", + "iopub.status.idle": "2024-02-13T22:14:50.362085Z", + "shell.execute_reply": "2024-02-13T22:14:50.361445Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:05.263456Z", - "iopub.status.busy": "2024-02-13T04:45:05.262636Z", - "iopub.status.idle": "2024-02-13T04:45:08.327835Z", - "shell.execute_reply": "2024-02-13T04:45:08.327191Z" + "iopub.execute_input": "2024-02-13T22:14:50.364977Z", + "iopub.status.busy": "2024-02-13T22:14:50.364259Z", + "iopub.status.idle": "2024-02-13T22:14:53.408785Z", + "shell.execute_reply": "2024-02-13T22:14:53.408183Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:08.330178Z", - "iopub.status.busy": "2024-02-13T04:45:08.329831Z", - "iopub.status.idle": "2024-02-13T04:45:08.390619Z", - "shell.execute_reply": "2024-02-13T04:45:08.390039Z" + "iopub.execute_input": "2024-02-13T22:14:53.411293Z", + "iopub.status.busy": "2024-02-13T22:14:53.410936Z", + "iopub.status.idle": "2024-02-13T22:14:53.465028Z", + "shell.execute_reply": "2024-02-13T22:14:53.464472Z" } }, "outputs": [ @@ -1206,7 +1206,7 @@ }, { "cell_type": "markdown", - "id": "97271f63", + "id": "d91cd6f5", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1214,7 +1214,7 @@ }, { "cell_type": "markdown", - "id": "09763c61", + "id": "a3523252", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1227,13 +1227,13 @@ { "cell_type": "code", "execution_count": 17, - "id": "e98d3c3e", + "id": "85a95966", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:08.393046Z", - "iopub.status.busy": "2024-02-13T04:45:08.392655Z", - "iopub.status.idle": "2024-02-13T04:45:08.497796Z", - "shell.execute_reply": "2024-02-13T04:45:08.497186Z" + "iopub.execute_input": "2024-02-13T22:14:53.467144Z", + "iopub.status.busy": "2024-02-13T22:14:53.466807Z", + "iopub.status.idle": "2024-02-13T22:14:53.567187Z", + "shell.execute_reply": "2024-02-13T22:14:53.566633Z" } }, "outputs": [ @@ -1274,7 +1274,7 @@ }, { "cell_type": "markdown", - "id": "6cb09354", + "id": "83823d3f", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1283,13 +1283,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "354730c3", + "id": "af2ddd93", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:08.501000Z", - "iopub.status.busy": "2024-02-13T04:45:08.500135Z", - "iopub.status.idle": "2024-02-13T04:45:08.579084Z", - "shell.execute_reply": "2024-02-13T04:45:08.578496Z" + "iopub.execute_input": "2024-02-13T22:14:53.570245Z", + "iopub.status.busy": "2024-02-13T22:14:53.569558Z", + "iopub.status.idle": "2024-02-13T22:14:53.648234Z", + "shell.execute_reply": "2024-02-13T22:14:53.647684Z" } }, "outputs": [ @@ -1325,7 +1325,7 @@ }, { "cell_type": "markdown", - "id": "f9a433d4", + "id": "878c6928", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -1336,13 +1336,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "e23f2b30", + "id": "5f5fdb6e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:08.581519Z", - "iopub.status.busy": "2024-02-13T04:45:08.581322Z", - "iopub.status.idle": "2024-02-13T04:45:08.589772Z", - "shell.execute_reply": "2024-02-13T04:45:08.589273Z" + "iopub.execute_input": "2024-02-13T22:14:53.650279Z", + "iopub.status.busy": "2024-02-13T22:14:53.649997Z", + "iopub.status.idle": "2024-02-13T22:14:53.658521Z", + "shell.execute_reply": "2024-02-13T22:14:53.657984Z" } }, "outputs": [], @@ -1444,7 +1444,7 @@ }, { "cell_type": "markdown", - "id": "0a4b72ce", + "id": "e8b636c9", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1459,13 +1459,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "7a61645f", + "id": "981d8711", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:08.591978Z", - "iopub.status.busy": "2024-02-13T04:45:08.591644Z", - "iopub.status.idle": "2024-02-13T04:45:08.610540Z", - "shell.execute_reply": "2024-02-13T04:45:08.609950Z" + "iopub.execute_input": "2024-02-13T22:14:53.660611Z", + "iopub.status.busy": "2024-02-13T22:14:53.660307Z", + "iopub.status.idle": "2024-02-13T22:14:53.679261Z", + "shell.execute_reply": "2024-02-13T22:14:53.678709Z" } }, "outputs": [ @@ -1482,7 +1482,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_6149/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_6180/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1516,13 +1516,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "87baf697", + "id": "fd85409a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:08.612895Z", - "iopub.status.busy": "2024-02-13T04:45:08.612552Z", - "iopub.status.idle": "2024-02-13T04:45:08.615808Z", - "shell.execute_reply": "2024-02-13T04:45:08.615267Z" + "iopub.execute_input": "2024-02-13T22:14:53.681184Z", + "iopub.status.busy": "2024-02-13T22:14:53.680881Z", + "iopub.status.idle": "2024-02-13T22:14:53.684159Z", + "shell.execute_reply": "2024-02-13T22:14:53.683645Z" } }, "outputs": [ @@ -1617,23 +1617,48 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "15304aedf88441638584cc268654d25c": { + "1f058a4261804c5eaaeb9e282bebc8d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_606f08b87c014ed7a6e0b44d4bd19e8d", + "placeholder": "​", + "style": "IPY_MODEL_b868a1a5c7b64532983cd4830c97f6aa", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "26aee9c0c8a3435f9fa4b1e322113c8c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "24f1be2cbcfd4936abefd2992cce3dda": { + "2d7e87e297a14667a0db1bcd0e503b52": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1686,7 +1711,7 @@ "width": null } }, - "2ba9ddaddfe741d8819bd34fe5a37144": { + "31294fa4b2c148e2a92df66dec3ba088": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1739,31 +1764,7 @@ "width": null } }, - "371684a8599f4e53908b224e4d4c7ccd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f889113fd3134186b4dfd166e7e99981", - "IPY_MODEL_e2fffd98b8e440cdbb2dc450aa606e45", - "IPY_MODEL_8e5de70a79e64b68a6550c2be95de0b7" - ], - "layout": "IPY_MODEL_24f1be2cbcfd4936abefd2992cce3dda", - "tabbable": null, - "tooltip": null - } - }, - "4a63047326124e819011db4680884ea1": { + "3fa7a98292314e07b6bbb9adc1b023fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1779,33 +1780,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4e84f75f4e9b43c6b95faa0e6e577368", + "layout": "IPY_MODEL_2d7e87e297a14667a0db1bcd0e503b52", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_15304aedf88441638584cc268654d25c", + "style": "IPY_MODEL_d09f249b54fd4520adc263902331da2d", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "4cfd644d9fa441c5ae21068b4971525d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4e84f75f4e9b43c6b95faa0e6e577368": { + "4019500ee1464d1eb7ee2c9fb95509a1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1858,7 +1843,7 @@ "width": null } }, - "5497e1c6aa954064927a219c2e0bc433": { + "606f08b87c014ed7a6e0b44d4bd19e8d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1911,7 +1896,7 @@ "width": null } }, - "5720134c8458441da703ebc287e9c9ac": { + "772c582ef2e848b69f6f5c27d7c30dfe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1929,7 +1914,7 @@ "text_color": null } }, - "5e5a619cf574409883c49a635665e9db": { + "8790e3c31b9d4bd086dd3b585ab28307": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1982,7 +1967,7 @@ "width": null } }, - "7664381fb04b486fa33c3113559f5742": { + "91080112e91545cea76f96ca17e7cf54": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1997,33 +1982,142 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5497e1c6aa954064927a219c2e0bc433", + "layout": "IPY_MODEL_4019500ee1464d1eb7ee2c9fb95509a1", "placeholder": "​", - "style": "IPY_MODEL_7db090840c474073a402926ff0effd86", + "style": "IPY_MODEL_26aee9c0c8a3435f9fa4b1e322113c8c", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: " + "value": " 10000/? [00:00<00:00, 1225580.46it/s]" } }, - "790e3eb0888a4fc3a8a99c73e6d5ba68": { + "97b173d3f64446ec83392d04655319d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e16e5fbb57bb41bf991fdf3a1a9c1d0e", + "IPY_MODEL_3fa7a98292314e07b6bbb9adc1b023fb", + "IPY_MODEL_c86ddce8010d492c9711e333fd641be5" + ], + "layout": "IPY_MODEL_8790e3c31b9d4bd086dd3b585ab28307", + "tabbable": null, + "tooltip": null + } + }, + "9892fd592e2448558a8916d099c20cd0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9e8ff64180df4ac58c1e79b17db791b1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1f058a4261804c5eaaeb9e282bebc8d7", + "IPY_MODEL_a27e18d31d814116b6b99fbe9d19e111", + "IPY_MODEL_91080112e91545cea76f96ca17e7cf54" + ], + "layout": "IPY_MODEL_31294fa4b2c148e2a92df66dec3ba088", + "tabbable": null, + "tooltip": null + } + }, + "a27e18d31d814116b6b99fbe9d19e111": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d928f805146c481b99bd4a131eec5917", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c9dbe135d2eb4ac6a459511fe483a695", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "7db090840c474073a402926ff0effd86": { + "b868a1a5c7b64532983cd4830c97f6aa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2041,7 +2135,7 @@ "text_color": null } }, - "8e5de70a79e64b68a6550c2be95de0b7": { + "c86ddce8010d492c9711e333fd641be5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2056,57 +2150,47 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2ba9ddaddfe741d8819bd34fe5a37144", + "layout": "IPY_MODEL_9892fd592e2448558a8916d099c20cd0", "placeholder": "​", - "style": "IPY_MODEL_5720134c8458441da703ebc287e9c9ac", + "style": "IPY_MODEL_772c582ef2e848b69f6f5c27d7c30dfe", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1573198.30it/s]" + "value": " 10000/? [00:00<00:00, 1078532.23it/s]" } }, - "8f990951a8a645829cead1a86444f37f": { + "c9dbe135d2eb4ac6a459511fe483a695": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7664381fb04b486fa33c3113559f5742", - "IPY_MODEL_4a63047326124e819011db4680884ea1", - "IPY_MODEL_f7b726aca564466ebdcf10dee0abfee4" - ], - "layout": "IPY_MODEL_ed6b461ba401417abe4c6d7bd03d59c0", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8fbdb741ea8f44b7a5d24d6b20242317": { + "d09f249b54fd4520adc263902331da2d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "a1cd19130552446fa35cf13685e09377": { + "d928f805146c481b99bd4a131eec5917": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2159,86 +2243,48 @@ "width": null } }, - "a31851cab6a842b5b7de46afe470f520": { - "model_module": "@jupyter-widgets/base", + "dd6fe6b511714fc5827a240ac41a8964": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e2fffd98b8e440cdbb2dc450aa606e45": { + "e16e5fbb57bb41bf991fdf3a1a9c1d0e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a31851cab6a842b5b7de46afe470f520", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4cfd644d9fa441c5ae21068b4971525d", + "layout": "IPY_MODEL_fabdf3478d794abbaa5a03ccb57487c3", + "placeholder": "​", + "style": "IPY_MODEL_dd6fe6b511714fc5827a240ac41a8964", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": "number of examples processed for estimating thresholds: " } }, - "ed6b461ba401417abe4c6d7bd03d59c0": { + "fabdf3478d794abbaa5a03ccb57487c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2290,52 +2336,6 @@ "visibility": null, "width": null } - }, - "f7b726aca564466ebdcf10dee0abfee4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a1cd19130552446fa35cf13685e09377", - "placeholder": "​", - "style": "IPY_MODEL_8fbdb741ea8f44b7a5d24d6b20242317", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1038965.57it/s]" - } - }, - "f889113fd3134186b4dfd166e7e99981": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5e5a619cf574409883c49a635665e9db", - "placeholder": "​", - "style": "IPY_MODEL_790e3eb0888a4fc3a8a99c73e6d5ba68", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } } }, "version_major": 2, diff --git a/master/tutorials/image.html b/master/tutorials/image.html index 61caabdc5..6e8f79e39 100644 --- a/master/tutorials/image.html +++ b/master/tutorials/image.html @@ -648,25 +648,25 @@

2. Fetch and normalize the Fashion-MNIST dataset
-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1029,16 +1029,16 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
2%|▎ | 1/40 [00:00&lt;00:05, 7.73it/s]
+
2%|▎ | 1/40 [00:00&lt;00:04, 8.69it/s]

</pre>

-
2%|▎ | 1/40 [00:00<00:05, 7.73it/s]
+
2%|▎ | 1/40 [00:00<00:04, 8.69it/s]

end{sphinxVerbatim}

-

2%|▎ | 1/40 [00:00<00:05, 7.73it/s]

+

2%|▎ | 1/40 [00:00<00:04, 8.69it/s]

-
20%|██ | 8/40 [00:00&lt;00:00, 38.13it/s]
+
18%|█▊ | 7/40 [00:00&lt;00:00, 37.06it/s]

</pre>

-
20%|██ | 8/40 [00:00<00:00, 38.13it/s]
+
18%|█▊ | 7/40 [00:00<00:00, 37.06it/s]

end{sphinxVerbatim}

-

20%|██ | 8/40 [00:00<00:00, 38.13it/s]

+

18%|█▊ | 7/40 [00:00<00:00, 37.06it/s]

-
35%|███▌ | 14/40 [00:00&lt;00:00, 46.37it/s]
+
35%|███▌ | 14/40 [00:00&lt;00:00, 47.32it/s]

</pre>

-
35%|███▌ | 14/40 [00:00<00:00, 46.37it/s]
+
35%|███▌ | 14/40 [00:00<00:00, 47.32it/s]

end{sphinxVerbatim}

-

35%|███▌ | 14/40 [00:00<00:00, 46.37it/s]

+

35%|███▌ | 14/40 [00:00<00:00, 47.32it/s]

-
50%|█████ | 20/40 [00:00&lt;00:00, 50.53it/s]
+
52%|█████▎ | 21/40 [00:00&lt;00:00, 53.38it/s]

</pre>

-
50%|█████ | 20/40 [00:00<00:00, 50.53it/s]
+
52%|█████▎ | 21/40 [00:00<00:00, 53.38it/s]

end{sphinxVerbatim}

-

50%|█████ | 20/40 [00:00<00:00, 50.53it/s]

+

52%|█████▎ | 21/40 [00:00<00:00, 53.38it/s]

-
65%|██████▌ | 26/40 [00:00&lt;00:00, 52.89it/s]
+
70%|███████ | 28/40 [00:00&lt;00:00, 57.85it/s]

</pre>

-
65%|██████▌ | 26/40 [00:00<00:00, 52.89it/s]
+
70%|███████ | 28/40 [00:00<00:00, 57.85it/s]

end{sphinxVerbatim}

-

65%|██████▌ | 26/40 [00:00<00:00, 52.89it/s]

+

70%|███████ | 28/40 [00:00<00:00, 57.85it/s]

-
80%|████████ | 32/40 [00:00&lt;00:00, 53.26it/s]
+
90%|█████████ | 36/40 [00:00&lt;00:00, 64.11it/s]

</pre>

-
80%|████████ | 32/40 [00:00<00:00, 53.26it/s]
+
90%|█████████ | 36/40 [00:00<00:00, 64.11it/s]

end{sphinxVerbatim}

-

80%|████████ | 32/40 [00:00<00:00, 53.26it/s]

+

90%|█████████ | 36/40 [00:00<00:00, 64.11it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 50.70it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 55.19it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 50.70it/s]
+
100%|██████████| 40/40 [00:00<00:00, 55.19it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 50.70it/s]

+

100%|██████████| 40/40 [00:00<00:00, 55.19it/s]

-
2%|▎ | 1/40 [00:00&lt;00:04, 8.68it/s]
+
5%|▌ | 2/40 [00:00&lt;00:02, 18.61it/s]

</pre>

-
2%|▎ | 1/40 [00:00<00:04, 8.68it/s]
+
5%|▌ | 2/40 [00:00<00:02, 18.61it/s]

end{sphinxVerbatim}

-

2%|▎ | 1/40 [00:00<00:04, 8.68it/s]

+

5%|▌ | 2/40 [00:00<00:02, 18.61it/s]

-
18%|█▊ | 7/40 [00:00&lt;00:00, 36.05it/s]
+
20%|██ | 8/40 [00:00&lt;00:00, 40.80it/s]

</pre>

-
18%|█▊ | 7/40 [00:00<00:00, 36.05it/s]
+
20%|██ | 8/40 [00:00<00:00, 40.80it/s]

end{sphinxVerbatim}

-

18%|█▊ | 7/40 [00:00<00:00, 36.05it/s]

+

20%|██ | 8/40 [00:00<00:00, 40.80it/s]

-
32%|███▎ | 13/40 [00:00&lt;00:00, 45.40it/s]
+
35%|███▌ | 14/40 [00:00&lt;00:00, 47.50it/s]

</pre>

-
32%|███▎ | 13/40 [00:00<00:00, 45.40it/s]
+
35%|███▌ | 14/40 [00:00<00:00, 47.50it/s]

end{sphinxVerbatim}

-

32%|███▎ | 13/40 [00:00<00:00, 45.40it/s]

+

35%|███▌ | 14/40 [00:00<00:00, 47.50it/s]

-
50%|█████ | 20/40 [00:00&lt;00:00, 53.84it/s]
+
52%|█████▎ | 21/40 [00:00&lt;00:00, 55.79it/s]

</pre>

-
50%|█████ | 20/40 [00:00<00:00, 53.84it/s]
+
52%|█████▎ | 21/40 [00:00<00:00, 55.79it/s]

end{sphinxVerbatim}

-

50%|█████ | 20/40 [00:00<00:00, 53.84it/s]

+

52%|█████▎ | 21/40 [00:00<00:00, 55.79it/s]

-
68%|██████▊ | 27/40 [00:00&lt;00:00, 58.90it/s]
+
70%|███████ | 28/40 [00:00&lt;00:00, 58.15it/s]

</pre>

-
68%|██████▊ | 27/40 [00:00<00:00, 58.90it/s]
+
70%|███████ | 28/40 [00:00<00:00, 58.15it/s]

end{sphinxVerbatim}

-

68%|██████▊ | 27/40 [00:00<00:00, 58.90it/s]

+

70%|███████ | 28/40 [00:00<00:00, 58.15it/s]

-
88%|████████▊ | 35/40 [00:00&lt;00:00, 63.36it/s]
+
90%|█████████ | 36/40 [00:00&lt;00:00, 61.68it/s]

</pre>

-
88%|████████▊ | 35/40 [00:00<00:00, 63.36it/s]
+
90%|█████████ | 36/40 [00:00<00:00, 61.68it/s]

end{sphinxVerbatim}

-

88%|████████▊ | 35/40 [00:00<00:00, 63.36it/s]

+

90%|█████████ | 36/40 [00:00<00:00, 61.68it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 55.32it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 54.95it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 55.32it/s]
+
100%|██████████| 40/40 [00:00<00:00, 54.95it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 55.32it/s]

+

100%|██████████| 40/40 [00:00<00:00, 54.95it/s]

@@ -1503,16 +1503,16 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
20%|██ | 8/40 [00:00&lt;00:00, 42.65it/s]
+
20%|██ | 8/40 [00:00&lt;00:00, 40.84it/s]

</pre>

-
20%|██ | 8/40 [00:00<00:00, 42.65it/s]
+
20%|██ | 8/40 [00:00<00:00, 40.84it/s]

end{sphinxVerbatim}

-

20%|██ | 8/40 [00:00<00:00, 42.65it/s]

+

20%|██ | 8/40 [00:00<00:00, 40.84it/s]

-
38%|███▊ | 15/40 [00:00&lt;00:00, 52.89it/s]
+
38%|███▊ | 15/40 [00:00&lt;00:00, 50.75it/s]

</pre>

-
38%|███▊ | 15/40 [00:00<00:00, 52.89it/s]
+
38%|███▊ | 15/40 [00:00<00:00, 50.75it/s]

end{sphinxVerbatim}

-

38%|███▊ | 15/40 [00:00<00:00, 52.89it/s]

+

38%|███▊ | 15/40 [00:00<00:00, 50.75it/s]

-
55%|█████▌ | 22/40 [00:00&lt;00:00, 57.42it/s]
+
55%|█████▌ | 22/40 [00:00&lt;00:00, 56.87it/s]

</pre>

-
55%|█████▌ | 22/40 [00:00<00:00, 57.42it/s]
+
55%|█████▌ | 22/40 [00:00<00:00, 56.87it/s]

end{sphinxVerbatim}

-

55%|█████▌ | 22/40 [00:00<00:00, 57.42it/s]

+

55%|█████▌ | 22/40 [00:00<00:00, 56.87it/s]

-
72%|███████▎ | 29/40 [00:00&lt;00:00, 61.09it/s]
+
70%|███████ | 28/40 [00:00&lt;00:00, 57.33it/s]

</pre>

-
72%|███████▎ | 29/40 [00:00<00:00, 61.09it/s]
+
70%|███████ | 28/40 [00:00<00:00, 57.33it/s]

end{sphinxVerbatim}

-

72%|███████▎ | 29/40 [00:00<00:00, 61.09it/s]

+

70%|███████ | 28/40 [00:00<00:00, 57.33it/s]

-
92%|█████████▎| 37/40 [00:00&lt;00:00, 66.05it/s]
+
90%|█████████ | 36/40 [00:00&lt;00:00, 62.74it/s]

</pre>

-
92%|█████████▎| 37/40 [00:00<00:00, 66.05it/s]
+
90%|█████████ | 36/40 [00:00<00:00, 62.74it/s]

end{sphinxVerbatim}

-

92%|█████████▎| 37/40 [00:00<00:00, 66.05it/s]

+

90%|█████████ | 36/40 [00:00<00:00, 62.74it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 57.39it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 56.13it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 57.39it/s]
+
100%|██████████| 40/40 [00:00<00:00, 56.13it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 57.39it/s]

+

100%|██████████| 40/40 [00:00<00:00, 56.13it/s]

-
2%|▎ | 1/40 [00:00&lt;00:04, 8.85it/s]
+
2%|▎ | 1/40 [00:00&lt;00:04, 8.82it/s]

</pre>

-
2%|▎ | 1/40 [00:00<00:04, 8.85it/s]
+
2%|▎ | 1/40 [00:00<00:04, 8.82it/s]

end{sphinxVerbatim}

-

2%|▎ | 1/40 [00:00<00:04, 8.85it/s]

+

2%|▎ | 1/40 [00:00<00:04, 8.82it/s]

-
18%|█▊ | 7/40 [00:00&lt;00:00, 36.77it/s]
+
20%|██ | 8/40 [00:00&lt;00:00, 41.38it/s]

</pre>

-
18%|█▊ | 7/40 [00:00<00:00, 36.77it/s]
+
20%|██ | 8/40 [00:00<00:00, 41.38it/s]

end{sphinxVerbatim}

-

18%|█▊ | 7/40 [00:00<00:00, 36.77it/s]

+

20%|██ | 8/40 [00:00<00:00, 41.38it/s]

-
35%|███▌ | 14/40 [00:00&lt;00:00, 50.48it/s]
+
35%|███▌ | 14/40 [00:00&lt;00:00, 48.06it/s]

</pre>

-
35%|███▌ | 14/40 [00:00<00:00, 50.48it/s]
+
35%|███▌ | 14/40 [00:00<00:00, 48.06it/s]

end{sphinxVerbatim}

-

35%|███▌ | 14/40 [00:00<00:00, 50.48it/s]

+

35%|███▌ | 14/40 [00:00<00:00, 48.06it/s]

-
52%|█████▎ | 21/40 [00:00&lt;00:00, 57.34it/s]
+
50%|█████ | 20/40 [00:00&lt;00:00, 51.71it/s]

</pre>

-
52%|█████▎ | 21/40 [00:00<00:00, 57.34it/s]
+
50%|█████ | 20/40 [00:00<00:00, 51.71it/s]

end{sphinxVerbatim}

-

52%|█████▎ | 21/40 [00:00<00:00, 57.34it/s]

+

50%|█████ | 20/40 [00:00<00:00, 51.71it/s]

-
70%|███████ | 28/40 [00:00&lt;00:00, 61.54it/s]
+
68%|██████▊ | 27/40 [00:00&lt;00:00, 57.87it/s]

</pre>

-
70%|███████ | 28/40 [00:00<00:00, 61.54it/s]
+
68%|██████▊ | 27/40 [00:00<00:00, 57.87it/s]

end{sphinxVerbatim}

-

70%|███████ | 28/40 [00:00<00:00, 61.54it/s]

+

68%|██████▊ | 27/40 [00:00<00:00, 57.87it/s]

-
90%|█████████ | 36/40 [00:00&lt;00:00, 64.99it/s]
+
88%|████████▊ | 35/40 [00:00&lt;00:00, 63.69it/s]

</pre>

-
90%|█████████ | 36/40 [00:00<00:00, 64.99it/s]
+
88%|████████▊ | 35/40 [00:00<00:00, 63.69it/s]

end{sphinxVerbatim}

-

90%|█████████ | 36/40 [00:00<00:00, 64.99it/s]

+

88%|████████▊ | 35/40 [00:00<00:00, 63.69it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 56.23it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 55.67it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 56.23it/s]
+
100%|██████████| 40/40 [00:00<00:00, 55.67it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 56.23it/s]

+

100%|██████████| 40/40 [00:00<00:00, 55.67it/s]

@@ -1925,16 +1925,16 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
2%|▎ | 1/40 [00:00&lt;00:04, 9.46it/s]
+
5%|▌ | 2/40 [00:00&lt;00:02, 17.80it/s]

</pre>

-
2%|▎ | 1/40 [00:00<00:04, 9.46it/s]
+
5%|▌ | 2/40 [00:00<00:02, 17.80it/s]

end{sphinxVerbatim}

-

2%|▎ | 1/40 [00:00<00:04, 9.46it/s]

+

5%|▌ | 2/40 [00:00<00:02, 17.80it/s]

-
20%|██ | 8/40 [00:00&lt;00:00, 42.70it/s]
+
22%|██▎ | 9/40 [00:00&lt;00:00, 42.89it/s]

</pre>

-
20%|██ | 8/40 [00:00<00:00, 42.70it/s]
+
22%|██▎ | 9/40 [00:00<00:00, 42.89it/s]

end{sphinxVerbatim}

-

20%|██ | 8/40 [00:00<00:00, 42.70it/s]

+

22%|██▎ | 9/40 [00:00<00:00, 42.89it/s]

-
38%|███▊ | 15/40 [00:00&lt;00:00, 54.22it/s]
+
38%|███▊ | 15/40 [00:00&lt;00:00, 49.56it/s]

</pre>

-
38%|███▊ | 15/40 [00:00<00:00, 54.22it/s]
+
38%|███▊ | 15/40 [00:00<00:00, 49.56it/s]

end{sphinxVerbatim}

-

38%|███▊ | 15/40 [00:00<00:00, 54.22it/s]

+

38%|███▊ | 15/40 [00:00<00:00, 49.56it/s]

-
55%|█████▌ | 22/40 [00:00&lt;00:00, 59.17it/s]
+
55%|█████▌ | 22/40 [00:00&lt;00:00, 55.27it/s]

</pre>

-
55%|█████▌ | 22/40 [00:00<00:00, 59.17it/s]
+
55%|█████▌ | 22/40 [00:00<00:00, 55.27it/s]

end{sphinxVerbatim}

-

55%|█████▌ | 22/40 [00:00<00:00, 59.17it/s]

+

55%|█████▌ | 22/40 [00:00<00:00, 55.27it/s]

-
72%|███████▎ | 29/40 [00:00&lt;00:00, 62.47it/s]
+
72%|███████▎ | 29/40 [00:00&lt;00:00, 57.90it/s]

</pre>

-
72%|███████▎ | 29/40 [00:00<00:00, 62.47it/s]
+
72%|███████▎ | 29/40 [00:00<00:00, 57.90it/s]

end{sphinxVerbatim}

-

72%|███████▎ | 29/40 [00:00<00:00, 62.47it/s]

+

72%|███████▎ | 29/40 [00:00<00:00, 57.90it/s]

-
92%|█████████▎| 37/40 [00:00&lt;00:00, 67.62it/s]
+
90%|█████████ | 36/40 [00:00&lt;00:00, 60.37it/s]

</pre>

-
92%|█████████▎| 37/40 [00:00<00:00, 67.62it/s]
+
90%|█████████ | 36/40 [00:00<00:00, 60.37it/s]

end{sphinxVerbatim}

-

92%|█████████▎| 37/40 [00:00<00:00, 67.62it/s]

+

90%|█████████ | 36/40 [00:00<00:00, 60.37it/s]

-
100%|██████████| 40/40 [00:00&lt;00:00, 58.81it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 55.41it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 58.81it/s]
+
100%|██████████| 40/40 [00:00<00:00, 55.41it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 58.81it/s]

+

100%|██████████| 40/40 [00:00<00:00, 55.41it/s]

-
5%|▌ | 2/40 [00:00&lt;00:02, 18.81it/s]
+
2%|▎ | 1/40 [00:00&lt;00:03, 9.85it/s]

</pre>

-
5%|▌ | 2/40 [00:00<00:02, 18.81it/s]
+
2%|▎ | 1/40 [00:00<00:03, 9.85it/s]

end{sphinxVerbatim}

-

5%|▌ | 2/40 [00:00<00:02, 18.81it/s]

+

2%|▎ | 1/40 [00:00<00:03, 9.85it/s]

-
20%|██ | 8/40 [00:00&lt;00:00, 41.95it/s]
+
18%|█▊ | 7/40 [00:00&lt;00:00, 36.91it/s]

</pre>

-
20%|██ | 8/40 [00:00<00:00, 41.95it/s]
+
18%|█▊ | 7/40 [00:00<00:00, 36.91it/s]

end{sphinxVerbatim}

-

20%|██ | 8/40 [00:00<00:00, 41.95it/s]

+

18%|█▊ | 7/40 [00:00<00:00, 36.91it/s]

-
40%|████ | 16/40 [00:00&lt;00:00, 56.00it/s]
+
35%|███▌ | 14/40 [00:00&lt;00:00, 51.14it/s]

</pre>

-
40%|████ | 16/40 [00:00<00:00, 56.00it/s]
+
35%|███▌ | 14/40 [00:00<00:00, 51.14it/s]

end{sphinxVerbatim}

-

40%|████ | 16/40 [00:00<00:00, 56.00it/s]

+

35%|███▌ | 14/40 [00:00<00:00, 51.14it/s]

-
57%|█████▊ | 23/40 [00:00&lt;00:00, 59.83it/s]
+
55%|█████▌ | 22/40 [00:00&lt;00:00, 55.32it/s]

</pre>

-
57%|█████▊ | 23/40 [00:00<00:00, 59.83it/s]
+
55%|█████▌ | 22/40 [00:00<00:00, 55.32it/s]

end{sphinxVerbatim}

-

57%|█████▊ | 23/40 [00:00<00:00, 59.83it/s]

+

55%|█████▌ | 22/40 [00:00<00:00, 55.32it/s]

-
78%|███████▊ | 31/40 [00:00&lt;00:00, 64.01it/s]
+
72%|███████▎ | 29/40 [00:00&lt;00:00, 58.64it/s]

</pre>

-
78%|███████▊ | 31/40 [00:00<00:00, 64.01it/s]
+
72%|███████▎ | 29/40 [00:00<00:00, 58.64it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 31/40 [00:00<00:00, 64.01it/s]

+

72%|███████▎ | 29/40 [00:00<00:00, 58.64it/s]

-
+
-
-
-
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
-
100%|██████████| 40/40 [00:00&lt;00:00, 72.00it/s]
+
92%|█████████▎| 37/40 [00:00&lt;00:00, 64.77it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 72.00it/s]
+
92%|█████████▎| 37/40 [00:00<00:00, 64.77it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 72.00it/s]

+

92%|█████████▎| 37/40 [00:00<00:00, 64.77it/s]

+
+
-
100%|██████████| 40/40 [00:00&lt;00:00, 60.50it/s]
+
100%|██████████| 40/40 [00:00&lt;00:00, 56.55it/s]

</pre>

-
100%|██████████| 40/40 [00:00<00:00, 60.50it/s]
+
100%|██████████| 40/40 [00:00<00:00, 56.55it/s]

end{sphinxVerbatim}

-

100%|██████████| 40/40 [00:00<00:00, 60.50it/s]

+

100%|██████████| 40/40 [00:00<00:00, 56.55it/s]

-
+
@@ -3275,7 +3284,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/image.ipynb b/master/tutorials/image.ipynb index d1f4477c2..8794e56aa 100644 --- a/master/tutorials/image.ipynb +++ b/master/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:11.903411Z", - "iopub.status.busy": "2024-02-13T04:45:11.902872Z", - "iopub.status.idle": "2024-02-13T04:45:14.879495Z", - "shell.execute_reply": "2024-02-13T04:45:14.878923Z" + "iopub.execute_input": "2024-02-13T22:14:56.927966Z", + "iopub.status.busy": "2024-02-13T22:14:56.927793Z", + "iopub.status.idle": "2024-02-13T22:14:59.704829Z", + "shell.execute_reply": "2024-02-13T22:14:59.704297Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:14.881977Z", - "iopub.status.busy": "2024-02-13T04:45:14.881650Z", - "iopub.status.idle": "2024-02-13T04:45:14.885469Z", - "shell.execute_reply": "2024-02-13T04:45:14.885028Z" + "iopub.execute_input": "2024-02-13T22:14:59.707280Z", + "iopub.status.busy": "2024-02-13T22:14:59.706980Z", + "iopub.status.idle": "2024-02-13T22:14:59.710555Z", + "shell.execute_reply": "2024-02-13T22:14:59.710124Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:14.887348Z", - "iopub.status.busy": "2024-02-13T04:45:14.887165Z", - "iopub.status.idle": "2024-02-13T04:45:19.374786Z", - "shell.execute_reply": "2024-02-13T04:45:19.374233Z" + "iopub.execute_input": "2024-02-13T22:14:59.712525Z", + "iopub.status.busy": "2024-02-13T22:14:59.712163Z", + "iopub.status.idle": "2024-02-13T22:15:02.758405Z", + "shell.execute_reply": "2024-02-13T22:15:02.757909Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0e0037cdb0e84b46b705b94d92cdb3c1", + "model_id": "b4b144c72af24136b9fb812c8f6be9bc", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9941def6fe7e41dc90e45a05b13ed47b", + "model_id": "78c74f56872849bd9fec91216fb1d9d8", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "09173e07625643ba888e38d5cee7eac1", + "model_id": "2716f1b917a3428498d311cd3719321e", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "03852962b5494c8da91da182fcd82736", + "model_id": "a7a5b61cf35b427f97e5c722f9b3203f", "version_major": 2, "version_minor": 0 }, @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:19.376839Z", - "iopub.status.busy": "2024-02-13T04:45:19.376623Z", - "iopub.status.idle": "2024-02-13T04:45:19.380408Z", - "shell.execute_reply": "2024-02-13T04:45:19.379898Z" + "iopub.execute_input": "2024-02-13T22:15:02.760600Z", + "iopub.status.busy": "2024-02-13T22:15:02.760174Z", + "iopub.status.idle": "2024-02-13T22:15:02.763840Z", + "shell.execute_reply": "2024-02-13T22:15:02.763423Z" } }, "outputs": [ @@ -274,17 +274,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:19.382420Z", - "iopub.status.busy": "2024-02-13T04:45:19.382117Z", - "iopub.status.idle": "2024-02-13T04:45:30.494407Z", - "shell.execute_reply": "2024-02-13T04:45:30.493754Z" + "iopub.execute_input": "2024-02-13T22:15:02.765730Z", + "iopub.status.busy": "2024-02-13T22:15:02.765551Z", + "iopub.status.idle": "2024-02-13T22:15:13.682562Z", + "shell.execute_reply": "2024-02-13T22:15:13.682045Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2ac30149fc4c458f82aa055e33a3ea5b", + "model_id": "b04b7e304a4743a1b238e56726ee40f1", "version_major": 2, "version_minor": 0 }, @@ -322,10 +322,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:30.497259Z", - "iopub.status.busy": "2024-02-13T04:45:30.496800Z", - "iopub.status.idle": "2024-02-13T04:45:49.205438Z", - "shell.execute_reply": "2024-02-13T04:45:49.204824Z" + "iopub.execute_input": "2024-02-13T22:15:13.685343Z", + "iopub.status.busy": "2024-02-13T22:15:13.684905Z", + "iopub.status.idle": "2024-02-13T22:15:32.411997Z", + "shell.execute_reply": "2024-02-13T22:15:32.411410Z" } }, "outputs": [], @@ -358,10 +358,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:49.208134Z", - "iopub.status.busy": "2024-02-13T04:45:49.207931Z", - "iopub.status.idle": "2024-02-13T04:45:49.212908Z", - "shell.execute_reply": "2024-02-13T04:45:49.212428Z" + "iopub.execute_input": "2024-02-13T22:15:32.414776Z", + "iopub.status.busy": "2024-02-13T22:15:32.414311Z", + "iopub.status.idle": "2024-02-13T22:15:32.419279Z", + "shell.execute_reply": "2024-02-13T22:15:32.418721Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:49.215006Z", - "iopub.status.busy": "2024-02-13T04:45:49.214686Z", - "iopub.status.idle": "2024-02-13T04:45:49.218865Z", - "shell.execute_reply": "2024-02-13T04:45:49.218341Z" + "iopub.execute_input": "2024-02-13T22:15:32.421444Z", + "iopub.status.busy": "2024-02-13T22:15:32.421030Z", + "iopub.status.idle": "2024-02-13T22:15:32.425198Z", + "shell.execute_reply": "2024-02-13T22:15:32.424804Z" }, "nbsphinx": "hidden" }, @@ -539,10 +539,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:49.221004Z", - "iopub.status.busy": "2024-02-13T04:45:49.220672Z", - "iopub.status.idle": "2024-02-13T04:45:49.229730Z", - "shell.execute_reply": "2024-02-13T04:45:49.229248Z" + "iopub.execute_input": "2024-02-13T22:15:32.427226Z", + "iopub.status.busy": "2024-02-13T22:15:32.426824Z", + "iopub.status.idle": "2024-02-13T22:15:32.435593Z", + "shell.execute_reply": "2024-02-13T22:15:32.435085Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:49.231811Z", - "iopub.status.busy": "2024-02-13T04:45:49.231625Z", - "iopub.status.idle": "2024-02-13T04:45:49.258319Z", - "shell.execute_reply": "2024-02-13T04:45:49.257825Z" + "iopub.execute_input": "2024-02-13T22:15:32.437637Z", + "iopub.status.busy": "2024-02-13T22:15:32.437250Z", + "iopub.status.idle": "2024-02-13T22:15:32.463878Z", + "shell.execute_reply": "2024-02-13T22:15:32.463299Z" } }, "outputs": [], @@ -707,10 +707,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:45:49.260639Z", - "iopub.status.busy": "2024-02-13T04:45:49.260450Z", - "iopub.status.idle": "2024-02-13T04:46:23.088104Z", - "shell.execute_reply": "2024-02-13T04:46:23.087366Z" + "iopub.execute_input": "2024-02-13T22:15:32.466344Z", + "iopub.status.busy": "2024-02-13T22:15:32.465888Z", + "iopub.status.idle": "2024-02-13T22:16:05.185348Z", + "shell.execute_reply": "2024-02-13T22:16:05.184740Z" } }, "outputs": [ @@ -726,14 +726,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.978\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.851\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.806\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.702\n", "Computing feature embeddings ...\n" ] }, @@ -750,7 +750,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:05, 7.73it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 8.69it/s]" ] }, { @@ -758,7 +758,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 38.13it/s]" + " 18%|█▊ | 7/40 [00:00<00:00, 37.06it/s]" ] }, { @@ -766,7 +766,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 14/40 [00:00<00:00, 46.37it/s]" + " 35%|███▌ | 14/40 [00:00<00:00, 47.32it/s]" ] }, { @@ -774,7 +774,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 20/40 [00:00<00:00, 50.53it/s]" + " 52%|█████▎ | 21/40 [00:00<00:00, 53.38it/s]" ] }, { @@ -782,7 +782,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 26/40 [00:00<00:00, 52.89it/s]" + " 70%|███████ | 28/40 [00:00<00:00, 57.85it/s]" ] }, { @@ -790,7 +790,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 32/40 [00:00<00:00, 53.26it/s]" + " 90%|█████████ | 36/40 [00:00<00:00, 64.11it/s]" ] }, { @@ -798,7 +798,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 50.70it/s]" + "100%|██████████| 40/40 [00:00<00:00, 55.19it/s]" ] }, { @@ -828,7 +828,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.68it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 18.61it/s]" ] }, { @@ -836,7 +836,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 7/40 [00:00<00:00, 36.05it/s]" + " 20%|██ | 8/40 [00:00<00:00, 40.80it/s]" ] }, { @@ -844,7 +844,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▎ | 13/40 [00:00<00:00, 45.40it/s]" + " 35%|███▌ | 14/40 [00:00<00:00, 47.50it/s]" ] }, { @@ -852,7 +852,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 20/40 [00:00<00:00, 53.84it/s]" + " 52%|█████▎ | 21/40 [00:00<00:00, 55.79it/s]" ] }, { @@ -860,7 +860,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 27/40 [00:00<00:00, 58.90it/s]" + " 70%|███████ | 28/40 [00:00<00:00, 58.15it/s]" ] }, { @@ -868,7 +868,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 35/40 [00:00<00:00, 63.36it/s]" + " 90%|█████████ | 36/40 [00:00<00:00, 61.68it/s]" ] }, { @@ -876,7 +876,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 55.32it/s]" + "100%|██████████| 40/40 [00:00<00:00, 54.95it/s]" ] }, { @@ -898,14 +898,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.064\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.896\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.813\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.527\n", "Computing feature embeddings ...\n" ] }, @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 42.65it/s]" + " 20%|██ | 8/40 [00:00<00:00, 40.84it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 15/40 [00:00<00:00, 52.89it/s]" + " 38%|███▊ | 15/40 [00:00<00:00, 50.75it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 22/40 [00:00<00:00, 57.42it/s]" + " 55%|█████▌ | 22/40 [00:00<00:00, 56.87it/s]" ] }, { @@ -954,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▎ | 29/40 [00:00<00:00, 61.09it/s]" + " 70%|███████ | 28/40 [00:00<00:00, 57.33it/s]" ] }, { @@ -962,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▎| 37/40 [00:00<00:00, 66.05it/s]" + " 90%|█████████ | 36/40 [00:00<00:00, 62.74it/s]" ] }, { @@ -970,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 57.39it/s]" + "100%|██████████| 40/40 [00:00<00:00, 56.13it/s]" ] }, { @@ -1000,7 +1000,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 8.85it/s]" + " 2%|▎ | 1/40 [00:00<00:04, 8.82it/s]" ] }, { @@ -1008,7 +1008,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 7/40 [00:00<00:00, 36.77it/s]" + " 20%|██ | 8/40 [00:00<00:00, 41.38it/s]" ] }, { @@ -1016,7 +1016,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 14/40 [00:00<00:00, 50.48it/s]" + " 35%|███▌ | 14/40 [00:00<00:00, 48.06it/s]" ] }, { @@ -1024,7 +1024,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▎ | 21/40 [00:00<00:00, 57.34it/s]" + " 50%|█████ | 20/40 [00:00<00:00, 51.71it/s]" ] }, { @@ -1032,7 +1032,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 28/40 [00:00<00:00, 61.54it/s]" + " 68%|██████▊ | 27/40 [00:00<00:00, 57.87it/s]" ] }, { @@ -1040,7 +1040,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 36/40 [00:00<00:00, 64.99it/s]" + " 88%|████████▊ | 35/40 [00:00<00:00, 63.69it/s]" ] }, { @@ -1048,7 +1048,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 56.23it/s]" + "100%|██████████| 40/40 [00:00<00:00, 55.67it/s]" ] }, { @@ -1070,14 +1070,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.068\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.772\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.795\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.619\n", "Computing feature embeddings ...\n" ] }, @@ -1094,7 +1094,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▎ | 1/40 [00:00<00:04, 9.46it/s]" + " 5%|▌ | 2/40 [00:00<00:02, 17.80it/s]" ] }, { @@ -1102,7 +1102,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 42.70it/s]" + " 22%|██▎ | 9/40 [00:00<00:00, 42.89it/s]" ] }, { @@ -1110,7 +1110,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 15/40 [00:00<00:00, 54.22it/s]" + " 38%|███▊ | 15/40 [00:00<00:00, 49.56it/s]" ] }, { @@ -1118,7 +1118,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 22/40 [00:00<00:00, 59.17it/s]" + " 55%|█████▌ | 22/40 [00:00<00:00, 55.27it/s]" ] }, { @@ -1126,7 +1126,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▎ | 29/40 [00:00<00:00, 62.47it/s]" + " 72%|███████▎ | 29/40 [00:00<00:00, 57.90it/s]" ] }, { @@ -1134,7 +1134,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▎| 37/40 [00:00<00:00, 67.62it/s]" + " 90%|█████████ | 36/40 [00:00<00:00, 60.37it/s]" ] }, { @@ -1142,7 +1142,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 58.81it/s]" + "100%|██████████| 40/40 [00:00<00:00, 55.41it/s]" ] }, { @@ -1172,7 +1172,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 2/40 [00:00<00:02, 18.81it/s]" + " 2%|▎ | 1/40 [00:00<00:03, 9.85it/s]" ] }, { @@ -1180,7 +1180,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 8/40 [00:00<00:00, 41.95it/s]" + " 18%|█▊ | 7/40 [00:00<00:00, 36.91it/s]" ] }, { @@ -1188,7 +1188,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 16/40 [00:00<00:00, 56.00it/s]" + " 35%|███▌ | 14/40 [00:00<00:00, 51.14it/s]" ] }, { @@ -1196,7 +1196,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▊ | 23/40 [00:00<00:00, 59.83it/s]" + " 55%|█████▌ | 22/40 [00:00<00:00, 55.32it/s]" ] }, { @@ -1204,7 +1204,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 31/40 [00:00<00:00, 64.01it/s]" + " 72%|███████▎ | 29/40 [00:00<00:00, 58.64it/s]" ] }, { @@ -1212,7 +1212,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 72.00it/s]" + " 92%|█████████▎| 37/40 [00:00<00:00, 64.77it/s]" ] }, { @@ -1220,7 +1220,7 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 40/40 [00:00<00:00, 60.50it/s]" + "100%|██████████| 40/40 [00:00<00:00, 56.55it/s]" ] }, { @@ -1298,10 +1298,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:46:23.090642Z", - "iopub.status.busy": "2024-02-13T04:46:23.090219Z", - "iopub.status.idle": "2024-02-13T04:46:23.106143Z", - "shell.execute_reply": "2024-02-13T04:46:23.105657Z" + "iopub.execute_input": "2024-02-13T22:16:05.187847Z", + "iopub.status.busy": "2024-02-13T22:16:05.187436Z", + "iopub.status.idle": "2024-02-13T22:16:05.203454Z", + "shell.execute_reply": "2024-02-13T22:16:05.203016Z" } }, "outputs": [], @@ -1326,10 +1326,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:46:23.108404Z", - "iopub.status.busy": "2024-02-13T04:46:23.108070Z", - "iopub.status.idle": "2024-02-13T04:46:23.588277Z", - "shell.execute_reply": "2024-02-13T04:46:23.587753Z" + "iopub.execute_input": "2024-02-13T22:16:05.205544Z", + "iopub.status.busy": "2024-02-13T22:16:05.205280Z", + "iopub.status.idle": "2024-02-13T22:16:05.693054Z", + "shell.execute_reply": "2024-02-13T22:16:05.692524Z" } }, "outputs": [], @@ -1349,10 +1349,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:46:23.590715Z", - "iopub.status.busy": "2024-02-13T04:46:23.590373Z", - "iopub.status.idle": "2024-02-13T04:49:51.222139Z", - "shell.execute_reply": "2024-02-13T04:49:51.221560Z" + "iopub.execute_input": "2024-02-13T22:16:05.695527Z", + "iopub.status.busy": "2024-02-13T22:16:05.695108Z", + "iopub.status.idle": "2024-02-13T22:19:30.718163Z", + "shell.execute_reply": "2024-02-13T22:19:30.717507Z" } }, "outputs": [ @@ -1398,7 +1398,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5d115934aff749e882f23b771c08ba39", + "model_id": "d0d70be349a64bbca45dc6828385e006", "version_major": 2, "version_minor": 0 }, @@ -1437,10 +1437,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:51.224605Z", - "iopub.status.busy": "2024-02-13T04:49:51.224062Z", - "iopub.status.idle": "2024-02-13T04:49:51.925858Z", - "shell.execute_reply": "2024-02-13T04:49:51.925319Z" + "iopub.execute_input": "2024-02-13T22:19:30.720815Z", + "iopub.status.busy": "2024-02-13T22:19:30.720171Z", + "iopub.status.idle": "2024-02-13T22:19:31.385825Z", + "shell.execute_reply": "2024-02-13T22:19:31.385335Z" } }, "outputs": [ @@ -1581,10 +1581,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:51.928614Z", - "iopub.status.busy": "2024-02-13T04:49:51.928103Z", - "iopub.status.idle": "2024-02-13T04:49:51.990166Z", - "shell.execute_reply": "2024-02-13T04:49:51.989547Z" + "iopub.execute_input": "2024-02-13T22:19:31.388273Z", + "iopub.status.busy": "2024-02-13T22:19:31.387855Z", + "iopub.status.idle": "2024-02-13T22:19:31.425501Z", + "shell.execute_reply": "2024-02-13T22:19:31.425019Z" } }, "outputs": [ @@ -1688,10 +1688,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:51.992188Z", - "iopub.status.busy": "2024-02-13T04:49:51.992007Z", - "iopub.status.idle": "2024-02-13T04:49:52.000363Z", - "shell.execute_reply": "2024-02-13T04:49:51.999932Z" + "iopub.execute_input": "2024-02-13T22:19:31.427654Z", + "iopub.status.busy": "2024-02-13T22:19:31.427377Z", + "iopub.status.idle": "2024-02-13T22:19:31.435590Z", + "shell.execute_reply": "2024-02-13T22:19:31.435142Z" } }, "outputs": [ @@ -1821,10 +1821,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:52.002234Z", - "iopub.status.busy": "2024-02-13T04:49:52.002057Z", - "iopub.status.idle": "2024-02-13T04:49:52.006784Z", - "shell.execute_reply": "2024-02-13T04:49:52.006262Z" + "iopub.execute_input": "2024-02-13T22:19:31.437611Z", + "iopub.status.busy": "2024-02-13T22:19:31.437344Z", + "iopub.status.idle": "2024-02-13T22:19:31.441752Z", + "shell.execute_reply": "2024-02-13T22:19:31.441305Z" }, "nbsphinx": "hidden" }, @@ -1870,10 +1870,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:52.008786Z", - "iopub.status.busy": "2024-02-13T04:49:52.008398Z", - "iopub.status.idle": "2024-02-13T04:49:52.494424Z", - "shell.execute_reply": "2024-02-13T04:49:52.493892Z" + "iopub.execute_input": "2024-02-13T22:19:31.443992Z", + "iopub.status.busy": "2024-02-13T22:19:31.443527Z", + "iopub.status.idle": "2024-02-13T22:19:31.919030Z", + "shell.execute_reply": "2024-02-13T22:19:31.918409Z" } }, "outputs": [ @@ -1908,10 +1908,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:52.496521Z", - "iopub.status.busy": "2024-02-13T04:49:52.496204Z", - "iopub.status.idle": "2024-02-13T04:49:52.504600Z", - "shell.execute_reply": "2024-02-13T04:49:52.504059Z" + "iopub.execute_input": "2024-02-13T22:19:31.921302Z", + "iopub.status.busy": "2024-02-13T22:19:31.920897Z", + "iopub.status.idle": "2024-02-13T22:19:31.929471Z", + "shell.execute_reply": "2024-02-13T22:19:31.928957Z" } }, "outputs": [ @@ -2078,10 +2078,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:52.506688Z", - "iopub.status.busy": "2024-02-13T04:49:52.506377Z", - "iopub.status.idle": "2024-02-13T04:49:52.513473Z", - "shell.execute_reply": "2024-02-13T04:49:52.513022Z" + "iopub.execute_input": "2024-02-13T22:19:31.931712Z", + "iopub.status.busy": "2024-02-13T22:19:31.931373Z", + "iopub.status.idle": "2024-02-13T22:19:31.938878Z", + "shell.execute_reply": "2024-02-13T22:19:31.938376Z" }, "nbsphinx": "hidden" }, @@ -2157,10 +2157,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:52.515413Z", - "iopub.status.busy": "2024-02-13T04:49:52.515089Z", - "iopub.status.idle": "2024-02-13T04:49:52.989173Z", - "shell.execute_reply": "2024-02-13T04:49:52.988610Z" + "iopub.execute_input": "2024-02-13T22:19:31.940934Z", + "iopub.status.busy": "2024-02-13T22:19:31.940632Z", + "iopub.status.idle": "2024-02-13T22:19:32.412299Z", + "shell.execute_reply": "2024-02-13T22:19:32.411788Z" } }, "outputs": [ @@ -2197,10 +2197,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:52.991439Z", - "iopub.status.busy": "2024-02-13T04:49:52.991233Z", - "iopub.status.idle": "2024-02-13T04:49:53.007430Z", - "shell.execute_reply": "2024-02-13T04:49:53.006890Z" + "iopub.execute_input": "2024-02-13T22:19:32.414611Z", + "iopub.status.busy": "2024-02-13T22:19:32.414275Z", + "iopub.status.idle": "2024-02-13T22:19:32.429702Z", + "shell.execute_reply": "2024-02-13T22:19:32.429147Z" } }, "outputs": [ @@ -2357,10 +2357,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:53.009633Z", - "iopub.status.busy": "2024-02-13T04:49:53.009315Z", - "iopub.status.idle": "2024-02-13T04:49:53.014772Z", - "shell.execute_reply": "2024-02-13T04:49:53.014348Z" + "iopub.execute_input": "2024-02-13T22:19:32.431869Z", + "iopub.status.busy": "2024-02-13T22:19:32.431552Z", + "iopub.status.idle": "2024-02-13T22:19:32.437049Z", + "shell.execute_reply": "2024-02-13T22:19:32.436527Z" }, "nbsphinx": "hidden" }, @@ -2405,10 +2405,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:53.016977Z", - "iopub.status.busy": "2024-02-13T04:49:53.016516Z", - "iopub.status.idle": "2024-02-13T04:49:53.417404Z", - "shell.execute_reply": "2024-02-13T04:49:53.416829Z" + "iopub.execute_input": "2024-02-13T22:19:32.439177Z", + "iopub.status.busy": "2024-02-13T22:19:32.438786Z", + "iopub.status.idle": "2024-02-13T22:19:32.895159Z", + "shell.execute_reply": "2024-02-13T22:19:32.894576Z" } }, "outputs": [ @@ -2490,10 +2490,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:53.419835Z", - "iopub.status.busy": "2024-02-13T04:49:53.419633Z", - "iopub.status.idle": "2024-02-13T04:49:53.429025Z", - "shell.execute_reply": "2024-02-13T04:49:53.428468Z" + "iopub.execute_input": "2024-02-13T22:19:32.897659Z", + "iopub.status.busy": "2024-02-13T22:19:32.897458Z", + "iopub.status.idle": "2024-02-13T22:19:32.906484Z", + "shell.execute_reply": "2024-02-13T22:19:32.905952Z" } }, "outputs": [ @@ -2621,10 +2621,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:53.431390Z", - "iopub.status.busy": "2024-02-13T04:49:53.431212Z", - "iopub.status.idle": "2024-02-13T04:49:53.436848Z", - "shell.execute_reply": "2024-02-13T04:49:53.436296Z" + "iopub.execute_input": "2024-02-13T22:19:32.908861Z", + "iopub.status.busy": "2024-02-13T22:19:32.908665Z", + "iopub.status.idle": "2024-02-13T22:19:32.914295Z", + "shell.execute_reply": "2024-02-13T22:19:32.913747Z" }, "nbsphinx": "hidden" }, @@ -2661,10 +2661,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:53.439026Z", - "iopub.status.busy": "2024-02-13T04:49:53.438847Z", - "iopub.status.idle": "2024-02-13T04:49:53.619466Z", - "shell.execute_reply": "2024-02-13T04:49:53.618997Z" + "iopub.execute_input": "2024-02-13T22:19:32.916573Z", + "iopub.status.busy": "2024-02-13T22:19:32.916383Z", + "iopub.status.idle": "2024-02-13T22:19:33.118180Z", + "shell.execute_reply": "2024-02-13T22:19:33.117696Z" } }, "outputs": [ @@ -2706,10 +2706,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:53.621851Z", - "iopub.status.busy": "2024-02-13T04:49:53.621529Z", - "iopub.status.idle": "2024-02-13T04:49:53.630200Z", - "shell.execute_reply": "2024-02-13T04:49:53.629633Z" + "iopub.execute_input": "2024-02-13T22:19:33.120250Z", + "iopub.status.busy": "2024-02-13T22:19:33.120089Z", + "iopub.status.idle": "2024-02-13T22:19:33.127332Z", + "shell.execute_reply": "2024-02-13T22:19:33.126903Z" } }, "outputs": [ @@ -2795,10 +2795,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:53.632712Z", - "iopub.status.busy": "2024-02-13T04:49:53.632322Z", - "iopub.status.idle": "2024-02-13T04:49:53.831668Z", - "shell.execute_reply": "2024-02-13T04:49:53.831159Z" + "iopub.execute_input": "2024-02-13T22:19:33.129131Z", + "iopub.status.busy": "2024-02-13T22:19:33.128977Z", + "iopub.status.idle": "2024-02-13T22:19:33.323962Z", + "shell.execute_reply": "2024-02-13T22:19:33.323407Z" } }, "outputs": [ @@ -2838,10 +2838,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:53.834038Z", - "iopub.status.busy": "2024-02-13T04:49:53.833625Z", - "iopub.status.idle": "2024-02-13T04:49:53.838307Z", - "shell.execute_reply": "2024-02-13T04:49:53.837756Z" + "iopub.execute_input": "2024-02-13T22:19:33.326098Z", + "iopub.status.busy": "2024-02-13T22:19:33.325766Z", + "iopub.status.idle": "2024-02-13T22:19:33.330031Z", + "shell.execute_reply": "2024-02-13T22:19:33.329590Z" }, "nbsphinx": "hidden" }, @@ -2878,7 +2878,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00a81cfb652e4161af17b66da497fa18": { + "0a4dae9997634e32bad60815aac1a220": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0bd752be93eb409d8bd6eb055e6d98d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2931,118 +2949,7 @@ "width": null } }, - "0100eb87e8e24545930c69c94876b011": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "02a7d52c3b384397ae37d60f05b9be70": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b8f85e3afdc742749c72249d328af602", - "placeholder": "​", - "style": "IPY_MODEL_94a52c43134b442ca54800d14105a36a", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "03852962b5494c8da91da182fcd82736": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6050a2c1d1d54caf859f3b27e1a6577b", - "IPY_MODEL_51ed663c61db4f30b892b63577f89313", - "IPY_MODEL_95b171356e914cbea98cb74b0e0db2a8" - ], - "layout": "IPY_MODEL_3a12b467da2545da832f1dc9f2ea26a0", - "tabbable": null, - "tooltip": null - } - }, - "09173e07625643ba888e38d5cee7eac1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6bc6bf8158a34d48bb547396a02fe3e2", - "IPY_MODEL_c75fdb88303f48a0bab0f3d1bb4b61a7", - "IPY_MODEL_c36f9cfcfd9446db869ce023e567b074" - ], - "layout": "IPY_MODEL_61ef78b060524781a428166569aae1bf", - "tabbable": null, - "tooltip": null - } - }, - "0e0037cdb0e84b46b705b94d92cdb3c1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bac429d41abd43dd930c199cdcefc81f", - "IPY_MODEL_3451d6528c0c4fcc9b05e20efbf027c6", - "IPY_MODEL_17c47372340847578d7ce0d673aff17c" - ], - "layout": "IPY_MODEL_7cf14493a17f4005975b8af322994911", - "tabbable": null, - "tooltip": null - } - }, - "0e7f09f4029041cf9e58917522c4e1e5": { + "0eae112e69984cab991a796815e27393": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3060,71 +2967,60 @@ "text_color": null } }, - "12c9496c08ba4c3d9fccbff0085f1846": { - "model_module": "@jupyter-widgets/controls", + "1056c1488fdc49c3ad8ba10d4a27487c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "17c47372340847578d7ce0d673aff17c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3ff65f76f35e460db5aa62eb01787402", - "placeholder": "​", - "style": "IPY_MODEL_eb2344da9c554d449fe19704e7c0003b", - "tabbable": null, - "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 48.6MB/s]" - } - }, - "18024d84b7f24387b05b2e197c01c264": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aea401d33e6c4ad586e260a7d35383e1", - "placeholder": "​", - "style": "IPY_MODEL_b3141274c7764bd68f3744cf25e7d509", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 7557.23 examples/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2750ea3096654a71b47dea528d65fe49": { + "11c9603c99d54bfabec0a822c0e3ca5f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3140,57 +3036,25 @@ "description_width": "" } }, - "2ac30149fc4c458f82aa055e33a3ea5b": { + "14b24631cbf74b49bab541887c6fdda8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_02a7d52c3b384397ae37d60f05b9be70", - "IPY_MODEL_2c781af92dd04b3d85f430b4fbd60814", - "IPY_MODEL_18024d84b7f24387b05b2e197c01c264" - ], - "layout": "IPY_MODEL_b5bbac09f44c4c518b8445796540d1b1", - "tabbable": null, - "tooltip": null - } - }, - "2c781af92dd04b3d85f430b4fbd60814": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b0c287f1fd9b47f48c8e64b36adf7151", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0100eb87e8e24545930c69c94876b011", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3451d6528c0c4fcc9b05e20efbf027c6": { + "18fa04c8bee94dc7a364a2ac67b92ebe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3206,35 +3070,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_463c57e7a59547dab02563a5696ad39f", - "max": 30931277.0, + "layout": "IPY_MODEL_3fc7f6d5f19743bd947ecc39556712d6", + "max": 5175617.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_64b7f223376548a3bf1da3be3cfadb49", + "style": "IPY_MODEL_3fdfb98eb09044498890dcdc26d0900c", "tabbable": null, "tooltip": null, - "value": 30931277.0 - } - }, - "34752300f48449e58ca75780fd122add": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 5175617.0 } }, - "3a12b467da2545da832f1dc9f2ea26a0": { + "1940bf6b76a043fcb809af50f4b897e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3287,7 +3133,7 @@ "width": null } }, - "3fa61c973fe54b348bb4d2fb93dc0a9e": { + "1cb6fa6bd32a428a93a177395c294e5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3340,7 +3186,72 @@ "width": null } }, - "3ff65f76f35e460db5aa62eb01787402": { + "1efe9858ace045609ca234c55983d437": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1f2b4f19cc00430e92438fdd9bd1c653": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c045f4fec4e24f7e92f652292c54e6f7", + "IPY_MODEL_95a465c3ba234b5dae82430d148977e6", + "IPY_MODEL_d3f500167f92488db6154e1d5b3fe4fe" + ], + "layout": "IPY_MODEL_324317c35b9a44938ac6a05cf099e0a3", + "tabbable": null, + "tooltip": null + } + }, + "2066206c9816433ebe956ad2ddc1cbda": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_97df32738e0d4e64957863f771076a94", + "placeholder": "​", + "style": "IPY_MODEL_c15671dacb3a4225b49f65c98061fc55", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:35<00:00, 1724.77it/s]" + } + }, + "2083f2e96bf04d2e805ab2d7e84d7d22": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3393,25 +3304,7 @@ "width": null } }, - "4184ab102ef743b4bfc89f97d78567d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "42c9c906f2f340468f542b62923734d5": { + "20c6cd1ad7bd414d90ac322ac4a1ec60": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3464,31 +3357,7 @@ "width": null } }, - "44dcd2bb8a6c486ab76a5549120d3e8c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d90522159a634f03b2fed67f6c1b2d2a", - "IPY_MODEL_dcfe23732122499baacc1e7909905d73", - "IPY_MODEL_8f1bb25b9bf94467ac9f7473449bb88b" - ], - "layout": "IPY_MODEL_00a81cfb652e4161af17b66da497fa18", - "tabbable": null, - "tooltip": null - } - }, - "45ef05251b114dc0963213dda34c78c8": { + "229bf29fc46d471596f276ee31670e75": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3541,7 +3410,77 @@ "width": null } }, - "463c57e7a59547dab02563a5696ad39f": { + "2716f1b917a3428498d311cd3719321e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3ad5edcc061e450ca2ab885a1baaccac", + "IPY_MODEL_c9d8b44efb2a49b1a9a20480a4002da7", + "IPY_MODEL_2ef9c652a9b9422498560a4a032ba047" + ], + "layout": "IPY_MODEL_759f0294cf9845a9b07de1c11dc81794", + "tabbable": null, + "tooltip": null + } + }, + "29a92e4a125f4ab8b1b09bd7352f701b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_40b3e569304147df9431b32162e6d9f3", + "placeholder": "​", + "style": "IPY_MODEL_571efba7e1f344f5918f747cc71fb304", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:10<00:00, 7756.98 examples/s]" + } + }, + "2ef9c652a9b9422498560a4a032ba047": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_be87d7530120454db0c423958aab2043", + "placeholder": "​", + "style": "IPY_MODEL_38da2c8230a34cf49ed2e016dcbc4696", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:00<00:00, 950381.76 examples/s]" + } + }, + "2f8c65b10aba4406ab2295f995681db8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3594,53 +3533,23 @@ "width": null } }, - "47b0b0d84ae549b78ac2c645fbc17c86": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_94cf5d86060645909bc253817fcc221f", - "placeholder": "​", - "style": "IPY_MODEL_e0bf989ef7fb46aaba54d6a87f1cfdd9", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "492e5b2554924914832a058e1e677bda": { + "30e3bd816e954002afe25e8cdc96c0af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ca0e42fefa4b463b89d0e0894757cd4c", - "placeholder": "​", - "style": "IPY_MODEL_e873376358504a109e35d30d42f1d8a3", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "4d6389d7d50a4ed5b037f420de744d13": { + "324317c35b9a44938ac6a05cf099e0a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3693,7 +3602,23 @@ "width": null } }, - "51ed663c61db4f30b892b63577f89313": { + "33ea9df613334aabb14a78a4c43ecc19": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3879560cea3c4987b44be1fc876c2243": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3709,17 +3634,58 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4d6389d7d50a4ed5b037f420de744d13", + "layout": "IPY_MODEL_f5dd014fb77044539c61612dfe4b6d15", "max": 10000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_2750ea3096654a71b47dea528d65fe49", + "style": "IPY_MODEL_6e4c96d7ebfd49269f247b245f9f2a7a", "tabbable": null, "tooltip": null, "value": 10000.0 } }, - "564607043da54438b11f000ef01d649a": { + "38da2c8230a34cf49ed2e016dcbc4696": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3ad5edcc061e450ca2ab885a1baaccac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_92b4c48e2eba4173a35f03baeb92c562", + "placeholder": "​", + "style": "IPY_MODEL_dd296e603e23401099e58619eee2def4", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "3c2d0c7d680742d0afda45b19909c4f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3772,25 +3738,7 @@ "width": null } }, - "5690b7e216064681bb125e25a83acf6c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "57d7b21768034a3fb6ddb82ae1e43594": { + "3fc7f6d5f19743bd947ecc39556712d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3843,31 +3791,23 @@ "width": null } }, - "5d115934aff749e882f23b771c08ba39": { + "3fdfb98eb09044498890dcdc26d0900c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_492e5b2554924914832a058e1e677bda", - "IPY_MODEL_ca935150916f400c8f20db71b260fe30", - "IPY_MODEL_c0942f6b880a42d4aa8634f038407126" - ], - "layout": "IPY_MODEL_564607043da54438b11f000ef01d649a", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "60338fe090854c2ea8a2300278faaae3": { + "40b3e569304147df9431b32162e6d9f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3920,7 +3860,7 @@ "width": null } }, - "6050a2c1d1d54caf859f3b27e1a6577b": { + "413c1e145eb24c9d9b506e2eb52c1ad4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3935,15 +3875,90 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9f26675b672f4b69b1caacf0738614d7", + "layout": "IPY_MODEL_20c6cd1ad7bd414d90ac322ac4a1ec60", "placeholder": "​", - "style": "IPY_MODEL_12c9496c08ba4c3d9fccbff0085f1846", + "style": "IPY_MODEL_cdecde7de88a4defbcd98f7a547c8b91", "tabbable": null, "tooltip": null, "value": "Generating test split: 100%" } }, - "61ef78b060524781a428166569aae1bf": { + "41bb6c864be14ef8894e35f022dd3c2b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bcfdbd5457d14796b2e58b1f96c06e2c", + "placeholder": "​", + "style": "IPY_MODEL_8de5b322067b4d0b9335afa97842d3dd", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" + } + }, + "48391842028445ca88ca120306136f9b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "571efba7e1f344f5918f747cc71fb304": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "595a7e8885774f50b285cc31defd2969": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5cbb86781983450bb16e03b8bbef7902": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3996,69 +4011,7 @@ "width": null } }, - "64b7f223376548a3bf1da3be3cfadb49": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "6bc6bf8158a34d48bb547396a02fe3e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_78a2a372df9c483ebaa4b00c288c2688", - "placeholder": "​", - "style": "IPY_MODEL_fae1a0fd8a6d4b5db6bab2833030e36f", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" - } - }, - "767919ec795b4b40b41e3b1f9116c45e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_57d7b21768034a3fb6ddb82ae1e43594", - "placeholder": "​", - "style": "IPY_MODEL_d8830a7af2ee46a7841aaef0b252377b", - "tabbable": null, - "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 28.5MB/s]" - } - }, - "78a2a372df9c483ebaa4b00c288c2688": { + "5eb259ed793943ef8aad6d298c193a6f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4111,7 +4064,7 @@ "width": null } }, - "7cf14493a17f4005975b8af322994911": { + "5feba688cb21403087ad67983a45f807": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4164,7 +4117,23 @@ "width": null } }, - "8e65ccc0a0f54c16b91938b70f067ae5": { + "6e4c96d7ebfd49269f247b245f9f2a7a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "759f0294cf9845a9b07de1c11dc81794": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4217,48 +4186,80 @@ "width": null } }, - "8f1bb25b9bf94467ac9f7473449bb88b": { + "78c74f56872849bd9fec91216fb1d9d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fae52f08e881419b97ed26312b87134a", + "IPY_MODEL_18fa04c8bee94dc7a364a2ac67b92ebe", + "IPY_MODEL_d8a87a94ad1c48ed8ca6c65f671173c9" + ], + "layout": "IPY_MODEL_fb21e046e2334843a45957abca478ea8", + "tabbable": null, + "tooltip": null + } + }, + "7f67762eb7f4421aa72f78242e8bc2d6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9808ca93633242a3b53f4cac21f4217b", - "placeholder": "​", - "style": "IPY_MODEL_0e7f09f4029041cf9e58917522c4e1e5", + "layout": "IPY_MODEL_5eb259ed793943ef8aad6d298c193a6f", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_33ea9df613334aabb14a78a4c43ecc19", "tabbable": null, "tooltip": null, - "value": " 2/2 [00:00<00:00, 587.27it/s]" + "value": 60000.0 } }, - "94a52c43134b442ca54800d14105a36a": { + "83fce3af13d54bc2a2873379cb1ea0ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_89a87477517d490bbeecbbd6565c5259", + "placeholder": "​", + "style": "IPY_MODEL_14b24631cbf74b49bab541887c6fdda8", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "94cf5d86060645909bc253817fcc221f": { + "89a87477517d490bbeecbbd6565c5259": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4311,7 +4312,51 @@ "width": null } }, - "95b171356e914cbea98cb74b0e0db2a8": { + "8acaf9ba28ed428ea6bab91c6975a2f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1056c1488fdc49c3ad8ba10d4a27487c", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_30e3bd816e954002afe25e8cdc96c0af", + "tabbable": null, + "tooltip": null, + "value": 30931277.0 + } + }, + "8de5b322067b4d0b9335afa97842d3dd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "919c51c3c5704059b8955d0ed4fe9510": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4326,15 +4371,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_60338fe090854c2ea8a2300278faaae3", + "layout": "IPY_MODEL_eb4dd5e860484050b7e29e7d313a9cfd", "placeholder": "​", - "style": "IPY_MODEL_aa090512beef488e80742327a96f385f", + "style": "IPY_MODEL_c5f0f72dc50b469d868a14e1b59e326d", "tabbable": null, "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 616827.55 examples/s]" + "value": "100%" } }, - "9808ca93633242a3b53f4cac21f4217b": { + "92b4c48e2eba4173a35f03baeb92c562": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4387,31 +4432,33 @@ "width": null } }, - "9941def6fe7e41dc90e45a05b13ed47b": { + "95a465c3ba234b5dae82430d148977e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_47b0b0d84ae549b78ac2c645fbc17c86", - "IPY_MODEL_e522be3c869b45c6bb7968c3f0116f3c", - "IPY_MODEL_767919ec795b4b40b41e3b1f9116c45e" - ], - "layout": "IPY_MODEL_b027fb4a87664fac8ae6207a8e1e0b93", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1cb6fa6bd32a428a93a177395c294e5f", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_595a7e8885774f50b285cc31defd2969", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 2.0 } }, - "9f26675b672f4b69b1caacf0738614d7": { + "97df32738e0d4e64957863f771076a94": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4464,7 +4511,7 @@ "width": null } }, - "a1abd0eccbe94f1ea9fd951ad0f9f889": { + "a053c60e09ab4895a3ad840efcda52ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4517,7 +4564,7 @@ "width": null } }, - "a4d5d6b9816a4d02977e10ddf741f714": { + "a49dc2cd80a44de2bd2d4ba0a310a96c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4570,23 +4617,97 @@ "width": null } }, - "a66aa5b3deff4f09ab07c4f7f356bf86": { + "a7a5b61cf35b427f97e5c722f9b3203f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_413c1e145eb24c9d9b506e2eb52c1ad4", + "IPY_MODEL_3879560cea3c4987b44be1fc876c2243", + "IPY_MODEL_d512531d6b134fb0914f89ff07bab9bd" + ], + "layout": "IPY_MODEL_c9af2593fa1a455780e34f7f830a9089", + "tabbable": null, + "tooltip": null + } + }, + "b04b7e304a4743a1b238e56726ee40f1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_41bb6c864be14ef8894e35f022dd3c2b", + "IPY_MODEL_fc6e6a9393194ac398c0ed4656e82b1a", + "IPY_MODEL_29a92e4a125f4ab8b1b09bd7352f701b" + ], + "layout": "IPY_MODEL_229bf29fc46d471596f276ee31670e75", + "tabbable": null, + "tooltip": null + } + }, + "b4b144c72af24136b9fb812c8f6be9bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_83fce3af13d54bc2a2873379cb1ea0ba", + "IPY_MODEL_8acaf9ba28ed428ea6bab91c6975a2f9", + "IPY_MODEL_f60f30b199e04f299a035dffab68de33" + ], + "layout": "IPY_MODEL_2083f2e96bf04d2e805ab2d7e84d7d22", + "tabbable": null, + "tooltip": null + } + }, + "b8545852bd314b42969f95ef6e91b9ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "aa090512beef488e80742327a96f385f": { + "bc38dcc23e1e4fd7b0e60b7381331d73": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4604,7 +4725,7 @@ "text_color": null } }, - "aea401d33e6c4ad586e260a7d35383e1": { + "bcfdbd5457d14796b2e58b1f96c06e2c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4657,7 +4778,7 @@ "width": null } }, - "b027fb4a87664fac8ae6207a8e1e0b93": { + "be87d7530120454db0c423958aab2043": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4710,60 +4831,30 @@ "width": null } }, - "b0c287f1fd9b47f48c8e64b36adf7151": { - "model_module": "@jupyter-widgets/base", + "c045f4fec4e24f7e92f652292c54e6f7": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3c2d0c7d680742d0afda45b19909c4f3", + "placeholder": "​", + "style": "IPY_MODEL_48391842028445ca88ca120306136f9b", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" } }, - "b3141274c7764bd68f3744cf25e7d509": { + "c15671dacb3a4225b49f65c98061fc55": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4781,23 +4872,25 @@ "text_color": null } }, - "b442ce91a53e4530ae36d4526d545fac": { + "c5f0f72dc50b469d868a14e1b59e326d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b5bbac09f44c4c518b8445796540d1b1": { + "c9af2593fa1a455780e34f7f830a9089": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4850,7 +4943,51 @@ "width": null } }, - "b8f85e3afdc742749c72249d328af602": { + "c9d8b44efb2a49b1a9a20480a4002da7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a053c60e09ab4895a3ad840efcda52ec", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e02f1598b5c4404b86aeb8103abfeff9", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "cdecde7de88a4defbcd98f7a547c8b91": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "cdf0a444af4c424d8f2d968f3dcfcfa9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4903,7 +5040,31 @@ "width": null } }, - "bac429d41abd43dd930c199cdcefc81f": { + "d0d70be349a64bbca45dc6828385e006": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_919c51c3c5704059b8955d0ed4fe9510", + "IPY_MODEL_7f67762eb7f4421aa72f78242e8bc2d6", + "IPY_MODEL_2066206c9816433ebe956ad2ddc1cbda" + ], + "layout": "IPY_MODEL_cdf0a444af4c424d8f2d968f3dcfcfa9", + "tabbable": null, + "tooltip": null + } + }, + "d3f500167f92488db6154e1d5b3fe4fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4918,15 +5079,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d15c8f396c47417e9e2640853546255c", + "layout": "IPY_MODEL_1940bf6b76a043fcb809af50f4b897e8", "placeholder": "​", - "style": "IPY_MODEL_34752300f48449e58ca75780fd122add", + "style": "IPY_MODEL_0a4dae9997634e32bad60815aac1a220", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 2/2 [00:00<00:00, 440.37it/s]" } }, - "c0942f6b880a42d4aa8634f038407126": { + "d512531d6b134fb0914f89ff07bab9bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4941,15 +5102,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_45ef05251b114dc0963213dda34c78c8", + "layout": "IPY_MODEL_2f8c65b10aba4406ab2295f995681db8", "placeholder": "​", - "style": "IPY_MODEL_fdb8d941926d414e8fbd80b77599dd7e", + "style": "IPY_MODEL_bc38dcc23e1e4fd7b0e60b7381331d73", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:38<00:00, 1639.05it/s]" + "value": " 10000/10000 [00:00<00:00, 652170.48 examples/s]" } }, - "c36f9cfcfd9446db869ce023e567b074": { + "d8a87a94ad1c48ed8ca6c65f671173c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4964,15 +5125,49 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8e65ccc0a0f54c16b91938b70f067ae5", + "layout": "IPY_MODEL_5feba688cb21403087ad67983a45f807", "placeholder": "​", - "style": "IPY_MODEL_4184ab102ef743b4bfc89f97d78567d2", + "style": "IPY_MODEL_0eae112e69984cab991a796815e27393", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 932972.88 examples/s]" + "value": " 5.18M/5.18M [00:00<00:00, 8.22MB/s]" + } + }, + "dd296e603e23401099e58619eee2def4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e02f1598b5c4404b86aeb8103abfeff9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "c3e9354851c3433185ea6e372faabaf9": { + "eb4dd5e860484050b7e29e7d313a9cfd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5025,33 +5220,7 @@ "width": null } }, - "c75fdb88303f48a0bab0f3d1bb4b61a7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3fa61c973fe54b348bb4d2fb93dc0a9e", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cf409baca4d3402cba9ae5b91e7d11ef", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "ca0e42fefa4b463b89d0e0894757cd4c": { + "f5dd014fb77044539c61612dfe4b6d15": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5104,65 +5273,53 @@ "width": null } }, - "ca935150916f400c8f20db71b260fe30": { + "f60f30b199e04f299a035dffab68de33": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a1abd0eccbe94f1ea9fd951ad0f9f889", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b442ce91a53e4530ae36d4526d545fac", + "layout": "IPY_MODEL_a49dc2cd80a44de2bd2d4ba0a310a96c", + "placeholder": "​", + "style": "IPY_MODEL_1efe9858ace045609ca234c55983d437", "tabbable": null, "tooltip": null, - "value": 60000.0 - } - }, - "cd4bed5282574b86833b2f162592b5a5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 30.9M/30.9M [00:00<00:00, 62.0MB/s]" } }, - "cf409baca4d3402cba9ae5b91e7d11ef": { + "fae52f08e881419b97ed26312b87134a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5cbb86781983450bb16e03b8bbef7902", + "placeholder": "​", + "style": "IPY_MODEL_b8545852bd314b42969f95ef6e91b9ef", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "d15c8f396c47417e9e2640853546255c": { + "fb21e046e2334843a45957abca478ea8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5215,92 +5372,7 @@ "width": null } }, - "d8830a7af2ee46a7841aaef0b252377b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d90522159a634f03b2fed67f6c1b2d2a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a4d5d6b9816a4d02977e10ddf741f714", - "placeholder": "​", - "style": "IPY_MODEL_5690b7e216064681bb125e25a83acf6c", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "dcfe23732122499baacc1e7909905d73": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c3e9354851c3433185ea6e372faabaf9", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cd4bed5282574b86833b2f162592b5a5", - "tabbable": null, - "tooltip": null, - "value": 2.0 - } - }, - "e0bf989ef7fb46aaba54d6a87f1cfdd9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e522be3c869b45c6bb7968c3f0116f3c": { + "fc6e6a9393194ac398c0ed4656e82b1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5316,86 +5388,14 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_42c9c906f2f340468f542b62923734d5", - "max": 5175617.0, + "layout": "IPY_MODEL_0bd752be93eb409d8bd6eb055e6d98d7", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_a66aa5b3deff4f09ab07c4f7f356bf86", + "style": "IPY_MODEL_11c9603c99d54bfabec0a822c0e3ca5f", "tabbable": null, "tooltip": null, - "value": 5175617.0 - } - }, - "e873376358504a109e35d30d42f1d8a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "eb2344da9c554d449fe19704e7c0003b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "fae1a0fd8a6d4b5db6bab2833030e36f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "fdb8d941926d414e8fbd80b77599dd7e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 60000.0 } } }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index f63ba0fd7..7bfe9c315 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:49:59.016541Z", - "iopub.status.busy": "2024-02-13T04:49:59.016121Z", - "iopub.status.idle": "2024-02-13T04:50:00.173633Z", - "shell.execute_reply": "2024-02-13T04:50:00.173015Z" + "iopub.execute_input": "2024-02-13T22:19:37.392984Z", + "iopub.status.busy": "2024-02-13T22:19:37.392561Z", + "iopub.status.idle": "2024-02-13T22:19:38.520633Z", + "shell.execute_reply": "2024-02-13T22:19:38.520146Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:00.176456Z", - "iopub.status.busy": "2024-02-13T04:50:00.176014Z", - "iopub.status.idle": "2024-02-13T04:50:00.360277Z", - "shell.execute_reply": "2024-02-13T04:50:00.359673Z" + "iopub.execute_input": "2024-02-13T22:19:38.523155Z", + "iopub.status.busy": "2024-02-13T22:19:38.522778Z", + "iopub.status.idle": "2024-02-13T22:19:38.701638Z", + "shell.execute_reply": "2024-02-13T22:19:38.700997Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:00.362859Z", - "iopub.status.busy": "2024-02-13T04:50:00.362649Z", - "iopub.status.idle": "2024-02-13T04:50:00.374261Z", - "shell.execute_reply": "2024-02-13T04:50:00.373741Z" + "iopub.execute_input": "2024-02-13T22:19:38.704168Z", + "iopub.status.busy": "2024-02-13T22:19:38.703821Z", + "iopub.status.idle": "2024-02-13T22:19:38.715588Z", + "shell.execute_reply": "2024-02-13T22:19:38.715164Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:00.376137Z", - "iopub.status.busy": "2024-02-13T04:50:00.375955Z", - "iopub.status.idle": "2024-02-13T04:50:00.585876Z", - "shell.execute_reply": "2024-02-13T04:50:00.585277Z" + "iopub.execute_input": "2024-02-13T22:19:38.717531Z", + "iopub.status.busy": "2024-02-13T22:19:38.717203Z", + "iopub.status.idle": "2024-02-13T22:19:38.950640Z", + "shell.execute_reply": "2024-02-13T22:19:38.950106Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:00.588269Z", - "iopub.status.busy": "2024-02-13T04:50:00.587942Z", - "iopub.status.idle": "2024-02-13T04:50:00.616209Z", - "shell.execute_reply": "2024-02-13T04:50:00.615729Z" + "iopub.execute_input": "2024-02-13T22:19:38.952983Z", + "iopub.status.busy": "2024-02-13T22:19:38.952644Z", + "iopub.status.idle": "2024-02-13T22:19:38.980126Z", + "shell.execute_reply": "2024-02-13T22:19:38.979547Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:00.618600Z", - "iopub.status.busy": "2024-02-13T04:50:00.618235Z", - "iopub.status.idle": "2024-02-13T04:50:02.379943Z", - "shell.execute_reply": "2024-02-13T04:50:02.379274Z" + "iopub.execute_input": "2024-02-13T22:19:38.982443Z", + "iopub.status.busy": "2024-02-13T22:19:38.982260Z", + "iopub.status.idle": "2024-02-13T22:19:40.658675Z", + "shell.execute_reply": "2024-02-13T22:19:40.658026Z" } }, "outputs": [ @@ -475,10 +475,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:02.382722Z", - "iopub.status.busy": "2024-02-13T04:50:02.381962Z", - "iopub.status.idle": "2024-02-13T04:50:02.401260Z", - "shell.execute_reply": "2024-02-13T04:50:02.400758Z" + "iopub.execute_input": "2024-02-13T22:19:40.661094Z", + "iopub.status.busy": "2024-02-13T22:19:40.660633Z", + "iopub.status.idle": "2024-02-13T22:19:40.678792Z", + "shell.execute_reply": "2024-02-13T22:19:40.678350Z" }, "scrolled": true }, @@ -603,10 +603,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:02.403608Z", - "iopub.status.busy": "2024-02-13T04:50:02.403195Z", - "iopub.status.idle": "2024-02-13T04:50:03.836390Z", - "shell.execute_reply": "2024-02-13T04:50:03.835759Z" + "iopub.execute_input": "2024-02-13T22:19:40.680795Z", + "iopub.status.busy": "2024-02-13T22:19:40.680465Z", + "iopub.status.idle": "2024-02-13T22:19:42.096969Z", + "shell.execute_reply": "2024-02-13T22:19:42.096327Z" }, "id": "AaHC5MRKjruT" }, @@ -725,10 +725,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:03.839229Z", - "iopub.status.busy": "2024-02-13T04:50:03.838433Z", - "iopub.status.idle": "2024-02-13T04:50:03.852330Z", - "shell.execute_reply": "2024-02-13T04:50:03.851853Z" + "iopub.execute_input": "2024-02-13T22:19:42.100162Z", + "iopub.status.busy": "2024-02-13T22:19:42.099099Z", + "iopub.status.idle": "2024-02-13T22:19:42.112445Z", + "shell.execute_reply": "2024-02-13T22:19:42.112001Z" }, "id": "Wy27rvyhjruU" }, @@ -777,10 +777,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:03.854540Z", - "iopub.status.busy": "2024-02-13T04:50:03.854206Z", - "iopub.status.idle": "2024-02-13T04:50:03.931457Z", - "shell.execute_reply": "2024-02-13T04:50:03.930837Z" + "iopub.execute_input": "2024-02-13T22:19:42.114366Z", + "iopub.status.busy": "2024-02-13T22:19:42.114059Z", + "iopub.status.idle": "2024-02-13T22:19:42.185367Z", + "shell.execute_reply": "2024-02-13T22:19:42.184833Z" }, "id": "Db8YHnyVjruU" }, @@ -887,10 +887,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:03.933886Z", - "iopub.status.busy": "2024-02-13T04:50:03.933626Z", - "iopub.status.idle": "2024-02-13T04:50:04.143267Z", - "shell.execute_reply": "2024-02-13T04:50:04.142794Z" + "iopub.execute_input": "2024-02-13T22:19:42.187819Z", + "iopub.status.busy": "2024-02-13T22:19:42.187382Z", + "iopub.status.idle": "2024-02-13T22:19:42.400115Z", + "shell.execute_reply": "2024-02-13T22:19:42.399559Z" }, "id": "iJqAHuS2jruV" }, @@ -927,10 +927,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:04.145472Z", - "iopub.status.busy": "2024-02-13T04:50:04.145125Z", - "iopub.status.idle": "2024-02-13T04:50:04.162092Z", - "shell.execute_reply": "2024-02-13T04:50:04.161565Z" + "iopub.execute_input": "2024-02-13T22:19:42.402431Z", + "iopub.status.busy": "2024-02-13T22:19:42.402086Z", + "iopub.status.idle": "2024-02-13T22:19:42.418839Z", + "shell.execute_reply": "2024-02-13T22:19:42.418387Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1396,10 +1396,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:04.164216Z", - "iopub.status.busy": "2024-02-13T04:50:04.163880Z", - "iopub.status.idle": "2024-02-13T04:50:04.173619Z", - "shell.execute_reply": "2024-02-13T04:50:04.173195Z" + "iopub.execute_input": "2024-02-13T22:19:42.420706Z", + "iopub.status.busy": "2024-02-13T22:19:42.420530Z", + "iopub.status.idle": "2024-02-13T22:19:42.430234Z", + "shell.execute_reply": "2024-02-13T22:19:42.429712Z" }, "id": "0lonvOYvjruV" }, @@ -1546,10 +1546,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:04.175638Z", - "iopub.status.busy": "2024-02-13T04:50:04.175314Z", - "iopub.status.idle": "2024-02-13T04:50:04.266519Z", - "shell.execute_reply": "2024-02-13T04:50:04.265870Z" + "iopub.execute_input": "2024-02-13T22:19:42.432407Z", + "iopub.status.busy": "2024-02-13T22:19:42.432004Z", + "iopub.status.idle": "2024-02-13T22:19:42.517690Z", + "shell.execute_reply": "2024-02-13T22:19:42.517144Z" }, "id": "MfqTCa3kjruV" }, @@ -1630,10 +1630,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:04.268999Z", - "iopub.status.busy": "2024-02-13T04:50:04.268611Z", - "iopub.status.idle": "2024-02-13T04:50:04.402477Z", - "shell.execute_reply": "2024-02-13T04:50:04.401828Z" + "iopub.execute_input": "2024-02-13T22:19:42.520126Z", + "iopub.status.busy": "2024-02-13T22:19:42.519794Z", + "iopub.status.idle": "2024-02-13T22:19:42.635225Z", + "shell.execute_reply": "2024-02-13T22:19:42.634473Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1693,10 +1693,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:04.404675Z", - "iopub.status.busy": "2024-02-13T04:50:04.404440Z", - "iopub.status.idle": "2024-02-13T04:50:04.408460Z", - "shell.execute_reply": "2024-02-13T04:50:04.407963Z" + "iopub.execute_input": "2024-02-13T22:19:42.637443Z", + "iopub.status.busy": "2024-02-13T22:19:42.637226Z", + "iopub.status.idle": "2024-02-13T22:19:42.640926Z", + "shell.execute_reply": "2024-02-13T22:19:42.640405Z" }, "id": "0rXP3ZPWjruW" }, @@ -1734,10 +1734,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:04.410658Z", - "iopub.status.busy": "2024-02-13T04:50:04.410253Z", - "iopub.status.idle": "2024-02-13T04:50:04.414308Z", - "shell.execute_reply": "2024-02-13T04:50:04.413792Z" + "iopub.execute_input": "2024-02-13T22:19:42.642877Z", + "iopub.status.busy": "2024-02-13T22:19:42.642575Z", + "iopub.status.idle": "2024-02-13T22:19:42.646214Z", + "shell.execute_reply": "2024-02-13T22:19:42.645697Z" }, "id": "-iRPe8KXjruW" }, @@ -1792,10 +1792,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:04.416344Z", - "iopub.status.busy": "2024-02-13T04:50:04.416053Z", - "iopub.status.idle": "2024-02-13T04:50:04.454502Z", - "shell.execute_reply": "2024-02-13T04:50:04.453897Z" + "iopub.execute_input": "2024-02-13T22:19:42.648107Z", + "iopub.status.busy": "2024-02-13T22:19:42.647931Z", + "iopub.status.idle": "2024-02-13T22:19:42.684561Z", + "shell.execute_reply": "2024-02-13T22:19:42.684028Z" }, "id": "ZpipUliyjruW" }, @@ -1846,10 +1846,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:04.456912Z", - "iopub.status.busy": "2024-02-13T04:50:04.456550Z", - "iopub.status.idle": "2024-02-13T04:50:04.500248Z", - "shell.execute_reply": "2024-02-13T04:50:04.499741Z" + "iopub.execute_input": "2024-02-13T22:19:42.686434Z", + "iopub.status.busy": "2024-02-13T22:19:42.686257Z", + "iopub.status.idle": "2024-02-13T22:19:42.728063Z", + "shell.execute_reply": "2024-02-13T22:19:42.727642Z" }, "id": "SLq-3q4xjruX" }, @@ -1918,10 +1918,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:04.502518Z", - "iopub.status.busy": "2024-02-13T04:50:04.502099Z", - "iopub.status.idle": "2024-02-13T04:50:04.599155Z", - "shell.execute_reply": "2024-02-13T04:50:04.598536Z" + "iopub.execute_input": "2024-02-13T22:19:42.729911Z", + "iopub.status.busy": "2024-02-13T22:19:42.729741Z", + "iopub.status.idle": "2024-02-13T22:19:42.817953Z", + "shell.execute_reply": "2024-02-13T22:19:42.817284Z" }, "id": "g5LHhhuqFbXK" }, @@ -1953,10 +1953,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:04.602069Z", - "iopub.status.busy": "2024-02-13T04:50:04.601561Z", - "iopub.status.idle": "2024-02-13T04:50:04.698047Z", - "shell.execute_reply": "2024-02-13T04:50:04.697450Z" + "iopub.execute_input": "2024-02-13T22:19:42.820650Z", + "iopub.status.busy": "2024-02-13T22:19:42.820431Z", + "iopub.status.idle": "2024-02-13T22:19:42.897309Z", + "shell.execute_reply": "2024-02-13T22:19:42.896712Z" }, "id": "p7w8F8ezBcet" }, @@ -2013,10 +2013,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:04.700334Z", - "iopub.status.busy": "2024-02-13T04:50:04.700087Z", - "iopub.status.idle": "2024-02-13T04:50:04.920196Z", - "shell.execute_reply": "2024-02-13T04:50:04.919622Z" + "iopub.execute_input": "2024-02-13T22:19:42.899779Z", + "iopub.status.busy": "2024-02-13T22:19:42.899366Z", + "iopub.status.idle": "2024-02-13T22:19:43.108879Z", + "shell.execute_reply": "2024-02-13T22:19:43.108304Z" }, "id": "WETRL74tE_sU" }, @@ -2051,10 +2051,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:04.922457Z", - "iopub.status.busy": "2024-02-13T04:50:04.922116Z", - "iopub.status.idle": "2024-02-13T04:50:05.119882Z", - "shell.execute_reply": "2024-02-13T04:50:05.119313Z" + "iopub.execute_input": "2024-02-13T22:19:43.110963Z", + "iopub.status.busy": "2024-02-13T22:19:43.110725Z", + "iopub.status.idle": "2024-02-13T22:19:43.289217Z", + "shell.execute_reply": "2024-02-13T22:19:43.288628Z" }, "id": "kCfdx2gOLmXS" }, @@ -2216,10 +2216,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:05.122296Z", - "iopub.status.busy": "2024-02-13T04:50:05.121930Z", - "iopub.status.idle": "2024-02-13T04:50:05.127645Z", - "shell.execute_reply": "2024-02-13T04:50:05.127215Z" + "iopub.execute_input": "2024-02-13T22:19:43.291497Z", + "iopub.status.busy": "2024-02-13T22:19:43.291273Z", + "iopub.status.idle": "2024-02-13T22:19:43.297731Z", + "shell.execute_reply": "2024-02-13T22:19:43.297205Z" }, "id": "-uogYRWFYnuu" }, @@ -2273,10 +2273,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:05.129548Z", - "iopub.status.busy": "2024-02-13T04:50:05.129288Z", - "iopub.status.idle": "2024-02-13T04:50:05.346428Z", - "shell.execute_reply": "2024-02-13T04:50:05.345831Z" + "iopub.execute_input": "2024-02-13T22:19:43.299815Z", + "iopub.status.busy": "2024-02-13T22:19:43.299505Z", + "iopub.status.idle": "2024-02-13T22:19:43.525106Z", + "shell.execute_reply": "2024-02-13T22:19:43.524523Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2323,10 +2323,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:05.348541Z", - "iopub.status.busy": "2024-02-13T04:50:05.348355Z", - "iopub.status.idle": "2024-02-13T04:50:06.434438Z", - "shell.execute_reply": "2024-02-13T04:50:06.433862Z" + "iopub.execute_input": "2024-02-13T22:19:43.527363Z", + "iopub.status.busy": "2024-02-13T22:19:43.527026Z", + "iopub.status.idle": "2024-02-13T22:19:44.607924Z", + "shell.execute_reply": "2024-02-13T22:19:44.607384Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index 8ff4bdc9e..3d39c24f2 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:10.161609Z", - "iopub.status.busy": "2024-02-13T04:50:10.161425Z", - "iopub.status.idle": "2024-02-13T04:50:11.255077Z", - "shell.execute_reply": "2024-02-13T04:50:11.254534Z" + "iopub.execute_input": "2024-02-13T22:19:48.239958Z", + "iopub.status.busy": "2024-02-13T22:19:48.239787Z", + "iopub.status.idle": "2024-02-13T22:19:49.301141Z", + "shell.execute_reply": "2024-02-13T22:19:49.300614Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:11.257800Z", - "iopub.status.busy": "2024-02-13T04:50:11.257271Z", - "iopub.status.idle": "2024-02-13T04:50:11.260452Z", - "shell.execute_reply": "2024-02-13T04:50:11.260022Z" + "iopub.execute_input": "2024-02-13T22:19:49.303709Z", + "iopub.status.busy": "2024-02-13T22:19:49.303285Z", + "iopub.status.idle": "2024-02-13T22:19:49.306278Z", + "shell.execute_reply": "2024-02-13T22:19:49.305851Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:11.262757Z", - "iopub.status.busy": "2024-02-13T04:50:11.262369Z", - "iopub.status.idle": "2024-02-13T04:50:11.270270Z", - "shell.execute_reply": "2024-02-13T04:50:11.269815Z" + "iopub.execute_input": "2024-02-13T22:19:49.308132Z", + "iopub.status.busy": "2024-02-13T22:19:49.307963Z", + "iopub.status.idle": "2024-02-13T22:19:49.315510Z", + "shell.execute_reply": "2024-02-13T22:19:49.315071Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:11.272420Z", - "iopub.status.busy": "2024-02-13T04:50:11.272042Z", - "iopub.status.idle": "2024-02-13T04:50:11.321445Z", - "shell.execute_reply": "2024-02-13T04:50:11.320903Z" + "iopub.execute_input": "2024-02-13T22:19:49.317266Z", + "iopub.status.busy": "2024-02-13T22:19:49.317098Z", + "iopub.status.idle": "2024-02-13T22:19:49.363659Z", + "shell.execute_reply": "2024-02-13T22:19:49.363176Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:11.323919Z", - "iopub.status.busy": "2024-02-13T04:50:11.323722Z", - "iopub.status.idle": "2024-02-13T04:50:11.342426Z", - "shell.execute_reply": "2024-02-13T04:50:11.341944Z" + "iopub.execute_input": "2024-02-13T22:19:49.365718Z", + "iopub.status.busy": "2024-02-13T22:19:49.365534Z", + "iopub.status.idle": "2024-02-13T22:19:49.383026Z", + "shell.execute_reply": "2024-02-13T22:19:49.382581Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:11.344401Z", - "iopub.status.busy": "2024-02-13T04:50:11.344222Z", - "iopub.status.idle": "2024-02-13T04:50:11.348200Z", - "shell.execute_reply": "2024-02-13T04:50:11.347752Z" + "iopub.execute_input": "2024-02-13T22:19:49.384968Z", + "iopub.status.busy": "2024-02-13T22:19:49.384795Z", + "iopub.status.idle": "2024-02-13T22:19:49.388588Z", + "shell.execute_reply": "2024-02-13T22:19:49.388144Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:11.350097Z", - "iopub.status.busy": "2024-02-13T04:50:11.349910Z", - "iopub.status.idle": "2024-02-13T04:50:11.381874Z", - "shell.execute_reply": "2024-02-13T04:50:11.381252Z" + "iopub.execute_input": "2024-02-13T22:19:49.390547Z", + "iopub.status.busy": "2024-02-13T22:19:49.390248Z", + "iopub.status.idle": "2024-02-13T22:19:49.417011Z", + "shell.execute_reply": "2024-02-13T22:19:49.416606Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:11.384489Z", - "iopub.status.busy": "2024-02-13T04:50:11.384074Z", - "iopub.status.idle": "2024-02-13T04:50:11.411513Z", - "shell.execute_reply": "2024-02-13T04:50:11.411049Z" + "iopub.execute_input": "2024-02-13T22:19:49.418930Z", + "iopub.status.busy": "2024-02-13T22:19:49.418739Z", + "iopub.status.idle": "2024-02-13T22:19:49.445201Z", + "shell.execute_reply": "2024-02-13T22:19:49.444761Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:11.413866Z", - "iopub.status.busy": "2024-02-13T04:50:11.413518Z", - "iopub.status.idle": "2024-02-13T04:50:13.213134Z", - "shell.execute_reply": "2024-02-13T04:50:13.212579Z" + "iopub.execute_input": "2024-02-13T22:19:49.447185Z", + "iopub.status.busy": "2024-02-13T22:19:49.447013Z", + "iopub.status.idle": "2024-02-13T22:19:51.198820Z", + "shell.execute_reply": "2024-02-13T22:19:51.198242Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:13.215831Z", - "iopub.status.busy": "2024-02-13T04:50:13.215320Z", - "iopub.status.idle": "2024-02-13T04:50:13.222261Z", - "shell.execute_reply": "2024-02-13T04:50:13.221803Z" + "iopub.execute_input": "2024-02-13T22:19:51.201527Z", + "iopub.status.busy": "2024-02-13T22:19:51.200994Z", + "iopub.status.idle": "2024-02-13T22:19:51.207956Z", + "shell.execute_reply": "2024-02-13T22:19:51.207509Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:13.224392Z", - "iopub.status.busy": "2024-02-13T04:50:13.224072Z", - "iopub.status.idle": "2024-02-13T04:50:13.236917Z", - "shell.execute_reply": "2024-02-13T04:50:13.236431Z" + "iopub.execute_input": "2024-02-13T22:19:51.209979Z", + "iopub.status.busy": "2024-02-13T22:19:51.209659Z", + "iopub.status.idle": "2024-02-13T22:19:51.222058Z", + "shell.execute_reply": "2024-02-13T22:19:51.221519Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:13.239164Z", - "iopub.status.busy": "2024-02-13T04:50:13.238719Z", - "iopub.status.idle": "2024-02-13T04:50:13.245372Z", - "shell.execute_reply": "2024-02-13T04:50:13.244951Z" + "iopub.execute_input": "2024-02-13T22:19:51.224089Z", + "iopub.status.busy": "2024-02-13T22:19:51.223756Z", + "iopub.status.idle": "2024-02-13T22:19:51.229990Z", + "shell.execute_reply": "2024-02-13T22:19:51.229568Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:13.247613Z", - "iopub.status.busy": "2024-02-13T04:50:13.247282Z", - "iopub.status.idle": "2024-02-13T04:50:13.249975Z", - "shell.execute_reply": "2024-02-13T04:50:13.249520Z" + "iopub.execute_input": "2024-02-13T22:19:51.231967Z", + "iopub.status.busy": "2024-02-13T22:19:51.231646Z", + "iopub.status.idle": "2024-02-13T22:19:51.234237Z", + "shell.execute_reply": "2024-02-13T22:19:51.233807Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:13.252042Z", - "iopub.status.busy": "2024-02-13T04:50:13.251637Z", - "iopub.status.idle": "2024-02-13T04:50:13.255441Z", - "shell.execute_reply": "2024-02-13T04:50:13.254993Z" + "iopub.execute_input": "2024-02-13T22:19:51.236150Z", + "iopub.status.busy": "2024-02-13T22:19:51.235837Z", + "iopub.status.idle": "2024-02-13T22:19:51.239372Z", + "shell.execute_reply": "2024-02-13T22:19:51.238926Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:13.257518Z", - "iopub.status.busy": "2024-02-13T04:50:13.257122Z", - "iopub.status.idle": "2024-02-13T04:50:13.259870Z", - "shell.execute_reply": "2024-02-13T04:50:13.259332Z" + "iopub.execute_input": "2024-02-13T22:19:51.241376Z", + "iopub.status.busy": "2024-02-13T22:19:51.241079Z", + "iopub.status.idle": "2024-02-13T22:19:51.243627Z", + "shell.execute_reply": "2024-02-13T22:19:51.243200Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:13.262000Z", - "iopub.status.busy": "2024-02-13T04:50:13.261733Z", - "iopub.status.idle": "2024-02-13T04:50:13.266015Z", - "shell.execute_reply": "2024-02-13T04:50:13.265479Z" + "iopub.execute_input": "2024-02-13T22:19:51.245553Z", + "iopub.status.busy": "2024-02-13T22:19:51.245253Z", + "iopub.status.idle": "2024-02-13T22:19:51.249512Z", + "shell.execute_reply": "2024-02-13T22:19:51.249074Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:13.268271Z", - "iopub.status.busy": "2024-02-13T04:50:13.267824Z", - "iopub.status.idle": "2024-02-13T04:50:13.298493Z", - "shell.execute_reply": "2024-02-13T04:50:13.297870Z" + "iopub.execute_input": "2024-02-13T22:19:51.251463Z", + "iopub.status.busy": "2024-02-13T22:19:51.251149Z", + "iopub.status.idle": "2024-02-13T22:19:51.280045Z", + "shell.execute_reply": "2024-02-13T22:19:51.279641Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:13.301086Z", - "iopub.status.busy": "2024-02-13T04:50:13.300631Z", - "iopub.status.idle": "2024-02-13T04:50:13.305579Z", - "shell.execute_reply": "2024-02-13T04:50:13.305029Z" + "iopub.execute_input": "2024-02-13T22:19:51.282073Z", + "iopub.status.busy": "2024-02-13T22:19:51.281772Z", + "iopub.status.idle": "2024-02-13T22:19:51.286931Z", + "shell.execute_reply": "2024-02-13T22:19:51.286484Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 1bf441475..a86822803 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:16.134926Z", - "iopub.status.busy": "2024-02-13T04:50:16.134736Z", - "iopub.status.idle": "2024-02-13T04:50:17.297645Z", - "shell.execute_reply": "2024-02-13T04:50:17.297021Z" + "iopub.execute_input": "2024-02-13T22:19:54.063046Z", + "iopub.status.busy": "2024-02-13T22:19:54.062694Z", + "iopub.status.idle": "2024-02-13T22:19:55.181665Z", + "shell.execute_reply": "2024-02-13T22:19:55.181128Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:17.300365Z", - "iopub.status.busy": "2024-02-13T04:50:17.300046Z", - "iopub.status.idle": "2024-02-13T04:50:17.505356Z", - "shell.execute_reply": "2024-02-13T04:50:17.504795Z" + "iopub.execute_input": "2024-02-13T22:19:55.184194Z", + "iopub.status.busy": "2024-02-13T22:19:55.183797Z", + "iopub.status.idle": "2024-02-13T22:19:55.378378Z", + "shell.execute_reply": "2024-02-13T22:19:55.377783Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:17.508089Z", - "iopub.status.busy": "2024-02-13T04:50:17.507653Z", - "iopub.status.idle": "2024-02-13T04:50:17.520953Z", - "shell.execute_reply": "2024-02-13T04:50:17.520358Z" + "iopub.execute_input": "2024-02-13T22:19:55.381096Z", + "iopub.status.busy": "2024-02-13T22:19:55.380756Z", + "iopub.status.idle": "2024-02-13T22:19:55.393706Z", + "shell.execute_reply": "2024-02-13T22:19:55.393178Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:17.523473Z", - "iopub.status.busy": "2024-02-13T04:50:17.523028Z", - "iopub.status.idle": "2024-02-13T04:50:20.279663Z", - "shell.execute_reply": "2024-02-13T04:50:20.279081Z" + "iopub.execute_input": "2024-02-13T22:19:55.395869Z", + "iopub.status.busy": "2024-02-13T22:19:55.395555Z", + "iopub.status.idle": "2024-02-13T22:19:58.073348Z", + "shell.execute_reply": "2024-02-13T22:19:58.072776Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:20.282238Z", - "iopub.status.busy": "2024-02-13T04:50:20.281764Z", - "iopub.status.idle": "2024-02-13T04:50:21.664143Z", - "shell.execute_reply": "2024-02-13T04:50:21.663484Z" + "iopub.execute_input": "2024-02-13T22:19:58.075634Z", + "iopub.status.busy": "2024-02-13T22:19:58.075289Z", + "iopub.status.idle": "2024-02-13T22:19:59.419117Z", + "shell.execute_reply": "2024-02-13T22:19:59.418467Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:21.666710Z", - "iopub.status.busy": "2024-02-13T04:50:21.666482Z", - "iopub.status.idle": "2024-02-13T04:50:21.670850Z", - "shell.execute_reply": "2024-02-13T04:50:21.670279Z" + "iopub.execute_input": "2024-02-13T22:19:59.421753Z", + "iopub.status.busy": "2024-02-13T22:19:59.421383Z", + "iopub.status.idle": "2024-02-13T22:19:59.425221Z", + "shell.execute_reply": "2024-02-13T22:19:59.424729Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:21.672865Z", - "iopub.status.busy": "2024-02-13T04:50:21.672562Z", - "iopub.status.idle": "2024-02-13T04:50:23.587199Z", - "shell.execute_reply": "2024-02-13T04:50:23.586538Z" + "iopub.execute_input": "2024-02-13T22:19:59.427249Z", + "iopub.status.busy": "2024-02-13T22:19:59.426927Z", + "iopub.status.idle": "2024-02-13T22:20:01.257632Z", + "shell.execute_reply": "2024-02-13T22:20:01.257000Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:23.590375Z", - "iopub.status.busy": "2024-02-13T04:50:23.589414Z", - "iopub.status.idle": "2024-02-13T04:50:23.597849Z", - "shell.execute_reply": "2024-02-13T04:50:23.597351Z" + "iopub.execute_input": "2024-02-13T22:20:01.260308Z", + "iopub.status.busy": "2024-02-13T22:20:01.259738Z", + "iopub.status.idle": "2024-02-13T22:20:01.267565Z", + "shell.execute_reply": "2024-02-13T22:20:01.267054Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:23.599981Z", - "iopub.status.busy": "2024-02-13T04:50:23.599793Z", - "iopub.status.idle": "2024-02-13T04:50:26.279225Z", - "shell.execute_reply": "2024-02-13T04:50:26.278733Z" + "iopub.execute_input": "2024-02-13T22:20:01.269551Z", + "iopub.status.busy": "2024-02-13T22:20:01.269233Z", + "iopub.status.idle": "2024-02-13T22:20:03.834688Z", + "shell.execute_reply": "2024-02-13T22:20:03.834232Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:26.281564Z", - "iopub.status.busy": "2024-02-13T04:50:26.281116Z", - "iopub.status.idle": "2024-02-13T04:50:26.284963Z", - "shell.execute_reply": "2024-02-13T04:50:26.284390Z" + "iopub.execute_input": "2024-02-13T22:20:03.836670Z", + "iopub.status.busy": "2024-02-13T22:20:03.836492Z", + "iopub.status.idle": "2024-02-13T22:20:03.839817Z", + "shell.execute_reply": "2024-02-13T22:20:03.839298Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:26.287102Z", - "iopub.status.busy": "2024-02-13T04:50:26.286711Z", - "iopub.status.idle": "2024-02-13T04:50:26.291110Z", - "shell.execute_reply": "2024-02-13T04:50:26.290566Z" + "iopub.execute_input": "2024-02-13T22:20:03.841837Z", + "iopub.status.busy": "2024-02-13T22:20:03.841501Z", + "iopub.status.idle": "2024-02-13T22:20:03.845501Z", + "shell.execute_reply": "2024-02-13T22:20:03.845070Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:26.293197Z", - "iopub.status.busy": "2024-02-13T04:50:26.292823Z", - "iopub.status.idle": "2024-02-13T04:50:26.296060Z", - "shell.execute_reply": "2024-02-13T04:50:26.295586Z" + "iopub.execute_input": "2024-02-13T22:20:03.847442Z", + "iopub.status.busy": "2024-02-13T22:20:03.847120Z", + "iopub.status.idle": "2024-02-13T22:20:03.849974Z", + "shell.execute_reply": "2024-02-13T22:20:03.849537Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index e2f8d7fdd..fe9344edf 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:28.932570Z", - "iopub.status.busy": "2024-02-13T04:50:28.932395Z", - "iopub.status.idle": "2024-02-13T04:50:30.115133Z", - "shell.execute_reply": "2024-02-13T04:50:30.114619Z" + "iopub.execute_input": "2024-02-13T22:20:06.167414Z", + "iopub.status.busy": "2024-02-13T22:20:06.167228Z", + "iopub.status.idle": "2024-02-13T22:20:07.248040Z", + "shell.execute_reply": "2024-02-13T22:20:07.247452Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:30.118025Z", - "iopub.status.busy": "2024-02-13T04:50:30.117377Z", - "iopub.status.idle": "2024-02-13T04:50:32.461885Z", - "shell.execute_reply": "2024-02-13T04:50:32.461193Z" + "iopub.execute_input": "2024-02-13T22:20:07.250700Z", + "iopub.status.busy": "2024-02-13T22:20:07.250294Z", + "iopub.status.idle": "2024-02-13T22:20:09.120223Z", + "shell.execute_reply": "2024-02-13T22:20:09.119629Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:32.464516Z", - "iopub.status.busy": "2024-02-13T04:50:32.464133Z", - "iopub.status.idle": "2024-02-13T04:50:32.467277Z", - "shell.execute_reply": "2024-02-13T04:50:32.466844Z" + "iopub.execute_input": "2024-02-13T22:20:09.122733Z", + "iopub.status.busy": "2024-02-13T22:20:09.122528Z", + "iopub.status.idle": "2024-02-13T22:20:09.125862Z", + "shell.execute_reply": "2024-02-13T22:20:09.125413Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:32.469419Z", - "iopub.status.busy": "2024-02-13T04:50:32.469097Z", - "iopub.status.idle": "2024-02-13T04:50:32.475773Z", - "shell.execute_reply": "2024-02-13T04:50:32.475354Z" + "iopub.execute_input": "2024-02-13T22:20:09.127714Z", + "iopub.status.busy": "2024-02-13T22:20:09.127539Z", + "iopub.status.idle": "2024-02-13T22:20:09.133716Z", + "shell.execute_reply": "2024-02-13T22:20:09.133327Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:32.477852Z", - "iopub.status.busy": "2024-02-13T04:50:32.477509Z", - "iopub.status.idle": "2024-02-13T04:50:32.973878Z", - "shell.execute_reply": "2024-02-13T04:50:32.973255Z" + "iopub.execute_input": "2024-02-13T22:20:09.135694Z", + "iopub.status.busy": "2024-02-13T22:20:09.135380Z", + "iopub.status.idle": "2024-02-13T22:20:09.616827Z", + "shell.execute_reply": "2024-02-13T22:20:09.616273Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:32.976962Z", - "iopub.status.busy": "2024-02-13T04:50:32.976571Z", - "iopub.status.idle": "2024-02-13T04:50:32.982058Z", - "shell.execute_reply": "2024-02-13T04:50:32.981541Z" + "iopub.execute_input": "2024-02-13T22:20:09.619787Z", + "iopub.status.busy": "2024-02-13T22:20:09.619357Z", + "iopub.status.idle": "2024-02-13T22:20:09.624472Z", + "shell.execute_reply": "2024-02-13T22:20:09.624055Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:32.984219Z", - "iopub.status.busy": "2024-02-13T04:50:32.983898Z", - "iopub.status.idle": "2024-02-13T04:50:32.987905Z", - "shell.execute_reply": "2024-02-13T04:50:32.987371Z" + "iopub.execute_input": "2024-02-13T22:20:09.626461Z", + "iopub.status.busy": "2024-02-13T22:20:09.626129Z", + "iopub.status.idle": "2024-02-13T22:20:09.629776Z", + "shell.execute_reply": "2024-02-13T22:20:09.629331Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:32.990222Z", - "iopub.status.busy": "2024-02-13T04:50:32.989785Z", - "iopub.status.idle": "2024-02-13T04:50:33.730947Z", - "shell.execute_reply": "2024-02-13T04:50:33.730399Z" + "iopub.execute_input": "2024-02-13T22:20:09.631777Z", + "iopub.status.busy": "2024-02-13T22:20:09.631446Z", + "iopub.status.idle": "2024-02-13T22:20:10.321879Z", + "shell.execute_reply": "2024-02-13T22:20:10.321260Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:33.733419Z", - "iopub.status.busy": "2024-02-13T04:50:33.733046Z", - "iopub.status.idle": "2024-02-13T04:50:33.901030Z", - "shell.execute_reply": "2024-02-13T04:50:33.900485Z" + "iopub.execute_input": "2024-02-13T22:20:10.324355Z", + "iopub.status.busy": "2024-02-13T22:20:10.323994Z", + "iopub.status.idle": "2024-02-13T22:20:10.494877Z", + "shell.execute_reply": "2024-02-13T22:20:10.494448Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:33.903374Z", - "iopub.status.busy": "2024-02-13T04:50:33.903025Z", - "iopub.status.idle": "2024-02-13T04:50:33.907423Z", - "shell.execute_reply": "2024-02-13T04:50:33.906873Z" + "iopub.execute_input": "2024-02-13T22:20:10.497067Z", + "iopub.status.busy": "2024-02-13T22:20:10.496883Z", + "iopub.status.idle": "2024-02-13T22:20:10.500885Z", + "shell.execute_reply": "2024-02-13T22:20:10.500465Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:33.909405Z", - "iopub.status.busy": "2024-02-13T04:50:33.909227Z", - "iopub.status.idle": "2024-02-13T04:50:34.378851Z", - "shell.execute_reply": "2024-02-13T04:50:34.378235Z" + "iopub.execute_input": "2024-02-13T22:20:10.502775Z", + "iopub.status.busy": "2024-02-13T22:20:10.502587Z", + "iopub.status.idle": "2024-02-13T22:20:10.971026Z", + "shell.execute_reply": "2024-02-13T22:20:10.970430Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:34.381762Z", - "iopub.status.busy": "2024-02-13T04:50:34.381552Z", - "iopub.status.idle": "2024-02-13T04:50:34.721138Z", - "shell.execute_reply": "2024-02-13T04:50:34.720661Z" + "iopub.execute_input": "2024-02-13T22:20:10.973615Z", + "iopub.status.busy": "2024-02-13T22:20:10.973200Z", + "iopub.status.idle": "2024-02-13T22:20:11.304082Z", + "shell.execute_reply": "2024-02-13T22:20:11.303567Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:34.723331Z", - "iopub.status.busy": "2024-02-13T04:50:34.723120Z", - "iopub.status.idle": "2024-02-13T04:50:35.096201Z", - "shell.execute_reply": "2024-02-13T04:50:35.095584Z" + "iopub.execute_input": "2024-02-13T22:20:11.306506Z", + "iopub.status.busy": "2024-02-13T22:20:11.306328Z", + "iopub.status.idle": "2024-02-13T22:20:11.665937Z", + "shell.execute_reply": "2024-02-13T22:20:11.665389Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:35.099472Z", - "iopub.status.busy": "2024-02-13T04:50:35.099051Z", - "iopub.status.idle": "2024-02-13T04:50:35.551938Z", - "shell.execute_reply": "2024-02-13T04:50:35.551343Z" + "iopub.execute_input": "2024-02-13T22:20:11.668931Z", + "iopub.status.busy": "2024-02-13T22:20:11.668742Z", + "iopub.status.idle": "2024-02-13T22:20:12.111237Z", + "shell.execute_reply": "2024-02-13T22:20:12.110629Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:35.556000Z", - "iopub.status.busy": "2024-02-13T04:50:35.555621Z", - "iopub.status.idle": "2024-02-13T04:50:36.015032Z", - "shell.execute_reply": "2024-02-13T04:50:36.014409Z" + "iopub.execute_input": "2024-02-13T22:20:12.115063Z", + "iopub.status.busy": "2024-02-13T22:20:12.114876Z", + "iopub.status.idle": "2024-02-13T22:20:12.532418Z", + "shell.execute_reply": "2024-02-13T22:20:12.531847Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:36.017943Z", - "iopub.status.busy": "2024-02-13T04:50:36.017721Z", - "iopub.status.idle": "2024-02-13T04:50:36.239803Z", - "shell.execute_reply": "2024-02-13T04:50:36.239237Z" + "iopub.execute_input": "2024-02-13T22:20:12.535457Z", + "iopub.status.busy": "2024-02-13T22:20:12.535040Z", + "iopub.status.idle": "2024-02-13T22:20:12.725708Z", + "shell.execute_reply": "2024-02-13T22:20:12.725048Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:36.242281Z", - "iopub.status.busy": "2024-02-13T04:50:36.241791Z", - "iopub.status.idle": "2024-02-13T04:50:36.443320Z", - "shell.execute_reply": "2024-02-13T04:50:36.442786Z" + "iopub.execute_input": "2024-02-13T22:20:12.728396Z", + "iopub.status.busy": "2024-02-13T22:20:12.727842Z", + "iopub.status.idle": "2024-02-13T22:20:12.911299Z", + "shell.execute_reply": "2024-02-13T22:20:12.910707Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:36.445980Z", - "iopub.status.busy": "2024-02-13T04:50:36.445593Z", - "iopub.status.idle": "2024-02-13T04:50:36.448689Z", - "shell.execute_reply": "2024-02-13T04:50:36.448212Z" + "iopub.execute_input": "2024-02-13T22:20:12.913697Z", + "iopub.status.busy": "2024-02-13T22:20:12.913391Z", + "iopub.status.idle": "2024-02-13T22:20:12.916330Z", + "shell.execute_reply": "2024-02-13T22:20:12.915796Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:36.450754Z", - "iopub.status.busy": "2024-02-13T04:50:36.450418Z", - "iopub.status.idle": "2024-02-13T04:50:37.462400Z", - "shell.execute_reply": "2024-02-13T04:50:37.461778Z" + "iopub.execute_input": "2024-02-13T22:20:12.918214Z", + "iopub.status.busy": "2024-02-13T22:20:12.917919Z", + "iopub.status.idle": "2024-02-13T22:20:13.859385Z", + "shell.execute_reply": "2024-02-13T22:20:13.858811Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:37.465426Z", - "iopub.status.busy": "2024-02-13T04:50:37.465005Z", - "iopub.status.idle": "2024-02-13T04:50:37.583446Z", - "shell.execute_reply": "2024-02-13T04:50:37.582848Z" + "iopub.execute_input": "2024-02-13T22:20:13.861751Z", + "iopub.status.busy": "2024-02-13T22:20:13.861367Z", + "iopub.status.idle": "2024-02-13T22:20:13.989224Z", + "shell.execute_reply": "2024-02-13T22:20:13.988781Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:37.585813Z", - "iopub.status.busy": "2024-02-13T04:50:37.585446Z", - "iopub.status.idle": "2024-02-13T04:50:37.757237Z", - "shell.execute_reply": "2024-02-13T04:50:37.756719Z" + "iopub.execute_input": "2024-02-13T22:20:13.991325Z", + "iopub.status.busy": "2024-02-13T22:20:13.991010Z", + "iopub.status.idle": "2024-02-13T22:20:14.116056Z", + "shell.execute_reply": "2024-02-13T22:20:14.115522Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:37.759281Z", - "iopub.status.busy": "2024-02-13T04:50:37.759098Z", - "iopub.status.idle": "2024-02-13T04:50:38.545018Z", - "shell.execute_reply": "2024-02-13T04:50:38.544545Z" + "iopub.execute_input": "2024-02-13T22:20:14.118064Z", + "iopub.status.busy": "2024-02-13T22:20:14.117762Z", + "iopub.status.idle": "2024-02-13T22:20:14.777732Z", + "shell.execute_reply": "2024-02-13T22:20:14.777193Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:38.547366Z", - "iopub.status.busy": "2024-02-13T04:50:38.546995Z", - "iopub.status.idle": "2024-02-13T04:50:38.550764Z", - "shell.execute_reply": "2024-02-13T04:50:38.550278Z" + "iopub.execute_input": "2024-02-13T22:20:14.779889Z", + "iopub.status.busy": "2024-02-13T22:20:14.779589Z", + "iopub.status.idle": "2024-02-13T22:20:14.783106Z", + "shell.execute_reply": "2024-02-13T22:20:14.782571Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index d5c104b48..4c2de062c 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -736,16 +736,16 @@

2. Pre-process the Cifar10 dataset

-
0%| | 32768/170498071 [00:00&lt;11:43, 242191.71it/s]
+
1%|▏ | 2162688/170498071 [00:00&lt;00:07, 21622724.86it/s]

</pre>

-
0%| | 32768/170498071 [00:00<11:43, 242191.71it/s]
+
1%|▏ | 2162688/170498071 [00:00<00:07, 21622724.86it/s]

end{sphinxVerbatim}

-

0%| | 32768/170498071 [00:00<11:43, 242191.71it/s]

+

1%|▏ | 2162688/170498071 [00:00<00:07, 21622724.86it/s]

-
0%| | 196608/170498071 [00:00&lt;03:31, 805516.69it/s]
+
8%|▊ | 13828096/170498071 [00:00&lt;00:02, 77484805.71it/s]

</pre>

-
0%| | 196608/170498071 [00:00<03:31, 805516.69it/s]
+
8%|▊ | 13828096/170498071 [00:00<00:02, 77484805.71it/s]

end{sphinxVerbatim}

-

0%| | 196608/170498071 [00:00<03:31, 805516.69it/s]

+

8%|▊ | 13828096/170498071 [00:00<00:02, 77484805.71it/s]

-
0%| | 819200/170498071 [00:00&lt;01:07, 2515336.98it/s]
+
15%|█▍ | 25231360/170498071 [00:00&lt;00:01, 93998799.87it/s]

</pre>

-
0%| | 819200/170498071 [00:00<01:07, 2515336.98it/s]
+
15%|█▍ | 25231360/170498071 [00:00<00:01, 93998799.87it/s]

end{sphinxVerbatim}

-

0%| | 819200/170498071 [00:00<01:07, 2515336.98it/s]

+

15%|█▍ | 25231360/170498071 [00:00<00:01, 93998799.87it/s]

-
2%|▏ | 3244032/170498071 [00:00&lt;00:19, 8505103.87it/s]
+
22%|██▏ | 36732928/170498071 [00:00&lt;00:01, 100935739.19it/s]

</pre>

-
2%|▏ | 3244032/170498071 [00:00<00:19, 8505103.87it/s]
+
22%|██▏ | 36732928/170498071 [00:00<00:01, 100935739.19it/s]

end{sphinxVerbatim}

-

2%|▏ | 3244032/170498071 [00:00<00:19, 8505103.87it/s]

+

22%|██▏ | 36732928/170498071 [00:00<00:01, 100935739.19it/s]

-
6%|▌ | 9502720/170498071 [00:00&lt;00:07, 21809878.42it/s]
+
28%|██▊ | 47972352/170498071 [00:00&lt;00:01, 104982488.85it/s]

</pre>

-
6%|▌ | 9502720/170498071 [00:00<00:07, 21809878.42it/s]
+
28%|██▊ | 47972352/170498071 [00:00<00:01, 104982488.85it/s]

end{sphinxVerbatim}

-

6%|▌ | 9502720/170498071 [00:00<00:07, 21809878.42it/s]

+

28%|██▊ | 47972352/170498071 [00:00<00:01, 104982488.85it/s]

-
9%|▉ | 15138816/170498071 [00:00&lt;00:04, 31208350.13it/s]
+
35%|███▍ | 59310080/170498071 [00:00&lt;00:01, 107768381.63it/s]

</pre>

-
9%|▉ | 15138816/170498071 [00:00<00:04, 31208350.13it/s]
+
35%|███▍ | 59310080/170498071 [00:00<00:01, 107768381.63it/s]

end{sphinxVerbatim}

-

9%|▉ | 15138816/170498071 [00:00<00:04, 31208350.13it/s]

+

35%|███▍ | 59310080/170498071 [00:00<00:01, 107768381.63it/s]

-
11%|█ | 18776064/170498071 [00:00&lt;00:04, 32376726.44it/s]
+
42%|████▏ | 70844416/170498071 [00:00&lt;00:00, 110194171.75it/s]

</pre>

-
11%|█ | 18776064/170498071 [00:00<00:04, 32376726.44it/s]
+
42%|████▏ | 70844416/170498071 [00:00<00:00, 110194171.75it/s]

end{sphinxVerbatim}

-

11%|█ | 18776064/170498071 [00:00<00:04, 32376726.44it/s]

+

42%|████▏ | 70844416/170498071 [00:00<00:00, 110194171.75it/s]

-
14%|█▎ | 23068672/170498071 [00:00&lt;00:04, 35369377.47it/s]
+
48%|████▊ | 82411520/170498071 [00:00&lt;00:00, 111925975.92it/s]

</pre>

-
14%|█▎ | 23068672/170498071 [00:00<00:04, 35369377.47it/s]
+
48%|████▊ | 82411520/170498071 [00:00<00:00, 111925975.92it/s]

end{sphinxVerbatim}

-

14%|█▎ | 23068672/170498071 [00:00<00:04, 35369377.47it/s]

+

48%|████▊ | 82411520/170498071 [00:00<00:00, 111925975.92it/s]

-
16%|█▋ | 28114944/170498071 [00:01&lt;00:03, 39025802.79it/s]
+
55%|█████▌ | 93913088/170498071 [00:00&lt;00:00, 112827006.65it/s]

</pre>

-
16%|█▋ | 28114944/170498071 [00:01<00:03, 39025802.79it/s]
+
55%|█████▌ | 93913088/170498071 [00:00<00:00, 112827006.65it/s]

end{sphinxVerbatim}

-

16%|█▋ | 28114944/170498071 [00:01<00:03, 39025802.79it/s]

+

55%|█████▌ | 93913088/170498071 [00:00<00:00, 112827006.65it/s]

-
19%|█▉ | 32145408/170498071 [00:01&lt;00:03, 38585451.64it/s]
+
62%|██████▏ | 105218048/170498071 [00:01&lt;00:00, 112706943.38it/s]

</pre>

-
19%|█▉ | 32145408/170498071 [00:01<00:03, 38585451.64it/s]
+
62%|██████▏ | 105218048/170498071 [00:01<00:00, 112706943.38it/s]

end{sphinxVerbatim}

-

19%|█▉ | 32145408/170498071 [00:01<00:03, 38585451.64it/s]

+

62%|██████▏ | 105218048/170498071 [00:01<00:00, 112706943.38it/s]

-
22%|██▏ | 37519360/170498071 [00:01&lt;00:03, 42851052.41it/s]
+
68%|██████▊ | 116588544/170498071 [00:01&lt;00:00, 112841304.38it/s]

</pre>

-
22%|██▏ | 37519360/170498071 [00:01<00:03, 42851052.41it/s]
+
68%|██████▊ | 116588544/170498071 [00:01<00:00, 112841304.38it/s]

end{sphinxVerbatim}

-

22%|██▏ | 37519360/170498071 [00:01<00:03, 42851052.41it/s]

+

68%|██████▊ | 116588544/170498071 [00:01<00:00, 112841304.38it/s]

-
25%|██▍ | 41910272/170498071 [00:01&lt;00:03, 40924153.13it/s]
+
75%|███████▌ | 128057344/170498071 [00:01&lt;00:00, 113396359.93it/s]

</pre>

-
25%|██▍ | 41910272/170498071 [00:01<00:03, 40924153.13it/s]
+
75%|███████▌ | 128057344/170498071 [00:01<00:00, 113396359.93it/s]

end{sphinxVerbatim}

-

25%|██▍ | 41910272/170498071 [00:01<00:03, 40924153.13it/s]

+

75%|███████▌ | 128057344/170498071 [00:01<00:00, 113396359.93it/s]

-
28%|██▊ | 47185920/170498071 [00:01&lt;00:02, 44084786.35it/s]
+
82%|████████▏ | 139591680/170498071 [00:01&lt;00:00, 113905134.49it/s]

</pre>

-
28%|██▊ | 47185920/170498071 [00:01<00:02, 44084786.35it/s]
+
82%|████████▏ | 139591680/170498071 [00:01<00:00, 113905134.49it/s]

end{sphinxVerbatim}

-

28%|██▊ | 47185920/170498071 [00:01<00:02, 44084786.35it/s]

+

82%|████████▏ | 139591680/170498071 [00:01<00:00, 113905134.49it/s]

-
30%|███ | 51675136/170498071 [00:01&lt;00:02, 42164629.48it/s]
+
89%|████████▊ | 151093248/170498071 [00:01&lt;00:00, 114199749.50it/s]

</pre>

-
30%|███ | 51675136/170498071 [00:01<00:02, 42164629.48it/s]
+
89%|████████▊ | 151093248/170498071 [00:01<00:00, 114199749.50it/s]

end{sphinxVerbatim}

-

30%|███ | 51675136/170498071 [00:01<00:02, 42164629.48it/s]

+

89%|████████▊ | 151093248/170498071 [00:01<00:00, 114199749.50it/s]

-
33%|███▎ | 56786944/170498071 [00:01&lt;00:02, 44239731.31it/s]
+
95%|█████████▌| 162594816/170498071 [00:01&lt;00:00, 114403067.43it/s]

</pre>

-
33%|███▎ | 56786944/170498071 [00:01<00:02, 44239731.31it/s]
+
95%|█████████▌| 162594816/170498071 [00:01<00:00, 114403067.43it/s]

end{sphinxVerbatim}

-

33%|███▎ | 56786944/170498071 [00:01<00:02, 44239731.31it/s]

- - -
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
36%|███▌ | 61276160/170498071 [00:01&lt;00:02, 42668530.48it/s]
-

</pre>

-
-
-
36%|███▌ | 61276160/170498071 [00:01<00:02, 42668530.48it/s]
-

end{sphinxVerbatim}

-
-
-
-

36%|███▌ | 61276160/170498071 [00:01<00:02, 42668530.48it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
39%|███▉ | 66224128/170498071 [00:01&lt;00:02, 44216856.45it/s]
-

</pre>

-
-
-
39%|███▉ | 66224128/170498071 [00:01<00:02, 44216856.45it/s]
-

end{sphinxVerbatim}

-
-
-
-

39%|███▉ | 66224128/170498071 [00:01<00:02, 44216856.45it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
41%|████▏ | 70713344/170498071 [00:02&lt;00:02, 42753642.41it/s]
-

</pre>

-
-
-
41%|████▏ | 70713344/170498071 [00:02<00:02, 42753642.41it/s]
-

end{sphinxVerbatim}

-
-
-
-

41%|████▏ | 70713344/170498071 [00:02<00:02, 42753642.41it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
44%|████▍ | 75628544/170498071 [00:02&lt;00:02, 44491349.83it/s]
-

</pre>

-
-
-
44%|████▍ | 75628544/170498071 [00:02<00:02, 44491349.83it/s]
-

end{sphinxVerbatim}

-
-
-
-

44%|████▍ | 75628544/170498071 [00:02<00:02, 44491349.83it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
47%|████▋ | 80117760/170498071 [00:02&lt;00:02, 42704990.20it/s]
-

</pre>

-
-
-
47%|████▋ | 80117760/170498071 [00:02<00:02, 42704990.20it/s]
-

end{sphinxVerbatim}

-
-
-
-

47%|████▋ | 80117760/170498071 [00:02<00:02, 42704990.20it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
50%|████▉ | 85065728/170498071 [00:02&lt;00:01, 44574577.07it/s]
-

</pre>

-
-
-
50%|████▉ | 85065728/170498071 [00:02<00:01, 44574577.07it/s]
-

end{sphinxVerbatim}

-
-
-
-

50%|████▉ | 85065728/170498071 [00:02<00:01, 44574577.07it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
53%|█████▎ | 89587712/170498071 [00:02&lt;00:01, 42724867.37it/s]
-

</pre>

-
-
-
53%|█████▎ | 89587712/170498071 [00:02<00:01, 42724867.37it/s]
-

end{sphinxVerbatim}

-
-
-
-

53%|█████▎ | 89587712/170498071 [00:02<00:01, 42724867.37it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
56%|█████▌ | 94633984/170498071 [00:02&lt;00:01, 44700899.96it/s]
-

</pre>

-
-
-
56%|█████▌ | 94633984/170498071 [00:02<00:01, 44700899.96it/s]
-

end{sphinxVerbatim}

-
-
-
-

56%|█████▌ | 94633984/170498071 [00:02<00:01, 44700899.96it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
58%|█████▊ | 99155968/170498071 [00:02&lt;00:01, 42882283.58it/s]
-

</pre>

-
-
-
58%|█████▊ | 99155968/170498071 [00:02<00:01, 42882283.58it/s]
-

end{sphinxVerbatim}

-
-
-
-

58%|█████▊ | 99155968/170498071 [00:02<00:01, 42882283.58it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
61%|██████ | 104333312/170498071 [00:02&lt;00:01, 44771108.59it/s]
-

</pre>

-
-
-
61%|██████ | 104333312/170498071 [00:02<00:01, 44771108.59it/s]
-

end{sphinxVerbatim}

-
-
-
-

61%|██████ | 104333312/170498071 [00:02<00:01, 44771108.59it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
64%|██████▍ | 108855296/170498071 [00:02&lt;00:01, 43221947.72it/s]
-

</pre>

-
-
-
64%|██████▍ | 108855296/170498071 [00:02<00:01, 43221947.72it/s]
-

end{sphinxVerbatim}

-
-
-
-

64%|██████▍ | 108855296/170498071 [00:02<00:01, 43221947.72it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
67%|██████▋ | 113803264/170498071 [00:03&lt;00:01, 44095950.61it/s]
-

</pre>

-
-
-
67%|██████▋ | 113803264/170498071 [00:03<00:01, 44095950.61it/s]
-

end{sphinxVerbatim}

-
-
-
-

67%|██████▋ | 113803264/170498071 [00:03<00:01, 44095950.61it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
69%|██████▉ | 118259712/170498071 [00:03&lt;00:01, 43110487.70it/s]
-

</pre>

-
-
-
69%|██████▉ | 118259712/170498071 [00:03<00:01, 43110487.70it/s]
-

end{sphinxVerbatim}

-
-
-
-

69%|██████▉ | 118259712/170498071 [00:03<00:01, 43110487.70it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
72%|███████▏ | 123240448/170498071 [00:03&lt;00:01, 44517047.11it/s]
-

</pre>

-
-
-
72%|███████▏ | 123240448/170498071 [00:03<00:01, 44517047.11it/s]
-

end{sphinxVerbatim}

-
-
-
-

72%|███████▏ | 123240448/170498071 [00:03<00:01, 44517047.11it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
75%|███████▍ | 127729664/170498071 [00:03&lt;00:00, 43014942.00it/s]
-

</pre>

-
-
-
75%|███████▍ | 127729664/170498071 [00:03<00:00, 43014942.00it/s]
-

end{sphinxVerbatim}

-
-
-
-

75%|███████▍ | 127729664/170498071 [00:03<00:00, 43014942.00it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
78%|███████▊ | 132808704/170498071 [00:03&lt;00:00, 45126467.29it/s]
-

</pre>

-
-
-
78%|███████▊ | 132808704/170498071 [00:03<00:00, 45126467.29it/s]
-

end{sphinxVerbatim}

-
-
-
-

78%|███████▊ | 132808704/170498071 [00:03<00:00, 45126467.29it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
81%|████████ | 137363456/170498071 [00:03&lt;00:00, 42978573.26it/s]
-

</pre>

-
-
-
81%|████████ | 137363456/170498071 [00:03<00:00, 42978573.26it/s]
-

end{sphinxVerbatim}

-
-
-
-

81%|████████ | 137363456/170498071 [00:03<00:00, 42978573.26it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
84%|████████▎ | 142508032/170498071 [00:03&lt;00:00, 44995468.75it/s]
-

</pre>

-
-
-
84%|████████▎ | 142508032/170498071 [00:03<00:00, 44995468.75it/s]
-

end{sphinxVerbatim}

-
-
-
-

84%|████████▎ | 142508032/170498071 [00:03<00:00, 44995468.75it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
86%|████████▋ | 147062784/170498071 [00:03&lt;00:00, 43213693.07it/s]
-

</pre>

-
-
-
86%|████████▋ | 147062784/170498071 [00:03<00:00, 43213693.07it/s]
-

end{sphinxVerbatim}

-
-
-
-

86%|████████▋ | 147062784/170498071 [00:03<00:00, 43213693.07it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
89%|████████▉ | 152043520/170498071 [00:03&lt;00:00, 44769587.32it/s]
-

</pre>

-
-
-
89%|████████▉ | 152043520/170498071 [00:03<00:00, 44769587.32it/s]
-

end{sphinxVerbatim}

-
-
-
-

89%|████████▉ | 152043520/170498071 [00:03<00:00, 44769587.32it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
92%|█████████▏| 156565504/170498071 [00:04&lt;00:00, 43058934.65it/s]
-

</pre>

-
-
-
92%|█████████▏| 156565504/170498071 [00:04<00:00, 43058934.65it/s]
-

end{sphinxVerbatim}

-
-
-
-

92%|█████████▏| 156565504/170498071 [00:04<00:00, 43058934.65it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
95%|█████████▍| 161447936/170498071 [00:04&lt;00:00, 44628359.61it/s]
-

</pre>

-
-
-
95%|█████████▍| 161447936/170498071 [00:04<00:00, 44628359.61it/s]
-

end{sphinxVerbatim}

-
-
-
-

95%|█████████▍| 161447936/170498071 [00:04<00:00, 44628359.61it/s]

-
-
-
-
-
-
-
-
-
more-to-come:
-

-
class:
-

stderr

-
-
-
-
-
97%|█████████▋| 165969920/170498071 [00:04&lt;00:00, 42685291.58it/s]
-

</pre>

-
-
-
97%|█████████▋| 165969920/170498071 [00:04<00:00, 42685291.58it/s]
-

end{sphinxVerbatim}

-
-
-
-

97%|█████████▋| 165969920/170498071 [00:04<00:00, 42685291.58it/s]

+

95%|█████████▌| 162594816/170498071 [00:01<00:00, 114403067.43it/s]

-
100%|██████████| 170498071/170498071 [00:04&lt;00:00, 39295081.80it/s]
+
100%|██████████| 170498071/170498071 [00:01&lt;00:00, 108293723.13it/s]

</pre>

-
100%|██████████| 170498071/170498071 [00:04<00:00, 39295081.80it/s]
+
100%|██████████| 170498071/170498071 [00:01<00:00, 108293723.13it/s]

end{sphinxVerbatim}

-

100%|██████████| 170498071/170498071 [00:04<00:00, 39295081.80it/s]

+

100%|██████████| 170498071/170498071 [00:01<00:00, 108293723.13it/s]

-
+
@@ -2097,7 +1499,7 @@

4. Use cleanlab and here.

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index 2ff39ede6..0a8417d3e 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:40.797102Z", - "iopub.status.busy": "2024-02-13T04:50:40.796728Z", - "iopub.status.idle": "2024-02-13T04:50:43.625253Z", - "shell.execute_reply": "2024-02-13T04:50:43.624682Z" + "iopub.execute_input": "2024-02-13T22:20:17.088154Z", + "iopub.status.busy": "2024-02-13T22:20:17.087983Z", + "iopub.status.idle": "2024-02-13T22:20:19.741741Z", + "shell.execute_reply": "2024-02-13T22:20:19.741216Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:43.628120Z", - "iopub.status.busy": "2024-02-13T04:50:43.627558Z", - "iopub.status.idle": "2024-02-13T04:50:43.970955Z", - "shell.execute_reply": "2024-02-13T04:50:43.970356Z" + "iopub.execute_input": "2024-02-13T22:20:19.744199Z", + "iopub.status.busy": "2024-02-13T22:20:19.743919Z", + "iopub.status.idle": "2024-02-13T22:20:20.069677Z", + "shell.execute_reply": "2024-02-13T22:20:20.069144Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:43.973633Z", - "iopub.status.busy": "2024-02-13T04:50:43.973311Z", - "iopub.status.idle": "2024-02-13T04:50:43.977777Z", - "shell.execute_reply": "2024-02-13T04:50:43.977244Z" + "iopub.execute_input": "2024-02-13T22:20:20.072295Z", + "iopub.status.busy": "2024-02-13T22:20:20.071848Z", + "iopub.status.idle": "2024-02-13T22:20:20.075893Z", + "shell.execute_reply": "2024-02-13T22:20:20.075385Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:43.980131Z", - "iopub.status.busy": "2024-02-13T04:50:43.979734Z", - "iopub.status.idle": "2024-02-13T04:50:51.494430Z", - "shell.execute_reply": "2024-02-13T04:50:51.493935Z" + "iopub.execute_input": "2024-02-13T22:20:20.078052Z", + "iopub.status.busy": "2024-02-13T22:20:20.077636Z", + "iopub.status.idle": "2024-02-13T22:20:24.278824Z", + "shell.execute_reply": "2024-02-13T22:20:24.278323Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 32768/170498071 [00:00<11:43, 242191.71it/s]" + " 1%|▏ | 2162688/170498071 [00:00<00:07, 21622724.86it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 196608/170498071 [00:00<03:31, 805516.69it/s]" + " 8%|▊ | 13828096/170498071 [00:00<00:02, 77484805.71it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 819200/170498071 [00:00<01:07, 2515336.98it/s]" + " 15%|█▍ | 25231360/170498071 [00:00<00:01, 93998799.87it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 3244032/170498071 [00:00<00:19, 8505103.87it/s]" + " 22%|██▏ | 36732928/170498071 [00:00<00:01, 100935739.19it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 9502720/170498071 [00:00<00:07, 21809878.42it/s]" + " 28%|██▊ | 47972352/170498071 [00:00<00:01, 104982488.85it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 15138816/170498071 [00:00<00:04, 31208350.13it/s]" + " 35%|███▍ | 59310080/170498071 [00:00<00:01, 107768381.63it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 18776064/170498071 [00:00<00:04, 32376726.44it/s]" + " 42%|████▏ | 70844416/170498071 [00:00<00:00, 110194171.75it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▎ | 23068672/170498071 [00:00<00:04, 35369377.47it/s]" + " 48%|████▊ | 82411520/170498071 [00:00<00:00, 111925975.92it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▋ | 28114944/170498071 [00:01<00:03, 39025802.79it/s]" + " 55%|█████▌ | 93913088/170498071 [00:00<00:00, 112827006.65it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 32145408/170498071 [00:01<00:03, 38585451.64it/s]" + " 62%|██████▏ | 105218048/170498071 [00:01<00:00, 112706943.38it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37519360/170498071 [00:01<00:03, 42851052.41it/s]" + " 68%|██████▊ | 116588544/170498071 [00:01<00:00, 112841304.38it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 41910272/170498071 [00:01<00:03, 40924153.13it/s]" + " 75%|███████▌ | 128057344/170498071 [00:01<00:00, 113396359.93it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 47185920/170498071 [00:01<00:02, 44084786.35it/s]" + " 82%|████████▏ | 139591680/170498071 [00:01<00:00, 113905134.49it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 51675136/170498071 [00:01<00:02, 42164629.48it/s]" + " 89%|████████▊ | 151093248/170498071 [00:01<00:00, 114199749.50it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 56786944/170498071 [00:01<00:02, 44239731.31it/s]" + " 95%|█████████▌| 162594816/170498071 [00:01<00:00, 114403067.43it/s]" ] }, { @@ -372,191 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 61276160/170498071 [00:01<00:02, 42668530.48it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 39%|███▉ | 66224128/170498071 [00:01<00:02, 44216856.45it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 41%|████▏ | 70713344/170498071 [00:02<00:02, 42753642.41it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 44%|████▍ | 75628544/170498071 [00:02<00:02, 44491349.83it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 47%|████▋ | 80117760/170498071 [00:02<00:02, 42704990.20it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 50%|████▉ | 85065728/170498071 [00:02<00:01, 44574577.07it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 53%|█████▎ | 89587712/170498071 [00:02<00:01, 42724867.37it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 56%|█████▌ | 94633984/170498071 [00:02<00:01, 44700899.96it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 58%|█████▊ | 99155968/170498071 [00:02<00:01, 42882283.58it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 61%|██████ | 104333312/170498071 [00:02<00:01, 44771108.59it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 64%|██████▍ | 108855296/170498071 [00:02<00:01, 43221947.72it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 67%|██████▋ | 113803264/170498071 [00:03<00:01, 44095950.61it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 69%|██████▉ | 118259712/170498071 [00:03<00:01, 43110487.70it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 72%|███████▏ | 123240448/170498071 [00:03<00:01, 44517047.11it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 75%|███████▍ | 127729664/170498071 [00:03<00:00, 43014942.00it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 78%|███████▊ | 132808704/170498071 [00:03<00:00, 45126467.29it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 81%|████████ | 137363456/170498071 [00:03<00:00, 42978573.26it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 84%|████████▎ | 142508032/170498071 [00:03<00:00, 44995468.75it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 86%|████████▋ | 147062784/170498071 [00:03<00:00, 43213693.07it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 89%|████████▉ | 152043520/170498071 [00:03<00:00, 44769587.32it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 156565504/170498071 [00:04<00:00, 43058934.65it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▍| 161447936/170498071 [00:04<00:00, 44628359.61it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 165969920/170498071 [00:04<00:00, 42685291.58it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:04<00:00, 39295081.80it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 108293723.13it/s]" ] }, { @@ -674,10 +490,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:51.496668Z", - "iopub.status.busy": "2024-02-13T04:50:51.496384Z", - "iopub.status.idle": "2024-02-13T04:50:51.501099Z", - "shell.execute_reply": "2024-02-13T04:50:51.500687Z" + "iopub.execute_input": "2024-02-13T22:20:24.281047Z", + "iopub.status.busy": "2024-02-13T22:20:24.280701Z", + "iopub.status.idle": "2024-02-13T22:20:24.285561Z", + "shell.execute_reply": "2024-02-13T22:20:24.285013Z" }, "nbsphinx": "hidden" }, @@ -728,10 +544,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:51.503206Z", - "iopub.status.busy": "2024-02-13T04:50:51.502871Z", - "iopub.status.idle": "2024-02-13T04:50:52.064895Z", - "shell.execute_reply": "2024-02-13T04:50:52.064299Z" + "iopub.execute_input": "2024-02-13T22:20:24.287559Z", + "iopub.status.busy": "2024-02-13T22:20:24.287387Z", + "iopub.status.idle": "2024-02-13T22:20:24.824224Z", + "shell.execute_reply": "2024-02-13T22:20:24.823678Z" } }, "outputs": [ @@ -764,10 +580,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:52.067171Z", - "iopub.status.busy": "2024-02-13T04:50:52.066959Z", - "iopub.status.idle": "2024-02-13T04:50:52.598463Z", - "shell.execute_reply": "2024-02-13T04:50:52.597895Z" + "iopub.execute_input": "2024-02-13T22:20:24.826346Z", + "iopub.status.busy": "2024-02-13T22:20:24.826161Z", + "iopub.status.idle": "2024-02-13T22:20:25.343804Z", + "shell.execute_reply": "2024-02-13T22:20:25.343235Z" } }, "outputs": [ @@ -805,10 +621,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:52.600566Z", - "iopub.status.busy": "2024-02-13T04:50:52.600375Z", - "iopub.status.idle": "2024-02-13T04:50:52.603848Z", - "shell.execute_reply": "2024-02-13T04:50:52.603426Z" + "iopub.execute_input": "2024-02-13T22:20:25.345983Z", + "iopub.status.busy": "2024-02-13T22:20:25.345586Z", + "iopub.status.idle": "2024-02-13T22:20:25.349090Z", + "shell.execute_reply": "2024-02-13T22:20:25.348562Z" } }, "outputs": [], @@ -831,17 +647,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:50:52.605713Z", - "iopub.status.busy": "2024-02-13T04:50:52.605537Z", - "iopub.status.idle": "2024-02-13T04:51:05.468666Z", - "shell.execute_reply": "2024-02-13T04:51:05.468060Z" + "iopub.execute_input": "2024-02-13T22:20:25.350941Z", + "iopub.status.busy": "2024-02-13T22:20:25.350754Z", + "iopub.status.idle": "2024-02-13T22:20:37.941208Z", + "shell.execute_reply": "2024-02-13T22:20:37.940679Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "00aa397df6b04e10b15ac7fe6eacaeeb", + "model_id": "f1334d8594c7430b9c801c6b0cbbf360", "version_major": 2, "version_minor": 0 }, @@ -900,10 +716,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:05.471113Z", - "iopub.status.busy": "2024-02-13T04:51:05.470905Z", - "iopub.status.idle": "2024-02-13T04:51:07.049511Z", - "shell.execute_reply": "2024-02-13T04:51:07.048865Z" + "iopub.execute_input": "2024-02-13T22:20:37.943664Z", + "iopub.status.busy": "2024-02-13T22:20:37.943259Z", + "iopub.status.idle": "2024-02-13T22:20:39.512538Z", + "shell.execute_reply": "2024-02-13T22:20:39.511970Z" } }, "outputs": [ @@ -947,10 +763,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:07.052356Z", - "iopub.status.busy": "2024-02-13T04:51:07.051899Z", - "iopub.status.idle": "2024-02-13T04:51:07.501552Z", - "shell.execute_reply": "2024-02-13T04:51:07.500941Z" + "iopub.execute_input": "2024-02-13T22:20:39.515141Z", + "iopub.status.busy": "2024-02-13T22:20:39.514935Z", + "iopub.status.idle": "2024-02-13T22:20:39.943624Z", + "shell.execute_reply": "2024-02-13T22:20:39.943057Z" } }, "outputs": [ @@ -986,10 +802,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:07.504502Z", - "iopub.status.busy": "2024-02-13T04:51:07.504022Z", - "iopub.status.idle": "2024-02-13T04:51:08.166833Z", - "shell.execute_reply": "2024-02-13T04:51:08.166267Z" + "iopub.execute_input": "2024-02-13T22:20:39.946058Z", + "iopub.status.busy": "2024-02-13T22:20:39.945851Z", + "iopub.status.idle": "2024-02-13T22:20:40.631972Z", + "shell.execute_reply": "2024-02-13T22:20:40.631399Z" } }, "outputs": [ @@ -1039,10 +855,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:08.169702Z", - "iopub.status.busy": "2024-02-13T04:51:08.169393Z", - "iopub.status.idle": "2024-02-13T04:51:08.515046Z", - "shell.execute_reply": "2024-02-13T04:51:08.514438Z" + "iopub.execute_input": "2024-02-13T22:20:40.634949Z", + "iopub.status.busy": "2024-02-13T22:20:40.634720Z", + "iopub.status.idle": "2024-02-13T22:20:40.970458Z", + "shell.execute_reply": "2024-02-13T22:20:40.969981Z" } }, "outputs": [ @@ -1090,10 +906,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:08.517355Z", - "iopub.status.busy": "2024-02-13T04:51:08.517152Z", - "iopub.status.idle": "2024-02-13T04:51:08.751486Z", - "shell.execute_reply": "2024-02-13T04:51:08.750748Z" + "iopub.execute_input": "2024-02-13T22:20:40.972627Z", + "iopub.status.busy": "2024-02-13T22:20:40.972448Z", + "iopub.status.idle": "2024-02-13T22:20:41.213268Z", + "shell.execute_reply": "2024-02-13T22:20:41.212645Z" } }, "outputs": [ @@ -1149,10 +965,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:08.755254Z", - "iopub.status.busy": "2024-02-13T04:51:08.754598Z", - "iopub.status.idle": "2024-02-13T04:51:08.853006Z", - "shell.execute_reply": "2024-02-13T04:51:08.852526Z" + "iopub.execute_input": "2024-02-13T22:20:41.215958Z", + "iopub.status.busy": "2024-02-13T22:20:41.215502Z", + "iopub.status.idle": "2024-02-13T22:20:41.302731Z", + "shell.execute_reply": "2024-02-13T22:20:41.302260Z" } }, "outputs": [], @@ -1173,10 +989,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:08.855645Z", - "iopub.status.busy": "2024-02-13T04:51:08.855300Z", - "iopub.status.idle": "2024-02-13T04:51:19.165693Z", - "shell.execute_reply": "2024-02-13T04:51:19.165104Z" + "iopub.execute_input": "2024-02-13T22:20:41.305247Z", + "iopub.status.busy": "2024-02-13T22:20:41.304912Z", + "iopub.status.idle": "2024-02-13T22:20:51.494431Z", + "shell.execute_reply": "2024-02-13T22:20:51.493817Z" } }, "outputs": [ @@ -1213,10 +1029,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:19.168285Z", - "iopub.status.busy": "2024-02-13T04:51:19.167864Z", - "iopub.status.idle": "2024-02-13T04:51:20.981784Z", - "shell.execute_reply": "2024-02-13T04:51:20.981216Z" + "iopub.execute_input": "2024-02-13T22:20:51.496886Z", + "iopub.status.busy": "2024-02-13T22:20:51.496509Z", + "iopub.status.idle": "2024-02-13T22:20:53.212852Z", + "shell.execute_reply": "2024-02-13T22:20:53.212227Z" } }, "outputs": [ @@ -1247,10 +1063,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:20.984398Z", - "iopub.status.busy": "2024-02-13T04:51:20.983935Z", - "iopub.status.idle": "2024-02-13T04:51:21.184714Z", - "shell.execute_reply": "2024-02-13T04:51:21.184218Z" + "iopub.execute_input": "2024-02-13T22:20:53.215700Z", + "iopub.status.busy": "2024-02-13T22:20:53.215185Z", + "iopub.status.idle": "2024-02-13T22:20:53.411598Z", + "shell.execute_reply": "2024-02-13T22:20:53.410987Z" } }, "outputs": [], @@ -1264,10 +1080,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:21.187120Z", - "iopub.status.busy": "2024-02-13T04:51:21.186800Z", - "iopub.status.idle": "2024-02-13T04:51:21.189948Z", - "shell.execute_reply": "2024-02-13T04:51:21.189420Z" + "iopub.execute_input": "2024-02-13T22:20:53.413921Z", + "iopub.status.busy": "2024-02-13T22:20:53.413569Z", + "iopub.status.idle": "2024-02-13T22:20:53.416600Z", + "shell.execute_reply": "2024-02-13T22:20:53.416175Z" } }, "outputs": [], @@ -1289,10 +1105,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:21.192041Z", - "iopub.status.busy": "2024-02-13T04:51:21.191636Z", - "iopub.status.idle": "2024-02-13T04:51:21.199711Z", - "shell.execute_reply": "2024-02-13T04:51:21.199172Z" + "iopub.execute_input": "2024-02-13T22:20:53.418634Z", + "iopub.status.busy": "2024-02-13T22:20:53.418324Z", + "iopub.status.idle": "2024-02-13T22:20:53.426433Z", + "shell.execute_reply": "2024-02-13T22:20:53.425901Z" }, "nbsphinx": "hidden" }, @@ -1337,31 +1153,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00aa397df6b04e10b15ac7fe6eacaeeb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bf6a836e52384f6a9ffc4cee82fa2a93", - "IPY_MODEL_45bd7172db5041bdbbc48032651c1904", - "IPY_MODEL_2afc57154736423eb7f7ff675a3a5c36" - ], - "layout": "IPY_MODEL_745577aac87f46cc9c64f65a91723157", - "tabbable": null, - "tooltip": null - } - }, - "10f1b614aabf47beb97e72a7a76d6ea5": { + "02b94e26f61b40daa3d97e50279cd6f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1379,56 +1171,7 @@ "text_color": null } }, - "2afc57154736423eb7f7ff675a3a5c36": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_df84d2959655484b81b615333136a429", - "placeholder": "​", - "style": "IPY_MODEL_10f1b614aabf47beb97e72a7a76d6ea5", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 170MB/s]" - } - }, - "45bd7172db5041bdbbc48032651c1904": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bcd03ef08d4f4a0e8419278c06ae781c", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_db14d8d8cc0d4d09a6dcd26607711ffb", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "745577aac87f46cc9c64f65a91723157": { + "03b046cfd2694c2d9e3f3a13cb7659bb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1481,25 +1224,7 @@ "width": null } }, - "869928d6e2704863b8a2eaab662f735b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bcd03ef08d4f4a0e8419278c06ae781c": { + "174d68d41f0e40c399d1e3a82bd6996c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1552,46 +1277,7 @@ "width": null } }, - "bf6a836e52384f6a9ffc4cee82fa2a93": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f7c2d3e5711d49e4b5f2cbbd296eb8a7", - "placeholder": "​", - "style": "IPY_MODEL_869928d6e2704863b8a2eaab662f735b", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "db14d8d8cc0d4d09a6dcd26607711ffb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "df84d2959655484b81b615333136a429": { + "22f5f812d1584c61a18cd261c1746f3b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1644,7 +1330,137 @@ "width": null } }, - "f7c2d3e5711d49e4b5f2cbbd296eb8a7": { + "30cc7e7e74134609ac8d894ef806e6eb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "60920ac5bc034615956b205a60c6d407": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_174d68d41f0e40c399d1e3a82bd6996c", + "placeholder": "​", + "style": "IPY_MODEL_ec0125af9fba442bacc83780053c219f", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" + } + }, + "7cae5e1d144a4c5d9c60b98b69c7eb81": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_22f5f812d1584c61a18cd261c1746f3b", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_30cc7e7e74134609ac8d894ef806e6eb", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "d91f8d29d89b4f59ba1da8ec762f2755": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_03b046cfd2694c2d9e3f3a13cb7659bb", + "placeholder": "​", + "style": "IPY_MODEL_02b94e26f61b40daa3d97e50279cd6f2", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 243MB/s]" + } + }, + "ec0125af9fba442bacc83780053c219f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f1334d8594c7430b9c801c6b0cbbf360": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_60920ac5bc034615956b205a60c6d407", + "IPY_MODEL_7cae5e1d144a4c5d9c60b98b69c7eb81", + "IPY_MODEL_d91f8d29d89b4f59ba1da8ec762f2755" + ], + "layout": "IPY_MODEL_f17fc9d4e6774bc8a3e17ec8d9c64f00", + "tabbable": null, + "tooltip": null + } + }, + "f17fc9d4e6774bc8a3e17ec8d9c64f00": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index dd40d3f0f..6f5d58edc 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:25.670456Z", - "iopub.status.busy": "2024-02-13T04:51:25.670260Z", - "iopub.status.idle": "2024-02-13T04:51:26.818204Z", - "shell.execute_reply": "2024-02-13T04:51:26.817559Z" + "iopub.execute_input": "2024-02-13T22:20:57.792740Z", + "iopub.status.busy": "2024-02-13T22:20:57.792345Z", + "iopub.status.idle": "2024-02-13T22:20:58.865217Z", + "shell.execute_reply": "2024-02-13T22:20:58.864683Z" }, "nbsphinx": "hidden" }, @@ -117,7 +117,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:26.820791Z", - "iopub.status.busy": "2024-02-13T04:51:26.820483Z", - "iopub.status.idle": "2024-02-13T04:51:26.839842Z", - "shell.execute_reply": "2024-02-13T04:51:26.839244Z" + "iopub.execute_input": "2024-02-13T22:20:58.867853Z", + "iopub.status.busy": "2024-02-13T22:20:58.867414Z", + "iopub.status.idle": "2024-02-13T22:20:58.885731Z", + "shell.execute_reply": "2024-02-13T22:20:58.885292Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:26.842689Z", - "iopub.status.busy": "2024-02-13T04:51:26.842102Z", - "iopub.status.idle": "2024-02-13T04:51:26.845444Z", - "shell.execute_reply": "2024-02-13T04:51:26.844991Z" + "iopub.execute_input": "2024-02-13T22:20:58.888183Z", + "iopub.status.busy": "2024-02-13T22:20:58.887747Z", + "iopub.status.idle": "2024-02-13T22:20:58.890830Z", + "shell.execute_reply": "2024-02-13T22:20:58.890384Z" }, "nbsphinx": "hidden" }, @@ -199,10 +199,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:26.847534Z", - "iopub.status.busy": "2024-02-13T04:51:26.847214Z", - "iopub.status.idle": "2024-02-13T04:51:27.220773Z", - "shell.execute_reply": "2024-02-13T04:51:27.220185Z" + "iopub.execute_input": "2024-02-13T22:20:58.892771Z", + "iopub.status.busy": "2024-02-13T22:20:58.892503Z", + "iopub.status.idle": "2024-02-13T22:20:59.009313Z", + "shell.execute_reply": "2024-02-13T22:20:59.008739Z" } }, "outputs": [ @@ -375,10 +375,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:27.223213Z", - "iopub.status.busy": "2024-02-13T04:51:27.222855Z", - "iopub.status.idle": "2024-02-13T04:51:27.412795Z", - "shell.execute_reply": "2024-02-13T04:51:27.412204Z" + "iopub.execute_input": "2024-02-13T22:20:59.011536Z", + "iopub.status.busy": "2024-02-13T22:20:59.011219Z", + "iopub.status.idle": "2024-02-13T22:20:59.195158Z", + "shell.execute_reply": "2024-02-13T22:20:59.194515Z" }, "nbsphinx": "hidden" }, @@ -418,10 +418,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:27.415380Z", - "iopub.status.busy": "2024-02-13T04:51:27.415086Z", - "iopub.status.idle": "2024-02-13T04:51:27.667778Z", - "shell.execute_reply": "2024-02-13T04:51:27.667178Z" + "iopub.execute_input": "2024-02-13T22:20:59.197489Z", + "iopub.status.busy": "2024-02-13T22:20:59.197296Z", + "iopub.status.idle": "2024-02-13T22:20:59.447263Z", + "shell.execute_reply": "2024-02-13T22:20:59.446668Z" } }, "outputs": [ @@ -457,10 +457,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:27.670053Z", - "iopub.status.busy": "2024-02-13T04:51:27.669701Z", - "iopub.status.idle": "2024-02-13T04:51:27.674216Z", - "shell.execute_reply": "2024-02-13T04:51:27.673651Z" + "iopub.execute_input": "2024-02-13T22:20:59.449644Z", + "iopub.status.busy": "2024-02-13T22:20:59.449235Z", + "iopub.status.idle": "2024-02-13T22:20:59.453665Z", + "shell.execute_reply": "2024-02-13T22:20:59.453211Z" } }, "outputs": [], @@ -478,10 +478,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:27.676336Z", - "iopub.status.busy": "2024-02-13T04:51:27.675926Z", - "iopub.status.idle": "2024-02-13T04:51:27.682404Z", - "shell.execute_reply": "2024-02-13T04:51:27.681816Z" + "iopub.execute_input": "2024-02-13T22:20:59.455466Z", + "iopub.status.busy": "2024-02-13T22:20:59.455288Z", + "iopub.status.idle": "2024-02-13T22:20:59.461419Z", + "shell.execute_reply": "2024-02-13T22:20:59.461010Z" } }, "outputs": [], @@ -528,10 +528,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:27.684676Z", - "iopub.status.busy": "2024-02-13T04:51:27.684344Z", - "iopub.status.idle": "2024-02-13T04:51:27.686834Z", - "shell.execute_reply": "2024-02-13T04:51:27.686377Z" + "iopub.execute_input": "2024-02-13T22:20:59.463263Z", + "iopub.status.busy": "2024-02-13T22:20:59.463093Z", + "iopub.status.idle": "2024-02-13T22:20:59.465734Z", + "shell.execute_reply": "2024-02-13T22:20:59.465294Z" } }, "outputs": [], @@ -546,10 +546,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:27.688884Z", - "iopub.status.busy": "2024-02-13T04:51:27.688565Z", - "iopub.status.idle": "2024-02-13T04:51:36.185649Z", - "shell.execute_reply": "2024-02-13T04:51:36.185116Z" + "iopub.execute_input": "2024-02-13T22:20:59.467786Z", + "iopub.status.busy": "2024-02-13T22:20:59.467482Z", + "iopub.status.idle": "2024-02-13T22:21:07.713910Z", + "shell.execute_reply": "2024-02-13T22:21:07.713273Z" } }, "outputs": [], @@ -573,10 +573,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:36.188498Z", - "iopub.status.busy": "2024-02-13T04:51:36.188072Z", - "iopub.status.idle": "2024-02-13T04:51:36.195442Z", - "shell.execute_reply": "2024-02-13T04:51:36.194989Z" + "iopub.execute_input": "2024-02-13T22:21:07.716591Z", + "iopub.status.busy": "2024-02-13T22:21:07.716202Z", + "iopub.status.idle": "2024-02-13T22:21:07.723402Z", + "shell.execute_reply": "2024-02-13T22:21:07.722954Z" } }, "outputs": [ @@ -679,10 +679,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:36.197421Z", - "iopub.status.busy": "2024-02-13T04:51:36.197238Z", - "iopub.status.idle": "2024-02-13T04:51:36.201066Z", - "shell.execute_reply": "2024-02-13T04:51:36.200617Z" + "iopub.execute_input": "2024-02-13T22:21:07.725474Z", + "iopub.status.busy": "2024-02-13T22:21:07.725141Z", + "iopub.status.idle": "2024-02-13T22:21:07.728674Z", + "shell.execute_reply": "2024-02-13T22:21:07.728262Z" } }, "outputs": [], @@ -697,10 +697,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:36.203140Z", - "iopub.status.busy": "2024-02-13T04:51:36.202831Z", - "iopub.status.idle": "2024-02-13T04:51:36.206183Z", - "shell.execute_reply": "2024-02-13T04:51:36.205605Z" + "iopub.execute_input": "2024-02-13T22:21:07.730731Z", + "iopub.status.busy": "2024-02-13T22:21:07.730405Z", + "iopub.status.idle": "2024-02-13T22:21:07.733393Z", + "shell.execute_reply": "2024-02-13T22:21:07.732883Z" } }, "outputs": [ @@ -735,10 +735,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:36.208157Z", - "iopub.status.busy": "2024-02-13T04:51:36.207851Z", - "iopub.status.idle": "2024-02-13T04:51:36.210914Z", - "shell.execute_reply": "2024-02-13T04:51:36.210384Z" + "iopub.execute_input": "2024-02-13T22:21:07.735450Z", + "iopub.status.busy": "2024-02-13T22:21:07.735145Z", + "iopub.status.idle": "2024-02-13T22:21:07.738219Z", + "shell.execute_reply": "2024-02-13T22:21:07.737692Z" } }, "outputs": [], @@ -757,10 +757,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:36.212994Z", - "iopub.status.busy": "2024-02-13T04:51:36.212682Z", - "iopub.status.idle": "2024-02-13T04:51:36.221310Z", - "shell.execute_reply": "2024-02-13T04:51:36.220789Z" + "iopub.execute_input": "2024-02-13T22:21:07.740357Z", + "iopub.status.busy": "2024-02-13T22:21:07.739975Z", + "iopub.status.idle": "2024-02-13T22:21:07.748531Z", + "shell.execute_reply": "2024-02-13T22:21:07.747948Z" } }, "outputs": [ @@ -884,10 +884,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:36.223479Z", - "iopub.status.busy": "2024-02-13T04:51:36.223053Z", - "iopub.status.idle": "2024-02-13T04:51:36.225682Z", - "shell.execute_reply": "2024-02-13T04:51:36.225258Z" + "iopub.execute_input": "2024-02-13T22:21:07.750689Z", + "iopub.status.busy": "2024-02-13T22:21:07.750297Z", + "iopub.status.idle": "2024-02-13T22:21:07.753015Z", + "shell.execute_reply": "2024-02-13T22:21:07.752502Z" }, "nbsphinx": "hidden" }, @@ -922,10 +922,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:36.227596Z", - "iopub.status.busy": "2024-02-13T04:51:36.227419Z", - "iopub.status.idle": "2024-02-13T04:51:36.363272Z", - "shell.execute_reply": "2024-02-13T04:51:36.362639Z" + "iopub.execute_input": "2024-02-13T22:21:07.755131Z", + "iopub.status.busy": "2024-02-13T22:21:07.754733Z", + "iopub.status.idle": "2024-02-13T22:21:07.877227Z", + "shell.execute_reply": "2024-02-13T22:21:07.876665Z" } }, "outputs": [ @@ -964,10 +964,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:36.365686Z", - "iopub.status.busy": "2024-02-13T04:51:36.365302Z", - "iopub.status.idle": "2024-02-13T04:51:36.471965Z", - "shell.execute_reply": "2024-02-13T04:51:36.471336Z" + "iopub.execute_input": "2024-02-13T22:21:07.879470Z", + "iopub.status.busy": "2024-02-13T22:21:07.879255Z", + "iopub.status.idle": "2024-02-13T22:21:07.984458Z", + "shell.execute_reply": "2024-02-13T22:21:07.983894Z" } }, "outputs": [ @@ -1023,10 +1023,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:36.474556Z", - "iopub.status.busy": "2024-02-13T04:51:36.474077Z", - "iopub.status.idle": "2024-02-13T04:51:36.974279Z", - "shell.execute_reply": "2024-02-13T04:51:36.973685Z" + "iopub.execute_input": "2024-02-13T22:21:07.987123Z", + "iopub.status.busy": "2024-02-13T22:21:07.986569Z", + "iopub.status.idle": "2024-02-13T22:21:08.478445Z", + "shell.execute_reply": "2024-02-13T22:21:08.477843Z" } }, "outputs": [], @@ -1042,10 +1042,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:36.976861Z", - "iopub.status.busy": "2024-02-13T04:51:36.976511Z", - "iopub.status.idle": "2024-02-13T04:51:37.067853Z", - "shell.execute_reply": "2024-02-13T04:51:37.067262Z" + "iopub.execute_input": "2024-02-13T22:21:08.481155Z", + "iopub.status.busy": "2024-02-13T22:21:08.480704Z", + "iopub.status.idle": "2024-02-13T22:21:08.569457Z", + "shell.execute_reply": "2024-02-13T22:21:08.568878Z" } }, "outputs": [ @@ -1080,10 +1080,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:37.070178Z", - "iopub.status.busy": "2024-02-13T04:51:37.069840Z", - "iopub.status.idle": "2024-02-13T04:51:37.078761Z", - "shell.execute_reply": "2024-02-13T04:51:37.078216Z" + "iopub.execute_input": "2024-02-13T22:21:08.571981Z", + "iopub.status.busy": "2024-02-13T22:21:08.571532Z", + "iopub.status.idle": "2024-02-13T22:21:08.579880Z", + "shell.execute_reply": "2024-02-13T22:21:08.579430Z" } }, "outputs": [ @@ -1190,10 +1190,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:37.080852Z", - "iopub.status.busy": "2024-02-13T04:51:37.080507Z", - "iopub.status.idle": "2024-02-13T04:51:37.083158Z", - "shell.execute_reply": "2024-02-13T04:51:37.082722Z" + "iopub.execute_input": "2024-02-13T22:21:08.581882Z", + "iopub.status.busy": "2024-02-13T22:21:08.581554Z", + "iopub.status.idle": "2024-02-13T22:21:08.584244Z", + "shell.execute_reply": "2024-02-13T22:21:08.583820Z" }, "nbsphinx": "hidden" }, @@ -1218,10 +1218,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:37.085108Z", - "iopub.status.busy": "2024-02-13T04:51:37.084924Z", - "iopub.status.idle": "2024-02-13T04:51:42.608752Z", - "shell.execute_reply": "2024-02-13T04:51:42.608158Z" + "iopub.execute_input": "2024-02-13T22:21:08.586275Z", + "iopub.status.busy": "2024-02-13T22:21:08.585955Z", + "iopub.status.idle": "2024-02-13T22:21:14.083843Z", + "shell.execute_reply": "2024-02-13T22:21:14.083243Z" } }, "outputs": [ @@ -1265,10 +1265,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:42.611221Z", - "iopub.status.busy": "2024-02-13T04:51:42.610853Z", - "iopub.status.idle": "2024-02-13T04:51:42.619084Z", - "shell.execute_reply": "2024-02-13T04:51:42.618632Z" + "iopub.execute_input": "2024-02-13T22:21:14.086297Z", + "iopub.status.busy": "2024-02-13T22:21:14.085848Z", + "iopub.status.idle": "2024-02-13T22:21:14.094140Z", + "shell.execute_reply": "2024-02-13T22:21:14.093671Z" } }, "outputs": [ @@ -1377,10 +1377,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:42.621172Z", - "iopub.status.busy": "2024-02-13T04:51:42.620829Z", - "iopub.status.idle": "2024-02-13T04:51:42.686333Z", - "shell.execute_reply": "2024-02-13T04:51:42.685699Z" + "iopub.execute_input": "2024-02-13T22:21:14.096397Z", + "iopub.status.busy": "2024-02-13T22:21:14.095978Z", + "iopub.status.idle": "2024-02-13T22:21:14.161204Z", + "shell.execute_reply": "2024-02-13T22:21:14.160719Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 501954654..4c11c72aa 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -721,13 +721,13 @@

3. Use cleanlab to find label issues

-
+
-
+
-
0%| | 15268/4997817 [00:00&lt;00:32, 152663.77it/s]
+
0%| | 14686/4997817 [00:00&lt;00:33, 146852.09it/s]

</pre>

-
0%| | 15268/4997817 [00:00<00:32, 152663.77it/s]
+
0%| | 14686/4997817 [00:00<00:33, 146852.09it/s]

end{sphinxVerbatim}

-

0%| | 15268/4997817 [00:00<00:32, 152663.77it/s]

+

0%| | 14686/4997817 [00:00<00:33, 146852.09it/s]

-
1%| | 30573/4997817 [00:00&lt;00:32, 152883.32it/s]
+
1%| | 29379/4997817 [00:00&lt;00:33, 146826.75it/s]

</pre>

-
1%| | 30573/4997817 [00:00<00:32, 152883.32it/s]
+
1%| | 29379/4997817 [00:00<00:33, 146826.75it/s]

end{sphinxVerbatim}

-

1%| | 30573/4997817 [00:00<00:32, 152883.32it/s]

+

1%| | 29379/4997817 [00:00<00:33, 146826.75it/s]

-
1%| | 45862/4997817 [00:00&lt;00:32, 152608.50it/s]
+
1%| | 44082/4997817 [00:00&lt;00:33, 146917.20it/s]

</pre>

-
1%| | 45862/4997817 [00:00<00:32, 152608.50it/s]
+
1%| | 44082/4997817 [00:00<00:33, 146917.20it/s]

end{sphinxVerbatim}

-

1%| | 45862/4997817 [00:00<00:32, 152608.50it/s]

+

1%| | 44082/4997817 [00:00<00:33, 146917.20it/s]

-
1%| | 61123/4997817 [00:00&lt;00:32, 152455.06it/s]
+
1%| | 58873/4997817 [00:00&lt;00:33, 147306.50it/s]

</pre>

-
1%| | 61123/4997817 [00:00<00:32, 152455.06it/s]
+
1%| | 58873/4997817 [00:00<00:33, 147306.50it/s]

end{sphinxVerbatim}

-

1%| | 61123/4997817 [00:00<00:32, 152455.06it/s]

+

1%| | 58873/4997817 [00:00<00:33, 147306.50it/s]

-
2%|▏ | 76369/4997817 [00:00&lt;00:32, 152398.67it/s]
+
1%|▏ | 73624/4997817 [00:00&lt;00:33, 147376.50it/s]

</pre>

-
2%|▏ | 76369/4997817 [00:00<00:32, 152398.67it/s]
+
1%|▏ | 73624/4997817 [00:00<00:33, 147376.50it/s]

end{sphinxVerbatim}

-

2%|▏ | 76369/4997817 [00:00<00:32, 152398.67it/s]

+

1%|▏ | 73624/4997817 [00:00<00:33, 147376.50it/s]

-
2%|▏ | 91653/4997817 [00:00&lt;00:32, 152543.78it/s]
+
2%|▏ | 88375/4997817 [00:00&lt;00:33, 147418.95it/s]

</pre>

-
2%|▏ | 91653/4997817 [00:00<00:32, 152543.78it/s]
+
2%|▏ | 88375/4997817 [00:00<00:33, 147418.95it/s]

end{sphinxVerbatim}

-

2%|▏ | 91653/4997817 [00:00<00:32, 152543.78it/s]

+

2%|▏ | 88375/4997817 [00:00<00:33, 147418.95it/s]

-
2%|▏ | 106908/4997817 [00:00&lt;00:32, 152112.15it/s]
+
2%|▏ | 103117/4997817 [00:00&lt;00:33, 146398.59it/s]

</pre>

-
2%|▏ | 106908/4997817 [00:00<00:32, 152112.15it/s]
+
2%|▏ | 103117/4997817 [00:00<00:33, 146398.59it/s]

end{sphinxVerbatim}

-

2%|▏ | 106908/4997817 [00:00<00:32, 152112.15it/s]

+

2%|▏ | 103117/4997817 [00:00<00:33, 146398.59it/s]

-
2%|▏ | 122247/4997817 [00:00&lt;00:31, 152513.02it/s]
+
2%|▏ | 117858/4997817 [00:00&lt;00:33, 146717.08it/s]

</pre>

-
2%|▏ | 122247/4997817 [00:00<00:31, 152513.02it/s]
+
2%|▏ | 117858/4997817 [00:00<00:33, 146717.08it/s]

end{sphinxVerbatim}

-

2%|▏ | 122247/4997817 [00:00<00:31, 152513.02it/s]

+

2%|▏ | 117858/4997817 [00:00<00:33, 146717.08it/s]

-
3%|▎ | 137535/4997817 [00:00&lt;00:31, 152624.75it/s]
+
3%|▎ | 132531/4997817 [00:00&lt;00:33, 146652.84it/s]

</pre>

-
3%|▎ | 137535/4997817 [00:00<00:31, 152624.75it/s]
+
3%|▎ | 132531/4997817 [00:00<00:33, 146652.84it/s]

end{sphinxVerbatim}

-

3%|▎ | 137535/4997817 [00:00<00:31, 152624.75it/s]

+

3%|▎ | 132531/4997817 [00:00<00:33, 146652.84it/s]

-
3%|▎ | 152798/4997817 [00:01&lt;00:31, 152605.77it/s]
+
3%|▎ | 147198/4997817 [00:01&lt;00:33, 146511.78it/s]

</pre>

-
3%|▎ | 152798/4997817 [00:01<00:31, 152605.77it/s]
+
3%|▎ | 147198/4997817 [00:01<00:33, 146511.78it/s]

end{sphinxVerbatim}

-

3%|▎ | 152798/4997817 [00:01<00:31, 152605.77it/s]

+

3%|▎ | 147198/4997817 [00:01<00:33, 146511.78it/s]

-
3%|▎ | 168059/4997817 [00:01&lt;00:31, 152403.35it/s]
+
3%|▎ | 161850/4997817 [00:01&lt;00:33, 146359.65it/s]

</pre>

-
3%|▎ | 168059/4997817 [00:01<00:31, 152403.35it/s]
+
3%|▎ | 161850/4997817 [00:01<00:33, 146359.65it/s]

end{sphinxVerbatim}

-

3%|▎ | 168059/4997817 [00:01<00:31, 152403.35it/s]

+

3%|▎ | 161850/4997817 [00:01<00:33, 146359.65it/s]

-
4%|▎ | 183300/4997817 [00:01&lt;00:31, 152113.29it/s]
+
4%|▎ | 176487/4997817 [00:01&lt;00:33, 146080.12it/s]

</pre>

-
4%|▎ | 183300/4997817 [00:01<00:31, 152113.29it/s]
+
4%|▎ | 176487/4997817 [00:01<00:33, 146080.12it/s]

end{sphinxVerbatim}

-

4%|▎ | 183300/4997817 [00:01<00:31, 152113.29it/s]

+

4%|▎ | 176487/4997817 [00:01<00:33, 146080.12it/s]

-
4%|▍ | 198650/4997817 [00:01&lt;00:31, 152530.19it/s]
+
4%|▍ | 191096/4997817 [00:01&lt;00:32, 146061.90it/s]

</pre>

-
4%|▍ | 198650/4997817 [00:01<00:31, 152530.19it/s]
+
4%|▍ | 191096/4997817 [00:01<00:32, 146061.90it/s]

end{sphinxVerbatim}

-

4%|▍ | 198650/4997817 [00:01<00:31, 152530.19it/s]

+

4%|▍ | 191096/4997817 [00:01<00:32, 146061.90it/s]

-
4%|▍ | 214047/4997817 [00:01&lt;00:31, 152960.10it/s]
+
4%|▍ | 205812/4997817 [00:01&lt;00:32, 146388.88it/s]

</pre>

-
4%|▍ | 214047/4997817 [00:01<00:31, 152960.10it/s]
+
4%|▍ | 205812/4997817 [00:01<00:32, 146388.88it/s]

end{sphinxVerbatim}

-

4%|▍ | 214047/4997817 [00:01<00:31, 152960.10it/s]

+

4%|▍ | 205812/4997817 [00:01<00:32, 146388.88it/s]

-
5%|▍ | 229458/4997817 [00:01&lt;00:31, 153304.57it/s]
+
4%|▍ | 220605/4997817 [00:01&lt;00:32, 146848.72it/s]

</pre>

-
5%|▍ | 229458/4997817 [00:01<00:31, 153304.57it/s]
+
4%|▍ | 220605/4997817 [00:01<00:32, 146848.72it/s]

end{sphinxVerbatim}

-

5%|▍ | 229458/4997817 [00:01<00:31, 153304.57it/s]

+

4%|▍ | 220605/4997817 [00:01<00:32, 146848.72it/s]

-
5%|▍ | 244869/4997817 [00:01&lt;00:30, 153543.54it/s]
+
5%|▍ | 235402/4997817 [00:01&lt;00:32, 147184.62it/s]

</pre>

-
5%|▍ | 244869/4997817 [00:01<00:30, 153543.54it/s]
+
5%|▍ | 235402/4997817 [00:01<00:32, 147184.62it/s]

end{sphinxVerbatim}

-

5%|▍ | 244869/4997817 [00:01<00:30, 153543.54it/s]

+

5%|▍ | 235402/4997817 [00:01<00:32, 147184.62it/s]

-
5%|▌ | 260224/4997817 [00:01&lt;00:30, 153507.14it/s]
+
5%|▌ | 250251/4997817 [00:01&lt;00:32, 147572.75it/s]

</pre>

-
5%|▌ | 260224/4997817 [00:01<00:30, 153507.14it/s]
+
5%|▌ | 250251/4997817 [00:01<00:32, 147572.75it/s]

end{sphinxVerbatim}

-

5%|▌ | 260224/4997817 [00:01<00:30, 153507.14it/s]

+

5%|▌ | 250251/4997817 [00:01<00:32, 147572.75it/s]

-
6%|▌ | 275575/4997817 [00:01&lt;00:30, 153192.48it/s]
+
5%|▌ | 265009/4997817 [00:01&lt;00:32, 147492.49it/s]

</pre>

-
6%|▌ | 275575/4997817 [00:01<00:30, 153192.48it/s]
+
5%|▌ | 265009/4997817 [00:01<00:32, 147492.49it/s]

end{sphinxVerbatim}

-

6%|▌ | 275575/4997817 [00:01<00:30, 153192.48it/s]

+

5%|▌ | 265009/4997817 [00:01<00:32, 147492.49it/s]

-
6%|▌ | 290978/4997817 [00:01&lt;00:30, 153441.52it/s]
+
6%|▌ | 279759/4997817 [00:01&lt;00:31, 147452.90it/s]

</pre>

-
6%|▌ | 290978/4997817 [00:01<00:30, 153441.52it/s]
+
6%|▌ | 279759/4997817 [00:01<00:31, 147452.90it/s]

end{sphinxVerbatim}

-

6%|▌ | 290978/4997817 [00:01<00:30, 153441.52it/s]

+

6%|▌ | 279759/4997817 [00:01<00:31, 147452.90it/s]

-
6%|▌ | 306323/4997817 [00:02&lt;00:30, 153313.02it/s]
+
6%|▌ | 294505/4997817 [00:02&lt;00:31, 147319.46it/s]

</pre>

-
6%|▌ | 306323/4997817 [00:02<00:30, 153313.02it/s]
+
6%|▌ | 294505/4997817 [00:02<00:31, 147319.46it/s]

end{sphinxVerbatim}

-

6%|▌ | 306323/4997817 [00:02<00:30, 153313.02it/s]

+

6%|▌ | 294505/4997817 [00:02<00:31, 147319.46it/s]

-
6%|▋ | 321655/4997817 [00:02&lt;00:30, 153242.01it/s]
+
6%|▌ | 309330/4997817 [00:02&lt;00:31, 147596.91it/s]

</pre>

-
6%|▋ | 321655/4997817 [00:02<00:30, 153242.01it/s]
+
6%|▌ | 309330/4997817 [00:02<00:31, 147596.91it/s]

end{sphinxVerbatim}

-

6%|▋ | 321655/4997817 [00:02<00:30, 153242.01it/s]

+

6%|▌ | 309330/4997817 [00:02<00:31, 147596.91it/s]

-
7%|▋ | 336980/4997817 [00:02&lt;00:30, 153203.40it/s]
+
6%|▋ | 324110/4997817 [00:02&lt;00:31, 147655.95it/s]

</pre>

-
7%|▋ | 336980/4997817 [00:02<00:30, 153203.40it/s]
+
6%|▋ | 324110/4997817 [00:02<00:31, 147655.95it/s]

end{sphinxVerbatim}

-

7%|▋ | 336980/4997817 [00:02<00:30, 153203.40it/s]

+

6%|▋ | 324110/4997817 [00:02<00:31, 147655.95it/s]

-
7%|▋ | 352376/4997817 [00:02&lt;00:30, 153426.27it/s]
+
7%|▋ | 338876/4997817 [00:02&lt;00:31, 147094.72it/s]

</pre>

-
7%|▋ | 352376/4997817 [00:02<00:30, 153426.27it/s]
+
7%|▋ | 338876/4997817 [00:02<00:31, 147094.72it/s]

end{sphinxVerbatim}

-

7%|▋ | 352376/4997817 [00:02<00:30, 153426.27it/s]

+

7%|▋ | 338876/4997817 [00:02<00:31, 147094.72it/s]

-
7%|▋ | 367782/4997817 [00:02&lt;00:30, 153611.81it/s]
+
7%|▋ | 353620/4997817 [00:02&lt;00:31, 147195.32it/s]

</pre>

-
7%|▋ | 367782/4997817 [00:02<00:30, 153611.81it/s]
+
7%|▋ | 353620/4997817 [00:02<00:31, 147195.32it/s]

end{sphinxVerbatim}

-

7%|▋ | 367782/4997817 [00:02<00:30, 153611.81it/s]

+

7%|▋ | 353620/4997817 [00:02<00:31, 147195.32it/s]

-
8%|▊ | 383144/4997817 [00:02&lt;00:30, 153175.07it/s]
+
7%|▋ | 368340/4997817 [00:02&lt;00:31, 146717.43it/s]

</pre>

-
8%|▊ | 383144/4997817 [00:02<00:30, 153175.07it/s]
+
7%|▋ | 368340/4997817 [00:02<00:31, 146717.43it/s]

end{sphinxVerbatim}

-

8%|▊ | 383144/4997817 [00:02<00:30, 153175.07it/s]

+

7%|▋ | 368340/4997817 [00:02<00:31, 146717.43it/s]

-
8%|▊ | 398484/4997817 [00:02&lt;00:30, 153238.06it/s]
+
8%|▊ | 383097/4997817 [00:02&lt;00:31, 146969.26it/s]

</pre>

-
8%|▊ | 398484/4997817 [00:02<00:30, 153238.06it/s]
+
8%|▊ | 383097/4997817 [00:02<00:31, 146969.26it/s]

end{sphinxVerbatim}

-

8%|▊ | 398484/4997817 [00:02<00:30, 153238.06it/s]

+

8%|▊ | 383097/4997817 [00:02<00:31, 146969.26it/s]

-
8%|▊ | 413809/4997817 [00:02&lt;00:30, 152354.16it/s]
+
8%|▊ | 397904/4997817 [00:02&lt;00:31, 147295.61it/s]

</pre>

-
8%|▊ | 413809/4997817 [00:02<00:30, 152354.16it/s]
+
8%|▊ | 397904/4997817 [00:02<00:31, 147295.61it/s]

end{sphinxVerbatim}

-

8%|▊ | 413809/4997817 [00:02<00:30, 152354.16it/s]

+

8%|▊ | 397904/4997817 [00:02<00:31, 147295.61it/s]

-
9%|▊ | 429046/4997817 [00:02&lt;00:29, 152347.55it/s]
+
8%|▊ | 412710/4997817 [00:02&lt;00:31, 147521.49it/s]

</pre>

-
9%|▊ | 429046/4997817 [00:02<00:29, 152347.55it/s]
+
8%|▊ | 412710/4997817 [00:02<00:31, 147521.49it/s]

end{sphinxVerbatim}

-

9%|▊ | 429046/4997817 [00:02<00:29, 152347.55it/s]

+

8%|▊ | 412710/4997817 [00:02<00:31, 147521.49it/s]

-
9%|▉ | 444384/4997817 [00:02&lt;00:29, 152653.57it/s]
+
9%|▊ | 427463/4997817 [00:02&lt;00:30, 147519.24it/s]

</pre>

-
9%|▉ | 444384/4997817 [00:02<00:29, 152653.57it/s]
+
9%|▊ | 427463/4997817 [00:02<00:30, 147519.24it/s]

end{sphinxVerbatim}

-

9%|▉ | 444384/4997817 [00:02<00:29, 152653.57it/s]

+

9%|▊ | 427463/4997817 [00:02<00:30, 147519.24it/s]

-
9%|▉ | 459713/4997817 [00:03&lt;00:29, 152840.12it/s]
+
9%|▉ | 442348/4997817 [00:03&lt;00:30, 147916.97it/s]

</pre>

-
9%|▉ | 459713/4997817 [00:03<00:29, 152840.12it/s]
+
9%|▉ | 442348/4997817 [00:03<00:30, 147916.97it/s]

end{sphinxVerbatim}

-

9%|▉ | 459713/4997817 [00:03<00:29, 152840.12it/s]

+

9%|▉ | 442348/4997817 [00:03<00:30, 147916.97it/s]

-
10%|▉ | 475034/4997817 [00:03&lt;00:29, 152948.30it/s]
+
9%|▉ | 457175/4997817 [00:03&lt;00:30, 148019.57it/s]

</pre>

-
10%|▉ | 475034/4997817 [00:03<00:29, 152948.30it/s]
+
9%|▉ | 457175/4997817 [00:03<00:30, 148019.57it/s]

end{sphinxVerbatim}

-

10%|▉ | 475034/4997817 [00:03<00:29, 152948.30it/s]

+

9%|▉ | 457175/4997817 [00:03<00:30, 148019.57it/s]

-
10%|▉ | 490409/4997817 [00:03&lt;00:29, 153184.82it/s]
+
9%|▉ | 471978/4997817 [00:03&lt;00:30, 147976.72it/s]

</pre>

-
10%|▉ | 490409/4997817 [00:03<00:29, 153184.82it/s]
+
9%|▉ | 471978/4997817 [00:03<00:30, 147976.72it/s]

end{sphinxVerbatim}

-

10%|▉ | 490409/4997817 [00:03<00:29, 153184.82it/s]

+

9%|▉ | 471978/4997817 [00:03<00:30, 147976.72it/s]

-
10%|█ | 505728/4997817 [00:03&lt;00:29, 153110.81it/s]
+
10%|▉ | 486776/4997817 [00:03&lt;00:30, 147710.39it/s]

</pre>

-
10%|█ | 505728/4997817 [00:03<00:29, 153110.81it/s]
+
10%|▉ | 486776/4997817 [00:03<00:30, 147710.39it/s]

end{sphinxVerbatim}

-

10%|█ | 505728/4997817 [00:03<00:29, 153110.81it/s]

+

10%|▉ | 486776/4997817 [00:03<00:30, 147710.39it/s]

-
10%|█ | 521040/4997817 [00:03&lt;00:29, 153105.08it/s]
+
10%|█ | 501630/4997817 [00:03&lt;00:30, 147954.47it/s]

</pre>

-
10%|█ | 521040/4997817 [00:03<00:29, 153105.08it/s]
+
10%|█ | 501630/4997817 [00:03<00:30, 147954.47it/s]

end{sphinxVerbatim}

-

10%|█ | 521040/4997817 [00:03<00:29, 153105.08it/s]

+

10%|█ | 501630/4997817 [00:03<00:30, 147954.47it/s]

-
11%|█ | 536416/4997817 [00:03&lt;00:29, 153297.84it/s]
+
10%|█ | 516616/4997817 [00:03&lt;00:30, 148524.22it/s]

</pre>

-
11%|█ | 536416/4997817 [00:03<00:29, 153297.84it/s]
+
10%|█ | 516616/4997817 [00:03<00:30, 148524.22it/s]

end{sphinxVerbatim}

-

11%|█ | 536416/4997817 [00:03<00:29, 153297.84it/s]

+

10%|█ | 516616/4997817 [00:03<00:30, 148524.22it/s]

-
11%|█ | 551746/4997817 [00:03&lt;00:29, 153133.56it/s]
+
11%|█ | 531469/4997817 [00:03&lt;00:30, 148246.09it/s]

</pre>

-
11%|█ | 551746/4997817 [00:03<00:29, 153133.56it/s]
+
11%|█ | 531469/4997817 [00:03<00:30, 148246.09it/s]

end{sphinxVerbatim}

-

11%|█ | 551746/4997817 [00:03<00:29, 153133.56it/s]

+

11%|█ | 531469/4997817 [00:03<00:30, 148246.09it/s]

-
11%|█▏ | 567060/4997817 [00:03&lt;00:29, 152739.95it/s]
+
11%|█ | 546346/4997817 [00:03&lt;00:29, 148399.08it/s]

</pre>

-
11%|█▏ | 567060/4997817 [00:03<00:29, 152739.95it/s]
+
11%|█ | 546346/4997817 [00:03<00:29, 148399.08it/s]

end{sphinxVerbatim}

-

11%|█▏ | 567060/4997817 [00:03<00:29, 152739.95it/s]

+

11%|█ | 546346/4997817 [00:03<00:29, 148399.08it/s]

-
12%|█▏ | 582524/4997817 [00:03&lt;00:28, 153305.47it/s]
+
11%|█ | 561187/4997817 [00:03&lt;00:29, 148303.25it/s]

</pre>

-
12%|█▏ | 582524/4997817 [00:03<00:28, 153305.47it/s]
+
11%|█ | 561187/4997817 [00:03<00:29, 148303.25it/s]

end{sphinxVerbatim}

-

12%|█▏ | 582524/4997817 [00:03<00:28, 153305.47it/s]

+

11%|█ | 561187/4997817 [00:03<00:29, 148303.25it/s]

-
12%|█▏ | 597920/4997817 [00:03&lt;00:28, 153498.11it/s]
+
12%|█▏ | 576018/4997817 [00:03&lt;00:29, 147757.16it/s]

</pre>

-
12%|█▏ | 597920/4997817 [00:03<00:28, 153498.11it/s]
+
12%|█▏ | 576018/4997817 [00:03<00:29, 147757.16it/s]

end{sphinxVerbatim}

-

12%|█▏ | 597920/4997817 [00:03<00:28, 153498.11it/s]

+

12%|█▏ | 576018/4997817 [00:03<00:29, 147757.16it/s]

-
12%|█▏ | 613271/4997817 [00:04&lt;00:28, 153405.18it/s]
+
12%|█▏ | 590920/4997817 [00:04&lt;00:29, 148133.12it/s]

</pre>

-
12%|█▏ | 613271/4997817 [00:04<00:28, 153405.18it/s]
+
12%|█▏ | 590920/4997817 [00:04<00:29, 148133.12it/s]

end{sphinxVerbatim}

-

12%|█▏ | 613271/4997817 [00:04<00:28, 153405.18it/s]

+

12%|█▏ | 590920/4997817 [00:04<00:29, 148133.12it/s]

-
13%|█▎ | 628612/4997817 [00:04&lt;00:28, 153256.80it/s]
+
12%|█▏ | 605734/4997817 [00:04&lt;00:29, 147627.97it/s]

</pre>

-
13%|█▎ | 628612/4997817 [00:04<00:28, 153256.80it/s]
+
12%|█▏ | 605734/4997817 [00:04<00:29, 147627.97it/s]

end{sphinxVerbatim}

-

13%|█▎ | 628612/4997817 [00:04<00:28, 153256.80it/s]

+

12%|█▏ | 605734/4997817 [00:04<00:29, 147627.97it/s]

-
13%|█▎ | 643938/4997817 [00:04&lt;00:28, 152729.72it/s]
+
12%|█▏ | 620498/4997817 [00:04&lt;00:29, 147479.08it/s]

</pre>

-
13%|█▎ | 643938/4997817 [00:04<00:28, 152729.72it/s]
+
12%|█▏ | 620498/4997817 [00:04<00:29, 147479.08it/s]

end{sphinxVerbatim}

-

13%|█▎ | 643938/4997817 [00:04<00:28, 152729.72it/s]

+

12%|█▏ | 620498/4997817 [00:04<00:29, 147479.08it/s]

-
13%|█▎ | 659212/4997817 [00:04&lt;00:28, 152490.37it/s]
+
13%|█▎ | 635247/4997817 [00:04&lt;00:29, 146720.55it/s]

</pre>

-
13%|█▎ | 659212/4997817 [00:04<00:28, 152490.37it/s]
+
13%|█▎ | 635247/4997817 [00:04<00:29, 146720.55it/s]

end{sphinxVerbatim}

-

13%|█▎ | 659212/4997817 [00:04<00:28, 152490.37it/s]

+

13%|█▎ | 635247/4997817 [00:04<00:29, 146720.55it/s]

-
13%|█▎ | 674462/4997817 [00:04&lt;00:28, 152140.36it/s]
+
13%|█▎ | 650152/4997817 [00:04&lt;00:29, 147411.77it/s]

</pre>

-
13%|█▎ | 674462/4997817 [00:04<00:28, 152140.36it/s]
+
13%|█▎ | 650152/4997817 [00:04<00:29, 147411.77it/s]

end{sphinxVerbatim}

-

13%|█▎ | 674462/4997817 [00:04<00:28, 152140.36it/s]

+

13%|█▎ | 650152/4997817 [00:04<00:29, 147411.77it/s]

-
14%|█▍ | 689677/4997817 [00:04&lt;00:28, 152020.81it/s]
+
13%|█▎ | 664980/4997817 [00:04&lt;00:29, 147667.36it/s]

</pre>

-
14%|█▍ | 689677/4997817 [00:04<00:28, 152020.81it/s]
+
13%|█▎ | 664980/4997817 [00:04<00:29, 147667.36it/s]

end{sphinxVerbatim}

-

14%|█▍ | 689677/4997817 [00:04<00:28, 152020.81it/s]

+

13%|█▎ | 664980/4997817 [00:04<00:29, 147667.36it/s]

-
14%|█▍ | 704893/4997817 [00:04&lt;00:28, 152059.98it/s]
+
14%|█▎ | 680008/4997817 [00:04&lt;00:29, 148444.04it/s]

</pre>

-
14%|█▍ | 704893/4997817 [00:04<00:28, 152059.98it/s]
+
14%|█▎ | 680008/4997817 [00:04<00:29, 148444.04it/s]

end{sphinxVerbatim}

-

14%|█▍ | 704893/4997817 [00:04<00:28, 152059.98it/s]

+

14%|█▎ | 680008/4997817 [00:04<00:29, 148444.04it/s]

-
14%|█▍ | 720119/4997817 [00:04&lt;00:28, 152117.38it/s]
+
14%|█▍ | 694854/4997817 [00:04&lt;00:29, 147854.75it/s]

</pre>

-
14%|█▍ | 720119/4997817 [00:04<00:28, 152117.38it/s]
+
14%|█▍ | 694854/4997817 [00:04<00:29, 147854.75it/s]

end{sphinxVerbatim}

-

14%|█▍ | 720119/4997817 [00:04<00:28, 152117.38it/s]

+

14%|█▍ | 694854/4997817 [00:04<00:29, 147854.75it/s]

-
15%|█▍ | 735331/4997817 [00:04&lt;00:28, 151521.22it/s]
+
14%|█▍ | 709641/4997817 [00:04&lt;00:29, 147711.76it/s]

</pre>

-
15%|█▍ | 735331/4997817 [00:04<00:28, 151521.22it/s]
+
14%|█▍ | 709641/4997817 [00:04<00:29, 147711.76it/s]

end{sphinxVerbatim}

-

15%|█▍ | 735331/4997817 [00:04<00:28, 151521.22it/s]

+

14%|█▍ | 709641/4997817 [00:04<00:29, 147711.76it/s]

-
15%|█▌ | 750688/4997817 [00:04&lt;00:27, 152129.46it/s]
+
14%|█▍ | 724413/4997817 [00:04&lt;00:29, 146962.76it/s]

</pre>

-
15%|█▌ | 750688/4997817 [00:04<00:27, 152129.46it/s]
+
14%|█▍ | 724413/4997817 [00:04<00:29, 146962.76it/s]

end{sphinxVerbatim}

-

15%|█▌ | 750688/4997817 [00:04<00:27, 152129.46it/s]

+

14%|█▍ | 724413/4997817 [00:04<00:29, 146962.76it/s]

-
15%|█▌ | 766110/4997817 [00:05&lt;00:27, 152751.32it/s]
+
15%|█▍ | 739111/4997817 [00:05&lt;00:29, 146576.91it/s]

</pre>

-
15%|█▌ | 766110/4997817 [00:05<00:27, 152751.32it/s]
+
15%|█▍ | 739111/4997817 [00:05<00:29, 146576.91it/s]

end{sphinxVerbatim}

-

15%|█▌ | 766110/4997817 [00:05<00:27, 152751.32it/s]

+

15%|█▍ | 739111/4997817 [00:05<00:29, 146576.91it/s]

-
16%|█▌ | 781473/4997817 [00:05&lt;00:27, 153012.04it/s]
+
15%|█▌ | 753802/4997817 [00:05&lt;00:28, 146673.13it/s]

</pre>

-
16%|█▌ | 781473/4997817 [00:05<00:27, 153012.04it/s]
+
15%|█▌ | 753802/4997817 [00:05<00:28, 146673.13it/s]

end{sphinxVerbatim}

-

16%|█▌ | 781473/4997817 [00:05<00:27, 153012.04it/s]

+

15%|█▌ | 753802/4997817 [00:05<00:28, 146673.13it/s]

-
16%|█▌ | 796775/4997817 [00:05&lt;00:27, 153005.95it/s]
+
15%|█▌ | 768561/4997817 [00:05&lt;00:28, 146944.21it/s]

</pre>

-
16%|█▌ | 796775/4997817 [00:05<00:27, 153005.95it/s]
+
15%|█▌ | 768561/4997817 [00:05<00:28, 146944.21it/s]

end{sphinxVerbatim}

-

16%|█▌ | 796775/4997817 [00:05<00:27, 153005.95it/s]

+

15%|█▌ | 768561/4997817 [00:05<00:28, 146944.21it/s]

-
16%|█▌ | 812109/4997817 [00:05&lt;00:27, 153103.15it/s]
+
16%|█▌ | 783527/4997817 [00:05&lt;00:28, 147753.96it/s]

</pre>

-
16%|█▌ | 812109/4997817 [00:05<00:27, 153103.15it/s]
+
16%|█▌ | 783527/4997817 [00:05<00:28, 147753.96it/s]

end{sphinxVerbatim}

-

16%|█▌ | 812109/4997817 [00:05<00:27, 153103.15it/s]

+

16%|█▌ | 783527/4997817 [00:05<00:28, 147753.96it/s]

-
17%|█▋ | 827420/4997817 [00:05&lt;00:27, 152861.06it/s]
+
16%|█▌ | 798376/4997817 [00:05&lt;00:28, 147970.64it/s]

</pre>

-
17%|█▋ | 827420/4997817 [00:05<00:27, 152861.06it/s]
+
16%|█▌ | 798376/4997817 [00:05<00:28, 147970.64it/s]

end{sphinxVerbatim}

-

17%|█▋ | 827420/4997817 [00:05<00:27, 152861.06it/s]

+

16%|█▌ | 798376/4997817 [00:05<00:28, 147970.64it/s]

-
17%|█▋ | 842707/4997817 [00:05&lt;00:27, 152618.89it/s]
+
16%|█▋ | 813194/4997817 [00:05&lt;00:28, 148030.01it/s]

</pre>

-
17%|█▋ | 842707/4997817 [00:05<00:27, 152618.89it/s]
+
16%|█▋ | 813194/4997817 [00:05<00:28, 148030.01it/s]

end{sphinxVerbatim}

-

17%|█▋ | 842707/4997817 [00:05<00:27, 152618.89it/s]

+

16%|█▋ | 813194/4997817 [00:05<00:28, 148030.01it/s]

-
17%|█▋ | 858003/4997817 [00:05&lt;00:27, 152679.53it/s]
+
17%|█▋ | 828109/4997817 [00:05&lt;00:28, 148363.35it/s]

</pre>

-
17%|█▋ | 858003/4997817 [00:05<00:27, 152679.53it/s]
+
17%|█▋ | 828109/4997817 [00:05<00:28, 148363.35it/s]

end{sphinxVerbatim}

-

17%|█▋ | 858003/4997817 [00:05<00:27, 152679.53it/s]

+

17%|█▋ | 828109/4997817 [00:05<00:28, 148363.35it/s]

-
17%|█▋ | 873374/4997817 [00:05&lt;00:26, 152984.23it/s]
+
17%|█▋ | 842946/4997817 [00:05&lt;00:28, 148197.93it/s]

</pre>

-
17%|█▋ | 873374/4997817 [00:05<00:26, 152984.23it/s]
+
17%|█▋ | 842946/4997817 [00:05<00:28, 148197.93it/s]

end{sphinxVerbatim}

-

17%|█▋ | 873374/4997817 [00:05<00:26, 152984.23it/s]

+

17%|█▋ | 842946/4997817 [00:05<00:28, 148197.93it/s]

-
18%|█▊ | 888714/4997817 [00:05&lt;00:26, 153106.77it/s]
+
17%|█▋ | 858002/4997817 [00:05&lt;00:27, 148904.38it/s]

</pre>

-
18%|█▊ | 888714/4997817 [00:05<00:26, 153106.77it/s]
+
17%|█▋ | 858002/4997817 [00:05<00:27, 148904.38it/s]

end{sphinxVerbatim}

-

18%|█▊ | 888714/4997817 [00:05<00:26, 153106.77it/s]

+

17%|█▋ | 858002/4997817 [00:05<00:27, 148904.38it/s]

-
18%|█▊ | 904173/4997817 [00:05&lt;00:26, 153547.33it/s]
+
17%|█▋ | 872977/4997817 [00:05&lt;00:27, 149155.31it/s]

</pre>

-
18%|█▊ | 904173/4997817 [00:05<00:26, 153547.33it/s]
+
17%|█▋ | 872977/4997817 [00:05<00:27, 149155.31it/s]

end{sphinxVerbatim}

-

18%|█▊ | 904173/4997817 [00:05<00:26, 153547.33it/s]

+

17%|█▋ | 872977/4997817 [00:05<00:27, 149155.31it/s]

-
18%|█▊ | 919528/4997817 [00:06&lt;00:26, 153446.17it/s]
+
18%|█▊ | 887982/4997817 [00:06&lt;00:27, 149420.16it/s]

</pre>

-
18%|█▊ | 919528/4997817 [00:06<00:26, 153446.17it/s]
+
18%|█▊ | 887982/4997817 [00:06<00:27, 149420.16it/s]

end{sphinxVerbatim}

-

18%|█▊ | 919528/4997817 [00:06<00:26, 153446.17it/s]

+

18%|█▊ | 887982/4997817 [00:06<00:27, 149420.16it/s]

-
19%|█▊ | 934896/4997817 [00:06&lt;00:26, 153512.24it/s]
+
18%|█▊ | 902926/4997817 [00:06&lt;00:27, 149424.12it/s]

</pre>

-
19%|█▊ | 934896/4997817 [00:06<00:26, 153512.24it/s]
+
18%|█▊ | 902926/4997817 [00:06<00:27, 149424.12it/s]

end{sphinxVerbatim}

-

19%|█▊ | 934896/4997817 [00:06<00:26, 153512.24it/s]

+

18%|█▊ | 902926/4997817 [00:06<00:27, 149424.12it/s]

-
19%|█▉ | 950248/4997817 [00:06&lt;00:26, 152181.55it/s]
+
18%|█▊ | 917869/4997817 [00:06&lt;00:27, 149340.29it/s]

</pre>

-
19%|█▉ | 950248/4997817 [00:06<00:26, 152181.55it/s]
+
18%|█▊ | 917869/4997817 [00:06<00:27, 149340.29it/s]

end{sphinxVerbatim}

-

19%|█▉ | 950248/4997817 [00:06<00:26, 152181.55it/s]

+

18%|█▊ | 917869/4997817 [00:06<00:27, 149340.29it/s]

-
19%|█▉ | 965736/4997817 [00:06&lt;00:26, 152981.80it/s]
+
19%|█▊ | 932804/4997817 [00:06&lt;00:27, 148960.57it/s]

</pre>

-
19%|█▉ | 965736/4997817 [00:06<00:26, 152981.80it/s]
+
19%|█▊ | 932804/4997817 [00:06<00:27, 148960.57it/s]

end{sphinxVerbatim}

-

19%|█▉ | 965736/4997817 [00:06<00:26, 152981.80it/s]

+

19%|█▊ | 932804/4997817 [00:06<00:27, 148960.57it/s]

-
20%|█▉ | 981306/4997817 [00:06&lt;00:26, 153791.24it/s]
+
19%|█▉ | 947701/4997817 [00:06&lt;00:27, 146116.39it/s]

</pre>

-
20%|█▉ | 981306/4997817 [00:06<00:26, 153791.24it/s]
+
19%|█▉ | 947701/4997817 [00:06<00:27, 146116.39it/s]

end{sphinxVerbatim}

-

20%|█▉ | 981306/4997817 [00:06<00:26, 153791.24it/s]

+

19%|█▉ | 947701/4997817 [00:06<00:27, 146116.39it/s]

-
20%|█▉ | 996719/4997817 [00:06&lt;00:25, 153889.51it/s]
+
19%|█▉ | 962883/4997817 [00:06&lt;00:27, 147800.15it/s]

</pre>

-
20%|█▉ | 996719/4997817 [00:06<00:25, 153889.51it/s]
+
19%|█▉ | 962883/4997817 [00:06<00:27, 147800.15it/s]

end{sphinxVerbatim}

-

20%|█▉ | 996719/4997817 [00:06<00:25, 153889.51it/s]

+

19%|█▉ | 962883/4997817 [00:06<00:27, 147800.15it/s]

-
20%|██ | 1012110/4997817 [00:06&lt;00:25, 153467.80it/s]
+
20%|█▉ | 977914/4997817 [00:06&lt;00:27, 148542.14it/s]

</pre>

-
20%|██ | 1012110/4997817 [00:06<00:25, 153467.80it/s]
+
20%|█▉ | 977914/4997817 [00:06<00:27, 148542.14it/s]

end{sphinxVerbatim}

-

20%|██ | 1012110/4997817 [00:06<00:25, 153467.80it/s]

+

20%|█▉ | 977914/4997817 [00:06<00:27, 148542.14it/s]

-
21%|██ | 1027528/4997817 [00:06&lt;00:25, 153678.34it/s]
+
20%|█▉ | 992777/4997817 [00:06&lt;00:26, 148520.27it/s]

</pre>

-
21%|██ | 1027528/4997817 [00:06<00:25, 153678.34it/s]
+
20%|█▉ | 992777/4997817 [00:06<00:26, 148520.27it/s]

end{sphinxVerbatim}

-

21%|██ | 1027528/4997817 [00:06<00:25, 153678.34it/s]

+

20%|█▉ | 992777/4997817 [00:06<00:26, 148520.27it/s]

-
21%|██ | 1042897/4997817 [00:06&lt;00:25, 153355.60it/s]
+
20%|██ | 1007881/4997817 [00:06&lt;00:26, 149267.97it/s]

</pre>

-
21%|██ | 1042897/4997817 [00:06<00:25, 153355.60it/s]
+
20%|██ | 1007881/4997817 [00:06<00:26, 149267.97it/s]

end{sphinxVerbatim}

-

21%|██ | 1042897/4997817 [00:06<00:25, 153355.60it/s]

+

20%|██ | 1007881/4997817 [00:06<00:26, 149267.97it/s]

-
21%|██ | 1058375/4997817 [00:06&lt;00:25, 153778.95it/s]
+
20%|██ | 1022869/4997817 [00:06&lt;00:26, 149446.77it/s]

</pre>

-
21%|██ | 1058375/4997817 [00:06<00:25, 153778.95it/s]
+
20%|██ | 1022869/4997817 [00:06<00:26, 149446.77it/s]

end{sphinxVerbatim}

-

21%|██ | 1058375/4997817 [00:06<00:25, 153778.95it/s]

+

20%|██ | 1022869/4997817 [00:06<00:26, 149446.77it/s]

-
21%|██▏ | 1073754/4997817 [00:07&lt;00:25, 153340.54it/s]
+
21%|██ | 1037958/4997817 [00:07&lt;00:26, 149876.15it/s]

</pre>

-
21%|██▏ | 1073754/4997817 [00:07<00:25, 153340.54it/s]
+
21%|██ | 1037958/4997817 [00:07<00:26, 149876.15it/s]

end{sphinxVerbatim}

-

21%|██▏ | 1073754/4997817 [00:07<00:25, 153340.54it/s]

+

21%|██ | 1037958/4997817 [00:07<00:26, 149876.15it/s]

-
22%|██▏ | 1089089/4997817 [00:07&lt;00:25, 153232.57it/s]
+
21%|██ | 1052961/4997817 [00:07&lt;00:26, 149917.76it/s]

</pre>

-
22%|██▏ | 1089089/4997817 [00:07<00:25, 153232.57it/s]
+
21%|██ | 1052961/4997817 [00:07<00:26, 149917.76it/s]

end{sphinxVerbatim}

-

22%|██▏ | 1089089/4997817 [00:07<00:25, 153232.57it/s]

+

21%|██ | 1052961/4997817 [00:07<00:26, 149917.76it/s]

-
22%|██▏ | 1104457/4997817 [00:07&lt;00:25, 153362.93it/s]
+
21%|██▏ | 1067976/4997817 [00:07&lt;00:26, 149983.85it/s]

</pre>

-
22%|██▏ | 1104457/4997817 [00:07<00:25, 153362.93it/s]
+
21%|██▏ | 1067976/4997817 [00:07<00:26, 149983.85it/s]

end{sphinxVerbatim}

-

22%|██▏ | 1104457/4997817 [00:07<00:25, 153362.93it/s]

+

21%|██▏ | 1067976/4997817 [00:07<00:26, 149983.85it/s]

-
22%|██▏ | 1119796/4997817 [00:07&lt;00:25, 153368.89it/s]
+
22%|██▏ | 1083120/4997817 [00:07&lt;00:26, 150417.41it/s]

</pre>

-
22%|██▏ | 1119796/4997817 [00:07<00:25, 153368.89it/s]
+
22%|██▏ | 1083120/4997817 [00:07<00:26, 150417.41it/s]

end{sphinxVerbatim}

-

22%|██▏ | 1119796/4997817 [00:07<00:25, 153368.89it/s]

+

22%|██▏ | 1083120/4997817 [00:07<00:26, 150417.41it/s]

-
23%|██▎ | 1135134/4997817 [00:07&lt;00:25, 152939.62it/s]
+
22%|██▏ | 1098163/4997817 [00:07&lt;00:25, 150159.03it/s]

</pre>

-
23%|██▎ | 1135134/4997817 [00:07<00:25, 152939.62it/s]
+
22%|██▏ | 1098163/4997817 [00:07<00:25, 150159.03it/s]

end{sphinxVerbatim}

-

23%|██▎ | 1135134/4997817 [00:07<00:25, 152939.62it/s]

+

22%|██▏ | 1098163/4997817 [00:07<00:25, 150159.03it/s]

-
23%|██▎ | 1150458/4997817 [00:07&lt;00:25, 153021.87it/s]
+
22%|██▏ | 1113255/4997817 [00:07&lt;00:25, 150385.04it/s]

</pre>

-
23%|██▎ | 1150458/4997817 [00:07<00:25, 153021.87it/s]
+
22%|██▏ | 1113255/4997817 [00:07<00:25, 150385.04it/s]

end{sphinxVerbatim}

-

23%|██▎ | 1150458/4997817 [00:07<00:25, 153021.87it/s]

+

22%|██▏ | 1113255/4997817 [00:07<00:25, 150385.04it/s]

-
23%|██▎ | 1165800/4997817 [00:07&lt;00:25, 153137.48it/s]
+
23%|██▎ | 1128295/4997817 [00:07&lt;00:25, 150272.23it/s]

</pre>

-
23%|██▎ | 1165800/4997817 [00:07<00:25, 153137.48it/s]
+
23%|██▎ | 1128295/4997817 [00:07<00:25, 150272.23it/s]

end{sphinxVerbatim}

-

23%|██▎ | 1165800/4997817 [00:07<00:25, 153137.48it/s]

+

23%|██▎ | 1128295/4997817 [00:07<00:25, 150272.23it/s]

-
24%|██▎ | 1181114/4997817 [00:07&lt;00:24, 153104.06it/s]
+
23%|██▎ | 1143449/4997817 [00:07&lt;00:25, 150647.13it/s]

</pre>

-
24%|██▎ | 1181114/4997817 [00:07<00:24, 153104.06it/s]
+
23%|██▎ | 1143449/4997817 [00:07<00:25, 150647.13it/s]

end{sphinxVerbatim}

-

24%|██▎ | 1181114/4997817 [00:07<00:24, 153104.06it/s]

+

23%|██▎ | 1143449/4997817 [00:07<00:25, 150647.13it/s]

-
24%|██▍ | 1196425/4997817 [00:07&lt;00:25, 146510.48it/s]
+
23%|██▎ | 1158515/4997817 [00:07&lt;00:25, 150266.53it/s]

</pre>

-
24%|██▍ | 1196425/4997817 [00:07<00:25, 146510.48it/s]
+
23%|██▎ | 1158515/4997817 [00:07<00:25, 150266.53it/s]

end{sphinxVerbatim}

-

24%|██▍ | 1196425/4997817 [00:07<00:25, 146510.48it/s]

+

23%|██▎ | 1158515/4997817 [00:07<00:25, 150266.53it/s]

-
24%|██▍ | 1211763/4997817 [00:07&lt;00:25, 148502.05it/s]
+
23%|██▎ | 1173566/4997817 [00:07&lt;00:25, 150337.39it/s]

</pre>

-
24%|██▍ | 1211763/4997817 [00:07<00:25, 148502.05it/s]
+
23%|██▎ | 1173566/4997817 [00:07<00:25, 150337.39it/s]

end{sphinxVerbatim}

-

24%|██▍ | 1211763/4997817 [00:07<00:25, 148502.05it/s]

+

23%|██▎ | 1173566/4997817 [00:07<00:25, 150337.39it/s]

-
25%|██▍ | 1227163/4997817 [00:08&lt;00:25, 150111.29it/s]
+
24%|██▍ | 1188700/4997817 [00:08&lt;00:25, 150635.43it/s]

</pre>

-
25%|██▍ | 1227163/4997817 [00:08<00:25, 150111.29it/s]
+
24%|██▍ | 1188700/4997817 [00:08<00:25, 150635.43it/s]

end{sphinxVerbatim}

-

25%|██▍ | 1227163/4997817 [00:08<00:25, 150111.29it/s]

+

24%|██▍ | 1188700/4997817 [00:08<00:25, 150635.43it/s]

-
25%|██▍ | 1242483/4997817 [00:08&lt;00:24, 151020.13it/s]
+
24%|██▍ | 1203856/4997817 [00:08&lt;00:25, 150908.62it/s]

</pre>

-
25%|██▍ | 1242483/4997817 [00:08<00:24, 151020.13it/s]
+
24%|██▍ | 1203856/4997817 [00:08<00:25, 150908.62it/s]

end{sphinxVerbatim}

-

25%|██▍ | 1242483/4997817 [00:08<00:24, 151020.13it/s]

+

24%|██▍ | 1203856/4997817 [00:08<00:25, 150908.62it/s]

-
25%|██▌ | 1257923/4997817 [00:08&lt;00:24, 152021.01it/s]
+
24%|██▍ | 1218984/4997817 [00:08&lt;00:25, 151018.15it/s]

</pre>

-
25%|██▌ | 1257923/4997817 [00:08<00:24, 152021.01it/s]
+
24%|██▍ | 1218984/4997817 [00:08<00:25, 151018.15it/s]

end{sphinxVerbatim}

-

25%|██▌ | 1257923/4997817 [00:08<00:24, 152021.01it/s]

+

24%|██▍ | 1218984/4997817 [00:08<00:25, 151018.15it/s]

-
25%|██▌ | 1273251/4997817 [00:08&lt;00:24, 152392.90it/s]
+
25%|██▍ | 1234156/4997817 [00:08&lt;00:24, 151227.32it/s]

</pre>

-
25%|██▌ | 1273251/4997817 [00:08<00:24, 152392.90it/s]
+
25%|██▍ | 1234156/4997817 [00:08<00:24, 151227.32it/s]

end{sphinxVerbatim}

-

25%|██▌ | 1273251/4997817 [00:08<00:24, 152392.90it/s]

+

25%|██▍ | 1234156/4997817 [00:08<00:24, 151227.32it/s]

-
26%|██▌ | 1288667/4997817 [00:08&lt;00:24, 152916.70it/s]
+
25%|██▍ | 1249279/4997817 [00:08&lt;00:25, 148223.79it/s]

</pre>

-
26%|██▌ | 1288667/4997817 [00:08<00:24, 152916.70it/s]
+
25%|██▍ | 1249279/4997817 [00:08<00:25, 148223.79it/s]

end{sphinxVerbatim}

-

26%|██▌ | 1288667/4997817 [00:08<00:24, 152916.70it/s]

+

25%|██▍ | 1249279/4997817 [00:08<00:25, 148223.79it/s]

-
26%|██▌ | 1304131/4997817 [00:08&lt;00:24, 153428.36it/s]
+
25%|██▌ | 1264309/4997817 [00:08&lt;00:25, 148833.27it/s]

</pre>

-
26%|██▌ | 1304131/4997817 [00:08<00:24, 153428.36it/s]
+
25%|██▌ | 1264309/4997817 [00:08<00:25, 148833.27it/s]

end{sphinxVerbatim}

-

26%|██▌ | 1304131/4997817 [00:08<00:24, 153428.36it/s]

+

25%|██▌ | 1264309/4997817 [00:08<00:25, 148833.27it/s]

-
26%|██▋ | 1319493/4997817 [00:08&lt;00:23, 153483.77it/s]
+
26%|██▌ | 1279385/4997817 [00:08&lt;00:24, 149402.13it/s]

</pre>

-
26%|██▋ | 1319493/4997817 [00:08<00:23, 153483.77it/s]
+
26%|██▌ | 1279385/4997817 [00:08<00:24, 149402.13it/s]

end{sphinxVerbatim}

-

26%|██▋ | 1319493/4997817 [00:08<00:23, 153483.77it/s]

+

26%|██▌ | 1279385/4997817 [00:08<00:24, 149402.13it/s]

-
27%|██▋ | 1334923/4997817 [00:08&lt;00:23, 153725.80it/s]
+
26%|██▌ | 1294573/4997817 [00:08&lt;00:24, 150136.53it/s]

</pre>

-
27%|██▋ | 1334923/4997817 [00:08<00:23, 153725.80it/s]
+
26%|██▌ | 1294573/4997817 [00:08<00:24, 150136.53it/s]

end{sphinxVerbatim}

-

27%|██▋ | 1334923/4997817 [00:08<00:23, 153725.80it/s]

+

26%|██▌ | 1294573/4997817 [00:08<00:24, 150136.53it/s]

-
27%|██▋ | 1350480/4997817 [00:08&lt;00:23, 154277.37it/s]
+
26%|██▌ | 1309815/4997817 [00:08&lt;00:24, 150814.55it/s]

</pre>

-
27%|██▋ | 1350480/4997817 [00:08<00:23, 154277.37it/s]
+
26%|██▌ | 1309815/4997817 [00:08<00:24, 150814.55it/s]

end{sphinxVerbatim}

-

27%|██▋ | 1350480/4997817 [00:08<00:23, 154277.37it/s]

+

26%|██▌ | 1309815/4997817 [00:08<00:24, 150814.55it/s]

-
27%|██▋ | 1365987/4997817 [00:08&lt;00:23, 154513.65it/s]
+
27%|██▋ | 1324929/4997817 [00:08&lt;00:24, 150910.27it/s]

</pre>

-
27%|██▋ | 1365987/4997817 [00:08<00:23, 154513.65it/s]
+
27%|██▋ | 1324929/4997817 [00:08<00:24, 150910.27it/s]

end{sphinxVerbatim}

-

27%|██▋ | 1365987/4997817 [00:08<00:23, 154513.65it/s]

+

27%|██▋ | 1324929/4997817 [00:08<00:24, 150910.27it/s]

-
28%|██▊ | 1381441/4997817 [00:09&lt;00:23, 154510.11it/s]
+
27%|██▋ | 1340124/4997817 [00:09&lt;00:24, 151219.95it/s]

</pre>

-
28%|██▊ | 1381441/4997817 [00:09<00:23, 154510.11it/s]
+
27%|██▋ | 1340124/4997817 [00:09<00:24, 151219.95it/s]

end{sphinxVerbatim}

-

28%|██▊ | 1381441/4997817 [00:09<00:23, 154510.11it/s]

+

27%|██▋ | 1340124/4997817 [00:09<00:24, 151219.95it/s]

-
28%|██▊ | 1396963/4997817 [00:09&lt;00:23, 154719.47it/s]
+
27%|██▋ | 1355369/4997817 [00:09&lt;00:24, 151584.36it/s]

</pre>

-
28%|██▊ | 1396963/4997817 [00:09<00:23, 154719.47it/s]
+
27%|██▋ | 1355369/4997817 [00:09<00:24, 151584.36it/s]

end{sphinxVerbatim}

-

28%|██▊ | 1396963/4997817 [00:09<00:23, 154719.47it/s]

+

27%|██▋ | 1355369/4997817 [00:09<00:24, 151584.36it/s]

-
28%|██▊ | 1412436/4997817 [00:09&lt;00:23, 154630.91it/s]
+
27%|██▋ | 1370530/4997817 [00:09&lt;00:23, 151447.11it/s]

</pre>

-
28%|██▊ | 1412436/4997817 [00:09<00:23, 154630.91it/s]
+
27%|██▋ | 1370530/4997817 [00:09<00:23, 151447.11it/s]

end{sphinxVerbatim}

-

28%|██▊ | 1412436/4997817 [00:09<00:23, 154630.91it/s]

+

27%|██▋ | 1370530/4997817 [00:09<00:23, 151447.11it/s]

-
29%|██▊ | 1427900/4997817 [00:09&lt;00:23, 154395.75it/s]
+
28%|██▊ | 1385676/4997817 [00:09&lt;00:23, 151206.21it/s]

</pre>

-
29%|██▊ | 1427900/4997817 [00:09<00:23, 154395.75it/s]
+
28%|██▊ | 1385676/4997817 [00:09<00:23, 151206.21it/s]

end{sphinxVerbatim}

-

29%|██▊ | 1427900/4997817 [00:09<00:23, 154395.75it/s]

+

28%|██▊ | 1385676/4997817 [00:09<00:23, 151206.21it/s]

-
29%|██▉ | 1443456/4997817 [00:09&lt;00:22, 154743.31it/s]
+
28%|██▊ | 1400798/4997817 [00:09&lt;00:23, 150249.39it/s]

</pre>

-
29%|██▉ | 1443456/4997817 [00:09<00:22, 154743.31it/s]
+
28%|██▊ | 1400798/4997817 [00:09<00:23, 150249.39it/s]

end{sphinxVerbatim}

-

29%|██▉ | 1443456/4997817 [00:09<00:22, 154743.31it/s]

+

28%|██▊ | 1400798/4997817 [00:09<00:23, 150249.39it/s]

-
29%|██▉ | 1458931/4997817 [00:09&lt;00:22, 154061.91it/s]
+
28%|██▊ | 1415882/4997817 [00:09&lt;00:23, 150423.63it/s]

</pre>

-
29%|██▉ | 1458931/4997817 [00:09<00:22, 154061.91it/s]
+
28%|██▊ | 1415882/4997817 [00:09<00:23, 150423.63it/s]

end{sphinxVerbatim}

-

29%|██▉ | 1458931/4997817 [00:09<00:22, 154061.91it/s]

+

28%|██▊ | 1415882/4997817 [00:09<00:23, 150423.63it/s]

-
30%|██▉ | 1474392/4997817 [00:09&lt;00:22, 154224.54it/s]
+
29%|██▊ | 1430947/4997817 [00:09&lt;00:23, 150488.94it/s]

</pre>

-
30%|██▉ | 1474392/4997817 [00:09<00:22, 154224.54it/s]
+
29%|██▊ | 1430947/4997817 [00:09<00:23, 150488.94it/s]

end{sphinxVerbatim}

-

30%|██▉ | 1474392/4997817 [00:09<00:22, 154224.54it/s]

+

29%|██▊ | 1430947/4997817 [00:09<00:23, 150488.94it/s]

-
30%|██▉ | 1489908/4997817 [00:09&lt;00:22, 154502.37it/s]
+
29%|██▉ | 1446038/4997817 [00:09&lt;00:23, 150610.84it/s]

</pre>

-
30%|██▉ | 1489908/4997817 [00:09<00:22, 154502.37it/s]
+
29%|██▉ | 1446038/4997817 [00:09<00:23, 150610.84it/s]

end{sphinxVerbatim}

-

30%|██▉ | 1489908/4997817 [00:09<00:22, 154502.37it/s]

+

29%|██▉ | 1446038/4997817 [00:09<00:23, 150610.84it/s]

-
30%|███ | 1505359/4997817 [00:09&lt;00:22, 154477.79it/s]
+
29%|██▉ | 1461100/4997817 [00:09&lt;00:23, 150351.35it/s]

</pre>

-
30%|███ | 1505359/4997817 [00:09<00:22, 154477.79it/s]
+
29%|██▉ | 1461100/4997817 [00:09<00:23, 150351.35it/s]

end{sphinxVerbatim}

-

30%|███ | 1505359/4997817 [00:09<00:22, 154477.79it/s]

+

29%|██▉ | 1461100/4997817 [00:09<00:23, 150351.35it/s]

-
30%|███ | 1520808/4997817 [00:09&lt;00:22, 152316.75it/s]
+
30%|██▉ | 1476136/4997817 [00:09&lt;00:23, 150351.62it/s]

</pre>

-
30%|███ | 1520808/4997817 [00:09<00:22, 152316.75it/s]
+
30%|██▉ | 1476136/4997817 [00:09<00:23, 150351.62it/s]

end{sphinxVerbatim}

-

30%|███ | 1520808/4997817 [00:09<00:22, 152316.75it/s]

+

30%|██▉ | 1476136/4997817 [00:09<00:23, 150351.62it/s]

-
31%|███ | 1536092/4997817 [00:10&lt;00:22, 152469.90it/s]
+
30%|██▉ | 1491172/4997817 [00:10&lt;00:23, 150194.73it/s]

</pre>

-
31%|███ | 1536092/4997817 [00:10<00:22, 152469.90it/s]
+
30%|██▉ | 1491172/4997817 [00:10<00:23, 150194.73it/s]

end{sphinxVerbatim}

-

31%|███ | 1536092/4997817 [00:10<00:22, 152469.90it/s]

+

30%|██▉ | 1491172/4997817 [00:10<00:23, 150194.73it/s]

-
31%|███ | 1551490/4997817 [00:10&lt;00:22, 152918.43it/s]
+
30%|███ | 1506211/4997817 [00:10&lt;00:23, 150251.52it/s]

</pre>

-
31%|███ | 1551490/4997817 [00:10<00:22, 152918.43it/s]
+
30%|███ | 1506211/4997817 [00:10<00:23, 150251.52it/s]

end{sphinxVerbatim}

-

31%|███ | 1551490/4997817 [00:10<00:22, 152918.43it/s]

+

30%|███ | 1506211/4997817 [00:10<00:23, 150251.52it/s]

-
31%|███▏ | 1566786/4997817 [00:10&lt;00:22, 152765.47it/s]
+
30%|███ | 1521237/4997817 [00:10&lt;00:23, 150109.15it/s]

</pre>

-
31%|███▏ | 1566786/4997817 [00:10<00:22, 152765.47it/s]
+
30%|███ | 1521237/4997817 [00:10<00:23, 150109.15it/s]

end{sphinxVerbatim}

-

31%|███▏ | 1566786/4997817 [00:10<00:22, 152765.47it/s]

+

30%|███ | 1521237/4997817 [00:10<00:23, 150109.15it/s]

-
32%|███▏ | 1582334/4997817 [00:10&lt;00:22, 153574.00it/s]
+
31%|███ | 1536249/4997817 [00:10&lt;00:23, 150096.26it/s]

</pre>

-
32%|███▏ | 1582334/4997817 [00:10<00:22, 153574.00it/s]
+
31%|███ | 1536249/4997817 [00:10<00:23, 150096.26it/s]

end{sphinxVerbatim}

-

32%|███▏ | 1582334/4997817 [00:10<00:22, 153574.00it/s]

+

31%|███ | 1536249/4997817 [00:10<00:23, 150096.26it/s]

-
32%|███▏ | 1597792/4997817 [00:10&lt;00:22, 153872.91it/s]
+
31%|███ | 1551259/4997817 [00:10&lt;00:23, 149462.26it/s]

</pre>

-
32%|███▏ | 1597792/4997817 [00:10<00:22, 153872.91it/s]
+
31%|███ | 1551259/4997817 [00:10<00:23, 149462.26it/s]

end{sphinxVerbatim}

-

32%|███▏ | 1597792/4997817 [00:10<00:22, 153872.91it/s]

+

31%|███ | 1551259/4997817 [00:10<00:23, 149462.26it/s]

-
32%|███▏ | 1613183/4997817 [00:10&lt;00:21, 153880.54it/s]
+
31%|███▏ | 1566267/4997817 [00:10&lt;00:22, 149644.24it/s]

</pre>

-
32%|███▏ | 1613183/4997817 [00:10<00:21, 153880.54it/s]
+
31%|███▏ | 1566267/4997817 [00:10<00:22, 149644.24it/s]

end{sphinxVerbatim}

-

32%|███▏ | 1613183/4997817 [00:10<00:21, 153880.54it/s]

+

31%|███▏ | 1566267/4997817 [00:10<00:22, 149644.24it/s]

-
33%|███▎ | 1628632/4997817 [00:10&lt;00:21, 154059.84it/s]
+
32%|███▏ | 1581276/4997817 [00:10&lt;00:22, 149776.05it/s]

</pre>

-
33%|███▎ | 1628632/4997817 [00:10<00:21, 154059.84it/s]
+
32%|███▏ | 1581276/4997817 [00:10<00:22, 149776.05it/s]

end{sphinxVerbatim}

-

33%|███▎ | 1628632/4997817 [00:10<00:21, 154059.84it/s]

+

32%|███▏ | 1581276/4997817 [00:10<00:22, 149776.05it/s]

-
33%|███▎ | 1644039/4997817 [00:10&lt;00:21, 153950.08it/s]
+
32%|███▏ | 1596406/4997817 [00:10&lt;00:22, 150229.40it/s]

</pre>

-
33%|███▎ | 1644039/4997817 [00:10<00:21, 153950.08it/s]
+
32%|███▏ | 1596406/4997817 [00:10<00:22, 150229.40it/s]

end{sphinxVerbatim}

-

33%|███▎ | 1644039/4997817 [00:10<00:21, 153950.08it/s]

+

32%|███▏ | 1596406/4997817 [00:10<00:22, 150229.40it/s]

-
33%|███▎ | 1659435/4997817 [00:10&lt;00:21, 153931.54it/s]
+
32%|███▏ | 1611430/4997817 [00:10&lt;00:22, 149875.17it/s]

</pre>

-
33%|███▎ | 1659435/4997817 [00:10<00:21, 153931.54it/s]
+
32%|███▏ | 1611430/4997817 [00:10<00:22, 149875.17it/s]

end{sphinxVerbatim}

-

33%|███▎ | 1659435/4997817 [00:10<00:21, 153931.54it/s]

+

32%|███▏ | 1611430/4997817 [00:10<00:22, 149875.17it/s]

-
34%|███▎ | 1674829/4997817 [00:10&lt;00:22, 150891.72it/s]
+
33%|███▎ | 1626457/4997817 [00:10&lt;00:22, 149991.96it/s]

</pre>

-
34%|███▎ | 1674829/4997817 [00:10<00:22, 150891.72it/s]
+
33%|███▎ | 1626457/4997817 [00:10<00:22, 149991.96it/s]

end{sphinxVerbatim}

-

34%|███▎ | 1674829/4997817 [00:10<00:22, 150891.72it/s]

+

33%|███▎ | 1626457/4997817 [00:10<00:22, 149991.96it/s]

-
34%|███▍ | 1690263/4997817 [00:11&lt;00:21, 151909.20it/s]
+
33%|███▎ | 1641457/4997817 [00:11&lt;00:22, 149842.61it/s]

</pre>

-
34%|███▍ | 1690263/4997817 [00:11<00:21, 151909.20it/s]
+
33%|███▎ | 1641457/4997817 [00:11<00:22, 149842.61it/s]

end{sphinxVerbatim}

-

34%|███▍ | 1690263/4997817 [00:11<00:21, 151909.20it/s]

+

33%|███▎ | 1641457/4997817 [00:11<00:22, 149842.61it/s]

-
34%|███▍ | 1705712/4997817 [00:11&lt;00:21, 152672.06it/s]
+
33%|███▎ | 1656442/4997817 [00:11&lt;00:22, 149178.88it/s]

</pre>

-
34%|███▍ | 1705712/4997817 [00:11<00:21, 152672.06it/s]
+
33%|███▎ | 1656442/4997817 [00:11<00:22, 149178.88it/s]

end{sphinxVerbatim}

-

34%|███▍ | 1705712/4997817 [00:11<00:21, 152672.06it/s]

+

33%|███▎ | 1656442/4997817 [00:11<00:22, 149178.88it/s]

-
34%|███▍ | 1721010/4997817 [00:11&lt;00:21, 152762.19it/s]
+
33%|███▎ | 1671433/4997817 [00:11&lt;00:22, 149395.57it/s]

</pre>

-
34%|███▍ | 1721010/4997817 [00:11<00:21, 152762.19it/s]
+
33%|███▎ | 1671433/4997817 [00:11<00:22, 149395.57it/s]

end{sphinxVerbatim}

-

34%|███▍ | 1721010/4997817 [00:11<00:21, 152762.19it/s]

+

33%|███▎ | 1671433/4997817 [00:11<00:22, 149395.57it/s]

-
35%|███▍ | 1736392/4997817 [00:11&lt;00:21, 153075.13it/s]
+
34%|███▎ | 1686374/4997817 [00:11&lt;00:22, 149138.56it/s]

</pre>

-
35%|███▍ | 1736392/4997817 [00:11<00:21, 153075.13it/s]
+
34%|███▎ | 1686374/4997817 [00:11<00:22, 149138.56it/s]

end{sphinxVerbatim}

-

35%|███▍ | 1736392/4997817 [00:11<00:21, 153075.13it/s]

+

34%|███▎ | 1686374/4997817 [00:11<00:22, 149138.56it/s]

-
35%|███▌ | 1751706/4997817 [00:11&lt;00:21, 153091.95it/s]
+
34%|███▍ | 1701289/4997817 [00:11&lt;00:22, 148918.26it/s]

</pre>

-
35%|███▌ | 1751706/4997817 [00:11<00:21, 153091.95it/s]
+
34%|███▍ | 1701289/4997817 [00:11<00:22, 148918.26it/s]

end{sphinxVerbatim}

-

35%|███▌ | 1751706/4997817 [00:11<00:21, 153091.95it/s]

+

34%|███▍ | 1701289/4997817 [00:11<00:22, 148918.26it/s]

-
35%|███▌ | 1767064/4997817 [00:11&lt;00:21, 153236.18it/s]
+
34%|███▍ | 1716213/4997817 [00:11&lt;00:22, 149012.69it/s]

</pre>

-
35%|███▌ | 1767064/4997817 [00:11<00:21, 153236.18it/s]
+
34%|███▍ | 1716213/4997817 [00:11<00:22, 149012.69it/s]

end{sphinxVerbatim}

-

35%|███▌ | 1767064/4997817 [00:11<00:21, 153236.18it/s]

+

34%|███▍ | 1716213/4997817 [00:11<00:22, 149012.69it/s]

-
36%|███▌ | 1782413/4997817 [00:11&lt;00:20, 153308.29it/s]
+
35%|███▍ | 1731115/4997817 [00:11&lt;00:21, 148944.14it/s]

</pre>

-
36%|███▌ | 1782413/4997817 [00:11<00:20, 153308.29it/s]
+
35%|███▍ | 1731115/4997817 [00:11<00:21, 148944.14it/s]

end{sphinxVerbatim}

-

36%|███▌ | 1782413/4997817 [00:11<00:20, 153308.29it/s]

+

35%|███▍ | 1731115/4997817 [00:11<00:21, 148944.14it/s]

-
36%|███▌ | 1797837/4997817 [00:11&lt;00:20, 153583.66it/s]
+
35%|███▍ | 1746194/4997817 [00:11&lt;00:21, 149493.82it/s]

</pre>

-
36%|███▌ | 1797837/4997817 [00:11<00:20, 153583.66it/s]
+
35%|███▍ | 1746194/4997817 [00:11<00:21, 149493.82it/s]

end{sphinxVerbatim}

-

36%|███▌ | 1797837/4997817 [00:11<00:20, 153583.66it/s]

+

35%|███▍ | 1746194/4997817 [00:11<00:21, 149493.82it/s]

-
36%|███▋ | 1813334/4997817 [00:11&lt;00:20, 153997.58it/s]
+
35%|███▌ | 1761144/4997817 [00:11&lt;00:21, 149208.94it/s]

</pre>

-
36%|███▋ | 1813334/4997817 [00:11<00:20, 153997.58it/s]
+
35%|███▌ | 1761144/4997817 [00:11<00:21, 149208.94it/s]

end{sphinxVerbatim}

-

36%|███▋ | 1813334/4997817 [00:11<00:20, 153997.58it/s]

+

35%|███▌ | 1761144/4997817 [00:11<00:21, 149208.94it/s]

-
37%|███▋ | 1828735/4997817 [00:11&lt;00:20, 153903.11it/s]
+
36%|███▌ | 1776121/4997817 [00:11&lt;00:21, 149375.63it/s]

</pre>

-
37%|███▋ | 1828735/4997817 [00:11<00:20, 153903.11it/s]
+
36%|███▌ | 1776121/4997817 [00:11<00:21, 149375.63it/s]

end{sphinxVerbatim}

-

37%|███▋ | 1828735/4997817 [00:11<00:20, 153903.11it/s]

+

36%|███▌ | 1776121/4997817 [00:11<00:21, 149375.63it/s]

-
37%|███▋ | 1844126/4997817 [00:12&lt;00:20, 153676.13it/s]
+
36%|███▌ | 1791134/4997817 [00:12&lt;00:21, 149598.30it/s]

</pre>

-
37%|███▋ | 1844126/4997817 [00:12<00:20, 153676.13it/s]
+
36%|███▌ | 1791134/4997817 [00:12<00:21, 149598.30it/s]

end{sphinxVerbatim}

-

37%|███▋ | 1844126/4997817 [00:12<00:20, 153676.13it/s]

+

36%|███▌ | 1791134/4997817 [00:12<00:21, 149598.30it/s]

-
37%|███▋ | 1859495/4997817 [00:12&lt;00:20, 152434.24it/s]
+
36%|███▌ | 1806122/4997817 [00:12&lt;00:21, 149681.04it/s]

</pre>

-
37%|███▋ | 1859495/4997817 [00:12<00:20, 152434.24it/s]
+
36%|███▌ | 1806122/4997817 [00:12<00:21, 149681.04it/s]

end{sphinxVerbatim}

-

37%|███▋ | 1859495/4997817 [00:12<00:20, 152434.24it/s]

+

36%|███▌ | 1806122/4997817 [00:12<00:21, 149681.04it/s]

-
38%|███▊ | 1875037/4997817 [00:12&lt;00:20, 153321.04it/s]
+
36%|███▋ | 1821194/4997817 [00:12&lt;00:21, 149989.51it/s]

</pre>

-
38%|███▊ | 1875037/4997817 [00:12<00:20, 153321.04it/s]
+
36%|███▋ | 1821194/4997817 [00:12<00:21, 149989.51it/s]

end{sphinxVerbatim}

-

38%|███▊ | 1875037/4997817 [00:12<00:20, 153321.04it/s]

+

36%|███▋ | 1821194/4997817 [00:12<00:21, 149989.51it/s]

-
38%|███▊ | 1890580/4997817 [00:12&lt;00:20, 153947.98it/s]
+
37%|███▋ | 1836194/4997817 [00:12&lt;00:21, 149437.65it/s]

</pre>

-
38%|███▊ | 1890580/4997817 [00:12<00:20, 153947.98it/s]
+
37%|███▋ | 1836194/4997817 [00:12<00:21, 149437.65it/s]

end{sphinxVerbatim}

-

38%|███▊ | 1890580/4997817 [00:12<00:20, 153947.98it/s]

+

37%|███▋ | 1836194/4997817 [00:12<00:21, 149437.65it/s]

-
38%|███▊ | 1906123/4997817 [00:12&lt;00:20, 154387.38it/s]
+
37%|███▋ | 1851139/4997817 [00:12&lt;00:21, 148984.44it/s]

</pre>

-
38%|███▊ | 1906123/4997817 [00:12<00:20, 154387.38it/s]
+
37%|███▋ | 1851139/4997817 [00:12<00:21, 148984.44it/s]

end{sphinxVerbatim}

-

38%|███▊ | 1906123/4997817 [00:12<00:20, 154387.38it/s]

+

37%|███▋ | 1851139/4997817 [00:12<00:21, 148984.44it/s]

-
38%|███▊ | 1921567/4997817 [00:12&lt;00:19, 154402.18it/s]
+
37%|███▋ | 1866038/4997817 [00:12&lt;00:21, 147246.22it/s]

</pre>

-
38%|███▊ | 1921567/4997817 [00:12<00:19, 154402.18it/s]
+
37%|███▋ | 1866038/4997817 [00:12<00:21, 147246.22it/s]

end{sphinxVerbatim}

-

38%|███▊ | 1921567/4997817 [00:12<00:19, 154402.18it/s]

+

37%|███▋ | 1866038/4997817 [00:12<00:21, 147246.22it/s]

-
39%|███▉ | 1937009/4997817 [00:12&lt;00:19, 154180.77it/s]
+
38%|███▊ | 1881056/4997817 [00:12&lt;00:21, 148114.68it/s]

</pre>

-
39%|███▉ | 1937009/4997817 [00:12<00:19, 154180.77it/s]
+
38%|███▊ | 1881056/4997817 [00:12<00:21, 148114.68it/s]

end{sphinxVerbatim}

-

39%|███▉ | 1937009/4997817 [00:12<00:19, 154180.77it/s]

+

38%|███▊ | 1881056/4997817 [00:12<00:21, 148114.68it/s]

-
39%|███▉ | 1952511/4997817 [00:12&lt;00:19, 154429.05it/s]
+
38%|███▊ | 1896131/4997817 [00:12&lt;00:20, 148896.05it/s]

</pre>

-
39%|███▉ | 1952511/4997817 [00:12<00:19, 154429.05it/s]
+
38%|███▊ | 1896131/4997817 [00:12<00:20, 148896.05it/s]

end{sphinxVerbatim}

-

39%|███▉ | 1952511/4997817 [00:12<00:19, 154429.05it/s]

+

38%|███▊ | 1896131/4997817 [00:12<00:20, 148896.05it/s]

-
39%|███▉ | 1968011/4997817 [00:12&lt;00:19, 154598.02it/s]
+
38%|███▊ | 1911091/4997817 [00:12&lt;00:20, 149102.93it/s]

</pre>

-
39%|███▉ | 1968011/4997817 [00:12<00:19, 154598.02it/s]
+
38%|███▊ | 1911091/4997817 [00:12<00:20, 149102.93it/s]

end{sphinxVerbatim}

-

39%|███▉ | 1968011/4997817 [00:12<00:19, 154598.02it/s]

+

38%|███▊ | 1911091/4997817 [00:12<00:20, 149102.93it/s]

-
40%|███▉ | 1983472/4997817 [00:12&lt;00:19, 154462.27it/s]
+
39%|███▊ | 1926116/4997817 [00:12&lt;00:20, 149442.99it/s]

</pre>

-
40%|███▉ | 1983472/4997817 [00:12<00:19, 154462.27it/s]
+
39%|███▊ | 1926116/4997817 [00:12<00:20, 149442.99it/s]

end{sphinxVerbatim}

-

40%|███▉ | 1983472/4997817 [00:12<00:19, 154462.27it/s]

+

39%|███▊ | 1926116/4997817 [00:12<00:20, 149442.99it/s]

-
40%|███▉ | 1998919/4997817 [00:13&lt;00:19, 154309.22it/s]
+
39%|███▉ | 1941063/4997817 [00:13&lt;00:20, 149128.38it/s]

</pre>

-
40%|███▉ | 1998919/4997817 [00:13<00:19, 154309.22it/s]
+
39%|███▉ | 1941063/4997817 [00:13<00:20, 149128.38it/s]

end{sphinxVerbatim}

-

40%|███▉ | 1998919/4997817 [00:13<00:19, 154309.22it/s]

+

39%|███▉ | 1941063/4997817 [00:13<00:20, 149128.38it/s]

-
40%|████ | 2014351/4997817 [00:13&lt;00:19, 153760.57it/s]
+
39%|███▉ | 1956036/4997817 [00:13&lt;00:20, 149306.16it/s]

</pre>

-
40%|████ | 2014351/4997817 [00:13<00:19, 153760.57it/s]
+
39%|███▉ | 1956036/4997817 [00:13<00:20, 149306.16it/s]

end{sphinxVerbatim}

-

40%|████ | 2014351/4997817 [00:13<00:19, 153760.57it/s]

+

39%|███▉ | 1956036/4997817 [00:13<00:20, 149306.16it/s]

-
41%|████ | 2029728/4997817 [00:13&lt;00:19, 153539.57it/s]
+
39%|███▉ | 1970971/4997817 [00:13&lt;00:20, 149316.34it/s]

</pre>

-
41%|████ | 2029728/4997817 [00:13<00:19, 153539.57it/s]
+
39%|███▉ | 1970971/4997817 [00:13<00:20, 149316.34it/s]

end{sphinxVerbatim}

-

41%|████ | 2029728/4997817 [00:13<00:19, 153539.57it/s]

+

39%|███▉ | 1970971/4997817 [00:13<00:20, 149316.34it/s]

-
41%|████ | 2045083/4997817 [00:13&lt;00:19, 153305.75it/s]
+
40%|███▉ | 1985952/4997817 [00:13&lt;00:20, 149462.31it/s]

</pre>

-
41%|████ | 2045083/4997817 [00:13<00:19, 153305.75it/s]
+
40%|███▉ | 1985952/4997817 [00:13<00:20, 149462.31it/s]

end{sphinxVerbatim}

-

41%|████ | 2045083/4997817 [00:13<00:19, 153305.75it/s]

+

40%|███▉ | 1985952/4997817 [00:13<00:20, 149462.31it/s]

-
41%|████ | 2060414/4997817 [00:13&lt;00:19, 153086.13it/s]
+
40%|████ | 2000899/4997817 [00:13&lt;00:20, 149362.33it/s]

</pre>

-
41%|████ | 2060414/4997817 [00:13<00:19, 153086.13it/s]
+
40%|████ | 2000899/4997817 [00:13<00:20, 149362.33it/s]

end{sphinxVerbatim}

-

41%|████ | 2060414/4997817 [00:13<00:19, 153086.13it/s]

+

40%|████ | 2000899/4997817 [00:13<00:20, 149362.33it/s]

-
42%|████▏ | 2075813/4997817 [00:13&lt;00:19, 153327.75it/s]
+
40%|████ | 2015836/4997817 [00:13&lt;00:20, 145896.07it/s]

</pre>

-
42%|████▏ | 2075813/4997817 [00:13<00:19, 153327.75it/s]
+
40%|████ | 2015836/4997817 [00:13<00:20, 145896.07it/s]

end{sphinxVerbatim}

-

42%|████▏ | 2075813/4997817 [00:13<00:19, 153327.75it/s]

+

40%|████ | 2015836/4997817 [00:13<00:20, 145896.07it/s]

-
42%|████▏ | 2091146/4997817 [00:13&lt;00:18, 153295.44it/s]
+
41%|████ | 2030712/4997817 [00:13&lt;00:20, 146737.35it/s]

</pre>

-
42%|████▏ | 2091146/4997817 [00:13<00:18, 153295.44it/s]
+
41%|████ | 2030712/4997817 [00:13<00:20, 146737.35it/s]

end{sphinxVerbatim}

-

42%|████▏ | 2091146/4997817 [00:13<00:18, 153295.44it/s]

+

41%|████ | 2030712/4997817 [00:13<00:20, 146737.35it/s]

-
42%|████▏ | 2106476/4997817 [00:13&lt;00:18, 153241.39it/s]
+
41%|████ | 2045591/4997817 [00:13&lt;00:20, 147344.64it/s]

</pre>

-
42%|████▏ | 2106476/4997817 [00:13<00:18, 153241.39it/s]
+
41%|████ | 2045591/4997817 [00:13<00:20, 147344.64it/s]

end{sphinxVerbatim}

-

42%|████▏ | 2106476/4997817 [00:13<00:18, 153241.39it/s]

+

41%|████ | 2045591/4997817 [00:13<00:20, 147344.64it/s]

-
42%|████▏ | 2121835/4997817 [00:13&lt;00:18, 153342.12it/s]
+
41%|████ | 2060460/4997817 [00:13&lt;00:19, 147741.07it/s]

</pre>

-
42%|████▏ | 2121835/4997817 [00:13<00:18, 153342.12it/s]
+
41%|████ | 2060460/4997817 [00:13<00:19, 147741.07it/s]

end{sphinxVerbatim}

-

42%|████▏ | 2121835/4997817 [00:13<00:18, 153342.12it/s]

+

41%|████ | 2060460/4997817 [00:13<00:19, 147741.07it/s]

-
43%|████▎ | 2137170/4997817 [00:13&lt;00:18, 153094.39it/s]
+
42%|████▏ | 2075716/4997817 [00:13&lt;00:19, 149174.37it/s]

</pre>

-
43%|████▎ | 2137170/4997817 [00:13<00:18, 153094.39it/s]
+
42%|████▏ | 2075716/4997817 [00:13<00:19, 149174.37it/s]

end{sphinxVerbatim}

-

43%|████▎ | 2137170/4997817 [00:13<00:18, 153094.39it/s]

+

42%|████▏ | 2075716/4997817 [00:13<00:19, 149174.37it/s]

-
43%|████▎ | 2152549/4997817 [00:14&lt;00:18, 153299.75it/s]
+
42%|████▏ | 2090987/4997817 [00:14&lt;00:19, 150227.50it/s]

</pre>

-
43%|████▎ | 2152549/4997817 [00:14<00:18, 153299.75it/s]
+
42%|████▏ | 2090987/4997817 [00:14<00:19, 150227.50it/s]

end{sphinxVerbatim}

-

43%|████▎ | 2152549/4997817 [00:14<00:18, 153299.75it/s]

+

42%|████▏ | 2090987/4997817 [00:14<00:19, 150227.50it/s]

-
43%|████▎ | 2167938/4997817 [00:14&lt;00:18, 153474.65it/s]
+
42%|████▏ | 2106142/4997817 [00:14&lt;00:19, 150621.82it/s]

</pre>

-
43%|████▎ | 2167938/4997817 [00:14<00:18, 153474.65it/s]
+
42%|████▏ | 2106142/4997817 [00:14<00:19, 150621.82it/s]

end{sphinxVerbatim}

-

43%|████▎ | 2167938/4997817 [00:14<00:18, 153474.65it/s]

+

42%|████▏ | 2106142/4997817 [00:14<00:19, 150621.82it/s]

-
44%|████▎ | 2183398/4997817 [00:14&lt;00:18, 153807.90it/s]
+
42%|████▏ | 2121208/4997817 [00:14&lt;00:19, 150367.55it/s]

</pre>

-
44%|████▎ | 2183398/4997817 [00:14<00:18, 153807.90it/s]
+
42%|████▏ | 2121208/4997817 [00:14<00:19, 150367.55it/s]

end{sphinxVerbatim}

-

44%|████▎ | 2183398/4997817 [00:14<00:18, 153807.90it/s]

+

42%|████▏ | 2121208/4997817 [00:14<00:19, 150367.55it/s]

-
44%|████▍ | 2198824/4997817 [00:14&lt;00:18, 153939.96it/s]
+
43%|████▎ | 2136392/4997817 [00:14&lt;00:18, 150804.48it/s]

</pre>

-
44%|████▍ | 2198824/4997817 [00:14<00:18, 153939.96it/s]
+
43%|████▎ | 2136392/4997817 [00:14<00:18, 150804.48it/s]

end{sphinxVerbatim}

-

44%|████▍ | 2198824/4997817 [00:14<00:18, 153939.96it/s]

+

43%|████▎ | 2136392/4997817 [00:14<00:18, 150804.48it/s]

-
44%|████▍ | 2214219/4997817 [00:14&lt;00:18, 153921.45it/s]
+
43%|████▎ | 2151475/4997817 [00:14&lt;00:18, 150361.22it/s]

</pre>

-
44%|████▍ | 2214219/4997817 [00:14<00:18, 153921.45it/s]
+
43%|████▎ | 2151475/4997817 [00:14<00:18, 150361.22it/s]

end{sphinxVerbatim}

-

44%|████▍ | 2214219/4997817 [00:14<00:18, 153921.45it/s]

+

43%|████▎ | 2151475/4997817 [00:14<00:18, 150361.22it/s]

-
45%|████▍ | 2229612/4997817 [00:14&lt;00:18, 153428.14it/s]
+
43%|████▎ | 2166513/4997817 [00:14&lt;00:19, 143788.49it/s]

</pre>

-
45%|████▍ | 2229612/4997817 [00:14<00:18, 153428.14it/s]
+
43%|████▎ | 2166513/4997817 [00:14<00:19, 143788.49it/s]

end{sphinxVerbatim}

-

45%|████▍ | 2229612/4997817 [00:14<00:18, 153428.14it/s]

+

43%|████▎ | 2166513/4997817 [00:14<00:19, 143788.49it/s]

-
45%|████▍ | 2245047/4997817 [00:14&lt;00:17, 153701.95it/s]
+
44%|████▎ | 2181424/4997817 [00:14&lt;00:19, 145330.67it/s]

</pre>

-
45%|████▍ | 2245047/4997817 [00:14<00:17, 153701.95it/s]
+
44%|████▎ | 2181424/4997817 [00:14<00:19, 145330.67it/s]

end{sphinxVerbatim}

-

45%|████▍ | 2245047/4997817 [00:14<00:17, 153701.95it/s]

+

44%|████▎ | 2181424/4997817 [00:14<00:19, 145330.67it/s]

-
45%|████▌ | 2260418/4997817 [00:14&lt;00:17, 153296.17it/s]
+
44%|████▍ | 2196325/4997817 [00:14&lt;00:19, 146407.42it/s]

</pre>

-
45%|████▌ | 2260418/4997817 [00:14<00:17, 153296.17it/s]
+
44%|████▍ | 2196325/4997817 [00:14<00:19, 146407.42it/s]

end{sphinxVerbatim}

-

45%|████▌ | 2260418/4997817 [00:14<00:17, 153296.17it/s]

+

44%|████▍ | 2196325/4997817 [00:14<00:19, 146407.42it/s]

-
46%|████▌ | 2275749/4997817 [00:14&lt;00:17, 152857.85it/s]
+
44%|████▍ | 2211331/4997817 [00:14&lt;00:18, 147481.67it/s]

</pre>

-
46%|████▌ | 2275749/4997817 [00:14<00:17, 152857.85it/s]
+
44%|████▍ | 2211331/4997817 [00:14<00:18, 147481.67it/s]

end{sphinxVerbatim}

-

46%|████▌ | 2275749/4997817 [00:14<00:17, 152857.85it/s]

+

44%|████▍ | 2211331/4997817 [00:14<00:18, 147481.67it/s]

-
46%|████▌ | 2291094/4997817 [00:14&lt;00:17, 153029.88it/s]
+
45%|████▍ | 2226301/4997817 [00:14&lt;00:18, 148136.89it/s]

</pre>

-
46%|████▌ | 2291094/4997817 [00:14<00:17, 153029.88it/s]
+
45%|████▍ | 2226301/4997817 [00:14<00:18, 148136.89it/s]

end{sphinxVerbatim}

-

46%|████▌ | 2291094/4997817 [00:14<00:17, 153029.88it/s]

+

45%|████▍ | 2226301/4997817 [00:14<00:18, 148136.89it/s]

-
46%|████▌ | 2306398/4997817 [00:15&lt;00:17, 152930.66it/s]
+
45%|████▍ | 2241232/4997817 [00:15&lt;00:18, 148482.48it/s]

</pre>

-
46%|████▌ | 2306398/4997817 [00:15<00:17, 152930.66it/s]
+
45%|████▍ | 2241232/4997817 [00:15<00:18, 148482.48it/s]

end{sphinxVerbatim}

-

46%|████▌ | 2306398/4997817 [00:15<00:17, 152930.66it/s]

+

45%|████▍ | 2241232/4997817 [00:15<00:18, 148482.48it/s]

-
46%|████▋ | 2321735/4997817 [00:15&lt;00:17, 153058.78it/s]
+
45%|████▌ | 2256259/4997817 [00:15&lt;00:18, 149014.50it/s]

</pre>

-
46%|████▋ | 2321735/4997817 [00:15<00:17, 153058.78it/s]
+
45%|████▌ | 2256259/4997817 [00:15<00:18, 149014.50it/s]

end{sphinxVerbatim}

-

46%|████▋ | 2321735/4997817 [00:15<00:17, 153058.78it/s]

+

45%|████▌ | 2256259/4997817 [00:15<00:18, 149014.50it/s]

-
47%|████▋ | 2337094/4997817 [00:15&lt;00:17, 153214.07it/s]
+
45%|████▌ | 2271171/4997817 [00:15&lt;00:18, 149017.51it/s]

</pre>

-
47%|████▋ | 2337094/4997817 [00:15<00:17, 153214.07it/s]
+
45%|████▌ | 2271171/4997817 [00:15<00:18, 149017.51it/s]

end{sphinxVerbatim}

-

47%|████▋ | 2337094/4997817 [00:15<00:17, 153214.07it/s]

+

45%|████▌ | 2271171/4997817 [00:15<00:18, 149017.51it/s]

-
47%|████▋ | 2352422/4997817 [00:15&lt;00:17, 153231.13it/s]
+
46%|████▌ | 2286080/4997817 [00:15&lt;00:18, 148999.28it/s]

</pre>

-
47%|████▋ | 2352422/4997817 [00:15<00:17, 153231.13it/s]
+
46%|████▌ | 2286080/4997817 [00:15<00:18, 148999.28it/s]

end{sphinxVerbatim}

-

47%|████▋ | 2352422/4997817 [00:15<00:17, 153231.13it/s]

+

46%|████▌ | 2286080/4997817 [00:15<00:18, 148999.28it/s]

-
47%|████▋ | 2367922/4997817 [00:15&lt;00:17, 153757.51it/s]
+
46%|████▌ | 2301089/4997817 [00:15&lt;00:18, 149322.38it/s]

</pre>

-
47%|████▋ | 2367922/4997817 [00:15<00:17, 153757.51it/s]
+
46%|████▌ | 2301089/4997817 [00:15<00:18, 149322.38it/s]

end{sphinxVerbatim}

-

47%|████▋ | 2367922/4997817 [00:15<00:17, 153757.51it/s]

+

46%|████▌ | 2301089/4997817 [00:15<00:18, 149322.38it/s]

-
48%|████▊ | 2383385/4997817 [00:15&lt;00:16, 154015.83it/s]
+
46%|████▋ | 2316050/4997817 [00:15&lt;00:17, 149405.58it/s]

</pre>

-
48%|████▊ | 2383385/4997817 [00:15<00:16, 154015.83it/s]
+
46%|████▋ | 2316050/4997817 [00:15<00:17, 149405.58it/s]

end{sphinxVerbatim}

-

48%|████▊ | 2383385/4997817 [00:15<00:16, 154015.83it/s]

+

46%|████▋ | 2316050/4997817 [00:15<00:17, 149405.58it/s]

-
48%|████▊ | 2398830/4997817 [00:15&lt;00:16, 154143.64it/s]
+
47%|████▋ | 2330994/4997817 [00:15&lt;00:17, 148813.12it/s]

</pre>

-
48%|████▊ | 2398830/4997817 [00:15<00:16, 154143.64it/s]
+
47%|████▋ | 2330994/4997817 [00:15<00:17, 148813.12it/s]

end{sphinxVerbatim}

-

48%|████▊ | 2398830/4997817 [00:15<00:16, 154143.64it/s]

+

47%|████▋ | 2330994/4997817 [00:15<00:17, 148813.12it/s]

-
48%|████▊ | 2414296/4997817 [00:15&lt;00:16, 154294.90it/s]
+
47%|████▋ | 2345878/4997817 [00:15&lt;00:17, 148395.95it/s]

</pre>

-
48%|████▊ | 2414296/4997817 [00:15<00:16, 154294.90it/s]
+
47%|████▋ | 2345878/4997817 [00:15<00:17, 148395.95it/s]

end{sphinxVerbatim}

-

48%|████▊ | 2414296/4997817 [00:15<00:16, 154294.90it/s]

+

47%|████▋ | 2345878/4997817 [00:15<00:17, 148395.95it/s]

-
49%|████▊ | 2429726/4997817 [00:15&lt;00:16, 153837.75it/s]
+
47%|████▋ | 2360762/4997817 [00:15&lt;00:17, 148526.38it/s]

</pre>

-
49%|████▊ | 2429726/4997817 [00:15<00:16, 153837.75it/s]
+
47%|████▋ | 2360762/4997817 [00:15<00:17, 148526.38it/s]

end{sphinxVerbatim}

-

49%|████▊ | 2429726/4997817 [00:15<00:16, 153837.75it/s]

+

47%|████▋ | 2360762/4997817 [00:15<00:17, 148526.38it/s]

-
49%|████▉ | 2445111/4997817 [00:15&lt;00:16, 153667.86it/s]
+
48%|████▊ | 2375616/4997817 [00:15&lt;00:17, 148159.93it/s]

</pre>

-
49%|████▉ | 2445111/4997817 [00:15<00:16, 153667.86it/s]
+
48%|████▊ | 2375616/4997817 [00:15<00:17, 148159.93it/s]

end{sphinxVerbatim}

-

49%|████▉ | 2445111/4997817 [00:15<00:16, 153667.86it/s]

+

48%|████▊ | 2375616/4997817 [00:15<00:17, 148159.93it/s]

-
49%|████▉ | 2460479/4997817 [00:16&lt;00:16, 151890.70it/s]
+
48%|████▊ | 2390532/4997817 [00:16&lt;00:17, 148457.00it/s]

</pre>

-
49%|████▉ | 2460479/4997817 [00:16<00:16, 151890.70it/s]
+
48%|████▊ | 2390532/4997817 [00:16<00:17, 148457.00it/s]

end{sphinxVerbatim}

-

49%|████▉ | 2460479/4997817 [00:16<00:16, 151890.70it/s]

+

48%|████▊ | 2390532/4997817 [00:16<00:17, 148457.00it/s]

-
50%|████▉ | 2475988/4997817 [00:16&lt;00:16, 152837.34it/s]
+
48%|████▊ | 2405379/4997817 [00:16&lt;00:17, 148196.15it/s]

</pre>

-
50%|████▉ | 2475988/4997817 [00:16<00:16, 152837.34it/s]
+
48%|████▊ | 2405379/4997817 [00:16<00:17, 148196.15it/s]

end{sphinxVerbatim}

-

50%|████▉ | 2475988/4997817 [00:16<00:16, 152837.34it/s]

+

48%|████▊ | 2405379/4997817 [00:16<00:17, 148196.15it/s]

-
50%|████▉ | 2491431/4997817 [00:16&lt;00:16, 153308.51it/s]
+
48%|████▊ | 2420238/4997817 [00:16&lt;00:17, 148312.28it/s]

</pre>

-
50%|████▉ | 2491431/4997817 [00:16<00:16, 153308.51it/s]
+
48%|████▊ | 2420238/4997817 [00:16<00:17, 148312.28it/s]

end{sphinxVerbatim}

-

50%|████▉ | 2491431/4997817 [00:16<00:16, 153308.51it/s]

+

48%|████▊ | 2420238/4997817 [00:16<00:17, 148312.28it/s]

-
50%|█████ | 2506866/4997817 [00:16&lt;00:16, 153615.55it/s]
+
49%|████▊ | 2435107/4997817 [00:16&lt;00:17, 148423.16it/s]

</pre>

-
50%|█████ | 2506866/4997817 [00:16<00:16, 153615.55it/s]
+
49%|████▊ | 2435107/4997817 [00:16<00:17, 148423.16it/s]

end{sphinxVerbatim}

-

50%|█████ | 2506866/4997817 [00:16<00:16, 153615.55it/s]

+

49%|████▊ | 2435107/4997817 [00:16<00:17, 148423.16it/s]

-
50%|█████ | 2522412/4997817 [00:16&lt;00:16, 154163.30it/s]
+
49%|████▉ | 2450070/4997817 [00:16&lt;00:17, 148780.43it/s]

</pre>

-
50%|█████ | 2522412/4997817 [00:16<00:16, 154163.30it/s]
+
49%|████▉ | 2450070/4997817 [00:16<00:17, 148780.43it/s]

end{sphinxVerbatim}

-

50%|█████ | 2522412/4997817 [00:16<00:16, 154163.30it/s]

+

49%|████▉ | 2450070/4997817 [00:16<00:17, 148780.43it/s]

-
51%|█████ | 2537871/4997817 [00:16&lt;00:15, 154287.08it/s]
+
49%|████▉ | 2464991/4997817 [00:16&lt;00:17, 148906.54it/s]

</pre>

-
51%|█████ | 2537871/4997817 [00:16<00:15, 154287.08it/s]
+
49%|████▉ | 2464991/4997817 [00:16<00:17, 148906.54it/s]

end{sphinxVerbatim}

-

51%|█████ | 2537871/4997817 [00:16<00:15, 154287.08it/s]

+

49%|████▉ | 2464991/4997817 [00:16<00:17, 148906.54it/s]

-
51%|█████ | 2553303/4997817 [00:16&lt;00:15, 154293.90it/s]
+
50%|████▉ | 2479882/4997817 [00:16&lt;00:17, 146441.13it/s]

</pre>

-
51%|█████ | 2553303/4997817 [00:16<00:15, 154293.90it/s]
+
50%|████▉ | 2479882/4997817 [00:16<00:17, 146441.13it/s]

end{sphinxVerbatim}

-

51%|█████ | 2553303/4997817 [00:16<00:15, 154293.90it/s]

+

50%|████▉ | 2479882/4997817 [00:16<00:17, 146441.13it/s]

-
51%|█████▏ | 2568816/4997817 [00:16&lt;00:15, 154541.27it/s]
+
50%|████▉ | 2494748/4997817 [00:16&lt;00:17, 147095.48it/s]

</pre>

-
51%|█████▏ | 2568816/4997817 [00:16<00:15, 154541.27it/s]
+
50%|████▉ | 2494748/4997817 [00:16<00:17, 147095.48it/s]

end{sphinxVerbatim}

-

51%|█████▏ | 2568816/4997817 [00:16<00:15, 154541.27it/s]

+

50%|████▉ | 2494748/4997817 [00:16<00:17, 147095.48it/s]

-
52%|█████▏ | 2584304/4997817 [00:16&lt;00:15, 154640.86it/s]
+
50%|█████ | 2509636/4997817 [00:16&lt;00:16, 147622.93it/s]

</pre>

-
52%|█████▏ | 2584304/4997817 [00:16<00:15, 154640.86it/s]
+
50%|█████ | 2509636/4997817 [00:16<00:16, 147622.93it/s]

end{sphinxVerbatim}

-

52%|█████▏ | 2584304/4997817 [00:16<00:15, 154640.86it/s]

+

50%|█████ | 2509636/4997817 [00:16<00:16, 147622.93it/s]

-
52%|█████▏ | 2599855/4997817 [00:16&lt;00:15, 154898.61it/s]
+
51%|█████ | 2524564/4997817 [00:16&lt;00:16, 148114.56it/s]

</pre>

-
52%|█████▏ | 2599855/4997817 [00:16<00:15, 154898.61it/s]
+
51%|█████ | 2524564/4997817 [00:16<00:16, 148114.56it/s]

end{sphinxVerbatim}

-

52%|█████▏ | 2599855/4997817 [00:16<00:15, 154898.61it/s]

+

51%|█████ | 2524564/4997817 [00:16<00:16, 148114.56it/s]

-
52%|█████▏ | 2615346/4997817 [00:17&lt;00:15, 154665.43it/s]
+
51%|█████ | 2539380/4997817 [00:17&lt;00:16, 148115.30it/s]

</pre>

-
52%|█████▏ | 2615346/4997817 [00:17<00:15, 154665.43it/s]
+
51%|█████ | 2539380/4997817 [00:17<00:16, 148115.30it/s]

end{sphinxVerbatim}

-

52%|█████▏ | 2615346/4997817 [00:17<00:15, 154665.43it/s]

+

51%|█████ | 2539380/4997817 [00:17<00:16, 148115.30it/s]

-
53%|█████▎ | 2630881/4997817 [00:17&lt;00:15, 154867.02it/s]
+
51%|█████ | 2554354/4997817 [00:17&lt;00:16, 148597.46it/s]

</pre>

-
53%|█████▎ | 2630881/4997817 [00:17<00:15, 154867.02it/s]
+
51%|█████ | 2554354/4997817 [00:17<00:16, 148597.46it/s]

end{sphinxVerbatim}

-

53%|█████▎ | 2630881/4997817 [00:17<00:15, 154867.02it/s]

+

51%|█████ | 2554354/4997817 [00:17<00:16, 148597.46it/s]

-
53%|█████▎ | 2646404/4997817 [00:17&lt;00:15, 154973.97it/s]
+
51%|█████▏ | 2569216/4997817 [00:17&lt;00:16, 148374.13it/s]

</pre>

-
53%|█████▎ | 2646404/4997817 [00:17<00:15, 154973.97it/s]
+
51%|█████▏ | 2569216/4997817 [00:17<00:16, 148374.13it/s]

end{sphinxVerbatim}

-

53%|█████▎ | 2646404/4997817 [00:17<00:15, 154973.97it/s]

+

51%|█████▏ | 2569216/4997817 [00:17<00:16, 148374.13it/s]

-
53%|█████▎ | 2661935/4997817 [00:17&lt;00:15, 155072.43it/s]
+
52%|█████▏ | 2584164/4997817 [00:17&lt;00:16, 148703.27it/s]

</pre>

-
53%|█████▎ | 2661935/4997817 [00:17<00:15, 155072.43it/s]
+
52%|█████▏ | 2584164/4997817 [00:17<00:16, 148703.27it/s]

end{sphinxVerbatim}

-

53%|█████▎ | 2661935/4997817 [00:17<00:15, 155072.43it/s]

+

52%|█████▏ | 2584164/4997817 [00:17<00:16, 148703.27it/s]

-
54%|█████▎ | 2677443/4997817 [00:17&lt;00:14, 154974.92it/s]
+
52%|█████▏ | 2599036/4997817 [00:17&lt;00:16, 148635.63it/s]

</pre>

-
54%|█████▎ | 2677443/4997817 [00:17<00:14, 154974.92it/s]
+
52%|█████▏ | 2599036/4997817 [00:17<00:16, 148635.63it/s]

end{sphinxVerbatim}

-

54%|█████▎ | 2677443/4997817 [00:17<00:14, 154974.92it/s]

+

52%|█████▏ | 2599036/4997817 [00:17<00:16, 148635.63it/s]

-
54%|█████▍ | 2692941/4997817 [00:17&lt;00:14, 154515.55it/s]
+
52%|█████▏ | 2613901/4997817 [00:17&lt;00:16, 148378.58it/s]

</pre>

-
54%|█████▍ | 2692941/4997817 [00:17<00:14, 154515.55it/s]
+
52%|█████▏ | 2613901/4997817 [00:17<00:16, 148378.58it/s]

end{sphinxVerbatim}

-

54%|█████▍ | 2692941/4997817 [00:17<00:14, 154515.55it/s]

+

52%|█████▏ | 2613901/4997817 [00:17<00:16, 148378.58it/s]

-
54%|█████▍ | 2708393/4997817 [00:17&lt;00:14, 154276.13it/s]
+
53%|█████▎ | 2628767/4997817 [00:17&lt;00:15, 148459.78it/s]

</pre>

-
54%|█████▍ | 2708393/4997817 [00:17<00:14, 154276.13it/s]
+
53%|█████▎ | 2628767/4997817 [00:17<00:15, 148459.78it/s]

end{sphinxVerbatim}

-

54%|█████▍ | 2708393/4997817 [00:17<00:14, 154276.13it/s]

+

53%|█████▎ | 2628767/4997817 [00:17<00:15, 148459.78it/s]

-
55%|█████▍ | 2723821/4997817 [00:17&lt;00:14, 154178.04it/s]
+
53%|█████▎ | 2643614/4997817 [00:17&lt;00:15, 147791.28it/s]

</pre>

-
55%|█████▍ | 2723821/4997817 [00:17<00:14, 154178.04it/s]
+
53%|█████▎ | 2643614/4997817 [00:17<00:15, 147791.28it/s]

end{sphinxVerbatim}

-

55%|█████▍ | 2723821/4997817 [00:17<00:14, 154178.04it/s]

+

53%|█████▎ | 2643614/4997817 [00:17<00:15, 147791.28it/s]

-
55%|█████▍ | 2739259/4997817 [00:17&lt;00:14, 154235.88it/s]
+
53%|█████▎ | 2658460/4997817 [00:17&lt;00:15, 147989.27it/s]

</pre>

-
55%|█████▍ | 2739259/4997817 [00:17<00:14, 154235.88it/s]
+
53%|█████▎ | 2658460/4997817 [00:17<00:15, 147989.27it/s]

end{sphinxVerbatim}

-

55%|█████▍ | 2739259/4997817 [00:17<00:14, 154235.88it/s]

+

53%|█████▎ | 2658460/4997817 [00:17<00:15, 147989.27it/s]

-
55%|█████▌ | 2754683/4997817 [00:17&lt;00:14, 153926.57it/s]
+
53%|█████▎ | 2673393/4997817 [00:17&lt;00:15, 148387.24it/s]

</pre>

-
55%|█████▌ | 2754683/4997817 [00:17<00:14, 153926.57it/s]
+
53%|█████▎ | 2673393/4997817 [00:17<00:15, 148387.24it/s]

end{sphinxVerbatim}

-

55%|█████▌ | 2754683/4997817 [00:17<00:14, 153926.57it/s]

+

53%|█████▎ | 2673393/4997817 [00:17<00:15, 148387.24it/s]

-
55%|█████▌ | 2770076/4997817 [00:18&lt;00:14, 153820.44it/s]
+
54%|█████▍ | 2688233/4997817 [00:18&lt;00:15, 148384.85it/s]

</pre>

-
55%|█████▌ | 2770076/4997817 [00:18<00:14, 153820.44it/s]
+
54%|█████▍ | 2688233/4997817 [00:18<00:15, 148384.85it/s]

end{sphinxVerbatim}

-

55%|█████▌ | 2770076/4997817 [00:18<00:14, 153820.44it/s]

+

54%|█████▍ | 2688233/4997817 [00:18<00:15, 148384.85it/s]

-
56%|█████▌ | 2785459/4997817 [00:18&lt;00:14, 152499.22it/s]
+
54%|█████▍ | 2703072/4997817 [00:18&lt;00:15, 148257.58it/s]

</pre>

-
56%|█████▌ | 2785459/4997817 [00:18<00:14, 152499.22it/s]
+
54%|█████▍ | 2703072/4997817 [00:18<00:15, 148257.58it/s]

end{sphinxVerbatim}

-

56%|█████▌ | 2785459/4997817 [00:18<00:14, 152499.22it/s]

+

54%|█████▍ | 2703072/4997817 [00:18<00:15, 148257.58it/s]

-
56%|█████▌ | 2800824/4997817 [00:18&lt;00:14, 152839.13it/s]
+
54%|█████▍ | 2717899/4997817 [00:18&lt;00:15, 148209.80it/s]

</pre>

-
56%|█████▌ | 2800824/4997817 [00:18<00:14, 152839.13it/s]
+
54%|█████▍ | 2717899/4997817 [00:18<00:15, 148209.80it/s]

end{sphinxVerbatim}

-

56%|█████▌ | 2800824/4997817 [00:18<00:14, 152839.13it/s]

+

54%|█████▍ | 2717899/4997817 [00:18<00:15, 148209.80it/s]

-
56%|█████▋ | 2816235/4997817 [00:18&lt;00:14, 153215.33it/s]
+
55%|█████▍ | 2732721/4997817 [00:18&lt;00:15, 147973.31it/s]

</pre>

-
56%|█████▋ | 2816235/4997817 [00:18<00:14, 153215.33it/s]
+
55%|█████▍ | 2732721/4997817 [00:18<00:15, 147973.31it/s]

end{sphinxVerbatim}

-

56%|█████▋ | 2816235/4997817 [00:18<00:14, 153215.33it/s]

+

55%|█████▍ | 2732721/4997817 [00:18<00:15, 147973.31it/s]

-
57%|█████▋ | 2831689/4997817 [00:18&lt;00:14, 153607.76it/s]
+
55%|█████▍ | 2747595/4997817 [00:18&lt;00:15, 148200.33it/s]

</pre>

-
57%|█████▋ | 2831689/4997817 [00:18<00:14, 153607.76it/s]
+
55%|█████▍ | 2747595/4997817 [00:18<00:15, 148200.33it/s]

end{sphinxVerbatim}

-

57%|█████▋ | 2831689/4997817 [00:18<00:14, 153607.76it/s]

+

55%|█████▍ | 2747595/4997817 [00:18<00:15, 148200.33it/s]

-
57%|█████▋ | 2847052/4997817 [00:18&lt;00:14, 153491.72it/s]
+
55%|█████▌ | 2762416/4997817 [00:18&lt;00:15, 146973.80it/s]

</pre>

-
57%|█████▋ | 2847052/4997817 [00:18<00:14, 153491.72it/s]
+
55%|█████▌ | 2762416/4997817 [00:18<00:15, 146973.80it/s]

end{sphinxVerbatim}

-

57%|█████▋ | 2847052/4997817 [00:18<00:14, 153491.72it/s]

+

55%|█████▌ | 2762416/4997817 [00:18<00:15, 146973.80it/s]

-
57%|█████▋ | 2862403/4997817 [00:18&lt;00:13, 153419.95it/s]
+
56%|█████▌ | 2777116/4997817 [00:18&lt;00:15, 146789.58it/s]

</pre>

-
57%|█████▋ | 2862403/4997817 [00:18<00:13, 153419.95it/s]
+
56%|█████▌ | 2777116/4997817 [00:18<00:15, 146789.58it/s]

end{sphinxVerbatim}

-

57%|█████▋ | 2862403/4997817 [00:18<00:13, 153419.95it/s]

+

56%|█████▌ | 2777116/4997817 [00:18<00:15, 146789.58it/s]

-
58%|█████▊ | 2877746/4997817 [00:18&lt;00:13, 153366.30it/s]
+
56%|█████▌ | 2791931/4997817 [00:18&lt;00:14, 147194.26it/s]

</pre>

-
58%|█████▊ | 2877746/4997817 [00:18<00:13, 153366.30it/s]
+
56%|█████▌ | 2791931/4997817 [00:18<00:14, 147194.26it/s]

end{sphinxVerbatim}

-

58%|█████▊ | 2877746/4997817 [00:18<00:13, 153366.30it/s]

+

56%|█████▌ | 2791931/4997817 [00:18<00:14, 147194.26it/s]

-
58%|█████▊ | 2893133/4997817 [00:18&lt;00:13, 153514.67it/s]
+
56%|█████▌ | 2806715/4997817 [00:18&lt;00:14, 147384.30it/s]

</pre>

-
58%|█████▊ | 2893133/4997817 [00:18<00:13, 153514.67it/s]
+
56%|█████▌ | 2806715/4997817 [00:18<00:14, 147384.30it/s]

end{sphinxVerbatim}

-

58%|█████▊ | 2893133/4997817 [00:18<00:13, 153514.67it/s]

+

56%|█████▌ | 2806715/4997817 [00:18<00:14, 147384.30it/s]

-
58%|█████▊ | 2908594/4997817 [00:18&lt;00:13, 153841.38it/s]
+
56%|█████▋ | 2821480/4997817 [00:18&lt;00:14, 147462.46it/s]

</pre>

-
58%|█████▊ | 2908594/4997817 [00:18<00:13, 153841.38it/s]
+
56%|█████▋ | 2821480/4997817 [00:18<00:14, 147462.46it/s]

end{sphinxVerbatim}

-

58%|█████▊ | 2908594/4997817 [00:18<00:13, 153841.38it/s]

+

56%|█████▋ | 2821480/4997817 [00:18<00:14, 147462.46it/s]

-
59%|█████▊ | 2923979/4997817 [00:19&lt;00:13, 153498.35it/s]
+
57%|█████▋ | 2836227/4997817 [00:19&lt;00:14, 147406.15it/s]

</pre>

-
59%|█████▊ | 2923979/4997817 [00:19<00:13, 153498.35it/s]
+
57%|█████▋ | 2836227/4997817 [00:19<00:14, 147406.15it/s]

end{sphinxVerbatim}

-

59%|█████▊ | 2923979/4997817 [00:19<00:13, 153498.35it/s]

+

57%|█████▋ | 2836227/4997817 [00:19<00:14, 147406.15it/s]

-
59%|█████▉ | 2939330/4997817 [00:19&lt;00:13, 153391.86it/s]
+
57%|█████▋ | 2851060/4997817 [00:19&lt;00:14, 147680.88it/s]

</pre>

-
59%|█████▉ | 2939330/4997817 [00:19<00:13, 153391.86it/s]
+
57%|█████▋ | 2851060/4997817 [00:19<00:14, 147680.88it/s]

end{sphinxVerbatim}

-

59%|█████▉ | 2939330/4997817 [00:19<00:13, 153391.86it/s]

+

57%|█████▋ | 2851060/4997817 [00:19<00:14, 147680.88it/s]

-
59%|█████▉ | 2954670/4997817 [00:19&lt;00:13, 153220.33it/s]
+
57%|█████▋ | 2865829/4997817 [00:19&lt;00:14, 147480.31it/s]

</pre>

-
59%|█████▉ | 2954670/4997817 [00:19<00:13, 153220.33it/s]
+
57%|█████▋ | 2865829/4997817 [00:19<00:14, 147480.31it/s]

end{sphinxVerbatim}

-

59%|█████▉ | 2954670/4997817 [00:19<00:13, 153220.33it/s]

+

57%|█████▋ | 2865829/4997817 [00:19<00:14, 147480.31it/s]

-
59%|█████▉ | 2969993/4997817 [00:19&lt;00:13, 153075.79it/s]
+
58%|█████▊ | 2880627/4997817 [00:19&lt;00:14, 147625.88it/s]

</pre>

-
59%|█████▉ | 2969993/4997817 [00:19<00:13, 153075.79it/s]
+
58%|█████▊ | 2880627/4997817 [00:19<00:14, 147625.88it/s]

end{sphinxVerbatim}

-

59%|█████▉ | 2969993/4997817 [00:19<00:13, 153075.79it/s]

+

58%|█████▊ | 2880627/4997817 [00:19<00:14, 147625.88it/s]

-
60%|█████▉ | 2985358/4997817 [00:19&lt;00:13, 153246.40it/s]
+
58%|█████▊ | 2895450/4997817 [00:19&lt;00:14, 147805.34it/s]

</pre>

-
60%|█████▉ | 2985358/4997817 [00:19<00:13, 153246.40it/s]
+
58%|█████▊ | 2895450/4997817 [00:19<00:14, 147805.34it/s]

end{sphinxVerbatim}

-

60%|█████▉ | 2985358/4997817 [00:19<00:13, 153246.40it/s]

+

58%|█████▊ | 2895450/4997817 [00:19<00:14, 147805.34it/s]

-
60%|██████ | 3000894/4997817 [00:19&lt;00:12, 153877.45it/s]
+
58%|█████▊ | 2910289/4997817 [00:19&lt;00:14, 147977.98it/s]

</pre>

-
60%|██████ | 3000894/4997817 [00:19<00:12, 153877.45it/s]
+
58%|█████▊ | 2910289/4997817 [00:19<00:14, 147977.98it/s]

end{sphinxVerbatim}

-

60%|██████ | 3000894/4997817 [00:19<00:12, 153877.45it/s]

+

58%|█████▊ | 2910289/4997817 [00:19<00:14, 147977.98it/s]

-
60%|██████ | 3016305/4997817 [00:19&lt;00:12, 153943.55it/s]
+
59%|█████▊ | 2925087/4997817 [00:19&lt;00:14, 147773.60it/s]

</pre>

-
60%|██████ | 3016305/4997817 [00:19<00:12, 153943.55it/s]
+
59%|█████▊ | 2925087/4997817 [00:19<00:14, 147773.60it/s]

end{sphinxVerbatim}

-

60%|██████ | 3016305/4997817 [00:19<00:12, 153943.55it/s]

+

59%|█████▊ | 2925087/4997817 [00:19<00:14, 147773.60it/s]

-
61%|██████ | 3031700/4997817 [00:19&lt;00:12, 153840.86it/s]
+
59%|█████▉ | 2939865/4997817 [00:19&lt;00:13, 147432.38it/s]

</pre>

-
61%|██████ | 3031700/4997817 [00:19<00:12, 153840.86it/s]
+
59%|█████▉ | 2939865/4997817 [00:19<00:13, 147432.38it/s]

end{sphinxVerbatim}

-

61%|██████ | 3031700/4997817 [00:19<00:12, 153840.86it/s]

+

59%|█████▉ | 2939865/4997817 [00:19<00:13, 147432.38it/s]

-
61%|██████ | 3047085/4997817 [00:19&lt;00:12, 153735.99it/s]
+
59%|█████▉ | 2954609/4997817 [00:19&lt;00:13, 147384.87it/s]

</pre>

-
61%|██████ | 3047085/4997817 [00:19<00:12, 153735.99it/s]
+
59%|█████▉ | 2954609/4997817 [00:19<00:13, 147384.87it/s]

end{sphinxVerbatim}

-

61%|██████ | 3047085/4997817 [00:19<00:12, 153735.99it/s]

+

59%|█████▉ | 2954609/4997817 [00:19<00:13, 147384.87it/s]

-
61%|██████▏ | 3062478/4997817 [00:19&lt;00:12, 153789.99it/s]
+
59%|█████▉ | 2969435/4997817 [00:19&lt;00:13, 147643.11it/s]

</pre>

-
61%|██████▏ | 3062478/4997817 [00:19<00:12, 153789.99it/s]
+
59%|█████▉ | 2969435/4997817 [00:19<00:13, 147643.11it/s]

end{sphinxVerbatim}

-

61%|██████▏ | 3062478/4997817 [00:19<00:12, 153789.99it/s]

+

59%|█████▉ | 2969435/4997817 [00:19<00:13, 147643.11it/s]

-
62%|██████▏ | 3077886/4997817 [00:20&lt;00:12, 153873.44it/s]
+
60%|█████▉ | 2984444/4997817 [00:20&lt;00:13, 148372.54it/s]

</pre>

-
62%|██████▏ | 3077886/4997817 [00:20<00:12, 153873.44it/s]
+
60%|█████▉ | 2984444/4997817 [00:20<00:13, 148372.54it/s]

end{sphinxVerbatim}

-

62%|██████▏ | 3077886/4997817 [00:20<00:12, 153873.44it/s]

+

60%|█████▉ | 2984444/4997817 [00:20<00:13, 148372.54it/s]

-
62%|██████▏ | 3093381/4997817 [00:20&lt;00:12, 154194.60it/s]
+
60%|██████ | 2999282/4997817 [00:20&lt;00:13, 148224.96it/s]

</pre>

-
62%|██████▏ | 3093381/4997817 [00:20<00:12, 154194.60it/s]
+
60%|██████ | 2999282/4997817 [00:20<00:13, 148224.96it/s]

end{sphinxVerbatim}

-

62%|██████▏ | 3093381/4997817 [00:20<00:12, 154194.60it/s]

+

60%|██████ | 2999282/4997817 [00:20<00:13, 148224.96it/s]

-
62%|██████▏ | 3108801/4997817 [00:20&lt;00:12, 154044.06it/s]
+
60%|██████ | 3014327/4997817 [00:20&lt;00:13, 148889.21it/s]

</pre>

-
62%|██████▏ | 3108801/4997817 [00:20<00:12, 154044.06it/s]
+
60%|██████ | 3014327/4997817 [00:20<00:13, 148889.21it/s]

end{sphinxVerbatim}

-

62%|██████▏ | 3108801/4997817 [00:20<00:12, 154044.06it/s]

+

60%|██████ | 3014327/4997817 [00:20<00:13, 148889.21it/s]

-
63%|██████▎ | 3124206/4997817 [00:20&lt;00:12, 153851.19it/s]
+
61%|██████ | 3029217/4997817 [00:20&lt;00:13, 148573.27it/s]

</pre>

-
63%|██████▎ | 3124206/4997817 [00:20<00:12, 153851.19it/s]
+
61%|██████ | 3029217/4997817 [00:20<00:13, 148573.27it/s]

end{sphinxVerbatim}

-

63%|██████▎ | 3124206/4997817 [00:20<00:12, 153851.19it/s]

+

61%|██████ | 3029217/4997817 [00:20<00:13, 148573.27it/s]

-
63%|██████▎ | 3139592/4997817 [00:20&lt;00:12, 153641.46it/s]
+
61%|██████ | 3044247/4997817 [00:20&lt;00:13, 149086.67it/s]

</pre>

-
63%|██████▎ | 3139592/4997817 [00:20<00:12, 153641.46it/s]
+
61%|██████ | 3044247/4997817 [00:20<00:13, 149086.67it/s]

end{sphinxVerbatim}

-

63%|██████▎ | 3139592/4997817 [00:20<00:12, 153641.46it/s]

+

61%|██████ | 3044247/4997817 [00:20<00:13, 149086.67it/s]

-
63%|██████▎ | 3154957/4997817 [00:20&lt;00:12, 153372.79it/s]
+
61%|██████ | 3059183/4997817 [00:20&lt;00:12, 149166.56it/s]

</pre>

-
63%|██████▎ | 3154957/4997817 [00:20<00:12, 153372.79it/s]
+
61%|██████ | 3059183/4997817 [00:20<00:12, 149166.56it/s]

end{sphinxVerbatim}

-

63%|██████▎ | 3154957/4997817 [00:20<00:12, 153372.79it/s]

+

61%|██████ | 3059183/4997817 [00:20<00:12, 149166.56it/s]

-
63%|██████▎ | 3170295/4997817 [00:20&lt;00:11, 153270.58it/s]
+
62%|██████▏ | 3074155/4997817 [00:20&lt;00:12, 149330.96it/s]

</pre>

-
63%|██████▎ | 3170295/4997817 [00:20<00:11, 153270.58it/s]
+
62%|██████▏ | 3074155/4997817 [00:20<00:12, 149330.96it/s]

end{sphinxVerbatim}

-

63%|██████▎ | 3170295/4997817 [00:20<00:11, 153270.58it/s]

+

62%|██████▏ | 3074155/4997817 [00:20<00:12, 149330.96it/s]

-
64%|██████▎ | 3185782/4997817 [00:20&lt;00:11, 153747.89it/s]
+
62%|██████▏ | 3089110/4997817 [00:20&lt;00:12, 149393.56it/s]

</pre>

-
64%|██████▎ | 3185782/4997817 [00:20<00:11, 153747.89it/s]
+
62%|██████▏ | 3089110/4997817 [00:20<00:12, 149393.56it/s]

end{sphinxVerbatim}

-

64%|██████▎ | 3185782/4997817 [00:20<00:11, 153747.89it/s]

+

62%|██████▏ | 3089110/4997817 [00:20<00:12, 149393.56it/s]

-
64%|██████▍ | 3201183/4997817 [00:20&lt;00:11, 153822.92it/s]
+
62%|██████▏ | 3104210/4997817 [00:20&lt;00:12, 149873.45it/s]

</pre>

-
64%|██████▍ | 3201183/4997817 [00:20<00:11, 153822.92it/s]
+
62%|██████▏ | 3104210/4997817 [00:20<00:12, 149873.45it/s]

end{sphinxVerbatim}

-

64%|██████▍ | 3201183/4997817 [00:20<00:11, 153822.92it/s]

+

62%|██████▏ | 3104210/4997817 [00:20<00:12, 149873.45it/s]

-
64%|██████▍ | 3216566/4997817 [00:20&lt;00:11, 153750.28it/s]
+
62%|██████▏ | 3119202/4997817 [00:20&lt;00:12, 149884.34it/s]

</pre>

-
64%|██████▍ | 3216566/4997817 [00:20<00:11, 153750.28it/s]
+
62%|██████▏ | 3119202/4997817 [00:20<00:12, 149884.34it/s]

end{sphinxVerbatim}

-

64%|██████▍ | 3216566/4997817 [00:20<00:11, 153750.28it/s]

+

62%|██████▏ | 3119202/4997817 [00:20<00:12, 149884.34it/s]

-
65%|██████▍ | 3231942/4997817 [00:21&lt;00:11, 153486.01it/s]
+
63%|██████▎ | 3134198/4997817 [00:21&lt;00:12, 149905.04it/s]

</pre>

-
65%|██████▍ | 3231942/4997817 [00:21<00:11, 153486.01it/s]
+
63%|██████▎ | 3134198/4997817 [00:21<00:12, 149905.04it/s]

end{sphinxVerbatim}

-

65%|██████▍ | 3231942/4997817 [00:21<00:11, 153486.01it/s]

+

63%|██████▎ | 3134198/4997817 [00:21<00:12, 149905.04it/s]

-
65%|██████▍ | 3247291/4997817 [00:21&lt;00:11, 153010.94it/s]
+
63%|██████▎ | 3149189/4997817 [00:21&lt;00:12, 149467.49it/s]

</pre>

-
65%|██████▍ | 3247291/4997817 [00:21<00:11, 153010.94it/s]
+
63%|██████▎ | 3149189/4997817 [00:21<00:12, 149467.49it/s]

end{sphinxVerbatim}

-

65%|██████▍ | 3247291/4997817 [00:21<00:11, 153010.94it/s]

+

63%|██████▎ | 3149189/4997817 [00:21<00:12, 149467.49it/s]

-
65%|██████▌ | 3262633/4997817 [00:21&lt;00:11, 153131.08it/s]
+
63%|██████▎ | 3164137/4997817 [00:21&lt;00:12, 149307.28it/s]

</pre>

-
65%|██████▌ | 3262633/4997817 [00:21<00:11, 153131.08it/s]
+
63%|██████▎ | 3164137/4997817 [00:21<00:12, 149307.28it/s]

end{sphinxVerbatim}

-

65%|██████▌ | 3262633/4997817 [00:21<00:11, 153131.08it/s]

+

63%|██████▎ | 3164137/4997817 [00:21<00:12, 149307.28it/s]

-
66%|██████▌ | 3277947/4997817 [00:21&lt;00:11, 152734.43it/s]
+
64%|██████▎ | 3179123/4997817 [00:21&lt;00:12, 149468.60it/s]

</pre>

-
66%|██████▌ | 3277947/4997817 [00:21<00:11, 152734.43it/s]
+
64%|██████▎ | 3179123/4997817 [00:21<00:12, 149468.60it/s]

end{sphinxVerbatim}

-

66%|██████▌ | 3277947/4997817 [00:21<00:11, 152734.43it/s]

+

64%|██████▎ | 3179123/4997817 [00:21<00:12, 149468.60it/s]

-
66%|██████▌ | 3293236/4997817 [00:21&lt;00:11, 152779.12it/s]
+
64%|██████▍ | 3194121/4997817 [00:21&lt;00:12, 149619.67it/s]

</pre>

-
66%|██████▌ | 3293236/4997817 [00:21<00:11, 152779.12it/s]
+
64%|██████▍ | 3194121/4997817 [00:21<00:12, 149619.67it/s]

end{sphinxVerbatim}

-

66%|██████▌ | 3293236/4997817 [00:21<00:11, 152779.12it/s]

+

64%|██████▍ | 3194121/4997817 [00:21<00:12, 149619.67it/s]

-
66%|██████▌ | 3308515/4997817 [00:21&lt;00:11, 152733.82it/s]
+
64%|██████▍ | 3209107/4997817 [00:21&lt;00:11, 149688.95it/s]

</pre>

-
66%|██████▌ | 3308515/4997817 [00:21<00:11, 152733.82it/s]
+
64%|██████▍ | 3209107/4997817 [00:21<00:11, 149688.95it/s]

end{sphinxVerbatim}

-

66%|██████▌ | 3308515/4997817 [00:21<00:11, 152733.82it/s]

+

64%|██████▍ | 3209107/4997817 [00:21<00:11, 149688.95it/s]

-
67%|██████▋ | 3323806/4997817 [00:21&lt;00:10, 152783.67it/s]
+
65%|██████▍ | 3224077/4997817 [00:21&lt;00:11, 149601.75it/s]

</pre>

-
67%|██████▋ | 3323806/4997817 [00:21<00:10, 152783.67it/s]
+
65%|██████▍ | 3224077/4997817 [00:21<00:11, 149601.75it/s]

end{sphinxVerbatim}

-

67%|██████▋ | 3323806/4997817 [00:21<00:10, 152783.67it/s]

+

65%|██████▍ | 3224077/4997817 [00:21<00:11, 149601.75it/s]

-
67%|██████▋ | 3339146/4997817 [00:21&lt;00:10, 152966.93it/s]
+
65%|██████▍ | 3239038/4997817 [00:21&lt;00:12, 145384.73it/s]

</pre>

-
67%|██████▋ | 3339146/4997817 [00:21<00:10, 152966.93it/s]
+
65%|██████▍ | 3239038/4997817 [00:21<00:12, 145384.73it/s]

end{sphinxVerbatim}

-

67%|██████▋ | 3339146/4997817 [00:21<00:10, 152966.93it/s]

+

65%|██████▍ | 3239038/4997817 [00:21<00:12, 145384.73it/s]

-
67%|██████▋ | 3354462/4997817 [00:21&lt;00:10, 153022.87it/s]
+
65%|██████▌ | 3253832/4997817 [00:21&lt;00:11, 146133.31it/s]

</pre>

-
67%|██████▋ | 3354462/4997817 [00:21<00:10, 153022.87it/s]
+
65%|██████▌ | 3253832/4997817 [00:21<00:11, 146133.31it/s]

end{sphinxVerbatim}

-

67%|██████▋ | 3354462/4997817 [00:21<00:10, 153022.87it/s]

+

65%|██████▌ | 3253832/4997817 [00:21<00:11, 146133.31it/s]

-
67%|██████▋ | 3369765/4997817 [00:21&lt;00:10, 152962.73it/s]
+
65%|██████▌ | 3268741/4997817 [00:22&lt;00:11, 147004.99it/s]

</pre>

-
67%|██████▋ | 3369765/4997817 [00:21<00:10, 152962.73it/s]
+
65%|██████▌ | 3268741/4997817 [00:22<00:11, 147004.99it/s]

end{sphinxVerbatim}

-

67%|██████▋ | 3369765/4997817 [00:21<00:10, 152962.73it/s]

+

65%|██████▌ | 3268741/4997817 [00:22<00:11, 147004.99it/s]

-
68%|██████▊ | 3385062/4997817 [00:22&lt;00:10, 152894.80it/s]
+
66%|██████▌ | 3283745/4997817 [00:22&lt;00:11, 147902.87it/s]

</pre>

-
68%|██████▊ | 3385062/4997817 [00:22<00:10, 152894.80it/s]
+
66%|██████▌ | 3283745/4997817 [00:22<00:11, 147902.87it/s]

end{sphinxVerbatim}

-

68%|██████▊ | 3385062/4997817 [00:22<00:10, 152894.80it/s]

+

66%|██████▌ | 3283745/4997817 [00:22<00:11, 147902.87it/s]

-
68%|██████▊ | 3400352/4997817 [00:22&lt;00:10, 152666.42it/s]
+
66%|██████▌ | 3298633/4997817 [00:22&lt;00:11, 148190.05it/s]

</pre>

-
68%|██████▊ | 3400352/4997817 [00:22<00:10, 152666.42it/s]
+
66%|██████▌ | 3298633/4997817 [00:22<00:11, 148190.05it/s]

end{sphinxVerbatim}

-

68%|██████▊ | 3400352/4997817 [00:22<00:10, 152666.42it/s]

+

66%|██████▌ | 3298633/4997817 [00:22<00:11, 148190.05it/s]

-
68%|██████▊ | 3415645/4997817 [00:22&lt;00:10, 152708.55it/s]
+
66%|██████▋ | 3313596/4997817 [00:22&lt;00:11, 148619.05it/s]

</pre>

-
68%|██████▊ | 3415645/4997817 [00:22<00:10, 152708.55it/s]
+
66%|██████▋ | 3313596/4997817 [00:22<00:11, 148619.05it/s]

end{sphinxVerbatim}

-

68%|██████▊ | 3415645/4997817 [00:22<00:10, 152708.55it/s]

+

66%|██████▋ | 3313596/4997817 [00:22<00:11, 148619.05it/s]

-
69%|██████▊ | 3430980/4997817 [00:22&lt;00:10, 152898.91it/s]
+
67%|██████▋ | 3328645/4997817 [00:22&lt;00:11, 149176.15it/s]

</pre>

-
69%|██████▊ | 3430980/4997817 [00:22<00:10, 152898.91it/s]
+
67%|██████▋ | 3328645/4997817 [00:22<00:11, 149176.15it/s]

end{sphinxVerbatim}

-

69%|██████▊ | 3430980/4997817 [00:22<00:10, 152898.91it/s]

+

67%|██████▋ | 3328645/4997817 [00:22<00:11, 149176.15it/s]

-
69%|██████▉ | 3446327/4997817 [00:22&lt;00:10, 153067.61it/s]
+
67%|██████▋ | 3343578/4997817 [00:22&lt;00:11, 149218.29it/s]

</pre>

-
69%|██████▉ | 3446327/4997817 [00:22<00:10, 153067.61it/s]
+
67%|██████▋ | 3343578/4997817 [00:22<00:11, 149218.29it/s]

end{sphinxVerbatim}

-

69%|██████▉ | 3446327/4997817 [00:22<00:10, 153067.61it/s]

+

67%|██████▋ | 3343578/4997817 [00:22<00:11, 149218.29it/s]

-
69%|██████▉ | 3461646/4997817 [00:22&lt;00:10, 153102.05it/s]
+
67%|██████▋ | 3358612/4997817 [00:22&lt;00:10, 149551.05it/s]

</pre>

-
69%|██████▉ | 3461646/4997817 [00:22<00:10, 153102.05it/s]
+
67%|██████▋ | 3358612/4997817 [00:22<00:10, 149551.05it/s]

end{sphinxVerbatim}

-

69%|██████▉ | 3461646/4997817 [00:22<00:10, 153102.05it/s]

+

67%|██████▋ | 3358612/4997817 [00:22<00:10, 149551.05it/s]

-
70%|██████▉ | 3476976/4997817 [00:22&lt;00:09, 153158.49it/s]
+
68%|██████▊ | 3373570/4997817 [00:22&lt;00:10, 149033.52it/s]

</pre>

-
70%|██████▉ | 3476976/4997817 [00:22<00:09, 153158.49it/s]
+
68%|██████▊ | 3373570/4997817 [00:22<00:10, 149033.52it/s]

end{sphinxVerbatim}

-

70%|██████▉ | 3476976/4997817 [00:22<00:09, 153158.49it/s]

+

68%|██████▊ | 3373570/4997817 [00:22<00:10, 149033.52it/s]

-
70%|██████▉ | 3492292/4997817 [00:22&lt;00:09, 153120.01it/s]
+
68%|██████▊ | 3388476/4997817 [00:22&lt;00:10, 146528.29it/s]

</pre>

-
70%|██████▉ | 3492292/4997817 [00:22<00:09, 153120.01it/s]
+
68%|██████▊ | 3388476/4997817 [00:22<00:10, 146528.29it/s]

end{sphinxVerbatim}

-

70%|██████▉ | 3492292/4997817 [00:22<00:09, 153120.01it/s]

+

68%|██████▊ | 3388476/4997817 [00:22<00:10, 146528.29it/s]

-
70%|███████ | 3507605/4997817 [00:22&lt;00:09, 152890.11it/s]
+
68%|██████▊ | 3403462/4997817 [00:22&lt;00:10, 147511.06it/s]

</pre>

-
70%|███████ | 3507605/4997817 [00:22<00:09, 152890.11it/s]
+
68%|██████▊ | 3403462/4997817 [00:22<00:10, 147511.06it/s]

end{sphinxVerbatim}

-

70%|███████ | 3507605/4997817 [00:22<00:09, 152890.11it/s]

+

68%|██████▊ | 3403462/4997817 [00:22<00:10, 147511.06it/s]

-
70%|███████ | 3522908/4997817 [00:22&lt;00:09, 152929.55it/s]
+
68%|██████▊ | 3418495/4997817 [00:23&lt;00:10, 148345.08it/s]

</pre>

-
70%|███████ | 3522908/4997817 [00:22<00:09, 152929.55it/s]
+
68%|██████▊ | 3418495/4997817 [00:23<00:10, 148345.08it/s]

end{sphinxVerbatim}

-

70%|███████ | 3522908/4997817 [00:22<00:09, 152929.55it/s]

+

68%|██████▊ | 3418495/4997817 [00:23<00:10, 148345.08it/s]

-
71%|███████ | 3538202/4997817 [00:23&lt;00:09, 152891.32it/s]
+
69%|██████▊ | 3433544/4997817 [00:23&lt;00:10, 148981.12it/s]

</pre>

-
71%|███████ | 3538202/4997817 [00:23<00:09, 152891.32it/s]
+
69%|██████▊ | 3433544/4997817 [00:23<00:10, 148981.12it/s]

end{sphinxVerbatim}

-

71%|███████ | 3538202/4997817 [00:23<00:09, 152891.32it/s]

+

69%|██████▊ | 3433544/4997817 [00:23<00:10, 148981.12it/s]

-
71%|███████ | 3553492/4997817 [00:23&lt;00:09, 152523.70it/s]
+
69%|██████▉ | 3448517/4997817 [00:23&lt;00:10, 149201.74it/s]

</pre>

-
71%|███████ | 3553492/4997817 [00:23<00:09, 152523.70it/s]
+
69%|██████▉ | 3448517/4997817 [00:23<00:10, 149201.74it/s]

end{sphinxVerbatim}

-

71%|███████ | 3553492/4997817 [00:23<00:09, 152523.70it/s]

+

69%|██████▉ | 3448517/4997817 [00:23<00:10, 149201.74it/s]

-
71%|███████▏ | 3568866/4997817 [00:23&lt;00:09, 152854.30it/s]
+
69%|██████▉ | 3463463/4997817 [00:23&lt;00:10, 149277.82it/s]

</pre>

-
71%|███████▏ | 3568866/4997817 [00:23<00:09, 152854.30it/s]
+
69%|██████▉ | 3463463/4997817 [00:23<00:10, 149277.82it/s]

end{sphinxVerbatim}

-

71%|███████▏ | 3568866/4997817 [00:23<00:09, 152854.30it/s]

+

69%|██████▉ | 3463463/4997817 [00:23<00:10, 149277.82it/s]

-
72%|███████▏ | 3584239/4997817 [00:23&lt;00:09, 153113.31it/s]
+
70%|██████▉ | 3478486/4997817 [00:23&lt;00:10, 149559.40it/s]

</pre>

-
72%|███████▏ | 3584239/4997817 [00:23<00:09, 153113.31it/s]
+
70%|██████▉ | 3478486/4997817 [00:23<00:10, 149559.40it/s]

end{sphinxVerbatim}

-

72%|███████▏ | 3584239/4997817 [00:23<00:09, 153113.31it/s]

+

70%|██████▉ | 3478486/4997817 [00:23<00:10, 149559.40it/s]

-
72%|███████▏ | 3599641/4997817 [00:23&lt;00:09, 153382.50it/s]
+
70%|██████▉ | 3493500/4997817 [00:23&lt;00:10, 149731.40it/s]

</pre>

-
72%|███████▏ | 3599641/4997817 [00:23<00:09, 153382.50it/s]
+
70%|██████▉ | 3493500/4997817 [00:23<00:10, 149731.40it/s]

end{sphinxVerbatim}

-

72%|███████▏ | 3599641/4997817 [00:23<00:09, 153382.50it/s]

+

70%|██████▉ | 3493500/4997817 [00:23<00:10, 149731.40it/s]

-
72%|███████▏ | 3614980/4997817 [00:23&lt;00:09, 153219.90it/s]
+
70%|███████ | 3508475/4997817 [00:23&lt;00:09, 149355.57it/s]

</pre>

-
72%|███████▏ | 3614980/4997817 [00:23<00:09, 153219.90it/s]
+
70%|███████ | 3508475/4997817 [00:23<00:09, 149355.57it/s]

end{sphinxVerbatim}

-

72%|███████▏ | 3614980/4997817 [00:23<00:09, 153219.90it/s]

+

70%|███████ | 3508475/4997817 [00:23<00:09, 149355.57it/s]

-
73%|███████▎ | 3630303/4997817 [00:23&lt;00:08, 153103.44it/s]
+
70%|███████ | 3523448/4997817 [00:23&lt;00:09, 149463.06it/s]

</pre>

-
73%|███████▎ | 3630303/4997817 [00:23<00:08, 153103.44it/s]
+
70%|███████ | 3523448/4997817 [00:23<00:09, 149463.06it/s]

end{sphinxVerbatim}

-

73%|███████▎ | 3630303/4997817 [00:23<00:08, 153103.44it/s]

+

70%|███████ | 3523448/4997817 [00:23<00:09, 149463.06it/s]

-
73%|███████▎ | 3645666/4997817 [00:23&lt;00:08, 153258.04it/s]
+
71%|███████ | 3538396/4997817 [00:23&lt;00:09, 148811.09it/s]

</pre>

-
73%|███████▎ | 3645666/4997817 [00:23<00:08, 153258.04it/s]
+
71%|███████ | 3538396/4997817 [00:23<00:09, 148811.09it/s]

end{sphinxVerbatim}

-

73%|███████▎ | 3645666/4997817 [00:23<00:08, 153258.04it/s]

+

71%|███████ | 3538396/4997817 [00:23<00:09, 148811.09it/s]

-
73%|███████▎ | 3661037/4997817 [00:23&lt;00:08, 153391.00it/s]
+
71%|███████ | 3553386/4997817 [00:23&lt;00:09, 149134.03it/s]

</pre>

-
73%|███████▎ | 3661037/4997817 [00:23<00:08, 153391.00it/s]
+
71%|███████ | 3553386/4997817 [00:23<00:09, 149134.03it/s]

end{sphinxVerbatim}

-

73%|███████▎ | 3661037/4997817 [00:23<00:08, 153391.00it/s]

+

71%|███████ | 3553386/4997817 [00:23<00:09, 149134.03it/s]

-
74%|███████▎ | 3676396/4997817 [00:23&lt;00:08, 153447.74it/s]
+
71%|███████▏ | 3568325/4997817 [00:24&lt;00:09, 149206.80it/s]

</pre>

-
74%|███████▎ | 3676396/4997817 [00:23<00:08, 153447.74it/s]
+
71%|███████▏ | 3568325/4997817 [00:24<00:09, 149206.80it/s]

end{sphinxVerbatim}

-

74%|███████▎ | 3676396/4997817 [00:23<00:08, 153447.74it/s]

+

71%|███████▏ | 3568325/4997817 [00:24<00:09, 149206.80it/s]

-
74%|███████▍ | 3691779/4997817 [00:24&lt;00:08, 153559.00it/s]
+
72%|███████▏ | 3583404/4997817 [00:24&lt;00:09, 149679.49it/s]

</pre>

-
74%|███████▍ | 3691779/4997817 [00:24<00:08, 153559.00it/s]
+
72%|███████▏ | 3583404/4997817 [00:24<00:09, 149679.49it/s]

end{sphinxVerbatim}

-

74%|███████▍ | 3691779/4997817 [00:24<00:08, 153559.00it/s]

+

72%|███████▏ | 3583404/4997817 [00:24<00:09, 149679.49it/s]

-
74%|███████▍ | 3707135/4997817 [00:24&lt;00:08, 153499.64it/s]
+
72%|███████▏ | 3598373/4997817 [00:24&lt;00:09, 149631.28it/s]

</pre>

-
74%|███████▍ | 3707135/4997817 [00:24<00:08, 153499.64it/s]
+
72%|███████▏ | 3598373/4997817 [00:24<00:09, 149631.28it/s]

end{sphinxVerbatim}

-

74%|███████▍ | 3707135/4997817 [00:24<00:08, 153499.64it/s]

+

72%|███████▏ | 3598373/4997817 [00:24<00:09, 149631.28it/s]

-
74%|███████▍ | 3722486/4997817 [00:24&lt;00:08, 153335.52it/s]
+
72%|███████▏ | 3613551/4997817 [00:24&lt;00:09, 150271.66it/s]

</pre>

-
74%|███████▍ | 3722486/4997817 [00:24<00:08, 153335.52it/s]
+
72%|███████▏ | 3613551/4997817 [00:24<00:09, 150271.66it/s]

end{sphinxVerbatim}

-

74%|███████▍ | 3722486/4997817 [00:24<00:08, 153335.52it/s]

+

72%|███████▏ | 3613551/4997817 [00:24<00:09, 150271.66it/s]

-
75%|███████▍ | 3737911/4997817 [00:24&lt;00:08, 153606.19it/s]
+
73%|███████▎ | 3628626/4997817 [00:24&lt;00:09, 150412.06it/s]

</pre>

-
75%|███████▍ | 3737911/4997817 [00:24<00:08, 153606.19it/s]
+
73%|███████▎ | 3628626/4997817 [00:24<00:09, 150412.06it/s]

end{sphinxVerbatim}

-

75%|███████▍ | 3737911/4997817 [00:24<00:08, 153606.19it/s]

+

73%|███████▎ | 3628626/4997817 [00:24<00:09, 150412.06it/s]

-
75%|███████▌ | 3753366/4997817 [00:24&lt;00:08, 153887.83it/s]
+
73%|███████▎ | 3643668/4997817 [00:24&lt;00:09, 150397.28it/s]

</pre>

-
75%|███████▌ | 3753366/4997817 [00:24<00:08, 153887.83it/s]
+
73%|███████▎ | 3643668/4997817 [00:24<00:09, 150397.28it/s]

end{sphinxVerbatim}

-

75%|███████▌ | 3753366/4997817 [00:24<00:08, 153887.83it/s]

+

73%|███████▎ | 3643668/4997817 [00:24<00:09, 150397.28it/s]

-
75%|███████▌ | 3768778/4997817 [00:24&lt;00:07, 153954.62it/s]
+
73%|███████▎ | 3658708/4997817 [00:24&lt;00:08, 150269.23it/s]

</pre>

-
75%|███████▌ | 3768778/4997817 [00:24<00:07, 153954.62it/s]
+
73%|███████▎ | 3658708/4997817 [00:24<00:08, 150269.23it/s]

end{sphinxVerbatim}

-

75%|███████▌ | 3768778/4997817 [00:24<00:07, 153954.62it/s]

+

73%|███████▎ | 3658708/4997817 [00:24<00:08, 150269.23it/s]

-
76%|███████▌ | 3784257/4997817 [00:24&lt;00:07, 154203.63it/s]
+
74%|███████▎ | 3673736/4997817 [00:24&lt;00:08, 150258.33it/s]

</pre>

-
76%|███████▌ | 3784257/4997817 [00:24<00:07, 154203.63it/s]
+
74%|███████▎ | 3673736/4997817 [00:24<00:08, 150258.33it/s]

end{sphinxVerbatim}

-

76%|███████▌ | 3784257/4997817 [00:24<00:07, 154203.63it/s]

+

74%|███████▎ | 3673736/4997817 [00:24<00:08, 150258.33it/s]

-
76%|███████▌ | 3799678/4997817 [00:24&lt;00:07, 154022.21it/s]
+
74%|███████▍ | 3688762/4997817 [00:24&lt;00:08, 149854.99it/s]

</pre>

-
76%|███████▌ | 3799678/4997817 [00:24<00:07, 154022.21it/s]
+
74%|███████▍ | 3688762/4997817 [00:24<00:08, 149854.99it/s]

end{sphinxVerbatim}

-

76%|███████▌ | 3799678/4997817 [00:24<00:07, 154022.21it/s]

+

74%|███████▍ | 3688762/4997817 [00:24<00:08, 149854.99it/s]

-
76%|███████▋ | 3815093/4997817 [00:24&lt;00:07, 154058.13it/s]
+
74%|███████▍ | 3703809/4997817 [00:24&lt;00:08, 150024.53it/s]

</pre>

-
76%|███████▋ | 3815093/4997817 [00:24<00:07, 154058.13it/s]
+
74%|███████▍ | 3703809/4997817 [00:24<00:08, 150024.53it/s]

end{sphinxVerbatim}

-

76%|███████▋ | 3815093/4997817 [00:24<00:07, 154058.13it/s]

+

74%|███████▍ | 3703809/4997817 [00:24<00:08, 150024.53it/s]

-
77%|███████▋ | 3830531/4997817 [00:24&lt;00:07, 154154.11it/s]
+
74%|███████▍ | 3718812/4997817 [00:25&lt;00:08, 149963.47it/s]

</pre>

-
77%|███████▋ | 3830531/4997817 [00:24<00:07, 154154.11it/s]
+
74%|███████▍ | 3718812/4997817 [00:25<00:08, 149963.47it/s]

end{sphinxVerbatim}

-

77%|███████▋ | 3830531/4997817 [00:24<00:07, 154154.11it/s]

+

74%|███████▍ | 3718812/4997817 [00:25<00:08, 149963.47it/s]

-
77%|███████▋ | 3845947/4997817 [00:25&lt;00:07, 153835.24it/s]
+
75%|███████▍ | 3733809/4997817 [00:25&lt;00:08, 147131.86it/s]

</pre>

-
77%|███████▋ | 3845947/4997817 [00:25<00:07, 153835.24it/s]
+
75%|███████▍ | 3733809/4997817 [00:25<00:08, 147131.86it/s]

end{sphinxVerbatim}

-

77%|███████▋ | 3845947/4997817 [00:25<00:07, 153835.24it/s]

+

75%|███████▍ | 3733809/4997817 [00:25<00:08, 147131.86it/s]

-
77%|███████▋ | 3861331/4997817 [00:25&lt;00:07, 152363.39it/s]
+
75%|███████▌ | 3748534/4997817 [00:25&lt;00:08, 144968.10it/s]

</pre>

-
77%|███████▋ | 3861331/4997817 [00:25<00:07, 152363.39it/s]
+
75%|███████▌ | 3748534/4997817 [00:25<00:08, 144968.10it/s]

end{sphinxVerbatim}

-

77%|███████▋ | 3861331/4997817 [00:25<00:07, 152363.39it/s]

+

75%|███████▌ | 3748534/4997817 [00:25<00:08, 144968.10it/s]

-
78%|███████▊ | 3876571/4997817 [00:25&lt;00:07, 148257.54it/s]
+
75%|███████▌ | 3763502/4997817 [00:25&lt;00:08, 146351.45it/s]

</pre>

-
78%|███████▊ | 3876571/4997817 [00:25<00:07, 148257.54it/s]
+
75%|███████▌ | 3763502/4997817 [00:25<00:08, 146351.45it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 3876571/4997817 [00:25<00:07, 148257.54it/s]

+

75%|███████▌ | 3763502/4997817 [00:25<00:08, 146351.45it/s]

-
78%|███████▊ | 3892073/4997817 [00:25&lt;00:07, 150233.03it/s]
+
76%|███████▌ | 3778452/4997817 [00:25&lt;00:08, 147280.93it/s]

</pre>

-
78%|███████▊ | 3892073/4997817 [00:25<00:07, 150233.03it/s]
+
76%|███████▌ | 3778452/4997817 [00:25<00:08, 147280.93it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 3892073/4997817 [00:25<00:07, 150233.03it/s]

+

76%|███████▌ | 3778452/4997817 [00:25<00:08, 147280.93it/s]

-
78%|███████▊ | 3907535/4997817 [00:25&lt;00:07, 151525.34it/s]
+
76%|███████▌ | 3793500/4997817 [00:25&lt;00:08, 148227.46it/s]

</pre>

-
78%|███████▊ | 3907535/4997817 [00:25<00:07, 151525.34it/s]
+
76%|███████▌ | 3793500/4997817 [00:25<00:08, 148227.46it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 3907535/4997817 [00:25<00:07, 151525.34it/s]

+

76%|███████▌ | 3793500/4997817 [00:25<00:08, 148227.46it/s]

-
78%|███████▊ | 3923032/4997817 [00:25&lt;00:07, 152544.53it/s]
+
76%|███████▌ | 3808551/4997817 [00:25&lt;00:07, 148904.08it/s]

</pre>

-
78%|███████▊ | 3923032/4997817 [00:25<00:07, 152544.53it/s]
+
76%|███████▌ | 3808551/4997817 [00:25<00:07, 148904.08it/s]

end{sphinxVerbatim}

-

78%|███████▊ | 3923032/4997817 [00:25<00:07, 152544.53it/s]

+

76%|███████▌ | 3808551/4997817 [00:25<00:07, 148904.08it/s]

-
79%|███████▉ | 3938584/4997817 [00:25&lt;00:06, 153428.34it/s]
+
77%|███████▋ | 3823448/4997817 [00:25&lt;00:07, 148893.18it/s]

</pre>

-
79%|███████▉ | 3938584/4997817 [00:25<00:06, 153428.34it/s]
+
77%|███████▋ | 3823448/4997817 [00:25<00:07, 148893.18it/s]

end{sphinxVerbatim}

-

79%|███████▉ | 3938584/4997817 [00:25<00:06, 153428.34it/s]

+

77%|███████▋ | 3823448/4997817 [00:25<00:07, 148893.18it/s]

-
79%|███████▉ | 3954145/4997817 [00:25&lt;00:06, 154078.27it/s]
+
77%|███████▋ | 3838405/4997817 [00:25&lt;00:07, 149091.59it/s]

</pre>

-
79%|███████▉ | 3954145/4997817 [00:25<00:06, 154078.27it/s]
+
77%|███████▋ | 3838405/4997817 [00:25<00:07, 149091.59it/s]

end{sphinxVerbatim}

-

79%|███████▉ | 3954145/4997817 [00:25<00:06, 154078.27it/s]

+

77%|███████▋ | 3838405/4997817 [00:25<00:07, 149091.59it/s]

-
79%|███████▉ | 3969685/4997817 [00:25&lt;00:06, 154471.17it/s]
+
77%|███████▋ | 3853321/4997817 [00:25&lt;00:07, 149108.91it/s]

</pre>

-
79%|███████▉ | 3969685/4997817 [00:25<00:06, 154471.17it/s]
+
77%|███████▋ | 3853321/4997817 [00:25<00:07, 149108.91it/s]

end{sphinxVerbatim}

-

79%|███████▉ | 3969685/4997817 [00:25<00:06, 154471.17it/s]

+

77%|███████▋ | 3853321/4997817 [00:25<00:07, 149108.91it/s]

-
80%|███████▉ | 3985282/4997817 [00:25&lt;00:06, 154916.43it/s]
+
77%|███████▋ | 3868424/4997817 [00:26&lt;00:07, 149683.15it/s]

</pre>

-
80%|███████▉ | 3985282/4997817 [00:25<00:06, 154916.43it/s]
+
77%|███████▋ | 3868424/4997817 [00:26<00:07, 149683.15it/s]

end{sphinxVerbatim}

-

80%|███████▉ | 3985282/4997817 [00:25<00:06, 154916.43it/s]

+

77%|███████▋ | 3868424/4997817 [00:26<00:07, 149683.15it/s]

-
80%|████████ | 4000824/4997817 [00:26&lt;00:06, 155065.13it/s]
+
78%|███████▊ | 3883394/4997817 [00:26&lt;00:07, 149463.82it/s]

</pre>

-
80%|████████ | 4000824/4997817 [00:26<00:06, 155065.13it/s]
+
78%|███████▊ | 3883394/4997817 [00:26<00:07, 149463.82it/s]

end{sphinxVerbatim}

-

80%|████████ | 4000824/4997817 [00:26<00:06, 155065.13it/s]

+

78%|███████▊ | 3883394/4997817 [00:26<00:07, 149463.82it/s]

-
80%|████████ | 4016398/4997817 [00:26&lt;00:06, 155265.45it/s]
+
78%|███████▊ | 3898342/4997817 [00:26&lt;00:07, 149433.72it/s]

</pre>

-
80%|████████ | 4016398/4997817 [00:26<00:06, 155265.45it/s]
+
78%|███████▊ | 3898342/4997817 [00:26<00:07, 149433.72it/s]

end{sphinxVerbatim}

-

80%|████████ | 4016398/4997817 [00:26<00:06, 155265.45it/s]

+

78%|███████▊ | 3898342/4997817 [00:26<00:07, 149433.72it/s]

-
81%|████████ | 4031927/4997817 [00:26&lt;00:06, 155263.31it/s]
+
78%|███████▊ | 3913287/4997817 [00:26&lt;00:07, 149158.69it/s]

</pre>

-
81%|████████ | 4031927/4997817 [00:26<00:06, 155263.31it/s]
+
78%|███████▊ | 3913287/4997817 [00:26<00:07, 149158.69it/s]

end{sphinxVerbatim}

-

81%|████████ | 4031927/4997817 [00:26<00:06, 155263.31it/s]

+

78%|███████▊ | 3913287/4997817 [00:26<00:07, 149158.69it/s]

-
81%|████████ | 4047504/4997817 [00:26&lt;00:06, 155411.91it/s]
+
79%|███████▊ | 3928270/4997817 [00:26&lt;00:07, 149356.03it/s]

</pre>

-
81%|████████ | 4047504/4997817 [00:26<00:06, 155411.91it/s]
+
79%|███████▊ | 3928270/4997817 [00:26<00:07, 149356.03it/s]

end{sphinxVerbatim}

-

81%|████████ | 4047504/4997817 [00:26<00:06, 155411.91it/s]

+

79%|███████▊ | 3928270/4997817 [00:26<00:07, 149356.03it/s]

-
81%|████████▏ | 4063142/4997817 [00:26&lt;00:06, 155701.11it/s]
+
79%|███████▉ | 3943329/4997817 [00:26&lt;00:07, 149723.39it/s]

</pre>

-
81%|████████▏ | 4063142/4997817 [00:26<00:06, 155701.11it/s]
+
79%|███████▉ | 3943329/4997817 [00:26<00:07, 149723.39it/s]

end{sphinxVerbatim}

-

81%|████████▏ | 4063142/4997817 [00:26<00:06, 155701.11it/s]

+

79%|███████▉ | 3943329/4997817 [00:26<00:07, 149723.39it/s]

-
82%|████████▏ | 4078784/4997817 [00:26&lt;00:05, 155914.73it/s]
+
79%|███████▉ | 3958457/4997817 [00:26&lt;00:06, 150186.21it/s]

</pre>

-
82%|████████▏ | 4078784/4997817 [00:26<00:05, 155914.73it/s]
+
79%|███████▉ | 3958457/4997817 [00:26<00:06, 150186.21it/s]

end{sphinxVerbatim}

-

82%|████████▏ | 4078784/4997817 [00:26<00:05, 155914.73it/s]

+

79%|███████▉ | 3958457/4997817 [00:26<00:06, 150186.21it/s]

-
82%|████████▏ | 4094376/4997817 [00:26&lt;00:05, 155609.03it/s]
+
80%|███████▉ | 3973535/4997817 [00:26&lt;00:06, 150362.74it/s]

</pre>

-
82%|████████▏ | 4094376/4997817 [00:26<00:05, 155609.03it/s]
+
80%|███████▉ | 3973535/4997817 [00:26<00:06, 150362.74it/s]

end{sphinxVerbatim}

-

82%|████████▏ | 4094376/4997817 [00:26<00:05, 155609.03it/s]

+

80%|███████▉ | 3973535/4997817 [00:26<00:06, 150362.74it/s]

-
82%|████████▏ | 4109938/4997817 [00:26&lt;00:05, 155507.75it/s]
+
80%|███████▉ | 3988572/4997817 [00:26&lt;00:06, 150215.59it/s]

</pre>

-
82%|████████▏ | 4109938/4997817 [00:26<00:05, 155507.75it/s]
+
80%|███████▉ | 3988572/4997817 [00:26<00:06, 150215.59it/s]

end{sphinxVerbatim}

-

82%|████████▏ | 4109938/4997817 [00:26<00:05, 155507.75it/s]

+

80%|███████▉ | 3988572/4997817 [00:26<00:06, 150215.59it/s]

-
83%|████████▎ | 4125523/4997817 [00:26&lt;00:05, 155609.64it/s]
+
80%|████████ | 4003594/4997817 [00:26&lt;00:06, 150138.97it/s]

</pre>

-
83%|████████▎ | 4125523/4997817 [00:26<00:05, 155609.64it/s]
+
80%|████████ | 4003594/4997817 [00:26<00:06, 150138.97it/s]

end{sphinxVerbatim}

-

83%|████████▎ | 4125523/4997817 [00:26<00:05, 155609.64it/s]

+

80%|████████ | 4003594/4997817 [00:26<00:06, 150138.97it/s]

-
83%|████████▎ | 4141085/4997817 [00:27&lt;00:05, 155552.22it/s]
+
80%|████████ | 4018609/4997817 [00:27&lt;00:06, 149672.46it/s]

</pre>

-
83%|████████▎ | 4141085/4997817 [00:27<00:05, 155552.22it/s]
+
80%|████████ | 4018609/4997817 [00:27<00:06, 149672.46it/s]

end{sphinxVerbatim}

-

83%|████████▎ | 4141085/4997817 [00:27<00:05, 155552.22it/s]

+

80%|████████ | 4018609/4997817 [00:27<00:06, 149672.46it/s]

-
83%|████████▎ | 4156641/4997817 [00:27&lt;00:05, 155421.11it/s]
+
81%|████████ | 4033577/4997817 [00:27&lt;00:06, 149505.88it/s]

</pre>

-
83%|████████▎ | 4156641/4997817 [00:27<00:05, 155421.11it/s]
+
81%|████████ | 4033577/4997817 [00:27<00:06, 149505.88it/s]

end{sphinxVerbatim}

-

83%|████████▎ | 4156641/4997817 [00:27<00:05, 155421.11it/s]

+

81%|████████ | 4033577/4997817 [00:27<00:06, 149505.88it/s]

-
83%|████████▎ | 4172184/4997817 [00:27&lt;00:05, 155117.46it/s]
+
81%|████████ | 4048528/4997817 [00:27&lt;00:06, 149125.02it/s]

</pre>

-
83%|████████▎ | 4172184/4997817 [00:27<00:05, 155117.46it/s]
+
81%|████████ | 4048528/4997817 [00:27<00:06, 149125.02it/s]

end{sphinxVerbatim}

-

83%|████████▎ | 4172184/4997817 [00:27<00:05, 155117.46it/s]

+

81%|████████ | 4048528/4997817 [00:27<00:06, 149125.02it/s]

-
84%|████████▍ | 4187696/4997817 [00:27&lt;00:05, 154534.79it/s]
+
81%|████████▏ | 4063484/4997817 [00:27&lt;00:06, 149230.93it/s]

</pre>

-
84%|████████▍ | 4187696/4997817 [00:27<00:05, 154534.79it/s]
+
81%|████████▏ | 4063484/4997817 [00:27<00:06, 149230.93it/s]

end{sphinxVerbatim}

-

84%|████████▍ | 4187696/4997817 [00:27<00:05, 154534.79it/s]

+

81%|████████▏ | 4063484/4997817 [00:27<00:06, 149230.93it/s]

-
84%|████████▍ | 4203150/4997817 [00:27&lt;00:05, 154184.66it/s]
+
82%|████████▏ | 4078408/4997817 [00:27&lt;00:06, 148972.40it/s]

</pre>

-
84%|████████▍ | 4203150/4997817 [00:27<00:05, 154184.66it/s]
+
82%|████████▏ | 4078408/4997817 [00:27<00:06, 148972.40it/s]

end{sphinxVerbatim}

-

84%|████████▍ | 4203150/4997817 [00:27<00:05, 154184.66it/s]

+

82%|████████▏ | 4078408/4997817 [00:27<00:06, 148972.40it/s]

-
84%|████████▍ | 4218595/4997817 [00:27&lt;00:05, 154242.53it/s]
+
82%|████████▏ | 4093306/4997817 [00:27&lt;00:06, 148888.41it/s]

</pre>

-
84%|████████▍ | 4218595/4997817 [00:27<00:05, 154242.53it/s]
+
82%|████████▏ | 4093306/4997817 [00:27<00:06, 148888.41it/s]

end{sphinxVerbatim}

-

84%|████████▍ | 4218595/4997817 [00:27<00:05, 154242.53it/s]

+

82%|████████▏ | 4093306/4997817 [00:27<00:06, 148888.41it/s]

-
85%|████████▍ | 4234020/4997817 [00:27&lt;00:04, 154099.47it/s]
+
82%|████████▏ | 4108195/4997817 [00:27&lt;00:05, 148605.24it/s]

</pre>

-
85%|████████▍ | 4234020/4997817 [00:27<00:04, 154099.47it/s]
+
82%|████████▏ | 4108195/4997817 [00:27<00:05, 148605.24it/s]

end{sphinxVerbatim}

-

85%|████████▍ | 4234020/4997817 [00:27<00:04, 154099.47it/s]

+

82%|████████▏ | 4108195/4997817 [00:27<00:05, 148605.24it/s]

-
85%|████████▌ | 4249431/4997817 [00:27&lt;00:04, 153957.74it/s]
+
82%|████████▏ | 4123096/4997817 [00:27&lt;00:05, 148724.20it/s]

</pre>

-
85%|████████▌ | 4249431/4997817 [00:27<00:04, 153957.74it/s]
+
82%|████████▏ | 4123096/4997817 [00:27<00:05, 148724.20it/s]

end{sphinxVerbatim}

-

85%|████████▌ | 4249431/4997817 [00:27<00:04, 153957.74it/s]

+

82%|████████▏ | 4123096/4997817 [00:27<00:05, 148724.20it/s]

-
85%|████████▌ | 4264935/4997817 [00:27&lt;00:04, 154279.92it/s]
+
83%|████████▎ | 4137986/4997817 [00:27&lt;00:05, 148775.81it/s]

</pre>

-
85%|████████▌ | 4264935/4997817 [00:27<00:04, 154279.92it/s]
+
83%|████████▎ | 4137986/4997817 [00:27<00:05, 148775.81it/s]

end{sphinxVerbatim}

-

85%|████████▌ | 4264935/4997817 [00:27<00:04, 154279.92it/s]

+

83%|████████▎ | 4137986/4997817 [00:27<00:05, 148775.81it/s]

-
86%|████████▌ | 4280381/4997817 [00:27&lt;00:04, 154332.23it/s]
+
83%|████████▎ | 4152864/4997817 [00:27&lt;00:05, 147916.84it/s]

</pre>

-
86%|████████▌ | 4280381/4997817 [00:27<00:04, 154332.23it/s]
+
83%|████████▎ | 4152864/4997817 [00:27<00:05, 147916.84it/s]

end{sphinxVerbatim}

-

86%|████████▌ | 4280381/4997817 [00:27<00:04, 154332.23it/s]

+

83%|████████▎ | 4152864/4997817 [00:27<00:05, 147916.84it/s]

-
86%|████████▌ | 4295885/4997817 [00:28&lt;00:04, 154541.78it/s]
+
83%|████████▎ | 4168079/4997817 [00:28&lt;00:05, 149178.91it/s]

</pre>

-
86%|████████▌ | 4295885/4997817 [00:28<00:04, 154541.78it/s]
+
83%|████████▎ | 4168079/4997817 [00:28<00:05, 149178.91it/s]

end{sphinxVerbatim}

-

86%|████████▌ | 4295885/4997817 [00:28<00:04, 154541.78it/s]

+

83%|████████▎ | 4168079/4997817 [00:28<00:05, 149178.91it/s]

-
86%|████████▋ | 4311340/4997817 [00:28&lt;00:04, 154233.71it/s]
+
84%|████████▎ | 4182999/4997817 [00:28&lt;00:05, 148754.10it/s]

</pre>

-
86%|████████▋ | 4311340/4997817 [00:28<00:04, 154233.71it/s]
+
84%|████████▎ | 4182999/4997817 [00:28<00:05, 148754.10it/s]

end{sphinxVerbatim}

-

86%|████████▋ | 4311340/4997817 [00:28<00:04, 154233.71it/s]

+

84%|████████▎ | 4182999/4997817 [00:28<00:05, 148754.10it/s]

-
87%|████████▋ | 4326764/4997817 [00:28&lt;00:04, 153934.37it/s]
+
84%|████████▍ | 4197876/4997817 [00:28&lt;00:05, 148338.85it/s]

</pre>

-
87%|████████▋ | 4326764/4997817 [00:28<00:04, 153934.37it/s]
+
84%|████████▍ | 4197876/4997817 [00:28<00:05, 148338.85it/s]

end{sphinxVerbatim}

-

87%|████████▋ | 4326764/4997817 [00:28<00:04, 153934.37it/s]

+

84%|████████▍ | 4197876/4997817 [00:28<00:05, 148338.85it/s]

-
87%|████████▋ | 4342158/4997817 [00:28&lt;00:04, 153797.99it/s]
+
84%|████████▍ | 4212711/4997817 [00:28&lt;00:05, 148033.59it/s]

</pre>

-
87%|████████▋ | 4342158/4997817 [00:28<00:04, 153797.99it/s]
+
84%|████████▍ | 4212711/4997817 [00:28<00:05, 148033.59it/s]

end{sphinxVerbatim}

-

87%|████████▋ | 4342158/4997817 [00:28<00:04, 153797.99it/s]

+

84%|████████▍ | 4212711/4997817 [00:28<00:05, 148033.59it/s]

-
87%|████████▋ | 4357619/4997817 [00:28&lt;00:04, 154038.91it/s]
+
85%|████████▍ | 4227532/4997817 [00:28&lt;00:05, 148084.81it/s]

</pre>

-
87%|████████▋ | 4357619/4997817 [00:28<00:04, 154038.91it/s]
+
85%|████████▍ | 4227532/4997817 [00:28<00:05, 148084.81it/s]

end{sphinxVerbatim}

-

87%|████████▋ | 4357619/4997817 [00:28<00:04, 154038.91it/s]

+

85%|████████▍ | 4227532/4997817 [00:28<00:05, 148084.81it/s]

-
88%|████████▊ | 4373121/4997817 [00:28&lt;00:04, 154329.55it/s]
+
85%|████████▍ | 4242341/4997817 [00:28&lt;00:05, 147336.76it/s]

</pre>

-
88%|████████▊ | 4373121/4997817 [00:28<00:04, 154329.55it/s]
+
85%|████████▍ | 4242341/4997817 [00:28<00:05, 147336.76it/s]

end{sphinxVerbatim}

-

88%|████████▊ | 4373121/4997817 [00:28<00:04, 154329.55it/s]

+

85%|████████▍ | 4242341/4997817 [00:28<00:05, 147336.76it/s]

-
88%|████████▊ | 4388575/4997817 [00:28&lt;00:03, 154391.98it/s]
+
85%|████████▌ | 4257276/4997817 [00:28&lt;00:05, 147934.28it/s]

</pre>

-
88%|████████▊ | 4388575/4997817 [00:28<00:03, 154391.98it/s]
+
85%|████████▌ | 4257276/4997817 [00:28<00:05, 147934.28it/s]

end{sphinxVerbatim}

-

88%|████████▊ | 4388575/4997817 [00:28<00:03, 154391.98it/s]

+

85%|████████▌ | 4257276/4997817 [00:28<00:05, 147934.28it/s]

-
88%|████████▊ | 4404026/4997817 [00:28&lt;00:03, 154426.41it/s]
+
85%|████████▌ | 4272071/4997817 [00:28&lt;00:04, 147925.43it/s]

</pre>

-
88%|████████▊ | 4404026/4997817 [00:28<00:03, 154426.41it/s]
+
85%|████████▌ | 4272071/4997817 [00:28<00:04, 147925.43it/s]

end{sphinxVerbatim}

-

88%|████████▊ | 4404026/4997817 [00:28<00:03, 154426.41it/s]

+

85%|████████▌ | 4272071/4997817 [00:28<00:04, 147925.43it/s]

-
88%|████████▊ | 4419469/4997817 [00:28&lt;00:03, 154210.38it/s]
+
86%|████████▌ | 4286975/4997817 [00:28&lt;00:04, 148255.65it/s]

</pre>

-
88%|████████▊ | 4419469/4997817 [00:28<00:03, 154210.38it/s]
+
86%|████████▌ | 4286975/4997817 [00:28<00:04, 148255.65it/s]

end{sphinxVerbatim}

-

88%|████████▊ | 4419469/4997817 [00:28<00:03, 154210.38it/s]

+

86%|████████▌ | 4286975/4997817 [00:28<00:04, 148255.65it/s]

-
89%|████████▊ | 4434891/4997817 [00:28&lt;00:03, 154138.11it/s]
+
86%|████████▌ | 4301802/4997817 [00:28&lt;00:04, 148247.61it/s]

</pre>

-
89%|████████▊ | 4434891/4997817 [00:28<00:03, 154138.11it/s]
+
86%|████████▌ | 4301802/4997817 [00:28<00:04, 148247.61it/s]

end{sphinxVerbatim}

-

89%|████████▊ | 4434891/4997817 [00:28<00:03, 154138.11it/s]

+

86%|████████▌ | 4301802/4997817 [00:28<00:04, 148247.61it/s]

-
89%|████████▉ | 4450305/4997817 [00:29&lt;00:03, 154134.10it/s]
+
86%|████████▋ | 4316680/4997817 [00:29&lt;00:04, 148405.11it/s]

</pre>

-
89%|████████▉ | 4450305/4997817 [00:29<00:03, 154134.10it/s]
+
86%|████████▋ | 4316680/4997817 [00:29<00:04, 148405.11it/s]

end{sphinxVerbatim}

-

89%|████████▉ | 4450305/4997817 [00:29<00:03, 154134.10it/s]

+

86%|████████▋ | 4316680/4997817 [00:29<00:04, 148405.11it/s]

-
89%|████████▉ | 4465719/4997817 [00:29&lt;00:03, 154121.48it/s]
+
87%|████████▋ | 4331521/4997817 [00:29&lt;00:04, 148218.44it/s]

</pre>

-
89%|████████▉ | 4465719/4997817 [00:29<00:03, 154121.48it/s]
+
87%|████████▋ | 4331521/4997817 [00:29<00:04, 148218.44it/s]

end{sphinxVerbatim}

-

89%|████████▉ | 4465719/4997817 [00:29<00:03, 154121.48it/s]

+

87%|████████▋ | 4331521/4997817 [00:29<00:04, 148218.44it/s]

-
90%|████████▉ | 4481174/4997817 [00:29&lt;00:03, 154247.34it/s]
+
87%|████████▋ | 4346405/4997817 [00:29&lt;00:04, 148402.52it/s]

</pre>

-
90%|████████▉ | 4481174/4997817 [00:29<00:03, 154247.34it/s]
+
87%|████████▋ | 4346405/4997817 [00:29<00:04, 148402.52it/s]

end{sphinxVerbatim}

-

90%|████████▉ | 4481174/4997817 [00:29<00:03, 154247.34it/s]

+

87%|████████▋ | 4346405/4997817 [00:29<00:04, 148402.52it/s]

-
90%|████████▉ | 4496599/4997817 [00:29&lt;00:03, 154208.17it/s]
+
87%|████████▋ | 4361268/4997817 [00:29&lt;00:04, 148468.29it/s]

</pre>

-
90%|████████▉ | 4496599/4997817 [00:29<00:03, 154208.17it/s]
+
87%|████████▋ | 4361268/4997817 [00:29<00:04, 148468.29it/s]

end{sphinxVerbatim}

-

90%|████████▉ | 4496599/4997817 [00:29<00:03, 154208.17it/s]

+

87%|████████▋ | 4361268/4997817 [00:29<00:04, 148468.29it/s]

-
90%|█████████ | 4512066/4997817 [00:29&lt;00:03, 154345.14it/s]
+
88%|████████▊ | 4376190/4997817 [00:29&lt;00:04, 148692.17it/s]

</pre>

-
90%|█████████ | 4512066/4997817 [00:29<00:03, 154345.14it/s]
+
88%|████████▊ | 4376190/4997817 [00:29<00:04, 148692.17it/s]

end{sphinxVerbatim}

-

90%|█████████ | 4512066/4997817 [00:29<00:03, 154345.14it/s]

+

88%|████████▊ | 4376190/4997817 [00:29<00:04, 148692.17it/s]

-
91%|█████████ | 4527501/4997817 [00:29&lt;00:03, 153705.84it/s]
+
88%|████████▊ | 4391060/4997817 [00:29&lt;00:04, 148605.96it/s]

</pre>

-
91%|█████████ | 4527501/4997817 [00:29<00:03, 153705.84it/s]
+
88%|████████▊ | 4391060/4997817 [00:29<00:04, 148605.96it/s]

end{sphinxVerbatim}

-

91%|█████████ | 4527501/4997817 [00:29<00:03, 153705.84it/s]

+

88%|████████▊ | 4391060/4997817 [00:29<00:04, 148605.96it/s]

-
91%|█████████ | 4542978/4997817 [00:29&lt;00:02, 154023.13it/s]
+
88%|████████▊ | 4405921/4997817 [00:29&lt;00:03, 148210.23it/s]

</pre>

-
91%|█████████ | 4542978/4997817 [00:29<00:02, 154023.13it/s]
+
88%|████████▊ | 4405921/4997817 [00:29<00:03, 148210.23it/s]

end{sphinxVerbatim}

-

91%|█████████ | 4542978/4997817 [00:29<00:02, 154023.13it/s]

+

88%|████████▊ | 4405921/4997817 [00:29<00:03, 148210.23it/s]

-
91%|█████████ | 4558492/4997817 [00:29&lt;00:02, 154356.16it/s]
+
88%|████████▊ | 4420946/4997817 [00:29&lt;00:03, 148818.58it/s]

</pre>

-
91%|█████████ | 4558492/4997817 [00:29<00:02, 154356.16it/s]
+
88%|████████▊ | 4420946/4997817 [00:29<00:03, 148818.58it/s]

end{sphinxVerbatim}

-

91%|█████████ | 4558492/4997817 [00:29<00:02, 154356.16it/s]

+

88%|████████▊ | 4420946/4997817 [00:29<00:03, 148818.58it/s]

-
92%|█████████▏| 4573936/4997817 [00:29&lt;00:02, 154379.11it/s]
+
89%|████████▉ | 4435904/4997817 [00:29&lt;00:03, 149042.50it/s]

</pre>

-
92%|█████████▏| 4573936/4997817 [00:29<00:02, 154379.11it/s]
+
89%|████████▉ | 4435904/4997817 [00:29<00:03, 149042.50it/s]

end{sphinxVerbatim}

-

92%|█████████▏| 4573936/4997817 [00:29<00:02, 154379.11it/s]

+

89%|████████▉ | 4435904/4997817 [00:29<00:03, 149042.50it/s]

-
92%|█████████▏| 4589375/4997817 [00:29&lt;00:02, 153899.17it/s]
+
89%|████████▉ | 4450809/4997817 [00:29&lt;00:03, 148696.48it/s]

</pre>

-
92%|█████████▏| 4589375/4997817 [00:29<00:02, 153899.17it/s]
+
89%|████████▉ | 4450809/4997817 [00:29<00:03, 148696.48it/s]

end{sphinxVerbatim}

-

92%|█████████▏| 4589375/4997817 [00:29<00:02, 153899.17it/s]

+

89%|████████▉ | 4450809/4997817 [00:29<00:03, 148696.48it/s]

-
92%|█████████▏| 4604778/4997817 [00:30&lt;00:02, 153936.92it/s]
+
89%|████████▉ | 4465679/4997817 [00:30&lt;00:03, 148391.39it/s]

</pre>

-
92%|█████████▏| 4604778/4997817 [00:30<00:02, 153936.92it/s]
+
89%|████████▉ | 4465679/4997817 [00:30<00:03, 148391.39it/s]

end{sphinxVerbatim}

-

92%|█████████▏| 4604778/4997817 [00:30<00:02, 153936.92it/s]

+

89%|████████▉ | 4465679/4997817 [00:30<00:03, 148391.39it/s]

-
92%|█████████▏| 4620173/4997817 [00:30&lt;00:02, 153820.99it/s]
+
90%|████████▉ | 4480592/4997817 [00:30&lt;00:03, 148609.55it/s]

</pre>

-
92%|█████████▏| 4620173/4997817 [00:30<00:02, 153820.99it/s]
+
90%|████████▉ | 4480592/4997817 [00:30<00:03, 148609.55it/s]

end{sphinxVerbatim}

-

92%|█████████▏| 4620173/4997817 [00:30<00:02, 153820.99it/s]

+

90%|████████▉ | 4480592/4997817 [00:30<00:03, 148609.55it/s]

-
93%|█████████▎| 4635556/4997817 [00:30&lt;00:02, 153371.69it/s]
+
90%|████████▉ | 4495454/4997817 [00:30&lt;00:03, 148415.61it/s]

</pre>

-
93%|█████████▎| 4635556/4997817 [00:30<00:02, 153371.69it/s]
+
90%|████████▉ | 4495454/4997817 [00:30<00:03, 148415.61it/s]

end{sphinxVerbatim}

-

93%|█████████▎| 4635556/4997817 [00:30<00:02, 153371.69it/s]

+

90%|████████▉ | 4495454/4997817 [00:30<00:03, 148415.61it/s]

-
93%|█████████▎| 4650894/4997817 [00:30&lt;00:02, 153092.36it/s]
+
90%|█████████ | 4510296/4997817 [00:30&lt;00:03, 148236.01it/s]

</pre>

-
93%|█████████▎| 4650894/4997817 [00:30<00:02, 153092.36it/s]
+
90%|█████████ | 4510296/4997817 [00:30<00:03, 148236.01it/s]

end{sphinxVerbatim}

-

93%|█████████▎| 4650894/4997817 [00:30<00:02, 153092.36it/s]

+

90%|█████████ | 4510296/4997817 [00:30<00:03, 148236.01it/s]

-
93%|█████████▎| 4666439/4997817 [00:30&lt;00:02, 153793.34it/s]
+
91%|█████████ | 4525201/4997817 [00:30&lt;00:03, 148476.86it/s]

</pre>

-
93%|█████████▎| 4666439/4997817 [00:30<00:02, 153793.34it/s]
+
91%|█████████ | 4525201/4997817 [00:30<00:03, 148476.86it/s]

end{sphinxVerbatim}

-

93%|█████████▎| 4666439/4997817 [00:30<00:02, 153793.34it/s]

+

91%|█████████ | 4525201/4997817 [00:30<00:03, 148476.86it/s]

-
94%|█████████▎| 4682119/4997817 [00:30&lt;00:02, 154691.04it/s]
+
91%|█████████ | 4540137/4997817 [00:30&lt;00:03, 148739.87it/s]

</pre>

-
94%|█████████▎| 4682119/4997817 [00:30<00:02, 154691.04it/s]
+
91%|█████████ | 4540137/4997817 [00:30<00:03, 148739.87it/s]

end{sphinxVerbatim}

-

94%|█████████▎| 4682119/4997817 [00:30<00:02, 154691.04it/s]

+

91%|█████████ | 4540137/4997817 [00:30<00:03, 148739.87it/s]

-
94%|█████████▍| 4697589/4997817 [00:30&lt;00:01, 154604.14it/s]
+
91%|█████████ | 4555012/4997817 [00:30&lt;00:02, 148724.36it/s]

</pre>

-
94%|█████████▍| 4697589/4997817 [00:30<00:01, 154604.14it/s]
+
91%|█████████ | 4555012/4997817 [00:30<00:02, 148724.36it/s]

end{sphinxVerbatim}

-

94%|█████████▍| 4697589/4997817 [00:30<00:01, 154604.14it/s]

+

91%|█████████ | 4555012/4997817 [00:30<00:02, 148724.36it/s]

-
94%|█████████▍| 4713125/4997817 [00:30&lt;00:01, 154828.68it/s]
+
91%|█████████▏| 4569885/4997817 [00:30&lt;00:02, 148218.47it/s]

</pre>

-
94%|█████████▍| 4713125/4997817 [00:30<00:01, 154828.68it/s]
+
91%|█████████▏| 4569885/4997817 [00:30<00:02, 148218.47it/s]

end{sphinxVerbatim}

-

94%|█████████▍| 4713125/4997817 [00:30<00:01, 154828.68it/s]

+

91%|█████████▏| 4569885/4997817 [00:30<00:02, 148218.47it/s]

-
95%|█████████▍| 4728632/4997817 [00:30&lt;00:01, 154898.93it/s]
+
92%|█████████▏| 4584708/4997817 [00:30&lt;00:02, 148107.90it/s]

</pre>

-
95%|█████████▍| 4728632/4997817 [00:30<00:01, 154898.93it/s]
+
92%|█████████▏| 4584708/4997817 [00:30<00:02, 148107.90it/s]

end{sphinxVerbatim}

-

95%|█████████▍| 4728632/4997817 [00:30<00:01, 154898.93it/s]

+

92%|█████████▏| 4584708/4997817 [00:30<00:02, 148107.90it/s]

-
95%|█████████▍| 4744143/4997817 [00:30&lt;00:01, 154959.25it/s]
+
92%|█████████▏| 4599520/4997817 [00:30&lt;00:02, 147382.48it/s]

</pre>

-
95%|█████████▍| 4744143/4997817 [00:30<00:01, 154959.25it/s]
+
92%|█████████▏| 4599520/4997817 [00:30<00:02, 147382.48it/s]

end{sphinxVerbatim}

-

95%|█████████▍| 4744143/4997817 [00:30<00:01, 154959.25it/s]

+

92%|█████████▏| 4599520/4997817 [00:30<00:02, 147382.48it/s]

-
95%|█████████▌| 4759678/4997817 [00:31&lt;00:01, 155073.46it/s]
+
92%|█████████▏| 4614260/4997817 [00:31&lt;00:02, 147171.43it/s]

</pre>

-
95%|█████████▌| 4759678/4997817 [00:31<00:01, 155073.46it/s]
+
92%|█████████▏| 4614260/4997817 [00:31<00:02, 147171.43it/s]

end{sphinxVerbatim}

-

95%|█████████▌| 4759678/4997817 [00:31<00:01, 155073.46it/s]

+

92%|█████████▏| 4614260/4997817 [00:31<00:02, 147171.43it/s]

-
96%|█████████▌| 4775186/4997817 [00:31&lt;00:01, 154917.52it/s]
+
93%|█████████▎| 4628978/4997817 [00:31&lt;00:02, 146910.50it/s]

</pre>

-
96%|█████████▌| 4775186/4997817 [00:31<00:01, 154917.52it/s]
+
93%|█████████▎| 4628978/4997817 [00:31<00:02, 146910.50it/s]

end{sphinxVerbatim}

-

96%|█████████▌| 4775186/4997817 [00:31<00:01, 154917.52it/s]

+

93%|█████████▎| 4628978/4997817 [00:31<00:02, 146910.50it/s]

-
96%|█████████▌| 4790721/4997817 [00:31&lt;00:01, 155045.85it/s]
+
93%|█████████▎| 4643877/4997817 [00:31&lt;00:02, 147529.63it/s]

</pre>

-
96%|█████████▌| 4790721/4997817 [00:31<00:01, 155045.85it/s]
+
93%|█████████▎| 4643877/4997817 [00:31<00:02, 147529.63it/s]

end{sphinxVerbatim}

-

96%|█████████▌| 4790721/4997817 [00:31<00:01, 155045.85it/s]

+

93%|█████████▎| 4643877/4997817 [00:31<00:02, 147529.63it/s]

-
96%|█████████▌| 4806226/4997817 [00:31&lt;00:01, 154851.24it/s]
+
93%|█████████▎| 4658676/4997817 [00:31&lt;00:02, 147663.65it/s]

</pre>

-
96%|█████████▌| 4806226/4997817 [00:31<00:01, 154851.24it/s]
+
93%|█████████▎| 4658676/4997817 [00:31<00:02, 147663.65it/s]

end{sphinxVerbatim}

-

96%|█████████▌| 4806226/4997817 [00:31<00:01, 154851.24it/s]

+

93%|█████████▎| 4658676/4997817 [00:31<00:02, 147663.65it/s]

-
96%|█████████▋| 4821712/4997817 [00:31&lt;00:01, 154804.70it/s]
+
94%|█████████▎| 4673466/4997817 [00:31&lt;00:02, 147733.38it/s]

</pre>

-
96%|█████████▋| 4821712/4997817 [00:31<00:01, 154804.70it/s]
+
94%|█████████▎| 4673466/4997817 [00:31<00:02, 147733.38it/s]

end{sphinxVerbatim}

-

96%|█████████▋| 4821712/4997817 [00:31<00:01, 154804.70it/s]

+

94%|█████████▎| 4673466/4997817 [00:31<00:02, 147733.38it/s]

-
97%|█████████▋| 4837193/4997817 [00:31&lt;00:01, 154721.44it/s]
+
94%|█████████▍| 4688278/4997817 [00:31&lt;00:02, 147847.75it/s]

</pre>

-
97%|█████████▋| 4837193/4997817 [00:31<00:01, 154721.44it/s]
+
94%|█████████▍| 4688278/4997817 [00:31<00:02, 147847.75it/s]

end{sphinxVerbatim}

-

97%|█████████▋| 4837193/4997817 [00:31<00:01, 154721.44it/s]

+

94%|█████████▍| 4688278/4997817 [00:31<00:02, 147847.75it/s]

-
97%|█████████▋| 4852747/4997817 [00:31&lt;00:00, 154964.32it/s]
+
94%|█████████▍| 4703187/4997817 [00:31&lt;00:01, 148218.46it/s]

</pre>

-
97%|█████████▋| 4852747/4997817 [00:31<00:00, 154964.32it/s]
+
94%|█████████▍| 4703187/4997817 [00:31<00:01, 148218.46it/s]

end{sphinxVerbatim}

-

97%|█████████▋| 4852747/4997817 [00:31<00:00, 154964.32it/s]

+

94%|█████████▍| 4703187/4997817 [00:31<00:01, 148218.46it/s]

-
97%|█████████▋| 4868310/4997817 [00:31&lt;00:00, 155162.34it/s]
+
94%|█████████▍| 4718010/4997817 [00:31&lt;00:01, 148126.26it/s]

</pre>

-
97%|█████████▋| 4868310/4997817 [00:31<00:00, 155162.34it/s]
+
94%|█████████▍| 4718010/4997817 [00:31<00:01, 148126.26it/s]

end{sphinxVerbatim}

-

97%|█████████▋| 4868310/4997817 [00:31<00:00, 155162.34it/s]

+

94%|█████████▍| 4718010/4997817 [00:31<00:01, 148126.26it/s]

-
98%|█████████▊| 4883827/4997817 [00:31&lt;00:00, 155073.23it/s]
+
95%|█████████▍| 4732860/4997817 [00:31&lt;00:01, 148236.19it/s]

</pre>

-
98%|█████████▊| 4883827/4997817 [00:31<00:00, 155073.23it/s]
+
95%|█████████▍| 4732860/4997817 [00:31<00:01, 148236.19it/s]

end{sphinxVerbatim}

-

98%|█████████▊| 4883827/4997817 [00:31<00:00, 155073.23it/s]

+

95%|█████████▍| 4732860/4997817 [00:31<00:01, 148236.19it/s]

-
98%|█████████▊| 4899377/4997817 [00:31&lt;00:00, 155200.09it/s]
+
95%|█████████▍| 4747684/4997817 [00:31&lt;00:01, 147668.07it/s]

</pre>

-
98%|█████████▊| 4899377/4997817 [00:31<00:00, 155200.09it/s]
+
95%|█████████▍| 4747684/4997817 [00:31<00:01, 147668.07it/s]

end{sphinxVerbatim}

-

98%|█████████▊| 4899377/4997817 [00:31<00:00, 155200.09it/s]

+

95%|█████████▍| 4747684/4997817 [00:31<00:01, 147668.07it/s]

-
98%|█████████▊| 4914979/4997817 [00:32&lt;00:00, 155442.29it/s]
+
95%|█████████▌| 4762518/4997817 [00:32&lt;00:01, 147866.52it/s]

</pre>

-
98%|█████████▊| 4914979/4997817 [00:32<00:00, 155442.29it/s]
+
95%|█████████▌| 4762518/4997817 [00:32<00:01, 147866.52it/s]

end{sphinxVerbatim}

-

98%|█████████▊| 4914979/4997817 [00:32<00:00, 155442.29it/s]

+

95%|█████████▌| 4762518/4997817 [00:32<00:01, 147866.52it/s]

-
99%|█████████▊| 4930524/4997817 [00:32&lt;00:00, 155279.46it/s]
+
96%|█████████▌| 4777306/4997817 [00:32&lt;00:01, 147807.41it/s]

</pre>

-
99%|█████████▊| 4930524/4997817 [00:32<00:00, 155279.46it/s]
+
96%|█████████▌| 4777306/4997817 [00:32<00:01, 147807.41it/s]

end{sphinxVerbatim}

-

99%|█████████▊| 4930524/4997817 [00:32<00:00, 155279.46it/s]

+

96%|█████████▌| 4777306/4997817 [00:32<00:01, 147807.41it/s]

-
99%|█████████▉| 4946053/4997817 [00:32&lt;00:00, 155209.47it/s]
+
96%|█████████▌| 4792088/4997817 [00:32&lt;00:01, 147635.94it/s]

</pre>

-
99%|█████████▉| 4946053/4997817 [00:32<00:00, 155209.47it/s]
+
96%|█████████▌| 4792088/4997817 [00:32<00:01, 147635.94it/s]

end{sphinxVerbatim}

-

99%|█████████▉| 4946053/4997817 [00:32<00:00, 155209.47it/s]

+

96%|█████████▌| 4792088/4997817 [00:32<00:01, 147635.94it/s]

-
99%|█████████▉| 4961574/4997817 [00:32&lt;00:00, 155197.03it/s]
+
96%|█████████▌| 4806931/4997817 [00:32&lt;00:01, 147869.15it/s]

</pre>

-
99%|█████████▉| 4961574/4997817 [00:32<00:00, 155197.03it/s]
+
96%|█████████▌| 4806931/4997817 [00:32<00:01, 147869.15it/s]

end{sphinxVerbatim}

-

99%|█████████▉| 4961574/4997817 [00:32<00:00, 155197.03it/s]

+

96%|█████████▌| 4806931/4997817 [00:32<00:01, 147869.15it/s]

-
+
-
-
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
96%|█████████▋| 4821719/4997817 [00:32&lt;00:01, 147691.24it/s]
+

</pre>

+
+
+
96%|█████████▋| 4821719/4997817 [00:32<00:01, 147691.24it/s]
+

end{sphinxVerbatim}

+
+
+
+

96%|█████████▋| 4821719/4997817 [00:32<00:01, 147691.24it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
97%|█████████▋| 4836489/4997817 [00:32&lt;00:01, 147414.71it/s]
+

</pre>

+
+
+
97%|█████████▋| 4836489/4997817 [00:32<00:01, 147414.71it/s]
+

end{sphinxVerbatim}

+
+
+
+

97%|█████████▋| 4836489/4997817 [00:32<00:01, 147414.71it/s]

+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
-
100%|█████████▉| 4977094/4997817 [00:32&lt;00:00, 154982.09it/s]
+
97%|█████████▋| 4851231/4997817 [00:32&lt;00:00, 147350.64it/s]

</pre>

-
100%|█████████▉| 4977094/4997817 [00:32<00:00, 154982.09it/s]
+
97%|█████████▋| 4851231/4997817 [00:32<00:00, 147350.64it/s]

end{sphinxVerbatim}

-

100%|█████████▉| 4977094/4997817 [00:32<00:00, 154982.09it/s]

+

97%|█████████▋| 4851231/4997817 [00:32<00:00, 147350.64it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
97%|█████████▋| 4865967/4997817 [00:32&lt;00:00, 147151.74it/s]
+

</pre>

+
+
+
97%|█████████▋| 4865967/4997817 [00:32<00:00, 147151.74it/s]
+

end{sphinxVerbatim}

+
+
+
+

97%|█████████▋| 4865967/4997817 [00:32<00:00, 147151.74it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
98%|█████████▊| 4880683/4997817 [00:32&lt;00:00, 147009.40it/s]
+

</pre>

+
+
+
98%|█████████▊| 4880683/4997817 [00:32<00:00, 147009.40it/s]
+

end{sphinxVerbatim}

+
+
+
+

98%|█████████▊| 4880683/4997817 [00:32<00:00, 147009.40it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
98%|█████████▊| 4895417/4997817 [00:32&lt;00:00, 147105.65it/s]
+

</pre>

+
+
+
98%|█████████▊| 4895417/4997817 [00:32<00:00, 147105.65it/s]
+

end{sphinxVerbatim}

+
+
+
+

98%|█████████▊| 4895417/4997817 [00:32<00:00, 147105.65it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
98%|█████████▊| 4910128/4997817 [00:33&lt;00:00, 146428.75it/s]
+

</pre>

+
+
+
98%|█████████▊| 4910128/4997817 [00:33<00:00, 146428.75it/s]
+

end{sphinxVerbatim}

+
+
+
+

98%|█████████▊| 4910128/4997817 [00:33<00:00, 146428.75it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
99%|█████████▊| 4924962/4997817 [00:33&lt;00:00, 146996.28it/s]
+

</pre>

+
+
+
99%|█████████▊| 4924962/4997817 [00:33<00:00, 146996.28it/s]
+

end{sphinxVerbatim}

+
+
+
+

99%|█████████▊| 4924962/4997817 [00:33<00:00, 146996.28it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
99%|█████████▉| 4939828/4997817 [00:33&lt;00:00, 147491.15it/s]
+

</pre>

+
+
+
99%|█████████▉| 4939828/4997817 [00:33<00:00, 147491.15it/s]
+

end{sphinxVerbatim}

+
+
+
+

99%|█████████▉| 4939828/4997817 [00:33<00:00, 147491.15it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
99%|█████████▉| 4954680/4997817 [00:33&lt;00:00, 147795.26it/s]
+

</pre>

+
+
+
99%|█████████▉| 4954680/4997817 [00:33<00:00, 147795.26it/s]
+

end{sphinxVerbatim}

+
+
+
+

99%|█████████▉| 4954680/4997817 [00:33<00:00, 147795.26it/s]

+
+
+
+
+
+
+
+
+
more-to-come:
+

+
class:
+

stderr

+
+
+
+
+
99%|█████████▉| 4969461/4997817 [00:33&lt;00:00, 147565.24it/s]
+

</pre>

+
+
+
99%|█████████▉| 4969461/4997817 [00:33<00:00, 147565.24it/s]
+

end{sphinxVerbatim}

+
+
+
+

99%|█████████▉| 4969461/4997817 [00:33<00:00, 147565.24it/s]

+
+
-
100%|█████████▉| 4992593/4997817 [00:32&lt;00:00, 154638.39it/s]
+
100%|█████████▉| 4984333/4997817 [00:33&lt;00:00, 147910.00it/s]

</pre>

-
100%|█████████▉| 4992593/4997817 [00:32<00:00, 154638.39it/s]
+
100%|█████████▉| 4984333/4997817 [00:33<00:00, 147910.00it/s]

end{sphinxVerbatim}

-

100%|█████████▉| 4992593/4997817 [00:32<00:00, 154638.39it/s]

+

100%|█████████▉| 4984333/4997817 [00:33<00:00, 147910.00it/s]

-
100%|██████████| 4997817/4997817 [00:32&lt;00:00, 153550.25it/s]
+
100%|██████████| 4997817/4997817 [00:33&lt;00:00, 148534.64it/s]

</pre>

-
100%|██████████| 4997817/4997817 [00:32<00:00, 153550.25it/s]
+
100%|██████████| 4997817/4997817 [00:33<00:00, 148534.64it/s]

end{sphinxVerbatim}

-

100%|██████████| 4997817/4997817 [00:32<00:00, 153550.25it/s]

+

100%|██████████| 4997817/4997817 [00:33<00:00, 148534.64it/s]

-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -9568,7 +9837,7 @@

Get label quality scores -{"state": {"4c548a90640044b2afb2285e559cb3cc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b5d25f6589924d72a4b940d9793c3743": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "dce16ba16de44874b970d13dcee8ee7c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4c548a90640044b2afb2285e559cb3cc", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b5d25f6589924d72a4b940d9793c3743", "tabbable": null, "tooltip": null, "value": 30.0}}, "ab5bb7a6adad4a29881d5db0c88524a3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "594871020e0a4853804349e45634c56d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fc26249c79164f439768fae6de62089e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ab5bb7a6adad4a29881d5db0c88524a3", "placeholder": "\u200b", "style": "IPY_MODEL_594871020e0a4853804349e45634c56d", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "514f5092bf4e495f8ffa9db289302663": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bbd880c7829942308d6000c8671cb0c8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f1eb1ead5b7242d29078e9399f8cb029": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_514f5092bf4e495f8ffa9db289302663", "placeholder": "\u200b", "style": "IPY_MODEL_bbd880c7829942308d6000c8671cb0c8", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007428.96it/s]"}}, "82150ee2af1e47e5a67d5ab9e6390086": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "88aabd8f77df4029b94e7832f7b660a8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fc26249c79164f439768fae6de62089e", "IPY_MODEL_dce16ba16de44874b970d13dcee8ee7c", "IPY_MODEL_f1eb1ead5b7242d29078e9399f8cb029"], "layout": "IPY_MODEL_82150ee2af1e47e5a67d5ab9e6390086", "tabbable": null, "tooltip": null}}, "2925f3b151034a51872a028958845534": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e450a26b5c574b36ae507ceaeeaefcf0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "01444347398a4ae58282102169d8be02": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2925f3b151034a51872a028958845534", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e450a26b5c574b36ae507ceaeeaefcf0", "tabbable": null, "tooltip": null, "value": 30.0}}, "ceea4ef73ad14c6887d59a1dca3c282e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "364cee12777c43bcb0bbc72a61d6c244": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0807d75c8c804c90aef25f73bbd613f6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ceea4ef73ad14c6887d59a1dca3c282e", "placeholder": "\u200b", "style": "IPY_MODEL_364cee12777c43bcb0bbc72a61d6c244", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "cd047bfc61394dbbb8b31457c29cb1c9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1e25939cf1414c95b3528ccd7288b988": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0979b21fc165433c855265f60522025a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cd047bfc61394dbbb8b31457c29cb1c9", "placeholder": "\u200b", "style": "IPY_MODEL_1e25939cf1414c95b3528ccd7288b988", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:22<00:00,\u2007\u20071.40it/s]"}}, "0f6f1287cc33482688640c69a23e0a36": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d029c1c5efc94a628a305425e046d81c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0807d75c8c804c90aef25f73bbd613f6", "IPY_MODEL_01444347398a4ae58282102169d8be02", "IPY_MODEL_0979b21fc165433c855265f60522025a"], "layout": "IPY_MODEL_0f6f1287cc33482688640c69a23e0a36", "tabbable": null, "tooltip": null}}, "14d284f39dda4ac29e60acdfd695d53b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "66fa00b672df4fd1aa720bf5c332b887": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a4b951693edd4ae8a0e2121a2f061550": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_14d284f39dda4ac29e60acdfd695d53b", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_66fa00b672df4fd1aa720bf5c332b887", "tabbable": null, "tooltip": null, "value": 30.0}}, "32e2845c1b6848cd914870bc2d2c7cc2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2312360348aa400d854939756dab8d29": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "08ecc2e77eec4ec9ab643b6c0222fe5c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_32e2845c1b6848cd914870bc2d2c7cc2", "placeholder": "\u200b", "style": "IPY_MODEL_2312360348aa400d854939756dab8d29", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "2c3b0d14e35743acb62625c8900d605b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "76dd508d8b864642ae33a7b538ef5be1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f37a6b7a87544390a87d2517a21cf017": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2c3b0d14e35743acb62625c8900d605b", "placeholder": "\u200b", "style": "IPY_MODEL_76dd508d8b864642ae33a7b538ef5be1", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200722.20it/s]"}}, "5d399539bb0f47d99b4c556256877eb6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b835fe8352304ba6a89408d78f3e2b64": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_08ecc2e77eec4ec9ab643b6c0222fe5c", "IPY_MODEL_a4b951693edd4ae8a0e2121a2f061550", "IPY_MODEL_f37a6b7a87544390a87d2517a21cf017"], "layout": "IPY_MODEL_5d399539bb0f47d99b4c556256877eb6", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"332fa78429f14fa89d9c8c87c1d7b861": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "984ae48f301546b985cd4cbd2abb7918": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a752642ad113449683aa8e41e5e7a2cf": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_332fa78429f14fa89d9c8c87c1d7b861", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_984ae48f301546b985cd4cbd2abb7918", "tabbable": null, "tooltip": null, "value": 30.0}}, "59e71c245a3c4da6bcc757fbf70cf9df": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ac36553f6332490ca7a852120b2777ff": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0c167a300f2c4b9abfd76fd76c9d52fd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_59e71c245a3c4da6bcc757fbf70cf9df", "placeholder": "\u200b", "style": "IPY_MODEL_ac36553f6332490ca7a852120b2777ff", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "09b9ecf2442d49928ca61553dd4afaab": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fa1cdb07e6a344feb2871422a98c1b87": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "005a55bdbad346ce8eaf6df819db11fb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_09b9ecf2442d49928ca61553dd4afaab", "placeholder": "\u200b", "style": "IPY_MODEL_fa1cdb07e6a344feb2871422a98c1b87", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007443.23it/s]"}}, "dfb28ff768824357abde03dbcf41ecf9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a2274f8c72ee4d14ba6da81202b02e53": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0c167a300f2c4b9abfd76fd76c9d52fd", "IPY_MODEL_a752642ad113449683aa8e41e5e7a2cf", "IPY_MODEL_005a55bdbad346ce8eaf6df819db11fb"], "layout": "IPY_MODEL_dfb28ff768824357abde03dbcf41ecf9", "tabbable": null, "tooltip": null}}, "7e7146c57bcc4ab293c933a3a6366ffa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f19f320b531540ed99408c3e2da28da9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5c596b0500d6405c84cb1f654469940c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7e7146c57bcc4ab293c933a3a6366ffa", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f19f320b531540ed99408c3e2da28da9", "tabbable": null, "tooltip": null, "value": 30.0}}, "d851112a71aa4e739ed90314e9b98945": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "44cb9d28b1cb45e493256824503d1a91": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "98e69acf55e14607a3e61e54bd2f4425": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d851112a71aa4e739ed90314e9b98945", "placeholder": "\u200b", "style": "IPY_MODEL_44cb9d28b1cb45e493256824503d1a91", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "1627a6b0fca94386b4768ca281cb03cf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f9a14dfed9334abf9181372b65df194a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e78c89e4d5c542938735e963726f1133": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1627a6b0fca94386b4768ca281cb03cf", "placeholder": "\u200b", "style": "IPY_MODEL_f9a14dfed9334abf9181372b65df194a", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:22<00:00,\u2007\u20071.34it/s]"}}, "a56c4946466c4ad0929f6308d8e5bcfc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b77e5bc485904561983937a4e95cf83c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_98e69acf55e14607a3e61e54bd2f4425", "IPY_MODEL_5c596b0500d6405c84cb1f654469940c", "IPY_MODEL_e78c89e4d5c542938735e963726f1133"], "layout": "IPY_MODEL_a56c4946466c4ad0929f6308d8e5bcfc", "tabbable": null, "tooltip": null}}, "9c1f05a1400d483fb05ea538c1f077b2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "88091181eb784c8bbccb8a4979196ec2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "bf980ac758df4590bbeabfa9c6ded8f9": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9c1f05a1400d483fb05ea538c1f077b2", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_88091181eb784c8bbccb8a4979196ec2", "tabbable": null, "tooltip": null, "value": 30.0}}, "e4e538a3205e47949d0129598e89f5c5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "296051a74dea42e8be53c000b2fa748d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b96327c2082a44beb94001617121ec26": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e4e538a3205e47949d0129598e89f5c5", "placeholder": "\u200b", "style": "IPY_MODEL_296051a74dea42e8be53c000b2fa748d", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "691394abc910417c9081aed5d0e43b3b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "50563a5f0f2e461fbd41a6dbad3a6de8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "55d8d324b03b42a0ab03d77586fc52b5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_691394abc910417c9081aed5d0e43b3b", "placeholder": "\u200b", "style": "IPY_MODEL_50563a5f0f2e461fbd41a6dbad3a6de8", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200722.57it/s]"}}, "cc3e1ca03f874d159312e1074f3b240f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cc23ec16dd704778a8d6099da2a0a4ce": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b96327c2082a44beb94001617121ec26", "IPY_MODEL_bf980ac758df4590bbeabfa9c6ded8f9", "IPY_MODEL_55d8d324b03b42a0ab03d77586fc52b5"], "layout": "IPY_MODEL_cc3e1ca03f874d159312e1074f3b240f", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 4a0ab7992..4a2b078bb 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:46.846489Z", - "iopub.status.busy": "2024-02-13T04:51:46.846326Z", - "iopub.status.idle": "2024-02-13T04:51:48.836619Z", - "shell.execute_reply": "2024-02-13T04:51:48.835884Z" + "iopub.execute_input": "2024-02-13T22:21:17.131886Z", + "iopub.status.busy": "2024-02-13T22:21:17.131710Z", + "iopub.status.idle": "2024-02-13T22:21:18.593046Z", + "shell.execute_reply": "2024-02-13T22:21:18.592386Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:51:48.839299Z", - "iopub.status.busy": "2024-02-13T04:51:48.839119Z", - "iopub.status.idle": "2024-02-13T04:52:36.158083Z", - "shell.execute_reply": "2024-02-13T04:52:36.157412Z" + "iopub.execute_input": "2024-02-13T22:21:18.595562Z", + "iopub.status.busy": "2024-02-13T22:21:18.595362Z", + "iopub.status.idle": "2024-02-13T22:22:12.098648Z", + "shell.execute_reply": "2024-02-13T22:22:12.097945Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:52:36.160808Z", - "iopub.status.busy": "2024-02-13T04:52:36.160383Z", - "iopub.status.idle": "2024-02-13T04:52:37.293678Z", - "shell.execute_reply": "2024-02-13T04:52:37.293126Z" + "iopub.execute_input": "2024-02-13T22:22:12.101231Z", + "iopub.status.busy": "2024-02-13T22:22:12.101037Z", + "iopub.status.idle": "2024-02-13T22:22:13.188674Z", + "shell.execute_reply": "2024-02-13T22:22:13.188138Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:52:37.296221Z", - "iopub.status.busy": "2024-02-13T04:52:37.295867Z", - "iopub.status.idle": "2024-02-13T04:52:37.299603Z", - "shell.execute_reply": "2024-02-13T04:52:37.299155Z" + "iopub.execute_input": "2024-02-13T22:22:13.191357Z", + "iopub.status.busy": "2024-02-13T22:22:13.190839Z", + "iopub.status.idle": "2024-02-13T22:22:13.193931Z", + "shell.execute_reply": "2024-02-13T22:22:13.193522Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:52:37.302029Z", - "iopub.status.busy": "2024-02-13T04:52:37.301545Z", - "iopub.status.idle": "2024-02-13T04:52:37.305489Z", - "shell.execute_reply": "2024-02-13T04:52:37.304961Z" + "iopub.execute_input": "2024-02-13T22:22:13.196005Z", + "iopub.status.busy": "2024-02-13T22:22:13.195641Z", + "iopub.status.idle": "2024-02-13T22:22:13.199308Z", + "shell.execute_reply": "2024-02-13T22:22:13.198877Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:52:37.307515Z", - "iopub.status.busy": "2024-02-13T04:52:37.307217Z", - "iopub.status.idle": "2024-02-13T04:52:37.311383Z", - "shell.execute_reply": "2024-02-13T04:52:37.310886Z" + "iopub.execute_input": "2024-02-13T22:22:13.201303Z", + "iopub.status.busy": "2024-02-13T22:22:13.201034Z", + "iopub.status.idle": "2024-02-13T22:22:13.204528Z", + "shell.execute_reply": "2024-02-13T22:22:13.204089Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:52:37.313395Z", - "iopub.status.busy": "2024-02-13T04:52:37.313105Z", - "iopub.status.idle": "2024-02-13T04:52:37.315927Z", - "shell.execute_reply": "2024-02-13T04:52:37.315413Z" + "iopub.execute_input": "2024-02-13T22:22:13.206424Z", + "iopub.status.busy": "2024-02-13T22:22:13.206113Z", + "iopub.status.idle": "2024-02-13T22:22:13.208735Z", + "shell.execute_reply": "2024-02-13T22:22:13.208336Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:52:37.317985Z", - "iopub.status.busy": "2024-02-13T04:52:37.317574Z", - "iopub.status.idle": "2024-02-13T04:53:54.285829Z", - "shell.execute_reply": "2024-02-13T04:53:54.285234Z" + "iopub.execute_input": "2024-02-13T22:22:13.210554Z", + "iopub.status.busy": "2024-02-13T22:22:13.210293Z", + "iopub.status.idle": "2024-02-13T22:23:30.135411Z", + "shell.execute_reply": "2024-02-13T22:23:30.134800Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "88aabd8f77df4029b94e7832f7b660a8", + "model_id": "a2274f8c72ee4d14ba6da81202b02e53", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d029c1c5efc94a628a305425e046d81c", + "model_id": "b77e5bc485904561983937a4e95cf83c", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:53:54.288507Z", - "iopub.status.busy": "2024-02-13T04:53:54.288130Z", - "iopub.status.idle": "2024-02-13T04:53:54.970593Z", - "shell.execute_reply": "2024-02-13T04:53:54.970050Z" + "iopub.execute_input": "2024-02-13T22:23:30.138060Z", + "iopub.status.busy": "2024-02-13T22:23:30.137691Z", + "iopub.status.idle": "2024-02-13T22:23:30.805219Z", + "shell.execute_reply": "2024-02-13T22:23:30.804696Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:53:54.973097Z", - "iopub.status.busy": "2024-02-13T04:53:54.972558Z", - "iopub.status.idle": "2024-02-13T04:53:57.733466Z", - "shell.execute_reply": "2024-02-13T04:53:57.732876Z" + "iopub.execute_input": "2024-02-13T22:23:30.807658Z", + "iopub.status.busy": "2024-02-13T22:23:30.807201Z", + "iopub.status.idle": "2024-02-13T22:23:33.509032Z", + "shell.execute_reply": "2024-02-13T22:23:33.508456Z" } }, "outputs": [ @@ -519,10 +519,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:53:57.735751Z", - "iopub.status.busy": "2024-02-13T04:53:57.735399Z", - "iopub.status.idle": "2024-02-13T04:54:30.508387Z", - "shell.execute_reply": "2024-02-13T04:54:30.507858Z" + "iopub.execute_input": "2024-02-13T22:23:33.511167Z", + "iopub.status.busy": "2024-02-13T22:23:33.510959Z", + "iopub.status.idle": "2024-02-13T22:24:07.417820Z", + "shell.execute_reply": "2024-02-13T22:24:07.417271Z" } }, "outputs": [ @@ -539,7 +539,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 15268/4997817 [00:00<00:32, 152663.77it/s]" + " 0%| | 14686/4997817 [00:00<00:33, 146852.09it/s]" ] }, { @@ -547,7 +547,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 30573/4997817 [00:00<00:32, 152883.32it/s]" + " 1%| | 29379/4997817 [00:00<00:33, 146826.75it/s]" ] }, { @@ -555,7 +555,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 45862/4997817 [00:00<00:32, 152608.50it/s]" + " 1%| | 44082/4997817 [00:00<00:33, 146917.20it/s]" ] }, { @@ -563,7 +563,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 61123/4997817 [00:00<00:32, 152455.06it/s]" + " 1%| | 58873/4997817 [00:00<00:33, 147306.50it/s]" ] }, { @@ -571,7 +571,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 76369/4997817 [00:00<00:32, 152398.67it/s]" + " 1%|▏ | 73624/4997817 [00:00<00:33, 147376.50it/s]" ] }, { @@ -579,7 +579,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 91653/4997817 [00:00<00:32, 152543.78it/s]" + " 2%|▏ | 88375/4997817 [00:00<00:33, 147418.95it/s]" ] }, { @@ -587,7 +587,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 106908/4997817 [00:00<00:32, 152112.15it/s]" + " 2%|▏ | 103117/4997817 [00:00<00:33, 146398.59it/s]" ] }, { @@ -595,7 +595,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 122247/4997817 [00:00<00:31, 152513.02it/s]" + " 2%|▏ | 117858/4997817 [00:00<00:33, 146717.08it/s]" ] }, { @@ -603,7 +603,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 137535/4997817 [00:00<00:31, 152624.75it/s]" + " 3%|▎ | 132531/4997817 [00:00<00:33, 146652.84it/s]" ] }, { @@ -611,7 +611,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 152798/4997817 [00:01<00:31, 152605.77it/s]" + " 3%|▎ | 147198/4997817 [00:01<00:33, 146511.78it/s]" ] }, { @@ -619,7 +619,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 168059/4997817 [00:01<00:31, 152403.35it/s]" + " 3%|▎ | 161850/4997817 [00:01<00:33, 146359.65it/s]" ] }, { @@ -627,7 +627,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▎ | 183300/4997817 [00:01<00:31, 152113.29it/s]" + " 4%|▎ | 176487/4997817 [00:01<00:33, 146080.12it/s]" ] }, { @@ -635,7 +635,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 198650/4997817 [00:01<00:31, 152530.19it/s]" + " 4%|▍ | 191096/4997817 [00:01<00:32, 146061.90it/s]" ] }, { @@ -643,7 +643,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 214047/4997817 [00:01<00:31, 152960.10it/s]" + " 4%|▍ | 205812/4997817 [00:01<00:32, 146388.88it/s]" ] }, { @@ -651,7 +651,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 229458/4997817 [00:01<00:31, 153304.57it/s]" + " 4%|▍ | 220605/4997817 [00:01<00:32, 146848.72it/s]" ] }, { @@ -659,7 +659,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 244869/4997817 [00:01<00:30, 153543.54it/s]" + " 5%|▍ | 235402/4997817 [00:01<00:32, 147184.62it/s]" ] }, { @@ -667,7 +667,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 260224/4997817 [00:01<00:30, 153507.14it/s]" + " 5%|▌ | 250251/4997817 [00:01<00:32, 147572.75it/s]" ] }, { @@ -675,7 +675,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 275575/4997817 [00:01<00:30, 153192.48it/s]" + " 5%|▌ | 265009/4997817 [00:01<00:32, 147492.49it/s]" ] }, { @@ -683,7 +683,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 290978/4997817 [00:01<00:30, 153441.52it/s]" + " 6%|▌ | 279759/4997817 [00:01<00:31, 147452.90it/s]" ] }, { @@ -691,7 +691,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 306323/4997817 [00:02<00:30, 153313.02it/s]" + " 6%|▌ | 294505/4997817 [00:02<00:31, 147319.46it/s]" ] }, { @@ -699,7 +699,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 321655/4997817 [00:02<00:30, 153242.01it/s]" + " 6%|▌ | 309330/4997817 [00:02<00:31, 147596.91it/s]" ] }, { @@ -707,7 +707,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 336980/4997817 [00:02<00:30, 153203.40it/s]" + " 6%|▋ | 324110/4997817 [00:02<00:31, 147655.95it/s]" ] }, { @@ -715,7 +715,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 352376/4997817 [00:02<00:30, 153426.27it/s]" + " 7%|▋ | 338876/4997817 [00:02<00:31, 147094.72it/s]" ] }, { @@ -723,7 +723,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 367782/4997817 [00:02<00:30, 153611.81it/s]" + " 7%|▋ | 353620/4997817 [00:02<00:31, 147195.32it/s]" ] }, { @@ -731,7 +731,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 383144/4997817 [00:02<00:30, 153175.07it/s]" + " 7%|▋ | 368340/4997817 [00:02<00:31, 146717.43it/s]" ] }, { @@ -739,7 +739,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 398484/4997817 [00:02<00:30, 153238.06it/s]" + " 8%|▊ | 383097/4997817 [00:02<00:31, 146969.26it/s]" ] }, { @@ -747,7 +747,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 413809/4997817 [00:02<00:30, 152354.16it/s]" + " 8%|▊ | 397904/4997817 [00:02<00:31, 147295.61it/s]" ] }, { @@ -755,7 +755,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▊ | 429046/4997817 [00:02<00:29, 152347.55it/s]" + " 8%|▊ | 412710/4997817 [00:02<00:31, 147521.49it/s]" ] }, { @@ -763,7 +763,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 444384/4997817 [00:02<00:29, 152653.57it/s]" + " 9%|▊ | 427463/4997817 [00:02<00:30, 147519.24it/s]" ] }, { @@ -771,7 +771,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 459713/4997817 [00:03<00:29, 152840.12it/s]" + " 9%|▉ | 442348/4997817 [00:03<00:30, 147916.97it/s]" ] }, { @@ -779,7 +779,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 475034/4997817 [00:03<00:29, 152948.30it/s]" + " 9%|▉ | 457175/4997817 [00:03<00:30, 148019.57it/s]" ] }, { @@ -787,7 +787,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 490409/4997817 [00:03<00:29, 153184.82it/s]" + " 9%|▉ | 471978/4997817 [00:03<00:30, 147976.72it/s]" ] }, { @@ -795,7 +795,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 505728/4997817 [00:03<00:29, 153110.81it/s]" + " 10%|▉ | 486776/4997817 [00:03<00:30, 147710.39it/s]" ] }, { @@ -803,7 +803,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 521040/4997817 [00:03<00:29, 153105.08it/s]" + " 10%|█ | 501630/4997817 [00:03<00:30, 147954.47it/s]" ] }, { @@ -811,7 +811,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 536416/4997817 [00:03<00:29, 153297.84it/s]" + " 10%|█ | 516616/4997817 [00:03<00:30, 148524.22it/s]" ] }, { @@ -819,7 +819,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 551746/4997817 [00:03<00:29, 153133.56it/s]" + " 11%|█ | 531469/4997817 [00:03<00:30, 148246.09it/s]" ] }, { @@ -827,7 +827,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 567060/4997817 [00:03<00:29, 152739.95it/s]" + " 11%|█ | 546346/4997817 [00:03<00:29, 148399.08it/s]" ] }, { @@ -835,7 +835,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 582524/4997817 [00:03<00:28, 153305.47it/s]" + " 11%|█ | 561187/4997817 [00:03<00:29, 148303.25it/s]" ] }, { @@ -843,7 +843,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 597920/4997817 [00:03<00:28, 153498.11it/s]" + " 12%|█▏ | 576018/4997817 [00:03<00:29, 147757.16it/s]" ] }, { @@ -851,7 +851,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 613271/4997817 [00:04<00:28, 153405.18it/s]" + " 12%|█▏ | 590920/4997817 [00:04<00:29, 148133.12it/s]" ] }, { @@ -859,7 +859,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 628612/4997817 [00:04<00:28, 153256.80it/s]" + " 12%|█▏ | 605734/4997817 [00:04<00:29, 147627.97it/s]" ] }, { @@ -867,7 +867,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 643938/4997817 [00:04<00:28, 152729.72it/s]" + " 12%|█▏ | 620498/4997817 [00:04<00:29, 147479.08it/s]" ] }, { @@ -875,7 +875,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 659212/4997817 [00:04<00:28, 152490.37it/s]" + " 13%|█▎ | 635247/4997817 [00:04<00:29, 146720.55it/s]" ] }, { @@ -883,7 +883,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 674462/4997817 [00:04<00:28, 152140.36it/s]" + " 13%|█▎ | 650152/4997817 [00:04<00:29, 147411.77it/s]" ] }, { @@ -891,7 +891,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 689677/4997817 [00:04<00:28, 152020.81it/s]" + " 13%|█▎ | 664980/4997817 [00:04<00:29, 147667.36it/s]" ] }, { @@ -899,7 +899,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 704893/4997817 [00:04<00:28, 152059.98it/s]" + " 14%|█▎ | 680008/4997817 [00:04<00:29, 148444.04it/s]" ] }, { @@ -907,7 +907,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 720119/4997817 [00:04<00:28, 152117.38it/s]" + " 14%|█▍ | 694854/4997817 [00:04<00:29, 147854.75it/s]" ] }, { @@ -915,7 +915,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 735331/4997817 [00:04<00:28, 151521.22it/s]" + " 14%|█▍ | 709641/4997817 [00:04<00:29, 147711.76it/s]" ] }, { @@ -923,7 +923,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 750688/4997817 [00:04<00:27, 152129.46it/s]" + " 14%|█▍ | 724413/4997817 [00:04<00:29, 146962.76it/s]" ] }, { @@ -931,7 +931,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 766110/4997817 [00:05<00:27, 152751.32it/s]" + " 15%|█▍ | 739111/4997817 [00:05<00:29, 146576.91it/s]" ] }, { @@ -939,7 +939,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 781473/4997817 [00:05<00:27, 153012.04it/s]" + " 15%|█▌ | 753802/4997817 [00:05<00:28, 146673.13it/s]" ] }, { @@ -947,7 +947,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 796775/4997817 [00:05<00:27, 153005.95it/s]" + " 15%|█▌ | 768561/4997817 [00:05<00:28, 146944.21it/s]" ] }, { @@ -955,7 +955,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 812109/4997817 [00:05<00:27, 153103.15it/s]" + " 16%|█▌ | 783527/4997817 [00:05<00:28, 147753.96it/s]" ] }, { @@ -963,7 +963,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 827420/4997817 [00:05<00:27, 152861.06it/s]" + " 16%|█▌ | 798376/4997817 [00:05<00:28, 147970.64it/s]" ] }, { @@ -971,7 +971,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 842707/4997817 [00:05<00:27, 152618.89it/s]" + " 16%|█▋ | 813194/4997817 [00:05<00:28, 148030.01it/s]" ] }, { @@ -979,7 +979,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 858003/4997817 [00:05<00:27, 152679.53it/s]" + " 17%|█▋ | 828109/4997817 [00:05<00:28, 148363.35it/s]" ] }, { @@ -987,7 +987,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 873374/4997817 [00:05<00:26, 152984.23it/s]" + " 17%|█▋ | 842946/4997817 [00:05<00:28, 148197.93it/s]" ] }, { @@ -995,7 +995,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 888714/4997817 [00:05<00:26, 153106.77it/s]" + " 17%|█▋ | 858002/4997817 [00:05<00:27, 148904.38it/s]" ] }, { @@ -1003,7 +1003,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 904173/4997817 [00:05<00:26, 153547.33it/s]" + " 17%|█▋ | 872977/4997817 [00:05<00:27, 149155.31it/s]" ] }, { @@ -1011,7 +1011,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 919528/4997817 [00:06<00:26, 153446.17it/s]" + " 18%|█▊ | 887982/4997817 [00:06<00:27, 149420.16it/s]" ] }, { @@ -1019,7 +1019,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▊ | 934896/4997817 [00:06<00:26, 153512.24it/s]" + " 18%|█▊ | 902926/4997817 [00:06<00:27, 149424.12it/s]" ] }, { @@ -1027,7 +1027,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 950248/4997817 [00:06<00:26, 152181.55it/s]" + " 18%|█▊ | 917869/4997817 [00:06<00:27, 149340.29it/s]" ] }, { @@ -1035,7 +1035,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 965736/4997817 [00:06<00:26, 152981.80it/s]" + " 19%|█▊ | 932804/4997817 [00:06<00:27, 148960.57it/s]" ] }, { @@ -1043,7 +1043,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 981306/4997817 [00:06<00:26, 153791.24it/s]" + " 19%|█▉ | 947701/4997817 [00:06<00:27, 146116.39it/s]" ] }, { @@ -1051,7 +1051,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 996719/4997817 [00:06<00:25, 153889.51it/s]" + " 19%|█▉ | 962883/4997817 [00:06<00:27, 147800.15it/s]" ] }, { @@ -1059,7 +1059,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1012110/4997817 [00:06<00:25, 153467.80it/s]" + " 20%|█▉ | 977914/4997817 [00:06<00:27, 148542.14it/s]" ] }, { @@ -1067,7 +1067,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1027528/4997817 [00:06<00:25, 153678.34it/s]" + " 20%|█▉ | 992777/4997817 [00:06<00:26, 148520.27it/s]" ] }, { @@ -1075,7 +1075,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1042897/4997817 [00:06<00:25, 153355.60it/s]" + " 20%|██ | 1007881/4997817 [00:06<00:26, 149267.97it/s]" ] }, { @@ -1083,7 +1083,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1058375/4997817 [00:06<00:25, 153778.95it/s]" + " 20%|██ | 1022869/4997817 [00:06<00:26, 149446.77it/s]" ] }, { @@ -1091,7 +1091,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1073754/4997817 [00:07<00:25, 153340.54it/s]" + " 21%|██ | 1037958/4997817 [00:07<00:26, 149876.15it/s]" ] }, { @@ -1099,7 +1099,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1089089/4997817 [00:07<00:25, 153232.57it/s]" + " 21%|██ | 1052961/4997817 [00:07<00:26, 149917.76it/s]" ] }, { @@ -1107,7 +1107,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1104457/4997817 [00:07<00:25, 153362.93it/s]" + " 21%|██▏ | 1067976/4997817 [00:07<00:26, 149983.85it/s]" ] }, { @@ -1115,7 +1115,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1119796/4997817 [00:07<00:25, 153368.89it/s]" + " 22%|██▏ | 1083120/4997817 [00:07<00:26, 150417.41it/s]" ] }, { @@ -1123,7 +1123,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1135134/4997817 [00:07<00:25, 152939.62it/s]" + " 22%|██▏ | 1098163/4997817 [00:07<00:25, 150159.03it/s]" ] }, { @@ -1131,7 +1131,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1150458/4997817 [00:07<00:25, 153021.87it/s]" + " 22%|██▏ | 1113255/4997817 [00:07<00:25, 150385.04it/s]" ] }, { @@ -1139,7 +1139,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1165800/4997817 [00:07<00:25, 153137.48it/s]" + " 23%|██▎ | 1128295/4997817 [00:07<00:25, 150272.23it/s]" ] }, { @@ -1147,7 +1147,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▎ | 1181114/4997817 [00:07<00:24, 153104.06it/s]" + " 23%|██▎ | 1143449/4997817 [00:07<00:25, 150647.13it/s]" ] }, { @@ -1155,7 +1155,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1196425/4997817 [00:07<00:25, 146510.48it/s]" + " 23%|██▎ | 1158515/4997817 [00:07<00:25, 150266.53it/s]" ] }, { @@ -1163,7 +1163,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1211763/4997817 [00:07<00:25, 148502.05it/s]" + " 23%|██▎ | 1173566/4997817 [00:07<00:25, 150337.39it/s]" ] }, { @@ -1171,7 +1171,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1227163/4997817 [00:08<00:25, 150111.29it/s]" + " 24%|██▍ | 1188700/4997817 [00:08<00:25, 150635.43it/s]" ] }, { @@ -1179,7 +1179,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1242483/4997817 [00:08<00:24, 151020.13it/s]" + " 24%|██▍ | 1203856/4997817 [00:08<00:25, 150908.62it/s]" ] }, { @@ -1187,7 +1187,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1257923/4997817 [00:08<00:24, 152021.01it/s]" + " 24%|██▍ | 1218984/4997817 [00:08<00:25, 151018.15it/s]" ] }, { @@ -1195,7 +1195,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1273251/4997817 [00:08<00:24, 152392.90it/s]" + " 25%|██▍ | 1234156/4997817 [00:08<00:24, 151227.32it/s]" ] }, { @@ -1203,7 +1203,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1288667/4997817 [00:08<00:24, 152916.70it/s]" + " 25%|██▍ | 1249279/4997817 [00:08<00:25, 148223.79it/s]" ] }, { @@ -1211,7 +1211,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1304131/4997817 [00:08<00:24, 153428.36it/s]" + " 25%|██▌ | 1264309/4997817 [00:08<00:25, 148833.27it/s]" ] }, { @@ -1219,7 +1219,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1319493/4997817 [00:08<00:23, 153483.77it/s]" + " 26%|██▌ | 1279385/4997817 [00:08<00:24, 149402.13it/s]" ] }, { @@ -1227,7 +1227,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1334923/4997817 [00:08<00:23, 153725.80it/s]" + " 26%|██▌ | 1294573/4997817 [00:08<00:24, 150136.53it/s]" ] }, { @@ -1235,7 +1235,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1350480/4997817 [00:08<00:23, 154277.37it/s]" + " 26%|██▌ | 1309815/4997817 [00:08<00:24, 150814.55it/s]" ] }, { @@ -1243,7 +1243,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1365987/4997817 [00:08<00:23, 154513.65it/s]" + " 27%|██▋ | 1324929/4997817 [00:08<00:24, 150910.27it/s]" ] }, { @@ -1251,7 +1251,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1381441/4997817 [00:09<00:23, 154510.11it/s]" + " 27%|██▋ | 1340124/4997817 [00:09<00:24, 151219.95it/s]" ] }, { @@ -1259,7 +1259,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1396963/4997817 [00:09<00:23, 154719.47it/s]" + " 27%|██▋ | 1355369/4997817 [00:09<00:24, 151584.36it/s]" ] }, { @@ -1267,7 +1267,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1412436/4997817 [00:09<00:23, 154630.91it/s]" + " 27%|██▋ | 1370530/4997817 [00:09<00:23, 151447.11it/s]" ] }, { @@ -1275,7 +1275,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 1427900/4997817 [00:09<00:23, 154395.75it/s]" + " 28%|██▊ | 1385676/4997817 [00:09<00:23, 151206.21it/s]" ] }, { @@ -1283,7 +1283,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1443456/4997817 [00:09<00:22, 154743.31it/s]" + " 28%|██▊ | 1400798/4997817 [00:09<00:23, 150249.39it/s]" ] }, { @@ -1291,7 +1291,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1458931/4997817 [00:09<00:22, 154061.91it/s]" + " 28%|██▊ | 1415882/4997817 [00:09<00:23, 150423.63it/s]" ] }, { @@ -1299,7 +1299,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1474392/4997817 [00:09<00:22, 154224.54it/s]" + " 29%|██▊ | 1430947/4997817 [00:09<00:23, 150488.94it/s]" ] }, { @@ -1307,7 +1307,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1489908/4997817 [00:09<00:22, 154502.37it/s]" + " 29%|██▉ | 1446038/4997817 [00:09<00:23, 150610.84it/s]" ] }, { @@ -1315,7 +1315,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1505359/4997817 [00:09<00:22, 154477.79it/s]" + " 29%|██▉ | 1461100/4997817 [00:09<00:23, 150351.35it/s]" ] }, { @@ -1323,7 +1323,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1520808/4997817 [00:09<00:22, 152316.75it/s]" + " 30%|██▉ | 1476136/4997817 [00:09<00:23, 150351.62it/s]" ] }, { @@ -1331,7 +1331,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1536092/4997817 [00:10<00:22, 152469.90it/s]" + " 30%|██▉ | 1491172/4997817 [00:10<00:23, 150194.73it/s]" ] }, { @@ -1339,7 +1339,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1551490/4997817 [00:10<00:22, 152918.43it/s]" + " 30%|███ | 1506211/4997817 [00:10<00:23, 150251.52it/s]" ] }, { @@ -1347,7 +1347,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 1566786/4997817 [00:10<00:22, 152765.47it/s]" + " 30%|███ | 1521237/4997817 [00:10<00:23, 150109.15it/s]" ] }, { @@ -1355,7 +1355,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1582334/4997817 [00:10<00:22, 153574.00it/s]" + " 31%|███ | 1536249/4997817 [00:10<00:23, 150096.26it/s]" ] }, { @@ -1363,7 +1363,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1597792/4997817 [00:10<00:22, 153872.91it/s]" + " 31%|███ | 1551259/4997817 [00:10<00:23, 149462.26it/s]" ] }, { @@ -1371,7 +1371,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1613183/4997817 [00:10<00:21, 153880.54it/s]" + " 31%|███▏ | 1566267/4997817 [00:10<00:22, 149644.24it/s]" ] }, { @@ -1379,7 +1379,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1628632/4997817 [00:10<00:21, 154059.84it/s]" + " 32%|███▏ | 1581276/4997817 [00:10<00:22, 149776.05it/s]" ] }, { @@ -1387,7 +1387,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1644039/4997817 [00:10<00:21, 153950.08it/s]" + " 32%|███▏ | 1596406/4997817 [00:10<00:22, 150229.40it/s]" ] }, { @@ -1395,7 +1395,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1659435/4997817 [00:10<00:21, 153931.54it/s]" + " 32%|███▏ | 1611430/4997817 [00:10<00:22, 149875.17it/s]" ] }, { @@ -1403,7 +1403,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 1674829/4997817 [00:10<00:22, 150891.72it/s]" + " 33%|███▎ | 1626457/4997817 [00:10<00:22, 149991.96it/s]" ] }, { @@ -1411,7 +1411,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1690263/4997817 [00:11<00:21, 151909.20it/s]" + " 33%|███▎ | 1641457/4997817 [00:11<00:22, 149842.61it/s]" ] }, { @@ -1419,7 +1419,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1705712/4997817 [00:11<00:21, 152672.06it/s]" + " 33%|███▎ | 1656442/4997817 [00:11<00:22, 149178.88it/s]" ] }, { @@ -1427,7 +1427,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1721010/4997817 [00:11<00:21, 152762.19it/s]" + " 33%|███▎ | 1671433/4997817 [00:11<00:22, 149395.57it/s]" ] }, { @@ -1435,7 +1435,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1736392/4997817 [00:11<00:21, 153075.13it/s]" + " 34%|███▎ | 1686374/4997817 [00:11<00:22, 149138.56it/s]" ] }, { @@ -1443,7 +1443,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1751706/4997817 [00:11<00:21, 153091.95it/s]" + " 34%|███▍ | 1701289/4997817 [00:11<00:22, 148918.26it/s]" ] }, { @@ -1451,7 +1451,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1767064/4997817 [00:11<00:21, 153236.18it/s]" + " 34%|███▍ | 1716213/4997817 [00:11<00:22, 149012.69it/s]" ] }, { @@ -1459,7 +1459,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1782413/4997817 [00:11<00:20, 153308.29it/s]" + " 35%|███▍ | 1731115/4997817 [00:11<00:21, 148944.14it/s]" ] }, { @@ -1467,7 +1467,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1797837/4997817 [00:11<00:20, 153583.66it/s]" + " 35%|███▍ | 1746194/4997817 [00:11<00:21, 149493.82it/s]" ] }, { @@ -1475,7 +1475,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▋ | 1813334/4997817 [00:11<00:20, 153997.58it/s]" + " 35%|███▌ | 1761144/4997817 [00:11<00:21, 149208.94it/s]" ] }, { @@ -1483,7 +1483,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1828735/4997817 [00:11<00:20, 153903.11it/s]" + " 36%|███▌ | 1776121/4997817 [00:11<00:21, 149375.63it/s]" ] }, { @@ -1491,7 +1491,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1844126/4997817 [00:12<00:20, 153676.13it/s]" + " 36%|███▌ | 1791134/4997817 [00:12<00:21, 149598.30it/s]" ] }, { @@ -1499,7 +1499,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1859495/4997817 [00:12<00:20, 152434.24it/s]" + " 36%|███▌ | 1806122/4997817 [00:12<00:21, 149681.04it/s]" ] }, { @@ -1507,7 +1507,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1875037/4997817 [00:12<00:20, 153321.04it/s]" + " 36%|███▋ | 1821194/4997817 [00:12<00:21, 149989.51it/s]" ] }, { @@ -1515,7 +1515,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1890580/4997817 [00:12<00:20, 153947.98it/s]" + " 37%|███▋ | 1836194/4997817 [00:12<00:21, 149437.65it/s]" ] }, { @@ -1523,7 +1523,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1906123/4997817 [00:12<00:20, 154387.38it/s]" + " 37%|███▋ | 1851139/4997817 [00:12<00:21, 148984.44it/s]" ] }, { @@ -1531,7 +1531,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1921567/4997817 [00:12<00:19, 154402.18it/s]" + " 37%|███▋ | 1866038/4997817 [00:12<00:21, 147246.22it/s]" ] }, { @@ -1539,7 +1539,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1937009/4997817 [00:12<00:19, 154180.77it/s]" + " 38%|███▊ | 1881056/4997817 [00:12<00:21, 148114.68it/s]" ] }, { @@ -1547,7 +1547,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1952511/4997817 [00:12<00:19, 154429.05it/s]" + " 38%|███▊ | 1896131/4997817 [00:12<00:20, 148896.05it/s]" ] }, { @@ -1555,7 +1555,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1968011/4997817 [00:12<00:19, 154598.02it/s]" + " 38%|███▊ | 1911091/4997817 [00:12<00:20, 149102.93it/s]" ] }, { @@ -1563,7 +1563,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1983472/4997817 [00:12<00:19, 154462.27it/s]" + " 39%|███▊ | 1926116/4997817 [00:12<00:20, 149442.99it/s]" ] }, { @@ -1571,7 +1571,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1998919/4997817 [00:13<00:19, 154309.22it/s]" + " 39%|███▉ | 1941063/4997817 [00:13<00:20, 149128.38it/s]" ] }, { @@ -1579,7 +1579,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2014351/4997817 [00:13<00:19, 153760.57it/s]" + " 39%|███▉ | 1956036/4997817 [00:13<00:20, 149306.16it/s]" ] }, { @@ -1587,7 +1587,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2029728/4997817 [00:13<00:19, 153539.57it/s]" + " 39%|███▉ | 1970971/4997817 [00:13<00:20, 149316.34it/s]" ] }, { @@ -1595,7 +1595,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2045083/4997817 [00:13<00:19, 153305.75it/s]" + " 40%|███▉ | 1985952/4997817 [00:13<00:20, 149462.31it/s]" ] }, { @@ -1603,7 +1603,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2060414/4997817 [00:13<00:19, 153086.13it/s]" + " 40%|████ | 2000899/4997817 [00:13<00:20, 149362.33it/s]" ] }, { @@ -1611,7 +1611,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2075813/4997817 [00:13<00:19, 153327.75it/s]" + " 40%|████ | 2015836/4997817 [00:13<00:20, 145896.07it/s]" ] }, { @@ -1619,7 +1619,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2091146/4997817 [00:13<00:18, 153295.44it/s]" + " 41%|████ | 2030712/4997817 [00:13<00:20, 146737.35it/s]" ] }, { @@ -1627,7 +1627,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2106476/4997817 [00:13<00:18, 153241.39it/s]" + " 41%|████ | 2045591/4997817 [00:13<00:20, 147344.64it/s]" ] }, { @@ -1635,7 +1635,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2121835/4997817 [00:13<00:18, 153342.12it/s]" + " 41%|████ | 2060460/4997817 [00:13<00:19, 147741.07it/s]" ] }, { @@ -1643,7 +1643,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2137170/4997817 [00:13<00:18, 153094.39it/s]" + " 42%|████▏ | 2075716/4997817 [00:13<00:19, 149174.37it/s]" ] }, { @@ -1651,7 +1651,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2152549/4997817 [00:14<00:18, 153299.75it/s]" + " 42%|████▏ | 2090987/4997817 [00:14<00:19, 150227.50it/s]" ] }, { @@ -1659,7 +1659,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2167938/4997817 [00:14<00:18, 153474.65it/s]" + " 42%|████▏ | 2106142/4997817 [00:14<00:19, 150621.82it/s]" ] }, { @@ -1667,7 +1667,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2183398/4997817 [00:14<00:18, 153807.90it/s]" + " 42%|████▏ | 2121208/4997817 [00:14<00:19, 150367.55it/s]" ] }, { @@ -1675,7 +1675,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2198824/4997817 [00:14<00:18, 153939.96it/s]" + " 43%|████▎ | 2136392/4997817 [00:14<00:18, 150804.48it/s]" ] }, { @@ -1683,7 +1683,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2214219/4997817 [00:14<00:18, 153921.45it/s]" + " 43%|████▎ | 2151475/4997817 [00:14<00:18, 150361.22it/s]" ] }, { @@ -1691,7 +1691,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2229612/4997817 [00:14<00:18, 153428.14it/s]" + " 43%|████▎ | 2166513/4997817 [00:14<00:19, 143788.49it/s]" ] }, { @@ -1699,7 +1699,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2245047/4997817 [00:14<00:17, 153701.95it/s]" + " 44%|████▎ | 2181424/4997817 [00:14<00:19, 145330.67it/s]" ] }, { @@ -1707,7 +1707,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2260418/4997817 [00:14<00:17, 153296.17it/s]" + " 44%|████▍ | 2196325/4997817 [00:14<00:19, 146407.42it/s]" ] }, { @@ -1715,7 +1715,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2275749/4997817 [00:14<00:17, 152857.85it/s]" + " 44%|████▍ | 2211331/4997817 [00:14<00:18, 147481.67it/s]" ] }, { @@ -1723,7 +1723,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2291094/4997817 [00:14<00:17, 153029.88it/s]" + " 45%|████▍ | 2226301/4997817 [00:14<00:18, 148136.89it/s]" ] }, { @@ -1731,7 +1731,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2306398/4997817 [00:15<00:17, 152930.66it/s]" + " 45%|████▍ | 2241232/4997817 [00:15<00:18, 148482.48it/s]" ] }, { @@ -1739,7 +1739,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2321735/4997817 [00:15<00:17, 153058.78it/s]" + " 45%|████▌ | 2256259/4997817 [00:15<00:18, 149014.50it/s]" ] }, { @@ -1747,7 +1747,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2337094/4997817 [00:15<00:17, 153214.07it/s]" + " 45%|████▌ | 2271171/4997817 [00:15<00:18, 149017.51it/s]" ] }, { @@ -1755,7 +1755,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2352422/4997817 [00:15<00:17, 153231.13it/s]" + " 46%|████▌ | 2286080/4997817 [00:15<00:18, 148999.28it/s]" ] }, { @@ -1763,7 +1763,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2367922/4997817 [00:15<00:17, 153757.51it/s]" + " 46%|████▌ | 2301089/4997817 [00:15<00:18, 149322.38it/s]" ] }, { @@ -1771,7 +1771,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2383385/4997817 [00:15<00:16, 154015.83it/s]" + " 46%|████▋ | 2316050/4997817 [00:15<00:17, 149405.58it/s]" ] }, { @@ -1779,7 +1779,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2398830/4997817 [00:15<00:16, 154143.64it/s]" + " 47%|████▋ | 2330994/4997817 [00:15<00:17, 148813.12it/s]" ] }, { @@ -1787,7 +1787,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2414296/4997817 [00:15<00:16, 154294.90it/s]" + " 47%|████▋ | 2345878/4997817 [00:15<00:17, 148395.95it/s]" ] }, { @@ -1795,7 +1795,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▊ | 2429726/4997817 [00:15<00:16, 153837.75it/s]" + " 47%|████▋ | 2360762/4997817 [00:15<00:17, 148526.38it/s]" ] }, { @@ -1803,7 +1803,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2445111/4997817 [00:15<00:16, 153667.86it/s]" + " 48%|████▊ | 2375616/4997817 [00:15<00:17, 148159.93it/s]" ] }, { @@ -1811,7 +1811,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2460479/4997817 [00:16<00:16, 151890.70it/s]" + " 48%|████▊ | 2390532/4997817 [00:16<00:17, 148457.00it/s]" ] }, { @@ -1819,7 +1819,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2475988/4997817 [00:16<00:16, 152837.34it/s]" + " 48%|████▊ | 2405379/4997817 [00:16<00:17, 148196.15it/s]" ] }, { @@ -1827,7 +1827,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2491431/4997817 [00:16<00:16, 153308.51it/s]" + " 48%|████▊ | 2420238/4997817 [00:16<00:17, 148312.28it/s]" ] }, { @@ -1835,7 +1835,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2506866/4997817 [00:16<00:16, 153615.55it/s]" + " 49%|████▊ | 2435107/4997817 [00:16<00:17, 148423.16it/s]" ] }, { @@ -1843,7 +1843,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2522412/4997817 [00:16<00:16, 154163.30it/s]" + " 49%|████▉ | 2450070/4997817 [00:16<00:17, 148780.43it/s]" ] }, { @@ -1851,7 +1851,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2537871/4997817 [00:16<00:15, 154287.08it/s]" + " 49%|████▉ | 2464991/4997817 [00:16<00:17, 148906.54it/s]" ] }, { @@ -1859,7 +1859,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2553303/4997817 [00:16<00:15, 154293.90it/s]" + " 50%|████▉ | 2479882/4997817 [00:16<00:17, 146441.13it/s]" ] }, { @@ -1867,7 +1867,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2568816/4997817 [00:16<00:15, 154541.27it/s]" + " 50%|████▉ | 2494748/4997817 [00:16<00:17, 147095.48it/s]" ] }, { @@ -1875,7 +1875,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2584304/4997817 [00:16<00:15, 154640.86it/s]" + " 50%|█████ | 2509636/4997817 [00:16<00:16, 147622.93it/s]" ] }, { @@ -1883,7 +1883,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2599855/4997817 [00:16<00:15, 154898.61it/s]" + " 51%|█████ | 2524564/4997817 [00:16<00:16, 148114.56it/s]" ] }, { @@ -1891,7 +1891,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2615346/4997817 [00:17<00:15, 154665.43it/s]" + " 51%|█████ | 2539380/4997817 [00:17<00:16, 148115.30it/s]" ] }, { @@ -1899,7 +1899,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2630881/4997817 [00:17<00:15, 154867.02it/s]" + " 51%|█████ | 2554354/4997817 [00:17<00:16, 148597.46it/s]" ] }, { @@ -1907,7 +1907,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2646404/4997817 [00:17<00:15, 154973.97it/s]" + " 51%|█████▏ | 2569216/4997817 [00:17<00:16, 148374.13it/s]" ] }, { @@ -1915,7 +1915,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2661935/4997817 [00:17<00:15, 155072.43it/s]" + " 52%|█████▏ | 2584164/4997817 [00:17<00:16, 148703.27it/s]" ] }, { @@ -1923,7 +1923,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 2677443/4997817 [00:17<00:14, 154974.92it/s]" + " 52%|█████▏ | 2599036/4997817 [00:17<00:16, 148635.63it/s]" ] }, { @@ -1931,7 +1931,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2692941/4997817 [00:17<00:14, 154515.55it/s]" + " 52%|█████▏ | 2613901/4997817 [00:17<00:16, 148378.58it/s]" ] }, { @@ -1939,7 +1939,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2708393/4997817 [00:17<00:14, 154276.13it/s]" + " 53%|█████▎ | 2628767/4997817 [00:17<00:15, 148459.78it/s]" ] }, { @@ -1947,7 +1947,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2723821/4997817 [00:17<00:14, 154178.04it/s]" + " 53%|█████▎ | 2643614/4997817 [00:17<00:15, 147791.28it/s]" ] }, { @@ -1955,7 +1955,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▍ | 2739259/4997817 [00:17<00:14, 154235.88it/s]" + " 53%|█████▎ | 2658460/4997817 [00:17<00:15, 147989.27it/s]" ] }, { @@ -1963,7 +1963,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2754683/4997817 [00:17<00:14, 153926.57it/s]" + " 53%|█████▎ | 2673393/4997817 [00:17<00:15, 148387.24it/s]" ] }, { @@ -1971,7 +1971,7 @@ "output_type": "stream", "text": [ "\r", - " 55%|█████▌ | 2770076/4997817 [00:18<00:14, 153820.44it/s]" + " 54%|█████▍ | 2688233/4997817 [00:18<00:15, 148384.85it/s]" ] }, { @@ -1979,7 +1979,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2785459/4997817 [00:18<00:14, 152499.22it/s]" + " 54%|█████▍ | 2703072/4997817 [00:18<00:15, 148257.58it/s]" ] }, { @@ -1987,7 +1987,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▌ | 2800824/4997817 [00:18<00:14, 152839.13it/s]" + " 54%|█████▍ | 2717899/4997817 [00:18<00:15, 148209.80it/s]" ] }, { @@ -1995,7 +1995,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 2816235/4997817 [00:18<00:14, 153215.33it/s]" + " 55%|█████▍ | 2732721/4997817 [00:18<00:15, 147973.31it/s]" ] }, { @@ -2003,7 +2003,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2831689/4997817 [00:18<00:14, 153607.76it/s]" + " 55%|█████▍ | 2747595/4997817 [00:18<00:15, 148200.33it/s]" ] }, { @@ -2011,7 +2011,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2847052/4997817 [00:18<00:14, 153491.72it/s]" + " 55%|█████▌ | 2762416/4997817 [00:18<00:15, 146973.80it/s]" ] }, { @@ -2019,7 +2019,7 @@ "output_type": "stream", "text": [ "\r", - " 57%|█████▋ | 2862403/4997817 [00:18<00:13, 153419.95it/s]" + " 56%|█████▌ | 2777116/4997817 [00:18<00:15, 146789.58it/s]" ] }, { @@ -2027,7 +2027,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2877746/4997817 [00:18<00:13, 153366.30it/s]" + " 56%|█████▌ | 2791931/4997817 [00:18<00:14, 147194.26it/s]" ] }, { @@ -2035,7 +2035,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2893133/4997817 [00:18<00:13, 153514.67it/s]" + " 56%|█████▌ | 2806715/4997817 [00:18<00:14, 147384.30it/s]" ] }, { @@ -2043,7 +2043,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 2908594/4997817 [00:18<00:13, 153841.38it/s]" + " 56%|█████▋ | 2821480/4997817 [00:18<00:14, 147462.46it/s]" ] }, { @@ -2051,7 +2051,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▊ | 2923979/4997817 [00:19<00:13, 153498.35it/s]" + " 57%|█████▋ | 2836227/4997817 [00:19<00:14, 147406.15it/s]" ] }, { @@ -2059,7 +2059,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2939330/4997817 [00:19<00:13, 153391.86it/s]" + " 57%|█████▋ | 2851060/4997817 [00:19<00:14, 147680.88it/s]" ] }, { @@ -2067,7 +2067,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2954670/4997817 [00:19<00:13, 153220.33it/s]" + " 57%|█████▋ | 2865829/4997817 [00:19<00:14, 147480.31it/s]" ] }, { @@ -2075,7 +2075,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 2969993/4997817 [00:19<00:13, 153075.79it/s]" + " 58%|█████▊ | 2880627/4997817 [00:19<00:14, 147625.88it/s]" ] }, { @@ -2083,7 +2083,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|█████▉ | 2985358/4997817 [00:19<00:13, 153246.40it/s]" + " 58%|█████▊ | 2895450/4997817 [00:19<00:14, 147805.34it/s]" ] }, { @@ -2091,7 +2091,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3000894/4997817 [00:19<00:12, 153877.45it/s]" + " 58%|█████▊ | 2910289/4997817 [00:19<00:14, 147977.98it/s]" ] }, { @@ -2099,7 +2099,7 @@ "output_type": "stream", "text": [ "\r", - " 60%|██████ | 3016305/4997817 [00:19<00:12, 153943.55it/s]" + " 59%|█████▊ | 2925087/4997817 [00:19<00:14, 147773.60it/s]" ] }, { @@ -2107,7 +2107,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3031700/4997817 [00:19<00:12, 153840.86it/s]" + " 59%|█████▉ | 2939865/4997817 [00:19<00:13, 147432.38it/s]" ] }, { @@ -2115,7 +2115,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████ | 3047085/4997817 [00:19<00:12, 153735.99it/s]" + " 59%|█████▉ | 2954609/4997817 [00:19<00:13, 147384.87it/s]" ] }, { @@ -2123,7 +2123,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████▏ | 3062478/4997817 [00:19<00:12, 153789.99it/s]" + " 59%|█████▉ | 2969435/4997817 [00:19<00:13, 147643.11it/s]" ] }, { @@ -2131,7 +2131,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3077886/4997817 [00:20<00:12, 153873.44it/s]" + " 60%|█████▉ | 2984444/4997817 [00:20<00:13, 148372.54it/s]" ] }, { @@ -2139,7 +2139,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3093381/4997817 [00:20<00:12, 154194.60it/s]" + " 60%|██████ | 2999282/4997817 [00:20<00:13, 148224.96it/s]" ] }, { @@ -2147,7 +2147,7 @@ "output_type": "stream", "text": [ "\r", - " 62%|██████▏ | 3108801/4997817 [00:20<00:12, 154044.06it/s]" + " 60%|██████ | 3014327/4997817 [00:20<00:13, 148889.21it/s]" ] }, { @@ -2155,7 +2155,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3124206/4997817 [00:20<00:12, 153851.19it/s]" + " 61%|██████ | 3029217/4997817 [00:20<00:13, 148573.27it/s]" ] }, { @@ -2163,7 +2163,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3139592/4997817 [00:20<00:12, 153641.46it/s]" + " 61%|██████ | 3044247/4997817 [00:20<00:13, 149086.67it/s]" ] }, { @@ -2171,7 +2171,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3154957/4997817 [00:20<00:12, 153372.79it/s]" + " 61%|██████ | 3059183/4997817 [00:20<00:12, 149166.56it/s]" ] }, { @@ -2179,7 +2179,7 @@ "output_type": "stream", "text": [ "\r", - " 63%|██████▎ | 3170295/4997817 [00:20<00:11, 153270.58it/s]" + " 62%|██████▏ | 3074155/4997817 [00:20<00:12, 149330.96it/s]" ] }, { @@ -2187,7 +2187,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 3185782/4997817 [00:20<00:11, 153747.89it/s]" + " 62%|██████▏ | 3089110/4997817 [00:20<00:12, 149393.56it/s]" ] }, { @@ -2195,7 +2195,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3201183/4997817 [00:20<00:11, 153822.92it/s]" + " 62%|██████▏ | 3104210/4997817 [00:20<00:12, 149873.45it/s]" ] }, { @@ -2203,7 +2203,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▍ | 3216566/4997817 [00:20<00:11, 153750.28it/s]" + " 62%|██████▏ | 3119202/4997817 [00:20<00:12, 149884.34it/s]" ] }, { @@ -2211,7 +2211,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3231942/4997817 [00:21<00:11, 153486.01it/s]" + " 63%|██████▎ | 3134198/4997817 [00:21<00:12, 149905.04it/s]" ] }, { @@ -2219,7 +2219,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 3247291/4997817 [00:21<00:11, 153010.94it/s]" + " 63%|██████▎ | 3149189/4997817 [00:21<00:12, 149467.49it/s]" ] }, { @@ -2227,7 +2227,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▌ | 3262633/4997817 [00:21<00:11, 153131.08it/s]" + " 63%|██████▎ | 3164137/4997817 [00:21<00:12, 149307.28it/s]" ] }, { @@ -2235,7 +2235,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3277947/4997817 [00:21<00:11, 152734.43it/s]" + " 64%|██████▎ | 3179123/4997817 [00:21<00:12, 149468.60it/s]" ] }, { @@ -2243,7 +2243,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3293236/4997817 [00:21<00:11, 152779.12it/s]" + " 64%|██████▍ | 3194121/4997817 [00:21<00:12, 149619.67it/s]" ] }, { @@ -2251,7 +2251,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▌ | 3308515/4997817 [00:21<00:11, 152733.82it/s]" + " 64%|██████▍ | 3209107/4997817 [00:21<00:11, 149688.95it/s]" ] }, { @@ -2259,7 +2259,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3323806/4997817 [00:21<00:10, 152783.67it/s]" + " 65%|██████▍ | 3224077/4997817 [00:21<00:11, 149601.75it/s]" ] }, { @@ -2267,7 +2267,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3339146/4997817 [00:21<00:10, 152966.93it/s]" + " 65%|██████▍ | 3239038/4997817 [00:21<00:12, 145384.73it/s]" ] }, { @@ -2275,7 +2275,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3354462/4997817 [00:21<00:10, 153022.87it/s]" + " 65%|██████▌ | 3253832/4997817 [00:21<00:11, 146133.31it/s]" ] }, { @@ -2283,7 +2283,7 @@ "output_type": "stream", "text": [ "\r", - " 67%|██████▋ | 3369765/4997817 [00:21<00:10, 152962.73it/s]" + " 65%|██████▌ | 3268741/4997817 [00:22<00:11, 147004.99it/s]" ] }, { @@ -2291,7 +2291,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3385062/4997817 [00:22<00:10, 152894.80it/s]" + " 66%|██████▌ | 3283745/4997817 [00:22<00:11, 147902.87it/s]" ] }, { @@ -2299,7 +2299,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3400352/4997817 [00:22<00:10, 152666.42it/s]" + " 66%|██████▌ | 3298633/4997817 [00:22<00:11, 148190.05it/s]" ] }, { @@ -2307,7 +2307,7 @@ "output_type": "stream", "text": [ "\r", - " 68%|██████▊ | 3415645/4997817 [00:22<00:10, 152708.55it/s]" + " 66%|██████▋ | 3313596/4997817 [00:22<00:11, 148619.05it/s]" ] }, { @@ -2315,7 +2315,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▊ | 3430980/4997817 [00:22<00:10, 152898.91it/s]" + " 67%|██████▋ | 3328645/4997817 [00:22<00:11, 149176.15it/s]" ] }, { @@ -2323,7 +2323,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3446327/4997817 [00:22<00:10, 153067.61it/s]" + " 67%|██████▋ | 3343578/4997817 [00:22<00:11, 149218.29it/s]" ] }, { @@ -2331,7 +2331,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 3461646/4997817 [00:22<00:10, 153102.05it/s]" + " 67%|██████▋ | 3358612/4997817 [00:22<00:10, 149551.05it/s]" ] }, { @@ -2339,7 +2339,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3476976/4997817 [00:22<00:09, 153158.49it/s]" + " 68%|██████▊ | 3373570/4997817 [00:22<00:10, 149033.52it/s]" ] }, { @@ -2347,7 +2347,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 3492292/4997817 [00:22<00:09, 153120.01it/s]" + " 68%|██████▊ | 3388476/4997817 [00:22<00:10, 146528.29it/s]" ] }, { @@ -2355,7 +2355,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3507605/4997817 [00:22<00:09, 152890.11it/s]" + " 68%|██████▊ | 3403462/4997817 [00:22<00:10, 147511.06it/s]" ] }, { @@ -2363,7 +2363,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|███████ | 3522908/4997817 [00:22<00:09, 152929.55it/s]" + " 68%|██████▊ | 3418495/4997817 [00:23<00:10, 148345.08it/s]" ] }, { @@ -2371,7 +2371,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3538202/4997817 [00:23<00:09, 152891.32it/s]" + " 69%|██████▊ | 3433544/4997817 [00:23<00:10, 148981.12it/s]" ] }, { @@ -2379,7 +2379,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 3553492/4997817 [00:23<00:09, 152523.70it/s]" + " 69%|██████▉ | 3448517/4997817 [00:23<00:10, 149201.74it/s]" ] }, { @@ -2387,7 +2387,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████▏ | 3568866/4997817 [00:23<00:09, 152854.30it/s]" + " 69%|██████▉ | 3463463/4997817 [00:23<00:10, 149277.82it/s]" ] }, { @@ -2395,7 +2395,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3584239/4997817 [00:23<00:09, 153113.31it/s]" + " 70%|██████▉ | 3478486/4997817 [00:23<00:10, 149559.40it/s]" ] }, { @@ -2403,7 +2403,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3599641/4997817 [00:23<00:09, 153382.50it/s]" + " 70%|██████▉ | 3493500/4997817 [00:23<00:10, 149731.40it/s]" ] }, { @@ -2411,7 +2411,7 @@ "output_type": "stream", "text": [ "\r", - " 72%|███████▏ | 3614980/4997817 [00:23<00:09, 153219.90it/s]" + " 70%|███████ | 3508475/4997817 [00:23<00:09, 149355.57it/s]" ] }, { @@ -2419,7 +2419,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3630303/4997817 [00:23<00:08, 153103.44it/s]" + " 70%|███████ | 3523448/4997817 [00:23<00:09, 149463.06it/s]" ] }, { @@ -2427,7 +2427,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3645666/4997817 [00:23<00:08, 153258.04it/s]" + " 71%|███████ | 3538396/4997817 [00:23<00:09, 148811.09it/s]" ] }, { @@ -2435,7 +2435,7 @@ "output_type": "stream", "text": [ "\r", - " 73%|███████▎ | 3661037/4997817 [00:23<00:08, 153391.00it/s]" + " 71%|███████ | 3553386/4997817 [00:23<00:09, 149134.03it/s]" ] }, { @@ -2443,7 +2443,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▎ | 3676396/4997817 [00:23<00:08, 153447.74it/s]" + " 71%|███████▏ | 3568325/4997817 [00:24<00:09, 149206.80it/s]" ] }, { @@ -2451,7 +2451,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3691779/4997817 [00:24<00:08, 153559.00it/s]" + " 72%|███████▏ | 3583404/4997817 [00:24<00:09, 149679.49it/s]" ] }, { @@ -2459,7 +2459,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3707135/4997817 [00:24<00:08, 153499.64it/s]" + " 72%|███████▏ | 3598373/4997817 [00:24<00:09, 149631.28it/s]" ] }, { @@ -2467,7 +2467,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 3722486/4997817 [00:24<00:08, 153335.52it/s]" + " 72%|███████▏ | 3613551/4997817 [00:24<00:09, 150271.66it/s]" ] }, { @@ -2475,7 +2475,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 3737911/4997817 [00:24<00:08, 153606.19it/s]" + " 73%|███████▎ | 3628626/4997817 [00:24<00:09, 150412.06it/s]" ] }, { @@ -2483,7 +2483,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3753366/4997817 [00:24<00:08, 153887.83it/s]" + " 73%|███████▎ | 3643668/4997817 [00:24<00:09, 150397.28it/s]" ] }, { @@ -2491,7 +2491,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▌ | 3768778/4997817 [00:24<00:07, 153954.62it/s]" + " 73%|███████▎ | 3658708/4997817 [00:24<00:08, 150269.23it/s]" ] }, { @@ -2499,7 +2499,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3784257/4997817 [00:24<00:07, 154203.63it/s]" + " 74%|███████▎ | 3673736/4997817 [00:24<00:08, 150258.33it/s]" ] }, { @@ -2507,7 +2507,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 3799678/4997817 [00:24<00:07, 154022.21it/s]" + " 74%|███████▍ | 3688762/4997817 [00:24<00:08, 149854.99it/s]" ] }, { @@ -2515,7 +2515,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▋ | 3815093/4997817 [00:24<00:07, 154058.13it/s]" + " 74%|███████▍ | 3703809/4997817 [00:24<00:08, 150024.53it/s]" ] }, { @@ -2523,7 +2523,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3830531/4997817 [00:24<00:07, 154154.11it/s]" + " 74%|███████▍ | 3718812/4997817 [00:25<00:08, 149963.47it/s]" ] }, { @@ -2531,7 +2531,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3845947/4997817 [00:25<00:07, 153835.24it/s]" + " 75%|███████▍ | 3733809/4997817 [00:25<00:08, 147131.86it/s]" ] }, { @@ -2539,7 +2539,7 @@ "output_type": "stream", "text": [ "\r", - " 77%|███████▋ | 3861331/4997817 [00:25<00:07, 152363.39it/s]" + " 75%|███████▌ | 3748534/4997817 [00:25<00:08, 144968.10it/s]" ] }, { @@ -2547,7 +2547,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3876571/4997817 [00:25<00:07, 148257.54it/s]" + " 75%|███████▌ | 3763502/4997817 [00:25<00:08, 146351.45it/s]" ] }, { @@ -2555,7 +2555,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3892073/4997817 [00:25<00:07, 150233.03it/s]" + " 76%|███████▌ | 3778452/4997817 [00:25<00:08, 147280.93it/s]" ] }, { @@ -2563,7 +2563,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3907535/4997817 [00:25<00:07, 151525.34it/s]" + " 76%|███████▌ | 3793500/4997817 [00:25<00:08, 148227.46it/s]" ] }, { @@ -2571,7 +2571,7 @@ "output_type": "stream", "text": [ "\r", - " 78%|███████▊ | 3923032/4997817 [00:25<00:07, 152544.53it/s]" + " 76%|███████▌ | 3808551/4997817 [00:25<00:07, 148904.08it/s]" ] }, { @@ -2579,7 +2579,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3938584/4997817 [00:25<00:06, 153428.34it/s]" + " 77%|███████▋ | 3823448/4997817 [00:25<00:07, 148893.18it/s]" ] }, { @@ -2587,7 +2587,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3954145/4997817 [00:25<00:06, 154078.27it/s]" + " 77%|███████▋ | 3838405/4997817 [00:25<00:07, 149091.59it/s]" ] }, { @@ -2595,7 +2595,7 @@ "output_type": "stream", "text": [ "\r", - " 79%|███████▉ | 3969685/4997817 [00:25<00:06, 154471.17it/s]" + " 77%|███████▋ | 3853321/4997817 [00:25<00:07, 149108.91it/s]" ] }, { @@ -2603,7 +2603,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 3985282/4997817 [00:25<00:06, 154916.43it/s]" + " 77%|███████▋ | 3868424/4997817 [00:26<00:07, 149683.15it/s]" ] }, { @@ -2611,7 +2611,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4000824/4997817 [00:26<00:06, 155065.13it/s]" + " 78%|███████▊ | 3883394/4997817 [00:26<00:07, 149463.82it/s]" ] }, { @@ -2619,7 +2619,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|████████ | 4016398/4997817 [00:26<00:06, 155265.45it/s]" + " 78%|███████▊ | 3898342/4997817 [00:26<00:07, 149433.72it/s]" ] }, { @@ -2627,7 +2627,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4031927/4997817 [00:26<00:06, 155263.31it/s]" + " 78%|███████▊ | 3913287/4997817 [00:26<00:07, 149158.69it/s]" ] }, { @@ -2635,7 +2635,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 4047504/4997817 [00:26<00:06, 155411.91it/s]" + " 79%|███████▊ | 3928270/4997817 [00:26<00:07, 149356.03it/s]" ] }, { @@ -2643,7 +2643,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████▏ | 4063142/4997817 [00:26<00:06, 155701.11it/s]" + " 79%|███████▉ | 3943329/4997817 [00:26<00:07, 149723.39it/s]" ] }, { @@ -2651,7 +2651,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4078784/4997817 [00:26<00:05, 155914.73it/s]" + " 79%|███████▉ | 3958457/4997817 [00:26<00:06, 150186.21it/s]" ] }, { @@ -2659,7 +2659,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4094376/4997817 [00:26<00:05, 155609.03it/s]" + " 80%|███████▉ | 3973535/4997817 [00:26<00:06, 150362.74it/s]" ] }, { @@ -2667,7 +2667,7 @@ "output_type": "stream", "text": [ "\r", - " 82%|████████▏ | 4109938/4997817 [00:26<00:05, 155507.75it/s]" + " 80%|███████▉ | 3988572/4997817 [00:26<00:06, 150215.59it/s]" ] }, { @@ -2675,7 +2675,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4125523/4997817 [00:26<00:05, 155609.64it/s]" + " 80%|████████ | 4003594/4997817 [00:26<00:06, 150138.97it/s]" ] }, { @@ -2683,7 +2683,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4141085/4997817 [00:27<00:05, 155552.22it/s]" + " 80%|████████ | 4018609/4997817 [00:27<00:06, 149672.46it/s]" ] }, { @@ -2691,7 +2691,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4156641/4997817 [00:27<00:05, 155421.11it/s]" + " 81%|████████ | 4033577/4997817 [00:27<00:06, 149505.88it/s]" ] }, { @@ -2699,7 +2699,7 @@ "output_type": "stream", "text": [ "\r", - " 83%|████████▎ | 4172184/4997817 [00:27<00:05, 155117.46it/s]" + " 81%|████████ | 4048528/4997817 [00:27<00:06, 149125.02it/s]" ] }, { @@ -2707,7 +2707,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4187696/4997817 [00:27<00:05, 154534.79it/s]" + " 81%|████████▏ | 4063484/4997817 [00:27<00:06, 149230.93it/s]" ] }, { @@ -2715,7 +2715,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4203150/4997817 [00:27<00:05, 154184.66it/s]" + " 82%|████████▏ | 4078408/4997817 [00:27<00:06, 148972.40it/s]" ] }, { @@ -2723,7 +2723,7 @@ "output_type": "stream", "text": [ "\r", - " 84%|████████▍ | 4218595/4997817 [00:27<00:05, 154242.53it/s]" + " 82%|████████▏ | 4093306/4997817 [00:27<00:06, 148888.41it/s]" ] }, { @@ -2731,7 +2731,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▍ | 4234020/4997817 [00:27<00:04, 154099.47it/s]" + " 82%|████████▏ | 4108195/4997817 [00:27<00:05, 148605.24it/s]" ] }, { @@ -2739,7 +2739,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4249431/4997817 [00:27<00:04, 153957.74it/s]" + " 82%|████████▏ | 4123096/4997817 [00:27<00:05, 148724.20it/s]" ] }, { @@ -2747,7 +2747,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 4264935/4997817 [00:27<00:04, 154279.92it/s]" + " 83%|████████▎ | 4137986/4997817 [00:27<00:05, 148775.81it/s]" ] }, { @@ -2755,7 +2755,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4280381/4997817 [00:27<00:04, 154332.23it/s]" + " 83%|████████▎ | 4152864/4997817 [00:27<00:05, 147916.84it/s]" ] }, { @@ -2763,7 +2763,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 4295885/4997817 [00:28<00:04, 154541.78it/s]" + " 83%|████████▎ | 4168079/4997817 [00:28<00:05, 149178.91it/s]" ] }, { @@ -2771,7 +2771,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▋ | 4311340/4997817 [00:28<00:04, 154233.71it/s]" + " 84%|████████▎ | 4182999/4997817 [00:28<00:05, 148754.10it/s]" ] }, { @@ -2779,7 +2779,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4326764/4997817 [00:28<00:04, 153934.37it/s]" + " 84%|████████▍ | 4197876/4997817 [00:28<00:05, 148338.85it/s]" ] }, { @@ -2787,7 +2787,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4342158/4997817 [00:28<00:04, 153797.99it/s]" + " 84%|████████▍ | 4212711/4997817 [00:28<00:05, 148033.59it/s]" ] }, { @@ -2795,7 +2795,7 @@ "output_type": "stream", "text": [ "\r", - " 87%|████████▋ | 4357619/4997817 [00:28<00:04, 154038.91it/s]" + " 85%|████████▍ | 4227532/4997817 [00:28<00:05, 148084.81it/s]" ] }, { @@ -2803,7 +2803,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4373121/4997817 [00:28<00:04, 154329.55it/s]" + " 85%|████████▍ | 4242341/4997817 [00:28<00:05, 147336.76it/s]" ] }, { @@ -2811,7 +2811,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4388575/4997817 [00:28<00:03, 154391.98it/s]" + " 85%|████████▌ | 4257276/4997817 [00:28<00:05, 147934.28it/s]" ] }, { @@ -2819,7 +2819,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4404026/4997817 [00:28<00:03, 154426.41it/s]" + " 85%|████████▌ | 4272071/4997817 [00:28<00:04, 147925.43it/s]" ] }, { @@ -2827,7 +2827,7 @@ "output_type": "stream", "text": [ "\r", - " 88%|████████▊ | 4419469/4997817 [00:28<00:03, 154210.38it/s]" + " 86%|████████▌ | 4286975/4997817 [00:28<00:04, 148255.65it/s]" ] }, { @@ -2835,7 +2835,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▊ | 4434891/4997817 [00:28<00:03, 154138.11it/s]" + " 86%|████████▌ | 4301802/4997817 [00:28<00:04, 148247.61it/s]" ] }, { @@ -2843,7 +2843,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4450305/4997817 [00:29<00:03, 154134.10it/s]" + " 86%|████████▋ | 4316680/4997817 [00:29<00:04, 148405.11it/s]" ] }, { @@ -2851,7 +2851,7 @@ "output_type": "stream", "text": [ "\r", - " 89%|████████▉ | 4465719/4997817 [00:29<00:03, 154121.48it/s]" + " 87%|████████▋ | 4331521/4997817 [00:29<00:04, 148218.44it/s]" ] }, { @@ -2859,7 +2859,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4481174/4997817 [00:29<00:03, 154247.34it/s]" + " 87%|████████▋ | 4346405/4997817 [00:29<00:04, 148402.52it/s]" ] }, { @@ -2867,7 +2867,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|████████▉ | 4496599/4997817 [00:29<00:03, 154208.17it/s]" + " 87%|████████▋ | 4361268/4997817 [00:29<00:04, 148468.29it/s]" ] }, { @@ -2875,7 +2875,7 @@ "output_type": "stream", "text": [ "\r", - " 90%|█████████ | 4512066/4997817 [00:29<00:03, 154345.14it/s]" + " 88%|████████▊ | 4376190/4997817 [00:29<00:04, 148692.17it/s]" ] }, { @@ -2883,7 +2883,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4527501/4997817 [00:29<00:03, 153705.84it/s]" + " 88%|████████▊ | 4391060/4997817 [00:29<00:04, 148605.96it/s]" ] }, { @@ -2891,7 +2891,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4542978/4997817 [00:29<00:02, 154023.13it/s]" + " 88%|████████▊ | 4405921/4997817 [00:29<00:03, 148210.23it/s]" ] }, { @@ -2899,7 +2899,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 4558492/4997817 [00:29<00:02, 154356.16it/s]" + " 88%|████████▊ | 4420946/4997817 [00:29<00:03, 148818.58it/s]" ] }, { @@ -2907,7 +2907,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4573936/4997817 [00:29<00:02, 154379.11it/s]" + " 89%|████████▉ | 4435904/4997817 [00:29<00:03, 149042.50it/s]" ] }, { @@ -2915,7 +2915,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4589375/4997817 [00:29<00:02, 153899.17it/s]" + " 89%|████████▉ | 4450809/4997817 [00:29<00:03, 148696.48it/s]" ] }, { @@ -2923,7 +2923,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4604778/4997817 [00:30<00:02, 153936.92it/s]" + " 89%|████████▉ | 4465679/4997817 [00:30<00:03, 148391.39it/s]" ] }, { @@ -2931,7 +2931,7 @@ "output_type": "stream", "text": [ "\r", - " 92%|█████████▏| 4620173/4997817 [00:30<00:02, 153820.99it/s]" + " 90%|████████▉ | 4480592/4997817 [00:30<00:03, 148609.55it/s]" ] }, { @@ -2939,7 +2939,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4635556/4997817 [00:30<00:02, 153371.69it/s]" + " 90%|████████▉ | 4495454/4997817 [00:30<00:03, 148415.61it/s]" ] }, { @@ -2947,7 +2947,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4650894/4997817 [00:30<00:02, 153092.36it/s]" + " 90%|█████████ | 4510296/4997817 [00:30<00:03, 148236.01it/s]" ] }, { @@ -2955,7 +2955,7 @@ "output_type": "stream", "text": [ "\r", - " 93%|█████████▎| 4666439/4997817 [00:30<00:02, 153793.34it/s]" + " 91%|█████████ | 4525201/4997817 [00:30<00:03, 148476.86it/s]" ] }, { @@ -2963,7 +2963,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▎| 4682119/4997817 [00:30<00:02, 154691.04it/s]" + " 91%|█████████ | 4540137/4997817 [00:30<00:03, 148739.87it/s]" ] }, { @@ -2971,7 +2971,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4697589/4997817 [00:30<00:01, 154604.14it/s]" + " 91%|█████████ | 4555012/4997817 [00:30<00:02, 148724.36it/s]" ] }, { @@ -2979,7 +2979,7 @@ "output_type": "stream", "text": [ "\r", - " 94%|█████████▍| 4713125/4997817 [00:30<00:01, 154828.68it/s]" + " 91%|█████████▏| 4569885/4997817 [00:30<00:02, 148218.47it/s]" ] }, { @@ -2987,7 +2987,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4728632/4997817 [00:30<00:01, 154898.93it/s]" + " 92%|█████████▏| 4584708/4997817 [00:30<00:02, 148107.90it/s]" ] }, { @@ -2995,7 +2995,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▍| 4744143/4997817 [00:30<00:01, 154959.25it/s]" + " 92%|█████████▏| 4599520/4997817 [00:30<00:02, 147382.48it/s]" ] }, { @@ -3003,7 +3003,7 @@ "output_type": "stream", "text": [ "\r", - " 95%|█████████▌| 4759678/4997817 [00:31<00:01, 155073.46it/s]" + " 92%|█████████▏| 4614260/4997817 [00:31<00:02, 147171.43it/s]" ] }, { @@ -3011,7 +3011,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4775186/4997817 [00:31<00:01, 154917.52it/s]" + " 93%|█████████▎| 4628978/4997817 [00:31<00:02, 146910.50it/s]" ] }, { @@ -3019,7 +3019,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4790721/4997817 [00:31<00:01, 155045.85it/s]" + " 93%|█████████▎| 4643877/4997817 [00:31<00:02, 147529.63it/s]" ] }, { @@ -3027,7 +3027,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 4806226/4997817 [00:31<00:01, 154851.24it/s]" + " 93%|█████████▎| 4658676/4997817 [00:31<00:02, 147663.65it/s]" ] }, { @@ -3035,7 +3035,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▋| 4821712/4997817 [00:31<00:01, 154804.70it/s]" + " 94%|█████████▎| 4673466/4997817 [00:31<00:02, 147733.38it/s]" ] }, { @@ -3043,7 +3043,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4837193/4997817 [00:31<00:01, 154721.44it/s]" + " 94%|█████████▍| 4688278/4997817 [00:31<00:02, 147847.75it/s]" ] }, { @@ -3051,7 +3051,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4852747/4997817 [00:31<00:00, 154964.32it/s]" + " 94%|█████████▍| 4703187/4997817 [00:31<00:01, 148218.46it/s]" ] }, { @@ -3059,7 +3059,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 4868310/4997817 [00:31<00:00, 155162.34it/s]" + " 94%|█████████▍| 4718010/4997817 [00:31<00:01, 148126.26it/s]" ] }, { @@ -3067,7 +3067,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4883827/4997817 [00:31<00:00, 155073.23it/s]" + " 95%|█████████▍| 4732860/4997817 [00:31<00:01, 148236.19it/s]" ] }, { @@ -3075,7 +3075,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4899377/4997817 [00:31<00:00, 155200.09it/s]" + " 95%|█████████▍| 4747684/4997817 [00:31<00:01, 147668.07it/s]" ] }, { @@ -3083,7 +3083,7 @@ "output_type": "stream", "text": [ "\r", - " 98%|█████████▊| 4914979/4997817 [00:32<00:00, 155442.29it/s]" + " 95%|█████████▌| 4762518/4997817 [00:32<00:01, 147866.52it/s]" ] }, { @@ -3091,7 +3091,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▊| 4930524/4997817 [00:32<00:00, 155279.46it/s]" + " 96%|█████████▌| 4777306/4997817 [00:32<00:01, 147807.41it/s]" ] }, { @@ -3099,7 +3099,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4946053/4997817 [00:32<00:00, 155209.47it/s]" + " 96%|█████████▌| 4792088/4997817 [00:32<00:01, 147635.94it/s]" ] }, { @@ -3107,7 +3107,7 @@ "output_type": "stream", "text": [ "\r", - " 99%|█████████▉| 4961574/4997817 [00:32<00:00, 155197.03it/s]" + " 96%|█████████▌| 4806931/4997817 [00:32<00:01, 147869.15it/s]" ] }, { @@ -3115,7 +3115,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4977094/4997817 [00:32<00:00, 154982.09it/s]" + " 96%|█████████▋| 4821719/4997817 [00:32<00:01, 147691.24it/s]" ] }, { @@ -3123,7 +3123,7 @@ "output_type": "stream", "text": [ "\r", - "100%|█████████▉| 4992593/4997817 [00:32<00:00, 154638.39it/s]" + " 97%|█████████▋| 4836489/4997817 [00:32<00:01, 147414.71it/s]" ] }, { @@ -3131,7 +3131,87 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 4997817/4997817 [00:32<00:00, 153550.25it/s]" + " 97%|█████████▋| 4851231/4997817 [00:32<00:00, 147350.64it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 97%|█████████▋| 4865967/4997817 [00:32<00:00, 147151.74it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 4880683/4997817 [00:32<00:00, 147009.40it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 4895417/4997817 [00:32<00:00, 147105.65it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 4910128/4997817 [00:33<00:00, 146428.75it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▊| 4924962/4997817 [00:33<00:00, 146996.28it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4939828/4997817 [00:33<00:00, 147491.15it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4954680/4997817 [00:33<00:00, 147795.26it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 99%|█████████▉| 4969461/4997817 [00:33<00:00, 147565.24it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|█████████▉| 4984333/4997817 [00:33<00:00, 147910.00it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 4997817/4997817 [00:33<00:00, 148534.64it/s]" ] }, { @@ -3370,10 +3450,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:54:30.510349Z", - "iopub.status.busy": "2024-02-13T04:54:30.510170Z", - "iopub.status.idle": "2024-02-13T04:54:45.091845Z", - "shell.execute_reply": "2024-02-13T04:54:45.091209Z" + "iopub.execute_input": "2024-02-13T22:24:07.420143Z", + "iopub.status.busy": "2024-02-13T22:24:07.419809Z", + "iopub.status.idle": "2024-02-13T22:24:22.126575Z", + "shell.execute_reply": "2024-02-13T22:24:22.126009Z" } }, "outputs": [], @@ -3387,10 +3467,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:54:45.094516Z", - "iopub.status.busy": "2024-02-13T04:54:45.094261Z", - "iopub.status.idle": "2024-02-13T04:54:48.897209Z", - "shell.execute_reply": "2024-02-13T04:54:48.896632Z" + "iopub.execute_input": "2024-02-13T22:24:22.129620Z", + "iopub.status.busy": "2024-02-13T22:24:22.128964Z", + "iopub.status.idle": "2024-02-13T22:24:25.825602Z", + "shell.execute_reply": "2024-02-13T22:24:25.825094Z" } }, "outputs": [ @@ -3459,17 +3539,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:54:48.899389Z", - "iopub.status.busy": "2024-02-13T04:54:48.899202Z", - "iopub.status.idle": "2024-02-13T04:54:50.249242Z", - "shell.execute_reply": "2024-02-13T04:54:50.248687Z" + "iopub.execute_input": "2024-02-13T22:24:25.827606Z", + "iopub.status.busy": "2024-02-13T22:24:25.827425Z", + "iopub.status.idle": "2024-02-13T22:24:27.189432Z", + "shell.execute_reply": "2024-02-13T22:24:27.188894Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b835fe8352304ba6a89408d78f3e2b64", + "model_id": "cc23ec16dd704778a8d6099da2a0a4ce", "version_major": 2, "version_minor": 0 }, @@ -3499,10 +3579,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:54:50.251926Z", - "iopub.status.busy": "2024-02-13T04:54:50.251455Z", - "iopub.status.idle": "2024-02-13T04:54:50.809205Z", - "shell.execute_reply": "2024-02-13T04:54:50.808731Z" + "iopub.execute_input": "2024-02-13T22:24:27.191707Z", + "iopub.status.busy": "2024-02-13T22:24:27.191529Z", + "iopub.status.idle": "2024-02-13T22:24:27.750910Z", + "shell.execute_reply": "2024-02-13T22:24:27.750360Z" } }, "outputs": [], @@ -3516,10 +3596,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:54:50.811713Z", - "iopub.status.busy": "2024-02-13T04:54:50.811259Z", - "iopub.status.idle": "2024-02-13T04:54:56.842152Z", - "shell.execute_reply": "2024-02-13T04:54:56.841543Z" + "iopub.execute_input": "2024-02-13T22:24:27.753288Z", + "iopub.status.busy": "2024-02-13T22:24:27.753109Z", + "iopub.status.idle": "2024-02-13T22:24:33.731175Z", + "shell.execute_reply": "2024-02-13T22:24:33.730574Z" } }, "outputs": [ @@ -3592,10 +3672,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:54:56.844334Z", - "iopub.status.busy": "2024-02-13T04:54:56.843952Z", - "iopub.status.idle": "2024-02-13T04:54:56.899795Z", - "shell.execute_reply": "2024-02-13T04:54:56.899197Z" + "iopub.execute_input": "2024-02-13T22:24:33.733163Z", + "iopub.status.busy": "2024-02-13T22:24:33.732982Z", + "iopub.status.idle": "2024-02-13T22:24:33.789654Z", + "shell.execute_reply": "2024-02-13T22:24:33.789130Z" }, "nbsphinx": "hidden" }, @@ -3639,33 +3719,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01444347398a4ae58282102169d8be02": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2925f3b151034a51872a028958845534", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e450a26b5c574b36ae507ceaeeaefcf0", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "0807d75c8c804c90aef25f73bbd613f6": { + "005a55bdbad346ce8eaf6df819db11fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3680,38 +3734,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ceea4ef73ad14c6887d59a1dca3c282e", + "layout": "IPY_MODEL_09b9ecf2442d49928ca61553dd4afaab", "placeholder": "​", - "style": "IPY_MODEL_364cee12777c43bcb0bbc72a61d6c244", + "style": "IPY_MODEL_fa1cdb07e6a344feb2871422a98c1b87", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "value": " 30/30 [00:00<00:00, 443.23it/s]" } }, - "08ecc2e77eec4ec9ab643b6c0222fe5c": { - "model_module": "@jupyter-widgets/controls", + "09b9ecf2442d49928ca61553dd4afaab": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_32e2845c1b6848cd914870bc2d2c7cc2", - "placeholder": "​", - "style": "IPY_MODEL_2312360348aa400d854939756dab8d29", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "0979b21fc165433c855265f60522025a": { + "0c167a300f2c4b9abfd76fd76c9d52fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3726,15 +3810,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cd047bfc61394dbbb8b31457c29cb1c9", + "layout": "IPY_MODEL_59e71c245a3c4da6bcc757fbf70cf9df", "placeholder": "​", - "style": "IPY_MODEL_1e25939cf1414c95b3528ccd7288b988", + "style": "IPY_MODEL_ac36553f6332490ca7a852120b2777ff", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:22<00:00,  1.40it/s]" + "value": "number of examples processed for estimating thresholds: 100%" } }, - "0f6f1287cc33482688640c69a23e0a36": { + "1627a6b0fca94386b4768ca281cb03cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3787,7 +3871,25 @@ "width": null } }, - "14d284f39dda4ac29e60acdfd695d53b": { + "296051a74dea42e8be53c000b2fa748d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "332fa78429f14fa89d9c8c87c1d7b861": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3840,7 +3942,7 @@ "width": null } }, - "1e25939cf1414c95b3528ccd7288b988": { + "44cb9d28b1cb45e493256824503d1a91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3858,7 +3960,7 @@ "text_color": null } }, - "2312360348aa400d854939756dab8d29": { + "50563a5f0f2e461fbd41a6dbad3a6de8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3876,7 +3978,30 @@ "text_color": null } }, - "2925f3b151034a51872a028958845534": { + "55d8d324b03b42a0ab03d77586fc52b5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_691394abc910417c9081aed5d0e43b3b", + "placeholder": "​", + "style": "IPY_MODEL_50563a5f0f2e461fbd41a6dbad3a6de8", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 22.57it/s]" + } + }, + "59e71c245a3c4da6bcc757fbf70cf9df": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3929,7 +4054,33 @@ "width": null } }, - "2c3b0d14e35743acb62625c8900d605b": { + "5c596b0500d6405c84cb1f654469940c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7e7146c57bcc4ab293c933a3a6366ffa", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f19f320b531540ed99408c3e2da28da9", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "691394abc910417c9081aed5d0e43b3b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3982,7 +4133,7 @@ "width": null } }, - "32e2845c1b6848cd914870bc2d2c7cc2": { + "7e7146c57bcc4ab293c933a3a6366ffa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4035,78 +4186,62 @@ "width": null } }, - "364cee12777c43bcb0bbc72a61d6c244": { + "88091181eb784c8bbccb8a4979196ec2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "4c548a90640044b2afb2285e559cb3cc": { - "model_module": "@jupyter-widgets/base", + "984ae48f301546b985cd4cbd2abb7918": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "98e69acf55e14607a3e61e54bd2f4425": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d851112a71aa4e739ed90314e9b98945", + "placeholder": "​", + "style": "IPY_MODEL_44cb9d28b1cb45e493256824503d1a91", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" } }, - "514f5092bf4e495f8ffa9db289302663": { + "9c1f05a1400d483fb05ea538c1f077b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4159,25 +4294,31 @@ "width": null } }, - "594871020e0a4853804349e45634c56d": { + "a2274f8c72ee4d14ba6da81202b02e53": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0c167a300f2c4b9abfd76fd76c9d52fd", + "IPY_MODEL_a752642ad113449683aa8e41e5e7a2cf", + "IPY_MODEL_005a55bdbad346ce8eaf6df819db11fb" + ], + "layout": "IPY_MODEL_dfb28ff768824357abde03dbcf41ecf9", + "tabbable": null, + "tooltip": null } }, - "5d399539bb0f47d99b4c556256877eb6": { + "a56c4946466c4ad0929f6308d8e5bcfc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4230,23 +4371,33 @@ "width": null } }, - "66fa00b672df4fd1aa720bf5c332b887": { + "a752642ad113449683aa8e41e5e7a2cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_332fa78429f14fa89d9c8c87c1d7b861", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_984ae48f301546b985cd4cbd2abb7918", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "76dd508d8b864642ae33a7b538ef5be1": { + "ac36553f6332490ca7a852120b2777ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4264,7 +4415,104 @@ "text_color": null } }, - "82150ee2af1e47e5a67d5ab9e6390086": { + "b77e5bc485904561983937a4e95cf83c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_98e69acf55e14607a3e61e54bd2f4425", + "IPY_MODEL_5c596b0500d6405c84cb1f654469940c", + "IPY_MODEL_e78c89e4d5c542938735e963726f1133" + ], + "layout": "IPY_MODEL_a56c4946466c4ad0929f6308d8e5bcfc", + "tabbable": null, + "tooltip": null + } + }, + "b96327c2082a44beb94001617121ec26": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e4e538a3205e47949d0129598e89f5c5", + "placeholder": "​", + "style": "IPY_MODEL_296051a74dea42e8be53c000b2fa748d", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" + } + }, + "bf980ac758df4590bbeabfa9c6ded8f9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9c1f05a1400d483fb05ea538c1f077b2", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_88091181eb784c8bbccb8a4979196ec2", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "cc23ec16dd704778a8d6099da2a0a4ce": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b96327c2082a44beb94001617121ec26", + "IPY_MODEL_bf980ac758df4590bbeabfa9c6ded8f9", + "IPY_MODEL_55d8d324b03b42a0ab03d77586fc52b5" + ], + "layout": "IPY_MODEL_cc3e1ca03f874d159312e1074f3b240f", + "tabbable": null, + "tooltip": null + } + }, + "cc3e1ca03f874d159312e1074f3b240f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4317,57 +4565,7 @@ "width": null } }, - "88aabd8f77df4029b94e7832f7b660a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fc26249c79164f439768fae6de62089e", - "IPY_MODEL_dce16ba16de44874b970d13dcee8ee7c", - "IPY_MODEL_f1eb1ead5b7242d29078e9399f8cb029" - ], - "layout": "IPY_MODEL_82150ee2af1e47e5a67d5ab9e6390086", - "tabbable": null, - "tooltip": null - } - }, - "a4b951693edd4ae8a0e2121a2f061550": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_14d284f39dda4ac29e60acdfd695d53b", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_66fa00b672df4fd1aa720bf5c332b887", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "ab5bb7a6adad4a29881d5db0c88524a3": { + "d851112a71aa4e739ed90314e9b98945": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4420,65 +4618,7 @@ "width": null } }, - "b5d25f6589924d72a4b940d9793c3743": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b835fe8352304ba6a89408d78f3e2b64": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_08ecc2e77eec4ec9ab643b6c0222fe5c", - "IPY_MODEL_a4b951693edd4ae8a0e2121a2f061550", - "IPY_MODEL_f37a6b7a87544390a87d2517a21cf017" - ], - "layout": "IPY_MODEL_5d399539bb0f47d99b4c556256877eb6", - "tabbable": null, - "tooltip": null - } - }, - "bbd880c7829942308d6000c8671cb0c8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cd047bfc61394dbbb8b31457c29cb1c9": { + "dfb28ff768824357abde03dbcf41ecf9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4531,7 +4671,7 @@ "width": null } }, - "ceea4ef73ad14c6887d59a1dca3c282e": { + "e4e538a3205e47949d0129598e89f5c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4584,57 +4724,30 @@ "width": null } }, - "d029c1c5efc94a628a305425e046d81c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0807d75c8c804c90aef25f73bbd613f6", - "IPY_MODEL_01444347398a4ae58282102169d8be02", - "IPY_MODEL_0979b21fc165433c855265f60522025a" - ], - "layout": "IPY_MODEL_0f6f1287cc33482688640c69a23e0a36", - "tabbable": null, - "tooltip": null - } - }, - "dce16ba16de44874b970d13dcee8ee7c": { + "e78c89e4d5c542938735e963726f1133": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4c548a90640044b2afb2285e559cb3cc", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b5d25f6589924d72a4b940d9793c3743", + "layout": "IPY_MODEL_1627a6b0fca94386b4768ca281cb03cf", + "placeholder": "​", + "style": "IPY_MODEL_f9a14dfed9334abf9181372b65df194a", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": " 30/30 [00:22<00:00,  1.34it/s]" } }, - "e450a26b5c574b36ae507ceaeeaefcf0": { + "f19f320b531540ed99408c3e2da28da9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4650,73 +4763,40 @@ "description_width": "" } }, - "f1eb1ead5b7242d29078e9399f8cb029": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_514f5092bf4e495f8ffa9db289302663", - "placeholder": "​", - "style": "IPY_MODEL_bbd880c7829942308d6000c8671cb0c8", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 428.96it/s]" - } - }, - "f37a6b7a87544390a87d2517a21cf017": { + "f9a14dfed9334abf9181372b65df194a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2c3b0d14e35743acb62625c8900d605b", - "placeholder": "​", - "style": "IPY_MODEL_76dd508d8b864642ae33a7b538ef5be1", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 22.20it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fc26249c79164f439768fae6de62089e": { + "fa1cdb07e6a344feb2871422a98c1b87": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ab5bb7a6adad4a29881d5db0c88524a3", - "placeholder": "​", - "style": "IPY_MODEL_594871020e0a4853804349e45634c56d", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } } }, diff --git a/master/tutorials/tabular.ipynb b/master/tutorials/tabular.ipynb index 0b071913f..b89a48c86 100644 --- a/master/tutorials/tabular.ipynb +++ b/master/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:00.717499Z", - "iopub.status.busy": "2024-02-13T04:55:00.717322Z", - "iopub.status.idle": "2024-02-13T04:55:01.854877Z", - "shell.execute_reply": "2024-02-13T04:55:01.854271Z" + "iopub.execute_input": "2024-02-13T22:24:37.695996Z", + "iopub.status.busy": "2024-02-13T22:24:37.695819Z", + "iopub.status.idle": "2024-02-13T22:24:38.867693Z", + "shell.execute_reply": "2024-02-13T22:24:38.867188Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:01.857481Z", - "iopub.status.busy": "2024-02-13T04:55:01.857033Z", - "iopub.status.idle": "2024-02-13T04:55:01.880310Z", - "shell.execute_reply": "2024-02-13T04:55:01.879895Z" + "iopub.execute_input": "2024-02-13T22:24:38.870168Z", + "iopub.status.busy": "2024-02-13T22:24:38.869888Z", + "iopub.status.idle": "2024-02-13T22:24:38.892770Z", + "shell.execute_reply": "2024-02-13T22:24:38.892347Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:01.882522Z", - "iopub.status.busy": "2024-02-13T04:55:01.882132Z", - "iopub.status.idle": "2024-02-13T04:55:02.017723Z", - "shell.execute_reply": "2024-02-13T04:55:02.017253Z" + "iopub.execute_input": "2024-02-13T22:24:38.894921Z", + "iopub.status.busy": "2024-02-13T22:24:38.894444Z", + "iopub.status.idle": "2024-02-13T22:24:38.945913Z", + "shell.execute_reply": "2024-02-13T22:24:38.945406Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:02.019751Z", - "iopub.status.busy": "2024-02-13T04:55:02.019365Z", - "iopub.status.idle": "2024-02-13T04:55:02.022765Z", - "shell.execute_reply": "2024-02-13T04:55:02.022269Z" + "iopub.execute_input": "2024-02-13T22:24:38.947927Z", + "iopub.status.busy": "2024-02-13T22:24:38.947744Z", + "iopub.status.idle": "2024-02-13T22:24:38.950935Z", + "shell.execute_reply": "2024-02-13T22:24:38.950504Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:02.024729Z", - "iopub.status.busy": "2024-02-13T04:55:02.024344Z", - "iopub.status.idle": "2024-02-13T04:55:02.033719Z", - "shell.execute_reply": "2024-02-13T04:55:02.033228Z" + "iopub.execute_input": "2024-02-13T22:24:38.952803Z", + "iopub.status.busy": "2024-02-13T22:24:38.952628Z", + "iopub.status.idle": "2024-02-13T22:24:38.960649Z", + "shell.execute_reply": "2024-02-13T22:24:38.960235Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:02.036007Z", - "iopub.status.busy": "2024-02-13T04:55:02.035608Z", - "iopub.status.idle": "2024-02-13T04:55:02.038726Z", - "shell.execute_reply": "2024-02-13T04:55:02.038306Z" + "iopub.execute_input": "2024-02-13T22:24:38.962560Z", + "iopub.status.busy": "2024-02-13T22:24:38.962385Z", + "iopub.status.idle": "2024-02-13T22:24:38.964963Z", + "shell.execute_reply": "2024-02-13T22:24:38.964531Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:02.040534Z", - "iopub.status.busy": "2024-02-13T04:55:02.040366Z", - "iopub.status.idle": "2024-02-13T04:55:02.559556Z", - "shell.execute_reply": "2024-02-13T04:55:02.558945Z" + "iopub.execute_input": "2024-02-13T22:24:38.966754Z", + "iopub.status.busy": "2024-02-13T22:24:38.966587Z", + "iopub.status.idle": "2024-02-13T22:24:39.482791Z", + "shell.execute_reply": "2024-02-13T22:24:39.482289Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:02.561996Z", - "iopub.status.busy": "2024-02-13T04:55:02.561790Z", - "iopub.status.idle": "2024-02-13T04:55:04.191992Z", - "shell.execute_reply": "2024-02-13T04:55:04.191356Z" + "iopub.execute_input": "2024-02-13T22:24:39.485114Z", + "iopub.status.busy": "2024-02-13T22:24:39.484914Z", + "iopub.status.idle": "2024-02-13T22:24:41.102959Z", + "shell.execute_reply": "2024-02-13T22:24:41.102333Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:04.194681Z", - "iopub.status.busy": "2024-02-13T04:55:04.194137Z", - "iopub.status.idle": "2024-02-13T04:55:04.204355Z", - "shell.execute_reply": "2024-02-13T04:55:04.203913Z" + "iopub.execute_input": "2024-02-13T22:24:41.105931Z", + "iopub.status.busy": "2024-02-13T22:24:41.105016Z", + "iopub.status.idle": "2024-02-13T22:24:41.115228Z", + "shell.execute_reply": "2024-02-13T22:24:41.114793Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:04.206414Z", - "iopub.status.busy": "2024-02-13T04:55:04.206158Z", - "iopub.status.idle": "2024-02-13T04:55:04.209940Z", - "shell.execute_reply": "2024-02-13T04:55:04.209484Z" + "iopub.execute_input": "2024-02-13T22:24:41.117214Z", + "iopub.status.busy": "2024-02-13T22:24:41.116914Z", + "iopub.status.idle": "2024-02-13T22:24:41.120670Z", + "shell.execute_reply": "2024-02-13T22:24:41.120253Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:04.211992Z", - "iopub.status.busy": "2024-02-13T04:55:04.211689Z", - "iopub.status.idle": "2024-02-13T04:55:04.218970Z", - "shell.execute_reply": "2024-02-13T04:55:04.218438Z" + "iopub.execute_input": "2024-02-13T22:24:41.122668Z", + "iopub.status.busy": "2024-02-13T22:24:41.122271Z", + "iopub.status.idle": "2024-02-13T22:24:41.128821Z", + "shell.execute_reply": "2024-02-13T22:24:41.128425Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:04.221312Z", - "iopub.status.busy": "2024-02-13T04:55:04.220885Z", - "iopub.status.idle": "2024-02-13T04:55:04.332135Z", - "shell.execute_reply": "2024-02-13T04:55:04.331569Z" + "iopub.execute_input": "2024-02-13T22:24:41.130731Z", + "iopub.status.busy": "2024-02-13T22:24:41.130561Z", + "iopub.status.idle": "2024-02-13T22:24:41.241808Z", + "shell.execute_reply": "2024-02-13T22:24:41.241243Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:04.334466Z", - "iopub.status.busy": "2024-02-13T04:55:04.334026Z", - "iopub.status.idle": "2024-02-13T04:55:04.336733Z", - "shell.execute_reply": "2024-02-13T04:55:04.336314Z" + "iopub.execute_input": "2024-02-13T22:24:41.243833Z", + "iopub.status.busy": "2024-02-13T22:24:41.243656Z", + "iopub.status.idle": "2024-02-13T22:24:41.246452Z", + "shell.execute_reply": "2024-02-13T22:24:41.246019Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:04.338718Z", - "iopub.status.busy": "2024-02-13T04:55:04.338394Z", - "iopub.status.idle": "2024-02-13T04:55:06.350466Z", - "shell.execute_reply": "2024-02-13T04:55:06.349800Z" + "iopub.execute_input": "2024-02-13T22:24:41.248657Z", + "iopub.status.busy": "2024-02-13T22:24:41.248129Z", + "iopub.status.idle": "2024-02-13T22:24:43.211053Z", + "shell.execute_reply": "2024-02-13T22:24:43.210398Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:06.353483Z", - "iopub.status.busy": "2024-02-13T04:55:06.352806Z", - "iopub.status.idle": "2024-02-13T04:55:06.364456Z", - "shell.execute_reply": "2024-02-13T04:55:06.364002Z" + "iopub.execute_input": "2024-02-13T22:24:43.214087Z", + "iopub.status.busy": "2024-02-13T22:24:43.213341Z", + "iopub.status.idle": "2024-02-13T22:24:43.224722Z", + "shell.execute_reply": "2024-02-13T22:24:43.224271Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:06.366504Z", - "iopub.status.busy": "2024-02-13T04:55:06.366183Z", - "iopub.status.idle": "2024-02-13T04:55:06.497327Z", - "shell.execute_reply": "2024-02-13T04:55:06.496858Z" + "iopub.execute_input": "2024-02-13T22:24:43.226908Z", + "iopub.status.busy": "2024-02-13T22:24:43.226465Z", + "iopub.status.idle": "2024-02-13T22:24:43.306566Z", + "shell.execute_reply": "2024-02-13T22:24:43.306169Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/text.html b/master/tutorials/text.html index 0b02d927c..9b1507a11 100644 --- a/master/tutorials/text.html +++ b/master/tutorials/text.html @@ -738,7 +738,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'beneficiary_not_allowed', 'cancel_transfer', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'card_about_to_expire', 'visa_or_mastercard', 'change_pin', 'getting_spare_card'}
+Classes: {'supported_cards_and_currencies', 'lost_or_stolen_phone', 'getting_spare_card', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'visa_or_mastercard', 'change_pin', 'cancel_transfer', 'card_about_to_expire', 'apple_pay_or_google_pay'}
 

Let’s print the first example in the train set.

diff --git a/master/tutorials/text.ipynb b/master/tutorials/text.ipynb index 6399cdddd..d727a6e93 100644 --- a/master/tutorials/text.ipynb +++ b/master/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:09.224502Z", - "iopub.status.busy": "2024-02-13T04:55:09.224314Z", - "iopub.status.idle": "2024-02-13T04:55:11.806283Z", - "shell.execute_reply": "2024-02-13T04:55:11.805719Z" + "iopub.execute_input": "2024-02-13T22:24:46.062313Z", + "iopub.status.busy": "2024-02-13T22:24:46.062136Z", + "iopub.status.idle": "2024-02-13T22:24:48.653383Z", + "shell.execute_reply": "2024-02-13T22:24:48.652839Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:11.808863Z", - "iopub.status.busy": "2024-02-13T04:55:11.808411Z", - "iopub.status.idle": "2024-02-13T04:55:11.811658Z", - "shell.execute_reply": "2024-02-13T04:55:11.811224Z" + "iopub.execute_input": "2024-02-13T22:24:48.655813Z", + "iopub.status.busy": "2024-02-13T22:24:48.655521Z", + "iopub.status.idle": "2024-02-13T22:24:48.659009Z", + "shell.execute_reply": "2024-02-13T22:24:48.658549Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:11.813719Z", - "iopub.status.busy": "2024-02-13T04:55:11.813409Z", - "iopub.status.idle": "2024-02-13T04:55:11.816924Z", - "shell.execute_reply": "2024-02-13T04:55:11.816525Z" + "iopub.execute_input": "2024-02-13T22:24:48.660942Z", + "iopub.status.busy": "2024-02-13T22:24:48.660613Z", + "iopub.status.idle": "2024-02-13T22:24:48.664051Z", + "shell.execute_reply": "2024-02-13T22:24:48.663548Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:11.818860Z", - "iopub.status.busy": "2024-02-13T04:55:11.818604Z", - "iopub.status.idle": "2024-02-13T04:55:11.966300Z", - "shell.execute_reply": "2024-02-13T04:55:11.965808Z" + "iopub.execute_input": "2024-02-13T22:24:48.666083Z", + "iopub.status.busy": "2024-02-13T22:24:48.665777Z", + "iopub.status.idle": "2024-02-13T22:24:48.714184Z", + "shell.execute_reply": "2024-02-13T22:24:48.713684Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:11.968451Z", - "iopub.status.busy": "2024-02-13T04:55:11.968095Z", - "iopub.status.idle": "2024-02-13T04:55:11.971636Z", - "shell.execute_reply": "2024-02-13T04:55:11.971204Z" + "iopub.execute_input": "2024-02-13T22:24:48.716183Z", + "iopub.status.busy": "2024-02-13T22:24:48.715879Z", + "iopub.status.idle": "2024-02-13T22:24:48.719289Z", + "shell.execute_reply": "2024-02-13T22:24:48.718790Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:11.973598Z", - "iopub.status.busy": "2024-02-13T04:55:11.973271Z", - "iopub.status.idle": "2024-02-13T04:55:11.976797Z", - "shell.execute_reply": "2024-02-13T04:55:11.976340Z" + "iopub.execute_input": "2024-02-13T22:24:48.721166Z", + "iopub.status.busy": "2024-02-13T22:24:48.720857Z", + "iopub.status.idle": "2024-02-13T22:24:48.723984Z", + "shell.execute_reply": "2024-02-13T22:24:48.723515Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'beneficiary_not_allowed', 'cancel_transfer', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'card_about_to_expire', 'visa_or_mastercard', 'change_pin', 'getting_spare_card'}\n" + "Classes: {'supported_cards_and_currencies', 'lost_or_stolen_phone', 'getting_spare_card', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'visa_or_mastercard', 'change_pin', 'cancel_transfer', 'card_about_to_expire', 'apple_pay_or_google_pay'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:11.978725Z", - "iopub.status.busy": "2024-02-13T04:55:11.978473Z", - "iopub.status.idle": "2024-02-13T04:55:11.981617Z", - "shell.execute_reply": "2024-02-13T04:55:11.981167Z" + "iopub.execute_input": "2024-02-13T22:24:48.725749Z", + "iopub.status.busy": "2024-02-13T22:24:48.725579Z", + "iopub.status.idle": "2024-02-13T22:24:48.728530Z", + "shell.execute_reply": "2024-02-13T22:24:48.728031Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:11.983727Z", - "iopub.status.busy": "2024-02-13T04:55:11.983402Z", - "iopub.status.idle": "2024-02-13T04:55:11.986469Z", - "shell.execute_reply": "2024-02-13T04:55:11.986015Z" + "iopub.execute_input": "2024-02-13T22:24:48.730412Z", + "iopub.status.busy": "2024-02-13T22:24:48.730236Z", + "iopub.status.idle": "2024-02-13T22:24:48.733662Z", + "shell.execute_reply": "2024-02-13T22:24:48.733230Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:11.988548Z", - "iopub.status.busy": "2024-02-13T04:55:11.988232Z", - "iopub.status.idle": "2024-02-13T04:55:16.248798Z", - "shell.execute_reply": "2024-02-13T04:55:16.248269Z" + "iopub.execute_input": "2024-02-13T22:24:48.735704Z", + "iopub.status.busy": "2024-02-13T22:24:48.735349Z", + "iopub.status.idle": "2024-02-13T22:24:52.616910Z", + "shell.execute_reply": "2024-02-13T22:24:52.616284Z" } }, "outputs": [ @@ -510,10 +510,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:16.251442Z", - "iopub.status.busy": "2024-02-13T04:55:16.251058Z", - "iopub.status.idle": "2024-02-13T04:55:16.254089Z", - "shell.execute_reply": "2024-02-13T04:55:16.253581Z" + "iopub.execute_input": "2024-02-13T22:24:52.619481Z", + "iopub.status.busy": "2024-02-13T22:24:52.619160Z", + "iopub.status.idle": "2024-02-13T22:24:52.621911Z", + "shell.execute_reply": "2024-02-13T22:24:52.621370Z" } }, "outputs": [], @@ -535,10 +535,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:16.256122Z", - "iopub.status.busy": "2024-02-13T04:55:16.255803Z", - "iopub.status.idle": "2024-02-13T04:55:16.258546Z", - "shell.execute_reply": "2024-02-13T04:55:16.257977Z" + "iopub.execute_input": "2024-02-13T22:24:52.623880Z", + "iopub.status.busy": "2024-02-13T22:24:52.623590Z", + "iopub.status.idle": "2024-02-13T22:24:52.626202Z", + "shell.execute_reply": "2024-02-13T22:24:52.625745Z" } }, "outputs": [], @@ -553,10 +553,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:16.260996Z", - "iopub.status.busy": "2024-02-13T04:55:16.260627Z", - "iopub.status.idle": "2024-02-13T04:55:18.560132Z", - "shell.execute_reply": "2024-02-13T04:55:18.559514Z" + "iopub.execute_input": "2024-02-13T22:24:52.627951Z", + "iopub.status.busy": "2024-02-13T22:24:52.627783Z", + "iopub.status.idle": "2024-02-13T22:24:54.898215Z", + "shell.execute_reply": "2024-02-13T22:24:54.897495Z" }, "scrolled": true }, @@ -579,10 +579,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:18.563257Z", - "iopub.status.busy": "2024-02-13T04:55:18.562572Z", - "iopub.status.idle": "2024-02-13T04:55:18.570320Z", - "shell.execute_reply": "2024-02-13T04:55:18.569652Z" + "iopub.execute_input": "2024-02-13T22:24:54.901247Z", + "iopub.status.busy": "2024-02-13T22:24:54.900654Z", + "iopub.status.idle": "2024-02-13T22:24:54.908327Z", + "shell.execute_reply": "2024-02-13T22:24:54.907815Z" } }, "outputs": [ @@ -683,10 +683,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:18.572203Z", - "iopub.status.busy": "2024-02-13T04:55:18.572013Z", - "iopub.status.idle": "2024-02-13T04:55:18.576009Z", - "shell.execute_reply": "2024-02-13T04:55:18.575587Z" + "iopub.execute_input": "2024-02-13T22:24:54.910345Z", + "iopub.status.busy": "2024-02-13T22:24:54.910034Z", + "iopub.status.idle": "2024-02-13T22:24:54.913839Z", + "shell.execute_reply": "2024-02-13T22:24:54.913337Z" } }, "outputs": [], @@ -700,10 +700,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:18.577936Z", - "iopub.status.busy": "2024-02-13T04:55:18.577587Z", - "iopub.status.idle": "2024-02-13T04:55:18.580844Z", - "shell.execute_reply": "2024-02-13T04:55:18.580386Z" + "iopub.execute_input": "2024-02-13T22:24:54.915829Z", + "iopub.status.busy": "2024-02-13T22:24:54.915523Z", + "iopub.status.idle": "2024-02-13T22:24:54.918616Z", + "shell.execute_reply": "2024-02-13T22:24:54.918109Z" } }, "outputs": [ @@ -738,10 +738,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:18.582818Z", - "iopub.status.busy": "2024-02-13T04:55:18.582496Z", - "iopub.status.idle": "2024-02-13T04:55:18.585392Z", - "shell.execute_reply": "2024-02-13T04:55:18.584949Z" + "iopub.execute_input": "2024-02-13T22:24:54.920647Z", + "iopub.status.busy": "2024-02-13T22:24:54.920281Z", + "iopub.status.idle": "2024-02-13T22:24:54.923159Z", + "shell.execute_reply": "2024-02-13T22:24:54.922689Z" } }, "outputs": [], @@ -761,10 +761,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:18.587304Z", - "iopub.status.busy": "2024-02-13T04:55:18.586985Z", - "iopub.status.idle": "2024-02-13T04:55:18.594246Z", - "shell.execute_reply": "2024-02-13T04:55:18.593699Z" + "iopub.execute_input": "2024-02-13T22:24:54.925093Z", + "iopub.status.busy": "2024-02-13T22:24:54.924777Z", + "iopub.status.idle": "2024-02-13T22:24:54.931706Z", + "shell.execute_reply": "2024-02-13T22:24:54.931272Z" } }, "outputs": [ @@ -889,10 +889,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:18.596263Z", - "iopub.status.busy": "2024-02-13T04:55:18.595927Z", - "iopub.status.idle": "2024-02-13T04:55:18.820657Z", - "shell.execute_reply": "2024-02-13T04:55:18.820106Z" + "iopub.execute_input": "2024-02-13T22:24:54.933656Z", + "iopub.status.busy": "2024-02-13T22:24:54.933483Z", + "iopub.status.idle": "2024-02-13T22:24:55.157525Z", + "shell.execute_reply": "2024-02-13T22:24:55.157001Z" }, "scrolled": true }, @@ -931,10 +931,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:18.823990Z", - "iopub.status.busy": "2024-02-13T04:55:18.822917Z", - "iopub.status.idle": "2024-02-13T04:55:19.000760Z", - "shell.execute_reply": "2024-02-13T04:55:19.000241Z" + "iopub.execute_input": "2024-02-13T22:24:55.160594Z", + "iopub.status.busy": "2024-02-13T22:24:55.159683Z", + "iopub.status.idle": "2024-02-13T22:24:55.340146Z", + "shell.execute_reply": "2024-02-13T22:24:55.339575Z" }, "scrolled": true }, @@ -967,10 +967,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-02-13T04:55:19.004499Z", - "iopub.status.busy": "2024-02-13T04:55:19.003571Z", - "iopub.status.idle": "2024-02-13T04:55:19.008440Z", - "shell.execute_reply": "2024-02-13T04:55:19.007968Z" + "iopub.execute_input": "2024-02-13T22:24:55.344164Z", + "iopub.status.busy": "2024-02-13T22:24:55.343195Z", + "iopub.status.idle": "2024-02-13T22:24:55.348294Z", + "shell.execute_reply": "2024-02-13T22:24:55.347794Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 32b9f2bf8..759443250 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -631,7 +631,7 @@

1. Install required dependencies and download data
---2024-02-13 04:55:22--  https://data.deepai.org/conll2003.zip
+--2024-02-13 22:24:58--  https://data.deepai.org/conll2003.zip
 Resolving data.deepai.org (data.deepai.org)...
 
@@ -640,17 +640,9 @@

1. Install required dependencies and download data
-169.150.249.163, 2400:52e0:1a01::1114:1
-Connecting to data.deepai.org (data.deepai.org)|169.150.249.163|:443... connected.
-HTTP request sent, awaiting response...
-
- -
-
-
-
-
-200 OK
+185.93.1.250, 2400:52e0:1a00::894:1
+Connecting to data.deepai.org (data.deepai.org)|185.93.1.250|:443... connected.
+HTTP request sent, awaiting response... 200 OK
 Length: 982975 (960K) [application/zip]
 Saving to: ‘conll2003.zip’
@@ -671,25 +663,28 @@

1. Install required dependencies and download data
-

conll2003.zip 100%[===================&gt;] 959.94K –.-KB/s in 0.05s

+

conll2003.zip 94%[=================&gt; ] 903.30K 3.87MB/s +conll2003.zip 100%[===================&gt;] 959.94K 4.11MB/s in 0.2s

-

2024-02-13 04:55:22 (19.3 MB/s) - ‘conll2003.zip’ saved [982975/982975]

+

2024-02-13 22:24:59 (4.11 MB/s) - ‘conll2003.zip’ saved [982975/982975]

mkdir: cannot create directory ‘data’: File exists </pre>

-

conll2003.zip 100%[===================>] 959.94K –.-KB/s in 0.05s

+

conll2003.zip 94%[=================> ] 903.30K 3.87MB/s +conll2003.zip 100%[===================>] 959.94K 4.11MB/s in 0.2s

-

2024-02-13 04:55:22 (19.3 MB/s) - ‘conll2003.zip’ saved [982975/982975]

+

2024-02-13 22:24:59 (4.11 MB/s) - ‘conll2003.zip’ saved [982975/982975]

mkdir: cannot create directory ‘data’: File exists end{sphinxVerbatim}

-

conll2003.zip 100%[===================>] 959.94K –.-KB/s in 0.05s

+

conll2003.zip 94%[=================> ] 903.30K 3.87MB/s +conll2003.zip 100%[===================>] 959.94K 4.11MB/s in 0.2s

-

2024-02-13 04:55:22 (19.3 MB/s) - ‘conll2003.zip’ saved [982975/982975]

+

2024-02-13 22:24:59 (4.11 MB/s) - ‘conll2003.zip’ saved [982975/982975]

mkdir: cannot create directory ‘data’: File exists

-
-
-
-
-
-connected.
+--2024-02-13 22:24:59--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz
+Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.25.223, 52.216.53.185, 3.5.29.190, ...
+Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.25.223|:443... connected.
 
-
pred_probs.npz 1%[ ] 249.53K 1.07MB/s
-

</pre>

-
-
-
pred_probs.npz 1%[ ] 249.53K 1.07MB/s
-

end{sphinxVerbatim}

-
-
-
-

pred_probs.npz 1%[ ] 249.53K 1.07MB/s

-
-
-
-
-
-
-
-
pred_probs.npz 26%[====&gt; ] 4.33M 9.51MB/s
-

</pre>

-
-
-
pred_probs.npz 26%[====> ] 4.33M 9.51MB/s
-

end{sphinxVerbatim}

-
-
-
-

pred_probs.npz 26%[====> ] 4.33M 9.51MB/s

-
-
-
-
-
-
-
-
pred_probs.npz 78%[==============&gt; ] 12.81M 18.7MB/s
+
pred_probs.npz 62%[===========&gt; ] 10.12M 50.6MB/s

</pre>

-
pred_probs.npz 78%[==============> ] 12.81M 18.7MB/s
+
pred_probs.npz 62%[===========> ] 10.12M 50.6MB/s

end{sphinxVerbatim}

-

pred_probs.npz 78%[==============> ] 12.81M 18.7MB/s

+

pred_probs.npz 62%[===========> ] 10.12M 50.6MB/s

-

pred_probs.npz 100%[===================&gt;] 16.26M 21.9MB/s in 0.7s

+

pred_probs.npz 100%[===================&gt;] 16.26M 65.9MB/s in 0.2s

-

2024-02-13 04:55:23 (21.9 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

+

2024-02-13 22:24:59 (65.9 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

</pre>

-

pred_probs.npz 100%[===================>] 16.26M 21.9MB/s in 0.7s

+

pred_probs.npz 100%[===================>] 16.26M 65.9MB/s in 0.2s

-

2024-02-13 04:55:23 (21.9 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

+

2024-02-13 22:24:59 (65.9 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

end{sphinxVerbatim}

-

pred_probs.npz 100%[===================>] 16.26M 21.9MB/s in 0.7s

+

pred_probs.npz 100%[===================>] 16.26M 65.9MB/s in 0.2s

-

2024-02-13 04:55:23 (21.9 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

+

2024-02-13 22:24:59 (65.9 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]

[3]:
diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb
index a54a9380c..d284de77b 100644
--- a/master/tutorials/token_classification.ipynb
+++ b/master/tutorials/token_classification.ipynb
@@ -75,10 +75,10 @@
    "id": "ae8a08e0",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-13T04:55:22.052599Z",
-     "iopub.status.busy": "2024-02-13T04:55:22.052420Z",
-     "iopub.status.idle": "2024-02-13T04:55:23.890312Z",
-     "shell.execute_reply": "2024-02-13T04:55:23.889747Z"
+     "iopub.execute_input": "2024-02-13T22:24:58.553423Z",
+     "iopub.status.busy": "2024-02-13T22:24:58.553070Z",
+     "iopub.status.idle": "2024-02-13T22:24:59.982798Z",
+     "shell.execute_reply": "2024-02-13T22:24:59.982101Z"
     }
    },
    "outputs": [
@@ -86,7 +86,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "--2024-02-13 04:55:22--  https://data.deepai.org/conll2003.zip\r\n",
+      "--2024-02-13 22:24:58--  https://data.deepai.org/conll2003.zip\r\n",
       "Resolving data.deepai.org (data.deepai.org)... "
      ]
     },
@@ -94,16 +94,9 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "169.150.249.163, 2400:52e0:1a01::1114:1\r\n",
-      "Connecting to data.deepai.org (data.deepai.org)|169.150.249.163|:443... connected.\r\n",
-      "HTTP request sent, awaiting response... "
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "200 OK\r\n",
+      "185.93.1.250, 2400:52e0:1a00::894:1\r\n",
+      "Connecting to data.deepai.org (data.deepai.org)|185.93.1.250|:443... connected.\r\n",
+      "HTTP request sent, awaiting response... 200 OK\r\n",
       "Length: 982975 (960K) [application/zip]\r\n",
       "Saving to: ‘conll2003.zip’\r\n",
       "\r\n",
@@ -116,9 +109,10 @@
      "output_type": "stream",
      "text": [
       "\r",
-      "conll2003.zip       100%[===================>] 959.94K  --.-KB/s    in 0.05s   \r\n",
+      "conll2003.zip        94%[=================>  ] 903.30K  3.87MB/s               \r",
+      "conll2003.zip       100%[===================>] 959.94K  4.11MB/s    in 0.2s    \r\n",
       "\r\n",
-      "2024-02-13 04:55:22 (19.3 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
+      "2024-02-13 22:24:59 (4.11 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
       "\r\n",
       "mkdir: cannot create directory ‘data’: File exists\r\n"
      ]
@@ -138,16 +132,9 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "--2024-02-13 04:55:22--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
-      "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.111.212, 52.217.130.97, 3.5.28.238, ...\r\n",
-      "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.111.212|:443... "
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "connected.\r\n"
+      "--2024-02-13 22:24:59--  https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
+      "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.25.223, 52.216.53.185, 3.5.29.190, ...\r\n",
+      "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.25.223|:443... connected.\r\n"
      ]
     },
     {
@@ -174,23 +161,7 @@
      "output_type": "stream",
      "text": [
       "\r",
-      "pred_probs.npz        1%[                    ] 249.53K  1.07MB/s               "
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      "pred_probs.npz       26%[====>               ]   4.33M  9.51MB/s               "
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\r",
-      "pred_probs.npz       78%[==============>     ]  12.81M  18.7MB/s               "
+      "pred_probs.npz       62%[===========>        ]  10.12M  50.6MB/s               "
      ]
     },
     {
@@ -198,9 +169,9 @@
      "output_type": "stream",
      "text": [
       "\r",
-      "pred_probs.npz      100%[===================>]  16.26M  21.9MB/s    in 0.7s    \r\n",
+      "pred_probs.npz      100%[===================>]  16.26M  65.9MB/s    in 0.2s    \r\n",
       "\r\n",
-      "2024-02-13 04:55:23 (21.9 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
+      "2024-02-13 22:24:59 (65.9 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
       "\r\n"
      ]
     }
@@ -217,10 +188,10 @@
    "id": "439b0305",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-13T04:55:23.892505Z",
-     "iopub.status.busy": "2024-02-13T04:55:23.892319Z",
-     "iopub.status.idle": "2024-02-13T04:55:24.932652Z",
-     "shell.execute_reply": "2024-02-13T04:55:24.932135Z"
+     "iopub.execute_input": "2024-02-13T22:24:59.985292Z",
+     "iopub.status.busy": "2024-02-13T22:24:59.985102Z",
+     "iopub.status.idle": "2024-02-13T22:25:01.061767Z",
+     "shell.execute_reply": "2024-02-13T22:25:01.061223Z"
     },
     "nbsphinx": "hidden"
    },
@@ -231,7 +202,7 @@
     "dependencies = [\"cleanlab\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@a73dcbf59baeaceeb30c257f912873747dd52f83\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@5612ddf6c0fb05e2777d75aec80f1acc189e641d\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
@@ -257,10 +228,10 @@
    "id": "a1349304",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-13T04:55:24.934999Z",
-     "iopub.status.busy": "2024-02-13T04:55:24.934722Z",
-     "iopub.status.idle": "2024-02-13T04:55:24.938095Z",
-     "shell.execute_reply": "2024-02-13T04:55:24.937638Z"
+     "iopub.execute_input": "2024-02-13T22:25:01.064443Z",
+     "iopub.status.busy": "2024-02-13T22:25:01.064023Z",
+     "iopub.status.idle": "2024-02-13T22:25:01.067462Z",
+     "shell.execute_reply": "2024-02-13T22:25:01.066930Z"
     }
    },
    "outputs": [],
@@ -310,10 +281,10 @@
    "id": "ab9d59a0",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-13T04:55:24.940142Z",
-     "iopub.status.busy": "2024-02-13T04:55:24.939743Z",
-     "iopub.status.idle": "2024-02-13T04:55:24.942611Z",
-     "shell.execute_reply": "2024-02-13T04:55:24.942197Z"
+     "iopub.execute_input": "2024-02-13T22:25:01.069634Z",
+     "iopub.status.busy": "2024-02-13T22:25:01.069335Z",
+     "iopub.status.idle": "2024-02-13T22:25:01.072360Z",
+     "shell.execute_reply": "2024-02-13T22:25:01.071828Z"
     },
     "nbsphinx": "hidden"
    },
@@ -331,10 +302,10 @@
    "id": "519cb80c",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-13T04:55:24.944409Z",
-     "iopub.status.busy": "2024-02-13T04:55:24.944236Z",
-     "iopub.status.idle": "2024-02-13T04:55:34.005653Z",
-     "shell.execute_reply": "2024-02-13T04:55:34.005121Z"
+     "iopub.execute_input": "2024-02-13T22:25:01.074414Z",
+     "iopub.status.busy": "2024-02-13T22:25:01.074045Z",
+     "iopub.status.idle": "2024-02-13T22:25:10.175626Z",
+     "shell.execute_reply": "2024-02-13T22:25:10.175081Z"
     }
    },
    "outputs": [],
@@ -408,10 +379,10 @@
    "id": "202f1526",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-13T04:55:34.008337Z",
-     "iopub.status.busy": "2024-02-13T04:55:34.007816Z",
-     "iopub.status.idle": "2024-02-13T04:55:34.013412Z",
-     "shell.execute_reply": "2024-02-13T04:55:34.012957Z"
+     "iopub.execute_input": "2024-02-13T22:25:10.178078Z",
+     "iopub.status.busy": "2024-02-13T22:25:10.177696Z",
+     "iopub.status.idle": "2024-02-13T22:25:10.183170Z",
+     "shell.execute_reply": "2024-02-13T22:25:10.182635Z"
     },
     "nbsphinx": "hidden"
    },
@@ -451,10 +422,10 @@
    "id": "a4381f03",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-13T04:55:34.015415Z",
-     "iopub.status.busy": "2024-02-13T04:55:34.015096Z",
-     "iopub.status.idle": "2024-02-13T04:55:34.353171Z",
-     "shell.execute_reply": "2024-02-13T04:55:34.352641Z"
+     "iopub.execute_input": "2024-02-13T22:25:10.185173Z",
+     "iopub.status.busy": "2024-02-13T22:25:10.184886Z",
+     "iopub.status.idle": "2024-02-13T22:25:10.531182Z",
+     "shell.execute_reply": "2024-02-13T22:25:10.530540Z"
     }
    },
    "outputs": [],
@@ -491,10 +462,10 @@
    "id": "7842e4a3",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-13T04:55:34.355696Z",
-     "iopub.status.busy": "2024-02-13T04:55:34.355356Z",
-     "iopub.status.idle": "2024-02-13T04:55:34.359545Z",
-     "shell.execute_reply": "2024-02-13T04:55:34.359032Z"
+     "iopub.execute_input": "2024-02-13T22:25:10.533858Z",
+     "iopub.status.busy": "2024-02-13T22:25:10.533555Z",
+     "iopub.status.idle": "2024-02-13T22:25:10.538148Z",
+     "shell.execute_reply": "2024-02-13T22:25:10.537599Z"
     }
    },
    "outputs": [
@@ -566,10 +537,10 @@
    "id": "2c2ad9ad",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-13T04:55:34.361581Z",
-     "iopub.status.busy": "2024-02-13T04:55:34.361240Z",
-     "iopub.status.idle": "2024-02-13T04:55:36.647980Z",
-     "shell.execute_reply": "2024-02-13T04:55:36.647342Z"
+     "iopub.execute_input": "2024-02-13T22:25:10.540202Z",
+     "iopub.status.busy": "2024-02-13T22:25:10.539926Z",
+     "iopub.status.idle": "2024-02-13T22:25:12.956868Z",
+     "shell.execute_reply": "2024-02-13T22:25:12.956108Z"
     }
    },
    "outputs": [],
@@ -591,10 +562,10 @@
    "id": "95dc7268",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-13T04:55:36.650910Z",
-     "iopub.status.busy": "2024-02-13T04:55:36.650361Z",
-     "iopub.status.idle": "2024-02-13T04:55:36.654474Z",
-     "shell.execute_reply": "2024-02-13T04:55:36.653933Z"
+     "iopub.execute_input": "2024-02-13T22:25:12.960159Z",
+     "iopub.status.busy": "2024-02-13T22:25:12.959329Z",
+     "iopub.status.idle": "2024-02-13T22:25:12.963413Z",
+     "shell.execute_reply": "2024-02-13T22:25:12.962885Z"
     }
    },
    "outputs": [
@@ -630,10 +601,10 @@
    "id": "e13de188",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-13T04:55:36.656287Z",
-     "iopub.status.busy": "2024-02-13T04:55:36.656108Z",
-     "iopub.status.idle": "2024-02-13T04:55:36.661341Z",
-     "shell.execute_reply": "2024-02-13T04:55:36.660807Z"
+     "iopub.execute_input": "2024-02-13T22:25:12.965295Z",
+     "iopub.status.busy": "2024-02-13T22:25:12.965122Z",
+     "iopub.status.idle": "2024-02-13T22:25:12.970427Z",
+     "shell.execute_reply": "2024-02-13T22:25:12.969922Z"
     }
    },
    "outputs": [
@@ -811,10 +782,10 @@
    "id": "e4a006bd",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-13T04:55:36.663245Z",
-     "iopub.status.busy": "2024-02-13T04:55:36.663070Z",
-     "iopub.status.idle": "2024-02-13T04:55:36.688385Z",
-     "shell.execute_reply": "2024-02-13T04:55:36.687955Z"
+     "iopub.execute_input": "2024-02-13T22:25:12.972448Z",
+     "iopub.status.busy": "2024-02-13T22:25:12.972190Z",
+     "iopub.status.idle": "2024-02-13T22:25:12.999023Z",
+     "shell.execute_reply": "2024-02-13T22:25:12.998453Z"
     }
    },
    "outputs": [
@@ -916,10 +887,10 @@
    "id": "c8f4e163",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-13T04:55:36.690260Z",
-     "iopub.status.busy": "2024-02-13T04:55:36.690089Z",
-     "iopub.status.idle": "2024-02-13T04:55:36.693947Z",
-     "shell.execute_reply": "2024-02-13T04:55:36.693400Z"
+     "iopub.execute_input": "2024-02-13T22:25:13.001031Z",
+     "iopub.status.busy": "2024-02-13T22:25:13.000765Z",
+     "iopub.status.idle": "2024-02-13T22:25:13.005424Z",
+     "shell.execute_reply": "2024-02-13T22:25:13.004951Z"
     }
    },
    "outputs": [
@@ -993,10 +964,10 @@
    "id": "db0b5179",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-13T04:55:36.695807Z",
-     "iopub.status.busy": "2024-02-13T04:55:36.695637Z",
-     "iopub.status.idle": "2024-02-13T04:55:38.103543Z",
-     "shell.execute_reply": "2024-02-13T04:55:38.102953Z"
+     "iopub.execute_input": "2024-02-13T22:25:13.007482Z",
+     "iopub.status.busy": "2024-02-13T22:25:13.007105Z",
+     "iopub.status.idle": "2024-02-13T22:25:14.450823Z",
+     "shell.execute_reply": "2024-02-13T22:25:14.450299Z"
     }
    },
    "outputs": [
@@ -1168,10 +1139,10 @@
    "id": "a18795eb",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-02-13T04:55:38.105746Z",
-     "iopub.status.busy": "2024-02-13T04:55:38.105552Z",
-     "iopub.status.idle": "2024-02-13T04:55:38.109654Z",
-     "shell.execute_reply": "2024-02-13T04:55:38.109122Z"
+     "iopub.execute_input": "2024-02-13T22:25:14.452751Z",
+     "iopub.status.busy": "2024-02-13T22:25:14.452576Z",
+     "iopub.status.idle": "2024-02-13T22:25:14.456548Z",
+     "shell.execute_reply": "2024-02-13T22:25:14.456118Z"
     },
     "nbsphinx": "hidden"
    },
diff --git a/versioning.js b/versioning.js
index 61bf3889d..1aea410da 100644
--- a/versioning.js
+++ b/versioning.js
@@ -1,4 +1,4 @@
 var Version = {
   version_number: "v2.5.0",
-  commit_hash: "a73dcbf59baeaceeb30c257f912873747dd52f83",
+  commit_hash: "5612ddf6c0fb05e2777d75aec80f1acc189e641d",
 };
\ No newline at end of file