From 15e7c1c870046e41ca1882fb0a055e8ef8026f66 Mon Sep 17 00:00:00 2001 From: jwmueller Date: Sat, 4 Nov 2023 09:27:26 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@19efa9ab0bd65981fc4e9e1966bbb4564081966d --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3315 -> 3315 bytes .../benchmarking/noise_generation.doctree | Bin 83507 -> 83507 bytes .../.doctrees/cleanlab/classification.doctree | Bin 298656 -> 298656 bytes master/.doctrees/cleanlab/count.doctree | Bin 297542 -> 297542 bytes .../cleanlab/datalab/datalab.doctree | Bin 164193 -> 164193 bytes .../guide/custom_issue_manager.doctree | Bin 28223 -> 28223 bytes .../cleanlab/datalab/guide/index.doctree | Bin 5915 -> 5915 bytes .../guide/issue_type_description.doctree | Bin 72704 -> 72704 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5502 -> 5502 bytes .../cleanlab/datalab/internal/data.doctree | Bin 70527 -> 70527 bytes .../datalab/internal/data_issues.doctree | Bin 69760 -> 69760 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 28921 -> 28921 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4562 -> 4562 bytes .../datalab/internal/issue_finder.doctree | Bin 62637 -> 62637 bytes .../_notices/not_registered.doctree | Bin 3377 -> 3377 bytes .../internal/issue_manager/duplicate.doctree | Bin 73417 -> 73417 bytes .../internal/issue_manager/imbalance.doctree | Bin 71121 -> 71121 bytes .../internal/issue_manager/index.doctree | Bin 5176 -> 5176 bytes .../issue_manager/issue_manager.doctree | Bin 82549 -> 82549 bytes .../internal/issue_manager/label.doctree | Bin 87552 -> 87552 bytes .../internal/issue_manager/noniid.doctree | Bin 90234 -> 90234 bytes .../internal/issue_manager/null.doctree | Bin 70422 -> 70422 bytes .../internal/issue_manager/outlier.doctree | Bin 75773 -> 75773 bytes .../cleanlab/datalab/internal/report.doctree | Bin 31311 -> 31311 bytes .../datalab/optional_dependencies.doctree | Bin 3389 -> 3389 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 103244 -> 103244 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 346504 -> 346504 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48181 -> 48181 bytes .../cleanlab/experimental/index.doctree | Bin 5382 -> 5382 bytes .../experimental/label_issues_batched.doctree | Bin 161811 -> 161811 bytes .../experimental/mnist_pytorch.doctree | Bin 492589 -> 492589 bytes master/.doctrees/cleanlab/filter.doctree | Bin 99001 -> 99001 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4550 -> 4550 bytes .../internal/label_quality_utils.doctree | Bin 19742 -> 19742 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 88865 -> 88865 bytes .../internal/multiannotator_utils.doctree | Bin 45614 -> 45614 bytes .../internal/multilabel_scorer.doctree | Bin 162815 -> 162815 bytes .../internal/multilabel_utils.doctree | Bin 33914 -> 33914 bytes .../cleanlab/internal/outlier.doctree | Bin 16196 -> 16196 bytes .../token_classification_utils.doctree | Bin 66017 -> 66017 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 208122 -> 208122 bytes .../cleanlab/internal/validation.doctree | Bin 33814 -> 33814 bytes .../cleanlab/models/fasttext.doctree | Bin 2403 -> 2403 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 5060 -> 5060 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 103797 -> 103797 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 172727 -> 172727 bytes .../multilabel_classification/dataset.doctree | Bin 68153 -> 68153 bytes .../multilabel_classification/filter.doctree | Bin 90121 -> 90121 bytes .../multilabel_classification/index.doctree | Bin 5009 -> 5009 bytes .../multilabel_classification/rank.doctree | Bin 46635 -> 46635 bytes .../cleanlab/object_detection/filter.doctree | Bin 36016 -> 36016 bytes .../cleanlab/object_detection/index.doctree | Bin 3927 -> 3927 bytes .../cleanlab/object_detection/rank.doctree | Bin 151195 -> 151195 bytes .../cleanlab/object_detection/summary.doctree | Bin 118771 -> 118771 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 102110 -> 102110 bytes master/.doctrees/cleanlab/rank.doctree | Bin 117993 -> 117993 bytes .../cleanlab/regression/index.doctree | Bin 3801 -> 3801 bytes .../cleanlab/regression/learn.doctree | Bin 220237 -> 220237 bytes .../cleanlab/regression/rank.doctree | Bin 19619 -> 19619 bytes .../cleanlab/segmentation/filter.doctree | Bin 29078 -> 29078 bytes .../cleanlab/segmentation/index.doctree | Bin 3855 -> 3855 bytes .../cleanlab/segmentation/rank.doctree | Bin 53700 -> 53700 bytes .../cleanlab/segmentation/summary.doctree | Bin 67310 -> 67310 bytes .../token_classification/filter.doctree | Bin 29360 -> 29360 bytes .../token_classification/index.doctree | Bin 4017 -> 4017 bytes .../token_classification/rank.doctree | Bin 67499 -> 67499 bytes .../token_classification/summary.doctree | Bin 85041 -> 85041 bytes master/.doctrees/environment.pickle | Bin 1678979 -> 1678979 bytes master/.doctrees/index.doctree | Bin 41836 -> 41836 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28054 -> 28054 bytes .../.doctrees/nbsphinx/tutorials/audio.ipynb | 1228 +++--- .../tutorials/datalab/datalab_advanced.ipynb | 348 +- .../datalab/datalab_quickstart.ipynb | 132 +- .../nbsphinx/tutorials/datalab/tabular.ipynb | 138 +- .../nbsphinx/tutorials/datalab/text.ipynb | 1914 +++++----- .../nbsphinx/tutorials/dataset_health.ipynb | 34 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 650 ++-- .../.doctrees/nbsphinx/tutorials/image.ipynb | 3352 ++++++++--------- .../nbsphinx/tutorials/indepth_overview.ipynb | 218 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 90 +- .../nbsphinx/tutorials/object_detection.ipynb | 146 +- .../nbsphinx/tutorials/outliers.ipynb | 398 +- .../nbsphinx/tutorials/regression.ipynb | 162 +- .../nbsphinx/tutorials/segmentation.ipynb | 3142 ++++----------- .../nbsphinx/tutorials/tabular.ipynb | 130 +- .../.doctrees/nbsphinx/tutorials/text.ipynb | 186 +- .../tutorials/token_classification.ipynb | 178 +- .../nbsphinx/tutorials_image_38_0.png | Bin 80961 -> 80478 bytes .../nbsphinx/tutorials_image_44_0.png | Bin 112125 -> 111955 bytes .../nbsphinx/tutorials_image_50_0.png | Bin 10069 -> 9406 bytes .../nbsphinx/tutorials_image_50_1.png | Bin 9406 -> 10069 bytes .../nbsphinx/tutorials_image_50_3.png | Bin 5972 -> 8410 bytes .../nbsphinx/tutorials_image_50_4.png | Bin 8410 -> 5982 bytes master/.doctrees/tutorials/audio.doctree | Bin 326478 -> 326296 bytes .../datalab/datalab_advanced.doctree | Bin 198044 -> 198046 bytes .../datalab/datalab_quickstart.doctree | Bin 128787 -> 128801 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3058 -> 3058 bytes .../tutorials/datalab/tabular.doctree | Bin 112081 -> 112081 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 291612 -> 291612 bytes .../tutorials/dataset_health.doctree | Bin 324866 -> 324866 bytes master/.doctrees/tutorials/faq.doctree | Bin 146230 -> 146232 bytes master/.doctrees/tutorials/image.doctree | Bin 459564 -> 460836 bytes .../tutorials/indepth_overview.doctree | Bin 202107 -> 202107 bytes master/.doctrees/tutorials/index.doctree | Bin 3170 -> 3170 bytes .../tutorials/multiannotator.doctree | Bin 137341 -> 137341 bytes .../multilabel_classification.doctree | Bin 57571 -> 57571 bytes .../tutorials/object_detection.doctree | Bin 110970 -> 110970 bytes master/.doctrees/tutorials/outliers.doctree | Bin 104010 -> 104010 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 17248 -> 17248 bytes master/.doctrees/tutorials/regression.doctree | Bin 80921 -> 80921 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 1976746 -> 1976752 bytes master/.doctrees/tutorials/tabular.doctree | Bin 59757 -> 59757 bytes master/.doctrees/tutorials/text.doctree | Bin 90055 -> 90061 bytes .../tutorials/token_classification.doctree | Bin 170852 -> 170864 bytes master/_images/tutorials_image_38_0.png | Bin 80961 -> 80478 bytes master/_images/tutorials_image_44_0.png | Bin 112125 -> 111955 bytes master/_images/tutorials_image_50_0.png | Bin 10069 -> 9406 bytes master/_images/tutorials_image_50_1.png | Bin 9406 -> 10069 bytes master/_images/tutorials_image_50_3.png | Bin 5972 -> 8410 bytes master/_images/tutorials_image_50_4.png | Bin 8410 -> 5982 bytes master/_sources/tutorials/audio.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 4 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- master/_sources/tutorials/tabular.ipynb | 2 +- master/_sources/tutorials/text.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- master/searchindex.js | 2 +- master/tutorials/audio.html | 56 +- master/tutorials/audio.ipynb | 1228 +++--- .../tutorials/datalab/datalab_advanced.html | 4 +- .../tutorials/datalab/datalab_advanced.ipynb | 348 +- .../tutorials/datalab/datalab_quickstart.html | 3 +- .../datalab/datalab_quickstart.ipynb | 132 +- master/tutorials/datalab/tabular.ipynb | 138 +- master/tutorials/datalab/text.html | 38 +- master/tutorials/datalab/text.ipynb | 1914 +++++----- master/tutorials/dataset_health.ipynb | 34 +- master/tutorials/faq.html | 6 +- master/tutorials/faq.ipynb | 650 ++-- master/tutorials/image.html | 236 +- master/tutorials/image.ipynb | 3352 ++++++++--------- master/tutorials/indepth_overview.ipynb | 218 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 90 +- master/tutorials/object_detection.ipynb | 146 +- master/tutorials/outliers.html | 4 +- master/tutorials/outliers.ipynb | 398 +- master/tutorials/regression.ipynb | 162 +- master/tutorials/segmentation.html | 12 +- master/tutorials/segmentation.ipynb | 3142 ++++----------- master/tutorials/tabular.ipynb | 130 +- master/tutorials/text.html | 14 +- master/tutorials/text.ipynb | 186 +- master/tutorials/token_classification.html | 20 +- master/tutorials/token_classification.ipynb | 178 +- versioning.js | 2 +- 168 files changed, 10683 insertions(+), 14934 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index 1fb764858..8bc9b8ea6 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 1b97d056926cd00202a473eadea74b12 +config: 7c8d85bf92ef2a3532054a3ba4ff45b9 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 0f4066e4d12b4c7c7b6cc9ede0c311f0eabf5500..172432c26e84ef80b7d9ac79d490201669616464 100644 GIT binary patch delta 175 zcmew?`B`#9IHO@sxv6PphGBtzvbkwmvavyGs)@0Qv5}>*nTe4>a!P7iqEV8Oxkai` kT55`6qFIvBz>% delta 175 zcmew?`B`#9IHO@^Msa0&j#0V3v2jwWaf+p(xk;*tfrWvwk%_5gQc9X-nu(!BQnG=G kiHW6YN^)|_{MieaKzlF{Y~jI3m6o9^hsn7mn&c?vV>R)X~APL5{ZK(5x69EId*jhmdnC$@P% zrvN(z`X}$_6rNACR3`9iV1x&bCyh#2r~ZVw>mmKail*44suXT*)^>XY>B|)#S&AuFmBB?^!qh j`q?W>t{d{rHMiSKF!FFwVgR!;Bd;Rq25biw;hz`*H3IA4 delta 1655 zcmdno!@9YLbwfO(VP-~gWqOWLxxTS+QmS!^rJ=b=s)>Pxfw7T^sbx}1nq``ap+!=% zfr*KUrD;lXa?0ijjI3m6o9^hsn7mn&c?vV>R)X~APL5{ZK(5x69EId*jhmdnC$@P% zrvN(z`X}$_6rNACR3`9iV1x&bCyh#2r~ZVw>mmKail*44suXT*)^>XY>B|)#S&AuFmBB?^!qh j`q?W>t{d{rHMiSKF!FFwVgR!;Bd;Rq25biw;hz`*u!#vp|(*Zm{Yve9N53>*fY~Je7SCxNjq}+GJ0n zKG%JY(CAoheX{3!9KpM+inr^fk#>r2l+{Wjj^SPp;cu0S}d?kTq9o9d59As41^f{Y2rD1*Ui_4O^8Em%t-*SzpUC;RSQZz8jq zzXvEMLylG$%K;uzjz$cQaJWUS8pq=yj_h2K2tl%Qc{22oor5O0M|KuwSR^>3>~<1$ zEb*8PJOtC|)(vAuI<%4F?yS3yW-{chu2^jlXCttJTX zaTX_Ds$dqXkJV#$8S@g`7?ndQcPN!uj^_PlLc5Peh>x@Cm_S|=TcTDVHriMM-tJ&4 z)Dkuo);rmZoz{h#;X#&$r-s-?>sACRAF~CYaRIE^V6PP8oRC})r#KIo2yk>3Md~(4 z5|7gOyR8VI$;y9H9;s{jyiru|<~E$j;5#WDh$^5|xSV1<07^KAvic-<6{l5xB+0m` zkg!9HLXUB;y<(KU*kP-3= delta 4202 zcmbuC?@Lor7{@v1T-{QabAw?`p)64(^Uht#F)J)BveHe|y~rQAU9FZ1AtplzTZuuw zFfVy}k)V|cu^_t8<2wjtEH1fTfiu|Au& zwv5Ev^w%rhCY*Ix|L}2`Vp+@QT;!C7_4zM8wD0uSw`jI#Jq=y+;tw6|yMLn@&1U}| z!ki2-T4AUliWHL!YJ6D>CigvC@B?D+@)k5x}ow=1PA)G;UI|VzI zaKb^n2-Eo14MSEY=|IQb=Ol*_&TuD-SkQ4jd&nn*=~mq79MXl3JDW=?(asZjWD@QC zzJN3#S3oVy%H+W=+>Wn>)hg2OMZo{A)*@aPl``So#m;_W9;xevtclm`We%9iV!JUNh%10lxRPc(00=k_v-$*g6=r01EXBAf z7qE+upScfetf?Igb!ac^hM0ybE{~-IG rXk89uACOuQak+?l9S(Y>CCq^lnS0>rDJfEDJh&$Q*$Md;WRp$(plhB@V?rkNRr1^UV6rfJE>2C1ng#wNx_md0i#Mh3|#scDHuNk--t zsYYq3DTaw=Nk)^a826H)t5Cvt^K2$2ax5&Au-nYTVj@D8ts6<#HT|F;v;O3IJ>|_y zCHHZWuU}*HYn6#)co=5C#%31v4kk+M7t!KoAyfb6dcA6j>~1m)rAU9gNj*jS)6B0? z6!u3fLnyL;fz1kX!ycISG&Wyw{K8CT+=2D`xXq=={e_;pDRTc7zcz~8e<)}UMfN`n zKTnbUwlP~M(qEbIg`)KLHK~E3`1_k`OOgIV87UO`e_hTi3gS;-Ge^;79`e(_z-I4y z<8U(dZ@zc!JSUlYC*Qj!w^{pPyEnP|6?{0iOY1UjBHIB#1EvEF;M(qB&N$tYOlM3l z;A0Zs?pMfIAV84`rcI1tZWNiobdqt4HJK(%28P8X8}{vLtW4+0PE1fUQiYg;OvrXe zIL~A|7uD(gbC_AT`?@o+@KM1ej_t2Pne-(|H)%VtfpddtyHXL;Dr3@hLz*Wae6^?R zh%t+7&tArKQS{Y)7M>Q7TA8`Dsv>+sToxAf=!wAl39+NfB^d8 z!}goMn5D@H0C1*W{+E+QpS)0T-(G6TlFCM|<{$?adv($^PcD?O-TptF#a#&i-B)$t delta 3732 zcmX>$Md;WRp$(plhM5_~mFYP~<@(0PNvXyumWJjgsU`*%2F6Avrj|)5X_jdwh89W5 z1|}vZmZmAm$tjbo826H)t5Cvt^K2$2ax5&Au-nYTVj@D8ts6<#HT|F;v;O3IJ>|_y zCHHZWuU}*HYn6#)co=5C#%31v4kk+M7t!KoAyfb6dcA6j>~1m)rAU9gNj*jS)6B0? z6!u3fLnyL;fz1kX!ycISG&Wyw{K8CT+=2D`xXq=={e_;pDRTc7zcz~8e<)}UMfN`n zKTnbUwlP~M(qEbIg`)KLHK~E3`1_k`OOgIV87UO`e_hTi3gS;-Ge^;79`e(_z-I4y z<8U(dZ@zc!JSUlYC*Qj!w^{pPyEnP|6?{0iOY1UjBHIB#1EvEF;M(qB&N$tYOlM3l z;A0Zs?pMfIAV84`rcI1tZWNiobdqt4HJK(%28P8X8}{vLtW4+0PE1fUQiYg;OvrXe zIL~A|7uD(gbC_AT`?@o+@KM1ej_t2Pne-(|H)%VtfpddtyHXL;Dr3@hLz*Wae6^?R zh%t+7&tArKQS{Y)7M>Q7TA8`Dsv>+sToxAf=!wAl39+NfB^d8 z!}goMn5D@H0C1*W{+E+QpS)0T-(G6TlFCM|<{$?adv($^PcD?O-TptF#a#&iN$_+_ diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index fe3d790d318763385f1d5942d6eaa332484c88af..a71bc41ac1b13616291b8b7a2361c775b8894acd 100644 GIT binary patch delta 4414 zcmbuDUr19?9LG6lQ#a?@oU)XVxuDiVq;B(15oHGbyVoenh>VL^%p1|3YNN z#z8J-iJ}Rq56MB#i{Tz*J~XYDqQ{AEz7$lCMR(OhuYLD$A3wj(@Ao^u`#YDrHBh)U zQ24r;xWlp9+E7o~C93qO$&EK87+`Z)G-96r#_uq_2cqi;Q|0FXIbVXC8+0 zGj@{+L^qwAXwsWb19!MS9mLE`!$Uw}*Am$OKqx%Pv0J^A=cjJkcv-Nr!l>?>>r-3I}X1l=slpPwY(jbPoYa|AtaRb!1}W{Eh9F}YfqCKhpFom>X17g~UH1tw>{ zCpNWhoD`_#VPaN&>m(|E?hp@{N;aHW{Y-w?!F2i(2GLkRzoMH*<5i8%6Dua#i6tS6 z$-Q(BmVm5kY=vmqPZzCF2V^x~N%gGnMX4CCr~TM5{1asHD3vTwCX(v7M2)IFOspay tQyX}V2rbH4?9GtXFCE%R?gXe8+be$qOm@?6B~TBVwEqVdVShj+`U?e)WN82Z delta 4414 zcmbuDT}V@57{__vP2HSp$0bUpq!oMr7n+AL?u)>BC_l`3aE~ z8!vJ&OB72;y+~g4y)oQ{=ta}IDY~3^=S@L%S#(xiblZOy=koXbp67X=^Sp<%HBh)U zQ24ru)J8gP_q0cA<5eC{AnXbGYU<^%T6rp( z1^Zb;Z;@t?l2X3!gIb8k;MUB*2!;zwlpF=sn$B9p`)=Yb2jxQvVgkl2J1@dCN;c4A zJ8;7)u8)&;(9N>^xk>Wf4A#9eOVIPybk;0hED~2SCf6#{#3s(KlS^RrLJyFxz~oGQ zY}Z=HNr6@#C00#cCtc#_4)K7gWW$M-&*X;#Os6kt5)B3PE4q1fUeozJv23C3SQ3hu z+)MXh2`HM*R*2^PbU}hTplFFoYGi%SOT~CS?Z=McpCAiIsNV)<;@6xPsabPGi6oK= swS(7)(4(Be-V82C1ng#wNx_md0i#Mh3|#scDHuNk--t UsYYq3DTaw=Nk*F+8TaJ?0KtG1{{R30 delta 64 zcmdmghjITM#ti|ChM5_~mFYP~<@(0PNvXyumWJjgsU`*%2F6Avrj|)5X_jdwh89W5 U1|}vZmZmAm$tjx~8TaJ?0Lm5=_y7O^ diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index 50287cf0f26f39846bca74e598af9ef148c60b9b..b7b3a30c22c89fdd50955780ac05ef2d60b2e74d 100644 GIT binary patch delta 67 zcmbQOH(PH*G^0^Yxv6PphGBtzvbkwmvavyGs)@0Qv5}>*nTe4>a!P7iqEV8Oxkai` XT55`6qFIuW{^avwx|??~CW-<8z&I4X delta 67 zcmbQOH(PH*G^0^wMsa0&j#0V3v2jwWaf+p(xk;*tfrWvwk%_5gQc9X-nu(!BQnG=G XiHW6YN^)|F{^avwx|??~CW-<8$g32$ diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index a758d98af02d6df281f9f8bd9cae4b65b453f76b..f97d5e9824686d0943b237eedc4499db1a9f9e8a 100644 GIT binary patch delta 68 zcmZqJ!P2mUWkV{XVNSWJX=a9Dfqt^NX{MieaKzl2P+C#_iJ>8MCAS>24I_ delta 68 zcmZqJ!P2mUWkV{XVP-~gWqOWLxxTS+QmS!^rJ=b=s)>Pxfw7T^sbx}1nq``ap+!=% Xfr*KUrD;lXa!T_w#_iJ>8MCAS@#qxW diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index bea087cec2d1d468f5f0bc2770457331d63fef9b..7a82aeea2b76e0d1dc379fba5ef1a322e9251ed7 100644 GIT binary patch delta 175 zcmeyT^-pVqFQZ{jxv6PphGBtzvbkwmvavyGs)@0Qv5}>*nTe4>a!P7iqEV8Oxkai` jT55`6qFIvB4LpwQim-e4h~j(_1!K delta 175 zcmeyT^-pVqFQZ{*Msa0&j#0V3v2jwWaf+p(xk;*tfrWvwk%_5gQc9X-nu(!BQnG=G jiHW6YN^)|_4LpwQim-e4h~j=xH`Y diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index bed51d2b6ff6fe786577efc8ce0145106e5c81bd..a0ca878a3958ef505464b72dba046ab1e605d8c8 100644 GIT binary patch delta 3622 zcmbuC-%C>g6vx@TTVrl|=MoxZNlLx7?e1+ke{~b_VObp`gd5s^_=K?-+Vj8JN22VN-{OMHE0LGSdn%I3>1b648 za}GlTG~qIGxpWnXjiYiWrW)pPUmF%x`=n^)!A1*qrz~wcZ^LY7>G`HctlS5*g@>E{ zK++VIGc;Xl`2+PU4_EN+#V#;*8tt+0*S4l&@VO2>7<^X!Oy`dx)X5bv(nzz76WuQG z1Q{2URBV&plk`scfSsZ+gvNX=d^dO$T#2pyzm1p!9uJ$)I}F6^lnk5MGxQXE0{KSd zu@5s&1F@R`8P|qr%~8g~3ufTS<+!$jq!rihapj@|xlvq;@RzqeNWgI|z#msOFx3G2 z5<8gcHJW*Co=h32c3f K$uH{aOa1{O>vgdJ delta 3622 zcmbuC-%C>g6vvs~yT;trO%obqNlLx7&D||WQY7RstPI19n)|&{3q-*s2<=rV*mfSo z2YaXxG??w4L@Feuh#3UKhq5S*&(ce%rYQ zZJNbUH$}~Au4=jl#KtkX2U8v73413NRaaau@j#0XyHlRlTrgm^^YmP63s&wdt>ck4 zCy+G7-JKy&o1y^FJ@3$Irz!QTS^bY-r8cGjp**f$Td;pT7jHH!RhPigZh}0%P*eT(v3%`=TQ=kxg>}?izdef7{{YXrXyDe}+t?d7chTG; z4eZ==BE>Aa(EpSuwS11<`(4=kw%{Z?hA;kF!TVLSFr`|jEz KMWcNsS9BWy diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index df9a4cc3487fd7a73e9c756c5f3528dd04661e4a..f12be804f988f9f252a161c6e6d2651f570c144e 100644 GIT binary patch delta 2717 zcmZoz$kMQoWkV>VVNSWJX=a9Dfqt^NX{MieaKzlF{ZiMkX?}O?I@7*(}ODiHUR@!CFn&4sejCb#fzr19>_(_X+H0CQs|+ zJ^|s${E@7iKZ$%M&xrKRwUUKoYMopw39)^i>_!%{Jdm^bjnaKqvb5%J&en7zFNIWX zj?v!2PnNAG$kLS#3@Me(M{Tqy4e0p}S>zgVAe(z~gRk)936cVv&%3N3FVNE`LyVEw zY~;O~yub$=vAMzb8hKe1;R3-xW=f4XAKXEy5klea6odmXMkF?iL>{Kp6_aA3D0Rj1 zI9bY)mc-`zq!X07f+=++rD2hlafiIZ2$ZyVCu@Bd-ux?9ke$qo4m4u(hSJ02RU+w= z4LrFwi`6e7*8?E!u`QVrWIEo!lWX#aMZB9!=iVgW1zejyEb0>^(*+lH@=Y$C+pu}b z)+uDB#?2RY){<+x!YR?szfOCTY4c=|_D|VVP-~gWqOWLxxTS+QmS!^rJ=b=s)>Pxfw7T^sbx}1nq``ap+!=% zfr*KUrD;lXa?0j5MkX?}O?I@7*(}ODiHUR@!CFn&4sejCb#fzr19>_(_X+H0CQs|+ zJ^|s${E@7iKZ$%M&xrKRwUUKoYMopw39)^i>_!%{Jdm^bjnaKqvb5%J&en7zFNIWX zj?v!2PnNAG$kLS#3@Me(M{Tqy4e0p}S>zgVAe(z~gRk)936cVv&%3N3FVNE`LyVEw zY~;O~yub$=vAMzb8hKe1;R3-xW=f4XAKXEy5klea6odmXMkF?iL>{Kp6_aA3D0Rj1 zI9bY)mc-`zq!X07f+=++rD2hlafiIZ2$ZyVCu@Bd-ux?9ke$qo4m4u(hSJ02RU+w= z4LrFwi`6e7*8?E!u`QVrWIEo!lWX#aMZB9!=iVgW1zejyEb0>^(*+lH@=Y$C+pu}b z)+uDB#?2RY){<+x!YR?szfOCTY4c=|_D|2C1ng#wNx_md0i#Mh3|#scDHuNk--t zsYYq3DTaw=Nk*IN7=_5uc97{U8QLZvWGbEPFTuSzp4Cf;bjL!q*O8^OU~``231;%N zPR^4Q-uy~dfQ3x$_q91UFHv$O*LI-x$xD=kH!oA0L8c2f-`8FsOP=F5D|r1O*Wn6Y We49`Ei7Sw0Gbp8SZJv~$&IkbIzvDRo delta 736 zcmezQkn!h3#tpuVhM5_~mFYP~<@(0PNvXyumWJjgsU`*%2F6Avrj|)5X_jdwh89W5 z1|}vZmZmAm$tj!b7=_5uc97{U8QLZvWGbEPFTuSzp4Cf;bjL!q*O8^OU~``231;%N zPR^4Q-uy~dfQ3x$_q91UFHv$O*LI-x$xD=kH!oA0L8c2f-`8FsOP=F5D|r1O*Wn6Y We49`Ei7Sw0Gbp8SZJv~$&Ikb8Y2xJo diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 58a9ab80c62df03061364e87db493dc039d5861f..0d777a4a343001996fef7917828fda0dc6d22fdc 100644 GIT binary patch delta 185 zcmcbld`WqOKcitzxv6PphGBtzvbkwmvavyGs)@0Qv5}>*nTe4>a!P7iqEV8Oxkai` nT55`6qFIvB<_5+&%tj<@)1NHBE;TuW^(^^X%{T90li~&dKXW#6 delta 185 zcmcbld`WqOKciu0Msa0&j#0V3v2jwWaf+p(xk;*tfrWvwk%_5gQc9X-nu(!BQnG=G niHW6YN^)|_<_5+&%tj<@)1NHBE;TuW^(^^X%{T90li~&dQ@u7_ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index 1a2ca2a4e508a0c68f63f04e62d5a9a59f5c5531..142fb1408ac6a6ce1740a154b3c6af7cb9da841d 100644 GIT binary patch delta 1640 zcmZ4cl6mb*<_+PDhB@V?rkNRr1^UV6rfJE>2C1ng#wNx_md0i#Mh3|#scDHuNk--t zsYYq3DTaw=Nk*GH7$w-r&~}l7jSSl+U*t&MoXz!}JgsS)fAYw4lkQlctp$^JN)(cz z^I$^OI^GrDjHuAJi_BUkR9H@GUjQE)ha=5=C$L3?Y@0iH5eY3w| zwJ>>Ffi??GE_V$jOLynyHaBxtvb6SXuJL(HPTD${(6?F6|0#JP)wlUjkT1Emo(s88 zuB|x{yU5l0GqY$YAuWNFQw{9&*3&1y$J@{p~ab#lXb(amQsP9Y=2f!P@335XHm*PoIXgxQl1Je1zN`H=v5i4>x} I>WQ%c04A9Z1^@s6 delta 1640 zcmZ4cl6mb*<_+PDhM5_~mFYP~<@(0PNvXyumWJjgsU`*%2F6Avrj|)5X_jdwh89W5 z1|}vZmZmAm$tjyV7$w-r&~}l7jSSl+U*t&MoXz!}JgsS)fAYw4lkQlctp$^JN)(cz z^I$^OI^GrDjHuAJi_BUkR9H@GUjQE)ha=5=C$L3?Y@0iH5eY3w| zwJ>>Ffi??GE_V$jOLynyHaBxtvb6SXuJL(HPTD${(6?F6|0#JP)wlUjkT1Emo(s88 zuB|x{yU5l0GqY$YAuWNFQw{9&*3&1y$J@{p~ab#lXb(amQsP9Y=2f!P@335XHm*PoIXgxQl1Je1zN`H=v5i4>x} I>WQ%c0K8reNdN!< diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 6de0e711018c470935aa91595cc8bb1e4575989c..881c33c1102d5c7abda469d3649215e411af33c1 100644 GIT binary patch delta 62 zcmdlewNYw=E0bYPxv6PphGBtzvbkwmvavyGs)@0Qv5}>*nTe4>a!P7iqEV8Oxkai` RT55`6qFIvB<}#+;TmV2C1ng#wNx_md0i#Mh3|#scDHuNk--t zsYYq3DTaw=Nk;l9`N_rl#rdU0$*GeS^^GSVWPEN&vMJLGWf&_b2Qlv4PX47NJh?}4J=waW$Fn9H+SczzCfIkSH4PX47NJh?}4J=waW$Fn9H+SczzCfIkSH2C1ng#wNx_md0i#Mh3|#scDHuNk--t zsYYq3DTaw=Nk;l9`N_rl#rdU0$*Ge+wi-`9$oSllWK)1TOD6j=A0$ub^zXuq{F4u{ z6q2RAe{wIk@Mbo)<1FN9-`vY>$x5cyHo>PHWNOuxW@98z>tr!?;ms_vL7Zf3k0w(m zFrX*jaN*k=q;ZzOvi(?zcucm#P&e5H)Ptr`LE>xGHu>m zYx9pxTPK739PF@+nXDk2FuA}-Zu1S7F7o0Uq+NNln^z`z{+_V8z~>Kn{)X5b5D-eH z&0vRj2Hm5?cJDAfN^FmfxJHTX;xY5cjI>F*Je!*m4ah57CQP=^l%I6%n}IbDd0t+y*{nN`n{*q2b>4)@`)3JmPMbc1%(&XTf0jEhnKswk@^8Mj zqME#r&YA3RNow-@?Sh*nx5$%MI)IJX{C@j29{iqC?+BZ8~5>q3~<_Vj{ nf98-^YfqS5Z_B#flZi2vyavOB?fD#xkI9R&lI_4&(k(^+(1SR- delta 2539 zcmcb(n&skZmJNZ7wwW2lmFYP~<@(0PNvXyumWJjgsU`*%2F6Avrj|)5X_jdwh89W5 z1|}vZmZmAm$tn6N`N_rl#rdU0$*Ge+wi-`9$oSllWK)1TOD6j=A0$ub^zXuq{F4u{ z6q2RAe{wIk@Mbo)<1FN9-`vY>$x5cyHo>PHWNOuxW@98z>tr!?;ms_vL7Zf3k0w(m zFrX*jaN*k=q;ZzOvi(?zcucm#P&e5H)Ptr`LE>xGHu>m zYx9pxTPK739PF@+nXDk2FuA}-Zu1S7F7o0Uq+NNln^z`z{+_V8z~>Kn{)X5b5D-eH z&0vRj2Hm5?cJDAfN^FmfxJHTX;xY5cjI>F*Je!*m4ah57CQP=^l%I6%n}IbDd0t+y*{nN`n{*q2b>4)@`)3JmPMbc1%(&XTf0jEhnKswk@^8Mj zqME#r&YA3RNow-@?Sh*nx5$%MI)IJX{C@j29{iqC?+BZ8~5>q3~<_Vj{ nf98-^YfqS5Z_B#flZi2vyavOB?fD#xkI9R&lI_4&(k(^+!=E>s diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index a3f098d76a8cf896a59f88f0e4e360aa093f1d33..bc3a75d3a2dad016bab487736cf6c6c50d3d2b06 100644 GIT binary patch delta 62 zcmdm?u|s1+B%@(Yxv6PphGBtzvbkwmvavyGs)@0Qv5}>*nTe4>a!P7iqEV8Oxkai` RT55`6qFIvB<}Su{LI7qd6E6S& delta 62 zcmdm?u|s1+B%@(wMsa0&j#0V3v2jwWaf+p(xk;*tfrWvwk%_5gQc9X-nu(!BQnG=G RiHW6YN^)|_<}Su{LI7^R6DR-x diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index 29eb67929ebe1357521372b8a2d32af8d4880e76..bbaf6f0d2573fb5c2182edbfc6c6ca0aecd51c4e 100644 GIT binary patch delta 2596 zcmey`!uqv^bwebhVNSWJX=a9Dfqt^NX{MieaKzlF{ZaMk6w`O%7j=K$gzV$?yEcHmkE$v5>7@cyk`N z1S@&kH#-PsvXiHEvV$P&<_t-7^1`|ktldxgq9OUVPrm0HMxO4?@BGeD5a5&j6IeI* zg*1@s^>=>4U?U!ctzsh21He=RF(M|ahf-JUia9}nD>nNl^it}AbxG$aZ~-_d{nCyx zlNFR*lMnQ8Pqr%%-uyPJo4hmuHe$0~K?ix^0CR!F<|RdBh6BQgfU*=yT`{TR0C};2 zaD_pQ9;L3ZsoO!RD=szGkRPD}n{xjG%KbnxvLAG|G&0@32)?U9*c(eE7 z7kuQ|zWLpzQ1Ttlx|w-TD0!7p*W}#?I5*22`bnPlS(_i6m_UZs%?r=5@Q@i)3Ag`} zo5B)q3vSkYsKZO9%>wT)kz3vgycgWO?(-fp{XDtuAIElGM#d|Y=s&{8*rZLC&ub=M NXW`$@WX)L24glnmRP+D< delta 2596 zcmey`!uqv^bwebhVP-~gWqOWLxxTS+QmS!^rJ=b=s)>Pxfw7T^sbx}1nq``ap+!=% zfr*KUrD;lXa?0i|Mk6w`O%7j=K$gzV$?yEcHmkE$v5>7@cyk`N z1S@&kH#-PsvXiHEvV$P&<_t-7^1`|ktldxgq9OUVPrm0HMxO4?@BGeD5a5&j6IeI* zg*1@s^>=>4U?U!ctzsh21He=RF(M|ahf-JUia9}nD>nNl^it}AbxG$aZ~-_d{nCyx zlNFR*lMnQ8Pqr%%-uyPJo4hmuHe$0~K?ix^0CR!F<|RdBh6BQgfU*=yT`{TR0C};2 zaD_pQ9;L3ZsoO!RD=szGkRPD}n{xjG%KbnxvLAG|G&0@32)?U9*c(eE7 z7kuQ|zWLpzQ1Ttlx|w-TD0!7p*W}#?I5*22`bnPlS(_i6m_UZs%?r=5@Q@i)3Ag`} zo5B)q3vSkYsKZO9%>wT)kz3vgycgWO?(-fp{XDtuAIElGM#d|Y=s&{8*rZLC&ub=M NXW`$@WX)L24gj*!Q`G{MieaKzlF{ZWMkzA1OTV!Q=fuqyS>ss9(mHkXS1ut| zvb5H1-X^e@mprYLmE@n0r*rdG1qW&Jv`*ftAUs(*!rtn*eo1Zt2$P&PfYCH@^FiB9 z{w(A$@QQ~)lqV<&6zNxgD%p?Phcb?5Js-AO@mDcMfKX}1DS-+WWb9W0T7nw#( z=oQ%<-mkzh}=H5G;xa(ffUiR2 z1z-B+Uq7z%kQH$to29q6urW$eqCZfW@un(S_Sa3fwP0l5{=kw^m)vy!;04?ELr#pQ fWTu_z|J)e4wr}uYJW5{Nf!e72+Z96??=u1bftZi~ delta 2852 zcmZoz!`iThb%Q6PVP-~gWqOWLxxTS+QmS!^rJ=b=s)>Pxfw7T^sbx}1nq``ap+!=% zfr*KUrD;lXa?0i^MkzA1OTV!Q=fuqyS>ss9(mHkXS1ut| zvb5H1-X^e@mprYLmE@n0r*rdG1qW&Jv`*ftAUs(*!rtn*eo1Zt2$P&PfYCH@^FiB9 z{w(A$@QQ~)lqV<&6zNxgD%p?Phcb?5Js-AO@mDcMfKX}1DS-+WWb9W0T7nw#( z=oQ%<-mkzh}=H5G;xa(ffUiR2 z1z-B+Uq7z%kQH$to29q6urW$eqCZfW@un(S_Sa3fwP0l5{=kw^m)vy!;04?ELr#pQ fWTu_z|J)e4wr}uYJW5{Nf!e72+Z96??=u1b5X+9e diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index ae00625e5009f984de5d85a1c98403be2d843139..0bf10d7009f9394d9be3ccd47b351029e9a903c9 100644 GIT binary patch delta 2906 zcmex$fc4h_)(zf_hB@V?rkNRr1^UV6rfJE>2C1ng#wNx_md0i#Mh3|#scDHuNk--t zsYYq3DTaw=Nk*G%7-h-OHo5VB-ee2rqoi91);Wizfjpg?ce8$AAy4b%-K@fs8%kL= zCvrD4lVwEyqK(=;{%{ie=35KJaMC$nzMP57Fn}51P~AhRE2h<+rqmVMjVma1#oXqjl)6Hv zeHnQfx@mI%a_-F&x>u2x9>CfsPw0k3s=&l@^1=eunApi@$O{itWByM|rG{&)X6~hi zYtGKmqlRlP&f7{2*TgJpATz=@_b-3RK~~OfnmpkP+vJ2Q*3D)c#kt5cV$&X3e)4o~ zzHmB~ojk3RFPs+G{Nr*2H|g3pH{PE}UL7}i^R;K}yrkO*EZ>_pPxul@UI1rI4hWW- z{)&;2Z}X!6isTh32s5^~Ff*>^AqK(=;{%{ie=35KJaMC$nzMP57Fn}51P~AhRE2h<+rqmVMjVma1#oXqjl)6Hv zeHnQfx@mI%a_-F&x>u2x9>CfsPw0k3s=&l@^1=eunApi@$O{itWByM|rG{&)X6~hi zYtGKmqlRlP&f7{2*TgJpATz=@_b-3RK~~OfnmpkP+vJ2Q*3D)c#kt5cV$&X3e)4o~ zzHmB~ojk3RFPs+G{Nr*2H|g3pH{PE}UL7}i^R;K}yrkO*EZ>_pPxul@UI1rI4hWW- z{)&;2Z}X!6isTh32s5^~Ff*>^A2C1ng#wNx_md0i#Mh3|#scDHuNk--t zsYYq3DTaw=Nk;mU9hprg8`!aK-ozNeYDlvF$%Rf?lWn+!CU0k-L#FO`9Gl71X~We( zmd@(QGcANSS99~QkgZ)}v$uc@dEr&PSy+sngG`&}DR68)C#S+lp7zc26w=9b^yGO8 z!jpeE+FKpbFUc(cVRF(6B;-%4uc0L5t#up7^gl4(B{tXV&t@Vo_`url8TC+NyPoNO zGHu^H)8YUnHp^P?B-3WFzh~JkV| zk6$7sw%Z15Brn7vw(kqpqr~<-p)1L>eX~JiHF+7deX>9b>*kEO=j4@dHIx4ta&KnO z;Nv1ar2%WAn#pqugf?F(lH?~-`@0T-&8wQGlb2v?Hoxl#;wIhZ&4p9ml996}7f$Kj zEHm>z59v07gX*6l+vao2+{g>*w8?c_bv9q$C_t9OozgbfZ9Pez!_zk3J7i3z*2(t{ zsck-Y{-G*)LAE*On-{t1n&%(K=IH+cWTvd?d@PKdlasy)PtN=Av3(CKV-zm{h(a0j delta 2548 zcmbQXjAhy~mJRNVMwuDKmFYP~<@(0PNvXyumWJjgsU`*%2F6Avrj|)5X_jdwh89W5 z1|}vZmZmAm$tn7i9hprg8`!aK-ozNeYDlvF$%Rf?lWn+!CU0k-L#FO`9Gl71X~We( zmd@(QGcANSS99~QkgZ)}v$uc@dEr&PSy+sngG`&}DR68)C#S+lp7zc26w=9b^yGO8 z!jpeE+FKpbFUc(cVRF(6B;-%4uc0L5t#up7^gl4(B{tXV&t@Vo_`url8TC+NyPoNO zGHu^H)8YUnHp^P?B-3WFzh~JkV| zk6$7sw%Z15Brn7vw(kqpqr~<-p)1L>eX~JiHF+7deX>9b>*kEO=j4@dHIx4ta&KnO z;Nv1ar2%WAn#pqugf?F(lH?~-`@0T-&8wQGlb2v?Hoxl#;wIhZ&4p9ml996}7f$Kj zEHm>z59v07gX*6l+vao2+{g>*w8?c_bv9q$C_t9OozgbfZ9Pez!_zk3J7i3z*2(t{ zsck-Y{-G*)LAE*On-{t1n&%(K=IH+cWTvd?d@PKdlasy)PtN=Av3(CKV-zm{a@H8s diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index 2d32b0542866a9605f174ec8629ce84d4ec5f276..5d8eb69dcb3517a8ab5bb6d39614224ac2afb1cd 100644 GIT binary patch delta 2831 zcmex+p5^a(mJPm)hB@V?rkNRr1^UV6rfJE>2C1ng#wNx_md0i#Mh3|#scDHuNk--t zsYYq3DTaw=Nk*IN7!}CSHrbG+bg~Qc9?~rY>ij^4E zGOT22@7ydc$izjK)}GC`q}j*_JBVzZ9PT{3M32irAs8%k`yZ+V(b z+c(GC?qeo1!pVvNM*RQGan!vJQ)R!?%{e=^L7c;947 zT`}ALFqyFda>Zu(U@}XN7Pu$uLU&W(0$`*{Y`zrHNJISl3S|%Tu$hUdNdm^t!hRwhR*7SdzjO^Q2ax+?UkY~W; k2?yD>&lh2ICNuh{>&P;4ZeJk9c#gbStluuD#(19*0K6Yz#{d8T delta 2831 zcmex+p5^a(mJPm)hM5_~mFYP~<@(0PNvXyumWJjgsU`*%2F6Avrj|)5X_jdwh89W5 z1|}vZmZmAm$tj!b7!}CSHrbG+bg~Qc9?~rY>ij^4E zGOT22@7ydc$izjK)}GC`q}j*_JBVzZ9PT{3M32irAs8%k`yZ+V(b z+c(GC?qeo1!pVvNM*RQGan!vJQ)R!?%{e=^L7c;947 zT`}ALFqyFda>Zu(U@}XN7Pu$uLU&W(0$`*{Y`zrHNJISl3S|%Tu$hUdNdm^t!hRwhR*7SdzjO^Q2ax+?UkY~W; k2?yD>&lh2ICNuh{>&P;4ZeJk9c#gbStluuD#(19*0D2-|i~s-t diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index 4318b39c3f2131f264b05823c9f53f299bf070dc..dd26a7457884eb643355b14e16dea045e3f70d6f 100644 GIT binary patch delta 1164 zcmX^Ah4K6s#tq(#hB@V?rkNRr1^UV6rfJE>2C1ng#wNx_md0i#Mh3|#scDHuNk--t zsYYq3DTaw=Nk*G%81J!>u5I!|!Jx@^ITn$rlZop)nL6)s2u$wbUQM=cp~+`>^2pMi zxA`XTb!O7FZhk0e%1*jAU5)8r%hEd`(%%4g;ReGlQ(i d41>+_VU`?Z+ME@~JJ~S)3HiD=uS-}c2>{AvYl{E? delta 1164 zcmX^Ah4K6s#tq(#hM5_~mFYP~<@(0PNvXyumWJjgsU`*%2F6Avrj|)5X_jdwh89W5 z1|}vZmZmAm$tjy_81J!>u5I!|!Jx@^ITn$rlZop)nL6)s2u$wbUQM=cp~+`>^2pMi zxA`XTb!O7FZhk0e%1*jAU5)8r%hEd`(%%4g;ReGlQ(i d41>+_VU`?Z+ME@~JJ~S)3HiD=uS-}c2>?jtYX$%S diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index be3be04c2c5668d4b64073c09853a39082ff0843..e3026f5e308d2cedbd5da58912fe7de9daab8dcc 100644 GIT binary patch delta 62 zcmdlhwO49G3zK0^xv6PphGBtzvbkwmvavyGs)@0Qv5}>*nTe4>a!P7iqEV8Oxkai` RT55`6qFIvB=B-Q}TmWn#6Gs35 delta 62 zcmdlhwO49G3zK1HMsa0&j#0V3v2jwWaf+p(xk;*tfrWvwk%_5gQc9X-nu(!BQnG=G RiHW6YN^)|_=B-Q}TmW>p6F>j} diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index c96720effbbf00aafb821f96a503ae54a766680c..f842ec0905dcc43de0fd19bb8a33ec2321f37807 100644 GIT binary patch delta 1283 zcmX@JjP1-awhg|FhB@V?rkNRr1^UV6rfJE>2C1ng#wNx_md0i#Mh3|#scDHuNk--t zsYYq3DTaw=Nk)_F7!Q-7t5L*g@_R1U%`2I8uWAiEYLri3AZy-x&@@8h939Mvk z&Dg9Xq(X*!H#dshAVb^aMv;uopTyh9iB*tRL8*E&Y~6fNMu`klqvYm8rEDUU=y&aU-a?-K?GyMJ|B>fy zN$JJ1j|2eR~o${_yj$0stjG6Dco Cw1Zs$ delta 1283 zcmX@JjP1-awhg|FhM5_~mFYP~<@(0PNvXyumWJjgsU`*%2F6Avrj|)5X_jdwh89W5 z1|}vZmZmAm$tjcT7!Q-7t5L*g@_R1U%`2I8uWAiEYLri3AZy-x&@@8h939Mvk z&Dg9Xq(X*!H#dshAVb^aMv;uopTyh9iB*tRL8*E&Y~6fNMu`klqvYm8rEDUU=y&aU-a?-K?GyMJ|B>fy zN$JJ1j|2eR~o${_yj$0stjG6Ddg Ci-O7k diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 6635535f9aaf4c75f912f099fee909dedfbb5328..76698774938a975d5c91b778f666f7cec7fdd3ed 100644 GIT binary patch delta 12247 zcmbuFYfzL`7{}+l@4H-=>#{;RDu_*(8nA$(BLWjDs5smW@5{;}&7vS=VTvqoQdrn#p9^*%y_mZ~Na5eEk1^&+R^s!h zjWu@T!AzE5dpjuRH7ntY^D;r4XE%D5Ldp!) z&FfPcliJ<94ECRj6*bNGk_1>pTQcp<-tP7)qd`3p5QjwZ%tEa)HY1f2a<#etP5PP&GN3D$t3c#rL+9(76A&Di9t&glIDRulgKi|=oBKwH|A9cv< zQ?W2?s(0=*EP0#yFs~RJHJkc4eXb4hSGBGD8+hX#kan zjb$b3;gye2?4uX51}Z#wY-N)G4CuT0P$xtTyE7am zcHWzWMjsQjC4nsit`TmY!*Y349&@K1$t>G7hZPgpUZ7@uF>v7!LO-Um1v=-yrvBfi zV;URhN#coK_Y{_lwvFH_(Q5 zE@UZ4&9wN1*pDg}vrm9e_`O-Isb*e0ua)`J;VPDoOpzlH5;o<)mvl!AnS9wcrl+-A zSP60#91bKL+JND4;Ahdr24)31Kti1E54N4JKgN7$DzO$|&ug6{;m`!;oWcFRV;)-D z?dju3QU4ZJ0mmV%n$b8Yy%pQSqV^eFh&?I$XExIp?Lz2v=1pU-u|jb2GDtXFMzYtg zktcVUFRj1JDv|ABe#r9sTG;V`O$S;?!X?!Jluzg~xlJ$m(iku45J2V*2NDj|K=Kr3 zkdRj_7rGf#)K6+fde)sP<}$3Y^Fy&$xJMx;wO;N(lKlCPFLU!ErU@X|CXmAov{HRSYa%@l^IL!B>ywt#tP zo#ffqikj6@FcODjlaa7GhD@X;p24N1NIx`j?sn-*bbZpAebPAK^!Aodh=XYMA!%ng z*Z`_(ms*j{qg@_Ctf!7&q-A~}o@bb3H@bXNI*h)WGzTsm^b~eax*O<9Ap9Lg_Tl0| zF_CUD*%O__-lT-r3?G-G=`zS(WC@hr;QnaU6*hIjE(Buaw{A-B(z+3H651pZfkYrT zq;|Y|CdgIj+2lg(NA8p56y#;y9jRpTj0)MqzVuf;U$t2-pp;p12r?M|v7-BP zdF~RZ?M!;GQ0@S}e{qKmiM)1&0(0>^26w93EWhVUE!??q2%wL)%GuC$_N+UajfZ{k zT~AuIUtZ~QM7>sx2jv`OWM7nr?>sFB^L3l$+0=7V9_Uh7B)r;PYu3|S@?zu^_2nZR z2GL7*JTUtuhFK3SBN8sZ+|*oQHBD&f=e4R=j)fj*}OZLSXVV z8xl4nk;jdQA(KblQ+nV0RB>Aw3&xO1!lobc+;hZm8Kz!VQMTl1x5rXR8Voa6L^K?BF&;AWMPUkW)pb9 z%c@5+MeUQRIaG0-d7~RBEp(sKknsjuQi+06MivB6wfTwTJv$Fazd^i??2QX z3O-vc9n#?iO3%M$0Vc#AVa-WcY}Kj-H=!dhlO;b&Bb zygmgB!=`%WOvRG7sSk6@u~DO)YH@EqSV%zX(;vB?C}6qjj)=rqhwQmE6o9j zVk&Lwh4QCpo|U!&lsaeL1e7|t63JCDOc_&QmYJ#bad*Ktac;9`r!iEFm&@$a=hL_T{ zFE~mKIJ_E_jy-k;l{S8rgI0LMi4Rcf;gjc4>af%B3@3hn1*Out&1kN_xBQJ#m$z;~ zsYlP>1gL83#Y-r0!sRIdQQL;$?fXz_%~j-f)2MmZx1rQ^HxhwdRd&;azMBtrK*W%{ z!%3sJ1kQZ9ug= zmLcz962G+3#{_LkV2gokgcr_aIoy)V+-dtbmgSnm((!B$P_w=mxNr!fA5+*Io%3H) z|8LVam5p&F9|JXIG8uJf5;gU3J_!>2r~|%z^UB>UoxfSiI-F;|&>DGm3-hP@Wo(2S zXhS>ZvSg%YTKq!nL)8n|C%`BC-YixvXL_F7!hET@mgOT;O%?DZ-4R0uU%Z7G zX!Rymft&@00||##V0aw(>2$e~l>!|gAx`rJ+s@Y>VMdxl>?E+~wa$@nI0ojN&V9aP z9$MS&X=6uG|C6j5jzd@-N8_Nh7HkWP+NX0N_N1(z*)(so3&A&-7sX#^CE(u7Jw=Ni9gvx>KZVIyzWN0k#Eqh`A7Z(fUxy5CD{1b67b>^6l$-O{}yU z4TgkOjKTRhNW`%Rgci|=H0dUs{QOeMTT7lVNtKLzeyWs0daHCDIlWplg<;B2=S!e1 zU>@8cdG@uUZlx56#NpUvB&?1g6RC*{xU>lAhbGS1Dt(ErPg=EC8Uvi(-tq}?0L?fk z?Fa=MK(!a77G(2imxmA=sO=YNu@8vn>5;MLhebO{;mYV-%(^E z7Y~XFbeqYZ=p^2eS<82_=N`!nU~ z$eDTW;;-#YdN5aR1HON8hYg9mb_N4;@jM21s@*8R=SnTyxp45Kk2cF$&~^5#JDQD$ zeQ>8It=K0ob2*}3tEK~THZrm=%ENb@kpuafjq(iYIVBHtDJ&9R7hG%B)7$a_+CtqnUa3Heuig1V96;MADc|ZrJWt41{QBN}ak&b#M6^tV)eK|^ zv`jvqtr#h6mZC%NR}v19Bb+Y-`K?w4AyA>qp+gNyWvcT~F2tGqvv$R+_wG1#Nhtv) zPqQImGZJ~+h!`@s<(|^}=BMgAN<0`t1__&f$aBvT!=bafjWGDCqWcRSe#-OJ;XgDo z19a=r9~wMpn9iGvugkuCPpB@CJ`C0UgDwFQUWb9trNm-%JwWNif40w}6-l}$9{&O- Ca*%fb diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index ce027e9044903c95d8ede44ea33939a70df760ea..b3b85ff1e7f8e62a7ae579739436bec9fe7bf22c 100644 GIT binary patch delta 1771 zcmdn`gK6szrVYW2wmIddrkNRr1^UV6rfJE>2C1ng#wNx_md0i#Mh3|#scDHuNk--t zsYYq3DTaw=Nk;l9`N_rl#rdU0$*GekvMWvA#CX(@WK)1T!#DqDN@O8j>*k5xjYMLxyC9>Jh(2s+>b(S6T5~tg4K^kt;5IXc26B;QWANnpiQ=2z#_N$` zD=4To&rkfuPNvNXnc|xbvW&>Ic```*-)u8ZGHqX1%)WVF=}&Tl4W!+vF;It0+hf;o ZP2QR)yxC;k18y>mn8=>EdD*UhMgSpK6-WR8 delta 1771 zcmdn`gK6szrVYW2wwW2lmFYP~<@(0PNvXyumWJjgsU`*%2F6Avrj|)5X_jdwh89W5 z1|}vZmZmAm$tn6N`N_rl#rdU0$*GekvMWvA#CX(@WK)1T!#DqDN@O8j>*k5xjYMLxyC9>Jh(2s+>b(S6T5~tg4K^kt;5IXc26B;QWANnpiQ=2z#_N$` zD=4To&rkfuPNvNXnc|xbvW&>Ic```*-)u8ZGHqX1%)WVF=}&Tl4W!+vF;It0+hf;o ZP2QR)yxC;k18y>mn8=>EdD*UhMgW7*6odc( diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index 0e34fef9a9da17513c3970902ce499d56b3940ae..cb526b98f18870315520b157e7a9f7d723c6c240 100644 GIT binary patch delta 175 zcmZqEYSY>f&S;oZZfcsDVOXG_Y;KyCY;2I4YGQ0+Y-DL{W@2QJoRXTBXq04RZjow~ gmYQOiXqIHOxr5Pwopf!JUvk_bOPAMX2d-mW0P)~82><{9 delta 175 zcmZqEYSY>f&S;pKQCyjxV^pqhY@C#8oMLHcZjx$ZU}0cvWMXQWl#*tdW@2cOlx$#P gVq$5UlAN5fxr5Pwopf!JUvk_bOPAMX2d-mW00!tZ^Z)<= diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index fca3807a546ea822ea9212f4481afe9e424ab48d..c09688e40eb45162771085469e81fd1fe9a15bb0 100644 GIT binary patch delta 3415 zcmbuC&1(}u7>9W$U!LFC&xyrwJ|0u^kxoU4MxqfZ8R?2jo%udRm8F~%PbiYA^oep;PGS#WJp$9k zpvuyY0Y~$RCaR|$E_Tv0;jw{_2_;L455a@Ey*DiebNOj)_E z>Af8i^Y3|uDQw`Zw_^lRShte5v8Un@ck}BtaaK+!tw{7nrh-c?8Hdut7LP3kP{}6l zVwcpBvnYH>ug+dalHWhP#gXjzrxa%R<@yjy&LweZS>N^f9;$Cy@2|}^Pcpf_8CjKu zzwXzXPi%}pDYTaRQxFzx@Jol`H+BTg{NXHkGx&TO9feakoMvYr#bpZjF?YOi2bh8b zeEtbsMqXc*VAD9X*%G*4!g*VQqZ6>hmLOAwo3;ecUc*LPg1c{E+LmDN6#PLxV%9dU zzK1E?3~SstNC{+n-u@9@AP0~Z=OM&z)!;PlJ<=?}_&1;}xEUO+z*g$~1smwY8sxb4 z0~U~LF-?4B3A&N5GEF}RKRq!C0yp|F>{0k{xwr~0cy<>d+cwmu!se9W$U!w8ayDO-i;|eg<|2|L$?<$HmuL53Jp$9j zV3DO90}ktn2CAhTE_T8*>9K*23uRpTAe-?kPE_&`TL=Iyb%>2@x#F^(%EVv*Q&wrH zT5o5R`FFp>6xMOp+c}CTteMH%*c0)v+xmJ9oK+HqRwQ~oUB#uA^+V}li$@m&sAL0o zv5UpgGbnsmtIb|RlHWhP!IA9PrzB?hmBuiW=VTmO(RO{li|Sj^`s%aRNv1S5BdfCT z*L|w>#O4T;LujnAjj7@Wf4G&2K9u28s#x#RUaz!2=` z^N-;&^7=9bnp-1nC;wuqAl<3O3pj+<6V}Yzg*E!yn`$W^Uu^ zdzi+}u*&s=lt8xU?H}PeasX-nJcRhoI`rV)Bh?g4d;{8oo58UvY^Ba$uz^0PLzb&Q zU;()n!^BsXpd0xr)6_HY)8kVhaJ>)19)Sq@CWX!#bW0k}~$R7%Hx-4z59V$;8P{e!h!b_1Y0s50DPr7nDkGcM~7) fKS>^9H>D|kA3t?e+P1EI&3%R_+aYUenAi4wtgQiQ$OJFerX$Ia=1cnmr zxxDFabRz8`8d>BC|I5kIXmA>nQ5rG}F?DQgST>oXqmfscea;!jwfc5{eqb%W{2u?u z{_lPEId@lU)UMX3&O#PjU6+thSrJuqYh1gi&os{$U!(B1}zL$AAI zsRF|z^agu07`jj&qt6ZL07KUs98bxR@zwm-xy-H~h$zDF&3a#CG8S~RzVF^VAYeV! z`G^VyTcsyXa$yCo(&gym0g$TO``6G2Z)dW?pU6=|bZ>k;X2ImqJCnN*8%-_6`VVQp zM3e>8dv4CRKZMv#mGe|o^|!xUh^jXJ{tBu({?#W@)wI`wQK;{Y=TT_Fj!HDvthZWG z)m6K~QRvK0ShYrnRb%$RD`(Q)OK66BKFC4SbYMR^n)E+?xE)mu>uErtzxeob6uSQt zc)Qu(y9retIrrPxlRb#%|fvPs2Iftq`zWxoWn*7Z? zRCU_WK2()|i|=&by^X34Tueb@?YXoERlWZztQtIg1XXSI%|T=J+&BxWQh>zJ!qR1# zDabvEIA7B1HWrF{UL44_pxEs}Y&?ox7Q#kQ?AS1t2$q+whqKM7Zra`Kc|ey~Bnv`o zyElqGi~9Y3JWI!}WjyrNB$kQlemaGHf?_kKvh6^QjYl5hG3+5!ccY6Hpt>)|vl>)) zcM^LU)%{O0dj!?}aVASZbq8j#d{lQJmCZr1y$`b2QS3dL3_T=M)Le$1FzCVgY!$Hf z>0%D+1#n#8R(t#0D%Iw*CLme22;L}Qg}`O_ErQM>hP*m32&$;Bm<5fC(5YHB5dpvVBFp2xl`M#FtY?1*)C~d>1T`84&ZmowY(COCLOGv$TG+l( z{wtFJ{{?9lfh(c_&dPu*bZ+E|U+Z8&G_r%$Ai}te7RN2L9!IbBb zU>FYeKjpmpw5Zp~L+ndnjGJICz@sU%m%W8VZ_3vnV~0_BI&_?U3@DRO9ze1!aBiCN z4_0mmvTb%s*k$H{+stv5eFKDR&Le)x&4RkNNbSf}h#e>8^Xqp=0n}%c+L3Y@3?vxd z4+SzOz$JWBwv<87+$*gBm+Fxn z+gy>(F|tO_UXu=j$E7@OG7K{L2r`XtdT{WeLo9<@!(|83i3SY`Bh!PxGFVZZyy?lQTCXZvI~ z-Kdf81L{wLK}VKA_gcAvUTKyu0nc_Mz<+T1pJOh}y7{;sIe=eimo=X0lNVFnPI(*< z_)oaV^|l<3Y|b|=gk^5gO4+0!PDJSH`XjN#cPlmQ4 zGk*dc)s?UGM1nm*?PHY*KqFe2D;Tf5gv@ZmI(a55KZlmR(aHjBr`%|z5UlzlzBygF z(>eszrzm6iGhNJ1;=e7Rr9~tN|A?#ua~~NjP%4lzn0uK3htWy5vNaIs0+Zp$SSWew7PW(Ns|X!ImPYpyHEC(71=P=Gb6V5$v0jL~I>ia(RFF{%vQ*I6CAZi3nZ zr+mX?^%eLzpnRrkx8~2)L^Xnj64f8j0YHN5eIy0uJ?}f2Y9;a*vTdolgmx}aL+=8b zUVuv}r(AUci=6~`V-+S^V|?@+&jb5aWK@58R`r-)Jk#g>YA-VB1j8CyIG`p0adQ)# zJg8P9=Oh!He@abslxM+?51dmUg~5l1)VXlD2hXb;U}f6{wI5bqe^EtV z&|CfS*<}@Zt7(DvUQrw2n1_bdWymZwJ9E?x^(>mOt~L$%n9d4$qM{)`sj|R-)->ef zdJ8-*Pf|U*`;0ge-|Ku?M5_B*NwBafBLU!MJ%v^d(yObfSXHisxyI~UZBmTqHJv} z&@=`C34(SY@|)uEeC=b}-893k>A*_;KMM(#>By7H%>vjcuS$Ck&7w2imPIcv*UEn8 ze;v&j1i?INZ_`rJaDpr@9E8xDXS7+s&D|{<8;7;ovA1i33mflJ`UAE);3Q{wA(4`Y O6CoP~dpx$Of&T?ZcyG%9 delta 15184 zcmbtbZBSI#8J=^$mY^(zg(zmnC^2mU=~asz02K=*l2Do*1t>p z38E~ZzVq|H24XjmWm)@Sq=Pr)u$0-IaZmoN*7ys2lr^`mG#Wfa|3h}g-H;Eje%$jg z(%{XlUVY&42B5)x2J~w2bX4_d=^9vd`65*Hn@VIco3Z}0dKYRqwYC(6=G6JoSifIc ziK^OHWuU5lFC44AF&|a6H)Wu)`de}VRlT{jA5|P(2c3Atg4?s902P&=8v(*JJHO+F zg{W%##za(g^-Hy=D(9)F>Mwu21XXQ%DiXwv`q`yHriL~kPs{qcvNqR;~$ z!Q0J&zRjqr|JWyJT^s)j_wakiPok`_$r`#CHL)g7G6@=@KvR5l;Q_C3U2N3r*1GW3v4F$)-a!k~v1vDLuZ zr%O4k55RGOTjT5Zs8pNJnt^29CU~QO6#|#xw+Xt681m}CAgH4LVm1WKE)&cJSfzy( z%x??)V%A_Nq0_Z&G6H_@MV7}$SFsSjse%0sP&Wuj5Y%WGIG-*xu|-Jd2<3e0ZDsq% z1g=a1{AZ+D1g?mJI4c9L(7BN-e!Y{0kbftuN1EMWAi;17c=2J$7wuzXsj{2Zf+^1< z!7vgUc*=Rt8BwoOhuP=A7&pOOfX7m1AA1Xl-jr`R&W@n+bod1O5KtzeJcwjl;5;<# z@2uPoWZUeNh%3wsx0&M_`w9rxoJah$hlO-+l{%2A5I;f6=Qr+>f~emnbs*(37)UU@ z9}Z+rfJ^x1Y$=1DxnEid$dh3B5((U_*_J8NO0;HNfP<-hn)EqRI8%N!L0XD5s{!T$ z97^YtrKkuX?w7jUekhR&7{EdZUx{RmOcZfkhR?l@K{=ZL25vD zY;#3A$H^K!dtEvN9+&dC$uPv^qsTPA<-x&+53>wviDCMNQ46O=HAC;l4 z$jqMr$8_f_z0qJ#P{(*>63~cN<_ab%FCjDBuuk5o%8#IBZ?v)i+bK6zDFmy&ly6B_ z?zRp=4Jpbv{!BNsllX5dXlW@4!rvk5z}!cM3X}?@4CY=Yz!7xHqihQXy1-<3tlCOO z1{GE+$UAN8Tp?(Rk$x~eoT*bnC})K-2Hg!wFr+?+rog{lQF-S!h;^eVx^@>nEwL zaLPAMRbPdl1Ip*9c5D7zOID+3I9dG;9RMV_-bYek-t)ebsa7J7A={U$Kc!uZ)$n_O zrWfE+$|+Z!z+xu>-c*H&))*f>yLj+`ij3-yMXi)Z?DKE75R#jgz{Y2@xk-zV=(y0u(|*a_s|7(Bdlz@s1Cr&8!oBH z3woXNIK!TtHi2Rngi?4fJyO(BrG#yx}|6?J+G7EW9xm5rggM+p_4zI<4%7 zf!EQDK@cpYj&?024JXLr!a*3lc~+YX+}z!^v1vq`7k{TVxUlgqr9Wt^2TpQ^7ZNFX OBpI?%u-9vw9{eBqjcE}8 diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index 9a9210dcbf8cc22cbd4d13e17e4e7ccf1cbb80da..b8403cf59811296e0235db6ab02fdd02bca9b78a 100644 GIT binary patch delta 1188 zcmdnl%C@tWZG$(XVNSWJX=a9Dfqt^NX{MieaKzlF{TE#sj45ntsuq(O~mjrU&d~>YaR#Yb*I$1vazrBrubw-*EDJQMJu) z_!C*l)W3PX=nFCe8Wdz8yR|o~NGxC?({8Z-KMoClhG#dc(IsbN(M#fe~0PR<6X#fBK delta 1188 zcmdnl%C@tWZG$(XVP-~gWqOWLxxTS+QmS!^rJ=b=s)>Pxfw7T^sbx}1nq``ap+!=% zfr*KUrD;lXa?0cy#sj45ntsuq(O~mjrU&d~>YaR#Yb*I$1vazrBrubw-*EDJQMJu) z_!C*l)W3PX=nFCe8Wdz8yR|o~NGxC?({8Z-KMoClhG#dc(IsbN(M#fe~0BAI7*nTe4>a!P7iqEV8Oxkai` jT55`6qFIvB<_5+tX417ywqbLcT+7-=y3WluY+c*{Bz-gr delta 175 zcmX@6d`x+RKciu0Msa0&j#0V3v2jwWaf+p(xk;*tfrWvwk%_5gQc9X-nu(!BQnG=G jiHW6YN^)|_<_5+tX417ywqbLcT+7-=y3WluY+c*{Ig&H= diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index d332d94e83c48580093c535045275883151c5e50..958705350e032b93a9a0c0dd6101b4ef88c0073b 100644 GIT binary patch delta 545 zcmbO?i*ep8#to^AhB@V?rkNRr1^UV6rfJE>2C1ng#wNx_md0i#Mh3|#scDHuNk--t zsYYq3DTaw=Nk*HeF*1>%ZSn%Pn91*1Stn~TzaiaHsBVGDn_1SAt-FDAotqc1y<{O> t8_>CJn;m#|lc%+K^L)W%ZSn%Pn91*1Stn~TzaiaHsBVGDn_1SAt-FDAotqc1y<{O> t8_>CJn;m#|lc%+K^L)W2C1ng#wNx_md0i#Mh3|#scDHuNk--t zsYYq3DTaw=Nk)@<7(bJ)Yr0`1WB6uv<~(-t^hRyswj#r^AZrsRpW!Ja-PXw)by_xm z;+@P!me$VA_M+}gWNLMgI7Y741Jc!G1QXD&otwYP?j+aN48 zTzH5KTY(uddb9t^1?ptk9J9IRq8|^LTEp-0+K{JpdY>{Q`}QAFjGP?g8L%B_K#?iw Ldba~h_YaH!ewh=# delta 1740 zcmZ3ujdkHR)(z2&hM5_~mFYP~<@(0PNvXyumWJjgsU`*%2F6Avrj|)5X_jdwh89W5 z1|}vZmZmAm$tjb27(bJ)Yr0`1WB6uv<~(-t^hRyswj#r^AZrsRpW!Ja-PXw)by_xm z;+@P!me$VA_M+}gWNLMgI7Y741Jc!G1QXD&otwYP?j+aN48 zTzH5KTY(uddb9t^1?ptk9J9IRq8|^LTEp-0+K{JpdY>{Q`}QAFjGP?g8L%B_K#?iw Ldba~h_YaH!*J~2< diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 32dca1be7ee5f940ccacd01e43203499e15ee464..279fc7a2c4673cd5e6dab27cb25cdc54f84ad562 100644 GIT binary patch delta 1973 zcmZ4YglXLqrVZ(ghB@V?rkNRr1^UV6rfJE>2C1ng#wNx_md0i#Mh3|#scDHuNk--t zsYYq3DTaw=Nk*GzFtU=NZE~St++-c*`=nb4);Wu1KiN73CjVe9AWQd@&ARMD9As&o zxtUYIoQ!bVTqx+yOoojIRc3B(5}ibbjgvuI?};B~BGcAv>Cfb9)sR0%uGSq&H^}ho z=7TD}hD*uS>TK%5N=8yB6l~mVX|2FRrdDo`S{Aaj z=1i9J=iO}N>rY1H0E?EK&2s+j++^7tKRF;$ZgX(-1M-3kqWxjw8zC}nZ%~lkTvb}m zMuGNuHD%;FeqM+C3nWbddyxDR7 fAu_a0cAQ_idF@g!F0vdOH+dEd|K_P1W-FtU=NZE~St++-c*`=nb4);Wu1KiN73CjVe9AWQd@&ARMD9As&o zxtUYIoQ!bVTqx+yOoojIRc3B(5}ibbjgvuI?};B~BGcAv>Cfb9)sR0%uGSq&H^}ho z=7TD}hD*uS>TK%5N=8yB6l~mVX|2FRrdDo`S{Aaj z=1i9J=iO}N>rY1H0E?EK&2s+j++^7tKRF;$ZgX(-1M-3kqWxjw8zC}nZ%~lkTvb}m zMuGNuHD%;FeqM+C3nWbddyxDR7 fAu_a0cAQ_idF@g!F0vdOH+dEd|K_P1W-pA9h7j8kJyKLPReSL=c5VR3t%U`=s^I+xh$he&4sgHEZp?&rFOPCdLhY zE?T|2-fs6+SZb2oDfTkA&Ft|c+mdb8RGTB&YIc`;%3RhGYsyNGwaim$aXCt?Nu@q_ zT~eKIZ>`%Sk4DDJ_i5OoSw(4YkP2B`z#78Xa`{W(H57FO`L&}WYZY4`T%m(dAKM&S z3}h9qK9(JxCuw(Oqmh{aCLC)Rk2-~-?_v`IwHGVr z#eQcav&8R20;}k%C0kI})MYn8*RHPRAjx)^i%`^KJBvoWZVw57#-fo`rRuSX@XCEz zI%Zt^8OQakJ2M8$th$@z@{PSvY?Us6$f-SgxM@GIhs^H`K&NAI?jVYGZg0h!+{j+! z{X$)j@4AD{q*qBVpa?crv;b(aIO-;Od927J=a_Zunfn!%{y!aG*%7Q2|LOF3d!~`g zD6i`<$z#oCmf@?N35~FqEFi=-A!Ae-BIj8zI=K-gl+wFOON5~^mw{aJIZMW z4FzfE6v0*Sl1QopIyDJbn z>0BsK!=)zjDi@ECjtAt^d*FOi{wnBsn}<4(A^xji3%_}4d-1$LnFkAiX|NDAgZ-%|K|pb*NE z3gzL%Xf9MZ@S0Hm3FsrG^K-RVpkC2D!7PDaK>2*wBF%zssw}CAcW#gzK=-*wU2M@F KmW#ins-@pL&)et# delta 4890 zcmbuD+e=hY6vkOc$7X6qbEcBQiY|s_<%~0GQ)EMF*~Ou#BohtiqK<~sjFs5U3`~)- z?1;xCh)|=TQrHi>BI!mKu$vIkO9T-_VG$Kc5ZOMdJ@|G$|A623t#8d*d+#$tgNC6& zLr)Q{43t(@m+VfdO19fQe!I_UOLzDk)@4?EiX+wO@fACZ9kyj2uhrpjI8%LIuP@mb z^j0QU2KR-%ez`w3LB3CYHq9zZbG1~!;v+H$V@u?3kylVOEh?lP6c*;TmKcVsa(zuB<;c3&4cq9>%AfLeUR#Ns-!%l|$}BO3zV>W>4cAkQRsB$C!Rz z71H96yO!A!b|8UObVcGO)YZA@I_TQbu>>U9c55Mu`t7Y~)T^n+2xu&7S-De>O+-NM z$<{IRs;@Y%XPsHou*|BvMJ`#_4aHXJe25&`qlfDc0DH(n?g(@`7HqkPqV3xnu_o8D zSGj*s*W){HVKW&}T=_Ja4HV7=S}cybVO}06w8)#SI`+c*21`FiCsmQ(aMv;NJTDs9AL*TNjMaPu(BL*;g zcV{&?4sv&=kv+SZGEKWPv-Nf%uD0I&?C|a7OSLS66n-0Tw$RtlR;-iz$W=uL8{U|pQd0UUPZreTp%Y^gKU{UIM41YCodz zWCOLCfEq5;Q9wCgLpmOjM<0RnO&L|t^CmyFAVWN=VCK(CC_Qc*DS*d~T7MlEvwH{l z0l0vhkckysBmdMumtoj_f^9+@PaF{=CrFgLHu($)K@^fu; zDG?iyGXC~1El1W|!iR**^v4T9h<_|9(#~bAUo9 zTPl$I7Ek3ug#)h%<-dSFRysRNdj;wh&6BJW_yv^5`)ty5=%&h+>UjHFDGlg87pZsI Mw1?&5FR2RYFI1e_zW@LL diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index 349a1442094121daa6903a94c9d1ceaf646743dd..bbafb8399262de5b5c66063802ed6448f6d922a7 100644 GIT binary patch delta 1312 zcmey>!St(xX+u1tVNSWJX=a9Dfqt^NX{MieaKzlF{S|j6ccHrDz{ES%8^bofBC0lWFG!7J!#V z*FO0joABlu-a>LhTG1Zt0MQeZNNn jWM~DY`50NQ&A|!mWcYJ3O#7SES{brz58M2qsf!T+O?!^? delta 1312 zcmey>!St(xX+u1tVP-~gWqOWLxxTS+QmS!^rJ=b=s)>Pxfw7T^sbx}1nq``ap+!=% zfr*KUrD;lXa?0chj6ccHrDz{ES%8^bofBC0lWFG!7J!#V z*FO0joABlu-a>LhTG1Zt0MQeZNNn jWM~DY`50NQ&A|!mWcYJ3O#7SES{brz58M2qsf!T+nx>9n diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 5efc3fb82ca6622712764978dcfa51377c21f011..287ee5bb81e4adcdf77348a1a9065ba881f6c048 100644 GIT binary patch delta 534 zcmX?7ccgBEFQZ{jxv6PphGBtzvbkwmvavyGs)@0Qv5}>*nTe4>a!P7iqEV8Oxkai` zT55`6qFIvB{MieaKzl97H&esZyXaeir0a_VHqyLyxFG2S&K*%YA8tjS@_ugTPThh;z6It3=X zu@#V|JA1N%F3;o*3c{NU+4a~cGD3WF9A70Pg+@#hn94+v5fYnU3pZ2d3W?2nVjYya zqD<1CQdhJ}Cs68&rExMK4LgG7i+x$h}QLJi?ig& zwE2uI$L88eie%b68Km85in0uuwks&}Z06mlM6T^1?bkP@X^>@m&E(h4s+;-mFp^>W SX2-j6N@UrZwbhDoIU@ina!1(! delta 1864 zcmaFZ%<{0AWkWHeZDvMsWqOWLxxTS+QmS!^rJ=b=s)>Pxfw7T^sbx}1nq``ap+!=% zfr*KUrD;lXa*BRResZyXaeir0a_VHqyLyxFG2S&K*%YA8tjS@_ugTPThh;z6It3=X zu@#V|JA1N%F3;o*3c{NU+4a~cGD3WF9A70Pg+@#hn94+v5fYnU3pZ2d3W?2nVjYya zqD<1CQdhJ}Cs68&rExMK4LgG7i+x$h}QLJi?ig& zwE2uI$L88eie%b68Km85in0uuwks&}Z06mlM6T^1?bkP@X^>@m&E(h4s+;-mFp^>W SX2-j6N@UrZwbhDoIU@jHR!0s1 diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index acd2b083315ebc4ba4f93348d28c58873b5c157b..65de7fdb211b3d4668492d59a161e0976b3bbd39 100644 GIT binary patch delta 8004 zcmbuE{Zmv`7{}+FWrc8oU3NDxAQ?s`CJWeIUJckC6IOwhrF^NuP{1W%gybb&6cV!- zCk)3fbsW(_Gsws+yVX&1w3wYtQD-Xpfhj_pDVkEo=@ki~b1xJ1>wf(MzTeOHdG2$b zb7t<;h;C{`_nwnjwlpOtS5{cICX}TnmzUWRJ)R_6lFgcKOG&aOmTmTwmsm@!sc9Z- zxo5MbB&F0UHIuIaRc%a`e3lj>Kp~Y{{mx@hq0~!fv|Ax{rR-hcG(gg7`K@plR&BN1 zeV>a$)Ec=xY80c^$kU5g093g)#)}e%m#hVdQf*9){P_cUsPz2@&!WX4}7I9>RO3Xr}q}3)EnKeV$>QrnsuNZ&OUG(rH&qa3Z;(poh)^ng3FyoNN$(TM;hd!Yw6gwn3J1-DAmJst>le-}MOdmT&mI8w#zM*Qum!BXuAOyQUMY7q< zAPM19Uec=by^Q}k{QU*FVL}}yei9kBj1wJl43sLkaJabu#7i62n^@&IiDNI{B7fb5 z2@n327=Rl^Y2zAJaf`&Vi?_+R?+Lgt$VK7qGowS@-oD@$o05?gWL!r`?b-@g`9@mDixfb{zxM&4+rj{sf& z&xI$hpzeEo&%s5G0gzn4zj=&C0G(5p)~aoxy!i>*ayR<=Vp<9;9F?EABa*f3r)J(* zPmcl}_}7H@HPdT>zIT3JZ+L+k7h-y*>!P7-`+jQVr}xq$U=^wh|F)ZkYp@v7l}-_G9dr8=H+gie3~<_r$^(|B+idDd|{3~YU62$;}D@IxQaEC8-N z03T)1pNY-A@eFkVbEGLz;r(g@uF0B)N&l9);`w>P-V-GWI(1q1}1jq zpwf}{%~+jP^60MaAn=v8pmQZko!V1~Qm=Qticx)X0&7P*oW1`RN*y`yBuX9bIf+uu zuUDZ|dv8BVef~|D+R=X$rG9zLj@H`$?r*3xL#{!k`5(bE+;*}UrM70?L9VqkE@H&jjd^5et`gkaYuNj94v zAQ61hPg-<=m+?P`zrP^Yqfm$OpG1Z&V?>7>1EmTs9B#}5@zRF%QLJ)|B(s-qlE3c2 zgopo148V<|v~dlqxJi=OgsD z=fce^sOPT0b8wNPA0!v>Zyu$wKQ#+#4BoeknTXcpt$hwzM>`|#%vc_uTdkr z;vste(lFf){MieaKzl97H&esZyXaeir0a_VHpAi2rw821{IYzk1P*W_nR7s=F_!zwV@iDf<6 zx*N#S88rEVoc!iKwuh`_YggVZ%6pB80__t8CX=sSW%Fs_OiHxh7AvDf`wvMaMzZ~` zviYEN51F=az982{rdD8_t88Xe3Zg{&FBN(6lMK)16mf&;-KmpX?FA;=M{sPe^b2Pu-2s~!gJzItbI|0uDZ-oeBVKcpZY!`@ u3)(z4MVdUDy(iDl6WQ#Mb(;+T0&Vu*JU=f(m@G$oP0nHE-#oFYl@S1Dzu0pC delta 1562 zcmbQ%!8EOdX+tohZDvMsWqOWLxxTS+QmS!^rJ=b=s)>Pxfw7T^sbx}1nq``ap+!=% zfr*KUrD;lXa*BRResZyXaeir0a_VHpAi2rw821{IYzk1P*W_nR7s=F_!zwV@iDf<6 zx*N#S88rEVoc!iKwuh`_YggVZ%6pB80__t8CX=sSW%Fs_OiHxh7AvDf`wvMaMzZ~` zviYEN51F=az982{rdD8_t88Xe3Zg{&FBN(6lMK)16mf&;-KmpX?FA;=M{sPe^b2Pu-2s~!gJzItbI|0uDZ-oeBVKcpZY!`@ u3)(z4MVdUDy(iDl6WQ#Mb(;+T0&Vu*JU=f(m@G$oP0nHE-#oFYl@S0vVb{a} diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree index b11dd2a4c9329a44bb624dfa79628e1080696043..106cb1c3a1738d3ffe58197d4306c901f7838883 100644 GIT binary patch delta 62 zcmaDX^jK(vAERMTxv6PphGBtzvbkwmvavyGs)@0Qv5}>*nTe4>a!P7iqEV8Oxkai` RT55`6qFIvB=6c2_>;P^V6K((i delta 62 zcmaDX^jK(vAERMrMsa0&j#0V3v2jwWaf+p(xk;*tfrWvwk%_5gQc9X-nu(!BQnG=G RiHW6YN^)|_=6c2_>;QJJ6K4Pb diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index 4e040d4b844bce68df53bf5dc157f9870adefc76..6c5c5d5856d0d261658a1ce30b4fe5ae58fd0d44 100644 GIT binary patch delta 175 zcmX@2enfqPH=|)rxv6PphGBtzvbkwmvavyGs)@0Qv5}>*nTe4>a!P7iqEV8Oxkai` gT55`6qFIvB<{HLDY@}M#-cK4pE|QbBC?6-N*UEbvbl{_;!@YNA~21JBokif z-5{2Nbl_3(R1fQ@Ecy^~WrQc?>Y#bhmk<*=k=}PN)p6JR2VB?hdY=2a@0%w(UXUFx zxZ@&Adym6$B4jzev#rVzY_pjI0lUp^vsT+G?N)P}KM?dxz#0trE#69>RX9h} zfXaJnH%sQ-)nHO_Xqa>?t=(IW>z51h?GZ@cD7c-g*sY2rz9XJil2D{rUw_4gE#mO*Qm_fuI`tvdexo^pYz+ zHFV=(1JY&6voQ$YhrYrsV-QxyO4-@rL_TOy6k94z){sefdE*IY!HQzfKsq~|7(=De zv4s*Su$L_+yMS5DMki_uA)<$crgmW?&BM064I|TEeq0^z_2NuFZ4v4|JcNShEZEiA zecJz*ix<~XGjnI|0au;V3hqokyY}NC&|3fW$A2b)E%sM0j;tUbcJ@v#Ewcwe)n#~; z(;6}XBTW&%GSUDr(6~g7!_dcNbOeAZi63pGYM4AyPPbw5HxnV7ONnjXN@rklLj@sQ zi+|cdb1*b)CJWF}{Edy8fCBMD4w?f-ynMYaVqz^B#OF0MkF}s;zz^)9*KmZii*&-V zgr95oQ#0zqB^PZedWdirX~n(}6$*>VZa&{i8gQhxh_V%ztbQ3(gwYEpr&@V1LbJd_ rQVJ{O(DUhD>H$`p;;^Bga?9;AdJx%w*I%L;WT#6XX)gVS=QO_oU1;t< delta 4036 zcmbuC-%C?r7{_@`-4E@DrL`!j7K_TDGj~Q?R!BrP5nU;xx=7sSS|yIDO)Y|@5s_rV zfzAf86r>BUinn@MSGA%aLavPPrnD|{7yS}qLO0Txhw8fT`2)V+&-Z{wxT ztniMDtfzvVy(il$yLZ}b-d3C6Y278Zih@J1Rf=|}*B@{OM61K=6GTyT+WkJCUphyV zfU4!p9+u3zn~zE5!6DMK8QnfJu3s+2w|7DEddclr#cox^vGh5)iKT_;5}0mcv*MRL zOwQbnO?pV$$g_Y1MM?N2^(L$f;acQBCpWm#7e*J>1h5jOXQwzPYKcI!a?6O}Az4VG# z3*9tOhjf|xY>d+P!LM-37^T&*GS)kkC;%;rV@u`nDzZo~Z#=;)SaIwbNM}b9qo_18 zI$sI}Zea__4qz6ukyLdNMD(!W#BOY)dDynMA!PdJ9#{K&gFMwoTcnx~524_T7VPTu ze%=4e<%{d6k-2B@0av}KmE5xh?Anh*Kx_TepZJ*sw%A|2JiLOu*xAEeS!NG_s^{Pl zPHV^lj5JmJ%0&IZK;sHI4nrT8(@_AbCVsS$oG^LVOt)e3Hwz(~ON}jTrL!=(u7Z%Q z#Xs$!3=9nkWCc2kzp+sRP#}KTP8ndt=dQO&POK%P{Je_huohGe_`$vO8jdjIBE57x z;pe&o)QGxp#YI*9W9~`Moa?Xk?R=IPPu>ad}Y7MI&+^dLC{UVDkAke#l4q`C4N&gB0Fn-A=G diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index fdbf71dba29c6716780737151051d6f74fb4877e..ce503237c760e06a4c97bd731b4f2ba52f505b99 100644 GIT binary patch delta 1786 zcmdmflxzD@t_{(QhB@V?rkNRr1^UV6rfJE>2C1ng#wNx_md0i#Mh3|#scDHuNk--t zsYYq3DTaw=Nk)@<7;liF%hA+f^HnBhax4UDo&I|P6aVCHA+F6yERW>KvmRo`5#KgI`)$F1#-3e z*gqh{pOYO;D>q+roKCK-;;whdwRNuhB64kg>1EA9R^%jZ-WF^lMyA%5tf*t;Y2996 z$hbz3JiXI_dil2Rac10?N0tGu+dph#?B*m-?{uJE>Fqpw8RNalH$ZF}I}`WxYC}fh z?V_Aa8WcDMY|{2CLQLN+$#c$R4;PW`p}tHn$ScEK!TOJfGHp~N%YMh{y46f_+c|2P YoY*Ka;8ru!1{typaM%v4L-sHN0Fv1uDgXcg delta 1786 zcmdmflxzD@t_{(QhM5_~mFYP~<@(0PNvXyumWJjgsU`*%2F6Avrj|)5X_jdwh89W5 z1|}vZmZmAm$tjb27;liF%hA+f^HnBhax4UDo&I|P6aVCHA+F6yERW>KvmRo`5#KgI`)$F1#-3e z*gqh{pOYO;D>q+roKCK-;;whdwRNuhB64kg>1EA9R^%jZ-WF^lMyA%5tf*t;Y2996 z$hbz3JiXI_dil2Rac10?N0tGu+dph#?B*m-?{uJE>Fqpw8RNalH$ZF}I}`WxYC}fh z?V_Aa8WcDMY|{2CLQLN+$#c$R4;PW`p}tHn$ScEK!TOJfGHp~N%YMh{y46f_+c|2P YoY*Ka;8ru!1{typaM%v4L-sHN0MNW3UjP6A diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index 8628049d7c875ef2578fa985b1be15b89e598989..9703a1a36057cfc8ae91a8f17fcd16a0c67fb558 100644 GIT binary patch delta 1249 zcmdlvg=OaymJPm)hB@V?rkNRr1^UV6rfJE>2C1ng#wNx_md0i#Mh3|#scDHuNk--t zsYYq3DTaw=Nk*IN7zN4DHaSr#ZTfl+M%K;R%&(Y8w-%{MieaKzlF{ZGMm{pMO`gb}xmktz1rzBu0=1S*-pIC|ES*ot(v>p3z=lz1@?R0* z&H9|$tdyA{zFC5QHhDn?cZc}qLcyoxg&o9<&3{D<*eLMF<}1>-Bq`A!Y9`Q3p8m-W iLW+|oTxH#?uxpnT`9^G>a5b-kEbYbH7sWBAGXemV>iY2j delta 821 zcmeA?z}k6$b%QsfVP-~gWqOWLxxTS+QmS!^rJ=b=s)>Pxfw7T^sbx}1nq``ap+!=% zfr*KUrD;lXa?0i!Mm{pMO`gb}xmktz1rzBu0=1S*-pIC|ES*ot(v>p3z=lz1@?R0* z&H9|$tdyA{zFC5QHhDn?cZc}qLcyoxg&o9<&3{D<*eLMF<}1>-Bq`A!Y9`Q3p8m-W iLW+|oTxH#?uxpnT`9^G>a5b-kEbYbH7sWBAGXem4(fXDE diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index 1118db71232b9c7f3f585bb5fe0000b6a69c0170..613a7d4102b16760f9b0f4635d24e6dc7212daf3 100644 GIT binary patch delta 195 zcmbQJK2d!`A){?hxv6PphGBtzvbkwmvavyGs)@0Qv5}>*nTe4>a!P7iqEV8Oxkai` zT55`6qFIuWeoB6Fv3_xWX;E_O delta 195 zcmbQJK2d!`A){?(Msa0&j#0V3v2jwWaf+p(xk;*tfrWvwk%_5gQc9X-nu(!BQnG=G ziHW6YN^)|FeoB6Fv3_xWX;E_O2C1ng#wNx_md0i#Mh3|#scDHuNk--t zsYYq3DTaw=Nk*G17&*w%wvow|nRMGGZ)8fH+{3nuOr3YwtI5zQDA==EgfokkEUgna zJMb?cCx8S6tH}up8K!khqiGmz5 XZ3b(9S!C@p8K!khqiGmz5 XZ3b(9S!C@PW-majT0{~yrpYs3! delta 540 zcmdlmlW7AGc{3VjW)xSZ=NOgi8yhF38mCwqnwzAW7+4q>8=06|CZ(iVrkNO8BqbY| zn3!0arX(k)Os-+vNQSOBrY~ga3g3K-xq=*L#xW&Le#*L@EK5@+YqIB&r88)PW-majT0|0O=pR@n~ diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index c44a74f099d7e09e6322e4f63be7ca9f40bad73d..a33c6f09eb9e7c122c86e8d1c131a3e7c9c5319c 100644 GIT binary patch delta 185 zcmcaEcU^8nJfmSwxv6PphGBtzvbkwmvavyGs)@0Qv5}>*nTe4>a!P7iqEV8Oxkai` nT55`6qFIvB<_V0wj7B7D)1NHJDm6Ki`7HTb%{T94na2eHO3^m| delta 185 zcmcaEcU^8nJfmS|Msa0&j#0V3v2jwWaf+p(xk;*tfrWvwk%_5gQc9X-nu(!BQnG=G niHW6YN^)|_<_V0wj7B7D)1NHJDm6Ki`7HTb%{T94na2eHUmG^+ diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 7e0d0b06d223ef0e0477e28538254afc59482c9d..6adfc9597ca924d06c4d95d6e969dce30c2a4820 100644 GIT binary patch delta 1759 zcmbO|mvi=9&JFI2hB@V?rkNRr1^UV6rfJE>2C1ng#wNx_md0i#Mh3|#scDHuNk--t zsYYq3DTaw=Nk)?^7~hhi>wvP~<|j;@fGEeae!Q{-=*`(i{ARpVsb0UwKY#skqoVy z4=77BlNB%Zo4eJM$*^(q0pXXKycE!wvP~<|j;@fGEeae!Q{-=*`(i{ARpVsb0UwKY#skqoVy z4=77BlNB%Zo4eJM$*^(q0pXXKycE!2C1ng#wNx_md0i#Mh3|#scDHuNk--t zsYYq3DTaw=Nk)_F7&nuyYx)CE#*oQ*>_U@IFij*=`{sMh$H{Oo%xZzjR&49Zv>NF0 z2J*CqP7YWtKKZ|%@aB0O?i`evA-;L0U_Y550CR`<<~zbinJ9CI#O5&Z4-~pXV)Jjw zWt6&OahNQnMr`I**haA#Wy+5z4h~+mQxv_U@IFij*=`{sMh$H{Oo%xZzjR&49Zv>NF0 z2J*CqP7YWtKKZ|%@aB0O?i`evA-;L0U_Y550CR`<<~zbinJ9CI#O5&Z4-~pXV)Jjw zWt6&OahNQnMr`I**haA#Wy+5z4h~+mQxv2C1ng#wNx_md0i#Mh3|#scDHuNk--t zsYYq3DTaw=Nk)_F7!Q-7YvEd>%}bb?$*~Zqb+R0Xz~)&jip=EM4AkC0mQI(+eZ0b( z)i^(sXR*uXK3)Y@vTXL;tRZ}ojV!G`oAaas$P4K3$!nyzHV4QkOeD+Z`K0UGT)6Hz z3+dV>7p_a39I%^p^ZU&=$?+;od;GR!CJJni+?h(I?VAI3CsJaw$G#$VvK;QW+45K> z7nxcWFP^p`UF-Bl2}a-TS$vGoI7!#M9jKYtjC6g#6ymy_#h-B>dBNnm-6EWEwJ90) NLW`^IVZDqUi~x70uVw%M delta 1385 zcmcaNm+jtMwhg|FhM5_~mFYP~<@(0PNvXyumWJjgsU`*%2F6Avrj|)5X_jdwh89W5 z1|}vZmZmAm$tjcT7!Q-7YvEd>%}bb?$*~Zqb+R0Xz~)&jip=EM4AkC0mQI(+eZ0b( z)i^(sXR*uXK3)Y@vTXL;tRZ}ojV!G`oAaas$P4K3$!nyzHV4QkOeD+Z`K0UGT)6Hz z3+dV>7p_a39I%^p^ZU&=$?+;od;GR!CJJni+?h(I?VAI3CsJaw$G#$VvK;QW+45K> z7nxcWFP^p`UF-Bl2}a-TS$vGoI7!#M9jKYtjC6g#6ymy_#h-B>dBNnm-6EWEwJ90) NLW`^IVZDqUi~yOPuEhWV diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index e039e068349a10a00479465222e6bfb0e4a41237..614b2751fab1d122125906578b7c543ab6133ac8 100644 GIT binary patch delta 2135 zcmaDkll|pP_6_cghB@V?rkNRr1^UV6rfJE>2C1ng#wNx_md0i#Mh3|#scDHuNk--t zsYYq3DTaw=Nk)?^7);NZ&HYTJEaYjO+|R_iIgPzjfPC%KZB8?CO^%i*AU)U@?bM7j#+erN9Ni#0^ZDwmp=(;=TO`N?nob z%*aY!;-0R+!N|V(smDf6O7!yvs|S;%KX~(wWj6##*Sh)O4y7Q{wM{;_Lw9nFmcVoi zJw}o3soacd9ON6a-BN_HPm(BFbZm(`;TuFutfN=*mgmwGs4#u@|q);NZ&HYTJEaYjO+|R_iIgPzjfPC%KZB8?CO^%i*AU)U@?bM7j#+erN9Ni#0^ZDwmp=(;=TO`N?nob z%*aY!;-0R+!N|V(smDf6O7!yvs|S;%KX~(wWj6##*Sh)O4y7Q{wM{;_Lw9nFmcVoi zJw}o3soacd9ON6a-BN_HPm(BFbZm(`;TuFutfN=*mgmwGs4#u@|q*nTe4>a!P7iqEV8Oxkai` pT55`6qFIvB<`%|wGPF&ez$iL7g2ixh6Y~VpEd}Y`9Kq7a1pw_DHn#u( delta 183 zcmca9dsB8pFr#5+Msa0&j#0V3v2jwWaf+p(xk;*tfrWvwk%_5gQc9X-nu(!BQnG=G piHW6YN^)|_<`%|wGPF&ez$iL7g2ixh6Y~VpEd}Y`9Kq7a1pooEHlhFk diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index a34b550f0d8a9953f874da147b557a61d6a97261..bf5a96379d13c27675357fcf4547785897bb5a62 100644 GIT binary patch delta 4150 zcmbuC-AhzK7>Aiz*N?5$)s!%!L@NuEJZD#3i>RoC)vZKxttB#DcX2JYGCwHL8!wcQ z+V+S;U&3NvB!o1?h(#n(1ZIT>8AL8f7vV)0LIf2wXA!zSKmUN|_q_AYyff!ak6Wk5 ztz!*DInz~A5^Pb@uPkB5U}mqQ52(jVUu`2(9Nkov&@iQLeZq zuqJzXXH`+6aU+}bQa8`7aTXe9HO1xC7P=b%G8zf;FFj?+5E|l-`$j2<{<(Y>MJ-nv zk$2{M!3$bWUBfHsmReMm#(=cOe712|ZeD&dlc*?*}2gmh~JZ zDPoO>6ao*koS)@@sS|{xVikz$(msSwbc|+(Ju59-+CwtN1@ld@|EvU^DcD^X#O9+C)JX4Fcyu$b{c( z(LTgfn#Hb`Q?rmY48kqYV}y*^f(=wHyX2-8w%<+XjV~lV5IQf$4$%$3m!tlv+acOL zbUmog!jaRKp8^q=o`WCn_<1mwOwz$zsD=fzKBE5q?1nyiWxjM1$BGs(MrFz+J zEw?70C9X4NivB(ta;zXl3_YX0l|X=8Lxl(@nHGU(PH#X3lW>|Kt4w}qNcmw4BS^VEyXdcsq`5!%(1w;S< delta 4150 zcmbuC-AhzK7>Aiz*N?5$)s!%!L@NuE_PEE~Eux|lR<{z(wU)?oS92|l{KPBne1Ya5LWyd=?KW+2QwkqUI8lJvWkerDR`JtCe@!47Q=(=Ft>wF%uWiOruDB<$ zCi{42MNy)0Bb)M356`V~78++Y#qHA;dg=f&5)Se&y`{+z+QJ|Ak5Lf)bNK>_TCSWy zHYXBp;g(P%VC9kUcL39LpezN z#2POt1RiENKg$8rCkaW#DiD?DNO}^+GRa!Rk5)372L;ryedWX^_70Q$w3P(>x=Sj2 z#sk1WTqp)X6OkQ*(sIUL_rn}0_Q=nh_$wMvdfQQZ-Ur2l)bY6@frW=4SNBvW`L$rJ8 zdSLxR!XH-~uUePZiOo&)EpTDRVJ6{haif`*S&ZvNdIx<7+__A0HDZ4^)vU&)df6T= zw<@0{t}|tdfqvSet{_DWKcju+K!99BnFuAB7J+9@Z$KH7aGD^iObyV;FLy!6E-bC2 YjpF)NQ%8~U2FU-j_`kQ%yrxO>KUrP_XaE2J diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index 7b1fa873e1b23101a04d57ad9e3e112c664a5efe..7aed15e3cd3143fae471e951b83d5f1aaf93b7b7 100644 GIT binary patch delta 522 zcmZ2HlX3A(#tpHIhB@V?rkNRr1^UV6rfJE>2C1ng#wNx_md0i#Mh3|#scDHuNk--t zsYYq3DTaw=Nk)_V7;lrItANja^FyW{ax5(13)=jF#h;TbTMv=0Ym!Lb=8OFQm`T^U mNkoT*bX}7~qBrl5h$bUwKsx73sTz=O=i~yuz|C&nv5WxHWStNI delta 522 zcmZ2HlX3A(#tpHIhM5_~mFYP~<@(0PNvXyumWJjgsU`*%2F6Avrj|)5X_jdwh89W5 z1|}vZmZmAm$tjcj7;lrItANja^FyW{ax5(13)=jF#h;TbTMv=0Ym!Lb=8OFQm`T^U mNkoT*bX}7~qBrl5h$bUwKsx73sTz=O=i~yuz|C&nv5Wxbr<~CM diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index 4081a81776ae9271f5f75c0f4b394dbc11ed1168..8479004f91179f8197d8e473c2413f0a8c9b8a88 100644 GIT binary patch delta 524 zcmbRCm~q-;#tq(#hB@V?rkNRr1^UV6rfJE>2C1ng#wNx_md0i#Mh3|#scDHuNk--t zsYYq3DTaw=Nk)@v7*~>^Ya(0B@o+3lnL!SK2 jzuC94kgj#}Lmn%3(zQ)~$P=@9g-9hInOfH=zwiYBE5M=z delta 524 zcmbRCm~q-;#tq(#hM5_~mFYP~<@(0PNvXyumWJjgsU`*%2F6Avrj|)5X_jdwh89W5 z1|}vZmZmAm$tja-7*~>^Ya(0B@o+3lnL!SK2 jzuC94kgj#}Lmn%3(zQ)~$P=@9g-9hInOfH=zwiYBKenO8 diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index 2f72c5393e7b9058ce7a981fb45371b6f3be9f64..5ac66f51b3499f501d1215bc8181c7cf0404bfbc 100644 GIT binary patch delta 185 zcmeB|>zCUQ&S;oZZfcsDVOXG_Y;KyCY;2I4YGQ0+Y-DL{W@2QJoRXTBXq04RZjow~ mmYQOiXqIHOxr4Em(THSi`jZ7&#U}eQA0=O_@#bEZCN2QQVl}$} delta 185 zcmeB|>zCUQ&S;pKQCyjxV^pqhY@C#8oMLHcZjx$ZU}0cvWMXQWl#*tdW@2cOlx$#P mVq$5UlAN5fxr4Em(THSi`jZ7&#U}eQA0=O_@#bEZCN2QktTm

2C1ng#wNx_md0i#Mh3|#scDHuNk--t zsYYq3DTaw=Nk)?^7$1_MYXPhG=BrF87hok% z`{oHe)#UjUWV7Ms&3t)Guzm|2gO~-6^vRn|lIrc(2BLJZS^$P$1 delta 797 zcmX@InEA+J<_+$QhM5_~mFYP~<@(0PNvXyumWJjgsU`*%2F6Avrj|)5X_jdwh89W5 z1|}vZmZmAm$tja77$1_MYXPhG=BrF87hok% z`{oHe)#UjUWV7Ms&3t)Guzm|2gO~-6^vRn|lIrc(2BLIpD^soQ` diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index 8a6ea11551204fb148aac50021e90294c3d94310..f4eb769c33119a0a799980cfb35a8f99e0fea169 100644 GIT binary patch delta 1042 zcmaFY%kr+5WrHuHVNSWJX=a9Dfqt^NX{MieaKzlF{Tk##dzMddM2M`4v+aITk)-jhW2Ix}Gdc&yc0dXRAp#An$F@3VMM{loXWh`U_ E0MGS4djJ3c delta 1042 zcmaFY%kr+5WrHuHVP-~gWqOWLxxTS+QmS!^rJ=b=s)>Pxfw7T^sbx}1nq``ap+!=% zfr*KUrD;lXa?0d7##dzMddM2M`4v+aITk)-jhW2Ix}Gdc&yc0dXRAp#An$F@3VMM{loXWh`U_ E0C@;L1ONa4 diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index 141f4aa698b54933ba875c9d7667e05768f4036f..3cfa796d28df36586b9795db907570d42112c9b9 100644 GIT binary patch delta 542 zcmdn+lyL(Pc{3X3l$)AnW*8ReC!3q5B^w*0rkWU=7#mp{o0%9HB&VdNB^o6enOme9 zrKP4ACYmJ~O|D`5Plm30LQ#_)3RyREGnbKLDMY)#W*JshX0mM;n0$w$fGpiPn_qG^ rvXG~B@=H$P%~Jf6$#D1PdqVt7q}#e#PIP)S>Dnd(19`JUVF4om#L%U| delta 542 zcmdn+lyL(Pc{3VjW)xSZ=NOgi8yhF38mCwqnwzAW7+4q>8=06|CZ(iVrkNO8BqbY| zn3!0arX(k)Os--4Plm30LQ#_)3RyREGnbKLDMY)#W*JshX0mM;n0$w$fGpiPn_qG^ rvXG~B@=H$P%~Jf6$#D1PdqVt7q}#e#PIP)S>Dnd(19`JUVF4om*F~j* diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index 123434606d42292eb765233acd92318a99815795..9479f227de545fe6e9b0923887cab9446931174c 100644 GIT binary patch delta 185 zcmdlezfpceI-_Auxv6PphGBtzvbkwmvavyGs)@0Qv5}>*nTe4>a!P7iqEV8Oxkai` qT55`6qFIvB<{6CZ8I4HRra#%ARc`Vg7VF8Em}ilxee)icuUr6ZW;jy- delta 185 zcmdlezfpceI-_A`Msa0&j#0V3v2jwWaf+p(xk;*tfrWvwk%_5gQc9X-nu(!BQnG=G qiHW6YN^)|_<{6CZ8I4HRra#%ARc`Vg7VF8Em}ilxee)icuUr6t%s4&( diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index a6d3802e703fa6c985a8d8ec202ad55150d1a75f..56f01b08387bab1ee9f55ffffceb70b06b3a2f73 100644 GIT binary patch delta 779 zcmZ48&$7CoWrI7TVNSWJX=a9Dfqt^NX{MieaKzlF{S}#-C*9`XCy%`3F-iITnJn{$Vj?CePN%e^>-2pWrAUOLx=e*PI(z z$a1i7c({o8^TUkfC++2T^xUGHkq{ShV?;{82LEX7dF_#~Lzh{2&@W`Tksy e&1>h`l40v)nD({>Dyd}I9tKJk+a1{$vls!8CiC(D delta 779 zcmZ48&$7CoWrI7TVP-~gWqOWLxxTS+QmS!^rJ=b=s)>Pxfw7T^sbx}1nq``ap+!=% zfr*KUrD;lXa?0ci#-C*9`XCy%`3F-iITnJn{$Vj?CePN%e^>-2pWrAUOLx=e*PI(z z$a1i7c({o8^TUkfC++2T^xUGHkq{ShV?;{82LEX7dF_#~Lzh{2&@W`Tksy e&1>h`l40v)nD({>Dyd}I9tKJk+a1{$vlsz={_~dr diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index bf44292f744b8d0273d67b35224a739066290d75..9ec1c5d11a82999e994af74fd11c7c4c713a8769 100644 GIT binary patch delta 1079 zcmdlugLUH!)(yUlhB@V?rkNRr1^UV6rfJE>2C1ng#wNx_md0i#Mh3|#scDHuNk--t zsYYq3DTaw=Nk*IN7@5e?wvp*O8QLaqWJ;WD#kz}hcS3b?PoBtDK$h;9$qq97o9D9U zvy!iU@?3V|&AWMzkmqx-3&2L`2`pry&=qyUU6i_FyJ!ccu6QRQNPch%Zk{XmpO5Tt z5Zr8~_bZk>?UQ=MHec^4CNl&?UQ=MHec^4CNl&euu(+8uGl~k5fH&H-HM7LD4>o71RE-1iO4D{X3=Ah#zdnr z*2ImyBx*F)6kDt@iM=HnHMalv-q~H{<&~6|yx;pj{e0xKThBfB-gEDnnVq;TZQ`~x z-8gZU%S_!;zkwqfHR|8bFQa~+#*NbYH1thP^>66kutAfC0sakq`=q3%B{%5ZpmAVo zgS6BXzvO`44Q8H9k*%3Fv=pX#$Qh}P{CYJ}hi*7geyp3p-`lrIke`2$Un5g5|MI!k zq`$iSq5>r=eOP9n)Rg|2MFp+u4;_@j{{QB3>Zhdl$*OO9;%J((y#g5JOvw{Viz%riiwfwNyUtfAqVXSzr75G5Sl+Iny6IS9b)L<| z*RBd=cYVaFCa?6GRZ8?3n3_CzU~=#JnaP6(6cv=T(P{k$4o!uUD$=f6_7#!YkM1^6 z{D8R9x>%hnE6x-iRFQ6fBub_wfu&79Hg*##n}jbbLsZRF>HTV^q^1>xYUF1Ys)6Nc zIyT?av^KPoP@RtLvt#XXqxQ?~-GF#ga-iT1#GPDp26rG{XmWXzQ;=jTHNekwEY!m! zgj7KlE~caX^`4cm+7&dS z@QOksl;>meo6l6~N_V@7uBH(g)mh8>>R8LFlS@gv>ZT)&tD5?RRx~vq?CK%*AIz2M zWYb5V^kIXCq8Ds zD!mHz-XvB+6a7rdffY;xoB0U-8>rdx8bVoWzrwz(DLK^JbYe((C z7ZsEkI&5fqX8+`YS@qMBhd>pk@!PALDyG+ZF>Y?;(!}7#$5I%GHrcVQ#m@cF{nw|~87&a-bx2TlvJl6Sgdr1zg_|hQSX*PrGnqFZjRh(Y5ZfNRA zXy4@}Msn|A1CujNX9s!Fgpb5hri_6V1#R-63~hdyDi11SN}5|13~dSlsX}ZHnC>?A zVB=&u792zeZrQog%nwBmy8>>%rqG}o!b<~PnW@dg^k$}^QLQ1Uh% zZCpjLOz1o56}gpabJ+AexIP`Ih0$jA!K@ipP3J!lt65FdR6Ep>x-Yjci6&|@C2X*} zV4DRNV>MOi=T7%Gh%PVYv^E>r0%B^FS(bdS*o!DaGjo{Gtr=4J4JR`L>~kCFUVE)g z_^I|2zV3J7hT6(TWh`B;jd`k3+mx>wUdoH zFwIAewNamST&i}}-79K@C?zLP^`DeCv7^-%$3Af(As)pLA z1G|=}K{o19kNIkpl{#yG>oe78qjc}JRomDoX=n{K+(wlM>!L>3s8Uaz)D%#;eC*Fw z{q%vV+Ju3hy`{FZQ9t*{CT_b=1HY z)Vzi2NEyp8&ye+9L*M&+XVd!O5@!8YOj#4L4yjrzHaqdLJ# zoqO$QsM^s+***C}9cQC-nI+WMt<+`Lt`X`WD|OX#X&be0PF@Vy(!;Xs-rhuEONh#jq@;lzq}@IUdVW7lW##~%HIyJOS%+bnr-fHnli@6 zv@EYK#orQ~O-b85c)M9gSd)0e_nK;>KDLbimG!ZW;;*caZAE`&eQdKseKfP1T>$Ou zAe8w_MzPzktTpd_p@pgB24_>;%8J~Ex~xjI+7X%W3dz*>TcN@4vm~~Y|C*k&HqiI7 z&hLdK{~KGuJc#10IR0tyiz!%qD*du46mZ3^2_0`KgcDV>Z)$p}WhSq6O)20<0S`@osxf3*UEJjx>4+e-!)d07c8_l6<@vlgh2X9{0*Z*R~xvk{J*7*WhC_GcOLvK_U~8GLyGF$?dw$mx z`|I?@;y$nR^|#mA+HyTPRp(A?{p?Eo-G!UQ$ck%jnY*2zN&2Fy>3`kO{<-2!pt55%OU;XPeI_wL?8-5vDD0X-D+c(^Qu2vTNf2G#of45rM zLlpmOYV}iQd0K7(A^UF@N!U%4&Tp#b)F%H+L1#U4NWHK%9xZ1BHX>9NVW0NNLA zrxFj${>K)Tzrxc0fackA*snDIyHDePK=bUG_kW^!lCIe|{0G+^|L}mrHq!q+!>8{= z`^Mz!t^4f@4|~<%)gb(_eO8+Te_#;U8y;*B?jE%B=eK;6_NiSRO1Ib5qYJf!5|qXQ zL+n7$pM_ku4G&xMMcsO-H^h{e>r8R`?L1z3gqQdujd&{FWXf0Rw2!?fmAh@pnW6a@p!&?^T&;l-+A_@f+KshrnRZz zTm4OYO?Cb@h-G<%U-M=E+2fhE2b)~)pwc__>=Bo^jpvP7jQho{>+s3i!`XcQr4zO7 z>QSM9cjxdh6W?mN%K7^W@p}T$S~;2 zX)!O`l`yffXU{nECz|(~kSGDl-uc*WmKI*Ya^h@qzF7@#53qM{{_=6kV&m#UVMpyt zyc#ifiT_(hjJ+TAYQ+AV<`{d2?H40fTbWhG`atHoT0+R5vLODSooH0n*}g7aQSATE zFOck&!(R;EpS_X28n-{Zv9WhUUyYk}nf&jWZ|p7JKQwOsh=@CrZ$EnnS{tA%VH*Bp z)8FArzM6r5cm}dJu>X>gq=qGQX{Hs61K8^TfB$6gi{Y&9h=WLhr2D%E1=EA$ttlzX z-s`VEG5pqPT7r(3(N&|q&EU`fr%n*;)%yP{!`z3`KDVz*KQ+VP@}uCZVP>!C{yPqe z?3)RH{xCnDjb-OKj)l#ZWBtY(rSvN%_p4F=)2;{Dw=w>+qt0%DxJ6{lu`ltD7x-5; z@Tb`T`y$G3wSm6)o(5&O;cBYbrQWad&HmXM@X8wg)7w4!BF-yo_%p7H|E}}5r>w4) z_F(DXzd8O(JV5Fs=sMzZ98>xqUL><`BmIxtMOvcH_s@zY{C67%`%=~`Fs5biI8%CMJny!)ihVpK`QU3Kwo9mgvyb}9Xnx)O#jkNv*moFT8BHbaYb&OG_Q=t_DIdYTxswX(Lr>0vTh&^>xkDh7kyzU1y*xXI_logv#+?m zGN)JO^y|$Dk7==Q_A;Z{H5f*9c#v)wIS;^}`6~X@P1h;(whF=aFAWO04*=HeD_~J9 z@g$b68_SVCP*fZy9SLZY=tg|K3oaTXQz?=i{-j3n)g0<&rTa; zihUQEyjJTf2n}h;YMmcGK*+&B4a9PwSU%8Lp#2O8MXk}fN^DV98&Ur?I(!P97Ov49 zrq+9ORcQKJT_XAH16FdKt_R&e$$0B@9Z|u>L%_@5(3K(g^|~-x|0T$yHxVgc$;i_m zfGn{Ad1h_~RrOh-Ne=KO)KGkv!WSpEmP4z%bLu%{pBx{w$IoNS8og z@6@pJ_%RwJ`SK{pip}uzH>sOIR@x8p(@nZg^!3NUnr%jd)a}3wDQL$2%}6p}9mqOc zkR**ILA`FYWeWrkJ_Cu)h;$@Nbf$(|!E0vLRi#z!#B%gLBg0O!B-_x^TAu=&x(%(b z&)OW@9zWdTvz-;slsIiWTDs|TV7bG@GUT-b0uM%_`&}sS0I-+@u@ZUigkY1IrP~R` zb~*y=*-l+=(wzV{ElKpEw{{`P2W-5edW#jQ%5L39G@P|`N2*wps(%dWY}RSx$LQ)6 z*41YpqkSE|0+#&=Y75>A?A?KAhO`HX{n>ygWI$nK7Ud*`W&BwTvIRf&= zT5Db-BO9{BJg;yR4h8g&AsC!2}Srb(`JkCFX1fQ&z>TSQ%$^3S{@wWh>V5Zq*ft81lZ zvrp^7gbWHlt$Ux2Fr5$j3}vN!jWie8y!iR36hKcI`Nmn0NoRE9X&h^y?yPP)U1a*5 za!+bVSI#0y))ycn&*|py-(F;!3<-+F{6%V82jl1HJ@SZM+wwf z3}ZhRpuWX0_91_D4a3+c_SLNnW1qcO_cM%rd|o}yF!lj>^%BF_N7mIlMZ5UY_4V_)%AyE2TescI_2 z*q33|Oop-VrK-6MV;>Mz3mC?}sF|zIWhncyq`Hh@?5m3E28OY(39368#y+5@9%2~# zW}JGOVeI2*>Sczp&wi=*7{)$hr3!BN!@kR;Ix&oWXh<#3F!re&wI;*Z*Im>`3~R@} zGN3kRDEoGX8p|;DeFwD%!??6R!`OTB>Trg!ce&Mx3}devtAz|>FTtt{8OGksR97;L zy(y@g8OGjRQ$JxCdwohh#xV8{k9y7xzjwo56H%`-CVTxreaJBOSi35^;}3gAS}nye z_SCKF#W409r&@<$>^VTS3B%ZT#+82f<~bt=P{@2SpV*hGfC!!Y)vDC&BKu^&WHcQ7o0VF!V^@?SzxPXQfP zpc{(ct1HSWs;M?GXMLmd66ju%Sd}(j(rtw!koB$Z)NlVCJGvMvmNR{}tOPCoPIsPe zri+7_BT3+k?we{Tq;Wyo_C9{tXDWD^fahMuyLJv}7==w{)%o z$Wmt0ZC$#CmAR{Hr(x+o=rT0y?vJ`G4I6%6cUQx*A3#c-tFh*OB{pGxjVBF#get36 z7ps~tJkogx40R!g$GR`^<>?ELf4AN?K4o?B!p1+-oe>6_6Q9GAQ)cO`fuKrd#YVF} z5$n^=I@p&>3gSfC-@@87I9ipcvYptLidv#+)9u8%0z+NQ2kpf~3mPnnsDpF2N@9`) ztt*QIEa(bF>~BGP;!_J+-&u^YpwnH%;TE)PX>pVVU0lY7)-Gp5 zH@b>~9W@y!rfVY@?147x2BFQ%Jw$hbp)TfQY4)!E)iImZBhC%@RARpqYY|_iS+(K^oHB; z2erht!gzD4kGNI%BOS`9BYsa!+o4i8$R2dAE?Q%VK+O^LQ1j9%aE#*Gh=J563`yWG z_oBMtkjDE$dZ9abaGG7|Ek9&4CqUrTfHn9g4!!W9%Tr=Q2+seg(^_pl&`_)@FuK(2 zM&el^%zUnq=wtT>+HV@S-;LrT71=x@Q0%D{P2V>W&!gY0c}^0tg^incWB zg+^X$ibjsvXgmY#;w<3M z7J0|dK;98;kuI%1h90MaL~7^@UcCtL^gFBug!6$LjfzB$!+Wt--RS}+_j07ThgOV1 z-*&c?g2*#kOs1?H#{&=L(y2AKvc?Zh9b|lM{}HKgNI{C zd8*S9Ejc+Gf;k-_5HDL5%w6FNoglq^!>Z+|&PZbT3f0W zt(Z#ZvmhrO~MQr^Qe`H`m%Z5bRolwo(oRQ;(uaIC7@Z z?Gx7F?vjfp1)BBa#OlAdNp!uOy$gMIUvZ$q@z_8<jn|GL=F z7tTf_lFnNzd@>tJoa2wgpyaW zllU%16TWOGIhPFEDV!vAVD}0mX?<@P!N#Rxs33GS-+x=Y z!r-}O;uJvIwOcG>&Usf{%9xc_in|&7_C0Y8gGKL)GZ?J8MjQ-CrnT5;J5tsaN{KOpAMZe|&I^O(;>KLKPZ^Nxe!SPhFk zEKb+3+egHYHSCjPFiD;+?+fvDfqIU`=;QV!gg*QVT5phxwpBVVHV}kC=1wQXISk%B zDZaahnrQpIt`DciuqB zjjxD}1cthpbFPZZEoh_b;${uqcvD<&VSaoIT5I;#ysdJ^tP$F;sf!_@33TZ?MLDey~8ZQa`I5Wqb1M8x#loI z8Y|O8)mkZTrzTPC0QB#;LGlq8>O%BHY-DcjD0R{3*$<^a^LHhrNg8P$T~gX_k(`ty zbApT1(IVMVO2WYNGOo9ks+c>Mk=j~l)@5NYT`VOvHhvx>05(a!&M?Fy<}I8!Jg07*wlB zM;HvMCVj=Aa}DVjgWuGYb}{(2k92~;F?A$wJHUnYr00xY=qq6^wlwE8kj^uh<}a-R zB;RgQ8FP&Q*8e3vwCds51xgbst0$`eI8cIN0Cgc4Mwq!>kkm(`&D(;dITkdnsWi`m zx->&Ocn0&OFln^~eXBXs6)VR4xCK6aqLm1ZRx(d(CHY%KpSPA|J1rG7+{(fYkC1Sr z<9VUy&KC5;Xz7Us-5o2nv!I^sC7q=Nzm6?d z(RmV9KAxaxfwa+r_E;pfv(vcd#nMy@x6@nFcnf-Ysgx&>Qw?j+aA7>1PSwCjPhTbl z2@G{HpIXkk&(Rqxn6+{==shXkg1)s%!s5ue?N>{+?8xknF5$L$GVLsH?NZS?DMVm& zDf;BB)Y@Eg12bk$7p{=P&0l{Yb+ypJ?_pud*(g=gX!BaL2nm^wpzJhE4s zz+i{{nAKE!K3a||@%f}%04>xxDEZQ5wz+$bFrCUk2~|RG~xzo zTyTsnmOx$1Cq8E*!qI_W!b&u>?r~|ihHgA5t+6n7o?==pe-Aq#?%Tu3a7Mxb;(>J^ z9Dasr4sLRx zg);zHECYZAG62}GumZ3MMx++L0L5Y#04#8U!gAPkK1dd`0AK+N02ZwPV4(^C7N-DU zK?)SZA{3xlbOL~dCIDDm0)Pc209ZrWj7#;J^-+9 zp#!k60|1LT09abcq79%}r~!b*830(20f0pq09bedfW;O7SYQEwMHK)7HNe6Npja#c z0D**D23Z&ZfW;61SO5WlMGpX2=m3Dl4FFis0Dwgd09d#HfQ1SGSeyWW1qlFHgdkGk z;ekkr#|8jcU;s=O6^N91NFWzUSwH|>77YNGg#s|J>_^liOYj&#qzexKM7r|Ze`H`+ z|B(iM?~g*+r9bkq8-Gyjx*r3}?)pKoi+;%1Ek7uB#UCm1>-|W1Sb-Dn_Q}mjA6TgY z1U-w?D&=2$Et%U{Ph9xNR6szW2!B%5SQ_G_chxbwqH(pw%64iPt##7Z7P`x^*R42yn%(hWiO~CZ~lah7MNiHze07Hg{4vN z7NaIq(vq_t6{@cnqwa{{QSJkRu6RuF*T8!FWjM`a@no&*5$0lQ;II6e#HEEP{F^ZWRlQHuvX*M{o%ki|^e^HlUAxsF{)fK%B>jXQH=5|MpZ0Ec^9K9YgDeK`l`i*)r(Ozi%~wss5-@{dc`Q; zVpOMwnsKmYs!)x$P!%+?dof{8D`h@ZR^LkyM$r;iy*EX>>N{%qFd>Mhx#{ar3paf` z4bKHA;jYgX^69C&zA~+FM`DhT6WW-^dgv?IA@aJwQ{R!UILc1ur=I#x>`_|1GO`zS zucUV}-}cs5&&~Iq&Syyk=mt$T8)_C@S1VASZ#L^RgeH)>hxn(1Lyk6*P zUJ#-`CJK$sgPZH$5`^*O(o)||m_&Cx^iRO|s^pc&BX)ZTYf6rAIK@fXU;VQi&C9Tjq znwziC*SE)JR3cEW$k+{qP&(!ceefhlr#Y81i|^~p$wH9X^F#fb8bXx$;2HgRJ8WDr z=b`vEgnoPBla+dfcAnQ?q^lkDP82##UrOVR+b)+hpSqx*WG_T$y5LC{f2@=-&;M5c zrcOv96l^J>@T$I)dDvC`WrLuad*0LcuosdEUDd?1AL%{JPaf#swx^$}VEk4;)=Q$p zEIW(4S>Qu{f?R=q@+$2_pMIlvoOM%fLUVPpJC*!ek<2lIoGJ^s zRggawXn3e>>2n1y`5?AzjD1A{?o4jpa&2Lxxuv(f-d<>7eo#g3tD{X#(E5QjA~`2N%IY8XA^Yz{b0EaZ4Hs@3j+vx^kR&%X78qQ7eSby4H@H5*f4j! zd3~sSQpja%5Hv7O1MHCuP|WQDU~U%xo2UTH>jGe27Xb6R0GQVWz@EGS=&6Cu8em=* zm}4}+ye?48>jGe27r;bM4KlY2By+m}5;V|+s)ft3+?O$Of8WU6{e1528@aP@W$o~H*%le$X$9P_vnq>6)d+kQUk(VB{{lk$db$=CJ3YdS+ur?ynoUyKdxr zhml*2k^AcT+-CB*$>ej3F>-^+=k}7%%_W~(OFlQ2d~PfGe8V+z|2&@?NO``&> zZY}Gvi)?Hyw*`3KT8;*YZX@%Js*M~8>Sh}`UdwqVf}WCGo>o>t&bX?27i!v;XJ61( zj$DVL__ zkytrGsD6|j29OaY_txYFi~L5E+?>gy<(>f3qUBDSy!4Cw&UCbn-p$(Z5UL#`x6=~2 zTM|u=kt^Y8=e03%2*Ax4xwX`gwXX_YjK=^)$IAX1qq@eJA1gOP!eg;=41jl>+y`4#ht2Da*98y<7_!ueC?(xHLRc zQ~S#LdN&%>fj4nR2e}&(UG0Fap&`}p$ic9Vvab+J%R0(ILN~hDQH}tp(@E|k@n+zfMRV(^+ncVhTFT$pE)H%dr5V zU0{ejRR$|GgmSxJ=uUK&%R%_Ci`)VrBwmiu(qwBr-ybKJqNL9F;}fiRw2nhJIumbg zP;Mkunj+UG=dLI%v8!B0%RfQOU(i(!(ioF8#)Ymhr><18n;Zquqnq4aVs|I%3{8Br zo7@uovfbt08h;i!_rU(^oPeFIS?>~ZNv!qUhY8Hw^hfG3IA(_L> zpqvPBd!RfBpywbt1K{u=d6<;LdIU$1wH(Fu&=_?!#@Z3+%Hlz?Cxr}<9W;@zCJIZJ zJ7|oCRB5~nr+g3wzQ#akE{B8+c?dvOhMW#?2|&;5X%?g`Z>t?Zq{;B2paU3P>pEKAPPgdMb&K!ebC23DVvL$UhwCBLEa zV1UI#VFPe@!^Zrj|JHg^}?D2--q&(RXE%Er#a8RIkt46hc& z=ExotHx$z(V-yCJ%O`5`5reGq7gj%-u8u;dMpM_(@(?X`ftI@0>(K@#$pYRrWs@9eiFN- zRo@|(9Jv|!PLRvdg@JmJ4~Qmu_ocS<8V`BB{??xHtnb+>?SLX%jFVM>)#ISIX!0D- z!IbfG3aH!TF&%iGZCajz6Xa-(u~TDwIROhdPw}zFxNXL&g-ybR3MXQ79yC#w_59KI zeNnT&!J3B^lZ$-l@I)*iF?4*QJXqo>4rwJohw&QYsKz)o07~`Fhuzycf_(KS$=O=6 z<61I4JyG4wD`&H@-XnS%?HVdOmV6$&2%ljHU6 zoC?MAdCo=GHT&nHLL)?LC&-GH>y}nUh!Kla49zrRSM#T@jM!@Zsr(e|gZ?yN3S|DY za|$-zM7lc#J8mL{OqC-gcD1f56h0Mx!;Zbs-+NPKAC2p%ac@tRYif*=Him(M3*?GI zCUq}BZJD&F0JUY(w*@FTlj={ybjYOf(@=LN9h-&?Ba^(R%k3m~gRj=6i*x11v}`&y zpG-1OM=LnrPvbY6!TE7BT%`AKs@G>&O0reMnRIamudz-coS00? zDTL3MN&5@s7%gk-Xu8uLS?A5wmoJ?*Fgq_<>mX?;9X%o}B znQ}+1U9oiDWJyJ>-jH21ZU-CJ$;q-k^VW8LskNo+^-CU@W-F6b*_C$9Lt)Mf^g8Pl z&7>d`T;5EYZsN^9ZQ|;yQzUl)Gq;FS$BN`mTE%$no;AAnEV-1{$&6^t?{Zi#N>>3%#?HoGo=InBV++ot5W)(`yE1{A zv5xc7t`L^zOnN{#2WL{u9NxAibF4a=PJXOWeskdq@w_v&R^EI^??BV$Vzy<{thsV) zfHQODD6K*BETa=KPp+wP7QUoBT0KuLf%IGF!ClQH-F!@cUi30%CxJ9$K6aQ)dUHN3 za0FeN59ewG`7VHS#R5d?2F+LxJc3QHUI2%fb2n<-Cky0eNFB0JZmaRPGJZvhSc%PJ z=Rz3Z2s*Yq;1-~&0F5|*KpK{Rj~_9V_Pq4DMAva?p6a}0Cg zYSNu$*c+0T%LXJLupHwaMBA5JD|L^t*>YuF52jX4uU`&Yvs2%@@c z;Q6A0HFAG|=WDPN1X0FXOuZmFyq1q?{dIB=PzCGco?0d93-vb9${(bubipC(yb7X4 z>#_I+(e3r{;(5!5$50p>xxyoQcbc{V?k;C%Q^s=i_W~G5escr2re+`D#2ZBP0qi=6 zZhe5|6uS73%cg4J?1wm5^Acvp;Oh+7C}KCt4K+@Yg|l#@+(hG$g@etw7I~QEk{WxS zg$yw#Hs)VQ=3DcG3sX=eV!+IvV$t-kA=Wak%F7E`CvFpw^eARQMrW&79+U zy><2FDVJGNzGK3Ef8jW;UoC4hhT$VQR?EDF4SZv*rf!?~Y)Rh)CzhA6o@oh--WCkt zos)WrN^G_^~r*=%YKNVA&2DZwD=p`$%pJv%F^@CWl59Wx0H$d4FmQ3 z3}qr!O`cf@r`0>;6fNCjOFH-(rFlUP8QIniGMtik!dD2VwL5Vk6hV)6%BcXoc42Zv z(9T_Qs-DI0RVPd`*5kNKsO#sMr7Ke3-EuV~nYJ4l(pU8dmDXf&Lv6?Y|@`)U)acWpN_4eTW%+vT-IJk>2(5gLhh{mpq*fcwWgM*(* zsZdI$(7m#Z(%bBn6SX7_Ep0?U{WVU2g;Qc5_LUTBwa=O~#8L_7Ko|ti_rX_7p-!K| zoKk4rr|3iqIq#RVv|=J-Y5pqIJ^c_f&>!@*we2K@F7C%h&s*KzQd7(UtO%Ub$-+7R zCDgX|{!8b2m98B?|JlP3YJw$|bqoVFcA|y7<}*1!<0M-+&uyF(3kMemdk}aidr0mK zFyIjSn9PbEW|3byB)8BwBQ2b;!??Ferm=_R?wVk%MX=)nbpGV99Hg;`o30;)Kf)7{ zwPt3UJD=#q+0Su|7<&wR5SP!R3#V{vVv)E|{iDtX+XYEBeSHj9XguL!+Id8-J1Y@U zjGS#)9I|Q9=W>)L!&7o!!D?7sg%DRMq0KLzZH1+NuP<MiObNNU&xZiU88Z| zvy)2~>*RV%e%wJC=;?7pR^07nXY10EO~GHnRm!H^FL95>i{E0&0G-u_z~L)7QWNa5 z2r|CH4P!RF|CLqC`z!+I<8mXdF$XB@OY|q_oZ?tQyQShqAF?Eb(P+A)!{-#Yms1?I zq_DQOnpWNyTIV{Qz}l5f=_lY4W0+4^n|#KS3$w^lu9qUa6;s1`OA@}sT)3c=*IU{} zOHSerB$qCngs+%Obx*+&VWA221{+x1ggeM3t=h_^uTNnf=92GeEJ^qt%W2sUFTAV+ z(6a}D)Mv4jR3N*~{#vfCF>p`R>_eR8=Y5Uk{&03_t2%gUU7U7v3Zb9iM+d)#rn$fn zM_!vSoq4X+XJkF~Is>o4j|QKCf9FTrHQ;m>P4=UNvzXC5pL-lFia@^6XJy>^j4bV_ zU19r?;T+aEq&x>ln5V2v&gbD4I+vF9He>Z8hx6#2A6`?yVw6X77?npi&tv_}qxKiz zfU?J&@b!)G>+E27L2jur0yPHi6Ae_}6_X+6B4!6q8?1>ipAEFoRjy;zWFEbL5se>C zKVOu4NyAyOt+b?ApA3}q4Q2-C;x!Uh+3N4mqr$gJ%2e`_TtgE@Y9cK7(I{xqB^X5( zUAu(CdKN3M^Gi8*#+G%Yso%;~kYdfZ2t~3dKGYs@e6*Z>m~P2UP}HGYuwY))UXAa#1AQB9Dy>k=ZMgwbjK7T=>wLO- z8(PdKzdP7X@@dQ+%(;9zct?)bvnTS@vvHco7kn4@=bUpPjt0Mjo@~B{S^gpll~0H6 z;?fx}lKjBI%pY(l;TdkcD8h?!o;c{~nSRghlgQ z4{7m_xCzRr0XM%e0uC7GK7P3@$aHk}9^BV_`thC|hyZw<`#2-BX9!i1mOQ{*+I$k- zUU*+Fk2v_I`v_xoXF^9!Sm7sJ;iOZ@PuSMe7{5$=x^n?s73$0IpZ&z@*h1JII7Xo+FGy9X6MlD!d(U-t;g;nEN-YvrF2R+&KUe?~Zx zJpie;(D>YaIZ)5N0zC?X4tSJs0zLZ~*?F>dELmw9{8+Bmv;oVvKH|04`uX+qGY%~p zU!)F0s6}1SjRg%Y;n0_*1uvwd=;&j)0-|`g7-&e2PXJ=chk0K;dF+92>O|U6mokGpi;ndIoOMPp6RhK zmoqZnRtp?JmNu7GGmuIL8StZP4CKv{l?n-bS85*ja{f_WZTb1m)1jDj(hF%HHhMjZ zN%LPwhs_$NR1o^jTBKBP2t>+RLHtRaS=$s(VdSjSkhPfgP^sW$Sz2Fi!L=8q45p@n z5{&7eEg;8OB7mlRhAXhr7Z%+O#%!@@_K2eDTuj>Ig*1)svXbJdq#ZzOs>?tyMKUme z`ZF-WJlRgsv8TZbbV^fz13INYo)YjEl_-GmqB0WTXHgjqFkDjd0G>+9On@1BWg0*Q zS&2c6eV~k{kD_;Fr31iYS?LDQSy6fdY*3Uw0Imil0U*nu^ac3ZprkpBV(mYV`Kq3$ zagIs^trQK85H5A#X&f9C71VG?B?;h!qml~Hv;?OXmEcJvCnW@PwuO_zevx#LlhOiU zos$v^Ae2;E0<o92EYILj4$5gr>E)E}00+t`0{{YC(Q$lW&6THosDW5FB}HP7 z;1zh&OgE(xopwX3lgQs4%}t_-?#fVrhwjQGfUzFRD1b*E%Il0Ok8w<*2jzLn)}Bf- zsCPZl+a&tQQyC%*q<$4J;sfc!3Q9P@g9=I-Kw?E@qR@%HsR*5Qq6jYxKqp%3r7V@$ z!+!-8C{)Co8Y8@w6!6b@b8+)ZN(QJ6m6U9Nx|LCSCwjB8G9I8(6*R6BEw7?X(Ml*s zGhOg;wV0~tZztMRRVe^yT}_#;iQTAPInkYdtfmas7#_6ARV+^vszWicbgH`25THa2 z*j_BPtASCErMWdQ>aldLhLVYOyM0Y15MWA8jB_`-Srheiqpr1}s%~_s7CPCD{C%MF zZnW4(83s_UHfQG4=FF?LIkQ(Cj7~S&T!+gl)kR0U(d4?Y=WcYVE|k-aBI_yr9J(=k zp2X~95{0=c?i98`C`&i$DGdLgi5?1mOYVW6XrFK2wDs-g-4WaGE6zs2r0*vxk(gCjdqwkHW zXCoyH&tEQTq_il>wx51}YHq@7uT3s02sDj9Qj>fG6&-m7C{Bp=*ABqMokU{;l)(Tu z1C$(q0gaWZ01p}~QvfCea>}WRG65Ua%qB{l!out*wJ3pR_EzdsVP(NUYr~aT`yw@t zh6O20kkB<)Sq$(|u(AxGSBSC#KxxWl?=@B40u>XgyaRAAlvC79SpdpEOqmC8B#cu7 z!tKDZsMUXi)$jP~z0xHmD$gX0%o21JrKEsr~JgMWFgcC>`;={H+lf@Gx?V zRC-A4xzqx8a*R^S)2v8nJ&eRCWh?gV-BFnHIaEFx%VQ3$h(_~ssC5jA&7p5%l*Nu( zWFDKb>JvrYEz#nnIHeOsg(#&QxU4Rd)urTQh{nYzU8KQj>39T|w!|rHO95SA zX?@xZptix4&6ERU3W~_zLc2&1L;do6F4=c z2YTL@+gfRVJ(}_dDq|6@)elml6y|MVR&?t@(*l(ml#!*xV?xBx*+CdT?us2^ z%|ArPx}eu<24f$HA;)wKT@0;AhsDKE+YHngLnkvZbTO1M1Va!*N+ygbhTh5KRA?63 z7DLCf(8Cz&J(N@ThoToTWE`e6Lx6byFf0K6WEhTp$Dh>U*xLQ+%i+o(faW70OQeY- zl)3=xMkt*Cq>)$!5~nb*hg46!+!`XC3* z%%n17u`_4Vu(4RNGwI}5r5`|eu9D=)Dpy;;&BPzNy-uk><3=kD=t(XtCX(U%q4_+?g?uc<$Zq6iZZ>je^(kB(Gp1NOS;X2@ zL_)Swhwe;OsySh$;9VdlASxV#-mjUe7*N#asa!*z1zf>71zg={3zSq%7t2_VWm=Af z(|C?|ry=PGQl`UJMo`3b^kf9Bo30FT)Pk}s#|DhWn;46u)0C1lb~^l$TPyWt?bH$U z#tbFhfhXL=5^iGp^rDREO8rtpGn4xdF48_rxRnXFQtnubkVR|_sAo?hYVAVOOr;G# z%uHx3ly=TkIw|Zlf(cf-Cne5Sl4-^wJRXDxmEM4t8cLof%F7$Og6ZhQva@F^O)(!sX-N@Ql~8It3;S9qeLM?OE|faX#&Qr!7iVLVh0-X(>)ib6)3!MZi{xILgN;21(Q*t}5G|gIbvB5~&w~*J(WH53b`U+7hY?0l zX}*%_z)wp8&O@qz&+{sY6tMsX97OR8u#E)Kz6CIpAPQQ@Gp<_5DX&GCw0O^B5wGIO zB5e9WH0VubxK^4cE6tNCEmaa-QimrGEYd#d=*8H$y=0YaSbTO|aa0xsh#6Oq7 z`v{^MZ}HZ>sR7reypp`7yvln^d6L0z^X6Q5o2Tsh4*ba=I`$5y+AZTf{$v?1v&nL} zGI$PmInU?+E=D7WK6n?7WDo_efd7Yp^9pPfK@_=?C)u+S8$}Q`e~*{B_qj5J)w~ZwR`YgVSk2oRvqs6%lre$zdIB9=fL{Bog&hY`qqUf( zK{R(Q&mphFlnTQ4NVpciT?ea1W7hL3K3cB~aO5L2j}?PBr{5G9x9>V7NS~FOil>1v z3LBIxIl0Q-0XYWu#sBO4|J0?&#h3~||9Zt)3!XFMN$6e51 z1ZD3+QzGcVE(|rIcDvD&2s*qQ?nVT)|5%ymz=M7+ILE8_>rR;k8OEafV~Rt%UQ9mR6tV7uZd@Sq|2rOH$O=SpLQ z({_H2W+YR{7dRIr)Albgr;;i3OEe>yKKc?GPNsmb(CuV0e}!XQHtCKlI9O=QWPBpU zTu_?O{3EhEM1{w3cFLy9$CdT~O-^9P&!&PCN?!*a=_z80DWYAcppwNWWF2`QlUFHY3wz&idUy*P;&95l4X<}NIo-h$oJHgB;4&qP_T9l0$fD+VG0C#%$X&Fy5BdCn zMXwLd{Q(sXBk@OEC=8=EKf+3f(VidSEf1r(dsyxIQQMIi38abl zF?@k^;y%ik5FF= zYVim+K`m(VBh1(q^zaed*@CiuMmJl~m7lSy5I>8W3Z3Tk~7k_62Lo)zR zJ3|+MEIUI_fMa$B7KvzRZ|LQ~!v<$@4XK{R*R2dOblu)i8p7xH1{FZn8L|M*X`q8> zNC9OQ4JSTTgL_=CaF2Hs`nVf1B=&M)K`lD{ zspv!Y9){7v>y+z(tgn+&-Vh_b&cron*Fk(ye^PlvJosnJ8*(&$W4e0;pIV*cX;@(3 z30wKstJ|9HdK#M3xC#a%)sHZUl;vxP!~LBhK^R1vD;kObV!aH#r9rIdnsmFB!G|t- z88S77+w4=gXUp_9R#EfMdSO@#S5Yz zMO87(1pizW!)|~jRSo9^w5FQjAV73=Ltlx#IayGf#$6TbkXvhmAGy}RNH?d^H4GO4 zde$^t0tl~V*rg?{N2BiG1H_Ge3_0L`=wo;t;C7@TfHGpoe090LxjszIegtipW7VV)%b;-FJLc#ri*RgUN1k z(zEG=Gy;ScdPlnS7E}ZRga83@NLdmBhPEJ8T$+Mo1HoPZ0n3U~MMdEvAOeDP6j4wF zFITR7jlbuaPv!yc>-Wz-XWlcX?rD2=&df{HR9ARgt1g8$ZD|#{sfBH6zv`wMwX?pa zP}$D_m%RJ9*F=9n4M_ z#^5|^JR`feRb6d;&}!(=rSE)m(*g9jrk$gS+Si>9xNOy~hxIIlZ+lpWEnU7xi!7S- zx-6@K^7f?W760gI&3EdYWU4N$w|6hgsaE%*10`Gi)XVBgfi`;qh39+I=FR2}pQ-xw zv6|8FoIX|&1^N<7F_rYeszYBZT`lfQn=o5_*Vh`3t(+Y z>XH7|#}pz4Sc4rS?)}21kOvL4d=z#Mw7#dXI@>x&Vb&n)wBHEd@Q180KZ+9{w&FR? zd&G+LbLxo;vHq5P+>QLrrt$rM4?WOz; zIo2dDmokD*NGLE&{WHyxqy8Le{XiL~a%pQIW2ibk+cC^HFV9NiQPz#N-m1#!sm|wG zNovyqM?>}8SZg!Quur~qox%g-tPlJiQGblHT2QDv-kR;VSiL=-cCN*$VuF?9;J1+P zITTwJ&_T0UEhw-q`z`jB*j8&l6zclS3yyB;`b29PWzQ+3V^fdYSB+fb=%-c{S+9|| zE4E&taJHC^)WvEflN`_=ZoiR+F!oVvSRyO07XO z+P*#CD*Nf zn@-E)R^A!(6}r{Xnbt29y3MkFb4=nXJgBbBvbw8T9{S2Asoy=;P1x;#x?dQs4rN)JRK-%dSPoYoFSXVd=>YjTe2xWf8`!tE8-9~5YX_Bq<{Y}%+aw-uwleVR^*ZB*V$y41J9 z>a<-&TdIv(xQaGG8?4UsXXv|aqxL^z`7ky;oOd`|shw1tfXh5k0efy;o20#^V<0>1%D2s~KX>ySxOx+kN)kUHJK&g&)}gp8$_Ha^0K#g0ZO1Y;5mW1fENTB09Fe$0(f2$X$n~<&;sy^Kx@Ej0_^~A z2y_6vCD0l0jzBlShAN;=S9(C+l_I?Xn+5s--echZvhDY2h_;B&fZiFlnw0%9vbPKD z0PGg{6!5t|{`4fjfP5uI_5ltEd<{4(@D1Roz%jrHfs=sK4BP;YeFkvezyuGUX)cp9S3l?uEHn9Ly6 z?5M<41H9lKyTT;xcQC?qfsKHf3|tq&o<&16g*gWFs?X)re9oSS?1ct&_7f&$Z^h)E z6xh}W*WV=~J5gkrz^8x}0-pn(X3z~5>;pVwK+p79ld=yW`+0#wfENLL{2zg=ks`+c zYXwdKUKTh7cvavm;B|oufHwtx1iUS9nSqY~^&(eLWTU`ufK39|0b3Y!9gdrT4-DwF z_nDN(+~BY+@*A%I|k96+eR zNI*D%kH0)fq!bwoa0!eD#0c1cIDsNSf`A)Pok3~=(^gM5pf^XV$0Y5k7$IF?8X!Yp zCZM*!Y(S>KTtGd61%L(uPXMwEcxpP)gl@pPl_Bukud^C0QmyP z0OJKt015<70VWEZ1r!Nf=!@%LiO7#AGD+YvpiJNjpj_ZLz*K?jfC`4@eA=8wL$r1? z4d~6Gcl_qM)5BXBVUEeSZv*BER08HRjO0n)Pc=Gdl8X%JNiH@i+ktGaKoDT5KnP&D zUJO0SaL7|!L|4Xf0ah8%^H3&b$0GYVfds${0!e_?0x5u(1k(G_`G?kHok%Sdc|{-- z@R~q0504*=d1=mhvcfGc&;vik(O1GWnE z0(>ICwYzAP?E(Wlkewof0J{aawik`FM}X^j5qvJdRlErH3XBANC6EW$FEAExU^t)u z^#&LZIVeSJz+r(Rz!3pA;HW?u;JCmPzzKm0!1n^48IaR=1aMa1alm zgm96;e1-|7Au1AKKrclUr*!=^eyxVGV+`o*IFqvXAv;0f0HC_SA%Lfb$Pq}2z%f9Y zzzIN2fm4850%rkr1TFyT3j7GDUj?-Ommv+M2v?V*b!)_+YgO@ELIh0>=#_15QuYmG zw-mSuXf1FH&{p6!p#2Cw{`5R5AswU$SGJ>>b`tOhbP;d@x(Qf-?gF8Jo&pho-U1#M zq_0RUpua!@V4wh3+@mEMB*0bn2p$$l2MiXd1sEcb2^i)PsSg=0kOdei&;&3_pgCZ) zKr6slfwq8g0uKNt81UGgAhr>^E1*!IJD^yg7r-sh7f>oN05Dl#5MYYHBLL51B10h4 z1abf~1V#d83FHB03ycLkE-)T2PrwE&r~=ymiy(`nh#Rn2pbX#@m;zWTPytvjFaz+E zfCsQrfNMPR^N(jl=A+270*e683p@#UQD7-xjlc@PT7i{-mjx8yRRAA=O74@Tms<{C_XxGbyqU@P)tuz?Tg2Y9wv5{RZ?Y@qkI$-=h3Mf#ZO~0w)2U zBO<3EM+MFSjx%rv4)%96L^J)~fS&1TPU$vfE~ET813LSHNl}wCdh8z~Mh$K%_t&fJ>krAV#3!0Q~-n6X6=Jv|I@S%>dN}S^{bav;m|DvDRV35Ep zz{3J_G%*d=wdKKrcm(N!g2#Jwo6~K(4@2K%T$~z!(9p=}Rk`FW^y-@gmOy z3ItXICJL+t6bZZnC=qxaFiGGoK$*aLK)FYRYYfw(O%>Pzs1W!7FkRpyz)XQp0Cy(3 z129KQ>;}v=;ITi0%r|211uPWU2Y5o@0N_c1Lx3d$M*zzNjsaE(oB(*97C8l3C2$s? z1TFxcW6)QgOMn**=sjkQN!dRmd#%7#z{>*HJdjsKZU9~vxCwZZfjf$@-=ZPXeN~NiPBH$0$F5m?06tDoh1wsLP z1R?;R3%CG#^$A=rS1jZ!DUtx#FOUQ{Admt$D3A^~EKmz@L?9DzlwkpH4o?HfcSiK) zI%!gNBV?ZvXbLzZ&;oEypf%uvKs&$>0v!OC2t2wA1)G~lpsoHh7vVM&^io_gDf>ZW z|0>WEa7~~O;JQG6z#k0K&H~NiKL+$HZs|i+=RblG{xbRY5WxR2=(ZUCrXiZbeYsVj zr%;Vky7iw?C?8-zXFE;G9)s*4fpH9U0~yRRfxnCp8loA58_-jTG%33XQ*beGlMi+@ z%EuYdDtOm3fSPSUDFo-wKs{l`DBYL^I znw0$p@*fm<8_+{w1E80{CO{vCVxGtQfc^&bEC!mC?W63Gv}p#3e2ftu7T69LEU*hO zL|_kKn7|i+;TlxpE~}A8SK&VlAJ5L97pB0Z>~E1hQQ$bBNZ=%(M1Wrkpv9jga1Kx= za8ZNDE*H6kB2xu^22==K1xy#X2AC;u1K<(3378{r3osYpp*7}r4QN^COOZ;zLWWuV zWmTglO{m0T1A6;-P09{H_ELsnTz(l1QTe9~=<+K~$__#KX9zsHOBY*Vgy*>kH=?3P zc#%`OEu?6S@R9+Yz0RcUIAp&fkO+8<;Za_oWWbvS^aS3fln41~$X{>r?F_(1fjWRq z47!D-`hfQg=t+KHQg#-yeGKh*5k8_J+9sbE(B-%5FRH3hCY`^F^BHvhrzT~$!Sp^8 zXb<>;K{veA3GkHxJ%RluWp_pP0fFuebdEhJ(hEfnGw_QR_BS*{%Y4*;p5$?pvcE(2 z_X4K?X9dmyE(-hr_{o6Bz6`ly#J&o+Ch$Ap4}pIJ{$$`cH|$%0+XnP<{%ulrC9?fS znex?Wh}J7$6#YoU6daHsDPjRa1;PN44E&mh9R-Lnpl2FqQg%GDs|zFnQUp?Ih<~Kl z6v?0=f;s}3fcgylB8c4p(8z$EX%myOnm9ApgW+K zKyN@lf&PGO27a@|9t3#AfL_i=P0AjE?3_^^Gs194t`r#s7$YziFkWB+V4^@FphUn8 zC}Vhl7i%(Ls(}gWfiJ909)9t}UW>d}IFCUu@@pn#zmDv;1l|U05ZDOVEU*Refxw4= ztpXow@Yvf$cA&^^27YVB{uJ=J0lipzP0Icf+4}|l1vn^h2yldfUr4dP1speknvy3> z(msj&(*kDz=LIeReiXO__*vi=z^?+o0j>+&0NkYD!E*fv@?R`NCKn?qylORWB}?2WCH37 zGypWxpnoqmhBT8R%>k_hS_9e%v1

#Y!GJ&OD<4250@{6`6;_^%5J zRZGZEh$+QSf+_HmRSNv1lL9|jq`*)6DDWda3jFAf0zZGFz>n1^@Z&QI{QQanJumWb zPB0^bHw;CmYid?}^CmrM$L0iuwLz-M4e z@kx;apU5ciiGczi$`ttEqQLwAh?V8#T$$sNiW&YIzsQ7c2V1oSgnFO#-Ky- zY~?v>#l|#ioZBSJT|9mz9p|m@$)e5y{ewb?+uqAB*x(NLa7^>&xsA<)+TWcOr*?j8 z1qXGx*M4DZcduoY_y_U~AGnu09i^h3@3o0+o$j`J^bR+#k=k|C3JLF4mBpKOxtChP zKW0^rZhdD7yPJH~=@`AOU;mgDP47d~aKoS;_hwPU6w&ma@%m%531_HZj#(|kw^Wtj z?}jIS=s3Lq-}^W%(R(K6neXV0^Vv)r@22SHceeJXyED|)3 z+!ceG?Y3KeQ`r_d)=h1_cS2`fPzSc)l){$ai-#F}l^AE&I_uIm&U8)@!axJZaSlY7mQEuRxtUY1N2n(&o-sweHDM z$s4fH_3vitxbdVF6x8r;s~ePccQQ4qso4kX-0jJCFJayP&5;A3=Kto%)aw0jPBSx~ zbjfj_vQkxpQ?!V+@3oO^X?I)Qpp3hdsZlby%zNC^ylOV(%T{LEC&$sH&3`<7T;(B) zhbnpKRsML7KU{2Ucqo>Kp5>wa{BeUncJjw<{@B1D%lIRS%U$H5pZQ}Ie;ntJPwB&B zCvf(coLg+QXv-u%>sW~@CEW@O#0i%=vL~viE}fy~ zGWt-*7gkNQw~?$O+gQoe23a>X?5vfDmLFo&?mkuwjmoD7Y9o2zqgE=V_{{4~R=+Q! zmH^xntUx;6&z-dzQ$qof=d3yoJ_mcLjeu!189oDh6Q53<5FM6P;I1ehjk7Vms=wk1 zD~V=Dug;&dlIdmk9p|j-cpW`MWiNLmtEDR~hr0i~mF(f`#!Or{DDZWI0$(pE@b!WM zUoR-|^@0LlFDUR*Q{cs=z!wS%d@`cI3rT^Oj{;vIDDV}60$(90@D*a_%5tw-d)|so z;c4o*;Yo*nl*bdnZRb4S(eu{3-F2VdUg{p!5fq2vRP|!AlQ$aQ+fWk`dCs7Q{yeN2 zX9m{~;GuHm*DbKFZ)n}%>)$5wy^lAtYhiv~ao_yB(&B>R@mb>vs8>d6On+8<61CPn zr!qL*pNpw;Gveb2c2)-0rqIX}UyDM>Kfx(}(-t=PC)n5EpOBa+-7z<{tLttXl8}U( zDsNbR+2n$vyvg~wc1b}oO}sr%E+ss)dOQz#!zI6v3h4ss-N?|^m=?8iQ_oqCR!Ns_ zpk`kSX+Ym(durD^v>uAY=^nbBC=svDXN1Ia3ExLiq4#rx-P&{GL9Q=uL# zsX;-ua&<5&w7T!R($I-nS$u7p%$bQ4u>}L=bKTLb|{p=eK<7H zZ;0>7!=blh1Nio|Ol3bxU8XL-7#ic-b~&`H6Ez0ixNcZ7g#mTL8c>)~H>|$@e4fUk z%&@uvJXEeWkD&deTD`E>YU%Eny|t8IZ)c+J^4Y21cl6eV9O@qyrouzQ9ctY0FzT1M zr_=Ja8yNOwuB}1)meh>eH=eaDEX98&FT?qz zVcdDb&Shb#6wWOROAKJAX2%KxTl-oq5Bnw4;=5;W4c>+-ZFXRFe@?5EkHRv8bxyM0 zx@xyOu)6Lcn2xJCEu7Tj$~b4V@4(iu@3Z~+##@aF4vz`Y_uy(1-^wr1+FUj)fTX*FiNF{lQ z&R>3u=-WHA$QkO;xAo;!-vaf8>x+CSJTg9>@AAFjgY>SLUn=`#bJccYc%p-IX|Xpi zai;mEPYi!Amzwfzv_CwB!hrqZX%r^y50CL1>07uzJU$|Ye;s)5@7ljVekgc@X)tSC zN$J$QQrbsLeLKDn|0~^}e>|wL%JAyxJmihe8*7)BP0pngfIj$hOXPYl`@Bi?bw zq*kQ@?rQPX8^~>xmZPXI>!0x4B}x1{#2co!davR#cm9~kCDePX);j9?7N<+iTpJjx z`_ZJ0sNwgu)D@yGkp_rZ5)na-wWckJs12{Dl3xyNz|FWWiKrW|iw2ds3kxRa=9N}W zy_~KwlQuZ(`F>myv9}Gixw&C)L|PR89P$P|R8ZtD%7}XM!-+du2DOQgbS|p?Ctua>pT^QBaZ>%q?DC%4|wb~gzGpa@{ zn-|rhOH$L4;`|9E^p!)9YO1eQwl8~TRAi$8d0aMpTtVUF{L zWAe+&awnHe%%@e-=q$=}yXksbl?*P*FC9-`4edd+ljNz*>!V_HPkMY7>HKwI1K)qw zM;$At1}_h#yW%n{cy_^K3Jcu1e5mEqIGRFqDtAmtdGTa66<*Vose5Ykx>Vj*Q7+mw zbiruuERP%NEUD>AZ=~tYb=X~=JFZDp!H6*>#pBA$3QCG|=^9;HKs!o>+Evq)=+7gm z$W&J>rk|*G`vq1{!sMgerL=i)LBDIfCK;{-jJGb;t45`{qA`crX|4np<}jwLG{!bzd6b%SHYl3NUCWgai$$O_Bdu<(EP{HemMfWx?5O3c9>7J))c|U5)%RyD z*U)roHZ;4ZD^>SSN9V=O7lPu5mi2TcCG(>aZ#X7H-#?$2@@PGo%jpXKdr)8v-=&_e zLydLsZzO(Ufi;}^VG1SYP@@h73ik%2U+4IA?fc zRp)-LSUMJ|&CqGCB=yqizz}XfbQsn0+4Sf!g}VDVYTGdH30JD>c#gX5Uw5OZEAb;*Sayabq8{EewcAF zu)32o`2?PQF|eL5zg~=!+axV2iK*i((>Zn3`9l$PeV>)YRLj(zz|qh86*s6i;pHkO z#IM|UUBy)P@|)oM{d~+TpHUN{oyR34P}ul-Y=-WmjpnnWFgAe}njb>Zf_3~TCeEZ1 z)IXPL891k$eqU_Ppswg5(gOW`L*9t}D^K^UMm(`rU`l{~c%^nZe|<_ye;^l z7G2JE*AA>fUrASWE+{TJN@LKJg0k|w!h&gZlIZG-u;O-hq?%Ndujrxi5=%HzfJ<3Bk!kFGGMVd{%)O+wTE E2lh1Cf&c&j delta 72867 zcmeEP2V4}_*3ZDs?974+HpGg(D6k-6x5NX*iaGFpsb>ziyV72CK`=h z>P5@0ok<%ud=FKWS&YE>oOS zcb0CM*Wf{^X#*3yM>TBJC^oLqfM#Azed2sPeLWj_`!sGAJ0QMUypNY}Y=2K5AD?E8 z2lVehVAh!dvMtl5Ho~;B^5D^>!&C#-Ozz={sVgglDbDpoO18CIGy1%n9sK^?IgP54+WL05Z9a?^6=v>`sliuO;4i%Cj|iEY?Fc|_81^DixG&Td+U!b23D*`ukq`Ov}& z=vieN`c$dxke6fjy6kB#Xj$G|kX+AvBB{E$%doPu{c6$rT*<>BrwV#g#oRB^i-NX_ z70kJbb%c7<`HoP}Ji))5xrA>Gb6`?)`lXlPX3k7;Hs>U`30~$6hrCcj9a_3cr~`IY zp}INfZgsO~N<*Orxt4LLVXmB1$-J>yd7-LV@T*AoJ{Bd191jxwbRNi9fi~!Mtc|6p z^8klZP+QVVT?6xmf#qpvWwESz7_@!1xtDoaLM2qYA=k|u;NPZL5qr0pHuLEIQ=O+d zA)t=ny@>)=)TDberLyMYzBR2)D4Cb@CyL5rqtVPz1{K@KUu%>3#ZY$=Hi_=$DoGX1 zds~*J%bUgO=90}l(0fnw#DvO}{8CrnA%}Mz?G4;2R@7VV#2h}XyrA_2C2KY_(YH8F z{8%h*-q5T9*ZIbQ<;+V5*W^YtXiyE!4$P;UH==7j#VQW3RKmx@I%+7+Iu@`8bC7>4 z+VhcE-od8$UC9m1UnZ0^&q}NfqujHwhPnUH3g)3r-Ra6Bv5eWFNon)?=6drae|Og+ zuWTtkW@uhcSqkrID9Z-SY)*1F&+>DFMHDakD%J3~(ZlmzS*SJ)OmS?Wt#7IP2JCqKc2j3KW(rRj!lcVjsxl5yKM($6-w<{;Fmx zFV#9X&8J${Vbjh$F{Lv7P>0Q_R}&BoDl~0wsTIu$iPcNIHg#e~3>ci8ms1}$TU(nV z!v@A(^>Wp$9dYvXTw-;Hj?RrZdBuIA)~i-g>KD z(An_2D|`a;)kbzIsPY7Lh@BdKqO$5^r?xb&q)xI^Ukv$B4YX5VZ62piwo@mmjXKp% zoqc3bqwUoBp@Y?c3>*1@JVB=>*r^?^3)OLU>a+CX>S#N4Fkez5?bKH>L)D(IsLL7Z zFgx{4!3{OYPCeLsOr2<_ei+|W4c28?d%x0YZ>;KX6RxbXc8?lvry5T&s@?5WrwVCm zH#^n0-vPC$or-N$>_tY#q_1V;cYPRmJ3{CkfzepXYj<*ZHoP1M_ zuv0hpx~WDRwW`_v*{WS@t3o#9sV(fXQ19Dn6FU{YLQp%~sXmt`s_AwrZc1O(8&n1# z`&E;o#;9HGLR0gKY6m+t?fX$`rk%=fct?%3QzvWa)lfTi;Y39>#73!(5$=>PSvyuGKyPpYaD?7Dp+ikVEo%(QgZMBP?y7ZNsnxs(~sQ%i|kJX`e;q}`K)sA-R z*3u+(ke&K@$#b=}o%*H0Np+x|dbYfUI>APLoEDL#nrzheJ~QvDoov)D-%&TzW>zZW z?yhG3qtxLx;of|Quho7w>N7umsM^>@ef~?^^=f|`bv&-x1@&z!b+1Fy3%k?-HY#+V zZnB#CiaK*a^|Ddn!;TbJTiU3M9wRM>)m}ETw?~D_>L?ra_BhWbYO~&4w^7HJ%s-~~u~8?RR6DH>wo&KiJe;A9uu<3I?xc*!aUKwt5{LCX$*ddONYB>5 znR&I$8%%YST)qZsR9$oME^qV5OO+jS)gk7)SwlSzLJiCm!LdIa$5?*hU zpR3X2hK}{jO_nyWH_beGMt%CRjYAdlmidiPC0pPB#Z|IRDR+o}G=RkH2yUs$CN z#Xoech5-%u*VJp?w6-QbMR@^M+pEf$WPQJ7V~!^>=bhp*%e+F7zbN zUb?_PGZmi+)#-2B@89lz4L@DK->(C9u=4NK!N@=yBmesq!OoQ4C<0zEJ5KwLRK)%t zF{5lx_U!SQIYa;K`N578{{`B}PY~+TcWZ>dv{3L#GC4p(n% zW!@;uk89X5$>0BAw|u8VEPbDYMcR5;@+VvVs}=OWPCM+J`M+B`J@P-pNtdTZdnEk} zJMTZX^|0gjH%j^&J_?IU{D&%uq>hdaUp-R%#bxMMrbPP}3;jv1B2@WPSMDD(C>FE% zU)R;z9~~M~&ByHE`!k0a;tJc}!J*vm_W)UJ>%UZMlv-3*!z``fUclcpvp-&SED-od zs*aZL6THacBn>_6QoSwn0BN7%C7wH zp7QJt#2f8uj?W*zBe6RrZ?wy_8?MZ0Z9U>7A;6)@AL}%++dBV#JyU*jhp56U@E^QT zQ0XrmT;?p%4Poaj{{|0>-Gh3g=RbX5`s3FPcEjwAp8xrJW_S1A==qTyq@{OaAi}&93tP=PH`w$2wFsyRC0XF7<_?h3;h0 zeirEb9nUDgc0K;ZDreWF|Ho85Im4m9c8S)rmSYWmAN5zqw)_F{->!UiJN=FFZBF;U z*z(!S0DqYBm;d6>)SN%5*6%t6`I9G{1DhQh(d5NKAb-sHU8~N2&lF%UVZ0fIUp;{S zi{}D+`Q_K6(1ebR6Dd^Uc#~7Yc~3*6JA*eyzJmgxekuXtF4i( z#M>J9mia+D;w$D+l(8R4&sYirTHmZHU?LVm|P_6=%0K zxMpZzeaF`9suX?uwSx~GZtSRC2IJRoe=a4o_>&hYPOfRmu2E?_H`%Wk&~lw)H!6Kv zXh_QsI5go~#j5%`U+n@0dv{^e4u{Tv5`W^it@Pg`IOP#7ROa{3aJ8%%P449QzWrdC zzZ0Py88feeU)^-DEeqhj1 zK3o-vFBES^=pPs%_HNjl5&BP_L+pLMzcfOFl{xOV1Jn(Qp#H9P?#*;!!QAD&9qUuk z5_n~WN6P-8Wskj7`Im<5_wPq<#_5k9C-%1Mn{oQ5EPj9Jd}8k*zZs`LXq@&BaI8hi z(Sl2UGsiivJib44z}Tze|Na4^{XaNX{~vMB|H7!jn-4Yzeps4j-f~p_+z?{ZaHk7q z$5MaMhxe|di>KP|cqbY!HvTndp1tw^A2O(n4K-?f2MSLWz!$K;*oIaJ~Cx4&;I`TG}<|9@7) zzR34KY&EaNYXAS)iuvcYd<`r`p2ZC^#g28T`3D{)v9CA2u^j#Z7#{QgUs`4Uxt7De z^!dhe-dK+P3d-Mie2q_+n&{{hT>_2hin~6GzcdsFs}m_*b+h&CE3j{D>WxkPMw`O@ zCidZ9W;uJ3U|Cs1bR)=x{fS7#pZdu<#d11P*F&JAjQ0D=pwN3N5(by$~xqXBOBpL-%QhGP~24A1j;-OUobI8H=4dR z=`syo(OxzSeU*Cp8CZ9cNjKWb*DB6cN74NpOo1aabPvemEXqilu1lt!Gj(ZnX*x2haf>&{kF5R(dv=^0KtE(bRqNQtfUbxWC!DJ0Y zbD+0K0vZx^e{AcUyG5 zD0K(wIN4AvO=%V+>01E71q*J%9c0bz@i8jzbyUO3;m2Q)i zs^|Ud_Zi5tUw}M39&NqK$oIF}68AU=GM*{Jb1nwqC?i|!$3Qy`K;wcBfjqO@mU#Oi z-F7;^7i83Q6lM7w(xb^O^mYT_$=` z9wQsF4&Evd1F7i=kVlzW9X|x}93!JykNm#C4E~-q=)xB|qFR@9RW12n>dFfg!6r$4 zgXBlWPa<^>HUjQtq?WXSk#!D$lsqI?s(uROs1qQ|`9k^$Bm1#oSkztWN@Grg+_WF$ zi|LXZJ!E9?ryzTt(JiJSY_eZ?UkawEvk;tPc6wvI6p()o)SVrmM(&nEXe}e}9tN5C zIm#Sx9^?|%^IwijP3Sozhp-9S?*a^R_C;X2i@F))$0pCzhf*W@{vwiWW=#&cq?^ls zz(#Ff8f#A@wgAO2jQwzpn#3^nqc!SShOu8wP_r4ve#}6f!!Y(61M0gBW1s$4*D;KJ zkzd`xF!qgn^&rF8r|Q*H3}au5SFbaSeUDweUm8Ck!+(rMea@Kd)8VSY4S(3DxK%fX zv9DRH)fmP;2(5ZCjD1sC^=BCSF0mTIF!mu|wHL$K(yGQWjC}-F9mX*BDO5FsVeDI= zY7WEL$1pS0c?@M=f>f6?jD7o1-NZ2VojJf&qFSe=Y7{@z89V}^C$#k685`|5-m#xV9>1hp^2 z*qi(6V1}`G%hiz#V{bpJlNiR{&sB37#$F&*7cq>z*Ql;y7<%@_4j8T^0_f7e32#hC0)zxtSA?C!WKy5kSKlB^bI7`ybUR$>^tR;kuw7`v~h zHe(pOQlzNF?cj0F_br3_<- z#Ohjxu|q#~JHyx^j`|tHCNS(I!`RQXsMi?AexgOa$1wI_u0CTJ`(+kYDT_b-7*?8L zjTu&zVg1<;7^$8NWlv!a!`QE@sE2{M@t;;v&jKBhqZ^JNw#!S;tEHw`Qm^SM;Q??z zRuzvMx)QYIx^4&jg4C~dXMg*z-qF=Cv9x*Y{35jE8{K7EeM^_b{ECX?^qsCfjk=9R zchq;f{nX|iF^Rbu<>|op5I8Tvuh=!Z0m1mT5WwpwL1S)0&^{P~Z*M{{jjcL?{*tfe zi8QAlmoMlZOHBwu-p$;>esNq2ojtv43+uFg$hba9LMo-WynmVBV=U`3OE(4|<> z2S4gkt?0;~bPud(+9Q@=$xsp1pA?%>kxgjz@F%E#*f6o0<;oLXSwWagd&*%0E&5b< z0{E4uzgu@(o})GtG4zG*wlLWe^%8C!RTM;@Ifq40{TzV@iKz2qIAg^GaT0w$TS{g= zS7oZ=AhxIHW~rKGhJ#pNV5qC*u%j4dMO%m>`oXz7B(a|rtuKp1tmsNb9Bf6aI*FBXty|iTZgCR@2O6^;ZRY-Di?V2Q z$_BJ~MOo2ZpyL~*;+8MUiIEygK^4S9LNqy76hHf&wwV81CsX~Jiejl(Ner_VJKaM( zAw*lED~oL$$fY6tiOh*&XEJTpxl+|?VtXNgX4Mv}(#&e&e!B5kXEi)Huej@0oi+Id zQu5i-z6O#czHhTlc(sufxYlNt&uc;&JJDu3-nGRjsxt{Dy}7oyUKnkOt0V3Z{*j(# zHdcyLk#JE@rh4KLYS7)*5IE3f=~8{x*0*h~>DU0R*-PkdcstRT{5oK|z^RTRLq{~J zrzfOK`(paRvv#9*y^uFG5`v=M5d6Hv)(Lpq!#~h1>#s}7mQlVi1r&a=nRp-N?r$zObf8i5&_>>h@qTDU(0sJx?{C#L^XYdvUfEV8oJUIR(>6<_#ZsZ9;=O74XPPeHF4+F)CT0t5)L#jrOts$K) zuU?rf*hYrhv3@~2-eO(s|wmk&8d8- z7()|gLa;OxmNeed#fXXi+f}{->$O13s-i+Xs;D%i8j8Hw8Fd|O4IZ9X%2BH&dnAq0*+#r1S%A(qA>ABzUd@t)%K z-_c5KSNU+dLV-IJMYH$uzA*Z-y-{xkFEj{`O@ryC7pgqp2fWoyZR#%;DGtaFu<4v4 zA^fQ>?El3f+l9L-+e3S46b9A5T{s{KZ6?-cKAzv#(>XDied`AHItxjDo6IAn?Q$ zPadmmd&{XfFimRN0J5eK1Mw^pnf z`!LL%2csF6TcH^{2Scz+u{9nKY=heW{?F%^qtdLd#K= zq2*hN;_2UR1zf+RB#U2D#<$q9@i5qjx_$=*oJ&D_sFJNccq}YWb%vp}(H@v8`NJS> zmSF3@&C+|3E)jhR84l@?TyY|qM<7SzS>U}K0iNIYY(-^zDIOndQlC+f7Q2Dk4vc~= zkFks%Ee8EwE6E=tKB7x8&@6vm8#NYXZ;VCF*TnHwbGgD#|Y|Z}U9WS8|zVSmehqEI*g{vZ)51UEED|&hPqnB_r)_-^zL%zd2w#q2jU7V z>a|MTXhk1>D86Gw-&-SQSW%yK%xPrVXxV!4n9!P1H;B7`hhg>KD2^6dTP|!AD~fjOvoej>(O(Jwz0 zW36cL0Ws5xp8ianD$u@K7;l`oWK(W!lr`>i5iT@PSIe%$tdATu9u;R=(YwdQPps&^ z6XFIdn)RiaB~bAmC=16mE$O3^7=+6`P+;X#Fad_TS_YgJv#sd!GvWd(y7HX3$cpy7 zAl7%#($2Xg`dZOTS42N6TJO5p+=`C+Mw}r~R5zPCa5mJFKK~BY*6NOGn|?1g78vSk zNx#7clcSAqiQ6=E%N;hXoVo9=xXg-#Y~tXv4R=~0j^`v!cZV zqyj7Yb)dAyiY{vqnT1(LyO3<~3WqMo5$13_VSkgQ2$}G@*8!NX}N9mar#Rzn> zqFX|xr&e@dn5~VL3Y{fKYYE<6S++|3Y*PTInG5J)KWMyf4>n9dUGvLI%`9K_l=^6- z1$t=az$KQceWY+JdMlERHA`=q7A>8(a!18VA6dD61Ej}RZty^9tCj0ASaNXGvQos-sZuX1`rZiXi8aC6QIemvglA)<(^l@+yz7?JD zw)E1PVAf>ms1;4gmIhlB+?*!8FOcg9n?7)y8%^g&U?-R`Ls~DSTD)gUvwqK$*27uS zL%Ne}E4QavT25P1py$eY5>^?Yu7p)4(6VBVguQ^#meM4hvZBxDGCSqm=ku8ba@4#~ zvRKhRi=~bZ8h6VQDaXp~`mQw5ihjFHnj+AX8#Yf6=g~80?@b*}FP2Nq1)-(o;0lZt zV8%*m6(F6sFO{(PeF$R$bM|U!ErUU8+2D7tj*hHfFBMR=8t6mb2C1dMP*>V_QEF$Y zwMoKp2d8JQ#5!<(Gg~=0-TXrsQ~DOEvPN6hStM5nF0!21Dq&w?sVuSErF<)@?37+$ zoI2Vxhof>c?F~V#^$TF3!YHks$$QXgVU*?BUK9eD{)yDt0r1#M?$1UE^$ts(0z+LbiASXAR@CVjYe(dGB*n@5c=FCb(uF6mTH;eSg0s}t;{2r) z2Ex+!D@k;7kv(O;9iuK-{5n}S_UYwz9sWJG=j=K#O{K) zfRT#bl<@HT$m&j6#@=MhJ!tE4f9n?dpwabTh@O^lcbHjm`NNlDyd~|P)KjA^*Y2~0 zi-|1Le~_?c_CAkF5ONqx{VvH@0S6n+0v+C{krvC^EQ`nLKxCA4$7pxdx#mWV0R z0!2=>=HWW@cGP2hnb?x5)4yj$Yf1X~R`g4~zO;ju;1@-|OyDt-5P=6w09dpHfQ3o` zSeyia1xZ5mJVFxU$ipKc#dvHaM8^XoNW!8b04yW|z~UhQks4rukPs~j0wxQA0I>K6 z3JYd21CT8A0l?xO04(SMz#<+1EZhOWVjU=k1v)^nAO`@8Z~(CI1^|m~0I|0N(7(9FPSu0N6*#0a)|`fQ2pqSlj}D1uXzr!~%eYD*#xm0)Pc7 z09cd)fQ2XkSbPG21t$R5N1y;$R04p7BmfYPXviRoMgXu-1OSUe0I(ng0E<8XuM!}$iPAdAqE~VK$*QbDf3VPNERo+P_iHaC>9|=p)5QAip2&( zM0EreDXMQ>nfeJj+qZ-))lKbs1s>@ zQGH!uJY6WNFE6y9Cq?z1CD|CTobzfT=K}nRQ^$~BF}<6RNZpI+>j`h`jryPvHL^g`6kLexn{WuSVk&~4SUD%iZrRd*Dkb`_!u3Q;qwYx&rm%T;F;qRfS;IfW?V zR7Ncxf6P_q6%sBeL@g>rF%w`~VDn5!0rA+ee?%B2v+%#F#I`Q>uEdqpt=d_{d$U!&N}%~d~tjp7q8 zS3UYGR)%`wS3LErU$ajCnsx5itc$;9UHLWZ`fIEVYsx)|MdFU(X1s_Y1T6!GsPqIYT*PHaEnWumSp53JYn5uzjdgh~VCj?m9 zG}iaj3kjBmE%hfvVVotYmHu5p7)`Ei^btZNp^{4E5~+8iCDF2ES9Wv`P@5kunW~p9mnQ1F7=)%4uj%?zg3SC16wuyMY^Gjv5V9<#XXzih3E2d3CCXi` zccy+T_0E=7EAu@e>Xl`ArKBm9`}2{-72CpkXdrL;v{qc1Jf+=R!Sbylf8-!D z=Lb3pqh-!=TcNGxhO^v8FSN119^Q2n;w;dEkE77rB9)W(3c?sVSY93?sFubR_@Xi*O>QEu68uI@&G?U$FO$)gs?Pw`C6gm=AR*5l6Sv>sY9)d7P8yd!;z!C0x%SM0sjF7>W z8}yxB*8pI5H2|1f1;E@Y05&H9m|F$F+$sR(Rsk@#3V>b70ATkq0N7;=0Om&luxl6q zy)?isV1Qy?6@YJf4KlY1By+0(m|F!ff~p6}VccyoaSz_a9r$eSzni%GZsOj%iBCxr zpOGf+x|_J?ZsLx+iTmv)?s}NG*KXpsmrVTTl8L+QChi%S_-!QF>L%{0o4BWL;*PqB`{^d`rkl8zZsJb5iTmg#zU!N~hi>8yx{3SeCVtB(n>*(w z?wez3_%}vF`EhU>9N;bEXZ0>w#b1Nxl z;=Xq_cfGT@iDYvN$%cVUYb{4(9lzCD4%Rn9Bh@V(N!TU3QCJ(fh0utmwUMJFF4#%A zZ7?|;+sfe@qd;RMww3#6jC~s8T3flN#@Mehx(3T0diLa~9_mQDccO4?5fx}{u&l?P zu_ah;5AZTr4h0BpC-Xh2og4z{PCL1$mh(bKdQNgVT2&P}!>j3C$*(=nzOcO<&Qi9w zrTnHN#au$l&#UXbWp!xhx8ACy4xuF-c(Ml_p2ysN&@dgF3eHc;={`ciZ$MAqxMNC=@>ZR8U4G6XA! z4>jy02LhyYl4CWw!79JqNp8jDp>ia^^ia8*CNJ?SKl`MUzKpHmK2+BzchC~KTNBMN z%9VvlwB9JU1h`|AgQZEVeO2jdPYh6KnCzo5YG{lFVRB<6JP{@v0X)Lxb^wDkus$4W znM6Woxt*5B*Iq~!>gSD3XnJQ^(ev_KgwW6xQ0&V{S*C){a&2V1*%__l(x4Dc?W-E< z%TQt$-o%+*9c!l*A6H)Tj2=^#lLGKsi(6 z3*Xg!_Xc5Ysj5Q{R?hcaE00s?~$7!hzTI!dBG5);RBJ_N++(OH_ zcBoubr6u*0jtpip~kLzYt8h333#` zy#zTCATm)-0XUi{kC1{{kLuWq>#H&9YmD`y(3K^La(QYwM0V0do|-5yS?;1S8d2p5 zGFYKoi;a2-I;>j~&Y3)Ugoy7BNOc?Q-|B-uF>n}9z#4U_u- z3>+q_5ZSmqbU&PDoR4lss4y zCfd~!4!$rNzGXOd9Sx<1)1J|Ce}L*~a)QLKX{T$6SEtF{DI-P};e>PhfZ^4quynaB zg%8IxNf{&S=_Qj-(&VEOZSq%EA5J&Mpi|-0Ypgs}D?Ud{9sRZ~b-*Zn5%P_fohfjf zJOF9mA1B8HIH$`)v@CPAEcY{DHR0*#AR8_Uh)3NEG||g+Y#H6D@p!D?-D&1{d62}; zT-Eo=NxXv2)-ZZ(E#wccI7^p># zTv5oP-Z`i(ix%ggwk-NO2L)$Q!|9j`Su|lf>dvAQ)3I4(k;e?VgT&6`)w*X3B zWKnu9{KYIfm@6B#tihplzcaGVpQkTZB0eEGX1F~oYe@$>nv0frF3{_W#g2%Nj~iwe z(}r1cSFK%PblGf8MQvxxt{S(Com;f1b!+CW?fzP8OEef1lMrt&lU3P^_RL3NE(`TK zn^%!V&CPIkvuK8yH~*ZOtFK<3+y%^xJWid+le=jZCu)t3og)|5I++rx`CLvLaeT03 zw!SF!%a;|}Hb*Xn{Kx0WUA1&0L&>!-lyUE!*V0u$lJWW2$Ft}{KDOU1YDrlAcvmJ; z0P8p}?R&z~oJEfa&%jw^oXgv`bgoTDGsuf+(rX_4Af9)Y*2+8Y>z!!&Jj}K%nln!h z2DmU!?xZznzIAju&X;RxoJFrGkJiqYiy-}u`EXUUNVfpfpBKHH*@-XBT!7sri{4oP z3(ThL3*cB~ljlM>RxI43ZqkhP&=c77+J$h2Id_Z3eYQ{zK%;R%Ajr}H$F0#?g`^!PoDy^)H( zkCodE9G8V zm9=Qr28dl&$!;2>F8Qz47&=;0pf^z1Z1_36c@16@1?TRZ#pQx#H;St;1GScFWSOAT5ZzH^T z-m#HJ3S=Xfdkm*}(>KB0?j3pJi_=wA< zY2e~Vc(CRr%z_~$VY3L^A~(`Fc~;J%EpjuBLskwpWVx7oCHz)0)*Fbnw@KJNMpcy3AAE|=13ImC>M*WyAu zF6iY~&Ahf92M8HddfLVnZ6e@Eu9|h#avCN@O>Pt+XoeT(@*;_OS~!g6S=?Mo0U>6 zOf%+BK9R#TPE9MP!KZkB=4t9!IXH_j(CSa+mKwW$7!75Q;NaAwfJ%LDM&ys6t~FekhV@EJPcO)dxJ zRIQkhFj}x0b-4wzk=G<|Mc2(eOJ19 z2>oZ*8`M75RJJkn)!0#1_PWpICK@Nk%6Vz$46t%=aPTP}Z%Q4Jy8{e4f{0ZzqTt1(!oW-e$RpLqwkGmM`2PCm{{sfNDc)}%Aa7?a0Cki2q^qp87Vkz+p zxsxVaPA(^5H7v+Nh^Q3N<`>Vl(prC|FL8jxIjil7OVT@E%96%ir*S`YkV_Qmnl9<+C8f;kDUMrH*jig%EALCK zbKOp3?TV%3({PJ1%%^QlzF^ITS!6A@k|LKWq=w7ZBz%dvaz!bpx3-Ixp1~PNC|x-N ze=(HmpM@jB-#Na`2DTYZbCQeMv=vI{&te{ilIJ-rNuiW+PWBSQXaj)0Ewi^5Vbm{2 zcFR96*U%Vvzz+Bb&+_xnW4S+?R>GzZo>~{Kot#4Gg|8hPJ`YWEfgzkKZN+rvxz=95 z2|)A(cnxhS=>q(_wzNwFMK7YsZK=;i%xIp^J)9PIM82^XWt{npF5#>lVYem2C9HEu zc?r%iPg#XrF2gN!DIx3a#@d#gE~9sCaqA3=Q5%}es5W%xGS<&F)cFb=PjvZD`F^G(L`gxhh9Xaje+3 zT2ib}21>t%nZdbui;h*c_8asl_uXPL6}v9i)I=eg2n&8F3R-*}M$wyYUdIDFyHTZf ze=TQ0SSe?k_O)CUDb{_BASAooq4o{uqeZ>1V}uaQ6Umc#;41lk1AmWQ#8Ug)3+bvc z;;ogkU9#TXQf0{RTV&}$ZNJ6Y1G}`PCTc18Y3a6V@~hL*L^}R04!6hRjbr${V<{Ry z8q2bb)v_G^PHw9)#%qkr-^(6!`#YSgAD>p*)jm*TDe-$)DbM=0J!KGztb7BLIgR3O zz}Ze?CC|{rU)_*9fM4+@`o;Nq_8QAk$}LnduZCRC<_Pl?q@{oZfo0<+rbrsKyoEDS zE?lGu`T4;1TR0!!+$9?Kex8(}?L|My&+RzWM{g62xFN0v+ON#j+>Sei@1TNHxOeS}f%LJJ?k^t;ggN6={(3Ve)5=_H!+7=CsVtE|E6xgX2rg`rgT ziR`auHx|_j z!Gea?aOmsOoLABzbo{AY0a3iW3``>DX8_Suhk*cU5737PVN4;f7w~Qud-2wQ%1LPmbH@XPq-|bFo6>q#PkTDbKo;F*Ae#&?0LD`-fIbnd^#?*s}%0 zq8@fBf6zH$d_C{xSJD==gw@l8b}`VIE-;WzzcAoUWnKbwr6w=s7L~Z?nH=_dIiq{p zYk>pE(uUGn2Eynt18wOh18wHWN`*drS85ghdj2uJ?D>1M9(E}t&3Yvr!=!x+NwZ%` z)j63;1);~B#YzP~cJEgmS}5hBS1I|*KcbNI<5$u&5(E@9k}3&GIp;Z|^}bFmwH^5h zN(-zEX-pnP1mMRfzXAh(W$Y2KbE~npV(oA#B<=f3+MFJ+lDbea2Y@81&%jU$VW1-o zW?+zIii4tKcfxXXiXXrsoiZ2~2z*4P6Tk#f84d7@sEh>|DJhcyo=eIsfSGz_IzRES7q#Bfg0Ot)#yc3V~yA8R12j50uCckyyO zXjU1eGMy`fRtJ)gJDM9vliZcz0FT|3EP(N4l`#NM$|`R&svO2KkRFxeDTB)^F`zyu zkKP8-&*hb&_-@Fc3K;Rp^ic&R2;fl#B_1HEqB2RCO4lkvXH%(TB@Dn+T3<<7Cb3(9 zITgrX#H;F~Jd^?8U-01KR+W_$P@5_%X#n-Bp!BKqP8DSWK;^1v+*DdoRhg=lP?~1B z;#+9OYUuA&+FDJ?0SK4M-yv6G0}9khSCV2NKM#Y zG8P^#o9_+E7&h9jT2@29Qr3=sbXy z)KNwNl&;H}>2*2tMqSQ~u7}YHpl$WIta5#HG=Qemhdl?-_4-gw0EIMA208I-3t7xQ zvMA6^ai{P^p%mS2pm-z1U#X!I3=rQCB`44q4WXX|>g376eorM6R68$a6u@pTXe)t& zyp>#lFT9luC%!8!WhF1A&R$9{>d+TnL;@XZ1Z|I_7CwqUz!)DT8Q`W5`aX^#8!Lgh zh`G42(z+PinFe{O8GYV*Yf4^@FFp9ep%!`iDmp6PL@A1U0Ck&S=0?)^CQ1^(ohC{; zz>ucOG=N7UIbBY3#g`j)_mH7b20y&isq$~nu zXobpyXnHHm%^Jq#h?atRJ!78B0D-_#3xdj5T&m) zkxc-1a_*#*qd6f^`$Q5uDLb&A@9l(1A57&!u|5XV%1|^vn1YQcHkhs%l_kzv)E*nP zTBj3vv_Xseg)7~tQ%j||6PMLzvicMg15u_?=^-V>C*v|KZ4XySOVNm>XhiFVX(_r> zR7XWY`L{ds+Du*0`e3Trm4i>aDg-LB8A(-mfK623#xX6G8R5}7&iA26|8X2Wz1H6n<@|?6lJL^e0y&R676vQf_G=8Asj1;x{Df0mK z_EYizddBeFcVd*eTDBaPEr+Qnor?5_1&34l{>n^%)%{U>I5i)@sY3(Mv2f}Wr*uG& z`u#Zcy*u5FQ!)UO;*}Wy&*PDyJ53v?m;ovc;>@*!ki9$k4@Nh;(}}^Hicu94s9UNs z1t4_@r=AZ%-@8+Gf-)ZATz#U_NnxHCCR;>bn(nLAq?A;pCniKUx|oRZ<8Im!*8C%M zqKD!+d%H}TsY-i#nS_paBj;ocVK-Wt49n|A?Nd;5H#(DoA?!veLopQHNErrW>PGJm z;isgCnpKG$q4GY(Py(9f>`@DSb6kNd#y$ z3bOVzX_QhQV8bY-8-O$#t3i8;7|p4*qoKC;^k}pa1<$cZn&PiyX=IeDb1c@-EUGpRdr%fl9>73e}j%H?2$?@2tvuMP4EZtdjX1p>8ASgrW=gcZsTf-H_AG)_esX&=y6>oZ$0R?7} zlF5r6k_iWcr|iU1cB1jwN;uVrdhZ22A2TST>25TjXu*Gg&nHZBAW#TS)*Fmc@I%B@2sl z7S*1NZ2&>m$=DyWNIwPp3NP!Pg7t^Su{MGC%KZ1B^lXGyv%JT&a5$&t7GO= zTPO2aoAO9VQ|i(EX-f5?STT4PhzW>t$D#M@rYQy#wQU;LQ289L;Pf1>?u$7}oTiKA zEXQ&!$D-*x#|P7qG@Fzeu$64;I0HS&rVTTcq0Ua0g|Kw+dNg*MNFH%|)%_ zNt&g!12E2l#v-U-meNgOPb`>dB_b&*Ux}fai*bc00x@;Cs}WS*j9DH*3(d+DXZ~pO zB`g2SP&&SfwX%h-RDQnVhlv?MOY^Y2L{QT?*x({)-yF=j2VT=3|yc&=|t> ziXf-C$|$Y0TdcHO-2NKU&bbN;_uia~E#8Q*I!4S$OXgw0HB!0xumU4x%}2Y9^k_bY z7?Gz1$}lJXNG0H*NyT^cmMc-zaUm?&NIe%~KQYpQg|HMOHDAOtu3p5cN{caT@!rQ` zUd6M;*#3=__>MACE3G^$tvpp;rbM~Mjf_di(>@4UiLr6S$tu~tgje#}5?+b#Qusm$ zk}icGVx*ey^47hh0k>tmlF7?>l@FKkBuVe_=3IG?r|k7UJWC^;c%M@pmh&EevYeOM zYz3SeBW+v3^Z9&$;V{zX58zT7$#*3@K}4ljV#hF2$SR)X(^c3pjMVBwUgq`>IkWL< zWh9uZSMxF}ufbe0(u_4+8NyoLhoNhEJFl$e?KG}aQZ;2vWWAn9Cl;dDb=Jd>jnsHO z=Bbh9t>-!94VY6#e5HhI@#_sRYcysfuj1p4$`EHhLi1TM2!?u1h23~=P@3ygZ-VfS2$e*&$eJ$Hd0Fq2jeW5{6_l0 z!n-}>W6u2WV_tNnt#HJQv}h~WZ>eo?^D?O0Hl;2=<~A(L8Tbe>{N4<5-;OOVgZgiW zXOuykx1$jmRDK8C-xkaTEKfssU|vNQGw6wSVE#9uCp+*s(1hCWMA`T}*iKCG&Qy69 z+~>{|zYA@`gSrN~>{f<3^LXN8ri;f$iupuw&)==Ir1n8h?wCWJDX0L8cV}8&0Oz`?OR!io_lDSd8Pn6zN;RfD#R@2G&sS>Zn%PNLZ<{n*XI`OH}K=97r z4_ol2r2Q~KZ@RZ1HG0#q1F$w0t%G5CQ`%=rnllfzd9s2%!zg?w>JB`tG^a`XQ8%(5 zgciN&)IkiaHw7KSy5dbc4`F1y$?J0%jW@mfIWMgIVOYL5(P1nd-c<7lhSHms9N~>9 zdK8X=H_bf?1$Cw8M=@$$Dfk%7qbqGZ2D9!;HIHLC?~3pi1C}Spv0^yck3w?F($MVU z&H^gX=R`jj|k;4#pKbRvrx&B z)3S~{PROoEVLXH9p;%gZ26luP)LD25vDEJ@FUxWkPo=TsdJbN2EUD*URk8SDxzbB3 zavdvj9WA+xB3U%dL5-#K^GbIl`tm%CC6=mPfU_M-qc89_9lF5Fsd^D!KrBtZ$m_Ux z5q<{Rdx>Y5dI?X`=)@&nir;0PAzuUcF7v`#U%_K}EG@ml+x_ecl7v$Ct4d3S1(Tqc z`BAi?0Hg156`R+yYf3fBFvvw5)KL2ADh3KywywbxLg}Ceyso3?p=7?UG{aj2N3P=# zB7_WID=gmB@@u7WG4|>zid`SYpSPNl>$iALSn#z{5yw^AzE(T|ZhZ}HwtKt!_)@zvE!ccW8WDI{6(YSX*lGJqJs_hfmfv{|4-)Ee*Z_ zB_UF!frd9Rz1z_EoAAQg(6*aM--bMHVL56;vu`0~8~W)M`qqYGZo>m;Lwjz+K-*A_ zJ21&OT5t#3Z5&;{gY`O&2HwT?7e|lpVo!{t$@ky^$5GMyScQAjg!?#I=}iajV+!=9 zRu3@AdegB7XzduP^8?nsF*NT7RHTylBTg4oYWE|oRHaXUgy*bM_(LpsJt+4fcKIH3 z;vu@ygPQ+@S&~STe!}o2(&?X|ma*jZGgh;)r2dS;#?q;uk#Z~rJi>GwOPd~HD;P^v zA7jdmrCEI|s>mo(5tGzBpdty_Q-~4fXa%Y1;P{eJEPz(wBOk<5THR3r0hboix>vs{PJlLl$k^= ziyBhs{!2x~IiH~u4m4jBMV_G)RSc@>NCm|VEdibvL+?A%P!~fAz%>`BWDteA8d?G5 zx*C#&LHWfEqd<%CF? zBhQ*rNqSk*umb!Qr3?!IT9-Ct0PHIbowTNxrBUNRQr!$DfQN2|4gmgT3}XPcmO+;X zQb~7%5um@jAw^;@BIeYlbDxQI$g!+ptT2Hx$|CCoQpy>O(gY^1NqY|CQ~g=x3_ZcW zSk92H@te|vWB4rV-13Hn2A;63PlNiw^q{-}pG>I03rY4gbi-+$p^spqZ50i90AZC3 zu@ZaZF{c*YYip=OS1TEYX^b-YXL0H_%)>BQ&l9w0M;^5dEvR{AL$;QpEcL#CbGYl3 z4I@!h?<$7v8sC$yUJ<>hQ&qz(@Gn(0>;+g_&2UNRM48nMhXF!s7zRq6SiN;A^M+WD z$^;v{$gL(ux)Y79X}AgyS<7%8AgH!skCwCnjkzy2q^5NY>EM4<$M815y%0kaN~vq` z5}MJwbq%5T^4R^lhSrkMk9@ohQvr5+L&N=OR*s<)^=@Qn1N@yvhEJt_toknbvkld0 zNdrRz+Ua9hq36s7KIBr-;6^E~`2PL8#;~Y<j#1I95sw>m6CWd&S zF*Rw5x*F4-riN}(V^(lA>Q~NCgJy>rYLn_~=;*|`HG|`Z_a8(tgAG;bny(=TS(2L> z-Vyp!vF3)_0L_}C3;pT;+Pd%fD2o4o;2tJ-$%fQRC!`S|w9p~aoAj^x_7 zcDC>B&CV|BKs!~wYTnWMih}Bn)(;eX-^n^c!IsX}J_;V|V*SgR&$Ak-s+v0QQ=7V4 z7XamILzc5bMRup9)H&L!4K1h_&Zr*NdPly0R}ahSpb|dsX}v;0NiXY_&;?vjR=<+G zNd?V%s$q#1y`OToH6etZE@2^gbV?f5->RcF-)%K>>fHZqx!C}EcGJ<>QhnK*jrhgyCLb`7<@qhRGQ>kI{R zhg&Bd6a8cEvBDe_PPx~L=WxLYE7IZ8g^V0budZ1m)%B6In@{xbxX()A9H&QFArz`h z_gh;rxAv+_g)>|IFxuKf>FaW=X`C-*ES-&zVYK>tmNQ5FG0ys)5>DjO+Cakn>f}7< zX#avdD~TsrGr@YZCWX5G%(ar#hDV&u)Uy+CehB-QdLg2a-1!B4g9k~TdMX&bkMX^j}%!K9WDK(ww3Kbrk+nf@9d?nO|hyd zd44e+n|j)TYTPR4Ahn{zdX>E6RO@95PEVyHwWS(cYHg=3xRT1Krk&JhW!4lYzZdOm zq4qDQgKx|WGzk>GCPU=d9b-^)89hq)DNkNf^ zu34khR~|aIjN(b(p@61ZMuGDQtCI?Uz#2m1xer)dDM+fcK5+6&*uFSbdz&*}U9F@Q zJyT7dMf<``6*8L^cBUFVn=ZLC)vvRuJ~Nf?LE3~f)%|md$f8oiiq8FJKtENg?RTtXMi z9QDx>YnA%D$_lKN)mB|yV6{+HRdfO}E(OYF2@c_Jr}C0~I5dZio%0_Ome1bzS%30wqB5x4{>5%?8QO5nx9 zUV}`NEdK^nFtnj9V&4GFFrZh*114tQMDi?wYQTd64*LIxmSnC#0E2hAJx|1iEDs4- zfCU1ffJX!(0FMf|0gnsB0(=4qfF%qM>sAqUAjGT>Zwhn=ye-fRu&xH^+bw+{??{&Z zfQY&mdn&mM;PO1ik_s z6!;o&Sl|fYn80zsNrp$b;->&-4NUg(ndZES+TSDnM}dogOAP#vx_udN#eiP)YbIu2 zNAm9i{{j40;7`C`06zazLmc$aFXmB;#;96>0!~1%fCUH@2m?e4L;+$1VgU&Pi41i7 z)fGubmNbEMKz)G*fJO|tygKg1uF=$hUL9E`W;aLvRsyX7?F@MB_K*%N`rr9cD6+Ew zU1V1ivvZK#U0@ubr$8RyZh?t_J_3^f{c`x*MS7+-WPoHT0Spo-0}K(U01OkD0k}t? z5->vGLBM?iUN7W+k%s^|0^C@Ec80MG((;X9yaBy_CYYG*L;i^ZRe(Z)CjpZgyt>F0 z5L>c511J`F9xzp46`)Ljn?6vr$^~8lOlOcrd6Z+O0j{{$t~62mZA>s*U_D?CgKoGt zm&T}s`3Cf&Kg_YQyfZF9@*)E|`7sl-H>0>G1hx*q^>?wz4rHkk_!zKE;8Va;4BWQD z{u1!C0X@@aOw8VgfY$`h0p1Y!0q~Z< zMFu+l*NR+1mh}R^0yYR-18ic@tvY@Oyl+4+z2C%iqYv6(n+0wn{}uyYyBf01i0z<% z-f5a00s(+s0xrOA0SoY{Kqz33Km_0m0XM+AS0om)PapxXpMe{b*av8gYIewgUf9DX zW*$xFFCFa8aN!;Aa7DnnHzM7H9$Z zRe+nOP>!n%UR|$tkn57=F2KJ9IsyJ8&=qh)pamdfDC~-fCd8d0GR?00~!lF0%$7m7$D1l*XDLQ zRIe6B>?%MjfhPfN1Xcjr2|NSH7I+@efkC&4?nq-amo5hM(svuf*I%9f5+>+j((P9P zy#(F>^cHv<&{tqRpufOIz(9fb0D}emUdT|9j{w63wgK)H*a;XZup2OnL7I5e!sZyz z3p>`t>@Sf&m%%HIjc9^A$#MW$@&yh73IvV-CJ7t^6bYOFOc6K@C=oa}5ZAv_kspv{ zn!rUsg}^0%N8ne$Oo3~FN(Syj+MY#Yv~+U}=+&Wj{Pz0Wi8nC8e3Ne91UxKI4Oqy~ zmy5iUns!i;j~dWLK5k;R6Ujb-V89ZA+JL3H8oJ1E$djB!H_LGYRv6IpP$p)_BKcW? z1ijGJTHw9V(-WF&BSSQdP@QyzI z^ul(4Y?LgW0q+WQ1H3Q5&AX`Xeu3VA%>w-ZTLieB7frHFV2Bs8Lu5E$mjJi>qG@&u zaEmX3PX)NK7r`EZaeyxb@&J1UCIa@2;q$*<0h1v6C5sI>C{O}8Bv1x8EKmVBDlh|Z zOrR3*oq+d2$jN^Ma9ZFYz*&KXfb#;60)7y90`Q~262MOa%K(@3{;yX6H&3Ir_={xW zW@!Xh1fBz26IcoOO<*15wE=zH-7(fAZ$NS_ zfp-A`0v`aJ0^FvJW*Q{G?brycv3&i}Gu;8H%~|I1877p*C`*I^U5hA=$xAqt9AiKy z$C;S@C5lTB*axU1Z~)+~D{=^uB5(wdCU6W;Pv8WgzQAcfLxFREMgl(on$!R-|3yeM z$-?dCXxW-G$U8*@tqkaeZDV5gb>wd+@H-$|;0Bv3&gLc~nEXNEU8&M>Fjv z5CG^Q-~#j#umHUULIHgRA^`mbyl%)qkyyZBfds%%0dB!ZH5)F#ZTAT76-Wn+6sQjv zC6Eai?G(@wCW7WO+v5QNVKoPXJyJSOQoj zune$TU^(C=0R?ykz{elAo}}IPHOaCP@P@!@z*_<@1J(+>23RlfCSZfWTEHfOcNpmT z!+Ro|kmUn`_W>UYdHw64CtAjzLq@!0&)x1h}m!6>vr1Cg7St zHQ+Y^2emGwNq%RbrloZJ1wwAr2>$&0)5Po`B>$g42%uUZ3~&dvu2ioCf!2UJ0_^~G1?~c*2y_CZ33LV26X*e`PvFJE-VJFeS^5GR2@C)<5f}_; zCNK=pT;N_nO9tH)&L}_|1GGvzF1Op6D0P*imp)ry9H4_h9-xy3O42iP_~y9w^`e3>J6*FjQbRV7S0sz`X+VHF)ijEV?o7LS(t$fUZT3iP?`L zd91(_fLwtkfINX^fP4XN?@J3>AmCMyNg~eyiUd{yrU3}OFiqf1K!w0s zfX6Gs?S`ppGX*vQDh1vL%og|%Fh^hu;GaUb1LjMPU4VxTcxAyh&rUq1GDEGhNRyZWC?4gXB#Hbn<%~yPK1%QJlX9 zyg1f2OS*$vrc&u!1Ofot1YCd}0v2GGKqz3hKm_1Z0XJZeK7s3c#X`Q2ED37v01E~7b1kL~|1kP*l+8&V$$TCylCqSjZWx#BKD}Xry*8yIE z-vRRlZU7zzcxj3Gg#)VVLdjAMSj3=vN2*1=oKTL(4e0gbGch|5$x9eI^L|}LW0e0% z13Le56SHe0|I-9s{Q($TVS?v4OAoUFUf@^jId;ED zKV&(`z^_`^U(*=X`LF?9I zz`p^1Fz~w@_6@*I1G=7nnV4OTWXE`uzZQ+ras`g3A89DT2?>@g79dn03=qk{FM8Nf zfEWXMrg0`_$0NCpKoTHDAeF}WM|wSx3>qV7D3A$g!oY8X*i8Y=4d|J+G%>pslG_Tj z1KcIh0noVyX!*N9x=WTGfV%~H1NsT{2MiJz3>e11ub0@v0V53PdfsPZ_9!IhjQ5%e z#z1l<%XmP(z(l|#fysa=0>yw*fige^!(Cjh>42FACacb$SsT3LIc+u4Ugk6gUFBCz z%zh2YZwkBxSSPR^uu)(W;C+D)0GkCq(%`kXiEKxfT@3u{iv2O*QvWSOw>M(^pgUo0A~fx0e%p;0QgDZXTUE4zXGlaTnGG4 zffx1q59Gg+`PyG{y(AfD;hR!0))&79iAsUVY&vW=C)`odn$?(JagD zIDvRT9f2f3ia;u$o|nmjJH<_$2rm>=XD3a8TfDz+r(SfMWv30Vf&wbtL;#9xXrZfoF~A znx8i@`+H3AqrgSLC4tL;D*{&mzX|*s@CO6Gk7VBf+|01X8)0Zjy&0-6i7 z0JLV{7pCksUPyZ*dZu@onB4)%odvo8x(oCG+|9smRN1`&{S4?52bh>W5XnPofR6v6 zkb5M{y@2}!MgejJ#sG2|3VEjE0r>{>ObblRE<|#XfDI^_z{j61VJc*rWGM%D1ZDs# z1!e)}2+Re{XW;j^?1umg4d`kuGBNwn33L-md)5;oK1@(0uoUo=z;b{Rcn0u11AocX zegW{J0X@?-CT72c^M ztsDho5OA9`igD8%3b>651>7=)0&amq0k@l=pr&a4hmd0YPap;S2OkCe*A@k>0%+?| z$p6An&<_FsQ9?2P>w*G)9!&v1A*O(z1XI9IRw>{oofPncMGE+79|inKj{<&lM*%;7 zqktc)QNWMSDB$N;6wvdc<{a`f9SRm9;Abcl<7WpH@FM{V_;)=89aOikt!OX*CZ-tw z(xrfZz*4|JIw|1abQJKfEDHE{4+Z?Qf&#vcr(ik)zE7tZ-zZbScefPqeIEsUGeZGi zJ1O96Bn5oMpo<$91z4Mcf6gmO2IvDz4ma^6srEYVo&JGoFMpwf!g4=9)}1)zV{Dg4$Mv?fc>FoN|n|<(6A5 zQ4Kyu_4VIw53+r5tJM$w=+~X47+O0<4Z#-@V2dCd^je_gl8cmIo{ieySo*do&pUs{1zbUd6>i=(wl-BTn zQ(BuX*H}`@PFSg`=?SW0#_cwat} zJP$%A(I9{aNj$j8_7x9&Jb0Z4@A6;;51!${2RumN%%AgE1dqMNW2<?9A4^1x!-%447M;1wRM;lTzTe9VIj zJUGvTbv$tK6xBR-kOx1h>nE+5=%yq_T}!m$OqV0q8d`}@wJ4>&FH#)`PH zx^Rj*#28QCz_99}M~!3^d6$(;-Hhd{(Wk9M^z9I%b`7v%Xi`2aP@l*{@3T@V#-~+Z zvbtJD@A{Wbwu0y|KXck@L0thvp0OG_`E=`}UI1oMF?_Q1B|haSj}FT!Dyy720ViI1 z?S0u}RuavQUXDLwCDWVg+s{~a@UD4=8n)D#td=adoa)ZAR0R?>fGiSNS zr&gb}VpF(GJQCD5k$k<z&^E^WMG~HO?6vhw)VPLb8ij8sE53ClGnA z;AR0lu3BVc=~@F|x$zk9E6{BVL`&s2$Ha{2xYz-pL(wZ=DvJ7{_;Q zzOY_-)AOj0@2v8IveI&@3VpeIT4)00ag~Rr25=sArYtm?pj&xpCZOfC&I91Oh~8_4&b6>8Xh^aa(W=R;%sTQ7!IbfdnXTQmwwreH{;u%;9| z*eI+?0Nu+? zS2mP#@)(`G9FNkbJMgG0)TwXSJvEzvzKiRRyeB*|KA!L2ec{9Peppa0J7jy+VM=(S zlT)eM8yCCM{IjQozne?l^)}xdo(1rf(--Z8~9>6~fR9JO*opc`aMdwYlJr&b)>FC!-er`D(e)#b~ zJ7UD!u9(!CSl}(ay842+8&VIl`m_EH&t06vzc74Zdad`HT2WSzKfRQ`^A(n{2Dbv1nwQRhelL@bVop#E6X7DqIIH&)3n1vTZKS{Fw&iq~0#E6R$C zrsw9B*Ocy|3(T~2uEzc!7Dw#4i@McZwS!)Je>-4EKPOm9+K9qCT8WA zmXvwu9Lt~b)9E4q$O9nWp=1tU?TLJQAawfcTw+=bJYBxsCofRYMLu54T;oO z<&UmJI-kx_mxH2`fOMYP9TXSHSv~5&p2$Z2dxE2SOmK2jNILtkyX;B~)J+9d>Ex)o z0nBRSF&5p{)z1i$uBM{%jH9@fTqz@TgP(qOFdJkv#IcU?o9o~ zHlJJNeG%oRT|;M#=8xuaN1Ubg-096V{c{m6^W+w`tjQRWUplqWQ&ChpHJ2{Xzo>q-db4Ozi^U~Z2Zp${UF%l7*2I)R+U zqlQp_s{TLfyYEk@Zb66jb*JjD)X{lyzq@g6g{TV-kwYr${aO4%^?A?j-8vGijE)K>$BNQ3q$b>&jTP zsy;zq8s`LGtm;0<9ZSa|^$9x5oupno8C0A52c1Q`fzFVq4$gANsUfF=0s$F-)u)2O zQDSPPJ6*=;dlsjIf*p4+s+#TgSIv&jFV>%tqkaqX9&@Lvu4m};y}fwG^qHyHphVie zbgUl7GHThq)U=Dy$<)K>(u>jcT%6>gbIH({pg8}*i_zD*1r+eoT+57U;3!bPG>U1U zKO{%zhX>CG)p2nmpTLKm4{Gc$XdL6>K1WMRV;Z{niIImYarQt&BmXC*F|{)F$KdFv z{IcuxRpF&7rnbZOUsEyF{Tw6xSI@@0{0Vgt+PyF#fr9m~#b)Slwb6W*6~`t}rTOs^ zRjliWF>xlAp#Hu{b>I{a{kYheL7$|HNDB(^k9s}!&piEoHR37tgHi(ZV=1-M6_*4~ zR9C)=<#kcX#nx538U)p)O;V}O1ji*uX$+oGRN=`hE}BIriAsNj6}P>V`V`$?8JF&) zhg)~hUNrA=Pz+5pLxsR>hfr#idgvblwa#Ei5X7%Il++oR4ek=;Qz7eBAZt68V|g|M&JjPv71L za60bm^Kf5J-%g|ZdieM`@l9kbTD?7oZvXT24Zr>nnupeJUUND~u6yHm*LCr8xeB^M z9aQo0{%=;srzE>NYf4hxvxDe%A|}D*kKG!-stI)wsy9^!|NbB2pUS50KvPyFBvLRp zH6hkDoF?+nTIGrS8&VS*M|0Pp0sd2M5+<~yjz9IJ{rx$G3A@`2C1ng#wNx_md0i#Mh3|#scDHuNk--t UsYYq3DTaw=Nk*HuGHzc80NLvm#Q*>R delta 64 zcmaEJjOooWrVTBOhM5_~mFYP~<@(0PNvXyumWJjgsU`*%2F6Avrj|)5X_jdwh89W5 U1|}vZmZmAm$tjz+GHzc80OElaz5oCK diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index 7de9c063edb7a3d31b3582c313442110938d3817..28b8d71a3e5b8fd3bb9b2f018b8e594fad12b77f 100644 GIT binary patch delta 64 zcmbPsn{nE0#tn-Z4Rgv(O*1nL3-puCP1BN%4N_B0j7^M\n", " 0\n", " False\n", - " 0.100326\n", + " 0.100541\n", " 7\n", " 6\n", " \n", " \n", " 1\n", " False\n", - " 0.998723\n", + " 0.998729\n", " 0\n", " 0\n", " \n", @@ -921,14 +921,14 @@ " \n", " 3\n", " False\n", - " 0.981028\n", + " 0.980980\n", " 8\n", " 8\n", " \n", " \n", " 4\n", " False\n", - " 0.998219\n", + " 0.998217\n", " 5\n", " 5\n", " \n", @@ -938,11 +938,11 @@ ], "text/plain": [ " is_label_issue label_score given_label predicted_label\n", - "0 False 0.100326 7 6\n", - "1 False 0.998723 0 0\n", + "0 False 0.100541 7 6\n", + "1 False 0.998729 0 0\n", "2 False 0.998768 0 0\n", - "3 False 0.981028 8 8\n", - "4 False 0.998219 5 5" + "3 False 0.980980 8 8\n", + "4 False 0.998217 5 5" ] }, "execution_count": 17, @@ -969,10 +969,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:03.873201Z", - "iopub.status.busy": "2023-11-02T15:06:03.872566Z", - "iopub.status.idle": "2023-11-02T15:06:03.880593Z", - "shell.execute_reply": "2023-11-02T15:06:03.878738Z" + "iopub.execute_input": "2023-11-04T09:15:03.819463Z", + "iopub.status.busy": "2023-11-04T09:15:03.819085Z", + "iopub.status.idle": "2023-11-04T09:15:03.823767Z", + "shell.execute_reply": "2023-11-04T09:15:03.823209Z" } }, "outputs": [ @@ -981,7 +981,7 @@ "output_type": "stream", "text": [ "Here are indices of the most likely errors: \n", - " [1946 469 516 1871 1955 2132]\n" + " [ 469 516 1946 1871 1955 2132]\n" ] } ], @@ -1010,10 +1010,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2023-11-02T15:06:03.886485Z", - "iopub.status.busy": "2023-11-02T15:06:03.885904Z", - "iopub.status.idle": "2023-11-02T15:06:03.895979Z", - "shell.execute_reply": "2023-11-02T15:06:03.894718Z" + "iopub.execute_input": "2023-11-04T09:15:03.826153Z", + "iopub.status.busy": "2023-11-04T09:15:03.825785Z", + "iopub.status.idle": "2023-11-04T09:15:03.831847Z", + "shell.execute_reply": "2023-11-04T09:15:03.831282Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1046,11 +1046,6 @@ " \n", " \n", " \n", - " 1946\n", - " spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_14.wav\n", - " 6\n", - " \n", - " \n", " 469\n", " spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_35.wav\n", " 6\n", @@ -1061,6 +1056,11 @@ " 6\n", " \n", " \n", + " 1946\n", + " spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_14.wav\n", + " 6\n", + " \n", + " \n", " 1871\n", " spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_theo_27.wav\n", " 6\n", @@ -1081,17 +1081,17 @@ ], "text/plain": [ " wav_audio_file_path \\\n", - "1946 spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_14.wav \n", "469 spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_35.wav \n", "516 spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_36.wav \n", + "1946 spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_14.wav \n", "1871 spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_theo_27.wav \n", "1955 spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/4_george_31.wav \n", "2132 spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_nicolas_8.wav \n", "\n", " label \n", - "1946 6 \n", "469 6 \n", "516 6 \n", + "1946 6 \n", "1871 6 \n", "1955 4 \n", "2132 6 " @@ -1133,10 +1133,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-11-02T15:06:03.901407Z", - "iopub.status.busy": "2023-11-02T15:06:03.900833Z", - "iopub.status.idle": "2023-11-02T15:06:04.118777Z", - "shell.execute_reply": "2023-11-02T15:06:04.117801Z" + "iopub.execute_input": "2023-11-04T09:15:03.834419Z", + "iopub.status.busy": "2023-11-04T09:15:03.834045Z", + "iopub.status.idle": "2023-11-04T09:15:03.946815Z", + "shell.execute_reply": "2023-11-04T09:15:03.946244Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1190,10 +1190,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-11-02T15:06:04.122845Z", - "iopub.status.busy": "2023-11-02T15:06:04.122302Z", - "iopub.status.idle": "2023-11-02T15:06:04.327446Z", - "shell.execute_reply": "2023-11-02T15:06:04.326294Z" + "iopub.execute_input": "2023-11-04T09:15:03.949212Z", + "iopub.status.busy": "2023-11-04T09:15:03.948896Z", + "iopub.status.idle": "2023-11-04T09:15:04.054984Z", + "shell.execute_reply": "2023-11-04T09:15:04.054333Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1238,10 +1238,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-11-02T15:06:04.331730Z", - "iopub.status.busy": "2023-11-02T15:06:04.331338Z", - "iopub.status.idle": "2023-11-02T15:06:04.543356Z", - "shell.execute_reply": "2023-11-02T15:06:04.542382Z" + "iopub.execute_input": "2023-11-04T09:15:04.057462Z", + "iopub.status.busy": "2023-11-04T09:15:04.057087Z", + "iopub.status.idle": "2023-11-04T09:15:04.160935Z", + "shell.execute_reply": "2023-11-04T09:15:04.160385Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1282,10 +1282,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:04.548223Z", - "iopub.status.busy": "2023-11-02T15:06:04.547604Z", - "iopub.status.idle": "2023-11-02T15:06:04.742737Z", - "shell.execute_reply": "2023-11-02T15:06:04.741521Z" + "iopub.execute_input": "2023-11-04T09:15:04.163260Z", + "iopub.status.busy": "2023-11-04T09:15:04.163057Z", + "iopub.status.idle": "2023-11-04T09:15:04.268109Z", + "shell.execute_reply": "2023-11-04T09:15:04.267530Z" } }, "outputs": [ @@ -1333,10 +1333,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:04.748778Z", - "iopub.status.busy": "2023-11-02T15:06:04.748205Z", - "iopub.status.idle": "2023-11-02T15:06:04.754796Z", - "shell.execute_reply": "2023-11-02T15:06:04.753702Z" + "iopub.execute_input": "2023-11-04T09:15:04.270598Z", + "iopub.status.busy": "2023-11-04T09:15:04.270223Z", + "iopub.status.idle": "2023-11-04T09:15:04.273512Z", + "shell.execute_reply": "2023-11-04T09:15:04.272953Z" }, "nbsphinx": "hidden" }, @@ -1377,7 +1377,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "035a36dc0c074bce8e805b7375453783": { + "03f16fd22e5b42e9a5af56c56d50e6a4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1429,37 +1429,31 @@ "width": null } }, - "0830110c1f1c45c2ba3d5d793102325c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "14e5e6a5ee2543bda9e8bac476621806": { + "0f0be45602d643eeacae872082f7f920": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_32567db138a24ff1914c2274c9ee7334", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_db4a4108c3444c3e886ba4cb104c81ca", + "value": 15856877.0 } }, - "14f6e4f3079949e192a74a3492d37446": { + "0fc21ac4570a420bbaf4505dfdc460cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1511,81 +1505,53 @@ "width": null } }, - "1acc8d7b46ae44029b99682085679b7f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "1197055e3456479cb42594919ae81328": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "21b41d8d53e14dd89b674d73fc01c9fd": { + "11f27b63df6d4b21bd0433db1eeab22c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a4cc8913c023424ba911d734d9d02bc8", - "IPY_MODEL_dc6eff535e8f4736a836ba8cf134b6ea", - "IPY_MODEL_73cc96c4f38740cbaa6d212144dc8565" - ], - "layout": "IPY_MODEL_49a40348ff6b417c8d6e52e5640464f0" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "28ece83362af44e88ce1e78fb441a0a1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "22220e7e970d4bdab058b0113259408e": { + "2e2d76b1cf8d44ff8c7d109e7a4ce9ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1637,7 +1603,7 @@ "width": null } }, - "2bcba10314a341edb064758210135f7b": { + "32567db138a24ff1914c2274c9ee7334": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1689,7 +1655,7 @@ "width": null } }, - "37c1536002be4ff5b8dde3bbaa2594e9": { + "3d2bf63a4f7d4ada8bcadf3fa5bb31e9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1741,22 +1707,23 @@ "width": null } }, - "39107a4c471844fab68e9174b0649197": { + "3f2e93a9b65145838d56313680bb665a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "39cb33a39dd8489597142cb26e01711e": { + "400d5eb74a804253a8c2221513464d60": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1808,37 +1775,7 @@ "width": null } }, - "3c8fa74d660e4d57b006f382c4de7423": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3d8116501d1a4ecc87eb9482980a653b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "49a40348ff6b417c8d6e52e5640464f0": { + "403d44bdd3ec4a33bb1995e0b3a29f0d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1890,7 +1827,46 @@ "width": null } }, - "52c3f65e4c744524a20d68f4fb5ebbf0": { + "417e2515ec01413598b74ef5747ac88e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "440a8d14fb5b4875b12bb6360e86405e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2e2d76b1cf8d44ff8c7d109e7a4ce9ae", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1197055e3456479cb42594919ae81328", + "value": 16887676.0 + } + }, + "4904aabcc0ff45a09118c5d491a340e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -1905,35 +1881,54 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_62b87b62b3f84aaf966cfb0268cd96ef", - "IPY_MODEL_c3cb752e0dca42cfa3ebf93b80bff3c7", - "IPY_MODEL_9d54b48f8b5e4f5ba04f2adbf3b3f450" + "IPY_MODEL_86fd170964a8476a9bc3a82d7523c426", + "IPY_MODEL_7152d14b11b24706a63baeeda4e01ba2", + "IPY_MODEL_99e711466a0e4b3ea28c8792bccd237f" ], - "layout": "IPY_MODEL_a7d3bccd401645fc8a11fe4c27901c7e" + "layout": "IPY_MODEL_403d44bdd3ec4a33bb1995e0b3a29f0d" } }, - "53771cf18f2e47008d372cd011557497": { + "527c72c3db214b67bc0ae05742cc1789": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d3486b269885452ebd9220a59eb70097", - "placeholder": "​", - "style": "IPY_MODEL_aae274ad00e142ef8469327e465b5608", - "value": " 2.04k/2.04k [00:00<00:00, 203kB/s]" + "layout": "IPY_MODEL_5ccb8b07baf04769a1c340aa79bebfe0", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_67f2e6e51d4e4d58b0e1175396a1391e", + "value": 2041.0 + } + }, + "57394531c6734077972502b4eb84ec5f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "58c337e9ab5b419a9cdf2f6423eaea2a": { + "5ccb8b07baf04769a1c340aa79bebfe0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1985,7 +1980,22 @@ "width": null } }, - "5b768ce206b74da7a3d929a29363abce": { + "641944556d5d46999c8ead2f69d2dcf0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "675dcf1e7a534b3e83154279e8c1bcc6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2037,51 +2047,62 @@ "width": null } }, - "5e243a3d209b4965ade5ace19e24945f": { + "67f2e6e51d4e4d58b0e1175396a1391e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_da6b80a393324d8b93b72bfc7b480ddd", - "IPY_MODEL_bf24c8b22d8346fb927cb3cbc692c317", - "IPY_MODEL_79a5c0e4c02c416ba84feda09b9cc896" - ], - "layout": "IPY_MODEL_2bcba10314a341edb064758210135f7b" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "5f13f1c43dc84da4b490318bb247eec5": { + "6d98e2af89c142b4a55c0e1360d6f551": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7152d14b11b24706a63baeeda4e01ba2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e7714048563d40139e2674148f573f91", - "IPY_MODEL_fa25c8a7048346c68d1535c6faea79f6", - "IPY_MODEL_53771cf18f2e47008d372cd011557497" - ], - "layout": "IPY_MODEL_1acc8d7b46ae44029b99682085679b7f" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8547b562133e46a0b91a295e4f3a3c00", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3f2e93a9b65145838d56313680bb665a", + "value": 128619.0 } }, - "62b87b62b3f84aaf966cfb0268cd96ef": { + "7200f73a3ee94377a3df8d775865e059": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2096,28 +2117,65 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_22220e7e970d4bdab058b0113259408e", + "layout": "IPY_MODEL_675dcf1e7a534b3e83154279e8c1bcc6", "placeholder": "​", - "style": "IPY_MODEL_14e5e6a5ee2543bda9e8bac476621806", - "value": "Downloading (…)in/label_encoder.txt: 100%" + "style": "IPY_MODEL_d05b5353011345b5ab7fe6866e29aaf2", + "value": "Downloading (…)ain/hyperparams.yaml: 100%" } }, - "68ea06bd0a55428983bcedc0e4d2e547": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "746359e2e5b940cda8b78228eb6786ba": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6ee73466521442f19a80883f1b7da77d": { + "775148660f914632b990f808c9f0b32b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2169,7 +2227,7 @@ "width": null } }, - "73cc96c4f38740cbaa6d212144dc8565": { + "7cdd2d3e08954f4db11c3b080a0c8502": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2184,56 +2242,52 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_37c1536002be4ff5b8dde3bbaa2594e9", + "layout": "IPY_MODEL_b1b8b4ea01e44e4887f932e4ddce91d2", "placeholder": "​", - "style": "IPY_MODEL_cf47f11bb37c486a8e0504acf52b239a", - "value": " 16.9M/16.9M [00:00<00:00, 51.4MB/s]" + "style": "IPY_MODEL_c953ea00a63b400897b698bee77ce4ee", + "value": "Downloading classifier.ckpt: 100%" } }, - "7763fee48c2a4f9fb5e8ff45b5cad49c": { + "7ffc9bb8df0e45de9e8ec1c6dae5137d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_afe2a591495546dd98406f95e87bc7fb", - "IPY_MODEL_8bf7709f20864a359a76a36a1885e897", - "IPY_MODEL_f7bb92a3c4d24f6e8e4e004b71947217" - ], - "layout": "IPY_MODEL_6ee73466521442f19a80883f1b7da77d" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_746359e2e5b940cda8b78228eb6786ba", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_57394531c6734077972502b4eb84ec5f", + "value": 3201.0 } }, - "79a5c0e4c02c416ba84feda09b9cc896": { + "809a90e482594f3593e69730c218760e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5b768ce206b74da7a3d929a29363abce", - "placeholder": "​", - "style": "IPY_MODEL_3c8fa74d660e4d57b006f382c4de7423", - "value": " 3.20k/3.20k [00:00<00:00, 332kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "7d915bd116c24b7bbccf1cad659c5238": { + "8504b5025e364052a5d036ebf4fb2e93": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2285,31 +2339,81 @@ "width": null } }, - "8bf7709f20864a359a76a36a1885e897": { + "8547b562133e46a0b91a295e4f3a3c00": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "85e06e383727491f8448980930b5ec79": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_da06bcda94b047acb67d9a687d9255b7", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d00953a061454c3f900855fd446435e6", - "value": 15856877.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7cdd2d3e08954f4db11c3b080a0c8502", + "IPY_MODEL_0f0be45602d643eeacae872082f7f920", + "IPY_MODEL_9f2382f8cc2a40e8ad5985039eecf41a" + ], + "layout": "IPY_MODEL_400d5eb74a804253a8c2221513464d60" } }, - "9d54b48f8b5e4f5ba04f2adbf3b3f450": { + "86fd170964a8476a9bc3a82d7523c426": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2324,29 +2428,34 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_af836e0b35854b19ba2f7789bcf34f8e", + "layout": "IPY_MODEL_95985c8035704ee49ba84d4d05959c05", "placeholder": "​", - "style": "IPY_MODEL_0830110c1f1c45c2ba3d5d793102325c", - "value": " 129k/129k [00:00<00:00, 1.08MB/s]" + "style": "IPY_MODEL_b4e2218b4c3b4af995814775f1e124a0", + "value": "Downloading (…)in/label_encoder.txt: 100%" } }, - "9edf141ef1484fc4912eb106be47acb5": { + "8a7f0f13b08b42b9b8f90594f195f412": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bdf0f2da3848486b9206b754cef07c0a", + "placeholder": "​", + "style": "IPY_MODEL_11f27b63df6d4b21bd0433db1eeab22c", + "value": " 3.20k/3.20k [00:00<00:00, 584kB/s]" } }, - "a4cc8913c023424ba911d734d9d02bc8": { + "939b2a03d6614455abfdfc8494687f17": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2361,13 +2470,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7d915bd116c24b7bbccf1cad659c5238", + "layout": "IPY_MODEL_959168073cdc4f54949d9c8fd74fd9f1", "placeholder": "​", - "style": "IPY_MODEL_3d8116501d1a4ecc87eb9482980a653b", - "value": "Downloading embedding_model.ckpt: 100%" + "style": "IPY_MODEL_28ece83362af44e88ce1e78fb441a0a1", + "value": "Downloading mean_var_norm_emb.ckpt: 100%" } }, - "a7d3bccd401645fc8a11fe4c27901c7e": { + "959168073cdc4f54949d9c8fd74fd9f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2419,37 +2528,7 @@ "width": null } }, - "a9bfc58f3dd24e4599965f29d71e0433": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "aae274ad00e142ef8469327e465b5608": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "af836e0b35854b19ba2f7789bcf34f8e": { + "95985c8035704ee49ba84d4d05959c05": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2501,7 +2580,7 @@ "width": null } }, - "afe2a591495546dd98406f95e87bc7fb": { + "99e711466a0e4b3ea28c8792bccd237f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2516,29 +2595,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_14f6e4f3079949e192a74a3492d37446", + "layout": "IPY_MODEL_8504b5025e364052a5d036ebf4fb2e93", "placeholder": "​", - "style": "IPY_MODEL_39107a4c471844fab68e9174b0649197", - "value": "Downloading classifier.ckpt: 100%" + "style": "IPY_MODEL_809a90e482594f3593e69730c218760e", + "value": " 129k/129k [00:00<00:00, 15.5MB/s]" } }, - "b26873aa7db54e93ae8af978b74ca524": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b645ba5d8646420fbcf5761b088adc40": { + "9cb1cb6a1fb649fbb9463ca3eae9f17b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2590,71 +2653,71 @@ "width": null } }, - "bdd292aa36c347aba0b6c45f16666d96": { + "9ec6feee8c2540829050b48dbb471537": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_939b2a03d6614455abfdfc8494687f17", + "IPY_MODEL_7ffc9bb8df0e45de9e8ec1c6dae5137d", + "IPY_MODEL_8a7f0f13b08b42b9b8f90594f195f412" + ], + "layout": "IPY_MODEL_3d2bf63a4f7d4ada8bcadf3fa5bb31e9" } }, - "bf24c8b22d8346fb927cb3cbc692c317": { + "9f2382f8cc2a40e8ad5985039eecf41a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_39cb33a39dd8489597142cb26e01711e", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_bdd292aa36c347aba0b6c45f16666d96", - "value": 3201.0 + "layout": "IPY_MODEL_03f16fd22e5b42e9a5af56c56d50e6a4", + "placeholder": "​", + "style": "IPY_MODEL_6d98e2af89c142b4a55c0e1360d6f551", + "value": " 15.9M/15.9M [00:00<00:00, 83.4MB/s]" } }, - "c3cb752e0dca42cfa3ebf93b80bff3c7": { + "a17830dd334e48d4a21af394f0654810": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ca1778c12bb746cb85204fef31cb2723", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b26873aa7db54e93ae8af978b74ca524", - "value": 128619.0 + "layout": "IPY_MODEL_d44f5681fe4749ba802269ee31a52792", + "placeholder": "​", + "style": "IPY_MODEL_417e2515ec01413598b74ef5747ac88e", + "value": "Downloading embedding_model.ckpt: 100%" } }, - "ca1778c12bb746cb85204fef31cb2723": { + "b1b8b4ea01e44e4887f932e4ddce91d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2706,7 +2769,7 @@ "width": null } }, - "cf47f11bb37c486a8e0504acf52b239a": { + "b4e2218b4c3b4af995814775f1e124a0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2721,23 +2784,7 @@ "description_width": "" } }, - "d00953a061454c3f900855fd446435e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d3486b269885452ebd9220a59eb70097": { + "bdf0f2da3848486b9206b754cef07c0a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2789,104 +2836,81 @@ "width": null } }, - "da06bcda94b047acb67d9a687d9255b7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "c76378977c9145c98d498613685c0e70": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a17830dd334e48d4a21af394f0654810", + "IPY_MODEL_440a8d14fb5b4875b12bb6360e86405e", + "IPY_MODEL_f036e36f1cfb4810904970aa02deb732" + ], + "layout": "IPY_MODEL_9cb1cb6a1fb649fbb9463ca3eae9f17b" } }, - "da6b80a393324d8b93b72bfc7b480ddd": { + "c7cf888269404a3e8d7e9bcbc9feb461": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_58c337e9ab5b419a9cdf2f6423eaea2a", - "placeholder": "​", - "style": "IPY_MODEL_e9bf4b71803a43daa66fd0fe5d0763fd", - "value": "Downloading mean_var_norm_emb.ckpt: 100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7200f73a3ee94377a3df8d775865e059", + "IPY_MODEL_527c72c3db214b67bc0ae05742cc1789", + "IPY_MODEL_fbbcca643c844e6cb91547a869f2323e" + ], + "layout": "IPY_MODEL_fbc243d47eba4612b5fdb9f1f34f5236" } }, - "dc6eff535e8f4736a836ba8cf134b6ea": { + "c953ea00a63b400897b698bee77ce4ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b645ba5d8646420fbcf5761b088adc40", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f85bfb31c25042b59e70b7acd5b3175c", - "value": 16887676.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d05b5353011345b5ab7fe6866e29aaf2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "e21d28a15a124374a97f75a86750b82e": { + "d44f5681fe4749ba802269ee31a52792": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2938,7 +2962,38 @@ "width": null } }, - "e7714048563d40139e2674148f573f91": { + "d91c99c639e746f9bfbbcad9e2e0ce99": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "db4a4108c3444c3e886ba4cb104c81ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f036e36f1cfb4810904970aa02deb732": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2953,28 +3008,34 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_035a36dc0c074bce8e805b7375453783", + "layout": "IPY_MODEL_0fc21ac4570a420bbaf4505dfdc460cd", "placeholder": "​", - "style": "IPY_MODEL_68ea06bd0a55428983bcedc0e4d2e547", - "value": "Downloading (…)ain/hyperparams.yaml: 100%" + "style": "IPY_MODEL_d91c99c639e746f9bfbbcad9e2e0ce99", + "value": " 16.9M/16.9M [00:00<00:00, 124MB/s]" } }, - "e9bf4b71803a43daa66fd0fe5d0763fd": { + "fbbcca643c844e6cb91547a869f2323e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_775148660f914632b990f808c9f0b32b", + "placeholder": "​", + "style": "IPY_MODEL_641944556d5d46999c8ead2f69d2dcf0", + "value": " 2.04k/2.04k [00:00<00:00, 356kB/s]" } }, - "f010c59fa4544f51a81502e94c47fb22": { + "fbc243d47eba4612b5fdb9f1f34f5236": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3025,67 +3086,6 @@ "visibility": null, "width": null } - }, - "f7bb92a3c4d24f6e8e4e004b71947217": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e21d28a15a124374a97f75a86750b82e", - "placeholder": "​", - "style": "IPY_MODEL_a9bfc58f3dd24e4599965f29d71e0433", - "value": " 15.9M/15.9M [00:00<00:00, 44.1MB/s]" - } - }, - "f85bfb31c25042b59e70b7acd5b3175c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "fa25c8a7048346c68d1535c6faea79f6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f010c59fa4544f51a81502e94c47fb22", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9edf141ef1484fc4912eb106be47acb5", - "value": 2041.0 - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index 7fe2c7d0c..2d9e8efed 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:11.086934Z", - "iopub.status.busy": "2023-11-02T15:06:11.086595Z", - "iopub.status.idle": "2023-11-02T15:06:12.917767Z", - "shell.execute_reply": "2023-11-02T15:06:12.916683Z" + "iopub.execute_input": "2023-11-04T09:15:09.183339Z", + "iopub.status.busy": "2023-11-04T09:15:09.183150Z", + "iopub.status.idle": "2023-11-04T09:15:10.206196Z", + "shell.execute_reply": "2023-11-04T09:15:10.205458Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:12.922525Z", - "iopub.status.busy": "2023-11-02T15:06:12.922014Z", - "iopub.status.idle": "2023-11-02T15:06:12.928781Z", - "shell.execute_reply": "2023-11-02T15:06:12.927775Z" + "iopub.execute_input": "2023-11-04T09:15:10.209030Z", + "iopub.status.busy": "2023-11-04T09:15:10.208746Z", + "iopub.status.idle": "2023-11-04T09:15:10.212027Z", + "shell.execute_reply": "2023-11-04T09:15:10.211420Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:12.933655Z", - "iopub.status.busy": "2023-11-02T15:06:12.933299Z", - "iopub.status.idle": "2023-11-02T15:06:12.947575Z", - "shell.execute_reply": "2023-11-02T15:06:12.946455Z" + "iopub.execute_input": "2023-11-04T09:15:10.214512Z", + "iopub.status.busy": "2023-11-04T09:15:10.214167Z", + "iopub.status.idle": "2023-11-04T09:15:10.223374Z", + "shell.execute_reply": "2023-11-04T09:15:10.222763Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:12.951765Z", - "iopub.status.busy": "2023-11-02T15:06:12.951149Z", - "iopub.status.idle": "2023-11-02T15:06:12.960515Z", - "shell.execute_reply": "2023-11-02T15:06:12.959576Z" + "iopub.execute_input": "2023-11-04T09:15:10.225703Z", + "iopub.status.busy": "2023-11-04T09:15:10.225319Z", + "iopub.status.idle": "2023-11-04T09:15:10.230255Z", + "shell.execute_reply": "2023-11-04T09:15:10.229767Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:12.965024Z", - "iopub.status.busy": "2023-11-02T15:06:12.964445Z", - "iopub.status.idle": "2023-11-02T15:06:13.473895Z", - "shell.execute_reply": "2023-11-02T15:06:13.472813Z" + "iopub.execute_input": "2023-11-04T09:15:10.232748Z", + "iopub.status.busy": "2023-11-04T09:15:10.232387Z", + "iopub.status.idle": "2023-11-04T09:15:10.498963Z", + "shell.execute_reply": "2023-11-04T09:15:10.498370Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:13.478915Z", - "iopub.status.busy": "2023-11-02T15:06:13.478587Z", - "iopub.status.idle": "2023-11-02T15:06:14.094416Z", - "shell.execute_reply": "2023-11-02T15:06:14.092993Z" + "iopub.execute_input": "2023-11-04T09:15:10.501998Z", + "iopub.status.busy": "2023-11-04T09:15:10.501574Z", + "iopub.status.idle": "2023-11-04T09:15:10.866581Z", + "shell.execute_reply": "2023-11-04T09:15:10.865921Z" } }, "outputs": [ @@ -568,10 +568,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:14.099107Z", - "iopub.status.busy": "2023-11-02T15:06:14.098691Z", - "iopub.status.idle": "2023-11-02T15:06:14.147925Z", - "shell.execute_reply": "2023-11-02T15:06:14.146867Z" + "iopub.execute_input": "2023-11-04T09:15:10.869484Z", + "iopub.status.busy": "2023-11-04T09:15:10.869099Z", + "iopub.status.idle": "2023-11-04T09:15:10.893257Z", + "shell.execute_reply": "2023-11-04T09:15:10.892622Z" } }, "outputs": [], @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:14.152864Z", - "iopub.status.busy": "2023-11-02T15:06:14.152468Z", - "iopub.status.idle": "2023-11-02T15:06:14.179295Z", - "shell.execute_reply": "2023-11-02T15:06:14.178211Z" + "iopub.execute_input": "2023-11-04T09:15:10.896037Z", + "iopub.status.busy": "2023-11-04T09:15:10.895527Z", + "iopub.status.idle": "2023-11-04T09:15:10.905023Z", + "shell.execute_reply": "2023-11-04T09:15:10.904527Z" } }, "outputs": [], @@ -641,10 +641,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:14.184202Z", - "iopub.status.busy": "2023-11-02T15:06:14.183853Z", - "iopub.status.idle": "2023-11-02T15:06:16.596152Z", - "shell.execute_reply": "2023-11-02T15:06:16.594931Z" + "iopub.execute_input": "2023-11-04T09:15:10.907734Z", + "iopub.status.busy": "2023-11-04T09:15:10.907226Z", + "iopub.status.idle": "2023-11-04T09:15:12.151359Z", + "shell.execute_reply": "2023-11-04T09:15:12.150383Z" } }, "outputs": [ @@ -708,10 +708,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:16.602077Z", - "iopub.status.busy": "2023-11-02T15:06:16.600918Z", - "iopub.status.idle": "2023-11-02T15:06:16.651191Z", - "shell.execute_reply": "2023-11-02T15:06:16.648313Z" + "iopub.execute_input": "2023-11-04T09:15:12.154857Z", + "iopub.status.busy": "2023-11-04T09:15:12.154365Z", + "iopub.status.idle": "2023-11-04T09:15:12.183093Z", + "shell.execute_reply": "2023-11-04T09:15:12.182524Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:16.655531Z", - "iopub.status.busy": "2023-11-02T15:06:16.655191Z", - "iopub.status.idle": "2023-11-02T15:06:16.697388Z", - "shell.execute_reply": "2023-11-02T15:06:16.696260Z" + "iopub.execute_input": "2023-11-04T09:15:12.185873Z", + "iopub.status.busy": "2023-11-04T09:15:12.185641Z", + "iopub.status.idle": "2023-11-04T09:15:12.206777Z", + "shell.execute_reply": "2023-11-04T09:15:12.206148Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:16.701505Z", - "iopub.status.busy": "2023-11-02T15:06:16.701158Z", - "iopub.status.idle": "2023-11-02T15:06:16.726996Z", - "shell.execute_reply": "2023-11-02T15:06:16.726070Z" + "iopub.execute_input": "2023-11-04T09:15:12.209177Z", + "iopub.status.busy": "2023-11-04T09:15:12.208934Z", + "iopub.status.idle": "2023-11-04T09:15:12.224868Z", + "shell.execute_reply": "2023-11-04T09:15:12.224230Z" } }, "outputs": [ @@ -1068,17 +1068,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:16.732748Z", - "iopub.status.busy": "2023-11-02T15:06:16.730903Z", - "iopub.status.idle": "2023-11-02T15:06:16.776002Z", - "shell.execute_reply": "2023-11-02T15:06:16.775020Z" + "iopub.execute_input": "2023-11-04T09:15:12.227508Z", + "iopub.status.busy": "2023-11-04T09:15:12.227072Z", + "iopub.status.idle": "2023-11-04T09:15:12.249442Z", + "shell.execute_reply": "2023-11-04T09:15:12.248820Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "686e3447fcc34034afeeb20adeff7468", + "model_id": "f5f0008f43c04dce869bbe61f6e304b2", "version_major": 2, "version_minor": 0 }, @@ -1114,10 +1114,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:16.780177Z", - "iopub.status.busy": "2023-11-02T15:06:16.779668Z", - "iopub.status.idle": "2023-11-02T15:06:16.805160Z", - "shell.execute_reply": "2023-11-02T15:06:16.804129Z" + "iopub.execute_input": "2023-11-04T09:15:12.252086Z", + "iopub.status.busy": "2023-11-04T09:15:12.251505Z", + "iopub.status.idle": "2023-11-04T09:15:12.266752Z", + "shell.execute_reply": "2023-11-04T09:15:12.266200Z" } }, "outputs": [ @@ -1235,10 +1235,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:16.809517Z", - "iopub.status.busy": "2023-11-02T15:06:16.809018Z", - "iopub.status.idle": "2023-11-02T15:06:16.819879Z", - "shell.execute_reply": "2023-11-02T15:06:16.819052Z" + "iopub.execute_input": "2023-11-04T09:15:12.269428Z", + "iopub.status.busy": "2023-11-04T09:15:12.268926Z", + "iopub.status.idle": "2023-11-04T09:15:12.275934Z", + "shell.execute_reply": "2023-11-04T09:15:12.275414Z" } }, "outputs": [], @@ -1295,10 +1295,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:16.824396Z", - "iopub.status.busy": "2023-11-02T15:06:16.823917Z", - "iopub.status.idle": "2023-11-02T15:06:16.856890Z", - "shell.execute_reply": "2023-11-02T15:06:16.855650Z" + "iopub.execute_input": "2023-11-04T09:15:12.278501Z", + "iopub.status.busy": "2023-11-04T09:15:12.277989Z", + "iopub.status.idle": "2023-11-04T09:15:12.296579Z", + "shell.execute_reply": "2023-11-04T09:15:12.295940Z" } }, "outputs": [ @@ -1430,7 +1430,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0ac7a1016867488da534dd4893d8461d": { + "04bab5117cfa4b3b8d0e903dd87a6f7f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1445,13 +1445,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d7f74deadd39479fba87a619a1f26c99", + "layout": "IPY_MODEL_714d1ac1d9944275be536652d374f800", "placeholder": "​", - "style": "IPY_MODEL_79cfe0dbcee54032af9fd6cd531168ba", + "style": "IPY_MODEL_9182627d36e844c9932644afc916f8d4", "value": "Saving the dataset (1/1 shards): 100%" } }, - "488ad1262e734030b6afb6538673f274": { + "0b23e7e11d3d4d1f8d30fdf1e8b2c9a6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1503,7 +1503,7 @@ "width": null } }, - "5a6a19e2c0134fe09648360bb2fc34ee": { + "0b830909454a4538a0f95dfd5429fc96": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1555,104 +1555,7 @@ "width": null } }, - "686e3447fcc34034afeeb20adeff7468": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0ac7a1016867488da534dd4893d8461d", - "IPY_MODEL_7b076a3ed7ea41e1a72913babf37b037", - "IPY_MODEL_78834562b3d7404091a8995788fbfaaa" - ], - "layout": "IPY_MODEL_5a6a19e2c0134fe09648360bb2fc34ee" - } - }, - "78834562b3d7404091a8995788fbfaaa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ab889e8d6b084286b62896b440506138", - "placeholder": "​", - "style": "IPY_MODEL_959b6824ab244def89a3bf1e39166e39", - "value": " 132/132 [00:00<00:00, 5253.78 examples/s]" - } - }, - "79cfe0dbcee54032af9fd6cd531168ba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7b076a3ed7ea41e1a72913babf37b037": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_488ad1262e734030b6afb6538673f274", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e715e318fd204462905c6f31e4a06b17", - "value": 132.0 - } - }, - "959b6824ab244def89a3bf1e39166e39": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ab889e8d6b084286b62896b440506138": { + "423f024249cb406dad7dad337c32ee1b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1704,7 +1607,38 @@ "width": null } }, - "d7f74deadd39479fba87a619a1f26c99": { + "4ba643f819b94086a2ab7d91d6bb4c56": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "654d8a4fb08641f7bb01ad666ae8215e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "714d1ac1d9944275be536652d374f800": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1756,21 +1690,87 @@ "width": null } }, - "e715e318fd204462905c6f31e4a06b17": { + "7800c9e7cba142a899815dbea7f48559": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0b23e7e11d3d4d1f8d30fdf1e8b2c9a6", + "placeholder": "​", + "style": "IPY_MODEL_4ba643f819b94086a2ab7d91d6bb4c56", + "value": " 132/132 [00:00<00:00, 10605.07 examples/s]" + } + }, + "9182627d36e844c9932644afc916f8d4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } + }, + "d0dbc9acefbc4af68fae5edb2752128e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0b830909454a4538a0f95dfd5429fc96", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_654d8a4fb08641f7bb01ad666ae8215e", + "value": 132.0 + } + }, + "f5f0008f43c04dce869bbe61f6e304b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_04bab5117cfa4b3b8d0e903dd87a6f7f", + "IPY_MODEL_d0dbc9acefbc4af68fae5edb2752128e", + "IPY_MODEL_7800c9e7cba142a899815dbea7f48559" + ], + "layout": "IPY_MODEL_423f024249cb406dad7dad337c32ee1b" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index 60fa59e16..8f2f23c18 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -11,7 +11,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Cleanlab offers a `Datalab` object that can identify various issues in your machine learning datasets, such as noisy labels, outliers, (near) duplicates, and other types of problems common in real-world data. These data issues may negatively impact models if not addressed. `Datalab` utilizes *any* ML model you have already trained for your data to diagnose these issues, it only requires access to either: (probabilistic) predictions from your model or its learned representations of the data.\n", + "Cleanlab offers a `Datalab` object that can identify various issues in your machine learning datasets, such as noisy labels, outliers, (near) duplicates, drift, and other types of problems common in real-world data. These data issues may negatively impact models if not addressed. `Datalab` utilizes *any* ML model you have already trained for your data to diagnose these issues, it only requires access to either: (probabilistic) predictions from your model or its learned representations of the data.\n", "\n", "\n", "**Overview of what we'll do in this tutorial:**\n", @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:22.612398Z", - "iopub.status.busy": "2023-11-02T15:06:22.611520Z", - "iopub.status.idle": "2023-11-02T15:06:24.407421Z", - "shell.execute_reply": "2023-11-02T15:06:24.406364Z" + "iopub.execute_input": "2023-11-04T09:15:17.241151Z", + "iopub.status.busy": "2023-11-04T09:15:17.240961Z", + "iopub.status.idle": "2023-11-04T09:15:18.276812Z", + "shell.execute_reply": "2023-11-04T09:15:18.276118Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:24.412394Z", - "iopub.status.busy": "2023-11-02T15:06:24.411888Z", - "iopub.status.idle": "2023-11-02T15:06:24.417488Z", - "shell.execute_reply": "2023-11-02T15:06:24.416529Z" + "iopub.execute_input": "2023-11-04T09:15:18.279854Z", + "iopub.status.busy": "2023-11-04T09:15:18.279335Z", + "iopub.status.idle": "2023-11-04T09:15:18.282448Z", + "shell.execute_reply": "2023-11-04T09:15:18.281896Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:24.421968Z", - "iopub.status.busy": "2023-11-02T15:06:24.421629Z", - "iopub.status.idle": "2023-11-02T15:06:24.435894Z", - "shell.execute_reply": "2023-11-02T15:06:24.434794Z" + "iopub.execute_input": "2023-11-04T09:15:18.284857Z", + "iopub.status.busy": "2023-11-04T09:15:18.284653Z", + "iopub.status.idle": "2023-11-04T09:15:18.293961Z", + "shell.execute_reply": "2023-11-04T09:15:18.293376Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:24.440505Z", - "iopub.status.busy": "2023-11-02T15:06:24.440183Z", - "iopub.status.idle": "2023-11-02T15:06:24.448131Z", - "shell.execute_reply": "2023-11-02T15:06:24.447154Z" + "iopub.execute_input": "2023-11-04T09:15:18.296070Z", + "iopub.status.busy": "2023-11-04T09:15:18.295872Z", + "iopub.status.idle": "2023-11-04T09:15:18.300839Z", + "shell.execute_reply": "2023-11-04T09:15:18.300214Z" } }, "outputs": [], @@ -443,10 +443,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:24.452825Z", - "iopub.status.busy": "2023-11-02T15:06:24.452429Z", - "iopub.status.idle": "2023-11-02T15:06:24.931958Z", - "shell.execute_reply": "2023-11-02T15:06:24.930835Z" + "iopub.execute_input": "2023-11-04T09:15:18.303529Z", + "iopub.status.busy": "2023-11-04T09:15:18.303094Z", + "iopub.status.idle": "2023-11-04T09:15:18.567124Z", + "shell.execute_reply": "2023-11-04T09:15:18.566431Z" }, "nbsphinx": "hidden" }, @@ -515,10 +515,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:24.936590Z", - "iopub.status.busy": "2023-11-02T15:06:24.936262Z", - "iopub.status.idle": "2023-11-02T15:06:25.528910Z", - "shell.execute_reply": "2023-11-02T15:06:25.527849Z" + "iopub.execute_input": "2023-11-04T09:15:18.569895Z", + "iopub.status.busy": "2023-11-04T09:15:18.569644Z", + "iopub.status.idle": "2023-11-04T09:15:18.876598Z", + "shell.execute_reply": "2023-11-04T09:15:18.875922Z" } }, "outputs": [ @@ -554,10 +554,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:25.533933Z", - "iopub.status.busy": "2023-11-02T15:06:25.533123Z", - "iopub.status.idle": "2023-11-02T15:06:25.539212Z", - "shell.execute_reply": "2023-11-02T15:06:25.538275Z" + "iopub.execute_input": "2023-11-04T09:15:18.879323Z", + "iopub.status.busy": "2023-11-04T09:15:18.878871Z", + "iopub.status.idle": "2023-11-04T09:15:18.881928Z", + "shell.execute_reply": "2023-11-04T09:15:18.881311Z" } }, "outputs": [], @@ -596,10 +596,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:25.544121Z", - "iopub.status.busy": "2023-11-02T15:06:25.543453Z", - "iopub.status.idle": "2023-11-02T15:06:25.588954Z", - "shell.execute_reply": "2023-11-02T15:06:25.587833Z" + "iopub.execute_input": "2023-11-04T09:15:18.884316Z", + "iopub.status.busy": "2023-11-04T09:15:18.883970Z", + "iopub.status.idle": "2023-11-04T09:15:18.908524Z", + "shell.execute_reply": "2023-11-04T09:15:18.907894Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:25.594410Z", - "iopub.status.busy": "2023-11-02T15:06:25.594019Z", - "iopub.status.idle": "2023-11-02T15:06:27.916110Z", - "shell.execute_reply": "2023-11-02T15:06:27.914889Z" + "iopub.execute_input": "2023-11-04T09:15:18.911234Z", + "iopub.status.busy": "2023-11-04T09:15:18.910772Z", + "iopub.status.idle": "2023-11-04T09:15:20.194066Z", + "shell.execute_reply": "2023-11-04T09:15:20.193296Z" } }, "outputs": [ @@ -677,10 +677,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:27.921397Z", - "iopub.status.busy": "2023-11-02T15:06:27.920324Z", - "iopub.status.idle": "2023-11-02T15:06:27.949763Z", - "shell.execute_reply": "2023-11-02T15:06:27.948863Z" + "iopub.execute_input": "2023-11-04T09:15:20.197931Z", + "iopub.status.busy": "2023-11-04T09:15:20.197064Z", + "iopub.status.idle": "2023-11-04T09:15:20.222305Z", + "shell.execute_reply": "2023-11-04T09:15:20.221655Z" } }, "outputs": [ @@ -814,10 +814,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:27.953786Z", - "iopub.status.busy": "2023-11-02T15:06:27.953453Z", - "iopub.status.idle": "2023-11-02T15:06:27.968507Z", - "shell.execute_reply": "2023-11-02T15:06:27.967447Z" + "iopub.execute_input": "2023-11-04T09:15:20.225137Z", + "iopub.status.busy": "2023-11-04T09:15:20.224936Z", + "iopub.status.idle": "2023-11-04T09:15:20.232471Z", + "shell.execute_reply": "2023-11-04T09:15:20.231808Z" } }, "outputs": [ @@ -907,10 +907,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:27.973131Z", - "iopub.status.busy": "2023-11-02T15:06:27.972617Z", - "iopub.status.idle": "2023-11-02T15:06:27.986777Z", - "shell.execute_reply": "2023-11-02T15:06:27.985846Z" + "iopub.execute_input": "2023-11-04T09:15:20.235256Z", + "iopub.status.busy": "2023-11-04T09:15:20.234702Z", + "iopub.status.idle": "2023-11-04T09:15:20.241554Z", + "shell.execute_reply": "2023-11-04T09:15:20.241033Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:27.992083Z", - "iopub.status.busy": "2023-11-02T15:06:27.991417Z", - "iopub.status.idle": "2023-11-02T15:06:28.006363Z", - "shell.execute_reply": "2023-11-02T15:06:28.005400Z" + "iopub.execute_input": "2023-11-04T09:15:20.243920Z", + "iopub.status.busy": "2023-11-04T09:15:20.243568Z", + "iopub.status.idle": "2023-11-04T09:15:20.251856Z", + "shell.execute_reply": "2023-11-04T09:15:20.251236Z" } }, "outputs": [ @@ -1122,10 +1122,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:28.011196Z", - "iopub.status.busy": "2023-11-02T15:06:28.010360Z", - "iopub.status.idle": "2023-11-02T15:06:28.026171Z", - "shell.execute_reply": "2023-11-02T15:06:28.025124Z" + "iopub.execute_input": "2023-11-04T09:15:20.254323Z", + "iopub.status.busy": "2023-11-04T09:15:20.253961Z", + "iopub.status.idle": "2023-11-04T09:15:20.263052Z", + "shell.execute_reply": "2023-11-04T09:15:20.262438Z" } }, "outputs": [ @@ -1241,10 +1241,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:28.031342Z", - "iopub.status.busy": "2023-11-02T15:06:28.030876Z", - "iopub.status.idle": "2023-11-02T15:06:28.045613Z", - "shell.execute_reply": "2023-11-02T15:06:28.044677Z" + "iopub.execute_input": "2023-11-04T09:15:20.265491Z", + "iopub.status.busy": "2023-11-04T09:15:20.265107Z", + "iopub.status.idle": "2023-11-04T09:15:20.272528Z", + "shell.execute_reply": "2023-11-04T09:15:20.271906Z" }, "scrolled": true }, @@ -1357,10 +1357,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:28.049709Z", - "iopub.status.busy": "2023-11-02T15:06:28.049342Z", - "iopub.status.idle": "2023-11-02T15:06:28.070099Z", - "shell.execute_reply": "2023-11-02T15:06:28.068752Z" + "iopub.execute_input": "2023-11-04T09:15:20.274914Z", + "iopub.status.busy": "2023-11-04T09:15:20.274557Z", + "iopub.status.idle": "2023-11-04T09:15:20.284596Z", + "shell.execute_reply": "2023-11-04T09:15:20.284062Z" } }, "outputs": [ diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 1b734feb4..70d680f35 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:33.982201Z", - "iopub.status.busy": "2023-11-02T15:06:33.981672Z", - "iopub.status.idle": "2023-11-02T15:06:35.602631Z", - "shell.execute_reply": "2023-11-02T15:06:35.601305Z" + "iopub.execute_input": "2023-11-04T09:15:25.403036Z", + "iopub.status.busy": "2023-11-04T09:15:25.402600Z", + "iopub.status.idle": "2023-11-04T09:15:26.380869Z", + "shell.execute_reply": "2023-11-04T09:15:26.380242Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:35.607678Z", - "iopub.status.busy": "2023-11-02T15:06:35.606748Z", - "iopub.status.idle": "2023-11-02T15:06:35.699828Z", - "shell.execute_reply": "2023-11-02T15:06:35.698417Z" + "iopub.execute_input": "2023-11-04T09:15:26.383744Z", + "iopub.status.busy": "2023-11-04T09:15:26.383447Z", + "iopub.status.idle": "2023-11-04T09:15:26.404461Z", + "shell.execute_reply": "2023-11-04T09:15:26.403961Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:35.704487Z", - "iopub.status.busy": "2023-11-02T15:06:35.704181Z", - "iopub.status.idle": "2023-11-02T15:06:35.965732Z", - "shell.execute_reply": "2023-11-02T15:06:35.964728Z" + "iopub.execute_input": "2023-11-04T09:15:26.406980Z", + "iopub.status.busy": "2023-11-04T09:15:26.406632Z", + "iopub.status.idle": "2023-11-04T09:15:26.579722Z", + "shell.execute_reply": "2023-11-04T09:15:26.579085Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:35.969664Z", - "iopub.status.busy": "2023-11-02T15:06:35.969373Z", - "iopub.status.idle": "2023-11-02T15:06:35.974881Z", - "shell.execute_reply": "2023-11-02T15:06:35.973936Z" + "iopub.execute_input": "2023-11-04T09:15:26.582067Z", + "iopub.status.busy": "2023-11-04T09:15:26.581864Z", + "iopub.status.idle": "2023-11-04T09:15:26.585645Z", + "shell.execute_reply": "2023-11-04T09:15:26.585033Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:35.978814Z", - "iopub.status.busy": "2023-11-02T15:06:35.978480Z", - "iopub.status.idle": "2023-11-02T15:06:35.991284Z", - "shell.execute_reply": "2023-11-02T15:06:35.990358Z" + "iopub.execute_input": "2023-11-04T09:15:26.587981Z", + "iopub.status.busy": "2023-11-04T09:15:26.587641Z", + "iopub.status.idle": "2023-11-04T09:15:26.596004Z", + "shell.execute_reply": "2023-11-04T09:15:26.595528Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:35.995571Z", - "iopub.status.busy": "2023-11-02T15:06:35.995226Z", - "iopub.status.idle": "2023-11-02T15:06:35.999637Z", - "shell.execute_reply": "2023-11-02T15:06:35.998739Z" + "iopub.execute_input": "2023-11-04T09:15:26.598476Z", + "iopub.status.busy": "2023-11-04T09:15:26.598127Z", + "iopub.status.idle": "2023-11-04T09:15:26.600892Z", + "shell.execute_reply": "2023-11-04T09:15:26.600300Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:36.003487Z", - "iopub.status.busy": "2023-11-02T15:06:36.003206Z", - "iopub.status.idle": "2023-11-02T15:06:43.684004Z", - "shell.execute_reply": "2023-11-02T15:06:43.682957Z" + "iopub.execute_input": "2023-11-04T09:15:26.603407Z", + "iopub.status.busy": "2023-11-04T09:15:26.603049Z", + "iopub.status.idle": "2023-11-04T09:15:30.200212Z", + "shell.execute_reply": "2023-11-04T09:15:30.199590Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:43.689242Z", - "iopub.status.busy": "2023-11-02T15:06:43.688272Z", - "iopub.status.idle": "2023-11-02T15:06:43.702508Z", - "shell.execute_reply": "2023-11-02T15:06:43.701693Z" + "iopub.execute_input": "2023-11-04T09:15:30.203433Z", + "iopub.status.busy": "2023-11-04T09:15:30.203003Z", + "iopub.status.idle": "2023-11-04T09:15:30.212845Z", + "shell.execute_reply": "2023-11-04T09:15:30.212359Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:43.707192Z", - "iopub.status.busy": "2023-11-02T15:06:43.706149Z", - "iopub.status.idle": "2023-11-02T15:06:46.097100Z", - "shell.execute_reply": "2023-11-02T15:06:46.095686Z" + "iopub.execute_input": "2023-11-04T09:15:30.215238Z", + "iopub.status.busy": "2023-11-04T09:15:30.214872Z", + "iopub.status.idle": "2023-11-04T09:15:31.528074Z", + "shell.execute_reply": "2023-11-04T09:15:31.527345Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:46.103692Z", - "iopub.status.busy": "2023-11-02T15:06:46.102835Z", - "iopub.status.idle": "2023-11-02T15:06:46.141276Z", - "shell.execute_reply": "2023-11-02T15:06:46.140380Z" + "iopub.execute_input": "2023-11-04T09:15:31.532578Z", + "iopub.status.busy": "2023-11-04T09:15:31.531041Z", + "iopub.status.idle": "2023-11-04T09:15:31.555292Z", + "shell.execute_reply": "2023-11-04T09:15:31.554701Z" }, "scrolled": true }, @@ -602,10 +602,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:46.147666Z", - "iopub.status.busy": "2023-11-02T15:06:46.145839Z", - "iopub.status.idle": "2023-11-02T15:06:46.164279Z", - "shell.execute_reply": "2023-11-02T15:06:46.163393Z" + "iopub.execute_input": "2023-11-04T09:15:31.559657Z", + "iopub.status.busy": "2023-11-04T09:15:31.558523Z", + "iopub.status.idle": "2023-11-04T09:15:31.571002Z", + "shell.execute_reply": "2023-11-04T09:15:31.570416Z" } }, "outputs": [ @@ -709,10 +709,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:46.170493Z", - "iopub.status.busy": "2023-11-02T15:06:46.168974Z", - "iopub.status.idle": "2023-11-02T15:06:46.188996Z", - "shell.execute_reply": "2023-11-02T15:06:46.188149Z" + "iopub.execute_input": "2023-11-04T09:15:31.575269Z", + "iopub.status.busy": "2023-11-04T09:15:31.574145Z", + "iopub.status.idle": "2023-11-04T09:15:31.588421Z", + "shell.execute_reply": "2023-11-04T09:15:31.587848Z" } }, "outputs": [ @@ -841,10 +841,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:46.197784Z", - "iopub.status.busy": "2023-11-02T15:06:46.196078Z", - "iopub.status.idle": "2023-11-02T15:06:46.213774Z", - "shell.execute_reply": "2023-11-02T15:06:46.212928Z" + "iopub.execute_input": "2023-11-04T09:15:31.592729Z", + "iopub.status.busy": "2023-11-04T09:15:31.591609Z", + "iopub.status.idle": "2023-11-04T09:15:31.604074Z", + "shell.execute_reply": "2023-11-04T09:15:31.603486Z" } }, "outputs": [ @@ -958,10 +958,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:46.219808Z", - "iopub.status.busy": "2023-11-02T15:06:46.218365Z", - "iopub.status.idle": "2023-11-02T15:06:46.238073Z", - "shell.execute_reply": "2023-11-02T15:06:46.237140Z" + "iopub.execute_input": "2023-11-04T09:15:31.608346Z", + "iopub.status.busy": "2023-11-04T09:15:31.607235Z", + "iopub.status.idle": "2023-11-04T09:15:31.620610Z", + "shell.execute_reply": "2023-11-04T09:15:31.620088Z" } }, "outputs": [ @@ -1072,10 +1072,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:46.242777Z", - "iopub.status.busy": "2023-11-02T15:06:46.242222Z", - "iopub.status.idle": "2023-11-02T15:06:46.256012Z", - "shell.execute_reply": "2023-11-02T15:06:46.255018Z" + "iopub.execute_input": "2023-11-04T09:15:31.623160Z", + "iopub.status.busy": "2023-11-04T09:15:31.622793Z", + "iopub.status.idle": "2023-11-04T09:15:31.631056Z", + "shell.execute_reply": "2023-11-04T09:15:31.630441Z" } }, "outputs": [ @@ -1159,10 +1159,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:46.261449Z", - "iopub.status.busy": "2023-11-02T15:06:46.260868Z", - "iopub.status.idle": "2023-11-02T15:06:46.276389Z", - "shell.execute_reply": "2023-11-02T15:06:46.275391Z" + "iopub.execute_input": "2023-11-04T09:15:31.633521Z", + "iopub.status.busy": "2023-11-04T09:15:31.633146Z", + "iopub.status.idle": "2023-11-04T09:15:31.640048Z", + "shell.execute_reply": "2023-11-04T09:15:31.639432Z" } }, "outputs": [ @@ -1246,10 +1246,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:46.280975Z", - "iopub.status.busy": "2023-11-02T15:06:46.280466Z", - "iopub.status.idle": "2023-11-02T15:06:46.294388Z", - "shell.execute_reply": "2023-11-02T15:06:46.293317Z" + "iopub.execute_input": "2023-11-04T09:15:31.642412Z", + "iopub.status.busy": "2023-11-04T09:15:31.642216Z", + "iopub.status.idle": "2023-11-04T09:15:31.649233Z", + "shell.execute_reply": "2023-11-04T09:15:31.648670Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 9df91a185..dc44b46d1 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:51.481971Z", - "iopub.status.busy": "2023-11-02T15:06:51.481669Z", - "iopub.status.idle": "2023-11-02T15:06:55.748996Z", - "shell.execute_reply": "2023-11-02T15:06:55.747845Z" + "iopub.execute_input": "2023-11-04T09:15:36.553680Z", + "iopub.status.busy": "2023-11-04T09:15:36.553479Z", + "iopub.status.idle": "2023-11-04T09:15:38.717664Z", + "shell.execute_reply": "2023-11-04T09:15:38.717078Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "236cdd64e2ec4826bf5499162ff0fce7", + "model_id": "f3f34222ca7043c4b136a6e5ef95924b", "version_major": 2, "version_minor": 0 }, @@ -118,7 +118,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:55.753700Z", - "iopub.status.busy": "2023-11-02T15:06:55.753204Z", - "iopub.status.idle": "2023-11-02T15:06:55.765076Z", - "shell.execute_reply": "2023-11-02T15:06:55.764037Z" + "iopub.execute_input": "2023-11-04T09:15:38.720624Z", + "iopub.status.busy": "2023-11-04T09:15:38.720146Z", + "iopub.status.idle": "2023-11-04T09:15:38.723637Z", + "shell.execute_reply": "2023-11-04T09:15:38.723114Z" } }, "outputs": [], @@ -167,10 +167,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:55.769453Z", - "iopub.status.busy": "2023-11-02T15:06:55.768997Z", - "iopub.status.idle": "2023-11-02T15:06:55.773743Z", - "shell.execute_reply": "2023-11-02T15:06:55.772862Z" + "iopub.execute_input": "2023-11-04T09:15:38.726110Z", + "iopub.status.busy": "2023-11-04T09:15:38.725697Z", + "iopub.status.idle": "2023-11-04T09:15:38.729243Z", + "shell.execute_reply": "2023-11-04T09:15:38.728617Z" }, "nbsphinx": "hidden" }, @@ -200,10 +200,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:55.777670Z", - "iopub.status.busy": "2023-11-02T15:06:55.777342Z", - "iopub.status.idle": "2023-11-02T15:06:55.924863Z", - "shell.execute_reply": "2023-11-02T15:06:55.923726Z" + "iopub.execute_input": "2023-11-04T09:15:38.731648Z", + "iopub.status.busy": "2023-11-04T09:15:38.731207Z", + "iopub.status.idle": "2023-11-04T09:15:38.783437Z", + "shell.execute_reply": "2023-11-04T09:15:38.782845Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:55.930337Z", - "iopub.status.busy": "2023-11-02T15:06:55.929880Z", - "iopub.status.idle": "2023-11-02T15:06:55.937958Z", - "shell.execute_reply": "2023-11-02T15:06:55.936649Z" + "iopub.execute_input": "2023-11-04T09:15:38.785843Z", + "iopub.status.busy": "2023-11-04T09:15:38.785463Z", + "iopub.status.idle": "2023-11-04T09:15:38.789711Z", + "shell.execute_reply": "2023-11-04T09:15:38.789080Z" } }, "outputs": [ @@ -305,7 +305,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'cancel_transfer', 'beneficiary_not_allowed', 'visa_or_mastercard', 'card_payment_fee_charged', 'getting_spare_card', 'lost_or_stolen_phone', 'change_pin', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'card_about_to_expire'}\n" + "Classes: {'card_about_to_expire', 'lost_or_stolen_phone', 'change_pin', 'card_payment_fee_charged', 'cancel_transfer', 'beneficiary_not_allowed', 'getting_spare_card', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'supported_cards_and_currencies'}\n" ] } ], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:55.943907Z", - "iopub.status.busy": "2023-11-02T15:06:55.943412Z", - "iopub.status.idle": "2023-11-02T15:06:55.949964Z", - "shell.execute_reply": "2023-11-02T15:06:55.948808Z" + "iopub.execute_input": "2023-11-04T09:15:38.792080Z", + "iopub.status.busy": "2023-11-04T09:15:38.791619Z", + "iopub.status.idle": "2023-11-04T09:15:38.795303Z", + "shell.execute_reply": "2023-11-04T09:15:38.794713Z" } }, "outputs": [ @@ -387,17 +387,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:55.956224Z", - "iopub.status.busy": "2023-11-02T15:06:55.955612Z", - "iopub.status.idle": "2023-11-02T15:07:03.427101Z", - "shell.execute_reply": "2023-11-02T15:07:03.426018Z" + "iopub.execute_input": "2023-11-04T09:15:38.797681Z", + "iopub.status.busy": "2023-11-04T09:15:38.797467Z", + "iopub.status.idle": "2023-11-04T09:15:48.120248Z", + "shell.execute_reply": "2023-11-04T09:15:48.119503Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ccd2ff966a224331ba87576dc1b583cb", + "model_id": "e511e2ae0df34b0785f65d2d9896abbd", "version_major": 2, "version_minor": 0 }, @@ -411,7 +411,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6f3fdd1e44734a38a1e4e79af6e724bc", + "model_id": "188508a8bb914f0181fd7770d36add4b", "version_major": 2, "version_minor": 0 }, @@ -425,7 +425,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2fbd72a11b38422db8cc2b7b6ea3c24f", + "model_id": "ab0236503c4244ca89641b8946acd4f5", "version_major": 2, "version_minor": 0 }, @@ -439,7 +439,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f035475e4b9d4449ae283a09b15d99e4", + "model_id": "f6de89c6c65341eabdf9febce459d412", "version_major": 2, "version_minor": 0 }, @@ -453,7 +453,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "514ddf8139274a3a9647d84cd184ac47", + "model_id": "b019f05692624c239026d8862df67d84", "version_major": 2, "version_minor": 0 }, @@ -467,7 +467,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f9fb3e20f3e343ae855437a44c7793f2", + "model_id": "8aa91303345c41398c3fe82ad1a2d93f", "version_major": 2, "version_minor": 0 }, @@ -481,7 +481,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "034f1b3e40334552b37a430a3d2ea02f", + "model_id": "6fa8eb2588e84204b9588758d6cb0cc3", "version_major": 2, "version_minor": 0 }, @@ -535,10 +535,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:03.433864Z", - "iopub.status.busy": "2023-11-02T15:07:03.433293Z", - "iopub.status.idle": "2023-11-02T15:07:05.389023Z", - "shell.execute_reply": "2023-11-02T15:07:05.388046Z" + "iopub.execute_input": "2023-11-04T09:15:48.123910Z", + "iopub.status.busy": "2023-11-04T09:15:48.123413Z", + "iopub.status.idle": "2023-11-04T09:15:49.349084Z", + "shell.execute_reply": "2023-11-04T09:15:49.348422Z" }, "scrolled": true }, @@ -570,10 +570,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:05.396370Z", - "iopub.status.busy": "2023-11-02T15:07:05.394793Z", - "iopub.status.idle": "2023-11-02T15:07:05.399700Z", - "shell.execute_reply": "2023-11-02T15:07:05.398941Z" + "iopub.execute_input": "2023-11-04T09:15:49.353971Z", + "iopub.status.busy": "2023-11-04T09:15:49.352688Z", + "iopub.status.idle": "2023-11-04T09:15:49.357278Z", + "shell.execute_reply": "2023-11-04T09:15:49.356729Z" } }, "outputs": [], @@ -593,10 +593,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:05.404601Z", - "iopub.status.busy": "2023-11-02T15:07:05.403184Z", - "iopub.status.idle": "2023-11-02T15:07:07.655074Z", - "shell.execute_reply": "2023-11-02T15:07:07.653952Z" + "iopub.execute_input": "2023-11-04T09:15:49.361358Z", + "iopub.status.busy": "2023-11-04T09:15:49.360294Z", + "iopub.status.idle": "2023-11-04T09:15:50.689128Z", + "shell.execute_reply": "2023-11-04T09:15:50.688381Z" }, "scrolled": true }, @@ -638,10 +638,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:07.661548Z", - "iopub.status.busy": "2023-11-02T15:07:07.660400Z", - "iopub.status.idle": "2023-11-02T15:07:07.694205Z", - "shell.execute_reply": "2023-11-02T15:07:07.693039Z" + "iopub.execute_input": "2023-11-04T09:15:50.692733Z", + "iopub.status.busy": "2023-11-04T09:15:50.692045Z", + "iopub.status.idle": "2023-11-04T09:15:50.722637Z", + "shell.execute_reply": "2023-11-04T09:15:50.722038Z" }, "scrolled": true }, @@ -675,9 +675,9 @@ " is_label_issue label_score given_label predicted_label\n", "981 True 0.000005 card_about_to_expire card_payment_fee_charged\n", "974 True 0.000150 beneficiary_not_allowed change_pin\n", - "982 True 0.000220 apple_pay_or_google_pay card_about_to_expire\n", - "971 True 0.000511 beneficiary_not_allowed change_pin\n", - "980 True 0.000948 card_about_to_expire card_payment_fee_charged\n", + "982 True 0.000218 apple_pay_or_google_pay card_about_to_expire\n", + "971 True 0.000512 beneficiary_not_allowed change_pin\n", + "980 True 0.000947 card_about_to_expire card_payment_fee_charged\n", "\n", "\n", "---------------------- outlier issues ----------------------\n", @@ -718,7 +718,7 @@ "148 True 0.006237 [160] 0.006237\n", "546 True 0.006485 [514] 0.006485\n", "514 True 0.006485 [546] 0.006485\n", - "481 False 0.008164 [] 0.008165\n", + "481 False 0.008165 [] 0.008165\n", "\n", "\n", "---------------------- non_iid issues ----------------------\n", @@ -766,10 +766,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:07.699189Z", - "iopub.status.busy": "2023-11-02T15:07:07.698797Z", - "iopub.status.idle": "2023-11-02T15:07:07.715950Z", - "shell.execute_reply": "2023-11-02T15:07:07.714943Z" + "iopub.execute_input": "2023-11-04T09:15:50.725572Z", + "iopub.status.busy": "2023-11-04T09:15:50.725133Z", + "iopub.status.idle": "2023-11-04T09:15:50.735612Z", + "shell.execute_reply": "2023-11-04T09:15:50.735040Z" }, "scrolled": true }, @@ -805,35 +805,35 @@ " \n", " 0\n", " False\n", - " 0.792019\n", + " 0.791961\n", " cancel_transfer\n", " cancel_transfer\n", " \n", " \n", " 1\n", " False\n", - " 0.258451\n", + " 0.258508\n", " cancel_transfer\n", " cancel_transfer\n", " \n", " \n", " 2\n", " False\n", - " 0.698890\n", + " 0.699010\n", " cancel_transfer\n", " cancel_transfer\n", " \n", " \n", " 3\n", " False\n", - " 0.183006\n", + " 0.183136\n", " cancel_transfer\n", " apple_pay_or_google_pay\n", " \n", " \n", " 4\n", " False\n", - " 0.771030\n", + " 0.771112\n", " cancel_transfer\n", " cancel_transfer\n", " \n", @@ -843,11 +843,11 @@ ], "text/plain": [ " is_label_issue label_score given_label predicted_label\n", - "0 False 0.792019 cancel_transfer cancel_transfer\n", - "1 False 0.258451 cancel_transfer cancel_transfer\n", - "2 False 0.698890 cancel_transfer cancel_transfer\n", - "3 False 0.183006 cancel_transfer apple_pay_or_google_pay\n", - "4 False 0.771030 cancel_transfer cancel_transfer" + "0 False 0.791961 cancel_transfer cancel_transfer\n", + "1 False 0.258508 cancel_transfer cancel_transfer\n", + "2 False 0.699010 cancel_transfer cancel_transfer\n", + "3 False 0.183136 cancel_transfer apple_pay_or_google_pay\n", + "4 False 0.771112 cancel_transfer cancel_transfer" ] }, "execution_count": 12, @@ -879,10 +879,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:07.720812Z", - "iopub.status.busy": "2023-11-02T15:07:07.720503Z", - "iopub.status.idle": "2023-11-02T15:07:07.729293Z", - "shell.execute_reply": "2023-11-02T15:07:07.728533Z" + "iopub.execute_input": "2023-11-04T09:15:50.738566Z", + "iopub.status.busy": "2023-11-04T09:15:50.738130Z", + "iopub.status.idle": "2023-11-04T09:15:50.743326Z", + "shell.execute_reply": "2023-11-04T09:15:50.742752Z" } }, "outputs": [ @@ -920,10 +920,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:07.732985Z", - "iopub.status.busy": "2023-11-02T15:07:07.732523Z", - "iopub.status.idle": "2023-11-02T15:07:07.743470Z", - "shell.execute_reply": "2023-11-02T15:07:07.742677Z" + "iopub.execute_input": "2023-11-04T09:15:50.746213Z", + "iopub.status.busy": "2023-11-04T09:15:50.745782Z", + "iopub.status.idle": "2023-11-04T09:15:50.752734Z", + "shell.execute_reply": "2023-11-04T09:15:50.752281Z" } }, "outputs": [ @@ -1040,10 +1040,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:07.747385Z", - "iopub.status.busy": "2023-11-02T15:07:07.746914Z", - "iopub.status.idle": "2023-11-02T15:07:07.757616Z", - "shell.execute_reply": "2023-11-02T15:07:07.756572Z" + "iopub.execute_input": "2023-11-04T09:15:50.754979Z", + "iopub.status.busy": "2023-11-04T09:15:50.754645Z", + "iopub.status.idle": "2023-11-04T09:15:50.760689Z", + "shell.execute_reply": "2023-11-04T09:15:50.760231Z" } }, "outputs": [ @@ -1126,10 +1126,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:07.761190Z", - "iopub.status.busy": "2023-11-02T15:07:07.760749Z", - "iopub.status.idle": "2023-11-02T15:07:07.770098Z", - "shell.execute_reply": "2023-11-02T15:07:07.769368Z" + "iopub.execute_input": "2023-11-04T09:15:50.762834Z", + "iopub.status.busy": "2023-11-04T09:15:50.762501Z", + "iopub.status.idle": "2023-11-04T09:15:50.768106Z", + "shell.execute_reply": "2023-11-04T09:15:50.767656Z" } }, "outputs": [ @@ -1237,10 +1237,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:07.774559Z", - "iopub.status.busy": "2023-11-02T15:07:07.773594Z", - "iopub.status.idle": "2023-11-02T15:07:07.789667Z", - "shell.execute_reply": "2023-11-02T15:07:07.788852Z" + "iopub.execute_input": "2023-11-04T09:15:50.770332Z", + "iopub.status.busy": "2023-11-04T09:15:50.769995Z", + "iopub.status.idle": "2023-11-04T09:15:50.778402Z", + "shell.execute_reply": "2023-11-04T09:15:50.777940Z" } }, "outputs": [ @@ -1303,7 +1303,7 @@ " \n", " 481\n", " False\n", - " 0.008164\n", + " 0.008165\n", " []\n", " 0.008165\n", " \n", @@ -1317,7 +1317,7 @@ "148 True 0.006237 [160] \n", "546 True 0.006485 [514] \n", "514 True 0.006485 [546] \n", - "481 False 0.008164 [] \n", + "481 False 0.008165 [] \n", "\n", " distance_to_nearest_neighbor \n", "160 0.006237 \n", @@ -1351,10 +1351,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:07.793374Z", - "iopub.status.busy": "2023-11-02T15:07:07.792816Z", - "iopub.status.idle": "2023-11-02T15:07:07.805132Z", - "shell.execute_reply": "2023-11-02T15:07:07.803987Z" + "iopub.execute_input": "2023-11-04T09:15:50.780572Z", + "iopub.status.busy": "2023-11-04T09:15:50.780238Z", + "iopub.status.idle": "2023-11-04T09:15:50.785420Z", + "shell.execute_reply": "2023-11-04T09:15:50.784959Z" } }, "outputs": [ @@ -1422,10 +1422,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:07.810343Z", - "iopub.status.busy": "2023-11-02T15:07:07.809776Z", - "iopub.status.idle": "2023-11-02T15:07:07.822393Z", - "shell.execute_reply": "2023-11-02T15:07:07.821590Z" + "iopub.execute_input": "2023-11-04T09:15:50.787416Z", + "iopub.status.busy": "2023-11-04T09:15:50.787215Z", + "iopub.status.idle": "2023-11-04T09:15:50.793173Z", + "shell.execute_reply": "2023-11-04T09:15:50.792641Z" } }, "outputs": [ @@ -1503,10 +1503,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:07.828212Z", - "iopub.status.busy": "2023-11-02T15:07:07.826681Z", - "iopub.status.idle": "2023-11-02T15:07:07.837224Z", - "shell.execute_reply": "2023-11-02T15:07:07.836227Z" + "iopub.execute_input": "2023-11-04T09:15:50.795712Z", + "iopub.status.busy": "2023-11-04T09:15:50.795316Z", + "iopub.status.idle": "2023-11-04T09:15:50.800957Z", + "shell.execute_reply": "2023-11-04T09:15:50.800329Z" }, "nbsphinx": "hidden" }, @@ -1556,45 +1556,31 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "034f1b3e40334552b37a430a3d2ea02f": { + "03cacde467a6494ca2fb5df15e83efff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4c8d99730b2046d688824649b95eb6de", - "IPY_MODEL_a7bcf9a0d60841b1a385d0d58d2ee7f0", - "IPY_MODEL_5285cec6f7de4479b58ee4a0a881edab" - ], - "layout": "IPY_MODEL_87d0dba21ae6410487b719c2af0827dc" - } - }, - "05051d9d023240a6bcd15d6a36ddfb70": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_df094d0493cb4a55854c38c6cacd18e1", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_db86b74660e349ce8b17c24e6725b3f9", + "value": 466062.0 } }, - "098c17c0cf9340548b89054b731f1c2f": { + "0b25d2fdb52c4e99b30f6dc16e31c863": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1609,23 +1595,7 @@ "description_width": "" } }, - "0a71d8789af04031b5681cd97fbe2c46": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0e582d959e804877a93770fc3bfcd091": { + "0da48297bbce46fe847e470bf8a67376": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1677,7 +1647,7 @@ "width": null } }, - "0f8b89dc78b84de6a9f0c580fbb9b360": { + "0f392776020d40868b822524f8cdab8a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1729,7 +1699,71 @@ "width": null } }, - "117a27f5d28e409083c9741b2cde4136": { + "1805a093cbc449dc9768c3ea04ab4e4a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a2402c5b8e5e4fa19c08f857a9ed4162", + "placeholder": "​", + "style": "IPY_MODEL_88fe63ac6a8b42c7948d72534d01901d", + "value": " 29.0/29.0 [00:00<00:00, 3.79kB/s]" + } + }, + "188508a8bb914f0181fd7770d36add4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a5f855a7a4a546128c981d9a6df81bbc", + "IPY_MODEL_88a12fad03de42ea83199e23c9adde7f", + "IPY_MODEL_309d945318554b0b95fde0c37b02b85f" + ], + "layout": "IPY_MODEL_4705ba6245a54242b73386cc6e0d32ad" + } + }, + "1a367d19abaf4382a515dfb3561dce0a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_49c3f16d063e47ec91a4e49f3e8d58de", + "placeholder": "​", + "style": "IPY_MODEL_b7ba9e60aa1145988e90c6306abfeac5", + "value": " 466k/466k [00:00<00:00, 23.4MB/s]" + } + }, + "1c704884c8a94b64ad5993fb1e4b8eb9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1781,7 +1815,22 @@ "width": null } }, - "20c5c407f21744a8aee83fdfb72cb2e4": { + "1ec4a362022147e38f33d23f63e809c9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "25f276b03d184f81a9499a6239b23e91": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1833,44 +1882,28 @@ "width": null } }, - "2337422244a64ebc88af39bbe71386a3": { + "309d945318554b0b95fde0c37b02b85f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "236cdd64e2ec4826bf5499162ff0fce7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8b6d3d9852db45c49305584e23db0291", - "IPY_MODEL_e9710b082f4548faada92281745b6890", - "IPY_MODEL_b872796ad1084122aa115d874d8d9125" - ], - "layout": "IPY_MODEL_5dabef6f2823414cb4e327f5820ad04a" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1c704884c8a94b64ad5993fb1e4b8eb9", + "placeholder": "​", + "style": "IPY_MODEL_901ef5ec3ddd48f59ea9eb99f2c401bc", + "value": " 2.21k/2.21k [00:00<00:00, 297kB/s]" } }, - "279c5f57020045a59d56111d0f9a2e94": { + "33ac3ec641344d22a524f7d59b7e1933": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1922,22 +1955,23 @@ "width": null } }, - "28eca70b3df648ab9605d0f53b5e6dec": { + "33f0dd962a074885a899876a0989cbce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "2d36925735ed482f866821e85d3a4e63": { + "344ad37b80d2497eb4bb64287f85a859": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1989,44 +2023,28 @@ "width": null } }, - "2ee4005ec2e042edbc508658b8c1a3d3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2fbd72a11b38422db8cc2b7b6ea3c24f": { + "3630c50baa1c4b559f36a26f1651f6cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_37773132021d4cdd8743f02ed818d82b", - "IPY_MODEL_d2fa511c49cc4a5fa25085589248d050", - "IPY_MODEL_cf29f459fafe45b4a819825a641e1359" - ], - "layout": "IPY_MODEL_84d5ba7382ba49f8878589e059c7ac0d" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f54671bf7cd048759cf1a05a097f8f91", + "placeholder": "​", + "style": "IPY_MODEL_85b9ab16a7b04dd1b46cb9da73cbbb46", + "value": " 391/391 [00:00<00:00, 50.7kB/s]" } }, - "32eb4d0d8cf149c19c681ed767c14d9f": { + "37764ce857834b429e27911ac70d4f35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2041,7 +2059,7 @@ "description_width": "" } }, - "35d5497a88534d78bbfa7aa63d54feb7": { + "3bf3177965b742db94617c3fd9af1474": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -2057,36 +2075,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_82fb5dc124fb4723b365edfe2a9ff3ce", + "layout": "IPY_MODEL_8e4e9b300e66427692bfabbb2b93c843", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_97ce6711eb7140e69701c74b9e6b1a40", + "style": "IPY_MODEL_8520280fe61741e8a9582c3690854f9b", "value": 54245363.0 } }, - "37773132021d4cdd8743f02ed818d82b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_49d66db81ac7443abd26b6a5725ede88", - "placeholder": "​", - "style": "IPY_MODEL_28eca70b3df648ab9605d0f53b5e6dec", - "value": "Downloading (…)c41af769/config.json: 100%" - } - }, - "380d5964772b4055b89b6d2d2f5ef466": { + "3e6e44896553489b80bf1d421a67c5ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2138,7 +2135,7 @@ "width": null } }, - "3cc9899a243a4f04b900abb35a68e3f2": { + "43d9b8a67cec40c9bb1ba9f1bc782fc5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -2154,15 +2151,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a1dbe03f339e42a5a966590326ee0a7d", - "max": 391.0, + "layout": "IPY_MODEL_9c0133a7b4f84df49ec828706c20d794", + "max": 29.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_05051d9d023240a6bcd15d6a36ddfb70", - "value": 391.0 + "style": "IPY_MODEL_d7854ec753c84d19927de7f8bcc568a6", + "value": 29.0 } }, - "3fd520af59114092ad36a5d5ed38ec72": { + "45c79ca14ec34159b24ea9a4d694350b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2214,7 +2211,37 @@ "width": null } }, - "444828f530db4036a932d9124c1e2b8b": { + "45de78505d284205b6309110bc167ff8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "46c6bff39f924e3797f6638384a7d7d6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4705ba6245a54242b73386cc6e0d32ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2266,7 +2293,7 @@ "width": null } }, - "44e7906cb4ef49c588fe5579dce66d97": { + "4947b2a8b634400f88577379802fc024": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2315,42 +2342,10 @@ "right": null, "top": null, "visibility": null, - "width": null - } - }, - "4552db17365b47cba277c93ebc2e4ef7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "467088b2088b4be8807cbf8d8e2f157c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "width": "20px" } }, - "491e9b14cb93454eb723fccfd8520346": { + "49c3f16d063e47ec91a4e49f3e8d58de": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2402,80 +2397,23 @@ "width": null } }, - "49d66db81ac7443abd26b6a5725ede88": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4c8d99730b2046d688824649b95eb6de": { + "527ea75cd58d407eb0b876be622e8959": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_20c5c407f21744a8aee83fdfb72cb2e4", - "placeholder": "​", - "style": "IPY_MODEL_b9cb1799f90347edbcb55fd70b3bf155", - "value": "Downloading (…)e3c41af769/vocab.txt: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "5020757f57c94b2b8bd9cd6af131cbe2": { + "529155445d4d4a648aa54b15f6c842b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2490,35 +2428,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_380d5964772b4055b89b6d2d2f5ef466", + "layout": "IPY_MODEL_f1225ab3146b40e1ba0df4130b56feef", "placeholder": "​", - "style": "IPY_MODEL_ea0b3922b6214456b0864f4b94ed9017", - "value": " 2.21k/2.21k [00:00<00:00, 165kB/s]" - } - }, - "514ddf8139274a3a9647d84cd184ac47": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8a2dc0999af744f9b722ad196650186d", - "IPY_MODEL_dbbc9040f5784046bb39697afb3111a9", - "IPY_MODEL_df611c9c209343eeb7a5e16605f159bd" - ], - "layout": "IPY_MODEL_0f8b89dc78b84de6a9f0c580fbb9b360" + "style": "IPY_MODEL_7f83a66806954f489c1798d3db5195df", + "value": " 232k/232k [00:00<00:00, 24.5MB/s]" } }, - "5271194b221e4cd88daddd3213c68312": { + "55fbe97d085a4dbca1da4bdd8480d787": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2570,28 +2486,7 @@ "width": null } }, - "5285cec6f7de4479b58ee4a0a881edab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0e582d959e804877a93770fc3bfcd091", - "placeholder": "​", - "style": "IPY_MODEL_098c17c0cf9340548b89054b731f1c2f", - "value": " 232k/232k [00:00<00:00, 12.7MB/s]" - } - }, - "533dfdd1970146fa95bec5bed00fd866": { + "67b0f9118ae34424be32ea8f33a72262": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2643,59 +2538,74 @@ "width": null } }, - "591042a596484155a5077f430f37aaf3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "6df247d3c2454afab8e21066f98899a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bacfd782401e4386a771217c36c332ae", + "placeholder": "​", + "style": "IPY_MODEL_fdfeb70759794620aaf2b8fa6cff711f", + "value": " 54.2M/54.2M [00:00<00:00, 249MB/s]" + } + }, + "6fa8eb2588e84204b9588758d6cb0cc3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f41c2d4eb2bd49e0a615438ced52b475", + "IPY_MODEL_a4b7a3c60a884b549cfb06dec33a8aaf", + "IPY_MODEL_529155445d4d4a648aa54b15f6c842b4" + ], + "layout": "IPY_MODEL_bbaa77c8b3fd4de994eea84187723a33" + } + }, + "709095c23e0047369e8c6e24c7b8c4be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cd321ea0f4db4690baaeb819db9b053a", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_527ea75cd58d407eb0b876be622e8959", + "value": 665.0 } }, - "5dabef6f2823414cb4e327f5820ad04a": { + "7923869ef4c64082af45666009319f72": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2747,28 +2657,22 @@ "width": null } }, - "6a11fd274747431b94efa79c09e44a19": { + "7a1b8f889a514f1c95c977cea2673ca5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_71bb5d3a2724446bb875fdb5dfae3dd0", - "placeholder": "​", - "style": "IPY_MODEL_b2e15f11644e426780b3d3ea8560683e", - "value": "Downloading (…)okenizer_config.json: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "6b0bbf8e65b443a6835fe8b58f03869b": { + "7f83a66806954f489c1798d3db5195df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2783,7 +2687,7 @@ "description_width": "" } }, - "6cd5da4ca5b3425c9107749fbd956346": { + "83c3cadf56354371a5194abe91b19dec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2798,29 +2702,23 @@ "description_width": "" } }, - "6f3fdd1e44734a38a1e4e79af6e724bc": { + "8520280fe61741e8a9582c3690854f9b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bbaf238a6e0a4e08a2a5c00f8c5dca2d", - "IPY_MODEL_bdaa3b84c99d441eadd56f65429d276e", - "IPY_MODEL_5020757f57c94b2b8bd9cd6af131cbe2" - ], - "layout": "IPY_MODEL_533dfdd1970146fa95bec5bed00fd866" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "71bb5d3a2724446bb875fdb5dfae3dd0": { + "855404f800454a41b8f2e96d6caefeea": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2872,34 +2770,167 @@ "width": null } }, - "72edc9d5b9164d5d8d667cb8716bc918": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "85b9ab16a7b04dd1b46cb9da73cbbb46": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, + "_view_name": "StyleView", + "description_width": "" + } + }, + "88a12fad03de42ea83199e23c9adde7f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a3f33b047ab845a18d425413108ed1db", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f83571ed1f3546bcb7c5c61c2f7773a1", + "value": 2211.0 + } + }, + "88fe63ac6a8b42c7948d72534d01901d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8926c6d252e345ab80ea5ab1d5752767": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_25f276b03d184f81a9499a6239b23e91", + "placeholder": "​", + "style": "IPY_MODEL_f7b42ce171fd41479b814cd6892cfa8d", + "value": "Downloading (…)okenizer_config.json: 100%" + } + }, + "8a33d6746e084ed3a8103485b4189327": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e6911333fdda494fbd91d3d164b9f91a", + "placeholder": "​", + "style": "IPY_MODEL_45de78505d284205b6309110bc167ff8", + "value": "Downloading (…)af769/.gitattributes: 100%" + } + }, + "8aa91303345c41398c3fe82ad1a2d93f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8926c6d252e345ab80ea5ab1d5752767", + "IPY_MODEL_43d9b8a67cec40c9bb1ba9f1bc782fc5", + "IPY_MODEL_1805a093cbc449dc9768c3ea04ab4e4a" + ], + "layout": "IPY_MODEL_ee2b41f04f01474ca7bdbf79a822309b" + } + }, + "8d91ae5844614198836462023aa6f7b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8e4e9b300e66427692bfabbb2b93c843": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, @@ -2921,10 +2952,62 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null + } + }, + "901ef5ec3ddd48f59ea9eb99f2c401bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "94e59078074f4430b3b512132a65be85": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "95e9baa65e5843c7958dbdd2cf2ca028": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_45c79ca14ec34159b24ea9a4d694350b", + "placeholder": "​", + "style": "IPY_MODEL_0b25d2fdb52c4e99b30f6dc16e31c863", + "value": "Downloading pytorch_model.bin: 100%" } }, - "82fb5dc124fb4723b365edfe2a9ff3ce": { + "9c0133a7b4f84df49ec828706c20d794": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2976,7 +3059,7 @@ "width": null } }, - "84d5ba7382ba49f8878589e059c7ac0d": { + "9cb0e3da5cb34999b815c99923056cd0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3028,7 +3111,7 @@ "width": null } }, - "87d0dba21ae6410487b719c2af0827dc": { + "a2402c5b8e5e4fa19c08f857a9ed4162": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3080,28 +3163,7 @@ "width": null } }, - "8a2dc0999af744f9b722ad196650186d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_44e7906cb4ef49c588fe5579dce66d97", - "placeholder": "​", - "style": "IPY_MODEL_32eb4d0d8cf149c19c681ed767c14d9f", - "value": "Downloading (…)af769/tokenizer.json: 100%" - } - }, - "8b65e8471fd544dd8686fa54b9ce813b": { + "a3f33b047ab845a18d425413108ed1db": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3153,7 +3215,31 @@ "width": null } }, - "8b6d3d9852db45c49305584e23db0291": { + "a4b7a3c60a884b549cfb06dec33a8aaf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_344ad37b80d2497eb4bb64287f85a859", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_94e59078074f4430b3b512132a65be85", + "value": 231508.0 + } + }, + "a5f855a7a4a546128c981d9a6df81bbc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3168,13 +3254,35 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_cc442634d7984394bead06f2391cc0a2", + "layout": "IPY_MODEL_edac81cd3d1340b19486064f2379c65e", "placeholder": "​", - "style": "IPY_MODEL_6cd5da4ca5b3425c9107749fbd956346", - "value": "" + "style": "IPY_MODEL_83c3cadf56354371a5194abe91b19dec", + "value": "Downloading (…)e3c41af769/README.md: 100%" + } + }, + "ab0236503c4244ca89641b8946acd4f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ed2254a0c82e4ead86af4e8ad01300bd", + "IPY_MODEL_709095c23e0047369e8c6e24c7b8c4be", + "IPY_MODEL_d59f43ee28494d5e9276a20af273fc65" + ], + "layout": "IPY_MODEL_b946305d5dcb4b0a8585d02529f14938" } }, - "8ff8a0acfbb7486f88b0925e54cf0422": { + "ac30de3b75c2459aa4f4a6ffdf9346cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3226,23 +3334,29 @@ "width": null } }, - "97ce6711eb7140e69701c74b9e6b1a40": { + "b019f05692624c239026d8862df67d84": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bf8640ae7967495ba4bed196464bb2db", + "IPY_MODEL_03cacde467a6494ca2fb5df15e83efff", + "IPY_MODEL_1a367d19abaf4382a515dfb3561dce0a" + ], + "layout": "IPY_MODEL_3e6e44896553489b80bf1d421a67c5ed" } }, - "9ba71612a3ac4120bf2bc7f27a23a6f2": { + "b0b6f050d10146448e45bd3e7f948a84": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3294,68 +3408,95 @@ "width": null } }, - "9c4be9ab35d047119314d2e762835ccd": { + "b7ba9e60aa1145988e90c6306abfeac5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_279c5f57020045a59d56111d0f9a2e94", - "placeholder": "​", - "style": "IPY_MODEL_e70cdc721e2a4df5a1e62382d4d73b76", - "value": " 29.0/29.0 [00:00<00:00, 2.13kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "9f8d9272b8f640e28529987f6061c450": { + "b8dc82aa552b4c83bcc019f3e4d879e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9ba71612a3ac4120bf2bc7f27a23a6f2", - "max": 29.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e0d010347a7340a6aff30adc733c8a7c", - "value": 29.0 + "layout": "IPY_MODEL_33ac3ec641344d22a524f7d59b7e1933", + "placeholder": "​", + "style": "IPY_MODEL_7a1b8f889a514f1c95c977cea2673ca5", + "value": "" } }, - "9fcb388b68b84fa6b1c551aaeb2e67d7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "b946305d5dcb4b0a8585d02529f14938": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a045511a46ef4c37b41b83cad949e48d": { + "bacfd782401e4386a771217c36c332ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3407,7 +3548,7 @@ "width": null } }, - "a1dbe03f339e42a5a966590326ee0a7d": { + "bbaa77c8b3fd4de994eea84187723a33": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3459,31 +3600,7 @@ "width": null } }, - "a7bcf9a0d60841b1a385d0d58d2ee7f0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3fd520af59114092ad36a5d5ed38ec72", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0a71d8789af04031b5681cd97fbe2c46", - "value": 231508.0 - } - }, - "a8d90567e77c4ad49552f0893acc8fcc": { + "bf8640ae7967495ba4bed196464bb2db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3498,64 +3615,89 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_491e9b14cb93454eb723fccfd8520346", + "layout": "IPY_MODEL_9cb0e3da5cb34999b815c99923056cd0", "placeholder": "​", - "style": "IPY_MODEL_bf8d1165d1ff4808a635ee143d79045d", - "value": "Downloading (…)af769/.gitattributes: 100%" - } - }, - "a9547caaceef4940893694211c7795aa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_8d91ae5844614198836462023aa6f7b3", + "value": "Downloading (…)af769/tokenizer.json: 100%" } }, - "a9cd2636d333460fab20268d011eb4e6": { + "c359d87f7a094597a2eca7e9394d623e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8b65e8471fd544dd8686fa54b9ce813b", - "placeholder": "​", - "style": "IPY_MODEL_2337422244a64ebc88af39bbe71386a3", - "value": " 391/391 [00:00<00:00, 25.8kB/s]" + "layout": "IPY_MODEL_4947b2a8b634400f88577379802fc024", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ffb051730bc242d5bcf7b74b192a5dc6", + "value": 0.0 } }, - "b2e15f11644e426780b3d3ea8560683e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "cd321ea0f4db4690baaeb819db9b053a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b872796ad1084122aa115d874d8d9125": { + "d59f43ee28494d5e9276a20af273fc65": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3570,88 +3712,45 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ec8c0dec281e46fc85214e3400d7ff41", + "layout": "IPY_MODEL_855404f800454a41b8f2e96d6caefeea", "placeholder": "​", - "style": "IPY_MODEL_f964ce7cd5624f01b2b556f541dd8526", - "value": " 0/0 [00:00<?, ?it/s]" + "style": "IPY_MODEL_46c6bff39f924e3797f6638384a7d7d6", + "value": " 665/665 [00:00<00:00, 87.9kB/s]" } }, - "b9cb1799f90347edbcb55fd70b3bf155": { + "d7854ec753c84d19927de7f8bcc568a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "bbaf238a6e0a4e08a2a5c00f8c5dca2d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f3d39f8634f14dddaab567001084f9f2", - "placeholder": "​", - "style": "IPY_MODEL_cd0e070e34bd474490f982d6c2208a0a", - "value": "Downloading (…)e3c41af769/README.md: 100%" - } - }, - "bdaa3b84c99d441eadd56f65429d276e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a045511a46ef4c37b41b83cad949e48d", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f4315c54796d469494e41dcb5cf9d162", - "value": 2211.0 - } - }, - "bf8d1165d1ff4808a635ee143d79045d": { + "db86b74660e349ce8b17c24e6725b3f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "c4c625e47dae4a1cbb4ae76f0ce45b26": { + "df094d0493cb4a55854c38c6cacd18e1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3703,7 +3802,29 @@ "width": null } }, - "cc442634d7984394bead06f2391cc0a2": { + "e511e2ae0df34b0785f65d2d9896abbd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8a33d6746e084ed3a8103485b4189327", + "IPY_MODEL_e9d6ade99c384057a4384c56c57c6aaa", + "IPY_MODEL_3630c50baa1c4b559f36a26f1651f6cf" + ], + "layout": "IPY_MODEL_67b0f9118ae34424be32ea8f33a72262" + } + }, + "e6911333fdda494fbd91d3d164b9f91a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3755,94 +3876,15 @@ "width": null } }, - "ccd2ff966a224331ba87576dc1b583cb": { + "e9d6ade99c384057a4384c56c57c6aaa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a8d90567e77c4ad49552f0893acc8fcc", - "IPY_MODEL_3cc9899a243a4f04b900abb35a68e3f2", - "IPY_MODEL_a9cd2636d333460fab20268d011eb4e6" - ], - "layout": "IPY_MODEL_2d36925735ed482f866821e85d3a4e63" - } - }, - "cd0e070e34bd474490f982d6c2208a0a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "cf29f459fafe45b4a819825a641e1359": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_117a27f5d28e409083c9741b2cde4136", - "placeholder": "​", - "style": "IPY_MODEL_2ee4005ec2e042edbc508658b8c1a3d3", - "value": " 665/665 [00:00<00:00, 46.7kB/s]" - } - }, - "d0c027fd0c8840558bd09d63d47261b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_591042a596484155a5077f430f37aaf3", - "placeholder": "​", - "style": "IPY_MODEL_de87df10e1574a98ae12d24421a778a1", - "value": " 54.2M/54.2M [00:00<00:00, 170MB/s]" - } - }, - "d2fa511c49cc4a5fa25085589248d050": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", @@ -3850,39 +3892,36 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_dcb9bf0895c94300bb6dfa739fe2440c", - "max": 665.0, + "layout": "IPY_MODEL_55fbe97d085a4dbca1da4bdd8480d787", + "max": 391.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_4552db17365b47cba277c93ebc2e4ef7", - "value": 665.0 + "style": "IPY_MODEL_33f0dd962a074885a899876a0989cbce", + "value": 391.0 } }, - "dbbc9040f5784046bb39697afb3111a9": { + "ed2254a0c82e4ead86af4e8ad01300bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c4c625e47dae4a1cbb4ae76f0ce45b26", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9fcb388b68b84fa6b1c551aaeb2e67d7", - "value": 466062.0 + "layout": "IPY_MODEL_b0b6f050d10146448e45bd3e7f948a84", + "placeholder": "​", + "style": "IPY_MODEL_1ec4a362022147e38f33d23f63e809c9", + "value": "Downloading (…)c41af769/config.json: 100%" } }, - "dcb9bf0895c94300bb6dfa739fe2440c": { + "edac81cd3d1340b19486064f2379c65e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3934,134 +3973,7 @@ "width": null } }, - "de87df10e1574a98ae12d24421a778a1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "df611c9c209343eeb7a5e16605f159bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5271194b221e4cd88daddd3213c68312", - "placeholder": "​", - "style": "IPY_MODEL_a9547caaceef4940893694211c7795aa", - "value": " 466k/466k [00:00<00:00, 2.68MB/s]" - } - }, - "e0d010347a7340a6aff30adc733c8a7c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e70cdc721e2a4df5a1e62382d4d73b76": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "e9710b082f4548faada92281745b6890": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_72edc9d5b9164d5d8d667cb8716bc918", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_467088b2088b4be8807cbf8d8e2f157c", - "value": 0.0 - } - }, - "ea0b3922b6214456b0864f4b94ed9017": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ea249a8b0ef64bf1b37002d0c87d914c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_444828f530db4036a932d9124c1e2b8b", - "placeholder": "​", - "style": "IPY_MODEL_6b0bbf8e65b443a6835fe8b58f03869b", - "value": "Downloading pytorch_model.bin: 100%" - } - }, - "ec8c0dec281e46fc85214e3400d7ff41": { + "ee2b41f04f01474ca7bdbf79a822309b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4113,29 +4025,22 @@ "width": null } }, - "f035475e4b9d4449ae283a09b15d99e4": { + "ee5dbdebc2114800aa103362604463a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ea249a8b0ef64bf1b37002d0c87d914c", - "IPY_MODEL_35d5497a88534d78bbfa7aa63d54feb7", - "IPY_MODEL_d0c027fd0c8840558bd09d63d47261b1" - ], - "layout": "IPY_MODEL_8ff8a0acfbb7486f88b0925e54cf0422" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "f3d39f8634f14dddaab567001084f9f2": { + "f1225ab3146b40e1ba0df4130b56feef": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4187,60 +4092,71 @@ "width": null } }, - "f4315c54796d469494e41dcb5cf9d162": { + "f1e9b644407e4ba58e46adf33fa96e8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7923869ef4c64082af45666009319f72", + "placeholder": "​", + "style": "IPY_MODEL_ee5dbdebc2114800aa103362604463a1", + "value": " 0/0 [00:00<?, ?it/s]" } }, - "f964ce7cd5624f01b2b556f541dd8526": { + "f3f34222ca7043c4b136a6e5ef95924b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b8dc82aa552b4c83bcc019f3e4d879e7", + "IPY_MODEL_c359d87f7a094597a2eca7e9394d623e", + "IPY_MODEL_f1e9b644407e4ba58e46adf33fa96e8c" + ], + "layout": "IPY_MODEL_0f392776020d40868b822524f8cdab8a" } }, - "f9fb3e20f3e343ae855437a44c7793f2": { + "f41c2d4eb2bd49e0a615438ced52b475": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6a11fd274747431b94efa79c09e44a19", - "IPY_MODEL_9f8d9272b8f640e28529987f6061c450", - "IPY_MODEL_9c4be9ab35d047119314d2e762835ccd" - ], - "layout": "IPY_MODEL_fee94c6f09754f11a559c039f5a278c4" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ac30de3b75c2459aa4f4a6ffdf9346cb", + "placeholder": "​", + "style": "IPY_MODEL_37764ce857834b429e27911ac70d4f35", + "value": "Downloading (…)e3c41af769/vocab.txt: 100%" } }, - "fee94c6f09754f11a559c039f5a278c4": { + "f54671bf7cd048759cf1a05a097f8f91": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4291,6 +4207,90 @@ "visibility": null, "width": null } + }, + "f6de89c6c65341eabdf9febce459d412": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_95e9baa65e5843c7958dbdd2cf2ca028", + "IPY_MODEL_3bf3177965b742db94617c3fd9af1474", + "IPY_MODEL_6df247d3c2454afab8e21066f98899a7" + ], + "layout": "IPY_MODEL_0da48297bbce46fe847e470bf8a67376" + } + }, + "f7b42ce171fd41479b814cd6892cfa8d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f83571ed1f3546bcb7c5c61c2f7773a1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "fdfeb70759794620aaf2b8fa6cff711f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ffb051730bc242d5bcf7b74b192a5dc6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index ac4e96608..1e0c8fa38 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:14.260958Z", - "iopub.status.busy": "2023-11-02T15:07:14.260528Z", - "iopub.status.idle": "2023-11-02T15:07:15.997921Z", - "shell.execute_reply": "2023-11-02T15:07:15.996863Z" + "iopub.execute_input": "2023-11-04T09:15:55.451513Z", + "iopub.status.busy": "2023-11-04T09:15:55.451324Z", + "iopub.status.idle": "2023-11-04T09:15:56.446679Z", + "shell.execute_reply": "2023-11-04T09:15:56.445976Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:16.013207Z", - "iopub.status.busy": "2023-11-02T15:07:16.012082Z", - "iopub.status.idle": "2023-11-02T15:07:16.018835Z", - "shell.execute_reply": "2023-11-02T15:07:16.018013Z" + "iopub.execute_input": "2023-11-04T09:15:56.449564Z", + "iopub.status.busy": "2023-11-04T09:15:56.449205Z", + "iopub.status.idle": "2023-11-04T09:15:56.452474Z", + "shell.execute_reply": "2023-11-04T09:15:56.451875Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:16.023794Z", - "iopub.status.busy": "2023-11-02T15:07:16.023352Z", - "iopub.status.idle": "2023-11-02T15:07:16.047649Z", - "shell.execute_reply": "2023-11-02T15:07:16.046696Z" + "iopub.execute_input": "2023-11-04T09:15:56.455005Z", + "iopub.status.busy": "2023-11-04T09:15:56.454576Z", + "iopub.status.idle": "2023-11-04T09:15:56.467928Z", + "shell.execute_reply": "2023-11-04T09:15:56.467320Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:16.052287Z", - "iopub.status.busy": "2023-11-02T15:07:16.051740Z", - "iopub.status.idle": "2023-11-02T15:07:23.520032Z", - "shell.execute_reply": "2023-11-02T15:07:23.519037Z" + "iopub.execute_input": "2023-11-04T09:15:56.470593Z", + "iopub.status.busy": "2023-11-04T09:15:56.470043Z", + "iopub.status.idle": "2023-11-04T09:16:01.734004Z", + "shell.execute_reply": "2023-11-04T09:16:01.733316Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index cf2007041..d2794eb6d 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:29.130107Z", - "iopub.status.busy": "2023-11-02T15:07:29.129501Z", - "iopub.status.idle": "2023-11-02T15:07:30.882464Z", - "shell.execute_reply": "2023-11-02T15:07:30.881333Z" + "iopub.execute_input": "2023-11-04T09:16:06.280481Z", + "iopub.status.busy": "2023-11-04T09:16:06.280290Z", + "iopub.status.idle": "2023-11-04T09:16:07.255845Z", + "shell.execute_reply": "2023-11-04T09:16:07.255239Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:30.887830Z", - "iopub.status.busy": "2023-11-02T15:07:30.887227Z", - "iopub.status.idle": "2023-11-02T15:07:30.893501Z", - "shell.execute_reply": "2023-11-02T15:07:30.892514Z" + "iopub.execute_input": "2023-11-04T09:16:07.259098Z", + "iopub.status.busy": "2023-11-04T09:16:07.258498Z", + "iopub.status.idle": "2023-11-04T09:16:07.262075Z", + "shell.execute_reply": "2023-11-04T09:16:07.261547Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:30.897733Z", - "iopub.status.busy": "2023-11-02T15:07:30.897070Z", - "iopub.status.idle": "2023-11-02T15:07:34.547622Z", - "shell.execute_reply": "2023-11-02T15:07:34.546029Z" + "iopub.execute_input": "2023-11-04T09:16:07.264436Z", + "iopub.status.busy": "2023-11-04T09:16:07.264080Z", + "iopub.status.idle": "2023-11-04T09:16:09.206937Z", + "shell.execute_reply": "2023-11-04T09:16:09.206227Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:34.553908Z", - "iopub.status.busy": "2023-11-02T15:07:34.552839Z", - "iopub.status.idle": "2023-11-02T15:07:34.615131Z", - "shell.execute_reply": "2023-11-02T15:07:34.613872Z" + "iopub.execute_input": "2023-11-04T09:16:09.210224Z", + "iopub.status.busy": "2023-11-04T09:16:09.209670Z", + "iopub.status.idle": "2023-11-04T09:16:09.245575Z", + "shell.execute_reply": "2023-11-04T09:16:09.244803Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:34.620878Z", - "iopub.status.busy": "2023-11-02T15:07:34.620238Z", - "iopub.status.idle": "2023-11-02T15:07:34.681213Z", - "shell.execute_reply": "2023-11-02T15:07:34.679814Z" + "iopub.execute_input": "2023-11-04T09:16:09.248684Z", + "iopub.status.busy": "2023-11-04T09:16:09.248416Z", + "iopub.status.idle": "2023-11-04T09:16:09.283859Z", + "shell.execute_reply": "2023-11-04T09:16:09.283195Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:34.686921Z", - "iopub.status.busy": "2023-11-02T15:07:34.686043Z", - "iopub.status.idle": "2023-11-02T15:07:34.693038Z", - "shell.execute_reply": "2023-11-02T15:07:34.691987Z" + "iopub.execute_input": "2023-11-04T09:16:09.287093Z", + "iopub.status.busy": "2023-11-04T09:16:09.286592Z", + "iopub.status.idle": "2023-11-04T09:16:09.289772Z", + "shell.execute_reply": "2023-11-04T09:16:09.289222Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:34.697396Z", - "iopub.status.busy": "2023-11-02T15:07:34.696809Z", - "iopub.status.idle": "2023-11-02T15:07:34.702099Z", - "shell.execute_reply": "2023-11-02T15:07:34.700801Z" + "iopub.execute_input": "2023-11-04T09:16:09.292245Z", + "iopub.status.busy": "2023-11-04T09:16:09.291801Z", + "iopub.status.idle": "2023-11-04T09:16:09.294565Z", + "shell.execute_reply": "2023-11-04T09:16:09.294019Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:34.706971Z", - "iopub.status.busy": "2023-11-02T15:07:34.706590Z", - "iopub.status.idle": "2023-11-02T15:07:34.755062Z", - "shell.execute_reply": "2023-11-02T15:07:34.754205Z" + "iopub.execute_input": "2023-11-04T09:16:09.297131Z", + "iopub.status.busy": "2023-11-04T09:16:09.296782Z", + "iopub.status.idle": "2023-11-04T09:16:09.327250Z", + "shell.execute_reply": "2023-11-04T09:16:09.326619Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ccdee57b5b0c4c699071d2367ce5bc0f", + "model_id": "141bccbaa1b84638b5597f17dac77695", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "462e18c7b9af4c8f8beb9d40c3c611ce", + "model_id": "9dbff80c15b240de879d1e056f4ecb98", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:34.760179Z", - "iopub.status.busy": "2023-11-02T15:07:34.759607Z", - "iopub.status.idle": "2023-11-02T15:07:34.770180Z", - "shell.execute_reply": "2023-11-02T15:07:34.769274Z" + "iopub.execute_input": "2023-11-04T09:16:09.333481Z", + "iopub.status.busy": "2023-11-04T09:16:09.333119Z", + "iopub.status.idle": "2023-11-04T09:16:09.339773Z", + "shell.execute_reply": "2023-11-04T09:16:09.339275Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:34.774840Z", - "iopub.status.busy": "2023-11-02T15:07:34.774200Z", - "iopub.status.idle": "2023-11-02T15:07:34.781222Z", - "shell.execute_reply": "2023-11-02T15:07:34.780137Z" + "iopub.execute_input": "2023-11-04T09:16:09.342208Z", + "iopub.status.busy": "2023-11-04T09:16:09.341844Z", + "iopub.status.idle": "2023-11-04T09:16:09.345466Z", + "shell.execute_reply": "2023-11-04T09:16:09.344927Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:34.785965Z", - "iopub.status.busy": "2023-11-02T15:07:34.785502Z", - "iopub.status.idle": "2023-11-02T15:07:34.796581Z", - "shell.execute_reply": "2023-11-02T15:07:34.795514Z" + "iopub.execute_input": "2023-11-04T09:16:09.348001Z", + "iopub.status.busy": "2023-11-04T09:16:09.347549Z", + "iopub.status.idle": "2023-11-04T09:16:09.354648Z", + "shell.execute_reply": "2023-11-04T09:16:09.353992Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:34.801002Z", - "iopub.status.busy": "2023-11-02T15:07:34.800374Z", - "iopub.status.idle": "2023-11-02T15:07:34.863149Z", - "shell.execute_reply": "2023-11-02T15:07:34.861877Z" + "iopub.execute_input": "2023-11-04T09:16:09.357138Z", + "iopub.status.busy": "2023-11-04T09:16:09.356683Z", + "iopub.status.idle": "2023-11-04T09:16:09.392377Z", + "shell.execute_reply": "2023-11-04T09:16:09.391594Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:34.869047Z", - "iopub.status.busy": "2023-11-02T15:07:34.868200Z", - "iopub.status.idle": "2023-11-02T15:07:34.925957Z", - "shell.execute_reply": "2023-11-02T15:07:34.924584Z" + "iopub.execute_input": "2023-11-04T09:16:09.395481Z", + "iopub.status.busy": "2023-11-04T09:16:09.395094Z", + "iopub.status.idle": "2023-11-04T09:16:09.432721Z", + "shell.execute_reply": "2023-11-04T09:16:09.432052Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:34.931161Z", - "iopub.status.busy": "2023-11-02T15:07:34.930700Z", - "iopub.status.idle": "2023-11-02T15:07:35.164522Z", - "shell.execute_reply": "2023-11-02T15:07:35.163456Z" + "iopub.execute_input": "2023-11-04T09:16:09.436219Z", + "iopub.status.busy": "2023-11-04T09:16:09.435642Z", + "iopub.status.idle": "2023-11-04T09:16:09.557849Z", + "shell.execute_reply": "2023-11-04T09:16:09.557115Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:35.170585Z", - "iopub.status.busy": "2023-11-02T15:07:35.168832Z", - "iopub.status.idle": "2023-11-02T15:07:40.547312Z", - "shell.execute_reply": "2023-11-02T15:07:40.546183Z" + "iopub.execute_input": "2023-11-04T09:16:09.560789Z", + "iopub.status.busy": "2023-11-04T09:16:09.560295Z", + "iopub.status.idle": "2023-11-04T09:16:12.040267Z", + "shell.execute_reply": "2023-11-04T09:16:12.039530Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:40.552571Z", - "iopub.status.busy": "2023-11-02T15:07:40.551493Z", - "iopub.status.idle": "2023-11-02T15:07:40.676098Z", - "shell.execute_reply": "2023-11-02T15:07:40.672369Z" + "iopub.execute_input": "2023-11-04T09:16:12.042972Z", + "iopub.status.busy": "2023-11-04T09:16:12.042768Z", + "iopub.status.idle": "2023-11-04T09:16:12.103682Z", + "shell.execute_reply": "2023-11-04T09:16:12.103033Z" } }, "outputs": [ @@ -874,7 +874,50 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "08f60b2d38cc42e98d82fe0f56dd6113": { + "141bccbaa1b84638b5597f17dac77695": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4eff796825b5464ea264226a4bd36975", + "IPY_MODEL_b04f04cf7fad483caf771b0f1ca8a8fc", + "IPY_MODEL_9a19f9fa1acd410ab9c16486477ffaaa" + ], + "layout": "IPY_MODEL_f96bb5f8df604a7bab038649c636c62f" + } + }, + "246e380a4a994540b62486b8e82fb3c1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f3ee9faedc8e4899aad5a45d7c7f834b", + "placeholder": "​", + "style": "IPY_MODEL_60bd2fd252ab478ab001929b4206271f", + "value": "number of examples processed for checking labels: " + } + }, + "2bc53b93d8a6496f8123b7eb0c23a27d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -926,7 +969,98 @@ "width": null } }, - "18a37037a9574d52a551d21367e26e88": { + "3ec9399bd9a34e9e94819378b87ee672": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4a64caa094f44935bb9695390dcf4b6a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7928b3a17da544c186382a3cdaf43e89", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3ec9399bd9a34e9e94819378b87ee672", + "value": 50.0 + } + }, + "4eff796825b5464ea264226a4bd36975": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e2b3e4d57d114c0497e05de8c71a322b", + "placeholder": "​", + "style": "IPY_MODEL_74ce91236f9b4fe0bf72c5f32ebc6838", + "value": "number of examples processed for estimating thresholds: " + } + }, + "5dfbb75320db46d9b2f224128394ad17": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "60bd2fd252ab478ab001929b4206271f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "63a780d9bbca4d439548ce6ad209e6ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -978,7 +1112,22 @@ "width": null } }, - "29be87873c58416eb0ee1d7873a88f2f": { + "74ce91236f9b4fe0bf72c5f32ebc6838": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7928b3a17da544c186382a3cdaf43e89": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1030,7 +1179,59 @@ "width": null } }, - "462e18c7b9af4c8f8beb9d40c3c611ce": { + "8007052054864226aff6d65b1adda807": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8628158fda1f4e639da89db46f448428": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9a19f9fa1acd410ab9c16486477ffaaa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2bc53b93d8a6496f8123b7eb0c23a27d", + "placeholder": "​", + "style": "IPY_MODEL_8007052054864226aff6d65b1adda807", + "value": " 10000/? [00:00<00:00, 1059970.68it/s]" + } + }, + "9dbff80c15b240de879d1e056f4ecb98": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -1045,14 +1246,35 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b56ab48a4c3c46a2b9e48ead88de0c6a", - "IPY_MODEL_f1692615cadb44af8ff5ab604bfa1936", - "IPY_MODEL_b90d98e84bc54c4592aa27c4b378bbd8" + "IPY_MODEL_246e380a4a994540b62486b8e82fb3c1", + "IPY_MODEL_4a64caa094f44935bb9695390dcf4b6a", + "IPY_MODEL_a91d60c3ca314e4bbdb754f2c8e10058" ], - "layout": "IPY_MODEL_29be87873c58416eb0ee1d7873a88f2f" + "layout": "IPY_MODEL_63a780d9bbca4d439548ce6ad209e6ac" } }, - "4dc973539e7e4a03881ec9afdc5f77a6": { + "a91d60c3ca314e4bbdb754f2c8e10058": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ab2df39fb78a4e4da43516943cff61fc", + "placeholder": "​", + "style": "IPY_MODEL_5dfbb75320db46d9b2f224128394ad17", + "value": " 10000/? [00:00<00:00, 838961.48it/s]" + } + }, + "ab2df39fb78a4e4da43516943cff61fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1104,7 +1326,31 @@ "width": null } }, - "56e33d930e5e41b8b875d65ebfd588d0": { + "b04f04cf7fad483caf771b0f1ca8a8fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cfabe39cd5ca41e18fa09451c8774df9", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8628158fda1f4e639da89db46f448428", + "value": 50.0 + } + }, + "cfabe39cd5ca41e18fa09451c8774df9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1156,28 +1402,7 @@ "width": null } }, - "760b788ae963482fa2c2ce2432891ed3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7fa432aa35274124beb8243aadf7c1f6", - "placeholder": "​", - "style": "IPY_MODEL_c6743068432746f4a189504a3a1be579", - "value": " 10000/? [00:00<00:00, 562525.68it/s]" - } - }, - "7fa432aa35274124beb8243aadf7c1f6": { + "e2b3e4d57d114c0497e05de8c71a322b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1229,99 +1454,7 @@ "width": null } }, - "847cad27ff1749f0b12f8082f6af6aa5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "97b765d0f7064c6aa31f0a050da307dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a01f00be75094c449203ffa4de8c5d2c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "afada712686d44929e67e8bb3883e07c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4dc973539e7e4a03881ec9afdc5f77a6", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_847cad27ff1749f0b12f8082f6af6aa5", - "value": 50.0 - } - }, - "b56ab48a4c3c46a2b9e48ead88de0c6a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b86019c9f9ca44658d2e7cf5659be0e2", - "placeholder": "​", - "style": "IPY_MODEL_a01f00be75094c449203ffa4de8c5d2c", - "value": "number of examples processed for checking labels: " - } - }, - "b86019c9f9ca44658d2e7cf5659be0e2": { + "f3ee9faedc8e4899aad5a45d7c7f834b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1373,80 +1506,7 @@ "width": null } }, - "b90d98e84bc54c4592aa27c4b378bbd8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_dd63df6c7a30448a977f2f55dc3f69d0", - "placeholder": "​", - "style": "IPY_MODEL_e126efaa9be3440ca91c5691c2a6407c", - "value": " 10000/? [00:00<00:00, 648099.26it/s]" - } - }, - "c6743068432746f4a189504a3a1be579": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ccdee57b5b0c4c699071d2367ce5bc0f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e6313729a53e46c3a3d6463be4c8bcf1", - "IPY_MODEL_afada712686d44929e67e8bb3883e07c", - "IPY_MODEL_760b788ae963482fa2c2ce2432891ed3" - ], - "layout": "IPY_MODEL_18a37037a9574d52a551d21367e26e88" - } - }, - "db4777950afc482a9cecf7c70c1d37bf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "dd63df6c7a30448a977f2f55dc3f69d0": { + "f96bb5f8df604a7bab038649c636c62f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1497,66 +1557,6 @@ "visibility": null, "width": null } - }, - "e126efaa9be3440ca91c5691c2a6407c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "e6313729a53e46c3a3d6463be4c8bcf1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_08f60b2d38cc42e98d82fe0f56dd6113", - "placeholder": "​", - "style": "IPY_MODEL_db4777950afc482a9cecf7c70c1d37bf", - "value": "number of examples processed for estimating thresholds: " - } - }, - "f1692615cadb44af8ff5ab604bfa1936": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_56e33d930e5e41b8b875d65ebfd588d0", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_97b765d0f7064c6aa31f0a050da307dd", - "value": 50.0 - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/image.ipynb b/master/.doctrees/nbsphinx/tutorials/image.ipynb index e3ab6a49c..0d6c0c157 100644 --- a/master/.doctrees/nbsphinx/tutorials/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:46.724798Z", - "iopub.status.busy": "2023-11-02T15:07:46.724482Z", - "iopub.status.idle": "2023-11-02T15:07:50.455232Z", - "shell.execute_reply": "2023-11-02T15:07:50.453968Z" + "iopub.execute_input": "2023-11-04T09:16:17.413380Z", + "iopub.status.busy": "2023-11-04T09:16:17.413192Z", + "iopub.status.idle": "2023-11-04T09:16:19.485225Z", + "shell.execute_reply": "2023-11-04T09:16:19.484667Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:50.459743Z", - "iopub.status.busy": "2023-11-02T15:07:50.459163Z", - "iopub.status.idle": "2023-11-02T15:07:50.465535Z", - "shell.execute_reply": "2023-11-02T15:07:50.464536Z" + "iopub.execute_input": "2023-11-04T09:16:19.488237Z", + "iopub.status.busy": "2023-11-04T09:16:19.487740Z", + "iopub.status.idle": "2023-11-04T09:16:19.491483Z", + "shell.execute_reply": "2023-11-04T09:16:19.490959Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:50.469150Z", - "iopub.status.busy": "2023-11-02T15:07:50.468858Z", - "iopub.status.idle": "2023-11-02T15:08:17.486180Z", - "shell.execute_reply": "2023-11-02T15:08:17.484813Z" + "iopub.execute_input": "2023-11-04T09:16:19.493918Z", + "iopub.status.busy": "2023-11-04T09:16:19.493550Z", + "iopub.status.idle": "2023-11-04T09:16:32.590696Z", + "shell.execute_reply": "2023-11-04T09:16:32.590055Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d05f567fc66047acb55847aaadfee70c", + "model_id": "1281c5f69432452d9bbc3f768aa9125d", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "612cefa3dd9347ea8c741dcdce1f8161", + "model_id": "4a71592e32144d348d484a0166e2664c", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "167ad04aa70d4431a7f93209fa3f0b90", + "model_id": "44f5e4f8bb604c8595fa0747a397c469", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a9c1ed92d1764f1dbd2c3822fa8b6898", + "model_id": "fe602eb6950c4adb8193e1b4d6cb1670", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "be5d8ecbd7ba4d20a2dd9b9089ba0b11", + "model_id": "7522bd2e46614a60ad0b06357b2d72f4", "version_major": 2, "version_minor": 0 }, @@ -232,7 +232,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "761c0ed328c449059ece5399e5ff1233", + "model_id": "1a75238303184efa8cd395078e0d7c99", "version_major": 2, "version_minor": 0 }, @@ -246,7 +246,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1d522d5ab30c4b468f5e76bca05a50cc", + "model_id": "1621d8005b4444ea93969df9e9d7bdd3", "version_major": 2, "version_minor": 0 }, @@ -260,7 +260,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d36d9d9cbc4845c4b832ff3271c15cec", + "model_id": "3bd0ca523aa04d828364731056c5a4a4", "version_major": 2, "version_minor": 0 }, @@ -274,7 +274,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9b275e24abf4422ab8fd76f997e0928d", + "model_id": "537a7e5193204b0d9f24067d8b0d6a48", "version_major": 2, "version_minor": 0 }, @@ -288,7 +288,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7ab5d79c93ad4df5a716ff45665625e6", + "model_id": "260d17ac03e143209527054d9ba8baa0", "version_major": 2, "version_minor": 0 }, @@ -302,7 +302,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b98270fd10c84b9cbbb081039967ba17", + "model_id": "3e0a2134ee9540998f353457d1bf4ddf", "version_major": 2, "version_minor": 0 }, @@ -344,10 +344,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:08:17.491364Z", - "iopub.status.busy": "2023-11-02T15:08:17.490982Z", - "iopub.status.idle": "2023-11-02T15:08:17.497747Z", - "shell.execute_reply": "2023-11-02T15:08:17.496695Z" + "iopub.execute_input": "2023-11-04T09:16:32.593037Z", + "iopub.status.busy": "2023-11-04T09:16:32.592832Z", + "iopub.status.idle": "2023-11-04T09:16:32.596857Z", + "shell.execute_reply": "2023-11-04T09:16:32.596344Z" } }, "outputs": [ @@ -372,22 +372,22 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:08:17.502016Z", - "iopub.status.busy": "2023-11-02T15:08:17.501243Z", - "iopub.status.idle": "2023-11-02T15:08:42.567207Z", - "shell.execute_reply": "2023-11-02T15:08:42.565180Z" + "iopub.execute_input": "2023-11-04T09:16:32.599300Z", + "iopub.status.busy": "2023-11-04T09:16:32.598948Z", + "iopub.status.idle": "2023-11-04T09:16:43.366361Z", + "shell.execute_reply": "2023-11-04T09:16:43.365648Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a11ed46d134748e790cad78f74d23947", + "model_id": "3168e4736ff2453499544e814fad0da2", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "Map (num_proc=2): 0%| | 0/60000 [00:00\n", " 0\n", " True\n", - " 0.129916\n", + " 0.110901\n", " T - shirt / top\n", " Dress\n", " \n", " \n", " 1\n", " False\n", - " 0.981029\n", + " 0.974390\n", " T - shirt / top\n", " T - shirt / top\n", " \n", " \n", " 2\n", " False\n", - " 0.996466\n", + " 0.998733\n", " Sandal\n", " Sandal\n", " \n", " \n", " 3\n", " False\n", - " 0.855478\n", + " 0.937117\n", " Sandal\n", " Sandal\n", " \n", " \n", " 4\n", " False\n", - " 0.998550\n", + " 0.998755\n", " Dress\n", " Dress\n", " \n", @@ -1974,11 +1736,11 @@ ], "text/plain": [ " is_label_issue label_score given_label predicted_label\n", - "0 True 0.129916 T - shirt / top Dress\n", - "1 False 0.981029 T - shirt / top T - shirt / top\n", - "2 False 0.996466 Sandal Sandal\n", - "3 False 0.855478 Sandal Sandal\n", - "4 False 0.998550 Dress Dress" + "0 True 0.110901 T - shirt / top Dress\n", + "1 False 0.974390 T - shirt / top T - shirt / top\n", + "2 False 0.998733 Sandal Sandal\n", + "3 False 0.937117 Sandal Sandal\n", + "4 False 0.998755 Dress Dress" ] }, "execution_count": 16, @@ -2005,10 +1767,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:40.062031Z", - "iopub.status.busy": "2023-11-02T15:15:40.061703Z", - "iopub.status.idle": "2023-11-02T15:15:40.076401Z", - "shell.execute_reply": "2023-11-02T15:15:40.075484Z" + "iopub.execute_input": "2023-11-04T09:20:58.249456Z", + "iopub.status.busy": "2023-11-04T09:20:58.249254Z", + "iopub.status.idle": "2023-11-04T09:20:58.258283Z", + "shell.execute_reply": "2023-11-04T09:20:58.257683Z" } }, "outputs": [ @@ -2041,39 +1803,39 @@ " \n", " \n", " \n", - " 11262\n", + " 19228\n", " True\n", " 0.000005\n", - " Coat\n", - " T - shirt / top\n", + " Dress\n", + " Shirt\n", " \n", " \n", - " 19228\n", + " 54078\n", " True\n", - " 0.000009\n", + " 0.000010\n", + " Pullover\n", " Dress\n", - " Shirt\n", " \n", " \n", - " 53564\n", + " 11262\n", " True\n", - " 0.000019\n", - " Pullover\n", + " 0.000014\n", + " Coat\n", " T - shirt / top\n", " \n", " \n", - " 45386\n", + " 53564\n", " True\n", - " 0.000029\n", - " Coat\n", - " Trouser\n", + " 0.000017\n", + " Pullover\n", + " T - shirt / top\n", " \n", " \n", - " 54078\n", + " 5473\n", " True\n", - " 0.000031\n", + " 0.000017\n", " Pullover\n", - " Dress\n", + " Trouser\n", " \n", " \n", "\n", @@ -2081,11 +1843,11 @@ ], "text/plain": [ " is_label_issue label_score given_label predicted_label\n", - "11262 True 0.000005 Coat T - shirt / top\n", - "19228 True 0.000009 Dress Shirt\n", - "53564 True 0.000019 Pullover T - shirt / top\n", - "45386 True 0.000029 Coat Trouser\n", - "54078 True 0.000031 Pullover Dress" + "19228 True 0.000005 Dress Shirt\n", + "54078 True 0.000010 Pullover Dress\n", + "11262 True 0.000014 Coat T - shirt / top\n", + "53564 True 0.000017 Pullover T - shirt / top\n", + "5473 True 0.000017 Pullover Trouser" ] }, "execution_count": 17, @@ -2138,10 +1900,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:40.080429Z", - "iopub.status.busy": "2023-11-02T15:15:40.080100Z", - "iopub.status.idle": "2023-11-02T15:15:40.087696Z", - "shell.execute_reply": "2023-11-02T15:15:40.086726Z" + "iopub.execute_input": "2023-11-04T09:20:58.260931Z", + "iopub.status.busy": "2023-11-04T09:20:58.260471Z", + "iopub.status.idle": "2023-11-04T09:20:58.265537Z", + "shell.execute_reply": "2023-11-04T09:20:58.264858Z" }, "nbsphinx": "hidden" }, @@ -2187,16 +1949,16 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:40.092584Z", - "iopub.status.busy": "2023-11-02T15:15:40.092269Z", - "iopub.status.idle": "2023-11-02T15:15:41.333110Z", - "shell.execute_reply": "2023-11-02T15:15:41.332043Z" + "iopub.execute_input": "2023-11-04T09:20:58.267759Z", + "iopub.status.busy": "2023-11-04T09:20:58.267554Z", + "iopub.status.idle": "2023-11-04T09:20:58.923032Z", + "shell.execute_reply": "2023-11-04T09:20:58.922361Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk8AAAGWCAYAAABhHmcUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeXidVbX/v2eex8xN2zTpnLkTlKlQKFAqYwtWQahUfoJyEa44XlTAi/cRRFGuXvCqFC2i3AoWBASsFGQotAVaSkOxLQmdMidnns/Zvz/i2t3nzXsyNWOzP8+TJ8l5x/Oud+299lprr61hjDFIJBKJRCKRSAaEdqxvQCKRSCQSiWQiIY0niUQikUgkkkEgjSeJRCKRSCSSQSCNJ4lEIpFIJJJBII0niUQikUgkkkEgjSeJRCKRSCSSQSCNJ4lEIpFIJJJBII0niUQikUgkkkEgjSeJRCKRSCSSQTDmxlN9fT2CwaDqtsWLF+OVV17p9xzPPfccFi1aBJPJhNtuu23A2x588EFUV1ejpqYGtbW1eOyxx7K2v/rqq1iyZAmqqqpQWVmJbdu2AQD++Mc/or6+HtXV1aiursaPf/zjAX/fychIy7i1tRWrV69GbW0t5s+fj5/+9Kd8W1+yevnll3HKKaegsrISVVVV+MY3voFMJsO333vvvaisrER9fT2WLl2K7du3D+p7TxaGQ7533XUXCgoKUF9fj/r6elxzzTV82y9+8QvU1NRwOT744IMDOg4AnnzySdTU1HD5NzU1ZW1va2tDUVERLr/88gF/38nGcMiXUHvejz76KFwuF5fh8uXL+bY///nPqK2tRX19PSorK3HHHXeAFsWIRqO47rrruGwvvfRStLe382P37NmDc845B/Pnz8f8+fPx1FNPDe6LTxJGWn+JXLp2zz33YObMmZg5cybuuOMO/vkPfvADfr76+no4nU589atfBQBkMhl89atfRWVlJWpra7F8+XIcOHBg4F96OGDjmEWLFrGtW7f2u99HH33Edu3axe644w526623Dnjbli1bmM/nY4wxdujQIZaXl8cOHDjAGGPs6NGjrKysjDU0NDDGGIvFYqy7u5sxxtjrr7/OmpubGWOM+Xw+NnPmzAHdp6Q3wyHjq6++mt1xxx2MMcZCoRCrq6tj27dvZ4z1Lat3332XHTx4kDHGWDQaZWeccQbbsGEDY4yx9957j02fPp0Fg0HGGGMbN25kS5YsOcFvO/kYqHzvvPPOXnIlSEcZY8zv97Np06axd999t9/j3n33XTZ37lx29OhRxhhjgUCAhcPhrH0uv/xytn79enbZZZf1e4+S3gxUvoTa896wYUPO5x8IBFg6nWaMMRaPx9mSJUvYU089xRhj7IEHHmBr1qxhmUyGMcbYDTfcwL7+9a8zxhgLh8OsvLycvfbaa4wxxlKpFGtraxvkt5MMh/4SarJ/9dVXWWVlJQuFQiwWi7FFixaxZ599ttexsViMeb1etnPnTsYYY3/+85/ZKaecwhKJBGOMsf/8z/9kV1111YC/13Aw5p4njUYDn88HAHjzzTf56PL6669HKpUa0DnmzJmDuro66PX6QW0777zz4HK5AADTpk1DcXExDh8+DAD4n//5H1x99dWYP38+AMBkMsHtdgMAzjjjDBQXFwMAXC4X5s2b12tEKznOSMt49+7dWLVqFQDAZrNh2bJl2LhxI4C+ZbVgwQJUVFQAAMxmM+rr6/k2jUaDZDKJcDgMAPD5fJg6deqQvv/JznDIty9IRwEgHA4jmUwO6Lgf//jH+OpXv4opU6YAABwOB6xWK9/+m9/8BuXl5TjrrLNO+B5PZoZLvkN53g6HA1ptTzcVi8UQj8eh0Wj4fUUiESSTSaRSKYRCIa6jjz/+OJYuXYozzzwTAKDT6VBQUDDg604mRlp/gdyyf+KJJ3DttdfCZrPBZDJh/fr1+MMf/tDr+M2bN2PatGlYtGgRv+d4PI5YLAbGGAKBwKi3z2NuPBGJRAJr167F/fffjw8++ACf/exnsXv3br794Ycfxve+970Ru/6WLVvQ3d2NJUuWAAAaGhoQjUaxYsUK1NfX45ZbbuEdqUhDQwO2bduGFStWjNi9nSyMlIwXLVqExx9/HJlMBu3t7XjxxRdVjdm+ZNXS0oI//elPuPjiiwEAdXV1+Pd//3eUl5dj6tSpeOCBB/Df//3fg763ycSJynfTpk2oq6vDueeei61bt2Zt+9Of/oSqqirMmDEDX/va17BgwYJ+j2toaMChQ4dw9tlnY8GCBfjud7+LdDoNAGhsbMTDDz+MH/zgB8P19U96TkS+/T3v119/HfX19Tj99NOxadOmrG1vvvkmampqUFhYiHPPPReXXXYZAODGG2+Ew+FAYWEhioqK4Pf78W//9m8AemRvMplw8cUXo76+Htddd11WSE/Sm5HS375kf+jQIZSVlfH/Z8yYgUOHDvXa7ze/+Q2+8IUv8P8vueQSnHPOOSguLkZJSQn+/ve/4/vf//6gv/MJMap+LhUAsO7ubrZ79242Y8aMrG0VFRWDcgn35Trsa9v777/Ppk6dyl28jDF2ySWXsIULF7Kuri6WSCTYNddcw26//fas4w4fPsxmzZrF/u///m/A9zgZGWkZt7e3s3Xr1rHa2lq2YsUK9sUvfpFdccUVWfv0JSu/388WL17MfvzjH/PPPv74Y7Z06VIe8vnv//5vdsYZZwz4PicTwyHf5uZm7oJ//fXXWUFBAWtqauq1X2NjI6uvr2f79u3r97iamhq2atUqFolEWCgUYueeey777//+b5bJZNg555zD3nrrLcZY32EjyYnLt7/n3d7ezsOpDQ0NbOrUqWzbtm29ztPW1sbOOuss9uqrrzLGGHv66afZlVdeyaLRKIvH4+yzn/0sD9/fcsstbOrUqezIkSMsk8mwb33rW2zNmjVDfQQnNSOpv/3J/uKLL2aPP/44//+5555jZ511Vta5m5qamMViYZ2dnfyzt99+m5133nmsu7ubpdNp9vWvf51dc801g/3qJ8S48TypQe7ZkaShoQEXX3wxHnnkEe7iBYDp06fjU5/6FDweDwwGAz772c/irbfe4tuPHTuGFStW4Dvf+Q6uuuqqEb/Pk5XhkHF+fj4effRR7N69G3/729+g0WhQVVXFt/clq2AwiJUrV+Kyyy7jyYjA8URjCvlcf/31eOONN5BIJE74ficTA5VvcXExDAYDgJ5Q64IFC7Bz585e+82YMQOnnnoqnn322X6Pmz59OtasWQOLxQKbzYbVq1fjrbfeQiAQwPvvv4+1a9dyT9ZLL72E8847bzi+8qRiIPLt73nn5+fzcOr8+fOxatUqvPHGG73OU1BQgFWrVnHP1P/+7//iiiuugNlshtFoxDXXXMM9HtOnT8fy5ctRWloKjUaDz33uc1ntt2RgnKj+9if76dOn45NPPuHnaWpqwvTp07POvWHDBlx22WXwer38s9/97nc499xz4Xa7odVqsW7dul7e6pFm3BhP8+bNQyqV4g9gy5YtOHjw4Ihe88MPP8SqVavwv//7vzj//POztl199dXYunUr4vE4AOCvf/0r6urqAADNzc0477zz8M1vfhPr1q0b0Xs8mRgpGXd2dvI8mPfeew+bN2/Gl7/8ZQB9yyoUCmHlypVYuXIlvvOd72Rtq6iowBtvvIFQKAQAePbZZzFnzhwYjcYTvt+TlROR75EjR/jf+/fvx65du1BTUwOgZ4BDtLe34+WXX0ZtbW2/x1199dV46aWXkMlkkEql8NJLL6Gurg4ulwudnZ1oampCU1MT7r//flxwwQX4+9//fmIP4CRnqPLt73kfPXqU79va2oqXX36Zh2X37dvHZ8AGg0E899xzXPYVFRV46aWXwBgDYwzPPfccqqurAQCf/vSnsWPHDgQCAQDA888/z9tviTojob/9yf6qq67Cxo0bEQ6HEY/H8cgjj+Azn/kMP1cmk8GGDRuyQnZAj+xffvllPph99tlnuexHjVH1c6mAf7kMGWPsjTfeYHV1day6uppdf/31rK6ujrsMH3roIfbd735X9RxbtmxhpaWlzOFwMLvdzkpLS9nTTz/d77YVK1Ywt9vN6urq+M8LL7zAz3vfffex+fPns+rqarZ27Vp+nzfccAOzWq1Zxz3yyCMj84BOAkZaxs8//zybNWsWmzdvHluyZAl36zPWt6zuueceptfrs7bdc889jDHGXf1z585ltbW17LTTTuMzPSTZDId8r7vuOlZVVcXq6urYwoUL2aZNm/i2L37xi2z+/Pmsrq6O1dbWsl/84hcDOi6dTrPbb7+dzZs3j1VVVbGbbrqJxePxXteWYbu+GQ75iiif97e//W1WWVnJ6urqWE1NTZZ877rrLjZ//nxWW1vLqqqq2J133sln13V2drI1a9awyspKVllZyVavXs3a29v5sb/73e9YVVUVq6mpYStXrmSHDh068YdxEjLS+iuipmt33303Ky8vZ+Xl5exb3/pW1rYXX3yRzZgxg8uciMVi7IYbbmDz5s1jNTU17Pzzz+czp0cLDWP/KpohkUgkEolEIumXcRO2k0gkEolEIpkISONJIpFIJBKJZBBI40kikUgkEolkEIxL42nnzp246KKLUF5ejkWLFmHBggW45557+PZzzjkHmzdvHvR533nnHaxcuRIVFRVYvHgxzjjjjCGdh/D5fPjhD3845OMnGyMhV1oXa8GCBZg/fz7q6upw9913IxqNDvPdS4CRlWF9fT2qqqpw0UUXqRbKUzJjxgzs2rVryNeVDB3ZRk9cpA4PD+POeNqzZw9WrlyJm2++GY2NjXjnnXfw97//nU85HSp79+7FhRdeiJtvvhkff/wxdu7ciU2bNsHv9w/5nFIxB85IyRUAli9fjvfeew8ffvgh/va3v+Gdd97B2rVrVfcdruUGJiMjLcNdu3Zh7969mDNnDv793/99GO54ZKAq5ZMV2UZPXKQO9zAcOjzujKd7770XN9xwA18mAwC8Xi/uu+++EzrvD3/4Q6xfvx6XXHIJ/2zKlCm89s+BAwewYsUKvoK3aAFfc801WLx4MWpra/GpT30KLS0tAICbbroJwWAQ9fX1WLx48Qnd38nOSMlVSWFhIX77299iy5Yt2Lt3L4CeQm933nknlixZgm9/+9sIBoP4f//v/+GUU05BbW0tvvjFL/J6Iffccw/mz5/PV/L+5JNPEI1GsXbtWlRWVqKurg4XXHDBsN7zRGG0ZHjhhRfio48+ApC97hbQU1Cxv3Uk29rasHr1atTU1KC6uhq//OUvAQC///3vs+6dMYaKigq+BMXGjRtx6qmnYuHChVi2bBn//NFHH8Xy5cuxZs0a1NTUYPv27cP4bSceso2euEgdHj4dHnfG07vvvotTTz11SMc+88wzuOGGG1S3vfPOOzjttNNyHnvNNdfgqquuwvvvv49NmzbhC1/4Aq98+tOf/hQ7d+7E+++/j7POOgt33XUXgJ61fhwOB3bt2qVaDVlynJGSqxoejwezZ8/mxhPQszDojh078KMf/Qi33347zjrrLGzfvh27d+9GJpPBz372M3R3d+P+++/Hu+++i127duHNN99EUVERXnjhBfh8PjQ0NGD37t344x//OKTvMdEZDRmm02ls2rSJLwA6FG655RbMnTsXe/bswcsvv4x77rkHb731Fq8wTh3rK6+8Ao/Hg7q6Orzxxhv4wx/+gH/84x9499138YMf/ABXX301P+fbb7+N//qv/8KePXv6bEcmA7KNnrhIHR4+He69RP044+tf/zr+9re/ob29HS+99FLWshtKLr30Ulx66aWDvkYwGMS7777LlwSYPXs2zjzzTLz22msoKyvD448/jo0bNyIWiyEWiyE/P3/I30fSw0jLVVm+bP369fzvzZs3Y9u2bfjJT34CAIhGo9DpdHA6nZg9ezY+97nP4YILLsCnPvUpTJ06FXV1dfjwww/x5S9/GWeffTZWrVo1qHs5WRlOGW7duhX19fUAgIULF+LHP/7xkO9ry5YteOeddwD0eCJXr16NLVu2YOnSpVizZg02btyIr3/963j00Udx/fXXAwCefvpp7N69O6tj6erq4rlzp59+OubOnTvkezqZkW30xEXq8NAZd56nBQsWZLnUfvSjH2HXrl0wGAx8CY6hsGjRImzbtm3A+9OaPq+//joefPBBPP/88/jggw/wk5/8BLFYbMj3MVkZKbmq0d3djQMHDmSV67fb7fxvxhiefPJJ7Nq1C7t27cJHH32EX/7yl9DpdHjrrbdw2223oa2tDUuXLsVrr72GiooKNDQ0YOXKlXjjjTdQXV2N7u7uYb3nicBIypDyJXbt2oVHHnmEd346nS4rP2Eouieuz7V+/Xps2LABoVAIzz77LB+ZMsawbt06fg+7du1Cc3MzLBYLgOz3Z7Ij2+iJi9Th4WPcGU/f+MY38Ktf/QrPP/88/yyRSJxwou83vvENPPLII3juuef4Zy0tLfjtb38Lh8OBhQsXYsOGDQB6Yuuvv/46li1bhu7ubjgcDuTl5SGRSPDYKwA4nU5Eo1G5WOwAGCm5Kmlvb8f69euxYsUKVFZWqu5z+eWX49577+XXJmMrGAyitbUVZ511Fr773e/izDPPxHvvvYcjR45Ao9Hg0ksvxf333w/GGA4fPjys9z0RGC0ZisyaNQtvv/02AOCpp55COBzu95gVK1bgV7/6FYCe9+Gpp57ia1fSqPRrX/saVqxYwRcbvfTSS/HYY4/xGUKZTEaGeXIg2+iJi9Th4WPcGU91dXV4/vnn8bOf/Qzl5eU45ZRTsHz5cnzpS1/CnDlz+H433HADpk6dyn+2bdvWZ0y2pqYGf/3rX/Gzn/0MFRUVqKmpwerVq+HxeAD0JKI98cQTqKurw5VXXolf//rXmD59OlauXIm5c+di7ty5OOuss7hbEuhJtLvuuutQW1srkxH7YaTkCvS4ixcsWIB58+ZhxYoVqKurwxNPPJFz/wceeAAWiwX19fWora3Feeedh6amJvj9fp6kWFtbi2QyiXXr1mHPnj0444wzUFdXhwULFuDaa6/li5NOJkZShrl44IEHcOutt2LhwoV47733kJeX1+8xDz74ID788EPU1NRg+fLluOOOO7Jc+ddffz1++ctfcnc/AJx11lm47777cMUVV6Curg5VVVWTNretP2QbPXGROjx8yLXtJBKJRCKRSAbBuPM8SSQSiUQikYxnpPEkkUgkEolEMgiGbDz5fD587nOfQ3V1NWpra1FdXY3HH38cQE/tBTHuPBCoKGFlZSV0Oh3/P1el6MFy11134bbbblPd9swzz/RZDXXz5s146623+jx/W1ub6jTPV155BS+88MKg7vVkZ7jfHaAnEXHRokWor6/HvHnzcO655yKTyQDIXgJAyQ033ICtW7fmPO9dd9110s7ckTqcjdTh40y0d0Ny4oxEuzxjxgzMnTsXdXV1mDVrFi677DK8+eabw3znY8OQ6zx95zvfQUFBAfbs2QONRoNgMMgLVw0F6tyamppQX1+fs7MbCfqqX5FKpbB582bU19dj6dKlOc/x9NNPq57jlVdegc/nw8qVK4ftfic6w/3uNDc344tf/CLeeecdlJWVAegpBidOb83Fr3/9a9XPU6kU9Ho97r77btx2220wm81Dvr/xitThbKQOH2cs3g3SubFgLK89XhhumRNPPPEEN7yeeuoprFq1Ci+++GKvYp002NVqJ0ZAbMh3eeTIEZSUlPAOyuFwYPbs2cN2Y0Nl//79fGZUTU0NvvOd7/Btzc3NuOSSS1BZWYlzzz0XXV1dAHpKt19++eUAehrKqqoqfOELX0B9fT1+//vf45lnnsGPfvQj1NfX5+xsN2/ejCuuuCLrs127duHhhx/G73//e9TX1+P73/8+gJ4S8rW1tXwpgaNHj/L7OPfcc3HppZeisrISy5Yt67eM/URkuN+d1tZW6HQ6PmUV6CnSJhpPTz31FE477TSUl5fnXATz85//PNavX49ly5ahuroaN910EwDwGTxtbW1DvsfxiNThbKQOH2e03o0ZM2bgm9/8Jk455RSsW7cOoVAI69evR3V1Naqrq3H33XfzfZULx1555ZV49NFHAfQMgiorK1FfX4+amho+NX7//v341Kc+hSVLlqC2thY///nP+fHKZZsmO6Mh89WrV+Omm27C/fffD6DHm7xmzRpceOGFqK6uRnNzM1588UWceeaZWLRoEU455RQeGcjVLvzlL3/hS/ZUV1fj6aefHtZ7zgkbIi+//DLzer1s4cKF7Oabb2Z/+ctf+LatW7eyuro61eMuuugitmPHjpznbWxsZC6Xa6i3xb7yla+w//qv/+L/d3Z2MsYYu/POO1lZWRnr6OhgjDG2du1avt+GDRvYZZddxu9do9GwV155hZ9j3bp17IEHHsh5zUAgwCoqKlgmk+m17c4772S33nor/3/Pnj2sqKiIHTlyhDHG2D333MNWrlzJ78NoNLKGhgbGGGP33nsvO//88wf5BMY/w/3upNNptnr1aubxeNjll1/O7rvvPv58GWOsrKyM3XLLLYwxxtrb25nT6eTbzz77bPbnP/+ZMdYj59raWhYIBPixAFh3d/cJfuPxidTh40gdzma03o2ysjL2hS98gT/3b3zjG+zqq69m6XSahUIhVl9fz/74xz8yxrJ1lTHG1qxZwzZs2MAYY8zpdLJjx44xxhhLJBIsGAyyVCrFFi1axD788EPGGGPhcJjV1NSw7du3M8Z6dPvuu+8e1HM5mRkJmZeVlbH33nsv67OnnnqKzZ8/nzHWo1slJSWspaWFMcbYwYMH2dKlS5nf72eMMbZ//35WXFzMYrFYznahtraWvfnmm4yxnr5gtNrrIXueli9fjkOHDuE///M/4Xa7ceONN+Lmm2/u97jnn39+ROttLFu2DL/61a9wxx134KWXXoLb7ebbVq5cyWtMnHbaaTh48KDqOSoqKnD22WcP+Jp//etfsXLlygGFibZu3YqVK1eitLQUAPDlL38ZL7/8Mq/Aevrpp2P+/PkAgC9+8Yt45ZVXTrpV3If73dFqtXjyySfx5ptv8irgVVVVOHDgAN+HqtDm5+ejoqICjY2Nqte46qqr4HA4hvjNJhZSh48jdTib0Xw3Pv/5z/PnvmXLFvy///f/oNVqYbPZcN111+Fvf/tbv+c477zzcO211+JnP/sZGhsbYbfb8dFHH2Hv3r34zGc+g/r6epx++ukIBoNoaGjgx4nLNk12RkvmTFEdadWqVSgqKgIAvPDCCzhw4ACWLVuG+vp6XHnlldBqtTh06FDOduG8887Drbfeivvuuw/vv/9+VnsxkpxQcNFms2HVqlW455578OSTT2Ljxo3DdV85aWho4MmGaoJds2YN3njjDcydOxc///nPs1ZgFvNWdDpdzqqqgy3j/uc//5mHDAbLQBrrk5GReHfmzZuHG2+8EZs3b8bSpUvxzDPP8G0jJfuJjtThHqQO92a03o2+ZCU+W71en3OZjyeffBI//OEPkUwmsWrVKvzxj38EYwxerzdruY7GxkasW7duQNeejIyGzHfs2NHn0lnnn39+lsyOHj2K2bNn52wXfvKTn2DDhg2wWq1Yt24d7rvvvmG/ZzWGbDy99NJLWet7vfPOO5g5c+aw3FRfVFZW8of6i1/8otf2/fv3o6ioCNdddx3uu+++fmfYDASn0wm/36+6LZFIYNu2bTjnnHMGdOzy5cvxwgsv4NixYwB6Vv0+77zzoNPpAADbtm3Dvn37APTE8ZcvX863nSwM97tz9OhRvmAo0LPcSmNj47C8jw6HI6fsJzpSh3uQOtybsXo3VqxYgd/85jdgjCEcDmPjxo244IILAGQv89HY2IjXX38dQE+y98GDB7F48WJ87Wtfw5VXXont27dj7ty5cDqdfEkXoGdZF8qTk2QzGjJ/+umn8dBDD+H2229X3X7hhRdiy5YteP/99/lntBZfrnZh3759qKqqwr/927/hS1/60rC0FwNhyNML9uzZg9tvvx2MMWi1WpSUlOCxxx7j2xsaGjB16lT+/2mnnYZNmzZh1apV+P73vz9ibv8//elPeOyxx2A0GpHJZPDwww+f8DmvvfZafP7zn8fmzZtx8803Z5Wof/nll3HmmWfCYDCoHnvFFVdg48aNqK+vx+rVq/G9730PP/rRj/jMnWnTpvE1fIAel/83v/lNHDhwAHl5efjd7353wvc/3hjudyeVSuH73/8+GhsbYbVakUqlsG7dOlx22WUnfK+33347zj//fFitVrz00ksoLCw84XOOF6QO9yB1uDdj9W5897vfxVe+8hXU1NQA6Amjf/rTnwbQsy7b2rVrUVNTg6qqKj5bK51OY/369ejq6oJer0dBQQE2bNgAvV6PZ599FrfddhseeOABpNNp5Ofn8+n3kmxGSuZr166F2WxGOBxGZWUlnn/++V4z7YhZs2bh8ccfx4033ohIJIJEIoEFCxbg8ccfz9ku/Md//Ac++ugjGI1GWK1WPPTQQ8P4VHIjl2c5QW666SasWLECV1555Qmf69FHH8XmzZuzZpRIJJKRReqwRCIZLJO7sMUwMByjYolEMnZIHZZIJINFep4kEolEIpFIBsHEKOUpkUgkEolEMk6QxpNEIpFIJBLJIJDGk0QikUgkEskgkMaTRCKRSCQSySCQxpNEIpFIJBLJIJDGk0QikUgkEskgGLY6TyO5vhOdW62qQmFhIRYtWoTi4mJ4vV6UlpbCYrEgkUggFovxaqk6nQ4ajQZarRZarRaRSASffPIJOjs70dbWhj179qCzs3NQ1x4uJkq1iKHKWKPRQKPRgDGm+l31ej30ej2cTicuu+wynHvuubDb7SgpKYHb7UYkEkFzczNCoRAikQgCgQCSySQCgQC6u7uRSqW4XE0mE8rLy1FcXAyLxYLi4mI4HA6+XavVYtu2bfi///s/tLS0oK2tDceOHUMymUQymcy5Vhrd/1CZCDIeKR0m+QI91eBpfbLReCbKa+eS74kymeXbH3a7HaWlpXA4HCgpKUFVVRUcDgdCoRBCoRBSqRR8Ph8CgQB0Oh1vy+PxONra2hAMBtHR0YEPP/wwa/mQ0UTKNzd6vR5WqxUGgwHFxcWYN28e7HY7AoEAOjs7kUgkEAgEuHwLCgrgdrthNpt5+3zs2DG8/fbbaG1tRTqdRjKZHNVnPpRrTcgimVqtFhaLBUajESUlJaiurkZ5eTmsViu8Xi8MBgNvpMl40mq1WcfH43F4vV6EQiF88skn8Pl80Ol0iMViCIfDE24V9PGO0nAym82w2Wx8cdd0Og2NRoPm5mbs3r0bLpcLjDFoNBqk02lYLBYYDAbYbDa+BIvNZoPZbEY6nYbBYIBer4fRaERxcTHy8/Oh1+uRyWQQCoUQjUbR2dmJWCyGvXv3oqWlhf9vNpthNBq5AZXJZJBMJrPegYnQeI41Go0GOp0OWq0WbrcbhYWFMJlMsFgssFqtXJb0LLVaLTQaDTKZDDdsMpkMEokEGGOIx+OIRqNZOqzRaKDX6/m1SO70t3Kwo9PpsoynZDKJeDyOY8eOobu7G+l0GolEQur7MEGysNlsmDVrFoqKimA2m+H1emGxWODxeDBt2jRYLBYu31QqhXA4jFAoBJ1Oh/z8fLjdbiSTSW48hUIhlJaWIhQKoaurC4cOHUIsFuM/Uj9HF4vFgpkzZ6KgoIAvi2IwGOBwOFBYWMjbZTKCotEoYrEYNBoNTCYTjEYjH1RrNBp4PB7MnTsXxcXFXMaJRALRaBSRSGRcyndCGE/KB6fX6+H1euFyuTB37lysWLECdXV1AJAlEDKYRIs8k8nwjjydTiOTyeCDDz6Az+eD2WxGR0cHDh8+PKqj45MdtWdot9sxdepUmEwm+P1+vvDqvn37cOjQIRQUFPAO0mKxIC8vD2azmRs2mUwGwWAQ3d3dyGQyMJvN3MDyeDxwOp1IJBLo7OxEIBDA0aNH+cjm2LFj+OijjxCJRGC1WuF0OgEAyWSSd6TBYBDRaHRUn9NEhzx/er0eFRUVOOOMM+B2u+H1epGXl8f1kYwho9EIvV6PZDKJYDCIZDKJWCyGUCiEeDyOrq4utLW1IZVKwWg0wmg08oETXcftdvOBlM1mg9Fo5LpN90SL8pJx3NXVhZdffhl79uxBPB6Hz+eTxtMwQB2j2WxGaWkprrrqKpx55plZnn+DwQCLxQKdTodMJsPb41gshng8Dp1OB4/HA4fDgVgsho6ODoRCId5mZzIZvPvuu3j22WfR3t7OIwdSfqOLy+XCihUrcNppp2XpHg1QGGNwuVzwer18sEODp1AohHA4jHA4jI8//hgdHR2w2WyYNm0aAODIkSPYt28fgsEg2traEI/HR8xjfCJMCOMJOG4UAT3Gk8Vigd1uh8vlQn5+PoqKipBOp5FKpXjjLB4jhl3Io0H7tLa2wu12w+VyIRqNwmAw8BdAGk/DC8nEYDDAbDbDbDYjFotBp9MhnU7zESgA+P1+RCIRLjvyami1WjDGkEwmYbFYkMlkYLVaYbFYoNfrecdKikyhPjKc2tvbeQdtMpl4w06kUil+LaDH4FZ+B/leHIdkSp4/g8EAp9OJoqIibjiRJ5AgQ8tgMCCRSCAYDHJPhN/vRyKR4IZVMpmE0WjksrLZbNxg8nq9sFqtMBqNcLlcMBgM3HgiPdfr9WCM8feBPCAWi4Ub6FKmJw49a7PZDLvdjilTpmDmzJkAjg9aRUOKYIwhkUggkUhAp9PB5XLBbrcjkUgA6PFS63Q67q1oaWmB2+1GNBpFKBQas3DVZMZgMKCgoABlZWUwGAyw2+0wGAyIxWIIBoNIp9PIy8tDcXExjEYjb0/T6TQ6Ozvh9/thMBhgMpm40e1wOKDX6xGNRmG325FOp7nMxyPj3ngSPQputxsOhwN2ux2zZ89GcXExpkyZAoPBAJ/Px918qVQKHR0daGlpQTKZhMlk4j+lpaXcq0GNpcFgQFVVFfLy8nD06FG4XC6EQiE+qqGwkrITlQwOq9WKvLw8mEwmaLVa+Hw+AEAkEuHhGRqNdnZ24t1330V7eztMJhPcbjeXocPh4CNXGpGIoVkyeilngmS5f/9++Hw+RCIRAD0hnWQyyUO2FosFDocDAFBQUMBz444ePYpgMMivQ6Em2dn2uO+nTJkCh8MBt9uN0tJSPoqsqKiAzWbjxqwypEbyFr1JZPwkEgmEQiEYDAZuCCUSCW500/uQl5cHu93ODXKtVotMJsPDwGRoAz16bjAY4PV6sWDBAni9XnR2dmLPnj1obW1FPB5HMBgcl6PciYDBYMDs2bMxe/ZsbjhT+JvaZTKCSI9IPvF4nA+ixMFRIpHg4VwyhvPz83HGGWegu7sbO3bsQGtrq5TZGCC2gdTmkgGt1WqRSqXg9/uh0WgQiUQQiUQQj8fR3NyMzs5OxONxdHZ2IhwOI5VKQa/Xc/03m83c4zxeGdfGk0ajgc1mQ15eHiwWCyoqKjBt2jS43W4sWLAAZWVlfLTb2dmJSCQCn8+HeDyOPXv24K233kIkEuENu9PpxLJly2A2m7lwybpdsmQJkskkmpqa4PV6EQgE0NDQgHA4jGg0ikQiIY2nE8Rut6O8vBwulwvNzc1obGzk+QpiKDWdTiMSiaC7u5vnsZBCUs4EeZrsdjvPYYvH40gkEujq6uLei+7ubkSjUR5/T6fT0Gq1PJE4Ho8jHA5Dr9ejtLSUJzIWFRXB7XZz4ysYDGZ5KwHIUAEAm82G+fPnY9q0aZgyZQrq6+uRl5eX5SmiTpCMJTEEQ/IgOZJuUpKp0WjkRnI8HgcAHsa1WCwoLCyEw+FAOp1GPB7PCteRvlKjTqE/q9WKM844A0uWLOEhehqAxWIx2REPEZPJhOrqapx//vk894X0sru7G7FYjOctkpFEXkHKbaEQK7UDJA+NRsN/FxUV4YILLuDequ3bt8sQ+xgitt+kZ6SzXV1dSKfTOHr0KI4ePYpoNIrGxka0tLRAq9XCarXCZDJxTzOlZthsNn4u6XnqB1IkcVaUVquFw+GA0+mE1Wrl+RMulwtutxtutzurwxV/KH8iFovBZDLxxGBqXMnDQSNfq9WaFafV6XTwer28M6WYPLn/6VgxAVbSGzEsYjKZYLPZYLfbYTKZeLKuaJCQEpJhG4vFss5FihWLxWCz2bj8SNaU5+Tz+XguDZ2D5EThI/I+kpeCvBd0nw6HgxtWEnV0Oh3sdjvXR6/XC4/Hk5VzqDQylbIWw+gU1qFBkdlsBgAe0iHvFP3odDruhewLMYRP+m6xWBAIBPi9k2dEMjQ0Gg0sFgvcbjesVis3jMQJARS6IXmQ3MiopvZbbJ+B7AknRqMRFosFqVSKG9uSsUWZ4iLOrqY81Vgsxo1k8ipTmF8cVNHxpNvSeOoHj8eDWbNmwel08sbYaDTC4XDA5XLBaDSioKAAXq+Xz94g5SRBWSwWAD2JobNmzQLQ0+ja7XbY7XZYrVZMmTIFZrO5l8FDAiooKMC8efMQj8cxY8YMLF26lE+LDwaDiEQiOHLkCNrb2xGJRHDs2DGeoyPpjdFoRH5+Pmw2G0pKSjBnzhx4PB4kEgl8+OGHyGQyfKYUgCzvDiUUi16FWCyGlpYW3rlSzJwa51QqxQ1dasytVmvWrCrl7Eu6rt1uR35+Pg8v5uXlIRqNcuOJGgL6ezJDnZ/NZsOMGTNQU1MDh8PBZ7qKDSEZT6IBAyArFENyod8GgwElJSVwOp288xW9VJR0TAYy7SOGEsS8R3pHxG1arRZOpxOnnnoqZs+ejYaGBu5plAwe0lmr1cqNXrEESDKZzJoVKybzU54pTSSgECzNmBXlC4DnNDLGeLhHplaMLco2kdIsMpkM/H4/nE4nH2zZ7XbodDo+05naWBoMG41GpNPpcT2YGTfGk8vlQl1dHUpKSlBYWIjp06fzhGJy84ozbmhKrGg80T6ZTIZ32plMBhaLhedNkSEmeo3EKdb5+fmw2+3cGCOPFM3s8Pl82LFjB/bv38/DQ7KxzY3RaERRURHy8/MxZcoUzJo1C263G62trTxJnBpLADycqtPpuEuXZtdlMhk+eiG5qUEdIyURm81mJJNJhMNhJJNJvp94DvJGUDgoPz+fh2/FuLtsnHsgI9dqtaKsrAyVlZUAkOU1FEuFiBM3COWMVrEkgU6ng9PphNPp5CE4+gmHw4jFYrysgeidJMSZtqIHjEI/9L45HA4sWrQIQE9+5T/+8Y+ReFyTAtF4Ip0h44kMqEwmw40d0XgiLwN5HcXtJH+xfAgNqoDjuWyA1M+xQPQgiwYUtb8U0XE4HHyQSmE58iSLA1RK06B3YLwypsYTKRtZoy6Xi08zpxo+ZL2KYT0x3ELnIWg7TYnNZDJcQGouQDGEQIpHRhl5RCiBjeoLud1u5OfngzHGi4GNRWGviQDJgkIwVqsVdrsdZrOZN3rkvhdnbYmzcsQfILuBVHozAPAGN5dxlUvZxRmANBoSE50lPZCM6IfkSN6BgeqAcgas+FttXzVZ93f+XJDsxZIJ1M5IBgcZqPQ+kBEEZMtTGdZRhlLVdF0pQzHEK3qdyMMhDo4kI4to8KrppihDtb/VvP+5jh+PjKnxRPVAXC4X5syZg9raWkydOpXHtGkUKo46k8lkVn4EufiVeQ/k1qeRMI2GKXkVON4JUDIquX3JKBNzbmi6tMvlQnV1NaZPn45jx44hGo3CZrMhEAigpaVFdRQ8mRFnsXk8HkydOhWFhYX4+OOPUVhYyGu8RKNRaDQa7vInuZL8xdk5ZNCQQSbOqAKyZ35QAT4xYVzs5MUp1C6XC6WlpTwsTAU5x7PreCzQ6XR85isVwlQbhKgZImoNpNJwouOj0SjXd3EfsVK48lrKRlrZWIvXoPeKDGYqdUH7yYHQwKBBEdVnstlsvMwEyUnMZVHmtQLH63GJRpTohaTBFQAe7mGMwePx8FSMjo4OnpcqGVnI6+xyubL0THz2YnSHftPfojwBdb0d74yp8UQhncLCQsyYMQMVFRWYOnVqlheHHjQ1msp8BtF7IXZy1PmKMzkop4Jc96KQEokEH7WQkGmGEJ2bwoZ2ux0A4Ha78fHHHyORSPAZf9J4yoY6J5vNBpfLhYKCAhQVFaGgoAAejwexWAzpdBqBQAAAeD6L2IiSvMTGlJSXXMEEvTMUIojFYjzsJyqy0kuo1Wphs9mQn5/P75c8n9IbkY0Y4qQwOEHGkxguy2WIiA2mGH4nnSe5qe0v/lar6aY2alXmW1F4n7zUyppfshPuHxrEiHmlVJdJOVFANKDE3EYAWYMjZZhX2ZlSWwz0hF29Xi8AIBwO9+rAJSODRqPhRjMA3t4q9Y76brXfarKaCEYTMSbGEz0gk8kEr9eL4uJieDwebtyIVqpSGMqHTUaVuA+ArARDceoxdawiuWYDKaGGnLbr9Xp4PB4UFxcjlUrxuLvkOGR4Kl36FosFXq+X56x0dXVxNzyNKmnkKr4PdE7xfSADS6z5JCaiajSarFmWonzJe+VwOHgNMQrzTiRFHk2ow6Sf4TY4qBMlz5Ayv00tTK9ENMbUtqmFCcmjYbVa+TIusiPuHwp5iu+CUkcBda8jRQeURpMSZaid9qX2ggxfyeih9Cz2116KOtefXuXS0fHEqBtPpDDk+q+trUVtbS0PjyiTr8VRhhhuExtY8vaI61tR9VlKUCTFEtexEuvMiJ4qcfosIXqi6MdgMKCmpgbl5eXYvXs39u3bh66urpF9gBMM8jzRqJRG+oWFhairq0NpaSk0mp417agMQV5eHl/XSswnU4bvAHCvVDgc5tXIHQ4HnyotzvqhhHGSJQDk5eXx+k6zZs1CWVkZdDodIpEIL9wmPU/Z0Iw3WoNM9M6R50jpDaJt/SF6kNUa2f7ymNR+97WPiMlkQlFREV8uqL29XdZ86geNRsMHQnl5eVk1nJT7icYUdbbUXieTyawVBAixvVWuIEHe4ry8PABAc3OzHPCMEplMhq8GQIMOtUK4at5eZRkKsU2nAc9EKAM0Jp4nevFp1fvy8nL+kOPxeNYoRFREtXouoiBIeFptT5G9SCTCZ9spi6+J4QEaOSlzI2hUBCDLA0LXoxXA0+k0Wltbx3U11LFCDK2KdXnsdjtKSkpgMpnw8ccf82dOs3VoNlU8Hs9SNDqnqGQAeLFLmqWnzIejYn0kN5K11Wrlq3zn5eXB4/EAAJ/VJRvj3lCStcViyWo0xVwh5SgzV+Kwklwepr4Y7IiWUA6O9Ho9Dy9T/TFJ/9ByWbQ4rOh96sv4FSeFiH8rIbmKtYDoGIPBAKvVimg0KtvfUYQiA/F4nCfsq0HvgNhvDmRApKz7NB4ZdeNJr9ejqKgIHo8HZWVlPGdCbGTVrFWgt2tQqUziZxqNhs/AED1PwHFhKddKU2v4c9X1ocaBvF12ux1FRUW8DD3VnpnsiPliZIyS50+clkx1PcQOS/Qw0lRWSkylECmdj5Zc0Wg0PHeJMcYXlcwVOqCyBB6Ph8fvxcZcrCc12NlkJytKz5MYrlaOIPujr1yovvYZyPb+vF7kuaYCnIwxvlC0XDNtYFDuC63gYDabexnAanlL4nZCmaYhDpBom/h+abVavlwTTeiRjA6ULkNV/wH08hoSYi4b9ZdUcojKFNBn1E+IdfnGK6NuPFksFlRXV6O6uhr5+fmYOnUqL2IoFkETDRgKsVAnSoJT5iCJU1XJpUvbRc8TfUYjZrqWUlBq1q/YCFDFY/JAVVZWwuVy4ejRo/jnP/8pk8eR7aUQp7MDPWESi8XCq47TWkbK3CbyVmm1WhQUFGDWrFmw2WwIhUJ8OR5xvbri4mLMnj0bsVgMhw8fhs/nU1VCrVaLvLw8zJkzh3ueSPlpNGUymWC32+FwOJBIJPjMvckMDYBmzZoFl8vVy+gk+Ymdnhq5RpbK8I7y7/7Op9ZRazQa1VABeRhpDbW8vDykUqmspUIkudFoNHA6nZg6dSry8vJ4XS5RDn0ZUMqcViA7j01pPInT46kWGHmwlZNHJCOHGLaj5c+ooCkZP6JjQixlQXmF9Df1D5RvGggEeC7seC7/M+rGE+U6UZ6JOBVc6dJT80YpPU+58iooXKSERpu0DwlXrTqtmjdKhAwwclvT7LHu7m7p8v8X4jOi0b1YT0v0PgHqtT/oHBRbFwuukYEqTnk2m81wOp1ZC03mUkCTyQSn0wmXy5XleqaGWhwVKZPNJysUcqfVAMTla0SPQX8Gz0BzmvrSQeV+g0UciDF2vJ4bjYwl/UOz7ShsB6jXX8tFrvZb+R6pGWUUtqN186R+jg6kN+JEHdErSCg9ibSPWGGefsTUDqUzZTwy6sYTeYTcbjdfDZ1CIdRhibFRZUhO/K0M8QDHlU8s3iWOXkTUPhPPn2vkK8b0KQ/KYDCguLgYRqMRPp9Prof2L8RSBWSc0NpWNNONRh0UPhFr8FCDSHIkVzEtA0IjGjLAaTHKQ4cOcUM2HA7zd0DZuJJBRvWiRK8SnZvcycqw4mRFNFBJrvS+9zUQArI7xb48SLk8FMq/lceI+tpXR6oWXqQFoc1mM9ra2qTnaQCQAUNrkIrhdPEZ9xWKVb4bAwnzUXtsMpng8XjA2PHluSQjD0WEIpEID5dS1XfSG3HwSm1oKpXKmplJ7b/JZMoatMRiMUQiET5Ji1D282PJmHiexOJ6lNwNgM9sEo0n5cMSFU1ZxVY50qUii2KeitioixazeB2xiJc4+qEOnTwS4qjVbDZj5syZKCkpQUdHhyxb8C90Oh03lqkkPxkhVAHe6XTC6/Xy0SMVs6QRCnBcblT0EkBWeQjReDp27BgPr4XDYT4JQVkJlww4qlFDBVPFsCzVAKIle6Tx1GM8ORwOvpQNhWQBZA0a1AYhSg+yWoiO/hd/K49RHqc0nPq7f+XUeMYYbDYbysvLEYvFcOzYManDA0CjOZ5jKOYN0raBlCBQGsbiMaJc1TxUNpsNRUVF3AMlPU+jQyaTQSQSgd/vh9Fo5G0pAD6opVxRoMfDbzabeV9JE02cTidvQxwOB6/2Hw6H4ff7+VJcwPirATVqxhMpBM1sE2vpiFPQlSNCtQYVGNiDVGtkxfPksmjVrqsWXlAaVTTLi2b3iYnokxkagYjGrpi/IC7vIRonZPAow6c0y0OZk0YyoZl3lAxM3kFxNo/4rim9lIS4XTnpYLIjznIVOzwxz6E/T5DyeasxkH1yoXZNer/UvBvk6Uyn09JzPAjEAsK5EobVUIZklPJQe1/Ekhik02J/IhkdyMlAs9ABdc+h6GUW+3axrRDr/4mDYOVC3+ONUWkhdDodryReWFiIadOmwev19jIuRFevuHivuF6R2ppJ4v/0mwRLnic6hzK3SRkSFDtiKmtAXiwxpi4u7wGALzpst9tRUFCAwsJCaLVahMNhhEKhcfsCjDRiwrjoRaLQDwC+dAstx0Grq1Ol8VQqhVgsxr1Ohw4dymqkM5kMgsFg1uKSlGio0fReK49CdHq9nufcieFdum8APCTh8Xh4MuRkJxwOY/v27fD7/SgtLcWKFSswe/bsrFmTsVgMoVAoqwEUG1ElSo8g0LtWzEB0SNxX2TmLRrI4pZ4a9FAohH379qG7uxuffPKJXCdtAJDHwWaz8WVZxA5PlKnSA6WWH5PLW6XcRu8TzXSm2XbjzTtxsqAWAaI+Vm0lAGq3qdYi1eGLxWLc6KWBcTKZ5CE/mlBECePjuc7aqBlPU6ZMQU1NDfLz8zF9+nTk5eVlzXQRhUIjGcZ6llZRJgXTfmp/i5DxQ94HteJc4uwgpYuY6gxRY0suSOrgxetT/o5Go0FRURGmTJkCvV6PtrY2RCKRSTtDi6YTiyutk/FEHjqn0wmPxwOz2YxAIMAL5lEdISo3QCUJWltbuWEsNqqicZtIJLK8W6LxRC5+g8HQq6ifmBdF56SwYiKRkB4J9BhP27Ztw86dO1FVVYX6+npUV1cDON4h+v1+3lAqdU6NvvJbgKEbTqJ3jCYukEFPs23pJxQKYe/evTh27BgOHTqUNQ1bkhsKfdtstl4TNAaaxyTqstLQonOJbbVoPDmdTrnCwwgievxEw1gsXizKnOQkrhARCoWycpjEFB1x7Vk6Zzwe5zNgx6vjYdR7AmrYxPXGqDOlDk6sF5HLYMr1v1K51Cxmtc+V4QHxRaBOWMxzEsN2ZIVTY6s0Bser8EcLUa5AtodRGRYTPYH0XJWjWPG9ocZWWZyvrx+6J2VYVw06t9jZTnYY61nMORaLIRgMoqurC52dndwoJT0B+p911d/zFN3+4mfKgY7y/nKdi95DMqTIS5ZKpRAMBhEMBhEIBLjhJ+kfcZCi9ODmkr+aZ1BtX2UahSh70ZMpXl8y8oiDImXJILFPJONINLJoICO25+IPHSsrjKPHQm1vb8eHH34Ij8cDl8vFPUyUOOZwOJCfn8+T/kQFiUajXEDkwclllNBnylipWkhATcGVoTha5JLWPSNvGXlDKNQUCAR4ovL777+PTz75BD6fD5FIZFy/ACONuF6YaHyS/KkTE0citEhzKBTKWl+M8uXsdnuWyxgAr0xOikmz9sRCa2SoAdnGmVg9XhkyoHBsQUEBwuGw9DwpaG1txaZNm/DWW29h+vTpWLp0KfLz8wFk12UTn+9gOzi1gY5oPKmFiEiPxdwKmvVJ4Vqj0Yi2tjbs2LEDhw8fxuHDh7F37150dXXxkKOkf8Q8VmUxYqVHSemJVPNQ0eeiftI+4jZ6n5SDL+VAWHJi5DJqKZ1CrK1IAyvKO/X7/byfBHreFVr8nSI7FLajiWPkdSLPk3jN8WQcj0pPkMlk0NnZiWg0CqfTicLCQp4HU1hYCJvNxoslOp1OAMfDZtFoNGuZFNEdr/Ywc3l8co1+lHkYpLBAzwwBamzJeBJzpjQaDV8vraOjA++//z46Ozvx8ccfc0Nqsisx5UTQNGJxREIGjpgsSF7JeDyOQCCAUCjEw2uUeG61WpHJZPgSLuS+p1wm8hJRvg3lrYnXEEc39AP09kiR4ez1etHe3i5znhR0dnbihRdegFarxcKFC+F2uzFz5kw+w5ImAvQXugHUq/ir/a80ktTOq/QwiuFj0mez2YyWlhbs2bMH7733Hrq6utDY2MjX15zsujsQRM8vzW5W1tFTeoSUXgblucS2mEI6pL9KA0oZmlcL90mGD9GpkUwm+UAXOG480VJY3d3dOHbsGA+pUnSAJhaIoTk6FwBuOImTfYjxJNNRG0aLsUyfz4e2tjaYzWakUim+NhEl54pFE6PRKPcmqCUiiogjErXw3EAfvDIZmWoLaTQ9Nal8Ph+CwSBisRja29sRiUTQ3NyMzs5O+Hw+hMPhcR2rHW3EWXNKV73Y4IleAtFDRMYWHS/mRYjhXdpGhhAZT7lqfJE8RUVV64TFWk/jaeQzHqAODgCCwSCam5thMpngdrsBgOe5kTzVnq9Sp/vSceXnSgNK3C56JTQaDc+f1Gg06OzshF6vR1NTE7q6uhAMBvli0FJvB4c4+FELr4r/A31Xlhf3FwfM4vujBhlRVP9tPFemPlmg9pj6durfKaRPMsglB/JM0xItap7H8SzDUTGeGGO8c0okEti1axcOHjzIy7OT25eKrLndbhQVFcFisWDOnDmorKyEXq/n7kCgdy4UCZKsYFIkcbvSZdxXg0vHkfeoq6uLux8PHjyI1tZWBAIBHDx4EN3d3YhEIujq6kIikUAoFJIzdf4FTSW2WCzczSvOYASQVYHcarXC5XIhHA7zGRsAeGkCETFBXKvVchc/hXmpY6fwDRVwE43hQCCAtrY2xONx2O12PoIVj6OlY2i7RJ1jx47h2WefhcPhwIwZM1BTUwOn04nS0lJMmzaN5xgppzYTuTrUXNuU+4jnImOdvNnU7nzwwQeIxWLo6Ojg+U0HDhyAz+fjRrRkcIjlApQhM2XoDsgeEIn7KOuwAdnhO7UOVsRqtcLr9SIcDiMQCPBQkeTEEI0Y8Te1t/F4HH6/H52dnejq6sLhw4d5v0mRAOWEHBrw2Gw2bgOIJX5khXEBceYbFTlUQ6PRoLi4GDNnzoTL5YLFYkFNTQ33UpHxpMyLIkQjSfytTHBTM5yA49YwAG5J05RL+tm3bx8OHTqErq4u7N27F21tbSPxyE4KRM8NQSNJscYH/U0hPiqSSQ2tmPdAjag43VUMB4quZJKzqITkctZoNIhEIggEAtBqtbxEglLRKVeGwoISdbq7u9Hd3c09O7Rkkd1uR0VFBYxGY9ZkCuo0ib4aSrXwvFJvxb8phGA2m+FwOBCNRtHW1oZ33nkHPp8PBw8eREtLy7ge2U4UaFaq6C0mlG2s2A6r5Tspc+Jo/1yeS/EeKCxLBRwlw4eanoh9eiQS4YORzs5OXnmc2kxRZtS2azQabnCLs6XVZvaNR8Zd9qvoQSK3n1iATc0NLP5Wy38QjSgRtX1JiEBPyDAYDCIej6OlpQXt7e0Ih8M8REcLGEr6Rjn6pP/F2Dm5epVhEzqOjCMalah1pmo/4nmURd0AcINc9Igp752MOjnbbmAwxnhJiWQyiWAwqOrtVeaniI0mofYZnUeEvITi+0VQWCEcDvOQu3LZB8nQEdeAFD3uau0zkDsk05dOK1G23aSnVqsVqVRKeohHCdGAovwlZQpGLoMXOD5ApUiR6MU0mUw8akWMp3y2cWc8AeDFEKmzstvtMJvNiEajfPaaKBDyPoieKDHJXJz2qBwViSE6SjymWVutra1obGyE3+/He++9hz179vBGWCzaKOkbalzFlbaB4+77cDjMJxSI7nwx900sWKo2Y0v0RIryFut7iWEjel/i8Ti6urp4ArrY8VKHTrWgqIK8JBu10Ft7ezveffdd2O12FBYW4tRTT+WjTNI5UY7i7Cu1jk9MRO7vPpS5N7ROVnNzMw4cOIBoNJoV0ukvdCjJDYXfrVYrz12lunyikayUtTIkowzbiflOap4qZVkbCq/n5eVBr9fD5/ON4lM4uVFL2KaUCIrOhMNh7migNByaQZ1Ld6l9Bo7PljaZTHC5XHC73Tw/WlyiZTwxLo0nsXAWAF6gUhz5q4XcRI+GqIBq4TtlfJ32Fd2HyWQSPp+PLzS7b98+OX15CPTnEUwmk9wwViaBKxeKpuOUxpPooRJDtmKtEbE+F0F5WNFotJds6TpU+I9mE0l6o3yuVBDParUiEAj08jypeQ6UEzxO5F7Ezpo8T5FIBN3d3arFL5X3Lxk41GZSZ6ncliuPSelVUttP3F/8TGmQkZ6azWbEYjHpeRpmlLohhl/J80QpLmJKhTgZKNfgh85N/TytfScu4Qb0XxNutBmXxhMVrjMajb0y9tUaXrXOlNyBtJ2OBZBlOCkbTXFf5QsiGTzKcJ2oSBSyE6e80v5kyIgJhKJRBGQrtDijT9yH6gwZjcasJXbExjcUCkGn0/GkdPGdoHAAnWu8KfB4QNmx0d/KIrhqSyupJaKqGTEDSRxVy6WiZWL6G8Hmuq5EHZKnGM7ua2AhGrRKw4nab7UityKkm6I3iq5JekodrzSeRhYymE0mE38HRC+gckKXeJyI2F7TAFer1cLpdCIej/PZ9rTveGp/x9x4UhtpUGgMAA/l0LZcSqHWcKt5KtTyLZTHi+5lMfdK3C42ApK+URpONJuN6oFEIpEszxMAbjzRGofUaNIoR2lIkZEkhurEEbHBYIDFYuH/UwOr0WjQ1dXFc3PouuIIl0ZAFHaS9EapB+JsR+B46FYZXlUawsrQel/XALLbDzpONKRDoRA6Ojrg8/kQCARUzyF1ePDQ7CibzcaLY6oNRgFk6b3SeBL1jI5Xa+PFd4lC72InrdH0TOyQS7WMDhqNBhaLhS/LQwaUst6WaOAq5SrqPLXrQI8Hqri4GCaTCZFIBEePHu3VLo8Hxtx4UkO0QslwGshDU3ZsfTW2fSWxKfOn+kpaHE/CHE/kCquKkDEkJnKTspHBJIbwlN4JseyEWtViOk7MpxBn9dG54/E4DAaD6rsmNvzKEZWkb0RDSOzklCF1tf2Vo0w1HVTTX6XsUqkUIpEIIpGILB8yjJCRQx6HvtpT2r+vkNxAQzN9FdikpGPpIR55lM9bGUIVEdNkCLW2XDSKzWZz1mLy45FxaTzROnE6nY6Hc/orXieOWqjzJQVT5tGouYapcxbXqKNcGJqJpRb3lfSGRoFUGVyZK6QMw9Kokuow0efkMVIuQEnbRblSWE70PgHHG1vyVkWjUZjN5qwREQAetqMOVlmMk3IqZKM8eGipHTEPAlAP99H/ylC7GkoDi94P0c0fi8Xg8/nQ3d0t16sbRki37XY7X8S9P5mppVso6+6JBrTY5ioNa+UASvQ0G41GGbYbYbTanoXdnU4nrFYrAPA+mnRQ2beqhd3EwZRYozE/Px9msxlHjhwZtwPWMTeeRC8PQR2pRqNBLBbjBlR/CwWKbmHyXInxdABZjbeIGKqjIovhcFh11Jqr0Zf0oNVqYbVaYbfb4XQ6eWVuZahTmeRN8W7alzxEFDYV5Sker9Fo+NRWseItkD2zh46nOlLK0VA0GuWuY/Ea5JKWFcYHDxkwfr8fQE8hQ4vF0qsDFPfvL79J6a0SQ7pKr3E4HEZbWxuv/C8ZHoxGI5xOJ1/mBui/crjSCy16HMR9yAOtZjyJ4V6lF4rW0ZTh9ZFHp9PBbrfD6/XyEKlyLTpAvdSI2mxpclpQyHXKlCmIxWI4ePDguDWEx9x4yoVyVKFUpP5cxLk+V458+ruuMrdG3E+ijppLlz4HkDXSpB9lvgpwPE9GjHcrXfzKH2UIIddIV6nkoqyVI2jlzB7J4KCwrJr3uK/8poF4nZSGlPL8ZEiLeXKEDLsPHTUvT385ablQiwQM1Pso7qssXyAZOcTIAE2oOdGilmK/QOE68vaPR10dt8YT0KMUtEAsgCyvwEDyHcSyBX3NvlMeJ+bG0AwtekEk/UNhO7vdDqvV2quWFoCsmRpUnp9W3HY4HEin0wgEArxSsN/v5/FwymkgY4jkSwYReYso1KY2+qGJAIRer+dVx5XGl9hIkDE40Dw8CXjeEVWP768zHKiRqsybUMtPTCQSCAQCCAQCskTBMGI0Gnk9HnHRb6D3pBxxUKP0LNNkDOB4vT6xTI0YNRBR5spQXo3dbkc4HJYJ4yMEGacmkwl2u52vYSkOUMS+FjjeF6sNlMS2lsoc6PV6vqID9SFUU0oc9I617o5ri4CMp2Aw2KtDU4Z8lMcB6knGamEjcTudHwCfiivr+wwOSvhTM54IqslCxhPlw1ChOzFEJ+ZAkHJR+QI6p1hOgowncbadmCMVi8WyFm9mrKeGkzJJnUazFLKjCrhiqQVJ31BnGI1GYTKZeAMpblcj1wBJ7fwAsryGSuOJlo2Ix+MD9mZI+sZoNMLtdsPj8eQ0iNW8wkrjiXIjxfacCiGLJS7UZCtGJdLpNIxGI8/DEgdYkqGhpqfUphoMBjgcDni9XsTjcXR3d/dabUOZRJ6rfIGYagP09A12ux2MMdjtdlgsFj7QFY1q8dixYFwbT4QyUZg+y2XQKA0tpaCU+yofvlLgufKkJLkhJVMaTkrjhHIYyBMkzroT8xyUK7eLPwPJg6PREuVUEGIojxphce0lumc6lzKJXTbO/SM+48EeN5CQjfi38n+Sk9oio7JzHTpkCIlh+VztrFqbqxZKp//VFg3ONUBWDnpliH3kIC8gpVMoy1MMVr/F8yrlSD90LbUCrGPNmBtPA7EglYpA+6nlwoiz6nIlhivdyrmuZzKZ4HA4kEqlZLLwICDPk81m40uaiDOhyGsUiUQQi8XQ1dWFY8eO8dL+Op0O6XSaFzZMJpOwWq3cOyQmBivzkkRPhBh+pUVqTSYTXwpGdPtTbTG/3w+LxQKr1dprIWCj0Qiv14vCwkJeeFEWT+0fZekRQs3bq2YAKVF6IcQQjtIYjkajfMFiWjZERBpQQ4PWkaPaaSJq+YZiOIcGpDQ5R6fTZS2ZI9aCo/wXceKH+K5QW0D75qp0Lhk6oo5SRMHpdGbV1hPlK07E6Ss1hv4WDS9lVMhiscDtdmf1GeNFX8fceBosSjc9fUbeCSA7b0k5elUqtth4KgVMhRVjsZjMeRoE1ODRWkVi6I3kkkqlkEgkEI1GEQgE0NXVhVgsxg2uTCbDjSsAsFgssFgsvOqsMvatNpolBaTwgMfjgc1mQyqVQnt7e5ani5ZpCYVCyGQy/L7FcxoMBjidTng8HjDGEAgEpPE0AETjSWkYiSUhxM/78jopR7miMaVM+k8kEgiFQgiFQnIx4GGEQuOUr9iX50GUjZjQTSVENBoN/H5/1oxMs9mcFTZXljQQz0tGFOm6rPM0PKhFZEwmE2w2GywWS1ZUgQYrymXP1FBup//FkBy13eTAyGQyCAaDI/Ath864sAhyjf6U8XKg7xyJgXzeV+Op5l4ery7D8Y7SoAGynz3lwdAaaKSA1NkxxngCInA82ZtGn7m8D8Dx5XfoNyl2IpGATqfjZS/EgmzUCfT3ncT3QTbQA6evBjWXsZTLgMqlw+K7IL4jakUVJScGeY9Ix9QGoEB2mgUZyjRLL51Oo7OzE5lMBq2trWhtbYVer0dRURE8Hk+W51gMvSpL1qjl40jdHH5oUCzmsqrplai3ud4L5f65wu9UfoKiEuPJUzwujCclomtXnOmUq86TOBVe3C7OilJ2smqNufIz8jxRBWqpkAODniOF4IDe01hplftgMAifz8c7uc7OToTDYa40lF9EhUrFEaj4N408yRgSQwmZTAaxWAydnZ3Q6/Xo7u7mnghyQdvtdtjtdlWjSFRkWpIgFArJ92GAiLkoYnhV7FDpt+jBoP8H8pyVnif6TFm9XnLiiHpGkz3EOmqEqEu0cKzVakV+fj4sFgsOHDiADz74AIFAAA0NDdi3bx/MZjNOP/101NTUwGKxoLi4GE6nE+FwmHudtVptr7ARAJjNZrjdbkQiEZhMpjF5NiczOp0OeXl5mDFjBvLy8mCz2QColwhRDmTobzHNAui9MgTtTzOfzWYzioqKYDab0dXVlXX+sW5/x6XxBKg3uNRBioJRxk/pc/E8onDF3Bu12LwIuabFxGfJwBBHpUBvBYvH49xVT6E5xnqKGobDYej1eng8Hh7ii8VifMYFNcpiR0lhAPI4URVxCheJVa7D4TAvvKrX67OK/amFAOk3vQ8mk0mGBgaB+ExzhcqVeqr8fCjPWgzp9FdgVzI4lEnDynCpWm03WvibPBeJRAKffPIJOjo6sGvXLrzzzjuw2WwoKirClClT4HK5UFRUxGfjJZNJRKNRWK3WXoNi4PgMXmWuomR40Gg0sNlsyMvLg9vtzlrRQQ2l4aRmYCm3iyFA8iRS2E6ZdzzW+jwujSeq/yGGUtQaVdGg6S88l+t/ZeyVGlvguKeBXIaSgUGyoUKZysUiKRGQRqAzZsxAZWUlYrEYd9MD4IYPlRYguaiF6oDjoxhahoMxxl39brcb5eXlcLlc6OrqgsvlQjKZRHFxMUpLS+FwODBlyhS+3ISylpMYPpYN8+BRGqRqbnrRsBpIzkSuhruvBl0yPNAAhcI3qVSKlxQgRGOZ6rqJ7ajRaITD4UAsFuM5hjqdDg6HAwUFBXA4HLDb7TCbzUgmk9wzbLVaVcM31FbE43HpZRwB6Nm73W44HA4eTh3IwCSXPouDXoL6YMYYr/lEk7bGE+PSIqAaIpSYJlqogHrNCOVIRBRGrpwHsTFXjpDoPvLy8qDT6bjCKhlPlvB4gRpLSvwkA4qSuLVaLbxeLzweD9LpNOx2O0pLS5FOp+FwOGCz2RAIBLBnzx4cOnSIr02mrCOivCb9Jte++D6UlpZixYoVmD17NlpaWvDxxx8jFothxowZmDlzJiwWC2+sAWSNfnKFkaXnaWCIRqdo9KgV1KP9gd5GkOjyFwc6fRlQUidHBiqSSTNYxQK14iCJwve0/hklGpMXo6SkhE/EoH1LS0tRXV0Ns9nMPcLkdYjH41mz9cTk82g0Cp/PB7/fr1oQVXJiUNiuoqKCt+uRSCRrObW+UOsryWAWF2Wn/FQqL1NUVMTTJcZTmzsujSedTsfXKhNLv4soi2SqJRAqhaUWzlPuJ16L7oPi+rkYT0ls4wXyIJHXSRm2oZk6APjsOcYY3G43XC4Xuru70drais7OTu6RGuhoUrn0CtDj0i8tLcWsWbNgs9l4HlV5eTlmz56dNarJZDJ8kWC1kbT0Pg0OtVCoMvTeF+I+ynP1dxwAKasRQGyjxVIk4ixXgowdGkTRNhpgkbeXdMtms8Hj8fAwHM22s9lsPM9JXB2Azkfro4kTTSTDB+UgOZ1OHkqlkPhgydX3ioMqSpWwWCxIpVLjbsA6Lo0nyuh3OBywWCx8hpPYKZKS9uVVUhZoVOsIRZSNLXXw4tR1Sf/QsxeNDPHZkhKQPK1WK6ZMmcL/ttls0Gq1mD59OpLJJAoLC2Gz2eD3+7O8FmKnKCqxsuYTAMyfPx9ut5t7NcvKypBMJpGfn89nz4mJxWpT4YHjuR6yQx44YqV+AL2eca6GlLYpB0HKULtSl5XGmexIhx/yElEnKk5VB3q3uWKOFH3u9/vR2NiIjo4OdHV18RzFtrY2HDhwADabjSeMM8b4OnoUKqJ2n8qedHV14ciRI+jo6BhX9YBOFmjQS32yciKGskCpMkIknkfN4SAWo6aEcYr6ZDKZcbfkzpgbT+KDpodpNpvh9Xrhdru5lSvWElEmf6slmoqdNFnI4nbx2srCi3Q8jYpo1p1k4FCHKU4vpXCe2OABgNvtRnFxcdb0Z5fLhVgshvz8fF6+IJFIcCNJLLjHWM8yPuSqV1Y2Z4yhuLgYJSUlvF5UYWFh1v1Sw61WSFGcZEBTocURtCQ31ACSl4KMZnHQI3r0+vJIqW1TM5zEv5UjWcnwQHmp5HkSZ7tSPScxJEuzpcXSBm1tbXjvvffQ1taGo0eP8mK1jY2NePvtt5Gfn88naZAHQqvVIhKJ8LwmagtisRiOHTuGvXv3wu/3w+fzje0DOgmhGZYOhwNarRaBQCDLOy8OlvtqG9WiRqLRRWE7ALyuFOXYjac2d8yNJzWUtXdyWbBKg0mZ3Kv8USI2wHS82MCSAUYdpih0Sd8ow1u5ctGA44n5YniPvI9utxvpdBo2my2rGrjSeIrFYojFYtzAURpPeXl5vKGnEIJGo+FTqGlfNWVW3r+s8TQ41GoCKY2ZgYbhcu2n5nmSejpyiPot6nhfbTLpJOlvJBKB3+/n1d8p3yUUCqG7uxt6vZ6XKAGOv0dqukkGVDAYRCgUUg3dS4aGOLghDyJ9JraXyiKmQ7kGIZ5rvA5Yx9x4UmvgqF5HXl4eHA4Hd9cq85ToQYqzPEQrmJRVTEYTk1RF96FaY0uFHOPxOMxmMwoLCxGJRBAMBlU9FJIeKNFPXOJE6QGg5VDoc0rOpsYxlUrBZDLB4/EAOC7vZDKJSCTCw3YkYzKCSNnIU0kjU6vVynMnkskkgsFgL88lebaA4x21+O6IXhLJwKEK76KXAuidSK4Mx6nlMSqNcNHbIRpk9Dldm9oQyfAg5oOKuSiit0npeQKAjo4O7N27F5FIBG+//Taamprg8/kQDAZ5u3Dw4EEkEglMnToVxcXFfOIQhdjFtoRknEwmkUgkeA03mTA+PGg0Gr7Ystvtht1u5/0teetpP+VAWUTUS7U0GuUxoi7TYJcm9RgMBp6TOpaMO+OJktIKCgqQn58Pl8sFk8nEH5iycRRR1v2hxpJis9SZii5msWNXGlDkkoxGo7BYLCgpKUEoFOLJxnQf9FuOdHsgzxHlrImdGylbPB7nI0QqfkdKQg0tNc6UWGowGBCLxRAIBHgCIRlbVIFYNJ6oQGIqleKNLI14fT4fkslk1sw5Zd4UfabslHN5QiXq0NqCFosla7BC3gjRcBL/VuZEEUrDSfRIKdsHSjom41kyPFAYhfRTHIiSzoheKcoTbGtrw4svvojm5mY0NTXh4MGDiEajXMfi8Tj++c9/4uOPP0Z5eTlmzZoFj8cDj8cDl8vFJ5mQrtK7lUwmeSFcKqgpOXE0Gg3sdjuvu0UlCqhPpdpdom6JbaiImKfal4FFg2m6PuU822w2uFwuvsbppDee1KCwHSWmAdmz7QY68lezcEWUI13lseJolpSU6pkozyMNp94ojQ4A3PMgGqzKnDPRQBGNXAr9iNOUxaVY6DriEipiR033JOZKiOUIco2ExPuRy7OoMxAdUDNwxN9DOafy3GqfK+uMSV09cWhmG3nlRaM3V3iVBjk+nw+dnZ0IBAJIJBJZITbyAFOeo8/nQ1dXF3Q6HfcMKycAiFEFcRkXyfAgFh9VDkAGGx5Xzsbs61jlQIgG15RCM9aMS+OJ6v4UFRXB6XRmdba5YqNA9swaUiL6nDpSMZFczIsR68WQ1UsjKr1eD7fbjenTp6O7uxsdHR1ob28flWcxEUmn0wgEAmhra+PPmEaHokKoJQ0Dx939NOOCksspByIYDHJvktLAojwmqh0SjUZ5JXEqOaH0PIrhX3JJi14oCkF6PB6UlpbyJV5kGKiH/ryv1KmRPMWkUmWnK55P7Vyi50r8TAzfiZhMJjidTmQyGVWdlYbU0Ghvb8e7776LgoICVFdXo7i4GEajkecekm6I+kW1mA4dOoTGxsZ+c5N8Ph9ee+01NDY2Ys6cOTCbzZgxYwZPJiZdjkQiCIVCCIfDCIVCiMViMudpmNBoNHA4HCgtLYXb7YbVau01y05sS+l/Nb1S6r3oaVLLYxMdGABgs9lQWFiIUCjEZT6WjEvjyWq18tlRVJNHTEwjcpV2VxpD1CnSseStIIFR407HUc0h0avhdrsxZcoUmM1mHDhwYPQfygQik8kgFAqho6ODr39EuU/0bPvqMJVyFRHDfWLHazKZsmrFUMiNZulRHSej0ciVVbwPcXRDHikynoxGI2w2G5xOJ4qLi6HX69HU1CSNpwFC4dpkMpnlIVRrMHM1vEovldLgFg0x8ZwGgwF2ux2pVEquTzlMMMbQ2dmJPXv2wO12o7CwkHsmlDWWRO8v0FPTrbm5GYcOHerXaxEIBLBjxw68++67OOWUU1BXVwe3252lq5TrFIlEEA6Hs2biSU4cCtuVlJTA6XTCYrGoLnckhtBF+huckJxohqZoWIl9OtBjF+Tl5cFgMKC1tXWYv+ngGTPjqa/RJU1zF4tkKpN21c5Ff6uNTvtKWBvI6NNoNMJqtSISiWQZcIM5x2SBRpiBQABdXV1ob29HS0sLN0RFQ1bpmlWTrdIwps/peLUON1cnqZYzp3assh5NPB5He3s7Ojo6eF6FbKCPo5QBdW5UrkLp5TuRc/e3r3gNuge6DxGps0MnlUohEonAYDAgkUio6hPJIplMch3y+/18tl1/UAJ5KpVCKBRCa2srjhw5wotoUg4jTRahgZmU6/CiLEsheoPU9Hkwz5/Op5w0ohxMk3FlNpuzPJtjyZgYT0q3nRIq/e92uwFku/Dof/FcavFP0YMknoOuS54JIpdxRt4ut9uNqVOnwmAwwGaz9TLQpMIeJ5FIoKmpCZ2dnWhqauIzZ8rKynD66afzWYtiArmYowQcz10i5aIGl8KuJHPlrDs6juLi5GkSjSGN5ni9KdHDJLqf7XY79Ho9fD4fXn/9dbS3t6O5uRl79uxBd3c32tvbEY1GR/vRThioErHVauWJvkajMUvPcuXGEAMxtMRzKMMGjDFYrVYUFBTwSQf95eVIBkY4HMaxY8cQCAQQCASy9JXyCElX29vb8frrr+PIkSPYt28fAoEAP09/uS8Uwj9y5Ag2b96MN954A/X19Vi5ciW8Xi98Ph/a2tr4LDtZz2t40Wh61iGlme9i+QjR6FEObsXjgeyIgthfi4Nm0YASQ73xeJwv3VVaWgqr1YrGxsZRegK5GdOwXS4DSizbT6OK/pJ51Vz24rRztVAR/a3WiCoNPHIZJhIJmEymrH2lsmZDVYLb2trQ3t6OdDqN/Px8LFy4EIsXL+a5R+IIhrxRYgFM8lKRIQwc9wqJHaZS/lSLRDyvaGxRQ08KTecWDTAKQ3R2dqKhoQH79u1Da2srGhoaeKVzSQ9qeUsULrPb7bBardzzM9TlHHJdS9RRZSgW6BmIiRWqlUg5Do14PI6uri7E43FEIpFeg1gxrBqJRPDhhx9i7969aGtr44MOZXudSxYUJty+fTt/j84991wetqOimFQrSjJ8aDTHZ07TwswUmhVlrOZJHOjgRBy0Uvsterho4GwymeD1esEY69UHjwXjJueJOjTxwYklBpReJ7V8ByA7gVzsMEUvkTLMJ55X6U0SOwOr1coXtpQMDPLiiDVC6PPBhHJEmah11n0doxaeU+Y6EeSlUs6sUysEKDmO8pmQ8eR0OrMqA/f1/HLlNfV33b50mAqwJhKJXss7SDkOHWqvaZBCM+TE3BUyZgKBAPx+P/x+P8LhcK9aagOBMcbzHJVT4aW3aWQRZ7nR8xcdEkq9HQz9HUN2AGOMh+3U6j6OBePGeKLGlnKdEokEotFoVrK40nASE8zI+hUTkmmkSTN9CFHoaslp4t/kgnY4HHA4HEin03yFcCUD6dAnGxaLBTNmzMCcOXNQXl4Oi8XCQ6EUxlEu+CjKQ/xMzUtF29TcvcrPxdmaZMQp869oCQlKErdYLHy0O94WphwvqOWd2e12lJWVwe12w+v18udMzzhXw6c2sKG/c4XJ+3pXrFYrCgsLYTKZxt2q7BMZSl+gyv9+v597FY1GI9LpNDo7OxGPx/Hxxx9j//79+Oijj7iRRQw0b5Bq6yUSCV5biNp/8kzLHMSRQfQik/xIx6g9FQfBat5EtWiR2v/KPp5mTAM9XuS8vDz+jo0148Z4os6UaklQAS5lR0oNtZrXQjR+xDL+YskCkVzHqgmcZnNRsca+GGuLeDxBZR4KCwvhdrv5SFUMy6lVmFbrHJWeQ2VH2J93g2SsNLrJ06l8f2i0pfQ+SfqHSgTQ9OZckywGm3ukNKLEc6q1E9TJj8dV2Scy1F5T+CQWi/F2USwTEggEeHmXzs7OIV9P6XkSPcbK6vKS4YN0iApVK0sAifvRbzUnQi696+tzGvCSkUapFGr1psaCsb+Df0EVRG02G68GTEqonLquzPZXJqCJnR9wvBqtmvdKGb4RlxSga4qFFYHjU9ep/pBy5oFU4uPQqtgUvqHlVWj02deMNzWPoLhdaXCJ29T+F8+nJn/ah5IUI5EI0uk0L1MhdhCSbJSyyRW2U5PbYA2ovsJ+SiNNLFUwHvIkThbEWW7BYBCdnZ1IJpPcWwuAV/0mT8VA6S8PStkPyFD68EODW3FNObWcNvF/8Vjxt3K72rWU/4uOD+qTacUAWih6rBk3xpPRaOTLsXg8Hh7bpKqyorJQx0oPVJypJT5ksdGmY8VziI24WrIpcFzoFA6ksJ3X60U8HofP5+NrqonWslTmHvR6PfLy8lBSUgKLxcJDsZRkqha7FmdwKMO2ohJT+E9NbqJXSRmWEz1dtF30PCWTSV5LKpVKYdq0abDb7chkMti5c+foPbwJgtq7TrXaCgoK4HQ6s2bCiYn54jlEvc51jVydKXBch4Hj4SCLxcKXdKDlYZQMtJGXHIdKFWQyGbS1taGxsRFOpxPTp0/naQ3keRLznAaCmE4B9JaJWIeNfmSbO7xQeQJKWxDTG3I5LpReX9pHSS4HBkF9OsmZ6sNR/iJNOBprxo3xRAtNWiwWmEwm1dWzCTHeCqCXt0jMa6Hf/S3NoJZfQdcCkJWnodfrs4otKs8hQwPHofwhi8UCg8GAdDqdtQCvsqGkzwjRW6RUysE8bzXZK88lypzyKjKZnkWFGWNZCe+SvtFqtbBYLL3C3H3JrT8PVH+jVzUjSFzAti+voQy1Dw7KL6XF04PBIJ+JRdD2oeYj9SUTZbsgjafhRaPR9Jow05duivmouc43GJTXo/5XOXt6LBlT40l82Q0GA1wuF7xer2odJQBZD038W6wHJFYsJY+QWD1cXBhY9FyoWc3AcaGJo2LKowB6vyyyEc4N5S2Ixq/oYRKVVBlqA9SNU9GjIV6HfiixlK6p3E7nUJ6TOgfKkVIrsijJDY1c1fIT+jOQlPJWO07UM6XHSjwHJRPT6JXyr0QDXjJ4SD8SiQS6u7vxySefwOPxoLCwEMDx0K3YAQ+WvtpR0mcqntnV1YVQKCTb3mHCaDTCbrfDZrPxxZhFlB5e8XOlZ4kQ++5c4Xu164hpFhRVslgscDgcfGH5sdDlMekN1NyxlElP69kpQylAds0e0Y2oDL+RYsdiMQDZOU/kBhStWDqHeE8UflML8ZnNZjgcDn5PRC435GRHHB2SQSImfYqGrVhVXpmnpkR0Gyvdx6JhRBMQxLCtaFxRzSeSOXB8PTaafUcJk+NhxDMRoNIeNpuNFyRV5gaqNZwDyWvr73jRC0EL2CaTSRgMBjidTuj1egSDQWk8nQCU85TJZNDa2op9+/bB6/WivLyc6xIZ0P15/IDctfdy6T61JT6fD5988gm6u7vh8/mk8TRMmEwmXl6GPO5Kmah5isUokJqXWZlKIZ6P/la2BWIxTqrhR+VvyHAaC10eNz0Bje7JvZ4rN6GvUB6Qvd6d2GEqvQ25fudCvLY4TVaG6vpGqRjib6WHiVDzIuU6Z67nrjxO9GSqbVP+KO9zsHWpJgO5ngM9r1xeh1wDjOHu+JRhHUqApRwOydARn2ssFkMkEkEkEskqZqtsMwd7/r62UYdJ69rRtaXxNDwow3ZK+hrUqrWxauenfcXjlH+rnYOMKHHpp7FgTDxPypLuQM9I1ev1oqioCG63m49YxBCbcuYdIYZ/RI8DPVTlbDu1zlLtHGTEaTQ9NaNoyqZawyuVNjcUOqGpzQaDgbv8SR5iUjeFWZVFUtUMZDU3sXKCgbgvvQvkVRKNXzG8RO8PNcipVIpPk6WVxQc7i+hkQnxu4vOnxsxsNvPZswaDoVfdLfEcyvOIn/VlHNPvXD/ieQwGAwoKCjB79mwEg0EcOHAA4XC413UmqzwHi9h2JxIJBINBGAwGxGKxLI99f/kpg33eGo0G0WgU7e3t0Gq1OHLkCA4dOgS/349gMCjlN0xQKQryGqZSKWi12qxSBUpIh8Q2N9ffYs4r/RZ1kLZT30FtMX1utVp56RtxuZ/RZMzWthNzjRjrKbdOYTuPx9MraVzsQKmDFSvNqo10yMhRLu+h9iNeh37Iuh2I8QRkzxiS9EAhOjKexNXXKUwmPi8xtKamqEqXvtKgouevrAguKi+NWKlTpfdM9CbS3xTSI4OA8gCi0Sg38iYrSoND9DaR8WS32/k+pFO5OlM1Q0lZ/V1E2SaI11EaT3q9HoWFhZg7dy66urrQ1tbGF6tW031J/9Czj8ViCAQC0Ov1iMfjWYbycHpr6RyxWAytra1Ip9PceAoEAohGo1J2w4RYFkCj0fAi01RwWtR90fEg9n+5JgmorQKi7OuVg11xMA0ANpuNF99ta2sbsefQF+MmA5YqyIbDYV6XhRJ9gez8lr48SGrGEx1D5xE7SFF4tB8JV6z7FIvFEI/HEQqF+N9qs0ik8maTSqV4HZh4PA6TycSVgJSCpqESZKyIzzZXmEf5LgC9E8DpMzLKqJMXY+hKg4w8TslkEsFgkNezkaGB4ygHCqKrXyyAqhZmHairXZSjOFValLdyti3tKxraYvkSWh2+r+8iGTjkyaUQGnmAhntwIXqWo9EowuFwVtVxmcM2fIghbtJnai/VZrGr6SmQe7k08TrKvhs43g+L7YjYrtDM/FgsNrnCdkDvmGl3dzd27tyJpqYmzJ07ly9GKArI4XDwAmy5pqaSAokdMimXCLkllQXAKBExnU4jHA4jGAwikUjg2LFjaGlpQXd3N/bs2YNDhw7xInHK7yQb4eN0d3fjpZdewvvvv4+8vDzMnj0bTqcTHo8HxcXFMJvN8Hg8cLvdvTx6YpiWUHqb1EY3olEsylU8n3KiAMk7EokgHo+jpaUFfr8fgUAABw8eRFdXF1paWnD06FGEQiFu+E1W1EJuBoMBDoeDT6igqvzUENKARq3onpp7P9f1aD9lg03nTSQSPHxEDS3QM1p1u91IJpOyYOYwQZ6n7u5uJJNJvP/++1zu9C6IHgNg4HW1xG3UeWq1WoRCIXz88cdobW3FsWPHEA6Hx2zG1cmKxWJBSUkJXx3C5XJx44XSWUgeoqdeaUipDZz66yfJ40QRKavVCo1Gg7y8PHg8HhgMBkydOhWJRAItLS1obGwc2YeRgzGbbadsDP1+P/bu3ctLAJSXl/MaOzabjSuj2+3O6YUgw4c8F9Q4x+NxXn+EBEaLDFJMl4RO05rJExaJRBAKhXDgwAE0NDTA7/fjwIEDaG5u7nUPYgFPSQ9+vx/bt2+HRqNBSUkJWlpa+KwcKk/h8XjgdDqzZJFLuZTlKMS/CdHgpvdAmTclhvJEYzkajSIUCuGTTz7B0aNH0d7ejh07duDYsWNIJpO8yKekB/F9p1IAtEqAWN6BdF4cxVKjKzaW4t/K6yj1XpQvDYa0Wi1fkDadTnNPGGOMT2+ORqM5J6VIBk88Hudt7P79+wEADocDc+bMQXFxcS99GUh+mZr8yfCOxWI4fPgwrFYr2tvbufdJMjxoND1LoeTn53ODxW63c11W80KJidu5ZtKJnmKx/VWmVSjTeSwWC3Q6HdxuNxwOBw/B02zPsRoIjbnnSfQixONxaLVadHV14ciRIwiFQlmF9vx+P9xud1apAtHlR+cBskM3YgVa+lt0O5JXglzNNIrp6OhAW1sbIpEIWltb0d3dzT1RfVnNkmxIJrFYDH6/HxqNBjabDUeOHIHP5+Muf3F2h9poRs3tmwtR/tTBK8tVMMa49zCVSqGrqwvd3d2IRCJoaWlBe3s7urq6EI1GsyrdS46j1GHSH7/fjyNHjiAajWa522nAQvmE5G0cjOdJDNXSNo1Gw+u6UdFGcQpzIpFAc3MzWltb0dnZyQ0sZY6FlO/QyWQyiEaj8Pl8SKfT8Pv9sNlsCIfDOZOMB4o46KHJGgAmfd7hSEDPOBQKwWQyIRAIoKurC3q9nqesANkhNyA795jOIw6s1PJQRbmKek9/x+NxxGIxnncVDAYRi8XQ3NyM9vZ27vEcC8bEeFLLUYjH4+jq6oJOp0M8HsfRo0ez4q16vR4ul4t7oZxOJywWC/R6PTeuTCYTt0wpSVmj0cBqtcJisYAxhkgkglgshmQyCb/fj1gsxt3OiUSCLylAxbdoCmwgEEAwGOTHKZEK3D/BYBD79++H0WjE/v378d5773H52Ww26HQ6HpqlmjwkY/pN7wIZ0GLuEnXElIsm1moS69KEw2Eub5/Ph+7ubi7vRCKBVCrF3414PI7u7m7E4/GcHftkRE2HE4kEOjs7odPpsH37dvh8PlitVuTl5aGgoIDXcnO5XDAajXC73bwgrphYrJazpuw8SaYkX6rrRh7Erq4uJJNJdHV1oaOjA/F4HMeOHUNraytisRhaWlr4+ZRJ55KhkUqlcOzYMfj9ftjtdiQSCXR0dKC1tRWRSITv158OqUUm6DjKP+3o6IDBYEAwGJQ6OQL4/X7s378fzc3N6OzsREtLCy96KhYdpsEoORyUciOZiTP3qM3uS9fpx+fzwefz8faZvIwdHR3w+XyIxWIntOD0iTCmnicRavQAIBAI4JNPPsnartVq4XA4YLVaYTKZkJ+fD4fDAaPRCJfLBZPJBLvdjoKCgqyp8ADg9Xrh8XjAGIPf7+fhmebmZvj9foRCITQ3NyMcDiMcDnNviGR4icfjaG1tzbldp9PB6/VyeZKMKbxHCkgeCzKYxZkhjDFeFJFCr+LfVFivtbUV8XgcbW1taG5uPuGR8WREqcM0WgV6DKmuri6en1BWVsbzKAoLC2E2m7nHl+RH7n+1kJrYWIsJwiTfRCKBQCDAJ3WQwXTkyBE0NTXxDrezs7PXfYuGmWToZDIZ3tnRTMtMJsMHH4OhL88+rT1Js/uk3IYf8r6bzWZutNDKGlRxnHQwmUwiHA7z/laZ9A2Az7KmAa+YBK5WqJqOo+hPPB5He3s7Ojo6kEql+GSBsWTcFMkcCANp5MRtfSlgfwlrkrElVwfX1yhzMDkU9JmU9cih1MWRfNb9nVvKWiI5cYazzxzoMWr99XjQZQ0bD3chkUgkEolEMkGYUJ4niUQikUgkkrFGGk8SiUQikUgkg0AaTxKJRCKRSCSDQBpPEolEIpFIJINAGk8SiUQikUgkg0AaTxKJRCKRSCSDQBpPEolEIpFIJINAGk8SiUQikUgkg0AaTxKJRCKRSCSDQBpPEolEIpFIJINAGk8SiUQikUgkg0AaTxKJRCKRSCSDQBpPEolEIpFIJINAGk8SiUQikUgkg0AaTxKJRCKRSCSDYMyNp/r6egSDQdVtixcvxiuvvNLvOZ577jksWrQIJpMJt912W9a2Bx98ENXV1aipqUFtbS0ee+yxrO333HMPZs6ciZkzZ+KOO+7gn//gBz9AfX09/3E6nfjqV7/Kt+/ZswfnnHMO5s+fj/nz5+Opp54a+JeeZIy0jG+++eYsWZnNZjz44IMAgD//+c+ora1FfX09Kisrcccdd4AxBqBvGTc1NeGcc86By+VCfX39kL/7ZGQ45N2X3vYlUwB49dVXsWTJElRVVaGyshLbtm0DAITDYVx//fWoqanBvHnz8K1vfSvrOMnAGA753nXXXSgoKOC6d8011/Tap62tDUVFRbj88sv5Z33p7LZt2/jnVVVVuPHGGxGPx4f0HScbwyFTQk1ujz76KG9L6+vrsXz58gFtA3Lr844dO3D66afDarVmXWvUYOOYRYsWsa1bt/a730cffcR27drF7rjjDnbrrbdmbduyZQvz+XyMMcYOHTrE8vLy2IEDBxhjjL366qussrKShUIhFovF2KJFi9izzz7b6/yxWIx5vV62c+dOxhhj4XCYlZeXs9dee40xxlgqlWJtbW0n8E0nL8MhY5Hm5mZmNptZc3MzY4yxQCDA0uk0Y4yxeDzOlixZwp566qlexyll3NnZyV577TX27LPPsrq6ukF/L4k6A5V3X3rbl0yPHj3KysrKWENDA2OsR67d3d2MMcb+4z/+g1177bUsk8mwRCLBVq5cyf7v//5vmL/h5Gag8r3zzjv71GPGGLv88svZ+vXr2WWXXaa6Xa1dTiQSjDHG0uk0u/zyy9lPfvKTwdy+RIWBypRQk9uGDRtyyrGvbX3p8+HDh9nbb7/NHn744ZzHjyRj7nnSaDTw+XwAgDfffBP19fWorq7G9ddfj1QqNaBzzJkzB3V1ddDr9b22nXfeeXC5XACAadOmobi4GIcPHwYAPPHEE7j22mths9lgMpmwfv16/OEPf+h1js2bN2PatGlYtGgRAODxxx/H0qVLceaZZwIAdDodCgoKBv3dJwsjLWOR3/72t7jwwgtRXFwMAHA4HNBqe17zWCyGeDwOjUbT6ziljL1eL84880zYbLaBfk3JvxgOefelt33J9H/+539w9dVXY/78+QAAk8kEt9sNANi9ezdWrlwJjUYDg8GA888/Hxs3bhyurz1pGA759sdvfvMblJeX46yzzsq5j1JnrVYrDAYDACCRSCAajarquqQ3wyXTgchtMPSlz1OnTsUpp5wCk8k0LNcaLGNuPBGJRAJr167F/fffjw8++ACf/exnsXv3br794Ycfxve+970TusaWLVvQ3d2NJUuWAAAOHTqEsrIyvn3GjBk4dOhQr+N+85vf4Atf+AL/v6GhASaTCRdffDHq6+tx3XXXob29/YTubTIwGjJ+5JFHsmQF9DQGNTU1KCwsxLnnnovLLrus13FKGUtOnOGSt1JvgdwybWhoQDQaxYoVK1BfX49bbrkF4XAYALBo0SJs2rQJ8XgcoVAImzdvRlNT0/B+6UnEicp306ZNqKurw7nnnoutW7fyzxsbG/Hwww/jBz/4QZ/XV9PZpqYm1NXVIT8/Hy6XC1/+8peH+O0mJyci0/7k9vrrr6O+vh6nn346Nm3aNKBtfenzmDPqvi4FAFh3dzfbvXs3mzFjRta2ioqKQbkL+3IFv//++2zq1Kk81MYYYxdffDF7/PHH+f/PPfccO+uss7KOa2pqYhaLhXV2dvLPbrnlFjZ16lR25MgRlslk2Le+9S22Zs2aAd/nZGO0ZPyPf/yDlZSUsFQqpbq9ra2NnXXWWezVV1/N+lxNxsTWrVtl2G6QDKe81fRWRCnTSy65hC1cuJB1dXWxRCLBrrnmGnb77bczxhiLRCLsK1/5Cqurq2PLli1jt99+O1uwYMHQvuQkZjjk29zczENsr7/+OisoKGBNTU0sk8mwc845h7311luMsdwhnb50ljHGgsEgu+yyy9gf/vCHwX25ScqJyrQ/ubW3t7NwOMwYY6yhoYFNnTqVbdu2rd9tfekz0VfYbyQZN54nNYbL5drQ0ICLL74YjzzyCA+1AcD06dPxySef8P+bmpowffr0rGM3bNiAyy67DF6vN+u45cuXo7S0FBqNBp/73Ofw1ltvDcu9TjaG063+m9/8BuvWrYNOp1PdXlBQgFWrVvUa9ajJWDIyDEbeufRWRCnT6dOn41Of+hQ8Hg8MBgM++9nPct20WCz42c9+hl27duHVV19Ffn4+qqqqTvxLSTgDlW9xcTEPsZ1xxhlYsGABdu7ciUAggPfffx9r167FjBkz8LWvfQ0vvfQSzjvvvKzj+9NZu92Oz3zmM/j9739/Yl9IMiCZ9ie3/Px8WK1WAMD8+fOxatUqvPHGG/1u60ufx5pxYzzNmzcPqVSKu2+3bNmCgwcPnvB5P/zwQ6xatQr/+7//i/PPPz9r21VXXYWNGzciHA4jHo/jkUcewWc+8xm+PZPJYMOGDb1cw5/+9KexY8cOBAIBAMDzzz+Purq6E77Xk52RkjHQo7x/+tOfsH79+qzP9+3bh0wmAwAIBoN47rnnUFtby7fnkrHkxDkRefelt33J9Oqrr8bWrVv5LKu//vWvXDcDgQAikQiAnhDDQw89hNtvv/3Ev+gk5UTke+TIEf73/v37sWvXLtTU1MDlcqGzsxNNTU1oamrC/fffjwsuuAB///vf+f65dPbAgQNIJpMAesJPNCtTMnCGKtP+5Hb06FG+b2trK15++WUsWLCg32196fOYM+q+LgX4l7uQMcbeeOMNVldXx6qrq9n111/P6urquLvwoYceYt/97ndVz7FlyxZWWlrKHA4Hs9vtrLS0lD399NOMMcZWrFjB3G43q6ur4z8vvPACP/buu+9m5eXlrLy8nH3rW9/KOu+LL77IZsyYwTKZTK9r/u53v2NVVVWspqaGrVy5kh06dGgYnsbJyUjLmDHGfvnLX7Jly5b1Ou6uu+5i8+fPZ7W1tayqqordeeedWfLMJeNwOMxKS0tZfn4+MxgMrLS0tNf7IVFnOOTdl972J9P77ruPzZ8/n1VXV7O1a9fye3nvvffY7Nmz2fz581lNTQ178sknR+wZnMwMh3yvu+46VlVVxerq6tjChQvZpk2bVPdTC8nk0tlf/vKXrKqqitXW1rLKykp2yy23sGg0ekLfdbIwHDIVUcrt29/+NqusrGR1dXWspqaG/eIXvxjQNsZy6/O+fftYaWkp83g8zGw2s9LS0l7HjiQaxmShE4lEIpFIJJKBMm7CdhKJRCKRSCQTAWk8SSQSiUQikQyCcWk87dy5ExdddBHKy8uxaNEiLFiwAPfccw/ffs4552Dz5s2DOqfP58PnPvc5VFdXo7a2FtXV1Xj88ccB9JSHz1XefefOnVi7dm3O877yyit44YUXBnUvJzMjITuxfH9VVRUuuugi1XpcSmbMmIFdu3YN+bqSoSH1d+Ii9VcCjMx7AADvvPMOVq5ciYqKCixevBhnnHHGCcnV5/Phhz/84ZCPPxHGnfG0Z88erFy5EjfffDMaGxvxzjvv4O9//zuf2TZUvvOd76CgoAB79uzB+++/j23btmUV3cvF4sWL8cQTT6huS6VSsvEVGCnZAcDy5cuxa9cu7N27F3PmzMG///u/D8MdjwzpdHqsb2HMkPo7cZH628Nk1l9g5N6DvXv34sILL8TNN9+Mjz/+GDt37sSmTZvg9/uHfE5pPAnce++9uOGGG3DxxRfzz7xeL+67774TOu+RI0dQUlLCa1Y4HA7Mnj2bbw+FQvjsZz+LmpoaLF68GB9//DGAnpEpLQzb1NQEt9uNb37zm1i4cCF+/vOf4+GHH8bvf/971NfX4/vf//4J3eNEZ6Rkp+TCCy/ERx99BCB7WQGgp2ZIf1Wj29rasHr1atTU1KC6uhq//OUvAQC///3vs+6dMYaKigpeYXfjxo049dRTsXDhQixbtox//uijj2L58uVYs2YNampqsH379mH8thMLqb8TF6m/Un+BkXsPfvjDH2L9+vW45JJL+GdTpkzBunXrAPSUmlixYgVf9Fv0SF1zzTVYvHgxamtr8alPfQotLS0AgJtuugnBYBD19fVYvHjxCd3fYOl7obAx4N1338WaNWuGdOwzzzyDZ555Br/+9a97bbv11ltx5ZVX4oknnsBpp52GlStXZr0cO3bswK5du1BeXo5vfetbuPfee7lSivj9flRVVeHee+8F0GP5+nw+/PSnPx3SPZ9MjJTsRNLpNDZt2sTXsxoKt9xyC+bOnYunnnoKbW1tWLRoEerq6rB69WrceuutaGlpQXFxMV555RV4PB7U1dXhjTfewB/+8Af84x//gMlkwmuvvYarr74ae/fuBQC8/fbbeO+99zB37twh39fJgNTfiYvUX6m/wMi9B++8806fS+5cc801WL9+PW688Ubs378fS5cuxYIFC1BWVoaf/vSnfP3YH/7wh7jrrrvw8MMP4+GHH0Z9fT0P744m487zpOTrX/866uvrUVpayl/0XFx66aU5lXf58uU4dOgQ/vM//xNutxs33ngjbr75Zr79tNNOQ3l5Of87V2Ewg8GAz33uc0P8NpOL4ZIdAGzduhX19fVYtGgRNBoNfvzjHw/5vrZs2YIbb7wRAFBYWIjVq1djy5YtsFgsWLNmDV8s9tFHH8X1118PAHj66aexe/dunHrqqXyNpa6uLkSjUQDA6aefLhteFaT+Tlyk/kqA4X0PchEMBvHuu+/ywqezZ8/GmWeeiddeew0A8Pjjj2Px4sWorq7Gr3/96zExlpSMO+NpwYIFWW7TH/3oR9i1axcMBgOvHjtUbDYbVq1ahXvuuQdPPvlk1orqZrOZ/63T6XKuJG21WvmK7pJsRlJ2lDOxa9cuPPLII8jPzwfQIysxRyEWiw363OLyA+vXr8eGDRsQCoXw7LPP4uqrrwbQEwJYt24dv4ddu3ahubkZFosFQM9yEBKpvxMZqb8SYOTeg0WLFmHbtm0D3p/k+vrrr+PBBx/E888/jw8++AA/+clPhvSeDDfjrhX5xje+gV/96ld4/vnn+WeJRCJnYzhQXnrpJXR3d/P/33nnHcycOfOEzgkATqfzhBLeTiZGSnZ9MWvWLLz99tsAgKeeempAK26vWLECv/rVrwAA7e3teOqpp/gSIKeeeioA4Gtf+xpWrFjB18669NJL8dhjj/FZQplMBjt37hz27zPRkfo7cZH6KwFG7j34xje+gUceeQTPPfcc/6ylpQW//e1v4XA4sHDhQmzYsAFAT/7T66+/jmXLlqG7uxsOhwN5eXlIJBJZ4Xin04loNIpEInFC9zYUxp3xVFdXh+effx4/+9nPUF5ejlNOOQXLly/Hl770JcyZM4fvd8MNN2Dq1Kn8Z9u2bXjmmWdwww03qJ53z549WLZsGZ/q/Mwzz+Cxxx474fu94oorsGvXLplwipGTXV888MADuPXWW7Fw4UK89957yMvL6/eYBx98EB9++CFqamqwfPly3HHHHbzRBYDrr78ev/zlL7nLHwDOOuss3HfffbjiiitQV1eHqqoq/PGPfxz0/Z7sSP2duEj9lQAj9x7U1NTgr3/9K372s5+hoqICNTU1WL16NTweD4CehP8nnngCdXV1uPLKK/HrX/8a06dPx8qVKzF37lzMnTsXZ511Fp8AAvQksl933XWora0d9YRxuTyLRCKRSCQSySAYd54niUQikUgkkvGMNJ4kEolEIpFIBoE0niQSiUQikUgGwZgYT32tUyVWBB4o9fX1qK+vR2VlJXQ6Hf+/rzWtJH0z0WR011134bbbblPd9swzz/S5HMTmzZvx1ltv9Xn+trY2VFVV9fpcLu9xnOF+Z4Ce9c3mzp2Luro6zJo1C5dddhnefPPNYb5ziZKJpv+SE0fq7+AYkwrj4jpVGo0GwWCQl1sfClQwq6mpKWe10VQqBb1+bAqqj+W1h8pYyGikuPTSS3HppZeqbkulUti8eTPq6+uxdOnSnOd4+umnVc/xyiuvwOfzYeXKlcN2vxOV4X5niCeeeII33E899RRWrVqFF198MWuGFdAz/RyArOM0DMg2evIh9XdwjMld9rdO1XAxY8YMfPOb38Qpp5yCdevWIRQKYf369aiurkZ1dTXuvvtuvq9ylegrr7wSjz76KADg17/+NSorK1FfX4+amhpel2T//v341Kc+hSVLlqC2thY///nP+fEajQZ33nknlixZgm9/+9vD/t1GmtGS0WDZv38/zjjjDNTV1aGmpgbf+c53+Lbm5mZccsklqKysxLnnnouuri4APZWGL7/8cgA9xk5VVRW+8IUvoL6+Hr///e/xzDPP4Ec/+hHq6+tzVsfdvHkzrrjiiqzPdu3apbo22saNG1FbW8vXYTp69Ci/j3PPPReXXnopKisrsWzZsn7X8ZpIjMY7s3r1atx00024//77AfR4HNesWYMLL7wQ1dXVaG5uxosvvogzzzwTixYtwimnnIKtW7cCyP3u/OUvf+HraVVXV+Ppp58e1nueiMg2evIh9XeQsDHg5ZdfZl6vly1cuJDdfPPN7C9/+QvftnXrVlZXV6d63EUXXcR27NiR87yNjY3M5XLx/8vKytgXvvAFlslkGGOMfeMb32BXX301S6fTLBQKsfr6evbHP/6RMcbY2Wefzf785z/zY9esWcM2bNjAGGPM6XSyY8eOMcYYSyQSLBgMslQqxRYtWsQ+/PBDxhhj4XCY1dTUsO3btzPGGAPA7r777kE9l/HEaMlosHzlK19h//Vf/8X/7+zsZIwxduedd7KysjLW0dHBGGNs7dq1fL8NGzawyy67jN+7RqNhr7zyCj/HunXr2AMPPJDzmoFAgFVUVPD3SOTOO+9kt956K/9/z549rKioiB05coQxxtg999zDVq5cye/DaDSyhoYGxhhj9957Lzv//PMH+QTGLyPxzpSVlbH33nsv67OnnnqKzZ8/nzHW8/xLSkpYS0sLY4yxgwcPsqVLlzK/388YY2z//v2suLiYxWKxnO9ObW0te/PNNxljjKXTadbd3T3o736yIdvoyYfU38ExJn5KWqfq1VdfxZtvvokbb7wRl19+OX7xi1/0eZxY8XSgfP7zn+eW9JYtW/DjH/8YWq0WNpsN1113Hf72t7/1G3c/77zzcO211+KSSy7BRRddhDlz5qChoQF79+7FZz7zGb5fMBhEQ0MDlixZAqBnqYCJymjKaDAsW7YMX//61xEKhXD22WdjxYoVfNvKlSt5kb3TTjsNe/bsUT1HRUUFzj777AFf869//StWrlyZtQxELrZu3YqVK1eitLQUAPDlL38Z3//+9/kSFKeffjrmz58PAPjiF7+I73znO0in09DpdAO+n/HKaL0zTFGabtWqVSgqKgIAvPDCCzhw4ACWLVvGt2u1Whw6dCjnu3PeeefxhYcvuOCCIeV2nGzINnryIfV3cIxZcLGvdaqGk77WLBI7Q71en3ONpSeffBI//OEPkUwmsWrVKvzxj38EYwxerzdrraTGxkasW7duQNeeCIyWjEQaGhp4Mqm48CuxZs0avPHGG5g7dy5+/vOf4+KLL+bbBrq+2WDl8uc//5mH/QbLQAyuk4nReGd27NiB6upq/r8oT8YYzj///Cy9PHr0KGbPnp3z3fnJT36CDRs2wGq1Yt26dbjvvvuG/Z4nIrKNnnxI/R04Y2I8jdQ6Vf2xYsUK/OY3vwFjDOFwGBs3bsQFF1wAIHuNpcbGRrz++usAehIJDx48iMWLF+NrX/sarrzySmzfvh1z586F0+nka/EAPevxUJ7NRGesZFRZWcmVRm3Es3//fhQVFeG6667Dfffd1+8suYHQ1/pmiUQC27ZtwznnnDOgY5cvX44XXngBx44dAwA8/PDDOO+887hnadu2bdi3bx+AnjyN5cuXnxReJ2B03pmnn34aDz30EG6//XbV7RdeeCG2bNmC999/n39Gi5zmenf27duHqqoq/Nu//Ru+9KUvDcs7NdGRbfTkQ+rv4BiTsN2ePXtw++23gzEGrVaLkpKSrHWqGhoaMHXqVP7/aaedhk2bNmHVqlX4/ve/P+Q1bL773e/iK1/5CmpqagAAV111FT796U8D6Fm0cO3ataipqUFVVRWfCZBOp7F+/Xp0dXVBr9ejoKAAGzZsgF6vx7PPPovbbrsNDzzwANLpNPLz8/nUzonOWMmoP/70pz/hscceg9FoRCaTwcMPP3zC57z22mvx+c9/Hps3b8bNN9+ctTbTyy+/jDPPPBMGg0H12CuuuAIbN25EfX09Vq9eje9973v40Y9+xGffTZs2jS9iCvSE7b75zW/iwIEDyMvLw+9+97sTvv/xwki9M2vXroXZbEY4HEZlZSWef/75XjN1iFmzZuHxxx/HjTfeiEgkgkQigQULFuDxxx/P+e78x3/8Bz766CMYjUZYrVY89NBDw/hUJiayjZ58SP0dHHJtO4mkD2666SasWLECV1555Qmf69FHH8XmzZuzZgxJJBKJZOIxuQtbSCT9MByeLYlEIpGcXEjPk0QikUgkEskgmBilPCUSiUQikUjGCdJ4kkgkEolEIhkE0niSSCQSiUQiGQTSeJJIJBKJRCIZBNJ4kkgkEolEIhkEw1aqYKDLUGg0Guj1euh0ukEtXdHXpECtVguNRoNUKoVEIgHGGIxGI8xmMywWC5YvX45zzjkHBoMBoVAIkUgELS0tePHFF3m1Z0Kn08FgMECr1apecyCTE9PpNFKp1ID2Heg5xwOjudSIzWbD/PnzMXXqVHR1dWHv3r3o7Owc8vksFgvy8vJgNpuh1+thNBoBAB0dHWhtbc1a9mEkmAgyHk35ms1mTJ8+Hfn5+dDr9bBarTAYDNDr9TCbzdBqtejq6kJbWxvi8Tja29vR3t4OjUYDt9sNh8MBl8uFefPmobi4GEajEU6nEwaDAbFYDMFgEIlEArt378b27duzlvIYCaR8B3Z9teek1+tRUVGBiooKXujQbDbD4/Fg6dKlKCsrw+HDh/H666+jubkZhw4dwgcffIBQKAStVssr9KfTaWQymRG5dynf3JhMJni9XphMJsycOROnn346vF4v749jsRh27NiBnTt3AgBKS0tRUFAAj8eD2tpaTJs2DYcPH8abb76J5uZm+Hw+HDt2DIlEYtS+w1Dke9LXeRJfqImgAJIelA3BiTYMuc6n0WjGvFOZjAz0uavJLddxufRbynfiQbKUbfbEpC+9HYrej0cmvPEkPmTxb6fTieLiYlitVthsNsRiMeh0OmQyGej1ehgMBpjNZlitVqTTaSSTST5qyWVwTQSBjme0Wi30ej1fMd3lcsFgMMDhcMDhcHAPItDjKSorK0NBQQHC4TCmTZuGUCgEjUbDR5rJZBKJRAKZTAaZTIbLSqvV8h+TyZQlb4PBAI1Gwz2LwWAQfr8fyWQSfr8foVAIyWQSXV1dCAaDyGQySKVSIzainQxQw2kymTB37lyUl5dzeRiNRqRSKUQiESSTSf5+aLVaOJ1OmEwmZDIZVFRUZJ2TvMtOpxMAEI/HEYvFwBiDxWKB0+mEVqtFTU0NvF4vIpEIDh06hGPHjvERca6FoyXDj9hxkp6SXhoMBhiNRr5PNBpFLBaDVqtFe3s7rFYrOjo6EAgEEAwGEYvFsvRRGlijg06nQ15eHjweD3Q6HW9PzWYz8vPzYbFYUFxcjBkzZsDhcCASiSAYDMJsNmPKlCmYM2cOACAvLw9utxtutxvFxcUoKCiARqNBJBJBWVkZfD4fWltbEY/HEYlEEAqFkEql4PP54Pf7x428J7zxBKhbtfn5+aipqeHu/WAwmKWsJpMJTqcTHo8H8Xgcfr8fmUyGn4vOoxRULtdzf9skPcpns9mg1+tRWlqK+fPnw263Y8aMGZg5cyZvQMlAcrvdsFqtAMCNI71eD5PJBK1Wi0AgAJ/Ph1QqhWQyiWQyCY1GA6PRyBtkr9fLDeR4PI50Oo10Os1dwhRiTSQSOHjwID755BP4/X7s3r0bTU1NSCaTCIVC0ng6ASi04nK5cPHFF+Oqq65CJpPhLvru7m58+OGHPCxLxlNBQQHcbjdMJhMqKiowY8YMZDIZHD16FO3t7YjH4+js7EQkEkE4HEZLSwsikQhmzpyJmTNnwul0oq6ujjfkzz77LP72t78hEonw90YyOqi1pyaTCQ6Hg4fqDAYDH9BEo1FEo1Hk5+cjlUqhra0NbW1t6O7uRigU4mF2xpj0Uo0SBoMBs2bNwvz582GxWJCfnw+HwwGLxYKioiLYbDZYLBa4XC7odDp0d3fzsLtGo0F+fj4f3NDAp6KiAiUlJSgtLUVFRQWSySSCwSA6OjoQj8fR3NyMI0eOIBQKYe/evQgGgyOeYjFQJrTxlMsNSB2ow+HgnXU6nQZjjHstqIPW6/VIpVID8ioxxmSYZwjQMyPDhxTH6/XC6XRiypQpKCsr62U8Wa1WbigZjUaej2Y2m6HRaOD3+9HZ2ckNp0QiwT0c4ojIbrdzI4gMLfJYEYlEgnsvDAYDnE4nLBYLdDod35cxJo2oIaDVark8ioqKMHv2bG646HQ6pNNpvvAyeR81Gg0MBgPsdjtvnGfMmMHzWhhjCIfDCAaDiEQi3HsVDAaRTCZhNBphs9mQn5+P4uJihMNhnvOWSqV4OyAZXcQBJrUJ5G0kkskkYrEYTCYTQqEQz1Ml/VTmk0qjaeShNtlut6OgoIDrpNPphNVqRXFxMe9rqc2Ox+MwmUwAAIfDweVGuY12ux1WqxUWiwUmkwkWiwWZTAZ2ux0mkwnxeByMMcRiMW5ga7XarCjDWDKhjSeCjBrx/1AohMOHD8Nut8PtdsPj8UCr1SISiUCj0aCzsxPd3d28sVVzA/eVMC4NqIFhMpmQn5/PO7K5c+fC7XbD6/Vi6tSp3MCx2Wy8Q8tkMtBqtdxbRApDn5EnQ6vVwmKx8CRh8hxSg6zRaJBMJhGNRrN+ZzIZbkxTZ63T6VBYWAidTodIJAKn04mamhpEo1G0trYiHA6jo6MD//znPxEKhcb4qU4cdDodysrKMHfuXOTn52P69OlgjCGdTiMWiyEUCiEQCKCjowMtLS1wOp3Iz8+H0WhEMplEc3Mzb2wTiQTS6TQ6Ojrg8/m4W5/CqhQWJg+zXq9HMpmEz+fjDXBJSQn3bASDwbF+PJMGaqPFNpX0m0LjtD2ZTCISiUCr1cLn88FkMqGjowNdXV3w+XwIh8NyEDOK2Gw22O12OBwOzJw5E1VVVTyCo9PpYDQakclkeNtKshYHqHa7HWazOauvtlqtYIwhEonw4+iHJm2VlpbC7XYjFAohHA7D5/MhGo3y92AsmTDGk1Lx1PKSxIfv9/vR2NgIq9WKqVOn8tFNLBZDPB6Hz+dDZ2cnfD6f6jnEzyRDx2w2o6ysDEVFRZg1axYuuOACTJkyhXv9lGFS0bNA4TWtVstDcul0OutYm83GjSbyZoijWVLgRCKBUCjEw3VkqNG+FEqcOnUqMpkMFixYgFQqhWAwiMbGRvh8PnzwwQdobW1VNZ5yhXknOzqdDvPmzcMll1wCr9fLc5eSySTC4TD8fj+6urrQ3NyMY8eOIZPJoKSkBHa7HX6/H+3t7QCAYDCI5uZmaDQaxONx3lCTQSUaTxSyNRgMSCQS6OzsRCwW4++iz+dDW1vbWD4WCYBUKoVoNIpUKpXl/Y/H4zw8097ejkwmg87OTrS3t8Pn8yGZTGaF7Qipe8MP5R6WlJTA6/WisrISixcvBgB0d3cjHA5Dp9OBMcY9//Q7FovxQarL5YLVauXtNLXj5OgAsttQmg1dWFgIl8vFvcqdnZ0IBAI4ePCgNJ6GitIDpFScVCrFpycnk0n+eTKZRDweRzwez0oEFjtxpSerr+uLSG9Ub8jVS94/+hERDSY1o5gSwsl4SqfTqsa0GJKl7eRlUl5D/E0eKAoLAj0eM8qx8vv90Gq1cLvdPIxEkwxkg90/BoMBVquVu92TySR34YtGM30meg5JhvF4HOFwmHsfSa6JRIKHYel4el9E2VO+m06nG3SZFMnwoNQVUVb0t7Jdp3xEkq+cvDH6iPpLZSRo4pU4yUfNiSG2udQ+k/5RqFbtvQCOh/stFgs0Gg3sdjucTicymQxvp8eSCWM85QqhiZ+LShWLxeD3+3nYJy8vD4wx+Hw+PpOKjCoSpPh7uO5xMkMv/Pz581FVVYW8vDwYjUZei0spPyC7VotSwRhj3OglZSSFZIzx+DqdBzhuOJPxRUondtyiy1iZRKzRaFBQUACXy4VUKoWzzz4bLS0tOHToED766CNEo1F+PklvaGTZ0tKCaDQKnU7HR54GgwFFRUWIxWLcrW+z2fhMHGqc0+k0TCYTb3Tp82AwiMOHD6OtrY17KoGeETHN1gkGg9zj2NLSwnV/NGvISLIHu+LghjyI5IXUaDSwWq3cO00J5JTzRAMW6XEaHTQaDTweD2bOnAm32w2j0cijNclkkveX1L7SIJTkS55hADyKYDQaodfrswatoqFFBjINmig0n5+fj+rqanR0dODo0aM4fPjwGD6ZCWQ8iSgVhzpbceQSj8eRSCR4crHH4+EdM8VLReOJBK4sfSAVc2iIce25c+filFNO4Z4dZXkBml0FZBvEYiMrGkPUgFJ4hhSSXL3k2aA4fCqV4oUx9Xp91rXF90dMRKX7p+m5FA5KpVLo7u7G22+/jaamJm48SdShzq+lpYV7jpLJJAwGA2w2GwoLCxEKhWCz2WAymWC1WnlOHOUtkcchlUrx8hNU8Pbo0aP46KOP+OxZo9GI7u5uPhuvo6MDbW1tSCQSCIfD/EcaT2OHqOtK40mv18PlciE/P5/nPlHSuCwvMfqQx728vJyXDgkEAlnee6XnSfTsUntNstTpdHA6nbDZbACO973kJRZTNsj4ikajyGQyyM/PR2VlJVpaWvDOO++Mef88IY0noHdSN3XC5O6n7H2LxQKHw8ET0Gh0S+EBUfDKcI5kaNBzNhqNcLlcfDYFkcvrlAsa0YilJNRcxGqf0fG5ztsfYuiQZgCmUileBVvSP9QYUpiNkvstFgvfh2Sc65nSseLoVjSqaNYe7UcJxzQ6VlYxJ0NbMvrkCs8rB03kdaRBjeilkHmpoweF7SwWC/T6bJNBlKNyFpwyn5Xab7XcZeVAVpkHS/I3m83cCz3WTFjjibwHwHEFslqt8Hg8MJvNmD17Nurr6/ksAafTiVQqhVmzZsHr9aK9vZ3P9BFj76LQTiSEN5kxmUyYM2cOpk2bhqlTpyI/Px8GgyFrdAFkT0tXe85iY0ohOrV8NEocJk+iqJzkMRL3pXMqyRW/j0ajXLkLCgrgcDjg9XrHhQJPBMTkf7/fj3Q6zT3CjDFeEFGcIRmPxxGNRrmH2OfzIRgMQqvVwuVywWaz8Xo/YtFUxhg6Ozuxf/9+WK1WPntPr9fD6/XC7Xbz2XpHjhyRne8ooxzgiCjz38gIpneAllYSl+GifSUjg0ajgcPhQElJCU/6VhpQ5OGn6AAZN3q9nhtcYp6j2kBXGSWg9gEAIpEId3Y4nU6Ew+FxMfiZkMaTaOyIGAwGntRbXV2NlStXwul0orOzE11dXUilUpgyZQqv/dPQ0MBrQFGYR8x7ohk8ylCeeB+S3hiNRkybNg3V1dUoLCyE2+3mHZw404K8DH15hsTkQTGUppYYLO5LP5QfQw2t0kAGjo+ERc+HmMRKycYA4HK5YLfbYbfbpedpgNBU9FQqxSu4kweYShIA4MaTmCQci8WQSCR44TwxyZ9yIUgO1DgHAgEcOXIEZrMZs2bNgtPphMPhQHl5OaZPn47m5mb84x//GMtHMqlRazfFASvpqmhEU04j5UwCyNJ5ychAOWgFBQVwOp2qA13Sb1ohgKAQO3kQRc+SEsp1SiaTvPwB1Yqiek+0Vq2aB2wsGPs7GCRKZaHQkMlkgtvtRllZGex2O89ToQRTWqaDBOP1ejFz5kxotVqEw2G0trYiGo1muYnVXpT+QkGSHqWxWq3wer1wOBw8OXAgDZ2aUSOilhMlhvTo+kovUq4GW/m5Ur7KsC511GazGQ6HA9FolCu45Dji7EWHw8EL64mDHiqGSAYSjTyVx1PHabFYuOue8t2oeKooc9EQpkKbNpsta7KAZPigJbAAcKOX8pmU1aCpPSZvMqVTkEeJZCMuKivOaqV3gZbfoeK26XSa57NJhhexuDENfgFkDTbJ0KWiwtTmki4aDIas2a6UF0VGFc2YpXxIMQ+ZZldT3y3DdkNAWUgLAF95mzxKM2bMgM1mg9Pp5HkRtOqzqIAlJSWYM2cOkskkDh48iBdffBGHDx+G3+9HW1tb1kwCcbQr6R+DwYApU6agsrKSjxTEhlFtqrjSSFGS6/mT8orKJHqE1Iqf5goVigovGmU0YqIQoEaj4QU/vV4vr1E0XpYNGA9QQrjVasWsWbOwdOlSGI1GHDlyBK2trQCAQCCAWCyGtrY2dHR0oLu7G16vN2uKMoXbKWdJo+mp7UWdNU2dFhtbsXaX2+3GtGnT+L2IEw4kJ45Op8O0adMwf/58aDQaNDc3o6Ojg9fXUhozRqMRdrsder0eDocDbrcbWq2Wp1CIqRhUSFWcYafRaFBRUYElS5bA6XQiFoshEokgFoth7969+Oijj6QeDiMajQZmsxkejwd2u53PVqVBDOUaBgIBhEIhHoInQ4tyDEVDmQobU0oEGcq0AgSF/EwmE5e/RtOzaojH40EwGJSlCoaCshOlBWRnz56N/Px8lJeXw2azcRdgOp3O6vTIICKDymq1Ii8vj6+bQ2EAUVlz0VeezmSGCqsVFhbyZy/mGvX1jMTtyn1z5UjQ32reIjJ8chlrAzk3bRc7aKqYDoDPPpEch/IWzGYz8vLyMG3aNBiNRgSDQbS3t4MxxmfEhsNhvpYZNZTiUjzKavBkMIXDYT7zDsj2RNI5zGYzXyORRrFi3p3kxNBoNNzjT4MNKoAaCAR67U+hHFqiqaCggHuQqKiiOFuWZC+2+1arFeXl5cjPz+d5cTTzUurh8EO6bDKZeE4iGUiU3kJGrFar5bPjSAcJUa8NBgMfyFA7QIaSWIoGAPc8kcFGuW9jzdjfwSAQlYgeJq1hRbO6gON5NWIVWmpYSRAA+DRzjUaDadOmgTGGjz/+GMeOHeMrtMtGdvCIoVJ67spFl3OFxXIZMaIhK3oQlYaSWuOplrPWl2EsGlxiHpV4bVrbyWg0or29XeY/KaDClDqdjtfm0uv1vDyB6EWmTlYtqZR+KLQDZBvVaoaQVqvloTqHw8GL+1FIXnwH5WDnxCDvQVdXFw/Z0MLrajqRl5eH+vp6uFwuPrBKp9MIhULo6uri5QiURhOlZRiNRr6mmt1uz6omL87elJwYNCOVEsTJ0KE8YHGJLPIKZzIZWK1WXhJG6d0XBzXiJCAyqMgjJdZ0E4+nwteJRIJ7LincNxbexglnPFFDSS5AWpRw2rRpvF4ExcDFEavyHBTSo5yJU089FXV1dXjttdfw4YcfIhgM8iQ2IDu+K+kbGiHY7XYA4It5iq5bpQdRzfjJ5dkTOz3ljEu6fn/nEa+pNMboHRGNKGooaN+8vDzU1NRwT8qePXuG9KxOVqiWVyqV4p4lvV6PgoICeDweZDIZRKNRPqMKAP9f7DgpR4o8FgC4h4N+xMriQE/bQBMViouLkZ+fD7PZjEgkgkgkklUZWRpQJwZjDN3d3Th48CDXbQqpqnkHZs6ciXXr1qGiooIXm6VJBLSMjlgMk6C1Jik1o7S0FA6Hg8s9GAzyEKDkxLFYLPB6vXxSRygU4romGj00oy4vL4+HY9XKuFDeq0aj4WviAeDeK8YYN34dDkev1A4y0mlJGKvVisLCQsRiMXR2do5Jvb0JZzyJXiRReLTIoDgdXq3cv2hUkZGl0fRUkWaM8URzup4y5CPdwv1DnicxXKf0PBFKb2Jf3qNc3imxoxUNnL5klavDFA0ptfIVtJ0mHRiNRr58gOQ4FL4RpylnMhmYTCbY7XaePBqPx3ljK+omkB2iFxtjURaikSsuBUHuffoxmUy8TpSU1fBB7WggEOCeCvJWiAMOkqPT6cTMmTMxb948Hnolj6TZbM6aPQkclzWlWRQWFsLj8WTlupFnezzkwZwsUMibJmmIS+OohcfJ0yiuOyoits9iP0AOD+C4rMkIFz+jHDhKKqd3hu51LBiXxpPYsamFeCjpjGY8iZWjRUVV66xJ6MDxWlEkcLHWjPI++st/muxoNBqeHE6jEGoMw+Ew0ul0lmED5F7TSCk/tX2U1wbQK76uRO38aucRw8LiPdO7RXWKCgoKYLVa4XA45LuhgHTKYDAgGo2iubkZoVCIh9GSySTa29sRCAR42JNC71S3S1ymgRpmJeQdFj1PNEKm34lEgo9kTSYTN+CcTief8SdrBQ0dWgpLp9MhHA7zUBotIhsKhXD48GGEQiGYzWb4fD4+u9lms0Gr1fIFo+lctFgsyc3j8WDOnDlwuVzweDy9ZvDKsgXDi91ux5QpU3i1f1H36DnT7DcaLJP+UQhNDNGJOUyks2JOm7iv6Bmm9pbOS/0IeSC7u7vh8/lUF2sfacal8aREaTzpdDo4HA64XC643W4eKyXrmFCG6+gcYliHcjGolAG9DMrjJH1DnV9hYSGmTJkCr9cLu92etThzLq+RCCmUOEIBsg0ppXFNv3MZRcoQn4hoTKudU3xfKI+HYvuFhYWIx+PweDwyXKCARq4mkwl+vx///Oc/4XA4UFRUhLy8PMRiMRw8eBCtra3w+XwwGAwoKCjgXilKIhWrS1PYTsyJEUuLUCNM7QBNm6f1LckjRevneb1enqQsjaehwVjP2oXRaDRrsDplyhRcfPHFOOOMM3DkyBFs2bIFjY2NsNvtaGlpAWOMz4Z0u91wOp2YM2cOTxgXZ1hRiIhq/4gFc8XQrcxPHR40mp5JAPPmzUNeXh6Ki4uznArkpKB+k+oxKWVBk7SoDSWZiflTZBCJM2TJeBLzTMWBkEajQWlpKTQaDY4ePYpDhw6ho6Nj1J/ThDCegN5Jv6RM5OJT8zL1h+hNEhPgBuLtkPSGkv6oDo9SAQbyHEVDR8112x995TepnSOX90n8XyyaSt+DjAOxgZf5M8ehcgMUSqHETjJ8kskkQqEQ/H4/n85OoR6g91IPgLpRLHqcxO3UKJMhJRZmFadCixNIJENDrWBxKpXilakTiQQ3kEwmE1/njEJvpF9Go5EbxDSA+v/tfWl0ZFd17lfzPKlKs9RSD2671YN6sBlt44mHcQAHTOIwOgwPkhCSvJCErMCDvMR5a0FIIHkhOCFgE7ATh8kmQAwY27wEDAbsbne7B3pSq7s11jxPqvN+6O2jXUe3SlJLapVa51tLS1LdqltVd99zzj7f/vbe5DAB81sxqYywHnsrB9IuuVyuOkKBb24B4y4RagQIqO9Typ1ePs7VWm3AXLiOh+RJU0uhXh22awAjUafFYoHX60VbWxsCgYAcYGqRPKO6UKqwmCZTKrjHveVGk7fRjbHRQeUJurq60NHRISsBU7kIo75HFBLjom/+PD4hGzm1jcJ63HYqta+CnCK+O6LX8XPyz0mfh2qV8KKsJI7e6PB6vejr64PX68XVV1+NnTt3wu12w+v1ysycsbExHDp0SDJNPAQH1N8jAGQlcm5Hsg1N9rRDTiQSKJfLmJ6exvT0tMy+ozARsaTpdBrJZFKK1jWWDlUKQQsehWSr1Sq2bt2KcDgsM+bUOYHr3fh8QBqoRhIM7TCtDiqVCgqFAvL5vCxNAACxWAwXL16UrY/C4XBdpACYc6ZJK8XnVArJE1NFCSIul0tmT1LtKADI5XKIxWIAgLa2NnR2diKXy2F8fHzNbd+SzhMNCnXAcJaIelZRdXF1gHGnSV24KQxA5yTniZrZcqX/WhtovcBkMsHv96O7uxvt7e3SeaLBsdBuhNuI/yY7qAxBszCZkeNk5LzRebnjrTJItBCoWjpyngDIejUkkNfO06zztGnTJoRCIVxzzTXYs2dPXYXxbDaLsbExPPvss1J8Txo5ziRx1oGcJ3WXSxO11+uV5TGomN/k5CSmpqakTUgAGwgE0NXVBZvNhosXL67BFbpywEMyXBeYSqUwOTkJq9WK7du3yyriFLbhpWSMxhn/mzJ11Y2tUQ03jeWBnNZ8Pi+ZQtrERKNRnDx5EoFAAJs3b67TC3MHmuZV1XGijRLVgqLMSno9ESG0ZlA2s9lsxvbt29Hd3Y1sNouTJ0+uOePYks4T0JzNIVEZhQUWO3gaXWTVyTLS1+gB2hwmk0lWlXa5XDKLwoi9W+y1VHeZK/EZuUMGNC5r0Cx0q34nXkROh+9mwYtkUlFEm80mSxhQ5gy1taEMGi425Qyyyvqqiy0le/AaM/R8nn1Lf1OGkFFmkMbyQe1SEomETCThfc4AY21hs40UhzqWlyrZ0GgOcp7sdjvS6TQSiQRqtRqSyaQsCpxOp5FOp+U4VGUvKluvhtf4WktOmNVqleVLqCF4Op2G2WxGKpVCPB6XBVhJa7dWFeVb1nkyAt+FeDweWTKeRKKc4TAqU8AZKQ5qWFosFuUOlSZybnzNRjWG2WxGKBTCwMCAFPGTTUjsS84ulYIwqjqu1oZpdq2bTZiqE8wZDJXR4Oej42pfJfq8tGPmQmYq/Gi1WpFMJpd66a5IUM/JUCgkWcharSYzqSYnJ2WxOyHmRMdUtZ0mUs4w0E8+n0epVJJib3q+z+eTWZ60WNMc4XA4UK1WpcbKZrMhEAigWCzqFPdlgs+RZK9cLoef/vSnOH/+PLq7u/Gyl70MfX19MJlMsrQH1zuRVpLsS4kmPJqgjmV6P6OQvsbyEIvFcOTIETgcDpw9exbPPPMMAGBiYkKGwfP5PA4fPoxIJIJ9+/aho6NDZlZTxIESCbjzzOtEud1uGUkKh8PweDx47rnn8Nhjj2F6ehrxeBxTU1Mwm834xS9+ge9973uoVCo4f/48otEostnsms25Le88GVFzVBwzEAhIDUOj0JDqQBktxjMzM8jn8zCZTDIzh2hojcWBBkBPTw98Pp8MwZDzQUwh7TC4NkllgjjVa0ThL4YNNGKQ+GOqRoPAnStyoCgTi+hsnu0FzBWUA2YbBm90kPjX7/fD7/dLxomcl1gshng8Ljuo12o15HI5CCHqNi8A6uzEM3mo0jDZhnSQwWBQFmi12Wzw+/2S/aJNEhXs9Pv9yGQyLdFkdD1D1SkBQD6fx5EjR3D06FFs374d27Ztk6Ftt9tdVzCXJxfQwmsEGpeqlMNID6WxPKRSKVn534hNcjqdSCQSCIfDuPrqqzE0NIRAIACz2YxcLifHKmkZKRxHG1Neo5FKDlEbpWg0iv/4j//AmTNn6jJhKaGE2GRVI3e50fLO02JxKaGgRseMnLBm0KG9WdDkpha5o0FDoRWqCUIhGaJ76fmq5m0h9mmhz6T+re5iafDxjEsa4PS4+gOgjvWg0ASFgbTjPVfrCYBsi5LP55HJZOQEyxlesgNNkkaaOO7cqvcaObYmk0kyUHa7XYbr6LyUJs1LIWgsD0bXkGxaLBaRTqcRj8frystQ1iVtSnj6uqpbNZlM8v7g91WpVEI+n0cul0O5XNa2XCGoelEV1WoVhUIB6XRaMsE80kA24nMogc+zpJcCIGuuEatMbDWv30ah3bXUOhHWpfNEkykZC2gcwmm0uKqLKi/MxQey0Xs3+1wbHUY3NQ0kqkDscDjqFkRiG7i2he8m1cVzMde5kaOkHuO0v91ul4Jj3rxSCCF3w6STMZvN8jGv14vBwUF4vV6cOHFiuZfwigD1nKQWPZlMBjMzMzh//jzOnj2LVCqFarUKv9+PcrmMdDotHR+n0yk7BtAP1XihkgOkp+LZOdlsFkIItLW1Ydu2bTKZhBbWjo4OtLe3I5lMolQqYXJyEtFoVOquNJYPNetKCIFMJoPnn38ek5OTGBoawlVXXYWOjg5MTk7i/Pnz0q608JJukgTFZHNgTrLh9XphNpsxPT2NkydPIpFIIBqN6jn4MqFarSIWi8m2OJSYIYSQ0gz6LYSQyQLAXPsuYhxJ5zQ+Pg6TyYSpqSkpj1CjAirDuZZYl84T0JwdMtLSNIMapiFakKMVPN31CH5tqbYOFTvkGRi0y6DHOGOlZtY0soWqc1L/Vp0n+pscKKqMTFkftDviOyCe8UOshdPplGE73aplFqRzI1vTTjIWi2FsbAy5XA7ValVeL7INhXMonZ3bWi2YyVuA8CxHi8Uii3FSujUxT1RVnEKIdExjZaDqCWlzdO7cORnmcTqdCIVCiEajkoWkoqg2mw3d3d2y9QbpDEmQTO9B9X1KpRImJiYQj8el86yx+qBQey6XQzKZRCaTQTabrettx+dv7vjwkDyNXwqpVyoVpNPpeb0NCa1k35Z3nowYJdqJ0q6EijMWi0WZ9sjpPv56MqJaqoAEzbwfFjFQ6jk0jEHXlmc20c3Od6QmkwnJZFLuMDjjQ8eNbG4EHos3CtE1+pw8+YBCbZQwYDKZ4PF4ZB0nYibpviHqmBZds9ksBZFGzVA3IqjTusfjkd0AyuWyrPMEAIFAAEII5HI5pFKpeefgVaSdTqf8m+qHkSNLdnE4HHLsUo81yvgymWZbfAQCAdkWpLu7W5Yp0VgZcLaQxhgJh81ms0x1LxQKmJyclI4TadmIpXA6nTKsB8yFxmkcUvbX5OQkxsfHpSPcSovrRgIPwakhdsA4e5kTFWR3Yv0pO5fWkVbEupjpVQNQRkY6nZadnyORiPRc1eqlXADO6WEyts1mk3H4SCSCSCSCXC6HbDaLdDo9zwnTA3Q+6NpSJWla4IC5sCjXNp0+fRqPPfYYMpkMhoeHce2119Y1+iSoDCO/9qqztJCDSwOWZ8t5vV54vV7UajWcP38e4+PjsFgssr0MFx2bTCZZn0SIubpDdrsdoVBI9rzTANxuN9rb29Hd3Y1IJIKOjg6Uy2VEo1EkEgkUi0W43W7k83mZVaP2pyLdGTmzAGTxxVwuh0wmI50ni8UCv9+PYDCIzs5OdHV1IRQK4fz58zh27JgM85PNent70d7ejtOnT+PEiRO61tMKwajMQKlUkjYmZioUCkknl2vYyEkKhUKyQGaxWITT6ZQFNqempvDCCy8gm83imWeewdNPP41sNotsNrtm4uErHc3WPiIfaIPDWSOal9U6UDSnc1aR12Dzer3w+XxyQ6tGFVohErQunCcVdNFpx0Kd7cvl8rzMAPUC0yLPF1oKJ5HolzIAtBZiaeDZUOSkErPHw3AAkEwmceLECSQSCXR2ds6r/ULnU2PejbBYvRvdE7whpd1ul/dTLBarE4u7XC6ZMcarHfPPxzU4mnmaBaUhUwPeUCiEUqkEn88Hj8cjtRBOp1OGa1TQvcNDqrzIIl1r2iBxxol+ZmZmkEgkUCqV0N7ejnA4DIfDITN1c7mcDC1qrAzUcUqbXQCYnJzE8ePH4fP50N7ejv7+fsnYkj2JeaLoQq1Wg8PhkHrJWq0mMzbHx8cxNjamK8SvIWicco0ozf3kMPEsamBu7qQ1gycT8YLVvOfkUiISlwPrYqZXaeBqtYp4PC4XuWPHjqFUKskQjMfjQbFYnFf0kgvDucapUCjg/PnzMJvNOH/+PJLJpKST1c+h0Rx0bWmy47sO3qeqWCwiFoshFoshn89LgaGa4WEUBiBwWlgN2xk9ZiRG5wMyl8shGo2iVqshHo/DarUiEonA7XbD5/PNy7jjYaVSqSTDyBrA1NQUfvzjHyMSiSAUCiEcDqNSqeDYsWMyBZkmWmqlAsxNxJylpMfph4dzPB6PdIRo8S0UCrKq+MTEBCYmJlAsFmG1WpHJZGS6vNPplONd4/KAlyWIRCLYtm2bzLyrVqtyDkgmk7LQJt0bxWJRjjdaYHWNrtUHd4L4hpF6ywUCAQCQshmyE623auYkVRXniUDAXG03h8OB/v5+OJ1O6RirWbGaeVoEjLKsSqUSRkZGcPHiRUxOTsJut6Ovrw8DAwO47rrrEAqFkMlkDOOlvKIwOU+pVArHjh1DLpfDoUOHMDY2hlgsVlckczHGWqxA/UoFp96pcz1nnLjDkclkcO7cOUxNTSGdTkv2kBgr2pE06nav0sh07ZvtTGjx5Zo3TicnEgmMjIwgn89LMetVV12FTZs2oa+vb57jROxJtVqV4slGNWo2EoQQOHHiBKanp6WO0OVyAYCss0R1mZxOpyxQC8xpJ7gOidsYqBcRBwIBdHd31y2k6XQap06dgsPhwLFjx3D8+HHkcjmcPn1aNjmlsV8ulxGPxy/n5dkwULWmAOo2VoODg7j++uvh8/mQTCalw1QqlXDhwgXJYJC9HQ6HLC9BrCLXSmqsDmju5jolEvZHIhH09PRACCEzZoktpA0xny+p5QoxhTSfUhSJGOtrr70W6XQaP//5zzE+Pi6dp1ZaX1veeQKa08BOpxOTk5OwWCxysSaxmdpvibMgfMBVKhXE43Ekk0mpx1AXwYUEcBr14JoyLs7nol9yOEjkr9oLMG7LYPQ4P/9iGCgjcTp1e89kMpiamkI0GkUgEECpVKpzAvl9xGP3jcpbbESQBgWAbLpNjitlLdLfxPCqzF6jyZKPRequzktIkDNLJRAooyuTyVzWa6AxH3wh9Xg8CIfD8Pv9ACDLURSLRcle0A+FhGiOoDAR70Oqsbrg15mSZHw+n0wAoc0uSTdok0KvJTKDdLEA5tV5IqeL9G1UBLsVsS6cJ4JKHwJzjo/FYkF3d7c0AKn2zWZzHYPEC3dxGjEajWJqagrxeFyyHUahnUaL9kYHhbpGRkYQCARktWBKS3a5XEin05iYmEA+n8e5c+cMQzU8PZ0WV1UvZYTFHON1pIyKt7ndboTDYZjNZpw9exaJRELupug1lCLNPy8t1tSPSaMeNGHSBArMbnq6urrkmO3r60OpVMLOnTvR2dmJYDCIYrGIfD4vmQe6H3w+HxwOB4LBIKxWKzZv3iwZDV4HCMCSel9qrCw4U0FwOp3o7OxER0eHzIYUQiCfz9cVLVXnXapET8kBtGCTU65xeUFh102bNsnyEzzyQNlzFH7nm2jSrQFzGybuDFM9QAAtnQm7bpwnEoXS36rjUy6X0dvbKylDmkxp4qbJmxfuooW6XC5jbGxMhpF4lhivdKzRGLVaDVNTUzh27Bj8fj+EmK3vQmJrp9OJeDyOZ599FlNTUzh+/LgM1dDAsVqt87IljZynhahbNcxDj/GsSS5ip8/g9/vR3d0Ns9mMSqWC6enpOj0Opd/zbvDArAOfzWaRyWQa1ifZyFB7RAoh4PP50N/fj6GhobrHe3t70d/fD7/fj3g8Lusw8XTmYDAIj8eDWq2GLVu2yGK5vO8gNR3Wmpi1hToW3G43Nm3aJNs4pdNpWYuLNIM05nnCAG12qGCm1+uVwnI9N68+VDtS2G779u2y/Ag5TvR80jBxB4kSO9SWSOQ0cUaLNquaeVoh8HALD5lQkTX6zdX+PNyihmx4GIleq6ZZNhMl0+P8s21EkCNLoZFkMgmfz4darSY1TdQVOxqNyvYcC4F2mhyXqi0zsiu3GXfiSHNF4cVsNlsnciYKmuudNPPUGFzzQtfZ7XbLkA3ZwefzwW63y4lXzZylkA1lyNntdqk7o0bB5XJZvo52s83CgBqXD+TwuN1u2ZqHh3P5JgeYX6aG5mAK/bXqwnqlg8TgVAiXZxnTWONrLw/F800rYCyr4AldrYp15zypIMenWCxienoax48fRzKZRCAQQDgclgbgxqVJlHY5tLNVy8EvFRt5Yp6ZmcH09LTMhBkfH0cgEIDT6UQkEoHL5UIymcTo6Ciy2SwmJyellohEopy2V8sUkKOjPrYYqIwVnZ9CusRcGNl/cnISX//613HkyJE6HReFlKrVKiYnJ2U4cmxsbEPfBxzqdbdYLGhvb0dbW5vMtNq6datszD0zMwOPx1MX3uOaCQB1DabpcXouVSX3er0y+eDEiROyIW0+n5daSX4/aXtdPjgcDml/ymAF6kXJfJGluZsvtuQ8UyShlRfYKwHcoeWbIK43BCDrJ6oicW5D2ujwTaha2obID3UNaDVcMc6T2WxGLBaTWT6bN29GIBCo0zgRjIzGF9FWNlirolarYXp6GrFYDEB9FhvtPniolK45bxBKg6bZ9V8q69Qo+46zR9Suw+i8U1NT+MY3viGLwPl8Ppnynkgk5Gt5g1N9/8yvyUKMUUdHBzZv3oz29nbpPJVKJcTjcRQKBXi9XukQcd2ikTaCWEl+f1GBUwq/DgwMoKOjQ07casE9ei9ts8sDm82GUCiE9vb2un6iPBGDQ9XL0GO8JpTG6sJog0GJWS6Xqy4ZhBxb7jwBkIw+VZun+ZcE5vw+UJ2nVh2bLX/nLXThuNiYU/P8h8Iv6k6FF3UE5gaq3slcGnhLnKVCDY/yHc5K2qOZbkrN9AMgWRGqmk7ZIBTKI4dbZ9ktDFocKRuWT6hUhJTCdVzjQpMrjW/OEvLfpJfTtbbWF9TsWr5oGi2gdB/xsK7G5YVRaI3baSGpC0GdhxeSVrQSWt554jC6iNRaxe/3ywrClN1FOohoNCorR3d3dyMcDksPOJ/PywJ6LpdL08BrABIL0gJKDi2fIFWbLNZGfPDyTE3KoKP34cwYZ79IU0efi1hOXpqgVXdGawl+TfiESDV+3G631DYJIeDxeGSWjd/vh9VqRSqVQjKZlIkFJELl7XWo1AU9RrYlUWoqlUIul0OhUKjToxl9Po3VR61WkyFvCr1R6J7XeKMxSH8Ts0G2pV6kOttubUDMEwn2KQLEIwPcdsDs/GskxyDweZjujVZmFlv3k6F5WQCugfB6vQgGgwgEAvD5fPB6vbDb7TLFOZlM4sKFC7Db7QgEAohEIgBmi22S88R3xEsdjGp4QmNpoFCM3W5HoVCoa53CQ66Xem2NwjTETvDMnkbOEzlalUoFhUJhmd9248DIXrz5NoVtaONCzhOJiYHZelGUXEAMFS2clUoFqVRK9hsk58lqtSIUCsFiscgCnJTJ1Winq3F5wJNzeFhWzbAlJpcWXx7KJSecbK2dp8sPLhinDSZtbgh8nqWyLo0Yeh625VXJW1k03tLOkxHUC0mpjdTg1efzwefzwWQyySrjiUQCiURCVqilBZnHXKk4Ik3Ei3lvgs62WzrIMSJnlTMHRP+qobyVeE8j0KJKDBhvI6OxsqAxVyqVkEqlMDU1VVfUMhQKyR0tOa1q9g6vVswdXmrJxNlkYqWMtBPacVobcPaBL5pkZ6owTws0bxBNThTZVWtUVw8Lzb28sDG3BY1bdR7njpDqJF/KfL9U/etKY105T0YZV06nE93d3ejv70dfXx8GBwfh9/sxOTmJU6dOIZ/P48yZMzh79ix8Ph+uuuoquWuh0F0ikcDZs2cxOjoq+/Oo77kY6EFsDKPMJmIZPB4PLBYLCoUCrFarFAsCqJtQlztQOGPJM3t44oDT6URbWxtKpVLDZrFG90MrixpbCULMlrPIZrOo1Wo4dOgQzp07h3w+j4mJCeRyOWzbtg033ngjwuEwstmsdGhpYqaqwz6fD4VCAfF4XPbToppcJpNJFmrNZDJ1TrnG2oIvtMBchWke6qHwPQcXjVcqFaTTaZTLZeTzeW3XNQBFatxud11lcdoIUdYdMYs2m00mBwkh6kLxfGPEWUgjDWorYV05TwS+eFmtVvj9foTDYbS1tSEcDsPn82FyclL2Tbtw4QLOnz+PUCiEQqEAu90uxb/UkiMej2Nqamre+zRznlrVqK0Gox0FFUCjmDll26kCfnr9Sl5r1aY0UGmAu1yuhrF2oyyylWTHrnSQbowc1unpaWQyGYyMjCCdTmNmZgZDQ0Ow2+0ytEPJILSw2u12WQAXgKztRNomj8eDTCYDu91e10xW22ftwYXgQH2FaTpGzYHJ0VIjAby0iS5Ku/poNP9S2RB6DjBXEJfmbppHaRNEdRS5NAOYk08spRjyWqOlnadGRjNKm+RGoG7c09PTSCaTSKfTdcUzybOl+lA0mfNzLTdk1OqGX2tQvNztdtcJRwmcKVqJa6lm9PD3onuC9HPNnKdmWXoazWEymeByuRAIBGR7FZfLhVgshomJCaTTackquFwu5HI5mc3Ia2zR2M3n84jFYpicnJSifpPJJBlEp9OJYDAIr9cr2Y5SqVQXMtJ2u7zg867X65XsBLEWVNk/mUzCbrcjHA7LVh00ZsnOPNlDY3XQbIyQvfiGl0DOEA+58gxqzvwT80SvWS9jsqWdJxWcxuMTIC/fTzvb8fFxHD58GPF4XFZ/Js0TMU6ZTAbxeFxS+wAkxbiejLge4XA4ZFNQCt2pTutKCvH5bpcGK/1NmVtutxsdHR0olUpwOp0Nz6Pvi0uDxWJBOBzG4OAgvF6v7ItFIfNoNIp8Po/z58/LpsLAnNNFlYyp4W80GsWpU6dw+vRp2UORHKarrroKPp8PZ86cQU9PD5xOJ2ZmZuY1B9bj/PKCbJdMJmWbHafTKTe06XQaZ8+excGDBxGJRHDjjTeiv78fwNwcQIk+AHT7nVXCQnIVIYTcwPDsSDpGr+ehO85KUSiedwPhBZLpM7QyWt55MmJ/mmXhkSCVNBCxWKxuV8NTYSlUxKlfTh1yQy4WenFdHKiYGmVOLRQiBRauGbIQVAEjv2cAyKwvo95LGssHpTf7fD74/X5EIhF0dnbK9j2UOJDJZKQonIv3uSaCdE7JZBLRaBR+vx8+nw/ArGMeCAQQCASkc06aOu0srS14th2xvTxMZ7FYkMlkZKX+mZmZOv0hPa9cLutMuzWCutYasfo8W1qdZ4H6sgVGP7xoZqtizZynS7ko3EAcNKlSGjQ1KaR6ImQQXtCQih9Shp1aWI/fAEuZbFvd4GsBI7s5nU5Zk8vj8czLblOv4VKuabPnGoVkedkCLlbUWFlQSI3CNcQKx+NxtLW1YcuWLQgEArBYLHKjU6lUZMiOFlHSTeTzeclikFDc7Xajr68PqVQKFosF1WpVljfQDvHlhVGiSD6fx8WLF1EqlRAKheZV5K/VakgmkxgbGwMAWaPP4XDA4/HUhW71OF19qOsfFbalKuJq0g1Qv8kl5olnVPPMPF6agI7ROVrdvmviPF2qc7FQ2M5ut8Pr9crFOJvNIp1Oy7grsUzUSDidTiMejyOdTtdldxiFjZb6/fQOdw6q82QymeD1etHX14dIJIK2trY652klw3X8nEb2VGvKLNSiZzU+20YBOTehUAi1Wg1jY2NIpVIQQqC7uxtdXV3SYSqVSvOKpbrdbmkvs9mMVCqF6elpjI+Pw263Ix6Pw263o729HdPT0wBmHS2XyyWLcmpcPqhV4YUQSKVSOHbsGHw+H9rb21EqlWQ/Q1pgJycnceLECWSzWYyOjqKzsxN+v1+GbqkBtJHWRmPloOpOTaa5IrcktSAnh8+bFIYTQsDpdMJut9dFeUgnBUCuzbxOG63prd65YU3DdkaL2UILUqOQHV1wnrlB4Tp6DvdmafDxZrRL/ayL/Xwa868L766+1roFI2aMh4iMEhS0nZcOGqNWq1XWespms7DZbJKNogQOmowrlYossMcztWgM02RMu9hqtYpCoVCXCMJFqxpri2q1KvVspJfhQmKeDEAdIAqFgtQg8o1pqzMTVxooDEctlNRoAWehCLzERCO2UGWweOmKVsaaOE+Nwm+LeR0X/QKznisVyaTdaKFQkLVkgPpimOQ0kWYin8/L+PtCn7XRoqkn5aWDMtuoLQewuD6Gi3neYsDPRecjjY3X60V7ezv6+/ulrobqkmhbXzpIq5LL5QDM1vry+/111D1VDS8Wi3KhpIKYtDGi0gVUZ4Y6Cni9Xikqj0ajMjRPDUx166W1AR+vpVIJiUQChUJBztXFYlHajeuYKpUKotEoRkdHUa1WsWnTJnlcFSlrrCxUHRMwl7hB3TwoU5q3S+LOkhCijiVs1IDdqDTNehinLS8YJzQScFssFrjdbllVPB6Pw2QyIZ1O1zlP5ECRAam+E2XiGTUTVcODeqCuHMh58vv9UsvCrzX/X8Wl2oKfn4sYiSqmWL7X60V3dzc2b94sF3K+mKvn01gceIYOJQyQY0Q7UlpcM5lMXULBzMyMdJxsNpt8PXUVoEmdykxMTEwgm80im83KauVG5Se0DVcPRskzpVIJ0WgUVqsV8Xhcbl7VSuLAbMh1cnJSaljJhsRQ6QrjqwvVeTKbzfB4PGhra0MwGJTjjsLs3AmiObpYLM7TGpOTBcw5TsRK09/rwYFaF85TM8aHdq0U+uGlCBbLZBi14mh1w613EP1LLMJSrvdqTpZcnOzxeOra+WgsDxRqK5fLMsOK7M6bwvJND9V4UjdNXI9B9xIVOCXBOe16ibEyCjNorC5UjSpP0DDSGPKFk5zpQqEwLzqgbbf64OOTQJsXKj9gNHerG0yeVcefYxSBWk/r7poJxhd7kfhA4hMmLbwkQI1EIshkMpicnJTF82iQclE5/aZq0n6/H6VSqW6B5O+jGafVAS12PGzXDI3YqMWwVEZo9HzSyHR2dmLr1q2YmJjA6OgoYrGYnAj0PXFpoJ1oOp2uY4Go9k+pVEKxWJQaKGrEXC6XZT0Yro8g1Go1uN1uDAwMoK2tTaa7Z7NZmdJOk73G5cNC8oxSqYRcLodsNisZQ9q4OJ1OmM1mJBIJWCwWhEIhVCoVzfxeRhg5RdQeiTfv5vpDI4dKXe+5IJwXt+U6qvVg25ZmnrgQXHWeyPulisVtbW0oFAqIRqNIJBJIJpPznCcqZ0CTKYX7qIcWPZe/t/qYxsqAGjqTFgVoXL27UWKB+rj6WDN7NdrtCDFbayYSiWBgYEBmmKivWw+Du9VAzlMmk5HaFZPJhHw+j6mpKeRyObl42u12ZLNZZDIZmM1mySirolKyg8vlQl9fH7q7u2XD4UqlIsc6hfr0GL58WGiskCYtl8shFApJ1pcaQ5tMJiSTSVQqFfT29tY5TyqjpbF64OQF6QyJ4QXqnSc+rum1Rk4Yd55ow8T7HK4Hu64L5snoMU4fEgtFgtNSqVQXtuNZeNwhM4qzL/XzLebzaswHLZK8FcpSsmeaUcUEIwerkX1U+1PNMLvdPi9stx4GdquDQjaU8cqbQVOR0lKpBGDOjnwM0+M8EYTmBLvdXueQl0ollEolrY9ZAzS73qpuiexKZWcAyILHvIWWxtqBJ21wB0ldX3nUhv+oITyuYVzsxrdV0PLOkxFIuOb1eqXq3+VyAYCs3ZTL5eoqR1MTWhKg0u6GFki1zhB3si7l+210LESvU52nvr4+mEymukKV/HVGIVsj4XcjLOa5qoDcZJqtQ9XW1oZEIrHmpRSuJNBkWalUMDY2hng8DqvVKkMBfr8fXV1dUkyeTCZRq9Xkjpc7RVSNPBaLIRKJyMxbGreVSgVTU1MYGxuT4nE1e1Zj7TAzMyOz7aikjM1mg9/vlzWgcrkcMpmMZKAahe01Vh/EPHm9Xlk3TS1gS0QFL/XCE7VI81gul2E2m+Hz+eqeR/Mvjxa1Kta0wvhS9SgE2p2SEckBAiAHG3VTV1kq8ppJZMrbgyzmMy5msdYDehbNdErUiywSich6LkbMUyP2qFnJiEa0r1GYjx7nr6VQnc/ng9vt1oLxFQLfoZbLZcTjcZw/fx5erxdOpxMejwcejweRSAQulwuJRELWhKKxarVa69gKCgNSNiRN6FRdPBqNIpVKyeeo0EzU2oG3yKLCihTO9/l8sFgssrF7Pp+v63223A24xtJBjDxlwVKYjeQw9Bzu/Kg12YhtpNA7FT6lEiZqjahWtnFLtmdR2QXecZkeIzaJt13gHbt5PQlyoHjGDWcauMHUWK3KfCzne2108FApD9UZZWMQlhs+5ec00kSpx+lxqqSr+9ytLHjiBhW0JMapo6NDlq6g8UqOEk3cVqtVTsZqFheF7AHU1QMqFAooFAqoVCp1n0U7TmsLtf4egTa7anFFNRVez7WXB3xe5JpErk/i7Vl4Mgg5V8Qa8jFL9jeZTHXlDDhz1cp2bsmwHV/k1FgqMDu4AoEAIpEIgsGgZI6KxSJisRimpqaQyWTkYDPSRwFzOx9VC2HkQPHHF/P9NGbBr6vNZkMgEJCOCekZuA2M4t6NGKNGou9mz6f3UEN1VHuEMrqCwSC8Xi9isVjDbMBGzJqGMWjydbvdqFQqMjvW5/Nh27Zt2LFjh3wu2YFaOlgsFni9XlitVqRSqXmp69VqFZlMBolEAh6PB4FAQD4+Pj4us++0rVoDpFfL5/OSVQJQV/yUFlxeXJHP6VzrqrHyMIoYeDwehMNh+Hy+uo0MZcrS2kqOLznB1I9S3aySno3OUavVJLtFa78RjGQclxst156FoIZUOIVHu1CPx1PHDNAuM5fLzSvaZSQMV8VsC33GxQxSPTnPQb0WFosFTqdTZtgZOa/cuWl2Tq6HIizmfqLnGT2XP4faQfCU3EZYywG83sDLBpTLZWSzWVSrVbS1taGvrw+lUgmZTEY2+jVintSMHHoe1QTiIYVarSb1TjSBa7QGuB5GzYzmm1wjdlpdEzRWHzQGXS4XnE6ndJ6IdSIHWC18SeuuutaSA02vIeaJ5oeFIj5rPe9edudpqUJsHrbjj/FS/jTBUvXibDaLUqk0L2ynLppkeDWLgze0NArpNcJCC/9GgtGN73A40NHRAZ/Ph1AoZFjXQ9UeNdNNLYcRbBTWo/Aw0cfA3C7X6F4x+mwaxiBHZnp6Gul0GgBkk1H6TSxyuVxGIBBAMBhEqVSSWZm8/xlnK9xuNzo7O9Hf3y/DCrVaDQ6HA8FgEMAsm0VaSI21h5ptx0NARg26eSHVRgUaNVYfRmQDPcb7URJbqM7tZF+gvvcd2ZOcZ+5Et2IJgzVhnhZS0fMLxCtQq8wTCcWFmOuZFYvFEI1GZWorOU68mSF5rEbMBy9rwAXMi3GK1Oe2kqHXAur39/v9uOqqq9DV1YVNmzbNq59EDpM6mPjEqt4H/Fo3GtAcfMdqpHkiloPTz0Qjk4OuU6YvDTMzM5iamsLJkyclM9zW1oa2tjZEIhFEIhFUKhV4vV5Uq1X09vaiv78f5XIZoVBIViWn1krkCFksFgSDQQwNDWHPnj3I5XKyrY7f70d3dzc8Hg9mZmaQTqc3/LhsFVAnCD4Hc+0aL2FBczXdN8Rgaj3i5QVnAPk44rq0arUqM19pPgXmnCeq7WQymaQkgtZ0k8kks+Bp80OMMznPHDpst8BzVNG2KgDnuxUSjKsaGs4+ERrdCHxRVhfqRjAKI2nUw2q1yoKmXq93Xs0egmo3APMcWfrdSN+kPqY+dzGv459b90VbPkjjkEql5CRI1aS5CBWYnWBdLpcMm9IxmqBJBwPM6WT8fj/a2tpgNpuRzWblhEz6GV1yovWgNvjlDIa6SeHML99kafZpbWGkQSX7Ga2vfJNKLCKPSNHaDqAuO96oRdOGCtsRFhPLbPYcPqFSuK5UKtWp9vn5VPaK4q20w1GdJ6Oq5ov9Pht5MDcTUbtcLsk6tbW1yZAribVVMTcfNDQQ+XHOYNIkrNrY6HOojjTdK/R83sLH7/dj8+bNUow8MjKCfD6/KtfuSketVkMul5MlCEKhEDo6OtDV1QUhBLLZbN3iSBm1ZrO5rkFwpVJBLpeTrVt4PTe73S5/ZmZm0NbWhk2bNiGdTiMajW7osbkeoIZtGtlrqfIPjZUB1UgkQbdRZIbsRnW8iDVSHSKyMzHK5FQRm2w2m+H1etHZ2QmHw4FkMolUKjVvXV4rJ6rlsu1UYxg9j0IpJFqjWi/5fL5OC8Hfz8h5KpfL8yZg/lweZ12KrmajTtBGmjIOt9uNwcFBXH311bL9AsXFjbRP5MBwrQN/H15fhKfC8gFlVDuKBi09RxUtArMD3OFwIBQKYffu3fD5fDh9+jSmp6e183SJqNVqyGQyAGZDuDt37kRfXx/a29sBAPF4HHa7XRa6JNaIN/2lzQ5NpGR3CgEQi0Uh4a6uLtRqNSSTSZw7d05mVGqsPRqFv7nMohlDrDVPlxc0xniilirgVwXiuVxO2pPCctx5ImeMSyK48xSJRLB582Ykk0mcPXtWht1bQRrTMmE7NSSzWHAGiYpwNQNlBVBxNqNSBY0+52I+mw7lzAcNBFoYaUHkN38jp2shZ5TvdjjzZMReGu1YmoEWcJ/PJ0sXaI3FyoAK3fp8PtkdgIuHCTTZ8s2PGuoxCrHz4n1Op7OuOrnG2sBoseOsMn8et7l6Do21g8r4q4Jwdf7lrHAjWzbzA3h3EFU6sdb3wpoyT41CXQs5INRQkrQTbrcbiUQCExMT8wrhEX1YLBaRy+Vw7tw5PP/885iamsLIyAguXrwo67/Y7fZ5Rl5sOO5Snb8rDWrYzu12o7+/H8FgEDt27JCFEDkrxFk+NcvGKAxn5ATxAc3ZQ7XdC/+cfHJWQ3y0EzKbzejo6JCtQhrVfNJYGFarFd3d3diyZQt8Ph82bdqE9vZ2eL1e6dhUq1WZiUclR3h4nZrDUrE+atHkdDpRKpWQzWZl3SBimEhYrEM8awc+XmmcFYtFJJNJWK1WFAoFAHMNwwOBAGZmZuSCyRM36J5QiyFrXD7UajUp+uZtVYC5eZY2zDS3kxaZj00eqgPmZ1vbbDaZQGK321tqfW0ZzZPqpDRzRkg7kUqlUC6XAczW5RkfH6/rvE2ghTCXy2FkZAROpxOxWAxnzpzBhQsX5CKutmpZSghONfpGhNH3drvduOqqq9Df34/t27cjEonA7/dLnRoJBokCJiEwMTxGjhN3dHiIlb+GHidnWhWkcr1EI0Ejpdx2dnYiEAhgbGxMF8xcBqxWK/r7+zE8PCxLC1BFcR5+pdA7tVTh/bCoIjHpLnw+X53zlE6n6wqvAnNhIO08rR3UzTHJJpLJJMxmM/L5vAzfu1wuOUfQfUELMS3G/D7RuLygjS9phXmRYf4c3vSXN+fmY5Nn4wHz53vVeWolrBnzxH+rxxotQHxRpN0oMLtD5TVcuBH5e9BzMpmM3NUaVbZe6HMbQS+axo4jZdi1t7fLRY5YAM4U0Q+vHMyfR8JxHlPntbuM6oXQ3+qiye8jXjyVv4b/7XA4YDKZZGkMm81Wp49S2TGNetD1oQbAbW1tspcdZduRzWkiNgrlkO1JD0MhObVYLtmVGgo7nU4Ui8UFi51qrC7UuZ02UE6nUzJIZDtKT1cXVh62NaoFpbF6EEKgUCggnU7LjQs9rs79C0ktuC1pvNPfVIrEZDIhn8/Pax7dKmgZ5kl9zIhxIAGpzWZDJpPBxYsXYbVaMTU1BYvFgkQiIRkkblBelTgWi8FisSCbzaJYLNaJwun56qS92O+zkVknYG5HQn8DgNfrxb59+/DiF78Yfr8fwWBQVqbl2W3k4DidTvkYVYqmqrOq0JfEhpw6BuYcJtrVEDtJIFExCccdDofcSVGojvfgo1piPT096O/vl1Ww4/G4ZEJ4tqCezOtBDkwoFMI111yDl770pZJRoHFNBTJ5/SYA0rH1eDwIBoOo1WqIRCLI5XJwu90olUoIBoPYvHkzQqGQbOFC4fpgMAiTyYRkMolwOKzZpzWAkUxDCIFkMokTJ04gGAzi2muvlYujw+GAx+NBJpMx1LlUq1WkUikkk0kUCgU93i4TyuUyjhw5gnQ6Db/fjx07dqC3t1eOX84Mka1pXhZCyHWYMmjJUaKC1jR/J5NJnDlzBuVyGUePHsVzzz2HbDaLaDQqn6NmSK8F1qTCuNHfRs+hi8L7GREbQcwRB+1eaLHjRTLJWKlUSsbLufPUqFP3Yp0hvXDOQv3+Xq8XV199NV7ykpfMC7lxh5MzT5xZoto+xPaoDSgpzEpOFlDvPKlMJIB5NYWAudY+vDgm/djtdlgsFkQiEXR2dsoaQslkUr6ePv9aDuZWBOkWqPnvwMAAhoeHYTab5eJHEyqxRbQj5Yyi0+lEIBBArVZDKBRCJpOB0+lEpVKBz+dDb28v/H6/nJjpHFS5PJFIIBAIbOjNzVqCz600Tngh03g8LscNbwGiJmhQKD6TycgQrR5vlwflchmnT5/GuXPnEA6H5diiJCBVagGgbnPJ12EKvVK2OzDnCMViMVy8eBH5fB4vvPACXnjhhXl2NmKnLzfWlMdu9sVVWg9AXSNIou555o3qAPEFTe2PRLoJir8uJlNPD9Klo1wuIxqNYnR0tC7kxjOruMOkhuWMyvKTfakwKjlKvDo4PWaUhck1T7zCMdHD/BzEQpFgvFAoSMGqxsKgsUe6pWg0inPnzsFkMklxt8PhgN/vh91uRyqVQiKRkD0qyW6FQgHxeBwzMzOYnJzE5OQkSqUScrmcLDmSSqXgcrnk36SToPPyBVpjbcDHMmkLq9VqXQiOHO5GpQqMKpNrXB7QnFsqlZBIJDA5OSk3MdSzlG+EGoX0LBYLyuUy4vE4crkcgLn1NZFIIBqNolgsIp/PN7TxWtv9sjtPzb6wkUicBgoVzKLdIy2w5XIZ6XR6XjsWbjBaGEl8Rs6X3++H2+2WEzOJzZfDIhmxVxsZ0WgU3/zmN/HCCy/A4/Ggs7NTlt4nBol2Lpy5IRtR6MzlcsnaSx6PZ97EStlYNPFSbzNq8cBpYQrVAcD09LRciKmxLLFNxGoRQ3XixAmcPXsW4+PjclADxuFKjTnQGK1UKvjud7+L0dFRWCwWef0CgQC2bt2KUCiEZDKJCxcuyHAMOddnz56VIb1nn30Wv/jFL+ScQK1zXC4XQqEQJiYmZDFT6nVZLBZx4sSJedm4GqsPvrHl44PGJXWFyGazcrx7vV45zukc5ICTcxyPx6XQXOPygByiTCaDgwcP4syZM7BYLDJTvb29HVu3boXH40EsFsPExIRsqVOtVmGz2dDd3Y329nZkMhmcOXMG0Wi0bg4lRoraKbXqRnVNmCcjb7TRAOADj1KTueDXbDYjnU7PE+/yxq68rD+dy2q1wu1214V6dMhl5ZHJZHDo0CGMjIygra1Npqnzopd+vx9+vx9ms1nuQik1mQYmhWSoRxnXzFDabKFQgMlkgsvlkqFbvqOl37zdyoULF3D69GmUSiVZZJXOwdOkAWBkZATRaBTJZLJOY0WfQ8MYZNNKpYKjR49ibGxMMr9UCqJWq6GzsxOJRALnz59HoVCAx+NBIBCAEALRaFQmehw5cgRHjx6F0+lEf38/QqEQAODs2bOIxWI4d+4cDh8+jEwmg2g0iqmpqZadgDcKONvEH+N194ghtlgsdbpEei4XFBcKBeTzeVkkVePygNbIYrGI8+fPzzu+adMmWK1WBINBjI6O4uTJkzI0Vy6X4XQ6cfXVV0sH+IUXXsDFixfludcTtHpSY83BJ1ajSdbouerzV+szceiGwMvHYuj3xdh1MXbXbKCGxtpiofl6ofm+lWES6/FTa2hoaGhoaGisETTzpKGhoaGhoaGxBGjnSUNDQ0NDQ0NjCdDOk4aGhoaGhobGEqCdJw0NDQ0NDQ2NJUA7TxoaGhoaGhoaS4B2njQ0NDQ0NDQ0lgDtPGloaGhoaGhoLAHaedLQ0NDQ0NDQWAK086ShoaGhoaGhsQRo50lDQ0NDQ0NDYwnQzpOGhoaGhoaGxhKgnScNDQ0NDQ0NjSVAO08aGhoaGhoaGkuAdp40NDQ0NDQ0NJYA7TxpaGhoaGhoaCwBa+487d27F5lMxvDYtddei6eeemrBc3zrW9/CgQMH4HA48Hu/93uLPjY5OYk3vOEN2LNnD3bs2IFPfepT8thf/MVfYO/evfLH7/fj93//9wEATzzxBF70ohdhaGgIO3fuxB/90R+hVqst5WtvKKyEjf/2b/8Wu3btwu7du7Fnzx586Utfkse+/vWvY8+ePdi7dy+GhobwoQ99CEIIAEChUMDb3/527Nq1C7t27cLrXvc6TE9PAwBqtRp+//d/H0NDQ9izZw9uvvlmnDp1CgAwMjICi8VSdw+cPn16mVfiysRK2JcwNTWFzs5O/PIv/3Ld4z/4wQ9w3XXXYefOnRgaGsLTTz8NoLl9n3rqKbhcrjobFgoFAMDTTz8tH9u5cyfe+973olQqLf3LbwCspX0B4N5778XWrVuxdetWfOhDH5KPNxv3uVwO73jHO7B7925cc801+OM//mN5TGM+VsLGn/70p7F7927s3bsXu3btwt/+7d/KY3/6p3+K9vZ2Oebe8pa3yGO1Wg3vf//7sXXrVmzbtg1/93d/J481m/ebrdGXBaKFceDAAfHkk08u+LwTJ06IgwcPig996EPid3/3dxd97M1vfrP40Ic+JIQQIpvNiuHhYfHMM8/MO3+xWBRtbW3iZz/7mRBCiGeffVacPn1aCCFEoVAQL3/5y8X999+/5O+nsXgbP/744yKZTAohhBgdHRXhcFicOnVKCCFEOp0WMzMzQgghSqWSuO6668TXvvY1IYQQn/zkJ8Vdd90larWaEEKId7/73eIP//APhRBCfP3rXxcvetGLRLlcFkII8ed//ufiV37lV4QQQpw9e1YEAoEV+54bFYu1L+GXf/mXxTvf+U5x5513yscuXrwoBgYGxNGjR4UQs+MxkUgIIZrb98knnxTDw8OG75PL5aTdZ2ZmxC//8i+Lv/7rv17al9NYdfv+4Ac/EENDQyKbzYpisSgOHDggvvnNbwohmo/7P/mTPxFve9vbRK1WE+VyWdx+++3i3/7t35b/hTcgFmtjmp+FECKVSon+/n7x7LPPCiGE+OhHPzpv/SV84QtfELfccouoVqsiFouJTZs2iSNHjgghms/7HOoafTmw5syTyWRCMpkEAPzoRz+SXus73vEOVKvVRZ1j+/btGB4ehtVqXdKxQ4cO4Y477gAAeDwe3HjjjfjiF78473mPPPII+vv7ceDAAQDAvn37sGXLFgCA0+nE3r17MTIysqjPuhGxEja+9dZbEQgEAAD9/f3o6urC+fPnAQA+nw9m8+ytXCwWUSqVYDKZ5Hvn83lUKhVUq1Vks1n09fXJY6VSCcViEUIIpNNpeUxj8VgJ+wLA5z73OWzevBk33HBD3eN///d/jze/+c3YsWMHAMDhcCAYDMr3bmTfZnC73bDZbACAcrmMQqEg7xmNeqylfR9++GG87W1vg8fjgcPhwDvf+U78y7/8C4Dm4/7QoUO4/fbbYTKZYLPZ8MpXvtJwbteYxUrYmOZnYJb5q1Qqi3rdww8/jP/+3/87LBYL2tracPfdd0sbN5v3OdQ1+nJgzZ0nQrlcxt13341PfOITOHLkCN70pjfh0KFD8vh9992Hj3zkIyv6ngcOHMBDDz2EWq2G6elpfOc73zF0gj73uc/hXe96l+E5JiYm8JWvfAWvec1rVvSzXYlYKRs//vjjSCQSuO666+RjP/rRj7B79250dHTglltuwZ133gkAeO973wufz4eOjg50dnYilUrht3/7twEAr33ta3HTTTehq6sL3d3d+P73v48/+7M/k+fM5XK47rrrsH//fvzZn/0ZZmZmVupSXJFYjn3Pnj2L++67D3/xF38x79jRo0dRKBRw2223Ye/evXj/+9+PXC4HoLl9AeD06dPYv38/rrvuOvz93/993XlHRkYwPDyMSCSCQCCA3/qt31qJy3DFYi3sOzo6ioGBAfncwcFBjI6Oyv8bjfsDBw7gy1/+MkqlErLZLB555BG9wV0EljtHf+UrX8HOnTsxODiIP/iDP8C+ffvksS9/+csYHh7GLbfcgieffFI+vpCNCUbzPqHZGr1quGwcVwMAEIlEQhw6dEgMDg7WHduyZcuSKOFm1KDRsenpaXHPPfeIPXv2iNtuu0285z3vEa9//evrnjMyMiJcLpeIxWLzzplKpcS1114r/uqv/mrRn3EjYiVt/Pzzz4u+vj7xn//5n4bHp6amxA033CB+8IMfCCGEePTRR8Ub3/hGUSgURKlUEm9605tkqPYnP/mJuPXWW0UikRAzMzPiD//wD8Vb3vIWIcQsDTw5OSmEECIWi4nbbrtNfOxjH1vqV98QWK59a7WauOmmm8SPf/xjIYQQ999/f11Y57Wvfa3Yv3+/iMfjolwui7e85S3iAx/4gBCiuX1TqZSk/M+fPy92794tHn744Xnvn8lkxJ133in+5V/+5VIvwRWNtbTva17zGvHQQw/J537rW98SN9xww7z3UMd9Pp8Xv/M7vyOGh4fFjTfeKD7wgQ+Iffv2XcrX3xBYyTlaiFnZw969e8Xx48eFEEKMj4/LMPl//dd/ifb2djEyMiKEEGLXrl3iRz/6kXztpz/9afG2t72t7nzN5v1ma/RqomWYJyOsNo0eiUTwwAMP4NChQ/je974Hk8mEnTt31j3n/vvvx5133om2tra6xzOZDG6//Xbceeedl1ekdoVhKTY+evQoXvOa1+Dzn/88rr/+esPntLe344477sCXv/xlAMA//uM/4vWvfz2cTifsdjve8pa3yF3PP//zP+OWW25BMBiE2WzGPffcI485HA50dHQAANra2vDOd74T//mf/7mcr7ohsRj7ptNpPP/887j77rvljvW73/0ubr31VgDApk2b8Eu/9EsIhUKw2Wx405vehB//+McAmtvX7/dLyr+vrw9vetObDG3o9Xrxa7/2a3jwwQdX6mtvGKy2fTdt2oRz587Jc42MjGDTpk3z3kMd9y6XC3/zN3+DgwcP4gc/+AEikci8uV1jcbiUdXhwcBAvfvGL8c1vfhMA0NXVJcPkL3/5y7Fv3z787Gc/A7CwjRea9xut0auNlnGerrnmGlSrVTnxPf7446ue3RSLxWRc9rnnnsMjjzxSR93XajXcf//98+jAbDaL22+/Hbfffjs+/OEPr+pnvJKwHBsfO3YMd9xxB/7xH/8Rr3zlK+uOHT9+XGY7ZjIZfOtb38KePXsAAFu2bMF3v/tdCCEghMC3vvUt7Nq1Sx574oknUC6XAQDf/OY35bGpqSl5b5RKJXzta1+ro6A15uNS7RsIBBCLxTAyMoKRkRF84hOfwH/7b/8N3//+9wEAb37zm/Hkk0/KbLj/+I//wPDwMIDm9h0fH6+7L775zW9KG546dUrat1wuy8wtjcZYC/v+yq/8Cr74xS8il8uhVCrh85//PH7t134NQPNxn06nkc/nAcyGDD/zmc/gAx/4wApejSsTy5mjjx49Kv+enp7GE088Ie1x4cIFeezkyZM4ePAgdu/eDWDWxp/97GcxMzODeDyOhx9+GHfffTeA5vM+0HiNviy4rDyXAfD/6UIhhPjhD38ohoeHxa5du8Q73vEOMTw8LOnCz3zmM+J//s//aXiOxx9/XPT29gqfzye8Xq/o7e0Vjz766ILHvv3tb4tt27aJa665Rlx33XWS8iV85zvfEYODgzKTh3DvvfcKq9UqhoeH5c+99967glflysJK2Pi2224TwWCw7po/9thjQggh/vRP/1Ts2LFD7NmzR+zcuVN89KMflTaLxWLirrvuEkNDQ2JoaEi84Q1vENPT00KI2dDcu9/9bnHNNdeI3bt3i1e+8pUyi/KrX/2q2Llzp9izZ48YGhoSv/3bvy2KxeIqXqX1i5WwL4ca1hFCiI9//ONix44dYteuXeLuu++W79fMvv/n//wfMTQ0JG3I74t/+Id/qLPv+9//flEoFFbkelxpWEv7CiHE//pf/0ts3rxZbN68WfzxH/+xfLzZuH/uuefEVVddJXbs2CF2794tvvrVry7rGlzpWAkbv+c97xE7duwQw8PDYs+ePeLTn/60PPb2t79d7Ny5UwwPD4v9+/eLL3/5y/JYtVoVv/VbvyU2b94stmzZIj71qU/JY83mfSEar9GXAyYhdPELDQ0NDQ0NDY3FomXCdhoaGhoaGhoa6wHaedLQ0NDQ0NDQWAJa0nn62c9+hle/+tXYvHkzDhw4gH379uHee++Vx2+66SY88sgjSzpnMpnEW9/6VuzatQt79uzBrl278NBDDwEAHnjggXntAvhnIfGaEZ566ik89thjS/osVzJWw3YPPPAAAoGAbKXx6le/2rAOiIrBwUEcPHjwkt9X49Kgx++VD23j1sVq2Ibw0Y9+FBaLpS47biE0er+nnnoKe/fuXfJnWOm5fGRkBPfdd9+SX9dyztPhw4dx++23433vex/Onj2Ln//85/j+97+PdDq9rPN++MMfRnt7Ow4fPoznn38eTz/9tGGxLRXXXnstHn74YcNj1Wp1ww3MZlgt2wHAzTffjIMHD+KFF17A9u3b8T/+x/9YgU+8OtjIxTT1+L3yoW3culjNObhWq+GBBx7ATTfdhPvvv38FPm1r4Ipxnj72sY/h3e9+d13F7ra2Nnz84x9f1nkvXLiA7u5uWbPC5/Phqquuksez2Sze9KY3Yffu3bj22mtx5swZAPXe8cjICILBID74wQ9i//79+Lu/+zvcd999ePDBB7F379666tQbEatlOxWvetWrcOLECQD1bQWA2dpdC1USnpqawhve8Abs3r0bu3btwj/8wz8AAB588MG6zy6EwJYtW2SF3S9+8Yt48YtfjP379+PGG2+Ujz/wwAO4+eabcdddd2H37t145plnVvDbri/o8XvlQ9u4dbGac/D3vvc9dHZ24hOf+ATuv/9+WSYCmGX5P/KRj+ClL30pNm/eXMd0cXz1q1/F8PCwYfmD73znO7j++utx4MABvOhFL6qrQq7i+9//Pq677jps27YNH/jAB2TT51OnTuG2226TDaM5Q/Wd73wH+/fvx549e/CKV7xCllb4jd/4DZw4cQJ79+7F6173usVfkMue37cAduzYIZs7NsIrXvEK8fWvf33e448++qh417veZfiaJ554QrS1tYn9+/eL973vfeLf//3f5bH7779f+P1+cebMGSGEEB/84AfFe97zHiFEfXPRs2fPCgDiC1/4gnxts6rmGw2rZTue2lytVsWv//qvi7e//e1CiPoUWyGECIfD4uzZs0IIIQYGBsRzzz03731/9Vd/VaY8T05Oir6+PvH000+LfD4vwuGwGB8fF0LM3jP79+8XQsxWxX31q18tyxX83//7f8XQ0JD8fC6XS1bT3cjQ4/fKh7Zx62K1bCOEEL/yK78iPvOZzwghhNi3b5/4zne+I48NDAyI97///UKI2c4dfr9fXLhwoe79/uqv/kpcf/31IhqNCiHq7Xb69Gnxkpe8RKRSKSGEECdPnhRdXV2G5WFe8YpXiFtuuUWUy2WRy+XEgQMHxIMPPiiEEOJFL3qRuO+++4QQQvziF78QbW1tYmRkRExOToq2tjbx/PPPCyGE+NKXviR27NgharVa0wbizdByzJOKP/zDP8TevXvR29uLF154oelzX/e61+Gf/umfDI/dfPPNGB0dxZ//+Z8jGAzive99L973vvfJ4+Qx09+NCoPZbDa89a1vvcRvs7GwUrYDgCeffBJ79+7FgQMHYDKZ8Fd/9VeX/Lkef/xxvPe97wUAdHR04A1veAMef/xxuFwu3HXXXbKB6AMPPIB3vOMdAIBHH30Uhw4dwotf/GLZfysej6NQKAAAXvayl+Hqq6++5M90pUKP3ysf2sati5WyTSwWw3e/+1286U1vAgC8853vxOc+97m657z5zW8GMMv+b9myBWfPnpXH7r33Xnz/+9/H9773PYTD4Xnnf+yxx3Dq1CnceOON2Lt3L974xjfCbDY31La+/e1vh81mg9vtxlvf+lY8/vjjyGQyePbZZ2XBzKuuugrXX389/vM//xM/+clPsHv3blmY8y1veQvGxsZw8eLFptekGVrOedq3b19d2OMv//IvcfDgQdhstkV3aW4Ej8eDO+64A/feey+++tWv1nXZdjqd8m+LxdKwk7Tb7ZadvDXqsZq2I83TwYMH8fnPfx6RSATArK24xqhYLC753Lz9wDvf+U7cf//9yGaz+OY3vyknBCEE7rnnHvkZDh48iPHxcbhcLgCzLT409PjdCNA2bl2slm2++MUvolqtYnh4GIODg/jYxz6Gf//3f0csFpPPaWafF7/4xfjFL34hQ60qhBB45StfWTe/Xrx4sS5s2wyNWsisZou3lrvD/uiP/gif/exn8e1vf1s+Vi6XGw6UxeK73/0uEomE/P/nP/85tm7duqxzArP9s1Kp1LLPcyVgtWzXDNu2bcNPfvITAMDXvvY12Y29GW677TZ89rOfBTDbRuBrX/uaLP3/4he/GADwB3/wB7jttttkv6TXve51+NKXviR3QrVaTfZm0piDHr9XPrSNWxerZZvPfe5z+MpXviJb7Jw/fx6vfe1r8aUvfWlRr3/lK1+Jz3/+83jta1+LZ599dt7xV73qVXj88cfx/PPPy8eaaUe/9KUvoVKpoFAo4KGHHsJtt90Gn8+H/fv3SzH7qVOn8F//9V+48cYb8ZKXvASHDx/GkSNHAAD/+q//it7eXvT29l7y/dFyztPw8DC+/e1v42/+5m+wefNmvOhFL8LNN9+M3/zN38T27dvl89797nejr69P/jz99NP4xje+gXe/+92G5z18+DBuvPFGmQb7jW98Y9GGb4bXv/71OHjw4IYQIy6E1bJdM3zyk5/E7/7u72L//v147rnnDClhFX/7t3+LY8eOYffu3bj55pvxoQ99SDpNAPCOd7wD//AP/yBDdgBwww034OMf/zhe//rXY3h4GDt37sS//uu/LvnzXunQ4/fKh7Zx62I1bPPMM89gamoKt912W93jb3nLW+aF7prhhhtuwL/+67/ijW98I374wx/WHdu2bRseeughvPe978Xw8DB27NiBT33qUw3PtWPHDrz85S/H7t27ccMNN8h+hw8++CAefvhhDA8P441vfCP+6Z/+CZs2bUJ7ezsefPBBvP3tb8eePXvwmc98Bl/+8pdhMpmwZ88e7Ny5E7t27VqSYFy3Z9HQ0NDQ0NDQWAJajnnS0NDQ0NDQ0GhlaOdJQ0NDQ0NDQ2MJ0M6ThoaGhoaGhsYS0DLOU7O+RpfaA2dwcBBXX301hoeHsW3bNtx555340Y9+tMKf/MrESttj79692Lt3L4aGhmCxWOT/zXpSLQV/+qd/it/7vd8zPPaNb3yjaTuXRx55BD/+8Y+bnn9qago7d+6c9/hGav2wEPQY3nhYTZvv3bsXO3bswJvf/OZFZdFqrDy0fRvDutYfgMD7GplMJmQyGUxMTCz7vA8//LA08Ne+9jXccccd+M53vlOXXQVAlprfqPVBVKy0PahB78jICPbu3Sv/vxx43ete1zCLolqt4pFHHsHevXvxkpe8pOE5Hn30UcNzPPXUU0gmk7j99ttX7POuV+gxvPGw2jav1Wp47WtfiwceeKCuYKbG5YG2b2O0zCyzUF+jlcAb3vAG/MZv/AY+8YlPAJhlK+666y686lWvwq5duzA+Pt6wv87Jkyfx8pe/HMPDw9i9ezc+/OEPAwD+/d//XfbR2bVrFx599NEV/cxrhcthj0tBIzsAwPj4OF772tdiaGgIt9xyC+LxOID6juxPPfUUdu7ciXe9613Yu3cvHnzwQXzjG9/AX/7lX2Lv3r0NK+w+8sgjeP3rX1/32MGDBw37Zn3xi1/Enj17sGfPHvzSL/2SrGL7wAMP4JZbbsHrXvc6DA0N4cYbb1ywD996gh7DGw+rbfNyuYx8Po9QKARgtpzB9ddfj/3792NoaKiuh1omk8Hdd9+Na665BjfccAPe+9734td//ddX7LNsRGj7NsGSG7qsEpr1NWrWe+bVr361+OlPf2p4jPc2I3zta18TO3bsEELM9jzq7u4WExMTQojm/XV+53d+R/zv//2/5XlisZgQQog9e/aIH/3oR0IIIWZmZur6rK1nrIY9hJjtPRUIBC75czWyw0c/+lExMDAg+ybdfffd8nm8N96TTz4pTCaTeOqpp+Q57rnnHvHJT36y4Xum02mxZcsWUavV5h1T+2YdPnxYdHZ2yr5O9957r7j99tvl57Db7eLo0aNCCCE+9rGPiVe+8pVLvAKtCz2GNx5Wy+bbt28Xw8PDIhAIiFtuuUVUKhUhxOxYpH5n+Xxe7N27Vzz99NNCCCH+4A/+QNxzzz2iVquJdDotdu3aJe65556V+7IbENq+jdEyzNNCfY0a4dvf/jauvfbaRb+PUMpa3XHHHejs7ATQvL/OjTfeiM9+9rP40Ic+hO9+97sIBoMAgFtvvRW/+7u/i49//ON4/vnn5ePrHZfLHktFIzsAwO233y6LZDbrfbVlyxa84hWvWPR7/sd//Aduv/32RZX6f/LJJ3H77bejt7cXAPBbv/VbeOKJJ2QLmZe97GXYsWMHAOA973kPnnrqqbr2MusZegxvPKyWzR9++GEcPHgQ0WgUg4OD+OAHPwgAKBQKePe7343du3fjJS95Cc6dOyclAN///vfxjne8AyaTCT6fb8X0lBsZ2r6N0TLOE9C8r9FK4ac//Sl27dol/+c9yUST/jp33XUXfvjDH+Lqq6/G3/3d3+E1r3kNAOCv//qvcf/998PtduOee+7Bxz/+8RX/zGuFy2EPFUePHpVicqNB2sgOwOJ7Xy21D93Xv/51GfZbKlazt1IrQo/hjYfVtLnVasVdd90lkzL+5E/+BJFIBM899xwOHTqEm266qWE/y4029lYL2r7GaBnnabX6GnE8+uij+MxnPoMPfOADhseb9dc5efIkOjs78fa3vx0f//jHZXbW8ePHsXPnTvz2b/82fvM3f3PBrK31gsthDyMMDQ3JRe/Tn/70vOON7LAcNOttVC6X8fTTT+Omm25a1GtvvvlmPPbYYxgbGwMA3Hfffbj11lthsVgAAE8//TSOHz8OAPinf/on3HzzzfLYeocewxsPl8PmTzzxBK6++moAQCKRQF9fH6xWK06cOIHvfe978nm33HILvvCFL0AIgWw2i3/7t39b0c+xEaHt2xgtk213+PBhfOADH4AQAmazGd3d3XV9jY4ePYq+vj75/0tf+lJ8+ctfxh133IE/+7M/a0gR3n333XA6ncjlchgaGsK3v/3teVk6BN5fJ5/Po1wuY9++fXjooYfwla98BV/60pdgt9tRq9Vw3333AZj1lE+cOAG73Q63243PfOYzK3hV1g6rZY/lopEdloO3ve1t+PVf/3U88sgjeN/73lfX3+mJJ57A9ddfD5vNZvja17/+9fjiF7+IvXv34g1veAM+8pGP4C//8i9l9l1/f79sQgzMhu0++MEP4tSpUwiHw/jnf/7nZX/+VoEewxsPq2lzl8uFarWKgYEBaasPf/jDeNvb3oYvfOEL2Lp1K2655Rb5mo985CN417vehR07diASiWB4eFiHYJcJbd/G0L3tNDSa4Dd+4zdw22234Y1vfOOyz/XAAw/gkUcewSOPPLL8D6ahoVGHSqWCmZkZ6Wi/6lWvwvvf//4118ZorAxazb4twzxpaLQiVoLZ0tDQWH0kEgm8+tWvxszMDIrFIu6880786q/+6lp/LI0VQqvZVzNPGhoaGhoaGhpLQMsIxjU0NDQ0NDQ01gO086ShoaGhoaGhsQRo50lDQ0NDQ0NDYwnQzpOGhoaGhoaGxhKgnScNDQ0NDQ0NjSVgxUoVrHapdPX8zZIELRYLbr31VrzxjW9EMBhEOp1GOp1GrVbDzMwMZmZmYDKZYLFYYDabkU6ncf78eeRyOYyOjuLIkSPIZrMN33+lExTXS8Ljcmy81Ovn8Xhw9dVXo7u7GzabDS6XC3a7HYlEAufOnUOhUECtVgMwa2+fz4dAIACLxQK73Q6r1YpSqYRUKoV8Po9qtSrrhLjdbvh8PlgsFqRSKSQSCVQqFWQymXl2XymsBxuvVbsDu90Ov98Ph8Mhu6Vv3rwZtVoN1Wq17tqVy2WMj48jGo1idHQU//Zv/4Znn312TT43h7bvlQ1t3ysbl2LfDcM8mUymeTcX/W8ymWA2m/XNtw5gdJOv5MSm7wENDQ0NjYWwbopkCiEWXNgikQi2bdsGn8+HAwcOYHBwEF6vF7lcDrlcDkII+UMOk9lsRqFQQGdnJ4rFItxuNy5evCh3veVyedHvr9EY3MFpxEKZzWb4/X54vV4EAgHs3LkTmzdvRiaTwfnz5xGLxZDL5VAqlVCtViXzBEAyS9VqFfl8Xtq5VqvB6XTCarXCZrPBarXK59ZqNXR2dmLbtm2oVqs4ffo0zp07V3cujdWB0+nEwMAAIpEInE4n2tra4HQ6sWPHDni9XnmPmM3munvEarXC5/PJ4y972cvk2I3H4yiVSkin05ienkalUlmT76ahoXHlY904T8DCDMPg4CDuvvtuDAwMoLe3F1u3boXdbkepVJJOEDlMxESZTCYIIeRiHAqFcOzYMdRqNWSz2bpFej1Qt+sJ/PoLIWC1WtHT04OBgQG0t7fjtttuw65du3DixAkcP34cJ06ckA4Rd47IAbZarRBCyFCd3W5HV1cX/H4/fD4fenp64Ha7MTk5iTNnzqBcLuOqq67Cy1/+cggh8L3vfQ/5fB6FQgGpVEo6T6sZst2o8Pv9uPHGG3HgwAG43W50dXXB4/HA5XLB7/cDmB2rBLrudrsd7e3tiEQi6OnpweDgIAqFAiYnJ3H48GHEYjGcPn0a2WxWO08aGhqrhnXlPAGoc3p4KM5kMiEQCKCvr0/uaP1+P6xWKxwOh3SerFYrLBaL4XmEEIhEIvB6vbJpYbFYxMzMjFywAb2ArhZMJhNcLheCwSBCoRAikQja29sxMTEBIQTy+TzMZrO0H4EcKQCYmZmRjKHVaoXVaoXT6YTL5YLH44HH40EymUStVkOtVoPb7UZnZycAIBAIwG63o1qt1i3cGisPq9WKtrY29Pb2wuv1oru7Gx6PB0C9PWlc8t9WqxVmsxlOpxMejwdCCDidTkxNTQEAJicntf00NDRWFevGeTKbzQgEAvD5fHC73ejv70c4HIbNZoPH44HNZsOWLVswMDCAUCgEh8MhwzskEgcgWSYA8xZhAOjt7cVrXvMaxONxxONxTE1NoVQq4cKFCxgfH5fC4mKxeNmvwZUCvhjS/8Dsgtrf34+9e/fC5/PBbDZjenoa2WwWHo8HHR0dsNlscDqdsFgsqFQq0imORCIIh8Mwm83S2fV6vdi6dSsikQgSiQROnjyJZDKJRCKBiYkJVKtVRKNRxONxWCwWWK1WdHR0IJvNIp/PS/G4+nk1Lh3E+trtdgQCAUQiEdjtdmk37jip15uzjbThoVCsx+NBW1sbarUa/H4/LBbLWnw9DQ2NDYJ14zxZLBa0t7ejt7cXkUgEN954I4aGhiRz4PF45AJoNptRq9VQLpfnTcSqSJw0FfQzMDCAt771rajVapiYmMDFixeRTqfxwx/+EM888wzy+bxsTKhx6TByRGw2GzZv3oyXvexlMJvNyOfzGB8fRzqdht/vR09PD1wuFwKBAKxWK4rFIrLZLEwmE3p6etDT0yMztzweDwKBAK655hp0dXXh6aefxlNPPYWDBw+iXC6jUCjAbDZjYmICU1NTcDgcsNls6O7uRjqdRjQaXfDzaiwdZrNZssGhUAhdXV0AZhlDCrNRmFxlhYFZOxC7aLfb4XK54HK54PP50N7eDpvNhrNnz8JqXTdTm4aGxjpEy88w5BA5nU74/X60tbUhHA5L3YPH40F7ezs8Ho+cVLkmxmj3yv+miZp+04RsMplQrVZRKpVgt9sRDocRDodht9sRi8VgtVpl6Edj6bBYLJL5IyfW6/XC4/HA7XbDZDLJkKnJZILb7UYgEJDOk81mQzabldefFlG73Q6fzwefzwev1wuHwyHfp1wuo1QqQQghyxnYbDZ5v1itVrhcLpTLZdjtdnmMh2w1VgZkd4vFMk/HBtQnaPDHjJ7D7yGdNauhoXE50NLOk9lsRl9fHwYHB+Hz+bBv3z6ZjbNp0ya0tbXBarViZmYGuVxOvo4mVyPqXs36UjUVMzMzkpWw2+3o6OhAMBjEDTfcgC1btiAWi+Hxxx/H888/j1KphGQyiVKptPoX4woALZZmsxmRSAR9fX2SNaAsu61btwKAdJjsdjscDgfsdjtyuZx0bs1mMyYnJzE6OopqtYpgMCifZ7PZYLPZkMvl8PTTT6NUKuHcuXMAgPb2dnR1dWHLli3weDzo6+tDJBKByWRCR0eHrPuVyWQAAKVSCdFoFIVCYc2u25UEymKtVCooFotSx8adnoXCpGppESEEyuUyMpkMEokE8vm83tRoaGisKlreeert7cV1112HcDiM66+/Hvv374fFYpE7VQrPlcvlOjExCUsJ6u6Vg0/UXB9ls9nQ3t4OAOjr6wMAjI+PY3p6GtFoFJlMBoVCQTtPiwTXqHR2dmJ4eBiBQABdXV3o7e2Fw+FAMBiUz3e73TCbzQgGgxgYGJCLJtn19OnTMoTqcrngcDjqShKk02k888wzGBkZkYxTZ2cndu7ciVtvvVVqZDi75HQ6kc1mkUqlAADJZBLZbFY7TysEutbcebLZbNJ2RuySEeheoOeS85RKpZDL5bTzpKGhsapoeefJ5XIhFAohFArB4/HAbrfDZDLJatEUqpuZmZGsxkK0vVG1cr6LJeeJRKy0YFP4kISuFosFExMTq/PlrxBwjZnL5ZJ1fTo6OmQCgMfjgdPplMJhNexKmVMqQ2Gz2eD1eqXDZLPZpPPMU9vJsXI6najVaggGg/IxEp3T+9C5qNaU2WxGMpmUAnXSvBk54RpLA2ciya6Xck3VULz6mIaGhsZKoyWdJ5pM7XY7ent7ceDAAal1KpfLqNVqkvGhXWetVpOi32aZNkaOFa81RDticsZocueamt27d8PlcuHcuXOYnp5GLBZbzcuxrkFsk8ViwdatW/GqV70KPT09cDgccLlcsFgscLvdcDgcMJvNqFarMgRLCyA5NbTY2mw2mEwmOBwObNmyBbVaDcViUWbeAUCxWITdbsfw8DCGhobqdDWkhapUKiiVSrLVS61Wk5lbW7ZsQXd3N8rlMnbu3IlisYiLFy/iueeek+1ceEKCxtJgNpvhdrsl07iYyvGqc6UWWCXH1yiLVkNDQ2Ml0ZLOE/Wds9lsCIfD2L59O4LBoBRxV6tV6TxRCICKJS503mbHaIEtlUpSqMzFqDQxb968WTJhTz311Ap/+ysLPFTX09ODV7ziFbjmmmuQzWaRSCTqqnhTGQlySojhoXPQfUHso8vlQk9PDwAglUohmUxiZmZGhnGdTid6e3vh8/nke5B9M5mM1N6Q8w1AMowej2deJuYLL7yAc+fOIZ/PAwAqlYp2ni4RvE6TOuaA+WH2hXpbcgG6Fo1raGisNlrSefL5fOjq6oLX60VnZ6d0WmhBVTNzeFinWTVotVyB0XO4VkpNjyYnzW63y1R40usUi0Wk02ld4YNfngAAO6JJREFU1fj/g4qROp1Oacuuri4p8OehLzVrkexDNgcgQ6kApKNMRUyBWWE3hXIp45JsRnaj35R1x4/TAk33klGGHYUbqYo5OXsUNtZYPLh+Tb12ah9K9X+eZcfPZbPZYLfbdY0nDQ2NVUfLOU8mkwnbt2/HL/3SL6GjowO7du1CMBiE3W5HoVBAuVyuW3xNJhOcTqcM4/CdKy2ARg2BjZwmYHbBdrlccrHloUEK5VHJBAB4xStegZ6eHoyOjuKZZ55BPB6/DFeptWGxWOD1euF2u9HR0YGbbroJW7ZsQSAQgMPhQCqVQrFYnOfAAKjTPpEzTExjpVKRx6xWq8yuqtVqsq2Kql/LZDIyFJtIJFAqlSRDAUAeAyDDvvQ4FWOkMBAlLRQKBZw+fRqHDh1CNptFNptFJpPRLNQSQIUyqTQEjS+jTDp6Pn8tadTouVQst1QqyUQDDQ0NjdVCyzlPABAOhzE8PIze3l50dnbKuksA5rEWtBDyukFAfQ0n1YFSdRP8GO1giW1Se98Bs4us1+tFsVjE5s2bZfbf888/v+rXZj2AHFm3241wOIyrr74au3btksdJn8QZoWKxKK+9GoLhLBL9TzqnQqGAmZkZlEolmfXI74VisQghBLLZrCw5QJ/NbDbXVSmnmmIAJJtEizA51YODgzLMdPbsWfm3rkC+dFBoXh2Djf4m0D3A2Sez2Sx1dBTW1dDQ0FgttKTzlEgkcOLECSSTSVQqFfh8PpnGbLfbpQNF4RteWbxRcUwjNMrMofPQ4i2EkLodi8Uia0FlMhlMTU1hbGwMsVhsw4fsqMaSy+VCf38/enp60NnZCa/XK5/DnV7KfqOwDf1NveU4e2DUi5Dbhzd7pvuBO9NGmhiux6LjPCRs5HDT8wKBAPr7+xEKhWCxWOqaSGsnamEIIVAqlZDNZuVYJpssVGbAKGzH7a41T5cXFC61Wq0IhUIIBoMQQiCXy0lGkTZKakFUo7FiZD/SOlIiEW2os9ks0um0LFmiy8asH6hzuFqDsdnr+Pjnc7M6ZxMJwrW1K4WWc56EEBgdHcW3v/1tBAIB3HzzzQiFQjIMRJXEaQDSoKIFEKjXq6hhHP4bQN1rgLmsHaC+ZYTL5YLT6YQQAsViEZlMBhMTEzh27BiOHDmCeDy+oWsBUYXwYDAoi4pSVmI4HAYwpx0TYq6aNzDL8qTTacniAHPsEXdsePYj/x+oL5xot9vlREusIDlKlFFH56CmwQBkPSe+OPN7hztdJETP5/P4yU9+gunpacmorcZAvdIwMzODdDqN6enpOqe2EfjYpcmW24fmAafTKdlLjdWHyWSCx+NBMBiE1+vFddddh927d6NSqWB0dBSxWEwWEyZHihI0SC9IoPHFxzyBStY4nU6EQiH09PTAarXi9OnTOHbsGHK5HKampjA9Pb3ozQudX5cdWRrU9fRSz0GaWB7p4eH4RqA1Wu1OwOs88sdzuRxyudyK27jlnCdgdhG7cOECkskkpqamkM1m5YWmxVJdRPlAMEKj7J1GITze7oHej1gnEirncjkkk0nE43GkUqkNv2hS016v14uOjg4MDAzU6YuA+utP+iJuO75LUHcURj9GzBMNLnUBVW1KEzU5xVSygJxydSdD5zCZZqufO51OlEol+Hw+2Gw2GVbUWBikIywWi9IGnElqVKaAj1sjdqKR3TSWh0bXk5ggj8cj+09u27ZN6hktFguKxSIsFgsKhYJseUUsLS8vwvVrfFMEAB6PB5FIBC6XCx0dHRgcHITVakUul8PFixdhMpmQSqUke9wIRho6jcVjJa6bOk/TptZIywgY96WlxBAj54lHEEjesRpoSeepUqlIoe+RI0dkP7M9e/bg6quvlhOkx+OpW0CNsFhj0+spFEi/nU4nqtUqxsbGEI/HZb2feDyOyclJnDlzBolEQmpvNipI50RNeZ1Op3RgjDIjAUgnyWq1wuv1ygFEINaPmEYCd4B4pp4Rlas6zfxzqOfgTCP/nNwx4yUxiBnzer0IhUKw2+1yh63RHCaTSbbm4RuW5VQG5/bVTMKlg2xDYXifzyfbJHm9Xsns2Ww2mM1m+P1+2Xeyp6cHFosFDocDnZ2dcLvdsnYbZcPysWi0eTUK2zkcDrlJIYbbYrFg06ZNcoGMx+NIJpPSQePZtZR0kkgkZIIClbrR98riYbRpWQgmk0ky/Nwx4lEjng3Na/nRe9J5gPq6fxx800yOE2lXqWXTStq7JZ2nYrEod/GpVAo/+9nPEAqFcPfdd8vmsZ2dnfD7/TLWTY5Lo/gnP9YMxH4Ac6GAQqGAkydP4sc//jGSySSOHDmC0dFRVCoVZLNZafSN7jy53W6EQiGEw2FZDZ5nKvKbnu867XY72traIIRAPp+Xj5dKJVnziTtInGGg605ODdmdT84mk0lO2vwcNPjo9RRGoPPyxsV8l0PHKLwbCATQ3d0tHf5sNqsn5AVAGZmhUEgufstlbnX4ZWVAGcXUb3JgYECG4/v7+2VRW1oMeZicxp/dbseWLVvqWF76TQsc1VSj8WakieJQGWpgduxdddVVMqmHfhKJhNRcJZNJFItFTE1N4ejRo0in00in04hGo/p+uQQs9ZqZTCb4/X60t7fPk2LQ3EpJQ9VqVYbf+ZwL1G9i+fytRof46+h+oMjQSpaVaUnniQYCAJTLZaRSKRQKBcRiMVlfJxQKNZwsjbzjpQrIufc6MzMjxeGJRAJjY2O4cOHCCnzTKw8LaVeA+pg5D+GRHonqLvFsSSM0E53y5zQ7BzDHPKlaOaPPbARyCo12QxrGoAnQZrPVFcfUWDvwsJnT6YTb7ZYsTyQSQTAYRHt7O3w+X13GKt37pAelciBU+oNrUcjZotdRZiTXsRrV8uNjnZgl3hGAo1KpwOFwIJvNolQqwWazyYXZ5/PJjRtpbTT7tHxwJ1kVbRMJ4XA46pI6uDNkMpnqIhF0j6jRAq5xVF/PHTN6Hd+wG80xy5l3WtJ5MkKpVMKzzz6LcrmMQCCAoaEhKdrdtGkT/H6/rE6teqoLDQxVyExanGg0iqmpKaRSKRw5cgTHjh2raxqrMYdarYZEIoEzZ84gmUxi69at6O7uloPGbrfL59K1Vgtj8jg4Oa0qo0iP04TLMy8p7KcW3aTXG4ULOL3Pi2WqgnH6jLwOFAnEp6encfHiReRyOc06XQLUsgONYKR30k7XpUFd4MxmMzo7O9He3g6Xy4XNmzfL4rbEPFHojOZIcnw4I0vjghwp1T7UBJovqHws01ysjm3+mfn4pZ6WNDZJSBwKheB2u1Gr1dDe3o5arYauri74/X5kMhmMjY3h9OnTKBQKiEajmJ6e1s2kFwHuhJDT6XA4EA6H4XK5ZL010gfT/M0dIr7B5hnR5GiTDc1mc9056J4B6je3/BzkgPHwL7FR6pqyXKwb56lYLOKnP/0pDh06hGAwiJe+9KXYunUrBgYG0N7ejs7OTlnrhzf2VWPqRuCDnztPsVgMzz//PGKxGA4dOoQjR47IEJRGPWq1GqanpxGPxxEOhzE0NISBgQG43W6pfaB6TKoTw8WhtHtQ63nRDxeUcxqWBgYNOLVKvNHuklP9FF4kGC3OPKZeLpeRzWaRz+cxNTWF0dHRuvCxxsIwsgnZbzEwYpd16G5h0MICoG4Mdnd3Y8eOHfD7/RgaGsLg4CA8Hg96enrqNqe8mCkA2R9SCCGbZ/OQCWeTiLGyWq11oT/+XBrTNF+QhEPVyhC7pYYPgdliu8Bc/S+LxYJMJoP+/n7kcjmcPXsWfr8fqVQKx48fRzwe187TIsAlDPTjdDrR09Mjs+Lb29tht9tlkWmK3GQyGSl5UFkjAFIywcvM8ELX5IDxe4TLKnhJDNLd8QxOuj9XCuvGeRJCSOfIbDYjkUggmUwiFArJi76YnetCE6sqWKYK0vl8XmaJaBiDHFDqHUe95qhUgQqVkifwVPRGUJ3ipS6YfPAbMVWAcRsfus9Ia0c9FiuVir43VhFGrJPRcxYzD2xUNGLruEPi8/ng9XrrBOOc3SEHx4iV5fOrql3iITnOJNDczcsWGDFPfHxzDaMa0uHfkbMOFFqkBZiygmu1GpxOp2F215WOxayH6vOJOSRHZGZmBi6XCx6PB16vFz6fTyYYVCoVuREul8symxlYOOtRjTTwDDquZ6IohZH+1ejeWMm5oeWdJ6MFrFQqYXR0VO5wcrmcfA55xY20J41uGE7zkSHS6TRGR0cRj8fr2m9wI+id7nwUCgUcPnwYsVgMPT09cDqd8Pl8DRkFnuVGJSmaTZ4qeMiP/ybwQUSDiiZt/t70/kbxcToHHU+lUjh27BjS6TQmJib0rvUS0GjBajbBqeOX21bXeWoOzjbR/UpMu8vlQldXF7Zs2QKHw4GZmRmMjY3B4/HAarXKxA16LQ+V8LArZ4iI/aXn8PmTdEdcX0rg7AMxkeq4VvWSvNgiZyxIHyWEQDKZxNjYGHK5HGq1GgYGBqSQ3O12z3PiruR7yEib1Oy5NL4GBgbQ3d0NALJdWigUwjXXXCNDd8FgEFarFYVCQSZUUUiuUqkgkUjI8kNut1vqXSlRjDtElDQE1GtTSVtHmjfSThIz6nK55P1Hnx3AihZRbXnnCZjvQFUqFVnVmwoV0vPUGhGN0EgQzAdnLpfDxMQE4vF4nZaFa6m04zQfpVIJJ06cwKlTp7Bt2zbs27cPmzdvbnityIHh1CwxOwvtFtSdJv9Rdzc81EATMm+7ozrQ/F7gOjoKAYyMjCAejyMWi+lw3TJgtKirUFkO1YGiRVQtmKsxB35N6DpTeINaKfX19cFsNiMej0unwuPxyNAeiW956yLORPESIEZOLIXiuL4JQN28Tc4QOWl8HFOIT+09yW3O2WRiwqvVqiwvk8vlZIZsrVbDiRMnZLcDVYd5pWMx7BPNeXa7Hd3d3di5cyeEmG15VSwWEQqFcNVVVyEcDsPhcMDj8cBsNkt9MC+KSolfuVxOhm7JeaK6byTkN5vNKBaLsk4Td9Z5MgAAWVKI3os24QQK261kQs+6cJ5ULKRtuNSbXt3VUN+zlUij3kjgGodyuYx8Po9cLgez2TxvQm1EuwP1zo4Rdc//NvrhUJ0i1ekyopGN7i+uuyoUCrJhscalwchOvGDeYl9Hjy1m47RRYcTykcCXSotwqKGTRmwsMLfAkt34bzoOQDpLjcZhI9vxuUB9zUIhN/r8je4nKvJJTLSR9nEjg9rhuN1uGdYF5sJ4dO9wrRLdD+TcUNIQOd08m55KFajlKoD6yA7Nu3Sc7kmur6NoBTnYdJzQ7B5eKtal80QMBe9LRo9zLDYUQMfJKKRfyWQymJ6eRiwWQz6fr4vn02/NPBmDFsBCoYDR0VGZ8rxp0ya43W5ZuE4IIdkmYE4wTDtd2pWooTeetWE0iZMInWxE94vRPaJO2rSAV6vVee1/KNRA4bpEIiHTpjWWhoWY4sU6UFxQqs4JGo1hMpkQCoWwdetW+Hw+BAIBlMtled35+KKFTa15BqCOLaaxQ+en39z54t0hjBwiAA0XPBqrvNMEH+9cT2W1WusWWz4P1Go1qcGh7O1MJoPTp0/XtfK4Uu8jdS1rBLPZjEgkgv7+fvh8Pmzfvh1bt26FEELqgKl4qtoaxWazIRgM1kkwKFxHjeBJt0SaZr455SwjgLrestRYXgghE3V46x+av00mU93avZJYt84TXzzVwcVhFFNXj6v/c2aBCqrxWKl2mBYHIWYz2OLxOMbGxiCEQH9/v4xP03M4I6U+ThMg35nyBVd1ngDjjBCjxwDUTcRqKIgWC/5aGqT5fB6ZTEaXrVgGFgrJNnud0Qam0ZygMQvVQTGZTPB6vejq6oLP55MZsQDq7n0u2uVMLQ9lk6aFyxm4ForbjMYsd3qA5iLiRvM8d8JofJJDxllr3jeN3pM2QpRRmMlkMD4+XseaXcn30WLWMZPJBJ/Ph97eXni9XnR3d6OjowMAZEFjntHImWMefi0UCrKEBTlFFN0xcqDV+RZAXbhWzZImh4n/TffnakWN1qXzxEGiQH4x+TEVzehdNWxHuhsSoWmnaemoVCqIxWJwOBywWq11LI06aHiYQGX1GoXc1OfxCZyf28ipNnotj4mr9i4UCrJFTzwe16HcZcLINoth8BqNw8XqHTXmYLfbEQwGZYaU2qgXmK/5ow0NHeMgHQvPruMbHoLKGi40t6r3BS9bwIXlRowVz8LiTjfN6TabDX6/HyaTqU4nw7/3RgCx7HQ9KTvR7/fD7XZLcTfZkYTdXAsHzJWQIfuQs0MOcygUQm9vryQoyInlayzdL7x0ELHKtVpN1hgjzR5l9dG9xEXidI+tpN4JWKfOE1/4eJNe7m02c47o70bUMA22QqGAVCol+yUZfQ6N5shkMjh06BB+8YtfYHh4GDt37pTV4WlQcLvx+k5quA7AvIlYZR6Mdqc0gPmEzWPrtFulon20I1J329FoFD/5yU8QjUYxPj6+ag0nNwq4XkVdoIH6BdNokeUMBzAXquFshoYx6J7mYTuaSwkUhqGMNbq2VGtHvf5ms1mKyyuVCpLJJAqFglzgVB0UYBw+UkPoQD17ROF8GrO0kBIzwZkwAPJ78d56vE6Qz+dDMBhEOp3GCy+8IN+bzxkbAU6nE+3t7XXV5W02G7q6umStPq/XWxcWJ6eJ6m4VCgXZpopfO2KdHA4HrrnmGgwODiKbzeLUqVOYnp5GsVhENptFtVqVThI/NzDnPAkhpMCfvzeAec4/2ZAnJqwU1qXzxEEDgWL1jZ6zlGM0IdCkYZTeqB2nxaFSqWB6ehoA0NXVVVdIkhfH5A6TUWkCrnVQQwE0iIxo9kbaCiPmiRZf2gWpk2ehUMDFixcxNjaGTCajmacVgLqQGo3TZuyEGoJtdB9ozNeQEdMSCoXg8/mQSqWk88TDn0ZhL7554eejsgdkAxojNEaNwB2oZnbjuiuubVTLJvDPw1/HJQH8nuENqsnJUz/bRgA1Ofd4PHC73bKqfCgUks3eeXiW6854CxRqukzgc7rFYkFbWxvsdjsSiQSmpqaQTqel3fjzeBiQPp+6MeLhQb4hB+oTvxrNC8uZJ9al88S1L0ahHKBxplSz4xqri3w+j9HRUZjNZoRCIdm+hXc4B+rDpkZlBLjjo06aXNfEoYYE1WMqy+VyueqOURVlyhwkcaPG0kATIDX+JDS7lo2cITX0Q5OorvNkDO488DCGmqnEw20A6kIjqqaJnBLavJJtSQfD26+ozCJnivlmiDvLFO5RGWae3cU3OTx0S5+HCjsS+0SFlumHNK7k6HGR/JUKIweRaib5/X4pEnc6ndKOVDeJshGJyaPrS8y9y+WSwm4SfvO6XVSA1Ww2y2rzPCRH45ev8/T5aM7g95Ca5clB97EO2zGQt0uesLoTarZT1VgbJBIJPPvsszh//jz27NmDwcFBBIPBeSyO2uOKh+qMdpgE7nDxgaTuQPlr6X/aYdOuh3ZapVIJsVhMJg/E43HZyuFKnlxXA8R0uFwuSf8v5jXNHqNFlSZiYDb8oJ2n+eBlAnj3edq8UAYT1wiZTLNZjG63W15XHvaijQUxQlRtulwuI5fLyRpu+XxeMgBqth19HjVcS++jCs+J3eILrqqV4ZoZ+ty5XE6Gh2jBN5vN0qGi7C21uOeVhkZEg91uR1tbG8LhMLZu3Yr9+/fD4/FI6Qowe30pBEdlWjwej+wlCMzV7aPNphACgUAAfr8fNptNVrD3er04evQonE4nhBBwu93SUeehOPrN63nR3wTu0PO5n4p1qiTLSmBdOk9GzBM/ZuRALdVp0pPvyqNcLiORSAAAstksgPndsbm9jBgkvsPgE2YjRkn930hbYfQelH5NiwQtLrTAaCwdfNLjAlOCunPklH0z8HASDydo1IPPi3wnzlkkzibRvU8aIqOsVDUkRg5LrVaTdubicXqOWstL1bKpn4vGJH12Ojdnq/h34w6CKirnJRVo08TfhzNSVyoabUqoFY/b7Za96mZmZqQjzB1rnqhF141eD0CyTsBcrShyfMkZJxuqjCGBP0Z/cyYLmO/gcsaUZ18aYTlkyrp0noD6HYa68C4FRjcRnZMWUEqtvxJ3IZcTxWIR4+PjSKVSCIfDOH78uIx/U5YHz5owcoh4NXI+aFUYhWj5xModLzoHL5ZHu6Z4PI7Dhw9jcnIS4+Pjspq9xtJBmhKfzydbKjR7rmp7zkwYOb5cA7PSFP2VBLvdDr/fL6tB8zHB6yFRuxuaA7muhVh/XhSRxiyxyJTBR5WgeVNwoD67lYfreHiefhODRC09KNzDz0efj8YyVaqmuk40vrnjRnMNhfeIRaH+nFdiUkijdbJYLGJiYkLOcWazGU6nU86FAOq0Tx6PB4FAQNqWHCtyOl0ul9S/kS0KhYKs8j41NYWTJ0/i/PnzUl9MGe75fH5eeJc7zPQ3B2em+PpB8w45d9yh37DOk1rT5VIdKA7u5VLarcPhkKwDsPj0Wo165HI5jIyMyIydcDiMcDiMgYEBbN68WQ4IXlRN3ZHyCsBGIlS+c6HFQNVDcPCYuNPphN/vR6VSweTkJNLpNC5cuID/+q//wpkzZ2T4QePSYDKZ5I6WJt2FQAzBQmJjk8kkdTC6SGZzOJ1OtLW1wev1wu/31zE4NB4odEIMAdcY0dxLJQkItGBReI56nJVKJbhcLqk5oqQRPh552IycGT6WHQ6HDPtQNpjFYqkTJ3MJBzlP9HitVpM9Nk0mk+wcQfcPzUmBQAAdHR2yhtGV6DwBxg4UaVIdDgemp6dx8eJFaXdyOsLhMILBILxeL9rb29Hd3Y1yuYxMJoN0Ol3HAFMWI2XhFQoF5HI5HD58GCdPnkQikcDhw4cxPj5et56r0QFa47kDz6uZ02/aDHAnn85Bjjd3ntTSRkvFunSe6ILyTIuVdGb4+YmG1JlVywcVMQNmHalkMgmz2YyOjo55YVij+DTZlwtfAeMaUCrzxJ/Lz2e0yAoh5M6TJoVUKnXFi0hXGyrl3sghWupmSG9ilgZiFLgInIMzQDyzjdtL1c2oryftINWEIgcGQB1jTOfkjIXKIPCFk34bFUPlC7ca7lF/1M/Nw4GUxLLR2EuuX+N958h5pobRnKknvRKVgyA2Uq38TnM/aeFSqRSy2aysoQjMMYdqQlAjO3LGkIcMyTkCUOccLxTCWyrWpfNksVjg9XrR1taGYDAoY6fcm1QHt5GuhcCNxQ0eCoXQ398Pt9uNyclJSTuri7TG0jE9PY1nn31WCgn37dsnmzvyHSgtoNyunJYF5jtPqoDUZDLVTcy0w6bz0URdKBQQjUaRyWTw85//HGfOnEEqlZICcY3lgdghYjOMsu3UbCuewmw08dFxYgXNZrOk/zWM4XK50N7eLsceT7Qg8PIE5FCoMglVk0b/86rRVADR5XLB4XCgWq3KGj20+HHRuslkks8F6hMC6J7h2iWas/nczecNGt90nML+auiXzuXxeNDe3g6Hw4FoNHoZrXL5oW5OeFFoOk4ZeJR93NnZieHhYXg8HnR3d6OtrQ1TU1OYmprC+Pg4Ojo6sH37dni9XlQqFUxNTaFarWJychJTU1MoFAqYnp6WPe16enoQCoVkWJZroMhpJoeMC8l5DahAICDr89F9PDk5iXPnzqFSqUhHkGvZjCQhS0XLO09GQkKz2Qyv14twOIxAICBjsFzI24hVaPY+dH4yVigUkr3Y8vk8pqen51GK2nm6NESjUSQSCbhcLgwNDUkhYalUqivjD8xNbnzXQ+BOMu1ammXCcXE5DxEAkLH9aDSKQ4cO4ec///mK0LsacyDniTQrHEY6NY5GGZYAZLViIURdOEZjPpxOJzo6OmR9J6C+hIeR/okWJ2B+qQO+meRjhResJLFwpVKRbIUatiuVSrBYLLJVDG2auCNMGyH+PpyFUDOwANSxWNx5ovPR9wdmNT2RSESG8a5E8HWRr2FUGJqu08zMDKxWa11Jgq6uLuzfvx9OpxNerxdOpxPZbBZTU1M4deqU1KS1tbXVOUwjIyM4d+5cXRam1WpFT0+PvNY0J3A2icTlVAKDMifpeW63G11dXfB6vSgUCkgmkyiVSjh8+LB0nuj+I8d7pebzlneejGA2m2U9Ceqps5hwTDOoThHtkn0+H8rl8rziaRrLAzk4ROtzh2axN7bRJKA6tOrOGJivWaO/ueNFFLNehFcOtOAup3kvd5xVap7bk1iIldhhXmmgHb06dy5kj2abRT5u1fGninONwt+0IKoCcqPnqoV0G31uzpABc0V5m90P5CjyVPmNAhqbZvNs2Q+fz1fXtJ133SgWizJMF4/H6+ZKNSQLYB77Q7XAiG2i8CCv1UbHXS6XZJk4A0psFdmLWDNq+cIzAzlTuVKkx7p0nqxWKzo6OrB582b09PTA7XbLC8oZhUsFvZ4oylgshqmpKZw4cUIe5781FoZ6w/IBVqlUkMlkAEDG3GlyVCc+vsvlNuY0PGeheGhBPU4hPnUR1lgdkHDT5/PB5/MtKttuMQsYZ0LoPfx+P4LBoMzc0badA1UVD4fDclffSLuk/m+0yWm0+VHDZ1TmgwTjfDwSqwCgjn1uxBLwgpuqOJge5040fW+jPnicgaYed/SZrkQ0Ggterxd9fX1SDL5p0ybY7XaMjo7i3LlzyOfz+PGPf4yxsTHJTvHNpsfjqWvDQ/XybDabXKuB+cUuuYaKa+xUJ4wXMiU7E5uZy+UwNjaGn/70p4jFYlJ+QU5dqVSSkhB+DyxnXli3zlMwGERPTw8ikYg02HLZJw6Tabbv07Zt2xAKhfDzn/+8biLXk/HiwSc2o91JtVpFPp+X2TNGbIFRqI7/zXcU6n3AX88n16WwXBrLBy1IVCRvoSKZi9khchvylGav1wuv1wshhAznacyCrk8gEJALmRoyVav9G/0AcywQ6RTpNXw+5psXWuhUXSJPPc9ms9JmKsOk/qjiYbVuHBe7E6uhLpz0m8JANpsN5XL5ig3bNYLb7UZfXx/a2tqwadMm7Nq1Szo058+fR7FYxAsvvIAXXngBtVoN2WwWpVIJkUgEe/bsQUdHR10zXl6Zvq2tTTKdVKqEh2XJfipbyDOvs9kscrncPCkPhXGnpqbwwgsvYGxsTDpa9B5k82q1Khnp5bLS69J5IsF4MBiE3++va8lxqcwTn6h5rNztdqNQKCyqGrJGYyx2IWz2etUB4udVU1zpmNHrVKErhw7zrC5okuRswUJ2V59jNLa5g05hAF7YUWMO3FkhBsFo3uRVxnkIlNuCFqWFQIJ/1Y5G7JbRT6N7RQ0HNnoNL9SpiuPpce5sXWnlLrjDCaCO4aFyBG1tbTKJgLenov52hUJBOiUkuZiZmUEoFILf74fX64XFYpHdGKjcA6+rxcPpAOqcWCPHmBcwpcw8Og9FDvL5vCzkWSwWZekKo7FP9z7P7rxUrAuPQB0wDocDg4OD2Lt3ryzExTtmL4ZRUCcKfmORp+p2u9Hd3S0L+11Jg6nVYLQ4Ngq9qXagyY+fh+9+aZCpi4TRRKyxeqBFmBwblcnloVej1xqxkaqmjeh/n8+HQCAg+5jpbMk5kFaEJ2jQrpyuc6VSkbo/WmDV8UPj04jpJXD2iX4ahWLVtkz8fHyBVR+jz6A28+bfRYjZRAJKCuFzA6XZ073jdrslS7LewcPZvLI/9Zdzu93o6elBIBBAMBjEwMAAvF4vHA4HKpUKqtUq2trasHfvXpRKJSSTSaTTaRn9cbvdMvPO6/XCbDbjwoULcsypYn/6HDxsxxN96Hl0nLfyIfsSQ0g6p4sXLyKZTGJkZATxeBzZbBZut1s6c9QdAoAslEoO4HIcqHXhPKkgL7mvr6/uwi41htloF0SG5NXFm/XLWikB2kaH0TWka65qnviukk/oqkNM9wdPeW/miDX6HBorAx5GURfdxWx6mtmLT84Oh2NeOQSNWZhMcyngpEPiPeQA1DUKpmtKr6XfRvYzgsoOqTakyAGxQ0YMl1F4HpjTOqr1gThokaxWq9IhJEeJNlakhSHx8ZUiGOfzJS8SSVlsfr8fmzZtQiQSgc/nQ1dXF1wul7xetVoNLpcLvb29qFQqshOE3W6XIT6HwyHLBeRyOSkgV+s8qdpSug+JieK1FIn5ozWY5nFijijsPzMzg2QyicnJScTjcck+8TpmvHE1la3gEYlLxbpynmjA04WjCVilkYH5k2yz3RF/TB2wPBarcelYqkPCY9l8QuU3PZ8seUozH5x0j1CKsjqRA6jbJfGFRGPlwcfUSoPCLVwHcyUsgCsFnnzBRbkEPp749SOnQ2V2CDzEws9jtDnhzrPKNvDn8DHO34d+q5sk/re6uVJrQqlZfUafjzMe6xk8c01tg8WvATkvvMwHvzZkT7fbLcsWUPYcsXrkpBgxSHQO+lHDuPweMtKt8Y0wH9/VahXJZBJTU1NIp9OypIEqs6HvysOxV6zzpMa4zebZ2k4+nw/hcFiWYQdQt9iRZ0mvXeyibTRIyUtvpnlSKWKN+WgUJmsEei61R6DGvFyXQA6RUajW6H34ToroarW8P6Xi0ntqe64syHZUuXglHShiDSjluVEV6o0Mym6ka6M2Z+ZhDN4Gg6rt87FH4BsaGkNGoTs+T/J5m7MNNIaJ2eCbJvV86sLHF1f181GWVa1Wk/cHD+OTU0iOE09/X+9aV5vNBp/PJ68psW20ttF6SQUyk8lk3XO57shsNiMcDqO9vV3eG+QAZbNZ+Ty1X6DJZKqrrUWbVF6Xi56vas44SUKPc+e2VCrhzJkzOHr0KIDZ+5ZYMFpH6HVCCDkGisUi0un0sq5ty98ZdAHI4Ly2k7rb4buOpThORuAGW2gC1o7T6oAcHtr58rYONFEbpTIbOVLceeL2Uida3k1eY+XBd/SLdWoWM7bovlB3rRpzIIeDs07qNeLOEBeUUxiGFkMVC11r7jzR51DHospC8NCc+vmMHDj1h45xR4mHkvgY55t0fh9dKcwTORBkP/p+QP01KpVK0qExqovFS0rQNeXMJFDP/hmNRc480fMJRk4wP5fKmFarVaTTacTjcdjtdni93rrMTV7SglgtYqyWOz+0rPNkxDz5fD60t7cjHA7DbrfLxZBqOPABrw7SRvFzAg8BUpsAipfqdg/LRyMHh9O4FC4gW1CLBqpGSzbgDrNReI07P9zW5GipYmU+Wetsu9UFjVGjULjKUKgObiO7NDqPdp7q4Xa7YTKZJKvDw3CcEQIgWTxV+6M6KLSY8Q0Lb7bdyKnh4Rd+XqO/uZ5Jndv5+fg9RWEoYp14hhj1aONtXWjOodfRcZqD1it42yKr1YpisVjn1JTLZSkA5yJ5YmpUPSFdH05QcIaIo9H/gUBAOnMk/FbXALoX+VxBSQ6VSgXRaBQXL17E6OgokskkCoUCgLm1gWvbuIaOjq+ENKMlnScjT9VisSAcDmNwcBBdXV1wOp2S/svlcrKHDYlE1Qm6mfPDQzdUxI0Gms1mkw0MjSZvHba7dPAbmm5w2hnS4FUHFu1yaOeiTuzkTJNAUHWi6X15XJ7vclcihVXDGDTOuAi00fP4b2Bh9kl1lNTFWQMIBoMAIOdOrk+hcColxlDIyuVyGTL53Gki0MLHGQtVp8iZCJ6yblTpXHWcVD2WymLyvmjUqou+J83f1F+P9zfj5+WbZcrMWs8olUqoVCrznFf62+/3w+/3A5htTUNhPc7Sc2eLHCf+GOmpgPpxamRTKnBN/eyobQ+J9nn4VGWT/X4/fD4fkskkTpw4gcOHD2NiYgITExPIZDIQQsiMP9Jv0XvyKulqi55LRUs6T41ANzP1qaGbni4GUcw02Bez+zQK9/EdGQ2opaZRa1wa+ETLa8vwbDuimDn1zB0kCr0Z7W4BzGs+zI9prD6MxuVirr/Rc1TKn59fs0/1IL2HkXOjLoYU+uAhLhp7BM5GGNlhseFWFc20iwQ+plVxMb2Ws0/kDJjNcy1IeAKJ0XvRc9cLVKdTBV0T/jyeVdlI56mOJW4fzvzx9+Gfh5+HnHTSLJPzpDrz3BEmB4oyBKn9SiqVQjablREF1ZHna4cqUF+urAdoUeeJG5mH7bxeLyKRiGwrYLVaUS6XZeVRal5JcV2iXJtNoEbeuHqjEGVIvX7Im9dYOfAdJGekZmZm5CRGduFhAdqhqLtion35LpUyTUgQri4EPJVXY3XAF7qFHBv1uFHo3eg1tBM26nu5kdHb2wsA6OjokFXeefFB2nTQokatSpLJJJLJZF2ms8fjkewBSR2MFi91M8tZXc7y8vm2UqnIzTAf382qjdP8Qe06UqmUbM+RyWSkFINaA2UyGcTjcVlxmuYMl8sFr9eLcrmMrq4uyWisBxCzGAgEZHSGlwjgoSq69h6PB729vbIwZjAYlGJxyqbjduCbUb55JajrKYFsY7fbEQgE0NbWJh+zWCyyiTTN91xvR0kFXANXKpVkg2E6F2me6B6w2Wx1YVkAkoEqFovIZrOSnboUtOwqYUQT+/1+dHV1oa2tTXquQgg5EDweT13FVAB11LAKvugaUcX8MafTKdsZEMWosTyotD4XCRIDSJMvDbxisSivvRoi4KE8tS6UzWaTYkKz2SxTco0GuK5MvbpYCiPEn9doR6uCJlIKD2rMYtOmTQCAzs5O+P1+eDyeOs0o7ehNJhO8Xi86OjqQz+dx/vx5pFIp2Gw22ausp6cH7e3tcDqddWUM+AaIt96gsUbjGqjP7uOPU3IIsRQUZVCLdHLWgxZJm82GarWKeDyO8fFxlEolJBIJFItFhMNhbNmyRbYGmZ6elk3fac1wu90IBAIAgL6+vrpswFZHOBwGAAwODmLfvn3w+/3yGtOaRewOEQB2ux3BYFAyQBTV4TqwZgJudSzy1/E1nM5BfRXb29vrXkf3HzmztFmmexKoZ7y48xQOhxEMBusYN35vcQeS2FS73Y5UKrWsjXLLOk8qyPulNFI1W6TRjvZSdw3qeUmHc6WV7V9LqDvHRnS/GlJQ7aw6wUb3gNE5CSQq5JME/ayXXed6wXJCaYt9nVFWjkb94sPblBixOHwBy+fzSCaTssq4w+GQTI5RaJw7M/wxHuLjmyZ1vBkt0jQ+uYNm9Hr6HKVSSfbIo1YhpN8idrnRPHIpBZdbAZQFR9W1fT5fXUYyd544O+N0OqXzyMsEcEmE6ihx5h8wrq1n5DwR6D7grBhnIukcJMmhMKuRY2232+cVVlVF4uQE843xcktRrBvnyWw2IxgMoqurS3rKJtNsaK6zsxNer1fW7yGBGK9Y22ghpBuCdkjAXKYBsR2VSgVutxtOp1PS2hrLgzpJE1NAmTE864IvglznRudRnSPa/VDtEp5pQ6FeTkUDc6G+K6m6cCtCXZg5luNYqe/BGUTtQM3i1KlTAGYzsKh9DXccaDGirCZykg4fPoyjR4/C5/Ohu7tbti/Zs2ePFJ83qgrOxyfNxVwYzBdhYphIk8jDOpx54uAtRxwOBxwOB/L5PCYnJ3H8+HFks1mcO3cO6XQau3btwvbt22Vikc/nkwJpmi+i0ShisRhSqRROnz6N0dHRy2egZWLbtm0wmUzo6OioY5BovbLb7XC5XPIaE8tDlbi5PII7TJzJB+YXW+XgY5uHWnkYNxqNSjaJ7h3OkHHHjYdwM5kMXC4XCoUC2tvb8aIXvajO2a5WqyiVSvPuRX7f0LlTqdSyE4PWjRdgNptl+XiK19OAj0QiCAQC88I1RuXgOe1LUAWKNOFS9km1WpViNbrhNJYHPmGS00KUO+0SuLizkb2M/uaF14ii5mJRXsSNQM7VQplgGpcOuua8u/1q7O5NJpO0pR6rczh79qz8OxKJIJfLwePxyLnTbrdLZp/YiHK5jGPHjuGHP/whwuEwtm7dCr/fj97eXjlH0jxLiyAtgLQo8/R/EgYTM2WkpaE+pXS/0H3CtS+08NE5+CYMAKampnDq1CkkEgmcOHEC0WgUdrtd1jEi0TLNOcTQJJNJ5HI5JJNJnD9/fl05T5s3bwYA+Hw+OJ3OeSFrI2dWZd74D7eNGnGhMaaOYRp3xBLyLGlykOLxOJLJJIB6W/PPp67dQH2NuEgkgq6uLvnZzGazZBtVSY2RmDwWi2F6ehrZbPaSr/e6cZ7ImHxxa6aZARZfF6bZcX4jEd2rF9alQ2X+VJs1Yh34LsToWKO/VUaJ7he+0+GTB99h6QV3daFS+EZapsWM0UbOc6P5YKODGNd8Po9EIiGZWXIo6HqR01MulzExMSEzmkhnYjabkUgkMDU1BSGELAXAYTbPpouTaJccH16wUl3A+YLLs/to7PJIAp2Dv5beJ51OI5PJIJPJIJfLSU1XLpfDxMQEXC4XEomE1DzxwriZTAbZbFb+Vr9XK4OuMTkkaki20XhQnSegfowaFVRV/1YJCHqca5DUeVWVWvDQb6PnEfi8Tr957S7VWVLnCVUbeylYV86Ty+VCIBCQlKQam+aDsZnj1Ej/YhQCor/dbrdU9U9NTa3GV7xioV5foD77ghxi1TFVQ2u8Jgx3mo3ejxYBIYTcHVPIgOsAKLwDQIYtKKNIY+VBO1NeAdgo1EN/LwTuEBO4YFxrFOdALVZGR0eRzWbl9aHQFV0ni8UiZQqpVArnzp0DAOTzeVy4cEGOV4vFIlth8LHjcrmkDbhAV13s1AW30QKshoB4twBq4UTPNZvNmJ6exqFDh3DixAmUSiXk83kAwMjICB566CH4fD6Uy2Xk8/l5omIKGVYqFdlodr3gwoULAGZZRZfLJZ1XYoKIAADqHSKjHw4jzWgjkLaK5ndqk0IMnxr14RnxzTY7PPRH64L6GHfI1R8eyiMdFb3vpWLdrBC0GHo8HmkQvoPhMHJ+FnN+/pteS6+nNEgS2WksDarTSpMo1yyo+hQ1c4O/lodn+XvQcRqMlK5LlXZ5SjaFDvjAVbM1NVYOnN3jAuKlhu7UMcqZRGDu3mrUSmSjgpyMQqGAaDQKYPEOKjDLXMVisbpwGmWnBYNB2Gw2BINB+P1+qUEiO/h8PrmQ0+ZXZaF44Vr1s6nOEwmfs9msZMZobEejUZw7dw4XL16su7empqYwPT29qO+6HpFIJGAyzRY4LRQK0hGi9Yo7rpxhV7WfauiMC65Vx1YF38zQxlRNKmgUMTIqqsnPqzZ/N7KV6jABmBdt4PfdhmCegPlMBHBpN/tSJlR+A/JMP46leOYaczDa7SyGvuXHFmIpOPXMHSLeCkB9b73grh640wzMr/ZOWEzYjl5vdGwlaPmNgEuZt4SYTRVPpVIy5b1YLMJms0m9EBd7UwkAYpedTuc8TYw6hxqNfb6Yk+i8UCggn8/LBb5WqyGVSiGXyzVcXK9UZDIZAKhjAHm9Jlq/TCZTXSIO38wY1dXizC53fDjUmnnALKtE2mSeSac6T0ZhdqN5nZcc4KE8cgip24hKqqiOE90jze6TxWDdOE/kwFDPJQq/rKbjQou6xWKBx+NBOByGEEKKEgEY3kgaC8NowAD1BS6NaHxyeOgcjXap9BiFbXilZKKVhRB1Wg86h862Wx2omxDOHgPGKdELgSZ3lZmkRUOH7VYH6XQap0+fnlfCxYhp4I6sukBzu6mhVw61Vh9nFTgrQk5ULBZble/dyjhz5gyA2XT8U6dOzbveFMoG5uY4nljBs+34uOKOq1EojNc9pNcBqGO3uP0aOcl87Kv3jrqx5XM2v5+4Fk59P+48FQoFjI6OIh6PX/L1XjfOE1DfVJTCLoTlODGL2eVSATGn06lDOksEd0zUgaPuNng8m4dijHQQnKVSQfcDDV7K+qHnq0X91F2QXnBXB3wMAzCc7BqhWWjdKKxrlEqtsTIolUoolUpr/TE0GBKJRNPjPIzGNaa0ppFkgcTXRuQEZwqJ6eNMIA+JAc0ZYiOo0QjudHO2jDtNagKKuhkmcOeqVCohGo1eOdl2zcJxJEQrFAqyWNtqvH8jI3PnqVHWgMalwWgB5Mc4eIjHiObl51MHDx+MVMuLD1QjR01jZcHDBITFssfqhEx/q3bmtYo086ShMQs1BEetUIjNt1gssvipEaPLxyk/zms0qZvepULdSJMjB0AWxzRysIzCfUbjnicGLLd6fEs6T40WUap0SzVIGmmPlurtNgoF8XNQ3x+K7XPauZnTpdEYfKCpC6j6GKeO+YBvpI9Szw/U1wkxoqZVOlpjZUG7R9oBm0ymOh3DYqE6xuqYJYFyuVyG0+nUzpOGBub62ZlMprpsM/WHYERgGP1vNHcvF0b6R6PH1L8bnUP9bMScLQct5Tw1Ay105XJZMgeNxKBLMd5iQwZEaTZy2jSaY7kOprrANhMWquCMBT2PQoPA7I6GO8PanqsHdafY6FovNZTHwctgaOZJQ2MWmllfWawb58nIMzY6ZhTnVJ/Ljxm9Rv2f0m69Xq/MGtFYPtSdi6pb4amtqsCU65f4OYD5TAS9ljtw/HxGtYY0VgdqmrRq98U4w0bPJXvSfcHrPGloaGisNNbVzGIkDuPHGgmT+XOM/m/2OC26TqcTwWAQuVxOO08rgGa7ILIjsQZkA57qapSNw8N66vnodaqjTfFvHvfXWB1woaeR87TYEhWNQnbkPJlMJpkmrWs9aWhorAZaLhVloYlOnSybUZALxWwXepyDFxjTGTxLx1KoYu7c8A7fRplxC90vjbRs9JjR/3qxXT2o5QgaMU+Epdw3PJlAZ9tpaGisJlqSeeLhFZpsKbWSa51UsTEXFTcL1y0WPPWSPovu0r4yaCQC5OUCqKYX9SxSK8WqYbxGYTugPjuEZ5morVp0Q9nVBbcxiTZp3PI2C4vZRAH1bRuohpcQQtd50tDQWFW0jPPUiEXgFYlpcVOdJ4LapkHVRACNW7fw1/DWEWoDWV0DaOXB7cNZJloAScdCzhPVFzHKyOPn5Ofm6bTkiJHzRAsu77WnGYvVgRoy5enOQONM22ag15PwH4Asxqk1TxoaGquBlp9Z1JANPcaPq5qJlXCe+OsoDEBMiF5YVwYLOaGqoLvR/+r56HH1Pmn0ntQqgod6tIO8OuBFMmlcc/aQjzl1HKvMolEIl/7nzWu1LTU0NFYaLe88US8knnZsMpnmOTGNxMJA83oPKnhKPG9cGw6H4Xa7MTMzA7fbvdyvteFBDinXkdFCSs5RPp9HqVSqY424wFsVG/NwEH8fnonFWQpysKhlgdPphNPphNvt1ozFKsBsnm0kGwqF6npv8QrFHI0YKbp3yHY8u85ut8Pn88lx6vf7tfOkoaGx4mj5FYKHb3g5dgrjAcYht0sFX2S5ODwQCMDv9yOXy8HpdC7/i21wcEZRFX/zhpQAGjo+dIyE5dzhUVkLeozra4jpoIwscp6Mmj9rLB90jf1+v7zWVqtVatB4KJU7xepGh98ztImiOYJ3kHe5XHC73Zop1tDQWHG0jPNkFGqhx6vVKkqlEqampnD69Gm4XC74fD7ZnZuLjI1o+kahOvqfP9+oA7MQs61hqtUqRkdHZfdqjcVDve7ENpTLZfm7XC7X6Zn4a5uF7LijZQRinuj5VJqfO8hCCGQyGaTTaUxPT6NYLK7CVdjYmJmZQTwex+joKNxuN4LBINxut7Qfz5YD6h1gVdtIv4mZJEfYYrEgn88jnU4jn88jk8ksuYK5hoaGxkJoGecJMC6WWCqVZGXxxx57DMePH4fH48Hg4CAikQhsNhs8Ho9kC4hF4AyU2nlb/VFZD5rIM5kMkskkKpUKpqenMT09jWw2i8OHDy8phXqjg64xv2blchnpdBqVSgWxWMzQYeGOEp1HDeXQMWo3oEJdiBuJxCuVCk6dOoUzZ84gkUjgwoUL2sYrjGKxiB/+8IdIpVIIBALYs2cP+vv7YbVaZR86u90Ot9stNVG8ESgwa79isSg3NNlsVjpQZNPp6WmcPXsWmUwGhw8fRrlcXuNvrqGhcaWh5ZwnFdSPp1wu48iRIzh58iS8Xi927tyJ3t5eOJ1OtLW1yRCAw+GYJzCvVqtyYuWsBu/oTtQ+z+aanp7G5OQkCoUCRkZGcPHiRXkujeWBd+3O5XLIZDIyDENNe3nhS9WBUv9WS0oYgTfEpPuB3rNareLixYt4/vnnkc1mF+xQrrF0lMtlnDp1CvF4HG1tbTLE5nA4EAqFYLfb4fF4pBMFQIZPufNE9iuXy8hmsygUCtKRqlQqOH/+PI4cOYJ0Oo3z588vu4eVhoaGhop1Jwa4FDZgMenPS6H2NSOhoXHpWO0wmlHpCg0NDY2VhEnoGUZDQ0NDQ0NDY9FYd8yThoaGhoaGhsZaQjtPGhoaGhoaGhpLgHaeNDQ0NDQ0NDSWAO08aWhoaGhoaGgsAdp50tDQ0NDQ0NBYArTzpKGhoaGhoaGxBGjnSUNDQ0NDQ0NjCdDOk4aGhoaGhobGEqCdJw0NDQ0NDQ2NJeD/AVh7pHsAEBhhAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAGWCAYAAABRknY1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5hdVbn/v6f3Mmf6TJIp6dPTILRASJAQqQFEQYhELqCocEVFLyqCeK8iyhX1ByoSlCJcBAICAkYCUkInJKSZhIS06af3tn5/zPOurLNnn8mUM5mZZH2eZ56ZOfvsfcq711rvequGMcYgkUgkEolEIhkR2rF+AxKJRCKRSCRHA1KpkkgkEolEIikAUqmSSCQSiUQiKQBSqZJIJBKJRCIpAFKpkkgkEolEIikAUqmSSCQSiUQiKQBSqZJIJBKJRCIpAFKpkkgkEolEIikAUqmSSCQSiUQiKQDjQqlqa2tDKBRSPTZ//ny88sorh73Gc889h3nz5sFkMuGGG27IOdbZ2YkVK1agpaUFs2fPxv/+7//yY48++ija2trQ1NSEpqYm/OIXv+DHXn75ZRx33HFoaGhAY2MjvvOd7yCbzfLjP/vZz9DQ0IC2tjYsXLgQ77zzzpA+97FCIeT7ox/9CKWlpWhra0NbWxsuu+yyfs/p6upCeXk5zj///JzHb7/9dkydOhVTp07FzTffzB//yU9+wq/X1tYGp9OJb37zmwCAbDaLb37zm2hoaEBLSwsWL16MnTt3Dv5DH2OM9hge6Njdd9+NpqYmNDc3o6WlBQ899FDO8VdffRULFixAY2MjGhoasH79egADj31JLqM9hn/729+iubmZy+Puu+8e1HkA8MQTT6C5uZnLcc+ePTnH880LkvyM5Zw90Ly8fv16/nhjYyOuueYaJBKJYX3GUYONc+bNm8fWrVt32Odt376dbdiwgd18883s+uuvzzl26aWXsptvvpkxxlg4HGatra3snXfeYYwx9vrrr7P29nbGGGN+v59NnTqVv94HH3zAdu3axRhjLBaLsZNOOomtXr2aMcbYhx9+yKZMmcJCoRBjjLEHH3yQLViwYISf9thjsPK95ZZb+slVyfnnn89WrVrFzjvvPP7Yq6++yhoaGlg4HGbxeJzNmzePPfvss/3OjcfjzOPxsPfee48xxthTTz3FjjvuOJZMJhljjP34xz9mF1988aA/l+QQhRjDAx1bu3Yt8/v9jDHG9u7dy4qLi9nOnTsZY4wdOHCA1dTUsC1btjDG+uTs8/kYYwOPfcngKcQYJvkxxlggEGCTJ09mH3zwwWHP++CDD9jMmTPZgQMHGGOMBYNBFolEcp6jNi9Ihs9oz9kiynk5EonwOTmTybDzzz+f/fKXvxzK2x91xoWlSqPRwO/3AwDefPNNvlu58sorkU6nB3WNGTNmoLW1FXq9vt+xjz76CMuXLwcA2Gw2LFq0CA8++CAA4KSTTkJFRQUAwOVyYdasWXynM2fOHNTX1wMAzGYz2tra+DGNRoNUKoVIJAIA8Pv9mDRp0rA+/9FOIeR7OP74xz+irq4Op5xySs7jjz32GC6//HLYbDaYTCasWrUKf/nLX/qdv2bNGkyePBnz5s3j7zmRSCAej4MxhmAwKOU7AKM9hgc6tmTJErhcLgDA5MmTUVFRgX379gEA/t//+3+49NJLMXv2bACAyWSC2+0GMPDYl+Qy2mOY5AcAkUgEqVRqUOf94he/wDe/+U1UVVUBABwOB6xWKz+eb16QDMxYztkiynnZarXCYDAAAJLJJGKxGDQaTUHeT6EYF0oVkUwmcckll+DOO+/Exx9/jC984Qv46KOP+PF7770XP/zhD4d83Xnz5uGRRx5BNptFd3c3XnzxRdXJc8uWLVi/fj2WLl3a71hHRwf++te/4uyzzwYAtLa24j//8z9RV1eHSZMm4a677sKvf/3rIb+3Y4mRyvfxxx9Ha2srTj/9dKxbt44/vnv3btx77734yU9+0u+cvXv3oqamhv9fW1uLvXv39nveH//4R3z5y1/m/59zzjk47bTTUFFRgcrKSvzzn//EbbfdNuTPfKwxWmN4sKxduxY+nw8LFiwA0DemY7EYli5dira2Nnz961/nGyGRgca+5BCjNYYB4K9//SsaGxtRW1uLb33rW5gzZ85hz9uyZQv27t2LU089FXPmzMEPfvADZDIZAAPPC5LBMRZztohyXgaAPXv2oLW1FSUlJXC5XPjqV786zE83Soy1qYwxxgAwn8/HPvroI1ZbW5tzrL6+fkgmeTWTY3d3N1u5ciVraWlhS5cuZVdffTW74IILcp6zb98+Nm3aNPZ///d//a4ZCATY/Pnz2S9+8Qv+2CeffMIWLlzIzc6//vWv2UknnTTo93ksUQj5tre3c7Pv66+/zkpLS9mePXtYNptlp512GnvrrbcYY4ytXr06x5R89tlns0ceeYT//9xzz7FTTjkl59p79uxhFouF9fb28sfefvtttmTJEubz+Vgmk2Hf/va32WWXXTbUj37MMNpjeDDHNm7cyCZNmsRee+01/tg555zD5s6dy7xeL0smk+yyyy5jN954Y855A419SR+jOYaV7N69m7W1tbFt27Yd9rzm5ma2fPlyFo1GWTgcZqeffjr79a9/fdh5QTIwYzlnE2rzskgoFGLnnXce+8tf/jK0DzfK9LeljzMKYdorKSnBAw88wP+/9tpr0djYyP8/ePAgli5diu9///u4+OKLc84NhUJYtmwZzjvvPB4sBxwKjiSz85VXXomvf/3rSCaTMBqNI37PxwqDlS+5aYA+t82cOXPw3nvvwe12Y+PGjbjkkksAAOFwGNFoFEuWLME///lPTJkyBZ9++ik/d8+ePZgyZUrOtVevXo3zzjsPHo+HP/bnP/8Zp59+OncVrVy5Ep/5zGeG+zGPaY6EeX7Lli04++yzcf/99+Pkk0/mj0+ZMgVtbW0oKioCAHzhC1/A//zP//DjA419yeAY6RgWLclAnzX5+OOPx7PPPouZM2cOeN6UKVOwYsUKWCwWAMCKFSuwfv16XH755QPOC5LhM9pzNqE2L4vY7XZ8/vOfx8MPP4zPf/7zI/hEhWVcuf9mzZqFdDrNzYRr167Frl27Rnzd3t5e7qP/8MMPsWbNGm4ybG9vx5IlS3DTTTdh5cqVOeeFw2EsW7YMy5Ytw/e///2cY/X19XjjjTcQDocBAM8++yxmzJghFaoBGIl89+/fz//esWMHNmzYgObmZrhcLvT29mLPnj3Ys2cP7rzzTnzmM5/hg/Piiy/Ggw8+iEgkgkQigfvvvz9nAGazWaxevbqfibm+vh4vv/wykskkgD75NjU1jejzHwuM1hgeiK1bt2L58uX4/e9/jzPOOCPn2KWXXop169bxDKG///3vaG1tBTDw2JeoMxpjGOhTionu7m68/PLLaGlpOex5l156KV566SVks1mk02m89NJLaG1tPey8IBkcYzFnA/nn5Z07d/K1PJlM4qmnnuL3ybhhrE1ljB0yNTLG2BtvvMFaW1tZU1MTu/LKK1lrays3Nd5zzz3sBz/4geo11q5dy6qrq5nD4WB2u51VV1ezp59+mjHG2PPPP8+mTZvGZs2axRYsWMBeffVVft5VV13FrFYra21t5T/3338/Y4yx22+/nen1+pxjt99+O2OMsWw2y7773e+ymTNnspaWFnbCCSfwDAVJLoWQ7xVXXMEaGxtZa2srmzt3Lnv88cdVn6dmSr711ltZXV0dq6urY9/97ndzjr344oustraWZbPZnMfj8Ti76qqr2KxZs1hzczM744wzeCaopD+jPYYHOrZ06VLmdrtzxukLL7zAr3vHHXew2bNns6amJnbJJZfw9znQ2JfkMtpj+Oqrr2azZ89mra2trKWlhf32t78d1HmZTIbdeOONbNasWayxsZFde+21LJFI9Htt6f4bGmM9Z+ebl3/3u9+xxsZG1tLSwhoaGtjXv/51FovFRvRZC42GMcbGVKuTSCQSiUQiOQoYV+4/iUQikUgkkomKVKokEolEIpFICoBUqiQSiUQikUgKwLhSqt577z2cddZZqKurw7x58zBnzhzcfvvt/Phpp52GNWvWDOmaDzzwAFwuF+bMmYPZs2ejtbUVt956K2KxWIHfvYQYTTlSz6ezzjpLtYinktraWmzYsGHYrysZHqNxDwDA+++/j2XLlqG+vh7z58/HSSedNCKZ+v1+/PSnPx32+Ucjcvwe3Uj5ji7jRqnatGkTli1bhuuuuw67d+/G+++/j3/+858IBoMjvvbixYvx4YcfYuvWrfjHP/6B999/n9fIUFKoEvzHKqMtxw0bNmDz5s2YMWMG/vM//7MA73h0oKrOxyKjdQ9s3rwZZ555Jq677jp88skneO+99/D4448jEAgM+5pSqcpFjt8+jtbxK+Xbx2jKd9woVT/72c9w1VVX8TYwAODxeHDHHXcU9HXKysrwpz/9CWvXrsXmzZsB9BUzu+WWW7BgwQJ873vfQygUwn/8x3/guOOOQ0tLC66++mper+j222/H7NmzeafsTz/9FLFYDJdccgkaGhrQ2tp6TBeJPFJyPPPMM7F9+3YAuX2qgL5ir4fr4dbV1YUVK1bw7va/+93vAAAPP/xwzntnjKG+vp63ZnjwwQdx/PHHY+7cuVi0aBF//IEHHsDixYtx4YUXorm5Ge+8804BP+3EYrTugZ/+9KdYtWoVzjnnHP5YVVUVrzG1c+dOLF26FC0tLWhra8vZ9V522WWYP38+Wlpa8NnPfhYdHR0A+goBh0IhtLW1Yf78+SN6f0cDcvwe3eNXynf05TtuKqp/8MEHuPDCC4d17jPPPINnnnkG991336CeX1RUhOnTp2Pz5s28srpOp8O7774LALj66qtxyimn4A9/+AMYY/iP//gP/OpXv8JVV12FO++8E+3t7bBYLIhGo9Bqtfj73/8Ov9/PC9h5vd5hfY6jgSMhx0wmg8cff5w32RwOX//61zFz5kw8+eST6Orqwrx589Da2ooVK1bg+uuvR0dHByoqKvDKK6+gqKgIra2teOONN/CXv/wF//rXv2AymfDaa6/h0ksv5cr522+/jQ8//BAzZ84c9vs6Ghite+D9998fsFfYZZddhlWrVuGaa67Bjh07sHDhQsyZMwc1NTX43//9X5SWlgLoU85+9KMf4d5778W9996LtrY27oI41pHj9+gev1K+oy/fcWOpUvLtb38bbW1tqK6u5l9KPs4999xBK1SEsjzXqlWr+N9r1qzBz3/+c7S1tWHOnDl47bXXsHPnTjidTkyfPh1f/OIX8bvf/Q5erxdmsxmtra3YunUrvvrVr+Kxxx7jXbQlhZXjunXr0NbWhnnz5kGj0eAXv/jFsN/X2rVrcc011wDos16uWLECa9euhcViwYUXXogHH3wQQN8O58orrwQAPP300/joo49w/PHH8+a8Xq+Xx+edeOKJR/WEPFxGeywDfe2kPvjgA16Befr06Tj55JPx2muvAQAeeeQRzJ8/H01NTbjvvvukEjVI5Pg9upHyLTzjRqmaM2dOjknu5z//OTZs2ACDwcDL0hcKn8+HnTt35rQdsdvt/G/GGJ544gls2LABGzZswPbt2/G73/0OOp0Ob731Fm644QZ0dXVh4cKFeO2111BfX48tW7Zg2bJleOONN9DU1ASfz1fQ9zxRGE05ks9+w4YNuP/++1FSUgKgz8oo+sjj8fiQry32s1q1ahVWr16NcDiMZ599FpdeeimAvvti5cqV/D1s2LCBWy2B3HvoWGa07oF58+Zh/fr1g34+yfT111/H3Xffjeeffx4ff/wxfvnLXw7rHjkWkOP36EbKd/QZN0rVd77zHfzhD3/A888/zx9LJpMFDxzv7u7GqlWrsHTpUjQ0NKg+5/zzz8fPfvYz/tqkhIVCIXR2duKUU07BD37wA5x88sn48MMPsX//fmg0Gpx77rm48847wRjDvn37Cvq+JwpHSo4i06ZNw9tvvw0AePLJJxGJRA57ztKlS/GHP/wBQN898eSTT/K+cccffzwA4Fvf+haWLl3KG3qee+65eOihh3hWSzabxXvvvVfwzzPRGa174Dvf+Q7uv/9+PPfcc/yxjo4O/OlPf4LD4cDcuXOxevVqAH3xVa+//joWLVoEn88Hh8OB4uJiJJNJHp8BAE6nE7FYjMdMHuvI8Xt0I+U7+owbpaq1tRXPP/88fvWrX6Gurg7HHXccFi9ejK985SuYMWMGf95VV12FSZMm8Z/169fjmWeewVVXXZX32uvWrcOcOXMwa9YsLF26FK2trXjsscfyPv+uu+6CxWJBW1sbWlpasGTJEuzZsweBQIAHz7W0tCCVSmHlypXYtGkTTjrpJLS2tmLOnDm4/PLLx1+TxyPEaMoxH3fddReuv/56zJ07Fx9++CGKi4sPe87dd9+NrVu3orm5GYsXL8bNN9/MBysAXHnllfjd737HTcsAcMopp+COO+7ABRdcgNbWVjQ2NuLRRx8d8vs92hmte6C5uRl///vf8atf/Qr19fVobm7GihUrUFRUBKAviPWxxx5Da2srLrroItx3332YMmUKli1bhpkzZ2LmzJk45ZRT0NbWxq/p8XhwxRVXoKWlRQaqQ47fox0p39FH9v6TSCQSiUQiKQDjxlIlkUgkEolEMpGRSpVEIpFIJBJJARiXSpXf78cXv/hFNDU1oaWlBU1NTXjkkUcAAK+88kpOTMRgefLJJzFv3jy0tbVh1qxZOP3005HNZgHklspXctVVV2HdunV5r/ujH/1IZhINktGQa21tLWbOnInW1lZMmzYN5513Ht58880Cv/Ojk0LLgwriNjQ0QKfT8f/zdS8YKj/60Y9www03qB575plnBqzgvGbNGrz11lsDXr+rq4vXrRN55ZVX8MILLwzpvY4XpIxzORplPFwm2r0xURg3xT9Fvv/976O0tBSbNm2CRqNBKBTiFZCHQ3t7O66++mq8//77qKmpAdBXBE1M08xHvroc6XQaer0et956K2644QaYzeZhv79jhULLlXjsscf4BPDkk09i+fLlePHFF3MCGwFwJVqrHZd7iSNOoeVBG5M9e/Yc8YKa5557Ls4991zVY+l0GmvWrEFbWxsWLlyY9xpPP/206jVeeeUV+P1+LFu2rGDv90ghZZzL0Sjj4TIW9watm2PBkXrtcbm67N+/H5WVlVzpcTgcmD59+rCv19nZCZ1Ox1MvAWDu3Lk5StWTTz6JE044AXV1dXmbS37pS1/CqlWrsGjRIjQ1NeHaa68FAJ5R1NXVNez3eCxQaLmqsWLFClx77bW48847AfTtfC+88EKceeaZaGpqQnt7O1588UWcfPLJmDdvHo477jhuidyxYwfP4mxubsb3v/99AMDf/vY33vqkqakJTz/9dEHf81hxJOQxHPLJAejbIJ1zzjloaGjA6aefzrsXPPDAAzj//PMB9C2QjY2N+PKXv4y2tjY8/PDDeOaZZ3hB33wbpTVr1uCCCy7IeWzDhg2499578fDDD6OtrQ233XYbgL52GC0tLbztzYEDB/j7OP3003HuueeioaEBixYtOmxLjtFEyjiXo1HGw+VI3Ru1tbW46aabcNxxx2HlypUIh8NYtWoVmpqa0NTUhFtvvZU/V9lU+aKLLsIDDzwAoM/A0dDQgLa2NjQ3N/MyDTt27MBnP/tZLFiwAC0tLfjNb37Dz1e2oDsisHHIyy+/zDweD5s7dy677rrr2N/+9jd+bN26day1tVX1vLPOOou9++67/R7PZDJsxYoVrKioiJ1//vnsjjvuYPv37+fHa2pq2Ne//nXGGGPd3d3M6XTy46eeeip76qmnGGOMrVy5krW0tLBgMMjPBcB8Pt8IP/GxQaHlylif7D788MOcx5588kk2e/Zsxhhjt9xyC6usrGQdHR2MMcZ27drFFi5cyAKBAGOMsR07drCKigoWj8fZN77xDfbf//3f/Dq9vb2MMcZaWlrYm2++yRjru5eOFnmPhjwYY2z37t3M5XIN+33lk8Mtt9zCampqWE9PD2OMsUsuuYQ/b/Xq1ey8887j712j0bBXXnmFX2PlypXsrrvuyvuawWCQ1dfXs2w22+/YLbfcwq6//nr+/6ZNm1h5eTmfI26//Xa2bNky/j6MRiPbsmULY4yxn/3sZ+yMM84Y4jdQOKSMD3G0yni4HKl7o6amhn35y1/m3/t3vvMddumll7JMJsPC4TBra2tjjz76KGMsd71ljLELL7yQrV69mjHGmNPpZAcPHmSMMZZMJlkoFGLpdJrNmzePbd26lTHGWCQSYc3Nzeydd95hjPWtz7feeuuQvpeRMi4tVYsXL8bevXvx4x//GG63G9dccw2uu+66w573/PPPq9aa0Wq1eOKJJ/Dmm2/yqueNjY3YuXMnfw5VZS0pKUF9fT12796t+hoXX3wxHA7HMD/ZsU2h5ZoPpqgSsnz5cpSXlwMAXnjhBezcuROLFi1CW1sbLrroImi1WuzduxeLFi3CH/7wB9x888146aWX4Ha7AQBLlizB9ddfjzvuuAMbN27kj090jpQ8hko+OQDAsmXLeJ2bE044Abt27VK9Rn19PU499dRBv+bf//53LFu2bFAhAevWrcOyZctQXV0NAPjqV7+Kl19+mVeNPvHEEzF79mwAfX1EX3nllZyK0kcSKeNDHK0yHi5H8t740pe+xL/3tWvX4j/+4z+g1Wphs9lwxRVX4B//+Mdhr7FkyRJcfvnl+NWvfoXdu3fDbrdj+/bt2Lx5Mz7/+c+jra0NJ554IkKhEO/DC+S2oDsSjEulCgBsNhuWL1+O22+/HU888QTv9TMSZs2ahWuuuQZr1qzBwoUL8cwzz/BjYkyUTqfLW2H2WGhlMJqMhlyVvPvuuwO2IDrjjDNyWhkcOHAA06dPx4UXXog33ngDM2fOxG9+8xveDf2Xv/wlVq9eDavVipUrVxa8o/tYciTkoWTLli08iFVtEs8nB2D0xulTTz3FXUtDZTCL9FgiZdzH0Szj4XKk7o2BZCV+t3q9Pm9LmyeeeAI//elPkUqlsHz5cjz66KNgjMHj8eTM57t378bKlSsH9dqjwbhUql566aWc3nnvv/8+pk6dOuzrHThwAG+88Qb/3+fzYffu3SO6JuFwOBAIBEZ8nWOBQstVjaeffhr33HMPbrzxRtXjZ555JtauXYuNGzfyx6gX1o4dO1BeXo4rrrgCd9xxB88k2rZtGxobG/G1r30NX/nKVw6bYTRROBLyUKOhoYFPgL/97W/7Hc8nh5HgdDrzjtNkMon169fjtNNOG9S5ixcvxgsvvICDBw8CAO69914sWbIEOp0OALB+/Xps27YNQF8cyOLFi/mxI42UcR9Hs4yHy1jdG0uXLsUf//hHMMYQiUTw4IMP4jOf+QyA3JY2u3fvxuuvvw6gL8h8165dmD9/Pr71rW/hoosuwjvvvIOZM2fC6XTy9lRAX4sqisMbC8Zl9t+mTZtw4403gjEGrVaLyspKPPTQQ/z4li1bMGnSJP7/CSecgMcffxzLly/Hbbfd1s80mU6ncdttt2H37t2wWq1Ip9NYuXIlzjvvvBG/1xtvvBFnnHEGrFYrXnrpJZSVlY34mkcrhZYrcckll8BsNiMSiaChoQHPP/98v8w/Ytq0aXjkkUdwzTXXIBqNIplMYs6cOXjkkUfw17/+FQ899BCMRiOy2SzuvfdeAMB//dd/Yfv27TAajbBarbjnnnsK+K2MHaMlj5GSTw4j4fLLL8eXvvQlrFmzBtddd11Ou42XX34ZJ598MgwGg+q5F1xwAR588EG0tbVhxYoV+OEPf4if//znPFNs8uTJvE8Z0Ocauummm7Bz504UFxfjz3/+84jf/3CRMu7jaJbxcBmre+MHP/gBvvGNb6C5uRlAX0jN5z73OQB9vQkvueQSNDc3o7Gxkc/jmUwGq1atgtfrhV6vR2lpKVavXg29Xo9nn30WN9xwA+666y5kMhmUlJTw0hBjgWxTI5FIjmmuvfZaLF26FBdddNGIr/XAAw9gzZo1ORlMkrFHylhypBiXliqJRCI5UhTCSiIZ30gZS44U0lIlkUgkEolEUgDGZaC6RCKRSCQSyURDKlUSiUQikUgkBUAqVRKJRCKRSCQFQCpVEolEIpFIJAVAKlUSiUQikUgkBUAqVRKJRCKRSCQFoKB1qobbH0mj0UCj0YAx1q8ZLtDXD0iv18PpdOK8887D6aefDrvdjsrKSrjdbkSjUbS3tyMcDiMajSIYDCKVSiEYDMLn8yGdTkOr1UKr1cJkMqGurg4VFRWwWCyoqKiAw+Hgx7VaLdavX4//+7//Q0dHB7q6unDw4EGkUimkUqm8fajo/Q+XiVDZYqz6X+n1elitVhgMBlRUVGDWrFmw2+0IBoPo7e1FMplEMBhEMBiETqdDaWkp3G43zGYzl+/Bgwfx9ttvo7OzE5lMBqlU6oh+5xNBvsDoypiurfZdlJWVYd68eaioqIDH40F1dTUsFguSySTi8Tiv+qzT6aDRaPhYjUaj+PTTT9Hb24uuri5s2rQJvb29Q3rtQjERZDxa8qU5GujrYEH9247Ed6J87Xxz9Eg5luU7lNfPt4bX19ejvr6ed6YwmUzweDw4/vjjUVtbi3379uH1119He3s79u7di48//hjhcJiPe6Cvsno2mx2V914o+Y6b4p9KhcpsNsNms/GGmplMBhqNBu3t7fjoo4/gcrnAGINGo0Emk4HFYoHBYIDNZuOtaGw2G8xmMzKZDAwGA/R6PYxGIyoqKlBSUgK9Xo9sNotwOIxYLIbe3l7E43Fs3rwZHR0d/H+z2Qyj0cgVq2w2i1QqldP4cSIMuImExWLB1KlTUVpaygehwWCAw+FAWVkZlyspR7FYDPF4HBqNBiaTCUajkSvrGo0GRUVFmDlzJioqKhAOh+H1epFMJhGLxRCNRqX8xgCtVguLxQKj0YjKyko0NTWhrq4OVqsVHo8HBoOBj31SqrRabc75iUQCHo8H4XAYn376Kfx+P3Q6HeLxOCKRSM4YlYwcjUYDnU4HrVYLt9uNsrIymEwmWCwWWK1WPh/TeNJqtdBoNMhms1zhyWazSCaTYIwhkUggFovlyFej0UCv1/PXormb/lYqyDqdLkepSqVSSCQSOHjwIHw+HzKZDJLJpLwXRhmSi6hY6fV6GAwGGAwGPicD4PO1VqtFd3c3rFYrenp6EAwGEQqFEI/Hc5SniTQ/jwulSu0Ls9vtmDRpEkwmEwKBAG92uW3bNuzduxelpaV80FksFhQXF8NsNnOFJ5vNIhQKwefzIZvNwmw2c8WrqKgITqcTyWQSvb29CAaDOHDgALdkHDx4ENu3b0c0GoXVaoXT6QQApFIpPjhDoRBisdgR/Z6OJVwuF5YuXYoTTjgBRqMRNpsNRqORT5qMMbhcLng8Hj4B04QeDocRiUQQiUTwySefoKenBzabDZMnTwYA7N+/H9u2bUMoFEJXVxcSicSo7W4lh1COc71eD4/HA5fLhZkzZ2Lp0qVobW0FgByFmBQpcReezWb5Rox2rx9//DH8fj/MZjN6enqwb9++I2oxORYgaz9ZHk466SS43W54PB4UFxdzWZGSZDQaodfrkUqlEAqFkEqlEI/HEQ6HkUgk4PV60dXVhXQ6DaPRCKPRyJVteh23282Vb5oHSO70nsiSQRtfr9eLl19+GZs2bUIikYDf75dK1SijZg02mUxwOBw5G2PGGF8/Y7EYSkpKkE6n0dXVha6uLvh8PoTD4ZyxS9ecCON4XChVIjSRGgwGmM1mmM1mxONx6HQ6ZDIZRCIRhMNhAEAgEEA0GuWaMe2gtFotGGNIpVKwWCzIZrOwWq2wWCzQ6/V8sNICTS5DUqi6u7v5oDeZTNzlQKTTaf5aAPqZI0fqCpQABoMBpaWlqKmpgcFggN1uh8FgQDweRygUQiaTQXFxMSoqKmA0Grk8MpkMent7EQgEYDAYYDKZuPXK4XBAr9cjFovBbrcjk8nk7J4kow+Nb6BPqbJYLLDb7XC5XCgpKUF5eTkymQzS6TRfmMVzxLFFlmp6TmdnJ9xuN1wuF2KxGAwGA1fA5XgcGSQDsvYbDAY4nU6Ul5dzhYqs/wQpYAaDAclkEqFQiFumAoEAkskkV7hSqRSMRiOfb202G1ekPB4PrFYrjEYjXC4XX5jJIkbvizHG53SLxYKioiJYLBa++Zbz8pFB/J5JNnq9PsfKTMq1yWRCOBzmoTuJRALxeJyPf2IiyW1cKVVWqxXFxcUwmUzQarXw+/0AgGg0yk3E2WwW2WwWvb29+OCDD9Dd3Q2TyQS32w2TycQXT51Ox03OAHJcBzTJJhIJdHV1IRwOo7e3Fzt27IDf70c0GgXQZ1ZOpVLcpWCxWOBwOAAApaWlPKbjwIEDCIVC/HXI3D2RboTxiPgdksxokGq1WqTTaQQCAWg0GkSjUT4o29vb0dvbi0Qigd7eXkQiEaTTaW6KZozBbDbz3bFk9BEtxW63Gw6HA3a7HdOnT0dFRQWqqqpgMBjg9/u5WzadTqOnpwcdHR1IpVJ8fJtMJlRXV3NrNd0jBoMBjY2NKC4uxoEDB+ByufjYJmvIaMZkHK1YLBZUVVXB4XDA7XajurqaW37r6+ths9n4RlVpraA5W7Q+0RhMJpMIh8MwGAxcQUomk3xDTXN6cXEx7HY732xrtVpks1keEkKbaADc1eTxeDBnzhx4PB709vZi06ZN6OzsRCKRQCgUkpbpUYDmZ3Hdy2QySCQSfC2m42TMoHXeZDKhp6cHXq8Xfr8fkUhkwo7TcaVU2e121NXVweVyob29Hbt37+ZBqqKpP5PJIBqNwufzcR87LbRFRUWYPHkyt0zZ7XYee5FIJJBMJuH1evlOyefzIRaL8ficTCYDrVbLtetEIoFIJAK9Xo/q6moeAF1eXg63282VslAolLNrBiDNzQVClL9Go4HRaOSD1Ov1IpPJ4MCBAzhw4ABisRh2796Njo4OaLVaHhBJu2JyEdtsNn4taakaXTQaDWw2G4qLi2GxWFBfX4/JkyfD7XZjzpw5qKmp4RaQ3t5eRKNR+P1+JBIJbNq0CW+99Rai0Shf1J1OJxYtWgSz2cyVa7I6LliwAKlUCnv27IHH40EwGMSWLVsQiUQQi8WQTCYn7GQ9VthsNsyePRuTJ09GVVUV2traUFxcnGNZotAIUqJovJLyo9Vq+VxMcqMEE3E8JxIJAOAhHRaLBWVlZXA4HHyBFt1+JEtxbiBX00knnYQFCxZwNzAp7WQJkYw+6XSab5BIqQLAldtMJoPu7m5uKOnu7obf78+JWZ5oFqsxV6pE06zJZILNZoPdbofJZOIBhqKiQoOVJtJ4PJ5zLVow4/E4bDYb3yXF43HE43EeR0WCo6A4ujYAbsImrZp2RLRTovfpcDi4wiUZXZQuHDFblOLo4vE4DzynHTC5KsSJns7X6XT9XLuSkUEbEjGbVqvVwuFwwOl0wmq18hgcl8sFt9sNt9uds2ESf0iu5CqgxBGacMlyTePcarXmxNvpdDp4PB6+GYrH40gkEnwOoXPF4GpJLjqdDna7ncvK4/GgqKgoJ95NuYFUzteiq5ZioEiRNpvNAIBkMgmdTsetWfRD4/RwyrDoJqZ7wWKxIBgM8vdOoRuS0UE5hkTvkqhwA4fukXQ6jWQyiWQymZPMMFEZc23AaDSipKQENpsNlZWVmDFjBoqKipBMJrF161Zks1me9QEgxxpEQZDiDiYej6Ojo4MPWIqpIWGl02k+sWo0Gp61ImaIKLOM6HXtdjtKSkq4m7K4uBixWIwrVXTT0N+SwqL8TskVlM1mEQgE4HQ6+QJgt9uh0+l45ibJiBZfo9GITCYjJ9gCU1RUhGnTpsHpdPKF2Gg0wuFwwOVywWg0orS0FB6PB2azmScaiK4Di8UCoC/uYtq0aQD6FlySq9VqRVVVFcxmc797gibq0tJSzJo1C4lEArW1tVi4cCEvsxIKhRCNRrF//350d3cjGo3i4MGDPFZT0gcpKTabDbW1tWhubobD4eBZmeImhZQqUbEBDrnwKYmE4h61Wi0MBgMqKyvhdDq5pUq0alksFm4FC4VC/DniwizG3NE8Lx7TarVwOp04/vjjMX36dGzZsoV7FySFRVSWxDJJlDgWiUR4uAaNYZ1OxwPXKXxDLQ5yIq2n40KpKi8vR0lJCaqqqjBt2jS43W50dnby4HSyNgDg5n6dTsddOyS0bDbLrRU0kNWgwUaBj2azGalUCpFIBKlUij9PvAbtfMgkXVJSwt0LYlzORNawxyviblccXCQ/skw4HA6u/JJ7j3a9ouJL7mKKz5AUDpfLhdbWVlRWVqKsrAxTpkzhCSdUIkXM8qJUeVGpoudks1m+6cpms7BYLDwuixQ00cokpvuXlJTAbrdzJY0sWN3d3dxS/e6772LHjh08HEAutLnQBtZqtaKmpgYNDQ0AkOMpEMtdiMkEhNKFI5ZO0Ol0cDqdcDqd3JVHP5FIhKfVU60yJWJWqGgxIzcTrRkOhwPz5s0D0Bfb969//Ws0vi6JgBi/rFSq9Ho9T0yh2CoKVidr1URmzJUquvnJDGy1WmG322E2m7n5l9x6YgaKWAhQ/AFyFRvlzgkAn3jzKV35FnExI5GsH2JwpqSwkNlflLOIOImr/a1mbcx3vmT4kNWYrIQul4uXLaFacWRVFN2DonudrkPQcYPBwDN4SUFWc9mK7iYa/6SskaWbEhSojp3b7UZJSQkYY7yY7FgUhh2PiFlbYq0hshYN9vtRZmuKv9WeqzbOD3f9fND8LZZ2oHtQMroojRpK2YvlUpTZvjRuJ1IZBZExV6rErLqioiJMmjQJZWVl+OSTT1BWVgbGGLc+kdmQAh3FTBCahGnSpomenqs0JZLQ0+k0LxJIwXHixEGmZq1WC5fLherqau62oEKj0oVUeGiH7HK5+pmTCdFKQb/pb1LCCaXSJRWpwmE2m1FdXQ2Xy4UZM2agpaUFkyZNgtFohMVi4ZYJ0RKRSqVyYmxoPCtjZ8gFRNYRspBQYDRwSAGgQGeSPylrYuwlpe67XC40NTVhypQpOHjwIGKxGGw2G4LBIDo6OlQtI8cSOp2OZ2lSgU81xVVNQVFTeJULJJ0fi8X4vSA+R6yMrnwttbEsbqTE16C1gTbDVFaHnjfRFuyJgDJjW0RM4qJYqmg0yr1EZrOZj2VKfKDnThTGXKmiG95ms8HlcqG0tBTl5eUoLS1FUVER4vE4MpkMgsEgAHBfu+hLJ3OvaFamRZlcQoQoJHIXknlSXKCVu1WtVgubzYaSkhL+fmkHLnc+hUej0XCrAgAuL6V1SRkAKf5WKmHieZLCQS78srIy1NbWor6+HpMmTcoZR6To0IKpjIkRrdLiJoWULcYYT0IQd7fKRTWZTHIXPk3qNDnTtcn9aLfbAQButxuffPIJkskkz0A81pUqMdyBXK2EOL6UZWqUiONVdPHS/UBzr9rzxd9q9crULM3KeC5yIZPFU1l3UCpVo8NA9wIptDQ/iFX1qRsGbZgmYgLJmCtVNNGRmZncPRaLBR6Ph/vTvV4vGGM8LZ58tWIbC6VpEThkhhR3PmIFXprIxWwicWCStcvhcPDaOuSGkAv06CL2WhwoRo4YaIek9tyJal4eL5A8qIdXRUUFioqKuNIjjkvlAqiWJUSyVi6MpFCLu1W13Wu+DDQltIjTcb1ej6KiIlRUVCCdTvNYnGMZsvTTT6EVEVLIyJKkHN9qrmAlopKmdkxtfFPyitVq5Qu6HP+Hx2q1wmazAQDP1KM1WG3cKdsMkQdJ3FCRNYoMG6K8TCYTj7VLJpPcAk2dMsYzY65UkaWKsnpoV1FWVobW1lZUV1dDo+nr+UflEoqLi5FKpdDV1ZUTB6F0AwLgu9lIJMKrrzscDlitVq6gAcgJVKfdLQAUFxfz+lTTpk1DTU0NdDodotEoLygpLVWFJ5vN8srLNBGqFRdU25mKPwBy7gmahGUa/cigCZPcRC0tLWhpaeHucGXQN1mIAOS47cTFlaxDYo+3WCyGcDiMbDbLN110DXEjJGbtkmWL5K/sIUYLAv0YDAY0Nzejrq4OH330EbZt2wav1zu6X+A4hzLwSkpKeBFO0SpF37fSlT6Y8SRaIwdyEakxmPisgY6ZTCaUl5fz1mfd3d0TyrU0Fuh0OkyePBmzZ8/ma3FPTw8vT6RUcsgKrNfreW05rVaLcDiMYDCYkyFPrnkx40+j0aC+vh4LFiyA0+lEPB5HNBrlfXm3b98+rmtAjrlSJZr+xZokdrsdlZWVMJlM+OSTT/huhgq7UWYIVWtVC04XJ1Yq4klZg8o4DioOSiUcaGBbrVaUlpbC7XajuLgYRUVFAMCzGaS1anSgXVAikeC1wdQgOZOs1SrZq8lIWbdKMnRoDFksFlRUVKCuro5/14lEgh+nRZQWZbWaQ6IiTMoz7VKj0SjP/hO71YvuejpPjP2hOYNisgDkWLbp9XQ6HSoqKpDJZNDZ2Smr7AM8uNtiseRsaMRYJKVlWBm3mo98FqmBGKoVmlAq1Hq9noeaUA1EycBoNBq43W7U1NTwDRAZISgsR0Sr1XI3ntPp5N1HyCpFRhCyQIsWbZKd1WpFXV0dSkpKEIvFeHu6AwcOjPs1d1woVbSLpcmPtFByC1J2IO2OxHPF4HSgTxhFRUXchE/Xo9YzGo2Gx0YxxngzXTXLBwBePqGoqIjH99BrigXsqF7SUDJjJPkhdxBVWAZyWw2JKOPp6H4hpVm8h+g+k53rR4Zer0d5eTmKiopQU1PD427EyVHNigj0d+WKCq4yVk6j0fCxJVqqgENjVdnzU23Rz1c/juYQum/sdjvKy8t52yOqj3SsobRUiS5RpdX3cAwUXzPQcwZz/HBWMlICqLAoYwxWqxVOpxPhcHjcL9DjAYpn9Hq90Ol0vJVQvnji4uJitLW1weVy8bmXGt17vV5eNkGpTFG7OYrRpFp3YhFnqmE3nhlzpUrcEYkpu0CfqdZisfAq69SrTRk7RdYtrVaL0tJSTJs2DTabDeFwmLe7EPv5VVRUYPr06YjH49i3b1/eDuZarRbFxcWYMWMGt1TRTUQ3lclkgt1uh8PhQDKZ5JmEkpEhuv/IhKzX67llQXT3MMa4Yk0uXdG9S/cXxcMFg0FVX75k8FgsFjQ1NaGpqQklJSWYNGkSL6IrVkQWFRty+5GsSHFWxjjRTpieS7EcottILMNAVhR6LeX4U7NKim4rquJNc0NDQwNcLhcOHDiAf//738dk0DopzdOmTYPL5eq3oaTvUlR+1ThcALuaxUs8nu96SrcjnaPm9ievAi3mxcXFSKfTiEajMnN7EDDG4PP5sGvXLh4fRWNSrZvI1KlTsXLlStTX16OjowN79+5FOBxGKpXiSSBikU/C6XSiubkZJSUlqK2tRXV1NRwOB98UhUIh7kocz4y5UkWTolgEUKwzI1qrAPXaQ3QNir0RC0HShEjnUQyX0+nMabCbb2GlgDmXy5XjghID7EmTVga5S4YPLbhigoG4QyaU2UD0HLJUibWuRBezcvGXDA2KpaJ4Q7G0iNIFq2a9Ulqq8sXmUHiAErJA0HPEjCKlTNWsVyLiHGSxWHjWsc/nG/cT+GhBbl2yFoiLpxhecThFaLAxUwPJR/m8oSIq74wdqlVGc4RkYMijQ4WurVYr37SSMUOUndPpxNSpUzFr1iyYzWbeyo0y5tPpdD+PE3Ao4aWsrIx7hsxmM7/fstnshEgiGXOlSiypQEoL9dqjzDuyMpAJV6w/QgGtNMjJZUStFGhXTBM+NeHdu3cvnzgjkQhX5pQDnhQ1qncl7oLp2uRWUronJcOHLBvRaJTHuFBLIpKlqBSTDNLpNPfnk+wolVqcSCn4kYKWCZlqPThot+p2u2G323mGLSlO4jhVc+2Jv9UmWPr+xeKvNEaVslF7TLx+PmuIWFSWXBEGgwEVFRUwGo3w+/3HbF9PcfNJczN9FwMpz0Cu0jWQxUnN0qT2t/IcUZYDbWLV3JRmsxnl5eUwm83o6uqSlqpBEo/HedJQJBLhhoSGhgbMnz8f4XAY+/btQzgchtlsht/vR2dnJ6//ptVqUV9fn3MtSmahcVhUVIQZM2bw4sFkzRYt0BNhXh7zGUOn0/HJmVqLkHJClZSdTic8Hg/i8TgMBgNP4ySLBHBogFMxTwA56dGiUnXw4EHupotEIjyoVlm5mxQ76jlGKaGi24D8vNQSQypVhSGbzSIajSIQCMBoNHJZAODKMsWyAX27HLPZjGw2y5VgvV4Pp9PJ25s4HA5eWZlaJlB9FEDWsBoKOp0upzAkBaIC4BmxolKlVJbE71zMBKPfSkuVVqvNiVcUF3TRkim+jlgEVpnQIMZEipYMs9mMqVOnorKyEj09PRNiZzwaaLV9TbCpLReFZwC5Lh81xVVpjVRz9dH/4m/lOcrzlArV4d6/mChB59hsNtTV1SEej+PgwYPHrHyHAmMM4XCYF+Cmn6qqKpx99tk46aSTsH//fqxduxa7d++G3W5HR0cHGOtLDKBm1k6nEzNmzOCB6lT0lTbAFFstehhovIqlVcY7Y65UAYcsDuLkKsZKiS0SRKWFvnyleZ+yxpSxFDQoKROQAhhJAxaz/kRXknK3TCgD1uWup3DQokgBjUD/CsrKHbG4MxUnVbH+mahcK5uzSg6P+J1STKHYSkpMsxetBGqLKTA4RVZtgRWvk8/SqPa6aq4opbJF2cGUbah0bxwriBmZyjEl1pYayHI0mGD2wQa8q6H2mrRGiHOEeIwCp49VK+RwUGbYA31zqMPhQGVlJZLJJFecqB9vNBrN6YBCChTN7aJhRFlEVjl+B+seHg+M+V0lBqqLVicyPwPgLWyopUEqleKTHu1g4/E4t1Lt3bs3R/miIDexqS4FyVE8hWipoptAr9fzWBHR/UDvG+gLWKf3R0HUkqGjZskgpUqt6jLJnWoYUR2yeDzOFWRSuFOpFHcd0o6HAtVljZrBo9PpeOX0srIyTJ48GR6Pp5/SQeOKxjalTYvNypXWKUKpKNE9QPKmayhjp5SuRXEjRRM4Wb3Ewr1iOyoAvFmz3W5HaWkpysrKoNVqeUr3RJjUC0EkEsE777yDQCCA6upqLF26FNOnT8/JxI7H4wiHwzmbE3GDo0TpBQD615sbzPcrPle50IsbYLFPJC3q4XAY27Ztg8/nw6effppzT0ryQ98hcMhKTJ1OqNbX1KlTUVxczDP4xC4KQG4ZFHGc0vhWU4JHonCPFeNCqRLjXYBDShXtFJ1OJ4qKimA2mxEMBpFKpXjVdbPZzMsiUOmEzs7OfoIS46+AvuKBojVMVKoMBgOsVisMBgNsNltOjR0x7oquSe7JZDIpdz/DQG3AAsgp6iou2rSIixX1w+FwToyU6IISe8aJrREoG2iiDdqxQqfToaqqimfoTJkyBcXFxTnZVaJSROZ8xvpSspVJI/Q8tb9FSG5kVVYr7ipmpIkTMVnQEokEH9vkMqYNmvj6FMep0WhQXl6Oqqoq6PV6dHV1IRqNHjOZvZFIBOvXr8d7772HxsZGtLW1oampCcChrLpAIMA3MUp5qJFP0SKGq1CJ1jRKOCCFnjJD6SccDmPz5s04ePAg9u7dm1OyRZIfNa9QJpNBIBBAZ2cn9Ho9ZsyYwUNkaGzReBHPUbNAAblFf8UxPNESwMaFBkACE02AorlZdK+JO1JRSEDublUZTyHuWg73Q+9J6XZQg64tDmDJyBEnamXKvThASWkSlS+aXMX7QfwRzc9SoRoeJB+xbyZthsTxLGbdiucqr6X8Xznpqlky1R5X7mxFRZw2UWIclej+o/uCFlqlkngs3SuM9TWyj8fjCIVC8Hq96O3t5RtO+g6BXAuUGoebE0UXvviYUjlWvr9816J7jxQssqql02mEQiGEQiEEg0GuEEqGB8Uk+3w+HndH8ZViyAb9pjWd5o6B3Ph0jnhfHO4+Gy+MuVIl9mISJzva6dLAEC0P1DQ1HA7n9G6iOA+73Z7jOgLAU0FpwaXsJLEAJC0GQK7SJhYqUwY/krugtLSUp45KhobaYKH7gGpJAYcsVFTnhILN0+k0YrEYgL57gJpuk4WC3H8USE1WKrJUia85EQbtWJHJZNDd3Y2tW7eiqKgILpeLj1NKDHA4HCgpKeFjTVRaYrEYV5CVO1gl4i5VPK7mPhKVbrXHDQYDzGYzD6632+3cukZWbgotCAaDPJFl48aN+PTTT+H3+xGNRo/ZBbizsxOPP/443nrrLUyZMgULFy5ESUkJgNyaY+IcOdRxpKYcK+O1xOeJ4RhinBdlklPohtFoRFdXF959913s27cP+/btw+bNm+H1ernrUnJ4lJXpgT5rJn2vlZWVOPHEEzFp0iRoNBpYLJacUBp6jJKJKFQD6B8rC/TfhA3nnhorxlwDoOA1qpQqWiBI8RGDjGl3THUzwuEwd9NRwLvVakU2m+WtbBhjfGIVzcJimXzRFai0ZtAP0N+CRRO1x+NBd3e3jKkaIeIinEqluAINHFKqqKWQz+fDwYMHeZYnWSMp8FF08dG1gEMNQcUkBeJYXTgHQzabRW9vL2KxGJxOJ8rKyvjYLSsrg81m48V6nU4ngEPut1gsltMuRnTdqCmz+SxEahOrWiwPjV+gLzOU5gdSqsSYLI1Gw/t+9vT0YOPGjejt7cUnn3zCFaxj+b7o7e3FCy+8AK1Wi7lz58LtdmPq1Kk8a5uSiNQWRyVq1gi1/5XKU754GyC3tyeFkpCszWYzOjo6sGnTJnz44Yfwer3YvXs3T+c/luU6FJRxUAAQjUbx8ccfY8uWLZgxYwamTZuG0tJSvgaTO48UXpqjyZWvhhj/prRQSUvVEBD9tcrAQ9EyJO5IRIuSGBAnDm6l+4GO0WRLSlW+2jcajYYHNdMCrDawxVpVE0HoEwWSp5iCm0gkuFtCbMKpBu2iqVWNctE91lw6hUCMSfP7/ejq6uIF/axWK2KxGE/eEIv2Ujo2VcXP59YB1DOAlHIbDMpkFaphR+Pa7/cjFAohHo+ju7sb0WgU7e3t6O3thd/vRyQSkTF3OGQ1BoBQKIT29nbeUgQAj4WlOVltjlTKeyD5Kx9XKlbicTE8RKPR8Ng9jUaD3t5e6PV67NmzB16vF6FQCNFoVMp0mKh9Z7R+xuNxBINBeL1euFwuuN1uWCwWPl/QPSSGCyhd77QBAw61qAPAO6Io4zbHK2OuVFGLCIvFwt09YqYOgJyK61arFS6XC5FIhGcEAeAlFETEwHTy85KpX6xrRSZkKiwpTr7BYBBdXV1IJBKw2+3cXy+eRy106LhkaChjaOg3ySuRSCAQCKC3txderxf79u3j1gNlSi4pwzRIqYovVcsm+cmK6kOHMcY3F8lkEhs2bMCuXbt4OyByvzudThgMBrjdbpSXl8NisWDGjBloaGiAXq/n7lugv5lfjNUCDgWvisfFeDtAPatM3Hgxxvj94vV6+Rywa9cudHZ2IhgMYteuXfD5fIhGo7w/GbXWkBzi4MGDePbZZ+FwOFBbW4vm5mY4nU5UV1dj8uTJPIZJWQaFUFsQDxe3Kj5HvBZtxMkySvfkxx9/jHg8jp6eHh4/tXPnTvj9fr5Blgwf0RVH62goFMLGjRvR2dmJhoYGTJ8+HWVlZejs7MS+ffv4vEFlFMiqTSEaYlFnql1pt9uh1WrR3d2NHTt2wOfzoaenRypVh0O09BDk8hNrDNHf5G4g4ZDWKxYApF2LmFYvuhVFlxINeqXPmAqTRaNRBINBaLVaXspBuYCTH5/ci5KhozZQxKwvam4bDAbR29vLK62LPnvxPHrMZDJxqyUp2WqZhpLBIcqEiuyqodFoUFFRgalTp8LlcsFisaC5uZlbtUipUsZdEaLyJP4WFSrRKk3XImi+AMAta1SCg362bduGvXv3wuv1YvPmzejq6hqNr+yowufzwefzcUsQtfWx2+2or6+H0WjMsSaI4w3AgJsYNRewUqbi3xQOYDab4XA4EIvF0NXVhffffx9+vx+7du3iRSglhUOUqRgv+emnn8Ln86G4uBhmsxlFRUVcsaX4RWrGXFlZyfsH0iaK4jPpNSgOMpFIoKOjg8fBjXd5jrlSBfT3o9L/YmwNuXyUpluxwCAtpmTpElFzKSivoyw2CYAvAKIFTfneSdmT2X+FR1zEKT5K6QoeyNdOCy9ZPMgySj9kfSEGs2uWHB7R4kQTJrnIlUqwWhyNWgyFqFyJqD2XlGigz/UYCoX45Nzd3Y1IJMJdfdRgWzJ4GGO8fE0qlUIoFFK1HIqyJssykKtcqT1G1xFRKy5LkJspEolwt+5EcBVNRNTW0Ewmg1gsBq1Wi56eHuzYsQOxWAydnZ05CSE0fsm6LdavI28ChQj4fD5ks1l0dnaivb0dgUBgQiSMjAulivynpBSJg4zSNilAVgwwFWM2xAJ/apkC4o5YTKcX696IpmvaJSUSCXi9Xu43VmrpZMok16S0VA0dtUBx0QdPmX60MJKbiTJCyWKpdl1SkCn702QycZ8/xQWJrWokhYOK8dJmw263w2w2IxaL8clRXIDJqixarsTgdrXigUD/VjeMMR4sq9Fo0NnZid27dyMQCODDDz/Epk2b+AIsFg2W5EfNhdfd3Y0PPvgAdrsdZWVlOP7447llmOShdBXR+WphEvnGsdr7EMvrAOC9PNvb27Fz507EYjGeEZzv/UuGh1o5hEQige7ubni9Xr5GUm1JGoc0V4uNy6meZDweh9ls5oVDu7q6sHnzZoTDYbzzzjtYv349tzCP95CNcaFUHW5nmkql+ESsDD5XNm6l85RKlWjREl0KYq0jsW4NQXFesVisX/otvQ419aVMB8nQUU50opuHLFW02xFdu2ISQ77BRtemwo/UG1BssQLI3n+FRhxXwKHvX7Toqn33oqVaHI9qbkBlv056rujuTaVS8Pv9vJH6tm3bZCr9MFDOjVRs12q1IhgM9rNUKed0MdYRGJlyo9w8k8UjGo3C5/OpFvVUvn/J8FF+j1QmAegrwbFt2zY4HA6UlpZi8uTJfNyTS54sVeQJymazPHPTZDLxTGOv14v29nYcPHiQX3+8M+ZKldLtJy6Q5PoTU+vp+TQpioHHorIE5ApeWRFWtHaRa0JsYSG6lsLhMPftioHQwCH3H11LLsyFgRZFk8nEXauiyy9fMUmlUivKmxZ4rVYLp9OJRCLBs9LouVJ+hYOKLhqNxn6ZmmqLrtr3L1ZTFs8FkKNQKRdM8blKBV0ydJSWCfpbWfhVrf2Q8lxl6AUxGAuEWqwWtcs5nNU53+tKCotYPqGkpATTpk3jcdBU/oYxBr/fzz1R5H4XK/RTzOxEa3o95koVgH4KFWXXUT2iaDSaY6kCDnWmp95iFGxOVg2lgkXKk+jyI+GTG5E6sZMWTZO21+vlcQP0uuKOmCweZPqWjByNpq9YnN1uh81m44qVWKmbZE73hNKlIE7iYm0Ug8GAiooKmEwmRKNRHDhwoJ9cJUNDzb1CLjYA3HVPx/Jlyaot2moWaLWYHeX5ottJjO0Sj4uuRsnAqFknyE0PHArjUIZaKDe5SvftQK8B5N5bdJ64SQ6Hw+jp6YHf70cwGFS9hpTv6KA29sR6YbW1tTj55JPhcDjg9/u5IpVIJLB///6ceySVSsFkMvHYWavVikwmM+HW1TFTqvKZ/UVISRIDyGkRJUVKdAUqd0Ji2rX4t9KyQQOUrkeB53TtRCLBi5YpJ2Bl0LR0/xUGMbicrFT53HSiG4hQuxfElF6z2ZzTxFtSeETroNrYyYdSvgMttAMlKSjjs/K9vnQLDR9RQaK5T2k5VFOU6W/lmFXKQU22yvk3nU4jGo0iGo3KEhjjALF2mM1mQ3FxMS8GLDazJ6uUGAdJfX0p7k5sLzdRGBOlSqPRcLOezWbrF4ukdBPQbkisZUFuN1J2xN5vdFxUcsi9J1qrgEPKFlm3YrEYL6Uvvidy/9GgVRYZpdiqiST88YxW29dQ2+l0wmq1AgDP/KTJWLRWiI+LiBO8WPuopKQEZrMZ+/fvl4rwKEE7Up1Ox933hyu8SPIii6QYL6mMp1RzIdK9IPbwo5hIyuBVi9+TjAxqGybGOgL5+7op5/h8KMe0sgI/Y31tq/x+P3w+n+znd4RRxj0CgNlsRnl5OcrKymC1WnmNOIrBozlAOXbF+GhK/AIw4Ypqj4lSpdVqYbVaYbfb4XQ6+ZemNMUrg8spHoaeSxYlsWKrOODE51IKvVihGzi0m6bfjDHu/1VqyLFYjLuQxNcg19REE/54RqfTwW63w+PxcJ+6slcfoJ6OrZb9SYss+fSrqqoQj8exa9cuWbC1AKhNrrQR0mg0iMfjXLE6XCNrcdyTpYuuLxYIVFOGRZcfFfmNRCKqlox8C75kaJBiEwgEAABWqxUWiyXHCqGsA3i4+CmldUsM71BaICORCLq6ungVfMmRRTl+rFYrpkyZgqqqKjgcDgSDQR6+Q4U+RaMEjWUa27T22u12HoozkdbVMbNUKV079DhwaIEUNVmlLx045MMX42GUcRdqQfCidqwMlCVNWbl4iztm5Q5LjPGRFAbREkmJACMt1ineV+T2I+uidAGNDuKYEhdFOjbQmMl3TC3A/XCvq4yxFJ8nGTkUoqFmiRwofmowViqlgqW8Pm2SxVhaQo7rIw8pQtSDkTZW+cahMqxD3ECJ+sFEYUzdf3a7nTdeBHIHjJj5RS0w9Ho97HY7HA4HMpkMgsEgT7MMBAI8XoaCJUl4JFBSlMi6RC47NWsHBbYSer2eV1lXKmXi4k83gQx+HR60azGZTLDb7by/mDhpihlhwCFXr9rkLcqKyjGQr1+8B6kmlqhMywm5MDDGeAN0ADnW3sHEzIjlFQbKBlSeJ8ZIUjYSKeiSwkJxTdTx4nAbzMFuQJWxkWqxcclkEsFgEMFgUJZSGAeYTCZ4PB6UlJTA4XDkGE1oLItjmuZkZbgNBahPtLCaMXP/5VOqCIPBALPZzJUq8tXb7XYUFxfnuARoMSWNmAQk7orFdGpSqsTsPzEGKx6P5zRTpSA6ZXA83Rzk+qOgOrEkhCQ/yiBVIDcd1+FwwOPxIJFIwOfz9at6rQxez1dmQXQlAX33lt1uB2MMdrsdFouFK9BiuyPxXMnwIaUqFAr125AoXfzK8wD1JBS1MAHxOF0f6JugaXxOtF3vRIDGViwWg8lk4psX8bga+ZRqtesDyPEUKJUqamGVSCQGFaslGT0MBgOKiopQWlqak2QkbnRE1JK8aF0FMOE2QmP2bmnxVCpUSqWFgk7JciRmAdJEzBjjSpeyds3hFkWxeCRpxmItG9GNQNljYm85es90LWXwvFyQBw+ZfMnsK8pyMHEYA11XudiK/nzRwigZPZSJJPRYvu9dqYApFWXlc5VjTam85YvDkowccZ4c6nmHU34Gcv+J64Nag3S5KRofiHIT123l34RoZZ5oyvGYWqpsNhtv7SJmdZCVKRqNIh6Pw+v14uDBg7xFiU6nQyaT4cXeUqkUrFYrtyaJwYzKuCdx1yMKjsrmm0wm3hKHBC72lQoEArBYLLBarf0aKBuNRng8HpSVlfFidLLY4OERF1qyYDqdzpzaYqLbT0wgGMj1Q3+LCpnSumGxWOB2u3PuOTkJD53BWPaUkyM9Ty0mUszyyxeQLo5ttYmXHjOZTHA4HEin0zKZZJRQls8g1CyHaoqREqVFSrkAixvdWCzGGz3H4/F+15KK1ZElm83ytkFkqCBjBf2I6zT9LYbpiB0vJtqYHbOYKrEXm+jCowmV6lnEYjEEg0F4vV7E43GuiFFZfBpEFosFFouFV8lWxsYoA1tph0zuQuqqbbPZkE6n0d3dnWMZo3Y11HtIvFnomgaDAU6nE0VFRWCMIRgMSqVqANQsCyaTCTabDRaLJceKSQNP2ZZEDeVx+l907ZHsacHNZrMIhUKj8CklaihdOvQYWZ2B3LgopUVDVOKUFmmlgk2FfePx+IRzJUwURKVKqTCJmV7i4wNZqZSWaVHJUlo2kskk7wsnmyiPPVSiKJFI8PEnlkcRf4BDYTtizCTNzdlsdsJZq8a0+KfaQCPIR0+1LWgw0QBijPHAZeBQkLnYCVttpwMcam9Bv2nBTiaT0Ol0PO1bLBRJwfKH+0yiK2ki3QjjAVK2xVg7tdg0cTJWW0iVqO2MxXvBbDZzK6jc1Q6ffN+dWjzFYK1Z+R4fSEZqrkHp4h19Btrs5FOi8ilW+eQ7kAtJxrGOH5Sufhr7tEESSxCR90ncMFOFdbGJ+kRhzCxV4pcJ9E+Xp47joVAIfr+fD5ze3l5EIhG+GFL8EhX2y1dFnbRhUpLEfkJkruzt7YVer4fP5+O7HnJF2e122O12VWVJXKCptUo4HJZK1RDR6XQoLi5GbW0tiouLYbPZAKinUSsnV/pbdAkB/Svp0/Mpk5MK1ZnNZni93pzrS/mNDDGWScyQzTdJillC4nExm1a5SVJbyJWPkaWKOiNIuRYecdEUF0/RbU+/xTFL/w9GJkpLFT2m7LghGVtIJuSlETPigb452WAwqNYcpDkglUohGAwimUxOuJCMMbNUiZop0H/hTCQSCAQCCAQC3MXHWF+ht0gkAr1ej6KiIu4qjMfjPIOLFB9x8JH5kSxUVDWdTNZiRWBq8JhKpaDX6+F0OuFwOHgRMqXbj35TViF15JaT99DQaDS8rYHb7c6pgK+GUqFSU7yUx0VXIiVLkPtP6bufSAN5vKK22NIGRxw7yjg4ely8jihjMQZT6QpUQuNSTIyRFBZxXsznjlXKUPn4cOZLut5EtGgcrYjzLJDbCo6OKbubKJVhKtZM6/BEkuuYFv8Ue/uIBTQpgLikpAQWiwW1tbVoaGhAPB7PSbUkhYhKIJBmrObyAw5ZLcSeQ+QudLvdqKurg8vlgtfrhcvlQiqVQkVFBaqrq+FwOFBVVQW73c7LMYjXV5o4JUOHKu273W44HA5eG2wwk2W+CVlUpgkayGSGpjg62QewsOj1ephMphzXudqCKio6h3Pz5ftfGW9FMgYOWZDJxSsZHZSbTTWXu6hwDSYuMt+maqDNlmRsoTCdeDwOu93OS+SIBozu7m74/X4YjUYUFxfzljR0T1BZDjH2eaIwZkqVwWDgGXSkWNEXqNVq4fF4UFRUhEwmA7vdjurqamQyGTgcDthsNgSDQWzatAl79+7lfZ+UdYyUr0m/Y7FYP6WouroaS5cuxfTp09HR0YFPPvkE8XgctbW1mDp1KiwWCxwOB+x2OwDkWDvyuTkm0o0wHiD3X319Pb8votFoTruTgVCzMtGiLTb0pfg5KqNRXl7O3bZSZoXDaDTC7XbzxANx9wqo1xZTuvlEeeSLmxEXcvqbXLz0PoqLi3k/MTUZSwvlyBA3lKIypFasl54P9FeORPe9qBwPpFhJeY0vqBir3+/n4588Q9lsFsFgELt378aGDRtQUlKCRYsWYfLkyQAOjb1EIsELe4uhOhOBMa1TRTFVyuJgFLBsNpsBgGfzMcbgdrvhcrng8/nQ2dmJ3t5ebsEarD9d6csF+gRXXV2NadOmwWaz8Tituro6TJ8+PceKkc1meXNl5YQgrVXDh2KcnE4nzxgRffNDQW1RpsfFxVmr7WvcnE6npSJcYKgqMrnDgf4tS5TFP5XWDaC/wqPmFlQ+T3wteh9URDgfMklh+KiFRSjduwMhPkd5rcOdB0DOt+MIMfuPsvdEd59Op0MoFMLBgwe50mwymfj59LxkMjkh5+Qxdf+Jyoc4OOiLJOXHarWiqqqK/22z2aDVajFlyhSkUimUlZXBZrMhEAjk7JDEgSYuzsqaVQAwe/ZsuN1uvruuqalBKpVCSUkJD7QTgyHV0n2BQ/0I5SAfOqRMWywW3tNR9LeLO2F6/kA1jJQLpFj8kQLVyXpBwZOSwkGZnA6Hg8tU7NUJHCr+OZAVSlkgWG0jI6JcaGmDJpZCkRQWsWo9gH7zZD7Fl44pFWelO1cpZ6XSJgPUxwY1N200GsWBAweQSCRQVFTUr8xGNpuF3+/HwYMHAQA9PT3o7e3l5XRo/ZyoGZ1jGqhuNBpz0tjJLUixTuTOc7vdqKio4C42nU4Hl8uFeDyOkpISXmYhmUzmFBejRZexvjYZ1BdKWcmdMYaKigpUVlbyeldlZWU575eC2tWKy4lBs+Q/FoPwJYODMjOpX1QwGMyxBopK+EDfrZr1Q1TGyP0HgA9kSl6QMhseoqJL8jKbzfB4PHC73dz6SAVdxckyXwkUIHeTRZZL8bj42srCv3S+1WrlsR0Wi+UIfBvHFqT4klWSNsTioiha8QeyYKkdU1OoxL+V1mfJkUM0UNDYCwQC2Lp1KxwOB0pLS5FIJGCz2bgcM5kMOjs7sX37doTDYezduxfl5eVwOp2wWCwwmUw8m1+tSv54Z0zrVKlZqpQxFMChQFPRTUi7YLfbjUwmA5vNllP9XKlUxeNxxONxrvgolari4mKYTCauuFHqNZkx6blqi7Ty/U+0wLqxRpxwydJHj4nft5iGPdzXIMRrSUV4dFDWeMtnWVQqUsrkD+WPEnHxpfPFxVVsH0VuZenqKyzihjefO3ew7rx8z1OzVEkZjj/S6TTC4TCAPquVWhY+lUqgWpSxWIyH+4jWr4moKI9ZmxqTyZTT6kW526C2MPQ4BYWTCyedTsNkMqGoqAjAIUGkUikuSHo+gH4VXmnHTFYtq9UKvV7PA1xDoVC/HTRZwoBDg18MgBZ3ZJLBodH0lVEgBdlut/PUW7IO0vMGKhwpLsRqbiLlOeJgJSWakhEMBgOPmZMMDjWZmM1muN1uFBcXw+FwwGg05iy6QK6yS3IXryeOYXGsiQHQSheE8r1QIeFEIgGz2YyysjJEo1GEQiFVy7Nk6FBXCtqY0jypDGBXuvXUxqhyg03XUFqj6HF6bbq/JEceUY6JRAI+nw+xWAyBQACxWAzxeJzHVopxUqlUCj09Pdi7dy/S6TSmTJnCj4uW54nEmLapoVgLccDQIppIJBAOh5FOp3nrGVr8KOiVgk8pk9BgMCAejyMYDPLAY1LCqOWMqFSReTGdTvPBmc32tb/x+/1IpVI5mXzKuCx6LF/1WMnh0Wg0sNvtqKqqgsvl4qUUKJ4qlUrllNEAkCMDETGObiDFiwYrvT4NdJvNBpfLxXtISqVq8KjFQpnNZpSWlqKkpAQul4v38kokEv0WRhHlzpYWSronaDMkFvQVN2ZKxYpcyLFYDBaLBZWVlQiHwzwZhd4H/Z5ok/h4gPqnWiyWHAWXXIOiQiX+rYy5IpQKlWjBUt47BoMBZrOZb4wlRw61TUwikUBPTw/0ej28Xi+i0WhO317RI5BMJtHZ2cl7ANO6TTrBRKw/NqZ3oFIZAcB3OeIEqYyVEBUXcVIlgYnlGcSWNPQ6YssKcfDTe6LXU5ZNyGf5EN+PbFMzdGhSVGsFNFQTv7KuyUDnKidnUtrJRSQZGeT+oyB1IDf7b7DjQ83yKKK0fijPFS0ctPin0+l+Vg2pUA3MYL4fNcVH/D2cayqvrfa4stahlOORQy0ekjatYrV7Nbc+Y4wbTShbULzuRGRMlKpMJoNgMIiuri4+sVkslpygZDL/qVVOJrM/ZXBRULter0c8HkcoFOLWJ6XiRXFSVLsoFovxyumUcq3cAYvuCXJRiFYrcmUWFRWhurqat7qRpujDo9Fo4HA4UF1dDbfbDavV2i/rTxl/l2/SFI+Lz1ErIKd0IwGAzWZDWVkZwuEwotEojwuQDA+qL0dBqOJmKV+MG5CbzUUWZnqcNkJiALsYHylO3jQ+KT5Sr9fD7XZjypQp8Pl86OnpQXd39xH5LiY6h7PkkWWX5mTlWMynbKldS7R0iY+JbkARk8kEp9OJbDarKs+JujhPBA634UkkEohEIgiHwzkZwORl0mq1fK0sKiri94/y+hOJMVGqstkswuEwenp6eH83+oIp/XKgQThQaxLRbSgOZpPJxNuQiK47yhqkOlRGo5EvwuL7EK0ZolmSzrHZbHA6naioqIBer8eePXukUjUIyP1XWVnJsz/UTL6iG0DkcIOO7pVsNpvjhhB3V/Qcq9WK4uJiGAwGdHZ2FviTHntYrVaeVUu138TEAyJfKyGlkkSbGjqX5EnjmRZ2Oo/mEtFa7Xa7UVVVBbPZjJ07dx75L+UohUI3UqlUjldAbTOTTzFTWrWUm2lRQROvaTAYYLfbkU6nZW/HI8zhlKpMJoNoNIpIJMLbylEzZcq2plCb6urqHKUqX4zkeGfMlKpYLIZgMAiv14vu7m50dHTwiU+cOJUuGuWAERdINXdivkGcb+CpxXqonSvujgOBABKJBLq7u3nNjUgkMuFSQccK2rlQkKtoPVKT01AGGV1PGSirVNJJ6TKbzYjH41IhHiQDWRyobIpY/FOcKNXGsvi3msVCHJ/KCX0w94XRaITVakU0Gs1R7IZyjWMV5TxKm0wqjaO07I/k2od7rvga9B7ofYhIeY4+A33Hyrgo0etDhgwqVZRMJo+KNXNMlKpkMok9e/agt7cXe/bsQTKZxKRJk1BTU4MTTzyRZ+eIgevKTtdkzqdFk8ookCZME6YyC5DOo7gZskyJSpJGc6helmiREt1Qdrsder0efr8fr7/+Orq7u9He3o5NmzbB5/Ohu7sbsVjsSH+1Ew6Npq/PI2WIkQuXrBpqNaeU5wO5FkxxsVTG3il3ulQdn1ogVVdXw2q1Yvfu3UfoG5i4KN2sSoxGI1wuF9xuN4D+jVbVLJFKRIuTeA16XbI4E/mUNrKOud1uTJo0CQaDgdfOUcaDSAYHdT+wWq1wuVw8A0+UgZryLDIYBUy8hjIEgDEGq9WK0tJSnrCk3FBLxg4KsYnH43wtNxgMcDqdvIZVJBJBKBTiFqvBGkDGK2OiVKXTaXR1daGrqwvd3d3IZDIoKSnB3LlzMX/+fB7bJFosyHolFvYkqxZNvMAhK5I4CJVmY6qFJF5XVMJI8aIFgK4tKmYUWN3b24stW7Zg27Zt6OzsxJYtW3hld8nh0WgOZYLa7XZotVq+YxHN/2o7mMEONmV8HMmc7i9SyE0mEzweDxhjOW0TJAOTT7GiRc5ut/OSJmpWJ7pGPveOWMZELTSA/la7H5SKH7l4k8lkPxnLMZsftbgocrvZ7XZYrVZuKRpua6l8ryXKTxmWAfQp706nE4wx1aboUq5jB2VwUzkimoupfI1Op4Pf70cwGOR9XvPFXU4Uxjz/lKw+Yo0ienwo5mRxp6k2AQx0jpqbTxlLRZBVS5npJ15DDuKhIWbdkeVBXECVLruhcLhzSGmm2Bux3s1QXBKSPmhDIiquYvaPWtsSZcwMkBu4Lm54xPGldBeK11Van0RFwGq1wmKxSBfvEFGOBVKqnE5nTjeCgebAfHFTh3vdgeRLxaGTyWS/VlNy/I4tNP5pDiBozhfHtmhEUatrNlEYc6XKYrGgtrYWM2bMQF1dHe9mT645xli/popqAWzihC1ateiYmttH+bioHdOEq4zvymQy3B9ss9lgsVj4Dm0iNn8cD4g73mQyiWQy2W+3IirXyntB/E3H1eJzxOfRY2SeBvp2vMXFxchkMqo7XsnhIVlSLFUymUQsFssJUlfKQEwgoHEoJqyQLCi7jFCOX3FeEF9LLI3icDjgcDiQyWRgtVpVP8NgNmTHGmqxqXa7HTU1NXC73fB4PHyupHky36ZETRmmv/O5Ygea761WK8rKymAymWC32+UcPE5grK/dXDQa5VYoAHxtt1qt3N1HWb7KdZw2aBNJpmOuVFGac1lZGdxuN3fLie49Na1VbcApd7BKQRxuJ0UCVU7ytOMWJ2vRuqK0VkkGj0bTF79GhSGVKfTi8+i32qKXb9AN9Dgt4KS8kUtXrV6WZHDQhEnfIZn/lWOUFmk1a7RynNFxtfsC6K9kK5U38fmUBUzFggdCWioHhkoZUCmUfIH/Q41tUipX4jXV7iGKj6PCkRNpAT7aEbNClbHJpDDR89Q2XROx3uOYrxw6nQ5Wq5WbkKnNDDW8HSgDT21nKh7PZz48nLKlZtkSn0PBzdFoFJlMhqdpx+Pxw07Ukj5IaRZ77ikn5XxK9EAWq3yvpfxfXKhJqaLqzEajUSrIw4Qq09tsNl7hmuIelaUTlFmeygQDcfMCICeLSGntUrrrSaaE+HrKUihU506ZcSoVqlyUYzCf+09t7h2qYjWQ+1A5T4glFWQs5PhCmf0njn1lUVDg0BinJCWpVA3nDej1KC4uRmVlJSwWC3cVRKPRHNeA+MWLGWFKt4I46MiNqDagRSuU0r0nWsbouGipSqVSvBZWOp3G5MmTYbfbkc1m8d577x25L28CQ2UUyH0qulnzLbTKHSo9R0m+BZegXRINeKqtQ7EZlCghGTpGo5G3pSkqKuIxahSoKio3NIbFnas4XknJFRdsMfZCdA/T8Xzjne4JcjGQ+8/j8SCRSMDv9/PeoKIVUypWfah9D1SHrLS0FE6nMyczT0zqEa8hyjzfa+TzIgCH5AscmicsFgtvL0VtcpQMdgMmKSxiUVhRsUqlUkgkEjn9dGkupsrqlKU/0ebiMVeqKD7JYrHAYDAgk8nkfNFivAShHCBKC5N4nvL5+VAz9SuvJQ566kmXzfY1Y2aM5QTaSwZGo9H0C/QfSE6inz3f9YaC8vUoBkSZDSoZGjqdjivLJpMpx32nRIybA9DPukTjTizeebg2JGoxOvRaAHJifagIIe2KldeYaDvkIw1lcSldqQPNvYezWB3O4qymHNE9R31gBzpfKlRHHtq8Kl3CovVafK7apnoijcUxV6pEKLBNnGxFi5S4+CpddoD6ZKgmFFEJoxpWYoCc0nevXBTErCaKwVIrPCfJj9FohN1uh81mg9ls7ndcuRsVH1daogiStVo9KvGaatcTLZO043U4HLyh90hSxI92xO/VYDDA5XLB4/Go1oECkKO0in+LdefESvhkQRKrpYsNlUWLtJo1EzikTImWEorFAfor63IBPjxiuxHl3Hc4xUk5Z6udJ8pAaeESr0EldcjiTPFd4uZcMn5QWqbz3SvinDyRGBdagNLPSpotfaHiRCpWZ1bGVygRBaJ0I4kKEwXUim4FUemimlXkEgAOmTUpG5ACrSfaDTBWmEwmXkaDLHzKWBa1Xa1ozVDbEStduuL16G+l9UIsMkoZJ1TmgxQqOTn3R81dQxmU1O9P6ToHcmvDiW5fpRuP5oN4PA4gN6aKXAWiBYuuIb4nGrNqrkKz2QyHw8HfE5HPbSzJhcpT2Gw2XixZGZemtqlReh3UvuvDnS+6ZjOZDBKJBFKpFC8sqdfrEQqF5LgdY/JVSKd5Vi2xQC3UZyIx5hqAcsETfystUoSa1SnfNfMJRHmeuKNWO6b8Ub7PodbVOtZRuv+UDKQsq8lI7fr0XPE85d9q16CFWmy/IRkc9L2RKyZffMtALkEgtx+guOFRyj7f73yIr01K3VBDBY4lBrIiKGv1KY8PJN9CId4P5DWgZBMZinHkUZO5OHbF5+ULDZjoY3BcWKrIfEu1bQwGA8/IIWuFGExObgBlUUG1CVnNXaQMmBWfS7thskKJk61o4iYFityV6XSap+Nbrdac9y/pD6XeUwxEOp2GVqvNKamgRIy9AXJr1Sj/FmPy6LeoaInBkfTaYoE6q9XKS3wEg8GCf/6jATG+ib57g8EAj8eD8vJyuN1uPp5FV50yE5AQ3XOiJZnGvjKLSG2zo3YNUu40Gg2/5yjeS4kcr4cQx444h5ISZTabeaanwWDoV/tPvIbyOuJjA2186Xe+H/E6BoMBpaWlmD59OkKhEHbu3IlIJNLvdaSMRwe1+yUej8Pv90Ov1/N6gBSL53K5kMlk+LpKoRcmkwmJRIJbqcU2VROBMVeqyNVHShUpJslkkpvuxS9UdNGpLcD5/O6iWZrceuJzxIWBguVpoJJGLe5q6W9yDdIkQ3FCsVhMtY+RpA+xfAHFywCHCjyKMlTGwihlqkStGrcyyFmpRItKOgDYbDZe0LCrq2vUvoeJjOiepx+TycTdf0VFRf2C1cUNEG2Q6DtXZt2K1iTgkAJMr632oyZjsp4NRqkC1AtdHqsoFRHROkVKld1u58+h7zufdVdNgRKfqxZDqVZ3TE2p0uv1KCsrw8yZM+H1etHV1YWOjo6894WksKh5kJLJJPx+P7RaLaLRKF8rLRYLnE5nThV82mhTSRtqb5Nvkz1eGXOlKp1OIxQKobe3F4lEAiaTiS9utNhRujtBghEHYD5Ts3JXC6j7acUAWZo4xBgbpaJG2nMqlUIoFEIikUAoFJpwWvVYIZrpxaq5JGuleViUV75JWFmSgV5HueACuYVexbZD9D9lsMXjcen+GwKZTAbxeByRSITXDqJEECA3znEgi5OaUkXn0HXEDY6oPNPzxJYXFFMVj8eRSCQQDof53xTHKSLHcB9K5VJ024tjR/kcAIMeN2pjW4yBE/8XUZbPEEtwmEwmVZeklOvoovyOk8kkotEozGZzTpcEmv+VMVUkc9HYoqxlNd4Zc6XK5/PhpZdewsaNG1FcXIzp06fD6XSiqKgIFRUVMJvNKCoqgtvt7rezVEvJVFqn1KwZ4iQsDmLxesrA10wmg0gkgmg0ikQigY6ODgQCAQSDQezatQterxcdHR04cOAAwuHwhLsRjjQWiwWVlZW8mr7L5eITNblrxOwQZZV7Qm0yP9xulCxUZFmhzvbFxcUoKiqCwWDApEmTkEwm0dHRgd27d4/ulzGBUX7PPp8P7733Hvbs2YOZM2fyZtmiguxwOGCxWACgnyWaIOuVuKFKJpM5bWqAQ7tbZQFZsbhgJBJBKBRCMpnEwYMH0dHRAZ/Ph02bNmHv3r282bPyMx3r41fNdWcwGOBwOHiQP1WoJyWWlGC1gr5qrvp8r0fPUypcdN1kMol4PM43RlT002azwe12I5VKyUKgR5B8c7Pf78f27dvhdrsxf/58bnUymUyw2WwIhUKqmaPpdBqBQAB+vx+xWGxCjcUxV6oCgQDeeecdaDQaVFZWoqOjAx6PB3V1dTw9u6ioCE6nk5sJlTETIsp0bPFvQpzgKWZDGZclugTFyTkWiyEcDuPTTz/FgQMH0N3djXfffRcHDx5EKpXixUsl+dFo+lrClJSUcEXGbrfzwaVmtRKDYfNl9om7WlF+Sveu0l1FzXXdbjccDgd3I1CVbTk5q6Nc9IC+8bx582ZeqqCuro7XcrPZbFzJcrvdea3LNObIIk3ypmKB9DwAvAm2ODfQpEyuxXg8jmg0inA4jJ07d2LLli0IBALYuXMn2tvb+70HsTCpJNf6QCULqGK+WEqG7gfR8kzjWNzIiH8rX0d5T4hzNCnQWq0W8XicX4csZ4wxXgolFovlTZSQjA7KWDrGGAKBAOLxOJxOJ7xeL5c5la1RK7RM4SChUAjBYJDLeqIw5koVcEjhicfjCAQC0Gg0sNls2L9/P/x+P/etipkmatYLNfdPPkRXEN0AynRt8gmTi8Dr9cLn8yEajaKjowPd3d3wer2IxWI5FaMlA0Pu03A4DJPJhGAwCK/XC71ez10yQK7rDujfuVxUrJWNr5XWBuXumP5OJBKIx+M5Azkej6O9vR3d3d3w+Xz9rCOSQyi/Z6orpdVq4fV6sX//foTD4ZwikYFAAG63O6ekQr4xLI5TsXsC/S26/8Qig1SZOZPJoKenB11dXYhGo+js7ITP5+OWq4GsmZI+lPKl7zYQCGD//v2IxWI57kBScimWTezvRtc7nKVKdA3TMY1Gw2uWxWIxXjKBNrHJZBLt7e3o7OxEb28vX4yVsVRStqOLct4lN57oytNoNKruPzpHrRL7RGFcKFVEKBTCjh07YDQasWPHDnz44YfQ6/V8Z6TT6bjrgOqRWCwW6PV6/ptioGjCFmOjaHBTDIVYayqbzXLLRCQSgc/n40F2Pp+PF4GkwDnSwBOJBHw+HxKJRN7JQtKfQCCAHTt2oL29Hb29vejo6OCDTCzGSoOSFkjlAKSFVcwkJJkr46gIcXL1+/3w+/1cvvF4HMlkEj09PfD7/YjH4+jt7T1i38tEQi3OJZFIwOv1QqfTIZFI4MCBAzlxc3q9Hi6Xi1utxDFMSpfJZOIWQ5qQNRoNrFYrLBYLGGOIRqOIx+NIpVJ8LMbjcT5uY7EYgsEgl2s0GkU6nUYwGEQoFOLnKZlIk/dooybfZDKJ3t5e6HQ6vPPOO/D7/bBarSguLkZpaSmvU+ZyuWA0GuF2u3kRWLHkTL5xSb9pARbnaMoGI6+B1+tFKpWC1+tFT08PEokEDh48iM7OTsTjcXR0dPDrKYPdJYWFvmOlhZcUInLXhsPhnFqANpstx9JJSWKxWAyBQABer5cHuE8UxpVSlUgk0NnZmfe4TqeDx+OBy+WCyWRCSUkJHA4HdxPSwkq7I5qgxUwzxhgvFEeuAfHvdDoNv9+Pzs5OJBIJdHV1ob29fcJlIIx3yNpnNpu5MkMVrqnCOskllUohEolw148y2BwAzxqlASsGn6sVhqTzyIqRSCTQ3d2Nnp4epNNpRCIRXnRSkh/lZEcLHgAEg0F8+umnOce1Wi0cDgesVmvOGDYajXxc2+12lJaW5pRWAQCPx4OioiLuViB3fHt7OwKBAMLhMNrb2xGJRBCJRLiVWzJ8lPIlCzPQp2B5vV4eg1hTU8NjJcvKymA2m7n1kOZgcg+queZE5Yfi58Q5OplMIhgM8kQDUqT279+PPXv2IB6Po6enB729vf3et6iwSUYHte9YtFSR5Yni4JQJBaL8KZQmGo1OuCz6CZvWlG/QDGQpGkgwasfkzubIU0h3zGDPUXMLSLmPHoNZ4AYji8O5c6QMRx+lnEbzOz/cteV8LRkPaJi8CyUSiUQikUhGzIS1VEkkEolEIpGMJ6RSJZFIJBKJRFIApFIlkUgkEolEUgCkUiWRSCQSiURSAKRSJZFIJBKJRFIApFIlkUgkEolEUgCkUiWRSCQSiURSAKRSJZFIJBKJRFIApFIlkUgkEolEUgCkUiWRSCQSiURSAKRSJZFIJBKJRFIApFIlkUgkEolEUgCkUiWRSCQSiURSAKRSJZFIJBKJRFIApFIlkUgkEolEUgDGhVLV1taGUCikemz+/Pl45ZVXDnuN5557DvPmzYPJZMINN9yQc+zuu+9GU1MTmpub0dLSgoceeijn+O23346pU6di6tSpuPnmm/njP/nJT9DW1sZ/nE4nvvnNb/LjmzZtwmmnnYbZs2dj9uzZePLJJwf/oY8hCiHfgWT41FNPoaWlBW1tbWhoaMDNN98MxhgAIBaL4YorrkBTUxOamppw7rnnoru7GwCQzWbxzW9+Ew0NDWhpacHixYuxc+dOAMCePXug0+ly5L9r164RfhNHL4WQ8W9/+1s0Nzejra0NTU1NuPvuu/mxgeQfiURw5ZVXorm5GbNmzcJ3v/tdLv+BZAwAe/fuxTnnnIOZM2eioaEBv/71r4f5DRzdFEK+RFdXF8rLy3H++efzxx544AG4XC4+1hYvXjyoYwDw6quvYsGCBWhsbERDQwPWr18PAHj33Xdx4oknwmq15ryW5PCM5ZwN5JfpQGN93MDGOfPmzWPr1q077PO2b9/ONmzYwG6++WZ2/fXX5xxbu3Yt8/v9jDHG9u7dy4qLi9nOnTsZY4y9+uqrrKGhgYXDYRaPx9m8efPYs88+2+/68XiceTwe9t577zHGGItEIqyuro699tprjDHG0uk06+rqGsEnPTYZrHwHkmEwGGSZTIYxxlgikWALFixgTz75JGOMsbvuuotdeOGFLJvNMsYYu+qqq9i3v/1txhhjTz31FDvuuONYMplkjDH24x//mF188cWMMcZ2797NXC5XwT7nscxgZUzyZYyxQCDAJk+ezD744APG2MDy/6//+i92+eWXs2w2y5LJJFu2bBn7v//7P8bYwDLOZrNs7ty5/LmMMdbR0THyD3yMMVj5Eueffz5btWoVO++88/hjq1evzvlfZKBjBw4cYDU1NWzLli2Msb552ufzMcYY27dvH3v77bfZvffem/d8ydAZ7Tl7IJkONNbHC+PCUqXRaOD3+wEAb775Jt+pXnnllUin04O6xowZM9Da2gq9Xt/v2JIlS+ByuQAAkydPRkVFBfbt2wcAeOyxx3D55ZfDZrPBZDJh1apV+Mtf/tLvGmvWrMHkyZMxb948AMAjjzyChQsX4uSTTwYA6HQ6lJaWDvmzHwsUQr4DydDhcECr7buV4/E4EokENBoNf+1oNIpUKoV0Oo1wOIxJkybxY4lEAvF4HIwxBINBfkwyNAohY5Iv0LcjTaVS/P+B5P/RRx9h2bJl0Gg0MBgMOOOMM/Dggw/y95VPxv/85z9hMplw8cUX89cpLy8f/pdwFFMI+QLAH//4R9TV1eGUU04pyPv6f//v/+HSSy/F7NmzAQAmkwlutxsAMGnSJBx33HEwmUwFea1jibGcsweS6UBjfbwwLpQqIplM4pJLLsGdd96Jjz/+GF/4whfw0Ucf8eP33nsvfvjDH47oNdauXQufz4cFCxYA6DP/19TU8OO1tbXYu3dvv/P++Mc/4stf/jL/f8uWLTCZTDj77LPR1taGK664gruVJOoUSr5KGQJ9A7+5uRllZWU4/fTTcd555wEArrnmGjgcDpSVlaG8vByBQABf+9rXAADnnHMOTjvtNFRUVKCyshL//Oc/cdttt/FrRiIRLFiwAHPnzsVtt92GTCZTqK/iqGWkMv7rX/+KxsZG1NbW4lvf+hbmzJnT7zlK+c+bNw+PP/44EokEwuEw1qxZgz179gAYWMZbtmxBaWkpPv/5z2POnDm44IIL8MknnxTw2zj6GIl8d+/ejXvvvRc/+clPVI+//vrraGtrw4knnojHH398UMe2bNmCWCyGpUuXoq2tDV//+tcRiUQK8EklwNjM2QPJdKCxPm4Ya1MZY4wBYD6fj3300UestrY251h9ff2QTMu33HJLP/cfsXHjRjZp0iTusmOMsbPPPps98sgj/P/nnnuOnXLKKTnn7dmzh1ksFtbb28sf+/rXv84mTZrE9u/fz7LZLPvud7/LLrzwwkG/z2OJQspXTYYiXV1d7JRTTmGvvvoqY4yxp59+ml100UUsFouxRCLBvvCFL7Cbb76ZMcbY22+/zZYsWcJ8Ph/LZDLs29/+NrvssssYY30m587OTsYYY729vWzp0qXsZz/72VA/+jFDIWXMWJ/7ta2tjW3bti3ncTX5R6NR9o1vfIO1trayRYsWsRtvvJHNmTOHMTawjH/xi18wu93OPv74Y8YYY/fccw+bN2/eUD/6McFI5ZvNZtlpp53G3nrrLcZYf5ded3c3i0QijDHGtmzZwiZNmsTWr19/2GPnnHMOmzt3LvN6vSyZTLLLLruM3XjjjTmvPZD7UKLOWM7ZA8l0oLE+XhhXlio1yCQ4UrZs2YKzzz4b999/P3fZAcCUKVPw6aef8v/37NmDKVOm5Jy7evVqnHfeefB4PDnnLV68GNXV1dBoNPjiF7+It956qyDv9VhiKPLNJ0OR0tJSLF++nO9mf//73+OCCy6A2WyG0WjEZZddhnXr1gEA/vznP+P000+H2+2GVqvFypUr+TGTyYSysjIAgMfjwapVq/Daa6+N5KMeswxnDNfW1uL444/Hs88+yx/LJ3+LxYJf/epX2LBhA1599VWUlJSgsbERwMAynjJlCubMmcOfe/nll+ODDz7IcTtKDs9g5BsMBrFx40Zccskl3Ar50ksvYcmSJQCAkpISWK1WAMDs2bOxfPlyvPHGG4c9NmXKFHz2s59FUVERDAYDvvCFL8h5eJQZ7Tl7IJkONNbHC+NKqZo1axbS6TSf9NauXVuQjKutW7di+fLl+P3vf48zzjgj59jFF1+MBx98EJFIBIlEAvfffz8+//nP8+PZbBarV6/Ocf0BwOc+9zm8++67CAaDAIDnn38era2tI36vRzMjke9AMty2bRuy2SwAIBQK4bnnnkNLSwsAoL6+Hi+99BIYY2CM4bnnnkNTUxM/9vLLLyOZTAIAnn32WX6sq6uLL66JRAJPPvmkqitKkstIZLxlyxb+d3d3N15++WUux4HkHwwGEY1GAfS5mO655x7ceOONAAaW8VlnnYX9+/fjwIEDAPrG8OzZs2EwGIb78Y96hitfl8uF3t5e7NmzB3v27MGdd96Jz3zmM/jnP/8JAFwGANDZ2YmXX36Zj7eBjl166aVYt24dEokEAODvf/+7nIcLyFjM2QPJdKCxPm4Ya1MZY4dMjYwx9sYbb7DW1lbW1NTErrzyStba2spNjffccw/7wQ9+oHqNtWvXsurqauZwOJjdbmfV1dXs6aefZowxtnTpUuZ2u1lrayv/eeGFF/i5t956K6urq2N1dXXsu9/9bs51X3zxRVZbW8uzx0T+/Oc/s8bGRtbc3MyWLVvG9u7dW4Bv4+ijEPIdSIY/+tGP2OzZs1lLSwtrbGxkt9xyC5dXb28vu/DCC1lDQwNraGhgK1asYN3d3YyxPhffVVddxWbNmsWam5vZGWecwXbt2sUYY+yJJ55gjY2NrKWlhTU0NLCvfe1rLB6Pj+K3NLEphIyvvvpqNnv2bNba2spaWlrYb3/7W35sIPl/+OGHbPr06Wz27NmsubmZPfHEE/y8gWTMWN/4ptc75ZRT2MaNGwv8zRwdFEK+IkqX3Pe+9z3W0NDAWltbWXNzc47sBzrGGGN33HEHmz17NmtqamKXXHIJf5/btm1j1dXVrKioiJnNZlZdXd3vXIk6YzlnM5ZfpgON9fGChrHxVuRBIpFIJBKJZOIxrtx/EolEIpFIJBMVqVRJJBKJRCKRFIBxq1S99957OOuss1BXV4d58+Zhzpw5uP322/nx0047DWvWrBnSNf1+P774xS+iqakJLS0taGpqwiOPPAKgrxVCvlYG7733Hi655JK8133llVfwwgsvDOm9HM2MhuzEVhWNjY0466yzVOuJKamtrcWGDRuG/bqSkTPa90NraytaWlrw9NNPF/idSwZiNOQKAO+//z6WLVuG+vp6zJ8/HyeddNKIxq3f78dPf/rTYZ9/rCLX4OExLpWqTZs2YdmyZbjuuuuwe/duvP/++/jnP//JM+2Gy/e//32UlpZi06ZN2LhxI9avX59TjCwf8+fPx2OPPaZ6LJ1OjyuBjjWjJTsAWLx4MTZs2IDNmzdjxowZ+M///M8CvOPRQRYK7eNI3A8fffQRfv/73+Oqq64qwDuWDIbRkuvmzZtx5pln4rrrrsMnn3yC9957D48//jgCgcCwrymVqqEj1+DhMy6Vqp/97Ge46qqrcPbZZ/PHPB4P7rjjjhFdd//+/aisrOR1NhwOB6ZPn86Ph8NhfOELX0BzczPmz5/Pqyu/8soraGtrA9BXx8rtduOmm27C3Llz8Zvf/Ab33nsvHn74YbS1teVU5D4WGS3ZKTnzzDOxfft2ALktFYC+ujaHq7Lb1dWFFStWoLm5GU1NTfjd734HAHj44Ydz3jtjDPX19byK8IMPPojjjz8ec+fOxaJFi/jjDzzwABYvXowLL7wQzc3NeOeddwr4aScuR+p+8Pv9KCoq4v9/61vfwoIFC9DW1oZFixbxewUAnn76acyePRutra246aabBnW/SHIZLbn+9Kc/xapVq3DOOefwx6qqqrBy5UoAwM6dO7F06VLejFe0lFx22WWYP38+Wlpa8NnPfhYdHR0AgGuvvRahUAhtbW2YP3/+iN7fsYJcg0fAGGcfqjJ79mzeXDEfp556Knvqqaf6Pf7000+zL3/5y6rnvPzyy8zj8bC5c+ey6667jv3tb3/jx1avXs2cTif75JNPGGOM3XTTTezqq69mjDG2bt061trayhjrq/QMgP3pT3/i5w5Uxf1YY7RkJ6Zgp9Np9qUvfYldccUVjLHc9F/GGCsuLma7d+9mjDFWU1PDPvzww36v+7nPfY6Xz+js7ORVmqPRKCsuLmbt7e2Msb57Zu7cuYwxxl5//XV21lln8dIK//rXv1hDQwN/fxaLpV8F8GOd0bwfnE4na21tZdOnT2dWqzVnPIvNzf/yl7+wM888kzHWJ2uPx8O2bt3KGGPs/vvvZwD4/SIZHKMl18Nd97jjjmP33nsvY4yxf//738zj8bA9e/YwxnJl/j//8z/smmuuYYzJ5ujDQa7Bw2dcWqqUfPvb30ZbWxuqq6uxefPmAZ977rnn4r777lM9tnjxYuzduxc//vGP4Xa7cc011+C6667jx0844QTU1dXxv/MVOTMYDPjiF784zE9zbFEo2QHAunXr0NbWhnnz5kGj0eAXv/jFsN/X2rVrcc011wAAysrKsGLFCqxduxYWiwUXXnghb9L5wAMP4MorrwTQZ+H46KOPcPzxx/OeVF6vF7FYDABw4oknYubMmcN+T8cChbwfyP3373//G2+//TauuuoqHDx4EADwj3/8AyeccAKamppw22238bi6t956Cy0tLZg1axYAYOXKlTAajYX5cMcwhZRrPkKhED744ANeiHn69Ok4+eSTeaeDRx55BPPnz0dTUxPuu+8+LnPJyJFr8OAZl0rVnDlzctwnP//5z7FhwwYYDIYRt5Cw2WxYvnw5br/9djzxxBM5Ha7NZjP/W6fT5e3GbbVaeYdtSS6jKTtaRDds2ID7778fJSUlAPpkJcYwxePxIV9bbL2watUqrF69GuFwGM8++ywuvfRSAH2uwJUrV/L3sGHDBrS3t8NisQAA7Hb7SD7eUclo3g8iTU1NmDJlCt544w3s3bsXX/va1/DQQw/h448/xqOPPjqse0KSn9GS67x587B+/fpBP5/G7euvv467774bzz//PD7++GP88pe/lDIfAXINHj7j8l195zvfwR/+8Ac8//zz/LFkMpn3Cx4sL730Enw+H////fffx9SpU0d0TQBwOp0jCqQ8mhgt2Q3EtGnT8PbbbwMAnnzyyUF1qV+6dCn+8Ic/AOhrifLkk0/yVgrHH388gL64nKVLl/Kej+eeey4eeughnnWYzWbx3nvvFfzzHE0cqfth//792LFjB2bMmIFAIACDwYDKykowxvCb3/yGP2/hwoXYuHEjj7F66KGHeAsbyeAZLbl+5zvfwf3334/nnnuOP9bR0YE//elPcDgcmDt3LlavXg2gL77q9ddfx6JFi+Dz+eBwOFBcXIxkMsljJIG++TkWi0k5DwG5Bg+fcalUtba24vnnn8evfvUr1NXV4bjjjsPixYvxla98BTNmzODPu+qqqzBp0iT+s379ejzzzDN5s4A2bdqERYsW8XTOZ555Bg899NCI3+8FF1yADRs2jI8guTFmtGQ3EHfddReuv/56zJ07Fx9++CGKi4sPe87dd9+NrVu3orm5GYsXL8bNN9/MlSkAuPLKK/G73/2Ou/4A4JRTTsEdd9yBCy64AK2trWhsbMSjjz465Pd7LDGa9wO5g9va2nDmmWfiv//7v9Ha2orm5mZ8/vOfR2NjIxYsWJDTIL2srAz33Xcfzj//fLS1tWHTpk2w2+1wu92j+TUcdYyWXJubm/H3v/8dv/rVr1BfX4/m5masWLGCJyE8/PDDeOyxx9Da2oqLLroI9913H6ZMmYJly5Zh5syZmDlzJk455RQe1Az0BVhfccUVaGlpkYHqg0SuwcNHtqmRSCTHFKFQCA6HAwCwZs0afO9738PWrVvH+F1JJJKjAf1YvwGJRCI5kvz617/GY489hkwmA6fTiYcffnis35JEIjlKkJYqiUQikUgkkgIwLmOqJBKJRCKRSCYaY6ZUDdQDSKyeOlgoYLWhoQE6nY7/P1C/IMnATDQZ/ehHP8INN9ygeuyZZ54ZsK3NmjVr8NZbbw14/a6uLjQ2NvZ7fDy1SBhLCn2/AH29G2fOnInW1lZMmzYN5513Ht58880Cv3PJYJEyPrqR8h05YxZTJfYA0mg0CIVCvK3AcKBCb3v27EFbW5tq4bd0Og29fmw+8li+9nAZCxmNFueeey7OPfdc1WPpdBpr1qxBW1sbFi5cmPcaTz/9tOo1XnnlFfj9fixbtqxg73ciUuj7hXjsscf4ZP7kk09i+fLlePHFF3OyNYG+EhcAxm39mqMBKeOjGynfkTNm7/xwPYAKRW1tLW666SYcd9xxWLlyJcLhMFatWoWmpiY0NTXh1ltv5c9Vdt2+6KKL8MADDwAA7rvvPjQ0NKCtrQ3Nzc28LtKOHTvw2c9+FgsWLEBLS0tOTRyNRoNbbrkFCxYswPe+972Cf7bR5kjJaKjs2LEDJ510Ek+f//73v8+Ptbe345xzzkFDQwNOP/10eL1eALkd0F955RU0Njbiy1/+Mtra2vDwww/jmWeewc9//nO0tbXlrQa8Zs0aXHDBBTmPbdiwQbXv1IMPPoiWlhbeh+zAgQP8fZx++uk499xz0dDQgEWLFh01feeOxP2yYsUKXHvttbjzzjsB9FknL7zwQpx55ploampCe3s7XnzxRZx88smYN28ejjvuOKxbtw5A/vvmb3/7G+8l19TUhKeffrqg7/loQsr46EbKtwCMVX+cgXoAiX1+lJx11lns3XffzXtdZZ+nmpoa9uUvf5lls1nGGGPf+c532KWXXsoymQwLh8Osra2NPfroo4yx/r2MLrzwQrZ69WrGGGNOp5MdPHiQMcZYMplkoVCIpdNpNm/ePN5HLBKJsObmZvbOO+8wxvp60t16661D+l7GE0dKRkPlG9/4Bvvv//5v/n9vby9jrK//U01NDevp6WGMMXbJJZfw54m9A9etW8c0Gg175ZVX+DVWrlzJ7rrrrryvGQwGWX19Pb+PRJR9pzZt2sTKy8vZ/v37GWOM3X777WzZsmX8fRiNRrZlyxbGGGM/+9nP2BlnnDHEb2B8Mhr3i9i7kXjyySfZ7NmzGWN9331lZSXr6OhgjDG2a9cutnDhQhYIBBhjjO3YsYNVVFSweDye975paWlhb775JmOMsUwmk9NHUpKLlPHRjZTvyBkzfxT1AHr11Vfx5ptv4pprrsH555+P3/72twOeJ1Z4HSxf+tKXuOa9du1a/OIXv4BWq4XNZsMVV1yBf/zjH4eN61myZAkuv/xynHPOOTjrrLMwY8YMbNmyBZs3b8bnP/95/rxQKIQtW7ZgwYIFAPpankxUjqSMhsKiRYvw7W9/G+FwGKeeeiqWLl3Kjy1btowX/zzhhBOwadMm1WvU19fj1FNPHfRr/v3vf8eyZcty2tnkY926dVi2bBmqq6sBAF/96ldx22238VY6J554ImbPng0AuPrqq/H9738fmUwGOp1u0O9nPHKk7hemSFhevnw5ysvLAQAvvPACdu7ciUWLFvHjWq0We/fuzXvfLFmyBNdffz0uuugifOYznxlW3MixgpTx0Y2U78gZU8flQD2ACslAPdnERVKv1+ftIffEE0/gpz/9KVKpFJYvX45HH30UjDF4PJ6cXnC7d+/GypUrB/XaE4EjJSORLVu28CB2sdkmceGFF+KNN97AzJkz8Zvf/AZnn302PzbY3lFDlctTTz3F3YdDZTCK2NHCkbhf3n33XTQ1NfH/RVkyxnDGGWfkjMkDBw5g+vTpee+bX/7yl1i9ejWsVitWrlyJO+64o+Dv+WhCyvjoRsp3ZIyZUjVaPYAOx9KlS/HHP/4RjDFEIhE8+OCD+MxnPgMgt4fc7t278frrrwPoC2TetWsX5s+fj29961u46KKL8M4772DmzJlwOp28FxXQ14+K4ngmOmMlo4aGBj6Y1HZIO3bsQHl5Oa644grccccdh83aGwwD9Y5KJpNYv349TjvttEGdu3jxYrzwwgs4ePAgAODee+/FkiVLuCVq/fr12LZtG4C+WL3FixdPeCsVcGTul6effhr33HMPbrzxRtXjZ555JtauXYuNGzfyx6gxbL77Ztu2bWhsbMTXvvY1fOUrXynI/XS0ImV8dCPlO3LGzP23adMm3HjjjWCMQavVorKyMqcH0JYtWzBp0iT+/wknnIDHH38cy5cvx2233TbsHk4/+MEP8I1vfAPNzc0AgIsvvhif+9znAPQ1kbzkkkvQ3NyMxsZGnpmQyWSwatUqeL1e6PV6lJaWYvXq1dDr9Xj22Wdxww034K677kImk0FJSQlPQZ3ojJWMDsdf//pXPPTQQzAajchms7j33ntHfM3LL78cX/rSl7BmzRpcd911Ob2rXn75ZZx88skwGAyq515wwQV48MEH0dbWhhUrVuCHP/whfv7zn/NswMmTJ/PmzUCf+++mm27Czp07UVxcjD//+c8jfv/jgdG6Xy655BKYzWZEIhE0NDTg+eef75c1REybNg2PPPIIrrnmGkSjUSSTScyZMwePPPJI3vvmv/7rv7B9+3YYjUZYrVbcc889BfxWji6kjI9upHxHjqyoLpEchmuvvRZLly7FRRddNOJrPfDAA1izZk1OlqlEIpFIjg4mVuEkiWQMKIQlTCKRSCRHP9JSJZFIJBKJRFIAJm7ZUolEIpFIJJJxhFSqJBKJRCKRSAqAVKokEolEIpFICoBUqiQSiUQikUgKgFSqJBKJRCKRSApAQUsqDLYdh0ajgV6vh06nG1ILj4ESFbVaLTQaDdLpNJLJJBhjMBqNMJvNsFgsWLx4MU477TQYDAaEw2FEo1F0dHTgxRdf5NWtCZ1OB4PBAK1Wq/qag0mYzGQySKfTg3ruYK851oyk3Yp47mA+q81mw8yZM1FZWQmDwQCLxQKj0Qifz4dPP/0UsVgM2WwWQJ+8HA4HXC4XdDodjEYj9Ho9EokEAoEAotEo0uk0UqkUMpkMrFYrHA4HdDodAoEAfD4fUqkUQqEQwuHwsD/jQEwE+QJHvqWOVqvl40xsEUXvZcaMGWhra4PD4UB5eTkqKioQDAbx/PPPY/369fweoOdrtX37RMZYzrEjwUSQ8Vi1TDKZTPB4PDCZTJg6dSpOPPFEeDwePl/H43G8++67eO+99wAA1dXVKC0tRVFREVpaWjB58mTs27cPb775Jtrb2+H3+3Hw4EEkk8kj9hmkfHMxm82YMmUKSkpKoNfrYbVaYTAYoNfrYTabodVq4fV60dXVhUQige7ubnR3d0Oj0cDtdvM5e9asWaioqIDRaITT6YTBYEA8HkcoFEIymcRHH32Ed955J6dt3GhQKPkeE5aqoS7okvHLcJXcwXIs9ekbL+STn9q4leP36EE51jQaTc7PUM+XHFmGK6eBzhvMXDDeOSqKf4pfuPi30+lERUUFrFYrbDYb4vE4dDodstks9Ho9DAYDzGYzrFYrMpkMUqkU393mU8QmknDHE/m+Q/FxrVYLp9MJu90Ol8uFxsZG1NXVIRQKYd++fejt7UUkEkEikUA6nc6xRJAlKp1OIxqNgjHGrRVms5nLW6/X8+dms1mUl5dj2rRpvL/jp59+mnMtyeiiNonSuKWx6fV6EQwGEY1G4ff7kc1mUVtbi5KSEgSDQWzduhUdHR1c5vmuKxl9dDodiouLUVRUBJ1OB7PZzOfZkpISWCwWVFRUoLa2Fg6HA9FoFKFQCGazGVVVVZgxYwYAoLi4GG63G263GxUVFSgtLYVGo0E0GkVNTQ38fj86OzuRSCQQjUYRDoeRTqfh9/sRCASk/AsMKUImkwkzZ85EXV0dl6vRaOTzbiqVgl6v5xZop9MJk8mEbDaL+vr6nGuSN8npdAIAEokE4vE4GGOwWCxwOp3QarVobm6Gx+NBNBrF3r17cfDgQW7hHI9z9FGhVAG52i/9LikpQXNzMzczhkIhvrgaDAaYTCY4nU4UFRVxV1E2m+23W1IOUI1GM6BGLQf04KDvmBZDvV6Pqqoq1NTUoLS0FEuXLkVTUxO2b9+Obdu2Yfv27VxREpUmrVaLWCwGvV4Pxhh3+RmNRlRUVMDpdMLhcKCqqgpWqxWdnZ345JNPkEwmMX36dJx00klgjOEf//gHotEoYrEYAoEAH7DS0jl6iIoQUVZWhpNOOgnFxcXYvXs3Nm/ejHg8DqPRCKPRCI/Hg/POOw8nn3wyPvnkE/z2t79FR0cHABxxl58kF4PBgGnTpmH27NmwWCwoKSmBw+GAxWJBeXk5bDYbLBYLd9X7fD7uHtJoNCgpKeGLKi249fX1qKysRHV1Nerr67mrvqenB4lEAu3t7di/fz/C4TA2b96MUCjUz5UsGRlarRY6nQ4ulwtnn302Lr74YmSzWe6K9fl82Lp1K3p7e/nztVotSktL4Xa7YTKZUF9fj9raWmSzWRw4cADd3d1IJBLo7e1FNBpFJBJBR0cHotEopk6diqlTp8LpdKK1tZUr4M8++yyfp/1+v1SqRgOlIiU+bjQa4XA4YLPZoNfrkclkwBiDTqfjz9HpdNx6MRgrFGNs0GZPydDQaDSwWCxwu90oKipCSUkJSktLuRUiGo3ywa1UdGhhpli2ZDIJvV7P/fsWiwU2mw02m41bO7LZLKxWK8rLywEALpeL77ooNkdy5KBxZTabUVpaitLSUrS3t/P4CorD1Ov1cDgcqK+vRzKZhMvl4go1KdySIw/Np3a7HaWlpVyRcjqdsFqtqKio4HOxyWSCVqtFIpGAyWQCADgcDh6HSlZlu90Oq9UKi8UCk8kEi8WCbDYLu90Ok8mERCIBxhhXuq1WK7RarbwPCoxWq+WWqfLyckyfPp0rNDqdDplMhjecp/hmjUYDg8EAu93O74Xa2lpkMhkun0gkglAoxONeyXKZSqVgNBphs9lQUlKCiooKRCIRFBcXw2w2I51O83V8vDHhlSqClB3x/3A4jH379sFut/OFWqvVIhqNQqPRoLe3Fz6fjwtR3OUO5Eagx6RiNTxIVsrvWK/XY/LkyTwwWavVoru7G+FwGDabDWVlZXxg63Q6pFIpHqhaUlKC4uJiaLVaPmjtdjumTp2KkpIS+Hw+7Nixg++qOjo6kE6n0dPTA6/XyxfrsrIynshAQevK9yspPBaLBWVlZbDZbJg1axZmzJiBkpIS7Nu3D+l0GvF4nO9+w+Ewenp6eKByW1sbLBYLurq68PHHH8Pr9Y71xznmsNlssNvtcDgcmDp1KhobG7lHgJJHstksn2dpTCWTST7v2u12mM3mnLncarXyDZVooSbFS6vVorq6Gm63G+FwGJFIBH6/H7FYDH6/H5FIZCy/lqMCnU6HmpoazJw5EyUlJZgyZQpPLInH4wiHwwgGg+jp6UFHRwecTidKSkpgNBqRSqXQ3t7OleRkMolMJoOenh74/X7uvqVwDq1WyzfDdE4qlYLf7+eKc2VlJUKhEGKxGEKh0Fh/Pf2YUEqVcmHLF8hKP4FAALt374bVasWkSZO4rzcejyORSMDv96O3txd+v1/1GuJjksKi9r0aDAbU1dXhxBNP5Mpve3s7gsEgnE4nqqqquOtAr9fzAa3RaFBVVYWqqiruMrDZbDmZJevXr8crr7yCDRs2IJlMIhaLQavVoqOjA11dXTCZTDAYDKisrOQTxOHer6Rw2Gw2TJ8+HaWlpWhoaEBLSws8Hg82b97Md7A03o1GI9rb27Fnzx5otVosXLgQCxcuxMaNG9HZ2SmVqiMMxc5UVlbC4/GgoaEB8+fPBwD4fD5EIhHodDowxpBMJrkypdFoEI/HuQfB5XLBarXyLO5MJsPPow2OGJJhNBoB9LmLXS4Xt3L09vYiGAxi165dUqkqADqdDrNmzcI555wDj8fDY6NSqRQikQgCgQC8Xi/a29tx8OBBZLNZVFZWwm63IxAIoLu7GwAQCoXQ3t4OjUaDRCLBFWxStESlymAwwGg0wmAwIJlMore3F/F4HGazmcfUdXV1jeXXkpcJpVQpUVqMlAsf7XCBvhuASKVSSCQS/QKexVgqpeVroNcXkdarwaHT6bgbjywQdrsdNpuNT6w04Wo0GlitVrhcLq5UUWkMkp3FYuFxGA6HAw6Hg7sI6HWSySR3F1DZBYPBwHfAer0eFosFyWSSD2hyE0qlanQhl15xcTGXs8lk4m49caOTTqcRDofh8/lgsVhQXFwMu92OoqIifl4mk+GLtWT0MRgMsFqt/MdsNvOEIHIHAeqbX9FyRS4dcW4QzyPof3JLWSwWaDQa2O12OJ1OZLNZ7o6SjBxRvlqtlifyiOukWEaIrE20lmazWSQSCUQikRxvQiaTQTKZ5F4HOp/mXXpOJpNBIpHgivZQyzEdSSaUUpXPFSc+Lrrw4vE4AoEAEokEtFotiouLwRiD3++H1+vlbj/gUI0b8Xeh3qOkD4qH0mq1KCkpwaRJk2CxWOBwOHjW39SpUwGAK1JGoxEmkwlGoxGRSARGoxEWiwVarRadnZ3Yu3cv0uk0D4YkZchgMCASiWD9+vVIJBL49NNPAQClpaWoqKhAfX09bDYbJk2ahJKSEmg0GpSVlUGr1SIYDHKzciKRQE9PD2Kx2Jh9b0cztIlxuVxobW1FQ0MDPB4PX5TVAs9jsRg++ugj+P1+VFRU4Mwzz8SkSZNQVVWF5uZm2Gw2dHd3Y+/evaNe20bSJ8OioiJMnToVbrcbRqORW/9TqRSfTykJSIyLJOsVBZYnk0lotVq+6WGM8eeLChhthmmxJhdSSUkJmpqa0NPTgwMHDmDfvn1j+M0cHZClsKOjA7FYDDqdjlsSDQYDysvLEY/HufvWZrPxzE1SqjOZTM4Glx6nzO6urq6cWnU+n49nd1L9wGQyiY6ODr52H8kaZUNhQilVIqLyIhb6E60KiUQCyWQSZrOZD3zSkMnfLipVJHBliQapKBUGClzU6/UoLy9Ha2srXC4XKioqUF1dDZPJBLfbzZ9PuyK3242amho+Iev1fbftrl27uF9ftGzQawSDQbzzzjvYs2cPt1CVl5ejsbERS5YsgcfjydkRMcZgNpsRDocRCAQAAH6/H+FwWCpVowSNN4fDgebmZixcuLDfwqkkHo9j48aN+PjjjzF79myceOKJPPW+oaEBLpcL//73v9HZ2SmVqiMAjdG6ujqeQh8MBnMs/kpLlWhpSKVS/CcajUKn03EXPnBobiarBd0fZIkkd342m0VJSQkaGhrQ0dGB999/X87fBYAxhlAohI6ODm5pSqVSMBgMPNaV4l5NJhOsVivcbjc8Hk9OGRv60Wq1PNwiHA7jwIED2L59O8/GpyLPlB3Y09ODrq4uJJNJRCIR/iOVqlFAGfdEuxoyO1K2CFlDKLCRtGkyU4oDXpwI5GAcOWJ2JqVYm81mHgdB2ZlU70TM3KEfcgGQm5CuSZklYpkMcQcMgFu2TCYTt3643W7+GJmdxXuHrutyuaDVauH3+3lgfDQa5ZO5vD+GDt0HlP1FbgLKFtPr9chmszyziDLFTCYT3x2LWbtiZwaj0QiXy4VYLAaPx4OioiJoNBru7pfZgaMHuYdIhiLiJlX5/SvL15A1Sy12VnQXiucC4GOS5neyikgKAymx5K6Lx+PIZrOwWCz8OWIohxp0rmitFJUtyiKk51G2N1k7lVXbKaZuvDGhlSrRPUCD0Gq1oqioCGazGdOnT0dbWxvPSnE6nUin05g2bRo8Hg/PLAsGgzl+XHGwjsQVKDlkndLpdJg6dSrOPPNMVFVVcYVXp9PBarXyRTadTvPgUjFugszF1EKIlOb6+npks1nE4/GcnQtlipBLSVxQKdaKFlva5VIMiM1m47VxkskkGhsbEY/HceDAAXz44Ye8rQ0pY5LBYzQaMXv2bEyfPp1bJindvrS0NKfuDAVAT5o0ie9evV4vDAYDJk+ezItIulwuAH1FQxsbG1FbW4vy8nI4HA4EAgHs3buXWytjsZi0XhUYsjRWVlbyYHOlYkWZf+TeIaWH4hgpy4tiapTJQjR+6TlUKoXmZir4q9fr4XQ6eaiApDCQUpVMJhEIBJDJZPj3TyUtRIOGOLeSR8jv9yMUCkGr1cLlcsFmsyEcDvM4KaDPaskYQ29vL3bs2AGr1cqzCfV6PTweD9xuN88e3L9//7ibgyesUiUqQSIGgwFutxt2ux1NTU1YtmwZnE4nent74fV6kU6nUVVVhZKSEtjtdmzZsoXXsCJ3gxhXRRkJ+aq2jzeBjjdEl19VVRVOPfVUzJo1iwcai4souXxIWaHdJ12DLBRGo5FbPKqqqgAAgUAAfr+fD3xy+1ZXV8PhcPDXoBiMUCjEK6eLad1k/bDZbLwnHf1s3rwZn376KaLRKIBDE4Bk8BgMBkyZMgULFizgypTb7YbZbIbL5eKWKPrurVYrr6adTCbh9/u5+3jatGmorKzkVmer1cqLC9rtdt7b0WAw8Cw0CniVciscFP9YWloKp9OpWsePrI9UcZsgVxDF3YiWKCU0P6RSKT4PUK0rkinVpFOzmEmGD8mPkkRSqRT3+FDpBABcqaJ5nKxayWSSF2wVCz5TLBxZt0ipDgaD2L9/P8xmM6ZNm8YLONfV1WHKlClob2/Hv/71r7H8SvIyIe865YRIZn/a+dbU1MBut6O4uJgLmdwI5C6gysxTp06FVqtFJBJBZ2cnYrFYThaD2gShzDqU9Ie+Z7PZjIqKCtjtdlRUVHAFVnShKZVj+l4pOBVAToVkUnTF7E5K0RWVY2o9RKm7YgovZZLQcZI1DW41NxG5LalcB03y5JaSHB6NRgObzYaioiLe2JpM+qLbgO4Hl8uF+vp6eDweOJ1OlJaW8qrdlGRANZDEe8psNvNCgRUVFaioqOC74vFY22aiQ/MrFc+l8SC6g8h6odPp+MZJHHcGgyEnu4vcuiRX2gBRPI8YByu6hSm5Rbr/RoboGXA4HNxFL87XqVQK8XicK05iey/xfMYY906Qi5bKJhiNRp7AJBYOpf8pHMNms/GMzvG8KZpwSpUy3gYAioqKsHDhQm6Bqq2thc1mg9Pp5H5b6pIumpQrKysxY8YMpFIp7Nq1Cy+++CL27duHQCCArq6unMwVUbuWDAxVVbZarSgrK8Npp52G+vp6rvgGAgFeK0xUbADkxFbRd59OpxGLxXiVXTIzh0Ih+Hw+ZLNZ3l5GTPGlAEsa+D6fj2eCiuZmUswoeJIeJ6slTdzFxcU4+eSTEYvFsGvXLnz00UcIh8MIh8MIhULy3hgEer0elZWVaGpq4nFuYq8wIHfCnDVrFqqrq3lCQjwe565fiqNzOp3c2kgLMBX7zWQycLvdcDqd8Pl8WL9+Pbq7u8dle4uJikbTVwW/qKgIdrudZ2fR4kmxMsFgEOFwmLuKSAEjSzYtwFqtFhaLhS/GsViMWz6oxx+5Dk0mE+LxOFKpFI+rKyoqQigUkiUVRggFolutVkybNg0LFy6E0WjE/v370dnZCQAIBoOIx+Po6upCT08PfD4fPB5PTqkLCruhmCjaWFEiApXgEOda8hjo9Xq43W5MnjyZvxdxIzwemXBKFdC/jILFYkFNTQ2mT5+OkpIS1NXVwWazcVNxJpPhAciia48ULavViuLiYt43isyR4k4qH2rHxquwjxT03dL3OnPmTDQ1NfHj4q6GLEg00Yoyot2LaHWi/ymOiiyL5AIAcmtgUYNOqsIdi8X4e6MgSIrFookaAN9t00Kv0+lgsVi4eymRSGD37t38b5nYMDgoTqq8vJy3JwEOuXaU32FpaSmmTZuWY3UgJZqUclpUxZRsm83GJ3dqc9Pb24utW7dKC/MoQDFOJpOJx9SQ4kRhFPF4nAcfUxyjWJsKOJTpRwozLaCUyU2yprZidK7oNjabzVxZlwwfkilZfSdPngyj0YhQKITu7m4wxrhcIpEIYrEY3/yKcjSbzTmJBOQuNpvNiEQiOZtZ0UpF1zCbzTz2kqySlAU6Hplwd51opaIvn3oEUdFA4NCiSJOs6MqjAQiAp8prNBpMnjwZjDF88sknOHjwIF+Qx6vwxhtUI8pisWDy5MmoqqpCeXk57HY7f46Y0UfZeCQj+puUWtEdJGYJ0Q8pXeJgFTPDxLRtpaJGz6VdMh0XLaFqsXP0PJfLhcmTJ6OoqAg6nY7voGV2mTqiKwAAn3jV4iJFlztZKSnmRkyjVypSNFZJAacq7KR8SdkUFsrAosB00dVO45fGG1kpqN8m1aFShleIiyn9ph+aWwwGQ07NI/F8Cgmg3p8Oh4NvnKSLfmjQZlWn0/FC2RRvWlZWljNXBoNBAFBNNhDnfFJ0xU2omoIkFoOmEAGr1crXB3EdGG9jekIqVSQAMhVTwOvkyZN5PROaSEUNWXkNcg2ST/f4449Ha2srXnvtNWzdupW7dEQfcb500WMdGgRU9O2UU05Bc3Mzr3gNHMogoSwdUQEOBoNcbsAha5Oo8NBj4oQtNsemCZn89PQc2hFThXTR3USBrQB4PSpRARddiaIyRgHw0WgUb7/9Nrq7u/lkLl1L/aHSFmTypx0txcLRoikuwhqNBrFYjMff0E5YKQuaB0iZymazOTXogsEg31HLKuuFw2KxwOPx8GBl6nBA7jlxDIuV78kCopxLqdinmDEMgFu7GGN8rDocDtXG6rFYjCclUPhBPB5Hb2+vrDU3RMilThnZsViMlz8pKipCNpvl45OSd+h/tZhZSkoAkONxoNdQru1lZWW8/hyV4olGo4hGozmV+sebYjUhlSpx0RMHLTXfFIvEibtTsaYJCZ2UL41Gg9LSUjDGeIA7vR4tyoR0H6hDpl673Y6ysjLU1NTkxC8BufITu5rTMdqJ0P+AupVKNBMrF1lxURYhRYpej3z31MSVXBKMMdVdMF1DNF8nEgleA41cHpL+iDWpgEOJB5Q0oJQXyZ4SAShTiHrAqQW3imOfrkEBzuJ8ICkM5Jqh4GOSlViWRrQ8UZafuFkSIfmJY5nOFWtTAYc21OJjNH+QFZOsKvReJUODQjPEchfZbBYmkwl2u50nFSQSCa4kK9tDiaE6Ss8DHac5V1yvKU5P/DGZTLzO1Xheg8etUiVqnuKXSL8pmNFsNsPh+P/tfWmYXFd55lv7vnb13i2pZS3WLllesGMMBhuME8xiZhz2YXliJgTIhJBkQhITQuYJyyQTJgmGLGbCkgESYxzCFsAmYBuDsSRLli1r6Va31Hvt+3rnR893+qvT91ZXd1e3qqTzPo+e7q5761bpfvec857323xCTuaSJH+vTIp4lhepVsR+5YKg/Du1szEvJSiOiiohU0yDHODPBxYv8Oj1epeQV1IaZHmYEyO+UMrKkvxT/h7yNUjpkL8nn+Rp0gcWY7Co7xy152jXSr+XCrQwknuY3HeUDk87W+6ap4B0PtGSqkWghZXHWfAq7ES46XelNLcWXq8XAwMDonq2vHkCUFcCheZnYJFUc1cfj5EiDwFPPuDncqWCu4DpOTCbzSJpKR6Pi84ICs2D5jebzYZ8Po+pqSlkMhnhjiuXy5ibm0MqlcLc3JwIi6AMQVLtuVKlR255PCXvjELvpSQFsj0VA6Y+jxST2y4egrYlVTJkUmWxWODz+RAIBESFbJvNJnZLBNntR9fgtafIV0wlF2gSkN+nYAxSb0KhELq6uoRLgBZQmuhoMqRBB0CUtyA1gl6nBZcPNh5nQYsu73DO5WCuivHdE4/HAhZJGz07dF3e1JX3HuMkHFhI++/v7xeZhplMRj0zEnggM7kNKGCZlCq6r5xIUbIJB51DtiWFkLsbSMkClj4zamO0dphMJgSDQVx99dXo6uoS5VLo3pJ9aF4lAs3dPbVaTSSmyOOMx2cRUeIZYXoZo3wBJhe9yWTCxYsXMT4+jvn5+Ut5yzoOpERSxvYLL7wAn8+H3t5edHV1oVAo4OzZs5iZmUEikYDNZkN3d7dQsWj+JsLE3X8U88y9E3y+prmYal1R1jYpWNRfMBwOo1Ao1Hk4LjU6hlQB9W43efcrS8bNgqtPciCzfJ7C8uBkxQhcTeKuQIp3ogBkIlJG915Wn4zOaXQNYFGp4q5i+fxGzxR3bSklRB/8HnFXHSdPRFK5PXjgKy2ivMM9X8Q55OdCKVWtBxFll8tVtxEl29C91pubZY8CsKg0y7E4fFxyd6/s9uNEm+IlSTVX7r+Vg7KxeXIJkSRS9alPKnXBoAQhQL/Wn966Km+aCVx9ps+k9YWX1ODzQDugI0iVXjAa1UIKh8MIBAJLahvRwNKra6U32RJBI5JmFAAnEwL59SsVtVoN8Xgc586dQyKRwFVXXYX+/n5RiI+3jNCrnCzHQ/EdKrBoM76Y0nEeL8NdRhz8GeC2I5cSLeBykLpM5PkEQ4Hpc3NzuHjxIrLZrFKpdGAyLbQxIVdRMBgUizB3AwEQxJrGM5XN4EoknUe7V97zkfd+JHvabDaEQiGx0Cq0BuVyGfl8Hrlcri6eMBqN4uLFi6LFSFdXlyBZ3H5kUwpsBxYVJ1In6PdqtQqXywWv1yvsTc9ONptFNBoFAITDYfT29iKbzWJqakqNxTXA6/ViaGgIXq8XO3fuxJ49e+B2u0UNwlqthsnJSRw7dqyuUwEvjcLjXoH6kA4CzcdE0mnjFY/Hxfw6NzcnsgGp20UgEEBPTw9SqRQSiYQIlr/UaFtSRROjvLhxVYl6AlFRSXlHxBdQmTXTzpeuSaSKik/yzBI1MJdHrVbD3NwcYrEYurq6sHv3bmzevBlutxu9vb0iHZYGHv8nu2n0qq7TPy7z8h0M3x2TqwCoJ2OyHWkCoEmAx0LJzxuwqLaYTCZRiDCXy2F2dhbj4+NChlaoh8lkgtfrxeDgoCBVVM+IiDBXG8i1b7PZxETJd6M8vkreRHE1i1zHNpsN4XC4rvigwtpAYyeXy4k+mrR4zs/P4/Tp0wgEAhgZGamLV+VxjDReZUJF8wSRaW5rs9ksCDc9L1Q3yWw2Y8eOHejv70cmk8Hp06ebUrMV9OH1erFp0yaEQiFcffXV2L9/f11F9Uwmg8nJSTz99NMihMPpdNbFNfL4Zdro0Ot6BJv6sppMJlFEdmZmBrOzsyJ7kxIjAoEA+vr6YLPZcPHixUtwh/TRtqQKaKz+ULAiyZPNTpTLuZK4hCyTKjUZNwYNDuqtR734qKSCDDmInECTc6P7LRPklU6aMuHWywrTi6uj54KKTlJMEG/PoLAUNFa5iw9AnRoJYMlEy+3Cs4R48oKsUvLXuDtIxVO1FkSq7HY7UqmU6G6QSCSQSqVgMpmQSqWQSqXEBkkOr5AVa9lNx+diImdWq1Wk8VOj3lQqBbPZjGQyiVgshmw2Kyq4U4FghZWBF/8kb4PNZqvrXkCKIgCRKcjVZ+4xkr08tJGi32nTymuY0fncG8E3XxQH3U7juq1JlR5ocbNYLKKHmNfrFcFt3LfO1QmuPOgtwtQokhZKAOIBkd1U/HsoLEU+n8fx48cRjUYxMDAgMjSNJjaedUfBkbJrr9H95oOX/yTI8Ri0yyZyxAOhl4upo+PJZBLPPfccUqkUpqendUmZwgJ4ELLJZEI2m8Xs7CxqtZpwoTocDgQCAWH7mZmZJa77XC6HbDYr3LAUv0GKlMlkEtXtafIFFmueqR6NrUU0GsWJEyfgcDgwOjqKn/3sZwCA6elp4a7J5XI4fvw4IpEIDh06hJ6eHtHYmtx6+XweJtNCg3RedoH+UfcDciV6PB4cOXIE3/nOd4Q6Pjs7C7PZjBdeeAH//u//jnK5jImJCczPzyOTySCRSFzam9WBoJ66lNlMZCqZTCKTyWBmZkYUWdU0TRDYSCQCYLE5PfcW0D/qiMDVfSrW6vV6Rayew+EQa7zD4UClUhExXDabDYFAAIVCoa1aEnUEqdKTcM3mhaKfgUBA+Fj5AiwrGUBjQlStVusqMPNMFIWVoVgs4tSpUzhz5gy2bduGQ4cOYWRkxPBeErEh9dFutwslaDl1gZNl+Z8eoeYZf0TEZaladjnz3TQ9F+l0GmNjY4jFYohGo2qxXgakNFDGXywWE0SJan2RW5C62ReLRdGEVdM0oUKQ9E+V+vm95+OfbEaNW7mtFdaOZDIpKmnrqU9OpxPxeFy0qtq9ezcCgQDM5oUG9pStRyEB5NajZ4XXIKSNGbUrmZ+fx7e//W2cO3euLiSAiDapG3rxmwrLw2RaKKLs9/vh9/uFQkWkJhqNIhaLicK9tdpCwV1N0+pECWAxA1/O/JSLJVOcdDAYFPUOqbcnqWUkflAhUr/fj3Q63VaJCB1BqppFsxJgM4u0HjlrBOUiXASXa0mmz2azIqjYSEXSCwznA9IoMUCPUMl2kMmSTMb07Kdnex7XxXtdKRiDYqCSySRKpRJsNpsgtWRXs9mMdDoNAIjH45iZmRF9GqmdEQWkEvH2eDzC1czr3PCdMbDoelSJBK0Fnx/1SAuNkVQqJcgz76nJ20kBS2vD8er6dIwSREjlIPWEu315eQ1l67VB7odqMpmQy+WQTqcFMeYeHT7meAkTPja5S17OyOVlbUixstvtQnmm61JyES/Z0C7oWFJFRuKSvpGqYUR05IWZF5Sj+jh6k0UjA7aTcS8lyIeez+cxPj4udiCbNm2C2+2uGwy0SAIQiiPFX1CpBdmFxyddWcHk7Wt4Zole7J0cP0fXoGeLEhh4gLqmacLtF4/HRZaSgj5qtRouXrwodpe063Q6nRgcHEQ4HIbdbkcsFoPD4cDU1BROnDiBZDJZZ0uqWeP1enHzzTcjFAohkUjg5z//OcbGxgxLYtCkXalUcOHCBaUqbhAqlQqi0SjS6TSCwaAIOKbkAR5nR2OUtwSjKt10TqlUwtTUFEwmE2ZnZ0WlfNkrsVwpFoXmQBsXUoTT6TSq1SomJiYwOjqKZDKJSqUCv9+PUqmEVColCJHT6RQdTugf1Z2i0ggUr8WzOWnTEw6HsW3bNpGEls1mUSqV0NPTg+7ubiQSCRSLRczMzAhVu13QsaQKaKwmcZdOM4NLjvsgRYJD7XxWBsqoi8VimJychKZpGB4eFkoFncMVLPl1mmi5wsRLZ8ikClgkVnxA670GLLql6DP5d6ddL38vuRRot5ZMJjfiVnY0NE1DPB5HPB6ve53H2ZFL1WKxYGxsDEeOHEEsFtO9XigUwu7duwEspNOfPHkSR44cUepEm4FcQtlsFolEAul0GplMpq73H41j2WXLXUe0eSLXT7lcRiqVEiUzZCj7twZUrJMKdpIyGI1GMTk5iWw2i0qlApfLVedVoM0whXHwMSkXAiXliTay5Dq0WCyiyCiV7SCliqqokyuSjrULOoJU6SlQxHypdx91MC8UCiL9lsuRsluHFkw6RpkE1L+O/vGKzsq1t3KUy2VEo1ExgLiqw+8/sLT8gezu03Pd6cXaGcVTcRjF6XEpWp6cKRaoUCggFoupbL81wmq1oqurC0NDQygWi4hGo8jlckgmk7ouVco+8ng84nnipTOMCBV1XgAggmzVwrvx4K482RUE6I9RvsElNYsSFeh54EkJCq0DlSDxeDxiDJFS7Ha7ASx0k9A0DdlsVneDyTtRUI9VctuVy2Wxmab1mBRsUrrcbjey2Szi8ThMJhNCoRACgQDy+Tw8Hg/6+/uFN6Fd0BGkCli6OFIGQSqVEp3SI5GI2MnwTANZqeD9oWiQ22w20e4mEokgEomIGIxUKrWEnKlJuTmk02kcO3YML7zwAg4cOIA9e/YgFAoJFwBQ379PDi7lbj8AdUoVsLRhp+zSBRbbmsiBtPSTngUqVKppi014eSzW/Pw8nnzySczPz2NqagqFQmED7uDlC7fbjf379+OWW27BuXPn8OCDD+LUqVPI5XJL7i0Fp4fDYdEKyev1wuVy6TbcpWfCYrFgZGQEhw4dAgAcPXoUJ06cUIvwOqDR3EibVlpYucokK9BA/caKzrVYLHU1irxeL3w+n8jYll35SrVcG9xuN7q7u9Hf349IJIKenh6USiXMz88jHo+jUCjA7XYjl8uJLEy5vyJvD0XNravVKlKpFLLZLNLptCBVFosFfr8fwWAQvb296OvrQygUwsTEBJ577jkRkkEbrsHBQXR3d+Ps2bM4depU29Sq6hhSJYMGGwU/2u12uFwu0ai10cAiYsUXYCp573K5xD+n09lWvtpOBDXdBIC+vr66FFpe9JMTKb0SCjRZ8uBHHgBpVIdIDoaUnwv+ORSUyQPt+fXy+TwuXryIyclJERytsHpQr7AtW7aIYOaZmRnDPl4OhwM+nw8+n0/EYhjVqKFnw2Qywe/3Y/PmzTCZTBgdHVWK8yUAjV2bzSZIEs3BNDZ5IVCgvi5ZpVIRm2CKwaQgZv6sGHk1FFYOKmdBjYtDoZDI1PV4PGKudDqdIgFFBs/65Vm41NuRK80UR0cKFf2rVqsidrW7uxtdXV2iBIvH40E2mxUuynZAx5AqeRGsVCqIxWKCCT/33HMoFotiYfR4PCgUCkuKefKAdB5Dlc/nMTExAbPZjImJCSQSCWSz2SWkSg3Q1SOXy2F8fBxmsxmhUEi0seEtKYBFW/MaYbzcAX8WuHIJoC5uikN2LcrHZFXM5XLVHaMKz5TJSGngCiuDybTQeNvlciEYDMJsNtc1XpUJN6+2HAwGMTIyIrL+zp07h8nJySW7Y2CRTPOCo8pe6we9TF2qJeh0OoX7lcIzCoWCGL+8HyT9o4K68tgkUuVwODA8PAyn04nJyUnkcrklWWBKqVobZmdn8dOf/hSRSESow+VyGc8995woZUE2opYyQH0Dcx5OwddgXh/Q4/EIgkRjNZ/Piyrq09PTmJ6eRqFQgNVqRTqdhs1mg9vthtPpFOt1u6AjSJVcBBBYqIU0NjaGixcvYmZmBna7HUNDQ9i8eTOuu+46hEIhpNNpXX87390SqaJijtlsFseOHcPk5KSoPyQv9o3QbGD8lYh4PI6nn34aExMT2L9/P7Zs2YJgMLhE9eHdy/luliuQRlmZcmNVYPkq3bwat7wYUKwPpYbHYjHEYrEl11FoDhaLBZFIBL29vejt7YXVakU2m0UulxPEimIkzGazaOJqsVgwPDyMG264AWazGRcvXsTo6Cji8XjdhMrdfi6XS3RckAOhFVoLnjRCc6DNZhOuo4GBAWiaJjLEaBNFGYC8xEKtttB6hloU0dgnrwQpKNdeey1SqRR+8YtfYGpqSpAqNf+uHZqm4dSpU5ibmxNxxrTRpDpRVFfK6XSKwtnAYuwcj3OSY1xrtcVeq4FAAP39/UJ9BoBUKoUzZ87A4XDgueeew/PPP49sNouzZ8+KvqG0dlMyVLugI0gVsHSXSTFVAOB0OjEzMwOLxYJgMAiTySSCGOWML70FGlhwU8ViMSQSCeEv5r3g6Ds0CqxUaIxSqSQywEhd4BXMOSE1Cjzmbh2uLBkpUPLfcvC73nm0eyapmnqRUUq/qku1elC6tc/nE3346J7qlc7gY83j8SAcDqNWq2FsbAzRaFTUvtL7HL5gE+FWWF/IpUlcLpewNbBYh4gKQPLsW9rYkIpBdpXrVBEZo8bcVPxZobXIZDJinrbb7YLM0IaSkgRIyQfqwy14vTAZfC11Op11ySeU6UllFFKplKiLRbXs2hkdQ6oIsswMLBIii8WC/v5+MfAoS4RXWwcWC5MBi8YtFouYn5/H7OxsXWaXXtaZ3kOiCNbyKBQKmJqaQjKZRFdXF55//nlRo4iaWFMhOa4ccfDq61RqQW9C5eRXDoiVCRldgyZocgfncjnEYjEcP34cMzMzmJqaaptO6J0Kq9WK3t5e7NixAx6PB6lUCs899xzGxsbEvaVdLLkJuMuA4jGi0SgmJiaEwsVj4QCIRt5UOHR0dFTEZiglY2Ngs9kQiUSwadMmdHV11ZVR4LWpaGPFYx8dDkddljApWbRRttvtgqi1U+bX5Qo+75JdnE4n+vr6xJpLWbx79uxBb28vgsEgCoUCcrmcGNNEwnw+HxwOB4LBIKxWK0ZGRkT2H3kKqD7WSnr7tgM6ilRRMBv9LhOiUqmEwcFBIS2TkeiBoIeCF5wjV1OpVMLk5CTOnz8vCssBi/5hvQBIhZUhm81ibGxMTIpdXV3o6urC5s2bMTIyIuIleN8/OUaCeoYBi9WTOWTyy4PN5ZIJAOoWbafTKWqgzMzMIJVK4cKFC/jJT36Cc+fOoVwuK1K1RlitVgwPD+Paa69FuVzG+fPncfr0aczMzIhdKKVcEzgRLpfLyOfzmJycxOnTp8UzwIvE1mo1eDweDA8Pw+12I5VK4fnnn0exWMTc3JxyAa4TZLJK7r8dO3aINHwiVHQ+jXm5oK/T6VzSeoS7hUkBoyKSSqlaX8g9cDVNg8/nw/DwsKgZR68PDg5ieHgYfr8fsVhM1JHiZTGCwSA8Hg9qtRq2bt0qPAKUdU2FQovFYlv19WsGHUWqCNwlwNNuyUVDP/XicWTViWeQ8ffqqRtAvQLCIfuMFZaCL5ZUENBsNqOnp6cuEF2+5wS6x7xAKGCsJuplgPJrNrIltT9Jp9NIpVJIJpMqJqcFINe81+sVLnYqDMnj6nhsFGUNkVpFky+5HPgmiX8OjXvuStBzFSqsD8gFSwUkiUwBEK4huZAvj8uSa8bxsUrHacOrsP7g6j6NS7fbDb/fD2BxbvX5fKILBY9f5kIIldgAFpRGTVuoO0nZ4aVSSbyP1MlG7sR2QkeSKhm0WBcKBczNzeH5559HIpFAIBBAV1eXGHh8UMsZZkbqyErR7gZvF8zNzeHpp59GIBCA3+/HoUOH6oqt8oxNGnD8NS5Dy6RKjs2hxRhYzA4kO/Pso3w+j/n5eaTTafziF7/AuXPnRBNfRaZaA7PZDK/Xi66uLsTjcczNzeG5555DPp9HoVCoKxZoMpnQ3d2NoaEheDweBINBUUGZ17HiqfgU6JzL5XD+/HnY7XZBjGnSVmO09eAbDj72eLwMAFH7TQ5Op3FICyefB8hlxBNXaNOsFyKg0DrIIRQWiwXd3d0Ih8OIRCLYtm0brrrqKtFlolqtihAKnpHNr0WxjnIsHQBRhZ1q0FWrVZw6dQrd3d2w2WzI5XLCW8DXh3Z6Bi4rUmU2mxGNRkXWwsjICAKBQF0MFUFvsJLsuFZipbA8qICcy+XC7t27RUV8apQqu3rlTEACVxxpQm6UmadXzZmeDYqjmp+fx7Fjx/CLX/xC1MhRz0NrwAPOS6US5ubmcOrUKWFvKuRJ9zsSiWDfvn3C1ZNKpZDJZISazBUOYLHnJJXvMJlMIui53SbfywlGSSVUP5AHOZNKwUkVsKg4VqtVUcyTxh/VqaKFVCZVyq6th+wtIIWpp6cHIyMj6O7uFqSqWCwiFoshn8/D6/UKW/O4Zr3YOHoeeLkci8WCcDiM/v5+mM1mbN68GT09PWJ+lwu9GsXfXip0BKla7mbRwihLhPwf+WjJyPSw0KCVgyKVpLy+IOJDvf30ymYsB9kdIGcF0ucQOEnj5/HdDn0vchW1y0DtdJArgFdA5648mhzljD9qlUGFffP5PPL5fF0iifyTj23lsr100HPR6bnijdzwBKOs3kahAgrrA57UQ+VKiAjbbDZUKhUx1mmzSmIFd+9yrxD/ScHsnZyp2xGkikNv8FCLGb/fLyquhkIhuFwuIfnPz88jGo2KDMGuri6xIyJ3Ak36nZZt0AmQyQ5XGMrlsghSpiQD3l4IqJeQ5YUUWFQo+LXp/XILE754c1VLEaj1gdlsRiQSQV9fn0iDn5ubQzQaFXFRfGNEEy6wkGHU1dUFt9uN0dFRjI6Oing8GZyY8b/pO9DmqpMn7E4CKVVOp1OMNdrY0lijBZTbSVYd+DjniobD4VgS1qHQOshJQsCCLRwOh6h2TrFTmqbB4/GIrEy/3w+r1YpkMolEIiHc9RSoTkRL0xb6BvIAdRI6KFkhmUwim80in8/XlbPR+37tgLZ/GvVulryoWq1WeL1eBINBBAIB+Hw+eL1e2O12kcqZSCRw4cIF2O12BAIBRCIRAAuLOJEqzsBXSqpkmVRhEXJSAP3OA4lzuRwsFgtKpZKulKvn8uO/c/VJzxZ8oaW/ldtgY2AymUQ1dJ/PB5vNhmQyiWQyqUuquE0oI9PtdqNQKGB8fBz5fN6wKbIeieblUzp9F9xJ4IHqlExEiyqB24MItZGyyEkzr8KugtXXD3pjjIqBOp1OEQdHggSRKrfbLeycyWSQzWaFrW02GxwOh2hZlEwmkc/n67xGVqsVoVAIFotFFBYtFou6oTntNoe3PanSgzyAKMXW6/WKJps+nw8mk0lUVY/H44jH43A4HKJCM7Do/qOFPZ1OCwM389kElf3XGLJSpYdGx2UFQr4ukST5PXrv4wuvjHbyzV9OsFqtolcbVannrS14cDopHDygGYBw4RPxlmMxCGoMbhzkQGYZ5P6TXT7kvuWxjUSsuftWVpK5+tjMOG1m3lFYGWjNLBaLSCaTmJ2drcuwDYVCQqEkO8vZnrx6Pn82qLUc9x6RiqW3CW5H23YcqeIR/wSn04n+/n4MDw9jaGgIW7Zsgd/vx8zMDM6cOYNcLodz585hdHQUPp8P27dvF8XlyAUYj8cxOjqK8fFx0Z9K/sxm0I5G7gToLYpGLjzZFjQo+XX0Ahn5wNSbbJXt1gcm00K/v0gkArvdjtnZWZw/f15kVgIL955cQ06nUxSFpaBXyi6ixqp0Hrcv/zz+UymSlwak/Lvd7rpK6rQAE2km4kzJKjROucuIL8g0H6wmDlNhbdC0hXIzmUwGtVoNx44dw/nz55HL5TA9PY1sNott27bhlltuQVdXFzKZjKgvRnalIss+nw/5fB6xWEz0g6SNlslkQiAQgM1mE+VWOmXD23GkisAXVqvVCr/fj66uLoTDYXR1dcHn82FmZgazs7OiiOPExARCoRDy+bxo5EvuQaqePTs7u+RzGpGqTjByp6CRq1eOqZIXTHkXS+fySRhA3c7XyK7Kpq0HESSLxYKZmRlcvHgR2WwW2WwWQD0xJhJG/RfJRjROS6WScDUAS9VFpVRtPIwUIUqfp3OAxUKSpECSm4gWX0oQ4WVPgMW4SZ7MoMbqxoMUY9qozs3NIZ1OY2xsDKlUCtVqFbt37xaqNCmQNA9T3TkqzA1A1Kai2CmPx4N0Og273S6ywRWpahGMBquRqwdY9NNns1nMzc0hkUgglUrVFQXlWV5UhNCo7pHe5zWDTngANgorvRc0qVIwIw0o7s6Tszv1ioLyOlUU08HVLGDRHUjn8GxQhdaAZ+Fls1lRb4paDdE5wEKLEtoYOZ1OoViQ/YD6ZAR6Lx+z/Hnjz4uqvN16NHKxUb0pvTFFJIli6fh1eKYYT1qh96i59dLAZDLB5XIhEAiINjMulwvRaBTT09NIpVIol8tIpVJwuVzIZrNibqbYK7JjqVRCLpdDNBrFzMyMeE64Wu10OhEMBuH1eoWLsFgs1s0D7fYstD2pksEXUnmCJTWDmPTU1BSOHz+OWCyGbDaLXC4nYqpIoUqn04jFYnUVnUmKbkeDdSKM3G1GoHOJ8NJA4nWqiChxl55Mljh4Zgm5JGgip5/kCqbPVLZvHXh7oWg0irGxMTFOecFPTdPg9/uxY8cOdHV1iQwi2sVy8sTTs+XFmCuSVBeHx/IorB3LhUXQGKbeb9xO3I7cBchVLHIZ8e4YfJNF30Fh42CxWNDV1YUtW7bA6/WKvo4UOjM/P49cLoeJiQnRjBlYJGNUWZ8aJc/Pz+PMmTM4e/YsnE4nQqGQIFLbt2+Hz+fDuXPnMDAwAKfTiWq1uqSpcrut0x1BqvTUokauIgqkIx9tNBoVvnwKeuPKRKlU0t0Fk7FWqlooH39rQESIFl/eQJlIkF5hTj2CxUmVnIXI38cLwCq0DmQTCkLNZDJi9yonDlCGbjgcrsvObSbOUY6not+JuKlFeGMgz8XymKQxqBecTpAL9cr/eDFQhY0BJZH4fD74/X5EIhH09vYilUrVtZJKp9MiGJ2SToD6TQ/FUSUSCczPz8Pv98Pn8wFYUKsDgYDouOHxeJDP5+uyPtsVl5RUrWYwGKkRZCxK96TmndQlW3YTEaniGX/yQsoH/kqMqAb6UhgRH77Y8mBUk8lU19qCapsAixOvEeHlpIgTcprceUYZnSO7GhRaBwpuTSQS0DStrlk5d+fSvacSKT6fD8lkEmNjY8hkMohGo+J9fLHmNtNzD+kt7Aqtg3y/qSAkVU0nG/HyCZzgklLFN0pcheYlFGQ3vxqvGwtyzXm9XthsNuEFisViCIfD2Lp1KwKBACwWixAwyuWysCHN6RQ3l8vlkEqlkEgkRIC62+3G0NAQkskkLBYLKpWKKMMgd0ZpR1wyUrVa0rGc+48CYj0eD8xmMzKZDFKplPDbkypFDVlTqRRisZjoDSZ/v9V+T73YDoV6cEJFkyPZiQrKUbNNOs6DJHl7EmBxsaXYOb1Fmz6Xuw94bA4vPKnQOmQyGczMzACACE7n8TS0mAILSlUoFEJXVxdOnTqFX/ziF8IFSIssuYQ56PngY5eeCR78rNA68HtNRImKQ3o8njrXLm8BRu48TdNEqQ3uNaD4GgDiGeF1jGjcNqprpdB6EOkJhUKo1WqYnJwUzeb7+/vR19dX1/Cc7EWkyu12i/nebDYjmUxibm4OU1NTsNvtiMVisNvt6O7uxtzcHACIxBQqNtruuOTuv9VkXxm5/ni2Fw1mch/ROXyBpomcXEvLfW6zBEsRqdWDkyDeB05uvlmtVkVGCYA64iS3RZDrVMlNm/kxhdaDxiEFnMvEh37yxuf0r1KpIJ1OI5lM1sVN0jjmY54TdL0kE6VUrT/IjmQ/OTGA24gg9240Kv7L36tXl05h/UHjjcYmlVew2WxCvaLELyLR5XJZbJxkzwQdp/mYikFTbCuvSdcpRV4vGalqFFS83PvktiIWi0UU/yT2S1WXeSo9ESxadMmnm8vlRHuU5b6rkfrUCcZuZ3C3Hx94vKs9LZS0y+ULMbcJDXr6nc6z2+2wWCwiEF2ubUQBzartRWuhaRoymQympqYALOw8qdsBKYMOhwM9PT1wOp3o7e0V2bs804fiM4BFF6/L5cLAwACCwSDS6TQmJyeRzWbr3ARqbK4P9GIXKSCZulu43W6ROk8bV06iNE0T45FnCspzLI1VvRZEChsHSj4gtdlut8Pv99e5aKlKeqFQEHaiQp+0MaINMSUNUQcUr9crgtnn5+dFiA415u6EFnIdtXoYBY5bLBa43W5RRT0Wi8FkMiGVSi2pT8QHLtW9ocxAPdeA7GZUu6PWge4tVxu4ukALLmUIUc0SisnRUy64UgksTr60k6LdM9U+4QOUFyPsBN99p0DTNKRSKTHJEsGloPVSqQSv14vNmzeL3p3VahWZTEZsdmhidjqddSqzzWbDyMgItmzZgosXLyIajSKZTAKAmOTloHWF1kEmVWazGR6PB+FwGMFgED6fDy6XS7iDODmi+bRQKCyJdSXyBSwSKq5ik12VPTcWRKqorRgRIK4wFotFxONxpNNpOBwO0ZKGvAu0eaX3U/wkkXGXywWr1Yrp6WlkMhlkMhlRnV1vw9tua3LHkKpGChGxZCoyx0smNOvS06tfowbs+oJPjI0K+vHjPONHjueQr0nQc/vIZIoTMn6NdhuwnQoesMrddcBi/Sin0wmPxyO63csZfzKIoFFiitPpXOIWUmN4fSFvTIDFEhaUEMLHNkEenzzLj5+j59FQNr10oA1NqVQSZUrIHrQJ5u5d7m2QxRDZ9U/9A10ulwh0JxWTNsp67uR2wyUNVG92cPAFjhvCarUKlSoUCiESiSCdTmNmZkYUFeNZYNwwNPBdLhf8fj+KxaKuy0AtrusDbg9SoShYlbsJyMaccPGAY+4uJJCNqZcUb9JJNVK46xBYdBnS91BFIlsLfr9pt0qvAxDBqQMDA6hUKpidnUW5XBblUChrMJfLCeXR4XDA7/fD7/cjEAggGo3WXZeeA6MsUYW1Q48sURsS3lSXx8/oES09RZHGMC8KyeO01Jy88SBlMZVK1alGVHeqWCyiUCgIz0C5XEY+nxc9O4kgyWOyVqvB7XZj8+bNCIfDsFgsSKfTyGQyKJVKQjTphHm57ZUqrmTIpIp2Q1ThNRwOI5/PY35+HvF4HIlEYgmpIhcPGYnchtSjiM7lny2/prB28MWVyAwpFHIRVnkC1gs85r/TYKegdnI70PXIpchJNJEu+h6dMHg7CXISiVw3ymazIRwOY2BgAHNzc7hw4YIozEtjmAJaLRYLAoEAPB6PIFXkPuBKFX0WT8FXC/H6gG96KU6GFAegnlTJblm9DbZMqmihJlKlbHlpQKQqnU7X2TGXy2F2dhbZbFaUTrDb7chkMkin0zCbzcKDJCcbkB1dLheGhobQ398vGjXT88LDMtp9De4YpUrvNS4zc0WD/Pfc/ccndE7U6H2ysdbir293o18KyGqfHEdldL95HIXeMaPfZQWKBjCXp2kR4M8DV1EUWgcjdw8dk0tpUIHQcrm8RC02mRbS9n0+n0izJhVS7zlQ43FjwccRJ07y/Mvtyv/JrkAeg2M05hU2HnJxZtq8kCvfYrGIsic8dlb2PPAEMu65oHAeitOirhrtTqY7glTpgQIivV6vyDJxuVwAIGpPZbNZITFSkKvT6RSBc3a7Xbwmu3zkxXY1/z+FBejFPpFqRO42vgvl79OrtsxVDqNYOFp4NU2Dw+EQRIoK0vFCoDR4qbgcBUoqtA7clnJJCwpmdbvdcLvdKJVKOH/+PGZnZ1EsFmE2m+FwOMTka7PZMDg4iK1bt8Lv96Onp0c0X+aBzETa9VoZKawPSKnyer2C8MqFH3lcHcXa8AQiitkplUowm83w+Xx15/GSGXKtOoX1BxGfcrmMyclJxGIxWK1W4fL1+/3o6+sTQeyJRKKuPRgnS1R9PRqNIhKJiPmXbFsulzE7O4vJyUkRtC5n47cbLnlFdaObstzkR2yYBi8RI2ChuGA6na7L8OKqFu2iaGdMJMtIKdGTphuhXY19KSErVTTR8no28k6UYmL03iu7avnvPKjd6XQKMkUZnpxU0WfKpRcUqWot+D3mhR15kgkR7Eqlgvn5eUxOTorXqGYZsNh/bPPmzXC73QgEAks2RrJKpQjVxoDHu9GiysMu6BxOiuSaRRTcTC4i6hlHqfxyjSs1124cuNpUKpUQi8UwMTEBr9crEk08Hg8ikQhcLhfi8bioaUVrLXXHoM0OuRMpO5jGMVVTn5+fRzKZFOfIaLdxfclJVaNjXO6nwcdVD1KfePl6qp5MAcp6LgY+8dJ75JpF9JNL1GtxVyoshewGoNdk+xD0MoDknzLoWkSgCbwtjvzZyn6th0xwKIYtFArB7XYjEokYVkuWnxGz2Qy3241gMCgmadmlqJSpjQWfZ3lMDY+b4W1q+Fgk0kXqJbcbqVOkcHKyJYcPKGwMeMIXFeokhaqnpwd+v1+syRTTyEvj0HjlCjIAkYxCLkNy59dqNeTzeeTz+SXZwO04vtvW/cdJjOyLByCCVSORCILBoFCaCoUCotEoZmdnkU6nl3Sq5/FXwGKqt+yr1SNW/PVm/n8KxuDSPb9XpFwA+gVief0aI7vIEzwRaqA+tV/TNLGT5tdS2X/rA76JKZfLcLvd2L17t3DjBQIB3Q0OVxOBhcm2r68PO3fuBADdjgg8Q5S7itW4bC30SpV4PB50dXXB5/PVLaCUGUZjkexJiSHUSki2I1XWpmvUajWhhnHVWoZe2IHC2kBzqtvtRrlcFtn2Pp8P27Ztw65du8S5lOlHrYcsFouoFZhMJpcU3KbuCfF4HB6PB4FAQLw+NTUlsgHb3ZaX3MexHLGic+RJkVgvxVJwpSqfz4tqzLzYnF5Auhwkudx3bGZSbnejbzRklYK/LtuUFlE95UG+XqN4N+72BVBX0RdA3Y5Xfr7U4ru+INtaLBZ0d3djZGRExDfycwD9RAWz2Qyv1yuKhMZiMcMFmSckqHG5/qB52eVywel01qmIvL+jXNCTd0aQ1Qv+Hhq3RMSW8yAou7cevLxBqVRCJpNBpVJBOBzG0NAQisUi0um0KF2jp1TJmX90XrFYRD6fr3Md12o1EU9F47ydcUlI1XILot75cvEwYsykRJDhqNorVWOW3X+yQkYDXq5jQyqKXE+j2XgqtSg3j0akVn5NnoyNlCq9yZZP4DTZyy5evc9UWDtobNLvwIJ6TC6DfD6P8+fPI5fLYWxsTMRO0PvIdtRYlRJUqD4OUG83chvRvMH/Kaw/9MYzvcb7wZHCyOdpYNF+QH1vQL7xoUWXPA+q1ML6gwjO3NycGHfUPJt+kteoVCohEAggGAyiWCyKBCAak6QwA4su/d7eXgwPDwv3ca1Wg8PhQDAYBABRe7CdbXzJlKrlsjb4TeMBy7JSRQGqmrbYkygajWJ+fl7UxSBCxYOiaRHVc//x8gty6nczpIqf287Gv9SQ06dllUHesXLVkdyARvFX8vWBxedItr+sVuo1dFVYG2iMAYvE2G63Y2BgAFdffTVOnz6Nhx9+GCdPnkQulxMTNs/2ook7HA6jt7cX/f39yOVyiMViSCaTdTajyZfsrFexW2F9YDSmObGtVCoi04tUDGBxHFNtKpPJJGLtaM43mUwia5sWXVJAaHPNoebh1qFarWJ2dhanT58WnqBwOIxwOIxIJIJIJIJyuQyv14tKpYLBwUEMDw+jVCohFAqJKuyUOEQEyWKxIBgMYvfu3di/fz+y2azoH+j3+9Hf3w+Px4NqtYpUKtXW9mxr9x8/hwYGH3w88JwmTqqZQeXt9d7DP9NoAuAKhuyeMoJyMxhjrfelUYsD/lMPeqSYXIwARCCsCm5eP/AYJ+7mpbIo1EB1fHy87hx6H6kTDodDLKgul0uoUXqqCJExpVBdeuipwOTKM9pUkd313PS8nhzP5tabJ9R4bh0oxi2ZTIrxTGOSJycAC8SYlGUqrMyVYzkLmJozh8NhmM1mZDIZQaQphosySNsZbZ/91+gcbihy+xWLxbosEX49We0if32xWFziq6XzZVLW7P9Huf+WB59o5UmVq1CcrNI5PD6KXwNYSn75s8TPMVKmlO1aD0q1tlqtCAaDdfWlcrkcyuUyPB6P2M1SrRrasZpMJvT392Pr1q2i6bL8jMjPj91uF6EB3M2kFtn1BZXHoEByvXFJc3G1WkU+nxcqk0yUeMkN7j4kdYPi63p7e+FwOJBIJIRqKW+Gld3Xjlqthmw2K0olhEIh9PT0oK+vD5qmIZPJ1IVoUIY+bYioo0W5XEY2mxUtbHg9SSqjYrfbUa1WEQ6HsWnTJqRSKczPz7f9/NyW2X/yINQ7j+qeUDAk1bqgrvfEgPnn6ZGqUqm0xLBy0LJRjM5q/m8KC2gUv0T3j+Ll6N7zbC7ZdczVCPkYt7esQJK6SddU1dRbD7PZLCR8t9uN7du3Y9OmTSLDJ5VKoVQqwefzobe3V9S5sdvtmJiYELFYIyMjuOmmmxAKhdDf37+kMjMHNVrmWWW8kr7C+oDcdTyBiM/nPLSCxnY2mxXhGeTe46SKSBrF15EN6XgkEsHIyAgSiQRGR0eFe0iRqdajVqshnU4DAPx+P/bs2YOhoSF0d3cDAGKxGOx2u9gUkcrEmyWTiEEEmBcCpoQVqnMGAH19fajVakgkEjh//jzMZvMSF287oa3cf3KwYrPgihMVj2sE2rmWy2WR7rlc+ftm1Sr6Pgr1WMk94aSHCsfpZYs0ImYEub5ZI0VqJTZWWBlocaQmyJFIpC4ekgJV/X5/nWKVTqfh9XoBLEzioVAIwWBQBLECi2592uVS5pnX64XFYkE+nwewWE5DuQLXF5w8AfoqMic8XKVoZkzK6wTvliEX7VVjef1AxZWp7yaAuqKeBBqfXNSgTE4jAYU/QySe8Grs7YxLrlQZucyWW4Sr1SpyuZzw7brdbsTjcUxPTy8pEEYqR6FQQDabxfnz5/HMM89gdnYWY2NjuHjxoqh/QdW0jb5Xs7E7Co2hN1nKCiGXi6mIHFcbZHegkfsPWIzRoJ9E0uSWNbQwK8WqdSBFmJqWh0Ih7Ny5U7iIKHvr9ttvRyKRgMPhEHFW1FQZAIaHhzEwMCDIGLkN/X4/AIhnJBaLwefzoaurCxaLBePj4xgdHUU2m8X4+DguXLigiNUGoFariWBznnAALM6V5Kal8UixsBTCQefKCzC9TmoIBUaTy1dhfWC1WoUb3ufzYdOmTeju7obX6xWEp1KpiEQTKm3Ew2yonycViaVMXqfTiWKxiEwmg1wuV/cMUCeUTqgf2FYxVXpxMHrnAYu+3WQyKdwDTqcTU1NTwmgcJB1ns1mMjY3B6XQiGo3i3LlzYpLVNG1Jy5qVuPLkwa7QHIx2KLToUvwUkSqaoGVipadCyTsjqo/ECRbJz7xVSicM3k5CqVRCOp2GzWYTpMpqtQqVuKurC9u3b69TH2iHS5N1Pp+vS6emliWBQABer1fUvKpWqwiFQhgYGIDFYsHTTz+Nxx9/HLFYTPQrU6RqfUEKFHe9ym57cuHRgsmb5vJsUZ4dCNTPszRuOalSWD9YrVYMDw/jwIEDogQCVVCncUoeICrmSUSZ+jlSYhDN7z6fr45UpVIpFAqFumeAlOhOmJcvqVLFf8rHjJQqrmYQ+wUWJlhew4LffP4ZdE46nRYsWs4SbOZ760G5/VaG5e63HEhu9Ld8Pb0YuEbPG7kIeRyHIsWtBZFhOX6N1AtSJuVackRygUU3P5Fh3i2Bty2p1Wrw+XzC/edyuUTTbqVAri80TUM+n0cqlRILJr1uNCb1IMc9yjFxlJJvMpmQy+UE4ZZjaRVaAx6O4fF4EA6HRa8/yv4jxZnbSy/5i5c3IteeXMSbNlTUiNnpdKJQKHRET9a2Uqrk1+RFknYl5FtNp9O4ePEirFYrZmdnYbFYEI/HheLEBzKv4hqNRmGxWJDJZFAoFOrideQsMaPvafT/USpVc+BxMHxB5IORsjm5ysQDyzmpkutP8c/hsRv0k65BOyYAIi6DAisVWgNy62iaJlx6uVxOkCi6/zzZgMZQpVIRhUDJrc9jNACIQq40P9BPInGkgJAbQm1+1g+lUgknTpxAKpWC3+/Hrl27MDg4KLpfcCWJ25jGJs0HlGRABIoKOdPzkUgkcO7cOZRKJZw8eRJHjhxBJpPB/Py8OId+ypsvhZWDiE0oFMLVV1+NG2+8UShTNN6o8CevPwVAbJQ8Hg+CwSBqtRoikQiy2SzcbjeKxSKCwSBGRkYQCoWE65/CdoLBIEwmExKJhMj6bWdcsorqer/rncNjZoD6VFtSmjho0qQAWF78kwZpMpkUkzUnVXRuI7dkI+gRMgV9cDefnJVJEyyPqdAjRHSMSDMnQnquY6500T+KyTCZFgsK8gbdCq1BuVxGuVwWsVAUa0MTMdlVL6tHz5b8eaFJltqX0OJMRJzq1lH/OIX1Q6lUwtmzZ3H+/Hl0dXWJKttUr4grEQRyB5GKwYv7lstlkZ0NLI7haDSKixcvIpfL4dlnn8Wzzz67pNK2nlqisHLQHEmJJJs3b8aBAwdgNpuRSCSQz+cFEebqM1eh6Tj19wyFQkin03A6nSiXy/D5fBgcHITf7xeEmq5Bz1A8HkcgEGh70eKSb8cbPfCy/AtASIx8IeWZBDIxkpUK7joilYJ8t81kBqkBujrI942Kv1HgIve3yxPhcq4/TsD0QPan82U3FE3i6XQaqVQKc3NzQh1RaC3IVqVSaUnXAr3xJ49lwnKLJVcpcrkccrkcstnskiQWhdaDCHKxWEQ8HsfMzIxYPF0ul3D5cNvruQYtFgtKpRJisRiy2SyAxXkkHo9jfn4ehUIBuVzOMHtbzddrB827NG7n5+dx/vx5mEwmEVROWb12ux3JZBLxeFz04KWxmM/nEYvFUK1WMTMzg5mZGRSLRWSzWVHaKJlMwuVyid8pTo6uG4vF2t6ml4RUNbopertSWoCp0BuxVSJX1P9LbkvDByoVmaOgRiJlfr8fbrdbGJyC3NeiOq0kuP1KgN69JJuVy2VEo1FdIiO3FuHEiv8NwHCxlBVPWtTl4PRyuYwzZ87g3LlziMfjuHDhQtsP3k4EkZxYLCaKNZJSJRfsBSDKMHA71mo1EUPDIfeDoySH8+fP44UXXuiYSbnTQeM2nU7j6NGjOHfunHDzWq1WdHd346qrroLH40E0GsX09LRw81cqFdhsNvT396O7uxvpdBrnzp3D/Px83dgnBYvalqhYqvUFn6+/973vYXx8XCT8AEAgEMBVV12FUCiERCKBCxcuIJ/PiznaYrFgdHRUqNRPP/00XnjhBbGmOxwOVKtVuFwuhEIhTE9PY2xsTGyIKFTn1KlTbb8xumRKld7uxGiy4woUpWDygHWz2YxUKrWkDQavus3jNehaVqsVbre7rmik8r9vDHg9k2w2i3Q6LWRm3tmeEyj6qfc7LcrA0uKfBLoWJ1X0mZVKBRcvXsQzzzyDTCaDeDy+rv//KxWaptXtTnkcnGxvcslSCQzuFk6lUsjlcnVj1WKxiCreRMaq1aog7YlEYsl7FFoPGpeFQgETExNLjm/atElU1h8fH8fp06eFi69UKsHpdGLnzp1CrXj22Wdx8eJFcW2FjQep++VyGSdPnsTk5KTw9JjNZvT09KBWq6G3txfxeBwTExPI5/OiwK+maZifnxcJYidOnMDJkyfhdDoxPDyMUCgEABgdHUU0GsX58+dx/PhxpNNpzM/PY3Z2tmOIc3tHfCkoKFwxaPWCKbuQFdoTeq5+vePKhu2BZtyszYgTzdhT3lR3AkxaJ31bBQUFBQUFBYU2hVKqFBQUFBQUFBRaAEWqFBQUFBQUFBRaAEWqFBQUFBQUFBRaAEWqFBQUFBQUFBRaAEWqFBQUFBQUFBRaAEWqFBQUFBQUFBRaAEWqFBQUFBQUFBRaAEWqFBQUFBQUFBRaAEWqFBQUFBQUFBRaAEWqFBQUFBQUFBRaAEWqFBQUFBQUFBRaAEWqFBQUFBQUFBRaAEWqFBQUFBQUFBRaAEWqFBQUFBQUFBRaAEWqFBQUFBQUFBRagLYgVQcPHkQ6ndY9du211+LRRx9d9hr/9m//hsOHD8PhcOA3f/M3dc+ZnZ1Fb28vXvva14rXPv/5zyMQCODgwYM4ePAgbr31VnHsT//0T8XrBw8ehN/vx2/91m8BAGq1Gn7rt34Lu3fvxv79+3HrrbfizJkzTf+frzS0wsYEPTsCwI9+9CNcd9112LNnD3bv3o0nnngCAJDP5/G2t70Ne/fuxd69e3HXXXdhbm4OAPDoo4/C5XLV2TmfzwMAnnjiCfHanj17cO+996JYLK78P38FYL3H8Hvf+946GzmdTnz6058GAHz961/H/v37cfDgQezevRsf/vCHoWkagMZjeGxsDC996UvF+FcwRivs++lPfxp79+7Fvn37sH//fnzxi18Ux7LZLN7xjndg3759uPrqq/F7v/d7woa1Wg2//du/jb179+Lqq6/Gu971LpRKJQDA8ePHccstt+Dqq6/G3r178c53vlOMXwB4wxvegIGBAZhMJiQSidXfgMscrbDvRz7yEXR3d4ux9uY3v1kc++u//mvs27cPBw8exN69e8XYBRqP7UZzd9uOX63NcfjwYe2RRx5Z9rxTp05pR48e1T784Q9rH/jAB3TPee1rX6u9853v1F7zmteI1x544IG6v41QKBS0cDisPfXUU5qmadrXv/517frrr9dKpZKmaZr2J3/yJ9p/+k//adnrKCxFszYm6Nnx4sWL2ubNm7WTJ09qmrZgr3g8rmmapv3FX/yFdvfdd2u1Wk3TNE1797vfrX3oQx/SNE3THnnkEe3AgQO6n5PNZoV9q9Wq9trXvlb78z//85X95xRaOoY1TdOmpqY0p9OpTU1NaZqmaalUSqtWq5qmaVqxWNSuu+467cEHH1zyPnkMR6NR7cc//rH2zW9+0/AZUFgezdr3+9//vpZIJDRN07Tx8XGtq6tLO3PmjKZpmvb7v//72lvf+latVqtppVJJu+OOO7SvfvWrmqZp2uc+9znt1ltv1YrFolar1bR3v/vd2ic+8QlN0zTthRde0I4dO6ZpmqZVKhXtP//n/6zdd9994jP//d//XZuZmdEAiPlAYWVo1r733Xef4bglu2uapiWTSW14eFh7+umnl5wnj+1Gc3e7jt+2UKr4LuLxxx8XbPYd73gHKpVKU9fYsWMHDhw4AKvVqnv87//+7zEyMoIXv/jFq/qODz30EIaHh3H48GHxnYvFIgqFAjRNQyqVwtDQ0KqufSWgFTYGjO34N3/zN3jTm96EXbt2AQAcDgeCwaD47Fwuh3K5jEqlgkwm05St3G43bDYbAKBUKiGfz8NkMjX9Xa8kbMQYJvyf//N/8MpXvhJ9fX0AAJ/PB7N5YSorFAooFou6dpLHcDgcxs033wyPx9Psf/OKRSvs+/KXvxyBQAAAMDw8jL6+PkxMTAAAjh07hjvuuAMmkwk2mw233347vvCFL4hjt912G+x2O0wmE171qleJY9u3b8f+/fsBABaLBddddx3GxsbEZ952223o6elpxS24rNGq+dkIZHdgQZUsl8u658lju9Hc3a7jty1IFaFUKuGee+7Bpz71KZw4cQJvfOMbcezYMXH8/vvvxx/90R+t+Lqjo6O4//778ad/+qe6x3/yk5/g4MGDuOmmm/C1r31N95y///u/x7ve9S7x96tf/Wq89KUvRV9fH/r7+/GDH/wAH/3oR1f83a40rMXGjex48uRJ5PN53HbbbTh48CDe9773IZvNAgDuvfde+Hw+9PT0oLe3F8lkEr/xG78h3nv27Flcc801uO666/A3f/M3ddcdGxvDgQMHEIlEEAgE8Ou//uutuA2XLdZrDHP8wz/8Q91YBBYWgn379qGnpwcve9nL8JrXvGbJ++QxrLBytMq+3//+9xGPx3HdddcBAA4fPoyvfe1rKBaLyGQyeOihhwQ5Onz4MB5++GGkUimUy2V89atfrSNOhGw2i7/7u7/Ttb1Cc1irfb/2ta/hwIEDeNnLXoZHHnmk7tg///M/Y8+ePdiyZQt++7d/G4cOHVryfnlsLzd3tyUutVSmaZqQZo8dO6Zt2bKl7tjWrVtX5BqSJcharaa99KUv1X76059qmrbU3Tc3N6dls1lN0zTt5MmT2tDQkPbEE0/UXXNsbExzuVxaNBoVrz355JPay1/+ci0ej2vValX70Ic+pL35zW9u+nteaVirjZez46tf/Wrtmmuu0WKxmFYqlbQ3v/nN2gc/+EFN0zTtG9/4hvaGN7xBy+fzWrFY1N74xjdqH/7whzVNW5CiSZqemJjQ9u3bp33lK19Z8vnpdFp7zWteo/3TP/3Tam/BZY31HMMc//Ef/6H19/drlUpF9/js7Kz24he/WPvRj35U97reGCY0cgErLKCV9n3mmWe0oaEh7cc//rF4LZfLae9///u1AwcOaLfccov2wQ9+UDt06JCmaQtj/7777tMOHjyo3Xjjjdof/uEfaqFQqO6axWJR++Vf/mXtfe97X8Pvr6CPVth3ampKhEv85Cc/0bq7u7WxsbEl542OjmoHDx7Unn/++brX9cZ2o7mb0G7jt62UKj2s1d2SSqXwzDPP4J577hEM+Xvf+x5e/vKXAwAikQjcbjcAYNeuXbjzzjvx2GOP1V3jgQcewGte8xqEw2Hx2j/+4z/iZS97GYLBIMxmM97+9rcvYeYKzaEZGy9nx02bNuGXf/mXEQqFYLPZ8MY3vhE//elPAQCf+9zn8LrXvQ5OpxN2ux1vfvObha38fr+QpoeGhvDGN74RP/7xj5d8vtfrxa/+6q/iS1/6Uqv+21cMWuky/fu//3u8/e1vh8Vi0T3e3d2NO++8c4nirDeGFVqDldj35MmT+JVf+RX8wz/8A26++Wbxusvlwl/+5V/i6NGj+NGPfoRIJII9e/aI63/kIx/BkSNH8Pjjj2P37t3iGACUy2Xcc8896O/vx1/+5V+27j+mAKB5+/b19YlwiV/6pV/CoUOH8NRTTy05b8uWLbjhhhvwzW9+s+51vbHdaO5uV7QVqbr66qtRqVTETfv+97+Ps2fPrumagUAA0WgUY2NjGBsbw6c+9Sm84hWvwA9+8AMAwMWLF8W5MzMz+OEPf1gnS9ZqNTzwwANL3AZbt27FD3/4Q5GF8s1vfhN79+5d03e9ErBaGy9nxze96U145JFHRHbet7/9bRw4cADAgq2+973vQdM0aJqGf/u3fxO2mpqaQq1WAwCk02l885vfFPY/c+aM8P2XSiWRZaZgjPUYw4RUKoV//ud/xjvf+c66159//vk6G/7bv/1bnZ2MxrDCyrEW+z733HO488478bnPfQ6333573bFUKoVcLgdgwc3/mc98Bh/84AcBLMTJxeNxAMD8/Dz+7M/+DL/zO78DAKhUKvjVX/1VhMNhfO5zn1Mxj2vEWux74cIF8fvp06dx9OhR7Nu3D8ACmSbMzc3hhz/8Yd0YNRrbjebutsWlFcoWACbNPvbYY9qBAwe0vXv3au94xzu0AwcOCOnxM5/5jPaHf/iHutf4/ve/rw0ODmo+n0/zer3a4OCg9o1vfGPJebLb6L//9/+u7d69Wztw4IC2b98+7a//+q/rzv/ud7+rbdmyRWQfEAqFgvbud79bu/rqq7V9+/Zpt99+u3b27NnV34TLHK2wMYde1uYnPvEJbdeuXdrevXu1e+65R3xeNBrV7r77bm337t3a7t27tde//vXa3Nycpmma9r//9//Wdu/ere3fv1/bvXu3dt999wlbf/azn9X27Nkjjr3vfe/T8vl8S+7H5YaNGMOf/exntVtuuWXJ+z7ykY9ou3bt0vbv36/t2bOnzoaaZjyGs9msNjg4qEUiEc1ms2mDg4Pa7/3e763xTlyeaIV9b7vtNi0YDGoHDhwQ/77zne9omqZpR44c0bZv367t2rVL27dvn/Yv//Iv4n3T09Pa1Vdfre3evVu7+uqrtc985jPi2Be/+EUNgLZ//35xzV//9V8Xx++8805tcHBQA6ANDAxoL3nJS1p7Yy4TtMK+b3vb27Q9e/ZoBw4c0K655hrta1/7mjj2a7/2a9quXbu0AwcOaPv371+yzhqN7UZzd7uOX5Om/f9iIAoKCgoKCgoKCqtGW7n/FBQUFBQUFBQ6FYpUKSgoKCgoKCi0AGsiVU899RRe9apXYWRkBIcPH8ahQ4fwsY99TBx/6Utfioceeqjp691///2iVH04HMbg4KD4u1UR/43aFdx55504deqU7rFEIoE/+7M/W/b6v/Ebv4GvfOUrS17/yEc+gkKhsKLvejmj1c8OsGCjt7zlLdi7dy/279+PvXv34stf/jKAhXZEclsb/l3uuecew+s++uij+M53vrOi73I5Yz1sx9tF7dmzB6961aswPj6+7Pu2bNmCo0ePrvpzFZZC2ffyhrLv+mLVpOr48eO444478N73vhejo6P4xS9+gR/84AdIpVKr/jLvec97cPToURw9ehR33XUXPvShD4m/eU++9cK3vvUt7Ny5c8nrlUqlKVKlaRq+/e1v484771xy7I//+I8Vqfr/WI9nBwD+4A/+AN3d3Th+/DieeeYZPPHEE6K4YCNce+21ukQYWLC9IlWLWC/bAcCtt96Ko0eP4tlnn8WOHTvw3/7bf2vBN14fVKvVS/0V1gXKvgtQ9l05lH0XsGpS9fGPfxzvfve78Su/8ivitXA4jE984hMt+WJrxcc+9jHs2rVLKF3nz58Xx/7mb/4G119/PUZGRvDAAw+I12XW/P73vx833ngjXvGKV+A973kP0uk0Dh48iGuvvVb3M5966ins3LkTPp+v7vX3vOc9AIAXv/jFOHjwIGZnZzE7O4vXv/712LdvH/bu3YvPfvazdd/jQx/6EA4fPoxt27bhk5/8ZKtuS1tgvZ6dCxcuoL+/X6RV+3w+bN++XRzPZDJ44xvfiH379uHaa6/FuXPnACwoUdSQc2xsDMFgEL/7u7+La665Bn/1V3+F+++/H1/60pdw8ODBK75q/kaN+1e+8pVCNZbV5UgkoltRm8NofH3pS1+q++6apmHr1q2iavQXvvAF3HDDDbjmmmtwyy23iNc///nP49Zbb8Xdd9+Nffv24Wc/+1kL/7ftA2VfZd9W4Eq2b+MmWw3w9NNP4+67717Vex9++GE8/PDD+Lu/+7vVfnxDxONxfOpTn8LU1BRcLhdyuZzoDQYs9IX72c9+hueffx7XXXcd3vrWt+r2G3vhhRfwH//xH7DZbBgbG8PBgwcF6dLD17/+dV0X0/3334/Pfvaz+PGPfyz60d1zzz3YuXMnHnzwQczOzuLw4cM4cOAAXvSiFwFYqJn11FNPIRqN4pprrsEv/dIv4aabblrTfWkXrNez84EPfABveMMb8JWvfAU33ngj7rjjjroB+POf/xxHjx7FyMgIfu/3fg8f//jH68gsIZlMYs+ePfj4xz8OYMGtmEgk8L/+1/9a1Xe+nLAR475areJrX/ua6NG3Grzvfe/THV+vf/3r8YEPfADT09Po6+vDo48+ilAohAMHDuCxxx7DP/3TP+E//uM/4HA48OMf/xhvetOb8OyzzwIAnnzySRw5ckRXzb5coOyr7GsEZd/m0LJA9Q996EM4ePAgBgcHxX/CCHfddde6ESpgoUr29u3b8Za3vAWf/exnEYvF4HQ6xfE3v/nNABYKnVmtVkxPT+te5y1veYuoENsMHn744ab7Tn3/+9/HvffeCwDo6enB61//enz/+98Xx9/1rnfBZDIhEoksOXa5oVXPzq233orx8XH8yZ/8CYLBIO699168973vFcdvvPFGjIyMiN+NitrZbDa85S1vWeX/5spCK8f9I488goMHD+Lw4cMwmUz4n//zf676exmNL5fLhbvvvls05P385z+Pd7zjHQCAb3zjGzh27BhuuOEG0T8yFoshn88DAG666abLesHVg7Lv5Q1l39Zj1aTq0KFDdRLaJz/5SRw9ehQ2m82wA3Ur8f73v1+49o4fP153zGKx4Kc//Sl+8zd/E7Ozs3jRi15U13qEEyyLxWLYhdvr9Tb9fV544QUEg0H09vau8H+ygOUqAV9OlYLX89nxeDy488478bGPfQz/8i//IgYf0Lzd3W53nbKpsIj1tB3FZBw9ehT/8A//gEgkAmDBVjwGYjWxiXz8vPOd78QDDzyATCaDb37zm3jTm94EYMGV8Pa3v118h6NHjwq1G1jZfNCpUPa9vKHsu/5Y9crxO7/zO/jbv/1bfOtb3xKvlUolw4Wq1fj0pz8tbhyVwiek02nMzMzgxS9+Mf7wD/8QN998M44cObKmz/P7/cjn86ItjQwj1x/B5/MhmUyKv2+77Tb87d/+LYCFsv0PPvhgXeuGz3/+8wCAWCyGr3/966LH3eWA9Xp2vve974l2FgDwi1/8AlddddWargks2J7b7krGpRj327Ztw5NPPgkAePDBB5HNZpd9T6PxdcMNNwAAfvu3fxu33Xab6Ad411134Ytf/KLIWqrVarq9yy5nKPte3lD2XX+smlQdOHAA3/rWt/CXf/mXGBkZwfXXX49bb70V//W//lfs2LFDnPfud78bQ0ND4t8TTzyBhx9+GO9+97tb8h/QQzKZFEFu+/fvR7lcxtvf/vY1XTMcDuNtb3sb9u/frxuo/tBDDzUkVR/84Adx++23i0D1T3/603juueewb98+3Hrrrfjwhz8sHhZgoTHs4cOHcf311+M3fuM3Lpt4KmD9np3jx4/jlltuESUVHn74YXzxi19c8/d93eteh6NHj6pAdVyacf8Xf/EX+MAHPoBrrrkGR44cQVdX17LvWW58veMd78BnP/tZ4ToAFhJJPvGJT+B1r3sdDhw4gD179uD//t//u+Lv28lQ9r28oey7/lBtalqAqakpvPKVr8QzzzzTkutt2bIFDz30kMhIU1BQUFBQUGh/qMCRFqC/v79lhEpBQUFBQUGhM6GUKgUFBQUFBQWFFkApVQoKCgoKCgoKLUBbkapGvdt41euVYMuWLdi5cycOHDiAbdu24TWveQ0ef/zxFn9zhWag7NteaLU9qMTJ7t27YbFYxN+N+iquBB/5yEfwm7/5m7rHHn744YZtMR566CH89Kc/bXj92dlZ7NmzZ8nrndymSNm4HpebjZV969EO9l11RfX1AO/dZjKZkE6nDQtzrgRf+cpXxMP14IMP4s4778R3v/vdumwCYCEFE4CqUbROUPZtL7TaHtRtoJnuA63GXXfdhbvuukv3WKVSEYkf1LFAD9/4xjd0r/Hoo48ikUjgjjvuaNn33SgoG9fjcrOxsm892sG+bbW6LNe7rRV4/etfj/e85z341Kc+BWCBOd9999145Stfib1792Jqagrf/e53cfPNN4uSBo888ggA4PTp0/ilX/olHDhwAPv27cMf/MEfAAD+9V//Ffv378fBgwexd+9efOMb32jpd75coOzbXtgIe6wGRnYAFjJtX/3qV2P37t142ctehlgsBmChrhuVNHn00UexZ88evOtd78LBgwfxpS99CQ8//DA++clP4uDBg4ZVoR966CG87nWvq3vt6NGjur0fv/CFL2D//v3Yv38/fvmXfxkXL14U3+NlL3sZ7rrrLuzevRu33HLLsn3O1hPKxvW43Gys7FuPtrCv1kb44Q9/qIXDYe2aa67R3vve92r/+q//Ko498sgj2oEDB3Tf96pXvUr7+c9/rnts8+bN2pEjR+pee/DBB7Vdu3ZpmqZp9913n9bf369NT09rmqZpZ8+e1V70ohdpyWRS0zRNO336tNbX16cVCgXt/e9/v/Y//sf/ENeJRqOapmna/v37tccff1zTNE2rVqtaPB5f8f/9SoCyb3thPeyhaZo2OjqqBQKBVX8vIzvcd9992ubNm7X5+XlN0zTtnnvuEec98MAD2mte8xrx3U0mk/boo4+Ka7z97W/X/uIv/sLwM1OplLZ161atVqstOXbfffdpH/jAB8Tfx48f13p7e7ULFy5omqZpH/vYx7Q77rhDfA+73a6dPHlS0zRN+/jHP67dfvvtK7wDrYOy8SIuRxsr+y6iXezbVu4/6t32ox/9CI8//jjuvfdevPa1r8Vf//VfN3wfrw7bDDQp4fHOO+8U7WW+853v4MyZM7jlllvEcbPZjPHxcdxyyy340Ic+hEwmg5e85CW47bbbAAAvf/nLRTPfV7ziFaq+lAGUfdsLG2WPlcLIDgBwxx13iOKBN95445IWVYStW7fiJS95SdOf+e1vfxt33HFHU+2gHnnkEdxxxx0YHBwEAPz6r/86PvrRj4pWHDfddBN27doFAPi1X/s1/MEf/AGq1SosFkvT36dVUDZexOVoY2XfRbSLfdvK/Qc07t3WKvz85z/H3r17xd+8J5Cmabj99tvr+gddvHgR27dvx913343HHnsMO3fuxF/91V/hV37lVwAAf/7nf44HHngAbrcbb3/72/GJT3yi5d/5coGyb3thI+wh4+TJkyIAlje8JhjZAVifvp3A8m2mGqHd+3IqGy/gcrWxsu8C2sW+baVUfe9738N1112HUCgEoHW92zi+8Y1v4DOf+Qy++93v6h5/5StfiT/+4z/GM888g/379wMAfvazn+H666/H6dOncdVVV+Ftb3sbrr/+etE65vnnn8eePXuwZ88eWK1WfO9732vpd75coOzbXtgIe+hh9+7dDQNgjeywFjTq31gqlfDEE0/gH//xHw3fe/78efH3rbfeij/90z/F5OQkBgYGcP/99+PlL3+52MU+8cQTeP7553H11Vfj7/7u73DrrbdeEpUKUDYmXK42VvZdQDvZt61I1fHjx/HBD34QmqbBbDajv7+/rnfbyZMnMTQ0JP6+8cYb8bWvfQ133nknPvrRj+r25AOAe+65B06nE9lsFrt378a3vvWtJZlhhG3btuHLX/4y7r33XuRyOZRKJRw6dAhf/vKX8c///M/44he/CLvdjlqthvvvvx8A8Pu///s4deoU7HY73G43PvOZz7Twrlw+UPZtL6yXPdYKIzusBW9961vxX/7Lf8FDDz2E9773vXU9zH74wx/i5ptvhs1m033v6173OnzhC1/AwYMH8frXvx5/9Ed/hE9+8pMik2h4eFg0fwUWXAe/+7u/izNnzqCrq8twot8IKBsv4HK1sbLvAtrJvqqiuoKCwhWN97znPbjtttvwhje8Yc3X+vznP4+HHnoIDz300Nq/mELLoGx8eaOd7NtWSpWCgoLCRqMVu2iF9oay8eWNdrKvUqoUFBQUFBQUFFqAtsv+U1BQUFBQUFDoRChSpaCgoKCgoKDQAihSpaCgoKCgoKDQAihSpaCgoKCgoKDQAihSpaCgoKCgoKDQArS0pMJGlvI3m82wWCywWCyo1Wool8tLer6tFgMDA9i5cyd8Ph+2bNmC7du3o1wu4zvf+Q4eeeQRlMvllnwORyckYV6qVg12ux1+vx8OhwMvfvGLce+992JkZAS1Wg2VSqXu3pVKJUxNTWF+fh7j4+P46le/iqeffvqSfG+OTrAvsLE29ng82LVrF4aGhhCLxfDss88iGo2u+noulwtdXV1wOp2wWq2w2+0AgPn5eczMzIi+XuuFTrDxRtrX5XJh69at6OnpQV9fH2666SYMDg7CYrHAal1YemKxGGZmZlAul1GpVFCtVuFwOLB582b09fXBYrHAbrfDYrHg+PHj+OIXv4hTp04hn88jlUqtu005lH3rYbPZEA6H4fV6YbVa4XK5YLfbYbPZ4HK5YLFYYDabYbfbxfcymUwwm81wOp1ifBKcTifC4TAcDgecTqdoU3PkyBE8+eSTyGQyiMViSCaT62KLVl2z4+tUtfrmmkymugeznXs+KSh0MuSxtdaxZnQ9eUwrbAxWc9+bOV/Zsz1hNi84vmQCRVjOZvxcjk5bjzuWVGmahlqtJn5fDjabDTabDRaLBW63W+xmfT4fHA4HbDYbfD4fbDYbgsEg+vr64HQ60d3djcHBQZRKJQwODmLTpk3I5/NIJBLI5XLr/d+8YuF0OrF582ZEIhGxg3E6ndi1axe8Xq8YXGazuc7+ZFM6ftNNN6G3txeFQgGxWAzFYhGpVApzc3Projhe6TCbzbBarTCbzfB4PAgEAmJs+Xw+mM1mYRuXy4XNmzeju7sb2WwWw8PDyGQyMJlMos9WuVxGqVRCrVZDrVYTtjabzeKfw+GA1WqFzWaD0+mEzWYTE7qmaUin00gmkyiXy0gmk8hkMiiXy4jFYkin00LxpPlEYfWw2WzYtGkT+vv74XK5MDQ0hGAwiFAohJ6eHvEMkI1sNhu8Xi+q1SpKpRLK5TKsVit6e3sRCoWEHU0mE3p6enDNNdegt7cXFy5cwLPPPotsNotqtbqhitWVDKvViqGhIfT29sLpdKK/vx/BYBAWi0Wsr6RUcW+SvMGx2WywWq11JInULovFAofDAbfbDQCoVquw2WxIpVI4duzYhiuUK0VHk6pqtVo30RrBZDLB5XLB6/XCbrdjaGgIkUgEHo8HW7ZsQVdXFwKBADZt2lTXGdtkMsHpdMLlciGfz2NychKpVAqJRALPP/+8IlXrCL/fj1tuuQWHDx+G2+1GX18fPB4PXC4X/H4/gPqdDT0Ddrsd3d3diEQiGBgYwJYtW5DP5zEzM4Pjx48jGo3i7NmzYmFVaC0sFgs8Hg+sVisGBwcFCd6yZQuuuuoq4Qog4hQMBsXkSWPZarXC4XDAbDaL8VapVFAul1Eul2EymYSbwW63IxwOw+12o1qtolgsikW2VCoBWJiUK5UKSqUSzp49i/PnzyOZTOLYsWMYGxtDuVxGJpNRpKoFcDqduP766/Gyl70MTqcTwWBQPA+0kSWXHrmGyA2Uz+eRz+cBAD6fDy6XC5qmoVwuo1arYdu2bQgEAsjlcnj88ccxNzeH6elpFIvFptYBhbXD6XTi0KFDuPnmm+H3+3HVVVeht7e3buxwUgXoK1B8c0WoVqvC1rRBMplM2LFjB2688UbEYjFomobnn39ekar1Ak3Oy7nsaDfrcrngdDrh8/kQCoXg8/nQ19eH7u5uhEIhjIyMwO/31+2OrVarmAj8fj/8fr8wusL6wWq1IhwOY3BwEF6vF/39/fB4PAAWCBRNoCaTCZqm1f0kpcTpdMLj8UDTNDidTszOzgIAZmZmDKVmhdWBxiARIoqDC4fD8Pv9GBgYwObNm5eQKrfbLQgUxc7wCTWZTCIajQpCVSqVYDKZhLrsdDoRiUTg9XoFOSICRmOYUCqVUCwWUSgUYLPZ4Pf7xc6YzuUKuELz4ApEV1cXhoaGxEbW4XDUnctJldvthtvtFuoEESz6nWxSqVTgcrnQ09ODcrmMSCQCl8sFh8NRF1NL84IiWOsD2ggNDg4KIaK3t1eIHJqm1cVUrQTlchn5fB7ValXMI7SBog01V7vb1cYdS6rsdjt6e3sRCARgtVrF4OUDVnZFkHuPlCly73m9XrhcLtRqNWFUeZDWajX4fD4MDg6KxVqh9aABY7fbEQgEEIlEhD1p0BpNnHSsVqstkZk9Hg/C4TBqtRr8fv+KB7yCMRwOh1B+I5EIdu7ciWAwiHA4jKGhIUF8PB6PuO+1Wk3YtFgswmw2171GrgOz2QyXywWbzYZCoSBsS5sdk8kkJmP+s1arieeFnimLxYKenh5YLBbkcjn4/X7s27dPKJnZbBbz8/N44YUXkMlkLvFdbX/QPTWbzYhEIujp6UEwGMTQ0JCYj2n+JeJD9iObc1tXq1WxWKbTaXF+sVgUCSlEsgKBAG688UYkEgmRiFAqlZDNZpHL5VCpVJDP54VaqbA2kHvd7XYjGAwiEonA7XZD0zRks1lhGxIcyuWycPvJsVUy6H3VahWFQkE8E6Ra8jmd5phcLodsNotisbhRt6BpdCypcjgc2Lp1KzZv3gyPx4OBgQExkCkbgXY75Kt1Op3Cn0/ZJzToiWnncjkRYwEsuiSq1SoCgQC2bNkCl8sFj8fT1my5U0FE2OFwIBQKoa+vD8CiNAxAKAlcpeREi9w9drsdLpdL7HC6u7ths9kwOjoq7K+wdlD8W29vL7Zt24ZXvOIVGBgYEFlesprM3fbkpjObzcK1V61W697r8XjEpErjkkiV2WwWKlOpVEImkxELKRE4OpdckkNDQ6jVajh06BAqlQrS6TRGR0eRSCRw4sQJzMzM6JIq+v5qzC+AxirFUR08eBDBYBBbt24VcTbA4qJI5IgWUQBClSByZrFYUC6XkUgkEI/HxUJLizTF7YRCIdx2222oVCoYHR0VGYFTU1OCYM3NzSlS1SIQoaLNaW9vL+x2OzRNQyqVqtvscjGDbKYXYG4ymerINs0FsivX4XAINdvn86G3t1e46xWpagEo8I1ia8LhsDA0kSqPxyPiLYhIOZ1OYRj6B6BOiaLJngfAc+OSCmaz2ZT7aJ1BuxuLxVK3Q+XkSV7k6Lh8Dl2L/nVCBkknwWKxwOv1ioBk+sfBiRS//3z8EXGimCh508ID2DmZprErfwb/SYoVTfLAwmRNMVzJZBJmsxnBYFAo11yxvtLB1T5aMKlshc1mQyAQQDAYRCAQqHP3UewLH7/cxUquWq4o0n0vl8t1v5OSCUC4C0l5poSITCaDbDaLUqmEQqEgPpuTuXaOx7nUIBvTT1rrXC4X3G43AoEA3G63ILc05oD6zQZ/HaiPoeLjn9uEPyOcWPHruFwuhEIhWK1WZDIZoV63U6JJR5Eq2mn29vaiq6sLL3rRi7Bz504xuGmw04PAMw/IzQDUp+QaLbB88HISpgIi1xc0QMrlMgqFAnK53BIyxBdLPfCMITq/VCohnU4jHo8LNVJh7TCZTPB6vdi1axf27NmDrq4u2O12lEqlJSSXwCdc7hqgc0nRoImdKx56CzZXMMnlS+fTM8AnbFK7+P+hu7sbgUAAlUoFL3nJSzA9DUaZCQAAOb9JREFUPY3x8XGhgND1rkRQRrTL5UI4HMa2bdvg8/lgt9tFyEVvby/6+/vFPByLxZYEKtPczBfOcrmMubm5uvmYwjDo2aD5nBNp/gz5fD6MjIygXC6jr68P6XRaBLhXq1Wk02mMjY0hkUggnU5jZmamLRWOdoDb7UZ3dzfcbjcGBgawfft2uN1uofQ6nU5s3769brNC44zWWjkznzZI3ENE7lxOoCjsA1hcB2jMVSoVmM1mHDhwAKFQCKlUCidOnMDExAQSiQTOnj2LeDx+aW6ahI4jVf39/dizZw+6u7tx/fXXY8+ePSiXy8hms2LHI++KgHr3EYGTK57mK7N1WdlSxGr9QDsXTqpsNpuIz9BTo/TAU+o5qUomk8hms4pUtQA0dtxuN3bu3Inrr79e7G7lMgjyGOKJBnyhBCCUCQp61csUo2KR9KxUKpW6zRX/bFkZ4Z8NLGycurq6hCurUqkgHo/jySefxNjYmCBVVyp4HOrWrVtx6623CgJFngCaJ2u1GjKZjFjgiBDZbDbhQSBQPI5eijx375IqAizOD/R+APB6vfD5fAAWCTsFwTscDszMzOCxxx7D+Pg4ZmZmkEgkFKkygNvtxtDQEMLhMA4ePIjbbrsNwWCwLq6JbMjHF/cGcEJEduWJLADqNjd0DVJByQVMnwEskqq9e/fiuuuuQzKZRE9PD06dOoWLFy9ifn5ekarVgIxCkysZgJgwwSiAWe91WbHiKof8T6/uhsL6gU/Wa8n44O9R2UGtAa+KHAgERCYWwWjMGYHGF08y0HPrGrl6jcZjM+OUuxkoI7FSqQjCcKWC7ECZnJFIRChWlH2pFwrBF2BaFGmh5XPrcpCVDL1/AOoIO/1N5J42ZD6fD8FgEPl8Hk6ns85tpLAIypQnwkxuP3Kv0wZJduXKypUMI9vxv4mA0WfR58khHBSGQ1n8hUIBPT09yOfzKBaLIgP4UqGjSBWAugJ/FKhGqgbtPpqZbPViOWRlSnYTkiEzmYwKdF5n0E4zGAwC0CdB8msy6eK/86BaRYrXDofDgR07dmB4eFjUfaMxyV0z8gZFBh+ntGGR464AiEB02sFy25Jd+bl0TRmyW5h+5vN5MW90d3fD5/MhHA5fsVmiNN/ZbDb09PTg+uuvx44dO+B2u+Hz+cTcK4dUkCpMduRxqpqmiXIWPL6VSifwa1QqlTolkjbOeptnIuP0Gnc5lctlmM1mXHXVVRgYGMC5c+eQTCYxOzuLbDaLWCymYqwYqM6cz+cTSp/NZquLL+R24MSKsvb0wi8AiKQDAr2Xq85UZ47IE30n7lqk8AAq65BMJtHb24tYLIYzZ87gRz/6kSifcynQUcyAlCragZBBqP6MLOlyX77egwAskioa1HIgOx/EvNaVqlO1vuB1pvhgMwpOlxdQPcLFlS9FqtYGu92O4eFh7N27V6TS0yRIPdzoXgONlSS+OHKXHE3WPJhVVid4phFfxPUWYD6+gUX3BX++ACAQCMDr9cLr9V6xShW5eRwOB4LBIHbu3InDhw+LDSwpCfJCKxNoshvFtRIB4llh5Nbn7iMi0ZQRRiqX3tiVY3j4fEBZg5SNCgBnz54V5yeTSUWqGCwWi+i7R8VaeQKB0VzLVUl6D41JOocnoPDjRKBLpRJSqRRKpZIQT4hQ0bNCY5Vc9n19fSgWi+jv70c+n0cgEMDTTz+tSFWzIBJFMh/5zunGyxMgn9Bl1YnvkGli5guu7A6kHVMulxO1cBTWD9wu8qQnL5hGC6hsQ4rPuVLVh1aClMRwOAyfz1cX77Yc9GzFoRdzxV2D9Pnybljvs/VcxrKKza9BnwVAFAqm+eZKisOhsgWhUAi9vb0iMJ3ukXy/G7n0+P3lqhWPj+LH+U96vzyXNwM9d5TD4UB3dzdMpoXyHDMzMyu7MZc5qJyF2WxGMplEsVgU7j8Oef6ln7Kt+TmcYOltjolAF4tFcT4RcILsdiQXbj6fRzqdFnUmLyU6ilTVajUkEglMTU0JhksVmuWqvQS+c5FJF5cpeTd0Dgqeq9VqSKVSuHDhAmZnZ6/44NX1BrkfXC4XSqWS2LUaScvyIOc7X9p1ezweMUlcqQpEq2Cz2TAwMIDdu3eLWmA8CFzPxSqTFxlGxIhn4sqvAViyMNNn6S3AfD7gZI0maVLCTSaTKGQaDocxNTWFycnJSz5hbxRcLhf279+Pffv2oaurC8PDw6I2H0/0kEtcAMbhFzxpgcYzVyCNCLLehlkm5jLB45+naZr4nl1dXbjxxhuRz+fx5JNP4vz582ouZ0gkEnjmmWfgcDjgdDpx+PDhOpe8nkDBf9J4ouxfWleBxbg6/h4eLkBKVS6Xq+vJS+dyhRmAeIaSySTOnz+P+fl5XLx48ZJvfjqKVJFPPp1OiyacRHj0FA2+49F7IHjgm5HaxRfxYrGIZDKJdDqNYrHY1K5cYfUg2VdehI1+J8gBz/QauW+JiCusHmazGX6/Hz09PYKI8FimRmNDVoqN4uDoOP9dT12icW5E4pq5Nh2nDZbJtFi9GQBSqdQV9czYbDb09/dj586dog4UlcoAsGR8NbrXXNmSa0U1CkLnm2GuaOh9nl4cHb8GHadCwJqmYWxsTMXGSigUCpienobJZMLMzAxyuZyofq+XwEWQ3eo8qB1YfAY4GZdVp0qlgmKxiFwuJ+LsCLJd6TMoTisej2Nubq4t3Lkd9USROkVSvHzTjQa23jE9N4KeqpXNZpFOp5HL5XDu3DmcPXsWiURCtbFYZ1BAYiaTWRIns1w5BD33Hy2WPEZAYfUwmRb7/HG7NNrNcteRfC1+nH7Xe81I5dIj2kbn0jGetQQsql/0t8vlEpWj5+bmrgh1k7cj8Xg8IrbGZDKJxYps3qg4aqO5WO/e0++NSDZXpPTGuHxOo/grTdNgt9vR1dUFAMjlcsjlcmqjzEDhNuVyuS5usVgsimQE2qRWKhVR1og3RC8UCmKt5MHnvGQCBZ5Xq1X4fD6RVczbGrlcLvHMVSoV8dkOhwOJRALRaBTnz5/H7OzsJa+i33GkqlgsIpVKicbHfFBy9kuv6e2kuPTP46hosNHEomkapqencfz4cSQSCfz85z/HkSNHhFqmsH6oVqtIpVJiMdNTETn4ZEuDn9ufZGhKMlCkam2gRAKv1wtgYYdLkx2l2ctuGT1SZOQG5IurXJeIPn+56/DPlBdjOX6H5g+uinR1dWHfvn1Ip9OYm5vD8ePHV3WvOgUmkwlutxterxfhcBiRSATd3d2iThjFulBT+Vwuh1QqJdLX5U0MYLyxpWwvuRyCHhGWVS6Ks+HvI5vSdU0mU13RUPlZqtVqCAaD2LFjBxKJBMbHxzExMXHJVY52ArVtozIUpEbH43HE43HY7Xb09/fD6XQin8+LAqvhcBibNm2Cy+VCKpXC1NQUqtUqQqGQyObOZrOirAWpWm63G/39/eJ9c3Nzov4ckTpKlKB2dOFwGLOzszhz5gyeeOIJ5PN5ZLPZS3rfOo5UUTAbpdkSjHbF8s6n0S5X3uVo2kKq9dzcHGKxGCYnJ6+ouIpLCU3TRKsJquTLbayndsiqhmxrnpqrSNXaQEoVd/vJShVBduc0UpuM1Cy+sHLi08iORqoDJ1hySRV+3G63IxwOi9i+y/2ZIZvS5oPqFPHCm3QOANGrkaBnE25T7g2QXbbyvaffZVIsZ/nJn0fn8GeEX48r3dReBwDm5+cve/uuFDwQnLtpS6WSaFrNa0tlMhkkEgk4HA4R/0pFl6nuG7leScHidqTwDJ/PJzJMKW4KqFc5SfwgRSyVSmF2dlYoWZcSHUeqcrkcLBYL/H5/XRYg3Xh+0412qPx63BfPa2EQaZudncWpU6cQi8UQi8WUPLxBIMnX5/PVuWqXc/01gvw8KKwMZBOXy4Wuri7hGiLpn1Lmjdw3/O9GrvlG7iQerG6kcsnX17sOd/PLMTu0eXM6naJlB38OL1eYzWb09fXhqquuQjgcFlXmiYhQ7Col9JALiNcnIvC5lV/fiHATGqmPJtNiGxN6L1Afl8U/h59Drn+yLSkjfX198Hg8mJmZuSLcuytBsVhEPB4XHRKAxRAcYOG+k8cmm82KGlcWi0XUfcvn84J8kRehWq0in88jmUzCZrMhFArB7XYDACYnJ4Wbj4p8U5Ymt2mpVEIsFkOlUsHc3JwgeWtZH1qFjiJVZMRsNguHw4FUKoVCoVA3UOR6NstdT+4xRgs3xW2NjY3hiSeeQDweXxLHpbB+oCa9oVAItVpNuJfWAnkCV1gZzGYzAoEAenp6MDAwIJqYU0E/Ui6MiBRBLhTYyG1Er9NPI7IkKxkcRJ7k1/hn8lo8NM7dbjd6enpQLBYRCoUu+0XXarViZGQEL37xi+H3+zE0NCTCIHg/RioKSioyLZZ0fyiAmGdWGoViAPUKJxFcPZJGLnyz2Sz6g3Ilha4tZ4aSS5oWaIrR9Pl82Lp1K3K5HCYmJi57+64UuVwOMzMzqFQq6OrqEveHCFa1WkU0GkU6nUatVhPKn8ViQSqVQiaTEXWnOOGlfoyzs7Pw+/3YvHkz+vv7MTc3h5MnTyIej6Onpwdbt26F0+kUGf/AQg05cj9PTU1hZmYG4+PjSKVSbdP8vKNIFbA4YElJ4vVMCHqxG/Q6sLRmBoEGNtWkIpkzlUqpGKoNBhFdquZ7uasEnQKbzVZXAJcvps2SVk6A5OKgzby/UfyU3jWM1Cr+txxXSYs4uZ1JndEjjZcLzGYzXC4XQqEQvF6vCEjn6h0RHr4J5YofsEiSCEZkajnIrmLuWjaKu9ILTuffjx+zWq1wu90wmUzieSaidrnaeCWgMgcUbkOkWnafE8nicYm0TssZwXKdMv48mUwmkf1HlfAtFosQOTRNg8fjqftu1WoV2Wy2rpzLpUbHkSoCDRReJ4VLk8vFXOjFAtBEEY1GMTY2JupScYVkJZO/Qmsgx7wYQS+eSpGx1oHKKPT19aGnp0ek2BttcLjywGNh+HlcWTJaEPUWUHlyp9/14h2JLMlzhl78jvx9SKnxer3CHZbNZi+r2kZ0j4lEejyeJc2P+WLI50uqek0g2/A2Nby+HD+Pfz7/HnRt+lx+jNe2MnreaIGWlVBuY1JWKF5uy5Yt2L9/P9LpNKampjA/P6/meOgTYh4qY7PZRFkjTqLoOSAXOmFubg4A4Pf7sWPHDlFklIhRb28vurq6RPA7ZRpSchHF+hWLRVy4cAEzMzO4ePFiW4keHUuqgMV+bsAiqaLdlNGAaBS/QX53KoA2Pz+P8+fP12W3KFK1cdDbMdIuqBkY7WaV7VYHk2kh86u/v19khfHCrPKiS++RA0wB/ZIJsiLZbLanHFvDP5uuy5UKWXHSmzdoUSZi4ff70d3dLQLzLzdSRRtKCiYmUkUuPP6PQAkkpCbzWBsCtYkBFkmzUWwjv/c8FIOuyUM7+PeRbSaTKllJpfdRBlmtVsPWrVtFHcJKpYJoNKrmif8PmVDxsUSuYO42B+rLkrhcLgBALBbD7OwsrFYrhoaG0NPTg0wmgzNnzmB2dhahUAhXXXUVAoEA0uk0otGocOmR25eSJ0qlEiYmJnDixAnE43FFqloBmggpjoP75On4alWKSqWCTCaDdDotYrZkXM5ugE6Enkqld04zipeCPmhn6vF4RFaYHvFdyT3WcxOt9TvKz4BR+YVGGyz5/0QEwuFwXNZuwFKpJFLSHQ4H7HZ7XfaVfM+4EimrTORC5e/lpEpWHOXf6aeewsVJE5Fm+XPk8a73Gle+ePNnBdSFwch9V3mcnEy8AdTVA5Q9PTLJ5QqxXhFRrqTy46VSCfl8XmQKtgs6llRR1P/Y2BicTicikQhcLteaCjvSQ5FOp3Hx4kVMT08jkUjUDTKjuA2F1kMviwdovPjKix0PkFR1qtYGs9mMUCiEzZs3IxgMitY0tKhRWwlyCQD17huyhVzFutFYakTQ5ABoeUMlF/Pk34MrVnzBoIWElBeK+fB4PKJ6fCKRWOmta2vQBrVQKODkyZMwmUwIBALYt28fRkZGROq6x+MR7cDonlHla3KxAvVtZbiaxN1D8ufLY5beR94IOa5LVq048aOfPPaLah0BCz0dKRZnenoahUIBx48fx5EjR0QJnSudWGmahkwmI4LAXS4XNm3aBIvFIophU0waEW9KIgsGg+ju7obT6RShNLVaDaFQCMPDwwCATCaD+fl5AAv22LJlC6xWq7h2sVgU8W1ceeQ1q/L5PBKJhCjZ0C7oaFIVjUZx4cIFBINBBAIBeDyeVWdw8IFMWQ+Tk5NIpVJL/MSKUG0s+OJoNNnJSoQ8SZPKYrfbRZq4wspAMVUDAwOi8jGRKpNpsW4VT183Uo64mqHnylsuJpIfM1Kh+MKu9zxwVxGPxaxUKnVp4MCCGyMcDgNYWAQuJ9B9L5VKGB0dRSwWQzgchsfjQTAYFC4X2pAAi3GO5A7lxJQSTDjIPUTBzo3GtFy/irsNeZAzV5aIANPf3KVJCzF/5mq1mlg/UqkUTp06hWeffVa1H2OgdTCXy2F4eFjcSyqJQJtTu90uim7G43FRgsTn82F2dhaTk5MolUoIBAIYGBhAuVzGyZMnMTY2BrfbjZGREXR1dQmSxLMF+TPF7UnFaKlXoCJVLYQcJ6M3ea7kWjRYueypBtmlg567gSbN5RQOvddUi5q1gcdUyK/Ju0lSGmi3KbtouNK0UlsaHZddPUB9fTNenZ8maXpd/gcsBr5brVYRH0Kk/HKbFzRNExWrSUmYnJwUNYT8fj/cbnedEsltyO+JnAGoF8soK4z89WbvbSNXv91ur2ujRGpcMplEsVjE3Nwc5ufnkclkRKD0la5QcZAySOSVxgWp0RTnRATWbrcL5YpsSG5zqm9G4442YHQdKhhKmxw5s1TPTVwqlYSi1U5jsaNJFZfw+S6F10nh5zaKu+E7H5pUMpmMbkzV5TihtiP4Am5EkppZjMneNJCVUrU26C2QNFHSxOpwOOqUBQrsllUIvhjzQPdmxpcRgZKPkQtPXmhpUqdJmVLDHQ6H2A3Ta16vF1u2bIHX68WpU6fWegvbEmSnSqWCXC6HH//4xzh+/DgCgQC2bduGSCSC4eFh3HTTTaJWEC9xQ/XK5FR6cg3K8VBGXgXuzpPjtWRVU35u6L1WqxXd3d2IRCIoFouIRqOiHtWTTz6JaDSKeDyOmZkZFAoFJBKJtorLaQeQukhj2WKxwOFwwO/3i7WXQm7cbjc2bdqEUqkk3KuFQgEejwfbt2+Hpmno7u4Wtg+FQqLAbiQSQTAYFLXPTCYTHA4H3G63cPNRX0buBibiTwJIu6CjSZW84MqDC2gclCq/RhI2TRD5fH5Jf0GFjUOjeJrl3qfnUuIqhbJl68BdaRR/Q7E3fKErlUp17hu9XShXIfWIlRxHJf8ukyr6nYgV32FT7SkiTzzVnq5LbiWn0yncf5dzyxpqoJvL5UTsWDAYRDabRW9vrziH3H6yG5WTHJk00zE+b+uNcb17qxcnqQf+GX6/Hz09PUin04jH4yiXy4jFYjhx4gQuXLgg2qooMqUP7gontZmIFNmNVClq6cRBBKuvrw8m02JTZIpRpAxMn88Ht9st/q5UKnC5XPD7/UJJlrNtKQM3lUq1ncDRsaSKSuKHQiHBlvkOyWjh5GTKaKCSqmG324UkTpPC5TqZtiP0CHEz8rzRIGukeik0B64I82BhoH7MmUwmJBIJzM7Oolwu1ylEdFxvo6MHI4W5kR05KSOyZzKZxGbJZDKJsgFcyeSLPu2I6f/mcrmEinUloVKpIJVKwWq1Ynx8HM888wxmZ2cRCAQQiUTEfeOB/7ywI1Afx2bkFuTEWibVjZQqDnI9m0wmTE1NIZlMIpPJYHR0FIlEAmNjYyKru93cRu2GSqWCQqEAi8WCcrkMYLGMEZEpUv+Beltye9EzwPuuUhFhug7N65T4QFm2tBGiIq2UcdzOYTkdOzvY7XYMDQ1h165d0DRNtJXh7S+MSBM3vJydRKzb7/cjnU7XtcJR2FjISgYnzEA9wSLbyXbm76PFlRcrVGgeRDJIbqfCn8DiRoTHTp09exbf+c53kE6nceDAAVx77bWiQrlMlI3iImUStRwhpueAZ+95vV5Rj2hiYgJTU1OwWCyizY7NZoPf7xffLZ/Pi+9E/z+73V7nsrjcIKe5c+TzeYyNjWFychKjo6M4fvw4nE4nbrjhBrz61a9GV1cXgMWsTt5SSo6lo4WVPotnB/LfSR2Rwzb4MyLXqaI6Rk6nE5lMBj/5yU8EiZqYmEAikUAul8P8/LxYK1QMlTEoUN3lcok6UKRU0VjhxT8pW0+PPAP1MXR+vx9+v1/8XSqVYDabEQwGl9id6qbRuaSmtqvtOpZUWSwW+Hw+4TOPx+OiiaO8E+K/6x2TzyF2TLtSo+sprD/ke99IfTRyF8mxHKt1Kyos9svk8TR8seSTaSKRwKlTpxCPx9Hb27sk7Z2u16xrxyiuTgaPu+AbpXK5LOJreJA6uRpsNhsqlYpuSAEVxqSg28sJy42FarWKVCoFAKIgssm0UHbhpS99KXw+X52yzyG7euXPIzvJxTz16p/x9+jF4NEi73Q6kc1mMTExgWPHjiGdTossP4XmwRul81Y0tCaSasXr1fFCu0C9es3drOR6p40LzSOkZtPcAiyqj8CCS5Hmn3ZdiztqdiBfrNvtFrIz70vEF0/ux9dbjOXj/L1ut1vED9RqNeV330DQINVrf2EEI5Iku40o3V/VqVobaNKkYFKaYClOiSbUQqGAaDQqgoTJVcDdPAB0xyFBdtfruQz1XII8Xoc/H9lsFvPz86jVaojFYrBarYhEIiINXM4ApIm/VqvVqeGXE5oltTIqlYoIIqbkBE6eAOOCu9z2clA7/a5Xp47P7Tyrk38Oj8OhzTYpjgrNw0g55naidZe7fHligexN4Eqy7EmQf+c2p3FI2ZvxeBzFYnH9b8Iq0FGkymKxoLe3F4ODg+jv74fD4RA1KnhwpFwDpVEgJN/x0Hv9fj+2b9+OcDiMSqWCCxcuqEG5ATCZTKImjtfrbUoRWE69oMFJGSoAhHStsHIQ2bBaraKOEV8AORFJp9M4f/48ZmdnkUqlRJ81nqZNgbB60FtQjYgVfw+59flumX6Px+MYGxsTbqB0Oo3t27dj06ZNGBoaWkKoqN4W7dqz2WxbZRq1CqvZ9ZdKJVEY0mq1iqwwvXIb8mfJCyqBYtm48swXWH4tsjHVvqLj9PzF43FcuHBBuKz5d1rL//tKgt5mh5MqureNBAwOOZRDfl2PyFG5hkqlgmQyifHxcUxPT4vK/+2GjiJVtOgGAgF4vV5YLJYlPcfkXZHsFtKbkOXjlJFAWQhqAd4Y0I6EV83lkAcs36k2ApEqXgNFYe0gcsVJC580qeVJNput6zovT9TywiaTKflYs4qVrFoBEJlt6XQas7OzmJ+fRyAQQLFYXOIe5gHr5KZo51iOjQbF0RAxbtatrrdQN5qj+aaXH+dEisfh0OvUxkQRp7Wh0f3j5S/oXHnN5Zsi/preem1E4GhcUrkPHrfXbugoUmW1WtHX14edO3ciHA7D5/MBaL6wHDeizIz5OV6vF8PDwwgGgxgbG1OL8AaBE1rKzGp0rmw7HsCutzDzqrxGNXIUjEEus7GxMQQCAdFI1el0iizcVCqF6elp5HI5nD9/vi4Wg+69LP03Cm7laOYYtz0v7Elwu93o6uqC2WzG6Ogo4vE4UqlUXWA1uZ759yWlKpfLKdWaQXbZAIu2pt9l6BFjI9vqkSk9cPvL4SCNvrvC8iB7UvNkghxQTucakV+j32WXrhwOIJOsds/i7jhSNTw8jGuuuQZerxehUMhwN6vHgOXjsqxMf/t8Pmzfvh2FQgHPPfecIlUbBJNpIZ4tFAqJRXs50C7ViCTxiZ5a1Kjin6tDrVbD7OwsnnvuOfj9fmjaQrFICvJ2Op2IxWJ4+umnMTs7i+eff14UhKRYNqvVKtQe/s8ohsYIRrtfHmPDg+fpO/j9fvT394ssorm5OcTjcUH+qJ8ZLz4JLChc1GRdpeIvgGJpODnmFbbpHD1lUVacCXpuISN3r96mmNxRjRTF5VxUCktBhT+p8rmsEhkRqeUIlXwNTo71PoPUbp5F2m7oKFJF7j+v11unZDSa4FayKyJQaX36vV2Nd7mBBo2cmq93Hv1sZnFTC2BroGkLpUsovTqRSMDn86FWq4mYqWQyiVgshvn5eWSz2aZcZVTjiKNZ2+p9R3q/3uaKkzuauMlNmclk6mJEyLXB46mUUrUURp4CPVeQfFz+Xe84f41/pt4xInrLZYepOWFl4G44o0SNZhTF5T7DCLIA0s5rckeRKgoipyB1i8VS169JTpeXJ9VGqhZQn8mgBt3Gg9Qkt9ttmP3Hd75cmTBSq+g4xdKYzebLMoNrI1CtVjE3N4darQa73Y6pqSkEAgHRasLlciGRSGB8fByZTAYzMzMiVolaXlBKNNnOSEHmrzUDeYzT9WkRoAbJemN7ZmYGX//613HixIm6OLFCoSASYWZmZoRbc3JyUs0PWFQTKCXeKPiY/00wUov0XPiNXIN6ShX1hFOxb62DkTuO/91MTJ3ecaNnhHuT6B/v2NCuHqSOJFW9vb2wWq11vfn0dqVc+pfjbGRD0muKUF1aEKlyu91Lsv/4RKxnI71JlM6j9G9N01Qx11WiVqthbm4O0WgUQH1WHS/SSmOISAxl/DXbpHylKlUj9xCpTY3ibGZnZ/Hwww/D4XDA6XSKuku8vQmRB03TmorXuRLAlTxOqpZTqGQYna9HquSFXY9U8UKUCq0Dv/c8OaxR+EUzWM72vH4ZuSGpzlU7omNIFY+5WC/5zyggTs4CUlgf0D1fS9NjvfgMeQKmmA9etE6hOdAEtxrIqvF6yfmNiLfebrtarSKXy4kq8bVaDVarVbgEZdKgsAi5YOdqFtfVunr13ksKtBrXGwej+KjlzlnJcflc5f5bIyjNnrKNqJAgyc5AfWYfgbuH6G+C0UDWNE24AICFmkZut1u4LlQ8xfqBYuZ8Ph98Pl9T2X/NTOL0bNDi7XQ64ff7EQwGhYtHTcDrC549xJu00ljTmyibnTi5gsmVaQp05QHUXEHjZJuXBqCWGTzgWT0fS0GKEN07oPkEg9WC25kXZqXvQ4piPp9v25T7ToZeGAYPu1lJYDrHcm5BObGlnTc4HUOqbDab6IxeKBTE5KxX3JND9v8C+qmc8rlU9M9ut4v2FDSJKKwPeCICFRRc7vxmJnFZEbFaraIfnKZpqpbNBoDGsN1uRz6fr2sh02zl/EaQQwB4/Rye+m1EqmgBpgVZYXlw9x93BxmhkXIoo1ENOh40zRd3YMF+hUIBxWJRkap1gp5HR45l5seXAz9H7utKpFmvhVG7EquOKNYjZ4TpFYVcDYzeJ1eHNipGqdB60CLbbHq9kcJhpHoQqSKS3q5++csB/F5TsLreAtxKOd/oOkSiSDHj7XQUVgdeEZ+XsqCfRm4hvWQiflzvPYRG8VT0WrsrGZ0Kvva2KhSmnd14q0XbK1U0MVP7EgpQ43VQ6DwZRkY3Corjr8vNVklWVq6i9QMRKiI8cuHWRqqknmol73Z5fzqfzycqaTdbmV3BGFwJIjtQ0oHH44HFYkE+nxf9OklF4vGKa4mtoe/AvwtdlxZZKlQaDodRLBbhcDga/l84VDzlUlQqFRQKBeFqk+NQ5fg1vULM8vzNX5fHpRwgrWcTlf23PuDChjzOWwnuqudjkMZvJ4zBtidVAETwMikLcsBrs+6/ZsDdCPQgXa7d6dsRpA7KwctGk6iMRuSa7EppuXLZBoXVQx6TwGJ1cuq1SNl/chkUen8rJ0y9SVnTNNhsNrhcrobuZb3YzGZU08sdso0oFo2XKOFzZzN9V5v9LP4euemuHKhOz5ciVa0D99yshVQ1EkEI3G7yuOuE8dcRLIFXUeWLbTOBrcvJi0Y75JX6hRVaA5qU14PskCuXtzlQLqD1A5FXt9sNh8Nh6OppFaGSXUP8syh7j+LpGpGqlcT+XMmQCQ6HHK9Kr5GCRX8bxcbwIGi5ZpXeNeifGs8bg/UaC2S/arUqbCvPGVwNbUd0BKnimUNGcVUrgRFJ0psY6PNUZfX1Bw0Yh8PR8ngnqm9C7VR4jJ6y6/rA4XCgq6sLfr9fuAD1YmoIa52o5UWex39QbSm3242enh4Ui0XRNUHvOopALQ85UJ0gj1uqmE//ZDceQS9eis7l7aj0ztFzIyq0FnpjdTnPwHKeJKPPkckzP9bu83ZHkCouPS5HplZjwGbjOdrViJcTOGlu9n43M4HKz1Arg6MV9MH7hVGw+nL3fTWTsPx+7sKna9Gib7Va4XK5lOu3RZCJkdEiy20in2fkKeCxWHrNe2UoQrW+WOm4XC2hWu7vdp+7O4JUNQpM1Du32cFH5+u9Tsd4NWbV2mT9IQdEcsiTcrO7004cmJ0GvZgHp9OJrq4uhEIheDyeJRuiZtz3RlhufMsxXry8Ak/PVlgb+H3kLnVOpJrZIDUzXxu5j2X3XzurGJ0K3jmBw8gmRtBbY43iF1erdF1qdAyp4k0yjSbDRruh5a7PJ2KTabE0PmW4FAoFVfdknUHSLrl6m2moTFipytjufvlOg0yqTCYTvF4vhoaGEIlEEA6H6+51K91+/Jp6Y54HLfO2Ks2QcEW8jEFzMd1b2b2nF/+it0E2Ikr8NbouP6Znp1aEhyjoQ2988bjURusyndvM8U73GHXUk8d3Rc1kEawG8vU4uVIT7MbAaPA2875Gr8k7XqVWtRby+KDMWbfb3bA6/kZAT+lupGqo56I5yIHm8oanmXHWaBNs9N5G6jMdU8SqtVhOrFiPMbORn9UqdIRSVSqVkMlkYLfbUSqVDF12yw0qOY2bF6yTBy9XqVKpFNLpNIrFoiJW6wyjlgd60JOSjY7x16lWFXU6b+cB2smgTDuPxwO73Q6g+V1oK8aZ7B6i72S32+H1etHd3Y3h4WEUCgUkEgkUCoW69ykYg7wHxWJRqPgySaW/5TI4srrBY1qbdeFzt5D8mfz6Cq2BPCcvR3ZWO371CDr/fTWeqI1G25MqTdNEITebzSaIDfefczTy4cvn8uJyMhGjVha5XA7JZBLJZFLVPdkgrERB0nMBLPdeIlXkZlRYHxCp8vv9otDmSuLgVjMx8+vTZ5DabDIt1ijzer3o7+/HyMgIksmkcPHLz57aRBmDh0ZQCrxc8kYvuYjfY06kyEZ6Qet0rvyTrkXhAnLJFIXWgO6zfF/X8x7rEeVO8DC0PakCFlN35SrMzcrKgH4mgjzBy61ReCXmTqnm2ulYy4Bp9n3yDlphfUB1wVaTAr2eY40WX4fDAY/Hg1KppDIBVwEe67pcD1YjrETZkBUKWZk2WvgV1g5aDy/FOrhRJK5V6BhSRbVQHA4HAoFAnaIE1BMkXqW5EWRj0SJLsnaxWES5XFZ1azYQRHYoBZ+jVTsUvQr9Cq0HlS/g7r9GMFpgm1G19GB0PtVN6u3txVVXXYXp6WmMj48jGo3WBVmrMb8ITmjovtA8SW1q+P1qJqFIvj7/Z+QVIPLLM7H5dyOyTO3MFFqDQqEgvDXlcnldPsNo3PO/eT/edkX7fjMG2hFVq1XRt81sNoteYjxlmhMqmTTpDXJK/+XKBfX5o1gB5fbbGBCx5UVe12Nho8lXTbzrC7PZLFrCkJtVz55GadNG6nKzO1ejGDtNW2isHIlEsHnzZphMpro+gHrlIRSWolaric2nnBlN5FSPXDWKx9GLl+EbZhqvNE/L728me1hhZaAQnFQqBQANvURrHTM8xg5YWlaBu5Tb1b7t+a0agLvlAP3AxOWC6PQeCFk6VhPrpYM8YBqlXhtBLw5DVjOVm2B9QaoBbwmzkvpQzSiVetdabvzT71RdX49cq3G/FEb3vtG9aiYGRraL/B75NaPFXM3Z6wu9DNqN+EyC3vPQjugIpYqgaRoKhQLS6bSYpK1Wq3APAs2nfcqLLqkXpFjxnZbCxoEUJKNF2Gg3awQe90Hggeqq/dDqoacmcFCdqqGhIeFWB+ozfHjml56LqZnJs5lz+TFy73m9XoTDYcTjcZWwsEboLba8ErpsX36cXuNzMr2Hl2zQ2xjxkjf0U8XAthZ68Wp68zC38Uruvd5aDNRn5xN4nGa7ztsdR6pKpRJyuRxsNpuQ8ckHz7NBGkFmvPQ+3uPvUrDyKx3cZ06DdzXEVl7s5QraZGe9uC2FlcFoEjWZTHA6nQiFQohEIsjn88jlcrr2NIqxaaRCGY1NIzVFb9F2OBzw+Xxwu93KDdwC8DlTtp/8nPAK3XJ4hZ4iLcdr8XP4+CZCpTbErYeeQiT/vpa5Wh7benMKLybbrnN3x5EqSuMlQmUUd9MMsdLL/qNBns/nkc1ml9TFUlhfEOEhpYrvVNfi/pOP8QxAhdaBtxniamOjbgirnRybWXDliZ6PeYfDAbfbrfoArhGyYrFSe8p1AzmWcy3qvbddF9tOBCcxa6khuJpjsk25+NGu8VRAh5GqWq2GTCaDaDQKl8uFQCAAt9sNwNjf2uwkztWLYrGI6elpJBIJJBIJ3QGriFbrweNcHA6HcBnx3e1qUvNlVwAv/qncf2sHv7c2mw2BQEAQFtoElctlYQc9cmykMBkFmzc6nyvW3JVACSnVahVmsxnBYBBerxfRaNQwO1GNd2PojRv5vuspUUaQz13OW8BtY+RKVFg9+AZXDg7Xu7/LjZFmbMKz+o2UKvpO7UqsOopUAUC5XEYulwMA+Hw+3QHU7IDSc/+ZzWZUKhWk02mkUimhiq3kugqrB1c6AOguxEbQW6D1JmZSqPQKEyqsDPLEZ7FY4HQ6RcYfNSTnk+Rybnr5PCNi1ei7GF2fn+N0OgEAbrd72RTt1bg2riQYzcGrvWfymNVbYPnvesfVfL028DgqvQ3temw49DZL8tzdTI3KS4mOIlU8porvOKmaLz+vmRsukyX6WSqVEI/HEY1Gkc1mdWVIhfWBybS0CnOzsW165Fdv8PGFXylVq4feOHM4HOjp6YHP50MoFKrbUcr2kclVo4VxJRsl+Xd5cabg6VqtJr4buSt5ZrH8f1WoB9+wNJpz9TpXLHcuLeZ6MVpGJApQDZVbCdm+sgoMrI/QwMmcnu3bvXBzR5GqWq2GdDqNaDSKSqWC3t5eWCyWJZKx3u8cRoGx9DOTyWB8fBzT09OYn5+vKzTHz1UTbWthMpmEC5aCyI0WuUbQczHxv202G3w+H0qlEpxOZ9sOzk6APAb8fj+2b9+Ovr4+bNq0aUn9J64KA4slURpN2lxR1gtyN3IT8Pfx82kTRmooFYN1OByoVqsolUqqNp0Ebg+uJFKVbaP7xd1FctKAkQvXYrEIG+mRNtnVy78fV7rVuF4buH15AgAfW3pdSAD9ZtZyBrb8utzDkbLwedw0jdV2dv+157cyAE2I+XxeTHx6O10+2IxUjkaxVpVKBZlMBul0us79p7D+0BuoemjWJnoTKw1MVVKh9bBarQgEAgiHw/B6vXWLm9GGRyZNy7nx9M4zUimN3ic/Pzx2RO89CsZxNM0QUNmOKxlzjdzEepmD7ewa6jQ08/zL99uI7Kz0dfm6MilvV3SkUjU3NwdNW6jyqnfjmyVR/HVN00SrhUwmg7m5OUxPTyOdTiv33waCxzsBS+25EtlZVjtoEpbrVCmsDI0Ir8vlEipVOByGybSYbMDlfPpHtuYZgvw4d+XQrlneSBltkDihk2sd8XZIfr8fIyMjSKfTiMfjGBsbE3GbCsYolUpIp9MwmUwoFAq6HgMjj4BevByfi+lnI5cfVznpGbNarXC73XVV/BVWh0aB6rKgwbN7myHZeudwdzw/h/8sFArI5XLIZrNLKuq3CzpqRanVaojH45iYmEC5XEY+n68btGSU5UiP3iJdq9VEY9VkMomJiQmMj4+jWCzqxgMoYtV6yAstUD+xGmWeNFI25AWYJgOq9K1qVa0MRrtHgtvtxpYtW7Bz507hWqXNil5sFREb7l7gn0OqIoC6PpwyUdZbcHnNOZqAiZgBC24mh8OBUCiEffv2wefz4ezZs5ibm1OkqgkUi0UkEglUKhWxyOm5640ULiO1kezJibD8PrquyWQSiRAARPZwOp1WpGqN4Io+udwsFososCpvbORkFBmN5g06Lm+aaVNGz1Uul0MymUQ6nUaxWGz5/7kV6ChSRZNjoVBAoVAQA8lo0C53LdmANIjL5fKShsoKGwM5y8RIqSKsxDZ8wVbZf60F3Uu73Q6XyyUy6uRYGsJyLj4OHmfBlSq6tnxdWaFsBJPJJGLsqMSCqlnVHGgjWiqVlsSdNoIRmaJr6p2j0B6g8aU3bzYSG5oZh3qvyWs0kbeVPG8bjY4iVeT+m52dhc1mE/FOfADyXRLfwRr5fHnBz1wuJ3ZdpVIJ5XJ5xUHwCmsDj6niLlnaqegtpEbXARYnZ1IoiCSrOlWrh+z+c7vdGB4eRjAYxK5du9DT0wO/31+nIpFdyaZ8V6vnztMjR3KdHF51nyCTtUYEnYLSzWYzenp6YLVakUgkDGtWKdSjWq2iUCgI9YJnUPJxx6udy/OxbCPuXpLdgPwfb01GametVkMymUQqlcL09DSy2exG35LLCnx85HI5pFIpmM1mBAIBeL1ecQ5XFpcjw3rEy8hFTM8CJS7R80bfo13RkaRqZmYGdrsd+Xxe14jcB8vrHMmGoN21xWJBqVRCJpMRP0ml4lBEav3BVQhuPz1XAKEZVZImYRqw5CZQMVUrgx4Bdbvd2L59O4aHh7Fjxw5EIhH4/X5R/oTc8pTNUy6XxSLMr6m3eAL1TdP5e+h1GqfyIszHvJ46QiTbYrGgt7cXgUAAk5OTqhBok6hUKiIEo1qtisxdIlI8c6xWq4lNKredrBbrxVnRHMDty4m51WqFy+USCUYTExOYm5tTpGqNICXSZDIhl8sJl2pPTw96e3uhaRpyuZzoOsJdv42q5BNkuwNLg9FNJpNQviuVCuLxeF3drHZEx60olUqlTkXiRjC6yXqkSp6o+SLeqG+UmlDXFzwlmgYOVyFl1w/QeEDyCZz/TXECKvV6ZdBTCSnjr7u7G4FAQLR9kZUlHjNHNubnUcA6H5P0U1aqZHVDHvvyws2vo/d+quDvdDrFs8Hjr2Q1TaHeFVMoFJDJZJYslPwek4olvy7HSsrxd1yNlBdpfrxarSKXyyGRSCCVSqnQjRaByFMsFgMA9PT0CAULQF0Cit5GyQh8HuHzud68ThugfD6PVCqFdDqNUqnU4v9pa9BRpIra1JTLZXi9XuH+M5vNcDqdoskyDTwe8AwsFparVCpip+x2u8X7aHJQ/f4uDcxmM9xuN0KhEFwuF1wuF+x2e90ul8NIweKLsd1ur8v2s9vt8Pl8qFarcLvd8Pv9ilStAHr33Ov14tChQ7jhhhvg9/sRDAZhtVrrFCe+eDqdTvEauWBrtZqQ+DkoUNZkMolAaGBxMaYYK3mCpVZHtJg7HI66GCBO3q1WK+x2OzRNw8DAAIaHh1EsFpFOpxGLxYTCqVeM8EqBnkegWq2KYOHTp0/jkUceQTAYxMjICIaGhsS8DCy2hiKbkS1ld69RPBw9dxS/xZ9BcgllMhmcOHECTzzxBDKZDKanpzfi1lz2qFQqeO6551AqlRAKhXDrrbeiUqnA6XTC5/PB5XLVJYYQVqokcZtWKhWRJEZqWDabxWOPPYbHH38cyWQSFy5caMtx2FGkihhzLpdDOBwWA5oWTwB1vnaHw7GkuKOmachmsygUCrBarWLyLRaLdS01FDYepBT4/X44nU7hnuOV8+XYDL1sTx7sbrPZxITucDhERpDZbBaycrvKyO0K+X57vV7s3LkTL3rRi5a47ngMHFequBJFmx3uOqIxSC4lk8kkyBdQT6q4skFwOBxiESfUaguN0nnRT/pnt9thsVgQiUTQ29uLTCYDk8mERCIh3s8V0naczNcTev9fHi81MTGBp556SmyIBgcHRfYYxTx5vV7YbDahONB8S4oSVxcp2wyoz/LL5/NifieFqlgsIpPJIJFI4MyZM3jqqadUAdcWolarYXR0FOfPnxc16Pr7++Hz+WCz2eDxeMTGhduMsNymlStU9DxRMhq1jIvFYkgmkzh27Bh+9KMfiePtiI4iVRxUBDSZTNa59jgxcjgcYrcKLCpV+XwexWJRLLjValUYLhaLIZVKKWJ1CVCtVhGLxTA+Pg63241gMAi32y2IlFzaQl64CdxVQLsdcjtYLBYRdElxAmryXRtKpRLm5+cxPj5e57oj15CmaXVESnbvETGW1UZgcZNE45RXQ6fXKP5RDlinz6KFm+aMQqFQdw1ejyeRSIj5oV3r4LQbaBGMxWKo1Wq4cOECgsEg7HY7vF6vmIfL5TIcDgcqlYqwB98Eczc9xWjxBbdcLovSDZShXa1WEY1GMTMzI9xCXNFUaA1oDi6VSohGoxgfH4fX6xV/kweAewa4+51fB6iva0XxcVyJzOfzSKfTKJfLSKfTIgEhFovpJpG1EzqWVBWLRYyOjuLYsWNCvrdarSgUCmJg0URJu1zepLdWq8FutyMQCMDlcmFiYgKPP/44JicnMT4+XlenRsVSbAwKhQIee+wxJJNJBAIB7N+/H8PDwyIQlezsdrvrkgzkeBdyC5fLZZF0QC5ETdMwNzeH0dFRpNNpHD9+vG19852C+fl5fPOb38Szzz4Lj8eD3t5eOJ3OOsWJVEGu9PBxSTam2lG0++W73GKxKAJnyS3IJ2LumqSdMwDMzc1hZmZGlEnJ5/N1cXV8U3bq1CmMjo5iamoKuVxOfP/lkiWuZNRqNczOzgr1//Tp0wiHw3C73RgZGUFPTw88Hg8GBwdFyQpy6fKWMkS8eawWbYzIHZRMJlEsFgWJz+fzmJ+fx9zcHAqFAi5evKg2xOuIQqGAn//85xgfH4fNZoPb7RbkeXh4GH6/H16vF5FIBHa7XXgcaANEcwIRo3K5jFQqJYp6RqNRFAoFZLNZJBIJcQ49AxcvXhTJL4pUtRiVSgWxWAwXLlyAxWKB1+uF1WpFLpdDPB4Xky9NzJSWCSySJHL7ud1uTE5O4oUXXsDExIR4v8LGolQq4cyZM4jFYgiHw8JeVKDRbreLxZbcvXqBkaRWUiZnPp8XBKtcLmNiYgInTpxAKpXCxMSEUiTWiHQ6jWPHjmFsbAzhcBhbt24VcWs08fn9fvj9fpjNZhHTyN1DdrtduH09Hg+q1aqwPxGaQqEgss0o3k7OBOMZYeSKuHDhAs6ePYtisSjiM+gadA6RqrGxMczPz4uilkblGhQWoWkaUqkUUqkUgIV7CAA+nw/79+/Hpk2b4Pf7kc/nRSIDuQIpC5c2SKROFQoFkSWazWYFIY7FYigWixgfH8fx48eRyWQQjUYxOzuryNQGoFKpYGxsTNiYEAwGsXPnToTDYQSDQWzevBlutxtutxs+n69u3FOcFLnw5ufnkclkkEqlMDk5iWw2KzxHcgZ+J+CyCSZp1YSnJs5Lj/XegchZJgrrD7ncAX/N6Fz5/PX6Thztuvu9HCDf7+Xs2ozd1RhuXzQa543GdafPzyatU7+5goKCgoKCgkIb4bJRqhQUFBQUFBQULiUUqVJQUFBQUFBQaAEUqVJQUFBQUFBQaAEUqVJQUFBQUFBQaAEUqVJQUFBQUFBQaAEUqVJQUFBQUFBQaAEUqVJQUFBQUFBQaAEUqVJQUFBQUFBQaAEUqVJQUFBQUFBQaAH+H5V5OUP5jikvAAAAAElFTkSuQmCC\n", "text/plain": [ "

" ] @@ -2225,10 +1987,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:41.337412Z", - "iopub.status.busy": "2023-11-02T15:15:41.337085Z", - "iopub.status.idle": "2023-11-02T15:15:41.351681Z", - "shell.execute_reply": "2023-11-02T15:15:41.350641Z" + "iopub.execute_input": "2023-11-04T09:20:58.925614Z", + "iopub.status.busy": "2023-11-04T09:20:58.925203Z", + "iopub.status.idle": "2023-11-04T09:20:58.933936Z", + "shell.execute_reply": "2023-11-04T09:20:58.933391Z" } }, "outputs": [ @@ -2259,29 +2021,29 @@ " \n", " \n", " \n", - " 27080\n", + " 40378\n", " True\n", - " 0.707531\n", + " 0.687452\n", " \n", " \n", - " 29412\n", + " 54473\n", " True\n", - " 0.713320\n", + " 0.705050\n", " \n", " \n", - " 25316\n", + " 29412\n", " True\n", - " 0.717087\n", + " 0.715470\n", " \n", " \n", - " 39719\n", + " 25316\n", " True\n", - " 0.729353\n", + " 0.716273\n", " \n", " \n", - " 4156\n", + " 52247\n", " True\n", - " 0.734812\n", + " 0.725283\n", " \n", " \n", "\n", @@ -2289,11 +2051,11 @@ ], "text/plain": [ " is_outlier_issue outlier_score\n", - "27080 True 0.707531\n", - "29412 True 0.713320\n", - "25316 True 0.717087\n", - "39719 True 0.729353\n", - "4156 True 0.734812" + "40378 True 0.687452\n", + "54473 True 0.705050\n", + "29412 True 0.715470\n", + "25316 True 0.716273\n", + "52247 True 0.725283" ] }, "execution_count": 20, @@ -2395,10 +2157,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:41.355714Z", - "iopub.status.busy": "2023-11-02T15:15:41.355359Z", - "iopub.status.idle": "2023-11-02T15:15:41.368410Z", - "shell.execute_reply": "2023-11-02T15:15:41.367065Z" + "iopub.execute_input": "2023-11-04T09:20:58.936365Z", + "iopub.status.busy": "2023-11-04T09:20:58.935999Z", + "iopub.status.idle": "2023-11-04T09:20:58.944013Z", + "shell.execute_reply": "2023-11-04T09:20:58.943511Z" }, "nbsphinx": "hidden" }, @@ -2474,16 +2236,16 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:41.373562Z", - "iopub.status.busy": "2023-11-02T15:15:41.373195Z", - "iopub.status.idle": "2023-11-02T15:15:42.224803Z", - "shell.execute_reply": "2023-11-02T15:15:42.223447Z" + "iopub.execute_input": "2023-11-04T09:20:58.946354Z", + "iopub.status.busy": "2023-11-04T09:20:58.946014Z", + "iopub.status.idle": "2023-11-04T09:20:59.415655Z", + "shell.execute_reply": "2023-11-04T09:20:59.414958Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdUAAAJxCAYAAAAU3CiSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZCd2Vke/tx933tfpG5JrZE0mpHkmbE9NhiPjbFxjDEQYqhAERNTGExBQgF2qpJUsYTCkAoBXIkxBjvBkExBgpmyHWBsbGO8MKtm07601Hv33ff9+/3Rv+f0e09/tyWNWhp193mqurr7Lt/97ne+c973fd7nfY/DsiwLBgYGBgYGBrcN52t9AgYGBgYGBrsFxqgaGBgYGBhsE4xRNTAwMDAw2CYYo2pgYGBgYLBNMEbVwMDAwMBgm2CMqoGBgYGBwTbBGFUDAwMDA4NtgjGqBgYGBgYG2wRjVA0MDAwMDLYJ94RRPXnyJEqlku1zDz/8ML761a/e8Bi///u/j+PHj+OBBx7Agw8+iM9+9rPquf/0n/4TTp48qX6i0Sh+8Rd/UT3/x3/8x5iZmcHBgwfxUz/1U2i1WgCAbreLX/zFX8SxY8fw4IMP4rHHHsOlS5fU+z7/+c/jyJEjmJmZwQ/+4A+iWCy+yitgYGBgYLArYN3jeOihh6yvfOUrN3zdl770JSufz1uWZVnXr1+3UqmUdenSpU2vq9frVjKZtJ555hnLsizrypUr1ujoqLW0tGR1u13r+77v+6yPf/zjlmVZ1l/91V9Zr3/9661ms2lZlmX9+q//uvXDP/zDlmVZVqlUsoaGhqyzZ89almVZH/7wh61f+qVfuu3va2BgYGCwc3FPRKoOhwP5fB4A8M1vfhMnT57E8ePH8YEPfADtdvumjvH2t78dsVgMADA5OYmRkRHMzc1tet3nPvc5TE5O4qGHHgIA/OVf/iXe+973YmRkBA6HAx/60Ifwv/7X/1Ln1Wg0UK/XYVkWisUiJiYmAAD/7//9P5w6dQpHjhwBAPzsz/6sep+BgYGBwd6E+7U+AYlms4n3v//9+PSnP43v/u7vxt/93d/hM5/5jHr+E5/4BBYXF/Frv/ZrWx7nS1/6EnK5HB555JFNz/3xH/8x/vW//tfq/+vXr2P//v3q/6mpKVy/fh0A8H3f9334yle+gpGREUQiEYyPj+NrX/ta3/ctLS2h3W7D7b6nLquBgYGBwV3CPRGpEufOnYPb7cZ3f/d3AwC+53u+BwcOHFDPf+hDH7qhQX3ppZfwgQ98AI8//jhCoVDPc9euXcM//uM/4l/+y395U+fzzDPP4OWXX8bCwgIWFxfx9re/HR/60Idu8VsZGBgYGOwV3FNG1Q4Oh+OmX3vmzBm85z3vwZ/8yZ/gO77jOzY9/+lPfxrf//3fj2QyqR7bt28frl27pv6fnZ3Fvn37AAD/83/+T7ztbW9DPB6H0+nET/zET+ArX/lK3/eNjo6aKNXAwMBgD+OeMqpHjhxBu91WhutLX/oSLl++fFPvPXv2LN797nfjk5/8JN7xjndser7b7eLTn/50D/ULAD/0Qz+EJ554AsvLy7AsC5/4xCfwIz/yIwCAAwcO4O///u/RbDYBrKt9jx8/DgB417veheeeew7nzp0DAPy3//bf1PsMDAwMDPYm7qmwyuv14vHHH8fP/uzPotPp4JFHHsGJEyfU81vlVH/+538ehUIBH/nIR/CRj3wEAPCxj30M73znOwGsG2in04m3v/3tPe87cOAAfvVXfxVvfvObAQBvfetb8dM//dMAgA9/+MM4e/YsTpw4AY/Hg5GREXziE58AAEQiEXzqU5/C+973PrTbbRw/fhz/43/8j+2/KAYGBgYGOwYOy7Ks1/okDAwMDAwMdgPuKfrXwMDAwMBgJ8MYVQMDAwMDg22CMaoGBgYGBgbbhHvWqD7zzDP43u/9XkxPT+Ohhx7CqVOn8Bu/8Rvq+be+9a343Oc+d0vHzOfz+LEf+zEcP34cDz74II4fP44///M/BwB85jOfwfve976+5/L+97+/73G/+tWv4m/+5m9u6VwMDAwMDHYf7in1L/HSSy/hXe96Fz7zmc/gPe95DwAgm83it37rt27ruP/+3/97DA4O4qWXXoLD4UCpVMLy8vIN3/fwww/j8ccft32u3W7jq1/9KvL5PN71rnfd1vkZGBgYGOxs3JOR6sc+9jF88IMfVAYVAJLJJH77t3/7to47Pz+P0dFR1VAiEolgZmZGPV8ul/GjP/qjeOCBB/Dwww/jypUrANYj0ZMnTwJYb/IQj8fxkY98BK973evw8Y9/HJ/4xCfwZ3/2Zzh58uQNOz4ZGBgYGOxe3JOR6nPPPYcf+qEfelXvfeKJJ/DEE0/gU5/61KbnfuEXfgH//J//czz++ON49NFH8a53vavHcD/99NM4ffo0pqen8dGPfhQf+9jH8Id/+IebjlMoFHD//ffjYx/7GIB1Wjmfz+O//tf/+qrO2cDAwMBgd+CejFR1/PIv/zJOnjyJ8fFxvPLKK1u+9r3vfa+tQQWAxx57DNevX8ev//qvIx6P46d/+qfx4Q9/WD3/6KOPYnp6Wv3dr5uTx+PBj/3Yj73Kb2NgYGBgsFtxTxrVU6dO4amnnlL//87v/A5Onz4Nj8ejNhB/tQiFQnj3u9+N3/iN38D/+T//B3/6p3+qnvP7/epvl8vVd9u5YDAIp/OevHQGBgYGBq8h7knL8Cu/8iv4oz/6I3zxi19UjzWbzZveW7Uf/u7v/g65XE79/+yzz+LgwYO3dUwAiEajKBQKt30cAwMDA4OdjXvSqJ44cQJf/OIX8Xu/93uYnp7G61//ejz22GP4mZ/5GRw+fFi97oMf/CAmJibUz7e+9S088cQT+OAHP2h73JdeeglvectbVEnNE088gc9+9rO3fb4/8AM/gNOnTxuhkoGBgcEeh+n9a2BgYGBgsE24JyNVAwMDAwODnQhjVA0MDAwMDLYJxqgaGBgYGBhsE4xRNTAwMDAw2CYYo2pgYGBgYLBNMEbVwMDAwMBgm2CMqoGBgYGBwTbhjjXU504wN4LH44HP54PL5YLP54PH4wEAdDodWJaFwcFBTE1NwePxoF6vo9Vqod1uo1wuo91uw+/3IxwOq63cyuUyYrEYHnroIYyPj6NarSKXy6HZbKJQKCCfz6Pb7aJSqaDVaqHRaKBaraLdbqPb7QIAvF4vxsfHEY/H4fF4EAwG4XA4sLi4iPn5ebTbbXQ6HfV6ft/h4WGMjo6i2+1ibm4O6XQa9Xod2WwWzWaz7zXYqaXCNzvGdwKjo6P44R/+YTzwwAOIRCIYHByE1+uF0+mE0+mEw+FQf3u9XoRCIXQ6HXz605/GH//xH6NSqaDRaKguXXrbSY7Jdo2NGeMbH9+yLDgcDsRiMUSjUcTjcbzuda/D6OgoqtWqmkf1eh21Wg3BYBCHDh3C4OAglpeXcfbsWRSLRSwsLGBubq5nft4NmDG+9c8cGhrCu9/9bhw5ckStxd1uF36/H4FAAO12W83VSCSCkZEROJ1OPPnkk/i7v/s71Ov1TWvxncTNjPFrskuNy+VCMBiE2+1GIpHA0NAQvF4vPB4PXC4XWq0WqtUqGo0GRkZGMDk5iWAwiGg0ikgkgm63i0ajgU6no4yyw+FAvV5Ho9GA1+vF8PAwwuEwOp0O2u022u02rl27huvXr6PZbCIYDKLVaqHT6ah+wh6PB16vF51OB+VyGUtLS0gkEhgeHkYwGEQ4HMbY2Bja7TZKpRLq9Tq63S46nQ4cDgdmZmZw7NgxdDodvPDCC5idnUUul0OlUtnSqO51OBwONcksy9ryxg0Gg/D7/RgaGsL09DSOHDkCr9eLQCCgDCnhdrvhcDjg8XgQCATQ6XSwb98+nDp1Cvl8HpcvX0Y6nVafq0M+pi/+BtsDGlJeU6fTiVgshvHxcQwMDOD+++/H9PQ0CoUCFhcX0Ww2lTPs9/uxf/9+JJNJxONx+P1+VCoVAMDi4uJdN6oGm+FyuRCJROD1euH1euH3++F2uxEKhRAIBJBKpXD06FHs378fzWYTjUYD3W5XOcSWZakWtaFQCMlkEgBw6NAhrKysoF6vo1wuo9VqodlsolKpoN1uK+frtcBrYlQ9Hg/i8TiCwSCmpqZw/Phx+P1+dSFrtRqWl5dRrVYxOjqKmZkZRCIRHDt2DDMzMz2TENiIMrggt1otFAoFNBoN+Hw+hMNhWJaFZ555BpZlodFoqEjV6XTC7XbD6XQiGo0iFouhUCjga1/7GmZnZ+FyuZBMJjEwMIBQKKSM8dLSEnK5HDqdDhqNBgDgjW98I972treh2WwiEokgHA5jfn4ei4uLKJVKANBjPAzW4XA44HK5AGwwFHZwOp0Ih8NIJpOYnJzE8ePH8fDDD6tJ1O12e5wcjqvL5VLO0n333Ye3vvWtWFlZQalU2tKoyvNj9MuF2ozf9kF3XgYGBnDw4EGMjY3hjW98I44dO4Z0Oo2rV6+iVqupcabzHAqF0Gg0cPDgQVSrVeTzeTz33HO3vfmGwe3D6/ViYGAA0WgU0WgUg4OD8Pl8GBkZwfDwMCKRCO677z4MDAyoAIhBEwMRzmM6x5ZloVarwePxoFarYXV1FaVSCaVSCUtLS6hWqygWi2g0Gq/JPH3NItVQKIRwOIxwOKyij263C8uy4HK54PF44Ha74Xa74fP54PP54Pf74ff74XA40Gq10O12VZQjDS0X1nq9rrwdHpt/dzodNJtNFR3rF7/dbqPRaKDRaKBer6PZbCIUCilPy+/3w+fz9dDGfr8fwWAQHo9HPe/xeF5TmnSnQjeKHCc6OHTKmC5ot9u2E0i/N3w+H2KxGJrNJhKJBJLJpJrMlmX1/H2jqNng9iHnL8eZ1F8gEIDP51NrQDAY7JmrTM0EAgEA62Pb6XTUekHjK+e9wZ0Dx0+mXgKBgDKokUgE0WgUXq8XkUgEoVBIralc/+lU08lm+sblcsHlcsHtdiuHimm5cDiszqFSqcDj8cCyLJWm4xrN499pvCZGNRKJqP1RSQt0u12k02kV/THkp+EEgKWlJdTrdVSrVVy+fBm5XE7lVJ1Op5pA9Xody8vLKJVKiEajGB4ehsvlwuzsLGZnZ1UkXCqV1MR0u90IBAIIBoOo1WpYXFxErVbD3NwcvvzlLyMSieD+++/HyZMnAQClUgnVahWtVgu1Wg0AUCwWkc/ne+jrVqvVszCbRXozaMyAjag1GAxicnJSjd+BAwdUCkBO0mw2q+hAUvntdhsOhwN+v19NchpWv9+voqCBgQFks1kUCgVcv34dlUoFy8vLimYsl8vK2+V9aAzt9oGLrsfjQSgUQiKRgN/vx9TUlErfrKysAFhfsGOxmFpkvV4vgA3mp91uI5vNolwuIxQK4ejRo6jX6ygWi6jVamg0GigWi7e905VBfwwODuLgwYMIBAKIxWIIh8PweDyK/vX7/QiFQor1qdfrahxlAAWsG0ca01AoBJ/Pp/Qx9Xpd5Vkty1J51na7jcOHD6v0XblcRr1ex8LCArLZLCqVCtbW1u54Ku41MarBYBAzMzM4fPgwqtUqCoUC6vU68vk85ubm1MShV8LFLJvNIpvNIpPJ4Jvf/Cbm5uaUSMXlcvVEqIuLiygWi4jH45icnITH40E+n0c+n0e1WsXVq1eRzWYVPex2u1Vet91uI5PJoNFoYHV1Faurq2rQp6am4HK5UK1WlXCKRrVSqaBUKqHVaqFerytPySzCW0MaKpfLBafTCb/fj8nJSYyMjODQoUN485vfjGg0qiIYYJ2RKBQKilXodrtoNptoNptqP1w6bITX68XY2BicTieOHTsGl8uFhYUFPPfcc8hmszh37hxqtRqq1arK8ejnaLA94Dj7fD4kEgns378fwWAQIyMjSCaT8Hq9yOfzqNfrSKVS2L9/v3J8KTyjtqHT6aBQKKBQKMDn82F6ehr1eh1LS0soFosol8sq32ZwZxCPx3HkyBHE43EMDw9jcHBQGVBGr2Qa8vk8CoWCMnBOpxM+nw/RaFRFpcD6epBIJBAIBJDJZLC8vIxKpaLYQ7JXsVhMsVsAlJitUqngxRdfxPXr15HL5ZDP53enUQU2PMxut6uiC6fTqUJ60n00Zg6HA5lMBsViUal4mYjmIJByoGCJF4+0bDAYxPDwMGq1GrxeL9LpdI9alIImuXgygvV6vQiHw/D5fD1JdHpgHo9H5W4ZaddqNbRaLUWL3C36YachFAohHo+ra032Yf/+/UilUhgYGFA0oMPhUNdQjhPHn/eOpI/lewhJCzLH73Q6MT4+riZkMplEsVhUCm4ZtRrcHFwuFxwOB3w+HwKBgFpYObfD4TD8fr+iBn0+n4pepCDR7/ejWq32qLLb7Tby+bxyglwul6ISqdFIJBKKKnS73YoBY/rIiAhvDy6XS0Wk8XgckUgEwWAQTqcTrVZLrfM0qm63W40dgJ610uFwqJwpsJFL7Xa7SjdRrVaVc8Q5L4/HPDpFqJZlIRwOY2BgAE6nE/l8Hj6fT83xO+Eov2ZGlYsaabZWq4VQKITx8XH1RSmvZ2Ry5swZfOtb30K73VaRIADMz8/D6XQiHo8jGo2i2WyiVCopfn1yclJ5uvv370e9Xsf58+extraGUqmkVGTz8/OYm5tT9KHD4UA0GsX+/fsRiUQwNTWFoaEhdLtdZLNZdLtdxONxHD58GLFYDPF4HMD6hur5fF6JYXw+H+LxuPKc9mLEs5VAa3JyEo8++miPh+v1elXeVFL8ZAY4QTnxmGtnPo2CNLIFwIYIikKmRqOhaGLSRjMzMygWi2g2m0q5PTs7iy9/+ctYXV3tURVyoTCG1h5S5U+1diAQUII/ltHJ3DnfQyc3k8mohZeGmSr9ZrOJlZUVFItFpXPw+/2o1Wqo1WrodDoYGhoCACUo7HQ6yjGvVCq4dOkSlpeXX+MrtXMRCoVw3333IZlMYmJiAvv27YPP50Oj0UAmkwGAHiNJh1dqGHK5HCzLUlEqnSrOaQY7+XxeiT4ZGHEedzodNcacixSwcr/tXC6nhKhzc3OYnZ29I8zFa2ZUgY1cGi8aL7oUFpEG7nQ6yGQyuHz5MizLQiAQgNvtVtQfFzjSt/RIqRiNx+PYt28fjh8/jnq9Do/Hg9XVVWQyGbjdbpTLZRQKBdsax0QioZTBwWBQHVcqEJPJpKIeOLikEEkt03Pbi0a1Hyg0mJ6eRiqVwuTkJMbGxtSCS7pIKrup2paiFXqtXLSlOIFlG8y76CIkUkwOhwPJZFJFMvl8HpVKRZ0j8/0cQyNA2xpkC3w+HyKRiCpNi8ViiEQiPQI05sPJHABQqZxms4lAIIBKpYJutwu32w2Xy4Vms6ly4hQ80sHy+/1q/ZBrCh1in8+HUqmE+fn51/gq7WywLHJ4eBipVAqRSAQej0cJPOU809N5AJQGplqtwuPxoNlsqvtGCo663a56XblcRrfb7akYYOqHda50uJmLp6iR6YFcLnfH5u9dNar8ohQaSOWtXAClV8n8isPhQCqVQiwWg2VZioZtt9tqEpKGdblciMfjCIfD8Hq9yhNqtVq4du0agI2BYJ600+lgcHAQhw8fRr1eV1FsIBBAIpFQfD/Pk4s+Gw6w3II5PUalpClIORisg0KkSCSCBx54AAcPHlRjxvuh2Wz21J3KiJCTjZNW0kCkfuTEpkcqKXiZgqCxpMfb7XZVFDU+Po43vOENmJ6exuXLl3H27NkeAZpxknpBh5TlEnRKueB2u11Uq9Ue5S9TQJzbrD2nuCUYDKo5zDxqq9VSQiSq8rmgr62tKeeb64M8v1QqpZpHhMNhlMtlLC8vmzl6iyDtOzQ01JP+ouBQ1yLQIaZTzHWT85YMAwVLZDM5L6kOZ2oNgKprpWqYxydkL4JQKKTuqx1vVCU1Rxk1Fy2gN7fabDYVBTczM4OxsTF4vV6Mjo5iYGBAebM0qpwI9EYYnTJHu7a2hmw2i+eeew75fB7BYBAnTpzA2NgYUqkU7rvvPhX5Mu+ysLCAQqGAWq2mxDBsPNHpdHpyrRxIRty1Wk2pz4ANZ4ILyV6Ebnii0SgeeeQRTE1N4dChQzh16hQCgQDK5TJqtVpPfls2daDjBUDdL3ISS5ESc22yzpSTUz8nvdzK6XQiFAqpnHk0GkW5XMbf/M3f4NKlS8qoGoO6GcyXJpNJPPzww5ienlZRBOc3600ZhfBxAEr/EAgEEI/HVb4dWE+tLC8vY2VlRY0TADVWVIkuLi6i0+kox5rjT1aCaZxIJIJKpYL5+XllrA1uHh6PB0NDQ5icnOxh6qhtkMp+/k2jSbqfRo+NHFhTzvfQgWq1Wqr0huWO0hYAUNGrdNjIZgLrYqpAIIBIJLI7jCq9DL/fr6JV6c3ImiJSueyYxFDe6XT2RBpyweVvWfMmveBisYh0Oo1wOIxCoaBKM5izo9Fndw5SRFSB0rOSHYDoafHc+VpGO6SQZb3VXq+B5L0QiUSQSqXUGJDqJ2hA6YXK98soUUafnLQ0yrIky64khn/z/VLABECxDLFYTLEVfr+/5/gGGyB1RwPHTmSVSkWp5GlEZS0hxwyAmkdclDnGdGRYQsXIhAsnqUOyRXytFMkA6HHUSBMzomUVwV6dm7cKXlfmN4He6yvnqayEIOMn1059XKVR5phIRlOyVvxMfW2WoF3gOrzjjarL5cLIyAgmJiYwNTWFmZkZJXs/e/YsqtUqqtUqarUaQqEQjhw5glgshiNHjihagd0zSAPoYhW5yJG/p8iBOVDWR509exazs7M4ceIE7r//fkU3kC5k67Pl5WUsLCyoXqPBYFAZWABoNBqqt3CpVEKhUECxWESpVFIR8+TkpDLc9LIYke01cLwikQj279+PQ4cOIRqNolarqRZ0nIzSuHGyyIkklX4cYy6oXITlBNQFRZxY+gLKyUahk8PhUOzKvn378MADD6BQKGB+fl51ZDJYB6nVgYEBDAwMwOVyqbpC1nDL8QB6nWA+xzKZa9euYWlpqafGsVarqUYPXJDX1tZ6WhTyWHKB5TpRqVSwuLgIYGNBdrlcSKVScLlcKJfLKBaLxrDeIiTlKzUP0rjSmSKL5Ha70Wq1VEBTLBbh8XhU/2ceh+O2urqKcrms5jjHV9fCyICLjYTIoHQ6HeVE3Ymyx7tqVIeGhnDw4EHs378f+/btw+TkpGpQz4lXqVQQDAYxPT2N/fv3Y2RkBKFQSJXJZLNZVX9ICX0kEukxosBmOk82XW40GorCI6Xr9XoVpeByuVREQpqK9AGl+rxh2KifarfV1VVUKhVUq1VFP09MTCAWiwGAUh3K+ta9AhnFBINBjI6OYmpqSi2i8nX6++w6Z8m8KseWrASwkTenFyw9aC4Adp/Fe4djTqGNy+XC6Ogo7rvvPmSzWcV8GGyAKvzx8XG1KFK0xxpuLnDAxkLMlIrMp9frdZRKJViWpZpDMG/KqJKUcrlcVmpOKWLhgs7PYcldPp/vaT7B82b+tVwum/K3W4RkDSkilc6xZINY8khHmHQw03AUqLExiM/nQ61WU/NOllHKOc2yO2lc6cgDUHXrkn7ebmbirgqVePLtdlv1ZyRPTsMJbLS78nq9sCxLiRFo4Jholjlat9ut6Fx5QYGN2iXLstTFZd5NLqpyoSV91O12VYQZjUYRCoWUx+NwOFTLLeYDJfUovSkOrKy73YuQ1KC+uPa7sXVBkDSwOjUsx90O8r30UOWksqPl5f8cb054g80gxSbpVgDKGQXQU/bAcbSj0uWCLPPYXLDJTMido+RxJB2oj7fURwAbLArP0eDmwPVWzj0ZePC6y/kqDSKwITaiQ8xx5XsZdElHR6d75WNSCCWfk00lyFz0u/deLe6aUeVEoAjp0qVLqgPK8PAwotGoktCz0QJpwbNnz6JUKinq1+v1YmRkBPF4XBlVj8eDsbExjI6OqjZVjUYD+XweS0tLKgKNRCJqQlLuzwsvaeRsNqtqYaenpxUlnEqlUC6XceXKFTid6034Dx8+jEQigU6ngytXrih6t1QqIRaLqUWG/Ys7nc6enLgOhwPBYFDVE1PoJaNLYLOoSadteSz9GspOXNIzls065ESTNaz0sKVRlSpCvo71yuFwGC+//PK2XJfdBAoSw+Gw2jmIgiJu5cX2nZKSle/XF2QAyhGXdcE0qrLmUd4nsiyObIh07KnPYJqA55vP5/es03uz0OlV5lQ5ltSzUIUv86Scg7pCl+MqnS9SxdwCTm6CQoZBj1b1cyIkFUwBomSztgt3NVLlzUxj53CsF+4y0vT7/T1RqtfrVfsoFgoF1VGFXTzYLYUUzuDgIEZHR1XROMURpJLYrYefIY2bpIg6nY5S/fr9fsRiMcXzsx0WB8zr9aom78FgcJNoiYMlu8joC8legS5Wk56iXaQqBQgySuVvncKVtI/Mp8nPl2PMBVW+Xn6mfi5ME7DBCIvUDTYgRUEyZ00DCmx0u7FjGQDYRg0cKy7UZJ+kjqKf48XPkZGsTA9JHQYXfYMbQzdkugGTLBR/yzIaXnd9XEgJk5lkFYZ0mnSKV54TP192YNMjZblhy3Y7UHfNqHY6HaTTadVoYXR0VPHkbJIAQNWfFotFZDIZlEol1SpuZmZGRXtsti4nGAVNXq8XU1NTcLvdSKfTiMfjim4mlUwxwoULF/D5z38eqVSqZ2cZFgzTwDYaDeXhsFm+LOdghMtG+4FAQG1tVKvVkMvlAAADAwMIBAJYW1u7W5f+ngGjGO5QIR0aXcHH1+s/8vX8W4JOjR7dygVcLgL6Z8lzlcckjc/Ih4pug82g08oFSwqRHA6H0kQAG+p5CTmm+jjI1+sLJWk8udjKLloUITJK0d8r0zoGW4N9BhjQ6NdMlsuwOQ/QWxIn2SNd70CjKJsCSSdN9gemgywrRPQ1gveMDHK4u029Xt/WUqq7ZlTb7Tbm5uawtLSEiYkJ7N+/X20qXC6XlcfJ9mUUElA16HA48OY3vxnvf//7ewYzl8thYWFBiYy4RduJEycwOjqqni+Xyzh9+jSef/551Ot1FAoFLC8vI5PJ4OWXX1adQahc/N7v/V4cP35ctTWTNwKVuzSsnJD1eh2ZTAblchmRSEQVu7OtFp2BarW6Jzu5OBwO1YeTohA9YuCk4AIqaSZ9AbYznFKoJr1hPbLd6kcaX/4tc4CMtE1EYw9pVKVYJBAI9DR4kb+BzblzQuZEgc0NPDhOjH654JIZI73HyIeOHQBV/wigJ7dqDGt/OBwO1bmMfX8pFKXRYnDC+lMaPjneesmNno/l/cO2o91ut0fVzXGXO5rJnL3MxzP44Xu8Xi9SqRR8Pp9K1W0X7rpQSV5Y6XHSw+SFZCmMnCixWAxjY2M9i51sY8hcDfOu3MmCEnwKiqi6lc0aOMBy8tPT4k3BujuZI5CLNL8LAOU1UV1GI0Hl4l6Mcri4csL1ExX1M3Z8Dti6i9HNKvnsji+fk78JSW3uxTG8GdhRc1I4wuelw6NHp3YUPJ+z+62nCQjpXPE5Vg0A2LTIyzy6gT0k8yAjSB36PaCPOx+TY203HznnXm3uk+MvP5v51TtB9981o+rxeHDw4EFMTEwglUphZGREbVgrjVej0VCNAFwul9qjj1t2RaNR5HI5fOtb38L8/HzPpOH2TslkEmNjY0qdyb39jhw5ApfLhZWVFaysrKBQKPTkOe+//34cP34cAwMDuO+++zA2Nobr16/jlVdeQT6fx9DQEEZGRuBwONT+qmNjY2qCBoNBDA4OIhAIKPGN3+9XHhH3Wd2rO2Pwug0NDSkanLltLmRyIspoVR7Djgbmc5yAklLmcfVaVY67rgDmsXTZPulrbnJucqqbwTGQDicAxS7JchkpSJILpp7f7nZ7e7nK8ZIN1GUkQvGSFEUFAgG4XC7s27cP999/P1qtFs6cOYNisQiHw6EcdKPq3hoOx3rdtmScJL0LYNP8o0OtOz4y160rdrlzDUWecotHHpNrBPUxNJJS0MY6dkkzu91uxONxJSLdTtw1o+p2uzE9PY2TJ08iGAxiaGhI1STRqHJ3A/bUdTgcSCQSmJmZUSIj5iOffvppPPvssz37qZZKJZRKJQwNDeHw4cNqO6mRkREVzYZCIbV/5vXr15VAyuv14vDhw3jTm96EeDyOAwcOYGhoCPPz87h48SLm5+cxNjaGfD6PUCiE6elpTE1NKQUyJy33gSwWi6hWq/D7/UgmkwgGg6rGirV1ew1O53rd7sDAgNojUY/6JHVnJ1iRkQ8nItCbX5PKUX0SS0+VeVGyInYNCWReEIAq4+KmDAaboQuVgPX5HwwGAazvO0xnBoDKswLYNG5yvFhbSJD1Yj2xVGozAmVpBsfN7/djbGwMx44dQ7VaxfXr19FoNNTCLRd/A3twHieTSZXiAnopVzujyrnJcaIxJLtIowhA9S5gzwCfz6fKHCX1T8ZQZzqlU8ZOTXIuswENgG2fx3e1pKZSqSCXy6HdbisvgbnMTqejmtjzorBOVfYMrdfrKsdJClHm0WigM5kM5ufnkUwmlQCp2+2qPq779+9HqVRS4iN5HrLmjaUA4XBY5U3pNbPDC8VJnU5HKYXZcEAOMovO2fpwL0J2NpFUoIxUZSMPfXLqUYxdPk6PYIHNylCZb5X0oMy7MldEyHM1C29/8DoBG3lQ7mkMbJRb2OWr+ZgUAPI5u2iIz0nIz+Z9xHw+txKU+TaZnulHZRr0gmkcqS2QxlIaSDl2dlSrnLOSndIdbJ3GJ3TKmMIzriM05Pp9cqcqMe6aUW21Wrhw4QJWV1dVM+vh4WEcOHAADz74ICzLwle/+lWcPXsW0WgUExMTSjl77tw5dRyHw4FisQiv14t9+/apScPNwIPBIFqtFp566ik8++yz2LdvH06dOoVYLIZkMolEIoFIJIIf//Ef72m23u12sbq6qvZWJdXs8Xhw3333YXBwUCmSW60WAoEARkdHUSqVcObMGVQqFbhcLjz44INoNBo4e/asil65iKytreH5559HpVLZ1sT4TgEdJdYwyrwzIxeyFHLySAPL/+WCyAmp0786pSh/AxtNQUgRWdZ6D1iK5chg0Gtme0xuQ2ZHZxlssA1Op1NtBM0uS1T/r6ysAECPwIStQmWZE+em3HiD4yoXTEkJc0HmsarVKpLJJA4dOqRqzbmNGLuf8d7UHSmDzXA619uvDg0NqRSenjvlZgis2Wf3JF1IxL85nnSAuHcuqXzSvoxWOddl5AlsOGMMhLg20Djzh13dqC7eTtzVkhrSn61WS9Gzbrcbo6OjANZFR9ylgPRcuVxGJpPp2R9TthJkpw0pBGo2m1hcXFRbr42MjKh6WG4PNz4+3sOlt9ttPPXUU5idnYVlWapNlsu13hPU7XardmuMbCORCMrlMtbW1pDP5zE6OorJyUk0Gg0sLi4inU73lF5UKhUsLy+jWq3erct+z0HmsGVLMVI4ZA5IB7HrlR6VSu9VPmZHPRFbRbGyRo75fLm1H8sCeP6mntEeumNDMSAA5aTKhiscR1kiIcdJZzKA/upfvleKX7hgu1zru9NQ80BHXG4VaEdbG9iDok06oIQ0ctSaSOMnx0uOmWSl+BoqfclUSlZBF8FJzYScxzSgdJqZa7+TpXGvifoXWN+qKRaLqZ67UmjEgWJEwLpQ/g1sdOfh+6SYQf7d6XRQKpUUdcv3crItLy/jzJkzKBQKOH/+PC5evKjKYBhRyy3pOKikiUnpZrNZtd8qB4/Rs8z9yRtgr4ETJRgMqqhEnyRyAlJEIJte6yIlWWYBoCdykYsxnS47yKJyNqfQF3n5HYzy98bgPc55oufbZCUAHSg5vpLqlTQv83B2n6UrSOW8AzYMOPtucz2QTp4Z2xuDRlPvXsY1j2VnyWQSlUqlp+KC48kuVtKZlTlXNvVhJy0ZVPEcON68hwh+PtfjWq2m0oIy5SS7Mm0n7qpRlc0S4vE4hoeHEQgEVPMHGie2r4tGo8hms8jn8yiXy1haWsLq6ipCoRAOHTqEeDzekzchx09RA59Lp9NoNBqYnJxUA0FD+corr+AP/uAPcO3aNbUHqtO5vsGy3+/H+Pg4HnroIcRisZ56K27xViqVsLS0hJWVFcRiMTX4zP9yckueX1IgewkOh0Pd7MxHczJwUZXGVW7RJOk+Oiry2hJSISqNon58Pg70llVwNyGem3yO30EvFTDohV4nSgWuVF9LGpe13roRBDaiGJnH1kV+Mvcqz4HjLtXkssqgUqmolANZCd5zBv1h5xyz3peak3A4jPHxcRSLRSwtLakWgwygeE8QHCcaOW4Z2Gq1kM/nVUCjv55iNDpmjDxJT3OzBY41jSpZSgY+24m7njzgAkXO3O12K8kzvR0ufpwYjUYDtVpNNYqgtyq9FWCznJ/vl3uc8hzIzefzeczPz+PatWvK03I4HCpn5vF4UKvVFL8vSwW4QLDpBGkkPdfH7ywX5L1mUAleU73Zui42IOzGWF5HSffxefmbf9tFQXafIcUqekSkn6cxqpuhXxs7x0RCRq46Na/nq+2uvRQ3EZLt4Pv0z+O53ej1BvZgGkQaJMni0fDapUk4BnSmpMBJjgOjSx67H3j/SIdcGli749uVfW0XXpOMvN/vx8TEBA4dOoRWq6W2S+t2u0gkEir3AgC5XA5nz55FNptVXZMAYHV1VcnlSUOwqQA/g0aw0WioyIP/nzt3Dqurqzh9+rTyhNgggjlVJtmXl5dVTvbQoUNK9MTP48DUajVkMhkVyeq5IHp3zBPYLdq7GVKKHwgEAEBtLN1vcupOisyh6gs2oxFGsnaLtZ5/A9AT+XCy89zo6PG9nIy835ifo5O2V8HrIhuWy8iQ15ARJ/OqjFw4VvqCymiWUSpzdUzzyGMTPA7Hj/eIzN3LdAGpX4ObA4VATN9xbSUr4Xavb93GncWoT7EsSxliyU7IOc31khS97HalO2CSAZT3nd5sXxpb3jdST7Nj61QlSKsePHgQc3NzmJubQ7FYRKfTQTweVwImh8Ohcp3pdFrJ8i3LwtraGmq1mqp/o7CESlu2tqIRJW1E0cmZM2fw8ssvY3Z2FoVCAc1mE5FIBIlEQt0czWZTKRUbjQYOHz6M6elpxGIxJBKJHiELANWmkPSvzBECUAsCn6eDsFfAPHgikVDOD7dQY10yJwtTBbpRldStNHg8PiMXeRy+nq/h33ppBh/je5gikJ8txUrsIcvX7TUnSYILGylUCgalIEgKUGh0gd5oVY8WpbhE5j4ltSyPLY8nm+3zmHIh14VpxF52jm4G0qjK6ynHg0aVBrXZbCpjx3VZshnSyQE2VNt8XJbZ6eVaXGN5X8lNyXlPSWeNzh/vwR1tVHW1ltPpVLnUYrGoLrzeM1TuaiIHkElxHpsLnryQPAaPKcUKrBVlY+VwOIxQKIR2u41isagiXL7H6/Uqo0/jTFq6UqkoI8kJzeNzoFutlhLe7FUxBGkZGU0Skobh9bGjdSWda0flyt92VLv+nMzJcYspSRMB2ERhMi8TCATgdDpVvn2vgnOP81Y6LjLi7HQ6KufmdDqRy+VUPTePo0PPg0uhE5/fCrxXdIMsz93Q+beGfqksWYNuF1XaOSw69S7faydQ1OesbpAJXdgkmS6+XtqP7XKm7qpRpfcgW0mtra3hmWeeUS0D6enytYlEQtWJ5nI55PN51a+XYPTK98uIhROYe67SmHJngmAwiKNHj6LdbiMYDCIQCChKinWvwPqiOjAwgAceeEB54cvLy5ifn8elS5cwPz+PSCSibopisYiVlRU4nU4sLy+rjk/sQLLdTZx3AhyOdaESO5lw02EpKJGvlcZPNtIGoIwyISeadLD4nKQf9QksX0tBHPfsTSQSmyJWHieZTGJychL5fL6HqtqLIFPE3V90hqFer6NUKqHb7SIWi2FmZkY1aMnn8+h2u8pZ5eJLuo7H5+ONRkPtOANsUIN6KoDpAN5fgUAAkUhEOcAy7yfXpL3q8N4KpFED1o2dx+NRLKPH41HXnuNCh4rQ57ukbZk20Bkq3lNSsEg9S7fb7VmvqaORokau7YxUZQpPGuHbwV01qnbJ4UqloibW4OCg6rTEm5tt7VgSk8/nAUBFqqSGgA0viYlyYINy5ZZy9H6oVvN4PBgeHu4Z1Hq9jrW1NZTLZaVusywLoVAIIyMjcLlcWFhYQLFYRKFQQCaTwdraGiqVCgCoXFGpVNrkHclWaHsN/N6k5iW9o0cLOjXLRZWgMEEuwDyOVJLqpTR2EQnvGwBoNBrI5XLwer0YHBxU7AjPhT+ksuPxuKqD3MugASQjJBW+nHONRqNnP10utnRugc0RA9cMnQ4mK8Sxs1ME6+POdA030ODjMsI20erNQTq8wIbC3ufz9XQp0ql9O+EZ/5b5TxpLHkOuC7rjRE0DU0oyKtWNpCzPk4JWuf7cbsR611Z2Rp3xeBwjIyOKz3a5XIpyZX6y212vPS0UCmi1WggGg2g2m4oCBqCiVWkMpTCCW7A5HA4MDQ318O2yNoneqjT4Ho9HNXzweDwIhUKqMxLfw0UkEAhgcHAQ7XYb4XBYGXvSwvTQgA16mZN7L0HWoUmKXkJf1Oj8AJvzXLyuOq0knRi75yRFazd55CSUdXM6lQVARd2sg9vLoHHSa3vtFi6+nuMhnWP5Y0cdSkqQn6NTw/JvzvtGo4HZ2VmUSiWVC2fEIql+Xdxi8qubwevFNcyuDpmP6w0b5NzUx5GMEpkpslN6xMrPIBvCqgugt+aYazwdL+mIS/ESy+i4bt9uGueuNtTfv38/ZmZmMD09rXZy8Xq9SCaTSvhBzyOXy8HpXG9zxp0QMpmM6rbDKIct/2i0Y7EYGo0G5ubmUCgU4HA4ehryB4NBVKvVnjo2FvvL6HZ6eloNHBVtgUCgh350u9d3OpiZmUE8HkcymVR51mKxqKhq2fBieHgY7XYb169fv1uX/jUHHRApIOgXEciFl2IHPYrlxJJCFE44+b+uIOZkkgsl38dFXSp96WCxRo7CKI4nN2u4E63Odhp4reRG5Ey/0BnWnSbL2mh2rjcDkKUUMtrlGMuSOj3fJvO5VNxXKhU8/fTT8Pl8uP/++3HixAlF/8lFWC/J26ocaC+D104KyeSP7B8g+xPwN4MPeW0pOKOh49adOo1L40wqVzbm8fl8qnMed7bhuQIbfafpLLMz3uDgIKrVao+BfrW4ayuBzKeFQqEe40QDK2lfhvTdbndT5wsZ2jNiJfXg9Xp75Nw8rr5pMo8DbEQkktrjROPA8z1y8eWE40CyLZZ+XE50Up/So98L0Kkd+bj8W0YGcmHU8zd8Xn+tbiz1x+z+14+lny/HUL6OPxzPO9HqbCdCH1/OG7vHgd7SqX7jaafQBvrXnuqfwfHrdDooFouq3ENvBqIbfPm4Maq9kJG9XBt1B0fm1e1YI7neEpLBkpGt3fjKqFVSwnKt0XUWdmkBshms2Lhd3FWjSvm6LBpOpVI4fvw4arWa8lgDgQASiQRCoZBSVTabTVQqFeTzebjdblXrWCwWsba2pjpnrK6uot1uo1AoqMkzOTmJ0dFRhMNh1Go1VKtV9Xk0thQPlctlABvKMOZvHA4HZmdn8fzzz8OyLFy7dg3pdBqlUgnLy8uo1+tKhOTxePDQQw/h0KFDKg/carWQTCYxODiIWq2m+mLuBXAPUpYhAf2NG0uZZAclaVT1iFUvmeB9pedqJPoZwG63q5p8kNWgtytVjYyqWFaQy+X2lJNkB5lT5biQCWIU32w2e+i1RqOhXrNVHkwumGSWuOBSpMJzYBTE+4eLZqfTQaVSURUHOtUrP4dOOKOk7RCv7AboRkp/Tkb85XIZCwsLqFQqKBQKqFQqPYygZBRkMCUVxbIki2Ms1wOuz7pgStLNem6XP7Js0uv1IhaLqePfLu66+pdGjIOSSqXwwAMPoNlsolAooFQqKRWZ1+tFoVBQVEG5XFb7mcZiMQwODqLT6eDy5cuoVqs9Houc1BMTE9i3bx98Pp8yqlT/kpqiMjifzysviIPPLktXr15VdYkXLlzA0tISgI2iZQqfWIcbCATUzUVxhNPpVHmdveIF60ZV9yyld1uv11Eul3uiQb4O2Kzelcfh84T0TPXH5fP8LE5ujiG3CSOFpFOSfr8f8XhcbQu4l8FrLBXXwIaBAqDERYxOa7Vaj+Mk6xWBzdEMDTTHiLQfS+uk3oLRL1/PzyPlLPPl+j1I51/m9A02583l4zJdAkAxhbVaDYVCQfVsl4JRfVzlfGUgJQWp/GxJ0Ushm+6U6eOqG9V6va7W7Gg0um2Cw7u6n6psZE1vnwlv0sOcCMFgUEV95OVJFYdCIQwODmJ0dBStVgsrKysol8sqApV0g9PpVL09eSFLpZLqriQ9H9J5ehJdesAUTxUKBRQKBZWz4UIcDocVxcvvFw6H1c1mWZaqx90rkI05+k1I3vyMDoDNdOJWkHTQrVA4ulHm53Niy0Vdile4GJB5MfTvOqSTwvtfLpQ65dePGtb/lo/plJ/da+zevxVlbBd56VThXocUEOlGUKdZiX7XUI94txpru9fKMhkeD4AqmZSRaj/ql7AT0t0O7urWb6urq8po5XI5pFIpRaPRIEmj6na7kcvllBgpEong4MGDGB0dxT/7Z/8Mhw8fxvXr13H06FEUCgWcOXMG58+fR6PRQD6fR71eh8/nU/uonj9/HufPn1fUcCQSUapeUsrcY4+fKymEcrmM8+fPo16v49KlS1heXla1q/F4HPv378exY8cAALOzs1hcXFT7rnLnekbHLCHYC+AYpFKpHtpbTka5zdPq6ipcLhdisdgmulhK8yWFRNh50v0WYLtoqlAoYGlpSam6eY/S6ZKTNBAIqM0B9vriK9kAOtB0aiUlTFGXFDDpjVl0tonHpMiFHXokG8XX6+ckqUDee8yx8niSOeP7JJVtsA6fz4d4PI5YLNajIeHc4TxioMR1lUGGVNzKIIOBhpxbUijGe4X3gC5G5DlQ4FqtVpFKpZQOh+lG/sh7RkbK2zXedzVSLZfLSKfTSCQSajs3SenQ65cTzu/3q56/fr8fqVQKY2NjOHbsGB588EFVw5rL5VThPjcflqpdqn7n5uaUyosiE15svo65H3ZU4g3Azklc+NfW1tRG1pFIBMlkEsPDw+h2u7hy5Qry+TycTiei0ShisRiq1SrK5bJSPe8VMJqno6RDepFsDcn32F0nu0WXx7ETQhB2uTopVgHWKcpsNotgMKjy+XyNVC1z4eD+vHud/gU2ogVZCsNFSxo4uWja0a8y0tXBhVVvHymft4t2pfEkHSw7Msmx1ctqDNbB8kJqDcjG2ZUicW7QibITD7FpBx0wjrc+PhwbUsFS1S8d4263q9Z27oXN48k8rB5Zy1TAduCuGlVSa4VCARcvXlRCIRrTsbExVfNJDt6yLNW8ngYsFArh6tWryOVyyGazWFhYQL1ex8DAAN785jer1ofVahWnTp3qGxXSQyoWiz0DwP6S3K+VZRY0nNVqVR0/FoshHo8rYZXH41GN+NfW1tDpdLCysqIaf5OC1ovVdzPoMHEi2kEqNBcWFlRjBdlIm9BpXrkoS2bBLlcmIZXFNPbd7nqTduZ9+B5ZxqF3CzJYhx6tysfkwsWcJ7si6RSdblDlGPLay6YvknLm/1sZWs5p5nNlU3g+LylBg3XwWsm8KK8ldSd0mOr1OqrVqtoLVYLjKEvVONdoHGUKjgJWvk93hpnKA6CMLssagY2e4zw3vYKD69N2Gda7alQbjQaq1SoWFxfx93//94hGo6oeKRgM4i1veQuSySS63fXmD7zoBw4cUL/37duHpaUl/OVf/iXOnj2rPCK/3483velNeOSRR5RX0+l0kEgkkEwmAcB24tZqNdX5iM+x/nRgYADVahWZTAatVgtjY2OYmZlRQqd2u42xsTFMTk5ieHgYqVQKPp8PrVYL6XQaly9fRiaTAbBe00jHgH2F9wro4dLp0Bc5GrVOp4OFhQU8//zzqgWg3O1EQkYzMtKQRpV/S4MqF1xOXlJUAFTenA6QFNFwMlK8JjdO3uvGVb/2so5U0mtutxuVSgX1eh3FYrFn/CQ9R3D8gA0nSPbVloZP3ld6OYZ8jo4t5zrrIak2BaDoRMNAbMDj8SAcDiMcDqv5ymtJVo9sQCaTQTabVSpb3UGh0ZXjojMJHA/2hZfzXKrKZT9nBmPZbBbLy8s97W5Z4cH5ymb/TDdSVX67uOsN9TkpstmsKi3hQPGCUE5Nw0MvI5VKYWRkRJXWXLt2DcFgEKlUCuFwGIFAABMTEz0LNyeyzJ/wQrvdbpWfkYuA7DcqLzJpXsr65cbGjMK46HITZI/Ho3Kz/Iy9JtN3ODZ6rOrydz7PCUcVODeZ30roYPf/jUQJfI3+2TLCosxeCm34nIxebySY2Uuwu966MyMNrtwO7EY0qy5mkZGsVH72o4zl+fDzdaPP9+u9qE2kugE91yyvuUyTcI1n4CHbxsrrqTfWkLWs+uPsNyDHTM+DA7052lqtpoIumbuX585gis9vB+5qR6Xx8XFMT08D6F2Q6LFalqVKVpiD4Q1uWRYKhQKuX7+OtbU1+Hw+DA4OAoBSa7IPL9W+NJrFYhHtdhvxeByPPPII6vU6lpaWUCgUkM1mMTs7i1qt1lPfRqGT0+lEIpFQtBXLd9LptCrxWVpaUjSCw+FAuVxW0a3M/ZRKJdU+kWUjewE+nw/RaBTRaFT1abXriANAeb+S3pOTlouzzKvIycbXSFED/wZ6Ixg+L0ULLN0CoBb+brfbI6yQ58oOLHvJSbKDHj1wPkjqF1gfy0wmo1I27XYbgUBARRt65M81gmkiyTxIxoDH5nuk0XU6ncpxtiwLlUoF6XRapZ2SySTK5TKKxaIqu6FTZyLVDVDnQJGSFHyROWBvcxpWvUOZNGp67SnhcDgQCoUQjUZ71lAAm+4LaSccDofa0KHdbiOdTis7Qcqa79XXj+1U8d9Vozo5OYlTp06hVqtheXlZce7cvYK1f9KjBTaS0Pl8HpVKBdlsVjU8r1QqyOVyaLfbyOfzyGQyqig/EAioOqlut4tUKoVDhw6h2WyqJv6zs7PI5XKKDuCNUCqVUCqVEIvFsG/fPvj9fuRyOVy+fBmVSgWrq6vKqC4vL6t6OSp8M5mMioKl87C2tqaOvVfg8XgQi8UQi8VUPbCk6XRKVvYM5QSgkeWiKvNrkroHNlSfNNA8LgBboyupZQqlAPSUfsndM/h6GtW9lB/vB914UqAiO5kB69csk8ngypUrajwDgUAPza9HLBwzeSyyT6VSqafxuvwNoOd8eD+Uy2Vks1n4/X6lheA9xjwvz8eUSm2AVDn7l8sx5Zzg43RQpcGTrJAuTNKvcygUwtDQkNKnsFWhTMEAm5s9sJVsq9XC2tqasgU68yDbJ7Lkj6Wdt32dbvsItwC2FKTXKJPcsm6VkDy5jF4KhQKKxaJSeukeshQzNJtN1Sc4kUioC8c8CpsSOBwO1d5QHoOK4GAwqCYwi5LloMguUVJRxsQ4vbJAIIBOp6Mk53shWuX1odz+RqIS3hv0buV9cTNUsDwuIxpJ+erv4eukB00nSfYC5bHkcQz9uwE7WlxSdRxXqvkBqMhCp3gJPTKR17sf/a7nZHlszkO5aTbV/bzPGBUZ9e9myDUNgO180sdD0v43Q6nrFL80yLpGgsfRNRR8v2Qe9eMDvfut2hn2V4u7ZlRbrdamJvKWZandaGT3Eqn+ymQyOHv2LMrlMubm5rC4uKi256rX60gkEpicnEQ4HFYSbhrSTqeDbDaLubk5dDodhMNhjI+Pqyg3Foupxg0s8SHlx63ckskkDhw4AJ/Pp3a6qNfrqrQGAAYGBjA2NoZEIoFUKoVaraZ25PF4PIpKHhgYwIEDB1CtVrGysoK1tbVdvyAzwohEIkrgICkhfZIxF8KtnILBoPJSZW5Gz3vZTTw9KuVnSsPO85Ot79gchOpy0kOku2REZURKm0E6kJEDN3IvlUqqa1kul1MCMeoRdEW1XKClWpRGmWtGv9w30LsdZD6fVzXsTDmNjY0hGo0qJ71YLKpN001Tj16wPDEQCACAUuWyPpUpMs4vGl/OHTINNIoy3647qrK9KztgyXVCjo3caUhGotxzWxcUMm3AkjmgtwHEbV+n2z7CTaLb7SKbzar8CPvksl2gXGyBjXxXpVLB0tIScrkcXnzxRZw7d65nElE0xM1xOdFIu5LqYTcnYP0ChsNhAFB5Gk5UGtZAIIBsNqtqTwOBAK5cudLTGo20UyQSUTvkBINBVY5DgRUN9ejoKCYmJlCv15FKpRTttNshJ6MUbAH2273JySq3CAQ2d1mxo5akYIzv4W8ZkXKSMVrh8XifsN5Zb5qv5/5MtLoOSeGzFpsOCxdKVgBUq1WluCbLpF9HmVPXyzdoYO2cGkkHyvGm4rRSqaBWqyljTiGLXGhNpLoZLD3Rt3yTbIReCsX3cH7pavx+YK93yVoBG3S+HB/JEvJe4H1Cm6DPUzppfEzfbOV2cNfVv8yHyI3DaeQ4+VgryNaDUtDAOla5HVChUAAAJSpqt9tYXFxEqVRCLpfD/Pw8ut0uhoeH1cbTBCMgnge954GBAQSDQUSjUVUvSZUyAExOTiIej+PgwYNqc/VAIKCip0AggHA43COUKhQKKj/AhWUvLMa88Sn2kaIuTjJuAUYnSypD+R6Z+9Qnid1k4PPS+HGxlYaRPzxPdvjiQixpJukM8J4xi+86pBEEesVLknaV0b5kDuhUy+upU3dkHWT0IT97q3OT+XN9zGSOnveCGdfN0PUPcqz5mJ1xlRGkfJ98jQQdM/21On0rdQ76udlR0TqjZZcaul3cVaMqDaoUCHQ6HdUk37LW5dC5XA6rq6tKLVur1ZBMJhGJRFCv1xU92+12cf36dYTDYTz22GOYmprC2toavvCFL+D06dNoNBpqv1XudSq9pGQyiX379qkENxVkw8PDShHGJvBDQ0MYGRlBs9nEzMwM3G43RkZGcPToUcTjcRXFss51bGwMq6urOH/+vNoIYHx8HM1mE+l0WkXuux0ej0cZKofDobqdcNcKMhJMBeRyOcTj8Z4IlQyEPnEA+/IaXeDEySlVqDIvzkkZCAQwNDSkPNxCoQDLstSm9fLecbvd6h4xWIcuFpKddeRmFlJgRt2BLGeRqlvpEAHo0UnIkpqtDCwjE9kXVtJ9vB/Yhc04S5uhaw90B4SP0ajqeXWplpcOsi4ypJMN9DZdkY40x7Db3djNRtbJyrltl5eVP5Kx2g7c1a3fZBG43DgWgGphx4tIKlZKqmXNERsoWJbV032JCzV7uMqJks1msba21lOX5nQ6MT4+3nOeLHKWnZioACWNwf6XyWQSoVBIKY1JCZP2opfOjQQ4sUkh7wWjyrGXBk2KCxilyGhGqn35Hjs1ppy4+gKoT0L9MTsal0pAGvtGo9GTA7YTOJm8Wy90BkEqcKUTo7MMcrEENkep8m9dzS1f329O6edlFx3J+8mgF3re0u562hk+Pg+gZ75tBRpo/XV275MMhO7UbfU9ZHndduKuGVWXy4WRkRHMzMyorXaYL+t210tpqtUqlpeXlaCB72OkSPBi8GJyAc5kMlhZWUE+n4ff71cRB/NhTqcTFy9eVF066vU6pqamFG3MvJ88ZqlUwuLiIiqVCs6ePYurV6/CsiwMDg4iEomg3W4jGo0iEomoz5C1i16vFyMjIwgGgxgcHFQ5170W3dgZONmAg52tGMlQnCCVmYxMKHbQxUfSk5b/95tgHAcpbPJ6vYjH4yoff/36dXQ6HUxPT8Pv96soS+aSjGHtzTNLIZdcbEnvc9zka+0WUB6XRo7RJbUKpAjle+VCr9N/MjqRHZxk5EU2ZK/Nz5uFzF/S2WSwYdcCEOhV8sqcqt6bF9hwuOW6r6dngA1hkYx4JXi/8PP5Om6qwPy+FMcxSLvta3TbR7jZD/r/e/s+8MADADZyZKRd2L5sYWGhR3LvdG7sLsHXS6qBVBCLfRcWFlCtVhEMBjE6Oqq2iaNBPXv2LCqViqpTPXr0qKqJGhkZwcjISA9tmM1m8eKLLyoV8qVLlwCsK98SiQTq9bpqw8f8q6yz9Pl8GBsbw8DAAEZGRhAKhdT32kvQc6DAhlGlQWUdsmx7RuUgJyonr8yvyQkkIww72b1OSUmPleOVSqVUG71cLqecMklX3wnV4E6HHBNpVMlAMV8uGRpey5uJLqVRJaVM55jHkveZfi9wrGRXNRl5MZJ2Op09LJrBOqiL4O40FBNyXsiAQrJNej05X8t5rEe/dJ79fr+id+ns0BDLbnd26R89GuU6QZU/KzIYvPH7bEfkelfdMdnbk16OnASSAmTNqKTe6KUwJyejEmAj7ybVuSyZ4cXlgi29JqkWlko1erBUDJK+dTgcaoHgwEglnDSYnKBclBkJU7SzF6BTdxIy4uANzomrC0ludFydltrK69Sf58Rj9MoyK9LRPFf5uXYU4l6GjDZoVIENh0YaUH0R1WFH1/MzdNq4H+T46jk1O8FNv3Mx2IA0WHbpFrvf0gntd0wAPUZSN4x2na3szkHmZjnONPKyp4Bkpzj2W53jreCuN3/gl6tUKmoRBaAiFkYtc3NzyGQyPd5ENBpFOBxWnYnq9XpPLVS321URz9WrV3HhwgXs27cPQ0NDqv0hZdpjY2OqXrXT6aBarSIUCqnuSTTGAJDP55FOp1VjZ0awNPqjo6M9G61zcabHFYvFAABjY2M4cOAASqUSotHo3bz0rzn0TjnAxqSgMC2fz6vIfmhoCB6PpycHRwZBlsxIsZIssZELu1ws9XOgM8eWlE7n+lZ97PRVKpV6hDUSJqe6AbmIsWELtwgLBoNKKMiORbLXqlzY+D+wsRjLSIfjJdkgCd0IyyiXdKJsSccyGubOt4P+262gw8maU655eipG0rWWZfWIw+SuU/IxSbfLe0mWPHU6GzsbSaaJ7JE0mJJGLpfLWF1dVTucBYNBpNNpdQ6MrndcpMovwJOnqEcqsBgxsrfuysoKgA2xA7cDo0qT9VKM/CzLUqU4a2trWFxcRCQSUaE/B8XlciGVSiEej6vt3dhEfXBwcFOUxKJw0szdblfRTn6/X1EdDsf6PoL8mwPLRYU1r4xY9wp0j5CPSdqNe9WyF2s0Gu3pLSqPwf/l5OWxZQ7PLgKRhpjg+NM40jFiATknsvw+wM01799L4Fwmu0QHiPQgy6ZoVCXtrl9fnUrW83NblVtICpEg08UGBLKukvP3RlS0Qa9hlddQ5s/1HDfHSqrn7dJAcizlnKITRAZTzj/JPMgSN/nD9EA4HEY8HldsJM9DqpJ3VE4V2KBngfUvyBufRf7JZBKJREJRbsViUZVjAFAGk8YsFouh1WohEAjA4/FgYGAAg4ODSqnLyHVubk6pc9kkghe1VqthcXERXq9XlU/IBZILfqlUgsfjwfDwcM8i73Q6US6X4XK5lEGWHhPrW/k99qpU3y56ADaa2JdKJdVzl96kTvXpP7z+dkIlPicpSDo5djQuwZIvOmpStSypJXn+BvbXRkI29eC811W+8r3SSZIGmMep1WqKudCNsh0tyePw9dzLWRoDmbq5kZJ4L0KfX3b7pAK9aTjZjUxqD3T6nSwBx4qpQBppAD2slczJ2qV+gI1GESzTGxgYwPDwsHKsZMOhG6WLbgV3NVJll4xgMKgUsTL5PTU1hbGxMQBQO9IkEgmMjo4qA8ndXeLxOGKxmFLq+nw+HD16FMePH0ckElE1sNyNhrWj+/bt61lY0+m0au59/PjxTVEMm//Pz8+r/VS73a6ig91uN1ZWVpDL5ZQwyrIsVZYRDAYxPDyMUCiEVCqlvK69tBjLqFEugJxYdGwKhQIcDgdGRkbUzhJ6BKrTrdJQ8nl6vRSdSApQnpOkoAi/36+8We7GIbes071jg15IwyQXOjqnnL8+n29TMxBeUzl2FIlxAeRmF7lcDsBGCzz5+cDmLeFoVL1er2qVSCNN50kaDFkBYLAOMoZU+dZqtR6HhAaPmxaUSiX4fD7V2EfeG1JfQz2FZJSk0eVvNs3Rx0Y617Lqwuv1otFo4Nq1a1hdXcXBgwdx+PBhVeUhO97JVNHt4q4YVV4gmbD2+XwqwqRR5ZdlflTmU5n/IKXErd04afx+v9pejJEh83XVahUul6snAuIEbTabyOfzKg8kF3FgY+9H0sbRaBSWtb59FLec43myDES+nwsDz1dSFXeqTupeg6Tz7G7aVqulOkwBULk4GakCm+vk9Md0L1j+rzMQkp6Xiz/vLSobZUTVD8a4boZ+TUjZyvpjed11upaQlB7vBdaeSyryZhZDOZZSnCgjMBk9bWf0slugr+Xy2skcuN5URXdC5d86tc/HmEazM9pyj2x93HSnjjubDQ0NqXtPzm3pfG0H7rhRjUajqkFCKpWC3+9Ho9HAyy+/rLxEv98Pj8eDy5cvI5VKIZfLIRgM4vDhw+r9LpdL7WEq1Vyjo6O47777VN9dionGxsZw/PhxVKtVtbVbIpFQtaX5fF71Hz169KiKKufm5lR5DGX7svRjdXVVGUTSz6SkFxcX8corr8DhcCCdTqPVaqFQKCiDPDMzozpCxeNxHDp0aNdPWstar//KZrNwOp2q/6+sF+QGBvl8XnmQNKq6GEXe/DLy1RdxO0NnJzTihKLz5nCs5+u5+JOytBsnPW+7l0HKz+l0qq3BpJCl0WigWCyiUCjA7/erOa+zDnZjLkswHA6Hin4kxS8XZDkWkiHhcavVKjKZTE/ZmzwX+fq9Pq4SjEApVKKOhdeLTXN4jSuVimIBGMiwNlRufymNG8eB9Cx1MqT9Jd2vO9iEHHOKEOm0s/UtqeU7ITK840Y1Ho9jZmZG1YIGAgFkMhk8++yzWFtbg9frVTRwNBpV7eyGhoYwPDysKJtOZ33HGhqp1dVVVCoVhEIhTE9PY2hoCKFQCPl8Hs1mE/v374fD4UAmk8G1a9fQbDZV0/tGo4G1tTUUCgUkEgkcPnwYwWAQ4XAYs7OzCAaDmJycRCKR6NlarlqtYmFhAV6vF6lUCslkEsViEdlsFo1GA3Nzc5t2M6nVamrDcofDgYmJCbTbbQwODuLYsWN7YtLWajWltkulUpsoVDb9yOVymJiYUM4XgL60jBQt8X89MpWvtfNEpVFlXTRz3zSkcqNyHdIz3+vgogdA0X26Uc3lcigUChgYGFDaBj1ileMq7xMusnR6eF/Izcf1cWB0K++fbrfb06i90+n0nKv8Pob+7UWz2USpVFIKed3oBYNBpFIpAFCbvnPtBKC0E61WC8ViUR2L6l6mzJgSpPqfAiW5lVs/J5frAOclRbFMHTIFIUWy2407blQlDy/pl1qthnK5rNSyUjIdjUZV1yUeA7DfI490XSAQ6Om2EQ6HkUwm0W63EQqFlHfFC8/3yR8Wk3OBIJUQCoUQiUQAQC0cHDwelwPIrcI46LVaTW1hRHoZ2GhjuBfA6ym76ei0jRQg0LsFNrzOfpGnPrn0SaIbWL5PHk/mZuT9SkZE7p8rhS1ywd7ri6/u5Mi5ToOnt+a0o4gJPZ+m52olHbzV9deNKtC7r6peT8v7TjprBuvg+uzz+VTNJ50fYENwBGykUmSDFb6G11wyC3ZzyU6/sFV0aZf+kfNU3gcca71mdTtwx42qLGOhgcpms6hWq8jn8+qLMfR3uVyYnJzEm970JszMzCg+nN5uOp0GsB4Bcx/TgYEBxONxRKNRVV965MgRTExMYGFhAU6nU9XFZrNZAOuN9AcGBtRnNxoNLC4uYnV1FbFYDMlkUpXdvO51r8O+fftw5coVXLx4EbVaDaFQSAkt2IUpk8ng6aef7lmAST90u13MzMzA4XAoEQzb4e121Ot1ZDIZNYZ22yzxPmA/5Wg0qiJ9ilbk9mx6LkxfxCU9xHwPn7ODdLaoFC+VSlheXsbQ0BDW1tYQCoXUNoWcoLIcYy+DUSPHRAqRGG2woT5TKnqESlBUxPuEY8z/OZ/kYiwhmQmZMyNoVD0ej6IhG40GfD4fQqGQcgC3q25xt6BcLmN+fh7FYlF1qePcsyxL1XZzzafKlr8lcyDBxxh4cA5SWxMKheB2u9FoNNQmKlITIc+D6wAjXWprOP7Ut4TDYSQSCVW+KUv3bhd3zaiyppQXmAIiO1BwNDExgXQ6rURBzWZTRbekkJLJpNqSjdSx1+vFxMSEytlms1kUCgWsrq4qQz40NIRIJKKKv6kIrFarSCaTOHnypBrQAwcOYHBwULW2Ys6A7dK4NdzS0hIuXLigKEMpOXe5XMjlcmrA/X6/UgrvdrA8ivlT3ZOUIhHujRsIBJQRZgQLbESe8rpJGscuMiW2oox0BoM59Ewmo2jLYrHY83l0mvTSgr0ILoo0lpznwEatIgV/UmDC5+ViK2tJ5YJp149Xr1Ul9ChWRihkH+g8sWaeFCTnbj/af6+iXq8jnU4rOpZGkkaVe1d3Oh2lvpUtIfUIUwqcnE5nT7ctWW7JjnQAVF5VrgMyoqXjTYPKoIkOFo283+9HOBxW793O/Pld7xp9M6UITIjn83nVdKHZbGJwcFD1Dpa1a/SQeIEkxSA3FXc6Nxox9LuQei2cZa2X7/h8PhVBUdlWLBbhdDqVEQiHwz2F5Trq9Tqy2Sy8Xi9KpRIqlcqeMKr6oigXUXqdskuLFLnopTicgHY5U2lQ9bG1o4AJKeNnXR1z4zLSkdQvX3+nxA67ATSmNE68ByQtKI2pTsnbzU3pzMgUUD+hkrzP7Epmms2mWqjtun4ZbEDPectUDqngSqWCdruNWCy2qTZVjoV0VmS0SUZC5shlFErYKYqZHpQ0PtkkCpXYPYtpCP7QOd4RkaqEfvH6odFoYGFhAYFAAJVKRVGHJ06cwDvf+U4Ui0U8//zzWFlZQafTURuSsxG6PDbpnXK5DJ/Ph5GREfWcHFwu4Oz6UigUkE6nEQgEcODAgR7RU6lUwtraGlZXV+F2uzE+Po7BwUEsLCwgGAyqxUS2YbSs9daG58+fh9vtxuzsLJaXl+/AVb73IA0V0FvEzSiPeXHSMqxrYxkGFzy7MiRp8GSEshVFqL8fgFKWRqNRNBoNJaCgcpETlkaUnq8xquvQKVzS96VSSXUsI5NEWo6LGxdTafQ4j+lE8Z5hvSIVp2xTJ50v6VzJXBpFLLVaDT6fD6VSSYlmZLtCo+q2hzRCjUZDGTuyj8vLy2i1WvD5fBgYGNjkQOm5bEayjDBlRMtomCkz9uCW2ge51pPWBzY2YrEsS63XmUwG2WxWVWBwjCVbuR3MxF0xqnIR0hPPduh0Oko9Rgm0y7XeQ/fgwYNIp9O4ePGi4sLZiYeCI/kZjFKZQ+GFlqpBPXKiqIJJ+WAwCK/Xq2hmTu5yuaw6OkUiEbUI9/t+NNbsR9mP/t5t0PMdwOa9GPmcjGQIParle+RvPVK90WJo9zy9X52u6nevStrJGFb76yQdJ1kfKMV8jGJ1Z7sfuyCPKelHu9fb3Q8y0pI1ldIgG2O6NaRCm3OFymqZEtHHUxcL8TVyHkknyrKsnty6hHS65HnprAUDJTpNukCN79kuFf8dN6rkxEOhECYmJnD06FElyWapjP5lqtUqLl26pMpnKL2u1+tYXl5GtVrF9evXVY4znU6rkhxSsfv27UMsFlP7qzJvwkS3bCxBUMxUqVRw7do1tFothMNhZDIZeDwezM7Oqj0/meer1Wq4cuUKisUiFhcXUavVVB5QwrIs5HI5XLx4EU6nE3Nzc6q38W5HIBDA8PAwUqmUUnbTQ2VbQOa3r169iuXlZQwODuItb3kLBgcHVb9PSeFJSA9XGlvuXSvTAbLon2Ak7XA4kMvlMD8/j7W1NVy5cgW5XA71el3l70kZAlBdu0Kh0J43qpzn1ApQNBgIBHo2fZcLMdC7f6ZcnPWo1+PxqMYtsvxFLsL8DB36gkz62OFwYGxsDPfffz/C4TCuX7+unDPO4RulqvYSaPxk3bAshWm321hbW1MsQKfTQSAQUOWOZIKk88RxkflUgp/B3CyZDpfLpWqd+d5ut9vDgHAr0Fwu17ONKNNMUhnM+5Tbwt0u7rhR5aIZjUZx4MABPPzww6ppOjvX6JOoXC7jxRdfVC3F2A7rypUrqs6RRqtUKiGTyai9Nj0eD5LJJN761rfiwIEDSmjCpsp8L8VPknqQ3uuFCxcwPz+v9mP1eDxYXFxEPp9XFJHT6USpVML58+dx/fp1XL16VSkJ7Yzq2toaXnzxRTgcDtXsYLfD4XAgHA5jcnJSqalJBfOHGyU0m021Z+2hQ4fwute9DvF4HNVqtSdfIqNdoLcUgpOSZVXcmYQTj+kAGcGwj7TT6cRTTz2Fb37zm0in0zh//jxWV1dRrVYRi8UwPDys6EI6hj6fD7FYbM9vas2FjqwNN6ugmI+Kac4L2apT5ltJCUtamMKTSCQCp9OJtbU19bkcez0/S8j7QX4eNRbT09N45JFHEIlEcO7cOTX/S6WSMrwG63A6ncpwkXaXzXtarRaWlpbUGpnL5ZQehfvT0ihK/Yuc28BGjpxOMj+P95fb7VZGENgQL8m5uLS0hOXlZbVHM8FzkTvj0AkkI3q7uOMrgRQLSdmyTG7bvYcXiqG7w+FQ3TzkRGK9q+x85Ha7kc/nlWqzWq327OpOo0q1InN9wEZNHTszUa3KYzISZa6PylYKm/o1KwCgymsAKBpit4MLHZWf7GrSarVUHkaquyk6Y1ONdDqt8nKsjdNzKTLy4WdyEZc7GTG/UiqVeugh1iQDQCaTUfkXMhJUnTMdUSwWlZhOsh97GVL8wxwVANVoQW6fx3kjF1UyP3R6pSBGbvWm07Py/35UL7CxAblsHkBqUKr1pWNtOir1gms5rxmpXjIEnMMsn+J6XSgUlKqa94GkiPWxlOMuy9f4uEwH8X6ik0S7wZ3FaBsIvlYq96VuY0cIlXK5HM6dO4dYLIYDBw4gEAjg6tWrqNVqqg5JL4NgzpNiB15sGkKpuJSyd16oQqGAZ555BpcuXVI728hFj6/jRJa0IQ2+3G2GohnK72XLrEKhgGw2C7fbrYxrP6PKjiQANhn63Yzr16/jySefVBHr8PAwfD4fEokEfD4fzp8/j2effRaFQgHLy8uqZvhP//RP8eSTT/aU34RCIQQCgZ48rS5W4D2lN1unAeWCL2uJOZ7Ly8tYWlpSSm0AWFpawuc//3k899xzqNfrqNVqaLVaqsPX2tqaqp/eq6hUKlhaWoLH40GtVsPVq1dV2zqPx4O5uTnlTPFaud1uVVcu2QZgo0k6Ixi+1+l0IpvNquiDYhdgYycifeHsdrtqO8hGo6HmXaVSwTe+8Q00Gg0sLy/j5ZdfRi6XU84cm8YbrKNSqWBhYUFtdEFhJjcSuXLlCiqVikrJURy6urqquuZJzQvHnDX/pJBJ57MmnC1ja7UaCoWCMrbcZYjOrUzzLC8vY2FhoWce12o1LCwsANhw9qvVKq5cuYLLly8rsdrt4o4bVUYGuVwOFy5cQDKZxMrKCprNpqIMdND70MFopx/o8VYqFVy6dGlbv8dWkHTUVuAk5Q2zFyJVYP36VCoVeL1ezM3N9RhVv9+P2dlZXLx4EZVKRTV7SKfTePLJJwFA1ZSxy1Y0GoXT6VQ0DrARkUjVtZ6f4et4b5E9KZfLWFlZ6emWJZHNZvGtb31LlVPxMxYWFpDNZpVnvJdBY+VwOJDP55XYi/k2OqSWZamFkds9MlfK8eJ7pUPNPLjL5VIsEl8vaxMBqJQRI+R2e32HnEKhoMYYWF9PXnrpJeTzeZTLZSwuLqptHrmLzV5wem8WXH8ZES4vLyMcDiOfzyMWiylnlD3PC4UCgHWnmmkg7tTFnCjz48FgEJ1OpycFUK1WVRc8Rr8MrCSrwb2t6/W6GuO1tTUsLy/3MKF8XOZN2Xp2fn5+29jDu7r1m7lB9yZ0dXU/yq6f2lPSP1KwpOfQ7I4p82j6737nYnf+enmOUYraQ7+e/a7RrV4zeS/c6Bg3+7jOjt3uOe4l3Op9b/f6m3Fa+o2JLmqye/5mzs+utvl24bDMnWNgYGBgYLAt2Nt1AAYGBgYGBtsIY1QNDAwMDAy2CcaoGhgYGBgYbBOMUTUwMDAwMNgmGKNqYGBgYGCwTTBG1cDAwMDAYJtgjKqBgYGBgcE2wRhVAwMDAwODbYIxqgYGBgYGBtsEY1QNDAwMDAy2CcaoGhgYGBgYbBOMUTUwMDAwMNgmGKNqYGBgYGCwTTBG1cDAwMDAYJtgjKqBgYGBgcE2wRhVAwMDAwODbYIxqgYGBgYGBtsEY1QNDAwMDAy2CcaoGhgYGBgYbBOMUTUwMDAwMNgmGKNqYGBgYGCwTTBG1cDAwMDAYJtgjKqBgYGBgcE24Z4wqidPnkSpVLJ97uGHH8ZXv/rVGx7j93//93H8+HE88MADePDBB/HZz35WPVepVPCBD3wADzzwAI4cOYKPfvSjsCyr5/2WZeFtb3sb4vG4eqxcLuOd73wnBgYGeh4HgJdeeglvectbcOTIERw/fhw/+ZM/iVqtdtPf2cDAwMBg9+GeMKqnT59GJBK5rWPcf//9+MY3voGXXnoJX/jCF/Bv/s2/weXLlwEAv/mbv4lOp4MXX3wRL730El544QX85V/+Zc/7f/d3fxcHDx7seczj8eAjH/kIvvSlL236PL/fj49//OM4d+4cXnjhBVQqFXzsYx+7re9gYGBgYLCzcU8YVYfDgXw+DwD45je/iZMnT+L48eP4wAc+gHa7fVPHePvb345YLAYAmJycxMjICObm5gAAL7zwAt71rnfB4XDA4/HgHe94B/70T/9UvfeVV17B5z73OXz0ox/tOabP59sUvRIzMzN48MEHAQAulwuPPPIIZmdnb/GbGxgYGBjsJtwTRpVoNpt4//vfj//8n/8zXn75Zfzoj/4oXnjhBfX8Jz7xCfzH//gfb3icL33pS8jlcnjkkUcAAA899BD+4i/+Ao1GA+VyGZ/73OeUAWy1Wvipn/op/OEf/iFcLterOu9KpYJPfepT+P7v//5X9X4DAwMDg90B92t9AhLnzp2D2+3Gd3/3dwMAvud7vgcHDhxQz3/oQx+64TFeeuklfOADH8Djjz+OUCgEAPjoRz+Kj370o3jDG96AWCyG17/+9fj7v/97AMCv/uqv4gd/8Adx9OjRVxVp0hH4nu/5HvzAD/zALb/fwMDAwGD34J4yqnZwOBw3/dozZ87gPe95D/7kT/4E3/Ed36EeDwQC+L3f+z31/2/91m/h/vvvBwB87Wtfw/Xr1/Hxj38c7XYbxWIRU1NTePrppzE4OLjl57VaLbz//e/H6Ohoz/ENDAwMDPYm7imjeuTIEbTbbXzlK1/BY489hi996UtKbHQjnD17Fu9+97vxyU9+Eu94xzt6nisWi3C73QgGg7h69Sr++3//7/jrv/5rAMDXv/519brZ2VmcPHnypiLWdruNH/mRH0EymcQnP/nJWzL+BgYGBga7E/dUTtXr9eLxxx/Hv/23/xYPPPAA/vzP/xwnTpxQz2+VU/35n/95FAoFfOQjH8HJkydx8uRJ/O3f/i0A4MqVKzh58iSOHTuG7//+78fv/u7v4uTJkzd1Tg8++CAeffRRFItFTExM4Md//McBAI8//jj+7//9v3jmmWdw6tQpnDx5Eh/+8Idv7wIYGBgYGOxoOCy9YNPAwMDAwMDgVeGeilQNDAwMDAx2MoxRNTAwMDAw2Cbc80b1mWeewfd+7/dienoaDz30EE6dOoXf+I3fUM+/9a1vxec+97lbOuZnPvMZxGIxnDx5EidOnMCDDz6ohEsGBgYGBgavFve0UX3ppZfwrne9Cx/+8Idx9epVPPvss/jyl7+MYrF428d+7LHHcPr0abzwwgv45Cc/iQ9+8IPbcMYGBgYGBnsZ97RR/djHPoYPfvCDeM973qMeSyaT+O3f/u1t/Zx8Po9EIqH+/6Vf+iU88sgjOHnyJN7ylrfg/Pnz6rm//uu/xtGjR3HixAl85CMfwcDAgGlPaGBgYGAA4B43qs899xze8IY3vKr3PvHEE1tGn1/5yldw8uRJHD58GD/0Qz+E//Jf/ot67iMf+QiefvppnD59Gj/7sz+LX/iFXwAArK6u4id/8ifxV3/1V3jhhRdw5MgRZDKZV3V+BgYGBga7D/e0UdXxy7/8yzh58iTGx8fxyiuvbPna9773vfjUpz7V93nSvxcuXMA//dM/4YMf/CAWFxcBAE8++SQeffRRHD9+HL/2a7+G06dPAwC+/e1v48EHH8SRI0cAAD/xEz8Br9e7PV/OwMDAwGDH4542qqdOncJTTz2l/v+d3/kdnD59Gh6PB61Wa9s+5/jx49i3bx++8Y1v4Pr16/i5n/s5fPazn8XLL7+M//2//zfq9fq2fZaBgYGBwe7FPW1Uf+VXfgV/9Ed/hC9+8YvqsWazedPbwd0s5ufncfHiRRw+fBiFQgEejwejo6OwLAsf//jH1eve+MY34sUXX1Q51s9+9rNoNpvbei4GBgYGBjsX91TvXx0nTpzAF7/4RfyH//Af8OEPfxiDg4PweDz4mZ/5GRw+fFi97oMf/CB+7ud+Tv3/F3/xF1hbW8MTTzzRlwJmThVYb4z/m7/5m6ol4o/8yI/g/vvvRyqVwvve9z71nqGhIXzqU5/C+973Pvh8PrzjHe9AOBy23W/VwMDAwGDvwbQpvEWUSiVEIhEAwOc+9zn8u3/373D27NnX+KwMDAwMDO4F3NOR6r2IP/iDP8Djjz+OTqeDaDSKP/uzP3utT8nAwMDA4B6BiVQNDAwMDAy2Cfe0UMnAwMDAwGAnwRhVAwMDAwODbYIxqgYGBgYGBtsEY1QNDAwMDAy2CcaoGhgYGBgYbBPuWEmNw+G4U4feddipAmwzxjcPM8a7H2aMdz9uZoxNpGpgYGBgYLBNMEbVwMDAwMBgm2A6KhnsWDidTjgcDjidTrjd7r40Fikby7LQ6XTQ6XRgWdaOpev2EjimLpdLjTF/LMtCu91Gt9tVPwY7F5zHTud6rMex51ztdrtot9v3/Lw1RtXgnoVcPPWJ5Ha7EY/H4ff7EYvFMDo6Co/HowytRLvdRqPRQLfbxfLyMpaXl9VjdjseyclscGcgjSOAnjHmb6fTCZ/PB7fbjVQqhampKfj9frjdbrjdbjQaDczNzaFYLKJWqyGXy237DlYGdx6cs8lkEpOTk/D7/fB6vfB4POh2u6jVamg2m8jn85ifn7/nt+I0RtXgnoW+6Eq4XC6Ew2FlUI8ePYpwONzzHr6v1WqhWq2i2WzC6XSiWCwqg2oW4bsPaVAZldCoSsPqcDjg9Xrh9XoxNDSE+++/H9FoFD6fD16vF6VSCS6XC4uLiygUCigWi2Y8dyB4H0SjURw4cACRSATBYBB+vx+dTgeFQgH1eh0LCwtYWVkxRlXC6XTC6XTC5XLB5/PB5XJtWgQZmQDrE0tGHq1WS9E9jUYDnU7nbp7+LcNEPK8edlSuw+FAIpFAPB5HIBDAxMQEYrEYgsEgAKDRaKh7xO4YbrcbIyMjcLlcqNfrWFtbQ7lcRr1eR6FQMAvyawSdjXC5XHC5XPD7/ZiYmEAkEkEikUC1WkWn01FGtdlsIhwOY3R0VN0D9XodpVIJpVLJzLt7CHItdDgcymi63W4EAgF4vV4MDg4iGAzC5/PB6XSi2+3C4XDA7/fD4/EglUphenoa1WoV5XIZlUoFnU7nnrMFd6yhvr6gORwOBAIB+Hw+BINBjI6OIhQKwel0wuPxbHo9814ejwderxcAkM1mkc/nUa/XsbS0hEqlcidOfVtABwKAyvX0y+Pt1Ml/J6T4/ShBAPB6vfjO7/xOvPGNb0QkEsHU1BQSiQTm5+dx+vRpFItFZDIZpNNpAFA0YTQaxdjYGAKBAKampjA1NYV6vY6XXnoJCwsLmJ+fx9NPP418Pr/t34cwY2x/bOZJu92uWhgjkQhCoRAGBwfx9re/HTMzM7h+/Tqee+45lMtlFb0Gg0EcPnwYg4ODqFQqSKfTqNVqeOGFF3D69Gm02+1NrMWdhBnjGx/fsiy4XC4cPHgQU1NTCAaD2LdvH2KxmGKOyC612224XC7FThDdbhfnzp3DmTNnUKlUsLq6imKx2PNZd2osbua4dzVSdblc8Hg88Pv9SCQSiEajcLlc8Hq9my48jarX60UgEFAeDgfF7b63mWtSGjxvYOdOuruJfpSvw+GAy+XC4OAgDh8+jFgshunpaSSTScVeVKtV5PN5rK6uAlg3wi6XCwAwPDwMp9OJ4eFhPPjgg6jVaqjVanC5XGg2m8pxM3jtwLnidrvh8/kQjUaxf/9+3HfffahUKigWi0in0/D5fPB4PEgkEgiFQhgbG0OtVkM4HEatVsP169eVQ2twb0AykE6nE+FwGENDQ8o5HhgYQKFQwNraGprNpjKwzKtHo1H4/X7E43EAQLlcxuLiIlwuF3K53Jafd7dxxywTFykukIzcOp0OWq2WomfkIioNK6M7t9uNYDCIbreLQqGASqWCer2uvFrSyTJHQ6OsqwF1qlk+3g92EfdWr5XnQQpDOgh+v98UW9vAzpDy74mJCTzwwAPKkNIgzs7Oot1uY35+HmfOnEGpVEI+n0epVAIApSSk0Q0EAqhUKmrRbbVacLvdGBgYwMmTJ1EoFLC0tISFhYV7ik7azSDFJw3q2NgYZmZm4Pf7cfHiRSwsLODatWuKrq9Wq3C73ajX63j++eexsLCAeDyOiYkJBAIBJBIJxGIx1Ot11Ot1Revr+VuDOws9UAqHw0ilUggGgzhw4AAmJydhWRYuX76MM2fOoF6vo1gsqii11WrB5XJhfn5eCRLHx8fh8/ng8/lw4sQJ5PN5FItF5HK5TWOqr7N3a8zvmFENBAIANiI2AEoCX6/XFY0rQ355EZhL9Xg8KvSvVCqoVqs9HDo9GcqxXS5XT85VXkgaYB16Tlf/u99v/Rjy+DSu3W4XzWYTlmUhHo9jYGDAeNE2kEZVd4aOHDmCn/qpn8Lg4CDm5uawsLCAtbU1/MM//AOuXLmi7ik6MHw/j7m2toa5uTk4HA780z/9E7xeL+LxOL7ru74Lhw8fxvj4OEZGRtBut/GNb3wDKysrxqjeYXBseJ35v9vtxszMDN72trchl8vhi1/8Ii5cuIBWq6XGWDrq8/PzcLvdOHXqFGZmZjAwMIDh4eEeSrjVaqn56XA4Nq0LBtsPGcBwPiaTSZw4cQLRaBQzMzOYnp7G6uoqvv71r+OVV15RZVG6CpxB08jICI4dO4ZYLIbDhw/j1KlTyGQyuHLlCmZnZ1UwpX++PKe74VDd8TaFMrfIm7nb7aLVagFAj1HV36dPgHq9jlarhU6no+hA5lxJCbvd7k21iHKR3cpo9vtb/u73Wv27SsPJiNXtdsPr9cLtdptJLWDnpMhyCgpV4vE45ufnUS6XFRVIqvdGaDabPf+TLanVavB6vQiHwwCAUCgEj8fTcw/JczTjdvuwo/iprfD7/QgGgwiHw6hUKqjVashms32PxXEtlUpoNpvodDo97JZdmsgwRXcXXAtJ48bjcXg8HlXWVi6Xb0rPEAgEUCgUlF0g8xcIBBAIBHpK54DNkfJW2E66+I4ZVTtD1ul01I3f6XRUVGkXFUjjSk+l3W6r98Xjcbjdbvj9foTDYaUi8/v9qNfrmJubQ6FQ6PFwaWSl1yo/S/9bPx8Zdd/oe/NzGDlJ4y5zxnsd+uLK3/F4HG9605swOTmJyclJlMtlNBoNvPDCC/jmN7+pKB/eG1IUZtcEQHrNlmWhVqvh9OnTmJ+fx+TkJN70pjchFothZGQEBw4cQLlcxtramqKSJfNgxu32QOdTltGkUikcOnRIUYRUd0oltz5n5TzK5/M4ffo0EokEut0uHn74YVWKUSgUAGy+xwy2H3aipGAwCI/Hg/Hxcdx///2IRCK4ePEivvWtb6FYLGJpaemGxwLW86iXL19WTlcikUCr1cL4+Dje8IY3IJ1O4+LFi6hUKj2pwLtN998xo6qLTDgByJXXarVNlK9dPk0egxcqEAhgaGgI4XAYwWAQ0WgUHo9HqQbL5TIKhQJqtZoy2tJw65NTj0D7fbbda/XvrDsT/QZVUhV7FVvlPKLRKB599FGcOnVK0bvZbBbnz5/HP/3TP6l8i8vl6qHd9QhTz9vzNfV6HefPn8eFCxfwute9Dm9605vUgj4+Po5isYhKpYJSqdRjtF9LAcRuAVkmzhemRo4ePYpoNIpIJIJqtapKaPgeGmN9brGW8ezZs4hEIjh06BCOHTuGXC6Hs2fPAuitgzXjd+chGQiWzwwPD+PQoUMIBoP49re/jS9/+cu25TD91lfeE263G0NDQ5iYmFB/p1IpXLlyBXNzc8qo8udur7N3RUIrKTQ5Iexet5VhJb1LCpW0LycnF1TSPj6fr4cCcrvdPeU7N+O56q+VudxbSYTzu+mS8b0OuThysSV9F4lEEIvFkM/nkcvlUCqVUC6X1RhzDKQzIxkJop+Aga9jjp+1jslkUtVS6+8z1OH2QBpUAPB4PAiHw4hEIuh0OkqAwjSRfJ/8W87Ler2udBXRaFRRwQZ3D3aRKpu0+P1+Rdez+Yod86MHWzyuTOc1Gg2USiWV/uOP3fy8GUdqOx2tO3bHScEOsNHIgXVpdvVpckHUE9YOhwOhUAjhcBg+nw/xeBzhcFhd4EajoYxWs9lEKBQCsJFrabVaCAaDCAQC6Ha7KJfLqsOOHf0rF2yeB/O5wPoiICesHvlKiouUJKloAEqZuJeh59YcDgcikQii0ShGR0cxNTWFgwcP4vnnn8fzzz+vBEe6ASVuxkniPSipw2KxiDNnzmBlZQWRSAQnTpxALpfD/Pw8rl+/roy9iVI341byVoRMifA9oVAI4+PjiMViOHfuHC5duqS6JPHYfK18Lx9rNBpIp9Oo1+vw+XyYmZlBOp1GJBJRn3uj3sBGHXx7sIsOA4EAZmZmMDExgXg8jpWVFXS7XeTzebUu2t1DOtMpYVkWMpkMLl26hHA4rOrVg8GgrRD1buOu7KcqI1UaG3qUjNa4qMobWv7tdDpVzarf71ddVVqtlvJ+aCQZnQaDQTSbTbWI8v3tdhvVarVnYtp5OHpEQ8Mo6at+31mniiX9zXPVxTN7DXashdfrRSgUUlFqPB6Hw+HA2toaFhcXUalUNk28W10E9fxos9lEOp1Gp9NBOBzG4OCgEs3o7zGR6mZwDG/W6bAbL6ZvIpEI2u22Kp/R54h0uOUxOp0OarWaWlsSiQTa7fYmtmGr7/BqHASDXug5b/boHh4ehsvlQrlc7lHry/fd7DWX7BLvBdYu3wvz844ZVX5BhufdbldFjaQFCP7N/BiwoRTmhXa5XBgfH8f4+DiAdc+0Uqmg1Wqh0WgAgFKJUszEkp1QKIROp4Ph4WEMDw8rQ5vP53saq3s8HnUuUpDE84hEIqpUSFLNrVZL0ZGMXmlE6Ym5XC4EAgGkUik4HA6k0+k9LXqxy1E7nU7EYjGMjY1hYGAADodDtZ2j0ld20dLZhFuZlPL19Xodq6urqNVqGB4e7kkt8PVUnJNxMdHMq4NcPMlYOZ1OhEKhnoYwrEWW+TBZ06pfe9K/nLfBYBChUEh1cdNz7Tq2cq4Nbh66w+v1ejEyMoLp6WmUy2VkMhnVh/vVHhOAMsyBQADBYBDJZBKRSKRnzm4V9OjH207c8TrVQCCAWCymlL8UfrCFmBSbMKGt07/AupE+evQoHnjgARQKBZw+fRrpdFrRvS6XC5OTkxgZGVH9QavVKlwul0qGHzp0CEeOHFGPszxDNlv3+Xy2ESqwnmubmppS9AP7xjJPyrIAmTPl4wBUgToAtY3RXoZebuV0OjE0NIT77rtP9eitVCrIZDKYnZ3F4uKiWhjJepAxkIvvjSaLfm9VKhXMzs7C5/Nhenpa5X7kBCVDcTNKYwN76I6q0+lUfV3j8ThGRkYQjUbhdrtRKBRQrVZVTvVGTgxLpLiuMFKlmJGbKtxsJG2wgZtxNPqlXvx+P2ZmZnDq1ClcuXIFCwsLqkfBrUA/brPZRLlcVkLV8fFxLCws9KTkdApZ1/TIubsjcqocCIqL5GIE9CajuThSSCTzXXwty2dCoRBarZaqYeRFonQ7HA6j3W6jVCqpyJH5T7/fD7/fr+hhesmy6FjP0cnH3G43QqEQLMtSBpXnYJcDkB45z5Gdpu4F7v9eA5kNRhfMzbALl+7d6nT7rUSq8jejHE40Wfusv6+fgGK3Yrso0X4Ls5wb7JRDp/tW986U+gy5cQe7mOmUox1281jeDehzi2k7v98Pl8ul5nE/PcStfA6FTrx/pD6mnxPWb83Yznl8x+tU5U0sa055AdgY2+12K6+S+RFeNBrYZrOJWq2motbp6Wn4fD4EAgF4PB5MTk5ifHwcuVwO+XweS0tLsCwLg4ODavKura2pTivZbFZRTIxGqtVqT76N34ETNJFIAFj3lBwOh2qNx2PI1oRsCE21MnfmodPAm2svQtLj8hpIo2qnsJbvZ29QO2foVs9FNu8+cOAACoUC4vG4Sl3YNRMBXrtWaHcLuoNoh35Rit1r9NfLORAOhxGNRuFwODa1I70VMIrpdDrYv38/Hn74YayurqpWlrf6PfaK4yRTMf1SUzc7xkSn00G1WkWhUEAmk8HS0pJi+W7mmP0+h6LPcrmMdDqNxcVFZLPZHmbDLhLVNzeR33m7xvmuGFXptcicJSMTFgeHQiEVidKg8jiMVsijz8zMIBAIKGGJ1+tFMplEPB7H3NwcnnrqKUUPJJNJuN1udLtdNaD5fF7lVKVRlV2fJM1oWes75sRiMQDrNVOSwtVpST5HSpg/suEF88t7FXb1aXRCZKTYz7BuF/1KA0+h0r59+5DP51X9M+8RvlZnIHa7Ye2HW80/6teFegRS/xSnOZ1O1Gq1V6WOl85xp9PB+Pg4HnzwQVy6dAmXL1++KaMqIRfcfq/ZDZCMAXG70SSwYVRLpRJyuRxWVlaQzWZ7BIevBsypVqtVZLNZrK6uquCm3/naRa+6YbV7363ijhlV5jb0vqz6RJSGqdFoqF1DGo2GmlSMImhYHQ4HisWiouyYM6EYamlpCdlsVnmrpJaZw+MuCLJpPylmeVPJyETK7QEoA0/DaEcLyrwfP19Ozr0apRIyvyE9yVar1ePgABtpBGlIZU62n9pcf04HP1unGjl2zNG0Wq1du6C+GtyqQaWamvukkublnIjH42pOBYNBTExMKDZoq8/St1f0er2qRrXb7SIYDCKRSKhmAaFQSH1up9NBsVjscZBvNRLbLeAaJqP1rRgIr9erxKiyIYe+uUkqlYLb7VZC0FQqpXQ03H2MkOMsU4VynZTj7Pf7EY1GEQgEFOvJ+0iur3b9hElD26X77HAr9/sdM6rVahXAOhVDxSYnCbCxoLZaLRSLRTgcDpTLZRUZUNlL2hSA6pTU6XRw6dIlNJtNDA0N4cCBA/B6vYrSzefzePbZZ7GwsKD2b+W+mrFYTCkLOdCsb2LOlapEKohzuZzKwzKKXltbw/z8vGq7yJuJnpKMuEhPyyS63jx6r4ERPMuq6BRVKhVks1m43W7UajW0Wq2eKKZararSCV5XyYBIWkef7Dp4/VlIzsfocPl8PoTDYdTr9Z6eotLB0h0jaQR2w9jKDmG6Y6n/vRUSiQSmpqYQCoXUDiVyEZ+YmEAmk0GpVML09DR+9Ed/tMfRlTXuvO5SPUzmBwAOHz6MWq0GABgbG0MikVDtLpk+8nq9KJVK+Na3voULFy6oHsNbNZsg9Gux08dZOrSSHu0HbsE4MDCg1k2u08FgUAnQfD6f6nJXrVaRSCTw5je/Wc13KdTknKGhpuEl88B5yb/5vMvlQigUgtfrxfDwMB555BFVikWBKvsU8DtalqVK9GRaZzsMKnAHjSq/BL+UHjVw8ZEtBKnAJWXAOjNePBkdLi8vo1wuo9VqIRKJwOPx4OrVq7h27RpKpRIWFxeRy+WUQIlRjsfjUSU0XHwpegqFQsrAkq5l03VGyBxcUhqybEaCCz2jVOZV5ev2eqTKa8OJA2zQOhwjshsUsfBeolGWOxTJXDhfo/8QfJ2k7fk4fyhyIz0J2NfWStixFrsNr8Zp8Pv9GBwcRDQaVSp8znXLWq8hJ+Ubj8dx/PhxFX1IESPHmOwRHTOuDZ1OB5FIpMcZ4w9FjLyXcrkcrl27hsXFRQBQx7mZ778bx/hmx9PhcKgt9pi2Y3BC9TYrOWQ/Ab/fr5wpWT7Ja8lxZlqQRpWBCw0l11vaj1qtphr+jI2NqcY6tCF6ox067/L+u5lrc7NjftfqVAGgVquh0Wj09PDUwcVOKoZJJReLRbWJbTqdVoXEbEe2urqqtnqiTB9Az+fRgNMQ05tiwTgb9cfjcYRCIRXFdLtdjI+PY//+/SgWizh37hxqtVoP5aHnI/hDx4ElO5IO3ule7q3A6XQimUwiGo0iGAxi//79iEQiiup3uVyYmprC+Pg44vG4ar6QSqVw8uRJ7Nu3T1HDdIJkcb/MjQK99c8ej0edg04VV6tVZDIZWJaF/fv3qzKp8fFxnDp1Cq1WC5VKRTllVKhTAV4qlTA3N6fYmd2I271PBwcH8fDDDyOVSmF4eBixWEwZSKBXb0GNhVx85RyWKRkuvtQxcPGjnkGmXfib88/v92NoaAhTU1NIp9PIZDI3lcfVqdGdPofJoElHlEZRal543d1uNyYmJjA4OKiuI4WcoVBIGdVAIKAYO8uy1Pqnb0oio2MaTAY9DGLknOb4sf6Y62wwGMTw8LDqPUAnS5ZmSci9doH1QJCBmlxHdGr8htfz1ofg5kCemz1cO50OVldXUSqVejwSucBJr4HGuNPpoNFooNlsYnV1VV2wlZUVlMtlzM/P49y5c2ogJHefTCY3Ne9nxDk0NKRoikgkouiDkZERBINBTE1NIZVKrV+k//9c6eEuLS3h61//OgqFgmqZyEUb2DCo7XZb5RNkkbtsNLHTJ+StwO12Y//+/ZiZmcHIyAi+67u+C5OTk2g0GiqvxQVSOkWTk5N497vfjWazqbxfllB5vd4eWoj3CrBB0/Je4sItF1cqTemMDQ8Pq4l17NgxDA0N9Sw2FMe1220sLCwgm83i6tWr+OIXv6iMqp7T3S24nXt1enoaP/ADP4DR0VG1pZvUKsh5Slqfn2mn3AQ2SrB4v8jyOEaq0hhLfYPP54NlWTh48CD8fj+uXr2Kq1evbilkktdhN22GQeeVBos7ygwMDKj2kSwlZHCQTCaVY8TrK8sX2Xij0+mgVCopgWk4HFYpHxpOXZQKoKfZCo2q7MRH9oE0Mpv8jI6Owul0qpwpy+V4P9CBiEajKmDjPVIsFnHt2jW1IxY1O8Ct3ft3vPevvNAykuunuJJqLOl9SlWfLhKS4PvpQekUM/OfUpVLioIOQDgcRjweV43VJe1kWVZPWYydekx+H75Hzx9sVS6yWyFpI0Ysw8PDPZEgPU8ufsD6PozJZBKdTqfHA6YnTYqH+VFGGzSaXERlrlzm4yqViqL+WNJlWZZaSGTEQ4U6DbnL5UKhUOhpMnAzFOJOBuezLjKxm89cKEOhEJLJJJLJJIAN4Zek3cncSGZB76wmowa5Tuifb5cb5GukgQ0Gg4jFYgiHw1uWcunnIKsSdnoah416ZNqLGoZwOKy6FXF+Op1ORKNRJfritaKYUNYHy9QfYN++VTIMdtdSpth0B4n3DR0CRs08Dz7PYIr3FZv8k/WicxcKhXqce8k03izuOP3LSBBY71yjc9jyb14YCdIHUtRECoK7ikh+nWrgZDKJVCqluPh2u418Po90Og0AKnKJxWJKieb1ejEwMKAWbXrPrGW9fPkyLly4gFwuh9nZWbW4SOECwZum0+mgUqnA7XYjl8up9oSkwXcbZM5RRhSkfiYmJnDs2DFEo1HUajUsLS2prlgAFO2k03XcCAHYKGeigEwqN6UogZOFRlVXYpMt0BXc/JtsixQvlUollEolZWwTiQQOHjyId7/73cjlcjh37hyef/55tcHDboPP58PJkydx+PDhHtV0IBBAJBKB0+lEo9FQkUIul0Oj0cD+/fvVBtPcbYiQOTVgY84AG06pjGT4mBxDne2QmyYwdyZ/yGywFtntdqt6ymg0ikQiodgvvp7iSW4JyH2bV1ZW7vIobC8ee+wxAFD0LcU/dDKSyaSK7OVPo9HooeilIyUrN3g/1Go1tcYzuiRkrpz/yzWUxpHjyfWeDrUcIz1S5efzWMC6fTp48CAcDodqP1sulzE1NYVqtQqv16s0HBcvXlQ9D24Gd9SoAlCbiANALBZTCxTVtxJSTCK9FylmYXMGNgmQ7+FFpox+cHBQ3QDtdlv1nuQAORwONBoNRCIRdcxUKqWES1Qhp9NpVKtV/OM//iP+9m//tkc5rJfK6L+5QDgcDuTzeWQyGQBQdMRug/REZXcbirVGR0dx7NgxAFDF23qOjNQMj8Ox7na7Sv3barXUJtQEx5k5eFKCsvGG7KTFcZa5HJk7ocCNCnbet5y48Xgc8Xgc0WgUExMTaLfb+MIXvoBXXnlF9aPebaBRfcc73gHLslS5XCKR6GktWa1WUS6Xce3aNRSLRbXRPEV+ZBY4T7xeL8LhMJzOjRpVfRHn/cTFVwqZGo2GKqELBAI9Pbrlgs3jcO3hGEYiEQSDQdTrdaWdoPqfBmFtbQ31eh3pdBpLS0uqleJON6rf+Z3fCWAjeqNRks1rZKqq01nfv5ZUOZ+XdeWSupWOLsdcRp+SuieDoa/rfEw6SXRcqfKV5Zn8XAYwzJPysUgkgunpaZX2Y2XBgQMHUK/XkUwmMTg4iFqthi9/+ct47rnnbvp63tE6VWDD0DFKYNTJnAqwdVcaaaT60T38W6pwZZkEB0F24OExut31beCYW6PBZH6sVCpheXkZlUpFed1ctCVtoKvDeJ6S3pDlRbJEY7eDDTq464zb7VY3OBXfstOW3fhK2oeQNJz0knkfyMkoF2f5Xr6Wnw9s1FjzvVLez0nMfIy+MPD3rQgbdgLYAjQejyORSKhtFxnNMdojhcge3lSIhsPhHnqv3/jK//WSM7u1QB9XuUboqm8eE0DPuNPBikajqhUq5zbr491udw+Dxe9M0d1OHmuyRDRYck3Tc4o6zS7nh5yjkp4FetkFOR/lc3p5iy5g4udJESjpWa6/nMf8LHnOupaCx2aUSwdMvk4K5W52vb5jRpW1p7wZKRZJpVKoVCooFAqqabksNZEnrhtbPS/L1+h5kmazibm5OSwvL/fcJOVyWRUc88K2Wi1cu3YNbrcbqVQKIyMjcDgcqutHOp3GxYsXVY2sZVm2JTJyQEhBUWhFeoJ0JQBlwHcLtnKMjh49ive+971IJpMYGRlRFGE+n0e5XEY4HEYqlerZbBjY8FBlobi+B66cgJwg+j0kJ5c02vSMud2cjHgAqEiW+flOp4NsNotsNqsMqSxkp36Agja5/+5OhsPhwPT0NF7/+tcrJfbIyAiazSay2axiC5ibdjg2RH1s6ylFInZbdEnhomQP5GJHx4YLqT73qDKlRoIGnnORbIXD4VBrj7znIpGIWpzp9DKqZh7R4XBgcHAQMzMzKBaLqrZ2J4/zlStX4HA4MDY2piohyBboYyYdFN773HaNoKAvEAioec5+7ZL9IQVvN0/kHKbx5NqvG30GTH6/X5VEcnylwbUsS50n53q73UY6nUaxWFTRL6Nbjj3P8zWnf0l/MRqxLAt+v1+pNQH0TAx9ktk9Jr0c+SX1CLHbXd8ElwuyLF+RpRWkmvL5PACo5hGWZWF+fh65XA7Ly8t45ZVXUCqV4Pf7lbcqt7ST5yI9KulJd7vdHhUy87y7CdLQycdYlD0wMKDuB+ZdyuWyYi9koT/Q691yQeWiKMdc3g/SA5b5E56LXBikB0wniRve02jy9bLFJFMQMlcD9G4MwQm9kxdbiUQigWPHjiGVSmF0dBSRSESNH0UgjNx5LUnlezwexdJQKKhDPiaZC0kT6mOu/y3FkbKDmjQAQK+4SN531FmQupalGcw3spNPKBRCsVjE0NAQEonEjo5Us9ksAKi9bBls0MBQj6AzMPJ+Z8mNTNl5PJ6eSBVAz+PyOX6unoLR13rJVOm0PgAltAI27AuZMfk+mV9nGkOuHRQiys5ur7lR5QWT3LaMDoANw2NnUG8GchGXA8Jj6+IT+R5+NqMQAMjn8zh//jwsa2Nrt3K5rGoh5WTVKRA72FFSMu+wW6AbKgBK7MCFlQ4VnQm9v7OMQJgXLRaLqgMOx4CtLMkIyC0EgY3ND3guNMSMUkjPMt9Dao95GW7EAKxrAMiyMH/PDlkOx7qQiQpkOgb8mzV0O10JTNGYZVkoFotwuVwqp02nkA6PXBh57ZlOkS0A9QVKpxhl7aFsACLZLP09Mp9GRae8L/VFlJCfIVkk5mfl/cXom057Pp9X4sOdDKp4Odb6Osp7WqdlgQ0dA7DRu1s6olz79WhUpl/6UfxyXdfXcrmWyrksc65SuSvvTflZ0jGQNDCFTnJHndfcqHIisPxF1mvKkgfJb0vcyOhsZTTlZNKPpfPrzItYloWlpSUsLi72DBKpQe4JqzcW0MVVdgMgB49e1E5fbCWkUeM1YmF9OBzG0NCQyj2VSqUesREXXKnKJPUyOzuLXC6nFOQsgaBsnnlZ2VlJ3g+kbdg+jbQyJ7SsaaWzND8/jzNnzgBYb1gQiUQQjUaxf/9+RWnF43E4HA7EYjHEYrGeVprcaYULyatpCn8vgSK+TqeD5eVl1Go11bVGGtVut9uTm5MqT5mfBDbnwjlWeo6NdD8dcrtcH7ARecgdb+hMAVAqTqpB5bnwc+U5cecpYKPHLXfRCgQCWFtbw9LSEtLpNGZnZ3Ht2rUdHamyHp81pLqxYftWsjiSPSDjxLWUzqcspeQ80K81nWr92ulrv+5Qcc0lk8Sx52cBUFEm70umjehsyVwpx7jZbKouTBQkko26J4wq0NusXEK2CCRuNnKz82rksfRj6q+XP5yk9LQbjYbaPUEaaVmrutUN0O876N7frXzfnQA7toFRG/NbktIj7G5SOelIvXHCsmWgfK1UieuOlHS8uMjrXraMkgEoow6sR8U+n68nyiK7wUlNWph5QHr1/M47HbJGu1qtKqdYF3ZIOk+mdXjtdFGfTu8Bm2tLb2YRk/eeHiXbGWkuynw9c3I8b65XXLPIQEgKmSwKHUTZJGAngs6mXSUDf2TZjP5d9evd7zk7IdJW102ut3brhhx7GfnaMRl256fbAnks+SOdsJvBHW/+QI+dk0vSfDdL/d7ogtodR5/AdguvfK1lWapWVb6HiXqev35xdRpLTlg+ZmfI+53LToXdDUtvVSoD5VZ86XQajUajJ//FqNLhcKgt/agm5fWiB0kj5nA4VJE5KXoAPd6ozONL+T09bio+x8fH1ZglEgklfJD9iJlXp0BDNpdIJpOq/WK9XkehULi7A7HNkDXmr7zyCkKhUA9rMDQ0hEgkomo8aaA4V8jMSHpW0nRAL+vDMaSja5eXluITmb+WzrqMivl+vlYyZHIt4nv8fr/a4pH3H5mQbreL69ev4x/+4R+QTqexsLCwow0qANUZiWVFDodjU3cwaQS5zsmx1VlDVndwCz5eW+prpD0ANq/XgH2AxLHUKXspPqTjRIdYX3PZB16uGVwHOKfZCCgYDGJmZkbdDzeDO2ZU5UWSoiWKGuwEJ8CNI7itjKp8r/x8acD7fSajIS7I0uORxcd67lAOtC7fl56xTmFJ0dVOh+5YABtGVXYwcjqdKs/qdDpVPlIaVblrUCqV6tk1yLIslEolVTMKQEWvvMeowgXQM5loQJnP5cRmDpa0MlWeTud6M3a/349yuYzFxUVF5fIzGIXL5hKpVAr79u1DKBRSudmdDBpV1mZ6vV4kEgn4fD4MDg5ifHxcdUkqFAo9Cyypdz0SleyAXAekY0W1tz4PgY0FlfcQxxvYWPy5aFerVbWQ83XSaJPek4JG3pcyQqPT1O12MTc3h6997WvI5XI9TSx2KtgOlF2SgPXqDbsoj79l6Yp0Zri2sok9nV/ORVL0kqrn+yTboa/v/GzJKkgaWoqouObKdYe/ZcMX2iJ5HOprwuGwKgPz+XzYt2/fTV/PO25U+1Gm/aJUnRbm6/mcfL/+PrvX9qMkOIj645Iy2gp23+tG6HfOuxV2ikEuVCy1opGloI3UGycGVYWywbZcuOVirH82Pw/YvKDLay+Ncrfb7aH6pXCKDT9kqQ0/gz/seyrLEXYy2LCFxoMq9mKxqBYd2YZUV0rK+WTHzOjjwOvP4/AxnSbmY7KmWEbJ+n2iO36SMZN0tX7f0KjK3zI1sRvU3blcDg6HQ3VQ4pjqKnl5vfi4/iONIiFZAF2YyMf4W0bCdukAO+pZ0r66UlgafhpQoLdLk1yb+J3JsgHo6VtwM7jjbQrlxZXlEroXImFnWPlaefPzgtnRBTIPJo9Lj8TuHPSJKakknb7lcfgjvTH5fnnudueyW6BfawoAGHVyQvLxSCSCqakpDA8Po1QqqV1iZJ0q6z+5zZ40uLzejGB57WXzBZnHo4jGbiGoVquYm5tTimXWKxaLRdVNh6UjwWBQ7c5hV28ZjUaxb98+tQ3Wq3G+7iWcPHkS3W4Xfr8f6XQa7XYbmUwGFy5cALB+vblxRS6Xg9PpVFEAhWd62kTOQ14b+Vpu8cXFUM/F8RgOh0OxBzR0+gKpN+PgwksRC7cNY7N3WX4lQREO1wLWce4Go/rlL38ZDocDb3vb2/CmN70Jfr8flUoF+Xxe5ZDpRMimPYTUI3CNlywVSw8pVtVTgjJCtTNw8vP0dZ/3C7UXUq1NRS9rz/m/TBdwPGWdLdNUsVgMzWYTL7/8sqoK+Rf/4l/c8HreMaNq56XrUcuN0M+w8redUZU0gp3hA/pTyLoikeesC2z6GVe+XhfD6O+zi5Z2G2jUZH0nPUNSKuzMw3aQnU4H5XIZ1WpV5eN4s3MDBf2e0FXgPD6vtTTo8nX6pKQn6nA4VHRWr9dRqVTUpOWEDIfDKg+j3zN+v181/5fb0u1UTExMwLLWN3Vm/9dqtYq1tTUMDw/D6dzYJoyLJw0WIwOOh25Y5XjITRHkGFGxC/RumM4fqfZkj24ZVYbD4R7Vtx7ZUCWqC5Lk/CZ1zHuZi/duUfBfvHgRDocDDz30kKKApQPBMeR3lmueXMNIu8s1U64Dcm2W9K1e5gRsMIF2QZMevPBz6YDplRl0CqQqXWe7ZKmjw+FQ9ciWZaFQKOD69es3vV7f8TpVPVq1MyY6ZStfawdecP3Cyw483ANQ9gSVnyV/8wagd8PHpaqR+R95Xnb0sV5krHvIMv9KanOnw86r5PXkj6SCCcrbQ6EQBgcH0Wq1EAqFlKGsVquwLEt1tJEdrPQFktBz9fqE1O9F6eDwM1dXVwFAqVwBKKqTJQP8rpJG5D0pu/fsdNBQRiIRjIyMKMOVz+d7OgnRCWIZmnSg5PWVC+PN3PtyztgxO3Lht8ux8b6RFQg0pjwPSV/rDrRcwNkBzW53rJ0M9rJOp9O4du2aEtkxvwhsKLr9fn8PxQr0zjGugdVqVc1fy7J6WB0aWqlf4XHsIn+5/nIdkXlx2cmMpXOBQADBYBButxuxWAz1el0xZ7wfaGRlcwvJbrFeOZ1Oq1LLm8Ed7f2rU6f9wnyJfgZLf16Cg0mvMxgMYnx8HKlUCisrK8hkMj2RiPwtBQrBYFBdYObNpFGW3qzd+fGm0L+39KakUEvetDsZ0tOTzossL+HCJRV7jETZopAUEduY5XI51Gq1nnIG3XjrKnJ9svcTPkhjKo0iJxAFK5ygQ0NDSkBjR2VyXCnGYtOKnQ5ufzc2Nob7778fpVIJZ8+excLCAkZGRlQumvczjZlkJ/RcF7BhVO1+gN4FWtKEQG+Uy8WQxfrScOuOMo/Dsil5j3Ks5WbcwIaoqdvtqhREuVzeVambTCYDp9OJy5cv46mnnkIsFoPf70c0GkWn01ENPGQ9No0S0JvXZCRbLpdRqVTg9XqRTCZV1Md5xuvNMWJESQGTnJ+6UJSOK6l9bp7A3tRsVxgMBhXLRFEhWSamGAAoBoJNXmisM5kMcrkcLl68iBdffPG1N6o67Wn3eL/3bEWN2lG4/J8TsNvdKPiXE10eQz8/SffKwmXpJW9l8GXUY/ecvmjYiTZ2EyQFK+k6YHOZERW/usPFhVIqhOWxefPrx7aj3+0iVT4vjSupYOm5SjrIzlDyvTy29MJ3OnhPszMWx5R0vHSiJDMh1aH97n057/T0ioT+fj3y1Z+Tx9CZMv2YclHX1wmeK51o2UBiN4EOYaVSQSaTQavVwvDwsFICS2ZQ9mjWWSMeh3/L+l3JFvCay12kpNiQTq6kaCUDAWykeehwc82mk8Q5SD0AO6NRLS5ZFHlMnle9XlftKuV2jzeDO07/yhpFqbSTUZycbNJDlYsd0NvXUX+/9GjYzWf//v1qVw1GsVyoV1dXUSqVeugl1qdxVw2fz4dCodBDH+sUFiNQ6TkDGxGbvJFkuzvZ5m0nQ44X0Os0SRbAjmol5I0tRUjMh8lImJ/JSSavoR516pQjj8/PkO3z5OSnuEruKWmX45GOkRQ8yFKbnY4vfOELcDgcPT1/uZUjDQ0jGckoSKMqDZeMLuU9QBGbfD2wse+xjIbsDKJsTsAohk6X3hKT4hnSmWRT7NYjLtatVkttssE9nXcbMpkMXnrpJSQSCQQCAYyOjqrtNqkRYJCiiwUdjo1+wWSZ0uk0gsEgUqmUeq0cV0aFZANkzlaOtzSwXGfoaFuWpfZDleVVtVpNdUeicadOQgqVZIqA94XL5cLc3Byee+455PP5W8qnAnfBqAIbxd2SHuVASEERL7pcgGm0APTc/JxQMpfCRs2BQADDw8PYt28fut0u7rvvPnS764XIlUoFlUoFL774IpaXl1WjbxpjblrMvq9OpxOrq6s9m9zqXq38fA4qy0P0HCo3Vpc3yE6FzhIAm3OquvJSRhR8rcy/Se+U24vJe0BCCg5oHKWRlAIInqsUScjOOXwPjSKNqt/vVykB+Toek/eCNKqkt3ZDTvXzn/88nE4nvuM7vgMPPvggAKgIhkaVLQul6pMLFl+nRxaSZeDzQO815WNcPO0cbb27lWVZ6hz4+bJRABd3Gmu24NP1EjwXt3t9R6pSqaR2KGI97m6CZa2L0WhUDx06pNY/GURwbsj7nnXbjE5rtRouXLiATCbT0woU2HA+ySQyMtQbeEhWUDZroYGU9e+yIxTXX0aZMmiiElg6T7zHaNx5P12/fh1PPvmk6vF8K7grrvSNqFy7v3VvVFJwuiKXCy8Hhx4LB4/9S4vForqI4XBYddHRW6npHrXd5zHytiyrR0ZOhaRd9B0KhZSXv9t2qdHHmAuSLtixo+4kDSiPJalj/TPkdddpY/4tI1o7Wk+PYvk4x5sRp+wKpefKJesi6W47KnEngouQbBnp8XhUYwy5gbsEr4G8/napAPm/LI/i+Oi5V6DXcZPHlO/pd9/Iz9SFdHzO7vXd7kZt6m6atxJU4bMTkbyunMOys5zUNfA5GkAyPjTMcuyczvWG99yeTR5P9oAGNhx2GlUpCJTGnqwVH5dby0lH3c4WybnK1zINxGj3VnDHjKq8oWU0II0MH+PrJZUqoz8qtoaGhpBKpXo8TXLowHoXkGKxqBoKVKtVjI6O4tixY/D7/bh+/Trm5uYQCoVQqVQQiURQq9VU/R13a5BJdwBKkcqcCtC7rRjPj4ozYN1T4o4qXJQHBwcVpfL888/v+BZncgz1BYyqu1Qq1UMXyhQAHR/JNkjmQsrwdQ9W/3z+1qkiuQDrESwnsDwXSSXq+6nK/A2/j05XMoqSOeDdgEwmg7Nnz8Lj8SAUCuHUqVMYGxtDOp3G2bNnlUhEOiUyQuV10+lfXj+Zq2buWq4NMqqwo+Dloqlfd925kUpfuReoXekcf1ifu7S01EP/Sudgp4NrYafTUSVuDodD0bTtdlttEyeFQuVyGS6XS6UCOp0OEokETp06pSoxdPV1LpdTdc2SqrcrryFk4wk90NHXH7vUju78MhACNtiQarWKbrerejvbOYw3wl0xqpIqkTe8Ts1JakeG58x7xGIxDAwMqMnASIjGMJPJqD0POch+vx+Tk5OIRCJoNpsoFArKwLlcLlQqFQDo6UEL9Er5WSrAAZfnRx6edEY0GgWwUWLA/Kzb7cbIyAgmJiZQr9fx8ssv7/hG3BL69yAtxNw0X8PrJyM6XVgkDR1pIWBzw3W7BY1GGejdN9OOdubzMscm84Fy8ZV7q8p7xE5AIWnv3QDLslCpVLCwsKDo0v379yMajaJcLmNpaUnt6KNTtxw/nQGSUQadED6m9/61M6D6PaDnZPuBn0+DYFdGIz+LizANDbcj1Gni3TDW1JxQHcvvyHufkSxTZdQacDxpVMnKJRIJlcfUtQ9y32Ku13LuAr11qXSY+LyMngmpp+gH3cmTjzOdQRqbbRZvFXe8TaGcTDI3pcvbaaD0C8kG7Myn8qLKlnayhyPLVAqFAkqlkpJ0B4NBzM3NYXFxUcm2Q6GQKpXhRGWXDTlppZetU1E08FxsKB2X4iWea7FYxNramqKRePzdCDpDrBuTztRWi5D0JGWOQ3fO5OcQNJBSJKdHs/xbLtj8LLtcnnxMP29pTHdTxGKHWq2GtbU1hEIhTExMIJVKIR6PY3h4WG08wPmsR3E67Wt3HeXr5CKqU8XA5lIpvtfu/qDRBHqdLJnHJfi//jrm+rjQ2nVr201ot9uYnZ3FU089hUgkgtHRURVtci7K/KQsiZEaB6A3Jwr0sg6yv7IUmvF1hBx3Od52TJB0ym9E/8t5DUDV1zIP/GrH+I7uUkNvn55nMplENBpVvRSbzSaKxeKmOlDSQU6nE4lEAgcOHIDf7+9pbcW6Uw6aw7G+q0g8Hke9Xsf169eRy+Vw9epVnD9/Hl6vV3kePp9P1bG6XC6USiW4XC7Vekx614xS+L/0pvj9uJuBbHHHm6XZbKoWd9VqVUnWZX53N8Lj8Shmgbua9FtUCd2YclPoVqu1KQrRJ400nna5VfkZhGwWoJ+ffK2kd/Xz1Q0C78XdNrZUvkYiEUxPT+O+++5DMpnE8ePHkUwme1Sx+jjJ3/zbLlfKyIHXut946PmxfowXKXwphCF0J00acymSpMPOfsf5fF41NditqNVq+PrXv46XX34ZMzMz+Ff/6l9h//79ANZTbLK0SK7VUlAoqwHk+EiHVbI/HGc59nx/v2PJe0qOOQM0HkvmVfmb810Gcs1mE5lMRt3L95xR1ekTUmyBQKCnnKQfTcaLzS4YFACxp6hsccX2dbFYTF0kbkUlKQ1e+FAohNHRURWJSKGC7sHK8+93nhxAOg8A1Ka3DseG1LzT6ajvLmu6diM42VhaciODSugMh6TopOjFzqjaRaU8F/m3NISSWrQzAJyoNzKSdsZ+N0WtnEe8Z8nOUEdA/QHHiLjRPb5VRKq/Th8XeeytmA+dadBfq4+dPK4s6+A16NdXfLeg2+0ik8moTRO4fupqfikMkkp8HsNubDhuck7JVIF0XnXHSb+35Jqtz2n9WPrr+Hn8DI4vq0PuyUiVXicpQNID7EpSr9fR7XYRj8eRTCbR7XZVYpgXkHmMbDar8qqMBGmkOp1Oj9CA3hJ/GAkDGzw8aw8pbFpeXlbREPOgpHK5M4nsG6lPukajoehOeYN4vV7UajVV68obqdtd7ziyW1WEAJQDRK+Wiy6je/4tDaKM8O2MmKRt+L/+vIyS7CaFjJL6lbzYGWE7OsluIZeRNr3x3bTgNptNvPLKK6jX60gmk7h27RoGBgYUFUzlqF4rrKuAdcjxl6yQnYNkxz5Y1sbWbpJuJB0tGQQpHtQFVPKYPC9GrIxgdpMWoh/oOJRKJVy8eFHNGa5zdmuXHmnaUfR2jBUfY/6Vn8NjSeGb/FzdYbMbw36ONqtELMvC6uoq6vU6MpkMzpw5g3w+j9nZ2Vfd2/muGFWWtJD2lBQqmzQAwOXLlzE3N4d2u60KyiuVCtLptKJs4/G4on/lThj8TBpTLuQ0aqSXKSpqt9uIx+Oo1WrI5XJKsZZMJntypMyxykhUp4iYH5UdSOSCmsvlkM1mN9GSuxkcFwoSGLXLom27HxmdykiS6BdpyMVWGr1+UatcAKSYqZ+htFtw7aJlyVToOoDdgEajgRdeeAEvv/wy4vE4zp07h1QqhYceegjvfOc74ff71eYDukGVhk2KjgjJNuh0Xb9IVo88+FquCbJGEtioF6c4Rqp/+0VWNKrlchnFYrFnN5zdOI8ZhbbbbeRyOZw7dw7lchlDQ0OYnJyE2+1Wa56Ezvboc0kXB/E9/GGwxUCJTCLL8rjuSqEjj2FXZiW/j/43WdNms4mVlRXMz89jaWkJ3/72t7G2tqby6K8Gd6VOlV+Qxk5/Tias5eOciBzASqWiGgLQ6MqJII21NIRer7fH++Uxq9WqarfGG4kXk0XtFCZI75efx0WAr280GqrFHZuxM/cgF4aboUF3OhixSbm8nbKPkFL5Vwt90e3nxPT7DP2cbiRCkt9JGhDpILAhyW4CaVBuyce2blsZGDuHZStW4dUaq34U/lbsg11Eo7+faSa5ycJW320nwe7ceR3Y+7dSqSglbL9r2e+4+m9dVGbHAkkHa6tj6ejHcMm/9THmuFJT82oUvxJ3tKE+0NtZqVAoIJ/Pw+1292zJpPP0ss6v2WxieXkZTqcTmUwGV69eVcdjfjQWi6kSGx6PuQAu7pa13iA5m82qOqlisaiO5XA4lPjJ7XajWCz2NNSXdU/8DKdzvYiZ+w5WKhWsra2p793tdlXdE+v7wuHwJpXpToWMNvRFkI3yR0ZGehTRstsNHSnZRg6AkuoTkrK1u2a6io+/ZQmUfK1O7UnY5c71KElSVXTI9IiK5VypVOrWL+w9Cn3ha7fbyOfzKs0iW8xJp5jXR94vdouqvI/6GTf+tltwCc75fs9LVblce6RwTW7bxxTPysoKFhcX0Wg0dp2j1A+tVks13A+FQlsqrOW49mN39DyqNMryPXYOGN/XzxHrp8+xW6ckVVytVpHNZlVq8nZxx9sUSk++Xq8jn88relUaQRlpSk690WioHr25XK5HteV0OhVdC0DtViAFToFAALFYTE1wLgJsYcXCfn4WsH7BaXDpodqJZOhx0UvnFkoEaSh+TiAQQDwe76GRdzIkPavf4HSc2BBAj+JkLgXYKOyWCvB+NJ8OeSz9fVzM5efaTUo5meUYbhXlsJ5N1sfxvm21WvD5fIjFYruCItSvK40QlbDsDytpOL6epU7yvfpYSPS7XnZGlQbRzgmzO75cO/QFWtYt6/nZVquFUql0yy3rdjo6nfU9jtlMRzeqvNZSXc00iK7ktYMda6DPY328aSsk7Ay4/FtXf8vjc99ku+/3anDHjCpzaNyGzeFw9Hh4pBVyuZzaaqtcLm+6ePLmly3jGJmynCUQCGBsbAwTExMolUrIZDIqauSC6/V6MTQ0pEp5WD4jJz8VbTK3o5+PnWesGxe+TnpJ3JibdZv9hDI7BdJh0uFwbOSV5bXQDZqclFzw5C4SugMjJ4/8/H4est15yajTLg8kz1Gf2HSwKKKr1Wo9Rp0iGLbUpKO3G0FDJNMjXLgkEwH0zhHdcZGQUSs/Q49a7dII8rddJGsXHZOet3s9z5epnRupQXey42Q3Lrp6V2pKpBhPZ9309buf4yRfI9cHziN9/uvjLD9Lvz+2ctQ41lLJLOfuduCOGdVyuQyHY7129NFHH4XH40EikcCVK1dQKBQwOzurlLmrq6uKSuXCyR/mRIH1fr1sJiD3zYvFYggGg3jd616HN77xjVhYWMCFCxfU8VkTOjg4iMnJSTQaDVy6dEmJhySdpTe5l4ZdGnhJZ0hHQe4jS9qZEXg8Hsfhw4eVSnin079beXUUGASDwZ7JavedqZTudjc6tchrLd8rjZxkQ/i3pP30hU5OYv6vP2/3m5GKZVnqfmJOkXs1RqNRVT7EPUiTySQGBwdv5lLe87DLf3a7XaWRYIMTSf/SaHELLvmcFInpeoN+uXA9OiX08bJLR/BcuaBSgEhDwfMjI0XFf71eV1UJO30DjBtBjovUBZBZZC9sij1ZYiV3ErJjfPSKCT6vO7NS3CkjTGlo+Xq71A2f6/cYWQjLstR9KbeM2y728I5vUs6ORj6fD6lUqoc+ITXKqFYq8XRjxhudr2F0ysH2+XyIx+Nq42Sfz6cuOhs3u91upfgl/SypO7vJqBtRO89LeuEANi0SBJtMk27ejgG8V6B/V3qd0iPcymOVlJxO5d6KEMRuDO0e4+fezGPyOO12G41GQ/1uNps94687g8wn7wbYfQ/On37lL5J6vxHsIg19MZbnor+u39jpc1MuxjIlYRdlcZxZabCbYRcRyghSDy50x7ffNZR5a7vcqPwtG+/0Ox8Z0Nzq99IjVbvc7u3ijqt/2d4sGo3i4MGDOHz4MBYWFlCv13Ht2jU0Gg3VL5L1ofLL6ZEHd8rgLu70PNjw+sqVK6jVanj00UcxNTWFbDaL2dlZNJtNtckyj8XBY05WRjz6xZaPETJKpaclB5+TMBAIqNzEuXPnVOnPbhE7UJAk63unp6cRjUbVJNKpFemBkjLlQsl2aNJ7tGMQ2F6S4H1AdabdIt+vvk7+rednZLMR1jl3u12lKue9SNpXeui7rU5VggIejk0oFEIoFOppksDSN+kk2+Xl5G8ddoZVZxvkbzvK2OHY0Gyw3IspKJb66J/ZbrcxNzeHq1ev4tKlSz2tRbeKincTuK7xXtY3AacDSaNq5+jYsRD9ghNdb9KPvbBz4vicfv52tbHSKeC6ofcN1pmZm8UdN6rVahXLy8vodDr4zu/8Tpw8eRIXLlzA/Pw8HA4H0uk0lpaW1CLFHqLyC0rRQK1WU+KicDjcs5Cura3h0qVLiEQieNvb3oZUKoUzZ87gySefRC6X27R/JhdJ0rHMn8gLrucNpYGVnhWwsYgCG8XTTqdT5dWKxSJefPFFVRJ0u9LtewEOhwODg4M4efIkwuGwakWZTCZ7RDp2QiJ5DWU9Z6vV6smby0hI96D1fDZrk/k/P8cuV6R/D92zlpOK76NRBaCcKJ6/7nTx8d2y6NpRqrJPKjeUYNN11nZWq9WeTan1fJ0dE6FfS9Ky/Sh9/i2Pyb9lVMS5Jx0vbqYhtynkenD16lU8/fTTWFlZUZtvcMwBbFqIdxvk/U2mkBSwLIWUOdWtqPmtYEcTy2P2S/nor5XQBWly7ZHUv94pSzrX/daMfrjjvX8pCmJ3IXqI8ksBm1vN8THpqVBIZLdjDMtX8vm8mij6LiVsRlCr1ZTgRA6O/E3PVj7O4xC618332b0W6FUSsynCTgaNSigUUj1+E4kEIpEIotFoD5XfD1tdT30y2eXU+nmm+sSWkU2/XIw0qvIxnbbSFxO7fDspM73YfbeB14XODLfK0q+LzF/qqQ+dCbKLYuQaYHc/2eXb7NIOLG+TbVL185DjzjWlVCpt6h28G2Hn4OjRHceS859iRH2e3KpmpF8Kzs6A9jOqdmAkLYWO/e7F7cAdm/GJRALAenT27W9/G6FQCI1GA/Pz80in01hbW9ukGmQRLrAhZafxtSxLFedaloV0Oq0mCAf12rVrWFxchN/vx8WLFxGJRJBOp3H58mVVi8SG9plMBtVqVdFzvCl0haAcaDnpbjQY+kSWUbdlWT0tDXcqhoeH4XQ6cezYMTz22GPKkDL5H41Ge6ghXgO54AGbDSv/l+IXSdvyuvExGY2QftaxFV1nR1kRfL2ed5eLjHwtH/P5fMrJ2O2wLAsLCwv4h3/4BwwMDODAgQOYmJiA0+lUNeTcBlDm2CXsIs4bfabd++zoX90JC4VC6r6ik09mhMwVdQ8rKys4c+aMagQDYJMjvVsg7295vbguUoTHrTYpICVLI4VekUhEdZiT0bzd2G41N7ei17c6JsGSR1lPDkBtgMLv0c+gvxrcMaPKC1oul7GwsKC4eHbm4C4A/KJcOOUm4KTbOCm4G7vD4UCpVFJiEO7jmM/nUavV4HK5MDs7q1qmcUecpaUlRUVzUvEm0D1d/abicxxAvT8tIyBpPKWqkAuxVD3aUR07CfF4HC6XCxMTE3jggQcQj8d7chPye9uJQwidauE11ql6vlYfGymIolJRh86A8Fg6dGeIn6s3UZeOFVMQTCcwmiUdupPH+GaRyWTwyiuvIJVKIZFIYHp6Gk7nesMACvQikYjSE8jSG/7utzhKJ4bQHTOdrtfHWL5frjmVSgX1er2n+5fcQSWXy2Fubs42etptkPNMny90GFkmxnknc6oMjlwuFwYGBpRDKdnJG805u3kqr7Udm7GVUW21Wj07C/GH34Oppu3EHTOq7I/JUoRut4t8Po+lpSU0m01ks1ll8BiV0qjKBVnmLLmwsYMLALWlGz+Te/xVKhV4PB5VoE/RhE4fU7RgF6Hwt51RpbjBLqrh8zL65U3J1+8GNWGlUoHL5UK5XEahUNiUj+y3UMqG+vzdb8IBvR60VBLK68pjcoMEYMPx6bdYyGPbjcWN2Ag7CioQCCAUCikqlE1GdjtqtRqWlpZQr9eRTqdVj28q/EkPy4hGpxq3Sp30e17eY9Jo2kEfSxnFyOYdpVIJ8/PzWF1dVemkvQqyepZlYW5uDufPn1f3NzcS0TcZdzjWtTLRaBTARoDUzwje7D3Q73X9wHlNx4n3IQDFRpRKJaysrCCXy22i+O3O4WZwx4xqNpsF0NuRZHZ2FsvLy8qA8nEaXtb9Ab1fhheQg1av17G4uIiVlZVNIhQZeeqLr/wsafxoVO1wqwPbj3aye91On6ysL56bm8OlS5eQSCQQi8UUzUeKmzc3qRbSRnr+EUBPnl1Cvx9kdMj3t1otnDlzBs8//zwsa104w967HHd5PE52lk3oHjFrovlduHAAUFFOo9HoeZ5NxxuNBpaXl7GwsHBHrv29hpWVFZTLZUQiEYyMjGBoaKincxo30+gHfT7YzQ3p6EpGo19O1o7O5OtkSkLeQ5Zl4dKlS3jllVeQzWZx+fJl9T67dMVug+58VqtVXLx4ER6PB6urqyq9xoYYFI1SaMj3s5ZVHxuiX05dvu5GUamMZHXHVTrS/J+BVafTUT0OqtUqnn76aVy4cEE19Nfff6vjfUc7KklY1nrhPLdhswMjyBuBoqTtwG6eIHcajDwqlQoKhYKKGGVhNWuBZVMMPUIhSOPeDB0jJ5ScdIVCAfPz87AsC+FwWO1IpJcw0ah2u12Vy5f3nsvlQjgcht/vV1Su3F2n0+mgWCyqvDwNOBuTyL0Z9wKYc2w0GsrrZ/25ZITsxt7O+PWL7u2MpN3CrTvafC+fsxNL0WlaXV3FlStXlEBJx05P2/SD3Xdqt9uKhZL3OTcLYTtSalM4h2RpzI0YH46VPi5blTXK+8AuZ0sqmp/vcrnQbDZRLpd7jGqtVlPMys1cj5vB7pYmGtxxkBb66le/qpL/gUCgZwKy1Mjh2NzgA4CKaCgWYf/fm4HT6VRdb+r1Op577jm88MIL6Ha7qiRHFzoRZDC44OuRKt/P85dKdTIm3LSBEW08HsfAwAA6nQ4uXbqExcXF273EOwqtVgvnzp1Ti7CM8PXeq8DWjRn6oZ9RvRHbJI2q/M330ljOz8/j6tWrqNfrPUEAHYLdaFBvBMta723OzU2k0eIYy/GTxtHOSbYbq36KYWlc+Vt3wHRnjfP6/2PvzYPsuuo78c99+771603dai3WYlmLW3jFYbGxIUAYQyA1DAwJIXFVCCGEMAFmkl+WYsgEgmcKmCRjAkyoCkmNQyYYTwJJcALBYINX2bJsS5bktpZW72/ft98fXZ/T33f6vu6W9KTezqeqq7vfu/e+++4557t8vsvRmUxWhbAkiD2duwmrdYVmyEqFosH69ZY5xvTQJO3OTEHuzsNMYJnGzh+fz4doNKrO8fv9i+KzhIytUpHNzs7ilVdeQaFQwCuvvIKxsbE2D3a559uJil8uGYLn6bFhLmIZN1+v5VOXso5pOHXKU5DXXUtzX3rVzN/Qt3xcCmvpu1wMVjrG9Pou9vxu6IKVhueWg90cvJhGPCv5POOpGlw2GKuWYIzT5XKpRBAmDum9PJmF53K5UCgUEAgEFhVtE3ZKdW5uDjMzMygWi8hkMiopwWB1sBFqsA0Wg3FJg6VhlKrBFQHpUcuabwDCbfHsvD+5m41sTbiUdSpjNaR/6/W66uZjYGBgsBow9O8awEanjQzMGG8GmDHe+FjJGK/vlj4GBgYGBgZrCFfMUzUwMDAwMNhsMJ6qgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXsCaU6ujoKHK5nO17N954I77//e8ve40vfvGLOHDgAA4ePIhDhw7h61//unrva1/7GqLRKEZHRzE6Ooo77rhDvffNb34Thw4dwujoKK677jr8zu/8DlqtFgDg8ccfx2233YZAIIB3vOMdiz7z3/7t33DTTTdh//79uO666/Doo49e3Bc3MDAwMNhQcK32DQDAkSNHLvsa+/fvx49+9CNEo1GcPXsWhw8fxqtf/Wpcc801AIA77rgDDzzwwKLz7rrrLrz97W+Hw+FAtVrFa17zGtx444342Z/9WQwODuLzn/88nn76aXznO99pO298fBzvf//78Z3vfAf79u1DpVJBqVS67O9hYGBgYLB+sSY8VcuykE6nAQCPPPIIRkdHceDAAXzgAx9AvV5f0TXuvPNORKNRAMDWrVsxMDCAs2fPLnteOByGwzH/GMrlMiqVCizLAgAMDw/j5ptvhtfrXXTen/3Zn+G9730v9u3bBwDwer2IxWIrulcDAwMDg42JNaFUiWq1ine/+92499578dxzz+E973kPnnnmGfX+fffdh9/7vd9b9joPPfQQUqkUbrrpJvXaD3/4Q4yOjuK2227DN77xjbbjH3nkERw8eBB9fX14wxvegLe//e3Lfsbzzz+PUqmEu+66C6Ojo/j1X/91FAqFi/i2BgYGBgYbDWtKqb744otwuVy46667AABvetObsHPnTvX+Bz/4QXzqU59a8hpHjx7FBz7wAdx///0IBoMAgLe97W04c+YMjhw5gq9+9av42Mc+hh//+MfqnNtuuw1Hjx7F2bNn8eSTT+Lhhx9e9l7r9Tp+8IMf4Bvf+AYef/xxpFIp/P7v//6lfG0DAwMDgw2CNaVU7UAqdiV4/vnn8ba3vQ3/+3//b7zmNa9RryeTSQQCAQDAvn378Na3vhU/+tGPFp3f29uLt771rYs8WTuMjIzgZ37mZxCPx+F2u/Ge97ynTVEbGBgYGGw+rCmleu2116Jer+N73/segHka99SpUys694UXXsBb3/pW/Pmf/zne+MY3tr13/vx59ffk5CT+9V//FYcPHwYw7x03m00AQC6Xwz/8wz/g0KFDy37ee9/7Xnzve99DpVIBAHznO9/B9ddfv6J7NTAwMDDYmFgT2b+Ex+PB/fffjw996ENoNBq46aab2hTVfffdh/HxcVsK+CMf+QgymQw++clP4pOf/CQA4LOf/Sx++qd/Gn/6p3+Kb33rW3C73Wg2m/jN3/xNvOENbwAA3H///bj//vvhdrvRaDTwcz/3c7jnnnsAAMePH8edd96JYrGIUqmE4eFh/PZv/zY+9KEP4bbbbsPdd9+Nw4cPw+l0Yv/+/bjvvvuuwlMyMDAwMFirsFosyjQwMDAwMDC4LKwp+tfAwMDAwGA9wyhVAwMDAwODLmHNK9UnnngCb3nLW7Bjxw7ccMMNOHz4MD796U+r92+//XbbTklLQbYtvP7663Ho0CF861vf6vKdGxgYGBhsNqxppXr06FG8+c1vxq/92q/h5ZdfxpNPPol/+Zd/QTabvexr33HHHThy5AieeeYZ/Pmf/7lKTjIwMDAwMLhUrGml+tnPfhb33HMP3va2t6nXEokE/viP/7irn5NOpxGPx9X/v/Vbv4WbbroJo6OjeN3rXofjx4+r9771rW9h3759uP766/HJT34SyWQSY2NjXb0fAwMDA4P1iTWtVJ966inccsstl3Tugw8+uKT3+b3vfQ+jo6PYs2cP3vWud+F//I//od775Cc/iccffxxHjhzBhz70IfzGb/wGAGBqagq/9Eu/hG9+85t45plncO2112J2dvaS7s/AwMDAYONhTStVHR//+McxOjqKoaEhHDt2bMlj7777bnzlK1/p+D7p3xMnTuAnP/kJ7rnnHoyPjwMAvvvd7+LVr341Dhw4gE996lNqF50f//jHOHToEK699loAwPvf/354PJ7ufDkDAwMDg3WPNa1UDx8+jMcee0z9/7nPfQ5HjhyB2+1GrVbr2uccOHAAIyMj+NGPfoQzZ87gwx/+ML7+9a/jueeew//5P/8H5XK5a59lYGBgYLBxsaaV6ic+8Ql8+ctfxre//W31WrVaXfF2cCvFuXPn8NJLL2HPnj3IZDJwu90YHBxEq9XCn/zJn6jjbr31Vjz77LMqxvr1r38d1Wq1q/diYGBgYLB+sabaFOq4/vrr8e1vfxu/+7u/i1/7tV9Db28v3G43fvVXfxV79uxRx91zzz348Ic/rP7/xje+genpaTz44IMdKWDGVAGgVqvhv/23/6ZaIv6H//AfsH//fvT09OAd73iHOqevrw9f+cpX8I53vANerxdvfOMbEQqFzD6qBgYGBgYATJvCi0Yul0M4HAYAPPDAA/gv/+W/4IUXXljluzIwMDAwWAtY057qWsT//J//E/fffz8ajQYikQj+6q/+arVvycDAwMBgjcB4qgYGBgYGBl3Cmk5UMjAwMDAwWE8wStXAwMDAwKBLMErVwMDAwMCgSzBK1cDAwMDAoEswStXAwMDAwKBLuGIlNZZlXZFj1wsuJql6vSZgr4VxW+k9rPYzXu3Pv1SshTFeLzBjvPGxkjFe9TrVRCKBgYEBeDweuFwueDweWJYFl8ulBnupL2JZlu2kcDgcbccsdSwhP4d/t1otNJtN9Tr/bjQaaLVaaLVa6u9Go4F6vY5arYYLFy4glUqt5BEYLAHLsmzH3+fzYXh4GLFYDB6PB36/Hw6HY9G4tVotZLNZjI+Po1KpoFwuo1QqXe2vYWBgsEmw6kq1r68Pt9xyC8LhMILBIAKBANxuN7xeL1wul1JcANr+poLkD5Wo/rp+jFS2dsKanyF/pNKkoK5Wq21KtNlsolKpoFQqIZ/P49FHHzVK9TKx1FgFg0GMjo7immuuQSgUQm9vLzwejxqfVqulxuX06dNqPGZnZ1Eul9etV2FgYLC2sSpKVSq6YDCInp4eRCIRhMNhBAIBOJ1OeL1eOJ1OAAsCVXqMwLzQtVOo8j1dqS7nqcrP0pVqs9lUzfypVBuNBmq1GhqNhlKqbrcbfr8fTqdzkadrcOmwLAsejwcejwfhcBjhcBihUEh5qTyGcLvdaLVaCAaDiEajaLVaaoykMSSvb5StgYHB5WBVlKrT6VQe6TXXXIPXvva1SCQS8Hg8cLvdHc/TBZ6kdXVcbJxAv7addywpRem1SuVbr9cxNzeHl19+GefOnUOtVkOhUOj6zjobGXa0v8PhgNvtxujoKK677joEAgH09PTA7Xbj/PnzePjhh1EqldQ5Ho8Hvb29CIVC8Pl8eM1rXgOHw4GxsTGcPn0ahUIBp06dwvT0dNtnGsVqYGBwOVgVpepwOOD3++H3+zE0NITrr78evb29yqNsNpvK+9OVYyeBt9Truve5kvOAxYrZTrlalqU8ar43PT2NwcFBRCIRlEolE8O7CEi2gV4kWQaPx4Pdu3fjDW94AwAgnU6jUqlgbm4OjzzyCGZnZ9V1AoEA9u7di76+PuzZswejo6OIRqPo7e1FMBjE7OwspqenlVLV78EoVgMDg0vBqihVehGRSAQ+nw/ZbBZOpxM+nw8ej6ctZgks7XVKpcn/5TmdEo30a+iQn2mnXPlDI8CyLNTrddTrdZTLZXi9XsTjcXg8HtRqNVQqFfXbCOyLA0MEwWAQPp8PhUIBtVoNk5OTyGazmJqaQrVabRvber2OfD4Pt9uNiYkJvPTSS8rI6e3thcvlQiwWQzgcRr1eX3S+UawGBlcXHo8HwWAQTqcTTqdThXQoa+v1OkqlkgrDrVX2b1WUaiQSwY033oiRkREkEgm8+OKL8Pl8GBwcRDKZVEk/VKr0BKVy65SduxR0Baxfi3/rClWP1UrIz87n88hmsygUCohEIti/fz9yuRwuXLiAUqmEmZkZTExMqO9l0BlyTIaHh/H6178ekUgEAHDy5Elks1k8++yzmJiYQLFYRKFQaDu/Wq3i3LlzmJqawpkzZ3D06FEEAgG84Q1vwF133YVcLoepqSnUajVks1lMTEygXC63xd3tmA0DA4NLg5SjdrI4Ho9j7969KmE1EAiohMNGo4F0Oo2zZ8+iVCohm80ik8mseH2upJKkW1g1T7W/vx9bt25Fq9XC3NwcXC4XgsEgQqEQWq0WyuUy6vV6W8au3aDoVCyP0yGVsB3k+7pS5efr2cP6fRSLRWSzWZTLZbjdbiQSCbjdbpTLZXg8HhQKBVMTtgLoYxQKhbBt2zZEo1FcuHABExMTmJ2dxblz53Du3DnbazSbTRQKBRQKBaRSKYyPj8Pr9eKmm25CX18fgsEgEokEYrEYms2mbQmWgYFBd9FJuVmWBZ/Ph56eHkSjUZWECADlchnNZhNutxvpdBqWZaFcLq+YTaLeuFoG8lVVqm63W2X20p3P5/NKqZKWk9m2wOIyGQmdipUZwRdjnUhlKhW1PJ/JMvSka7UaXC4XvF4vLMtCo9FANptFPp/HuXPncObMGRUL9Hg8yGQycDqd6vsZLEBSPcA8OxEMBlWmL9mKmZkZvPTSS8jn86hUKmo87Lx/zgE5nnNzczh58iQajQZisRj27duHM2fO4Pz58ygWiwAWqF9DARsYXB6k3JbeKXWB3+9X9eaJRAIjIyPweDzI5/MYHx9fdM7BgwfRarUwOzuL2dlZFItFnDlzBnNzc4s+d7Vw1ZSqZVnwer3w+Xzw+XwAgFqthunpaZw4cQJOpxPXXHONavrAbFoAbQpS9yJ1pep0OmFZFtxu9yJB3Ukpy+vxmrJkhkrQ6/XC6/Wi0Wggn8+jUCjA7/cjFArB7XajXq9jdnYWqVQKL774Il588UUkk0kcPHgQ0WgUqVRKGQ1GsS5AGkHMqna73Sp7N5lMKuU5Pj6Op59+GvV6XZXY1Ov1RVQt54LD4VDvNZtNXLhwAU8++SQCgQB6e3uxbds2BAIBPPPMM211xcZbNTC4PFCech1S7gHzbCXX4O23345rrrlGMYGNRgPPPfccTp48qeSu0+nE9u3bcdtttyESiSilOj09jX/+539epFSBxYb61cJV9VSl0pMF+pVKRTV6kF1xJC1nRxfoSUm6N7sSj0N/z+5/3hMVPWtTed9SKVB4sx6yUqm0edy6oDewN3ZIB4VCIcVssBa4WCyi2WyqxbZSBciwQjqdRrPZRG9vb1ttdKd7M+NkYHBxWG5Ner3etjpzn8+nqj5qtRrK5TIKhYJa9y6XC9VqVekIr9eLUCiESqUCv98Pr9erEpikXliNtXtVPVWZ1cWMS2D+AbvdbgQCAYTDYVQqFeW16K3ndK/T5XIpgShjntIq0mOuvJb8La8pz2Gs1+FwqKSjarWK2dlZ5PN5JBIJ9PT0wOv1wu/3o6enBwDg9/vhcrlQr9cxPT2NYrGIcrmMaDQKv9+PXC6n6EaDecjx8Xq92Lp1K4aGhhAIBJBKpRRDIGPpnRYOF6OkflutFiYnJ3Hs2DH09PRgeHgY0WgUgUCgzXjjvDHK1MDg0iCdGVnTD8zTuLt378b1118Ph8OBubk5zMzMoFgsIpVKoVKpYHp6GlNTUwCgdEYmk8H09DQCgQC2bNmCLVu2AAC2b98Oj8eDubk5vPLKKyiVSm0O1tV2YFbFU6WLX6vVAMxTAVRKgUBACVepVKUXqHujbrd7URKTpFh1qlUq505KlZ6n0+lUMb10Oo2pqSmUy2XMzc0hl8upUhpgXhFEo1HU63X4fD4VP+Wx9Xod4XAY1WpVeVwG89DpfY/Hg4GBAezcuVMlgOk1v5L6t4NUpvx/dnYW1WoV2WwW9XpdWcqdshINDWxgcGnoJGNdLhe2b9+OV7/61cjlcnj44Ydx+vRppNNpnD9/XpUd6ueNj4/j+eefh9vtxm233YZYLAaHw4EtW7YgFovh7NmzmJiYaFOqq4GrqlQdDodSqnrMVNKnSwnKpR6U3lpQNr1fiaWi07ROpxPNZhPVahWWZSGbzWJmZgb1eh1utxs9PT0Ih8OKzpWf73K5VDBeJjpxwwA9i3gjYrlJrRs68jefldfrRaVSUYaIpHcu5fMbjQaq1Srq9XqbsSXn5XLXXyouv1mhJ+xxLTDebbC5oLN+wDx7F4lE4Pf74fF4VCkcWTtm+dqtQSkf6vW6KoNzuVxwuVwIBALw+Xwd5eqG9FSZqMSMTtK/rVZLCU8AqqiXSlGPWXYql2F8lgtaNo9g3E33cOVvDla9XlcZyh6PB41GA7Ozs6jVajhx4gQee+wx+Hw+vPa1r8XevXvhdDrhcrkWCX6v14tIJKLum96rz+dDrVazDaxvJMj4Of+X0DOsufCkkotEIujp6UGxWEQmk1kRZa4zFnyNf3NehEIh9TfZDo4NGRS7a8oYu4mLLyAajWJwcBAulwvFYhGVSgWVSkXReQabC3RKpGHV39+PG2+8UeUxnD59GqlUCmfOnMHZs2eVketyuZSTArTLaK67U6dOYWZmBtFoFLfccgt27NiBbDYLl8vVduzFOFXdwlX1VJ1OJ9xut/ri9Do4AAAWeXzA4gQkHVIwcwCpmPUa007XkJQz/3c6najX60pIzM3NYWJiAuFwGF6vF4ODg+p9qdD5nTwez6LvT1q4U2LMRgHHy67GGFi+ZSQ9VZ/Pp5IU2Ai/0zl296Afo2+CQDA2r5fmyFi8nId6icBmh8fjQSwWU55DsVhUa8hg80Ean0QoFMLWrVsRiUSQyWSQSqUwNzenDGaHwwGXy9UW8pPXAxaUZTqdRjqdRk9PD+r1uuq2Zrez1YbN/uUCY1KSpH/dbrdStlR+3P6N+6zq1JwUfjIgrnunUpku5ekC83t0cneZQCAAr9eL6elpPP7440ilUqjX6zh06BBCoRDC4bBqmcUJINtn8TWZTEWP9WIozPUK3ZOze+5LKVaZQV2v19sUrH59u5piu2tKOBwORCIRJJNJJBIJtUtSPp9XDIp+PjMPpVe90cdxKbCkyel0YnBwEAcPHoTP51NU3tzcHJ555hlMTk4CuDwhx3Hm3xcTAtANPLsmLhToutFkZ+TXajWVZLlZsRIHR4bfgHnDletsYmICZ86cUbkSPLfTGOtyRP7v8/kQDAZVFjEziTuVLdqxlPrnXA6uOv1LZcX0ab7u9/tVbanL5YLf70ej0VDK1bIs1Gq1Nk/Ujn9nGQ69Yn62XakM0D54wWBQJSVRCc7MzOBb3/oWXnnlFbzlLW/BO9/5TgQCAXg8njbrivFX0l5MqCLfTyqEpTgbrVWhPkGl0XQpaDQaKBQKKqGILcsYJgDQsffnShaGy+VCMpnEyMgIzp8/j97eXmSzWTSbTZVhbHfNjTZulwNpfO7atQtveMMbEI1GVWOUV155BbOzs22lEYD9DlCdIONyNEbJCMlrLXWPVKI0zulNS5nA7RqlAQxAdXbj57ZaLeTz+U0bK9ZZG/maNG71jF9g3mlJJpOIRCJ48skn8eyzz6JcLquQDqnipT5br+Bgk5hYLIZYLIZIJIJ8Po9SqYRarbZI5uthHF6Hv7sR0lnVOlUqHk58ens81o6ulbw6j7Wb3MtRxp3ujZQtY6P5fF41enA6nYjH4/D7/UrB69CtI6ngec5m8HAYp7SbuPy93N/8n51X2BRCp4Uu9llybjGZjDF9r9erPGF5rB2NbTe/KHj1mOxGBQWaz+dDJBJBNBpFLBZTcelcLodoNIpoNNrW9Wqp8ZbQwwVUZMutfXk+ZQvXoFSqEmxGYKdUKZz5+TT4NsM6tsNyITSCz4Zy3OVyqe09G40GisViW+7LctApYfm5NJy4lpdbg5crQ5bCVY+pSq+uXq+rrEEW+JNakUqLAo2v6/FWuQerpF35/3LBah7P+0un0/inf/onHD16FPV6HXv27MGePXtw/fXXo6+vDy6XSyVg2Cl/OZncbreKwTJ2QOt3I0F/ttFoFAcOHEBPT0+bQGRDDLmomLQmO1U5HA7V/IGNtpn48txzz6lx51ySxoycAzTU9FADKSKOYW9vryrZmZiYUF6xy+WCz+dDLBZTjEooFILL5VIJF5L2P336NF544YUNTw9aloVkMom77roLIyMjGBkZUc+FGe5OpxPvfOc7MTs72zYG+l7EOuwYJT2T385TtVOwsjTO4/G0MUtyzVIgUziTWeK91ut15YEfOXIEjzzyiMq12CxGFLAgT6UisqNRCbfbjVgsBp/Ph97eXsXyXUoorFPojvLD6/VieHgYPp8P586dQz6fb1PY8nM6bSu67uhfWotMCGHvXAo6YEFxyvgovzzfAxYUrVwgurIF2l16fUECaKN6uZiKxSK++93v4u///u+xb98+3H333RgaGsK1116LZDKJVquFXC7XRhXoHZV4D2we4fP5kM/nUS6XN6RS1RGJRHD48GHs2LGjjfJOp9Oqb+/s7CzK5TIqlYrazo1egFSqvb292LFjB+r1On7yk5+ouCbnDctkpKCVrIgU4lSScotBMhDlchmTk5NKGTOOG4lEsG3bNgSDQcTjcSSTSXg8HgwODiIej6vt/qrVKlwuF06ePLmhlSqfTzwex2te8xpVxM/nzZKJWCyGkZGRNsOGQpDreKUxcN0w7hQHszOgpVKVnqtOX/I335cga0Uj7PnnnweATcVMSKw0DulyuRSDQeUqlerFhlPswjJUqm63G4ODgwgGgygWizh//rxt4uFK7vtycFU9VZ26kYqMliEXn4ybSApRTvylsnntFh/vQYIZuQ6HA+l0GtPT0xgfH0epVFKUUE9PD3p7e+H1elEsFtVAdgqk65SnXp+7USijlVioyWSyTamyvVi1WkUgEFA0O39TaQ0MDCAejy+iZJPJJHbv3o1Go4FAIKB6LtdqtUVjK5Oa+D7pp8HBQfh8PlVCxVjgli1bVBvDWCymdk7q6+uDz+dTAsLj8SAejyMSiajvVavVFIW40cZa1l0nEgmEw2Hs3LkToVCoLXNfz/jU6XNd6dl5l50oXTulaidk7YxrGWJaiczQm8zwGmQ5AoEAqtUqyuVyW0OSzQI7Zs4ODodDrSGWU8ofABflreqfSceFYZxAIKASG+3upVNcnTK9XC5fdt7EVVOqnKi1Wq3NM6TnwAQU1nuSimNZi6RoZdYhlbC+EPX/Owk4v9+PgYEBWJaF//f//h8eeOABFAoFZDIZ7NixA/v27cPNN9+MkZER5PN5nDp1yjYmRIVPz5nUEWOCjAXqBsN6ht3C4jiFw2Hs27cPr3rVq5RSJd1KC1UqukAgAACYm5tDNptVW+cxNMD9Um+55RYMDw/D4XAoKqnRaKiFKTM7JYPBsaBn7Pf7sWXLFhQKBXi9Xlx77bXYvn07rr32Wrz2ta+Fy+XC0NAQEolEG/sgDSSfz9eWyV6v1/HCCy/A7/crWnCjJDbRsIhEIrjzzjtxww03wOfzKU+da8DOSNZDMnxWQOcM8E4eaaf3dOjv0fDSvVL+rRsCMlNYvg7MhzauueYazM3NqUYEmw1yjJdqskNGZ2hoCMPDw0gkEnC5XIjH46oGPZfLraiW2W68KQfYXalSqSAajeLs2bOLMrw9Ho9qKRuLxdDT06MSYJvNJtLpNE6dOoV8Pn9Zz2ZVPFX5cPTEAbkzjL5YZSMIWetpZ+lIRbcUXC4XQqEQLMvCxMQEfvjDH6Jer6sN1JPJpOozOTY2hlQqhWazqQS6/CxgcfMBWrzSUt8IChWwD/Dzu3o8HvT29mLLli1tnqpkKoD55xEKhZBIJFR/T7Z0JCVMqgiAWpzMqqZSld25pNEmLdFms4lcLodcLgcAqtmD0+lEX18f6vU6+vv7lee5Y8cO9Pb2olqtIpPJ2IYl5FizXk7WvG4UpcpmJj09Pdi/fz9e97rXoVarKQpfD69wnbM8iQYn0N75TJ8PQOdyCvkZ+vsrSUhcbiz0NSx/mB/Ras3H2uPxOJrNZls2+maBdIhkWRuwWPGxzStZHdbps3yx2Wwqg/lS74VhGraBZcN9fU6wqiQYDKKnpwdbtmyBw+FQ3qnD4cCZM2eW/KyV4KpvUs4FIbPxdI9HKlHp5dF1l96Hnrqtx1blIHMBs0bR5/OhVCrh8ccfR6FQwEsvvYRqtQq/348DBw4o76XZbCqhynIgAMqDlkKW9CLjSLwHndbeKLSghGVZyrP0+/1t8Q5Z06t/dzYKsCwLuVxOlbTIBh40SugBOhwOFQ8F2jsxcY7wPDkX5PnSY5KJS6VSCY1GQ3kgMpGK4yiVtmRQGIPl+es93sbv6Pf70dvbi0QiAcuyVBKIZAhk+QqNSW7zyGQfXlPvfMO/+dvO8LQ7zs6ok7/luTolzL/tZIakp/k/4/axWAzXXXcdCoUCYrEY9uzZc0nPdj1Ayt1kMomhoSEl46RTASwkogJAPp9HsVhEJBLB8PAwenp6EAqF1Hxi8p/T6WyrVb2Y+wIWwoCS9Wy1Wti6dSte9apXqfFinJ+GeCQSUXOZazscDqvOTuyOZzdnlsOqeKrAQnyCcRpdOJInp3WhxzfkDiQrTfrhsVJAPPXUU/jbv/1bnDt3DidOnEC5XEZPTw/uuusu/MzP/Azq9TpKpRImJydRqVRUtifrUWm5UrCw+Fi2spM/neJ/GwGWZSEUCqkCb9KtpHjs4lQAUCqVkMlk0Gq1VHYwsEAxSUqdLQsBKKNMxtd1parH9Pj8pcIlW0FPmYlkU1NTmJ2dVV6KLnz5WbJpSTAYVBnitVrtsqzwtQCyQ7FYDNu3b1eCkG02qVTdbjeCwWCbwSuTwjiurVZL9WkF7BP8APuYqR7D70Q5Sg9TXk+nouUcARYUKEMTVKTMUqVH09/fj+3btwOASl7aCNCZFzo/VEj79+/HG9/4RkQiEdXEh2uDx4XDYTSbTZw9exbj4+Oq3ajH40EikVDrOBwOY2BgAD6fDzMzMxdNoXOty53PPB4PgsGg2sx869at8Hq92Lt3r2LMCoWCyqPgHs10dl566SWcOXNG5dfMzMysmAWRWBVPFVi6jlR6GVJI6tfQrcvlvrwudAGojM/x8XEVXwsGg0gkEujv70cul0OhUFAxQZkVqC9qed+dBEUnQbARQKuWCw5Am3enU+GEpAJZ48ix0q8vjSiOuVR6ZCL0seBn6vEfjoM+1+gpcwHyGnZCXs/2pmG1EVr0yRpDPp9qtbqo8Ymk3e1oVpmhTcp0qUTDy0Wn2Cl/y7+lZ93pNWDBKWCZHJmZjZ7pzdrPcDiMvr4+RKNR5a1SmdH5iUajaLVabT20JdPE9WdZlvJ2mfgloXuI+thxjLhto5S1lmWphEG/369CRtxLmRuk8Jos9wuHw8qAoDF5KViVXWrofXBjcqapA1DCkdSCHoukIJTbui0HLo5oNIpwOIxarYaTJ08il8vh2WefxalTpzA9PY2RkRG89rWvRX9/P5LJpKIimdwiBQeTVOR+rrxP+ZvnyNKfTsbEeofD4VCN1ZktK704HiMzYzt5JDLWLp8xO9/IRSRpR+l9SKEtf/OeJFMiBSPZCOnZAGjztHXDj2NLusvv92N2dla16FuvIEuUy+Vw7Ngx+Hw+nDlzBrFYDH19fbjlllswMDCgniWNIRo/k5OTqNVqmJmZwfnz59FsNrFz505s3bq1LXENWGws6wapXosM2NNyci5IlkM3ZPW4LGUJQxjAgsEkDYhSqaT6fZ8/fx4zMzMAgOuvv/7yH/gag9/vx7Zt2xCPxzEyMrKoNlsyQHKTlEqlArfbjVKphPHxceTzeSSTSVUuNzc3h2q1imAwiDvvvFMxF3YOE9c+E+OcTqfKuqaBc/bsWdRqNRVmCofD6OnpUdctFAool8vI5/PKaNcVNUvr+vv7UavVMD093WYErBSrtvWbpHxJxwFoE3iEjG902iO1E7g4HQ4HwuEwtm7dilQqhR//+Md44YUXcPLkSYyNjSGfz+O2227D3XffjUgkgng8rrh+1iDKPsS8dzsPRt6vVBDynI0IxqoHBgZU5q6kZ4H2LdaWGkM+Myo9zgcmF8mGElKp6T+6t8j/eU3GyGVCDRei3B5OZnLrSlX+HQ6HMTg4CLfbjZdeeulKPeqrBr/fDwDI5XI4fvy4UlSWZWHfvn04dOgQgsFgGw1HRVSr1TA1NYVMJoPx8XEcP35cPUPuO5xOpxV9Ko0XmY8gWQO9FtnOQJX3IlkTQhp0ertTGkZMnJOf4fF40Gw2kc1mkUqlUCgUcPToUZw+fRqtVgsf+9jHrtxArBJ8Ph9GRkYwMDCAoaEh1ciGjgawIOeotEibu91u5PN5nDlzBuPj4xgYGECz2YTL5VJKtaenB69//euxe/fuNkNWGrQcy1gspijdubk51QLzxIkTqiaVxjHZRjpnVKoy+dGOhYnFYsqjXReeqi6IgIWsSQa4aVUCi7cDs8sU5HV1SEuW5TeNRgO5XE7x5ZOTk8jlcoqLD4fDiEajKr7GeIpdAgU/k8piKSqbNVkyOWYjxFTtYll8lpKWWep8fRHpxolkJggqNrsYWad4mbxHoJ0B0b0ezkE76tAO8j1STrL5/3qGjH1KJQNAKSxJlelrloZRIBBQ5UnshQ1AxbWApZUqFaXOTNlR7HryilyjvKZcf/xbGsF6iEAa+tVqFdPT0ygUCpidnd3Q2zgyT4SxSlmdsRRL2GndU0mysQsb4zCLX7aEJE3Leef1epUnSoZDbl7CBh+co3JjDNLRDEPJEBTPpZHNPvRyXV9MuO6qd1SS2bEOh2NRqyqfz6cyNJkRxgdglzXbSaFyYdJicTqdSKVSGBsbU6UzTz/9tNrCze/3Y8+ePdi1axdcLhcymYxqr8bFxnsFFgQ7hYb0xgguxFgshkQigdOnT6usuI3QUcmO6u7p6cHWrVvR39+vBGYnhSk3SOBrnTKm5XnM1AUW5pVdDEQqAN1TlvEUjiPfl/XP8lqdvrdEIBBAX1+fivdYVnf7il5tDAwMAJivU41Go8owbDQa2LlzJ5LJJMLhsMqW1L0+Zl729vZi7969yhMMhUIqmUmn4/RnbwcpE4jlnvNSgl6nG2m0URbRKPB4PDh27BgefvhhpFIpnD9/HtPT0yt7mGsUeohEwuPxqLJCdiqil1qtVttCYpTpQPta9ng8qpSFnu7w8DDC4TCCwSCCwaDKp6AnSU9Uyo9oNIqJiQl4vV6VKEqZTLaE7JhlWZiammrzdCmP9XwdKvVwOIz+/n44nU6Mj48vkucrxarFVGVhvk7/UtBKN52Qnom8LmBf/+Z0OlXXlwsXLuD8+fMYHx/Hyy+/jLGxMfT19Sm6sre3Fz09PQCAdDqt+H/+SAEvk2SAxZ6q9HoYiKf3u1GyBYF2QUVFEovF1G4/S1G8ks7XY6y8tl4HRwXKsdUTkwi7mImk4uU9yDHWqWS7xKSlhLfH40EoFFLxnvWOcDgMAIjH4+jr61Px53q9jkQiAb/fryh0liLJcWTuAT0T0sOytEw2dwEWe5L0FGVc3u5YOYf4mr6jjWQgdDZDj/Hz3iqVCrxer6qtLJfLOH36NObm5i4pc3WtYSkWxuGYz2iPRCJwu92KXmXLWBkO0NeWNFLkxhUsp6GyZctQ0resC2dMkx4mKwg431jaZlkLSU/sP10oFJDL5dr0BWuteY98nY6R7Pbm8/nWB/0rIWk90r+d6hh1ZaV/Wd27cTgcal9Ut9uNYrGIZrOJsbExPP3005iZmUE6nQYAxGIxHDhwAP39/ejp6UE+n1fxOhmXo+WqK3DZ9kqnt3Xr7VIHaa3CTrmQ6iMNY6csZdxNXovzQY+byfi73kBCPlM5PnbJBfq9cGzIoNBwYt2aFBwcU0kH2oGlJRtFqfIZFotFTExMwO12o7e3F729vUgmk21sBCGNWukpyOuRYrVTcPJ1fazswPmkG9qkjfXsUHldXYnq73NucD7zXsi4bYQMb91w1J+FlGuyjAxYoIdlchqvyZ+hoSHVcIFKlAlGVGgcG64ZbqQh1zu3GZTJj1IfSEctEAiohKpCoaC8ajnPdM+aDlij0VAJepeCVVOqHABagqRXpWKl8JILsZM1y2s2Gg2VCBEMBlEul1VSwU9+8hP83d/9HYrFompFtWXLFrz5zW9WdWezs7NoNBool8ttD56fzc+gtc7sVC48SS/Kc2VsZ6OCxgzj0kB7sk8nD096pLRM2b2GAoxeTjabVYaPLnw5PrwX/TO44KSwp+FFIyyXyyl6vlQqqQYT7NAi7xVYWMiEz+dTO/MwHrmewe/G9pEejwdbt27FgQMHEI1GVc9juRZlUw27ZBAeYxcukcao/qwJuzi4VKx2lLu8lpQdevxW/gag1jXHn4k2fr9fzZmNArs1KpUp5RwZKbIQrEOldygVIb1cepWUg4FAAKFQqC0+allWW8taPZ4v78/v96vwCsE122w2Vb/2Wq2GM2fOYG5uTs1BXUZzPrjdbiSTSQQCARXquBSseiaFtGrtMr90ykZ/uJ1AC6hUKqnNrufm5jA1NaV2E2FSTW9vL/r6+pDNZpHJZBbF8XRrmp8tvSWdbtSx0bzUTnA4FurWAPuFCnSuU9YpPDvlpRtU+jV0GliHHRMi6UWZiEFBTbpZKmX5PQjp2UjLeb2C1Bw9EQCLapHletWZAl1RAu3ryG4O2IV85G/9b/0autfKY3ievJ5ulOmQxrE8V8YS1zvs5qf06mTFBh0E0qX87fV625wR6eDQQJaUrTxH7jDF58k5xr/JIrH2lXSvXF9Sf9DAl4aAznjqrzHm6vV6L8tYWpXmD1JY0mNlYlI+n29LBqpWqypmwQSHTnEUcuuMy1YqFZw+fRrf/e53MT09jaNHj6LRaCAYDOLAgQMYHBzE9ddfj0Ag0BY/0b0dO2pJTjI5YfTEK3paUtFsVDgc8ynprFtkDJk/ko4DFmqS9ebqnBOyXzAXFpMkeC0KNi4CnSXQDR07upgWLv/m+RQSktqXAlwyELxv7rNaKpUU1bWeM71vueUWAGjbJ7XZbOLEiRNqj1luUMAe2oVCQT1Pu/ps2SSCglcKzEAgoEp5dO9SX++6F2NH8etUsk752hlZFNZMVLIsS3WFks0DNoJS1eF0zvfCjsfj2LZtG4aGhjAwMNCWe8BYOjAfGmDdru6MyJAO/waAbDaLQqGAZrOpWD9gQeaSyZAGlgwD0VNttVpqX+ZSqYRsNqt6AMsN0GVJoz53gAUHiYyEpPsvFldVyttNfFoqlmWpOiJpERcKBaTTabRaLVWmwCQmPYlF1jU2Gg1UKhWcOnUKDz74oOrpSKX6qle9CqOjoxgYGEAwGFRKlcJfCtJOVLT0RKRxIO+NlAfvayMuQsLhWKhTbbVaKpOPShWAauEILFigkrYFFgQpBbOuVMvlcltSkaTnOyW08Lcet9fnEJPmqOy5MKkM5OYP/B9YENRMyimXyxtCqd58882wLAt9fX3Ytm0bqtUq/uEf/gGPPvoo4vE4EokEms0m+vr6VOak9BbosctnzmdIdsrlcqlifq4zdtiR42PX8IXGm92YAvZzwI4dka9zbrF/M1tNlstlRVcSG3E9O51O1YpxeHgYW7ZsURtN0MBgfJO79LA5js5GcIylYqUi5HOUz18PF8gxkbkrLFtjzJQ9u9mjPZFIKA9YXk9+npTfXOOcr3pJzcXgqrtO0sLTrUidXnE4HKjVamp/y56eHtWFiUJaDgS7ujSbTczMzKjic1oyjIUwQ7WnpwfBYLAtOUWfFLw3/tZpv04PXp4jJ9VGh/Qq9IUkIZ+v9DakNQosxLyo7PRsXfmje5N6cgz/lsKX15NeFKErbHnfemmO9J4kTcb5ul5x4cIFOBwOhEKhtgbqbIgia/86rWl9DtAL4bOXz5nHM89Ceo16/FM3xvTQAbAw3ksJSH187O6Z921HdW8UyFpNuxi47ljYsY5L0aZ6KEQfGzuZKsdZnk8Fz57M/OFrssqC982/5QYodnF9Hs/verHr96o3f6DVwCJbWqcypiotBnY/ajQaSCaTKvjMH3oLDodDNR2YmJjAP/3TP+HYsWO4cOECMpkMLMtSW7kNDw/j4MGDGB0dRa1WUw0hGo2GihPJicMJJT2rTgaB7oXX63UUi0VlTa1nAbscSJcxCYyGiizQloJKL1/hwqFhJLNws9msUliMeZC5sFOgeiKCvpibzfkSkFqt1paKT+9SblenG25sXsA5Ciw0luf9kQ6NRCLreszvu+8+WJaFu+++G3v27IHD4UCpVEI6nVY5C1SwHGNJ5crQCd9nJqbDMd/xiFQbmaRisYhsNqs2OmDsTQ+rAAt1xrw+wc8irbgSr8POg5WhCdKUlBP0kjcKIpEI+vv74fV6EY1GAcwzN+wgxb7ojG/Knaf05yDHwi4PRmcYOF5SwfJ4OQY0yKrVqurjOzU1pXaE4jaE6XQaU1NT6l4Z15XzUsZqdQNPJqhd7L7IV91TlW48KVHd4pFxl2KxiDNnzij3PhgMolartaV08zrs/NFqtfDiiy/i4YcfRrVaVcFzFnD39vaqjXNTqRTm5uZQLpfbtjMCFlvaurUkYadUgYVG4ozNrGcBuxwknQ8sZP528tAlDczzgXlly9g0BS2FJ2M5OhUrlepSRg89JABqbgALwp+KlRa79M74vuxHrHf5kXQ/a/LWM370ox/B4XBg//79ygBh/IrKVN/PmMIP6JwABCz0cZbZ8zRCqVRlOIfVAXqCSTege0dy/fI70QPSBfBGgc/nU+1F5ZZ9DMvJXBK73BHAPulJrkUqUr1WXFeqkm3QY+lkrmj4plIptcsVzymVSsjlcovmkHTeZKmklD30uLnGl+sepeOqK1X5Bfi/3a4j0l1n4sPZs2fx/PPPKyuxp6dHLbZqtYoTJ04glUphfHwcExMTysLgA+zv78fBgwfV1lzZbFbVsC43KSSdq1PUdrSFzJDkJNjIClV6c7oFyvf1Z2xH+0gl2Wq12owcqbDkHNGvRUiBrlO+rVarzSudnp5uW7y0VmWjbxli0Cln/T4cDofaW3Uj0P6VSgWZTEaFTnbv3o2enh4MDAygt7dXNUUgJSyfN2C/2wi9Pxpj9PyZ1MduSzSKKeh0r0fKDTtmQp9vS0GeL9e8/C3j+d1W7qsJeqhutxuVSgVzc3OKDSL9T8VEmpXQQyz63zK+qitQ3aEC7BuAUKZalqW67cmm/lI2kLWUypSfK2Op8v6ABYrf5XIhFosBmG8EdDH7Iq/aJuUEE4p0F5wPp9lsYm5uDul0Gk888QQsy8LAwABuv/12bN++Hel0GhcuXEChUMBDDz2E7373uygUCpiamlLUMgdk3759ePvb366E6fnz5xe1HbRbgFJw6pnBdnE3ZseFw2G1Iz35/o2oWGWcUSahAAvPS4+TAu0ULZWnTGBhdp9usOiw81x0upmLlEYYk6q8Xi/Gx8dx9OhRpNNpzM7OYmpqCqFQCHfccQf27dvX9jly4UqhKhcp5280GkV/f/+GGPN8Po/x8XFEo1EMDQ2ptoV79uxBNBpV28HJEgndmJAZ2qTdisWiMmCYnCST/ZjARGXudrtV8hvQruikzNC9G2B5pWrnrXLNSuOArNhG2d4PmP9ewWAQAwMDcLlcOHHiBF555RWVeJdMJtv2gibzxufOMIwdU0RDiA6UXI+Afd2xnVHk9XoRi8XgcDjUnsq8PsMu9LSTySR6enrQarWQy+WUEpZJhoRMliQ7FgwGMTw8jGAwiHq9flH7Il/17F/5m4KIcSspQCm0AChrNZVK4cKFC6rUhnGYSqWCYrGIqakpnD59WhUT0wOVQo7lHuxhKfl83ttSi0+PFegTSP7Wyy02gsdih06LSX+2BI0nHqPTQ9KIkV4Iz9UNs07Q55v+uiwTIeU4MzODCxcuIBqNolKptAkLYHHvYH5//TM4/j6fb10rVbl1WqlUUkks4XBYNUSXvVtlfS+weK3riktnByTFTgOoVquprHGZ3Cbnl/RA7Jini1GovL6+XuXa3kieKp875STHmzKUhmSr1VIlh5Lil9DZJ/4tjR+Z1Kav5aUYQ1n/TcaIeTVU7jyGil7OBf2+9Pvm/fA7BwIBJQMuBldVqXKR6FmhcpD0Tiv0DhwOByYmJlCv1/Hyyy9jdnYWvb29KBaLSKfTKJVKePbZZ5XXy0FJJBLYsWMHYrEYdu7cqTYXZpKKnUAHFu+Iwweut+GigpcZkBst1rIcOKH1/WWXM1Ts6FmeZyeE5TUvR5jp4QUqCRnPY1Z4Pp+Hx+NRPUM7zQt9DgML20+tZ6V65513wrIsbN++XXWbOnbsGMbGxjAyMqJaUtKD0cM7NIi4jjspJBmb9nq9iMfjqFarSKVSynMtFotK4XJPXZm1L2XHSg0vQs41acTxvqhsmNR2qQJ3LWLnzp0A5tfF8ePH4XK50NPTg5GREQwPDyMej6uyp3K53FZ+wnGV5SpcD7pi5bGd6HUe1+lvlrnQq+Y91et11Vud98Ht24B5ilgvp6Ezx2vr6zgQCGDLli3w+XwYHx+/qOd51WYEb1jGOfk6B4lCSQplSbONj4/j3LlzcDgcKoFCDpDcRYZIJpO44YYb0Nvbq5QqHyYftszik7EgOw9Hp5WYhMQAt6yvutiFvV5B+k4qVTm+UkHK5yspGF2odUInS3Olz1r3pnkf4XAYrVZLdd8ibZ/L5RAOh1V8tVKpqOQmCalQeR8bQaneddddsKz5DjjMQXj44Yfxwx/+EIcOHcLNN9+MLVu2tHkw0oOUipRCUe+4RXDter1epbTYRJ07mDidTrXzjR1taEf76p9jBzumDGjPm+B8pXe+UZTqrl27AABTU1N44YUX4PV68eY3vxmvfvWrEY1G1S5fzJinEqOhQadHN6p0lkk+w07j0cnTlc4KS7wYdgCgGuGzeRDZSmaYU5nLBDoax/wevP9mc7694pYtW+D3+3H8+PGLep6rUlLDv5cC+W0mfHBjXD7E5T6H1nAwGFSlOH6/v60XrTxewo7K07+DnoDBvznopKypuJm0tBHoIh1SENkpveUo9U7HrfRZLRWP4etLCdVO3rJ+7YvNOqUiWc/gLjWNRkP1dmXiIOe3Hcugzwed9rXzUqThxXVEY0bSsZLp0hPW5DU7sR2dII/T2Qj9c6RQ3giQXlqr1VI7trCxvL4HNNkpndnTKfml6FY76Iq0E5PIY2RGsnxP9hxYydrXvVUAbQ7SxeCq76cqacJOuw2Qu6fLPzw8DI/Hg4mJiRXVepK+CAQC2LdvH17zmteofSGnpqZU1qFO0+rUnmyBp3ueXNjSy3U6nfD7/SgWi5ibm8Pp06dhWRai0Si2bNlyWU2a1zJkPEOOqawr0ylXXchKXA7F2+naXIB6DI+ehix7kjFBSV3KOmV5r7oi4XncXGA9e6rsjvXKK6/ghRdeUHFnCT5LZrpLGlYKJXqidi3o7GBZFpLJJBKJBAqFAubm5hQrxGuzdpLJgDIEIz3WlcwlKVil4S1jdsC8nCgUCsjn8xeVFbpWwY51tVpNsQTxeBz9/f1wuVxqXfDZO51OBAKBtpCJTMKUVK9u0C4V49bXj52Xq4+RpHB5fX4GHRoZ/9XpaOmAycYRDO3JnIqVruNV209VF7TyGFK5/GLxeBz1er0t4wvo7IE4nfNb+LAP7e7duzE4OIjx8XFcuHChjZboZM3IB84HK4+jt8qBlpmhTqcT+Xwe09PT6O/vh9/vRywWW7SrwkaBnJj6M9UTBSQ6KVNp6S53rH69pSa/vvDkomVCDOedZCKkRSznq51ylWAd5npWqmxe0Wg0MD4+jlQqhXw+b+thdvIkeAwNGvls5dria1S6pOVp+ExPTyvjh2uNO6Xo98JryesuBX2u6WUeMl5Ho1/2ll3PKBaLAKB23eJGIxx7bgguDWQyCKRc9X7IsjGKXSgNsC9/k8pUKlRg8S5lkrGQkP93qpPXjWH+yBCOHUOxElxVT1UW1ler1WW7DDWbTYRCIZXaPDc31yY09fMY14vFYrjuuuswNDSE7du3q4QTJibJe9Kvow+q9KTt7k9SBPJYma3KsgCHw6GC/rL35XoHkzdYy6Z7pZeKpZTkUhavPKZTXE0/Ty4sOb/kjx3l3+lzgY1B/z777LNotVo4efIkpqenkc/n22LKdvFLyTzJjFw7AWhHu8ltFUk9AvOxTDJDjJlx+7VGo7FIQUvolPBy73fyTujRlUoltUXgegc3LGE9aiQSUXWeZABkw3s7dhHAIhkoX9f/1plJ3SiT61Gey+NkIwcaAQBU3wF5n7KUS5+X+vfg38zcp9FGZ28luKpKNRQKIZFIwOFwoFAoqBiNzM7il+IC6+vrw0/91E+pneCPHTu25PUjkQi2bduGd73rXbjxxhtVTdXExIRqj6ZbLrKWkg+ZD9KOkqAHzXMYW5C0NgeJGYxsg7d9+3bk83mcPXsW09PT3X/Qq4BAIKA2eef3ZAzGrpSIk1NPVrI7ZrmJrB9npxCJTkpReiKce50UKtBezqF7NFJ5yMW+XvH1r38dAFTbN9JjhBxjPle5NuixyDaD9DKA9mxRvs8MU5fLhWq1qmqYk8lkW9061x4VMGOvclckfXz0OcF74HfhfUuvlN+Nf5dKJczMzCCVSm0Iw/jChQuwLAtbtmzBwMAAenp60N/fj0QigVKppGh3erF6u1ZCxlmld6fHou1YHQCLlJ1umPN9AEquA/PGFpMJWU8q5TLPI5vI+7Qrj+PnysYt7GuwJpUqFxkpBS4k/TgJbvrsdrsRCoXUg+JikdaLz+dTWWGDg4MYGRlBLpdTe6hyIdspVvn58po69SD/14+3s65arVZbOzzW9K13D0ZCFsNLYwRYmVJczru4WEjF2kmhS3BuknXotODsvGO7zyBkzHa94vz58wDmPQBuDq/DjgGgYtIVlK6k9EoAPVbG9pQU6Lw2z2PLUmkA6/PJjvGw+1v+lh6rfhx7G19sT9i1CionlpIEg0H4fD7VkpLvAYuTEuVr/Ft/T0I/VqITI6iPBWUv6Wg6MtKpkfky0svUZXSnHAlS3FIWrDmlCixYD3I7MCpXfWFxwlqWpWqQDh06pBq2nz17VtUTJhIJ+Hw+7Ny5E9u3b0cikYDf78fMzAxKpZJKA5ewEwTSguZn21EDFAxUjn6/Hw6HQ9G8tLSB+Qk7MzMDp9OJUqmkmgFsFKVqWZaqK4zH44qOk1bmSuKhPHY5avVyIRNo2P3H7/dj7969qFaruOaaa5DJZOByuTA0NIR4PK4ScOS4LmU0cD6zrdp6jqkWCgW1HiWtTc9ebgemU3oshZGshR2oNKl8yXRwrUkPF5gfQ/b45v66Xq9XhWP0Gnj+vdzcku/Lnr/8XBr0691QsoNlWYhEIhgeHkYymUQoFFKvc2xkzgiTPaXRw/ftHJKVQCpuu1CB3OuY60t6taFQCNu3b1fb0XFv1UKhgGq1qjbDIKtBuS0/i/NaOk18bc0pVempUkAxrkirUy4ELkZZbH3DDTdgaGgIMzMz+NGPfoSzZ8+iv78fu3btQiQSwate9SocOnQIrVYL2WxWNYugQLCzhKQg4KBSuUpKS/7mQiefz+9GpVoqldSirFarmJ6ebmsIsBFibRJkE5LJpCrK1pWq7tHpFBFxKQpopYqYgpWLhsI6GAxiaGhIKU/pMXGsZbMQGS/nb907ZohgvSvVXC4HoH1cpFdPpcrXCCpRu5ijHneTTIFlWW2KWHqEXENMRKzX66rxCzc1lx4L71v3QDtBNwjkHKCnLCnEjYZIJILt27cjmUyqJCWODZWpjC8y25p0qlSqQPvz1tdMJ8ise91w1WPdkioG5su/BgcH4XA4MDY2ptpmUsGyzaHX61UtSim3mcWtK1X52ppTqpI6oYLTuXZgces/6Y4zi7bZbKpNc3t7e1UsLxQKwefzKVpAXlP/TEkHyPugItXpXYIDqsdZpcXUicZY6r31DBnU7zT5LtYLvdhntFSMRlKOwOIFy/dkzEbO15Xcy1L04noeb30sGWYhTSjpfvk99cxNaVRJwaiHYvSQDteuHW1Hik6WtunJKfq4rGQs5L1KOUJDm3FldpHaKKBypAKVa0I2ebAziAAsUkadZCCx1LOjspb/y7GUxpJMQGXDfbmmWVIj54FuFOn6R5Z/0mBYk0q1XC4jl8uh1VrYIaTRaGB2dlYtBNI6Mq2eXyYejyMSiWBoaAg7duxo25fR4ZhvkF4oFNRgyR1OAPuyh04LTle6dp4q25eRRqBVzW3kAKgWeLFYTFn1G83KZYY2a4PpVci2k3JRSGZACk1g6ZiL/lonw0i+x787xVItaz67lHNQgkKiE3Upv5edYpFe+nqFXhbhdruxe/duFWrp6+tDIBBoe0ayvIregGSMCPlsmMgELPRkpofILmv0ZOklN5tNxOPxRVvvMRZ2qSiVSigUCuqzHI75bNNMJqOSHi9cuKC85I0CKhImI7ndbjQaDVUKqCf/cO2yL3CnZD+5WQqw2DFZKiwAtK9z/lCWNhoN5HI5JXNlKI7ME7Cw37HH42mT13pNOo0zXsvr9aKnp0ftL7sSXNXgABUOaWDLspDNZtWCIl1GWpXClgMSDAbbyma8Xi/y+bzamocxWp6nF+vbKTNJ+dp5MtIyk4PMloiSFuLm1HL3Clr2wWBQxeR0L329w+/3I5FIqB0iZEaonkmrw06xAvYGEF+Xf9uxHnbQaUAJtjWT73PcOmUn6/ckBY38vPWuVOXYkHIbGBjAtddei8HBQUQiEbUPqtyonDQptw6Tm0PbPRdJFevJTTKmR+9UN5hZ+kHB6fV6L/k7N5tNVbtJ5cISmmKxiEwmg3Q6vahufr1DeqrymTOEoctCfX3KdSi9QxkmsWMQOrEVS4HX52bl2WxW6Q/KYrYnBNBG49Mw0O+PhgMNM2bukwVdk55qqVRSfVUDgUDbguNDpnVk91BpnbRaLdXFQ8ZkJd0HLAjs5ahcPZNYP1anteRndZpYko5IJpMYGBjA9PS0sm43Qn0bwexfJilRYHZSjBJ2Hqbu0eqQxo1+DBebvLb0JDt5rLyevC/92nafxfP4IxeojMmtV+j33mg0MDMzg5dffhm5XA6hUAjnzp1rO46Gr9vtRjgcVp6MrHVcijGS20Fms1lVk0qlrStV+ex1OdCp+L8TVU/ZwtIMZrRzl6xSqYQzZ85sqPVLlEolzM7OAgBmZmYQiUTatq3Us+I5x+0oWcuy2jxFKReAxd3rCH0e6O/pjBedJ5ZuyQx+OjvJZFJ5qKFQSClbaeDJ++dcbbVaKqFWb8e5FK6aUm00GkilUjh37hx6enpUQHxqagr5fF5ZFIFAQFGkcoBYl1SpVOBwOFQzBV0Q2jXq7uSB8jg9gUb+lvVzMsYjPVFeRw4qzw+Hw7juuuuwe/duPPnkk3jhhRcUjbQRYFmWSlRiFrauVO28fWBphSr/7wQ74SzLl6S1LWk8u8xuaUEv5/XalelQecoYIy3pjaRUq9Uqnn/+eYyNjcHv9+Oxxx5TJRjM0ufONcwK93q9SqiRpaIQ5LGyZIafm8/nceLECUxPT2Nubg5nz55Vmb6kd7l+mdlJ6o+sELv9AO3JMtIgktfR5QaVarVaRSaTQa1W23C0LzE3N4fjx48jGo3CsizFKtJzpSMk2RtpuEhlR6Um36exxGe90vIsjps0UPl5TqdTJanJumh2fLIsC729vSpcIJNWaRjpsVc6b5VKRW0iQRZkJbiqniq7KNF69fv9ymLQE5h0q4fX4LEyvVruhCEtKEL3PqWw1wfWzpPV6So7D1a+J+O8LpcLkUhECRfpXW8UyKC+naFDLOe1AivrlMT37Y6hESSVozRy7M7TWYmVJlPwfu3mh/RU1zN0yrzVmt/0OZfLwePxoFwuq7BHNBpVXdOoSPP5vEpiC4fDKuGQ3kK9XldKks3bKdiy2SwmJydx4cIFTE5O4tSpUyiXy22eKuUGt+dzOBzK02RpRblcbhtXu7CENK65bhkCoFLN5XKLNi3fSOCuTE6nE7lcDtlsFm63W+W56KVNwIJMlolBdmtNDyPI8+2YIvm/PMaugsAuO1lS2MFgEH6/v20XG3289c+kHGEymv69l8JVVarsGRoOh1WT+eHhYYyMjKi6p5dfflktKPaTlE2NaVEwyCx5dOkN6RmewEI8hwpYZoZ2gmzUTY+H19QpTm4LVi6XEYlEsHXrVgwMDKhOL8ViERcuXEAqlbqoneTXOiqVCtLptIpXyCJ9qWh1T0COhz52nbCUUmy1FkofOG9kJqg8Hmj3dOU1l5oP+r0xxMDPl+VSbDa+ETxVu+/AnWs470ulkopHca1cuHChrU8vFRYFHpWrfG6cK+VyGePj48hms8jn80ilUir3gutQ1gTn83k4HAsdlegZ6fsmyzVvR13Ktc04oN4RaiOBa7Svrw8HDhxQTkCrNR+yS6fTKs+FST6SkZN1yxxD5re43W7E43Hl4co6VrJ1doyTxFLvS6+T9yB/U/ZwPnRiM/k5dLQks9XT06M2llgJrppSbTabyGQyyOVySCaTiMVi2Lp1K2ZnZ3HNNdeoJKbjx4+3eYgyI4uLURb0yoEmKFD1PfSYnctkB3rJhJ2HQu+6Xq8rb4zH6kqbyVLFYlFtis49+SzLUk0rOEk3Alqt+axu9mXm7hUAVLmDtGb1uIpkJ3RLl9e3U3w6JGvBJBXJGNgdfzHJYjI+K0GBy89nfBlYsPzXM5YSJKRX9fHp5K2s9Lf8bNnjVRphOuQ17BSkPGY54ahnE6/kWaxn0CkZHBzE6OgoIpGI6iFQLBZx7tw5lQ1NSLaBne7IWLRaLUxOTmJmZgbBYBC7d+9WZY+s0wfayxc7rcVOc0PKCtkK1I6NYOiQ7+tKWnrapIxpEFiWhb6+PgwPD689pQosLBJmzjJ7NhKJqPIY8vjS0rCb2DrlJt+T/9sdLxephJ6Bpn+GtGDlcXLwqCSi0SgGBgYQDAaRy+UwPT2tYjLrnRLU0Wg0VGcb2ciDC0Zv7iGhexAyLqPD7tnbCUourE5zp9P1loLMUuZ969fS55fMRt+oWA3P7VI/71LO28hjR8hQFWPhsk0ka/8JyUbotZx0ZPi39Gjp+dsZqEutK50y1tFJVuiJhJ2uqzf6AaAMChoXF5MbsSr9tsrlMs6cOQOfz4d6vY6DBw8CmH84hUIBHo9HtRqkYJTxz1arpawk6alKYU73XSo7ad3o5TZ20OMw+gRh/V2pVFI0ET2V22+/HQ6HA+Pj4/jud7+LqakpnD59um2Hj42CQqGAiYkJ1Go1JJNJ9Pf3A4BiAqhggHbrVKdhZCKCtGB1ylhCjqkcF31c7dpUXoxSpUCwA+MvtIjz+TyKxSImJiYwNja2KQSzwfoFaXnGJV0uF/r6+lQlxtatWxfR7ox7U97JxhDA/D685XJZOU1sysBkUxkK4trUlV+ntdnJoJUyQK8/tTuHsokhAukcTU1N4dy5c8hms3jsscdw/PjxFbOLq6JUq9UqJicnEQwG0dvbi+3bt8PpdGJqakrRiLKQlwOl07fk+UlfSDeecVipVOWASeUooQ+OfJ9KU48BMjOM73u9XuzatQsDAwN4+OGH8b/+1//Ck08+2THjbb1D0r+MPwMLCR8siQAWsqTlM2SMHGjvuGVnodopKH089OxE3bDiOStVdsspXo4rswbZgnNubg6Tk5NGqRqsadjlIMRiMcRisTYGhhRvqzVfdlQqldqShOxi1fy71ZrfRKVQKChlzHWlU7XLUfzyugDaPE27qg5ZBkTI5jSlUkkpepbPnDlzBsePH0cmk8FLL72El19+eW17qpVKBePj4+omh4aG1GDqhd92yQG6YGSQWg4IBbMdjctr87dOIfJc+RqwEGvRr8/XpPc1MTGBdDqNsbGxti5PK43rrAeEQiGV4LBjxw4kEglEo9G2tmWkgmTyEpWfnSLUn+fFeJLyuvJacqzk9eyMKv2aKwGvTzYDWGggkMlkNsRYG2xcVCoVWJaFiYkJPPvss4hEIkgmk4hGo8qDtaz5jTMYc6QiY0kLaV/KYIb3KpUKZmdnUSqVVLmbVIC6fF7K6ViK5uUa05WqLmcIWXHCOlwa981mU3XNyufzKJVKF7WGV0WpplIpPPLII/D5fLjjjjtw8OBBlTXKFHYAqrE2a8J8Pp/q2EMhxnieDrtECYmlLCJgYVshPfWe5RqkQqSipXddqVTwk5/8BGfOnMHZs2cxOzur7lnSyetd2A4PD8PhcGB0dBRvectbEIvFlNLkogKgErUAqCxASdMyuUgqRn2x6LAzkIDOilCP2ehMhP7b7lg7SI+X84PzdnZ2FmNjYxuSnTDYOEin07AsC48//jhOnjypwm/hcBg+n0/Vn7N5gtPpRCQSUTXGsVhM1adTJufzeeTz+bbNT/R8C4nLkYUrWV92Wfvybz3+SgOg0Wio7lorxaoo1VqthunpaViWhVQq1aaYpKcKtHdRIk1BZScDzYQ+WJ0slaU8VZ5nl3ZvZ2XJe3e73ahUKpiensbp06cxNTXVpvRX6v2sB3BD8p6eHgwNDSEWiynLjgYEvVU9a1omoTHhQc+otutG1IltWIlilVhKqdrNoZXQUcACrVSr1VAqlTruQWpgsFbA0Mvs7KzqgR2LxRAOh+H3+zEwMAC/3682A3e73UgkEohEIkqZMuuXSpWtAy9cuIAXXngBp06dWuVvefWw6hsDplIpnDhxAvF4HOFwGD09PW31TtK7Y1KSzNgC7D2VTh4JIZXhUpSsFNjyb/L0ct/HSCSivLVMJoOTJ08il8updG5d+K93vOUtb4FlWbj22mtVfWC5XFZ7cAJQ8RbSv/yfsWd2OmFMg5l2gH12YCelapdR3ekc/m9X7sONEqSnTEHB4/TECul15/N5ZLNZNf7yWRgYrAcw/gnM50vIBh1MSgoEAor25W5FUh6zCxG3XdtMWFWl2mq1MDMzgyNHjiCRSODGG2/Ezp07AUAV63InGMuyVCs0oL0xN2GXYGQnmCX0GFwn70c/l9fl/bVaLSQSCfT398PhcGB2dhbPPfdc2z6Qne5hveI973kPLGu+TozF3IVCAblcDg6HQy06WfTN58r6NnbdmZ2dRbVaRSqVQjabhWVZquXYUuMCGbgyUQAAtV5JREFU2Cc66IpWKlIqTSYlsEkAGw6Q9pF7ebJfsyyTkbtvkEVJp9OYmZlBqVTC+fPn1a5MBgbrBVSKbOYxOzu7SK5KVsmuxlTGSGkkbxasuqdarVaRzWbhcDjU5t5S4FGwAQvNFYDOCpKQvVz5204g6zExO4G8FGQ/y0KhoLwUBuY3skClx1atVlXcm54mm3TIGCmw2DtkzGJmZgblclnt/kFFtRKlKqliGYeVf8tFLst8WDetK1X5PjN62cuX2d40mGQ9XjqdVgYCS60MDNYbNhqrdjVxVZWqndc4NzeH559/HuFwGIlEQvWZLBaLqvaPSUPpdBqhUGgRnSsVp13Ji/65nbxOKZTlBsRSMejnspyEZSO1Wg2ZTAbHjx9fUTxwPePLX/4yLMvCtm3bsG/fvrZt32QLOqbiy7EBoLoNPf300/jHf/xHpNNppZTlccuhk9K1e95SydHTlEpZ7uspM885F6Wnq9O/wEKryk4JdAYGBhsbV91T1eOXuVwOpVIJwWAQO3bsUD0W2RpQlkkUCoW22lXZmUMmv8gkmU5K1U6p2XkxAGzpYX5uLpfD+Pg4SqUSZmZmMDExgVKphHPnztl+/42gTIl/+Id/gGVZGB0dVbEVbj4vd7ew6xlKw6XRaOC5557D3//932Nqamq1v9KGGh8DA4Orj1Wnfwk7D4PxKkkf6ufYJRnp15HHyONkkwL9XP36+vv6PemJLZsBsrRJ0qsSK1VSG6HEyMDAwMBqGUlmYGBgYGDQFax8mw4DAwMDAwODJWGUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXsCaU6ujoKHK5nO17N954I77//e8ve40//dM/xcGDBzE6OooDBw7gi1/8onpvcnIS73znO3Ho0CHs27cPn//859V7f/iHf4jR0VH1E4lE8LGPfQwAMDY2httvvx3RaBSjo6Ntn9dsNvFbv/VbOHDgAK699lr88i//MqrV6kV/dwMDAwODjYM1oVSPHDmCcDh8Wdd43/veh6NHj+LIkSN45JFHcO+99+Lpp58GAHzsYx/Dddddh2effRZPPPEEvva1r+Hxxx8HAPzO7/wOjhw5giNHjuAnP/kJ3G43/uN//I8AgEgkgk9/+tP467/+60Wf99WvfhVPPfUUnnrqKbzwwgtwOBz4whe+cFnfwcDAwMBgfWNNKFXLspBOpwEAjzzyiPI2P/CBD6Ber6/oGtFoVP1dKBRQq9XU/8888wze+ta3AgCCwSBe97rX4S//8i8XXeOBBx7A1q1bccMNNwAAEokEXvOa1yAYDC469plnnsFdd90Fj8cDy7Lwlre8xfaaBgYGBgabB2tCqRLVahXvfve7ce+99+K5557De97zHjzzzDPq/fvuuw+/93u/1/H8v/3bv8X+/fuxfft2/NZv/RYOHz4MALjhhhvw13/912g2m5iensY//dM/YWxsbNH5X/3qV/HLv/zLK7rXG264AQ8++CCy2SxqtRr+5m/+xvaaBgYGBgabB2tKqb744otwuVy46667AABvetObsHPnTvX+Bz/4QXzqU5/qeP7P/dzP4dixYzh+/Di+/vWv4/jx4wCA//7f/zvy+TwOHz6M9773vbj99tvhcrnazn3llVfwwx/+UFG/y+EXf/EX8eY3vxmvf/3r8frXvx579uxZdE0DAwMDg82FNaVU7WBZ1kWfs337dtxyyy34+7//ewBAMpnE1772NTzzzDP47ne/C8uysH///rZz/uIv/gJvf/vbkUgkVnxff/AHf4Cnn34ajzzyCK677rpF1zQwMDAw2FxYU0r12muvRb1ex/e+9z0AwEMPPYRTp06t6Nznn39e/T09PY1//dd/xaFDhwAAs7OzKsb69NNP44EHHsCHPvQhdXyz2cRf/MVfrJj6BYByuYxUKgUAmJmZwWc+8xl84hOfWPH5BgYGBgYbD2uKr/R4PLj//vvxoQ99CI1GAzfddBOuv/569f59992H8fFxWwr4C1/4Ah5++GF4PB60Wi189KMfxRvf+EYAwGOPPYaPfOQjcLlcCIfD+Ju/+RsMDg6qcx966CE4HA7ceeedbdcsFovYs2cPKpUKMpkMhoeH8fM///P4oz/6I2QyGdx+++1wOBxoNpv4jd/4Dfy7f/fvrtCTMTAwMDBYD7BarVZrtW/CwMDAwMBgI2BN0b8GBgYGBgbrGUapGhgYGBgYdAmXpVSfeOIJvOUtb8GOHTtwww034PDhw/j0pz+t3r/99tvxwAMPrPh69913n2oXmEgkMDQ0pP5n8tLlQjaa0PHWt75VleHoSKfT+MxnPrPs9T/84Q/j/vvvX/T6H/zBH6BcLl/UvRoYGBgYrC9cckz16NGjuOOOO/C1r30Nb3vb2wAAc3Nz+MxnPoM//uM/BjCvVD/60Y/iHe94x0Vf/xd/8RcxOjqKj370o5dyex1hWRZSqRRisdiKz6nX6zh37hxGR0c7KmQAaLVa2LVrl23bxUv5XAMDAwOD9YVL9lQ/+9nP4p577lEKFZhv60eFutr49Kc/jX379ilP95VXXlHv/dmf/Rluvvlm7NixA3/xF3+hXt++fTuOHDkCYN4g+MhHPoJXv/rVeNOb3oQPfvCDyOVyGB0dxY033mj7mU888QT27t27SKF+8IMfBAC89rWvxejoKKampjA1NYV3vvOdOHjwIA4cOIAvfelLbffx8Y9/HDfccAN27dqFz33uc916LAYGBgYGVxCXXFLz1FNP4V3vetclnfvggw/iwQcfxFe+8pVL/fglkUqlcO+99+LChQvw+/0oFotwOBbsB6/Xi8ceewwvvvgibrrpJvz8z/+8bTekEydO4Ac/+AHcbjfGxsYwOjqqlK4dvvnNb9p65ffddx++9KUv4eGHH1ae6rvf/W7s3bsXf/d3f4epqSnccMMNuP7663HrrbcCmN9Z54knnsDs7Cxe9apX4ad+6qdw2223XdZzMTAwMDC4suhaotLHP/5xjI6OYmhoCMeOHVvy2LvvvvuKKVRgfneZ3bt3433vex++9KUvYW5uDj6fT73PVoTXXnstXC4XJiYmbK/zvve9D263e8Wf++CDD+Ltb3/7io596KGH8Cu/8isAgL6+Przzne/EQw89pN7/5V/+ZViWhWQyueg9AwMDA4O1iUtWqocPH8Zjjz2m/v/c5z6HI0eOwO12t+0Qc6XwkY98RFG7R48ebXvP6XTixz/+MT760Y9iamoKt956Kx5++GH1vlSwTqez4044oVBoxfdz4sQJxGIx9Pf3X+Q3mcdy7RgvpV2jgYGBgcHVxSUr1U984hP48pe/jG9/+9vqtWq1uuKt2i4XX/ziF9U+qAcPHmx7L5fLYXJyEq997Wvxu7/7u3jNa16j9la9VEQiEZRKpY4bkXeifolwOIxMJqP+v+uuu/DlL38ZwHxbxb/7u79THaAA4Gtf+xqA+eSvb37zm4u6PRkYGBgYrD1cslK9/vrr8e1vfxtf+MIXsGPHDtx8882444478Ku/+qvYs2ePOu6ee+7B8PCw+nn00Ufx4IMP4p577unKF7BDJpNRSUCHDh1CrVbD+9///su6ZiKRwC/8wi/g0KFDtolKDzzwwJJK9T/9p/+EN77xjSpR6Ytf/CJeeOEFHDx4EHfccQd+53d+B7fccos6vre3FzfccANuvvlmfPjDHzbxVAMDA4N1ANOmsAu4cOECfvqnfxrPPvtsV663fft2PPDAAxgdHe3K9QwMDAwMrg5MR6UuYHBwsGsK1cDAwMBg/cJ4qgYGBgYGBl2C8VQNDAwMDAy6BKNUDQwMDAwMugSjVA0MDAwMDLoEo1QNDAwMDAy6BKNUDQwMDAwMuoRLbqi/HK5EWz2HwwGHw4FWq4Vms4lWq4WBgQHs3bsXXq8Xs7OzmJ2dRbVaRSqVQqlUuqTPcbvd6OvrQygUgmVZcDgcaDabSKVSmJ6eRrPZ7Or3Wq8J2N0YY3kNp9OJnp4exGIx+P1+bN26FZFIBJFIBIODg/D7/di2bRuGh4dRKpVw8uRJzMzMYHJyEsePH0epVILD4YBlWXA6nQgGg3C73di6dStuvfVWRKNRuN1uuN1u5PN5PP744xgbG8Ps7CxOnjyJXC6HfD6PbDbbNsbdGJ/NPMYrue7u3btx6623IpFI4NChQ9i3bx+y2SweffRRvPLKKzh//jyeffZZFAoFNBoNNBoNBAIB7N69G729vdi1axduv/12RKNRnDx5Ei+99BLm5ubwox/9CCdPnmyTGVcKZoxXdn2Hw4FoNIpwOIx6vX7RstrhcKC/vx99fX2o1+sYHx9HKpVqO6bTWNh914sZt5Uce8WUarfgcDjgdDqVcrMsC81mE7VaDa1WS73udDrR19eHvr4+VKtVTE5OIp/Pq2ObzSYajQbq9TparRYajQaazSYcDgdcLhcsy1LX8nq9GBwcRDweR6lUQjqdRqPRgNfrRTweR6vVUj+NRgPlchmNRkO9ZmAPy7Lg9Xrhdrvh8/nQ09ODQCAAv9+PcDgMl8uFcDiMSCQCj8eDSCQCn88Hl8ulfrdaLZRKJbRaLQwODiKZTGLLli0YGhpCtVpVSpOK1bIsRKNR9PT0wOv1olqtolAooFKpqLHs6+vD4OAgqtUqSqUSisUiarUacrkcSqUS8vk8zp8/rz6320bVZoDT6YTb7VaGUzweh9vtRjQahc/nQyQSQU9Pj+rLXS6XYVkWtm/fjp6eHuzatQv79u1raxPK8/1+P+LxODweDxqNBhwOh5o/119/PbZt24ZSqYS5uTnUajWkUinMzs5ecSW7WcF1zp9kMgm/3w+v14tAIACXy4VYLIZoNIpGo4FcLqdkaKVS6TgmLpcLHo8HTqcTiUQCiUQCtVoNExMTyGQyKJfLyGQyqFarmJubw/T09CK5TJ1xJbEulKrX621TqrRUm82mEp5erxcDAwPo6+tDpVLBuXPnkM1mUalUkM/nUa/XUSwWUS6X0Wq1UKlUUK/XlcCmcnW5XPD7/dixYweSySSmp6eRz+dRLpfh8/kQCAQAQA1UuVzG3NwcqtWqui8De1iWhUAggHA4jHg8joMHD6Kvrw89PT3YunUrfD4ffD4fvF4vACihVyqVlPfYarVQKBTg8/mwY8cORCKRtkXDa8gxrtVqysOZnZ1V1+rt7UVvby/cbjeCwSCcTidqtRpqtRrK5TJeeeUVzMzM4Ny5cygWi8ooM0r14uFyuRAIBODz+bB3717s2bMH4XAYO3fuRCwWQz6fx8zMjFrTxWIRHo8H+/fvh8/nU4aYXKeNRkOt8Uqlglwuh1qtBofDodbqrl27EAgEMDs7i5deegnZbBYnTpxANptVxrZRrN2FZVkIhUKIRqOIxWI4cOAA+vr6FOPk9XqRSCQQi8XQbDZRKpVQr9fVOmf/eF35eb1exTYFg0EEg0HU63VMTU0hl8thdnYWY2NjyOVyOHbsGLLZrOpHL8f4So/3mleqfLCdrAt6ovRcXS4Xms0m/H4/6vU6nE4nWq2WUqBer1d5nfV6XS1Ah8MBt9utlCwXMr2jZrOpLCV+Ln+73W5lAfF1s1DbQTaBXmkkEkE0GkUkElH/e71eeDwetd1erVZDo9GAy+Vqo/2r1aoaV2DeC6JXyrGjsKQRxjlQr9eVt0PPSVrQPMbtdiMSiaBarap7rFQqyijj9c04d4ZlWWrsAoEAQqEQ/H4/QqEQIpEIQqGQGnuuIxotlUpFrXmuOxo+XJc0mFqtFmq1mhrbZrOp5gQ/r1KpIBwOo9VqIRwOIxwOo1qtKqFLJsvg4iDHWLIRsVgMiUQC0WgUyWQSyWSyjTGKxWJqPLxeL2q1mpKtuhKkM+Xz+RCLxeB2u+H3++H3+9FoNFCtVuHxeOBwOJDL5eDxeNDT04NEIoFKpaLkSLPZVNfmOr8iz+RKdVS6HBdbUneMowIL3iEXUavVQiAQQCKRgNfrxa5du7B9+3Z1jhSoABQd0Wq11OLjgwagqEOi1WphfHwcTz31FLLZLOLxOOLxuLo3AMoLqtfryOVyiirmQK4E61Uwr3SMPR6PWgSHDx/Gtddei0Ag0EYL+f1+Nc40TiQjIX9T0QaDQaWEvV4vnE6n8mKazSbK5bIStqVSSY1LtVpVwoDCl5QxvxMt6Fqthmw2i/Pnz6NQKOD06dN48cUXlWdULpdX9Aw2+hjbIRgMYtu2bYhEIojFYhgYGIDX61XshNvtRigUgsfjUc9TGitOpxOhUAher1dRxBxfKtVsNotyuYxisYh0Oq0UZKvVgsPhQDAYhNfrbaMGuU5LpRJOnz6NyclJlEolTE9Pd9yFaiXYjGMcCAQwMjKCSCSC/v5+7NixQ9Hx0WgUXq8X/f39Kr9BX+dkEGngkFEqlUool8twOp0Ih8NKdofDYbjdbng8nkWMFucQw38XLlxAtVpVTGMul8OFCxdQLBZx/vx5jI2NXbQhta5jqk6nU3knVIwUrBLFYhHFYlENWCAQQCAQQG9vL0KhkPJAycPH43E1mLRyOJAejwcej6eNpyfPXyqVVAINLTPLstBqtRAKhZR1TEFuqOAFuN1uRfvu3r0bt9xyC5xOp3q/Xq+jUqkoA0fGvSlcaexwvKXw9Xq9youRcXdppdIIozdsWRbcbnfbHOO9cnx9Ph9CoRBisRiGh4fRaDTg8/lUSICeq4E9vF4vhoeHMTAwgN7eXmzbtk3F1MkAcewly5ROp5HNZgFAjZHf71fUHw2hRqOh4uOlUgm5XA6NRkOxIA6HQ61zh8Oh1v7w8DA8Hg/y+bzKp0in00in05elVDcjOMb9/f1qbTO5MBKJKPnLZE/K8EKhoEIq1WpVhWoIKkMazxxzggwlExIZIuQxXJu1Wg1zc3MoFAqYnp7GsWPHlPF19uzZKyKj15xSpXdKSIpN0nzSo+CDKZfLSKVSKJfL8Hg8aDab8Hg8KsmlVCop64bXpYXEeFm5XEalUsHs7CzS6TRyuRycTid8Pp8KkkvPmd6u9KrWq8V6pRAIBLBlyxaEw2EEg0FljPBZ0btYilLla3psnfOAClha3YzPkZoCFqgkOcf4uv558vqcc8FgEL29vfD5fMjlckr4G8zDsiyEw2EEAgHEYjHlsfj9/rY1qycMynFnmAbAItYJmB9rp9Op5gwwLxuYqETFS8i5xrHntcLhsIqrZzIZeDwelMtlRfMb2IOGZygUQn9/P7Zu3Yre3l74/X4lJzk2VH5co3ydY0uDmbK90WgoapdzwePxKIaC8wFYWKe1Wm3RHOH4cV5EIhEMDAwgGAxiYmIC0WhUecTdpILXlFLVFZaeuUWqUPL4lUoFhUIBzWYTk5OTSKVSCAQCyGaziMViCAaDimpiJi+THRwOB2q1mrKY+IBLpRJefvllzMzMKC4/GAyquB8A5VEx+5eWk+Tq6QVt9sU5NDSkyh2SyaRSojJRhM+IihDAIssUgMrs1J9rrVZr+0ypTHUhrQtcaeFS4ZNOqlQqbQu/v78fN910E9LpNPL5PKamprr9uNY13G43du3ahd27dyMUCmHbtm2IRqNqTOkJ2q0JHuP3+1UWsJwf9GhlSAiAip36/X4A8wKf4yWVNn9Xq1WV6LR161b09/djZmYGwWBQUf2XQg1uFjDhMBAIYOvWrbjttttw3XXXKTlJ5ZbP5wEsKEsJGfemAqZybDabCAaDiv4NBAJKUZNlktcpFottjhbQ7oyROo5Go9iyZYvKtZmamkImk7EtybkcrCml2unBSMHHgDStFmbgMks0l8uhWCwiHA4DmH/ogUBALa5qtaoEs8vlQq1WU9lnrFEslUqYmprCzMyMiv2RGrbzUml5656qtKY2K5gJODw8jFgsphYQPVQKLru4jj4XCJ3J4IKUafMUvPKH80uOC+eWPveABYHMuUZh0t/fr+LEBu0gzbplyxaEQiH09PQgGAyqjGo9jCPja/xbrm0aYDIJSY4lDXEaPnIs9YxPesdy3MPhsBLsqVQKbrdbGd5GqdqDoROfz4dwOIzBwUFs27atbR3SwQDQtsblOpPsEeUo5YNUoMyXkOWVkqWQa1/eI68t4/A01vr7+xGPxwEAMzMzXX0+a0KpygfArE4+KL7G0hpaLBRyDFjLeJplWW1JCYVCoS0NG1gYCGYQ0lPN5/Oo1WqoVCpq0Gld8z0OODOJaZmxVIOTSHqqm02xcrzoRcjFACwoPukZ8nXCbqHolqpcYNLblbF0nVrWFTkVs51il0YUADWP6vU64vE4kslkW1x+s4JCNhAIIBKJqORBKidJ/UmjUypAzg0aW/q8kLSfbhzJHAYyDMACTcnjAKj5ILOLnU6nysNIp9OIRCIqFHSlskTXK5xOp1KkIyMjCAQCSu5RVsrcF72CgwaNHA8JMpF2RjDlrS5TO1WJSCOuXq+r96PRKK677jrMzMxgbm4Ok5OTXXs+q65U5YNjQgrjm4yd+Hw+JZxJL8iFwmNJ1TWbTVXzRuqPReeJREJlDepdPLiIAChP1rIsZXUVi0W0Wi243W4MDg4iFAqh1WqpEo65uTlF/3KhbtZUfZm5GQwG1fPgs5QLR1q4+mLRPUlSOXYLDligC2WIQFL8HB855zotUD3xiUo9FArB5XKhv78fW7ZsUcbWpXbw2gjw+XxIJBIqxtbf36+EH9enXYMUrmXdy5HxcK51Pe5NUHAyNyKVSiGVSsGyLNVARIZ8ZG4Gha3L5cLw8DCazSay2SzOnj2rwkVGqbbD5XJh586dqgNWMBhUz79arbYZQJ3WKYA2A1tnjei4AIspfKDdqOpkaMm8GekFW5aFvr4+3HbbbZienlYZ/V17Pl270mXCzkvg6/pC6LS4JKS1K4U3US6XUSgU2gaiWq2qgLekkjjYpKKoaKX3o0+QzQ5S7Kz37TRmncYdwCLhqy8Y3TuV75E9YOmFndLUaeSVfi8Zp/X7/SqksJlB45eJKtIglWPVKQlN/+E6kx6NnWCWXo9MGmQNuv658vqSSZJxc8YGASCXy13R57YewTwTJh6SqgcWK8jloI+7/jmd1qU+J5aTI5xP/M069Eql0lZG2Q2sCaUqaUA9E5TF+TKjj8lBjLOwxEKWY1DIRqNRbNu2TZXZ9Pf3I5/Po1QqIZPJKCXNiUJPWG+NCEDFZBuNBmZmZhYFyHO53KIFv1kVLDtckSLlGOqQQq8TDcxYiGVZqvNOuVzGxMQE8vm8spApKOmVMNU+HA6jv78fXq+3La6i1xLrNJQeu5MGnsvlQiKRwJYtW+D1ejExMXElHuO6QTQaxc6dOxGNRpFIJNqacywlGPn8dcUrjRQKwqVCA8AC1cscCmankoaWXjE/S29RCgC9vb247rrrVIcmk+HdDtb/9vX1qaYpdnFNHXbGDf8GFio5dIUpoXu/Ukbrc0h+hpTTwHwNdSgUAoCu50asulKVD0fP0gMWPB4ZG2k0GigWi6oOkdm3duUsLECPxWLo7+/HwMAA5ubmcOLEiTZrGJinfAOBgPJydGtLKm5mt1HgAkChUFhWkGwWeDwe9Pb2qkJ/jqGc7J36Jev/s3UkMJ9UMD09jUwmg2PHjmFqakoVdjebTdXAw+12Ix6Pw+/3Y3h4WPUWpuEkvRqgXaFKIS4XpWRLXC6XStHn525mhMNhjIyMIBqNqhpRO3pPX1N2tL8dXSjP62Sskq5nm0oqWGZ+c0xlCEJ+Hn8SiQQcDgfS6TTGxsauzANbx7Cs+dKyeDyuQnMycchOGS5nOFPuk+qV65GGjx5TtyuPs1Os+j1ZlqVCifV6XRns3ZLZq65UJfRJzoUkvQMWiFPBSe9EtrjjA4rFYqolmtvtbou56V2b9FR9fUAkzy8HyY624OubVbmyYF8WZgMLysmOrtUXm4x7sbCfzdCLxaKK2zITl3Qv47cUpuVyWW2w0NPT0yZAOSekx6pbwXYZxBTewWBQxew2M9jbl3QgwfGWCSYSS9F/K4Hd9chUSIZJvk/BzfHUSz5oxLH0xmAxGP6QoR0p9/T1vBw9a2fAEnpdqv5b/zzKDD1ZSr8/KSt0w+Cyns1lX+EyYWeByC/GWAdb0bHPLpNP6H243W4MDQ1hcHCwLf45MDCAnTt3KkqoUCigVCqpxCcpQFk2I0tk5KJj39pWa6FZu7SMZEah7nFvNpD+3b59O8LhsIpfyc4oukBttVqKdeD4uN1uzM3N4cyZMygWi3j55Zdx5swZuN1uDAwMKPqV3bOISqWCiYkJZLNZpFIp/Nu//RsAYN++fdi/fz/8fj8SiYTq6UtaX6bty0VHpoSfwQ5dbrdbNRvZrLCs+bKprVu3IhaLqbEG0ObBywQxyUxJCpjXs/sMu9f1bGLOMVL8AFRcV3ZmYxKkNL44B5nBLDfQMFgADeZ4PN5mvPA5S1nYSZlKpWhH+9uVwFEuc4ztjCYpf2U7UpnYSpnO9pc0/iXreTlYVaWq0y52r8mYFoUbrQoW8bLhdiwWw+DgIICF5gzJZBKxWEx1wOEWQzIxgZ8tHz5gT0OSWpI0BSeGvNZmB9uHyYYZXDR6iYNUqnIx0cihh5rNZjE1NYWJiQnVWKCnp0fVQ0qvs1gsIp/Po1gsqmzOWq2GRCKBkZERtFotJBIJdX15P0t5qBxfSTPKfqabFW63WzWq5wYXkpqThrOE9FD02tVO0JkgXQiyiqDVas/RkH2BaTDblfGxrabxVDuDSYgyRq17k0QnBSvXvTxGrj9g8XjbMRtUlpLltIvF81hZv0qGczmPeqVYtRmzEt5d59+pXOUCJSXr8/lU/0nWjJbLZUXjNJtN1TeW27hx6yF+Bi0WtjpjeQ0XLWtTeV/MLNV70drREfwOmwVUOoFAQHkukqqXoIVI0OsrFArI5/OYnJzE2NiY6gW6e/du1ZQjFAohGAyqmCkzPz0eD/bu3YuRkRFMT08jHA6jWCzC4XDgxIkTKoGFJVxSeNKjYmtKGmC6YqBRptfObiZQALJOleVlrFeUZSxcO7J07WIg148Uvsspa11YU4bwnllvLueo3GiB7NVKknE2AyiHuSboEVJR6d4nIZWW/p4cm6XkpRxr3UOVrAedHnqqlCm8BzmePp8P0WhU6YbLLYFcdaWqc912ylRaQrK7DQDVxioUCuGaa67BzTffjFqthjNnziCVSqHZnN9thHE5ZouSLpStsUKhkKo95c4JpJmbzaZq2A9ACWO2NiQ4mfTFvtkUKzMEo9Fom9Ik0yDBhuh8xsFgEJVKBTMzMygUCjh16hSeffZZFItF3HjjjTh06JBS2KR+ScWycYfH48F1112HQCCAyclJHDt2DJlMBs8++yweeeQRhMNhRKNRRU1zXpXLZeWhUBFI+lfWW7JmNhAILPpOmwHSyGU9cjAYbKsLZOiGhm+r1cLMzAxmZ2fVNTpdW4euJPXjdM9Hr2mkcce5w11yeM8yOZGtDnnf7Au+WdbvcmBMVYba6ODolRjA4rGzM3pkuEV2ZJJOipSjMpygN9qRFD9j5M1ms42iZvZ/KBRCb28vstms2oP1sp7NZZ19hWBHH+iLRR8QDigXiOymwwHitl/M1mRyC+kfucG1tFg5QMxgBdpba+l0Jv/e7N6LpE7tIOkd6eHTWmUtcbFYRKlUUl2uuP0TdwySzbZlrIy7zBSLRRXrczqdKmubCtQuZiopImlB28096f3oFvhGB5+R7OMKLG4ByfFgPIy43DWiG6uS+tPBYygrqPBlVrf0fqXRsNQ83iyQ3qhkm+Rz4XPS24bK43THScoBabzqhpMeX+U1ZAMX3UOWoUMJeYxMulrX9K/uiepenVwcsodkoVBQwlCez44epVJJ9e6dmJho8zRpjTqdTvT39yMQCLT1JKUn2mzOb03EDYy5LRmtV9nkmVvE6d107OIHmwGsBfV4PMq6l5mWtCIp2Gi0kDZkY/RisYixsTGcOXMGc3Nzqsk6s4lJ2cgMRI4xaZx6vY6pqSlY1vx2X7VaDc8//zyAeco5nU4rajgajbbVr7IdYTQaBbCwCMlskP6nkInH4+jt7VWx3M0w3twMWiatAAtb+ck4FTtRAcDExIRiJvgcpWcp5wshFaUeWtGPk6DAll4K71smP1qWhUKh0HauZVnKeDPb/EExQvF4HF6vV4VT6JHK+LTecIXga5TZsmqDJY0Oh0PtFERF63Q6lTxhnwJ9I3v5uSynopfKGDmdKoLHxWIxlaNzuVhVparTAMDiBcPFIGlcJkLwOhwgLuZisaj6OcrmELQ46e739/e3KV3Sec1mU9HEMsEBWMhG7u3tVRmCR48eXdJD0S22jQophBinYutIadnKRDEqXz53yRacPXsWzz//PCzLUn2facx4PB61xRiwMA/YLrDZbCKTyaDVaiGZTGLXrl1wuVyIxWJq8eVyOczOzioF7/f7lUKVe8DyuqT7KZxlCCISiahyHbZE3OhgLXA4HEYkElHeHscdaC9fYJcisgTNZlMZVoRO8S0VL7V7T39NGuiUIzSCZJycnpH84Xfk3NzsyWiBQEA1dPF4PKqKgs+Ka1rPKbED5bUMs9jti8y1zxwXrl3Zk5nKXMZJaXhTHtFgphdMMHciEomoMr3LxZqgf+3oNBnfkD/SCvF4PIjH4+jv70coFFJepqTo+KDloqlUKsjn8wgEAos2yOaxbC7BiSIpBlpXbMmmZ6nxb9KBy02wjQIugGAwqMph5OLQj5UJIXrHIjtKnWNZq9XgcMwX55Mh4JhzpyFgIVnB6XRidnYWLpdL9W8GsOiz5GtkJUgpUyDbfWeZnr+ZmkBQWbJjEdBO7cmNJSQ9LulUjj1f171UnVrUX7uYe7UrlZKUoYS8Tz2PY7OC1Q/cIAOwbxdI45rxVT1kQujOlN3rdtfWDR87Y0eGoOyuKQ1l5gRIWX45WHWlKj08CjNaMQDaFgGP93q96Ovrg8/nw9atW3Ho0CGEQiG1Vyd7sbKGsFgstqXWF4tFAMCFCxfaBojn0FOtVCqIRqMYGRmBz+drKxUgFRKJRBbFGID2HXd43xu9btXpdCKZTGLLli3K0JExamBhY2IaJl6vF9VqVXkDtFg5yZkQRtagUCio3YBOnDihKCIuco4RhXqr1UIoFML4+DgcDgdefvlltZD8fj8ikYjydunFkGJmVjH32JV1cjSWuCDj8bhiRXRreKOCz5CZ1Fy3HANJj0vjhd4f/5ZG1VI1gp3oRDuBTcgkGHorbFLhcDhQKBTavB49Rsu4PL/vZobf70dfXx8SiUTbmiFkmQ3XBbfUpNyUrWYJOTdoMEunSle+0vDtFLeVG6nwPmUZVbVaRTabRbFYhN/vRzKZRKFQ6EoJ1aorVWBxfaCkdqQ1y2wvt9uNWCyGUCiELVu24JprrlETn94JsLBfn9yLUe5SUigU2lLDKQDq9bpabHzIFO4EPVVppdtZVPx/M3isljXfIINdrDipOR5yXPWyBT3JSCaIyK2bqtWqatZw4cIFZDIZZQxRKEtPid4rWYd0Ot0W55PeJV+nlU2lLpvC8zj5ndmoQu8etdHB9UIKl0ar/JEGqxx7riuZDS6TU5aKx0lFaqdQO1HAci3LpBS5bZx+LkMDxlOFMjiZOS3BtSMbajidTpXnIuuWl5KBso6Y15W/O3mrunEl5QsZEL4HLIw5t/IMBAJd64y2JpSq/oCAhYfIgeQiKBaL8Hq9GBwcRDKZRE9PT5sSZEIBvR4qSXqvctApAHUqivfE+6AFzoFpNBqYmppCpVLB5OSkyiaW1rYsPN7IilQHkwnYl1lum0XrlQuOx+bzeczOzqokEm4cTYZCehGRSASDg4OKjo1EIm30ohTi/Bz+NBoNvPLKK+p9ds5hSUyr1UKhUEAmk4HP50NPTw8ikYjK/GboQDIQHGd6X5upWQDjUbL/Kz15Ga5hHEwaJ3KM3G632jJMbvOlK09pnMp74G+7H65LlsdJ6l9ShLy2DBfJMhE7NmqzgWuCDVdY+ykVFg1Z9gTgWEvGSrI8Oj3LdSxbSUoGk+PDz+NvXXfIuSMZSHksDXomJIZCoY0RU9WtWB2k1jweD1qtlqox3bNnD3bu3Ilms4lKpYJCoYDZ2VnMzc2h1WopZZzJZFSGLwU6g9dsrE6hzQVECoKThLWPnBCVSgWnT59GvV7H3NycylqVGcAbneq1Q6vVUmUwzNKmEqJwC4VCSlFx4c3MzGB8fFxRtf39/W1KVZYxJZNJ7NmzB81mE7FYrG1TA93L7OvrQzgcRqFQwNzcnKp55UKNRqPqs6goU6kUTp8+Db/fj97eXsRiMQBQc6darSKfz7dlqtJDJw26WTwap3Oha5ZUjFJ4yTg4wy6k39kv2OfzqUxOHqu3AAXsFav0fqUcYUyUhg6zsin0KTxlOZVUqsz8Zy1ruVze1EqVBu22bdvQ29uLZDKpNrmQGbf8O51OY25uDk7nfDtPn8+HarWqHB4yB5KeBdCWyc9sXDILjIHKVoW8N8LOIGN+hEw2k3IlHo+j1Wphbm6uKzkRq6pUl4uRAAtWBie+tHwCgYDyTJn1mcvllDsvaSUuFj22p3uWuvUqE2h4HBWCXWax/t02i4AFFgqymbpOpelyuVRWLQUmO1ExW5tlTXKBkp6Vz5ceIRWwPl6kbL1eL2KxGMLhMCzLUhQw55Is7pdeFRPXeE4ul2ujl0lnSWub5Ttyfm0G8PvLtSk9EUIqK0mjA+0xdjtazy50Il9bKuQiaUDeB4UymSvde6H84feQntJmWst20J+xfHYcEyq+YrGIXC6n1q++PZx0puTz1ule/i3f1+eYzlxIpaozE/JvO4a0G1h1TxVYGCx92x8qNVoq5XJZUXPpdFplf2YyGVSrVUxOTmJyclI1COBxko4slUrw+/1qOzJJM9ATBqA6rfT19WFkZATBYBBnz57F+Pi4UgwssZATRS8P4OubAc1mE+l0GvV6HalUCrlcTnWuomJiokO1WkUqlVLN6BmfZmtCALjmmmsQCAQwMTGBl156SQnFubk5eDwetXenXECS1qPSnpycxPPPP49sNotarYa9e/ciEomoLkxcqJwHHo8HlUoFP/jBD/D9739f9ZV2uVyYmZnB1NRUm3FWLBbVd5mZmWmjvDcy6G3Quq9UKkpw6l6ILEWiIUqWietOJhNKD1XPs+Bn8z1Cj5vJhDGufbJM2WxWbfrAsZXxNhqGNNQ2u1JttVqYnJzEk08+iVgshlQqhXQ6rcpsAoEAUqkULly40FZj3tfXhze+8Y0Ih8MAoHabkrKS8pm5ElKGym5sNGil8Wqn6BmKKJVKqNfrKt+Gx/P7sN51bGwMp06dUpt2XC7WjFIF0KZQgQUrVraukko1k8mgUCgglUqhUqlgenoaU1NTKobi9/uRy+XUYFERMh5H70Na0Hrgure3F8PDwwgGg5icnMTMzIxKerEsSw0yv4f0jjejUs1kMmrz91OnTqn3+GwGBgaQTCZRrVYxOzuLUqmEkZERHDhwANFoFPl8HoVCAc1mEzt27MDAwABOnTqFubk5JbTn5ubU/p3xeHxRvI7UEePs586dw3PPPYdsNgu/349du3YhEomosIL0MqlUi8UifvzjH+Oll15CMBjE4OAgPB6Pqn+W81RaxJuJ9qdSJY1mp1Q59yk4aYgCUEqV3iNZCr0ErpNHwt/0TvjZkoHia1SqpVIJ2WwWp06dQjgcxq233ore3t5FSpWKVbIfm2Udd8LMzAyOHDmCUCiklGBPTw/i8Tii0ShyuRyOHz+OdDqNF154AS+99BJ27tyJ173udQiHw21xc7kxCrOvnU4nSqVSW4mLNMh0h0v3OGm4Uw5QNttl4vM+KpUKzp49i6NHj2JmZmZRE59LwZrYpcYO0l2XXTDotbJeSsZxaNU4nU5lDZMalh0+ZDkHF5Okhtxut0pgCYfDylIlrSjvmZ6tbjnZfdfNIGwlfaNToRSoTLGn58BnTo+HFBIAlVQWiURUPCadTqtWlDo9SwVZr9eRyWTaNjBn2EAmJejeEbCQkUrB6nTOtzaksu1Us7rZIBUgsFAew+x65ij4fL6OglGn9uySk5aC3fvyPJkwSCqXORKMs9ldTwpq3UDYrGB5TKvVwuzsLMbHx1EsFhEKhZBOp/HKK6/g/PnzyGazbQyhnVepP0s5XsBCcwidubAzsOQ15HUoC86dO4eJiQlUKhWVY8PjuGFHOp3uWtOWVVOqMlZpN5Flmv7MzIxaGGwHNzIygh07duD8+fOYmppCvV5HNpvF9PQ0LMtCNpuFy+VSlim79rBIP5FIYGBgoM1zJeXj8/mwc+dO9Pb2qlpGh8Ohtg3jcUxompiYUIpfjy9RuDCIv5mFcavVUi0d+bz5zGKxGOLxOAAgnU4DWCixiMfj2LdvHyqVCtLpNJ544ok2YdzX16f2zOVCrlarmJmZUckplmUhHA5jaGgI27dvV0YVjS/ZFDwUCrVt+8VrORwOo1AFaLQWCgUkk0lEo1HlzddqNXi9XiSTSUQiEcUiMV7NZyuFpiyj0GNrukGqC1g7hSzZA8uyVJ4FDS0ASsDq8Vfeo9mIfgGFQkGVvaVSKTz77LPwer0Ih8MqdMPwD9kjNqiX4RJpoFjWQoa2ZJooH+wyhgnJBPJ6vA7nZSaTwaOPPooTJ04ox0uuX7YylQmtl4tVUapyEttZLDI5qdVqqQzPZrOpdqSJRqOIx+NIp9OKwq1Wq6p/J4UiE5larZZS1Mw6lC3oKCDK5TICgQD6+vqwZcuWtiYO7BHJJBx+HoVyp4w0SVNsZnCy6xPX4XCo+jcAqqEDn5vf70d/f7/auebcuXPK6iyXy9i2bVtb83yOzeTkJHK5nKqd9Xq9iEaj6Ovra/NEJXUIQGUPSyq/G7GWjQbSqmRr2GGMnWm4zqLRKNLptDpWxmFlFjWvyZ+LZXfszqNCBaCoQWCeqmbDEcCeTqSnbejfecj2sDR87cA1y4Y5cm3pslA+dxmGkx6j7AMg6X59bsjxIa2cyWTw9NNP44c//GFXnsFKsGqeqny4+gOXGYGMjTmdTsTjccTjccRiMUxOTgKYb849NzensjuBhSxULhj2HGXyEWusZG2jHExSkbSgZOo1ayQpuOv1uvJgOinVldBYmwkyWQCAShgolUptwktmYLI705YtW9TxU1NTyOfzysOVFqjb7VbeUyAQUBuSs0G+pJT0xdnpdYN2MAmMTc6bzflevtI4LZVKCAaDmJ2dxblz59BoNNDb26sMKN1zkALXzju1e53rV54nZQoh6x1LpZKSAcFgUCkLWSnAOTYxMYHp6Wl1jMHKoWfsAp2pW70sSn9fV6r6cfr80D3bq4VV81TpAcqYjG7lkqopFApwu93YvXs3Dh8+jFqthhdffBFPPfWUer9Wq6FQKKgBpOfIHTRYb8Y6SdkVRKefaWUxWE7qx+VyIRKJqHIQJjL88Ic/VLFcKuJL2YR5o6OTpVmpVJDNZuFwzG9szkxB7ipET9PhcCASiWDnzp0oFAp4+eWXMTc3p7oiyYJ9l8uFwcFB1ZIumUyqGJqM29hRSMuVxyxlIG0mRVwoFPDiiy/C6XTi+PHjeOqpp9Q6CwQCts+JtPvQ0JAyflm3qtcsAoupYN2TBRYUJ7OEZaITsDC2lC2NRgPpdFp5orFYTI03KcBisYhCoYDTp0/j1KlTyugzWBnkODE+qscrOYZynGRjFR12ilVeC2hPFJTtD68mVn2TcqD94do9OMY92NCBhdzT09OLBk23Vp3O+X0cqRypLKVHKS0f3VOWBgB3SWFcgfFXYCGVW1IVEptJ2K4E+viTWpKJJTSQOPb0KkgfsomELN9gyIBjFYlEFDvBsiwmPEnhrC/SS42bXixluZ7RbC700ZbJP7FYDNFoVOUrcIy4qTwzPSU1y9j6UrATolLp6iEWfXxlKIcxP8oN5kmwbpo/bGQiE24MVg56/XqCGqHHxjsZrLoC7nSM3d9XG6uiVGUMq5My07l3Wpfnzp1DoVDA2bNnVb0i65CoQOUD7evrwzXXXAO/39/miQJQRfusNZV0IxcTGxfQCqbSDAaDSlgzHsDYC0sz5PeVvzcrOk16Sf+SUudYca/NQqGgxgCY73A0MjKC/v7+NuNHlsbQg3W5XOq6VNx6Yguw8tKnTnT+Zh5friOWyDBLlOPBfTI5hqRhgcWdknThyfdkvar0UnVvRM4T3gPnEt9jfP7b3/42nn/+eRQKBUVlM/ZbrVYxPj6OfD5v62kZzMOOrucYNZtNtcWi3DJRZxv08ZZYbl3ZrWFpqF/tdblqnqpdHMXuRx6fTqdx/vx5FAoFjI+PY3Z2tm2jam5ICyxkF/f19WHXrl0qiaVcLqsymkqlglKphFQqhXq93paQQCuVVC4zkmXHHrlHJBeuVKqdYkObGXYGBnsAs9UdnyWFJZUqny9ZBxbtd/ocXktuqEDjicdcarxbekdmfKEyPgGosZLPJR6Pt4VcuAY7xcfshC3/tzPEAfuNOeghyVZ1rdZ8wlw6ncZ3vvMd23lB6LXzBouhe54SjUYD2WwWs7OziilgdYTd+lvpeuqUqCSZDyrVq20MrZnmD1wcMnlIBx8UPRlanhTCcpB4Hbnbidy1AICyWLPZLMrlsqKHa7UaZmZmALRvISSbh1Op0orVEyP0TEKDBdgtGj05yE6o6pSwjJ/o5+kJEvoitruHy1GuBguwM5w60Xf681sqntbpuKWEK9/XFS7Xp8xoNbh06A6ELvvslOClGrQruRe55q82Vl2pSgXImjC67rK2ybLm+67mcjnU63XVlMGyLFWiQWuZ9WX8YWwHWCjs54NPp9N4+umnkcvlEA6HEQqF4HK58OKLL6r2eey8w1Ielvw4HA6cOHFC1TiRouL73MXBbkIZLEB6FIC9QSItUCaIsX+rHXUkqUfphUgvRlJ69Jz0EITByqDHxXTBxkQ/2WzFLi6qQwppmcgkyy90dotjJ+uP5XXIaEmK0ODSYZeTIJNNL9bBWEnctNO1JPXfqZvSlcaaUKpcCNybUe5EIK0ZNjtvtVoq+UjufCAzNuU+jzKGy8/iNYvFIi5cuKCo5FgsBsuy1GIMBALo7+9XdGM8Hm/zeM+dO6faYbVaLfV5zECVpRsG9tCVqpwThK4sJTotMFk0LmNwdtaznVIwWBn0Z6eXqfE9O6bIzptdblz0c6i05RhL6N14uDZN7Wn3oK8ZOQ8uVqFeiqzU47MyZ2LTxFT1eCnpWW4RxJKVcDiM4eHhtm2ipJKU+6dKWke2TEun0yoeyl6vPIexNlLLTJunlcP9PPk/B4ixVdlphb0kAbQpcJnlaGAPXanaKVRiqfeWogntjrW7tvSoDJaHTqnb0b9ca7JcSRd8eqyb0IWkXSapvsZkPF4atrriN2PcfZANYPc63ZCSx+m08Urpf2DBK7Vb46sZfltVpSofSrPZVH1Zi8Wiara+Y8cO3H777QgGg8jlciqrkItEdjUKBoPw+/2o1WqYnp5We3qePXsWlmWht7cXPT09Kp2f9Wj0SrmrAQD1mmVZSCQSSkHL8oBwOIzZ2VlFS1FZAwslAnJRmwVsD7IMst+vvmBkzFr3XuxiajxWF9j6cZLmpUJlnXI3NizeLNCpXF1YsmyF2bVyXdgpSBkKkNcF0Ebby/mg737CazEkROhxVaKTB21w8WC/7mAwqEJl+jrUFa383UlW6vSvdLDkNclGrMYaXnX6F1h4ULJ5Ah+Wx+NR/UOZlCStVi6WVqulOiYxsw+AyvxkDI7XlYteeka8PpWqbOosIROfdGpSF/oGy0On/JaigeyoJp0utPu7k/LVXzMx1cuHXVKKDNHoXqpUxrpitrum7h3bQSppu2uatXllQMOGjI++jpYaW7vxtGNBlmOkVjOMs2pKlYtMxjf8fj8CgYBKHKDXyHIZNmiWi8ThcKgaVCYuNRoNZDIZzMzMKErXsuYbasfjcRUfDQaDqFarGBkZQSQSUffG7cVYGkAqQ1o+mUxG7aPZarWUMUDr1+PxKOXMJCZj/dpDj7etJOZJkF5f6tq6xyuvKakphhBkZy+D7kCyS/JvGqe6Z6v/L1/juOljKpNU5N/yOhToZueZKwvdOJVlNJKCB9CWIyHHmJAGlJ0B3UmhygqQq4lVa/4gO+WwdRmb5TMZiUqVFk+1WkUmk2krGmfbQSYdSKU6PT2NSqWilGNPT4+6Jne7aTQa2LZtG2KxmPJIZZsyZvLyh54xG4TPzc0ppUqrjIqBNa6mGfvS0BeBHmuxS4Cww1K0kXxfp4r4Hl9jvNwo1e5C765DRcguWHZGp/Qw5Y9eh2pZVluIxc7YkmNs50UtN38MVg6dYrdjl2Qzj6WevZ1C1aHPHyrT1ciNWHX6V68flUKTipXtw7ill1w8ep9PAMrTtVuI+g4kPp8PyWQSPp9PfQZpaN6D7AtKCll2XpEDyu+gK1iDpaG3jVwKescqHdLz5DV1GBpw9aDTvXoyH+eC7oHI2Le8Bl+3W+8UrHItLlUPb9ik7qPT+rvUdbeS6206+ldaMaRWZT9eiXw+jzNnziAQCKjSFwBq43BCJgWxa1I0GkWlUlHWSm9vLwYGBlQ5TrPZRF9fn2ruPTExgQsXLmBubg7nz58HsNBCj/Fc7sjBfTuz2azqC0qvlkqZwsLQTEuDz83r9bZRRcBiwcr/l6J8pZCVrAhfW26x6Y0oDLoLGspc/7qB1Km+UB97afBSpliW1cYa+Xw+FY7xer2wLEvJG7YfNeg+JItgt4Y70bx27JGE3XmdPGGGFa/2GK969i8VkN3iAuZ3Kpmbm0OxWEQ6nVZ7qwILdA2VFhcjt2NjrJUKj80bqMCbzSZisRh27NgBr9eLkydPqnvi1lQsBeCOOqSm5c44rKnlQMofJknxOxsshmQrZBMGPf6px0btsjVXwgx0WtDyWkahXjmQgZLdzoD2rG3dwNbjsNLTlQ0gALQlEJJxYvgGQNv6NGvy6kE3bHXj+WLHQk9slJAG26agf3WKhr/Z3IG70lDh+v3+th9goWEyEw64iwwApeQYpw0Gg7AsS+1U0mq1MDk5qepho9Eo/H4/MpkMMpkMCoWC2ni5Xq8jn8+rHWm4K42cBFzwMimJAyoFh+khOo+lEgzsjrP7fyX0badEJ/39i6WN7O7foB16/MvO4JQ0r07v6kwFvVLd+NG7JVFuSK8VWOiYJQ1xO4G7VNzOwB524+D1etUWgLKDnX6OHexiqHbn28kAGRJYylm7kljVTcr5w4deq9WQy+VQLBbhcDjg9XoRDAZVM+58Pq9imVR0sqkD6wu5SwZpWy6i4eFhBINB5PN5HDt2DGNjY9i1a5favPrMmTM4d+4cUqmUqjctl8uYnJyE0+lEJBJBNBpVAoJgAgaTotgUQiY3kZ7e7Iu2UzxkqTiXHitbKkaqLy69S5MEhbQe+9aTpQwuDXKuy97Z/JEZoXIM7NgCGq1SqfK3/ppU2PIzeEwndsyM96VBV450YPr7+5FMJuH1etve0w0iO4/TTrECsFWyUi7IjnrcRWy5LQW7jVWlf3VvVdaFAgsuvFScHCAKYPLm3LnE7/crLp+LhovM7/erB8ySm56eHhQKBXg8HhUnlX18W62WonB9Pp+irbg4JRXF+5cTQhoPZtF2xko8z25+jp1Q7nQ/BpcPrgXJLEn6XhrXdooSgFp3do1UdOFspywZp5VGnBnn7oNOh9/vX7R3NWE3vktdr5Ni1d+X761W2dSqJiqx8X0oFFKJR1SqtCa9Xi/C4TCCwSBisRhKpRJcLhf2798Pn8+HQCDQtgUYY6vFYhG1Wq0t+y8YDCIQCKj9UyuVioq/ut1uxONx1Ot1RKNRpFIptRF5LpdTnZTkoqYn6vV6lWAgdS3pLvYzNvsxLg+7BbDUgloKOiUlz7ezlHkchb5B9yDLWGgAM/lP1qsDi8eIf+v0L6EnMMnx05vFNBoNBAIB+P3+RZ2WDLoHynXSv0Sn/JKljGq7eGun/2VuhWwmdDWxakqVE1/ui0kvUSo6n8+ndo+Jx+Mol8uIxWJ41atehcHBwbbFWCwWVXN7bkDOMhpggUJiW0Mew4efSCQUPZzL5eDz+ZDJZHDhwgWVRcykJ3rIVKoA2nbDAaCO8Xq9qiRns9O/K4FOAcoFY/f8lvJa7JSwFNQ6JS+9KKNYuwedVWISoVSqrDWX4ycVqaQZO9HAZKikV8vzaEQFg0GEw2FlKMtrGs/18kFWj3KbcW09pGLncXZSrkuNjd01mWOzGk1c1oSZptOnrVZLpcIHg0EVg/H7/cprpdcJLObfZYxGbobMBaovVP5wn9Rms4lkMolmswmPx4NcLqeuTW+TC9TlciEcDsPn86FcLqNUKilKWHqnZrEuDTvPo1uwW3R8fakYr0F3oYd7GO/UQyTSoJLhFbtyC12p6g0HJJgMKT9PhzF4uwOZI7ESdFqHS42HroB1Y7pTi1n9/G6P+aooVXptbGJfKBTgdDqRyWSQy+Xg9/uxfft2RCIRXHvttdiyZQsCgQACgQD6+voUJWxZlkoOqtfryGazquSGDR64Gw1jo+zKRI+S91AsFpUF29PTg5GREViWhZdffhkPP/wwpqenMT4+jnPnzilq1+FwIBKJYO/evfB6vTh79ixOnTqlPiuVSqk9Xg3mYWdx0qCSOwHZeZh6IkOnGI3MIpXXl8cBC023pRDX94A06D6kwOXYyOfNsdWZiU5xON0g08+X80HmaKwGNbgZwGe+VDKYXdhFv4adnJDHdlKqrVYLpVIJzWYT2Wz2qu+Xu2ptCumR1mo1lMtlOJ1O5HI5pNNpuFwu9Pb2YsuWLRgaGkIikVCeKlsS0pMlnctGDLlcDk6nE6FQCF6vV+2O0Ww2Vcck7kZD75WdmkhX+P1+DA0NIRaLIRaL4ZVXXoHT6cTc3JzKCqZR4PP5sHPnTkSjUTSbTVWqQ2WtbxlnYG8ZSgbBbsGtJJFpqUWqU8nSY5IMhHzP4MpAPnv5A7R3w5LKEbg4NkNnrhhykvSwqVO9cpDJYPrrwOL2k8RSSUh6GEi/prxurVZTLWKvdi7LqjbUp0LL5/MAoGKcrVZLUb3MygXmG0FIBeVyudT2brVaDbVaTbUs5CKSngu5fXZUId9eLpfVlnKlUkllCdfrdeRyOQCLtyNjk/5QKIR8Pq+SmohKpbJoxxtmFW92dKJddO9wpTEVu+Pl9fQ2lnaQgtsI2isDXYl2ommXq+deiUJdKu6+VPnWSq5vsDz0Gn2585hu4Eos99pS5+kMhTSOdSpZzrsNQf9S0QALu70AC/skNptN9PT0YOvWrfD7/cjlcigUCm1eDAeHDRyYnETFRvpBWqtsU9ZoNBCJRBAKheBwOFRzfPYYDgQCSKfT6O/vx8zMjNqCjkq1VqshlUohm80CAAYHB1VyEwdKv2egPRt1s2KpZAM7z+ViFauEjN3xfEkFy+vqlLNRrN0Fx0F2z2L2rxzXTgpVj5fJ69oda9f3WXpPTDLU47Rm3LsD+YxJA7PbXScZ2OnZ6+zFcnkR/F8mHC6lQJeL3V4sVtVTBdAx5shuSE6nU2XNEmwdyGxb0q1SKRM6tSQHm/RPpVKBw+FAPp9HoVBQW7oFAgGl8CkQJL1A6rpYLMLj8bRx9+wOZXDxkNbm5VzDTkF3WjxLeTYG3UGnePjFoBuMAlmspeJ2BpcHaUR1ongv5ZorOYbspJ0MuBrjuyayf3Ww1CYYDNpars1mU3VeIoVMT7VcLqu60FAo1HYeHzQTlVhXmslkUCqVVMxVWtBAewxI3iPLdUgnU1k3Gg0Tk7sIyAUILC7k15//UhSRHneRWaF6j9ilYIRrd6HHTO0EHiHHWqfudYNLj7vqsPNq2frU5/OZRKUrAK5X9h6Q67BTvkQnpbdSw8kutEAniqVcVysEt2aVaiAQQDgcVgFnGWxuNBpIp9PIZrPKI2w0GsrLdLvdKJVKCAQCahcc+cBzuVybUp2ZmVEPvdVqKe9YUki6UJc1d1SqjNMybd9g5dAXlpz4sgSiEz0ohTXRierRj5HHGYr+yqOTMiVkDI5Urq5Y9b8ty2pbr/pckkaax+NRPcFN84crA9bnezweW6Wqx7ilYWS3/pZa+3YKlXJcymmyoptSqZLKZYN60rsySYhepd7Xk14i+Xs9cK0vZlLIPI+LkyUeAFQWcSgUQiKRaGvkH4lEEIvFEI/Hkc/nTfuzS8DF0IKdFhfLMuxoQRljs8suNLj6uBgPRP69lEDU1zrQ2bAyZVNXFjJ23ukZ6+vdbvx4LXkM0Hlc7a7Pe7Ezzq6Egl2TSrVarWJiYgIvv/xym6fK0pdarab2MWXTfXqX3GRcBqt9Pl9bfRoHmwqbGb5sKMEt3TKZDFwul6pZTSQS2L17N6rVKvL5PCqVCrZu3Yo77rgDPT09ePjhhzE+Pm72abwE2MU/5eu6NQssXliNRsM2hV8mtumsg1TE0jhbKpniasZnNhKWonyl4SM3oacC1D1WO+OpEyUs91sFoGQBExkNugvLslQvgUAgoAxhO+aP46uvv6XGltBpZJ3dAhbkfygUUr3d9YY8GyL7dznU63XMzc1hYmJCbWhMepe1n/RkY7GYatrMYm4pWMntM45CpUlvltnDHEjucsMap2g0it7eXvh8PiSTSezcuRPVahWTk5PIZrPYuXMnbrrpJiSTSZw9exY+nw+FQsEs1ouE9Bz0uNlS0CkjLlL+TTCBTdYm6skM8porWWhXytLd6NAF5FLCVCYHrmTrRHltSTXKMZaxNmP8dh+WZbXFrTmGAGwVn53HKo+R42Y3B5byhNmukJ3y7Iz2bmNNKlUOiuzbKLeIYkzT4XCoDkgyfZrNH9jeMBwOq10T/H4/CoWCarpPpQ0sdOORCTPcjq5SqbTtYkNFn8vlcO7cOWSzWUxPT6tYrBG2F4dOniqw4MXYLSq54ADYps/beajy2vy9Ek/VYGWw8xwY3+rUvo5jw9CLHQ0ow0B2VOFS0O/nYs41uDhIx0ffuMKOYSL0cZU7luljL4+ViluCivVq7lizJpUqt2lj02sGl1ky4/P5MDAwoBRnMBgEAExNTWF6ehpOp1M1jpDK2efzwev1olaroVQqYWpqqk1gx+NxtZMGMD/ATH6yLEuV0ciSnvHxcXzve9+Dy+XC8ePH1e44ZkNye+hUK7DQxF72abbLFOykUGXsRvdOeb5sBCINNf26nA+dDCM9q9hgMewMIxq1gUAAXq9XtYcE2j1Uy7JUFzJpPPM9MkySwuvkdXAsdU+XgtbkPlwZUFazD3qtVoPH4+nYh5cs0lJZwbJHu51skOtWgg4at+3ctEpVeqqyPIUZusFgEMlkEtFoVO140Wot9PalUvV6vW2JQ7L0hW0LCRlb0weSiUz6LjTAwibmzWYTqVTKtCW8RHSKtQHLxzzsvFA7Wlj+XgrLfZ4Z25VDUvmyr/JSrINdhqjd+/r1lwoZ2AlsgysH2cu70xaL0vvsROvaGeHAYmZJN4zlGEuqf1MpVcuy1A40g4OD6O/vR29vryqZabVaSiF6PB6VnERKiaACpMKU1gsf6uzsLMLhMLZt24ZSqYR0Oq28VXZZYftEJiXV63WllB0Oh9oDVm4zB6CN7jBYDD3mBaAt7kF6sNVqqdgoqUO72JhMdgDavRNZlyrPkXE6WtXyvkxWaHcgBR89F5/Pp1gey1rY+AJoz/LUY6FSgMq4uD6uANq2fqtWq2p7RzJQrCdfjW3BNgvo7DCu6vF4VMIgALWnLV+z81R1yPkknRcymVK5cj6wNDMWi6mdyORnXAk5vWaUqtPpRCKRQH9/P0ZGRjA8PIzh4WG1C02r1UI8Hkc0GlWLhfshcpNwAKp5A/c+rVarKJfLikau1WrI5/OIxWLYs2cPZmZmVKyUCtrhcKh+w8ViUcVKE4kEenp64PP5EI1G1abpMzMzbcKDitXAHnrMk9Q8Fx+pQRoqTEKTbQepSPX6VFncbZcIodO/FN5c2LIm1ijWS4Odx1iv15HP5+F2u1UpHLda1CEzvWWHNDmuMhmNc4I/NH5brZYKx3C+0DinAWeUavdBYykUCiEYDCrlKkNt0WhU7TS23Obzdg3xZSlksVhUZZc8loZTtVpFLBZDT0+PMq70e+22cl0zSpXgYpQ1qrKhvswEZgkNhSO3jiOt4Ha7UavVVOclLtJqtao2Ry8Wi8pzIdVrWZbaOqhYLKqG/Rw4Dh5/M9mJG6xfjQLjjQY9ZqLTQjJRTQptaZkC7RasLKPREx/kufpYGXrw8mGXjFKtVlEqlZDNZjE7O6vyF6SRJBNL5DzodF09aUUaRrIfuBzrbDartom82tuCbRbIFrLlcrnNSKLTw/HWew0QnXIrgAX9wDBetVpdNF8sy2prXXu1HJ01o1SbzSYKhQJmZmbgdDrx3HPPIZvNolAoIJVKodlsIhaLIRwOo1Kp4MKFC8jlcqpOFZhPVJqZmQEAhEIh1cS5XC6j1WohGo0iGo3C7XZj27Zt2Lt3L44dO4aXXnoJ2WwWqVRKLWrSUqStOCC0cgEgm82iWCxiamoK5XIZ58+fx9TUVJshYNAOu8VTLpcxNzeHer2uklm4WFj+1MnC1P+2S2DQj7M7luNLb1nSkgYXB7sxzufzOHv2rNp16siRI2p/ZHo0sVgMHo8H4XAY4XBYhWMofEn7SiFJQ1bSgJKVmp2dVTtZpdNpVCoVzM3NYWpqCqVSCWfPnl2tx7Rh0Wg0MDk5iRdeeAEej0f1CWBTHwCKmZIg4wCgLWFUV5RA+xyTFRdcx/SOs9ksxsbGcObMmbZ9tPVrdBNrRqm2WgvbqblcLoyNjaFcLiOXy2F2dlbtLBMMBlEoFHDy5Em192ogEIBlWcjn82obNr/fD7fbrbxIy7IwPDyMoaEhRKNR7NmzB0NDQ8hms6pfby6XU8dK+o8eUiAQQDQaVZZvPp9X9HC5XMbMzAzS6bTxVJeB/mxYtsQxZN2wjFXLc+2Upl5z2snb1F/n2Mq4rN3mygYXB32M2ZcbACYmJlRewu7du5FIJBCPxzE0NAS/34/e3l5Uq1W43W4Eg0E1HgCUB0qWiNQfcy+4Ltl1bXx8XHmm58+fV5tlzMzMmNyHKwQmbZ45c6aNppeVHLKfgFyvXHc0bAH7Ejc7Q1seEwwGEQwGkcvlMDk5icnJyTZ5YnfNbmHNKFVCz+rq9MP3gQUvg3SfvliWqnG0yxjV74e/O9GFne7f4MrCjgrULdmlaFwzTqsDriW9RILv2a05u2sst16lfNDXr1mnVwdck51oeolOdK/dWHUaP9mulMddbVgtM7MMDAwMDAy6AsNvGRgYGBgYdAlGqRoYGBgYGHQJRqkaGBgYGBh0CUapGhgYGBgYdAlGqRoYGBgYGHQJRqkaGBgYGBh0CUapGhgYGBgYdAlGqRoYGBgYGHQJRqkaGBgYGBh0CUapGhgYGBgYdAlGqRoYGBgYGHQJRqkaGBgYGBh0CUapGhgYGBgYdAlGqRoYGBgYGHQJRqkaGBgYGBh0CUapGhgYGBgYdAlGqRoYGBgYGHQJRqkaGBgYGBh0CUapGhgYGBgYdAlGqRoYGBgYGHQJRqkaGBgYGBh0CUapGhgYGBgYdAlGqRoYGBgYGHQJa1Kpjo6OIpfL2b5344034vvf//6KrzU1NYX+/n684x3vUK89/vjjuO222xAIBNpeB4Cvfe1riEajGB0dxejoKO6444629//t3/4NN910E/bv34/rrrsOjz766IrvxcDAwMBgY8O12jdghyNHjnTtWr/yK7+Ct73tbZidnVWvDQ4O4vOf/zyefvppfOc731l0zh133IEHHnhg0evj4+N4//vfj+985zvYt28fKpUKSqVS1+7VwMDAwGB9Y016qpZlIZ1OAwAeeeQRjI6O4sCBA/jABz6Aer2+4ut89atfxY4dO/Da17627fXh4WHcfPPN8Hq9F3Vff/Znf4b3vve92LdvHwDA6/UiFotd1DUMDAwMDDYu1qRSJarVKt797nfj3nvvxXPPPYf3vOc9eOaZZ9T79913H37v937P9tyXX34Z9913H/7wD//woj/3hz/8IUZHR3HbbbfhG9/4hnr9+eefR6lUwl133YXR0VH8+q//OgqFwsV/MQMDAwODDYk1Sf8SL774IlwuF+666y4AwJve9Cbs3LlTvf/BD37Q9rxWq4Vf+qVfwp/8yZ/A7/df1Ge+7W1vw7//9/8egUAAL7zwAt70pjdh69atuPXWW1Gv1/GDH/wADz30EEKhED7wgQ/g93//93Hvvfde+pc0MDAwMNgwWNNK1Q6WZS17TDabxbPPPot3v/vdAIB8Po9isYg777wT//Iv/7LkuclkUv29b98+vPWtb8WPfvQj3HrrrRgZGcHo6Cji8TgA4D3veQ/+6I/+6DK+jYGBgYHBRsKapn+vvfZa1Ot1fO973wMAPPTQQzh16tSy50WjUczOzmJsbAxjY2O499578aY3vWlZhQoA58+fV39PTk7iX//1X3H48GEAwHvf+15873vfQ6VSAQB85zvfwfXXX38pX83AwMDAYANiTXuqHo8H999/Pz70oQ+h0WjgpptualNi9913H8bHx/GpT33qoq57/Phx3HnnnSgWiyiVShgeHsZv//Zv40Mf+hD+9E//FN/61rfgdrvRbDbxm7/5m3jDG94AALjttttw99134/Dhw3A6ndi/fz/uu+++rn5nAwMDA4P1C6vVarVW+yYMDAwMDAw2AtY0/WtgYGBgYLCeYJSqgYGBgYFBl2CUqoGBgYGBQZewZpXqE088gbe85S3YsWMHbrjhBhw+fBif/vSn1fu33367bSvBpZBOp/G+970PBw4cwKFDh3DgwAH89V//NYD5nr96H2B5LyzPscP3v/99/OM//uNF3YuBgYGBwcbDmsz+PXr0KN785jfja1/7Gt72trcBAObm5vCZz3zmsq77//1//x96e3tx9OhRWJaFXC6HiYmJZc+78cYbcf/999u+V6/X8f3vfx/pdBpvfvObL+v+DAwMDAzWN9akp/rZz34W99xzj1KoAJBIJPDHf/zHl3Xdc+fOYXBwUDWQCIfD2L17t3o/n8/jPe95Dw4ePIgbb7wRp0+fBjDviY6OjgIAxsbGEIvF8MlPfhKvetWr8Cd/8ie477778Fd/9VcYHR296PIeAwMDA4ONgzXpqT711FN417vedUnnPvjgg3jwwQfxla98ZdF7v/Ebv4Gf+7mfw/33349Xv/rVePOb39ymuB9//HEcOXIEO3bswH/+z/8Zn/3sZ/GlL31p0XUymQz279+Pz372swDmaeV0Oo3Pf/7zl3TPBgYGBgYbA2vSU9Xx8Y9/HKOjoxgaGsKxY8eWPPbuu++2VajA/JZuZ86cwX/9r/8VsVgMv/Irv4Jf+7VfU++/+tWvxo4dO9Tfnbo3ud1uvO9977vEb2NgYGBgsFGxJpXq4cOH8dhjj6n/P/e5z+HIkSNwu92o1WqXde1gMIi3vvWt+PSnP43/+3//L/7yL/9Svefz+dTfTqez4zZzgUAADseafHQGBgYGBquINakZPvGJT+DLX/4yvv3tb6vXqtXqRe2laod//ud/RiqVUv8/+eSTuOaaay7rmgAQiUSQyWQu+zoGBgYGBusba1KpXn/99fj2t7+NL3zhC9ixYwduvvlm3HHHHfjVX/1V7NmzRx13zz33YHh4WP08+uijePDBB3HPPffYXvfo0aN43etep0pqHnzwQXz961+/7Pv92Z/9WRw5csQkKhkYGBhscpjevwYGBgYGBl3CmvRUDQwMDAwM1iOMUjUwMDAwMOgSjFI1MDAwMDDoEoxSNTAwMDAw6BKMUjUwMDAwMOgSjFI1MDAwMDDoEoxSNTAwMDAw6BKuWEN97gRzpRGJRJBMJuFyuZDP51EoFNBoNFCpVFCr1TrehyzPtTvGsixYlgW/349EIgGXy4VMJoNUKoVms9nV77BeS4Wv1hhLuFwuuFwuDA8P4xd+4Rdwww03oNFooF6vo9lsotVqodVqodlsolgsolar4cUXX8Q///M/Y2ZmBoVCAYVC4ao/czPGi69l90xcLheuu+467N27F5FIBHv37kVvby+q1aoat3g8jlgshkKhgCNHjuD8+fM4d+4cnnnmGeRyucu+h0uFGeOLR09PD173utdh586diEQiGBgYgNvtRrVaRbVaRavVQq1WQ7PZRDAYRE9PDxwOB55++mk8/fTTyGazOHnyJKampq7K/a5kjNfcLjWWZS1SeBx0Ckyv14uenh4EAgEkEgkMDQ2pvr0OhwPFYhHj4+PIZDJwOBxwOBxwOp1wu93wer2oVCqYnJxENptFLBbD0NAQvF4vms0mGo0GgPmm+S6XCx6PB6FQCA6HAxMTE7hw4QLK5TIymQyKxSKazSbq9fq6XVDrCU6nE9u3b8f27dsxODiIXbt2YWBgAOVyGblcDo1GQy1Gp9OJ3t5epYTr9TrS6TSOHj2K5557bsUtL/X5aHBx4PqVz3Cp5+l0OjEyMoJbbrkFwWAQfX19CIfDqFQqSqlGIhGEw2FEo1EAwM6dO3H06FGcOHFiWaXKz6ZMkbLF4OqB65KKsr+/H9FoVClVaSjXajU0Gg0liwGgr68PW7duRSqVwvnz51f527RjTSjVpSwly7LgdDphWRYajQaazSb8fj927tyJ3v+/vTdrjvM8rsfP7Pu+YAY7SICrSIqUKEvyothO7MSpSlVylXyNfIJ8FN/mIpVUpcpJVBXL+VleJFO0SIEiwQU7Zgaz7/vyv+D/NHpeDihagmiJmK5CicKseJ/3ebr79OnTsRgSiQQuXrwoDjYYDKJcLuPjjz/G3t4erFYrnE4nrFYr/H4//H4/qtUqPv74Y2xvb+Ps2bP4i7/4C4RCIXQ6HXQ6HZjNZrjdbtjtdpjNZlitVoxGI2xubuLhw4eo1+t4/PgxMpmMLDyd8dRe3PS6v1AEaLXitddew49//GNEIhFcuXIFs7OzqFaryGQyaLfbGA6H6HQ6sNlsmJubQygUwuLiIs6dO4dGo4F//dd/xYMHD17IqdIhmEymE0cnToOZTCaYzWa5fi9yDa1WKy5cuICf/vSncDqdcv07nQ7q9TqGwyHcbrcMtVhbW4PJZILb7cb777//whmLdq7TNf5q9qfuY5PJBLvdDpfLBb/fj9nZWSwtLYlTtdvt8l7cz/1+f2yd5ubmMBgMkM1m8eDBg6/tb/sy9o1wqtpGo5FklmazWS4+AHF6DocDbrcbPp9PolaPx4NQKIRwOAyLxYJgMIhKpSKvt1qtCAaDCAaDcDgcCIVCKJfLCIfDiEQiCIfDaLfbaLfbMJlMcDgcsNvtY5Gs1+tFKBSC1WqF1+uF2+3GYDCAzWaTiKrX62E0GmEwGEyj3y9hXHuTyQSbzSZIg9lshtPpRCgUQiAQgM/ng8vlEkTBZrOh3+/Dbrej2+3CZrMJMjEajeDz+WA2mxEIBBAMBtFqtQQuZlDEdfuiAGmavX41s1gsssZWq3UMTfJ4PPD7/fB6vbDb7WNrRDTJbrfLvcG9HQgEEA6HUa1WxYHzdfwhoqQd/J8T+jwNZlxjrpvb7RanarPZ5LznDwMyrqPZbJa149ngcDjg8Xhk7fW69vv9sT3N37+Mffu1af9+lZvV4/FgYWEBwWAQyWQSFy5cgMViwcbGBp48eQK3243Lly8jGo0iFovhzJkzcLvdiMfjiEajqNfruHv3LtLptFx4m82GSCSCSCSCZrOJzz//HOl0GslkEpcvX4bH45F6W7/fR7vdRq/XQ7vdRr1elwPbZrOh1WphfX0de3t7cLvdiMVisNls2NrawsbGBtrtNgqFgkBRGgKbdLm/rQf0SR9IZrNZ0Aav14uVlRWEw2F4vV5EIhHY7XaEw2GEQiH4fD6sra0hGo0K/Nvv99Hr9QT+DQQCcDqdqFarODw8RKvVws7ODnZ2dtDpdFAul9FqtVCr1ZBKpdBut5HP55HNZscOXeP6fBnI8LSusfHeN5vNmJmZQSQSgcfjwezsLAKBAAKBAGZmZuByuXDhwgWsra3BYrHI+xAOHI1Gsg+JYpnNZqTTaayvr6NWq6FSqaBSqaDT6aBYLKLRaKBarWJ/fx/NZhP1eh2VSmWsBn8S63Na13iScV1cLheSySR8Ph+i0SgWFxfhdDrhdDpht9tht9sRCoXgdrvh9XoRjUZht9vh8XjgdrsxGo3QarVkb7daLQwGAzmre70eSqUSms2mlOW63S4ODw9xcHAgZ3G1WpXy0FdBJL6VNVUAcDgcWFhYQCKRwOXLl/Hee+/BZrPhgw8+QL/fh9vtRiKRQDgcRjgcRiAQgMvlQiAQQCgUgsPhkDqp0+mUaCgWiyEWi6HT6cDn86FUKiEQCCCZTMLhcKBaraJaraLT6SCXy0m0U61W0e12sby8jLW1NXQ6HQwGA7jdbkSjUVy8eBEejwe///3vZQM3m01xqnr26rd1470MM5lMQlaIRqN4++23MT8/j1gshqWlJdhsNhweHiKXy8mBOxwOYbVa4fP5njkgeVhwE7bbbaysrODKlSvodrtIp9Mol8vI5XL4/PPPUa1W0e/3kc/nX2pk+yqb0WGZzWaEQiEsLS0hFArh6tWriMfjSCaTOH/+PJxOpyBSw+FQ9g4hQ74H35sw/tzcHC5evAiLxYJ0Oo10Oo1ms4nt7W0UCgVkMhmYTCZUKhVks1khNE75EF+PsWzmcrkwOzuLeDyOlZUVvPHGG/D5fIIktdtt4b+MRiNYLBZZZ6fTKdlpv99Ht9tFvV7HYDCAyWQSNOPatWsIBAKoVquy7g8ePIDb7UatVsNwOES32xUk8eu2b4xTZV3E6XQiGo1ibm4Oc3NzCAQCssmq1SrK5bJAACQnNZtN9Pt92Gw2jEYjNJtN5PN5FItFufCj0QidTgftdhutVgvFYlEcp8/nQ7/fR7PZRKvVQqvVQjablWwzm82i1+vB7/cLo5S1VEKHdLKMtvP5PEql0sRD5aQi41fFPB4PgsEgbDYbkskkYrEYgsGgwO/9fh+NRgNWq1UykV6vh3q9DrvdLqQHnRHpWkyj0UCtVkOn05EaO52m2WyGw+FAOByGw+FAv9+HxWKRrLVer8v7Ac8S56Z2vNlsNgQCATgcDoHoHQ4HlpeXsbCwAK/XC7/fLxDuYDAY21u0SYxdHfSQIUo+xGAwkEPd4/GI81xYWEAoFILf70cwGES320W1WkWr1Ro7sKd2vD3v3mdiw/1ot9vh8/kEmXC73ZJtapiW/7ZYLHC73XA4HLBYLOh0OrK2PGN14DwajWAymYTA1mw2pevD6XQiFovB7Xaj1WrBbDaj3W6jXC6j0+mg2+2i0+l8LdfoG+NULRYL5ufnsbCwgNnZWfz4xz/G8vIyms0mMpkM6vU67t+/j3v37iEej+P69euyMfb39zEajbCzswOr1Yp2u439/X1UKhXE43Gsra3B6/UKvl6pVHD79m1sbm5ifn4ew+EQPp9PIIVyuYzf/va3ePLkCer1usCBzWZTGIe1Wk1ukEqlgn6/j0gkgnfffReVSkUgpl6vh2azKRudGZbx4HjVbdJmpINaWFjAO++8I7Vxr9cLm80Gr9eLwWCAcrksGyeTySCbzcLj8cBisaDRaIyhDbymnU4H2WwWlUoF+Xwe29vbaLfbSCaTUqth/dvn8+HSpUtjdbhSqYT/+Z//wd27dwU24ndnYDStrT7f/H4/bt68ibm5OTlcyWcIBAKSlZCZXy6XBTbk/cJ6HHB0v+h9w4O20+kIMtRutzEYDGCxWJBIJBCLxbCwsIDV1dWxEkGz2cS9e/ewt7eHfD6Pzz///AvZw1M73mZnZ/Hmm29KIkOYN5FIwOv1ot/vo1AoAAC8Xi88Ho+sB5Oq2dlZKdkUCoWx/cX9SkfL/2fyovd0MBhEPB5Hr9fD0tISisUiyuUyNjc35UxPp9NfSxD1jXGqZrMZPp9PGL2Li4tYXl7G/v4+Dg4OUC6XUSqVUCgU4HK5JFNlhKkzR90ywxqo1WpFq9WSmko2m0UqlYLdbkelUgHwNOMlbJvJZLCzs4NGo4FcLidMs1qtBovFMkZI6nQ6sFgscDgcQqBhPQ8Yr8vpA+K0G8kIfr8fS0tLkp2yXma1WgX6YWBSKpVQLpfR6/VQrVYF3dD1NTo8tmHU63XUajW0Wi0EAgF0u10ARwey3W6H2+2G1WqFw+EQpOHWrVvyXbjexlaMqR1vDocDiUQCS0tLgj45nU64XC54PB6B5RhwdrtdWXdedyOhyNiaQxKKJiLxdzyoeU9EIpGx17OvnWeHzWZ7uRfoFTLCsfPz83L2kewZDofhcrlQqVSk9Y2EJE0uslqtQmCq1+totVoAIM/V5E+iD/1+X5AGzTb3er3iVE0mEzwej3wHi8WCarX6te3hP7tTdblc8Hq9cDqdiEQiCAaDGA6HuHXrFh48eCCOymazIRwOS39aLBbDzMwMBoMBdnd3Ua/XUS6XUS6XYbfbEY/HMTs7K9FQo9GQRWy1Wpifn4fL5YLP55NWDELDo9EIN27cwIULF7C/v48//OEPqNfrmJubw+LiopCemKU+fPgQrVZrbFGXlpawsrKCVCqFDz/8UKj+jIz0AX0azev14uzZswgGgzhz5ozAQ6ydMKu3WCxjjE2bzSakhmAwiFAoBJvNhmq1OgbV9vt9YXx3u10EAgFhCrNeR7ifEDKjYG7Y5eVl9Ho9FItFPHjw4BkoeGrPmtlsRjQaRSgUQjKZxJkzZ7C8vCyQHh2pvtZ0gLp1jvuEe4QHK42HqyYb8TWa7dnv92Xf03Q2PDMzI//+9NNPX8YleqVMZ6IkFhJF4p7SxD+bzSasbpbtms0mut0uPB4PCoUC3G63cFtYXmN93Wp96rK63a7UYTV87HQ6YbFYMBgMUCgU5Cyw2Wzw+/1YXFxENBpFt9vFwcHB2P1zUvZSneqkfiav14u5uTl4vV4paFerVbz//vsoFAp4++238fd///ew2+1IJpPSAjM/P4+VlRUhBhUKBTx48ABPnjzBzMwM/umf/gnXrl1DvV5HoVAQdlitVoPNZsPa2hquXr2KarWKVCqFYrEosJDP58NPfvITLC8v4/bt2+h0OkilUlhdXcWFCxfgdrvlwP/oo4/w7//+73j48KFAGTMzM/jnf/5n/N3f/R0+/vhj7OzsoFqtSt2H1+I0OVVjEBEMBvH9738fa2tr8Hg8CIfDMJlMKBaLqNfrUvvkBqFTZZ0mGAwiGo1iZmYG7XZ7jFhGh8p2q9FohGKxiGazKYhFv99HrVZDo9GAy+US6JjrMxqN8Nprr+HChQvY2NhAKpUSpzqFfI83q9WKxcVFnD9/HolEAlevXsXCwoKwrFk3ncSoplPl3gKO0AQeqMxejX2mel109mPkM/A7so1jZWUFS0tLMJvN+N///d+v/fp82824bl6vF1euXMHc3JygjHSaw+EQ9XodOzs7KJfLQji02+1ybne7XeE7sBXS5XKh2WwKikAei8vlQigUgsViQbPZFCiZWbHNZoPP5xPuRT6fl8f5nHA4jMFggFqthnv37n0tZLWX5lSPcyDMUD0ej/QU9no9qYXV6/WxXie96fTGY/tLo9FAt9uVw5cKO+12W1plXC4X4vE4/H6/EJPq9brg9IQBA4GARF06yibhggtJZ0pCVavVEpKGz+cT8QmdpT7vmryqph0re301kQXA2AE56aBkj5q+HwaDgThKbhLWZPmeXENNFNP9jHyePpBdLpeUJZxOp/Qj6zrMtK46boTaWDdlL7GWDDVm+0ZoVztEOlWdXepMlL/Ta/C8Vhk+l/eSw+GQ1g+WHvT7T+35pvcxz0ruMRr3JFm7XAMN53Jd2+02AAjJkKiFUYaUryc6aPzhWc0yIe8TlpToZHXv8oldkxN7p+eYMUPlhTWbzTh37hz+8R//EW63WzLNarWKUqkk0W2xWITD4UCpVEKlUpE2iMPDQ5RKJbTbbelNJJwcCoUQi8VQKBSwubmJYrEoEGE0GoXP50MymUS1WsWtW7ekbjoYDKRVp9fr4fPPP8fW1hZSqRR+/etfo1qtIhAI4OLFi5ibm0Oj0cD169cxPz8vNV+269y6dQubm5uw2+2IRCKoVqtot9unJtuZtO6k0rMOqhnURlYnNxMDo+FwKKQWm82GWq0mtfPDw0PZRNw8DKBqtZqQV1g/ZeDVbrclgHI6nVKDpSN2Op0IBoNYWVmB0+lEsVgcg7P4d56G9XwRs1qtmJ2dxdWrV+WQrdfrY/2BvLbaNLzLIBnAmPNkIKUDG/2eWjQAwNgBrD+TrThkfjscDqnrA0CxWBxrq5ras8byjNPpxMzMDBYXF6Uuzjo5nWI0GoXf74fD4ZCzutfryfX3+XxS5slms4JMcC/zXGcCo/uVLRaLEBzJfSCzl2usYWMGTMFgEOfPn5f+ZWa1J2EvFf7lwaMjz+XlZfz1X/81vF4vMpkM9vb2hFjCzLNcLksfab1eF6fLpl4uIqMS3bMKAPv7+0ilUkJ6WlxcxHvvvScwARmAjIQikYjUgTY3N+X1rVYLu7u7or7EG+jChQs4e/Ys0uk09vf3pRB+7949ZDIZqQfzRjotPZCTyCV0qEYpsuc5VSIBlKhk5t9oNDAcDlEul5HJZKRlxmq1wmKxCGJAx0ynTFiZECA1RUn5Z/2GiITf78fc3Jx8Zx64pw1peBEj4/b8+fMwm81jJDMGULo2qv+t+4qNkByVeKxWq+x3jXxoxrD+t1bk0ZkuW6e4ziw/8fnFYnHqVJ9jRH6INCYSCTSbTWl51HXQYDAo68Z2GjpMu92OaDQq9VQKs7hcLimzEcVkex3vCyJWVOEio5tsfa4xHbMO4P1+P5aXl1Gr1VAul7+9TpWmU/ZyuSyNut1uV2BZl8uFTqcjRWXjRtAQsJY50xGrjnS0oD5hHs325AKaTCZR7QkGg/D5fMJIi8ViOHv2LPx+/xiphg7W7XZjcXFR/sZisSgKH19HQfzbaFwHTbnXmYX+r3GdNWxER2uxWMYauylLacx8uAZGGImfpx238XC22WzweDxot9tj0pVTm2x0VPoQpAPUThQYLwkY66ST+lP1+mmbxNcw2vPWjZKohPmndrzxTGXZhusyGo1keIWG2LWMKJ2tDn71uvIe4eN8DoMhfZayv5kZKkuAZBfr0p3+7tzTLpdLyn0naS/FqRpvct7AFosFn3zyCf7lX/4FHo9nTD2JkWmz2ZSJMJ1OR5iflLFi1sPXcCG4eZmF6FaKRCIhUniRSARnz56V/kifz4dIJIK33noLr732Gnq9HpaXl2E2m/GXf/mX+Nu//VtYrVbk83nUajWBD9rtNq5du4a33noLnU4Hv/zlL3H37l3U63WBsl+Gmsc3yYzkJJPJNIYiUGZSN4Rz0zGDJEysayuNRkM2WrvdRrVaFZnCaDSK2dlZAJD6OpmCrLVSs5nfbzAYCERJohI3tsPhkCzG4/Egl8s9EwRM7ciYfbjdbqlrUQxd17ONrTH6vwDGDjo+nwx7TXTSQbR+Lh/jf/WPzpR4+NtsNoRCIXS7XWSz2Wec/9SOjHVzn88Hr9crIhqsUbOswn1MIiCdXr/fRyAQgNfrhclkkj3KkgyzU+p1M3Gq1+tIpVLo9XpIJpOYnZ2FyWRCq9WS0lq5XEa/30c8HpcEh58JHJUZvF6v9E2z9fGk7M/WUkPKdS6Xw+7uLjweD86cOYOlpSURWnY4HNje3kYulxOxBS2griMZnebrg5xRMzMYOmRGpDzkO52OCPJHIhEkk0lRAvH7/QgEAlhcXMSNGzcwGo1w+/ZtlEolUXpqt9twu91YW1tDq9XCr371K+RyOVHvOK3kB31QMmplHcvlcsmwBLYy6UORjm0wGDwTkWqmLjNVPs/r9crjvPZUWuH/a5IED38AY2QKbkA9copOfmrHmz4IjUEVbZIj1fVT/Tu+jgcjMxXtNI32PDKgMQsmPOx0OuF2u6eZ6hcYMz2SfUgwokMFIMQ0nskaueBjvM5aMUkPUiHkSyNjv9PpSBsPgy0GxCQsUvsbONrfOgDT3IpvZaZqNL/fj6tXryIcDksmx95SwgHsZSMJpVwuYzAYSDZJyFZnqnztpAzCuLm4gSkiUCqVhB3c7XaRz+el75X124ODAzx+/Bj9fh/379/H5uamULspTJDP50UmK5FICExiNpvx4MED3LlzR8T6X3VJNB58+oBjpsjoULM7R6OROFvW4/SGmVQf4/sS4qF8If89iQmqnaaGl/kefG/2NANAKBSSvuapU32+MRgywoDMVPn/x7Eu9e/0ujFg1pkmAIH7gGcdty4FTXqOZoATHWEAN7XjjdeKE8P8fv/YmpD3MBqNRKmu0+mIDoHdbhcZQq2AFQgExKnyfqHWuslkQiwWw2AwgMPhkHnWrVZLWMPBYFC+Yy6XA3DEJKZ0Is8WnvevhFONRCL4m7/5G1y8eBG5XA57e3sYjUZYXl6WP5Bj2HK5HDY3N0X1iNlkIBCQEVGMmHQx+jh4yGjUeM1kMigUCrDb7SiVStjd3UU8Hkcmk8HBwQEODg7w4MEDfPzxx+j1evjd736HjY0NybhtNhtSqRR2d3dhMj1V9FhbW0MoFML58+fh8Xjw3//93yKfeFp0Ro2ZqtvtFuidwRNrLGbz05FQPDjZpkTYiHCSrrPQcfP13W4X5XIZwJEUpCZB6cNVIx38LyNq4IiFarPZkEgkAADhcHgKDX6B0anq1gdeYwBjZBPdKmV0iPpHqyxpFq+xPj4pM9ZBmJEoyDo7cNTPOM1Uv9jYR879HA6H0e/3xVHSqbZaLezv70vXxMzMjBBE2YfKMk0kEkE8HhelPCJQVMJzOp1YXFyE1WpFr9eTRItIocfjkT7ZSqWCnZ0dAJDWR6IRvI+IfL0STpXzD6PRKPr9PiqVikSb7XZbIFtjv5M2bgjN6NL/r3+v+5x0sdzYX8rn6eyIWSWZZdTz5Y1AGISHSLPZlEiIhwEFvKlpS4jjNBo3o45E9RpryJfRpIZrdc1cH5T6vVjDA8ZJcbo0YIR4adrp6rqrPtCnWczxZqxfAs/WOXU9k4/zMf38SfVX/b58D/6QbXoc5DzJJpUbTuvefFHTkK4OTHn99T6leAtRIwZHZrNZzmFjAmRsidKBFx3kpOELzHAJQXc6nbG9q9EpXUI0tnd9Vfuz1VTp8Kjd2263ZRpMMBjE1atXhXTy9ttvo1qt4rPPPsODBw9gMpmws7ODYDCInZ0d7O7uolgsSt+qz+dDNptFJpNBKpXC3t6eQMjVahVWqxX7+/vY3d3FwcEBstkscrmckJU4l4/qPjxc8/k87t+/D6vVilAohOvXr8Pv92N+fh5utxtutxvZbBatVgu3bt3Co0ePcObMGSQSCSnI65vqtJnFYpEBB2RWc4OQqMQgxDiZgtkEiWSszzAT4uHJ+4oTL0hgo5N2u90AIBuf0DwDKW5KRrUacjRmVVOi0pFp1iYPLR28AuP1aq3rzGupe0+NELAu7UwKxDQiNYkENYnQxM/i9yIbdMrwfr6ZzU/1upPJJCKRCMxms5AwWdZh4qA5FEw86BDZYhiJRCRbTKVSAI4GKXDtiUgyKeE8ZAACQXO/0hgQE57WiRoDe0LRJ2l/VqfKAjJF7vf29pDJZDA3N4fV1VUR5GYD/5MnT3B4eAir1YqDgwNEo1EcHByIzGA+n5cBxfx/TiPgpJt6vQ6bzYZ0Oo2DgwOBfTnpgDP+2L/EuYuj0dNpCI8ePYLP58OFCxcwOzuLaDSKy5cvw+fzYWdnB0+ePEE+n8edO3dw584d1Ot1fOc73xF1JyM7+TQZN9Dy8jI8Hg88Ho9sNMK7ZAV2u12pwwBHG4SsPdZq2NKknSqbvll3pxISD0wNKfK99efwMCC5jcEfoWpG05NaO06rGR2qVtYhCqWvHTMYY31TZybajLXx5zF8ddaqzZhB8311jzsFQqZO9XgzmZ7OPY7FYlIDZZmEASmfp0f+MZACjkorDodDAuxisYjd3V3RAWZLDF+r691kHLN1hgG6Dqx4ZjidTuFCcF3ZWcD67Enan8WpkpnZbDZFt5fZKv/odrstQsuEG4jJx+NxWYhwOIy5uTl4PB7JaMLhsLB8g8GgiGZTVCKRSCAUCsHn8yEUCskhzTYP1m0J20YiEbTbbczOzuLMmTPweDyYnZ1FIpGA2+0eY6Hqmg9Zp+VyWbRneficxk1rzGZ48xO2IVGJN7lmdDMCJjGB9Vgt1kBIStfFmP1wYzIrBsaJLFwTblxj/5wmSfHwIJN4akeQoM4wgHEikH4un2M8BI8jldE56zqq0Y4LcIx7zfg5POh13/vUjje9JwmtDgaDZ+RDCb3yB4DMvB2NRmMTqQA8sx46ANOkJwAS/BjvOa2tThUmZqVGKHkSQ/0k7M/iVLvdLjKZDNxuN+7du4ff/va3aDabiEajMk0kn8+PHZJWqxWXL1+WCOntt9/GmTNnMDc3hzNnzqBer+Ozzz7D/fv3MTMzg6tXr2JtbU2il0qlgmq1ikqlglAohLfeegsXLlyAxWIRhm88Hheq9sWLF5FMJmEymfDkyRNks1ncvHkT7777rrTmOBwO5HI53L17F5VKReqFjLBGoxEqlQrW19dl1Jz+e06j6ZoqAIFfKKhPAlqj0ZD+Xs7gBJ7eO1tbWwCONh0ZfBaLBaFQSEhF7XZbkIloNAoAoqplsVhkogbp9br2QqfN3kgeHPyudrsd5XIZzWbzz3AVv3lGgQyNPhhhPrZI8CDUMDBwRCw7rv7KoHVSpspD1Vgr1z/68CbsrOvvTqdTEIzTGPS+qJlMR/rObInrdruiZqczRiZDJtPTUYy5XA6j0QgejwfRaFQCGZZ7uK46Q3W73UI+SqVSksnOzMyMdVcQ3RoMBvB4PFhYWJD96vV6pf2x3++L1rPOrE/K/iwnO5vtKZq/t7cn7K1YLAaz2SySVzz0TKandGrKYnGiDVts2ArTarUQjUYRj8elmZtzE8vlMiqVitRBo9Eo5ufnsba2hmq1ikQigdnZWbhcLiwuLsr4qoWFBTidTly8eBE3b94c65/q9/sol8tIpVIIh8OYmZmRw5kHAXWF2SD9dSzkt8W0IhYAyTJ5TQjZakaw3W6Hx+MB8FQisFQqCazD1g1uYqfTKX2qvCfYj8xrXq/XYTYfyaexD5XOgJBgu92WyJqP8TvyHp7aU9MkEU0aYy2be9hILOO9cJzimDFTNZrR+Wky2SS4V8PDAJ7JVJltTe14YwZKxwQc9RNrCJhcBKJPRCf7/b6I93B9jIgG9xzhY5ZwqPVOURYdLA0GA3l/Cv7w7HA6nfL+vI+0vsFJ2ku9e/hH+Hw+rKys4Pz586jX69jc3ES328WNGzdw8eJFOJ1OhMNhoVZT+GF3dxfpdBrBYBAWiwVbW1uiptHpdLC+vo6NjQ3EYjFcuHABTqcTW1tb+Oijj0SVqdlsIhwOI5FIwOFwYGtrC3fv3kU+n0cikUAikZD6ZzKZxM7ODh49eoRcLoeZmRmZTE/o4eDgQODIQCCApaUlNJtNXL58Gc1mE/F4XHpydZ222WxKH9VpMTokrh+zGEJDxjomm8lJROBzmJGQBAFA6p2NRgPFYlE+k9kHNUlNpqMZmnqIvG75ACB9bfw9n8txcgCEKDG1cfnJSf3i+v+NMN8kB2iEBDV72/g+/Lfxd7RJ8CLvBS0kwYP7pNmgr6rpcg4TCRKW6DSBp9edgg9ut1ugX9bZG42GMHlDoZCUgfRaMfimnKyue+uJNjwzWOrRhEfdUkeOBb8XEZOTEOh5qaPfGMnGYjG88cYbePPNN+F0OqVN5Sc/+Qneffdd6V3qdDrY3d3FvXv3UC6X8Yc//AF3796Fx+PBxsaG6AJTApBsXmacnU4Hf/zjH/Ef//EfAjsMh0NhrZlMJty6dQv/9V//hUwmIxkuHeD58+fx6aef4qOPPkI6nRZ4glKJTqcT5XJZ5kTGYjHcuHFDBAgikQhisRiuX7+OUCiERqOBWq2GQqGATCaDjY2NU0V0MZlM8Pl8SCQS6PV6yGQyMs+U2QsnxpCA0Gg04PF4RB0ll8uN0eu5cSmkXalURKM3Go3C6/Wi0WgglUpJBLu6uiooArNcHgwM/LQQCEX1CRnHYjEpUUztqVHYnIceMwJ9oNG0Q6UZ2bl8HvecbnfRdVX93lpUQhNVaMxQmD3TkfJ5POh1nW9qk03XOpmJms1maU0MBoMixEAiItEh1jtJcCoWi6jVaggGg5idnYXNZpPeVABSPiDruNvtyuvplFutlmSlDM4pZ8kJZrw/6EBbrZbUYO12uxASv+qZ/NKHlHNzEObTU0f8fj9CodAYvs4L3+l0ZLBtv99HqVQSMXWm/NSA9Xq9csGYuRQKBblYbrdbhpY3m01RTNIbt16vy8JS47dUKok0IReAn03mMHVlfT6faGNSjo8ZEeGw02b8+0kaADAG+fA5k3pRNSzEzWxkUutaGQ9FrbTU7XZlWIOGJvm5vD/pFIzDGowtAqcVwp9kGq7TRCXgxTWS9TprM9ZPjf/+smYkRRlrr1M73ibVroFxdSsjAxyABC7GPUsHSM6Jnr8LHAVMfD33qNYjmIRo6HIOs10dhGnSEoOrb5VT5R/YaDSwubkJl8uFu3fv4pNPPsFgMMDCwoJMZid2XqlUBDJYWFhAvV6H3+/HtWvXkEwmRZCBkRBrqmtra7hy5Qrq9TrOnDkjY716vR7i8bj8kBhF4edgMCgDdwnz6vpouVyW6ShsC9B1IbZ4pNNpPH78GAcHB0in03C5XIhGo0gkEgJ3nFbjjcw6h9vtltq52XwkIQY83ZgkKLA+Q+Utn88nzi2fzwsDUTMCtVPUIv28D7UYCDe1x+NBv98XRjoAYR0Oh0P4/X4hLU3tqZENauwVBI4O4Bdh1x53qOnWF2By/6lmnfIxmnaWxjqrhn91vX9qk43XSivZ0VlRclBrbTMxobA+cKT32+12pR6vEQ7eTzx3SUaMx+MwmUyo1WqCFNlsNikpARDtX2AcetZ97xoadjqdCAQCIrz/VSHgl+5UR6OnqkNbW1swm81YX1/H3bt30ev1cPbsWcTjcWHNsq+T1O3Z2Vn0ej2EQiG8/vrrmJ+fR61WQy6XQ6vVQr1eRzabRSwWw5kzZ3Dp0iUUCgUsLy/Dbrej1Wqh1WohFoshFosJ25gHMLVdOdqNn8tDgOyxwWAgj2toQjNGM5kMtra2xmo2165dw9tvvy2w4mkzIyzHsW9ELVjDpKPjda3Vanj06BF6vR6uXLmC1dVV6X1jIzhwJLiuW3b0gc6aH0XAgaNolT+EMdlDR6iI8DIAeXwqZ3dkZGHSqRprmzqr0XZcDVTXSJlhGPta9fMn/fAxmrGNR7+/DsSm7N8vNs3i1wIpRrW6Xq8nXBaNYHCPE1ni++j6qdPpFIW7TqeDQCCAeDwOm82GJ0+eoFAowGKxIJlMSqBLp869Saeqs1o6VU2kYnmnXq9/5YTnpTpV3TOkYTtdF7HZbGMRDuFhKuT4/X6ZGuP3+wE8zSJI06YeMBeJF6zRaAgzNBKJjLVShMNhaelJJBKiLcym4mAwiHq9jlgshmQyKa/xeDwYDocyNozwMyclAJDojb25p1EwQJN92MbADWiUKqPWJ8kHGvbRUC4PY5YAeBiypYkZq5FdzDIBP5/3IKNbDSEZWaokUHi9XiEyTe2pTcoU9WM03fbCxyaRk4zva/y9fv5xTF+azoAm9c1O+hum9nwzMqU1g1pDvnRexoCKjpekJfoDysJq9rCGdPV8XiIf5ENoqJffRXcbaGIav79x6tlJrP1LOxXYQ0jpQYorsNZoMj1V6ZiZmUGlUsGjR49weHiIZDKJZDIpF42CDefPn8f8/Dyy2SwGgwFcLheWlpbQ7/eRTCaFoenz+bC6uipSWJybuLi4iGAwiKWlJbzzzjvIZrO4dOkSLl++DK/Xi+XlZUQiEdTrdbz11ltYXFzEu+++ix/+8Ifi+Dmt5pe//KVAvIlEQjIbl8slrUOdTkdaMPRBcRqMQUggEIDFYkGtVpNghBuILTPFYnFspF6n04Hdbsf8/Lw42FQqNbZRms2msP44ZxGATK8wmUzCKiwUCnjy5MlYnyoAqaFrZRatbco6cDweh91uR6FQkKBuakcjFnU7mdGB6vo1zVibM5KY9F7hYanfkweh0anyMOehqwdYU/QdGB8jRwdxmvbmlzFmkbz/mQRxwpTWQef+JbGTe5YZrNVqRSQSgdvtRq1WGyMUst+fwv0ABPIlP4J9rHp+b6/XEy4LORA2m21sBKfT6ZSWOiZQJC1+VXup7F/OLqUzNU4MYBbACTWVSkUa7Yl7U3c3Go0iGo2i1+uJmlIoFEIsFkM4HBbsnrVMZqXMdoPBoFzYpaUl+P1+nDt3DhcvXoTL5UIkEoHX60UsFsP8/DwcDgfOnz+Pq1evwmq1CmNtZ2cHhUIB+/v7SKfTyOfzUnznhichipv5tEXCNptNSFuaIUjpP5fLNSZbyU2qRzYFAgGB12u1GoCjw1X3tPr9fhnUQHYvId3RaCSyljabTXrZgCM1rElEC71e/BsIG03tqWmS16S6qIbf9POPg2yNDhnA2GsnZbvH7SuuJ+FIPSjB+P3576k934g6El5lwEOECIDsP3IZtNqSrqdy0o0eNk5+A/th2edKLXa2z2gFNXJcGLzx9VRu0sEanXG/3x8bH/qtylRJp56bm8Ps7CxisRgikQhmZmYwPz+Pfr+PWCwmlGvKAUajUam9kfzDweGNRgPb29u4ffu2zF3N5/Oo1WrY3t6Gx+PB48ePsb6+jlKpJNlMOByWXsjNzU08fPgQxWJRDm2qcYTDYWxtbWFzcxO5XA6JREJGF1WrVbRaLdRqNVy/fh1nzpzB66+/LtPmu90uwuGwKENVKhUsLi5ifn4erVYLHo9njIn2KhvJPzpa5cYjuUUffFRFYZSq+1HpUHUtTh+qnU4HpVIJwFOn6PV6JTsh65pKLLqVh99pOByiUqmMBUZaHo/Z8vTgHTfN/tUwG38/Go2EvMIM0ugktU1yzEa4XWfEwDg8bKyVcq9q9S3tRLVTnWaqX2z6uhNK1WvGzJ9OjU5Vw8R0hu12G9VqVRIku90On88n7Vm6RENyIVXtzGazlN5ardYYaZTIBL8Hjd+ThMjjhEe+rL00p2q1WjE7O4urV69iZmYGq6urmJmZwblz53D16lX0+32srq5ibm4O0WgUDodD+j9Ho6eaj59//jl+8YtfIBKJoNFoYHV1Fevr6/jggw+ElUv4d35+Hu12G7dv38Z//ud/Ip/PS5QUi8XQ7XZRKBRw584d/OpXv0I2m8XGxgb++Mc/yhD1+fl53Lt3D7/73e+QzWZRr9eRz+cFSuj3+5iZmcE//MM/IBwOIxwOC9FqdXUVjUYD+/v7CAaDyOVyeOONN4SRHIlEvhY1j2+iES0wjr/jpuGmZO8Y26U8Ho9ASsFgEGazGdlsdqwdRpNXTCaTXHP2QweDQVSrVRSLRVHtOn/+/BjkSKdPdaZ0Og0AEi2bTCa0Wq2x2v/04B03ZiNUG6MmM3/PWjZNO8jnOVQ6Ry0wYHSkxntAO3TyKsrlMrLZLGq1GgKBgATv+jMZ6E3rql9sGt7X5RLWNDXT3uPxCPSqW2dYUqnVajIvm/OKvV4vvF4vgCPOTafTQbFYRLfbxfz8PCKRCIbDoUwTAyCIJ3vW6dDJ1Gciw0CbyBiz35Owly7+QBq2htjI8tLsO2LoJK4ATxv8C4UCTCaTTJyhmAKzE2L5zWZTGMEUtOdBarPZZEguH6ckosvlkhmvgUBAelQrlYpoBLNGMxgMEIlEEA6HhcDEjIoMtGq1Co/Hg3q9Ln87m5FPi3GDaaagptHrg5LQLw9dTSjQfYQ89IzOjRAfD12t9NLr9USflL/jwaAzVS1NyDqfrvUd10N7mo2ZiV4POjZeQ93aYCQj8ed515L3jUZ3dE3UmKkCGPv8druNVqslfcrHfdZ0PV/MGDRx/0yC0zUKoDNC3ZJIBINBmYaL+TmahKTr5byfyM0wCoRMgvoBjD1+0vbSnOpgMEA2m8WTJ09wcHCAra0tOBwOPHz4EJ9++inMZjNWVlYErqvVauh2u4K322w2hMNhLCwsIJlM4saNG0IqqtVqQm7pdDpIJpN47bXX8Nprr6FSqWB+fl5qqhwddunSJZw/fx75fF4gxnA4jJWVFQQCAdEWPjg4EEgrHA5jbW0NVqsV5XIZrVYLVqsVu7u74tS5yJRFTKVS+Oijj1AsFkXgot1u4/Dw8JnD5VU1h8OBSCQixIB2uz2mEco+NOokp9PpMZZ4r9dDpVIRaJYjnyiC32q1UC6XhWhgNj/VjiZ5oVAooFwuC2mJUSuVuFwulzjvZrOJRqMhHADKpdFBcIyU1WoVveCva3N+m0wTRhiwMGOx2WwiwsKs0+12j7GsdbvVpD3BQ3BSq47xRz/O0sFwOEQ+n0ehUIDVapUBCzT2JTOoOg378suabh3UUDpFfUjsY4DF/cnf6yBa9/Y7HA6Ew+ExqJZ6vqy/koTodrtlvQAIQqIHNejvxD3Luc3U7qZqExOeb1VNdTAYoFAoYHNzU9L4druNcrmMXC4Hm80mLF8AAh/Nzs7C5/PBYrEgGAxifn4eS0tLuH79Ot544w1xqiQO1Wo1zM7O4vLly7h8+TJyuRwWFhZgtVoxMzMjPaoXL17EuXPnsL29PeZUl5eXx5wqGavaqVosFqRSKZTLZVgsFuzs7IjwRL1eR7/fRz6fR71eRy6Xw/r6ujgCn8+HwWCAw8PDU9NeQy3nUCgkTlXXY+g0Oag+lUrB6/XKFAwKfJB8xKiWNVpuWmaYdH5UtyISQSYiSUsUdyBZgcMRWCrw+/0CCzOCJkOd9VoiDqdlLY8zOkoGKEQBeO24/weDAbxerwTKeog88OxYNpqRFQxMdqjaeKjqz89kMgiFQs/IJrKvkvKUp3ktv8iIOlAakJwI7VR1uw1HfFLGkq1tLN+QsEhGPh0muRUkerrdbszNzcFqtQpKyXWiQ2R2TKdK7gShZJZ4eJZop6o1Cb6KvVSiktfrRTQalb7NZrMpUY/NZkMgEJBWGMr/saEcgBCNmMHoH43hkxXGKJmKPWR7kn3M57PvNRgMIhqNisQgM1v2xlJMnUQlMkZ58+gIjYEAszKd5VA8gqzXV910e4qGf3XDPW9yo7qRw+EYm3JCI1TkcrnQaDRgt9sxHA7lc0iA4j3Deg9fx+cymwLGJ5gYD3Z+XwBjEBTX/rSgDscZrw+DYl175jViQMSAWZO+XiRDOK639Iu+F9dVM8qPe//TvIYvalwv7mf9e8K6vN685my5AY5EOLjX9blJIRdCwrrPVbPxCRsD44xjvW/1vaXJTnTgmjB5kuv+0pyqw+HAzZs38bOf/QztdhupVAqNRgO5XA77+/uwWq340Y9+hLfeegvtdhv7+/uo1+uYnZ3F0tIShsMhYrEYvF6vqO/QuIEJGfr9ftncbrcbyWQSdrsdCwsLWFhYQDAYlCk48Xgc165dQyKRwHe/+1384Ac/kLYbt9uNcrmM69evI5lM4urVq7h48aIU5z0ezxi2T41iOlC73Y7Hjx+jVCohlUrh8uXLeO+99zAYDHBwcCAi/6+6saWFvWOsazITZA2cQxRYc+GIv3a7Db/fL1lEp9OBw+HAzMyMQLD8PVt3HA6HCOp7vV7Z4PF4HMlkUmBhOmQygXkY6LYOkqpIuMlms6Il7fP5xoQqTqtxjZmJUMqTWcxoNEIul0O73ZbAGjiSvKPCmHE/6ANxUqZqbMuh6czWZDKh2+2iVCohn8+LWIzRpqzuFzOTyQSv1yukIt77XG+LxSLoUrFYRD6fRzabhclkQjweh9VqHVNZCoVCEvRub2/L/ufaagYxnWCr1RK9do4E1b3ILPNoh9zv91EoFFCtVmV4CgNBowjNV7GXyv5dWFjAjRs30G63EYvFUK/XkclkpMn33LlzOHfunKT9xWJRYMPBYDCmx6tVVjQphQ6NF58Z8GAwQDQaxczMjGSh1I/lOLfl5WWcPXt2TH4rHo9jfn4eNpsNc3NzmJmZAQCRUdSEFWYwfB2bo/m3JhIJrK6uYjAYYHZ2Vthrr7ppEXqiDOwvozNjXYWwIeFV9q+ZTCZxqpxCQ/WsXq8n0ytCoRBCoRDsdrvAx8PhEMFgEO12W6ZnkNxAp6nrOKzN6myLm5qQEbWAWXM97WxgohE8yHiwETkgy5NSoYT++NpJ18/o4CY5VWN9ddJ78HmtVmsscJvalzM6LJJJWafkPWA2m6VmyR/26XM9CPuyD9Xj8YgTJs+BZTkGyTqRYs8qOQ1sfZs0FUl/JieFUaeA31v3UH9Ve2lOVePwVM4olUool8uo1+tCOCFhhVT4TqeD/f19+W8qlQIA7OzswOv1YnNzU7JBbs5yuYxz587B4XBgZ2cHm5ubKBaLaLVaKBaLMom+Xq/jyZMn2N7eRqFQkBoqoUO73Y779+9je3sb+XweGxsbWFxcxGg0woMHD5BKpRCJRHDx4kUZlN5qtQSK1gLSWg9TS+e96pubBys1ldmews0wqWeMRAL+jrV3RqLMVAkNV6tVGVLg8/kkM2o2m1KvZU2VazscDlGtVlGv14W4xHYMHs68X409lQwSIpEI5ufn5R4+jXrONC1bp9tadPan26D0wfci2aHOSnUvJHA06H4S5KcPVAZDzGb0dzR+xtS+2HS5xLje7B0lmUjDr0T2WJbRAZUm/enSHtEPJlyj0Uj4LgzKtXALANHnpi/RpQljMKb7Yb+qvVSn2mw2pV/s7t27SKfTouXocrnEybJh1+v1olqtYmtrC9VqFX/4wx9w584dHB4e4syZMyiXy7h9+zY++OADaZkBgGQyKf2Jt2/fxm9+8xvk83lhJ4bDYWSzWelz/c1vfiPQ0JMnT0Qv2Ol0Ynt7G7/5zW9EapBNyp999hl2dnZw8+ZN6WktFovI5XKSAQeDQZHBI/xI2IuQ4qvuVIGnAvSJRAKhUEjmzwJHUnJs1G61WtL/S1Zgp9NBuVzG/v6+BFwkKnU6HXg8HhmqMBwOZaMBQKlUQq/XQz6fRzqdFlISAxuSo9hiQYgIgPRG87nRaHQMlvJ4PDhz5gxGoxH29/elj/m0Gg8uPYVE9wGzPMI1ZJZivP/1wax7UY0CA5o9Osk5sl7G33HCFCF/1naB8baskzxcX2XTa8Q9pfkJ9Xodh4eHItbALJMoAdn7mmehg2s6Xe1Ya7WaJFicvUoEq9lsSgAPQJAJ1vTZ865ruZosOUk97cvaS3Wq/X4fnU4HrVYLlUpF1IYY3bIlRm8URjyVSkWG0TabzbE+VbZZ0HjQGntM2+02Go0GhsMhSqWSCOBXq1XpZT08PITD4ZDDtlgsolqtynPy+Tx6vR4ODw9xeHiIcrn89EL+/3+D3ujA+BQU/v3AkUN51Y2ZnVZOMpJ6jIcjf6d7yTqdjsDDdHw8mElq0H1sAKTGrckSfB9NpGA9hwQL/Z00qYZ/D/8mDk8nC/w0G7O8SWUZZpF6kIJ+nPvgiwJMfoaRCTypDsv/6sOfPdBc0+NeM7Xn26RrZFwDPV1Goz+aoKYDGL33NdKg0QaSW7vdriCK/CxmwHxPHTzTiR9XMzfeu1/VXnpLzfb2NlKpFB4+fIjd3V3B091uNx4+fCitDew7Ze3N6/XizJkzaDQaiMfjuHHjBs6fPw8ASKfTKJVKUveKx+N48803cf78eTQaDel/jcViiMfjiEQiePvtt3H27FkMBgN8+OGH6Ha7WFpawo0bN+TzyDx+9OgRzGYzLl68iL/6q7+Sg5gTb3Z2dtBut3FwcIDt7W1YLBasrq4imUxifX1dvt/nn3+O999/HwDw2Wef4eDg4JXNVM1ms9RBOAQhFApJtsh2GNbHJ0GDdF5UZGLQRfiXTG1S7LvdLorForTORKNRITiFw2F0Oh35HlrIgUxsRsTMYFhXZ93H6XRKRt1ut6Xuy7rwaTejIIbOHtvtNnK5nATCmtk5iYWpDz8jK9v4vOPISvp3+jHCiEQcjE6YgT5h/1d1j/6pxm4J8hiYFI1GIymhsKND11F5H5AwpANQJjgMlEl+MvJmeK8wu6WAEIO1brcrbXYWi2UMes7lcvD7/Wg2m4JkscsEgHSAsNTzVe2lOVX+cVtbW9jf38fDhw+xs7MDv98v00I2NjbkAmWzWTSbTSwtLeHKlStwOp04c+YMXC4XZmZm8Oabb0rPaDabRblcFuZnJBLBzZs3sbKygmq1Kk51bW0Nq6urCIfDeOedd7C8vIxqtSqj35aXl/HGG2/A5XJJyw0AfPzxxxgOh7h06RJ++tOfSrbDbIWBwuPHj/HgwQNYrVYcHh5ifn4em5ubSKfTKBQKuHfvnjiLnZ0dkdx7FY2EMQ5JCAaDCIVCIvdHOMYohK0dKzeh2+2W4QkkujgcjjEyGKXKisUitre3BX4PBAIYDofPOFU6bjIW2V9JBw8c1YPZ2qOdaqfTkfXX2sWn0XRmMalFwWR6OlQin88LOsQaGPkH+nWTHCowLqg/6fP5HXSrDh29PqC1Uw2FQhPfg0512mZzZORG+Hw+CWAdDgd8Pt+YUyUhSJdPuAYMWHhN+/2+7F2K+1B1jhwFve4kL/Ge4bnBBIxkyHK5LFOuCoWCdABQKtXlcsnfxUEv9Xr92+NUeaOyr9Dtdsvi0KnqNhYedKyt6uhRN4zzQOYm05J2ek4eC+LUoeSBzsyWBybnsWrmGbMYTV4C8Azez+/MFg/9GraTsE/WZDIhGAwKFPyqmoZ1dX/ipMb+414/6blGiFgbD0TeNy9qetMzQ+H31ixV/Z7c0KeBwf0i9jwIVUP5k5iZL2KTmL4vAtsaHyPzlPfj8yDBKRx8ZFzD4/p8gaNrzQBY7w/jWuvSmK5vksnLoEY/zkCcPa18b/oBDRUzOCeXhax+1ncZxAMYQzu+qn3tTpUXye12Y2lpCdeuXcPs7Cw6nQ7S6TRCoRBmZ2fhdruxsLCARCKBVquFVCqFWq0mc/WAcbFsWqfTQT6fFxF2wsf6YtNp+v1+kcujc3Q6nUgkEgCApaUlnD17dixryWazmJubEzUdY0bC11MBaGVlBTabDUtLSwI3F4tFpFIp3LhxA9/73vdgNpvx8OFD7O/vf92X/89mZFtyfXZ3d8cgIavVKnVOXV82CkIQFSCTl5rOpOybTCZ5DACCwaD0rZHMxDYcfh4/k1AyyQ2EnQhvkalO8o0O7PhdCoWCqD2ddpsExRpZu0Z4dxJsq99P11EnteBMOqiNwZjxOewCoGKbsQ6sg/OTFFr/thv5Lbyu7N1mdkfUwWQyoVKpYGdnByaTCYFAQBTJuH+4j7lvtAoTnZ5uzSG8m0wmYTabUSwWZfAFRXV0KyU5E6PRSEqDekwc0QrdbXJSvIiv3amyLsYa1+LiIrxeL/L5PMLhMGKxGObm5gTWjUajMnSaLFHgiNhj3DC8OJw+QfhQbyhmq5Sr0uIR7Hdst9uIRCKIx+NSAAeAUCgkPY4UYtdms9lkPitrdTabDbOzswItrayswOl04vLly3jrrbekFheJRF5ZaIk3tclkElgWOJo4wXUy9ivqQ5i9pHSE+t8ABIKnkySLnBJ4rI8yItX/1m07WrWFEBIAqf+Fw2EARyxBRsXdbleGm5/2g/eLiCDAs8jCn5oV6DqtsX1Gw8STEA79Hjwz6DT1a/m9jOzhqT3du2yHYx1VzyBlFsjn5XI56WfVYxYJ0XPfAkes60nOjaQnu92OQCAAm80mw01YZmK5ThOf+N6NRgPValXQQ4vFIj3LWizipNb6a3eqjDApWF0sFlEsFpHNZpHNZmGxWEScwe/3S2ZBR8lsodvtYm9vD6lUCu12Gzs7O3A4HNjf35c5qsPhUF7HjJG9rcViEZubm+IEB4MBSqUStra2kMlkUCgUsLW1hfX1ddjtdoGG7t+/j729PRQKBezs7ODx48dotVrY3t7G3t4ehsMhFhYWJHhglkW4s91uo1arCXM4k8mIzOFpaUJn7ZEjoHq9ngQ1kw5Zfc8cBxkDGIOOuCEJwRthXD5P/9fIytYbXQtNsD1Elxt4OOiWgNNs+noCR05WQ+h6/V6EbamdI6858Gx2+6dkvwDGlLk0SqK/30m2WLwqpq8PnSWDS86h1qP/SqWSKGwxQ9RtM2ydYW+50+kUR0cjDEz0kEz/0WgkXAbthPkdiURxz076/Ek98SdhL8WpavIRB35TPIHN90zfnU4nKpUKMpkMisUiDg4OsLGxgUajgWw2i3w+j0QigWAwiEwmg08++QSfffYZisWi9JjOzMzAZrMhnU7j008/xZ07d+S91tfX4ff78dprryGZTGJjYwN37tyRKQpskeHiHh4eYn19Hc1mU26adruNX/3qV1hfX8fKygrC4TDq9bpkrMPhUMg05XJZWMGhUAixWAwOhwOlUunU9DW6XC4ZSk8I2Ol0jmUI+gDjzc72Kx5+RuifmSwVVcxmMwKBgMD5VM9hhqproFqMo9PpoFariXwaazAc1JBIJOQQIcGFTpY/p/nwpePTB6WW7tRQHDAO9Rlh4UnvzfVlJmKEeCdlrQCegXVpFBNh8Gt0xpqLwbGTU3tqGvqNRCLo9XpIp9NoNBpCDCQSsLW1hVAohNdee03Uzbj/mDy5XC4kEgkEAgE596kTTGiZHSKj0QjValX2L2fiEnLW9wX3NMtAwWAQwJFut0au+F263e6J8CNeilNl5tFqtaTns1KpoFarySFrsVjGal/sRa1UKsjlcmg2m9Jb6na7pfeUajo8DLn5+Bip1Tw0AQgT0WazoVQqyfcoFovIZDIAIH2txWJRhB94yHJTVioVVCoV6ZmlHrDOVFl7azQaqFQqgu+ztngaTEvY0fkZ+9OMhyIP20nyYZPgRM3apFKV0dEdd3BrqEg7bi3yrx2F/h78e06zU6Xp9dCZ6iRykr5mz0NrjO/J+0YLh0xa6+Pen2fRcf2q/H7TTPX5xrqzDlABSDZITgWzWQZEfEyvicPhkICVDg442uf8LJ6n3KtaCc14D2nJQu5TfS/qUgG//0m1T70Up0pYbXt7Gy6XC+VyWWaQUhiAg7zz+TzK5TLu3Lkj6kTLy8uS5pvNZkQiEbzzzjuYn5/HcDjE1tYWyuWyjHZjy8zi4iI6nQ5u374Nl8slLTU+nw8XLlxAPB6Hy+XCZ599BrPZjHPnzuF73/seACCTyaBarQpE3Ww2ceXKFbzzzjsiXsHsZX9/H/l8fkyof2FhAZFIBFtbWwJPP3nyBADkBjktdTiq2VAVhZuHBLTBYCAj2cxms4jt+3y+sR5QssHpOAOBgESwFOUg4mCxWODxeAQ5oL40WeeMlslK10pMwJEiDDAOR3OOJMlW0z7Vp6YDIGOmygxWO8dJNUtj5gmMk4yMohHG5xnl7oywMK3VaiGfz8NkMk0MbDWsf9rXVRsDY4/HI2MS6bTYN6qhVeCotY79wPw90UnK0xaLRTSbTUF9iFrqNeA50u/3pWVuNBoJr4GdJdzHRLKYDPG7UzlNcyROsozzUlpqCP88fvwY5XIZzWYT6XRasksKKOfzeRwcHKBYLOLWrVvIZDK4dOkSfvSjHyEUCmFubg6JRAI+nw9nzpyRlH5nZwflchlXrlzBhQsX4PP5sLq6ikgkgmazKX2qN2/exDvvvAO/3y+wrdlsxgcffAAAuHTpEn74wx/CZDJha2tL5O3M5qdDr9944w384Ac/QLvdRr1eh9vtRrFYxMOHD9FoNAT+ZeCQSCSkTzWbzaLRaODg4GCsSf40WLvdliHuRCbYVkWHRcdE6UaO3NOiDNqpOhwOBINB0VymkywUCvL+a2trCIfDzzhV9q6ytktmuB4lqCX3CG2yRs6ggH17rPecZtM1VTpVABI8Ev7VEKtmak76oWnU4rhMQkO+um4+qf7aaDRkZq6u32mHPq2VP2sUvHG73eJUgSPHSWdlbEMjQZRQK0lO7BUlKkmSJ1m6rJkyw+WkoW63C5/Ph0gkItrfLKWFw2G5r5g9V6tV5PN52fsul2tM11tzYb41ThU4cqz1en1sVl632xWR5EqlAovFIo5XS1wxemQtxggFkQqv+0l1vyoPT7boUOCBhyd7aJk98XH+DIfDsYOWURHVYTjGyGw2S2M0a7TE6rmQk6DEV9k0scd4yPFakOCg63KMNHVNdNKP7knTpANdRzX+TPo9gLH3O+5v0T+nKTj6IjM6Q53ha5jVCM0aexX/VPtTrz/3orGGZiQ3Tdf2WdO8B/Z96v2g9452iEaYXq8/9yPLRDzrdQmB76FlbY2oBb+XzpIBCLqkh6lPOn+/Nexf2nD4dCoIKczsK2w2m8hkMrBYLMjlcqKmUalUBDYm/T2fz2M0ejrDkhBEJpPB5uYmyuUy5ufn0W63ZQg1MC4GQFjR6/UKxs+Mp9PpyJB0k8kkBXfOf+TAct4onCdITWLWZindlUql4HK5pC4MHLX/AKdrdqPD4UAoFEIkEhG4hUGJ0+lEMBjE0tISut2u9Bxzbmm5XB6rebDXlEPJ2Z5Vq9XQbrdlYzKw4fscHh5KVsLDPpfLoVarwe12y0xHKsE0m82x2g4hZ4qFABCW+J8qNPGqm25VajQacqgZ65fD4VDWjGiDhmyN7TNaeB3AM4/zPfn649aEzpRniLEur4UEpnZkPI95LrLNxeVyCWxLCU+z+akEpM1mEw4K4WPCxOQrkGHv9/sRj8el1cl4D5lMJiEhulwuVKtVORfYa67bdNxuN4bDoUDLi4uLuHz5spz3X9f6vtRMlUQkbWzAP840O6tWq0kGU61WYbVaUSqV5PBl1qg3CnAUMfEGIFTBw1LrD7MXlf/2eDyiL8v+VdYQPB6PCAxw8DE/l43J2k5rIzkJXJQK6/f7wu4jpMQMn5OMiFzoiJRoB52q1WpFr9dDtVqVCTcc68amcd4rnEhDtGEweDqvl84YgLA96VCZvfJA183rjJpPG5T/RaYzT926otm/wJHT5Ezi57VO8fm6pYYI1iSSkn7NJOM+JKtcP9+IQEzX9ciM7SccRM/EhTV0nufU/ua+Juqna68837vdLvx+P/x+v3RYUEeYiRUnjDFoZn842254H2kiE1s5q9UqQqGQtPeR5PR12Etzql/WdNbKAw2AKC4dHh5KoZoqG41GA3a7XXRgc7kcisUi9vf38fjxYxEIcLlcePz4MbLZLAqFAlKpFDY3NzEcDrGxsYF0Oo1yuYzNzU30ej3E43EkEgn0ej08evQIT548QTqdlkU1woaTWGmn0fR0Is2y0yxbUtpJUmAQpK+r0akGg0GJRqvV6tjGpCN3uVxot9vw+/3ymlAoJJGyyWQSQpNmKLNeSto/cER84CFgMh0N4Z7as1ki14vlHv28SftikkM1/j9rppMcqq6h0r7IMR5Xez3u80+zEeEZDoeiPMbzmEERmbpMfoCnikdUXwLGZ0uPRqMxUlK1WoXNZhsr91CpSfeJE/UbjUZjcrF8fwAic8ggjPuU58mkBOwk7KWfBka23xdZrVbD5uYmPB7PmH7jwcEBTCYTHjx4gMPDQ7RaLTx69EgkCe/fvw+Xy4UHDx5gfX0dtVpN6rVarmp7ext37txBo9HARx99JIfwxx9/jK2tLbTbbemNyuVySKfT6PV6+PTTT7G9vS2HhsvlGot8tTSbsW5z2oyDwq1Wq8D/3JyEAElAACBQbDAYlEHkzHT0PNVYLCZ6zQBkJBSdKjcyN2m320UymcTs7KyQoyqVCjwej8BOVF9hAOB0OhGNRgFAWr0oS0ghEc04nNr4iDbun2azObYPjG02wJGDm1Sb1XV5vt54lujD1NgSM2nfGet5zLZ0HW9qR6aFPHw+H+bm5jAcDoUD4/P5pDQCQAIp9o6zjk2UgGxf7uNms4n9/X30+31BCgFI2UUrOLVaLRweHsJisSCZTMo0qk6nM9beoxEHfjc+r9lsygCAk2R6v1Sn+mUcCiWqAIxFvFwcqi2RBMS6LQ/eXC4nvaxUcmLkYzabpXWm1WoJlNxut7G3t4ednZ2xzz88PEQqlUK320Umk0E2mx2rw2hH+lX+5lfNNOHI2KPGx+nEdOM95cdIf9dEBUL5hPPJwCVkT9Iambx8nIPqB4MB3G43ut2u/I51Wt5jxmlFjLB5EDOrPU2ksxc1Xg+timW047JS43/1e35R1mn8/Bex4yDnqY2bLsOwHMZsUwcnxoyRSQyAsXnZg8FgbK8T8mVJwEha0vuMjpHCD8yYtUodnSTPZT11aFLP6knZS3WqmljwohYOh3H58mUEAgGsrKxgYWEBwBHLKxAIiCDDd77zHXznO98ZI47Y7XbJYC9evIh3331XGoFHoxH8fr9AyWfPnsV3vvMdyThjsZhE2oPBABcvXsSFCxckg1lYWJCeNxbjjdKD08361Lge3HB64lCj0cDm5iZarZZEqKx7ut1uEd4gTAcc9fpSgSufz4vzZd2GNZlqtSpKLTyYB4MBDg8PUalU5HmsqVJNiwx0Bm10+h6PR7JtzVI/7cbDSweXVKcy1lSPq5vyv0byEABhhWsnaIR6jb/7ImOgpEXcNdw47VM9MjpSh8Mh7Wt0qLzmLM/oflU6VQr4UDEpHA5LBqoRCKJ9RmdKMR4+Jx6Pw2x+KrrP9p7hcCgOmZPO6DyZIDE7JYJ10mv80uHfP9XJRCIRXL9+HbFYDKurq1heXh7bNH6/H5lMBs1mE++99x5+9rOfwWw2y2QDAPjoo4/gcDhw9epV/OQnPxEYknqV9+/fR7FYxOXLl/GDH/xAstzFxUURAej1ejh37hwuX76M4XCIubk5VCoVZLNZfPrppwIJsh/zOALFaXaymvCjIZ16vY4HDx4ImSAQCEit1OfzoV6vo1AoYDAYyKYmlG+1WgWFYK3H7/djNBqhVquh0+mgUqkIwqBrNazHezweWXNdA9QKL8y0CUv3ej1hFZK5etrN2DYFHEHm2qnq/04iFBrfk6YPb+BZrd8/9XBkxqJbQwCMMb2nsP6RcdqY0+lEq9US1E+3vuggimgiRXIKhQJyuRza7TYWFxcRi8XGJtsAR/VOZp+anNZsNrG3t4dOpyNlnNFoJCRVlnw0KZWOlIgJJVL7/T7sdrtk1yeJVnwrGBa6KVtDC7pthr2OVO7gBmSNlRAgmbx8DYvkfA4L5m63Gx6PB8PhUGBEPU/V6XRKxMXF15t6CgeOm14v3aNG8oOut2jSiH4uX6+RCH0wGqFlYx3OaMZ+Sb5WN7GTVayha75OE6xOu1Od1IOsCSHGWumkQ8z4+pPYQxqyPO5x/V+eC0RRppnqkemaNzkKzAi12Af3sUYsmC1OalnSgS4Rg0ltanwfLRuq7zE6RwDP3If8DKPf0NKJJ7WHv/FOtVwuY2NjY2yMEDNCkpNKpZIsJnA03qndbsNkMonwcjgcRjAYFMhgOByKMDTHsXExOAKs1+vB7Xaj1+sJRZyblAetVpPRNnWsT03DLqxBMqI1mUySxZjNTwXxk8kk3G43YrGYMAxJ5ecoPgBjG1w7P90LazKZ4HK5RFowGo0iGo2Kg2SLDclGHDJfrVaxvr6OjY0NjEZPZzKSxMa6ay6XQyqVEmj5tJtm/XJdqtWqEFm4Pyj6wnU1BsyTWpR0cGR0lMfV0IAj/ebjWJ6a/cvMlMQah8OBbDb7NVypb6dR8m84HKJSqaBarUq/PuVC0+m0CPyQp0Bd9cFggEgkgsFgIG0zug+V81I1aUivNZMkk8k0NuVKn/XAs2WEWq2GSqUiLX1aD5hj4KgzcBKTar7xTpXSfvV6HclkEslkEp1OB/v7+6hWqzg4OJC5q7wgvNC6ZWI0OhKNMJlMwgZ2OBwCF3JyCjc4o1XCE1wErQCjC97ajDDVaYZ9SSpg/xqhIjpAZjImk0l60dj2RNlC1kFCoRCi0ajU6yiXRietlVnYjzYcDmWAAuUPyUDkuhJS1hMx6vU69vf3EQgEpG2LxAz2v2azWRSLxbGWkdNok5AFNvYTIuceMCILGiHgez3v/TW5RB+4xucD4yS5L8pW2ZrhdrtFM/rr7Gf8tplWO6PmAFE+v9+ParUqQ0/Id7DZbOh0OtJBwbOWwXS320WhUECj0UA8HsfCwoLUX1utltxHNDpTYxZK2VA+ph/n+NBGozFGmiNiqecin0S2+o13qmzuByAaj41GQ0Tss9ksSqUSLBYLstks9vb20O/3RbD/0aNHoqaTTqext7eHwWAgj29tbYkOMdm9nU4Hjx8/xubm5pgYAUWg2V7D2bA8NI47WE+zQwWOlFiYnTDrIBTEGhbHcGlJM63jqTNe7VRJOCMLmEGMZibqNg/CtfwMOlur1Yp+v49arTZ2r9FZM5tmsAVMbg057WZ0sEbTyI6R2HQcCWlSZnrcvwkz6u9jfD/j9x2NRlJL1+MCT/vePc50x4Mu4bRaLQk+dZ8pSUG8plp+FMDYKMDjZCyZIHG/UW2Nmt4Oh0OeT7U87k+ez/oe0R0JzxMe+VPtG+9Ua7Uadnd34Xa7MTs7i3g8jkKhgP/7v//D1taWLKTdbscf//hHhMNhNBoN3Lp1C/v7+yiVStjf38doNEIikYDX60W73cYnn3yC/f19mXc6HA6RSCQQiUTQaDTwi1/8Anfv3pVIyGQyIZ1Oi+Tg4eEhyuUy6vU6MpmMHPZc8OOISqfNeFhR15lKSvqHzeF0WsxiSGIAIMo8hO61Ux0OjwbFc0gCs9vRaIRWqyXUfDpNHgSUU5udnYXT6cTOzo4Ihuzv7+Pw8BDFYlEgatbWub7si5sevuOEIa02pY3XnWunZSUJ8fO99Hsed+Dp3+la2SQS1CTjdySDlMQXBlMnAQe+isZ9QAi/0+kIoZBjPblnyHXR/AOO7jSbzYIOkbti7PHnHrPb7UgkEjCZTMhkMtjb24PFYsHs7CxisdgYN8NqtcLv98t5wrZKfXZQkpTvf1L7+BvvVNnDCEB0JRuNhggxAJCFK5fL0pfKw5E0bpPJhGKxiMPDQzSbTWxvb2N7e1vwdJPJhEKhgEKhgFqthv39fezu7sr3sFgsiMViKBaLAIBSqYRKpSK1ukmj3KYH7VPTcLzOQI3Zqs5KeS11bYyRJduW9GbzeDyy0bkhNQFCZ6pEFPQhTOdOeUP2LvOe03U7raKkyRun2XRGYSyPGDN5lkw04UTX0IwtNZMyVJoxmz2u1HIcmqDrv1q+8Isg49NsmgConR/r13pW7Wg0GpuHSmMd1Gx+OplKD0oxohwMxMiPYL9prVaTsg17zrlm/H5sn+Sa6nuJ661V3k7CvvFONRaL4cKFCwgGg3jzzTfx+uuvo1AooFqtYmlpSZys1WrF1atXce3aNdTrdfT7fSSTSZEqHI1GOH/+PF5//XWBAuLxOCqVCvb39zEcDnH+/HlcvnwZjUYDe3t7ckCT+LK2toYLFy4AgPQ46v7Ura0tPH78eBrdGow3LjcGCSG8se12O6LRKOx2O1KpFB48eIBQKITBYIC5uTnpQdNDEYgeULyBKkzMfnnAcrOwt5REM9ZiG40GCoUCdnZ2AACbm5t4+PAhqtUqcrmcfC5H1dE0bZ+zJE+zZTIZ/O53v4PH40E4HJYa28bGBorFovQRm0wm5PN5PHr0CPF4HKurq1Jnq9frYzMugec7Q+2QuaYAxtphWEebREJptVr49NNPRe6OAcDh4SH29vZkxOPUxo3XmlrbNptNhFLo3DRXgmQmk8mEUqmE4XAohEPOPSaLmGvJPUd5QQbPDGZDoRCWl5dhtVoRCoXG1NOoG14ul1Eul6WUwxqt2WyWOjBh4pO0b7xTnZubw49+9CPE43G8/vrruHTpkjC50uk0SqUS0uk0TCYTvve97+G73/0ums0mgsEg0um0QMf9fh83btzA97//fWGm7e3tIZvN4v79++h2u3j99ddx8+ZNmcAwOzsrkKXVasXc3BwWFxdl41UqFXS7XemHNJvN2N7enjrVCcb6CZ2Rdm4Oh0PYlp9++il+/etfI5FIyBQRwjIUXgiFQmNRr9frRTQalZoKfziDVTeW07n3ej3k83nk83mUy2Xs7e2h0WggnU4jlUqNsckJJXG6hR5uPh1S/tR2d3dl2hShPIqZ60HlZrMZqVQKw+EQKysr+OEPf4hwOAwAMhCDJQIAkkXompexbma1WgVSJmrFSVXUhC4UCs/sy0ajgQ8//BAfffSR/E5nMEaSzNSOTEsCEinyer0yN5Xi9sBTLYGZmRlZy8FggJmZGcRisTF+hW6/MvIWjFlkNBpFKBSSTJeBNO+VWq2GQqGAcrmMYrEopTrWZpnxsstjEqLyZe0b71T1H8sFYbRhHDBrnCRiHNVFiJHEGF3fAyCCzbzYjHb5On1wGkkVx9kUPjoSzGfbCw83bkqtwELkoVaroVQqoVAoyLrrDcQaGCfMUE5Qw450oCQ4aXJCp9ORSJYbr9FooFKpyObT379SqQjLl2xBMhSNakGn0TQzlBCqrodpp8h6Vr1elzXmCEVd19LQ+qQfAOL0eB9p9RwytJvNpowJ0zYaTZ6cNbXnG0so3NMMNAn9ch0YNHOducYUWOFzuNe4/xkQ87zVPoD3h5Hdq1n5RD1qtZokPDwHNDytv7MO3L6qfeOdajabxe9//3v4/X7R7m00Grh//z7y+bwUyK1WK/b29kQEf3d3F7lcDoVCQaKfarWKdDqNTqeDfD6PYrEo48GI0afTabRaLaRSKaTTadmgwFEdtd/vY39/H4VCQTLVbreLnZ0d2eSn/ZDVVigUsL6+jkAgIEGKJrEQ8q1WqzIzt1Kp4MMPP8T6+jqAI7iPMoa6TuJ0OuHxeJ4hqHAtuIbGNijC91xDkt6Ma7ezs4Of//znCIfD8lmdTgcbGxs4ODgQBzE1iNPUmZ4OUEajkWSPjUYDP//5zxGJREQNh6gARVo4q3OSaIDOTPh+DKDoLFOpFMrlsiASU/vqNhgMkMlkpEwDPM0cDw8PsbW1NbaP8/k8/u3f/g2//e1vx8bCzc/PI5lMjtXANVGNaANwVDfXrTmEmxk4UTWJ5DJ2crTbbeRyOfR6PdTrdezu7komywB6e3tbuDanok+1VCrh3r178Hg8ACD9iE+ePEGxWJSNZbfbkc1mkclk0G63kc/nkcvlxAkOh0M0m01xhGSoaUYYH282m2N1oHq9PkaM6fV62N7eRjabHXOqpVJpSlaaYLVaDVtbWwIDxWIxAEftKAcHB9je3paB7lyL9fX1F2ZQG4kNL2ov8txsNov3338fFosF4XBYmIYMrKZrPG7MWicZ15Z7jLXsWCyGlZUV6VNmjTwSicDlckkvsdYX1llKu91GpVIR+chCoYB6vY7NzU3kcrnpGp2gDYdDKZlUq1W4XC7UajVks1lsbW0J4sPg+P/9v/8nLHuOWORe17wHLQRCRTuuNQAhqA4GAwQCAQSDQXS7Xeny4FzrXq+Hcrks9VsapRVJWqWvYFeHHnD+Vewb71RpRur8JIjouOcbf/enwLYv8l/dRvNF3+E0Gq/Dce1Gx12/4373vM/4OkzX8Y6DIaf25cy4J437WV9fPm4MoIz7X6/LdI2+fjOulbE2edy6HvfvSe87qWdZf55GoV5kb37RZ38VM42md9zUpja1qU1taidip5uyOLWpTW1qU5vaCdrUqU5talOb2tSmdkI2dapTm9rUpja1qZ2QTZ3q1KY2talNbWonZFOnOrWpTW1qU5vaCdnUqU5talOb2tSmdkI2dapTm9rUpja1qZ2QTZ3q1KY2talNbWonZFOnOrWpTW1qU5vaCdn/B1DKzGT0TA8uAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAJxCAYAAAApTkn0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eYylV30mjj/v3fe99qW7et/cXe22sc2SGLOIZBJwJkMgSqII4lEIoIkUEVCCEmX4JpGSQfljwmiYBIYoAwoMMwowCRLBHSBg493V7XbvS3Xt69339fdH/Z5Tn3vqvdVV7e626/p9pFJV3Xvf5b7nnM/yfJZjtFqtFixYsGDBggULG2B7vW/AggULFixYeKPCUpIWLFiwYMFCB1hK0oIFCxYsWOgAS0lasGDBggULHWApSQsWLFiwYKEDLCVpwYIFCxYsdIClJC1YsGDBgoUOsJSkBQsWLFiw0AGWkrRgwYIFCxY64K4pyfHxceRyOdP3HnjgAfzwhz/c8rmWlpbQ19eHxx9/vO31P/3TP8XevXuxd+9efPazn1Wv/+M//iOOHz+O8fFxHDlyBJ/97GfBxkJ/9md/hvHxcfUTCoXwe7/3ewCAZrOJ3/u938ORI0dw/PhxvPOd78TVq1e398UtWLBgwULX4K4pyYmJCQSDwTtyrt/+7d/GL/zCL7S99m//9m/4h3/4B5w9exbnz5/H9773PfzzP/8zAODd7343JiYm1M/3v/99fOtb3wIAfPazn1WvP/vss3A6nfi1X/s1AMB3vvMdPPXUUzhz5gzOnj2Ld73rXfjDP/zDO/IdLFiwYMHCzsNdU5KGYSCdTgMAnn76aYyPj+PYsWP4yEc+gnq9vuXzfPnLX8bY2Bje8Y53tL3+jW98A7/xG78Bv98Pt9uNj370o/iHf/gHAEAwGITNtvbVyuUyKpUKDMPYcO5vfetbGBkZwalTp9Q9VyoVlMtltFotZLNZDA8P387Xt2DBggULXYC7HpOsVqv40Ic+hM9//vM4d+4cfvVXfxVnzpxR73/xi1/EH//xH5see+PGDXzxi1/En/3Zn214b2pqCrt27VL/7969G1NTU+r/p59+Gvfddx96e3vx2GOP4QMf+MCGc3z5y1/Gb/3Wb6n/f/EXfxGPPvoo+vv7MTAwgNOnT+Nzn/vcbX1vCxYsWLCw83HXleTFixfhcDjw7ne/GwDw3ve+F3v27FHvf+xjHzNVRK1WCx/96EfxhS98AV6vd9vXfetb34pXXnkF09PTePHFF/HjH/+47f2bN2/iJz/5iaJaAeCFF17AuXPnMDs7i7m5ObzrXe/Cxz72sW1f24IFCxYsdAccr8dFzahPHdlsFmfPnsWHPvQhAEA+n0exWMS73vUunD59GqOjo7h586b6/OTkJEZHRzecp6enBz//8z+Pb37zm/iZn/kZ9fpXvvIVfOADH0AsFlOv/f3f/z0ee+wxRCIRAMBv/uZv4r3vfe/tfk0LFixYsLDDcdc9yUOHDqFer+MHP/gBAODJJ5/EtWvXbnlcOBzG6uoqJicnMTk5ic9//vN473vfi9OnTwMAPvjBD+J//a//hUKhgEqlgv/5P/8nPvzhDwNY816bzSYAIJfL4Z//+Z9x/Phxde5ms4mvfOUrbVQrAOzZswf/+q//imq1CgD4p3/6Jxw7duy1PwQLFixYsLAjcdc9SZfLhW984xv4+Mc/jkajgQcffBAnTpxQ73/xi1/E3NzctmN/jz76KD70oQ/hvvvuAwB86EMfUhmw3/jGN/CNb3wDTqcTjUYD/+E//Ac88cQT6tgnn3wSNpsN73rXu9rO+YlPfAIXLlzAiRMn4HQ60d/fjy9+8Yu3+9UtWLBgwcIOh9FiAaEFCxYsWLBgoQ1Wxx0LFixYsGChAywlacGCBQsWLHSApSQtWLBgwYKFDrjnSvKFF17Az/3cz2FsbAynTp3CyZMn8ad/+qfq/UcffVS1kNsq/u7v/g7hcBjj4+M4ceIEjh8/jm9/+9t3+M4tWLBgwcKbDfdUSb7yyit43/veh0984hO4ceMGXnzxRZw+fRrZbPY1n/ud73wnJiYmcObMGfzN3/xNWzarBQsWLFiwcDu4p0ryL/7iL/DEE0+0NSuPxWL4y7/8yzt6nXQ6jWg0qv7/1Kc+hQcffBDj4+P4mZ/5GVy6dEm99+1vfxuHDx/GiRMn8JnPfAaJRAKTk5N39H4sWLBgwcLOxD1Vki+99BIeeuih2zr2O9/5zqbe4Q9+8AOMj4/jwIED+OVf/mX81V/9lXrvM5/5DJ5//nlMTEzg4x//OH73d38XwNoWXB/96Efxj//4jzhz5gwOHTqE1dXV27o/CxYsWLDQfXhdE3d+//d/H+Pj4xgaGsKrr7666Wff//7340tf+lLH90m3Xr58Gc8++yyeeOIJzM3NAQC+//3v45FHHsGxY8fwuc99DhMTEwCAZ555BsePH8ehQ4cArLWhc7lcd+bLWbBgwYKFHY97qiRPnjyJ5557Tv3/X/7Lf8HExAScTidqtdodu86xY8cwOjqKp556ClNTU/jkJz+Jr371qzh37hy+/vWvo1wu37FrWbBgwYKF7sU9VZKf/vSn8bd/+7f47ne/q16rVqvb2l9yK5iZmcGVK1dw4MABZDIZOJ1ODAwMoNVq4Qtf+IL63MMPP4yzZ8+qGOVXv/pV1bfVggULFixYuKe7gJw4cQLf/e538Ud/9Ef4xCc+gZ6eHjidTvzO7/wODhw4oD73xBNP4JOf/KT6/5vf/CaWl5fxne98pyPlypgkANRqNfz5n/+56hH74Q9/GEePHkU8Hsfjjz+ujunt7cWXvvQlPP7443C73XjPe96DQCCgdgGxYMGCBQtvbrzpe7fmcjkEg0EAwLe+9S38wR/8AS5cuPA635UFCxYsWHgj4HXZT/KNhL/+67/GN77xDTQaDYRCIXzta197vW/JggULFiy8QfCm9yQtWLBgwYKFTrB6t1qwYMGCBQsdYClJCxYsWLBgoQMsJWnBggULFix0gKUkLViwYMGChQ6wlKQFCxYsWLDQAVsuATEMY9snl8fIJFrDMGC329Hb24tYLIZAIIDR0VGEQiF4vV6Ew2HYbDbkcjkUi0U4HA5EIhF4PB7E43GMjIzA7XZvOJ/NZkOj0UCtVkOj0cDKygqWl5fRaDTQbDbRarXgdDrh8/lgt9vhcrngdrths9ngdrvhdDpRKpWwsrKCUqmEZ599Fj/60Y9QLBZRqVQ2tM7rlBi8UxOGb2eMbwc2mw0OhwOGYbSNDbD27HgfhmEgEAggGAyi0Wggk8moloKv9zN+va//WnA3x9kwDDW2zWazrZsW3wsEAnC5XBgYGMDRo0fh9/vh8/ng9XoBAI1GA61WS/00m03Mzs5iamoKpVIJ09PTSKVSANbHwTAM2GxrNr+cT68VO3Wc79VaNrtuIBDAkSNH0Nvbi927d+PBBx9EMBiEzWaDYRgwDANOpxM2mw2FQgErKysoFAo4ffo0vv/976NSqbQ9d44r58Odxq3OueUSkNt96Jy8LpcLDocDAwMDOHDggFKGwWAQHo8H/f398Pv9cDqd8Hg8MAwDpVIJ5XIZNpsNHo8HTqcTXq8XoVAIdrsdzWYTzWZTPXguTP4Ui0UUCgUleHkvXMT8n4uX56SSnZ6exrVr11Aul5FOp1EoFFCv15XCnJ+fx82bNze01bMW1q2vY7fbAawLNJfLhXg8Dp/PB7fbDb/fr8bK6XSi1WqpcSmXyygWi6hWq8hms0ilUvf8me/UMQbu7Djr55JrkQrObrdjaGgIAwMDcLlcCAaDcLlcsNvtcDjW7PRKpYJ6vY5ms6mUJI1XXoNGcKFQQKVSQTqdxs2bN1EsFtW1dLxWwbpTx/lerGWOMbA2Nn19fejp6UEoFMKJEyfQ39+v3ms2mygUCsjn8wAAu92uFGpPTw9sNhuuXbuGq1evIpfL4eLFi1hcXNzwXV4PJXnXmwlwslMZnjx5Er/yK7+CWCwGl8ullGc4HIbb7W6b6LVaDfV6vW2i12o11Go1ZaVK767VarUtPL/fj76+PiVsqQTpvcjjeX63241wOAyXy4Xx8XHY7XbUajVMT09jdXUV5XIZyWQSlUoFTz31FObn5+9479luR6vV2vDMXC4XxsbG0N/fj1AohKGhITidTpTLZVSr1TZDK5vNYm5uDsViEVeuXEEmk0Gj0Xidvs2bG9LrJ2j4SK/h8OHDeOSRR+DxeJQsmJmZwdmzZ9V4zs3NodFoqPVJQ9rlcuHAgQPYt2+fMqDcbjeuXLmCQqGApaUlVKtVNQfIKrVarbZ5sVMV3hsR9O6Adbk7NjaGEydOIB6P49SpUxgaGsKFCxfwr//6r1hZWcH09DSmp6fbZPzhw4fx7/7dv0NPTw+OHz+OU6dOYWVlBV/72teUkny9x+2edNwhxRIIBBCNRhGLxRCLxZTycjgc8Hq9ymPgIuP7nOx8nQKWnqCZBQms03q6kuSxzWZTLSZgneqz2WzKe/X5fKjVashms6jX63A6nahWq4qufb1ojW6By+WC0+lUlJvP51NMAp+tHF96oR6PBwAUTSeNJwv3Bp3mPr0Eh8OhQhper1cZOZKKrVQqKJfLKJVKKBaLbUqS4ZFGo6E8TR7vcDjgdrsRDAZRqVRQLBYBvP4C9c0GykqXy4VAIIB4PI5wOAzDMNTYZrNZZDIZ9SPXaDabRT6fVwxSOBxGtVpFIBCA1+tV4TNJqxP3aqzvmJI0u3kKulgshne+853YvXs3RkZGEAgEYLPZUKvVUCqVYBgGCoWCUlhSkXFBUQDSE9TB96TX2Wg02mg9/f7ktXhcvV5HoVCAYRjw+/0IBAJoNpvI5XKoVCoolUpIpVLI5/PI5/OWUH4NcDgcbR5CKBSC2+1GOp3GxYsXUSqVlDCVcedIJILh4WEEAgE1v/L5PK5du4bl5eXX+2t1PSSdKtcSsMbEJBIJ+Hw+9Pb2qrGt1+u4ePEi6vU6stksyuUycrkclpaWUKlUkM/nlTCUrFE2m4XD4cDFixexvLysaPlAIACPx4Of/dmfhc1mw9TUlAqNLC4uIpPJqPuSXq28Vwvbg9kzDAQC6O3tRSAQwNGjR3Hq1Cnk83n86Ec/wtzcHFZXVzE5OYlSqYRsNrvh2S8sLOD06dMIBoN44IEH8OCDD8Jut2P//v0wDAPJZBJXr15V+oEe7L1kju64ktQTdAzDQDgcxv3334+TJ08qyxKAUpL6YqPicTqdsNvtaLVaqFQqaDQaSljyt1SCuqdZr9eV4q1UKip+KWOS8r4Z96JFGwwGUSqVAAClUgm1Wk0tbi50a8HdPux2O0ZGRvCWt7wFhmGgWCyiVqthdnYWZ86cUckZOvbv34/du3cjFArB5/Ohr68PmUxGJWpZuLvo5OUDa2Maj8cRjUaxf/9+RbE+//zzmJiYQC6Xw40bN9riyJ3WUL1eV2s5m81iamoKTqdTCeXDhw/j0UcfRSKRwNmzZ9FsNpFOp1Wc2uy+CWvdbh8yOYpxY6/Xi/7+fkQiEezbtw+HDx/G5OQkJiYm8KMf/QjA5nHhZDKJVCqljJ/jx48rueD1ejE5OYnp6WnluNyN5Kxb4Y4pSZmVCKy54bFYDOFwGIODgwgEAnA6nTAMQ018Ki1go5KVD4DUq34Nvqf/EHIxk5Y1SzTQjyFFC0B5McCaAHC73QgEAgCAUCiESCSCYrGoYmcWNkIfW8alvF4vfD6fotiY5ZZMJjdQLHKMSqUSFhcXUalU4PF4VFIXtzmj8SUZCXl9C9uHWexRvhcMBhEIBODz+dS6bzabmJ6ehs1mw8LCAjKZjDKEdLZoq2NDg9dutyOVSuHGjRvIZDLI5/Mqoa+/vx82m00l95ht6L6da1poh3xuXq8XPT09iMViAIDl5WWVs3GrMZZsRKPRQC6Xw+LionJiwuEw/H6/coTuVnbrrXBHlaT8Ai6XCydOnMDJkyeRSCQwODgIj8eDarWKfD7fFv8D0PYgaKXwfyouxif58CX1amZZ8PwMLPM1eqL8X96/3W6Hz+dT5yiVSiqmybipy+VSXmU6nUYul8PU1BSWlpbu1OPsavT29uLEiRNKqeXzeWSzWbz00kuYnZ1V8SnAPLV/eXkZP/3pT+HxeHD48GEcOXIEPp8Po6Oj8Pl8SKfTuHHjhho7shFyXlnYSJ/pcR89DV8+R0l3kTY/cuSIik05nU7Mzc3h29/+tspqzOfzaDQaKqavX8ssdGG2ThnHyufzmJubg8fjwcGDB3H06FHYbDaMjIygWCxidnYWTz/9NJLJZBvtyox2PbHHwubQw1PA2lp+5JFHEI/HUS6X8dxzz2FxcRHJZBJAu7xlrBlA2xiQBbx58yZ+8pOfIBQK4fDhwxgZGUE+n4fL5VLXlPL+XuGuJe7YbDb09PRg7969CIfDCAQCamHQknQ6ncpq4EOTZR36xAY2eo56TJHQ6VS95ENaxLoHzEHlfTKBgMk/DocDzWYT8XgciUQCDofDUpAdYOZ5+Hw+DAwMIBQKodVqoVqtolgsYnFxETMzMxuO189RLpexsLAAh8OBwcFBAFAZ1FxIzHDWy4MsJdmOzbxsPcXfLGOUQjAajWJkZEQZs4wTXr9+Hel0uu28cg3K65uxOma/q9UqWq0WSqUSVldX4XA40NfXh1AopOqgmRnPEhKdoZLntObE1qE/K6/Xi4GBAcTjcVy7dg0LCwtYXl5W9cxSdusyVyZdtlot5HI5zM3NoVwu4+jRo0pv3O06yVvhNSnJzRaYzWZDOBzG0NAQPB6PKqVg3ZQUXDLDlMcC2ECX8aHSo5TXpnI1Ow6Aqfeo369cuJ1+eLzNZsPAwAAeeOAB5U2urKxYCw4bFRuNjHA4DI/HoxI76G0sLi4il8upuAOP4W/deiWazSaWlpZw7tw5eDweRKNRDA8Po9VqKSXJ41+vBfZGx62eiR57NAxDZXX39fVhbGwMPp8PPT09KBaLqNfrSCaTypNjCKITc2Pmyer3pn9On1vNZhNzc3N47rnn4PV6EYlEFPV7//33I5/PY2ZmBpOTk4pN0DOmrbnRGWbykmAtq8vlQi6Xw+TkJFKpVFvTD339Sg9SPvdisaicjUajoc7L3BP98/dq3LatJM08MCo7Cbvdjp6eHuzbtw8AVMyOVr78vJky1N+jEtOVnaRN+BBp6cqFxwctaTdd6Zl9P+l9ElTqe/bswbFjx5BOpzE3N4cbN268KbNdO8V1AahxcblcGBoaQjweR29vL0KhEGw2G+bm5vDss8+qJA05RsDm1iMpmvn5ecRiMfzcz/0cDh8+jFarpZLDpPFkoR163F/+bebp1Wo1OBwO+Hw+uFwuHD16FO9///sRCARw/fp1TE1NIZVKYWJiAouLi6jVaqhUKgDaQx+349HrRjTPxfNduXIF09PTCAQCeOCBB7Bnzx6EQiG85z3vgd1uxw9/+EPMzc1tiFXrCtfCRmxmyLDBi9vtxurqKl555RUUi0Vks1l1jG6QEPJ8rVZLxZYZRvN6vfB4PKp0qF6vK7mgz827ibvSlo4LgvE7Btvl5KQw3EyAdVLI+gI2e1+3ODv9bXY9efxm1BCTRer1uqrXezMK5E6TVDcsAoGAykil8iqVSigUCqpcR2cVbgXWR3q9XuXl8MfpdHYsGbKwhk7P2mz9sDY4HA6rzlec96Q/GX/M5XL36isAWKNgq9WqKtcqFotK/rC8KBaLoVAoWEl220AnWSkrDOhgMGGuVCptaOKgG9Jm844ygUl7lL9czwDe2ErSLCZoBpfLpRYQM8wAbFCQ/FvSOTL+wWvpnR0YM5T3Ij0+Sd92ukddEOtUqrxPxkclRcxja7Ua8vk8yuUy+vr6cOzYMcsahTnF4vV6sX//fuzbtw+ZTAbT09MoFosqqaKT8WMGszhjq9VSHZS8Xi/27t2LaDSKpaUlLC4uqnkhqR4Lm4Nz32azIRQKwe/3Y3BwEO95z3uwe/du1T6sXC7j8uXLuH79OkqlkqmCvJO092bnqFQquH79OpLJJKLRKFKpFILBIEZHR/GpT30K+Xwep0+fxtmzZ5VQl4KX57ewDv25OJ1OxONxeDweRCIR1Ov1ttI4Nn4wO1aPCZt9BoBayx6PB2NjY/B4PFhcXMTs7GzbvLwX63jbnqTuIutg9xT23qzVam2KRVKb0nNgvFK+L8GJTKqFAlJPIpAPzsx66RSX1D1Rfp4KWWb3yXrMQqGAarWKeDyO/fv3b/VxdjV0uhRYK/vYtWsXjhw5ggsXLmBiYgLJZBLpdPq2hBLHBVifG41GQyVrjIyMIBKJoNFoYHl5WSlJaUBZwnANm8V2+Lrf70cikcDevXvx/ve/H/fffz9+8IMf4Ctf+QoWFhZw48aNDS3H9PPcqee92XlqtRqmpqYwNTWFeDyOWq2GSCSCX/iFX8Cv/uqvqtyBGzduoFwuK4FuUa+doTNsTqcTsVgMkUgEoVBI9VMul8tKHt4KnWQx54lcy8PDw6qr1vz8fFu/bsr7uzle245JMsOTN8ibZI/VWCyGkZERhMNhlb0IrLvSOpUJmNc6mgXnpaLVvQgZn9AfmtnfukUjKQEz71aeX8edtJK7CaQ/aThx3tC4yOfzakHpz3mr5yeazaayZmu1mrqez+fbYOBZY9SOWz0PUuW9vb3w+XyYn5/HxYsXcfPmTSSTSeU9AO2hitfrOUumh17t7OwsLly4oJRiNBpVpUedjrdgDuYcuFwu2Gw2ZWTIEiszNkh/rrqilO9TpwBr7CRroXUP9F6M1ZaVJK119ufjbh1utxuVSgXZbBa1Wg33338/3v3udyMSiagu8HL7KmD94Xg8HmXZMyirf2lJj5Fu1WtltqMk5XHyGma/6alSsJvdC1GtVtWOI29WSDqazyeRSKCnpwd9fX3weDyo1+vI5XKYnZ3F6upq27Y4W40dmi3AWq2Gubk5lUU7NjYGp9OJZDKJM2fOAGhP4nkzj9N24XA4MDY2hoceegiVSgXf/va3USwWMT8/j8uXL6NcLqPRaKj8A8kK3Yo638443Iqqk+EawzBQLpdx8+ZN2O12pNNpPP/886qOc3x8HAsLC0ilUhu6fllYh9kY2mw2+Hw+BINBOBwOFItF2O32Ng9Senm3okT189PgLRaLaDabautEGrzSQXtDKUnJR3OrG7/frxoEtFotFZs7fPgwotGoOk7vucoFpPdT1TMadU9BTmQpjPX3dQ9Q/x5m5zf7m/esJxnp9wFAFUm/maHHbA3DgNfrRTQabdvejLFcPXb1WiZ8s7m2FU8qlVK7R7BhumQsLGwf7Jc7ODiIxcVFXL9+HTdu3EChUEA6nVbp+kyUMgtdmEFfg5t9jueT2CwBj4Yte7jm83lMTU0hEAjgoYcewujoKCqVCpxO55aegYV1mHmSunOy1fwC/bzSYKZecbvdaDQapmO11fO/Fip9y0qSRf/BYBADAwPw+XyIRqMIBoNK8zebTRw+fFgpUXbmMKNEZfd4PhAzd50PjlaDbHIrv3QnhbcZzI6Rr8nSD7MF6vF4EAqF4HK50Gw2TRv4vhkhKbdwOIz+/n7VpoyJTq/lOUkjRS6qdDoNw1hrTA+gbSs2szorC5tjcHAQ+/btg9/vRzgcxvz8PJaXl9XeqjoLQMO303N+rWNO3CrBxsxAZtcsZufG43EUCgWEw2G1N6m+2W83YrsUpZmHzURGmdna6djtnN9s3Ox2e1vmup54t9XEHV15b+cZbFlJ8gZ7enpw8OBBhEIhDA4OIpFIqJgTt8SKRCKw2WwqiCtrGOmdtVot1eqNW+bou9TzS0kFK7NbZb2jfoweX5QPS7d25W/5t9nClH8HAgEMDg6q/QyZIPJmhW452u12JBIJHDhwQNXGJpPJ17x7iu7VA2t06+LiItLpNILBIIC1HSlYkFyv19v2HLSwOQzDwMGDB/HhD38YgUAAFy5cwOXLl5FMJrG0tKQSrjgOsobtduLL28Gtzmk2t9h3mb1GR0ZG0Gg00NfXpzxOei7dBjNZt531pysv0p2yY5rZMVtVRp3yPKgjWHIk8wtk+OtuY9uepCyFkA+L3VRouevYLGnCzEvbLKhrdox+bKfjzM7fCZu9z3NQsbOXazcusq2g07NyOBxqf0jWysqa2duFmfXJ+qpKpYJqtapiY/QkZTzbwq3h8XjQ09MDv98Pr9erXmcixWZegNnv16o8zVgmvQkIX5MyyjAMVaPLptksVGdeRSdhb8EcbD/IdWVGrd4JWSjLtmRG++2c/3bHd8tKkl3eM5kMfvrTn8LhcCAYDMLn82FoaAjve9/7MDIy0jZxHQ5HG4+sF4KyvkZy2sDGmN+tqJut/L0d6K45sJ70wYJqdou5dOkS0uk0XnnlFczOznaNkuxkHW72vsxelq/V63UUi0W1J+DKyopqW3W7MHvOnEdLS0t46aWXEIlEsLS0hEgkArfbrXYX2S5uRe/tZGz23dhNhQ2nE4kESqUSTpw4gUKhoGoi2S2J4ZVyuawMFJmvwLVOelPmD+hCVp9fbBphGIbyYFinx/8pbxKJhAr5sNl6KBRCNBqFx+PB0NAQEokECoUC+vv7VZ/X1dXVrjSiNnNMbjWnzVgbenc9PT1IJBKIx+NotVrKGOZnOa7SkNHf38xxYuyTG2+zD+9m6BQek++b0bqbYVtKstlsIpVK4erVq23FoseOHcODDz6IkZGRthvUe+7JWKRhGGrHcZnU0+nB6ZaoPsj6MWYUwWYwO1Zy7vQY6TnbbDYsLS2per/Lly9jcXGxKwTpZhNtMw+807gxFvnqq6/i2rVrbQvvToFefaPRQDKZxKuvvqoaXQeDQbjdbuTz+W2fVxfe3TC+W4XdbofH40EgEMDevXsxNjammIB6vY50Oo2FhQXFotB7Z0kIX+dns9ksqtWq6u3KWjiGUcwSfijU2E7OZrPB6/Wq2OLQ0FCbV8hGEn19ffD7/ejp6VHKNB6PA4Da2i6XyyEej6vs/G73JM2M3K0oS/09u92OYDCIWCyGaDSKSCSCZrMJj8djeoxkH3V5anZ++VmG5NjacjOYJQttJqu2ii0rSW4fJXvryWYAlUpFda+gIGUw3+xGb9c1l8p2K9jMI+ok8PXFqk8uWq3VahUrKysqjbzb4pFboaTN4Ha7VeazYRjIZrPI5XIq7ny3Ua/X1bZMgUAA0WgUlUoF+Xxe3QNbmG0HbwYF6XA44Pf74XK5VIq/NBZJX8tYJHu0VqtV1Ot1eDwepST5vP1+PyKRCKrVKsLhsCobobEtKTu9VzKw1vu5VCrBMIy2/UN7e3tVmIdladFoVIV/2FeUjbKBNaHN3UIGBwdht9uxsrKyZZmyU6F7csR257XNZoPH41G1yKVSSbUFNIN+rVvR7TR46/W6krVA+yYVm8GMhbwdD5LYspKkl1itVtVGqn6/X/VuTCaTmJ6eVhlkDodDpf7rNykzVM1iFZ28SL1kZLNsxVtZELoCMPtb3x6IdCupnFwuhzNnziCZTKr907oBt1pAt5pkfX19OH78uCoPevXVV5HL5W7Lk5PYalu5YrGI6elpuN1uvPWtb8Wjjz6KarWKQCCAK1euIJ/PY2FhYUuU7+3Gz3YK9O8WDAZx/PhxxGIxHDp0CD6fT219RQVGhdPb24vR0VEVk2dilEzYo6fI34wd62VhZJ2Y9yApular1SaEdU9D/z8SiajSH7I+bJFJutbpdGJ0dBThcFgp3xdeeOE1hwHeyKDBI8fgduByudDX14ddu3ahVCqpcqDV1dWOTBJhxgDqYE/nbDar6iPZ7nQzJamv1TvhRQLbUJKRSAStVqvtRl0ul1pEpVIJmUxGcci09OSE3+xLbMW66PTTCWbeKhfdZl6kGe0jj2fiQrVaVQXJb/YaSYlAIKBaSd24cQPLy8tbble1GSgIb7W42bCgXC7D7XZj9+7dqNVquHnzJlZXVwFgQxKAhTVQADJu53Q625Iz2MVI9zAZ16OSZBKVWTtJKSilkqQy5m8JeqwUulSwcs9X0rbcHB1oz5zktdxut6KSE4kEms0m+vv7u3pOSCOCDN/twm63IxAIIBwOo1qtIpPJIJ1Oo1gs3tKo3oqCohJnKI5MgFlC6K3OcyewbSUZDAYRCATQbDZx8uRJHDp0CK1WCwsLC5ifn0ckEkFfXx98Ph/6+vraalyq1WqbktIbABBygZhlrZlhKwHoW0H3JnVvVVJOMlmBVnI3gc+bG59yiyTpVbRarQ07KthsNrVLvMfjQaFQwPz8fEeqRGcV+PtW7f8IuRk2aTgKXLfbjXg8rq49PDwMAEilUvD5fCgUCqosQM6vWq2m9kZMpVJYXl42LU/qFhiGoejxgYEB7N27F7t27UJfXx8Mw2jrnsMxZxE5lZTc/UFvcG0Yhmo2wLGR2aRm8THdCJY111TITAKSQp/zk3NKzlW2zqMcYhIej+vt7YXT6VS7iHQTnE4njh49ij179qgwkfyOfGZy8whg7VmxIxE/MzQ0pDZDZgJVIBBAf38/9u/f35Z7ItvLdZIBXOsc40gkgmg02tagotlc2+T+2LFjKJfLG6oteD1ek8yD9Jq51uv1OqamptTelbfClpXkwMAAWq0WFhcXVbbgL/7iL+IDH/gALly4gM9//vOYmJjAvn37MD4+rhp+B4NBOJ1O5W3JOkk58TkwZoqQD2Mr1KzE7Qg0PfgrY2jSagagEhW6TUlKWm1kZASjo6Pw+/0YGhpSjes5GRmTlTTZ+Pg43vOe98DhcGBlZQXnz5/vmGIvM6C5GDr1wTVTnG63W9HfzGrk1kgejwejo6Pquxw9ehQHDx5EKpXC2NgYCoWC2t9SekaFQgELCwsoFos4d+4cnnvuOZRKpbbWit0Eu92OeDyOnp4e7N27Fw899BD279+v1oHMLajX60oZFotFpNNpVKtVpFIpVS9Mg4JbVTFEQdosEAgob46Z4kB79yrpMUpZIbNnS6USUqkUarWaUr6kV0nfUmkyZ4IClPEulra4XC7s27cPqVQK169f7zol6fP58O53vxsf+MAHkMvlcOHCBaRSKfU+DRnuw8r1l8lksLi4iHq9rppzRCIRJBIJ2GxrGy7TiKa8B9C2BySbNJBhlCAbAKxvd+bz+TAwMIBQKKS67dRqNYyMjODd7343ms2mSt6iMSyNLybvsTd0Pp9HvV5HLBZDX18fCoUC/t//+39YXl7ektzespJkXZTf71cCKJFIYGBgAHNzcygWi1hZWVGdLLxer9pgWQogMy56qwpms6Dza6EPOmVEdVLCcgF3o3fBwmuPx6O6kwQCAVUzRyUpMxN5HFuYsQ0da9LYdJxWJQAVH2LPT/lMWc6hMw68HoVfMBhUSpJ1cMxmZDiAQpOdeAAgHo/D6/UikUigr69PzVG73a6S0wqFgopvAe30YDeBApI5BsFgEKFQSHWhkVmIVDKNRgOlUkmVc7BhvVwTtOBl4Xmr1VJCDWjfwUU+WypaaVBzvlGY8v6q1aryOBj/5Gd5Ten10tOlfKJR6Pf71bm6DYax1i2tt7cXXq8Xq6urG+hLKh5gXa46nU7lDDCDmEYO1xXXbygUUgqPYyzrx5lcpbN0HBeW+TDhinOGn/P5fIoe9/l8bbS5NJI4rl6vF9VqVfWMjsViiMfjKr65VWxZSYbDYQDAyZMnsXv3bjgcDvT09GB6ehoLCwuKyigWi8ryKJVKbdSX1+ttW3QyGeBWzWolJUPL9naVk/QWdeWox0zkvVIZyGL1bsSuXbtw/PhxhEIhRdFwQZB+408sFmvbycMwDMRiMaysrMAwDPT19eHRRx9VgotKUvcQpBKUzMHq6ipWVlba4oy9vb04cOAAfD6fUmyMk9C65MJhXBxAmzAcGRlRmZg63RoKhdrSzn0+H7LZLCYmJnDt2rXXbVzuFmw2G6LRKEZGRtDX16eEW7FYVFZ4pVJRiS80hlj72Gg0VMYj0F7kTyXJUhAqrUql0janZLyZHruMOQLrRisNKApgeq30IgGoJDGuZVmHLXMq2EjA5/Ohv78fLpcLU1NT9+7h3yM0Gg1MT09jYmJC1ZL29fUpOpVJiTLURYOUZXyyCUMsFlNZ0HSI6KXRuKGxSwZRUvayNp7jwjHkfpX0ULl+g8EghoaG0Gq1NiR3SerV4XAgHo+rECFlDet60+m00ldbwbaUpGEYGBsbU7GKZDKJ2dlZLC4uqouWSiUsLS2pOIW0NriI+IDkwpAJGVJYckLrAvp2FKTudepJOhK61yoXPpUCEwm6CYZhYGRkBI899hgSiQSOHj2KsbExVKtVLC8vK9qR481JTYVHy5CZbn19fUr40HuTlFw+n1cCTVqv3O3+2rVrajPfhYUFZLNZHDx4EO9973sRi8VUqYH0aCWKxaKizmjokA2hwSW9W2DNCmaROmPsKysrWF5exvXr17tuzOn9Dw0NoaenB3a7XSlGtmvjllgsEeGYcy1SScrsV6nEqCSpyKSBqdOpxWJReRU0qnUDVv9NKpDnJu3GuJSkYpkIAkApeK/Xq2h3We/XLajX65idncUrr7yCnp4ePPzww+jr60M+n0cqldrQ0IVgqQcAtfG2nAOGYaj6UypHboVHj51jIMeY65aw2WyKCWIOCw1lypVAIKA8QHm/VMIyLkl2ibLEZrPh6tWrWFhYQCaT2Vaf3i0ryVKppB4UJ6PsdEEBRQ+SiQ/ARjqTr+nYSuZip2O3iu0k8Oh0K18nldNtdZEErTJacNIyNIsL6yneMq5MI0nGJCVrwJIheV5pPbLji8vlUlQMFRjPa2Y0yWQrWR8nqWFatWYshqwDJs2k72fXLaCSCIfDSrhIgcP5IDNd9Tgi/5ZKkseytrJer7eVekj2QM4xaQhLL9OMAZLjSSXI++RxjIfxe5Ft4P/6ec2MrZ0Kzn/SkKVSCZVKRW04TSNBz3qV60eOtZwTesIdzysznM3GVZcnANrKiHi/ckzMWCez8+jfnedm+GRpaQmrq6tKn20FW1aSV69eVa4s9+qj8IpEIorfLhQKmJubU8XbfIhSCHLiSsp0q4pUvr4VgSXplu2CAyPd+VarhUKhoIyBblSU9AYrlQqSyaQScHLi01BgXRmFExeRngBQr9eRzWY3JEQwiYLg8+R5Q6EQ9u7d27ZTjM/nQ6vVUg0DZLmBPh5UcrryJmTav6SA8/m8SlTx+/0ol8tKUXabJ2m32zE0NIT77rtPbVDAmDRjQzbb+n5+ZklY0qOUvVC51iX7QPB1Pk+On1S29Pik0aYrNMZUpSdLQ0sa9NykQTeCdeq/m9Y0dyryeDxoNtc2GDAMAzMzM6hUKorho5LUjWGpJIF1z5vKl55irVbDzMwM5ubm2uLJ0jgB1kNY9DKlkc2t19xuNwYGBhAOh9vGMJ/Pq6SxUqmk5IZcj7qBU6vVlLx+9dVX8eSTTyKbzWJlZWXLz3DLSnJ1dRWGYSghJwOmdGd5U7VaDU6ns82lNaNQ5evyS+rJEbrFApgrVQleS39ts/fNzqGXpsgOIzpN1y2QVlqxWEQ2m1UTW2YeUsjR66IAlbEmufAY15ILz0woUQlT+MnNVqVVKXeYkVSONKJkg3U5Z6RQ53eWr3Pu0guh4Keh1E0g1dXf36+8ZtKTTNAAsCHRw2wdM+mLDBMVE+k1jpvs9aonZhHS65TsghSEurcvPV4mI8nvAqzPORq6uozqJrCzEBMvi8UiPB6PqmkPhUIqtg+sy0XKYLnm5I9cw1SUyWQSMzMzbXKeYyBjz7qSpEypVqsol8sqoQ6AMnp4PdK59DqloSTHkZDe8+LiIq5du7ZhH9tbYctK8vr167DZbBgcHES5XFYZYEzvPnjwIGq1GpLJJObn59VxOu3Vaq1lt0lPUqdddNyOZWemRPWHKL1YXWnyNVq28jVm1XVb6QewnukYjUYRjUbbDCBJX/B5USDR4pNZosCtBY/00Ck4dZpPxqp5jBwTCkp9rKQnw9f088jfUvjqc1O3hLsJhmEoupVGjhxj0tr8rJlHLo1gySjwc/QsaXRI4SipNkmhSUpP/y3ZHc5ZNsCW2fTMgKTglwYegDbvlAK4m8ZXGpB8Hs3m2iYAhUIBw8PD6O3t3dA8nB68zEpmjE9SodJZikQi6O3tbcskliEbma3K96iMOS/oefJvzjt9vCTDIelf6eUC6xn0rVbrtnd62bKSfPrpp2Gz2dDT04NcLqe+jNvtRm9vLx599FHs378fL7/8Mk6fPq0mIyektPD4xemmU0DyYeiepSwF2ErMQBd+ZlYqYaYopfUk9y3jQmIySDdu0moYa6niw8PDiEajba/LCU5Iz5HNBvh5YrNnRIVKi69arW7IeuS55NZXetq3zIqUwrPTfcjXZQ0uX9fjsbJkodvG3Gazqc2xSWNzXcrYnqQudUUp54WZMSO9UlnwL+OWFJj6HOtkQPNeODf1uSfnjywul7KAMglYr9PrJiXJJBk+o0AggEajgatXr6pdVUizM9HSMAy1vqTCA6DmBJ8Z6dpms4mhoSFVMpJOp1V8ks9dhmEYI2XyTrPZVKwR945kko7MSua1abzzNX5OdnjiNSUzcjvYspLMZDKKF6bFT6HCzibNZhM3b96E1+tts+515cZFsRkdqkMXYtuFXBhboVk3u6YMPncTOOlYssP6IpmAxd/S+9J/CGl0bDa2MmHLzKDh/9Ii1sdTZwE6wYwx6PQe700+m26EHHO9REf3yGnASCNE0vP6sfwt54dkG8ySeKRClDS4nqDB4/V70ueaTqXrxpKk8LstJinHjz8s75HhD/n8ZCMGoL3TFdefzuTQY6Py4kbnZvNA6gOZOCUbAuj6Q5fFsmuTDN3cDWxZSVYqFdjtdsUbl8vltoe5a9cuJBKJtpseHh5GoVBo8wKpIPUSEMA8wUfyzdIz1L1Fvq5DF9pyAXIwpJCVSSmkCHT6j/z+VvY320kIhUKw2WwIBAIqjsF+jHKSy8kox5YxQvk8paCVQo6/ZayJtIiubOXnOed4XT14LwUuoXukErqg1ylbsiX1el15Qt0iRCkcZTYqswALhUIbtUrWR3p+QHtinFRG/M2/JSVWrVbb2ooRZsaL2frWGSIqNr2sRIJxUJlhSTSbTeRyOaRSKdVBqFsQDAaxa9cu5U3lcjlFbZMlo5fFxKpWa33j8kqlomQ4d1sB1veOZQekZrOptiDjXDGrn6WnLsNVvAefz6eSxqT3zwQ9OR95z/qc0Q3nUqmkWvCl0+nbWrtbVpKkwdjeiXFJWqCjo6MAoHhput/MEmw2mxs8AGBzJcb3dQtfV6SAOQ1m5qnqLrncRQCAGkBy5jLmxmMkZdCNSpJ9PF0u1wZKWaej5VgwfVtOZiq8TpSZtESZ5MHXCTnWUslK48pM8OnGldkckl6SPI7zii3uqCQ7KdudCNKVXMd8DoVCAdlsVtFfVJ6UAWbrWEIqL1JtknmQJRryR/cq5G/APM+AwlNX0roxJjv2UIDzPtmogq31tlNo/kaGYaw1xhgdHYXb7UatVkMul9vQpIEKRxpKpNvz+TzS6TSAtT2FqfC4TuR2aNQLstk99QM/S0OanZr4PpVkLBZT98FOTtws3e/3IxgMtoVZ+D0BqPpYGtqGsZadvrS0hHQ6ffeVJFEqlZBMJpVL7ff7TYUK4zjkvQkpzOSgSO+tkxDq5F0A7R4B35M0AY+XQV09CM3PyMQBM/pmM89kJ4PP5lYxX8JMUcpWX7pykskvnSixTtfh8WbH6dmRuvDtpCjN/je7tqwNlHN9p4Otu7xer6LWms21JiAs32Ihuf785HPm67qHJ1kjYGOHLXlcJ2WprzV93ZkZwp3+18/BucHvLhVpt0DO30qlopghyjc99quzesB6OMTs+UkZIOPV7K4k8wsIOhr8PL1cJlnpmbZM3jOj6DuNP++t2VxrZEGlfDtjuy0l2Wq1MD09jdOnTyORSODRRx9FX18fgPUOCF6vF0NDQ8ojy2QybRah/GH/Pbr9+kaswLrFQmuEClV6CgDa+HO9H6R0z5kSbZYYwuvJnQ0kXSwXuz7w3QDWmemp/jJ5Sg+M62UXfF0WkxP8WwojOZ60PuUxen0cYD7G0jiipckxIovBecjPbQUU2nqSUDeAbb56e3tVY+pSqYSbN29ibm4Oo6OjiMViagcfPTQhC/J1xQe0j40ez5JjyWN4vLyOHv8izIxXXSZIgU8Z0ClGZrfbVRipm0q7OOdbrRbm5+cxNTWlNgPweDwbthoD2jcaYJIMAEXLy0x2OQaBQACBQKDNYK3X60qu05OUYFs7npN0LuF0OhEOh9FsNlWZD7BeYyuTt/g6vzfru5eWljA/P49UKnX3PclWq4VUKoUrV64glUrh5MmTbfGhRqOhYjjNZlO1MTOM9bRwChvDMNSOANVqVbWiAjbSJdIakoF1M89BClAKXl6ftVOBQEDFv8ziHBTaLCqX1+Jnu9GT1Ms3gM1Lafg3hZ9Ok+selzyvTP3WMyP1MdEFK+eHVNzynmRChzynmXe7GW3Iz+keULeMu8fjQTweVzSaYaxRYqlUCktLSyq7WRo8ckwldarT7ADaxsYsY5W/9TUsx3szr11Xmp1YA0m/8XW+Juk5PZOzW8DvnU6nMT8/D5/Pp+pHpRFj9kPZCbQbL/oaA6Da/UlGqlwuI5PJqGfLkIps9kCnRdbM8rdU0syQbrVabU1I5JhL44f6gv1aO+13eSvcFt3K/fUymQwKhUJbhhmtRz4UbmPDuhb5kOm1yaJwXUByEOmh6BluUhAC7Rls0v1n7U25XFa9CumGA+uCwO12IxwOw+l0ql6TBL8Xf7ptMUmvgEaCPh78m4JGLhzSK3xPt1DlWNG44nPvZICY0b9yDunn7eTF8n3+1uea9DbMIIV2t9BxLperbRcVAKqlGHu2sv6QjAqwXjtXr9exsrKCVqvVFteUtZbSGDKDPu7AxlZom0EKRz2ZCNjoTcpr6fNMb7HZLTAzBGVNqFQqcj1LBgZoN6Ile0CnSF93fOb0QGV8Ut/3ldeTSV+6ISWbech7rdfral1y7KQBXS6XVc/pe6IkqZGj0ShmZmawsrICn8+nNslk31Y2N2aHB8Yv5WRmAJcKVfcIpAXKQSB0oSUtEJ5HLlyfzwen04np6Wk899xzWF1dxdLSEhYWFpQr73A40NfXh5MnTyIajSISiSAWiwFY7yrBxs+yxrNbQIuONUwy+0wXVpIaA9o9Lk5coL3VmEzZlhSJ7jHKBSCzX/V4NtBe5ybfNxOuXDQyMUHGqLlopXDXPRy+v9NhGGsNBPr6+tDT06O2A6vValhZWcH8/DwOHDgAv9+PQCCAbDareq+yhm1+fh5XrlxBpVKB1+ttS8CQm+V28hR1Y1dXlBK6cczvoB+ne/7Sw9X7gfJ9ygrZtadbIJk1gklYMhudz4JOAZ81ZTMA5WhIT5HPS2cLZIkgPUGpRKk49Xvlb53+lZ+RThDvj/9LJc3EMXqSsrvSdrBtJUkvyuVyqWAoH6zU4nq7KVr+Os0m6c1bWZt6jU6nzxHSu+H75XIZKysrWFxcxMLCgmqjJHfB3rVrl5oAANR987vIxd9NkAk38rtuBjPhB7RPZrkQzRI29P914ddpvDmnZKxJXt8M8nvxGDMhbja+ZhTyToZM3KGgY/E5e2TK8AifB4Vps7lWLsI4HrMV5fOjsSSfnfxbsgxmHp4UlLoB1ImaNcuwltDnHa/fiYHYyZDyV85nKaMJjov0uqXM1mPPQHvMU15PZ5AkRSurBvTP6ufh8bo80ueITLTUv6PMwL0dbFtJyhvIZrOYm5tTm+ySL+aXIN/scrlUlpHchJNegkzekA9IUmq6VaF7kFLQcZHQ4q1UKrh06RIWFxcxMzODV155BclkUnXOofK02WzKow0EAjh27JiyMAOBAEKhkArudyNIe+iTV1qFuvUnJ6WZh9BpMptZh5KulYlRck7p98a5Y3Y9s/8JSffq7ark+aUi5rZB3WIc+f1+5Uk6HA7k83lks1kkk0msrKyoeLyeTch+nFzXtNar1SqCwSAikQii0ajKppSZiVJ56XS8GS1oRr8R0nPQPVSOm6Th5Oco6KkouC1ao9FQJV47HVwfLGmR8WE2EZCsmFSacox4LilvKQNlmY8cTz13BFina6VBArR7itJA1w1fOZ4M5fG8PJbH00vO5XLKIeKm4NvFa1KS6XQas7OzqFarGBoaQjAYbNP0TMzhw6aFmsvl0Gqt9wLk+fRFw4UlH7q09HVajMfQSgkEAggGg0gmk7h48SJeeuklLC8v49KlS8jn80r4AevZuaurq5icnITdvtaSaXh4GJFIBMFgUHWlz2Qyt/vY3tBgTFKWA0j6WvcyJaQAMlOG0ho0DKONUZBCTafEGOPmOXhOmd0qKVjpPcg5IRexpNnMunvI++Lx9LqYvdcN8Pv9GBgYQDweh91uV0pydXUVy8vLqsZZen00PrnBNS315eVlLC8vo6+vD/fddx+i0Sjy+bwS0LJDilzDpPSllyB/66/p0M8plSDvl3Na0oq8PpWDw+HoOiUJrIeJ+DewXgsOYEPxv/TI9Fi/lNFmG19Lo1auW12e6waNNIKlnNCNHSaF8vrMbqXckvfHpjeZTAaLi4uYm5szlVtbwW0rSWpzWiJ69hrQXiohA8OkavRMSp5Xjwfx781oE/maXCQ6L80EBJvNpopTAahdCuTWKkxgIPe9GfXXDdDjCUDn7E/dW+sE6X3e6tnplCehUzFm59KpOrnwNrt/s3m12ef0tPedCo4L43D0DrjPIIWmhDSa+J4sBWARObMWmRNgGO0dUvgj5YVZooZUnJ3GUDeKdG/RLJnE7Idjy5hbN0GXy3yueomO7r3pXncnKlpfe4Q0mAHz7c74N8dAP0aPM0pjl8dKBS1fk20GX0sewZaVpE59tVpr264kk0m43W7F+UoBywXEoDnjfLTG+QCazabaH0y677JpsU6zyYcEtAeKGRQul8soFAqYn5/H5OQkrly5ApttbVugaDSKQ4cO4dixYwCA5eVlZLNZLC0t4ZVXXkEul8P8/Dyef/55xONxRKNRDA4OdpwQ3YBisagoZz3uKn/rC0FanDobYBZ/kpRYJ8Em42AMzMvjpXLj/5IW5HcwW+TyWPm+Tvvwnnldlg91Q+IOsOZJ9vf3IxqNolQqYWZmRtWTZbPZtv1S6ZFUKhXkcjn1nOPxOJxOJ+bn55HL5RCJROD1etXrMofBrMG0VH5mRrYUpPJvQn9NvqcLVDPFS2Fqt9vVvqGdMpy7BfQkKWvNsvX5vGVinAyP0QGRhqO+JoGNWcdyrekyXHdu9PVLD5LX0hkv3gu/D42917pet6UkeXOcbOzrxwxVM7pUKknDMEypDOnm81qSGpHXl56mpNGkNUIByzZM6XQay8vLWFxcRCAQQH9/PwKBAMbGxvDggw8CAKamprCysgKXy4XLly+r47j/GKkn+Ty6DeT49QJjM6+yk7EgBVAn2kb+rStJ6bHxOp2sfv0eqCjlXoV63EouSH2RdgI/x3T1bvAkAahyp2AwiGw2q3qXFgoFtSOLPl4snWKWL2O0hmGonAMawo3G2gbZLCVhmYk+9hK6MpQlCXIcJczGQ7JIVISygYUuOOn9sutLN0MqGzO5TUgZrK8j6QzJMdINXrOcEakEzdY/0N4IhvKDTJ80wPkd+L+8rv7528WWlaQZ5aV7DJLa4JfVLQb9ochUf35GWgZmFqLMppLXkALUbrejWCxu8G55LYfDgWAwiJ6eHhiGgUKhoGKS8l5kMglfk5OmmyC9RF2x6BNtM+pTQh7fiarRaRyZ1l0qlVTqtpmSJF1opoj1e9WzI+X7ZlSf2Y/+3Xcy5FxmSIKJNmZjpT9b6an5/X709PQgGo3CMIwNcS6GK4CNO4zI85kpSeD2MotlQqBZ4o/+LDop4Z0MKn/5LIGNslg3IqXzQZmsG7ydWCOud7NETGn08j2CMr+TYS7vXXqk8py8JlkfuaH07WLbSlJ/jQqIgyELOyUnLAUcFSNrbGw2G7xeL1qtlmqiLNuT8bhOlr/McGTjAofDgUwmo+IsMvmDmYr9/f04cuSIei0UCqFQKCiLl6/LMhJJB3bi6HcqJGUijR6gPbYnf5sVX+sUC39LIcnPyfkArD3fUqmkunSQ4tMpGMY3enp6EIlEAKzv9KDHVOVvSeHwO+k1nVKomsVuugVkeOx2O3K5HObm5rCystLWyFyuQd3YkJ5IT08PACAej8MwDGSzWVUiJsMoQDtzZGbc6B6/GWNxO99Vn398XVJ1OoOxk0EjnzWwZnWici1J50MmxJl5erK2XTJ7Zl5lJ0ObkLLdzKuVHdTkMfJ7SqYDgGqSEYvFXjN9vu2jzR6wGaUlrQldwFEYS4uSX1oKZmmBmC0guWgkVacLQf3+5bWYGeXxeFStpFyg+sDz9W5TkMC6VWbmcenPkWPZCbfyLnWqFWivs2WxMykT6RXw+ZPyk/fRyZPUlbyZwaV7jPprZu/vZMhnTxqVWY+3UkryWdDgjUQiKptdxrmkHOC1pAyQskBeW75vpig7Ge7y+3GdMlFQfk7/flK2dQuoKM1e30yZybElpFyQDpJeYSBlo4wzdro/fb2Z/S0/v9lvgmzineigtG0lGY1G0dvbi1AohGPHjuH48eOIRqOK3qS1KBUWrXH+ljuD6LwzF5dOvUjlqi8WwzDaWqpRqHo8HgwMDKDRaKiuD+zyY7PZ8Mwzz6i2etyEdHJyUrWqi0QiGBsbQzweVzEWYL2xc7fFLmTPWlqKMtVaPne58MzouVtNTLMFwHGvVCoqvkVv0zAMNVcodGXsEVjfWV5XZGZKtJMS6ESvUnHfbteONyKoGOm9M3mOVBX7uQLr8Vi73a62MALWtk9qNBro6elBq9VS/TXZBkxPkCLrJCk6oLMnuRUP8lY0qvycZAZoAEtWqNsMX+ldyfnMtSYZEsphWRpD6HkAMklGUuLSE+fvTg4LIdmK7XwvwmzTAeohxqRfC7atJGOxGI4dO4ZYLIb7778f999/v9Lasr+jWWxSF2pUmNIjlQF23QrQLT35cGWHeg6w3+9HJBJRChNYEwwUBj/60Y/wL//yL7Db7UgkEggGg8hkMipJJxKJYP/+/YhGo21ZjRQY3bafJI0X9tOlF0cDx0yYUPDoXr0eu+j0nOTClLQclSTLCKRVy8Vts9na6FUeJz19nWaT5zHzTPTYlYx1VCoVVWDfDeBaMAyjTUl6PB4Eg0GlJA3DUE01DMNQG+Y6nU7E43EVqggEAqjVakgmk0qJmlH3ADaMg/6afH0r3oaZh6/LH46tNMT1XUy6SVFynTAhT4Yh5M470jjhWuT6J8i2SRkslSLQvoG61AM6bS9/m91zJ+hyh/OFTB9lgbx/1nC+FmxLSdJjI98rrU1psXSa6DqVoT9A3UvUP6+nBMsHZjbBSad6PB4kEgkMDAyoBdtsrnUAyuVySukBa4qCfSj5PbnxrFTw3YzNLD4zT14/Rqdq9PnQSRjK42nxyzZn+r3ox0qFJpW02XFb/c4SMl7ZLeDzAjauPwndI9CNCSk4eV75ntn5zOhO/fNmilL/eyswkzG6rAFuzYDsRGymkKhkKBM7rfFO/5s5Lfrft7qPOwWz+STn5e2GSm6Lbj1w4ADi8Th6e3vh8/lQr9eRzWbVjh9yh3m66DI4LrOt9L5/jB3Qk5RJHfzim01k+SA8Hg98Ph8GBgbwS7/0Szh+/Dhu3ryJH//4x1hdXVUCr1qtIplMqjqvkydPIhgM4vjx49i/f79KMEqn021CpVvBsZGGh1l8ViozoL2zhpkAkrSM9MqlJUjhS+pU9tRlAhbnkWxTJSlYSfHJ65oJYb0nbydIT7Vbxl/SbU6nE36/X3mAukHIJiB8TjJ5R3awoeeyGaUtr7+VewTMBeBWIMdcyhrOZenpskyl28Iom81Xp9OpOpOVSiUVk5YyHNgod6XR1ImZ4Wt66EL+1v/Wj5XQ9YReAUHYbDY1lmzQzy0ZmQS4HWxbSbIAOZFItPVrrdVqKJVKbfSFpFgo2Ki4dBdcZhZKoaoLXL4uHxavRWXMRSp3vX7ggQdw6NAhPPfcc6o9naRgKBwikQh27dqF/v5+7NmzBwMDA7Db7chmsygUCup73K5V8kZGJ0uRMKOkdIEpU7LlOTtZ6voc4bFSSHPfO16P4y3peBn37nQ9M9pOKgqz56F/V33T2J0MOYfJpnBu62VTkoHRG2M3GmvbEXH96RTere5hq9jsXGYCVZ+7OuUn5x7nk97Hd6fjVs+XXZe8Xq8KdTG0IpWSzuDpP5sxB50ocf1vM8apE2RCmM5Oynskk8iuUjQCtoNtK8laraYagzOxg9YkO+zoreiA9g13dctGV5KyxyCTNaSwkhYuHy7rsKRnw4XL+/N6vejv78epU6cwNDSETCaDZDK59iD+//c9MDCAgwcPqs1oeR+6Ir5V3dVOhPTC5PjpNJpcGPycWSzajLoxG3u5eAxjLf7F7Zbcbre6NhtqS4HOuKTuxeqxSF1Z8/OyvEO+J9+XNGs30a3VahWZTEbNZa/XC4/H09aJRY6P2Q+wkWqlV7kZXQeYZ5jKz2/2/2bHbObF6mtWCnAzw7BbYLPZEAgE0NfXh2q1inw+rxQiPSy9R7LuJTKkZlamIZWaLiMkzAzorbAOxK1ofPmedNZeS5brbW26vLS0hEajgb6+PuW+ejwe1XpONhPmlzerwdHr0TgIMruVX7iTSy+pO/0BMouVzYuDwSBOnjyJ3bt3o1qtYmlpCfPz8wCAQCCgsvoGBwfVRrOcTHThKUDYZb6bFGW5XIbdbleUpl7eIz1FnYbVY1tEp8QZXSHJ+IjX60VPT4/KQOQYc0cZMhJ8j3PQZrOZJlPRgJJeAgWC3C9P/568P87J26Vr3ohotVrIZrOYmZlRbSITiQRyuRzq9TpyuVzbd5XUut4yjHOAtLhscaZb9mb3wffNcDsKS6fgOnklNM7lcd0ak7Tb7RgZGUFvby8ymQwuXbqkNtbO5XKqllJf13KtNxoNld0tDUs9IUtiK4rSTKFutsa41s1yD+T9y/Cey+VCpVK5pYdqhtvaT7JSqagMN30x6JScLlCBdcteNhqQStNM+Zh5JfTqpJLVvZZWq6WaA7DtVCwWQ6vVUnVdABAKhVTCTiQSgcPhwOLiotqxRCp63ZLuFnAsOwXwNxsT/q8bNzrMrE9dUJIC0ikVZtI5nU5VBM+EKnk/uqDj8WaLUPcM9WPlWHcbg1Cr1ZDP59tiOKw9lcYqYfa3LpTk+JsldEh0mlf6+9uBPh8lzNatNAK6EVI2cu/QZrPZZkxyrM2MC7medOPRjAno9JoOM4/STFHKc21njMwM+dtlCLatJLllkPQc9ZsyuxkzulXStZspSX3Smy0EuQBkzIR0gtvtVjU9FLayftIwDHUvq6ursNvtKj1eHsNzmu2SsNORy+Vgs9lUckon44AeXicKjkpJGlCSqjGLb0jhxSQK6bnQeqRVzMQCKQR4LQk5D8wMG32+6rSR/Ey3UXErKys4c+YMgsEg9u3bh6GhIdMcAGA98QVop7SBdY9Mp703w2bKaTMjayswO056uGx8zXVtGMaG7jHdgkwmg+vXr8Pj8WBwcBDxeFyxgGwAQYcFWF8/+mb1Eroi03MSgI1Z5/prtxrbrbxvNsd0eSLpZLnv7HZw20pSUl+6+60/IH4hWv2SC2fhv+5V8gvLL2/2tw4uAql4uahLpZISwBTybNDMrDwqCKkkZDYl71XGbLoFmUxGGQdSMfF7SxqcsWKpfOQzk54af0slKeO7BM9js9lUXSupbWDjfpEAVE0nsRldJuNkekKP/pqZMqVy74aYZKvVwuLiIp5//nkEg0GEQiGMjo6aWtzSGif0hAmZS8DPd/La9L/1a23mCXbCZvKB65txt0KhgEql0kbby/Z53TC+BHd08Xq9qjmKw+FQ++TG43E1jtJAkI6ENEI7eXdS3gLmLeTk2JplperQHSD9df19nfXinJTM5+3I69tqaicpVWIrF9cXwK1omM3+lveiC1qz++FD0wWztDpkmyWzxAOZKNKNniSfCy1qs0kllaJOQcpnLxWeHnsG1sdfPme5GM3izPIaZu93glzY+vzY7Hjer3wW3eRNcu9Uw1hr8F8oFBTrwhpooD2WLGNBnQwSacR08izMnuGdeK6dzisVt1k4iOu+25SkdBTK5bJKuGR/a6/Xq76/7lGaGSs6g0TIc5jJDJ5TP9+t1m8nQ6vTOczkhXTCbgfbVpIyVRpoL7CWjW71G5YWhF5vJYWp/Oxm1oP+t4yP8vySgjPbgV4+ODOKTQp6t9sNr9eLQqGAZDKJlZUVlRlodj87ERw/7hlIo0CnNWQXHsB8H0DdyNCND53WkZ6oPJ+ZdSqP11P7JaWizxkaQfr9ynuVFG6z2VS7YqTTaVSr1Q2dY3YyKpUKUqkUyuUyXn31VeW17969G4ODg9i9e7fKZmcyl1Q2usHL95gDAJhvpsxnu9l60Y2u7VB1Zvcm4628R7JK/Ew+n1eJS93EEAFra/batWtIJpNIJBK4//770dvbiz179ijDn9DHU69WkAaFhOzXy3Zw0qjUwy9m43grJShf02W2mdNSrVZRLBZRKBRuO9Fy20pSptRKuo0TX38A+oOSGYQ8j+5dSC5ct97NFosUsFSIuoKVHPtmmY06eB7ZliuXyyGZTKJYLJoO6k4FnyMFI5u+67EJSb12ojp0wQi0b4ytJ3HJ93XqluchHSaZDCZj8fOkgQl9XOU1Oi1U3peMXzHLWWZp73Sw7WC1WsX09DRqtRoCgQBGRkZUuQCfgdnalmMrBSuTqiQ7I8fUrDMXzyd/69cwO0aH9GbkPGOiipQTNH55Ttmar9vQaDQwPz+P+fl57Nu3D+973/tw+PBhRKNRFQaTa0LGpvmsZItIrkVgoxLTa5r1Mbtdj+5WoRQzuSGz0m8X21aS8oGwXk1Oflk2YEZZdnKf5W8z724zy4LX1h8UoTdUll6I3o1FQnrH2WwW+Xwe8/PzmJ6extzcHFKp1AbrpRuUJdDu+dOQ0dPlAXNDRr4vx9KMatdjg1Kg6pBziouPxg+tYTODTH4fQp9D8pz6fekeUDfRccDa92NfWq/Xi3g8jp6eHoTD4Q1rSz4nfY1J6lKuw07j2UkOdFKWZlTerdabDLHoylPGuBmzfC0JHm9U6MxcuVzGjRs30Gg0sHv3bpW8I589lYrD4VAJmux+BWzcJ1j+LTPROzkfurwgNnM6Oo01HS6CDFCpVFIsyGvBbW+0ZRhr2+OEw2E0Gms7a+hCSj50XYHpsSx9UZnB7HPSS+l0vN1uV11+ZGGppM70QQfWPc1KpYKpqSmsrq7i+vXr+OEPf4jZ2VnF73cr6BWwPpSeQad4lK44dWrNLIBP6EKy0xwwU2IEaXY9MUgaSNLj0cHrkjbi8TIuyUSzbkKj0UAmk1Ge5MGDB3HkyJG2LiUyJis7Yem0OQWmnC+dPHa+z7/l62bYjE3S6XKOnfycnDukWyn02Zid9HO3QDoClJHLy8v47ne/C6/Xi8ceewzDw8OIRqPqudfrdRQKBZUBTCXp9/tVDFOOv1RQlA0yccvM2OlkKG/G0mzGIgLrJX7VahUrKyuYn5/HysrKa5bRt+VJSsHHh2W2Z9lmXuKtrgFs5KV15apbqp0ErB4wljQC71tvYCA/32w2kcvlsLS0hKWlJSwsLGBhYWHTe9/JkM+RYwysxxL43HTBZzZxZcckvfSDn5XXldfXYebp6awB3+P9yTiovrh161kWycu4upnS7zawrWSr1UI4HFabKFORye8s6W5dWfIYM9YIaKdlO423/LuTct2qp9HpvFKYA+tlXdxqrVughzaANS9xdnYWhmHgyJEjqjEKwez9SqUCu93eVjon+yVLuUCYjZ2ZHjBjlcyOka/daszZOIBjmc/nVab+a8G2leTi4iJefPFFRCIRlMtlrK6uwul0qmwp9sqTHLZcGLTKpcXOvzdztaWQojVvphz1eFmzuVY4G4lE4Pf7sbKygkuXLqlALicOJwDLQJgqzs4jCwsLSKfTWF5eVn1e9fvrBqq11Wohk8ng6tWriMVi2L9/P0KhUJt1KCetpGAIOcZSqcgFof8tf8txlTA7Rj8/sK4kSc/q80oqQbOm5Wxm0Gq1kMvlVEJHoVDoqv0kJWRbSenhARuVC5s5SOghDOm1Axu3UZLrU77Gv2msSHQyTsyyVeW9t1rrDfOlJ8PuTlTY6XQa6XT6NcWv3miQYRK5dvmsa7UastmsaqISCoXUdmm1Wk2F1Lj+zWplua/k5OQkJicn20rkzJhFevJMAOX5dYZCGtdmf+u0ORV5oVDACy+8gPPnz2NhYaFtezszJXwrbEtJtlotzM7O4kc/+hG8Xi+Wl5dx48YNhEIhjI2NqT3lotGoUpAM4stgvjwff5vV0OnX5ueYOdUpw4r1UFSYLpcL8XgcwWAQi4uLeOaZZzA3N4disag6jjDlvVgsYmVlBdVqFaurq6oFH8/HespOz6cbsLKygnPnziEWiyEej2PXrl2w2WyqpkxSaKFQCH6/H8BGQ0b3wqR3apadKpPBtpphaKaEKcgl5cP7azabbc0hstmsalfF+2DWI7DWYCGTySCVSilF2S3jTJBW93g8KjNVT4CSn3W73W3NHvhM+QxlxjKfldx/VV/fZnNEhy7sdQpferfSU+VPLpdrU5LA2nzz+/1KLq2urmJ5eRmlUunOPuDXEZSZQPvG13zG5XIZ6XQaLpcLPT09SCQSyqhoNBoqq98w1urMJRVNb5LP79KlSzh9+jRKpRIymQwqlYpai/oxbAPKvUsZ1qHC5PqVrJBMGJWJexxDyoJUKoUf/vCHeO6551R2K7DRa93qOr6tBuf0wpLJJJaXl1GpVBAIBFCpVNSO5E6nE6VSCX6/X1kOZrQnIYvXJZWnL1QqQR6jxx2427ruxZTLZTgcDuRyOaTTaZWdyg2WK5UKPB4PSqWSikukUimk0+mupNc6gQskk8nAZrMhk8kgk8m0FV4zNie9OTlO0pM0oyrNLH858XUludlkNvMUZdxZCgSZfEKLOJvNIpPJKEOIMVcK9Ewmg3Q6jUwmo+ZVtylJYF3xMB7F7ktcs7Lsh+uPnwfalVQnL5AC1owlMPMuze5P/jYztszoeABq3VPGGIahmrnb7Wvb4JVKpQ3UYzdCelPVahXpdBoOhwPJZBKhUAjAekkdx90w1nph61425XWlUkE2m0UymUSpVEI2m1W9oKkkpSdJeet2u9s8VipJSe3qniK/A89dKpXUTkH1el2t13w+f0fqXm9LSebzeZTLZVy4cAGzs7NwuVwIh8NwuVxtOzfIvSOla0wBRZebliwfBh8qPyuVrFm2lIx3SSEmKQKfzwe3240LFy7g5ZdfxsLCQpuw5/WpZJnt1kkgyphKt2FlZQWvvPIK/H4/yuUyLl++DJ/Ph/7+fni9XuTzeSSTSTSba03HuR0Zf3fyFmQtq1Rc+iSmt75dYdUpZilLfng9/s0Ca16TPSypJNkEv1gs4ubNm1055s1mU5U+TE9P46mnnsLNmzfVtnYyY537D9Lj5POQoRWueTaWbrVaKiO8WCxiZmYG2WzW9D42gzSadNpf/jYDE/B0upUNE0gVlsvlrvIkJczm7vXr1/Gtb30Lfr8fIyMj6O/vbwtXyLUgEx352+Vywev1olar4cUXX8SlS5faNoCQxq80ZilvSfPrdKtuAPG37g1SUUqDvVKp4ObNm6Z5JlsxvHUYrS1++lbxtq3G42RKMekdh8MBn8+nOGpaETJY7Pf7VSxEuuJ8gFLJ8kHL2AkH/erVq/j+97+PpaWlLd3vrb6r2ePbqYJUH0On06l2DgiHw9i3bx9CoRBWVlYwMzOj6BgaR9xflFahVJZ6LNksLi1LiUiNyWfZaY5JxcjFSIErvVrWBTIbm8qS12JNpBT0ZEv0QuSdOsbA5ms1Eong2LFjiMVi8Pv9iMViajy5VrkWeS4Zm6bQI2UdCATQaDTw0ksv4cyZM0ilUjh79qzafeeNhG5ey3xN0tDydbvdjr6+PsTj8TZ5zPdldqt0VkiXNhoNPPPMM3jxxRfviie+Vf1C6HF0vnY7Y3zbJSDbvRAhPQdZd6ZreNkblB6iPEYOtvxbUj2d3t+pE/9eQz4vMxpMf6Zmk1CnOs3OqVNtt4pPdQLHXt6nTvXq9ySVtqTx5LzrVoq1E8woarP3O1noneaBtQZff3RSEvo60cdIvibl7L1aH6/nfNmyJ2nBggULFiy82dAdTSgtWLBgwYKFuwBLSVqwYMGCBQsdYClJCxYsWLBgoQMsJWnBggULFix0gKUkLViwYMGChQ6wlKQFCxYsWLDQAZaStGDBggULFjrAUpIWLFiwYMFCB1hK0oIFCxYsWOgAS0lasGDBggULHWApSQsWLFiwYKEDLCVpwYIFCxYsdIClJC1YsGDBgoUOsJSkBQsWLFiw0AGWkrRgwYIFCxY6wFKSFixYsGDBQgdYStKCBQsWLFjoAEtJWrBgwYIFCx1gKUkLFixYsGChAywlacGCBQsWLHSApSQtWLBgwYKFDrCUpAULFixYsNABlpK0YMGCBQsWOuCuKcnx8XHkcjnT9x544AH88Ic/vOU5/uRP/gQ9PT0YHx/H+Pg4fu3Xfm3DZ5aWltDX14fHH398w3ulUglHjhzB+Pi4eu0rX/mKOt/4+DgSiQT+/b//9wCAGzdu4NSpUxgfH8exY8fwwQ9+EKlUakvf14IFCxYsdB/umpKcmJhAMBh8zef5tV/7NUxMTGBiYgJf+9rXNrz/27/92/iFX/gF02M/85nP4G1ve1vbax/5yEfU+SYmJtDf36+U7+DgIH7yk59gYmIC586dw+DgIP7kT/7kNX8HCxYsWLCwM3HXlKRhGEin0wCAp59+WnlnH/nIR1Cv1+/INb785S9jbGwM73jHOza89+STT2J2dtbU+ySeffZZLC0t4f3vfz8AwO12w+v1AgAajQYKhQIMw7gj92rBggULFnYe7npMslqt4kMf+hA+//nP49y5c/jVX/1VnDlzRr3/xS9+EX/8x3/c8fhvfvObOHHiBB577DH84Ac/UK/fuHEDX/ziF/Fnf/ZnG45Jp9P49Kc/jf/+3//7pvf25S9/Gb/xG78Bp9PZdr+kYa9cuYL//J//83a+rgULFixY6CLcdSV58eJFOBwOvPvd7wYAvPe978WePXvU+x/72Mfwuc99zvTYj33sY5icnMSZM2fw//1//x8+9KEP4ebNm2i1WvjoRz+KL3zhC8rzk/jkJz+JP/zDP0Rvb2/H+yoUCvj617+O3/qt32p73eVyYWJiAouLizh06BD+x//4H7fztS1YsGDBQhfA8XpcdKsUZn9/v/r7bW97G06ePIkXXngBkUgEZ8+exYc+9CEAQD6fR7FYxLve9S6cPn0aP/nJT/CTn/wEn/rUp1Aul5FMJnHw4EFcunRJne+b3/wmjh49iiNHjphe2+Vy4SMf+Qj+43/8j/j0pz/9Gr6tBQsWLFjYqbjrnuShQ4dQr9cVVfrkk0/i2rVrWzp2ZmZG/X3lyhVMTEzgvvvuQzgcxurqKiYnJzE5OYnPf/7zeO9734vTp08DgHp9cnISX//613HkyJE2BQmsUa26F3nz5k0Ui0UAQLPZxDe/+U0cP378tr+7BQsWLFjY2bjrnqTL5cI3vvENfPzjH0ej0cCDDz6IEydOqPe/+MUvYm5uzpRy/exnP4sXX3wRDocDdrsd/+2//TccOHDgNd/TpUuXMDExge9+97ttr589exaf/exnAawpyfvvvx//9b/+19d8PQsWLFiwsDNhtFqt1ut9ExYsWLBgwcIbEVbHHQsWLFiwYKEDLCVpwYIFCxYsdMA9V5IvvPACfu7nfg5jY2M4deoUTp48iT/90z9V7z/66KP41re+ta1z/t3f/R3C4TDGx8dx4sQJHD9+HN/+9rfv8J1bsGDBgoU3G+6pknzllVfwvve9D5/4xCdw48YNvPjiizh9+jSy2exrPvc73/lOTExM4MyZM/ibv/kbPPHEE3fgji1YsGDBwpsZ91RJ/sVf/AWeeOKJtl6rsVgMf/mXf3lHr5NOpxGNRtX/n/rUp/Dggw9ifHwcP/MzP9NWDvLtb38bhw8fxokTJ/CZz3wGiUQCk5OTd/R+LFiwYMHCzsQ9VZIvvfQSHnroods69jvf+c6m3uEPfvADjI+P48CBA/jlX/5l/NVf/ZV67zOf+Qyef/55TExM4OMf/zh+93d/F8DaDiIf/ehH8Y//+I84c+YMDh06hNXV1du6PwsWLFiw0H14XRN3fv/3fx/j4+MYGhrCq6++uuln3//+9+NLX/pSx/dJt16+fBnPPvssnnjiCczNzQEAvv/97+ORRx7BsWPH8LnPfQ4TExMAgGeeeQbHjx/HoUOHAAC/+Zu/CZfLdWe+nAULFixY2PG4p0ry5MmTeO6559T//+W//BdMTEzA6XSiVqvdsescO3YMo6OjeOqppzA1NYVPfvKT+OpXv4pz587h61//Osrl8h27lgULFixY6F7cUyX56U9/Gn/7t3/b1ummWq3esa2ziJmZGVy5cgUHDhxAJpOB0+nEwMAAWq0WvvCFL6jPPfzwwzh79qyKUX71q19FtVq9o/diwYIFCxZ2Lu5pg/MTJ07gu9/9Lv7oj/4In/jEJ9DT0wOn04nf+Z3faWs398QTT+CTn/yk+v+b3/wmlpeX8Z3vfKcj5cqYJADUajX8+Z//uWp/9+EPfxhHjx5FPB7H448/ro7p7e3Fl770JTz++ONwu914z3veg0AggEgkcse/uwULFixY2Hl407ely+VyCAaDAIBvfetb+IM/+ANcuHDhdb4rCxYsWLDwRsDrslXWGwl//dd/jW984xtoNBoIhUL42te+9nrfkgULFixYeIPgTe9JWrBgwYIFC51g9W61YMGCBQsWOsBSkhYsWLBgwUIHWErSggULFixY6ABLSVqwYMGCBQsdYClJCxYsWLBgoQO2XAJiGMbdvI+uwk5NGH4jjPHt3MPr8bx36hgDb4xx3inYqeN8r8bYZrPBZlvztZrNJprNpum9OBwOHD58GIcPH0YgEMDevXsRj8dx8eJFfO9738PKygqKxSIKhcI9f+a3ut6WS0CshbV1WAtr+/B6vRgbG0M0GoXL5UIwGITdbm9beHa7HYZhoNlsol6vo9FoYGFhAfPz86jVasjn8/esreBOHWPAWsvbwU4d53s1xoZhtF2Lz4u/Y7EYRkdH4ff7sXv3buzevRtutxuhUAherxepVArT09MoFAq4fv06rl69ikqlgnw+j0qlck++w63G+E3fTMDCGwPBYBAPPvggDh06hEgkgsHBQbjdbtRqNdTrddhsNrhcLtjtdtRqNZRKJVQqFTz77LN4+umnkc/n0Wg0rN67FizcQ7RaLaVkdK+y1Wqht7cXP/MzP4NEIoGenh4kEgm0Wi1l0I6OjuLhhx+GzWbD6dOn0Wg0kMlkMDs7q5QklfDrZbDsOCVpGIbyKLZjLUmPxIwSsHDvwLGz2Wxwu91wuVyIxWKIxWKIRqPw+/1wOp1q0clxJnXjdrtht9sRCoUQj8fhdrtRKBSUh1mtVq1xtmDhdYLdbgcAeDwe+P1++P1+2Gw2VKtVNBoNFAoFVCoVuN1u2Gw2OJ1O+Hw+hEIhtFotLC4ubjinYRivi6J8XelWCktpjdwKwWAQfX19cLlcbZbLZkqzXq8jk8mgVCqhWq2iUCig0Wjc8t5ud0Asiqb9nDwvlZbH40EwGITH48EDDzyA8fFxBAIBDA0NIRQKYWZmBmfPnkUul0O5XEapVFJK1WazIRqNYteuXUqZut1ulMtlXLlyBUtLS5ifn8fExASy2ewd/z7ETh1jwKJbt4OdOs73coz1a7lcLkSjUfh8PoyNjeEtb3kLgsEgpqenMT09jXq9jkqlgkajgXg8jn379sHr9ar1nUql8L3vfQ/nz5+/J/f/hqZbKUAZZ9rKhPR6vejv74fP54PdbofDsfYV6F0C2ODyVyoVOBwOZLNZFItFlEqlTZUkz/N6WS7dBCo3YJ2acTqdCIVCCAaDeOihh/D444/DbrejVCqhXq/j2rVr+OlPf4q5uTkUCoUNwfyxsTG8/e1vR09PD06dOoUHHngAtVoNAwMDmJubw4ULF3D58uW7qiQtWLDQDkm7RiIRRCIRhEIh5UFevnwZP/7xj1Gv19VnE4kE5ufnEQqFcOrUKbzlLW/B6uoqnn322dfzq7ThdVWSrVZrgydpt9vhdrthGAacTifsdrui47xeL9xuNzwej6Ld6FE6HA6lMHnOZrOJRqMBh8OB3t5ehEIh5PN5OBwOVCqVNgVdLBZRrVbVcdvxbi2Yo1MsIRwOY9++fYhEIvD7/chmsyoJJ5fL4ebNm8jlcqhUKqjVahsMmlKphKWlJVSrVYTDYXg8HthsNrRaLSQSCfVTr9dRKpVQLBbVXCOssb272IqBydCJzWZDKBRCIBBQhi/XJem5XC6HbDZrUeg7AHa7HZFIRDF+y8vLaLVayGQyaDQabWNYrVaRy+XQarWQy+VUrDKRSGDPnj0oFotYXV1FrVYD8PrEJ193JakLQL/fj97eXrhcLoRCIYTDYSQSCTz22GPYu3cvLl26hB/84AdIp9PweDwIBALKM3G73W0KrlKpKC/y0KFD8Hq9SKfTmJqaQqlUgt1uh91uR6VSwfXr17G4uIharaZiW1vB6x1UfiNCp77lojAMA/v378ev//qvo7e3F9lsFq+++ipWV1fx1FNP4caNG8jlclhYWFACUkcymcSLL74Ip9OJl19+GeFwGL29vfjgBz+IU6dOwev1YnZ2FgsLC7hx4wauXr2Ker1+W/S+he2DcWQanJ3gdDrh9/vh8Xhw4sQJHD9+HB6PR2U+5vN5LC8vo1Ao4MyZM3jppZdQq9W2zDpZuDfQx8Lr9eLAgQM4ePAgbty4gaeffhrZbBaZTEbNB8qHYrGIqakp5Qj19vbC4XDg5MmTuO+++3D16lWcPn0aKysrbazUvZwDb7jEHafTiUAgAI/Hg0QigWg0iqGhIZw8eRLHjx+HYRj46U9/qqxQJn74fD74fD7lPTabTbVYXS4X+vr6EIlEEAwGUa/XUSwWlfdZLBaxvLyMTCYDwIrZ3AnIOKSkYQzDQCQSwaFDh9DX14dXXnkFk5OTmJubw/nz53Hp0qVbnrtcLqNcLqvr2Gw27Nq1C7/0S7+EeDyOnp4e9Pf3AwCWl5et8bzH4Jjcyuvj+nW73ejr68OBAwfg9XoRj8fh9/uRTqcxOzuLfD6PmZkZOBwONBoNy8h5g8PpdCIajaKvrw8zMzNYXFzE8vKy6Wfr9TpyuRwcDgcymQwymQz8fj96enoQCoVQLpfhdrsBbJ53cjfxuilJwzDg9Xrh8XjgdrsRj8fh8/kQi8UwMjICl8vVtsiuXbuGcrmMxcVFDA8PIxqNqvdsNhvK5TIqlYrKlAKAbDaLlZUVRckypXhoaAgAlKVbqVTQbDbR19eH1dVVXL58Gfl8HrVaTbn5nb6DhY0wE2I+nw+7d+9GJBLB7t270Wq1UCgUMDk5iRdffBHJZFIZKcRWY8KtVksl7jz//PMolUoYHR1FIpHA6uoqXnnlFfW57Z7bwvYgmRWz5+vxeDA4OIhQKIRoNIr+/n74/X6MjY2pPAPSbvV6HV6vFw6HAwcPHlTG7czMDFKpFGq1GorF4i2T8CzcfRiGgWg0ilAohN7eXni93k0/L0NtwJoxvbS0hHPnziEajSIWiymnxuPxKH3wehhId0VJboWCNAwDoVAIiUQC4XAYx48fR29vL2KxGIaHh+FwODA1NYW5uTkAwMTEBM6cOYNQKIQDBw7A6XRiZWUFyWQS1WoV6XQaxWIRHo8H4XAYhmFgdXUV165dg8PhQK1WQzabRX9/P44fP66sFCaLDA0NoVwut9F9xWKxLchsYevQvQgm6ezfvx8DAwNoNptIp9M4d+4cvv/977d5h8B68hVgPo90OrdQKGBiYgL5fB7Dw8N4y1veAr/fj6mpKRWDlgtMWqXW+N5ZbPY8/X4/Tpw4gT179mBgYACHDx+Gz+dDrVZTMeilpSXk83kEAgH09PSo5hJHjhxBOp3Gv/3bv+HKlSsqfqUrSSv2fO9ht9vR39+Pffv2IRwOIxQK3fIYOTbNZhM3b97E/Pw8BgYGcPLkSfT09CAWiylKvlqtqnV8L9fvXfUkzax1m82mgvM+n0/V0LjdblX/RuuRFkS9Xke5XFaWJSkap9PZlqBDmpUPkZ1ZgHWvUd4DfwCoZCCv16t+ZL2dHnB+M3mRd8LrcjgcqqbR5/OhWq2iXq8jn88jm81u6rFv5b5I26ysrKiuPYFAAD6fDy6XSwlTPSZiCdG7A93idzqdcDgc8Pv9iEQiiMfjCAaDqh6WSVaVSgXZbFYl6fj9frW2HQ6HCsdEIhEYhoFMJgPDMFCv17ecR2Dh7oDxZL/fDwBqjW+VwSFzxxpKygSfz4dgMLihC8+9YoPuipKkkqIyarVa6mGxm4rP58Pg4CD6+vpQrVZx48YNvPrqq4qKo3UZDAbVwyKd2mg0UKvVVEsjxh9dLpfKcAXWrNaBgQF4PB5lubZaLVy7dg3AWj0Pk30ymYwqDxkZGUE0GkWhUEAmk0GlUsHCwgLS6fTdeFxvaGzHYtvMgnc6nRgYGMDY2BgKhQKuXLmCQqGgMt906O2tNrsWsLYgJycnsbKyojxHm82Gnp4eHDlyRHXxSKVSbVmVUnFamZOvHXK8+LfD4cCBAwewb98+xGIxnDx5EkNDQ5idncX/+T//B7lcTgnIRqOhPEQaOrI9ocfjwdjYGI4ePapCI9lsFtPT05icnFQxSwv3FlxrBw4cAACsrq5ibm4O09PTG7pg3Uq5lctlVSNZrVbx0EMPYXx8HBMTE3jxxRdvy6B+LbhrnmSr1VIeIz2xVquFYDCIPXv2IBgMYnh4GP39/VhaWsLZs2dx/fp1FItF9Pf3IxwOq4Scer2uPDoKNgDIZDJYWFiAzWZDLBaDz+dT6ePAmgWSSCTg9/sxOjqK4eFhLC4u4tVXX0WhUEAsFkMikUCz2cTq6iry+TwMw8DAwACAtZgmadx8Pv+mVJLEVin0Tp9xuVxIJBIYHh7GtWvXMDU1hWQyiZWVlU2V5FZRq9UwOzsLAOjv70e1WlWNB/bt24dkMolsNrtBScrrWXHKOwP9GdrtduzevRtve9vbEAqFVHPrGzdu4Hvf+x5mZmY6Hgu0C9WhoSE88MADeOc734n5+XkEg0GkUik0m01MT09b8cnXCVxru3fvRqFQwNTUFGZmZrCwsKA8/K2yb5VKBVevXkWxWFTj7ff7kc/ncebMme5QklJY0jpnhpLf70cwGITf70epVML8/DxWV1dRKBSUJSmbBNBrZFE5qViXy6Wom2azqZJ1SLGydpJ0LpOE2P+TdZhUwqTrmJZut9vh9XpV8XskElGlIYxjdmru2824lSLR35ct6JhNzN6N9CDuVEKNpF4Zv7Db7QgEAqhWq2qO8LNWPezdhdfrRTgchs/nQ29vLyKRiApj5PN5lEol0zrYzVCtVrG6uoqZmRkUCgX4/X4YhoF4PI6+vj6USiXk8/m2+LaFuweua4/Ho36q1SpKpZJyMDi+eq1yJzSbTeTzeSSTSYRCIVQqFZV86fF4FDN5rwyiO64kaaUDUB6k2+1WzQBGR0exd+9eOJ1OvPTSSzh//jzK5TJWV1fVxA4EAgiFQigUCmrST05OqnT+kydPIhKJqN5/lUoFyWRSdWahxxkIBNDb26tqL2OxGEqlkqJy4/E4RkZGUCgUcP78eVy/fl1lX3q9XgQCAbhcLtRqNbjdbvT39yOVSuHy5cvI5XJt37WbaB6dYtXjeNtRZDR4XC6XorcrlQpmZmawtLTUltG6nfNvRsdSkAYCATgcDoyNjSEUCuHChQsA1ualtEZ1Jd3pvN2MW9WQ6v1zAXNqVWJoaAhvf/vbEY1GcfToUZWhurS0hLm5OczNzZl6BWap/ryvfD6Pp59+GtPT0xgcHMT999+v6irD4TDS6TRefvll3Lx5s+M57wRzYWENHo9HZaGygTmTry5fvoxqtbptz69arWJ2dhbLy8uo1+vYs2cParUaDMNAX18fisUikskk8vk8gLu/Zu+KkpQ1chSwVDqhUAiRSAQ2mw35fB5Xr17dYBG4XC5l9bPPXzabVR6n0+mE1+tFJBJBtVpVdCh3gqDF4nA4lNfq8/mUJ0mPhoFmACr7lclANptNLbxaraa6QtAD1b/r61XDc6+xXU+P/RhpcZIuZ3FxuVzekidp9mw73Uej0UCpVEKhUFDdP2q1Glwul/qMHn+0WhGuwez7mylI+Xen5xUKhTA2Noaenh4MDQ0hFou1lXAUi0XTcdiMoanVaqpdocPhUIYwmQm/348rV67c8jtKWFT77YMJmF6vV8lYp9OpFJmOrWSmNptN5HI5AGtt6wqFAnw+HwzDUElBZi0n79YY3jEluVmHFY/Hg/7+fvT09KCnp0e1EOMDNgwD4XAYbrcbPT09aDQaqltOuVyGzWbDwYMHMTY2hnA4jMuXL2NqagqBQEDtADE9PY1araYEMb0XdplPp9NKEXq9XpXJCqwN9NDQEAqFAkKhkOoNWygUcPPmTbRaLZX84/F4MD09DcMwUK1WlZB/M9B2ZgYBv7cUbpysNChIdfN11rexFlWeXxeOmxkenRZao9FoKykhtS+TunTo15Lflej2xJ5O81c+m1vNcdZBBoNBHDhwAH19fYhGo/B4PCoUUigUkM1mUSqVTDPG5ZzSQSqu2WyqXszlchkulws9PT1wu93YvXu3CtEsLy+rdpO3890tbI5wOIyDBw8qbzKXyyGXy22aabydvIZKpYKVlRU0m0243W4cOnRIUfX3KkfkjipJCkF6hsxuDQQCOHjwoNpw0263o1qttm2+uW/fPkSjUcTjceW5MQ4ZCARw8uRJ9Pb24tKlS/jhD3+IYrGIRx99FIcOHUIul8PFixdVP1afzwen0wmPxwOfzwcAWFxcVMkc9GYDgQCAtXjpwYMHVa/BQCAAm82GV155BWfOnIHT6cTb3vY2HDp0CPF4HHNzc3C73VhdXVXxyW6DmTdhpiTJFjDuKF+ngRQOhxEMBlUXllKphFQqhWQyiVKpZFq7KK97q3vUFxbjy5lMBqFQCLFYDPV6XcXFb/W9dYUvLdRuVZR3SokEAgGcOnUKu3fvxtDQEPbu3at2a2Hjjkwmg5WVFdWzd7Nr6eNfr9eRSqWQyWQwMDCgxphGLEM08Xgc8/PzeOGFF1R2paUI7zz6+vrw1re+VTkrKysrWF1dva0NkylDgPVOXcViETdv3kQ6ncaePXswPj6OTCaD+fn5DZT63cJdrZMkrel2uxXVCqxbiuSzvV4vQqGQ6r/KchF6mw6HA16vV+1JRqquUqnA6XTC6XRu8AKkN8lz1Wo1JajZYIBWJpUjt17i+bjA7Ha7ohXYJYjN1uv1+rYTEN7IuJPChOPAZCnGOJksdTeeGQ01npv1ddvBm4E6v12Yedyk1BmiiMViSnlxowKOfblcRrFYVIXh2wXHlhtyNxoNFfNuNpuqm0+hUGjr1kID51axVAtbh8vlQiQSQTQaVcly7GAmcbtUqGwhytLAer2+KSt0p3FHryQpR4fDoUo8+vr6sGvXLgwODiKTyWBpaQmNRgNvectb8LM/+7Oo1+tIp9OoVCqoVquYn5+HYRjYvXs3jh49ikajgbm5OVy/fh1Xr17F7OwsyuWyUpT1el15jqRXbTYbwuEwRkZG0Gq1VMPk2dlZvPjii8hms9i1axfGxsbUsXzwpAZDoRCGhoaUoue1uDPJ3r17cfz4cZTLZVy4cAGTk5N38nG+oWCWwMPXOeaNRmPDYqDRwew0wzCUoNS9cHqft6qRvNV7Ena7XRlSTLLayjn5Xfh93wx0+lZARSibcdjtdkSjUUQiESQSCRw8eBCjo6OKxZFjXCgUcPXqVZw5c0atX0L34uUz7xS7Yn0llaTdblddnQYHB1Gv17GysoJ0Oo3V1dW2piPMVO8W4/ZegqV24XAYo6Oj6OnpwbVr1zA/P4+lpaW27OKtGpxSxnC8S6USZmZm4PV60dPTg3w+r2LZNLzu9tq8Y0pSjyGwTdGRI0dUfVxvb6/a9BgAHnnkETzyyCNIp9N4+umnVcbj0tISWq0Wjh07hvvuuw+pVApPPvmkUpCLi4tqd2t2dWAiDoUhaVU2EGD68OTkJJ5//nnMzMzg8OHDKo18aGgIkUhECVJmxw4MDKh+sFJJut1ujI6O4vDhwyiXy0ilUip+2a3YTGCZTVRm/1KAkUqRMedbneO1Pk+OHWPVW8FWlPSbFXa7XRmjMmt5dHQUQ0NDiMfjGBsbw9DQkPLoWZLF/sk3btzAuXPnOo63Ttt3AksBWEZEYzYSicDhcCCRSCCfz2NlZQUzMzMqj4Ayg3PQUpLbA9e13W5HMBjE0NAQEokErl+/jqWlJaysrNwW3QpsXHOlUgnlclllqZNOZwWDZAjuFu64J0kwMSYYDMLr9apAOuOCrdZag2uWAaRSKaTTaTQaDcRiMVWnyEXGHw4MW1Y5nc42q58Lj71Bp6en0Wq1VMpwvV7HyMiI2jV7cHBQUafcv46Zc3TvDcNAo9FAsVhUcVJmTsbjcVQqFUUVd5tgZaYxs4X1hCUaJBRYuuBjPatM3OHYcl7c6ZguPRGZWUtlSeptqyU7pGq70ZuU7RnD4TACgYCiMWW9sjR+3W63SsShl+5wOFT3LH0dkGbXvYk7IdiksJaKVWa4h0IhNd7AWnZsuVxWvWKZvU45w8xoq85yHXrMnw4HW4hyjJkwx8YvdwpcdzTQgLVkvFAopPQKx/dulIO8JiVpluVI2O129Pb24tChQwDW9gBkphnLLM6fP68aFV+9ehWrq6vYt28f3vrWt6oegJlMBul0WvVuDYVCuO+++xTdGY/HkcvlVP9HLo56vY4XX3wRzz77bFvv1b6+Pnz0ox9VTXij0SgqlQouX76M+fn5tqwpr9eLoaEhlUmXTCYxMzODq1evYmVlBSdPnsTJkyfRaDQwMTGBy5cvd1ViB8cwHo/D6XQiGAzC5XJhYWEB169fR71eV+U1TLZiPKLRaKguHKOjoxgYGIDb7Uaj0VDP1W63qyb1d1r5MJZNJcdyn0QioZJHtqKcuasBd1fvpiQt5gr4/X68853vxMmTJ1EulzE3N4disaiaddALJ9Xa19enqFSCPXIBKGOTmc00orY6xjrtbgYqSApqMhWtVkvRuI1GA3v37m2jcdkMn7sGMcOa3ZiKxSIuXLiAmZmZrjKIbheS/mYyjdvtVsxbf3+/CnEVi0W1nnUa/U6AXmutVsOhQ4fQarWQSqVw9epVxU7eDdwxJWkWqPX7/YjFYiiXy0in08jn88r65NYoTOOenp5GPp/Hrl27MDIygng8jmKxiGKx2NacmhstezweRKNReL1eldXKxUWrYmFhAXNzc4qKodAeHx/Hrl271CLLZrOYm5tT3mq5XEaz2VS7D9TrdSSTSaTTaaTTaaRSKaRSKdhsNvT396PZbKo98LppYdlsNvh8PuU58Dc7YDD5ikpSxhhJhzA5S/bgZP0qG0XczfuX3pLMdt4K9WoYBtxuN8LhMOx2u7KSuwV8JqFQCPv27cNb3vIWFAoFRCIRZDIZRCIR9Pb2qhAGk9cGBgYQCAQUnSpDLexznM/nlZdpt9vbEqm2glspSP7QEJLxbio/er1MyguHw2i1Wqr8pFarKSW5urqKxcVFZDIZLC8vd9z/8M0InQUgmxeLxdS6JsPE/td3msLmWgwGg2g0GojH4+jt7VWy/W7iNZ3dbCKHQiH09PQgGAwiHA6b7iBNAdrT06MKgWkVcOusQCCAfD6vGo8Hg0HVrJydcAqFAl599VWUSiUYhoGenp62hTsyMqL6eC4uLiqPkwtqamoKN2/eRLlcxsrKinLlg8EggDVPktmvLAup1Wro6+tTA8OaScZldjL0rEWn04lEIoFdu3YhEAhgdHQUgUAAw8PDyqKjJ8kicRYBk948cOAABgYGEIlElHHk8/kwMjKCYDCISCSi4r5MvJABfGA93k1ajYaWpNrkT39/P4aGhtQ84Q4S+/bt22AIUXjL+BljbUxI4bxaWFgwLZDeqWBf20gkArfbjUwmg2w2i4WFBaRSKdW2kRncfF4MW8h4ILA2Z6SxRKFJ2tbhcCASieDBBx/coGT57AG0MUJUsjKuTXZg165dGBgYUOEXNhOhF0lKleEYqchJsUpl63a71Y4Tcr9aC+2w2WzqWdFYJtWayWTU/LjT4NxiNUIoFEIul1N5JGZ11ncCr1lJ6jfS39+PU6dOIRwOo6+vr00IyWMMw8DIyAiGh4eRyWQUjTc6Oore3l4Eg0G1q3Wj0UAikUAikVAUkWEYWFhYwIULF1RscGxsTA1Us9nE0NAQhoeHkcvl8IMf/ACXL19WcSnDMPDSSy/hf//v/w3DMHDfffdhdHRU1W46HA7VxQNYEyhU0vPz82oRnTt3TlnY4+Pjr+Vxvu7Q0/k9Hg9GR0dx4sQJJBIJjI+Pqw4Y6XRaeYV2ux2ZTAYXLlzA8vKyKo1hR5RAIKBeq9Vqav9QCtNarQan04lwOKyKzmlckUEg1SepU9kzkvfrcDgUZc7mEvV6HS6XCw8//DDGx8dVnJS7hVBhlkolVb/LBvuyld7LL7+Mq1evdgVbYBhrLb4efvhh1V91cXFR7ayxsrKCUCikDFbWLdPrkp4DGRy9jpZbzTHm6fP50NfXh1/6pV/C+973PpVEw2xnKjTGDOU4hcNhhMNhxULQoKU8Ic0nt7fjHLLb7WqczWpeySjREO7t7UWxWHx9BmYHwGazwe/3IxwOw+v1qizjTCaDxcVFtdXVnUSr1VJhEpYE9vT0qPwR4g0XkwTaaxKZERqJRFQAX/+cTKrw+XwIhUKKtqOlKGugSG9xhw8KrVarpTxAl8uFcDgMp9OpPIFGowGfz6c2YGaiAQBVp5VKpTA3NwfDMDA2NqZKSeipMMZBS5PlDMFgUC3+UqmkaMTt1uK9kcFxolKS+wCyaTzjjlRQq6uryupnQJ/lF3yeAJTylPWtDoejrTOL3BuU16HlygYFjHkx7sWMS8aWZBN6u92uGt17vV7EYjGVsUx6iPsZklpmC0O22QoGg12VnOXxeJBIJFTCDj3JXC6ntquiUcmxkwlaUrHpFCjXDrDew7nVWtssIBqNIhwOK49edkjiOFBJcp6wFo+xcdL+ci9SndKVmY/0VM1KTGRCivyxYA5Jc1Om6kmbMumLcv9W60Z3uuT4cD7p3n+nsq7brcs0w5aVpK6hqXhcLhei0Sjuu+8+xONxRCKRts41VBzcYJXHUlCGQiGUy2VF87CvJ70CZrAmEgn4fD7Vw7VYLOLq1at4+eWXlWBl6zEK6FKphMnJSZRKJbWfYS6Xw//9v/8XdrsdZ8+exerqKgDgzJkzmJ2dRTQaxZ49e1Tck70C2ZW+Xq+rRs2hUAg+nw/lchlXr17F5cuXd7QA1S3sWq2GlZUVtQURPT9JhbIsptlsqgQdKYRkpiDPz51WPB4PgsGg6sZjtn2V7OijU6wU2Dw/g/crKyu4efMmisWiqtWt1Wq4fPkyFhcXEYvFlEciaSFSrJynkuYF1ro2XbhwYUePMcHwxPHjx+F2u3H69Gm88MILKBQKWFhYQLFYRC6XU+ENtoLjsXK8dMHGZ8rPGIbRVhMpM9A5d1jvKLs3yY0SSqWSOmcmk4HdbldGNClWGjA0rkj56w0teN80kNgmkdnry8vLmJ2d7aokvNuFDH3IjGU6OJS1zHA+fvy4ckCKxSICgQB6enpUVrnUH8B6khc9Rc4BJsmxOxcdKSpKUumS7tfDNHcK2/YkKfyoJP1+P4aHh/HYY49h7969auIBa9lz9BZIufGLUEkGg0Gk02mlJBcWFvDKK6/A5XLh1KlTOHHiBAKBgNpjcnp6GtevX0cymcT169fxyiuvwOfzIRAIoNlsIhqNKo8kn8+rTvJOpxO9vb1YWFjA008/rZprk1bJ5/NwOBxqE+hYLIaRkRH09PSo/SZXVlYQDoexf/9+BAKBtv6y169fx1NPPbWjF5ZeH8iNrWdmZuBwONS2N7qSpBEyPDysyjo4yRcXF9uamJP+YpLT0NAQ+vv7lWfCbv8yEUMXwvI3hSwpu1qthsXFRUxPT6NYLKKnpwfRaBSlUgnJZBKXLl3C4OCgyrbld5FCWV4bgKJzlpaWcOXKlR09xhKJRALHjh2DYRj4h3/4Bzz55JNt8cB8Pq/WONkSWVpDpcN6Nan8WOwtkzrYlFqWa3Ac5byiQSS9B3r50pMleA9krqRnKJN6+Jv3xVKmUqmkEk4KhQJWV1cxOzvbFcbQnYD+HBj6CAQCisVhLsDRo0dRKpWwvLyMQqGA3t5eHDx4UNGycr0xhk25wtK6er2OfD6PSqWCdDqNGzduqJ2YOL+oJPW+vHdjzF6zJ8lSDSZcEM1mU1lmMtZFSoRCSBeCcscIWitOpxOpVArZbBbLy8tqscRiMezfvx8ejwfxeFwlGXBhsqURA70ej0d19mHWLCkYBvIbjYbKgrTZbCpexS1f2HrJ4XCofdNIE8nntNOhW/tSMMn3mElI+otUN+k10q8cEwDqNf6t0168htnf/F9P7JHzUq9ppECnwOf2Z4xRyTovAG1zVFJGcj/MnQz2T+Z3kda5VFQya5Wv8beksTtluEt6TEIaIZIO1b0MXp9yg/fUqV+wTOCQx+oJHTw3Fa7u+cqEojcjpJHCEJcMk8XjcZUfQDnP8Jjc65d9u6WxJHUBx0l6mSzlczqdKleBxm8oFFLnYAw5GAwiFAop+UzP0ixh9HZx2zFJu92Ovr4+jI2NIRaLqYA+4w/VahVzc3NYXl5GIBDAnj171JZFLMSn9cYSDj7caDQKn8+HAwcO4OjRo1hZWcE///M/48KFCwgEAiqB513vehd+/dd/Hc1mU9XokWJptdZSvaempuDxeHD8+HEMDQ2p2ASTe2TZCK3RPXv2YHh4GPl8HjMzM8qjopXDQeKgMKuO8dVuAIUIrW25uziFS7VaVXsDsvEDFwVpU6fTiVgs1iaw2KaOQpb7gMperrcKwEthLoUk48ak13gv7JDE13K5HIrFoqqVBaDmLY0rJn8lEglVytLX17fjPcmhoSEVR85ms8rY0aFTlxxTGRPy+XzKiJRWPdeU7vVJsOuNpPNkTFN6q2aGtMwdoJeh5z2YUcIynEDvUX4XGtjdspa3C+6o4vP5VC0kY9PMNxgcHITH40G5XMa1a9dgs63ttMT8A3Yv41hSicoQhlSSAFSSlqTEq9Wqkq/MSzEMA4ODgxgcHFQZrmT6FhcX1bhudx/LTtiWJ6lP1FAohL6+PiUgZUEnlebNmzcRi8UwPDysrEeZlCNTsWnty008udv4jRs38Mwzz2B4eBj3338/PB4P9u3bh7e//e2oVCq4cOECFhcX1cKjp5DJZNQDZkcQfkYHBzUWi6G3t1e5+8ziY9YcBS29LArUrewysZOg02e6d8cxX11dVdluAJQ1SSEl08RJtcsuNkzOup1aOmmZygYCurC02WyIRCJt+5PKnUEo1Enj5HI51Go1JBIJdW5STDtdeIZCIWVMMqbcKWVf99Llbwo62TxCZrrS8OFr+jnJxOh9chl75tjxGD02LVsNSsNFjrlU7LqilMqd85RK9056IjsN9AAp33fv3q2yyMnUMWeENeQA1LaGzEZm6RCNbJ1ZkPS3Yazt3uTz+VTMk54qjyUzabPZVPJWs9lUXdOYfEZ6/54rSTNe2u/3o6enBw6HQwXXZXmAx+PB0aNHlZWXzWaVtdlqrdWdkb4cGRlR3W8YK1xcXMTVq1eRSqUwOjqKRx55RD3ESqWC+fl5nDt3Ds1mU3V5oDXpcDjUIAeDQZVUxAxNxiRLpRJcLpdqYMA9I7moKLR9Pp+i6kgB83sUCgXcuHFjg8W600CFQSVGz56en8wmoxfN+ka9dZsUMhSWbEso41zS0t/Ks9OzDqVw5D2zCwtbCU5OTsIwDGXE6RSiVKiSWqUCYFPlVqvVFdmt8XhcMTc0FsyaJMiEGgBqnZOKlDXHm9GaQHvMUf6WihDYuKfkZs9axhfN6mUl7SrnIu+fST9c41S88jt2O7gW5XMLBoPYu3evalrPxBtCUtxOp7PN6OJevTQ0ACi5oRs6+lgxh0UfUx7Lki6yDcxrGRkZUYzQ8PAwyuUy5ufn1VZ8r6WXLHAbSpK/Sbfu3btXFesXi0VMTU3h1Vdfhd1ux8///M/j7W9/OwqFAq5du4a5ubm27MHz588jm82ip6cH73nPe7Bnzx6cO3cO//qv/4pMJoPLly8jl8vB7Xbj1KlTeMc73oH5+XlcunQJxWIR58+fx40bN9pq7OSOHn19fSo7b9euXapucmRkBLVaTcU3fT4fHnjgAZw4cQLhcBiRSGRDnCUWi6nC+Vgs1hbXyWazuHTp0o5Xktxfk7Fgt9uNRCKBYDAIn8+nJjEAZYGz7IetqaS1KON8nLi5XE5ROIwTy9pIHkvBaZaKrwtWHuN2u+H3+1WTApvNhtXVVayurqqG1/yOFMDSkpWWLRMNuIsEY9Pd0FVp9+7dMIy13sqrq6sol8uqoYcEswuZiMdYLq10jh/pNJkLIBUcBRyVre6dyrg0sL7m9LiyFM56nJg/epxSV7Qyc5IlLJVKRRnAnN8ya7KbEQqFMDo6qqhUluiMj4+jt7dX0at0crLZbJsxxDaFLpdLPddqtaoqEEiF64YpQyJyXCULRKNczg+GQ2jgUT75/f42hq9UKmFiYgKTk5OYm5vD888/f2+VpHSVXS4XfD6f8hToAebzefXA2awcWBOsMvmBRd8sOGcTAdm9gZbK6Ogo+vr6VEd4YC3lP5fLtbW/koJOdgxh8J8ecDAYVK2z6B0y+UcGqvlD5ctJw3PSqzWrF9pp4HNlY3qPx6MC9LLOUVKnANpikLQUJe0maXYKWLknnO6B6HSMDvl5+b5cbBxXUjQ0pDopXf08ci7JbjDSQt6poLVvGIZiU8y+E8dZNnSgISRjlfpakT/6+eSPTqfqn9Whzwszz7GTJytBY0xmRvO88n528lreKmTdKWU2N0kPBoOqYQezx/VacHqQlJnSUdBlACE9RcpqYGMeAueI2Tk4VlSmzWZT1UCXSiXMz88rBqhTJ6+tYtuJO2xHxBpBh8OBcrmMS5cuYWZmBsFgULWdYks4ud8jlWOr1VI7hMRiMWSzWdy8eRPXrl3Dq6++itXVVVV0PDAwgCNHjqj9xBKJBOx2O6ampjA1NaX46Hg8ruKJHNhKpYJCoYB/+Zd/Ufeyd+9ejI6OYnp6Gjdu3FDKnr1lqRQjkQhGR0cV9ULLiAO6srKChYUFpNNpzMzMIJvN7uiFRSVy+PBhvPWtb4Xb7VbZu9FoVC0U9jCVG1IzDgC0e2mBQEB5oexiw9f0+A9jl/QQJCRN1mnR0Mo0DAO9vb0IhUKYm5tTdVb0ECkgmTQilTEXNhWJFBZ2u70rPAzW/larVczMzKBUKqnOUhLscMJxkTEiJslJ5cn3KYwksyApTEllmgktncYF0OZlkNGQrJH0JAkzYcuxpyygwSYFupkh1a3o6+vDAw88oEJI3FUplUphZWUF/f392Lt3r9opKRqNolartW06wQ472WxW9cLl+2z3pxu2VFxAu7wA1ntG8zM8np4saVbOPxmzZIxbdmdbWVlBLBZDMplUHdy2g9tSkuyo4/V6VWuvixcv4vLly3jooYfw4IMPIhqNIhaLKc+BwV5argAU580m4/V6HVevXsX58+exvLyMYDAIv9+P/fv3o9VqIZFIIJfLIZFIAAAuXLiAy5cvq4XCWhr2X+TApdNpPPnkk7h48SKOHTuGD37wg+jv78fVq1cRjUbRaq1tiVUoFJRFRCXpdDpVFieztziQKysrOHv2rFKSZoJmJ4E083333YfHH38cHo8HFy5cwI0bN9RzYjYyx5VKDYCK8VD4cDGwU00kElFNBFiEDKwrJib76DFBCl1mv5p5DIZhtCWB9fb2qkA+4+BUkuwSw/uVXTuYWMS5zQ5SMkuvW5RkpVLB7OwsCoWCqmGU4PqhEenxeJRnyW480gvj/5JJkOOme25m3qNUVDyn9FZstvX2g8xklnOG59Hj4masBhWkVJJvJgXJdXLq1Cm104/dbsfy8jJ+/OMfY3Z2FjabDYcOHWpbB1SKVJL5fB42mw1LS0tYXV1VrCIpedZSyutKA5lrisaU3W5HKBRS4TMen8vlFHPIhDoaX/xhnkQ8Hsfw8DACgQCWl5cRiURw5coVrKys3H0lSQHCOkJpjdFjZFyPVgktTwpY2chY7i9JwSezIJk4UiwWFc/NhBLuhM5sSp0ikRYKA9SkdiWtKmmjZrOpBKts4izjLPzfZrMpoavHVXYimOWn16B1orKkQOtEc8nnIakxPWZFK18XbjKzVq+P4/s8l1xk9PzkJtzMeKbSlPNNKmQ9Zsbf8h52MuT3ZlyuE91KxoDJbLoXr8cNgXVmQXp3krY1mzPyeUuvkcKUVCCzUGV4RdKk8jtKuSLHUf4t26dR4O708b0V6I3Lhi6y4TwNETKFlNNkagqFAvL5vFKO3BBCJtno4RP9f32d6caMTstzfLh2GUbhMaRcdUqVzk6tVsP8/PxtGUHbVpLMJgoGg7Db7apbDq3ySCSCo0ePIhaLqYbJyWQSk5OTWFxcVJOcQiudTqudIOhl8GGPjo7i6NGjCAaDqukyE2fYu3PPnj2oVqvIZDKqj6r0ZliQevz4cezduxe7du3C2NgYwuEwbty40dbAPBAIoFgs4plnnlHFq9FoVHkphmEoeqHZbCIYDOLEiRNIp9O4du3ajleSy8vLsNlsWF5exsrKCvx+v0pYAdYXAa34VqvVJqxkaYyM57EOVtYumgkjXSEy1k2jSgb7JVWjp/+zZy8tUu4SwabnFNgyK5t0sTTgeE/SU2aW604Gx65SqSCZTKJQKJh+L2YGAlD9bBuNhkry4LqgF6fH5Wk0t1qtth11pMcPbIzzkmaTZR4y7qWX+Ogwi3kS3LidNCBbZzocDpWktF1PY6fB5/Nh165dCIfDOHjwIHbv3o1QKIT5+Xm18f2uXbvQ09MDv9+PVCqFdDqtevuWSiXMzc0hn89jcHBQhc2oVJnIyRwUynTAfEtF5qjI+SB7aNMoYr06sJZYtbS0hFAohJGREXi9XtWvmWEherInT55U9d4TExPbfl7bUpL0yKhQbDabilnx5rxeL/r7+xGPx9u626yurmJpaQlerxehUEjFd2jNGcZ6xhMndywWw65du5QrPzs7i127dmFwcFB5mP39/cjn87h48aKydChsaRna7XZVQN3f349YLNYWT+V3I+07OTmJXC6HgYEBFYuhIJCF14ynsjxkp4OWYT6fV52SZK2RWbKE3k1D9xJonXIxSC8GaO+8Ib13eu5M9qHylf1V5VhLi5Q0DUtBuPsImQyZmEO6hwpdzh29Vk5SQzsZMvmGrcB0xUADpVAoqDiu9NBllyIaS3ocWZb3cMx0JanHpaTC7aQkzbwNaSyZeY28hvQ+abBzznKudbsnSboykUigr69PZe4vLi6qJC6GwlhGVa/XMT8/j+XlZZTLZSwtLaFYLKq9ZFkm5vF4VJtKSYNTdsp1pXv5komQGedUmM1mU9WkszSr1WphdHQUHo9HyX8AKj/C4/FgeHgYNtva7i4ytLJVbNuT5BYlVArcTJmLbGlpCS+88AKi0Siq1arKlOzr6wMA1WeVLj+p01ZrLcU4FArh7W9/O/L5PHbv3q0WKAUUd6JmzIgF0YxpkS6lJSFT+Un75nI51Ot1tYkyvYalpSW4XC7s27dPUbhcRHJgSbUCUILmThWuvp6gV0Cqm43ImSIvEx84JpImkcpRKkmdAmXMQlqP9Gx0ypWCU487yR0deF2ZLSf7wLJtFbd7onDUE3F040qn4ukV73TwO8jNzM0UP7tJ0cjQvTfGgPia2S44VJJS0OmUPtDu/ek1dDxPJ3pWxkDlexKS5eHaBtZKIKi0yT51u5KkczE8PIxwOKw8/JWVFczMzKgx4DhxPbjdbsTjcZTLZbXGqAvIFLCRC9Ce9U5wzKVRZsYG8H05T0KhEAYHBwFAGcKUT5TjsgxJrmeza2wV21aS0WgU+/fvh8/nw/T0NGZmZrCwsKAK+S9cuIC///u/V5ur3nfffXA6nTh8+DCGhoZUYo3dblepxvV6HblcDvPz8xgeHsYnP/lJ2Gw2zM/PqwbZLAydmprC5OQkbDYbRkdHMTIyoigxbt80MzOjqDZaQ8lkEuVyGblcDsvLy3A6nZiensbNmzfV5s2NRgMPPPAA/tN/+k/Ys2cPZmZmcOPGDeUN02OmMGdzdFK9Ox3smAGsZzGzTyMzzJi0IxWaFJ5ScRE0KpghJ/cm5OSlhy49DBkzkkYLu+I0m2sNK1izKvtJsu2gzWbD0NAQisUikskklpaWVAsyxiv4ORpTANr2JKSwZjPmne5JMpbDnsOdCueLxSKWl5fRarXU3JCsAdcTABXHkpBGjVSuVMqdlKRZjFFnJ/hZ3TPQY1zyN/8mC8G4W7O51oyEXtLd2DD4jYRAIIBjx47h0KFDiMViqt3mlStX8NJLL8HpdCIejyualD+hUAj9/f1K9tVqNcTjcZUXsrq6qrJbAShFC2w0XGiAmnmSMsxCw8tut6O/vx+JRKJNibNxfjKZhNfrVQ4XDR6uaxprt4NtK0mn06m6vzOAKht8F4tFzM3NqXRcWa/YbDaV8GVHHGah0vtjCzun04lSqYTFxcW2L8fer8Bagb9MOuBDpqUTCATaKD5aRLScZEA6n8+rJIZoNIrBwUHkcjkVuJZJGxTk9Ki4hdROh8w6lFQHrTZ+hp/TPUkdkhLj/1w0svaQ5+LzlAlDQHvCj/RidGFL71d6BoZhKDZCWrBUgtJz0AWqPH83JXboxf6bfU7u8wi0Z4lyDQHrDcr1eSAFoBzPWylJ3WvU/5evyXvi+2Ywi1Uy0UQ25t/p43srUDZGIhHVOo6OQDabVU059JAK44ukrev1upLlfI56w3izpD4z6EYR55scS9nRh9ekUmYN51bmwXaxbSVJ4VGr1ZBMJjE7O6v6mwLrG7myj2c6nVbFnZlMRmW9AsDc3JxSVKlUSu0MzzjEyy+/jImJCbjdbuzatQu7du1qE2SlUgkLCwsA1q0WCmL+zc9Kocw41djYGB555BElCGq1Gg4dOoRKpaK27Zqbm1PbLOVyOYTDYezZswculwvJZBLT09PIZDJIp9M73sMgaEjoFiGfo6QxgM47n3CuUFnpZQAywYclQsB6o3J6J9JD4b2R4qd3KZWvzWZTnXV4j8FgELVaDT09PVheXsa5c+eQy+Vgt9vb2m55vV51LZ2GpHW60xM7ZLlHLBaD1+vF/Pz8hs9Vq1Wk02mVe8Bn4Xa71ZjyGdlstrbenTIZRzeW+JqEzkTItbvZZ/mZTp4Kf2SNJvsws4mIy+VSnYdkn9FuBcMGpVJJMTz1eh0ulwuRSESVbfl8PnWMYRhKTsuYfrFYxOzsLIC1nAbOE2Yk60lW0gCV4yplgQTnoOzXK8e/WCyqagSn06lYKzJMVPgy/rxdbFtJ0pqWew1y0gFrQoatzAConc7ZS6/ZbCIejwNYU5JsSs7JycAsALz44ot45pln0Nvbi+PHj+P48eNtXumLL76IF198EYZhIB6PIxAItClJaaVKYc1G1Xv27AGAthhbOBxGuVzG3Nyc+ikWi6ppwODgIHbv3g2Xy4VMJoMLFy4gl8upJr/dAKZas7RFWorS2jYTTvr/nLQ2m009ZzN6TwboWUBst6/tO0kanTu9cHuuer2uGhRIJclYhd41JxgMolQq4ezZs/j+97+PqakpBINB7NmzR8XOGcNmvE4Kad3z3KnIZDIA1jNWaTRSiBEMcwBQCR2GYaj+tVIZkpKVxqlOdfF46QHyelJA6l4F0LnRurxfM8Um2R/+MFkpGAyit7dXhX+YAbnTx/dWYPy/WCy2NdhgLTONB64FrgMqVrKALM3L5XIbYoxykwOZnNfpfghJi7ZarTZDTSaHcT6Rbq3X6/B6vW2Na2hAMwdG9p/dDrasJKPRqBJk+XwehrFWL8O6M04sWilut7utWXk2m1WepBSw8geA8ihstrX6G3bdYXYUFSk9CiaZML4grYx8Pq88otXVVeRyOQQCgTalyMFlIhAnBj0GGcfwer1q4FutlqJ+mf3VLZDUp24B6nEjWRclaVJ9snO8GNuTyTKyxpRCVQbuJXRKVFJnclx5b+wiwgXFOSPrwGgMcF7R0NJb8UkKdieD4QrGmTpZ2FwHzDo2G3+ZwCbrTSWlqnsJUlFKyNdkzOpWnwPWPU55jE7Jyu9UqVQU1UijnwbYTmcKbgUZj6VxQAeCjRp0Q0XOf8oHUq5m9a9muQm8NoC2NW52HULqCimv+TqvS+NMN6Z0WcVyn05xeDNsWUm+973vVV/u5ZdfRqVSaetgQGoum83i+vXrKhsSAFZXV/Hqq69ifn4ezWYTBw4cUNo+HA4r7V+r1TAwMIDjx4+rUpH9+/crSoDdQVZWVlCtVlWHHL/fj9HRUQwMDKhyk1KphFdeeQXnz59XA9lqtXDkyBGMjY3BZrOpbC6Hw4GDBw9icHBQCXN6tixLYcNsJnzQwllYWEAul+uKxB2ChgjpClkDx8nItn98thJywlIoyV1DOF8oxHg855CuaKnkZFxM3w2g2WwilUqpRBIukGg0ikQigVqthhs3bmBpaQm5XA6HDx/G2NgYgsGgYjsoLGKxGA4fPqw6BAEb+33uZFy8eBEAsG/fPgwPD6uaQR200km3yjGjl85nT88bWG/OAKx7hVKAytIQnYLVFakUeLrwA9aNJnqtVMoA2u6RiYUsHVhdXVV13dzsgC0M5ZZ/3Qi/34+xsTEcO3YMy8vLmJ6eVoZif39/m3Ej16r0KnO5HPL5PAAoelU2j5Djb0aPSzpeGszyNZkPIO9HQoZWXC6XclbYyIbXIisVj8dhs9lUvedWsGUleezYMbRaLUxPT+PSpUsoFApYXl5WD4oolUpYXl5GoVBQ21Mxdjk9PY2hoSH10Om50Wuz2db2/GOzAm7+yZhmOp3G8vIyrl27hnK5rBJ/PB4P4vE4BgYGlKAsl8uYnZ1VjQHoBQaDQRVbJE1K1zwej6uMPiYrcOC5ETTpR3YrYQlMN4FxYpbWAFDjRbDmjY0BAPOkHumFkMrSY8Y8v65waZTou41T4PL6soYqlUopxczz+nw+VCoVLC0tYXp6Gg6HA4ODgyqNnUxAOp1WjSLYjYTKQ1L2Ox0LCwswDAP9/f1qfpvVjzEpjRuMS2aBQlEeJz0NKizdm5MZskB7pivR6W/+3ymupHuN8nNU1ly3+XweDocDxWJRsU4smDfbNqyb4HQ60dPTg6GhIdU9R9KoMhlRhkckW8g1KWN99NQk9LGUc0IaNjqjqJ+DxrSeQCab09Bgk3kT8lqkXrmP6R1Xktw9njVWnSaqrIFLJpNKQI2NjaGvrw+JRAIzMzNIJpOIxWLo7+9XiTKMO01OTsLj8WBpaQnLy8uqow4TAwYHB9FsNlURP3e0pmCXiTgU7vF4HKFQCLFYTJUbcKsVh8OBVCqFixcvqofOhBEmcrjdbkXPsHxBJjNs9kx2EkgjZzIZJdBkxwygfXsjqbD4LKhIdCtfLgppYeqvy8QASdvJ/ql8XVK+0quUWazZbBblchmrq6uq/IdUayAQUIYby0Q4hzhHCBoPO92TJLVGZUErnb1ZuW74TPgMmNkok5f0eJL+o4+1GfT3trOOzI4ze0022mZsmjFofi8qjG6oeTYDE2lo9LAyQW5jBqwrQRq3elYy0L5louyvK0t+iK2MpxlVLuWHZCHk+1JW0GCm0cz9J0mhsz7U5XKhVCqZ9is2w5aV5OLiIgC01UWZfXn2ZuWNLi8vo6+vD4899hiGh4dx6dIl/PSnP0Wz2cTjjz+OkydPIpvNKsG0vLyMH/3oRwDWEgyYZEABmUgkMD4+rnqvysJjxj2lN9lqrXVg2b9/P8bGxtDT04NGo4FsNotAIIAjR46gXC7j4sWLmJubw/DwMB555BHEYjEVp2i1WiqQnc1msbKygmw2i1QqtaFzTDcgl8thdnZWCUjGo/n96E0D5pmFzJRrNpuqrlFSs/oC4FyhN8nEG8aa6X2ymTU9fGB9o2WbzabqpGTDZMbN8/k8rl69imvXrqmG3W63G295y1vw4IMPolKpYHFxEZcvX1bttzjHACilksvldrySZGeSbDar+lm2Wi1VWJ7L5VRaPceO7zMcIZstcHyA9dpIaeRIyszMM5S/eQ79c9KTMYM01qTA5X1J1orGj9/vRywWU32fuYkB65+7Cczx4E+xWMTKyopiT6hIWPLG2kk+N13pSQOIpRe6ktRDK53uyyxLXsb+dUUIQBlqUkmzmTqwrujJCnFLsPvuuw+pVErN/a1gy0qSCoeLw2wi0yKlQCQNGY1GEY/HsXv3bsX780sGAgH1RYD1/piNRqOtiS4DysDabhXsHUu6Txa5M9mA8Sy3262SgOT+lxS8ANSkYZ9PWRsEtCsG7plJBdptYEySnoUUbnw2HH8zugxYF2oyGUePdQDmqf+ygYD0YKW1KD8vvU8qXF6PQp30iqz5o0cViURUKy0Zh9HLPeTC28ng/fO5yNivHEuuZdKPnP9m2adyHPS/N/MUZayR534txmYnz1IqUdmukIKd7FK3Ju5QiTG0RNpZ9jJmyEtmBMs2ofJc0vjQDSK+zrWuj/FWIWPQXN/s8yqThXRZAEDlDsjSP+aWNJtN0xh8J2xZSV6+fBnAWr1ZLBZDo9HA0tKSel8+RH45uvSVSkW5+dwY0zAMrK6u4vz58yrrkDtqUJCR8qzX13ZIZ+yI1Ce3TmE5ChsYZDIZ1Go17N27F319fSqLj1Ykywf4oGu1mkoF9/l8qlyFmzrz3m22tbqg69evq25AZrTTTodM3JEJGVL40XrU4wQSMsuUE1p+XipN6V3SiAHQNl9kvEGn8GRcg510gDWvOJPJwG634+DBgxgdHVXxdCpCbu8TDAZV83s2/w4Gg+q8LLrulrHO5XK4efOmUn7svsKscIKxZSa0yFiwpL2B9lIeM6WpQ3+WeiasTOrYDHLuyGxIAG3zTlLmct5RxnRLYxAddrsdg4OD2Lt3LwYHBxUNyfXNHz4rOY6djBzp3XH9yeYSZh69VJy8lkzSkdeQ5We6EgbQphBpBPDeeZwsK2NZimw6sJW1vGUlef78eRiGgUOHDuHAgQNotVq4fv36BmtNTjwOABsEcE861lAuLy9jYmJCfQkqRCowbuHCTWGZgUhly6bn7ErPOBoH7sCBA9i7dy+q1SquXLmCpaUltQkzPdZisQin04n+/n4cPHgQmUwGk5OTbQKB9WQ2mw2FQgGXLl3CtWvX2jyiTkHnnQiWtrhcrjbLWlpsMkAvLT6gfcscqdgMw2hrXq57m4RMkCGNSkufnhwXkW6cMbZGpoFK0OFw4NixY4hGo5iZmcGzzz6rdgVZWlpSSWP79++HYRiqsUUikWijgjttK7UTwTi/0+nE8PAw+vr64HQ6sby83PY55iIUCoW2hClJf+n0m5m33ykuqc8f+VqnZ2221qSC1I9njR9ZJz3Bg0ZAN7QdNIPD4cDIyAjGx8cRCoWUwc/1zTUnY41ULLpykmtPzgHptcnzyK5nZvS6TPTiezIGKa8nZQzHmfFUhnj4fWWclH+7XC6Vsb/lZ7fVD7LPZrPZbOunJx+cvggotNipYWlpCfV6HYlEQu3iUalUVC2by+VSPQHpLvMB8WEzC7HRWOvHmkwmlTKmK84HRZ7aZltLE2axM2snWejOc/N7sUCWFgkAtUM7Owh1a3AfaK+PM6Oe5CSW6f58zyyjkR6C/OmUAcnfkvYD2jve6BSQzKqUAX19Y16+x/Hmd6CQkFsp6Qq4mwwhYD1JSwoe0txy1wZgvQSGn5OeAF+X3oKZMLzb32WzJDoKcOk1ySzorbbq2+ngOEpnQVeGndYjYRZa0b0y/fNyTkjlKl/Tz8v1p2fCy3Pq9yHLgOQ98TWyR9sxdLesJHlRllEAaPMmdG5YegmLi4v49re/jaeeegr79+/Hr/zKr8DtduP69eu4efMmfD4fBgcHVbcb1jna7XbVGikcDsPj8SCTyeCf/umf0Gw2sbKygtXVVfh8Phw9ehT79+9HJpPB3Nycal2WTqfhdrtx5MgReDwezMzM4LnnnkMmk8HAwICqE3M6nSiXy8hms5iamlLnZZ3c1atXlbJnFxI5UN2ywFqtliqDYaay7g1QmDIwbzbhuHB0D8LhcCjBJBWTtPyp2OiNMhksmUyqpAqpxNjQgnSZVMqMQ5OSZ3kSdztnpl+9Xsfc3BxmZ2dVE/9wOKy6kXT6njsRcs7SUKRRarfb1V6tZHCA9dAJNy93OBxtoQ3S4jRMpIEjBa+cFzI5Q4JjB6wLyk6f1WEWHweg6FT5W2ZvZrPZrhlfMzSbTayurmJ6ehperxe5XE6VxTE0wZgsPw+ss0ISOvUpn1unmDSwHr8E1kvIJKTOkAmgMhYpryOPI6TzYxiGqrfnfJahtK3K6y0rSZlpxBZW0mXt5Em2Wi1kMhm88MILcDgciMViePjhhxGLxRQNymxDUmH5fB65XE7FPg3DUFTt/Pw8Lly4oD6Tz+fR09OD48ePo7+/H4ZhYHZ2VjUEKBaLcDgcGBoaUs0CstksFhYWEI/HVTcfCsJSqaT2vgyFQsravnbtGhYWFlTQWH5vfaB2Omq1GrLZrKIr9XGlkqSX36l7hRRYpDtkrZWk5mX8SMYieD80enK5nDLU5Pv8jCzbMAxDNXJmn1+OIdkLshPcbmdhYUExEKzBpfXdLWMsqSrOZ2mF+3w+9Rnu2cdYHr1MGhnco1PWy+mQ1+r0vv66Hpvs9Fk9FtkJDPuQjdA7aunlXN2GZnOticLy8rLae9Hj8aCnpwfRaBROp1O1d5MGjTRWzLxKfe3yczoTw3VNx0pmwcqyDkmDM74oWSBZKibvgdCZL8l61mo1pNNppFKpbW15ty0laRhrm/Dmcrk26tUsWK4fyy89Pz+Pn/zkJ4hEIpifn1fbG7EQ3GZb2wKrXC5v2K7FMAwlJKUQlYvY6XRiYGAAtVoNsVhM1UYlk0k0Gg1VdymD9XIndL/fj6GhIeV9MDalu+hmC7VbQIHCH1lvCmykRHUDSY8NyR+Z+CMD+PI46UmSamFskseyjaBsjcViYVrIMnjfbDYRiURUsoJM3uLffr8fg4OD6OvrQzQaRTAYVAkOMit2p8PMguf6s9vXdogIBAJotVpq3czPz+P8+fOqR3IwGGyjqmV8T1K4nWhXM1p9K9A/r9N8+vkJlgcwLEOPg+GdN5OSZGtRhqL6+/vblBsdg82ea6dxk0aLpOppjEklJz1NGX6R55ef5fk6GUT667oCp7zf7nZo22pw3mqttSOamZmBzWZDtVpFIBBQNVWduudTIdXrdTz77LOYnJxEIBDA0aNHceDAAdhsNkWd+v1+vOMd71DdMOgJhkIhVfR748YN9YVpYbAWzufz4dSpU0owktK7cuUKyuUyFhcXVRP1UqmEVCqlEnN8Ph/6+/vx8MMPo1wu4/z583j55ZdVZq184JJS5nfsFlCJ2Gw25PP5thZ1MmAv47nAurWpG0202GlYyVivjHsB6519aNzwHDabDX19fWi1Wm3JAKSEm82mKg7ndmz0Fql0d+/ejUQigWw2i8nJSZW4wIL6/v5+7NmzB7FYDHv27EE4HFaUYiqVQrlcfl3G405DN2Tr9TqWlpaQSqUQi8Vw8uRJJBIJXLp0SYUuXnjhBSwvL2P//v0YHh5WYQoqRZ2+lJnNOu0uY02dDGsdUkjKbEpJ0wPtQloKclLElEXN5toeklNTU8hkMsoY6FY0Gg3Mzs5ieXlZeW9M3hkZGUEoFFJOgt5pR47dZkpSV1B0qpgRLmUGS/rI5nAuAO2bIsg4uR6a4XXMFDP/lowE2aJ0On13PElemFlgVE50Z291UX6RVCqlFNPg4KAq1v7/sffmMZZdd53457593+rVXtV7t3vv8h4ncYgThyxEiYHRBBihKJFnBEkGhhHgMDMwGoTQL4BggMyQCRkGacIoVhAkYUgUJZDNTuw4jrvddrsX91r79vZ9/f1R8zn1fafuq6W7ut1VdT5Sqareu/e+++4557t8vsvhTiLBYFBtXcQereyQwh+m8dKl572wuJTxS5nSzfgkYw+0ghm45iCSo2cWLQdZCvrVJsd2AJOtOClZVLwey1IaEFLBSbpN9wQoNGXsgnEtKXjleMtYlazjkzSqjGdYlqUEJeukJE3L7GtS8NwqiJ70dui0sxoYjwoGg6ofMmOM7MA0MTGhSqmkopK0ufQoAfuaSgnpRawHdlmycl52m1vSKOMccDqdykjaTqU9dmi327at2HK5nKKedWXV7Xnoz1j/HP6WMkBmscvfvIYcUxkHlZ7kWt/PTnnKz6Cs2Oha3vBWWfl8HlevXlWU19GjR1GtVtV+bFRGq1llkp9mwXqlUkGxWEQgEFCZpKlUCgsLC/D5fIhEIrCspYbVx44dQ7FYVDGmYDCIwcFBxONxtFotXL58GQBUWzlJHXJvymaziUgkooR/NptFqVRCJpPB5cuXUSgUcP36daTT6Y4u+RwA+Xu7gUkaLpdLbSvUbreVkqHiZMKHzG6UCpGQE5X0qDxP0q52WbN6bEoKYctaLkfhNWQ8hJl8QGfiwIEDBxT1yjZ3jEGS1pUJO7rHu12gz+lSqYRLly5hfn4epVIJIyMjAJZ2s/f5fKr3JTta6UKPsUnGJ+1iVDrFritKqYD1Eivd87Sj3uT/PFYKR45rOp3G9evXMT09jYWFhW05vmuB9cDtdluV3AHLWbCscZahLaD7WrfLX5BxQZnLACyvT5nIxd92PYV1xcd7pQzRS1Dk9Uirb3TXpg0rSbb08fv9ePjhh3Hs2DG1/2KxWMTk5OSK/cUkpGXAhJ1KpYJyuawyUdPpNDweD+bn5zE3N4dgMKiScpLJJB544AHU63WMj49jYmICPp8Po6Oj6O3txczMDM6fP49yuaxoIXqM9XodgUAAw8PD8Hg8HQuHXYBu3LiB73znO1hYWFDCXN47B2U7Q8aduUNGu91Wezcy+YF0ioxBrUY/S2tQFnRzgktBqlO6QGfDAFnqIRNG5HmSLWBM0+v1IhQKoa+vT90Lrykb7ctY53ZK2pGw88iKxSJee+01VXx+8OBBtem1w7HUlKPRaCCXy6nOWHLMLctSdcwSkmLX74Hnytdk5rSdV8BzdG9Ep98IuVckjd7FxUVcvnwZN27cUJt47zRwz9Bmc2kfVl1J6gYJ0NkBR3qJdvkJsr6RZX4AOoxPhjEYGiPsGujr4y0/326dyrnJ+u+NNoy4qU2XaVnIPQdJ01SrVVX0r1NsfLjsyclNkhkfzOfzHZ6kzKzkA6R1A0DtiSaLQ/VB0iFpIdl9h1l62WxWFRVLbDTBYCtDxhKpEDmp7OIS0mOQNCihC0JakroHodN0OrWq3x89F0nBydZa/J9zUBa56zW+dt9dnr9TBKiMMdK7ZjN4tvWiAqNC5G+v16u8SHoPHHO7UgJCepMyXibpXHmt1ZSkfF0KTvk+ZQlDKXIzhJ0G+Sx0hahTooQuY7vR3asdL3/srgN0MkjyPux0ipQhwHJbPNmxB4Dtd10L61aSnOB8cI1GA+Pj46jX6+jp6cHY2BiSyaSiTSlgudgYqGWdFYVVs7m088frr7+Oq1evIhKJqF1ARkZGVNySWx3Je3C5XOjr61MeCNP/9+7di2azqRY3ANVpoVar4fr162g0GpicnMTk5KS6T2aAyf3kdAG6ExYSFw7jz2zr5nA4OgShNHp0T1BfOLTkGBOS+zTSumcNo4w/8nz9mhJ6bEwKXMYoHQ4H8vl81zZbnNPM2A6FQqoWkMlL262BhP48dSEWiURw6NAhxONxDA8Po7+/X5XGVCoV+P1+7N27Vx0bCoXgdDpVgpdkCuzKOeQ96IaWPo+6rT07IU7QYJfGNsub+MP+0N2SDrcbONcJZvhyj1zZvq9er3dkietsjXRgdHrUbjzkbiM0XmRdrRx3aYhLRoHX5/1IipZOFPVNIBBAOBxWOSrtdlvVud+WxB1507wpxi0AYHBwEPfcc09HLQxjPi7X0pZEFD7cruqVV17BxYsXUSqVMDk5iStXriAQCGB+fh5+vx+xWAyxWEwF2FnYTjDJhq/xs/r7+1cITtkwYHZ2FuVyGa+//jouXLiwLuG3ExYQQQuc9YOlUgmBQKBD6ehtqbrRacByZiIVEWPRcowYY2ZWbbddRnSBy/dkrElamX6/X9X9Aat3gOG9+Hw+FVvjtmvbtfG1nZKhoREKhVRJzPHjx7F//361WwrbFvb398PpdHbEswidql7NE5S9YKWylLEwuzi3HXh9Zi/rnmSz2VR9nlkSsBOgy3BguWk/i/dp1MixkwaM9N50Slw+Y7tEG5mdynOYZNfNOKIi5N8620Bm0bKsjjwHhvJCoZCqsQfQsVn0erHhZgK8WWr4arWKXC6nSiyCwaBSbDyPGXIul0ttNdVoNHDx4kVcvHgRc3NzStkyiQdY2hz20qVLKkFEp1Zks1r5On9krInt5EqlEhYXFxXVKgfA7rvuRHAy0ggZGBhALBZT7d2AldljVIA6RUa028u9fOVn8G9geWKzETEnvowfSHpGjjGAFdQaaUAq5G7fUyb5cOEyKYFxjO28zyBgX6RfKBQwMzODRqOBeDyukuC4XmXjfzJIUgDLeKKEPhZ8zpwfbLCu0+L6OXbXkp9RqVQ6NlHm50xOTiKVSmFiYmLHKMhu4F69lNOJREKNJVkVKiapDGmsSsUkkxuBlWMk17JuIHULrehyQnqv1EFSrlAnSLaLxv7NNq7fUFs63iitfKaNV6tVfPGLX4Tf78fo6CjuueceBAIBRcFIC4BKslwu48KFC7h69Sqq1SrS6TSA5W4vhUIBL7zwAs6dO6fuwU4A0muVBaLyQfO+9V0/GDDWMzNpRdkF/3cKKPzC4TAOHDiAhx56SBVjS4Ui54TMBKUXqsc1uDAkxcJYFyk7xrbC4TAcDseqTaftYhiEjHnaWbWcQ6yhBNCx4Hn9QqGAqakpLCwsbNgC3WrQn+fc3Byee+45RKNRpNNpzMzMqPZ+lUqlI3Ti8/nUc5TCVG90TvB/lmNMTU1hamoKuVwO586dw+zs7AqvBehsU9etLEB6qjJGxdrphYUFlZ2byWQ29RnezeCYyHHO5XK4cuUK4vE43vKWt+Cee+5Rm8rLUioqGxm71ecLvVI9IY/jQdkgwW5nuqcqf+QcklmxvB4b1kciEdVSUcbSGT4rl8s3lXS5YU9Sfmm65/V6XQmQRqOhNvbUWxy1220sLCxgYmICxWIRV69exfXr11fQafwiLC3RwQfKOCMTf27F0pcLUgr2nQhORk62np6eFYtLXwCkaGUiAIWU7q3rc4leG40vSZHyevp42HkneqzEjl7SDS2ZcSfHnwqTjaB3UtyKKJfLymtMJpMIhUJqgwFubVepVJRRRYOV84AGkBxngv9Tcc3MzODatWvIZDJ45ZVXMD4+3mFcd/MydMjXZChAyop0Ot2Rd7CToM9fNg6hx0inJhAIoFQqdSS9AMtt3/T4P69NB0Mmdcr39YQ+qTjt6Fo5/pKlolFOg5zXlYljnHvMWr/tniTBB8G/dWSzWVy9elWl2nMvQB5bKBRU7zyWFtzMPQDocN1vtSzDLtV8p4KTnFQMt5LiRPX7/QiFQiuEFo9hglY3SIuQz7tWq2FqagqZTEbV4DIZa7Ugu07v2NG8Mh6qU4C853a7rRqlS3pmamoK169fVy29dhLYx5hx4rm5OWWQMrbM7FbGqYHlMZXjrBst/M05tLCwgPn5eVVrzevQGNvIupTXp6CWWY3bmTbfKJi443K5cO3aNZw9e7ajNaH0CqWikYamNEzldVkFIcMXBI9dq+evVJJybfP60ntlu0QaX2SipqenVXnizSjKW1KSdkilUsjlcrYUC8+XdS03Ay4YWVdzq4ptOyZl3Cz4XOnJT0xMdGQtMluMVAmAjokpt6eymwPSo2TiRLVaxZUrV3Djxg0A6KBY5Dn8W75OIcrYhLRoZTNrKkB+P/6m1UsKTpYGcdNmnr+TwJoyy7IwPj5uqwTtxqcbVjtGJoDoMWgZc94o9HkDbP86542A5T7NZhMXLlxQNcQPPfQQBgcHVeKeZI5Ik8vEPZ1V4vpinoFOu0v6lB6flOuSzdPLN6QOkUyT9Hr5vXK5HF5++WXMzs7iypUrd0ZJrgWm898p7HSv73ZAUhr5fB4LCwsqmYZJWABULJETlA2TGb+UVqYOLgqWV6TTaSwuLqptyIBOqoXn8LdOq9FDkLEK6RG32221abPM3OPCk0qS4QNa2RvZVmc7QRqyN0tVvdGQ47YTx3A94Djn83m1QXkul1OlPkxwZPmXpL6loyJZGa5DmXSpr196+pItkMpPT/xh8xeCdK0eB5XGL0s+Nro9loTVXudZ67EUDZawVRejPok9Hg/27NmD4eHhjgA6O6rIWJHT6VQ7c5BulVlrksqWr6XTaWQyGVQqFUxPTyOXy3XcU7fSDbv5KC1QmWGp/+ghA74uFaiMt9vRc1t1jAGzljeCrTrOGx1jp9OJ/v5+JBIJRKNRHDx4EPF4XNVJW5aF/fv3Y9euXR0UaqlUQiqVQqvVQjAYVKVi9NZlkp7MT5D3KT180uOyDpKKlBteOJ1OxONxhEKhjlrYubk5TE9Po91uqxh5NpvF5cuXkcvlkE6nsbCwsIKRWGuMjZK8DdhuC2u115n9xgYBrKNk2YWMS8kCYmY1zs/PY3FxsSM79mbu+04/8606xoBZyxvBVh3nWxlj7jMZCARQKBSQSqXgdDrx8MMPY2xsrINVWlhYwI0bN9TWhPF4fAUFr1OggH2TCMoAslFOp1Mlz7E0KJ/Pw+12Y3R0FMlkEuVyGQsLC6hUKnj99ddx7tw5tNttxGIxBINB1Zt2tbyGtcZ40+lWg+2HbpNIJlZID44Wo56RZhdz0N/bzPu7XTBKxmA7Q7I+ci1LA1Yeo69joLN9nGR1pHKU15F/25WN2cmKbj92x9wK1u1JGhgYGBgY7DSsvkmXgYGBgYHBDoZRkgYGBgYGBl1glKSBgYGBgUEXGCVpYGBgYGDQBUZJGhgYGBgYdIFRkgYGBgYGBl1glKSBgYGBgUEXGCVpYGBgYGDQBUZJGhgYGBgYdIFRkgYGBgYGBl1glKSBgYGBgUEXGCVpYGBgYGDQBUZJGhgYGBgYdIFRkgYGBgYGBl1glKSBgYGBgUEXGCVpYGBgYGDQBUZJGhgYGBgYdIFRkgYGBgYGBl1glKSBgYGBgUEXGCVpYGBgYGDQBUZJGhgYGBgYdIFRkgYGBgYGBl1glKSBgYGBgUEXGCVpYGBgYGDQBbdNSY6NjSGfz9u+98ADD+Db3/72mtf4sz/7Mxw/fhwnTpzAyZMn8fnPf169VywW8ZGPfAQnTpzA4cOH8clPfhLtdrvj/Ha7jXe84x2IxWLqtUKhgHe/+91IJpMdrwPA2bNn8ba3vQ2HDx/G8ePH8dGPfhTlcnnd39nAwMDAYHvhtinJ06dPIxwO39I1jh07hmeffRZnz57FP/7jP+Lf/bt/h8uXLwMAfv/3fx/NZhMvv/wyzp49izNnzuBv//ZvO87/kz/5E+zfv7/jNbfbjaeeegrf/OY3V3yez+fDpz/9aZw/fx5nzpxBsVjEpz71qVv6DgYGBgYGWxe3TUlaloVMJgMA+P73v4+xsTEcP34cH/nIR9BoNNZ1jXe+852IRqMAgNHRUQwMDGB8fBwAcObMGbznPe+BZVlwu91417vehf/9v/+3OvfVV1/Fl770JXzyk5/suKbX613hXRIHDx7EyZMnAQBOpxMPPvggrl27tsFvbmBgYGCwXXDbY5K1Wg0f+tCH8Ed/9Ed45ZVX8PM///M4c+aMev8zn/kMfud3fmfN63zzm99EOp3Ggw8+CAC4//778cUvfhHVahWFQgFf+tKXlEKr1+v41//6X+N//I//AafTeVP3XSwW8bnPfQ4f/OAHb+p8AwMDA4OtD9ft/oDz58/D5XLh8ccfBwD85E/+JPbt26fe/6Vf+qU1r3H27Fl85CMfwdNPP41gMAgA+OQnP4lPfvKTePjhhxGNRvHQQw/hn//5nwEA/+W//Bf8zM/8DI4cOXJTniAV+0/+5E/ip3/6pzd8voGBgYHB9sBtV5J2sCxr3ceeO3cO73//+/FXf/VXeOtb36pe9/v9+NM//VP1///3//1/OHbsGADgO9/5Dm7cuIFPf/rTaDQayOVy2LNnD1544QX09vau+nn1eh0f+tCHMDg42HF9AwMDA4Odh9uuJA8fPoxGo4FvfetbeOyxx/DNb35TJd+shddeew3ve9/78NnPfhbvete7Ot7L5XJwuVwIBAK4evUq/uIv/gJf/vKXAQDf+9731HHXrl3D2NjYujzKRqOBn/u5n0MikcBnP/vZDSlzAwMDA4Pth9sek/R4PHj66afxa7/2azhx4gT+z//5Pzh16pR6f7WY5K/8yq8gm83iqaeewtjYGMbGxvD1r38dAHDlyhWMjY3h6NGj+OAHP4g/+ZM/wdjY2Lru6eTJk3jkkUeQy+UwMjKCX/zFXwQAPP300/i7v/s7/OhHP8K9996LsbExfPzjH7+1B2BgYGBgsGVhtfXiQgMDAwMDAwMApuOOgYGBgYFBVxglaWBgYGBg0AV3XEn+6Ec/wnvf+17s3bsX999/P+6991783u/9nnr/7W9/O770pS9t6Jp//dd/jWg0irGxMZw6dQonT55USTwGBgYGBgY3izuqJM+ePYv3vOc9+PjHP46rV6/ixRdfxD/90z8hl8vd8rUfe+wxnD59GmfOnMFnP/tZPPnkk5twxwYGBgYGOxl3VEl+6lOfwpNPPon3v//96rVEIoE/+IM/2NTPyWQyiMfj6v9f//Vfx4MPPoixsTG87W1vw4ULF9R7X/7yl3HkyBGcOnUKTz31FJLJpGlFZ2BgYGAA4A4ryR//+Md4+OGHb+rcr3zlK6t6h9/61rcwNjaGQ4cO4Wd/9mfxx3/8x+q9p556Ci+88AJOnz6Nj33sY/jVX/1VAMDc3Bw++tGP4u///u9x5swZHD58GIuLizd1fwYGBgYG2w9vaOLOb/zGb2BsbAzDw8N49dVXVz32Ax/4AD73uc91fZ9068WLF/H888/jySefxNTUFADgG9/4Bh555BEcP34cv/u7v4vTp08DAJ577jmcPHkShw8fBgB8+MMfhsfj2ZwvZ2BgYGCw5XFHleS9996LH/7wh+r/P/zDP8Tp06fhdrtRr9c37XOOHz+OXbt24dlnn8WNGzfwiU98Ap///Ofxyiuv4Atf+AIqlcqmfZaBgYGBwfbFHVWSv/mbv4m//Mu/xFe/+lX1Wq1WW/fWWevFxMQELl26hEOHDiGbzcLtdmNwcBDtdhuf/vSn1XFvetOb8PLLL6sY5ec//3nUarVNvRcDAwMDg62LO9rg/NSpU/jqV7+K3/7t38bHP/5x9Pb2wu1245d/+Zdx6NAhddyTTz6JT3ziE+r/L37xi5ifn8dXvvKVrpQrY5LAUpPy3//931ft737u534Ox44dQ09PD5544gl1Tl9fHz73uc/hiSeegNfrxbve9S6EQiHbvSYNDAwMDHYednxbunw+j3A4DAD40pe+hN/6rd/Ca6+99gbflYGBgYHB3YA3ZKusuwl//ud/jqeffhrNZhORSAR/8zd/80bfkoGBgYHBXYId70kaGBgYGBh0g+ndamBgYGBg0AVGSRoYGBgYGHSBUZIGBgYGBgZdYJSkgYGBgYFBFxglaWBgYGBg0AXrLgGxLOt23se2wlZNGH6jx9iyLFiWhYceegj/6l/9KwwNDSEYDCIYDKLRaCCXy6FSqcDtdiMYDAIALl++jEuXLiGdTuOZZ57B5cuXAXSOAb/XZo7LVh1j4I0fZ6Knpwd79uyB1+tFq9VCo9FApVLB5OQk0un0G317ALbuON+pMeaaBZaeVbvdhs/nw/DwMMLhMI4cOYJ3vOMdiMfj6thWq4VyuYxGo4HTp0/ji1/8ImZmZtT5AOBwOGBZFtrtNlqt1m39DmuN8bpLQO6WhbUVYBZW9+tz4rfbbViWBa/XC6/Xi1AohEOHDqGvrw8DAwM4fPgwfD4fFhYWsLCwgEajgVKphEajAZfLBY/HA4fDgVgshmg0ikqlgvPnz2N6ehoLCwu4cOECCoVCx/cySnIJd3It68/e7XYjmUwiEAggmUwqJZnNZpHNZlGv15HNZlGpVFAqlTA/P6/6Ot+OcVwLW3Wc7+RaBpaUWiKRQDQaRSwWwwMPPIDh4WH1frvdRqFQQKFQUHMgFAqhUChgbm4O5XIZZ86cwcsvv9zRplSef7uw1rV3fDMBgzsHp9OpLMlmswkACAaDiEajGBkZwb/8l/8SY2NjSKfTmJiYQDqdxve//30888wzqNfrHZamZVnweDx44okn8PDDD8PlcuHAgQNqsc3MzCgluVUF3VaHZVlwOJYiOq1WS3kZu3fvxuDgIJLJJPbt2we3240bN27g+vXraLfb6Ovrg8vlwtTUFHK53KZufmCwOZCeXrPZhGVZGBwcxD333IPh4WH8zM/8DI4fP44XXngBX/jCFzA9PY2JiQlMTk4iHA7jkUcewd69e7Fv3z586EMfgt/vx1/8xV/g0qVLKBaLaDabHWtdKuQ7DaMkDe4I7Cxby7Lg8/kQj8cRi8UQCoXg9/uRzWZRKpWQy+WQyWSQTqdtm+B7PB4UCgWUy2V4vV54PB64XC51HZ/Ph0ajoc6V92AU5xsDh8OBYDCISCQCn8+naNZ6vY5GowHLshAIBODz+eDz+ZRhZXD3QB8PGkN+vx+xWAzhcBhOpxPNZhPVahX5fB65XA65XA7ZbBatVgu5XA75fB7VahVutxt+vx/hcBixWAxOpxOFQkFtNvFGr1ujJA1uOzjJGVuQ1NvJkyfx6KOPwuPxKM/xxo0beOmll5DNZjE5Odk1JtFoNPDjH/8YhUIB0WgUx44dw+DgINxuN44fP46hoSFMTEzg+vXraDabcDgccDgcHZ6swe2DjCdxzD0eD4aGhnDgwAHMzc3hu9/9LorFohKioVAIx48fRywWQzabRTAYVAqUbMIbQbsa2McfHQ4HvF6vYgjuvfdeNBoNfOUrX0E2m8X09DReffVVFItFFAoFFY987bXXMDU1hampKdTrdcRiMfh8Pnz4wx9GKpXCN7/5TZw/f96WjbjTMErS4LZCWoG6snM6ndi/fz/e/va3o1Qq4fnnn8f4+DiuXr2K5557DrlcbtVF0Wq1cPHiRVy6dAnJZBJ+vx+hUAhOpxN79+7FwMAAarUaxsfHO5QkzzVC9vZDf8aMR+3atQtzc3M4ffo05ubm1LE9PT04duwYIpGIYgQqlQrK5fKKbezeSApuJ0IqSa4fp9MJt9sNn8+HgYEBHDp0CFNTU/jCF76A559/XilTOU61Wg3Xrl2DZVlIpVJot9uIx+O477778L73vQ+zs7N49dVXcf78+Y7P3ZJ0K4WO0+mE1+tV1IgUjPLL0fLg+7QQW60WqtXqXW/dGwv25uBwODoWis/nQzgcRjAYRCAQULRMOp3G7OysolfX85x53Wq1itnZWVy/fh1Op1NRdn6/f4X1a8bv9sKOHvP7/fB6vWrHnWq1inq9vsJYabVaqNVqqFarAIBQKKTer1QqHXEqeX2DOwNdWfn9fgwMDCAUCsHtdiOfzyOfz6NWqyl5vpqSq1arKjEvk8mgVCqhWq3C4XDA7Xar497Icb5pJcl4ktfrRSAQwODgIILBoPpyOm/NQKzb7YbH4wEApFIpZDIZVCoVTE9Po1gs3tq3uY3QvRAARuCuAzSipILq6+vDqVOnEIvF0NfXh2KxiPn5eZw9exZnzpxBpVJBpVJZ9bp6pmyxWMTzzz+PV199FQcPHsS73/1uJBIJXLt2DU6nE8DSHJSGmPFEbg9IkUlvo7+/H8PDw4hEIgCAxcVF5PP5FYZxs9lEoVDA4uIiAGDv3r2oVqu4cuUKstnsCtrc4M6B4ypp9MHBQTz66KOIRqMIBoO4ePEi5ubmOjLL6Tw1m011Hp2lfD6P1157DV6vF7FYDCMjI8jn82i1WgiHw6jX6yiXy2qe6DL4TuCWPEnpasfjcUQiETidTng8nhXWJJWkx+OB3+9XsQUuIpfr7mZ+5QQxVuz6IZkFjjetz0QiAb/fj1qthlKphMXFRczMzKz7uhKNRgOzs7OYnZ1FPB6H3+9HPB5HIBDoyMTTzzeKcvPBMZfPOBAIoKenR639crmMarW64tm3223UajWUy2U4HA5EIhG0Wi1MT093XE/+mPF74+D3+zE8PIxYLIZCoYB0Oo1sNtuRdEPFpjOMDodDjbXb7cbi4iJyuRxKpRKApfi1ZCG7MZS3G+vWTPT+eKO05prNJur1OvL5vPoicjIT1PwulwuBQACtVgvZbBbFYhGVSqXDUpC0LRWTtEIIndqVr3eDXWbWasfK+5BJH1T4Pp/PZN91gUwRBzqpt6GhIcTjcdTrdVy5cgUzMzNqcfBc6SnqkLSbpHPb7Tbq9TpyuRyCwSB8Ph/27t2rvJN8Pt+xcA0bsLnotiY9Hg+CwSBcLhey2awSqHrWcqPRwOLiIhwOB0KhEJLJpMpaJuSYmbG7c6AHKZ+51+tFJBJBJBLBxMQELly4gEwmg3w+33EO/yZ0Q4rH1Wo1tFotxGIxDA8PI5vNqsYDct3eydDcupWk3+8HgBUChl0ySJsy5V7X/LTm3W43vF4vAKBYLCoOWipJr9cLh8MBl8sFp9PZEbOUD5oKVYduceh/d/utX0NeX3aLqNVqaLfbiMViSCaT6nkYLEMP8EtEo1Hs27cPiUQCr776Ki5cuIBUKoVsNqvOlRTNakpSjhHnXbVaRSqVUp15Tpw4gXw+j5dfflktXs7Huz0OvlWhG8s+nw+xWEx5/Pl8HvPz8yuUZL1ex+zsLHK5HIaGhjA4OKjimfo6NQryzkAqMn28fD4fent7EQ6HMTs7i2eeeQbValV5knZKUmcCeH16lQDQ398Pr9eL6elpzM3NoVKprGDz7jpPUvcggeU4Y6vVUgW/Uknq5+lCr1KpoF6vq2JU0rcej0dRsC6XS8WSaEHyodslCcnf3f7WaRu7Y/XvKhUhPUp2fnG5XGbB2sBuIluWBZfLperg6vU6MpkMcrlcxwLciHeuf06r1VIZkZZlIRwOq3i4wRsDl8sFt9ut6FQySDo7xPcty0K9Xldr0M7zMLgzsHvmTqezw5FxOp1oNBooFosrmj+s1+unA8K8FjJBuhNyp5m7dStJO8XUbDZVFlOz2VRen511LpUlvYRGo6HOi8ViSniGQiG4XC5VEF6pVDA+Pq7aVnFxUWnSwlhLSer3I73itb43P4e0r24hdfN4diJ0toGv0fhh1qnH40EqlcJrr72GUqmkvLxbRblcxuTkJMrlMsLhMEZHR5HNZnHu3LlNub7B6tDXh2VZCAaDSCaTqkHE+Pi4Yp70c2k81+t1RdMyW9nhcKiMeJMfcPsh1zKfudfrRV9fH4LBIHp7e9FsNleMpZSrdiENPdO83W5jcXERr7/+Ovx+P3p7e9Hb24taraZCfW8U1q0kdT6ZioFFvuVyeQXFKs+x8yg4AH6/H319fQiFQggEAohEInC73apMoFAoKG6aSlgqYl1B6h5it8+2O1b/zrpx0K2MQMbeDFYmxtA6ZBzX6/XC7XYjk8ng6tWrisK+GejnMVu6XC7j4MGDGBgYgN/vVyEDu3MMNgd2a8OyLNWNpdFooFAoYHp6uuv5LP+ggCTd6vV6V+Qn6PPMYHNhZ/C63W709fUhmUwiHo/blvBJeWnHFuj/t9ttZLNZ3LhxQ7WpHBoawuLi4hue1HlTn27HLXeLG62mKEmnkrKkp8EHS2VIapO7BfChkcLRrcnVFot+rIyFbiTmwe9Gapk1nwb2YCIGvUgAHRS63cLZCOTxtGyLxSIajUYHe6GfYwTr5sDOKOWa9vl8N011M3zj8XgQjUbh8XhUsqD8XDOOdw7MG/H7/XC5XIoi1cNsqxkudp4k81sCgYBiEpmfwmPk7zuFdStJmcACLDcGcLlcKs7ExBYqHkmJygQOepzBYBChUEjVyIRCIWWVMD280WigVquprZFYqFqv1xEIBOD3+9FqtVSvP13Z6TFROTCMhwJL1pG0WHTPlLERfhfGYVnPt57avp0EfUL7fD7s2bMHvb29ancAu2QsnsM49VoLwi4xoFKpqFqtPXv2wOPxKANso9c3WB9kUgXXejAYxODgIAKBAKLRKIDunY4ko8PxrNfrKBQKcLlciEQiOHbsGAqFAs6dO4dSqdQRZjGtBm8vpEx1uVxIJBIYGBiAz+dDJpNBq9VS2ekcS643uzHXdQKwFCah58gysRs3bnTIZbtM2duNm9pPUloLVB4M4NKbkhlIUmDKrERSKaTfPB4P6vW6yoyi0qP3GAgEUKvVVKIMz+c2StI66ZaxKu+Dio4DakcTyb/1xAHSzbxXvW3WToYdaxCNRtUWOTptZnf+ehaC3XFMIGDzbDtP0niRmwu7sIXH40EkEkEwGFRU6XrOl+Ecriufz6fKQZgdv1a4xGBzYJfQ6PP5VEkPuyexty7P2cjYkI1j/axM3JHHvBFrdt1KkrQm40qtVkt5de12u6MUg38zAwropNb43vDwMIaHhwEstSdiZhRjEuFwGPF4XCX3MDgcDAbRbDbR39+P/v5+pTgzmQwajQaq1SoajQbcbre6F7tAcjgc7qD+KLTZLovKn+fwfSpVv9+Pnp4eWJaFhYWFHdMPtNvk1xeIfM3pdCIcDiORSCAYDK7pxenjJX/r96KDbIRlLe1X2d/fvyImudp363Zdo1hXh/7MfD4f+vr6EA6H4XA4kEqlkE6n1frudh5Rr9eRSqXQbDYRiUSQTCY7Ssh0A9zgzoBKUmf+9H0gV1sv3YzbSqWiWESXy9VRYcDz7jQ2XCfp9/sRjUaVlcfibBZ7Mh3Y4XCojDQ719rtduPIkSM4ceIEstksTp8+rXr41Wo1OJ1OjI6OYmBgAM1mE16vF6VSCU6nU9F0Bw4cwOHDh9XrExMTKBQKKJVKyguV9VXSgwSARCKBPXv2oN1eyqwqFApKEctkExlz5OsAVBslAMpr2QmQnpnOEuhePI9hY+uRkRHEYrGOLEUd3ZKv5BxazUKVGzQHAgHs27cP6XQaoVDI9nhdMXIe65+vJ4wZLMPOE4xEIti3bx8ikQjy+TwmJydXKEk9u1wKz3K5rPaUPHbsGHbv3o1MJqNCL5wThja/s6DBG4/Hkc/nkUqlVL27xGqK0u41htFI2zIEpstvwN4Qv13YMN3KZBu9fEIKRwpRWRslY0+0Euiy1+t1eL1edV0KqUAggFAohEajgXw+rzw7PjzW2pGOpeXBmKE+QPqguVwuBINBtNttpSB5D/I8fTDkPTI92a6pwU4An9VagoolIBxnYH0JVt3+XwucA5L90Bfcej/b4OZAtsXv9yOXy6nmId2MSX1MmIDFWCdDMnaK1eD2wc7wpUdfKpVUiEwakDfDuuhOjIw565sk3ElsuE5SWv7So+CX8Xg8KjuJJR3NZlO1FpJt3WTfviNHjmDv3r0qa8rtdmN0dBTDw8NIp9PIZDKYnp5Gu91Gb2+vUlTz8/MoFotYWFhAKpVSzXDp/THAL72QVquldi6Jx+MAoAqY8/k8MpmMuoZsRddoNJRiZLYtY5n0rHdC02W776jTXnZ0azAYRDweV1nK3TxJmVgjX9MNnm6fLcFxqdfrcLlcCIfDitbplgTQreZ1J4ztzcKu2YfH41EJeRcvXsS5c+dQLBY76mFXE3pMwPL5fCiXyx1G1kYy2g1uHlyLADrGtb+/H7t371a771BGS0dkPUpNskY6U0QZHYvFkEgkUC6XO3JP7hRuSknyBmVLMNl2LhAIqMCr3DSV1j0AlcZdqVTg9/tx8OBBtR9gb28vPB4PEokEYrEYxsfH8cMf/hCFQgGBQACJRAIulwutVkvRpJlMRsUkpZKUXYFoEdEqcbvdKuuuVCp1UKY8j8fLJBC3261+ZAOFW6n120qQC2e1YyScTidCoRCi0WhHYsZGYhbr+RwdHBeWETD5y86gkdcytOrGYDcnmLgTCoWQy+Vw6dKlFaVSq7EQbG/m8XiUMc0sZX03CoPbA7txdblc6OnpwfDwMMbHx7GwsIC5uTkUi0Xb8MtakBUJsiSPsjYajSIWi6Hdbnf0d75TWLeSZMxRWuG6tQ90xuaq1SqcTqfaH44lEvTIqCgty0Iul1P7xQUCAZU8k8/nMT09jVQqhUKhoJJ4ZFCXQlA2USelK2lQaenqtTdU2FR0dnQfFab8fGnR7pQFS4ue1l+3xvPtdlsZLRwL+cz4LEmhyR/Zj5Vjy998n/Q76VveCxWjvId2u60K2svlsmpMwRg675u/5c4F/J7M4jPoDhrKkmr1+XzKqNUNIz2OKV+TgpZj7fF4VDyM7e3kvoXETjBW7zS4djkO3O2pWq0qplBiI2MgFSpL+tLpNFqtFgYGBhRLSSPrTu4/vG4lSQ3Oicm/5SS3LEvtwGBZFgqFAtxud0dPP9KUAFQnnWaziddffx21Wg19fX3Yt28fPB6PolAzmQxefPFFTE5Oqv0rWTsVjUaV0GNGayAQUO3PuEsHhXSlUlEP3+VyqYc+Pz+PiYkJxa3LBtsAlDBn2YleVynjoNsVHONEIoHdu3fD5XKpbDQJWVOazWbVjhwyLkiammUhrVZLHUNB6HQ6kU6nkU6nUavVVIKALCyPRqNIJBKqnZns6EIFyTjY6OgoHnjgAczNzaFarar7YvYlFaNscMHXG40Gbty4gbm5uTfi0d8VWK2sioYSu7EEg0GMjIyoOknG/qVB1a1MQC+zApZ3m/B4PDhy5IgKtZw/fx6FQqHDsOpGzRtq9tZA45i7fpAVWlhYwOzsbAeTtt6EKjnGPLZareL1119HIBCA1+vFe97zHgDAj370Izz77LMoFAqYmZlBJpO5fV9WYN1Kkha0tNKBlUX3MgOQGabNZlMJKsbxnE5nh/c2MzODQqGAer2OcDgMt9uNq1ev4vr168jn85iamkI6nVYJO7RM3W63Sj+mB8i4BXs+snE6d84ul8vKg6WHwt6hssxDgouQXqSeCAJs/5gVx1jWrDEZQ4LPiJ4D655oeMjnyBg0sLQ7iM/nU5S6VFDlchm5XE5dnx5KIpFAf38/2u2ljZdZq+p2u1XdFl+LRCIqW9rn86FUKsHn8yESiXQoSRlX571Wq1XMz8/fqUd912G10hi+3m63VcJdOBxWVCuNSjuBqStJ+Tl6/gMZh97eXhQKBRUy6Xad9WZVGqwN3YNkm0DLslAqlZTjJLHeZ60f12g0kEqlMDU1hZGREezfvx+hUAipVAoXLlyAy+VCKpXalO+1Htx0nSQAVfgpO/XroHclM2JJ3eZyOczPz6NWq2FhYQGFQqGDnpubm8PCwgLq9TrcbjdisRgAdHweFTIVq9frRTgchsvlQjweV43TY7EYgsEgqtWq2vl6eHgYu3fvRi6Xw/nz59WuEVKYy+8h6TzukE6lT69juyzCbhm9DocDyWQSR44cUc9T9yTp7bfbbcUG9PT0KK+C13W73di3bx/e+ta3wrIs5SnIfTpHRkbURqzXrl1DOp1GT08P9uzZo7KfWdpBoZrJZHDjxg3U63UcOXJENS/o6+tDq9VSBe7FYlGxDQDUHCUbIRV9oVDA7Owsrl+/fkee/92GtTKYZYJWOBxGT08PXC4XCoWCCrXo5+pxK/360vObn5/HuXPnlNEyNDSkuvHwGLtErG5/G6wPbDDv9Xpxzz33YN++fRgYGEA0Gu0IT9nhZks0ZFJnq9VCIBBALBbDgQMH8Ja3vAWpVEq1t6xUKkilUrc1DLKhOknLspSV2Gw2MTc3h3w+r5SEbs3J+AOVKz2LWq2Gubk5xS/Pzs6iUChgYmIC58+fV/FPUqg9PT1IJBIrmqnTI+zr61NFruFwWGVgDQwMIBAIYM+ePejp6Vn60v/vXmkNTU9P43vf+x6y2azKppK9JqkcG40GXC6X+u1wOBAMBjsaF2znhUhvenR0FD/xEz+Bnp4e21gshSQLyDOZjHpWjCvQuLrvvvswNjYGh8OBcDgMr9eramV57VarhWKxiHPnzmFubg4jIyO4//77EQ6HVTya5/t8PhXHrtVqSCQSqgnzvn370Nvbq5LKSBczVs44J993Op2KYVhYWMClS5dw5syZbT3Gq2E939vtdqO3t1cZRAsLCwDQdYeX9bAvzWYTV69exT//8z8jGo3i6NGjOHz4MCqVigrd2MXGDW4dwWAQQ0NDiMVieOKJJ/De975XJSvmcjkli3XINqBrQT+m1WqhXC4jn8+j0WggFothYGAAwWAQR44cQSqVQiwWQywWw9zcnGIGbxc23LtV1ilKT0tXkNIKlF6IrF9kiYaeNCPB80mz6pQu44cy65T1VFTooVBIpRGTepUpx7KMQ96vfh/Asmes733YzZPeTuD3pCERj8dtF0E4HEZvb69KttBbksmAezAYVONGi5WGEJN0aJz19fUpj7C/vx+RSETFo51OJ6LRqEoWabeXesP6/X7FDHi9XjSbTQQCAUUXl0olFAoFAOiggakkC4WCCg280Vv2vBHgWpDr3S5rkQYNY/ahUEh15qLykiVjdl5Gt8QdPn/mOLC8jA2217P25D3vVCPnZsD8gFgshr6+PtV3eWFhQVGsXDd2ORkb9SalLJXtTjnmzG5OJpPo6elRoZz1KuSbwYbpVnpqAFRmWTdKQ2YOyteYFcUkH9mbFeiMbzLbNZFIoKenpyOlP5PJKEuV8YpoNKpiVh6PB8lkUglKCl/WUl6+fBkXL15EOp3GtWvXOjo8dNvos9lsolgswuVyIZ1Oq3Z09Iy2K6gcGYulZ20nMAuFgorrkpInfe1wOJTAk7sGyEUALHsYMn4dj8dVsk6pVOpgJQCoZhDValUlhMkEAmbHVioVLC4uwu12dxhcFPTtdhuVSkXFItmXcqd5KnKbqsOHD2Pv3r0dCVJEu91WG2fH43EcPnxYeR+MAQ8ODmJwcBDAUuxZ1soCUFvuyXAH1ysA7Nq1C/v370c8Hsfo6CiGhoYwNTWFgYEBVSZC2lxuXEBwVxiu1Z3SHetWMTw8jHe9613o7e3Frl271BpiWCISiWD37t3wer2q7aBd+cd6FBiZvWQyiePHj+PkyZMYGBgAAJUvwjDX0aNH0dPTg/Pnz2N8fFyt2W6e7a1gQ0oSgOrZByxNdk50uxRgmQwh6xRZoiGL/d1uN/x+f8c5LOAPBAKIx+Po7e1VD59ZjIuLix0eR7VaRTgcVtfs6elRiTzMsl1YWECpVMIzzzyDr3/96x2Zsbplqv+mkrQsC5lMBouLiwCgdlHfrqCS5LNkrM6O5qrX68rKlCn8pMZqtZratYVKjoX+jPHKGDjjTqyXYrIAk8GobJntptes8nwKTypX2cGJipRsBw0lMhw7pVGEBPd0DYVCePDBB/HWt74VrVYL2Wy2o5l/vV7H+Pg4pqamEIvFcM899yi6lXtIDgwMYGhoCA6HA8PDw4hEIkoxsrMOaW8avIw3NZtNjIyMYN++fYhGoxgeHsbAwAAGBgbQ39+PSqWianCpxEm/cU2mUimleOXGBAarY2hoCD/xEz+BwcFB1f1M9q+ORCIYHR2Fz+dTjoud4bweeDwehEIhJBIJHDlyBA899BA8Hg/a7bZieyjrDx8+jKNHjyIYDOL73/++et8u9n2r2FCdJLCsuGSNGz0G2U5IoltdlKRhJQXDv2WWKRNuAKiMWd4HhRvPKRQKsCwLxWJRKUBmYObzeczMzKBYLKo+kkwkooLkPevZcrKAmcFlKoNqtbpthKgddc7nIw0JPVHJjm7Xr8dryZivzHiltynnhG6oyPfkfXBsJBMgDRdZsiMTTfT5B0AZADuZmmMCUygUQiQSUbFd1j7z2cjaaW6Uzk21OT7RaBRDQ0NwOp3o7+9HMBjsqH2Vu+hwfjH7uNVqIZlMqmtzHH0+n/I0uFk7AOX9y3nAe6pUKkopG9iDnZL8fj/6+/vVRhBynXHNhkIhjI6Oqn66DJcwjEY5Lb1LKWsZjmFyZTweR19fn+rMJfcXlqCsoCcLANevX1fM5GZi3UqStY/c64uJOD09PSgWi8q6lEk8QGdgXleeelyTx0gByAU5Pj6OmZmZDk+zUCio+JOkaK5fv666QrAQNZVKKS/y0qVLqkaTmbd6SQcbJdCzoEHABdZsNlW9JQClkLcDZGYvKW/WpYZCIeXxMQmH56zVU1PGrVjbKD1RaaRwHDifJF3KBC1StzLJhwuRXisXGj1Zeox6ViXQ2VWKFulOpFmJcDiM3bt3I5FI4ODBgzh06BDa7bby4CWbsGfPHrXRQCgUWrEDz/Hjx1VyXSAQUB6CHq+U40zGodVqIRaLIRqNwu12w+fzoVarob+/H+9///tRrVZVRnU3w3ZychLXrl1DKpXCN7/5TaTT6TfkmW4FJJNJvPvd78a+fftwzz33YGhoSHVO43pgEw+yBrVaDfPz80in08hmsyrJjjJXNgWhLPH7/WqTCdbVjo6OKspV1tbq8piv7969Gx/96EdRKBTwd3/3d5iYmNh0lmDdSpJp/rT42u02fD4fPB5Ph5epW/0S+mvSC5BWuz7RW62WcuP1cgt6JLxWuVxWtBvLD9rtNiYmJpBOpzEzM4NXX30V+XxepRGT3pOJBjJRh9eXApYZWLSMGCfdLrAbKyZDsU7V5XKpGAHPkfS6HaNAg4O1kbr3qSswnX6Xlqi0MvU5pFusVJKkiqVC5Y/c35KlSDtVQQLo6JvZ09ODZDIJAIp9abVaqhZVtp2UMUGyPP39/ejr61NjojMErL2TnY2khyqNb6dzad/aUCiEo0ePdoRrZOybf7fbS/2eQ6EQZmdn8aMf/egNe6ZbAYFAAEePHsWpU6fQ39+vjBOOjWRwent7sXfvXljWUt/rXC6HVCoFp9OJa9euIZPJqCYuVJQejwe9vb0qc/bkyZOIRqPYu3cv9u/fDwBqwwmGRziPCK5Z7sTUarVw9uzZDrZos7Dh3q1Mz6cQ5KIAOmmwm4FOyclrUSnq2VI6BccsWGCpXu7ChQtot5e3wioUCsrLkDuHyHvuFluUnyk9XXkf2wHSwpdxvWg0ing8rhKsJCVpp1SJbplnukElFZyeuCPpUZllScqmGy0qhavMmiOkJ0vhyr/527KWG1Qwi28ngMqPMV7u8ye3k5PetzQ85GsEx1luzM5jWRZE752fTVnDrEY5z7rR4ZLmpdCkgF6tX/BOhsPhQDweRzgcxp49ezAwMIDe3l4EAoEOupRrSToqst0oWZ7du3cjFAqhWCxidHRUPXvWwDN5i8ldbPqSzWZhWdaK6gHd+OW8kvHloaEhPProo1hYWMDVq1cxOzu7Kc9m3UqSXiLLNWS9oKwz0ycysZYSWU0J6oJN9zSlAGRT5Xa7jenpaUxNTXUsdhbHck9M2XaO9yG9IX3h8zOpIOnJbqeennxeEh6PB319fSpr0e4YYDmwbjdedvHFbkaVHjMka0DjTBpHzIiVnyuvbxfzlnQy41fyfb7G8pRardbR6WkngAKIhd3scsN4k24kUnhJtoVzRJYJsO+mzJAGlgWgbAlJxQlAde2Rnj/PZzyTipG/WTa2k7OU1wOXy4W9e/finnvuwa5du3DkyBHs37+/o2aZa01669zGUD7TcDiMBx98UPXnlgaVzIzVHYxisYipqSk4nU4VQ+b7kk2i0uR57AB34sQJ/Jt/828wOzuLz3/+83deSQLLlp8uHGVLOGK9npVd4oe8ln5Nu4QQXZHS86hWq6ozvVS6MntStyrX8x10L3cj33ergQKH7eIYTwK6W/ISurKSr/Fvu7HW6VYZ9O92fWmgyc9ay2jTP18KfwrbbqzDdoedwqNXptc8rnYN/X9ez26XHgpkffst+be+diXlTnqWng+vpYdSDJbhcDgQCoVU05ZgMAifz6eyjulg6E4JgBVhCbfbjVAoBJ/PZztG/DxpCLVaLdXfu9lsqlwTYFnuSzku5woN81AohJGREeWpMnx2q+zBhpsJkF6VLrgMrK5HgNgJQ11YdqPv5MPSPUx5bLvdVrWS8hxJvzDGKSEfpuTBu1HBdvG47QKv14sTJ05g//79iEQi2Lt3L8LhMBKJRMfEtYNuzMgx02OO8hg58fm6rvi6fa78DLkzBIP9nKdUgvRs9HGTY8k4bLlcRjAYVC3udgKczuVNAjwej/LkpTEqjU0ZvwdWGkYUjKRDWf9Kpcbr0OuTyVZM4AOWY9M+n0/Fy9j6jnvXspVlMBiEw+FAoVBAqVRaUeO508Fx4HaFb33rWxGLxdQens1ms6MMi+tHGqyUoezjzPpieoIE1x//ljFszh/SubozxjVNSpe5ETyu3V5K1uvt7YXL5cK9996LcrmMVCqFixcvdu34tB6sW0lKASWTePQC4G6WfjespiTlufLzpULu9pmkXvVtlHi+TgtKC0Xf04x/S6vFrtSAx2wXeDwenDp1Cu985ztVBrDDsdRejtSaHfiMpLWvG0byXF1R2ilJ3QjRk3T4mh3bwGsy4cTpdK5YwBJyPrMMolKpKCW5U+g6puf7fL4V9JiM+ZF2070ECTkPeC2Z3ENBzGQdCllmJ8v4JJVgLBbD4OAg/H4/8vm88kgKhQKKxaLKvnY6ncjn80pJmr1Cl8Ex9Pv9OHDgAB555BEVQmInK+lYyDGTjkq73Ua5XMbi4iIcDgeq1aryPAmpGGXyF6/JzHleT8phyhvWVDNRi+UmjUZDbeoeDAYxNjYGl8uFK1euYHp6+s4qyW4UZTcvcjWKzE5ByvPsju3mQdgJbelxrCXY7L7XWuh2z9sFVIgs1+Bk5ORfzShYjRVYDzYyHnKO2CllCV0Jr0WfSiOIAmOnKEkm7DAmpcftacXTytcNG7lmdQaIdKik0nU6lAKcHie3saNxTmNMxpfpldLzpRKnYDaeZCe4M04ikUAymVSlVfp4EjJRy44GlcfpxoikxLtRoPqc0c+TVD2pWc4nzkuuU5ap3Wp4ZMNt6eQHymxAu7gSYacoeayk0nQqTp4jLVV5XVlqoP+W1oi+QHXvRCaEyLiI/CzdQ7G7l+0Ep3Npt4Vjx45hYWEBzzzzDGZmZnDw4EEMDw8rS45Cxy4O2M3T1xM+gM55Yuddyv/tBDIXEReKHa0PQFmklrXcIEEeK+/d4XAoYcu47HYb524olUqYnp5WCsrv9ytPD1jeW1Z6FKRIZc1ju91W88TpXNpKi1uZUTHWajWUSiU1hhwX9tDN5XJqQwR6NHLf2FarpbyFSCSCZDK5QplPTU0hlUptm3rmW4VlWbj//vvxi7/4i+jv78fevXvV/KYCkolzslMVAMUGSGVFtgmASoyU3ZmAToNTrm2ZOS7Lu0jHynIQMgdclzSKeL9MuJO11zeLdStJu/oTnVJbC90UJX/bCUR6iDIzys5Slcfzb1nGIK1TXYB2U5Y8XgpFXVHy/dXic1sVDsdypxT22Z2amkJ/f7+KR8mEDjvFaGe42L1P2BlUdrHMbsfq40fwf5k6rmfh6sfrwp/JOzsFtVoN+Xxe9bhlLJH/k2LjexR80nqncCNdKjNP6Z1SGMpMVn4OQybcrowCud1uq/1qZZtLy7LUHqHAskfTbDaRy+WQy+VWbO22kzEyMoLHH38cg4ODHXF72fdYrh0+e7nBhKwSIFUrPUbp9ctMdVnKJZkpuwxpPcGL7Sz9fr8yuvTEPbtmNTeDDddJ6gLITjnoFKk81g5SIEn3nQ9GWp/VahWFQqEjMUP/zYcl+XSp0GQGnLwvO7pWUga61yIpBS7q7aIo+V3Z0q9QKGB+fh7T09M4ePCg6nzCBSDHcLVrrvWZ6/lbV7TyfiW7Iceb58j9B7vdk250ce6QxtspnqRsIC8pSmmwsgGAbClo90y5FnUjg//LDjwcP26szXXKxgIUiFxv/HyZ5LPad9kp49cNLOVg+d7Vq1dRLBYRiURUDbTuQUpZJ1+TDJ2EXDeyBSUVpV0JiJ1xy3MIzjs516iIGavO5XK4cOECzp49i6mpqVtmDjbUu1WnKrlYgO5CZ62YoJ1SoSBkXVMgEMDw8DB6enowOzuLxcVF1YtVV5KyI08gEIDX61UUEHeIoJKVsTW7++Nk0L+3zovzfTYx2OqQ2Z+VSkVRXZcuXcKrr76KI0eOIBAIIBqNqonJCatbhzq6KUo7pae/bscYyNelQSRr7SQdrLdDs6N65ev8XjxX3/ZrO4O7tbAfJ9DpGTLtHuiM7epev6Tn5LiQniM1pndhCgaDCIfD6pxSqYR2e2lXIJYokErlLjIAOoQy75kt7rj7zE4GSyS49+qzzz6LeDyOo0ePYu/evaqWnE4Jd9yR8UhSqJKFs1NyZBYIaczqTT6o7GSc2rKsDu9UGsj8YTb0/Pw8ZmZmMD8/j3/6p3/CD37wA8WG3NLzWu+B3eJxqwkMuyDsasfIa8vF2Gq1VG9GBpZX82YlFUu3m/y0TEFeTYFL197uPfnDz9kukNQijRUaF/l8fkWP3rXGtxu12g2rKdLVlG8377MbHd/tOP11aRXvpMQdPQ5E6KU0UmDxff1ZyqQfu5iyXd9ezkGdKpdZtbyWZAlWYwf0v3ci+KwYF15YWECz2UQ+n+9QUvK563PertxH/y0ZGH09kQrVDWtdtutGslSSeuyzUqkoGZVOpzE/P78pYbAN0626m6uXY+iKg6/phcEAlAUpH4ZOt7ZaLfh8PvT19WH37t2qUzy9TCYVzM3Nqc4PVISyjioUCsHr9SKbzXbQtXIy0KOUzRHkQADoiL/J7b1kAstWR09PD3bv3q3SqXO5HPL5vErN17ukyAXUjQZdDetVnqtBF8qrJXTx7/WGCQhu6L1ThCwpTEl50rvM5XJq2zxSaMyKlDvryDpKzhX2PCZ9TUEp+4OSoeG2dJZlKU8xFAqphB4m+7AEgIKW8oNUcSwWw7Fjx7C4uKjCBjsVfN5OpxPFYhE3btxAOp1GMplENBpVmaEMc4XDYeVgUC5Swcm4PmWh3Wfpa5DnSflA40ceJyET81gDXygUMDk5qXZ78nq9atP3kZERVCoVZDKZFclDG8GGlSSADs1PJUmLT8YraEVIr0wmeng8no4uDsyWonLkouGWLbt27UKr1cI999yjShKKxSKKxSJefvllzMzMqIw7KtdYLKY26uUgzs3NKfpIJnBwYOTnc9C42PQYJDl8PX65VWFZFnp7e3Hy5EnEYjEEg0Fks1nkcjm1gTJLAqTgW8tbvBVFuN7Ytu7tELJURVem66WEOcf1LiLbGbKZgKw3LhQKSKfTiEajHUqSz42lFqxz1HMBuN8jMyGpIL1er2oGQKEmBWwkElHKkltmFYtFVKtVlXnMz6ec4WfFYjEcP34cCwsLeOWVV96Ap3n3QMrmQqGAa9euwe/3q1IQaUAODw8rGSoVjfQEpWKk0yPzAHRl2A26DNZB3cDStFAohFKphMnJSaRSKcTjcfT09KDVaqG/vx+jo6PIZDIoFot3RklKrEdI6X9LV5kPl7uJ6y45FxODu1yklmUpS8GyLORyOTVAcuHQ05E7QEirx+7z6BnTwqVVQ8/BzjvmQAFYkdywlSGFI7C86wNgnx2sY72e5Fr052ZjNeplPd6uTBbZyZCCUWY8UhnyWUnh2O1HQhpcMhMSQEf3HCb0MNtWv5aMgcrQAb2nnQ5Jt9JRYeOFfD6vukxJJ8EucVMmWQGdDV902lUfH92IlcfKuaTfN+cFS0OYtMX7ZPYzN3CuVqu3PObrVpKSipJd/PUyEBn/kdSl9M4CgQBcLhf6+vrQ09OjkiJk2jcAlbLNIHKpVMLg4CCOHj0Kn8+HGzduYHx8HMFgEMViEeFwGOVyWe1fJjvD8KECUItNbvQqU5h5f0wvBpZqxvjAqbx7e3sxODiIer2Ol156CZOTk9tCgLI7fyQSUTGLXC6ndqpn02hJk0iLEVi9HETH7VKQUmgDyx1Dut0rocebeYzf70c0Gt0WY7wedIu9+/3+jsQOlmJwrEnRSvqM12MSHXf1oIBk7gEAlcwjZQ6pQMuyOoxmCdbw0TimEU7vlIl2O2X8usHpXNqsOBqNIhwOo6enB263G5VKBefPn0dvby/e8pa3YHh4WHmGlON6+MnOYKaRpENXqLqSlfOM15AspCzpyOfzyGazKJVKSCaTaseRubk5VKtVRCIRHDx4EIFAANevX7+l53VTStLOCuB7+rHyS/Ihs/gzGo0imUyq2Ac9Nyq3xcVFBINBtaC4E8Po6CjC4TBqtRqy2axSWOTYAahCU93iBaDqvPTaGxknYaIQ662oHBnfdLlcGBgYULz3K6+8ojbq3epwuVwIBAKqeDyfz6sWVbTg14r36bgTcUl5LTkvZUxsI4259Wt6PJ6Oxss7AbqxQOXDvRvlptsUbDQy5fOV1BvZGfm+pNLoIUqDnA2zpYFDI5wGMD0LmevAz+aat2tKstPAdRwMBhGLxZTszOVySKfT8Hq9iEajGBkZUU0eJFugJzXK9XYrCYx6SE/qEV6bG9+zF2+73UYoFFKtI7PZLBqNhgrRFYvFFdnOG8WG29JJ+pLxBmDZ0pD7wunFnZZlIRAIIJFIKBefD4Z0pSyraDabivLLZrOKCkgkEggEAhgfH8fU1JSqfQoGg8rV1oWibqHomZl8XyYr8IfX4cLmveZyOczPz6sYDK+/1cGEJCY6cXfxVqvV0Q+XuB3febNjmExbp9dD5kImHuhNI+wUxGp7V243yGcmPT2ZZCOFJ2DfToxMksxfoCch1ynXqpQxkkbj2NGg5lp2OpcaassmAbJHr1So8nvsVHi9XgwPD2NoaAgA1EbKkUgE/f39GBwcVHKPhoVel65D9woldGXX7X3pXUojVmZG83jWacu5FY/HASyxfleuXFEM2K2GwTa0CwgnLd3eRCKBSCSiCs5rtRpyudyKOkR+KYdjaWPPffv2qUJ0Kh/WPXLhWZaFeDyOWCyGSqWiMrCuXr2KCxcuwOPxdDRCZh2l07nUzNjpdKJcLqNSqaiEIJkkwP9lejO/XzgcVrVY4XC4I5bKeis21l1cXFQFrNulDMTn86GnpwderxcXLlzAuXPnVM9LZgmvFnPQvYSN4mbP1RN3pNXbbDZVohc9ZZl8QEGqJyRJ42qnZbeyQLtQKHQU4dO4lcX5evIOsLxjEJ8/25wxoafRaHRs5MyxYbxM0rWpVAqpVErJENZAs46yUCggm812GHJ+vx/JZFKV7ZRKJUW77mREo1E88MADOHr0KC5fvozTp0+j3W7j8OHDOHnyJEKhkNpvl8lPkgkA0MHCMaShl4UAqytVu2P0dpUyB4Lzy+lc2m/S7/d3hNGSySTcbjfS6TQuXbqE8+fPY3FxUTkwN4ubanDOGyXtovfv7Ea30YLnBKfnKTNambZtWRai0WhHIXE2m1W0iuz7FwwGMTg4qCxUGevQLRx5/93uk9ap5MC58S4pJm4cy+9O73erC1BJiTFOkU6n1fhKxWJ37kYpzM1GNwUtlSWVp1SAeojAbhxlnGSnQDccgJV0tp3nzt8yq116CdJb4PucY9I4kbQrY46UGTLJR+Y9SNpVv5dutc87CWwm0NPTg8nJSWWo+P1+9PX1qbWvG4yUqzLOfzOwU6ZA9zpou+Qs/V7a7aUmE9ylp9VqqZjlrVYdbLh3K1OtHY7lXalpbbRaLcRiMbVrRD6fVw2QKaCKxSJSqZSKS9JTo9JhH0g+CEmTkOIsFArq4TmdTkUNMtFnZmZGFcUyPkHqtNFoKE9SdgCRFBEXI5MPeC8ejwflclnVWspMq+3UyYOepNO5tPvCzMwMnE6nStqR8SZp8UnqklhPrHKzEnf082WRucPhQCwWU3OXdCuzoXUj0O6eWBe4U4RsIBBAf3+/SoygMuKzkp1UpCCTa0jSnVK4yn6eso4ZgBLQsjl2IBBAb2+vShyid5jL5dTnJpPJDqVIw5aeRigUQrlcvuUY1VZHrVZDKpXCzMwMJiYmcPXqVQBQCS8yWUffN5hYrQUhFaoOytnVkua6va6vOWl8yRp8vpfJZDAzM6M6gt0KbkpJsgSDNKOkLFn0DwCXL1/G+Pg4Go2GojkY3yJFGovFFN1KC5FfigKMzZFJ/2SzWUXnMsmGBcPlchnpdFpx1IlEoiPGyFiF9BQl1cY6LmApCxboTJlut9tIp9NIpVIdA7edBGcwGERfXx8sa6nl0+TkpCoqZuKOhE6NSNh5ZWspzlsBryetVd4vk03kPckGzVJB6vfFZIdwOLyp93s3IxgMYmhoCD09PYrWlGNJ41MKNtLa9XpdGdSyrpqeHuOLXH9sWEB2iTKF4+L3+xGLxQAsU31M3Gs2mwiFQujv7wfQWdNM4x1YqrPkPoc7GWzhFg6Hcf36dVy6dEnFdWOxGCzLUvWlUgHxR48ry45M3da2ztqspgS7yQRpAJE1kOwAx7nZbCKVSmFiYqJDN90sbqpOkl+Cykt/j9mPUmDywXDiAks7WdM9phKVD1N+QanYmOEkB6lSqahNVVnszoXC+6xUKiq2JnsR8vNkEkGtVlN9Cx0Oh5o03NOOk2U1wbpVQQ+L30cmZ+h0q06drfUMui2izXp23Shvqch1q3gtcF5QqG8ng2g1cA3LbFP9fbt4tDRCyC5IGo3PX57PZyvpMykUpTyhkJRrXF5ffqY8346224mQMo7hKxonrAoAsKp8s3t9tee6EbmwnnN0zxHo3P9UzotbxYYanMsbApYyTjOZjGouTAtN1k4ym4yWR61Ww8zMDBwOBxYXF5Wrzy8eDAYRjUZVBhuvFwqFFIXKeOTi4iJSqRRarRbS6TRyuZy6lmVZKhnI5XIhl8t1NDiXVAI/w+FYaquVyWRUOcn8/Lz63gz+M97BZgLdqMatCtJflmV1jKn0JjmBabTosWCiW3yP2EyBJRernsQjY196rMXuOvK+JFXIzOmdAHoMVF4yFgh0loNJy173LGTskcdKtgjobFKhxyf5GiFjmMViUXXv4VqUhrqeK7Fd1uitgCUU7KLFMZufn8fVq1cRDAaRTCYV8yLHVMaVgZVxerscEKKb8WoHfS3bHUdjiTqG4b/Z2Vkl+zcDG25LJxcI++KRzpQTXnqC0gqvVquqx2o6ne5ocutwOBQ9CkDtCiATfljQTa80k8mg0WigUCgoZUzqhinhlmUpBUprQ7dkuYBIt7bbbRSLxRUDTiqI2XOxWGzVZJatCD5Dab0zvuT3+zs24KbRIoXcarhdCqbbIpILW1ec670ezyOTsZNKCKRXRmGk028AOkoF9KxgfWwodOXckl6+bszwHIKvk0GiVyRbRvJ6MrljuzE+N4tWa6m0h+3/+LxZjM+8Epb5kEkg9Q2sbBaiG8PdPMNuCk8/TofdeZwjDJfQ8clms+p7bQbWrSSZ2cltqyzLUj0SAaiuFul0GlNTU3A4HCgUCisWi0wVl7tJ03Nk+YXf78fQ0BBGRkaQz+dVY2JguRzF4/Ggr69PlZ6w3IMPk9aFtGJluYekYCR0qoavSUu03W7D6/UiHo93eFLbAd3iiLL8Z63ju2GjtAqvvxbsFpHuDXarh1zrujrdul3GeS1wTTNDUKbnU2hKYdRutzueD0uv5Ps0MAF0UPo6bUoGQ44PQzscP5fLhUgkouqpKTR5LRo1sqRkpytIgvKPCYmtVguTk5P48Y9/jMHBQfT19akYcLeMYEmf82872bAWbbpWCEZXyDwPgEqwbLfbuHHjBi5fvoz5+XksLi5u6HmshnUryUKhAMtaql185JFH4Ha7EY/HceXKFWSzWVy7dk1lns7NzalFROHEH7m/GDsleDwexGIxFeiPRqMIBAK477778KY3vQmTk5O4ePGiuj5rEnt7ezE6OopqtYrXX39dJdPwAcoiWEIqaqmwZTxDKn65jyZpXnrIsVgMhw4dUlmw24nKsTMS2IVI33l+I0qSuJ3Cqtu93IwHKONfNOZ2CiqVChYWFgAsKSi52TF3+8hkMmg2mx3b2LHvp6yDBJbXnkzS4Q+VMbOo2Q6Sa4rbIAFQ98GOWKRVWY7F1P9wOIzh4WH4fD5ks1nFeBhFuTwWDK2Uy2U8//zzeOmll3D8+HEcOHAAo6OjSt7JZgJ2FDqwcnNkYGWrOb6mMzXdDNy1xooMIwB861vfwv/6X/8Li4uLmJqauqnnYocNb7rMjjderxc9PT3IZDLqGFKR9DpZbwOsVE6MG/AYeo8+n08VG8diMQwMDKiGAXzwcj9DZrSS7tVTgnWBqStFO/pFp+b0JB318P5fUToX/XZZfN08SX385LGrKcnVrMXNvu+NQl/odtekJa3HX7Y76CmSMdLLZGToQlKdNITb7bY6VzdESeXJ3s61Wk15mbLzDoCO7bPkMX6/H06nU/VW5nUqlYpal1Sqhmpdhs6OOBwOpFIplMtlxONxlVwp1/dqXp7d37pRKq+xmuLcyBjJMqNSqYTr168jk8m8MTFJolwuY35+HpFIBPv378ehQ4cwOTmJSqWC69evo1qtqv3iZIo4v7je8LhSqSjlGwqFlBBqNBpYXFzElStXUC6X8cgjj2DPnj1IpVK4du0aarWasiJ5LWa80tqX2bH6ApevEdKL5GKUA0dB4Pf7VfD7/PnzqlRlu8SqCoUCpqenYVmW6oXLMZFdkgB0LLKNYD0LwU5Rr+e6a8VG1gN9wdKT3Em7gLTbbTXeumcgY4ZUgnpplYwxAp3tx3RPYq1nSuVHBctkIq5Jjg/pXJ0Wp+crQ0Q7Fdx/lzHdvr4+VKtVpNNp5PN51ZuakEpyvRnCMsasvy6vq7+nX9fOWZEGq5Q7fX19OHXqFBYXF3H58uVN2zN0w0qyVCphZmYGzWYTjz76KMbGxnDx4kVMTEzAsiwsLCxgenoarVZLucKSsgKWFSVjHkwUYaE2hfH8/Dxef/11hMNhvOMd70BPTw/OnTuHb3zjG6oLjNyRhEWspH0Y0JcekFzswMqFyzgKsNyjEujsgs+Eolwuh5dfflmVsMjekVsZxWIR4+PjsCwL+XwewHKwX990WSrJ22mlbyTYr1urG722vlhpbMmay50AhhvIEBGyPk162Yz/6UpST5yiAJX1bd0YCQpF2YmLbeeYsEFw7ZIWlx4kG57Q29zJYO1zLpdT+0gyx8LtdquNl4FOo0gqpW7rUZerazE1hN319JCPfryUO5ZlYXBwEA899BDm5+eRy+XuvJLkZGOSq3vmIQAAtLRJREFUDLvPMC1c1tDxi+mTXtKWfPCMG+o7crDcIpPJKNpGTz9nXQ+ztOTCBTozcqX73y1xQypReZ7dsUBnpqzeYHmrgt59Op1Wz8zv93dQ4XIB6dalng6u09TrVaT6s95oAoBcYLeivPV5vJPoOhqsdp4knwcFlRRYelY7f8vSMJkMwvOZXMPPkaU7UihK70HvtsLr1Ot1JYukTOmWhLKTQA9S9/rJzMVisRWMiVzjN8MCdXtfeoerHaNDGsI0wjwez21pGLFuJckO67lcDs899xyCwSCq1SomJiawsLCA+fn5jhRwGRsAluuoZJ0jG5C32221ywTbyDkcDly/fh1TU1Pw+Xy4dOkSwuEwFhYWcPnyZZRKJaRSKdVgfHFxEaVSSQ2utGLlg7Xj2LkAVxt83bOQXnG73e5oYbfVMTExgW9961vqWZ44cQLxeBxHjhxBT0+Pav/FWjeOF7N85TOWNYbSQOLz09te8Vi7Z7nWwutm0Nh5lnbH6gsPQMeONLrRtN1BCs6yrI4YFcsHuMmBZVkdnZgYD7KspWx4/Vmz8YcsHwoGg6rDFT+b1wCW5lhvb2+HsmSbS4Z2uKVeJBJRCWasyaQRK0tFdirI0mUyGeWBBYNBHDx4EMlkEv39/UgkEh2bGpMp0PvhSsh1L8uFNut5SwOJ8lu2LoxGozh8+DBisRii0eimfCawASXJCVwoFDA5OakmZbFYRLVaRS6XWyHsZEcemSFIQcm9ykjrMeAfDofhcDiQyWTUYrx27Rp8Pp9aYLVaDdPT04r65aDoQlYXyrpXwEWo89u0iKUyZMxDT+QAOgvWtzJosJw9exYejwc9PT3Yu3cvYrEYRkZGkEgkVCtBJnNRScrOLNJ6Z32VnSdBWpzzRS9W5j2tBbtnb2eldnuN15CvcYHLInq7OMt2BeORXq9XlXrIcAjrZqU3ydgfyzLYlk6ey9CE3HiZyXpsa0clyWfNxD5gme7lZ3GDdX2jZ46n3IJPp453ItgDG1hyfpgAdejQIRw7dkw1DdHXo4zz2nnkOstgR8mvhW5ry46J4jUph/x+P0ZGRuB0OjsMrlvFupUkU7nZwqjVWmoiOz09rRrmUoFRoFBJSqEoY370IuSgcQssfib3OuPmmfV6XRUQl0qlFXQthZpOC6ylJGXvTnkOj5W7R0gBz+MpSLcDSKnTuh8ZGUEkEkFvb68qz+HElBYj4792SlLGhXWqhVnJfE/3JNerlDbTk+S9kJIC7Hdh387gJuh+vx8Oh0O1MZOhEfk89HaNQKdXLoWoNKgZ5uA6lgJYF7jyb7vYqLwnygNpgO10BamD+SDcQYMdtfQkRj5Tu9IOQv5v51RIbNQIBlY6Mrri5XyVFRIyg/pmsW4lmUqlACzTpvV6HdeuXcPMzEzHJJS9ANlLlV+IkA+81VrqcDM1NYXZ2dkOl1r3DHUvRH6WVGZUknZYbbBWCx5LqrDbdbeLh8H9AyORCH7iJ34Cjz76KILBIAYGBhR9RupKF3hA9+2VqGRkfIoNJXgM0Fl2oWO9lOtqSnItRSe/CykmGnI7yZMMBAJIJpOIx+NwOBxqA1vpjelJOJJhoRElnxm9OmnYyhZ0lCG6wcmWlMDyWpO7A+lN6gF0eLXsDW0UZSd8Ph/i8TiSySQGBwcxOjoKYOUaAJb3B10LrJUlg7CaYtVBo4nQ8xmk7qARxHnk9XqVkxWNRhGNRtX+v7eyQ9OGOu5ItNttFAoFVeBrBz37rBuYpLMZ2CkC7HaCgof7hfb19akWfNwsm7srSAVkt62OVEzSQ5MxSr2GjZN/NUvV7vWNeHnrSQKiJ0kqEbi5hgRbFcwUZxmX3J2D6OaR6/Fn6RHyWKlUOWdWM46oBO28S3ktaazpdLmRD52gJ8nkPFYjlMvljjAJsR4jlWua8Us7o5nHrnY9O+XIc+Q4yw0YGP5hOHAz8ghuahcQg50BLhZuR8S95vRWY4SkJdnfVULPggWgYlT6ApKCcK2FqVN8t/J95d9UkszkPnfuHM6fPw8AeNvb3nZLn7UVwPyAcDgMr9erjBkWb8vOSzLrmaBxoVOyDJtQkOkGkmwcIq8llS8/n8k5pNgAKFrYsiwEg0G0221Eo1HEYjHUarUdv1UWYVlLHdSOHj2qknVkiKTRaKhaccnkyfMlJAOYz+fVNRiq0xXuapBGDz+nWq0qZlLGs3mPNJrS6TQAqE48LGO7WRgladAV9PBTqRSazSYSiYQSSnZ0KuvSuO+iviD0RdVuL+3Nyeb0sucmhSsXGrCy+YO8z/UWOevQPV8djK1ks1m88MIL+M53voN2u43/9J/+04Y+ZyuCXa8SiURHgg67W8nNCQKBgG2yhN2Yd6PCOQZ2NbeSTmVGrD7/OF9kwlEkEoHT6UQul1MZm0ZJLqOvrw/33XcfBgYGVA9UPkNS3DqbAiyvRb0kB1hSZvPz88jn86hUKkph0sNbD+zi2+l0GgsLC3A4HCo3wuv1IhqNqg22a7Ua0uk02u02wuGwys69FRgladAV7fbSTiipVAqNRgPRaNQ2rkOqg9adVHT69fib9Nfi4qJqDCEzSCW9qfeNtLtPwF64ruc76t+Fn8VrOhwO5PN5pFIpZLPZHUPZyeS7QqGAVCql4oz0smUyhR21Zfes7I7R8w90wcsQAJWkbLYuwU5YpAs5J0ulEgqFAorF4i3Fp7YbZOtBemO6kqRRImHXwYygYZ1Op22V5FoeqT4fpJJcXFxUORFUkuwrzO+Ry+VUAulm5IoYJWnQFdVqFS+++CKmp6fVriysP5Pp9lxEpOTYeFom6jDo32otbcmTyWRUGc/c3FyHMgSWdxNYzcvTcTN1qmtdm4q3Vqvh8uXLmJ2d3TFKMp1O48KFC/D7/ajX63j11Vfh8/nQ09MDv9/f8ew4DyQdKpMq+JoUujIGyYQgWUokBSQ3TKcnS+UnGxAAUImA9Xodfr8f8XgcbrcbZ8+exQsvvIBMJoPr16/f8Wd5N6LdbuPq1av4h3/4B/T09GDPnj0YGhoCAGUMM9zQjRGQSZt8bWFhAd/+9rdx+fLljp1iNmrEct4Q7JgELNP77K7EutlWa6mxy/j4OBYWFpSyvxVY7XWu+FuN9+wkbFUh2m2MGYdKJBIqXZz7aDIWROGlK0lZP8fSnXQ6jcnJSZTLZUxOTmJqampLJMTYxUy3Ija6lp1OJ3p7exGLxRAKhbB//37EYrEVnbL0THRZAiZLgNhWTqbn1+t1VUJEBchrtdtLmfLc3zUUCqkWaqSBCSrcZrOpNg92uVz44Q9/iO9+97solUqqU9h6sFXHeb1jvHv3bhw9ehTRaBT3338/Dh8+3OGly8Q6viaT9GQSH5XU5OQkvvCFL+DMmTO37futhY2M21rHGk/SYE3I+ONqNW92P92OJVbLaDS4O7Ce8dTf73ac9DhkbaNeBykpXF6LSni1+WR3n/J8M8860W38ZBap/lq38dWzWLfLs163J2lgYGBgYLDTsD2ajRoYGBgYGNwGGCVpYGBgYGDQBUZJGhgYGBgYdIFRkgYGBgYGBl1glKSBgYGBgUEXGCVpYGBgYGDQBUZJGhgYGBgYdIFRkgYGBgYGBl1glKSBgYGBgUEXGCVpYGBgYGDQBUZJGhgYGBgYdIFRkgYGBgYGBl1glKSBgYGBgUEXGCVpYGBgYGDQBUZJGhgYGBgYdIFRkgYGBgYGBl1glKSBgYGBgUEXGCVpYGBgYGDQBUZJGhgYGBgYdIFRkgYGBgYGBl1glKSBgYGBgUEXGCVpYGBgYGDQBUZJGhgYGBgYdIFRkgYGBgYGBl1w25Tk2NgY8vm87XsPPPAAvv3tb695jT/7sz/D8ePHceLECZw8eRKf//zn1Xt//dd/jWg0irGxMYyNjeGxxx5T7/393/89Tp48ibGxMRw9ehT/8T/+R7TbbQDACy+8gDe/+c0IBAJ44oknVnzmd77zHTz44IM4duwYjh49ih/84Acb++IGBgYGBtsGrtt14dOnT9/yNY4dO4Znn30W0WgU4+PjuPfee/HII49g//79AIDHHnsMX/rSl1ac9/jjj+ODH/wgHA4HarUa3vrWt+KBBx7AT//0T2NwcBD/9b/+V7z00kv42te+1nHe1NQUPvzhD+NrX/sajhw5gmq1inK5fMvfw8DAwMBga+K2eZKWZSGTyQAAvv/972NsbAzHjx/HRz7yETQajXVd453vfCei0SgAYHR0FAMDAxgfH1/zvHA4DIdj6atVKhVUq1VYlgUAGBkZwUMPPQSv17vivP/+3/87fuEXfgFHjhwBAHi9XsRisXXdq4GBgYHB9sNtj0nWajV86EMfwh/90R/hlVdewc///M/jzJkz6v3PfOYz+J3f+Z01r/PNb34T6XQaDz74oHrtmWeewdjYGN785jfji1/8Ysfx3//+93HixAn09fXhHe94Bz74wQ+u+Rnnzp1DuVzG448/jrGxMfzbf/tvUSwWN/BtDQwMDAy2E267kjx//jxcLhcef/xxAMBP/uRPYt++fer9X/qlX8Lv/u7vrnqNs2fP4iMf+QiefvppBINBAMD73/9+3LhxA6dPn8b//J//E//+3/97PPfcc+qcN7/5zTh79izGx8fx4osv4nvf+96a99poNPDd734XX/ziF/HCCy8gnU7jP//n/3wzX9vAwMDAYBvgDcluJfW5Hpw7dw7vf//78Vd/9Vd461vfql5PJpMIBAIAgCNHjuB973sfnn322RXn9/b24n3ve98KT9MOu3btwk/91E8hHo/D7Xbj53/+5zsUr4GBgYHBzsJtV5KHDx9Go9HAt771LQBLtOnly5fXde5rr72G973vffjsZz+Ld73rXR3vTU5Oqr9nZ2fxz//8z7j33nsBLHmvrVYLAJDP5/GP//iPOHny5Jqf9wu/8Av41re+hWq1CgD42te+hlOnTq3rXg0MDAwMth9uW3Yr4fF48PTTT+NjH/sYms0mHnzwwQ7F85nPfAZTU1O2lOuv/MqvIJvN4qmnnsJTTz0FAPjUpz6Fd7/73fhv/+2/4ctf/jLcbjdarRZ+7dd+De94xzsAAE8//TSefvppuN1uNJtN/It/8S/w5JNPAgAuXLiAd77znSiVSiiXyxgZGcF/+A//AR/72Mfw5je/GR/4wAdw7733wul04tixY/jMZz5zux+RgYGBgcFdCqvNAkIDAwMDAwODDpiOOwYGBgYGBl1glKSBgYGBgUEX3HEl+aMf/Qjvfe97sXfvXtx///2499578Xu/93vq/be//e22XXRWg2xRd+rUKZw8eRJf/vKXN/nODQwMDAx2Gu6okjx79ize85734OMf/ziuXr2KF198Ef/0T/+EXC53y9d+7LHHcPr0aZw5cwaf/exnVaKOgYGBgYHBzeKOKslPfepTePLJJ/H+979fvZZIJPAHf/AHm/o5mUwG8Xhc/f/rv/7rePDBBzE2Noa3ve1tuHDhgnrvy1/+Mo4cOYJTp07hqaeeQjKZxLVr1zb1fgwMDAwMtibuqJL88Y9/jIcffvimzv3KV76yqnf4rW99C2NjYzh06BB+9md/Fn/8x3+s3nvqqafwwgsv4PTp0/jYxz6GX/3VXwUAzM3N4aMf/Sj+/u//HmfOnMHhw4exuLh4U/dnYGBgYLD98IYm7vzGb/wGxsbGMDw8jFdffXXVYz/wgQ/gc5/7XNf3SbdevHgRzz//PJ588klMTU0BAL7xjW/gkUcewfHjx/G7v/u7aoeS5557DidPnsThw4cBAB/+8Ifh8Xg258sZGBgYGGx53FElee+99+KHP/yh+v8P//APcfr0abjdbtTr9U37nOPHj2PXrl149tlncePGDXziE5/A5z//ebzyyiv4whe+gEqlsmmfZWBgYGCwfXFHleRv/uZv4i//8i/x1a9+Vb1Wq9XWvXXWejExMYFLly7h0KFDyGazcLvdGBwcRLvdxqc//Wl13Jve9Ca8/PLLKkb5+c9/HrVabVPvxcDAwMBg6+K2t6WTOHXqFL761a/it3/7t/Hxj38cvb29cLvd+OVf/mUcOnRIHffkk0/iE5/4hPr/i1/8Iubn5/GVr3ylK+XKmCQA1Ot1/P7v/75qf/dzP/dzOHbsGHp6evDEE0+oc/r6+vC5z30OTzzxBLxeL971rnchFAqZPSQNDAwMDACYtnTI5/MIh8MAgC996Uv4rd/6Lbz22mtv8F0ZGBgYGNwNuKOe5N2IP//zP8fTTz+NZrOJSCSCv/mbv3mjb8nAwMDA4C7BjvckDQwMDAwMusH0bjUwMDAwMOgCoyQNDAwMDAy6wChJAwMDAwODLjBK0sDAwMDAoAuMkjQwMDAwMOiCdZeAWJa17otu5Nitgo0kAW/VhOG7YdzWew9v9DN+oz//VnA3jLMd9Pu6G57x3XAPN4O7dYzvRqw1xpteJ5lIJDAwMACPxwOXywWPxwPLsuByudTArXZTlmXZDrDD4eg4ZrVjCfk5/LvdbqPVaqnX+Xez2US73Ua73VZ/N5tNNBoN1Ot1TE9PI51Or+cRGKwCy7Jsx9/n82FoaAiRSAQulws+nw9Op1ONAQC4XC44nU5ks1lMT0+jWq2iUqmYXrxbCE6nE8FgEF6vFy6XC16vF06nE263Gy7XkjjiOiwUCpibm0OtVlOv6bBb//K49cgcA4PVsOlKsq+vDw8//DDC4TCCwSACgQDcbrdaFHKyy7+p8PhDpai/rh8jlafdQuBnyB+pBFutFtrtNmq1WodSbLVaqFarKJfLKBQK+MEPfmCU5C1itbEKBAI4ceIE9u7dC7/fj0QiAZfLhWq1ilqtBsuy4PP54Ha7ce3aNTzzzDPIZDJIp9OoVqtGCN5FkIpLHxeXy4VEIoFoNIpgMIh4PA63241gMIhgMAgAal1OTEygWCyi2WyqNat/jpxTBNc0sDzndOPYwGC92BQlKRVXMBhET08PIpEIwuEwAoEAnE6nshiB5YWjT1qHw2GrIOV7upJcy5OUn6UryVarpbwUKslms4l6vY5ms6mUpNvtht/vh9PpNIvtFqF7kh6PB263G6FQCIFAQHkZcrzluZZlwe12IxwOo9FooFKpwO12dxg8Bncf3G433G43fD4fgsEg/H6/MpzJEHDMKScCgQBCoRDa7Tbq9boyXhuNxrrWoKEcDTYDm6IknU6n8hj379+PRx99FIlEQgnAbrCzDOVvu/fWC/3adt4rFZ7uVUpl2mg0kEqlcPXqVUxMTKBer6NYLG76ziXbHXbj53K5cOTIERw+fBh+vx/JZBJOpxPT09O4evUqKpWKEoj0JF0uF0KhEA4fPgyXy4VLly7h4sWLqFQqyGQyKJVKXWl4Y9zcXthRmwy17N+/H3v37oXb7YbT6YTL5UK5XMbi4iIajYZihdxuNwYGBhAOh9HX14fHH38crVYLi4uLWFhYQKlUwo0bN5BKpToM1rVCLwYGN4tNUZIOhwN+vx9+vx/Dw8M4deoUent71cRttVrKO1tvcH6113XvcD3nAd0TA6SylJYs35ufn8fg4CAikQjK5TLK5XLXzzBYP5xOJ/bs2YO3vOUtsCwLhUIBtVoNqVQKL7zwAlKplDrW4XAoNuLEiRN4+OGHkUgk0Gg0kE6nUSgUUCqVUCqV1PESHFvjad4erKagnE4nRkZGcP/99wMAisUiarUaZmdnkclkUC6XUa/X0Wg0lPdIRmrv3r3wer24ceMGrl27pih2zg27+KOBwWZiU5Skx+NBb28vIpEIfD4fcrkcnE4nfD4fPB5PR8wPWH0y6wF6GbPk/3aJN/o1dOi0nd1nUpDSc2k0GorS83q9iMfj8Hg8qNfrqFar6rcRvN2hW/jtdhter1cZVV6vVz3nubk5FAoFLC4uol6vdzxX0mztdhvFYlEl7rRaLSSTSXi9XiwsLHR8jlSKZoxuL/i8JbxeL4LBoIolV6tVxcyUSiUsLi6iXC4rxqDZbMLhcCCdTsPhcKBer8Pj8cDn86HRaKCnpwdutxvxeBy5XA71eh2lUqkrQyDXtBl/g5vFpijJSCSCBx54ALt27UIikcD58+fh8/kwODiIZDKpkmCoJOmp2QX4NxLz65bxpitZu7iWjHVKyM8uFArI5XIoFouIRCI4duwY8vk8pqenUS6XsbCwgJmZGfW9DFaCNBrHtdVqIRaL4dChQwgGg4hGo8hms8hms3jhhRcwPj7e4RESjEs1Gg1MTk7iu9/9LoLBIHbt2oWxsTHkcjnMzc1hdnbWNjnMCMnbD/0Zx+NxHDhwQCXlzM/Po1gs4sKFC5ifn+9QcjKjtVQqqWSeRCIBn8+H++67D/fddx/K5TJqtRqi0SgWFxdx5coVNVe6GURm7A1uBZvmSfb392N0dBTtdhupVAoulwvBYFAF3mktyoxUqaykMJPUJ4/TsZaHIN/XlSQ/X8+O1e+jVCohl8up5JBEIgG3241KpQKPx4NisWgonnVAj1X5fD6V3OX1elGpVFAoFDAzM4MbN250vY4UpJOTk6pspLe3F16vFz6fb8XnGQX5xsHr9SKZTCIYDKLZbKJUKiGfz2N+fh7T09Ndz2NJj9frRT6fh9/vx7Fjx5BIJFCr1dDb24t8Po9Go9FRNmIHM/YGt4pbUpIMwnu9XrTbbTQaDRQKBaUke3t74XK5OrJJgZVlHRI69SkzXjdS8ySVo1S88nwmCtDTrdfrqnbLsiw0m03kcjkUCgVMTEzgxo0bcDgc8Hg88Hg8yGazqpbPLMbu0BWVx+NBLBZDOBxGOp3GjRs3kM/nkc/n13W9ZrOJcrmMVquFUqmESqWCWq0Gr9eLcDisMpPlfON9GNxeOBwORa/6/X4Vvkin00in0ytYgm5JeqRIK5UKWq0Wrl69iueffx5OpxOWZWHXrl1otVqrJgZKmLHfXKxW5iPBjGbS50zE6yYz78a1etNK0rIsZb3Tgq/X65ifn8fFixfhdDqxf/9+1USA2aIAOhSe7uXpSpKLwu12d9Q88fjVEoHkYpMlHhwgr9cLr9eLZrOJQqGAYrEIv9+PUCgEt9uNRqOBxcVFpNNpnD9/HufPn0cymcSJEycQjUaRTqeVEWAUpT2oqKSi9Pl86O/vRyAQwKVLl/Diiy+iVquhWCyu65r1eh35fB6VSgX5fB6FQgHVahU+nw+JREIlgjBRjPPGlIhsPnSh5nK5EI1GEQgEEIlE4HQ60Wq1MDMzg9dff13VIfNcncmRBjGNoHK5jLNnz2J2dhbxeByPPPIIDh48iFarBa/Xq85dK/RisHmQsnW1Z+z1ehUDVywWVd0r49MSktljaOZuwC15klKJ8WExmYWNAxiPApa+uK7o5LX0JB3d2+QxqwXi9ffs/uc9UXGzNpL3LRcqvVDWTOoeCuu7jADuDjmunBOsj2s2mygWi0qprRe0RuVCotXaaDQMDX4Hoa9d1kRyncma440KPh5fLpeRyWRUQh3XHefR3SRUtzu6rS2OO7Cc6xEKhRAKhRQtDiwxQdK5YELe3Ypb8iSdTqearI1GA7VaDcCS9eB2uxEIBBAOh1GtVhV9KZWmtEKoDFlYDHRaFnygAFbELHkt+VteU57DWKnD4VBJOLVaDYuLiygUCkgkEujp6VEZmD09PQAAv98Pl8uFRqOB+fl5RfNFo1H4/X7k8/kVySbbGWspIT0uKA0qGiL0FpjdejMLxePxqAYEvb29aDabSKVSyGQyqlOPbmTp96/fq8H6YPdsHQ4HAoEAotEoXC4X8vk8Wq2Wkg0AVhig+jU5X6hwLctCrVZDOp1WnXh8Ph/y+Tz6+vrg8XiQyWSQSqVUZvp6vByDjUF6/vrYuVwuHDp0CAcPHlSyn5UNMmlPsjuWZWFhYQGvv/66ilfncrlVjZ03go7dFE/S4XAobwxYElxUMoFAQH0xqSTlItEXGxeGfCCS0tSpTT2bUd6fzGLl/YbDYTidTmQyGczNzaFSqSCVSiGfzytLFVhS9tFoFI1Go6OXKI9tNBoIh8Oo1WqoVqs7SkkC3RWlbrxwTGhUUVkCy8bPzXgBVLh+vx+tVgs9PT1qTslaV/0+9fmmwwjW9UMXWiz9CoVCiiVoNBodpVJSSeqUm1SQbDpgWRbq9TrK5TLa7TZmZmbg8/lQLpeRSCQQDAZV3JP3dDfGtrY69Ex1+WxZ8/zmN79ZORd+v1/lqDDJyuVyKUPK7Xbj6tWraDQaWFhYQKvVQjabvevG7JaUpMPhUEpSjznKhbCaRbeaR6K3kpNNyNfzIHValPERehi5XA4LCwtoNBpwu93o6elBOBxW9Kn8fJfLpRKV5GJnA3e7HpLbHbo3v9rrTOig4dHb26viv7cKKstoNArLslAqlTrondXmijTYjOexOaByk92sdKN2tZAJj9GNXxn6KJVKaDabynjlOjS4fbBbI4FAALFYTDlELPWr1WpwOp0olUrIZrOKIueP3++H2+1GNptFMBhUobparaa6mkn24Y3ELSfuBINBeDweRbe2223lSQJQVBqVnB7z6yZk+dDoZchmBPRE7DwCaUHys5mB6/F40Gw2VbH6xYsX8cMf/hA+nw+PPvoo7rnnHrXA2VibAWav14tIJKLum96lz+dDvV7v6A6zE2Dnua8Gj8eDwcFBRKNRHDt2DG95y1vg9/vx4osv3pKBQYMsEAjg8OHDiur58Y9/rOg3/V71hb6WwN7OuBVP2s6oYGckn8+HVqulPEk93myXk6DT3rK3stytJ5VKweFwIBwOY2BgAC6XC+l0eoX3uFPHdLOhM3r8GwBGR0fxtre9DaFQCPV6XdU5sztSN6qdDkd/fz+OHj0Kv9+PhYUFzM/Po1Ao4NVXX121TOhO4pY8SX2LG8aVaC0AWOGRASsTcnTIRB+mDMuOHECnt2oHSefxf6fTiUajgVKphGq1ilQqhZmZGYTDYXi9XgwODqr3pYLmd/J4PCu+Py1ZSe8ZrITT6UQoFEIsFkNvby+Gh4fh9/uV93ezoMHlcrnQ09ODUCiEGzdurNuTXM/72x12sf31wk4hcTzIyOjxZjtP0o4ilXEvKRMqlQpKpRL8fr8yVFm2dbPfw2Bt2D3TcDiM/fv3IxqN4urVq1hYWEAmk8Hly5dXVXKcH5Zl4eGHH0YymYTb7Vbx5StXrqz7Hm43bjlxh0k60spglhMfBOsR6c3xdak4paXJBSSTdeg9SuW4micKLJUacPeOQCAAr9eL+fl5vPDCC0in02g0Gjh58iRCoRDC4bDKvuMi1pNK9OQiepR3e3bW7cBGkyNITfv9fjQaDUxNTalaU7vz7WJK0uOUW5wVi0U4HA7V5KHbeNh5K4yTkHnYid2TNnPucq2Fw+FVd+3QE6h0Vkhf11Jxcsz9fj8qlYpKHJTH7GR24HaDPbojkQgOHjyIWCwGn8+HYrGI8fFx5PP5Ff2t9fHg+mXbz0qlgkgkglgsprpnAVDtC5nv8kbglulWKh82Mefr5JxpVfr9fjSbTaUsGYyXnqLucQLLZSP0WvnZdpYo0EkBBYNBlaRDpbawsIAvf/nLuH79Ot773vfiZ37mZ1QmVj6fV/fL+GW1WlVlH1SQ3P6LlLBsubcTIA0VmXrfbTx4jsx2vnjxIizLwvz8vC31ptc28jW9eUOlUkE2m0Wz2VT1raT9dejxc8uy4PF4EAgE0G4v9YRdz3fZ6thMj0s/3+l0IhKJoKenR60LXUnaGT5SMcot9XTlSgqXsoTJctVqddX7Wg+22zhvFvTnEQ6H8fDDD2Pfvn1IJpMYGBhAq9VCJpPB2bNnUavVVlCs+rU4rrVaDYVCAX6/H/v27cP+/ftV3XM0GsX09LRi9t4obGqdJBWJ3BtOJs/Y0aMy/sBj7TId16Jou90bKVLGFguFgmoc4HQ6EY/H4ff7lcLWoScdSIXNc3ZawgdpZskG2MX5iHa7rfYQ5HlcRA6HA8FgsGMR6EXFVJI6hcf4l+7VclcabuLL+5EMBsc1EAjA7/erOShjYbq3s5PG+GYhjRlgZbcrgmO6HugJPFS89PxNfeTtgZ03znUUiUSQTCYRCoXUcbVaTTXyWC+Y5FOr1ZQh3W63EQ6HEQ6Hkcvl3vCkyFuOSUqvi2m+7GSjZyxRCfFL83U9XilbTUmak//bCWUJPYU8k8ng61//Os6ePYtGo4FDhw7h0KFDOHXqFPr6+lTgn/WcujKX3hA3/PV6vchms6rzy07aX5JNxemBc7y6xZhItfb29nZshcR4BC1RSbfZLQyOKQWjZVkYHBzE4OCgqpf0+XzYu3cvnnjiCbXAdHpeCm4mmdRqNZw/fx6Tk5PI5XKYmppCqVTqUNjbxRiy+w6rpfdv9Npy4/JaraaUmV38UjdE7K6nH8+1pl/3VrEdxnazYBcjZggtEolg165dOHDggOqjXCwWkU6n13yGuuItlUqYnJxEqVRCf3+/ksEDAwNq3em5IN2udbtwyzFJZilxYbBUgoKTilDGF/nw+R6wrDhlvE9XnkCnZSq9UEJSq7RoS6USvvGNb+D//t//iyNHjuADH/gAhoeHcfjwYSSTSbTbbVX0LBWiFKi8BzYj8Pl8KBQKik/fKUqSiunRRx9FPB5HKBRStbByrDhe0oiyaxV36tQp3HfffbbGSbfYM4uSdfDzR0dHMTQ0hHa7rQwl/TieT6OuWCyq7zI3N4fFxcUVe1Nu565KXCt2FOdGIHMJaBgzNml3rN3fa11fhmj42nYdlzcKupKk7GMN7NDQEPbs2YMrV67g3LlzSKVSyOVytuOgswZSVlQqFczMzKBQKODgwYOo1+twOBzKoM5kMrZKUhrUt3vsb8mTJEWqU6pUVFxwesG4tMylt7FatqqdFcp7kJBUYCaTwfz8PKamplAul1X8qaenR+0cUSqV1MLrZuHqrfT0+tDtuEDXohh1j97OoGFik50xI69DxSkbS+j/6+hG4fE9OyUqv5Os6aUgl6zHzQjwrYZQKIRoNNqRmc1ECmnQyh+uL5fLpXZvkQpRrn8aINwXkgl+cn5I2FGwOoMkG6iHQiGV2cokPT1vQS85AzopfL4mS9g22iJxJ8CyLLW1XSwWUw1f6vW62gibstQO3V5nNQET72q1mnK8OLacOzq1ftd7khR69Xq9w3OjtcE6SdYblstllMtlVYYhFx0TKOhx2MUZ7LLj7B6Q3+/HwMAALMvCP/zDP+BLX/oSisUistks9u7diyNHjuChhx7Crl27UCgUcPny5RUxD/5wkVHhk9qhB21Z1i11jNmKoBAhldloNFQm22qKhfFDZpNSmBWLRZVVbNf4XhfSOl3K60ljhruE6N69bLbP8aJAJ200PT2NTCajGA6pULeTsrQsCwcOHMBjjz2mWrwVi0VUKhUsLi6iUqkoRccwg8vlQigUwt69e1XK/0svvYRcLqc2AuAOOfQ44vG4KpOSiTkyYQdYmczDsZZ1yUzW6e/vRzgcRiKRwMDAAHw+n9qTlHXRlmXB5/MhGo2q0gJ6JJVKRXksXMeLi4uYn59XpWG5XO4Oj8jdBRqoHBen04ndu3fj8OHD6OvrQzgcVp1yXn75ZczPz6u9XIH1Z7+Xy2VMTU3B5/NhZmYGmUxGGTzBYBDxeFxlvJbL5VUV8e3CpniS+gSn4AKW247JRra0CKVwk7WGdin8UnGt+oX+30K2LAszMzN45pln0Gg01IbQyWQSQ0NDGBoawrVr11Q/SMbX5GcBK2kHTp5uPQy3O2gY1Go1lX4PrEzQkF5dq9W5pZG08KvVKgqFgi0lw9+6wJSfReEnE3NolJGWk5nJetyNc48JXYwxS8W4nZSjRDKZxNGjRxEMBrGwsIBsNotSqaToZ5fLBY/HowwcbnF24sQJxcRMTk7C5XKhXC4jl8t11E6z5AdYEobcJ5LjANiHNajkdJlQq9XUXqSJREIld9CrjMViKi+CyVvJZFIpbXZ2Yd9luS0es6LZQ9RgpeESiUQwPDyMnp4eeDwetFpLu7TMz89jZmamQ4HZxTTtwGTKarWqDGbWVLMGVjZteSNwy5suU4hwcdglvUilKL0wWVAqYxlS2OrWiHzgFIAcQPZzfOGFF1AsFnHp0iXUajX4/X4cP34chw8fxp49e1SPwHq9rspXACgPV1JNdPVJ//EedBp5uwpSCrNIJIL9+/cjFothcHBQdfGXqd6rxZ04VswqptKsVCor0vcJO4NIF6hUclKJ8r70+9GNHWDZk6xWq0gmkzh8+LDaJ5T1XrI0ZC0jbStgdHRUdazhfo03btzA+Pg4LGuphIvtAnWaslqtqn7HmUxGxegHBwcRDocRiUQQDAZV6zGWgoRCISSTSXUdgvODLI1kl+hxOhwOZWSzkX00GlXGUbu9lA05MjLSQf1Kqk62k2TWO1kvGgFyLu0EbISutCwL4XAYvb29CAaDKJfLyrDi7kiSudmocdluL22mPjs7q8o//H4/IpEIBgcH0Wq1MDU1peh9eV9rfb9blc2b4kkCy913OCFlCjgARbGxZlKPNcmNmdebBMNj/X4/ent7kUgk8OMf/xh/+7d/i4mJCVy8eBGVSgU9PT14/PHH8VM/9VOKHuRgBAKBjnrIdrutMnMZ/5DlDjIOy8/vlpiw1aAbN8AyNTYwMIAnnngC99xzj4r1MnZDD8HOE5RJL3axLrvEGh4v70V6f/LHzkCRny3j47JZAK8vmy7v3bsX99xzD+bn5+Hz+bCwsICZmRlFB3eLj241nDp1CpZloa+vT3mAp0+fxosvvoienh488sgj6O3tVY3JCe67euXKFTidThSLRdVMZGBgAIFAQGU/sl5SxiFZviO9fHoHLOkgBcp5J5P4gKXxisfjat3yOslkEv39/Wg0GkilUigUCh2df/jZwHKWJj1Qlh54PB5Fw253SLq7W7KNfnw8Hsfu3bthWZai2Kenp5HL5VAsFm8pjt9ut7G4uIjLly8jmUxi165dCIVC6Ovrw6FDhxCLxdBqtTA9Pb0iXqyzTvL1bgzXRrApnqS8wW7WPyeqrKHUr6F7jGsJJGlt8thKpYLZ2VlMTU2pRRwMBpFIJNDf369iL2wQIJMW7BJQZEKRTq3aJa1sN1BoBQIB9Pb2YmBgQE3otZQUz2fskuUAEnaZa/pik56+Pldkko4cN9K58v5kyYC891arpSg5NjsIhUKoVqtqD8PtBLYCdLvdigbN5/PIZrOKHqVyo3KRHh8TLWStKzdZJs1Kw4frRu4WZFmW8vS5/ugByox56VUSNLLZuUkv5WFz7Eql0sEu2CUEcW5KRbrdxnozQLnNNdJut1UDctm+81ZRq9WQzWY79oR1u92IRCKoVCrKuVoPNnMcN2UXEHoDbO/FWhcAiqqkMLSLYcmkmPVkldGqj0ajqv3V66+/jnw+j5dffhmXL1/G/Pw8du3ahUcffRT9/f1IJpNqF3tSfNJSZcac3M+S9yl/8xxZqrJdPAxd2TmdTiSTScTjcQwNDXUwAHpclmO3WkMICkvJQMj6Wd3YoJCmoGXWqR6fJKQHaWd48TwZAuC9ymzXQCCA0dFRxGIxlMtlXL161fb5bFUcPnwY7XYb09PT+MEPfoBSqYSFhQUEg0EEAgH4fD61GYDMO9A9eGa3WpaFWCymOh5FIhG13nl+Op1We3ySoqM3xzGRiVUcDzk3AHTs8yrvjXOyUqlgenoahUJhRXcsfU7IDQxk2GA7rOW1oM/lbnPb7/er2G80GlXF/vV6HW63G36/f1M871arhdnZWbRaLczPz+PQoUNqjO+55x6MjIxgZmZmBUOpfwe7sbtVJ2bTtsqSFKukLGR2nLxpYFk4SSW5FrhAGVMZHR1FOp3Gc889h9deew2vv/46rl27hkKhgDe/+c34wAc+gEgkgng8rjKkmGos+8jy3qUgtbtfvi+V6XZdVE6nE4lEAqOjoxgcHFS0s7TOpeCRHYgkfS6pa+kZUFBJjw7oVLAyu5ieoIxrA53UkYSdl68bNJyDMpEkEAhgeHgY1WoV09PTtkbTVsahQ4fQai1tXvzDH/4Q+XwewWBQ/ch1Idcox4njwCQXPk9uft3T06PmCmuoS6WSSphJp9Oq9yp31pHjrHv5UklblgW/349YLNaxbjn3aISRReKc0+cXvxONZWkk7QSsdx57vV4kEgnEYjEVJwSWPH8mZm2G/Gu325ibm8P8/DxSqRQefPBBjIyMIBgM4sCBAwCAM2fOdIzPemjizcAtt6XTaQouItItMmAuE1/4v53H0c0a4HssF2k2m8jn88hkMlhYWMDs7Czy+bzqvkLrh3EH0n1SsOsJGVLgdqOOmVEpEwq2U0xSPmum0QeDwY64DvcLJPgMqDhpaMiEDDtl1s0zJWRMUdKodnFM/Xvof9v9L408AB2JWNtBIa4GrlXSzUy6kQl1OuQ4SSMZWM4R4F6PVH4ykcouAUoaXZw/MulCzjsAHZny8hqykYm+wQK/L8/X0S0UtF0h5ZtMzNLnPOdFJBJRyU3AkvIkBbtZz0syUqxZlrssce9KbmVIStbOsLFzxG4Wt9xxR2Z/MvYkJ7DP50O1WlU7iwOrdzDppiC5wBhfdDqdSKfTuHbtmir1eOmll9SWV36/H4cOHcKBAwfgcrmQzWaxuLjYURLAewWW084lBaQ/fHrEsVgMiUQCV65cQaFQQKlU2hYdd6h4OLGcTicGBwdx5MgRlU3I5ArpcdBgYechqWRksoxkDahEpTcuqTfOC9lBCYASmNKr0fvn2gkAniuvwzksG0OQZeB2at2apW9lMKOV9LXT6cTQ0BD27t2LcDiMUCjU4T0Dnd69ZBSkAcRM4Pn5ebRaLRWfbLfbyGazSlFSsFKZSSZKjh3Hl5/PGGY+n8fc3Jxqjt1oNDA6Oopdu3bB6XQq1kg2FuFGBLwWlS9DJ/SKeN/bGQ6HQxn5ck1wvkvEYjEcPnwYiUQCvb29SgaGQiG4XC4kEolNe15SWRcKBaRSKRXG8/l82LVrFx588EFks1lMTk4ilUrB6XR2KG+C84V5BbdSPrJpMUmZhabTrTKTTdf8Mp4grwugQ9jKRcJFPD09jcnJSUxNTeHq1au4du0a+vr6MDAwoAa1p6cHAJDJZNSWSjKtXCZ96N6OnUfChRcIBJR32q2EYatBj904HA6VYcbvy8QLJlfwNw0PTkaZbMPx564Q0jOQyorWqfTwZeyXnoFe4sF7kpRcNy+IP3ZGEQDVeYc/27HzCrOxJcUYiURUYT5rB+0S7LjW2QHF5/N1XLfRaCCTyaBSqXTs+MPMZpmsI41RKbB1z083frhVVrFYRCqVQrPZVPsRAlCJPVSANIiBlbXd/DxZ37ndKVfOf+lpU27r8Pv96OvrU3u18lmFQiG1C9RmPC/dqK1WqyiXy6jVakrexGIxjIyMIBQKddRUsuSIkNUHDocD+Xz+jVOSEtJVJt3ajbayo9skJC3LL8pJz+1xWq0Wrl27hpdeeklt9AksWT7Hjx9Hf38/enp6UCgUFA2kC0hem5/J5AFSNzqdrNOC242Wsess4/F4VJq/9Bw4vhwT6X3KMach0m63VTKITMyQwsquRk0mhOnUtlSuEt08SULSalSSOr3HFmfcvYRCZDsoTV0BSlaIrECtVuso1+HrPEen0bmeZPMQKkkZlgDQMY/4o5fYyPHQY8psAtBqteDz+dBqtToMHVmWRS9HerV8T3qs/P52Xsl2gMvlwuDgoIoXR6NR9V3lc5Bry7IsDA8PY/fu3apfNZUNHR6WDC0sLKhrAMvMnMwm5xygTJVevFTY4XAYx48fx8DAgNrnt9lswuv1Yvfu3ejr60MikUA+n++odZXhNN5HpVJBKpVSDUZY2TA3N4dUKrW+Z7dZg0BFxNoqWm96Zpwd5aUPkLwmBS/jYjLw//zzz+Pv/u7vUCqVUCgUAABDQ0N4z3vegz179gAAFhcXFRUolZy+sPmAKZQZd5QCVZ67HS1OPZPQspYLy2VDBVp2VHxUYvQodUjqVV4bWPY+OA66sKSCbjabyOVyam7RcqQxA2CF4Cfs4pJ8TfYUZbsyZkVSCDAOYreZ7FaE9PwJ6RVwHesxHxm35ViSOqVAlFY8u1+RTSqXyysoWnkPVMqSldLlgmVZqnuO0+lUdD6NaOlpMnFHGr5ynCVrwXsFlsMO2wkejwf3338/HnroIYRCIZUUI2UaFaGMzzL0QPnOkArX5J49e/DRj360YxMLUrLcTpAMUrVaVV26AoGAKi3r6elZ0TqQ41qv1zv2i33wwQdXhHs4B1nGRD0j5129XsfMzAzGx8eRyWTw7W9/+84rSUJSozJDTQ/GS8G2niQJWvy0BnK5HFKplIpN8GEFg0H09vair68PuVxOPWC7Lg2cIHpikbRw5fES282LBDrLXDjRZbmLfgwno4wvdlNOMplHPneez0VIb0UKZr4vDRXdaOE96ePSzZDRY5JyTgLLpUssOZA9arcbJMMCdMaO7SCzRHmuXPccF65ZqfTkGpPzQcoFnZIHVqbxS4pUxpR537IcSc4VeX/6XNXn+naAZFvi8bjqjDQ0NIRwONzxbJi4RW/dspaaBszOzqr6U65PGkp+v1/tuCMbQrBPc71eV1S77N9NJUd5LXv+siGE3HyCndPY9IFtCWWmey6XU3FluTsVlTSVJje64LxbC5vSTEBy/BR2TNRhYB1YEni1Wk01D45EIgiFQh2LR3qd9Fj45arVKq5cuYJvfOMbmJ+fx9mzZ9FsNhEMBnH8+HEMDg7i1KlTqpaH58j4F+9RLhDp/nOx0bPRE5Esazm7dTtanADQ39+P3bt3Ix6PY8+ePYhEImi322pzVC4UqaR0lkD/TSpbJkwAyxYj0Nn4GlgaJ3b1cLlcqiUW+71SmK6X/tZpO/0zmYlJAWFZS11p7r33XuRyObz88svboq+nHpcDlulIsi7MLmSSj/5sJX3G/yuVCnw+H0ZHR1X/ZLIPtVpN9Ulm7FnGieR8sTNO+VnVahXZbFYpM+5i4nK5kMvlVMIVPUXZ8IBKUiYL8W9S9pyn2wX9/f3YtWsX4vE4Tp48icOHD3fQ4MDyM6fMlpR0NpvF3NycYnxIo9PjozdoWVZHZyqZVUojiZ/JxCE+Z2aq8qder6uuSZyD9CqLxaKKPZNlZBKS7PzF+dlut5UOGRwcRDwex/z8PJ577rl1P8Nbmg1SoUkrjsHWSqXS0ffS5XKhWCwik8mg3W4rKoRJPdLz5PG6RXD58mV85Stfwfj4uLIYg8Eg7rvvPoyNjWFgYEA1Mpbb38gYYzfqV7d45RZK0hvWLeTtBMuy0N/fjwcffFC1oQqFQsoilAX9uoUuaTw7D04qVU50San7/X4VN+L4sXlyKBTCoUOHsGvXLuRyOUxOTqoaNzsBrv/dja2QMU+pxHm/fX19CAaDyGazmJmZwfXr19dlfd7N0HMF5JymMcSxrlQqK7xsGfvj+qpWq3A6nejp6cHo6ChGR0dRKBSwuLioenumUikVc/J6vUrw6WtRfo5MqGLrSPbWjUQi6OvrU94H26NRsUslznEGljOm9bAJ5+92UZKWZSGZTOK+++5DMplUSpJNxfVMVso5+T6VpNwGjR4fnRjKccp+AB1KSj5vKldZZsR1zPlUq9WQyWSQyWQ6lC3fo9LjWFH5yjktWQ7Kfnqfc3NzKqFzPbjl2SCFpbQC9aA7Jzz3H2u1Wujp6VGCiQ9XUiHktVutFhYWFlCv1zE3N4dSqaQoVrrgsVgMPT09CAaDHYkHOrXKe+Nv3YLtpvTkOTJ+tp3AZxQIBNDX14dYLKaSVvQffcztkjF02DVf0ClTeiT5fB61Wg0LCwtIpVJKODIuKOlBu+9h95qd8pTH69+HczAQCKj5th3AZ6ErPjI2QKe3qYdI7FgfAGrd5fN5lTeQzWaVwpWfbVf+tRY4R6rVKkqlEtxut8o1IKUomQAASrjzN+/B7pnIXIXtApa2MAYo1xqhh0V06lyW+Nk9J2lkyHaEOlaju+Xn6rS6pOOBzox3ea783G5ySMq4aDS6Lhl+y80EqKkZu6G7LhcZKUrWNj733HMqbbu3t7cj5V6mJrNN1szMDL7+9a/j1VdfxfT0NLLZrLIMkskkRkZGcOLECYyNjaFer6sGA6QG5MOTFo60ZropeN1LZrE0s6S2ulchQdpi7969eMc73oFYLKaUkqRbZMmP7JQCrFR63egzSYFzYVUqFZTLZVy7dg0/+tGPkMlkMDU1henpaYRCITQaDVy7dg3RaFRlvlUqFUWz2AlBSafK8ZXJJfQg5G/ODVk0zW4jWx20wuVzYXwIgKJHZUxSMjyE/J9rKp1O4wc/+AHcbreiR+kxyo0CmB0pFZoOadiSuQGA+fl5LCwsIBKJoFwuIxgMYv/+/di/fz9KpRKuXr3ascsMaWDKIpmMx3lL6pWJW9sFgUAAAwMDSCaTagNsrmPOAV2ZSKXj9/vR39/fEXNkRqncA1jKeMA+P0D39HSHg/fRbi8lhJGyBzrlCpWcXuspZZDc+YXXZ05BtVrF6Ogo3vSmN91+JcmHoQfpdYuAE9OyLJRKJdy4cUPVwQSDwY6JKRNG5B5w58+fx/e+9z1FBVmWhUAgoOohBwcHMTw8jHQ6jVQqpeq0ZANt3VrhwNgpOjslCSxby4x7bCclScWQSCRw6NAhRKNRvP7668jlch2ZygA6Jmy3iczj7BaLnJy0MLmA5+fn8corr2Bubk6NZzgcRjKZRKPRwNDQEAYHB9Wi16+l/9YNIS543TrW759K0u/3dxhcWx12xgRjklSOsvMQ0F1J2oVaFhYWOvbyBKD6f/JaNLZkTFtfS3ZsRbPZVJRqvV6Hx+NBuVzG3r171QbPzHSlMiadK6lVfd3T8JOe0HZY2263Wz17UqKyLAPAirVBMJ5H45DNBqSMlmMny6m6JczxurwPmfMhHSuZtUrdIetu9cYTEnyfGbicywzZ1et1xGIx7N69e11jfMtKUnePyWnzYdjRaSwEHR8fx7lz5xSt2tPTox5crVbDxYsXkU6nMTU1hZmZGZVmTJ67v78fJ06cQF9fX0fgXq+BsnuIdrEqO4GqHtT/85ZJ/243BQkABw8ehMPhQE9Pj0r9lkJTWoF2dLOdINVpPZ4vY0WcQ3JC2wk1WVMlP6ubQtatY/2eVqOGpeLkHOHC2+rjrlv7ujEoDQbCLlwhBSTHjMpJ1kRa1vIGAnLtrUZv6mPD8+hF0JMhvXv58mXlAU9PTytPlcKUhhg/lzJCNlTg/W+nXAOPx6O6KFF2yaxfuxAKsFxaJRsycE3Sa5SGC8dGhtTIKkrwHMYxgc6qAinfZXkR78mOppV/S2UrS5J4TVLygUAAgUBgXc9w0zZdJmTKrVw45MNbrRZSqRQymQx+9KMfwbIsDAwM4O1vfzv27NmDTCaD6elpFItFfPOb38Q3vvENFItFzM3NqYdOS+PIkSP44Ac/qBI+JicnV7SZ07lq/s0Frwtaad1Kzp3d8JkkIJNYtgsef/xxWJaFvXv3qq1w+Fsv6+Gi0sffsqyOhQisNFSoJDmOUrDyPO7jKS171vJxV3ReQ8YmdZq3m0egjzcXOc+VwpLn06re6mPO5yefm2zUwDWrg89CN4zla+12Wz0jKeh4HK8j54nO6Mh1xzGR6zoWi8Hr9aJSqah2d1evXsXXvvY1xTBRierCWM/UpWdEGSUL27f6OPNZsLEKyyP0NWtHObKTEr1DHiebgPAa0iBxOBzI5XI4c+YMpqamlPELLK81n8+HkZERxGIxpcRZ88prsoJAGsN0pjh39O8h2UHpnUpZQ486Ho+jr6/v9nuS0hsDOlNv+bekSrjwmDWXTqfVLgvMiKWSLZVKmJubw5UrV1SKMB8AJzRjU+zCw0w86b3YeTJ23wFY2WiZ34m/5eLRFcF2QG9vr1pYnNi07OwEI3/bGSLyODslKSlv6ZFIiy8QCKiCcLZLk6njHFu9ztFu/OTf+vvSs1jtO9Cq3g7C0+67rjaW+vO08xAk0wAssy9SaOnXonGiKy89VsZjHA6Hig/LgvNMJoPZ2Vm4XC4MDw+rkg7KHZkfoXsc8jPtYnRbGYwfslG49Nq6zXXJokhPnL8p43XjiNdkpnEqlVrxjJ3O5UblnBvSYGNZlzRQ7Ywm3qv8W5dJ+o80fpkhe9uVJK1PGb/Q3V1+aULSaDMzM2g0Grh69SoWFxfR29uLUqmkXPWXX35ZeaX8MolEAnv37kUsFsO+fftUQSyTS/SFxb/1weIA6HsZUmHLYLJev7dd0d/fDwAIhUIrJr+coHq8wC7GJYWpLhyldSgFNsfrnnvuQTQaVfWQ+XweXq8XIyMjqtE6u8N4vd4VzeVXo/DsXqMAlgtSj6m3222EQiH09/dveePIznAF0EF36/Sb7lUD9kJKUnEAFNuiCyq5Rqko9c/U2QDp8dFbZVkA5Y3L5VJbO/l8PrURdKVSQalU6rgusJz9yu9IQ4hhgK0OuYsH1zAT1vR1LZuucLxkcqLOzOgMkhxbxqelHOFYMZkoGo2i3W6rdoCMT0oKXHqictwkK6CX7sm5LRkLef9skn9blSRvSMYJ+To9SU5cmfovb35qagoTExNwOBx49tlnV3gUcpcOIplM4v7770dvb69SknyI3E9O9nGU1q3+QHRLiAPJmi+Z/WhHLW43SCUpF4sUVpa1XBaxmtVt97y6JfHwPXbpGBwcxIMPPtghwFutVkd7Kzap6Gbx63S63Wu6UuTrpGj02A2bvW912ClJrjddSeoJTXbeGK/J30zq4FqS80D31uyMT92jlOcxoY+b/bbbnY25nc6ljcIlledyuZDJZJSSlNBjVlSQ28UwppKMRqMdG5zLXqlkZljzKuUi61P5fPSEGTmH5LhynQLLzzifzyOXyyEcDqNUKikDimwR62kBdKxLQs93oeHEz5SKUN6r3sWr1WqpTkK33ZPsRmvZgV+QnDRjCnpBa7fP4ZcOBoOqdERSLrpVI2FHDenfQV/s/FsGo9m3kHSg3Ph3O8DuGXajoLvFreS50nPsJhRlTFhSPBRWcnxksoUsHViv12j3uXJRMxtO7lxiWZYyBNnwfKt7GFLAMJFBKkv5Wz9PYiNz/2bWiTSqdMHMeUQhTi+FtZ5282q934FzcKsbxGvJZv2Z8HtLh0I3jtb7uSwpkgk07OLEHBK93lGXD5Llsbtv/q3LFjt5pbMeUvmvhVveT1JucCqtE3mTdNtpZY6MjMDj8WBmZmZdN+pyudDT04NAIIAjR47grW99KwYGBgAAc3NzKqtNt/7s+HDdPedncyClF8ouMKVSCalUCleuXIFlWYhGoxgaGkI0Gt0W1ibBdoEsPnY4HKrfIpWH9CblpJQeu65YpXDj8fI8uSABqPZT+vU5nkyk4jl2AnA9C5rWMRciywkqlYqKg/N3vV5HOBzGrl27buEJ3x3gmvP5fBgeHlbNown5nCVFJYWpLryk1ymNVmYD2ym71dY95YiuKClcSaFOTEyouuhUKqXi1hT2bE4vDS35uTIxjMYQm51vZSUpZaHd1m+UgZzbwDKbQzaQ8lAm0OgJeXZGiMfjUTuHsNWdLJ3z+/0YGRlRjo6k3GUsmXOM80lnNnRmUtKtsgevpGt5j9xmbT0G76btJykntX4MqRwKpXg8jkajgWw223GsrvEJp3Np/7JYLIaBgQEcPHgQg4ODqtBcf4DAygWoeyl2VhQDyLyWrP0sFAqYn59Hf38//H4/YrGY6lm4XcBONlQYeoCb35XjrXuSusdo9zewUlDqY9VqtWwbBEhly+w7Oedk3Gu94Hyg8JSfR+OLvSN9Ph96e3vX/0DvUshsv1gshlarpYSTTKiS4ymfrW6960lPuicCrCzHWUtB6t6BpPQ4/9gIO51OI5fLIZ1Ow+fzoa+vD5FIRH0nGZvqRv3yvqgYtnpNrF2skQqHRi6/N5UQy3Q4zmQY+CxI1+o0u/4M6dR4vV5Uq1Xk83l1D81mUzVb5w4xnF+S+tUNNN1okw0hODdkApCdoa47bevtw3xLniTbwrndblUusJpn2Gq1OrZpSaVSHYpRP4/bGMViMRw9ehTDw8PYs2cPms0mCoWCStSR96RfR4+p6AtDvz9JAchjJZ/NzjAOhwPxeBwul0s1Vt7KmJmZgWVZiMViAJYVCJUIKXPSJlJJ2nkavEY3ylang2RsmO/Lri9yzGRsZC2lKO9Lv1cKXWnIyfelBS2t7q2MXC6nBCaNDZZMUEhSQHYzOuxoS308bwbrOZfzz+fz4cCBA2o9lstluN1uDAwMdGRPMoFEeiwyxsm5SsqWgn4re5IyrsrxLJVKKJfLKuuY61dSnnIN2Dk8ck7onqQ0bPx+PyzLgt/vV3t+cs6xwQE7MAEr16h+PTuFp885O6NdesXSa2TW722nW0OhEBKJBBwOh9opPJ/Pq7id/LK8wb6+PrzlLW9BNpvF/Pw8Xn311VWvH4lEsHv3bvzsz/4sHnjgAZXAMTMzo2qcdJeZ/0sBTXpQCnD+Tw+X59DKkjQyB4O7GdAK2rNnDwqFAsbHxzE/P3+zj/OuwOnTp2FZFiKRCB5++GGVOs7JxPpQSXPISSafu3z2+m9geTFIT5WTWc4dObmlALWjuXVvRf6Wx9hROBJ2yQL87tthu6yJiQm0222USiW1i0Y4HFY9ahk/kkJHt8T5W3qTusCTWEsYrcfQ4RzhnoTcYJ19SenxMMErn89jenpaJXnRAJBhFzJFrVZLNTlh67WtrCQZLpGNx1OpFBYXF1UyD7PEI5EILMtSDeTpAOnsII1WO09Sgo1h9PVl58Vzrsms1G7rXMoOO5kiZRLXuNyAWzY98Pv9t793KycZ+WpuSaVno+qT3+fzqU029c18dbrO5/MhFAohGo1icHAQu3btUqm7sreknaKUn69bJDxHp/D04+08lXZ7eZcEACo4vdXpGQBIp9MqDgl0ZhRK2kNPlpK/pSfICan/T+gUGCcyz9GvyXPkZ/Jvu3HqJuSo8GVyB+dzN6+JAlqf31sRzPJk/E3mFXAt2WWDd4NUlPz/dikYjh2TdHp7exGJRFQHlWaziWw2i2KxqO5BNjaR80iyRZIOBFaXKVsBeoYuZTR3SOEuHnwukinTlZ6unOQxUn7K8Zcde2SnJbnWpSLTqXzeM6/d7V7k6/JHZrDL8AEhwyxrPst1PfEu4AMg/cHArLwh3iSDxpZlKSvn5MmTKp1/fHwcuVwOwWAQiUQCPp8P+/btw549e5BIJOD3+7GwsKBoFV1YyQcgH7Isiu9G+clBYw2Ww+FQngNjUsCSlbqwsACn04lyuay8rO2gJK9duwaHw4G5uTlUKhVFV7GGib9lHZzdpNbj1DxGLlp9ccr37egbHkPYjbdkBnQlKo/TPSE7xchFxMJ12eBiK3sYAJQRxFAGv6NuFEnoz0l/ztIgsvPeCbtnp7ML3Qxb/mbT8kAggHK5rLZKcjqXttSjjCCzVSgUOtaoTrdSWJIxoPG/lTE6OgqHw4He3l7VlEM2IGfYgBvZc+1xL17KQ+n4yG3lJOsjmTl93ellG3YlQzLnQcoHfd3yM/T5ID+f0I0g/Tp2irMbNsWTZJyOcTnZQJc3w6Avu7sHAgHcf//9GB4exsLCAp599lmMj4+jv78fBw4cQCQSwX333YeTJ0+i3W4jl8up5gOr7UEnF7O0JmRzAPnAuNjpWcgieRnroJKs1WqYn59X/weDwY7g9lbG5cuX4XQ6MTs7i3K5rAQnywSoJHXuXy8f0Bsd87fsWNRtAfA1fQHI16Wnox/bzdOUnyU9Wmko0ZPg+MuOMQBQLBYxNTV1y8/5jQY9yXg8jkQiobob6XVwulK0M0bkGuNvOwNGwu59/bP4OdJg4rizp3AoFEKpVOpoes3YW6FQUI0o8vm8ytiWcDiWG3XXajUlo1iLuZWxZ88eOBwO9Pf3IxgMduzaYVlLcVq9nC0QCKjWdXQM6O0By04R1500dCUrBHQmgHGOSBks6VxpkOhr0Y5OBTqT9LqFXviezDGRumE1tknilpoJ8IvLAK7+fregK3lhZtf19/ej2Wyit7cXPT09CIVCCIVC8Pl8Kyg4PQAvP09/aJLrlg9PPkwpNOX9SovTbrGv9t5WBMeSsQkaPAQnnN2kBOw9ATshqB+rv2/3PO2utdr1V4OdIrV7T2dEGJfc6pAp8Xb9MLsJHsA+Fsxr8Vz9dTvY0Wv65+jvkdKTgo77Skq6lLuEML5qZ3TJ69h99laPSdqxMnaQGa/Se5RzoBvt2W2Nr/bc1isb7FiE1eaW7iXqusbuc+6IkuTmuO12WxWINptNLC4uKoHKra5kTz7eWDweRyQSwfDwMPbu3asScfgTiURQLBaVJaJTIHYPrpsVqytRO0+SmVf0oFhbxG23AKgmubFYTPWN7CY4tiqKxSLGx8dRKBQQCoVUTSJZA92Ts5uU8hlL689OOPH5SZpP9wT1ydztmevH2XmU3f7mvdNQIIPA7iHpdBrz8/NbWngCUH2SnU6noluZ6MIMUXqWwEohKdeOPg6rja/d+3b0WTevkr8dDofaaODSpUsq/qbXxXELPjbFl80ppHfK+SUp9q3uSUo2D+iea9FoNFAsFlXyUrVaVc+MhoJOqwOdJSZ2SlLKeckwEVJ2263F9Tofdk6PlDvSy5WxUca1b6uSBJYblZN2tSwLuVxOBWPpypPG1N30YDDYUebh9XpRKBSQyWRUnJMlJdJF1xeOhKR/5HHyb9264kNjVhs38+RegmwOzPO5zyUpCd2L3sqg8ZNKpQBAjSGwTKPKpBcJOytRX0g69akLXOkldFN4+sLQF+Na36/b//KanH8UNhQm2Wx2yytJuZcmjVu5ubYcc2DlmEnor3XrwiTfl8kxOtPUDXKe0FhuNBqYnp7uUAhct3JPWq7fbsaYTt3JnS+2KvRcDMB+fVIxchwajQZ8Ph/C4fCKOSDb2unyTsrbbh5bt3VLxWVndMvz5Tl2sPM6+TcVN8FY6W33JMvlMnK5HHw+n9qexuVyqfrFdrutqBC7BUBPrN1uq15+MqZJa1fy3LoFo1sRkiaze1j8m6DnwM+ys4Kl8PZ6vUgmkxgYGMD8/Lxqxr4dsh6JQqGAqakptaN7NBpVAkTy+0DnxJSp9d2eZTeLVnqhdsH9W4HdAuumZPW4Kr1IKpD1Lqy7GUzz179Lt+etrzMZkwTWX/IhLXydfVhLSdp5FpQv+rzSawTtsjEJPabKY+Q83IqYn5+Hw+FQWb58LjQw7MZazod8Pq9qoWkwMKbI8+w8QTtIBai/Znctu+tuRAbYKd9u8/G2Kslms4l0Oo2JiQn09PRgz549SCaTmJubQ6FQUK51IBBQlKS8eVowtGJYnC9vmlad/OI8n+/rHgsXhX6stJw4GagApZUhr0P6RQr8cDiMo0eP4uDBg3jxxRfx2muvIZvNbvlGAkS73cbs7Cx++MMfIh6Pw+/3Y3BwEABWZAcCywtLKkn5PqlZmSRhp2R12FmUa9233f92r+vJBnxd0sEshi6Xy8hkMshmsygUCrYbyW41ZDIZOBwOtUG5ncJaLSYp94bVnx//lgKK5+megZwnMinDDnZGrlyXzLwEOhUfv5+uSO0aSMi5K+nbrYizZ8/C4XBgbGxMGROBQADhcBitVqsjXssxYHiBHcYYLotEIraetR0bJGG3Bu3kgp0j081AWY3VsFvrqynI9cqWW/Ik2WUnHA6rWB7TqfWEHt1y4DVkrYy0BKXQ1TV+N/rAzvqz8zT1h2c3yPI9GSd1uVyIRCKIx+Pwer0d3u92QblcxsLCAlqtVodSkF6iXvAvn5OdZah7oqs9c4fD0VGysx7o1qdUsvJ1u/N0T5Lfk0KXxpzsfbmVQabHrsOQXE+rPbPV4oxAp0cgr6tfh1grBiXPl59N4S1rtuVOJnbywM4T1uXLer2MuxXZbBYOh6OjvSOfESsE5LrkM5DPjvJOJvfIdWvnHa53vekKtNt1JPRr2t3PWtfQz73tSpL1R+FwWDX9HhkZwa5du5S1cvXqVTSbTeRyOZUwoAfQWSJCK4Z1T1Lg6pYogA4rmILbbmFIMEOx1Wp1WJ9SQPJzWHxbqVQQiUQwOjqKgYEB1U6pVCphenoa6XQaxWLxZh/lXQeWOrAukIlYuiVuWVZHSrjeZQfoTPumJ9kN0quwW4QSqwkwna7VF4/+ty583W43IpEI6vU6JicnMTk5iUwms23GmF2T2ImE648xdia6lEol5HI5tNtt1X7SLo64Wgal9PpoxEqPnZBj3+0a3WSB7pXqSSOcm3a1j5JR4H2xWchWVpKEVEjBYBAAVAihXq93dCqSJVD8cbvdSh7rrBqw8VCInAO6otQNpbUUnbxmN5A51Cl3tqW7rc0EWq0Wstks8vm82r9tdHQUi4uL2L9/v1p0Fy5c6LAeJF1DJcWkiFqt1lHYTPBLyUJWYLm7vcPhUNlr8kvr1i4A5f2yTZWkEHWhyuSNUqmkNnkeGhpSVBybIGQymS0dv9CRy+VQLBaRyWQwOTmJ+fl51cJKb+8n6dNuG7nqnqZdjZL+vm5xSqxmpQIri5p16Hsm6gKe+9txgd24cQOZTEbtkrLVwUb2cnPxWq2mXg+FQsqb5y4orLHrFle2q0WT80PGCCm0JB3azdPUFaRujOlCVaf25H1JilXOMVkCwRZu28UgApbXSygUQjAYVOPKjkusM5XPUtY28vlwc+TNuBcZ3uB2idJpIXTWYqNgG0NdSVLPrMcQuqXsVk4wZoYyOzQSiahyDma/6nU78hr8rU/ybhyzfrwsS5CQ/9vRrNJ7lMfpC9jhcCAajWJgYADBYBD5fB7z8/PIZrPbhoKToCChp6F72fqPHT1uR8fKHy48uzFfax7Yvb5Z9JhckHwObCqxXcaZhqXe9IPgWtJbtQEraU/pvenCzE6h6tewM1Ls/u52Dn/smCCptO2S/Si/9DVvt9n7VkWpVMLs7Kxi6ZhdzM5oVJK6XJZKkt15PB7Pim5bstmArLGUckCvSiD4/GUFg4xZ6jLHTh+sNm8oZ2gQeL1eeL1e5HI5FAoFpTzXwi0pSaJSqeDGjRuqdunEiRPqRovFIjwej2otJyetDLBzV3rpScqJL7u12D3AbgMhoQ+CpA84oI1GA+VyGa1WS00qn8+Ht7/97XA4HJiamsI3vvENzM3N4cqVK9uiuLwbaHHRg+QY0QOXHryM29oJR2mYUBABy2yApMl1oaWjm4fJe17tf/09uzlWq9WQz+dRqVSwsLCA2dlZ5HK5bTPW6XRaMSH1el2Noc/nQ6VSUW0JuasPn5OMy1P4sQeoHGcZo5exLvkasBzjlpAC2A4ysY73pAtYqRB1xc05RY+xVCopRcD9Q3O5nCqB2spot9t46aWX8Kd/+qcIhULo6+tDPB7vSNzhWrYLg8h1yGcNLCdUMuREZ6FUKqFUKsHpdKr8lHg8jpGRkY7NEoDl8WWtPeVuqVRCo9FQXZUkZO9kfQ7pzJZkFhl79/v9an/g733ve3j55ZfvnJKs1WqYnZ1FMBhEb28v9uzZA6fTibm5ObUdlizS58PW6VLWU9KykZaJ3HfMjq7TE0IIOw9InqPTRJZlqXgE3/d6vThw4AAGBgbwve99D3/xF3+BF1980dZ73U7gBGQtKxeTTLGXdaVyDPg8ZQxDevwsXpaCU1eMkinQYaco7QSs7lnI1/WYCL8bN4otFovI5XIqrLBdUCgU1DzXY8aVSkVRy1QeHCspiKggQ6FQh4ClZ6bvvGBn1NitV2I1ik0KSJ1e1deyzhLpzBPb0VGJk3beDuPdbrdx5coVzMzMwOv1Yt++fRgeHu4YH26q3O15y7UnM1KphDKZDKanp9W8yefzcDqdaius4eFhHDt2DJFIBKFQCOFwuGNsuKE9m3WkUinUarUVOQBkdVhFIOeAbCZB5e33+9UG0jzW7/cjFAqhWq3ilVdewdWrV28/3UpUq1VMTU2pDxweHu5Io5adO2RGHSGFGI+RsStpydrRpvKhSRdcviYtUEK255LX52tUAsDSXouZTAbXrl3r6AKkf9Z2gPSsOfH0ribMRuZ46cJJCizpvesUuGxMYMcGdBOwdq+vR2nyPthtQxpiFJbFYhGzs7PIZrPbLt4swf1gmeZvWRay2SxyuZxiDFiITyFHAUnjiZsVSI+RPX5ln2U7wxaw9xjX8ia7Gb1rKUnOVxrkknbW90hdbzeWux2SLs1msyrRTpbBkRVaDVwDspzL4XCo5i8MSzDMxlyTVCqFiYkJ1ReW3bs4RvQka7UaCoUCcrkcGo0G8vn8CoUoaXDp3cofypBKpbIivun1elXuy0ZKuTZFSabTaXz/+9+Hz+fDY489hhMnTigLhbtdA8s7W3MXAp/PpzryUCky0KpDLhy7xSMVqh3YGUcuVingqQz0vpbcAeL555/HjRs3MD4+jsXFRXXPOoe+HcACYiawMLORFifHUFJXOuQO4/oC5LOWY0WBzYYUMvahg89Z9zj1Yme7c4ClxBU2eJaeKgX69PQ0XnzxRczMzPz/7b1njJ3peR58nd7LnDOV5HCGndxl20IVe62sdrXeRFhEAuLECozAcSD/cAH8J4lipCAwggCOU4w4PxzHCfxDMRzbgGXFMqREK2m1S2kjcSlyWZZ9yOnt9F7f7we/6+F9nnnfmcO6nMPnAgZzytvO0+77vu7y4ObNmwOx0bIOl8uFYDCI4eFhDA8PY3R0FKlUCmtra/D5fFhdXcXExAT27t2r0ga4QFGQ6KXgdFZApzPZjk7sgB2col2dhCDPsfOPShqWz0zFiEXRC4UCPB6PKre53UHq0uW6u1/kwsICgN54jH4CY+yUG/r8JGvAWANGUOdyOczNzSmjSe8DSYfKLfjsqnpJJUsaM7pSJRUl/ZnJitzPvrCPREi2Wi2sra2pRpGCRk/KlVV2uBDqEY16oICErikSm1mSPE8uqvwvaSTZCXx2n8+HRqOBtbU13Lp1S/lrnJ5vECBpNUmXynbiIOYiIxUPngtsDN4A0EPRyv7nQsZ2d5q8sl+l0sPJymfVj+VrWg+6kOQkL5fLWF1dVb7IQbUk2c5+vx+JRAIjIyMAgGQyiUajgZGREezevVtp4Bz3dguULFnGzxiQwaAR3Z/oxBIQTgqxk5Dkd3YLpPSVyyhqSTfLAvZco7Y75HrKLIInAY6Fer2+7aPCH4mQlMjlcrh27RqGhoYQi8WQTqd7ShtJjU6G4UorwImK5X+7yWE3cbei6eRrTmJJI8bjcSSTSXg8HhQKBdy4cWMDDTAIE0kHhV+1WsWVK1fUbizc51MKQV0wSh+BHfVKC52h5NVqVe0Iv7S0hFKptMESkNa6HaQluVl/8DsG5ujCnQI3m83i+vXryjc3iELSsizMzs7i7bffRiqVwokTJ7B//34VMOH1elGr1bCwsACv16ssb9LTst1YfYsBHKy9LBVip3q/xGb+SR1SCOqKshxzdnPd5boX1CGtqFKppHzP6+vrAzmvDR4Mj1RIWpaF9fV1nDt3DqlUCi+//DL27t0LAConizttkO7hHm9OuXO6ULSzHiXkwHcSiHbnSgqGvH0qlcLY2BjcbjcymQwuXry4ISR+ECcTf2OpVMLZs2cxPz+PeDyO6elpxONxxGIxDA0NKV8lfQGMggWgWAK5aPFY7l8IAJlMBsvLy1heXsb//t//G1evXlX3l4oPoVPqD6Ko6HSffr6M/hvU4CzLsnD9+nWsra0hFouplCbOHZ/Ph3K5jJs3b/bMPdk2tMZbrRZmZmbUzjEzMzOKtuRcl5DshEwV6rcM3GY0vKRcZd9RyLvd7p460/S50v/carUGIrLV4NHhkVuSzWYTxWIRbrdb5ZZZlqUGqfRN0FkOOAs8Qk4m/ncKBNAFo07hbgaZtyOjG+nHGkSh6IRu9+5+fXTMJxKJnv6TAT20NhjwUa/Xe/wQtDApJElrZbNZZDIZZLNZFd0mqVBgayFp8GDgXO10Oshms1hbW9vgL9b7gLQ2mR/SrNlsFtlsVhWhKBQKaizo7hE9RcPJheKErXzV8lmlv5mBOqRVKSS9Xi/K5TIqlUrP+DYwAB5SSNotVtlsFpcvX0YsFkMqlVL7STL/hRqo2+1GPp9HNBp1dMBTu9Qn0VaWhD5J7PxVTkKW20Sx0kir1UKhUMDVq1c3HLuZZToI6Ha7KBaLKjw7n8+rhGK5Gzzbmykim/kk2Zess1kqlRTlOj8/r+i5zdp2ENv64wCD5DqdDj744APMzs5usOjsFBVJU9NaY4J2q9VSeW8yr81pftsxRJths+N0BUo+v7QqG41Gj2vA5XKpGswU/AYGhMvqc8XZzIEO3PMXURONRCJ4/fXX8YlPfEJZZbKIudt9dz9JmTspNUzpYJcBHU5C0u5n6PlQch87ea78PaVSCYuLi6rI9/LyMmq1GmZnZ7G+vt5Xo27XRfx+gpAeR8DSdmq37fSsOpz67mH6dDu3x2bYrr9rEAMKHxe26uNHTrfKG0vaE7iXYyMpUf2czaIS7egUPdIR2FhazO76+vf6M0krdBB9Ug+L7bp4GDjD9KmBwUb0bUkaGBgYGBg8a3jw8uoGBgYGBgYDDiMkDQwMDAwMHGCEpIGBgYGBgQOMkDQwMDAwMHCAEZIGBgYGBgYOMELSwMDAwMDAAUZIGhgYGBgYOMAISQMDAwMDAwcYIWlgYGBgYOAAIyQNDAwMDAwcYISkgYGBgYGBA4yQNDAwMDAwcIARkgYGBgYGBg4wQtLAwMDAwMABRkgaGBgYGBg4wAhJAwMDAwMDBxghaWBgYGBg4AAjJA0MDAwMDBxghKSBgYGBgYEDjJA0MDAwMDBwgBGSBgYGBgYGDjBC0sDAwMDAwAFGSBoYGBgYGDjgsQnJkydPolQq2X738ssv43vf+96W1/jX//pfY2RkBCdPnsTJkyfxC7/wC+q7//yf/zOOHj2KY8eO4fjx4/jqV7+qvvuTP/kTnDx5EkePHsXRo0fxH/7Df9hwbcuy8NprryGZTKrPvvWtb6l7nTx5Ejt27MCLL77Y/482MDAwMBgoeB/Xhc+dO/dIrvMLv/AL+N3f/d0Nnz///PM4ffo0EokE5ubm8MILL+DTn/409u3bh8nJSXzzm9/E+Pg4CoUCXnrpJbz00kt49dVX1fn/6T/9J+zbtw9nz55Vn7355pt488031fu33noLn/3sZx/J7zAwMDAw2H54bJaky+VCPp8HAPzgBz9Qlt0v/dIvod1uP/T1X3/9dSQSCQDA5OQkxsfHMTc3BwD46Z/+aYyPjwMAEokEDh8+jNu3b6tzL126hK997Wv4Z//snzlef3FxEW+//Tb+wT/4Bw/9rAYGBgYG2xOP3SfZbDbx8z//8/j3//7f4+LFi/j7f//v4/z58+r73//938e/+lf/yvH8P/uzP8OJEyfw2muv4bvf/a7tMd/+9reRy+Vw6tSpDd9dvnwZP/zhD/G5z30OANBqtfDLv/zL+K//9b/C4/E43veP/uiP8PnPfx6jo6P9/lQDAwMDg0GD9ZgAwMrlctb58+et6enpnu/27t1rffe7393yGktLS1az2bQsy7Lee+89a2RkxLp9+3bPMR9++KG1a9cu6913391w/tzcnLV//37rT//0T9Vn//yf/3Prd37ndyzLsqyZmRkrkUhsOK/b7Vr79u2zvvGNb2z5jAYGBgYGg4uPJbrV5XL1ddz4+Dh8Ph+AuxTqCy+8gDNnzqjvL1++jLfeegv/43/8D7zyyis95y4uLuJzn/sc/sW/+Bf4u3/376rP33nnHfze7/0epqen8corr6BYLGJ6ehpra2s9x9Tr9R7/pIGBgYHBs4fHLiQPHz6MdrutqNJvf/vbuHnzZl/nzs/Pq9fXr1/HuXPncOzYMQDARx99hM9//vP4gz/4A7zxxhs95y0tLeH111/HV77yFfziL/5iz3fvvvsu7ty5g9u3b+O9995DPB7H7du3MTIyoo757//9v+Mf/sN/uCkda2BgYGAw+HBZlmU9lgu7XMjlckgmk/jBD36AX/3VX0Wn08GpU6dw9uxZ/O7v/i5effVV/P7v/z4WFxfxW7/1Wxuu8Yu/+Iv44IMP4PV64fF48Ju/+Zv4uZ/7OQDAG2+8gTNnzmBqakod/9u//dt488038cu//Mv44z/+Yxw4cEB99xu/8Rv4pV/6pZ7r3759GydPnlQBRgBQKBSwY8cOXLhwAXv37n3ErWJgYGBgsJ3w2ISkgYGBgYHBdoepuGNgYGBgYOAAIyQNDAwMDAwcYISkgYGBgYGBA564kDxz5gz+1t/6W9izZw9eeuklvPDCC/g3/+bfqO9fffVVfO1rX7uva/7RH/0REokETp48iRMnTuD48eP4y7/8y0f85AYGBgYGzxqeqJC8cOEC/ubf/Jv4tV/7NczMzOCDDz7A22+/jWKx+NDX/uxnP4tz587h/Pnz+IM/+AN8+ctffgRPbGBgYGDwLOOJCsnf/u3fxpe//GW89dZb6rNUKoV/9+/+3SO9Tz6fx9DQkHr/j//xP8apU6dw8uRJfOYzn8HVq1fVd3/5l3+JI0eO4MSJE/jKV76C4eHhnjqvBgYGBgbPLp6okDx79iw++clPPtC5X//61ze1Dr/73e/i5MmTOHjwIP7O3/k7+I//8T+q777yla/gxz/+Mc6dO4df/dVfxW/8xm8AAFZXV/GP/tE/wl/8xV/g/PnzOHz4MDKZzAM9n4GBgYHB4OFjDdz5J//kn+DkyZPYuXMnLl26tOmxf/tv/2384R/+oeP3pFuvXbuG//f//h++/OUvY3FxEQDwf//v/8WnP/1pHD16FL/1W7+ltvF6//33cfz4cRw+fBjA3eIFfr//0fw4AwMDA4NtjycqJF944QX86Ec/Uu9/53d+B+fOnYPP50Or1Xpk9zl69Ch2796N06dPY3Z2Fr/+67+Or371q7h48SL+5E/+BPV6/ZHdy8DAwMBgcPFEheQ//af/FP/tv/03/PVf/7X6rNlsPpL9JSXm5+dx/fp1HDx4EIVCAT6fDxMTE7AsC//lv/wXddynPvUpfPjhh8pH+dWvfhXNZvORPouBgYGBwfaF90ne7MSJE/jrv/5r/Mt/+S/xa7/2axgZGYHP58Ov/Mqv4ODBg+q4L3/5y/j1X/919f7P/uzPsLa2hq9//euOlCt9ksDdPSP/7b/9tzhx4gQA4Etf+hKef/55pNNpfPGLX1TnjI6O4g//8A/xxS9+EYFAAG+88Qai0SiSyeQj/+0GBgYGBtsPz3zt1lKphFgsBgD42te+ht/8zd/ERx999DE/lYGBgYHB04Anakk+jfi93/s9/K//9b/Q6XQQj8fxP//n//y4H8nAwMDA4CnBM29JGhgYGBgYOMHUbjUwMDAwMHCAEZIGBgYGBgYOMELSwMDAwMDAAUZIGhgYGBgYOMAISQMDAwMDAwf0nQLicrke53MMFLZrwPCT6GOXy+XYPi6XCy6XC7t378YLL7yAZDKJ4eFhDA8PAwA6nQ46nQ6Wl5dx4cIFFItFrK6uYmVlBd1u94m2+3btY+DR9DOvsVlfEvox7Oddu3bh+PHjSCaTeO6553DkyBF4vV643W64XC60223UajV0Oh1UKhVUKhWUSiWcO3cOc3NzKBQKmJubQ61W67mHx+OB2+1W9+Zft9u979+5XfvZrNf9Y6s+7jsFxDR6/zATy/n6FJJ6GyUSCZw6dQqTk5OIx+MYGxuD1+tFLpdDsVhEt9tVi5/H40EgEIBlWVhZWcHy8jLK5TKuXbuG1dVVx9/1KPtlu/Yx8PD9rAtAl8uFQCAAv98Pv9+PVCqFYDCIfD6P5eXlnlKPiUQCL774Inbu3IlUKoVdu3YhEAigUqmgWq2i0+mgXq8rhajVaqHb7aqxI9FoNFAsFlGv1zEzM4MbN26g3W4rIcvn4/8H6bPt2s9mve4fW/XxM19MwODJgYuXZVnodDo9342MjOBLX/oSPvvZz6Jer6NcLqNWq+Gdd97Bj3/8Y3Q6HUQiEfh8Phw+fBif//znkUqlsLi4iMXFRSwvL+NP//RPNwhJfXHdrove0wRdALlcLoTDYcTjccTjcRw5cgSpVAo3b95ELpfrEZLpdBo/93M/h8985jPweDzw+/1oNpv4+te/ju985zuoVCpYX19HuVxW93C5XEgkEkgmkxgaGsKrr76KQ4cOwe12w+fzod1u46/+6q9w584dtNvtB7IYDQycYISkwccKWiDRaBSxWAzRaBTdbhfNZhONRgO1Wg3lclktfH6/H/V6Ha1WC51OB36/H/F4HNVqFdFoFJFIBO12G81ms2cRN8Lx8cHlciEYDCKRSCAWiyEYDCIQCPRY/rQyk8mk6udOp4N2u41Go4FKpYJisYhyuYx8Po9KpdJzfbfbDa/Xq4Rqu91W1/R6varmciAQUIKSFCuVMqmYmTHxeEGFmH1n1966stXpdJ6426QfGLr1MeBp6+R+8aTpVp/PhxMnTuDYsWNIJpM4duwYxsbGcOfOHfz4xz9GPp/H3NwcFhYWYFkWvF4vPB4P0uk09u7di2g0in379mH//v2o1+v4yU9+grm5OaysrODChQsolUpwu93KP9Xtdh+ZlbFd+xh4dHQr2yAQCOCVV17Byy+/jHa7jWw2i2q1iuXlZVy7dg2dTgcvvPACjh07hmg0isnJSSSTSSwuLuLy5csolUq4fv06bty4gVarhVqttmHrvEAggGAwiGAwiMnJSQwPDyOZTGJ6ehrhcFgtsM1mEwsLC8jlcmg0Gsjn82i1WlhbW8Py8rIjdetEx27Xfn7cc1kKPn1Oeb1exONx1V/xeBwej0cpRQCUEsU52el0kMlkkMlk1HFPihEwdKvBUwN9IfJ4PNi/fz8++9nPwuVyoVgs4sqVK7hw4QK+8Y1vIJPJ2C5es7OzOHfuHPx+P9566y1MTU3B7/dj//79mJiYwNWrV3Hjxg2USiUAvQuGsSAeHnr7eb1e7N69G5/61KeQz+fx/e9/H5lMBvV6HYFAAF6vFydPnsRbb72FZrOJGzdu4OrVq7h06RL+z//5P479LNFoNNBoNFAoFLC6ugqXy4WJiQkUCgWk02mcOnUKn/70p9HpdHDx4kXMzc2hVCphaWlJ+TpXV1d7Fl47QWmwNaR1aCfIPB4PYrEYYrEY4vE4RkdH1Z7BjUYDHo8HoVAIXq8X3W4X7XZbCc9SqaRYoqcF20JIulwueDweeDwepQU6BWOwA/maiyIpmgeNcjN4dPD5fAiFQgiHw4hGo/D7/Wi1WlhfX0cmk8HKygqazaZjP3FBbbfbyGQymJmZQTAYhN/vRyQSQTAYVGOAxxs8POwsyEgkgkgkAq/Xq/zIwN0+HhoaQjKZhM/ng9vtxq1bt9BoNHD79m3k83msr6/3WIz3o8BYlqWEpmVZmJubw/DwMNxuN+r1OkKhENxuN7rdrjouEomg0Wj00LEyCvZZxYMEtklXBiOSSaP7fD5lSfr9fjQaDbRaLTSbTbRaLbhcLnQ6HXi93p7rRSIRTExMKAqeQrVUKj3yPYfvB0+NkNws8pGaSTAYVH4J/VguqF6vF4FAQHWex+NRCzAbu9FoGEH5hGDXr8lkElNTU0gkEtixYwcikQjW1tZw5swZXLhwAdVqVfmkdGpMUjydTgeXL1/G2toahoeH8dprr+HQoUNYWlpSE/Bp9HFsR1D5lP2YTqdx6NAhRKNReL1e3L59G81mE263G/F4HNPT03jppZfg9/vx/vvv46tf/SpqtRrW19dRq9WUwPL7/Yp2k35E/f76X6VSwZUrV+D1ejE7O4szZ84gFovh5MmTmJ6ehtfrxZEjRwDc9WWvra2hXC4jm82iXC6rcWVHvz4roAEC9O+OkIaGz+dTPuiTJ0/i+eefh2VZKJfLSjlZXFxUfU1hRzcI4xF8Ph927Nih9gCuVCpoNptYXFzEuXPnUCwWH1MLbI2nSkjyv5wgnJyBQAChUEhZIdQS2VlSSIbDYeXo9/l8KjCg0WjA5XKh1Wr13MMsoo8fsl+ZJpBMJlXEarfbxcrKCm7fvu14vg7LspDJZFTAR7PZRDgcRiAQcLQkn9XF8GGhCxTLshAKhTA6OqqEJKkypoSMjIzgyJEjCAQC+OEPf4iPPvoItVoNpVIJzWZTpfJwkd4qf1YGggBAu91GLpeDZVkolUpYWVlBOp3GwYMHEQwGEQ6HkU6n4fF4MDIyooLCPs4F92mDVBBk324FHkNBFwwGMTw8jH379qHdbmN5eRnFYhGVSgW1Wg2VSgXtdhudTqfn+pJ2jUQi2LVrF1wulxojjUajxyhy+g2Pcw3/2IWkbur7fD4EAgH4fD5MT09jcnISwWAQqVQK4XBYWZIUkroZzonHqDqv14tWq4VMJoNKpYJWq6XysEqlEvL5POr1Ou7cuYO1tbUn/vufBegDOBQKYefOnUgkEuh2u5ifn1e+I0JP22AqgH490q4M+CiXy2pv0FQqhXq9viHZ3Pgl+4ddugfp06GhIezdu1cFZjA4Ix6Po91uo1Kp4Jvf/Cba7TY+/PBDNf9kX7bbbeXbogWp943e3/J8KWBJzd26dQsejwfj4+NIJBKIRCKYmprCT//0TyOXy+H9999HoVDouZ7T+Bp0SKvQLhrczm/r8/mQSCQQCASQTqfVGu3xeHD+/Pme9bZYLCKfzyv2TmcJKDTJ+hWLRQSDQaTTaUSjUYyNjeHUqVOoVCqYn5/HnTt3NvgrH3d/faxCUmox0nwfGhpCNBrF66+/jjfeeAOhUAjDw8M9FiJ5bb3RJUfOv26325M2UK/X0e12cefOHdy6dQvr6+v4q7/6K1sh+SxOnAeFXT6iXbslEgns3bsXqVQK2WwW165dw9ramhKSemCAPoklGNrfbDaV0tNqtZBKpWBZFtbX11Gv13sWQYP+oPv+u90uvF4vgsEgfD4fdu7ciePHjyOVSqHRaCg/MufZT37yE/zxH/+xinalv5IUn2VZyie51fxycsP4fD61FlSrVbTbbVy4cAELCwt47rnn8PzzzyMUCuH555/H9PS0inK9du1aT77us5pPq7cBYUdFyzSsHTt2IJVKYc+ePfjkJz8Jn8+H73//+/je976n5iIFI2NB7NrU5XIhn8/D5XJhcXERXq8XiUQCP/MzP4NUKoXJyUk899xzcLlc+M53voPFxcUnHtTzsVuSOpj3lkgkMDw8jNHRUYRCIQwNDSmaVfqbdEuSgpELLf0ozWazp4pHu91GtVpFqVSCZVmIx+MqlNzk2D1ekBIPhUIA7ka0kY4h7leg0UdJyyQYDCIUCsHv9/ccZ/rz4UAqle6PUCiEYDAI4N6CS/8T/Y+ZTKbn/EcljHQLk+tBpVKBx+NRFDzzaRlhGY1GEQ6HVT6tiU/YCLv5x75jXmoikVBUu9vtVpZ8o9FAtVrtKSLRD6gweTwe1Go11Ot1+Hw+RCIReDwelQftcrlUvz4JfKxC0m6CTE1N4Qtf+AKGh4dx4MABJRjL5TIqlUpP3htwT7tx6lR5L/7R+oxGo9i/fz+Gh4exurqKZDKJ1dVVXL58GcVisUebcnpeg3uw8/3ZtRlpmmQyiWvXruH69evKf0Ewn+1+2pyLZCAQwOTkJFKpFNrtNpaWlsxC+ACw89uHw2EcOHAAIyMj2L17NwD0LFj5fB4//OEPFYVuF4Al5+LDPh99oDI2oVgsotFoYHl5GfPz8/B4PEgkEkilUojFYjh27JgK5rt48aKKkLX73c8SdIpVWpBUPOlrPnbsGKamppDJZPCtb30L1WoVN2/eVO4O4C4rKNtyqyA6GjatVguXL1/G0tISduzYAQCIx+OYmJjAz/7sz6JYLOLChQuYnZ19LO2g42O3JPVG27VrFz73uc9h586damKxwDEnhKzNSOi0kE6v6Y5/l8uFSCSC4eFhpNNp5PN5JBIJ3LhxA7dv31bOfSMgHz38fj8SiQQSiQRqtRpmZ2dV7U5gc6rWCbRiOp0OAoEAJiYm0Gg0sLKy0qNUGdwf9D4IBoOYmprC9PQ0RkdHAUDRqwyg+fGPf4wPP/ywRxDKgBs9eONhnk23JrrdriqGvr6+juXlZfh8PhW8E4lEcPDgQfj9fty6dQu3b9/u8U8a3IUelU4GIRaLKQPm0KFDOH36NE6fPq1yUClQ2eaEzEJwol0ZR9Jut3Hz5k1YloUDBw5gcnISwN3SlZOTk8jlclhZWRlsIWknePTINXYQ/Y7yGHmuk7B0ioYE7lmfsgIEk17X19d78nf05zR4MNAPRT+S1+uF1+tVVDgLWevn9Nv2vL4M6pI+K8L05dbYTDH0+/0YGRnBjh07kEgkVE5qJpPB+vo6FhcXUa1WbS33J9329XodS0tLAO5awDt27IBlWQgEAooqZLGDR1mNabvDzqp2u90qSCeZTKJUKmF2dhYrKytoNBobfLtSQerHSnc6tl6vY3V1FZ1OB+Pj4xgeHka328XQ0BCGh4fRarV6rFcnN83DjL0nLiSlRSctPmoebrdb+QX1vBo9n0palE71AQmdbgWAWq2GZrMJl8uF6elp7NmzR1mYPKfT6fTc41HQRM8iSHkFAgGV+hEMBlWUcb1efyifpNvtVvU7GfHabDYRi8UMG9An7BROvc3i8ThOnTqFT33qUyqquFwu4+2338a3vvUtlMtlLC8vb7g2LQzgyfXD2toavv3tbyMcDuONN97AxMSEim+IRqNoNptIpVIoFAqo1+uoVqtmjPz/0BWGQCCAT33qU3jzzTeRy+Xwzjvv4M6dO8jlciqug0owcC+gTmIrASkZBlqVuVwO7733HoLBIN58802cOnUKw8PDePHFFxEOh7G2toaLFy+iWCyqbAbduHpYfKyWpHwvK+owCIMBNi6XS1kIADY0viymq+f66A2lC8t2uw2fz6dCjtPpNHw+34Zz7KxYg/5BJYeBHrQmWW9TBks9CDhGgsGg6l8WwDZRrVujX/97IBDA+Pg4pqenUS6Xkclk0Gg0sLq6ikuXLm2ouSrxpOdNtVrFnTt34PV6cfToUdRqNRWdG4lEVLCe3+9X68yzPrd1K5CfeTweTExM4OjRo7hz547y50o2jkygbozY3YOwC76SrGK9XkepVFIVnSKRCCzLwujoKIrFokpJkfcHHiymwQkfm09SNpTP51NJySMjIyrFQwo/WgfAvU1VdXpWdrDe0bp/RB4rfZ4MNNApGLPQ9g99sFJgTUxMIJ1OY3x8XCWRB4NBRKNReDweVCqVDeke/Q5yCmGyAFSAWFzArmiy3SR6VhdKKoJ2i6PX68WOHTswMjKCqakpZLNZXLx4Eevr65ibm0M+n8f8/Pwj09z7ocf76Se5WOdyOdy8eRPxeBwjIyOIxWKqWH61WkU+n4fb7Ua73VbpYtsZdm24VbvaFS2n4RCLxdDtdjE3N4fFxUVUKpUN1hrX0q3Ytn76TebM8v3MzAy+/e1vq2jqqakptFotJSRpXD2qwDDiY7Uk2SHBYBB79uzB+Pg4JicnVTEAfbEFeosFONFDcnscQjqgZRkm0gK5XE5NJlb4Yb1Bg81ht7jKCWdZd6uzHDhwAHv27MG+fft6wrqHhobUFkj95s3pkHQrn6HVailrodvtolarqXGk+7752u73PCtCU/+d9OmGw2G8+OKLOHXqFDweDxYWFrCwsIA7d+7gww8/RKlUwsLCQt9CUp+3m40duzzo++knPtPCwgI++OADJBIJHD9+XDFTU1NTiEQiWF5ehtfrRb1eRyaT2fZCUq5xevCUU7uS4pQCKpVK4dixY0pIXrp0CSsrKyofWcKOYr1f8Jn01D7m3d66dQvDw8P4whe+gJdffhmtVksJTeboPmp87NGtwN0OjUQiqjqGjEZ0Su2Qk8Xue6dz7UCByo4hbQdgQwk7g43op30YHceix1wI5R6BDxuFykkuxwarw9gpVVs977Pe78xnpfLBQAkWflhdXcXq6irK5fLH5s/r16JsNpvI5/OwLEuVMWy32wiFQkgmk6hUKmrtGYSydf20i9Mxcp7QYAgEAuh2u6oohM7I2NG0jxrVahWtVksF5nGTBOZcy7x5PcPhYebzxyIkdUotFArh4MGDeP755zEyMgK/368Cc3SOWmpC8r0eBUvolea5MANQ9BsXVtK+L730Enbu3ImbN2/i6tWrPYLyWV84+4G04qVvmMUbOMm4CA8NDcHj8SCbzT7UfRlIIovcOwnHrSyQzWi+QQfbbHp6GqdOnUIikcCRI0cwMTGB1dVVXL16Ve3ksbq6imaziXq93vf1t6LipD9JP3ar907XXF9fx0cffYRgMIj19XWkUikMDw/j6NGjSCQSmJ2dxfXr15HP59WemIMGOwvS7jvZ7q1WC4VCoSf9jpWNAPRsOEFmDrg/A0V/rX/Ga5L6Jy1erVaRSCTw2muvIZfLYXFxEXNzc2g0GsjlciiXyz3P8qBR7k9cSNoN/FAohL179+L48ePw+Xw9VVIoINk48hryR9PU1/2UeuEBaVVI7p2CMp1O4+jRo9i1a5fa+84IyfuDXR+T7iyXy6osoMt1N0GZFKmeenO/96QmySAwWpZOx/fzmcSzICClMrp79268+uqrqvBDLBZDPp/HrVu3cPbs2S1Ljj0oHtanZYdcLodCoQC3243bt2/D7/fj5Zdfxuc//3kcPnwYo6OjKlpyZmZmIJmErdrVji5vtVooFototVoqEI7zF4CKK2ARAPoE+2Hz9DVVrsfymWQ2A1PH6DuOxWL4qZ/6KXQ6HZWby2j5crmsztvs/lvhqaBbWVu1UqkgFAr1+BxlY9tF3vE1F0UeK2Hnc9JBX6V+D2mtDtqkeRC4XC6Ew2FV1FrSGrofErjXftyAlZGtRDAYRCKRAABMTk6qlA0KTKd21wMGRkZGVFnBTqejxgIjGd1uNyKRyIZdY2T9XxkkIAsyD3r+HCODue1RKpVCKBTC5OQkotGoqrTi9/sRi8UwNTWlCj/o7UnItpTuDMuyehZTPdBCt2TknOX44jyVCq/MiWWxbJ02lAq31+vFzp07VWFu/bm2O/gb2G8ul0vNDVlfF9i4HjIITgpAPWqUAXeBQEDV1JYpe1splHYC0q7fmeVgWZaifemeKZVKPWVKqRTrfa8bVPeLjy1PUqLZbGJ2dhbhcBgTExOIRCKKcuUPlE5nQmoY3HJJNqp0JOvnAr0WKRcJ0gnFYlFVb+EE+jg3/nwawMmyf/9+/NRP/RTC4TBarRZarZYKqPJ6vRtqqHLCMRd2aGhI9cfw8DAOHToEy7LwyiuvqInJ6EOmhwC9ZbK4mPG1z+dDKpVCrVZTO8l4vV6MjY3h0KFDaLfbSKVSSlByjJACplXU7XZRKpWwvLyMarXas4vIICyeduCOGSwS8Prrr2PXrl0IhUKIxWJqE91oNIpDhw7hV37lV1Aulzf4etlGskYy818LhYKq67m+vq7altQdxxH7pt1u91yfDBP3lmX/cmegZDKJoaGhng0SOK91BZtbNsViMYyPj6vo9vX1dbXX5Xbva7Jq6XQae/fuhcfjURZWtVpV41sqH/wfDAYxPj6ucpnZxhSEHo8Hu3btQjKZ7KFb7RQMJ4pXumHsIIUy5yoFYjAYRC6Xw0cffYRwOKxcdHw2ZkcQMkdXv38/eCryJDudDorFItbX1xGNRnsEo2796ZYeKVRqwbrjVvopnTQKGdnlcrnUPmb0m9G8f5YhNfehoSEcOnQI8XgcjUYDjUZDBV9RUWGRBjrW2+22WiRDoZDqB+755/f7MT4+jlgshkgkgnQ6Da/Xqwod8xkA9Ag0LsjtdhvFYlFRQRTKkUhE7QjCeq58Po47+qH4FwwGUSqV1LW5i8igwuVyIRqNYnh4GJOTk3j55Zdx4MABVCoVVdc0GAwqq3xiYkJZa3Y5xbRSGo0GyuWyqpPK3UAWFhZQLBZRq9VUlCTHEVklKSQZPEIWYmhoSKX2RKNR+P1+DA8PY3x8HMFgEKOjoz0LuKTbLMtSRURk0ZJms4lqtdrjb9vO4HgNBoMYGxtTwqVUKsHj8WB9fR0ANghJWpEsG8nPuDZa1t2iAfF4XDF+tODthKFdUr9UOHXrUWcOJQMhmQAWz4/H44jH4wA2utPs2uNB8LEISf5gms6RSKQnN5LcN7U+OwrPsiw1sQCoguSyw5mwzg4ENmouNM9J1zYaDSwuLmJhYQHZbNY2pNmO9h0kkL7yeDzKFyXLye3fvx87duxANBpVO8zTAtRzXP1+vxrUFGK00GkZUJnhfQGonSRoVUiNVE4ATpxut4tyuazqcA4PDwO4t0i4XC5MTU1hdHRU5cPSumR+JsdYtVrFrl27VDL6jRs3VNEJXSgMAizr7k7y6+vrSKfTas4B2ECXkn6WAky/Fo+Ri1swGFR0u8vlUrtEsKQYLUkqJqTMpSVJhZU0Hzdg56JNi8ey7pYzc7vdSlmTSjMFI3AvGIQBZO12e8POMdsZ0WhU0cqpVArValVF8pbLZfj9foTD4R6BxP0cg8GgyiHlWsz5y1xS+iIfJFCHsDOGAGxYE+zcIs1mE4VCQTGB09PTaDQaSKfTqtgAxxWVMSpt+Xy+r2f+2AJ33G43wuEwkskkksmkMtmZlxWJRNDpdHr2oKMWw0YrFovI5XJoNpuKJgmFQsoySaVSSKfTANCz0FLwMQpSOoQrlQquXLmCGzduqJqETsJwEJ37wL1c1EAgoHIbqcz4fD4cPnwYhw8fRigUUjuPUymRdCmjkzudDvL5PObm5tSiyLBtn8/XQ5vTz8l+l34UWoler1ftDsNJZFmWqh3abDYxPj4O4O4isW/fPgQCATz//PPYtWsX6vU6stmsslzkrgUsIkHh/P3vf18tuqQcBw2dTgfZbBa1Wg2JRAKNRkONbbZ9s9nc4Ce2o6B1BYZClNscWZaFiYkJW8Gr1/+083NLn6O0YvQgvlKppJ4VgLIWgXuLLUsk+nw+JJNJ7Ny5E36/X1G1gzC30+k0nnvuOcRiMbXnZ71eV+tlPB5HOp2G2+1WmwxIX/Hc3BwWFhZQrVbVGknIWAQAPf+l0LNTLKWP2C6WhONO9jGVZjkua7UalpeX4fF4MDY2hn379illVvouGaXLMnpnzpzpO23piQpJfeBRSFFQ8RjdIrRLfCWoKXDDXforqLnKCSevoQeWyInIIgKD4sS/X0hag1X/pZBkYetAIKAWObl4sf1Z0b/dbvdEJ0tqR/5JC50LpgyeoXVCy0D3hUlrk4yB1+tFJBJBIBBAJBJRQQbVarUnIIvMBi0R4O5EHRkZQTKZVEIyFos96e54IqA1wGRstjHnAff+pEUhLUaC/cF+ljmrsn9pqekVUvRIc92KkNHr8rpSGdNjEXhtucByjFC54jOTwXKKiN5OkC4kCgz+RrpEGICXTqeVMJPuEs5bOadkLW3JNuiCks8gq6NJ6BQvjwd6Ay1pwHB95r0k/UtfttvtVixDNBpFKBRCo9FAOBxGs9nsMcQYkPRUCUndeU5/1dDQEGKxmOoMagicEGwMPRLL7XYr+mZ1dRXXrl3DhQsXMDo6iueeew6JRAKxWExp/pwkcuJxUQegBKPf78fhw4cRiUSwsLCA+fl5R2E5yALUsix4vV4899xz+NznPqesKQY85PP5HiEI3Ovjer2ORqMBt9vdQ3OkUil4vV4MDQ2hVqupZO4dO3aoAVsul3t8SXI8cOJKOk4qQFNTUxgfH0c0GkU0Gu3xSbrdbtRqNZXXVywWlWXB65A2luNwx44d+OIXv6jGY7+00naCZFi63a6qsTszM4OzZ8+i3W7j5MmTGBkZUfOItXYp2ORCyNfse/1eAHqUHmkZcBHj4irdJdKqpbIkFVxeXy6ydpGOHMfdblcJEI7HQVGMaSAUi0WcOXNG+ZwTiYSyov1+PzqdDlZWVtDtdhUrxD6g4ksfsAyKYf9IgSUjS6WQlp/rxpAT7IwijieOC6lcu91uxUxxDnOMygImgUAAhUIBiURCufS2whMVkvp7VuSndi8DMWQCKQA1gPmeQtLr9aJareLGjRt45513MD09rbbz2bdvn+LbK5WKEs56p9K/yVyg/fv3Y2hoCABsy205BQANCjhwfD4fDh48iNdeew2NRkNtoluv11EsFtWiRgHHBYa5VKRI2H6pVAqpVArBYFAFTwQCAezcuVPlY5XLZQQCAQBQY4LjghQohS5wz6fk8/kwOTmparfyd8gdXSi8GXWp59XKxZ071o+Pj+Pll1+G2+1WhRAGETrtHAwGUSgUcP78eTSbTUxNTal6u6xWIy1JuWgCUO3YaDR6rDf5mn0pBaC06OXWZ3JdoG+b9+F/ufByIdXdKaTS6Urh51JwDkLKDxmPYrGIc+fOIRwO48iRI+r30n9bKBSwtramaNhGo6GimcnyJRIJtTZSOPG/FJxSuZH/9dQcwD6xn+NACj+dbeCf3Oib/S7HjcxqoB+cbiD+1zeFdsITE5J2ARfMkePOEHact6RadYoFuNewtGhqtRqy2SxcLpfK5dpKY5HUkdt9N52k2WwqzURaS0AvpTAIWqcdpHDi79cd5/0oC1wMObFk1QyddpXnAP0n7/NZqfjwvZ3PzE5D5e/g88gFmdelkGVg0KDBjhZlUATTcKhQyrgAO6qbKUHSMpPz2M59IoWdtFDt+tEuFw7orcdL2PlPpZXDsSdp2kGY0yyrCUAVI2cwnF2wFf9L1wY/pwtCBjjqVqJ8z9dArztL72feU6fp5bHsG929Iv9LNoHMBL/neiBdK/fb1w8tJO1+tJP/UGpoHo8HO3bswPHjx3sKAdCXJX0ivA7z32j6s4ILNVsAyGazOHv2LKLRKI4dO6Y0E8ln69QMtUtWlN+5cyeSySSWlpZUKLk09akZyfDkQQIHD4s9LywsKA2eGpwUcOxjTiZadsDdjW/r9bqiPknzyFJWuj/JsqyexUtarJIB4LOSRpdULF/LoulS+2XAkLQc6JMhs8Doy2KxiHa7jcuXL2NmZgaWdTenc1BALZ/+OM7FXC6Hq1evotFooFgsKk2dxemlRc725vWkFQD01tKUiyXHiZ4qwHFAxoBWCtcG6SOV19WpW95bX/TpO6dFBdwVJkxZ2e7YuXMnLMtCNpvF0tIS/H4/du/erXJAuc4CUJaX7mdkO0gLjfNS0p2SgpXKixReuvJjp8DKcaH7uiWNy2hVbn3G+9CNQgOJPtVQKKTWJFLrjPJ97EJSpzoIO0tAfxjSpRMTEwCgfALyR8tG1c17UnGkCDgZa7UaFhYWVMKpXdiwnFC6duH1elVgCn2e1KLls/fr9N2OYFu0Wi1VWIFC02ljZH0scKGVliQVDMkYOGm1MiBDXltaoFyIpaUifV2SxpPPKf0owL0JKSc/oyFJQzWbTaysrOD27dsD2e9ybhG1Wg1ra2toNBqo1+tqkeTm51RmJH2qa/n6oigXPGlxAL2+J51B4r0AKDpe9rtU0kmV6/NbCkngnlLERZ79rVu62xHxeByWZakiDkzDIisk20OfD0BvoBTbR+87nQXSLUB9/Zdz2S61Tq6r0qiR1+ezyiA+nksmEYAqf8kcdwpLCtn72cP2oYSk1BAkNqPJZJL38PCwqpE6Ozur/FR2FAsbWGr+MgFcTihZBYILND/nMewELvrUVGl5dLtdVXEEQI9Tm89n19GDBNmW3W5XWYpSeZGUiN2AkwoUBY+0ONjeesKwhL7wOoE+LplaIK0K+V/+Dk5G6ROX/hGmmzA3b7svoHbQrep+IOeVLgz1NrK7rh7sw3NkRKRcIOUc53nSx8VrkOXRaTfJPkiligqhHIvbHaRbOV5peXGHk1AohHg8jm63i0KhAI/Howo02Cm5nU6nZ0cd+SdjPLjGSmGq09uAfQU0vV91mlZ+x8A8MgJUcO1kB+8vGUMnd4wdHpputeOHpZavTw6/3494PI5kMom9e/fixIkTatPWfD6vkrz1ScuBT8Hmdrt7nM2yKj23UHG5XD0OfkYzSWqP1wqFQirghBpUIpHA6OhoTz6gDOqQv3szxWC7gm3Gmqj83XKA6T4dOR507ZN5iaTqAKhFSeZFyUmhWwKSCdCPY0StpG8pNOXEl9/L38MxxIlEDTSRSKDZbKqw8kETklJhdHIf6MKP/U4FSs4vad3JxZZzRlr3ToLPbnGUQUJ8BrsgPLpHeF35n+NE0vL8jHmCgyAkGcUaDAbV2M7n81hZWVFrG/NVWX2HzBmrV9HSomIrKW+pIMnAHb2YiJQHUlHRrXV9fksFSs5x4N4Wbnr8ChUdSfNLYU5FQWfEtsJjCdyxExj8oaySEYlEEI1GVZIrf8BW+zfa8dou190gIAo6lkKjFiUFrZ2Gq3PrtEiAu9QOozCZFyijrQYddk54fWHbjFbncUBvBCXP69eC6aetpaDW/VByEjpZppIilAs92Y9Bptn1tnE6BsAGASa1eBnopI8NnXGw0/Z5nJ0SJKHfX/YNhaW0UgmnccaxMyjsEPtDtwhZKYdFPxhfAUDFfEjlQ59Luntks3m7meGgrxlSIZbfyTEkx5WsyiaVLzm+7MbQgwRnPbLAHTs/Ih9EJqBPT0/jhRdeQDqdxoEDB+By3U3PuHz5Ms6cOQOfz4fPfOYzitrSBzyDeejf4jZLX/jCF3Dy5Ellfvt8Prz44ovKApWNwz8ZntzpdFCtVjE7O4vvfOc7WF1dVWkMLOy8f/9+VRyYkY6ZTGYgfBhOsFuM7H6vPug3UyKkpug0kewoE7tnkp/rFqLdsdLPSe2StCq1S/o65OTSfZ+DBjvFQn6na/nU4nXaSioqdv3AhdZOWZXHynN4XUJaGbrVKc/TF3tJ53a7XZXqQj80y1wOgiUp80+Bu+3Lqlf06TKITlre7E+5NsrCArri4fF4VAlAPfpV9gNwr6IVsHH3D0JfD7jO69enG4igQsAgJPYjjSafz4dKpYJSqdRjJfeDRxK4I60wu4hPn8+HdDqNWCyGY8eO4a233kI6ncaOHTsA3PX3ffTRR3j//fexa9cuAFCCTl8ISftJqzQej2N8fHzDzgEc/NLPpE8WaiMcCLOzs/jmN7+JW7duYWpqCgcOHEA0GsXIyAgSiQQKhQJu3LiBYrGI2dlZ5PP5+/LjbEfoQoaQ1Jt0ytspSnbnsG94vn6cvA6fQz6PXCx5rJ0lYCdQpf8KuFc0XV/Y5bPoASWDhK0UG7aLHmwj21unujlXAWygQ3VLcys2wW4hlefr9JwMRJLPRWaAPnZaUzJYaxDms5OQbDabKgecSfZSSHKtlPmP7XZbuTLsLD1Jp+oCkp8D9wKlJOQ6YUfH0n3GtZpKjxSSXJNoIfP5yQCGw2H4/X4VvXy/EcyPhG7VTVz+kEgkoqjVyclJ5eOjSc86nmtra8oX2Y8pzMkq7yn5cF0D1RdsOy1GaseNRkNx10xf4ObAHs/dGoHhcFiFxnP7mfvZnX07YjP6RD9GUih87yQw9c82638ZyLHZuZtRNk6Q1pQ8Tw8iGWRsRZH1OwZkP+gC7kGUDP2+Ttau/Fyf71vde5CUH7u2kFuSyZQdlqIDoKxoxnS0Wi0lVEhxAr2KihSKMmpdn3Myqt2un2QkKz+XBSWAe8os40NIG1MpkvETMmhPCnuZDdEP7ltIysVCatVs3EAggFgshlAohBdffBHPPfcc4vG4qmJDbaFUKuHSpUtYWlrC4uIilpeXVcPoeVe6xk9ButnCpy/OUlBKDpu5j/Rncr/BRqOBXC6Hubk5pNNpvPjii3j++efRbrdx5MgRtNttzMzM4OrVqygUCjh79iyuXbt2v8351MOOrgR621UOON36kn4GO0pPThYGjki6TlqpOu0r/+xoObtnpxIn2Q5aOJyA0uKw01gHEXr0oQ7dcgc2pmDYCSrd6tOpWzmv7caEruDoiozsQzk2+Z996SQAyT4NgvUoQQtepnvQH1ksFlEqlVAqlWBZlqquUy6XUalUEIvFcPDgQQwNDaHZbKJWq/VEigMbi5nr64OUETLOhP/lGm7HDOnrfbfbxfLyMhYXF9FqtbCwsIBGo4FoNKoqbXG7tFarhcuXL2N1dVW1h9vtRr1ex8rKCgqFgio00w8eSEjqg1a3yLhr9b59+/CJT3wCyWQSBw4cQCqVQiaTwdzcnPL/ffjhh6oyOxtRj6DUIRdnfSHUF2eebzcJ5DVYr5JJ5swRzOfzCAQCCIVCGB8fV51pWZYKQ85kMpiZmXlgLflphx1VSdj1kV07yP7QKUt5ben7k+H9+jNsZknqAtNujOi/TY4p6XvTq4oMKvQ22uw7fZ7pAk+eJ88n5JixYxrkXNVjEvi9XB/s5hzZJp0VsHuGQROQwMboUeCeEkqGjCUDaYmVy2U0Gg3EYjGMjIxg586dag5YVu/WhDrDovc13/N+MkBPCk5an3ZjjNYfAzqLxSJarZbK3y0Wi0in00in06pQwPDwMBqNBrxeLxqNRk+JS26EIes294P7FpJ2AzwQCCCdTiMUCmFkZASTk5OIRqPYu3cvEokEXC4XZmZmcPv2bayurmJmZgaVSgXXr19X27B0u90eR7JeVEB2Pj9zuVw9k0AeY2fOOwl1XoumPSNlAaBarSKTyeDy5csqUGjPnj0qOnf37t2IRqOYmJjAyMjIwE04qbQ40W12i5ROi+pCVmqgTjSpDidBp38vr2/HIlAQynHCsSS1ZX3CDmqFJTn2ZbSjE/Q55KTEkAnQlRI7i8FpTtop5dInKi1Z/b52CzePtftepjZsdzDWQrYVwRSPbDYLy7KUr08m6XNvVq6HFFhkDO2UXifBLIvh65GobHd9rslC5UwJDAQCqta3y3U3oJLb1zEASxfGchxRSFYqlcfrkySFIRGLxXDixAmMj4/j8OHDOHXqFCKRiNpOaXV1Fe+9957am+zKlSvKh8e965ggGg6HlUPZroPZwPJ55GvZcToVwGPkoi+juTggYrEYEomEKstWKBTwjW98A6dPn8aRI0fwpS99CXv27MHo6CimpqZQKBQwMzODtbW1gVtAdcFgR7npShP7Uz9eHssFSdaEtTuekAsZn4v9pwtH9iUFm17yTk48SRXqObB6BC614kHrYzIpTCbfymLezIKzE2q6JSjz2/Tryuvr81b+pyC127rJTjjKz+wYAsYkyAjO7YxwOAzLsmyVHm5WEA6HkUqlVL7k2toaOp27Gyqvrq6i3W4jFoup/SZlHiL9epKOJZ2rC04ZPKRD+iGlO4QlLBnd6nK5EIvFsHv3bnQ6HYyPj6tdm1is3O/39xQUkWs7i9ivra2hUCjc10YFDxW4wwEWCoUwPDyMsbExTExMYHJyUgW20FG8traG+fl5zM3NYXZ2tifIhbuNsz6g3cDWoU9UO/qEgpKwm3C6RszJQoqBVThWV1dRLBaRTCaVJhKJRJSlzG25Bm0BBZzDtPWFS2Izqs3JItXPle91a8HpvvKedr6mzah8aXXaLbDSHz5okIKjX0tyq+vJiGdiq77v51h+rs9vp2tsdm1dwRoUSp2/w07od7tdVKtVlMtltTm6/O1MoajVavD5fIq+5FpIQUorkQXUSeNKIelkYepKC5/Z5bpHvzICWX7H4hUAetgPjludDZLgM95vms8DC0m/348jR45genoao6Oj+OQnP4mxsTFEo1GUSiUUCgVVEDqTyeD8+fNYWVlRxaIlZGM2Gg3k83mEQiFVjJf0CSGFICEnlJ0Fqlsxkq4lR84aldVqFdVqVfHW5OM7nQ5WV1dx/vx55HI5HDx4ELFYTFEW0Wh0oOhWOwvRiR4D7IMv7CwJXkvmsAH38tdkEIm8h6RwZV/zGNZj5KThM0mKiJNSWpBO95DpDlSY6BoYJHBhYvSinaCwY2PsBKU+r/T+t1O2Nntvp2DJ+SvHj93YlP0sr2UnHPn9IAhKlqULBoMIh8MA7lW3oiUJ3HWVHTx4sKf/XS4XCoUCGo0GMpkM5ufn4XK5VA1jWo202uhz5PoJ2O/eAmzMq5evpVXPOUxmj2kq/KP/lK6uUCik4lrkPpJer1f5MavVKkql0pNLAfH7/Th27Bj+xt/4G0in0zhx4gTS6TTW19exsLCAfD6Pd999F++8847avkpqGTr4eb1eRz6fRzAYVGXM+L2+qEm6TFqgMsrNTqDKBZT/pZBkPo1cCLgrxOrqKs6dO4eFhQV4vV4cPnwYnU5H7YY9iFaGhL4QSaEjP98Kdr4ffdHidSV9zuN0+q7b7SoHP7dek3Srfh4XWifrURbU5zmNRgPVanUg+1jPGbQD55/0+dgJMd2VoQtGO0G5mcVo97m8n94fup/S6Ti78TYoPkmWo2N8BfuBLoPFxUXUajWMjY2pvqeby7Is5PN5AFCKobTCZLI+MwS63a6yNKVrQ+9DGeyjB/7I/SY5J8PhMNLptBLedNGQMh0eHlbWMBVZulIoJCk0WUygXC7f1xzuW0hysQiFQsphOjY2hnQ6rSrOswrN0tIScrkc1tfXUSqVFO3qlJsiuWs5sZx8klIz3GpAy8mxGSfOKCoKZic6jnvseTx3N5+V9UwHYXLpsLMm+b5fgSivxQnE0HuZ7rHZgukEnRIF7iVEU0g6WcLyGnbXsrOcBzFwB7i/NgecqW4ngbTZ/TYThP08ny6oNzveyTVgN462M7guuVx389VdLleP1VetVuHz+dR74F6uuE6V2rkoKLCk8komiGOAhULs5pedkKSxw2P5TDLWgMqrz+dTlddk4QN5f7mjj4yovd/527eQTCQScLvdOHHiBH7mZ34GQ0NDeO6557Bnzx7UajXcuXMHlUoFFy9exLvvvotCoaAsSkl52YEClj+IO4qzsWjKc99AO5PdaQEk7BzJLITe7XaVpbu0tKQ0J15XXpNRuaFQCFNTU1hdXYXH41EBSIMImRIhP9Mji+0WGWlpyiogMvDGbmDbLVxOi5meKtLtdlEsFnsml6R07PI6+Zz67gUEKfdyufwom/apgZwzWy0i0jerK1FO15RwUkT0c7ea0zxff2/3W5zcAIS+2G53zM7OqteHDx9Go9HAlStXUCqVUK/XsbCwgLW1NRw4cAD1el359qLRqLIOKeQ472VAjF06B7/nHHeCbrXbsYD8nhti+Hw+hMNhRCIRtNttFYCTTqcxPDysPqeLjJZ0p9NBoVBQEbsP4irpW0iGw2G43W7s2bMHr776KtLpNEZGRjA0NITV1VVcvnwZS0tLuHDhAk6fPq22ZOkHXEABqCoKUmtgpwH2UWz6a6cJxU6VVEAgEFA5kZlMBvl83nHbJi6UKysr8Hg8WF1dRalUgs/nU88/CBNMQvfZAb20G+HUF1LjlLu76FX65bF2CyfHgQ5d46QGy/7w+/1q+x85EXWfmi6A7caYDGcfRPTzu6R1oZ/TrxVJPIzlJi0aO3+j/j3PsWNA5LgYlPmbzWYBAMlkEqOjo2g2m5ibm4PLdTeVI5fLweW663skXUofIOcp0Ds/ZdAM209Gv+tbUNkpUHpbUzHW+4+RxhSOXq8X8XgciURC3Y879DArgnEk/C4QCKBer6NWq6kKanaU+1a4L0vS5XKpnBSPx4PFxUXcvn0ba2truHTpElZXV7G0tGS7MW+/EyebzeLSpUvIZrOYmJhQCfzcHVtetx+NlJB1OSkkuWM1N9SdmZlRlRz4zJxkTpoytS1u2zVoCygVlM0S+2UkoxR4OnQt0YnishNQ8junc2TtR/aDnvumjxl9Akt/tv5/UKNbucAxOnErbZttaOf32+o8eb7dd1vRpfIY/bV+vc0oYfknoyWlX2w7I5PJAAAikYjaN3JoaAjJZFIFsjAGhAKz2+0iGo32RLE6zQ/5GSGVT71tdUjGxi6iWsYj0HDy+/1qCzCPx4OhoSFVuIZRuLR0aYXWajVVrEZakvejDPUtJHfv3g2Px4OJiQlVXu706dP44IMPkM1mcfHiRWSzWSWx+SDyx/aD27dv48///M+RSqXwsz/7s8ppywgn2fBSy7FLHZGwo1l4rXK5jA8//BDvvvuu8qMSTp3Mc6k9lctl5PP5gVpAuXgyFJx5S3o0Gl8DUBqpLujk8fR9OC1kuhAl9GvqE1YqUXJcSN+H/J59yAWei6R0D8j+H6QC2BKWZamoXYbzO0GfY3YW22bn8bX8rx/H6/YrKPXjpQB3siLZx9JvJus/b3dcv34dLpdLVc7xeDxYWVlRBb7pViqVSrh9+zZKpRLS6TRGR0dVJKhM06Ng0tvGsixVtFxfW/uxKOXaIZUv1l6l4O10OojFYpicnOzZto6BSAwsonBnX2azWdy5cwdLS0tYWlqyDeLbCvdNt0qLLpfL4c6dO8jlclhcXFQRUbIh5P9+UK1Wsbi4iEqlovyEAHoEpB3Np0+KrawTyaGzTuvy8jLK5fKWOTT6gis18UGDDLKRFLRuFch2dxqAUrjZLbT6cU7veQ276+sTz86/qQteuahuNnnsxt+ggIwBlb5+0C9LZKfoPAzslO5+riuVIjulWfqvtzsqlQpcrrvUKq2wcDiMaDQK4F7+JH11fr8fQ0NDCAQCSjjZoZ+56dS+8rWca/octYuaBqCsw0AgoCKxWVqPO0PpSi8NGPpiH8SI6VtIFgoFuN1uFa3a6XSQy+WwtLTkmHdip0FsBVZFKJVK+N73voeVlRW1xQp/tIQdbdfvRKQ2WS6XcfbsWayvr2+ZaBoIBJBIJFQt13Q6jU6ng0qlgrm5ub5/53YA0yoKhQJCoZCyJO0GMOEk0CQDoFvyuoYpBRY1SV7HLlhIQrco+F8GZuhVhOzKYkk6iNdlCsigCUnLsnr8SnJRYi1jnYK0Uzo3m+92SpFO18rnsftMHyd2zyPf27FG8lqk8vhs3FidY3y7s0KWZWFubg7f+c53EA6HEY/H8clPfhLZbBZerxfr6+uwLAsXL15EPB5HOBxW9Vr1eW4n0KQgtaNLdWymfMp7WJalGB05F3O5HK5duwafz6cquvF8jmHegywBjS3uNGXnS98KfQtJWonlclnx2ZlMBktLSz2Fb/Uff78DjXSty+XCwsIC3n77bfXd46JBSJvKivlOCAQCGB8fRzweV/Vaa7UaKpUK7ty5M1ALKGm4bDaLeDyuaHZ9AbFrL7nQSspdXwClZaZT83Iy6hq/bsnymroWKr9nwjRzYi3L2hDRKq8vJyi1VTnRBgmsy0maC+jdb1UKSckIEDq7Y8fo9CNQncaVfC37v5/1xYkGlLQ6WTI99mG7Y2ZmBvPz84jH4/h7f+/v4ZVXXlEl55aWllAqlfCTn/wE4XAY+/btU64QzlvOJ84V9jkpTztWyeVyjlLn+dKil4GSRCgUUmsDv19fX8f6+roK2GEJ00QiAa/X27OjC1nCUqmEtbU1LC8vb6nIOaHv0cAUDSbV84ek02k0Gg34/X7lr5E1MvWI0q0gfwip0EcB2XnUFmlZ6Pe3s1bY4YlEAjt27FCFdbngMol1u2ufEhQMtVpNLZa6FdmPImSnlevX2ur8+zmOz9TPeZtRw9KK5BiWltYgggsMA3ictglzshQepm22Urz6hZ1g7ocm3Ixq365gupXP51OV0Difme5Rr9dVMCbXayqUMhJdlg3VhaCEnnalr6MUuHKtJXisTNkDNgbOkQ2iccNjeD9ZHEZG60r0O8b6FpILCwtwu91YWlrCysoKIpEIXn75Zezbtw/lchlzc3Oqwno+n0er1UI+n1cJ99K/+KThdrsVhz08PIwDBw4gGo0qR7XksuWGnnI3Epr3sVgMu3btUvmVN2/eRCaTUSHXgwRuiH3z5k2Mj49jampKDX49V0rCzqID7K1GfZLZ0XLyOycaSF8MeS/pm5Q5mfJYHbo2zcnIepeDaEkS9Xpd7aFaKpUwNjYGy7JUNSm9z+z6qJ/FZzOavB8Fx4nS1d/r9D0XWjk+H4Txetoho7wZxXr69Gncvn1b7cG4f/9+dYzP58Po6ChKpRK63S4SiQQikYj6noKRvkwZxa4zOTqk5W73vewnyTDJ8+R15O/jFlpu990C7MyvX19fx8rKSk+2Au/Fa/WLvoVkLpeD2+1GPp9XFWf27duHWCyGUqmEK1euIJfLqQAYVpLPZDKqHNDHJSRdLpfa4WNoaAgHDx7E8PAwJicnMT09rRLMWbSgVCqh3W6ryvIejwepVArRaBSRSAQ7duxAIBDA5cuXcebMGayurqJSqXwsv+1xwrIslEolrK6uwu/3K/8Nv9OFpG5lEvIcuQmuLtgeVIvXBSWAnmfS6d5+LF9Z7JtaK63qQVtQJVqtFjKZDJaXl9FsNlXqF5OzH1QobnWOTtFu9v1WAlJ/bXetQYfcSBy42683btzAjRs3sHv3bkxPT2N8fFyV0+QuTGQMw+HwhmhWFhyQkPNOloCUxSakAaJTqzLSXc+/3YySl5XOuKMHfejcEmt5eRnZbPa+6rTa4b7Id8uy1N6KQ0NDOHLkCCKRCLxeL8bGxpTfKh6Po9FoYGxsDMViEfV6Hbt370a1Wu3Zk0x/3e3erf/H0nCsssPP9dB0LoDSUgwEAipdJBQKIRQKqSRZn8+HkZERTE1NIZFIIJVKqe/ZEQxQYW4OqQNuTMpqDy7X3T0yr169ivX19YFL/wDuBauUSiXVd04J11sJPOmTsBNqTtdw8nnon/G1Hkwg0z9kHiUDUuysUP52Wh0cp4NsQRIsfh2JRFCtVjE2NqY2JJcF/3WrTwZVARvTMO6HyrSzJJ2sS7s5ZycU5fiTf7olNChzeLOxWqvVMD8/j3a7jXA4rLaa2r17typhJ9NjOGfkGizbU/qr+VoP9LIsq2erLXktSZfK4/lf/hadxbJTjumLlMVhHgb3LSSvXLmClZUVDA0N4ed//ucxMTGBYDCI48ePIxgMql006L/hAkPatdFooFKpoN1uq9025Pes/cq9HLPZLJrNJjKZzIY9wMibBwIBTExMIBaLYWxsDIcOHUIsFsPOnTuxa9euniTXYDCIeDyuqANqMbQYZYPLKEh2SrlcxvXr11Eul/GDH/wA3/rWtxTXP2jodDrI5/NYXFxUZZ82W+jshJUTNcoFSqc/pYapp9no1ql+PSkEeYzcN5BKlCyJx2tLpYi/XfrnmIs16CgWizhz5gzu3LmDnTt34oUXXkAkEkE6nVZpBU4CSwZl8L0UotLHaycEN4OTJanTdPxe3leOE8uyVDqZzNslY6BHW29XOKXJAXeDMN977z2Vfz40NIRYLIbXX38dk5OTsCxLrdE+n69n02XOHZnvTANCWpoM7OG8A6Cq3zSbTayvr6tIca6xdlG1eoyIrgSTBmbfMo5lfn4eH330kZq7D4P7DuNiMmqpVEI+n0ej0VCCh4EsMuGaD04/X71eV3Sm3LaEFmc4HEa73VadxEo2pVJJabJsINKh9BUODQ0pGjWRSGB6ehp79uxRfDUrMUi/Gjtd7srOjuLWS7Rq+T+bzSKfz2NpaQnz8/OoVqsP1QlPM+6nEguxmeXXz/FO0avyeLvrbvZeXhu4J4Sl70O3KoB7mumg5kfqaLVayOVy6Ha7GBkZQSKRQCKR6KHb7yeP0M5K34qifdjv7QK3pLVrx2rIcwcBm/0OUuoA1JZTLN3mdrvVeJf50cC9XFopJKlcyHvKzaxZWo7HSUZGBsMxfkCvqkb5AaDnWeyUcPY740qKxeKmG2v0i76FpP4wzWYTH330ESKRCFKpFI4ePYpUKqU0B/LD8kd7PB5VCo7BAPomnuVyGXv37kWz2UQul+vZ14zbFHGycnuXQCCAkZERRKNRFX0aCoWQTCZVR8qqDlzwKIAltdtoNFQ9w3w+rzht/tVqNaytraFareLWrVsPbco/zWA/s/oGy1UB2NDHcvHkxADuWWSkbnSNUQ589hH3taOvWNbalVqlXOykRiotC7lISz8jo3V5XLvdtvW7cRwUCoUeJW1Q0Ww2sba2hnK5jLGxMZVoDkDVwLUrbu4UtOGErahTu+91ild/7XSfzdgMWYZO7lf4rKDZbKJUKsHlcilDgIGKoVBIsS+cM3ZpckzZazabPUwOrXXuUcp8d6/Xi2g02hPhKpVUfTxJZsIOPJ/KfD6fR6VSUfn8PPdBFaC+haSkSrh4nj9/HouLixgbG0OhUFCU59DQkKooz+K04XBYFQSQOTayQaUfiA5Z7hGYz+cV5cWFOhKJqOtHIhHVGTLvTVoOvA+1GUYrsmh5oVBALpfDzZs3USqVsLCwgDt37ijrWO5iwes8rFP4aYYUktxGjCkQ7EtpgUv6g4JTRhJKWkVOJqnIuFz3kro9Hs8GZ78u/KRFSDpYhorLMaaHphPyHP5u2cdUlh5VOtLTjEajgeXlZbjdbuzYsQOFQkEpFMxd41wAthaQm1l9ctHbakszvb+IzQI89GvxnnIcyLQGzudB8E32+/xyG0OyfaRhpZsCuJegL5k1WQeWYDQtq/2wjUdHRzEyMgKfz4dYLKZoXDu6W7c4gY15ufRz8rmZ081arTKgR/oy7xcPnDXLhuAkWl9fh9vtVpXYfT4fyuWyEmIsQkuOm40vrRAOaJ/P12NWc/Gis5eCSQbm0EIF7g0QaYXwNUP5abUWi0W1mXKxWEQ2m0Umk0GpVEIul1PpLI/CbN+O0ANX2J56CLhOf9rRbBJSgFF71c/TfUmEFJBOi6fTPeWxUnvlGJRBXFIRklrpoINzhW4OBu3YBebwtQ4ZyCPHhe5Tkq/169j5oZ2+dxKUunKlf8+xJ2MonpV+Jjivq9UqCoWCqipGC1IKK5lGpbsipGIj/+Qc5jnFYhHVarWHVZLXlvnIOsXKz6gYcz3P5/M97ONWLEO/6FtISh8j/7NEXblcRrVaVeY5HbkUhCwjxPqByWRSRZqmUim1ZxgtCIYk00phCgYbkQ0orUUZNECOu1KpKEu0WCyiVqshk8ng+vXryqeaz+fVAGFgEfcfI824mQaia7yDBMuylPVULpdRqVSUhmjnz7HzE8rJYteO+jkyoVlfiOXCa+fA1yeunKC8pt0CyHtw93Pgnqa6vr6OpaUlZLPZgUzzIez8cisrK/jRj36E4eFhFRUu3RYcA1Sa2N6ySpGdf1DeU29vaanq/ig7uk2nfOVrvpd+Z/me1pPLdXfLqPX1dWQymYGswaxDX7darRYuXryITqej3GfDw8Oq+AotbZmFIH3UpGNp4Ph8PnQ6HYRCIVURB4AqE/f222/j6tWrPaySHYMAbKyAJSH9nMViEblcDvV6HYuLi+o6D7s29y0k7TQ0csDFYhErKyuO50ohGY/HMTw8jFAohOnpaezcuROhUAhjY2MqD5E7f1Bwut1u9V8KQblvoJxs1Aar1SpyuRwajYba+3Fubg4//OEPlVmeyWQeOCDDTiAMEqRGxwr7tCjsHOf6ufwv/Q76gqVbcRRo+kLnBCfqjdeQNLuu8crnBKAKCMjjGeHLILVBhr5A5fN5XL9+HWtra/jEJz6Ber2u2B+5cOkLGqnMzfpQKrl8T8HFBZiWvLyuHezuY8ca8HOpMNHPzFxuBhU+K2DbtNttzM7OolwuY2JiAqlUSmUP6NGtso/4PWlV+vUZTxCLxTAyMgKv14tCoYBCoYBsNosf/ehHOH369Ab3mKyjDPSOJ7vvgXv9XyqVUCwWN0Qoy77fjP53wkMXKexHSEjrr1qtqkjWQCCAdrsNv9+PfD6v6FPuRJ1IJNTreDyuCtrynlKLkAFADLxhagZ9mtVqFSsrK8rUd9pA90EE36AJSIILF9u41WopH7NcKPXBzuAsvmeKBf2GdnQtg3UYuMPr6AKW58nzuejxeGlJ8tmCwaAKQgF6KUEAPedIOpah64NWdlDCTuAFg0EMDw9jaGgIkUikp7iCLCzB84GNypHTYqVbl/I7CmEpJOWY0c9xup9u7fI76a+W45R067MQxUzIdicrmM1mMTMzg2q12rNFnqRb+cccWualc43mXAqHwyiVSvB4PMowWV5eRj6f3xBZrkcfA/cC7iRryM/1ft3Mn6xTt/eDhxKSeu4TgA1SHIASXlxwuKPI3NycorgY/CFLwaVSKQwNDSEcDqu0jkgkgqGhIbVZMv1FtBRzuRxmZ2dVoXRGxFILYpFqvndadAmnBn+YRt9OoIBkAE+5XEY6ncb4+HiPQGIfykApy7JUH9HCl5NAX2TZ76TpnaxEHRSSkUhEPS8h6XgZ3apbMECv9clxeePGDWSzWayvrw80Dcc2kcImnU4r2m18fFzV8pSUu90+rrqvGOjNd5Psgk5/s3g1g4RkJK0dtSrf65/p/awfK38z15NnxfeszyXSlZVKRVVcImtA95nsbxlkx6BMGjnye85ly7KwvLyM5eVlVKtVzM3NqfEgFS593Ni5c5x+j5Nb7InRrXawEyhO5qysrtAPbeVyuZBOp5FMJlUh3lQqhXg8jlarBZ/Pp/IYa7UaFhYWkM/nsb6+jps3b/b4GB/kd0k4NfKgC0iCA5DtaVkWAoGA8jtwkNtFLcuFSGrwdpNB0ip6VDKweRURHqsvcE4+D0ntSj8nhSRrQAJQboVBp+H0uev3+5FMJjE0NIRQKNTTj7pfWv459ZNcFKWQ1K0/sgnye12g6kqqk+KqW8jyOPm8VKSfNUtSgkwRA7aAewVbZLoXGR7Ok2g0qoQpGSaZWgPc7fulpSUsLi6i1WqhXC470uNPGx5KSOraofz/KEB/JzX4aDSqCgeQumNUWi6XQ6VSUVV87MrYbfVbOJnkJNnMdH+WUKlUcOXKFdRqNezbt09pkDIdQNce5QIE9PofZZUMgsJ2K41RQtJ8W+W4SepNt2os694m3AxWAID5+XnMzMwgm82qhWMQYecTBu61DxdJSYHrfkm7oCwJO4tdr9vZ7XaxsLCwIfxfnqfnacrnlPchc6T7wbmAk91ot9u4dOkSZmZmUCwWUS6XH2XTbmuwjdhHLCbAsUIFkuyL3BhAUqOMaK1UKtsuF/WhhOTj1Lgsy1JCz+VyYXV1tWeRlcfxWeQkkt/dzz0f5LxnAcViET/5yU9w69Yt5PN5JJNJxGIxtU2YXIQYxSw1Sk4iOvjp55CLqxR4TtSaDrkQ2wX8ONH/9F9IfyeDk5hSBAA3b97ElStXkM/nUSwWH1FrPl2QiosMhgM2UtCdTkfRZ1KZkefpLgy+5nv2t/Rt04phkY5MJqMoeCm4ZWCevJedkGw0GigWi8o6ZN5eOBxGIBBAq9VCpVJBs9nEuXPnlBK4nRbwxw0ySIBzrqqTq0p+L+faVnP6acNTvbuobEwzcD9edDodpWHncjmsr6/3FBgA7i1+WwlJWTDeTog9jJCU//laV+ZkhLScvFJIMgAhn8+r3znoY1BvZ6ZBsRQl6xOzLWhR2J3r9Jn8XH5PAckUgdXV1R7r1s7id7oe+5vVZGQ0vNvtVgEmUkgynW2Qi4M8LLYLPfqo8VQLSYOnByxXVigUUK/XsbCwoHySuqCTPgtJn8odAuTip+NhJqPduXaMh07BSbpW+jHn5+dVkf1B9UnSH8f2YHstLi7i9OnTiEajyGazuH79OiKRCEZHR5Xrg7tGyMo1OgXO17p1T8HY7XYxMzODmZkZ5HI5nD17FvPz8wA2p8iJzXygckslgsGB0geZzWYHtn8NHg5GSBr0hXa7rSyJtbU1XL169WN+oieDZ0VjtqPCstksstks/H4/6vU61tbWkEqlcOLECYyOjvYISAAbqmfZBeYAvYE7FJbz8/O4cOEC1tbW8P777+POnTuP5Hc9K/1n8PhghKTBA8EsPoOHrehRXbg9zvub8WXwtMBlmdFoYGBgYGBgi/43hjMwMDAwMHjGYISkgYGBgYGBA4yQNDAwMDAwcIARkgYGBgYGBg4wQtLAwMDAwMABRkgaGBgYGBg4wAhJAwMDAwMDBxghaWBgYGBg4AAjJA0MDAwMDBzw/wFqVRRd9E8OsQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -2514,10 +2276,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:42.228758Z", - "iopub.status.busy": "2023-11-02T15:15:42.228401Z", - "iopub.status.idle": "2023-11-02T15:15:42.262904Z", - "shell.execute_reply": "2023-11-02T15:15:42.262036Z" + "iopub.execute_input": "2023-11-04T09:20:59.418331Z", + "iopub.status.busy": "2023-11-04T09:20:59.418011Z", + "iopub.status.idle": "2023-11-04T09:20:59.434230Z", + "shell.execute_reply": "2023-11-04T09:20:59.433564Z" } }, "outputs": [ @@ -2550,39 +2312,39 @@ " \n", " \n", " \n", - " 258\n", + " 30659\n", " True\n", - " 0.000012\n", - " [9762, 54565, 47139]\n", - " 0.000012\n", + " 0.000015\n", + " [30968]\n", + " 0.000015\n", " \n", " \n", - " 9762\n", + " 30968\n", " True\n", - " 0.000012\n", - " [258, 54565, 47139]\n", - " 0.000012\n", + " 0.000015\n", + " [30659]\n", + " 0.000015\n", " \n", " \n", - " 30968\n", + " 258\n", " True\n", - " 0.000022\n", - " [30659]\n", - " 0.000022\n", + " 0.000017\n", + " [9762, 54565, 47139]\n", + " 0.000017\n", " \n", " \n", - " 30659\n", + " 9762\n", " True\n", - " 0.000022\n", - " [30968]\n", - " 0.000022\n", + " 0.000017\n", + " [258, 54565, 47139]\n", + " 0.000017\n", " \n", " \n", " 54565\n", " True\n", - " 0.000022\n", + " 0.000026\n", " [9762, 258, 47139]\n", - " 0.000022\n", + " 0.000026\n", " \n", " \n", "\n", @@ -2590,18 +2352,18 @@ ], "text/plain": [ " is_near_duplicate_issue near_duplicate_score near_duplicate_sets \\\n", - "258 True 0.000012 [9762, 54565, 47139] \n", - "9762 True 0.000012 [258, 54565, 47139] \n", - "30968 True 0.000022 [30659] \n", - "30659 True 0.000022 [30968] \n", - "54565 True 0.000022 [9762, 258, 47139] \n", + "30659 True 0.000015 [30968] \n", + "30968 True 0.000015 [30659] \n", + "258 True 0.000017 [9762, 54565, 47139] \n", + "9762 True 0.000017 [258, 54565, 47139] \n", + "54565 True 0.000026 [9762, 258, 47139] \n", "\n", " distance_to_nearest_neighbor \n", - "258 0.000012 \n", - "9762 0.000012 \n", - "30968 0.000022 \n", - "30659 0.000022 \n", - "54565 0.000022 " + "30659 0.000015 \n", + "30968 0.000015 \n", + "258 0.000017 \n", + "9762 0.000017 \n", + "54565 0.000026 " ] }, "execution_count": 23, @@ -2674,10 +2436,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:42.267665Z", - "iopub.status.busy": "2023-11-02T15:15:42.267314Z", - "iopub.status.idle": "2023-11-02T15:15:42.279280Z", - "shell.execute_reply": "2023-11-02T15:15:42.278046Z" + "iopub.execute_input": "2023-11-04T09:20:59.436922Z", + "iopub.status.busy": "2023-11-04T09:20:59.436555Z", + "iopub.status.idle": "2023-11-04T09:20:59.442455Z", + "shell.execute_reply": "2023-11-04T09:20:59.441913Z" }, "nbsphinx": "hidden" }, @@ -2722,18 +2484,18 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:42.284954Z", - "iopub.status.busy": "2023-11-02T15:15:42.284327Z", - "iopub.status.idle": "2023-11-02T15:15:43.037624Z", - "shell.execute_reply": "2023-11-02T15:15:43.036755Z" + "iopub.execute_input": "2023-11-04T09:20:59.444739Z", + "iopub.status.busy": "2023-11-04T09:20:59.444364Z", + "iopub.status.idle": "2023-11-04T09:20:59.897736Z", + "shell.execute_reply": "2023-11-04T09:20:59.897071Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUoAAABzCAYAAAD+K0vUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmwklEQVR4nO2de3BV1fn3v+d+SULuJDEBxbEIEpIgYhVtBaFVqAoWq1VaHZXREatO663VsdrOz+mIVls7dqit1RkvbaVjlbbWCyLWC0Kt3GxmvBIgBJJDkpPk3G/r/SPvs1h7nX0ucA7Zx7PXZyaT5Jy9d7K/53nWetaznrW2hTHGoFAoFIqMWI3+BxQKhaLUUQ2lQqFQ5EA1lAqFQpED1VAqFApFDlRDqVAoFDlQDaVCoVDkQDWUCoVCkQPVUCoUCkUOVEOpUCgUOZiQhrKrqwtjY2O675122mnYtGlTzms8+uijaG9vx+zZs9HR0YFnnnmGv/fUU0+huroaXV1d6OrqwsKFC/l74XAYV155Jdrb29He3o6LLroIPp+v4HuaCIqhW39/P7797W+jo6MDM2fOxK9+9Sv+3v3338816+rqwqRJk/CjH/2Iv79r1y4sWLAAM2fOxMyZM/HCCy8AADZu3IjTTz8dp5xyCmbNmoU77rgDqVSqoHstFsXQjBgYGEBTUxOWL1/OX8umWU9PDxYsWMBtUWTz5s38nFmzZuH6669HNBoFAKRSKdx2221ob2/HjBkzcO211yIWix3RfReTYmh43333obGxkd/zypUr047R0zebLwPAW2+9hXnz5mHWrFk45ZRTsHnz5rzOKxhmMHPnzmVvvvlmzuM2bNjA/H4/Y4yxvXv3svr6evbZZ58xxhh78skn2bJly3TPe+SRR9iKFStYKpVijDG2atUqdvvttxflfzeSfHW74oor2N13380YYywQCLDOzk62devWtOMikQirq6tjH3zwAWOMsWAwyKZNm8befvttxhhjiUSCDQwMMMYY+/DDD9nnn3/OGGMsHA6zs846iz355JNFuKtjS76aEcuXL2fXXHNNRtuSNRscHGRvv/02+8c//sE6Ozs1xwaDQRaLxRhjjCWTSbZ8+XL28MMPM8YYe/zxx9nChQtZNBplqVSKrVq1iq1Zs+aI728iyFfDe++9l91yyy1Zj9HTN5sv79+/nx1//PGsu7ubMTau//DwcM7zisGERJQWiwV+vx8A8N5776Grqwvt7e24+uqrkUgk8rrGokWLUF1dDQCYMmUKmpubsW/fvrz+digUQjweRyKRQCAQQFtb21Hfy0RSDN127NiBpUuXAgAqKirw9a9/HU8//XTacS+++CKmTJmCuXPnAgCee+45nHHGGTj77LMBADabDY2NjQCAOXPm4MQTTwQAuN1udHV1oaenp5BbLRrF0AwAnnjiCUybNg1f+9rXMh4ja1ZXV4ezzz4bFRUVacd6vV44HA4AQCwWQzgchsViATD+GS1evBhOpxMWiwVLlizR/YwmimJpmI189JX57W9/iyuuuAIzZ84EALhcLtTU1BTl/8nFhOYoY7EYLrvsMjz00EP46KOPcPnll2PHjh38/bVr1+KnP/1pzuts2LABw8PDmDdvHn/tnXfeQVdXF+bPn49169bx16+//npUVVVh8uTJaGpqwsjICH7wgx8U98aOMYXoNnfuXDz33HNIpVLw+Xx49dVXdRu1J554Atdeey3/vbu7Gy6XCxdccAG6urpw5ZVX6qYsDh48iL/+9a+44IILCr/RIlKIZrt378batWtx//33Z/0bsma56OnpQWdnJxoaGlBdXY3Vq1cDGP+M1q9fj9HRUcTjcTz//PMl0fEU6q/r1q1DZ2cnzj33XLz55pv89Vz6ZvLl7u5uhMNhLF68GF1dXbjpppsQDAZznlcUjlmsKgCADQ8Psx07drATTjhB896JJ554RMOhnTt3sra2Nj4kZIwxn8/HgsEgY4yx7u5u1tbWxjZv3swYY+yll15il1xyCQuHwywajbLLL7+cD0VLnWLo5vP52FVXXcU6OjrY4sWL2XXXXccuvvhizTE9PT3M4/GwwcFB/tpNN93E2traWG9vL0ulUuzHP/4xW7Fihea8kZERdtppp7Ff/vKXR3+TRaZQzVKpFFuwYAF7//33GWOZh3R6mhFvvvlm2tBbZGxsjC1btoz96U9/4n/z3nvvZV1dXezMM89k99xzD6utrc1+o8eQYtjdgQMHeKrhnXfeYY2Njaynpyenvtl8+cILL2SnnnoqGxoaYrFYjK1cuZLdeuutOc8rBobPetPwIx+6u7txwQUX4I9//CMfEgJAQ0MDvF4vAGDmzJlYunQp3n33XQDA448/josvvhhutxtOpxMrV67U9G5fVvLVraGhAU899RR27NiB119/HRaLBbNmzdIc8+STT2LZsmWoq6vjr02dOhULFy5Ea2srLBYLvve97+H999/n74+NjeH888/HsmXLNBNApUw+mo2OjmLnzp247LLLcMIJJ+C2227Da6+9hkWLFmmO09MsXyorK/Hd734Xzz77LP+/7rvvPmzbtg3vvfcenyQrRfK1u+bmZp5qOOusszBnzhx88MEHOfXN5stTp07Ft771LdTW1sLhcODyyy/nNpntvKJQtCY3C/j/PVQ0GmVtbW1s48aNjDHGXn/9dQYgrx6qu7ubHX/88eyVV15Je6+3t5f/fPDgQXbSSSexN954gzE2HhldddVVLJVKsVQqxW644QZ23XXXFefGjjHF0O3QoUO8Z//www9ZU1MT6+vr4+8nk0k2depU9vrrr2vO27NnD5sxYwYbGRlhjDG2Zs0atnTpUsbYeEQ0f/589rOf/awYt1lUiqGZiF5EmUkzQi+i/PTTT/nnEI1G2aWXXsruuusuxtj4hNjQ0BBjbDwy6uzsZOvXrz+i/7OYFEPDffv28Z8/+eQTNnnyZPbxxx+nHSfrm82X3333XXb22WezSCTCGGPsxhtvZKtXr855XjGwF6/JzY3T6cRf/vIXrF69GslkEvPmzUNnZyd/f+3atejr68PPf/7ztHNvvvlmjIyM4M4778Sdd94JAHjggQdw3nnn4bHHHsNLL70Eh8OBVCqFH/7whzj33HMBjJcpXHfddWhvbwcAzJgxA7/73e8m4G6LRyG6bd26FTfffDPsdjuqqqrw/PPPo6Wlhb+/YcMGWK3WtIhp6tSpuOuuuzB//nxYrVa0trbi8ccfBwD8+te/xtatWxEMBnnJ0He+8x3cfffdx+L2j4pCNMtFJs1CoRCmT5+OaDSKkZERtLW14fvf/z5+8YtfYOPGjXj00Udhs9mQSCSwaNEi3HPPPQCAkZERLFiwAFarFalUCrfccgsuvPDCwgQoAoVoePfdd+O///0v7HY7bDYbHnvsMUyfPj3n38zmy/Pnz8dFF12EOXPmwGazYdasWVi7dm3O84qBhTG1w7lCoVBkw/AcpUKhUJQ6qqFUKBSKHKiGUqFQKHJQcEP5wQcfYMmSJZg2bRrmzp2LOXPm4P/+7//4+wsWLMCLL76Y9/XWrl3L12vW1dWhtbWV/14OZT16KA0LQ+lXOErDHBQyZb5z505WX1/P/v73v/PXBgcHNWupzznnHPa3v/3tqK5/1VVXsUceeUT3vUQicVTXLJRkMsmSyWTRrqc0LAylX+EoDXNTUET5wAMPYNWqVZrla3V1dVizZk3BDbjMU089hYULF2LFihWYPXs2tm7dildffRWnnnoqOjo6cM4556C7uxsAsGnTJs3uLR999BFOOOEEAIDP58M3v/lNvgvR1VdfzY976KGHcPrpp+PUU0/F+eefjz179gAYLzFasWIFzjvvPLS3t+PAgQNFuy+lYWEo/QpHaZibguooP/zwQ6xYseKozl2/fj3Wr1+PP/zhD3mfs2XLFmzbtg0nn3wyBgYGMHPmTGzatAmzZ8/Gs88+i0suuQT/+9//sl7jmWeewbRp0/Daa68BAIaGhgCMbwLx8ccfY/PmzbDZbHj66aexevVq/POf/wQwvk3Wtm3b0NTUdFT3mwmlYWEo/QpHaZibok7m3H777ejq6kJra2vOG73ooouOSFxgvOD05JNPBjAu9uzZszF79mwAwMqVK9HX14f9+/dnvcYZZ5yBf/3rX7j11lvx0ksv8Z1eXnzxRWzYsAFz585FV1cX1qxZg7179/Lzli5dWnQD1UNpWBhKv8JRGqZTUEM5Z84cbN26lf/+4IMPYvv27XA4HIjH44VcWpfKysq8jrPb7Ugmk/z3SCTCfz7zzDOxfft2fPWrX8ULL7yAefPmIZlMgjGGn/zkJ9i+fTu2b9+OXbt2YdeuXUf8t48UpWFhKP0KR2mYm4IayjvuuAO///3v8fLLL/PXYrFY0fasy8YZZ5yBXbt24aOPPgIA/PnPf0ZraytaW1tx4oknYs+ePXxbMHFvv927d6OyshKXXnopfvOb3+CTTz5BIBDA8uXLsXbtWh7Cx+NxbNu27Zjfh9KwMJR+haM0zE1BOcrOzk68/PLLuOeee3DjjTeisbERDocDN9xwg2Zd56pVqzR7QK5btw4+n++IcxsijY2NePbZZ3HllVcikUigtrYW69atg8ViwXHHHYc77rgDp59+OpqamrBkyRJ+3qZNm/Dwww/zNbcPPvggqqursXLlSgwODvIt5BOJBK655hrMmTPnKNXJD6VhYSj9CkdpmBu11luhUChyoFbmKBQKRQ5UQ6lQKBQ5UA2lQqFQ5EA1lAqFQpED1VAqFApFDlRDqVAoFDlQDaVCoVDkIO+C8yN5rOyR4vF4cP7556OzsxNerxc1NTUAgGg0ilQqBYvFwv8+Y0zz5XQ6UVlZCcYYDh06hEAggO3bt+PVV19FOBw+Zv/z0ZSfHksNvV4vlixZgo6ODng8HlRXVwMYX2GRTCbTNKTvpCGtlVUajmvo9Xq5htFolGtIyP97Jjt85ZVXTKlhZ2enxg5FDbPZYan68oQ+hTETTqcTHR0d+MY3vgGbzQa73Z7zw6Sbs1gssNlsAMY/jEQigXg8jo0bNx5TcUsNh8OB9vZ2LF68WKOhqJOMrCFjjC9dUxqOaygjaipitVphtY4P0MgOY7EY3njjDVNquGjRIl0N87FDoPR8uSQaSrvdjpNOOgnz589HMplEPB6HxWKBw+HgxpeJZDKJRCIBxhgcDgdsNhs+/fRTXSMvZ5SGhSNqSE5KGpIDZ0JpOE65amjof2Cz2eB2u1FVVQWn0wkASKVSiMfjYIylDXf0YIwhkUjw3oi+vF4vwuEwH3qWKxOhIaVAyhXSsLKykmvIGOM751D6JxvJZJIfZ2YNRTs8Ug1L2ZcNbSjdbjdaWlrQ0NAAr9cLYHy3j5GREd3j5SGPOAwiUR0OB7xeLyZPngyr1Qqfz2d42H4syaahOKShPBBBRptLQ4vFgkOHDpW9hk1NTZg8ebJGw0AgkNa45cpnkZObUUM9O8xXw1L35ZKIKCsqKnh4nUql+Jec9JV/lnso+kDsdju8Xi88Hk/OcP/LTiYNKZokxIZS1C2bhh6PxzQayveaSqV4lEjoaSg7vc1mM62GenaYTUORUvdlQxtKj8eD1tZWNDc381lX4LCYNpsto0GKglPDQFRXV+MrX/kKqqur4ff7EQgEJuBujCGbhgA0+R09J6cvPQ2nT5+OSZMmYWRkpOw1bGtrQ3Nzs2ZjV9kO6Xdx5pZ009OwpqYGM2bMQE1NjSk0zMeXRb+l3Llsh2LDWiq+bGhD6XQ6UVtbi7q6OrhcLgDpvTbNxpJ4JC4JKpYYEF6vF83NzQDAr1uu6GlIWCwWPhtLEabVauVOLud7zKxhXV1dmoZiw2i1WjWjHHGCTI6YCI/Hg+bmZqRSKVNoqGeH2XyZIsRMIx+gdOzQ8KF3ZWUlqqqq4HA48jpHNEpqAOg1Etlut2PSpEkIBAIlMWN2LMmkodhDk04A0vJFYq5SPNfhcKC6uhrBYNDUGmYiHzt0OByoqqpCVVWVaTSsrKxMG8WIOoq6iQ2kbIel5suGfnoulwv19fVoaGjI2FvIxkriUsJX7o2o925sbEQ0GuUzcOXK0WgoRueihuLQyEwaUjRUX1+vGdlkQ7RDu93OZ2tJw1QqBafTiYaGBkQiEVNoWFdXh4aGBrjdbgD66TK975nssJR82dAljBaLBW63G263m4fleuRTViHmOaxWK5xOJ5xOZ84awi87ooYU2egZ6JFoSFGoWTS0Wq1pGh4Nog3KdljuHImG+ZQJlZovGxpRer1eHHfccWhtbYXT6eR1UtmEloeI5NgWi4UXrDocDtTW1iIYDOY9pP+y4vV60dLSgpaWFjidTr6iQdQpWyNJs5J0TjweRyKRgM1mQ3V1NUZHR8t+2EilLS0tLXA4HIhEIlyDXCkLAJpjRDu02+2oqanB2NhY2TeW+WgoIjeW5MtU91tqvmyoB9jtdp7XoNCbkudENgMVZxzpd4qG3G43XC7XMV3XWgpYrVZUVFSgqqqKP2hJnlzIpAG9J2tIjabL5YLL5Sr7iNJut6OiogKVlZWwWq1cQz3d5EkdQBsBAVo7VBqWhy8b2lDKQ5NEIpGWcwSgOYbEpshHrrFMJpO8NyrnFTmEzWaDy+Xi+ujVrQHja3D1NBTzQmIiXaxnLXeoBpCGjWJFhei8oh1Sp072JpYNyfqZSUNq0MgORQ1pKaO4coex8dU45MuihqXky4Y3lNTjAukNpVh0SvVtJH4gEODL9AhRWLrW0eabvixQQylqKBfr0+wh1bfRa8FgkD+7mcqGZCfXy3mWG2LBudhQynWRtJwOAHfscDiMeDyu2eVKdHIzaeh2u+HxeHhDSf4n3r/H4+F2SNoEg0HEYjFNQ0nF6qXiy4Ynn6hGDUgvHKc6K8YYotEo/5mOoR1yqEEVHV38oModceca2SnF1QyxWIwfQ9jt9oyrJ8SevpyRayNFOyT7JNsihxaPsdvtfH293EGZRUMg3Zfl10UN5WNIQ7mTLxVfNrShpCJU6sWpByGxPB4P7HY7wuEwBgYGND0O1b1RVCkKnEgkEA6HEQ6HDQ/ZjzV6ReVifsfr9XINDx06pNHQ6/WisrKSr8kV85nxeByhUMg0Gtrtdo0dUkNotVo1dujz+TQaUl6O7NDMGpIvkx1SByHbIWlI51VWVmLSpEm6GpaKLxveUMrLwYDDkwxUK5lKpRAKhfh5NARyOBwao6VzxeGjGdDLLxK0uUAwGEQkEtHoRQ1ApokLs2lIyPdNtZLJZFKzKYPYAIgTYyJm0VD2ZVkH2Q7F1TkVFRUaXxbrLEvFlw0felM0pFduYbPZ4HQ6EYlE4PP5eC9FSeHa2lp+vJwHoSLVci8PEjsU2dmpkNdutyMSieDgwYN8GENRVE1NjSa3RrjdbjQ2NiISiZS9hoB22Cg6KjA+LHS5XIhGo+jv7+ca0mRkbW0tj55EOzSbhmRvenZot9t52VB/fz/PO8q+DKAkfblkGkogvcGjXigWi2FwcBDxeBzRaBQWi4Wv/9TD5XKhrq4OgUCg7OvXAK2Byr0xaRiNRnHo0CHE43HEYjGuoai/iMvlQm1trSlqAAFoOgvZDsnJo9EofD4f373carVyDfXqAqkRNYuGmYIe0Q5jsRi3Q9GXM0WipeLLhjeUYk8uviaG8YlEghewkoGKeQwxryQn4s2A3n2K+gHjGoqPKJDrAcWkORUJy9coZ0Sbk7+IZDKJWCyGeDyOeDyu0VCcqRXt0IwaZntNtEOa/NKb7S41Xza8PEjuhfSMNBaLYWxsjM8gUnE6zXpTGE+7KcsPMSpn9DSk18UoSdbQarXyRhGARkMq79C7bjlC9ykPG/U0HB0d5SkgssNMGtJEhpk0lIMeWUOaOBRXgGXSECgdXzY8ohQRG0sRWi1C4splBED6sN3sZNMwHo/zSTI9DeXSDjMgd9R6ULSTj4aiLZpFQz0y2SHZ4pfFlw1tKMWSIKfTqTFWsWeiEoFIJIJgMAiLxYJwOKwxRDkK1Rs6lSNynZk4lBY1jMfjfMYxGAzCarUiFArl1NAMiM4raig7KpX7RCIRjI2NwWazZdTQbGTyZVnDWCymsUOLxZKXHRqtq+ERpZyL0NsQg/JqZKDA4eJpMbQ3m4MTeqtI5F45mUwiGo0iEonwXaJFDWXMpiU5OqGniaghOTlpSJhFLz307FBG1FD2ZT1KRU9DG0px5QKVq9Dv4vAvkUggGAwiEAhgYGAAqVQqbUt4aigzzaCXK7KGNByU7z0ajWJsbIxrSEvHRDJpWO7Qqhpxj0m9td7RaBSjo6MZNZRHRJSXy9V4lAN6dkivHamGpejLhjaUNItI5SoOh0OTsyBhIpEI/H4/hoaG8PnnnyMej2N4eJhfR+x1xJC/3I0TgCZnBoxvfiGusSVCoRB8Ph/8fj96enqQTCY1GoqIw3czOHkqlUIsFkM0GgVjjBeXy/laWcNEIsE1JKcmB6ffxRncckbPDvXyj6KGX3zxBVKpFIaGhgBoNRQ7m1LQz/Cht97OIXrH0DKmcDjMzyFkYQH9J8CVK/lqGIlEEA6HeU4om4biiohy15CW3OmtJ5ZLW0hDWlInayhf1wz6EXp5XiCzhrRC58tgh4Y2lPT86aqqKjQ0NKQlckng0dFR7N27F8PDw3ydKC0lozCfvotLHsUJn3KFNKysrER9fT03Mlp3SwSDQRw8eBB+vx+Dg4MAoNGQNucVIyEy5nLXMJFIIBAIYGxsDPX19Zp13qKTBwIBHDhwQKNhJBIBAI3u4sRGNBrlG2mUM/F4HKOjoxgZGUF9fT0AaOyQdAwGg+jr6+MaMsY0GtKae3FzDRp1mnroTYldMUSXSwXE/FooFOJ1fnQsTQCJvZC4PVM5k0wmEYlEEIlEeM0ZoM31UP1aMBhEMBhEOBxO0xCAxqBFDcvdyUkf2mFfLo+SawBJQ6pFJagAna5ZKjvfTATky9FoVPehYQB4LSoFMXp2SPWUoh2ShkZiaEOZSCQwNjbGi3gpIpQhp80Uessz3slkkn8Y5T7sSSQSGB0d5TvYyKVVhOi0eoirnWiH6kAggEAgoBkalSOhUAh9fX0AgObmZjQ2NvKOV+RIJhUYYwiFQujv78fAwADfJrBcicfjGBoagtvt5nMOmdJAR5L3jkajGBoagt/vN1RDw4fefr8fXq+XF/BSVCM/N5kcXc5/AOmlLDRLHgqFDO+JjjWxWAzDw8PweDx8tZK4LyIhdjZ6GhJk3DSUotU85UwkEkFvby9isRimT5+u2d9UtMN8co5iJETDzIMHD5Z9Q0nr4GkDFr3Za0C7qCGbL9OxtD0g7fVgFIY+yEMOq8WaSBFK+IqzuTRjLpYjiOfp7ahTjoidCKC/MQEdJ2tI9anio1YJyhfRMtFyhxo/q9UKh8OhO7LJpCGtXQa0s952ux1Op9MUz8wBDjeC5I+ZRjZiSky2Q0DbDtBmGg6Hw7wF5+KKCFlc0XGpmj8UCvEVJ6FQCH6/X3ets8PhQEVFBbxer67Blxu0tJNKrGjoIxqqmBsiDcPhMIaHh3nSnbSiyHTSpEmmeAojcPiZQl6vF1VVVQiFQmlRIOV5RQ0DgQB8Pp9mMoca2urqakyZMgUA+LOuyxkaTjscDrjdbt3Im+YbgsEgt7NwOIyhoSHuw3a7nbcFXq+XPxs903PrJwLDuzlxKCPXoBGUSBeT4lRmQOG4vLEGiV3u0ZA8HMxUlkFF1eLkDGkor9Ch/JyZIkrqmOmeM0XlooZkl6IdikNOu92ueRaPGRDz3Hro2SFtuaanofjwPCPt0NBPL5VK8VlveaZMXqdMa2ypURgaGsLu3bvR39/PHZs+BCoaJoMvZ+RZb0C7P6WYtxVr10jDnp4evkJC3MafMcajzHLXEDi8a404BJdTQaRhNBrlObbh4WHs2bMHPp8PAPjqMvG51maIyOmeZTvMpKFoh8PDw9wOAfAdhWgGnTQ00g4N9QCxPEh+bKpekSqtnGCMwe/3o7e3l9diiQ1lKpUyTY6SSi7IeQH9pYgU+VA9WiYNgcNPGMxUhVBuUOcgl0LJHbZcF8kYw8jICPbv369ZoUOdl1jJUe6dDZXxiXZI6PmyrGFvby+Ghoa4HdIcBPmy0VvVlcxkDvXotA+ixWLhOUy9cgLKdVBRud5wXfxermTSkIyKlpUdrYblrh9weEKBtKLIkuxQrLGU9aDNHSh/rreyxCwaynYoakhLHDNpGAgE+AIIMQoVl9GatuCcht4UVdKyMIpiyEDlsgDqhfr6+uDxeABAEz2WwiL6iYKiaIoqRQ3FaFPeoYUiyn379sHtdqetRBGXjZV7LWoymdQU48t2SLrKkzuMMYyOjmL//v18soYiSBohmUVDMY0m+jKlHWg0qGeHFFG6XC5uh2KnTQ2waZcwiqsX9CYk9DYmIGgmnD4AOk9cSWGGhlLWULxvsUfOpKGYcyPKfZgoI68nFmv8xEhJrsml4WYoFNIsscs2mVGukIbyCFD05Wx2SFUGpaqh4Q0lreOUHZWMkGbE5POGh4exd+9e/gQ8IH2LpnLPTwLaqFzMsckaylF5KpWC3+/Hnj17UFtbq5nEoOS5XsFwOSLuHiQODSnvTTYq5zDFqLyurk7z2AJ5Qs0MGtJstqwh+XkmO6TJnJqamrR6VMpP6lXDTCSGz3qLYbXcC1HyXM6v0fKwwcFBjI2N6a7NFa9TztBEjfiIDACaiZlM+bVgMIihoSGuoTxLaabOhnJrmexQLIgWCYfDGBwcxMjIiCZHKepnBg317FBceUMa6uXKZTsE0ncRMlrDkokoxeWJorjihqoi4jN09IbeZmksabhDGgLaJZ3U2ehpKCbeZeMtJSM91pCT06QXoNVQ1ElGbGAJUTOzaKhnh0B+nQ1N9OhVHQCloaHh5UGU+JWHjcDhHJreZA7VY1FuSG4kjQ7VJ4pUKsXr0kQDpWGfXBBNUO6NhuaZGkozFJyLZWqiI5P9kIZ6OUq53EVEXvFUztC2fKFQKC0VBhz2ZbmhFDWkHKU4kikVDQ1vSbJN/ev11oSYgJcnMMwE3bfekBHIT0NxhlY+3yzo6SNGQ7k01OtozIaeD4uTOZmicnnCVrbDUpiUNbyhJMQokHrycDiMsbEx3c1jSXi93Jw421vu6A1PxMmDUCiE0dHRjBrSUEnvwVp6RdjliJhmEL+LdjgyMpJRQzE3J6ePzLIfJZC+ixctQQTG85B+v193M23Zl+lc0Q6N1rBkGkpCNDKa8dbLa1DInimSEo8zG/lqKJfDiMl3wFz1qHIO7Eg0zOTIZtJPD1lDObVB6Pmy/L7RQY+hDaXFYuG7tsgF41RuICbYRcReSJw1N8tMLUEa0o41ckNHk16ZNKSyDb2o3CwObrVa+XZoestexTpVGbF20OwaOhwOXQ3FWtR8fFnedhEwPpVhaENptVr5ziBispYaPXmvPxGaRaOZNHmtuFkgJ5c1FAuAs1UO0KodedhTSvmhYw3ZITk5QdFgthwlDb3F0hd56G4WDd1uN9xut6Z+lDTMliuXfVm2w1LwZ8MjSr2SHiD7OmNRfL2yDDOVBwFHVzsqr+jRu55ZKgeAzBqSDWayR9JQntQRc8dm0DBT2oLIpJ+eL8vlfqYvDwLSa6REw8yGWJelV5Zht9sN3xV5IsjU0eST06Ght7z8jpLwTqcTDoej7B1dbCBlDeXljSJ6pS3idaisxegtwiYS2Rbz2dBCjCj1fNn0O5zLHIkQehGlfK1ybyT10IuGMiFGQ/I15Nlzs6A3sslGJg3pWmbY6q9QyJfpZ6KU7NDwhlKvHABAzkkZvb0B6TqEGXJD4syqqGE+Qxax4FyvtIWuX+6QfvLyT/o5m7OSHcpb2ZkpxwtoR4KyVrlyjbQYQm9kQ9c0WkfDG0oAug6aaThE0JA7WyGw0eJONJm0ykfDbPkjMyB2Nnr5tkwdN0WTmfb8pGubgUwBS6b0ECFqqMqDdBDLBkSB803e6u2ZaLaJnEwa5jtjqLe9mNkoxA7FSRzRoZUdHp2GperLhu8eJG6KAWi3V8omjrjjC33p5TfKHeqJ5c0I8nkUhtJwHL1603ztUCzD0ttgxCwair5cqIalaIeGR5R6WzKJ5COQvAIi32iqHJDLUmTy1UFPQ/F7OSNHhfI9F6KhWewQOLw5bzlqaHhDSRENkD5kzDdsFzcEpUjK4XCYoixD7I2B9EkxmnnNpoO4Cgowp4Z6dkiQptl0kO2QIikzaSjOXhdDw1Kyw5JoKOUwWyTX7LdYOE3nl8KOyBOJXHQv/pxvZyPml8ymoZ4dEvlG1qIdipNCSsOj05COLxU7NLyhlDeWlYXONcEg794CHC44N8NjQvVyQ4Q8pMx2DcrRiQ0lrR8vdw317FB8T/yeCbJDynOShmaxQznPq1dilq+GpejLJbFxr7wpqjiDmMvJGWNpzwYX1z+XO/lomOsJdqSh+JAxWpnjcrmO+T0YTT4a5tq2jzGW9qA20tAMdkgddqbORs496lHKvmx4HWWukpZcvZDFYuHLFcUHEYk/mwm9kooj0VDcj9FMGmaaPDgSDcVcmmiHRkdDRiCngHJNOtJxdrtdV0Oj7dDQhpKMiwzM4XDw92w2Gx8S6u18Q7hcLkyePBlNTU3weDyw2+1wOp18J5NyN1AamtCXqKHVatU8eD4Tsob0mXg8Hng8nrLXUHTQYmjo9Xq5HXq9XrhcrrLXENA+wZOe502v5+vLDQ0NmDx5MioqKkrKlw3fPQhIn7Chn7OtoyVsNhvcbjd3cOp5KK9hBvQmbArRkGbKS6Ennyj0Vt8crYYUEZlpUwwxAtfTMJ/d8vU0LBVfNjSijEQi8Pl8iMfj2LFjByoqKuByueDxeBAIBLB9+3b09vait7c3Y35oaGgI77//Pvbu3YuWlhbU1NSgv78fu3fvxv79++H3+yf2piaYaDSK/v5+xGIx7Ny5syAN9+3bh+bmZtTU1GBgYABffPEF+vr6MDQ0NMF3NbFEo1EMDAwUxQ737duHlpYWVFdXY2BgALt37zaFhsXy5S1btqC3tzdNQ6N92fCGsq+vD36/H//5z38QjUZRVVWF+vp6BAIBbnh9fX0ZxfX5fNi0aRMaGhrQ1dWFKVOm4NNPP8WWLVswODiIwcHBCb6riSUcDnMNt27dikgkwjUcGxvjnciBAweyavjWW2+hoaEBnZ2dptMwEongwIEDGBkZSbPDQjT87LPPTKWh6Mtkhw0NDQgEAtiyZQv27t2b05f//e9/o6GhAR0dHSWloeHjAXFmVt4OPtvO0oS8fEy+lhnWLheqIZV2KA2VHRaC3lJEWcNcs97ijvylpKGFmeETVCgUigIwPKJUKBSKUkc1lAqFQpED1VAqFApFDlRDqVAoFDlQDaVCoVDkQDWUCoVCkQPVUCoUCkUOVEOpUCgUOVANpUKhUOTg/wFs2UydQEdXHwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK8AAAB2CAYAAAC+o8OSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkK0lEQVR4nO19a2wcV/n+s7PX2Yvt3cRxrnYSx+TmxE6aplSVCo36IQSomqQoStIWVQotFKpKlAISFBD0Ay0gCrRQKKAgaKuoVAoRDSVUSSpBi0oJCQmhEJI6VzvxbW3v/Xb+H/x7j989PrO7iXftXf33kSzvzs6cOfPMO+/tvOeMTQghUEcdNQhjpjtQRx03irrw1lGzqAtvHTWLuvDWUbOoC28dNYu68NZRs6gLbx01i7rw1lGzqAtvHTWLsgtvd3c3xsbGtL9t2LABR48eLdrGc889hzVr1qC7uxudnZ344Q9/KH/L5XJ45JFH0N7ejmXLluHZZ5+Vv129ehXbtm3D2rVrsXLlSjzzzDN57b755pu4+eabsXr1aqxatQpvv/02ACAej+P+++9HZ2cnOjs7cdddd6G/v//6L75CmElOAeDVV1/FmjVrJD89PT0AgG984xtobm5Gd3c3uru7sXv3bnlMsXtRFohpxE033SSOHDlSdL9wOCw/j4yMiEWLFoljx44JIYT41a9+JTZt2iQymYwYHBwUra2t4tSpU0IIIXbt2iW+8pWvCCGEiEQioqurS7zzzjtCCCEuX74s2traxOnTp4UQQiQSCTE8PCyEEOL73/++2L59u8jlckIIIfbs2SMef/zxslxzpVFpTo8dOyaWL18uLl++LIQQYnR0VESjUSGEEF//+tfFo48+qj1foXtRLpRd89psNoTDYQDAW2+9JZ/0Bx54AJlMpqQ2Ghsb5edoNIp0Oi2/79u3D5/61Kdgt9sRCoWwY8cOvPzyywCAEydOYMuWLQAAn8+H22+/Hb/+9a8BAD/+8Y+xa9curFy5EgDgdrvR1NQk+xyLxZBOp5HJZBCJRLBw4cIp8VBOzCSn3/ve9/D5z38e8+fPBwAEAgF4vd6i5yt0L8qFivm8qVQKO3bswHe/+12cOnUKO3fuxIkTJ+Tvzz//PL72ta9ZHv/b3/4Wq1evxuLFi/GFL3wB69atAwBcuHABbW1tcr/FixfjwoULAICbbroJL730EnK5HPr7+/HHP/5RmrjTp08jHo/jzjvvRHd3Nx555BFEo1EAwEMPPYRAIIA5c+agpaUFIyMj+NznPlduSqaMmeD09OnTuHDhAj70oQ9h3bp1eOKJJ5DNZuW+r7zyCrq6urBp0yYcOXJEbi90L8qGsupxIQQAMTw8LE6cOCEWL16c99vSpUtLMnEc77//vuju7hbvvfeeEEKIzs5O8dZbb8nfn3vuOXHfffcJIYTo7+8Xn/zkJ8XatWvFnXfeKR588EGxdetWIYQQH//4x8X69evF0NCQSKVSYvfu3eKxxx4TQgjxu9/9Ttxzzz0iHo+LZDIpdu7cKU1eNWAmOV2zZo3YsmWLiMViIhKJiE2bNokf/ehHQgghent7RSqVEkII8ec//1k0NzeLnp4eIUThe1EuTGu2wWazXfcxixcvxi233ILf//73AIDW1lacP39e/t7T04PW1lYAwOzZs7F3716cOHECf/rTn2Cz2bB69Wp53Ec/+lEEg0E4nU7s3LkTf/3rXwEAP/vZz7B161Z4PB64XC7s3r07T4tUMyrNaWtrK7Zv3w7TNOHz+bBt2zbJ29y5c+F0OgEAt912G9atW4d3330XQOF7US5UTHhXrFiBTCYjheCNN97A2bNnSzr29OnT8nN/fz8OHz6MtWvXAgA+8YlP4IUXXkA2m8XQ0BD27duHHTt2AAAGBwelL/ePf/wD+/fvx8MPPwwA2LVrF44cOYJkMgkA+MMf/oCuri4AwNKlS3Ho0CEIISCEwGuvvYbOzs4ysFBezASnu3btwqFDh5DL5ZDJZHDo0CHJ26VLl2SbZ86cwfHjx7FmzRoAhe9F2VBWPS4mTJwQQvzlL38RXV1dorOzUzzwwAOiq6tLmrif/OQn4oknntC28eCDD4qVK1eKrq4usXbtWvHcc8/J3zKZjHj44YfFkiVLxNKlS8Uzzzwjfzt48KBYtmyZWLFihbj55pvFm2++mdfu008/LVauXCk6OzvFjh07ZD8HBwfF9u3bxapVq8SqVavEtm3bRH9/f/lImSJmktNsNisee+wxsWLFCrF69Wrx6U9/WiSTSSGEEPfff79YvXq16OrqEuvXrxevvPKKPK7YvSgHbELUZ1LUUZuoj7DVUbOoC28dNYu68NZRs6i48L777rv4yEc+giVLluCmm27CunXr8OSTT8rfP/zhD2P//v3X1WY4HMa9996Lzs5OrF27Fp2dnXjppZcAAHv37sXdd99t2ReKonU4evQoXn/99evqy0ygzuk4HBVp9f9w8uRJbN68GXv37sXHPvYxAMDQ0BC+/e1vT6ndr371q2hubsbJkydhs9kwNjaGvr6+osdt2LAB+/bt0/6WyWRw9OhRhMNhbN68eUr9qyTqnE6gopr3qaeewp49eyTJABAKhfD0009Pqd1Lly5h3rx5MkEfCATQ0dEhf49EIti5cyfWrFmDDRs24Ny5cwDGtUB3dzeA8UR8U1MTvvSlL2H9+vV49tln8fzzz+PFF19Ed3c3vvnNb06pj5VCndMJVFTzHjt2DNu3b7+hYw8cOIADBw7g5z//+aTfHn30Udxzzz3Yt28fbr31VmzevDnvZv7tb3/D8ePHsWTJEnz5y1/GU089hZ/+9KeT2hkZGcHq1avx1FNPARg3neFwuDLle2VCndMJTGvA9vjjj6O7uxsLFizAv/71r4L73nXXXVqSAeCOO+7AhQsX8K1vfQtNTU146KGH8NnPflb+fuutt2LJkiXys9UolNPpxL333nuDV1Md+P+Z04oK77p16/DOO+/I79/5zndw/PhxOJ3OvJK8G4HP58OWLVvw5JNP4tVXX80rt/N4PPKz3W63LBv0er0wjNpKuNQ5nUBFz/LFL34RL7zwAg4ePCi3pVKpkmtQrXDo0CEMDw/L73//+9/R3t4+pTYBoKGhASMjI1Nup5KoczqBigpvV1cXDh48iB/84AdYsmQJNm7ciDvuuAOf+cxn8IEPfEDut2fPHixcuFD+vf322zhw4AD27NmjbffkyZO4/fbbZVrnwIED+M1vfjPl/m7duhXHjx+v6oCtzukE6rUNddQsasvhq6MOhrrw1lGzqAtvHTWLuvDWUbOoC28dNYu68NZRs6gLbx01i5ILc25kinWpoOFE8X+zd+l8pmnivvvuw9133w273T7puGQyiXA4jEQigUOHDuHAgQNydjC1Qf3mbZcbN9ruTHK6devWPE6Jq3Q6jXA4jHg8jtdffx379++vWk4rWlWmgl94LpeT26mj9N/v92Pu3LloampCe3u7XHopkUggl8tJ0gKBAEKhELLZLN577z00NzcjFothbGwM6XQ6jwB+Azn5/H+tQr0e/plzOn/+fDQ0NGDZsmVYtGgRcrkcUqlU3go4Qgg0NTUhnU6jtbW1qjmdduHVaQT1Qv1+P1asWIHm5mZ0dHSgra0NmUwG4XAYqVQKQgjkcjk4nU40NDTAMAycOHFCLtWUTCZlkYqOxFL6UCvgnNKDDeg5Xb58OebMmYOOjg60trZKTkkoOac2mw3Hjx+vak6nVXh1ZsZms8HhcMAwDPh8Png8HsyZMwfNzc2YPXs2TNOU+xqGAYfDIYm22+0wDAM2mw0NDQ1YsGAB/H4/AGBsbAzJZFJq60wmI7V9rQqqFQpx6vV6YZqmXIdt1qxZkzg1DEO2QUJYC5yWXNtQLv9MNS9utxsNDQ0wTRNdXV1ob29HMBjE0qVL4ff70dbWhgULFgAAstmsFFyC3W6HEAI9PT04c+YMxsbGcP78eYyMjODixYs4c+YMEokEhoaGEI/HtX2YKqbT5y2l75zTtWvXSk7b29vR0NCAtrY2zJ8/H7lcDslkUroNQggYhgGXywWbzYazZ8/if//7HyKRCHp6eiZxOjw8XJDTqfBcdT4vkO8nAePFy6ZpSp+so6NDPvGmacI0TWQyGelXkaagtkigGxoa0N7ejmg0CrvdLs1hX18fbDYbnE4nEonEdF/utII4dTgcME0TXq8X8+bNw7Jly9DY2IiFCxdKTZzNZqWbYbPZ5H9gIh5pamrC0qVLEY1GYRhGHqeGYSASicwop9MqvB6PB36/H263G/PmzUMwGJTBmcfjQUdHBxYsWACn0ykLnqPRKDKZDIQQ8n8ul0Mul8szj7lcDqZpwm63Y+HChQiFQvD5fGhubkYikUB/fz+i0SgSiQTGxsaQSCRw8eJFDA4OTicFZQHXSh6PB4FAAC6XC/PmzZPXTZwuW7YM8+fPh8vlgmEYcv3hVCqFXC6HeDwuBRkYt2QejweGYSCbzcI0TRiGgYULF2LWrFnw+/2YM2fOJE6j0SiSySR6enomcVpuSyfbnU63IRgMYsGCBWhoaMAtt9yCjo4ONDU1YcGCBXC73XC5XHA4HFJoSUjJv4rH48hkMshms8hms3A4HPD5fHA6nQgEAnIBZboZmUwGqVQK6XRamrihoSFcuXIF4XAYhw8fxr///W8Aky0C31YMM5kqI04bGxvxwQ9+EB0dHWhsbJScOhwOyWksFpPaNpfLIZ1OY3R0dFLAFggE4HQ64ff7EQgEpCCTpUun00ilUhgaGkIsFkM4HEZvby/C4TDeeOONvEX96Dp1WaZCqAq3wTAM+P1+eDwehEIhzJ8/X6a4AoEAfD4fXC4XnE5n3vQRh8MhBRcYJyAajSKbzUoBJs1Lx1Pekn6jAI/ym4ZhIJ1OIxQKwW63o6WlBaOjo4jH4wiHw3kpo2qGjtOGhgaEQiE0NDRoOSWuKGjmKUceS9jt9jxOaQlTug+GYcDpdMJms8kpP+Q7E6cjIyOIx+MYGRmZlIYrJyouvF6vF7fddhva29sxe/ZstLW1we12IxAIwOPxyCX1Y7GYdAFcLhf8fr80YW63WwoZRbjZbFb6dI2NjfLJJrOYTCaRyWSkq2Gz2eDxeNDS0oKWlhak02nMnTsXQ0NDOHXqFF577TWMjo7WRCZCxym5ZJzTeDwOu90Ou90uNanT6ZSCGYlEpDYm7etyuTB//nxpxWjgIhaLIZFISOUhhIDdbofX64XX65WctrS0YHBwcBKnleC14sLrcrmwaNEirFq1Cs3NzVi8eDEcDod8/wMRQxqAk01C7PP5pFYgUGQcCARkUj2dTkvBpnldlJskLeR2u+Hz+SCEgN/vRzweRywWg8vlqjQVZYMVp3TNmUwGiUQCQgg4HA7JKblmlJIEMMni2e12LafkglH7NptNunlutxumaSKXy8Hn80llVGlOKya8wWAQLS0tCIVCWLRokQwg4vE4bDabdAnIrFDEm81mkUwmMTw8DIfDIfOK8XgcPp8vT/BN00QikUA4HJb70Y0jDU1al8xeKpWSfTQMA6ZpYu7cueju7sbAwAAuXbqEgYGBStEyJQSDQcyZMwezZs3Sckq+Ph+soOum1JbD4UAikYDX65Wc2u12GUd4PB4tp5RS4wMQdO94uo1ctJaWFnR1dWFwcLBinFYsYFuxYgU2btyIWbNm4bbbbsPSpUsn+UE0wMBTXwDkkw6Mjwx5vV75hJOQ0w0iQqPRqHxBCgUIZK7oHCTEXGubpolLly7hxIkTGBoawuHDh/NeUlIKpitgW758OTZu3IjZs2dbcgpADt7wvnFFQdaMLJw6OkYPAefUbrfncU8c823EqcfjkZwODg7i8OHD+Oc//3ld1zqjAZvD4UAgEEAgEIDb7c67eK4N+eiOSrQQAul0GslkErlcTkbOPOjg7gcJvGEYkwp51DF5/p38wVQqJQOUagT1k9KNOk4B/RCtjlNyKagN2o/qHYhTnmPn7fJz83NSXt3n8yGZTFaM04oJLw06hEIhaarIpyUS6GL5mgMqCfF4HIlEAna7HbFYTOYquVtAx3Fks9k8X46Tzwc6qE8NDQ3IZrNV7fv6/X4sWrQIwWAwj1MKdPlDzc04kJ+i4sGc2+2WqTCeDiPh5Mdb1TToOHU4HGhsbEQul4Pb7a4IHxUTXnpJn9/vlwLHNS0fEy9UzEFPPw1aULqLfFc+UkcpHAKdj+9H7gNpfkqreTwemKYJh2PaBx1LhsfjQVNTExoaGiQfdI08jgCQ5+9zzQpMLFJit9uRTqfl/VELb1wuV57g6YZ+gYl6CH5vKZ5IJBIV47Rid8rpdMLr9UrfiucJudvA843A5MEC7q/ybeQ+8G2FwH1r/pn6RJF4NS//5HA4ZGqK8qsA8sw5kB9MqbxRiotrS54T5+1wLrgiIHC/Vy2LpGyEy+XS1mKXhY+KtIpxzRsMBmXJIpHCq8LoiVeLbbhwkU/G/2gbB90EFZRiUx8Cbg7tdjtM06yof1YOOJ1ONDY2Ss1LnNJn7hqp7pdu5NCKE4IqrKoA8+N5WSa5bF6vF6lUqvY0Ly+i4WbLSlOqpo1rVb6N738jfVKP5QKgeyiqCdRH0mRWnBYb4rba73quXdXoM8FpRYRXjXq5eSPiuYYgt4K7EDqXgJfuqSkw9Tx0nKp1eR/4CBwNilSr22BlVXigxH1ONaXI2+C/E6e82IlnIFT3g7I+PANBLgcA6TtPB6cVj050wshNDAkSF3h+rK4d+q574olgbgpV00hmVgghg0BKw1Wz5lX9SuKC88mvl/bj9SEqVOHlDwMdz9tS3Thql3NKbkNNaV6bzSYrmXw+nyy8icfjSKVSeW4EMFF8Q1VPauDB2+XbrdI2KohAOq/uxtAN8Xq9yGQy8Hq98Hg8eWP4MwkrTmOxGNLp9CQBAvIHKbhG1bWtfi7kctA5SuGUfN5sNiuHo3kNRTlQVuGlfCmfdmKaJnp7e2WOFsg352ReDMOQNaa0D/1XieV5zGL9oVE5fk5uUrPZLJxOJ4LBIFwuF4LBIBobG5FMJjE2NjbjlWbEqdfrzeP0ypUriMVikywKcex2u/Mq8FTorCDxolpK2o/OQTMtdJyS5vV6vQiFQjJwb2pqkrXU5eK07JrX4XDA6XTm/VcDNqs/+p23xz+rQ57qufln9U/N93JTyPtNf1NdrLlcoL7x/qkja7Sfer2qr6trG4B2X6tji3HKBV+VhXJzWnbhdblc8Hg8eSNVapbAimg1paIb4qTvVpqZawPub/H9eI6U2qNzuN1uOeFwdHR0xjUv55TnYYspAxIsp9OZN1OCjlXdMGqLoIsTyA3TPQzEqep2CCHg8Xjg8/kAYFIdxlRQEc1LQ47FnniVbJ4C4pFyIS2gG0HjRNM2fowa+PD/LpcLXq83z5+cSaicAqVZHp4nB/KzO7w6zEqz0jH0n/u5HLpcshpcUxkmxTXlQkXdBnXwwTAM6d/q3AT+nT+dqonXZR104A8Bv4kUKOqIJJ9OHWqeKaic8iFgoDinVoLOhY3vp2Zx1NFNXRqTc6rTvDSCWe7BirILL5kIp9OZNwcNmJjVSmPqqvkoJiz8idaZT3U/XrsATCTNKfKNRCKTNLBpmmhsbJTZkZmGzWaTBfTEKS+cKcSpyhGHqsW5UOpcMQ4upDRtyOv1Sk6pPbrvpmkiEAggkUhUt+alp1DVkARVQ+jIKQXF0i2qkNP5qA/8O9+f17hWi+bl+dJSOS0EK59fl2FQwc+t+sXcXeGoFKdlF14aVVFNHNUxjI6O5l0ML5FUC6p1gRqdRzcmr27jeWU6D033Jn+aTBmVBJIZpnTQTIM4JbOrxgCZTAZjY2NSaXDfVOWUeCFTDmCSqbdy43T9ovuXy+XkXDg+AldpTivi81IlkTr7l6a00zwpl8slfU+eZ6T9uTbhAZxOeHVaQBViOg8tV8TLCWmomPtn1SK8KqfcJKfTaUQiEdjtdjnBkoSKxwhWGpk44dZIJ8BWrgf1iRQC55SEl/Lt5ea07MPD3HSQlqCAI5VKIRKJSAHxer3a4zlUn9bqv+5YXb+SySSi0ajsFxVyE7gGqxao5pj3nYTXMMZnXZumWVB76gRRFWCr46z6Rfd1ujktu/DydAoFFmQuRkZG8J///Ac22/gkvVAoBJvNlud/EXRCrPOnrHw91TekwGJoaAg9PT0AgIULFyIYDMpAiPrq8/nyUlMzDc4pFZFTvXRvby/++9//ymA5GAzmcaq6VbSNuNH5/wQrbU3byRePRCJ4//33AQCLFi1CKBSC0+mUFoKmBJWb04prXnqiHQ4HstksRkdHAUyexavW8+rapTZ1GkGnidXjuY9In7mWoAeE54irAZxTXi+rclro3cPFzHUhzq+HU/J5+T2tFKcVy/MCmGSeM5kM+vr65G9U+MIdfLU9wvUKLfd1+eDH6Ogoenp6YBgGWltb4Xa75UNGDxr5l9Xi81KwA0CuceFwOGQB0bVr1wBALpEFjA8MkM+ptqfGE4XOzY8BJlwA/sCPjo7i/PnzMAwDixcvzhtdrSSnFQvYhBAyr0fFOlx4I5FInvCS78TbUtvWCXAh35dnGYBxIkl47XY7Nm7cCLfbLRfU4JFxtQkvzSUjTt1uNzweDzKZDK5duwYhBGKxmBRWugZajBuYnPqycgv47+p+vKoMGOeUlpWlmILuNa3nUClOK5bnpVQNrxEVQshJg8lkEslkMi+dxZ9mnQ9rFfXy8+v6w9ulBfvI5HL/XM1mVAO4b8kFBpgQRlrVRsdpIZNf6vn5Zx2ntOqROsrGayp0Q8tTRcVG2Ej7AhNJaiHGFwehFQb7+/vh9/sxe/ZsGIYh0y2qaSMUGgrWCTs98ST0udz4QhpXr16V2Q9yKVKplHxxiBotzyRIy6qckntGo1qZTAZDQ0MYGBiAz+fDrFmzYBiGdDNUTnXFOKpi0N0HcgGAidx4JBLB1atX4XK55MNDDxMtO8WnL5ULFRmkUNe/Im0MQC45Sks4UQRaLAfIA7br2YfnHEnzxmIxuN3uvPSQWjNQDS4DgR5+VYhIGGhNMeKU/EtuposV81hB3UfNfFCBObks3JrxWuJiluBGULGSSAra6KkjMz02NoZ4PI6BgQFcvXoVhmHIlSP5EKLuQq1uBN+fD3XyG5xIJJBOpxGPx6WGB5BXc0wPn9frrZr5bDabTfq3pHn5MHY2m8XIyAgSiQSuXbuG3t5eAJDBKHGqG9Sh9gH95FadpgYgByZoQcNkMqnllM7pdDpl/6tWePngg+o20GjayMiINDNXrlzJW4eMO/WFcrrqECn/z3+nAJKWLqIVISkqJ8HgfiI9fDQDY6bBBx/IpyThpYxCOBxGJBJBX18fQqGQLNRROeUZg1IsGAmfWifCNWsqlZIro1txWhPCC+gzAOoTTP4Q+b8UlFyvWbHSzDwzwQNHPltYNwwNTJjjahBcgs4SWXFK8wXLxam6jSsWchnIJbMa2idOy23Jym4X1eIZ6jR9t9nGE9nDw8NyKXjSLvzi+P4qVHL4vjy3S2k7WiqV3kXBLQJfbI40NWmsahFgVeupf+TTDw8Py1cWkGYuNORL39WHQ6eAyIfmdRY0Jy0ej2s5Vd2Gqq9tAPJTXdwE8d/5SzjUJ/NGL1An0Pzm0gRPK63LH7hq074EVaNxV4qsGWVN1PSU6loVuz6dBdVxymdZ6zjli6VUvfDqOsiFhjQJX3Jf1bK6z4VMGg/Y6Bzk6/JInA+E6NpRR5CqBTrzry4BwBdusRIW7lLxbeo+6me6Z+R+FeOUB4iVchsq4vNagRPNBwWs/EwukNzXsgo2VM2Sy+VkNByJROR7w7hlULWT6kpUA6yEif8H8tfgVTlV21AHgoq5ZwTStqlUCrFYzJJTDlIINaF5Veiq/wttvxEU0h68qL3QOQvdyGqEFadWmMp1qcdyTVzKsZXgtCIBmyogfBsXJEpq6wYIdH/0m9V5dcfzIJEPV5JbQYl0XUBULdDV36r8AhOvQ1Cjfw6dH1tIsKwCYwCSP64U+DY6jjRvuSdglv0OWS3FpJLN/TP+VwqR1IbuQeH7qYKve6jU/lar9i2VU/pcKB1Y6jVa7cfdOVXx6LaVUmtxIyi78KojOaoAcfBCmEqYFivh5udXl7BX03vVgFL5BEpbBlbnL18PinHK76t6DeVE2YW3EMn8MzfjumwDUFi7lgorDaSaOJ4iq+ZsQzHBLVUhTJVPK07JdaH7yhVB1QtvIaiE8ZSZuiRRKccXQilEqQ9QKQIy09A94Byk+XScTvWaSuGFWzN+XCUsWVk9aNJmqkDQbxykIZLJJIaGhgCMv4yuWHBWTIDV49WUGO8PJfVp+gwFFtW0Yg4wUXpYLGVIyoBeGAhM5lTdvxCsXJBinMZiMTlETXxmMpmyc1r2VBkPHHQBlop0Oo1oNAqPx5M3B0uX6tIFdDr/TRdRA5hENFX784Jp7jZUg/Cqab5CnNI+NKPY7XZbzmujtnibxdJsOv4LccozDbx6r1wou/DqUiVW6TMr88K/W5lzNV1kFRHTdp3vRVVR1Y5CnHJwy8dhFX+o20vNPtBnPopHv9ELCqk/umPLhbK7DfwFy9ThUnOsXHitTL/6MOhSc+qxXKNSfS9VYdH0lWp9CxBpUuKUb+cCTJzSlKBCnPLvqkLgbdNnK6HnAS4AuaBLJBKR7kIlUXbhVR32QiapWCK9VJSyvy5ooMAGgPTHqsFV4OBBrZWPS6BgTReklXpdpcQU9F83rE9KaTp4LLvwUnEyvVnR6mkm86JWetHv/OLJRdCtrM21q64/1BYvjyTtHY/HEYlEYJomPB6P1jeeaRBXVDdL12tlzUhDq9pXBXGqum60v+pb65QQzWrmiwBSEGyaply9p1IZnIr5vMU0L5k4q1WydRqAR9zUtvpaJUA/ykfTZvgaDjS7gtb14kJbLcIL5HNF18r9W7rWQu+gAPJrrXkgqGpq4qgQB7QfzVmk9qnajBYFrKQiKLvmVf1Q0nDZbFYucMehC7SsQNpCJ2A8y2HVjqrd+dviuZauJsGl6+LZBkqHkaa18vmtvquZBl2QfL19o+885inUh3Kg7JqXBIJmkeZyOYTDYTnXSl1DSw2urMA1At9G4G6JlQuhPlRk4vh8Ozq+mgSY3AY+25ne7TAyMnLdnJLg8gAY0OeNaX9g8gxgVdNzTml2Np+TWNX1vFYpMRJo3Tu4SgkQCvlualtcoxTbn/uNpZ5juqHmeWnbVDjlsLreUttQ91N98VLPdyOoiM9LppgI52YPmBywWWUdCKUKrU4T61JtBF7VpqaDqqm2gVuzUjhVJ5mqKOZm8O2cVzWW4EEwwapmuuoDNtIIao2nLh/L1wezMlsqivmxOpK5ybMq/uHHq2Z3psG1LK/T1XHKFUcxTgtZJ/Whp22cU3U0Uj3+erT/jWJaXiKorrVFN4SGEV0ulxzKpBvENYxVqketn9BNP6HzRSIRDA8Py+WP6HdeTcYXR6mWJU5ttolViIpxSpo3m83eEKdqDlcHntGJRCIYGhqaxCnnkzIS5P+WExV597DH45F5Puo43QTySWOxGBKJBFKpFPx+P5qamuSFc8Eu9BSrN4/2oyWk6HyZTAZXrlzBuXPn0NfXJ4WTp3r4ijS8rzMNm218/Te/3w+fzwev1yvXfSuVU1pelnLqqlWk86juFc8kkIal1GQ6ncalS5dw7tw59Pb2IpvN5r2p0+12yz8KDqt+0REO1TfjQkjbyczxsXs6VpeXJFiZNdqXzk2DJpFIBCMjI3nLEulMb7WDXxt9J+g4VYNnXWCqE2DOK+c0m83KBfSIU3qZCj9HzbkNqVQKPT098uXILpdLrhyYzWZx6dKlSfm/s2fP4he/+AVCoRCam5sRCoXyFswgjahLtXDho5tFL21Jp9MYHh5Gf38/IpEITp06hb6+PoTDYblfb28vzpw5g9HRUdlX0l79/f1V8f7hVCqF8+fPY2xsDOl0WgZJFJhdvHhxUj/PnTuHX/7yl5g1axbmzJmDYDAoLZFhGHkjiroYgP4om5HJZBCJRJBKpRAOhzEwMGDJaV9fn+SU+hqPx5FMJnHt2rWyclp24b18+TIGBgbk29T54nC9vb2TOt/T04MXX3wRpmli48aNWLlyJUzTlG9hb2pqQiAQyHMDePqIgj7y95LJJHp7exGNRnH27FmcPHkS0WgUAwMDiEajACaGUq9duwan04l4PI5AIAC3241oNIpEIoGBgYGqEd6LFy+iv79fCi8tsCeEwJUrV7ScvvzyyzBNExs2bMCqVavg8XjQ1NQEl8sl3wXCaxO4RieBJauVSCRw5coVRCIRnDt3DqdPn9Zymslk5FKn8XhcvoeCFEK5Oa1IPa/OXbAyJSRIvPJfTQEVOw/fj29XZyfrcpJ0DA9mpsvslQreL/LXC7k8VHBEbkMp94HOU+g+EY+FOFUzIdTnSnBqE9V0l+qo4zpQPZn4Ouq4TtSFt46aRV1466hZ1IW3jppFXXjrqFnUhbeOmkVdeOuoWdSFt46aRV1466hZ/D8OXe44Ro7dywAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -2741,9 +2503,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK8AAAB2CAYAAAC+o8OSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkK0lEQVR4nO19a2wcV/n+s7PX2Yvt3cRxrnYSx+TmxE6aplSVCo36IQSomqQoStIWVQotFKpKlAISFBD0Ay0gCrRQKKAgaKuoVAoRDSVUSSpBi0oJCQmhEJI6VzvxbW3v/Xb+H/x7j989PrO7iXftXf33kSzvzs6cOfPMO+/tvOeMTQghUEcdNQhjpjtQRx03irrw1lGzqAtvHTWLuvDWUbOoC28dNYu68NZRs6gLbx01i7rw1lGzqAtvHTWLsgtvd3c3xsbGtL9t2LABR48eLdrGc889hzVr1qC7uxudnZ344Q9/KH/L5XJ45JFH0N7ejmXLluHZZ5+Vv129ehXbtm3D2rVrsXLlSjzzzDN57b755pu4+eabsXr1aqxatQpvv/02ACAej+P+++9HZ2cnOjs7cdddd6G/v//6L75CmElOAeDVV1/FmjVrJD89PT0AgG984xtobm5Gd3c3uru7sXv3bnlMsXtRFohpxE033SSOHDlSdL9wOCw/j4yMiEWLFoljx44JIYT41a9+JTZt2iQymYwYHBwUra2t4tSpU0IIIXbt2iW+8pWvCCGEiEQioqurS7zzzjtCCCEuX74s2traxOnTp4UQQiQSCTE8PCyEEOL73/++2L59u8jlckIIIfbs2SMef/zxslxzpVFpTo8dOyaWL18uLl++LIQQYnR0VESjUSGEEF//+tfFo48+qj1foXtRLpRd89psNoTDYQDAW2+9JZ/0Bx54AJlMpqQ2Ghsb5edoNIp0Oi2/79u3D5/61Kdgt9sRCoWwY8cOvPzyywCAEydOYMuWLQAAn8+H22+/Hb/+9a8BAD/+8Y+xa9curFy5EgDgdrvR1NQk+xyLxZBOp5HJZBCJRLBw4cIp8VBOzCSn3/ve9/D5z38e8+fPBwAEAgF4vd6i5yt0L8qFivm8qVQKO3bswHe/+12cOnUKO3fuxIkTJ+Tvzz//PL72ta9ZHv/b3/4Wq1evxuLFi/GFL3wB69atAwBcuHABbW1tcr/FixfjwoULAICbbroJL730EnK5HPr7+/HHP/5RmrjTp08jHo/jzjvvRHd3Nx555BFEo1EAwEMPPYRAIIA5c+agpaUFIyMj+NznPlduSqaMmeD09OnTuHDhAj70oQ9h3bp1eOKJJ5DNZuW+r7zyCrq6urBp0yYcOXJEbi90L8qGsupxIQQAMTw8LE6cOCEWL16c99vSpUtLMnEc77//vuju7hbvvfeeEEKIzs5O8dZbb8nfn3vuOXHfffcJIYTo7+8Xn/zkJ8XatWvFnXfeKR588EGxdetWIYQQH//4x8X69evF0NCQSKVSYvfu3eKxxx4TQgjxu9/9Ttxzzz0iHo+LZDIpdu7cKU1eNWAmOV2zZo3YsmWLiMViIhKJiE2bNokf/ehHQgghent7RSqVEkII8ec//1k0NzeLnp4eIUThe1EuTGu2wWazXfcxixcvxi233ILf//73AIDW1lacP39e/t7T04PW1lYAwOzZs7F3716cOHECf/rTn2Cz2bB69Wp53Ec/+lEEg0E4nU7s3LkTf/3rXwEAP/vZz7B161Z4PB64XC7s3r07T4tUMyrNaWtrK7Zv3w7TNOHz+bBt2zbJ29y5c+F0OgEAt912G9atW4d3330XQOF7US5UTHhXrFiBTCYjheCNN97A2bNnSzr29OnT8nN/fz8OHz6MtWvXAgA+8YlP4IUXXkA2m8XQ0BD27duHHTt2AAAGBwelL/ePf/wD+/fvx8MPPwwA2LVrF44cOYJkMgkA+MMf/oCuri4AwNKlS3Ho0CEIISCEwGuvvYbOzs4ysFBezASnu3btwqFDh5DL5ZDJZHDo0CHJ26VLl2SbZ86cwfHjx7FmzRoAhe9F2VBWPS4mTJwQQvzlL38RXV1dorOzUzzwwAOiq6tLmrif/OQn4oknntC28eCDD4qVK1eKrq4usXbtWvHcc8/J3zKZjHj44YfFkiVLxNKlS8Uzzzwjfzt48KBYtmyZWLFihbj55pvFm2++mdfu008/LVauXCk6OzvFjh07ZD8HBwfF9u3bxapVq8SqVavEtm3bRH9/f/lImSJmktNsNisee+wxsWLFCrF69Wrx6U9/WiSTSSGEEPfff79YvXq16OrqEuvXrxevvPKKPK7YvSgHbELUZ1LUUZuoj7DVUbOoC28dNYu68NZRs6i48L777rv4yEc+giVLluCmm27CunXr8OSTT8rfP/zhD2P//v3X1WY4HMa9996Lzs5OrF27Fp2dnXjppZcAAHv37sXdd99t2ReKonU4evQoXn/99evqy0ygzuk4HBVp9f9w8uRJbN68GXv37sXHPvYxAMDQ0BC+/e1vT6ndr371q2hubsbJkydhs9kwNjaGvr6+osdt2LAB+/bt0/6WyWRw9OhRhMNhbN68eUr9qyTqnE6gopr3qaeewp49eyTJABAKhfD0009Pqd1Lly5h3rx5MkEfCATQ0dEhf49EIti5cyfWrFmDDRs24Ny5cwDGtUB3dzeA8UR8U1MTvvSlL2H9+vV49tln8fzzz+PFF19Ed3c3vvnNb06pj5VCndMJVFTzHjt2DNu3b7+hYw8cOIADBw7g5z//+aTfHn30Udxzzz3Yt28fbr31VmzevDnvZv7tb3/D8ePHsWTJEnz5y1/GU089hZ/+9KeT2hkZGcHq1avx1FNPARg3neFwuDLle2VCndMJTGvA9vjjj6O7uxsLFizAv/71r4L73nXXXVqSAeCOO+7AhQsX8K1vfQtNTU146KGH8NnPflb+fuutt2LJkiXys9UolNPpxL333nuDV1Md+P+Z04oK77p16/DOO+/I79/5zndw/PhxOJ3OvJK8G4HP58OWLVvw5JNP4tVXX80rt/N4PPKz3W63LBv0er0wjNpKuNQ5nUBFz/LFL34RL7zwAg4ePCi3pVKpkmtQrXDo0CEMDw/L73//+9/R3t4+pTYBoKGhASMjI1Nup5KoczqBigpvV1cXDh48iB/84AdYsmQJNm7ciDvuuAOf+cxn8IEPfEDut2fPHixcuFD+vf322zhw4AD27NmjbffkyZO4/fbbZVrnwIED+M1vfjPl/m7duhXHjx+v6oCtzukE6rUNddQsasvhq6MOhrrw1lGzqAtvHTWLuvDWUbOoC28dNYu68NZRs6gLbx01i5ILc25kinWpoOFE8X+zd+l8pmnivvvuw9133w273T7puGQyiXA4jEQigUOHDuHAgQNydjC1Qf3mbZcbN9ruTHK6devWPE6Jq3Q6jXA4jHg8jtdffx379++vWk4rWlWmgl94LpeT26mj9N/v92Pu3LloampCe3u7XHopkUggl8tJ0gKBAEKhELLZLN577z00NzcjFothbGwM6XQ6jwB+Azn5/H+tQr0e/plzOn/+fDQ0NGDZsmVYtGgRcrkcUqlU3go4Qgg0NTUhnU6jtbW1qjmdduHVaQT1Qv1+P1asWIHm5mZ0dHSgra0NmUwG4XAYqVQKQgjkcjk4nU40NDTAMAycOHFCLtWUTCZlkYqOxFL6UCvgnNKDDeg5Xb58OebMmYOOjg60trZKTkkoOac2mw3Hjx+vak6nVXh1ZsZms8HhcMAwDPh8Png8HsyZMwfNzc2YPXs2TNOU+xqGAYfDIYm22+0wDAM2mw0NDQ1YsGAB/H4/AGBsbAzJZFJq60wmI7V9rQqqFQpx6vV6YZqmXIdt1qxZkzg1DEO2QUJYC5yWXNtQLv9MNS9utxsNDQ0wTRNdXV1ob29HMBjE0qVL4ff70dbWhgULFgAAstmsFFyC3W6HEAI9PT04c+YMxsbGcP78eYyMjODixYs4c+YMEokEhoaGEI/HtX2YKqbT5y2l75zTtWvXSk7b29vR0NCAtrY2zJ8/H7lcDslkUroNQggYhgGXywWbzYazZ8/if//7HyKRCHp6eiZxOjw8XJDTqfBcdT4vkO8nAePFy6ZpSp+so6NDPvGmacI0TWQyGelXkaagtkigGxoa0N7ejmg0CrvdLs1hX18fbDYbnE4nEonEdF/utII4dTgcME0TXq8X8+bNw7Jly9DY2IiFCxdKTZzNZqWbYbPZ5H9gIh5pamrC0qVLEY1GYRhGHqeGYSASicwop9MqvB6PB36/H263G/PmzUMwGJTBmcfjQUdHBxYsWACn0ykLnqPRKDKZDIQQ8n8ul0Mul8szj7lcDqZpwm63Y+HChQiFQvD5fGhubkYikUB/fz+i0SgSiQTGxsaQSCRw8eJFDA4OTicFZQHXSh6PB4FAAC6XC/PmzZPXTZwuW7YM8+fPh8vlgmEYcv3hVCqFXC6HeDwuBRkYt2QejweGYSCbzcI0TRiGgYULF2LWrFnw+/2YM2fOJE6j0SiSySR6enomcVpuSyfbnU63IRgMYsGCBWhoaMAtt9yCjo4ONDU1YcGCBXC73XC5XHA4HFJoSUjJv4rH48hkMshms8hms3A4HPD5fHA6nQgEAnIBZboZmUwGqVQK6XRamrihoSFcuXIF4XAYhw8fxr///W8Aky0C31YMM5kqI04bGxvxwQ9+EB0dHWhsbJScOhwOyWksFpPaNpfLIZ1OY3R0dFLAFggE4HQ64ff7EQgEpCCTpUun00ilUhgaGkIsFkM4HEZvby/C4TDeeOONvEX96Dp1WaZCqAq3wTAM+P1+eDwehEIhzJ8/X6a4AoEAfD4fXC4XnE5n3vQRh8MhBRcYJyAajSKbzUoBJs1Lx1Pekn6jAI/ym4ZhIJ1OIxQKwW63o6WlBaOjo4jH4wiHw3kpo2qGjtOGhgaEQiE0NDRoOSWuKGjmKUceS9jt9jxOaQlTug+GYcDpdMJms8kpP+Q7E6cjIyOIx+MYGRmZlIYrJyouvF6vF7fddhva29sxe/ZstLW1we12IxAIwOPxyCX1Y7GYdAFcLhf8fr80YW63WwoZRbjZbFb6dI2NjfLJJrOYTCaRyWSkq2Gz2eDxeNDS0oKWlhak02nMnTsXQ0NDOHXqFF577TWMjo7WRCZCxym5ZJzTeDwOu90Ou90uNanT6ZSCGYlEpDYm7etyuTB//nxpxWjgIhaLIZFISOUhhIDdbofX64XX65WctrS0YHBwcBKnleC14sLrcrmwaNEirFq1Cs3NzVi8eDEcDod8/wMRQxqAk01C7PP5pFYgUGQcCARkUj2dTkvBpnldlJskLeR2u+Hz+SCEgN/vRzweRywWg8vlqjQVZYMVp3TNmUwGiUQCQgg4HA7JKblmlJIEMMni2e12LafkglH7NptNunlutxumaSKXy8Hn80llVGlOKya8wWAQLS0tCIVCWLRokQwg4vE4bDabdAnIrFDEm81mkUwmMTw8DIfDIfOK8XgcPp8vT/BN00QikUA4HJb70Y0jDU1al8xeKpWSfTQMA6ZpYu7cueju7sbAwAAuXbqEgYGBStEyJQSDQcyZMwezZs3Sckq+Ph+soOum1JbD4UAikYDX65Wc2u12GUd4PB4tp5RS4wMQdO94uo1ctJaWFnR1dWFwcLBinFYsYFuxYgU2btyIWbNm4bbbbsPSpUsn+UE0wMBTXwDkkw6Mjwx5vV75hJOQ0w0iQqPRqHxBCgUIZK7oHCTEXGubpolLly7hxIkTGBoawuHDh/NeUlIKpitgW758OTZu3IjZs2dbcgpADt7wvnFFQdaMLJw6OkYPAefUbrfncU8c823EqcfjkZwODg7i8OHD+Oc//3ld1zqjAZvD4UAgEEAgEIDb7c67eK4N+eiOSrQQAul0GslkErlcTkbOPOjg7gcJvGEYkwp51DF5/p38wVQqJQOUagT1k9KNOk4B/RCtjlNyKagN2o/qHYhTnmPn7fJz83NSXt3n8yGZTFaM04oJLw06hEIhaarIpyUS6GL5mgMqCfF4HIlEAna7HbFYTOYquVtAx3Fks9k8X46Tzwc6qE8NDQ3IZrNV7fv6/X4sWrQIwWAwj1MKdPlDzc04kJ+i4sGc2+2WqTCeDiPh5Mdb1TToOHU4HGhsbEQul4Pb7a4IHxUTXnpJn9/vlwLHNS0fEy9UzEFPPw1aULqLfFc+UkcpHAKdj+9H7gNpfkqreTwemKYJh2PaBx1LhsfjQVNTExoaGiQfdI08jgCQ5+9zzQpMLFJit9uRTqfl/VELb1wuV57g6YZ+gYl6CH5vKZ5IJBIV47Rid8rpdMLr9UrfiucJudvA843A5MEC7q/ybeQ+8G2FwH1r/pn6RJF4NS//5HA4ZGqK8qsA8sw5kB9MqbxRiotrS54T5+1wLrgiIHC/Vy2LpGyEy+XS1mKXhY+KtIpxzRsMBmXJIpHCq8LoiVeLbbhwkU/G/2gbB90EFZRiUx8Cbg7tdjtM06yof1YOOJ1ONDY2Ss1LnNJn7hqp7pdu5NCKE4IqrKoA8+N5WSa5bF6vF6lUqvY0Ly+i4WbLSlOqpo1rVb6N738jfVKP5QKgeyiqCdRH0mRWnBYb4rba73quXdXoM8FpRYRXjXq5eSPiuYYgt4K7EDqXgJfuqSkw9Tx0nKp1eR/4CBwNilSr22BlVXigxH1ONaXI2+C/E6e82IlnIFT3g7I+PANBLgcA6TtPB6cVj050wshNDAkSF3h+rK4d+q574olgbgpV00hmVgghg0BKw1Wz5lX9SuKC88mvl/bj9SEqVOHlDwMdz9tS3Thql3NKbkNNaV6bzSYrmXw+nyy8icfjSKVSeW4EMFF8Q1VPauDB2+XbrdI2KohAOq/uxtAN8Xq9yGQy8Hq98Hg8eWP4MwkrTmOxGNLp9CQBAvIHKbhG1bWtfi7kctA5SuGUfN5sNiuHo3kNRTlQVuGlfCmfdmKaJnp7e2WOFsg352ReDMOQNaa0D/1XieV5zGL9oVE5fk5uUrPZLJxOJ4LBIFwuF4LBIBobG5FMJjE2NjbjlWbEqdfrzeP0ypUriMVikywKcex2u/Mq8FTorCDxolpK2o/OQTMtdJyS5vV6vQiFQjJwb2pqkrXU5eK07JrX4XDA6XTm/VcDNqs/+p23xz+rQ57qufln9U/N93JTyPtNf1NdrLlcoL7x/qkja7Sfer2qr6trG4B2X6tji3HKBV+VhXJzWnbhdblc8Hg8eSNVapbAimg1paIb4qTvVpqZawPub/H9eI6U2qNzuN1uOeFwdHR0xjUv55TnYYspAxIsp9OZN1OCjlXdMGqLoIsTyA3TPQzEqep2CCHg8Xjg8/kAYFIdxlRQEc1LQ47FnniVbJ4C4pFyIS2gG0HjRNM2fowa+PD/LpcLXq83z5+cSaicAqVZHp4nB/KzO7w6zEqz0jH0n/u5HLpcshpcUxkmxTXlQkXdBnXwwTAM6d/q3AT+nT+dqonXZR104A8Bv4kUKOqIJJ9OHWqeKaic8iFgoDinVoLOhY3vp2Zx1NFNXRqTc6rTvDSCWe7BirILL5kIp9OZNwcNmJjVSmPqqvkoJiz8idaZT3U/XrsATCTNKfKNRCKTNLBpmmhsbJTZkZmGzWaTBfTEKS+cKcSpyhGHqsW5UOpcMQ4upDRtyOv1Sk6pPbrvpmkiEAggkUhUt+alp1DVkARVQ+jIKQXF0i2qkNP5qA/8O9+f17hWi+bl+dJSOS0EK59fl2FQwc+t+sXcXeGoFKdlF14aVVFNHNUxjI6O5l0ML5FUC6p1gRqdRzcmr27jeWU6D033Jn+aTBmVBJIZpnTQTIM4JbOrxgCZTAZjY2NSaXDfVOWUeCFTDmCSqbdy43T9ovuXy+XkXDg+AldpTivi81IlkTr7l6a00zwpl8slfU+eZ6T9uTbhAZxOeHVaQBViOg8tV8TLCWmomPtn1SK8KqfcJKfTaUQiEdjtdjnBkoSKxwhWGpk44dZIJ8BWrgf1iRQC55SEl/Lt5ea07MPD3HSQlqCAI5VKIRKJSAHxer3a4zlUn9bqv+5YXb+SySSi0ajsFxVyE7gGqxao5pj3nYTXMMZnXZumWVB76gRRFWCr46z6Rfd1ujktu/DydAoFFmQuRkZG8J///Ac22/gkvVAoBJvNlud/EXRCrPOnrHw91TekwGJoaAg9PT0AgIULFyIYDMpAiPrq8/nyUlMzDc4pFZFTvXRvby/++9//ymA5GAzmcaq6VbSNuNH5/wQrbU3byRePRCJ4//33AQCLFi1CKBSC0+mUFoKmBJWb04prXnqiHQ4HstksRkdHAUyexavW8+rapTZ1GkGnidXjuY9In7mWoAeE54irAZxTXi+rclro3cPFzHUhzq+HU/J5+T2tFKcVy/MCmGSeM5kM+vr65G9U+MIdfLU9wvUKLfd1+eDH6Ogoenp6YBgGWltb4Xa75UNGDxr5l9Xi81KwA0CuceFwOGQB0bVr1wBALpEFjA8MkM+ptqfGE4XOzY8BJlwA/sCPjo7i/PnzMAwDixcvzhtdrSSnFQvYhBAyr0fFOlx4I5FInvCS78TbUtvWCXAh35dnGYBxIkl47XY7Nm7cCLfbLRfU4JFxtQkvzSUjTt1uNzweDzKZDK5duwYhBGKxmBRWugZajBuYnPqycgv47+p+vKoMGOeUlpWlmILuNa3nUClOK5bnpVQNrxEVQshJg8lkEslkMi+dxZ9mnQ9rFfXy8+v6w9ulBfvI5HL/XM1mVAO4b8kFBpgQRlrVRsdpIZNf6vn5Zx2ntOqROsrGayp0Q8tTRcVG2Ej7AhNJaiHGFwehFQb7+/vh9/sxe/ZsGIYh0y2qaSMUGgrWCTs98ST0udz4QhpXr16V2Q9yKVKplHxxiBotzyRIy6qckntGo1qZTAZDQ0MYGBiAz+fDrFmzYBiGdDNUTnXFOKpi0N0HcgGAidx4JBLB1atX4XK55MNDDxMtO8WnL5ULFRmkUNe/Im0MQC45Sks4UQRaLAfIA7br2YfnHEnzxmIxuN3uvPSQWjNQDS4DgR5+VYhIGGhNMeKU/EtuposV81hB3UfNfFCBObks3JrxWuJiluBGULGSSAra6KkjMz02NoZ4PI6BgQFcvXoVhmHIlSP5EKLuQq1uBN+fD3XyG5xIJJBOpxGPx6WGB5BXc0wPn9frrZr5bDabTfq3pHn5MHY2m8XIyAgSiQSuXbuG3t5eAJDBKHGqG9Sh9gH95FadpgYgByZoQcNkMqnllM7pdDpl/6tWePngg+o20GjayMiINDNXrlzJW4eMO/WFcrrqECn/z3+nAJKWLqIVISkqJ8HgfiI9fDQDY6bBBx/IpyThpYxCOBxGJBJBX18fQqGQLNRROeUZg1IsGAmfWifCNWsqlZIro1txWhPCC+gzAOoTTP4Q+b8UlFyvWbHSzDwzwQNHPltYNwwNTJjjahBcgs4SWXFK8wXLxam6jSsWchnIJbMa2idOy23Jym4X1eIZ6jR9t9nGE9nDw8NyKXjSLvzi+P4qVHL4vjy3S2k7WiqV3kXBLQJfbI40NWmsahFgVeupf+TTDw8Py1cWkGYuNORL39WHQ6eAyIfmdRY0Jy0ej2s5Vd2Gqq9tAPJTXdwE8d/5SzjUJ/NGL1An0Pzm0gRPK63LH7hq074EVaNxV4qsGWVN1PSU6loVuz6dBdVxymdZ6zjli6VUvfDqOsiFhjQJX3Jf1bK6z4VMGg/Y6Bzk6/JInA+E6NpRR5CqBTrzry4BwBdusRIW7lLxbeo+6me6Z+R+FeOUB4iVchsq4vNagRPNBwWs/EwukNzXsgo2VM2Sy+VkNByJROR7w7hlULWT6kpUA6yEif8H8tfgVTlV21AHgoq5ZwTStqlUCrFYzJJTDlIINaF5Veiq/wttvxEU0h68qL3QOQvdyGqEFadWmMp1qcdyTVzKsZXgtCIBmyogfBsXJEpq6wYIdH/0m9V5dcfzIJEPV5JbQYl0XUBULdDV36r8AhOvQ1Cjfw6dH1tIsKwCYwCSP64U+DY6jjRvuSdglv0OWS3FpJLN/TP+VwqR1IbuQeH7qYKve6jU/lar9i2VU/pcKB1Y6jVa7cfdOVXx6LaVUmtxIyi78KojOaoAcfBCmEqYFivh5udXl7BX03vVgFL5BEpbBlbnL18PinHK76t6DeVE2YW3EMn8MzfjumwDUFi7lgorDaSaOJ4iq+ZsQzHBLVUhTJVPK07JdaH7yhVB1QtvIaiE8ZSZuiRRKccXQilEqQ9QKQIy09A94Byk+XScTvWaSuGFWzN+XCUsWVk9aNJmqkDQbxykIZLJJIaGhgCMv4yuWHBWTIDV49WUGO8PJfVp+gwFFtW0Yg4wUXpYLGVIyoBeGAhM5lTdvxCsXJBinMZiMTlETXxmMpmyc1r2VBkPHHQBlop0Oo1oNAqPx5M3B0uX6tIFdDr/TRdRA5hENFX784Jp7jZUg/Cqab5CnNI+NKPY7XZbzmujtnibxdJsOv4LccozDbx6r1wou/DqUiVW6TMr88K/W5lzNV1kFRHTdp3vRVVR1Y5CnHJwy8dhFX+o20vNPtBnPopHv9ELCqk/umPLhbK7DfwFy9ThUnOsXHitTL/6MOhSc+qxXKNSfS9VYdH0lWp9CxBpUuKUb+cCTJzSlKBCnPLvqkLgbdNnK6HnAS4AuaBLJBKR7kIlUXbhVR32QiapWCK9VJSyvy5ooMAGgPTHqsFV4OBBrZWPS6BgTReklXpdpcQU9F83rE9KaTp4LLvwUnEyvVnR6mkm86JWetHv/OLJRdCtrM21q64/1BYvjyTtHY/HEYlEYJomPB6P1jeeaRBXVDdL12tlzUhDq9pXBXGqum60v+pb65QQzWrmiwBSEGyaply9p1IZnIr5vMU0L5k4q1WydRqAR9zUtvpaJUA/ykfTZvgaDjS7gtb14kJbLcIL5HNF18r9W7rWQu+gAPJrrXkgqGpq4qgQB7QfzVmk9qnajBYFrKQiKLvmVf1Q0nDZbFYucMehC7SsQNpCJ2A8y2HVjqrd+dviuZauJsGl6+LZBkqHkaa18vmtvquZBl2QfL19o+885inUh3Kg7JqXBIJmkeZyOYTDYTnXSl1DSw2urMA1At9G4G6JlQuhPlRk4vh8Ozq+mgSY3AY+25ne7TAyMnLdnJLg8gAY0OeNaX9g8gxgVdNzTml2Np+TWNX1vFYpMRJo3Tu4SgkQCvlualtcoxTbn/uNpZ5juqHmeWnbVDjlsLreUttQ91N98VLPdyOoiM9LppgI52YPmBywWWUdCKUKrU4T61JtBF7VpqaDqqm2gVuzUjhVJ5mqKOZm8O2cVzWW4EEwwapmuuoDNtIIao2nLh/L1wezMlsqivmxOpK5ybMq/uHHq2Z3psG1LK/T1XHKFUcxTgtZJ/Whp22cU3U0Uj3+erT/jWJaXiKorrVFN4SGEV0ulxzKpBvENYxVqketn9BNP6HzRSIRDA8Py+WP6HdeTcYXR6mWJU5ttolViIpxSpo3m83eEKdqDlcHntGJRCIYGhqaxCnnkzIS5P+WExV597DH45F5Puo43QTySWOxGBKJBFKpFPx+P5qamuSFc8Eu9BSrN4/2oyWk6HyZTAZXrlzBuXPn0NfXJ4WTp3r4ijS8rzMNm218/Te/3w+fzwev1yvXfSuVU1pelnLqqlWk86juFc8kkIal1GQ6ncalS5dw7tw59Pb2IpvN5r2p0+12yz8KDqt+0REO1TfjQkjbyczxsXs6VpeXJFiZNdqXzk2DJpFIBCMjI3nLEulMb7WDXxt9J+g4VYNnXWCqE2DOK+c0m83KBfSIU3qZCj9HzbkNqVQKPT098uXILpdLrhyYzWZx6dKlSfm/s2fP4he/+AVCoRCam5sRCoXyFswgjahLtXDho5tFL21Jp9MYHh5Gf38/IpEITp06hb6+PoTDYblfb28vzpw5g9HRUdlX0l79/f1V8f7hVCqF8+fPY2xsDOl0WgZJFJhdvHhxUj/PnTuHX/7yl5g1axbmzJmDYDAoLZFhGHkjiroYgP4om5HJZBCJRJBKpRAOhzEwMGDJaV9fn+SU+hqPx5FMJnHt2rWyclp24b18+TIGBgbk29T54nC9vb2TOt/T04MXX3wRpmli48aNWLlyJUzTlG9hb2pqQiAQyHMDePqIgj7y95LJJHp7exGNRnH27FmcPHkS0WgUAwMDiEajACaGUq9duwan04l4PI5AIAC3241oNIpEIoGBgYGqEd6LFy+iv79fCi8tsCeEwJUrV7ScvvzyyzBNExs2bMCqVavg8XjQ1NQEl8sl3wXCaxO4RieBJauVSCRw5coVRCIRnDt3DqdPn9Zymslk5FKn8XhcvoeCFEK5Oa1IPa/OXbAyJSRIvPJfTQEVOw/fj29XZyfrcpJ0DA9mpsvslQreL/LXC7k8VHBEbkMp94HOU+g+EY+FOFUzIdTnSnBqE9V0l+qo4zpQPZn4Ouq4TtSFt46aRV1466hZ1IW3jppFXXjrqFnUhbeOmkVdeOuoWdSFt46aRV1466hZ/D8OXe44Ro7dywAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUoAAABzCAYAAAD+K0vUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmwklEQVR4nO2de3BV1fn3v+d+SULuJDEBxbEIEpIgYhVtBaFVqAoWq1VaHZXREatO663VsdrOz+mIVls7dqit1RkvbaVjlbbWCyLWC0Kt3GxmvBIgBJJDkpPk3G/r/SPvs1h7nX0ucA7Zx7PXZyaT5Jy9d7K/53nWetaznrW2hTHGoFAoFIqMWI3+BxQKhaLUUQ2lQqFQ5EA1lAqFQpED1VAqFApFDlRDqVAoFDlQDaVCoVDkQDWUCoVCkQPVUCoUCkUOVEOpUCgUOZiQhrKrqwtjY2O675122mnYtGlTzms8+uijaG9vx+zZs9HR0YFnnnmGv/fUU0+huroaXV1d6OrqwsKFC/l74XAYV155Jdrb29He3o6LLroIPp+v4HuaCIqhW39/P7797W+jo6MDM2fOxK9+9Sv+3v3338816+rqwqRJk/CjH/2Iv79r1y4sWLAAM2fOxMyZM/HCCy8AADZu3IjTTz8dp5xyCmbNmoU77rgDqVSqoHstFsXQjBgYGEBTUxOWL1/OX8umWU9PDxYsWMBtUWTz5s38nFmzZuH6669HNBoFAKRSKdx2221ob2/HjBkzcO211yIWix3RfReTYmh43333obGxkd/zypUr047R0zebLwPAW2+9hXnz5mHWrFk45ZRTsHnz5rzOKxhmMHPnzmVvvvlmzuM2bNjA/H4/Y4yxvXv3svr6evbZZ58xxhh78skn2bJly3TPe+SRR9iKFStYKpVijDG2atUqdvvttxflfzeSfHW74oor2N13380YYywQCLDOzk62devWtOMikQirq6tjH3zwAWOMsWAwyKZNm8befvttxhhjiUSCDQwMMMYY+/DDD9nnn3/OGGMsHA6zs846iz355JNFuKtjS76aEcuXL2fXXHNNRtuSNRscHGRvv/02+8c//sE6Ozs1xwaDQRaLxRhjjCWTSbZ8+XL28MMPM8YYe/zxx9nChQtZNBplqVSKrVq1iq1Zs+aI728iyFfDe++9l91yyy1Zj9HTN5sv79+/nx1//PGsu7ubMTau//DwcM7zisGERJQWiwV+vx8A8N5776Grqwvt7e24+uqrkUgk8rrGokWLUF1dDQCYMmUKmpubsW/fvrz+digUQjweRyKRQCAQQFtb21Hfy0RSDN127NiBpUuXAgAqKirw9a9/HU8//XTacS+++CKmTJmCuXPnAgCee+45nHHGGTj77LMBADabDY2NjQCAOXPm4MQTTwQAuN1udHV1oaenp5BbLRrF0AwAnnjiCUybNg1f+9rXMh4ja1ZXV4ezzz4bFRUVacd6vV44HA4AQCwWQzgchsViATD+GS1evBhOpxMWiwVLlizR/YwmimJpmI189JX57W9/iyuuuAIzZ84EALhcLtTU1BTl/8nFhOYoY7EYLrvsMjz00EP46KOPcPnll2PHjh38/bVr1+KnP/1pzuts2LABw8PDmDdvHn/tnXfeQVdXF+bPn49169bx16+//npUVVVh8uTJaGpqwsjICH7wgx8U98aOMYXoNnfuXDz33HNIpVLw+Xx49dVXdRu1J554Atdeey3/vbu7Gy6XCxdccAG6urpw5ZVX6qYsDh48iL/+9a+44IILCr/RIlKIZrt378batWtx//33Z/0bsma56OnpQWdnJxoaGlBdXY3Vq1cDGP+M1q9fj9HRUcTjcTz//PMl0fEU6q/r1q1DZ2cnzj33XLz55pv89Vz6ZvLl7u5uhMNhLF68GF1dXbjpppsQDAZznlcUjlmsKgCADQ8Psx07drATTjhB896JJ554RMOhnTt3sra2Nj4kZIwxn8/HgsEgY4yx7u5u1tbWxjZv3swYY+yll15il1xyCQuHwywajbLLL7+cD0VLnWLo5vP52FVXXcU6OjrY4sWL2XXXXccuvvhizTE9PT3M4/GwwcFB/tpNN93E2traWG9vL0ulUuzHP/4xW7Fihea8kZERdtppp7Ff/vKXR3+TRaZQzVKpFFuwYAF7//33GWOZh3R6mhFvvvlm2tBbZGxsjC1btoz96U9/4n/z3nvvZV1dXezMM89k99xzD6utrc1+o8eQYtjdgQMHeKrhnXfeYY2Njaynpyenvtl8+cILL2SnnnoqGxoaYrFYjK1cuZLdeuutOc8rBobPetPwIx+6u7txwQUX4I9//CMfEgJAQ0MDvF4vAGDmzJlYunQp3n33XQDA448/josvvhhutxtOpxMrV67U9G5fVvLVraGhAU899RR27NiB119/HRaLBbNmzdIc8+STT2LZsmWoq6vjr02dOhULFy5Ea2srLBYLvve97+H999/n74+NjeH888/HsmXLNBNApUw+mo2OjmLnzp247LLLcMIJJ+C2227Da6+9hkWLFmmO09MsXyorK/Hd734Xzz77LP+/7rvvPmzbtg3vvfcenyQrRfK1u+bmZp5qOOusszBnzhx88MEHOfXN5stTp07Ft771LdTW1sLhcODyyy/nNpntvKJQtCY3C/j/PVQ0GmVtbW1s48aNjDHGXn/9dQYgrx6qu7ubHX/88eyVV15Je6+3t5f/fPDgQXbSSSexN954gzE2HhldddVVLJVKsVQqxW644QZ23XXXFefGjjHF0O3QoUO8Z//www9ZU1MT6+vr4+8nk0k2depU9vrrr2vO27NnD5sxYwYbGRlhjDG2Zs0atnTpUsbYeEQ0f/589rOf/awYt1lUiqGZiF5EmUkzQi+i/PTTT/nnEI1G2aWXXsruuusuxtj4hNjQ0BBjbDwy6uzsZOvXrz+i/7OYFEPDffv28Z8/+eQTNnnyZPbxxx+nHSfrm82X3333XXb22WezSCTCGGPsxhtvZKtXr855XjGwF6/JzY3T6cRf/vIXrF69GslkEvPmzUNnZyd/f+3atejr68PPf/7ztHNvvvlmjIyM4M4778Sdd94JAHjggQdw3nnn4bHHHsNLL70Eh8OBVCqFH/7whzj33HMBjJcpXHfddWhvbwcAzJgxA7/73e8m4G6LRyG6bd26FTfffDPsdjuqqqrw/PPPo6Wlhb+/YcMGWK3WtIhp6tSpuOuuuzB//nxYrVa0trbi8ccfBwD8+te/xtatWxEMBnnJ0He+8x3cfffdx+L2j4pCNMtFJs1CoRCmT5+OaDSKkZERtLW14fvf/z5+8YtfYOPGjXj00Udhs9mQSCSwaNEi3HPPPQCAkZERLFiwAFarFalUCrfccgsuvPDCwgQoAoVoePfdd+O///0v7HY7bDYbHnvsMUyfPj3n38zmy/Pnz8dFF12EOXPmwGazYdasWVi7dm3O84qBhTG1w7lCoVBkw/AcpUKhUJQ6qqFUKBSKHKiGUqFQKHJQcEP5wQcfYMmSJZg2bRrmzp2LOXPm4P/+7//4+wsWLMCLL76Y9/XWrl3L12vW1dWhtbWV/14OZT16KA0LQ+lXOErDHBQyZb5z505WX1/P/v73v/PXBgcHNWupzznnHPa3v/3tqK5/1VVXsUceeUT3vUQicVTXLJRkMsmSyWTRrqc0LAylX+EoDXNTUET5wAMPYNWqVZrla3V1dVizZk3BDbjMU089hYULF2LFihWYPXs2tm7dildffRWnnnoqOjo6cM4556C7uxsAsGnTJs3uLR999BFOOOEEAIDP58M3v/lNvgvR1VdfzY976KGHcPrpp+PUU0/F+eefjz179gAYLzFasWIFzjvvPLS3t+PAgQNFuy+lYWEo/QpHaZibguooP/zwQ6xYseKozl2/fj3Wr1+PP/zhD3mfs2XLFmzbtg0nn3wyBgYGMHPmTGzatAmzZ8/Gs88+i0suuQT/+9//sl7jmWeewbRp0/Daa68BAIaGhgCMbwLx8ccfY/PmzbDZbHj66aexevVq/POf/wQwvk3Wtm3b0NTUdFT3mwmlYWEo/QpHaZibok7m3H777ejq6kJra2vOG73ooouOSFxgvOD05JNPBjAu9uzZszF79mwAwMqVK9HX14f9+/dnvcYZZ5yBf/3rX7j11lvx0ksv8Z1eXnzxRWzYsAFz585FV1cX1qxZg7179/Lzli5dWnQD1UNpWBhKv8JRGqZTUEM5Z84cbN26lf/+4IMPYvv27XA4HIjH44VcWpfKysq8jrPb7Ugmk/z3SCTCfz7zzDOxfft2fPWrX8ULL7yAefPmIZlMgjGGn/zkJ9i+fTu2b9+OXbt2YdeuXUf8t48UpWFhKP0KR2mYm4IayjvuuAO///3v8fLLL/PXYrFY0fasy8YZZ5yBXbt24aOPPgIA/PnPf0ZraytaW1tx4oknYs+ePXxbMHFvv927d6OyshKXXnopfvOb3+CTTz5BIBDA8uXLsXbtWh7Cx+NxbNu27Zjfh9KwMJR+haM0zE1BOcrOzk68/PLLuOeee3DjjTeisbERDocDN9xwg2Zd56pVqzR7QK5btw4+n++IcxsijY2NePbZZ3HllVcikUigtrYW69atg8ViwXHHHYc77rgDp59+OpqamrBkyRJ+3qZNm/Dwww/zNbcPPvggqqursXLlSgwODvIt5BOJBK655hrMmTPnKNXJD6VhYSj9CkdpmBu11luhUChyoFbmKBQKRQ5UQ6lQKBQ5UA2lQqFQ5EA1lAqFQpED1VAqFApFDlRDqVAoFDlQDaVCoVDkIO+C8yN5rOyR4vF4cP7556OzsxNerxc1NTUAgGg0ilQqBYvFwv8+Y0zz5XQ6UVlZCcYYDh06hEAggO3bt+PVV19FOBw+Zv/z0ZSfHksNvV4vlixZgo6ODng8HlRXVwMYX2GRTCbTNKTvpCGtlVUajmvo9Xq5htFolGtIyP97Jjt85ZVXTKlhZ2enxg5FDbPZYan68oQ+hTETTqcTHR0d+MY3vgGbzQa73Z7zw6Sbs1gssNlsAMY/jEQigXg8jo0bNx5TcUsNh8OB9vZ2LF68WKOhqJOMrCFjjC9dUxqOaygjaipitVphtY4P0MgOY7EY3njjDVNquGjRIl0N87FDoPR8uSQaSrvdjpNOOgnz589HMplEPB6HxWKBw+HgxpeJZDKJRCIBxhgcDgdsNhs+/fRTXSMvZ5SGhSNqSE5KGpIDZ0JpOE65amjof2Cz2eB2u1FVVQWn0wkASKVSiMfjYIylDXf0YIwhkUjw3oi+vF4vwuEwH3qWKxOhIaVAyhXSsLKykmvIGOM751D6JxvJZJIfZ2YNRTs8Ug1L2ZcNbSjdbjdaWlrQ0NAAr9cLYHy3j5GREd3j5SGPOAwiUR0OB7xeLyZPngyr1Qqfz2d42H4syaahOKShPBBBRptLQ4vFgkOHDpW9hk1NTZg8ebJGw0AgkNa45cpnkZObUUM9O8xXw1L35ZKIKCsqKnh4nUql+Jec9JV/lnso+kDsdju8Xi88Hk/OcP/LTiYNKZokxIZS1C2bhh6PxzQayveaSqV4lEjoaSg7vc1mM62GenaYTUORUvdlQxtKj8eD1tZWNDc381lX4LCYNpsto0GKglPDQFRXV+MrX/kKqqur4ff7EQgEJuBujCGbhgA0+R09J6cvPQ2nT5+OSZMmYWRkpOw1bGtrQ3Nzs2ZjV9kO6Xdx5pZ009OwpqYGM2bMQE1NjSk0zMeXRb+l3Llsh2LDWiq+bGhD6XQ6UVtbi7q6OrhcLgDpvTbNxpJ4JC4JKpYYEF6vF83NzQDAr1uu6GlIWCwWPhtLEabVauVOLud7zKxhXV1dmoZiw2i1WjWjHHGCTI6YCI/Hg+bmZqRSKVNoqGeH2XyZIsRMIx+gdOzQ8KF3ZWUlqqqq4HA48jpHNEpqAOg1Etlut2PSpEkIBAIlMWN2LMmkodhDk04A0vJFYq5SPNfhcKC6uhrBYNDUGmYiHzt0OByoqqpCVVWVaTSsrKxMG8WIOoq6iQ2kbIel5suGfnoulwv19fVoaGjI2FvIxkriUsJX7o2o925sbEQ0GuUzcOXK0WgoRueihuLQyEwaUjRUX1+vGdlkQ7RDu93OZ2tJw1QqBafTiYaGBkQiEVNoWFdXh4aGBrjdbgD66TK975nssJR82dAljBaLBW63G263m4fleuRTViHmOaxWK5xOJ5xOZ84awi87ooYU2egZ6JFoSFGoWTS0Wq1pGh4Nog3KdljuHImG+ZQJlZovGxpRer1eHHfccWhtbYXT6eR1UtmEloeI5NgWi4UXrDocDtTW1iIYDOY9pP+y4vV60dLSgpaWFjidTr6iQdQpWyNJs5J0TjweRyKRgM1mQ3V1NUZHR8t+2EilLS0tLXA4HIhEIlyDXCkLAJpjRDu02+2oqanB2NhY2TeW+WgoIjeW5MtU91tqvmyoB9jtdp7XoNCbkudENgMVZxzpd4qG3G43XC7XMV3XWgpYrVZUVFSgqqqKP2hJnlzIpAG9J2tIjabL5YLL5Sr7iNJut6OiogKVlZWwWq1cQz3d5EkdQBsBAVo7VBqWhy8b2lDKQ5NEIpGWcwSgOYbEpshHrrFMJpO8NyrnFTmEzWaDy+Xi+ujVrQHja3D1NBTzQmIiXaxnLXeoBpCGjWJFhei8oh1Sp072JpYNyfqZSUNq0MgORQ1pKaO4coex8dU45MuihqXky4Y3lNTjAukNpVh0SvVtJH4gEODL9AhRWLrW0eabvixQQylqKBfr0+wh1bfRa8FgkD+7mcqGZCfXy3mWG2LBudhQynWRtJwOAHfscDiMeDyu2eVKdHIzaeh2u+HxeHhDSf4n3r/H4+F2SNoEg0HEYjFNQ0nF6qXiy4Ynn6hGDUgvHKc6K8YYotEo/5mOoR1yqEEVHV38oModceca2SnF1QyxWIwfQ9jt9oyrJ8SevpyRayNFOyT7JNsihxaPsdvtfH293EGZRUMg3Zfl10UN5WNIQ7mTLxVfNrShpCJU6sWpByGxPB4P7HY7wuEwBgYGND0O1b1RVCkKnEgkEA6HEQ6HDQ/ZjzV6ReVifsfr9XINDx06pNHQ6/WisrKSr8kV85nxeByhUMg0Gtrtdo0dUkNotVo1dujz+TQaUl6O7NDMGpIvkx1SByHbIWlI51VWVmLSpEm6GpaKLxveUMrLwYDDkwxUK5lKpRAKhfh5NARyOBwao6VzxeGjGdDLLxK0uUAwGEQkEtHoRQ1ApokLs2lIyPdNtZLJZFKzKYPYAIgTYyJm0VD2ZVkH2Q7F1TkVFRUaXxbrLEvFlw0felM0pFduYbPZ4HQ6EYlE4PP5eC9FSeHa2lp+vJwHoSLVci8PEjsU2dmpkNdutyMSieDgwYN8GENRVE1NjSa3RrjdbjQ2NiISiZS9hoB22Cg6KjA+LHS5XIhGo+jv7+ca0mRkbW0tj55EOzSbhmRvenZot9t52VB/fz/PO8q+DKAkfblkGkogvcGjXigWi2FwcBDxeBzRaBQWi4Wv/9TD5XKhrq4OgUCg7OvXAK2Byr0xaRiNRnHo0CHE43HEYjGuoai/iMvlQm1trSlqAAFoOgvZDsnJo9EofD4f373carVyDfXqAqkRNYuGmYIe0Q5jsRi3Q9GXM0WipeLLhjeUYk8uviaG8YlEghewkoGKeQwxryQn4s2A3n2K+gHjGoqPKJDrAcWkORUJy9coZ0Sbk7+IZDKJWCyGeDyOeDyu0VCcqRXt0IwaZntNtEOa/NKb7S41Xza8PEjuhfSMNBaLYWxsjM8gUnE6zXpTGE+7KcsPMSpn9DSk18UoSdbQarXyRhGARkMq79C7bjlC9ykPG/U0HB0d5SkgssNMGtJEhpk0lIMeWUOaOBRXgGXSECgdXzY8ohQRG0sRWi1C4splBED6sN3sZNMwHo/zSTI9DeXSDjMgd9R6ULSTj4aiLZpFQz0y2SHZ4pfFlw1tKMWSIKfTqTFWsWeiEoFIJIJgMAiLxYJwOKwxRDkK1Rs6lSNynZk4lBY1jMfjfMYxGAzCarUiFArl1NAMiM4raig7KpX7RCIRjI2NwWazZdTQbGTyZVnDWCymsUOLxZKXHRqtq+ERpZyL0NsQg/JqZKDA4eJpMbQ3m4MTeqtI5F45mUwiGo0iEonwXaJFDWXMpiU5OqGniaghOTlpSJhFLz307FBG1FD2ZT1KRU9DG0px5QKVq9Dv4vAvkUggGAwiEAhgYGAAqVQqbUt4aigzzaCXK7KGNByU7z0ajWJsbIxrSEvHRDJpWO7Qqhpxj0m9td7RaBSjo6MZNZRHRJSXy9V4lAN6dkivHamGpejLhjaUNItI5SoOh0OTsyBhIpEI/H4/hoaG8PnnnyMej2N4eJhfR+x1xJC/3I0TgCZnBoxvfiGusSVCoRB8Ph/8fj96enqQTCY1GoqIw3czOHkqlUIsFkM0GgVjjBeXy/laWcNEIsE1JKcmB6ffxRncckbPDvXyj6KGX3zxBVKpFIaGhgBoNRQ7m1LQz/Cht97OIXrH0DKmcDjMzyFkYQH9J8CVK/lqGIlEEA6HeU4om4biiohy15CW3OmtJ5ZLW0hDWlInayhf1wz6EXp5XiCzhrRC58tgh4Y2lPT86aqqKjQ0NKQlckng0dFR7N27F8PDw3ydKC0lozCfvotLHsUJn3KFNKysrER9fT03Mlp3SwSDQRw8eBB+vx+Dg4MAoNGQNucVIyEy5nLXMJFIIBAIYGxsDPX19Zp13qKTBwIBHDhwQKNhJBIBAI3u4sRGNBrlG2mUM/F4HKOjoxgZGUF9fT0AaOyQdAwGg+jr6+MaMsY0GtKae3FzDRp1mnroTYldMUSXSwXE/FooFOJ1fnQsTQCJvZC4PVM5k0wmEYlEEIlEeM0ZoM31UP1aMBhEMBhEOBxO0xCAxqBFDcvdyUkf2mFfLo+SawBJQ6pFJagAna5ZKjvfTATky9FoVPehYQB4LSoFMXp2SPWUoh2ShkZiaEOZSCQwNjbGi3gpIpQhp80Uessz3slkkn8Y5T7sSSQSGB0d5TvYyKVVhOi0eoirnWiH6kAggEAgoBkalSOhUAh9fX0AgObmZjQ2NvKOV+RIJhUYYwiFQujv78fAwADfJrBcicfjGBoagtvt5nMOmdJAR5L3jkajGBoagt/vN1RDw4fefr8fXq+XF/BSVCM/N5kcXc5/AOmlLDRLHgqFDO+JjjWxWAzDw8PweDx8tZK4LyIhdjZ6GhJk3DSUotU85UwkEkFvby9isRimT5+u2d9UtMN8co5iJETDzIMHD5Z9Q0nr4GkDFr3Za0C7qCGbL9OxtD0g7fVgFIY+yEMOq8WaSBFK+IqzuTRjLpYjiOfp7ahTjoidCKC/MQEdJ2tI9anio1YJyhfRMtFyhxo/q9UKh8OhO7LJpCGtXQa0s952ux1Op9MUz8wBDjeC5I+ZRjZiSky2Q0DbDtBmGg6Hw7wF5+KKCFlc0XGpmj8UCvEVJ6FQCH6/X3ets8PhQEVFBbxer67Blxu0tJNKrGjoIxqqmBsiDcPhMIaHh3nSnbSiyHTSpEmmeAojcPiZQl6vF1VVVQiFQmlRIOV5RQ0DgQB8Pp9mMoca2urqakyZMgUA+LOuyxkaTjscDrjdbt3Im+YbgsEgt7NwOIyhoSHuw3a7nbcFXq+XPxs903PrJwLDuzlxKCPXoBGUSBeT4lRmQOG4vLEGiV3u0ZA8HMxUlkFF1eLkDGkor9Ch/JyZIkrqmOmeM0XlooZkl6IdikNOu92ueRaPGRDz3Hro2SFtuaanofjwPCPt0NBPL5VK8VlveaZMXqdMa2ypURgaGsLu3bvR39/PHZs+BCoaJoMvZ+RZb0C7P6WYtxVr10jDnp4evkJC3MafMcajzHLXEDi8a404BJdTQaRhNBrlObbh4WHs2bMHPp8PAPjqMvG51maIyOmeZTvMpKFoh8PDw9wOAfAdhWgGnTQ00g4N9QCxPEh+bKpekSqtnGCMwe/3o7e3l9diiQ1lKpUyTY6SSi7IeQH9pYgU+VA9WiYNgcNPGMxUhVBuUOcgl0LJHbZcF8kYw8jICPbv369ZoUOdl1jJUe6dDZXxiXZI6PmyrGFvby+Ghoa4HdIcBPmy0VvVlcxkDvXotA+ixWLhOUy9cgLKdVBRud5wXfxermTSkIyKlpUdrYblrh9weEKBtKLIkuxQrLGU9aDNHSh/rreyxCwaynYoakhLHDNpGAgE+AIIMQoVl9GatuCcht4UVdKyMIpiyEDlsgDqhfr6+uDxeABAEz2WwiL6iYKiaIoqRQ3FaFPeoYUiyn379sHtdqetRBGXjZV7LWoymdQU48t2SLrKkzuMMYyOjmL//v18soYiSBohmUVDMY0m+jKlHWg0qGeHFFG6XC5uh2KnTQ2waZcwiqsX9CYk9DYmIGgmnD4AOk9cSWGGhlLWULxvsUfOpKGYcyPKfZgoI68nFmv8xEhJrsml4WYoFNIsscs2mVGukIbyCFD05Wx2SFUGpaqh4Q0lreOUHZWMkGbE5POGh4exd+9e/gQ8IH2LpnLPTwLaqFzMsckaylF5KpWC3+/Hnj17UFtbq5nEoOS5XsFwOSLuHiQODSnvTTYq5zDFqLyurk7z2AJ5Qs0MGtJstqwh+XkmO6TJnJqamrR6VMpP6lXDTCSGz3qLYbXcC1HyXM6v0fKwwcFBjI2N6a7NFa9TztBEjfiIDACaiZlM+bVgMIihoSGuoTxLaabOhnJrmexQLIgWCYfDGBwcxMjIiCZHKepnBg317FBceUMa6uXKZTsE0ncRMlrDkokoxeWJorjihqoi4jN09IbeZmksabhDGgLaJZ3U2ehpKCbeZeMtJSM91pCT06QXoNVQ1ElGbGAJUTOzaKhnh0B+nQ1N9OhVHQCloaHh5UGU+JWHjcDhHJreZA7VY1FuSG4kjQ7VJ4pUKsXr0kQDpWGfXBBNUO6NhuaZGkozFJyLZWqiI5P9kIZ6OUq53EVEXvFUztC2fKFQKC0VBhz2ZbmhFDWkHKU4kikVDQ1vSbJN/ev11oSYgJcnMMwE3bfekBHIT0NxhlY+3yzo6SNGQ7k01OtozIaeD4uTOZmicnnCVrbDUpiUNbyhJMQokHrycDiMsbEx3c1jSXi93Jw421vu6A1PxMmDUCiE0dHRjBrSUEnvwVp6RdjliJhmEL+LdjgyMpJRQzE3J6ePzLIfJZC+ixctQQTG85B+v193M23Zl+lc0Q6N1rBkGkpCNDKa8dbLa1DInimSEo8zG/lqKJfDiMl3wFz1qHIO7Eg0zOTIZtJPD1lDObVB6Pmy/L7RQY+hDaXFYuG7tsgF41RuICbYRcReSJw1N8tMLUEa0o41ckNHk16ZNKSyDb2o3CwObrVa+XZoestexTpVGbF20OwaOhwOXQ3FWtR8fFnedhEwPpVhaENptVr5ziBispYaPXmvPxGaRaOZNHmtuFkgJ5c1FAuAs1UO0KodedhTSvmhYw3ZITk5QdFgthwlDb3F0hd56G4WDd1uN9xut6Z+lDTMliuXfVm2w1LwZ8MjSr2SHiD7OmNRfL2yDDOVBwFHVzsqr+jRu55ZKgeAzBqSDWayR9JQntQRc8dm0DBT2oLIpJ+eL8vlfqYvDwLSa6REw8yGWJelV5Zht9sN3xV5IsjU0eST06Ght7z8jpLwTqcTDoej7B1dbCBlDeXljSJ6pS3idaisxegtwiYS2Rbz2dBCjCj1fNn0O5zLHIkQehGlfK1ybyT10IuGMiFGQ/I15Nlzs6A3sslGJg3pWmbY6q9QyJfpZ6KU7NDwhlKvHABAzkkZvb0B6TqEGXJD4syqqGE+Qxax4FyvtIWuX+6QfvLyT/o5m7OSHcpb2ZkpxwtoR4KyVrlyjbQYQm9kQ9c0WkfDG0oAug6aaThE0JA7WyGw0eJONJm0ykfDbPkjMyB2Nnr5tkwdN0WTmfb8pGubgUwBS6b0ECFqqMqDdBDLBkSB803e6u2ZaLaJnEwa5jtjqLe9mNkoxA7FSRzRoZUdHp2GperLhu8eJG6KAWi3V8omjrjjC33p5TfKHeqJ5c0I8nkUhtJwHL1603ztUCzD0ttgxCwair5cqIalaIeGR5R6WzKJ5COQvAIi32iqHJDLUmTy1UFPQ/F7OSNHhfI9F6KhWewQOLw5bzlqaHhDSRENkD5kzDdsFzcEpUjK4XCYoixD7I2B9EkxmnnNpoO4Cgowp4Z6dkiQptl0kO2QIikzaSjOXhdDw1Kyw5JoKOUwWyTX7LdYOE3nl8KOyBOJXHQv/pxvZyPml8ymoZ4dEvlG1qIdipNCSsOj05COLxU7NLyhlDeWlYXONcEg794CHC44N8NjQvVyQ4Q8pMx2DcrRiQ0lrR8vdw317FB8T/yeCbJDynOShmaxQznPq1dilq+GpejLJbFxr7wpqjiDmMvJGWNpzwYX1z+XO/lomOsJdqSh+JAxWpnjcrmO+T0YTT4a5tq2jzGW9qA20tAMdkgddqbORs496lHKvmx4HWWukpZcvZDFYuHLFcUHEYk/mwm9kooj0VDcj9FMGmaaPDgSDcVcmmiHRkdDRiCngHJNOtJxdrtdV0Oj7dDQhpKMiwzM4XDw92w2Gx8S6u18Q7hcLkyePBlNTU3weDyw2+1wOp18J5NyN1AamtCXqKHVatU8eD4Tsob0mXg8Hng8nrLXUHTQYmjo9Xq5HXq9XrhcrrLXENA+wZOe502v5+vLDQ0NmDx5MioqKkrKlw3fPQhIn7Chn7OtoyVsNhvcbjd3cOp5KK9hBvQmbArRkGbKS6Ennyj0Vt8crYYUEZlpUwwxAtfTMJ/d8vU0LBVfNjSijEQi8Pl8iMfj2LFjByoqKuByueDxeBAIBLB9+3b09vait7c3Y35oaGgI77//Pvbu3YuWlhbU1NSgv78fu3fvxv79++H3+yf2piaYaDSK/v5+xGIx7Ny5syAN9+3bh+bmZtTU1GBgYABffPEF+vr6MDQ0NMF3NbFEo1EMDAwUxQ737duHlpYWVFdXY2BgALt37zaFhsXy5S1btqC3tzdNQ6N92fCGsq+vD36/H//5z38QjUZRVVWF+vp6BAIBbnh9fX0ZxfX5fNi0aRMaGhrQ1dWFKVOm4NNPP8WWLVswODiIwcHBCb6riSUcDnMNt27dikgkwjUcGxvjnciBAweyavjWW2+hoaEBnZ2dptMwEongwIEDGBkZSbPDQjT87LPPTKWh6Mtkhw0NDQgEAtiyZQv27t2b05f//e9/o6GhAR0dHSWloeHjAXFmVt4OPtvO0oS8fEy+lhnWLheqIZV2KA2VHRaC3lJEWcNcs97ijvylpKGFmeETVCgUigIwPKJUKBSKUkc1lAqFQpED1VAqFApFDlRDqVAoFDlQDaVCoVDkQDWUCoVCkQPVUCoUCkUOVEOpUCgUOVANpUKhUOTg/wFs2UydQEdXHwAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -2761,7 +2523,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK8AAAB2CAYAAAC+o8OSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAWwUlEQVR4nO2dfXAbR/3GH92dTifJkt9k2Y7t1E4aasvyW0wayIQhTUObZNoUmjCFlpZJxtBCM9OBUmBoAwXyB+V1pjOlpTAlTDNAKQGmpJ0Q0gSGkGmgdtK6DnWbguPEjhNjS7b1etLd/v7Ib7crRbZlW25yw35mPJZ0t6vd55777nf3TpKNEEIgEFgQ6Uo3QCCYL8K8AssizCuwLMK8AssizCuwLMK8AssizCuwLMK8AssizCuwLAU3b3t7O6ampnJue//734+//OUvs9bxxBNPoKWlBe3t7QgGg3j88cfZtscffxzBYBAtLS1obW3F3r172bZ//vOfWLNmDVwuFz760Y9m1DnTNgDYvXs3li9fjuXLl+Phhx/Oq69XgkLoCwD79u1DS0sLgsEggsEgBgYGAACjo6O49dZb0draiqamJnz6059GPB4HAPz+979Ha2sr2tvbEQgE8PDDD4NeoI3H47jnnntYfVu2bMHo6OiC+zsj5D2ks7OTHDlyZNb9wuEwezwxMUHq6upIT08PIYSQQ4cOse2Dg4OkvLycnD59mhBCyNmzZ8nx48fJU089RW677baMOmfa9te//pUEAgESiURIIpEgnZ2dZP/+/fPv6BUiX317enrIddddR4aGhgghhExOTpJoNEoIIeSBBx4gX/jCFwghhKTTaXLzzTeTJ554gu1nGAYhhJBkMklWrVpFfve73xFCCPnRj35Etm7dSkzTJIQQ0tXVRR566KGC9i+bgkdem82GcDgMADh27BiLntu3b0c6nc6rjuLiYvY4Go0ilUqx5zfeeCPbXldXh6qqKpw9exYAUFtbi+uvvx4Oh+OyOmfa9txzz+Huu++G2+2Gw+HAjh078Ktf/SrvPr+XFELfH/zgB/jiF7+IJUuWAAA8Hg9cLherf2pqCqZpQtd1xGIx1NbWsv0k6ZJlEokEkskkbDYbKxeLxZBKpZBOpxGJRFi5xWLRcl5d13HHHXfg+9//Pt544w188pOfxGuvvca2P/XUU/j6178+bfnf/va3aG5uRn19Pb70pS+ho6Pjsn0OHTqEUCiEVatWLaitg4ODuOaaa9jz+vp6DA4OLqjOxWYh+p46dQqDg4P48Ic/jI6ODuzatQuGYQAAdu3ahdOnT6Oqqgp+vx9NTU3YsmULK3vs2DG0tLTA7/dj/fr1uO222wAA9957LzweD/x+PyorKzExMYGdO3cuogKLaN4333wTiqJgw4YNAICbbroJy5YtY9vvu+8+fOtb35q2/LZt29DX14f+/n7s3bsX/f39Gdt7e3uxfft2PPfcc3C73YvTiauYheibTqdx4sQJHDhwAEePHsWxY8fw5JNPAgB+/etfIxAI4Pz58xgeHsZbb72Fn/3sZ6zsmjVr0Nvbi7Nnz6K7uxt/+9vfAAAHDx6EaZoYGRnB+fPnUVJSMmNwKgTv6WoDHWLmQn19PVavXo39+/ez106dOoVbbrkFzzzzDNauXbvgdi1duhRnzpxhzwcGBrB06dIF1/tek6++S5cuxdatW+F0OuF2u3H77bfjlVdeAQD8+Mc/xl133QVZluHxeLBt2zYcOXLksjoqKiqwefNmPP/88wCAp59+Gh/72MegaRpUVcVdd92Vs1whWTTzNjY2Ip1Osw4cOnQI77zzTl5lT506xR6Pjo7i8OHDaG1tBQD861//wubNm/H000/jIx/5SEHa+vGPfxzPPvssotEokskknnnmGXziE58oSN2LxUL0vfPOO1mkTKfTOHjwINra2gAAy5Ytw4EDBwAAqVQKf/rTnxAMBgFcivamaQIApqam8OKLL7LjsmzZMhw8eBCEEBBC8OKLL7Jyi0ahZ4AASCgUIoQQ8ve//520tbWRYDBItm/fTtra2ths+MknnyS7du3KWcdnP/tZ0tTURNra2khrayub7RJCyIYNG0hJSQlpa2tjfwcOHCCEEPLmm2+SmpoaUlpaSjRNIzU1NazsTNsIIeSb3/wmaWhoIA0NDeSrX/1qoWUpGIXQ1zAM8uCDD5LGxkbS3NxM7rvvPpJMJgkhhPz73/8mN910EwkGg6SpqYns2LGDxONxQgghjz76KGlqaiKtra2kubmZfOMb32CrC2NjY2Tr1q0kEAiQQCBAbr/9djI6OrqoWtgIEZ+kEFgTcYVNYFmEeQWWRZhXYFkKZt5XX30VmzZtQkNDAzo7O9HR0YHdu3ez7evWrcMf/vCHOdUZDofxqU99CsFgEK2trQgGg/jlL39ZqCYDAPbv349169bNut+ePXty3hOxmAhNZ0aZd0mO3t5ebNy4EXv27MEtt9wCABgfH8d3vvOdBdX7yCOPoKKiAr29veyy5cjISCGafNUjNJ2dgkTexx57DF1dXUxkACgrK8N3v/vdBdV77tw5VFdXs8V3j8eDFStWALh0cNeuXYuVK1ciEAhkRKRHH30Ud9xxB2699VYEAgGsX78e4+PjAC6tXX7+85/HihUrcP3112cspI+MjOCGG25AZ2cnmpubsXPnTrau+V4jNJ2dgpi3p6cHq1evnlfZF154AV1dXTm3PfDAA3jsscfQ2dmJnTt3Zlxlq6+vx8svv4yenh50d3dj37597CoRABw/fhx79uzBqVOn4Pf78ZOf/ATApStB/f396Ovrw9GjR9HT08PKlJSU4I9//CO6u7vx+uuvY2BgAL/5zW/m1a+FIjSdnUWZsD300ENob29HTU0N+vr6Ztx3y5YtGdfOeW644QYMDg7i29/+NkpKSnDvvffi/vvvB3Dp/tGuri60tLTgAx/4AM6cOYOTJ0+yshs3bkR5eTkA4IMf/CC7+vTyyy/jnnvugaqqUFUVO3bsYGVM08RXvvIVtLW1oaOjA6+++mpGnVcSoenlFMS8HR0d+Mc//sGef+9738PJkydht9szbmecD263G5s3b8bu3buxb98+PPvsswCAr33ta/D5fDhx4gRee+01rFu3DolEgpXTNI09lmV52tsF+fsBfvjDH+LixYs4fvw4Xn/9ddx5550Zdb6XCE1npyDm/fKXv4yf/vSneOmll9hruq7nfX/pdBw8eBChUIg97+7uxvLlywEAoVAItbW1UBQF/f39+POf/5xXnRs2bMDevXuRSqWg6zp+/vOfs22hUAhVVVXQNA0jIyPsppMrgdB0dgqy2tDW1oaXXnoJu3btwv3334+KigrY7XZ87nOfw/ve9z62X1dXV8Y9ns8//zxGR0fxwgsv5Bzment78eCDD4IQAkmSUF1dzT7288gjj+Duu+/GL37xCyxfvhzr16/Pq62f+cxn8MYbbyAQCKC0tBQf+tCH0N3dDeBSPrht2zY0NzdjyZIl7HbDK4HQdHbEvQ0CyyKusAksizCvwLII8wosizCvwLII8wosizCvwLII8wosS94XKebzsfX/Fea7VC40nZ58NBWRV2BZhHkFlkWYV2BZhHkFlkWYV2BZhHkFlkWYV2BZhHkFlkWYV2BZhHkFlkWYV2BZhHkFlkWYV2BZhHkFlkWYV2BZhHkFlkWYV2BZhHkFlkWYV2BZhHkFlkWYV2BZhHkFlqUg3887H+jHviVJgizLAC59BbxpmtN+7Fl8G+vMTKepYRjTlrGyplfEvDabDU6nE6qqoqSkBDU1NZBlGcPDwxgfH2e/Rk6/AFmSJKTTacTj8Sv26zxXOzNpOjY2lhEYJEmCzWazvKZXzLwOhwMulwt+vx9NTU2w2+2w2WxIpVJIp9NIJpMghECWZciyDF3XkUwmLSv0YjOdpgCQTCZhGMZlAcHqms7LvDabbV7Djdfrhd/vh8vlwpIlS1BaWgpN0+DxeAAATqcTbrcbpmmy1wAwoe12O9LpNDsQhmEw8a08/AHz17S4uBiVlZXQNO0yTQkhTFMeSbo01dF1HaqqIpVKMU1N00QikbCEpnM2Lx1yCCHsL1/q6+uxceNGVFRUoKOjA/X19Th37hxOnDiBiYkJ+Hw+JBIJqKoKj8cDWZZZJE6n09B1HYZhIBKJIBaLIZFI4MKFC5YRezoWqummTZtQUVGB9vZ2XHPNNTh37hy6u7sRDofh8/nYie/xeCBJEtPUMAxm3Gg0img0ing8josXL7J04mrWdE7m5b9bay6RQlEUyLIMj8cDv98Pv9+PyspKVFZWIhKJQJIkmKYJSZJgt9uhqipcLhcURYGu60ilUjBNEw6Hg00+6HurqgrDMNjfXA/+lWahmhYVFaGioiJD16mpKVYX1dThcMDpdEJRFJZG0LkFTRvof1VVmbmvZk3z/kEVKjIvdj5FXS4X2tvbUVtbi7KyMtTV1UGSJEQiESQSCUxOTmJ4eJjlX7quw+FwwOv1QlEUqKrKcjf63pFIBNFolKUN6XQa4XAY4XAYuq5jampqxt8qm+0L7mYyES3LH9CFftHeQjQtLy9HbW0tZFnG1NQUEokEJiYmMDQ0xDRNp9MZmtrtdjbHyKVpIpGAYRgIh8MIhUJIpVJXpaZzThvmeqA0TUNbWxtWrlyJaDSK8fFxTE5O4vDhw+jr64OiKNA0DbIso6SkBEVFRUwku92O4uJiOJ1OyLIMVVUBXPoBO7vdDkmS2LahoSEMDg4iGo0ikUhMK/RMIvMHkx/G+e00X6RRqhAR6Upo6nK5MjSVJAmKokCSJGiaBkmSMDw8DEmSWIq2WJpml8979MlrrxwNmu1NvF4vysrK4PV6EYlE8M477yAej2NychLRaBSRSISlADQtiMfjsNlsUBQFhmGwnDcWi7HIQSdtVASas9G0xG63Ix6Ps9wumUzm3S/an1wiZ+8zW//nAj2Asw3PXq8XPp8PRUVFC9I0nU5naMr/miUhBOl0mpVZbE2z9ZyLpnNOG+jSFSGE5U25WLlyJW688UaYponjx4/jzJkzGTkWHeKAdycssiyzx/xrsizD6/Xi2muvhdvtZks9/Hqww+GAqqrQdR1DQ0OIRCIYGxvDhQsXFn0paKFpgyzLUBSFGWcmTTds2ADTNPHKK6/MW1MaYb1eLxoaGthETpbljPpUVYWmaUgkEhgeHkYkEsH4+PhVo+mcv1ya5qG80Nlnj81mQ3FxMerq6pBMJlnnsxtF66RCzHQlyDRNRCIRyLIMh8MBRVFYfYZhwG63w+v1IplMwuv1QpIkxONxdqIVMkryfS1EXYqiwOFwsAnWbJrqul4wTePxOEsz6NyCXtCgqz6qqiISicBms11VmuZt3urqakiShBUrVqCxsRGSJLFZK11yAcBmp83NzWhsbEQymcTq1avh8XgQj8cRiURgmib7HV1d19lEgR40Qgh7TF+nBysUCqGxsRENDQ2w2+3QNI0ZGQDS6TSqq6uRSqUwMDAATdMQj8dx4cIFRKNRltvZbDbWVl40PgejkYqiqiqb9ExNTSEajeYtdD6aAmBpEK8pDRLBYBCNjY1IJBJYtWoV03RqagqGYbClRF3XEYvFMjTlr7DRx4lEAkNDQ3A6nZdpSg1Kj2lVVRV0Xcfg4CBcLhdisRguXrzIVov4YJJryY/qymtqs9mgqiqKi4vZhDMSieSt35zMqygK1q5di02bNrHIlkqlWB5ETWkYBmpqanDttdcikUhgbGwMPp8P4XAYIyMj0HUdkUgE8XgcsVgMo6OjGWuPfDpAxaZC2+12NDU1oaGhAUVFRaisrITT6cTk5CQmJycBgM2ki4uL2ayZzqZp5KamyF5640WWZTnDzEVFRaiurobD4cCFCxdYG+cL1XTNmjW4+eabIcsyWx3gNY3H4zAMA7W1tVixYgUSiQRGR0fh8/kQCoVw/vx5pikNBmNjY5dpSvNgelLQgGC32xEIBFBfX5+h6cTEBMLhMIBLJ67NZkNZWRlM00Q4HGZ5Np340YDAB55sTWngoH8ejwc1NTVQVRXDw8NIpVKFn7DRKBuLxViDdV1nZzHNrYB3hzl6INxuN8rLy9lwn0qlEI/HkUwmEY/HUV5ezg4YrY8ag16goCIoioK6ujqUlpbC5XKhqKiIDbmsU/8vkN/vx9KlS1FSUgLDMNiPT2uaBgAZdfPt5vNF3rxOpxNVVVVseI3H4wsyL9WHaqooCus31ZRe9jVNk2mq6zrTVFVVdizoikAikYDP52PRm2pKozp/sw7VtLa2NkNTTdMy0heaJ/t8vgxNfT4fW5vnRzN+fZj6gs5feE3dbjeqqqqgKAo7UfPNp/M278jICCRJwltvvQWfzwdVVaGqKiRJgtvtRlFREYtq9EaakZERAEBVVRUqKyvZQQHeTS+okNlDW/biOB8ZKyoqUF5eDrvdDqfTyWbBuq5n7FteXo7rrruOGSSVSjEBgXdzO/qY1k/hJ1T0IDudTpimicOHD+Po0aMZ5p8rVNO3334bZWVlGRcS6GVdepGBXiIfGhqCzWZDZWUl/H5/RoqVnXZRnWk/+TSJx2azwefzoby8HIqisGW00tJStrJAy/l8PjQ1NSGdTiMSiSCVSrE20v3oX3bk5TWlk25ZluF0OmEYBo4cOQJZlmfM03nyNm8sFoMsy5iYmMDFixehaRpcLhcTlkYzeobSzsmynLFWS4d0vlP82ml2zpsrmecX2en708V3XjxN01BSUpJRdrpbMGeKoPyMnY4cfX19KCoqylvomTQNh8P473//C03T2EgCgEVVGtVoGkDXb6fTNLuPvJmoptlrq4qisGNHgxKvKa2H15S/S43PebO1zfV+1Ly0vbymBY+8tANjY2N4++232QxZkiS4XK7LogRvTE3ToKoqE4PvCN8JKj5PrgkUP7TTx/xByrUWy0duerJk941/z+zX6PvTof3kyZMYGBhYUNpA32N8fBynT59ml3GpZlRTOlrwWjmdTtjt9gxNeQ35SSzfL17TbB2zgwltI2/e7Pbn0tRms2WManQ7f2x4Y9Noe/LkSZw5c6bwOS89c+lNG7yQdJ2SF4gXm3aMCk238x3j13Tpa9kG5VcJsgXk33umPvD70DbyKQs/CmSnM7QNpmmiv78f//nPfxa03kk1HR0dRTKZzGgbjYQAptWZmpRqStvOR15+rZcfQabTlDfYdBdPckVSCn+TEdWGHlM+laCjCO3DfDTN27x0wkAnBLzp+GGDF5A/+6kZ6dCUK6Ly4lLx+X15EfLpYC4hebLNS8meNVMj05PLNE3EYrEFrzbwmtIrYfzJz09u+Lybhx/uadt5/fhAwAeGmTTlzcuTffLnIl/z0skybRshBIlEYk6a5m1eOjGhy1Z8o6iA9HH2FZ1scqUBuUSg+9KO56ojV5nsYQ9AxmRltgNAy82Uz4ZCoQWbN1tTfuimETX7hOdXdCjTpVbZTKdpPlE1+1jyIxJfNhf869kTZL6+uWo6p8hL/9N1Qt68VGg6vObqLP+fP1DZneCh2/kzOVfZ2XI2GknziSa52ppdXyHud51JU3qy8Zryfc41yZyvprwGueYE2YGI1jfTpezsNvF9nk7zud6XvaCPAVEz0LOFPs4l4nTmpY/5bdnweVeu2Wt2PblytZlEm6t5ASw46k4H1ZReKeM15duSa1K6UE35bdmaZJ84tK35aJDr5C+EpnO+MadQ+1mdXOaZK0LTTOaqacE/gLkY0eh/HaFpbsSXjggsizCvwLII8wosizCvwLII8wosizCvwLII8wosizCvwLII8wosizCvwLII8wosizCvwLII8wosizCvwLII8wosizCvwLII8wosizCvwLII8wosizCvwLII8wosizCvwLII8wosS95fOiIQXG2IyCuwLMK8AssizCuwLMK8AssizCuwLMK8AssizCuwLMK8AssizCuwLP8HrCc374KV5soAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK8AAAB2CAYAAAC+o8OSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgR0lEQVR4nO1deWwc5fl+Zmd39l6vHdtxLhPndMw6duo0TaoICEmoSSkqpChCpaUprqClFVVbaNRLVeEPoJUKCCkQWgQ9FVpUGjWIRi6kRQWphBJIIEUiBw52nNjxrr3r3Z095vv94d/7+d3JOnESjzMb5pFW9u7cz7zz3t83ihBCwIGDCoTrUp+AAwcXCkd4HVQsHOF1ULFwhNdBxcIRXgcVC0d4HVQsHOF1ULFwhNdBxcIRXgcViykX3vb2diSTybLLVq5cib17955zH7t370ZHRwe8Xi++/e1vlywzDAPf+ta3sHDhQixatAiPP/64XPbYY48hFouhtbUVy5cvx+9+9zu5bHR0FFu3bkVrayuam5uxbds2UHHRMAx873vfQywWQ3NzM+644w7kcrnzv/hpgNX83n333Whvb5cfn8+Hxx57DACQyWTw5S9/GbFYDLFYDDfeeCMGBgYAjHH4ne98By0tLVi+fDnWrVuHDz744KKu9ZwQ04iOjg7xyiuvnHO9999/X+zfv1/88Ic/FPfcc0/JsmeffVZce+21olAoiNOnT4vGxkZx8OBBIYQQ3d3dIpFICCGE6OnpETNmzBAffPCBEEKIH/zgB+JLX/qSMAxD5HI50dnZKZ577jkhhBA7duwQ69atE7quC8MwRFdXl3j44Yen7sKnCVPBL8eJEyeEz+cTJ06cEEII8ctf/lJs3rxZGIYhhBCiq6tL3HvvvUIIIf7yl7+IVatWiVwuJ4QQ4v777xe33HLLxV3QOTDlmldRFCQSCQDAa6+9hvb2dsRiMWzduhWFQmFS+1iyZAna2trgdrvPWLZz50587Wtfg6qqqKmpwZYtW/DHP/4RALB+/XpUVVUBAObNm4eGhgYcP34cAPD222+js7MTiqLA4/Fg48aN+O1vfyuXbdiwAZqmQVEUXH/99XKZ3WA1vxzPPvssPvOZz6ChoUEeO51OI5/Po1AoIJVKYe7cuXKZruvIZrMQQmBkZEQuswqW+by5XA5btmzBL37xCxw8eBC33nor3n77bbn8iSeewE9+8pPz3m9PTw+uuOIK+X3+/Pno6ek5Y73u7m7E43F88pOfBAB0dHTgT3/6E3RdRyqVwgsvvIBjx47JZbt27cLIyAjy+Tyee+45ucyusIpfjqeffhp33HGH/H7nnXciHA6jvr4eM2fOxPDwML75zW8CAD73uc/hmmuuQUNDA2bNmoV//OMf+NnPfnZRxz8XLBPe//3vf3C73diwYQMA4LrrrsOCBQvk8rvuusuyiztw4AC2bt2KnTt3IhgMAgC2bduGxsZGfOpTn8JnP/tZrFq1Smqer3zlK+js7MTVV1+Nq6++GkuWLDmnVrrUsJrfV199FclkEps2bZK/7dmzB4ZhoL+/HydOnEA0GpUPyL59+3Dw4EH09vair68P69evx1133XXBx58MpjXboCjKRe+jsbERH374ofx+7NgxNDY2yu/vvfcebrjhBjz99NNYu3at/N3v9+PRRx/F/v378c9//hO1tbW48sor5Xn99Kc/xVtvvYXXXnsNLS0tclklYSr4Jfz617/G7bffDlVV5W87duzATTfdBJ/PB03T8MUvfhGvvPIKAOA3v/kNrr32WkSjUbhcLtx+++1ymVWwTHibm5tRKBTkBXR3d+Pw4cMXvd9bbrkFTz31FIrFIoaGhrBz505s2bIFAHDo0CFs2rQJO3bswMaNG0u2GxkZQTqdBgAcPXoU27dvx3e/+10AQDabRTweBwAMDg7iwQcfxH333XfR52olrOIXGOPqz3/+M7761a+W/L5gwQLs2bMHQggIIbB7927EYjG57OWXX5ZZmr/97W9ymWWY6ggQgIjH40IIIf7973+LtrY2EYvFxNatW0VbW5uMhrdv3y5+/OMfl91Hd3e3mDNnjgiHwyIUCok5c+aIv/71r0IIIQqFgvjGN74hmpqaxIIFC8Qjjzwit9uwYYOIRqOira1Nfl566SUhhBBvvfWWWLx4sVi2bJlobW0Vzz//vNyuv79fNDc3i5aWFtHc3Cy2b98+1bRMGazmVwghnnzySXHVVVedsd3p06fF5s2bRUtLi2hpaRE333yzGBgYEEIIkc1mRVdXl2hubhatra1i48aN4vDhw1N78SYoQjgjKRxUJpwKm4OKhSO8DioWjvA6qFhYLrz79u3D9ddfj6amJnR0dGDFihV44IEH5PJrrrkGL7zwwnntM5FI4LbbbkMsFsPy5csRi8Xwhz/8AQDwzDPP4POf//yE50KZiXLYu3cvXnrppfM6l0sBh9MxWJqJP3DgADo7O/HMM8/ghhtuAAAMDQ3hwQcfvKj9/uhHP0JdXR0OHDgARVGQTCbR399/zu1WrlyJnTt3ll1WKBSwd+9eJBIJdHZ2XtT5WQmH03FYqnkfeughdHV1SZIBoKamBg8//PBF7fejjz7CrFmzZFI+HA5j8eLFcnkqlcKtt96K1tZWrFy5EkeOHAEwpgXa29sBjBU3otEovv/97+MTn/gEHn/8cTzxxBP4/e9/j/b2dstLmxcKh9NxWKp5//vf/2Lz5s0XtO2uXbuwa9cu/OpXvzpj2T333IMvfOEL2LlzJ9asWYPOzs6Sm/nGG29g//79aGpqwrZt2/DQQw/hySefPGM/w8PDuPLKK/HQQw8BGDOdiUQCjzzyyAWd83TA4XQc0xqw3XvvvWhvb8ecOXPw7rvvnnXdG2+8sSzJALBu3Tr09PTg/vvvRzQaxZ133om7775bLl+zZg2amprk/xNVnjweD2677bYLvBp74OPMqaXCu2LFCvznP/+R33/+859j//798Hg8yOfzF7XvYDCITZs24YEHHsDzzz9f0sLo8/nk/6qqTtgqGAgE4HJVVsLF4XQclh7lvvvuw1NPPYUXX3xR/pbL5SbddzoR9uzZI3sRAODNN9/EwoULL2qfABCJRDA8PHzR+7ESDqfjsFR429ra8OKLL+LRRx9FU1MTVq1ahXXr1uHrX/86lixZItfr6urC3Llz5ef111/Hrl270NXVVXa/Bw4cwFVXXSXTOrt27SoZ8nOhuOmmm7B//35bB2wOp+NwehscVCwqy+Fz4IDBEV4HFQtHeB1ULBzhdVCxcITXQcXCEV4HFQtHeB1ULCbdmDOVw6onC1VVsWzZMixcuBANDQ1YvXo1otEoBgcHMTg4CJfLBb/fD0VRsHfvXvz973+HrusoFApyHjI6byvT2Re670vBqdvtxvLly7Fs2TLU19djzZo1qK6uRiqVQiqVkusJIdDd3Y3du3cjm80im82iWCyWnPel5nTaZ9Y4nwt3u92IxWK47rrrEA6HMXfuXPh8PkSjUdTW1sLtdqOqqgqqqiKbzSKdTiMej+P999+Xpc6PQw3mfDhVVRVLly7Fxo0bEYlE0NjYiEAggFQqhdHRUbhcLgQCASiKgng8juHhYcTjcbz77rs4ffr0pI8zHZhW4VUURTZtGIZxThJIS9x8881QVVVuk0wmkU6noWkaamtr4fV6AYyR2tfXh1OnTpXU6Sc6Fw673JDzhaIoJddyrutQVRXNzc3o7OyEx+OB2+2GoihSeDVNQ01NDTRNQy6XQ7FYRG9vL3p7e6Xwnu1cOKzmdNo179kuyOPxQFVVeL1eRCIRhMNhRKNRqKpa0qnk9XphGAY0TZPbBINB1NbWQtd11NfXI5VKSW0shDjjYRFCXBKzPdXg11GOW7fbLTkNh8OSU/rd5XLB5XJB0zQUCgUp0KSBZ8yYAV3XUVdXh2QyiWw2i0wmA8MwLjmn0yq84v9nWikHl8uF6upqRCIRzJs3D2vXrpVTMmUyGbjd7hJB9fv9knjDMFBXV4e2tjbMnTsXuq7j+PHjOHr0KN577z3ouo5MJnNG51WlalszDMMo+7vL5UJVVZV0uT796U+jrq4OsVgMhUIBiqJA0zSoqopAIACv1ys5FUKgvr4ey5cvx+zZszE6Oio5PXTokOTU3IY5nZxestnk+BOqKApUVYXf70ckEkF9fT2WLVuGmTNnoqamRgqdx+OR65pNpd/vR21tLVRVxbx586CqKlKpFHw+H4QQyOfzZTXF5QSz1qOANhQKoa6uDkuXLkV9fT1qamqkIiG3g5QD58Tv92PGjBlwuVyYN28eXC4XRkdH5Qya5FZcKk6nVXg9Hg98Ph+8Xi/mzp2L6upqeL1e+P1+eDwe1NXVIRqNYubMmZgzZw7C4TA8Hg9yuRyEENA0beyk3W643W4YhiGXUU+rqqpoampCbW0tqqurMWvWLORyOWSzWeTzeSQSCZw6dQqZTAZ9fX1yrttKhdvtlhPfzZ49G9FoFD6fD8FgEB6PB7W1tYhGo6ivr8cVV1yBSCQCr9cLXddhGIZ0E8hVAMaE0jAM6LqOfD4Pl8uF+fPno7a2FjNmzCjhtFAoYGho6JJwOq3Cq2kaqqurEQ6HsXr1aixduhShUAj19fXQNA3RaBShUAhut1t25OfzeSmg3B8DUCK0RLSmaVi6dClcLhdisRiSySQMw0ChUECxWMSRI0fw5ptvYmhoCLquV7zwapom44OOjg4sWbIEkUgEDQ0NMjMTDoehaRqCwaDklISXNC65EIVCAblcTq6Ty+Xg8XiwdOlSqKpawmmxWIRhGDh8+DD27ds37ZxOi/CSwEUiEcyaNQuRSATV1dWoqqpCIBBAIBCAx+OBx+MBMGb+yBzRTOYul6vkN1qHAgfaTlEUGIZRYg4Nw5B+XDAYRE1NDRRFwcyZM5HJZJDJZDAyMiLzmJUAM6fhcFhq2VAohGAwCE3TpE9LvAAo4bRQKEh+VFVFsViUvAJjroeiKCVuBnGqquol5XTSzegXGkWqqooZM2YgEAigtbUVGzduRFVVFSKRSEnQBYwHdKR53W436urqUFNTA13XEY/Hkcvl4PV65RT8HOTbxuNxGaDRlJt0A3O5HDKZDHK5HE6cOIHh4WEcOnQIe/bswcjIyKRSeGZMd5GCcxqLxbB+/XpEIhFEo1GZo+VCB0BySu5ZdXU1dF3H4OAgdF2H1+stCdg48vk8hoaGbMep5ZqXgoZIJILZs2ejtbUVkUgE+XxePuXcxyIzRakwYCxwIP82k8mgWCyiUCjIFA/dKLfbjUKhgHQ6jWQyKdcDxtNwmqYhFAoBgLyBdPNIO9s9kCvHaVVVlbRCJGDFYrGEU4obFEVBMBiEEAK6riOdTqNQKCCfz8vAWVVV+SkWi7bk1HLh1TQNixcvxvz589HY2IhcLodkMilJFUJId4DMVbFYlEQqioKRkRH5Ag/uKqiqCp/PJ80Xad5EIgFd10tIKxaLcLlcyGazcrZvEvrq6mq0trZiaGgIPT098vVMdgXndN68ecjn80ilUtL/JwEmTulDAS0wNp9CoVBAMplEoVDA6Oio5JSsHvGXy+UwPDwsX5bCOVUU5ZJxarnw+v1+rFixAqtXr4aiKMhkMkin00ilUtB1XZpOSoGRb0sBxalTp+ByueDxeBAKhaCqKpLJJJLJJFRVRTgchtvtLgnsiFyXyyXfLUGmizSMy+VCTU0NgsEgGhoasHbtWiQSCbz88su2F14zp5RzHR0dPYNTcgNIIRiGgZMnT0q/NxKJwO12I5lMYmRkBG63WwbNFLSV45QXfrjWnk5OLRdeRVHg9/sRDoelgE0UaHETwzUprev1eiVZpFlof0Qg3x8RDKBEu5MGohtCETtlNOwOzillWogjM6fc7zVzSv8DkJwC46myfD5/Vk75MSkwm05Op8XnDQaDqKqqkg4/Rbf8jTs8yKBImsjN5/MQQiCTycjfaRIMeicYHYv2RUSTkNPNomPzoMTv98u8cjgctpqSi4aZUxLGiTjlH+KUeEmn0zLrQD0inHPS4jwANHMqhJD+Ma1PnIZCIekPTzWmRfNqmga/3y9LkgDKRrW8cYc0I/ff8vm8XIdMFz0MRB7tG4DUtABKiOagIIYyHxQk2hmcU/Llye0yp6Y438QP15SkWWk5F066R2YtbuaUjsN7LDRNg8/ng6Io8qGYakxLntd8gTxLwF0AACU5Wr6teX/04RrVXHIuJ6zUkEL+NdfE5gYgO8N8XRQXKIpyBqeU4+UPNf0182x223h+ly/nUFW1pNGH543NpfypxLRV2MhPoqefNKeu6zIFw5uduZaYaF/c5+Ik879mst1uN4LBoCSWllH1rpJg5pSuZzKccoHkXE3EqXk9zqnH40EgEJDCy3PL9EBZAUvvFteg3PQA46adzBKBa4CJ/nJiuSBPpEXo+HQ8rmHND4fdNa8dOeWZItqOL7eKU8uEl0yJ1+uFx+OBpmky7QKMN9cA4xPF8UCCAgZeqqS/uVwOuVyuJLgDIAsX/DegNHDhZowyEPSblSZuKlApnFIMYjWnlgkvkcD7cPnFq6paUkkjX4kn1znRPOVDeU2qBgHj2oO0jjmrwP8nMnlzCddgdkUlcMp7I6zm1DLhdbvd8Pv98Pl80g/iwgKMP73UPGK+cPK3yG8jn03TNBkN002kfZsJo32Q1qJjASgJauh87IxK4tQcpPMHZcr4mNK9MXi9XkSjUTnkhJcoeTKdAihzspt8MNrOnEYjgmkMFk+yA6XpMjoONfRQsUPXdXljy6WE7IZK4ZSOY+aUbzsVsNTnpTFmvDJjjnS52THnfs2RLTdXtF+e4+TBlzltxtNjZE7NQsrPgQcudkGlc3oh3WVng6VuA/Xq0lOcz+eRzWYBjN2IUChUUj83+1PmfCR9yETx4IIn2c2E02gDv98v/UUz0aRxAoEAqqqqkMvlkE6nbSXAduWU+9pcwGl7v9+PaDSKXC6HVCo1ZZxaKrw0PIV8LGrVI7K8Xi8URZHlTU4mNzNm559uAk978RykuWmdzJvX65VCStU+7pu5XC45hMblciGTyVhFzwXBrpzSNuSKmDkNBAIIhUKyKcv2wktmiJs4+h1ASZeTuf5uhtkUkS820fr8RlCahxcleHMQgW4SnTeVou0EO3NK25s5pWORNp9KTi31ecms8CiXhpDk83k5QwtVt7LZrDR35fwjevozmQx0XZcEUtcSHYPIp7QSDyyy2aw0XVTX5+kjTdMQCARKyql2gV055VML8C5A+pDFmGqFYHmelwdAwHj1h1r5eAmRSJqMWTGXMM3gPhtPlFPek1I6/HfSLOaEvF1gZ055McScWrOqWGGp28CjTDJJwWAQ+XwefX19SKVSqK2txaJFi2RSnS6Sm3FzwEGBl7m6Q3/pN57MJ42QSCTQ398PwzAQjUblEHGekPd6vTJdZCfYldN4PF6WU3oYSJNPNaeW9jbwygwFSIFAAJlMBv39/ejp6UFTUxMaGxtlEGImtZwPRkl4Dh548Aia1qPAZmRkRI4kiEQiJUNeSHitIHqqYHdOw+GwHOjJA0NyR6YSlroN5pwpXQQNMUmlUnJAJS03mzhugrgwlTODPL/JyaYgrVAoyOEydF40BJwfz66oBE4BSI0PoORhMbsTFwtLhZfMC0WjHo8Hfr8fQozN9Njb24toNIpsNitHRlBjCfefyGTRhfOG63KEcF+PJtLIZDJIpVIYHBxEX18fPB4Pli1bJkfR8hs31VHxVMHOnPb29kLTNLS0tCAcDkvLAIxr9aluObXU56WL5cJB5iOfzyOdTstJi4k8/pQCpU88Pc0TaREegAHjfprL5ZImjiJjirKpzGpu47Oj8NqVU5pkhI7n8XhKgmJ+3lPJq2UhNSX8uX+kKIps5xsdHcXg4CDi8bicjhSALH9ymC+Yql80FJsvp6CETCa5BdlsVo6QHR4eRjKZlG4DaQRebbOj9rUrp6lUCsPDwzIFSTEEn1HdCj4trbBRBQaANCGUG8xkMiVEU4RK7XjmJDrXBDSxCPW0moWPlyk9Ho8cSp9KpZBMJjE8PCx7W6mbisDr9XaDnTmluTVIeAGUWLmp9neBaRxJYf6NCKMSJ92IcwkOmR/ez8orORw87UOahZLxFA3TcjoPs9axGyqF03KB3lTD0gobTzmZTTJN80SR6ujoKGpqauD1ekv6Dsz+maIoMicJjE/KV84skdahWXQ++ugj9Pf34/Tp01JQabpPGklAmsOOoyqIU3N52E6cUpWS7j1ZMj66e6pgueblKRP6jUikXlM+98LZtARty00an9y4nEai/WWzWXlDaS4tHkzwAKfcvuwAnioD7M2pOTVmRSBsaaqM+1T0IbNG0S3/zawVJvrQdsD4SAAii0fhRDQAZDIZJBKJkjm96Jj8uHb2eYHSm29HTvl6Zk4rTvMSMaQRqHmDiCJiJqqLm0uZZ1yAqRJmbt+jbVKpFIaGhuQcaeZp/rkZtbPwAigRKDtyagbvF6mIVJkZXIh54weRbJ5eaKLtaRvSNOUaSMzb8Zt9tsYTK02cFagUTq3icVqme6IGcGC8Hk5PKE1dGggE5AR4ZvNiNmuUjOfNInwd+t+sRSe6MeUCGLvD7pzSMSoy28DBT9z8dBuGId+BwAOoiWA2ifyJ59txsidDXLmUkJ1hZ07PlmabSkyb8NKTz80Mfedz6/K2v3L7AcbSNcFgEMB4uZI/3VT7p3wlaRI+RJuOTb4c+WWk0SpBeD/unE6L2wCUtvKZZ2yhMiLPsZ5tf/Q6LNIY5oiabiIni1eO6JwoPUY9DvSxa3kYKJ1u6ePO6bT08/KUizmfCkxchSlXyjR/5385yeXOhd9EXq83ZxysDDIuFmbffCJOzc04hMuJU0sbc7hzryiKfDEHvcCD1vP5fGe8W4LX0stdtHnYDu92IvAcrs/nQygUknPGApDDxvkrSK3q+p8K0LXytFM5TmlmnWAwKJtkLkdOp0Xz8ieYZt0mE8dviDkCBsqTzG+E2RxOpCU8Hk/J8B7SWJTMp2Px2r0dYa5eTcQpNetwrUi4XDidtoDN3FNLF0daIhAIQAgh3+dVDqQB6GZxE1ouQub+Ns0kzueLNaeYuGmzq/ASzsYpjTL2er0wDOOy5dRS4eUX7nK5JJHcxHk8HvlSQSEERkZGkMlkzqgMmX08ej9FOU3BNRNpE3oBCZk40ljZbFbuoxI072Q4pbnKQqEQisXiZcvptOSDuIkzlzIp5UJPr9nZL7cvvs+zHZM0B3VImRvP+SR157NvO2AynJI5v1w5nZbeBqrwFItF2Xmv6/rYCbjH3vtFb3g3BxblQNPI000qFzUriiJffpdOp+H1elFdXS1fnEIuyvDwMPx+f8kw8YkidTvA4XQc0+rzUv4xk8nIJ5P8M8o2TAblkujlUCwWkc1m5etLA4GAHJQohCiZUBkonRfB7nA4nYaWSLOvZI6MuYnjeWFKm5n3AYz3p55rFhi+DUXGvJGb+l75MBWe4rMbHE5LYanwms0FBRfZbLakUdrr9cLn80nfiXypiaJUHmhQCZQHGeYEOWkIHlwAYxF2JpORY7yIYLuOpDgfTmnC58uZU8vzvNxc8P5Tc9TM/aHJmC9g4gYQDh5Z8/o6b+czp3Xs7DZMxKl59IN5vcuRU8vfSUGTDwNANptFPB6Xb2UnTFT35tEtJ5669nngQiYLKJ1+nm4GPf18P9RJZZ5wxK69DeU4zefz8kXivKrF+wmAUqG8XDi1TMXwKTApEqU+01QqVVIepid4ogszJ8t50ED74NvyJ5+2JQIn6oDi52LXoG0iTsuV3KkkS8JqxuXA6bS4DfyppFG65vJhOdeBL+e/0Y3hyW9OTLnGHzOBdON1XZezLZIvx2cftxvMPJHQ0eQewPj1lgvM+H5oXaAyOZ2WKU7phMtpXh4Zm/0y7lvx71SzJxPHbwBvQqFtaD2al4ACHV3XkU6npbZxu8ffSUFT+9sJ5TjN5XJIJBJIJBLyOuh6iVOXyyWjf9qPmeNK5NTSu8OJJvNlNisTEUMo96SaA5Jy7Xfm9ek43ISSKeRpHfMNsRvOxik36+ag6VyoRE4tnXSEUmB8Egqz75PJZNDb2wvDMFBXV4doNFrSVE0oJ9Q8rUPam5NJ6SHDMJBMJjEwMIBkMinLpUQy37+dh75zTsn3JVPPtWkmk0FfXx8Mw0B9fT2qq6tLhvlzcCVC2pOyQZxTgp04tVx4zbOnmH2wbDaLgYEBuFwuRCIROcMg18bAmd1JnGg+7ISDAkF6V0M8Hsfo6KgslVI0zRP3PAixm+Y1c8qnZ5qI06qqqpKGccMofdeGOTVGzTW8WmcWXrtwapnw0tRDNBCQZnAxD5NOpVI4cuQIkskkamtrMXv27LETY3O5lvOBqa5PkTKPevlfOo+TJ0/i2LFjGBgYgGEY8qabfW07a94L5XTWrFlSkwKlQbA5K0DCbeZUCCEfFrtwapnwUv6R6uwAZF8p7/fs7e3F7t27UVVVhZqaGixZsgRCiJI38pifVtI8RCJ/jSkAmSIiokdGRvDGG2/g9ddfl2/HoVEGmqbJKJiCR17ytBPMnAohZHA0EafV1dVYtGgRhBByEmqzb0sZAU3TZNDF534A7MmpZcJLM2fTqFSXyyVLmLxFT9d1DAwMIJvNIpFIIJ1OAzjT3+Xg6Rxurgh0Q4j80dFRDA0NYWBgoGQ/5J9RMzeZTO6K2AkXw+lE+V4SYs4pKQZ+D+zIqWXCe/z4cXR3d8Pr9cLv98Pr9WJgYABHjx6VE7Rx6LqOV199FadOnUI4HMbs2bPlGKlgMFjiOtCTDYyTTzMjUotgoVDA6dOn0d/fj0QigQ8//LDkeLlcDocOHcLAwACqqqrwzjvvQFVVDA8PY3R0FCdPnjzjHC81LoTTf/3rXxgYGLhgTjOZjNT4duNUEZN8FM5X3ZfL13K/bCItoCgKGhoa0NHRgWg0irq6OtTU1JQk3HmwQqVSmuA4m83KVzodPnwY77zzzhnzkpnPkV5yB6DkfWL8jednw4VqEztwSp9ynNLE0cRpMpm0FaeWad5yaZlzgcwUmSz+oWDCnF/keWLzd/KFzdUh8zmSv0zBX7mbYgdMNadAaRHCzCNPf/H8rV04nbTmdeDAbrBfPsiBg0nCEV4HFQtHeB1ULBzhdVCxcITXQcXCEV4HFQtHeB1ULBzhdVCxcITXQcXi/wCuj10nXJQJMAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -2771,7 +2533,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK8AAAB2CAYAAAC+o8OSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgR0lEQVR4nO1deWwc5fl+Zmd39l6vHdtxLhPndMw6duo0TaoICEmoSSkqpChCpaUprqClFVVbaNRLVeEPoJUKCCkQWgQ9FVpUGjWIRi6kRQWphBJIIEUiBw52nNjxrr3r3Z095vv94d/7+d3JOnESjzMb5pFW9u7cz7zz3t83ihBCwIGDCoTrUp+AAwcXCkd4HVQsHOF1ULFwhNdBxcIRXgcVC0d4HVQsHOF1ULFwhNdBxcIRXgcViykX3vb2diSTybLLVq5cib17955zH7t370ZHRwe8Xi++/e1vlywzDAPf+ta3sHDhQixatAiPP/64XPbYY48hFouhtbUVy5cvx+9+9zu5bHR0FFu3bkVrayuam5uxbds2UHHRMAx873vfQywWQ3NzM+644w7kcrnzv/hpgNX83n333Whvb5cfn8+Hxx57DACQyWTw5S9/GbFYDLFYDDfeeCMGBgYAjHH4ne98By0tLVi+fDnWrVuHDz744KKu9ZwQ04iOjg7xyiuvnHO9999/X+zfv1/88Ic/FPfcc0/JsmeffVZce+21olAoiNOnT4vGxkZx8OBBIYQQ3d3dIpFICCGE6OnpETNmzBAffPCBEEKIH/zgB+JLX/qSMAxD5HI50dnZKZ577jkhhBA7duwQ69atE7quC8MwRFdXl3j44Yen7sKnCVPBL8eJEyeEz+cTJ06cEEII8ctf/lJs3rxZGIYhhBCiq6tL3HvvvUIIIf7yl7+IVatWiVwuJ4QQ4v777xe33HLLxV3QOTDlmldRFCQSCQDAa6+9hvb2dsRiMWzduhWFQmFS+1iyZAna2trgdrvPWLZz50587Wtfg6qqqKmpwZYtW/DHP/4RALB+/XpUVVUBAObNm4eGhgYcP34cAPD222+js7MTiqLA4/Fg48aN+O1vfyuXbdiwAZqmQVEUXH/99XKZ3WA1vxzPPvssPvOZz6ChoUEeO51OI5/Po1AoIJVKYe7cuXKZruvIZrMQQmBkZEQuswqW+by5XA5btmzBL37xCxw8eBC33nor3n77bbn8iSeewE9+8pPz3m9PTw+uuOIK+X3+/Pno6ek5Y73u7m7E43F88pOfBAB0dHTgT3/6E3RdRyqVwgsvvIBjx47JZbt27cLIyAjy+Tyee+45ucyusIpfjqeffhp33HGH/H7nnXciHA6jvr4eM2fOxPDwML75zW8CAD73uc/hmmuuQUNDA2bNmoV//OMf+NnPfnZRxz8XLBPe//3vf3C73diwYQMA4LrrrsOCBQvk8rvuusuyiztw4AC2bt2KnTt3IhgMAgC2bduGxsZGfOpTn8JnP/tZrFq1Smqer3zlK+js7MTVV1+Nq6++GkuWLDmnVrrUsJrfV199FclkEps2bZK/7dmzB4ZhoL+/HydOnEA0GpUPyL59+3Dw4EH09vair68P69evx1133XXBx58MpjXboCjKRe+jsbERH374ofx+7NgxNDY2yu/vvfcebrjhBjz99NNYu3at/N3v9+PRRx/F/v378c9//hO1tbW48sor5Xn99Kc/xVtvvYXXXnsNLS0tclklYSr4Jfz617/G7bffDlVV5W87duzATTfdBJ/PB03T8MUvfhGvvPIKAOA3v/kNrr32WkSjUbhcLtx+++1ymVWwTHibm5tRKBTkBXR3d+Pw4cMXvd9bbrkFTz31FIrFIoaGhrBz505s2bIFAHDo0CFs2rQJO3bswMaNG0u2GxkZQTqdBgAcPXoU27dvx3e/+10AQDabRTweBwAMDg7iwQcfxH333XfR52olrOIXGOPqz3/+M7761a+W/L5gwQLs2bMHQggIIbB7927EYjG57OWXX5ZZmr/97W9ymWWY6ggQgIjH40IIIf7973+LtrY2EYvFxNatW0VbW5uMhrdv3y5+/OMfl91Hd3e3mDNnjgiHwyIUCok5c+aIv/71r0IIIQqFgvjGN74hmpqaxIIFC8Qjjzwit9uwYYOIRqOira1Nfl566SUhhBBvvfWWWLx4sVi2bJlobW0Vzz//vNyuv79fNDc3i5aWFtHc3Cy2b98+1bRMGazmVwghnnzySXHVVVedsd3p06fF5s2bRUtLi2hpaRE333yzGBgYEEIIkc1mRVdXl2hubhatra1i48aN4vDhw1N78SYoQjgjKRxUJpwKm4OKhSO8DioWjvA6qFhYLrz79u3D9ddfj6amJnR0dGDFihV44IEH5PJrrrkGL7zwwnntM5FI4LbbbkMsFsPy5csRi8Xwhz/8AQDwzDPP4POf//yE50KZiXLYu3cvXnrppfM6l0sBh9MxWJqJP3DgADo7O/HMM8/ghhtuAAAMDQ3hwQcfvKj9/uhHP0JdXR0OHDgARVGQTCbR399/zu1WrlyJnTt3ll1WKBSwd+9eJBIJdHZ2XtT5WQmH03FYqnkfeughdHV1SZIBoKamBg8//PBF7fejjz7CrFmzZFI+HA5j8eLFcnkqlcKtt96K1tZWrFy5EkeOHAEwpgXa29sBjBU3otEovv/97+MTn/gEHn/8cTzxxBP4/e9/j/b2dstLmxcKh9NxWKp5//vf/2Lz5s0XtO2uXbuwa9cu/OpXvzpj2T333IMvfOEL2LlzJ9asWYPOzs6Sm/nGG29g//79aGpqwrZt2/DQQw/hySefPGM/w8PDuPLKK/HQQw8BGDOdiUQCjzzyyAWd83TA4XQc0xqw3XvvvWhvb8ecOXPw7rvvnnXdG2+8sSzJALBu3Tr09PTg/vvvRzQaxZ133om7775bLl+zZg2amprk/xNVnjweD2677bYLvBp74OPMqaXCu2LFCvznP/+R33/+859j//798Hg8yOfzF7XvYDCITZs24YEHHsDzzz9f0sLo8/nk/6qqTtgqGAgE4HJVVsLF4XQclh7lvvvuw1NPPYUXX3xR/pbL5SbddzoR9uzZI3sRAODNN9/EwoULL2qfABCJRDA8PHzR+7ESDqfjsFR429ra8OKLL+LRRx9FU1MTVq1ahXXr1uHrX/86lixZItfr6urC3Llz5ef111/Hrl270NXVVXa/Bw4cwFVXXSXTOrt27SoZ8nOhuOmmm7B//35bB2wOp+NwehscVCwqy+Fz4IDBEV4HFQtHeB1ULBzhdVCxcITXQcXCEV4HFQtHeB1ULCbdmDOVw6onC1VVsWzZMixcuBANDQ1YvXo1otEoBgcHMTg4CJfLBb/fD0VRsHfvXvz973+HrusoFApyHjI6byvT2Re670vBqdvtxvLly7Fs2TLU19djzZo1qK6uRiqVQiqVkusJIdDd3Y3du3cjm80im82iWCyWnPel5nTaZ9Y4nwt3u92IxWK47rrrEA6HMXfuXPh8PkSjUdTW1sLtdqOqqgqqqiKbzSKdTiMej+P999+Xpc6PQw3mfDhVVRVLly7Fxo0bEYlE0NjYiEAggFQqhdHRUbhcLgQCASiKgng8juHhYcTjcbz77rs4ffr0pI8zHZhW4VUURTZtGIZxThJIS9x8881QVVVuk0wmkU6noWkaamtr4fV6AYyR2tfXh1OnTpXU6Sc6Fw673JDzhaIoJddyrutQVRXNzc3o7OyEx+OB2+2GoihSeDVNQ01NDTRNQy6XQ7FYRG9vL3p7e6Xwnu1cOKzmdNo179kuyOPxQFVVeL1eRCIRhMNhRKNRqKpa0qnk9XphGAY0TZPbBINB1NbWQtd11NfXI5VKSW0shDjjYRFCXBKzPdXg11GOW7fbLTkNh8OSU/rd5XLB5XJB0zQUCgUp0KSBZ8yYAV3XUVdXh2QyiWw2i0wmA8MwLjmn0yq84v9nWikHl8uF6upqRCIRzJs3D2vXrpVTMmUyGbjd7hJB9fv9knjDMFBXV4e2tjbMnTsXuq7j+PHjOHr0KN577z3ouo5MJnNG51WlalszDMMo+7vL5UJVVZV0uT796U+jrq4OsVgMhUIBiqJA0zSoqopAIACv1ys5FUKgvr4ey5cvx+zZszE6Oio5PXTokOTU3IY5nZxestnk+BOqKApUVYXf70ckEkF9fT2WLVuGmTNnoqamRgqdx+OR65pNpd/vR21tLVRVxbx586CqKlKpFHw+H4QQyOfzZTXF5QSz1qOANhQKoa6uDkuXLkV9fT1qamqkIiG3g5QD58Tv92PGjBlwuVyYN28eXC4XRkdH5Qya5FZcKk6nVXg9Hg98Ph+8Xi/mzp2L6upqeL1e+P1+eDwe1NXVIRqNYubMmZgzZw7C4TA8Hg9yuRyEENA0beyk3W643W4YhiGXUU+rqqpoampCbW0tqqurMWvWLORyOWSzWeTzeSQSCZw6dQqZTAZ9fX1yrttKhdvtlhPfzZ49G9FoFD6fD8FgEB6PB7W1tYhGo6ivr8cVV1yBSCQCr9cLXddhGIZ0E8hVAMaE0jAM6LqOfD4Pl8uF+fPno7a2FjNmzCjhtFAoYGho6JJwOq3Cq2kaqqurEQ6HsXr1aixduhShUAj19fXQNA3RaBShUAhut1t25OfzeSmg3B8DUCK0RLSmaVi6dClcLhdisRiSySQMw0ChUECxWMSRI0fw5ptvYmhoCLquV7zwapom44OOjg4sWbIEkUgEDQ0NMjMTDoehaRqCwaDklISXNC65EIVCAblcTq6Ty+Xg8XiwdOlSqKpawmmxWIRhGDh8+DD27ds37ZxOi/CSwEUiEcyaNQuRSATV1dWoqqpCIBBAIBCAx+OBx+MBMGb+yBzRTOYul6vkN1qHAgfaTlEUGIZRYg4Nw5B+XDAYRE1NDRRFwcyZM5HJZJDJZDAyMiLzmJUAM6fhcFhq2VAohGAwCE3TpE9LvAAo4bRQKEh+VFVFsViUvAJjroeiKCVuBnGqquol5XTSzegXGkWqqooZM2YgEAigtbUVGzduRFVVFSKRSEnQBYwHdKR53W436urqUFNTA13XEY/Hkcvl4PV65RT8HOTbxuNxGaDRlJt0A3O5HDKZDHK5HE6cOIHh4WEcOnQIe/bswcjIyKRSeGZMd5GCcxqLxbB+/XpEIhFEo1GZo+VCB0BySu5ZdXU1dF3H4OAgdF2H1+stCdg48vk8hoaGbMep5ZqXgoZIJILZs2ejtbUVkUgE+XxePuXcxyIzRakwYCxwIP82k8mgWCyiUCjIFA/dKLfbjUKhgHQ6jWQyKdcDxtNwmqYhFAoBgLyBdPNIO9s9kCvHaVVVlbRCJGDFYrGEU4obFEVBMBiEEAK6riOdTqNQKCCfz8vAWVVV+SkWi7bk1HLh1TQNixcvxvz589HY2IhcLodkMilJFUJId4DMVbFYlEQqioKRkRH5Ag/uKqiqCp/PJ80Xad5EIgFd10tIKxaLcLlcyGazcrZvEvrq6mq0trZiaGgIPT098vVMdgXndN68ecjn80ilUtL/JwEmTulDAS0wNp9CoVBAMplEoVDA6Oio5JSsHvGXy+UwPDwsX5bCOVUU5ZJxarnw+v1+rFixAqtXr4aiKMhkMkin00ilUtB1XZpOSoGRb0sBxalTp+ByueDxeBAKhaCqKpLJJJLJJFRVRTgchtvtLgnsiFyXyyXfLUGmizSMy+VCTU0NgsEgGhoasHbtWiQSCbz88su2F14zp5RzHR0dPYNTcgNIIRiGgZMnT0q/NxKJwO12I5lMYmRkBG63WwbNFLSV45QXfrjWnk5OLRdeRVHg9/sRDoelgE0UaHETwzUprev1eiVZpFlof0Qg3x8RDKBEu5MGohtCETtlNOwOzillWogjM6fc7zVzSv8DkJwC46myfD5/Vk75MSkwm05Op8XnDQaDqKqqkg4/Rbf8jTs8yKBImsjN5/MQQiCTycjfaRIMeicYHYv2RUSTkNPNomPzoMTv98u8cjgctpqSi4aZUxLGiTjlH+KUeEmn0zLrQD0inHPS4jwANHMqhJD+Ma1PnIZCIekPTzWmRfNqmga/3y9LkgDKRrW8cYc0I/ff8vm8XIdMFz0MRB7tG4DUtABKiOagIIYyHxQk2hmcU/Llye0yp6Y438QP15SkWWk5F066R2YtbuaUjsN7LDRNg8/ng6Io8qGYakxLntd8gTxLwF0AACU5Wr6teX/04RrVXHIuJ6zUkEL+NdfE5gYgO8N8XRQXKIpyBqeU4+UPNf0182x223h+ly/nUFW1pNGH543NpfypxLRV2MhPoqefNKeu6zIFw5uduZaYaF/c5+Ik879mst1uN4LBoCSWllH1rpJg5pSuZzKccoHkXE3EqXk9zqnH40EgEJDCy3PL9EBZAUvvFteg3PQA46adzBKBa4CJ/nJiuSBPpEXo+HQ8rmHND4fdNa8dOeWZItqOL7eKU8uEl0yJ1+uFx+OBpmky7QKMN9cA4xPF8UCCAgZeqqS/uVwOuVyuJLgDIAsX/DegNHDhZowyEPSblSZuKlApnFIMYjWnlgkvkcD7cPnFq6paUkkjX4kn1znRPOVDeU2qBgHj2oO0jjmrwP8nMnlzCddgdkUlcMp7I6zm1DLhdbvd8Pv98Pl80g/iwgKMP73UPGK+cPK3yG8jn03TNBkN002kfZsJo32Q1qJjASgJauh87IxK4tQcpPMHZcr4mNK9MXi9XkSjUTnkhJcoeTKdAihzspt8MNrOnEYjgmkMFk+yA6XpMjoONfRQsUPXdXljy6WE7IZK4ZSOY+aUbzsVsNTnpTFmvDJjjnS52THnfs2RLTdXtF+e4+TBlzltxtNjZE7NQsrPgQcudkGlc3oh3WVng6VuA/Xq0lOcz+eRzWYBjN2IUChUUj83+1PmfCR9yETx4IIn2c2E02gDv98v/UUz0aRxAoEAqqqqkMvlkE6nbSXAduWU+9pcwGl7v9+PaDSKXC6HVCo1ZZxaKrw0PIV8LGrVI7K8Xi8URZHlTU4mNzNm559uAk978RykuWmdzJvX65VCStU+7pu5XC45hMblciGTyVhFzwXBrpzSNuSKmDkNBAIIhUKyKcv2wktmiJs4+h1ASZeTuf5uhtkUkS820fr8RlCahxcleHMQgW4SnTeVou0EO3NK25s5pWORNp9KTi31ecms8CiXhpDk83k5QwtVt7LZrDR35fwjevozmQx0XZcEUtcSHYPIp7QSDyyy2aw0XVTX5+kjTdMQCARKyql2gV055VML8C5A+pDFmGqFYHmelwdAwHj1h1r5eAmRSJqMWTGXMM3gPhtPlFPek1I6/HfSLOaEvF1gZ055McScWrOqWGGp28CjTDJJwWAQ+XwefX19SKVSqK2txaJFi2RSnS6Sm3FzwEGBl7m6Q3/pN57MJ42QSCTQ398PwzAQjUblEHGekPd6vTJdZCfYldN4PF6WU3oYSJNPNaeW9jbwygwFSIFAAJlMBv39/ejp6UFTUxMaGxtlEGImtZwPRkl4Dh548Aia1qPAZmRkRI4kiEQiJUNeSHitIHqqYHdOw+GwHOjJA0NyR6YSlroN5pwpXQQNMUmlUnJAJS03mzhugrgwlTODPL/JyaYgrVAoyOEydF40BJwfz66oBE4BSI0PoORhMbsTFwtLhZfMC0WjHo8Hfr8fQozN9Njb24toNIpsNitHRlBjCfefyGTRhfOG63KEcF+PJtLIZDJIpVIYHBxEX18fPB4Pli1bJkfR8hs31VHxVMHOnPb29kLTNLS0tCAcDkvLAIxr9aluObXU56WL5cJB5iOfzyOdTstJi4k8/pQCpU88Pc0TaREegAHjfprL5ZImjiJjirKpzGpu47Oj8NqVU5pkhI7n8XhKgmJ+3lPJq2UhNSX8uX+kKIps5xsdHcXg4CDi8bicjhSALH9ymC+Yql80FJsvp6CETCa5BdlsVo6QHR4eRjKZlG4DaQRebbOj9rUrp6lUCsPDwzIFSTEEn1HdCj4trbBRBQaANCGUG8xkMiVEU4RK7XjmJDrXBDSxCPW0moWPlyk9Ho8cSp9KpZBMJjE8PCx7W6mbisDr9XaDnTmluTVIeAGUWLmp9neBaRxJYf6NCKMSJ92IcwkOmR/ez8orORw87UOahZLxFA3TcjoPs9axGyqF03KB3lTD0gobTzmZTTJN80SR6ujoKGpqauD1ekv6Dsz+maIoMicJjE/KV84skdahWXQ++ugj9Pf34/Tp01JQabpPGklAmsOOoyqIU3N52E6cUpWS7j1ZMj66e6pgueblKRP6jUikXlM+98LZtARty00an9y4nEai/WWzWXlDaS4tHkzwAKfcvuwAnioD7M2pOTVmRSBsaaqM+1T0IbNG0S3/zawVJvrQdsD4SAAii0fhRDQAZDIZJBKJkjm96Jj8uHb2eYHSm29HTvl6Zk4rTvMSMaQRqHmDiCJiJqqLm0uZZ1yAqRJmbt+jbVKpFIaGhuQcaeZp/rkZtbPwAigRKDtyagbvF6mIVJkZXIh54weRbJ5eaKLtaRvSNOUaSMzb8Zt9tsYTK02cFagUTq3icVqme6IGcGC8Hk5PKE1dGggE5AR4ZvNiNmuUjOfNInwd+t+sRSe6MeUCGLvD7pzSMSoy28DBT9z8dBuGId+BwAOoiWA2ifyJ59txsidDXLmUkJ1hZ07PlmabSkyb8NKTz80Mfedz6/K2v3L7AcbSNcFgEMB4uZI/3VT7p3wlaRI+RJuOTb4c+WWk0SpBeD/unE6L2wCUtvKZZ2yhMiLPsZ5tf/Q6LNIY5oiabiIni1eO6JwoPUY9DvSxa3kYKJ1u6ePO6bT08/KUizmfCkxchSlXyjR/5385yeXOhd9EXq83ZxysDDIuFmbffCJOzc04hMuJU0sbc7hzryiKfDEHvcCD1vP5fGe8W4LX0stdtHnYDu92IvAcrs/nQygUknPGApDDxvkrSK3q+p8K0LXytFM5TmlmnWAwKJtkLkdOp0Xz8ieYZt0mE8dviDkCBsqTzG+E2RxOpCU8Hk/J8B7SWJTMp2Px2r0dYa5eTcQpNetwrUi4XDidtoDN3FNLF0daIhAIQAgh3+dVDqQB6GZxE1ouQub+Ns0kzueLNaeYuGmzq/ASzsYpjTL2er0wDOOy5dRS4eUX7nK5JJHcxHk8HvlSQSEERkZGkMlkzqgMmX08ej9FOU3BNRNpE3oBCZk40ljZbFbuoxI072Q4pbnKQqEQisXiZcvptOSDuIkzlzIp5UJPr9nZL7cvvs+zHZM0B3VImRvP+SR157NvO2AynJI5v1w5nZbeBqrwFItF2Xmv6/rYCbjH3vtFb3g3BxblQNPI000qFzUriiJffpdOp+H1elFdXS1fnEIuyvDwMPx+f8kw8YkidTvA4XQc0+rzUv4xk8nIJ5P8M8o2TAblkujlUCwWkc1m5etLA4GAHJQohCiZUBkonRfB7nA4nYaWSLOvZI6MuYnjeWFKm5n3AYz3p55rFhi+DUXGvJGb+l75MBWe4rMbHE5LYanwms0FBRfZbLakUdrr9cLn80nfiXypiaJUHmhQCZQHGeYEOWkIHlwAYxF2JpORY7yIYLuOpDgfTmnC58uZU8vzvNxc8P5Tc9TM/aHJmC9g4gYQDh5Z8/o6b+czp3Xs7DZMxKl59IN5vcuRU8vfSUGTDwNANptFPB6Xb2UnTFT35tEtJ5669nngQiYLKJ1+nm4GPf18P9RJZZ5wxK69DeU4zefz8kXivKrF+wmAUqG8XDi1TMXwKTApEqU+01QqVVIepid4ogszJ8t50ED74NvyJ5+2JQIn6oDi52LXoG0iTsuV3KkkS8JqxuXA6bS4DfyppFG65vJhOdeBL+e/0Y3hyW9OTLnGHzOBdON1XZezLZIvx2cftxvMPJHQ0eQewPj1lgvM+H5oXaAyOZ2WKU7phMtpXh4Zm/0y7lvx71SzJxPHbwBvQqFtaD2al4ACHV3XkU6npbZxu8ffSUFT+9sJ5TjN5XJIJBJIJBLyOuh6iVOXyyWjf9qPmeNK5NTSu8OJJvNlNisTEUMo96SaA5Jy7Xfm9ek43ISSKeRpHfMNsRvOxik36+ag6VyoRE4tnXSEUmB8Egqz75PJZNDb2wvDMFBXV4doNFrSVE0oJ9Q8rUPam5NJ6SHDMJBMJjEwMIBkMinLpUQy37+dh75zTsn3JVPPtWkmk0FfXx8Mw0B9fT2qq6tLhvlzcCVC2pOyQZxTgp04tVx4zbOnmH2wbDaLgYEBuFwuRCIROcMg18bAmd1JnGg+7ISDAkF6V0M8Hsfo6KgslVI0zRP3PAixm+Y1c8qnZ5qI06qqqpKGccMofdeGOTVGzTW8WmcWXrtwapnw0tRDNBCQZnAxD5NOpVI4cuQIkskkamtrMXv27LETY3O5lvOBqa5PkTKPevlfOo+TJ0/i2LFjGBgYgGEY8qabfW07a94L5XTWrFlSkwKlQbA5K0DCbeZUCCEfFrtwapnwUv6R6uwAZF8p7/fs7e3F7t27UVVVhZqaGixZsgRCiJI38pifVtI8RCJ/jSkAmSIiokdGRvDGG2/g9ddfl2/HoVEGmqbJKJiCR17ytBPMnAohZHA0EafV1dVYtGgRhBByEmqzb0sZAU3TZNDF534A7MmpZcJLM2fTqFSXyyVLmLxFT9d1DAwMIJvNIpFIIJ1OAzjT3+Xg6Rxurgh0Q4j80dFRDA0NYWBgoGQ/5J9RMzeZTO6K2AkXw+lE+V4SYs4pKQZ+D+zIqWXCe/z4cXR3d8Pr9cLv98Pr9WJgYABHjx6VE7Rx6LqOV199FadOnUI4HMbs2bPlGKlgMFjiOtCTDYyTTzMjUotgoVDA6dOn0d/fj0QigQ8//LDkeLlcDocOHcLAwACqqqrwzjvvQFVVDA8PY3R0FCdPnjzjHC81LoTTf/3rXxgYGLhgTjOZjNT4duNUEZN8FM5X3ZfL13K/bCItoCgKGhoa0NHRgWg0irq6OtTU1JQk3HmwQqVSmuA4m83KVzodPnwY77zzzhnzkpnPkV5yB6DkfWL8jednw4VqEztwSp9ynNLE0cRpMpm0FaeWad5yaZlzgcwUmSz+oWDCnF/keWLzd/KFzdUh8zmSv0zBX7mbYgdMNadAaRHCzCNPf/H8rV04nbTmdeDAbrBfPsiBg0nCEV4HFQtHeB1ULBzhdVCxcITXQcXCEV4HFQtHeB1ULBzhdVCxcITXQcXi/wCuj10nXJQJMAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK8AAAB2CAYAAAC+o8OSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAWy0lEQVR4nO2de3BcVR3Hv/exd1/ZzWuzSZqkJJRKstm8Gku1U8dSCrQdKErroCA47URB6QyjiDpCFbV/iM8ZZhAEB+vQURGrDham1tLqWDtUSVoIqQSKpmmTpo3JbpJ97957/KOe49nbTbLJJrR3PJ+ZnezuvefsOd/7vb/zO+fe7EqEEAKBwILIl7sBAsF8EeYVWBZhXoFlEeYVWBZhXoFlEeYVWBZhXoFlEeYVWBZhXoFlWVTztre3Y2pqKue297///fjTn/6UVz179+5FS0sLgsEggsEgBgYGAACjo6O49dZb0draiqamJnzqU59CPB4HAPz2t79Fa2sr2tvbEQgE8PDDD4NeTIzH47jnnntYfZs3b8bo6GjB/V0sFkLHJ554Ai0tLWhvb0cwGMTjjz/Otj3++OMIBoNoaWlBa2sr9uzZw7b9/e9/x+rVq+FyufCRj3wkq86ZtgHArl27sGzZMixbtgwPP/xwXn2dE+Qy0dnZSQ4fPjzrfj09PeTaa68lQ0NDhBBCJicnSTQaJYQQ8sADD5DPf/7zhBBCMpkMufnmm8kTTzzB9tN1nRBCSDKZJCtXriS/+c1vCCGE/PCHPyRbtmwhhmEQQgjp6uoiDz300IL2770iXx3D4TB7PjExQerq6khPTw8hhJCDBw+y7YODg6S8vJycOnWKEELImTNnyLFjx8hTTz1Fbrvttqw6Z9r25z//mQQCARKJREgikSCdnZ1k37598+9oDhY18kqShHA4DAA4evQoO+u3bduGTCaTVx3f//738YUvfAFLliwBAHg8HrhcLlb/1NQUDMNAKpVCLBZDbW0t20+WL3YvkUggmUxCkiRWLhaLIZ1OI5PJIBKJsHJXIguhY3FxMXsejUaRTqfZ6xtuuIFtr6urQ1VVFc6cOQMAqK2txXXXXQe73X5JnTNte/7553H33XfD7XbDbrdj+/bt+MUvfpF3n/PhPcl5U6kU7rjjDnzve9/Dm2++iU984hN4/fXX2fannnoKX/va13KWPXnyJAYHB/HhD38YHR0d2LlzJ3RdBwDs3LkTp06dQlVVFfx+P5qamrB582ZW9ujRo2hpaYHf78e6detw2223AQDuvfdeeDwe+P1+VFZWYmJiAjt27FhEBRaGQnQEgF//+tdobm5GfX09vvjFL6Kjo+OSfQ4ePIhQKISVK1cW1NbBwUFcddVV7HV9fT0GBwcLqtPMe2Let956C6qqYv369QCAm266CVdffTXbft999+Gb3/xmzrKZTAbHjx/H/v37ceTIERw9ehRPPvkkAOCXv/wlAoEAzp07h+HhYbz99tv4yU9+wsquXr0avb29OHPmDLq7u/GXv/wFAHDgwAEYhoGRkRGcO3cOJSUlMx70K4VCdASArVu3oq+vD/39/dizZw/6+/uztvf29mLbtm14/vnn4Xa7F6cTC8hlW22gQ/hsLF26FFu2bIHT6YTb7cbtt9+OV199FQDwox/9CHfddRcURYHH48HWrVtx+PDhS+qoqKjApk2b8MILLwAAnn76aXz0ox+Fw+GApmm46667cpazAvnqyFNfX49Vq1Zh37597L2TJ0/illtuwbPPPos1a9YU3K6lS5fi9OnT7PXAwACWLl1acL0874l5GxsbkclkmEEOHjyId999N6+yd955J4uUmUwGBw4cQFtbGwDg6quvxv79+wEA6XQaf/jDHxAMBgFcjFKGYQAApqam8NJLL6G1tZWVO3DgAAghIITgpZdeYuWuZArR8eTJk+z56OgoDh06xPT4xz/+gU2bNuHpp5/GjTfeuCBt/djHPobnnnsO0WgUyWQSzz77LD7+8Y8vSN2MBZ3+mQBAQqEQIYSQv/71r6StrY0Eg0Gybds20tbWxmbJTz75JNm5c2fOOnRdJw8++CBpbGwkzc3N5L777iPJZJIQQsg///lPctNNN5FgMEiamprI9u3bSTweJ4QQ8uijj5KmpibS2tpKmpubyde//nW2ujA2Nka2bNlCAoEACQQC5Pbbbyejo6OLKUVBLISOn/nMZ0hTUxNpa2sjra2tbFWGEELWr19PSkpKSFtbG3vs37+fEELIW2+9RWpqakhpaSlxOBykpqaGlZ1pGyGEfOMb3yANDQ2koaGBfOUrX1lwXaT/iiMQWA5xhU1gWYR5BZZFmFdgWRbMvK+99ho2btyIhoYGdHZ2oqOjA7t27WLb165di9/97ndzqjMcDuOTn/wkgsEgWltbEQwG8fOf/3yhmgwA2LdvH9auXTvrfrt37855/X4xEZrOjDrvkhy9vb3YsGEDdu/ejVtuuQUAMD4+jm9/+9sF1fvII4+goqICvb297FLwyMjIQjT5ikdoOjsLEnkfe+wxdHV1MZEBoKysDN/5zncKqvfs2bOorq5mC/EejwfLly8HcPHgrlmzBitWrEAgEMiKSI8++ijuuOMO3HrrrQgEAli3bh3Gx8cBXFwP/tznPofly5fjuuuuy7o4MTIyguuvvx6dnZ1obm7Gjh072Frxe43QdHYWxLw9PT1YtWrVvMq++OKL6OrqyrntgQcewGOPPYbOzk7s2LEj64pQfX09XnnlFfT09KC7uxt79+5lV94A4NixY9i9ezdOnjwJv9+PH//4xwAuXl3r7+9HX18fjhw5gp6eHlampKQEv//979Hd3Y033ngDAwMD+NWvfjWvfhWK0HR2FmXC9tBDD6G9vR01NTXo6+ubcd/Nmzdn3Y/Ac/3112NwcBDf+ta3UFJSgnvvvRf3338/gIv35HZ1daGlpQUf+MAHcPr0aZw4cYKV3bBhA8rLywEAH/zgB9mVqFdeeQX33HMPNE2DpmnYvn07K2MYBr785S+jra0NHR0deO2117LqvJwITS9lQczb0dGBv/3tb+z1d7/7XZw4cQI2my3r1rv54Ha7sWnTJuzatQt79+7Fc889BwD46le/Cp/Ph+PHj+P111/H2rVrkUgkWDmHw8GeK4oy7a2D/L0BP/jBD3DhwgUcO3YMb7zxBu68886sOt9LhKazsyDm/dKXvoRnnnkGL7/8MnsvlUrlfa/pdBw4cAChUIi97u7uxrJlywAAoVAItbW1UFUV/f39+OMf/5hXnevXr8eePXuQTqeRSqXw05/+lG0LhUKoqqqCw+HAyMgIu5HnciA0nZ0FWW1oa2vDyy+/jJ07d+L+++9HRUUFbDYbPvvZz+J973sf26+rqyvrvtkXXngBo6OjePHFF3MOc729vXjwwQdBCIEsy6iurmb/ovLII4/g7rvvxs9+9jMsW7YM69aty6utn/70p/Hmm28iEAigtLQUH/rQh9Dd3Q3gYj64detWNDc3Y8mSJezWw8uB0HR2xL0NAssirrAJLIswr8CyCPMKLIswr8CyCPMKLIswr8CyCPMKLEveFynm8y/W/y/Md6lcaDo9+WgqIq/AsgjzCiyLMK/AsgjzCiyLMK/AsgjzCiyLMK/AsgjzCiyLMK/AsgjzCiyLMK/AsgjzCiyLMK/AsgjzCiyLMK/AsgjzCiyLMK/AsgjzCiyLMK/AsgjzCiyLMK/AsgjzCizLgnw/73yg//YtyzIURQFw8SvgdV2ftoz4NtaZmU5TwzCm1c7Kml4W80qSBKfTCU3TUFJSgpqaGiiKguHhYYyNjWUJLssyJElCJpNBPB6/bL/Oc6Uzk6bj4+MwDAOZTIZpKsuy5TW9bOa12+1wuVzw+/1oamqCzWYDACSTSei6fonQqVQKyWTSskIvNtNpKkkS0uk0MpkMkskkCCFQFAWKolhe03mZV5KkeQ03xcXFqKyshMPhwJIlS1BaWgqHwwGPxwNCCJxOJ9xud1YZWb6YlqdSKWiahnQ6zcxtGAYSicSMw6JVmK+mXq8Xfr8fLpfrEk0BME0Nw2DvAWABwWazIZPJME11XWeGvtI1nbN56TBOCGGPfKmvr8fGjRtRUVGB9vZ2XHXVVTh79iy6u7sRDofh8/mYoB6PB7Iss6ih6zozbjQaRTQaRTwex4ULF9jQd6WLPR2FarphwwZUVFSgo6MD9fX1OHv2LI4fP46JiQn4fD4kEglomgaPxwNFUZimmUwGqVQKuq4jEokgFoshkUjg/PnzlggKczIv/91ac4kUqqpCURQUFRWhoqICfr8ffr8flZWVmJqaYnXJsgybzQa73Q6n0wlVVVkaQXM2OsTRv5qmMXPruj7ng3+5KVRTj8eTpWdlZSUikQhkWYZhGExTTdPgcrmgqipSqRTS6TQMw4DdbmeTZPrZmqYxPa9kTfP+QRUqMi92PkVdLhfa29tRW1uL8vJy1NbWQlEUTE1NIZFIYGJiAkNDQyz/ymQysNvt8Hq9UFUVNpuN5W70syORCKLRKHRdRyKRgK7rCIfDCIVCSKfTmJqamvG3ymb7gruZTETL8ge00C/aK0TTsrIy1NXVQZZlRCIRJBIJTE5OYnh4mGmaSqWyNNU0jc0xcmlKj0M4HEY4HEYqlboiNZ1z2jDXA+VwONDW1oYVK1YgGo1ifHwck5OTOHToEPr6+qCqKhwOBxRFQUlJCYqKiphINpsNxcXFcLlcUBQFmqYBuDjMqqoKWZbhcDggyzKGh4chyzIb+qYTeiaR+ROEH8ZzbZ+vHrm4HJo6nc4sTRVFgc1mgyzLbNvQ0BAGBwcRjUYXVVM6r6Gjad6jT1575WjMbEOJ1+uFz+dDUVERIpEI3n33XcTjcUxOTiIajSISibDhig5h8XgckiRBVVXous5+ZTEWi7HIwf/yIiEEmUyGlfF4PLDZbIjH4yxfTiaTefeN9me6/vGvF3oo5aPPdHi9XpSVlcHr9RakaTqdztKUTtpon+jcgqYli6mpuc9z0XTOaYOiKFBVlRlnumWWFStWYP369TAMA6+++ipOnz6dlbfStAH434RFURT2nP6lEdbr9aKhoYFN5BRFyapP0zQ4HA4kEgkMDw8jEolgfHwc58+fX/SloELTBrp0RQhh+X0uVqxYgRtuuAGGYeDYsWPz1pR+ntfrxTXXXAO3282WJPn1YLvdDk3TkEqlMDQ0hEgkgrGxsStG0zl/ubSqqrDb7WyCZZ6REkIgSRKKi4tRV1eHVCrFDGVuFK2TCjHT1TUaReiQSHM2ekGDzqY1TUMkEoEkSYjH48wUCxUl55qf5lMXzUP5gDCTpslkcsE0jUQiUBQFdrsdqqqy+nRdh81mg9frRTKZhNfrhSzLV5SmeZu3uroasixj+fLlaGxsBAA2vNBlLABM/GAwiMbGRiQSCaxcuRIejwfxeBxTU1PQdZ0t0aRSKcRiMRZxCCFZV9jo80QigaGhITidTjQ2NqKhoQE2m43ldrTTuq6jqqoKqVQKg4ODcLlciMViuHDhApuF8wcp1/IUTY1opKLvaZqG4uJiNuGMRCJ5C52PprIss9UVXlM6429ubkZjYyOSySRWrVrFNI1EIjAMg/02cSqVYpMvqiPVko/u9AQIhUKXaEo1ose0uroa6XQaAwMDcDgciMfjOH/+PKLRKNNUkiTWVqovryeALE2BiysbdCI5NTWFaDSat35zMq+qqli9ejVuvvlmKIrCZqU0D6LRUdd11NbWYvny5UgkEhgdHYXP50MoFMK5c+eQSqUQiUSYyGNjY1nruYZhsJyNHkAqtM1mQyAQQH19PYqKilBZWQmn04mJiQmEw2EmiCRJKCsrg2EYCIfDLCekkxQqNH9AeaH5A0IfHo8HNTU10DQNw8PDSKfTBUUfqumaNWuwceNGFtnS6XSWpvREr6mpwTXXXINEIoGxsTH4fD6Ew2GMjIwwTePxOGKxGEZHRy/RlM9r+YBgs9nQ1NSEhoaGLE0nJycxOTkJAGzFp7i4mK3u0BUKGrkBsM8DLjUvTfd4MxcVFaG6uhp2ux3nz59nbcyHvM1LjRqLxRCJRKCqKvsgwzBYo+x2OwzDgCRJbJnG7XajvLwcmqaxy5J09ppIJODz+VikoZGWRnX+Zh2aA9fW1qK0tBQulwtFRUVwOBxZQy3Nk30+H5YuXYqSkhLoug6fz8fWPPkowa9l0pkvzQt5od1uN6qqqqCqKjtRC8n9aJSlmlJtqAY0XwX+lzrQ40A1pcN9Op1GPB5HMplEPB5HeXk5Cyy0Pnq86AUKXtO6urosTWlqyIzy3xPZ7/dnaUp/0NvhcABAVt18u/l8m9fU6XSiqqqKpYHxeHzhzTsyMgJZlvHOO++grKws60ICvQRJF8TppcehoSFIkoTKykr4/f6socs8nAFgZqWGzdUJSZLg8/lQXl4OVVXZMlppaSmbBdNyPp8PTU1NyGQyiEQiSKfTrI10P/owR176HACbzCiKAqfTCV3XcfjwYSiKMmNOma+mb7/9Nnw+HzRNg6ZpkGUZbrcbRUVFLKrRG2lGRkYAAFVVVaisrLxEP/qaf86PLrnWUiVJQkVFBcrLy2Gz2eB0OtnKQiqVytq3vLwc1157LQtk6XSanejA/+Yg9DmvI/+cmpj6xzAMHDp0CEeOHMky/0zkbd5YLAZFURAOh/Hvf/8bDoeDnaEAWFSlUY0OWXStka4d0uGHdsR8+x5vJnrWmtcRVVVl0ZUebHpBgz8xHA4HSkpKsuo257y84NN9HjUvbW86nUZfXx+KiooKirxU04mJCVy4cAEOhwMul4sFABrNaF/pSagoStZarVlT89qpOefNNUHiLwbRz+c1pQ9eU1p2ulswZ4qg/CoIHTmopvkGhLzNSzs/Pj6OU6dOscu4VGQaeelZyB9wp9MJm83GxDBHN35yQDEfDH7oMb/Ht5E/SOb20/r4MpIkZUULup0Xnz/oNNqeOHECp0+fLijnpW0dGxvDO++8w1ZyZFmGy+W6ZDTj++xwOKBpWpamFF57Xku+z+YJlFlffiXJbMRckZvXlO8b/5nm9+jn0xT0xIkTGBgYWPi0gUbD0dFRJJPJLEFoJOTFoOvBtOHUpHTIpp3lz1p+XZI/M80TKH5CYJ4UTLdykAv+hhgqKh3O+FSCjiK0D4ZhoL+/H//6178Kirz0M+jNRbzpzPrRttF9qH68pryO5jVd+t5smtJ28frN1gd+H9pGPmXhRwFzOkPbMB9N8zYvnYTRiQFvCvPkhs9nsj6MG+6pMHR/+prPL83RgDeW+VKiWWSzqLnI17x0EkLbRghBIpGY08x4Nk0TiURWf/n0hj/ReU1pe6imuSIqHwSozrNpOlfNeMzmpdAThJ/z0Kt49IJTLBZbnNUGmkTTJRZ+6KZnv1lIfqbMdyLXkJVLJH5/81Blrstc1pzX8akBLZsL/n3zxIOvLxQKFWxes6ZA9kSGRkWzprnaXoim5jpylTGnZwCyJtWzBQpabqZ8dq6aziny0r907ZUKTTtB8ySzgLmSd9785g6a96PvmyccuXIt8wGm9c10KdvcJr7PuSI4jbyF3u86k6Z8QKCa5jop+b/z1XS6srPNLWgkzWfUy9VWc31zvS+7oH8Dog2nV8okSWK5Id/AXMk+L1Su/Xj4XNYsTK6DZT5xaFvzESWXqLkMU2jUnQ6qKa2f19Tc1+nMy/djLpqadTX/5cvQtk5n1LmaF5i7pnO+MWeh9rM6uU7IuSI0zWaumi74P2AuRjT6f0domhvxpSMCyyLMK7AswrwCyyLMK7AswrwCyyLMK7AswrwCyyLMK7AswrwCyyLMK7AswrwCyyLMK7AswrwCyyLMK7AswrwCyyLMK7AswrwCyyLMK7AswrwCyyLMK7AswrwCyyLMK7AswrwCy5L3l44IBFcaIvIKLIswr8CyCPMKLIswr8CyCPMKLIswr8CyCPMKLIswr8CyCPMKLMt/AP4RN+9/t8geAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -2800,10 +2562,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:43.042003Z", - "iopub.status.busy": "2023-11-02T15:15:43.041266Z", - "iopub.status.idle": "2023-11-02T15:15:43.063535Z", - "shell.execute_reply": "2023-11-02T15:15:43.062613Z" + "iopub.execute_input": "2023-11-04T09:20:59.901332Z", + "iopub.status.busy": "2023-11-04T09:20:59.900984Z", + "iopub.status.idle": "2023-11-04T09:20:59.912996Z", + "shell.execute_reply": "2023-11-04T09:20:59.912397Z" } }, "outputs": [ @@ -2931,10 +2693,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:43.068144Z", - "iopub.status.busy": "2023-11-02T15:15:43.067582Z", - "iopub.status.idle": "2023-11-02T15:15:43.075702Z", - "shell.execute_reply": "2023-11-02T15:15:43.074794Z" + "iopub.execute_input": "2023-11-04T09:20:59.916394Z", + "iopub.status.busy": "2023-11-04T09:20:59.916056Z", + "iopub.status.idle": "2023-11-04T09:20:59.923233Z", + "shell.execute_reply": "2023-11-04T09:20:59.922675Z" }, "nbsphinx": "hidden" }, @@ -2971,10 +2733,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:43.079865Z", - "iopub.status.busy": "2023-11-02T15:15:43.079197Z", - "iopub.status.idle": "2023-11-02T15:15:43.409874Z", - "shell.execute_reply": "2023-11-02T15:15:43.408809Z" + "iopub.execute_input": "2023-11-04T09:20:59.925742Z", + "iopub.status.busy": "2023-11-04T09:20:59.925490Z", + "iopub.status.idle": "2023-11-04T09:21:00.125081Z", + "shell.execute_reply": "2023-11-04T09:21:00.124497Z" } }, "outputs": [ @@ -3016,10 +2778,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:43.414736Z", - "iopub.status.busy": "2023-11-02T15:15:43.413716Z", - "iopub.status.idle": "2023-11-02T15:15:43.427617Z", - "shell.execute_reply": "2023-11-02T15:15:43.426636Z" + "iopub.execute_input": "2023-11-04T09:21:00.127777Z", + "iopub.status.busy": "2023-11-04T09:21:00.127410Z", + "iopub.status.idle": "2023-11-04T09:21:00.135726Z", + "shell.execute_reply": "2023-11-04T09:21:00.135225Z" } }, "outputs": [ @@ -3044,47 +2806,47 @@ " \n", " \n", " \n", - " is_low_information_issue\n", " low_information_score\n", + " is_low_information_issue\n", " \n", " \n", " \n", " \n", " 53050\n", - " True\n", " 0.067975\n", + " True\n", " \n", " \n", " 40875\n", - " True\n", " 0.089929\n", + " True\n", " \n", " \n", " 9594\n", - " True\n", " 0.092601\n", + " True\n", " \n", " \n", " 34825\n", - " True\n", " 0.107744\n", + " True\n", " \n", " \n", " 37530\n", - " True\n", " 0.108516\n", + " True\n", " \n", " \n", "\n", "" ], "text/plain": [ - " is_low_information_issue low_information_score\n", - "53050 True 0.067975\n", - "40875 True 0.089929\n", - "9594 True 0.092601\n", - "34825 True 0.107744\n", - "37530 True 0.108516" + " low_information_score is_low_information_issue\n", + "53050 0.067975 True\n", + "40875 0.089929 True\n", + "9594 0.092601 True\n", + "34825 0.107744 True\n", + "37530 0.108516 True" ] }, "execution_count": 29, @@ -3105,10 +2867,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:43.431554Z", - "iopub.status.busy": "2023-11-02T15:15:43.431165Z", - "iopub.status.idle": "2023-11-02T15:15:43.757572Z", - "shell.execute_reply": "2023-11-02T15:15:43.756492Z" + "iopub.execute_input": "2023-11-04T09:21:00.137869Z", + "iopub.status.busy": "2023-11-04T09:21:00.137671Z", + "iopub.status.idle": "2023-11-04T09:21:00.327214Z", + "shell.execute_reply": "2023-11-04T09:21:00.326665Z" } }, "outputs": [ @@ -3139,10 +2901,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:43.761942Z", - "iopub.status.busy": "2023-11-02T15:15:43.761652Z", - "iopub.status.idle": "2023-11-02T15:15:43.769921Z", - "shell.execute_reply": "2023-11-02T15:15:43.769058Z" + "iopub.execute_input": "2023-11-04T09:21:00.329642Z", + "iopub.status.busy": "2023-11-04T09:21:00.329426Z", + "iopub.status.idle": "2023-11-04T09:21:00.334240Z", + "shell.execute_reply": "2023-11-04T09:21:00.333731Z" }, "nbsphinx": "hidden" }, @@ -3179,43 +2941,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "038e08f4d921423cae59c57cd58abc34": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0811fa4996d049e090febc06ea32c8be": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_aced78e0b4a54c3b957bb7b58ff5da71", - "placeholder": "​", - "style": "IPY_MODEL_cc7fc197cdbb4d8483276e815a588e7c", - "value": "Downloading data files: 100%" - } - }, - "0c8b474086ff45a28dcb688a6b1416d0": { + "027bb356c11345ccb3aa18600812711c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3267,7 +2993,7 @@ "width": null } }, - "15dcd9ce4dc0435f8131ad9cc2cf4892": { + "02bf43de662141e39a7779325411ac17": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3283,37 +3009,30 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8040f9b0c58a48e581c1c91e2988cd98", - "max": 5148.0, + "layout": "IPY_MODEL_e5ee4f3a98a342c8b7d48ced17eda826", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_2963e32f9ee245ca9c016edda288f9e7", - "value": 5148.0 + "style": "IPY_MODEL_e3e3d730a68d43139c8ea8493328c162", + "value": 60000.0 } }, - "167ad04aa70d4431a7f93209fa3f0b90": { + "0303aac63e5e4fc5920a61bcfe83b03c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fe6e299677474b5db54e378feb494bd4", - "IPY_MODEL_586f6cf72ec145cfb78b3bec580a9a0c", - "IPY_MODEL_f52f6d96ff4f4ffd85aa3dadf61fcc4b" - ], - "layout": "IPY_MODEL_2c48d181aed8493c9dfdcdafd512107c" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "16f0bcb2b29a4013ae1bfc39aeae305c": { + "05cc2250105a418aa4367d257cc0414a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3328,34 +3047,28 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d1e9973a7d4a4efdba048a2e719cd651", + "layout": "IPY_MODEL_a86812a0e7f54fb9bda9262ce674e5a7", "placeholder": "​", - "style": "IPY_MODEL_452d87c16daa4fd0862c167ca6e2a8c4", - "value": "Generating test split: 100%" + "style": "IPY_MODEL_f899b4d1f050489aae5ee2acd46db8ed", + "value": " 4/4 [00:00<00:00, 747.15it/s]" } }, - "1790c08d664442409bc55b6b2e7dacf7": { + "0653198644094413a6b086c098ae9033": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f7c076b2d484403b94bf9cf6614a53c2", - "placeholder": "​", - "style": "IPY_MODEL_57b0fd9c4b604a31be5f93e528981694", - "value": "Downloading data: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "1ab99b9b405f4b889e0ee7bac870df8e": { + "07f1eb3ff3314ffcba31f27c19bf10d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3407,43 +3120,7 @@ "width": null } }, - "1b15dd21c7454f82a7e3b1aade1337a5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "1b1c5fba64c14d2784e32bfd006ab230": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9e939aaf314543ec81d38ed9a6e10943", - "placeholder": "​", - "style": "IPY_MODEL_eb58eaa1c1954e64b0090ac631cf0dad", - "value": "Downloading data: 100%" - } - }, - "1b62c4a2a7fa4cd48cf790f910023cad": { + "0912d37c17124722bc87f291ffe6382f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3495,29 +3172,7 @@ "width": null } }, - "1d522d5ab30c4b468f5e76bca05a50cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f28ad72bcab343d2a0a5a8f8d4d57e28", - "IPY_MODEL_b3faa01b617f407e8d1b152a2fb85c2d", - "IPY_MODEL_e342db7c6ad14b17b36cf29d3dc944df" - ], - "layout": "IPY_MODEL_6a5e9f8649ba42b9953f16261b99c9f9" - } - }, - "205fdf80156f417fbf78fef5bcf91f56": { + "093cf0b3d78a452cad534e131f55e56d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3569,7 +3224,49 @@ "width": null } }, - "20dcf93499714ee19ae5551c1d19da4d": { + "0e527f8d03724332b69c612398bf8e1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2b795a7c7a0c4438a773acbd8c9f6ee9", + "placeholder": "​", + "style": "IPY_MODEL_3553e6f7b5ff4c849db31836723aba4f", + "value": "Downloading data: 100%" + } + }, + "0fe0428e0e864c05be692c67935ed544": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c68ba05b52a44fcf8cede8858221a21f", + "placeholder": "​", + "style": "IPY_MODEL_690f7c9744144ac3b673a489998a31fc", + "value": " 10000/10000 [00:01<00:00, 7426.21 examples/s]" + } + }, + "10d6a459a3de4918a150b33482d8f94e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3621,7 +3318,7 @@ "width": null } }, - "218bea2a05724fbfa1f4efa38b744a6f": { + "11b1fca65ff84c24b4ae4471199365a0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3636,43 +3333,29 @@ "description_width": "" } }, - "2516c9abffa24f1ca7f345cd5181796c": { + "1281c5f69432452d9bbc3f768aa9125d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a71041b7e65840ceacc14617a97b2b6e", - "placeholder": "​", - "style": "IPY_MODEL_711ed2bca2084ab2b54e91947ac1108a", - "value": " 60000/60000 [01:16<00:00, 759.47it/s]" - } - }, - "253002c0917842f6899d59d681edafca": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_506a4171567d403abcc301f62515c0c9", + "IPY_MODEL_97948cf5069f4fb8b8b4b42413105a21", + "IPY_MODEL_bc0897bb0c9a4310991fa46279bae3c2" + ], + "layout": "IPY_MODEL_612b79dbe9dc4d4a9df3e71d740d1505" } }, - "281a2c3c6242441c8cc20537c015d265": { + "12f96b7aa9f74dd49b8faae0ab4d8bd6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3724,7 +3407,7 @@ "width": null } }, - "28b0314091b54a0e9d01442159a3674b": { + "1430047be29e43e3ad2d016ff6d9dda0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3739,63 +3422,29 @@ "description_width": "" } }, - "292910b6abe14a82bf100bed726476f5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "292c5ed4289a42cc9e075371ae69c495": { + "1621d8005b4444ea93969df9e9d7bdd3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4e1f844593454005a6ae8b6438e1161b", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_292910b6abe14a82bf100bed726476f5", - "value": 4.0 - } - }, - "2963e32f9ee245ca9c016edda288f9e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a4de7f9653574f5e938e4598410da12d", + "IPY_MODEL_f07878bc520a46b7ba6a998b866ac201", + "IPY_MODEL_2fdc3253647c4ccd98fc336147123490" + ], + "layout": "IPY_MODEL_a50faee2fea343bf94b52d1204e1a79a" } }, - "2a4b0dc0c4a14bd082e2d072bbfc841e": { + "1637af5e927944aa9a2712f05182c7e9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3847,52 +3496,10 @@ "width": null } }, - "2b83c0f239144261921fca67e904e75e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1ab99b9b405f4b889e0ee7bac870df8e", - "placeholder": "​", - "style": "IPY_MODEL_038e08f4d921423cae59c57cd58abc34", - "value": "Generating train split: 100%" - } - }, - "2bdff68ec5d24f65a203ba93c047ad59": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e96cef50a8df40d087bdae15b405f49e", - "placeholder": "​", - "style": "IPY_MODEL_3af93a14e6ca49e296f092fe25b4229b", - "value": " 60000/60000 [00:15<00:00, 3796.97 examples/s]" - } - }, - "2c48d181aed8493c9dfdcdafd512107c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "17d3881b74754a51ba0df691d25c9cf2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3941,22 +3548,29 @@ "width": null } }, - "2cf7bdb4a529481e9133f4b0ac4975c2": { + "1a75238303184efa8cd395078e0d7c99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a27d46aefff44a1fb6de7cd868f0e90a", + "IPY_MODEL_e8844724612d48e8bd56a5d09bfba9ac", + "IPY_MODEL_30e08809a76e452f8316a747aa3735a9" + ], + "layout": "IPY_MODEL_701a760ce04a4697ad3712a07459e6cd" } }, - "2ddd67149d6b482dbf3fe7161822d0c5": { + "1f00d58c20cd4a78ae391d7f5da662fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4008,7 +3622,7 @@ "width": null } }, - "307de2c8b62c441a9268876370811e96": { + "23335ca0a6e6468ea633ccdad870019f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4060,7 +3674,23 @@ "width": null } }, - "3260af91315a4ce19d3dd5418bc74f96": { + "24acdfa125d844c8ad0083addbd3a43f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "260d17ac03e143209527054d9ba8baa0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -4075,14 +3705,59 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_55af92ba72df4db0a81672b1f35b9e1c", - "IPY_MODEL_e02d68f14b7543f88334666e0bd315f8", - "IPY_MODEL_2516c9abffa24f1ca7f345cd5181796c" + "IPY_MODEL_6e9aa0810d4f4d8885223b01a604e468", + "IPY_MODEL_fcab5be83a8144b6a413a329d9da980d", + "IPY_MODEL_66d82dd27be8492a9968efb499efa374" ], - "layout": "IPY_MODEL_d2d0f95ce92b498ea0372ff90b1ee069" + "layout": "IPY_MODEL_d9e47029a70144beb3253e67eb8a8f4f" + } + }, + "26a56455075e410a8500d528a01214da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c45799282b214919a12cbde5d89076a0", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bdbffa13cb094da8a21d3c002b496dc5", + "value": 4.0 + } + }, + "27453c4f2cf844829d80d562563bef2b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_334ab97de942446baa98388dc7cdf2e1", + "placeholder": "​", + "style": "IPY_MODEL_edb2626ea7fe43cba9657b7cb42d5634", + "value": "Downloading metadata: 100%" } }, - "35906c636117467c89b0ac0ae8c0a0ab": { + "2879f2ebffe144ea9c57752bc1eb8f92": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4134,28 +3809,23 @@ "width": null } }, - "39bcea738cbb4a26b4a7ca4d87c69a0f": { + "28ebb4a711c04c5dbf3f58db63ce416f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_281a2c3c6242441c8cc20537c015d265", - "placeholder": "​", - "style": "IPY_MODEL_9dd65b2a67f74220b1b21b97fb3fb804", - "value": "Downloading metadata: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3a3676e45a4a4f4d9cf748aa7a617f1d": { + "2b795a7c7a0c4438a773acbd8c9f6ee9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4207,7 +3877,7 @@ "width": null } }, - "3af93a14e6ca49e296f092fe25b4229b": { + "2c0da79efc3f480bab81a9bce04b4ae0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4222,7 +3892,7 @@ "description_width": "" } }, - "3b7ea58f9080466c940c18d2babb2d3e": { + "2d6e7172b5fc4d9c8921a9862fd50d29": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4238,15 +3908,131 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_49b1e9d1dab244d1a4c9fe6910e10f0a", - "max": 4833.0, + "layout": "IPY_MODEL_bd826af1a92f487a8c7933ba7199dd4a", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_41d74c3e5bce4034869f9cbf304475ed", - "value": 4833.0 + "style": "IPY_MODEL_fae2438f83af4331b446e19b3beb96a0", + "value": 60000.0 + } + }, + "2e5d3051ac3f463ba4e2b037b3bf6a6d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e29bc7e5e4dc447a807eecb7ea072516", + "placeholder": "​", + "style": "IPY_MODEL_a56574785d994197a25f60e59fef2ab3", + "value": " 4/4 [00:00<00:00, 3.89it/s]" + } + }, + "2fdc3253647c4ccd98fc336147123490": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d9bdd15f8e9b4565bbfa4b273eb7fbb0", + "placeholder": "​", + "style": "IPY_MODEL_4b8a109637c94f2fb478c35089dd98df", + "value": " 4.42M/4.42M [00:00<00:00, 88.2MB/s]" + } + }, + "2fdc9aa7c44a4c26ad2ca301e097ef9b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "30e08809a76e452f8316a747aa3735a9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ffb9563a9f2e447ead263097568bc49d", + "placeholder": "​", + "style": "IPY_MODEL_f221ee9541074b83ac6544e40a87ebca", + "value": " 29.5k/29.5k [00:00<00:00, 3.33MB/s]" + } + }, + "3168e4736ff2453499544e814fad0da2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_de7135124236426bbb2f54381d665d0e", + "IPY_MODEL_02bf43de662141e39a7779325411ac17", + "IPY_MODEL_56db53d371014197b923bdbb1a79530a" + ], + "layout": "IPY_MODEL_d87280dc535b4a6786403d3b38c77930" + } + }, + "32415e8d4fb248f0bd09a01e50f9e3ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "41d4c17aec3048a09d36ba2cd7bb1d66": { + "334ab97de942446baa98388dc7cdf2e1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4298,7 +4084,7 @@ "width": null } }, - "41d74c3e5bce4034869f9cbf304475ed": { + "34b22502df214166ab4c1267bcd108e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -4314,7 +4100,22 @@ "description_width": "" } }, - "43a0ee64b6e44fc29c490ab217442403": { + "3553e6f7b5ff4c849db31836723aba4f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3590bfe3b36048d69c9784740855535e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4366,22 +4167,7 @@ "width": null } }, - "452d87c16daa4fd0862c167ca6e2a8c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "49b1e9d1dab244d1a4c9fe6910e10f0a": { + "3a24bc725d8e41cb922300a958614055": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4433,7 +4219,7 @@ "width": null } }, - "4cc01f457f1d4b749355a005e7598a2e": { + "3afa28a9cfcd446885b76512d5f589d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4448,59 +4234,29 @@ "description_width": "" } }, - "4e1f844593454005a6ae8b6438e1161b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "3bd0ca523aa04d828364731056c5a4a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0e527f8d03724332b69c612398bf8e1c", + "IPY_MODEL_464236d59746418eb9e9e65b8eead657", + "IPY_MODEL_5874762017e64cdfb45f5bfc4156fcd9" + ], + "layout": "IPY_MODEL_7f1c64576071479594ebb33e3841c81b" } }, - "4e5aef44d5754aea9a04e783a247d5fa": { + "3cfa4f7f077f428da6a2d2f06a8d25a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4552,31 +4308,7 @@ "width": null } }, - "540aacf86dc84c70bc6608a1b039b6e9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7d74598aab5046599b49115a603ca10c", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fe0cffd29643463d87406f6447b990d6", - "value": 60000.0 - } - }, - "55af92ba72df4db0a81672b1f35b9e1c": { + "3d814e5b1946422eaf756314bbf61644": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4591,94 +4323,79 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4e5aef44d5754aea9a04e783a247d5fa", + "layout": "IPY_MODEL_6443cbc94e88493ba1591b9bda2a36d0", "placeholder": "​", - "style": "IPY_MODEL_aa1d356cf8c94487b3051735a5ce6450", - "value": "100%" - } - }, - "57b0fd9c4b604a31be5f93e528981694": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_0653198644094413a6b086c098ae9033", + "value": " 3.13k/3.13k [00:00<00:00, 416kB/s]" } }, - "586f6cf72ec145cfb78b3bec580a9a0c": { + "3e0a2134ee9540998f353457d1bf4ddf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_79d62771dcae4dfaafd6dca5b692ce84", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c0e1059bff5a45b1890c91ce4b8f8b4e", - "value": 8845.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b041eb1dd72b47cdbeaf6c763fa45a1f", + "IPY_MODEL_78049c4e3feb46a4998a572dd69d3106", + "IPY_MODEL_0fe0428e0e864c05be692c67935ed544" + ], + "layout": "IPY_MODEL_eea61fb21379446e864476d046f65f47" } }, - "59cb7a9d9b90423893dbefd541ecde8d": { + "44f5e4f8bb604c8595fa0747a397c469": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_205fdf80156f417fbf78fef5bcf91f56", - "placeholder": "​", - "style": "IPY_MODEL_dce6cd24d28d438a80c01cd3323ea676", - "value": " 3.13k/3.13k [00:00<00:00, 206kB/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b99980af9bf54a949ce22bd15098cc19", + "IPY_MODEL_55fa5385724d432b94007ae87ceef468", + "IPY_MODEL_fb72fc40aada40419e654f1d7757871f" + ], + "layout": "IPY_MODEL_c4ee0629bee942a8af4877750a3f259c" } }, - "5c1c69a26d054448b47c7e0e21c04bab": { + "44f77843e7b04295927aa31d88fe3a0e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_20dcf93499714ee19ae5551c1d19da4d", - "placeholder": "​", - "style": "IPY_MODEL_b6802c1b13294dafa045834671fb2a3a", - "value": "Extracting data files: 100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7b77e6a6426f4fd5abc187e7ca924a99", + "IPY_MODEL_2d6e7172b5fc4d9c8921a9862fd50d29", + "IPY_MODEL_ebeb11467e494d1da1e11c4c1f020a4b" + ], + "layout": "IPY_MODEL_bdb87db508984dbc9ff20f8feafc73ec" } }, - "5e69092a40ab41d18155799662c1d79a": { + "464236d59746418eb9e9e65b8eead657": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4694,15 +4411,30 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8a323c9e3f424d3a9d3add0fec5a3aa6", - "max": 3126.0, + "layout": "IPY_MODEL_869b46ed61dc450999ff10f98e125875", + "max": 5148.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_6ad2b5fe64d44ca49e12cfedca2a8a87", - "value": 3126.0 + "style": "IPY_MODEL_630ba679044f419abdae032b67e77e9d", + "value": 5148.0 } }, - "612cefa3dd9347ea8c741dcdce1f8161": { + "466f32eb8a2e4aada841ec3262131ff2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4a71592e32144d348d484a0166e2664c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -4717,30 +4449,29 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_39bcea738cbb4a26b4a7ca4d87c69a0f", - "IPY_MODEL_5e69092a40ab41d18155799662c1d79a", - "IPY_MODEL_59cb7a9d9b90423893dbefd541ecde8d" + "IPY_MODEL_27453c4f2cf844829d80d562563bef2b", + "IPY_MODEL_c0e1e47095d24c20a096bd7a54642482", + "IPY_MODEL_3d814e5b1946422eaf756314bbf61644" ], - "layout": "IPY_MODEL_7229d8a4884144d2963426ec7964a354" + "layout": "IPY_MODEL_07f1eb3ff3314ffcba31f27c19bf10d2" } }, - "616df3409ccb46fa9e17f565608fd38e": { + "4b8a109637c94f2fb478c35089dd98df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "64a6d2c65ba44d598a00ab1a0bb19a7a": { + "4d3f1d92201b4f6882b0a4efe4c27937": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4755,7 +4486,44 @@ "description_width": "" } }, - "6a5e9f8649ba42b9953f16261b99c9f9": { + "4e0149a329f4494bb563bfadd3dce0bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "506a4171567d403abcc301f62515c0c9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dc9041c668a349fb846d5286bc22c688", + "placeholder": "​", + "style": "IPY_MODEL_9648095aed574f23b250c5bd580d6c91", + "value": "Downloading builder script: 100%" + } + }, + "50b5ebc5f3a24736b202b3c679427280": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4807,60 +4575,89 @@ "width": null } }, - "6ad2b5fe64d44ca49e12cfedca2a8a87": { + "537a7e5193204b0d9f24067d8b0d6a48": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e1032ef202124bcbb4295a62f0fbcd7e", + "IPY_MODEL_5ee813a8a46740c3aab89f6b599ad39e", + "IPY_MODEL_2e5d3051ac3f463ba4e2b037b3bf6a6d" + ], + "layout": "IPY_MODEL_17d3881b74754a51ba0df691d25c9cf2" + } + }, + "559d94ee3b454e26afb08fa107d536d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "6af441dc94b9428c80d498dab6d90d7f": { + "55fa5385724d432b94007ae87ceef468": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b0d70013d8cc4363bfad3cb8e5f29622", - "placeholder": "​", - "style": "IPY_MODEL_e26a48ee9488421ca9916f3462179bb9", - "value": " 10000/10000 [00:02<00:00, 3750.69 examples/s]" + "layout": "IPY_MODEL_f5fb26d2b1a144548fec9eeffa1d5884", + "max": 8845.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_28ebb4a711c04c5dbf3f58db63ce416f", + "value": 8845.0 } }, - "6ce7b0e758cf4736861384747982cc7f": { + "56db53d371014197b923bdbb1a79530a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1637af5e927944aa9a2712f05182c7e9", + "placeholder": "​", + "style": "IPY_MODEL_2c0da79efc3f480bab81a9bce04b4ae0", + "value": " 60000/60000 [00:10<00:00, 7986.29 examples/s]" } }, - "6d6b8fb83021442099598400f697851e": { + "5874762017e64cdfb45f5bfc4156fcd9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4875,44 +4672,172 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f4de3fdbf5a04ff3aaca95ba3f8b7bd1", + "layout": "IPY_MODEL_1f00d58c20cd4a78ae391d7f5da662fa", "placeholder": "​", - "style": "IPY_MODEL_d9609b0893284e26972c993b8b39dc0b", - "value": "Downloading builder script: 100%" + "style": "IPY_MODEL_1430047be29e43e3ad2d016ff6d9dda0", + "value": " 5.15k/5.15k [00:00<00:00, 631kB/s]" } }, - "6ff7c27f74894cb8a78e9ae05ac3ac3b": { + "5998de2f3dd44e269565585a0a171f29": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "59bc65670bd04511bc2fb1a592dd883d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "7028e5c434574d56953b37507185302d": { + "5a5755af220a479ba1a7b86e8b86ce1a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5da9d463909242c6aaaff23086751219": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "70d07d6da2554a7eae14ce6e993fd80c": { + "5ee813a8a46740c3aab89f6b599ad39e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_23335ca0a6e6468ea633ccdad870019f", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_59bc65670bd04511bc2fb1a592dd883d", + "value": 4.0 + } + }, + "612b79dbe9dc4d4a9df3e71d740d1505": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4964,22 +4889,23 @@ "width": null } }, - "711ed2bca2084ab2b54e91947ac1108a": { + "630ba679044f419abdae032b67e77e9d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "7229d8a4884144d2963426ec7964a354": { + "6443cbc94e88493ba1591b9bda2a36d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5031,7 +4957,7 @@ "width": null } }, - "72509aecafaf46419ab5eca56d1d07b7": { + "66d82dd27be8492a9968efb499efa374": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5046,65 +4972,29 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_70d07d6da2554a7eae14ce6e993fd80c", + "layout": "IPY_MODEL_96436149605e4d58a0a7c03ea821de17", "placeholder": "​", - "style": "IPY_MODEL_218bea2a05724fbfa1f4efa38b744a6f", - "value": " 5.15k/5.15k [00:00<00:00, 324kB/s]" + "style": "IPY_MODEL_c4bbd3871bf344b09a69017a586b09a5", + "value": " 60000/60000 [00:08<00:00, 7511.12 examples/s]" } }, - "7276206ef29b48fda0ab685ae2f4c5b2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "68d210cf8a9b4be3a3bcc96402332748": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "73ba91dcac0d4c1c9d4846ccb0fcf091": { + "690f7c9744144ac3b673a489998a31fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -5119,7 +5009,7 @@ "description_width": "" } }, - "757ddd8a9bb34d09a3a6b77b4aaf4857": { + "69421edd53374a1db153e6ea9902e51a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5171,29 +5061,43 @@ "width": null } }, - "761c0ed328c449059ece5399e5ff1233": { + "6dfcd217c55e45fb879053967b360d09": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6e9aa0810d4f4d8885223b01a604e468": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1b1c5fba64c14d2784e32bfd006ab230", - "IPY_MODEL_7dea94a63af149118f75e89bfa70876f", - "IPY_MODEL_f0f61bf74b254944b94ba220d2a246ed" - ], - "layout": "IPY_MODEL_e9bec30e2317490d9a4382b936bf0bd9" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bec7614f7b424808aaad478bd2501c59", + "placeholder": "​", + "style": "IPY_MODEL_2fdc9aa7c44a4c26ad2ca301e097ef9b", + "value": "Generating train split: 100%" } }, - "79d62771dcae4dfaafd6dca5b692ce84": { + "701a760ce04a4697ad3712a07459e6cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5245,44 +5149,7 @@ "width": null } }, - "7ab5d79c93ad4df5a716ff45665625e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2b83c0f239144261921fca67e904e75e", - "IPY_MODEL_f704a3dccb5b4420a10abea93f101b9a", - "IPY_MODEL_2bdff68ec5d24f65a203ba93c047ad59" - ], - "layout": "IPY_MODEL_d93ca8c757794d2da6227cf1e7712637" - } - }, - "7c1cf24d94b14fecb4bb58664192beaf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7d74598aab5046599b49115a603ca10c": { + "721e24bde61d45ec9d5009c3099c7a49": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5334,31 +5201,7 @@ "width": null } }, - "7dea94a63af149118f75e89bfa70876f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_43a0ee64b6e44fc29c490ab217442403", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b2f678ecb4f843cfb6f045127c9c6000", - "value": 29515.0 - } - }, - "7e1cb1ffd78f4c55be8f128a66a37d1c": { + "736c417bd25f4e20bde338512436ced7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5373,34 +5216,35 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_da0be24acce84f42b8dcb0fc65be50ed", + "layout": "IPY_MODEL_bd09722abaf84b51b5c5eac4e0a25cc7", "placeholder": "​", - "style": "IPY_MODEL_28b0314091b54a0e9d01442159a3674b", - "value": " 60000/60000 [00:24<00:00, 2183.18 examples/s]" + "style": "IPY_MODEL_f0f9dff1082942a486ea2ccd7065dab2", + "value": " 4/4 [00:02<00:00, 1.62it/s]" } }, - "7f9dcf4693b64884a760553f66173507": { + "7522bd2e46614a60ad0b06357b2d72f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d71666b44f7a4dada421af0312873de9", - "placeholder": "​", - "style": "IPY_MODEL_64a6d2c65ba44d598a00ab1a0bb19a7a", - "value": "Computing checksums: 100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e4216a625ef3489b8a292ebdd193b9b1", + "IPY_MODEL_dd8c9c8ff61b4a218c6324f1c004a434", + "IPY_MODEL_ffc51b71be434d6499331e6c7f2709d4" + ], + "layout": "IPY_MODEL_027bb356c11345ccb3aa18600812711c" } }, - "8040f9b0c58a48e581c1c91e2988cd98": { + "76e24cfe61d04e9bb249db7e36614b9b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5452,28 +5296,31 @@ "width": null } }, - "867c25e156564b75b1a3478e0c27fcdf": { + "78049c4e3feb46a4998a572dd69d3106": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3a3676e45a4a4f4d9cf748aa7a617f1d", - "placeholder": "​", - "style": "IPY_MODEL_73ba91dcac0d4c1c9d4846ccb0fcf091", - "value": " 26.4M/26.4M [00:00<00:00, 55.5MB/s]" + "layout": "IPY_MODEL_937d5f2b03e642fa83468fd96849ddcb", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_24acdfa125d844c8ad0083addbd3a43f", + "value": 10000.0 } }, - "8909feaa0dc7413aa28a55b49e391869": { + "7b77e6a6426f4fd5abc187e7ca924a99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5488,13 +5335,29 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0c8b474086ff45a28dcb688a6b1416d0", + "layout": "IPY_MODEL_12f96b7aa9f74dd49b8faae0ab4d8bd6", "placeholder": "​", - "style": "IPY_MODEL_7c1cf24d94b14fecb4bb58664192beaf", - "value": " 4/4 [00:00<00:00, 2.33it/s]" + "style": "IPY_MODEL_3afa28a9cfcd446885b76512d5f589d2", + "value": "100%" + } + }, + "7b82b6a2804e495fb202b1d1a942b498": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8a323c9e3f424d3a9d3add0fec5a3aa6": { + "7f1c64576071479594ebb33e3841c81b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5546,68 +5409,7 @@ "width": null } }, - "903d37d4295940cf8e152671be03cb85": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_35906c636117467c89b0ac0ae8c0a0ab", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fab815f8e2a647d6b4d66b089b7db947", - "value": 4.0 - } - }, - "91782d261dd84e97914beee2a8925a8e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7f9dcf4693b64884a760553f66173507", - "IPY_MODEL_292c5ed4289a42cc9e075371ae69c495", - "IPY_MODEL_b052f1ad208f459ea8374b6d83019b8e" - ], - "layout": "IPY_MODEL_ac7894d4d13244b79762d4261411d28f" - } - }, - "9529573278a14cfebeeb127ac35b59ee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "969a86fb72864592907227476c004e9f": { + "85f21b994a514646a81e121fa7e4db46": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5659,7 +5461,7 @@ "width": null } }, - "97b5a1af5d93477f8c14662092693155": { + "869b46ed61dc450999ff10f98e125875": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5711,29 +5513,37 @@ "width": null } }, - "9b275e24abf4422ab8fd76f997e0928d": { + "8fb8e1b75e5e46a5b8325de4ce8a72ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5c1c69a26d054448b47c7e0e21c04bab", - "IPY_MODEL_b791fda2d47747dfb5ac7e3e67610aa8", - "IPY_MODEL_8909feaa0dc7413aa28a55b49e391869" - ], - "layout": "IPY_MODEL_ee346b4fa8194857bf89bf2d2cb10b2c" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "92d06fbfea054a8e88e09151581d7306": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "9cf36dbe475f42408e19d9b5a04d082a": { + "937d5f2b03e642fa83468fd96849ddcb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5785,22 +5595,7 @@ "width": null } }, - "9dd65b2a67f74220b1b21b97fb3fb804": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "9e939aaf314543ec81d38ed9a6e10943": { + "96436149605e4d58a0a7c03ea821de17": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5852,29 +5647,97 @@ "width": null } }, - "a11ed46d134748e790cad78f74d23947": { + "9648095aed574f23b250c5bd580d6c91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "97948cf5069f4fb8b8b4b42413105a21": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d382bff8f725441898de0b7b48057514", - "IPY_MODEL_540aacf86dc84c70bc6608a1b039b6e9", - "IPY_MODEL_7e1cb1ffd78f4c55be8f128a66a37d1c" - ], - "layout": "IPY_MODEL_307de2c8b62c441a9268876370811e96" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0912d37c17124722bc87f291ffe6382f", + "max": 4833.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_68d210cf8a9b4be3a3bcc96402332748", + "value": 4833.0 + } + }, + "992ce557afcc45bdb10cacf473041f5b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9e06f9ab1944486aa10fbe17b8738ab6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a27d46aefff44a1fb6de7cd868f0e90a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f0aa3b6bcf8f4c94bd864090213842e8", + "placeholder": "​", + "style": "IPY_MODEL_4d3f1d92201b4f6882b0a4efe4c27937", + "value": "Downloading data: 100%" } }, - "a1a9fcb84e7a48eb9e75412f4f7f409f": { + "a4de7f9653574f5e938e4598410da12d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5889,13 +5752,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_dd9e627d2c4145f8898572e607734b98", + "layout": "IPY_MODEL_5a5755af220a479ba1a7b86e8b86ce1a", "placeholder": "​", - "style": "IPY_MODEL_4cc01f457f1d4b749355a005e7598a2e", - "value": " 4/4 [00:06<00:00, 1.41s/it]" + "style": "IPY_MODEL_92d06fbfea054a8e88e09151581d7306", + "value": "Downloading data: 100%" } }, - "a24e81a4b4b34b6497deb2cdfa772651": { + "a50faee2fea343bf94b52d1204e1a79a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5947,31 +5810,7 @@ "width": null } }, - "a6850e0cf7cf411083eb402a1f7ffcdf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_41d4c17aec3048a09d36ba2cd7bb1d66", - "max": 26421880.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_616df3409ccb46fa9e17f565608fd38e", - "value": 26421880.0 - } - }, - "a71041b7e65840ceacc14617a97b2b6e": { + "a55eba05af564a53815c6845a477c3a5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6023,29 +5862,7 @@ "width": null } }, - "a9c1ed92d1764f1dbd2c3822fa8b6898": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0811fa4996d049e090febc06ea32c8be", - "IPY_MODEL_903d37d4295940cf8e152671be03cb85", - "IPY_MODEL_a1a9fcb84e7a48eb9e75412f4f7f409f" - ], - "layout": "IPY_MODEL_9cf36dbe475f42408e19d9b5a04d082a" - } - }, - "aa1d356cf8c94487b3051735a5ce6450": { + "a56574785d994197a25f60e59fef2ab3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -6060,7 +5877,7 @@ "description_width": "" } }, - "ac7894d4d13244b79762d4261411d28f": { + "a8505ed4316d463cb93e002611334bca": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6112,7 +5929,7 @@ "width": null } }, - "aced78e0b4a54c3b957bb7b58ff5da71": { + "a86812a0e7f54fb9bda9262ce674e5a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6164,7 +5981,7 @@ "width": null } }, - "b052f1ad208f459ea8374b6d83019b8e": { + "a9e316fa834343b68f168198f909c51d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -6179,166 +5996,98 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_757ddd8a9bb34d09a3a6b77b4aaf4857", + "layout": "IPY_MODEL_093cf0b3d78a452cad534e131f55e56d", "placeholder": "​", - "style": "IPY_MODEL_2cf7bdb4a529481e9133f4b0ac4975c2", - "value": " 4/4 [00:00<00:00, 407.53it/s]" - } - }, - "b0d70013d8cc4363bfad3cb8e5f29622": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b2f678ecb4f843cfb6f045127c9c6000": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "style": "IPY_MODEL_6dfcd217c55e45fb879053967b360d09", + "value": "Computing checksums: 100%" } }, - "b3faa01b617f407e8d1b152a2fb85c2d": { + "b041eb1dd72b47cdbeaf6c763fa45a1f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_daff3c773de94946ad2bab4b8ebcfc09", - "max": 4422102.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fdbea6608bb947daa73550a82c368bb2", - "value": 4422102.0 + "layout": "IPY_MODEL_85f21b994a514646a81e121fa7e4db46", + "placeholder": "​", + "style": "IPY_MODEL_e4b42dbc17714e4cb8ff523f30fd08e4", + "value": "Generating test split: 100%" } }, - "b6802c1b13294dafa045834671fb2a3a": { + "b8c2eeaef9cc40408a21e61164f3e589": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a9e316fa834343b68f168198f909c51d", + "IPY_MODEL_c401551c61cd4405884c3527f0bf2c49", + "IPY_MODEL_05cc2250105a418aa4367d257cc0414a" + ], + "layout": "IPY_MODEL_3cfa4f7f077f428da6a2d2f06a8d25a3" } }, - "b791fda2d47747dfb5ac7e3e67610aa8": { + "b99980af9bf54a949ce22bd15098cc19": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_daab8b6aa44a448885d76496cf4e849b", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7028e5c434574d56953b37507185302d", - "value": 4.0 + "layout": "IPY_MODEL_d57a4ba27f6e455d996784f19305358b", + "placeholder": "​", + "style": "IPY_MODEL_5da9d463909242c6aaaff23086751219", + "value": "Downloading readme: 100%" } }, - "b98270fd10c84b9cbbb081039967ba17": { + "bc0897bb0c9a4310991fa46279bae3c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_16f0bcb2b29a4013ae1bfc39aeae305c", - "IPY_MODEL_d7481eede9c54285b1abe9c1c559588c", - "IPY_MODEL_6af441dc94b9428c80d498dab6d90d7f" - ], - "layout": "IPY_MODEL_feba6d70d1f54daba5f2b892640f3ac6" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_10d6a459a3de4918a150b33482d8f94e", + "placeholder": "​", + "style": "IPY_MODEL_9e06f9ab1944486aa10fbe17b8738ab6", + "value": " 4.83k/4.83k [00:00<00:00, 553kB/s]" } }, - "bc54a691b3b846ee88158a6f8c5f16d8": { + "bd09722abaf84b51b5c5eac4e0a25cc7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6390,7 +6139,7 @@ "width": null } }, - "bc9480a82b074d8ab28bafaf83d8e64a": { + "bd826af1a92f487a8c7933ba7199dd4a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6442,29 +6191,7 @@ "width": null } }, - "be5d8ecbd7ba4d20a2dd9b9089ba0b11": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ffd120466aa9408d93784aa48cb4312c", - "IPY_MODEL_a6850e0cf7cf411083eb402a1f7ffcdf", - "IPY_MODEL_867c25e156564b75b1a3478e0c27fcdf" - ], - "layout": "IPY_MODEL_e0c93f77843745e581caa31d1a7f19db" - } - }, - "c00e00711ebc47538c4c510ba4422d0d": { + "bdb87db508984dbc9ff20f8feafc73ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6516,7 +6243,7 @@ "width": null } }, - "c0e1059bff5a45b1890c91ce4b8f8b4e": { + "bdbffa13cb094da8a21d3c002b496dc5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -6532,59 +6259,107 @@ "description_width": "" } }, - "c52ea24aec5648228ce51f7c3e9f346b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "bec7614f7b424808aaad478bd2501c59": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "cc7fc197cdbb4d8483276e815a588e7c": { + "c0e1e47095d24c20a096bd7a54642482": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3a24bc725d8e41cb922300a958614055", + "max": 3126.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_34b22502df214166ab4c1267bcd108e5", + "value": 3126.0 } }, - "d05f567fc66047acb55847aaadfee70c": { + "c401551c61cd4405884c3527f0bf2c49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6d6b8fb83021442099598400f697851e", - "IPY_MODEL_3b7ea58f9080466c940c18d2babb2d3e", - "IPY_MODEL_f1d76f8be3bd4023a4857f4f416821b4" - ], - "layout": "IPY_MODEL_e713287ee87a4d40a382b0631b536755" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d2c2127712304611b576e27909001071", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7b82b6a2804e495fb202b1d1a942b498", + "value": 4.0 } }, - "d1e9973a7d4a4efdba048a2e719cd651": { + "c45799282b214919a12cbde5d89076a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6636,7 +6411,22 @@ "width": null } }, - "d2d0f95ce92b498ea0372ff90b1ee069": { + "c4bbd3871bf344b09a69017a586b09a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c4ee0629bee942a8af4877750a3f259c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6688,65 +6478,7 @@ "width": null } }, - "d36d9d9cbc4845c4b832ff3271c15cec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1790c08d664442409bc55b6b2e7dacf7", - "IPY_MODEL_15dcd9ce4dc0435f8131ad9cc2cf4892", - "IPY_MODEL_72509aecafaf46419ab5eca56d1d07b7" - ], - "layout": "IPY_MODEL_2ddd67149d6b482dbf3fe7161822d0c5" - } - }, - "d382bff8f725441898de0b7b48057514": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a24e81a4b4b34b6497deb2cdfa772651", - "placeholder": "​", - "style": "IPY_MODEL_253002c0917842f6899d59d681edafca", - "value": "Map (num_proc=2): 100%" - } - }, - "d48761e18d36445daaa903b736e4bdd3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d71666b44f7a4dada421af0312873de9": { + "c68ba05b52a44fcf8cede8858221a21f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6798,31 +6530,7 @@ "width": null } }, - "d7481eede9c54285b1abe9c1c559588c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_969a86fb72864592907227476c004e9f", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fffd6541a6714298bda7704e8ca87ab6", - "value": 10000.0 - } - }, - "d93ca8c757794d2da6227cf1e7712637": { + "d057832ec8be4cce8b0f68d794d903bb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6874,7 +6582,7 @@ "width": null } }, - "d9609b0893284e26972c993b8b39dc0b": { + "d150295da13a4f6990dcffe7be732503": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -6889,7 +6597,7 @@ "description_width": "" } }, - "da0be24acce84f42b8dcb0fc65be50ed": { + "d2c2127712304611b576e27909001071": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6941,7 +6649,7 @@ "width": null } }, - "daab8b6aa44a448885d76496cf4e849b": { + "d57a4ba27f6e455d996784f19305358b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6993,7 +6701,7 @@ "width": null } }, - "daff3c773de94946ad2bab4b8ebcfc09": { + "d706f2f9b57f4381a09209864a913ca5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7045,22 +6753,7 @@ "width": null } }, - "dce6cd24d28d438a80c01cd3323ea676": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "dd9e627d2c4145f8898572e607734b98": { + "d7dcb58725a24c6fb1989b5897028a13": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7112,31 +6805,7 @@ "width": null } }, - "e02d68f14b7543f88334666e0bd315f8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f98701b031574129ab50c61935ad389e", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f282773aef224356a1f8705ade97a1c6", - "value": 60000.0 - } - }, - "e0c93f77843745e581caa31d1a7f19db": { + "d87280dc535b4a6786403d3b38c77930": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7188,43 +6857,7 @@ "width": null } }, - "e26a48ee9488421ca9916f3462179bb9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "e342db7c6ad14b17b36cf29d3dc944df": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ec5cb2bd2c404a0199e2497abed562cf", - "placeholder": "​", - "style": "IPY_MODEL_9529573278a14cfebeeb127ac35b59ee", - "value": " 4.42M/4.42M [00:00<00:00, 47.4MB/s]" - } - }, - "e713287ee87a4d40a382b0631b536755": { + "d9bdd15f8e9b4565bbfa4b273eb7fbb0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7276,7 +6909,7 @@ "width": null } }, - "e96cef50a8df40d087bdae15b405f49e": { + "d9e47029a70144beb3253e67eb8a8f4f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7328,7 +6961,28 @@ "width": null } }, - "e9bec30e2317490d9a4382b936bf0bd9": { + "daf90e236faa41c0922e212140e77826": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d057832ec8be4cce8b0f68d794d903bb", + "placeholder": "​", + "style": "IPY_MODEL_466f32eb8a2e4aada841ec3262131ff2", + "value": "Downloading data files: 100%" + } + }, + "dc9041c668a349fb846d5286bc22c688": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7380,22 +7034,73 @@ "width": null } }, - "eb58eaa1c1954e64b0090ac631cf0dad": { + "dd8c9c8ff61b4a218c6324f1c004a434": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3590bfe3b36048d69c9784740855535e", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fcd35b0293524453a68d23c0a8539e19", + "value": 26421880.0 + } + }, + "de7135124236426bbb2f54381d665d0e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a55eba05af564a53815c6845a477c3a5", + "placeholder": "​", + "style": "IPY_MODEL_0303aac63e5e4fc5920a61bcfe83b03c", + "value": "Map (num_proc=4): 100%" + } + }, + "e1032ef202124bcbb4295a62f0fbcd7e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5998de2f3dd44e269565585a0a171f29", + "placeholder": "​", + "style": "IPY_MODEL_992ce557afcc45bdb10cacf473041f5b", + "value": "Extracting data files: 100%" } }, - "ec5cb2bd2c404a0199e2497abed562cf": { + "e29bc7e5e4dc447a807eecb7ea072516": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7447,7 +7152,44 @@ "width": null } }, - "ed50ad1dd46f489798d7b9e8cf22f305": { + "e3e3d730a68d43139c8ea8493328c162": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e4216a625ef3489b8a292ebdd193b9b1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_69421edd53374a1db153e6ea9902e51a", + "placeholder": "​", + "style": "IPY_MODEL_8fb8e1b75e5e46a5b8325de4ce8a72ae", + "value": "Downloading data: 100%" + } + }, + "e4b42dbc17714e4cb8ff523f30fd08e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -7462,7 +7204,7 @@ "description_width": "" } }, - "ee346b4fa8194857bf89bf2d2cb10b2c": { + "e5ee4f3a98a342c8b7d48ced17eda826": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7514,49 +7256,31 @@ "width": null } }, - "f0f61bf74b254944b94ba220d2a246ed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c00e00711ebc47538c4c510ba4422d0d", - "placeholder": "​", - "style": "IPY_MODEL_f2f1f336fe4d409db8834fadeecb5de7", - "value": " 29.5k/29.5k [00:00<00:00, 1.66MB/s]" - } - }, - "f1d76f8be3bd4023a4857f4f416821b4": { + "e8844724612d48e8bd56a5d09bfba9ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bc54a691b3b846ee88158a6f8c5f16d8", - "placeholder": "​", - "style": "IPY_MODEL_6ff7c27f74894cb8a78e9ae05ac3ac3b", - "value": " 4.83k/4.83k [00:00<00:00, 306kB/s]" + "layout": "IPY_MODEL_50b5ebc5f3a24736b202b3c679427280", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4e0149a329f4494bb563bfadd3dce0bc", + "value": 29515.0 } }, - "f282773aef224356a1f8705ade97a1c6": { + "e8a11c40685b4ea19c771689d8ccacd3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -7572,7 +7296,7 @@ "description_width": "" } }, - "f28ad72bcab343d2a0a5a8f8d4d57e28": { + "ebeb11467e494d1da1e11c4c1f020a4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -7587,13 +7311,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2a4b0dc0c4a14bd082e2d072bbfc841e", + "layout": "IPY_MODEL_76e24cfe61d04e9bb249db7e36614b9b", "placeholder": "​", - "style": "IPY_MODEL_d48761e18d36445daaa903b736e4bdd3", - "value": "Downloading data: 100%" + "style": "IPY_MODEL_11b1fca65ff84c24b4ae4471199365a0", + "value": " 60000/60000 [00:28<00:00, 2065.78it/s]" } }, - "f2f1f336fe4d409db8834fadeecb5de7": { + "edb2626ea7fe43cba9657b7cb42d5634": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -7608,7 +7332,7 @@ "description_width": "" } }, - "f4de3fdbf5a04ff3aaca95ba3f8b7bd1": { + "eea61fb21379446e864476d046f65f47": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7660,28 +7384,7 @@ "width": null } }, - "f52f6d96ff4f4ffd85aa3dadf61fcc4b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bc9480a82b074d8ab28bafaf83d8e64a", - "placeholder": "​", - "style": "IPY_MODEL_c52ea24aec5648228ce51f7c3e9f346b", - "value": " 8.85k/8.85k [00:00<00:00, 555kB/s]" - } - }, - "f704a3dccb5b4420a10abea93f101b9a": { + "f07878bc520a46b7ba6a998b866ac201": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -7697,15 +7400,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7276206ef29b48fda0ab685ae2f4c5b2", - "max": 60000.0, + "layout": "IPY_MODEL_2879f2ebffe144ea9c57752bc1eb8f92", + "max": 4422102.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_6ce7b0e758cf4736861384747982cc7f", - "value": 60000.0 + "style": "IPY_MODEL_32415e8d4fb248f0bd09a01e50f9e3ae", + "value": 4422102.0 } }, - "f7c076b2d484403b94bf9cf6614a53c2": { + "f0aa3b6bcf8f4c94bd864090213842e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7757,7 +7460,37 @@ "width": null } }, - "f98701b031574129ab50c61935ad389e": { + "f0f9dff1082942a486ea2ccd7065dab2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f221ee9541074b83ac6544e40a87ebca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f5fb26d2b1a144548fec9eeffa1d5884": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7809,23 +7542,22 @@ "width": null } }, - "fab815f8e2a647d6b4d66b089b7db947": { + "f899b4d1f050489aae5ee2acd46db8ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "fdbea6608bb947daa73550a82c368bb2": { + "fae2438f83af4331b446e19b3beb96a0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -7841,7 +7573,52 @@ "description_width": "" } }, - "fe0cffd29643463d87406f6447b990d6": { + "fb72fc40aada40419e654f1d7757871f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_721e24bde61d45ec9d5009c3099c7a49", + "placeholder": "​", + "style": "IPY_MODEL_d150295da13a4f6990dcffe7be732503", + "value": " 8.85k/8.85k [00:00<00:00, 1.10MB/s]" + } + }, + "fcab5be83a8144b6a413a329d9da980d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d7dcb58725a24c6fb1989b5897028a13", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e8a11c40685b4ea19c771689d8ccacd3", + "value": 60000.0 + } + }, + "fcd35b0293524453a68d23c0a8539e19": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -7857,28 +7634,29 @@ "description_width": "" } }, - "fe6e299677474b5db54e378feb494bd4": { + "fe602eb6950c4adb8193e1b4d6cb1670": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_97b5a1af5d93477f8c14662092693155", - "placeholder": "​", - "style": "IPY_MODEL_ed50ad1dd46f489798d7b9e8cf22f305", - "value": "Downloading readme: 100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_daf90e236faa41c0922e212140e77826", + "IPY_MODEL_26a56455075e410a8500d528a01214da", + "IPY_MODEL_736c417bd25f4e20bde338512436ced7" + ], + "layout": "IPY_MODEL_d706f2f9b57f4381a09209864a913ca5" } }, - "feba6d70d1f54daba5f2b892640f3ac6": { + "ffb9563a9f2e447ead263097568bc49d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7930,7 +7708,7 @@ "width": null } }, - "ffd120466aa9408d93784aa48cb4312c": { + "ffc51b71be434d6499331e6c7f2709d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -7945,26 +7723,10 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1b62c4a2a7fa4cd48cf790f910023cad", + "layout": "IPY_MODEL_a8505ed4316d463cb93e002611334bca", "placeholder": "​", - "style": "IPY_MODEL_1b15dd21c7454f82a7e3b1aade1337a5", - "value": "Downloading data: 100%" - } - }, - "fffd6541a6714298bda7704e8ca87ab6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "style": "IPY_MODEL_559d94ee3b454e26afb08fa107d536d8", + "value": " 26.4M/26.4M [00:00<00:00, 115MB/s]" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 2a57c2348..4c9b8d038 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:50.076934Z", - "iopub.status.busy": "2023-11-02T15:15:50.076608Z", - "iopub.status.idle": "2023-11-02T15:15:51.959838Z", - "shell.execute_reply": "2023-11-02T15:15:51.958366Z" + "iopub.execute_input": "2023-11-04T09:21:05.973237Z", + "iopub.status.busy": "2023-11-04T09:21:05.973042Z", + "iopub.status.idle": "2023-11-04T09:21:07.004958Z", + "shell.execute_reply": "2023-11-04T09:21:07.004368Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:51.964615Z", - "iopub.status.busy": "2023-11-02T15:15:51.964073Z", - "iopub.status.idle": "2023-11-02T15:15:52.440669Z", - "shell.execute_reply": "2023-11-02T15:15:52.439559Z" + "iopub.execute_input": "2023-11-04T09:21:07.007607Z", + "iopub.status.busy": "2023-11-04T09:21:07.007341Z", + "iopub.status.idle": "2023-11-04T09:21:07.274232Z", + "shell.execute_reply": "2023-11-04T09:21:07.273590Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:52.445757Z", - "iopub.status.busy": "2023-11-02T15:15:52.445377Z", - "iopub.status.idle": "2023-11-02T15:15:52.466633Z", - "shell.execute_reply": "2023-11-02T15:15:52.465415Z" + "iopub.execute_input": "2023-11-04T09:21:07.277243Z", + "iopub.status.busy": "2023-11-04T09:21:07.276981Z", + "iopub.status.idle": "2023-11-04T09:21:07.289260Z", + "shell.execute_reply": "2023-11-04T09:21:07.288763Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:52.471098Z", - "iopub.status.busy": "2023-11-02T15:15:52.470786Z", - "iopub.status.idle": "2023-11-02T15:15:52.866752Z", - "shell.execute_reply": "2023-11-02T15:15:52.865827Z" + "iopub.execute_input": "2023-11-04T09:21:07.291448Z", + "iopub.status.busy": "2023-11-04T09:21:07.291245Z", + "iopub.status.idle": "2023-11-04T09:21:07.524446Z", + "shell.execute_reply": "2023-11-04T09:21:07.523793Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:52.871309Z", - "iopub.status.busy": "2023-11-02T15:15:52.870894Z", - "iopub.status.idle": "2023-11-02T15:15:52.924852Z", - "shell.execute_reply": "2023-11-02T15:15:52.923703Z" + "iopub.execute_input": "2023-11-04T09:21:07.526959Z", + "iopub.status.busy": "2023-11-04T09:21:07.526749Z", + "iopub.status.idle": "2023-11-04T09:21:07.553849Z", + "shell.execute_reply": "2023-11-04T09:21:07.553313Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:52.930641Z", - "iopub.status.busy": "2023-11-02T15:15:52.930283Z", - "iopub.status.idle": "2023-11-02T15:15:55.351474Z", - "shell.execute_reply": "2023-11-02T15:15:55.350167Z" + "iopub.execute_input": "2023-11-04T09:21:07.556150Z", + "iopub.status.busy": "2023-11-04T09:21:07.555953Z", + "iopub.status.idle": "2023-11-04T09:21:08.855565Z", + "shell.execute_reply": "2023-11-04T09:21:08.854845Z" } }, "outputs": [ @@ -471,10 +471,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:55.357720Z", - "iopub.status.busy": "2023-11-02T15:15:55.356363Z", - "iopub.status.idle": "2023-11-02T15:15:55.399564Z", - "shell.execute_reply": "2023-11-02T15:15:55.398628Z" + "iopub.execute_input": "2023-11-04T09:21:08.858593Z", + "iopub.status.busy": "2023-11-04T09:21:08.858046Z", + "iopub.status.idle": "2023-11-04T09:21:08.875057Z", + "shell.execute_reply": "2023-11-04T09:21:08.874421Z" }, "scrolled": true }, @@ -599,10 +599,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:55.404394Z", - "iopub.status.busy": "2023-11-02T15:15:55.403817Z", - "iopub.status.idle": "2023-11-02T15:15:57.155524Z", - "shell.execute_reply": "2023-11-02T15:15:57.153900Z" + "iopub.execute_input": "2023-11-04T09:21:08.877460Z", + "iopub.status.busy": "2023-11-04T09:21:08.877078Z", + "iopub.status.idle": "2023-11-04T09:21:09.756163Z", + "shell.execute_reply": "2023-11-04T09:21:09.755465Z" }, "id": "AaHC5MRKjruT" }, @@ -721,10 +721,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:57.160920Z", - "iopub.status.busy": "2023-11-02T15:15:57.160109Z", - "iopub.status.idle": "2023-11-02T15:15:57.188012Z", - "shell.execute_reply": "2023-11-02T15:15:57.186914Z" + "iopub.execute_input": "2023-11-04T09:21:09.759003Z", + "iopub.status.busy": "2023-11-04T09:21:09.758483Z", + "iopub.status.idle": "2023-11-04T09:21:09.772803Z", + "shell.execute_reply": "2023-11-04T09:21:09.772262Z" }, "id": "Wy27rvyhjruU" }, @@ -773,10 +773,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:57.192920Z", - "iopub.status.busy": "2023-11-02T15:15:57.192426Z", - "iopub.status.idle": "2023-11-02T15:15:57.345895Z", - "shell.execute_reply": "2023-11-02T15:15:57.344707Z" + "iopub.execute_input": "2023-11-04T09:21:09.775362Z", + "iopub.status.busy": "2023-11-04T09:21:09.774896Z", + "iopub.status.idle": "2023-11-04T09:21:09.856549Z", + "shell.execute_reply": "2023-11-04T09:21:09.855846Z" }, "id": "Db8YHnyVjruU" }, @@ -883,10 +883,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:57.350993Z", - "iopub.status.busy": "2023-11-02T15:15:57.350140Z", - "iopub.status.idle": "2023-11-02T15:15:57.680661Z", - "shell.execute_reply": "2023-11-02T15:15:57.679683Z" + "iopub.execute_input": "2023-11-04T09:21:09.859455Z", + "iopub.status.busy": "2023-11-04T09:21:09.859138Z", + "iopub.status.idle": "2023-11-04T09:21:10.061506Z", + "shell.execute_reply": "2023-11-04T09:21:10.060865Z" }, "id": "iJqAHuS2jruV" }, @@ -923,10 +923,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:57.685588Z", - "iopub.status.busy": "2023-11-02T15:15:57.685200Z", - "iopub.status.idle": "2023-11-02T15:15:57.721756Z", - "shell.execute_reply": "2023-11-02T15:15:57.720702Z" + "iopub.execute_input": "2023-11-04T09:21:10.064310Z", + "iopub.status.busy": "2023-11-04T09:21:10.063840Z", + "iopub.status.idle": "2023-11-04T09:21:10.081054Z", + "shell.execute_reply": "2023-11-04T09:21:10.080559Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -988,10 +988,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:57.726378Z", - "iopub.status.busy": "2023-11-02T15:15:57.726002Z", - "iopub.status.idle": "2023-11-02T15:15:57.747437Z", - "shell.execute_reply": "2023-11-02T15:15:57.746440Z" + "iopub.execute_input": "2023-11-04T09:21:10.083399Z", + "iopub.status.busy": "2023-11-04T09:21:10.083200Z", + "iopub.status.idle": "2023-11-04T09:21:10.093511Z", + "shell.execute_reply": "2023-11-04T09:21:10.093027Z" }, "id": "0lonvOYvjruV" }, @@ -1138,10 +1138,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:57.752527Z", - "iopub.status.busy": "2023-11-02T15:15:57.751917Z", - "iopub.status.idle": "2023-11-02T15:15:57.919362Z", - "shell.execute_reply": "2023-11-02T15:15:57.918041Z" + "iopub.execute_input": "2023-11-04T09:21:10.095900Z", + "iopub.status.busy": "2023-11-04T09:21:10.095537Z", + "iopub.status.idle": "2023-11-04T09:21:10.194540Z", + "shell.execute_reply": "2023-11-04T09:21:10.193805Z" }, "id": "MfqTCa3kjruV" }, @@ -1222,10 +1222,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:57.926723Z", - "iopub.status.busy": "2023-11-02T15:15:57.926280Z", - "iopub.status.idle": "2023-11-02T15:15:58.203808Z", - "shell.execute_reply": "2023-11-02T15:15:58.202338Z" + "iopub.execute_input": "2023-11-04T09:21:10.197452Z", + "iopub.status.busy": "2023-11-04T09:21:10.196961Z", + "iopub.status.idle": "2023-11-04T09:21:10.339452Z", + "shell.execute_reply": "2023-11-04T09:21:10.338757Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1285,10 +1285,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:58.210095Z", - "iopub.status.busy": "2023-11-02T15:15:58.209694Z", - "iopub.status.idle": "2023-11-02T15:15:58.216560Z", - "shell.execute_reply": "2023-11-02T15:15:58.215685Z" + "iopub.execute_input": "2023-11-04T09:21:10.342254Z", + "iopub.status.busy": "2023-11-04T09:21:10.341935Z", + "iopub.status.idle": "2023-11-04T09:21:10.345872Z", + "shell.execute_reply": "2023-11-04T09:21:10.345221Z" }, "id": "0rXP3ZPWjruW" }, @@ -1326,10 +1326,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:58.221394Z", - "iopub.status.busy": "2023-11-02T15:15:58.220957Z", - "iopub.status.idle": "2023-11-02T15:15:58.230369Z", - "shell.execute_reply": "2023-11-02T15:15:58.229182Z" + "iopub.execute_input": "2023-11-04T09:21:10.348453Z", + "iopub.status.busy": "2023-11-04T09:21:10.348084Z", + "iopub.status.idle": "2023-11-04T09:21:10.352509Z", + "shell.execute_reply": "2023-11-04T09:21:10.351961Z" }, "id": "-iRPe8KXjruW" }, @@ -1384,10 +1384,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:58.234828Z", - "iopub.status.busy": "2023-11-02T15:15:58.234400Z", - "iopub.status.idle": "2023-11-02T15:15:58.317870Z", - "shell.execute_reply": "2023-11-02T15:15:58.316817Z" + "iopub.execute_input": "2023-11-04T09:21:10.355014Z", + "iopub.status.busy": "2023-11-04T09:21:10.354652Z", + "iopub.status.idle": "2023-11-04T09:21:10.394876Z", + "shell.execute_reply": "2023-11-04T09:21:10.394226Z" }, "id": "ZpipUliyjruW" }, @@ -1438,10 +1438,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:58.323285Z", - "iopub.status.busy": "2023-11-02T15:15:58.322716Z", - "iopub.status.idle": "2023-11-02T15:15:58.421165Z", - "shell.execute_reply": "2023-11-02T15:15:58.419972Z" + "iopub.execute_input": "2023-11-04T09:21:10.397359Z", + "iopub.status.busy": "2023-11-04T09:21:10.397004Z", + "iopub.status.idle": "2023-11-04T09:21:10.445078Z", + "shell.execute_reply": "2023-11-04T09:21:10.444533Z" }, "id": "SLq-3q4xjruX" }, @@ -1462,13 +1462,7 @@ "\n", "\n", " Noise Matrix (aka Noisy Channel) P(given_label|true_label) of shape (4, 4)\n", - " p(s|y)\ty=0\ty=1\ty=2\ty=3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + " p(s|y)\ty=0\ty=1\ty=2\ty=3\n", "\t---\t---\t---\t---\n", "s=0 |\t0.76\t0.0\t0.15\t0.14\n", "s=1 |\t0.06\t0.92\t0.06\t0.0\n", @@ -1516,10 +1510,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:58.425576Z", - "iopub.status.busy": "2023-11-02T15:15:58.424941Z", - "iopub.status.idle": "2023-11-02T15:15:58.591569Z", - "shell.execute_reply": "2023-11-02T15:15:58.589907Z" + "iopub.execute_input": "2023-11-04T09:21:10.447501Z", + "iopub.status.busy": "2023-11-04T09:21:10.447059Z", + "iopub.status.idle": "2023-11-04T09:21:10.553777Z", + "shell.execute_reply": "2023-11-04T09:21:10.553071Z" }, "id": "g5LHhhuqFbXK" }, @@ -1551,10 +1545,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:58.596729Z", - "iopub.status.busy": "2023-11-02T15:15:58.596215Z", - "iopub.status.idle": "2023-11-02T15:15:58.775916Z", - "shell.execute_reply": "2023-11-02T15:15:58.774429Z" + "iopub.execute_input": "2023-11-04T09:21:10.556971Z", + "iopub.status.busy": "2023-11-04T09:21:10.556454Z", + "iopub.status.idle": "2023-11-04T09:21:10.660442Z", + "shell.execute_reply": "2023-11-04T09:21:10.659717Z" }, "id": "p7w8F8ezBcet" }, @@ -1611,10 +1605,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:58.781830Z", - "iopub.status.busy": "2023-11-02T15:15:58.781422Z", - "iopub.status.idle": "2023-11-02T15:15:59.131735Z", - "shell.execute_reply": "2023-11-02T15:15:59.130558Z" + "iopub.execute_input": "2023-11-04T09:21:10.663430Z", + "iopub.status.busy": "2023-11-04T09:21:10.663004Z", + "iopub.status.idle": "2023-11-04T09:21:10.865957Z", + "shell.execute_reply": "2023-11-04T09:21:10.865357Z" }, "id": "WETRL74tE_sU" }, @@ -1649,10 +1643,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:59.137015Z", - "iopub.status.busy": "2023-11-02T15:15:59.136429Z", - "iopub.status.idle": "2023-11-02T15:15:59.500836Z", - "shell.execute_reply": "2023-11-02T15:15:59.499499Z" + "iopub.execute_input": "2023-11-04T09:21:10.868729Z", + "iopub.status.busy": "2023-11-04T09:21:10.868174Z", + "iopub.status.idle": "2023-11-04T09:21:11.081753Z", + "shell.execute_reply": "2023-11-04T09:21:11.081068Z" }, "id": "kCfdx2gOLmXS" }, @@ -1814,10 +1808,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:59.506258Z", - "iopub.status.busy": "2023-11-02T15:15:59.505387Z", - "iopub.status.idle": "2023-11-02T15:15:59.518360Z", - "shell.execute_reply": "2023-11-02T15:15:59.516928Z" + "iopub.execute_input": "2023-11-04T09:21:11.084422Z", + "iopub.status.busy": "2023-11-04T09:21:11.084171Z", + "iopub.status.idle": "2023-11-04T09:21:11.090978Z", + "shell.execute_reply": "2023-11-04T09:21:11.090391Z" }, "id": "-uogYRWFYnuu" }, @@ -1871,10 +1865,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:59.523331Z", - "iopub.status.busy": "2023-11-02T15:15:59.522610Z", - "iopub.status.idle": "2023-11-02T15:15:59.882143Z", - "shell.execute_reply": "2023-11-02T15:15:59.881131Z" + "iopub.execute_input": "2023-11-04T09:21:11.093448Z", + "iopub.status.busy": "2023-11-04T09:21:11.092993Z", + "iopub.status.idle": "2023-11-04T09:21:11.311419Z", + "shell.execute_reply": "2023-11-04T09:21:11.310713Z" }, "id": "pG-ljrmcYp9Q" }, @@ -1921,10 +1915,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:59.886969Z", - "iopub.status.busy": "2023-11-02T15:15:59.886374Z", - "iopub.status.idle": "2023-11-02T15:16:02.103520Z", - "shell.execute_reply": "2023-11-02T15:16:02.102244Z" + "iopub.execute_input": "2023-11-04T09:21:11.314187Z", + "iopub.status.busy": "2023-11-04T09:21:11.313830Z", + "iopub.status.idle": "2023-11-04T09:21:12.374953Z", + "shell.execute_reply": "2023-11-04T09:21:12.374232Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index a5bad1bde..a182817b6 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:08.260336Z", - "iopub.status.busy": "2023-11-02T15:16:08.259986Z", - "iopub.status.idle": "2023-11-02T15:16:10.014087Z", - "shell.execute_reply": "2023-11-02T15:16:10.012937Z" + "iopub.execute_input": "2023-11-04T09:21:18.171864Z", + "iopub.status.busy": "2023-11-04T09:21:18.171672Z", + "iopub.status.idle": "2023-11-04T09:21:19.173197Z", + "shell.execute_reply": "2023-11-04T09:21:19.172500Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:10.019512Z", - "iopub.status.busy": "2023-11-02T15:16:10.018596Z", - "iopub.status.idle": "2023-11-02T15:16:10.024194Z", - "shell.execute_reply": "2023-11-02T15:16:10.023041Z" + "iopub.execute_input": "2023-11-04T09:21:19.176270Z", + "iopub.status.busy": "2023-11-04T09:21:19.175883Z", + "iopub.status.idle": "2023-11-04T09:21:19.179377Z", + "shell.execute_reply": "2023-11-04T09:21:19.178773Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:10.028764Z", - "iopub.status.busy": "2023-11-02T15:16:10.028387Z", - "iopub.status.idle": "2023-11-02T15:16:10.044189Z", - "shell.execute_reply": "2023-11-02T15:16:10.043058Z" + "iopub.execute_input": "2023-11-04T09:21:19.181870Z", + "iopub.status.busy": "2023-11-04T09:21:19.181485Z", + "iopub.status.idle": "2023-11-04T09:21:19.190837Z", + "shell.execute_reply": "2023-11-04T09:21:19.190210Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:10.048046Z", - "iopub.status.busy": "2023-11-02T15:16:10.047727Z", - "iopub.status.idle": "2023-11-02T15:16:10.160423Z", - "shell.execute_reply": "2023-11-02T15:16:10.159259Z" + "iopub.execute_input": "2023-11-04T09:21:19.193291Z", + "iopub.status.busy": "2023-11-04T09:21:19.192820Z", + "iopub.status.idle": "2023-11-04T09:21:19.241206Z", + "shell.execute_reply": "2023-11-04T09:21:19.240501Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:10.165107Z", - "iopub.status.busy": "2023-11-02T15:16:10.164753Z", - "iopub.status.idle": "2023-11-02T15:16:10.202210Z", - "shell.execute_reply": "2023-11-02T15:16:10.201137Z" + "iopub.execute_input": "2023-11-04T09:21:19.244183Z", + "iopub.status.busy": "2023-11-04T09:21:19.243928Z", + "iopub.status.idle": "2023-11-04T09:21:19.263512Z", + "shell.execute_reply": "2023-11-04T09:21:19.262914Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:10.207198Z", - "iopub.status.busy": "2023-11-02T15:16:10.206799Z", - "iopub.status.idle": "2023-11-02T15:16:10.213646Z", - "shell.execute_reply": "2023-11-02T15:16:10.212633Z" + "iopub.execute_input": "2023-11-04T09:21:19.266097Z", + "iopub.status.busy": "2023-11-04T09:21:19.265795Z", + "iopub.status.idle": "2023-11-04T09:21:19.270060Z", + "shell.execute_reply": "2023-11-04T09:21:19.269386Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:10.219815Z", - "iopub.status.busy": "2023-11-02T15:16:10.219102Z", - "iopub.status.idle": "2023-11-02T15:16:10.277905Z", - "shell.execute_reply": "2023-11-02T15:16:10.276680Z" + "iopub.execute_input": "2023-11-04T09:21:19.272815Z", + "iopub.status.busy": "2023-11-04T09:21:19.272395Z", + "iopub.status.idle": "2023-11-04T09:21:19.301227Z", + "shell.execute_reply": "2023-11-04T09:21:19.300697Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:10.282667Z", - "iopub.status.busy": "2023-11-02T15:16:10.282265Z", - "iopub.status.idle": "2023-11-02T15:16:10.340680Z", - "shell.execute_reply": "2023-11-02T15:16:10.339529Z" + "iopub.execute_input": "2023-11-04T09:21:19.303818Z", + "iopub.status.busy": "2023-11-04T09:21:19.303429Z", + "iopub.status.idle": "2023-11-04T09:21:19.330467Z", + "shell.execute_reply": "2023-11-04T09:21:19.329937Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:10.345490Z", - "iopub.status.busy": "2023-11-02T15:16:10.345171Z", - "iopub.status.idle": "2023-11-02T15:16:12.875032Z", - "shell.execute_reply": "2023-11-02T15:16:12.873964Z" + "iopub.execute_input": "2023-11-04T09:21:19.333088Z", + "iopub.status.busy": "2023-11-04T09:21:19.332711Z", + "iopub.status.idle": "2023-11-04T09:21:20.666514Z", + "shell.execute_reply": "2023-11-04T09:21:20.665859Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:12.880246Z", - "iopub.status.busy": "2023-11-02T15:16:12.879335Z", - "iopub.status.idle": "2023-11-02T15:16:12.892666Z", - "shell.execute_reply": "2023-11-02T15:16:12.891506Z" + "iopub.execute_input": "2023-11-04T09:21:20.669978Z", + "iopub.status.busy": "2023-11-04T09:21:20.669281Z", + "iopub.status.idle": "2023-11-04T09:21:20.677286Z", + "shell.execute_reply": "2023-11-04T09:21:20.676612Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:12.898089Z", - "iopub.status.busy": "2023-11-02T15:16:12.897695Z", - "iopub.status.idle": "2023-11-02T15:16:12.922715Z", - "shell.execute_reply": "2023-11-02T15:16:12.921743Z" + "iopub.execute_input": "2023-11-04T09:21:20.680259Z", + "iopub.status.busy": "2023-11-04T09:21:20.679674Z", + "iopub.status.idle": "2023-11-04T09:21:20.694418Z", + "shell.execute_reply": "2023-11-04T09:21:20.693842Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:12.926501Z", - "iopub.status.busy": "2023-11-02T15:16:12.926196Z", - "iopub.status.idle": "2023-11-02T15:16:12.939820Z", - "shell.execute_reply": "2023-11-02T15:16:12.937801Z" + "iopub.execute_input": "2023-11-04T09:21:20.696918Z", + "iopub.status.busy": "2023-11-04T09:21:20.696565Z", + "iopub.status.idle": "2023-11-04T09:21:20.703526Z", + "shell.execute_reply": "2023-11-04T09:21:20.702954Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:12.944111Z", - "iopub.status.busy": "2023-11-02T15:16:12.943753Z", - "iopub.status.idle": "2023-11-02T15:16:12.948820Z", - "shell.execute_reply": "2023-11-02T15:16:12.947790Z" + "iopub.execute_input": "2023-11-04T09:21:20.705996Z", + "iopub.status.busy": "2023-11-04T09:21:20.705748Z", + "iopub.status.idle": "2023-11-04T09:21:20.708844Z", + "shell.execute_reply": "2023-11-04T09:21:20.708245Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:12.952843Z", - "iopub.status.busy": "2023-11-02T15:16:12.952502Z", - "iopub.status.idle": "2023-11-02T15:16:12.959523Z", - "shell.execute_reply": "2023-11-02T15:16:12.958276Z" + "iopub.execute_input": "2023-11-04T09:21:20.711409Z", + "iopub.status.busy": "2023-11-04T09:21:20.711210Z", + "iopub.status.idle": "2023-11-04T09:21:20.715384Z", + "shell.execute_reply": "2023-11-04T09:21:20.714753Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:12.964802Z", - "iopub.status.busy": "2023-11-02T15:16:12.964451Z", - "iopub.status.idle": "2023-11-02T15:16:12.969013Z", - "shell.execute_reply": "2023-11-02T15:16:12.968037Z" + "iopub.execute_input": "2023-11-04T09:21:20.717858Z", + "iopub.status.busy": "2023-11-04T09:21:20.717458Z", + "iopub.status.idle": "2023-11-04T09:21:20.720920Z", + "shell.execute_reply": "2023-11-04T09:21:20.720434Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:12.980844Z", - "iopub.status.busy": "2023-11-02T15:16:12.979008Z", - "iopub.status.idle": "2023-11-02T15:16:12.989986Z", - "shell.execute_reply": "2023-11-02T15:16:12.988910Z" + "iopub.execute_input": "2023-11-04T09:21:20.723228Z", + "iopub.status.busy": "2023-11-04T09:21:20.722933Z", + "iopub.status.idle": "2023-11-04T09:21:20.727805Z", + "shell.execute_reply": "2023-11-04T09:21:20.727267Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:12.995976Z", - "iopub.status.busy": "2023-11-02T15:16:12.994591Z", - "iopub.status.idle": "2023-11-02T15:16:13.066669Z", - "shell.execute_reply": "2023-11-02T15:16:13.065421Z" + "iopub.execute_input": "2023-11-04T09:21:20.730385Z", + "iopub.status.busy": "2023-11-04T09:21:20.730012Z", + "iopub.status.idle": "2023-11-04T09:21:20.762668Z", + "shell.execute_reply": "2023-11-04T09:21:20.762025Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:13.071750Z", - "iopub.status.busy": "2023-11-02T15:16:13.071260Z", - "iopub.status.idle": "2023-11-02T15:16:13.079810Z", - "shell.execute_reply": "2023-11-02T15:16:13.078603Z" + "iopub.execute_input": "2023-11-04T09:21:20.765515Z", + "iopub.status.busy": "2023-11-04T09:21:20.764994Z", + "iopub.status.idle": "2023-11-04T09:21:20.770319Z", + "shell.execute_reply": "2023-11-04T09:21:20.769694Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 34c8989c2..66b4a6932 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -63,10 +63,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:18.966439Z", - "iopub.status.busy": "2023-11-02T15:16:18.966106Z", - "iopub.status.idle": "2023-11-02T15:16:20.814821Z", - "shell.execute_reply": "2023-11-02T15:16:20.813757Z" + "iopub.execute_input": "2023-11-04T09:21:25.590800Z", + "iopub.status.busy": "2023-11-04T09:21:25.590272Z", + "iopub.status.idle": "2023-11-04T09:21:26.642282Z", + "shell.execute_reply": "2023-11-04T09:21:26.641658Z" }, "nbsphinx": "hidden" }, @@ -78,7 +78,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -104,10 +104,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:20.820437Z", - "iopub.status.busy": "2023-11-02T15:16:20.819648Z", - "iopub.status.idle": "2023-11-02T15:16:21.370040Z", - "shell.execute_reply": "2023-11-02T15:16:21.368875Z" + "iopub.execute_input": "2023-11-04T09:21:26.645149Z", + "iopub.status.busy": "2023-11-04T09:21:26.644694Z", + "iopub.status.idle": "2023-11-04T09:21:26.928998Z", + "shell.execute_reply": "2023-11-04T09:21:26.928381Z" } }, "outputs": [], @@ -269,10 +269,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:21.375149Z", - "iopub.status.busy": "2023-11-02T15:16:21.374736Z", - "iopub.status.idle": "2023-11-02T15:16:21.399929Z", - "shell.execute_reply": "2023-11-02T15:16:21.398831Z" + "iopub.execute_input": "2023-11-04T09:21:26.932173Z", + "iopub.status.busy": "2023-11-04T09:21:26.931729Z", + "iopub.status.idle": "2023-11-04T09:21:26.946021Z", + "shell.execute_reply": "2023-11-04T09:21:26.945486Z" }, "nbsphinx": "hidden" }, @@ -408,10 +408,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:21.404239Z", - "iopub.status.busy": "2023-11-02T15:16:21.403724Z", - "iopub.status.idle": "2023-11-02T15:16:26.691118Z", - "shell.execute_reply": "2023-11-02T15:16:26.690103Z" + "iopub.execute_input": "2023-11-04T09:21:26.948534Z", + "iopub.status.busy": "2023-11-04T09:21:26.948092Z", + "iopub.status.idle": "2023-11-04T09:21:29.586248Z", + "shell.execute_reply": "2023-11-04T09:21:29.585519Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:26.695818Z", - "iopub.status.busy": "2023-11-02T15:16:26.695434Z", - "iopub.status.idle": "2023-11-02T15:16:29.720322Z", - "shell.execute_reply": "2023-11-02T15:16:29.719085Z" + "iopub.execute_input": "2023-11-04T09:21:29.589342Z", + "iopub.status.busy": "2023-11-04T09:21:29.588814Z", + "iopub.status.idle": "2023-11-04T09:21:31.123982Z", + "shell.execute_reply": "2023-11-04T09:21:31.123375Z" } }, "outputs": [], @@ -498,10 +498,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:29.725465Z", - "iopub.status.busy": "2023-11-02T15:16:29.724662Z", - "iopub.status.idle": "2023-11-02T15:16:29.744941Z", - "shell.execute_reply": "2023-11-02T15:16:29.743775Z" + "iopub.execute_input": "2023-11-04T09:21:31.126914Z", + "iopub.status.busy": "2023-11-04T09:21:31.126519Z", + "iopub.status.idle": "2023-11-04T09:21:31.143779Z", + "shell.execute_reply": "2023-11-04T09:21:31.143259Z" } }, "outputs": [ @@ -543,10 +543,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:29.748857Z", - "iopub.status.busy": "2023-11-02T15:16:29.748500Z", - "iopub.status.idle": "2023-11-02T15:16:32.216115Z", - "shell.execute_reply": "2023-11-02T15:16:32.214068Z" + "iopub.execute_input": "2023-11-04T09:21:31.146265Z", + "iopub.status.busy": "2023-11-04T09:21:31.145963Z", + "iopub.status.idle": "2023-11-04T09:21:32.459675Z", + "shell.execute_reply": "2023-11-04T09:21:32.458895Z" } }, "outputs": [ @@ -584,10 +584,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:32.221724Z", - "iopub.status.busy": "2023-11-02T15:16:32.220226Z", - "iopub.status.idle": "2023-11-02T15:16:37.821810Z", - "shell.execute_reply": "2023-11-02T15:16:37.820832Z" + "iopub.execute_input": "2023-11-04T09:21:32.462599Z", + "iopub.status.busy": "2023-11-04T09:21:32.462011Z", + "iopub.status.idle": "2023-11-04T09:21:35.279336Z", + "shell.execute_reply": "2023-11-04T09:21:35.278687Z" } }, "outputs": [ @@ -622,10 +622,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:37.826727Z", - "iopub.status.busy": "2023-11-02T15:16:37.826042Z", - "iopub.status.idle": "2023-11-02T15:16:37.836636Z", - "shell.execute_reply": "2023-11-02T15:16:37.835381Z" + "iopub.execute_input": "2023-11-04T09:21:35.282049Z", + "iopub.status.busy": "2023-11-04T09:21:35.281530Z", + "iopub.status.idle": "2023-11-04T09:21:35.286525Z", + "shell.execute_reply": "2023-11-04T09:21:35.285890Z" } }, "outputs": [ @@ -662,10 +662,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:37.841496Z", - "iopub.status.busy": "2023-11-02T15:16:37.840738Z", - "iopub.status.idle": "2023-11-02T15:16:37.848770Z", - "shell.execute_reply": "2023-11-02T15:16:37.847782Z" + "iopub.execute_input": "2023-11-04T09:21:35.288688Z", + "iopub.status.busy": "2023-11-04T09:21:35.288481Z", + "iopub.status.idle": "2023-11-04T09:21:35.292633Z", + "shell.execute_reply": "2023-11-04T09:21:35.292078Z" } }, "outputs": [], @@ -688,10 +688,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:37.853119Z", - "iopub.status.busy": "2023-11-02T15:16:37.852470Z", - "iopub.status.idle": "2023-11-02T15:16:37.859797Z", - "shell.execute_reply": "2023-11-02T15:16:37.858709Z" + "iopub.execute_input": "2023-11-04T09:21:35.295093Z", + "iopub.status.busy": "2023-11-04T09:21:35.294715Z", + "iopub.status.idle": "2023-11-04T09:21:35.298072Z", + "shell.execute_reply": "2023-11-04T09:21:35.297484Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index 5567885b3..64dd8fc1d 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:43.008632Z", - "iopub.status.busy": "2023-11-02T15:16:43.008295Z", - "iopub.status.idle": "2023-11-02T15:16:44.917722Z", - "shell.execute_reply": "2023-11-02T15:16:44.916482Z" + "iopub.execute_input": "2023-11-04T09:21:40.284425Z", + "iopub.status.busy": "2023-11-04T09:21:40.283890Z", + "iopub.status.idle": "2023-11-04T09:21:41.326271Z", + "shell.execute_reply": "2023-11-04T09:21:41.325665Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:44.923385Z", - "iopub.status.busy": "2023-11-02T15:16:44.922328Z", - "iopub.status.idle": "2023-11-02T15:16:47.899900Z", - "shell.execute_reply": "2023-11-02T15:16:47.898193Z" + "iopub.execute_input": "2023-11-04T09:21:41.329335Z", + "iopub.status.busy": "2023-11-04T09:21:41.328693Z", + "iopub.status.idle": "2023-11-04T09:21:42.796096Z", + "shell.execute_reply": "2023-11-04T09:21:42.795370Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:47.905514Z", - "iopub.status.busy": "2023-11-02T15:16:47.904896Z", - "iopub.status.idle": "2023-11-02T15:16:47.911481Z", - "shell.execute_reply": "2023-11-02T15:16:47.910505Z" + "iopub.execute_input": "2023-11-04T09:21:42.799236Z", + "iopub.status.busy": "2023-11-04T09:21:42.798826Z", + "iopub.status.idle": "2023-11-04T09:21:42.802270Z", + "shell.execute_reply": "2023-11-04T09:21:42.801614Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:47.915566Z", - "iopub.status.busy": "2023-11-02T15:16:47.915070Z", - "iopub.status.idle": "2023-11-02T15:16:47.925856Z", - "shell.execute_reply": "2023-11-02T15:16:47.924765Z" + "iopub.execute_input": "2023-11-04T09:21:42.804794Z", + "iopub.status.busy": "2023-11-04T09:21:42.804342Z", + "iopub.status.idle": "2023-11-04T09:21:42.810039Z", + "shell.execute_reply": "2023-11-04T09:21:42.809523Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:47.929979Z", - "iopub.status.busy": "2023-11-02T15:16:47.929675Z", - "iopub.status.idle": "2023-11-02T15:16:48.914821Z", - "shell.execute_reply": "2023-11-02T15:16:48.913818Z" + "iopub.execute_input": "2023-11-04T09:21:42.812350Z", + "iopub.status.busy": "2023-11-04T09:21:42.812143Z", + "iopub.status.idle": "2023-11-04T09:21:43.431738Z", + "shell.execute_reply": "2023-11-04T09:21:43.431087Z" }, "scrolled": true }, @@ -237,10 +237,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:48.921007Z", - "iopub.status.busy": "2023-11-02T15:16:48.920180Z", - "iopub.status.idle": "2023-11-02T15:16:48.932694Z", - "shell.execute_reply": "2023-11-02T15:16:48.931266Z" + "iopub.execute_input": "2023-11-04T09:21:43.434628Z", + "iopub.status.busy": "2023-11-04T09:21:43.434383Z", + "iopub.status.idle": "2023-11-04T09:21:43.440512Z", + "shell.execute_reply": "2023-11-04T09:21:43.439985Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:48.937251Z", - "iopub.status.busy": "2023-11-02T15:16:48.936874Z", - "iopub.status.idle": "2023-11-02T15:16:48.943853Z", - "shell.execute_reply": "2023-11-02T15:16:48.942838Z" + "iopub.execute_input": "2023-11-04T09:21:43.442863Z", + "iopub.status.busy": "2023-11-04T09:21:43.442413Z", + "iopub.status.idle": "2023-11-04T09:21:43.446609Z", + "shell.execute_reply": "2023-11-04T09:21:43.445987Z" } }, "outputs": [ @@ -552,10 +552,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:48.948346Z", - "iopub.status.busy": "2023-11-02T15:16:48.947958Z", - "iopub.status.idle": "2023-11-02T15:16:49.924508Z", - "shell.execute_reply": "2023-11-02T15:16:49.923044Z" + "iopub.execute_input": "2023-11-04T09:21:43.448942Z", + "iopub.status.busy": "2023-11-04T09:21:43.448604Z", + "iopub.status.idle": "2023-11-04T09:21:44.074289Z", + "shell.execute_reply": "2023-11-04T09:21:44.073541Z" } }, "outputs": [ @@ -611,10 +611,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:49.930257Z", - "iopub.status.busy": "2023-11-02T15:16:49.929650Z", - "iopub.status.idle": "2023-11-02T15:16:50.102027Z", - "shell.execute_reply": "2023-11-02T15:16:50.100818Z" + "iopub.execute_input": "2023-11-04T09:21:44.076863Z", + "iopub.status.busy": "2023-11-04T09:21:44.076645Z", + "iopub.status.idle": "2023-11-04T09:21:44.168997Z", + "shell.execute_reply": "2023-11-04T09:21:44.168317Z" } }, "outputs": [ @@ -655,10 +655,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:50.106977Z", - "iopub.status.busy": "2023-11-02T15:16:50.106538Z", - "iopub.status.idle": "2023-11-02T15:16:50.116989Z", - "shell.execute_reply": "2023-11-02T15:16:50.115775Z" + "iopub.execute_input": "2023-11-04T09:21:44.171517Z", + "iopub.status.busy": "2023-11-04T09:21:44.171310Z", + "iopub.status.idle": "2023-11-04T09:21:44.176108Z", + "shell.execute_reply": "2023-11-04T09:21:44.175565Z" } }, "outputs": [ @@ -695,10 +695,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:50.121708Z", - "iopub.status.busy": "2023-11-02T15:16:50.121315Z", - "iopub.status.idle": "2023-11-02T15:16:50.727187Z", - "shell.execute_reply": "2023-11-02T15:16:50.726232Z" + "iopub.execute_input": "2023-11-04T09:21:44.178455Z", + "iopub.status.busy": "2023-11-04T09:21:44.178104Z", + "iopub.status.idle": "2023-11-04T09:21:44.553030Z", + "shell.execute_reply": "2023-11-04T09:21:44.552347Z" } }, "outputs": [ @@ -757,10 +757,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:50.731975Z", - "iopub.status.busy": "2023-11-02T15:16:50.731399Z", - "iopub.status.idle": "2023-11-02T15:16:51.257454Z", - "shell.execute_reply": "2023-11-02T15:16:51.256406Z" + "iopub.execute_input": "2023-11-04T09:21:44.556460Z", + "iopub.status.busy": "2023-11-04T09:21:44.556063Z", + "iopub.status.idle": "2023-11-04T09:21:44.890588Z", + "shell.execute_reply": "2023-11-04T09:21:44.889922Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:51.262629Z", - "iopub.status.busy": "2023-11-02T15:16:51.262021Z", - "iopub.status.idle": "2023-11-02T15:16:51.933274Z", - "shell.execute_reply": "2023-11-02T15:16:51.932377Z" + "iopub.execute_input": "2023-11-04T09:21:44.893789Z", + "iopub.status.busy": "2023-11-04T09:21:44.893348Z", + "iopub.status.idle": "2023-11-04T09:21:45.275927Z", + "shell.execute_reply": "2023-11-04T09:21:45.275276Z" } }, "outputs": [ @@ -857,10 +857,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:51.938388Z", - "iopub.status.busy": "2023-11-02T15:16:51.937872Z", - "iopub.status.idle": "2023-11-02T15:16:52.725775Z", - "shell.execute_reply": "2023-11-02T15:16:52.724383Z" + "iopub.execute_input": "2023-11-04T09:21:45.279277Z", + "iopub.status.busy": "2023-11-04T09:21:45.278881Z", + "iopub.status.idle": "2023-11-04T09:21:45.739514Z", + "shell.execute_reply": "2023-11-04T09:21:45.738868Z" } }, "outputs": [ @@ -920,10 +920,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:52.731966Z", - "iopub.status.busy": "2023-11-02T15:16:52.731247Z", - "iopub.status.idle": "2023-11-02T15:16:53.473091Z", - "shell.execute_reply": "2023-11-02T15:16:53.471986Z" + "iopub.execute_input": "2023-11-04T09:21:45.744207Z", + "iopub.status.busy": "2023-11-04T09:21:45.743816Z", + "iopub.status.idle": "2023-11-04T09:21:46.195187Z", + "shell.execute_reply": "2023-11-04T09:21:46.194502Z" } }, "outputs": [ @@ -966,10 +966,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:53.477888Z", - "iopub.status.busy": "2023-11-02T15:16:53.477367Z", - "iopub.status.idle": "2023-11-02T15:16:53.845656Z", - "shell.execute_reply": "2023-11-02T15:16:53.844556Z" + "iopub.execute_input": "2023-11-04T09:21:46.198027Z", + "iopub.status.busy": "2023-11-04T09:21:46.197642Z", + "iopub.status.idle": "2023-11-04T09:21:46.422276Z", + "shell.execute_reply": "2023-11-04T09:21:46.421581Z" } }, "outputs": [ @@ -1012,10 +1012,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:53.851117Z", - "iopub.status.busy": "2023-11-02T15:16:53.850348Z", - "iopub.status.idle": "2023-11-02T15:16:54.126415Z", - "shell.execute_reply": "2023-11-02T15:16:54.125128Z" + "iopub.execute_input": "2023-11-04T09:21:46.425001Z", + "iopub.status.busy": "2023-11-04T09:21:46.424615Z", + "iopub.status.idle": "2023-11-04T09:21:46.624623Z", + "shell.execute_reply": "2023-11-04T09:21:46.624007Z" } }, "outputs": [ @@ -1050,10 +1050,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:54.131061Z", - "iopub.status.busy": "2023-11-02T15:16:54.130005Z", - "iopub.status.idle": "2023-11-02T15:16:54.136059Z", - "shell.execute_reply": "2023-11-02T15:16:54.134978Z" + "iopub.execute_input": "2023-11-04T09:21:46.627540Z", + "iopub.status.busy": "2023-11-04T09:21:46.627176Z", + "iopub.status.idle": "2023-11-04T09:21:46.630922Z", + "shell.execute_reply": "2023-11-04T09:21:46.630388Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index 59c2b89e4..05e62c249 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:57.851137Z", - "iopub.status.busy": "2023-11-02T15:16:57.850587Z", - "iopub.status.idle": "2023-11-02T15:17:01.436396Z", - "shell.execute_reply": "2023-11-02T15:17:01.435214Z" + "iopub.execute_input": "2023-11-04T09:21:48.697377Z", + "iopub.status.busy": "2023-11-04T09:21:48.697181Z", + "iopub.status.idle": "2023-11-04T09:21:50.609377Z", + "shell.execute_reply": "2023-11-04T09:21:50.608645Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:01.441469Z", - "iopub.status.busy": "2023-11-02T15:17:01.440854Z", - "iopub.status.idle": "2023-11-02T15:17:02.009348Z", - "shell.execute_reply": "2023-11-02T15:17:02.008267Z" + "iopub.execute_input": "2023-11-04T09:21:50.612814Z", + "iopub.status.busy": "2023-11-04T09:21:50.612261Z", + "iopub.status.idle": "2023-11-04T09:21:50.932638Z", + "shell.execute_reply": "2023-11-04T09:21:50.931923Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:02.014157Z", - "iopub.status.busy": "2023-11-02T15:17:02.013614Z", - "iopub.status.idle": "2023-11-02T15:17:02.021162Z", - "shell.execute_reply": "2023-11-02T15:17:02.020049Z" + "iopub.execute_input": "2023-11-04T09:21:50.935481Z", + "iopub.status.busy": "2023-11-04T09:21:50.935262Z", + "iopub.status.idle": "2023-11-04T09:21:50.939757Z", + "shell.execute_reply": "2023-11-04T09:21:50.939273Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:02.025482Z", - "iopub.status.busy": "2023-11-02T15:17:02.025079Z", - "iopub.status.idle": "2023-11-02T15:17:16.116758Z", - "shell.execute_reply": "2023-11-02T15:17:16.115753Z" + "iopub.execute_input": "2023-11-04T09:21:50.942058Z", + "iopub.status.busy": "2023-11-04T09:21:50.941852Z", + "iopub.status.idle": "2023-11-04T09:21:56.335284Z", + "shell.execute_reply": "2023-11-04T09:21:56.334668Z" } }, "outputs": [ @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b9472a0e1af842379eacfcf729a6e73b", + "model_id": "3a8ce117c43c4a819acb7107cdf05f96", "version_major": 2, "version_minor": 0 }, @@ -361,10 +361,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:16.121362Z", - "iopub.status.busy": "2023-11-02T15:17:16.120939Z", - "iopub.status.idle": "2023-11-02T15:17:16.133997Z", - "shell.execute_reply": "2023-11-02T15:17:16.132880Z" + "iopub.execute_input": "2023-11-04T09:21:56.338217Z", + "iopub.status.busy": "2023-11-04T09:21:56.337752Z", + "iopub.status.idle": "2023-11-04T09:21:56.342967Z", + "shell.execute_reply": "2023-11-04T09:21:56.342335Z" }, "nbsphinx": "hidden" }, @@ -415,10 +415,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:16.139004Z", - "iopub.status.busy": "2023-11-02T15:17:16.138162Z", - "iopub.status.idle": "2023-11-02T15:17:17.120606Z", - "shell.execute_reply": "2023-11-02T15:17:17.119574Z" + "iopub.execute_input": "2023-11-04T09:21:56.345429Z", + "iopub.status.busy": "2023-11-04T09:21:56.345057Z", + "iopub.status.idle": "2023-11-04T09:21:56.879578Z", + "shell.execute_reply": "2023-11-04T09:21:56.878919Z" } }, "outputs": [ @@ -451,10 +451,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:17.125044Z", - "iopub.status.busy": "2023-11-02T15:17:17.124458Z", - "iopub.status.idle": "2023-11-02T15:17:18.056556Z", - "shell.execute_reply": "2023-11-02T15:17:18.055672Z" + "iopub.execute_input": "2023-11-04T09:21:56.882140Z", + "iopub.status.busy": "2023-11-04T09:21:56.881886Z", + "iopub.status.idle": "2023-11-04T09:21:57.364034Z", + "shell.execute_reply": "2023-11-04T09:21:57.363321Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:18.062729Z", - "iopub.status.busy": "2023-11-02T15:17:18.061889Z", - "iopub.status.idle": "2023-11-02T15:17:18.067845Z", - "shell.execute_reply": "2023-11-02T15:17:18.066838Z" + "iopub.execute_input": "2023-11-04T09:21:57.366505Z", + "iopub.status.busy": "2023-11-04T09:21:57.366300Z", + "iopub.status.idle": "2023-11-04T09:21:57.370065Z", + "shell.execute_reply": "2023-11-04T09:21:57.369524Z" } }, "outputs": [], @@ -518,10 +518,10 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:18.071716Z", - "iopub.status.busy": "2023-11-02T15:17:18.071364Z", - "iopub.status.idle": "2023-11-02T15:17:45.248022Z", - "shell.execute_reply": "2023-11-02T15:17:45.247048Z" + "iopub.execute_input": "2023-11-04T09:21:57.372238Z", + "iopub.status.busy": "2023-11-04T09:21:57.372040Z", + "iopub.status.idle": "2023-11-04T09:22:10.543759Z", + "shell.execute_reply": "2023-11-04T09:22:10.543067Z" } }, "outputs": [ @@ -580,10 +580,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:45.252258Z", - "iopub.status.busy": "2023-11-02T15:17:45.251672Z", - "iopub.status.idle": "2023-11-02T15:17:47.782132Z", - "shell.execute_reply": "2023-11-02T15:17:47.781343Z" + "iopub.execute_input": "2023-11-04T09:22:10.546683Z", + "iopub.status.busy": "2023-11-04T09:22:10.546249Z", + "iopub.status.idle": "2023-11-04T09:22:12.164959Z", + "shell.execute_reply": "2023-11-04T09:22:12.164310Z" } }, "outputs": [ @@ -627,10 +627,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:47.789932Z", - "iopub.status.busy": "2023-11-02T15:17:47.789457Z", - "iopub.status.idle": "2023-11-02T15:17:48.216848Z", - "shell.execute_reply": "2023-11-02T15:17:48.215711Z" + "iopub.execute_input": "2023-11-04T09:22:12.168405Z", + "iopub.status.busy": "2023-11-04T09:22:12.167858Z", + "iopub.status.idle": "2023-11-04T09:22:12.427085Z", + "shell.execute_reply": "2023-11-04T09:22:12.426397Z" } }, "outputs": [ @@ -666,10 +666,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:48.221413Z", - "iopub.status.busy": "2023-11-02T15:17:48.220606Z", - "iopub.status.idle": "2023-11-02T15:17:49.267570Z", - "shell.execute_reply": "2023-11-02T15:17:49.266636Z" + "iopub.execute_input": "2023-11-04T09:22:12.430311Z", + "iopub.status.busy": "2023-11-04T09:22:12.429951Z", + "iopub.status.idle": "2023-11-04T09:22:13.101325Z", + "shell.execute_reply": "2023-11-04T09:22:13.100587Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:49.271994Z", - "iopub.status.busy": "2023-11-02T15:17:49.271436Z", - "iopub.status.idle": "2023-11-02T15:17:50.078748Z", - "shell.execute_reply": "2023-11-02T15:17:50.076580Z" + "iopub.execute_input": "2023-11-04T09:22:13.104559Z", + "iopub.status.busy": "2023-11-04T09:22:13.104313Z", + "iopub.status.idle": "2023-11-04T09:22:13.577839Z", + "shell.execute_reply": "2023-11-04T09:22:13.577166Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:50.083397Z", - "iopub.status.busy": "2023-11-02T15:17:50.082570Z", - "iopub.status.idle": "2023-11-02T15:17:50.522569Z", - "shell.execute_reply": "2023-11-02T15:17:50.521469Z" + "iopub.execute_input": "2023-11-04T09:22:13.580468Z", + "iopub.status.busy": "2023-11-04T09:22:13.580080Z", + "iopub.status.idle": "2023-11-04T09:22:13.825305Z", + "shell.execute_reply": "2023-11-04T09:22:13.824572Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:50.527039Z", - "iopub.status.busy": "2023-11-02T15:17:50.526259Z", - "iopub.status.idle": "2023-11-02T15:17:50.764244Z", - "shell.execute_reply": "2023-11-02T15:17:50.762970Z" + "iopub.execute_input": "2023-11-04T09:22:13.828442Z", + "iopub.status.busy": "2023-11-04T09:22:13.828083Z", + "iopub.status.idle": "2023-11-04T09:22:13.917161Z", + "shell.execute_reply": "2023-11-04T09:22:13.916570Z" } }, "outputs": [], @@ -853,10 +853,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:50.770647Z", - "iopub.status.busy": "2023-11-02T15:17:50.769773Z", - "iopub.status.idle": "2023-11-02T15:19:38.809676Z", - "shell.execute_reply": "2023-11-02T15:19:38.808376Z" + "iopub.execute_input": "2023-11-04T09:22:13.920515Z", + "iopub.status.busy": "2023-11-04T09:22:13.919874Z", + "iopub.status.idle": "2023-11-04T09:22:52.033664Z", + "shell.execute_reply": "2023-11-04T09:22:52.032884Z" } }, "outputs": [ @@ -893,10 +893,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:38.816602Z", - "iopub.status.busy": "2023-11-02T15:19:38.814717Z", - "iopub.status.idle": "2023-11-02T15:19:40.967954Z", - "shell.execute_reply": "2023-11-02T15:19:40.966789Z" + "iopub.execute_input": "2023-11-04T09:22:52.036418Z", + "iopub.status.busy": "2023-11-04T09:22:52.036201Z", + "iopub.status.idle": "2023-11-04T09:22:53.206075Z", + "shell.execute_reply": "2023-11-04T09:22:53.205419Z" } }, "outputs": [ @@ -927,10 +927,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:40.973511Z", - "iopub.status.busy": "2023-11-02T15:19:40.972381Z", - "iopub.status.idle": "2023-11-02T15:19:41.261733Z", - "shell.execute_reply": "2023-11-02T15:19:41.260488Z" + "iopub.execute_input": "2023-11-04T09:22:53.209216Z", + "iopub.status.busy": "2023-11-04T09:22:53.208585Z", + "iopub.status.idle": "2023-11-04T09:22:53.396717Z", + "shell.execute_reply": "2023-11-04T09:22:53.396119Z" } }, "outputs": [], @@ -944,10 +944,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:41.266011Z", - "iopub.status.busy": "2023-11-02T15:19:41.265666Z", - "iopub.status.idle": "2023-11-02T15:19:41.272301Z", - "shell.execute_reply": "2023-11-02T15:19:41.271221Z" + "iopub.execute_input": "2023-11-04T09:22:53.399434Z", + "iopub.status.busy": "2023-11-04T09:22:53.399222Z", + "iopub.status.idle": "2023-11-04T09:22:53.402557Z", + "shell.execute_reply": "2023-11-04T09:22:53.402055Z" } }, "outputs": [], @@ -969,10 +969,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:41.276254Z", - "iopub.status.busy": "2023-11-02T15:19:41.275795Z", - "iopub.status.idle": "2023-11-02T15:19:41.290645Z", - "shell.execute_reply": "2023-11-02T15:19:41.289459Z" + "iopub.execute_input": "2023-11-04T09:22:53.405158Z", + "iopub.status.busy": "2023-11-04T09:22:53.404796Z", + "iopub.status.idle": "2023-11-04T09:22:53.413780Z", + "shell.execute_reply": "2023-11-04T09:22:53.413267Z" }, "nbsphinx": "hidden" }, @@ -1017,7 +1017,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1e7aeb213d534e2db195138f236fd0c2": { + "1511c8396956475c985de09b595f1904": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1069,28 +1069,7 @@ "width": null } }, - "2d144b2f99774ffaac01c5c4ec4fc379": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1e7aeb213d534e2db195138f236fd0c2", - "placeholder": "​", - "style": "IPY_MODEL_cb7027054add4a6296c264af28ff9df2", - "value": "100%" - } - }, - "355bfbcf91f24a419c79b2fe8c89694a": { + "1f523b7201c14b909621af5658027c5b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1142,7 +1121,117 @@ "width": null } }, - "3ba3e8cf6362488b819cd8bad3a0a143": { + "3a8ce117c43c4a819acb7107cdf05f96": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5ea610936c5d47efb83ce045c4bde840", + "IPY_MODEL_f69091a533504896a2c8f28a6661c4dc", + "IPY_MODEL_853a3adeeedc4b3e8b13129366e2f490" + ], + "layout": "IPY_MODEL_fbf96cbd8dbf42ba87a6176239c55824" + } + }, + "4a12fd81945c40ac967f11edecdb3e3c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5ea610936c5d47efb83ce045c4bde840": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1511c8396956475c985de09b595f1904", + "placeholder": "​", + "style": "IPY_MODEL_7d6231edc946457aa00974869e60bfcd", + "value": "100%" + } + }, + "782bfe85dbf5491e95dd9d1350855c80": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7d6231edc946457aa00974869e60bfcd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "853a3adeeedc4b3e8b13129366e2f490": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1f523b7201c14b909621af5658027c5b", + "placeholder": "​", + "style": "IPY_MODEL_4a12fd81945c40ac967f11edecdb3e3c", + "value": " 170498071/170498071 [00:02<00:00, 95482714.46it/s]" + } + }, + "9a7fd7bed93d4b2fac47868e043501b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1194,7 +1283,7 @@ "width": null } }, - "587637739e8741eba9241eb8e12ef52e": { + "f69091a533504896a2c8f28a6661c4dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1210,36 +1299,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3ba3e8cf6362488b819cd8bad3a0a143", + "layout": "IPY_MODEL_9a7fd7bed93d4b2fac47868e043501b1", "max": 170498071.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e5ae1eac3d4f487c9566b9a659793dfc", + "style": "IPY_MODEL_782bfe85dbf5491e95dd9d1350855c80", "value": 170498071.0 } }, - "810e2bd013044c62a6cd3bb81ec06409": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_355bfbcf91f24a419c79b2fe8c89694a", - "placeholder": "​", - "style": "IPY_MODEL_e24517e4b8b74874b789fec65e6b03b4", - "value": " 170498071/170498071 [00:05<00:00, 35376540.01it/s]" - } - }, - "8d588339dc134e209405ce96ac054bf0": { + "fbf96cbd8dbf42ba87a6176239c55824": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1290,74 +1358,6 @@ "visibility": null, "width": null } - }, - "b9472a0e1af842379eacfcf729a6e73b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2d144b2f99774ffaac01c5c4ec4fc379", - "IPY_MODEL_587637739e8741eba9241eb8e12ef52e", - "IPY_MODEL_810e2bd013044c62a6cd3bb81ec06409" - ], - "layout": "IPY_MODEL_8d588339dc134e209405ce96ac054bf0" - } - }, - "cb7027054add4a6296c264af28ff9df2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "e24517e4b8b74874b789fec65e6b03b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "e5ae1eac3d4f487c9566b9a659793dfc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index b3b4950d9..a670be679 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:47.065880Z", - "iopub.status.busy": "2023-11-02T15:19:47.065501Z", - "iopub.status.idle": "2023-11-02T15:19:48.929522Z", - "shell.execute_reply": "2023-11-02T15:19:48.928324Z" + "iopub.execute_input": "2023-11-04T09:22:59.201314Z", + "iopub.status.busy": "2023-11-04T09:22:59.201119Z", + "iopub.status.idle": "2023-11-04T09:23:00.237150Z", + "shell.execute_reply": "2023-11-04T09:23:00.236534Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:48.934496Z", - "iopub.status.busy": "2023-11-02T15:19:48.933600Z", - "iopub.status.idle": "2023-11-02T15:19:48.975723Z", - "shell.execute_reply": "2023-11-02T15:19:48.974591Z" + "iopub.execute_input": "2023-11-04T09:23:00.240049Z", + "iopub.status.busy": "2023-11-04T09:23:00.239640Z", + "iopub.status.idle": "2023-11-04T09:23:00.259100Z", + "shell.execute_reply": "2023-11-04T09:23:00.258616Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:48.980484Z", - "iopub.status.busy": "2023-11-02T15:19:48.980160Z", - "iopub.status.idle": "2023-11-02T15:19:48.986273Z", - "shell.execute_reply": "2023-11-02T15:19:48.985435Z" + "iopub.execute_input": "2023-11-04T09:23:00.261358Z", + "iopub.status.busy": "2023-11-04T09:23:00.261013Z", + "iopub.status.idle": "2023-11-04T09:23:00.264150Z", + "shell.execute_reply": "2023-11-04T09:23:00.263562Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:48.990814Z", - "iopub.status.busy": "2023-11-02T15:19:48.990231Z", - "iopub.status.idle": "2023-11-02T15:19:49.236220Z", - "shell.execute_reply": "2023-11-02T15:19:49.235131Z" + "iopub.execute_input": "2023-11-04T09:23:00.266621Z", + "iopub.status.busy": "2023-11-04T09:23:00.266152Z", + "iopub.status.idle": "2023-11-04T09:23:00.381520Z", + "shell.execute_reply": "2023-11-04T09:23:00.380987Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:49.241255Z", - "iopub.status.busy": "2023-11-02T15:19:49.240881Z", - "iopub.status.idle": "2023-11-02T15:19:49.730318Z", - "shell.execute_reply": "2023-11-02T15:19:49.729255Z" + "iopub.execute_input": "2023-11-04T09:23:00.384009Z", + "iopub.status.busy": "2023-11-04T09:23:00.383807Z", + "iopub.status.idle": "2023-11-04T09:23:00.649275Z", + "shell.execute_reply": "2023-11-04T09:23:00.648644Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:49.734868Z", - "iopub.status.busy": "2023-11-02T15:19:49.734443Z", - "iopub.status.idle": "2023-11-02T15:19:50.165414Z", - "shell.execute_reply": "2023-11-02T15:19:50.164418Z" + "iopub.execute_input": "2023-11-04T09:23:00.652085Z", + "iopub.status.busy": "2023-11-04T09:23:00.651874Z", + "iopub.status.idle": "2023-11-04T09:23:00.868731Z", + "shell.execute_reply": "2023-11-04T09:23:00.868029Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:50.169654Z", - "iopub.status.busy": "2023-11-02T15:19:50.169281Z", - "iopub.status.idle": "2023-11-02T15:19:50.176664Z", - "shell.execute_reply": "2023-11-02T15:19:50.175658Z" + "iopub.execute_input": "2023-11-04T09:23:00.871465Z", + "iopub.status.busy": "2023-11-04T09:23:00.870993Z", + "iopub.status.idle": "2023-11-04T09:23:00.875707Z", + "shell.execute_reply": "2023-11-04T09:23:00.875082Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:50.180933Z", - "iopub.status.busy": "2023-11-02T15:19:50.180628Z", - "iopub.status.idle": "2023-11-02T15:19:50.192803Z", - "shell.execute_reply": "2023-11-02T15:19:50.191845Z" + "iopub.execute_input": "2023-11-04T09:23:00.878168Z", + "iopub.status.busy": "2023-11-04T09:23:00.877690Z", + "iopub.status.idle": "2023-11-04T09:23:00.884163Z", + "shell.execute_reply": "2023-11-04T09:23:00.883526Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:50.196755Z", - "iopub.status.busy": "2023-11-02T15:19:50.196395Z", - "iopub.status.idle": "2023-11-02T15:19:50.200810Z", - "shell.execute_reply": "2023-11-02T15:19:50.199742Z" + "iopub.execute_input": "2023-11-04T09:23:00.886843Z", + "iopub.status.busy": "2023-11-04T09:23:00.886482Z", + "iopub.status.idle": "2023-11-04T09:23:00.889200Z", + "shell.execute_reply": "2023-11-04T09:23:00.888667Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:50.205459Z", - "iopub.status.busy": "2023-11-02T15:19:50.205107Z", - "iopub.status.idle": "2023-11-02T15:20:11.240316Z", - "shell.execute_reply": "2023-11-02T15:20:11.239392Z" + "iopub.execute_input": "2023-11-04T09:23:00.891647Z", + "iopub.status.busy": "2023-11-04T09:23:00.891286Z", + "iopub.status.idle": "2023-11-04T09:23:10.976778Z", + "shell.execute_reply": "2023-11-04T09:23:10.976130Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:20:11.246384Z", - "iopub.status.busy": "2023-11-02T15:20:11.245481Z", - "iopub.status.idle": "2023-11-02T15:20:11.257032Z", - "shell.execute_reply": "2023-11-02T15:20:11.255924Z" + "iopub.execute_input": "2023-11-04T09:23:10.980105Z", + "iopub.status.busy": "2023-11-04T09:23:10.979457Z", + "iopub.status.idle": "2023-11-04T09:23:10.987274Z", + "shell.execute_reply": "2023-11-04T09:23:10.986677Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:20:11.262333Z", - "iopub.status.busy": "2023-11-02T15:20:11.261823Z", - "iopub.status.idle": "2023-11-02T15:20:11.268473Z", - "shell.execute_reply": "2023-11-02T15:20:11.267458Z" + "iopub.execute_input": "2023-11-04T09:23:10.989739Z", + "iopub.status.busy": "2023-11-04T09:23:10.989371Z", + "iopub.status.idle": "2023-11-04T09:23:10.993056Z", + "shell.execute_reply": "2023-11-04T09:23:10.992553Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:20:11.272383Z", - "iopub.status.busy": "2023-11-02T15:20:11.271809Z", - "iopub.status.idle": "2023-11-02T15:20:11.277155Z", - "shell.execute_reply": "2023-11-02T15:20:11.276208Z" + "iopub.execute_input": "2023-11-04T09:23:10.995509Z", + "iopub.status.busy": "2023-11-04T09:23:10.995024Z", + "iopub.status.idle": "2023-11-04T09:23:10.998894Z", + "shell.execute_reply": "2023-11-04T09:23:10.998345Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:20:11.281064Z", - "iopub.status.busy": "2023-11-02T15:20:11.280541Z", - "iopub.status.idle": "2023-11-02T15:20:11.284957Z", - "shell.execute_reply": "2023-11-02T15:20:11.284110Z" + "iopub.execute_input": "2023-11-04T09:23:11.001060Z", + "iopub.status.busy": "2023-11-04T09:23:11.000861Z", + "iopub.status.idle": "2023-11-04T09:23:11.004219Z", + "shell.execute_reply": "2023-11-04T09:23:11.003679Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:20:11.288916Z", - "iopub.status.busy": "2023-11-02T15:20:11.288363Z", - "iopub.status.idle": "2023-11-02T15:20:11.309515Z", - "shell.execute_reply": "2023-11-02T15:20:11.308555Z" + "iopub.execute_input": "2023-11-04T09:23:11.006476Z", + "iopub.status.busy": "2023-11-04T09:23:11.006234Z", + "iopub.status.idle": "2023-11-04T09:23:11.014962Z", + "shell.execute_reply": "2023-11-04T09:23:11.014430Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:20:11.314119Z", - "iopub.status.busy": "2023-11-02T15:20:11.313348Z", - "iopub.status.idle": "2023-11-02T15:20:11.611177Z", - "shell.execute_reply": "2023-11-02T15:20:11.610312Z" + "iopub.execute_input": "2023-11-04T09:23:11.017441Z", + "iopub.status.busy": "2023-11-04T09:23:11.017105Z", + "iopub.status.idle": "2023-11-04T09:23:11.161849Z", + "shell.execute_reply": "2023-11-04T09:23:11.161245Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:20:11.615471Z", - "iopub.status.busy": "2023-11-02T15:20:11.614620Z", - "iopub.status.idle": "2023-11-02T15:20:11.869834Z", - "shell.execute_reply": "2023-11-02T15:20:11.868986Z" + "iopub.execute_input": "2023-11-04T09:23:11.164498Z", + "iopub.status.busy": "2023-11-04T09:23:11.164138Z", + "iopub.status.idle": "2023-11-04T09:23:11.298709Z", + "shell.execute_reply": "2023-11-04T09:23:11.298096Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:20:11.873829Z", - "iopub.status.busy": "2023-11-02T15:20:11.873227Z", - "iopub.status.idle": "2023-11-02T15:20:13.134834Z", - "shell.execute_reply": "2023-11-02T15:20:13.133939Z" + "iopub.execute_input": "2023-11-04T09:23:11.301397Z", + "iopub.status.busy": "2023-11-04T09:23:11.300978Z", + "iopub.status.idle": "2023-11-04T09:23:11.899877Z", + "shell.execute_reply": "2023-11-04T09:23:11.899158Z" } }, "outputs": [], @@ -1014,10 +1014,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:20:13.140029Z", - "iopub.status.busy": "2023-11-02T15:20:13.139300Z", - "iopub.status.idle": "2023-11-02T15:20:13.288320Z", - "shell.execute_reply": "2023-11-02T15:20:13.287423Z" + "iopub.execute_input": "2023-11-04T09:23:11.903096Z", + "iopub.status.busy": "2023-11-04T09:23:11.902888Z", + "iopub.status.idle": "2023-11-04T09:23:11.984976Z", + "shell.execute_reply": "2023-11-04T09:23:11.984398Z" } }, "outputs": [ @@ -1056,10 +1056,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:20:13.292458Z", - "iopub.status.busy": "2023-11-02T15:20:13.291950Z", - "iopub.status.idle": "2023-11-02T15:20:13.308796Z", - "shell.execute_reply": "2023-11-02T15:20:13.307235Z" + "iopub.execute_input": "2023-11-04T09:23:11.987536Z", + "iopub.status.busy": "2023-11-04T09:23:11.987328Z", + "iopub.status.idle": "2023-11-04T09:23:11.997192Z", + "shell.execute_reply": "2023-11-04T09:23:11.996682Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index e0ec17e8a..0f2351858 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:20:18.629281Z", - "iopub.status.busy": "2023-11-02T15:20:18.628532Z", - "iopub.status.idle": "2023-11-02T15:20:21.268148Z", - "shell.execute_reply": "2023-11-02T15:20:21.266691Z" + "iopub.execute_input": "2023-11-04T09:23:17.004234Z", + "iopub.status.busy": "2023-11-04T09:23:17.004042Z", + "iopub.status.idle": "2023-11-04T09:23:19.239153Z", + "shell.execute_reply": "2023-11-04T09:23:19.238424Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:20:21.274248Z", - "iopub.status.busy": "2023-11-02T15:20:21.273266Z", - "iopub.status.idle": "2023-11-02T15:21:43.613773Z", - "shell.execute_reply": "2023-11-02T15:21:43.612463Z" + "iopub.execute_input": "2023-11-04T09:23:19.242178Z", + "iopub.status.busy": "2023-11-04T09:23:19.241784Z", + "iopub.status.idle": "2023-11-04T09:24:31.056224Z", + "shell.execute_reply": "2023-11-04T09:24:31.055397Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:21:43.620191Z", - "iopub.status.busy": "2023-11-02T15:21:43.619823Z", - "iopub.status.idle": "2023-11-02T15:21:45.359965Z", - "shell.execute_reply": "2023-11-02T15:21:45.358871Z" + "iopub.execute_input": "2023-11-04T09:24:31.059482Z", + "iopub.status.busy": "2023-11-04T09:24:31.059051Z", + "iopub.status.idle": "2023-11-04T09:24:32.043644Z", + "shell.execute_reply": "2023-11-04T09:24:32.043005Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:21:45.365414Z", - "iopub.status.busy": "2023-11-02T15:21:45.364801Z", - "iopub.status.idle": "2023-11-02T15:21:45.371456Z", - "shell.execute_reply": "2023-11-02T15:21:45.370540Z" + "iopub.execute_input": "2023-11-04T09:24:32.046564Z", + "iopub.status.busy": "2023-11-04T09:24:32.046079Z", + "iopub.status.idle": "2023-11-04T09:24:32.049513Z", + "shell.execute_reply": "2023-11-04T09:24:32.049002Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:21:45.375901Z", - "iopub.status.busy": "2023-11-02T15:21:45.375104Z", - "iopub.status.idle": "2023-11-02T15:21:45.383715Z", - "shell.execute_reply": "2023-11-02T15:21:45.382594Z" + "iopub.execute_input": "2023-11-04T09:24:32.051864Z", + "iopub.status.busy": "2023-11-04T09:24:32.051664Z", + "iopub.status.idle": "2023-11-04T09:24:32.055948Z", + "shell.execute_reply": "2023-11-04T09:24:32.055410Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:21:45.387438Z", - "iopub.status.busy": "2023-11-02T15:21:45.387115Z", - "iopub.status.idle": "2023-11-02T15:21:45.395222Z", - "shell.execute_reply": "2023-11-02T15:21:45.394281Z" + "iopub.execute_input": "2023-11-04T09:24:32.058141Z", + "iopub.status.busy": "2023-11-04T09:24:32.057948Z", + "iopub.status.idle": "2023-11-04T09:24:32.062001Z", + "shell.execute_reply": "2023-11-04T09:24:32.061458Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:21:45.400142Z", - "iopub.status.busy": "2023-11-02T15:21:45.399417Z", - "iopub.status.idle": "2023-11-02T15:21:45.405440Z", - "shell.execute_reply": "2023-11-02T15:21:45.404491Z" + "iopub.execute_input": "2023-11-04T09:24:32.064269Z", + "iopub.status.busy": "2023-11-04T09:24:32.064076Z", + "iopub.status.idle": "2023-11-04T09:24:32.067045Z", + "shell.execute_reply": "2023-11-04T09:24:32.066531Z" } }, "outputs": [], @@ -333,10 +333,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:21:45.409559Z", - "iopub.status.busy": "2023-11-02T15:21:45.409281Z", - "iopub.status.idle": "2023-11-02T15:23:08.878184Z", - "shell.execute_reply": "2023-11-02T15:23:08.876873Z" + "iopub.execute_input": "2023-11-04T09:24:32.069245Z", + "iopub.status.busy": "2023-11-04T09:24:32.069057Z", + "iopub.status.idle": "2023-11-04T09:25:23.986399Z", + "shell.execute_reply": "2023-11-04T09:25:23.985696Z" } }, "outputs": [ @@ -344,13 +344,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "Multiprocessing will default to using the number of logical cores (2). To default to number of physical cores: pip install psutil\n" + "Multiprocessing will default to using the number of logical cores (4). To default to number of physical cores: pip install psutil\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fbc0d7f26d9247179cfb96e1e7b0ba8a", + "model_id": "455f6efc5872419fa7d6c42efed407b7", "version_major": 2, "version_minor": 0 }, @@ -364,7 +364,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "490a3ec3e934490597a189fec0c08f71", + "model_id": "644d8d222bb7434d9224bb6b3207e61b", "version_major": 2, "version_minor": 0 }, @@ -407,10 +407,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:23:08.883027Z", - "iopub.status.busy": "2023-11-02T15:23:08.882641Z", - "iopub.status.idle": "2023-11-02T15:23:10.189720Z", - "shell.execute_reply": "2023-11-02T15:23:10.188525Z" + "iopub.execute_input": "2023-11-04T09:25:23.989704Z", + "iopub.status.busy": "2023-11-04T09:25:23.988999Z", + "iopub.status.idle": "2023-11-04T09:25:24.737069Z", + "shell.execute_reply": "2023-11-04T09:25:24.736390Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:23:10.194580Z", - "iopub.status.busy": "2023-11-02T15:23:10.193840Z", - "iopub.status.idle": "2023-11-02T15:23:14.027461Z", - "shell.execute_reply": "2023-11-02T15:23:14.026369Z" + "iopub.execute_input": "2023-11-04T09:25:24.739788Z", + "iopub.status.busy": "2023-11-04T09:25:24.739456Z", + "iopub.status.idle": "2023-11-04T09:25:26.815649Z", + "shell.execute_reply": "2023-11-04T09:25:26.814981Z" } }, "outputs": [ @@ -526,10 +526,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:23:14.032407Z", - "iopub.status.busy": "2023-11-02T15:23:14.031504Z", - "iopub.status.idle": "2023-11-02T15:24:06.999821Z", - "shell.execute_reply": "2023-11-02T15:24:06.998894Z" + "iopub.execute_input": "2023-11-04T09:25:26.818208Z", + "iopub.status.busy": "2023-11-04T09:25:26.818004Z", + "iopub.status.idle": "2023-11-04T09:25:55.823288Z", + "shell.execute_reply": "2023-11-04T09:25:55.822614Z" } }, "outputs": [ @@ -546,7 +546,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 9070/4997436 [00:00<00:55, 90690.57it/s]" + " 0%| | 17107/4997436 [00:00<00:29, 171063.23it/s]" ] }, { @@ -554,7 +554,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 18511/4997436 [00:00<00:53, 92808.93it/s]" + " 1%| | 34625/4997436 [00:00<00:28, 173478.59it/s]" ] }, { @@ -562,7 +562,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 27792/4997436 [00:00<00:55, 89947.99it/s]" + " 1%| | 51973/4997436 [00:00<00:28, 172726.04it/s]" ] }, { @@ -570,7 +570,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 37460/4997436 [00:00<00:53, 92550.24it/s]" + " 1%|▏ | 69426/4997436 [00:00<00:28, 173432.65it/s]" ] }, { @@ -578,7 +578,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 46727/4997436 [00:00<00:53, 92078.61it/s]" + " 2%|▏ | 86770/4997436 [00:00<00:28, 173320.07it/s]" ] }, { @@ -586,7 +586,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 56095/4997436 [00:00<00:53, 92612.29it/s]" + " 2%|▏ | 104275/4997436 [00:00<00:28, 173905.69it/s]" ] }, { @@ -594,7 +594,7 @@ "output_type": "stream", "text": [ "\r", - " 1%|▏ | 65383/4997436 [00:00<00:53, 92689.10it/s]" + " 2%|▏ | 121666/4997436 [00:00<00:28, 173345.27it/s]" ] }, { @@ -602,7 +602,7 @@ "output_type": "stream", "text": [ "\r", - " 1%|▏ | 74656/4997436 [00:00<00:53, 91892.86it/s]" + " 3%|▎ | 139002/4997436 [00:00<00:28, 172522.49it/s]" ] }, { @@ -610,7 +610,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 84199/4997436 [00:00<00:52, 92984.48it/s]" + " 3%|▎ | 156460/4997436 [00:00<00:27, 173160.68it/s]" ] }, { @@ -618,7 +618,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 93501/4997436 [00:01<00:53, 90862.93it/s]" + " 3%|▎ | 173778/4997436 [00:01<00:27, 172892.55it/s]" ] }, { @@ -626,7 +626,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 102896/4997436 [00:01<00:53, 91782.98it/s]" + " 4%|▍ | 191068/4997436 [00:01<00:27, 172673.55it/s]" ] }, { @@ -634,7 +634,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 112356/4997436 [00:01<00:52, 92616.71it/s]" + " 4%|▍ | 208336/4997436 [00:01<00:27, 172431.89it/s]" ] }, { @@ -642,7 +642,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 121837/4997436 [00:01<00:52, 93269.13it/s]" + " 5%|▍ | 225864/4997436 [00:01<00:27, 173289.20it/s]" ] }, { @@ -650,7 +650,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 131446/4997436 [00:01<00:51, 94110.12it/s]" + " 5%|▍ | 243240/4997436 [00:01<00:27, 173428.63it/s]" ] }, { @@ -658,7 +658,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 140863/4997436 [00:01<00:51, 93566.08it/s]" + " 5%|▌ | 260609/4997436 [00:01<00:27, 173505.71it/s]" ] }, { @@ -666,7 +666,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 150346/4997436 [00:01<00:51, 93940.46it/s]" + " 6%|▌ | 278119/4997436 [00:01<00:27, 173984.08it/s]" ] }, { @@ -674,7 +674,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 159958/4997436 [00:01<00:51, 94586.84it/s]" + " 6%|▌ | 295575/4997436 [00:01<00:26, 174155.30it/s]" ] }, { @@ -682,7 +682,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 169425/4997436 [00:01<00:51, 94607.37it/s]" + " 6%|▋ | 312991/4997436 [00:01<00:27, 171762.41it/s]" ] }, { @@ -690,7 +690,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▎ | 178888/4997436 [00:01<00:51, 94404.44it/s]" + " 7%|▋ | 330493/4997436 [00:01<00:27, 172729.29it/s]" ] }, { @@ -698,7 +698,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 188330/4997436 [00:02<00:51, 93943.38it/s]" + " 7%|▋ | 347915/4997436 [00:02<00:26, 173171.78it/s]" ] }, { @@ -706,7 +706,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 197726/4997436 [00:02<00:51, 93792.22it/s]" + " 7%|▋ | 365286/4997436 [00:02<00:26, 173331.10it/s]" ] }, { @@ -714,7 +714,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 207107/4997436 [00:02<00:51, 93381.42it/s]" + " 8%|▊ | 382644/4997436 [00:02<00:26, 173401.75it/s]" ] }, { @@ -722,7 +722,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 216698/4997436 [00:02<00:50, 94123.69it/s]" + " 8%|▊ | 399987/4997436 [00:02<00:26, 173106.09it/s]" ] }, { @@ -730,7 +730,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 226194/4997436 [00:02<00:50, 94369.61it/s]" + " 8%|▊ | 417480/4997436 [00:02<00:26, 173648.83it/s]" ] }, { @@ -738,7 +738,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 235632/4997436 [00:02<00:51, 92475.28it/s]" + " 9%|▊ | 434876/4997436 [00:02<00:26, 173740.44it/s]" ] }, { @@ -746,7 +746,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 245163/4997436 [00:02<00:50, 93306.94it/s]" + " 9%|▉ | 452252/4997436 [00:02<00:26, 173738.78it/s]" ] }, { @@ -754,7 +754,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 254502/4997436 [00:02<00:51, 91682.82it/s]" + " 9%|▉ | 469627/4997436 [00:02<00:26, 173413.70it/s]" ] }, { @@ -762,7 +762,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 263681/4997436 [00:02<00:51, 91109.18it/s]" + " 10%|▉ | 486997/4997436 [00:02<00:25, 173495.87it/s]" ] }, { @@ -770,7 +770,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 273205/4997436 [00:02<00:51, 92320.25it/s]" + " 10%|█ | 504348/4997436 [00:02<00:25, 173494.21it/s]" ] }, { @@ -778,7 +778,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 282444/4997436 [00:03<00:52, 89136.57it/s]" + " 10%|█ | 521789/4997436 [00:03<00:25, 173764.12it/s]" ] }, { @@ -786,7 +786,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 291958/4997436 [00:03<00:51, 90871.68it/s]" + " 11%|█ | 539166/4997436 [00:03<00:25, 173546.26it/s]" ] }, { @@ -794,7 +794,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 301139/4997436 [00:03<00:51, 91129.27it/s]" + " 11%|█ | 556717/4997436 [00:03<00:25, 174132.74it/s]" ] }, { @@ -802,7 +802,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 310831/4997436 [00:03<00:50, 92831.82it/s]" + " 11%|█▏ | 574138/4997436 [00:03<00:25, 174152.96it/s]" ] }, { @@ -810,7 +810,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 320130/4997436 [00:03<00:50, 92266.18it/s]" + " 12%|█▏ | 591554/4997436 [00:03<00:25, 174032.35it/s]" ] }, { @@ -818,7 +818,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 329368/4997436 [00:03<00:50, 91877.68it/s]" + " 12%|█▏ | 608958/4997436 [00:03<00:25, 173901.23it/s]" ] }, { @@ -826,7 +826,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 338905/4997436 [00:03<00:50, 92909.63it/s]" + " 13%|█▎ | 626356/4997436 [00:03<00:25, 173921.90it/s]" ] }, { @@ -834,7 +834,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 348203/4997436 [00:03<00:50, 92822.65it/s]" + " 13%|█▎ | 643749/4997436 [00:03<00:25, 173758.48it/s]" ] }, { @@ -842,7 +842,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 357766/4997436 [00:03<00:49, 93655.92it/s]" + " 13%|█▎ | 661125/4997436 [00:03<00:25, 171272.16it/s]" ] }, { @@ -850,7 +850,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 367441/4997436 [00:03<00:48, 94577.22it/s]" + " 14%|█▎ | 678375/4997436 [00:03<00:25, 171633.25it/s]" ] }, { @@ -858,7 +858,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 376978/4997436 [00:04<00:48, 94809.80it/s]" + " 14%|█▍ | 695728/4997436 [00:04<00:24, 172194.03it/s]" ] }, { @@ -866,7 +866,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 386612/4997436 [00:04<00:48, 95264.17it/s]" + " 14%|█▍ | 712979/4997436 [00:04<00:24, 172285.78it/s]" ] }, { @@ -874,7 +874,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 396141/4997436 [00:04<00:48, 94281.14it/s]" + " 15%|█▍ | 730331/4997436 [00:04<00:24, 172652.23it/s]" ] }, { @@ -882,7 +882,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 405690/4997436 [00:04<00:48, 94637.65it/s]" + " 15%|█▍ | 747605/4997436 [00:04<00:24, 172675.70it/s]" ] }, { @@ -890,7 +890,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 415157/4997436 [00:04<00:48, 94567.52it/s]" + " 15%|█▌ | 764875/4997436 [00:04<00:24, 172420.84it/s]" ] }, { @@ -898,7 +898,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 424646/4997436 [00:04<00:48, 94659.31it/s]" + " 16%|█▌ | 782216/4997436 [00:04<00:24, 172715.82it/s]" ] }, { @@ -906,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▊ | 434371/4997436 [00:04<00:47, 95430.71it/s]" + " 16%|█▌ | 799506/4997436 [00:04<00:24, 172768.07it/s]" ] }, { @@ -914,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 444093/4997436 [00:04<00:47, 95963.50it/s]" + " 16%|█▋ | 816784/4997436 [00:04<00:24, 172728.51it/s]" ] }, { @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 453691/4997436 [00:04<00:47, 95876.32it/s]" + " 17%|█▋ | 834058/4997436 [00:04<00:24, 170555.55it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 463280/4997436 [00:04<00:47, 95578.36it/s]" + " 17%|█▋ | 851296/4997436 [00:04<00:24, 171095.65it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 472925/4997436 [00:05<00:47, 95797.11it/s]" + " 17%|█▋ | 868509/4997436 [00:05<00:24, 171400.02it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 482719/4997436 [00:05<00:46, 96434.79it/s]" + " 18%|█▊ | 885748/4997436 [00:05<00:23, 171691.75it/s]" ] }, { @@ -954,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 492443/4997436 [00:05<00:46, 96672.04it/s]" + " 18%|█▊ | 903051/4997436 [00:05<00:23, 172088.38it/s]" ] }, { @@ -962,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 502230/4997436 [00:05<00:46, 97027.21it/s]" + " 18%|█▊ | 920358/4997436 [00:05<00:23, 172377.43it/s]" ] }, { @@ -970,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 511934/4997436 [00:05<00:46, 96091.99it/s]" + " 19%|█▉ | 937749/4997436 [00:05<00:23, 172834.26it/s]" ] }, { @@ -978,7 +978,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 521546/4997436 [00:05<00:47, 95104.39it/s]" + " 19%|█▉ | 955034/4997436 [00:05<00:23, 172746.84it/s]" ] }, { @@ -986,7 +986,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 531306/4997436 [00:05<00:46, 95838.66it/s]" + " 19%|█▉ | 972362/4997436 [00:05<00:23, 172902.69it/s]" ] }, { @@ -994,7 +994,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 540894/4997436 [00:05<00:46, 95412.52it/s]" + " 20%|█▉ | 989653/4997436 [00:05<00:23, 172821.44it/s]" ] }, { @@ -1002,7 +1002,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 550544/4997436 [00:05<00:46, 95718.10it/s]" + " 20%|██ | 1006936/4997436 [00:05<00:23, 170734.00it/s]" ] }, { @@ -1010,7 +1010,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 560118/4997436 [00:05<00:47, 94223.63it/s]" + " 20%|██ | 1024240/4997436 [00:05<00:23, 171417.33it/s]" ] }, { @@ -1018,7 +1018,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 569547/4997436 [00:06<00:47, 93850.32it/s]" + " 21%|██ | 1041507/4997436 [00:06<00:23, 171787.71it/s]" ] }, { @@ -1026,7 +1026,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 578936/4997436 [00:06<00:47, 93086.22it/s]" + " 21%|██ | 1058705/4997436 [00:06<00:22, 171843.35it/s]" ] }, { @@ -1034,7 +1034,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 588371/4997436 [00:06<00:47, 93456.05it/s]" + " 22%|██▏ | 1075971/4997436 [00:06<00:22, 172084.30it/s]" ] }, { @@ -1042,7 +1042,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 597758/4997436 [00:06<00:47, 93573.74it/s]" + " 22%|██▏ | 1093243/4997436 [00:06<00:22, 172271.07it/s]" ] }, { @@ -1050,7 +1050,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 607242/4997436 [00:06<00:46, 93948.30it/s]" + " 22%|██▏ | 1110549/4997436 [00:06<00:22, 172505.21it/s]" ] }, { @@ -1058,7 +1058,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 616639/4997436 [00:06<00:46, 93237.36it/s]" + " 23%|██▎ | 1127801/4997436 [00:06<00:22, 172161.35it/s]" ] }, { @@ -1066,7 +1066,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 626069/4997436 [00:06<00:46, 93550.74it/s]" + " 23%|██▎ | 1145072/4997436 [00:06<00:22, 172323.05it/s]" ] }, { @@ -1074,7 +1074,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 635702/4997436 [00:06<00:46, 94374.13it/s]" + " 23%|██▎ | 1162330/4997436 [00:06<00:22, 172398.71it/s]" ] }, { @@ -1082,7 +1082,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 645376/4997436 [00:06<00:45, 95077.36it/s]" + " 24%|██▎ | 1179899/4997436 [00:06<00:22, 173383.09it/s]" ] }, { @@ -1090,7 +1090,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 655035/4997436 [00:06<00:45, 95525.84it/s]" + " 24%|██▍ | 1197434/4997436 [00:06<00:21, 173969.15it/s]" ] }, { @@ -1098,7 +1098,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 664589/4997436 [00:07<00:45, 95058.37it/s]" + " 24%|██▍ | 1215034/4997436 [00:07<00:21, 174574.75it/s]" ] }, { @@ -1106,7 +1106,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 674097/4997436 [00:07<00:46, 93653.73it/s]" + " 25%|██▍ | 1232578/4997436 [00:07<00:21, 174832.39it/s]" ] }, { @@ -1114,7 +1114,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▎ | 683468/4997436 [00:07<00:46, 91902.80it/s]" + " 25%|██▌ | 1250168/4997436 [00:07<00:21, 175149.38it/s]" ] }, { @@ -1122,7 +1122,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 692674/4997436 [00:07<00:46, 91946.07it/s]" + " 25%|██▌ | 1267684/4997436 [00:07<00:21, 175073.62it/s]" ] }, { @@ -1130,7 +1130,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 701911/4997436 [00:07<00:46, 92067.26it/s]" + " 26%|██▌ | 1285192/4997436 [00:07<00:21, 174999.14it/s]" ] }, { @@ -1138,7 +1138,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 711191/4997436 [00:07<00:46, 92280.15it/s]" + " 26%|██▌ | 1302870/4997436 [00:07<00:21, 175529.47it/s]" ] }, { @@ -1146,7 +1146,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 720423/4997436 [00:07<00:46, 91532.63it/s]" + " 26%|██▋ | 1320550/4997436 [00:07<00:20, 175907.61it/s]" ] }, { @@ -1154,7 +1154,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 729853/4997436 [00:07<00:46, 92349.79it/s]" + " 27%|██▋ | 1338187/4997436 [00:07<00:20, 176042.81it/s]" ] }, { @@ -1162,7 +1162,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 739092/4997436 [00:07<00:46, 91457.30it/s]" + " 27%|██▋ | 1355845/4997436 [00:07<00:20, 176199.69it/s]" ] }, { @@ -1170,7 +1170,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 748430/4997436 [00:08<00:46, 92024.32it/s]" + " 27%|██▋ | 1373466/4997436 [00:07<00:20, 176132.68it/s]" ] }, { @@ -1178,7 +1178,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 757636/4997436 [00:08<00:46, 90929.76it/s]" + " 28%|██▊ | 1391080/4997436 [00:08<00:20, 175815.39it/s]" ] }, { @@ -1186,7 +1186,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 766999/4997436 [00:08<00:46, 91724.81it/s]" + " 28%|██▊ | 1408722/4997436 [00:08<00:20, 175994.03it/s]" ] }, { @@ -1194,7 +1194,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 776617/4997436 [00:08<00:45, 93037.78it/s]" + " 29%|██▊ | 1426392/4997436 [00:08<00:20, 176202.24it/s]" ] }, { @@ -1202,7 +1202,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 786092/4997436 [00:08<00:45, 93543.08it/s]" + " 29%|██▉ | 1444013/4997436 [00:08<00:20, 175832.14it/s]" ] }, { @@ -1210,7 +1210,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 795617/4997436 [00:08<00:44, 94048.66it/s]" + " 29%|██▉ | 1461599/4997436 [00:08<00:20, 175837.27it/s]" ] }, { @@ -1218,7 +1218,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 805415/4997436 [00:08<00:44, 95221.08it/s]" + " 30%|██▉ | 1479225/4997436 [00:08<00:19, 175961.07it/s]" ] }, { @@ -1226,7 +1226,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▋ | 815028/4997436 [00:08<00:43, 95488.59it/s]" + " 30%|██▉ | 1496845/4997436 [00:08<00:19, 176030.58it/s]" ] }, { @@ -1234,7 +1234,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 824583/4997436 [00:08<00:43, 95502.64it/s]" + " 30%|███ | 1514543/4997436 [00:08<00:19, 176311.98it/s]" ] }, { @@ -1242,7 +1242,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 834213/4997436 [00:08<00:43, 95737.46it/s]" + " 31%|███ | 1532175/4997436 [00:08<00:19, 176073.01it/s]" ] }, { @@ -1250,7 +1250,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 843788/4997436 [00:09<00:43, 95082.60it/s]" + " 31%|███ | 1549786/4997436 [00:08<00:19, 176081.12it/s]" ] }, { @@ -1258,7 +1258,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 853318/4997436 [00:09<00:43, 95144.37it/s]" + " 31%|███▏ | 1567395/4997436 [00:09<00:19, 176049.87it/s]" ] }, { @@ -1266,7 +1266,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 862915/4997436 [00:09<00:43, 95387.60it/s]" + " 32%|███▏ | 1585001/4997436 [00:09<00:19, 175920.31it/s]" ] }, { @@ -1274,7 +1274,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 872455/4997436 [00:09<00:44, 93711.54it/s]" + " 32%|███▏ | 1602594/4997436 [00:09<00:19, 175701.32it/s]" ] }, { @@ -1282,7 +1282,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 881833/4997436 [00:09<00:44, 93256.19it/s]" + " 32%|███▏ | 1620165/4997436 [00:09<00:19, 175208.27it/s]" ] }, { @@ -1290,7 +1290,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 891164/4997436 [00:09<00:44, 91816.53it/s]" + " 33%|███▎ | 1637773/4997436 [00:09<00:19, 175467.02it/s]" ] }, { @@ -1298,7 +1298,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 900595/4997436 [00:09<00:44, 92541.25it/s]" + " 33%|███▎ | 1655320/4997436 [00:09<00:19, 175440.17it/s]" ] }, { @@ -1306,7 +1306,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 910514/4997436 [00:09<00:43, 94503.23it/s]" + " 33%|███▎ | 1673093/4997436 [00:09<00:18, 176121.76it/s]" ] }, { @@ -1314,7 +1314,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 920756/4997436 [00:09<00:42, 96850.08it/s]" + " 34%|███▍ | 1690900/4997436 [00:09<00:18, 176703.20it/s]" ] }, { @@ -1322,7 +1322,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▊ | 930486/4997436 [00:09<00:41, 96980.53it/s]" + " 34%|███▍ | 1708584/4997436 [00:09<00:18, 176739.96it/s]" ] }, { @@ -1330,7 +1330,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 940426/4997436 [00:10<00:41, 97698.96it/s]" + " 35%|███▍ | 1726287/4997436 [00:09<00:18, 176825.45it/s]" ] }, { @@ -1338,7 +1338,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 950200/4997436 [00:10<00:41, 97461.55it/s]" + " 35%|███▍ | 1743970/4997436 [00:10<00:18, 176731.47it/s]" ] }, { @@ -1346,7 +1346,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 959950/4997436 [00:10<00:41, 96876.34it/s]" + " 35%|███▌ | 1761664/4997436 [00:10<00:18, 176791.76it/s]" ] }, { @@ -1354,7 +1354,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 969641/4997436 [00:10<00:41, 96125.24it/s]" + " 36%|███▌ | 1779354/4997436 [00:10<00:18, 176820.48it/s]" ] }, { @@ -1362,7 +1362,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 979257/4997436 [00:10<00:42, 95310.50it/s]" + " 36%|███▌ | 1797037/4997436 [00:10<00:18, 176587.78it/s]" ] }, { @@ -1370,7 +1370,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 988791/4997436 [00:10<00:42, 93924.27it/s]" + " 36%|███▋ | 1814703/4997436 [00:10<00:18, 176606.95it/s]" ] }, { @@ -1378,7 +1378,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 998237/4997436 [00:10<00:42, 94076.97it/s]" + " 37%|███▋ | 1832364/4997436 [00:10<00:17, 176464.15it/s]" ] }, { @@ -1386,7 +1386,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1007649/4997436 [00:10<00:42, 94064.19it/s]" + " 37%|███▋ | 1850080/4997436 [00:10<00:17, 176670.69it/s]" ] }, { @@ -1394,7 +1394,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1017104/4997436 [00:10<00:42, 94204.90it/s]" + " 37%|███▋ | 1867748/4997436 [00:10<00:17, 176482.45it/s]" ] }, { @@ -1402,7 +1402,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1026683/4997436 [00:10<00:41, 94674.83it/s]" + " 38%|███▊ | 1885397/4997436 [00:10<00:17, 176285.68it/s]" ] }, { @@ -1410,7 +1410,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1036153/4997436 [00:11<00:42, 93813.18it/s]" + " 38%|███▊ | 1903077/4997436 [00:10<00:17, 176437.75it/s]" ] }, { @@ -1418,7 +1418,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1045582/4997436 [00:11<00:42, 93950.64it/s]" + " 38%|███▊ | 1920721/4997436 [00:11<00:17, 176204.46it/s]" ] }, { @@ -1426,7 +1426,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1054979/4997436 [00:11<00:42, 93461.49it/s]" + " 39%|███▉ | 1938342/4997436 [00:11<00:17, 176139.39it/s]" ] }, { @@ -1434,7 +1434,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1064927/4997436 [00:11<00:41, 95247.67it/s]" + " 39%|███▉ | 1956042/4997436 [00:11<00:17, 176395.85it/s]" ] }, { @@ -1442,7 +1442,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1074620/4997436 [00:11<00:40, 95746.89it/s]" + " 39%|███▉ | 1973719/4997436 [00:11<00:17, 176506.39it/s]" ] }, { @@ -1450,7 +1450,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1084197/4997436 [00:11<00:40, 95581.93it/s]" + " 40%|███▉ | 1991414/4997436 [00:11<00:17, 176637.28it/s]" ] }, { @@ -1458,7 +1458,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1093757/4997436 [00:11<00:40, 95516.54it/s]" + " 40%|████ | 2009078/4997436 [00:11<00:16, 176465.69it/s]" ] }, { @@ -1466,7 +1466,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1103310/4997436 [00:11<00:40, 95011.94it/s]" + " 41%|████ | 2026735/4997436 [00:11<00:16, 176493.47it/s]" ] }, { @@ -1474,7 +1474,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1112813/4997436 [00:11<00:41, 92704.01it/s]" + " 41%|████ | 2044385/4997436 [00:11<00:16, 176271.86it/s]" ] }, { @@ -1482,7 +1482,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1122334/4997436 [00:11<00:41, 93437.15it/s]" + " 41%|████▏ | 2062013/4997436 [00:11<00:16, 176201.48it/s]" ] }, { @@ -1490,7 +1490,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1131902/4997436 [00:12<00:41, 94096.07it/s]" + " 42%|████▏ | 2079634/4997436 [00:11<00:16, 176082.70it/s]" ] }, { @@ -1498,7 +1498,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1141785/4997436 [00:12<00:40, 95497.21it/s]" + " 42%|████▏ | 2097262/4997436 [00:12<00:16, 176140.35it/s]" ] }, { @@ -1506,7 +1506,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1151342/4997436 [00:12<00:40, 94873.11it/s]" + " 42%|████▏ | 2114888/4997436 [00:12<00:16, 176172.74it/s]" ] }, { @@ -1514,7 +1514,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1160835/4997436 [00:12<00:41, 91622.58it/s]" + " 43%|████▎ | 2132506/4997436 [00:12<00:16, 175695.12it/s]" ] }, { @@ -1522,7 +1522,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1170023/4997436 [00:12<00:42, 89779.58it/s]" + " 43%|████▎ | 2150076/4997436 [00:12<00:16, 175462.51it/s]" ] }, { @@ -1530,7 +1530,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▎ | 1179022/4997436 [00:12<00:43, 87711.22it/s]" + " 43%|████▎ | 2167623/4997436 [00:12<00:16, 175297.73it/s]" ] }, { @@ -1538,7 +1538,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1188026/4997436 [00:12<00:43, 88375.60it/s]" + " 44%|████▎ | 2185153/4997436 [00:12<00:16, 173533.40it/s]" ] }, { @@ -1546,7 +1546,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1197258/4997436 [00:12<00:42, 89519.12it/s]" + " 44%|████▍ | 2202705/4997436 [00:12<00:16, 174122.58it/s]" ] }, { @@ -1554,7 +1554,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1206623/4997436 [00:12<00:41, 90727.52it/s]" + " 44%|████▍ | 2220230/4997436 [00:12<00:15, 174456.53it/s]" ] }, { @@ -1562,7 +1562,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1215835/4997436 [00:12<00:41, 91136.38it/s]" + " 45%|████▍ | 2237764/4997436 [00:12<00:15, 174718.35it/s]" ] }, { @@ -1570,7 +1570,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1225094/4997436 [00:13<00:41, 91563.46it/s]" + " 45%|████▌ | 2255238/4997436 [00:12<00:15, 174589.67it/s]" ] }, { @@ -1578,7 +1578,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1234258/4997436 [00:13<00:41, 91555.86it/s]" + " 45%|████▌ | 2272750/4997436 [00:13<00:15, 174745.28it/s]" ] }, { @@ -1586,7 +1586,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1243419/4997436 [00:13<00:41, 90723.08it/s]" + " 46%|████▌ | 2290339/4997436 [00:13<00:15, 175085.10it/s]" ] }, { @@ -1594,7 +1594,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1252780/4997436 [00:13<00:40, 91577.71it/s]" + " 46%|████▌ | 2307894/4997436 [00:13<00:15, 175222.43it/s]" ] }, { @@ -1602,7 +1602,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1262043/4997436 [00:13<00:40, 91886.82it/s]" + " 47%|████▋ | 2325417/4997436 [00:13<00:15, 175072.62it/s]" ] }, { @@ -1610,7 +1610,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1271235/4997436 [00:13<00:40, 91622.14it/s]" + " 47%|████▋ | 2343150/4997436 [00:13<00:15, 175747.77it/s]" ] }, { @@ -1618,7 +1618,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1280410/4997436 [00:13<00:40, 91656.98it/s]" + " 47%|████▋ | 2360805/4997436 [00:13<00:14, 175986.01it/s]" ] }, { @@ -1626,7 +1626,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1289578/4997436 [00:13<00:40, 90857.47it/s]" + " 48%|████▊ | 2378415/4997436 [00:13<00:14, 176017.59it/s]" ] }, { @@ -1634,7 +1634,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1298667/4997436 [00:13<00:41, 90143.22it/s]" + " 48%|████▊ | 2396017/4997436 [00:13<00:14, 175863.34it/s]" ] }, { @@ -1642,7 +1642,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1308067/4997436 [00:13<00:40, 91284.16it/s]" + " 48%|████▊ | 2413604/4997436 [00:13<00:14, 175411.51it/s]" ] }, { @@ -1650,7 +1650,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1317642/4997436 [00:14<00:39, 92609.59it/s]" + " 49%|████▊ | 2431146/4997436 [00:13<00:14, 175200.46it/s]" ] }, { @@ -1658,7 +1658,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1327247/4997436 [00:14<00:39, 93631.66it/s]" + " 49%|████▉ | 2448694/4997436 [00:14<00:14, 175280.41it/s]" ] }, { @@ -1666,7 +1666,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1336883/4997436 [00:14<00:38, 94443.63it/s]" + " 49%|████▉ | 2466223/4997436 [00:14<00:14, 175163.40it/s]" ] }, { @@ -1674,7 +1674,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1346587/4997436 [00:14<00:38, 95186.13it/s]" + " 50%|████▉ | 2483740/4997436 [00:14<00:14, 174977.65it/s]" ] }, { @@ -1682,7 +1682,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1356108/4997436 [00:14<00:38, 93568.43it/s]" + " 50%|█████ | 2501238/4997436 [00:14<00:14, 174897.75it/s]" ] }, { @@ -1690,7 +1690,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1365472/4997436 [00:14<00:39, 91671.36it/s]" + " 50%|█████ | 2518740/4997436 [00:14<00:14, 174932.91it/s]" ] }, { @@ -1698,7 +1698,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1374804/4997436 [00:14<00:39, 92151.63it/s]" + " 51%|█████ | 2536243/4997436 [00:14<00:14, 174960.80it/s]" ] }, { @@ -1706,7 +1706,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1384177/4997436 [00:14<00:39, 92573.82it/s]" + " 51%|█████ | 2553740/4997436 [00:14<00:13, 174935.61it/s]" ] }, { @@ -1714,7 +1714,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1393442/4997436 [00:14<00:39, 92070.68it/s]" + " 51%|█████▏ | 2571234/4997436 [00:14<00:13, 174763.47it/s]" ] }, { @@ -1722,7 +1722,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1403074/4997436 [00:15<00:38, 93301.38it/s]" + " 52%|█████▏ | 2588807/4997436 [00:14<00:13, 175048.63it/s]" ] }, { @@ -1730,7 +1730,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1412638/4997436 [00:15<00:38, 93993.80it/s]" + " 52%|█████▏ | 2606312/4997436 [00:14<00:13, 174083.68it/s]" ] }, { @@ -1738,7 +1738,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1422225/4997436 [00:15<00:37, 94549.01it/s]" + " 53%|█████▎ | 2623722/4997436 [00:15<00:13, 174080.30it/s]" ] }, { @@ -1746,7 +1746,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 1431923/4997436 [00:15<00:37, 95271.13it/s]" + " 53%|█████▎ | 2641131/4997436 [00:15<00:13, 173894.67it/s]" ] }, { @@ -1754,7 +1754,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1441687/4997436 [00:15<00:37, 95976.62it/s]" + " 53%|█████▎ | 2658522/4997436 [00:15<00:13, 173390.61it/s]" ] }, { @@ -1762,7 +1762,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1451287/4997436 [00:15<00:37, 95526.55it/s]" + " 54%|█████▎ | 2675962/4997436 [00:15<00:13, 173690.37it/s]" ] }, { @@ -1770,7 +1770,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1460859/4997436 [00:15<00:37, 95580.79it/s]" + " 54%|█████▍ | 2693332/4997436 [00:15<00:13, 173567.04it/s]" ] }, { @@ -1778,7 +1778,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1470419/4997436 [00:15<00:37, 94985.15it/s]" + " 54%|█████▍ | 2710690/4997436 [00:15<00:14, 154354.97it/s]" ] }, { @@ -1786,7 +1786,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1479920/4997436 [00:15<00:37, 94978.75it/s]" + " 55%|█████▍ | 2727237/4997436 [00:15<00:14, 157415.55it/s]" ] }, { @@ -1794,7 +1794,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1489850/4997436 [00:15<00:36, 96265.93it/s]" + " 55%|█████▍ | 2744650/4997436 [00:15<00:13, 162131.99it/s]" ] }, { @@ -1802,7 +1802,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1499900/4997436 [00:16<00:35, 97528.73it/s]" + " 55%|█████▌ | 2761967/4997436 [00:15<00:13, 165299.91it/s]" ] }, { @@ -1810,7 +1810,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1509655/4997436 [00:16<00:36, 96697.46it/s]" + " 56%|█████▌ | 2779223/4997436 [00:15<00:13, 167409.80it/s]" ] }, { @@ -1818,7 +1818,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1519741/4997436 [00:16<00:35, 97928.74it/s]" + " 56%|█████▌ | 2796297/4997436 [00:16<00:13, 168383.69it/s]" ] }, { @@ -1826,7 +1826,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1529537/4997436 [00:16<00:35, 96901.94it/s]" + " 56%|█████▋ | 2813588/4997436 [00:16<00:12, 169719.61it/s]" ] }, { @@ -1834,7 +1834,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1539610/4997436 [00:16<00:35, 98034.62it/s]" + " 57%|█████▋ | 2830909/4997436 [00:16<00:12, 170752.36it/s]" ] }, { @@ -1842,7 +1842,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1549418/4997436 [00:16<00:35, 97876.75it/s]" + " 57%|█████▋ | 2848236/4997436 [00:16<00:12, 171498.76it/s]" ] }, { @@ -1850,7 +1850,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1559229/4997436 [00:16<00:35, 97942.80it/s]" + " 57%|█████▋ | 2865562/4997436 [00:16<00:12, 172021.89it/s]" ] }, { @@ -1858,7 +1858,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 1569026/4997436 [00:16<00:35, 97616.51it/s]" + " 58%|█████▊ | 2882790/4997436 [00:16<00:12, 169463.52it/s]" ] }, { @@ -1866,7 +1866,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1578790/4997436 [00:16<00:35, 95548.04it/s]" + " 58%|█████▊ | 2900192/4997436 [00:16<00:12, 170808.48it/s]" ] }, { @@ -1874,7 +1874,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1588355/4997436 [00:16<00:35, 95460.25it/s]" + " 58%|█████▊ | 2917509/4997436 [00:16<00:12, 171507.92it/s]" ] }, { @@ -1882,7 +1882,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1597908/4997436 [00:17<00:36, 93963.19it/s]" + " 59%|█████▊ | 2934736/4997436 [00:16<00:12, 171731.55it/s]" ] }, { @@ -1890,7 +1890,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1607313/4997436 [00:17<00:36, 93401.06it/s]" + " 59%|█████▉ | 2951966/4997436 [00:16<00:11, 171898.29it/s]" ] }, { @@ -1898,7 +1898,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1616659/4997436 [00:17<00:36, 93281.07it/s]" + " 59%|█████▉ | 2969307/4997436 [00:17<00:11, 172348.65it/s]" ] }, { @@ -1906,7 +1906,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1626544/4997436 [00:17<00:35, 94919.84it/s]" + " 60%|█████▉ | 2986696/4997436 [00:17<00:11, 172806.10it/s]" ] }, { @@ -1914,7 +1914,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1636399/4997436 [00:17<00:35, 95995.41it/s]" + " 60%|██████ | 3003981/4997436 [00:17<00:11, 172744.18it/s]" ] }, { @@ -1922,7 +1922,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1646273/4997436 [00:17<00:34, 96809.28it/s]" + " 60%|██████ | 3021345/4997436 [00:17<00:11, 173010.61it/s]" ] }, { @@ -1930,7 +1930,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1656092/4997436 [00:17<00:34, 97216.57it/s]" + " 61%|██████ | 3038721/4997436 [00:17<00:11, 173231.29it/s]" ] }, { @@ -1938,7 +1938,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1665898/4997436 [00:17<00:34, 97465.45it/s]" + " 61%|██████ | 3056046/4997436 [00:17<00:11, 173203.89it/s]" ] }, { @@ -1946,7 +1946,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 1675649/4997436 [00:17<00:34, 97476.09it/s]" + " 61%|██████▏ | 3073414/4997436 [00:17<00:11, 173344.08it/s]" ] }, { @@ -1954,7 +1954,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 1685399/4997436 [00:17<00:34, 96724.34it/s]" + " 62%|██████▏ | 3090771/4997436 [00:17<00:10, 173409.52it/s]" ] }, { @@ -1962,7 +1962,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1695090/4997436 [00:18<00:34, 96776.32it/s]" + " 62%|██████▏ | 3108113/4997436 [00:17<00:11, 168324.46it/s]" ] }, { @@ -1970,7 +1970,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1704770/4997436 [00:18<00:34, 96663.96it/s]" + " 63%|██████▎ | 3125016/4997436 [00:18<00:11, 168529.37it/s]" ] }, { @@ -1978,7 +1978,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1714511/4997436 [00:18<00:33, 96883.28it/s]" + " 63%|██████▎ | 3142341/4997436 [00:18<00:10, 169921.70it/s]" ] }, { @@ -1986,7 +1986,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1724336/4997436 [00:18<00:33, 97285.65it/s]" + " 63%|██████▎ | 3159703/4997436 [00:18<00:10, 171017.41it/s]" ] }, { @@ -1994,7 +1994,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1734066/4997436 [00:18<00:34, 95297.20it/s]" + " 64%|██████▎ | 3177078/4997436 [00:18<00:10, 171827.46it/s]" ] }, { @@ -2002,7 +2002,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1743605/4997436 [00:18<00:34, 94602.00it/s]" + " 64%|██████▍ | 3194444/4997436 [00:18<00:10, 172370.64it/s]" ] }, { @@ -2010,7 +2010,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1753295/4997436 [00:18<00:34, 95277.53it/s]" + " 64%|██████▍ | 3211801/4997436 [00:18<00:10, 172725.63it/s]" ] }, { @@ -2018,7 +2018,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1762943/4997436 [00:18<00:33, 95631.27it/s]" + " 65%|██████▍ | 3229190/4997436 [00:18<00:10, 173072.49it/s]" ] }, { @@ -2026,7 +2026,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1772511/4997436 [00:18<00:33, 94916.96it/s]" + " 65%|██████▍ | 3246591/4997436 [00:18<00:10, 173351.31it/s]" ] }, { @@ -2034,7 +2034,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1782007/4997436 [00:18<00:34, 94190.95it/s]" + " 65%|██████▌ | 3263949/4997436 [00:18<00:09, 173417.03it/s]" ] }, { @@ -2042,7 +2042,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1791436/4997436 [00:19<00:34, 94217.64it/s]" + " 66%|██████▌ | 3281334/4997436 [00:18<00:09, 173543.51it/s]" ] }, { @@ -2050,7 +2050,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1800931/4997436 [00:19<00:33, 94431.65it/s]" + " 66%|██████▌ | 3298701/4997436 [00:19<00:09, 173579.12it/s]" ] }, { @@ -2058,7 +2058,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1810461/4997436 [00:19<00:33, 94686.10it/s]" + " 66%|██████▋ | 3316060/4997436 [00:19<00:09, 173258.64it/s]" ] }, { @@ -2066,7 +2066,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▋ | 1820293/4997436 [00:19<00:33, 95767.16it/s]" + " 67%|██████▋ | 3333425/4997436 [00:19<00:09, 173374.67it/s]" ] }, { @@ -2074,7 +2074,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1829929/4997436 [00:19<00:33, 95939.87it/s]" + " 67%|██████▋ | 3350764/4997436 [00:19<00:09, 173260.11it/s]" ] }, { @@ -2082,7 +2082,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1839525/4997436 [00:19<00:33, 94548.44it/s]" + " 67%|██████▋ | 3368166/4997436 [00:19<00:09, 173485.48it/s]" ] }, { @@ -2090,7 +2090,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1849240/4997436 [00:19<00:33, 95315.64it/s]" + " 68%|██████▊ | 3385525/4997436 [00:19<00:09, 173513.14it/s]" ] }, { @@ -2098,7 +2098,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1858884/4997436 [00:19<00:32, 95645.40it/s]" + " 68%|██████▊ | 3402877/4997436 [00:19<00:09, 173300.45it/s]" ] }, { @@ -2106,7 +2106,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1868452/4997436 [00:19<00:33, 93853.75it/s]" + " 68%|██████▊ | 3420208/4997436 [00:19<00:09, 173234.68it/s]" ] }, { @@ -2114,7 +2114,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1877939/4997436 [00:19<00:33, 94135.76it/s]" + " 69%|██████▉ | 3437532/4997436 [00:19<00:09, 173228.65it/s]" ] }, { @@ -2122,7 +2122,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1887360/4997436 [00:20<00:33, 92375.70it/s]" + " 69%|██████▉ | 3454882/4997436 [00:19<00:08, 173306.07it/s]" ] }, { @@ -2130,7 +2130,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1896608/4997436 [00:20<00:35, 88410.75it/s]" + " 69%|██████▉ | 3472213/4997436 [00:20<00:09, 166460.65it/s]" ] }, { @@ -2138,7 +2138,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1905790/4997436 [00:20<00:34, 89382.45it/s]" + " 70%|██████▉ | 3489491/4997436 [00:20<00:08, 168299.47it/s]" ] }, { @@ -2146,7 +2146,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1915201/4997436 [00:20<00:33, 90751.60it/s]" + " 70%|███████ | 3506830/4997436 [00:20<00:08, 169793.76it/s]" ] }, { @@ -2154,7 +2154,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1924571/4997436 [00:20<00:33, 91611.99it/s]" + " 71%|███████ | 3524180/4997436 [00:20<00:08, 170887.42it/s]" ] }, { @@ -2162,7 +2162,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1933867/4997436 [00:20<00:33, 92006.99it/s]" + " 71%|███████ | 3541534/4997436 [00:20<00:08, 171674.35it/s]" ] }, { @@ -2170,7 +2170,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1943083/4997436 [00:20<00:33, 91586.72it/s]" + " 71%|███████ | 3558960/4997436 [00:20<00:08, 172442.22it/s]" ] }, { @@ -2178,7 +2178,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1952348/4997436 [00:20<00:33, 91861.51it/s]" + " 72%|███████▏ | 3576383/4997436 [00:20<00:08, 172974.49it/s]" ] }, { @@ -2186,7 +2186,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1961884/4997436 [00:20<00:32, 92894.58it/s]" + " 72%|███████▏ | 3593814/4997436 [00:20<00:08, 173369.85it/s]" ] }, { @@ -2194,7 +2194,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1971436/4997436 [00:20<00:32, 93674.12it/s]" + " 72%|███████▏ | 3611224/4997436 [00:20<00:07, 173587.30it/s]" ] }, { @@ -2202,7 +2202,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1980809/4997436 [00:21<00:32, 91876.51it/s]" + " 73%|███████▎ | 3628635/4997436 [00:20<00:07, 173741.16it/s]" ] }, { @@ -2210,7 +2210,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1990008/4997436 [00:21<00:33, 91067.98it/s]" + " 73%|███████▎ | 3646013/4997436 [00:21<00:08, 166951.89it/s]" ] }, { @@ -2218,7 +2218,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 1999391/4997436 [00:21<00:32, 91877.40it/s]" + " 73%|███████▎ | 3663388/4997436 [00:21<00:07, 168929.96it/s]" ] }, { @@ -2226,7 +2226,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2008929/4997436 [00:21<00:32, 92910.17it/s]" + " 74%|███████▎ | 3680864/4997436 [00:21<00:07, 170640.98it/s]" ] }, { @@ -2234,7 +2234,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2018447/4997436 [00:21<00:31, 93582.38it/s]" + " 74%|███████▍ | 3698281/4997436 [00:21<00:07, 171681.41it/s]" ] }, { @@ -2242,7 +2242,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2027898/4997436 [00:21<00:31, 93855.06it/s]" + " 74%|███████▍ | 3715743/4997436 [00:21<00:07, 172550.43it/s]" ] }, { @@ -2250,7 +2250,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2037447/4997436 [00:21<00:31, 94339.89it/s]" + " 75%|███████▍ | 3733177/4997436 [00:21<00:07, 173080.99it/s]" ] }, { @@ -2258,7 +2258,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2046962/4997436 [00:21<00:31, 94579.28it/s]" + " 75%|███████▌ | 3750586/4997436 [00:21<00:07, 173379.77it/s]" ] }, { @@ -2266,7 +2266,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2056463/4997436 [00:21<00:31, 94704.79it/s]" + " 75%|███████▌ | 3767988/4997436 [00:21<00:07, 173569.12it/s]" ] }, { @@ -2274,7 +2274,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2065935/4997436 [00:22<00:31, 94371.94it/s]" + " 76%|███████▌ | 3785481/4997436 [00:21<00:06, 173974.70it/s]" ] }, { @@ -2282,7 +2282,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2075380/4997436 [00:22<00:30, 94391.40it/s]" + " 76%|███████▌ | 3802976/4997436 [00:21<00:06, 174265.34it/s]" ] }, { @@ -2290,7 +2290,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2084956/4997436 [00:22<00:30, 94797.78it/s]" + " 76%|███████▋ | 3820407/4997436 [00:22<00:06, 174232.97it/s]" ] }, { @@ -2298,7 +2298,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2094437/4997436 [00:22<00:31, 92255.52it/s]" + " 77%|███████▋ | 3837833/4997436 [00:22<00:06, 174144.19it/s]" ] }, { @@ -2306,7 +2306,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2103678/4997436 [00:22<00:31, 90805.62it/s]" + " 77%|███████▋ | 3855261/4997436 [00:22<00:06, 174183.69it/s]" ] }, { @@ -2314,7 +2314,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2113047/4997436 [00:22<00:31, 91646.12it/s]" + " 77%|███████▋ | 3872681/4997436 [00:22<00:06, 174060.75it/s]" ] }, { @@ -2322,7 +2322,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2122223/4997436 [00:22<00:31, 91157.18it/s]" + " 78%|███████▊ | 3890088/4997436 [00:22<00:06, 173810.48it/s]" ] }, { @@ -2330,7 +2330,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2131448/4997436 [00:22<00:31, 91475.73it/s]" + " 78%|███████▊ | 3907470/4997436 [00:22<00:06, 173597.21it/s]" ] }, { @@ -2338,7 +2338,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2141012/4997436 [00:22<00:30, 92706.76it/s]" + " 79%|███████▊ | 3924836/4997436 [00:22<00:06, 173614.94it/s]" ] }, { @@ -2346,7 +2346,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2150439/4997436 [00:22<00:30, 93167.25it/s]" + " 79%|███████▉ | 3942215/4997436 [00:22<00:06, 173664.46it/s]" ] }, { @@ -2354,7 +2354,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2159761/4997436 [00:23<00:30, 91893.33it/s]" + " 79%|███████▉ | 3959582/4997436 [00:22<00:05, 173614.93it/s]" ] }, { @@ -2362,7 +2362,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2169077/4997436 [00:23<00:30, 92263.82it/s]" + " 80%|███████▉ | 3976944/4997436 [00:22<00:05, 173514.71it/s]" ] }, { @@ -2370,7 +2370,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2178607/4997436 [00:23<00:30, 93162.60it/s]" + " 80%|███████▉ | 3994296/4997436 [00:23<00:05, 169785.32it/s]" ] }, { @@ -2378,7 +2378,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2188133/4997436 [00:23<00:29, 93783.13it/s]" + " 80%|████████ | 4011766/4997436 [00:23<00:05, 171234.42it/s]" ] }, { @@ -2386,7 +2386,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2197515/4997436 [00:23<00:29, 93503.39it/s]" + " 81%|████████ | 4029378/4997436 [00:23<00:05, 172681.06it/s]" ] }, { @@ -2394,7 +2394,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2206868/4997436 [00:23<00:29, 93224.17it/s]" + " 81%|████████ | 4046982/4997436 [00:23<00:05, 173677.05it/s]" ] }, { @@ -2402,7 +2402,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2216266/4997436 [00:23<00:29, 93445.92it/s]" + " 81%|████████▏ | 4064596/4997436 [00:23<00:05, 174408.91it/s]" ] }, { @@ -2410,7 +2410,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2225612/4997436 [00:23<00:29, 92537.56it/s]" + " 82%|████████▏ | 4082212/4997436 [00:23<00:05, 174928.13it/s]" ] }, { @@ -2418,7 +2418,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2234869/4997436 [00:23<00:30, 91490.22it/s]" + " 82%|████████▏ | 4099710/4997436 [00:23<00:05, 174843.93it/s]" ] }, { @@ -2426,7 +2426,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2244149/4997436 [00:23<00:29, 91873.44it/s]" + " 82%|████████▏ | 4117395/4997436 [00:23<00:05, 175439.90it/s]" ] }, { @@ -2434,7 +2434,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2253603/4997436 [00:24<00:29, 92660.05it/s]" + " 83%|████████▎ | 4134978/4997436 [00:23<00:04, 175554.65it/s]" ] }, { @@ -2442,7 +2442,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2262908/4997436 [00:24<00:29, 92773.23it/s]" + " 83%|████████▎ | 4152546/4997436 [00:23<00:04, 175589.88it/s]" ] }, { @@ -2450,7 +2450,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2272269/4997436 [00:24<00:29, 93020.00it/s]" + " 83%|████████▎ | 4170135/4997436 [00:24<00:04, 175677.63it/s]" ] }, { @@ -2458,7 +2458,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2281573/4997436 [00:24<00:29, 92522.34it/s]" + " 84%|████████▍ | 4187704/4997436 [00:24<00:04, 175460.52it/s]" ] }, { @@ -2466,7 +2466,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2290901/4997436 [00:24<00:29, 92739.51it/s]" + " 84%|████████▍ | 4205251/4997436 [00:24<00:04, 175313.88it/s]" ] }, { @@ -2474,7 +2474,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2300293/4997436 [00:24<00:28, 93087.84it/s]" + " 84%|████████▍ | 4222783/4997436 [00:24<00:04, 175284.97it/s]" ] }, { @@ -2482,7 +2482,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2309603/4997436 [00:24<00:29, 92346.99it/s]" + " 85%|████████▍ | 4240396/4997436 [00:24<00:04, 175535.22it/s]" ] }, { @@ -2490,7 +2490,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2319018/4997436 [00:24<00:28, 92880.83it/s]" + " 85%|████████▌ | 4258015/4997436 [00:24<00:04, 175728.02it/s]" ] }, { @@ -2498,7 +2498,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2328308/4997436 [00:24<00:28, 92854.55it/s]" + " 86%|████████▌ | 4275678/4997436 [00:24<00:04, 175994.86it/s]" ] }, { @@ -2506,7 +2506,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2337595/4997436 [00:24<00:28, 92059.18it/s]" + " 86%|████████▌ | 4293425/4997436 [00:24<00:03, 176435.62it/s]" ] }, { @@ -2514,7 +2514,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2346804/4997436 [00:25<00:29, 89424.72it/s]" + " 86%|████████▋ | 4311165/4997436 [00:24<00:03, 176721.61it/s]" ] }, { @@ -2522,7 +2522,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2355808/4997436 [00:25<00:29, 89599.58it/s]" + " 87%|████████▋ | 4328909/4997436 [00:24<00:03, 176933.08it/s]" ] }, { @@ -2530,7 +2530,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2365193/4997436 [00:25<00:28, 90847.24it/s]" + " 87%|████████▋ | 4346679/4997436 [00:25<00:03, 177159.49it/s]" ] }, { @@ -2538,7 +2538,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2374709/4997436 [00:25<00:28, 92108.22it/s]" + " 87%|████████▋ | 4364396/4997436 [00:25<00:03, 176849.67it/s]" ] }, { @@ -2546,7 +2546,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2384132/4997436 [00:25<00:28, 92736.10it/s]" + " 88%|████████▊ | 4382082/4997436 [00:25<00:03, 176724.05it/s]" ] }, { @@ -2554,7 +2554,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2393613/4997436 [00:25<00:27, 93351.40it/s]" + " 88%|████████▊ | 4399823/4997436 [00:25<00:03, 176926.94it/s]" ] }, { @@ -2562,7 +2562,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2402954/4997436 [00:25<00:28, 91830.23it/s]" + " 88%|████████▊ | 4417516/4997436 [00:25<00:03, 176911.60it/s]" ] }, { @@ -2570,7 +2570,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2412485/4997436 [00:25<00:27, 92854.97it/s]" + " 89%|████████▊ | 4435208/4997436 [00:25<00:03, 176887.24it/s]" ] }, { @@ -2578,7 +2578,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2421779/4997436 [00:25<00:28, 90933.59it/s]" + " 89%|████████▉ | 4452924/4997436 [00:25<00:03, 176965.90it/s]" ] }, { @@ -2586,7 +2586,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▊ | 2431030/4997436 [00:25<00:28, 91392.85it/s]" + " 89%|████████▉ | 4470651/4997436 [00:25<00:02, 177053.85it/s]" ] }, { @@ -2594,7 +2594,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2440572/4997436 [00:26<00:27, 92579.42it/s]" + " 90%|████████▉ | 4488406/4997436 [00:25<00:02, 177200.29it/s]" ] }, { @@ -2602,7 +2602,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2450126/4997436 [00:26<00:27, 93453.12it/s]" + " 90%|█████████ | 4506186/4997436 [00:25<00:02, 177377.80it/s]" ] }, { @@ -2610,7 +2610,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2459856/4997436 [00:26<00:26, 94595.27it/s]" + " 91%|█████████ | 4523954/4997436 [00:26<00:02, 177465.07it/s]" ] }, { @@ -2618,7 +2618,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2469687/4997436 [00:26<00:26, 95700.03it/s]" + " 91%|█████████ | 4541701/4997436 [00:26<00:02, 177061.52it/s]" ] }, { @@ -2626,7 +2626,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2479262/4997436 [00:26<00:26, 94757.76it/s]" + " 91%|█████████ | 4559408/4997436 [00:26<00:02, 176764.72it/s]" ] }, { @@ -2634,7 +2634,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2488743/4997436 [00:26<00:26, 94367.51it/s]" + " 92%|█████████▏| 4577176/4997436 [00:26<00:02, 177036.43it/s]" ] }, { @@ -2642,7 +2642,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2498184/4997436 [00:26<00:26, 93768.32it/s]" + " 92%|█████████▏| 4594897/4997436 [00:26<00:02, 177085.81it/s]" ] }, { @@ -2650,7 +2650,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2507564/4997436 [00:26<00:26, 92745.06it/s]" + " 92%|█████████▏| 4612737/4997436 [00:26<00:02, 177475.21it/s]" ] }, { @@ -2658,7 +2658,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2516842/4997436 [00:26<00:26, 92614.18it/s]" + " 93%|█████████▎| 4630485/4997436 [00:26<00:02, 177320.83it/s]" ] }, { @@ -2666,7 +2666,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2526275/4997436 [00:26<00:26, 93112.19it/s]" + " 93%|█████████▎| 4648218/4997436 [00:26<00:01, 177208.30it/s]" ] }, { @@ -2674,7 +2674,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2535771/4997436 [00:27<00:26, 93658.01it/s]" + " 93%|█████████▎| 4665942/4997436 [00:26<00:01, 177215.82it/s]" ] }, { @@ -2682,7 +2682,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2545410/4997436 [00:27<00:25, 94469.38it/s]" + " 94%|█████████▎| 4683700/4997436 [00:26<00:01, 177321.22it/s]" ] }, { @@ -2690,7 +2690,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2554859/4997436 [00:27<00:26, 93709.86it/s]" + " 94%|█████████▍| 4701523/4997436 [00:27<00:01, 177591.06it/s]" ] }, { @@ -2698,7 +2698,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2564233/4997436 [00:27<00:26, 93261.25it/s]" + " 94%|█████████▍| 4719283/4997436 [00:27<00:01, 177169.73it/s]" ] }, { @@ -2706,7 +2706,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2574001/4997436 [00:27<00:25, 94569.29it/s]" + " 95%|█████████▍| 4737001/4997436 [00:27<00:01, 176413.38it/s]" ] }, { @@ -2714,7 +2714,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2583461/4997436 [00:27<00:25, 93426.77it/s]" + " 95%|█████████▌| 4754644/4997436 [00:27<00:01, 176211.85it/s]" ] }, { @@ -2722,7 +2722,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2592808/4997436 [00:27<00:25, 93036.88it/s]" + " 95%|█████████▌| 4772266/4997436 [00:27<00:01, 176034.99it/s]" ] }, { @@ -2730,7 +2730,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2602403/4997436 [00:27<00:25, 93896.64it/s]" + " 96%|█████████▌| 4789870/4997436 [00:27<00:01, 175981.22it/s]" ] }, { @@ -2738,7 +2738,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2612198/4997436 [00:27<00:25, 95098.76it/s]" + " 96%|█████████▌| 4807469/4997436 [00:27<00:01, 175720.15it/s]" ] }, { @@ -2746,7 +2746,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2621961/4997436 [00:27<00:24, 95849.36it/s]" + " 97%|█████████▋| 4825042/4997436 [00:27<00:00, 175296.96it/s]" ] }, { @@ -2754,7 +2754,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2632277/4997436 [00:28<00:24, 98029.42it/s]" + " 97%|█████████▋| 4842653/4997436 [00:27<00:00, 175536.63it/s]" ] }, { @@ -2762,7 +2762,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2642083/4997436 [00:28<00:24, 97899.25it/s]" + " 97%|█████████▋| 4860207/4997436 [00:27<00:00, 175530.68it/s]" ] }, { @@ -2770,7 +2770,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2652234/4997436 [00:28<00:23, 98975.80it/s]" + " 98%|█████████▊| 4877960/4997436 [00:28<00:00, 176127.14it/s]" ] }, { @@ -2778,7 +2778,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2662136/4997436 [00:28<00:23, 98985.03it/s]" + " 98%|█████████▊| 4895723/4997436 [00:28<00:00, 176573.55it/s]" ] }, { @@ -2786,7 +2786,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2672076/4997436 [00:28<00:23, 99106.59it/s]" + " 98%|█████████▊| 4913440/4997436 [00:28<00:00, 176750.98it/s]" ] }, { @@ -2794,7 +2794,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 2681988/4997436 [00:28<00:23, 98037.86it/s]" + " 99%|█████████▊| 4931210/4997436 [00:28<00:00, 177032.76it/s]" ] }, { @@ -2802,7 +2802,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2691874/4997436 [00:28<00:23, 98278.14it/s]" + " 99%|█████████▉| 4948914/4997436 [00:28<00:00, 176888.67it/s]" ] }, { @@ -2810,7 +2810,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2701705/4997436 [00:28<00:23, 98187.00it/s]" + " 99%|█████████▉| 4966741/4997436 [00:28<00:00, 177300.08it/s]" ] }, { @@ -2818,7 +2818,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2711752/4997436 [00:28<00:23, 98865.50it/s]" + "100%|█████████▉| 4984472/4997436 [00:28<00:00, 177142.17it/s]" ] }, { @@ -2826,1863 +2826,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2721899/4997436 [00:28<00:22, 99640.43it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 55%|█████▍ | 2731905/4997436 [00:29<00:22, 99763.53it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 55%|█████▍ | 2741977/4997436 [00:29<00:22, 100045.37it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 55%|█████▌ | 2752124/4997436 [00:29<00:22, 100467.38it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 55%|█████▌ | 2762172/4997436 [00:29<00:22, 99687.71it/s] " - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 55%|█████▌ | 2772157/4997436 [00:29<00:22, 99732.02it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 56%|█████▌ | 2782132/4997436 [00:29<00:22, 97775.84it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 56%|█████▌ | 2791919/4997436 [00:29<00:22, 96981.10it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 56%|█████▌ | 2801832/4997436 [00:29<00:22, 97611.98it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 56%|█████▋ | 2811637/4997436 [00:29<00:22, 97736.46it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 56%|█████▋ | 2821434/4997436 [00:30<00:22, 97803.78it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 57%|█████▋ | 2831300/4997436 [00:30<00:22, 98054.62it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 57%|█████▋ | 2841320/4997436 [00:30<00:21, 98692.92it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 57%|█████▋ | 2851192/4997436 [00:30<00:21, 98579.72it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 57%|█████▋ | 2861052/4997436 [00:30<00:21, 97812.85it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 57%|█████▋ | 2870836/4997436 [00:30<00:22, 95820.65it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 58%|█████▊ | 2880531/4997436 [00:30<00:22, 96149.23it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 58%|█████▊ | 2890153/4997436 [00:30<00:21, 95807.99it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 58%|█████▊ | 2899739/4997436 [00:30<00:22, 95214.80it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 58%|█████▊ | 2909394/4997436 [00:30<00:21, 95606.89it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 58%|█████▊ | 2919303/4997436 [00:31<00:21, 96639.44it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 59%|█████▊ | 2929223/4997436 [00:31<00:21, 97398.40it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 59%|█████▉ | 2938966/4997436 [00:31<00:21, 97276.49it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 59%|█████▉ | 2948696/4997436 [00:31<00:21, 96338.31it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 59%|█████▉ | 2958560/4997436 [00:31<00:21, 97010.17it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 59%|█████▉ | 2968264/4997436 [00:31<00:22, 92231.41it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 60%|█████▉ | 2977913/4997436 [00:31<00:21, 93455.77it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 60%|█████▉ | 2987439/4997436 [00:31<00:21, 93962.46it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 60%|█████▉ | 2997473/4997436 [00:31<00:20, 95833.26it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 60%|██████ | 3007258/4997436 [00:31<00:20, 96426.20it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 60%|██████ | 3016919/4997436 [00:32<00:20, 95697.86it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 61%|██████ | 3026536/4997436 [00:32<00:20, 95833.60it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 61%|██████ | 3036180/4997436 [00:32<00:20, 96010.04it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 61%|██████ | 3045788/4997436 [00:32<00:20, 95727.54it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 61%|██████ | 3055366/4997436 [00:32<00:20, 94282.17it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 61%|██████▏ | 3064909/4997436 [00:32<00:20, 94567.25it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 62%|██████▏ | 3074443/4997436 [00:32<00:20, 94792.22it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 62%|██████▏ | 3084278/4997436 [00:32<00:19, 95848.77it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 62%|██████▏ | 3093867/4997436 [00:32<00:19, 95503.45it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 62%|██████▏ | 3103421/4997436 [00:32<00:19, 95039.86it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 62%|██████▏ | 3113161/4997436 [00:33<00:19, 95738.91it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 62%|██████▏ | 3122965/4997436 [00:33<00:19, 96422.20it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 63%|██████▎ | 3132872/4997436 [00:33<00:19, 97208.48it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 63%|██████▎ | 3142884/4997436 [00:33<00:18, 98074.73it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 63%|██████▎ | 3152869/4997436 [00:33<00:18, 98602.82it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 63%|██████▎ | 3162731/4997436 [00:33<00:19, 95864.31it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 63%|██████▎ | 3172335/4997436 [00:33<00:19, 93859.36it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 64%|██████▎ | 3181900/4997436 [00:33<00:19, 94376.07it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 64%|██████▍ | 3191682/4997436 [00:33<00:18, 95383.50it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 64%|██████▍ | 3201561/4997436 [00:33<00:18, 96386.20it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 64%|██████▍ | 3211210/4997436 [00:34<00:18, 95027.53it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 64%|██████▍ | 3220999/4997436 [00:34<00:18, 95868.61it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 65%|██████▍ | 3230595/4997436 [00:34<00:18, 95783.18it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 65%|██████▍ | 3240263/4997436 [00:34<00:18, 96045.98it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 65%|██████▌ | 3250142/4997436 [00:34<00:18, 96855.41it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 65%|██████▌ | 3259832/4997436 [00:34<00:18, 95873.53it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 65%|██████▌ | 3269424/4997436 [00:34<00:18, 95481.35it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 66%|██████▌ | 3278976/4997436 [00:34<00:18, 95319.45it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 66%|██████▌ | 3288655/4997436 [00:34<00:17, 95754.10it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 66%|██████▌ | 3298342/4997436 [00:34<00:17, 96082.92it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 66%|██████▌ | 3307952/4997436 [00:35<00:17, 95901.86it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 66%|██████▋ | 3317544/4997436 [00:35<00:17, 94769.80it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 67%|██████▋ | 3327355/4997436 [00:35<00:17, 95757.60it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 67%|██████▋ | 3337007/4997436 [00:35<00:17, 95980.50it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 67%|██████▋ | 3346811/4997436 [00:35<00:17, 96592.22it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 67%|██████▋ | 3356473/4997436 [00:35<00:17, 93217.64it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 67%|██████▋ | 3365959/4997436 [00:35<00:17, 93692.45it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 68%|██████▊ | 3375470/4997436 [00:35<00:17, 94104.98it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 68%|██████▊ | 3384895/4997436 [00:35<00:17, 93858.31it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 68%|██████▊ | 3394294/4997436 [00:35<00:17, 93875.68it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 68%|██████▊ | 3403798/4997436 [00:36<00:16, 94218.78it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 68%|██████▊ | 3413709/4997436 [00:36<00:16, 95673.70it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 69%|██████▊ | 3423327/4997436 [00:36<00:16, 95815.08it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 69%|██████▊ | 3432974/4997436 [00:36<00:16, 96006.88it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 69%|██████▉ | 3442577/4997436 [00:36<00:16, 95965.89it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 69%|██████▉ | 3452176/4997436 [00:36<00:16, 94451.73it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 69%|██████▉ | 3462094/4997436 [00:36<00:16, 95848.26it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 69%|██████▉ | 3471883/4997436 [00:36<00:15, 96451.47it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 70%|██████▉ | 3481533/4997436 [00:36<00:15, 95618.80it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 70%|██████▉ | 3491488/4997436 [00:37<00:15, 96778.02it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 70%|███████ | 3501501/4997436 [00:37<00:15, 97772.92it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 70%|███████ | 3511285/4997436 [00:37<00:15, 97788.79it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 70%|███████ | 3521458/4997436 [00:37<00:14, 98963.50it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 71%|███████ | 3531357/4997436 [00:37<00:14, 98716.10it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 71%|███████ | 3541231/4997436 [00:37<00:14, 97759.13it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 71%|███████ | 3551175/4997436 [00:37<00:14, 98254.23it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 71%|███████▏ | 3561003/4997436 [00:37<00:14, 98168.33it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 71%|███████▏ | 3571101/4997436 [00:37<00:14, 99002.59it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 72%|███████▏ | 3581003/4997436 [00:37<00:14, 97932.18it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 72%|███████▏ | 3591165/4997436 [00:38<00:14, 99023.64it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 72%|███████▏ | 3601137/4997436 [00:38<00:14, 99227.75it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 72%|███████▏ | 3611063/4997436 [00:38<00:14, 98878.90it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 72%|███████▏ | 3620953/4997436 [00:38<00:14, 96122.71it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 73%|███████▎ | 3630583/4997436 [00:38<00:14, 95217.62it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 73%|███████▎ | 3640309/4997436 [00:38<00:14, 95806.95it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 73%|███████▎ | 3650383/4997436 [00:38<00:13, 97258.07it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 73%|███████▎ | 3660197/4997436 [00:38<00:13, 97514.15it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 73%|███████▎ | 3670130/4997436 [00:38<00:13, 98049.43it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 74%|███████▎ | 3679996/4997436 [00:38<00:13, 98227.15it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 74%|███████▍ | 3690275/4997436 [00:39<00:13, 99586.05it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 74%|███████▍ | 3700396/4997436 [00:39<00:12, 100066.97it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 74%|███████▍ | 3710837/4997436 [00:39<00:12, 101363.54it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 74%|███████▍ | 3721091/4997436 [00:39<00:12, 101711.26it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 75%|███████▍ | 3731588/4997436 [00:39<00:12, 102685.06it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 75%|███████▍ | 3742038/4997436 [00:39<00:12, 103225.17it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 75%|███████▌ | 3752367/4997436 [00:39<00:12, 103239.17it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 75%|███████▌ | 3762692/4997436 [00:39<00:12, 101970.51it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 75%|███████▌ | 3772904/4997436 [00:39<00:12, 102011.30it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 76%|███████▌ | 3783108/4997436 [00:39<00:12, 100230.32it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 76%|███████▌ | 3793139/4997436 [00:40<00:12, 99071.74it/s] " - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 76%|███████▌ | 3803393/4997436 [00:40<00:11, 100088.06it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 76%|███████▋ | 3813409/4997436 [00:40<00:11, 99290.95it/s] " - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 77%|███████▋ | 3823344/4997436 [00:40<00:11, 98804.27it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 77%|███████▋ | 3833228/4997436 [00:40<00:11, 97570.66it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 77%|███████▋ | 3842990/4997436 [00:40<00:12, 94726.44it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 77%|███████▋ | 3852480/4997436 [00:40<00:12, 94575.68it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 77%|███████▋ | 3862029/4997436 [00:40<00:11, 94838.13it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 77%|███████▋ | 3871522/4997436 [00:40<00:11, 94166.43it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 78%|███████▊ | 3880945/4997436 [00:40<00:11, 93805.53it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 78%|███████▊ | 3890489/4997436 [00:41<00:11, 94285.33it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 78%|███████▊ | 3900097/4997436 [00:41<00:11, 94803.59it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 78%|███████▊ | 3909691/4997436 [00:41<00:11, 95139.02it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 78%|███████▊ | 3919747/4997436 [00:41<00:11, 96751.85it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 79%|███████▊ | 3929425/4997436 [00:41<00:11, 96539.01it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 79%|███████▉ | 3939081/4997436 [00:41<00:11, 96139.15it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 79%|███████▉ | 3948720/4997436 [00:41<00:10, 96208.65it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 79%|███████▉ | 3958765/4997436 [00:41<00:10, 97473.16it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 79%|███████▉ | 3968834/4997436 [00:41<00:10, 98431.37it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 80%|███████▉ | 3978899/4997436 [00:41<00:10, 99093.18it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 80%|███████▉ | 3988810/4997436 [00:42<00:10, 98915.84it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 80%|████████ | 3998703/4997436 [00:42<00:10, 98413.56it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 80%|████████ | 4008592/4997436 [00:42<00:10, 98521.22it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 80%|████████ | 4018625/4997436 [00:42<00:09, 99057.10it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 81%|████████ | 4028532/4997436 [00:42<00:09, 98828.79it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 81%|████████ | 4038416/4997436 [00:42<00:09, 97939.35it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 81%|████████ | 4048212/4997436 [00:42<00:09, 97562.89it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 81%|████████ | 4057970/4997436 [00:42<00:09, 97281.07it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 81%|████████▏ | 4067700/4997436 [00:42<00:09, 97270.31it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 82%|████████▏ | 4077428/4997436 [00:42<00:09, 96897.82it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 82%|████████▏ | 4087119/4997436 [00:43<00:09, 95302.34it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 82%|████████▏ | 4096658/4997436 [00:43<00:09, 95324.88it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 82%|████████▏ | 4106206/4997436 [00:43<00:09, 95368.21it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 82%|████████▏ | 4115909/4997436 [00:43<00:09, 95859.59it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 83%|████████▎ | 4125836/4997436 [00:43<00:08, 96872.74it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 83%|████████▎ | 4135526/4997436 [00:43<00:09, 95337.95it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 83%|████████▎ | 4145067/4997436 [00:43<00:09, 94365.65it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 83%|████████▎ | 4154510/4997436 [00:43<00:08, 94201.41it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 83%|████████▎ | 4164123/4997436 [00:43<00:08, 94769.51it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 84%|████████▎ | 4173653/4997436 [00:43<00:08, 94924.36it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 84%|████████▎ | 4183635/4997436 [00:44<00:08, 96375.99it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 84%|████████▍ | 4193276/4997436 [00:44<00:08, 96245.58it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 84%|████████▍ | 4202966/4997436 [00:44<00:08, 96438.20it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 84%|████████▍ | 4212612/4997436 [00:44<00:08, 96050.51it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 84%|████████▍ | 4222629/4997436 [00:44<00:07, 97265.12it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 85%|████████▍ | 4232357/4997436 [00:44<00:07, 96298.29it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 85%|████████▍ | 4242320/4997436 [00:44<00:07, 97285.27it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 85%|████████▌ | 4252052/4997436 [00:44<00:07, 97112.33it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 85%|████████▌ | 4261987/4997436 [00:44<00:07, 97776.35it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 85%|████████▌ | 4271767/4997436 [00:45<00:07, 96067.38it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 86%|████████▌ | 4281834/4997436 [00:45<00:07, 97424.59it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 86%|████████▌ | 4291584/4997436 [00:45<00:07, 96104.10it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 86%|████████▌ | 4301254/4997436 [00:45<00:07, 96275.76it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 86%|████████▋ | 4310973/4997436 [00:45<00:07, 96541.34it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 86%|████████▋ | 4320632/4997436 [00:45<00:07, 96443.61it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 87%|████████▋ | 4330333/4997436 [00:45<00:06, 96609.79it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 87%|████████▋ | 4339997/4997436 [00:45<00:06, 96594.70it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 87%|████████▋ | 4349850/4997436 [00:45<00:06, 97169.52it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 87%|████████▋ | 4359586/4997436 [00:45<00:06, 97222.67it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 87%|████████▋ | 4369310/4997436 [00:46<00:06, 97029.13it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 88%|████████▊ | 4379014/4997436 [00:46<00:06, 96857.54it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 88%|████████▊ | 4389013/4997436 [00:46<00:06, 97784.38it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 88%|████████▊ | 4398793/4997436 [00:46<00:06, 97553.43it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 88%|████████▊ | 4408779/4997436 [00:46<00:05, 98237.63it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 88%|████████▊ | 4418719/4997436 [00:46<00:05, 98581.33it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 89%|████████▊ | 4428650/4997436 [00:46<00:05, 98796.78it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 89%|████████▉ | 4438531/4997436 [00:46<00:05, 97196.47it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 89%|████████▉ | 4448591/4997436 [00:46<00:05, 98200.06it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 89%|████████▉ | 4458417/4997436 [00:46<00:05, 97098.07it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 89%|████████▉ | 4468445/4997436 [00:47<00:05, 98035.61it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 90%|████████▉ | 4478627/4997436 [00:47<00:05, 99156.56it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 90%|████████▉ | 4488790/4997436 [00:47<00:05, 99887.77it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 90%|█████████ | 4498783/4997436 [00:47<00:05, 99722.75it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 90%|█████████ | 4508758/4997436 [00:47<00:04, 98780.73it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 90%|█████████ | 4518640/4997436 [00:47<00:04, 98331.67it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████ | 4528647/4997436 [00:47<00:04, 98844.91it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████ | 4538865/4997436 [00:47<00:04, 99828.46it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████ | 4548851/4997436 [00:47<00:04, 99138.44it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████ | 4559279/4997436 [00:47<00:04, 100663.33it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████▏| 4569630/4997436 [00:48<00:04, 101509.35it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 4579890/4997436 [00:48<00:04, 101831.93it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 4590076/4997436 [00:48<00:04, 100861.36it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 4600166/4997436 [00:48<00:04, 99295.69it/s] " - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 4610103/4997436 [00:48<00:03, 98466.29it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 4620148/4997436 [00:48<00:03, 99045.33it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 93%|█████████▎| 4630159/4997436 [00:48<00:03, 99356.34it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 93%|█████████▎| 4640188/4997436 [00:48<00:03, 99628.44it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 93%|█████████▎| 4650154/4997436 [00:48<00:03, 98431.81it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 93%|█████████▎| 4660002/4997436 [00:48<00:03, 97722.44it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 93%|█████████▎| 4669778/4997436 [00:49<00:03, 95994.96it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 94%|█████████▎| 4679489/4997436 [00:49<00:03, 96318.02it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 94%|█████████▍| 4689589/4997436 [00:49<00:03, 97697.36it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 94%|█████████▍| 4699479/4997436 [00:49<00:03, 98049.37it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 94%|█████████▍| 4709289/4997436 [00:49<00:02, 97428.95it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 94%|█████████▍| 4719036/4997436 [00:49<00:02, 97029.64it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▍| 4729046/4997436 [00:49<00:02, 97935.73it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▍| 4739051/4997436 [00:49<00:02, 98558.07it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▌| 4749142/4997436 [00:49<00:02, 99255.19it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▌| 4759070/4997436 [00:49<00:02, 98633.54it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▌| 4768936/4997436 [00:50<00:02, 98529.40it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 96%|█████████▌| 4779200/4997436 [00:50<00:02, 99752.95it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 96%|█████████▌| 4789281/4997436 [00:50<00:02, 100057.57it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 96%|█████████▌| 4799289/4997436 [00:50<00:01, 100036.98it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 96%|█████████▌| 4809325/4997436 [00:50<00:01, 100126.34it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 96%|█████████▋| 4819339/4997436 [00:50<00:01, 98946.14it/s] " - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 4829238/4997436 [00:50<00:01, 98387.66it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 4839080/4997436 [00:50<00:01, 98339.25it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 4848919/4997436 [00:50<00:01, 98349.84it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 4858756/4997436 [00:50<00:01, 97583.02it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 4868517/4997436 [00:51<00:01, 96032.90it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 4878580/4997436 [00:51<00:01, 97380.55it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 4888325/4997436 [00:51<00:01, 97263.08it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 4898056/4997436 [00:51<00:01, 92999.80it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 4908186/4997436 [00:51<00:00, 95388.08it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 4917762/4997436 [00:51<00:00, 92480.12it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 99%|█████████▊| 4927555/4997436 [00:51<00:00, 94039.44it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 99%|█████████▉| 4937576/4997436 [00:51<00:00, 95832.70it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 99%|█████████▉| 4947305/4997436 [00:51<00:00, 96257.39it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 99%|█████████▉| 4957079/4997436 [00:52<00:00, 96692.45it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 99%|█████████▉| 4967041/4997436 [00:52<00:00, 97552.34it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|█████████▉| 4976833/4997436 [00:52<00:00, 97656.53it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|█████████▉| 4987059/4997436 [00:52<00:00, 99026.84it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|█████████▉| 4996969/4997436 [00:52<00:00, 99008.16it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 4997436/4997436 [00:52<00:00, 95358.38it/s]" + "100%|██████████| 4997436/4997436 [00:28<00:00, 173979.47it/s]" ] }, { @@ -4921,10 +3065,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:07.004177Z", - "iopub.status.busy": "2023-11-02T15:24:07.003584Z", - "iopub.status.idle": "2023-11-02T15:24:21.929718Z", - "shell.execute_reply": "2023-11-02T15:24:21.923257Z" + "iopub.execute_input": "2023-11-04T09:25:55.825872Z", + "iopub.status.busy": "2023-11-04T09:25:55.825456Z", + "iopub.status.idle": "2023-11-04T09:26:02.410315Z", + "shell.execute_reply": "2023-11-04T09:26:02.409656Z" } }, "outputs": [], @@ -4938,10 +3082,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:22.060539Z", - "iopub.status.busy": "2023-11-02T15:24:22.059597Z", - "iopub.status.idle": "2023-11-02T15:24:30.741531Z", - "shell.execute_reply": "2023-11-02T15:24:30.740502Z" + "iopub.execute_input": "2023-11-04T09:26:02.413180Z", + "iopub.status.busy": "2023-11-04T09:26:02.412906Z", + "iopub.status.idle": "2023-11-04T09:26:05.542557Z", + "shell.execute_reply": "2023-11-04T09:26:05.541883Z" } }, "outputs": [ @@ -5010,17 +3154,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:30.746803Z", - "iopub.status.busy": "2023-11-02T15:24:30.746453Z", - "iopub.status.idle": "2023-11-02T15:24:34.191649Z", - "shell.execute_reply": "2023-11-02T15:24:34.190542Z" + "iopub.execute_input": "2023-11-04T09:26:05.545221Z", + "iopub.status.busy": "2023-11-04T09:26:05.545016Z", + "iopub.status.idle": "2023-11-04T09:26:06.858877Z", + "shell.execute_reply": "2023-11-04T09:26:06.858253Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6795c80077d140ce9f4dd03920b4a9c6", + "model_id": "e95126e9ebc046f8b7f0709a9b140c47", "version_major": 2, "version_minor": 0 }, @@ -5050,10 +3194,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:34.196699Z", - "iopub.status.busy": "2023-11-02T15:24:34.196353Z", - "iopub.status.idle": "2023-11-02T15:24:34.537309Z", - "shell.execute_reply": "2023-11-02T15:24:34.536129Z" + "iopub.execute_input": "2023-11-04T09:26:06.861566Z", + "iopub.status.busy": "2023-11-04T09:26:06.861363Z", + "iopub.status.idle": "2023-11-04T09:26:07.077063Z", + "shell.execute_reply": "2023-11-04T09:26:07.076442Z" } }, "outputs": [], @@ -5067,10 +3211,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:34.541876Z", - "iopub.status.busy": "2023-11-02T15:24:34.541548Z", - "iopub.status.idle": "2023-11-02T15:24:43.821516Z", - "shell.execute_reply": "2023-11-02T15:24:43.820377Z" + "iopub.execute_input": "2023-11-04T09:26:07.079766Z", + "iopub.status.busy": "2023-11-04T09:26:07.079564Z", + "iopub.status.idle": "2023-11-04T09:26:11.625674Z", + "shell.execute_reply": "2023-11-04T09:26:11.624980Z" } }, "outputs": [ @@ -5143,10 +3287,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:43.826121Z", - "iopub.status.busy": "2023-11-02T15:24:43.825388Z", - "iopub.status.idle": "2023-11-02T15:24:43.995273Z", - "shell.execute_reply": "2023-11-02T15:24:43.994128Z" + "iopub.execute_input": "2023-11-04T09:26:11.628520Z", + "iopub.status.busy": "2023-11-04T09:26:11.628314Z", + "iopub.status.idle": "2023-11-04T09:26:11.694822Z", + "shell.execute_reply": "2023-11-04T09:26:11.694107Z" }, "nbsphinx": "hidden" }, @@ -5190,31 +3334,22 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "13eb9c0cbc954f3fbddb12c5caa71076": { + "009a47328894418e843ca3ec8420bd91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_24dd143ed2ba448d94f10899d484892b", - "max": 244800.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_de3fe1a51b674d8789f5a88414c2db1b", - "value": 244800.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "1a4a4c89993b498ca899f4c673a31967": { + "00fef66b61d1416398c1efcb77f46b58": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5266,7 +3401,49 @@ "width": null } }, - "24dd143ed2ba448d94f10899d484892b": { + "0f1041d0f96948fc87d88009fed951ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_806297cbc2204d75ac65af5422e24653", + "placeholder": "​", + "style": "IPY_MODEL_728dc1729c1a49dab3c1ce6565e7f32a", + "value": "images processed using softmin: 100%" + } + }, + "10c1504edf5943c4ab82d5f24f33d9bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_78d56f243f7f4005a4265beabbf61e84", + "placeholder": "​", + "style": "IPY_MODEL_a734c7bb722c48748fad4371fcb5dd90", + "value": "number of examples processed for checking labels: " + } + }, + "1911366edfff4e0f89132a7add4fbcbd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5318,22 +3495,23 @@ "width": null } }, - "2b545da6bd574f0d9c6d17e002f15459": { + "19b7b667441e4917b38553de2257c5d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "3fe893e9cb074fb6979e66b5b31eebe0": { + "200a2c77194d4a418841660c052d814a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -5349,31 +3527,51 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bee87ab3a18f4628b4bfac3bac906cb9", - "max": 30.0, + "layout": "IPY_MODEL_5d18223055d34c699eb705bdab96b440", + "max": 244800.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_754331747aa246a2bf0979ae42f39841", - "value": 30.0 + "style": "IPY_MODEL_6e0f918bffff4fbca25c674122c58853", + "value": 244800.0 } }, - "48adca308515462783aab0def8f0a0f2": { + "3761ecf2e84e47daabbb57ef6d218054": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bbbb45e5407c4bf18ac3f1ccbee9d748", + "placeholder": "​", + "style": "IPY_MODEL_009a47328894418e843ca3ec8420bd91", + "value": "number of examples processed for estimating thresholds: " + } + }, + "3c5edd0b9d4e4499bda5f98f9ba46904": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "490a3ec3e934490597a189fec0c08f71": { + "455f6efc5872419fa7d6c42efed407b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -5388,66 +3586,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e5d9341859e940e5b45bb442c984b722", - "IPY_MODEL_13eb9c0cbc954f3fbddb12c5caa71076", - "IPY_MODEL_d0f29056e04243b4acd9c61d7c224d9c" + "IPY_MODEL_3761ecf2e84e47daabbb57ef6d218054", + "IPY_MODEL_57fcac44a3cd416997cd2477e0bf387e", + "IPY_MODEL_86b8f04425884ca5a2482855c8d2738e" ], - "layout": "IPY_MODEL_803fa576923546d4b5d7780b388aa8e7" - } - }, - "4aef34e310df4cd4b2b99cbb2311899b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "layout": "IPY_MODEL_fd5b6b5537e942bc98e2e986632ed3ab" } }, - "4c8bc77d820d4282854741bee154e1c0": { + "52878af6cac1444cb5261f83bc47ffab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5462,13 +3608,37 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f9c4d44648924f979ce88b91227af28e", + "layout": "IPY_MODEL_684d9aa8b6944accaf63060960666374", "placeholder": "​", - "style": "IPY_MODEL_98c06d8a46434500867fe0294d789636", - "value": " 300000/? [00:00<00:00, 3267270.46it/s]" + "style": "IPY_MODEL_fc0c5ee77f8a4184ba5ed21457a32bed", + "value": " 30/30 [00:01<00:00, 23.35it/s]" + } + }, + "57fcac44a3cd416997cd2477e0bf387e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_77edd80b429e45d39849720a4eeb1f7b", + "max": 244800.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6f83735803844606be9739f114a365b7", + "value": 244800.0 } }, - "576bf9da24944c91b1c8bc615fa1d2d1": { + "5d18223055d34c699eb705bdab96b440": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5520,7 +3690,7 @@ "width": null } }, - "5c6d69ca414f47599f7cba68ee7ba817": { + "5e03a630e1a241549cb6c3e77e57cd33": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5572,7 +3742,7 @@ "width": null } }, - "6795c80077d140ce9f4dd03920b4a9c6": { + "644d8d222bb7434d9224bb6b3207e61b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -5585,37 +3755,16 @@ "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_690812e5d4144c8f8ab304af50d68ad6", - "IPY_MODEL_3fe893e9cb074fb6979e66b5b31eebe0", - "IPY_MODEL_812fdea5e8ec479894189d90365b4189" - ], - "layout": "IPY_MODEL_576bf9da24944c91b1c8bc615fa1d2d1" - } - }, - "690812e5d4144c8f8ab304af50d68ad6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9625c66a291c4e5dbf9e0501ddc65fe8", - "placeholder": "​", - "style": "IPY_MODEL_b5faea0ba92848b6a77424999ab22c2f", - "value": "images processed using softmin: 100%" + "box_style": "", + "children": [ + "IPY_MODEL_10c1504edf5943c4ab82d5f24f33d9bc", + "IPY_MODEL_200a2c77194d4a418841660c052d814a", + "IPY_MODEL_8e1a25dfd1ca4d3c8139c4de181d0784" + ], + "layout": "IPY_MODEL_aca5add058e74841a64a2e46854a41ce" } }, - "6c451d82295e499588505bb478f5bd16": { + "684d9aa8b6944accaf63060960666374": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5667,28 +3816,23 @@ "width": null } }, - "6e24c07364bd4b17948143439fc58f57": { + "6e0f918bffff4fbca25c674122c58853": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6c451d82295e499588505bb478f5bd16", - "placeholder": "​", - "style": "IPY_MODEL_e5219f954e8d43768dd7d762412bfb20", - "value": "number of examples processed for estimating thresholds: " + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "754331747aa246a2bf0979ae42f39841": { + "6f83735803844606be9739f114a365b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -5704,7 +3848,46 @@ "description_width": "" } }, - "803fa576923546d4b5d7780b388aa8e7": { + "728dc1729c1a49dab3c1ce6565e7f32a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "75e7065dccab48ffa50528355bb9be1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b3c279f317e2476aab7c57f2e8a3a31a", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_19b7b667441e4917b38553de2257c5d2", + "value": 30.0 + } + }, + "77edd80b429e45d39849720a4eeb1f7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5756,28 +3939,7 @@ "width": null } }, - "812fdea5e8ec479894189d90365b4189": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5c6d69ca414f47599f7cba68ee7ba817", - "placeholder": "​", - "style": "IPY_MODEL_ea51e4fd77b340ceb4fd52644594fb8f", - "value": " 30/30 [00:03<00:00, 9.92it/s]" - } - }, - "8ff4a9ebe2bd49db9045bbf364378cd2": { + "78d56f243f7f4005a4265beabbf61e84": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5829,7 +3991,7 @@ "width": null } }, - "9625c66a291c4e5dbf9e0501ddc65fe8": { + "806297cbc2204d75ac65af5422e24653": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5881,7 +4043,49 @@ "width": null } }, - "98c06d8a46434500867fe0294d789636": { + "86b8f04425884ca5a2482855c8d2738e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5e03a630e1a241549cb6c3e77e57cd33", + "placeholder": "​", + "style": "IPY_MODEL_3c5edd0b9d4e4499bda5f98f9ba46904", + "value": " 300000/? [00:00<00:00, 5527815.88it/s]" + } + }, + "8e1a25dfd1ca4d3c8139c4de181d0784": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_00fef66b61d1416398c1efcb77f46b58", + "placeholder": "​", + "style": "IPY_MODEL_b0dd94fd69b5408883fe83ebdbd4fe72", + "value": " 300000/? [00:02<00:00, 106197.75it/s]" + } + }, + "a734c7bb722c48748fad4371fcb5dd90": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -5896,7 +4100,7 @@ "description_width": "" } }, - "a9e3d0bbd92240e0a56f5496440fcaf5": { + "aca5add058e74841a64a2e46854a41ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5948,7 +4152,7 @@ "width": null } }, - "b5faea0ba92848b6a77424999ab22c2f": { + "b0dd94fd69b5408883fe83ebdbd4fe72": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -5963,7 +4167,7 @@ "description_width": "" } }, - "bee87ab3a18f4628b4bfac3bac906cb9": { + "b3c279f317e2476aab7c57f2e8a3a31a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6015,95 +4219,81 @@ "width": null } }, - "c5e60034cbbe45289b901ea62cc68152": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d0f29056e04243b4acd9c61d7c224d9c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8ff4a9ebe2bd49db9045bbf364378cd2", - "placeholder": "​", - "style": "IPY_MODEL_c5e60034cbbe45289b901ea62cc68152", - "value": " 300000/? [00:02<00:00, 104686.04it/s]" - } - }, - "de3fe1a51b674d8789f5a88414c2db1b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e5219f954e8d43768dd7d762412bfb20": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "bbbb45e5407c4bf18ac3f1ccbee9d748": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e5d9341859e940e5b45bb442c984b722": { + "e95126e9ebc046f8b7f0709a9b140c47": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4aef34e310df4cd4b2b99cbb2311899b", - "placeholder": "​", - "style": "IPY_MODEL_2b545da6bd574f0d9c6d17e002f15459", - "value": "number of examples processed for checking labels: " + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0f1041d0f96948fc87d88009fed951ba", + "IPY_MODEL_75e7065dccab48ffa50528355bb9be1c", + "IPY_MODEL_52878af6cac1444cb5261f83bc47ffab" + ], + "layout": "IPY_MODEL_1911366edfff4e0f89132a7add4fbcbd" } }, - "ea51e4fd77b340ceb4fd52644594fb8f": { + "fc0c5ee77f8a4184ba5ed21457a32bed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -6118,7 +4308,7 @@ "description_width": "" } }, - "f9c4d44648924f979ce88b91227af28e": { + "fd5b6b5537e942bc98e2e986632ed3ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6169,52 +4359,6 @@ "visibility": null, "width": null } - }, - "fbade7b119ea4248afefe80635667e1f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1a4a4c89993b498ca899f4c673a31967", - "max": 244800.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_48adca308515462783aab0def8f0a0f2", - "value": 244800.0 - } - }, - "fbc0d7f26d9247179cfb96e1e7b0ba8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6e24c07364bd4b17948143439fc58f57", - "IPY_MODEL_fbade7b119ea4248afefe80635667e1f", - "IPY_MODEL_4c8bc77d820d4282854741bee154e1c0" - ], - "layout": "IPY_MODEL_a9e3d0bbd92240e0a56f5496440fcaf5" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb index 8d0fd6c82..217257915 100644 --- a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:52.403751Z", - "iopub.status.busy": "2023-11-02T15:24:52.403144Z", - "iopub.status.idle": "2023-11-02T15:24:55.321093Z", - "shell.execute_reply": "2023-11-02T15:24:55.319992Z" + "iopub.execute_input": "2023-11-04T09:26:14.227663Z", + "iopub.status.busy": "2023-11-04T09:26:14.227182Z", + "iopub.status.idle": "2023-11-04T09:26:15.212316Z", + "shell.execute_reply": "2023-11-04T09:26:15.211713Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:55.325899Z", - "iopub.status.busy": "2023-11-02T15:24:55.325031Z", - "iopub.status.idle": "2023-11-02T15:24:55.407331Z", - "shell.execute_reply": "2023-11-02T15:24:55.406275Z" + "iopub.execute_input": "2023-11-04T09:26:15.215403Z", + "iopub.status.busy": "2023-11-04T09:26:15.214916Z", + "iopub.status.idle": "2023-11-04T09:26:15.235839Z", + "shell.execute_reply": "2023-11-04T09:26:15.235339Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:55.412458Z", - "iopub.status.busy": "2023-11-02T15:24:55.411745Z", - "iopub.status.idle": "2023-11-02T15:24:55.541363Z", - "shell.execute_reply": "2023-11-02T15:24:55.540273Z" + "iopub.execute_input": "2023-11-04T09:26:15.238481Z", + "iopub.status.busy": "2023-11-04T09:26:15.238110Z", + "iopub.status.idle": "2023-11-04T09:26:15.329845Z", + "shell.execute_reply": "2023-11-04T09:26:15.329270Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:55.549193Z", - "iopub.status.busy": "2023-11-02T15:24:55.548764Z", - "iopub.status.idle": "2023-11-02T15:24:55.560020Z", - "shell.execute_reply": "2023-11-02T15:24:55.558764Z" + "iopub.execute_input": "2023-11-04T09:26:15.332128Z", + "iopub.status.busy": "2023-11-04T09:26:15.331785Z", + "iopub.status.idle": "2023-11-04T09:26:15.335399Z", + "shell.execute_reply": "2023-11-04T09:26:15.334801Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:55.565875Z", - "iopub.status.busy": "2023-11-02T15:24:55.565072Z", - "iopub.status.idle": "2023-11-02T15:24:55.582451Z", - "shell.execute_reply": "2023-11-02T15:24:55.580752Z" + "iopub.execute_input": "2023-11-04T09:26:15.337668Z", + "iopub.status.busy": "2023-11-04T09:26:15.337318Z", + "iopub.status.idle": "2023-11-04T09:26:15.346344Z", + "shell.execute_reply": "2023-11-04T09:26:15.345860Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:55.587578Z", - "iopub.status.busy": "2023-11-02T15:24:55.586640Z", - "iopub.status.idle": "2023-11-02T15:24:55.592536Z", - "shell.execute_reply": "2023-11-02T15:24:55.591525Z" + "iopub.execute_input": "2023-11-04T09:26:15.348716Z", + "iopub.status.busy": "2023-11-04T09:26:15.348343Z", + "iopub.status.idle": "2023-11-04T09:26:15.351129Z", + "shell.execute_reply": "2023-11-04T09:26:15.350613Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:55.596771Z", - "iopub.status.busy": "2023-11-02T15:24:55.596446Z", - "iopub.status.idle": "2023-11-02T15:24:56.635869Z", - "shell.execute_reply": "2023-11-02T15:24:56.634620Z" + "iopub.execute_input": "2023-11-04T09:26:15.353527Z", + "iopub.status.busy": "2023-11-04T09:26:15.353192Z", + "iopub.status.idle": "2023-11-04T09:26:15.928677Z", + "shell.execute_reply": "2023-11-04T09:26:15.928049Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:56.640308Z", - "iopub.status.busy": "2023-11-02T15:24:56.640005Z", - "iopub.status.idle": "2023-11-02T15:25:00.989643Z", - "shell.execute_reply": "2023-11-02T15:25:00.988407Z" + "iopub.execute_input": "2023-11-04T09:26:15.931657Z", + "iopub.status.busy": "2023-11-04T09:26:15.931448Z", + "iopub.status.idle": "2023-11-04T09:26:17.146550Z", + "shell.execute_reply": "2023-11-04T09:26:17.145742Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:00.995271Z", - "iopub.status.busy": "2023-11-02T15:25:00.994213Z", - "iopub.status.idle": "2023-11-02T15:25:01.012991Z", - "shell.execute_reply": "2023-11-02T15:25:01.012008Z" + "iopub.execute_input": "2023-11-04T09:26:17.149825Z", + "iopub.status.busy": "2023-11-04T09:26:17.149014Z", + "iopub.status.idle": "2023-11-04T09:26:17.159757Z", + "shell.execute_reply": "2023-11-04T09:26:17.159231Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:01.016886Z", - "iopub.status.busy": "2023-11-02T15:25:01.016605Z", - "iopub.status.idle": "2023-11-02T15:25:01.024264Z", - "shell.execute_reply": "2023-11-02T15:25:01.023260Z" + "iopub.execute_input": "2023-11-04T09:26:17.162383Z", + "iopub.status.busy": "2023-11-04T09:26:17.162088Z", + "iopub.status.idle": "2023-11-04T09:26:17.166180Z", + "shell.execute_reply": "2023-11-04T09:26:17.165582Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:01.027970Z", - "iopub.status.busy": "2023-11-02T15:25:01.027698Z", - "iopub.status.idle": "2023-11-02T15:25:01.039586Z", - "shell.execute_reply": "2023-11-02T15:25:01.038573Z" + "iopub.execute_input": "2023-11-04T09:26:17.168600Z", + "iopub.status.busy": "2023-11-04T09:26:17.168248Z", + "iopub.status.idle": "2023-11-04T09:26:17.175925Z", + "shell.execute_reply": "2023-11-04T09:26:17.175410Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:01.043156Z", - "iopub.status.busy": "2023-11-02T15:25:01.042883Z", - "iopub.status.idle": "2023-11-02T15:25:01.253028Z", - "shell.execute_reply": "2023-11-02T15:25:01.251907Z" + "iopub.execute_input": "2023-11-04T09:26:17.178277Z", + "iopub.status.busy": "2023-11-04T09:26:17.177983Z", + "iopub.status.idle": "2023-11-04T09:26:17.299026Z", + "shell.execute_reply": "2023-11-04T09:26:17.298369Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:01.257524Z", - "iopub.status.busy": "2023-11-02T15:25:01.257141Z", - "iopub.status.idle": "2023-11-02T15:25:01.266509Z", - "shell.execute_reply": "2023-11-02T15:25:01.265585Z" + "iopub.execute_input": "2023-11-04T09:26:17.301590Z", + "iopub.status.busy": "2023-11-04T09:26:17.301213Z", + "iopub.status.idle": "2023-11-04T09:26:17.304808Z", + "shell.execute_reply": "2023-11-04T09:26:17.304310Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:01.270788Z", - "iopub.status.busy": "2023-11-02T15:25:01.270475Z", - "iopub.status.idle": "2023-11-02T15:25:04.624319Z", - "shell.execute_reply": "2023-11-02T15:25:04.622820Z" + "iopub.execute_input": "2023-11-04T09:26:17.307165Z", + "iopub.status.busy": "2023-11-04T09:26:17.306803Z", + "iopub.status.idle": "2023-11-04T09:26:18.717919Z", + "shell.execute_reply": "2023-11-04T09:26:18.717176Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:04.629721Z", - "iopub.status.busy": "2023-11-02T15:25:04.629314Z", - "iopub.status.idle": "2023-11-02T15:25:04.654741Z", - "shell.execute_reply": "2023-11-02T15:25:04.653807Z" + "iopub.execute_input": "2023-11-04T09:26:18.721272Z", + "iopub.status.busy": "2023-11-04T09:26:18.720753Z", + "iopub.status.idle": "2023-11-04T09:26:18.734689Z", + "shell.execute_reply": "2023-11-04T09:26:18.734045Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:04.661075Z", - "iopub.status.busy": "2023-11-02T15:25:04.659079Z", - "iopub.status.idle": "2023-11-02T15:25:04.772591Z", - "shell.execute_reply": "2023-11-02T15:25:04.770770Z" + "iopub.execute_input": "2023-11-04T09:26:18.737248Z", + "iopub.status.busy": "2023-11-04T09:26:18.736805Z", + "iopub.status.idle": "2023-11-04T09:26:18.805845Z", + "shell.execute_reply": "2023-11-04T09:26:18.805210Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/text.ipynb b/master/.doctrees/nbsphinx/tutorials/text.ipynb index b60eecfa6..54533810f 100644 --- a/master/.doctrees/nbsphinx/tutorials/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:10.122653Z", - "iopub.status.busy": "2023-11-02T15:25:10.122329Z", - "iopub.status.idle": "2023-11-02T15:25:14.212505Z", - "shell.execute_reply": "2023-11-02T15:25:14.211471Z" + "iopub.execute_input": "2023-11-04T09:26:23.366362Z", + "iopub.status.busy": "2023-11-04T09:26:23.366167Z", + "iopub.status.idle": "2023-11-04T09:26:25.371985Z", + "shell.execute_reply": "2023-11-04T09:26:25.371363Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:14.217035Z", - "iopub.status.busy": "2023-11-02T15:25:14.216558Z", - "iopub.status.idle": "2023-11-02T15:25:14.223246Z", - "shell.execute_reply": "2023-11-02T15:25:14.222307Z" + "iopub.execute_input": "2023-11-04T09:26:25.374977Z", + "iopub.status.busy": "2023-11-04T09:26:25.374461Z", + "iopub.status.idle": "2023-11-04T09:26:25.378040Z", + "shell.execute_reply": "2023-11-04T09:26:25.377464Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:14.226863Z", - "iopub.status.busy": "2023-11-02T15:25:14.226423Z", - "iopub.status.idle": "2023-11-02T15:25:14.231963Z", - "shell.execute_reply": "2023-11-02T15:25:14.230944Z" + "iopub.execute_input": "2023-11-04T09:26:25.380304Z", + "iopub.status.busy": "2023-11-04T09:26:25.379999Z", + "iopub.status.idle": "2023-11-04T09:26:25.383278Z", + "shell.execute_reply": "2023-11-04T09:26:25.382764Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:14.235928Z", - "iopub.status.busy": "2023-11-02T15:25:14.235211Z", - "iopub.status.idle": "2023-11-02T15:25:14.367541Z", - "shell.execute_reply": "2023-11-02T15:25:14.366488Z" + "iopub.execute_input": "2023-11-04T09:26:25.385578Z", + "iopub.status.busy": "2023-11-04T09:26:25.385225Z", + "iopub.status.idle": "2023-11-04T09:26:25.434736Z", + "shell.execute_reply": "2023-11-04T09:26:25.434198Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:14.373440Z", - "iopub.status.busy": "2023-11-02T15:25:14.372430Z", - "iopub.status.idle": "2023-11-02T15:25:14.380670Z", - "shell.execute_reply": "2023-11-02T15:25:14.379719Z" + "iopub.execute_input": "2023-11-04T09:26:25.437036Z", + "iopub.status.busy": "2023-11-04T09:26:25.436740Z", + "iopub.status.idle": "2023-11-04T09:26:25.440303Z", + "shell.execute_reply": "2023-11-04T09:26:25.439763Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:14.384636Z", - "iopub.status.busy": "2023-11-02T15:25:14.384285Z", - "iopub.status.idle": "2023-11-02T15:25:14.390442Z", - "shell.execute_reply": "2023-11-02T15:25:14.389415Z" + "iopub.execute_input": "2023-11-04T09:26:25.442561Z", + "iopub.status.busy": "2023-11-04T09:26:25.442201Z", + "iopub.status.idle": "2023-11-04T09:26:25.445812Z", + "shell.execute_reply": "2023-11-04T09:26:25.445190Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'visa_or_mastercard', 'lost_or_stolen_phone', 'cancel_transfer', 'card_payment_fee_charged', 'getting_spare_card', 'card_about_to_expire', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'change_pin'}\n" + "Classes: {'card_payment_fee_charged', 'lost_or_stolen_phone', 'getting_spare_card', 'visa_or_mastercard', 'change_pin', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'cancel_transfer', 'card_about_to_expire'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:14.395218Z", - "iopub.status.busy": "2023-11-02T15:25:14.394920Z", - "iopub.status.idle": "2023-11-02T15:25:14.401331Z", - "shell.execute_reply": "2023-11-02T15:25:14.400418Z" + "iopub.execute_input": "2023-11-04T09:26:25.448243Z", + "iopub.status.busy": "2023-11-04T09:26:25.447884Z", + "iopub.status.idle": "2023-11-04T09:26:25.451250Z", + "shell.execute_reply": "2023-11-04T09:26:25.450634Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:14.405772Z", - "iopub.status.busy": "2023-11-02T15:25:14.405475Z", - "iopub.status.idle": "2023-11-02T15:25:14.410857Z", - "shell.execute_reply": "2023-11-02T15:25:14.409911Z" + "iopub.execute_input": "2023-11-04T09:26:25.453673Z", + "iopub.status.busy": "2023-11-04T09:26:25.453305Z", + "iopub.status.idle": "2023-11-04T09:26:25.456638Z", + "shell.execute_reply": "2023-11-04T09:26:25.456093Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:14.415091Z", - "iopub.status.busy": "2023-11-02T15:25:14.414778Z", - "iopub.status.idle": "2023-11-02T15:25:20.963319Z", - "shell.execute_reply": "2023-11-02T15:25:20.962309Z" + "iopub.execute_input": "2023-11-04T09:26:25.459171Z", + "iopub.status.busy": "2023-11-04T09:26:25.458778Z", + "iopub.status.idle": "2023-11-04T09:26:34.217993Z", + "shell.execute_reply": "2023-11-04T09:26:34.217281Z" } }, "outputs": [ @@ -502,10 +502,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:20.968574Z", - "iopub.status.busy": "2023-11-02T15:25:20.967937Z", - "iopub.status.idle": "2023-11-02T15:25:20.972144Z", - "shell.execute_reply": "2023-11-02T15:25:20.971221Z" + "iopub.execute_input": "2023-11-04T09:26:34.221388Z", + "iopub.status.busy": "2023-11-04T09:26:34.221154Z", + "iopub.status.idle": "2023-11-04T09:26:34.224277Z", + "shell.execute_reply": "2023-11-04T09:26:34.223638Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:20.976555Z", - "iopub.status.busy": "2023-11-02T15:25:20.975881Z", - "iopub.status.idle": "2023-11-02T15:25:20.980203Z", - "shell.execute_reply": "2023-11-02T15:25:20.979150Z" + "iopub.execute_input": "2023-11-04T09:26:34.226480Z", + "iopub.status.busy": "2023-11-04T09:26:34.226275Z", + "iopub.status.idle": "2023-11-04T09:26:34.229085Z", + "shell.execute_reply": "2023-11-04T09:26:34.228534Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:20.984525Z", - "iopub.status.busy": "2023-11-02T15:25:20.983587Z", - "iopub.status.idle": "2023-11-02T15:25:24.801367Z", - "shell.execute_reply": "2023-11-02T15:25:24.799760Z" + "iopub.execute_input": "2023-11-04T09:26:34.231350Z", + "iopub.status.busy": "2023-11-04T09:26:34.231149Z", + "iopub.status.idle": "2023-11-04T09:26:36.428283Z", + "shell.execute_reply": "2023-11-04T09:26:36.427568Z" }, "scrolled": true }, @@ -571,10 +571,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:24.808489Z", - "iopub.status.busy": "2023-11-02T15:25:24.806642Z", - "iopub.status.idle": "2023-11-02T15:25:24.821246Z", - "shell.execute_reply": "2023-11-02T15:25:24.819869Z" + "iopub.execute_input": "2023-11-04T09:26:36.432204Z", + "iopub.status.busy": "2023-11-04T09:26:36.431208Z", + "iopub.status.idle": "2023-11-04T09:26:36.439636Z", + "shell.execute_reply": "2023-11-04T09:26:36.439129Z" } }, "outputs": [ @@ -609,35 +609,35 @@ " \n", " 0\n", " False\n", - " 0.857900\n", + " 0.858050\n", " 6\n", " 6\n", " \n", " \n", " 1\n", " False\n", - " 0.545836\n", + " 0.545854\n", " 3\n", " 3\n", " \n", " \n", " 2\n", " False\n", - " 0.826185\n", + " 0.826194\n", " 7\n", " 7\n", " \n", " \n", " 3\n", " False\n", - " 0.965809\n", + " 0.965814\n", " 8\n", " 8\n", " \n", " \n", " 4\n", " False\n", - " 0.792077\n", + " 0.791923\n", " 4\n", " 4\n", " \n", @@ -647,11 +647,11 @@ ], "text/plain": [ " is_label_issue label_quality given_label predicted_label\n", - "0 False 0.857900 6 6\n", - "1 False 0.545836 3 3\n", - "2 False 0.826185 7 7\n", - "3 False 0.965809 8 8\n", - "4 False 0.792077 4 4" + "0 False 0.858050 6 6\n", + "1 False 0.545854 3 3\n", + "2 False 0.826194 7 7\n", + "3 False 0.965814 8 8\n", + "4 False 0.791923 4 4" ] }, "execution_count": 13, @@ -675,10 +675,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:24.825858Z", - "iopub.status.busy": "2023-11-02T15:25:24.825237Z", - "iopub.status.idle": "2023-11-02T15:25:24.833419Z", - "shell.execute_reply": "2023-11-02T15:25:24.832299Z" + "iopub.execute_input": "2023-11-04T09:26:36.442055Z", + "iopub.status.busy": "2023-11-04T09:26:36.441746Z", + "iopub.status.idle": "2023-11-04T09:26:36.446028Z", + "shell.execute_reply": "2023-11-04T09:26:36.445374Z" } }, "outputs": [], @@ -692,10 +692,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:24.837715Z", - "iopub.status.busy": "2023-11-02T15:25:24.837120Z", - "iopub.status.idle": "2023-11-02T15:25:24.842301Z", - "shell.execute_reply": "2023-11-02T15:25:24.841421Z" + "iopub.execute_input": "2023-11-04T09:26:36.448403Z", + "iopub.status.busy": "2023-11-04T09:26:36.447922Z", + "iopub.status.idle": "2023-11-04T09:26:36.451565Z", + "shell.execute_reply": "2023-11-04T09:26:36.450960Z" } }, "outputs": [ @@ -730,10 +730,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:24.846365Z", - "iopub.status.busy": "2023-11-02T15:25:24.845780Z", - "iopub.status.idle": "2023-11-02T15:25:24.850942Z", - "shell.execute_reply": "2023-11-02T15:25:24.849598Z" + "iopub.execute_input": "2023-11-04T09:26:36.454005Z", + "iopub.status.busy": "2023-11-04T09:26:36.453511Z", + "iopub.status.idle": "2023-11-04T09:26:36.456848Z", + "shell.execute_reply": "2023-11-04T09:26:36.456229Z" } }, "outputs": [], @@ -753,10 +753,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:24.855071Z", - "iopub.status.busy": "2023-11-02T15:25:24.854741Z", - "iopub.status.idle": "2023-11-02T15:25:24.867911Z", - "shell.execute_reply": "2023-11-02T15:25:24.866749Z" + "iopub.execute_input": "2023-11-04T09:26:36.459464Z", + "iopub.status.busy": "2023-11-04T09:26:36.459016Z", + "iopub.status.idle": "2023-11-04T09:26:36.466508Z", + "shell.execute_reply": "2023-11-04T09:26:36.465973Z" } }, "outputs": [ @@ -881,10 +881,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:24.873797Z", - "iopub.status.busy": "2023-11-02T15:25:24.873186Z", - "iopub.status.idle": "2023-11-02T15:25:25.261875Z", - "shell.execute_reply": "2023-11-02T15:25:25.260990Z" + "iopub.execute_input": "2023-11-04T09:26:36.469002Z", + "iopub.status.busy": "2023-11-04T09:26:36.468626Z", + "iopub.status.idle": "2023-11-04T09:26:36.709208Z", + "shell.execute_reply": "2023-11-04T09:26:36.708493Z" }, "scrolled": true }, @@ -923,10 +923,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:25.268461Z", - "iopub.status.busy": "2023-11-02T15:25:25.266538Z", - "iopub.status.idle": "2023-11-02T15:25:25.695806Z", - "shell.execute_reply": "2023-11-02T15:25:25.694867Z" + "iopub.execute_input": "2023-11-04T09:26:36.712450Z", + "iopub.status.busy": "2023-11-04T09:26:36.712004Z", + "iopub.status.idle": "2023-11-04T09:26:37.006255Z", + "shell.execute_reply": "2023-11-04T09:26:37.005617Z" }, "scrolled": true }, @@ -935,7 +935,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Test accuracy of cleanlab's model: 0.9\n" + "Test accuracy of cleanlab's model: 0.91\n" ] } ], @@ -959,10 +959,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:25.700871Z", - "iopub.status.busy": "2023-11-02T15:25:25.700305Z", - "iopub.status.idle": "2023-11-02T15:25:25.708850Z", - "shell.execute_reply": "2023-11-02T15:25:25.707940Z" + "iopub.execute_input": "2023-11-04T09:26:37.009494Z", + "iopub.status.busy": "2023-11-04T09:26:37.009061Z", + "iopub.status.idle": "2023-11-04T09:26:37.013220Z", + "shell.execute_reply": "2023-11-04T09:26:37.012649Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index 6e3a1dadb..47ef32c52 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:31.547394Z", - "iopub.status.busy": "2023-11-02T15:25:31.546506Z", - "iopub.status.idle": "2023-11-02T15:25:33.874027Z", - "shell.execute_reply": "2023-11-02T15:25:33.872542Z" + "iopub.execute_input": "2023-11-04T09:26:42.213668Z", + "iopub.status.busy": "2023-11-04T09:26:42.213136Z", + "iopub.status.idle": "2023-11-04T09:26:43.527461Z", + "shell.execute_reply": "2023-11-04T09:26:43.526752Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2023-11-02 15:25:31-- https://data.deepai.org/conll2003.zip\r\n", + "--2023-11-04 09:26:42-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,16 +94,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "143.244.50.90, 2400:52e0:1a01::1001:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|143.244.50.90|:443... connected.\r\n", - "HTTP request sent, awaiting response... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "200 OK\r\n", + "169.150.236.99, 2400:52e0:1a00::941:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.236.99|:443... connected.\r\n", + "HTTP request sent, awaiting response... 200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -116,9 +109,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", + "conll2003.zip 100%[===================>] 959.94K 5.38MB/s in 0.2s \r\n", "\r\n", - "2023-11-02 15:25:31 (6.50 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2023-11-04 09:26:42 (5.38 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -138,22 +131,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2023-11-02 15:25:32-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.204.17, 54.231.160.57, 52.217.231.65, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.204.17|:443... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "connected.\r\n" + "--2023-11-04 09:26:42-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.168.17, 16.182.68.129, 54.231.166.249, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.168.17|:443... " ] }, { "name": "stdout", "output_type": "stream", "text": [ + "connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -174,23 +161,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 0%[ ] 118.90K 521KB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 6%[> ] 1.11M 2.43MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 45%[========> ] 7.39M 10.7MB/s " + "pred_probs.npz 38%[======> ] 6.33M 31.6MB/s " ] }, { @@ -198,10 +169,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 98%[==================> ] 16.05M 17.4MB/s \r", - "pred_probs.npz 100%[===================>] 16.26M 17.6MB/s in 0.9s \r\n", + "pred_probs.npz 100%[===================>] 16.26M 58.7MB/s in 0.3s \r\n", "\r\n", - "2023-11-02 15:25:33 (17.6 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2023-11-04 09:26:43 (58.7 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -218,10 +188,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:33.879577Z", - "iopub.status.busy": "2023-11-02T15:25:33.879227Z", - "iopub.status.idle": "2023-11-02T15:25:35.563876Z", - "shell.execute_reply": "2023-11-02T15:25:35.562737Z" + "iopub.execute_input": "2023-11-04T09:26:43.530634Z", + "iopub.status.busy": "2023-11-04T09:26:43.530385Z", + "iopub.status.idle": "2023-11-04T09:26:44.518033Z", + "shell.execute_reply": "2023-11-04T09:26:44.517397Z" }, "nbsphinx": "hidden" }, @@ -232,7 +202,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -258,10 +228,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:35.568365Z", - "iopub.status.busy": "2023-11-02T15:25:35.567762Z", - "iopub.status.idle": "2023-11-02T15:25:35.574662Z", - "shell.execute_reply": "2023-11-02T15:25:35.573725Z" + "iopub.execute_input": "2023-11-04T09:26:44.520951Z", + "iopub.status.busy": "2023-11-04T09:26:44.520445Z", + "iopub.status.idle": "2023-11-04T09:26:44.524139Z", + "shell.execute_reply": "2023-11-04T09:26:44.523623Z" } }, "outputs": [], @@ -311,10 +281,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:35.578785Z", - "iopub.status.busy": "2023-11-02T15:25:35.578117Z", - "iopub.status.idle": "2023-11-02T15:25:35.583153Z", - "shell.execute_reply": "2023-11-02T15:25:35.582212Z" + "iopub.execute_input": "2023-11-04T09:26:44.526666Z", + "iopub.status.busy": "2023-11-04T09:26:44.526180Z", + "iopub.status.idle": "2023-11-04T09:26:44.529385Z", + "shell.execute_reply": "2023-11-04T09:26:44.528883Z" }, "nbsphinx": "hidden" }, @@ -332,10 +302,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:35.586699Z", - "iopub.status.busy": "2023-11-02T15:25:35.586408Z", - "iopub.status.idle": "2023-11-02T15:25:49.528234Z", - "shell.execute_reply": "2023-11-02T15:25:49.527067Z" + "iopub.execute_input": "2023-11-04T09:26:44.531824Z", + "iopub.status.busy": "2023-11-04T09:26:44.531385Z", + "iopub.status.idle": "2023-11-04T09:26:52.439981Z", + "shell.execute_reply": "2023-11-04T09:26:52.439303Z" } }, "outputs": [], @@ -409,10 +379,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:49.532817Z", - "iopub.status.busy": "2023-11-02T15:25:49.532446Z", - "iopub.status.idle": "2023-11-02T15:25:49.543261Z", - "shell.execute_reply": "2023-11-02T15:25:49.542272Z" + "iopub.execute_input": "2023-11-04T09:26:52.442879Z", + "iopub.status.busy": "2023-11-04T09:26:52.442629Z", + "iopub.status.idle": "2023-11-04T09:26:52.448555Z", + "shell.execute_reply": "2023-11-04T09:26:52.447929Z" }, "nbsphinx": "hidden" }, @@ -452,10 +422,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:49.547607Z", - "iopub.status.busy": "2023-11-02T15:25:49.547258Z", - "iopub.status.idle": "2023-11-02T15:25:50.330234Z", - "shell.execute_reply": "2023-11-02T15:25:50.329066Z" + "iopub.execute_input": "2023-11-04T09:26:52.450897Z", + "iopub.status.busy": "2023-11-04T09:26:52.450468Z", + "iopub.status.idle": "2023-11-04T09:26:52.843977Z", + "shell.execute_reply": "2023-11-04T09:26:52.843256Z" } }, "outputs": [], @@ -492,10 +462,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:50.334792Z", - "iopub.status.busy": "2023-11-02T15:25:50.334444Z", - "iopub.status.idle": "2023-11-02T15:25:50.344687Z", - "shell.execute_reply": "2023-11-02T15:25:50.343690Z" + "iopub.execute_input": "2023-11-04T09:26:52.847083Z", + "iopub.status.busy": "2023-11-04T09:26:52.846696Z", + "iopub.status.idle": "2023-11-04T09:26:52.851927Z", + "shell.execute_reply": "2023-11-04T09:26:52.851397Z" } }, "outputs": [ @@ -567,10 +537,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:50.349163Z", - "iopub.status.busy": "2023-11-02T15:25:50.348798Z", - "iopub.status.idle": "2023-11-02T15:25:53.878811Z", - "shell.execute_reply": "2023-11-02T15:25:53.877194Z" + "iopub.execute_input": "2023-11-04T09:26:52.854342Z", + "iopub.status.busy": "2023-11-04T09:26:52.853981Z", + "iopub.status.idle": "2023-11-04T09:26:54.749676Z", + "shell.execute_reply": "2023-11-04T09:26:54.748895Z" } }, "outputs": [], @@ -592,10 +562,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:53.884326Z", - "iopub.status.busy": "2023-11-02T15:25:53.883304Z", - "iopub.status.idle": "2023-11-02T15:25:53.897999Z", - "shell.execute_reply": "2023-11-02T15:25:53.896964Z" + "iopub.execute_input": "2023-11-04T09:26:54.753157Z", + "iopub.status.busy": "2023-11-04T09:26:54.752394Z", + "iopub.status.idle": "2023-11-04T09:26:54.759451Z", + "shell.execute_reply": "2023-11-04T09:26:54.758872Z" } }, "outputs": [ @@ -631,10 +601,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:53.902373Z", - "iopub.status.busy": "2023-11-02T15:25:53.902039Z", - "iopub.status.idle": "2023-11-02T15:25:53.934615Z", - "shell.execute_reply": "2023-11-02T15:25:53.933424Z" + "iopub.execute_input": "2023-11-04T09:26:54.762088Z", + "iopub.status.busy": "2023-11-04T09:26:54.761717Z", + "iopub.status.idle": "2023-11-04T09:26:54.779102Z", + "shell.execute_reply": "2023-11-04T09:26:54.778598Z" } }, "outputs": [ @@ -812,10 +782,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:53.939676Z", - "iopub.status.busy": "2023-11-02T15:25:53.939086Z", - "iopub.status.idle": "2023-11-02T15:25:54.001248Z", - "shell.execute_reply": "2023-11-02T15:25:54.000165Z" + "iopub.execute_input": "2023-11-04T09:26:54.781675Z", + "iopub.status.busy": "2023-11-04T09:26:54.781294Z", + "iopub.status.idle": "2023-11-04T09:26:54.812221Z", + "shell.execute_reply": "2023-11-04T09:26:54.811719Z" } }, "outputs": [ @@ -917,10 +887,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:54.005615Z", - "iopub.status.busy": "2023-11-02T15:25:54.005259Z", - "iopub.status.idle": "2023-11-02T15:25:54.019524Z", - "shell.execute_reply": "2023-11-02T15:25:54.018511Z" + "iopub.execute_input": "2023-11-04T09:26:54.814796Z", + "iopub.status.busy": "2023-11-04T09:26:54.814442Z", + "iopub.status.idle": "2023-11-04T09:26:54.822845Z", + "shell.execute_reply": "2023-11-04T09:26:54.822342Z" } }, "outputs": [ @@ -994,10 +964,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:54.024085Z", - "iopub.status.busy": "2023-11-02T15:25:54.023715Z", - "iopub.status.idle": "2023-11-02T15:25:57.422363Z", - "shell.execute_reply": "2023-11-02T15:25:57.421225Z" + "iopub.execute_input": "2023-11-04T09:26:54.825181Z", + "iopub.status.busy": "2023-11-04T09:26:54.824816Z", + "iopub.status.idle": "2023-11-04T09:26:56.592022Z", + "shell.execute_reply": "2023-11-04T09:26:56.591412Z" } }, "outputs": [ @@ -1169,10 +1139,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:57.426694Z", - "iopub.status.busy": "2023-11-02T15:25:57.426334Z", - "iopub.status.idle": "2023-11-02T15:25:57.433970Z", - "shell.execute_reply": "2023-11-02T15:25:57.432833Z" + "iopub.execute_input": "2023-11-04T09:26:56.594750Z", + "iopub.status.busy": "2023-11-04T09:26:56.594322Z", + "iopub.status.idle": "2023-11-04T09:26:56.598656Z", + "shell.execute_reply": "2023-11-04T09:26:56.598107Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials_image_38_0.png b/master/.doctrees/nbsphinx/tutorials_image_38_0.png index db8956ebae8591c092e63973bf823bc9c20062cd..89069de701945838a0a2066045830794eaec100b 100644 GIT binary patch literal 80478 zcmb@ubySsW7d^TG1tkS(5LCKDq(nkeq@|@xq)S3VP(r$qkQQl>5|EY#kx&|>1*99K z?s~uTyZ8Qm$GBr~JlpM#_kEtV=9+V^^$@J0B#VbliH$;`@E*%asi9El8YmQ6!Zl2I zMm5IuKKxI}MOxeCslA1Zo3WEQO3~QG!N%Uj=7q^^S92%l7xs4dIQcp6vER0IadB`K z=Hjybe_p_8@ARCj|Df>zKIFQCoQ^XJMPQ8lhn6Rn`vQfALOqs}P^f%ke23RedAtww}<2aiQV>p*`CuTA;0aj_wfva>o@YV*|N3y@QNES6wInmK+C%==7hd(dJ#0Y@9nSp^ zgFN>Bw3zYE1yb2{35|@82a~XAX5{2tt$5zwae1+Ixoa9J`j2^HVq)OeFaJ-U7|-U( znr1rle(y(==uz3D zJBz2;wCC4ya&j!;DxN)~;;dUQ_vv5#`}dKDhtLnP%d-!i_D$!m3aP>*Pji*p`vhjb z(_VHf`+O@M9T~yQ{TXcUvzLPMwc!s%9w1-)~sDKg%Rofm^1rf;Oo=LnXKB{q~3+i zx-FVt9;ofMo5~r;6OR394~07S`fy^-!j?Wf9H_5{_g%QdXOz_bp@f|?_U=%98}9t4 zFQs#&_?g?-vh7S`s_ockziF?%zV&}=rTs##t2yt>Q|ud)csjHNsV$0&iy^#z8;9{6 z!ar9W9=djroBA}RE2av^H~q$<^=fwAm}n%LO zQRWTPurhdA6o>X_BmeZnG1Jex4ND2n{&j0~pDd^MYZmLa|9G$^axqp|+SmiPihSvg z`-i?1fyjra>lNoe!aEnfFYJ6i`t2DBAN*ALVSB`bO~C{OMherg^W#o23o=8moeZ(} zi#GzuTQP1ut8?YpJ3SBM={Ve+?hOeI9siN~0A6}a(7|{3*RRhU&%SVX{99b#J0UlP z744p7X(MMmft$U3!zh+X*@D(bKXPV&k(~2-;|+ zT&$Pj6!$DLs;Wp{H8jqYL3m#4eb0r38nfYN*R8xpAbNZoHTyAE>5;VbRaEnmlkrHA zj#uuz=Rc@_jgDfVzFXXbXg=l%mwBts8X!lHj@mvwPvmlC6fJj~Ch{#$ zpbgqJx)~fVt1^ns;Zy&=^+~GV&?Mnb`RZ0G%jb}1%>qp)is~8~XeerYtRhV|u{3*wDBSPbKafQm zx2pPP#EnA5bkm!Zk@Hb1O8i#NBqx(6iB@2A>}GgB3$f7FN&7mC%WDqjcqKdXc*k?A zflTadjv&Zu8nS*aT9!tFKSkQjO~AlwM|!y1xi^7ByUFKa0;m4OmbR=c*2TZkrup@X zeoR#5moM{TmwRHWT3SJmV;Sd4>NdZXzCK^O(^PF59NlxY(@869ZOx`6cJ5O2tU5xh z(eub|3cl_bQg~?VLxbm0)~8Q_mxj-tg~H=Q&)>9{$Fg3qj(;xGoqq@kZdCqMfhFqc zkw4o@zihLup5|Zd_bTGiHFf`7q+drWnoa;Ij2aO5WLicJ*B1f+<8{7fxJ-2?+OMN= z@kaLjK(tx7A~s4YDpmLvd+)VpiLmF!{gdV9I1s;~5bh+-f4;X6_-tdC@lv2L`f*}f zcu1YUymKbSdg?m=(#9;m6h4GX3oaTTt_v>cg;5emK*w2Xa+fMKuzP>zqeO^Lw?aJ8M z$=*1Z&koMT7*o2}H&RZ$uD%~l7YC)|kC{^WR*pQ_Rj-|Vsjhae*jg)X`XT@1$#~jB zPi_7b^W0QdO3$_8YDgUb1mVs&ufy@@6|yuQ{+E|i&i!Rim4q0UCp-_=jY&fT4h|1@ zJAeC}+9I*{XYWLtG1hqI;;?$${JlQ^uSlQo+!Lnm+@1V(Q(cUT$!!Ln8}~29gqAH?8){<(P?0mQ&qmPJ0b6cq<76diJYxBJW`v zPq4ADv|td3G+#CyPFN3)jdfj$xo_V_HgxOtDydl6bGC`}|`Oa|2XQ~y?5KU!FfRsIvH44-9dYs<{aijIQBGHkv)>%ZJy zfVJwLC0`{c<>(eqzkhPP5ZPJLFB+P3?>WBv?>LsHpH14awb@Bg%^@UgND0#OIa$K^ zffF-#Z^D^Blb$HGrda$oW4^GlfLHs6hbFL0V-?Q{ zHtYA4y#CxvpL@GEAIjD7mO%8K9Q_-qyMCuzO=8bc78N>01`S`+gKHZbX}Frscmaxh zMNjze-w$8eqs0juA*Xp){H)sKWOwQKeCu`Oy&r;f%VRn34MJY7jqKoN!nJK#+S*=4 z;4kkUr78K!(~#iJO}qND-CoNVFND@T-W$APF?hAgU{;~?@#l+rfK7P)!}a>x6x60X z&oNGxm!SObR*57j%;)E(%^!8w7#As;huz}6&)YFZWnbT-`|O#{)2BD0&vf+lZxt36n$DbWx;aNQKoS&v z`I2B>G5(=*VMnm;Z$aT$kxqrSv-7~!{^H>?_VF)&6IU?$czjPeFH`@HrjOYk~FkkW?u&<97t@3 zdSUE;bX5qOTx(P8KNcGk9HL(EKXMx_hwc0SK5VX0D}Y3O_~GS* zpVN)A;}^N9f%mOPa95KFM7B|SoMeB#C%uKc$p%!e{{4#0q)gjyroo?FQAn*nx8jHJ zld5;QF%uKIHe;WS$4c2KXtEs%P|XmSk>5OJt?j(Y9K_-8q^2N;rj%R^uC3X09Zd)D5dm-`CuVKEWYdoB958asyqBU6?DF!-l z;RjouKH8m&(k~@ zp-KvS?RGP{Z#5ik10>MhxQ2V0td`#+9Wf&sF|xz9G}&p{<2J>tf$(OBVGXSves0w4 zj=KYFCGq~to}QlVT(R@(Na_R8MB691R|kaevr!AW*OuoDu=#JV&pKbv)+|Iw0v#@C z{AXoQx^g&a-?=_s;gP$pEOt&@rj7ev&*?gB-oV7fD+RJ(5j7`~z3=zRyiZ+GwcZ83 zjV7f*YjY#R!vVnjw>J-)Ac8>|iJdw8@O&NyE16bp;lAC1@9`pgfD zrWuyVaV~%i2s8x{eI+!pjW(0YO~3Su{ao!TE0P~V%hVUz8X6>}JXOxiO6>Yyi8(kp zfdBW79~iifniBf#62EDtA7{*? z;kU7OM7AH@olXVDx4@r12#izX8(#h!<#GO_Aab%8yYlz%Hwax=PQY@_S>W=rz?E28 zS+{%GN;C5Eu0fU|aJ&7!>Fg@JugQovX?w!DbZ+Pg*HX_3fJQj1?hS;H9-azQk{5f< zo*&K7e%2a;Djld%s5zHxUD6V9>%nJ-xko^pvF_i$e>`(}ZWx!4fWGqdhtGaC?HuG$ zd&AN1P~btEZv;o87mikFn$#Mzxn>+q^VN1Y>|awsmC7qA`C}+A`s3lzlmwf)f4RtL zfkxr+jP*!S3)C2AWUYUE5OUwB8vP7AB$%qCkS==55G3AC-OM?@K`EI<1qIyA*w>eA zjsJ#A=gT^27W69_0^%3GzFZp^83_a$DUm%mOV)JU{&{9}qRQH_@BS!irNW>@y9^z| zHlW?4C4kJ}9mtj&;xqWmutHZ*BIo-*5kl$!5w-WH-k|h-=W?q1e6Z|+zlffUCp(7s z#z)cPSquX|kAM5Cg0SQ}uzYAJ8jnT7@9AQ+ii(OgTaBk5iSElS9zXmVy~`m2>70D; zxl+XAO{nEUP|Q$oTbg@^$gtD)EOutWSAYRSo z#i^>A8hS>55A(mSg`MN5QjWt4U5I^6pcf8;Vb9aONs$`n+jwdMrTOe3e6`;*4!SSh6<9vw^M40#eMGzW4@M0;5&62D{+fpN^%;*3uw(o+8X?js*jpJ$0tx~7VYkM; zTR`AnHzPHQ7UF8%piBoC;Tbx!2Pwh z`|k}>Ky*KtIl49 zE2!0Pe%^#W_AyO58cHemW|?+arvlAd*N&$P-O_`9VN^K4GL-U@V)+j@i@fg>bQ*ULJ0MK1xV z-?W=ZfH47x^cl!A04SE9xGz?JRb}PvczJ|ajX}Lo5?-YTEo1^&Qv)oe(=fJ^uFbNC zht_TSC0R++#jEeB56EbJj_-h4Ch+`$>?bfF1R+DoxH=G51B(r%=dl!jJiX=9so0Bh zKoAO4c=J^QWLO+J49`9WFQTf3(ZCt&Tsi=Y5vJhM}1c#aJ;&eG1V15igrUHwW1 z*SiDAM@e85oL^V&PPxr^1GU9QDjM()6DXg8OL0#jNjpkcp`x^tXo0OGjaeWWF_V3Z zWoA(J@Z$f}ZWh!+hZ@6weiUzXw0!*kyeOi_XyotZ<7c)yA-kpd?%&S@M+H*PeKA@V zg(|Jzl~+<|GxC54;j#ZMf8?_2D7em*|&+@Cv_doQ`jS;hVhMmn_O3FOgu z{z-a{Su|S@jJF;r6NW)kVPWWK@l9AtEvN}xxT_5jWFNzvg(%HM^cW`^cvQ&++QpmS85HCy5G@^z?jy)XI8D-@N>Mv;nOviV8o!%Qk+cUUi{-)j)&r z4FnAm`~Da=HJJuH>WxR@nrc=sXlAwwO5lOxC zCV4r{lM^6UZ`c$*4zLypD^PriN0d;IEC1d%@K_=_KKB8RUSza&BzMRBL+>E-!W=K@ z5oU3UX-o904aeHA>oZNX@$vC`tB!)yiK5>BK9`P;k6%w!>U_$DW&~weNPak0Sv2^j zk|5g4moGh1p7^XjG5m($faTy_*sVE$%&Vw0)nCKI_t%fy*;OoS3(7!*=mE<^QXXx8 z!;7na`_TuFKS`EWR*zs!5ElReh(rN<8pIf~3!VaH&_8bjK?g#@8`TV2QsDQ$kNNr6 z;Z9s6X7;ol=@)sZce~M6CU2*LkOyO~c{MlvM;)2Sb~A?H<=GzEK1Wn|c=$26I$=<( zM9#Kb-C-}?C1$*+a)9uGVCL-dutCrie5oD4rtIQkyy|IJD&Iy|av%)#8-3s$9iJkh z<+xe9oRyi07D~z?Z1W^yP^w4peYR>x>yq3w6$sRt)lVr7Q;wZTwq6TrMMy|;ax!9E zKC^F#7t92R0hoaJpG{PSbD3YttS=Qk0kX zF7@@r$vUi}(dp6Fa;LSG)&ICNIDXU9)8AKJb{BHfUa@-q&Cf-IyjrQ zViYwzI$B}FKe;uAycxm2i%U>W+TiJ?)7gQa`^9FQ_d+yGh7NII;8WAj*PpM4-TOg4 zFQ6j$F^s^mvd6uKI^Q!J+#zqo4w^YdO5FdPQw7G>Z*$z%*4F=XpiSA`8qCAWKs2psOxcBcdPzLUESJ$U%Z$g|t zLd0<*E-%~wLu^#;pdob)UZ|q4kB36ctC07G zK1o{PqC0Ij|K~G$drKJtQho>-k|knUkfbi=rQwv_{e3+2zOk+8sLFbDUhHB)EMwTp zxMCcs6tiH@bsCqJK_NtpisRu@pMdE)w^qAq)6>I^v3ietqL(NANTM>Ox!(n6daD&@ z5t4-{>`4wb%7&jRfy*!g7{o1Qk)11B2lt2&7sI-w787Bf-vV%UzTfNLHZ@U*Q_Agq zW_+k^Y0jM-7N{3r4_Soq<+d=$Tqj)$YC#9o&s^nBgg}BLg#nDY4cvdK-+1Rhtr>u0 z;S~;t#ItFU)@Pq;JJBy@nt|sb@=n8+sGkYTXuo3>vAFf0NSbqp?rYyQpXwZBUzl_H zxEbze#^6)^szKELNebKmy4d-uamDhIKHJ-BP1o z07gX4huAa4Lb_&OEXap!g~V1`%u}HR#Yv!Rn`<_+m>1Cc#cssW+bC zNsktOiZP$6AknT$c4nrZvTxJ*hW+WSex{)4Sr_5Gh@WP>!3e#n{Ha9ss}>1rNDkk( zSOn;(&4wcbcAfGoz-&>7+hjBO1y9_Nx(gKBNf}*uoFlDlMOaX;_B0h3m+gob%iVD! zSZW)r`uTh5C%C>-3H-?2gBOXP!PVt8TB47rwZ?;D`#A(bK|Z|&lJO02>`-0YFqAc< zl?tcB{BQ=6-vP+-8y?JJ%}{W2MfL|I&yInUaK9L$zqq{4^uZT+BQ^N-o#63~^z$Vt z_Xa?N?ASxecM^*>b{Q7+K zwJ}69_=)h%HBhv%kBh@@Wiv!Z$0*~|&F%Jbb-r)hX8`L3b5!3=U#Tt}vWf!iTV7nu zw|{HN^c>J=ytX9}<^!0246OWJ`sLZO$Wxo$#qN4#ih*UyuTYQ>WkpOzwt$#=?`AF? zqIowLEE9GdC<;9nz=%R?+zGcwXr8#CT;H5 zyV8SZ3<9IRcK1R zVoh>fOm%g2BOt1uCpW<7S=rc-=1r2~CWjw?rCdo^-6=Z(=n%c%YI%#b15QeIMa50n zfPD48?|hbTN;EdF^dy!PAL>Ie8vm~MKrWk6IR|k%cj%I`N;`WIp&FutW#|>`CA~ujIn<0CVnkOzI_%8 z#g+iraL>F+xVV@Y`>!5CmVld~0>T!;3_7kLWVP7?!F6t1a73&vU>;|$E5>oN2fIiL z;osF+<9{AI-o>p6_6NEDEB~pgu5J%jCVYD9oVbn-#d|guS+JpY+^OM87-O%?WJj~D z!9!_j=|mxCM))pprsob`LF0-rwEaf7OwL&cs#p^zv>iQr@EyblB0ga6H48~-BC#;v z`bB!H6;$fl{x}JiLWgI->_^=FGaoS*;aji+&`JM69v?;>E`yP(gasc|JsDnJ&I{c; zaNr>dL}`Dz4_Q?WSn_pQROrohTU0<>!6@tw^zcYSm%6kdVoOK&Mzd;DE;L!Ygi|?X z^W}5Yz~>Z%UWJz^Ei6<__s4oN8H$+DJZ*?92rKvzWx|-X3Tm`^McCr5q*r($vgx{X8%j5mR^*}K--PVytf09xZ-13K)a02Qq^{LTSP zDSdZ|v0ESmQu@BZ6YYiIEP)#CHY0*4g4h*wm_=2aQH!|Wn5?#!<)aK3whH*UdIbg1 zFDfXRdBdb^jPN`yf&r{lq`!hN2$^g`{uDe|e&ysa9GOKx*Ntt&=? z%CK}a6v1Usc#rNz`_62=mmg-%w!q_0Qg9HY7NRokAU70)rlGvNe3Viy@@bHZ$6liT zt#cpBo{WCDw&1SEtZ|nwni3cEo(23sl&`o51EfmbCG>AKMv33PA6fokWtQCRCdgbX!c>Xp*-=S+ZQ zu=~&*hP>8lUUH|VpvNdbq{77nrw@3lb3jPZzc$e}@kYu8&oz~D)TVNb z%Cu)41W_nhXOT|}&3+iy0v?^c?3#KQZRfx9?)X;BcgrZNDqYx@E9hw8eL=+$WuBaz zMBo`(S^#gb-|(+?Ar@gRHvD_jWoG+?9PJuv!Pm4%6df`S6roY|w(+GqT! zO4*Pt0EZ9~US25*jOtoi&er#*>0m`cHZXH?c7SvR&^;bwwC=L(FrzMp<${KO%bY{= zhHLiMugTAR*4Ea5bsx)UyeQ5PdR8eqNUp#b3+k1d99K_5o-x)-QqlPp#K^kqgBcs^ zDqZM>(GWdKu|!P`FYdS_4HU>Dq-h7P-OBnpRBdr);+TY0Ro_3)9jANEcmcS)I6f_y zeb0FL8;U4gF&Mi(O|;Q+X5S)yI_9X4Z@7X>(6Z!|+0bwcXx|@+f~Z7_L!9G&dgC znK%(n+VJ~uyvV22=cB}fA_bFy-+* z?I9JwpA2*^U{FLwPw#`NPS(IRwJgi}nBDAQs}ns1r|c^?9YvUkuA^q}+#(IVYHn^0 zVB_USI_*RM#L@1y)=%g>`Cr8$br9fY*)Y2v9VQCu)ILfsAH6w#68Z|z<+Nj7-P{bE z+3FA0NwXv^i! zXc{x#q}cD=sua$)&6a#wA3t7!as*BoV(f;5guq6Xy)B47sLGKdlH;^qddcYe0zt%&B+AuJXaxM6r1c)fu@a&?mC83W>2Rm;%u zYqwc~{pV?b^#Y)?va!v%2-oJwS6TsWu)B%_a3?hXjlE-PP=t%-r&X1Ma4NzZdA$F* z*o>D4c#_cvNUJBb@ji|dgb6J78q9EG*cpsb7B5K-e5bp`xiBNh%Ecx7`0;fBIc}I= zff^0XgWXw|a(>k8A0K$N{sa0-=yDg6@I?)0w8;2HLW2kr>VHE^A!5q)m>XVQ^!jRQ z-==X)^nOT5Ul~$WwgfotXJzdG=7?1l3>#tM;o+g87Fcfd>c8v0;y)BXm!LGT>H>=bKU49t zV$pK`xx-J3c^OPJ^DKGj1a1~n0MJ7Z5o3UC@(6}atoa%_gMG=Hiqs2$6e}xaj*bpHh4Be(IG8W{CDRl`}La5~`&i*HP*2do21Vq>emv z(M7Z-4xc`Ljv6!(d;;CII+l|^L^-hj!a!gGY#VDw^^R4C6WV< z(7d|m{#ZiOc|2s3k@E6mQFKlU5piBb>g0wDY!A6`P%ZiQsN z>i}KH;A*RAYGQVfSBplEN1@+pSGbYv|6=Gg*# zz8SOxkuaBVeUJ#~o|B1BZTEqDn@(`a%dUi&tt?`tWDM#ayIMqIDz~d z_r$Rv+#5;+AmE#p+rq-a>Kt^PM8c^N&tItdDc^6`P?S)8>K>0npGq6re%x?dRJJIr z#EYYA{IAnAIrFR$q{DTVng?E;`54N{Q7k>>JV86eX;^zyT) zep^%^wGh&KX=#a>gF{+Xl@Ndw2o`)Z%E7R1sio#8=_I{J{>=1FWHBCUdKvL` z8n84eeStACL>E3UusGdB17x!Y9SYG=oLo6CA5)-MKu#FXd&GQ`;5-98@@r%y3+5DH zQFK^I)NeWJ6qKbd{gnm|apIcT>qM?A1qi*vf#0 zD@r6UNDJ5!0Cvp~UBr_m^t=QHsd7!uu#YOCbsAOE){VG)43+PGIs#LGNCZ`WJ5^~< z`-3S(IY{PA5<<1Eu9%P1Ggc)=3|TRsTor7+p6-SWTP@*yrM?X6gxN=n3K(Ykm3?2^ zc8X;ZHyZ2lluGpd5L~LPdXQF;RnQxqLRU=X?YL)Jq8^&E5izZI4~pvDKGSdxL(bzMDongazoW$&LlFf2($ zMLbZMz%96#SvWKhnYP>0%STv1LZ&{M6e5Ol+Pt3ZZ%%pMm2o|GN(vcxc=2Lx)4_Z| zK<6E5v1X&KJ-$fNB(fS5HRx)B< zn6&i$xhe$$1!Rx6M>R|{mRO5N)T%KgU$iIF0~dyJ3?v@Gjbpn&>^fD8YZ}%XI7(zp znymAWb>8*};>wFxf?xO)$;4MP;AjK z>v&ZpDfHH)9JQ$ZW%U4d1!PoIx7on>I7{I=hDgn%N!g-}Wt%pAj=45Pb#kN^X}%wM z0ZFn7>#tW0X+g;sh;i$RZ-iT-eUgVOYjNI##zw&7I z$UVyNz)l&S4)=Td_j|EW2BMkJ9O^t8unxJpo@X$m!fQ%@a>wn4hBl_tGrVBth1C_G zJ2^V_K`WxMscW)^~5Ex4oE zKkB-f5I!$37D%IT&XJ!Y3}&elPtPAQDcfdU`&Fn&@j!Zn1ELFP57OlYJ_9yYb={5A z6AiH6V5s9==fYUEz2R^CKf1-FAPEt2SFJv%C?yaN6d3p~I7hrmi%I@5(RaRHcKJiR z)|yMW9C3Hlm?(1U4>mkGB5QAjS#k}-Mzd`YRft6dZAqBlMa&hhEH+IkQW7es)94~O zN6ikwL8ZjBCuP)GlXC2>;+n*-IF^o|R>+6gu@%fKI!j7QVt};8rxx@@dhMNN1HvqQ zkn3-Im;P2~e%w-1_Zb${L)9g>KM_gWdL>^?mzw?Okf{`%;}2Xqc-AmO#Ov&NgS%sP z@8q-fC?^fAw5eKgN*7pRWll@-Fm?{?6vOjqQ(BN(hBbcv@okf6WiZc?xd6E0yy9YM za1dd}dxjY1H8$m``@?G0q+_$Ruc#E=qth)!9ZX2N;Dt00;z$hn%Pp(ozW=%U{l(`L zd*d8mq4&M<3vY-p)*r`eV%9zhB;cqqdE-|j$rv{-zE54Q9$Zx-MONXo^Bxy3Bqz&V zvaIsm(A7eV1~uJ+-S$5!?!H9j;sefYVRv&BhKscB&QqI}X}gb<^)FK$-8{CGu+uLm zeHWTbZr~^=ZTXq!DMq*KNqy#B)~&Ex1sXEW{$@s9*^&Vz#hPq0l`%Y$aj8F7+u*i& zV8Q~dl;1t!ynlYKx`;*IbYPy#DJlx{3(qinrdH}7+Qna zsRk|MI%`y(+>Ob}BaTH}kfY_;b>?{84{|KW(Qgv2Cs{odw5+BankdX>mLuJRk$Ikb>$uL;@ z#Y=|nN3}oh8~S)yy-Tf{fMIJgJQW8d7^nhwN*|1d#UvC+5Jh%+45`o)%?0`g24W&3 zOJGq#t3gtbI&jGsG3z7c7`SO{K(j|7 z36l`rNxGp?PLJZ_K+1v>155QkC z_`zQx8J5hfN#C>jUqs;G2Y`)u7p(Og*8uUHbWpQByzS*^-gVR!<46&THv&s9_hnnkkzXl5^&)o^PlEsm6sDeeE9ID$#W4(%PMch&-ol=0nbsjoV38!UWBVV z9}Hg3+b;?A?8RXZ&;4#nWR_S4^$kwM9h%4m5JR0sUP0)lxPTmFv!Bun3RpjQAC3#I zevJJLnh7}+09Hldv>h^hN51w1H^X8CknEnt_gTNc>ihBh&BV_*UXfeYhvaBi4huERi< z99p>eC3a8Gt+JYXBupA*7fE?~Y$+A;_>sq{Y9I*Yv0*jzpZDYDlK=vf-wm?}v=hbdikpRp5tQ5r2)+QW07vG{< z!O_k=l9l)slbLPNeLF|K_%CmFsuj8Ft#WsfA0%dKHBa-2-EIv<1fdU`hbOmWgCt(s z2fm8%2%5;;^dX6bkPiMF#n8T<_z{*z`OJe4#dkkhGn?kdl}J0%N#7LIX=wY_VDf+! zRj*S48w6bym}G_SvWNVURN^lj33{Ryq=P7a+ZSX6(xn1#t-rf1qH_U!FQJs1j&HN2 zRV@3@TAvF6h^vRMw1Bp_~y7W923Ys#GhP-qu~u>0 zX7nzWzpR`SmG44H4qE3Nl)~ax-Vk|q1Q!!BQ(0!=O_V*#{h3)%5b}HlIfDSzLTFqg zOHJyJSI0lK^7zMe`yy3M(sFiY8k%gItQH@GZ}R925CvbMom}MogqM8$kGL~`&=P49 zL-?;8yh8j>%5a){Ne!U5*G5Y_VazTF#~1JZaUSDC2skr7!$NI~-`y-z;08bfkqZX{S|rUZZ3f*5`&BE% z(Q2h%xATY$5;b=OV2Y#PRP@cN)p02eexRl*C%$Q?L7{wSQy2e8a_jM`tIFFF4t%5T zEbfgGAU{3Y0K;xZ3EkO*e#|*mRU=4&J2ZC3v_sg zX|y(Nq@_RbtC~>9uUurGz9H4kiE(G2W(zyGUmgiT5%6gHRRi?umZ+5e;rr>~#8C#N z+>|D3JWf;-(rj$<8qM;IBxWx!0O!a5(H;1?@>ZhchI}AaJN>DbD2ezFn3eLEUuPf-rjXQ;8QX zIqURgD0&V|zNT;Pq9!X;;Zh+&%nj{mV5ig5{~HN}ZVo8_$fxqS;2eU7KWD0_t_$zgii&@r z%`nfYAyV>3lqlY=suK?r18OEgN%iE$)K?izJ8TZ<{)j}I!(kVsy*PJtN*FE^IexVU zT9wcd6og3^4kX%e$T+3IEbyI5Hl3#y`sMiX6E)jHRoim#9J$E{GV_?HD}jTSQqb7> z?R})bK3Pow6{;1+%)!^KT~l*%kBeXR6SZdaE(NwPh)j||3m@3BHhaPc70Op(F~Q90 z7%Q}FIQujHc*|*&Y#n+S8MF5b;#hTW%k2=p4SV6H@bVr^@VNa{ZLS0Q%%8GUY(sA9 zWkS;T%_PZdkR-3tVt`;^=8g2tDsW@n+^WO!DeuhR{UD!HgN{e7R*;ty1&I!gSdRoI z9Xgh6RhON?Dql%FiFW#{^V<4?Sdwsh&EB31R_%il6F|)I7zZ2MTWD#vzk(F^mD~iC zmGF~O#$`H>rQ(EL%IapJE;~WEVFuT|xIb8G1#OA!;WDkKK8O4JMzER?VeQE2ERrJA zlSbq(Fi!z}$k1BnWl%7te}CnRSf|9i`$a0tU^Q~B>N39PX`?&U?doc#fS9PFK8t%` zOMHIulhNyVE(ij4tie-2d08xBNtig!Q3VBN-wqs;GldZqgzdtlL?F=PM$Fg;k;Dec z+1>G_f#jE;Dpejo8NPAjysD>Ja*&sPQ%)*0hWrK-zFp3#U&Nr<6M2os2?3B4SoeRT z7x8~?*VVWwv2ycjOm5YGTe5de&Z zo+z5fP0;KR z<_B5K3;dmIP`On@uZ6aMn|^5W3E%fa$Qno%&i6QA-#x#AHp@UP)z<8?yBCvhSY$2D zXvWIUqSV-8bVFZXAAD-)kWCqKrO9%*tkjrUGMiei2z0YSoA<`G4Co=jWkJXoP|Y4kFlbcg(v4C3h!AcLkDGA0g(uG}Boc4~T%ssy?mE*BJbt4WzrM;HZ+ zJNg=wE^j`|Xi72+8%D>!S{l;X?*2ghVWGm5J5R^)`8+g9s1Z#7Mk>rTn7|~>_K6n= zhI%oIs*xya#PxND6MZl^qyi0oID!SeIWQy3W9OMS-iH!4u!3S-jHkj`| zu9q+;?kZ5cLusP=yg>g2*xkccgMddcHrTwp2c02VR*fLZ%KaOQyEmW3z3a(yL{eout=DyKgYJ61Yd6?PChH3mHrwZ5^m=~JP=C-_y`iny%opu-4V zwO+R3P*Kkvkyqc%cpVEFSjMfA0%Kb4^!SIY7i2Jvxqen9m#@~L zPnfk!e?dyZI>@Rxde^cM)y!e7{^qR@m>_|0boATWfe92bh-b?1()B#(PeF^^@yU&< z0~qknD=iHgwESMi_-+BO**As!KG|orPxCXx_)zMR$*j~EazC-szXmlr~4FZh%sdT-s*j3eBNle4Cpg-wuHNR zfFE*o|0sLt(!>U@)+_GQv$E#f9G}cqiBz3gm`k(S`LFwOp|Y+jp8S419y|UzKvu7f zMO1zjo2F}235QEZq>EQx%*^`^W`%VEHO=6>)J?|Pu6X&+y42yixB+>3!Fdng$603d zACO}Q94}76E`c$n@BPc@8LvC|zg~*0@sHp%e-(8|Ib$zxRH0t}Lzz)RRW{BiQ7J4$ z!4B1%QVt}FQolw9pxva+j?800z^spzVZbOxYHF&`^*ek%-CtpThRz;6;2Lzq!EA>h z&4M1FpSaN@`mivZoRG8JkHo=m!-n`-#5HlbNlf|M&|h06q0dKXE98=`{eJh!dV+z0 z=sINbrhul^s#y>H=*LQRyjxY`j)PdrNj{a_F)6{kkGf6rUG>$XSWaPP%`si9{c3Qr z6@9?lkewk5m??yL2k3C`bgSz5b{DYgmbA^fR?Yi~Uup`3@zAgr4qAev6AUU4j!(_P z@yIrS&SP|TQoMvk*}i~LSQ$9-jRIE+A{}XX)S4$QX1b6Jo>&0sj4VAsPDfXBM;=9mJ7%iivU{E^pK~l#ge$7WZZFj|NcRa0#^5cs*+1qN)Wq7p8c|k8pLHQL8F| zl*0;jmSq>75km4Lr|c<_*mme8K`7^w9;i3I?%r1QiBxAqTVZQ~)4Tj2?!b;S0c`P_ zihYvCuCaI>x+@~iuq`_ZrZ7nXzz!27QHHPU@BNXFAKGBzj9UD6^Xb~^2_H*{UuRbN zl|^g=9YW1Y*J$fUHpX|pCP0Bd+6eI*XufkqtN(=adw?IQG<5Fu3$uE;40#^ssIm2= zkh+624!^@e>TXNL&`PbE4{SXrWq5~AQnFQO$;1(t=2O!Ct5Ml1EMy8hwenZ>d0pZX zuK#6Z zi=~PdE{i2qjQujYw&aMh|8+hhk)6iuUjhseeJa)d0A>_0ija8i{1h{#BmbeC+e-5$ zw#08+d|}cWW{RNi41=l}>3R&3l6?)2IQdaiFO@rY&ASUYCag#;s}gT5on%cu4%;A# z3@wrAZqCzT>QW@2#$Hef)MXZ^l|R}LFGXAY{mdn;<}rRy>&oh?ACy~ea`lG5xUH28 z{=>Fc#?TE!jzIy2A%h2Zq<}-`%k@rUP@Z3XJ#Q6d%vig59KZX}QNl z7+o(28KmW1uCls4GMT74t{y6vz=$i6^;>q?fQ<-EU|}*cAE

B*EmV`B0>OGUbv* z^-iUZtS!y}j-LK(d#2_twU#k4)*YnQh`~{b!N9`2P_f(4=z@bst16LItNcPp{b}5) z{ZgVvkA&ivo)dvoC1iS!GQ5X~d;wMF3I>oQ3@&hCvh!Ck6~>WcJ@)oy*;KOO5>O?- ziTrK{hYA=LS|bbn=yG$wPOivY!cIWVwe7dPiynB?4NSU)zLGtpI@Q2gxN^7}nVc>M zGc-ska>fdR>Cbk;G$%(@pf3&mYjjlq*~f0}O3inXq3>?iYoF#pWB`uC=>7YUZDxrF zYS6lzJ_=&1m)pG?`jMO~KP*?>`OZ+o?ZfTtM7f?>jnJ9cFkCAt#tvchlhdy(%g0{K zot5S2Vy51 zAy$#WYB?}S{lDHIG-yxWf8uLrd)v!G6PWgdl%dR|P;jFMsJV)lDc`}E|dEcCVpBMb{x{bmTS>wq(u}boIeg_KiMxVD1h;(GGG)s zpQ})LiY1kVLzaBtr|Ojn>(N;|PQ~VgmT-|?Q-2yL{hpTOBwXrlK|+`pPNSJ+l*!F& zS5PS6Po$v?o!FU0816O4EIBWq;BKkt-UfpW<|o}ryt<>Mg?xZ2!Y>_p1F{n^11ddD zqhx@nboP~SbIQre!wHxI3Aq;y;RfKN|6pIx!P1ZTzD^F;Ey2ZBvIXNfM=~pk?JU9tWf7I7V20Yb_qqt!25Oh2zgB5|K#@^A99;yD4xq zpF5NmhLsVgGf@Z;XJuLhQ#1Qmaci>XyveB-wT)@l)_oMQMn}N%=-1n5e$A7POx_~N zDe>TcEmFn`)30F~LBQaO6INK_i8Kc{NLsMM!C3vTd8b@~dj(y@An*;tV|RKLwYaXY zQk)O&TVq}QLIe!~EgdaZ^Z9vY0Y6-yTQrr{JV^?`AM2YE1z&_v7&qV1DxFy5=n3iJ zi7GX$$I53+$W!ROUdzqh;f~>g5*qp4()Rt`5(#Dxrg|DvhnyNe5z9);~yW2eHut=_G$sTH&{Kw3^2JdQ~a^>e_ z9_P!Yrv=yEwxEy!7S`S2$qiR%MJ?A{vE*S0PrO3E8Pe`z1wv+Bj0cmACUTkYY0hn7 za|e-W>cxNA8Ny}s{`6u!w>54H+!}?sg@qmXtwX@{4hmlt;~Mm9SxC4rpm`r9Oxt0Z z;z9w1-yp#@U{Xi7qu0HCCx?|7`(QGPS^unO4|PCKT*ZyHBdAZil9KVlOQ}+SOUk!H zlb!S}463A%?bJ}7#939XVRY>fGsm-983RILk`yvfJOt+iXnimA8M zzsfzw|H$;v?!}HetGawnz#FA*CwdFCA*t`=3-a&FUHj%prOVvuUv!voPz{EQkDHp< z3%%-h;V|E>*Neg;Nb>4lXX|m|b|lBp*Qy;0x$qkN#!T@rE|`8_yKzfD-FgeI7){d(enq!zJ3!0 zUEw^8$G(CNg9>MGPZn=?g>W>c-CRvlp3b)C-4kTZP zVkZrKg^4CO1me6YBy^o1wMF|dE|%`0G6$pD_uXEyD9#Ams^Irv_#nfK&}raJGK*75 z=)e7oJ;*8~nkYwFz7`cqHLcCwLG=)RS%A-IOvrFF1N0=nNSNi_HobcOZjJApBXITI zEiT51#9I}KtYu^=E8nuO$N$vI56A`y&eQzLLOr% zk0(gsEjj)(blHerf6>xsQ2|Cy_BIQH6|=tZKDkb+-&75AjrYEoHvRA-f)7} z-sUN*X^f z`A*;0H*VwlO{cJ<@;G-woUTh&xr)P*dk|$3w$p4rs}fZ^cKw-cE(W!gy+qTC7A3}5 zXmW{cJYy$*+_D>Vs*uI@;_mddh5w7W_YTLp|Nq8MsT9(%WoNG<6iH>T?46YnrG%7- zkdTo*GK!3lm6jPQBZRaxj54B2B~(^&KVDtm@Atm%} zjpy_6d<-h%`z@Ax?!A%qk}*G|l~VLIrsW){fTzTZ`d=|*2Mk@cR%&r5vs&Qh(b70p ze&F*kSK!)rUq(%GXGF~xM)$e}by}!jy?fX=vH84;bNLr^-F6ibJ>w&F z+}`S7-N7Hk%thNKr}&=EZq8JlSDSi2`+#7m0X-$5#oc*JDJnD)7q(bDh zS<$2<+E?jaN6tPN%$n3)xJ)mds{J&+YnOJEl?od5O!FFT<3mqU;xHUn+@@8-!tK?| z#A?uc!l1E5T6blmhLDaf^WGa@s`=OtX$g%MY~DE>(xC9xVMozx&U^)EV)3;@W1(Li zAA?&UGDGxP&__LiE$ddV!aw~jZI<@etNvvIV!r=PET(NlDKwgi$Lo8-LITh-xvP4w z9n~Fo)|KG$VyQTx^B-hcCattRK5j@`TcZR%r1oTS&9e5N&388Oz2Nnm2}vU@rn zYt~`7Fz@+Ew{}qNt{Z3BrCEvi_q4IGqIH=fDTl>g>rH-FOPsvIvchz3>Czfm(co&7 z57-KXg9W28CGH;WdjesXba>;Blzy6_X0VcMzNR`VU+V@u$ZTcn@f}Gn4ePB;Z>;Bd;v9Zsx8hrxTekp| zT+zG1*;n)Kf|!_M#Hrb_C42Uh>N0B?tm4~S#M!x$GY`t8)fIVe5R#G^x^XP0E7ke< z^&MBwDnUZgtvh;YZ4BBN00C^5H3(NBRo2JA(27C&mtXFVBRVM$9X_!8_J z_V$JtC@-uAmmg2(isET8=pJyt;+Dk}e$Pyeg3$BJJGgo0?4eU@+@9O(reBv7Vt7ZU zH&;^rN5Q;;Se}ucUH8C!<0D~@L8kk9X11ByYmT<4kHw^RLCtS8I&(9t_hP0^{SRd< zYrlQca_qWvV^22iO3szZH!n@Qw(*BWtlHdzBF>HZmfC)ow->RM3{8!XWGktHLyU`+ z$d7+m$8eyWoC~f z9J7Ev_ONXZoK-z=!std@ON&*>SNHxb{lWr%8;2q>nVQETe4d-p`Nz!>N-xfn96;H1WsMcSo<2_gX8J$ToAo7Rnf ziEj=OlIrfrFr(~%h7<@^LtS}sF@{Dez=t>9Wenwe^*k^{b$Q(wFOOor-XRH=!52n9 zs-pKC_W!eAE+&~S-|~0Ds#op)2OcJYy_BBC5E0sG`sLMnPO(1<@yt3_yp|`nZOgTB zI~ppKs)Aitd2Da+`B`V>mb6$=X4ir}7NV{N&xNR8wyl-hbwZY-1+3_JEdeaUmlaPn z}Q7|tgF#nj3+j3SB`&B27A`e-PQ_tVDOKMf>k9MEJjw>qqAO+$z4OnHs zz`(V#JHnT)_lb!$Pd%-&L7x33tBzIsRq1dvXP_0%_*(!KP?$=)@a|PqXXJr9qx)Dw zzYB(j%Iqw*H{HSZv~q2f&iwwNvW%aqrmatwX@WO8>)6H1Y~{|))t!;a?1K2lvu>b& zQEQEDOS_EydL~}qB=uC?>FW7+9giA)8o)@ZMBOyDE?{dLOa6SKS)zRNaIT2;G|g>? zVlEStqUOew*RJges>+k602zo91fyh7 z6j4clVxyF4U#9cttgGInX|dJKWND_R>-$Z54{Ftct9lt*II}C&WZ9(*?6FEoR4g)ID52|06Cj9KI`ikMFH-^#MI5cTBa}WA|acj-EeQ zxg^D!ML9($$2u9UOT^Np*A!jkBOuj)Sr@f;J6 zCO#t0lG5^54nEIpceG84orIA$6bXYIWJTT<@sK!r)0X62CXxuR>GV8qKJYi@-`|iqfrDA#q zi`t(rTZ_Cy5B3>a=S_I|pQvpV(Bw9X1#=f3bb!u6_EY|9nX=l7DTMT&0TywEu|T)-r9 zO)N!cEV-8wzm0mcbgTz&OY~at2g)0KGP~BMb+(+-LOu4qs6_?0Kky#Hp~kFfZbnC7 z%QB0`=CSTn7M)sQx19nkKbUtN(P@dYLHkLM8xNBnOkkDR!v<-Vuel}7pAB9tw3bNa zT$5%KnyVuCr!1z1Kbbbg?V<7D9u$CJPM(Yr)MU7KP!FmDu*=YI!9|Xo`a^cT+d$O@ z4&8o^@}l;j;zPC4eeySabBx)kntT<8R~N^mY+`2hG8PPp9Aj@zmHnaU*h%a4{l&T5 zK9kggPh1x^4aFTd+3DkEZ0f#7)|9dFc6s~$aWP?6<9F@q0_^OgfAV-w^X^(Yd22+q zYeppZ?s<_OW=T%ee=k0tH{VcfxZ$Zo1E>a?zxQUji&d2Us=odDdh$qusw8)!e3|3D zb8=P6PBB{#iX1Ym|EA`wmwXdAsl$#-PzNbjT4BbO<1DjMY^E=CXP=9wkzpN(Sbr5e z!>@%4hSj}{P3uH}S$2F*_AcwEivG6V+vt+HxVH-nGxK%GI;v_DZcIGR>ve-9g{ZQ@ ztuJ}?Zu_JGdr;cR=S*?YJx1cZg+AM;Aiz_FL=HO&l)^Z=c>0Yuw`(3K8a^UwAG0++ zvrC=jh<}#6iX)|tjYm{}P*zz~*%%T^jHAGb#Uuf65hiDIn-`>n6eI48Cb*=1avrmM zT6nzJR`;$?WL%`j{>_ln0DLG6^xU z;kme(MaD>Jqnl94;w?eAbv9_%;sw!V@04c)i&o)BR;0(9?v{H5|e9US?JrVx{D ze>A+bsf<0>DzUrr?QtAkL=;6&C(AaM&xOqpy zH~Cup-~@1m0}FE%K+i1mN!;f^yS!$mdvB<@nVR2ToUb5JEt5krZB%mC3PAe%4x^ne9rte-X8!ZfKb!?(_A#SpU7sf31S`{F$2tI^sHS{;e7;8- zWbICo;us6w%&H~l>)3E0>*R;x7XPBF;@@JaLns*4L-OU<1#DjCqw#?@+IKaE@g;71 zjgwv&u4T71U>7MdeXji(_Xq$QV?J&HYAep7<58BsO|nE@wcehu%4kvH%V1a@G39;nCr|TUYj6Iksk1@-2%mgbf zzi0*BV`Km{+Oy5&QUYCCDaSFn!sK!48WugTO4HUsQQulqu54>w80tMfcFz&QZq13U zSE@w@N_GB~kU^Ce{O7XyD~SXhwdka?8~kl=?`B*`mcJcaGvGle=}>s~bsM#YYOSR? zy$|g)L~csd2FW2AGZHdvYxL^FWmX4Euf@v2{Pfzb{C-2-RtDP2$hMIH$z5#pSb+86 zW&&G?*$Yd_LyrBe;!e4ypay_EalNF34$Rmm&N7&|KZN~|G`x_x-wRkvJn*7leX9kxG zfW$BjYjE1!wQ_9Fm4^)SE&-hFS>LuBKRGDG2;LT(lfnr`0qP`!%3Sqs+-QkH$IOLm zHI(OKEnC$jWrP2i*YPAr@zk76YIokp-YK2QbFW&&yAGWnc7%s0hlhJ{K!sq30edRd z578;K-Z9dzZcG@LJJGm!nkevRL>C8K)-MeG3muOJ+Re7ug3hkAl3c3nc$wcnK;)CN zS7EU{6}?YvMy3I~u6n$gZu)0oJ5`3^>wHHB62=bL>`#%ZyY5+iO6%y2H(M(Qy9{l% zBr3b9@{5%_{))4Hzs2P#ef-vHDUY+w(*-`PQGI6C*=p)dU}8H~YOzjjGKyVed^1bm zRe#rokWWnkUM3Oe20})4Tdv~+HJY1v|BjWE{d1Io*R7ki?Y^6uQHi^}5!l%$5PVCpbgnnH=-98vo8u)SR2nZKQWs+wYwu;Z$zE6D@-Sd_&)r}W1K~B>_t-(+ zxsBskWid7eoY+teq9zO|&-X(grgo71M&oRaBTdE>7?1=LmPyBnGsdZ;?@(GXU<3ZN zxdz&o>b#H0aM1`|>%C6~!PxM1{u!bbjn-DG4A< zADbfW;@p3pYUCM-J$Zal>;;s4b{{i_xl;-lldZ0GtfuywUBxRLt#$OPaqXn`jf?aC z9mXQ2Q7DY=r`X z#ikp^H%$B_un0(W=uCZ?!A9Wh3!ZO@W41@|s1Bs#mwNt%U#I3~ z2Xk_nO~lLtivl;AMwCKmqF=aEc&CBhKbtG~I+TXoM`!sd5u%ORQazKU18bhsML*)f07IK^?n+Lq(?-#-LbL>l_g}t0lkj(tFLqN>d+;f zy*9J3V7T+Ac!eN?|3BJkUBBdL?uey6)uBd_-d-47lu{oL%mLqEeW%={EttCqe& zjGY6z8u3n{B+<6OLbaGo>SsN*Y9sm*gMQWW0>`8ke^^tz9RrKj@qLX->AT{#XLQ>J z7cWuUV(P935qB)Px`#_|aQ5!i40NDTv==kgZ$`p{R$(;!48pakv=&&fr4d9{=WR zQ?r$s$HF>yUE)3Ky<*cD$NCs0lkSe3-pyHmeNM}`IqppJ)GLP_M4~q`UGzF+Reavv zsG#W6QhqWGjYm9mm!-R7}=-`y?R3a%wr zg*)~i{kWy#fZ*vT!+O)U!=G$q&Kp|am>m!w&QeNXW3>)`-lLNt8F+nIP0ZZYywyTv z^O{_rZIQH$YhFfqtTFnWn_)J(g~E_7C%QF$RhjU+4Li)ymDy>8N(6LRvfQ&RbL%pE zzggV2cKGMS$%3CM5;8jM!ls`>nZy(n<}|x(RoRnYP8obwr15rt9O+?Sur=;eD8L@x zT{og^*5s~lgO48~2Ni{JCB>Og_H4 zz4i#2Ow=mCueVDS_f5i-V6>XcX~s;e(9c}5a=+wDSAOYF9KqfX8H2eP3T$yn4w6VPTBtZAx2{d*+Px#!!*!1*0C@w|^?ya}#vdyQz!kn#J zclfqSWKx;iu+W;Q{uJnH3r7x>z0R83{&{1;pb5R2;?;04lSPYj)M6e`dAq+7Sz&RS znW!pqi+q^yK0dJ7~?k$ zoXQnUZ*7o?);e(~@5~0{ZxA6jj*ATHMsij}Y-)?$9g(=jMLyH-M&Uz;35z9z`tTXW zVJGSn0iS&vc%~K6A3=%^>o!IBBc1uyAE_nqeCl+5j3&*!B|%IVrsh<^$@LFriXQi_ z!DTaFt8<+d06Ii3hl*R|%>Y$d+JF>QS$;&M~1jH62C ziB+*$w2mS%%eQ-WtE9yJWkW<{%*3@q9+dS1LBR8uFT85mu<1nn#2yRqG+zsRh+n0L z_9;)u>Grh^8pW$#(%EvCh%j&NRaDnW8SohIxjwZg`?STukS*CIEULxkzIq3XpHKc2 z5f^_9^HPuriRVIWY;65pSpKadzj)yIn5e=@f#|cvC0Xc5&A=S+&do%7>#>tbCzJNt zK^Gu~Suzvtb=0!xyoHh?w|m@uV^q86z=h2;4$3BXye;U8mX5YitTJ{tvu!QN)p&R6 zFCPXL5KzBocv}Co zRd7fFoC!WzA49I%Cf;4$UcAvs8OG}4&rUaQh%HijG25KV%4EVE*9OQ2&HTa;Q=2G% znqTpdI70A7P12NL%18$H2!H{y4e7N{9j>vkN}sNC@~=b;ne< z-PF49WhwixfCPi%w0}oa9~xHJaigIDi3PHG*ct%B{qpV}9f)l(B_N{uM<2gmtlJzb z`)_YwpV0vLfKjf-z4^-~my~lVCuH{Zdn8MkI$K@u{)IY;{I-V2SO^#S}opyzr0+9dseP%_%f~m<4_bxOX zD_;z#(Cjf0v+)@~Z3kNVE)CNkFQCi(dS+XSPPV7v&R22D(*<#Cn2Hx8UF2K~mlKwu?mW5{u!-G*_Z(%!nizA8zX>r?5cpVei6dlNH8uYT(?r=n5|Mx-D8i z!UWe-y%lBs!-6CCwuBy@b@>%pXKi#|XRiFYt$Nq#0gqik{d~6>rkqevD9N+=5!^5h z58)$rH;K}%&->2X<2LQybpw87owA>v@E@GH;TZBmiBiA*{_b7R^7YDFfOX=FhFT9j zuOld=n6VI7x_9s2FFl~C+)*shx42)BuE?>$QYZWyP4A4}h-LqiOF`oHntleCPRWWs zgU$+09QF|st})Vfw1R*v4<^UQFmzZdwzA>bKvn`28{kcvLQ0vD_+7n^yckl!;jhy_ zcL#_xo?0K#VBxo7B!j2?rZH$AcJW+URJzcy*K~4o2Fhv{n+7NyJ|||@Cq*|+{saXH zRCV&8(Qttcd#S}yfjLi*TJ_rt&)xJ%?HB*{*>u4EY-RSBPclpl)!3Mprd+N_dA)Y* z+m%21Kq%Tq6sQ%zMFk~|yvRbpa_P22Rgp&5o8q8Y;AkQ0d1BbYQ}UbEIjsCyCU5WC zeq(RZ)PrB9H2U^r73lbEc!7|R$L^^uj?#8AA@Y@&+!H=5JT^c&wvS1vG&R1T7wtVL zxa-V-3k~Qh46P7`Yn0LvZ05Y*%@n z4c!D7n>lzY@JyMQnD`K?C()`Cn#iIxM#&E|dnzE1Ev$UR08m9X!su}Te92+qB zMls6fgolWi06rNY0T!>a2ds4)=j_QlD(;iU9%6i|t;%`RaM&!2q~ zg=>PG6QEndP6qQ`J0Igjo-t=lI&KOM=zzt~g$l&E48OnB+`XGkp5tB(7Loxx$GlFzGpA|azJ+R{rwS+L#Nw5>WC*Ix9 z_)iYr8*kQpQX7jH9&c7qOxFWNa7K;VIRDqwP#oYP0MEp<1}kTIu&U^mwg%0;Da*U2 z31gANAClLv$^9*wEW~kHzgl8(edg=rlh5d#MLD!~9BUix{`AB|%lD~6kI^YQt(rLQ zP^%AXw?#j$Ih9YZ$y1P}F}r79|GlvQN%oCySL*2m|Fw+MczW@kDZoY&3=kun|33}p z{(ttLtzpKmU}tV9lJ9>U?(=8iD$H>1GCTnpKsE-)<+(^Hx%ML|I);OSS!P>ow(=1BbvUIjRGgKk5S^~`^j(1$nYe-w?N-0@n}zB zP0I*#3+T!p!q1UVS}9GyT611}_8x77=lbUJjGEiS;-^mrEgd2%a=3I7$8=b0E>wn$ z@7658k9-@KY^7F0oarf;`?eqohFtE%VwZ%|L@aFJ9AHvuAR-ayiM{?T zjL)`lpZ!1u+P?B@IBqKyIZ?hNT*C3;g*9%+kE=mQ3qQV%l(R7A_kx8gxOt!IQ%Aoe zLTkfl+UNaFf&ERb3V5VWa4g;PW%mBbp>CM9H+eKH967W6vu~X9|1ERs0o?pc;ev^5 z6XI@*yYmh5Ro+i6;!^Wd;{Ju6UAmPG`o~h-rw=3%uWz55ct<>bTi? zrxJ^b?ge}2948tEP6t3w$8qn+R5tj%8^_F=4X$rI=a#-!y+sT_=3GGgGxo0v=Xlc@ zWM8+@jXW|g!0cgeiHdTvVL@o97?#s1pbv%CLbR|G$px6X4Nbj4Y7ES&C=}v$1nL5c zDH;kfy7t7ohI=5WrH5bLG@D0=&+{o_Wc?5r2{HSoG;NDhx)4UkIt&MZwGedDp?G4mf=KQsfS2uizMEP_VbTezvHb;kHDIG`}z6DJh2lbHiiy`EXU>q<4Dg;J=CmUx;a@a7*JX#6DcZFXLS2f$KTJ9eI_#?gsT;BV z2wk0cTB9tbqL5TM!p=@fxn5t-iTlfb>0KX%GM;scL4VIzSz?I*JuUh0#4dH(U4wr! zv8p~b-rWKt)o?u_lcI{@BA0xbKa=(=QIG_}U1XS;^TP-J#gu~1LQm$djYJ)WZv^)V z956$18Bo|PTd^(=;65gXzQj+f8iw4&2axIe``wFdkpaH&d)Ri!=Sec(8`uUSnu#?RxP-q-Q z08RnimB(Rn_yzvpZw>b?N~`j@JhjYTx>r_q8Hreu<6d$Lnt4XQE}skty?6iqZO~3C zVO^WhmA*4VTK-l{&~&u@4zP5T|IEXT(24i~XYM*VNM7lo)>vlOk+--TT8V0})iNl} z4(^dS#&E>o$vz^V5+`cV8z-_7hynSm{{xA1J%n`C#gOnGg^IlZM02~53HR^AwqvtM z6_a}+u-lk?GkBC+Nm!BZTdF3cP<@BYWoBg#Eu5&yjnS++|DVUQdp6%d4Lq6C{B1@3wgkU=? z%@N2EBi?@n{L%v7N93sXTBd3u2EN3^8VXHH zFiG-2#KgAq6`DJ@B~0y?>4(2F)+>dViS}d7_%)K*Lm`GM+aLVc!sg@<^Y@3i@%R0L z`S7-My;YQJfxoQImzI=7Z!gEM#C?^2Q(PypQ_H#DrIY24FV+f4;*@H`y$-L@%NkTa zYObJG;O@uLpsY=uwsO51w!Abqg3_L{*!mq$1(#s>(sZ1ExVSwiG$_uAKo9f6zlUBA z(!S=Apt7D~vz9{0P{c<(t|}zf7T(vERUTY8Jt!X#)mE1kLHES+f8XE{dY5rWwr)Ln z3m!YKU%qTEM@Gc!cken5UM6dP2>~QI{+D4kejBW_PoBH440yO=!F|D+JQ5>)|KBhx z5|Fjxhg6~Y8j`|5VzJPre?c6LNB3!@Q>r6_uk%iu8d+|4NHA4@|5ME2NJ8bI;FBX0 zd7Eaqw8BYl#2b7tD?DNM$B49=Eg#FU?WM&hnd z3a<0Vc^87v>>Y>6$#K+rr4Y95g?RRNeTef@%c1!jeS46~@djuQ-R~|=F5H*=I%)lL z4Rd>6KYP|>jkvN?r%uIwp+Q&fL`=am_nwnScz`3xa0<%C;L!<>jN}V|+F@>MJ1}Jv zsff_MovHRWs4xGVz7SqHZ9aN{WXW!cbRL#2?+^M9?`B5k;{PnfnS#AaOi?wQ+dWx& z#}J8*B!-3@{mZ}JFHFDC-?IUCJ^ORH<@5U*=3BPsLRn6HjE)_9glm6QP6e|{gZWy5 z1xeM6Cf4@_{?7;w&aRm7FU{u6cxL3aO(!Eoi_6Mdz{d+;u1!qX`EHKHmEc)@$4S9D ze^qy_qwFXxg;=WNOAKFJ^e1K+!dHEsUurD_ykiiw_~LMOP$_@khmX=yDK`mvgtDL- zp4YdKFi8SD$Z~Dp`8B+gBvcS_6BI#js=c=1)XX-Ck>DXQU`}y+Z}>}G)sGVoiIvL} z+(WUfKPycV?~oVZgoPLDHu+V-T(dyqwT$j$1gYITYxmeSlRQmAV#7Rh_ zy^vfnTsv9*7&74tcz}Oz)Kwu(w<<(aZeHJpcexYql7t*oBel&Fy3W})%zjZp#%{Lt z1!K0kjLQvWg2QDqi($+w~k|CQq<$sF8JD<4sE`#r!`lHiN_0!2SbnL$a1 z^>}J3Nahpnx9M|;7CFColvrirgd@2dYfm?7d9zE_ApC1z3r>4a#D9Hn zgOT7ZIN(s4kQ`fy9X=RiaW~oKzX|^ecCUEA0>lYj5S-@!TpApzykHZm*~I3`b5jO; zY|uuU=RXrO7We+a^0~7eIjlFwNmw8WwS`FgHj><8;gKIS(gu(8F0@}us85lvG2rv! z;1`mChhxTLK#}ZMw#kwo^uh4`4;mh4Fl|}3bh_&-e8Zve#nE2{+XEwQy;_)KD*J!f zx3Y;#NgV;H6o1zooi>T%IA5_;(-Rn*)&nSL)GPy*ROHV98bWb??g+|yT;6s;%csx0 zwsM_*PD>)dEOF)p1+hdI*suBSbhWph2X78hI4&^0a5XQHb5)A&>RLfW$}J?DB}u;) zc8_a&jJMjs=Je&y(v&M@ewm-0Gf%MZvF#kzk`q}BsA|YvOg=j*xgD+EE`LZu>lcKF z9gb=LH1YUA`NPMqHr6+j1CVm8ffx!&vYD+ z7?R%g0qc9D&0zP()hMQ?8)umncCyivl3@2!gHy+iL{LfmAH%;W7=x3vOXAQ1*qPPt zEZ@oJ3oxMnK*GPCxqkew=&x(00IGr3P(0BplE9+J=MCCch1K&sS)RikvlW5R^5wPv zh(VFKiSj)z=r^@+mgg$c4wDkNx)v7%9S)`|xVR|}V;w0l>QN%ijpG zOaB=m=2sYs(A3p94m5GYqLEjYI@SIp!TtLOb~r{O6w13_7+Ik`m4_e0%sYH@RXku$ z%Z3025@Vu-6I_9-91{PPLxnHKzP6r#_ABB9GNeWKSgY;ANrLb|9#}b17M%rKceIR5 z^VuId{@~WJS7J!Wi^$uc}t-W#};M`mmT$M+09B%vcp$m98434hf&I&KM4bfD&4L9*#k8=O-# zeGXEtQ!vUX~g7BI41E-7aYkfrje2>^inQ)Js!N!^~rzII+ z!41_}sQzcJ#i3f4;`X25yLK96Ofp4h{yocikh6H{FiyTVh!TRmNXUL(M6(6M)O|jBacD2OJ~k$$Q2-BQF}e4?S`S3F&|c<_cirrk*(q+tP|y|%(es+zSMv%QKtQn z-nHrfI`%6?lv0huo#f5M*8QP;Ac1ULzWpI|Qq>fkpa4&r$+tT?cTPe&V~)Be^!>Yc zp5(RxV$j%&s6jXbkbGE8B#Lj12U)d0TCP#5}5H%SI~T zeF}-caqzX`?nQS>4FV#9%+Hn%CF1|liT@iuffq_#wL{A3KeIxGIGk>nZg@$pReDX) zQpDjNP$&=)R`wY-^0qhW$+9m`Xzn9GT#o;jbk}R_x5|)c;r{*gp_3cVE`zp-=(Jzw z0+jA)vFXwVHX=r2tLuLkG2 zM!42S3Wc0vi2Tbzuf94u{;_g*djbxqbK7f0Qgm^;`PpRR0hR`5pJl4OE2E4GpBc1DS zn%;keM~;=PC4p=%hIKm!!Ht_U&NA7xWyz1GCOAe%_7ppM-5;J8{Vc zj>k4H-~Qi%$gG6_KZ3{*DbBF}&(bFp*juLr0l8d6KVO?Owcw`GF^_D-DoTu5P*#XP zB{J}QGD(;Hg5bTbbG9zog&7$fzs9x)rMuj*LPb5a(CteCh&!MMrHgo6iVl7+0)JvE z|2&8RfS__84KeS(BrZ5^6lyEL`(=j5Ltv>HyO6)Pri3!VJ@`EZQ%-$35+$OqJY*eHO+&Y@_Y zmoqQ7X-6$vUSGjZzt)OKX5!S60}FBXGy`va`)7FxxXA$Wabe)>@;eaXp8M$g@D52{ z>>D&H(#s`4^hTiP6c^y_b`xp0Mu>V){w(|M|*d8X;K2B##saXdH6S zs;I9Co1f*9uwQ(hR{iP0nXlGJ3vCQGFA3{9@)#k+Bnjb+ zVO>%Bc#)Bq>%4M@o#F^EbFLrme~>EOhTJRfcW+0X5XVMh!%^f=Q3#gs7bi1UBmq@N zdaiBwn+H3Mzrcfezv5MoXH%|9h=O9hp=D`@TON;_ih^ahiZC_Exj%w|DIoE#b3-IZ zsn0%WFG=wtY1r)M{ZA?{{O6N0X&c**t=qnT@7rc|P_xIs^363f8hk)*uPFF7BnV5B zCy*&d8jn27&XdTK{>_wP4A~~QEdd|yJMWpww?ZUIclh$I!6uL<{ucbm_mSTx|7Org zHKmi}SPeuV$13Vg@1uljd*axHBVl?)-Abm_vz6U-G^QPnq{La%Zz|LN&rF)-1AjS; z?6ANh0bu8S_^-X<>l~AAEN8tpn4yhidLr6*bBr{GR7wb6n1AZ3OwC&r(f@6rZW_6^ z)Dv{hgZJE7(VWDc44gbvO->%HeFxkUgl5ai{H!l7YWS>>qLW}A>}Hg&ygZ|YWQP3^ z$d^|S(;|wGE28V&R(k56vET*}_Y8oUcMn{xL)i(uj*fVdQ9htjXaN*mEqDxBsBeIg z1UFbdXo+SuI4jQV>HID2|CFL7eY|1m2-;$Df%Y~0l0yQhz37u=pS%1n0VFQeyY=aE z6_yPFL>yucl)Qp1p-dsoGqjukZ6uZa7jFH1^A9(E2bxEXLzNO7y}f}gd#Qh%@6ch>%N(iV!k{AJg-yFBY@k#=i364wxhY`cd zcOIp{?C~bVAYhoXKYMA4w2J7l2!(`HvD?nCjD+;o+M`3?f?^EcFYbvC*uzt4a%#kq zHBM<}9l@L-fXDDnBO9BR@bhwzNnp zfis*mYeW&K&T1<=?7kPbk>#Bu2lZ2nNoG_mgOK@0fke~AhI@BefE0bMcr`&<#oj({#!zi_KDU0lc(X3SA>ngX}OgoVus z&lQ{*NT*1HPjGVx3!tjPhs4(g+V~-w5)g83?Hk#zw|ZffWz{fNhu5n(l3>8Rf-}Z|=Kj4&fW*2EY z;BO2uE-|mz!AAZ=J`)yE|H0w<*D42L1*&peXz5`6@V3V>X3{34K0TDtMlNQ1QS4_7$DOSxQa5-9v*541o=T7yd?0%pvJFMix(tJGmgs_ zq+83Fp=atm1XAAkkvmo}`Eo*-Lw)1OU#CgQ_K95i$mi7smB@PnhzzV1j}UBO63Ye9 z8FMTIf--}4W%FsFT%0`+?-K%6BLwwgy}`X<{4If||24M;-yOv>SktJYVN+seW=0(0 zC^>MS!jKC8fcu4SE(}3kpjDuT0M!N>LF^fr$dP0u{X*jUw{CU*Z#sHW95U+>ji?6t zd>YJ>MrS?1oPaACi(BD~^?=}!(6zX@nB|_htNpXjDxz7zV`Ou}F2Na&ARdx4(KdqL z)PhhkwdVRYS;s^;DHWhvwf0ifEoGhBtQp_-&5=?TH3jER}q%fd)L^J~>1 zV+O;^8as0|Bx!zp$eFsrq6$xU7>B@98$O9lI49K6abwgQi)jf-+_N#-k|G2@D!5X? zb+(nwcY*z~1}0o2jO3$d&dr;&uqc5=74a7b4~+y^WcfVT20o4v9}Tt`3}LXRcy2v^ zuHb(uY7?<_PtsRh4+0zU+(W4bdo+f>iBao7rU3I~BT4O3UKnNk{i~``9fq+KPOr3V z0akRP5ceJiPK&1jNl3`!kHLt6#ty_{BmD7K@Q?h)jShi0G)9X_Rs%uXoES*%zASg&}`_~6K$j3SawpbFWA z%jX+SZ)#8%@CzzKE(`TJbfwt5Fq=f!n||R)53Bip2?U{L4X6oa1_=e?uq_%*WwY&rX2Zj#vnU@dk!LGw*`&%c0A2d}fBCqK^ zn&SlqEaKjX6bER=>^yDMW5oKPPlp$qrcC-p@C|9@MEeuBZR{$9fC7wIn*?vDTdm88 zlJ^uiRTq$$hTyJt=T#I8K)EAy%w4c;Aq&N^3*{OnL&xRm@Dr?LNH<&AENUUOxNBWj zzmYZu$7gCWXuD8lUlo_d!^U`jS61Qt5k$Y?;KtBxDvUf+8Fr~`P$dmTnn&!~z0-9H zKs?u0jaIf4K&b^h_cV!a%1zo1j(9{*0za+YXJ z&0BRz+U9)FpwYw!HCBgeGyS27A!DM+$VU{Bw}H3usdZGbTE)sL5zY^ z!MBD2PX6ytqze)sUGa+g3jlU_L6>5QCRHMMix?r}dPNCFKzqjKkAoHYo}f)* zt&wF+oFOn>0=kba|J3)E?BHdMZMaw~U3<9k4NKTmZ-N19^S@qafcd^u~QyyLjHtxI2}Rd#JeHKIZhPvixD6P+e<S@&;iK=>=>XPN!QE869qQ|mtosW%-$}K^(CgQFEAA~vW61?&sWco zhONQi|KWIAUUjX-QmkOiJ*ST~;dRMFq$gExjg#1fjgBM3pj7rFVwg}xf-VHX(^2}w ztB8K_V#D1B1A)4A6Q@zM`LY_mU4y(E-zE?bvCKhr-{|Je2m!MXUz#24!_w}6gy^x? zD=$gE5O?3l*#&Tp0rt_uz5+bC^LDW2iN5FjLz;~qr^@d(M7Le!^`@cvC)2*yTV0CF z%VSf|wuvBbUC;->{)LYUZZC2Y$HE!NsKL4{Re0voWWJ@wrP70UQ*rZy_J{hE^CT(W zkwIWbqnQ24)*qfRC>lOQ{W9#7=F%2QHcshb7FL$3{f^5Nj~lltDDAlMAF@G%7Xd3d zk9{8uFK?apy*`+izcDHT8e5_{#Nx%Pm_+qw1I-nNBQzxdsR3zpOC+L1)2Dqv~6S#;I0Ur+p5-eXV5brzQ|7x<4 z19>Izq~^}MkzO@62x?RZ#Di69pZsc756GL!ixbD~5 z!1MU_At^C40Z*66wZ$ULYiVt8BZ(l`3Zq9iFTLfRjv_Z}Mkg z)z@;{x@vp-yT_loqoO0E)i-xsH&z*@q@^K@cQb;z5ggb4cC&OV*p^t0sKF?NX8zIB z64^SdFYk(Y9D-+u-G6K7QLzAboD*?r2GfDWaAzS^T6wm)hD0=q#SPfiBP|n})zWJ*|cO zJ;_{e@Z|tKMHh&}=+Cy4n@0QD=hW&rWcC=}UuUH%ax3BPQ5lmcYP+m;qYj)3j%S1l zEJ0e~raAC7-E>OrY5#Q|Z>spr_;T%ZLC17@FB`CvAU$#NiDe<9`EC*RNq_#OEBs$P=_pWT=H~KaE4KidSr|gi>gbs)h z4x_bdZKNoH>Z)6}ZYA9a>LC=WL zG0Y~~8SQv1xm`u}{AUHw^FAFBn=kom#pG8MoWCR9I7Lqg3!G?^<_rWS)k4E}S0!pb z`D+o4Lxwo_!eEAzVRpA@PS3G+HdUaWXTH3lg1+j``k(%L@z}8Xdbs-=gI20DLxoF? z1;q~VLl=c31XlzmT?DYh?TlI&Jtn#u==#HOj^T_ZiFJLq_z20MQTTJYC6okik9M>2R!pg5s^O%+-E zhLW@5##Llq!hUn#*ayge>jZ6mM}(rWH$TYudsW#nx?c zrE#WSnYw6MPKEc+_|D1zOg+nQ4P2D+`J*edyzlpmsM(w zOOW+AGo7-D1gBM%Rx!icP|{wY-G%jSE8XtCSFcDUn%l{fZG@&<`CDg3hHpx7?4s6@ zpmz(P-XI?jflF8D()-tqO67DsH7V2&Lz#^}0zUsB$m_F&zFU3$sbcbvhz3^}DWC|( zGshj^xyIb*x@d~iqMhh&=KcC%&c;41U-Wf)nNysO?NuwTbEMtwlK9LkQEr2W+^)?v zlEpSO2WLi86FIq2aU=T-cf{bE4827Jk9;E*Jy`v~B}m+CYU<3*fn?|Xa`DaQ5KcX- z5`rd|^Z<3k)0Xd#S{&yEc?hxGuWCR>0yN#YicRjYhmS zOteP5c10t6f*s{-zxwv>K3K4z1QyqKJhy#1pp|V-KR!COLkRHIwI%@;hJqDQP7;J2 z(>+};n&GLFA~U#_0!PAIfW$pQZkCk+w+=XHBuZr@i;Ig(1F6QhM08Z!8|L{z zij9Eag4{z-nT_gF>FLeP?nA`@c^jd0;{%q@uU$oDC$49DoHE*M-b*Z-5MzBd#a3o# zgbLrk#>#_s8hXYxvVeXw?B(HDv4hw5Q5Kp2;M{&HDoWhr<@Ql|rx0oQPK#~_^HP_y4Ej1W z_E5_ZycGrxZ7%1cBcn84SgdKp2?v8rSJ&QQ?MfM#Wg%OoE=r4Po36ZM6N(Oa|7~xD zo6jNTqBfoy23#O0Zm>4vO2pA9B2`w9S!3OrT!eZN2odG&MKAy{q`*D4o`SlcXiNV2 zM+K4%;9ca_DW;>XyM9IFouv`~s+13##;s@AfR*B2K$b{)BdgaoCGK=j9p-0^F&EHw z1Ly!PhIl%mg2&O~W#Wa}j_OISdmIydf{0Pb;I62r3B&qgJjdEvOK!z6{TO&Yr+Dg< z9s$EghReexv}AjuWO4_h-A?DOh{i@qM31hbc)L3oh3emY#D!$Qb9ua4Q7yTV9F(CG zFH|aCd`2}^eNHq%%K=6ezfY#W*|A$h|7LxCR+TXFHqRsv9R@cRyDrt~G_PPrvbVKq zOY-r|u2x~+W2aug4gxGe9lBYO{nDrpBimla533z!!g8eHG2zU!%%t6&{8^KBr({lY z`@!2c?mPOFPsk$`)y67~o+nY%Dp1(q8dB6R;qr#x2(qngP`ji18TuXNEt}b;5V?9( z3V$3C6*>8uTjK<^S$a;kh?wGf3;EX{tpPNNh+P_$fH^pT-X6M z4oPc?kp_k=Oh9(~__mVoty@jE!EV6;o@j6qQUS^V+qR(CE4`X;&kAf?%uKfK%oV2~?DEwx zzk1ppD^bx;8hUvaV#c!O+Ej&NU-ARA-!iduH03t=^uE#`No(C|C0aBj^y<2CxW%Pt z(d8RF8HecCs_J)bn+~8|pEH<^#^7XDe)M^_XGhEsex&l2>7=!}dFoD!wV?+nh6m+0 zjR)XJI#`r(L4YOn#wK#t^wD^6v7L1CS3%83kzqDzngmVVZ!cqpmih)OzYX3S5)I~1 zfsyjh?%Y>7z;r2fK59H(4L-e2TpX)Se|*I-o_;|J%v%_d(5!7X9~F_TORf1ib_2~+CBDF+t4$8OHn$6m#4#aTS0CD&FPR)r`Ti|XdrNB{qErM zkLUhx3SRWlDO2sMaBC1PKH;l|KN3m1r6s9z>VnS$%<0BU20DX z^x5Cy$7%cEM4*D0jgh28--)1mSFCh&5P|BI(`Q)z74Sj*AI_BFNa(jT@)S}Q+cF*H z_)^5YdKqaX<%XD|nHhKIz!+&Ft!ce^MG5jOr6VXVt|A^k4$*-CJ2ijFL!IIESH5euJslwDlF+{@+^n=LRXvE5;-Dr=9NWIO81 zHr$DSF3A-Kt47i!%jP7rwqM&qC1P^Pzo~dlRg_b9`2ni#;Q(Gy`q7N*DCANsQ#I}? z8Kq`dTW#T6h;&NtW_CBBijaRf>?9i$&zw{$_QOt4HB@D1vo|a7cr;Kr*o2wUyOj%w zzgLaCuBg*P%~hyiVN)ThZ}1ylzV+R&&f0~xl^F{jyEdGr)hK$U_qhDykMk>E1CL&@ zvGDtJXsO}M&q2vz7s=OBR(7|X=+|zIVSMU%g!9*7KS!a}PcFtgt88IZ`Lw=MfKh0D zxWti1iBwyhI3KYz2{~*HtrXBrm304XUiI?a*CqdP%^u&yk{5I47QPl$H}hweGw@$FxYeGTSj59k8*F~P4%3xls2pHVqes%Kl>KQRwmxAZ(IJY7#?@6Ih}d3V-q5OGLP7OSnu(lWZep606ReZjE!x~*F6t5TJB z9&@^T2EaC&KAXUwuW*ZP88e<3Obm3h6I|6bu=k$zL4g}jMq=7rHyaJJANFU@3!oBW zeE?w?=9JRP%CQRz3%Y)tiVXQ`#;w0dZVbjnAXgLpprObIOy#enrvpDAc3%j(F|2g^ zBlHM*d#2f^4;TX)Zq!^kW^43XUexlX{SE}&13~uNEhVQIZc6pjW0&8YxNd9Lg%SgA z-a7%;9?g7kZdqq@aJYPbly5G@ncrAr&dxkLru(SR1_z_!;c~}?-x@tkz9&Ql)p&k$ zds%P^8>kuA>^=KITr#)*@m~98h0$@e&Sf;4UD7(usx}M0fA-*YW~NKrs#`^}ot3)- zY`lFdzWf?d%N!Qemb3WQm=b!s($9N+f`IYQVgs?$4|7)Y?QeXYJy;EkUA zpJ8b)Kg{mmle0}L#cl`3D-~K)FRNGS9^2a6^t{BqVAtC%2eu_1VWJ2#u3Gphj;Y-S zAWY-kS5^5Fn!vpd`}60#(WSVmm}ezf5^bu}Tw=G}b~apj?!~?Rv8@K@Z}t!Ox20{7 z{NNp5t2er^S~cV|Skl#Jr}=NcEj2FoagdR`E6rzNw1bT)dWSDH)u!f*)}1L`A9Mt+ zYSvi{&L+&A7dZFsxIFCsDxZnnT|4H@z7W7&V^c154HLs*aKUn0v@9&rc&+-+JDboR zr(t0hHWr?kJ9dv2x#$&r;$IH-=%ewLDX zdv&C5p<+UrwI%Z6y41#(ZikH38T0C^z04y0R~Z>;`)M|_8m7y==uRuw&X0;Rn0dNI zZbzDCnfc@Xeoj;i*d>GvO}ZI0RuHT3bEU53UJsXa~2cwD)YiRdgRK-ssYfw9dmYUmF=2Q3*FMLh?Lhw=Ew&@Rp(2WGQp!wLTC!zi zMzWJlLRJXb%2xJz&!_M2d%V9t-+y0+qeBj#^*r}|-Pd(q=XIV+J#sc;e)?7aEImJ_ zEk=FrlrcRRUgsnAGTY&6L&E?>VsYnLcJEH|(;2ey7d14KmH$H?WMOsVeTTr7+=g zG?GF`t)OfA6#a!GFYqtE%PAFiq(5c6(Q&?N#Do)EU#+;Ai?KbL{DgiT;4F+z-8^=P z|Kr8`#$I9fnK!ts;a`<9W+>y!NebetZoNJ!5?mya9Td}R(Oi4udDGGl*3#of3{>5! z1No_nVeIBM?{x)Y9zSm%V=TS(Blm0T)-;Jx!Otzc!Awe|{!KyMnyb#d0`gLkRWk!s zXj+OKKD_UUXaLW#H+E-BgR*XJ$ww9caayHrA&$p4jI3`}l1A z($H`qqz3Bt`kk*@??=7K5A9I7$`3R@q{jH#H3f!Ct)l05euo^jai+NB0#l>(Z|_g7 zuKaDk=bYrruX|OH!x>x(YxPaX`hh9WRRuLnuuTR|r(&yoQEQ!@=<`s2a*;PH>nDK=b zz#3k%@^KjaM*G9(b5TyGY^lNd=HGH#jYY_ezOIJ)abJ9W7vXhoM^f&=Br`5Iwf!0x zlD~VhTia*L-qXo1<=^izKI)gvE`Ec2h*O_D{Dxve!?pLEiQmu3f1}wpLiUYUL?%$J z#{OwduuA3M@weBV+1o3e4ft3dm_z{pQ;OdOO~`#YS9Nf2!Mr4)l*EZi=ej2;f{r3? z*UY?w#OKy8V?U-NL^4L5G=0cZDIz)M&d~$}Y4USdADv37=~CRJe4}jU_wrr;U2^A! z_RT#kaCLOtZZ?*4dh)R)_G8@;+G`Xd!|Z#dh8?!jOC8HoHvC#WWOnOZW>(jPtYZR9 z@92a(8ihu6HRKiggNuWbugKjU^m@S@8oPYLDMbDN*@qAtVeab3ZyH8$<_p>H!(cbm zS<+ayWuM!;)AvAyky;W(hga1>gG;4@6E_^L`52Bzut}e7kGk%+i^ahsKf&Vj1an}O z{Ig(BDa)KaLWYIB_Tky+4@R)CvB{laBkWA!sZiGUsilQM_4SGSSC3q}uAF>nV9v?r zPyKPinhiP);LnLyR#t9PHffAANYcFB_n9J|-)bj+7&VYA&`&%|qqdw#7~I5u{j6zd zE_p0}_g&Q_&ChsBpsUxeUzd+}={S_B&&T97EW^sI0rG}uaw|U%4-c_D5tEeSH{;%F zBt68X-4fLNi(#+oC`W5V%(pEJ=@swAEt=_fJSN+KIIrUBbJSj-= z7DHA|)HM*K8M6I#>__}{$W&PK0Lnvc)zcoZ5*vo6jMT0=ImG>1EgnB$F< zijFNc!$~bY1N>8OPtnBIqp}BDi*qgQ}dOvZ)x1VYwPb=9K{&4cko|79pHB+`e}8`9F|)e z!W-u%dCG?6p-UfIx`GbXGn_q3&A67Lox*9KgN8I3?J?wN*PK4~iczT6UZ(0Pza!l{ zO@17Wo?E3s9>=0Lx$@URf|r3>+1GK_<1YJ|Foa+c5kkour#~Xk)%P9TaZ1}8TX6@j zxVWHuy*pa%Ty|!kAfJc)?CxZZ=ddEA$bm6G&W z5rAi!Bi9*%&dDW~p%Ou!^_ti0^s$&{M`T>d?y#$twi_FAG!D#c@su+ai)`@Y|J~f& z{QS)ug=jSoCb_GPqrBA+7H_;13{YQSx!Y0Uv(Op5T_+IFE6eQG> zNU5>$4BSukcJE4xF?oVui1fQ`a4;@WnoD>-pz)^hYM3_^rU;@fJv}|qYaoWljSqj6 zo9pYYTe5m~=&8b`7q+Ha#!LL&g?n-fS=8Rq#y_eu5h*vxvJAyFCiaWm7*iIz7^3X!?FIot%%i-OyPOTgwfj z^~R{fp7M)rr0so~(1(2wM1tO?GP^16q`Ia~?XSDOpF2L8jDyh@Y^r}Fr@}A=+1=XO znyf3O2YOy0&cS-=C#JE>{xnDjBI3Wl-r!ptoo#>dh$eAy88hyND~f25e%?JPa`Y$} z=tvN*f})!z%aFft5yc+e+ZUk^g%#K*JY4j1^pq&|J56(cjU=ukpUxTlWc(t&UyNE} z*lKT@z-~UZ*tBs2=P6QupG1@iaD@>EC0TmZz;{hX!?ac!zD>ZSa7{+?Hy@Rvdmq zY|?IQM~@!GV=Z5)jz&-e)F&p;F^d8cE4 z=3E?ZAEK6;3N}Ei5#?d|OXW+2#GDV>l>lI=y*AtCy=G~aBNQM&*u}5VHdjzkkelal zq)wD-Q*v7QKz7nsQ~faOnh<>q@*;%l{emGuqxYj8dosU1pmPz~)!-o4*GOq$>bgyS z>sN|M=e)x910%S3Q$@uW@eP2|XUq>1k))s7p;ua5!PDu{CcoAY@vF0S59)`4w~~G{ z-Fn;1XBmYA3g$W(ilbSqx!~rBDcxv&p+g!u1RZ-DE$skQ6y)>tE0_L^*ew6Gz+ZbC z@W$)YpP&;8ud5#UgXF3lC3VHoPk!ZXmSX6>;X%-ghi+aU_}^zUb;|+P*=|asznY~q zSpp$3Z&4Rc&AUowTJdc&K{(XeQ z!^r=Rwwgkjg3Cu`)6TU0c~6A{>w<4o&SWZ8S(K$@tpEHi6`%}F{*qo=V;d_lGGk~c z0*!`cw}gEsF@-9eznpkVv7;|uL$NThrAA@0++Ox)$P8f@Vi>6X_C^KnfL=p8Yt}B>46FM=rfOh`=-wNpWkzPRZQqiU7XUB`sfN4 z-7h=1PW>5=1(>?DBeX`^maPYTlu68%cfT z{0`N(Hs@##Mp9LqmDB5(H@{=%jA}ety`KTG8+21N9MNbZ#xIDO+a|LZy;R?w)Ng|7 z)8#Xt*b3|=se46OHfp74y*_D2jlV||9Vyo5%b(gG+dENWg@OqRfI+_Pb9FTcXfg)d z7*AVg1do5zHi^%WNc6y)BXVU1(dX6>;43v(AHMv;xWhPe zgeztlpn5gESc9-|IKKO3VXmA7FSrjum4QZ+TYr10#qG)_g$y> zHnQ`C;=ssE_YPNKTgIF^nTfkk4|(XwjHF4tWE=9AwhTM%<@#qyVs^>JfYWC+B=FWy zR?*$YJ59gx`U8GUlgGa6QHb75Jx2DX<;;+h_ZFnsn*59+Z5Hp9OepS6*{1K@P%Isf zc%9Tm7w3D%dRonIcS)}>e;R1p$R77EH6Tsh6X3h86ss!p0O!5U=a(a%-D=$Wv}T76 zOYKnB7L5chvL3@NiQ!L&ycl#fc^7kjt=ZDh7dzb1Ql?9syAR__5D1KnBF{aD1nMuk zhtWpe#Z-=7DC6lBG;Ar5hBq~-`#*W&>mafF_4ApMU#A*}lS2-Ut8V7gQhj^TU##={ zH{Do@&@M&oy^AMCd?DMXyQ?i4Yfw@4lPC1>9w*wXW?p=m0O@A$cPiMNI3G}t%5m=h zF~^XoDyQ7cv`jfmvfFi%_YzEh0K#%cHnfMmZ(4Di@c7`qXU^(bVWM8DHb!!=FMv*= z`Hr8lAA)LMoZ})2W&DiagXu(~@jDU3|MioOQu5Uonpfy-HArh;$$akQv4KCU6d#-x znldswP;zHZv4P1YI=&>V%h(jCo}Ad-$ObC3LGZq=9!XM8{&=4EK=Xt>(tl&5ol7n~ z8GKpnKEp#7Pr5SyQ2crScc_Y-AOHQX2U~K2vZ@u2rhiWJY;C7?GWGYpe=Rys1Y%;M>9s(W4$CJRB6bL|LGtPTWe>@(ujYo zP-R9TTPzgBwIt~@H9(W@Z$DdaqzdL_j1H?-(nzYH!|juNY!XqsJ#P2W&pa~~*iiOI9|T z>r`FGn?ffk_hX4UYzyo`zVW$Rtd&=wK4%U9$VT zdH2$%mRC2!CfcX~AC{B=>_f-0qvO(RX?Me`+M8(>-sqpfGGy?IkJ70Xim6P#%bqK| zA+dguFF2esZndC$GGFO;Hi_PXr(dOpUsN@(&Re)zl;a)Gj*C}rHD-I+f|W>#&IOS> z<=fx5Y@xt@81jwFx^Q0e|{zW)9aPA_0q$Y@#_DTXc?YCddCoDAw25qqHOKsrW!sEAoKN#pQ= z?Yxs;L*Ad7^YxrPsm0J-+A3h&wD;V|^i4IdHjnFlnBG;l_SM_oB>qX(Z&xRac!X-S z?$b5s#*;eS z&HLCM&;QFhihB&xXd}AVh>%8O}SrU4zf2jU= z@`IvUOTc#b%p{9ThFY z<761XwA%^ic>!d|ve8fXX<*yIdlKTFBZm(kCSkK$=H$mE*%qWW1ML0V5~GmDNga29 z172>7#V*uN1GREVn%}x9LNc|J^>{hlZ^+1DJ@v@EIQP`>imIe%g<{xiuj<|^nos=M zJFe1G%Yvq4vcP|EhuR~UBBs@Sy~XoY{mI*yUZ0Oi@(!l^8Y*U=$B85|zgB%pGgrIe zAfo0Ku!%be;T%+D1aG1PhZU6*jH}Ga5)rKGv3#DkLLE-@0Arx6UN-V)ldf6{*?o`E zkMKKuiZGfb)x{Vds+oH2FiR5MRRN`ixZ#Kv?#uS{bV>cY-DhQMsn(VJ6DgN9Sm-#4 zzt0+LhSX@bcY0dBBKgs$)AbF-dDGjz{NbpuJK{jW9tJ%sYOC{HyBbAP(=LhM8~IlB zb{8LZJQ^Q>^ihEUqw9Bd$s9h`e24az;5c>a1DBGdeOy}S53&lD^k4 zH^bHAC416YX>98u<_gMnABAs)2~sg)L zw!FetkCXjex$;lPG;7YkS`zVUdr-Nb;&om5W4GDLk-zC0N&7Gx_(G+v;{3N0!=`WO z?-p^<$7`laS3kKbEiU5G<-KpgN|b-St~W&|T=mM@>4AVso-iFG#4X$}*t#C(vNjd?&yESiL z)eXrxhYl5|1TD90t+cv+JC}pQp)f^KFf_Yvh(;uL>vpH*h_COvCJ>D{cN(PKlG{|D zJRyH0+F}oGc0xh|Nnl(escRG80|0u+RzU^?D8txMAkqA||EPyNb2>8dPoGFA+|VrG zId~9LjAK8@EpMjL{xxCd+xH^>G8lS6Coiz-sK$t%rymHqPF;IPAV8~#NsgM8N=a&8 z4lMbw%i8l`pW+m)w$naFHZofzX1fUYc6BNS^vgXvMn*>Dy?2NWPd;R_-J9dYLhWp%^0>S?k9HC^Ua{v%b&JfdUYnp2EoDaV&RFZc&g zFV74}44i#3@-$ts@y<&1RbToeZUOeJ84=X%8MWPZpG?+xG0GWObs)dHZnygp? zUsUS-Od6&RuKTT3JSuiEh3@=Zb?h{Iq(og{Wb8ohrNU&g&%)7t*_G{qBE^ckqb;QI|_Yblw?JJJ#@^Q2;)z?S{>(W ze@3%UjBUq($Ocn4H+E1`eB?~FCUG*;?)Lfds3q3>>rkX%NkWGGbVXS8Ha-ShI&H_z zZ8Q?YCC$cfqwH-@HO^JXS1XDJ2`#fn9CkRh)pnPU{&7(IK#DgtHYO1ymD_!uykC?} zpKsQK)deED1bg5T1hKwzFn;OB~s}dPHJ-%_w{+ z4~M_Cp!?ZCrlXGI?Z7?Sy&=jLYWEv$^9tnzkG){}Ht#AGdG0+AqsElD+JKE|X%*c; z)!Eg$iQ0{tG#T~>rlP})$JlLcu5}hZJ=ANG>78{@!d`n`Vw(KOWM0&5cHichv^^85 z38&B{yT6&U$S}S72quz9`z$XYz1uIM@iYa9_We8d1qOvY1ulaX_F@~-UKFDhQbCq- zlgEl_hNhZRK77&I5vzMb&jFwmy7qFu)Zb=gqeLB&KC)3LA-DMP%vOq*BGRDywG@8yvQW6lsZ)ML*Cku%`amwLkfXd^?5nIFgJ*9(rxd0; zU>yAs-tcL4)BVXz6EWu3Rk-TT@im1cutpmMxbp2kq$S!k>vU{ZHPpo9Z_l9u%cUua z#O_~rsgKC-e)C$h>3VHEGeeT4;G*QP*Iviqt#so`@t%N{R8&=c+Y_(t&iL+r6FUJ{ zgy3WyQ^-<^-_ly?QB}|sQ(Go9%BJc&_)?zXhl&vA@7-sUR&4_giM3m?eeBfa58LTi zaTskDg!EnKf%1W=feEVqnU9GU@;3zSs-o(5sBh}`)Hm)^_ zTCt}3lW$9_v}iRV9hRJu->7V=brPbKn)&98SNj{H+;YQ4hhM;JoHDBY>dMZ)M?3~2 zkBsWcMQtqz4XhmlK?Z8V^kbI~i?;H!NIKwRfEkPr^YU19#3zO(1yDp@ zcU0LP_^R)g<)SXvH~HV(xvWVS<8Iq#aX+Tzy}8ZdGc)6FF0W)DJ(v=GSHsX;tvt}^ zFhqTX6yz@}bjEh1-BN7ukK^EN_IYX@2-<>Py4p)X#DJl( zjxeGUem8k!M(2}Ba_)Fa>jCZ6xohk0)RjNKNtWou>64ZzOdQwt94M%!m!PwZlFBh^ z7R?M9ZrA8=A0sRF;R~+G(lPwZwLJNFb zKi(Als}u%!?>}W>D+uJf6-J`rLBVlqYq8!dU&{+zl#KgF>Hg$DB3;$7- z$(9*&XHYRnSGYpsc051YPL^K^zrQw=$!Fur`*H8)H4UqKvDTtj!#qobx3*W)R@~BGP`s~8Pk@OS9K3o}uKf7y9nzW{s7^pL5BWZNkemQ+V1+v(COJSFZfopMAUqx$K37r%{Vx?lNBE z^a(a1-Sw^DL@SloAoi_h%?tOthMBr@QjzI*_TnDWU63CrjIdEW*J?`>)3andbJ*ld zoZQpC#Lh!nrq84AV@{@cZgti0yFT&*42Ds1T>^cK(fjKq!Av&9e(XMLX(* z42v2xbx)b!{5JK;(@90>0RURe>Jm*wK>6jWjVsmmExKX5G!vzEs97JkWo;@f-QasC z{kQUHQRPZ$(C6wA3*#m?8CPqW;+bgqa0%Mvme0!%wtNNV&T_9s;+0!)JB~oqq5D|2 z#pnw7lJDCS5_g!)PiPH|5Wpcc3y`irXp=e2LQYb5&WO0>QWKgylyz+J{J^HVEDiZh z$uB>A58>StVB+Rx*ix}iw&FpI1zqc%jhR^*+u!$&#`#8eeXT5MdD{HeEbMeorfqA` z4-bVIo!Pnj6(i?9l)TgaEp}H+m(|>VlVACFt6buo(lK%sQ;n1gfI=G!MiS)ExuZYU zFdyS{3XLdC1EXCAs23?W5FWc@u{Gi2?{qRRUvV`SO%Tsa)#T@F_S4*EY{Pc(7C$;; zCKKjgj{}{%@rubnL&p40ee`f&TeM!P2}p)-FGMoEi2|OAZ#2;HZJS3R-3VA{s^Ig- z;^Ht+`|yv4o{%Glp&c$0VIfMiB*FC@INrT66xA{q&y6MD2tIT$~}u#MeZyloy^?a&cq6yNJLQulObf)Dw3 zVS(^gi20SZ>R;Uu*looez3E4N98<>}MOamojBSyP;vJhDJrDw!`9oAf9cs2uN^#je z=pQ3y@L+m*j_aW%pY@}#?)E33u!7R3#Etgx-@kvO5Tsrv><_7F@iJF?Bz4O>F&0@I z%-b0SZ#qaS^2eIwcB!XoV?D4}+;=Xsoh(xw$r9Iw!-|oSlfjHlDdn($4w*PYA+Et2L0mIx1 zXU}>$p9@NALn9Ud7#Ru4FJXO!t_y-2840{waA>|W1l5+m;tugXP5zvDbHYQ$db;B^YoWiuC?+nOHsq) zTe2_iF?H21Ge1$zYvg&wmk!8Vav#$Mv}zN_Qyp|JPKZ5tv(}oMdxS|C}TbQfzsg@?PFdTq>_rH%FtCklef8@`L)ERW&R@vCG_LXuc_3IkxxC_ z&pe@J>bNFT5tcN?VZvO(r38dOk0jm_$#Mr?#}!2?D9iUSkN7v zp2+XELcybQ;es&VP6d86qGUh?1qwQYp>bnuY``AiW5*=ApKi?#DAswOd5St9`uL?< z>iyu8db8=UUcDC;v_h-v-xL)o_igZ*SoYyV70Gt{ZAfr#biXnh6B(fkO!|G#Uo7%xp)kKc(+9Fy`Hiw-?Hu)99 zos91X87Prs`(k@t_{K_6F3RAV3UNrA?tU*s@+# z_;lsB3D3Ci6Ani@ErrS2DHs!EVPS!8O({&u0wBrCMxf4zF2-59o~CBFS5#}|Y}?o5 zS@UXm_NMxqy<1uu-ium^Cu!(P|4&C5^WZV$o3+&5+9ho~nB#jF9+A9B0{d z=dsgyYub;7CUe=&S^dp*kt|~QsL;Tgx5bg|F=s_8MbH&-w}2KJ4W1!ATRGeN^2eov zuJj1r&lOB+wM3fzc@2h$a?MupGHJq~`=RX#h8Yb{k(DUV+`cNwS`nMjVC#Q;PV&BI zrWTBPWb97>^1+!;K3%$Y{XoTwE@j~*zwqOn?QitUUmeqI@$P_NjvDV>xeIL{G?E9~ z2jzq9xd$(wf7?vV5TM(S)b2{AF2pyy`pc<~r1$R$P{9AuUR2{{_}yH{%jjdp!$^277sY33C zB84~K=r*@c*YirAdMZrLlKWDNH~)bM)a}V1;^3XV{tv_PG&uCDtA!^XyVbrD_6mF8 zeICTJRvn`Ncu=VGUKH&~oIaQ?O(AnL6bU>qA9U)G#)FgwDjV`C{03YH#L9$-lH?{BA)v4}F$YaYv*mo;9VF#i@u(luNSp|n7zA0l>8>#o&-+^Yvh z>5fpi-aa1rI!uvXATX)%fZSdGb4L%#I;EMW-EETgtvURHiH3TXvYR^fG|miUshMgF zH_p(DbZ7~uoNaiv>KLu~tTVi^Uq$Zq?>6;~6JB#?K&gOTk`3C~1o+M0rJ3%1h>qNr zD#*9gZ-t1S5!(fx^Z_gz&Ki2L^8jb0267B)p6E<$Y*u6@vIz-0pp zOhGsN`>0OzuM=|%+q`5^L<1W`2LOu>{M(1UQ_K%vrk!q31H*LRPIKp`{$T4WR>|qC zRT`Od{x186UXULV2@a#4Jjog6>5^N2l`?5l{>kcv0N)bzpPUQ1b@Y9se1 z{bP2V;e0;`r)Zl129VvWZZ24@9j{@b*uJ@F=3t=NXInpR9X_1k_|EDW59VS5{J6yy z8Lb36I${305*-*ApE~DaSd=VR^z-b2VhgI%nme-y? z+G9?pa(!G=^5`kzdIjz%NUa8(2XdME%6&Jsf4ZF+%6LJqW$5Q$)XLyl{X{%Oa}tP% zY!_{hDtXXrT>&0nv0x2u=5dOBwTEw?0$+vhOxga02eDj_k#!GvF&mCPSIlcZJpfgO zfzhVe6Za-x-~NLRFTs?AHoqrGgJ{(J{hNLJj}AX0@N?upv7i*T|7p+g@< zW&)C6%@i&4(2)q?07NfL<)$~hslhe7RU(pqRVl1zvfMmtfSMuRc-F%Xltl1d^R84Kftl$AW@vQv2lp;WkTzOsw3O$o7T298e6wbGO5OEAS1Uk1^?Nbzelbz zxixv;1i-5rX9hjmJ>ggy;PELxvF^-P)NJG6;HUy6$jdJs+0w7OCb%-PssCguXZq!B zZg~YzC9Qynh|IqnoWSY7NLz`7PdkOMUq!iyrvkAk=2Lot1-M|$TTKwCK4A>F50p5N z`qX&INyI6P8$pngRu>6el%VL^+kY_iz5|I%K3-mZ5%W1uzJjNWo%Bv=ZbbvNk0$P4 z`|+;co4)@0#U9Ojn^p7-Oo(wUm%6hHMdJ_p@+ifh@jfN1A#mK$QSZZ!Rns(g~Uv~%xD&q-D^TwRu%BPmHPYhy-L#Op&?YP_e26|(Y= z(RlEvG<86aSlIQKa>b&~VTD8EE3j7BL%e3O>q>_EhMNnhnhaG4U_CQW?hy>0k8pIG zaV}YK{`?3{^^&!&l7J%Tg?`vHR2KBi3E_YveZtI=O`TxwPvVz&?=xTT6<_o>A~}?? z_IQ9Gibw~Wlh$63IRcf`5_6En|C#t&*juSVGQi}dWOtl#PdD-sW z4$r&$`6U6!2C{FTcqcj60+NbFXM4%I-2`NE+d&seuy{Ft(0%q`r~C4S4U3L3%v`-c z#xvT1IW)gcF#mGkv1a-5gK@fpM4H9RgtZEzRWEx8uiwCAX|w2g=Y@jaRM*in9N$FG zH?unq(oG;K%a05JAH+4KHF>_Xy;ytY5Bwd%)eVy&J{P&T-+zvO%dx zO-WHcb!XV0_z;9eT_=pgv>}jc0R~*bz>`ziP|hcwyOXdtnt%>@EBXMSFJ!|#u)Fi1 z)XY|Vh6zOLMhKAONfNa987HJSMmF9-hugLP=*C*_hQX^BFPcc+OEOo?%-f3b$s_wd zau?iqnE(O0TMiDo&alM{e|_-Z9V&Rz`#~*vQK%mpcFZ^D_f9!b@rNm0Y$rSfFgHNL z6>(mL(DoGgl%C8bixnx$PoU7h6U72?UuPoxDma1JA$i1Ta${p-a+)i56yq^U|A|Fn z2Rbyr>Un5TV84m3@Kpq_6ZTm{}uCE?!~Sk*l4{>N7yy8uoMgqs_Q zU_TcZOR1=+kVv>lk08oShM{!~o8|Vpogy5myiIev?O8EKhy=`VE?LLN6lp)P)i#k( z>0sCHC77|-d+fVzL0`|JLh$3ersSoLEm!XupAHiUugf2)F)e8N(VaGsD|n6(g>fH7 z3rgQg&GEfHVYAuVWq{RY{JV(FD*QyMIM$jtQWx`MV`D$ULTBc!`|{iTD)-rtNFodo zwexgNy6gFc*M#{%6|oy<7E+AXEDQg}3(FfBabN^w<^jhli35uKI;-7jqVFmy1I8U@ z2Ni*&{=gd~B3Tdg=0SnoOqwiOFhu8`I8tz)ASEf8VJ+F;0|xFT{X6wygqhFuzrfhO zmzA{)=^9AAm=2%D{vAvGxIJ93?Z&n{t7X!wXS#LCnV38w$ruedSJ=6uZu(_=;kBBT zL6LVEw%N7Cy%5zRbd8I9XYt~)EH zNAzah9B&FAzn9A`l%t77|MXfQ7XPh|toX_Aa6`};+!M@Qt(Tfmgp1bdhTw_q-_m{j z`0=-BcM$spDixiLjZfzxRoG&12U*3PJbgV7D$*q(2Ga=_L0dugz#FZWS}To@rQ(X< zBx<$nY-pjI5)l4=fVdqK&}DBzKVO?aEcuQgj*mzo94v6ZoH z%y4W(&n+z62vd?@SR5aJHxG)c?n+ajo904(4-1c|?WRKlQDO70aH+@!Eb=eNI0%N< zS-`txB?o$M=CIxJn}_X}+NryvPZKO?OgCUU(+n@)M8dkRlViP)!xEI%$(I!->MKJ= z>t++KQ_e9#H5 z-mh%5tdX+brL#@%*O4{ETIWI-7Co*oX_D*#rx(7TcYONa9e>2A_aN;10#?Xkn9&j= zvG~adkJOobwC;`8hm87>3@_qVJOqM@DJt(V_rU`kr9lVIPDAO$6o6?z3kfTnknhHr zbrtcD50lafq$tOg`MEit+df9i@kXCPPM(I6zM!}@+$ulzJz|~48S#G7t|+tHe9}rM zn=vULhqQWekr)^>-z(acp+{Wa<3+#DI}8S$m9y_5 zrc??2+fSaUu&bCl-7ISU@{v2X9Q_9f3CgBwlaY{Jy8L<7%P=pEBWrpsT!}l#EWy}+ zj-?C(i(c;QBkq-_Fe{wj9*I?Ql6AeSWbJZ9gnwnm=h{rB6)DUU{aXaEaN2>`>)f4* zN9hYu8JE^?yl8Nt*EdU+e-eNDj_2QxnFEGTGPUcahbdm zc~K3CE|+FL(&jHiX)*bhC)<=?WO0{7@0kSj$A>sh67n zZrX_;myKk{a>}9VR5o_XmR~bRBbWT=AG@~PWDJs_$qH36U5^s%oSFu_bg^pU^Hfnwfs9{;^ufV&6X@OcY- z&H{VDm#w`IiBw7Cv0>XVactkhj_5>glmkbovo40Bds-)pSFCPf{d9t=or45tt`nUL zA}=6bw+%^U>O^meQ5RZR_PwqPTQ9rAROW{DGj=SDGdF>_=fnCNW6hfbU5%u&Yi7&$MzF)Q5f3NBwKAdghy zy8QdlgppzYcccdL+d&N8aI>j5+L$w9u7aaE+i)ySf@Z`)=r>{z3$=WHrOpZ&Sm z+PSMM8(Ya7uh&Q@<0A!Jd3j>~M#=n*PT(=bZ8Be3m@>-xx+j20BMY7wg(R$PnCzqe z?^lY#<-CpmmMte4eKk?{{QJr#-Qd(Byo8B!9pmBTk7+q7iOrW8=&Hiz{!7`&7hckd zzs9=VH`Zb_U6DrMo-Yv=?@O<|m%co|OdO&2(_wa?Y`9T< zR?1U0IwNMvNj$c-VMm5>Y;NI@AfX;gSbh^ZHO`VF9$xlxwwGDg4G4S4vN6bh#x5eA zejhVsD{d-zv#LuTH-;+RsWs)WlvMHf3c;6&JsX&|e24LwY{$avqpYcAlh(N3i!%f8 zPdYV?f7lGuPGOxi%LnL$6 z`mpsnC1LsjY>e>Q@oqP3TgA5IINsxMz;MP_=cnY9BQ5AtgfTtb5VRMLMmqiG!{?(1 zXgWE!P><@*q-EA{7F>NDu&s?erb4&G4%9YjB%?Z`V6;hGTgrk*E+9;*iMIt0`8> zmyL_wL;#M6Dk(9F(}Mo^&E8@Iwg#jy1FXH?*v);I0IC2plO({a-trWQ!!|INhy=#( zMp_=F`<#xu7vV-mSW4WU{#kmc*m7MVU`3~RHcVFRS?ka_u9(Z}ugc6_P^%dwuS~v7 zxI#3HEdMeWPgDH3UAFz>@XH&wQFVE@6HXEXNcSs{#s?6u3`4*L2Bx`-WcYz2esybOTTj?k7UUXjATC_kNM~$b9-yk>Z z9d68$nWIHOP%qdpP5ZNG!i8=x- zM<7;Xh9iR3j(&+dyS5?u?Mqlub%k+Y6&yfmNGK&r;TY}Yg5NM#_0FZ;BglEXd<4Yp z^P;sHz7jhO72;}5%i&LmR`jvWKeH z4!|A!0TnHAQ!tdXNK{Q}%g(z4gdraXpSsJUgKMyF4ZK%4u$SaPR3<0v$62gC_E9!T zANeuPRzjUqY3qZmsiEy=y=|rlJ&n<4>~?h?lwMLK!V84)GRW)>&0tp=eVhmX z+VI{Nlgxj*72GN1H5!%MaEQh z4|&Wv*%Nt{k3AEKn6uifV_?_%GHt8C_cvXWN|o^}3j}o}z5@9(5W@xzUh1eN8 z_}M_`n5cYEq`n%Za=^ar!{cMB^^#jH^NZ?)uJf)K_8``}zk8{<7YST1HuW@-GeZif z6h?i4m#vE!H|9##bujLE=Jf*d6IRS9_xI9Ykho6}4~W2gd6uK`3|b4Pt#Hzw#grr5 zxaY+TjzYBfmbEi0kv^~{uEP#dj7y6+bZk~8a{XlH2%A_3oNF0Khkn44YY{Gm0_;r2 z(IVr0Wshyv=Gq62yA2!{dgZ`xy!Iwypem3M3!vj>Bx*qdn9~2V;MzTANZhGp89V)# zHXF?DGt7X3q&$e2O2|v-=(J}|U9xg18rVDaiHL)JCrM1Z6s2Z-F8s7hci#IydImo? z)_XS!`lq^T{(Gy{Zdn3JPvR?_4NE6*-R9siq-hkuE1p)LyQuc>%iKNjQxFp(eu>#b zrPKeuqK`(0^8XhPWs>33`frvYD04X|S)r)Qp>-_G7Z+BiCmHB8hI z(yWBOf8m(H)Mq@y46I_e(n_x$mRhR0&=2V3kybPZE@t7RU3!Z11ZuSWB90PZJH~_o zCMYa!OX2Rs^gBcE08wiK`4A#NRMg3JS*~B(=xZzIKK{7*Zv1lKhm7<#1)_>d^eVgZ zuh8#V=~=Kus=vYiL~^$J08vBS?OjOLDN}!N z>+MZHf8heKHjC>GZ(4~n(xT?724KfiuFKhN?d@+FsVOF4jaD)*y*EiBE$T_I8_jH>*^_1Md_{6R+T!K0lP8lYHs9BB7d~+62Y|kRI45|A1O!2p z;3I@FR3}kl&vc*X37N-@_Ps&WyY1`!!t0->k6ug){a`mnAdQ0JL^)wWps(eDs zprhm<2_kZSj+O6K*}%)rxX>1Kr$tCO67PHkr*RtLjCZJzEcHRw45!dp)qAPRuvE*$AQy0(e(_03?(GEA5eb;VD>=pTokT`spl z>jq~XZie6@AeV=T=HZ2d+#e@CbdgAe+pzr6UL6#>$;F|YLS4IPSj_^%K3DG`-LBeu z&%6IVGKqm;Cas5{miBWCJ1RCuE)iCC@NztRaUzNUbqPN-G#bfCtGJCPrC?I-tIc-2 z`z}4~#wkdPIYujDSf#6*pvEJ>q}<&5R!i-eVfm1`sadalwx4TP?HZNnWOp0?Do)QT z0@Cg+JP2Hc@a-O3rZT|H7XcX($yyb=^EOZl%Z=7rjrw%lhIB|IqA-3!#qL0YNSw9% zN*4l`OUzL3lI?xsh8`H-KLEIall1I(ArDK(Cf&&5h)=V(681!Quh{al3jegt$;_JC z+*wh4D_#>QO>dc9yTN0$exmG(x=s|&1X%w>1-q?yrF-f(yF0Nli3F#T=wm^fg^YyE zEwT?-Inju+Y1Pu{BjR~l$+}b1$zhD8SE2Keft>|L0%0e5<9}_*(JR=8+sTXr#xs~i zfA{M0hfNdydPJhQz1JE2&Y1-wNg>Qc~WArR@MrAM?IfNTGCaSYH~kftBIF z)cWMqZS+kHcZE@_9plkYJElEvAaklCH}zaAIt?>Gs&-=d6tn0E#A)}s(Bcvi73Eql zo~dM=0U)}au(TrX+VA;6G7pr@R6u<&Vn?)OP~D_*zqs;{h{8mG_#4fQYihlAi{Ec%{C5 znaI>ooo*p4a63z$%hpBRba9N0z&=w7^TZ<*Vi^m}z2+Zf%?t(DXQltI#+}E9y7m7# z;M7Ltcs1gq{`1wi`TynT?CiMD3eRRCIST$hzQL(Nt6tfuIF$)=1jMNay#}I61s^O{ zUuXcB&kkafh1Lx{bJ=nBAlDVcWbN$$<V9A?X0>0H$U^ z$0vCp<`Fs!#fD>Esu?p1o$W)mL`_B5-~cTr99_5V*a6+4PnHI{PH5v_yLL@YC>*#N z`tcy$WjOx1_IGZs6n}uZ8sxC3v5AG^jm{K05KwMNEjW)Fb_|w9V7Y+%1%tLe+dSjk zF8t;ve#q1X#otFI@!mZ$n3>a-dF`&GqspQGQ`>iVW8MG%qe5269!Zp) zvUee_j0oAGLYXN^3bI`_%B zuj~DOjpy_6d<=I6bMFr+O2-Ets-2YItN7HBO53vY^t#P0!(-7Zw@qD=uUp?23Ovq) zIR<_(rvNix?)2rqMjDu*;0@v5=o?_WfySf<5GQD!*c5mk_Ml#&iUm&&lkC}FA8PF} zPewjD5ms1!72ylSqp!6qTF*vssFEpYWye zHVB@+pDI}H_U>x|`!UBp$%B>yvLJ#JfSvm6*)x27^dwnb<{+YgYIWcI;C*wJ$7m+T z(h>gE=lahN{u-pZEKl-WKoJ4wl@N&v5f2W3Af8=*ujXRTn%2oxbgJ(jxv*d!g4eN6 zR`%M7eT11ee4!Q@VjvCXfqN7VbC5T{(*(~5w;CYiYun+h?(gq^4r%MeNQ6VurUBHI zNX#K1v&@X>OJsnA2#`8@6e8-Y{;z8kBu6D>Ii{Xx<7ykr5$I%n-)C3&8%d;O-FQY> zHONR&U|x*R0~`k3)Vu5A3F6v^;)`4>trdE>(bEy3LNLJs;TM8ySoMGd4%s!KS%xSD zfwQLlT!Z*qh+u$e^F8 zjA|RO(}3B)LIPy82E=P(?o4n^P;A3?U<_5I{Yf+DJy0v+_wXpt$Zpy^f_VzzHZe-a zKgP;H-7=x;FyLB=5V!_Bi$!y65Ns34B&4HVOKC)a5ib**OtPU>2Xk8cv8foP<(&la zL^?d*&NQ`1f~bA>@EE3qfDaDh{R+h!=M-(iW~l!Cb9S*Jsg3~$HVBidTOP&kPU0h9 zf5Dj0H4TwHCBx->Y3JNzcabt~a$$Lu~S_vQ0F|?x9 zYf~xkO(ZTeEXpd6xpO9)X2gvGytVNnn%+J_cFhWOWMipQu+y>{WMGg8hRCm7xy^Wewmw97le^?QVd}`K+D?F`E|1#_}bi2bed*ji7+|1_GAv4=Wwl$tNxpm1gJ<3cZ|dm zjU?EOMOZQZfF`-6^G@d^UA5-&M>@g*2nS>{>FwybH>vHqiEySG{KEcuBeTTMRCkj? zQ=CtPK_KRp^!~0e7injuu5zn+Ku3DwtSr2VD76Ob16DO)N29CS+H}Uhd60^F$N$I2 zM6_6Eu4Yg=R1M;HFjBmx=F-h=aPNExs?FHD5Xa(d1gT;@@J|FyZHN>s7mNZS_#pCs zv5SEXVgqUffLvX@fEoQe`27*CV0ENY!kh))10E2Xnf&hhDciw$7jpRh5WLgr&@@p9 z@Uj1q^oZ*pYGn)rj)>gF*|WU7><5Gkq(aF>+cQ_X)#Uy<`xBSMKF($g0`Ek-{N6ow z@S9+Y_c4oNvvSM4UKh{6a!c0DqFNQ$q{Kpk&s1y}UIvUJ;6GqgXo_7HYF+q1KIYOe zWHOu#kQ~8=?qIJh*j*=iwt*jBaqhpiax>|f%g{xJYHFym)0A;UtVoo zmEm$;q7b1m?;tuxni=NTSHZ53iV@`r_EniEhHX?+`jG))*_m(`_&6~;P)a=6g<}n$ z3HLAYPBHL)>rOtZq4jR`931^J!4+@Fl4VdA*=&xh=(W!t0gEx znCV5C6_t~0;(#EaE>Ju_L%3f8jsXUQ$JF+KcFj#h5)A2Gdp7M2K< zB44BI-I_)p?30ZZgOGD#szwc{cqUZ` zCnt36CT6Mwm~10|`)E?@3KJy)l>9-CKU*8aS?m7qbeB5UBYI@y^dDjT;Gmc_-USX~8Pl+e{-fAVk;pgc+Vm*t)A0;am z!H`E4f0gW1(9aI)E87dAGsni$2d^Cvyl1&M`;Rq;svbIsOuMS1S-OW}#ooJo`}U3S zv)t?76Zyb<+EA+6qB= zzTVuaTn}ajl-YdI^l~OAzu-Fm>R(4x3j{$Qb{g<_NzlvPy(_6f*k+zP!&|o}BRo}{ z&!1l2Vqe>&{&cTQgRr|v&5u8ss0uL61m}*J1npB}B;DOiL7`NytEFM87KK(YGpKvD zRLh72;k71)GFYiNs8M!lzaR))xb|CA;SY3sqge0ID~?Vaabz<2$=aQ!eKP|YYxh`O zelws9!Ev5}TLpUpgZ7Qp*xEq$z!E2HG5(5d^Y*aa@(seJdf|cso+vsPB7hlU>C6>4 z!~p)U^LVH^e)Fxhl1#e1&d@=vc^ktFk+}_)HZ;z!K(#@gL!cZG1K`FcxOp%SfrNp$ z68%&IT|APn-4ZmzeL>K|umK4?j36_hm?2CrS_Ky(g8aWT2gi%2O^HABu^KRGcKxNU z!eLkhOWv@q?xWc&4M#sK6(YeKe?P*sl0w!OACovJXUppC<~$~)X_q+1!l?r?H}WTJ zrt|M>XU(>cU4esR;*$=xKkimsqv?zi?)L~gfAM0d>iMF_+l14b-@UuTZ)PFp$NL$4 z34+i@N2Q%cku2<12_gGU%a37O0W6Pd@EfV#vWrl?un;FkCDFNMC6EHI80bDCPdli?B+ zpXC+KGn#0$Z91GzDG^sh%*vk3mI8s)f+IU&Y(V%aLT43Q)E9J9GhUo4=+3@IkszxD zAFJ{)u^a10%I2>({R}?x)~)Tw#|7g7jr){k5xht?5Mpn1e#I61oa2aexA!bJ*+1&J zgUonB4VQ>uxk({y)4AM`IrY2u-~lOOo^ZL4gRYU|gf**6=A`$mS4<*9-4%+@v?{+0 zCeq{`QJLV}f|rb8{=?2QIS*)GCI~kj_Bh~G)=RDHJNfcuB7@-IVtsf}k5kWd+fH8A z>j$mYQ6fY6kMbJq7l92wOfs`|*n*x=U12RC6;XfLpM2MS)n3W*l%6k3+)kOhH|fsX zIdvP#a57MJ3u`R7Nq-uvU(T@Bj_7AXo*gXWPN0Q+b2(e8%~ocKTAO-D{-cwzgV4#dJV?eu943ha8(?;6F9YeQR*y6crf6A2KsopRhH}ryhLz+J`&A8W^}N}N6FJX zB!0s*M(nWfglAE5Ubq*#>eEC$;jeC3GRnK-kKK$MB}!NMhH%E$ajgvf+-eXeq-ozU%XzOK)fJXut?@u_#LE=Q8+MTPTB zbZNy9Y~`AOnofmTZP|~HeXG>u9k}4|)ZSHc>$WfPPpce%?{i6&PfFLOkWQ-@bugT9 zf`)4@L|UIvrM2m55sT;GA~lCOjlC?Rw5-_I>-1?)L%{xzj!{A`CQX1pMI5=AZb-?= zg~CKufB(s|#5|N3&=Yhv+=XaOv*dRiS&7lNp?E&Zq3RO+T*iVwine0px|PtBbmMq> zzDx3tGyo6PfTPf}EFv9yY<+FnRniGPv>#Yl7$>5k00VMVIjJ^Hz46LxzpT0A))v7n z)ylv5_$1Z!%p{YFXWR6ry+XNy{I0`129}kC0U_+77URwa;yJ}0*`I0{DRfWEZ-tfd z>3Gj2e!q_?vF}?r7Qr-!=h=DXCW>HsOah zN*mR_@7Qx&m85=h6|$E9);()v-*PycgJisY7S-wcvZw^lPcK%8e35$5*P_ zC$}YLPftyi()z?#31Z49@c22NWJ`qmNP(hjHraAvq<0}oN8Tc5<#~00VfGJkgI?4a zJ+RcHKnIE+*X&p7qwvlT|=h=C;Hd@lLibYYRhxo;q@89$9&sN zGUDOrf?&#P9|NJIwmn8`Rv1M>7)vzWD1V-}w!$IWv(4<5FIDB4Y-!dUQtP-U_y{Nu zp%OtC5A(oCs$%@_2pfM?cpwXdrhvu<7FaK)I!`~$D%n(MjSq#|Y3wpoJXybaW0mz1 zGJMbDmoQ%@LLUg?JXo*rpVs&PpnQvPiOn6@cGI_IsWZPv(qd%N`MqY*>c6BGcR0P!$pq%x{Af+CdDSi@EYc=@W`lpxs$gWA=zvM#JRYgh|99e+N zp;RB`7WkBIG8HwXu)aVlT_er!;w$mU@oMYuuVK2d+%Bc^=pwQWvrf@mVcKg!=u%c! zN1^*cG0tu_6&_|ZC$@VfhCZxcSl}x;@%V?Zb1dA2(L%lUJS_fujdmop9JrBwu=GmB z9#KKuc)&}LDM1z(su9=ttFz+RzAdO_EANTXr}3>qDIF2q7694aTn1}4Bp{Xpl69;Q zAWBUzbopyTv4H|_Ff=7PBH-w4p(=3hH6_>&=9)BuBFBHx&1#2r=q&*=$7bZ!qih1J zP&3m=!Dzx?zTNi7ycCIEq2)|eRMcp=aGE-1Y1>+J9|UFy)!`xpzEGX?mg*vvg(Vlr zr)a5w4&r*@Prh?h{u+3Xw7}{6-RReZ(@4@Y9cJi(IycH8Uzpmu*nB=8$Ea^tX{bOG-xs^ zc^x?ge+Vm;A3Qou9ZW6Xmm_djCQ+}Dvxt$J z*|uov61jL|Dpg8{xdlbi-n@=DbHkvCv5bz|dgJwk5xJXh#C})tTIfb9l2dh4djzAB z=<#fE>B3hLurjUA^ylr&d`~w|M(lW?6GuyObX9s$YCmr+A5rs~-f;Ru^p1zt_hHw8 z_Hyi^P?j(Gz2EK(X&P3KgE`i|=`3wyp5c!S+qoLOQl)>Z-i24^uS1Dn_rR}BN!H+M z>v-XR9spbh+#i?TYtJRM#)?rfvf2rU>c_XY*vzz0b!!n}Jo55FpG`bN9e2mqYr65b z)^cj>P1B1le;fQ#1S=gZ_d_}Fc+Q-wUTSbS`QxIEm9+KNRd%C`UilwZ$F_${w0U2* zTfen_S*LK(zpiOJ(m3`OzbBoK4%hNmP21fOy=MPnTEEEOfPe6-yj<;5-UHEB_W$8K zf99u6;LZNW(*7gP!M78QJRD5SMeIBXDgj2+08yYU*>~VT*_7W5i#?y1!@~hBD?!7o z86|!W<-f|I|CtgRJ0^q~qYXw|r}b6k6gSdST7I%cYTHzwqr^&qwATJuI3JL^pq4<7 z27$t?;e?(bsQfhoFNg)n!-x=gZU3n%5tB;K?m?;7k_B9xUrr}}F{g=l*|}T{_M2nq zVpGXdmi|KQhQpM<;x<9wo(|m4^1ByYRF2Vi`(MLe839lspnm|U-LlD|` z>|oGn*syK!@UnUe&V7mj#UsZY86=b{?O5%}N`=hlH z__)nmj|O9$F_ayw?@(wwDnsF2qJ>>TMH(<|RL zHGcEw-8)W9k^b8L^e5A)ygrEP$P=nTu*w8ub>1*aXIC?ZzCE}%lE%6A$IHm=TVhOo z&=z5kjxh-4E z5qd3wBVr9_be4aBK&<7b`)+RC)RhR&!&n-75O6%fog{qOKR;<5hd^p3&3MwytDI`} z%&F?+=HY`&)9ntoM-Gk9DwXP+-&b7BPFMXF>AIbgUTwQ5yOX~^H=1Hl3tCalXl+gv zPqoDK>adVtNCW({FaX&I(NM(6qldYf&*}*v?3=I!z$uj}i)kU=FzRy(g5QN|nS%Zs zAp`-CT7;}~#Xw$oxM@hZSF_X*G66J%40VA5p`2F-FGXb{IwPhoM|udZ{Z@i1xBP zfOe4pKb+Dpn^*2|$nYT&;(!1Q>5GM{ryPaNYlO%1aZlrrW*8`7{o_l)Y6~w2EjnD- zo)dF(d3kDBb;QOpquARV*ZgqPnoP?V-4^FUiwps?J=b`JvlT9uPFTxYlIIGk2Xe2b z)dUN5OtLc7^_xZ}R|dD5z9?&}(KX?At`e*BQqzT8{B3{J zNKijT6fyG-&75_w6b?8QvK8y<5(biT*Dy300&#C!+nE;&;rA#DINC+TZ^El-;f$a~ z{jf)wTeg;~&EGB(ZuqxBupU)|NPS`{@ciW8iDd)2K_tVdln1kb@ zW9g6BIlGwT>)thaww>w5JH}o&6vc!^GBhM8tKRz44{mcLIvdo*J3vt-Xwo=)2pAn| z5Wo>b=X(vZ%(w3KJh=LD!qnf3@#Ufs$!-%IcE>9n&5j0o%+x`Y{BKwX6aZeOS$uuq z{DnhJj}#C>9Zt6i!pg@H?JhJiPjnmx06YIR>5HsP()0lKhwX9=$InnPwiE`5V4d8^ zb0KWhA8!fO%xXXs6tVCsyC7u)yn(9q+_Ld;(mb`$*byq7nv87S#M+N9uhKj7CWzIO zw#gd+-U`&cq7fQ(FxxMAawLD+WK1ly;?!(|tqbdwgXIbVnc|6hKJz?vwjvfgSHlu{ z5AFUV887xTHH_`U$)jIH1&*lprIqS?>_&pZ(3K?bc5c@U!bWq>5-2yKND!2(cw;EA zf+sPa_pWTO)c&)xQJ!^|iaCS}X@38&V?{dxb^5;vucGJJM%an)zb_Jz&fPLkCtP_q zjCCN&RMhoTv&P0^K)I+fk2*#e=P(?G3J_zo-=(Hva1lnyqp5rQ;Th2l3W<7^sSQ2l zIT3neFgR(vy~fn$JUZd{(m5lp2&4MYU54>Zlgf7=3$D<5$}H9P@Vn*si^|fJ(k`Dk znGyI36$R>Y4DqsTB>P3R&fA>L&ZZFzCC6@85*4g)lD^w~x(!`q1*J{fMCAT2VW0j? zd6BP0`0UOEz?!IsS)o1r$h%aR8GvZ~n}9W69uNLg`#{iWN9*Yc_K9X|p*~n&F?p$_ z92NpHLO7};E)Txj=ocaH5h$)19wL3Yj+LgFNrABzteQ@g-(-#zHTe_lf6VJrk4(dV zr6$ZLpD=aICj3yhdi;nvOW=Nj=TPTKrR^#z=(89Y8BaoD(k*N7C~@@5-kUls3bprA zwMqtI_6TFc$|mD?mM`?Eh2a3&C@|ROJGGGAlE@)$>ddDlt>cm3l-@8#y4Gr#ibkAB z{{!>T^J4=gp##X$Bp*(Q8WT9Rt&(?V-gJ-?F$FY^cDA>t!mtK(k*tneh{=Ja!-qX+ z^A@!J9H<$#o35xH;?F00qhSL8e-blpNEnFygG-L!AJ_iuDpkd zaet%}&C&;4u_Mu{8&;*x0~vt_-MTGitcXfrpiX+1`Z=$MoRjys_zSLED+zXV z@1rvCaL)?Qu4NgkpWPncwbS=-jY;+_JjNz2ebBiq>&4Ml&RgswE++AM$JgsX9BJNy8SdnT59;0geQsAyZWN5$ zRTCvLe7p~-NpK!HVUm18)G%D=jb>($v#eOiwKlVcVO5IrtvfY*`)A1vt2QC3b~g^} z_&00CSdj1tw!RNWf&imUCq+(pJtWJ8qe(2uyDO#f9B2jdCN>(TQH+Pw41M!5Qu$SC zk$a=_pP4X89!51YEQao-_EUS23p>b7fi{Q5pj&@J48{ z_xyFXNvzvA2g&LLnFBH=z^XT3U?eBzcP__fL#{FZt`CddmtbE6<i(&f_f z41yo{cONr~3S+yng}l1vaW@ca2Al^Lj||{*|MSP<x6CW9Q*5(n91>kSamB}SIQC2?pxO^IwoUiBt8_%Q^kteZO}gXh2N`1mp)y#a8g%3 z<^HVl-Xm|8nuOv-*DN1KB$ilHZoPX3b{^;_VLkz@TAlDqZw!9TZ-O{sF z%H!?*(kdf`=ZA{2p z_^SFnW<*R*Ra(Pp`bMhC1#l|}-*D%r4|o-_Ufo<%!nKR44~P;T?a|1u)WIy)FJHNy zFLhVpYbdSSw_H?9lJjD{sUi6ghV4j|=+Wsz+?2!+I)BhbF#f-H;L1};_N()C62BDa zJSLr|IIGn5&gr75L=PP@;Qst?2$mv961FGg$Z2cecjt;FwTt#8YxoXOL_W^@aB7Cx zL2&SMtf<<#|Jq0Sqn_3@E%9G6S#}KJH8Py$jy(?N)}&HiCjR&m->$KFMH4y5%n8Oi zK6<9ni*pLatwEFH6(xtS{L>L_$9+xYjR~0XY($rp26xSH?Mq7Cl6_&j7Q@r5-xQ3c z7lRN*bUI-068r_gSLHf%OR!SLcJhNrpP0T7OcvH_IhOLU2YbW!yG!Kyb6Qf(aXyD< zSEoOz;I{y%04mPs2^I(?1M1BFZEl5Jefg_E?20gQ&XR`*|h+MSKsWa8a#97S1SnTclVhT&nULMzSA+)E`8Nakg(D=Hh+gp zfKZPA`PuI|)*Svsu^i+2Z9r8{UpwaQ>b#nO~TWcP^3k2`-1_L)Sk*!+mHx$3XS zwtDSo`PutdV^wbb89sbCb;L8<>Ds0EnH>x7x=ZO71ix=BG>95=$8om!^%>!c(tu6#M8CFfb1aQPZ*oLGd0RuGs$tRXqXmwf zsbza$ynQX zwJ&7wF30KIg@Y0H`_s=3Cj4i3-HwxbOO2K83FTHV4-KXA+*AccWVvBxKXVf~sLc~4 z7DMp|zx|>5S$J=WY`W6rQ5E@(RW@9tWQ(5w6&tI~{Q7AjPb=nfTr@i%@h!UDK^^q` z0TO7TV07Er>pr`@Z7>4OeEYmq@lTqcWdt2gijI zje$5;AmNWK@(D>hbm-Qpsn(g8CKg&NmvE50T2R?z9%C$>-<#+xI;7B}R@ zNQK@0-2#K|{&lfUCv*I_77E0Tlm@P~Q?A<`eeh(2YDiD%!;G?4mX6f;m-DRVG52qHR4>UbWguM7Gupz9ri2M9)wr2)Y1R8(HV{V7|p11 zkw^-35#wd;9p<{`=A~Jy8<@oeRJ}&ul8SQDTz4<{Uc90Vm|M(6;n-c00&5Vsut*Q+j>=RNcE*r%ij?w^u}outz0{jCwoCT((I0CGne&{Hc_; zz_2Sx!0i5p??WY_rgGaf;D)eNJ$r4jpIIWBJGanRMn`#p7kvG2^XE!{9@{NGp%CwCpu2>)Zrd~yqaRw-j&uZwO~>^t@Vo08Brh$ zpxD8}tVd2`K{-Nw&lV-4RQ~8=MR$(;aa7>b*lQQjIr*hvrL)IdQ0x)Azk`obSA$pD zuI#SZHkku&=a+pC#fV9&Ngm2GcW5|0uJpbyEQv+Y#p7F`f=uwsE+g@)*=#F~|AiVq z`04fivRwRw^}zY2e7BygvwwNl3A4zI2#@U%Xg?#6?ld9#vE0(X&4 zWLnQJ_@>vu=vzbYphjM|?PNJ=xzOjb_jCW3i5ybK12x zHN2&Uj}6r2bNtDw(vTO>TbFwxc_7az-~8GQk(q;M0~V{_kY=S*2VX53e&_Ug6W@A4 zyTg&WgnDUJk!->;_q@URtNij)QdygdU9Nd0`_hk$S5{Sn!w-~ylhluV^2l*5n9fpq z5j?eYJ^!xfTW1#cl@Zcsne9iLiz+P*ODv%8kiJiY@0){Fml$ehqc$&f1x1CW; zDJq4dB%WrkMImr2Ah7Tz5-^`-$i7YE-yI(pb!)M|(45Uj`Rp|1`?ie3D$%VQYKECI z)@+@{pWmJ1%UW=(8U&@D;HCpR`HOsPCJZmXBb&UI2FF^#4{6=p`blZUiYJW@)+s)t z-c>Q{ch`T?-49k3-h0T`TqSUoR{76mxwL{P5^`2B+}jD&f>0Ra_jGUBrP223r7FTZGgW-OXIaSrNnnT0ketIrj|Rl7B2nwE311-Z|tMFjMVaMuT#u> zcj-NEMPLCzcz8gS9M_g}Zn3>9?Y$P))f*%ux>}nh(q3}d2M5EP7bJg;+4H6A@uk|M zR98x-^F<_TwOyg9>U=m?KSTLCH7!#Ab`RV2Rd13>%%*U3u#t zY;T#Yx9n|Et~TCPYBs}ZqFreOvf$#2#2 z71@-YZKlFnNB4{FK274@kMs4Ueby&Zj4M}8oZsJP@cGM^7BdT5qJq8|O;E?*Zn7$t zs;4z{o_X4>stcR!#I#2iiahhP`Uuu^rU%Mb!arnzCR_m)MdTQk+y)N4Bf95>2 zTz~Pvh_Cj4fil$ZnGsvqQ`G^|ke$8isbm(hyRx4cz4ZP}zTC9BmTgHn`E8JMYx$(M zUBAQ0>^2L7+F5$c#H^cQQp~#2NG`pk&t4BzEV4OO430UMAS8lNY}|olVtVX*J%m$m!cK{b;UzZ#k+LuOX^XswjZS!Q#us-ED^wd2v)%XH9OCNbs2WsM@r zvzs5r{WR(jN%Zfx_E_&-Ftt4%ZBy)7&r16Kw5QHhh??{`a-DBYF1y91V_=rPj^TaO zkHaA&%iXtTXmcYnT)07_gnRm(9MH?$4R|Lg$Q9i$H`PHK+M36W}+MlonZdx9#Cw?=`8vylXh2pu$gl@PIV4 z=W*?}C+^1s@7axeOV`~eX&zk8=^ zItMXH#+U?CMwBfvi)}Pr4>hvN9~oaTd9WnDeaOl1>IJ!GbGx}oy7!Jwb=7-9 z6C0hkfv*l)Kb&vT-Gk)@j>MC1$jx%e(d3FU5R}tC+vBUq3yvUKt(S~LR9}^jK2Bf1 z_mytg%P%xdU{9;tqW6yL%(S;u{^$YbZ2hFf@%NQ@A&9N2KCUl!Bt#it`6BAw8g2sDOTqu z!_%TK{uO21|4C8GTwz~sa_Obd2Bq8Hdp_4y*>VgTZWNYsE8JO~>`-Aq{?SvqXsUiA zwg{Rq%om(x=`b2s=cmA(+wktg`?+16ePC&aVLt#5#LqBgahUmR*u%@hrhU* zET6KV*!#P1=!zRneHC;#F!$fe{(d94b0=xkyxep4acxRbP)-+rJCvxtSrlW*zpP+F zMbP8?W}k|2)CGr`D4w;av!ceNm@eDSV-055_v0D ztO}hrDOjOn5i4O>YIZ8O1XoG>`3|{V)A18t9{y{pg7$qgHJrBT>Eq{>DWOulG{E|$ zuUfuz7iULfah=oBoxWoy))xF*`vU6ZzbcB=F@EuPS6q?TUm6-d9Q9H^9Poo`Uc`c8 zVe;MsWp{Zb<9GkGLV`tfD<-XYcRr_dLRW*^9zCM-epr6Sf5PJI*TvA|qGrW6Mijjj zdBMXE?wUp@d(oir%Wtu5X4#>hyLoo6UAX9(_wf@{PEUEr;ulYsuU|1Mp!x7XHrabs z*+Sxi@*;|zOzQTQTC7JRB>D+#lzWCw zgG`-PC+(rMpZL&t(7CGOX?OIw+RD-@crd=TofwKwo?P4vQy!)pk79moHLL z>^SCct3&bY^jk0L$Lmjqp2b#ty*MNr)#vN`r*gVVn!+Fqqr$@h{wlWn-`zC5MJhK3 zks5vKr}Ixbf8{^;-OW?r@BCKCpGBPUu$f8bD*8ywh>*tv`mRr8O3(E}LI&;R#g$GO z6Va#<;R6R$eYF+T@e;H$C!`lVH*g3#Ct7|A+%VX6tO`H%P&s zD>51%UP{?H;6Hutg6e@Ae(F4ru|794J@jP-&nAC|L z5wI=p({ktoW`V#y+=khf5}%)M5V7y`e?h;;=s-F5sWe#=`H4+;gf`%- zHncf+OJ3MB5F{JcKDiWk{UsgG2Br39okD??( z-^P>7b;G}`%}qA8DpB<;PZW-diQk|pK?=dLXc$1TWV`J{BllXs#l|jh1$}KX21gmu zqVbi^Z9{b7n55PF!kIleq<%_vVJ8!juwBK6=abGKUrE}S8uGg1v<#R!&@Vx3!r*2u`i79QA-ifd#K~yM zv$Z(2eYxCSaNaI%IB0#xSp$-*6Xc0_dLX8)tjNM8n)D&Aoh~2%&>~J)(4hbl0c`bT zvS3dVeCFTW{zCh37u9abo@LU9Y}=mL99MuskltXQ_JW$HPxPe$zY6<&ni&YPA!XG1{-?T+ZWbLc`>O^~e{?xEaW|jL zA^E9k;|Ap&@heBoiyVCp^8L5e)KQlGJ+SB_#vm;Z8^_BW z|L;SytAEvuaQ_3Z2LKhc#j~u!PyHZ0S>z_4aH~v?`Jp6Y^cJU(y7LK7sXR{ciy^t@ zhaTNg;l1^QlizUUzPb2cG1N1J3Sy}M9RW)ORz%mD3N3Da)eBBLlz}&YVzf8^$T%!_ z3Ar1Z8A3Ez%OLUixLdfj8%EnF0j_Oq-%I>1}Tv+Ej^;TxRHo7%+FUCdu#Iz zi->S}f&2}MNkYht@KylP&)_(Hc9c&W~gu>T@7O}DG({TO&H zimJD1r)-~B&XUrR+>L|k1&7g*qUs6_*u>g13%_xtk9vKv=g3bd$hZ+c5U$k?Wx`>h z4e@O-B;PsG#rE3w-m88V|3An1_R3-AmY?RY=N<;#toAp~7S(@op_z)^0s0Z!EI335 z849|Vz+AKs6b>b_%;VemVX6Xa3%}2W`KFZp>;x=}*)CykCO1PUmZ4;Vm=o%{=b?i) z9}MLsikq&e8cTCm-h^8c^v;kGa|W(t?+73N5{3hl*L0&SvM|Zt6r~^)w6CI*5Ho`+ z1r4%9HPo7%l5lQH)DyM$*$gNfZyz>tOaN+5?4!kaJS@THy{29D<{>lnn(baHP)9PK z*Y%`wU9#mtSp)us)c*Z;(@zBZVQ1l^rRTfAEOon&biy-UYdpc?V1B>IZ(}CQ{I0Cf zl&PCwRbF7Uix!U630upwo&ETT$C>$Ni#-N@1b-i5b1X&>{O;UnpOi*Fib>xCnhzVj z71Uas7dKVeNJhS9OvtpwX9NLHMn-T*)27GNnbDa^GEomy2+kclZXgZhN<2-_CF<(` zQjgOVl(}gydfJ4)f>=Gj7X$(PTYz#Wd*mmf*h&@*Zozp&>N%l1)_huJeIKjH{zQ+K zZjH@IP8D(p!P$l41C{`oO%skJ;E)pE)*_$OV&cw#ri|~>oYby(T^#0fAL@5tT326uC)g`qIdiP;MfQ)ri*t`bP9<{Q2sg}T2*~NttfRtI zOzl)|2{+X!UHR&%E1&n?_|bopHAD90B2-RodtM0J&nM@k%22?d67vC4f^OUNvX7@v zz)|1NZ$$Am2s0hBjbXr_$++F6ju^;-f$cqb>5)mO~srIDIF-^5&ooXV<0lnvZ5C8WK!Eec;~e3g$9iiwI)me zu&oh%0%lBTpQ|?ZwJIM+{9c1s3AZ;(#O?C>k38&w5WF!sQ$rJX&9A=cc@}(;u_-Xi z!q;iCGtKA$EZ%Z^sLnq)HpkpV$O*wn8;flu9q_XL<#9COH%)fE4a2#NsW-F-3?P61 zm65v1F0TCw#0i0$n7Q}G@Iico>dR0T!;SyJ0p?`D5fvRGBZi$D$GJ{UL=dZ!(B$Dw zjLFP!pJ$3K!rTx>`H@+-Nt4{H?6}^5VBsey^b#$hNGFVn@(faNE<^93EwF)1B}$(p zuajd4zn<9L$sMOR?Yz}u4+;++X)Ad2ATe#lqE=BUe({Dn!=&&8gc9%WY-OM>M=^+2 z9dtDJky3PLD-cK;e%Sn}uBZuH_4L>PN4R z1i!EnqMO}99-_R`F=Ml~zWURU_sf(2>UjA-EKJV5zd78;>2X|^dphd5PkvXI(EX$J zWSD~x|7h}zRv7<32Y<=ktc523Os|ZbDgS@``S*^*i%JLAZi()tz(2a$hFYbXCqn)Y DZKDZ4 literal 80961 zcmb@ucQ}^s|37|9(J;#1vS)UYZd(Z1iR>+8@62THl_Z-G5wfx>D}=0&z4zWDe$VUu z{`@}2_uubve2>G+%et@oyw3AE9^-ixs-h%|d!6Ds3WdUbBqyzgLS0fup)lTD#e$z0 z(O3|{|L!|K)N)q0Gk10~ax_CdHgdMNv2(V0ZhYI-%+cw&oh?7tJuZIE+m_DG_D;gw z+%Nw354h|cEx3F38}{KM*X-rAolq!zBji7fe6hUeC=3+pk+g({`}?(25BJn36&H;b zX>GqAj|wcmuOUn*P+?VJH@TrHk+0$N%JEjQkiN#Z@WWfus>S+SABpZ{ja?_Xe7T6o zl=aJ%XYx{|cdn)Ku~?+_j5LbP{2gEHddYX!q+F~go~7NRZMWEMz5d{tb;&2A2wpix zf>3GtSUIfMu0?j@@CAHtN>3Nb@}HkF#!1}%fB7ZPLaVyBx5%sS87q}7;iR*PPxY4% zsd_{XsYvcTyBy#CdepY|#kWx!uPq6Ur%$s#e88%xsBm8^Z7Zv6JXtB!Dl@(I@#9Ao zZSBw(qm>w_^P@JgtcC`f!NI}&;^Nk5-?Lc^-^uo$a-G!`6~u*4OJrWWxU!VfpD=(Ev zf}|SU#$8CSU%#$mU=V$B;;HM@b=PZ@+h_a6z`%h0ebJ+-08C*#RGQb$Bjg9if_Lwl zy|A;kmQq!{#npJWgRG|2{%4ZP%ZX^w6INX=(xmB~`Of1?v5VuL{7;`A!W*)4a5%J4 zyZMo{gvex9Z+u;?w&AYdQ~Od?wQF*?HWJ{}eII*wv8V0qcz1h1T^V;HT$w=TnQy4> zS6A3L!-ZeTZ|^%XZ&c6Xogd@-Y+?E|z(R#mmAv)~4X&U}`N)wk9-5gkSy@|`dL27b z3E3M?8F&gA&c1yZPEz_wr|O_~QkK@c*>(MI3vwCP)lXG;?xSz+=)CP&G>PDKUHVP; zCMl^6k4oqpnaSExZ+1~pQN&#V0iIT}@D}5u+S(M}*5TEX#_o41DdZ**$6liMoECmz zjOXPDHqp%%mNdK@hdYemZI#TtSy)(TGFoM45wU-#&~4H?i5l%5!`rGQKw)O_-T`a$ zvk|6AMCswg%jn1HqN!H`BwEQ#C-5-3a4O@L9P?D1*ycF4Ai*)bG zq0&;V2#|HES`2M1m}T2UO-QToL( zt*-a};9D_YQPek6zVGX}1+Pm$4 zR&mS8V%(;}V@OuSTdJnLIBGjudDnq;l3nuumS5FlVvD{NDt*a%sJP|d;bb(v=n*RY-@CLk4G{oyg{KTC@5}5%9I+nTpt)3nth{VJ5606Cnbeh`C>GPm_svSxIUFL zA|ZnG&a>BTw7yiyidgIG>+ahvq)#G88cYZK`d*3sTUM?`}HY^g~|6 zlh%l$7sSNG0gl%W=Y`j-M^85!dp;x~@a@ZBNZCfmk; z2Su|G=)cUn-nE=>UYy%~I}{=(e@q@Z)wno5G11*rfQyT31LtisTKS^ByZ_Ih)^6cd&V!Z0624ZlmnX}4Bhdfa zvwB&>+h*6w)BkbePfj{^-a%fn_A{1&Grs+^o%gDaP1n1-Qr?$Y?lKfK{%b#<3FkIP zQsm+S;>E-w)kX79P0G7>Z(EFwQd3jU%Bv=QQc~R}JdnDa+yDGvzr;6H5BgTXzZI6| z>TPs^#KuT$PG%+sseuggv$Xc~MREKJeUk)D}PRTDF#(bNx+ zXrFp8d5l;5b>-u&#-8}Z=@2TB;723JrNe5;>mE zly!2=wugM%mNvP5tP9)fJ{u_*Bgd$8+k3*N^sO=b1fl^dU(7Q6LNyCB%} z(mdJIybnfvqEke@h5r<3V}`d}O6dw3EPOf(>yf;D^BaUobcOYhqw*gG?)ule-4E=9 z8g_DwZ||&cdMqw3?%JyI{pH>DMon0{ z&`7pC>(9z3|82Ml9gaCoyVhn7T9w+4f7PE@i8UW1Q{G+Zl44Js!8h!Db4SR1Ybr#4 z7ZSAj{?OR=TK7^}( zK2i3*L?@H6k-NFN?x5d7U&K!lv};XjJTpUicd`>*H=6HA)T(i0YS>NPG<{K+pZ|^0 zuFhYD^)kvG$^@@PHx*fAD`CTAd?I1&W-Np3(d6mjW?Qjdt%|xjW`>2I6u^wx`6L4X zN-rAQkR`b<=O)Fpo5slJZuKc}XBHRZaV6b=z_PTml2lhG+-SV;(Y616{z|Xe^humZ>QgFf$3U1NYukZ9A@QR9yqiS(z zJ(uVX#y5SQ?o;Vh+8E{L=Kh+t=cygif%=cyX)f>Su^xxroct>@*W z_hISr?qd1MidCiS`ZJ$&!7+Qx@@Jp4+eCJLGBE7=DP59z*4iU>flj$=O#%l)qXPid zZI%B|RnbPxBF%@P)$+=5sI`C;^!`DRn*o|#`_iv8%P+z>f)ngjQoA9n33&tWIs7B= z#>j`qDMyunF2ilk&yJCW5B~X6W^gt`iYd&Ms#HE|*O&@jE*g+)X^QRF(3aV4{h>ET zwGHHW$6>7LhgFULUTA7-x5MSM9zTBk#%uHID%U;Vb1zLDold~b!%!C5ErwiNUCZuT z|M}d}A&>mEW{G~+-_g_UHfs z!pJ7?c}#jNQWxpg5I|gM)w%Nm!ik_u4F-I2G>z{oG&jpa$w2q?8L2hA6oEppANGgi zZVVKWc)Q~YezA#00J~v7?0X-Q7LatP^O>~bto^O9{yCJ0Lp>s+teb;}k3ZY({#*@6Rrx+O`^&?PmOxVd5af5XzGu9y8)Ko5Q|^7=Jj6eK zuf~hrE!R$rdc$oHh2$))&k^1EK~>{49Kd&YqbG;d#q(Iq3=DUg^lDv=HYe)e@>}4Y z|C_wPh4w?wd8&2(4c2MH4Vg(%eUTj`WC#Wk)0IO;^ zYT@4Tq=WRv2ZGh}bmx37UKs&QkSH3OnpsdcNTE)Ap4gQ(`eN!n9Y{Kp9W8n(rhbFu zx4KGcqYEQci_f0>R=}GwzJ8@>Je%jnKs8?c+brKm?{^GBm z4x-eks)s%ywEm^vk>+LB-JvO@z94-B4s7~{!O^7>uM&_rXGTl6fn684-o4mc`xa1%D zpWFQX63UGdCbF%WC;657fb`|T+V@WG#)y|2HQ09b`y?eiO4O?yC3Tmg+YmB3>4As|FXsNK|Il z*Ha^m^G_M2JQw_5*K;{Hph1R*tQi*GnRNNB$jf`(=v~D+;5@7x98I&)Vo{Nlg7hTe zbnqc2=KFI}wy#O9^NDtY4Z!iUO$3PpKB9RS5)qSAa$o&!F4P-wEevNBWS zl$Y)!ywIKcVD6=Ga_oz}=7%d=zscRw@~+$r# zZQoA&--(tqo(m(A1RDA_Fn;{4`1G^OrCK&W4|%o8*=j!a0%yR)#xqS^tr}fFvuhtie*m+7ZE(Jm1e@Rv#M*xJMOEgfPq+$6TrJim^+=#2fdFkBK}afkdXXC& z8%Fhuq2J^>Vs@Ay_5x*TJYKu`2&Zy!h#9edWhw5d05)qg{23!t}h(M5+Mx5)00hy8kY_l8~Lzk8^ug1j_IA*zkTw+Ie> z+IT|jmv%S}Kb*0C+Lym)ZE#AVS)}!yl(K%WPhor5Bzl`%GFee3$iwmW|8e^eXYS|6 zi`#&*aS%p2pP>F3v=Fal1%n^&?>im&AjK77AHKlv{#Ynhg7gH@WbmICK%2=gDEPiI zSUA1yj@o0)64`DhL}L42-&H>)+O`d@xY4Jf@%;#X%E4L6iWBa`oox{q@hh- zpt-k2&$gtHN_o69Up*W3piK7|XrYMDai@W!n;7c7%OCCP&4yF^7UHKFP_Y46#NVs> zBxXt};t(s0_WD_|{{PE^->Y}gkN*2jghkFa<9~ZP-_;-+H0V8E8&2s`E-rVW(WpWQ zBZOF7dHo9S2Kr_`s}Tqy&cf6eVo!6IzB>Y&oUR8~dgf)sxg2EVmqbvmWM`l(f}(?Ak-9(#N->e(GNmZwFn*4+!%D zdQ%VTbzk>btnmBDf$3SrFK$wfGZE6YXz1)n6@}w}3lNQ~c8#y@cp;_9Ytf`BW)i#uPCgpM%IALe*fj?kzyylT{hsZ; ze&xb6M7#9wS#0V^=XI2&$oMn3`Y1Sm4b5*rqal3iB|)Ftb|9`ypE zJx`I1hEv-y*U=X|DP2+xjoV=Z(>6JHv=*EbxP3LHhMXlL`ee4r5Ea{(1?$p0SJ;Z4 zRb1z8I5I9VP8Ap)v|^DFxB2PjG57OULPEk8UdOb(AuPVh)kMnd;{2bNxyIwixCj^6 zdI3bDdM-`@(Ml1vucxPn@|3Rv)I5*!r04)~!3$cSH~=A^i_^*3WQ(-#(LQ?&aFdH` zHiC8&5gf(U^sD7a+d>4AP2Y=`hz*py;g*mB>P{0gG^ej<@Tb zc%x0VuRu^$1-TXoyXajX*p;J!JkdbVbTTR{Nf6!jc)PTS^_k3SEFIpe4&d8P)gNe)!&FAsJDWkawpc|2fD7FvWLT;Q-X>+2y=+ znm;eQuTj!-H=gnBde+-O`mHUb*qQr6ejQapWR^jT9-QU+xe7;71TVrj8YY4444WnCwQlNV_kM=F2uwE_ z|LTH>lRrJW#BYCNXJ^-9j$f`=?|!gpS~cOxap4P9q9{Kn~MzA)4-qy(d_wJ%Ulw9TY=v<-Ln}6QTf-ha~W(9Z!4JsBLOEF zPMHRK3pfJJNcn;_Puss892ocvvOIsQr}HVSk!HZ@elq#BeJOjtMaag^W?&~AH`hruZ5~uNGu*4qp`l;L`{a2&w z3!}*XS}VSH{reoKe#XjuI21&p!#{e5G>}rq`3{W0&`R6!Fpx#EzI-737L{_ zo*)950M|qLA*|1RKJls2*C%7ar{ld=74AFjEZgw*JM2?Xmxb)7P?NzQe=jU9W@lwx z0y^?>sCwmN;gr2l&`}pNiCSwgwMaH0&QTd4dxXaKq z;CP+JMMPde1k@P|u~TviN=l=u(QUxh2n#v-Wg!{>?!kMXlVt$>mX?-NZK0j_9=pmY zEGVi{KOg+~gq5BB5(=vG4P-$GEk%rq1ysR!wl%WJ#o+#Pc#rlVt5fvN90CWt4b5ch1q0J*Xw<+oO%C265{C_@ zOrkpV`sq%|(Jbj+1Y&2?__2!2h&FV#9qoJB1V_I_(7Gn7wN(ZRi>>%jT0}(9FSoVf z-o-v`b`C4wQg5U)7x#dZJ=<4$T7Z>ruRpHApE3fgzK!$_Y7O~ zWQl<+QU(@_-uo@pbfn?PkYsUR!uIPjbCFi*CFmgY*V0!J5)Io}Zk`~=7#I6+<+C(B zIcI$B=N29ws%+y>X+BpuY7pH69(tzzFZyd{ooD+W$fp$38jm=}j0Eks|8Kq|s}xpd zsA(Wf)%o;M64VB$@2_WOjNR+?6W+Y}VO)AUR_-=Q__kGna4H@}B-XP}B=8X{cRAf_ z=bG??2fcs(1c|&n$S5y&QW>J*VwSH6$?VX|?ga|r$NS+#Z{Je{;MIF276jzI2fF-u zbe)xr&3|-VhLJ!5+Buky^s!ej`J>|68R7HS+FCg3YTd`ogdLros=B&3;VrLVJwS3A z^a=-!5dsTht=N|@UowENwM9`&@g+<1CI70?q!_bZAWuRC*x z^|4+e5lrLZaUX0skdHum zx65gF@3X4VZfl!$fFl6o%?tVsNNB)QLCw1w+(c+gytf_IXU~_?^?Ag`%V7w-CIHFc zlOU=;h{BN40u&IoTAUR%paL6g3)yO&}lKv9E{2%@thbNPgS=x_I^yAS~o2XF_rRg{5& zfjr5IpS3ul`0BpdEdZO!@g@rdjA_b#&R!mJymK4G#ncpHS zBg2n7+?a<98Z$U;KS#~@UV+17TuKH@R%9lOkYS+Juoj?jN7Ep!4h~qi6|Bi#OQKjg zQ{4_XNiyXQ?7X2>SkJU$4G-AaNag~6LB%lL*yJtrch=_F&r)5fN?S^+Bd_bK{$rCsW=7(-M@x z@$vDWrhGt1#=h;iqoMXgYA>y=NrTzan=O0%a{)Ti(NcEw%}{B>if7Z#!WgJ_(>S*r zcxkVtvqpNqbTHZ%LKbK;LQo+vVezprFt8sRL6_Zo6$%|30r*1j8O~jW^)(y^7<*qT zD(DjBzgr6YuoT$wC)8_Ocir_*fC%cfocsFtP&#}k&S7kDFc2&Sa*)9!&@{n4i}9`f zJmS>ZaLdo1vwC9bQa#m9gUZ&gdN?6333K}8x@5IF+O2# z!AD*P$OLgmdcmV(z*h6g4)2`*5k|~m|Mz*G*)k2T3Ym$0jV@R`UZ14`@?g0T2Jiu% z8yPhz@ZzivZHKjr%Mo4MULL&uod)FO`)))?J(C9qA|{p@(geic=^z-Dqz%qufdhdrAmlyTb@f51O_b@?>OWpv=t7;C-NW!)K%pVFk$L_5bYbM1~w7ckGn=mj$2@P9L5c z@sJtvC0F;Z+Y7<{--?t0ARDWcSM#flVRpiuK;$}94j46nS`31%47~hu{E^2no2`cGDR#sMlkK5|O#z4aK2g@9gZ@1H!7-<$|CQ{h0YVu8c4d2d{82 ztga3XX$6M>3NA{Vkzjh7oFdZI)pcgvZSvvEmk%Jt$7}_YGMlES7@ktZhGc5HCyNYQ&4@d!O_BX{G=HUSt3|8C6pDSg7B3!*6RN<-9KsY;1+pk5c|Z z$&!nf6Ww-ykDt~2T@`|2T9+?qcX!tT{PGMaq7Pix#I3Ch6Gq5xSNabu#9@3Iw1VJ< z@c|g;fHHx6M7Q;hjYV{KD>ctLz}wQpq)4K?M9GlTKS8K8vuJ(tq1JerZ2vBEDSdq! zkSu{WA+;CkET`6IBo4g3j6$c7W4x5!6ATptn*S8y0mGi-*7h$qmzi}!-LA23|EdSB z8#HxLZQxFCUA_GK_isN)SWAI0X_#coBW$*<%C4)Uf|doM2uw@N9bY$Qy$dCjAQbK< zWwA6yQmy;4$2(}VJx1WgBlQm?GvKil((fixW^KGJ^r#8%@)5eJHj;En6v541$fnTL=>-pQhMhSWDu_7S{dj#|cFphZP;18>cAEtZ`%KW+J(9C_fmOWOm)fgQ# z6Eq89kjk%r`SqaH{4pVHBV?9s)q}z&VqaEYumNBWXS>XR1SA8b; zCt-1J_t>2aH#J~RdYWNJG%o2?9jS9VUT^@VCV>k8Cpe}d*^;3f(QWaGPWb|SiDe{B zOGJM%C1OWxuuwF8belx~KzZ5-T)V;hTKUAbR0}ZEQGL9HG@k%8VF)$IPyj-L5zW^y zh`!Q!#EkvS|8SsVlkUHEjRoKmBxZp|80BbO>BHn1`tITn=s_*c)=1MGcJ;RgR2se8 zIir2U~X64#&p|2$7~2a-6#g)f^_5 z>;dDYWiu>C0-l0yVsnpDUS6ID%zZ!+PzS*F42BNw^?}Hba}$q=C|o}fI^LT%Boj4i zzur?Uf|!Dyc;ZgO_LC7!?GwRv7TK{Mh`$GzA-PC#^LK4O65X>CTzBYE;4db`9lrOSG_lm;Qp4(plH_)IKAIH)$dqy_1{W(59hPEJP!0CM=44NkR9R^kva?{#0aE2P>mWkR2Z-@cpFW`q2GV(U#?b2G9NPI zBNz3gt0|D6W?;IN(q#^i@O6_Bd~Qg0$J>!n5n>e+OAoedsjjto|ME7&kX1!iQ4vmJ zVj?PL{w|S1U+iSQ_ zg~$2q%T;k@pLuYmWqs6(etSe}^#~Q$xN#!_Bac??Wpg8>MzOS5mk#e;$RXX?>WH z2=AEWBAw-f$Dv)Oe7fRRT;ja1#lvJ}$UUT4{UcXy)QsB#ISt@#4fl_HXjBr4YJVlk z0~7_CD*#DB&$$Ltix;8gj?J{UYyCAm`B7U~f=LdE3L`D#egYH(gsDs-F%e6_b8-{@ z{wsctSVc!VFAVN#AG)3E#;mo(T^s0@!@?%d-xH0wb=kC2o&1k#klLWL9-9q_r;O1MwpBQK~gbQII-=^b0YRA;rMn_ zO`pp(M~NQzbAR$;c_M?@JcxxRuBq^`*Lb(H5<1yhe*FSb1Tyjm<#dD`ASledobKk; zjNIIZE=1_$TNb4rXd1XCG4PM0quFRxfb-UM&=7$3Z0xYq#GSQ_+&BFlBf;FAf2qvE zM+HNa*GPA5u7zy?Y9s&(G^gT~`)%c`?wmlXycRf!e`rv?&L^k0!p-Tk&zjBdWgT*J zpekU5 z9$}lW)MPPSN*EquC&)me7r&P}2nL8j8)FKJN?BC{o=)Y>@+S=CY9*OpgdY#|sbC0P9xlE&_E!b#_uwbTZX8+=ai zLx<~M3LdPF1{W6>$9nq_;_RS%^AluFAn?JYlmezD@GkA{dOnT>KsAFQ`ClyRL7OQ1 z5)C1$g~6ZHc-ZOece+n9UpvGxp}-;DK2d^(CkbW-bZgLDxW|}9lt+F?2tEr?-0O~A zlv~Eldhw6WGiH!tbcH8Z)@?a=m_v@Omt*{4G0GNR5;~1Rai7hJ z!BXS$?M_U|p={!BKsKJ~=(M@q9VnH=`4r~j0oVh&4)BgGNQhkvrE(X`drtthsR;<@ z<(s11OBLSb=KTuJHuh!|jH>{=ROq!hKM!e&LZuHfQO-`N#8tEyw_6Fc=+e!z@;{yV z9H&e3p@D2IT7yTfaol1g%X>7!*+P4;yFd90yN|L%37sB zamIooGN|XpmEO&=TOj$VO zd*aE8HKT5yW|!#ZHyn`vJUFk@pR4(B>3sxmgUT0O{uhQS8#g{p0e*i;{>{omVa8Q5 z`2!tZjAhD^&-03B4Z4JnmtrIE61b$ETwv_&P!Je%QSK*cIEHi({k9lT4skhd<;b>0 z1G+*U69NAanmd#=c5Y)<5(z?Fvg@TPEb_0^7jB2DKWWcZ7=747=qma zxK+UYuLeqb-KTM={|c4kSDFZ*Z=7I!+Mu3A^(T_RyC5WgCG!WrOp`l)E?@?Dw`z3S zUI+$XkABs+RITHyvA1JDca-d4E(v6&h5*@F07RTLG8J zQ7b6Qm1L}ey#~OA+#HZncRemuJa2N9j`y0kA4ETXjt=dgEg&KD_?#Fo%g7K+R+&BD zlb^vxE|z5?$!R9x5x6I~kDp*iarLr0*P1)m1^-Gb;k>YFTBs1Q?sA{{t_+)qa?K7q zt8UI~nUpX1*Peb7{`5{z{xuGdqfY-?De#}=oeR<#{;b}5EoFs0QH+%eu_Y=Z9nu@c zvHt8z9`{nZU~$?v9xtegLqP>!BdIfS-t$AyGb&=X_%0R>BFDTzRP(&GbhLyoR*$&T zyOTbNd7prXR3W^sb!n855lsK2%GX(Ku=9ruIv*Av=p54&ked-zX1na>_(b952+l}T z_j1UwiiCcN)-p=-X&%7K0O36OJS ze9C(VQ<8y#@7r_U4sZe;r0!AS?YfDNRL4ok>}N@r5TvGzwRe1;F?}eY@~C*P;qdOw zOJxsQ8qjhzXrhkB#I}%=zfWa9lIZ7L$?P)c2Vp2@@i{66L&`cPY}$F7{E#^8NdqP3 zwO!ShAYFpm_-%N5zJ`$j|KV$>llVz$gKmA44qNgsEZGw~-X%X;Z)`X1p!m{k%nQPS z=%a9zgI$yMx9(}pGoA@!xPCo01d%NBO$5Y`wOcgr_vO-u8>fX0=ZBM&yHl5jBnh2l z;-#VqX7UGZ?wJ5aLeywk*7Q_0g`#zaH%oUAt#K~}7i!QLCX zJR*Dy6v0jkl=YGWTD)M;gO1g7za14~+_eIDd%4So(0VyU{dXdRWCa#6*>He{wQ0-l zT$$xyaUqGm3dIwF&T#X?(9orLati;D*5bE~x4AayC|FFlSex<$I;E21W%x3a-4bvV zCnOy1MIRNj)hE2J*1NxKSjN!pNc;fJ+mk7#9JAw5$Q$GBnCbf1vvHt~a&B2MufNX; zeYN@0j~arYL6soWgdLTa2F-C~IsL}I^yJh(+r`U&W4QEWE}4;>x|V*rxq1;AU^p*1 zIUA|^oDNQ&O0m_h{x~FXggA8jEl+U)3XW0-^`T z?AGG?oV*{nxHd8TxP@)1Mpa?j9e^IlQ@~1IOJ+KpUWyPf{!zX3FzYuys=@ijoi>TW zLiOBj5VwKS)+>R4-C>o(pN#YByWyXixCG1m-aUPeXh~j6J#Y z&6%=*kq9G~Tc`h6@7#d_CJr8uWs9`qp$2BEuohwvQK~Y@N8kQktNBaZS#Ip<$o+7c zGNIfwiaiify-yDi{T%2?c$axo>FWJ9To$WHt%AoIi}X z&UQU;D9a$h$P(3j!GyA^D)>V`I1LY*jVb6`nySoK`hBc?!(+CkCa^1JbZ6FX=Z3#s!BI6);F4RJ zYFSl3kCMrj0PukbgdkQ|R^9`D>(K+L@DGIH9G~L1rD=qrvVoLbJ`w>_7dIAEsp;4S z#hI=FHmEV;y!SE7Aw`a{tWGCuTbj!!;QQ~w{Pee^4;OPj8`H)OH=XqrWS!?wa%qk)%~tcIKSTl4vI@sx^4V>=By_8Zk|1~|B;Js^JkOSF%;@U-w}k6sG;a8G$DT##os|Fiz541}Ark#?NOgI{c${&K*<3C#3jt zek#0?&jsh}7JPuAHO;b2>kyN*H?xI3lv!BwxVTVKA-FRXCfZ&K42H1fd1!w!kgo&!w+~%4F+`&wXz< zOZaWkp;hoqPW}Haib`RR$`6_)txfYWMp~1#MD)q|GVE=@ z+5Iv7c@ND70&5El^Kbppu`@c^Th{vO%m%@UVLD_+n7(QFK&Zk$$`V}=7$O(lGIssl z{-fz<*}WkUcWc9?m;fhQr<;OH-8S`sS!~B-=lC|GHO+X9b7dbbhidGq^e$%k^oh>g z^Gr_&;GP%Pax|Xfvtmn?Eczse$RiNW)gw(z=?`)f&zuoT`LsYcdDOVVz9WOI>onN^zC#q$c!V7~Nm-R~@XkyB7BF^@mc)vB%PFVd z4zjKIZ9f&(<|gX|cUv&m+f9!MxaJ!2beVSuR2y*TKZOq6loi~=+&hqqonG7b1W$&` zDUApO;~AK)_tPwFf#)J%7KhhqK~c0Rj``9a=~s+_!lS}}B?55+-GzHRVbdmk7Lb@A zcY%nF4bzV_U%!6+Jv{t#Xz2ag*9SMHd$_x7HUIRgd%jN4$C|Hcu6!#goYN?eDNp|H z>5aojLHNA|FcxwwPAX)J?p4zQI}AxX`~o#+KW37U%=^NmC|jY>c<+#H#(q^wneb9Y z5TxO--gcRT!_si?7Sm$bLqcHlhs^m*^kE?k1QlCj;XnjiC86eCco;IR_g5z9Cb@Erl~*kK z;ln4ZuUnoe&pw~yr^&#>L%{{%aa&MQft_RcE!M=M2h&Q_@=p64<`?1K#<)D0;Fx;S z2P_4^%zF)U2k`U`>! zAQFKZ@ZGr7u>1Xec$ymCb8$mF!;OpRT3nGKD9N>bW@AqS6xw1BfmMdr(&E#gLtsh} z9sr_3yCXIvh@K$4OVY=Rvl7MeyPRKn%v7nxIo8F|ZFo86iT@Y~)L@qZBqOIpxj(;j zi&sLoaL|!dEYPFCByS6s*q$(Q8sZJk222M~T18(GM`!1nSk_9Xg2FRBVv!C)_P75L zI3fDMT2V~77r98rmUoY^MtDGXG~qO4k=`V=Ze(D?YwJ5U$QDaWOH;>>vGJ(DX`Pk% zVrm~Ue<^{E-)sr*C(X^!Q`Xhb7$egUD)2O$VRftfh|h8J>Xu6ET=UIHvTebNs%>{F zpGI1!hj42@AhA6fAH|~PUsF+Rfy!=+8N%da8t8!Gus}(CUqdRp7s09g7TvEq=U=rL zBVFxKEp|KSS2(>i!=tlLiuUUK@BL=~@StoT^(QEtjDQ0P4dOM}scYl4q%c0ou>Di% zx^xe&1jD1!R_uR|=|tJ%9^rm^dng{6FEsuH2Rp3TG_E}V^_=4$O99yMtCufy&1`RtHS$Hh`91ka0uyX;Cyqhz>~Kyuz;49y+I~_B6I&F=b~l!evN0M5utEY z1Or84zRL$Iu^EqqhvO*w0NuS1w$0QC;rpYuhCHqAk3#=rPUo+zKUv5NiDb?^AWxNj zUH5wC^r4Ct5^FKFjw9IZzi$os5s7SAt@Fn`VC+v);!v#|&&dM`v_M1NGeq`UuV2;~ zli76{t^iUYQSn^4*rgVMWJR>q!-zbuN(T!x##GDAg7Px(HB-7^Qo-xs9qY{<(U3G& z-ge#h2l-UQp>)FX=nvXDAUcCZ1!im;G9wSB*OrVH=U>)kN-N!##7h6!jZ=G}Uo1o+ z8(zGJk2$qI-ZN3ylMdSE!{R}m#FA(* zKdb2nW?rcW#N)y3rUatt(cA*Hc9Wv_y*;k(E#6XOjvwREWcKGE4f`;g&>Fv#Ng!2e z{OMMyD5->pR(Eqi_v3%)Pu?tC(^z{3gtlMElUfOhi}@)c>-i1_DfBD46UO|%q()td zF%x2=eC%K_e}kSJ-C>`aFGo~Hm{-?#Zu&Fi+UqRU%cdM(gtC>#f>&_JBU_7@T$@`3 ziLQg~zn$Z}otj~fO0}+I+j18lDeax?ps%)4;3#0q`bf@;`H1RCXKt36@d@Skg|EfZ z)Ny%a-5b`1bQE9Yn?nEERnS+_=cHr_h7~{Zl&3BcNRuJqd;6G~&=*^pJHt^j$^CuE zuzo-4DVToC&X7dABL`nL-K~7v#@y8?pQ~8npz!B^SL(`V{;@CgU?14Ilh78vVa9t1 zZROsjxCT`UC4rR46@P%qoIQjnXqyzl1D1WPvd`sWV;O^1ns1fD{7;MV^o2TRVXx)y z!NC?Mr=_nmSCeGKiCp9MWD2lnY-Fe0mo&-spHTeh`0Z&hgen`w7giF;k;=R&EG#^= zdkm(XMh~5f`_}I@Rs@}xe8iQ(FkPat0+|{E z$A`O93M-*(;*I4L`#k#!x?)v48v7#@Rp$6>aPG3vH0y(0(b%nUr&3=e+wCcSN~ycr zc;Bt`W-4Xd%{!5QMy33NN_p;jVOR_=BeP?CS?qVlpsj?7Yo%+ipA8xdEB(s5X|dm1 z1JheLSOF`w%=gYZZYAc}NlVGC%_Y#eRQyZKR=i8C(QlBu2J>FP>*-@dIBEGJVq&Fe zf*by-|7|RZ855V{_a+|B$uU``qwz@S(IJ;4zSVDfwW3m2Ags&W>5uWwY^=j`bg!_3 zaB5Vr(+P(@OVqRcU8XDQ3%&U@K?P1EL;2adWbZf5e`qFc96G?m$Sn%WWZj_jt{Xm`s3YF_+H zD)@)J7ac0K6!Mti6ZpMdwBapq3h?hC+!-pQl##1icYR>cTrZYfkgLPGx)F-?Wq5%d z*Lof$zb63R9C;MMYkP z`G;39O`02Dg1P{B7mQC~Y53l_5@u_(qZ_*IjM9#*3L*QLO&>mOujMlEuCO<051Cps@eM|<|lJ>=(K(=Y1p6Mgz5cQSr}-st!e_zv5$LFqsgZN8+gv01G|KCwwwSLYYN8D0a-< zz8qS!hU@ldWtj*!4!yGuTC=NkLvl|G=CXxxd@g!-SY2}V!QVYKAt+(z z%v3Ji!|^pvEk5;KZe`#5&udh|FXIfHvThV|8r&wo-~1ExIRAcc)*ItS@oC|mgJ@Yj z>MD3%F`MX%IHwgKX5-dzpqG%O3Pzj5w(N-+MDGI~%u4g)TK3*V6V6(v(> zq@`<)xe8IitNm-SP-$9r$qXBr_C+pu8t-iLFV)axuI@ zztQMx?i073L~oYxQ{~5g{FS28sjSFI0M~$zGU@L;#sU-`A~X)Yb{U5`R1PZHdz}5I zI8*NRqNR$FWOr|>E_A5qM*{2+qIz>}mf3 zs-=C;hAhl|It_Jss=cU+jVSAIzlc0Tp5a0%^&qc=HjI@=tyV@14i8dkQR!hEtEV`4 z@<;0YX;(kCOM(pAq>}l7SDIx(JjPM=_>yp*meQ*T7Kh5zw+t|gP)1^BUX&LU&-W-* zrktoO`+Bu;!IejoDi$zai%c(Ive`am7(zW-KSPz(1B5<~2243*nEI9lAk2E22(Y!{GBZEq4Sb-$!Gf_C@%cG?EDshXV}#u_>%bqXc<+1HL_KM5JTzY^|JC2&-Qi($40WcL!xYuq$ujixYi zSZDfbA)Le)s&}vZAA{)ZcN)Q%n8>559pAY4zx3HU}VPP*o~7`eof|+`_KxSn8E+Y+;80pzT@}%et+Y-{<@B%<2*V$JL~;^ zy`JMS?vMM8PR;$d(HY67{fv%IUJ*vjfMaMXChU? z*G3_Z;U4Mdi&2Qi)m*&dbAiLC<+e6 z6~0Rt-4_>`*m_Vv6*=Oci+*n-bV|CDH_Dh@-?hF)Ta9J>alza!#oPn7kh7t5E6%EI zY8*f#)^wt!Q{O4)Z{0P{(htMc_!!XV@l9_FX)e3J+BI@1ZpJlziZd+0r_XFC?~@gG z;r1FRh|{Tx)09S@wQ@Mz^6%`HtoK;4)mgFordnEg1!MKh$b~Ukk@H)l{dIGOPDs>V zI^DTuej%lHVV_JZbxt9TbV5BJU;hPdEeTR zrSj)f@KVcU8fr9B+#Vq$ka@~1c|7h;bL{SoR=wMsuNa;$c8n~a-8rjhu*xy-8g*bQ zU(iSYz7F$~@xPDlSPdPaLOD_wM7sBO#T``*(yH5#`$INTv5}2QWeq+J%A&~nS|`4Z zef|0=b+zlho@M!uNtTAOtwjtE3ti*FasSYAVQUYQFZ$z;#-64BrJYTVPZj#5bEwkF zbuiRREmo;k-tls-_57eWY4V3l`ZSscjb~nz23OnjAEv9UGL`7cNMG4 zZ`ak@H&(A#&sILW3JSVj6TJ+%dao-S!8ONmOk;_152AYOQ@={O$y#0WIAwOX!A2Ll zO<^YYY6f;lROG`cU28`=`3LWAI1;9Xd=XJ&zMHf;*PJv2m^akU*>^G#lo3 z-&zG)fBZpjb>d#8tw*cFF8o&LN&|Z)n=RV*F=P+ivO6a7D4bV$mf!H5ZqfzCx4#sT zpydDM4L0oLFlkF4mrzWY@H_D(p5ySxvYY_R;Fy4Y#TomPn(DTSY`CVDzSHiNGKMu! z<+;#7{V|v^o|UIOH|VqfP!^j-Fr+g_79lA@uN^rM83cj&1oH%trNV&(dGrp*j;eYu z7hjKM+jE^^?xO+6Ek`G>w)-3!&8qi;pA^y@ky31>1U;99GA)6HN7W|j^W(6|+%^ZI z97GHy7mSw*Iq9lZt1x#!^s_f#Yam_PdAiiXq(-*W6j#gm2~Mi9?k69}AUC%z*NbZY zggxPbR+oMqt7j|xsT%vRo_VN!YdXi)xI{sVTz{|Et4B0cS=8<&(-ujZUA;E82df1m zNoCJP+4ZhZdjxQ3YyIJ;z7kUgK|ZDm;2ngkjdaMhwIRgCm%`G*!F1ogg_~2}J+$!P z?E=2c3c*FeuBsnSXfw)b~*&l$Lk~5iJKjk`Pl+0+sKQqLDAWxCy#}y zrlG{dME{l zO7M(4xJ@vc0nuEFbbcdre9^~BqaV!gVOUqHpDQ)rw`p)sliRlooD`8e8=6}WOXo}SbZQaa@)D- z!OnA#Bb024q@U@IVY;S>S^)Ya&;LH`K8?B&nS6)zmTv7@3>iZITT;Plog*w-RQ!pV z@+xib7Nf`l1oC1?6EOQC$;SuSez9S6O_&F8n5QYfw6onmA`2N_=FJOXg;zP{hvqAM#!- zqM7H@no{v!2O!Kx(T>gRo4+orL#wuLvFq00V&y!k{rsuwuLpQovuE-@rxRRz7fGoPk-S%Z0t)SlsdGgBG+hzuOb&`nlY z86Q7>{OzJ)&0SLsgJfG}ql~%@5BOy}DUi5E*txXwdCmWt)yO-85?}4pc)ml8)5@NC z!=6m`PYjiWB>A;Vvg_JuP~sya{;epwk@0KmQsPYWd-4%^yh10h(eA(VW-C+JbcLYf zS{y}iC?SJ3&!-khfo76geoY4Zbz;DGmo-3{=cR(gy6e9kH^0eL%WOMvT!B(?k7eXt zWRA>*SCK-}aiter58c-a)J*EV^T%MTOtpK(yXqJ!HLlyj?wb9=HHXVx+x&;Zep-7( zRYc)zgZfM6=C(T=W$hkU>a39l^;R2j=;5NN$jDiL2~sSh+>=M8Pnh;SEtuK0yVG%n zNMuq#@PO-N&L__pFL~F{U)w%=96cj7&Od&3x$!&treCCA0FyT88=@bXAWU`jsk-B1 zO&a4JY^uU6h72FHgM)XM@iK1p6?~Y`wDq=1ISp^>sfu;xq>gdwW3H7t^h#(EU+5B@ ziyPZ_r9@FxEHTbRM~ykw_`pJjg^hL)C(?M_pIE@q*`hXXqQnxzE!?JOIjA~Ll|G_B z=BCwryIvA=DzH<8jA!@uDbx!g8LBzYZv<_X{IUJ|jq6-Gs0Y&_$JK5%7HIKg3n~ z<7=oDQ)6`o-Bf16im?=pd-M%?Ba)(#&TT!s9JcdvM{d4f-#E?lDey|UaONY;anBY0 zSl*nsAA#P)wrjl9nF$_$&|wRm%ocK9_#B_zl9I zhD^E zpAc{$@Z{q?BZ@tzWib9xRX=`9HnlVTK9|64s_v3W8u?kX66XVPd`Cu#1|6=)#eGf^ zZsB9d=@X7zN9mp8;V5WI-r1(SA<~j=F|;GDF57%eevnDjTK(Vx|0k``5k$$CYkx<- zEXm!uo=bnHb8WwhT+VE-W184Rgys~B`VYzjd^7mI9hFgCn%Nt5YTfPe4Fj05yjW(ZXr4=JaO`xRC!d@ejF=x+i ziMN;Bpt+p>JDfT-)RL$clDR)ufPuQRTOsSMJv|bGCYwZmZ~>tnK`QUM~A*Y z3==g-WMEZmk`f=>*^0k>*)s|9QX=od>8X|#J<1*96#DBxX(DNN)YsQvbc;n>&B}XH zdY6ohH9AfRct}L6Cn$L2D%u*zctUFMPn<(iqbCy)@R51UZQFvdL*6(}O25=Stv&81 zU1|8aa_pqxOB-e`HVW=yA}B|{^2DC&cy^7BrL)}z#&>73{dq^c>&6W=zSa$= zq>_pq>-1kl+Kn4<31zjth&QQVba7YV7LiItO#rDDs!vzK!!a(|*4fD)nM1XI;5}}t z5nkg{JKUrzv?Su&Ke94N&Ll&MkFo%o5BK!sbavE}jxKry$Vap8-@oQ97$<#QbxNYu zsN-&VIXgripSw;W+q@6EJu>}9>~G*BL;I*FCHqd?1j)eHg_PJ0YU*;*^~A@;RYMVE zU6i~10)KGpfnS@GuO&MK-*zw$^ObM4*#vpTGsvk*OV1@f9skI_b11K{P2iy0rf^%) z*z<3i5BS}Q)cvhxzWK#i2Pz>bz{60Q-8oRM!8SlG5lIUMQ1F7)wYAsEsvb}=9lv1` zd$)bZ?Ur$m(si$@t#>@eze+w}nTA z9t@9ZA2V*qD^bDxHZN0H_3|WJ?q}x4tw}nrT(iFyeI6e1(_i6<)LEEi|EW`AS2^XL zhdUUq<2%Tj5s(x&F`X%{&FdA|Iq$inC9OFpc~>ToU zNLvm6<1`dnAp|9h+i&q4{28wJb^P7T1yb z_0*CNYTbluXd)yrU_wScHE9<|Ml@(JL|zY{MV!d^Q9K_%yIRw%r>AEIzQRNQnqkCn z@m@W@atW5_dogn&1NRr%J`ZZ*5C>~XME3YBkh1*{S2)yi%A?J}>n(3~(vzwL_0=|S^dUrHD(5}s&Nu?5+REZBJFw}%l75mh{YehMG$NeMQskOv=^s=rj#dyB4 z{66@=tyF)*;@!8Qq6~_z?1D^dkee3xW*6J3m|TK0Tx(z7Rd@MFgjC{|W$VK?Nqj0- zA6y+=VPH+AGiw;lOV7DL7shqlaLG7aRk6_Fw1J8q-N8{-h8=V&&<mJPHAp zUv?ajh?aUKlxjA9kV%0W@x-QwarE@FgQ3#<$L5}0c2!NvJ@?j^D~mPN=#%`0;cUa^ z0wb}N!g5zlUfaKOxVCqr zlpWqQrfcv6<4T1Vj?@8?^>du@Mg!T8PTFp;FK?UM#Kojl$wj}&rE;EP6A?1m`FYRP zRYUb2nf2FQQ!pBk+2&wcT-NT)#Qf^TuZ_$xCvR!)^j&Q*=Gb_0uz&axD#kcwQ8e}m zau%Q-Zxz}Ml{_-zYM5-n&~Y7vwJI4b^#e5AE4iL_L}1arY5Zphrail z)p^NT8@+FSYwRD5hFqnMw9g#-R7)MA-~VmelWM0!tz zP}gE8z0tLQ*Tq_?CF{l&(UuMQYm)8U42tTj*iMCeDDFGKjn9SK;irZP{mVR)MAHe* z_*9h>>hIDn1lkttdfeEN=i}$_AbWm~=C2T~m96uiEMvuKZhGI^m09bSU&`Fs7}a3X zEhN=xW%Pp|z6j?H#F_wY<;Zf@p1syFV*q*UMZc{XMs&^?sSL`<6!_Pgz@w9x+T zl@k+g9Mdt;YI!V<-)`4mDta2|w{N5B8JW$6G&)+j$&c^7`fete9+tAjxq{>FjRh_C zstpM&>8Gv)Z44MP>dITX=K3kXcyOpS{~b$J#)yf-e0NubtaMa**^!gZVLhEon_6-N z{oaSfu<%8%#xs^M;yu4U=5$=?G1}#S8&!|= z9vqohM8U{PTQpwlIHovJNI{kJ9gN+^lq%L-djCYX^gZI{kJxZ_&%?rg4$7%kHlK^M zOu^qB5->EtgFipPJ$>YO9Q}jn1kMnxjfiS6=$=tjv;kE)*bR@KWI#$cmrQdhQI~4| zdYE}g{44=zDd|?X)!eeB~RHKGzs5Z9TY~<5Yd*jOyBh z7UHZ3m)^W7StHp;m!9xQ5#t)2|=h*R|qWd=6rVk}KOpTXx;rIb=woN=pVb=%=v#!b%@&q{ZTwFopN&x%SVr5*@kw>h+CDy9m)Lx}b(pZEGU z-rdV+?3ZOG&8J~m{ZOJXgT9n;U6Vw1T}R+Ep0uz7t=}^~@qH6uKJkPnGH2jGR@?lI z9UTcySAOP}H_Nicb!9D?$$5K;vl|U*`gAkUP@@h~VO8kJB|tgEc<|5R0$P4kae=67 z=1P{9Z07Tpxrbg?yJUoASvO@-yq<~|Z)j#1*%n$~ICh*V-k9Byx--(KEsNJG@9Bu^9(cObOwJz~M z9JkesTef}J`rltI2fRxsLQk@?m=v3fX2y|zQ`?V_IQcG+QDbxy9BeOm>6uLR#U zH?c~}xvlEHS?ohY=5bZ#^|kl!I#?RK7K)K`_ED0#;j6wTcIbHR&JF49+^BhM;y3w3 zlP{f2-FRwZ%A;-VzP0aAG(~cUC>rI~m4W+CDyC54=HejrL*WV1Td0XMfi0L|VsBma z{NvwSy5Ks#r&ItL1}UK8$qdZ>L<2zwOUueCSn;b?Qm*HfI^koOs_>nmw~iQMl&3)-R6E{L&)F(H!5p zp*X)gDS;8fF5@{x$8;3+nqs~xw`jbEYewd-%Xe&XT{_EU|bRx%zrtx(!* zILT>SOXPW34o$Z$YQ*AYWLe}h@?O&f20Zzr$!%>Y8+0iCfZ-c@TWQ%M*GmCq5|wL* zO_(B&N>->&F-pHcAyzLoJHC!qA$-hszmL=4Tu%L~(=v12B{YE%aBx5|eHyQa)UF1c%eu}9-ch6te|KJpX$^iAFR<3SNIc5d@25zhZy)3g zumyp(iFj)vE<@t8@@aq6u^qxAvO4-Abh8|{4MiME-xnCJ($Wa2m67f0w{8|&WIcE7 zp;7<7Gm^d#TzZagb}3J5vwijUA+uW~+l0s?-Qx;T4IN@9Ex#z|1#T33ogeA`;)TKX zsf_P@*j+CkbA`^Vv~6LFnOEkOmrAXD(6xR21*^Anv$XRC`p;5eb0Rw{D5e#tGA|Q7WBaJ*=bl?eBDkEnJFhIXMI z1fvj)l_e@%*iK}c@WkJA$F#$jlo+F6_W&{4#5Yo@4W4!OIyKIT9txT|h$nhI=vJ;k zo^N=*=CU~}On;`gb{IQbbo#c<@O<|x7hIEjcSYuxiTJ=HE;|@VU2s$X8IU=OMq4)x z2~uAdeSuDdRYDMxZ@`y7*DW7oP$ zqB8=9glXwA?;I8P&u6vc%Drd{P}t1sl<~=3yAqN97AC!lOUlcO!s2Id3wd^^4qs#R)ld$i6pEp7l>a~ExbVz zmIsh0LN*tzL2Sl|{RRGSV$p?Rmzk|DO;h}v2Zo4kG0g3j9g@jB6Q-PSbzzzer6(lW z)9{FS@}W}E%R2G8zSqr8HQ7u9@g@_+G}lZ@qXJVH&p(~M^>Wkm|8%Zz_gA|+mU_c`Z`U`6y(a<>jvnM^QuI+}*w(t!;@p!D z2pfuzecG`vH3#!Z7`3kWyY$=g>-_dmZt7zn&z07m>GX8OzylnN{>(HGp>wkPvL>JhBq{fE6 z63lQR!{h7@i4K&!c_!yH{o=*F-@kr%sZD`_u&HN6E_X z@=CREdPALr%eoym8kxb0fa8(#$7(8A{8mpb3{?kEJ2*LgJ;!KGrKib=Cj=5s2sAMG zgm^+f3OGgeFls@93)^Vz^0*P<+NW#UKHgqXPLdS}o>jGxGvf768UH>)@ahTsPl+m2q7NzrxF zW3!3SJByaMoKUs~jUH-vXTB^g{-&a!Gz@glK9sd3eAzWFCf)c0w;>2xe17aeq>c2m zd_hwRrA8&~3=D+31=cw|ayw!=w?8bbr`)bREY-Sb(d4#?aEB*4I4Dw~|AF!=s1!N4!bMFm|e1b zz3a;O*qAZ|I#5z!;9^;tYT$e5b$ z@Bevu_zY*ns3!fJc2IC?CLSBKskzX(L7fbZB>5!W-Hi<5C$0v?O|_zJgTo1~0ywHL zAA{Z^s!wvU5wur!k7YD+Py~JZ1~imgcC*l-j!cHk@mWyP&MBaD^UCrlEF?Dbtt;r9 z)jv>v#Y@i*YYEcB)C(Ii9RXgwq zQx)_4-Wez#;mIT1m4%{!`H_x@=Ao>%YABPfi~J>nVH$@%g{>6a2cw`m_|P1tdPzb= zx$cnz-D#fn$~)MG8$_b%diNq+2POh@SG8CaGq7=X`PqG123`!@H?nUi^4t76IJJVk z)%q*bx!SmJ!MBb~6Yc1NZ$ArNJhtfeDLB)?bE2Ol)cE(>p_yc^-?pj;Lzu%>A|cD@ z7{BlP`#j|DC{&=Dg!ys*E>|}g48dmT$%hJ_dx_=+*Gq1HQPjN6e>8tWjk^}|W^8<{ z8I;v9^vX%x*pS?#!9n)T&p6G|m<$-ukl`{oB|$2KV!6A!JBm~rqctv1b)~J#J0Li= zyJ_#_*cj|?@J-|7?g|Ad2`^DruG`Oq|w(J?e&8wPM zv&&+Y7kwTcTWXrVscHS3FiDc(meY_htp3%n^xBPg=HY9e^Y`OTVWLUs+_h)!@DxTl zeP-RGl9G}x-|*lh+cD%Wecf$3FCk8$-4d7~(X!{Rl4i;8TfM z*&X(55WdeXnI_F+DzW%BRbk@Fd#1TJu4awlaQRmq58|I6wgE-9y)2EKtEo>8*Pihe zIp(+KR7{b88EsdWu-gtfmieT(Z!a=B>!N+$E~XrAve+u;5?s>4IVR}{giPxRhRuu@ z{)Ll}+Lx%G`frrFA~g=Ze>ishfw0l~|I<&8y^74i$QQ!9H)l}Cs)u)f`;=U&_g6V$ z?g4Qd3?L7`eMq~-XFb8#<>e8&0=M^Ck@k7Ws6yaG<@h7IL{}XXek|zBu zyDVBLKsE(HkKpUOcKhj8En)P|jcatD6mq1X&A#&h^{=UFv~ zoan_xKpGL>zm&AV@%iySKZ!7T>i7#sy?PRKqPUe%0&X$~I?Sd({T?nLe9onzy-R^d zyeCTu<4JYvGvXnk8^-!z*B!b2_{iNOy8KM||M4-F z|BD`MX`l60sRji!#p%cPz%Sahsi^Rb@Aw=BO}gQ``kMRVkAdWdD1Mu-p6w31aCTAr zW&3@YiPb!aiQl@8Mj4Arr@LWjofam82)-*H5_l9uDinWAp_0}$2GVFKim<#d0{{YT zez+gp2Y~=?x_)EluKp+N8ija~Ho%RS*s`vm;QmL(L$mlnXf5A1o9KS9CdyzOOsqC3 z$e&vsy{+bO9U;PwRO^`7ogD$|4#Jsuclu$##efBjTy{#P zV9xwe4+Di*R^YL%0W1&o4e*1ufD_1huTbeEmg4t@vlr(!BT^eGC~0mgk217}YylY< zg_zxOMCN~f3^buYN5G3SJLa=njB<4Afa6;c+qg@-i$nbXiWbNGxc)!W;z&~pw%1j@ z5U>y*I6_pA*~`48dIB#0=ub;^nVrq;_yfT^x>9FScDZzl#Rk z92kMs5(wPO?N182T(sD=b(05T9vPku=#@I-;Gn#VgACmg6y;&3@>K)QY?Nh8#rp?q zaQ?#=9bU+4Mn)ae7soaKD^+f`W%K6EGjP)#qTTyrUs{)0M>kT2&NpvB@Yn*s8p5au z`7tRdB($|-Y4|(31BCrXpcyi7WlJY(DskuMs_mg7$Ta=$KFk6F7XUy5J8+p;tr z^31nfvnj0U!QS#xVCOK4!)8;Ekr8kZ-a}xL-tEVO+Sz9I?kqpMY^soS@XL|+aHB)J znk`Ckb~R%uRW(3jqzpCv7tppHzQ5)RY-CTr^T#VEcGMGPBQF!+F2{nHHtl!sD48H- zcv-0{6Wnok8K(#)SfFl>(Fd!4xMtrtzU4NWOG(kI^_4F_ivJ37bN%qZT>M9O%f(<~ z=8tDcbcCQE>Hg8y-2D%Vjj<>N)_&&qk5Q3K5)*U_{eD{rEfJ$~)1`&J48X%M!DGIn zVCZ+pAp|llKA(2}Se)|nvp%XJ#gp`1=n*mfsTp7eb+)+c(>fF!l_sp?ZDaAGt zw`KtX!ppSr$Ag;D7;4$j5er(^shs>9w`pi2t~gNvXr zBnrzB*9?eFu~g9BBjA9jwcE=meqbp4Tq<|}jtmdE7{%+k-YzjCDd%8O>?Oh@tpXHQ z%nHadcpIjZHS({`^dsR3@TbK1+|%S6d~!Uch?;`MLxU++EnY7OeFJwOiy z`T18q07`Ob_Laa87ChvAhp>cpveDy{Jm~t(YheFR#30mx-f|Q%;WsfeD*>c$*4q6 zT=5Q0sf`9rlRf=QGIt6JY_a9ZcUc_V^pvetrXHaK%x=x$STyIMh-zF(dwaW8!&QEc zdfN=w0f!2B59vmi&52>?nUX7j)~M>QW8(qhu*3wD|Llk;bq=c;C##0d3@=A4AkPCj0R zA|F5aiV_mU8!t;OypI6vMuwk{V={QZT^QW@&1^-)D{l$~rtj-;tAzmzByLr~1}1L( zn#MPya|0o8ufG6JmyMF=SHqbuRlZKo? z-e;cR#&H1v0(jfhYGR8IT!dXEC#+Vh39b<^Ji-Dk1MH&Q@Cp(}#N-3W%vZJA{QTv! z=g)l3UaoefG@XdJFRF+Rac9?dm2l8K>UCWU=v6pe8R-z$5|jxJ7s6fZ^_n0iyeRcZ z!WMobieHEY24F2;ja!ZuG_k+_jkeDTqUugz6$fy4t0=@~oM;c>O5Mxb-__{f*$=+d z(Y&YCFDhxVa&^W`O}L^P8Bn1B)KM>DF zzl*&7qvGF*F+Pr8Mv4bg4*~~HMu6`VnT<3W3UW#{fG^uOTW!3xq-%L=Ny~r0m(dme z6*E}qv(Iy2GF%UeP8jkC2Ff(-0&Qjn>qv}EsAQ6o*W)0%I|(4+A*YTli(~3!b{+v~ zA-94tR6oF;1rfps2b-ie5p>5?8 zlT=4q!|o=>Hh9lE#iC&8p2UHoiD5L!R&ag5sA z?AEvP8W%vRcSCAFIz%So4kX%2 z5?KBP=4I8>#mTd%y4=U6CR8+Ky`>IN%dQf#5X5Y#XhMQY6m$a~82Mi|1$NoLAj5)_ z6lZt{Kp)(D!Mi0p%t%*m)yo8lhJ>nl0b=7db)kkq_84N?KlXS|9>{8(@e8@B7vP~x zfP`tE|A0F}kQNF9zbgTkC1VIl&R3#ij~rE;uBI--o+f8a1$HfF4JH;6Nt#b+kmRrd zf2;6BYzREdkL7kXEK>N*e3HoguVBdaOZl7{V9=K@lpZe`J zIj6u&BIc`vP2J}+_xgC1TUbok?Y}Y1>Yt}Rvc=L34a%D!G)AW-;qVqZ;~ij?irAO7 z8H=u}ym*=}KWd~jq{;k+!>uwbBLbz$Cl}tk3Qxi^FLEDmPaY+E+oWZtNvyDXbdKP2 zYtBDqj>ks`#WTAk+e0OWytoZ<~=yO3JwK=mP=|^C_mN{T`u9a zhqG>bP96*xSSwyEeqE+!O`Jqn_%CW!YUsb7=QUi3;7-}WNt0x7AMnz@NcjC++yC&~ zgehX;9IxI3n~v0;|MD(+t^!i`S0k=7e=$(-Zd29tDrAl*^Y{*J?mtG5m)bcU;w*GU zsJ49vFESeVCpdn*Uive-cg_Z%^Zz|-ijBG&FY@a?rG%MUhen6{J|kjBkN^F4^l#nY zsV`q_!6^rfvKV>)+qSl6Y&NGS-AY?sQ&`Jn){=zrDcv9Hp)}Tu!^&_6QqDX$A`i)D<~@i z9=s@dN*A?7Z{Ty-Z6bgMfBWHs(%96+V&0yy#*ohbXOe;!wJdTzBSowO);5e>lwdE& zflPID-ZR;J#yy=Nct)?!qw+D00D%ot1Zcbvv=QNme%pLu@4vC7VzjqE!+X07AW}NY zAB2{>oXj1Cavzm2RL@qV+voX*H90gn>>yaJqrfPl`MM0ZN0q~;2d9;1bY+LG0s~@M z10`ZZ(!A&Q7pkLkxKPCqBPW&8t8V` zFLhPgOp`<9P91|APX7(fs{YZbQVYx~36DN;1I2G9C`1C-B;Jwp$*2E){~vNLDm<4T z99#8PoJm22;H4t7|JQh_ySM%WFSR=2dW0$wBueF#O^XqTEy1^vR`_zP3$XjA9-7Bh z-N!~|mvL8%z+KVbiw$e@u*dojfbaX#Q(?V&w&uNm|A?ajJ12RcI@CuRa=!T)SDL6si)jrp<*5tbG(@iCdlj=|*ct;J9j|t#wgg}U z2+Ri_Pu#2VUHH&7C0-uT+V#s0JyhJ8HFBfLJJW3duDZI(%7Y4h8)}N;pXnL`AuF># ziQhp682wWfBT@HAW3duC=H8ctm&d`VG{4^I>Eih}llcF5N!*5-M4F#kc=9K&3&g6H zT#G$V7dKbUXG<`=RFG~1({)&7`IflB)FoXf{^|L>7g!_udh zv81F-glm~XF*|Z@;~qe$sK*XHaK@G>AZ73L?WFgDiEOQ!^n+6n> z!+V^bFfb}kQxJQ@>FZ}_b6B%^WA0us&i4)=J^<516;xnQ;C-Ht5|Hi;MisaTybSqN za;Z!QVf>PV6U_8)@4#MMf!Cvo$QX3)$SL0`?;mYZ7i;bN!ODu1u%?^8JX!Vg_1Qs` z8xU92OkG@f!d&%t=D9}Y&i{rSb?$#dj{5oazb8it3jS;LaJrsR2)o7jzhX$y6DX+d zpk(>l!y5dHJ2+Ffkt{peQlsVHAyJ8J*@^=H zdY0PnM-T1T4j>Nlt=xEGnc?bdnAhq5ooh_4fjX>1#r>#@8`uFtZqx#dH9 z-nVr0R@a1qfk6OD0#;+KK*J2p5a=->F{8*&WZXm`4vqhF1efqyTY1;?rPzE<$4Sf$ zY$(4V(%%bFmq(=){)s4^nVgKs&ZnYmirC1hlA>^71qCG?SVvMoG$1zWH)R-z2_3lu zNORI>53*4DFjec$sv7-a@AfWFrlYxG>694mIEH6oGW6xmIc*O06-G%B^z-F+8n<=1 zl+Pb-x-ht}IPT2%+FKHpTvz&{)CDVM`1jb(oJ9-{>s-_d;eLfCH=4@mGUEM0dVwJd z{5ptI==JV#Y&_w7aAm+%dx#d$&ps;o0dxiE?15PraCTQfZ)Uf|HpU5@g>y3gvr;%7Gb97}P539)34Vfs1QZG(^TbFb zpG;;7y?)I}sU(74LIc6g6OIqCdBgNHKGo7iNEaZo!?VPvHa0f4O^K~|iC0JgzX7d! z^mKv!fv>;modc+L;W?wKNO}Xr+F*mry`U_Cny7a!F{v?D7~aR9T%`vBjyP)|em?{W zkXT^efhhHt8~?@g1{~&DDEAUV3IcmHRL<&QE*l37pg;PSmMG8K;c4(dbi+pf944=@ zA0Z@p3L!ipQ^pTycF>dahsXqSIyiDe$`9!R`fp_1jV=g1S^RAyk3+?!%>6 z%sBA|zAhfyk(gb8#>GG4AG8?o#PCeh!ke>LjJJ2W`StKCHNkoh^d02uSI~Z}ae8F) zuL<6>%8kmdPd;EzP^u&OFkXbV4bEa^9`JWUuy-*;2OR>o1cqQX+ZJ}cWEh580Fr-q z`PWCDvsgm{1Q!*aJwJz;Nt+(TF_c_UT7_Vw-9w&A_`#rSIVm*_f#tqmFm_=3FDMNN z2t!d^yWR+^0%cJsAP7_jfjV9mr;-=Z(h=7%aoOC&}}D1d01lOx@DkTAhO|4r8L2Q9|2v)$%kU z4_OZXkaUPLpOSWjRX@+9yh!gP|{= z>){Kf-!^NGb#lp@5aa%lmS7F`CrAoL=JLXnr(6-;A0laVD#Q1|#;ux`^4ucL!GPb6 z@w&6g_NY70S+LoVQLJUANv}6FEpS`Jaf(hN9!(Su1GJP==imqGp}@m_q?Sssbj|P? zetdt(JMapD&1*3dSTz0=tCe+fI76lzG#@BNCO`uLkmdmDS5v3*USDk(f(U^^0k&jB ztvnL5QSfF%%>!=^|HNs4U%}6@iX$X(>^L1e1>vM{jk#1tq|l`Zj+wu(sI3WM#0sui zHgCaYfx#u{3;`TuM$@*U$i$6$A%4ephTMRE#2qaP#gK&)tCxvy)~FHmRu_TQpz_jI z3WtC1VO2Vnv}hp}IBZ!LP4ge02l)9qmN9EB`iG~xQc?W1wkJiS6S$Yq6ohoHy-S` zQ67SH2dF|-w5`vchUf-C$v>W2Wrx$A=d-X1GM2z21LP~{r5K!{K3jk&^;ywH#aJ50 ztU8(a`J4NP9wWVc8#1*#>%AJ|Ll~`^Z951l@Uog;#ok`XXHVK^x!M+fm4?$YSs<%mr!0fL%Ra6E zQzyuKG48lwTZ!_3G%i6E*Kv3G33GUdMGDT^g=QTx{0O-VF(W-^o7+~!qLmC&b>L=L zfn>*t1VA0aVBB`Z_z~B32^AK6ic(wBlaQ34-6ZoGBL_|_;8Q; z9@aJFuSa3ZSTufQF{)umQLzKkJ{`e8I0j(;i#((x9lM~()p_1Ej3eBbI<1DZ8G;Px zNoXiIMxYr|$?3o>kJ8_H1mRViWKRyCFtk$nbC4SnqZLZrJDZ9ydWRiAeEuR-W9e-JKkUVMXnH69 z$%oiR{tE-)YCC-ez1C?4V=oeyk}aC|aKwZhANTM&s@iQ-byGKIvwIRt<8*rGMg!CN zN5w~Sd{ko!lPe^Dh5ph$!S65_zq?WWbr|o%^3FZ6O9r{7la-XKA-}h=uKj1K7Y7yI z>e-xzm^C(vBXk*IY2jM1bixtm`A!HIV}vAL@}Af$5u!}Det4ICb&*n$_=B^Wm@`8L zid)$#Tw7!>&lA&dLuB>6V*)4mgKQ&ae#ocL?snQ8J99uw=zMSHOY}cTIC;&jEB(N&CEDJ zBgJq-cvl*ZU?i3h%Y6h00XolVwmnH}Y!$wjr*~dh}W&Aw+Oe)a=Y?E(8$N`zm%AE)bN($y7dF z5T?jcNTdg|W zzPFRjFflTQEaUzV+vJI)_M*Wt(_Q%vZ@DMc*EH;sH#Llcmz);Q-ltVno?AiB@}-;P%!kz11-v3ag;4c3D+y zaTgM9GA#}371RQMic{g{!TKdIGn^}xl_@Rr8*HXBTXp#_%O*)C>5!0;MA$fvw?ZsJ z6UckYoyt~E+swP!+D404zSL)z7N?+IW^VGZB-28+n`q<4r%@QmFDIB<=iQJyHUzEE zTUk5o2i+;+JEiB4FRnL8=4D418mU$u@(w2)8$FyWpwcF`@LqeZ+l=ekpcO4bbpbiS z9&bIoLc}mYgm!yD=^LFgC7i|iF;sZ2|HbOt7yPfAG9?UT`Yt1X0^o>)J5BGGDf|lt za>gj^0P3c0wzN*odarE8E|C76iZuH#oJSx}445T@Ff%}NNVTdBS#|9dLz*w zZhk_`%Qhq|zrw|i*4FA%$_9z*ue>wi=Bc0Ru_dMtrv=HEQ2rzoKk(qWl6QAps-XAv z46YsCCmDD9I-B@c?Y(hZR2c5IE7M$!x_qD|B(YYjv7Q2lBErIZ)B}eb|5oF9oWf#d zv9yU=Oq7rHv5EYg;dSr{^B7Q+Y)o_I)mYcLn-)&Va;__3q=@kH65=0xQ}n+G!3wtx z>DjTpRF}##I3-(0B{rV#plYPcH=?uRMZ0I?3uQS6;teF9l23i4{j3GAfBJd_&-Djd zVwjrFX+b{zhw9ChOfS6$rgv}9o)%~Ot-!{wbt0qnTB9u}_iD%-5YV+4Wvn!^xE;81 z=$jXD*7ZD;wTD_~ih0(AtTxKyJ}s4H~9M#rOuJhLc6+WfQ5h zA96kNh27fL-`;-{CL^bc{cV4w3*4tTXC=%g#l1<-QxZHYm2GrQJ-`yn4`C%YTA~@esi;hn;UXXvGL5a-na{zj+|EHCT+n?lZqos^jjt24eKaH)lkCil z`nT1bS5ZEsv6gbw^QNK}Mpwbz1gUMoNT}&h9!9a$1{<8oFKgE@h?)2qJA0*x-|KScm9$TE8?VqwaGcm> zow+_8&M2$)Li<)|u*>Q?0~@3M{<1fY#2V!>jMf&x z*I$te>JhQm%o@*|Jdh%NFokvV;iB^iJ(KkhPImmL3}s%&FLYHmrw0GF!*2;g${bJ` zBeD$a>N4cmiSh$t7HG%u5|Are+`XQoADYKztYMOT967x{sty9$*Wm^L$Rpx60AERQ zgq*pzxYzNaRe|@1xe(YhwwPw`qaWd*SwRIMGxsGSm2g-311d>$n~k(qvNt_gu`=in zF1duKY8@qxNWu0&fSpYje5sf@dzGy{Xn~LqA=$>zoy(?U@+r-q=U?z_4QzsWfP_R; z;Z2p}6oW%w!w4=>se>*B|dR{`xa3<+2rdsqS4y#*tb>6$CdpQwVdpkO$rYA ziR=7Z_C#}r%(9|5gdz?hi{ep2g^Pd+W?c5QmK*?kOAx~-RjTVmPn(HY)cDbS21u15LWH3Pxql7vn z_TZ)3`RULML$9w*2NK+Z>Rj0+GkL|l*2f3OSPbP|FL|4AT%5zwnmgX(j73i)n3RBO zecCIM{yYwDvR$9rC%#oE28W-L20j9Oa`E5<<{jLHfGqJ_11G;wW+rj;xMTW6nN-$6Iy##s{aCd_jrk zzPMzzU3~FOwT-PAipN~S#AoS{^57)5Vp1Fbu!&ZBke^2?_XVH8TX*KDoabF6$=oi| zE6dtfzs6qCKt*%AvPGOT25>8^R@PP5ZMZYb$1av=MzxkIB+5GMNtpl39Kk z9)&8g@y#5(NJl6i!#%IuJDg2x@cKvNNH?>B(ny5%9khtjUB?O6RGHgB5B z^!x7MlsGj=^|4Q^o=x^5*E;pW&UI4lCpFoSCc*X+DJ^^tu4-0R;_-!9@nfp(Mfz?o ztGm5V9gL%+v)ks4qwOMQRNWq@N)7XUc)qBTDkN!{Gq1Qo>#X(BzAVc=k)o`P49Qit z@po!i7(_~EH$F%aO+_c%ofHgB( zZ2PKxUwwZeTBy*Ci+eM@Z_@;b(kWd)6^ zH|@>h+^r>=b0PTaIdQgx`q+0xc|jh+;}Njvjn5*KgaXa6>KO|Ie&?dM5wm-Kz4W{B z1;<`0r*77IM|!vowvW4CKTbVt)uAD>x70VTi>6hq>YnQ4AIH%RHO~i?I-VRjcLlm- zf;xBJJ^UoY-yQTQh=wy!WzEnJ4Qa#KPkcBqi~lZm|CI3~ZOhvM9CiZ3T&zlZyY}Di z$6AiEg-@yMM`R*tGeW0UF>qPXp*cz1Vx!cVRAaR zO00EnmKBb%-~N8RS$lD{C(o1RkzV6Xr?#A|&z`xZdQuU|Fp_obU3fuqiwR65>IYAZ zaax;)xJu^6QB~464e|S`q#QkdoR@HLz}J29A+>b3+xEif)gp1b_fr)!h-AAQeCo!2 zplN+tsDsX(6eFLb!cigCzcJ5=GaVmQ$}-(w?H5jeG|tMm;O7Qg4Yz=43oGZ+Ra? zkR^Uly^qAk4&En&>)L&!vB6VVdv{^SE99CAVHv2C(9HwX=N{2RK; zt*-U%D?Ki5Knyi0$mK~n72CHYnQr)2`o-AKk|HPe#XiVo5J(F9X=J-TY^NBAnNZM-a$2YSTZl-KDW0RZTt3e%X{+s z1I{{84Q=1xxN>#wlu=WP)t=@z7H6t0%dUnDYZ_^1SaCf(Md35ZL9rZO4d{}r2=M1T z<`}J*^;kduexjg}Xjwz$h+6EUw#cHkeIsi~sim!rSB%Q2e05fpIt$ZK=Gi61J-nOc zN+X|p^_~|kExeSxwMrqgYsPK1MKdkLF@8F;fd6XW7*5o&iHX3ji8{2kBhl>mr(oCg zD!Hgg5}jTRse_6uX*>J*D7FHwPU^)B2fsg1!H|V;!pp?e)cX1P2d}EKc5EoR1$Vnf zTf-}FrLV6uq1(5XJIMCV8&T4JcHS+%^HZl>z{H0iKFS=qYE1N#JMOL%ji;jvS~2^x zLi`|wg6_^H39GofQ5f(&a*LAac3V@dZq%5rk=f|LnyuRtwC(f^Cxt05MqE)Dpb&lu zA*Lt1JnrM;^ZHDGOfxeB-MMP#>!Dtz2IpMP`Mcz39w`%{S03db4ZG3pn*G;evqNPy z4CSVM5M3xVvB=$s(|ZWg|+&ts^Mo9F1hq$nEG( zF9pE}#hxl8+-NzEU055&U^KIByDMen=!FiK_@G@Kcj6mVJ>_?D=2>Y+udTbvJvY5PJQh7rR~50Op%z9>cXMP4Y!M-K?`o-b!Pyu(fp3Lqmpo^oGt@@iBOC;s4} z-4*5Kw|38lojvtatx4eN9idd2%uYYsYZ*~zpQq9{uuwm3{XUj3WM_JCxirswRMCoe z6|Ea!_;Anh%u|}pbx^+0|7eiGEt-P;56f&>&QaxB?fe*SttO!s4Tac~DcX;K$kS^BZYQOgp_5ee=|7IidVCYR7cK8JhgxJA3EU@mo>D&Ra)jPSPWU@&Z*Olv z^Er8xU9zD%kAJH9bIV1(d}Qf)G$G`D%^bu6iCB)*6fJ*)u~}}Onsm|3OwsSd{9m~p zdliW4im;ALNKmrUIbU^q*S4bhhDqh(UMH5*RQD^9bO?t3%op?EOP-#rfE3T4KM!nU zsao*nZDMYotj$Zj7HAXXbpMQOEasn#!ly+@R8>nR$ggqDzrV=VkNqN1W7$L8@W zMMUr0*aTJI-f~PsgBD;j^@ou8<7YUhgo-3iTi%iCuvZ=s^rI0o3t2KxRk>RpbL7g) zL-YYZ99~ROG%!3Nw_@Akd^KdL3v!#&i)uCg(c%9VoCIW(yX?e=uSjp@oRAPCP5i79 z^+^6K)a`dQQo~Eo?2d8mcx5avYj_c2vyy2jx7nO^Ttx}MmbgtCqynCj=T58;sV$8;?}vQHZzyQ zaW7SB1Eb$qwZy&CZyA2YSe$TNDUKm^n<6Jm{EhLysiTgZ3$}61iR&4^%xq_71Jzi+ z|1Mf4fBERo%a+Z)xATVNbtkvoatL_bJO<~l;m!3dCOPD1AFD)4{rZ-=$SPfcyD6f1 z?X58?k^$hG>b_i(YA7CYW^Voa;)N7#MVv{2 zaHV3S&H^LOWY2R99d-=9ie%$g4MaZ3eLf~J=z8dOb8cezrhWFAJJZfMh-dYy#P#O4 z%k1n-npX}x%(C5PPlat>QEC9MU_&)!PU{WH6(crw6-jZL1F6S;UY43*R5oKPD)61= zhINT>S8-@UBF9i(S+7(09rM0Yt*xBbD-*+nqZ;RgAv^!!!*R^lqorKTio<6flKw;| zGGchL1&4|_dQC6n1AwmCIux>6i?RfeB^@9Vb1vRhhcJKWkWTy5ccQ9Wnik0R;AMnI~CwisksGx@v9c#PBRf?KzYhct(G3p6sCP zz8AAf>0l8(xg^`0YRQ=B%4OK5E&@cs!GXHiXh(8ei8#F)?2a_@CDq-kRY% z8Bo1Hz(uP>Tv$W5QPwqVhMV(BWX8QOaZ`Gt-+}zxlpC-+xXD`3hyn!Qw0SA0VC89DW9c#y&e=W^~$OV~FrRef9 zV4mplj%HhiMgOzwF9Mkl_V|C!y!TL)G2leR!pCuibx)CagVbA_8%y^x3TsYCiv=F< zdS)%r+SqhG5fv|LgI_{YLrS$l4o;gn0wk$g#h0Vy{@zk_d?Ez&8dk3s>^x@NNp&S-Tr)==8vE8G!(1nCuQ(K$F^-VQkQe_kEhZN3hQO_x+G#0yjg?g7nm`I@wiANvx;TRek0uMju9W@hs)ERF5Smg)BB}%}i;xtb!l(vyD%qK`R$oTlnanzsG zTcTLNlK<|26KH3K=RG1WBrLq%-^(JMOR|`)#)~_{%@xA~P#%{Ka}`X|K<&Y#bO1L5 z_I}T)=ffI3Z`=Sc=MlKkLskCtC7o?lACeo6A=gQ8Tk-CuI?WSq|K;OpDqqE%V^-OE z_i%P8BwoLIg&kJGeNl~rVEcb)(>O{LAr2C6tp*2S3Vs!2mS1|Ti#VFrIvo&Z*1SQ z&!xuyrj?ZyfM!kJr-bU_Whv_Wm7Jn(uEo*R{C4To?JlZO#v~l5s@b7hs6-Lpv%Y?_ z?#p9&e~JoFtO z7t%QqM^Q#4hIKT@weGpm$a$jY*lnpV(s|-`>t{v!B_9u%<}K1%1K?Ss@ja`qRGbyYa(Pfi;_|t zkRjutxm)1};j8zhz%i-Ku^W#!)-{a#GL%{Km|qJ#gKRGJMQxd9#7xjrD~VH z!{*nh%)wm?C-?9C{rmT^t(>A({``qF!m)xWBUHk^VzFAg{h24R(Zqia#GxzM+}RO5&i=Xkyvi@|GGK-e?pI2!CesJs&6ipKe2)|n zXc~(*y&`pLIICy7kW>A|-%>|6%$N^xxyZQPXtoe}9vP_!Viz=3QnXWDH~salGG7e( zWaywAvW4Q7L&@1kM=be2_gBrNHkc&TJq|uGk=dknDnwN6Al;#aBVlz$o%Sz<_j+;u zahJm!6Qv<(U;R0Rx;m2KRg8qrhoNn=r+!gCcjY zW|KxcJodj1`0c2@`7J{>;>{h^y_;MgL0}7dPlaNnlm%FfvEQxQe%*ytm^H}E&W>u< z-6)4$B`!uKU_ph_w*&_bG&GC+i>hj9oxq)b{`@&niDKYOtt2idAH%47LD2GE^`0TO z#K4DzD91tK0h&eB@czn*zh3ybq+H=sdFK{&z!p}F@wV_MP79`jO=)vRN^8Hs;&bG3-Nqoo`}ulbyVLD8>$lMTfi zl!9l|PYam6ZYG#jy}dA@2vkkFGd?~pBflf5f8J@PJe?dKE4YHJojlziHE$?WaT0cG z{r$mlad9QJaQkWP@25rfLV%nUn!P#-%Ng)94Kn=r4GTV+6_-x$6KC&?e4g(s!-({V zg}(z|r9kS}4+s#uD>mv;L2|s7eDM`p^@=OZ{Jx7TMO7fSzK zvhB}K4U4&`1W2SI$Z*bF-cB2#87jWq*s(76E#A+;o!Q?c?UlX+{lT`O)m%sA5H7X2 zQ1JG^;X}L^KikeA%Nq1)VbAv4*CO|Xr}B&D94TbEK6uLY#6Y!!gdxurZmP)17_s?w zW}|tf9vkhXgM?2(InY2UXQXFPNplS|oG z`&y6B46R^o@Ln*SlyL>&B(~*yP15Nn*QE1uFVue!WMK0!dl3=wfdF^zvFzP@av$BT zwsCL*2@w>Lh^iky&@A$y6Ha>e0G)S%ZvF0%gam~G=Hx(zm{`S+*8$q2$Q?1 zC{WXl)4BAwo7#(#C7 z=*#o-^Q-qO1SiyencOx*53{e%h}B&!I!Tcxc#geEwI?CMNwx7e`9A%fsgdg4`*wfg zx^HOR%};Hx=P=tdjb!b6Pb%Duh7`k&1UWbDn(I#tZ_6*}WNQCu@ZN@%|K-)avu`qM zMtslN1bwyTOxb=s=04M7oxEKJeIA2CB@fySs;3w0sVbiIo{)K9BgT8=Z%&2n65BY5hT&OI|MY!O903f8L_G1QIG{K(<(Aw|A+J(!@SGif z7yV3}W^!8si?>2h$H@$xFivNxcjtb*=yFdGKIKE7d%PgYBvIz8ljE@l`fUq`H&t*+MUImjK(Xv*>FAWyVIM$GGaS^?(QG~A9(TfJT+|{C5w%7sQv1(V1$a2$X(}+3 z`6#^K`l%?T@hUY!`E;JFC9C`+~i;F75WlccpKH3n_vO z-8jY`g-jeU{p3}qy*8<8ZY-^#!lH|c13l}H>FJZErhB(gQVuMx2un-*Ly!g)?GPqr zQa2X(kQ6gZCU}eO<64aOhn9EeS_{j_@UF}!PZu-)IPO55(7$m zQ*xAMxU8m>d7bDD_dz1K0b>W@s?sW3Wl`x!0IT6P#fE3OAFXneJM0L;8j|sSFNI)# z|7|G59KIIN5KGpeIp%byU$wC{dzD%VsaPN^C=(Xi;vOoKT$gGOyA< z#YJOxWLi7<43OY)N3JU^tfWT-x$$%BGv1YpN#p9k0YRZEw9b%Jj>=mcWJA`!U!bhDVPukKeyX`I( zBYz&I!I#85XONH-^IAnkR5fZ?<)zcNwzf7j1SqN8szvK^la@8bBIaHBB`w+~{7mgN zOTSHB>)Lj5Tl8TAfBO`x-!qHxH}3p)ZH#_xrSHkw2Q62o; zoXx1+eKg_>ItuVe>vh=0tm>NNx|Ph`S{wpH-YxlsA8VqcEuN#cYg(nBSI*KGG|x$j z;bDlb8KU1O*sme`b#~TekAfF7&W4T;cO$*9I>0adAFUPAf$E|cfkhmEi!IJ;QuU^& zPpVSQ{&fo9a%Amngdr#=?Ck7^o~oj*qiIf<4p77P1bF#1-@osJR`kz+6Pz&XdWdrg zC6fAA73I-wC!PkT3^+pw30$sbokOd0 zcO1gca9c*P18T52Phtoi{^4o-W3FlAp6$s`KyOPr;bUl0&CW##Lrb`j{@5(5J>)PnjgS;-!Eij%5-w^Pd*v zpGcu?OFR@EuvpA}=PIEg3&mdyPw{Tb)6F^lSvDlPsz=I9@n!J47qDl)lRIOLl>)Sz zN$U|25i)C>5KtDFJo8rkPDv+g_OhIzL5%h7iZtv%l$XA*hqQLD5;?|b_}Ipb8_aRZB%R?vGKg zFFKNaru`J!W&{VW81*j8>&(7E&z9GI@3_7rbsqarpdz+*b%AVur=XxfX3X|rrQ2$> z%7V82C%*Q0YjK6IDrC}<*a||?Z*Fc5<{zCRL9_x3@be`o!p}cUD(Q8y6+|%)L>Eyc zFgO?+1NhtU-wE&DvEy!&tl0U(>kkH8u`^OgzA)fRho3@p4}^!t*ROc*7Dtr~F7oj3 z5U7qtu72R7M+DLEW|^sUG z;}j3YvCPI&b+(N0jK1PaXDhF%1avEI*GdRsH@^I$`1pW~=Z-}ypz&6DYHR5MYhJAL zS=*;G-*=W!a9IW3e-OB9cV0~R4%P&nv-kz!}9j&G4-iC(>B$1MKp7|2QOu4=9?wpgzXFkIMH>`@Xp#+cZ&nUDiX?C;6YW z+mKnuZ7r=*<|@#%eB(a;P^TtRN+YPkIlzORX>C*Piz5tmiM=*)nj!fXx0cPG4~vCb z?MJP&w4xZB-x{C7Gm>;yV_ZQ&7!YGMYI$WPDbsJ_v5ldr z%&D};^&_N)&Sfyo-P+|Z&bk889Lb*fO;4)9JWvA(`Kg^3NJd|D|hI8 zWTDz%(_^~$M+Y6+Z}ldNHF`3?<`-n<5!-dy5PLkmPWl%B3RObW6~_%~@5e&PQr^>B z4zh^TU#Pt6`7(3QM-RM8t@?^A@eR}Jq@Fvmu>s8fysz}$<9$I$jp%ZjuDpMqHrA%M z$K7woLFy25Wmzo)BhiR6#)=;r8Un9IJ4i%%$-6PUJRS4t48DLp?vHBxWH+KR!jng% zORG{RinoTq0U8>@u9HcJ>R`FUM>ph7JH0x;D$Q}Kp|tHC9wPs=n_*<41oqv~ql%y3 zw#7@A=TN&#unDYm1+$uA!)2*rT zRcK`{+NnP?ivBt4KGE|R^P1guN5bnxDj)uAimI49i;;$wAul8Yp&0 zF@qR`Vh69Y?oe91R?c1YxF|L;oVBbRP)*ujE91NToB6$$o=tiPHzF4>^3$E+tV)34 z0eayr{a#q;l-A%)NXqv7K1?xA?LR;<5yPX9Ii9bg4xJF2%Bqz;nUrrcw~yBS5LVy2 zYx{{iZA6VxFr@GPjZ^etuHc_}{?U2621@?Nr3|06a;ziIRd42^ObhkaUOC?=^tM+) z(4mlH%eAz-iV{y|KSdosANm=X^~I(~Ues+vay##hLOa)FEF@g@;1kt@8NvGGVsHCW zo&0~QS|YdJsV((=R?~Bv$MG`dX=785cE62ePPxoWMn7u`FSN{|9XM4q`o}YAqW>Q( z+54n^WP3;h&r0$hcDC72*eWH^k-6Iy3poZ&u~)-n7j zT=s-^kla7w?8gQ})&Q0kqhxbCudB~H7kS#^)7QIvqoOeK>m>JNY`m)49>BND|D&gXO2c`sg=GD@ z2P%14=bi_1jAbQh#x#$?3AgjkEW@V$xM%g2=;evAj7b&~S`<)x@e3Q(kcmVW)p;*I z8-nYTU#O_awImLl{h@6v2VwH3s&!+@Eoa($ZWn%xuXwn-Y4NWYG1JMup%9xj>0R)R zrl{ug@jyAt4_eQIhJ}9b`L&uX-u=Kau|<|a0h2nrpk$o_7qtTGbKMkuE)g7D68?q8 z-`U@K$Zxyy(!GYpnziUdyI#g8FTSxGj#p3QakRFnwYlo zErZW}a0^4;ftnOR4$m@Q&Z<7zb@m&woqCNOBa`n>vi1&gOm}egzzuMVJt3=Zzde7Q z?GJC_sU3?|L_;gnt`!;#9F8iP~%?jl>Ib*otCgw+-#BhI*uP)oUXe7fdT_lDhc zxLuD|NVW);O4ug2^Wmk%qleY|v9kzD3<|X2i=v-TlDW$6y|De#@Uhuiruj87s}EUe zF!SC=7xHM^I7<;t;9y@6bAn3zv{m!#MNK6)?Hl(*N`QW1Z`dqbuhOAhr6JN!*k%qQ z_;{@%vYk+@AtV#B&F^~&bl*0RLEJ&6BbKHyFHD)l6da{Dk{mv++sBS6;7cHPIxoY3 zJW;oPZ2s|uO`5u^PZ*6%j6$2ojV4pG=Y$?IgJFV}Ysu?Kvpevi-2f&edCcH%LCN9)ehUe zYpSWW-e)N9N@tG&zRP^e}O8d&| zx1d!-kkU@OKp5qqazr+ZIHMx5EN=FqJ#ddFN5|$tPG8`Sf7Hcp+vja5;!tS}9E~#K zx@KTZFQ&6sY>Tk~6GjbJUp#QzPpQZ6b$T+hr1LTP*(}ac|Iz!t`xWfvr%kSn*`_Eu za1;y$&uXoUebD+dh`F6sikP6oYk^1$ckzI`l6hiOV(0mp#1xhj(I6G7* zSaJDPEXd_+R?h7*Om3R8Fn#%ck-a-C+WMDrq1m>(;+I}9YPHU9uR5Zc23)7w_xWT5 z_S+z3Z)tZ#TD>%a(<5D_fl|=EoT4GX$N zBTVM`QdMdn<*I=sYs((5TDwG#{m<^UH7j$4-OW7zN{|K|2Fx-l>cV&qihe`%12qlJ z3w|Ln;N;;mLwX?EsF5om$DYzT__|Ydc&k1iBbfHoG&GkWlm%8>PR1i_NTAvw_R}zI zRDUhGTI9f>$+J~~(shbe@X~Qt@m|TQi+1vZBNW!8zfyxGd8juGq@Mx%LBr%<{l z9=Owa6}@ckciVZTKvC)DJu(i3<*wST1-zuOw+y=i(^y%X6n3)qZuL5+!!)5HM8##> zj+x)5JFiT#uA4M++_94+&F|4)?mg9?sPIbRx^UJ|tl{DbLxodA0C|QFoa#s{-pcSi z=AyAcICa!#;mDV#DajkgEdcw&{0=G*p^a7}_s%S{7+;D1^HO4Igxas<^gx4PzlH6B zt>dM{;|Et*GP1nFRQdJ?pK9&d@lrsxFZo29AJx~LjP&&m3wspew2Csdc{@@T{{Gco zcsQ7mS9vamCn0q-U`>I|Lr9YT97ecxGEm&C3pwJSe?eGsub3F!UzetfpAV$>eEH#; z{79_#$ZxN{irVQ#bMRQT0_8+R?szGb@pk=E1^kDJU)aH|;F4n57oRc(=jNPlhu*Mj6ISap^DsH6@#I@M>=ZFe_8rI$!g@P2k5=?KlVNi)pen?0=8=D;ANgc_V(l%$7 z4^}*Uz#zdu@UPc<_3a<}n?HK+hS$$?UtBlhur_{}X_cVfq7o^x17eS$&KPBw2z zR9zjEr!ic9IfLA1uZiis*A;VQmfErpxA4oKWZ>VFOa2Wy2iSjK{M8G5Qp$T-470}k z`K$f_uuvG1tdxo%7N?BL23-~z2}Cf^iWo}{bUu(=OKRM4Hqqib6&W26g#oB!p~6FL z6D@mP-AdaoU7ppqthgbbMJZieBb-SLCU4Jpzw1&A78|MegjHPm=CR*8P;GzFJZv)G zc+6W7e^UO2j$g0gan?4GOS0kza`i56@qc((oZON^(?uddiy}y2%uFF_$4CPu&1M5; z+vCHMK3uQuIjx^eUz3`*s4`)l(u=&!co~MxYD{38eY!=}3k}C^_FDn>w~2MnH3qXz z2vcRx4|=P=&drno!d7mRJ(Mou!% zSP?0r5u|9mU3y=;=Hom#Rkr4>_lgvRbm6B>A2X#^;!Plou?Ngt`wR}inSIYezeym^+av0Ev>cl$=P z*A*QluRMCR6|mb5$xvkN@cOLBj3xw-<`+n^qvOR?3LyVAM2hh*h!qk3Cl8)d4SUL4lpJ9YGu zKVE1CaM~Lw;3GV|JnDGiR&fAftF>E4H z%vI%-EbJjP1;WW1I!7?^$(k%Z`_fkk3|k9}&8ToN3juoc!FM~;@czsKJAKuy>f*~P z_gWXPz3u%MGclF}gB273*tn?0ux{JpzlobuNLWtg5&iY6?hl@p`El@A8!#kZd8f>E zoGa}k*UFG3#OUqUxnqMO|f0`gbT;bq!!tH?SZv7$@_)J1-ukYW9FZz zzn-MZ+T?m^-;`VidwZjB9XEL4#PZVLQtEyL2I-S6-p98K^Vh5@v=)`V3=*{U^$5MR zzNhbZxa8QVd6@MO+5Fgz4iCG7=`8bAK54bA{Kve`CH5W?daE=dZdA1M?~N8$l$YN+ zST7Wq{BUJEE*M$!h|BT|WUT8?JkldI?QW&b+S3qwvciSq{8;|mzzN@${)zayX)Y5v zyuXbp7+Z)$SlCiWHR`+$*6J1x@@)ANx1}6yOinnv<=4eeQ$Sinc|Rx1 z0Vhq9r&5dom>{4v`lZrm%x4;C4LhuZs7mSJ>^h=#r zBi)X}-_gtcWxnw6RcdZ(OL&!Ew9J;#J={GVbh4-SofFOEq+fhFq4;u zZrXJCg*QX9MHY(g1utJTOdj8H20UExE~C3pk4$=e?xo9F3K5SrZqny$VvN7#E&>%M zD9DDF-}VCY#P1Nggo<$?4g-n<%Rpz*xgnNbmP+q_Eq*KXjM7#jw9@maL)&Gr$3E+6 zKtkofEf8e5!-U(5ahpK*#4W)Uk?#|r|1=^3f7?4(WoR%mhAYs^!b06grcKnL8MY>j ziXYvci`dkii@(z;=7T+dm~n1F!af&N#fR4pXa96H>fs?Ml6EthiUz%37P-&@6<3Z+uqYgi#dH2N_8wNW@ zbvBPPCjXr-FDHREhDK*(@FYEN_K7^Mk-&J&Fi=w=$-&H*I}92-%1K)A`%!Xs7F@kq z7X5sDk9M&f_>FX19ey-68r*5l5L0*OY{T@tmd2SZp4&$AkV079N4g9S=Wt5A`PUk; zHDEKqC~D+O{DFNJ?8sg^xz=@EqI#!QAS*Pswc1SBsMLMuUoQ?qSla|z&K}n!%w7vh zc0Q?fTByEYKzq!X>s0(NkI|qB(k#Wt>_lfg8R^Q*4 zAK?^1uL^zWt>Qo8|Hz`aMgZv~^JWdcuI0#TG`@cmdMbJg6+=UOFBktCJV&TSo5(Uc z2^lb-_EKpI$1D9h^^9KBzcIXWKTEbQ8w-G`eyGmPf;C52FXrZ+f7Zvd#s8W>bTKE} zxgQX8tm{$Z2)6F4Qtj3go7Hj_wVN%sy+qXksr=u0Mh{Z5`LfSe+3i$v17J$L=*Ebp42+6!dA2hNe7sC8-38SDDd#(auTchK z_;B>G3|H7uqEG^X%R>14gc}N0z_I=w-9@ZvwC}S=hVIrJbo0e{>`Lj4cP7$J<9mj0 zg}LqlleEPM1g|~uAmBn}aS#(aw74SY-vRqIEOhe4?c`&utg5=_ka9jl2MRYWpe!N* z0)QdzT&qo<(~g5G4|@*hPpG(^ea^$>oYzYFP9CfkR{XuoK?0a{GyU{jO=fBO(U^L; zHenXz>v{E~*EJPe|%7?frzrModcppXggWZTirbNOlp451&k(MUJ}piCCpdW{WoPQxZ-F zn;~b3lxb6eB|r$>qkUwRh&3F>{iF zVlP44#{VSUi#Jan8p3|jQjik>7`whv*+z?{_~Z-Q*1sF zG#lb8d$Y~hX$$~~FY|3JO<{ij`KsCVGKPodKVLxykI8C4K=9v}+O2CZ;OF-5>ltZE z&i21Ql#i^(<8#Y@zVtTb{onWt?0?BkL9IRFOwG)f{4Nth)!Xias~2?sE8utosfC#v zWs5fg6eKW1mMk5h!6pwaq4B2SJ#l{Si|J~$=|${s&!K%7TJ+giBqM3a&2BdN9nW;h z#%3$Z=c>JHt$X8i()dU0oe!no3))z4-e7!tZK~o|@7rvs&U=lknLe(455018G9q- z9V(KLhzRU>wXV~G_~#j+JNT(e^-DO0?Y@ z^Rn1G)^p-;5!TGu7*QXV<2U*Del2$8>09Yr1Y4eet=^fGp5%>X*&EZs?!yx-9<>;i(Hc$>@9P4)zuDn14S}Un)=nY+|-U*W(#I)L~O2L>(?y1WgtKG}M^QArJ2A6fTe5XtdBT|Cm zR!-HV#{?_1s_XrNIOjdO*wta4YUAs@2kr7B@w2a&t@IAkZp_g7(kXhaO`0+ZdbS2A z7aL&#VRj5&JA=A6M|AJeDH2`I=1sR5R$j0%1mp`2g!}vrua@oqtL_5T+fTJb@33Xd zmMR#~`O@VM35TBA${G1}5!NQVD=RDgro-w-5__$!tf~Yz<^%)E)+ftMdcxcE+*a1% zVnv6;K)ipm>_a>DNbMuUEU7pngIA9J4LiEi`Nr3;${9NJAcTFpxiU3Kd=Aexd?oiW z+M7ql`qBYv^ank57ECavPnJT{q>?VH`9oz`(8#vH^rW)2QNB+Ad(*z+8K-4=-iWbB*! zP!J&@D>dyw__v^nCq7?NIZDVkFy$bDT2a;a?uM|4NKSHd$Dx{ z+wm2U#UmqOo@+J#GsB3F5e*Nj=;0e<^B#auP{jfH`u*omojE|SYO|e+TQSVXah%oL zwz8?5@R@MvD`k=Vc3G)+2shRzShDPIBk(^;5~2IYO#Nxm$)ev16(u2Aa|_!gigEj< zS%N%q{2?=bsdUQG`EKnH6j92F4{o)-Y<2ss(V_L0IHe*evx7|lah;h@y6-<!T<=!<;C9XYHX5Gi_-1l%U3Qo#_%W>8`Z$h zAV|Y&ke)E8?fd;oasWSiZV5uL_k+ELxsEKqpxm*iobXfuaS;Pk2=Vp{U%jKSSlm2d zJnb1iAdM6}^EAtgBFm%EUgvkNvA^Eoe+L{x5#kIFn;%_n4JK|YAyM?q(CGv0skV{a zr*HIc2R4UY0L*xBAO;G3Rtm{TS>99jE^TKe|LgU*w7ystd~_xEXxJF)4C3d#fuPK4 zckCJq8cLlBEu&DqN8X5K0dOv%^_gYz5uW~n1AXq$?#o{t3kkIgcUZdw8wpS%?2vtj zch46Hal;%%W_7K9!@Jkxq>74=oE)*G26c}9<&1s<|N6_-X8b>8Wn>=SzD@S`8z2tk zvQHaqK`Z2xJHFSOu8W{t1Hq8PV|eGg55}9H$)5Cqu=EFTaD=6#9voe|dz3g|!`Z~O z$EmF0FZ^}~3d33o??ZyNsmv?Hb+f*+D{|PQOHQH#9#3qsQt#N&$qpa1`p1U`tlD3; zX5(4AKq3Eu{EdYN(55|GIwn88ldvL~d?6|#vLC}PB}tFi8Y0Er2Iz0hBuwJslj z+1LLf*a zqMI4X#)Q?w83nc1l)Y(M!b|bdA+0HFL1Ud2b{6RH(+gH{%TQNw10ldRzi1i^5?hW^IpFb_CA#es5To!5Z;9f3^`bO|RYv)eI2M9t#X4sthcfaB4@@%@R;r+(g#_C=y(H?O8I33`#bl)dAcY39N z<0itN&akJEt)AKn6=&7Pvgw8zQnfzupH-Z$Y_HPpA|I?KS7B%7Ac}BKB3`|R`-#9L ztI@dLHnuV%A_HKhL$zdv6g1ctyPhYv0O46<;*C<%(gv)pECvwQVNNgKfT8Sprrwbbv z0)0a5bqleNFcNxN>s&I&uRHYlW$pA+TF0Tz zYP&CfGY~W1%@~j*AnU{_=2?a|h6)Y=#&gzsf?XjF6y+JpMJkVzeY81ds;EO!!> z5HYGC95Y=;8(2tx`ep&QW3;P)j>c?beQoJ&*@`S-^FoBr?CaBgB@^vzJJT#>8L~V( z(k=t)ApLQqxYgZby#2zi7eMRT`ewEeGRQ<@a&)!wD2c=Yq0*9OfqUh!W3ce;CE}<% ztQrDwYKCgqoSy_AB`j$Ejz+n_p@Dccgn^CD%-2l8AG0?`l)e_ZWks zwY2$H*~U$M?oH1v{~nzS4gQ`a=zSOm&ZzdPi`Snt)9RU-H<$k2CCn6vZ7iY?F8y&r zFf~mva}YN|fvAdzjtHTM(xPn)B<2BJ=P;TCX{A3g(_WOYl&(d5oq4ERs`yN2DX4#m z20PQ62yY1ViY3*iA@wi%3rWOXiISD5IAStOHH$Ro-8Y1olI-5~w$E}Y5+*H*7!&&w zS7Y(rwD(~D##;YKHa;g)5G#pijWS~I>UYZO8-4Q}oXXy=t#D?dA`QZd^NyEeZt5r- z4W9Cg9-|DM>a30BtbjuJ2Pr;S-fhTv56f1A2sDU0L}LSJRC3ze=Z~(>g;#PK>go@P zn&@|%MgW$TDhA##@7>F!*w816w}t=JsrJSr;;&~|?cZ4OscvZrS@psWfKFTQ$CjbR zPxlL4Ce894xbD%F%^fM*uYj11S_<9=u}etIT){Nd)DITRHr5cqnjj);YE*PN?$;Vo zm8lYLyU^F8;+&Ye1`KERad@dRpkKUA9*q~fK{@doxnwf?Q1<~$K~G?mjww$S(15DD zvv^#1DesrgAHFT=I~i{Da8j#K_cpV8fSNM z;&(u1{suSUoZCNOn{w-V=@2{V7Tn%;6Ds!srmJS%K1Vo$6EqKzNG1z8;REoydOzHJ zHAykJ|H$5+nv8&_IZzF*ByxD^_*v&oq*B=8RiT?IE*UFDs@)<~zwQk2AOaVx{q=6q z#0y1!EpZc|sOT}~^E12l@O|9qa`*<*W6O$`<|t6y~`vKTaZ^b|Uq8h;rg8e^B4 z@5f6;GHBVxHsM*#EQBzT+mRQU>omI(Kv` z`jTZPrS91R4qvH*3_hk?1r$DeTe1r6 zi8PSel62Qixof%bU&v{8J$Nx6ggr1?Dq&j-BGy(0BE_^H>>+@;sRmgNL+{d+DO}zWpEXV z(@Mcy>N{*WD;x`Zx1ifZ&`}d!0rh;w6fQu7ku`A}Hxp(Fkmw+h5KcB8_Vt;dA~Km< zYeoJ-kw=`FA?Ni`XJU9v1k4H|5%sS&_E#Ybjm-DK;uCynjdeMAdJ^kaw+Vp8Z%p26 zNr-UKi`cRfgVhS3#mUS@-_S>VXV;rWA;xX#EG zLjQw2(lqCr*X}5V2UIO^L>K(UA8+2LRan|bq-c~mL&T3jP+8v=CE=)ubdJP!ycAFE zU$%&7_S!<&fdZ>|0|*kO5j|3%!Q+cYh1RYA3%43P`d{qT#`6CU&}|WEI-mPqCA^2+ z8hr;bwnF`x?f6xKXuk-9mAs1BRiKbx&C&P&7u~#=tv9^U=&8j|@ec>=UwPLrDz|`F zoM0;(PT0^LU7rn(df|g7geMrixTIpY_J-~^bDz83*{Ep%iG+b;6k3K8maTT_a(Uit zl_i~fZKm~c;`kGea70QtA8t%>>{(=g@}J|{>3QIJo^Wv+Tk=q5%=6MZ#xtgX4Ps@q&VztJ3b&JBRzXs{Kd0;Lld zvMNyg2`MP_y(wz~3utyOylf8&)-UjXCK@Yp(mHSu(+`1Oks6br=%qib$A z$FAQzxjMbERyN`Rt}&oi0(~Le9#K&MZ<<(6&#+GSlfUG^__P8*f-Qa7y|i2uLcfr2k|;yJYC6Qqw9Ge)GE@@rsy5S zIzYJaX1-hKIZ+m@`N^OcXBYd~n_EiDngFdlXofc-fpy;_{E0B{Cfzc0e#cO@^0q91 zXtfA8$&sN+_V9WRwG+f?nJVlT2(XZt^v=h-EFEOX())d5z1C-y5)jG4iKojxFb^iW zfrP?BCen-{8X|Y}DRbM@~hY%KrYF0^k-vszUL z0QVdw9>&I)e4TRGx(pgyCL;I|j+-_8YrXvg;#nRvr0+yw>9Vo52rr4D7dL)=fF0c| z!^XdxLCb)-*;BJC3CDXr?kFF;ValIR+l#>N#Q=i`?>$grx>+g}by~-^u-I zqyBVBd(0gG>u?r5B|8D)SYGP{s+H|JroM{Fj>Ju%GOi!eGydGEzeLN03siSv8cpc$ z(xITAZ}x~yI%*4q69w_lOdX*#3|f(!cMze(h(i4DhMMWJmKO}GYuK-UyG>xc z_NR9C;R<1y3?vI;T0~U#9{Mty`%HOan=z3$?|<*@{v+=GKfKv=`Exkrw{e*+_j@mr zJ^%AWBU*~=Z7;z}BM^=w?iV_Dq*(@!#D}s!yIc5f%5e$Ce{MvB?B2i9r`y#(PB`@v zez8$d@$4aT^FOmW!YG-jV-<)NiYW0c7mR&;${ZA_8~mn-_HVE~9ekL z`(L!Ob;Uj(R&Ib9+osX_ELFOH{o3azh^fYx61O8x#UqS=BMC^I=!1Mg@PO&hMR#|- z`xnEvIri7Iyqgjei~KHmb4Zc^t_P5yhH{$!5CM`%5rD^XR%u_w#hts4DQ`ps%eYM$ z5!=zWt&4Zn*rZb%G`{Dr#4Iy!zs{X*j4}1RvDQ$EDzv7dff~H#U$FOGMLRNK;KLWh zpqSRJEBgOVM32>Ptr7q4NVJpu|8(?uv09ZO{aVV^KdX(8H$(oOz#&U#gPfH?pp}V% z4v|WRP9LT5Y869Q97@|K$7bCx zV`xkWB0?GpASC33h-r3H43?%rBq0~FcScPIZ8WF^;d6&bA(lI^*M*b;^6BI~EP+6r z6|4e+XtQe@f+c9E9@k6{r&F?JU3iPN&>dy{v=GaAo8*ik4d#L!cKN@0p4M9eH2x3! zV>dBD^&@J`vkH>;3#OmaIQAc53peYhsg#R2^U6b#Y0VjLNh0b`W8sdASHrS~t6oi$ z5kO9m?;EFw7F3*!Mqj`#FL3-y)Ss9iTtwvp&JCuR_@%h@uhI@;)gNyN<|z1>Kr<%h za@XIDT=8g~&T3`;_QAGFF#-p4?Iu`w5RD=VC_)qf2@sRpr=?T?E_ZMz(KIe{Qws2Sf`!%|5Mv{xKsW2aUUyXrAP=Rq9iM1C81+xMMfwy zt6`5yBqWZKlsz)CQbvVP*|M?{QuazRQZ%2}_jfs;OUb>F`Z=X^io{eHb) z1DB00iagBM2>vCGOjBPmN*|~=^W4~fqx=-2-%jv(WWvYYplgLgb)HgWg2~GuwFQ8HD zvC8Y#tD|Px$UkAr0|VXp_mbcM+LsPg9t${Z@ci?p-#;1oVcOf((-VR{L_p?1AL>xO z5MT<=kw6|{z2w_0TYRINsSrrRs@iOjg13gbH3+_-Dh31ujQG4D)Yk{kcBEU15y4Wm z7}j`fzsQqV8pDjCj&D+|#85GV*13e2Tmk1xGKe8JZrH1WIzw3Q23 zZbaUc`tF(8+1L13&}PFR!W~B%%y2Q=!A&^d_q+nRKx)*SnyeZE`f-F=Kuz* zq@*MjKkf3mQk!FG+0I~|eWdt=gqWy|K9^9ukQ{)37|aF1>3~NDNL6rg8u~)U8X|!} z^$KD}i%0JceBj={8M^{70UDZGL_=UJL0OK<4Ps3wk7d{OY{)Js)D5E=3agCV5GYyq}n z_@UVJV4(n!AhdRHK3XdO=`SP3TmKV!D(oRp*T7+OKC~d0*Pm2MDI3i&D8yF@jXk&y zSWcoGtrnLLV-qu9^Bz|Mxd^L~C|Yob6S{hkCImfU@GwE`B%6c_2vddWl_EUZyMy|q(ff)y%boJIdr`0ET~F&st52MuMiafMK$ z(~md*av~A~d#=MiA4d`~Eq^|=g(Vy>1ZCi~!VY(s(XgAvbG@@JAdIjxxQ7#_Ua)z% zo%g@63g~M(VnGs>O^WMJ<1oZI4gWK|;AxGu_UR!$r?JSNa=B(R)8p&+KH1tj!>T-~zAqgQysX=h?L6*YkQq#^RB5xhn z4wj%%UfIv>;|!z&_pq(7Qec~UMnYQTAStKyoH|@oIv>aVXI*Aee4Cs&~N!y=G+$_K#;C_g8h5a9jU=xT`JAGdaV{xN(;N;}I9Vs-hiUGXT^*JmtSafP{ z1y@1|_yi{xS4`9i99~3Ii5A1e#a`|O$mI}hfb~rxL013YS-YRM^4$l2Xd=3O$n$r$ z%vh&S-&wh2ZdelVj znT}8|EIV^z?e_H|2%XRX7OYG@X1z#B0PD{C3iKED)F8~^YP?%(BQvj^a6&{4Y(U7* zv+HnWWv#TG7-}hoPb;=LKHak9)|8%KZ!2=&-NoX9*9*0GcNLfXD7OyH+1)Kg_dSmH z8C3m@$GOp{ow+API8pbDk0RU)iOVO?8`=uI&7GwTtFy3xdGN_GL6#i7?XiryqOC`x zlgD&oBDx&p9}!D}xO7E1PPMld7aetrZLoa}del9E_s=<_k(V-aQ}xX5#hRyS_cwp$B$Gh@I{0%J8>13d^xWSVP3K0m~2e&|~N%W4~DXsa|XBM(H!^^I}g=dHkEDe9vqSvpr4ydm~R` zu4lKW3!cuaDR6tn!TrAGiXtR-?Cz!oCbLS08-s4{5%c=!*yI#^AWqvTx2+*p8sP#} z=2A8Q7kU}4{@Tx|WZaKZz!ZIC`Bb7SR0hbgn#=b)!L`Xl`^IR7C+PI^nGnO`v?T3{ z(?-M^HZM8MJw;C#UoH0b#HHI;4kkqPe!RWHtRfW!imJ8H6td2PFyRI(orWY5che_T zY)h41tin{#y3O~{fKwh+l^hh%3=3s3YFl2v3aRJ8Vxy}N+Kyf&{98Y+_&~GTR4e-y zr!&N5Tw~_dWa)RQ<&m;7b&u%=o7)@;_1HIl$Bpch`RT5A)2$xr<3H{ghVh2($h#>o ze~Df8otaX3;PGl7mz~tycoQU}YzNQKm z0jeX^m9TR^bs1>}5ZEz|FQ)825JYAUrX&lU@p%nrIFI7VjH3*bhAp%tzlQzR!KtZy zL_rQ~%%e(tFPTj9o}yC0vd2U2>gozc=emhl5+IUdhl9@yv&ZRIq}(3mn1i~y;6TMR z!M~=hD8J98H+88nF?dk=Wv%)ry=U~R5@_ETW=8?5B@mQK z9nw@WM;YsKRai$OUVdw7L}QH-VW?nExEFo|L@ z4_X@wcjkJQTZ9x3d|q3d_AFI6%eJZZ>C^q8_dHXtvl0U*H1+3Df)OAC-c^c8J+9uF z)Sdo-jy1QxAlHWH?+%q=*Px0*-t-y=qRK_B%SsJq9j+T3(}WWTp_A}as>yJrG7MeB z-5Gh)=%lS2&jyKyyll2biH9UwmkCFmF_P!}7GF2N?*jjJ=87kyx|vkhDcmKmeb-Q9 zIz8t#$^Ni#joiwma78OY_0H*)H6n!_w5yifM~y1g-B5RjAkLO>{CoIp%i8ElB1$6IE? zTScZlz$1Z`uSP^=kD{0H97{q?BpZlHa2E4Zz_{> z+H5lN4aOxw$sXRqYSR)4jsV zz86mJkB#32quO8k=ZBshpW^};fco`6U#n|w{>MZQh>O>*x?Vm(OG1f{5(!N`3Vlu< z9wG=9cBh0SNGbtpPQgnbHj=p&C=GUdijoxcdve}swr=G7k)2)7Dli?P!K(SOnA=Hf zI?pIiGvg~pH}*$L0o9HG#kv1`7>eE@Gi4Deti?NFTt&P+?o ze+n8cXO&V{Q{@$lsn;qh&X5$B5&5$5` z09xiTPbJb~{sa#AmOOk&kE#P2Vq|&ZvM%x2;ZV0+>{RA2!!QKSSA`aT*pO{8LBR3| zhNUis0o_N(2cF*bLiW1-HR`y^t{-p4Y|5O?HxdTyzduNh849E_x4W))UF!A^`dN9E z=W>rO{G(0t9D1||U+hVFh*QmX364HTehqZOyoca|woVn}$D<9FdUrfpCv#2s$UCO` zK$2%h5Dq<QCVdKAk{cQ@Or-L{12MDgwcG=FRpc?8o1?(g0a@S$yN;iM z6||zOiNGR=M&|kR&RE;GAGEd9V09GsX+4>-_k!*E??>eDwa+tw>CJDo@5MQ5O-F2? zCZWXul!R*w0D$>vVRixD928^Ev5XWtT4sn{PYEwh3Ndb9WTV4+0CDgN@a#+%D=OcjMEY zyaxk#KRwyeF4>yki`qv@6&9~ZM2*A@2F%!u4E}wC!)4BF&}tRxJqpNYWM(pH*0o6f zPb9JrUkjlq0r#rFmAgO^=A!V~2nGfJM{cFWJXJi;>Ct@i6xeWJErr@ zM8}Ac0|ENOCzlWw637L}Da22POv3zg_@VD6c5~#BkTgYos8~S*Re}Wt@fW~-Z)Uwq zJ`6|#QfVUb9W@WaAOMa5u*$oV9-y1gR@abGcFEwgf7j;icRji9ZP>sp_f)&8YvIm` zKkU|moCi9Ta;(Mf6OB~oG^CcHDB>y?iyLbtN;VB#kd&~!?>%$g=4~x?`gtZFUtbKJ zd2t{R*gF6(01YTE=42mM#qT2x>_lin(%F^Uo6g4GC`JaUcgB&wmfStkr*B_Z>wClc zB0Fqz@PO@$SC)Uoq348r2n>HbIYRISnG<1Y4MSHYK7`fmezk|`+qjnkkUoLZv7sR% zLen9}`Q`^afqni4<^m)msn@M-i>m$jHZNUo74g$z>K`L zL$rYkDNxumbJ3+vlK1ROJf14z*L>@r(Be_`kefp1{(k)Sm%QYzK+miHKVLJv8z}tW zidMJ2b$ab0`#Nv@{?N&Oe;1Yx*{(m@x-VKMRe`aBvq%lE0Mx?RBSdEnNV%Rl;K1g% z#V7mE-nj86dwOv_)=R_kwD!n6jbzMR`N`EgRquD771i9i=ei2`i0|JM1rHW8R)5xQ zc+7QrjulN@YSv8Zov)CtA@&4pmPsX67XOps3aI%)zz&cSAcK&xp=Oa$-mVzU=4G|> z&ri)+?K6y0RKF`t+v|El>y$>~p>Dmc2LUTg{Lx6`eRY$=@SOkjrueTaF#k61OJdm8 zz0%9Qh4NODwT=EP>I_)Fk1hG7+zWNhD;t-F2h}EE%dfx-c>*%Q{Lu5w0NBs_J!%df z?G=?&Wcnpuj*ySWv>Mjw5pR;;_`2vfKg#bC$l~ z2gi&L#1}}?2OghMIN=v!v2S&C73d~x=5!tc?P`9@7jeP=^X?AyrLDWjdZM9YRy(4%cz6Dj{W)rovb%3q>Ol-;LA>Y%ym?A&iW{?EH|tfM`DlAu95UeGFf zoasa-|K2P4?L42g2oV&+ME6yPe9Kc*mR+T(WpCE$7C4ao2cW3I(kODe=R&&@R|v-| z)H^6}5|*m~1LCKdm+Nih9}qgDC!wooH5iwhaVYhvjdVop#uPX8ACX;$ALtF11(_D~ z`G2{(w^wDf6592i9GQDzq48r43I>)2`5l|MDX3#nXFY+)3}rL=9n=o~!|Q7gLXSW4 z-;f@CAg5Su`r)S!>tn@~A zjy3X=q5?scA4_`8tT*zrdHa3dnfUU!(23!}>N{r7JJ?Pu^}TMeVLxGdtKgrfV=zPh zl3AWlJO@3$KldM*ZQx*Nk-e1CwIQb~IbD*m?K@qa z5StU)%2m#Bb114&)Hfh#YWEmGB=5MswGXhbSLoWmWGQ#<$pm$zt7v#T=ZDU-7&t&&L%`>_=0qt9PJZz! z4y)XuA9|;kHYKMGHRs6&9Jm!x@Ldc);+Q@zwTurAwav1THjCVpx`sJknJEJGX4>Eo zc6Ts$d;H_|OlD@@@m;)(okin2_^!R-7L$IS|AS8a)T_`*a@4lY+A+OD?X#G2;-(ae z&C?UEd-;P*DxUW`yic(USyW$qbleXO#9SY?WTbD4yUqXWcBvYRCxrADE<6_8+Z-|J zDmpA)<;7b3228qloC5894y#?&^~c7%ZavESxXJ7xp7EMrto6byl5i0Q1Nk(D(gc_6Zr`Z0!NnI#KlNP7Szc8|m^tu8`8<>kTEE_I z_qps;_Jb>B0!F?=z<~*-B)p3d#!%zJEPRNe-1?YRdhk!W9;cW|CVGkO`J--OVUjbc zQ#Oi;I-A(TGNNQEpBcMqRR6^+;%4jqI0iHsu%ombG3I4I!=r4ZHluR*lKSXnZbZ#& zJ@`67g0y^T>0>~Z-fh?g{5Ml>1d6xoQ&K0_4l2yAFs1YEn>;7G1L*|zkCY$xpW4nL z{4iqf{5A%U?1yb}WxsH`AbB>N^f=C6=e~B% zYo}9N|LrY3TTzlC9YZ@iYo)#}jcg-c<3Bo`Swe45!!009ro7_Kb@Ump++TFgxK(Je zv+i`$9;)A|qs;j&Ehml)kx4T0Km3%4PBQ=UUiLffAN~FAeeUpMWOu359r3Jeuq8%Y z7(HMJKwt)X53`5YR{S_`E2mXTj*T9z;isQtd&%9-*qR_reCDU(SUQIh#(zNy9L7OmJbEhqtJPRy&XJ4c#R70AztNZvYFb?2NGecjOG+_v3k zZ>~GuP;6yiFywMf9d0-zujHkZ7S5o!^_P0+z1eW-qKO&znBQ>>0`xI1LhFA5_igo6 zNa>C?J`_>1C88zsvrbzz;QQM1TLV`rt&D^E++29AmZmiIUKm4Z{S%*(Y3Iv47AItTM)r4l z%ER>$2Wr0`{)1Hp8`%0cCg{R47A1_eDc|=86go*&<8z3t5V+sk!hIg4s}#xQ8SfQ7 z8B3k7nGBr~!()s^`EjF(Tt7b$7kIeSYuw%484u`V0EwWMYijTsfvjuCu<1E)i zM5gy_bLy%86n@aiRD}DScJ8)YXppPtz$wWRXybKF%{|snvEHmwqW8-3(O!?sEnLDo z@}u~JkC3l=3Ngli9r0+qd-gQ9jlBJvO0U$QpS)p}i(+)-Lt9c}ISjNPz1-@{f1eE~ zBfKf#_ltoAkqQ!Z^~62;&O`~18-6k#%1$Pnp-$`dZ+OKO=*918yvPBPR2RP44nY$5 zTP2Cra7Rqs3c%--i1ei*mrEVGobol6G^O3_f8t<(39gBF!O<1T*Pri|NWQ;=(`s`K1Q3g{U7my!S(0r$*YXMk$m0oJu|Enu>9< zCv)hJ8^<#KCY#zCX=ZwtAS(l5iyiL&P4Z84gp%gU^wDd;JaF(H&wdXDc%k*aj5&bg zwQyM({U3qrAd<=Gv@X}e`sF}tzx#@9-wx5A%~|_-bcIFU_d~{~CmpdCJ(EVfds!AH zjRqef9IBA!$=WvyN&vyuiHd5DN&#q&7aCDQEyc3Y+W7cz%re6(@^0fA&x{6@KDCRB z@#VlUFw4$1dJTUQG#O&h*%18dT0|AvuN@ulCS=sn_k@N+RhV9@+Sk(nS2_~)d z+azfmdGip(f?_T@I@;gHEOSkI;6CGNs&Q@uk(K(i*3PqK%?$h#9kD{8@VRV=)HK~8 zGWoHY-(t>D^MdWY4Yus%8yL<#FQ!{Odc%FVY|Xu^ zvc>*RC*2$y^-SvM;GV?N^$+dS%-o;6l579E%-rvoT=FAk-Dq{4qyxAfd8}ug*Yh)U zQqbe_yL;sW;*MbW09yf~+I;kg2o@rY*uav;#Q4dTUp^>A(cTl37w9o?FyLPRn1o{E z-r+C6QqU3Do85CwZ*~?6k78``XUoy0|7{T>Vf4N_6L{I9AMWREkySx16Eu`DUe}LN&J_%5Dtlxb5g4=V~bcFPN9gGMg{u% zx2oPr3tyCtsGl^Z4v`X`^@mv=s0ZjT@O=X>#|T^Q^4b$@yuSiXm$Ii;h)hTfs~rw+ zn#(JVzo>gKS8vOgJ6DuQJoNjkxzV*3Rj?)e631_O~39jwzq-TY7lYlT!PsY*#+D zN9J^XsMn4w=R0mwc^>mmLfg7`*?65o&7I`9;x@23t<$u>EX8*ieYlkFc0f5(+A@NS zXZU`pJ$-fK+=InkkNe0?IK1r>6tX$JNDLW;t zbT-4!>F8lSer4}1@632_U+noWapi!>(0NHl&ave?+VRUuTMJ0((O1sbZ(Y2WlrI<0H?1dq;vCQQ%QME07ECum)}xJ!_3#_5}I^5CV3`+>n0n zF(Awm>-_9%57?L3dBllQb$)k$?9$k4VcE=Kgx?**v|`{O*)15xaR1tU+2^jjI^8MU zpZ&xVVGjp1jRh}c>`sUr;P=?EeAf}|BfR*pGfg|UT`STDNr^FmTgs&1&yGJNPf^xc z_F0+B%2P?(E#RlTTmNvUV`;aeNL|+7+%cP{=XtijU@OQFOa7KrtAajn(qsK5^N`Fn zaP|nt%fZ1X_)-X!x`H&})`VF#!Bc=}j|xl;Yz9=D7?(lHdsIV1!|I^5bwUli&81R| z^RI_Hv;>NrYCiZFLs-lRmG*58b^pI1mxO(xg2gvJ`xWqExn?Izx<7aO?|$uvspY4y zk6l~b^V-CUOL81 zFB`xt-kW!GeAa!z&B}RFth{bhdh}?92Q74rQV~JVA3pf&1B6duk6;BDjz{;hUxNc# z|L0JUk%l>QKhQibXsDYd%_W-&G{tY1$Zk_o*nEryOeWC@(DEE+88VCYe<*h@R2dgC z-csR}z)THuc!*LSi`F+NI*NxG8VEB4+QmGa1Azg9CdOY@S|NFTXUgPc8LIPq(pzq& zg?|lnzMU6&y-U5YI3WF4JkO4}mdOm$%zp0TnEV{d%+>!$#=CyS&$_k9-#&R=*y(Li za*-zvzRDvOXZn`Z#(Qqe?z#9qB9J@Ow(ptl@5`5iO?GB>rpvBOeL8kyK%H8fVbqf* zd!VO!98?*dl8>+J2C7Pqtlswot8#W0WD0^;1`00f4m7F=HNd=*SQEZqtuc1R2p8jQ zu0QTChNV_IP!_q#j)P6<(Uxa>^(T*#TNB%r8Gopq=TFZTYW$*x7 ziBfFeF4NCSd4ooknJsQ~( zfr88<)#+7FXyzuf?3m#7Shv#QEmw7UpD1w@xX+s9tJT^KTvnYtbU01aU;E(BWUpHW zH%k;^XmW@4EQPAuO}=jG)efmWU`g+}M>J?ZUFzl6$0}%*Q`c4n9;!L`Y*ebR?X)YC zAMGf8BfB`gDB1BTJg^{1@bB}=3L{t5Jo78$v|9)HK65E~9zPe-@R&+oysC}VC9Dk=XeO#BLDba4lkrS&|hjQkwDgOhTh=$`QYkD_lT%J}P$sX&z&4wvBt;_Zf-SlhN80mvVT%3vvgR*z(|tN>gBoGrtPMyD~9(>P{(ZU7M&EloQ6Fs7Klj>4-3LqtUm6TAUTwp zuPZ%0o!(-fU-0NylCkyu$kfL!9dcT#w>+nxffh+*YN2rr8u)e3Ou|BA##?ox{05K= zx@W(Y6rF4R#N|cRJW};6wsL6nMRc~D9(iQLDJSZ8(LHlPJbZ)e%gA@S-#ka{n*Q0pkR>Py+H6p_AtZ_~!c?IsY+SkS=&uV|c4H0b=xMLE`?)U~pStS52g{+oC>+GAg1apE%ctNvKocHFxAn%M!{!h4EG$_imK ztc1`$jHmJKAf2YQ;kJw1BGqG-Zt{{R^=2xgB+||Mb3U6}H3aCxd&=3xcAYYa+>lS! zksV9{KQY!YR+zLD~GX+lxLrieaWf`5S{=mh%EHq!n)Yq|SlT1&~^>pswy> z@)qh{=1L~NG8Oig#V;{4UU)X#oHshUJDp?9CO&+Pxk`j-bb3=?QiR1e3;*Ar=G#Zup60O|ImyocnbbL*-xt6 zzHWI`iv>vvzzw&HTN6o*|ABwhK^0GfU5CoUqN5*QmnJBZ0{VThf#qSbgI)rK9fn$W z{sLnv31^N_@7q+Fuu`XX$he-eArX<*%uE!a3%t)>crEToJb!VJt9!(Rp5u#$)AR$q z`3c=v6$9@Fvse5rQ@?tc?hZAnH$SpQxcyV_>03Vz zjZaS|IlO7J=tSL#Q)(sI^yd(8TS7~4?zo!G;f`+4vynW)e>rFKf_}QY*q;!&c>K?N z?zzno-~HE&9b%ysfP?{G1);1WKm{H3!OvMk?sp!mzG6lT_RI;j_D}qQ&bKe zT+Pc!N)_8+*e3mcd+9G}h9673T+F%IIfky5+-vHsuC0r1iVx!DSKD|68LGLyoTqAY zRc^cGT&Nt?IB8q-vdh!>Or$6zKcn%(6LeN=f0a^A1~jMhqW7HN+3|bn$7ou3 zT6nTow`lB2mcq)1Ekg7+rD*g1XoDySF83C?zL;s(a1n#kMTPWEhSL!{62iaW&O@>0 zwjaE3Lj<@?8oF3(xm!K3Ogf%U{#YK6$?Bk49oU@IZzjLUD|j{wc+Z3&*=N*-YA_@B zh3$hY>tb(+^$G>bjNf(Ar9>{)a7#3`oxt#s(kfDxd5X>lr~XD#JKu$x!d{f#3TB9-5P!{E{? zk#GbP+SdI|&bZG=l3|Vip4`v-g5B&eAOQE}-8-S3rD&WYq}zX3UeM5@v!p?2p?!#r z!glA>89wm$y=}}%cY;MYBB7AFlTyiEHZNkM&i3n1Ac)}^C;|hDa00R_@#$MN7?Zqv zpD@(Sa2q!KmIP64h>Nu$w^%8+OnLjJtu&gk;>=b5V>j*|$xwPKb{AX677eE82@lGK z@*>^pN;3w5`m}y0je=`JMhu%>+HAoupb(@cAo19!-VRJ_8*V)Rm|jdC=g#e17{7JGV`DKpyMsZbm&dyh4lM`^zykbrLa_$TLfz>*N3kb-JzYAW4corL&g0|@}WEkuCeC@gdL zBp#b**+Rk)6eiG8D(rou3QruV&wGn5_bMG)&FZ6tFlt1J4ukuUR{zgD9q5);t_X4b7VwiN+eqtsbLL6@tWUdr zD!PqwnbzP=3f#zNvDG;7Vk#G`G@T)Ve;m*L`ZIMA4(O6G~fVlt&6V z&+eY(5p2njD2TB;_k3u2+ewpSV-vJ1lqC-xLoiTUaJzCcJt!#933wyagD+cCoz*g|^^VbaX4LG@tGu{h)hb^8-nd!b*VkO?UsV1Zu8!$ z!FU1MAoNzq76F37z7yfz=mz;@6fD?39u+w0}qE45F> z%ND!j*MyiznEw#gDA;p^cMq;%#4Nm%+}$PBE?@r^tp;jp{0YmAKxBG?2C;#JA+uac zhd;loz}b@yAJ;ZNr*OMxNajS_aQoJ8T^4orxQ!Vxj?$j!XN@Ogq5i zPz7pmH;X%IDx^4JyjSy|Ej#stm&50u8?WjgKmMrEw8}Qa`gFSTuWLNEeUc_>u2n)z zzKN8Nw>YSfYsq_}Ip{NKZxxM7*nz#7ns$>%6;D`Gz2Dobc2%5qft9WNjHN64w90{# zU1AQ#Omm;~o`R%;hSkR`b1d&%3A# z!-D*tlUzpCJ7tpEfm$|ZsD%?ebsW<8o1|B;upkUVup&_EO{}c@Kd@!sIw`Vkz{#h2 z1U)Iq(fk;)6H`oWuiYS#=6H8!?qm^YcM`b$?BWwPbj!202MHoLOQKk!ZDSur02<$nEfuE(HEPva}&bamVEy-K~fZS8=;%%G4pl zZ`5M7G_QkgQ(Eajp?#y1n?|M~aSowyEqw9(|5CSezgF^Lot=?t=a2*ApnJ=M)tib% z$u_1>(_Chv7>i7rPSSm9d)sJyT*Qf8Qc5JhrL#cx>YepmOCx^+*w4c@IZ{FL=4_aayMY=_EYA9)ElrNL^Bs)n=kl{c2USZohP56Up{|ir%!+@hF9GZpxLK z_}Cd3)$c-XBVEnO0)FUb?zhTVT0S-g`HqxpNAj;0vUsU0bi!&k%cnNZzP_L<`gh?NhZLVkBtelj)ywp9fWh$Hu&&8`}A~(QLy4?F+FDXCMQfcxBMJhv8*m z&bVqMX3vC36~a+g)tg(XI6rD~GuAo1BCXPiQJgM&_|5Q8eDc0=hMx1wwto;8%Ia;g zSs@&;&b+xvtQ~wbjr+P7gN1zK60(k|g?~9ok1GJa|EZ?64L6)eq6;fkJYVExn6f-Q zx%2Ecx&5ko#?VH^eI0%y=Q+g`G~o3c9%k(?KC-{rFf}EYYWBMH%UbzZbb;aCsQ$xQ z{ZzSj&&&UC%eP#fFZdB%Sv=_}`!cPZL+{Fw1tko608sAcyLEbb)%s8eo53gJyR~B1 zC*>p~2PTcEP+jGzDd^Dp>h=a_F39>RC578Yd9fxVq2~t;v-O*w8Pf&F{`6Yiw!Uae zf0>C!B6*%W!`x|jZ=vg5?MKB@xK8kL{Ua&Oxivx^A$d`aGC5^AG4{dr{p1PSvkVcl z@_EuNL@B zJ-tbIsY^1-&}uv~xY3T#`;xW1Et#!N`;K(DO6Mhg%vK%Nj1{0);b@ZfcoJ26g*=`r zyg~GNz-6Kn;V{hi(vi{RcD{9Q?u#q~-IAxlr=2&ycn(%1^kjE&UQW+r%>BvvFnT@c zLe?##&dt63nZlB&$JXhr9NFp@}sTV z26bmyk3s1~y9$<^%2%>%9Qh+rbVxJ`c{Lv$rdT(aT0rmp@coR1xXj(A*R5xqrnJ=T zI1h9d2jYE_Gjd{rNvv`9kS;eQmaaEaOewn_|~JqyAp_ zE_a|3LkCl)Acrx%CoZ!wlEKVtN`xf8zFQC}!aPH(rZb|*?*&hxmC8(SoBHl*G;*S5==(a?+eNXSW zrWhAXZr^r@vHt*v(&`=M$c642DJMbdiAn0*ob9WkM*AD`ZK}vNis{OV*Uu*8KC*kiYW3WX+_3wss{MqWlbK0b)JpG-Vo0ZYLKY;gCM3)EZI^u0JU%@!JvCc4aU*6$ol)%T(}!G< zeZkyPld~NvHV>bJA*_U^JEAEi-O>LY39ARnGZMKDoBioyO_H6c`uWS?hR`* z(+!OB8Tsiiy8huibzfC>{+8M+axFZdETl?dqKjmKYj%D4hE$eVcuhUJy~pVC%cj{rL5i$Q~#jb6VeaE&PI?ybr@TRU`j%9lF!@ z6>>_D_kaBXz6jhM#QsH|yLgdoxb5mn*j*C0g0ffC^~n#ThUSa`QJ-CJ%%(?)dZb1r z9&r`j=|%Yy__FF9FejI{etY8-8|KL2pAMEqJdnTUd)v3d63tfPzIS+J?s#PO>@FEi z1$`p0xhBd*m=9$fsPIQr6N(HUO(pa5(&Mp){yfFVxGT zG+0O8QU7ehnrl+%e0in=t!?Vex^ZHfVzcT-Tr)tukSmaBCR$W$^8P)6`YZ7@0SSWl z1%~e*&Oa~P*?EsyPQ~p#P~qhUS|Sn^E4QRt3h6u_-Z^hHDM* z7V&+d0hy@mUON7lh{BClsMxISt<7lk))Woq$+wa&htgH8ZtRGt2VG4sMIn@sHpFNW zHP2w<{wU~Tcm7=rCzvC&)I>%C)OE-9^LnADD6@*mZKHuB#| z9c|9wL-kp|fyggL;HUltpk zN|=7diu!kC1_O}5u(dk|w-Ldd`d@qz1u-DvFT&&SfWmHi3vVcAmpvmn+o_ZBT}A*O zZ`SOKM55s=1EJ)MyRJ3EMTS(E_{Xlx%(w0TWp`Mp{{PPF82LwKb}8!;iIvlagnzV- M>8Tf~p1Jma03d071poj5 diff --git a/master/.doctrees/nbsphinx/tutorials_image_44_0.png b/master/.doctrees/nbsphinx/tutorials_image_44_0.png index 785e7b6fae9d5fe3164e985d19f3c5a2cac19c7e..f6f4ffd2fa044c83848b141967a02472b77fd46d 100644 GIT binary patch literal 111955 zcmbTebzIcj8#Owhq9TYQA|;@7N=cWZw19Lsh;(*pLiXN2$U+53t0thKg53UU&-*d*8p1Oit|@`WM-fzg3LVA|clf>#*i zr1s%AKF62pj!HJBjxGlFCWu!Cj<%LIj+So?DVd7zl*ai)YHNNgL;GAz5l(v|%D! z(}#6`vufODr*t+eihGbmrT-b@+tP|rN`JmF|N2H+5W!uAclahpw2{bX$41R&@mB-r zuVCYFVzb@EZ+b|nzc4+r>AWT5w7EWgcyK6jo}!fMu~s*tviYZC{lqI%QDxd=cBy_P zsc+Xa)~HOgfRI_eNWbabwOge69(6X2@E`DsYeuso@_&Ew{JOgI;QwA-MaW2L{_mR~ z>N7~8zp+R^{R%V9TlCKpGCTTaQM3Gen*Z&h=*)jlD(c6GMV9@01491a-xxY}cI+1I z`GyY3U4LVoZ3l`>?N-Ic#`cen2DVf9)NUS#oDYe#&eVAnyKL!t{w+;aDZE?|xu6Q8 z5D9}HCF8TdntHzRrm5|@&)+vb0r1knJ#7DNkA_1Jgs*97(Clg5Y)d4SgzedpUF}}- z){l`qwaUZRf6ID4ie5la(9Nswn*{8?&0cKIwmms(eo|KV*XHuC%~7Dw(e)%D55kqc z)b_*rL!q-hkxNd*@98aX9$H%3;l9I$OE1rLtyxUO{}v{4x>0J&pL|rVcls33=u*G; zQ1D<_iPvEnr#D6Dqf6bo&QXiVS&P8#!+(3++}om~gbXmCOqRQXNbx>-8xkJAFjj1I z^ix9koqJvV(w^sWmtNc07}3m5m`hpRMW~JEm4+SC28@PTyvoVYaPR$$e``dDvJrjg zsrWn6xx~R3gN@TNX8Xs+Yh8i*cz24j$fY?`Y+}6VUOk zA&<&e%{%H36#mfXbFs(k@`ud(K+Wg=o8F|?TRuA<^?p!X?ocF>dn~l!dZPa~^?W?l z%GJi)9J|JOQ}J?ZrjAreNonmeJJp-yaN32!-NR#N%qV>B3dK=lfWyBJU~~SJ~&aU-@Who`wE39Goe!9`T6Xn5V^+&`-{hS5sfw%%Qo|MTV7k6-mm`m zSzGKzg*wCnZ>Q@PE?gHm!a)4)piBKxZZT@@rp-&%wzkGdOGn4f#}|Y?6xS_}*^jVY zR}jKSO?dM@=Y^O4&(nRSv))}Ei(JwPpUvT2QQy-|?4dA0%x5C5(0|5Q-EuSoBr54Z1ps?WgE5+_?Oxw#{XZU;VF_S(4w zg_m-9#3bXzpRJ4AbGAea3k$q<^H=I(s@3DDOFc z@4MXsmagZ{OZ35yTmF5TdYZiDNeB6EyWCBD)-!wdN{c)1f2*_=_?|7j`{ZK&$@Y(X z@?}q%!dnfGx*E>91l*Gy`9saPaxX52vxWW9I|&Q;7bx1*j#71pn>IeAfp`>cuoc@0 zeV$lBFEFE`qFna9|KGy!Lr4Yrq;4Od+~ZgxnK?Y~?JMXS(dc*OXi4wF z zhpt2Q7YBtI+N`t17XN$HpH|qE)QkP>ol2k6$|EQddAfP3d6N@*_Dt~!2~9CfYPP={ zF^oBgd6VUEaB$K_%;#?D9lbl5YQYl;DSgwIOSGicaH29&Ir6{u^*y`BH;LB{bN2j? z%Z`N4zQoZFI$^(*6mt0av)-+<+qcPh(}WMU0%KtN9w)0MR`;%+w)z0{|wPsS%1KC)^Me~baCxJsWn^J z^eZO^CMQ3tGY5!L`VI`dhPQOB)BVt5FlNaOt(xHDOJ1_uP}p1r$$u=^g@lAOZaUlW zruLYMWekWGsKVFA&Q5IDr~xyseoO8F^KwY{xxHg}?wozqZ|53=(sB4Y=g9w>F{Y@b z)6#-O!r5C_F>R}~iHL|A2Qnn) z4o_hXzYp9o5KyEFRAtV&5?^)q_8LMf%Tl}v9Yiuq5%H_Ni4AAW(t^7oNxtyDfK$@e zh$eT9HRYW~z!3egE7LVD3r*K4UZ6X!>3ahrHXL->gBAKe$6#V&q9?%S^*Z4~=ShZQ zPMMHP7}H8ia$7-f)e?Thq}OUvEoxsVnCDr9rEz&=jZ3!r{{njwp|6` ziLjm}dt!Jf{1H4|x9~x_!VTw|hdrkEdQ6psTv=r=;1me3uhF==J<yP zlF|k(M1eIfQZD;7J%K{uXiRfbYHE8=A`eg5NGaj3fqI$z9x>0cV~FdbC;a$THSecsDQw5#S;E#ZJJz2K-t`rvMI?5wb)}J+*$r4c z?CTAz_wco7a?_Ug*Tz0{Blo&6)6$%1>QFV^_u{tc3Zhwx&-jzu;N4#{6ONQS)~YsD zE43f%=9`4E7jbiYd3mj(P|xTInxP8z&(0RkSa2u8{{39pLm+CVzY&6hSxqhFzwHck0Yoaa~!_Z+OW9CO54U zSIaeV58UglK98C|g)}wElHU3@VqVT7*f1MjUoT8!nR69Y_jAF`8<3POFAnSoV8^jd zXZT)Od3hrzr~7aO9me=E(%0mL4hWW4R<>NX#;qmtMkcnqwOJpuwY9;b!xiX1q^CcE ziU9yiId6npj483l(AxTTtKnU>Z`#jjqn>39xF*;4B$5uU)0rJf7S3(YwYV-uO8nk& zjb=vIt?|+~Bd)zYJ?R5xUk{|jCYJ2ypumq++N5%%OGhwC z<(dT*ZpBLXXGrhv|M7LI65!?zxJM^PNglp1oTG%UrFY!^beSJ%*J+TZ8;lAS$i zd^Xn-xU+RJ-5>_Lif)5S*>VOZCfD>%Cq|=@o^|b;DUMT*TJdjOy%Q>a_hajwkFC+W z_Pk`vSd36?_edAaQS8#e{eJxn%zp)*d4bnFB!#|HLYIBxjBQYm>5qRc8>+oVZOAqGoH{@=g3#Ra45-(7beuO0B0j57nyx340DF-ajuIihbRhAle(HFu(a%UmNozPPqF z-|SeF5)t119*x%hdrVt~hoiAWnORvML%BRf>K4?h-I{zq&WUpsb9HkQwgz1w?be1F z7WdrFRwYE5r>4kM)zr`c6l$|2cg@`R6K3Y$`=}vEde`56*SCMa$7_aSaCvbK0J7(Yv*A&6@{C>hzKX~b!;E=5{$!{aX62f&Q)XNw z((1dF%I~VPHK0_@!@)CpGZ-Ov>xmCPza)i|W{g1~pca;EzGAUvb+l-j7T$0cfOFc8 zt*pHkV34NH{8=^6z}cA)J+5>R^Z(tN4Tl0vMS$J3vX@?1h?gKMPGhd|y=HZB>57FB zNqGC+Q1N1)OYfJ(!k1@z@$vDZtZ^-&q&ySzKa+nc)aj~O@Im@QN07@_y1CR6h_^5x zLGki&WFsW$fF(E7Rh6WPjryAw)7BIme8F}`g`*!YF1(=`ZcJ9-@k`Y zg7jg-5qssy$fBQtjKT9A&hy5t&%V54&mI-~REDcR{L#x>qHgSspAdj6;QJB2P=p|u z42!=Sz9Hm(PNCJ7Rjd2NQ#keWSo~6~EG>@$vwetk7CzyF2ar5ac$5_%RPtr)&=B8r z^SU(|sIl?7{s9iw-5Xbb?;Q_U+i)kwr=$cx*fcj|awLRsd~mEV%QF&tKWbe`6(c>@ z7E1clm;=I_F}<*%fr2~n70qG1)oOjRg{E1cr!{mdAt9mvS`87tOG_p(rFMDjv6e3Y z8o*Z1&wsWzY@TB~^KP*J@JH2oy}(u?Ci4svnj(xEjey@HC8^nXd2c}MnwJNA3eOT= zUg`f!X_mF^!^ql3cf3t=U~a0heTKul_tgFKnchspv~?g{tPc{m_rK9{|LG#owKy(1~YK&{-8{Ja=WZpYR3 zXxjkIC?xT&1oJ=ui9pF+dtHq&$yAgbg%GZuu!NLLB)5qD;(x)f_>$!S z8qZD6UQ~3NcdzV0R5N}l)azn)G^mgxZtq;#i%(2^-@ee)^!~ct{_1N0Q2?1BbPXYH z!xEx4&kM+nI9cGqAI}3n?aAQ)`k>EILUP zajn*EkJfuPDwUD|8{JM|&VMGH8VDbKGga~Z$YifFiP#_-Gmh86u)%Bj4 zW<0E?)>5c-mf0x!IU7l+p|SA`;?j_Nx((hBQI6G{wf4B3>xsqurVV)`jKDlWh(gtY z`5(>xD9~rFr6mye;o~Q#BUj3nfBZ@pVS;q?^TPntsa@lYd+XLMbzNQ6gKkCVbq+OJ zoeE7BfTwU6>DsIds{_Z2+TWACU27o$8XFO4UTW#pxBPtdTenH?lZJ*sp9ycz zz!zAxLKoDyuAJ{z!sl$J-Dy7c&_cY~{+Z$fWc(uIH83q1BjyY=9SeGe*ZzvP7o-G{ zdvM{1nK&ID9H2*52s6kOG~gOtm!ysAj550M`JRK(a>v@?7azG)EjR}U2M5Ik$tVSKf-1E5Vp z@?4Ny!p7#w^Yl9a+?JP@w>L`ra;b6o#2c4?Q89cvK6d+I$bL4}cTRSjLO4V-bf-kf|!Iucs!c zW-vDF*1H`6tjVRtOtvXmUnj+%Cz#wGdX>Ba=T^=_ZfB;$ccNad9aQIzdT?Sd%0(&j zFk|}pc1mXLG6I?*z|Pf{cyr(S+Aj(BI^CtE?RJ!-Gc$2XQGi_Egyne=H+=NGUbUpd zOc7$A?j`%fH7105hJM~iF5@U8;YaCOUoK<}`gKx@=R%Y{Q zq=Tk=VH|!^9?=cjeTbPc=|N^%Gc+J3yu;azuvCaR(;DRCxM;FKB|jwMj6QrUBrG-S zTrHt%F{+a%0#uW@O6|y4N?NJW-t;F{Zv!dai zDDpV89udxm1l?Wg`tE(sFP(+Vc~=`%c4)c+M~Z$0*+KnzfL<|&;9V0Xux&dz@?O}- zp5)o`scq1OV-(`v#jR8p-9E1Z&<&LUookQp4zC|n4Dxb&vk9n%-%Rwv^407DkZELO z1cwMC!;g&(%gNf>2kWkrDVcvBuj?NY{GG`kF}DhSshBwEpkJ$4|D-8MHrF3hQT}lR zUT?QMiXd)S=(TqWwub3phkG|5aOg*XGS5#BZ4T_5pE_0(s5708m0LUrBjbB_>jA4i zgeFvJl;cUo2mJPH>Zzom;$k!wQ0po2gVF}f^xfPv7^L2cYBby8Cbl{sRnKlo0I&dN zd*|Y?f#Pu1N5p&kJ;iS(y<==bLPFbxwoqJ__Wix7oRzw9H}i6mFJHc}J$(vuTbO1+ z0JM9(BY(Zd!i%-S+$ldu#WZbJCO_-fg~{ohmM}8{poo;bnyw&upu`&2B~3nqoovj$ z5~SVL($bQf_v`G;Q>($c^R$LfcQQgu4W#=}SoIMr@%`4x4P)RGWlGd*~8oloXV zpzh|z1~X6~Y0-vUBq~`F$zhfHx0lJF8bCiYG5(3q#K|q`^R4=G^p;XK!eWEkBHamZ zUpHhVHio*u>F>&d^+W4QQkd9)%!Tm}y{9uk?oi8Pb`ga7QidVyo4zXD|;vi@E+%zUWA$ayc=iukTdi$HW<$W$=z?js%9_# zR>COEE+P`%754Ak`t^kVguWKFL*30q!RXcpkBR9{9>Hw^h}7E%Q)mgpLqdAHC2k8$P%pVitR`ndinWED4>V~#ORFmG%QMC()<_f? zR2wrhTT*Pq3Gnj%*V_708@fD?^^_B;$ptzPGez zYH+0UuO#jci!AII#4EkFw&QvS+yA$H6|hvVNRR4?A2C$g@`eDQANdjzBv-h^Cq?y= zHP?|Jw?*AT7B9_;iMy1a=~g1Tn4SLJd=D86kmBr25V)?9nOy!`qAis}4&DVua#M^= zZQY`#qs*o&Z3}il)Ids=^W@Zz+wd6H5M(6;_Ph{J7@t6mZ6?iHPHi}QXf0Q#xK@t* zc&OuMvqEgCA+?L;;qGp`{refTF`V1CA4f`ljlWmXHl1Ov zB;&Oe9ciPD>KLu{2>vs2#lmrYe*WMat3^mz8DWf8)Jf60qq!-!<7((EFCVa?B;6PFzAE;R%pQ+Rnk(3&PFr{LhF%m$CmW7RM%R~d zX5}}!FX;?yn#e3gema?m7tGw$pzo?M7C+rgx^!-LfjHBd;Y`5sJ{d}Fp0fqsv3X_B z0BA6fWlq^RI0m`x9^RH94bOk@uB2Yvexk80ezxFiV!>J6!_{wmMJfAD@64S)Rym^Z zVRzAR14u{bP~?X3L+iiw-MX=bBkN9(!R2(nJ3E8TwVZ0$JbIHPWMpJqQCV?!f?gDr zmBDm}SvgtY{9v5b`sLQ9vE|?Cu~+`M+4q930%n#=;`Mu;o@V}doF!;3#=a^ahajP_ zv0TnwX&G7TqOQ5mjEQj54wu&j|sw@ zO6n+R1mCzmb34ddKh5q@Cv|rLh$=~q|6lt8OzoXS%WwF;4Mu=?(`{$C5k+cKinnFD zNZC@B>tfToRq@@1K32wqD#jwn|ldFf+|oujLPOVf(@}pf;ex zvU78PiT4G55>y#~|7)$E`#s)B-OyWkQ##I^JCeJ$*{R7J@VXn{n|^pquGh4*Y5gE~ zY`(u=AyMt8I6k`kpPmC(`MQ&fJp799!~}HIN95so8)w#s)IA|n1@toKLV%|A+5UqD z3MdG=vuWwg@OC5j5Mv4_H*;t2V~v2tu?c(5c$!;Qw0RZ5EKE|?6f_>|9j1sF>6cE0 zX_O{xvm4?zqfg^HotehEsn)2s4_b5OSv3nr%++vjic;m* zxZZmgXbo&~xvn2nBg;ikY40aCh4|M##6ymiAT#6Cq1B4#dN=4DSj*Bz0q3AfYwv3dj{)KWhbaW(`vsGu9eW2?)_cRb= z=4V9UVRl2tvbB13f9R&^4C8}oQ{7DBO{(xW^UupQ zRjzf|{3VeJ0>w#FYWlm~m9DNXEo-%MV)`34<=@AP04=s`IvXASnTA;k#BEv_yfO5} z@O}NCDj+zlR~-2#k(^_#l80=>qZvqG!8HV=80fQ*nHmq?mw|B)J{0*)430Y-q2jn zm(5ZHs)3tDevObQAboWQNQjN;ng?Kkcn%B0X)#+*X<>hJmoFxI>in6Ftrby#Id@}m znI&r|oJ9He_yDta@>4Drds*Ecu)ff}#*&+#4zqG9Ah!9pH? zzp_Q1g?XCV@7>Vf)F`I9E5gaemB}q;im5_*N7Tnh1USywSdYh(T~0_0?RByRs5L-J z|4REju06SU0rn9f&q;GxT!nO_y5H}As`|Blzz?It@Jvi)b8O5aFdD$L028QE@f)pN z&x26|0g&4l?KA*Fw6WgnlucOp8;Lj6RG6@qtUCCm_;&c%OoJovjF^V=e{A015;|fs zG8;6w z=U(^ilLO48fU-bIBxN1??@R6V{)+3=iChr|(Uhc!d>fbLy<;{o!2rosy$OmFOo{(& zMKCx?&wOTQ4t+wqRm|fEHWW}9mr)El!#yZinTWXl}k&^oQ z`UoJ3V242Qd7aE$t6MmsuYpa;$?BemZCaYPXOWJ_Z}P%PvDqHOCBvnu*#Zcx>L^ei zR5&GQ7&z~_k!i&j<36+)9CJ)kr9s@MFzk~*meuG@=e%7@?ytv2q%4hevh6lC=JkCZ zmF$WDt*K@G05EA-gOZXvMp{M3;+i++Lv$28XgdKfhi* zJRPa3#tkU`#ZpjN`2e`(yu3WpRT)NdeVuRo5S}<}@8iX9kKP}(p(jwp4mV<6Z%@$9 zDs?1#5PQrv7wiy_x_9guOn!LmX;oImh2;GPj~FpmIS2`BH3UqcB&9I$;B;k_WwOlUFL(ZYrUO(j1+zmW}R|KMN_R0WlHAEgx! z?_}afcQ*kKrK+krF&_d0GRVRRpzakdL!$bt7n=>V$wU*`$cTwwC&cqllVJN#4EA~n zQ-BDBwxn!Ml#g0z{~-jn4LB1}M$nl1gI2M+vZ`yA;_IL%TmkB*V`f~+ZB+fbi}Exb zigy?bq_YOOvyE#L$ZJCQFxSPIaOtu2-3#^~V|=A%|7M~Q$l|~_CfNuA3XuCi%!4oE z@Xy>V6_^ju!lBTZwuND86 zaHlLZvoCtb>?>4xzi*-p2ngsmFXyIqky;x87!CO8&Lb1tb@w4u*`S(MQ$;jjLn2aA zrQ%>1qQ}QI&^*$|SZNwGAmsHgT3pNy6@dB46Q+sCg&wI_{t{gg3D$rWq>uVNqN24y zAjEv7Sva+M0l?Cna~9AcP=REEu6Mw$AO*C~{`aRgD zk^Dv*0Lvg7+YZ)8YplCb=Xkid>A)5^*XS^aS6D2>sx#l6i+5mAltN*9hvm#Vuq}oBCi&3Xxa{PaDBYB&M?FAO_oZkjhe=y5&6hX z_pMOL!bi{_lyUA8^;wv5br>^gP|)QVXqKBY2jpL&?aADFGs=>N1TjMTyQE*sF(s$Y z0q^6>SZQQ?NkxfnVP%ZF~?7(e%8v-`&djd*vO7dd|UhZAq9OMV*h&&B2y6Hw2166<)MDT z7WD4--lCgW`W@gyCo7af`c}lC)Ztz+uJRKmSGKR-r8S;t$n@Piu9a5aIX#D7E&bX# zk?w8fBs&+^htoeb@>U9s@mxk?+>0Tve4o!fzvZEUH1d6~r!8jAti;njXh zc_Y!a-TuH9<()zB< zTF2e$R?K)Nm7BUUK31iNJ-z91Uw+=E;(s;D5}~SDtp0*KQRSYNDY@d$f%VUbm}1(h zZK6@+tv*@$*Ef}pI(k&IR2W?1BbCFrJ{!Mx;(L>+u;LP1=OBO_oN zsWlyplI=$nJsN1Se8`FVh;#4$J=D{%#EpYoI@7y@>(LwU2tHI-J`vKTrRvzi%sLkoEKyIZC?&|SE0eGeg3R;>h{QpnLS`mpzv21P)uqWbV=`?9IQhY5|NR;sM1y? z)|cH9cHO1~1{auZu#t?|@o$cp7noE^$tz~-I8KF`y!rCtAdtRJUFYrYQ_YIqr=}xL zTBz$qDJUYaVuXrM;!sNIZM(gu9GH*N_}o}UYp@JM1&Rb(EZ=&*7Fzmy(vhWEp?h ztHIqEJHFrToB2Bqi`b7gsE8ta2-SP;fhg!m1C*ChmU9WI)A1^_Ao}jY9 z_63y8du`V2`VcTffKEj2wf}l!wt?bF!x@KMs&D}<6nt^R+SQ zZqWzcrmBnvU+A+As1I2do*QyV@>ma=6ItZU!`guOvnuSmDJR(%*@JcDW?1^>g}?Mi zfbG^l-50ACf2p}oRCWhPH&Bvcy1YCGRdg%i%&c)Gz8p8z3y0QeX*#Hhg)?A=1eYv0 zlX7)bBuhC52H9}R>oc3Lq%B`fB}Pqv`4)^pDjZ1g40s~@bOH>Bs7!X{O2?J+?;eI3 zBg49-m&@PQ?mhLEb9SA7O2cU{07G%NF-P!&FRk+F&AqfB|MA$&d;ru@`p0Rh?PW3X z!(6ckhLiruAYc!C}zVoi=wl`1n`5 z(i;r^rV#ekee$hW!im-&$Q5&G(3rFv>6-aGn(KQ?TGPUT z$Kc8*xvcdzWaf4a3oS!?xCrxBexr=tdGQs~J<+u*3A{9< zn5!pZajhj5Q8?36xB#eB8Sevs-AWqQwNw#UWiiT1jUQBzNKQ^Jo~~fFhnYipfPbe^ zut{RKXOMHa?q&Tqu?G|O81`(L5iwE>nKv9y!p|;L|ME;q-SB@7xdgHvV_1`Sh&{5a zgT6hM{rRzAR$9#Sum+R-ptAqISuU;ct+?t4xjwnZn(mQ_U!69}pjAS1;I8BLeERVV z1~L$5Shix$SO!!VQU znGjPIlndJId8t|1tSu_F*Hinlk!_iWeOHC}DBSu^k_K>Bpss3eXAPkyHEW<9Wj2k? z1ldVxrojY+NOOH#J==|M$(=|lh|qVSX*+bfrKgtZ%ZF>aoU_JSHT4qVOCoB&%(2{N zL~YU^Dvk6K)L|XPlGe!1SW;*6(vmY}td)ySD0`8x*fe^R@0VhS^g^fXHmWUVoD8Xp z6b#!7X8H4#T7Y3P`Nm+3cDv_o$nbGX)d4-_lxPgob@k_rPZX_?ZV@yjyAp?ti#Cmd zeZI{~YJ=76v;uz>eD{RMzrHIts8BMy5DzfOf7(X$@S#5>GuS>^<0ktv{jeoSq%$Y? zjs=12^eq?i&)NPix9Ds(e5+(!=-`TojM%5-Pe;Nr#()F{D3HZX zo6aPs@Tu2y0&#Ql#b{qsRnr#h{kN5(y|WMi@sB!rg#PB0x;MJ>{@6H{BBopz+4u(J z_6>fLGr>A-S`Ab}h3pJx#;QQ5$X3C)wuSMtEKdQW8Wx&y^Kv#Jp-`~*Q$#_HDR79X%x+_4c8M-FuqnT~x4_*St* z&FdY>xYRn#4{C(BrxCvrP&pSIZqj%m>n0C8bqJ&GooQiH@uidrFR{COk?9M!4f1}@ z>R^BTvB~XcpVc*j33sFdkFQldT;EVJS_9J;+@V0*7$GRZ$zy(t*4g ze!z?&EmcS+8JpD z$(0En5`82N;$>HttTP`Lu$6wIX+8SjYm@#q6cw$nC6E&3$O@+5yKoV}l3OJKuSnO3 zDXQ{_zkz4HCN4IX4P-NAMyEre4gh4zjQ(f>518h~jwq|0bTBv=@`53;oSie|pv)GV z6s&+@2pIIrKVxza(hQOy{hT=ao?$Cs>*}VKEBT3vwl;LnlMzfXGscb1zo{9B8t&rp z?U8wV#N(eT7qw0vCs-(Z{)?09fPLT^(@LQ7)NYFL^FYDu1eY3OtDk)+a)ru}8X%Me z$Q|&1cAV;I zQG7yCrCN5|A5y68Zu_lpq*XXa<_{}oXCnqFV(k9NO#B;S-slc%JrYj=Y@~>$2 z%U|8#mK*GjurAlMdL_9SFS8JM^6p$yVAI8oX^L>V^ZbA#0SDXvxmEyifrK!DwNXno z;c*12yyLU2j;Q?|RQf8hwc;JjO=8Qz^EaEX0G!leqXMq1zXJm|71`|;lw+=L)YXOu zKGjz2QiZ%2z5ZsSkXgci1xajUQ;Rzl~biTx{L-y7;y7X`j2B z(%-qV-;Omd&+5T_L~a(5M@7j+L2Wj2VrR z(yM+%lj!!-0|Lif$9^Ld187l|K9t92>YT`o0eVwYQ?Qg{!j5ux7|*J5^Oy!+Z+o(2 zY>J4(Ryn+pd9CvqrDHk`%bgSnR&6jqgJui#u;Ag8gSw7R>);?hXz$TXU^Yc_v|wF) zOcMGSKZug>BZm4GhB;_OfWZv8|4x$u#mh&Qq_rPPxCix;J zHB#=*R`{h1P0tT@cVtP;pfgagQcpUU>~r+#De{Ns-D?;$FZg?CQ9W83iSD6t*?o5h zYvxYD6pbEx!BWxO{LVas+NEix+#>E10x|5hSM#%V_Ep49p4}R2EY7*>W%8y~cY5%- z_b;91M&H)*WgF*9>CWQpdh8H!KCuk%KH3ELGv#PjqBY;YP#daOpNY5G?m(9wa)+y9m$Q6mufEhgx-y&USW zt;)z*sPyut)ZyA@?&5LQEH(}rZn=iWxnsb6HzGe?`ICK!D=UKy!xfW+a58xzm#ga87Fo|Q%RGVyMMrV<_)>6|c4`G< z+lOR&m+U(q&42kl*=nJPL^+a_mX?B*8}003BeERYm+hWw`QrbnYpLJ7;1F~1c>iUK zKMh57*}juzNPEBZ&8wIo!h@9!ZB^EFN6`TBvM`t>1J)4fBaHR&Dwx9KlafA6*Z)Gk zb#)~IWur-7!6~cHn4|J^Y^GmdRx$R9sg|L4AXL-c?tsh&)R>NhQ&ly$67u6J2U{h<$O{dZ5g zt+S?(hwWc@z$*n#HHb9M7%ioRep+k&D#~kSZ5$O%m#)Na zx-yu300eBg@5*xT$q z;%OHZ5fA5-Hi~PPzQ&>#Wrd|DL*5h{lPTv_u4ys(4Z;<)wbo;4jIL`x()boU%i4|+ zKx0o($X0Kaye*b1?FhVDc0HJw07O&JRM6%huqeW<2Fye&E3Gt8OW_{m9OxGR?81-$ z!1v9?sOdffFC$dN6u8(1E-$p5^7d`#q&w5TU}&U&BlL&SXZ_YQ%_M$OeL^2(v^rfA z?Sei|ch^Fe{lX=ZaM6WLYjIcoxL)pbJH<^W7SBm+{&vx_)ZfEHDw5F8%8Ul4rs5+} zCZ*#Q=ZdIEWybq}^$(I3c6dRF0ptP#B1rFGyBt~P2yDu4DpU406|W%3+_ib`^Qu1k zmNI9njDdOOL7B<-&9MtljCXys_G%n>!=0N7t z=NMhwvXF)l$xw1%{7(VG^h3bq6SM^%69LK&y4}Gg2vE%P7QSB+<KPq$?!Np=}dbbt@vAwaX>Qt+(R8Xs(m&AHn1OQe71M!@cS*;KB^vBL*%ZmF~?24sHiWAlyxt3idVrZu%`5!d^RX|;4N9gFCE4h<+X|gB(;v& zm;VktMoOucPED0l$HOnCT{srCO(ow2ahn=tiD;p6paui!Pe~Hm%oc)c#~Q%o8!8a; zb1#8G>i1uck0#I4H0HxEnE4szl5rS)j+y;JOVoKDXYD;p$S18$R;T*rQu;#n?f$ON zJC24Z1J*4a_srd-T3QW?s`UL$!%1mHpHS@o-aon}KtsoTjqE;^g(Wcd;F{Ddh&BJr zJQ=m~T`snv+tzpi6F#FXZN@w^$MO4wV7L~>3np`S7BF5b(9?g6E9~OHm%8pezv{wB zZSpvjJWZ&A&L{D{-a5f8ADKrTeI3V$e4$wwFsmIS=7$)F+IZaE-64<>`CI#G?aE6w zQghn^sHe$_Uq7{4S6?%Bh5Hn6lLXj6h@!z?KefL-n;wfuk%T)!|3n@(97sr&$Fwc< zq5=-arcu!dmn**JNTAepIlbyPGkVC2h_h%4Zt66?CX)Gx)YHT^ed`y` zLRn=-t&)A~+4;p%c|7qF+*K&Z)J{8T+&i#VifF7>Flqab;`YOR#<9M z%*k*Mb$|OfYB%a|pd)HHrZ%A|%Om8(!gOoP_~#pWk{FHfN=4~ijsD-EFCH@{>ao)zzxE`9d#1{Ac&nE}7%Cg16kIw_=6Ut*`Vwy0fwg9mO=6+7Y*rx(1Xc z86lj`)goSX3Fj;#4dXWNEa#I~)5<`%4i!gVmxMbQM(ts9M>`9^NCnSimeb!SEU>$X z6?nf|%lRNqu1<0(_X%MO+k|HB>#y#Ddwy}e?2 z?#CC8K?)Ir;ewq|zpmJ!vX#}iPg66PV?#pODSMFJoF_sxZM)m6?jvh*<cyDD(?)I%mdZvFGO zHVjUbG-PO4Dn2k*jvu6o!Em0&?q?A?wlxWKzg+}oI%@pa*!R@$;SgYuax`$>z< z(Pd;Y)Ll0+Rk~WOO2;QwRmkatypm0$R@nDs_s3#FoS@>X=+EN*)?~xUcqIkr0anT^ zYTOouS5I+T6iAmrTZFcAKNpxMa7X~8kq-Lw`Vhe#^8VtJrx(*qKtf<)7e!bB*N+1o z*=niR_Q`CIWNR{v;*C$ec+zIEQN_* ztWsrG;J$4D53 zeV|+QDhDrXX~BNIPsqdmsA#E&XY+}#jE^Y=$??Fy0RqFeOvAnmICXffXKI5eE|1z_ z?oz=7zVdV^MAh6am~n{V~ApR|;o zavW|F&PC}fCB#`Qg$*$tSG%wMR;6s$?j-3oL7_@yvnHGA6MNLMhjRF%Vx(#AN5yiG zjnTVg4Gae*%vrdvKEL>N`71o8|KNiz#xt;$JdL&N?_(iOxcVJEU6dgBA|=ZXEWosd zmW=oPGu7$GzJ7OnplwPhot}G3yPlPTu<)fx_e(~XI&ZkBV7uD?2t9n}3MFUi(~|+n zcix=v2L~$pFKhs3E5tv{D}bBUJf^;>?23!i$wabcWIFmWD3vVn323aHkj)hFv&KINNgW z89$HjmFx7Nj{5mckqfipy%kdjcw|W4a~8k^5=ZMDPSOTq?h^o^j3KL(66AEVd3L=MUm!NYE{HK*W=&BclO!*y)z{B56g~U@yM9(k@K}hsPNL)w4M(P_>X%0`pIE7=yKzaOGgLw^lLJPKv|eQYAl7-*ar7S;vgPH&J4F|X93+T2@IAvF`b|p{XqEmS;@&%& z>;H}aCuvwM6582&B^i;Hl}azNvPVYt&T3G}<|QLqBs+v`5wfyLMgv7eR#x%7KkNNH zzkj~JbH2axJKx{$oX-1v-k;va>p8B+b=|M~b-UX9BJ|f$-{==Qx0YBc_pZJ#*?RB} z44g#q8ykD!>Opw5aPVWC)Uimf&yCz!JSZCE)kT{{nxc{_&kG}gD=;`NX#el#>~e((GO-Mq<&mK)nm4EJJUw$E5H zLzZ02YxJv7Flu-)p2JzuIquT(O5gQk`#74qGsV{xZ&R0WoWjNIHCJ`aXbz$+N^~A- z3)(z77sntL+74OS>8eFg6Wvmu*(MxzMP^}hyXWIYOIXB;HQMvzd6c}{;|10iQJ6N} za>nSd=3!aJf?OZ;h+KqF1mm^lmDS%{?G*PT;zb9F4Lo-wM`f-dzrFfgG$G1Ltmh-r zMDE!sey(As87pe_Owwq2vyNxIyTIn7Tbk(Dyvx784F9cKc)XNqKqQB~&$~>`1kFgQeIZYd&FVHP2TzUd=97chv?=iVWPqyEopGT|G2y z2tWI@yIzi;4aM=>)LI5|%jWajiw|}~V0+v}kI=)gBqG zx0wz4DY5?c2fzC zDUDj2VrsmTEF0BDrmv~6KFBdn^%@q7Ol0*{;ouo6S>J+Gh;*4R^{U~JPdEkXELRT8 zWzHc}PleFcxLDC-$EkoA)AX(?^jnF#5JxtQHbEgFaXS6&tXy-qHpi+|wz$oFn5&q# zzWQ~uYnA!T_3?Oz!oRef_S1chzdYa#Uhn2S?OB#~G_d;f`ITY#^ACr#%ZG*B5?7G+ za8n;#_f=qc_c_bUnZ*n|=ZoB0h=NbN{ z#Lo%tSqbm>mgf_M%6-i2 zw&OaH-f^^P*x$Lzc4MDrgs2AV6`>c=!M5{k(K~PH+j01({+=-JzPVZ$6gu-e;)Yn? zb^T+KVu5FAJb{J4s3k5NtT<#c6Pe|TtDN+<-ExyGicjTJ4x2LXt@PR_Kk&9ScuPWe zc;a)Jhp{fap*Gf<2&iZlQ#e9KtD6{lTuJUhH*mdrz z47}M&X>I)rh8?73$PQnvt*#ImILwpW)el?iE@o?nZScP}(bMQ^-~PO_TF89JosWat zpu?;nwnIHr6C*gFW7tZ!IpQ&X)~Q?^yu-kkV)zPC4;53cW6Rm{G|F??5}et3xbP<;7#&Ss@D*C$fWuQ$E43(Dkjs9$jT z9{ugW9?n=gPLt``r0bi#^+pa$36KWw2N{SoYMWb5IluT}n6Fa_8Z5<<&PA5*63)Qs;S@oFQRDbk6%qj3*Xzi9vBe9#RKKm3No|t*C z?2TT@kv50Q4+|y+I(Vx7SvGG~f2OxqImYE3tn^(yt6FWSSBb${J=&Z!nAsgqmowUM zvGx^9o|nMpy>_J0CcPp(Or0OW$0h~{$)$%L%94rKcXQl?54BA{m)5F)Sex|GeZ{5w zC7h(Bf)DQzyg>&zf;#_O>(^K9UYhN)?i<1kjyS8ewDqWh@-gSj*T-`By)VSRo^Wbc zft-p1_Og$uQEJk=x#JtVWt%ZhlA6ksk(KoYZjMFFzTAN&t!B!NZ>Xv3tu!|Z|N#4qR6V)KGgPlJVN5jw5VYH$vj&H3@UI&UPv4!2Ed2k zh8GBOh;s5t8;!j@O8xACP=btWc}vB}xcU2_v+ZM!Aql@9JdjS(<(cb^Ntkmgl$Tl; z6%P4_;2qK8>ecPNM)%M4@V%%9gCjK5WJ*+<0r&aCqKU-yz(8_KGuh!{-(>Q+rHTE{Mtgo!K{wGZ0_bmau2zu z$LQsvbi%Zg#ofDpU8-Z3(}_LJk;{4>0=lHvCYU2+iw>Kg!AL zN(KfsrMOl&REp$df)ir*3Y(CLnXUn=rd~-ulh~GT8qZd(Ul)*vaZV5@FL-f5XTiO! zLWj$S=T}4I?gG7CFB_6;-c=lN%1;h^a@g+K?s<1@G#@0{Ap0$>5G^Z}`+}+Rf?Nz- z6pivRyzkx}f*%w>09gJsz4hl;#y6zpcUc{Xtp5a09h#)5SL75PpO1Ip=E_Vm+;p^7 zJ@qa1<23=_Mh7xpVmY}NS?o$J-)EJ1kLNubu`!1k5*A{T0w^M*X@A%`Om&sUK2x%h zY2%M7jvk;J%co*1ybv*dvAnjzGDFc>RIMpjW2CH5XPkaEnX7tIjr1PEAjVA(*JKY~ z2{YPW0}+v|KKAa|r=D$5vGOamJzlkFgyH(*Gya>8YIsh7 zAJRVxcYkl2EgccHJUUHz$y=4&_s)jNZmhQ(@!^`B1Fx6e;yVrJ~ zXt;rP_P*7hw~0}Ik}KbfHtT`!QstQ&zRgv^Glr`UYzN8`1hmeOVbrtmK%%78W-x!r zb>LnP2RTKE#Cv@2)4Dyc`iduO@T|kbOn6s1EXfHC^wIDvqWs3Bb)X9DEJ+<>SxG%o z*J;@!>nkyzjms2S|B^{xOoFTI=ux%yNb#q<&HTPcr(HOTdQBx}8O{2&Y1YSjDcqBc zZ^jS@_lY|qmuTjYJz|;)TIE-bLLMc<%hSSpYbI6n@^U9`kB2_o_<>B~5(-<_9mF9# zE7&}FZdF38plQ^d!fN1REk-Efiu!(7_kAKOC)0PD98vJRh(`gJ6YvSx?r^g!J(c#< z4G4F88jb5qjJSX#1)7g&?8#J;0!)Ktk5bu_xs*J{T}%38GfW=2J~$e{?JDZ-`MYB-lyWr86|Y zedLhO2pW{rJ#4v+x*eo6^zqOY5s$Y%TUWG)#n)|Sr>Q_XNpG3`Sz-BQqb?qE9u*&V z+12KC*7}jM{Hg4{>npVQzkF?uzkKv7EDYphuvrhKrX*H@oYhs}Dr%CjvZZ}!csA@Y zQ-@g;-+|<^9O@f3921Gor}rzI~19s8%MHc*g2ZMPQsi# zooVMyi?`>{p+l&=?PxE(&ELOc&r;urBj(%y(D_`$Z15&o<^Bf=zp&bDadRF!rP*=k zbX$t)!by7d3(7ak)Kfp<*L&u{sVh?IvMW=-XIXQ)AhUMJR9R$f&+TeTblWAZbhe3V zP2e2jKUw_6%TK+2=6K`#%^Uw9I4)wqJv2EvSzur)vpl_bs4w*fY2OJ*EUpZ=8z5cn z126&xcwsR(WOlKh={Jbdd`yb=AWQtS)uh`L3<5(4>i0K8(-Iy{3udnA&YFt%C0OZYW}Cza zy699OSGmR?g;59Ra#v{+uRf0bePvq@$ZphjduHw4%NDiwiOgw+g5SF8vI&D9Q+KTC zpExEY#;WT3%sldZid6Hv)QeXO1JAjvtJ5D$QJeq1z)mhmnjS74*9^?x(Zp?)w;-)O zn(*~{{sseIXZ7vNQf+mL<(wlEWjgz^zj^iMa{WiuE$waHbC&x*u5QWyTLf?A{|T<| z|B-J>uzG=LLtOj6V8Nv$M^}f>t*%E5-nDOE9R`kke)RZUt+oJ&g%ELo5caCRhH!Z% zWcTaE#aEs`fLFk0F?SVk2NtCYjRs87#ieZtu!$fX2w&l}RyKB0A*87&;p6Oh| zj0Qori<uN!-Dt*5LTz& z9xneqB4h$w%#?ebv_$CwJlH@7b$70?Cwl+-+b#VwDj`s5g}iezeM7cj$YS_ zB%^G=>ehZgT$^<*&-%--96i|Y!r?Lfg+NA@t_)0VpeS7^o2p5az1F$1Z{>X*0TF#S z_de8n!UV>EH?d+CKiB^FuI>8^nMKTjWVHw&S)h>DXWE9@$iIM4Ae7}!+S%FFt?)9^ zEH3v{gnV4i{AhJ;V8ro1K8&RE=+@P`wZ(mfv-$r>&&-w6o_fydjOM<+70WBQMQnup zhRIAyco6>YxW95s_2+&9{ki_(a%T#GRaE74z(hWQa7~yZV4%c=$)PhLG5Uz5pAYR@ z+O#_4`#Y4lLVsAxGyh(I_o=VO6Nf=Y#l2+GSjNpGMwoS_T+x62<2};AL{M8n(}t&5aoje_^#V8ga*o4!beH8*;N^avhosGyh*edl?S?{{ii#s91`x*nGdy#iIPdzXxcVAREJ4 zNo1s*YilDFznO74D}f2sOdrS@2Rxb%)=>BFsVM}L<{V<%;`d7xfymuIj~lE>HH^&c zDT)3U0rdMXax9IV^JN9K*SD{G?3qsHU`}SFm`1q~|9X&fDhy$Hf1C zaCR2xtux+LJ5U;$Ri$=zm(QV~=^y>oC|Y(8eQ zVaypTLnsC!Wfy3Lr~ly*wuRO?AVhmXN2&(7H?Za)jenJ_@7KcO!Dtov4F7x=En4dp zkU)u^G@ucX^MSt|u(i{5N7Mj^vDfB_el}n>PzWfY77-xOZ?g*-nV;15m{jTj4WhQ^ z+qJ{BAoyOs*K)4{one5T0OTdcEhiuX0@{O|AC703XbHd+BMkw9%F-_jgbd?#EL1t! z@mzUzX6@qHkE)ebY*eTzw;WsCPav%^{tW6IEJ&E51=Ii?If54S7vmbG%z-Yi450k( zm_7+_`34?w#$d@#{{9ny;3S(mXXk=uhpAHH1;2UnAc1~HvlV}5)*2EL^5ygGeFOw? ztRn?q7*=lzhJ1PyJNf6h*^3ED4oe_4xC=}KltSMGZGT}uRha`0Du9eAE|7Z?e@+tv z(SSKxwbeUtx(tDPT-djb#vfq6&#omwtI}chkDZru?f!!S_4%}Jv%OD1Nulyo-8}kXu$v*+f z--0>u3a*8cq@+=k~8g9+~?HGdccoR&I>YQIpqnFpc|1@)nmkCcY{3$pEF%f>2 z%-%BVsVz9Lp7)4hLL5M&c;)btx{p4-{c~|Bv>HAlTnzyCasDnM9tDEi#7N^$|N1wE zL`(ntusZ|Si&}z||Hi%U6c}Yg_Z9BFYJXa0`=yzYk~9Lc-O8X;a{Ayl2uipSBgY9o zy4>n?C;{NGKt~P6G2CE#fK*FI1nh{hUZiNfJ+tXAKf7o|WNKR9BqsfE_lNXz~}|IK$C?%Kp?q$`Y9!>K!bz&_(3Qr@kvR%WC`la(5^wvaOj)1 z6^MCyk^jJM29uBF-gizO#IuIx9`9x@aFUTY{e#isO=P2sgPs2$J{Srp9x^;kc!uz# z&tJ^$!F&a1x?OsQGIGjF-UnWfso}UA%20VSQm#ngTC-xZ+6> zAIOnJE74RGaqX%JC?1dr|5LLvL@|!ul1M-e(bqqfsY&&7`3;wW8%HXwJj~7bJa|3v zk?@<~7m)e&-sF9Wn-IE*xAr07MEZ+i0az{?!~lD`N|U9Y$}Ke0`uGH55B@GDE>0np zgm(oF&ojyDuTk6PVBQ|xXJc3_$M=wY4k@IRk37Nf{mIJ;C&GJVX;8@@e7asJQh{(VtsbprU|Ql{sBn_bH~oVSH#A6*b0| ztFKdSBmkC(dkZT-=!#$$2ZB1ze>~NQa*c02ZesQTPWvbD=3?fOaF@@_mx$6P(arJ5bTJRCllcC)5dKBJk7dgHHa_hR*zFxy$8Z-R9wGJcvPtc+VW_BHw_&09(2A*TMlSxT;S2ZF$*?OS1S%?jkVL`;X6-)(t&B3Xbv7$6vEMu zPQ;P7gePeGxny4$r1GVBZn_^mS|8K0guV7YVjkgcRpa27r9Eo{V*#f#PU?p(hvJ)U zzvtMElq>cT_Wvwd3`pTY6TGjo`JybR@#eM?s(~+VQVGC`6YAEnmQa%cs}rEgC>~WQ~2PF;pa)eX;aY9D6E3*$gdAL)v+o!tcPT2 zDE#U%ZA+Q)&B?%sq=+Y?R{1*LjdJ1xTfPw@1!BheOie=bFJ1ng9vJx41(cqy>VpX% zu81S9kyH-V?!){|gFSV3MmL~1I9<$&&@&+Lyp=k#TOz%|kLKON0^f)@>nV@`!NW)3 z23NX$Y;M3^&+dv%opE2&4SX#!*KovZD^Qp32mLxVKc9~MvoiOk&Y zT3;XGzHu5SR5J9L_hP_GYA@|e+Af?rGCwP++`mbGyo*LO%ou1cU}zTVweEC%&t^Sq zB1)pM1P(VbmG$DqBbncsxpsJ3fnYcVM#&I{I+2z;d~J%IJRhO1)h=Zb5CI=3@>2XW zl~jdy5vMkhDs%9}uWz+By>K*D3rySR@tCuXa8b<3b&YTqjJ)-JEz%{1RFyOy6K#w9 zYTi?0`Wnon$p?Z=T&*VinqQF*wtc)WFdB2VX)t(h|0GEvI7y$S0xlfF-l>^x74kDr zQ+8s&zh@jm6%kDk7!QWup)o-;K^f5@^}ZSJK~8aTAWki0<#^NZe&O7MUW~s7c&=cv zz`tZ;7D3kW0Za|e7Dr*pa?eahE@F=OZ$|)W53+f(*Vwc>qnJlF-4p37cFSa{^Lvxv z4{D}BNkr^8L!M9I$t8VP2@o$ne%BiYjMeyKg#e9J`#CkWH0M>qBnjBqpf9c^F_2{b zxQ+$#c3)q*l@N+6{O~7^7-fL50B4i^>TeId3ZKhn2EYy@G$H{*t%TS`Jct;e1c(>O z;?JS zAglc1t1U2$63H1-QJ_-Z=UHrlmjcNPhG$W}qG^VA!>^>md@3*^>aZiM98x&EyYZ;zi@ju2&-dA-C@!VYfa~TI zyes5-c_dQ;rARo76-EG+Jdfg%Tgo>k8h?Thi;zatUOVsQlkE{9Ivm~yJx=Yi zO1u0R9)|$o*v&WvG49$wBdx4OTKREva}0K6)N7%G!WbKpY5EMm6=ZP=>#O6CeqpnP zgIVdgxd7Kx_pU(^jw0>bOyKDwzrcwGp6!|ZtwU52bW}LRQFuc-M;f1|s|J@Ls$G~A zKuZh&29-cCViN*JWq(i*H5)$ldXX|_*VuC@9m?DAERpMJGU(@kkHinf_}h1ST|8`1 zB~e_Ee-9zGk(H&#`ID(h4)Yajbv55WSy9Mn`yfM{ThV3KrMoa^r$(Xyb4WbP-h`bP zTf4%?b0A+Rveg@d$bjRt3@~hj@2nP%b zTiC-#ibNRj;{8n)uweiV-@i@~Wb)WQ#(0}y4*_Hc>R3Zg^Y5rBkdRdP9~4M%N%gzu z%&D#;bi0q?nrmdgMn;d*jmWvN&4SRw`UZbV5F9)-(LwjZ2O^x()AhDDV~-d;W3S&S zJjrd4a-EUkHkP7jFh`@xLmL@^Ts_rPr-VEETKct4=AA>07(~Of4~Y|f(V7~&`7#%O zA%RX?jVL$ey9fslq+Dnas0lJYm^JCH)<#1i=!R5l z;bmo-wUvlZi$4cg#dx;@)i=!?60I&4EGQsAfJ|NQIAO@?P(pfcbD*KU5~~_{_?%N5 z&SbOmoWUj=W#V$Y04;*x_D0ql!rco1nw>|Z?$12A6=FdSvR_O&^&bAriGVwUE2OP3eDKhilbYs#PEjwhBQ;ju?*iOQWIWI+H9tO+;K z!&^@jsc0r;8YnD$84;UeEHU=xASV%?ssz}XQE(D|8rTKEx-58hsEIVSbLf};jb!k# zcj3EW1m!i6rohpLE^)!cmrT|N>b3Tz;PT=4L21_pY>d~jY~x<>(#c;RN==m2Ll3+- z+lG}~ByT-CyX+5hyD0X03~!T}d3y-gmXP~2YKJh)4b&kqg95G+!SFkGY$-`S3~m%F zH)~fH!-EX|2P`!twi+(~ggJ&Vlr}XreZoEs-e51BUXVIAtDDy`VD`f2g}M@iFE~xV z;I9DzLh8xu)0_ET)iCxf$$U-SFI+iXtxU-$Oyoezhv+1sDLkkVff66@qVMPDtCvkh;IgSxpI{IkevPBFQ~8=5^6 z$@8DT#lgzXs8#&QL^fTu|MPoC{r<5SLD_Aw+A3yB->;@~NGDm9w8cmLV8L0B^$1Ty z%*t}beFkg`mESzRKWQ&XTHyEI6K391c31kq`=l4qfg0woZYvx(JXopYYC|v!jAP5x zj#f8aNq^_K$Fu1n!$#dZjzO`)b+tlnGeeHv%oK^}m)mB>yI+zK*y;M7BYOjf$D%1KO) zgAznk(Ol;e-+(d*Ihp9K;ed71Fy2@v44NY358Na)FrlCWH3{tFrIEv`1;#Siarazs zH(nCdM}7dUV7$Af%eF9`bKXs7NjUl}N1fxtlLsG1oGEznpeUWv?b6gUc7d-nNKpT7 zyTwn#dKO|^2b@=NF0Hg&T_1o5d``L{>qyCM5*gbp{-i*vR_cfC23|!PD^Vs07j3T) zuC6UiUVZA&OZTv3gGhDUKn$`ff)W}V8=ED1$Cf!_)m$_fX={@%8mcr7OyE~1y0HFH z^V7EmV2sd@;BHe+CIUl^+8}+u2#4j)=ktGU8N}<8(t!p+!}4%9x9U)0V&dsz59=V) zK(e`koEpccanAeh2XSly*ZwY2fv1Mt)lhRP-56H~M`2*#tZA=O45} z5GVY`ThIl7{RZAA;t%Xj>O9b@kn280f*|{|*wU!?FFJqZ=+7h4hQdpM%IdYdlx_lQ=6f}r#hle|R(ssys=n&bZMca<4M7Cp zEsfkiwqFh>4A>mRn?dLlyXX$?W{98Mf0ptCuo5)aEt%}cGk}sn)MO0>$+auvL4rN< zG{Sg|f(6A3E_;E$w5aHlWp_bALEg|vS}SCG#90lmElA{!BbZU~JA5vpH=Cap$tZ-p zi&WKdO0{OLqH`IiAVETW1jHEVenZ4J$Q6)m8lF7msz2zklQMEp1`}e$<+yt?$^rEe zac@xM>w@QWj-@($JOmK+;qXcagoL3s;c7W zQXMTVVS%v0R6~QlzZ7&>&Tc}p1E>*qwyPkVrQb`RPWP?*{udG!NjWDUD}Crj{Dc(< zTN?WxnJ!IGz7$a)<%(vVbv1-qh1cl(XJ&~VkC~N}$)9(nzE#RmHiM6>D`babg%0fx z7!JQ{w`p;9#nqd3{(jZ*so(f8N-rdG7d_a`UAo=YWos*aKhh5Q2of>mBk%;W&u*$W zK_&k7?IuWR;q|7B!ADTILzqKRoS*K3V2PUjVEB2)aHCx)^()a+Alca4*r?KzP{|{h z6JORig7qK2DeemyXgcsz3;%U0`L0c^A&0jA=)GX%>`dyiMT4NLhDvJ(H>n*NnANrf zX*V_P_t@Z?J>pP4+1jxryLSr;NuqC#QyR-+(;0Rln0fd^yGL9j;Qdfmd4rA4L}A!S zAM_EcwevI`I+?`s3VX?nz;~8<;m7xPaiw1D6^mFHx0hrzd-rua)JUY&TjYKdO?iz6 zQ6>K8jezFVsA$}=x)4 zk4U6q*Vb$HmF(|TsTHPS#4v%D_%=CBI#dkg#JK{LhGYsnFGyS zg@r@AbNhZ+J!rPlujg*tI*FBaIa*%c8_YMtzlh~B1iJ?38~+d<4ZKJBU0n$$p~e_( zk6!-^I^geZU+9@5*MG3y9=nb8?nx4b!P*1WG$5W)R0kG3P3E?Kq-f`GdkYOH+sQKW zn5D;xC)8Fl*U^L_Kr)8rPbeugQeakug>_@KFiN&(%1WcD!nMa$B1h z9poW0SrepE8*RG76LYz&1J}y*aVnE@R6XykuteyX)1D~krP*-vGWh|fp~Do}NmUH8 z^?>LVq(8Y(pA)%RM?GhZk-LZC#b9+&mrfr)hS(7c_(Jtv6~9QHS8_~zu`@Ksp?%d+ zNIjvQ92+`EYF1V?RS5i@W5}T7bn)4DrFhY?dyZ?G|Ii3k(b}JiHD)}Ng!cwg76s8QfmVn0B7`}J z)E`;4u9sY{pPhcX88H`1C@MQ5E5_;xx0e)M0uxxgf*K{CdYi1Al7BA$Ger0Gdw6b{ zKHJ~YlAsB{>y6iszSo)*c#|hapI*#hd@mz+a{<)}0XqlIHLVNtfv>!lM8S5!OnTIr zgO&%>GajTwe5LL#mbm=N-snuI$m^ePriX}bt;6!1W$Di5iD8mljq*1b-1I~9wj@10jd z^^CJHnVos(&Yul@*_ALW!S6;Gy^w!>FmVLxn8-QM3nSd3#DDQ^7GWK2ee`5_L)k$C zRhxnB7`-tfdUc$W%Z#&*)U5wD3pLtm$0$a;u{8+C(DOf>moznj5G58y;hPt%=HeUI zT|6h7|CBjef8X2SObaCR_L7|iM?lovCMqM7(I6#R&&8xY>BIp)3Lg@dS)rEIL50i>AbV!OK;jK0RtE7;y_%(AH=3d*Vdw zU>j*5?~$$Djz$MoP+&{%;%(o>jWSEaK!sJ}NbHvE-L9>3BDvc0aO!WZ34utd_fb00 z*7mzcN}n8OFWcz3)E>#hzp?TjBoIHW%$arF=_4k@<#W-6kDATy|70P^j^+Smhuv5Iq!hU@))8 z!D4Teo4k#x4Dy)EFQaaLo?RPe*n$HZZh%h2t6w8v@ZPijv;A}L4#gey-(Ge+)?HB- zu3v~zQe3`AIx=>+J$v^KitmS4GduK41A0IHHaIsCKC7N>nIxZ5`R$iQ(1m&_A&RR` zB=ysda!mkwmS@+0%tdInrjYR6JD`SPw)nbd}NRKXkmg(3xuRLiJNv z-S^FVWR5UpO)fRudUE7YQh3$Y`*e{tLk{G9@<&^K#`KTh_by4!VRxadQ}T@EA90dO z;JtLcmOyxaGo(9;WQLK3XGyiCo!@BA)uB&B>7O%~5FK~kOZ7W8v<1y5B!XJ{`h*SpOAq8Z2vQ|(74P+Lm!~|Lec;U5gR9*& z8g6Wv->qJj^6VM*ViM?X2yvn{(r;!w#OIm@4m>gV`j;# z;ZBsMY){nWywZ#D;G|ho)r+3#<^eC8_B^`(_?v9Zg(}ep@>3Ulm|5Qs`)IDzbDii1qTb=yZ+4uE41>WDL``A5zZqv@qYhon zvHa0^R;H+L5f3-PvLLP+v3?72m}oB)R{Z%vtar2jypH&`RZml(Cv{SppV{hjdgI2! zSZh~Uc&TWm>5EDCZfb!tewxnA3DKO$M;#W$ZgnCC(7k$XDWVQ59pLDAqm<6mH}{F1G5b(wE(FMwzLKKI`W(GgxRJ zv7?ddl~FJ+ZvXk&diiMmn^A8^mTO<%Pw$eI5YVMpu09n~M4G^gv4(`%DCGq;&x6wR za}+!u-KGXJbKll?idft_JWSD95YTkmd~9p5O@emVT%l3Mk3l54q^8J3-cSxPOB5nA zn#3q;M~v5L&$UE8B{BUEQwvWKy0GAcy2s4J4-F`U3^MtCvpG4x*DA9sA-tTxybsvz z;?qL|yes_@WH({tk!SXLoRob7nG#)=2hwf~cy3)h9v#MNm(Kl2?a8D!bZ2YXA(lX5 zwlb`gJyi6Z`=vLwzkXMwoV|uJrT>+K$<3PL4tf9M9H(0n6CXBlK4orRK3(P#&nU_m zZKJ|Hq}Sg5u_3P`k0IH9ST>KAR(G?Snp%}Go!Of)#wVob5jx513@?rV;>XmRiO?f* zM0{sc9Q)f_tQ1xWk%3W%>*CwufM2_?8XdUx{i~E=^A??2=H~Ba96xx!9h`coB&Rn- zDxHybm43Bz#EEvpO}IX?t#n%6uqmkb6U^w*FZyNT;uPFPkJ+S_wM1^8+IMkpV}xKX zeUmkshZllcfBqCkJA}X|YkFlT-{-eyQ;w)mDntkV64N;Iy;E2s_8BcQto^BLS^M2G z1hb|zqBYU{FDfc3n0SrRCiGZ|!{hHBLM(_Rt|crYYk^1`QHvkC-}w56E3rcxKI_5j zxY#iIZiapdLsA_c>kn2F!y$ViLGw!6p^!+kbp&c2#(%B~s+JH6cJ|bp=Yb*D9&#z7-ykx_5K|>6oD79GA+zKZp)k9iH*q^N6}XrouLrNt zq`V**w4?EZ;$D^4meGOPw3>Ti9D{E{BXS+oVK@@dmP`xi`5nSo*&acT7T7`m>fU;j zj)7JUODuB{4$2>FK+1_4JMHo9^?9_hcj~kRGo3^Bjfuz7?q}Lfy_=jlnb7b`{6+cK zxmUT2?>ryG$ay|czw}bnDT0F^WObIx2OmYPbK_xT!o!#LoD@BZG6FuDOKs`Sj#%#$ zFY-phAAM=r9_-uV-Kyw69>8X zF8AF9^%RN^#$hiRIeu_jy3%MBaXpy4KI$CAu;j5+u4l9Rk~;RPNby|$BjYGoZ!6rc zFqrx%-)>ic@x`X{9d+6g&W{eTn~;}v!sV8ihC|g-zCY}G+(IkXk`u|rcicqP{Pb+; zjF0P#&LFSp0FRl(5v48Y#v5(StDD!c_Y8}QZNJcJMsYy)RD+eF$=-F}?(`m&)FeG4 z&K&vs${bBCEqoiEU*yWpH14}AZFA-g>v7nGWT$x;7P9FCYQ zCUz$Q^Q+lgf+bJ_jK74*Z0ceR6fdt?qCMpCc)}R?@x?7B_vf~KAx|*z@-Ds4AJoZ5BwVrEdLd7S{E}Jcs_)7vUT=7W}z?Wl>T)S!WT|pLE#N) zx&B&TCyRpdTQevAv%j)EoKl3V3NJXCcGwn*6~G6e=Az>iu1N8B(+)vu^RLoj{bev* znT!pONJ|M`A|X_7!3t1&VLVeu2~H7wtt}Ts(_z_}TSZx9BqXI5}5F zMUK;4Hm`{Dpo1fq<2npyY4XR0K9M3OwpXu^FH6U0y(wyDP#0Cn){QcST?3s6Y?wr}J-cRWKKPVGl1Z7UtMPcp~#VLJ^&3W<-53kzj)6Et;|Dky+_(Bn6TpkYnNBVJaoMTp0&>Ji65z z#+9jJtpjVLAbKM;{4BQjVdDs+)7x88tOmc05>LwPt;4Z^DhaMLtVc%H&qQe9-W*Dl zRZA5C!x1nbg=Hisz6`Lg-?@n(`8Jf!Hofexu0d| zw~6{kb(mV=IGb52RS)Uks=(Ph`gzA6U+;vm+90(?C$CqoET=z5@H`5oX#;mLgpLRo&RHlN=SL;Q}H9_l)4d1@j|q2_qZh0ZLtZOjWCZi+bcSm ze1CCN_@2l1{#Oa&`*kfKt&x*nUOs1%@*4Xc5o9r&NH{fJrv`(O`ywC6pZ2u5@r4mr1>d*2;$k z0^bR>G8FBu>{z1%p1EiVkmd*BCF=9hN4S}L`}{oU?}6IWUttVJB@91fUvVGdMM4`9 zjzBC`s&Tv0%u?%FyMxP(e`hs*qbNQ(SSq2#8sS&)h(Y*+x{i?YB-feS#*(n|Xvhyh zuq4uvb0cnten`Wv2wN`Aq z^hFNu6K)pM<9b4@2fo zZfZuiC+1CesM~@p!v&K$4qRMPTKS5iW85YGu4q{RdUEiVfXs33!YjR#j)qG4>(1Z! zs>YO6p7`jJd|G_)+t`CbJN8L(MsS8VT;NqoSZCIxpc6W0^LaWPc7e$O8F%drAn zE0wudnF_BxvG3gB;5?+9@@0%^%K4}C+vcWbM!6EDwzsWiM{4~R<9Y=pNfGL;V^POi zC;yBcc9uEE<*8XKKXPq*#K`9l8@iSEKYv+&%%vnE$w@>;1`F&nWPU?C!^!(x zEQ}A(^>A(TYoF7;Wqc7%+nPA9X5W;2!Mt|EPw%7WFrJGxE~Pw6Rn)ntpsA z8z#gT2r;l)!<%0XoXLMKFPbGGbc!n0Rw^#Vrw_V)^u`Q?Bo+=s;wKpgLk&x<#aUUT z#{dPJaHw&~Eh(WzgOn&8d{MfDxVS3xV`0)oULt}91-FRpM{$e>KbO!sfv^Q35MPTR zf^SQ3Nr)-wugz##ZISs&vD)Fge2%aK;dddX!ba#jOr8l_I614AN$;76q0F!l$vbyQ ztSRQ@A*MLSM0JO4;=C~jxE45vhm&s$%F?ljMVzKB`GVnXdOoc@-W8?XACKUQfhzUS zRs?a0L@Qd$w|JEGBE^Sa>`5=o#l9v?Dv3r{CsrrWe8WB&97gD!cJ_y5Q1QZu_qO}p%yW$t;5h2>7 zP~8Zt3YK@>J^AG9-8=^$(O7t!G#Hra_hwnMS{H)YhB?mE;tDZ8UN$e(PKaNr&U)I} zxC!K+W@mPrKW<+!p_PV~0nxUmrlvrsZZNx2=X!;z)Ta~Al6P!c|AG6M&dHY#Oy#AZ z4YCs}PcejpvYY8uv=STR@Z9rP{+(*Ko1~&h8#5(*0v>kAD(#8bKD4GMp8G58+n3p> z%_roqRfWzOI~%D?UGm(3qe4PK=LP8oc-GWuGQLMRTt{nG95UiQek>9}lY_wgp|gU=8a6l_ zvN$EB2dnpAQ5@ZQ;NjCG5x;lR5ACzgYmb>xh`zqfp-}1h)X|fx{lw?8@GmKDJmhRd zy95{aPz?WIWCdO>;#h^J0AvwVntdN^J<9Z51QG(0T#7q(NShX6nc&Ty@fzd@0WBI> zjR-=-wMq*p++8s(lkb;;|POOVknWwpi_pB$|>$Qu3fA8dHH!<>CwNwb}T zJj82uef_sb6Fq!&03M`St;a*C#V4vtS`=L^y$pI{dtCH2ddGH3YlVQ!CW_|??|N0T zkw0MPuGYl}8|8QP^_Bb-gzJT%iNNi6Z>TPG2&BlX`ePX4xI;AN1B|d(?$FjvFL{(K zla-B{Pj_AWH9_fDuuE5R_i3nLxQoj?JMX1gR>IwkU`~&256XXV9+07@a#jpbJk!a0 zc}gd+{e#2~wdJ)3FX63|wGi_>w_#LU-lj17hqMxFf^?bvwJg|oSs4{M>b3j_4|DCJ z15^4l?&e?C0UYb-{Ndlu)VyP>91FL_z64Cs zTn)CqA}_Y_^sk2l3*i;g+E^*=_j((fq$JpUV=Fnw&vGQEUE2&S#oHd!rtg{$ zsk&v=Jc88f8>aAfGIl9GeYoMhngxw5HA`r+gZ#!D!K}_FPQCMO*r=XmKA&w~w7FEm zui&t)>mG&gG(6c$QrRj)sz;tVYu7kFRC90_!|ozX6;EjxOoIDyI$7Ov+)&<1Fus|< zK=HC|ry!a_BBl~1Kd4HVsIdLTe)#P+2-~kwde{g;1Asx%7-`&QC(ifXc(-@65RbBnt0$;C!?T%II-1V1FNE&dzahLfPmUSg{*i=vTBR$c& zAuFez+%6b~*bKc14HR@82rC-SPE1VHA~K;tW-QIkj{y*deaAAS)>E>rcu$(@mAY@E zAUyP#mPwC0zUO7TQelJ0)BEo%&b6><*}bF4xaP0!*U-K-;YJrzDx-VxPpa-+Sya+azzD?P`6D zIsAwyLz?xr|Dbn3;|;9yFM*`&Q={$UO6CbcpZS@xDuqb0!?Kg}%X2Jiwx zRMRxO>~#!2DP*rkkY8YKgwoC%oS-U?GbZ@p``}v*C)9sQ@4*Rz=`|ejRzC4vp&~rN zY(XmK*A*@RUrf)-KM)_uk}H4h8DHC&-Rei4tfXtfGft##y+XXg_?Fl#nWM%ZbEHoq zBOb$Pgli6;zDxE@`*Ts23jt@?b>AN5G4Y=3WS`54a#CQGkb3(3;mz8YiSnHB9j%6u z9y?}qlJtv0$M!(0lubOWnZTKraa{%MWBK6V;KvxwLPHIW5McL^o@ToFqs1!*jezGpYSp-}3p zUrhymyu3XJh0j=VqT9)`+{p||VbKsAxovu2ctu^a)$mzc(;qIS$9cy(M;x)yJN6f! z1p4L#dyL{`*Qr=H9mj7_B2K~mF%&8nLiqXPn|WWqgm6U6 z|5J2tr;9O_r;Jr(Cw4J=W;axs)XF9wL7TwEu(!fj4t`H!l^zVEu)-i|gaU|--a}t% zh=mi?5JiZr1BxM23S36KVF}IVgbxG%Er~b(v6Jc%9Ck*ou9}+_Yo9Lt89ht&HP*i= z3Jk5ZtPARS%j-VrJw8(ZhOIVk%sV&su&kG%_fs>BJ$+9ytv0P~#&R!W7}B~YD-~SY zLbkuoR%l{R)Kd)|9JUb#mLG+Zbre_^-ZZfB8LuirF(VP9s1-|*^v#!`yTB%_DtwAt3b_b zs-bE`qCcapm&9&gv0^%{|3Te%hjZD7Z+}w}MUzNq7#XQFWR)mcQTE8n%1Dust)yjS zOEM~wJtCVZdq!45g=`W+Dew8|d4KQw@B8oT=y;CjDC6sU-}m*ouJby_c1yHV4;?7q zl2)>Bdd(RoV`&npOBNbf*X2ik?u(+l%xVhcg1}9E?h!oCY6Hu`9i5bT7z#hIXFU|6e2Z~vq4-EQ|+S%zSYd&%B z15cikkq8|tGk9xQw-HQ;EJu7FYH-%mEXG;oK9*mL*yZGlK2f5xeOF%R7RJGDHpNEL zET>KBuHvU4B>67Bclj`|W{XgL=vEyMeZF&}dad_XwHz}rDL$3>-Q=Qow7u8SjN|Yr zv&kFyT<#4erTUCLpOnq?R#4t&U5~9WP30nR4gU zXl2Hi-2AD+emEgX+B4jRJ5_P4YlGcXjkPT0%B+&gH@m(IRrU(To7g}^K|Ka&d;qnJ zk-m1mk>dovNIHw6 zSc_(cqg4PDyI+ADtDH@(V_!#`6wmPRI&Ol*Zb4^*a<2)(>$xwEuqu^S`muT)9cv-U1N%?Jx!3PZ>Ox4pm43Qw)NRGU-Tv|l zu`xTh2iZJ1^jhY{P5Bn+jfr!X%yXDSm%nO0k>a>kTSrGl&X^4MM$E}s5U^f;eoO2M zf9}@u<7E&hpvGW9gHr}z_otsC->|Xwd3~E#&U17wDl)I1S1_rWV@W5`{L1T&_*)+y zn)`ET^GK9?%Sa06upNP9l#u1XCBv2}w7hw~@hFe6znVayU9gpM(<&sE&DNxwo6Qv} z&V6+iqUO!uG2KudIiq&x#-h9FlTc5Hki)XdhRpNYH)c1(qS<;pk%!|+>AHP6T}ehb zh%l7gKP@%+6}EY5`=cOV(T2Nu5nz>czF1E%phm@=wG*Hf#*T&x0XjkSJn0h|6Ki1 ztZ!snU_)}~DtC8d{nF~0Z%%Q6fx5h-boo&mb{k5_DbTUEezNPNHY{0lCpIL8Vi3`H zEAn7*PrvCaPEopRqep86M$%r7^^AT#E^mHH^G>@C%g7v)uMJS}wF8v@ib5EAvl`aiROCdta{0 zfE&~RI#xnbtXpxI(dl2cS^VrIOi;P zNI3>2OTBQVL_&T-hk8Stosi=ThGV4hk8j?1C2s|318YWNDE|1d%CKqlCoC<(vdy<| z5jo$R{RYV%nuji@c@nq9?xlFnjq z7`2a}sc6E0refb3R(a@1`6Gdo8&h9NZ4sU4jnz$jbR?6#Y)ywk4QG5)AZ?rw6K}@e zhkN5^jhXKx=MB4sKg~(28{f|_7isa1Nu$+ta*)_$q6!j*7#LCLjczP{xeI>8Hu^ei zX%!=MXZS&tCy*|oHVI85h}3Z>Lf}V&BOC(*foh0SwgBVHXZ-WF3BmCZ{YkDq+qB}v zOwz*QznLz}R_(cQ@`#IF!4shmgTI&k1bPl`kUnZ>7Hbf&yL)~1)=xI(Mn7iYqzFkg70UVct<& zN9BSojjRz(?jL9EUwO$$r$*=o+;FjDQp-k4+}D1%DdM~!k?fE)V;@b+AjI#O__pEJ z@UK@rosRdwG(z#W>;j+c8Zuk~4`>5;#{3GXn~KaM;8vO?rtA-% z-;}? zS;Cg_wf^mAePBN$nd~G!JER|B-V2| zT^3rkS{Z(>tHz_lcnaf|EhQ1~BIoJcL6p@r6khT=dYZ8c>oJHi1n9a9PL=VEaI{cwqhzk2W7c{TpA_ zf>Ljc%oqU88b)+{XQE3(BO6601&z-|Z?Ixhk*%|qmup)+DWyYar}8fJ3_`EjgH=^k z0oBwok7(fLf&DG)U$vdDD)tc>JNA%DxB4v32K1WAt7x9LPkyvn(3D!?SIxI;f|SXq zJvGM**dKp!XxMgmCERaK_cNr}I*H5aKhic-Q?fU|>TtmWVPgr~+CW<5>-f8pweamw zxSmt=;&7>Z|5&?zyKA27^bd9(+k0E@3Y@-w^Zgp;r~87;*T_-d+5Gw7;e$JFw;b>? z^lAvCWudmH*r&0H(@1t3S74*k#PNWlUdN*C3p&4l{&fHI=fbSWynEtQNK1YlWo_ zgd9osGuH}FSi?0Q&v~wX!b;`)C%$_zbB-f9uXZp$#4a+KL&(@~;?0pmhn~tO#Xk$q zDVW>0>i1)L+R-zqG>+QYcKVJ{x~=;Lb^_h6ll`caAmMm9ujh4I7b@7Z7zfk#N#~Jf zt(BdB!-XWxvg-Sb?|>vn6BaY5)8DM*T-O|z+BKrn_gzC9MHhTw_0Ud2%!Fl*hqana zineKRtXa7W>|{aV#e)(V4{{}DZjixISTa)+?zDq2Dh+AVp%+jq0MrJ`4w!-1fKb$Q zMdaA*uGYbw2Qr4+o^ZT?z8A+KILXkcUxU0K-ns#TOFJn`u0=QHU=FNsg&+B4VZl$o znpE6vunDCL3fvkt_flNBHQiDBm5a4Jol(7x;Mp%nO~h|Ux=ET7cNm&&^L59Z{7waT zgwcu>Ru}2THIL%qBg7DZPC%LA<4Os4d_{We1uik2QK^Sna#cK&m()Zn)A{9-yymy? z_s-@#?;BhZ*PuHaUEGmJ zCA>`_#d?S@yu91R553!eS`x^7+1B6H^CC_;({96JpdO#ExY#E~V=5+H6B zDh%F`{R6*KX)-4jtj;spU%#brDp|Eq()=w&du;bsnL+2^{f3Hd-JYqC-$!^(B$;*11Xu@8iY*~bz}O-wdNMH>lPdudU9jbv@PAM&br)p zT%ye`4Knqhi25ntImEnU@5GLg@qzs(`)#7@3Tl5%`ycbmPdXQ2pqGhi^wyFA3QDyi|R5ThO@ZeQyfe0ndr_)%HTNKTb^8KM39Z#!gqfJB!9^(n)Xq zxJK}k&u-VSor6XN%2y)w1oRkO8~^MauVFzK^GnlcMj!Q81v#_T;~8ZEP>~R413gI+ zits5|m#x+nj%GxA#J;X=1q?S|;G|5#ly-}!FfK-i3rQ5tH{68rh011LwSNZfR~2q$ z+OnNtpxJu-+qL7OYn~o)u~$BCa6D&_d28_RBdvwz^w0fH{&4&Ac#Dg*BHhKReQXRg zVA*ya(|yv`(1k$sWTwDcg`TvVxBrSe>}CS71R+hR0{}$Psu_e;0mp;B4g;?y8!Md; zW+3%j5hipKbs~cjBX`12JSSMAGh|mH?(*8U?VYEeMTLKD&Q|@d?4s*6`EYPJBuqLuzI@)aIa}6F(x7j}2`WY6iL$ zoSkTh)^=%kDIKi6lQHuOXSn7%rS5}hI|+W4QTA69ZE2?9m%Ob^n@+8NGVhH_gM@DB z(UB`jh3_ri*qQBN+-&^b&X3vHOyf$Po{as?`UNEV>O{hdy#3Fr6eq7QC72-?bq8Ks z_2kavMh8EAit$cOt^pbfA_&OUrR!lr04Kzbj_+Qri%!;W+!|V9n2;Tsb+G7o9@`Cf zvjgKXCV+U|W3;zqZjGzIW>{cx(s#k)Lrqo)wclKyz5K-!#zm)DBctoCKQifTJpOFY zV83XOq}luI)BtgsJ3k;FPtKxg$b61O4q?^g|-FTL7)h^N$#L)Jwm;E)&NhaDD@ ze1kUqs@zN0z6kN&wDp@TZr){R5Raf2_+1kS4@|w_&-wbM1D-;%DwO&g&u*V!a%+0R zVV#-Y_Vt&DV`p$I23gT#7rqTEDk%Zi2dVN>^}ZUL&-x{ykl{)Bb7?d3aVKrCNR_YT z3}L+)X3W`{ZL`Z^ecFhfluO2kQ!44_d1PPvR{d=}mfn9}SF~?mn%fJ1%@lRF8D9f< ztyF_<38PPT*a4g=mtF5ApN-ZIg!z1zc|HIUaOChBvN-^tfv_Z+qQw%Y%9SXsR$*(O z{WvvSIcef}Rc@#Rksh_UwCgXjL?dT52(RePoHp5eye02@KWhz$qvSe}@epvzc0Vy)Vl zCLrmOEF@F;aTMgnu;{2-lVkHNeT|x;t}wu8`Oa9Clz46Y&y`Va*nc7QFXnQ@Lrn%kjn zVgB}sq~nt#IwF6A6P{gA@_y18cHj7kYlBYNWDI9HO?jCE7^)XbT+|ajUOyno4m%LF zY4LETPYn{3k!!tIa|PZCw!0PNO;;hA6>DD=8v zLZd3_=Fp+AfmGK0%Z(yAnVDW7ZK+!|j<+!P)D(txCdP$p`}ag1>)-b%f55Kb+T_Qh zPb6GlKR^0(jxOO@(47}Y6o(wN*Y1A1ea%C?l;I4uV7n``zgk^Qi%#z_FnI>=N_FS2 zjr;0!Re~Mi007sV*W1=NM>y;kUM_p%#K>!`rPE}X(a!E)j_x^l#w{CL6K$MQl;H>UAJ>Cn;y2}lk_)lvT%V-g@6QvXgOTK(&W_-kq`c|TBn<}Tfc>Oui?fvD;mjH^WSaOY4P}``Q z*!4i0Fm0>gy6_B8Y=O<-%*L(|9Dj#Ts(G#SMN9kkpN}+3S{d2Bx>S(yr5_yOuIoDZ zt$GzMd@D_~iIvUxKfD#QB+3p!T_JmDm(vaR!E%=*ldx^GME8$56tOly01__Eb(jXn zG$;oy@JhI~4rDU~KL}+dZcgYNZc9B4(CNZ`N)&9pHYv>5uM;IBG{1pLiCM75x)r2l z<>wzL!0HJjFuD;ko5L?Y)mt6f>3@9Sj@vUg+}5tmP>u6)4_Q}7$-V$^ zhO0U2$iCR-x08;>;K}_*tisiXOy|a*`A*xZPa-)zSFl3@lc7DzF}L_mZq<#pQ4R0O zyEY-R+#0eQ1DKx21etBW-qPRG@ViLwpnR2~m~{3DyZs8QHQ1kL7{|SGe`4YgZx`Ab ziwC%TSFxgC&UGc!*dNiCI&xJf?B8SY#N#{Lx_dWNC#|NidOc4jUM zIQ$tJwyc%;-(O;X^Z(mV%R46*00CQUb5H5Qo7EdX_rTQrapxi|VGa|Ea~`E9Z{XH2 zv()UVU!p0%G!yjDZ4LR$FK_S8)GB*ynRF}~SavM(cLH()h;b|z$D~u)?_O+U*)mqY zfx+C&>%0^Dc<#t0^8U3!WUPCkM)wg_>d{d=Hy9eZIQ#^Qu_WO32Bjt&ks<4IG7t zg`my-%in}G-D1H0gX6u$larq8ur9)A{Vwsue3I@jhJV*ncRPM_op8`>R#X15V+a`l zzc2|nKq5zngTGVhY&3Qc6tDj{5{59>qg?yez*0OcF@4ii8_q{JI*a;zh-5fVbO9=# z%81fAE;r;UOys}l9M}7zw*@Yl#93n%1$s$h4UNtI>+-8Mqua3FF;BvKh+Q!bwza&oSEyT7n z)f_aGW#m0@LJODJw~_$S`_T;BpA*_{gL^s3p{MnST!6AT$aC^Ou~Pqs9{bA>qroq+ zD@(DfDE|!Dmm8XwHw3`@P&H;3<8P!#D1S}#{FNx|R{HM=`uXOHX0T(XfK_jG43tgN zo-4m+G(G1vZ;b2qC+jc#{Ys&o%*iy zB#Z8Qce4l6v`c4^Xdfs^nBM@0l2-EX*8_j44F3LzSVifF-~|-fqV{P3XG?%9B-F4k&r}PtN!=( zVk}N-avo!kHuYT}nrlsj;2<)#Vz4rAP)!mc@Cu42uUsWI z*B@NTwISOc@|u(-=C@%?w>V=?etXJi2L4(Oq&1U!^Xk~A47VZv6qmdGaLgeFc4Xm6 z5<+IGkt8x!LTUpU6_jF6_>*Xle`zBWP$+kvK(P1M>6O3JFnwepF7#Ml2|IZHd*wYF zuU`JzbalDvsv*)&hym<;yQZeZ&($1@loJaD%?|Fd_T!juXO?H12Woj@-@#at@|m@N zk(#g_NJ%OCT~y|aBDb1C#s%U4ifTwraa(-Lai@Bq`^kZSzf0zj?b)zFa*0Xi*4PTk z6L|-hcdWYLR3$ul9VWH`VAFr;Hjk|&de-~OZd9==%fmz(|9QQ^A{Ad)-3#~d|DL)^ zHuYclG6g9%va?r5a}Xi*3@yUIRbRavK5K)nW=@n?SybD{yoBHl?64pt0e{{LUbFKaMZMt9NrFOmeHTDeI5NWp7Z4FCHsC#fdjCQ##}{EaDRm!Lf%@8Bjk`GXkB9FOg&CDI3o$1ISr-5@PEQibMx1B~@|V{G zT+kaSH>d-41)pBnco=4i1jgvU>b`BNO)Nzv7CvDtF#7M@#4}Ceehd~Xw!@gxAM9-c zrtD-G2s+DN4yU{yxakE2wd#?Yr2oV2AS*^=gQpCw2!=8s9QXs~ zTbjmt{15&He-9=WJ{g}0tPh{;BX#P^u^E{RUA%4^vE#KYx`7{hNP{`@{2};y` z5O53QG$tl<|Duc#P)LqE+rP_80nNR^_WV8p|7>a1Kiu2q_oM#(kI%nzHtD7@CAW|1 zUF~IE|MMFPjwlnnx{)3wbC8*Av~m>jv`tK;KGW=+ed62;^b<~z7hx%hiSL4=N13P3 zyj9io&x!zcgj*7(c6Bs9$EBpSLJN7J$cup3kKzT#raq{**=+fo-Mz(D>uE3j@xal5 zdH{($aVw8)eh%j{=hDZ)DHC6#d&Z3f{PmZe z=+#Ea)SgKk#;Yi>@A^M;Ic#0}KIRqpx0Gz6$b3#;edJmEtuY9DlT;J2(OFu{!r7voskRyxch9#{uc)1xT2tWa z+^A(Wu}|6zP~e7m3}XjpSbX)s&Hic4thIuBBF3l8JciaB(wO+QJ92G+a9Z=}J*&W2 z0CO8>0bVZnH>tl1w_ufm`-E5}iL>7YJ5rqe?5<5CHSgM*g&)|>mLG~}J`VT}F28Ai za74i?`D-^$9T4eg#bG}< zRru%jOjhB&0Zs%Q+$&)**JO9mq0l_m@eakgzc-%ed_$7Ei=BoAf)}RNPD>nv{nc z1FQs3I!TuS&DhfR`^8b-vA~?D`0G8B$M9qDGLRvIbCNjK7KgZ<=+C-F&ze~<@|qhp z2>%45Do|mzymaZX1Dz2s9N7^Nuc42v)8QU`6q!|YJ&uMq7RkxP>KO?Rq(g&P4H6K1 zGh2ogZhPqm)eu+VJwm;~#s{7e$yKZEdi!cyJ{5+=_fOM!F;d;p6OxS*8q)7v&iU4B zBMhY`1=?3W1|2>*ob3q2#JP(%el$37xJ zy12R`^^HVvn8!F%w_B<^2Rq8Em{Z+wcL}2)vv4Cil+jTO6m;}fsfM#tqRJ`@yKW90 zCvF65%T(mXhDW6`RFdLg(RE3!H4i$=3z=B0R0dx@_2X#|7j12S@81p!)*|EiX+Fl? z67r57@WwVP|MRJ~623J{P`D{v^-^x+m$REQf9JB;TtzPMQT3}i)U zA3>Bsmk7xs+5v!P1?LJ%%g0(e(aNA|;94i2dbhZke<^0}x`jA`yU(-<>2|}M$?rx8 z$F<+PJB9w;l<3TH7vtK1KdLi+?eZYlSx+d9%X z9Zp0(xOt`&V9(l0zUHjiea9&{*1)a-x{k>k)SF=O*pkv7_Sa*RQNGADmTVZL0S>`Ld?H*e915oE@K7 zPNQHdYZ+3s_WRSIiuY-??M%KNseV2-oZrf)Wh^6)#!~+@+(TU=OJUnq*jv%PZg3{Y z8XC+U{xUSKPh*YOjDLI6v~TF~&m}kEa}I~y;7Y#9Uj|7rYT0qi7Y_$GF*LA(&;W?y z!JhWF)+sE4jxn6Gy0AsNv?VgO!gz36%m;T-sHOnmHe_v_X$xIBUA z4sz`F8VpaSVFx9O@lI%@B&7vuy+qFaX7q9kzln=(#!0>I(L)zR4*K1tQs@ZE(Xww2 z&D!j-y~;?tIWOj8Y4jR*DG=@m#R--fmQIu+6M>kw$LDp{R|p=8Q%QQMlLjBEH|W_` zTR-m<*5WWxS=;FX7hs&KFh785*=s5~fb;p=89V?`!r*n{nv)&{jse)#-Bn5Yu-WWT z8uir!@rn-r1w-IUqH91J2OhcZQIO4riw<=Z7uX z&U!WW4WC=1f>~r$4C_))!&S8({Eo5t!aBcatIYpb}+aMoH(x%Ea+)cT@K zA3R(r%xD(XMqQdBzU)lrM}u5<>JeL+M*cg)>xL06Bd}SL+gQYtl_%KTUDFllZ~P|} zWb*3b%~p=R^1(UW1M*~SZ~$ETe4DrD;nj2_@yLzA5C`GKDuG;{OJ>`Qx1dcX4r&Vr zkMG<-jfaiI!GLC#aQtxO1|+Cr>52b-vdJslUL=XEmZ`YE`*OMked}U}zq|9P<5-4e zKju+=^5)WRLCpEkK`^)xl7kqRY zchq~XrFr*n1Bx&h)G*6K_6~r1Ob+e8rX1PHz$TvnS}xdz(4&gU*VwN{C*pjNL`iRTyL_K<@(?_MU9n4fg6SNLuFl3-= z?vs-!x=7ayPSDR#aoowogaKLOQU{)Fy>qPWRa`kMJeiw^@lL6g6uq;2&^mSW&U@J& zp*1h+ufFNqRHoN;u(!^HwZu(|?kwE}ZB{O0<(w@e*(kgi$sF|Pk|3JF0FFVM2pPpr zh0#fAsW(Ry+pcr#0oSgb=7#RH z8ohrF)<0Pt{HJC6Czq2wpT9}Iu7n#YxI^D|_xj1XD?ak7)Z&pAa(vMK`Dc04_k^~= zFXgkU`)^N!{uNU-Hn|YefdM50_j46B9Qil_i8Cd7gvM*5e-6DlP!b3?Q%Ax3)dQ3` zx<}CLAc?2&j`f+&%SS>lnY`X_966WjB-LhGH2tzo-_hO*D_m$2QJV$Z$F^_4sv5e$cc>^X>N5< zd;=y8nqD@U4jG}3^fv4leJP?(|4 zr#!XIMqcg*wW-3vZb!jQ>t4P|`E(?#LxK`krI)0JN=lM(Sqp zYpGU+iGwdrD12xPrJlwG-!M5JA$9)P1)c@mWt)f zqSH}jLrrU!V;a659%0x~7i>8X`@xs(^m`=&cnv~sg&R-e>=gH#oE$9md8c$xWBN$G zqX@&N$t0aLz8B{&?KR%T$fxiNgb_IJ1JvE7Ah&m1Y3gLL4VN5!)BW1AANS z$#6D(vT-`Ae6lr^qQ(;qQe~%sCmW_?G%lnTkVM4usK)wkGiQL*B>&;p7Gp$-YcZA~ zD!<9*d<7aG`vjE>8~caslJ1@WKOC4&Wm-LT4<+=VdG~#NP2PdH9>$#mC|$ipPJo$` ztdG!Yt3GZtYY*5dBq;m%vFUEyE^N}LM(jnAONT%308qQ-B_Qxn<~ib%lA|LhMx@r( z9`6D_hOie&H;gc_-E*t~P2%{Y^CIGsC&&WCfI1Z*%2sfl4KcyARQ6%>JCtuLi zsL)FcQ}iFd-?ioU1W4br!K1NGx$)=^onJYuZY>PS7rB7Lj*Ud-z8n9Db6 zhHIFQWafz7LvmGUq1t&Mg%CUF#j?u-S@iTg`EfGAKSDcY%&|zlm&w5Q^d3IlkH|e! zJ@q*zp3&2%ZuGi;+IKHw5roJPUzSr9%O0qs1@Mh=$XI7ti8V4#I&QlV4g@cILr2^pr%@+g- zulgZu>_3K1=dypYkLIMPFY=1bkHG8Z83|A6$p$*|FLmPd$Z0IiZnYU?zEJM-LD=0vXPxhz^*Z@?j?z>uyGO zfEySD5f$NaHfE*wPOi`+(_0#Vi}0;5EyLG~E_Y;j%$EPpuh!WptPoJmL*EO*8?SKY zJ9E+LR2xs$)Q#2$r{`U4n_k zSBePZXOvZ50%yZB$p1L0Z7&RYRL`V;xu#`mh!q84HDW=AI;;Jwb!A%Lg8m#-;3S(2 zvwz)-;1cenop>-w;L_x^;|RPI+p*nx*hluN3wRDEXSSXsLBBm(0zRDUYYs>HxoG(D zx8xTBgu^C_8o(?b6A)o7O`RtJ^89CTM3% z-G7txt>8M@?T0m*j`Q>*(C&c|F-t~{I#$_{S0t)Zj3oMdCLM{BBFkyu_mmcgyAku5 z2hf5MZWuACMLH#M-y+KZq*K!Mc2!o<+puBGAn74c6%oX|Z=qC^iyt>Dm#;(3u{f(! zCto1N_@W?zNQDuckJFsU~4_h)Wo6b+(^$Uxo+An{4ycY4@(ikUpi) z3-P-lmc6naLJZP<$iHsU4X*WaMbADU;~REoQ;7ZLC-d|3ybm*R>cbeM@_Dop&$IV0 z<(VwzwUhXb5LShZSSzzn`JK`Sn#K9cXEcF=|bv7 zVMh@b)_Lv(fv`y>k#7w)O57p1V=g>>GS4>{Reonw!^M)KW~MDHFKxz9*ZGLCl9Qu5 zigCp6s!-2SSWqDWWpBdCklK9;VKWadA4$HX0e?MYtL2l)q?g+a?XFj{A z8lx>_qg6Q#8a%5xfJJOmwVXNpR&8WpfPuuOH!2g_9d%Uab*E~t(RA`th*1sE z_Q5m{rx`(oP#}R(t8+_zyl8V#@|q@ddV6#$+qedS1D#67^$0f~Jc60rqQwUI5Ao7=^-Zkw3NG(&0mEnZ{Y zGy>-wmF$bQ8Afi{J-$u**>2xIz|NLEJgY?nK5qn0@n5pV##n7XEQQ(F5l)CQtI;`u zt9DWn@i_9uCO?YBCC>3ee|lW-;472VrhsqB zo#SJK+MWj@XB^7{`$ zt!e1Fgm#K0T)4ev!5+%m8{f-mW)N(JSQG%7ub)SH0$0OE0WO;zrS5L+E~Jhd)lf zzT~=ZobWP;!5<9we)q4Gy7UYFbWiCzAI+JWns4IIDnZ??B>PNPFErkWYwg=I({SFc zHk6ls+I=)Wtj)aJ=rRS?@n#m`E6*-^X8k89Cw#)X4EH~xzCh2>( zU$Qwg4ezC=mAFtFVAGjVZB_dyqv1wE9`EpNo0l~UgYMU?Ik)bj->#j#ck8*iB^pT< zidf`hV=7f7X~2pyORwX^Y(ygW`u|QXXWUcVh zXF?-tb$uuNjDH--*A}A;{i%0;;$j%ffxq(6KSOeF>_VBpWIG*(sLLqG!G`ob>Dfi*0ao_vLao}Kz zsw)hY6PGkM)Ypu0xfoI{yQ*fb2x7|+e8Zsp3Wj!zA@P@Snx+>@Wo|kOYmWmzuqaHH z35m>ek)vVdYIzlR>do2?fQ}_xl!U;%)h1>Kc&~OO;FS%{9HPBDoZ7CcT9u~NvrpoJ zMf|m$$74D5>elR6$rGx*yFN&tfBOyzZ5NzLTrJ(|512-k;(aL4UO zHsNyr_{13^L2IWiLP7jSS`z`j2&;iA&r+Dj_e31i;8uAtmmqyA{ z)MLU5f*ML)#zFY4qn+Ir(pUWNZ5p&o!h?}EYZ0DP{JVF$3TGO*!Es~DIw%de7;fE| zO^x;(vnClp5j9>LAf$P0?Nb2&XqF+g9qj=D0ep4p9UWso9%Z05u@WZ>=%T(mc`i6% z4cuiPPWn`fzd4K8kOTb?XIH)(k)-=)%P*_e^?@2iC*H#}$ZlZXZoLaFu2xRJf4De=yo3BK&2J(7Z^zZmL>v{DTCkp@*OPgA-)M)K5{3j6`*#XqgDn zQXaTt3zp2J{yIAJ(5Y;37_kuTiSe_;Yf?)>qW$CV^7&s)yl&C|5#RwHHOJdlCKFMf zc|8h$Vi3Isx$?|&{Mz)cFLcRBdiEiEC01B?*fadL2Kbv?19nR?KD9bj`p03wsK$pi z!F?EM><+1Y$t|cBiZccfAm8<$D5|Iz#0cQ$Gzsl}OMB<+@rUcuwWr>JC~^%=Aj9j+ zuQI>%r71QiZW??>5w*ySx~WuKYjuHltXoBNZMA@wVUqq7Nc@-cBJwJL+0@ksiruYo zonq1rjpdclbLQw-)mjl@TLNAI6bM^VIk_wn)$ZFwnirnpVtf*lzjyRPq^Vrp3)cO7 zJ}C{4_r~)me5os2>d6jgRXgZ=mB*{@;UWF0S)RO*kiNVl;)7OesFa0!w?@D(N6^$qH_|AV}fUrwKH@}AJCPQJUm7FMFcJDsz z7;>kBb)Y4133)dXt{ra7=HP*(UB?Q^tax6UmbNuZdh4uL$0l?GG-4g!u$)pp8?-HrhZ zyGwSvf0;d;v}?51CNU<)O@9k60%lM?tM^mPh9a3Z!upOgl{PYA?1wq6BnK3CoNc%l z7R#S;b^C0%z0iQ>5BJilAE6+8ydSmT@uIrt(>r1J_C|;er^*ev*FM)zhtpq}y-6>qbr##sd3>F- zZ1xA7_Vzoa+@!iY`IT9js!;dGmcs1djG3!NSskMqEOXP2?iO*i%{uj$+fEwLdD8XR zq`q~$8(r~S^F^n4x+DD`PyJ?_2zELX_uu=M@=6`KhLl{wV>V_a+*R2S4w#c93Acs+ z=Y5_XFlsoWMC-+9gnc;-RuM*RE+(@qZm}*`XMcNt5%OFvZZ*`NQVm|#B4NzQt8(Ms!SIX<5reA_Ca=xmLCC^z`WPPwv!RlK`7UJRBO zT_|^)$)BXcMr$jNk|D&vfXB(Bg?$YoLaN{8dfPPA9BMNTKn(cIQepaHp?muBhJwRu zy#G8&RJ%22J!czYTzeehb6B#g?Voa_deSs>jtU6HkHLgPeE#QH%4jrp$ZYeAm)2g9 zPpBGi84sz|Q2e|)+_()v;g$7WzXDu4v%^dgY>X!W@kgIubyx49Y4DxHT3DkK*O&~F1OZna;$_OvTovNEhs!(b@ZHkM8Rh9^j>}Wj`7J! zA8=m?jSYL=|NN93Cl_Vb+p*KpE z*2}Ly)8FRjsgP2c{=uu-dOMm5!ucaIOLgi@h#>U?K0Iby^o!5UV3qlCQSZV>m@ck+ zA7a1wn62lHmC%=WqxR`qZ?@Q-c(nnxKcMZXj)=a%P*ln|_sDN4$g!3ocQ8XHGguLA25~+ytLvz3X97lK< zA@wmzUE<*%)v7rZ5+Dz-6PvdGcDk6he~8m2F`NF_o>AN2tgl>WRL9z(cKCwt5VyaK z^p!F84b+ISrN(mw861{Vznb`JZMK;TAFw<6ph4+W-Rwlb#%dfJw8E8!jYN+lhpPjla{$-lQO&?}u)6fwC5M^l~;97G9( z(JVf@fw-UoH^m;CUm-xMT9Bcuv8{9K39lySOT&6~E0b%4wr}44fGusKq;`CG?x$U+ z*!ib>zg*jARG&ZL$U1C;4FEB0qpO=<;8)(L)u*fBvMpZLw9yz3+3dT~iy!5Ebt5kv zf_VdiosQnwx&3ELblOCyKq^xC+_~Lh@>ilZz>S95^`z4b(>qOOX9V?dVGhKN267k>l8IS7^JyB zrTbA8K;QAl(lkn;KKldv(>K{?+pLcfok#tUhV|s@5E$CtB5v)lk6^QP?OxDIXFK6q zP<}gg%Pw_(37OIPdPN8AI<83Gq74=j<-U^we>}>B3g_NQ6qy|r_NMQY8>6aG5*gW+ zB;LWGvP*6udZUa^>_39~)4hkJR~qkfE!iivm{30{J|I@8p+a5QxrcYH;MnA|eM@@X ztr>t=AP9xmD9JP)bE{aptNL25Rr-A7_>!(>&JPc+qTSU|!!>_sih4tA>}{t4t9p22 z;;nZb;FY(?%wFYX&3k!4v4F{8ulGtlgZR#qHmQvcbyZZ`?p?gP>=rrr>Z4OP??5NL zz>wimAI{|q0!+j-gFa{Kl)N^NLCA*a+ZTni*K#o?=+WMbwynRuu1QR!^W{C36e7gC z_JxWl4w90Rbj=u!eJD~-)wgYOx)&E5mUXn~_kc-DSzeRxtoyM;U1NdWu^68(=nd{v)0uFJ(`u5FEj3U2)pM7j@nwB+&HkTOV%|l$nH)SVqbx#` z>?3}YWBO(B!-M&OF?)}`a593i0aheqPr%f1bhXgj6}~S}en?P=B6?eBI&%M1{_h4Q zY6Z^xg)w+5`6A*Ht>Y!M$jRYPlxUqk1;+Haa#3(-=I;Bp?@rf6ofU1gx&S^Qm=KXZmLESKAcY4Mn>qEURm*>MOgjaK0)- z9j-ZR#>J?R7qy(DcuN1=O@+?BDT$@G&E0~5ANKe&?%2NM=5gj>Uv5<%Ywkz-6yDbM z(5u4JuUOgoCy)Peuwa~yf5#@laC#)+h>GEi`ycJPc#fh+*?Rr@O{b#yBD8ah!%b*4 zjA`b|oc1iHGH=(%Yz`vTiP-7$DnAOwulJ>YI=ix;h1p#qh_0R9O7Hc!OtxCE%fu_3 z6)a(B=1-n1<2A~pZ%ZqTN{KKYdElKf>Qhb$UCYaHM=1|(I$-*NHDCnHAz4+tM3I}3 zcoa8nRJ)xWfL68~dj6p_b>NjhhE0DI@pFY9~ufsOmM&0@)-s-K|Ogyd{g} z8#{~QYu0}7r`Dq%SC2_KwY@Hd%YJ5h{toRrn~@UL+X9H0aBeL^cDQAaxXR^*2ccr) zHKOuOj6cP>-Oruk{p}t6^vi4ea8q98L)++*ZnJa$&RpYlEBuGInk~+=EaU3T{QQ>{ z)MAWoec+sd^#nfvkX~hkB2ObMI`Zj;>qs;lGCVJ+QeK;X!t`mc`KVRku-ua5z*%;l z-CJk1RueI>h)9y7>klyU+7^IYL$78c6votpU;X!QtCajIUEm;Ki}Apfbwn+87;GQ0q>`1RvVZm*5m7{^GbAHkgWTLZ3Si` z1UsgvY_gDKz~RNh$LK$|CgDD7`&=%sEgHa6FgdmRrMvns; zia{6N5?GRAo`8=L`_eUeR%*vZp{-ja&o1obo;%p1Q5NoZv#w=TNn$jETwd!1qX8e_ z--U{DJmrG6s@&SEqUjCnKdN(Z^xg}rt}BS|7am@#ApIz(^0&#)!@}3nHB$1#zrjQy z_(8DV^1RR{mX)9n33E-LeE_@%eE=?y&x7}vd=#dHWjF4!13rfK3R&VL0gV{GLP`ZJ z7`G${4~T}IG~gC{`~4}^dEaw3b9}0goIMo}P={MqExt)Ac6D_`uU1(u2 z*CXYXE#`^qcE}eBddFn*w##xMvc8+ON_L*Eo>U1`xxBibO}em`|7mrUvmdC4M|Siw z85gtL`rFQtkb^Hg2qV?jtJ; zkI}PD<7t3*`|S%Z0{uK+yuhDP{Os6R?-<#Zuc1o5Ar5DBCiR@poevg9^S9c{Iqw%a zV5(@n*S}!i$^}nvRlV4%!Ys+5wRx)-su~y#cX_fmGJVR~R-5U72Vze?E z)H@uDL9+X{$8Nl1pCFI|viE}@NLYSAhdl>=EoP)HfA|oZ?2ZGkuD!$Ona$IY$VfK> zZvO9gJHJ$XEBSAUmcqOtqpZFBHYc~JtGAO$Y<+!er5bfQ8%$u`kNFt`^dSy z6WiWdx@y`8*O+rlNJN_K_2Dt>SMpN~ZZL@B+1<(8nH+j3SZ1K>ecU%4N70BKmi64L zvd?Cyz5L-ip@t0tx>|ykQa;GkL3{$Jh9uY7J-p+iACWG-K*wco+BxYyswcl!17S@! zIxOl7;2^w8Aj?BD{o;iUU1@j9kL9di$Fsk;4;x}Q`p`95k(6 z_bY`$G)RP&JtJjnNM@9kt+Fz*H)%@4p2?_;vWbwH6ha|oWv{oL9g_U+XMK;~^*xU3 z`U|el;ppi7iI>;wJfG+D`55>6?U86Gm;}Mr-2*Y~l^f<>N8g&Df?c3H;PB>fRJ|A9 z@irq2Tp`cwN}>6Hk{p&e#5csy9yHywnp7;dAU5qlJC?a;W7V>)qpX6kIwm)oOTUXJn{)sHE>rniUCS{!r)X8iTT zsWnDqYtX3jYcWkW3$S=@^!x~KOB=2%o)hHZv}0+QQJZnkpgynkKv)eu`qmZY>MQO) z&hmWvd{&HHAd(~UrPfWa`;~Sq=5b~(Pl~bJjC3iCA8qUt$uRQT)?(1V7H8Tb9{QTk zG$?{eq)y>K8O86~Z=>xBnxwYbauOI_93SSXAi5ypNJGLK5RoC$c;jfU=8Kcdl2=QI z`PYrn#OB=Ho$|8PI_>dDmJX}!8+SgG<^77XTb05?2Kni!CI%$p)#SH}e8CLVvkcWDvZp3qf4R!7uHi-srQgYTIGoNy z2(>3{)2;gTsu|PY>h2^Ye=UB!Rs}*5bRi%X&2d`IDNTgws%JXo?{Z&UFb^$8K>;ih z=V%wc{O7KRn|~zeGQQEgYm0^~(i`P~XCj07VewkY2f}R>TjDj|)cYpn1u@;+)to2c zhVLO7cr1zTj~hn5jdF(9(WWTAk4nI90lHen$lg{Rg)AMSK8!bjDl9S0opgSikcgf_ zpV(vFEb@a4>9qBotzrL_lxOEiSozd3`&2~NnSpDPBze1s3WA=zEq6qdlKJ%(>4?GB zHE5k+2TGLK+jmHw8GOVZW$I9qhhzbtLzOlVbjXj2)ZHV8QiBOIs~x{#e#POMkGg(~ z^c<}50w2MwndmK4QWyxZ}|>@ z2h+E_>?a9qLyrt^*y^5idm!RBGzfX!qiPbr=5^I>V3HxMMczu;toK!Qh*dW|e^}OE ziph3h53Ro=AYcT0uG$r{0R9Gzr4)@#a|*$H4MD0sZH0~BGhb{et=nQn3OyDwMXD|S zi)jbWB~ebShuT?&R~s8^Y0u6$yB8DzRJAV6-lS*dn&Et@c=tz8n%~n z+ImxsepPGeu=5sjdheWHFxz!1OGooMH7l+E6VdLkLE+}d-j!&dqI=Y*z-c+=lA#u# zwM0`Qkoeilt%ut_?W1dkhk%3e`BZzZJ6Df6Y;UmDT)$rG@mlosM?ppAz$TM~CQH8Y zqdfE}($7O8Yz&P}d|ycS1r>HZ2oVVy;A7^>q$1^}`{a9HFBmP^S)7~T?9#Mztb0SN z@sUCGJ?6NEePmH0YUr(73#w9|Yf}@64T!=@dXHrUK|XLgkr_=wDA7Q&s7nXQpV59JVc65!rSqRjPpnP5tW>D5(KJX(wF#QOnV>x{@cGcAd_-@nU#_0s$~ z+WXFetS7Z5i>k#W%G@;|ZIM&rmeuRASCwRhbUpGvG2CL|I_Y`u6L~Ar(W{hYM`G-pHRW}IE>;E82a@*&-okjp zu_m^8pPdR9R(w;jsIcoAJx=b;YP|P5onPtNwwgs{ZIzX?DnD8=yu2oL zy#K|QLw?=XZ;Ys3bR7z#HnwXD=szwI@j`lP_jox^BzuGSVGp zTw(WVmgRO%_^HH;>;`A&y+n#lONC{{9_iSmz4o8pSSiyBXe!$kwHl&yU}<}%?ViMa z?|Y=*+fk{XQ1kEcj5|yd-8={D--P!y3h2;dI_s`wV9m?y+LW5T2SQI+pWqXNQi*TR zBUOgzQl+oXW~+Yi*I}Fv_+BARquQodE)}y>gBc1oTVz6R_Z_F!XEyL)JKZR#1kpZD7`YpC>c(rc=mw|l1cg#Os>mf>$WSt8j}VpQWP z;BfA!-1!%ynpc%CgS{t}K&O&3ye4{Nlgs&ElGl_e0cgPzN5Wo*qJT?EPZ#W^I&=42E793{_Toorx|_@R-1SBe9rS0r5wW00I7!20V2dm&a%#NWgOuM%0CT|{7xF|e>{K_O?v@pX1n z{UP1cyw+*C=F)P!zQw_uR>oc*;XT4IJq^9wt_St6j_&I4Q|$BfJ**t|CcY}YtGqja zl6%NR^glN$Sk~Y&CGqoc7k3J~uOUeyERJ0ruV!9m-q{k>o}k(?Ko=>TpV~Ttt4&qivM=|l21Wm zh={Nw<84js)d*db)U)55sihXMZ+5R&Fly-x`)Xm!!5ocyn|x-SPRLoj4*SundD|5V zF?p$9@-P2eWM^HP{bO=Ll5yQl&j(`G>%WIzW$@IsW>$Z$m>GUnEv%#l@VQYbaX z6DHi!U}iRUS|eWcZr607G!OS?llI%OogNqA0ByUq#;lHvbAwSPhZIe-keuY2D?A*trI~gco)cXm?_GHg_RH+ znxgiGP?dl*KbP|-AZ>8;;yaQcDqJ5ldno?)P4Da*)JR6am5bP6Ey|1meII}ef<$)i zoSiL?hOb0yRyYN*toH00ft}SdFa3~? zB0I=Mm-V71{2GKqjlxJS{CR$aCwWPmVP{B*60`jsq8R*geW_eGgXPyWWE*5$$0zHq`grulp-TS3N1A-8|bn5JFd=;oa;L3@?JR)17b1k z6bh(d*u`o4Va}7q`Hla85<$ ze(Vi3U_x39Dj{SKa7|S@<(l-l=<(KdS*6&scjOpk>?<#<(6zFyd(se3y0`D+j-7e3 z=e#-tHpZ1T)Z-FKkxSQl_HLt+?|ks++UVolQx4N%d!pIc_a!uUb=O^*b|#d&iXye> zzGnnR-%?9bF9&X$cN zDP^rsz)_C(f@ea{tCN;5GJ7w1X58+*4vA;eC&cOJ2b?yIx1}V|W`F%Qsh#{QzxOKH zO~Xq?iDgTkW#MCz%$YF1Jf$R$q}TP*k-E{)awLYPY9Yq(eN$+Plm@r*%&D2es!7NV zIUXgejz`_i3qMJxvHYvgs9`y#v!eQq*LsS^VLBA&^2AG;HbmD8WKYSXOa<0L+Tv z$-9t>W7Be2oi|73f~T(ak`D|~7(lf>`}LKPI|V}>#iWb-e0uUjjG^}aarJUhtFW-} zUqZ=*UIOMaV*m*uh*MV&w%(}L7Yky{_Zc}Fb?jct$-#xMUB+{|rIy8QRg)IY9iCBc zwG-5ICu@U5OTN7BIYre7w%}fd2Ff>eV9~I~Ki*51mziSgv96at=g+^NK-#`%I1$@U ziuzC2-rn9n&n#Bup4*!gV-!xdS!C8F@8naFcjNuoVlKioa*O=VDWV(!0VwiS;PnlfwP`|G7ypTm4EIHVKSb*1v?-1?v3|e~mmFJFUZ5UvjZh zK6Rn%_5BnPvrlsB!z4-Swjz{@)MIGryj)i?6Dcv)VL zjORL~AGaVcr1PIl7I~?qy=97_?XhvTGK1 zR;9M;TOX2=k;!8IPvh2wXXllapL3h~E*=_w=19%&%egE$^j{3(dxjm+$|(#k0)9`_ zs54X8&1cj+X@et66%;o$4e=-zZB|VCTCyLgXBd%?9`QB}e2Ca{c<3$cku`p<>3({3 zKI+Tt?HLirzlIN&hlG($xnJ&U?B^WAIRVRTfpGZqovYG|Zh|eFwRG$%y?H&mtkwzkYT?nbG6q z@^oaXnVHYS?HnF7&3bOnP0J%Dt(Bbw-^uZmsa(>kqkfM|#KDqxbx{$O^ZMbXo5#;hY;y4^nA(1g-kb}1A3zpSC;*)f z(G1n45oS`O2z+fd4^W$t^NoX^z3LpJ4h`?mj@-%rG8dwjb2V@vrI$<2zgg0xgyLEC9ohDZ?Qo>clQ|Wsq?p=lHyNpskIuv5 z4cqtb{c~B|;pqHUJ8Q-rcj7k*?y*z&Q2yVdj_KWGj?O;q(@nR@pIy=VMHY73A$Nbwk(HoI3k5kJgt*R?jUjN1B~*|tAt_>0!gTYSl?>zxvZzc`VDp9^e|Vm`^jIf zrs_M^4c9Gjuy20cG}?M>Z~9k;AJ!pf=}x?aal=BRCf_qy^a;`~QmUFXziFu+phnFM zi?f<(^e}kudT@7_vYQLr z+>RB6shOY6l-&?FF{`@3zU$W4@iRC=nPSf>2_}J&vfSgoAFEZ1PD@r!qgyhTj6X-d zoSjlv!vcadRDOZ2Q@-5t-hgguunVaNIto~%ykb?z9MI<5UWn2jJ|5I$RRg*8jpYn~ zKj8Gw7By}Z%HXO0a`oHsY`OG1ZSh(zzm`^F7uyF16Rl|u9#!NhPg@RrU8-Jb{3d%; zYNF5YX|)Yz1tZ$QK?GVYt6XQ@a4C8g;JOb6EasVu_^}q4FK12#eOaJ$dDpOm6q#&W zDELlIHlQWS z8y9i?VS)epSI8O3_P)x zf8sqPv5wHg5g0In-qq^;zo=^j8SYgro94{=df$eOT7vWgfY6A0w=s9(j{;5_QYEpL zL7DlCteh}j==l5xP9dxGO8*_gT8+K+Ap!i`w>F4viGrewBD>3V02TDU`Tt8-#5zEJ z@n*T#`)~3F;Th>>Et@wDK@!x7TV5Fo9=fyt_W_i|&}ZreN^S5KC0nKX#-cg_3fowE z`{!cWVvEYk_x6f5$6ip5WPcCP4cVBiF%vK<)B~J~eH!}S|K&T{3>JEZp??!zMU)`GE`^yR^C8-kHcwdkQHosJV zTC?%{>Bes2V|q&is6G)#+;DO4pZtWibnubTAY4VgPnN%fjMOvZ%V_d@ka4bxTIc|F z%@Z4=8$L%(y8d4Mef`_(>^PQ++2a1+kL16x=j6c zmU;!Q20!ZpDiX1}?rFYM%bGO)cUkw_8MyHQkubaXRei{G|Jq(e0Bk<9?`W$RVw!v? zkdzfhO#W}`qNchGIceqFOIbexN4jFaG5vO+!Q_t!T0*Gh`cAj|ZlCd}l_HVUPppd) zcLDPr;r{vk=*FDT>~Od`m~9}Q5D-x8rtl6EOYp`D-NvTkO_pp}y|E zv9bR5q4a*c>^-qw^mcu^(8xvSj_n2aiEli_c0q6u#a0{t;qaJ$q=rdjN%SrxEcb(t z^%p0_h*`sUPB-ov3c5G6`+|b$@N3a3PQsbu>H3tVcH%!cB2~-< z+V>MsHG)D5qGqYJe;7gE0_5@oUVjsbpe|y49UpA~NPq8MThHzb9GM9;@@;bI+*%w=Mg(x#<7cO(Bm9m49zLxkh>2zM^?ZNPTFNPTR!_|dzF_Wk z0_|x3=Rf;Fp^bT=xz-$CZFoyt+sa+ryoibb$biIjb?5}ZL_xn8?x`ArUF+H%+q=kF z_Itj8_v|VVylfauq&Wj37|^+sgM~#Y;Y9JO;#X_VV9|}WqB&f67AW=cA}b>%f6M{; zQe<7mTE=@@x%+E_KmwwoGZ&fTlfpMr|CpVGvdM2;RrlqKS)m%Bg6i80g@gUx*))XzKnEJ==!+IN><-5fwG_9ZR}@_ z{$9ZD?QbxmuIE1CAgm=|vhY$vbxA-eJ(KL~h|kb3_%3Mq-^A$-edOKJWo9=jxTSld_Kp(TT80V2~IVzK7{h{M$*=-u&Z zIioxGW|B4J+1B=rE?h?U4&_w1{((P2i563M!SjJ69tj9R+Sbp4HuJX^ACyF67Bf@j&_2r<&o$VXf3x(FW%HfZ+;QbRq#bl8eiQIVq{@)o zfCr*a@08c@Hf?rAE+zGC_Wr|>FMCe+TYlW1wgp@^WEa*2`u-ZW0IBI@U?)TC11Fj9 zrHEmHD+RBpwvZ7Z4zR1J0T2P*3q1%N;`&(>f02Ud6gYxNPf!w3{YHxuuW@#3uYAZu zmHmwPR)`c})c`fnLz)(fdHjWd23s4csj9-Ml?c83v5Xr*ahhA&MRTP`U4}X;FO_%D zbMP=+M2i$fQouFvN$@eyO3vGRYs4=}UElxx<%|O(-X&p%4dD?_Q~2r#$u2!FdO8oF z146VLkqlZ}-;6&7`aGK6^V~ZOB_dopII3@*Jn6~gR5nr^Wlk{RSZLus1*``2H}}2L z6z==6`{N5~Kd#+xXjtRwb~t?E;ll3+X#rOX@E8%yHmE6Sd-j}V`|-`OiR{RJ=Jzho z^aU&IzfO<27TYTAa`S0M>`Ry1sMo){_3|+!{Lof5$7u|IH_?nnsTlkzz~k(GHF9*Z z;^+j`ALa>IA@}~3I_$!oM)8Y)52JR!>;59Uksu>}KSFaFTvB2;z|36aj)Yb$QrXDL z!?e5GxZ^@BO#xvX2Nci`pC1rDn7#jr&(XfV;)f50QwHdkFCfzqYF-?&Xk-uo4k)ky zsKon|q-iTSEky8q&s_+EGZ60wU+@PK8wpa7)(_VT^y{Sz>>Ydy+FfTHWJWjj?B1N5 z7ZJtZM>H9sd3VPk!HGYMh^1fMW2h1Qv& z%K-WeFpv?;if65%PldLKXmG)j@`Br~aeL`X(yezES2QDltwU){2=5Q~7mP8yApQbB zm%=AH-RmNgo4lCvhd10Fi2XX|GWI&Y$5JDt#o0=f`C-cf)JnBO03jgV#QL5n+F91~ z++YR%R#Xj{wDE_`D1pqNB1bzd5p!~+FSgj?U(t@`_yM5>%xQ>1(HwB`3DSCK5nv~@ zQpSNj6Li6c92jU){RstP;ztby`D!o)9Xvt=Ywrgfuud@bvJ$ErEYpA5GNi4jN+X3$ z(MaQyJJ9}`>BgPd>KEK~*gPrOJV=D75WZp?2R)BrWVxD*Jd^C;5ulu7$~{ zxfgtTrEj7FT$MjIK?R9cH3WzM!(IZ&2Ko5~!Dxa45);F;R8FIFTa>xB;IA)_IE4Q3 zQgIaF%VWTgk(kRduya>{$}#5cNL&YjG8Dwa<2L=>58*F#ia4$@wYlxM#HX!wU3BYA zgy~n@;Uvch!7b3`A4DP#2=L5#Cy}HAE#5S<1ne=;0j~Wh{aZf4TEeYH3PAK=(2zWK zv4rW2#ng5?^4R~BFqelI1At47HHBRgk%Kt!LdnEe_ zlcu278SpjHmrolG!7ssfq?|$)TzlurtE=1zt|x=FSAAq7yGNG12=MH`K{o_asyv83 z8I8?!+vK7mM(o3~PwlHmnaEdb2th9hVZiyqM2#1I+C;R<@Z=gbnJNW?w;=lztixJJ zZ3$jXMk~zrk3hjgRD9w170RPODT*FqC5KoDMh@OXexviZo{> zW_unr7SmW@k4(}koA=?QYW|wlKAG;;kjIZ`6qgr2LoiN(MMdcdOB7$YGwD%H{53zC z86vUfVWx-a9j0&M5eI#!X|&z79D5}UI6wuU+lO`@wsRPbFtSu6e8gwy`rdA1Gz#T& zey#g5R1mtAmtXmGZ`&z(B`fkpQXxM63nzVggAF?sxdt|q)>kRs?RV}=fA`6 z0xViaRXH;1`c}wGk8(RXgzbY6E;BlgdZd0%3+TP z=lD12xs}#kw}!8TbFi@-_(vVayG5xAT08GwkG~!#llIt0g=UQMnwdBRH86y(3d-#UF?h5NPz51VBrGRIc z#)G-b!ZCh%W}C)lVa zO9MzhXeF}ac4r1d*n`JcIW3Fv_1TfriLE$iXtw)OKF={~JL42z_hcxLN|wz;Fd93h z)@jyu*3mCL>{>-qC0PPNQn_)Hn01Ak61@N|zwoJ+;!CG{dmb9h6KC3!Ow<>#SyzTF z5o!Qj0$P7~a2c-iM80@^I+aFGm&QeZkIyrb&If)^fmH)z&4l;5Y3~QlD~aQ$aIPSX zK&yzL7cf0We}+VQ+ee4f3pWn31NjB{qze$Q5j4{}&Mqb!o`W)i+}nAX4=wI_+~akW z8tRHviY*9M(dS3=7$;r2X0V;v_;OBP#=BpamTdv!#i@*a0f{trEllnW+fLHi`|Q^- z36oR@K!~6LLk}_D1A9FF9not4oCm==27Jrnmsc6foxoFGe|~jt!M7ukD*+s0TuuyVQ)pgZY zZvmBzw|Wwc7=$*GdZZ2qHjf-|T}0^hoT(;qpu{MIfeIRx+J+3glr4`5@^Eo z3qcN+LA}R_r0ARLxdw-!iv~AT;tc;%MyoXp`1p71c@Gbb1|#U}nm+rF-2A)*w8@eu zNbQ%>1Lpmc=tu(qvYr=JR82P0o3M zWT*Y=7lG|3P+iy=h}IJ^Y^#1vX0vael=1rT|D-Zagzao4@^S%k%t|ZC^x8&;Kl|F7SCrSC#TBXi4iNzhttlWWIOWD&y!@8mXx6&qKR@dAdmjn- z&c8!c5Z|Iv*ea1Pr6HCcPpbfq5h1F_o{0%!#A$n;yB~8%j0#l8)CNKJz5ZxlP2^Pp zlI}q0CcfQHE+5bAe?ij_#B%awku{~#=-dt1yz#i=gh0R#uO{LF$QK9=Gc9fUa?0)h z+~+-{`6^Bb=qb%GW!^>a0}@P}HVCpnEgV>0i(GaG^lrqdn9!@j^nlYevn$-NX$?{D ztM#QSwS$h*A3u)GSpcONbSTnMh-Wv1K4A6|p|_S^p=*BM`%Bk4WC$NI1{e{b8LUoX zY5tpEdQsacZhw^dz<~dL*j6Bh(U}{8b24*{%}&ft!qHzzvZek~)b9OTCU=g1o^wqT zPf4i*DZq71MtS7T6D}(LNM?uSppyqkxSiOPi1rUoI;`SXUBt{ z@Z-)uoU;7h4`{njH}6h$(NQ#M*Kl_F=!C={j${qyhZpr%JKdtVo0T@9i65CPmr{tpPUyyJ!yDgq$zIGe8MO5M&r*w1 z2QuL0h86PyeQopoS|Qzk9!2EZ78e1B!4TuscTL(O=#yIoDAN25RnRaBEWKzyK7Xv- zQw~gPJZ%8gE@dUJyN=B{BP#^1bnBL8JE5h!MosRW6CJ9-Dku7YncVf@FX5TmNa;J1 ztcGyCz>>>|GF5cm-8!dMYuDB_eY(Ofar-@sqo5W29S4P~C|b9uwh&tpZaJm}fpw;H zKJ!f?CD?fX=ZLQv^@r_yv< zgta~KYH80t9*vqk)PA?ES#Y33135EtH0$_SlZCl`#ECaGPE(DasG8S+O`6 z$aKlPi0`&(3ES8j8#gti+CI5wOb1Dn2GR8ax=aim=Z**-l-zMWH4chIb$%Z6h zKEzW>3^PG^PULAg>$LixF2$9IMEC9x`@Q5EX-*PT1seY_j@bl+S zH(S3C9$N%1C>3=I&;;?2C;b~i(BJhLJT8 zAT}_7&UbWG@6B7I%}80cU;OSgG>=_3BF5;qhS-^@?3eqS3SO8j>%3yEam&BNc-UgA z0H8dG7vYt@Igw<@zX#!3yU)FnK>?U{IvEt;Vee4YvF;f!KG2ixTI$dstYpFC zcsW<=_U-V8=W7^OXII&BGsVrz)GsESd})rb=(I-0>#OKe{w?DXmGMVJ;hLDif}O~5 zW%e>sFvQr}i~J0U^r>Z(#}7lJg9zoJdLNH+*u(KJ3j0AOSAgN9AlE5V+_>d_o(%(0 zSnYQ2yIxqMRMc_wQJCxOf`WpAu&C%=tPL8Db@2rCq-@}3W<&r8tFEqQ@Yb{&%~m$# zbE6+Ud%$_y)xAfLTe)ZU^w}7h+`GE+-HkO`j0%0zDbwv!5R(#lF?Or|?qX*m!ogg= zp=bFN8ago15gZ$A)*z=K<3wCv|E$qWq)=Id`CF0qlzm+|yL`H4x|WuqgV(z^uRo;} zz0xmCk7ua&4hhk^gy#fWGq8Se@@xN215o6Yd>$D&ANx3`>N>o(3sC>sH~dn z_h$>?Sa-7zrMi%PgZV%=W7sxdCtt;m3%Qba*!QLSpFSAbSe`i5JF6Nf!9Fdxz0`Va>jG zPAYgOsnoVFs=*vhQSEyN8CiF8k2!W!Gfm|UO|gX_wE~t18xk=Jr(eb77vUiUFczh% zzjyz+KU)=w0LbJZ!5U!@ru*X%dSM{^`*X@`dTj!(0i6$@?ZA7zDyqfVW&O}^PR=4+ z<1x1INNwBp6=TL0Nu&BnCDVJQcgK3mZ3~;`5>Ikn69vo?MAyBvY3GZ=^8j%o;IpQ| zGB5PY2#?@j{1wV~-14as;@b5aDnjKby1zV5)=w+3C_Xs%hBrLyfrQ9q zO5K=G?_Wi^)~U9QBTqq|hTI*W3L2>I;SsK1P^JQK5L$p1GB0+xfj#*RYYFk`)2A0x zE*BgApbh@mL(ZJa!ib|95E8-#Ljd&S8wdG|$SyWe0-Pyv|TT>ju3+}n`{MK;H`sMeh?{pzQ zHTd=(|HW9MO7rbrGvr|4AE7l~g$lpc3B{WBVarW?R+MT9b}}?YQdjq4w}|wm%T#R+ zF*eF*Elvr2J)6z(zwtUR;Z!I>7hQ-d&4UM+ z5nwpE`)HcX^+_JIyS}vqadwQ7l9D)i9-JX^gh}D3+XSd9T*;O7_QD&R8B-iH- z{!k1n?o4&;v=h4aLRLyDqy7X$a45k+P(@_Z$Bw0pUH3Gxx&GE5@^kDUurEFC;s?#C z#7Xk6URh`aAFB(DX^-9V-W1Ui%8$ro{tkOVGvmf1fK!P{$VlOlA9?(qtDVz4v84Hs zZTJ%CJV9O`u}OTe>6Xl zXRJ|kP_N=}xsMkm|M&s&dQYzKm76JZ4{L|4d*&to=`9hC;&{MW#TtKOrL)p0ic{u% z6tPI<-`lw>mXsRg1^W7ckN2ae6msdr4ln=_Ltx?A^91$T6`?bBA0rYmV(AKwUBUx| z2_?{Rg9O)%8z3W7e#kg8Uu}NLj;8%=F0ct@@9f%6aHVHH|CaOIJHTceyVbS%4uqaC zh7j?tJdB(~p%!$gD?+wA4utQS+I8OSbf{X^caAJuvGZ5S$u?o;7cku?&y5vC&^K95 zg^iGQxy9K0x)PpHA$!p*EQm#{rFj02S>4UDWn??t633~9=#~w4isQJa>KVzHf13bsIcZue87Apyj zTy~yPPHA~3*uk;I(N0;uq^HK~=*i;G$65ep-R#s^v7m$a5u<~oe%=MN6g5v2(d&!# z>5e{+H_!l9yqWX_3C% zRw|XclOKQS^>jQ7dGXA=EsgCddorb!rN^8!6Ip+Gy=^;a-xoWFT zGzn1dM3Ir`(cDCChTIOREvS?*I2175{3O*Z<6%*R(UnLPB-!K-?JVf^^hG7a+b1kB zNvu{l^no@DorD<4Wom(UCeS%gBaM)(`<=cl@6LZ+?c;VDvyMwrnIi?ynnvuLyAauS z*yF*k{)2)UdMKF1qbWUux*?VWD%;p2hY)pI2h1QhCXj(BI*`ky-JmReRjSQp@wKo% zj6Nfo-^?wp%<7V!xDrS4o;N3%G?`dg z@FkM`*qVRs<9u(*fr3(#3ZckxHzO?+9f8e;TZ6F9zRrK$n9?80dY}EeV4BT1)A{pC z!L(yqxgw>H6P^XwY>xjHdN)2gXP;=?9g$FWKv+S$MX?VTu<-0xof+0a=N`WFw0j3f>)FL2qNpQEx%G>zbFQ1wF zz4;lfj>i(daWfI*!UQN6N}`F1)06&=lr7gaawoSjY4p1#1;t$8*-cfbsj4As^WqET zop(WRXqTzkS7=hjt*(B&OCx38_W3A>nd*g>R5wS}b?>noUF$-D(j?Xgx?QIZW>aKq zw|rJD3Ek!@IV`Spm`S&BXTNc@4EH1BFAfw}?lp0dj7L%q_sA38CBm)qE$SkYKDdUe z0PaOo7LPObxQ+|ED!s|0zBY1@C!g@~`T%1Q)(AY)r~ZPgzVBgmPxTOgg`N*i9%5Q# zQoy%w@hYXP^l4(hoodITmZjBR{3?!w!qczn;m*)3&zB8B9* z79V=_bumGj&9v%t&Y?mDONe;(@u6_MDpUNM0>i%R!8vbZ4LwFGa>zOvY8H^Q71%Hm zYl`S5V^kbUN8>JT-1fH@{5;8vG-UIvgq33aUVP0G2|w5VTO{E?4)rs+j(Yhjd1-{U z&>v!tA3%|XaO)tCL=XHKMFBcbB$Q6SMJbD98FF49>kW!msPbdnx+TK>d)D2{8K;7K zQ1^(uTr<<~ftvH;tk`xswX-p{@8?FdceET0sejm(wm54(6`gR)c<`NfScIXN(ESr` zXLpiXJ^fE~y;`8kf5lOakEV55)`oI=*VLP~&P~;$3$BJmU<1QksFCI}wetRxMNH=5 zzzaONu1)G197`2DBon+@9$Y|XZy?-mRpy#)=USDw!&&9?Y<5rq>lTe8g zG(_)$c|E_=2MegbSx5`@q-OnXb))#I+>0wqJb?66uHUrshVO^8QX=DD_4yO18MdoM zo3rP8U}0WT7dyK^gHXLv)3hVe{=jAh-h|S%#clk0vc$YN)Y_noK(0Z*J(*h3IQD7X z@Fop0$@t8#x4QzPUQP02h>O;fw~H*|6)d~Quh$E|JV+c$BKK84g;dpNpFPKUcl=wS zR`xEKzfQMUqtH-ZyT`J-{O)NpDeiMdo0N6#XP(T`ndELCn3Ps{`K36)Y+(nl5>phZ zSvYtlDZ1n1T(fDtEg8;q6n*ihBn_)xl)R9FSAmbZSLW|OZpL+PH-TP5ZvT)`A?d=B z(TH=14cbTqkbof8m>i4T&dL@=Bf!s}YC~%H6!(d9l;xRfq;Z)R26OBsWO`WE$XufuED=8aW`^tAJt3AHMVI+k08W zv5utBg_LoU3k_WnnT7eTX^2p}5v^WsdJ+lAgh!Ki?;T9+Ad%4RV_@KpjH}39y~z{7 zV3^OjpY-OXA{O!*TaVCQDT!k30rlJwuFv*mY5jxVP zCZXqeqZ|0R^*!md>cb*iMsAzyrF&zZotBGi;MH*}5l02)3a2;@n|Ii2-qUt%gRp=Q z&9Zro9Yok1Nq^X!nc;arlgQ%9)y5F2_F;tjvzTf9+H^OyMqamC2#p4|H=`1$$aw`O zfdc;`88U>iJ5oO%U5AwF;$3fXO1+vhGKWWvfb50w7>YhLZe}rrcde06>9j_Yh}=24 z8kKj23GCbSf4`a)}FMi}p!<7^u}9KLX>o;*H`Qs>2-%0sQ12+zJe7Ntf8 z&l|rCTStGn-83^mnmZ97igJmAc=w#`<2Um5J$X@2C_XhdrvK8+R%cd5>tXuM;eDrb z)txaTORIFM?;MAMr-1jLyn}bUeQw8p?O42ZZJYTEZ)oZr&5NZNB1I!P#Y+0i45(vU zR8Knnrgu~QcKH&k?k*3annnleFak-|M+#o?i@GZ#@N8up7T+d3c0|_^)kDn8K}P8a zzb8uAgP2vD9_2s!afNZ_g5ZwvKhCedMErlM+_7TCdi&_!KToFBU;1= zG;3!qLHe|0m#C8)=Xeb`RY?td4mWqMFzYgNxh;XBlFqSbtz6@Ab~MI_Nv$7^d7!ij zt_CA3VrC?|wS-oyD>3IKTlD6ram75rPl9G)!GCNyuGeg!v5Hm|YWdn5W_fh@JWEOz zQ+hQIhJ9WgRa@0V%+hJA!*leI_K+Viw>&i(OB=H+ZsL!`}C-$BvKpu98g4!th*)JYjw#=48IZ6tTR$citWNQ92_F88dM2Cy$9l zb@hGRYbrKzvB+a&k8;btHi6;kEe(0ZbtkZ)1<%pqsy`G#zFy)dXeBL0r^c(T=Ax8_ z;yZ)b;L0mcC)8IEz~$Ps3*y@1xJzdiliHNM(G!>zBCMYF!SgLKPmJOYj$n+Pc(*j! z-fn)q_j9u|`Ec9|;SaAcUWKpBmT7J1SGrCH0dmF=6d-hP51>FH@K|2nU|cgegKwog zJ8pBqH%K-0%B14Yw!kxoh%=>^vMcGrD;17LM~bMUFP3t*jn24TAoR>Js)H44Kjc78 zR7S;hNmZv_VpTRWxtk)8ZGZgUddGTS605SZtUd2VJ&O;npH{Vym7q0QXC@gT(3jLQ zqE-=41^Ps5_4WhQ4-O6&K*xpu zozH0}W)+}R!mU%%j}QonF+M))14_w)dha3op4-ze7KbH7d<)|%E$LCChY$!^LYU6t z{_CHn!-QQrj+r#`XnL_D5Jq_&9X({8%Hkq|+~cQ8XD%;4iJyK7vs9vc03igOA;4wr?2Qsw!V+T^WV@M?B zHw$7j?|#I5H1wM$iz+-q!QIaM++W^h!Z2#3Q-;gR?4#RVNu8w9kb#l@=8h9Ud`$!I^)q4SQ$B zpQW53^t*@wt(dWpM*|-hp&&x#2rKY8Ry)P!WQyVU;d_E!Ta@s4^r%?863tI8EV+2_ z)OP}O2l;O=W*EPS2un6Fs|%irAj{P9>KQw#bj$fNwC6-thJl?YFdQ6rjsVkx(~DC8 zjUnRy|8iB!yaL}QpWm_Vl+w%kxyU+>#RJ3kjobA^KieHPV0~RR;(Xa>>&-+3b5#uy z>ASz5+VDc6O?hHv6E0Sw!nkmKAlYM99)>5hRvlr*o8Ub4gofw<+9)V^0RsYQe#hGz zCvb5g$N2uLfyU}m{h^qET2GaU$Oi^p&+fCsY!1+3)Gk*n%gB?1J#_NGvx$Q! zFcENm*jwN=ns{xt`C5fnw&mhbB1S4Xz(9%4Y1yA&lQ_azW9mtg zoVG;|J`GLnc@!7-`bhE3QK(Zf&K$Fy)dDS1ECs6$5_5#%2 zjWHnV6f|=L+>@f|lS_&SXFOk;_Vu2xv*8KNZn|A|MFuk78i{%Qn=2m{oH~-AFck8c zA~_(+l&c}FgyYj(Nf}+t!a-KPm;&XVgOhekHM@8DJY{+l*Fe+R`ga=e6kgiM)TcpN z!#%jpYT2AzLMiZYTxxMAO-xJ_ z`i*mL<$2$Cd&MhtE1m7z#zK_RhMgGsHWE|}1gjT@VdeFx)0+CX++6bG542jzBnX+x z$H_UJ?%H-tPm|+BM(pXfEYtM_ouqpygTpKXRb3N9*#>JR!ra>_sss%WlC#$a)GM`} z(QlilAak0|I%_{+`hHU`>vRT200o`@DXeO#-5-TtNF=HS|- z67CCbb(tomJE(FE^*Q#5IGk&-iMU5yd-mS9kG#sWEH%Qn8q>*m`pi9d&eR3Hh`ga< z&ZiRQaZY0%%k|dDOGZr&UymDcn$>3+iVwfXzJ?qb^EQ1KllFsq2iMmJgFx%^xuf^7XK9lEA>s$3GH^%qO z#;_j<*Da(bEEt%G2aI)kmcxpH(Bwd3OKl&#(|%hsMYU4dC4w|^=cRuP@d$Xg%{yLn zF_x?0bbV43tMDvXj8UQ~vMOx!YkKd5Y2zr@(^%VYmB%vfG@TX;7_q?sE1APQV;(Fy zhesbYj(v1R;bl^C&m(BY&>u*3b0?;!v{(E*R(<5cgNZ8Lrf(^hXP7vsyNZ5^FX-jI zqG~w2c+5sYA}@Sbxf~l;?9Ex`mIIFBEO;=)o&TdjdnaO!nm^|lI>q2FB85r$ptn$O zlXv?h^Lv*U;_izx2Rl!V$1Cf}1xvC8!;3ic(>ttX-)2co`_-ak#&3gYrC-6KzA*>AyCT`M)S2Ek_ZazFoo=~`ZU&00gv=J%1~Hu! z2dCi@fm-lP`7MG>8%kPY#yn;UXr1B@S6TF{e!KK;kTmAaq;a|7Ql9bKA|q_3bR-0w ze4KCNo_Up33f6G=r3td6xN?&pubo7!bPC0@r4SsbP!3`kPx=?h()S+ay$qj6E+)-R z87GmVs5OGqz!1R6vADc!?>Y3b(Sf}Al>6jj><{hDKTj)bIFjhQ5~+EM&!%xNHGS(O zjn92CFxMlE1U8Il7)U|1Sg;c##ZI9Y`$jM~ZoPg+QSScbn_0BQk0{%Z>~33h6^PAt zC^K_PZ2UAv6UJgt^D>2HKvy`1n>i3(#|*cd0qV+BhF*zI-RykNqJPvC3ouc8ZrFz1 zFozFsckSR&$`&(Hn%H*Et#@xuU7zYi zzkb-l$>p}G0QH`vh*9C^!LjRwUGag%@r@~gRUDDfZQ)do2#aVo)zJ#+sy^}}40r<8 zeQ^!OX=WC>3%nzTCN)=m7Vk1i_z%BviYIGm632+}=myO3g-VoX^F!O6lUAEtGF47D zxj!HH&=m3Td~Zf?H55l_YNv~O!l%yKblx%vi4!%Y@;YTx)HD!H3#x+484bY_?ZcN9 zwvYFnGMV~qK#|m06yox%d&OO<@&}V!(zDX)tl{Do=P6Elb5&gpX?h(eAG16^epcO_ z_N&XqP8W{uQ~P0fMK4NZOXsXlhWB2L$|IqtcvV&nPN-iw?7U&o_CPe<<=rRGGY8d# z{0b7>7OczrZaF(-?E7F-XR#hL>#gE{S}dq-t(c!DY@6uR;0Kmn<-Hf8>B2@{mD>Nw zYS<&?nUc?@v6|y&(5tRt=fIn_+cVsy%gQ_`AOK`QqJnEAHt|ohg9d4G|nt*DyalUiA#V_k7&XV4D zDAIqCb0j%}tu$LV#bIb}Ub^_erqrLBzm_BtRFelK+{hecsGqb6GahQ#235?%I}7gR z#%PDupwePDu&s}^{|Rbam_(!VIceK!9EUvdl$9m7^91TxZ0_PIZEceoxu4C=W2p2T z&VtmEF~Zi|M*q`RO=!EoYO#oLK+TTWczbgW9)N7y>?3Z)bybSQ${i1xKhN1bw$0P+ zECk*cr2KPRf`|bHIX<<#87ajh3uD%A8~y&){y0YcdowFQ&P8 zxC(q}(paccz*vL?14GCiGqdNmfoHyv2j(K?6cN}AK(o`E4R746tS3+P=5f=Z-~6#G zDs!E%a6ElV6pqjlyYlMsgx(vYO10x!d%bSP_C*e5d54wMUR@T;)i^(4+G<^3yKjr4 zdBc>H#Hd-fO?ki1v)PEJ3PX>|4`2T~7Q21p2zTKb1({2LTt@Lj@6?n;M|ea8$&X@%oV!hW@G7wx$k zzWt!Mm>F3}{PS$7Ym?LOeN+7yyf)6b1ZP?Lka7PGpK>GakknxV`lq!rXgF%>64kQnLrBnjLO@KR7O@G>y}f<1+so* z1)vkZg)?w_lKUe+!eE)d=e4oSd939Ui?)$#3>-?VQ=ll#0cVU+RiIl1-k-xG(q0twk z7d0d7H@6-;Zm%{J5qtOsE~iMf2O_6k-0f@9ODScsA*QA}w_2g6bJk$6T~pr@I{3XR;IIUpX94SXhIV|Q(Ch<1f^GHPOy8N5 zlHmpzD(%GbmD7E}Bv`tp^7E1g$>9r$KeE8}&yvmMJL1af!GU@;9LMtFD6(VnoNP|7 zg;cbjm)cIQq*|HiFeymF&J{Eo^!?f1XFxKLwPckKP*lqKylCJYm|qg8tGYY6;`@(1 zKO($3FNeF4hNr|zk%esP?5xjsr;ftUWS7Kgm?IrIW-^+coW#p2>i@g~ZVfnowI#M> zeg**!PHda|hbe}~xS#9DsB3yWH<_I?A1rf7sZ46L9yP3Dl6kq;e0xi7=RE^SSwOov z#kYh7SQjm=NpaU=MgpO)N;oGu_s!KQzXrq!W(II4h+HwKA~X{UGIChXD0U;Y6Y#VlLdGCa0EIM zvV8#CbitsogT-(q{q2N;q@@3ha>nTZrVTowf(De%4@J!n-%|b|%IPW^AlMKbkrLJ~ zuIXMi70Tga7SEU09JjY2!L|EPYS;Ls{?Tcrt7+B0DS1ALSjkm8$xey(Qgg4CmLz@P z>E`t;hxMNDAYyog!tcUF8LV88JkZF1z)G;>fJS1>0wWciim2->M!J=B+*}zVPbbeT zRw|fo4gtwGg4$HGBp^6HEsX+{5+oUaNE(mgO*JYYG6o5AVhpqw(;q%5Hs=WIif!&| zJbp%0-_5RSetd|X^JMGu95Y%+J|W)*Sst0PFQ-3$bZYCpBJ8r8B52!Z4cg)uYi80= zE$MDeJ$J@TH+{ji_)NyGO$KXM8>Vs8;J3Y3v6l{g-x%|ZJ5zfIAV%z!!7Q($?I$Br9#-9S}c$7#prtH1*ao= z3ws)LnLrQ7W9V_G)`Hqwyh=nup^)F21ovTc0S6iBEyCjenVDu zK58`5fwTD!E-gfS75C3KIr5(LGvq(|-`>>}DQoUIQNnjjuC~n0&&NOs1C-5w=-8vg80@CT(j&Bga-Lzp$mQsf2 zEmvZ(&HVB4le%L zzdq2zXIVuhKd8V2uG=_@&+pfsBUY3m}om4?4G3 zkGd-`^HtC^tLkX2n$*-H=|A=P4Re*9<1a@m+U^8(t^F!&(BSqgnc#ut0Nh~=^lwvX zxCKCo@!H_!(8o>ZokL1gcm!K~Nvb`?P+5BQ2Xqmhgu?aI3GW}p{njwifz**cO;k1 zNpq3ae1l}_tAo?emuK4~25bmn4-O<}i!frLKw~;w6p7W%g zjj4*=MK2?K-dI_BE`iZ-n9uRT?WK?3clGJ_q;{-N{}*1;_jv?Zoh}^IW2(ok3W7tJ;vS9K0K{f)nUzPkmICUW`51FdS>7lIc-LI@hHpD zQr+R3^Sspq64F#bKyV2atTP%mgPkp8JvW036WRXF)kPcsZLEVpBVfclrYy7VGhSq z=V)^2s=@s(s?j%QbGbr=%0hl~qDcj;XJ=Z9RdWWDQxCBQZfG{1<~iUR?xw4X7H4PB z!KDxNRvX4M#OY<XUqMcXRaV?8tV{;ygVkQ@&5|9RZtg%gruRF4!VB=QBtez>DAmUTrp?4Zqm zI^ionk4H|9ax(6E;GUEfCdK-eA}*LG_2klNh83*8kqq(^WYybKWxJ-@tx|bjeY0LX zLq*8cK~8XA_{0Sx)K8Q1gh2>}ju{-`f7Cy~FF60ODH0)5R8I$oBkqR@NCRfEqt}x};`D^FXz8;j;p4h~VZN z6H~Y^a+~mm{`~$!eziW+YW(wGoU8^pQf?IvGh}r*@y=Scch%~*e6KAWR|%L?LPGJ8 zRZiGfVAcxCwueIbpRzDmEDC1PdliKrI;m^+j)d&L$0Yp1qr=)nS?pvw2>ZH`nkS|m zbX^S+w9sP^JO&IrO^AgRG6A6oRjlmF)K#tlBf1djG*Q1Ny7_$8*gC1?cAL`;on3w- z(6+fgG0nhhdm_D9cuLbQ-?bc3S7fWAKZS$|sGT^RM$htR-YkD%6xjO2Yt&bq%%6|e z6RRHdpiS=eqCUC$v~jab*FUTHhWnZJjI(u_-Jb{^A?*u$Mb7pOIN$4*uJ=VpC%{Wf z8GR6i)<%H-w;Y86_%v2vxTwN8n#7hirSUk7I{$U!=D2L;@DEpy`W#9Wayo5J^Nd=Qc>q}UO^$A!#1mF z)zM~AWPWCx3y$6D6kXN-9LSR79ZohjO|3nzxDkGcwDmIe> z!wuH#c_R^TjGhOq60tgeqdW!|r|;TwuW591qB7Dn0YZ-eC%a z`%7D}DSI_2x<4s>bmztQiKhc+PL^*J%;M!}|JKmR5^MczSW!FvPrn=KsdkOH9#!d1 z>y9#Rs*n~{G!8@va+Qy2(xKp5&1T8zMO%mdZ@IfzyL-t`>MeL2o3F%NWHa}P)z5Feqb>$Q!im?`7xVs1$?(vq72LwrgY6)fSJMu8Zr6Xs&%l0BZ&+>qPK=P(Ehl|d` zq^c(e3$j~fORTARqPKX&Zjp+DY7$QH7;?@D0h=XkT7Z^8D)Es3sDV!Zs0tSDc%A!! z{kmP9XaDXx>QK%P&pO)al`LLpY^AKeaWA&gDLO9Z)uT$6OXGJ}WebkM2?VlTXp#xm zDS**_`@EZnn&CAs&I7sE^Js9U;xy0Sq|Zy-5*hfc`ocmw-P=9aSYtxdMHku9_Vk7L zQMEEjr2EXrGU_I5bt?OI?6hw>5U$fDt0x`u!i4U(S7EVDP^*5&Bd7^o8$s+i&N->v z`9uFbqvsc=FV{AU2xv+4pSl*UC4?_fir%dRp)d9K_xJg>{ocTod9v()HMAQsbs9#& zyk?VTZcM{pL(F!vy38YI^=>cWVsm?OAapY9Z>t<0ej4@;(1`)Zr^cLt!6KU@M5KQ3 zQ}eK9^M(2h|Bxr0x4!zMH0)5^D6>U5BBtR~h84L$SDg+$CA(5TVhlt}7$+unb6LOZ9KTbYEpP}V zO>8g--@6Z$gEQDOTM8$^keW~k!UzPaJtS?I-pGxXedPoe7rYQzj!~F7>7M2uymy0N zVPJfIxrw&^c=O~ukuj>D{F893f}6XIe3uGv7=o0$Weq{nLdl zD%Fxi`*UuAp_?kw#8URkE0tYrT1r?Fw@UyoWP03FUu>Xtzk|>gAWeZ1jj4 z3E%rGn{*$m^C(f0`kuUEQTFwhbvKVRm-)0aZGLylG=BkWp_L%1<|12v0J(Wy*~sQ- zNC8KHD6%7k>eNC?{aN%k8&YS4RsXPk`|IE)Rk5$-hJjEVqC08Y71C88b!L_qUWmXm z(3+v2n_gUDc(C8XcDSpGs|t$VjJ-v}bI#fm)n`=lBu|sxG+4N+b?P+kjFt8A!fVgMhwpH@hIdzo9SZKZeHh+p-l53i zlAJ`&?mne^it6WQhG!*q-0QZKD*{ih#Bz&yQ21PUCMCb8f_~+s_@0h?=4BGGr-UuC zRW0_}3EJz0xP2KOpS{#GNmo4j!!6=Y&&yBwVV?%6XdS9LY8ob%izcRfe|>vJonDv0 z1m!inS8&%6bT1rc0Bo(StT3MG8X1*+{!IA0B-YdBo;dF}6xZvhb0Ypwn~&PqJ&v%~ zM&VxEwdpgyDr_OOXUiU+u48;agop~|s0}EsCoJoADY=`nS`B?Z?UsgWttSw6OJ*AA`w4~(Zgfspg zXVj~LwaK|#N47n8j=JZSBDnpPUchm6(RV8cEqL4LUCF4Zz*)1ik96icsV-WDMc8cR zwm3oxts?*A{%a#bn8=JZ*zMrhCS{qa>C*S(-Lxyo&{in*RYfZibR{C4={rY(! zU&5Q#F8ZR7&D&N3E-3&KY-T9#AsQY(9qTmgXbmiS_so+SgGBVoYj^vVMs4eg9QwR{ zs~SUkpkMzjGGpv)aP@vm($Q+FKZY^yW%`|~L_7p2eI7U$7LCVz_8C*sUK$#R_dnIo5eQn zAkjTA#_kW(slEu+>=x&!g3|vx%l(dH4=yB#*wEPdmP9PT?6^M8hMi6qLp#29UUE|K9;(f zbCa)@GN|Trb54YZ9AWHIydr^niIGA`z+2{~-^3428?`)#e2uJ3PQLzNj&Ja^09pFtc)@xXta&UqL7W#f=5wQb218n1 zs=Vt{x)a75DNx3$tE+V{T`DIOf9%+(YR`v0-4cCaWXtQfLynQ|MbFmQ8+%2nGi(uX zf_n_n;t4_gH5|B&VA}BNsLh|RvTc%C<=8S~>(N*PQ1#H$_x*;Ueq&x|Sw?a;bzVLE zA=c2m=lmD=b4N%w%;wdvcUorC?#*cGt^46`fP7~nIS-_Ofe^irINF5SbKmutq!^DY zs`0PgV%YGVCPwXtHSNoseKG9A6>O)XhrF!kC*0i}zY1)B60sIYDVrs^`#0=sTvoPb zi3#$Otjsg@FzJB2%hJW4pmEuX$Kvkhk#CLAU`31*_C9NQzN#YAUxM(7|7X zg5eC5+F)xglO)z3u)T$9UM><@XiknL7YZ5$>U2W9g+9jDUkl_9{5)*wQw zkM1dWX)e8Sh+F{M38CXMz^%Qm^)go_OXi}!0P%!g=w7h)kP~Nw8^45-} zJ_^r%>2M~wg_nA6pcAeh=`qk~#xt6IX>aL1<<{6LkI^1r_lU~XQ z9yvRFIh2w^O|gFB+R&ngJ(moKL$cUUp?81xWqx{^@REUTPoblNt>9C~sTsI-y+^L9T22+aYWt4dP}6;a=U2nNz1}`P z#4KCCtyNe5>%`L1{L&$ku;W%Y%`M*J`L}mVeVR?UUwUTtCh4D_>2a&uzo$q38T?T* z?faj3*`CW@v4j=i{rl9<{Qg;%+1}e0@bBB0#1#MenUzqUQU3Q+q)IlDz~;d}bh~-} znWpwq{QvR8deiAE36NAvsLg$Ty82)r;XfJDve2@=WNd0?wt?`_!#7M34vr%Q>noA# zhX^B5B>w(bnCe>?xmf(JXgN@RaR=dINTkn0_&3G1_UUe`?ak_p-vpq5u)Er#xn!FJ zmvDTK40)^sBCFPQUr4#c#CGq$&DHXtHe6<2Ic4UrO=MTkYS-pSc~Fd{+?Ft?Z20x- z*Iy^WhRC(Uf5tl=f$091H3Cf>nu<%#!+eBiDPbktw75PjzbY`+k+TKfz}k_8i@#po zp80mPX*s9cnUU~G@?WrhU zy0~67wer_T7FC}3%oFe}EqX*<%Gu(`*m$dy$drmRzheIEt5;=iklSE?6M z;obVNZ%V3r-gj-t_c!4u2#w9^nig@>c`A6$y`U(8OGq=UrILq-ha)CY=dIl43wpYy z*;G|kbu!zsP-?qfCS|S6%s%J4Et6}-;qn*_b*SiQ*R7r|+chvyvvKr{5^k|g*N8j8 zVf2>!;4S>UB=DSs{grP>rFM+#V_A_&NV#t;KKuLjJ-vPT@|y zPMlzo!GG=wfC{uhvK8=b8Zb$y-$A4lrZFSn`bYcVqb`Z3vI+Gh8T7{ zwpx^DC@>qPnN~0v=Gsz%599VZ8RI-WE5m=c{;z1H!kPsC{9h|lM6Ta)P?px3 zdzK7{HSgc24Nv33(e+DJxF(7R6vJ_Nvk1vr;_{P^)BLOS)|OB2OQBMevN7Aw`|zULXQFSQ)a zW`ecs@#2*4TAlny zDrbUPgF^68m=CEyZ!~r<~!XM{wZ@T~P^QLfwnk z>sF-xKJ7Ps1%!BwZ~vfK8B&thoV+`D%bgC!#-6|$5}TaO=8qwK5pl)OVI6G><11Lf z7W<^S&m|)LX)pYY*EY;KuljdY6PBEpZKqB>=$BuOUuRw)FJ6Toh4Fg!61o?;fK@&| z=xK@cIf5qvHxKM7K`(+);QB!E$}XqQc)2-2S2zP!DJ{YjmF3&j8GkwNzaPY(2lJ%v zG2%kNht_JP`tIVvDXZc?Rv>QN$Jj?W{Sx*GBe{gv$pU_*)7)C^+E{Jc`}Yr1@2-ye z1PQwZlyu4NBVJPu;c!Xu*FqrT?%Ex=in&gC8*2?d^YQsf7`slD9dzFYxt;uqtQewFIH~mplpcTVcNNA|tkB>CqOeUqITroGN>9U@G@_v~-ZrWQn zdnh$s&v^Ti_}Cz{X~ZdwQgj>sM}$u$Kr%2RK+gjT3t_vXGzXT#_yROb3<2N>p(Fk0 zPCA+gKJ9(@^34A-&gm$e?8!4)ZcA!eHBFS8kfHf}*m+%SNA=v9uBWS~SBf?cJuT4chfPh|6+LtNm(2_Qi2we* zn#6blb1wXRU^NC=CLV0eywL0p3=BkQ`eMu@@(0Kholo$8@V*cm3u##t3|AY5;j}3H z0CKSCj`4Tt`~L0A(3fK(@Pum-A!^{M9_(AE8_pbWuf1A0!DTQvb;$T^NpIzS?@)8S zAxCN1p6Ab={k@0emfLFK0vUr?RiqY#-|8;)y}M$H&k3=<5a|++TO_RA{Z-5&*OlVk-LS!k0>)%;TO#Hk7$zRG-+)n9gKCvsR6HTykWwt82-=1+gn+vkjHcb$>kn! zzhRLE>&@ewTac`Q4#peyv`EY~0hu0ND+`tC?jArRlai8pVN3~QF&LUv$v2IYxn2gR z8!hj??dT}n!3`fT0)(qRSd1>=Id~l~$Ql^mLYSNSaL7EwPez}KxgJa9p9rtO zPa|BHtUGh>LqM&c{N7~r185I_J#io7I|0oQGJW(USjikn!v_xq2HF6SRH62T!y*R2 zPt(&G`pIwtNE(WKslHh5IpzUSH+J+smpv70Co%+*l zVvdQW7pUEMVAw@S28cV9FwTJeCg5l|cT*AF7NnM~qL%>hNg>_^ET(Sf(F25M2o`tv zbY8r8LCk-InKhntibBSR>D-*0&dd1iz)RR8mm1><$M)69yIdH|ag(56g7Zo={{}XN z55RxHgVak%OA(E=R=d6^@3Sg`2MuN-M2nH1&wytafFBSL!qySBAaZRszHZo&h*tw} z4&2$q!h*CYeevQ&mz|en6fDw?#5!FU_<~D`;3s@R_XO!qQ$#85R|xX}tm60M4#sYu zz80{B?(2A(4n^gBLs0-N_==;ErZG*UUi{B{ui$@l&+QN0b_5_s5EmYO0*{e+s_>cP zNrI(LRTaa3-`<$Y+bP_Hq}NOW3^WC?-CoEKN8l0`D5m!+*pD9{6Zrz&x-u^nZsV0N zC0%k@`M?6*t9H<{W4t`sAO~;OcKOduaOaXzQ|EP`&Bv7JhQxWjG1nsq*kBp}5yAEg zX21ADepiaLDAXQx*Jr<{OECP=EA!m&o^+9RUjQj)*;US*MEHHNZHCYo3p@N9B^gBq zC~V5b&5>;|3|{Bb*Ep|6@80O2R0N=5nw(tim?~e zUEi&+=ykaz6}}Vj%SYY7lSGGgTyt}??XRz_L4UjtA~=U!w7< z5GM2HmKFd~2x3}ZeM$~=Kef8HWE`hi3IGfpEkUM13yXsC1Fa9X{tsJ5%l!8#QFP9k zrzR&8CNQtQ!9h3C&RnTjPB@B^YIf4c@8QGR!3%Oj7*7dQ_mR0CY)Mp(=^>=X?VO3y z(T#oEFinuhTBH9^Kn;c}N@N$J!v|f0>jLAA=kY4a)5T%jVPUwNqcxQEcpA62>1is% z;BjDRe$iD(3|9v*MRb$pT<0f|*S=gC#xMC{@umIQGN+>qca3#V(fI8mrs@oWE>WTc zk8tQ#xVPG7@kTb4{WghaWUkHtLj>#7cV4^+5^ubqMec=q0qF~W^IBj$xDi?`U>M+9 z#!cJ$cMILsq4l6R0jqJ*P*1#}U=st#pn~6kf1`qfZ!)+PKnB7>CJuz9`pL9F!%?!A9@6R;~cwYT4n-5w4n)GWOK=74 z6TgeHb=KI7&Mbm32RA$5w@qy0Q@3r`Ru&`X-b3jKKhHmE*XZ{ju3Uoi6C5~Dv>;w0 zB3hs;#Sx4*QxPt6OL9S&>(*VjBt=b2@p@OTzuf3D!b{|6_ibvFC~#k8ckaD&v#^d& zsiqh)(SeeX@zsr!?Qn7d=4J%cx{z4BBy7O5D54fd_rOT*wNU}OCA|M#_}BsFVVCo% zz5T!K0nV52$vxrQ-QIIUGPu6MG8>x_oOZ-h1%z>@g6CS)@>)Tc=wIh)ZsNX2D}B+n6 z%M0D}Me)D(((E%;7;A4tyAWB62yGJ#D=157)#PUm$$R3$<6I;{PSD8wP3D5lngD0x zOu9jU^ox0q8NPV+v>CiC$b3sw_WSOhaY(w0kpqTaf(V6mde^pfRXe+{hy zG`=COF?A=h^~VMG)@^w!hCMVoX5<3k(?m0fGbosD+&)jMSdQK`NwMDAgK%G9G+v-0 zTdVc;>H1=qN4T0$((NgJ^z4Ikc zm$aGHwrp05|M35;T2g)xdw{zNVv*zS?P1<#Fhd3=1z8oIm5`8-uZjy4X)_%#)dvbd zfkjAbq03Qj{*I<$?9CdwhdGKgn^qMM+4aXLwzA{W2;Cmig#CiS{y16I5(8 zTrU`Y6(IiisbBVTSM7Gkr`q~{TE~a2LNr5Xxv>U|0_WFMo;o;$KBI8kgra8QGXF5=tKvOMof@}&++4EgY=AM~>mL@ZJ+5}y z;axL*))fpzuoOnjCr;_KjEwpiE!Ix1Sve?Zi9&&09=Z$46LpE3q6q)iXGmE{Q`%Z} zk6re5pGm~I9DbbFLJy0IihR%t;sUdL0AJAdcdr7hzlaAJuV7+Iovrf$XRsPARuO{K zzX-!d0F-Kxa>@1@f*NhVyuK>hzBXc2f;WWS%&&8hrcu)|T}F*9>8cO@XS;}E&w7K$ zLg4o7mm}n@t3K1a@1z8#IX->3VL~r5gK9(IrIwZ!m+4!xgNJX6ecy6gKA>gvLCdJN zmK3Aj=-_O}pASWwMgru7Kh6#`x1JTB{VR4TMZbzlr=@0zUT0}Z8lV!)o^KwQ7wGzf zRu1qU#e{wda950AIGLUbnWcLw={>h7_*C8AZN*mWy&JW z+y^$*=?6r%jnF%^OMO_0l@kd? z(DGskv&oe_u&K9l4%L*6$mBvkMBnqH-6fwtdp)&5M~L>|pB2}?9Du9OR@T3>JVXos zH!KH;8X(r+H8PXEKy?UaL5in}nC-zRwJXAuf~>Uq!Qf*fF@_WN_}#8E=ZF>;)t?~E zp?stRnDE|p5V!lg8?;@y&bqEiA+fFpg-66TdQwV4_n^0tLh^8t$eYB$rJ>DnjMe0V z&Ddls!kpr;t6a}Rhp{AG&ou?UNB23i`1Ncq(5lLAlsbciff3`KC6ecp4PuPfUGV4w zKmF(M58@GVpQC~xP~zs>JfW%B!E;zQ;><#~Wj8x?9;J#UoE_}-v@Zd8RQI1teX8a3?`alO-ITBg`409DZ8%T7~34 zPsb_prj(xRmAa;65SlVlC2EaO*+~X@eY%pubJ|YMI^?wOy8OGRIECFJHXZ&hxI6Rv zpDk`_nwQU=J&Qa9Q&(3*K7Tq-!d)4aQ%fj#^DyTslRbk;28Gr=UBi-;>lt0V&N{nP zggnUJG3X9)Q=00iS=ranxg1@wJS>o>i&b^!hdVpanBp~| zmc7$;$DslHeyqhXj1FJvU?tzo)h=jfIS~JYa84U16GD58?!>ETW^1WWZhh~*bne&J z=~Y5`j(aEZ`Urk6x^g~V3q#p=C1O8Kv2Nx;ujKM)40Z@oV7O_EQ@EwmID6Ab)t$6= z*`p{OWzNc9PX)g1Iewi5lR^d0ZzegpRrJ^NZY5?C)tUIKP$N2j%zyOoVdGBa)nDI+ z{TziO(S8bA0lI*@eS%%=a?xV@#Qbq##S81$8CX8V*DPaI6Xhbr%CVD?@ zk%!&t$B!QsdlWSzb6!2?C^$ZZk3+5j`+QjD=ifmW3IcuxQQ?UCfnh;K`BJ_kJqmyjm)=L8D}~0tU(Pnl{p#vQ^~0V1H}(kf zN`f6lf9}_ioTcknU2;hm6S~cJ(hr}Vaa0-i3oM&(iFX)3alguk=O*3dlQ27cJ{0e^ zo1@}&h2h2l&ih-~A5@V###Xg=TV_p15QT9@U^h64(( zkmi?N;D%p@)gSK2e)?hZYo=l^uan9F^g0C5b!~AF2tHMDPb!szqmRC&;&dS=jp|VF zuRJkojal|xI`u^d3um_z4HnkSgln~|$F!cY)bjnTpK&%X%GjkUb2o0;yt%Y*iu=_! zxkfiu<-OjWGV~S6B7Wbl7b(zn+yD#^uNF>Zd0@y9Lkbje$`?9okM|R&KE`S1!tVLG zoYy~N0 z1Ww%tiqQhAKEcl^W^YI-TxH6Yr#^i*`EI#Yz>>g$OUXKf;Uckr3#}$PGeCO;7J8SG)>W0egn^({$K|%c!Fd^n=S#8bz+-*|RY|}~&jV-G|&OazEw3R2qJ&4p! zyc*0Eq3z2x8!MMRjkp3QL_(|Ii9}U99aVVAoDkvcP&^;YU&$?|AEH(j0Ok=@VP9B=*z5$TH26v&0ZmIXxPzJXBVaw2Vu zz}m3H64JNFf}i`PS8{ukkEl(yK6clb?S;1b%36#?}meBt#kL8DzuOpP6B9VUM|K$La2=BfCy> z3Y!c%)GHXrxo@#ZW@?YUvlS-{AUy3x{d%^1uI;%k?w$97{gY3D`nK1ff`afX3EIqX zHlEx()ybqe#RGs0x^MdSm#T>K#uz`i2$AcMCzdkWfzY#7O#E^rU zh@(l{#CkRFz03l8s}0VTZ=3auceUnnN^DePI3a5pM0pFKKvQFgpo@WE5SgkzrRU|q zWf)7k4MzwDtH_$GBruP-yfWcTP?=!9L*%r}h8XMB;Sf$iEz8pUKAk1O@WTwOZSdZ2l)F0ns_w(x z5S}CR7@LW(3!HO+$ey1$Nn?Eeyoo=pbaTh}dwt%M(S9Rz6N`iM%Xo1RFMGm1Svy%U3m!@h-5c>jX|FfG)s)w1Rjmw(0Q+ z^0FRR+<67}LEIml_-LXD>KasSI70DA%QEK1c0et7`jlB+0IDIbaGy;_P4Df^w4PWW zT=*CVo+{+bZf+bDk{e0-{vzy^wYie|&0Vi4VS6m@p4B_<6>X$htR>|%dj1*{A2rWQ zik-E-6@3^!C?xY6#@hQ7ey49FtzG`F#$P#B;AlYS(QG*xhT05~Bk2@xJ^C{~y-cfN z+8}8udbpOjkPDqS^A`#U`iSuCyuOh!2Ge_q|=SsGQvGob%#oq%l(v}9^`fjsD|-FD86TY*ZeKcpegMI!z{wy3#jtj z|Gd;b+HMVBE-5r@gy)Psd%{-?U_|jJQb^(IF5`Pa(BDxoCJ>JdU?|W*8ee}&yBS&A za`II}ZKZptJG1^1o~|H1SAFoi!c*1>`$Q) z*{kql1$ejdf&AD#bel2Z0E_{W2J`~Y*7KY1-7?!cdj;OdL^;tsR1E6a14kSH+y5J|L3fc9z@0k}w;(S|0L%jOb{)h)( zJthkFEEawQDu}pFpnrnqI!mIgan%yeNYEUXxjFoVf#lYEUirMn)b6gmS*oslZv|~X z87&FF&8wmpNR6fo`SRq;UMkO@pNox^^*y!MaGlYvv4tWIB zawo=+hL{if(m7Kfuqd&0`&G!hstTlVTu0>OVYbr{LjbM;K%3b%CjNQ1->eorsq2o~ z-6jmIghYRn<;JkBH#W&`uO250FI~l0OJHvg77q8o zz@;Afq0j&mZ8uaNN+!p?P&Hn+Hc z3N|kt^^*+gv#s#qSopcC_-(mqaaKLq!%P=A#k+JFY&Ic`g0i&_a5~|4F!MN@EZEww z_@!mcW%Uw;a}cKmtL?VFpF&-H_3z>`cv%cD8H;9+{eAXSbXi}d-|ADLaQ>MEHx|f9 zkUg^)w&RIc#%uU=14hx&(ZPtsBK%n{>ZdAK+NP%_>&o}}_Nm7Cg+z{)`|TKew%13% zhcUqr;hAM;?U)>%RZ;N+VFv{OUhR3a??3Kf30QK`>5nHLq!u@$5~MhCZ!to#9_BgV zzeAC6docVKysMMn&$Q*(ME>j$Mowalb9{YqrC}7z(@l}FNpYk4<}n(I%?whufI5j_ z6~by559ZC+2B|HGWNvzWhO&a@VV+j3a;rP)8@`DAICVVic>FF5mkEg`{tv8934={ln3eSL|plXxm0Y^B{MJr192h$I0R z-@$fz`@y)no?86 z%wd{&{_As%drIWeBl}J;$cNwTjqDtHwJKWi{HtXYSC}>TTFcP~I3g=*`fdR*|QbODQYg%=GX ziS#E}_FWSTGfHDwS8bt{k7rb*l^W4`?ONM%B2`9p@>=(W_~C){G4`&)z3Zxy_rGo^ z9(3k55}xm9*>Zq)+&wFBUBmJ^`YVDkh+tnA2FmZDd~SO`FwOK_U&{1gJYqlrUM&%w z{km>H(1JIIcT`>*ZQPWtsuR=$at)3qAf#IR^A67?uvY%=SD>QX;w^hnL}dTw2(~b0 z+c8r$etmLD*K?cEx%}61q?s?8I{EUI8A%aks`^O*l)ae&XF|0^jH_P{Yc89Y_+{-G z3gpQw8LGw=#o`#g>_`}(4RJae@1SwwK;)WKO&KPc#EYqbSV2z{Iu~9x9Cy0r&#$>y z7K+*C`XFz#NFNXap?3ZqFkw_m8#D)eRI*Yi`^*2 zit_~xoYuz#qt>)AjeIh=<=U4S+#(uZ4`j}d&UX1+HUJi)t$Saw!NSzcO~f`jIE0sF zQ{`?ci);z*la~ziqYNL%#qD)73Mdb(6k~(w_pYdQ$M{i~$3w zH$wCC>4?>2gZz$d=zpOm+RJqI(_UfTj+2pFPS`{-cPLHDgwxa?IN`P$>d+>dt(KBl z|JJ`{FtdtVE<%-m+dZMXm3wY6s4}!Iw|)8(?G@X&l~*#R(kx*9_wTfK{?Z6HSkWRg zGqUSiu1QcDs_oaK@nAeGKPW!7L3F86%i@k>fswY|h7-OQUe#V}sq@^>7J@RW_f+$a zf6(Kudw~qhG`?9MuqCz(-@!a4TI!R%D5A@{(Z!8`R8WmbLzbrwe}<&@)|GDPq3?%;?uICjb6 zj@_d`%;{j&qr1ec468PV!>xjOSomF2;#d?gJ)T>xV)Cw`s0n`{8x~?u4wQ0n!*yT{!9W5!EXQ$-({ViT&Xd>?inpgpzfM<@q7A45=)e1#o=T3jfqTH`(4Oj^PvW1SoZ5WY zUm1C+@6x6fb_8geINEa!ee_*bqfx0jXwg+!7UFP5e_qX_*4i#eLD7}Afctp9(ru%~ z$i7qc(<{&JczAO2vX-%JqHSu0SqO0T^H%IL+Int}zOp7>tgC;0MOe@#fxEJVqwvM! zAUe(Sb;(X{?yC6VcD>y@t({jGSU5;CswQfu6|Q}L|Iw7bGkwSImFT1ZB1_}>8SMb! zyCpiyN86{`MO(VKxf!HG6k~Ss(IkgIOmrB{QodKv$P^>?a@YQtWLgfg+HE(Jj%PZ9 zb|-8$@BzB=7>-Yli)vogu-`7N_a>sAKE{*b@^n@Mm@ntr{#AWQ=TYuRUSAQshaO%mU*Y( z<&UUTR!yFeo=S1vir}Ow{@{bhipI*ndv3TUn^D3cBfppH6n_*v{`wy5x^x1o<-bK$cLp>XLMSf4y5I0IV`a_js$t#-C2@Dndf!)shFzYI?yHRSvg} z6!ls2n*?hccDaxS$puEiBZ~5es|}ev_ylLv?-z_$zq>d)Eb&-Pzk5tQPqOMGRsK(O z#ai?yWS6x6P}`=yW=XS~-=b)|CAVg@C7%6plwt`t@1K3o`SF&q%hpV2H07K3RN9`q zFIlYMu{!=MRP>mY2{wCjPPZaHEF2^tCCt0c)+yZv#WEfIX9^7uHRFw>Wm4i{xCy(u zx_+vm+_O?&8>_z4a^Ief;M^=Ajq!;=jWvJqP<@Y4y#5Kat2`#H0? zJl%IgX-M&*U*jvsst!RF@?e_H?IQQE4@{9K<$MiA?j(itT^7)YTW83L4sxYRwZoI651)=~O`N>8tnT$odx~bgj1j z$_(@acq&8}M*5?vY@Zyo=nEE2p2V1lEGd43Dj<@2o+^&FU)n^eqTa1M`#%+5<^aRM z>pU}yl@tJ+F(R@Qx)yKy>g#3Qbk1-MtEJa(o3P3q=!+rMN=Kl6SM6%^75rK$G%2`f zYee0&>xRsMGnN%-&+J;x8u$Jx;jHaqyAMvmgK~%Em&f5 zR&w+%>zDMlyjSNX)%==+jw33Z)$GP;|2Y|2Gx;H^35B3dt3_(fDJzDNlLlQbenDIX z@BIt{DuXyeUQI^O~H`i^MFi@^4Q?zWl(TS}Ot~x3z)Ti5OW#{+6?fTu7lQ%(A`T;u* zFkwFa{J9r1m-eTjI~ViI)fMvFKE@xc(bQ03dX?upd(FPM6dX7l_n@0$Q%O8A1gu<# z%^ygXShEw(9>sQ zCyz-kM!F62QdG)q_L$qRzGD{+t z8MlaGD)k6~T7mu->85P`hE1m17YYrz#(wQ-;}2&^b9tz+!>^=#=zMR)c9ntCe6Wnw+eq^mR8>?Qr__56{Z8Fz^j>I`c7kz~_n&0N&d(31o9tm=Uf8PEm+ zk!X|v@&qUbiU!;BGwM%Nt-W|gCFebtcLtEDk8j8X0=0OWto}_nA|I{R-3W zUa%8|G_Hf9AtZeZ&i?qx#Qy!umoFvfq!O~E>TZ&~gVel76m=}4)D9;w2`I$hJ(y}! zu~%bjmEFg5-fVNXk4%;i_>TQC&x+YGd#pe9vmgEU;O#Qrr50-Kf&=veLI?C#i^z;e zeY2M@y^*|eORQP(JxeLG?+r=D>WrXNb^c)o8=aI#%(`Zq#)B>il!|!&81;X9N;jz!JQrqWe=8a9R)RaHvA?tB49ymn+)tD{!9@e72HEXc@`8DwN%Q{u`43o5 z1G@kV6C3{b0$&~!JkOMi>MCiDR@ahQ^705sdu5w{=4++m)BD;|&@f=S_CL!X%#TpD zpt!F$^Js5U(u94=ntPyn<zP)v|aB4r0R?j7O-OnS& zSk*ppwDR$_D~UyugSzf1wKnlqH^?`QO4*oI!iztt4c#g*0uc!-`|M-+E8}OQLEFaO z>1k2FzOsUfus=;BsZWJx*vw=^g)y>iAYZ9if=bW5;wKA*bL$o#gYeA(y@$GO{;Q>C zB%z6go`c9g0-{W?lb+yx18fGt6*N@stJ52vDlpxd%fQ8QQth??QHKZfMSoegJ zdd&0SmOj<97*mm>U znp~NE9UhftYC5(dPA+wJE$6~}Nf(>=%ax156~0}qL8~IEu&G&G<=&_g630mE2^uTK zgm%trKKf3lV2T4mi60;tZl7cz#r+&X&007cOaYXomtR1LIIkmh>kgV6rdluMHy9f;hDAm|T z5Q%-DbR#))*W`y8pY|dZOIGOx@Pw5hF$END{&k_S=q)M#tbUY4)i<@MDw-eyPLz9Y zxG`7wGxoQHCK;&7vNRoLy|C7w-y=W;`RKkoU3-Mynqp zySefs>xZQZrX=^vkwRijU1^r@i+W2Jpydiu$%>>`63(C@Z zAE(*KEg6|%bmF#jxy6!nVF}g(_y138*Zogr|No6ByR49rvS$fpWmLxDKH1%lm5?oa zBzrW-K7@=yva=mTDdET_DHp;#*X8Jgx=&4Py&yvLn75y zexzo`=T&^L-q(@(5`r%V^#*ptW`^897?&Ft^ZM=d{zP584j&_E<&nDp3Wb9xkv10) z2)=>LIk=wCae5r~q|=fX9~;-3VgAe!LuvVsg_5NxKT>#7Rbh|!oK{gtnsgxLTjA^! zi#C1Hk)p*r*D{R%|u1WVb+;DKtBNW3mQK-$gzYZL6p0qV#(El=$I6*fXaw6s>CI>JD7$`x-rezlNA8q&cDh8!>ZfP4c0AX&el_NK zzsMdeXVFrOnHLb}PzcWbt<+m#tuj~7mb{}y-y=B={cT8CKzNx{*F9&f6pO|Ao>Iqm3K)#c43R@RM!`%4} zCBT#e-WdSAsU3Zi4~*+2wV_+2@HsOytHZO2sK{Y@Ks*GnzE)IM+caLh*TN(SX$NrX z1~3oKExJ^PU%5;z>Uf?e$9u~O^Wm&zE)QjCp%H`f&R?xMWAs7r>6{lf0V zPeuRcNng|cd;;51P0-tJA*+4CT>gAZXNB`gog^g4;p4IgV9?MsN>O=%GJ>pXV)Y!y z)1B)T^4$#k?7Y~UZ(Y1KKYfyTiTQNC&kgkMjx-nG4+MVJs6I-szS_$n@{6O4QHeSx zaW|KCTb$2#eToiV0Q8ZO#oE@=AY$``nhkgGMu4`7zheI^p?&AC$F%p)VJ{pLHmbk| zjCbfdAvm_7-&LW_mGCCl#IF?GHlSNP38vICLM|gZ^Rs865}a9Kt_;Pf;QXYRpZjay zm*%h}*X1abSe)D33cMn2({Pf1%jqYRv520BndbDv!>qs#imd27FNTiaJb7fJi~y#+ zHjnzHpqg#%!#Z(yVYBA2oTq(xM^tEgHlM_|^4wVaz&(Lw<$JznEkRtMIWX$kgxeE# zRf=ZlF9%yp;DIa%#F4un`fvDN>kQ`J9+>!4DP~k{W@&m*Av8bEin5P-3V zrs$Qi+SpJ{TCtaIc9wUmOppZzo)s9oD(SvYQ1AXzhl+*_xtafzcp&OGJf&C3JNG9D zpa`TA6P5q+FoNX%u{^Hsf}2lDOPD%eRH2vuI?D(ta?->wQJGEEaN5cQ=4w}#4j*5R z5dHcw@oJ(wdflI{ae0}kx2L6$#sc@+Rn~vy({xTq3@Nrbs83ScreIN#b|rZ&s7w@l zP9fifSYD?9rS@iJjYA@(Zy+nrUYh!w#c#eqZ?I3nA_>z9>dM%QY~0dNGoj|W6Opqf zI-N47Sh^qP_7Ryr8Mjc!o!R0ctemzgtL?YE4Y{TFZrMxi1*T+YmV@ha<5~g64(Xwcl_*YY{PH4}P^6sKh#0vh7 zmi(g;Tk4J+DlJf)9HKn*?uc7whE*HLU(Q(fK_#F^@Cy|OIy{0tz2~PVD%1&>Ji?yy z*MBpuA2e2}rPx}zy3$YY_xQq@7E0JR!FI(6{?fY4})+_$zd0A<4) z1~!FDx->!#_2BM;B1(IoK+*~)Nn9TaZ*EDFZ~MyNmxt6(juzKWLV5$MNQ+&owC5f1 zuJM!oBIS~TLN!Km{ghNCU0Ufhi<9?^sI@vzoRn|0ZeQFwubcS^`#}7lC40N=F=cYK zyor?3j#VSV1Aw3!ve1 zcF4V0?|;WkCouf$Apj3Bt^!;$U!EW%wf$(I^lb2n!afbsG5;Y}2b0C!x+>$*8DKSm zLD7x$#(k4|?A_>;&B#m(1y$lH4J>1E=WGhF%Om4I4-e#Gdxv`cGxR+X?GCi;<<0msvOH9R`37XwkW43{Q8QOL zAC={CnK6AA9FIs$^gb4`SqdcS@s5NabA1#DGHjTdtid@?7o>Cx)!Orte5F)9FmbHk zgPKy|{W*9kPVQiQL zAJ{S2R)|?)3C%j}ZDp6_i7)8o5Nla=Z~fa2 z1Yc-f-xd8s*D?skAzMZQCyuI2VwBr3dIS)*EW3fFsUR^+la&mNXz5Q?Q(b-#g27}0 zs2Mc18T~w+RK;T`Q%D1RjPl=bh%C z)#EeG9ll+aLsL&+LB8TKcLMGtKw!W=nmjE6_9E~*I6KpVQwpT;;HL&d$?8~=PVnUF zROz4g0k@LM553!cUJ@Y#`hZi2nDasGI5Tx2p9z4&kR}D(FE1Ejv8clJu~W3VR<87g zx06 zP}zo?pIm>XMEAE3hKsWx+*y@TEQkv-i2+@gm3<}4mrC)+yZ9!h5$T!13u_PY)m40% zCEAU0c7n|Fdr83!{L(_6epMBi;^7OBuLS%fXv%8S$KM9jiC75^T3@l7;}DxLAQtaq z7`7_KitUQU{ly_$YZfRd*37m_gV?3$B4q*O39~+W<0vqt6O1 zFEqNULD>py*Z`Q9W$}%`4}^vHHM!%(YBt;OE+I`H6eOvFid9b{bu*mjkYt+prH*+- z*&fW-;EzT2c-w4Q)5VntERzhL0#%@#A5~Z|w)mwmNJ;pZf6Uj*@u+06$L&tq`Hx!6 zi3`u7WfnmPiqz>Ko;1+Ce@EC35UN01vI7O0OqXfbsw zmI|v;w)J!@9TGQ@Q#JWnR>y9{Pk;fA|V0kOF2I@eu8!uRKOsb2Hl7%RDhmK zSbQgPMNwGH`T#m8>qW#;M)0!}B<4#u2^#Pm-Y&1F=b<1&94o_xnMog%Rc} zH0ub!cbAx8V%xRU)hRz*3{ojCQr{=dSuj~icH2>yMLlWz{_2d=7A#?Tzb}BG3@*zl zcs9Yigaimd$A|QB!UuvzfFidMb?kc*qCgfb{77pL*et;)KQ7UfJEFv?fvL zwOe~7z-fY;22AwA*Fr*{fbXRIms%Y0j;JY>5rYn(eZ%r3S54~D*pp@v;uw9?)mx|BhV+MRJ3 zk=6cZBM@5tckRymWyKPMJ%=df#INcx!Y5a>9YVE<;b8{qj3~?vv_N4;z1ePJgA#Wy zrCp1}Vcrc*`G2FHbX|P)@D&q*^SA3*yI~5qk^I0QINL(OJcSIzqZQ;J9~5T(Y(8s7 zQp*~jVG`)kKjEl->21rSZZgF!r_C%6&W>uzo(0v7e|8QIJ<134Q91+wvsf(gwRRrBXQ>M5*=D49{h{ zqQ3EAEG>bXFvgBTu?lEY8SjXxX~$+fl`K6;Zx4DwYh%yNmsP1@T9iNf)F{^IPC7(x z$XwfZs9}x1QIqBYc@?r5Hw2QPjY$n!OP9prTAin3`^ayNX5Bwgj}9L1cV^TN(F+*v z9SqcpV2(#e7Yr)RSLg@Kvn8vV>7Po(EailIM!M2du8vat*r=gr?>OHcxn_`9zP&uU z|01*5mod4)BR{yeLeN?$3mYVGr5pe`piqiL)M@moMbp&t8_(t4Isa#l^M@SlSfI6g zXp}gTvfm-!hVOmN=BWe?CrT@`pm%FoG}T1$oc~jG-5h5Idz#S?IW8P?gxL9y#84Pq zZ=^%_WsM!1_=zaKL6j9W<(ULJq0$@d(kiiy`h`N;)nEiPF6IS<6tNc;q=U79#On5` zU7qvZ^=XtZotnZyx1GFg_?J6MjV zBvQd)A6;9$@62i}W^c=1w z*tg&S0MF4+d4@(=*acUmr9IxkKfr%6b^*o99@ma|tAP_lTxy`;1klRb+FFDmK_OVz z4WxP7mei`adpXaYhbZAq1MrXIY1H_EJB&hz(GqKt)oH_h*rmYM~X* z1tRWH@`#=omT&6LY)@2MI41b>=}5eEW7#Ht;aCp!iH=$JnXa=ns!`11sm5x1CA^KE)!$Dd|jxkc{=8|Z|k+w!Ydk@n#<*w(jv_-uoQ!J4Ul(O zaTg8Nu7me`Xc;zo>TyDresnyk3T=~>BV}MZVCisO@k74jD!Z!3rgNw?!)Q)V)PvKB zr^-xd`+d(hv1Yp`6h~1$UgF{2Z1o=?&o*VD^A~P$)6YSRFb38)YBkdP!m1=n3!3sN zFP6iNeRNyV-=HWN5t73h7gXH^^M7)~fW{jI4v>C=CD*x_6G5@BB+0wv$39tPdO@Xp zyVKnt!aM*zf^!IiG+n!FLaRU~T6Ek6&eFq#VB#Nh@LK;3_|v@CX~e zQmz`2>E-ODqY@s`;7cP(c5S;Qz5D}M$WAsgJLjabo3?U~-KIT9heM7K&|}+GiTE#I zQ3uKf_@lzjvn&#UUqPYvJSZ;7bmeh>sm~iGA@q-ulCnMq7w{{9)gHJbBi<=6e}lrv zxR?S)d;;5l0y9V$f$YXuB)W5tjc3kR>xv8^hek7uJbu-|gcWMF2?}oU6F0=c0_?cq zlcYKza^FzujX%pN?qW$d^i>9}Rg|(|B%hNCnXYT3YQfAFZh7|re%(blw&@BD4aPNC zVt&hQCz&zl#}Ab%S5grI%yWLCijuw;nRXDa>^B+aWy@&mhv}RmuMG*HFtuqo&CcDE z1pIb{FuOn+hWzX50jyr&1b7KqLS_;Q1G6{JaHBMTj=wnkBcu{6D6)Ox|U@9kYh}RD)NiMsmawoSLEHQz zV5e@&W$=krLadHJu8^N_z3uI+Cg3cbr8(e)kC(TZviO_2p#oR{G$mGzArT+RjP;qU z8|`#bnjxNLMM=e|AjySsV^5;P2ZOhbubp)+xhY$~wvcZH?ofC_cA42o*2IHMskBTk zOraks#l$E7*~i@aVG~jPyh&eEiUbl2il^lkt#$9&y;7}U=3i#261UeI&0O9}J2VTr zN!rN_7QSKb>o#_%E9j+)=OQS@5y=h3J6<%;$>=y9Q z|M3nv4-y-4lCIKdW#hTX=DruqS_$M%;(THrqTg#Z7!xl-FRoF-k?OYA08jhQ?ErDe z8v=|NSbPA)k;ox9GXt=ST@G(l@4(B*Q}m29c;9?K3NBVy%piCXILhZr0jw|wkjNHv zJnnvwZcM*<(>wsp`;!En19*0s5WY-cH%D^9~--KLX+f7k=+=@50bZ`3d||+3lKH~UbBJ3zQC*(H|MJ)dSth; zheS`2zZbh2{;+gW&%9o#=OAO#cBA^8Z5mA9e?OvsUyi!;H+j?V)BkID>c$^ZMzZSCGV)V3T{ID|Glb-mu$Up|Mz|U#g2ShYV6C7JX~Ao4)*oq7In6b z3HDWX?~c-FGxlYYY!Y7RkA1ZWw@~ZhVPApI1NaL6_cjw3%uvKc*w>dU2d}lI+_%}( za%0z>NM%m$G#-tXPH$2-ogX(v&7-5{{Vy>z2a-y^?f2QQT&+FdO+O>oOp`3|$r|MF z*`o5*mO4lKo}k|+CAG8!UfR-?+0(VEdW7(^uMRUlX*d2>Zie2R4J7?tj%H}fRZko_ zmOel1pYM!e#r_8A*(_<60e53J*Z=OH%VcWaZ8hn*OT=p`v2ph%S9<^B1dE5` zrN-4d1@Bx|hH~$f7LBjz^Cx{yb6=$Cso-Agj^`R%Ue2%j{Mp>4{>j>L%{3qktW^l3b zQLb^_`iAX)3+nXpzCs~MFy5gT17fr9g%3IV{j_ge^XM&qQZK~1>+#3Pt^MjI`f>vz z#2qoQkeHZjy?uSpJ*JkV55zPyHGgLYGvFdlFve#$r;n!(OwG+Nz?(514FqpCosFOC zER9+TYL$*ZeRw^zo#oc8TL{GY#`&pCint4bawHuN;^a^N*(ZLLnPRO&$ zkb|c4(|@~pG7%eRe>Xa2PN!z(1kw+~JiODusoDA2>FRkw0jFV;4?SYjd*;CVU-yH?0C)lgmTTcrQS-LO z$B$+XZr{G0Ic49r-k8Tz^xthfX_dNGK(_QfHE?3RR-$oULRjj2<-RZN%=zg| zlsSI^!$kE9#*!!XAJ5WLQ`;N8k6{^ie9!KGU4Q=Kt|UY7@XELQC*SVRav2}0%^XBT zMt3`-`F=58(vEiIG=7<8bcMe#G|QjS{)y{pCCw|6gKZZ~H%_lh>YO`O>hb z|E4!ijWq7xpNF__Ezr%|ywS9EWA(7Qaj*E_hyM#XyUDniRkZXzpVwv}BMP4q5!=P)b6o9v{3TLC zMkZ=-POa^TT#Ar{{@Mq@4ls|`}P8{g!KPD(FpsAPW@8Bj7OP_9(o(zzeCtJzmeac)lEMd z`MBgWN9BWaev*FfBzg94-feeKd8_1ALlN3R=5%*h)cZ*AV_x3YV3ZF9XL^X83F#9i2K7M(hc2qY{bFLsSP3Qdl`^E{0X1X+S6gpe@s&CchAbGcg`k9EC ze-Sgy=Z7-qm*8D}3)6OvPgh?g_Kd!os5QBBId3QJtMh;HSIYcXwP%y7X`AaGtTL(c6++-^l;X zUXro$oJ=(Gxbnii=P^pPkNm!*KeqN&dpF8#;>q|8=iR@N8H=r~48bd>|CI?Syfy5s z|8JE|z5M^z*8lrrJr^l7vZQ%OBmh0{-@g>tg9(7I=y@E3vpBs$LQqSKoW{L-E%RF$ zMy1)KHjtXL4SBL5L2n$e(vcJuPj+MYP0OhnJeHXuhi5-3W=ZVH{Arh^#le)`pFOdj zrBjdrzcy%<@u)ZpetBXY7xC4Iw*!s77KNVMa=S`|Kj$D?R#Wr#@X#GH1AOY9htJI1 z+|%&L$gGKVQ+s=o6=&K#5Bi^W*ZZDTZV3G-$ZZvo=y-*jot^z}j`8fN+CF3LSo{}{XY*W z!W6l=xlQctODuh+iQn@z?)B5r(ze#moZ8cgIVu#lPuWxXG%@$#ht#YEN znv#bLasTR@jwMFc_U_qkrGD!R-?FVxkLbb3-=Tgzv981t(>yS671l?Rfz*(P>QV9a z!cin`1iq4z61Li#+<9vy7z%F(SVt+_Uo$T|yaF;#gOPIfpx^jf`{w4I*10?4sU*MF zh2eq<^#&?$_D?$&YN9OIh2fQapH_ybOGc$sshXECjx_4(>MCqx)C>$tcc>La={kP= zpoZU5%OzXg6R(@%fp?-Kx%BMWGlxGv_+TNwZnhG>PfboJ3w@ zCGk}K^rE}cA9>I4C-7)>jC7&M7;wLVGyw^C_Uw2A4R1#fgss_7!DG|-TfB$|WQiz{C=U96+L}7N%V-Bu^WBBB21VQkz(Q3I4yUW^tW||oL zo{>i=;Z4~;5c`&3QE0vTB~ZdHAP7= zkpA8h4QOHd`0=B|$v^BzyD-~U(LzLM7whwhi-#s9(Lj}>lW-*x5D<`xyZYlTe+^Uh zquUe&7X@jF|9MHjZhHy`$}-IzKfwYHM83-CigW9_Yuk!53vC3;^{`AWj#l@aOi?F*x;p!lsdO5gFt^oCGD8GBhY_})qSNP1n+$$r@xq0H5}0vE(*zJ3wM^)M?z+R`pb?>?4M zEsoa?qTvprpR%Its|kB5;7K92W+BMn+Buws3w9nZ2hjnWs)2P^y?3m{x2eWF8cM#> zGbH=I5~mkTzDG&FM%4uA2=WqKufHUF$Eteb3%N>@h?g`Y+#CGL;=uNQLJMqrW|2ezQyu^!6 z8Zles)dYb$$)`cG1kM&AWo9K@R0#ESEXhul2ZQbS8B9{T=ABV2z!{`?q~3$Rdd zG~t^}EtTQ|!}Ar?aM!b=4vb?9T7{Ns;x@sT>m6z*qZW`Zy|5)f?sa#&5<=1*c!t|FB&Le7*wie-UnI8Yk(yoV4#Y@ z>3`FMY5ntu8v;*{%@7$s^3Az^>hcBL%lLu$qc#SHh6=^{ZIhF9jVBmhR%W+W1v&8t#Y@kO*-l@&NnMD{FmzkBne`MZZ#Op`Am^Wq5n%tLV$iqrO zFtB?H(QXG1vNtwqVkt-6yq%N)1M6=qDU3} zx*`7x@fAYgKnf7``gaGiH{>ozrU3mG7Z*pqWj<(a=T7cpfh(?SHhJdc7X0x$m3EBd zoi=KzW`WhZpI$asAsz>dkMGs>7o>5Buajn-gs)h%Q>w>T~fn!osRAe)d z_wgf~0Do9%>WG19Aqf)N>UEHmY@6sX@doJb;Uul|&>grMr4-cOm$h_;e zlROh{C0NKpZIT)TNG4Qo*|pwEI2kS*8AEY9sHN>t4pKDP;mqSF_5=k5UBn*l&S#aP zul~~6RMA3(?A}^lvMQ6B6+QNnW+S_TO|bCrtgNh%aW*{~I+u1}`Bidtel+q-G8dS~OZprRKD- zfCNDS{0^FVlDnk zQyG8TTN{t*!9@2jy~@+RC@k4)UtN?%m^WM??=j>p_zYq&Ndv##RJ*_}>Fpv@v}1-z z2vyW)yF1k1AXC9pLNOj%agKWQF5p(J8-Ku_M*}uq4!xvQojpt-KVa->tjBGHK0msx z7&dwP=xH7^1pzZdRFUny{io3K!ox#%sU?^Jh-6$Vk{q3W5SbH&@w}``$dBG|7Uz?e zF1cmSpQKQ3fFiJ`siK{vgTfD07jg@vg+~Tr)opWkPJEiO@V%weLydBn1~(1>X6@%! zOsorUAAWTVFyu+hA}bh#LLQ2QgByxtcGUUy@(WU)M0LfSEjK#IC$K57aK-xS#XEw9 z_SKIg=>5{FhUOgdQ#i|F)Yo0>)kL6*#XEfy0M$yUBPEQY%&}?RkSFhTzLS#^ zAg~73-get(DE|mUT3%Y-I*RKt_U8;f7fFH8Fzvft-zA`uBF99i~a%fYFt-N7K3O_&Q;ah z!%h=nN>z*;g3!+>A>&&Y7T7vEIz|H2>r{~S1-}xqC_Rb|Kj(`2TiocaUuI#`(SQ@x zWv-*h4`CCprkKjQb4quYRd#~boDlYlCFU*iURb*+;B_fn!Ns;NI)qk13aqFslb>2H z;9A1!31Ub#&ngQXe^W>fwQL`s+MGt)640Bb_Xq0~ygocU9RG)0w=3gzbaSIFKoLN6 z!zsKXiIE&0c1OI!|M;l56;Q-ayTW57g2=k55)W*muAW#gpf*_zb}4bLNeau$k6H0I z>HO_L&(b5bMMj6 zO>R^5sK#}j)-S@}B<=I?iiv~6)nHOas09zS?U=60vczb4$@IsCN#7tTn+y<>Qp(NY zR1u^86eynq$o&$78{!fv1In!981UQvNNV@n=(vbD{UO;LpM`H9m64ooNdXzHv zqC&A=Nt>ck9eK9G?b?je;$qIFMRy&KTK zKrCK^ZgdXHm#E7s1+G5=x=+}S`#z6_T{7k`%1-e*lBvg#IX$oV{w_{ehP`338xj!( zK|zYUAgyApVaLo#-^}b#u6lPqZD1WuZ{n>uRmqdhHdtSM?F&mHYxih^HeVvt&Y`M6 zA<}E4H@II6Yh`9(p%_7q5Yk75@bK^eZN`EAFn?b^z&ZuC6yg?oSBp=?_6*Ql-MxDk z%J-kAtNG8PyM4~?WvkYuD@8@n8R&jL81RRiE!=&Bi5$9)&>Adq{?Yjicg?gAf?tKL zLLwa5K!im?dMkaMA6Rs1|GfXEHNE1zuRsd`@WsQOTMe_Odp#j<p*79n^cE~wD_GoSMicpcP&Rxg z*5Pb!Am85knvlKVZiS*(F+~?*`Q?ZTxj>c$Ws6a2ay5a`gGCYl={2sUf={oR=Gn(J zy$y4<7vHNW=~n2UXm~$Q$apd<{&ha05D;f)=Vf3*u&Ewer<RPF^&aw@?#D?TL_O-6KOPmlI?iOQ)}yjypD2seocx$I$Sj6kj4CvA^3R58!=z1Ge@S8W-#te(f zpysr}gWG8Jhdd}i0qMdgB^7acd|(Cw0W=%&T~KHBd{wS^vyrXvWi>w&zc2j6UXV7l zl{FWtDP=C;OO%5AhtOS|+@r5gf8?jzR6_}Y<{MfIMVb2=8cf&2aQt-WyN|{iaB12v z1j=D^fsKvY?W}E=qvJo~mR(I@(YS5a^&BFJ zS<0A&v+nl3#CXy;t12t!d1B0TF5gU#yLYqGaJT-z==R?a+8Bk5%b;ed7vgmTw#^#M zj~%ES#Iz@Zhj`d>Go;Z2i~u2L)Wpr-=49+Yr+RHKm0*TV`F-<*a? zq<&9JsR4ul$8(ficll4)39gdz>3}?N-SZdQY(meCnqJaPCjuSnaZovK8dSoA0YomE=qsT ziG__)11HP8@(bZBAstMghS`$CC#t{vL%YYPQrd;%YkJ2V*9k6;Y6m@${Bb*o;yVz6 zO3KQ5gQD%%a$+ zmiO=o?40Y%&1euml!)oLct*_Ab0V|S=iB>ZVm@h*s?y_Ac?aIOD`H-U6UR;A+rv+5 z^vc^%dSW(rw6KF)at3TGiqzWE*2p> zntnY@5r83_vr(iy=njgWc3*hdsW09GUP4z_*P(t&C2tt8P^kT_cn!YRAVR9m!+u|e z0#u=;CCzoB;bvi4V$59G!$$5Ulh-{;$NsXi&z}Q8iSEH55Wti}$8GTVasA`OvoxG+ z>c3jd^t4Y}(Bo?|+j}RE12iKTrn)a0^57m>b~(kP*&_NogG22D`!a^RFRBy7(2)cW zDIjjFx?d6dcqH06zD9V{TC(;>H_syqW`4E78LnY*{KtXb_|yZ-;~EJ)Wn!cQkIC47 zvOd|6&E`nPRb{`of9Yc&HZi)(8=hd5DiEOztAyf2aO3L*Kcz%N^9#)<@USr|3Y7Jg z#n)2-Ak?u-)B>$K8XT8(RmyZWXBHP}eajo?i$ID_{;h_mQWaCH%CyF3x1IdLKi^X@ zBeh258bBAkE9e%}X zU2XI^)!#ZTRU?CymqTp}LFSy{DICz1nVFeMg{9h=bs7@yluUL7ka-b==GVpd(TX-Z zZVwOtzSmMGk;EDuCfG!XzzAtSQDT+D{5A@Atf_Hq-6N;m6L9q+`B4`(*oQp)6Umz% z*K|eo`QLWFuQWfjopeN7mvY;(mGfLFB-1O8i}S8rUNPJf(>Q3<(&8KLaeEjMf_)PO=2ulCg3T;aI^SHy$t zL9GY`Z1b<|sK>5~+1d+^V%Rpe_2k5>KWA=V6PRImGPTsMhEpt~4SfkTeps4Vi(_{| zYy)5iR#k+suGwfjz9TG*W!vZD9~c31g9aWSSo>KA(UG%4coUld{6IONomj43=Gcmu z*?7Qk?cm{5k%ZZ19WgO6Cv8gYa~^X?mToIOhPFujMW+q`)e<<38) zS8VMa?Hvn~Tlk_$*b(hKU5+%IDzStg(`NpmA?%v0DJ2u+4hvhNm4Nb`>ubGg_im6ggU+hD%qE4=*? z5CedN0GEX}3+p0ly3did zELM_+zi}H*o__5n8404ciIvr5AO>pOwpbRImiS<0y`-anaadWg2K>)?k)Qqcfj>9U zdiq7sf&i6T_ zwJTU$iLaO&UG+oG|NcmXpPWe;@3(izNQ95`X+uK865p@868DFoz2jGd$12f#rc&i7 z8v$GkYkYLy#(|lg9T7T`{w~mRaPxy!f+MZBseJJ~9T?c-RO5f+dT>6F$nLJ~dYQ$? zR)Y~U29$!PERSC2gfut5lB7(Ju(YO_lD419;lrF)NDS&8yv$``>EJoxa z<{S(#_f~`|+X&lLQ#F-2gMK>5lJJLp|9RxVEAJ{CgUSd;S+J6NJFaSnKatjqGV$;0 z)=GL2znjrp&;LN7(@BW%h3}>~&JB01zt%){?;iia6dk^&Kx~WETfOa9?d)Il{^liJ zP4@0kI4NyK*@AXAz?!b$c65ght%{hdE2=1^GB$OH-Y&I+9Z2$4ff821g(GjrJR~1r zkLS=dJIvwgKX{-gumE5~#9v_5D$(n|p}59~KNIk}pc=if;&7rNj!e~4HR zk-U%h3sl?sngd&yAd=HORyna@g{3nzQ^kXzLonwL0ki>)7*^uju>LZ=?pj_~SGcc# zbMy}!dmvt(0*%NS`?&Zzbc|53wUO}-z*qr#g;OH=Z#EFx1TZap3N@;I`>D8i?rhQ>HaFfN>xGOxUGWMbB+nE$D@uqF9nWTHmdn`vAjhR`O?Qpx4?NMm4@mSC%MIP z=ypK#C!rV5vFWRgpsr8fnjWF&4D53dAD<{CAto-MNK2EzJiGkqr{w|L6P0gGVrkBP zHLrLIyoMUX^~J_57OvQdni0LO5griT34St_&oiw#IT}klln!LyV5NQa4NyrDV~Wa? zxqiEbK!n_iTlvYT`-RLrkC^j4mI5#iza9tQTLBGS^+ZMoGG&n5Rpbb)6I zvUpf{FQKPunjGM5k*jUE9c#>G=(&OG20|69dI6yf>J~Q-4@;`%!8;>ZQ>c5uPfi#2 z`1H#ymRYFt>4=(>s9Y*viw8bvLr?mdvedQ5iscnbk%wNjRg68jZf76U1{vzi?(#7q zFge|CxagE0vM{4nE&2V(4ezys=cF*k< z(fphc)s<(J536R7m!bwMdr!M=n3VdHV;Prxg>*JYTpb0bWTQ2fn-8DiWUxENgz=^F zNOWd73g-<_xgXMpZy$8bN_}_FTADDwiJ<2YYm8lu7v$Y>a81wUQo(%16DATpws(?> z)=Z4=YP*S|u1L3`=?6+x9TXdq+UxP3ENRQ70 zc`_8hk729lf6o55P&>Yl4Ajau!NJ!qUqJ0#qGkV53W70E_rSUqO(7J$D%;mO@S?B*(+#Tw=u)_)0AT`C-|ZEUFk;pN{yQLNnm z&9pqtgUfzP9~qB@O;8yD@e2LxJ$H0ePcznG^1MP4e0Sd9s|rI`wfKMR*sz3)_cF;XZ3`A`jCdLpDgO>!1j@%tobYh3~j^gKQ( z)X?kz@gx+QQH^Y%G^tEU-$?XK*{194TiS64Vtf8qm2LO1qbMEHa&gN|t7w#>iC6t% zjcnP<1#32`ar6c^)k4EFtt&>l4L|F6gqi+y7#Jz59&EWECi_k(%DJX9w}*qCqME@1alzbN;M`kHG!6l3H8E~3_u z#Iiq4Q8-!eNgM(+BfTz+>fN#egiN4P8K}^mf#>NGuSh^h0{HrQ`}Gf|05QE=KNAxZ z^)&Z^Xj9w$)<54oVj~1?0cF=}EtAKqUh*Hef7R3Igfd>ffRKI8J@vwIRWr0VbCpmy z`(~8q+S# zPO-kdSc--}uDKE>u{iGzQm5^VX&+CE=-jU~TSMJcDPoXxyNcz?laucP@sl?!C&};t z_Z9#k$J7<)M_t>uds=_}qP3~|Q0SXo_FC=nmoHh@Za!BS>`D@_+}!TrHFI^n4o*0* z3jo0!q98v-*Y`}9lk!FcJ_&TUfI}eI*~mf|m+_>A+O?^&YLZ?~)cVeT1U7h+cp zAiTkeBEZjOQX$Z?a`vCL(u=yDTcfZjeY1)?>UI=+^7_tuN9OS$>u*M`k@ol?)UR=( z1C`?OtA5%c&Co6nD`4YC-F>FMy?IE-8 z&ucuY(<$I!?Yh!8@09VlIDu^Xj~?FzYZ{t+z>&}Gm1n!$Otn?UbkDe=>d#VoyIzKI zs*>aUPdiao*7$qt&ycq_R&|K{9sGsX*Bv3weI*4(p~NW z(___QsN6}GY1+5(R#vvFV9Q2B79GXFk}z7DXtE2;=i4Ci_nsv~?;R}zz(|v=90h(P zR%#+FB3BD_DQ!N=5(mQt5cIO{bD%xHPftgKfA|hK@l@Ed>_dTig&YSi9w=}{k@x?| zR!rSXd4)?C>5@q%k>oJ^l#?T-G`{1$@DP4RI6pJ{2j{YXDLIULSGbMU<>(In++!n4 zX3=M02N4LAsza~F;KE;FOuFBujGfUpF9&>tDi=RV>VT<44RJ65?nQ=!i*h-1W)V-*J-!)4*Sv5s!w*swyFn6LRe< zxe38a1IjNDm<9$0Shf{7*IRKdaLPa&N8}p<)A?(GzDwWAllWvhXYpo3wlbl(P>*7K z#vM7HX30oY>}sx{>$NKzH?XvAC&m%P7VvbT{#@=4lF6x<->NALob1WKVPj>ZY)o;A zP|CKHdBXF>+1|hJ8s0cjD#*f{i;pwXJBS#~0xclP*^lQ&1?Z0`9>$@tYg3t(06WR~7 zY^bA!PsPNOQYrBAfYls&4bTlkaq%;<^sI?;?*u$96Qd)6_GWK$y+Sx-x=`>RC{jXR zU@8DVL7@QIOq(J!=vbWyOb>w4X*`EocL)54J(A))dF943RYQ&BjYpPG5Xn1+UrWS` z*;1+Nm)I0-McfzI-nlr5$6u6Hoca_v(Ub9V$kucHI!|NTJaekqp_wwhnp$*vwr<<@ zi|@x^2>bc-Av9X?gqGh}3VfbSnr;^*x2&}b^_Gw%MXeFvSeP6^$Apt5aaQPheCzIK zy3txlm{Gm>-d2*Hcjc}67Fo}7js1*0?NW*G$V`*33>d%eNJ$mDI&OJ1K#!&NPp+Re zv8QFl@P$)H>Q(-v@YOGE9KpBGtv;KTQ-d`L2ox<23TSyfXtyr~f+1)$OV!p-7Q)r4FHkB|fn#U5}oIxu-L3*#4lq*HHazwI=*w&C2e|M#ID_&4q z&}bT<8B4v@^UKP$L&CZ-3OBIh$pVvS>5MJCm^eS{>c=ctj z7WamC-U@f6z%(#{g`+l6{ytSTwp{+bc|r1-4D$+jT-L^KcBkxL=`In{{1Py|xd+xX z&xJ|Jl16L(C_Fm_w%A|u3iHi7QjS}g*YmO!w-bB}HJx?Rhq7k~2MXv9Yfc_3;X6JZ z*%9$F@-4RK-b4R68;{CO=S6EZM#|9jOAM~svCA_Wf4@8%H(V|$FOIGou+~nK#kR!86i@x@&ezjvbu1oq zx$bI>Q$h3TN6nK-y==9^I&NCcTpdxL6H%y>+Xi_42=F<{XGZJj2`AqJqz}0j6lA?M z1Mce}=YJHp{8Unc^>}J=4 z$xc7aofy`;5`)JR+(eLe!7!rsdST0LbKov1R_H^LP6CJnGn}aCTR^!-rhhLwkm@8b zrM|%@b;7b#hvrOenq`2ZucasF16pO?gRtluIU9Q#3ng z{c7nS{ADFIUrnVGpy~(-3G-1%=nmkkRCtCth54PElQ`?+}E2KMu)KPWZQa|xm1F>D5hpkG9m z1wpz&@QuqCM*0+Af(sVqp4#yH;+m4)0e9}J$ED-iJc*uJa*ZTEK267?=XPH2YV4sg zJ15+l_L0ohS6G8`bYsEx2K4`P!kWYuTW-qn<~RPh8Q&DcHEpXNMa{FVQTq1{5)lic z-+pFPU(1;e800nX?`Oqu?_iFkRF;evcZr3U`Y`kSPjF@Vg1{6OBrmsTml&Y!ZHV!* zV7hs+;KWXKP@OsX@4J=x!W*OD$s7A)C0O@7psl_xz0l75-i!1rFNWGuE`vUx=)HhZ zr3{v5hBYyDcBTNE85b89)+U4-?;HqE*C6H2tezXYTEZs9IOOg@_Qa!^;yxw8Mc`iJ zE9c~aEv9Vm*`Oi`9_@SfFrg4V#T6YPc63i=`Xrphuh03nezfyIv6g6^_TrM0X^-NQ z&<8ct(e8Y^8{#=}t;fbZ@5C|VQM6;{2~jKW(x+_yOgB+l*ipH!pyrH%DXy+4Y2`f( z@fp{Oa;v7btsn2^r(q!VLngh8v5{F#EF&M9BKf;I_5yHqw-v@wEJue^F?*0n70aIi z;(15S2}U}wpi$G)x62$`o)dwEpaTe{m*7){2S^cf!e8o72Vbu&Sil;Lg26?2oS!D+ z%K(4+V8nrqOuNuXr+d;YDxHh-wPS7g&QgE2QRzIWI|fEZ`c*|xzJMP>!!Q&A0WvAJ z%|9-2T=Gytb2I-SoTbjuDPZ{ZSW~ICZx}j3upF6||F~6Wptf@}Na2V3(CKxPdaFW^ zH?6Hz3+mjXhE`(Z1g~Ds@59+Y`pxwdAwJ-2bMvN#b|S@{m57JVUqaA1ok8>-Y&Y7+ z*Ou4{WT!oQ%eUQP#paLM;-8n1fOi9kJp=BsZ05PiIZ4xuZ!Yn2Z%~unOo9GyQXcDY zba)0G`0*$$h-u9}D%Out%Y8=@yrOj0>8YgDJs~s=dd%&_9*`cOr?HU`QC%5WOC*y|M&(dFdwS6yqxIrVYIIJ?2$U~(sa`_L-_b=zrf_Ux-?>e)r%tcwo`+7#7k zMQg2o4VLl`jkW~oyw;}HA_!-ag(taSMf}FJ6 z`V#$}$ZBb6x*IwzI-|Vw^N`cVT>l33&38$DVtCktYIdD1q1Dr|g${*^*9axgOgju} zo!*Wr$#ezx=+`uSZZJQtjurumf~Fsf$G~;f+>Dq$SrjQ63kK6>o@VOm4a%Xr$m?NJ zc+F?Alcn(%*9B8XZS?46u7`nvjq7PVz{m*fLSbFo6%|>uzHtF#VWY1EmhZe|`6Y)G zq`H0`Wp?qWO7eiUQ7wo1vlgBQx0vJG1^1`^dc?UddjDg1*pc~)kl!Gfp|~5p(Au8D zUeB^Zk!r7nq2B)0^N}~!aq;{y&7<$ui%u50ZqmG*a)B00I7? zXr*{x^*|(*p{9`z3W1tVA&I6Kbl}(ddP_uedaXmRX}=;8HDn8{9@t|+JZd*Bw>)8! zQg%4;BW73GA5D03fBJ!k*c-3N$lFWeYs>}07c-U>+GOp(Eet+!?7+rhx2>vvlpP>* zIbZ~kkEi4^2jl0n1g_AL?gu6A7#4P0$XMc=!LS9?VySiehjT55-OtW7M0E6g>TA}B z_ry3WettsUo|D}Q(9*ouc9)m+e}YQ<7`BXq!3Uln6kF&|pmIqOim+Gorf-5V&^|sr zCd}`T2$GlI+Nk>o)6o&$TC?m(ZVnSWj+H0j4Y!70i3)psTHSsn-G4=yQdA^qMs3;T z;53ap|v(axTzGFjR)O{3Lq0{82)#n*RI1Ib!>V*TKwNV%&sndce;QbqUu` z$F_o$ceGLPL%ZoUK(CN?qa?R4L*ynTBmfwW?t8`u_QFTSW4be79vNOy0BYbfWzVaj zmCwknhmRiV2x4c(p!^RO_nu;9SLqlFR!^M&Jg#7zN9|cxt-ZyQb#IEDj*CkOtL!c6 z?CKa-(Z)N+_h6-#=2ax*p2E$zer8`i!TKqBshfn`vrDxikU`2pT4j~WfU!s8R<@2X z+!-jbiZ?tK`h^0lS-K=uI{eU!o;iaq;;G#)zi<;mJOM3|n+j(H=-trvEM$GAt|iMT zvDT7oOe}?0jF`y_CtCf6yGepJ9_yT7uD=SC6%k6FV_Jyhzl7H8P;Gw=fP}%Cs>vlG z*ZpB*bUbPuwKb!cEe=Q!=Cr`w|J2?6;mg014FOfYL)jOFV+a1T2wwbYr!OQ4j!8&X zV5|p*5`2t>95PUC#0y~11%(U(dk&c83U8f3C4-*|C7F!?x)!dhVeQy?5*Wq+=?-gg zhv&dn+ykUO@q zb(e%u>4F22Jc!5HTm=>cxrp6&K3!7+|2$|%8{RQ)T$*yz$zYL4!dV;V23;5C?`$OT z{AEe|N|m|k1l+kR?&s!MvsP|P+^1+BjiFK}4vN-+f#{*UGQCWV7DRHgR9U=T(I^m9A1W@2?=VfUS1d&3 zrdE5W+8;dXo__78rli^1c-ARI?6>YUguXj;CUUo6jiO1gvrZ`hJt#!s)nv}FH;>nF zT>Oh>|3Mh&?~jYeKHl1fk(?Pivu<;K>>McsBUYBLsmcGc1P%-+|3FT|q>?_F zJ?#+WP$<2%wPIj;f<^=8&x$xi0C9H^b8j(Y(8ZHjX@yP{E55nbL0?h$86N@jELfoy z1S5zmIQg#7YDk8vF;G)C!+-*K=*ufA0;;O2o-{EDw1P`jZI+3X**lhxsdh4_6x5RC#G_;IL>zhJ)e3DN@+9iw z@~vKTR;)72$bIxqDalr;X;NgMp59zK{ejRQ4Y7!b2(X?Z*&7VF3-1lz(~UAJljOU4 z8R4gcsgRE6q(&;f31^@HrSh0+1 zoNv#K^CqNQ@4?s{3>XxiTs~f?c#>gg=O5wqAXlg5e^W$8UR#PO60b@u$+QK(^}Q4u zRH=_$eJa9ka*F$=?I}XbomLY?I|i|VwfEeIp0C8Pc4(M3; z1J4%N_h6VD&>F@1=Lu%^YzjM^{fUOIE@buP3&O7+mS-pAn1pZ4y`YJ4jOBX-zP0qS z>4z^qlrEiVe6Ax=ovXZ_OhQPdrjLLIF}LPcPmZy2lJ0nqh?U8D3a#p;?yZl%Kf^eK zei5gcCUcmf6(n>TZmGd)uQnueu)L+;DEBW9%Z^Hk$R8PtNGq z6}R@%n6bmSI*gAt^#*rFv{^5R9vX0Ujs@xrG>hxk(raaEArLo_Hq{f@2^a7P@+7vM zoJhjh8|WsZ9m5w`nbIybEP<;Jo*8BX^>|g|`4Ld$!Pq_z$lbC_ zAt?xuGR;92yxbjMw>bA>vUoK4?QxXY)sc4(8Iq1i*h8kwXLpAFy)2J^6C)#e-}T>b zd2Z`lD@2=Vd|}XYT)W`Wt{&?eKiFtavW)6kE6{yqPH(=;EaO?^6nE(4-D@71b`U@_ z-Z!vE>iFsKed^2jYdK!&UJ)1Q1x~BPy}4XSj%t5u4~l17B+}MlJ9s24J9 z6=RqI5CR}Ks@;AJb{vgc;IfCkqm%-l@ypXA7dSuIN!9lsK45wA#?2t!+1(Ya7-Z9= z_typ4kOL|!R*AhJLTL_oS?yZKtxd4H!bF!`<AKD3~KTDW8b|$KA)h?dg~GQ>zSo2EjbnV^dugo?X{5QJV7S zwu~u!ymA$1c~G@8_CqldH!Jy1D*YkvuZ%x}`b5=}Gi^zoFTIW$%wKhPDM&~pso>$y zi6h<>ei9QYh%TF$`q8H}*4176JTWm|Cbs++$>eD9jQO>iNzv z_OlYdM_dpsS7qL~nB85Th<`7XkUF>1N~zHMkU>J|V@k~tZvK7wQ$7jWL^WAjVDkp! z@V=0XCVhR(>x?glbjT&ot|W3SzaXq!u>Imm-)-ZW7n&dYjx`4x)De8`tQi|Jt=edDc9d6GwDfc*Ku`gz{)VB z5TD_{VV0w^X}W3Zi1QuXtS|~FogNG>m1~!Fp27$Sw#j%R4yXpEA1R*qeodEr24n8O zf3pC!3)ndf<^fwPxUu#YvJe=Wgt-s+Cci(rDhzyMK%)X>iluVJ#v86r{h$&3=@*z< zOx>lG!W5qruEF6t(5^fbmvDZNY(jU5(+&)m;4nin`a)Pj^a2orVdEkW^~Komr|W$J z>dc9TcB&grlMA-%*R>cDl_CdkRuSY}#&}}nONV{=#bfAG%oh}e%}e|GlY@GVhklxu zJsrorx~#X|ol-cRO!dQ|22)p>XX!`$G$!2brd!kI&Y`${Ve?5N1)5K#e%;o2Lb>KA z>Cw68u{7{C2w_L_oF_jT?Vdi(RCe5Ow*SM^GOk|ekGdM>4IL1ajB8-01q;}hkZd{Z z|H%OvA6lp@<*}Pz7(xpJkDZ+=q|e{?J=^*n#*3uf21x<&iE9R!wAH;jn>O@G(WlB? z7>&GfqYWA~I6?rdMh)BsztPT>v!JiA^Hjnxu_M__drP~nu(1+J{A|!vRgH?D z2U!?(qXFhZQutLL%v>3r)eNR1w?=iz@)`5c&>Hn5hw$WT-^|rmdXJ7hNb=!z_+S-Jiu*&0cz)RIUqK3TN25+Z`HFiUQewtE?w^#KoYPKW;ON!LpMk4A_OD!5 z7^P@2;&SmaT>R8uw~pP5Q}Txm!C7eoO_3zJ)6vgb>r4(EqBsf zJ0{?E!>xkr32H(fWhkQ9MsNq&_|G=0+)NRCpORttj^>K)=Sr#!-B)D%zh{ZRhZGU2 z+B+MjCj9DN8%baKX13eS&owkC`QWhDmEyP2n{Z((ls|E>60Mf^wb7@_<2wS*ziJp4 z{;i4$NwnN+a^m~pCurcha=m_L=*s#l4TO}Ej!3v`YVn`%a*NNzz6)+wyHS9r>7@eBICLZd1eWP@pUm@W9LD%gPlnK?!?PtVL!sZ8()JQq?oik)75L{o;f zBM?|}0{)K~Fjk#4xIFcBw^VFbQ>?ioC*#iT^!}nwA22&HMCGwxQpT4{=v66?A*^{F2U-VP29 zy6?VaISlo}?De1~%zbLplc0~J15T3hdK80%O2Z8f2%Mv$qf~!Ic#c+3*$UFGuiQpP zwVY!XFy$5`{XDoaZ{E-T8x|enGsO{OuQ>UCSbGm>uK)Ot_p3n>8YF}Y8KFXCD-kLy zqp~WLmAzL}{j#_GtTGbWC3}=)6%_x{fJbk47g@Avch zyx;HFcs?I5>54C>ru#1Z&^uauj^dyBL-j9BH903U4Gm+Jzs=d}hU+R)1|MpvBHxyq z88Wx1p!xPp){XFXwc*BvgQC^SX(N-(vUYq!F$w$5kza0*sg5*NU%YrAi?IW zoLXPwXl136YTwE6fFTcAkFD(l?04=}-ZPR!J?mtvyVf79>6T!M~ zLU&o}Pnu?*fE!8V-;PLRg7%TUNh%9tG9?>MXE~+0cofCOoP-75ha49-*T~~b<#gR3 z|I@B;R%GEvNxN3rY-zJn2>G+>)HZXU!ms|hEc~?tzZbgeuQF|oDk=;PaXEfA-q2|^ zX-lcu=}!NP=Clqgv3z9JKB=-yW+bWf@Xxj1lfCXizs}dfj9~cp?`*qt`L<5a-=m+oKP;$<3T+8sjS-(g&s7=&A$R&f_^a zmEGOW zLF}iJl0*j@j-`^!(zgfdU#Sb+i@D-piDU<@1MHHm4SU_TrL|-qZ6Z+%&4x4~sGC%UJ$WP`UD5Dir*P)RN? zR}Ay_n`)LCWSNI6vR@ieV%l|;?0Pnh;A73@Z{~TdPacs6M(;;vj*P#p<9si(hM}C4 zw{cif(~z~um!@h3@%G&D4-*RsO{PDf4Z+H(0+z~l>Gut-p~DirwVF+nKQj+#861kr z{Ik-jq1{JhL2=h|pL6<9s?x}?}yw_@bl<5(0C6vjHe{af4x z-q~CG<-{U1Vz}8)FiPFIJ)f)lJZot7d+ou3UQK!DvqOF2d5zW26y6AZw+poN>~=^A zkcftGHPv0U;m(-H9g3*}b#!FY&Ya~9f6zCLx^+eU@$&SNbLD-suoBcq5@n*pk@bgB zi-Xj2d>!W0$s4?Fde|xn@vLT_zRyz_3kkFWl7YNDUDQePlHr3~U?YxFA4mm;HC=a^ ztme)eLBqm$uDLNOi2-Fkh?FY&Z4Sk%5Yz@WZtjPYLPCk+XRF{C6?ZUgSG`t$Eo-yx z)*Fxz(jdiS7$hghPjw9vPAfVf-@7I_+s0rkA$OZg_~)a9xnZ01k%_{k(A>AoTvFD> zk!R`}#~ji!-X{emLxFjP4_K25#3Eu@Z)lv11TLIF)x*b&qv|+=vDp5Q!~M3e+js?| zE~<7$OEN64luBpr^^@h%ObGC9_q}BA;(sjM=O)>KnrsnGtGhh@%+>ej`5Xn4);W8! zBsv})wD;LP_V&#Jf9jCLVZo9Cg;T77MvwxuJs{sg2JH-YS&SkU z8Vy*>HcPI~46uUO}WrWY|Z7M?0@&Udy<7;|3W*IMnp8`Ju#xx*!BnI4`4}gs{_? zSK2|R3B^3fEr|YpcH|hj-)u&;6bhtdjc9I7k#*E-o;`b}*1&MD?5!Ui|IA$}!SJlS zxpT?tCi=qmeZon0iFPc_LVXiI5-4PwJd4!74B4T(Mwq6*lS|zUAK;zdCy?vl=3-d$ zrFy~ky2G*Qcoe%@UX`|t&Bwf6lYYE0DgUOE@ODwU_KXr|mIe<=ExOEpa@+H_@H|st zyJqnnH+cE^+1{j;_${1;;kq(hkrSj5PWhaREP~q)%jb6aOIT@g(jFg+yq578ma5iV z4M7%v1+8{Y)~(rn?12vYhjx#Sz1u_c1p3=1t9-)b<6K46xLC`!Kh*yIp>U!a_VgS{ zmjB>EN!G}%H5ngHk3vRv=f*iV#tu`X0)~nSp5n35xBhg8z7}s6DQWNuPLVF0S4v>M zQl`qPI(%zzU0LDWRQxe-e!KU*6TVqfgEfUJ4^#4o-zNUEQ!4)Dh&d-qN!voZKkwJ# ztTY4F`c)Ni3-XB{E5GKJHNSAhvR#+6*=CufVf>K3>~XuEAeEDStx9>emV;U3M(~_w zFU3KN(p!!aHr4)Vd`2(sV?m(7h%IK^_vE~Dp&st}$LQYqqeu?8rDJ-n#AC^`S;_3# zT9E!CpCi&=LpRv+A)vpGM*`y3wkjwgNfZ9_6y)Tsw?+SIKyQLb05<^azu`T9IXdvk z*}xT~SK_h<-9Y3*JNY}jc~CtYONpPldQV9P-fsL#EMV?EySn-(onW27vwrHaQy1Ti z^mUmb0#M-TqdoY?(oNu^;YUuXj~=w~Zyq|ldqs!(3R+#CptFY>l?a+eyknl{9yB`s zP@TQ{9A)ref0qs8yXGWeU#pC-4ep@qr4jX z4mUoWAhGM4Tb$l#%|{ZA^`uqCb79en0S24gmthRgwj7aAvk^Xd^1g$3#3#%&?|V(Eyp8<8;E6QUV*4xgL2v_TheFwa!+X3kv&uX=mv-FxwVbT z@?6|(krGq2fFS3)1V0Dzhhp=n44c-Y?KkJ@@b7%{gVG%WKEe?(BNYl6N4DS9xc*^e z=;kpCrJ)CA?SVR3TAcIT+6vspY@?Dnx8mqHMyzDM-_1%e$RY~9;t>iV3gPZLaH}Vm zh4UX?*m0RMCPwA9YCiu}tJ(kulBR)H=2pRkz+TQ+3ydz;(0{c(>)Dq%lgwy zojeV}6Q(lNDck5;uSt{o1HNB0ey;GnOBK-y@OIEPeygN#cDTlbPPv1}CyF&p zSh|ygGQ2~|*KEheSFzqb!D)}YW>!G{AyyFjBkQ7f_l`S5krvIw@@e6mLt8KGjx`h!VIfG=e zAcxs+<43vl@~_I-?rB6QB&tK$&H4PfUGTmLg|N7+lW7xQdGwkWlQona`Pf6xT?_DK zX1HuNe>!mN+)Uh!(j)XKmY2C=kB{lq>M_alVZEb?fiHe~%eeS#;`qBK!e=33W0c4Z zL}v*yDuM@e;6TTq>{y|tLayHllXLZ^&v=CX{D}BYQTQ$N8-<9-O{hIH+RQ%s@4B%8pfut1dS^uDj@wL(!n?So-#@ zoZ^>?Wc{Z*1?V?fMAHU8%Dvc)f+|r#bGHn;*5ZPQBvJ)?$XTm32b%>|Cvs- z0)%2!UWXji$U$H&$G89T>T5yk59jhN`Oc_))=bqT^xEK&U^l{E>LSVdxuGFVN+xRL zb(=ZSxz|5yuI?r8jVj!B!-h~f#wB!UaQLc8qkIoc3q0>6&p*HlMc{YPY(&m-%EN+5xO%D8TqZ z(%eVe;APDR@$b9&qG%%Plg(q7dl4^G-m^LORZpP(jX!tGMGeN!t6^OqdIS))4kf^} zYx|>ujNkyInTboZkA}X|6BqzGMw7p)gN9(erZogBpj>bm2#`_{kigJa=w11i{}U|( zWz!EY>pYHEsfM@(^-jPKiBF&P$7sPtl1PP7m0*Eeqe5;5MarCVCV=Ts;E0&Gc z=3l%6(y2vXKYteJW7a^`nRaoDd;$S=olUS)(#);A?i4<;1s}vly_d}y?wC6z*m&B+=>eZj@_rDQtHgTXw_Bvgu&-U zF--P7l7r`NmcIVw0p~loQsL%r0KNG&u9B#ncf{VaLg5mNgphhhosr;Plgz+6ZOZ7C zQ^!cp>nupzOgHl%Qn7@`|1xieW1dwZt(ZsL=(0bK-&wnK{}y{5!P)-Xc6%Zv7*CdK zpsF%@_#4MoM91pO41#+#V})4M`SyoDQ^{p>XVh4$JV;M!Gd*J!U+v1ypd~2d;Ff$y z!D``U%bVFvFU{lGIb?;Ftg_~6X$#3lcf@%Y9$1KFF{T;_Zi}hpi~s4S&rKJW_V42T zq<f`gDASr3hdu8GaTriFE-SBoW4y9zVjLSj!c!xn}|k9FY&IkodD9UMBE%yeFY| z$JU&7Ye{u;UUgZZmwHvxPbFC2iK^=ik z^6QC8;_L^?+Cl3;=W6ufO@`}6Tt__nLA)}TsDW5-SRWlM(Xtt8!fgbH4s5k3R9$X3 z82yPk9b8A8sb}suoVjsSbZ;T{IMiU3Yt;`H!3S0}tn`JdI_A`7QjpTfo1-!OM!@zF zEU9DZh19CWv$vjIEJX-FdWgkzP^;GXZFzC={Sz+M!BRY^#a+ER zHWtAN0N6~1wdaNK%QHgz_wR?WApCYo-2S-Ply3F|Rmz!lY zvXe%>{tDokGhLbX8oBAb;pQ5k?(^?3K_0nychhJcJWF6iJmTyj09`k%0Uf|0U~nRS2=KG~v1_1UmIC(UFCm*&@;8Y< zs|0$@CuZ}#9$Akt>Az#`&J2>4TRP6Y*l7aM43|DI{I=fsQvM#;A~I6>a&-AqwCfoR zJ@y)p+ zJboFm6=zKUM{a*(t9n2S#Rm^*TGA4%`A^|U{<$dhrKYnPbgo?{n~qY(!wsQ*&)yElFw-`Ij$3M9qxtKB1EWR`i?mQv$ac-FwQ zJ&Z`@wfHnL3{}tZ%S#(zeCsTD{Ur_ekSzkv|9{Ct?>|YbY>yvX*(wGCWdeXOBrT1e zm+>KPxl1K;?>(F`?d2N_ORMFZ?xc#Wjq$9X6nB49KzrJxLvPl+XDM!anRTs#cCCWH zyzei?dGQCxgMeUf461Hy>ziTed%;S(ZOc+=->THYruF(a>waKc zf!Ch2Fsy{4b%wxELx6n zO_Xm~kSg%u92bhP*TzV?&b~ZCARF11gW1kt@8*(OuGJOX_`5+A?_1PVY5N}@dii?( z=6+&vY^*hI9z*+1T z^K{^s>1n>w>n(q&=M_J+`r~~5XJmqt;Qu~(p?gkY0WPQai(b=U|j3w6bZZ%fZH!lXw079z>SM1@z6F8ux6Uy*<^%6dMZ5>wg>fyS z!niaWS?+f;$EB;<>sL;-&C0wP!Tens-GC#m(8cYKf#?5KVZG1TKX~Zw=RwD zy@{+Bj)pGb%1qu_kAYbqIJu3@WWyCs$=Moq;yU%tM&$okTb>&)EZ>+Y|J0Oto^W3L zy{>TUo2i--%bN6qRWz+pYVlz2@5iDgX^YYTWa}!#8!p%B*xnhvKt8#8A(-onS;2k#9oMj z2j!1J=Eg9B^-1f2_Y`a&gW0jPWoGutkY%+OOBpu&T{zVPaUy9D+kQZNp1iRc+qcX@ zyjy_6GPEtaq(`u05%T`B8Gq{^D+?1#h4HIm9)I4%SD}3FhlgcTbbMjuooB?~Q3z92 zQg<}(4(WJpzdL{a?xW*gGrr?Fx8At6biME4102A1=BGSyjS$G;7ofC`X#s4TOVw=? zz1W$55-E+?Hv%n=U8~DY;P1tdU|7_gHe?|l5r*<5`L!pTzuA5RzkYx~_PR*^AJFAq zQzKsBpflW^VL;|p2~>GgGyAWO61XD0X~^jL2SWm#djB{Z2-G#UrGm3YuB!+?cFWG zK03(PolI!pNiRT`8ms2-SWGX^nWt(M4XrL*A+Mdk;LK8f}W`|;r%?!^|=sC z<8}S&w}9k{KYLHVM6<*H*Gf()wEc+l z){|U#ij;?-qc5%!`J1>nB_y)DGS1DK8b4P>U239`d7$6(Mo{J2WKgPx}~G!-tT)$()o}J z8|uph5CU?1gq2YAgHDcT7z$^&Z4m#SRM5h2Azt7hkIaFFeCOIW#wgOnz6%Ph1n58t z2WhOzh*jJMf8{yJELJDYOf)=>1k1u>hH3_k(Gc_l-c2I#@9rO`4nRWvpH~qH3m#;- zzbxPLFVs#@&01`W^@oWOFI*Y4E@V0Op21JbyC#pqoC3VIN06w4nAEcs?+>3QS)=xI zvHK1?euvWs>r9J!tN?jN$WMr24($4XcZ=)OHTePY2H4WjVM8vBeH*Plocxfh;%&#h z+3uYFqO9yWY=rn`ED(I^u&LuzpbqqR zkP4!t02jSF4 zV1Q$s*a*=?z8O#>kk@qw|5T;28zg`&Y@x6)_k%j+QM8GQ{Fd_IDc;RfCe$00Mw$cORASfY@1XPA_au=c zA|&N4hEP8GACvQP-Sg}MN_D*Rke?HVyMy9VjCDEs0y?SoSJ}qGUs{#AiFy%b%$XLXNJKD;^#H#4Kx^t{f+vhx z3W0?`k$ksIGNl-0xfu~}!Tg%&LX7rkGbfV`RB!7`QN4#f159Yh$wy^}^^|rN_e@>N z`^PT0r_S`xs_w?r;O%+ zYfEY~lpoDytYma{NcWJx1Xj1$)7IJx4>+x6CoZLCV8P?5z`x>Y#FB)^$uqFZmOoq> z-;J(-)UOEre``+2J2U7}DGhuYutgDE>zlSfq_uJ*$gc2Zgy|oeV*uk7RcPgrdtZWQ zwL4UbmI4^HB;>w<&hOth=Afx*#z3z)psbqQWA%CwdIFrJSdlmelaFAG44z^FF7ZNb zbjHTaIJuoy=EA0~3>%|k->CbX{Q)th0Rj6@?kp=m>-tc2;rQ&{%P`$ z?8xPaCiJ=?b5K-&r0J~8nJ;~NNV0BZ?ld@b*z2KWX7yUSq2+@GO0q1g-t~^nDIp0> z5R~6wa3S(_2;2$A7N$Q~BRsfiW;XV?dds)DSMV)qtLWg=g9`zVCJ~K8VKMNt$`==0 zDz&2c(qiAq#5CWFr^#x<+s*SXg=OhWUt)d8zzd%{qzBm5aFF9^gVHyZynaX!x*d3k z1;01jOoUzzlwI|F*JH6Toi4F&om@+U-kn}|ND{6)BDltE5ap&~=nT-dswU#^R1e?! zq45_zXeu^#&7H!bOZ*E#9wZ9m#D#5rAdSu!_zc+dG*VlQ-WpyY`)EaW^=JdbON9VL zEdLEnG0#g=HeF(6GV-*_iJ1A-`39f;3 z^kjH?4(=2}OISZdI9voG+YZ?8N)lpc+?f!6?|zn1Kzv>R+Uso^6VpPi{eNVcG)XvR zun_QBh<4b$55mD7@oTyb_1OF!=wTpIe^2gA>lDlz{T2_eeEXYaAC|d93SG&}izBC) zs1bFCZwv(Xtd%gHHs|;XSKgM7gM=@7ev2x@PS32vmvX5^VN2)1F zIjSJ?#mF~^xPacpEeDS4Bw~(-6tq8q-Kw5zl*!t5zKD#|>XXt>Delxt+*NG%*G){e zBRE8oBKx08pXdhpl|I!F9nhZDesuBaZz;URfq?;xb07*vMBA*0W2VC+!{ay`q=ZBa z(msJBncxnH$D&}R9`BymTcN<>;hybFv-LiS*gnyt$AJXM2UH0-Kk@{=_sEI2@Zi)D zjM{}CiNPc3<82S$KhM~`U^S5WD}|R`i;3AS%&+Ix%AZX#-zWLqtwA(qkO75}OUVT?nd^p#?*tb;)xl=o(dn0DyrqfV2 z#|XK~ej*ki`gEz9B9}^Z^|vjonc{-u&7;|cQ9VC?Jm33eboylQ_$`}V*5AgmnUBA; z#x?yu`HnZfY2+V=f}xWL53uU4>0&eZKKbY9yBn{kf14lN_RwHd%=*tL>)*j2XAAYF z)F!SO>dy4qU6R#NKqKhm93Ig$O+}3_M8F>G zXJB@2>}jE%01kg_VmKC)TE?XK-E!*HC1O<&3t-~R4HN{xkjjfqY}RpVYVLfb8x=OY zfDHh)0_^$(gG7n{_kw0jsO`z7 qN!DHwi&c4a_C?&|6Y261%O|e3q#3$5m&fE| zH-h@a(YD2YQv97=CQ#i)IEdU%3JN|z@P{oK;c(lN)i&0B_XIzqH;=DJb`-3bbi2Wd zetxvNOQm~8ybV^5D||1*%IUnay`RxVpLmhcQeIIMEbTVW&Fb=ljPPwEw};80sT9#8 zax2&))Ys3Tn*hk9@?$n}haH&yrylr5Qcgs7aoOYD9^ULYi|Bv<)tKM9`bki=E|(M~ zG&Dfcyf045^KUYEY+yA6UjdOqO%3D*wPx&@sK@}2fS>g#2# z#Y>MiFVYPp7uSZo2Dfp_*$OEeZFL_FNJC%2Q-5HFh%gYTLMVU(fhgOnEGVe#x{y?m zc|s%kS#UIOwAc1w1y(boW2Kt{cWTPSPW@52IUhRBo5L5FACC4 zYEAI6Dx`r>YmVMYR0*=S<%FUD#BM+)628s@7>J5S<-m17W5P%qM_VEa4j-6(Tu9ekaLFxP4)2L01SOJFt;aYC*nZKAV}5 zk*abGf(7-9ehPqssFq>$%|78^MbeeUFz5x%{i}^?zCE(saVbyGdH6+3MYP57v&{pu zOp1x-DcKRzx2@GAZjWj=%8N`(BkIM$iORgPe#fbOWCq3Brp{DF4^5wVsr&R;%(vHz z?WTFM2e%ZVULJcX{Ry8j2XV|=ks;1~q%mpQ5&0`pe|!cwE}vZ2xQwZ31PKe7?0;yU z=H`%_%T~kB)}@~$G=d=jvV2vQyz!e()?1YVd)q`sgZo^IKP^MOI+j-x!^ysHKLv0M z^iP|g&z|1QCEnd0M1X2$!&ro_Y?o<&Y*|&ie5j zUret~NDO0flO|4G4*Ae#rX+n{`I$^^|Mt0hcY2&R4rh&%IvTUB7}k}ys=jE3e2l=i ztqV=>Dbv1v$f@|o?eY*Sj^6JR<30MLosi2$aI zCz1CsL$_B}Cv}h?nQd_sNA?ZP3(3SJEkbSl<(B)lCt2j5Q?*}f!Kg`GtsgJ@mcPqq z72U{l@5}g!EpS+5zASy^T-f7OlnwOdnEW6AtLb;d^a=|N1uT~dzn%%bIACsOwi9>T z^>tE2RONucj$AVto?EV$YirKcO_FhMRjo8VPgPgKCS$15P|B3NSFrrBR4pbX4g4T6 zn{6{wG*NjM|6T8{3Wbbr3X_=A=cc#UGW3g|moasxok{-p-_@j$;h`AVVa!#aY(z1c zTg3ErV{^XFyjy9SLLQ8M09e89d5a9&o2M1-ZqAiown5gX_IC0AU^<$(ka2*}ynK9> zd-zFNp%TQo=*6G?3SG5>aJQ#l&;Z|MZ@bvA0gP3{a|Brt-9+uGVrG`p`XeQ|uH@BU zHpdoMS%mN$(^rVo%T*oa+L@j6{2iv6`4Z9vBHL$F>%8!t?%sG<>zIShSTiA9AW*N+ zMj(LqX$CjXd$G$M8u2Rs)0M*2`wG#8< zn&_u-A$|pls`VU2y^?NO_xDKFr;XBKf5TnEGXRpe=6s|z?=;Y4Mj8ZpC>2VaI%t6QnX*lin#G||e zCp_dCm@?;un(Eu?rtni!B~uzw7l$cGM0wy^204ky-=RmI6o`_BISFI4mcHeeAp#Y6 z#agL*D*Dj8MNUigRq?kWtdkU0?@ymN@%-DR%oZ?Ac76r7W!z2&NDD;{0w8_$i!)E_ zV9bjbFZ(&?DqL&JmrLr0&T`W|fDjNZd1AnYmXG{>-c`Ea5`^)5-uT*WiCw%l6#l&B z+seaOPua`_^KVP7;54Za7c!7!WI>WS`ZBo!$}~4L+n6+Mr5C=2LR;2 zDXizg<3{Oywyq*1)1<{wq2{2T22-x3!UHO)M9pEXp@~0kNp%*LPq$ir6+g(H%S@N^ z+aN(bLV~VV@3dj!=5CMJq{-#ece(A@rFM3-e^c(r*#^G&n+R zeVA*A88e*FfTZ_S+{0e|?AIO^p-gI&^l+S3GY-(o`;|mu5fal0vE7i=stcp0%bBZ} zZdJEnA`$wXW!cFeSa5Fz!G z_}jy7i7evNvm3=x7WQw9yxPY#$zT~pSTaBVyY+pQ3h!ejP6l83yr*|CY|#6o<$26a zNPFj&aFI>6air;9%kGxwo9|CEFH{fMLhV3bgOf+9zCNtm-KOrib(h=43 zPgkib1(I=tY3hizaL{&#UbD@kE)Sp?l|!Z z(;9~M83z|z3g@(N4Q5nKIuZ8{kv^<u$$cg2(Cm2iCzy}Z*ajZmaHEeC$Lbk6T@rEe zz>B(X2F)xF8f>oKJoQ5^GGFhb7Rq~lKuUve zzbyf8W#4~Fq9UVb)wyIbtK_R-$V5s(h&kVwr?OVOz}}D_t7B)z=!E9tHNr3WJfQg> z3zUBw=cMsfZPlxOv2GW=*vif~vRP^gVQb0(R3!voOaBy3!1Hn|#cP0{$HoVPf2A@(~IP0R#sgy?>%kdM3( z5X^~g)Z>Qw5wbeG?oszgCiT>IE8aRYoqjZtyijE{-a3+b&?4zRW{e`iL$<3MVK+8% z==EMFH>M~4ZpPnznI0oIE26jc5|33uGl6sEXI{cHwQm<!&r(%CrP`IkjuN>~NrX zx=78kMd6Dit#spcpGErUwa|qGdj?8xw;1(aHHp{mY1K{Tr^84kuT|M2QYH z1+<{^3KaXdypMi~JBX=`lTIM$rT%%8^xm1-xItZkF3F3~eBwdFyT;K*5NtEAkmx3p zS{%D~kack1PPliGS2UUXeyF#Cmd?#k{;%}iYtfdzg#4YLs+(Bud%BH=Rq`L_^3@&) z42b=Tm_d;DzS0WMTP4x6Ui#h7+U9`KR2+NnLyQROeK5@K7(iBmX=`odE!}ti2@*SX z-Kc@YtdiqY4qpdwP z%WZj_)%_RTVDtP{G7f^!wfp=UQcY|ceKDHM&UsAKMFyWL?~_mwhjC`iX8ozKPr(DV z3vo1g2ic`GhDPSDR1|rNV?_{=v5c-jBvA}7&!a@lB7Bf=9ZS(#kvq4(+M*T>3JRpI zRCI0mdo?Z|DP`cfb;F)qWM|NHzx+!-FG$9Fh-teEaf2kZQBYw+H_`DkZr7s=nuk+b z%uw538<5#x-}qy_`R=?}dSu;bc_AKk8f5y|g-L1-AFUqFpEGf0_Q^w0!WOrLq*m4C z7U0*qE3h(W3N!N7yUg=ikG5{BjuLaxc#u2u_*YVuZA9V0D2W#p{*+F=`7s5kkKl#E z7vMMO>Ololc2CE^Rem9{_s(;5&uWQYvie-jLOu9v%=oWnXrt^&EKo#Kc}=Ka-Z{o{{yBRXUVWh&*{;P;J{HB~>)^;LCu`Wd8w$BgE#2a(Qy>^Obn= z8+YzdBQpkb2)RgF_)itlw7%uozMa?E-4fM9zE~KirL|n`E053=i;r|13MmQ?5UAEu zhz}{^diWx1!sDX2l7n9AZ1_;rnjZOy&!Mw9;He|s3IAhc@}2-=0Q2y_GWZ@7r7)MN z!V#+#x85dkt?QLvPbyz;t&O3~cGO`qOIm4?TGLIlF^SqnamMLK|4BfX?)-SBoA}HBh9B6^mTzds2Q zj+qZ}Wvi*>X1Kj@Ky~`-p!L7MLej!6?TE*Vwno%kd;$unUO+xUP=ig&wiz34OC0f=1emy5sJTHv{crAK+B+w%z`5{aI)H@&$MTZ*aLxWvqoXWz zy{p|${?DHu2mHsi!D}*P{qS~cQPshNFJ}h7XEA${UxaZu{G6Rf^7}l#3$a`yZfJ_5 zB!=OcO~(^;1Ed<~PNm#cx_go-hmQ(hntFGy4mq{`(p z3{Iv``WL)6(yQS;5hmy$u_Bd+sMTdCTnD9Bw64PQdGp_fjvSHV9aC~H?qQ`DoGU5b z+5EM(`bwA-cKa!cVSNzdZXP#&A@g;j$L`Ef0(Z4uFKzSIh~<58zIq3eC@yk6W$tY; zon6SS;<&t9P-pAB)votDOG6oSiID|H)d7fXFnxy(C|`dz`9pr)uKY?vD410>gP|!W zeKd+nY2Ua}<|cntaPGr@g-Nnm1&Y1StyhDJB9a+Di{^%^VjOPHm5(q%?S1+&AVBj? zCm-omsU@T3*9x`3=RzlDy>8d~U+i?1jEhsGmu(!F74yoBd(hPGR;xMoR+_~5c8ka_ zs;HC8(ou%DndCBA=#JDiSY;Ke4{ZKcO6*}Bh}c}dE@D!jvK=wo-5mcQ|nea65K6zNu) z>U$Y{wL5C~x83*uLhB+R{LxQCu~D#3&OFeS(dr{9-GWq;d*W^*%~hJ}qM)ag#^U5_ z(We|F^mkrtdS-GJ;W(PFyeXGbf@lKu4!BN6sRZ+r7Pc#=959)DVM#jD$+s>g7_T6o zQgVDjJ}fBy@KuiC+e7PBqtPnvkmCQWjNO&yBKB=Xyw3eviphOymaW-M#k%4NdaDbj znlBAk)Yt6v+uQ95BkBtI>@zhAk4;}%zS?{;Nce=eirx9x_U>19N3z%Czgg6UP}Evq z=&l*HG!Y&$ZVpVIoA~UDKps3fNNNA<+M9Z2YUgXw{a>rJoVFgK2sCI_F|_1NQXe>V z^M)six1c@MNrB$LnzM&NFSU+iK@gBIa2)6c`R+frjB~x(c~z;GHt9}>wEtT{uD9uC z$!~<=sz4>2bjA7#l=%PCah5kjUkYa!N-6}7U;E!~GjFQe*JhM=kKaF1hP4f?J@!_tZmeqOo(_>ZH1IJmtRaOjc~J6e z)~Q(Y_3vXAlSZk1A$yF%6mcg5Hg~3TtT=k`+%cO&Pyvj6Lw8aJMTYEwm<5)Sn7|jIgJf!UH zB&{=b^xo9SDpE%AQL>!tMvVpOo7n(gpFRb^DKKRaZKEA?#vRuEhJDVu@7U! zT(B6A8%e77)#rf=%TiKSywYfaw>{(ByOYx+X#JlkofKI)kw_d3Y3nyj4WMo*DBha$ zCFs;}R>>?Sf^b?3fOQD3p}C~l^V2#tpB3G-n;m42PgI^vO0_Ptvv2L(n$m7o?J1s@1!uuWYnWLozl638_6_G z&pouF4<&AC4#|fkaQZO)+QwDk&t8z>m*$bR=3!Q`>UlKrus}`oKyX#H+mss3TY|!&JD%% zPCjP@H2Lxpf|H;7w=#2)YkB9sf2UV4bTj>~hzxB<$@6-PFB^w>nwGk>9xI;Nq6+X1Lh~dbM+gFyaxz5c! z=xo|9NP9H!Lg2@#gY!>$QaNJFhHRJEOHVF)xlTEa0B>MuK}kB`Xm@sY2B9wGa%fo* zoeBM$#<9E;GKF8_gbPY~{jR%Cn#^sFs!sgplht8JM2K0{J|^EFJ(h2~^dy-bMZU>~ z8#>l7k>!9ym`DBXwQboHC!xB9Tm(`!tY38g;9-QGl$7mNT4*aT5J}*R)k)sB-M*h| zkTYOjzGgL3Ri)NgHFE$LB8NiQVP#9I=)jK;7xqx)QyaZ;zUsw!W)DsKmT$IG({FquoS02pjXk-fgUTvy`Oz+z!R%0LoPL!_6#0S z&!L*Pde*>}`o}oXicyP*_}lVXJJmSTs6qzUjyisJkMdo#QvYoT+YK%n^wL2I_ma21 zKRM_eVG*ZSsaRZp>T>2*yE_r{83x1KEKl5bIupuT^4osw-dH%J17#Ag{_SGp)I>zI z3pEgEsBsfIT~Q1UoDtWOx|Sz&RNUm4p#_D3&H9IW8p-ahYJawc$8+ADBY*B(S)H5~ zyv*im;546OV4Ut=BeBMMU)7KZ`uX{BSB9h8 zD!#L6=S{|c9i9&^gi{TC>0Y&K=r}21*PmaXGgB5!zeD(?B(0L+1kGE$icYdGR?g|M zyZ+>=z&7hN`S0G&ljS=sxr^4l?$TCK&NrOQypLP>#jrlt?FtLiwN%4?+h0fS7H-(F z1iRXH*7_ye|JNr)%7P~dHqVo{OV~_}P3);^t#S;|nt82JkJE2*{q^OP^$#9Ty~r=z zHF)q)DN6`@JUVCCQ=xMrxJ$wRtnqKB#7fe?KKvy~J)$?gXL;u3*Yf=Nmq}_Ddf!Sg zHn)T}`0^d^|G-J_?su*;A&72I*E3MH(fx_DBkysU;I;G2UEC+FXvFJ(glqTqV=>Pm z&`_2&I&Wg9$MflCi%%?#)m>459|m?N4G*B2%p$M zYDye2H5|TnK%}4)rIs|767k>rHM-rH19c5N>JY>tht_JXcKtN*<>bwCN@Sri@kMH3 z0mo83t>P+rTP<}C>>{VHKc{~9>d}`6NZjNPE*Y4nW9}QO<(NbD58N{|d7^3JlV*!9 z<%^c`{@>LL*5dbpUB|r?xlf-}PDVy)vF?M(7^k(#Z$=|MD@GGzR4q6(#QRerCuK^R2HvkP@654d^i8WS=>eSjnMvT zgi{U)972cNUaU`ficQbY`#jq4lA3Lc53T+hCAj{~PQAT-XWX$^(@xo&qW5WTBx{^O zI|ZU4;Da=_T)3t7$MoA(cGf3%>sRz^_y7L4UOy?RBS^`Xuj=Qy^jhmCZUP`P8?e>M=2v&2r(sEML3Y)$f+in|6G; zjUunP4z)s#-YYB)qSQRf`7Om(hZ=@?IF04lCg}FFtBr|mW!@8A5^P*7(K&pFOD=%n z>x8h<{)zx|&Ov{EdBx99Y89Ww*D4*&dco>A9>yNn*cdd48PO>P%2PaMkpsa2!E}-} z8qu)<$36O~kd;eG-7O4fr>16StmRe&VlmQBU`R@KPqc?rcFuH;-{W7q5-e3JxF4%T z_U;Y+$=DoaeEHWmc7bnDJ>1ECFBR*|3^57e&q4TrPBQAYX_F$Ud#(p1_-A~dSuq`{{UehVnG>Cc7`XBKp z)G<6{%i^q|iw}g;lJcG8R2JsqHwo%`*?>gZR>C<$dbQ)RLO4HF@^~oKe#4aW`$J5A z%*jrl8Zy$8oIH4^v^d=4>iEH>_VgEN!GyB{qJdnFn2-968zX{07Oao?1hvU*^W z;S2E-Ee7j-lVLn(V^y;n=h#KeF<>G}vloxHv{2G@*htrM2nx0`yC`a_iCDb2AGR=^ z%TCvBs1PM+ny~kZxN1qYX}7D4ez_M5ydO#9GaknZj%CjKztSr%ceK{juqiqcNp+m! z2`d#v;Q9sMs)V9{ppJ5EYSK*|W6kRsIXU}|@AY{F74Ibdc^2&Nk>y=ZsZG_-s6qrf zauTOFsJR0AXEtm5J{#+U@)Op@+8(JMUJ?7k3)7a|m;L$L(&@-iQXWZ)F z{Jom}Z}tV3WX4qHzKLl)^;?WdR!~~_v)!+lhK0wA-Eo&#RsY;07dhy}q{Xu%>{DDi zJzJ!1z0&!fhW)jLb?t)GA59mvZL0m!N?w=FkkEuf5Q~!y+HEAQn3krw&f;tlq~uIe4z7!#{92rGpfS)# z=z7oPp8>pjVQ6sCC(mLi$n?_w+jhGaw)>?OYx1_qG1SqKSlDVs6o=2&{dT0)-t^e` zmU^U+G_i+|D_fF5iF154wQh~NJWxeP&?iLfM-OiBL+JS+oj(K+KBTNf2N%V(&NsKi z70-!t3Z5NuY#B2&kcoPIYwB7iwP0Fy;*X((R72;U!eC{?LWWoRV+ZeEi7$TpwpDIZ zdE|P^LyH^O)H$sXpEbQjo%zl_F7LC5a$xO9-U6K!`pU3jCG(ziSa5_d+3`zATK=)D z!^Q(UrM@<`vlX`nOsxs--XhWwgn$M(e>aIPF+b4{U|EFl28))cd{Ht#|9IrHJ2H8q z1yoz1_|K;k;0;L8iq#;#L(>WkMyOj+POPhdYzlTr(&*S3s(Iz*tGpFtkt63>;~W%( znYL%E->g_mhiDj8yZ`vSGZ<$!y`<2+cV+Pq|Hp1&!^#ORc5(eH9Mmjkhp*dLIu>vD zS703N5p4-@8lDrZK00^bZYJFQb)EZ171_gP(>=hh65@Mw@JE}`ss!CL0h}C6hL{{p zyqtefCYCHjoji88^vlJKJfY{9!#iTUdOu$E;dLDab{Sva6V%lC?5$=$dro|7jZtH% zpRRF_59YgU(#m8b30P$v^40L_);wCfzMGltc2iqQ9a9~iEtUAi?MzJ>rRb>*4HSw! z!xVjIzcsyc$)y)D7X?L=>$}XJ&r{Ws|N5LVn@|_wl>3CeUK3gw<>ZhM2h1LV-v!(~ z_1brGFM@c(`_Gv~Qj3`-M`m1B7yhkh$;}e^lQYf&g)>4=8|<>yvqM}iojJ6jRogdc zp2H+S&beW5WVdjT21m;IH*2~A9cz5WdT|~XWvtCEI$!>H^9e9fh)N08*58T3gd*I< z<;oq&iskh4w&If(&MZR{gGbUXS5*va@RYSrZ9H$<<`&BrRn56nz9BxmQt4V&qcW?=W}Ut%X8`eopF40&{?e4>0*#Wo%OlR zdRJ=Mwst|-f0aP~e~mUrHDK<)}~9&zItA&1bM}KRvev(&2l3)6-^m zs){bt{9Bn*_F56P7z~7f69EbV8(9BhFjxePLRVJlc-6L?B0T|Q$?#vaxm|Q?_tRJ^ zpMSZuUJ!lX(zZG}8P%Kp&WH?^zL|JAi(-j!-@0G?@4T+&&Yov>mq)c<=kZWBarq0! zITdOxGd{B1|2#h4BO}RqVXlpO%XC$b$UDt4#H@gn4V0};$-$F3Gf<7d$XzpM<#cV| zT9<%MUCsUWqCS_=HpdNbASNJvyKI^JRxz_pLyh}2+2E4m6RljCgSW;0c-$>Fs&!Wm5ZfxudSO^= zIeJc?+zy#f)J27!`o$Rawy}L0mKaf$f~jqnKKXtTI6z0rNqJ>yTlL2g&366&g}nFv zr~3cn{||+RQQ3qN%B+-;6%`pF$02)!WbeHz%HAs>A$w-;k-e3@LMNN-&FB8?_5NPI zzkU9J&+Fpi;_|xWIOq9%JRgtyxZSRICUbFSRwAuE5IG`u%2zV!&1!x7=9)voRZ#&F z)X%S_#4SEQt9~q`uW^}F*x%qEQBkwL@m6}C@O{dB%6wCI`lxs+fZ{_I1OMidN=`lK1Iau0r zIwB0Zo%MLNO)^sJCaY-wnPq8o-ca9)J($c8p4p1M(#sgi5T^iW18igloHa^;E^2VE z=j0U+s`F=Pg@jBs4Pii{u zNMl0x8*QU|5O3BK7(NU>2;fFRNQR8ahNkYw$jFO{F+}qgRTQ!lLBkF%-zDjxF3RQ8(7qdzR>iBlauz5#9C08`=LW|FLJ9$w-+OxJb8D`1f?yRK_;aR0EYe5T zFX&tw@4T&Mt)z0W(4JcE`9g^+!|9Z1ph56B6j#2V35OOkH-zug1b;BKcgdI;0Du4p zPYnMb5w(B%^bR_3CJFDlcjj%RC<)euk96~!M17wzc5IZbN+;b2)_w7cxiRM^W072oPHYkP%(J*pli5TUS8#9l8l_KMl9+=4Re@A_ zReWJ^2zvj;MYq0{x$j$tgvX!EnI45rNzq(dxR!st%^cV0xp`YliMcv8mEd~=cID{- znk;v+6XoT%nop8z6OCBP+ZvRo%x>1Njyur}AC|%>OJ>trlaaNu0}D;es}@`-0+TGg zh4~iCw%YBxf6CB`o5p0dR~(9xM0&?mGoIhNme|v{V!vzJma@53*qsMT7HDO{77Mi< zWDr-2p8I_mK5&JWKDZpkwHj4CdF=tPOaw9@FbV=nN5o#+ianT?cJBX-wv#_1OtY!} z5DQjJHgcFbov}6nPvHdV(qY5&UzW%PIqv}8E%A`Rji(Y4&SZUsV?=bUBND`(VT+_; zg~gSxD*T`_cs{~4M{Y%G7~8#lOA4)I+q(6^537-ZSsc8*EPTOj+T`Cf4Yn>u^-ig@ zn4zbWx9$BitAY=x`A$mIEzfuFyZ6W_m20@9Sjw7@wUG4y*91gkK(@1wPyPuLY-D)G zNxUDavt?t;cJv&!gfj29ZwT8HQ%w!^TwY4+DNs*iQqllvTh}Wk;|+VOmN7DE`5GX? z!F)1jB^ohmBWby65KhupmuuucEe0hsx#mUD73FJqa*%w$jw)-(g=?zY)Zp$;k?&q_ zWVw(u>Z?C*)h9DYA$`{9mb)BC7KG^6l0qH0nS`^Ze%XE+z9bqvqtAsmd}}%C!e96M ziNsDE$8H*(*tt}p9XKvgKK00!z zFPv~{OaH+|!qlUXIBc7L>kGiXgeBq`sY-sPB$v{PJ!blGL!*p|6lbgZ@`P1rhywe= z$H8hV{pU7HHJMB(>B19AU4(n0GvaA8#2gA|_4&9eoL?AAr%=foPHb&gCeAWx-xwn3 zzTtMVG|TZ&ruJcp^-ummbQ{Oqs{OAZ>Hz@Nz1OR@-|BnH;0>rB#?U(G?t;6Hikb>ytdt|O~ebtgMAsw?fC?XTTM8p*aJW5Ki(@%Io|RHx%NrkLyO(GP(Mf?-CxRuy6^zwPD$juuw-}} z6BOYr{-7r}^E*83D>YL?b>5Ono%X-By2!QviOhGw`K^1orLX|=)_S4L)4v+!pV6L@ zkLx#Y+z@Z_fO3V>c|o@`0kmR4{y*_TRP}G0`U$JPWOlexsOP%ncU~k<@EdxZ^~N)! z*Zawz1LD1c}6VUP)z04*O3Q%c=qKIX^}tZYlCRS@ivah^u;a$Y$b_bl9eG6<*Y#b=Kf z&hh;>#@qEGBR zsNL5I#;Lp-xs#kZL;Y`;2Ol`VZDyORmK=TIJYSh3r}PGwK1deY>9@!hjl$~s`4*VQ zu-M-gboM?l zARkWJ87Zir&kq+|I(|c{Y0)2Coo_R<_sRXlzPO;D^;bpGF416YY+Ms?|3Fy{ssr$D z{c~$0eFFqM0fR`uA_avY1gyr`ME_;uqI92VjklRJFTiL(j zf&)cyFfJe<4Covgi^oFL@_U!qe5kCH3IHuZrqJ8>8B*EbQNU1S3T@j z>NVuuO<3CApXcAHy_i7~f44thleBBvE_bZ4vTOz^!8@RY&TCThRtk|u8LN7 z?$>-DT}#+z;>#y)3FDcsQnW90cYE&K%e2>F;`9zWUTs>bql;UI%&pGZc4x)HgBHAP z05|}zFDQ9|Rxp-Aqkowz|GGiiI;ddC=hULS0dB`~j$j)BkZWkXgIVw(8@lZK1RAqe z`x^#I{@;CeAWVU*t4)zrDACoH!!()94vWsj-cU^}E!8A?||(9{sb7GJ);wTqgwsinuSw!85jCpOAasVHD;L`-dZ4(v5N`stC|=# z=iw{;GE^$SQXlqIRi0SX%(G#wujg|u&G_Bq_KRv<(TL-q%+dbOFD}&47Y%+a%deC% ze%3NtfD4KOEc)f8)!7&TDP#@&vMxtXDYdUwPd|ZxLtNYjz0T4rta>VSqAde4oh z3tOO>>L+dOr#)FM<(Izc(@S?RK6j`^rA9mV0hDI9ovYIhqsPUVqdRoX&AWM>N6kVu zpC#V5rBY>ScDiYkNf-p607#x99mLNZ0nY?7t70Lg`a+>I$hgeSiID-RyL^0C z`uM0F_y>!*L5x`^;rX-Y+~l%w@0#6los(>f@9uR}lLVxS+1c6GfQa&CZ>4+s6$Eg` zym5HFW1;%?_Q?FhcFzqf8m+-&oN8?!%8<9vu`DPngDLQlvW#TZPK*9|M;t~+uQ4l@ zS!c$A?F(HdvmUUb3#IesO$!85I2z&L@{eSiA*vOx6f*4=MWN({7LwB#z~qi=rh$AKcn?)VMEtbjt<}`KxG^@S_i5Uf43Eq8-z_&!cJFQb zudW27Of=*Oj=J7X{6;F%XQT$h7$6Ld5S40?lONl9JK+Esx}SI0?gPGyx`Jq9MgI5t zMxB9F3_+11TESOAauGL$|ZNOCvb0el?1PX51=-;$ZPb zZD!ahl!^>-3xBpw50C#k5(V0w7DFrU;-zodG z6v{T$vl%UI$IUWc@aP1NCFXUfk5wG*z)Y%#aZXTTKt#!R!u2>XY?{Pb<*Xyl+Im$cL(QHn0D05*0XO6FT^nE;XX^hAQkwSg-RY*$`ZF;=k1G;LQ|Qj-z8DX zYZg1^{9-w&Kxif5fCm|DIetC&S>qPv&@KZiZ#3GCogrs@Jg>TaFMh&n5 zZ@UB{j5CD(f><123@GCLsc>F1(LSX4A3Q)nz)x_s>~ZyOmxVj&dt$lXb z9|0VP0`+UXg`vf)bixPR+YZ1U^B36!O5K#@4_Q8>TwJzVvGjL7Iaq6)lJDP@e{Pwx zLxidWnj6<44KhO;u!%Rooq+%d5mZZ-_OY>sO&1T!6aMZQAO_Zb*@V~NssauiGG+r9 z-6mR_G~e`haeBB8tW5$$R|akK3{1uH8W`ST zmADtM2q|?GLhJ_6KwwTHZUo>{BRoeK$$7>^(-h zeI;Y&jYtY#GRpw|MTF<%=H~VfG+A1Eywc&`3{;0;bjG{N)ryM%rQ6%qKD8se;O)Ox z@^9VK5}8P6)a=b5;@+~Q+)5M*fqLZI%*kz^5Io!yL)dX@8#GUY>6-{d{^B6q5-1#? zJWH!r%phDOMEE;-?%P>=2#*lK-7S6^Gp{5<{yp^j5RUN-&{4H^w3fC7fL6%xi*{-c zpWfrh3b+GD2wF4M)$HGOAbJBq`idxzd0HtREZ{vb5^AhqP^D_i&)H%c~u+)!{Es$bYc2#Qer7TIr;p9xPqVnY4;mUztJevsxt z;{o6NEZmmV0WbuO$GxtpBiX8HA`27>xdUaVCx`GMp;-9W=HaeQ*<6AP3I$W2TH+lh zeF545w;M1JM_{($71>H6nMT&ggu_%IpoJP2Y!SmGGWI98L6IAI=v1=u)i~PkBR}4` zQ^t|adNA}4gQ+9jcuNVnH)q~*>2|RX+)Qx9wQ%ZC&(~`q9=B{HLTU>l#|!dVyB4*_ z_G5BVGGZm1RVN2aR`b2rU6<6S7B}Mmy8*nQp>_tee${@LMRVTqXx=msq?^O#MSMN> zqdj02cJ;E!lvN8IzxD5P$f`$fN4d1zzjt@13qUh5raUU44Q_`kB&Y)f#~F2dH)ovLvwgLn0hT?%G77zn3X&G7GI zZTs@%U=qPIKW^Q@8Ev}?n9j14-F`0xMdqOj6l+S~7ht@iwbP|oVgvMbRcj|R*s^aC8@ zRY7~xHa)lj<_KqXVNYaXiu9)3FMy+-2VW08*k6Hbc{s5)Gmz)b10!@j5e%&{Wjyi{ z2r?(PdPfaacQ|$G?kJS7>iXc{N3jcrk3s^L=@xpIXUC`IJ#NJCKE1|PfO@txI)?!M zz}T|a7wrBHDONNxoZR_`pemnBXguA2cnYGya+5@Ze|w-+!Pm$|grDoW-=WQQ}csV*0Fk^|mrXGG%K%*v|8y1LR89 z?#ut}t6xXS7XRG`B&n`FtgQ9dJ}lOLY+-R5&=c<4FFeRyc9s=dCTx0y_x`?rn0<1J z@QlF*h0x#VSaq8JIg6(eRP0wZ#uEgUnGf8zt*tEtB>Y|=EiaD*VU_+3a;Q23tV0Xe zSy~ts)G3nrZ=*v!i)-))YWZXStN17cx3+it6kGcXb^sM@<$uq?MU@{3i)!Cbj}lKw zk--Nvf%s6606_1Fak0feq@_+^o#THmhp*Z2Q4aIp3RRK6BmIx2S@&7y|Nc|iOJ<%Z z1II=fzJNL9!dTKG*-gmWb-_fgDF9^GE`^tOvM2XIMbFXAeHIj-hP9vq7K zQu&M0#c**;$E`1dIS$lOfGdQ123|QJtDrSdqbFbA{3eM^KdEpJz?9fGd`!IVk? zIafK$OuA^q^b5Qo3~)&7nS}y1kMuTo!A}(cDj=uVN0VGJDEq-85TXyJNkqVESU_+Y z3xU}IGJv6+7sxv(DPWUUVyghWUP1yrBwm04gVO-0pV0n<@2HEoO3ndwRlUWE=^MhD z8C-K2?LGZ4v|t3&b(DdD^bPV_aPgrtK`sd&S1!#aG|j|v0Wu%>{O|>MCHMjdwo`_X z53=L_Ln?ud7k)4fNV&_DXAzO(QHnr-F7yjLLmF>~YIceNF$f4K_!YXIA9x8V zc6J)3pG0d*;vG0x#TSaDvFdq4NTCvGlS5X4a0tPEd(bUFOKo3N3nWC4iu^BRf)4~s z89b`9!0C0|n|=?Xx}Oi=%~e-dpYwhM?G(o@6Rk4<-G=#p2 zRLch{TfB-`5{xEc}vL|;QD8w&JK7nXxzaM zFn5#l)p?E;JL%N6Q|yEID}h@k^C95f*4Tf1qppzSKO!MG)!{Y+ixD0G=yikkW_#@1 zvj3UK2(A=f1+D{(y8(?3fat*g|EO5ajCKsxJ+R3E$q0nQs;z#R_SS`!6_DwHN)$E# z35euuYZS8a@n2BF6^7S=Hw5KbZ`)fY5T}5S*4b3+rHJ@SGF!ZCZGVrY3rfKQ(ycw+bDQvPKrRF|Vgw0;Xh=c% z2Iq2YEH$WB($@@nsjZ(u)o&eC6!dUiPzb94o906Y`Q#9 zvwznJ8v z1yn%gG&>IzW-*68sdCjQJjhd#jUZVe^4&QUw9Y|C0#7!G{XrtG!Ic*y`(?6B4Sz#P z2_ATLgPs2Pp1DowjIgNik&?O@ZtC;#ev#DmlzQ=!25jWTLWynMTPdJTgpUkc8i0ZU z^vfG3E|S=SyvIMC)Z`bp9EFh6P9T2qkeWjjEnFug2y-%(zTO`3gByx0FfiqT-_%%W zxyqv(=RpD>>5!s6oFMS_A?kmR9J=segNqJDk*@t1hn7l%K4m;=lGV-&sw~@opx_MW zGwdbsLIC;Fw(W*NmY__B;waLNfoqHutl(w+MI4GP2O=^JR3VRm#Ry+0PuSz(phO^( zu#kr|YyyoB>P*#8W*5-AjCQGD!~u-jxcM%l*n|{o$I|-8LVX|UUSL7~o16))_2hq} z6>k9Y7P{nGd3sQR1BE!EL`9kvz!O693aI5}V5F%*^vfkmBi5N|Upc|%!Wa9D4f_BH zfN6>DG@wI|90vM}IEHiX4QTe)c;aM{TaK{1VYhI0aVdax04rE%v-6&rT~o6<&z&-% z=Lyzy=vACeQ|6&xE2UFGCb{JjcfFwIjEa#b>^JK6^=^9baz(r+pbPnn7RHRD#B9&3^>OR={mpSXii=*`~SN zo7LB`v{Esbb*`Q)5wL+?V5SHhD)3}Lc};B>D$-EiUjW*VKM0hhQ*i-x1upt4F)3Oq zfyFLL!b-6NO#w1GCpgePgwGEL80=%%;`y98+dL?JuzKCnOXz3o*UPPnI^xV@?a|F1 z0>fEKGUSDD_rWC(4;FGfz&%^rO-@TAKq0$4lu6)xfr|k#KbWRo-@gFvDR45*OT2Yz zU0-*u9Ki2s{3gD8uj-)=@cIAE`%+@zT5ubnl3>QuzRNPCHjo`=yGsg&t1 z$>yal3Rl8YRO~X9*yiMT@UynRsNkg{}&K_8#s_pTGSBQvA zbu5kMne;TdDB;}(Ap<->I)og(2&EbL%plCuilked3k(jP1wJA&#|x5hYWr?g0kSw!aRTX@- zKbj-P$^awJ+1}dxgKGmV67~%`?4r*WCN}+hfLwnqC{E7HqcYQ@r4@oz?b)JrU863l z@doRR%kElYEr^w&(N5hChb26hFsT&!#r#$?XA$}Y+=i;1;=HEGY8Pl>!J4Ev?+(ua zI2%{vCbN3xAn5r(H)qY3Z}KFQo#O; zhhW13W^z5EG7epWxz6FZMIEnmD;3k^bm3yd`bOec`{iLT7|j&jF<`&k#IH1g>>TlO zH^}tjVjDDZcEKz-j5og#kY`228?AuuX)K4WFz1@xXrfGefe)8__$w zdC`AbRjNL{clND&^&Z3;fYnHN3>JEmR-H{TnnZwlHb7+wX&<)f!$XS@hzMW3Z^VJO zOtBF@bcQ0r0JbLhl9wleJGxl%s`T4{PuB?+R}USQ;xS=fiY~#pkDmk{W-tEyMCQ(Y zE!QOt9m|DXz}9~VVL2`8k!g^yKSN^8yX3e2qF?J-I^&c)+q+bL+8m`M5wX-h zTUIFLKxD_3^ntU3iUrkMusbJB;RB&1h-pFgjm-0!oYaDd2m+f(T~mjyKwk6cGe)kf zqs133pfCsSaV5P7;F93Mb7Yo!+4GqAdHl6m>-!RI=h{p-?Se61?sqT9%EZ>K(4^uJ zirU%F&HhY{F+{> zuXb4Xvg+=a-~Ut=6|Md@n*DK9gHmvYbY8AjURJgk#a_5tsI)(BVBXTYayda(ist^Q zb-git&!J4(kG(XHgPX{Zbl82N-cX+)>|%MmJ(LXjEw~Aob%t3z9>l_S;8)LWFS_J# zL(HQDwhjaUEiW%0C#wILusl7ch(%BdI5z`FUV$aCdmB)&&9Iu&2x|`bbmsogt>n`*)MgDNrnd-qM zJFFMO1M9PpoqcF89_ElB%fBX{%2=4Ja2~QCIIF<&g9)?t7vsJJkw2t;($x2YXnmg`83r(UAWwuX39=7l1O$C>*2)Q-mJr!P99fN;g&K%C?S1-YZtLZ=l9hBdJ_)a9W4fs_RXJVLw=kbiWbJS5nOUlwPcs({(RpuI?<^pi7vao~nP!YlA^ZGHWhvp9-GmhnN-u zIskl}?w+17{Ezhu)F@azXP|-8*u^&$0Qort$w2UH=Vf`~E#DLS^RnKX0K7%~MrWUi zh8ccu_&8&wBzevQSrKUF3F(VaPJ)9Fg;3;q1Vm?nK?en7sZfj1a9JrHu5lAY3b9D&gV_K6L13QH9$q72O6(bmYSYRa zT5q^`yKZflUClC?iMKBww(7FYZb7R?BEGu0O;-7Mle%un!N=UL%A#|Gf92?n(spg< z*ZThUSEEmIXmPm}RceSk-}B~{|Dl1XBSYeB9FcWEv~l5M2}2+Yf_)HbPtdf1Ejkll zIJzSzJ!-_fij`nkGXtFgQPT`WrvBVj!t}w$thD}3y+3{=U(o@33dq`!kyWlD9;!XB zl!TP_Ew{eol-~=eQ8Bo2PIbx1a6wYMlnkDje>C6*nBL;P*T?{^lPsd2;cY34_a1~JV(a1o#~N5Go@1QLIE=noDLBj?JY(*Q5_ zMJ)$P6~jKvzg50z$qiPSlcl!5Vu8RJDXnPjRtzO6XR%(;Cdspm|0d*%f3tUT|5+l5 z=$!S1ed>clb}2~>bB-+@4v!dyKI5*IQGhXj?0Tind+^H3_Jh7EZNAESK^MC!-QdDE z*MbpKwzvD}HE&&-5-)>BH#fQbOeQMAFOYGmmza7%PCJ*;E{>lXHDBksN z>$bs9*%TJAeRk24?-MF=T9mQZY;e9w^v!K1Vc4dj2MYX;I+@$m?|`lb%Nb^j-dY1M z4_i{Z^)*!c+o(rTTa2@kRRr;aledaKzcWy6|F(5_Y_?9U`XkH3f%gJbD$6zGB8yt_ z>F-O=;|N?OCMUrg6})Q|^jGKs`sNd|Z$P)eMRBy5SOTv@Q zYxBE@eb6dRi8miam}@{c7Lqu+A`S=B7hF+5UqLhv)iMC7 zIy*Zfj91r}8;L&_OtX}#V-9gC8a%_cVagtok!o#czQ|aA`6gxNffo@)4pJ@;!u#?dQ6H*=|rbK{Q=3$%2??cPid{ubG@;Y0uM2g zNCO=Dr4kTl4}5=b^0o!GF^DRWW;o#XGbhsjiM^jMK`0Iq2Nay;Ad{e!O|r@9i0=`i zCwWu4YX)p&$MZ=X2c`rMmTG5{Ti@wX&9&tfKNl5}b1UY?n3|^=TxjeZ_MG(fB z8ZEgv)SJ_Rt*PR&#Yqq7fo>(a_C@@+u;I+Ftv!VvO49S^cg14K({CF)O~s!TzbTe~ zSu`u^BC%+kLz?3ByA)j2+17&oyxW1dg32+@`ixrzzYG`G8G_!549&CJ;B3&?Kho;i z`KnudS#7J02BHt+;)?Wj-;{}!*UGU;vhB7RPZ~SK(;yh@s7*DTSm4pAXVr@|F(D8$K_@2eL9WERf>W*HOh!)^+$57YJvI}V6dCbu zjGS8-LA~BAvTF?1ld0$ceyqK{a`C)+-ZhyB@Cibt299y01_&z+I{anWD0OJpeokNx zyiW5F!XU`V5$Y;Ty6!XOEr9;L=|n{_rxlTkDaR6ihL%6!@DFQiF3G6JeEQpE90unf zQ`NnxXCi`Lams;PB3KY%>7YEJV{o#;utx(Zg_aVtF=(a(rN1zpSDjnbIy?djTM$e_ zG65?BsY!)PDRJ>ZdjqOe(3=rlt5Up6X-`Z#Btkm-NiMCu;;Wa<&ax`hr^#QzG$F|N z6^1xr@K|&Q6gk^p50Uf8EWthxDp0th6R*x@lVz1`$ECPRwcxxab$l0KVLN)Gn6!)^ zh~Ln6Dlwn%gL4Pzg8rLl1@&@Z5F=fs|F69bxsIbyZkhYwwRVy3RStqA5|eqDOB#&4Fo|=inp5NUjBG;l(U`sOzB+(5L%R85#qUN9Zjh$um6dv_wzEG4M%1K@a|C zxIi$dP(%3fsvukmayPa>%Gls*s%NSxM!H2KcNtYlAJN!4S1Qs-Jo^-$2!$F@yn&S` zR5}%ePe_>`>F|IQjp1;(C3jpj`wC2o23`i-aZlKG2U>lC@bj=wwkK?5Rm)%v~$I3KCS34l`yEOqtyaC+J@4lp&ERoH3M#9Qf*Jxq)f=<`rzrEErnlZq=f5VdgfaP*>5{LNtq}tAC!LJ6k5k3y%wys zpFh+D5!7u>v!kCTF5biN_Lr<|aXhNr4_@8)j#+uB>KYXmrMl?qc6p)MSD)n^8*e3* zYMNtg)zi=MIDOUh-C}}^y~G>BXt~1uQ)iz5H)-ZGqO2TJkqahKJ_-=yVx^Y7iA0-< zJyRpu$WyzYjVLTTZ}@2>SAEs+I8vvncm5zsa{v`J2%#Y%huwLicZ{D~{#}8zYJ35i z%&^gfqEunQMcUar{@Nw)m}EPg=C++9Z%X?-HrHyvXZVzCtw-43NBFqy5?N1bXqU*A zwWjv7veirnOxQ>P^h6c1*r0;LeLwbcGl5Pt&zMw_wQm1QD}i{Znt-QWG4-DO!{egS zhAwzmp&ve6Y(fcf6L)NYab9y%vkM-@SwU}~t>$xF-yzL_RxV7e%*rkc>{VzBT3lUN zsE0aF-_%sz*;hBcS@|S?nZ$E{#X5EV#H08VsY&>R4K<+{wN4gvV=8*PXG1N%rt}F| zvb41m{dQH99S;4p%s}Feipf)iu)qC|DNITzx48)jU#Q}=NByi8d8M@jaTs)e+DQq$ zAF;(srOj>`S`e_3e!wPdqTgtx(Ha#gQ1sn`o&&%AG8Hnl06H*G^Q4FC$?g(kLgxJ8 z3FHUqg^%pnzC^3#D33jQ8L=RGsJ7!Mlo{cjunI^0fBj%MXWG*~-;|Qavk2qNY?}sq!wf(Cv-lywzpX;3QJ2VA^bymg7SXP<3tkYcDTN0 zQ$psJGu4N*-AaW*Jm3h4i(m0?`f2`9MxiRKdq^+4szi(6DPDWQ0BQKS${6328LV*Y z-N6j~%I_(u?@Hk$1rx%0!gi1)KOqW&>iMN5#q~MpBSO>!N5?JOD8@D`{Z$-c(*DN6 zqG!AgI20~nTVw_rldCEZ-tT>^Ne z=(18YPsjAUhWV_}G4|6k=un|1?j4G{kN(|E&XJZ>XwdPzzcl-z;j?gh7WQ-eQ!1mc zR4+=&FF%Ay_8}eE(Jefa9H(H{_@L0`oj;rVg9OLy*NuexYvUKG>JDL)>z5Lus zQ`2{G&BokPWK*lP%^*&+iSaY4X|{1X z;XEBCyfj3S=b&>3We6p7y}bJd>Cwd0F&)g4FcvR{{0+z zS4w``wD=8J0j$n7KsLiCUG8OEBUe#rMT((e|fl7}sl z6?>JMweV8*<5Y)R0Q3K~^C_Y$`40 zfX9|bQ3$9Ex=wh{e@Zz+G8tH76eS zcKvN}Y;jCeG1RW-m{65q9!C*Gk6Kr zYYQ3tOyw-LSM_J#%UO|GF9mdfIT$&Gr;b-0kRDs|)8H?Cudh)N&Va23Bmm!`D;6wz zt(W3qUp1Yev6LM51Kq9f?9OWFK2r?;)lJrgY;}FY*oR?3XDE!rw*M@CA}!RuLrD?N z-5h)*_E)-Xj~2MOH~%D-_+P5$p(rO?o}i82-NGbo5drh zGjL)X2dkPtucIIJek3L=UwL3U!u00Niwm7lR*`nHT|;ZHRZ!|ZU0=c!%I%L*tC9^q z!xRF~%sZ^>4DTECz_e}mZUaoC7%nlRg`OaU61`C_bt(dP7-)1Ra#sUdLx@lDJ;D74 z^D7~_S9z!-_9v_@1V4)KOrIjySB$m)K;#FM0%ueQQLlkivWSBx9)WMbyOhJ*6fcz8 z$7EgA*dWptU^Kc+3Eli3Mn!6zN?+@kScHAW2YKMpgO(>UV*xNjpBEP-Qx7sBygF3lEki_cWe9$D#5$tOU+h zR=jVym<}j8p+i&V1euHemeQ9F&0PxrlfGPjCxh_!ACe;ml}kULwX;Td&_2qTblvQN zG#Wx@s%nLm3smn%n7>K{PLTe=qbF&8gte~I@Wda3S+1@%G*YL`% z{0BkZ5|#n512O)#iRjTLp=`YyTF%a)uGbkMTse{~94dK>L`6&9Jt1OBWA;;?vs72p zugprh{)QhplJQ!wn?qP{?9l;ghXHTjM{2}pD=Q!Ygp4hH#zu`h!28Z)B+jeX$>)3^ zo=8^3cQR;HD@UT0aO38H#QQC_EpMjliFsSRDLfZAzE`C$Z<%WDC%c3@TN9o}HAD}E zYmp_fn>tN78wG78Fv&LWS7=#HH{d}!31hrU@E1)#Fq)hS)?%>KN74(zw5}apK!QG=_ zoea(wp^C^u2mRImW`RRJxXf}I7bLSVrb@k>2qe~EaiyZ869=0J(REOG`H{ByHlAk| z&XU9TT7`*jcA%Rukj*i~sk|x~efNBTj~_>G)EnvB+S3h5x=i0Jzl~(0RRWws%JUUJ zJ2SqiiHYmlzY?OBGZ^J3zlJt{kw$B7s#W*k0>}NRx#Ljcz$c7L&Yf$(>w;=z1dcY43n)Lhh{?aICxvbAJwIj0^0o2q)cOYuZEOl0#qiYd3g|4$l4PMS+BH{+ z)b}vvlwHYd?0y@WbiO|#f^;j4?*eEIAsd3~FF0v&I`8o*^J-K@VS(lwWBT3<{k zMw$z;Doo6TT1CSffgS(Wt_T#gfE1HzyD6}I1R9gSGyb;`m9|8&no_+Dh2`$fPG+Eu zVg?xmE-(dgtmGaph5BekF_Uf@#>-n`CZH=DxuQ(*BpmuD_8Yy-M4g*nP6i#r_whKr zZ|Xe|AZL$UL`#qeGog&lQ5PE${URwUx4QRgmY-%j?1$PuG}#!u=f0K9P!Cvg5F@vv zbdUVnF;hJ;4J7lQP-i)|tfEFX??1}G81TOzz;S*f#rN6esrB)OVBeX3yuT7&aDuLg zW24*%JK8j^RE}S+6IqbT6=y?ND{H*S3^VK1ThPyaz4sN(THHb2!wO!1thN825Zg)p zjFbrBt+Mjw=q38p*-Un&eZ0NeiQF6gnuarth+G}$SM2NsX=zV6OCYBORW8UTb-^$I znx*!JUuTxr)>=T8Gcc$DL#GDvx%gO_;QzO`2FVuGFMC-Hk40eq!l=64jouSz za03v>TMjAa!!r*7{^!!t7d+zEm^l*pbZW=WRX?QB+d7K<*IOG zaC(U)+#aer;+)-|P+rYC@0<=j33xRS4EYf;9?Lg9`54*znB!oIyC#$U`9u=#GOg$H zuOR=cSZVuug60h=j%bfaWY^2sIPt{uo5EVdd_EyvCIHelTmC#GGn@Xb^+x(lPoO z%h=8vmd)n5?mGc=iccPYAdb)o_H>&lh*$UxkF|dj5chv3v{#8Va%~ks&jt#mP&T1!3uzby@daC&$qK^1?9t9h|&xT3)`F^Oy1{ zIU9JBKKaMv{tuyA=XwT+zRC5@#hp}ekY2~~-@Eq~5efrf4AfEQFX~vW>9~6w-{U`l z;7F5QsoYKtnp9F8U>4+g5?!rs;C4ITF=xq7#*l!iN$w2bc{8%DV#itLqPIksW77N; z(yMA}w6LR-k_l{yf>@@OIPM4^{j32r^ZT%w=-!c=C!B!{u|L1&VNe{kZ# ztP1(~X?5cr*K8gBIsPk1fQ!R?h713NQigTtylRql$d(-Y7BQIf|9`j|qE&-b13GWu z&jy_lGVd&Ms6z~72}u7Cs@C?a;~Bh^ufqJ|MF}X@J~R^KmQH_p6HOgL%Q;whl|O0w z*dY2IW_eyU!SLogEYIzyF$>dpZ0D(a^pqV%5<#P(ApBUc>!KU+nTuocIfkjubMX!h zg&eTvHSOXAAa!nTZob3K{Y4Gk|F*AD@cxIgAVF3p>bM>7`2dheISa}K?KZ&Rm!7tk z*NiQ`ZO|f3bo)^^kJ0z_nsn2cpY|EJ4xBHc4U76S)C4>((9l4;2ARMF&8QpD#4JpM z;p58g4OWp@HVu-Bm)L^%c{}={1&gTi-mE{u150)T>hZhvD`TEcek!-qlJ2#bEG_W^ z?F70oh+dU}p*DTaY2eja3zg;v`vL^MkEAXbNPR89AHRBjS*8aUVE%%cgy3 zd&kDIBG?#M7)m;4!V9hmk~~d|jCuDRRhpewG3;HfC3Yakru3i&E!IBA&Pt`3ZujV> zj7@5f+U{2;29U-;#oKO*(JZk83lkERT#L~e>AzXdXFPXepcTuQv>VdQ&)z5I?-WC% zR_owIxP&;zkS-o*s*0TM^uLYpi+H54Rwiz_0;KQMqTwg;f-z7qDBcXDGkg8?a4}Jj zK=3Q!>z=q@uBi?+3K5Gi&J2Zu0}v?;0_k-fhP_cEt|Wv>!KK|9lXfLJNh}RmGPY4t zB8_sheQiG?yD!L8QQ4zD(@cMJx-=sFDn>E3>KSO4f`|%csjd4v zCuE_~jkVFZ`(`YzmU#L_Q8Bgc1Brj zQPJgjMmqGR5!Pz#t!=rMoGn#O^5E$unezj3lZEap{#^p8jH*4qxOkv#vu$rMb8W7a zuH$nLLHthfCOT!h$?l1sM1MipLO zJQNZl1f`s>uP^z4b65=s!Vns%*5=2dbhqniU%z4oljMFZ{!B3SN^?oj81C<|6Nm>X z2s~!cGHqP=kp_xVFad(z&stUX;}EyL(Bq(tZ1x|lFEm@FHHe$W7DhEZoe6^zd^lXf z?utoiwhI_IRSGC% zK~N5DCx}7F*uR^6vkzD-Dhcs@))0ZoGwSa`kQ z+17lSaHZ{&Uu5pA(wMvwWzhx|y8P%Ryc)RvIcG1sO*ldP;xR6MBzrVj2JR+Qn*Jn%-=a|ciw~o}I`{S&fX{rVOt~;Qtg`&5sh{ckw z{RWdGArZ~KDRy+m1XGcMHQED?AN%ZklR&}L`P~MSwk0k+x7-B-dTyt?bl`6gxUf$1aV$Jt!y(RmlDR^ zEO^HKI3U*Quvj9wKvGO*KH{(Sn!|?Nd>>5aDi;6cOu)yXD-7y=1-k@&lzyX&p#9}K zM(SJIL#KnWQWLkrmlP5@X7z6n(BPmjQ#ekEg%L7|(FeP~raH&d`Xmf3n9DMydB`pR z9ind9@-qyCp$hEmo{65pU0Padlt2C{pAr8nm`XAaj0I>EL(4;RgxX} z{{5YC@K<%N!l*EkSd#vru+IctHdN{%MZ5&Q)B&b%OWh9bk(xcU@nDfmc=Tp@LJrUC zG`Fiy*qj^jAzV>jxlr&`xoL z|=?A{r|c{%8GJPbiN`f)is}UYn!|r^J`_3 zjoLBldhaWrYb(_CDJCi3unl(_E&ek3!lbfwzv)}&s&A+kQ~Z#ou-%&XI(S2(aR*am zZpyq8g|t>Zc!HxZ#9B>S)Ga6`=9+?M^8a30i{i+-%kH|z(E3782`%YxR5&C==(BZ( zhyUCV5V3REYUPT@1-X-2Pj?+k51}>_8oMqb(vcCiB+}9H(abT8eT(`hb>?jGR9b%R zZ4Q!0NSEEO+P^|rZ5g^1^kcTt1Zh{T&RyK=!zu_p4SK}q4u*jU+VJ)*J$xogRMGjn zHg??majjpCijiI;c-@V4y8T6QvDeZTNl{UPaE_1v@dj(gR7;(xOuoQ|A^+eAtshF? zlBAr)Ef*XP?7H5w+JF`WO8p2np8t4kg_btKRl(LoKWyiX@6QFzj^2E`-9Br}bG$$&XsiSuqY?|3!GGSp>-a}}~K32qdW*Rgho zKn7Ti%>-7IuqzUF6kH)gvI+~_nJ2q)3}XsHGV4b!BFnOuG5>a~UMlDa1}1(bNp zV(M~`tM)y9ObnipCvyuJ8$+2M3fKvDs&fj!(b=Bk-f_Ve7B3)U7OaD|9H#PoE zJlHv=e~&7&K_|8DqhG!Dc+~&Kr*mjt`$s(P*!YXr)x2iJU~Zdo*aEC0Tm{HaBK z{+kPjojX6P`GNC1V|SON7v7$?&`_*R_cfjm-P)bI*XEqRYEUg_*j%&81=8EAhJGOMHXV3@@G2gheo_? z8ON5-MR{}>X-6oP=m}ybV^XJX&w-To>qcmK3vBF=5Xp%*td)_sh`G{HFAJc3s zjc`y?Fqfr0Z#4EOU`_Y%YlW8$)sl7U0#-7WkvA{ilY6?$iMKjB&N$3q*~Qy{8LnzH zOl_Gg$0jCD@85piRle|r|DdO7;N~UkM~$dVm_GAu6ttQ*9pi#0{LRqJ*(*PVnVmC` zcpwxRFJcc~vi_jLogB^~r1w1W#rGge(oXI}O|`0cLz{LcjqLlzO;F6SkJL=9SC(?LyQN~m(DUgsAI zrmYr6AQZea@4R!iManZ z>R~wZw;vxJ7HM^VL;PI#-BHNB>h;e>Vrt*sgQoK7@rqfmRSPJ8(`+}4_UJF*aBj1Z z-BNli;^)mz5@v@d7CEVdR$eURY7F;;I_%lKyM|DC{%0C2*_Qb!{mD_@vaJ!Zr~9Q@ z6qzQP&Wk)d_fzBeBc0__wPPr@FG=F#(yUY*ezo&4QdV@x9VM#LZSPi{cFCNL5q*%< zBIoYj?8H-bnw7i2WV=KGld@O$i1{$~_}I2)3@^@}W;q@x+3 zluB&fNhk5Pj6c=8G%xhN>Yz6-z8Rg3S~`kx*69n%FkPaEK}lh5ZVpa+Uun+AqHp32 zQ#?8?g?&xsTOtP(n>rC#I3&4%d)%Lw#h)%|HhZA6c~&2T$#24GhG<7#LA%{q23n#;3n~ z&7P3K{>c@l)~Tj^Y#?>@)O1_ zRO#WP_y&pv(WQ(h4bzm3+&sbF{K3@XY`LE8p39Z_502)R+p7JC0)vW32Ht za#Fsu+U7pa_pCpj5Ap5($g65grzIE-^>@D0gcgC?R~3S-hbSA8$Q9{v-@7HyItSs| z|8nC&_l)aK7i5EdWt`*kBh{@-n3eXOuruXOm*Tj-=s0{V`ti2qD&aRZtFk*L*7Vk}5?Akao zcjp8<-Cpu2>)2oJmScA3^qWiGok$$qVR^{Qsu->SNdGUY%4QwgR|xk2snuIiCOj;{ zsfGRYk1}*jAvYiX+AN_}=;Rz2@kafpa$dyZeveDPZ^$?ri!O;f7IPMLLU}6|rM-pN zmtwK7k)j%nV+aTsLJLU@^?P@$JDu|xR&Uvzha!gp0@Rr2o4vSsE-pyVKZ}&<_pjL zO%FRNM|YQ9a+Bb+s^w&A+TF9)L%7LUM27E_S4-EPU3uSivahxAvZCV&t2zLA;|DHcvNgQBWQOx_ipNbi zYU9+!awJS`STt}9YMF&(f7sO5!XlYdr+V{rGi@*J$KW8N(a@h0O1dt6DS;N-(LsTR z4+X9~X++QbJI&vVxQaoCKD&GNPe(_7Y>&h+_veUz{dHX62f_?6Cy zvIB??Fad#|58+sjvB*T+&W}izHLmUHZM;t>Z#R7)$#uJkVDjtf-u^90g4wD!(>^Rj z-FvJ4!+oN=VEe0f76JuMpxOT?Z6(rPIz3t*R1!CV2Q$o);*C?9#8 zfFT_-=1bU8j3Q@RK{Uwb9LrF;s=BC8lC&5Y9TszL8#=PQ@#?BRuCJpzq{;nu)liyI zVR8PMzEvIYUpcqJ#y2GB9zte_X&|6OXMTQhk;>DUGTq42c|s%Ys_DUd#YRre+H%1e z>@4njQ+*l+f$FKU`BXzf#SiC}q~OjVrpt?omGW*Zs$HhGxKqysrz6qh+Xw36PYM6!r%-pLY4-$K6wlw<7Y&!7K_ zav^rm?a6|M8>ovh6$NBHC60F-Nl;Y~8e>Ge1Y*Y0QmOr6VQ4f}>W8xLONxdH$K&m_ zGc<-h6^D6}wgtN-C|wHKAR-$0)3wTA62>T$($}kj)ob1VUI7f#D?DUVb-JTE@FW%8 zmVNww6wHMw!=k2v?AL!jH@lY9$IIg`H9vV~Ape^-LY}aL|+9DYndW$A%2)GMK0xO>MgA7UjQ0y z{2xCiJWN^BIvq_D`aN6M-4#Zdx=WCRfM|^D`2LhKac2odI=`&q2a$3GlDvDtXufEu z=X?K)A-$t257zppwIvloqUY|66VdPW9Y2&ch*jNO^GTIHjimth|qXC zA&7x15+5t3-aLDhl15v6OYPwKQ)Y*$-aU}fj^ih%N@>Pli*~lVX4d42nZ%I9Aib4f}8KO1d7W3skV zM&G+6a+_KWWezqFWatvpr!0-~wQAa0CMUDUz4ivwp?FSkJdPZpfc{L33O^A7Y&>hF z7?Fu+C2|fGQVdUGECDbey2EyN7V^jUP~pK57yy(l@p(WaXS1N%Q3+@0+aAhEX|gKE zmILIk>XF%uJ+pSR^A4XIVAFk3f^hslg>#0Zt^S|9TZ9!78SeAneO8+8M&){1t~V$z z&M4$Z%z9dp7*4hQ71 zwOO6ryR$bPS=;huZj{T+WP+4^#M3 zzsK$kCM;}_Wtwm}yc>oEzN3j%!pE;h8<`${#5KQL@9@uaC!@QER{^XcT=9#G@arIR zWCkukuU{rKZu)A~H-ewWZ}n0&u@7IPkmiHkdn=#fO06N~l6 zB-r5|^&v{u=OStp6eR|VXHIGK9F`dM*CMHt&U16+D^l#)8u~lT^-iH-5r0HjrCsP* z#k6%%U53Uh^fNniRcL4?s5Shpe_*LsD@HRaZ8)GJtU+A(KWq@juhZ7(wWk3R<0 zzo_MJpnJ#U`JOgBv`TNOUv>Y4u&|`p3r5qEErg1Vk>pp=fc_hJu18c+YjNC#DKL$hp4pBUf-YsY&JL345()61G z*2?2vsPaY*)4Wj^9vvxs^1$p62rEDs<0v##le!^2)MB_Mg6=Qsp80m4UzXZ@Hl>qz z_N}F0Lt+JkGz5o#8a!6cp*foxIc(pO6wy)QI;h^%{vlFHXL^EHv{jrXH7)Byb&XtB zv+5Q{T;_ZBK&a3;6paT37Ykwt&jm8& z{{;}q{||KJ$<+@h>!6h&m}js%eF-pJdFo>4;INZ0wGx0h!j6~lZ)K#@m3U4MG1O-P z^OAlQgt*gFAZqa;q9QnNp%1f3=(ZM{xdOr)!J;HgcPq0(|3or7$Ip7)TK}kn?t`Hi z0utek6K*=)w?F?K^o3gQTVvRv+uy^^-S}Cx_-!mLfri3u(q!Lj^dEh%CAc#a3I-6I z@(6p@CW>`pB>^+UDYTAa1K?_H2;?^kPt@=(cr1VTGf}-ZaW-KQR5qpy(hH37;KmV% zS+r08ykdEIL+3M!<~21&?k4AX{$B*ihqGcQe|c?7G|0;vWy4gwRcLv^L;v`%RcelY zaJj3Dk^-C?!o~Jg=-;dmi~f+;CJq8FNf-qwD9{8WnsSgG3QGKrxfWjw?hkcH1651m zuc)#Yb-y34!_8thS;=MWgcP2TUDy-vmssJhgL51NX=Qx%?{ww1>P6S;?wOV9)&A+63R^9TI#bbu$zs4?H4eQt>s5o>S&#$k5cisd& z(nzQ4Y(f#<7{T-V^SAn+D}^jv`2cktBR&Tryryd@%=h@WR(f;oo6s7ioyXt)Fa=I6 zH$#tKn>;)Th7EzY0>ZT7Z1*}5u}4q)lF~w-Ro+?5?81wardXG^fGUwQ`Uyv=!747< zAbfBhbxEgvDJUQv2K;XR!-e(7NMHh;+=_bN7_QVAWEx%|fgMaL1?NIJtml!RIzCTHYb zZqQNH5hgK;8j}!dpAfh2htT^3Qshr;_0k@=pfhjoa~VAVP2Z#hN_ez2jdHl<-udn~ir=83htj3d_ zsiE4I{l{f-;8ubq%OeF&v?)^7uFZA~%ZWX1n*rQYll*lQ!QG#?*JO$&7f!Bx-8QuL z_ow0f^1hYYeJGI_eym#mVc9}@4k`Xm5fMicu(HX~4z7FA#RgH;xS+?sH3J+BRLlT;l_Z%`pa%&*N3>0U zo$`|2`Vw34R{pJV@^5eJH^8OUXqg__O`P+t=p)`(ko(`?ycZS$N>=;13hXSa?aL)| z!k&zu=8BhB%YJRI5}- zB3P*#Db~R%$hx0Bdqxf(E+*haw?%k&wuY%-#DEV);IoVLZrvFXvN* zzCuB$6+d42dDV7uppwO7@sBBzY<(Py0zzr*o0F#8iG(64EC$J1_r z>ZIRwbA63HFC5i<+R<=w%^q+-v}86n1n<2v+XJcPUw>W=qr10a2q2yNPuKOINC4*% z@>jKLJ?J)Y6@d2!8LxHT9FCA}zzNkQtiNgCCja^eyN@RM{^F~i<)iRK+2O@p+|M_V zsih458#Y`sL(Fd~Qa&oZ{+vtvl(jMm)-blyv$cPpMr3?(C&1KDHnsg`>aVa6w=-&$ z;M>}`wvIV|!)q0m!2%;RXk~*ge8k3Fc&U-EnpQNVdICXJ-QrDDG?9rSP&NF1Jf^{6 zYPV3Telign)OOZ!@pWFnA@FB5x;l_JjmAr0h5VM&C&*&B@{OfaCLQ<`YgeJ@maDis zi8=K%m0)KQD8S_3T2&hB%)Zp%Jz=+=-t~jC2Cav+YG8bS5o5}0+^*CSpv_Br6DhtB z)Mn46?|B5KG@wG7mDsJ>(t3sJRRkNAU~(Gb8e3<(LMgqzrLwA*vv5{~NK9kJ!`Pd@ zd+U&Y4c|FhpcP_|94X3sryMH=`W5T5|FfTae%5_l=Ba1elS+QWACKdA&L(kZR> zl>=}Nod)N_Oy|Fo6tza&sDO!0jxXxwZRr`s368uMk35e#r5gt8Jg~-qVR1Fa=z${=*z(Pb65DDZebd9J*;tQ$*g6acv+G}hv zVibJlzjFLL_#>oJCvlsi1PrNFmATQjmO{wH(Ch=1gpk?+1p!+=oL>-4U>7NHQbHSr zUlUq40l0b>a8)#EaM==2kr)*MZUE2;NRygM5&l37;RE>(&IVG!(~CTb5WE#kLMQU& z%YGOQke;9zhkywbNcdqrr(|Hy zRjE_!^gh8b0OIqB#i%KEZp* z>jujNb}PutF~%0SI&#f32d8p9Vx2>t37OY_G9UaecoqQFQOGiAl_sL3PbB9=ZpvG_vQlY%GdGKn0y*n=O!!}w)xi8#j291JTx``W5e zIJeWX`86_r&F*o~N&n*wBjkRfdKk~-KZqZp-^E7zg7PLLQ_Vc0N(c~ef--!bYPe2x@TUmcjBtMHtRWgh}{9JbhJ>V)f+c4u) zbg}=Gn3sXYe*h=c)c&Dfi@397zyK&)Y_FDK%j8u|l4QGVG)VXKa&tj)e#(w|apF0b zoo-dsZIh~>at2-|Q8y>kHCuz!%rms`?!+x0GabuGKx4od!K=cr@IJ^Tg|fNk9%2(f z3ohqQt|Xg`Ui8sN*yWZbkJ>cqE0!h(i9jJAx>ZsY!eRqFw^ zelktDs&eX1)dZO!Obf*6h@S1OPu`YXJ%J|dSnnbt_mDTk=!-D;bo&e*3eE`VGD+2^ z3`b12TYL${(pJLhLR@CPua%sAUth%q2JqV1K<1I{uRVySAl{vd32HnTO-QtyK;}me zS-p(40JHYg16*N^)ck}%Hq+Ym}$D1hM%DcDcolWr2{ z#~Mu5IOw74Xih^?gfApm#}A#T$7gA2BU*k0Jk+HY(+kbNP&||)0fXsnxtVmDt(E=e zJ$kNPJ6R8Y7uJi#agMBr@M9piFED9{oN)rnh3{Z;_Y?KhTS^N4=R4dwlE2)CRSw|_ zo(fFiNCNRIsR^Ugcqe?iQ@!8Z)&Xt>2RuRxP=s)s;VeNffHqvYHD)k(KC>&U&LtIx zT|S(&1fu)?DYL*|I_;I({_4Y4F4l2#p0wJ!1A(n!k13hcImH|PRIJ^ZU4C*C^*%%w z=rv$hDE-;<_H`lue}r$uN5chwR@X|8WgVt(w!ij>rsiPRmPh-n(mrJTpg$tC=TZ8Z zI_1Xl`ht-X*xvoKu8FYXbOJ5(?A)H7`##rz76+h%AV=ToXSMCYBy=ib}~ZS6F`qubfP{;@YeV2xN2Wfx;(V;m_Ocis%7-0O~1?_`RK zFF%`karO_oKqxIET0z4J9~u6-1f@n(tL&x63D6 zs*G*v%h|#)1UMpd{*!(4*Uc0*d-}&MuimAYqf8j$B8z!k&e9~07NaYVG{t1Sk9$#V zHCm3rmifq6416>KMCSQaY5$D@r*2+x#o?&dkq!Jj%3D|$pHV(@0A8GU*K3FsmDD24 z!n=8y18jns+ol7t{jfyDFJ?R)&Lz z@&tx{9qod<53?#ZP(azJ?=FLiUGt`zY*iVam-QWNy8Mg|^x7@AA46EExW!v8Nq}LG z_U_H*+dD4316sP%lAuesS?JG6Z#^OEXAx7NaX&)AB{TMXfy0Z@vyF8W{5&#atg}w9 zY?DT#GWCo)`pE^3ak^bh;!H(x#?kVO6vskv`{Nc0haOn(ZqYqCF-(3#!~Ody(qY9_ z#pFvQ+4l@=SC(Id7AM%UH?h-*(AQ9&ZyKUVU)o<35C@*iYn(o~JV=a=sfA~{`EX9E zr+`?9m9I3drq%q3rRv^&njrRVTSUT~<&O;K2wsxZ^iw!QP#G7K+t&vJ5!uXtJz9NN znJlQu?wiQb4#ft>L3GRYL{X^G`<01eC)DPebMoUMXGhSbFk=|kmwNt?g6Be4A-|au zQ@~jS;yAF0Se%hIsnarJXE1`^v;Q2DY`ZkvW6D|SX*%b=6h+dV(|x{d+%B!CF78aX zRXdT+?4hjs3j03s5eb2d(ldTa(vVCJJ0ua@bC`DPyHcHh^=-y6gf<(gz6%TG!M^S^ z{ril$W&y|i>K5lxw=>_W;^_6u& z#3$!|8ywPFtgHBd^ea2eUcFcTGO;W-TKt?drG(G>I09ug9>zWzq#Bu?Whvn&dQzUI zUr$|3z7YCutNLX2;?z;|xca>{2ftAy4SFV0N`B0# zp=du+$9}R&C-0W?|Gr8@a0JB}MHz&su$eMctd-9$hbxBL->j$EfC+v2?IWcewNksd zIl?nHG4nMJCx%q6iN|%N${dc0IP~Pg$~%d9rPK~B`Cf+XEvY06S?OJobxR`2Ax)**a6eJ<-Ksrf$4h{^==o zwGI=%q+Zy;;oak*a(TNL-fBNYpKeYSsR595xDE?Ld3najM>=7iOvV$$P;-IYr``;gxEIb(SEG%r##W7R?%U>Nji!cQtzV3T`lb>t%(uz|ZUl1eht5i9v z8p_TVc3ShaaGxjx;giaCYP1x%mIw`;hA(%-*MY5F|9&qlWIW?_wm-kuxt`%44KqpH z(VI8PwOU<%;-f~+bT05wir8rpkSb!&iX4}@V-ZJN5 zety}II%Bv)i1~9!p>M$5FJ`s-QJNc-m*=d5qm?qr*1SyZ3nko?+FGI3%(&FR!ON8M z2u^x38Mn+e@vq2<^GJdQL83zQ)}$f$Dijw?&JbC4)?iLLOk>b?n%usvy}|8n0_U1@-WtD_L&a=Du#_Km8ng4a%5nvNJJPlWk|a9k?m z3n{vky)3O0l`7|l6oYkgAiNiwooin4y*FnS74ySOwTeH_ls+G#LWG{l^|*h^HlTb= zKXzWj-CdTmRcKRFaOszcSk3Z6BSU6$D!S&T;M`7@*g)5U{DgOH0d-IP`$cv|I|>bz zF+M{_)FvNc`v-1W@xv(%nOAC^S>G@Y5*pV@G0~p>Xvh7vGf`W(cPh7g@Ocd^G-@dL zD89T<`)=l=vdr~21@rYr!n@Z(llJm1&M&-Rm$tfAv(rUCbM4AMsb+d<9i{4%ynK$Y zzZAy5Gc)`ua`l>5qfou}rYr3Qt%4C3M%{^nh=JiMYEA-c;t2HOByW+F(oq8dFXPQ& zURfQnL&~P#pPGE`)3Qp^sVojOl~0(>xDyT;&Xux*%mEn%G;Kd>TQ&+esVLGu>Mr_AU)jB2 zZTwzXeT70p@3OPG$RFCOVih2J#`sf1>JdCDX$2z0?rW3q_lpIqz4Hbypp&TAO~=AzjIRgPCC1xqG2%RJsMHr!^Hu0bJ{x9Nq@ z%>PfZE0Ewp41v(lc|5BBx&6d}yEFpKr4lIku?S%LfZ<#IPS^In_8lu*W2rSH5a`?y z49|>C^j2t_;9GaHJ$mxwO;69Gaq0@lZaX6p!y#$Qe8ekyQkr8MF>M8J6qy#0`)c#Q z`g-FFuplHaZ!SIc+a1ZqR!VF}6~>8b&${2+a$lq za1|x>KKX3(z+T)uAY3pqrvRy0ru6XpEh#am8(H>jligxcD#m#tX1?xaFC(Am#^mEhr;sZt}BJ+2!8mNRbw}FG@3~}9NBH1 zMQ1wd<70>6CotwfFx7cXLjQ_yF6Y9KW9zv*ixm5Y^4Izfw_8QT!*aIX`8-MYQm5;u zgOQ4+Pv7X5QS$DZZv{o7E~d}VI-7>8`bQ>7shzf_ z-~9#RG>LQfHafR&G~n#M?OSlS_ZyHd04z{tVJgDhQHvmnI91}x-@dtcfiv}RpY?mY^KTde z%LQ0-F86+qx$gn-X~_84ktY`Tu4?U>^XIC1{> zTK%nbTX_qphD+#+dZq&2mb9|7 zJ<9qy^kfGuz5{_`19TKdGlOR-qkj^IpJr%~AmK*V5g^w1qrh6Q*6$!MjqYXZrf1hO zX6!n=TF&POQ3`q*9Z7G#`u$s52zko^mxhCqN^vGSm^XgoEz3y6fiI74rX4Ukpi>L2 zDk`Wzzc1L)e;tUgx$?`>FEnSQLgH&uB`U%8kB{9GGzK?qb*{X>!gd zaWa>e!R*II1)aO%+D@q?X(?J!U15qo<_#e*L7;RF9`|cP_5p1S($bR4hg}N_ee$*W zOH;d80?ty@pa|AS^Khi?QjP`*Nj+SX;GkIXG3{sC>34>?Znx*}y|-?E-cx1UIp+93 zO^W8WFkwrht0u;5+^D`0BT}evsx-xHm+vAhtplE_PfjH9929g2-r?C*Nxgjrpio#!jUeqCDh1 zxbI(-e5d-cdvT*@B)!fza_)BFvsQ=f4K?|`7aY>^EzhN@f0|>e^f@q|@uK@5A25w! z=%z0FnDQwy$9#+U@#{yF)08g1?D#dsSVrEH@k_>xRTDZrOk*n0et>@m$06pYDQ)Ql zyT!=fJu$^Oy7~GPdZmbCo;r29P}0nsim6~xF0s=#G?CP*>wXx3&G(QI3^0#G400K!k1Epj48T%fk(&>l;W4ag%0C!(Um zy$XXLb(5D1Xqu2L?2oC}E{cjT4 z8DccSPE)xJRU9Nmmplwdpl~AjFTVMkNd4Xmi3chtawyw<|DMv!9o1FJFE!Zcudyj& zOHZ_pZS2_zGF@=PkGVTI3Nkr&+OnVbkz1eChGwLHFo;Js^G_MSt+2156-e|4$K9RZ zUsY7WYDu~%%N>C=cp3y|tdr&y^HEum?d;cF3}Z8ND2CJu|M5xRVa>hDuEKWMArLba z`b1Q0=TiADSUhQV{bE}MP63-7%pr7|6 zWC{;J-~#H0AKJBumm#9Z3?+oss1@* z?Lq=Z!!>;R^rTsr%v!T2ZoK3)T8Cyw-gZ3O`Sb>zx15ri{nvM>VYs>JsgFsL+vOOS_q56{QiVe!JORM&>e9R5`NBD5xiyvT#ka zUsZ|p*;-V{JI^a+CQjDKe7kZ@z^Ytt@S_r$W(ti!06Z{)Aw#S@l(lRH3zT$RMyxzL^g%TQ@2GmwOZ?m&;@!mYk9vo{_6dHle-U8#3CHHI6}~4fxIG@PkaZ) z8bt?$QP6489DZ5sMu`MfC1xQ8%o<4{3ob!s>C!aUsEP&BuIsnineOSE7px741$a_3 z(-y{5sHTo#rjeEaHMgXi@ReAz^A29&@#NNMjsr~jG6pHuXlbBo4u&Y2w~R+d!uhA8 z4VZRy-&Pfjwn~mxyryUsJ1psN*M{cT-)YRrJ!I5Th%xYES;D-S%tsr-$JJ*|}VgP?mlCs1a+gg&7jJVq#(} zl3yGb8MSGv$kQMx-557`$ba_f0i`Iv303Z0O4~GBi@sc&la>SH^MP=#d!Y&(mp02a z1>_kqHlL#(#VXa2nG#tEF|8MeEMOGq1vOivc?aPXh8nhMnGB*yPiQ;P#{q33HoP!= zHl}>1x=*vM_0j98GnQ$itp0Eop#4w!?9(v!H-FH{+L|7!b@f! zpzh$^m7#q@snG^tmQ!nzQ zL>l3|MI9G5D70XL_ni!ewS=$%5PA&a)a$OAcEY2uvAR0>%jy5{_ zDleX}cz$W?MX`RfZ*wvb0iswL0Ie*v<>t6Gm1`gOq}Ffk(2v$XGFnn-pj2;vy%YD7 z8AAkH)Lt1=@l7ldDLy#Lm5jCkpsvo9!}BvHKF3zP*S-7QerqoGGFf;kK4=OdunOFC&MG6?hX8%m5Mo{K#CUM8CcY-e}UF=K(;5_ z=nn3pS7=EA2?nVFF>FFLZH8dW00n`Lj17HK+~tgu%Hjq!ayK`}mFJ7*e?Ru!iH8oA zKwnf9;G`j&ydHXf^_)c9wC;x}U}HtJERKhnJzgVv{JX6;9Y-&7ucR~a{fL{i%HW(> zY#qkkVNxXA17K}O@mBuMS2!7_010^FyPI6YLl6ysz)qCxbmh^-D`gn6SGoQe!+`t^ zLxj|xA9+|E<860?X1MxhG5vx?%JOv1N2}ur~4eD+2x4-#`UH#PEo%Z|f zup9>JVtcDK@nVbtkpIxf5pV^0rXZnSMkz+x5}UtuR+vkae3ANkF*pw}jUo3PeuuGI z;4u?_I=G|mps>NaYkc0%_>9FuC{P-3`Eu zlB-f-1cJo~u?ChD$?^5CZM}!Y(xbobv`EzMlJhAweay3OQp9IV)5cks7h6Zn;FL-Z zks;7|JPpdZhNU9pEjiHvnrfL2JNtF`MZ_~uucvQCH{Ur0*nYfM^c4JGfs2>vaoGFd zt{6g_@bRrgq`)Z8ewgcU%s>-?hGJAH_twcBO`Pm^IlLXx0*@+QvNpd_II)Wulem1G zA~T69Ar=9mhevf^`47lAn#Y0Og_7#Zl{vTIcNpjHQ2rzndWR~6&Iq=x=FV_AZI(6L zrcA2dQxFwI(~)Uv)pIp4&f@udY%Ew%CA8|VnlT>(e>lMG*5vzSIqJmpQ%3Qb=C60u z#H*&H*^GX^)A&38sM}P{u@)b32b;0Ni!!%ZktHWjQtcnR>u%dPb07!N#xFt)?0a(M z>gD)arF_fyOtn& zYLm>aq8?V9XgYq(ij(*G#6rcakpyoixlKEEi--<|r_yd5t~Rff&5a5rKcM3MaRwwT zWJt}g$;{~x7Y$wlOMOpx(W#dyk@I!EV@~&-k8BA%{~oMMgO?pAptm3n(f>xWwp~9; zz`y8u25yE@cE6V_agCd}9Dmr1_Q1qm7;D2fpsvbGr^8z#E{6LGb}6U8+UBHdlaz58 zSE~4xJPa>qF554!v`P18d27yTjBRLs6lgmfp2^EdOX$_AT#pkXZ`@-nhHg8cjEHop z*2+pkF0vtIq;c<2ZM%92#a^Z}X$cl)!rH3i4FC}m$>?@&krm7Y*C@~t zGK>ZysF@iL7daEmfbums?GZSgs@Cz z1E08$!xK{zroGPong(>&FEB<aW7eWG5vr_Iaz6H3?tH0R5-;@&U0 zvuChp@TZ>R71##`JPpMy#jAQ=Gnb7HkgupS?Tl6I$=$e&A!p%!Tt`Ds{GKN%>?`zp z!2j8((bI&O0BCAf9h?YFmmQ{>g8B_JvZ<;+fBxY|dGYMu z>|!7E(ucR%?QPV@GEc$(sTz#BR;=GIEzi{;tZTq};5Hi$LJoP~iN-tQWu8rk{T#BHtr^O_ieAb_axteNQVD~JRD)*`4{7OZby2j`CL zM$56J?&&8HwQGCkXQH%i^?P%!TBI9JIhA9_>a*8PpW{eSO(P^I_#PnF13Or1lWb|L zK*w*&vWOrMbrq6dDh&K0kCAgA$UvloVX;x6vV3F>LD6ut29EM`oGiH-nQ_LaV_BVP zXk00ZI`<}Ud2?YbnUKyV=BZoD>;}-B$`1K8=vltF;&RU1ElEUXLwZ4YD|iN4wJH%NT+K$DhJPM6y&J&Cw_h{N~x-#Il}GDj1TXX4%l^#QfN%$1ZY5VbeZFX;$5M##auZxA&I!`+X{*@GR6W z>cup+!l%9%i;T#CqS)>LXRPm~j1K?KU5DmX#$ON9G46jE;alEtiHaU-XGY`>o}5($7$$ZhU;CV!E)jsqn|&+#e3&khgV4VijvXJ!KWMV77AAdXqNKY%_y z?uP{)S$my0GtP~9D+tM}yUahC-~OPsIkBP6v9|uq$zJO^LBY(^v=%XqoGn6*&H*Ne zCqjmu8m}w*w|(ij8Xd7e;=E8-t+wK);twU93!gJ$JIM8qFJ|g({uHY=eP(|StC*x6 zI2=m~({B4k#fD`h(I|p{X53+wG@6dMmmp@)@4T%DGs~2+pTeuX?<5= zW?Z=QR+gN)hvs)1IrGV`2f6%Q5&}nbjtZLGaPBIKQ$M23I)5!KI%7s!@>%2iSbbZ) z`J3s*!@HG72W~$XJ3nQyn3%^ZzD-ao$-qDR<4}>vHRBI&G!}02j_KI$coR;BSmEo} zucbCmQ^F(vrYY&3D^($g1{}=>c~ZUwV(Kj_v1#Pjt5QoRH$5!S?6vT&;@nWodn0D} zy3scMj6PlsH2>!6uuS^5%kO~QJD zdk7LBQdVfd8RuiPG=vx$$_Jty?&^X;jm#MDji?{$Pf}dM!u5Hj@~jOM3s6j;VXt(m zWtI?$BGW&stfoUn$3^L&7E5itt&qO(bKXlM)3>^d29uBjYO(Yz+lT*1l{1TTI4;IN z$lsQsr>|XT?cH1Apx?u*z)Bn1P2DEn-?EhW^X@AvVa_w7_L@&4Hrd>mF{++MQBlrp zS>hv8&dPwI*7$s$BcjPB`RsZ&1E*yc?b{a%?@;cGf|zdgbW9{?j+S5)000u)!bRIW zn^#QfgS*KA1}^e1WXPG;Ms1T#}X1brhN=F_o444 zC~PS7F4j-gX|u_aPV35mL_C!YhH<2@>_j&tQp0aKxlLC4PKT7`aQ;vXH833St7zcM zD{9q4KO9TUy1ntbam=L(j)dNEnFpc~*jP)O;j{k8a=u+3aZey-jUV zhYmD63Z;pR+c2P*)Jz+i<)>-2wqJ5M--$JLSd`UIiOhUqo$X@5$9Ap%6!%_*^@-mQ zWk#An7+t}As}fZ$LMCrq@Mu=SELOyPcGfpuc+Z2@ckg&pm9hf;y^iHRWBuFF#^S|c zRiNyd|608`%*`;({||?u$%{`sozrqZb5Eab6x4Q>Pn$n79Ae;0j7fM{_r53G#Cqhc zz;O>;d~wEQCefy%A*u0IadMqWt@}tHIvazuot7`>?IX)Y_>-qzKTnO;lX6M8K+*i6 z}dHo1@)z3IkUcS+#S$LW;vqLgA@y=qfYzTf(8Vxd&+Y>jbk^S|h)ZmFTRUf9j-@Ef%ehV>$4t%5haf=j#p^Io=!J_P%MM>w#KxSq+RAyq5 zO{NWbwG8*Kk3XffWMenHFHmfV2WFQ{u6+ZCZ^LMt*Kuy`D@E-s!ieifP~>@?Wu@P)x@eYeXE@}OCPklO%$vR zHOT6Oh#5jzl-%)u1IVE%I_)NtXB?y9SeQXIL07I!V{t|BDX=||X2L2$v`T?fAbf6p zFP5P>ApCFY8IhUC1)^I}Re7+^Q6NCsl=qA%X(FCt+%Na>u=v5rfYM7+rWq%qIry%S zg_kCaYb)B#Cb)M(zMu?*x} z_^~{-0%hKJA#R^8Se5c@DGOFh@piIR>+vVs$y=`agz3-@y+5e#-eRgIZ{ov%hwo>W zGAZ9j#KRu}SO(T?KUb8e$Ia~M7j~Xfi7&ECP951_zZ!#KTQnx^&J79@Z8lyZ30HqP zp4l2hle49XTYg1{q1XArULQ>t=U`RGQL8j=`m`w7C-mdLd@m!rRri&Pi2ljSOWL`S z2HhhuGuhYsyD~VB=g)egAr*L0HRBa0NX-AHAYswM-T^Dh;>-vQh*s#hUvHr^%!ED} z6Ha+n`RJ(F@XW5OoQQhxpz6)P@E`ykl<3fM6z#c<49tW_UtgqhVLC~a-XSNRN!~>v z(NzInnzAiSiQD%U60b$sab}_nw;Pd(Oq*G}{?p z|DR_Eve^p>(Nu3Jo1HqUWYX3mQi3eXTrJZ!jcxp`I2}duaaPdk{(30SckQ?s##}jv zqD2bjFFJ#+-I+S5mugFwX?j_1`?2~)~wLAv;HW?8e zlBf&sleyg9sb-K2IMZv>qhuSovkQeK6LlTtb87KIi*`&w-7U=|pLdsdThh(En~oly z>2$g0T%O-^r<>`L=ID49F}lCZVW)Qbk6n};kExEGxpGgywTwKLJ%6vG=Dkb7_i}uk z4Bx0c)L37$30=-Os^(^GWuOZyilZ3FF2Y)X`LQqwfPncoJhs4iCzy@@$c=qRtPrV2 zO_%~q3NyY2>|!Zl++~>bvsorIVhK-k)Rw{j!oXpKAwuV9&aCmnGeZYlB>V&SzAR)=&MaDRRtew_g$z8NO%&~=&YQ9 z;7xFqAh!Fh7BgmI$}FsROosPZh(L4=q7WH|hUm#p+mR6?BG4M?>Ai%vm$$|&r#cRDBE65W^`sn-Z24mdSD zEs)o!Wk?%m+tQor+0rX)t+A=e<_I@WzmTEQ)L|Gw<>%4%x%sS=`!e|}m%51NJte0^ zrA>3_93tlP(p4%P!kY9}rmDXzBCbnb&W%p4Dz)4ODq|jlTxZ^v4AHK%^DX0ZB+m?< zU};^ec;CF`JL5UIE#DkUyB2MrG(g655%*WNh^ISCJ)Kn#kLd8mbVoZt@?g9j^G5Lb zNgfun8%A!R8;QL)A`XhJ0<%U&ll`{NjxV$wXY5i0_Lq%)TbLJ(b`HBcxNYDBxptuQ z3-g%Fah<^P+Q)xYsxJ2^WhGhrkP!tVf|i|Q?p zMLKEuLcB_lxyshR^Vr9zeIGf76LLW6W8a`Cor2KzJp zf`(>2L^VS$ja~Y=>u6*C(z{C7ZPM|7b7%Sr}@OH}U z;-sS*(99vSk964l6|W$RH1o~Jt4F(>Sy+W>qttK2H5nn8NA!F;Tq4~Li6S(YkShqSz$L0tOajNRpb; zTOlzNw+LH8GrN^ALvxE`*$`+xs2(g1GA&o%D%FZtP5>87Q-P-DjJmSio2xM*E~*(p zor2aQdfz@CjDGUBfZ_$Mp>UA_b423{lO=QD3OyX|cGOyP_2# z8%NAIs8O1`cY?fU++Bj@CT8E3r05$JZ$xXZI`4>b&}ud>coDCh9?@*<>()^wD1Tok zWfexP{!|w zr?0d+TEjC0WCp=&hK3TRL4bUO8xvj$Q0s&xMEq9?IciBFcMO}U&7yfZMPL1yZ&PnX zc5>^e2g}xp`s;GOp3L%9ecN&B=JD7s77eDNd!vDiN7+w4Pb2G+ye>YLPJ4uV>E@Pa zMx?a#yWSvOLY0r0!A_+w{ylUoGq)f_G|1rX{F|MNB6JrDinndVFSl|LS1=T+WN;=iNR!}+6$>QCGW z4YM1~9YYfzw|rHuRpq42F`AOOZ7na-ED)V9YPjai8f{!upM5%j#A<(HLgVq!@G+B< zl+l0u`g6h({`?GDv@ujVu15Xf=it%e`v!`jTwhYl33|r0vi1%0V~n#lEg&(#u*I7z zDZ98G$HKP@eG19JK#^$!=?j<$VTas6s8^w3%v8_X^ZMYu%TJHzeXj50IbQmiq%XB? z@b=3;18Ws~uXO7f=gl$Ejr{1U3^Ag(m(YmwFs-wyuXT}Xah?Ja?YrHs8QX8Vr zHg6v#9zAKu7aH~8=G_Mi7QfUBkvd*%ZrEwLHAX`a%^0LtJlki=Pe(xl)1P!Evo%p#8ZTBc+9wu_(I~3*&N-! zPMJtMxKF5_$ou$KXVLt1%f6qJ%OK8>(^Z>a9VwS_d{9K%(kSt>{HnO7`i9Pq7SE^jgHh7T z%LTcAl(T%b16~fTt}Mjtpzqsm<$Hp%zoo46z{8H!pE6Se^rO`VCh{kPz&2%gs~khT zO&7H=1R{ho%hopcc&vGmrov&2evf)0qY(IvEV=ek&ra4K=*j^a|Ie6=wsEo!7^&w_vPt5ZpS-|~#-*EzR5bcp(nrc0OgJyvuk8K|Juh&kRC zZZD?U{ijm#x|z$NEv%9U0a(>pS~UCql9{#r=`wt-?9*IQB9%ij@Y*Z$dZvZ@MZv3C zT)M&5HKG{Yz@PJD)>XCk5J^!Qk8a_ds?)n=js(nURW5aq$`clXBs$^US5vL+rz=bz zWuWF^3qK3j7%^@a&LUJxMLU%scY%!@mC!@~)x!>vb|e|M$(N+iwgO^)APa{v`Yk}t zM6wF_Qq`!HV-v`~*EN<^3yCe>>rk`Ut zu6RDunlfE(VMSHrlXc9t=bcsihPC<%ID3xvT=Gq5R7cmeZ5)PmwPQ@hnq7y5Dva+5 zpUx4a559HxjIb9fo*j*Ll^;)~k(xfTSUP8jehY-d$G;tywkDQ|@as?C=bU%V8Xq&t zS64NTk%$gZ0mA|-Gx!w2oO$=@*ACi33Q?a89*JZWJg?Ow!` zAd&=F=M&1cvQpV-|kFTi4#m177Ky26j zwiIOm^pOm~YzPpZb~c1@4g=Hq5MUGVKihV?ssfKihjMcEsY9{ON$+E5p?LJzC0mV-h^+@H%LG1* z&jGDx4LJQkPL+kXk()4@Gf;HEW{wd{{)R_A1Z#_O<7$1xrU-OZb#DcMhiG0>E2~Y6x-c@RVPl=BCA%RLr7A1Vzyja0zlJ zu*NMIMG+(byLh==O9AnCU^puvIU#?NmX;<87+qV`v5g8Vp)AS(Gk9X6Z82ze9-7kz zXc*8~omGvwvtgzF`mKP`P+pK)%dP20sXDg?ng+Xc$NQQ~vWC7lXbce+l1G#Z(f7MpZ}FAz_B&ZanRPoAcjQJqVYhtz z>D~znPV1+qZ>0vO#zZj{B>HIOYPkqok*@ANDK34J1)mZ`36Ug=3)s}uBzoJxrPW5i z^{CqUwjV#{>z3|p;q!G&tW=NAuz%G;*FAHuO1#}a;n&FL=Gu@QT|E6MW?Dj*Gs$y~ zRLI<&>CZl0X31Twlj8BQH&-L=2BlVHf|*<3Wyjnhbti^1{W*^swXM~8gbIlu5=4=Z z)!F_FVnJ@w|C6Bf|G%#+mD58)LfB$j`YT<=f=_-Sl42g@ion(ZgLwHE^UT#;NyL^A z22&`Z26QNWh@=}r0XgGdgcKL*qHCMg%DFnH? zZmy1m60vmulU+b9)BEec{1{}pxn)3X0c8dW;U+*T5i$MsZ#AWqk6T6Mmnn~hOx=3y z62Av}D_>79;IR0F^c)o82c2}i7frnbh&(gm`;t^oEnpMU?h^TT=S6vYl9i7Djt*nG z?AWmTOg$kkS}Grxbp0M{+O&xSb2t27pGMqnR^ww5#H^p}N*VcOr{L3@i6(}OVxtBQhEa`TcR!&>n)>UmTZL$Ep@Rk228=g-+sZW@I z7kX|Y)MM6{b&Z5Za(*|A?^1}j`@H16xkLod>8!;3mz&0~-l@<{9c|3xt_ZnIVVl%L zm#Wnv5+9J)Xq1c3l+z;ZZnNNPDU$5hD{M!k$``V2>ygXF{>g1B8{LQ++;~D3^O?x< z+?WX6m=LTC{+F60TN{_^or@emU}yrGk&{Twf0Twpq^n^3Leez|Sq-2s1G8DOH0(Z` zda}Y?!+!?}u_t(6L1?<}=7O&M-{1Nq)$Sv!I>a|XY6&R`u{3Hh)7Sf$ZtK4#MQ)(v zo`DT{X~g@C)ckXr=Ln8WjkmE-F(7USt)wyvnRk)T9u~C?XsSnda3jL4B1UVL3lN*EV^$F_NVFUVQlT=(8&b#r$o zW-@}NLi`B^iy60-VIGqG=K9iLQ_y%Z8og z$EE&$_I3STLpd9j>tWpPUNy^DbtiGPG_h`dX(aStP}^Mm$fwj2R_`@?rqd1-gig?V zqivHuas8+1Yzm*JdAk#eOkzuF^I9w<`ELFVa=bS0jky@dwtq=%jO3ObD&7Br+K6Gt z3=FjhV2GAj#O;2q_Of~{+J=Zp_Fm83+z$ZoZ|l-sEz(t)K}uY11NN4#k%TuVF+!w# z#&f3Zt*zm|Rd6kzGwR1^-M!g9!_f52GfSmyqks|6*q~t=<1~%=k;Rn@+5f`nHdnnj z`8M#dDOZfoEq9F&(PW~x@LW?j#(5Cwt6R5b-WN%ymzoW{@|j3>tz4hB&Fm%eHK$W7 z?s;#Fd&?e=QrpX<<+PMU%Ri^uPC9_v%O zRXVJMTkyZpF0z)yfk08E)4?o21BVB37)l_i z7m)4WthLnCoaXf$qoCeTydv1Nm0g(}cPOI&hRzBCz+kKdFPmOjft-4@GjM1k6bjZL z;w6@VRfiLgh{JyJLP)P_~DUI<+Gf+{9n8jqGj+65G+Mxxk25B2M5Vm z_*Xv`R^Dh|o!Sm&7>dS5OmQU!>_KI#uct=>g#BME3Xd#e)4+nH_)RT{K^z&vBKcta zsk==*58uMFnVtRTm8dqm^zlhYF#$-2ZrYS?L7|M?F>D}sa|-FQZ2z+Zl2k+dN$ge7 ziWq35G`FQHh8NU-{&8n2;z0q-_xu?_N~iMZz*%Y(0w z@!FljeFQOLj$+8@`Y(tK%m<;r9p0>}IB6L&Cy~?G_H(sTZ>zYRPo~_1M@KLHdC_~Hp?|}>GqpdB>Uvk!I90YQ+||M6tkSQc*n*<&om4Vvt(UIDgzgO#aqD( z_(E#quc4K#?HHcFzYnYa?nJfYD8`J}<5m+O=)P%Ze4(CwJxG?_%Esmkb`;38UDy5! z2*w6+OC-#8>3o`hQ+1WXtmq4}iRwbV*9?g!MybOVD2pH)z&bE19;BnbH{mD-pBYlZ zkbPJC=M+|w z!@76^HDW3P>JCF>OjV?Q^QLc;(cQu6hSiy>&06}0&N-bT8y1UczYHUrD9VPYV_Jyk z5~2@o9-cszqQU7uI-lCsy}Ydwa60kRQK8D5#fu7#bCRP0okN*qi9U#;guq> zcf(@Dm}E5TUtC9T2#h@v;2zfB#pbDy!j@aCnGHb-URdQw=|ZKCg@h*yzv3g~#UHDP zzseh&HVnrMunS00>bAhpaeusBJ$|27lgRsM>cEAl&rheAG{UE^<&HOvDpk(6-zoq+ z1DI0ORc+&-miEfjm=r!AnW?iWP8yu9MYBp!fFT%^fu3mmo^2Euc7b3i3SN_|Z=F_O zkeJ6+c!|ISUC?kn(}_yykE;a8e>{T3Td|Z8Zn7zEsi>)7#{Z+f2i1H1ojIqq!!MGV z*Ai)0BzBo-8Ro;%Z&1_Fu=T0LZ8Es8T4MMxc?bBGaIRxJfUXzl9V@BC zeTf$}pO$NUD=`ZVFLdMJQe*-Uz&DEF(+y}G3wOI&HFB|RNH(`u8oyTP#E>KJ3%jPi zrzbOpn-Slz-T__j zrC8kf8Y>>OX;yYNs{0*lgELF*QwtPCR1MY}7BJFdWFR2_@PQiB1wKwXV&FNERfk@> zLdr**Vz4eqYHFm`9$WFCfA{-UPX6rh$@o^tu%VW@1LrX~uK!wj1o7ZdO7uhVvuX_T z->vSZW(t-qpb0dHZ8bqxEGsuR2~?wUI`RRZbxuCRd4NL#gtoUgD_Al$INjpG3Mc!;=zBKg3gwu`=G)yeLbMlcH5HA{a&pRip(MUz2 z2Lfec72!(9ha!>?J0}qyBL7My`+EDdbAEYwP*ITxb{@Pp>^xu%w8~wH{Jg5o^%-Mw zL|52nxGnxDb{eao5{gwke;q5xb#=N};LMp&oP8-NNBXQpnOIm*MmF6MXQGB=4vB$J zPanFiZb$oi&^jwC>vMC|i3#U2^iA-vg5~*(dG1*M?K4Zbjk*>_tHH(>B(Pr` zhF|?hcP61h=Zqv`FA->SNV#tG>LT@F=}O9xc>WEf5Mr0zhCKnG4lgX;>1k_74WOcW ztjGy623+=G;mgarbwl&5zGLPh3??|Mu?ow9eUT+|m!oLVdbA4LD|+b~rfHqW`pvP} ziwB83Y3ves2!zK5iY(FC!D1}aLb zA#u1{^Q?Mi-HR3S((9ROg5f&3pt`8bhIo@H6ZTAMDkim`1=L9E3}+BeNX0&f7Tzf) z;#VxFdV}z+BAwipRnoS-jO&xajWkb0}fA0|CCHhX_g3+olD5Ndy*8C=MJ_=Z6|FU`4Ja%R}npl%&|GnNKL zEH;h^Ym3Lxo3GWm@innot8?R^DtIkn==52FAy`i^)~~w9N;G8(Lu;^o)l55s2CT6X zO&YRE0wsv2bZ{E$*n_8cf^kfh=fKYIdfpb~#`no3;4CMaA{xG$$qf#eb)oyjs8t1NomlsRj z=x&@uhx`$^H?px8*E5-y{ba7hq{b-9z;swp;TOalfq++ z3G~skpIy7HJ4}*&HPzLtQC+ha+2caSw-S3|jUHmhxf!`4n?PHla|)$8;AznFUFE4* z9}o${LcmSL(D@lPT6?L{wO;E^o{h(XZ>ZZcKKLRTG|dzOOqcw+VLH6bsN%>E)}VxI>Ya zhs)R9-JQSp9CFcNXUi)tz6VkOhr-&<{yG)$VWcn2evh|RV3U4)661H#pc$D#q9F+h z5G9;dS(K3(xctZZF&H9$y?$NcV#}uKpBGDxSPkIlb9?JLI`#rq0$+-rJo!x#nql2b zyBC7(GfWEUafRtB9zJ}iuA|eiu^~lGO^yAY2-$>I!=aQz#n>-h=;DxI9RtcJpyr4; z1>o7^QFn)IE`lTYEj)I_D!$1G_tY2IMvIqAu@E_*59I{!>xl7=p~ zWs>~ME5@d680dQG(xr%m0v(eg%`GeXddm1|IAf+35IwnN=;MNjn8a&+Fd0Z~MT7~S z2gfpPl8clDLpIoe1Ar*7Fp@{%4F98DGTd-ID4p3BxCKF%__lYY;2}Zf0p-)3Z*+Ff zW!f4pIxg(b-}S{w?|s0@HtQns^7a)pH1d041T($YYT{mcaALn;ZT{TcoWo-HPkPLl zaVSN#le`e@$DzbqpqYJM52yw4=Ol;Py1!m|L9_0q8@9Do6ejgAs!E)+xC0)P*bps> zR*I%a&y=YUVXkf!I7|s>wAB|-u*7NV0E>j{p^#>iLa^?ayfsk~fc)L+OX}?6LPWyi znj_m5#~3(Waq$!FSCiVqE?B{6n3#C4<=fr1@yP2`=j*V4owWHx7~k`%szQk%cpwTQ zhxW^t7hz8yr$~AH-HmWOt7|dQ(Rl?0cTtr=9CP*MMo`c^sV4)(j9&nI@t#iI`W{p* zot40!S**@&7^DOYmK*?-cl9XXSb#;5*w*gFRZo2nmojZ!fBhYWIu}b4cMB%z+4Oz; zW<2jEiS1Ov_4jA`qplWhas5`v=>^(5kI@3LLZ*4;<=kN`%;}Xqjy`XkLRS6U{U}ca z-^=7=oE3?i?w?sQ9_e%xl@JnQ-`s!|NVnmLTZ*FT3yuSOFMN60@%9YfOqNabG`0~O z(%5X#!vOZRyQ!{Y=s9HJ`J>>?P)?V=h{sQy{rT#^v{RZ31yr`V;BiV}+4?W=`t&!%5 z^7H3UAO(e?d%a(TPpcX31`+>{B(k)$MDiqHHUKst25!3Y>esE$Rg4p$*dPu;l+M%6 z?m_CZ_nMtE+s*tyC}JDDe*uTv{}oHScjEDs5JT{9Ol}xO%crle4e)3YM4eb%H%p-LxGS4ZjNg7B2`k zG&bIXCyqb9_3sEK$K+7pivxe0KlN&G+Q9~E zYE(RLe+Po*`mJ_6ILq=7I10yCy#e;WeMe(8@>@+1{XqNcf>dHm-WV(O%)Iz=vSH8W9Jj@TQFSpp#HXEaY8nGF zf-_z7s@ffi!{hV3A1M;WWVFSaIY;mAls8p4ua?=pHzEK(Z+3e^iquS8c}6Pp33pGC z@GaGSq^BpJ8HL7GvTpUgb4tNxZ;#RPQ!QzweVyw;9#5sh5J&y!2r$w-`;^%GS2*}P5r0zlMNhOXa zOgsE>-r#Y`D=iJgirtM`jL6qUibRoSJ<_m}Z7}&cSuL%1Y7`FZ#-1Kx7=#z-Cj<*a zs`>d#{X?RlO=_=RnCb-%fi{|jQ`ei;zP(4E)XxI()Gsd60ZHkZhIEW=E`=+ov|I2e% z*U*66O(tKR$+z&Y%hP}bk3BeC2wz@z=8bP**}YSS>vzgu4+xjH9HOs&JZE$$g`9Ey zsirUq?p)TH$m~-_UVz2vQ{-pyJuEZh1_~Sg1VKQDM;g^b3hxK8(+LK+0wXi`a9axB z^iDM`EG>H|e{V7=ysK!(H>YJvmb4nhbKv1_rY6rrg)x>{`i5H-QSyO0kJ&IbDdN)S z+rROxCW*Zb+u}dw7)LU}el9Nhsn@&ff#;OaFM`2%j zCD_BPA#bDj`q%bY-kWJ9AGpuVF4r5_|4>adl<~SRj8X1D*ygvpoIdLDADwD&W)M>> z8wxQKKE9y3qYy{&vBEv|M()frJK3(Qj;sN`0AOIK1=K3SF$)**Qd9`4YTY~EB6pV z;kZU?UYm630n|NcRomNN+i1Y*-odJS@!Z;=nHHr|X>Y9mMy`E=h?UGm%Y5|)hO%Rq z%-?&IY?Y-8OiW`gp0&f^a3bQjc+jvTN+sUPQFUc^GI`hKeRO==>86q+S5y{O%;Vqo z@(;}Q1V_B|TL!kCRW$Aom=a_NHgfe3=qn03nvhNH1urVg=$Hq!?_tmAf~r{hZ2bDviBO$pPcC!5`g8_chvDi254R+G{Mo*Nfg4*`LQNGV1H;V=`yU1JCtSYx zIPp=wK~G(;-QkkkvHla+AIPvBR(1skiVk?TMMxj5GG03idgL3tRm&Y*b!TPx@|J@FZP~% zjYo&OVQdzatt2gl;`F=6L>L@IYB$BuKaym(p1yca@0 zJaYXzXeCOJZ)Ms>h5e>aHoHQCoNi&hKyL2|HioQgg;}+pifo4xbZ~~D)&`5zWE3IU z96?p6^215U9*_)A(Zqrq4sL7-_)8RU5gnQcWX6AxV2Po)m$;oNioRSYcV4M*VK(_^ zTaU7IvlGIzfBhm*1*VkxqJ-X~>3oW*Z+KXiH-WiE#DlP@+e*lPD+P|So70K(1u&2@(QU*wM{KFkCiW~YL0GNMo`dr zlNcK9usJK~@ZhqSMPt0ww%~L7ts~gG7gW~8D?=#Rh4xPi2QNwpJ`>oUku-dXvvF9tmh`7F`*yfC4f*NhMCIRIH_h;vPNu3YDJ{8k zj1A&XKju%<&L9s`W}+4beSOI#yw>PY{4ULmG=Be{dbRABB2dr;&J*Es+Y}A3B0txV z!+d`6?TW6GyfBN$ijQIHyNRoX;un*`Pu=Vpn-7RpWgT1H`{lXE;Z4cF?HLKF0Wr%g z9=40ZCZb2=yQQ{Ne~IY@s#+h_kainr;1yq@>G!Eylv2i<_x zd%Fk1X7xH4xhs*aPHy*>Bh`_u?ZDHeTt5}W{rn}yMiI;mICpSwbiuNym7>pt8TKJ< z0z3AFh5P+RhjxeUxfb-;QDEhi>pQb9SEOwKVB$zb1GH~wh#0wnAb^@0QWRLfaZNnd zW*f11{|?P~-3t!h)l_0F%7~*D)quXBq}n{Oj=&m&TL+Q#n}AnriLRQCvca(#;3+2( zYG^IFP3AhouS%TiPnGGrZx@kM_|blD0iP4if$H#m$(-jV>(tnp*Z9~iKHv8Tv58uf zgk;ptb;mBRJMHN|dMI@avDRpZjvG7PU%8mcZGIp(UrOqjP|vx?;YZ(ziQ9FxooZFB z>g&7sVI3niKpE9v>wq+d=jY7KrCuUmWVcNJy=FlONzX~J988g5yQ*4?q&++vekc`l zdn08Y$~^~{Dby;if8)4RNOkX9MIHMRZPYruq>kPxxoZIUQQYo%Gud#2v2p;u=z9E^B zRba=RgUnx(M|Zxr+kVbPEFr%lv;CO%dEwVCo@%Rw-KvwnUk(l06dN-rBJ%_Y#ozJI z;-D>n(--vm>%jPfTOsOXlv%hMKY#r~|4U&c1MmwKHO981mohy3^z1tbS+8gA2TH)Y zK@~%a0A)lqghic-3H>1@p#?4qyb28j^rYvUzTK#MPEm9!twY@4VSdNdubGR9s5(UF#enW zP-$=t>vId)&PYx1%bE1d8P|Ib??}mI7NRrsR59fo2r8N#7w~ZE$!L9iZqCywRD8?% z)XNL5La|RjNQTrKD3cq<`jH+>OuM)t5JncFZ~}3PWIs{b4Gn3xlbT$j(#@P2GGZ!p z3Lt$$o#ko*x5?;vJMDgr>Xo1J1BvzN5wYMCFBHf0AKwHC%yYiQkMVvJ1ic#fQB(aF zs?=nL#N9j(-{Ted-j3f$DS?Bi#O3wf+CbXs{QnoSVnuuPP-uY z*1xAECY(lAyFyM@aBa_~-s)@mReF2HA4;G1<;=mdhP3G<5``={&62rD_O8**oX*a^ zyr0t~MfT|Jz0&I(Kij^jf{6tp#~1*p=I#+hBIY=NNyo;O*cQqhfoBa(m*{Pi)5RkV zU@wTZ1~Vyo)nmkSyS}<4fKj|SA`Psqm0rYPFGHb)U-9%2km|qA&z=BV?134J^$!oi z!KW`6`}=DXEtv36<+o`ey2yF;9h@!@!KVs$f~Wl9ACxDXv%-UDFq`Bgc&3)m{d0?mYXki5t+&Q~{j zv2_x?sq<;A!*VQ4YdOwk%-H{1P3GF{_E+7Oy+ai&MW-+ITJHCuE`EMH8E)~Mjpk=g z%BjuL-RdWL&#e6B{Fya11M&Cnpia8^%9pW<7gs)51x`7ay)a1=lI4`aS3p281V zSDH7txy0kAkHu9L7jym0hUXum%ZM8i^NOiyjuy=Z_AhqbwCdZ@i2)?RvLL`xV&iYo zwtN%B(a?1crv$+;zkUr?3Ly9nU?^$|ZeHHzzZw4iTd?Mdqxq!mFw<1xkEK=641k4T zO3;rAuZyK5b@J~&wC=?HwYdHj+X0d$!P`pP`YmMhz$G@0k^WX?%TqnRJ*%!~myH2B z5uO?4Tz#SMEp>8x^+j2m((-AdKKO*`l?_F|iwm6<|HJZhK&6voj}n6+PrQ4d9QRm- z-IFhm1yn@h+Lz4*`#DN()YXwZZBmW3R+@G-+^Wz>!L&eYx$UtQ#fvL4T&wGq_m}KE zgYIu#Vj4A!wtKm7`PuzGtU!#8R*4-c zL(}g26-Mk44hW50a(WSo&DS zD-)xiKcD^l4q?K8%P94 z>v4D(1?kxz322L;)gl$yPbng=l$t~z=XSr`W|`!Wr}dg-VvD^4iQiFyBKzeg`SmX= zo5B1e9F%5$6e8|}f2G!nXI);&|7M%n!oyMHyPDkpEH`7)ftq&v-slP8J88WMcQMrP z<}=-%e#YPc{@c>e!yet4*A)1h`XnpIeJT(Pqxz3_zl%f47elsG9o!QcxqISvdeR78 zQ-gs3(TsAPYdwknVT#f>t~1Nqhdr0HC$&LZ6UQ!CcvPjcP!^Kn0{Nq>+0YO$L8d|$ zW~F2D1Z9*r^3A}!%(9Y+Q{9u+&qf2Epg|y{+k_m3ot~HZGr-#{hU|Vp`qO!_gafX3 zl>>1juvvbW!5jEgVlPdx4QC`eNIAMyA=pkppo8Utqy>7K;NW1D3yuP@ivLYt091so zK(Osm|4y!kFdyh~(3X~AJ`&Rs+&)!me=HdT=4FyjLaL4CK)V?v-trV>Z{8d~N>-@F zLPfRqYWKDa3)|@%4Frx|Q=Cq}*7xKdix8RTv-VfgDfIoN9xO{wY+Tx%)YgYJRnOC^ znZ3XISh6$x&u#3z3APrIO1)ySfyf;8 zswB!%ho(vfr<Qgz(yfM|3@uPJsg7Ncoa zt2|b$dOT40@IjwMrSJSs#&9^B87hZ_((f6~>oi$gm1iK~-@5$!bfnug5$?CGRz}KG zn)EamvR`#gI~%L}25>HymYIhy^iAp`I(jn;Qit z92e*c%3=UP!Jk zgxv|>ZJ7bWx5VMw4)oAarm`DWpu)$jthF$@3!~#;S;$?s&;3|2E7gjgJZiP`qtoHn zu4tzdr5Gh8C7QiNp0R8aLO{q|o?IUbelLc`N%TNzzX!+RtrA0zIgaK@Nq^%>Y~%WX zUv`pT6Cx{8>0(|E8zL0K^peHc=t;Xpmiqcoi!zRTk0eu@z4&j+!&OUbA%W+4Qg+EpgVW9_ zEV+BAhp$Mu$jb&bj)BI;y1Ba#@Z{Jr(%sX#dQ5ITo-+o1~f##X+mcKCD5FV%}l zX&KVky1-4T>*_Y5;f5}e9flmEXQ=Gjq?EQ2=EBynA(YM3Bh;s#-IrQFP4sw zUg1!;o9sA(H3VXw(3AWVprKEX*Y?53l>9~7rw4))Tcmw{=GW*Q3biylFC;4zOZEEo z>jn!^@cwlez0H&N#axJ;yD{HZhDW_FIcdx(yW7Hbeqs-9O^#OSUBJ^xPeb-ob{r)+ zH=XD2e28PcP<|Gm-l}QlHB$Pr#+3u{hOSM-nR-bNF zb778a{kK3|e(=SrD(bhXKS%gPTfg*@9g{73qm#>}bs$*JE|gZ|%j(1mbO!tU%Pyy3 zM5B+Z1c7uhY7zmF=wU)@pz!Qc+J_4Hw2VScF*T)RgWG93x!&LW##6-9hJ=#!#kCLS z_gfk6p&r#g{uOsNmH{J>NF`d?rD@mr&qjLoHB|31dvrXhhpUN_VX^%x zFO6X|i7Q<}N+5k^xb}NN(ld!mhmvmYI!v#T!EqJcn8SitSxU|O77T@l7HbBbku3^c@Pqld}M{Zxz=JaFTioZLx+v^ ztF+n6n2`%EjAjN5RaN#s`sK6MFNyE(la`x2_uxccj~Qy}NkXB5&|ji3a&^5A13W&; z!Qi{Q2(!xCngq%$wByh&h>ni_2z`Vir~mUwSgf&&Dyu(=1 zCjb07dxoHMav-+Q_Q<{-sRwAzBLrI2Dp@D36MO~UQu(Pq)#Dsva*C z@pxWmR6l(rlJa?b`XB!B=b4o1D)Y>Atn3#l?c)}|#|W5&mv6>W*u$fCZhYfNex!Re zeHLnX=z0DrFBsYP6^ta-u9HywIdbN%XO^3nZEi0u@6OY^MdPilDAJ&Oi5BC$%E9BM z=AQmj_XBT=kjP~!y#v+TMF4ggrUTtoTyQp_Q3Yj1U>xG7LB1dk_`uJnMT#aV@10S8 zX!YUJVnsd?ccDJWr{jm75Pm#FWO#sacOcNjj8KB9s%)gZSlF7iwVum%ABvSZ?x6Op6HT%_gOci=yyK-|0nkmrqii+R`hG`J(SS>&$m} zsNIaCAR7O{t>1@TBuidqXNArh<2FVtO7n=`2eXWA2>8txJxs1yir%&W? zjmk+Lt@*pYJd-Xta$jt(j&ZfL-!`A0XB_BX4MgOmIdlZGh+g(0U)Ap)SKx7e-Db8$ z#6gR$e0D+ArlW=-!MyGc$>pP+|_N-NFww zD1)+catPrN@@{d$t(?I*6BnB3y>Z%W_Mz?}4Cib&({pm#KQ%Q4F+7c5)TO^JxFUEP z#kM02g!~%;)t4Ua!$8t$XTlN&x?t_cjVkDe>Y>KlfDWd4_rmh>?N4PcH1K%LKy-;F zKUmW(3KL7K#9KMDR(A%2J2AFoXS)S{6mBpUGmsQSTA1c>(l4ATP^R*LNT}_LJv{s& zRb#26sYWw&gDK!2&ME-xL%Pv#<($PV8+k*KGg9l;qBJr;U;;y9{@S#d_r@CCSGlw+ zPN|M!yGZu(#4B>X(#*~u*d%U-3A-v|5~q-No2ICe_`C7bs$v&;`1Kr<8{E%|JN|)$ zN)UUYMG*rMvnXa(gy<)frf^pnhI_y5?GYB~93Gq9HlK0RR9zX-rGk9%a}N;sg0`0r z`v;}8&U45yLYaa`7ArcS?zti@`JwwdwZ$qbnSV%!}dOILq)lpzqzE zj-TQN6C61tR~XlJ`jg?aC_Z`qn5>Z2V42YQ)a-jTeh%!VksL2;8pn&4ZxQsl7^UE* zdLrt98AYM25FHhi_fU2ESHBHjBa%e(xvN}M?9MwJ$oD_b>Gto+ixn~?G)MZOz8Yj1cp|h ziw$_Vd^*lAdFoqv;=5M<9e#>;S4e{-y*d^(Cni6~U+F{fsr5tL0j%tX?h(tge^ z=n?qMiqE;0x4hyNX=O2w!w`sst+qC+bJ{sHKg+4CJ6W*sj$-Epax?U01~}c*^}W^r>HO8kstzxwI(GM2+URz{_a2%B-pg zKU_rP3X*N-Ur>rn%)FIsDQ)fgm1;pt`_xuV$%&s1s7deEEtQVHxSj>~Gjh7-c4UrJ%X9(qOlsCIaSdAxlYEuv|oY4X_7 zOSPD7?>SC3`Ahp;4r$z}+oOIQG8nR*LU%c(6BabtsMCyjLWRT>wjPxsb)7ERr1T|4 zON^q~?Y_kCpX#D<;rpo+onH>PzWmYFW+b@H|9sm!&Vt;CKabLG^HjaNFLsq7?8&xi zRj0CD7d@04BC@TyN5b;tWTlunOZRiQp;-&_Z4I6}g(jyL(nijTX$rq6o*PBGx<;F& zWr%FAd{CkKA_B*_Fhf)&2LBwp7TRhejc&yY#&yl#{(-r+pEDjXoFkM)WN1(>M6-IDY9B3b7~quV$x7*E!~^_Y&v*-MwiaQD96 zjaSd88|iatd=0eSzl#{0ee0tUS*gPzeJZDT{$b_8UNxcSQ1{Kw@&G;yExuo->+ZF0 z%7@FpTa}WA$eb$aT_}}5eDHkjn>Mw=+3k$vV?l-$whI+0O_v=%$MN5enA+%gl2JEW z-5P&#wlHy>3WoD z+v!)u-A-GpJOqjGr*2b z19ILH*Vz~Q#wA(W=w4q5HW0gt=6qu)D=}{{N?{aB*cB#4h^Vj|9b((eeUqQ!UtySK zDM)Ly>xuL}^;@I&tDMU)pn*?A2EY`b2z1}syfw+2F6atv`+@P-{oo>)U|Q7E7c&yP zbDM7BHFZRWTnR)JFOE#lEjRcbznp20J@smHq{e$Q;qxfZz^GL-oQfz zZ?^@ripCEA^LyuQY;9XM#s@663MA-3)>GjeLeX9Ej(g7R-lv%*9MljP8oTZwKbN$v z^+tY7^M*F0p&-jXGbHO6nXFNGCy^w{Xuk!?~qY zjtYl9$lp}cuuo^x(x*;kwf?Yr7#|n5r^rX+mgKaR-itjF?_BftoIcbNsr=k;BXXNJ6Rc|$S^UG>uzg0h=uL-Udi}w7f!}|WJ ze^HP^&bw@TJc^72+Z#lx2H08)&e?pxVuW+C26Q7pJ9I)2ut7|TUj+jzL9#bRauMx! zR4xq1pJQQ!V0yfvyE`NFw~UO8L^Wk5T#N1*#J)J`3GS2r(J-tZ4|>QtG-*^WjaU4L zkEc8#64n2-wv|8KG)RVQBc#Yh_QiYE?Yp4$qgRG$ghR+eG+sH^SSiX9M+6k`fMfn8 zZ=I=FK9uVQOGZ)c1zG{m{EbB_*zJQb&&{+!O~=Kw!DsU|OKknmKPWiyao7n@cD!XwpUg*M1?6x~gB5QK6bP0ExBkPjn_i5da-}}2z(*K z*N0(FxRh1Pt+p~2VM@)3o{RJ_b=b{)SDG}3tO;Nj|MP&!8E`)q_Y+kyq2XKeXf{l$z3N4P~PGZc^*wSY}aAcfBO32NC3Gh^c z=~UiJ&KQx@XK?QRHlKOfxzctsN2+L8av(aTLf36U>@P8m=t zpk@L1L0#GvKsQuyMAmkntOR}+&@LL^nlGjHTH~YZM+SFADDmK7!&a=260z+w*3qP~ zq=W>(MOYoQ^SDjTw-B5J@`rGdfKPBJU7J6@vFYtQJW>63-@c9Y>Tv1X-NCU5*Dni3 zxCPx~_fB(f5=#iFu5~>#s`xvjkL%mwPlme z#63$Tr>j^J>3G(@HR5L3P|l$TYuqN)9#@zpIs;j62%Q`*)9u!AyVSb4C*ti|5?b?%*n7icm-TNp>~SFL1LMfg6ZwI#eo zHpTGY_`p8`NQAACn9=3wsa-iTp6DF{k2x#J?|#!nbRRxPwWvzs{ zJ&j!Fd>wUEjSN0s_#2~Wt^5-e?1TCjuRfq9eE5`qoj!au%PgAj?kHNxzJ0H!e#3OA zaneyicF3kU50lyAMIqFuq z?&~_w&-b%VR%JoakAKRB>vfi{ElIo$(%`1*Mf)jPt^eckU@fE8m2qxoG-t4u;DM)k zN$TAvukU#%p1jdupB!@p#Yb|^&NEm1b&4;Wf064eQJ1UR@7pqawS0909E0NcuT6d< zt*^UpUdK<9sgxroYnQ=m_6!WvRR^->BN2fOwp~p|MrMS@w$L0Z3*tC~2=71>A|4yi zQeX#u5Fvn8{AHRYmfOGC3vpBdUF5^(?N}tD=K*YwITzBG=V<&jc(AGX-J}5+!yt8B zto-UmY1~30Y$t>t9o&`AQhTD#%WCJ_es4h{5I!Av#<18Ba2KmI@s4vc64N zLTLYuZNUK&EEJ5W0Eq$%+H$q~19EsoWwBpJ4KfOq%5jHCNbXE|kD$TJSFbktu+q}t zUuu;zk$08c-g}lp&&u8D-`kfI?}#YOe0Sfwv^IA;i44su8!vfd%+s6YYq)kU(l2?0 zbBlf|?O|8F^msQ9bvzyMYiWw2-#41?_-$9= z&J$;7elUM-ooU+6y2|x3JWn5>1=T`KoGY2JcRW094JFsE4WCgSE71xv+s&%+S@y7_ zSG$z@;6m3ylhuU&|I+-bRt0`5Fqo(>hDXO7J|7-kewgMX*B-&25evgV`Kk_Zd)ru6 zBVFg0Cg(Sk__0y)y56Ip5g=E4xzS z4)&{W>z2;9I{0^b~T0-%HWcdImywbt8iqYW3}{|455%ez+(2tpgN2~w>~{uZ?&^I<#rR!raC_UtWFURz0+r9nAF&|@r6H% zZAqR4HF2Gpgb>xQoY1Bk8Ezk5QN)^yY$DCjXqqdzY>le>INw9hdoQ zEzfHl&RGNc-6w^MzUa!Q2UkVU9+{+hay~AfCENdJIH$$>%iW8I%AQYtvb(C?Q3Xti z5gFiPUpOPU1I~uxTg4AbF1}#e8lT|W%wLB80lbqqD#!N6CQT1_(Y;5uV(ZrN_tNEV zWBTOcW>^-K`zfP9td^@AF*%Lc$wT|CDlI$ z7x&v`MPz*#VxPR`{OThXNGy|vBzj*Abc!LI=erS>w^0&x^1uZ|Y?$UyPIh)B&f6g1 z_(aaDpi)53-BKj!evejq8( zx!&b+)S~D%8wV+49ZMfc`=F}UJNRht#3larU$`H{S6Nv9HZgYFcln(Bn_AU1;cP6c zyb4m^$@5N&Z>W=l8H%4?I|o|xn6&cQZm%E3F_>faoz~kK+pY}IXlGAQT7r{>fy`9+ zNEnc-Png-AFVWkY_~$dm84z>-sRNZOHd-7UO72>6x|T^5KVWwH;C5V41V!ZqY_a*(IT0yIR6Q59)Ts4#E< z5uWv;qTBQH9>}oz-64`?n6Dw}0Be3h3mp(8P$ZG~#+Hp~T*&iWlxA@uLTjd3j928s z8-kh!9URo`r$Pmvc)dxWl@4byzuC%7ziZ=8|BzyS#;V;`mP-2T-SzLgcAwsSB2Q7{ z(QZ$y3mMq68uS@+jN-E}a|mUL4Ai#&HVF1P9}txyza zVIqH*;W)=m?_;Fk*Sw%RfCH*v4f)?L0Qd#-^7H+m4Li%+M=A_YFJuTP#QI8$v;>~R zruQov9*jyvi{kZ$+x3;-!ND~02F{Yfh2>cgM8qMd*47)ZP4|Z$U~&!}9OA_)k03Gl zHP={BA7@v`{~_eH_wSi-TO%c5la2SHo(!qltO^YUDB(c9D#dWDN(r|OjZ&6+!t?!932e+AEj|XR1xoF&Kbtlv5i3OF23z}x#_2zOC=k9<3afFS( z>b72#a@yjLl;L*zl&I+r18#Aa`CV3nl$qvv+kNK)JcVs@NC|!(4xC%9emJ?;#@?^W z4>!8u$h8D3CSmtYYX>$_V;15d?gyym-Dhr`=x8opk5)iq7wm2zypAknY}LIG!y^FK z3hvL}hwXb z-0|$BCXN*aK*o0a;neum*C`7Tj`9l3C5wM{W^^i$H!y5%LnPZ+q+tQ048(aj8gS>H z4A|pY?`C8wvJJ_`v6vLzycT2g8%|^{^ey~5Q~1)8OZRwB+v2X}c50vi>qp9*RrnW; z=DuXZ$hJ0~YnPnTj~#VAG?&YBdyRMHhF+mj%GmsWG2=pRVdZwM>Q2;|hGnhIfw~qG z!=DrF+b*wWuK2X;&M(%M7P1&@I3{yUZ&RT;orbq=?p**?-$)h~xxUerg9&NA&Gj(=l_wfPgXzyxDdS4R`wbm%(5N3V6D|L~vZAv9U4i zTU@gpg1%aJNv;O55aevBSFIbHupnZKaUCe%0&VM%G|Dz%h*H5&j&ex*#G7#X z5X0XfdWCpNd^pI?B8N%ile5g_ukW`Jf1$vcs!3ao#FW2A;tsn6JJM|XXl zrsj!5&jssHZ6kSt*;zXKR$sTt?v2(D>IAJh#$NQuWEW3FHP-u^m`f@tR1*G5N9ToKYMp#C(paAa5~#QDG0ES!I6 zQE;4T|0wF_xw(;fA3~B5_s?HU_A6-*5H8M{gjhp^iwS`yG{Og47rvB8RS`k5znbK| zzr_JCEW!CygLEr_AM7+~=|>Yh*Le*J04*iW#I zVsGoLE~pw|AWG4j+_qPQ5+-b3njIrq{WbZi>#NOwV-Ny;0|!&E>y_k2D`HN=FxOZ7UT_e*Hst7R2>Gpa5W8q^b&Ue`z z_!Oy=g79y$7&CX#Iw{TRY7zov5N(Ax*o$wg-fbU4YfcS_O5`wqabIzDD6!YzY&>1m3;uVUgQuh{Jb5am9{f~XTpI2QXo;{7$`{MMO`CevM&ZGA zv4ZAzU)>m;k2C5QE@sds!;r?pG-&;{W<>O%6^`#FY=oT+o~&Th`1!GEK^Z%;qsQs_ zM|T)OAxo(=BJ&LLzTok~+3uzC4&6u%As6RL|H-f!IEyI+h4@7>c_k==lJa5}r6yHdi9$qwAj z?4Ma{b_O_%Jkf~*p%Cd@kO{~^fNswRQi1Opj2~oZ*m7Xg!H$ei6uf>h5cX>M_$W>3 zw|BzL9Mal;xeGKGv>!ZW*heuu$CjL%)s{i$uX7V+A?1PAPKU1jv8Li45Q>yFZn|4pz_$*DW{qYA{NfL&JMHX*c@>b5v2_u~Oh|jrJLaKVNs>R%E-O z*{DNU$2WRRh;ar6eR#g;S$WR^XQ8TKyvX9YBQ{!KFgRK(wfEc<3j9&G=N1+EACb)r ze*e`C$c9LSAQ7Ga=FOqNJB?qt?t2%Job>2baMvuD)z>W&@`DTjew6W5zwy7OFg)K0yv zfZ7$JLWrB?_C_>FCzEMZXb$`iDGWIg;p=>MdKfAn2w-UIs!SV>^=gXB;Q%iz0Ei$$ zynIj2)Jv1<`kVxiE31^->-?VN8*bxOVVt&P%gwYmlSI`lv*gY^6iQoDdWiKidIa8N z8@rt!u?9u$k=p6V7y$t!AH4|i@$vbs%4nz&iB!XPir9oq98XsD1??r1wQv74lLza2 zl4|S5YTSnvzt$bQ)vd8fZ86|yL*-r@{SRC*W!{hd$1zr54Zzy965?U;*}B$2lbUy( zO)5+AL~`K{=`*Z3_iSGb7Z@U?cEjgnm&3}+j{IT1(Tw0YvFbeTT4y7A;aX}ah1oa% zdar-gIp^H1bGDSqV-_ElsUe|nS(~DZba>*0T5T0QE*Q3sQ+mNV#+vRl2I3%P;#CcD zC`8xj^RFTi8Y8fPkiR+X)(NuPhl4-(w>K|!6!Z39@)|;UKqc-_oE)l=o_zxv9s6fK zU3%{MB||?^=qf*LKi!dz0Xw8~NFf?m0}Lkij*;ux8HOkBGrQBdxG$kJx4@;@P1Y$U7OPQn)gyn-v11+1SWYxYa`%S{<6O3E7sR`X9exu=(X zJJ|Z&2m3wK9|MU4$d%D$vNJrpsb#Mt!K)<9`=Hv{N2Ij%cf#PM{VXxzE#DPl_#}?* z{nz7z)5?dz0p-pHfK9@jg0Ta97P3~nAIa#9h|#6PA`h*K7p;PcXe4R0*+?QpYjiXb zu8x%vVP*E6VP27lqGN3@-N10F3RE)B;Pb?{OU!VmvjRpX7r^Jo|g z_WYEidFODoAofQRe>{wCcybwHaGun$9Gp_{6t#6wip6)W0jP zZS5&W9K#HTw@;j;v+Hgs@S0yay|IJoaMKIM;|pGjR@=f#y!x7ZWHxcDe(TE^U)K}h ztJZC_8{*q1Yvs3CMs>GYLytUBFebLxkAzXFnzbgOEckhCLrW=-5=*!4( zBC!mSs&?N;lJ>lwU1IEGw6qXU1Y)wbk1g9~bf_%iz=7uud6z6(sYt7Sgq1J~|ZYrA}Zj$}fsa$Vsw%%)_ z_zwSUM*dohv1Ik8KTF{~>Rbg1)0bDzCT!L?nHn=5IuAw5U) z4}N0o{uCES?>&chXU<5-Ym-|016P=n2LAhSSGXv!Vpb1lP@uQe+L_8Gr4|;B!TR97 zOXSZPpIiad@BVN@5tH~%&iZq5-1o%Eb@`Vi@5Mzq#+PcUjej*9@t@|kpuZrHo%X8ldGKt5OpaA2A^Gv({(ekGFiZp)*}pEf&5#sK_iSRg(K$J#xA zoBLZDw74bD=9m&rE4b>ZTKe{qVKud-PEaz@p>SdGMV#HL+iCO?vY8hv?_YZBAx+m5 zZV};r$;LgRuJb=%!PRfWW(l#YjZG0XT<}yl%PdP?HSvQ@q-Gerxoqb*X|#eAbrUF|q%V zmT*p_dCvnG$UnX`Us)SeMoKvhyS7TevJ8-bhPGsv`!&qJD-fT9PbxnuwEaT(!%Z^3 zw+f8%iVJM!;{S3(ab{JzL}O2J?dZl~p_0SzO?zWOQEEypO-$Oayo@nDn)HoyQVID~ zELH0I_1Dnwfl7@Js#S$iRqj~)pBkv3>_LII4u!N*y{ zwY~0=14SxlI78~plrcq4aC5XO)o$Oo4C~vX6=wNU$gIKKXOSawHMh-ND$Xu%ldkKQ zBU5(nd0OrDA)!6)+>8!}c3%Azj8fw>*51m)3y3%w9`7Ee(O>?o*y3L2FE$8_!Kmbs zcz~i>mTKX{S=qC{a@giz4BzF7lPSqX zIMMrG?C~+zF#i$#<99V+wD@uV>lSH^0`5e2tO3Eki$MKdA2k_^}qy%@zJEhs~Wt{!_=GP70YhT6& z#w>b;I68!euL=1_)a;-$65c>xey{eX3Ik%$3{M|gE0);Td$g@=44K9(@-Iv1>+_Sd zqr8RafDz)rgMn|O=i^6z)cO5&X7=oqtwxi=%tGV!w=Z>WUNs1dn7L)R{0G;xx0*r4 zeJ{c%3=*V=w?!W{et7i0I+W}h-ar(v01$#AK-DDF>{CB5Xa(S!;{(qvE+X=u?-ww- zp~nyW5y=;&Qh1t+N-0VGsq|Au?U%}0RDydmTXe1;@^GPs?)@0`%kHPALP1*zzw`z* z`%DeaU;MhGde_x|i~US!_c)sKEV*HKTCcm7)xiflrLITmk_R=q|Dzs~4wp2Jm55V( z-r>d_`(&cRqWs5wzTtM~SWe z(Q$dIPa39ZKte?4Lq$;iM|8@e71zU$2AwQGr&uX4H4thd5h}u{fqb=_O8B1w#J!NL zBl-T48(-@HMh1K0$@PhgDk~;S$H-rnKXvseDgY<19wl^4fN$`CSTV7ykEyn+vj_1S zl=+G1Hu+qybSunz6`>*3b$)j+9kx=ajwBMuW%Tdxqb&~7pSPHHXB*iiu~10A&{lHS z%Jj7g95|v1FD=(ccsU7nl^p^BSOsE+fzbt+#Lzwq-6K+Bexpa#ryiE1l4|>`%(UY) z)Ntqrf!{T!LpD_6A;7v~Q#0IA8{8dh@ewZL0K@P77KYfO?DKzWdQm z4T{>=Rq0xp?bM&L5mgRF7U(mq?PyQmjnlMH=#dgp%>{NRN?zP*DE!66GNX7Hhly%% zOjtzl0fbMOcnOpqtZDceBMDlqX9iyntcsyV32k+#oK&fU`c2eF5q;KHsZ&!^I1gfI zZFL!9t>@}|_hq;OVk(h}6@8e3HxNyKfE>2Na0H{GVJr~O3K;eT`A){#CC2#BtFBmT zdZGx|BGC_nKv_K}`&&uQGf)Su;jZ}W_=;t^CFgG<8`WL{EQCvl4;bJkr>4*x&KIvI z7^xGS-@v%{a_MbeS0x_9wGJ#%wtbvW74F4MsD6dT6)FLoFQTHNe+F4^A+^d(l4SGW zOG66N{2u!#-<2p3Gu-F+j$+agAjZkmI@t)G9F13Odv5*;UD2}_*9vRu2+=)G!*O8F z>y4yrCHra7fmdPHchPDcoeBXHXsD{zOR5!A%Xi=&`8X zxv0Q2%&7m?K2QN%+4#s=RgyE&`(+BiyDe3;So|$peHNjR1~uGLr5HshhOI1%&qksu;jN*yO6nxZ>=lMEtYZC zqn{S{wFd1i3p8mW6h+XI~=;Rq&^ZWzwGM7a5BTetvTUNm&x#Y7oJROhyIT%B9-ixmhC~=EkQBv@p#GH^J*Ye$#44hUn|eHZJodto>Nw*!ym7+3t0 zErIF>Vu+JREX9y0fc*$z1ID51FMrloE7pY%-Uu-pIn!N6e~4C1^XPMF5`Q`i-9}8n z;EstUW$ugR1o|2w&d;CXO4&xSNXb3-PayB5HIqp^Vh&p4D?&lvi${0gT1cyWd3f&Z zC#|2F1A}C)-0I6yT6L!@hJ6;wTK~xFcF%_R^QZm(+EgqYylj5d+6|L;qB|3AKDo!;Pmlg%$( SRxuKOP&D;4o~xbv_kRG7djWI+ diff --git a/master/.doctrees/nbsphinx/tutorials_image_50_0.png b/master/.doctrees/nbsphinx/tutorials_image_50_0.png index 0ad47747ab4081ac17b12b6d0b3025683999d6ef..7df0995e5bb34c2ac04359d49f124b07d7613709 100644 GIT binary patch literal 9406 zcmaiabyQSe)b>!)Eg{`q(v1QN5+e+yG)Q+0NC}99fONwUN(?C?-5^pTIUvGFr|_de z8otB(t@W+-{q@e8J2UIfx#ym9_TJBa_H%Bu4pfbpfQ|qHfe=4aSA~J^YH;}C-2_5Bb#Z=78ijLvUrYo}*o zcjmr(e)gs4UtRwW%`VYTBZ#|T#V*Y*;?bC(HXsnZU#^jgNpYX-7)y|apiYOUfW@Jr zRG)yHm{b25-{V*fe0=kHa=+MvFfNXO5nXJkptgSF)jPQbZbiq-5Dif|JR>i3Ef}6mg?*4tLt?A{RKlU zfk|+-&wErMO2YY9L2E00Zf@?`5@`re$k3XX-)fTD*!+CF?NIvCjD3Dur&)Ud6}rK- zXSUwC#%oPO{^+Ne|4zsGdQKBKY64E2Dvj$2+&ix&AuLP@D>s*WYWDWrvT|~s(`K(f zc6Q!g2zMxFK7(Q`P8nJBW=lA8C@Cl?KtkPvR_Gnv+@6AgwY0X@1fIJ2Yt;nmQoncn zt}Qjk5zin4gLisJ3n(Rg`0)NoEOqp&{&;-W@UyAvU`|QbSq{;x53~#n_p7R^mM6>f zl<`=7cV;;|4%4dfSi|3|vVE$k&}=&zkpq7SS#$`@&dz@Si$X?_DRWTZKa`gj2q#;< zT)6G{-SMV%V9g7(`uE=qJ5$Kj!BEe=Z!6O$kn{bo>viX)8A8^FK<@SK_h?G))xA-rTltQE_0=z#ZqW-j z)D=e6eapSE2NA+S7~8+9upp*Q9vH5!u3nwJu{0~+A_yU&Ic_cZ!tKWtUd;>_mzM|q zN;kUMO(^7Zc3|=mxjj{2MJE4MaqfZPZVovih45ab>4Pt?(S0WwV&pZDZd{Xfgb!aaUWdB58RdUTzGQ| zTxD}_k0$?WmAe;sZg1}Ed0wWV{l_&v+lIi5%(rL#y%#6jy<=mE>cueY)7`n{ntmoq zWxRvdg=^>^5FBhw39&Y!yuQ1Cc(u(XEV*RNYVG2Ff3=N$-)qfA5&d2}M>3lEdQ%Pf zPC#Jb6TUPGaPfxH?Mrbfso1Jg4c&INW~UEhX@vU(8~=nY+}@l*LVx`- zL@0%r-^`;>@4#+CC>}&VUyPtJe`wl*WW{`Lj1`ZSCA`bIx;=7aWJL6fj`>e)WUKGaw~s1Oi9>6N zgEk(Z%^+H%teK*n2XgW2hj+rG+3gJRte3|Gk(7+==;-*=f0ryS|Lve|(t(AJH+2Edfgb!dt}8gU5YU28*{5a5yl;65fgFPn zGJ=TxW7KodnP!HN6=)^;m>CayYK_5f2t7~@ z($k~tI4%~py1qE^`!{2MaCJ1g(o17;hbSHA!|u?sgf!(`6u!Rx5tE!R5xUX6^W!U0 z2I){NT#`i)ZRbS`OmB{L?*jIBqdT)(`-veKqRgJ%&5nCW&z&FH3{nK04_Wl-Jy(dx zzd1&x%szPVpnGeo;$TwmIR>p%?vh87=vtud-CeYtyZ)W6Bou<2NJuTvb%)1cm-9Z; zX2!`Fi}7;1T@i#d`&I652(`7f{Wd>F?azz`8{PzOS2bD>CUYLvPVuCo{(cAc34CXy z$9Q&|g^D5AyR#y|$br3u^O4scS7)Bmxg%}KZS-$PH+s?qP3|nb407Wzf8&v#{9)~! zTcZH|aX`DshgprLNtxV7Peu=Wg@eh3+x9U@nB;jHi(zHS&N@|hAwxt;IskiLg7y@@ABN}kgd*-V}+!tSM@Fm^;yqDW;!pcAYX}|xL zH0aT8qx~q8fN7J?P5bpfw6w<}1SG;j*VEO(lqPV()_9}qE!Nqvd$8ErjoVxcReu6= z^;T%r$Y1QOdSahR0jHs*ib9ge|CNFy6MDPZ#Q2mIEU6xZ)V}^3RN}Y{{JjVGEOG0c z;@>74(P$6p52|c$Ria3iz&*WuMd}}4ue)Z@OU>?Td4WazB@d0RfXl{#W`6SV(-t9& z0DG#9q5Q@MC1DnRLK!LOvcltqz0+5_f0`YfoRk9tTTKIalhj!Ore zFdw+503e#3I@Zd?h3GF_HUSchC3AiiQl;F^bd%*R8*&pQE-r34^VRl6odY?@c(5}4 zc>-x=JaGvL)?8>|eSLkoOs?iFd@CGG-k?GV4FH-o?k0)HO6{K%eo* zASH8%@7CD~iZt-^vFo#|?OyT#eVhd;0?7ZFC5AgZJe;WzD5-@?y`+o8i0WaDZb0vd z5MhA}!Ry5rON^^vC5R=M-=Gc5X&az?{hKO+aw-DPt&;$&>=M%`R}hUU(h@`}4Ud&y z5F*k|(KY9h3EsJV1{IsWTcBn}}p1oCyJ^1f-l^S8a+NX z7TVAt`7>XMx!IHi46ub*8ILv+BV!0BXE?IfesmdlG&5TgUO+$qm#3_}ylEn;Y~R#J zQ8;mr8)Kz+sKiktzp}7UMe(4-@te4|jp&2FMoA?F4eAB-baZ#z)j^z~bxvs5%EE%# zMUox?<)(=K4!78?3zPPdW&m?DuckR#AMW{TJ2dwD_j?f28rq0qyW$*xeXAjsY)p<$ zPT#<+$>W|{(LQBDMq05@ME~SLqWIdF5^#e%nZY7~>s3T(Q@gYJS01aW;Zh5{fFM!4 zgn5PIJfc}d;bey)LK!MT8ADmnej4WiO9j?1 zQJur%VEG9V2?>-N#};E+1KjBCBZyE2A-GY>v^GM>q=5)m_}@2veab zKY1aX2egegpfwm|&M;UF+Q_$HLe{{%`4jn2@&LFx@bkZLNi%N0Bo3b>3dPLsA4W7YvESviR7c^z`%x-K4=} zjEsy9E-tAESq73pM*-@TS;>qc5K*r{=)k(D@vs-+vcS{G@vw_nQi?T^D8S5U>FAUN zs8ysHp1QjWe_Iln_gjf;dvd)g>+`Zixs;%>8-&GmFbIoqWme!(79~v}(1R42O@(L> zQ2Y5~au6IiG_>3-ba8As!x|V|!EM@2^71HFRyb&%ow%;T`mtHz}Hd*`1#)Dd5=g*4Kt>o5G9UF{&R(yAOK z62LCFnD)Vgtkg(;Za$$l;AD5KYZi@u82HbnuD-r|$CsT9uWRLCfb-;4O(q-zjPWYC zQ{2j}(S+c^lcpIL!wYy^T-@OxS8b*i7vTCu6~H4G5B$a^Cc@Iwsf$pKKXc`1R8&-? zeYWnK2kuCGh>!oJ%B9@T+iZhC`N@;C&Vjd(L>cODYS@El)gno*oo%mX5rAlpy$*|P z)Um8d>gsE(;h`XWr?(@fx6=>}b#;~=9v&3Pw8i@6Z=m%ThjF&Mk`7?Zi#ET93?xxO zw^-yVbfGEQ%Ksgm7a6kX*f8K>+rSiZp_<(#{${B;9D=L9t$=f~goiHdsmU{`2~fWq zS}PZ)vVBK|gbxEhiB`o_#*+qS=WVu2O~w`(T%OtS6-2Iv>0V0aXt(%-h$?Yp%NXk3 zIC^HQ?+E4RYU{Qn6BHB#5d%;-iHK$SK-xtz2aZ2bsq;N&*e*$n3)BTfz`92<2Yw8S z`NGflwNa`dtfU#zFURB9iM5S0ewy>8CBG3T!YXmJ1~~!L3w>Q(5FxXc@V9T@YK)6= z0%m;&r?qy&6J8n}ip-S-+a;6fJxh<+l0xqmXLiT;ff{fwL1Zdy1&a*6=hqTvS_e!4 z_wljv@c3elFch#fsj%OM@O0;NaPO-elnTZt9#<5)Js$5~$07r+-`Oi8?Ze!3awDElogPxa$=Va}zIu zM|9=4 z2MZY2;dNVzBa1V?0KvX}qOlOOf!~boI*RLB?Z(`#K6G7G+;@%WdgFYPb)lN%Cn0>h z>LG386mwVsIs7S;$gEY?rW+IMteHo-vEw1s#Kz*$X(Sk1Qe#*X zF=4+;SGJqswmKF=8OB#x4mn!!f63MC0+6RnzxMLiz-P0mO|fprC*ekM0nPsG%gvE2jbW{1vKgTnyJfs0 zC-QJaxsN~d86E?1jD7{$($>JQ;QJe>MDYN6v6B+n_B-01MgR2OS4DZO$3nP}zjDuU zkyHs#__qOVB76!Ozu?Nxj2E8+m!mD+2ndFK|-C(sd0)S71b+Z8Q2A@FXxkDmJNy(KoyYFSw+rulzKhpStM35pt;Q60#>k;3+ z{$?f1!6##l*@ThDVuEl)^7=_YJHRzj4|gZ0ZLbusU4zcR@rP?&~b26#_n8~AJAT2UExe0>T6N)D%SG{jzwC8 zm$$L+l25bg-SpWFoYK2u93+ZA(JvS68D?iWW9_;hT>HhR&K7z%&AG`ed4R0jCn3C% zx?vT|i$x)TL}f|og~c1pi8#d;#8M6rqZEj~mu>mtv4RY=cytc2gfaH%>yQs?s>Ju^ z`K7t!VJ;_mu?iN@KVDHqNd|wQJKMhngvGpCYBV45tQ3J+{E{h;8~3nQu1)r*M(xDI zk^OaCI3-50HxWt*6QyQozpo`^axCB2ec z$e(U9j9p(lpMc2-V)N%)WLW8Rk5*mu{xMrBy^pk|F{d-o)n=G_2vYUB8If?3K4H1f zTe@5|DXwa_6@ObjjRM^!fR-#flC-O1rG{dk6SS<*|t)VaG1KjWT6 z-^biY4bM2-SzE9Buczk^JTbi>ls!#@l_FXl14P*Dij02#udUAA7iOJ+Rel;T{f~yq zi?Zon1$F6q=4o#Dv`C-5Sx(7Ioxm+@T`J3pmCB1Jr#>w*g01_9Z~`1^8=FrM;mVaq$jTsvDXF3^YX=9s|51qnm1UzP`tj)f#n#dJAxuw< zc!ZZKNv|Ca*x(HiaDQ0J&=ReCmbVzx#Wjte-(vH-YNH2ffa2hHdwq%liKP})=D8mR z_z-ni33gfzD#qD7;1eSWE+_<_s;OaU<@HwlI@+2omh_=}jEtUIX--hjZ%!}34c~ZQ zfq~F77q0L!-kj^{{prIxQXQpt=zp$IbstGJbcC5{lP8u%ba8R9>aKtGjWMWR;oAv; z;Hl5~V*lnQ4`ADtwD*inOqP6G*HoU8(w%2a0b_l^di2?I31kS2aZnCH9tkDkd>|!C z94%`=_EAQR3@2c4nL=*565`{Rug;G^MF(WV5qh&K4kQ)f?{G5FYPDWjQ$O}3^}PM$ zz3*rk`WLq3V8gHTVlXMP|_0Lp;Zh!&)oTukz;#}^*vWQWeVNy#&jf~w@RS?fJk zZ0nlL`-Uy|j6cw4A}+pq5uWXB1-F$G(Qc%srxj<0?MhT_=IFsiL1$}ln0)@ z1B7AFMpQVrH{ULo)S2q!@M!y@2VIPFIk4(=YdUPFkJaQph;uKK?5Xk8(|$+R6pO9% zb9+W)-Byz9k3MHUxXO^;lisJl)h{tApEQnbMG2NWvfrm8 z_=PX0aKLfg{O3%W&ZycvZHCl~7gm-UGE_8M~MQP|koh@%Al-DcCiMv>Hfb zKPUUNt6b%Vy^v4pb4ZU+=KwN3c|w12ByOUSw-#ys^mbMDIbgQh7mY>!=OVs9XdM{9 z163igR^0$FrP%^5Z{@>s7+WY(&e}Qb&M#VS8I)=y$&OZcB2^ zVRm5Py||dsXVXEGs1I@{5ne4@WW2YdAxKDay3i*oR$e~t?!{m>g&=XPS0&xJ%mYY{ zrQ#3Dpt$0ocnpeV<&TL1le#i%58lB9Xz}xnxxYy`0|w1sXyR#1`HgT>46;S3bwhUE zc|X;(`en_;PkFI!EHy=w7g9vTTA3?OWTs&w6fZqBj&O#0%Ua_2sl6TyaMsezazlq) z2Ybe)6?U{>o*~EwS0ENr|)&vA>XL!C}+%<{+A z!nvmOB=^x%VIA(VtMv)&=loSe%uP|bt6 zuf-PYx9@Ms4n#zX<6C%HOnq$`jnJYa{k_Ssx_zjQAPwJ~)m2L@$B{j%7Q*PFajT)A z-h~~wZYgfrx7e=+Q>~=pzEAU_=UYB9eoHxwi&J@}C6xGQ`YVB?{&4cpnvFOh#H)cl zO}0AqDO(!)Se4qW z^7hjx^QxAS>hNNUqQ(>!8H&!~2a0mbbOT-p*sA{sHK)bXTGyZJB&#${v_^p7 zmr>OYvJ=hv>TUc_{{blj93vg<-^BqrDWN|_3Rg2@YXS!@d#g>Oi97lfNE2)Qd=-i!@pwuN8dV4vb-hC zY^calzPWo(40NaBl@VSZL;Y4%A*E=|VZ||f#Td2DaYBMJrIuGi5no%0uW*JYmtfwN zrhZjgofjgTFz>Az(?ZxAVFRo2<20u?gk+Ae(G_LS|8WCD z2+~}j$w85{tIVnEyJW!lPnoOi1zWp*>eo&ohk~wqp~wB@-3E(`kE_xWGz%=XX^PSU z%!nG5<5Azgle>uM8$aVC|FkpP|YI*Rpf^0{^ z9w5LbWv{q!mUM-|S0B1iwLg;$7si~Alzyn8?9S* PCDoh&Px2!116^?ow_n>l|^hkt)QgPneYHwijYVDN5Z_cWrCO6m{Kt2!#O?wKV9wZAFclV9hZjPfe@FFOM} z%r0r&O9pIs$V_XPsb~^^uI!S)TzIuHq=8RHaPH=0Vp@0~oqriu zocF5bqYOUpbAt#hjP<^VSOn!WV>sAfqf-i94%Cc~GPwv2ei1XWPVZI~;z z`BX{CyYjMzwyqwzfoc>0KPt6{P{NnoCm)fn2t6Nhn8Hm!-EEw;u{m4m=lUm7 z;gRHKLKzG{is-*fd@v|itI8kKR{D7KgpK@e<6$jf^R>BlAB|dBIw#b%A===5jHgDn zRL<}`8PbWw2sdv$T9pl`8rk1@H&R3?R&UcOsr*mB0JXwjaZ7p*`|ug4&OoArmE8ww zb#`|4YJ_*U(DD5Wsf2%poJE^KAj^YX*4^yAF*ZHT9g%_zIExW)s}>{9aSghb>Rcer zAH}Vn=AVAUpQdMQp6<0(Zcubox=S_6kr-J#X(OB42R0NvcK^s6|N95TzxDPq)Q<0v z5&=m?@Hjcil+=o{I(qQuK~12nVMYeWi!6!Rj1ld3TuJKKK+N+WqWG)jUjNR5{tfr0 zw81-jGs|*H%Mtz!@tolwILGhx0Qy^Y29Qv-8e7 zA)BW23=VFX$5bLEY-PGh6@F z3lxp*LFc0P?%i8OPo6J(w70jX$S#15X&Q?la-f{8^u@hs_TmJa4enN;VpV1#8}P>R zyLca_czAlJD+dMwq1^M|e=ia8{uJX5_pz|B-ajpba7DtZ0pUcVq5&g%!~$tV10an7 z8$94uPCgHa?WfL83j$%mFWli>VB5A1(E%Qc0O~xwq)QjrY`xPxCnvE%QL}*a&6%?4 zDfe5>iZq~;ul=9`2pI1sGX1mf)KpLcAlQD9-`db zFaCQ0my5eC_s~h(3E1S0tD=Di1VU_n^@~^Xq}Uz;Vfm^gE3NC3xtrzh`gHv4w0%8L zN#-XrFJ5Q$?R)X`7UVB(qMw%Br6_x92v5S1mZ@)-k5_*m9NG+fW+diSQa(=2{i4t^ zsbPYEae_dme8$P99iU ziQ4S?h7jJaTunBzh$#K&f49i)hUATDK?`Njnk!NQiFZR}-d`WrWGA~TN2H7V0G5ep z{{Q|nH4ar%Rz_fHY593C%j>)SRGq!fpriPojeI*7m+qbES{x4d#x~m*)qXmrqk;bX z8D?T)vaz-G^=k;hng60Im7b~Z!|y+S;O6FHBDp@_mdvSK@K3)Tfi?;XdeU~W>yn?J zf1TfU@LOfz$>V=>7pL<>0^8u@1xg9~`429_+S?r`xj6KzAXjVp)A$d*5^zHxg3dEx zqZ&`(#hLDRZ3faq#D0Fd{z11i*PoN3b2y5Mib_gH=YBG`*`OJ=$UsAbn1Vz9%L^^5 zqqTwaOoLjR#XsAX3JBOuNP+gF8LuBNu5KlYn%{M|ev*+Q5{`RCnP6e(Gym!oU0wZt z{-`hM@n{TgR49Y{`WGXY))3#LHS>v&2Ewa}I#u9(%iv=w8y=7KL2H+`Gn>I>L8qxN z=YdZwqpDl|Piy}C@%uGxo5R~h<$u`AI$dLp^&IkFd9N@PLH<~uJ;@@9x4~hY-Rtje zBjsw4P<+74=B0?oQ?uUl15}nAB)6*u2h|&1Zco%LGrqrFR#s;DAYdO4Z2g?4r${ZM zYcBBbi!Lh5aM`y|LPDM{s=xaf;_3CAph56qTB6$8LD5Kwvy}w7Pi2-WZRw=g6mHu| zV-Gd?AMpY-w6s<(?H7W7yPy2)5ET;>=*AD0rikpMvW$9|pwtj>=Kc$8#t*Lh{GfXp z9H#*SX8l1oqTH}PqTHZ%Eo{$)u}2T%zt@^F>yG6#i2YB5_U7Aj;6djHADf#qcm*pi z_xD`~k0LtW$tF@n-VAJi0NJ1O-$R3p+TGp#^k=K=y(07B=dL`tNKF$HC?u87`fhqg zMzza)TgyK$HZmD;It9k}QuHKJMn*rh=CQKcgtJ~dQ*R1YQm#SR+1d9`Dudt}PcA&a zyK%SuW-L-od)wr(ehrfC|5GH>t&3Xt?@lcqL@)yy9UTpME#k4Z@a?|F4alciXU~@} z(Z$8ZaYmf5&S64Gw$IWX)eJ$X+28Mzd~{5X&-C;{YlkFh$jQm=yZu^Cg=vW(QXCXW zVOmtD1s=~oYEIJ@D)r*~;HFfPIdB(IED;v=snG$)NoTt*L6MIuK3xL|3%<#iYiw+c zZ1u9Y^W7SoWi=I7^A4Z*@i6lDMt-d8*=mYqcMSaeqTX?Gsrbo-{ouCKR23cugGm)~ zp$pp0@}85{)1zD)%83Oja4=cf{?AYM=~MH=m0mjshp#<7w*&WsACR4P#qfq~2zviC z7C)WwP%PBmKMU|V8P|JBQ_q_1b8XVppYyV{xtWG5g@Dr774P%s&#tRUdRs*tM0Da| z?f*_HKP|i^xZ93n)DE+0_TKCIUhn93d2wocK~rPXw6VD{WA ze%nD0@*V6mF)`64=rY$&Ww}$BVrr3M?0$zJ6vF|FuEBD*XA;Y)WLa#i9i2@*)idc7 z6&0OY>WrLzIcd_()%M$BfLB67qJR0Is-r{t-*+{k*>B&!f7f?$;Z`Zs-T?)`YgBC! zvexqcJt@Gr;%c*hhbam{335f61KJ zsEbXFprxQAkk{7W9(VfrhpfOc5SNvg4+Q3S$5~9xzPWzOr*sjVra8#NkHy8T#ck68 zX8_5pinIOLX<#smYW=8k>oijbScTEb3 zyxwBU4SBxSpQiuW^U>U^QxnLS<=7`Nk=$)m&W$u6As_2ij2%0hJv$sPN2BpHBu>b# z>SfX_2o6%U)@ERY_Gl$R!vf$?NmjB%`NMae}{*vE{Ha+t9{eta;y z7f3lI`IqCe{b%!@q|=WE=w9n7T@LeOxx@PAwKbb;2jT6HwLG?iv;q4aw?s|`*04Io z>Ya^kC!Avw6JHly7Y?!9>w;;!EqR)CEJ6goFC}yV>b!XI!fClHI*PZ;H0a_bK7A!! zDS($NnAu6vGgb1hY-~)q4A@_g_8L)QtrnW|3FZ}~qc(Xt{*)t0xmuUK)A`dPzSr!_ zN%D12DxJf-!)RoS?InOW1Hcp8+uO@~tO-hjFSm4m0cLO<{84L5oWW~}PeV;@4)ED# z0M_8Ssogc@BZ~<77x1e#=i(z(qk(P&IxWmpHcg3NhCA>4cvRzTog`X*8sui*&(GUj zT~oi`O$`r|SUQRGZSCw>ZBJG{$-AsgB|~Cf{rz>2^W<#hzM$`+)vtr@2gPvK?TmpG zz&IvefGuhjnZJT8@1k+BD$}bR^fl$JqO9y4h#uYi1~QZKqiHLw*XkZ%v#Wv&3flc% zzp=fI84CJ$ROfM(oKaCx3xi^N-$2IQf%q)Ex#c?NyS`Z6O@~q8ZoLtTd85l7^5EZo zs4&P=yr`5%#@@3p0SDfK^r!M(Z~r^H$FkrYslf30#q4Ktq4@y*9WSxc($am95c!3L zA?@wv7<~QmiMlZRt+5ZEwkw)>KveY0pVc)qEP#MmJsK*iP7*DwB^zmyC-h%|c+j@joJr(j+?9jC}# zWrt&&@febTyavmzM8LB$@(;Rq8)w`JxLWqVe!anVEyT{}bk=*h{qlkvT&0sB4W0iE zuWF8@#QJ>y8un;?s9TQGM znu)dqrH$5PbJui5o^{-M@VqzvVXEK@*xF!Lshh@maTdtgAmWGaLH%@3j4B693jM0mlzRBI~rj z8rv^+ODclKpXyaB(D}-qw#qWP=}vMaTJiP9_gdj9iV+-yg=ULvP!AnV*|RU#iJy;` zK22YBeEIUFeyxpK2lP|Fj)p`?2mz%rZNCEKYIw-Q93qT)I zWk1R?@RRewt7B4i;l&$}*F)+aOr4s`)Sja1=kx^W3kyT)`m%{IHE&VF?N zyJICD1cgFDqFk;Wfc&upiCs1Ap+E02zmyoD9AAdurR- zMQxk;Cg@_@?9<7F(ZPrc_d%AaX~2Qp75xGwCkI#;Bug+5aEC|9TqcH|*T<3e`c%s8 zU$tOGI+{ok0AWtEpOY^CEd&!={Qb4-Doh*Jy&Pg}n9|qR*Ai3vV^@(S;rtX7a**Uv zKY#VBzg__+WoDfO+%2zxW@JcHeanl=IbUI&YI`Nt;4&X$((GkESz)4Z-WW^vKezW5 z)_0|CL3-~U0BAg#1WbYZ^%47@>jxiM%#W44201?)3X%s9ZfIoWwiM24F_bM4V8r9* z(mvblonKRPFU8dFQQ%R={6d0;q%=Lrm%~+Twb!m8-Pi7AH*i+Fsq>*DRXmA-A^C`Y zHEEGPpgCL453!%tv;AF{qlNOSt4WDMuM5q%2HTjdmp&~+_)Aq7H4;hY?1g#IFal2V z0ifjuGzH^(#oUGl3Lpi7J1sigy5XT$S6`eHD4L$0US-vLFK`a1)_nlHM*@w+lE3Lo z%gUbd?uXx~Xj+2-mA}q5-b?)7QJ|@xFuJPA+-GZS|J%OhznU8Qy|+h9 zz8`nqFCF-}{ySUGudTgrT1hD&AOLv{&_|d3W@P8rOG!)Bqg78)Edzr)T~tJH(RWhx zuXlemE`$1z6Q-54xje!p=Fq7?TTQu>ISk&$#1Q$2)9LB~DP(5;UX^7OQLtCQP@eP@ z7UQ^a;@5=2*(EwE_FVe2hy{S4sD3cFwJq)F1+M5~4mbSVnQ1 z=zwoyV{%}(s5dmPk0BoJAp-Jp&Sx2_(8LT=Zk~-vP#3)e&`^Od zO;(&PwA11ZW^th_CESWHT$T~9i;9-$7Qjx)i(?%VCT`nAR0xxUqPj9H{<^J3G)4UR3X&+_<0n=d&T{^ur?r0zAo}S@JoJtAI(rG z)ki*3RZ|o1*h94}wyybym8RD!{(-FxR8CA>8>%v$0)4?Y>nvnwXgEAP45^$XcplIg z3xIxhd6gknn2=EmPIL?G$fA)=ST=q)XUNuPDv+bM2rXQI7AKLG&rm@|cD_Z15+${w z)YQ~c#eHk!F;et#6Q5T5Y~LqjXdxxU`t>l{r>pT{Y>(O5eSET%3xB6%9w!AQ`?LL# z0(1d(7pK!0biKr?vp^rEGk-&Ak8x(8=wiDOu)foDdecOk-fnBjo};5xMMe1hHvLj+ zYSE7n{oN^Y?S(Ta{<|G6&&b__hII`!=6k<0#bWm zU;y%^(x_s?UQwTeLXt*>v}oL6Rh?_yzyG5-(5LAr3yfX8p+G*Z+gsI`)Z5@rfG`7% zu#R1cZRm7B8sj%rrU$v6JHz{EZ)@v^fcO_&g%3p)5Xuga4S{>p&W)BM1xmMXTzklC z>BZ4ofSy7os6$2$C+^8#K(^xRcSiI zL?b?jLkpZj3)iryKtIrvoSdB4+1d3>8TE82FKK_(`x#ww>g?nsi-4{2yRP=(?AYYj z^H58}J*qHmgsz!cCH1rwvJTliJ80{ugaIX7JQ|Kd;mb0T>e%Unz74zw4IbprCSU7b z+D=ts!1VCLD4>3UKz44-2wnAC(Rs$OCi3yw<4kqdOm*8q*jH|`JQUgV2KB~!J4LM$ z14Nx+xjl>yng{Lk(*H>tjyg-cla$U)1JeSnAg%X|o85~SA)}isFSV!NC5MKsOi@IJ zP<|ApB?2Ork&19lqTsS->BJ8=GV(S#nL;>Ay)93A?2!?ZQf<7a`hQy5*8?`lmoEk6 z6%??6Q;LP0;OB}#WEqWvjUN#}(k*4h>VE8&eE85YHKji-lze8##we7$g4I1Wa%giZ zxiz)xl|7j|oDsh+D|nsUmUh!S0yX0-WXv_mYcgqg7l<)kUESQ$(ugN^O4-Ie1$eEj zj*8Jm*wwe#RrbGOBhHQad3o28l9H+n%Z-r|vnxt)DH=RHLor=gaws>=cg;Rzf-K|v zWRDxUBB*agJqi`osw@dDLhS40BJT!lg0ZVhe>TR;@s=H3PY`5BG8T*`A8k3kOYq}R z(H3$c8!dTo?PB#`EXmN`KWR!x2Y^m;Q2R&upWH*M55|R8uz9G$6)Z|9acue8CbUrB zQ~Bftb09s*0`~Z}mj34n+*(E(hbHoo0~_V`=nlhpBhInodEArcv_6y->m=4UnZ}}{ zX-c#2<@>r!B8c~nt8kQ$c*XRpvZp)0{f1Zb;(?D3Qt2P-TzmKOqLPRc=7EftYX3Ebpnf_3Nu zM%}H>54RYq#p#Fv&;V2fS_mOQG~TME`{-__A~Ok5DBx5m@pPj`S9R;Padd`&X`9CE4EMw0xf9^pw-|mf z*ek9-efG=(6y|4Gas)TcoMs=k<25FMQ1@|~av{mxkl((D8}7oiu>3-g&c%G{VJ!E( zx+Wnb&iVwF9c>r zvCW~v1fG7gi^-`Lw*hmBZS zy?DVHn=LDb$Us@S_<7ki{_vgF1g7DTSYI1qF7vAfNCyTh~623PhsP-qPW&sI?J^OW~KxyGkFSL<%86eYz z$@E@ZkC3pz%>>2s$VdSj7;?%i^;zGL`cpN#V>QY{7ki|{Cjng@A>ya^9`nU9Fu6DJ){nsqE_)#u_3>DQ6LC*`43#|3?^NUku5r9R6VZ8Z;ec6*_fUyYNXv-+d z6zrLy0Y;XwLx8!My;j#c>eAU@9P)iYE?vruJGn?hC$tp&QNJDK_M>exb z!at;bzNYlGs5+T-?DJ4?SI6g@rKRi$1ft-fyV3%%_jYERDS;Omkj2LNFrO!n={|TgGB#a`X&!Jp2j|rAJi_0Hx)ItG}snmw-e_{h#w3*jb#{L z7Xmht?(gOSg}qGo+fWNP;gwBMx%utfkd18VWuPaA8YH|m?vsR$NP;R003wobS)T#w z+<_C#3qycz;Eyn^`Y6fku3R}NcD7gP!FO{ruGn}-h!V0??qLZetHOX?Y+m)o3KnOl zdx|!P_;9k{&@IqDNYUp~!;+ZLnzvuQdIfn6Bo=_X!x+64MHX@@%iAF` z0Oh*Be1XifR2heNFH^x_Z-4Brc@U+INGZgh#>nSi{mcBGkS-DvItPMlTA4z*udU1U zL@15cWH1P_S;&DhRaRh9Xk zG%z|Xs;PkGQZYTRTZaj7kFj8u#qwj z2~g^x7_?YTFKCEN@at;lyqe+a#iL|H{dhz|Z&zZ|dpOD=>AZG$~Xeug3|K1m8+8rL&;7(FLFmUlLQZ+4Bb#(fm1&;jd z&)H_&{QM9+L-GbYj3t=ccE!L&s`*J_Y9qPhq#`Ceo32epW~K|wlk)rBCrN}`9HWJA zr07T&n1fOhX;@q|2Y$yb$sA(H?=8NArU{#{p3Q7)vHk+IT`0(r86v!Wc!(W-76LIs z1U-RNiz@~?m72b1FVB1))vKCcM{|&P0I)v6 zM`&-H)!>ZAllrZQPB!X@^ExdSMO0heul2pu)M}b@H90q}uo{Vribzg^m!noI9=Q6* zya8t$zoYrFI`JfT0L~Uv(OC111J>uo=AfuT%WqG0`^N8Uw|Vc9r{K~X7BW$DWKTzG zcp@x%q*iMnTOoh`{8>2gfk@q#NdC(BC;V-mT?D%vw9`&!4jsbS2OQXrU9aMDS<;l~ zB!5l^zO*s2WvrLt=e`87DBdXGbzlCw2&h3ZD#93m!sCr*`NLNTw?lvyiA?LWF_&|w zMX?&R%07iBqKxvGh51;Jh2D-OQxYPoVXS11LTOKEwzyO)3>KhMJ(&7lrLr+qvQjvn ze^XSd=q+5dVIv#isKyGWX;s9b4sUB7uR3`tKE*FAMK3}hmMj0k^7LwweKay{nfp&J}p2S03N!tCHyswjLOo!<*qcDcDRZ#{-k3jfxX7*%F4Y=|_kpCQmX zG#;$P9bSz{08?*P43Jmq3=Ydi{|+OBq=%=ep4C6+2?I4!ffiS>FB(L-JErYua)eRb z3B^#+(thjd31d-sv}KDAJ=xJT_C>=ne!o(=eXaQyJxaOFWywmeLTKu(FeW_Gn7F6wc z<0%|ch(<52N+ZM%v^;m;ug@AV z+Np^GEokO%Y;k^v08Of^d1nVKm3&%fGKGH_{oH_ReCrL?WP1k&=25T_O{KjKLqEBx z)v#0>lJ-b1VLrZiEhMiHYjJFU&4Y(=ZIP6m(l@$};;x{O|HX95rZJ8vdZG%5UKs>m z`oRR&QL`ueQT)AFews4}wiHZQulE<@lM;8L9YsX{N{`Km2C)HBq+S}7;dvWQIu;Er z1U1*(&~tNH*O{JWO75GfVy1u)R+Up4HWDM?j#Nl6O+ysaKwC>@IEb9<4bQyn{II5- zqED%-y@q#Spu07Jb{dWa1Q^VDk@83;ncE@l!Ky)ei<)GZgm2{&(sa4}G=y*YCj)xc z6ag}V*R@ZHhD+hTQ##6LXiMlckZaPo=MA(Ep{<=Gl)f9z6i{IQ%s4j|1tuc;lOLzN zG5|r`x5Y3ix5m@a{}r{=3TUk% zh(hys;3iJ=*3i|}Xhy$6&ZU%f!-#llYMq29&$I zFrN%ZqWBo(k%s~+(;l_CLN&eeEYM9uo2jiz&7PD^+q^{JnxM2RX(3XBO4O~bc$=c{ zsNIoE{iP-5l1Pf`1>?%PkP5S(ae;@28h=DGYUAO3M$>7Jx(VzQ-qt*8a*wW~l5w#@ zP9h8yFf_`L&qV3=!m`70Vnz&AxFvN&T3w$4#_5cSpB^y$S%WHENG>7m*Li_s#v4^U zm7-%328WWqU{4Y(zU-SLwYja`G`oiIOjX#Lm}N<0Yw9%HH=<4@S{ynFPM3u$+`^*v z=$M@&@a!7(`dDH}qmgMt(d8*c;JiT!JdJ z3q>g;`Wf+suQ0{6Tw|QKE2WLYYFizSOKTtx{6&})LJlP;^Uwx6fSp8KL>%luCr%2D zleFp=a-tNvQK;Cr=$e|xf!v9HbF9Rh?mJKv{ORspo?>9IDaI8|d&cd?F+SqAXB#x7 zL}IjSF!6S5t2{=`lRJ(2!fNX&Ut@aihZ}ox|I2i-Wm-$=FG6R-@14m{0Jcq#QO4wt z#>H@xiy>Oji9*RqA%g-P^m}vHXt{)iFqSeW?#OrI1^r&oK3q6J+6Ua;S6~&Oah`pr z2HEEkkFu#oiVT(MStM6pN&Sb_Zj~*MN`-?{vAxum_CxrTlTT8_&g@dR?|2oUf5-6} zrY*ZS#hgh{sY$}tzBk13CjZJ692q9`QiOXI4ayHnY-#niIr+e?E8>%lTjM|hV#zyi zk%m9XxYHUR!GzPCiN&eHY|_Pr??F3_)9pg#6_E1u#joAfL`U4bnoabO`9LV3;-ex7 z`xjmJPk~4K;NI4501{Y#s@dYy!1n~Iuj~#ovuT75f zlg2)37Hh2mFSj1D+mbbvR3+_#Tj!ACcr~;Fa<6pn>8XJWy1A*^%d$0Xc z^4HJVNZ^!#MXSm)0Q>B7}w4%#he!wphMCY?_Z5DukncIUA<~6 k{NEq<`meFc!X=*5v}%@=g5Cr0h#N#nPF=P_=K0(I2dM&I{Qv*} diff --git a/master/.doctrees/nbsphinx/tutorials_image_50_1.png b/master/.doctrees/nbsphinx/tutorials_image_50_1.png index 7df0995e5bb34c2ac04359d49f124b07d7613709..0ad47747ab4081ac17b12b6d0b3025683999d6ef 100644 GIT binary patch literal 10069 zcmb7qbySqmxAtIQzz|9f3{nCj&Cnq*beGZ~ozl{RiVPjn4MPjkB~s!@4mC7NcS?&W z$anayyYBt(TlccWnWbmWyzf4HKhLwD{f29*D?snU?m{3CsFI?rHUxsF4BmU(#s`1@ zd#o}BUPL_Q^gVT4Y&^Zq-K`;N=AN!jE}l;I7W7`$?jH6o&iq`0T>KpLcAlQD9-`db zFaCQ0my5eC_s~h(3E1S0tD=Di1VU_n^@~^Xq}Uz;Vfm^gE3NC3xtrzh`gHv4w0%8L zN#-XrFJ5Q$?R)X`7UVB(qMw%Br6_x92v5S1mZ@)-k5_*m9NG+fW+diSQa(=2{i4t^ zsbPYEae_dme8$P99iU ziQ4S?h7jJaTunBzh$#K&f49i)hUATDK?`Njnk!NQiFZR}-d`WrWGA~TN2H7V0G5ep z{{Q|nH4ar%Rz_fHY593C%j>)SRGq!fpriPojeI*7m+qbES{x4d#x~m*)qXmrqk;bX z8D?T)vaz-G^=k;hng60Im7b~Z!|y+S;O6FHBDp@_mdvSK@K3)Tfi?;XdeU~W>yn?J zf1TfU@LOfz$>V=>7pL<>0^8u@1xg9~`429_+S?r`xj6KzAXjVp)A$d*5^zHxg3dEx zqZ&`(#hLDRZ3faq#D0Fd{z11i*PoN3b2y5Mib_gH=YBG`*`OJ=$UsAbn1Vz9%L^^5 zqqTwaOoLjR#XsAX3JBOuNP+gF8LuBNu5KlYn%{M|ev*+Q5{`RCnP6e(Gym!oU0wZt z{-`hM@n{TgR49Y{`WGXY))3#LHS>v&2Ewa}I#u9(%iv=w8y=7KL2H+`Gn>I>L8qxN z=YdZwqpDl|Piy}C@%uGxo5R~h<$u`AI$dLp^&IkFd9N@PLH<~uJ;@@9x4~hY-Rtje zBjsw4P<+74=B0?oQ?uUl15}nAB)6*u2h|&1Zco%LGrqrFR#s;DAYdO4Z2g?4r${ZM zYcBBbi!Lh5aM`y|LPDM{s=xaf;_3CAph56qTB6$8LD5Kwvy}w7Pi2-WZRw=g6mHu| zV-Gd?AMpY-w6s<(?H7W7yPy2)5ET;>=*AD0rikpMvW$9|pwtj>=Kc$8#t*Lh{GfXp z9H#*SX8l1oqTH}PqTHZ%Eo{$)u}2T%zt@^F>yG6#i2YB5_U7Aj;6djHADf#qcm*pi z_xD`~k0LtW$tF@n-VAJi0NJ1O-$R3p+TGp#^k=K=y(07B=dL`tNKF$HC?u87`fhqg zMzza)TgyK$HZmD;It9k}QuHKJMn*rh=CQKcgtJ~dQ*R1YQm#SR+1d9`Dudt}PcA&a zyK%SuW-L-od)wr(ehrfC|5GH>t&3Xt?@lcqL@)yy9UTpME#k4Z@a?|F4alciXU~@} z(Z$8ZaYmf5&S64Gw$IWX)eJ$X+28Mzd~{5X&-C;{YlkFh$jQm=yZu^Cg=vW(QXCXW zVOmtD1s=~oYEIJ@D)r*~;HFfPIdB(IED;v=snG$)NoTt*L6MIuK3xL|3%<#iYiw+c zZ1u9Y^W7SoWi=I7^A4Z*@i6lDMt-d8*=mYqcMSaeqTX?Gsrbo-{ouCKR23cugGm)~ zp$pp0@}85{)1zD)%83Oja4=cf{?AYM=~MH=m0mjshp#<7w*&WsACR4P#qfq~2zviC z7C)WwP%PBmKMU|V8P|JBQ_q_1b8XVppYyV{xtWG5g@Dr774P%s&#tRUdRs*tM0Da| z?f*_HKP|i^xZ93n)DE+0_TKCIUhn93d2wocK~rPXw6VD{WA ze%nD0@*V6mF)`64=rY$&Ww}$BVrr3M?0$zJ6vF|FuEBD*XA;Y)WLa#i9i2@*)idc7 z6&0OY>WrLzIcd_()%M$BfLB67qJR0Is-r{t-*+{k*>B&!f7f?$;Z`Zs-T?)`YgBC! zvexqcJt@Gr;%c*hhbam{335f61KJ zsEbXFprxQAkk{7W9(VfrhpfOc5SNvg4+Q3S$5~9xzPWzOr*sjVra8#NkHy8T#ck68 zX8_5pinIOLX<#smYW=8k>oijbScTEb3 zyxwBU4SBxSpQiuW^U>U^QxnLS<=7`Nk=$)m&W$u6As_2ij2%0hJv$sPN2BpHBu>b# z>SfX_2o6%U)@ERY_Gl$R!vf$?NmjB%`NMae}{*vE{Ha+t9{eta;y z7f3lI`IqCe{b%!@q|=WE=w9n7T@LeOxx@PAwKbb;2jT6HwLG?iv;q4aw?s|`*04Io z>Ya^kC!Avw6JHly7Y?!9>w;;!EqR)CEJ6goFC}yV>b!XI!fClHI*PZ;H0a_bK7A!! zDS($NnAu6vGgb1hY-~)q4A@_g_8L)QtrnW|3FZ}~qc(Xt{*)t0xmuUK)A`dPzSr!_ zN%D12DxJf-!)RoS?InOW1Hcp8+uO@~tO-hjFSm4m0cLO<{84L5oWW~}PeV;@4)ED# z0M_8Ssogc@BZ~<77x1e#=i(z(qk(P&IxWmpHcg3NhCA>4cvRzTog`X*8sui*&(GUj zT~oi`O$`r|SUQRGZSCw>ZBJG{$-AsgB|~Cf{rz>2^W<#hzM$`+)vtr@2gPvK?TmpG zz&IvefGuhjnZJT8@1k+BD$}bR^fl$JqO9y4h#uYi1~QZKqiHLw*XkZ%v#Wv&3flc% zzp=fI84CJ$ROfM(oKaCx3xi^N-$2IQf%q)Ex#c?NyS`Z6O@~q8ZoLtTd85l7^5EZo zs4&P=yr`5%#@@3p0SDfK^r!M(Z~r^H$FkrYslf30#q4Ktq4@y*9WSxc($am95c!3L zA?@wv7<~QmiMlZRt+5ZEwkw)>KveY0pVc)qEP#MmJsK*iP7*DwB^zmyC-h%|c+j@joJr(j+?9jC}# zWrt&&@febTyavmzM8LB$@(;Rq8)w`JxLWqVe!anVEyT{}bk=*h{qlkvT&0sB4W0iE zuWF8@#QJ>y8un;?s9TQGM znu)dqrH$5PbJui5o^{-M@VqzvVXEK@*xF!Lshh@maTdtgAmWGaLH%@3j4B693jM0mlzRBI~rj z8rv^+ODclKpXyaB(D}-qw#qWP=}vMaTJiP9_gdj9iV+-yg=ULvP!AnV*|RU#iJy;` zK22YBeEIUFeyxpK2lP|Fj)p`?2mz%rZNCEKYIw-Q93qT)I zWk1R?@RRewt7B4i;l&$}*F)+aOr4s`)Sja1=kx^W3kyT)`m%{IHE&VF?N zyJICD1cgFDqFk;Wfc&upiCs1Ap+E02zmyoD9AAdurR- zMQxk;Cg@_@?9<7F(ZPrc_d%AaX~2Qp75xGwCkI#;Bug+5aEC|9TqcH|*T<3e`c%s8 zU$tOGI+{ok0AWtEpOY^CEd&!={Qb4-Doh*Jy&Pg}n9|qR*Ai3vV^@(S;rtX7a**Uv zKY#VBzg__+WoDfO+%2zxW@JcHeanl=IbUI&YI`Nt;4&X$((GkESz)4Z-WW^vKezW5 z)_0|CL3-~U0BAg#1WbYZ^%47@>jxiM%#W44201?)3X%s9ZfIoWwiM24F_bM4V8r9* z(mvblonKRPFU8dFQQ%R={6d0;q%=Lrm%~+Twb!m8-Pi7AH*i+Fsq>*DRXmA-A^C`Y zHEEGPpgCL453!%tv;AF{qlNOSt4WDMuM5q%2HTjdmp&~+_)Aq7H4;hY?1g#IFal2V z0ifjuGzH^(#oUGl3Lpi7J1sigy5XT$S6`eHD4L$0US-vLFK`a1)_nlHM*@w+lE3Lo z%gUbd?uXx~Xj+2-mA}q5-b?)7QJ|@xFuJPA+-GZS|J%OhznU8Qy|+h9 zz8`nqFCF-}{ySUGudTgrT1hD&AOLv{&_|d3W@P8rOG!)Bqg78)Edzr)T~tJH(RWhx zuXlemE`$1z6Q-54xje!p=Fq7?TTQu>ISk&$#1Q$2)9LB~DP(5;UX^7OQLtCQP@eP@ z7UQ^a;@5=2*(EwE_FVe2hy{S4sD3cFwJq)F1+M5~4mbSVnQ1 z=zwoyV{%}(s5dmPk0BoJAp-Jp&Sx2_(8LT=Zk~-vP#3)e&`^Od zO;(&PwA11ZW^th_CESWHT$T~9i;9-$7Qjx)i(?%VCT`nAR0xxUqPj9H{<^J3G)4UR3X&+_<0n=d&T{^ur?r0zAo}S@JoJtAI(rG z)ki*3RZ|o1*h94}wyybym8RD!{(-FxR8CA>8>%v$0)4?Y>nvnwXgEAP45^$XcplIg z3xIxhd6gknn2=EmPIL?G$fA)=ST=q)XUNuPDv+bM2rXQI7AKLG&rm@|cD_Z15+${w z)YQ~c#eHk!F;et#6Q5T5Y~LqjXdxxU`t>l{r>pT{Y>(O5eSET%3xB6%9w!AQ`?LL# z0(1d(7pK!0biKr?vp^rEGk-&Ak8x(8=wiDOu)foDdecOk-fnBjo};5xMMe1hHvLj+ zYSE7n{oN^Y?S(Ta{<|G6&&b__hII`!=6k<0#bWm zU;y%^(x_s?UQwTeLXt*>v}oL6Rh?_yzyG5-(5LAr3yfX8p+G*Z+gsI`)Z5@rfG`7% zu#R1cZRm7B8sj%rrU$v6JHz{EZ)@v^fcO_&g%3p)5Xuga4S{>p&W)BM1xmMXTzklC z>BZ4ofSy7os6$2$C+^8#K(^xRcSiI zL?b?jLkpZj3)iryKtIrvoSdB4+1d3>8TE82FKK_(`x#ww>g?nsi-4{2yRP=(?AYYj z^H58}J*qHmgsz!cCH1rwvJTliJ80{ugaIX7JQ|Kd;mb0T>e%Unz74zw4IbprCSU7b z+D=ts!1VCLD4>3UKz44-2wnAC(Rs$OCi3yw<4kqdOm*8q*jH|`JQUgV2KB~!J4LM$ z14Nx+xjl>yng{Lk(*H>tjyg-cla$U)1JeSnAg%X|o85~SA)}isFSV!NC5MKsOi@IJ zP<|ApB?2Ork&19lqTsS->BJ8=GV(S#nL;>Ay)93A?2!?ZQf<7a`hQy5*8?`lmoEk6 z6%??6Q;LP0;OB}#WEqWvjUN#}(k*4h>VE8&eE85YHKji-lze8##we7$g4I1Wa%giZ zxiz)xl|7j|oDsh+D|nsUmUh!S0yX0-WXv_mYcgqg7l<)kUESQ$(ugN^O4-Ie1$eEj zj*8Jm*wwe#RrbGOBhHQad3o28l9H+n%Z-r|vnxt)DH=RHLor=gaws>=cg;Rzf-K|v zWRDxUBB*agJqi`osw@dDLhS40BJT!lg0ZVhe>TR;@s=H3PY`5BG8T*`A8k3kOYq}R z(H3$c8!dTo?PB#`EXmN`KWR!x2Y^m;Q2R&upWH*M55|R8uz9G$6)Z|9acue8CbUrB zQ~Bftb09s*0`~Z}mj34n+*(E(hbHoo0~_V`=nlhpBhInodEArcv_6y->m=4UnZ}}{ zX-c#2<@>r!B8c~nt8kQ$c*XRpvZp)0{f1Zb;(?D3Qt2P-TzmKOqLPRc=7EftYX3Ebpnf_3Nu zM%}H>54RYq#p#Fv&;V2fS_mOQG~TME`{-__A~Ok5DBx5m@pPj`S9R;Padd`&X`9CE4EMw0xf9^pw-|mf z*ek9-efG=(6y|4Gas)TcoMs=k<25FMQ1@|~av{mxkl((D8}7oiu>3-g&c%G{VJ!E( zx+Wnb&iVwF9c>r zvCW~v1fG7gi^-`Lw*hmBZS zy?DVHn=LDb$Us@S_<7ki{_vgF1g7DTSYI1qF7vAfNCyTh~623PhsP-qPW&sI?J^OW~KxyGkFSL<%86eYz z$@E@ZkC3pz%>>2s$VdSj7;?%i^;zGL`cpN#V>QY{7ki|{Cjng@A>ya^9`nU9Fu6DJ){nsqE_)#u_3>DQ6LC*`43#|3?^NUku5r9R6VZ8Z;ec6*_fUyYNXv-+d z6zrLy0Y;XwLx8!My;j#c>eAU@9P)iYE?vruJGn?hC$tp&QNJDK_M>exb z!at;bzNYlGs5+T-?DJ4?SI6g@rKRi$1ft-fyV3%%_jYERDS;Omkj2LNFrO!n={|TgGB#a`X&!Jp2j|rAJi_0Hx)ItG}snmw-e_{h#w3*jb#{L z7Xmht?(gOSg}qGo+fWNP;gwBMx%utfkd18VWuPaA8YH|m?vsR$NP;R003wobS)T#w z+<_C#3qycz;Eyn^`Y6fku3R}NcD7gP!FO{ruGn}-h!V0??qLZetHOX?Y+m)o3KnOl zdx|!P_;9k{&@IqDNYUp~!;+ZLnzvuQdIfn6Bo=_X!x+64MHX@@%iAF` z0Oh*Be1XifR2heNFH^x_Z-4Brc@U+INGZgh#>nSi{mcBGkS-DvItPMlTA4z*udU1U zL@15cWH1P_S;&DhRaRh9Xk zG%z|Xs;PkGQZYTRTZaj7kFj8u#qwj z2~g^x7_?YTFKCEN@at;lyqe+a#iL|H{dhz|Z&zZ|dpOD=>AZG$~Xeug3|K1m8+8rL&;7(FLFmUlLQZ+4Bb#(fm1&;jd z&)H_&{QM9+L-GbYj3t=ccE!L&s`*J_Y9qPhq#`Ceo32epW~K|wlk)rBCrN}`9HWJA zr07T&n1fOhX;@q|2Y$yb$sA(H?=8NArU{#{p3Q7)vHk+IT`0(r86v!Wc!(W-76LIs z1U-RNiz@~?m72b1FVB1))vKCcM{|&P0I)v6 zM`&-H)!>ZAllrZQPB!X@^ExdSMO0heul2pu)M}b@H90q}uo{Vribzg^m!noI9=Q6* zya8t$zoYrFI`JfT0L~Uv(OC111J>uo=AfuT%WqG0`^N8Uw|Vc9r{K~X7BW$DWKTzG zcp@x%q*iMnTOoh`{8>2gfk@q#NdC(BC;V-mT?D%vw9`&!4jsbS2OQXrU9aMDS<;l~ zB!5l^zO*s2WvrLt=e`87DBdXGbzlCw2&h3ZD#93m!sCr*`NLNTw?lvyiA?LWF_&|w zMX?&R%07iBqKxvGh51;Jh2D-OQxYPoVXS11LTOKEwzyO)3>KhMJ(&7lrLr+qvQjvn ze^XSd=q+5dVIv#isKyGWX;s9b4sUB7uR3`tKE*FAMK3}hmMj0k^7LwweKay{nfp&J}p2S03N!tCHyswjLOo!<*qcDcDRZ#{-k3jfxX7*%F4Y=|_kpCQmX zG#;$P9bSz{08?*P43Jmq3=Ydi{|+OBq=%=ep4C6+2?I4!ffiS>FB(L-JErYua)eRb z3B^#+(thjd31d-sv}KDAJ=xJT_C>=ne!o(=eXaQyJxaOFWywmeLTKu(FeW_Gn7F6wc z<0%|ch(<52N+ZM%v^;m;ug@AV z+Np^GEokO%Y;k^v08Of^d1nVKm3&%fGKGH_{oH_ReCrL?WP1k&=25T_O{KjKLqEBx z)v#0>lJ-b1VLrZiEhMiHYjJFU&4Y(=ZIP6m(l@$};;x{O|HX95rZJ8vdZG%5UKs>m z`oRR&QL`ueQT)AFews4}wiHZQulE<@lM;8L9YsX{N{`Km2C)HBq+S}7;dvWQIu;Er z1U1*(&~tNH*O{JWO75GfVy1u)R+Up4HWDM?j#Nl6O+ysaKwC>@IEb9<4bQyn{II5- zqED%-y@q#Spu07Jb{dWa1Q^VDk@83;ncE@l!Ky)ei<)GZgm2{&(sa4}G=y*YCj)xc z6ag}V*R@ZHhD+hTQ##6LXiMlckZaPo=MA(Ep{<=Gl)f9z6i{IQ%s4j|1tuc;lOLzN zG5|r`x5Y3ix5m@a{}r{=3TUk% zh(hys;3iJ=*3i|}Xhy$6&ZU%f!-#llYMq29&$I zFrN%ZqWBo(k%s~+(;l_CLN&eeEYM9uo2jiz&7PD^+q^{JnxM2RX(3XBO4O~bc$=c{ zsNIoE{iP-5l1Pf`1>?%PkP5S(ae;@28h=DGYUAO3M$>7Jx(VzQ-qt*8a*wW~l5w#@ zP9h8yFf_`L&qV3=!m`70Vnz&AxFvN&T3w$4#_5cSpB^y$S%WHENG>7m*Li_s#v4^U zm7-%328WWqU{4Y(zU-SLwYja`G`oiIOjX#Lm}N<0Yw9%HH=<4@S{ynFPM3u$+`^*v z=$M@&@a!7(`dDH}qmgMt(d8*c;JiT!JdJ z3q>g;`Wf+suQ0{6Tw|QKE2WLYYFizSOKTtx{6&})LJlP;^Uwx6fSp8KL>%luCr%2D zleFp=a-tNvQK;Cr=$e|xf!v9HbF9Rh?mJKv{ORspo?>9IDaI8|d&cd?F+SqAXB#x7 zL}IjSF!6S5t2{=`lRJ(2!fNX&Ut@aihZ}ox|I2i-Wm-$=FG6R-@14m{0Jcq#QO4wt z#>H@xiy>Oji9*RqA%g-P^m}vHXt{)iFqSeW?#OrI1^r&oK3q6J+6Ua;S6~&Oah`pr z2HEEkkFu#oiVT(MStM6pN&Sb_Zj~*MN`-?{vAxum_CxrTlTT8_&g@dR?|2oUf5-6} zrY*ZS#hgh{sY$}tzBk13CjZJ692q9`QiOXI4ayHnY-#niIr+e?E8>%lTjM|hV#zyi zk%m9XxYHUR!GzPCiN&eHY|_Pr??F3_)9pg#6_E1u#joAfL`U4bnoabO`9LV3;-ex7 z`xjmJPk~4K;NI4501{Y#s@dYy!1n~Iuj~#ovuT75f zlg2)37Hh2mFSj1D+mbbvR3+_#Tj!ACcr~;Fa<6pn>8XJWy1A*^%d$0Xc z^4HJVNZ^!#MXSm)0Q>B7}w4%#he!wphMCY?_Z5DukncIUA<~6 k{NEq<`meFc!X=*5v}%@=g5Cr0h#N#nPF=P_=K0(I2dM&I{Qv*} literal 9406 zcmaiabyQSe)b>!)Eg{`q(v1QN5+e+yG)Q+0NC}99fONwUN(?C?-5^pTIUvGFr|_de z8otB(t@W+-{q@e8J2UIfx#ym9_TJBa_H%Bu4pfbpfQ|qHfe=4aSA~J^YH;}C-2_5Bb#Z=78ijLvUrYo}*o zcjmr(e)gs4UtRwW%`VYTBZ#|T#V*Y*;?bC(HXsnZU#^jgNpYX-7)y|apiYOUfW@Jr zRG)yHm{b25-{V*fe0=kHa=+MvFfNXO5nXJkptgSF)jPQbZbiq-5Dif|JR>i3Ef}6mg?*4tLt?A{RKlU zfk|+-&wErMO2YY9L2E00Zf@?`5@`re$k3XX-)fTD*!+CF?NIvCjD3Dur&)Ud6}rK- zXSUwC#%oPO{^+Ne|4zsGdQKBKY64E2Dvj$2+&ix&AuLP@D>s*WYWDWrvT|~s(`K(f zc6Q!g2zMxFK7(Q`P8nJBW=lA8C@Cl?KtkPvR_Gnv+@6AgwY0X@1fIJ2Yt;nmQoncn zt}Qjk5zin4gLisJ3n(Rg`0)NoEOqp&{&;-W@UyAvU`|QbSq{;x53~#n_p7R^mM6>f zl<`=7cV;;|4%4dfSi|3|vVE$k&}=&zkpq7SS#$`@&dz@Si$X?_DRWTZKa`gj2q#;< zT)6G{-SMV%V9g7(`uE=qJ5$Kj!BEe=Z!6O$kn{bo>viX)8A8^FK<@SK_h?G))xA-rTltQE_0=z#ZqW-j z)D=e6eapSE2NA+S7~8+9upp*Q9vH5!u3nwJu{0~+A_yU&Ic_cZ!tKWtUd;>_mzM|q zN;kUMO(^7Zc3|=mxjj{2MJE4MaqfZPZVovih45ab>4Pt?(S0WwV&pZDZd{Xfgb!aaUWdB58RdUTzGQ| zTxD}_k0$?WmAe;sZg1}Ed0wWV{l_&v+lIi5%(rL#y%#6jy<=mE>cueY)7`n{ntmoq zWxRvdg=^>^5FBhw39&Y!yuQ1Cc(u(XEV*RNYVG2Ff3=N$-)qfA5&d2}M>3lEdQ%Pf zPC#Jb6TUPGaPfxH?Mrbfso1Jg4c&INW~UEhX@vU(8~=nY+}@l*LVx`- zL@0%r-^`;>@4#+CC>}&VUyPtJe`wl*WW{`Lj1`ZSCA`bIx;=7aWJL6fj`>e)WUKGaw~s1Oi9>6N zgEk(Z%^+H%teK*n2XgW2hj+rG+3gJRte3|Gk(7+==;-*=f0ryS|Lve|(t(AJH+2Edfgb!dt}8gU5YU28*{5a5yl;65fgFPn zGJ=TxW7KodnP!HN6=)^;m>CayYK_5f2t7~@ z($k~tI4%~py1qE^`!{2MaCJ1g(o17;hbSHA!|u?sgf!(`6u!Rx5tE!R5xUX6^W!U0 z2I){NT#`i)ZRbS`OmB{L?*jIBqdT)(`-veKqRgJ%&5nCW&z&FH3{nK04_Wl-Jy(dx zzd1&x%szPVpnGeo;$TwmIR>p%?vh87=vtud-CeYtyZ)W6Bou<2NJuTvb%)1cm-9Z; zX2!`Fi}7;1T@i#d`&I652(`7f{Wd>F?azz`8{PzOS2bD>CUYLvPVuCo{(cAc34CXy z$9Q&|g^D5AyR#y|$br3u^O4scS7)Bmxg%}KZS-$PH+s?qP3|nb407Wzf8&v#{9)~! zTcZH|aX`DshgprLNtxV7Peu=Wg@eh3+x9U@nB;jHi(zHS&N@|hAwxt;IskiLg7y@@ABN}kgd*-V}+!tSM@Fm^;yqDW;!pcAYX}|xL zH0aT8qx~q8fN7J?P5bpfw6w<}1SG;j*VEO(lqPV()_9}qE!Nqvd$8ErjoVxcReu6= z^;T%r$Y1QOdSahR0jHs*ib9ge|CNFy6MDPZ#Q2mIEU6xZ)V}^3RN}Y{{JjVGEOG0c z;@>74(P$6p52|c$Ria3iz&*WuMd}}4ue)Z@OU>?Td4WazB@d0RfXl{#W`6SV(-t9& z0DG#9q5Q@MC1DnRLK!LOvcltqz0+5_f0`YfoRk9tTTKIalhj!Ore zFdw+503e#3I@Zd?h3GF_HUSchC3AiiQl;F^bd%*R8*&pQE-r34^VRl6odY?@c(5}4 zc>-x=JaGvL)?8>|eSLkoOs?iFd@CGG-k?GV4FH-o?k0)HO6{K%eo* zASH8%@7CD~iZt-^vFo#|?OyT#eVhd;0?7ZFC5AgZJe;WzD5-@?y`+o8i0WaDZb0vd z5MhA}!Ry5rON^^vC5R=M-=Gc5X&az?{hKO+aw-DPt&;$&>=M%`R}hUU(h@`}4Ud&y z5F*k|(KY9h3EsJV1{IsWTcBn}}p1oCyJ^1f-l^S8a+NX z7TVAt`7>XMx!IHi46ub*8ILv+BV!0BXE?IfesmdlG&5TgUO+$qm#3_}ylEn;Y~R#J zQ8;mr8)Kz+sKiktzp}7UMe(4-@te4|jp&2FMoA?F4eAB-baZ#z)j^z~bxvs5%EE%# zMUox?<)(=K4!78?3zPPdW&m?DuckR#AMW{TJ2dwD_j?f28rq0qyW$*xeXAjsY)p<$ zPT#<+$>W|{(LQBDMq05@ME~SLqWIdF5^#e%nZY7~>s3T(Q@gYJS01aW;Zh5{fFM!4 zgn5PIJfc}d;bey)LK!MT8ADmnej4WiO9j?1 zQJur%VEG9V2?>-N#};E+1KjBCBZyE2A-GY>v^GM>q=5)m_}@2veab zKY1aX2egegpfwm|&M;UF+Q_$HLe{{%`4jn2@&LFx@bkZLNi%N0Bo3b>3dPLsA4W7YvESviR7c^z`%x-K4=} zjEsy9E-tAESq73pM*-@TS;>qc5K*r{=)k(D@vs-+vcS{G@vw_nQi?T^D8S5U>FAUN zs8ysHp1QjWe_Iln_gjf;dvd)g>+`Zixs;%>8-&GmFbIoqWme!(79~v}(1R42O@(L> zQ2Y5~au6IiG_>3-ba8As!x|V|!EM@2^71HFRyb&%ow%;T`mtHz}Hd*`1#)Dd5=g*4Kt>o5G9UF{&R(yAOK z62LCFnD)Vgtkg(;Za$$l;AD5KYZi@u82HbnuD-r|$CsT9uWRLCfb-;4O(q-zjPWYC zQ{2j}(S+c^lcpIL!wYy^T-@OxS8b*i7vTCu6~H4G5B$a^Cc@Iwsf$pKKXc`1R8&-? zeYWnK2kuCGh>!oJ%B9@T+iZhC`N@;C&Vjd(L>cODYS@El)gno*oo%mX5rAlpy$*|P z)Um8d>gsE(;h`XWr?(@fx6=>}b#;~=9v&3Pw8i@6Z=m%ThjF&Mk`7?Zi#ET93?xxO zw^-yVbfGEQ%Ksgm7a6kX*f8K>+rSiZp_<(#{${B;9D=L9t$=f~goiHdsmU{`2~fWq zS}PZ)vVBK|gbxEhiB`o_#*+qS=WVu2O~w`(T%OtS6-2Iv>0V0aXt(%-h$?Yp%NXk3 zIC^HQ?+E4RYU{Qn6BHB#5d%;-iHK$SK-xtz2aZ2bsq;N&*e*$n3)BTfz`92<2Yw8S z`NGflwNa`dtfU#zFURB9iM5S0ewy>8CBG3T!YXmJ1~~!L3w>Q(5FxXc@V9T@YK)6= z0%m;&r?qy&6J8n}ip-S-+a;6fJxh<+l0xqmXLiT;ff{fwL1Zdy1&a*6=hqTvS_e!4 z_wljv@c3elFch#fsj%OM@O0;NaPO-elnTZt9#<5)Js$5~$07r+-`Oi8?Ze!3awDElogPxa$=Va}zIu zM|9=4 z2MZY2;dNVzBa1V?0KvX}qOlOOf!~boI*RLB?Z(`#K6G7G+;@%WdgFYPb)lN%Cn0>h z>LG386mwVsIs7S;$gEY?rW+IMteHo-vEw1s#Kz*$X(Sk1Qe#*X zF=4+;SGJqswmKF=8OB#x4mn!!f63MC0+6RnzxMLiz-P0mO|fprC*ekM0nPsG%gvE2jbW{1vKgTnyJfs0 zC-QJaxsN~d86E?1jD7{$($>JQ;QJe>MDYN6v6B+n_B-01MgR2OS4DZO$3nP}zjDuU zkyHs#__qOVB76!Ozu?Nxj2E8+m!mD+2ndFK|-C(sd0)S71b+Z8Q2A@FXxkDmJNy(KoyYFSw+rulzKhpStM35pt;Q60#>k;3+ z{$?f1!6##l*@ThDVuEl)^7=_YJHRzj4|gZ0ZLbusU4zcR@rP?&~b26#_n8~AJAT2UExe0>T6N)D%SG{jzwC8 zm$$L+l25bg-SpWFoYK2u93+ZA(JvS68D?iWW9_;hT>HhR&K7z%&AG`ed4R0jCn3C% zx?vT|i$x)TL}f|og~c1pi8#d;#8M6rqZEj~mu>mtv4RY=cytc2gfaH%>yQs?s>Ju^ z`K7t!VJ;_mu?iN@KVDHqNd|wQJKMhngvGpCYBV45tQ3J+{E{h;8~3nQu1)r*M(xDI zk^OaCI3-50HxWt*6QyQozpo`^axCB2ec z$e(U9j9p(lpMc2-V)N%)WLW8Rk5*mu{xMrBy^pk|F{d-o)n=G_2vYUB8If?3K4H1f zTe@5|DXwa_6@ObjjRM^!fR-#flC-O1rG{dk6SS<*|t)VaG1KjWT6 z-^biY4bM2-SzE9Buczk^JTbi>ls!#@l_FXl14P*Dij02#udUAA7iOJ+Rel;T{f~yq zi?Zon1$F6q=4o#Dv`C-5Sx(7Ioxm+@T`J3pmCB1Jr#>w*g01_9Z~`1^8=FrM;mVaq$jTsvDXF3^YX=9s|51qnm1UzP`tj)f#n#dJAxuw< zc!ZZKNv|Ca*x(HiaDQ0J&=ReCmbVzx#Wjte-(vH-YNH2ffa2hHdwq%liKP})=D8mR z_z-ni33gfzD#qD7;1eSWE+_<_s;OaU<@HwlI@+2omh_=}jEtUIX--hjZ%!}34c~ZQ zfq~F77q0L!-kj^{{prIxQXQpt=zp$IbstGJbcC5{lP8u%ba8R9>aKtGjWMWR;oAv; z;Hl5~V*lnQ4`ADtwD*inOqP6G*HoU8(w%2a0b_l^di2?I31kS2aZnCH9tkDkd>|!C z94%`=_EAQR3@2c4nL=*565`{Rug;G^MF(WV5qh&K4kQ)f?{G5FYPDWjQ$O}3^}PM$ zz3*rk`WLq3V8gHTVlXMP|_0Lp;Zh!&)oTukz;#}^*vWQWeVNy#&jf~w@RS?fJk zZ0nlL`-Uy|j6cw4A}+pq5uWXB1-F$G(Qc%srxj<0?MhT_=IFsiL1$}ln0)@ z1B7AFMpQVrH{ULo)S2q!@M!y@2VIPFIk4(=YdUPFkJaQph;uKK?5Xk8(|$+R6pO9% zb9+W)-Byz9k3MHUxXO^;lisJl)h{tApEQnbMG2NWvfrm8 z_=PX0aKLfg{O3%W&ZycvZHCl~7gm-UGE_8M~MQP|koh@%Al-DcCiMv>Hfb zKPUUNt6b%Vy^v4pb4ZU+=KwN3c|w12ByOUSw-#ys^mbMDIbgQh7mY>!=OVs9XdM{9 z163igR^0$FrP%^5Z{@>s7+WY(&e}Qb&M#VS8I)=y$&OZcB2^ zVRm5Py||dsXVXEGs1I@{5ne4@WW2YdAxKDay3i*oR$e~t?!{m>g&=XPS0&xJ%mYY{ zrQ#3Dpt$0ocnpeV<&TL1le#i%58lB9Xz}xnxxYy`0|w1sXyR#1`HgT>46;S3bwhUE zc|X;(`en_;PkFI!EHy=w7g9vTTA3?OWTs&w6fZqBj&O#0%Ua_2sl6TyaMsezazlq) z2Ybe)6?U{>o*~EwS0ENr|)&vA>XL!C}+%<{+A z!nvmOB=^x%VIA(VtMv)&=loSe%uP|bt6 zuf-PYx9@Ms4n#zX<6C%HOnq$`jnJYa{k_Ssx_zjQAPwJ~)m2L@$B{j%7Q*PFajT)A z-h~~wZYgfrx7e=+Q>~=pzEAU_=UYB9eoHxwi&J@}C6xGQ`YVB?{&4cpnvFOh#H)cl zO}0AqDO(!)Se4qW z^7hjx^QxAS>hNNUqQ(>!8H&!~2a0mbbOT-p*sA{sHK)bXTGyZJB&#${v_^p7 zmr>OYvJ=hv>TUc_{{blj93vg<-^BqrDWN|_3Rg2@YXS!@d#g>Oi97lfNE2)Qd=-i!@pwuN8dV4vb-hC zY^calzPWo(40NaBl@VSZL;Y4%A*E=|VZ||f#Td2DaYBMJrIuGi5no%0uW*JYmtfwN zrhZjgofjgTFz>Az(?ZxAVFRo2<20u?gk+Ae(G_LS|8WCD z2+~}j$w85{tIVnEyJW!lPnoOi1zWp*>eo&ohk~wqp~wB@-3E(`kE_xWGz%=XX^PSU z%!nG5<5Azgle>uM8$aVC|FkpP|YI*Rpf^0{^ z9w5LbWv{q!mUM-|S0B1iwLg;$7si~Alzyn8?9S* PCDoh&Px2!116^?ow_n>l|^hkt)QgPneYHwijYVDN5Z_cWrCO6m{Kt2!#O?wKV9wZAFclV9hZjPfe@FFOM} z%r0r&O9pIs$V_XPsb~^^uI!S)TzIuHq=8RHaPH=0Vp@0~oqriu zocF5bqYOUpbAt#hjP<^VSOn!WV>sAfqf-i94%Cc~GPwv2ei1XWPVZI~;z z`BX{CyYjMzwyqwzfoc>0KPt6{P{NnoCm)fn2t6Nhn8Hm!-EEw;u{m4m=lUm7 z;gRHKLKzG{is-*fd@v|itI8kKR{D7KgpK@e<6$jf^R>BlAB|dBIw#b%A===5jHgDn zRL<}`8PbWw2sdv$T9pl`8rk1@H&R3?R&UcOsr*mB0JXwjaZ7p*`|ug4&OoArmE8ww zb#`|4YJ_*U(DD5Wsf2%poJE^KAj^YX*4^yAF*ZHT9g%_zIExW)s}>{9aSghb>Rcer zAH}Vn=AVAUpQdMQp6<0(Zcubox=S_6kr-J#X(OB42R0NvcK^s6|N95TzxDPq)Q<0v z5&=m?@Hjcil+=o{I(qQuK~12nVMYeWi!6!Rj1ld3TuJKKK+N+WqWG)jUjNR5{tfr0 zw81-jGs|*H%Mtz!@tolwILGhx0Qy^Y29Qv-8e7 zA)BW23=VFX$5bLEY-PGh6@F z3lxp*LFc0P?%i8OPo6J(w70jX$S#15X&Q?la-f{8^u@hs_TmJa4enN;VpV1#8}P>R zyLca_czAlJD+dMwq1^M|e=ia8{uJX5_pz|B-ajpba7DtZ0pUcVq5&g%!~$tV10an7 z8$94uPCgHa?WfL83j$%mFWli>VB5A1(E%Qc0O~xwq)QjrY`xPxCnvE%QL}*a&6%?4 zDfe5>iZq~;ul=9`2pI1sGX1mf)4w6IH&fk4PK)RhguYYlk#5D|dq zj^dsa@B;T%G4VEZxA*q7Mm>S(SbKZ8xO=-e*|7RNL3ug3yNL=)2#WHvI(mD1cu5Nh zx&Hqj2)d&jgvO3Lj=>DvX!+S*9=a-mHB@vOv8x3B*5-6gyl()LD^p^2s$0;r2Ws1Ud5+Yv8NBFY0 z9vLx+$EXUHsNATCpjKy9VJ9T_$^CIy-M&4aC%b-ewY+$7K0hSwNu4OlxSssrWN&V) z4ZE-?8Aple3JWKR*fuB##UrF6QS-ZN#Lu++Os~!(Vp_4Uo63Ul*3JLz!+2i0g_9E> z&eWmz!w;&>V%q~x^SxMFefL$>)Ck)wggUNv-81<`N%0o{eE(SMv5eq<)IgLdf8Atu z^20Wf?RNa@4}LVIcRj9>#T&H=eRIw(0<^e68~)_ zFE7!(rd9GaR5P~o%qjHS<-+sRc}I8mOqPPN=mF+HQb^K}-2p}@V)+Q^=hy6;&VSQclJsB#<9|zE_j$)qc7dV!5-}X?b}N zEl+zo=cPOJ-l5?61GB*04@G*=n8|Y8`2K!X&x0jJwg}4k`FZwabt1Ni&8;meQTq`} zmY{<$N<<9H{k@8&rTS)%u=2x)nSN)> z(dB#H<-~@cga%@1cp}C&Xn2shlnA23Vasa+mxVS{`Y3Q>(c8CLbAkKq2qL!Yqs-12 z;QOC|9m8_US&(p@#d+zruwvIS=(|IjM;uT~BM;qrjr{+K9N!x7>^*B`YwIc19av}Pe!$EfUiEAdXIF}VwV zIc)Y=;p^9m%=hz<90g;=dQjGMP3yh6W>j|d_Mm+|CBn+iPFb*?B;&lT*^K;gqsu3u z;KQ3tGJcdF7Xt1r1Yfu|U&iv}cj*QnrD7M{b#*DKn^s89pI={|gGj?|+xPa|dRIMz zj#3NoA>Q8JOS&O{XuQqU_|m&?3blpW4kQdcY4zFd9vmb(I+ytu`sR`9+BnOE@`7Ln z-#O3d%ixVXUv?();*JhxQHL+R2M59(=cDep5V_OlvE`hn)rv|=c=n??ks+6>EN3%g z!9Mx}@^t((3xBWnLp)mNf7DvzL6%y!t9xGDxVd)Jy4N!NKK{PP5~R^>J}&RRFFQRc zE~L?QHVWiQ&@aP+ZU^}b(|3c#2C^k20NZ#c!0e7eR5J%Q$w*mT{B?rJOAv{ zKmlo)_-rBcv&w#PT^$um@Y(Cj;GG{LViFRc_xIaRncbR}31qH*Pnxv)R9(*RpRSIp zvGiSET^x>uT+@8`@S*AG^F56J)$elozQ^wEk<%7|WB?^7Q!Z=1Gp@@&)1Cdh9~a4u zjWO;Zd%JWb=kW{12z4e8`h+=VaCGCy$hi^_$ED=YlVGQQ5||+J0y> zS|3WgcEj7(clBVohpv6`v0L*EUD;#WxIXr%sHj?ygf27hZ$LaYzp}afY#{!3f&N#F zT8)f%?kGy<5kQz^188SIx)1nvUYJ7^B+x1{%!Ck9a`Kf=ge<)P_`c&C&Rp+S=;&8} zf!T<5{P|XsaoJ(@33ms?4?#r4RvUQg1~AaPgUPhaFwN-%RD{ZYlJ$#-GBjpj^>R zipDoKN>Ii3^#WE^_b4<;~H=x zN#u*Oe#s8DoSd9qkOjRQi8AaTXKSs)V^oWas;YE?EdsW<0CL^ik26f#{OU{^U9ufr zU2l!a|81MA?(DP_la!3l$hbW|H^<-Tz9{#tLHo|T^@l`k`9Vh-p5Kfg=GDz_O_uio zAgX9-#XCAVQAsWa)zj0{19C_nwO0Y`;ppaeyQ-?n20(HJ1lTa}kQ<7S;^1X6;?5;O zhsQ;7w2|}OPB@T$V`3uMc5$-Xb3ARCSXRajKx5Sxcgt@njBxGfX>~J!P}@Pb|E_4V z`cmVp8{pZVBg`-e31GoX9LT|l=-3jr;O}L`1|mBa^`q5S2u!XNE1ju@6Fn(nk`pTr za$oxX{lkAhjAC?yKuF2Rmcbgey}7#HRFg-To8Kj8l7gt{Cuwt!FD{0B+5J~208%o{ zA3$kqefKQ@X?gqjSWKOp5=T#ZnpFC;1Z=W-KYON;f>T&lMnEBdd7!d;TAV1?{m!)B z&OnZd-1cy#59JRqU-fYz?)&!#@64L1)e@L+gv)OHoSnsac}ucr9NGa8yGm1VhR+;w z=_zyAOLGR+I}s4$uojw*e$isSfEqgOfGStok0tcmPAQ$d+u-Ceu|7@Poy{(Ra2vX}dFa7)X?C#|2KIt zlN;pObEwLO%$lQe;lee7c-o&1-{jID-{@|l0!e2reKj`iQ zx0Jz*>A2YIG1Qffq_Ygtzs?xOaL@ZnQ=RP0a0F68mPREPd%GiV3ON@*C}Wj{Wn_ZJ zFY2ht%U5fS{APdtJXnbrS^;FDVrWS7pz2ZNv+eK8+m?T&Gx$x}r?-Fo>Yi)%!fb$y z8vtSb`t6&sPbVQcQNJ$A47__k5OUdQTTT1rlzNDM{~sAR9CC=r6c&#Q?`lO zzRu6Tns4>xK##JcM~h7OGjdN$*S&u_e3vS?>DxLV(`VDP*RoAX9xdX#XLc4O2RLx* z`}gi$pW@0&lFCYO5<94Z%!#X4r;C}TUlNtb)`O&sjc;jX3ibi2ql#7j`r}880&A!d zU*!1sKmNqW#ev4X@RLbcUbY5RuI*y4RqFYl-zABnce5TW8`G*txY9>?BB|B2=7O-J zdd9|XsoLDh$nw`t49-uVE*}TryiEQ%JsoXWj!d80;*q8!Z=FlRMixQ2rcu?~dd9a# zM@K;giWpc8o865nf*SaV>nQ2ykcsIi31%wQnJBxv3k3uQmLBBqnn}F_a~0p85gc4S zR4_L7YqwBlr;6yY2D5xq`DmhI?Kr@ioDV|POryIha!0t57?@=orUtFd5^$6>M zlL3p59?y4})L-y*N~YmgF_K36KsdU=U|#=Mr|dkKt)}8@>Cdw*4>fcr=@3 zNxCze3DN;IjUmlhdtk9pB`+QX2Q1CmRj{87^VGL*Yz(h#)m=g6GelqpD{$BWHIrXckBFWf{jEY2^wiK3P#RClUhf0BYTvnwo)I56!~V zIdN;IZ<riFBPN7NLG**gN$8*c-V3|(%}gIYN{Zl-uhS9QO2 zVgOgCB9E>MICkbYZ=rpyM|6CA{8fw$TnW5)`}o*rZ3FAiTR6vpr^nu)+)(CZ(&Ehv z;$c%qpEATr+N1DVPod7FH)sl?ge$)5($?Euk8epO{ zN=PR;LbQmJa=Dy|)ZNR(CtqnM7FAO9hmGZsWVAy!?mrB2GDgQ@T{!-#f9;n7~P~}P^qkpyCZ7PN=Z}*S|>(HH)X&m zpcT>hdgCRbcZvVJo8+%wzw`_Z@yw^G5(kpO^o|2Cw3ke4v;C`{cM8YT(B61n%}lUt zQji+RT&Xa?HB8dpM1dzep9Tj9OAP$%wSALccrnEH{p$z-@&Mwqi!lg71(fEV>9c3z z-sS^KORV1J(bL-k#6P5f&IW?cWuO9+lldY_o%6*^y+bj$HxRG$APYIn+yJ|%N`GLc9+3mVRXin;k$hPzCSjn8>+$2YD`p_adik;T&q z^NrFz-nl0{FhU*va(0V+CDcnycgR10f5y@4JQ8b;BX_ilyC%uB?=HA z3t`#Hul2e%H{YzKy<$#0p_4L7F6qSQan# z5)c_ks~4YG85kI9eRdxK*tT6B4L8zRh?b{$-MxEPHrx<}r_M$n6_(1QtJx_@9ox0* z!;!6RV`qmCfJHD$+mODRMi<=lJs*h_ptDfXUpl=2SS$_Ip>_16=@I9x+CC28GA%K6 z3{hrXWT7H0RBlZrC}KoV-G3ssL;i*L$)gw!(ek-{aWBokcuBdqs}=8qi$?M49iNIpGNs4Y+FH=J=beuMFt|~#TSuuEmEbM8--xo zqRYhN{hlCmS~_SPil97g6+_!hduQ?;j(QGNiq(2rwF4{{6}D!k(_7&$`=w%FRgsl4se9OK__u;7j@JI|>B70+kkzuh z5$dp~p|RH}n`Tzs5|zy}Z<%WAQHtn!@tV7EOg8(^1fh>{hQkq=+OgByk$||$oM5}S zFD0iTt2BLw3NLU8EGkPnK||hbR?XRj$9j|QQnFCYW7+;CjPf@+o!gC1k2lwV)JD8K zgIFlJ>%!x_?``EH0}T$#Se|M4xC}J%lZ7|ye@8%hijo{H_0m+9A zmien|pEBXD{gbwK$Wg@Su`ohGAH`Cy0Jixj4&kM4c*nmc40FdeK-Y!yay~{6YGfcU zd11I7#QA(s`Ecn4&&+7Vq$3_kzAF{c@e)tmFi2%(WzsMv30dyS)#ZapyZC9==6Nyg|Pxg|yIHwxTvbpsEXN}8SWM$psS z=?Kkla(n1zGeLMnKL*8?I%J|UcH>iZ?u5izTo#-RAD1W+@t$}1q+82A1}*jHu7XBp zYV);Q)C_I1ki__(OI5v`XgV%GFUl}C>O9HxqFwy^UYfILc&Tl&M1dw!;MjlY-2pT+ zDhbqnxYAAIkMC#RiTPqKIRgHOW|MlGXW|=7Q{N3AEN`Hu;Q#lXxzY5-7KhFxB@w>n z=L(-Nb2!HE=7FHXpQOGl=SVC6{7gcHF2CdGN9TUT$?7>TO+_+=N0;Onb<+$NQVpap zeJA+WBihWZ9FYDZy}6I-D^08`X1j{DVH!YLoCh%j*#UU*O;uH2kxIOsL7rd=+S98` zF)XvWMJZ%UGJk~URgyaA*TqGO9%0H?su)Vo{G`)>c9^*x&yVy;KN*V*!vK2qR9%p& zClUvrNpGl!DL{anxw^Un29hG^R~Q%>pHSLxf5@d!)$k){_B$ZT`Ci;*4}7Tv&KPBO zE+q?fzbe*%N-JMv&vGr(<`A9|O0A4KqlIiem)9JhOhlv90HwesAc>Z8d(kAEE*dV= zIW$zpS_P`wGR)gT3_q7;tojW;5=Z?NMd6yYNGlE9O|8hxk((;TKsp6?vLIfL{{AsL z8xJzVMdF^Cs-7+JX~Ce~cqBGz8x`SUnaDlyuR@d>&@(Y9TUxRJ83!aLx7zp-qvSXJ zL!(b$a!*c95R+mJ4GpYJjF7Ah}{(B^KwG2`+eA?YqNvnnh*%?-~9 z-@>)N_~gUA@(Lpo&=tdOXo%n!=+BeL2~^eU-yjGTV@qQkv4e3b8%AjE`mJ+HPveW# z5gj+=L?&kP$}%T1X%=Xf0;@m-)X%`j73jFG?PH(tJa}odxVj%snn`oTiEo$_lZN&6 zE23g*p7|IrV)AU3g|W}~;7l^RN;#1!hqPpqC~1oN?{$oPk&~#f1*4t`5=LEkwhl}O ztDO96a}x@*Hc&-cf5=C!vx}fG9^#j}pC5kVPyYVe)LZV)Cdcp7)79TwlLmTDExHUE z3OPLq#e6Y_Uj9Fjxd!Ped$Oi5xt736tLAkKFU_A<>LnJ2a;M!h4fw9ZIt&GKO}VN? zS5N9q{gs>q1(>xDAmwu%JCJ-nyq(bsxVXIvtBX_R%L}95Z1t++0)I!}-Qxc9)u-!B z9l{>3wyZ1$v4h>=q>fF2w{K=$Hu;?RhfSc})sW`__Q-okEVW1p)f@lt7kTckYQ^(WSzr-?hgBOhQWvUY&On5}hVN&OwUKz5 z_HtvCJ?QSA#dj(^Eg~3P`qrMk+zAmr*lgD)-MLF|#wfPMur9neu~rhXm$4hOp6_{- z%$n1Z@~j<@V;S~nO>OkSMC#Zm>GKV*?W4v{)CEreggC%_mtS*={Jhacc@UQqwVX0K zL8pW1{7K0;pQ4}q9uVNOkhI35YzLRuF!r&!eAkfQ()<(j>oGZQ>^$)g6E<_9vZ}J= zzw4g*(?j#zwpPDvHT=dNrNzSwNVLr&c^`fj3)u*P4`IGUE-G8pNIEdRBZUdxwqFcl zM~;q4MGVIpYB72>dDTGUf18L7&dS4|3SX*!+yY2J+`3)rA_hb z$4%<#KfkA5_3KXo$=44@4Tf-}lYO3*FcfVksD><8!5;Bs+0S#+47kU@aS1-Bj<`q6 zFd<90WSDh_4wxrQ(niW{4}Z4bwXU|%>E#vQ_NY>CGLy<{3>}>_)S^>+#7;@1K*YAV zVN70vvuW>1^GFb}el0P|`DG(sygaMPss8N&^_PC$SFn?Sc45-h_n0YzWenXOs+lu+ zuGe3N`P@K}4PRAN74#Wj-jHTLmkE$pf$Mw{r*WbQz#-0-nlJ%y-7BUR+qaV{ZT^gS zO&Qm>@??0cVJ*BVRx}gFi$Unt%*+UV6zUkOzndyX_)I;UaqOJ)*+#wleJfaQ3cS+{ zo|myePanr!Ug^IhMB;jq0!sOtj4j-NPy*PHu;7nvWuq5=&%>^uT z5rUtA(|#EoG9-K$%l_>Ce{8W|Sc7X3papqSFGW8~XcJ&kHZgkqw?VDNY-{0#g)*f< zBcR!Occ6K6pY}YY@}e@->uc;1UN*i^&Gu@x?Xd9ibj|=eRx19JdA-Hcs^Mdo;2xPB<|u^+CJufLEB8x>Rn`h|k!7xs1oJ=%y&ou>V(u zi>28ko`Oa$T%KQ{D;qY`g|6(#;q~dt$koqu8SfBONHuluVV_?911$S;ZkMTVrO1-hZl0_l*@4JgA;eEA}E-^832w7a2K?q&b>Ui5Imp^^;q0BGj;(+$K% zX-;K`>d@=rUZ2Yya$+Wdyi1Al?14U?j)IG;j*7QEa=2~L>fxMyFfpYhMww*qAwrRg zEH#iqtr39+4)}5+ptY`}vGr=sz=l;+>n6hz1I{g_6G3CP@}tfcxcZ^i^hagr=dSmk zF5JX;1H0KE6}MEe7Jg5m+jZTDh>hj;f5tbsPX4t6v9sjeKi%2g?c1Ag)i*Yd%*kQ+ z=W`%pQY4SE3LZ?zD6@yW;)P_hvlpqUsvZE#dI|WjneGFx^$BvyhM-w5)GUq~Xhw2L z*z7#SsLFw-Vbb786+wxjcCL5Vx`U%LY4^2nBN(zXRPm%+OVnZVjS*N`t*kZ`-RWnf zq@=9C*GyJt%|qfzO)g@VwwT z7SuLhczFqeDRu_Ipn;cXo?v6B2cUBQ6g=BlSwYkinbT<+Jb`QUZ!fGInTL>K>IViK zhQ7i|*knceYbx2xR9#UHgLo^@XoKAmu$Pdi%pL}I2Wr>+K!12Q_;Pda@=h$=OR_RGWh%;9NNrwhA4 zA(R9()L+NP!+w6SA z`i%_>PwCYDWZ8_iA=DNxS8$^09^udpIlQbgm&$8cf40=+R%q}L>b0z6xl_VsKzeqWRJ0A zi^(#P-Fx@E=RAKs=lSD3=RM~;GvD)_`+IMn>$*PI=T0y)(PN%kN&S|&Cl!=Q6WQx5;+wu9SwiXEz@ z$5^@IVwuavavE33utgZA5%Rbfh&=z1CdS8EQH$-#7oCjicY{Y}PEWgi8YFb;oo&7S zaN#a$8OVmRnU$QQUjctiQlB$v3NTqStr;q62)vg5(sHg(=&MAPKxM+8*c@sf1y*mnCx)4bwh3L=q6O&J|{yxlcf-^Cxn^Vxyv+O=zLUS1uuA44YV zBTh-V*0nAS_oUd>4~J1M-<0tRkcp2WiW$=O$xD5&7U$#n2g)j~qBK|OAV+&dEh8hk zsLul6qND^-DJ(4fusdcuJT;Yw#fpX=;&XM?_^2Sqr+?b?JUk?(rl*;y$+xy}7oy>L z&$|{stmK4PhuPM9eqLQ&jXF{l{&AzIwlCznVAWripR5`A^Bbs#|6DC*qsxZLe503H--% zRQn6;ZBH*7Wk4Wmd>25d$|Bs|X|V{+@yG4=uYVgGt2q%_OLb;RAW!WP@l@cJU{C6J zVOadaq=Y#^+q$vi{;(h1Zv0^vZ@}CU;Y@utaFHQ&CoQ+#qw-^C{mtEPclHm*+tj@d z2&a1uZrY= zhl}80j>={$&4FQ@9E+Iwfu=wvG@|x!qQUO@HT!J3^q~YOeYbtF>$@F zuI|(3AE%SU-4De2X$a)cY=|^i*>U(yaS4g**RMaps0K(CoJ(?>RV0L7Oe}D~#W6r4 zv%H&V`ZBILO>Z`Ds)w%I643R>^CDzuvkz!DdL_bzx*F5Kc&8~^nbs*bukcyJB3b{5yF@6M3 zt86uTCDk!jZaa@unfGsgctmViOt*rQL5}ykZg$!Q%uv{5%x?!)c}*(-iu|Zi5f>M) z3L?3vogI@PktMm|T>M89U3myD3(F4BI=%LupbeCypr9axF{x$bQ9)8~wvbHV&ZZcZ z4n9ya%;WjFQXHfk}vS9cMKv7Q6GH2+* z#oR0UGf5qqzdw=&RBeikOYlm8TLM#4QxFIU1n$XsDhTAQ1#JZ2Jrg}8*}cR)EaDsl zNYU0pl61{tjpw8+k6Iv83=@;)zn=Id>E^peLiDe&3dJz({AoMG)V+V7;vl16??W&F z-A;J!_lV_+H2V{KZMs}<9@&h1`=$+^>jN#xBC=?9$1!m08yL_aJUpBts2F(!KrhQ# zKB;Il*X@7)F@(Z|<>lqyZ5U4jf@cwqMGT&GP>yP+k}mY>ge{xhnm!aDD}fD2zPg(^78Vc z#>ULhMQ(ya8J&}p(}VS~auFu#7a9T@-fbuTvMMS~Z~mE}X3i~QvcC8*7Up0R6GV}r z^V-V6hSp`)%07%OOTkN1OY6Lfs_O9Y@ROP5fLbEx1IK^56|X$X$r!)=)-;S3C^Q%f zi1z-HbcD?t(eseKO# z2jSr7?+R!oVJJqAx`k1B1qJ6me*Cymv((+KFNh8u6^3FkQQEUzd?EC9c6P=OAXg+L zZ~<*cGZdpCzrHJ5SXtF}1faU2*(B~lJ|KO^E9{ceC9H&)s2^w->G6lL27G@=<^6H@ zE)d&y_HBHNi;EDca=UPlL%I^#Bz#YH$6Y0hP|u#t#c_LUxVnm=v$Comt(eqT9KioI z^y`L_5~?z*${ednc6cBen1gb|jjd1T12?L>h9)Ny0PS7wIhR#dcJ)cOJU3-yNacwFzxmoMi~5y!$! z&CT0~>y=Ip4v@BkexK#h%2*+=c%96u8^4FN+q%*;nI)U5|AvFJF}~fZb%zZ=94P7e%GN`7U5ph={@N02dkZfw zFW~s;=bVVm5CX0zP0X=jTF%=w`+|1^cb1}0=dYROY9E5S+R;WWB(gG$=&^MWs`PMy z93DcHe`njkn4le%j)y+Kk>MOPHBE7FL>9h}<6l_lNKy(vR)R;IJpLZEg5iAJ`U)VW zL}2-3=T+OY+|%DBfosLDCOn!dR>C6Ikbk+EZ}#-Y=C5C!J4=0JkbE=h_wV1Eu~L9t z-6!RqWm{pm6+Axyr;uV;oVTv>H`29Upp~ViU_mm6%97LG%y(^(Ys2H2X)r-rmZ}s`Ez9;LS5NT|K?+FLcsBc$R}hLbd@P zqnOSaq?*~;^{elZ0C493FFU2fx9KG9TY1*UD+kNUa}U0{Zgq0|2ryCS)zz``9}dM2 z&CD>&-B$kq$Rqvj$ zEjL?8K`}X@P_`7n)qj)r|K+AwfH0`azuMJ$*&s@?4cO%sUG$Z+nip|=}P zF&4ch@%z3U1`By%Eb7S7=}h+dCwia{jP3=;Js)3>C2Yp`EqzJ7Y-IM&KeRCX+;$)Y z0_Fv9ibd3nLuB%a{;DHuP*tWlN15$%wPP~Uc-@B&9O>!lLr|hDj7HG-4xd32baePJ zZ)qv;L)T$2ytYtERSfo#f;6umwcv)d{m=FF>W7QE78VwHfGNAXyGjAScucaDo+KpD z?1!q0u+Y3IrA2j}x5=;(F)6_hJ?4#b6ktgZxRfNAqCfW~mM()iMCDTH8WxsiW^Vpu zZ_oeUqkj3nod6wRW{jUF9ZV!_ZU+h&u;9PR(7SwhgC>G2P%Sx$UAhLj;68>lSzcN<8(?7%Ra19MnYBl~T1^j4~fwh%K|JaDb|0|Q?#**8_- zKsW2Vpqn?Py?%;^vnl%I!)`B&8PI8;1xwhMP;DSb||a_&xxKQ`YUvG7bApHA{{xX<8jonnqX~K z#n?wC+{?jvP?(mjE%)7udkJ9MwznUG8T~aAKzXAJt^g&dkt_r#)zQ&07HOXOYkrk5 zCSV&aEy?a3lBqV&FdC#z)aU050)Z6*t~f>CSmL*_5Q!>{zw>|ywJ$O+Wnx}4bo=So zC<{#&p-C(N+wF#?G)R?EQ=>OXwN9+JM!UQk4Ef#TQOU!ACc;|a(!IUCbGyO7;cgA6 zZVK?Boc#P)hTT|G^ka%4&}&b-76Iacl*Kt#Wh-7vs_woe=4C;St{tvx_ihm8L)Ctl z$~0b{k)F!EC*-;*XM47C?nY!S!yvqpT|M^#SPI<;6l3D*)_aD&EJ(hFM5o($!fJQ3 zlm2eW>Ij=)%o428y3y~lcgwc!Yiz<|7i#fqrW~j8CEkU|05QoL$=a@Cj~Yqb`tHJ% zM`i3Z(Z%S-ac~uGKC-kFAXrOF>#4R72RAn^mX7^W*j2ZDM6_g|8EY)3t0+v-a{_{g zZud%5ezm>B<@gaU&Betvp>2|}^z6{WG8T)_7hwT@Rab=N^Zx$6W#L+O+dcGhe#_9L zE2`f`>*2%epo#*7wppp=)>$vo{EEEX4TS+TfuO|W$aKuD!{Qu2c{hN`31u380fF>9nhF1;gd_Poh5qN zYxd_)cm32D;283%tC>?ps%<3f{K!7Jl=S!ayLozQ%VxI!94!MbmI>7bV&#AqJ>s>q z8=usE!Uxr)4l%Ybp^{*w%?IxSqXuMZ2>P6p69NRKw5$vy9T^!J2n-M2eK`MxLc7pB zV|vn4VeBp(s!mmyl2}kGp7q-p1{36ZzI+X-jy~srV5+>zzyd7P^XJdO9$CM4XTu{w zu>??1tZg^WoYWx;U8<}a?n=-;2O{9Bf_a57WH3Y_EG^lPc3pFG0)X20t2w0LE!}sM z_8n3^dQd-mJ=|+2^Gd}NlaeN5A;tiO(9mrE{O%G~jP7hS5ibe-kbDHQ6m6y-Y&nE+bd-LvH z41TTs#}5%vF)^~p{-Pu>-n+~JEaC?i+YJw1)X8vG#(n+UvZCT|r3ipy&Amc5itIhmq66}+;<(-oUg|-a+d63AhtM5|)qJwM;1dxd~*7x){2z!-*5_ngzYLY|n?V(7Z zXP`tkv$xO9Uu$nC|1vKVX(UzwFl1xHX^hua;&BO5!0Zo4exl0pgdyhgBKS~LAR7UX z1F{j2h}hh!;Vaxp9oEs0?Oa{2_m@Wo#4862eD_xD?dzNL%{43r!2?-_8P#PDhYv7v zl%u%7VL+bHmBgr~CY6^N8DEzC^5499%Fy`k&YAQJ!e-YAxhU(@D`Sq{*tSS8bHPdSDc2k z+zks=B5D~&>+0(jwC=$0vLozhv7^vddRUk`zirlvo?Lj?>%*u4`#{)?w_<5&Y2FoD zRdZ5*2}xnIyPI0X;0ve-DRKv?EG>cRgXB6*)HOF}PICXPi%v;lhG+oTfRc6c7TGLJ z`pt_;E!({XC4No`ad9&^oDt|=3BJeWb5n)uhAkYPyk60q%qap=AlZ|EN2-Uf$4uwN zEPe~9VoZR3;NmYVt_~M+F6T;E;2Q|x+|JI z{~t^8#cAH4s6?tba!@AoD4(;*aQ%u8+EMV4yad$e_3PK4I+ED)5nO-;7c+F_g5yR8 zdTO$(?;6D;TkjlCA^ZojBr;dnC)bYf9RYAP7~bsm?NoFBCR-WT#JuBYm}H)?u&^uQ z;=Q)3nNWs!-2P_7866Bip?@w?$C7K*jZ0(PrvwjeMzv(V!A^RVfjK+rMYB|1Esr06 z*=F>7FsSx@|8DrVmb#BESPE22-FX1kKu{P@(gVly;a){w0lAMc3=i0NF?y4lKqIbh zT0z5lvku>Ne5?2Ur9M6H;F<@2o<|IBjISQy^G|;Cq;YU?Ses305S&6oc}h%kU0ywW z>tb<7<)5v8lrbg~#65ag5W|6iBtaUE_vEdOrtuQ?ncdi18TsZ?>-@|esT$!K=!AC* z+4*6Rt^5ePr7V5p(He}q|CY0N&BEgu8skVC}?ZrKRXzVxKuZ5AP@Y%j%?;vH}2;#5bS6s`lY+!^ne~by!;ja zEiC?};slc2)KBL&ZA2RLXdK@i_4K?#Y9cNa+CSZb{GuU7-m&Cm~WmFmh5++M8zkOscA^?HffkqzeFa;AhP-gvnb@%d(CBggP+1aCgVyZu!% z^?#@){!5|pfBVa5)?P)3>7Liq?*D%L`|p$CGpcuDikngC%e~-)8)BeiqFtfs5cNOu CyoI#@ diff --git a/master/.doctrees/nbsphinx/tutorials_image_50_4.png b/master/.doctrees/nbsphinx/tutorials_image_50_4.png index 37225d5e9616a7e678e07ba599f8aa5f6ae3b9c5..7415f5ad184e115e3b1556c34d2dbb609950ed87 100644 GIT binary patch literal 5982 zcmcIoc|4TwyPmOc*|PMrrx7t3gk;SyLXDC=`%c+nY}v9zNJ7MD?1mImlzqu}%F-BX zM#z@34N3O>JkB5IpYuEC^ErQ<`Mfjp4$r*r{ap8TU-xxS;w__Vr&t77AP~qY1AX1w z;GF=TK}-zbwY8X-4&JU{P?i`IUpGv!qrWQz?TGR7^2K<0I*A3j`UiOW`dpG#mc0ZQ z^T1&I0#p$Q@BdmL>+A21=-X`F1Q%iU)3*wMKsX#vp3riwGEWGEk7S^$Z5r}&1sCRL zVMYiI{sz}}sQIGrn z<;F?JNbNV~dd<#SHH`19dQCizHp5k|w8V^%%|B@t=?LVqn%kMhFA|zPi=6Kt>sZ-?cw2SROiz0>ly!sKWVAqu-Cmgwa|}M zwoPxnMit=JwQL+(2Yz-DxYIus21Z8>*hMwfsgW8Q8b8PG5hQeUbmBOX=OrZ#6a^&W zIRAd6<#^T?b+iutsF1_fusfIAefp+)`_@n(juWY`kOPyksDical6{%Z#vS}g(1Kal zdYz4Tk&L#J*cg~$%CO0)uK20mNZ&cmKw&t~tbLeQG+=;sS;%Q1hM~HCf^(;6P5~40rZzF4d{Pimj z8}X`iCKAr4h;QL3O%eY7{>^=ln7Gv3~pS7;&Sm6e|ZM{F6JCL#@Rm%PJ{cIWSJPXrTJf`~qK z&ih*{JD(AeX~FsHGaB8YCa-vY*Uz$tuZB$#bA4MAZ-)Ok9dfuiGP+fk_khKIe{94* zOC$6zjDeAHZH6Q2jIglqw}t>oj4dN%`Fq3ZG9w%k-1i_-3ya0R4PAFL-&z7P0h`noSbOXf|f0H>G|T37`lh{$9p3lK0bO85gM%^ zvZCVR+4Kl@5%tHnq~bDVEcm`s+S|2l0*B3(1Hlpy2W!PpPngqW-Q)w-iVCO0y-mo& zT%Sf}3;PJA@yMx&?U~%E1GnDloEr?CsiK`nhx_+`c5w-5Jm9&hxeJ3#zi2y~;s0-YT% zxNRd3U|;mmV%+#j$4cGQQxGgK%tO3qJ+-RIKdXjjcd5(7-aggrwYejp+;U5XJt*r$i(@U=j9RM{bWDz3}wL=u;WMhEZJh>eY1QCzN{~5fFDE#mtGgHlP z8p3o|EN;5=g`Lx{Di@Z4wV&M?%exB;QtZO2pEh2~4n)7*z^9<8M!^e3Ls1M7fPRn%C>N@ z;_GQ9v}_3|`+R>KAJ2dZ3Ig<}Z3>w(Z*98Ds)j+v{LNJ{&aNc=RLwo96AAhLfLh5!M`Ky% zBizy13AM4|IQl-XnedDBVz!Z5MQT)$S5Szd652$7PJ(*xcq**+?ao?QN!1bT4ejSd&mKI?pC8Y%_HTV7$Irp;rMC!)?poY$VewO(D~)D53FG0p9A_d7$G}L7Hur~eF?Ljsk56S z_MKxN?xpF&EUzRG+w)|S6jmx@4_csFJMA2PGyl*FsRgn5Hm@=KZeH(wqdIjx4qsCv zHg`DqqBYJvFO&h%cAyZ3$Ta*FL0H5HsrW$(Z#{1L{rh)EwJQk%J}`aw@ZpvjFA%() zS<&Nc3mkQX(3z(Z_ROd(&9L;(iMQ}(eS|EpsE8rXeC+CCYD$~;7gNOH=&igx?%gAj z5N%IzYQaB__E)c=Q1o8Pf|~oIeLo^r!$ikH_mZKuj`G`uKtTnDtbOJWU=IKU4f)f~ zsLd1&C!G-RxacpS?)2}b)sDW%txG3%fl8?)y{^nZ+9+F_%k>rKWGZ<7o=0@AKcRnO z;?%U0W_=*lT=DW{=k9cgWeSlL4HEsSoKpX9$Vw~nA3 zBYJ{g*?6dG?0QIx|BtKxmka%${zZxj*IErPINrKQQs6;B{nlir18wtbpX?}8a&nAJ zh;sPh-Y-}?zIDTNy0Rf=^w0?#u~-4Aq!`f1o}{F>GRu+_UhkB$pUdC8i36EVm$-iG&K;Hn zA~dy=7RmI|NbF*+xD!7;Ar_fs6YzEf{>U~_*%wr9 zG*k|Kis-Nkb%3_J)tt@fmO}^Hy2rN;D&cBE7v+qY98<$z5eS_fDT2nv#?f0_K_@;y zC2R{0Iy4u1!p!<^b^(y3YIsd~AyxH~kD>qy9O@#Sk68J?^#_+GYY0EO+vrGSFf}zT z0Lr?#xq0&Kr=nU<6BC(t!Zl&s%pO<<5IM>?8xNWwK%lYe9CxA^@LXy7(+9ijSxhVe z3W(#0I{}G26%|Nh9v)uaLZF{u3*gAi%*@7OodUb7*>cGYO%v=OF=l2~0@?w}s-Fhh zuz2|ZYNO_SY*fPqQ`aKAkq4!1V8EP|l$5Qn zoO=o|2apf&35$o;tMpV8RljClLtoa+uXkhrE z@s1~LZ=LcyGH-4`-%#{ z53d;4yfkj4m;rZEaQ*^~a9)p^MD=Mn@Ft!OGJ0nz-LQWjW0i0y< z93Prn*Vrgf4R_xC`^&@2iw>gP-0up9+&FNMd)(2X2lo2Lrhyw2Fvy9CiAjGT?&3hn z?F*lr@%9$i>?Rt0CIsH_aIf}T)2=>1S*RWV==s8%qg0XjYY>{RbJ zLzDYxo$P>Eq)I}_DeUodSrJD&r>W?p&c z^T{^k*kTWr?@MPoWgsff4X3C6-k<}u^1{PVsi^Zk*aC3Ez%cl!2mvruqK?!-Sq+({ z!zktz2!iB8I6696Mi3)@MM>$Aha$EvGC+Y)QDNEgK*^_d*G($vAGcCPj-mnMkw8$n zP5=vi7&jQCPIxNC^G`#-JV+O3qHcDVv$L}mwISZ|?aLIAtJ3euZaQL|SAppPwR6kL zin(kk5vW!i(eeCan1PgxOswM>P}FeAk_;Yc#i*;Hg}by!QGh0JF#U?Bh(sbNc6yX( z#UfVe-rM`LdVHgUi0uUuhGfU9lESnsy}%dCq;c% zs-56En1dj*h89lvT&}370QXWeX6-)ocwUOV?Oo2GXitCiLbZSPs!}O2LKUZ{E^h$R9w!5ccRR8#lALOd}M0nF~c<#v8 zMNCmeMN(<>T1fZ|SxrHK#wu&AS8WwIWjGZ{(?Vy!|7o$b6OdIuJ?_gF!=1yUH-#ki zmrw_{(s=SPvq3u8;VnBmb~Ce4g*#wg$fY0h*UaZYqtRV13XgTgL9*VYV6^t+uG#Gg zL2`Sfl4w9Pu^j<3p`%oig0oQ$0q@&(s2r{-`kz+vnd`rN>I4Bg@QMLJPdz<72*k|H z40PpYU9CNARBx(m1Ld}a0TP%kU`HKmMyD~VqhFBHnP0~00P-VtVHa6l7BN`d!pGw| zv5hN)bH^{S*?XOGY(lCSrfW}yx)qLZ{Pdo*gfpOwIoT7|R-=vu*%M-Mg%C^AQsWeM zD@NYCRK27;-`qSs6d|I7@b(26 z0InPmnkA{(6!4kZrrr; zn~CQBphJ^>HM%Iy?l1eP6nNgr!t>aL*P}|?nd@aFr;c>tE?nK(AYh5CrmWo6= z0hP)~?5`gEeMdDQMkyw*S{+B2*i z-ykk6N>|=n>lIiRQ)sM z%iJN==Z97Y!-J}@y%+utwqaH>S#&-K4e7y?2XpM$?c&v3NudV+i|bJQ zCK+>K{QLRVz6NoXl;%g1tEw6J@T&#bIn@ihZR^9B#_AgKMGqL+{VQqMJRl;V1<_Ox zMO$>L%;F2oz^UQv)JL0cO@wLHVaSdR1%9I{)>ZSqhxIy_#EbF4w6IH&fk4PK)RhguYYlk#5D|dq zj^dsa@B;T%G4VEZxA*q7Mm>S(SbKZ8xO=-e*|7RNL3ug3yNL=)2#WHvI(mD1cu5Nh zx&Hqj2)d&jgvO3Lj=>DvX!+S*9=a-mHB@vOv8x3B*5-6gyl()LD^p^2s$0;r2Ws1Ud5+Yv8NBFY0 z9vLx+$EXUHsNATCpjKy9VJ9T_$^CIy-M&4aC%b-ewY+$7K0hSwNu4OlxSssrWN&V) z4ZE-?8Aple3JWKR*fuB##UrF6QS-ZN#Lu++Os~!(Vp_4Uo63Ul*3JLz!+2i0g_9E> z&eWmz!w;&>V%q~x^SxMFefL$>)Ck)wggUNv-81<`N%0o{eE(SMv5eq<)IgLdf8Atu z^20Wf?RNa@4}LVIcRj9>#T&H=eRIw(0<^e68~)_ zFE7!(rd9GaR5P~o%qjHS<-+sRc}I8mOqPPN=mF+HQb^K}-2p}@V)+Q^=hy6;&VSQclJsB#<9|zE_j$)qc7dV!5-}X?b}N zEl+zo=cPOJ-l5?61GB*04@G*=n8|Y8`2K!X&x0jJwg}4k`FZwabt1Ni&8;meQTq`} zmY{<$N<<9H{k@8&rTS)%u=2x)nSN)> z(dB#H<-~@cga%@1cp}C&Xn2shlnA23Vasa+mxVS{`Y3Q>(c8CLbAkKq2qL!Yqs-12 z;QOC|9m8_US&(p@#d+zruwvIS=(|IjM;uT~BM;qrjr{+K9N!x7>^*B`YwIc19av}Pe!$EfUiEAdXIF}VwV zIc)Y=;p^9m%=hz<90g;=dQjGMP3yh6W>j|d_Mm+|CBn+iPFb*?B;&lT*^K;gqsu3u z;KQ3tGJcdF7Xt1r1Yfu|U&iv}cj*QnrD7M{b#*DKn^s89pI={|gGj?|+xPa|dRIMz zj#3NoA>Q8JOS&O{XuQqU_|m&?3blpW4kQdcY4zFd9vmb(I+ytu`sR`9+BnOE@`7Ln z-#O3d%ixVXUv?();*JhxQHL+R2M59(=cDep5V_OlvE`hn)rv|=c=n??ks+6>EN3%g z!9Mx}@^t((3xBWnLp)mNf7DvzL6%y!t9xGDxVd)Jy4N!NKK{PP5~R^>J}&RRFFQRc zE~L?QHVWiQ&@aP+ZU^}b(|3c#2C^k20NZ#c!0e7eR5J%Q$w*mT{B?rJOAv{ zKmlo)_-rBcv&w#PT^$um@Y(Cj;GG{LViFRc_xIaRncbR}31qH*Pnxv)R9(*RpRSIp zvGiSET^x>uT+@8`@S*AG^F56J)$elozQ^wEk<%7|WB?^7Q!Z=1Gp@@&)1Cdh9~a4u zjWO;Zd%JWb=kW{12z4e8`h+=VaCGCy$hi^_$ED=YlVGQQ5||+J0y> zS|3WgcEj7(clBVohpv6`v0L*EUD;#WxIXr%sHj?ygf27hZ$LaYzp}afY#{!3f&N#F zT8)f%?kGy<5kQz^188SIx)1nvUYJ7^B+x1{%!Ck9a`Kf=ge<)P_`c&C&Rp+S=;&8} zf!T<5{P|XsaoJ(@33ms?4?#r4RvUQg1~AaPgUPhaFwN-%RD{ZYlJ$#-GBjpj^>R zipDoKN>Ii3^#WE^_b4<;~H=x zN#u*Oe#s8DoSd9qkOjRQi8AaTXKSs)V^oWas;YE?EdsW<0CL^ik26f#{OU{^U9ufr zU2l!a|81MA?(DP_la!3l$hbW|H^<-Tz9{#tLHo|T^@l`k`9Vh-p5Kfg=GDz_O_uio zAgX9-#XCAVQAsWa)zj0{19C_nwO0Y`;ppaeyQ-?n20(HJ1lTa}kQ<7S;^1X6;?5;O zhsQ;7w2|}OPB@T$V`3uMc5$-Xb3ARCSXRajKx5Sxcgt@njBxGfX>~J!P}@Pb|E_4V z`cmVp8{pZVBg`-e31GoX9LT|l=-3jr;O}L`1|mBa^`q5S2u!XNE1ju@6Fn(nk`pTr za$oxX{lkAhjAC?yKuF2Rmcbgey}7#HRFg-To8Kj8l7gt{Cuwt!FD{0B+5J~208%o{ zA3$kqefKQ@X?gqjSWKOp5=T#ZnpFC;1Z=W-KYON;f>T&lMnEBdd7!d;TAV1?{m!)B z&OnZd-1cy#59JRqU-fYz?)&!#@64L1)e@L+gv)OHoSnsac}ucr9NGa8yGm1VhR+;w z=_zyAOLGR+I}s4$uojw*e$isSfEqgOfGStok0tcmPAQ$d+u-Ceu|7@Poy{(Ra2vX}dFa7)X?C#|2KIt zlN;pObEwLO%$lQe;lee7c-o&1-{jID-{@|l0!e2reKj`iQ zx0Jz*>A2YIG1Qffq_Ygtzs?xOaL@ZnQ=RP0a0F68mPREPd%GiV3ON@*C}Wj{Wn_ZJ zFY2ht%U5fS{APdtJXnbrS^;FDVrWS7pz2ZNv+eK8+m?T&Gx$x}r?-Fo>Yi)%!fb$y z8vtSb`t6&sPbVQcQNJ$A47__k5OUdQTTT1rlzNDM{~sAR9CC=r6c&#Q?`lO zzRu6Tns4>xK##JcM~h7OGjdN$*S&u_e3vS?>DxLV(`VDP*RoAX9xdX#XLc4O2RLx* z`}gi$pW@0&lFCYO5<94Z%!#X4r;C}TUlNtb)`O&sjc;jX3ibi2ql#7j`r}880&A!d zU*!1sKmNqW#ev4X@RLbcUbY5RuI*y4RqFYl-zABnce5TW8`G*txY9>?BB|B2=7O-J zdd9|XsoLDh$nw`t49-uVE*}TryiEQ%JsoXWj!d80;*q8!Z=FlRMixQ2rcu?~dd9a# zM@K;giWpc8o865nf*SaV>nQ2ykcsIi31%wQnJBxv3k3uQmLBBqnn}F_a~0p85gc4S zR4_L7YqwBlr;6yY2D5xq`DmhI?Kr@ioDV|POryIha!0t57?@=orUtFd5^$6>M zlL3p59?y4})L-y*N~YmgF_K36KsdU=U|#=Mr|dkKt)}8@>Cdw*4>fcr=@3 zNxCze3DN;IjUmlhdtk9pB`+QX2Q1CmRj{87^VGL*Yz(h#)m=g6GelqpD{$BWHIrXckBFWf{jEY2^wiK3P#RClUhf0BYTvnwo)I56!~V zIdN;IZ<riFBPN7NLG**gN$8*c-V3|(%}gIYN{Zl-uhS9QO2 zVgOgCB9E>MICkbYZ=rpyM|6CA{8fw$TnW5)`}o*rZ3FAiTR6vpr^nu)+)(CZ(&Ehv z;$c%qpEATr+N1DVPod7FH)sl?ge$)5($?Euk8epO{ zN=PR;LbQmJa=Dy|)ZNR(CtqnM7FAO9hmGZsWVAy!?mrB2GDgQ@T{!-#f9;n7~P~}P^qkpyCZ7PN=Z}*S|>(HH)X&m zpcT>hdgCRbcZvVJo8+%wzw`_Z@yw^G5(kpO^o|2Cw3ke4v;C`{cM8YT(B61n%}lUt zQji+RT&Xa?HB8dpM1dzep9Tj9OAP$%wSALccrnEH{p$z-@&Mwqi!lg71(fEV>9c3z z-sS^KORV1J(bL-k#6P5f&IW?cWuO9+lldY_o%6*^y+bj$HxRG$APYIn+yJ|%N`GLc9+3mVRXin;k$hPzCSjn8>+$2YD`p_adik;T&q z^NrFz-nl0{FhU*va(0V+CDcnycgR10f5y@4JQ8b;BX_ilyC%uB?=HA z3t`#Hul2e%H{YzKy<$#0p_4L7F6qSQan# z5)c_ks~4YG85kI9eRdxK*tT6B4L8zRh?b{$-MxEPHrx<}r_M$n6_(1QtJx_@9ox0* z!;!6RV`qmCfJHD$+mODRMi<=lJs*h_ptDfXUpl=2SS$_Ip>_16=@I9x+CC28GA%K6 z3{hrXWT7H0RBlZrC}KoV-G3ssL;i*L$)gw!(ek-{aWBokcuBdqs}=8qi$?M49iNIpGNs4Y+FH=J=beuMFt|~#TSuuEmEbM8--xo zqRYhN{hlCmS~_SPil97g6+_!hduQ?;j(QGNiq(2rwF4{{6}D!k(_7&$`=w%FRgsl4se9OK__u;7j@JI|>B70+kkzuh z5$dp~p|RH}n`Tzs5|zy}Z<%WAQHtn!@tV7EOg8(^1fh>{hQkq=+OgByk$||$oM5}S zFD0iTt2BLw3NLU8EGkPnK||hbR?XRj$9j|QQnFCYW7+;CjPf@+o!gC1k2lwV)JD8K zgIFlJ>%!x_?``EH0}T$#Se|M4xC}J%lZ7|ye@8%hijo{H_0m+9A zmien|pEBXD{gbwK$Wg@Su`ohGAH`Cy0Jixj4&kM4c*nmc40FdeK-Y!yay~{6YGfcU zd11I7#QA(s`Ecn4&&+7Vq$3_kzAF{c@e)tmFi2%(WzsMv30dyS)#ZapyZC9==6Nyg|Pxg|yIHwxTvbpsEXN}8SWM$psS z=?Kkla(n1zGeLMnKL*8?I%J|UcH>iZ?u5izTo#-RAD1W+@t$}1q+82A1}*jHu7XBp zYV);Q)C_I1ki__(OI5v`XgV%GFUl}C>O9HxqFwy^UYfILc&Tl&M1dw!;MjlY-2pT+ zDhbqnxYAAIkMC#RiTPqKIRgHOW|MlGXW|=7Q{N3AEN`Hu;Q#lXxzY5-7KhFxB@w>n z=L(-Nb2!HE=7FHXpQOGl=SVC6{7gcHF2CdGN9TUT$?7>TO+_+=N0;Onb<+$NQVpap zeJA+WBihWZ9FYDZy}6I-D^08`X1j{DVH!YLoCh%j*#UU*O;uH2kxIOsL7rd=+S98` zF)XvWMJZ%UGJk~URgyaA*TqGO9%0H?su)Vo{G`)>c9^*x&yVy;KN*V*!vK2qR9%p& zClUvrNpGl!DL{anxw^Un29hG^R~Q%>pHSLxf5@d!)$k){_B$ZT`Ci;*4}7Tv&KPBO zE+q?fzbe*%N-JMv&vGr(<`A9|O0A4KqlIiem)9JhOhlv90HwesAc>Z8d(kAEE*dV= zIW$zpS_P`wGR)gT3_q7;tojW;5=Z?NMd6yYNGlE9O|8hxk((;TKsp6?vLIfL{{AsL z8xJzVMdF^Cs-7+JX~Ce~cqBGz8x`SUnaDlyuR@d>&@(Y9TUxRJ83!aLx7zp-qvSXJ zL!(b$a!*c95R+mJ4GpYJjF7Ah}{(B^KwG2`+eA?YqNvnnh*%?-~9 z-@>)N_~gUA@(Lpo&=tdOXo%n!=+BeL2~^eU-yjGTV@qQkv4e3b8%AjE`mJ+HPveW# z5gj+=L?&kP$}%T1X%=Xf0;@m-)X%`j73jFG?PH(tJa}odxVj%snn`oTiEo$_lZN&6 zE23g*p7|IrV)AU3g|W}~;7l^RN;#1!hqPpqC~1oN?{$oPk&~#f1*4t`5=LEkwhl}O ztDO96a}x@*Hc&-cf5=C!vx}fG9^#j}pC5kVPyYVe)LZV)Cdcp7)79TwlLmTDExHUE z3OPLq#e6Y_Uj9Fjxd!Ped$Oi5xt736tLAkKFU_A<>LnJ2a;M!h4fw9ZIt&GKO}VN? zS5N9q{gs>q1(>xDAmwu%JCJ-nyq(bsxVXIvtBX_R%L}95Z1t++0)I!}-Qxc9)u-!B z9l{>3wyZ1$v4h>=q>fF2w{K=$Hu;?RhfSc})sW`__Q-okEVW1p)f@lt7kTckYQ^(WSzr-?hgBOhQWvUY&On5}hVN&OwUKz5 z_HtvCJ?QSA#dj(^Eg~3P`qrMk+zAmr*lgD)-MLF|#wfPMur9neu~rhXm$4hOp6_{- z%$n1Z@~j<@V;S~nO>OkSMC#Zm>GKV*?W4v{)CEreggC%_mtS*={Jhacc@UQqwVX0K zL8pW1{7K0;pQ4}q9uVNOkhI35YzLRuF!r&!eAkfQ()<(j>oGZQ>^$)g6E<_9vZ}J= zzw4g*(?j#zwpPDvHT=dNrNzSwNVLr&c^`fj3)u*P4`IGUE-G8pNIEdRBZUdxwqFcl zM~;q4MGVIpYB72>dDTGUf18L7&dS4|3SX*!+yY2J+`3)rA_hb z$4%<#KfkA5_3KXo$=44@4Tf-}lYO3*FcfVksD><8!5;Bs+0S#+47kU@aS1-Bj<`q6 zFd<90WSDh_4wxrQ(niW{4}Z4bwXU|%>E#vQ_NY>CGLy<{3>}>_)S^>+#7;@1K*YAV zVN70vvuW>1^GFb}el0P|`DG(sygaMPss8N&^_PC$SFn?Sc45-h_n0YzWenXOs+lu+ zuGe3N`P@K}4PRAN74#Wj-jHTLmkE$pf$Mw{r*WbQz#-0-nlJ%y-7BUR+qaV{ZT^gS zO&Qm>@??0cVJ*BVRx}gFi$Unt%*+UV6zUkOzndyX_)I;UaqOJ)*+#wleJfaQ3cS+{ zo|myePanr!Ug^IhMB;jq0!sOtj4j-NPy*PHu;7nvWuq5=&%>^uT z5rUtA(|#EoG9-K$%l_>Ce{8W|Sc7X3papqSFGW8~XcJ&kHZgkqw?VDNY-{0#g)*f< zBcR!Occ6K6pY}YY@}e@->uc;1UN*i^&Gu@x?Xd9ibj|=eRx19JdA-Hcs^Mdo;2xPB<|u^+CJufLEB8x>Rn`h|k!7xs1oJ=%y&ou>V(u zi>28ko`Oa$T%KQ{D;qY`g|6(#;q~dt$koqu8SfBONHuluVV_?911$S;ZkMTVrO1-hZl0_l*@4JgA;eEA}E-^832w7a2K?q&b>Ui5Imp^^;q0BGj;(+$K% zX-;K`>d@=rUZ2Yya$+Wdyi1Al?14U?j)IG;j*7QEa=2~L>fxMyFfpYhMww*qAwrRg zEH#iqtr39+4)}5+ptY`}vGr=sz=l;+>n6hz1I{g_6G3CP@}tfcxcZ^i^hagr=dSmk zF5JX;1H0KE6}MEe7Jg5m+jZTDh>hj;f5tbsPX4t6v9sjeKi%2g?c1Ag)i*Yd%*kQ+ z=W`%pQY4SE3LZ?zD6@yW;)P_hvlpqUsvZE#dI|WjneGFx^$BvyhM-w5)GUq~Xhw2L z*z7#SsLFw-Vbb786+wxjcCL5Vx`U%LY4^2nBN(zXRPm%+OVnZVjS*N`t*kZ`-RWnf zq@=9C*GyJt%|qfzO)g@VwwT z7SuLhczFqeDRu_Ipn;cXo?v6B2cUBQ6g=BlSwYkinbT<+Jb`QUZ!fGInTL>K>IViK zhQ7i|*knceYbx2xR9#UHgLo^@XoKAmu$Pdi%pL}I2Wr>+K!12Q_;Pda@=h$=OR_RGWh%;9NNrwhA4 zA(R9()L+NP!+w6SA z`i%_>PwCYDWZ8_iA=DNxS8$^09^udpIlQbgm&$8cf40=+R%v#|C~E} zX4b67x7Ign?s@8%Fa7zLo!>ozZTq-V@7v0@pAwDAQP7m6kb*m*C8x1Y+4I1SO+2TX zc^&v?9zLRZ_z1G+rGsCsYwlS^wx7CV#o&-bPTl_Dv|;(?&Fh&QGp7Yp75jmxR$2cvb@^7o=f~`slpyrrN&%o zY>A)PP$`FF9zET0y=VsvQ)R_@ zH^%v>n^>KV8CNhYOwIJzD8U8BJFAPaP}JIqN7z_7%Z->EP>*?Q7k>3c=ELy@LkUs#@5!1?-^< zh&}fOAa>Cv&jYrPUqFuk53pU>=pbTuVbk?{0sO%Q1Ro%P7j{K@>PN9I)i21hnY)){ z=|wg?c&U0}(-+a*SML}B*e^-}?rO{OYF2;`QUR{Yj{`Y;=FpZV9z2+KEN^c@UdYG) zdq!0?f2_&(UOxnpE7#mYHVm{YkKRH~8wgdZTS-+eyOpdNf+&|0ZY6U=#dNvm2C{kx z0$Dspnp>_V*A5PR`Ht@pH$33wC46JJa#Bs2r@l|_IPi0{8?9;negk>@fcIF_9C|bP z@_(`Xwp&R$a;PLL8x2`qK6fWMhq$u)PW=AhUF4+l>)Xj!M-&&1a^)Qu+jSSdn{vk8 zWOZ}Y&&cM%0WB?9%A3#LO&;jhBLwiv8g}_bsk}pg| zJ+G;+Du2I^JpKIV&y^#8LB8_>=dUcgPA5l{#~&a+eEuufl%2mM^$VEaocIvoN4}(z z+Tm)%bcNeq+4>vu?tO;t`VHB&&(Oxl$g9il-w&3R$9_vT|NF0hnn;| z^4PNGktfJ2NqPGd<+-?i-ZBGvu4)#;3`q>%R32A!X;^$f}`} zy8QHSk4Z zaN~h2ntJZALkHLI?^x@~lgkDd?RUoKu2?>3u2??Yy5Xh&Amott-=$yNdffYOJGQJi zZg66`==Xz_&4x3EPi!W)m-W{U&zMs&1{+(g5pr~_v*XcHp!i7F#`j11j{a`6v_$27Zc z8a;ry`xi{h-QORc`JO((YfrA$e#~$CXj=Q)ic^XE`K6a)NE=nh%#!g+$RJYNERfu| zWFrePHkUW8Ry9>Y2_-0FLgJ?nCMRvRPTYB)dGqLv!z)Q;IHlPLFH&++7~@5qZEcLQ zT0uM4+;2xH0zERzH&%^UugJ1z)o4|@{`}EvDhOZ_hoKoQ2Q7GTj%G`3beRVH*}#}* zjn+s2P%5QsRRfdGMVoxhvvxIy2@3poY_s!`;ipNJ1621~ifE-wItB-$7;m-996gBC z>Cr2(&dUKk&v=F4?kn;*}gCm!g&?1ur$@LFGEQ%(9SKanX5Y zE}EFFwOl(%C5#SJCl_LX-YEc#SKc&S*<5tk=nAr<&ogawoU!S=3pbwmrZ>Oi!oKKS zI=jzWYqy+S>fNK`-qNF$?sVsg*G2~h-D)Xww$apR2q8jcOwOm)o0~=zW6n^e65?;WnL z+M_FNSx(YO7d%>I@KZ{Hd05x+sTPu%#1&I1QYM)|8!H%@G7^FD(c07jYtADl2wKg+-r6~1-n?fX64`%S>{`rV*f}#iYp_ky2E2 zu(`9E32jxR$#e$4?5(5ElN~+2p-aKi7mrJ4_nB)iwEEQQpast$#NZMIwc$IDXtSK# zgbHMJ@KawZgV0ifMQu>wjB$o5%7aY7$`n}wRzD6?7wUN1YxlMb=Hg9-nc-m+VszsDE zp*f;fCTn9tsk4YZ$vpMl)Je{tbHWAgsi?JPZJF>P*BSXA@nKD7WzSI^#J)|co&&Hh zI(uYe$F_j|<*&oFRe%XIuf4Dm|8;Pj>R=S|U8V-ip!3TdW0@NyuR7~mf;fblN&yPN zQu2ZGvS<6=3TC~*mP`a{kr;yuHaiqxnVC~rvU!~K3GOuMksHee*NxVVm6eMsn5cQk zT6mca(p4L2$Oc(tuR;(kx#r@xkKQ>tKI)tjxCU1eFDN)7MOvssz$=0hoy|Lx^|;3@ z#Z6ymE}h+Hti34fQ>sImz{`$-SA_K(^@|~cM9z(jNdE>Id_H3a=_Lb85mL&C>fItx zB0W(VEsMTG*&GFj0lYLaBnSyS9Z}#=&MnU-JKklYjwtpCE>9mlde>Z!*s^WKXmu4B zxUNi|vIN}Vwhvi?gVEMV=B%DCUlGqZm_)r6K~joWv7k}Hpr?sRrfK=AOsv7NM8X6m zvxIHHoe`SU(`b=erdhvFXcvurGFx29ii*s1u6dj5BnNL$9`!i3?2jhxCr$t-tQ}qi zeYP&*u?m(^ZF)zVr?t*XEy@p7OZ{MT8zc7;?7`P4)_8-1QzH=N=POr_+)f9*f4QuD zVJ#44#dvY)f`My=Dk(uGKz4)&Y&gf;o{(DBy6G+;7EBu@)(V4=b1Z|wwy%y(&;XWU zTyy$k!>@u6_PAszLVAL5pBmR^s(C!Uxkn?~;mLw~2c{9 zgQK&~>l55sa{l7QI7kGZKPMy~Wdv*j@3x>;z{-Rr%39*Cg)fn+=Kd3L_gW(poD47m zG16z}lw}e(9^Bc$Y+y|V zinqQfT{^qRQh6S4Ri8@bwzrMk(HnP8+98K*UAE8O!+8{ zm&%1yT#?L%NTrlcr5Mxie0_WO_3h;8pBkOGq&u~T9KUq^!05d5E zb6POj_8&79%t)P^bA!8i=N- z5ZcXlG*icfr5k%_NaL*N7ur@#8GcIZW}=xXr`ABH`ch9`zTWDo;Ec-IM$nN`B{j!e za~;`~Gu^-2Z{&IlaA6lJYRj2{N;B!0noUO=~l?tcC%y1maYj_a?%y)HDqZwZB*|%)UxUw)_|65Ou5_4nBMHN$_C>+xBWNfOO zqR}f{H^uiwdCSu2>hgnz=ieQzf6vees5F{-9@JL z#cO2eMQ2I@m93Fo*Pko&H<16E*Bwjm`qi6nL+;oL|JDB!{OjTC$?l8KjQaKK5%510 z^&5f!Z9i7%Z|uBE*EbTtj|2Z3TO-$Y?4E7mlx8I)0N4e-a%3 zp7j-!{pY3N&r!c?qgZc6{IcNxzZd+MtbgFfZAU+F<4do7o`PU68m(p5_xyH!FX?n5 zpL*?BF#>uhZTj}V-hPtoX}DFoK6w&#^FESyjs@5CN<;S6Kl(@VRwC+W9>DMW9w4u*#~&bfj2Y#1|AXYBddY)$?CRnB z@%YXM3IEX3WLx(q_mh>;kFrIFEnYaDy@?pP6nuaCVRB0YZnpmUBUo_t8;>9)4n0I( zRR7@=dB-4W2U0=?$?99aOg?#5R2R;?RpnR6=ZEOuH$*V$Zh4fjoiFaAzHMcHx>T&* z^DXk`=PX_LFXXZ3EPeQK@-uxmwXL$p$=VM-y!Sav*F8Zl-@4S@{RDYpTRr(7UYUQqk89mk|UM8VDuODJ1-cW-Z_`KKPKw>)PIqmu6wqP zR_Zst568UrdnBI~c?a?xq~3m-ylD*WKX_tvsIH$TJF7lT*19K7lNXU6!bg(P=YPca z77o0+8GYt#gnZxG5WV8}zq)WmpR54(7q@mieuf~ljd*9zBBW!C)OG|%=VjW&1G#8((1sqvlddry2)`4NnH+x zQfC%Ac%QkEK2e&PUwl^EpvhpBlLMoHqGuRCz_(Use7yQE!VK1Q2NklJS{DR;p+42dX=YFsd7uF^ym zCJKvEq-bUGGDytAFs2J!nw(>Y*!n10A9BbF7+!JsZ8uzb)z82FjW-Mh;a2J)L#-UW zq<-a!=EBzxX*Ab6XsLo%$!e)3rzJ!Ljb?#b>r<57H$OH$(zL~@P=a8QD=K+_qYVuJ zQ&LzoD$YGQ$5e_smjW1NTci=%TcLxu@U4(RXTQMI0ApHz_SE>AVa9)UYP`2Kn4YST z7}Jr;bUMl+tdTTgADuYkOiBbWnnJ|u z1s%0$1=};T&Tg*DAn!YV7uZs4DzDrCmvmlIK(`bfBr^b-&PW?dBWr0{=0P^$3=fk{ zN+4aNWL-cOgV9T*EV@$JljGgposW;-Pu2&#vlTHz0lAghoY`Uu_-gAT0NBr+St&Zl zmvAu%;e~@j7)8&f<2)jFX37k!hwmC+&^`3&@oSnkq{JQfC=OAePz6r|9EXIX@kvf^ z##ks^MjJR!ecdX-aRW9nMD2J4A{Q7tGjo=!dun{uTZb6;_PNC$drw|@bt^c0*3ad**2o0SPFu(mOClw8D|Hy#%< z+N13vL_M6Z*abEQ$8(Abu)@MOka`F_# zrB5$nxlKh4nJRdO0wujbLzDu=y$)_67@7oCOoxPr>UD}XbAO$M0P z+t(V_4zixrwF7_O?44xJ61Scy&k$_T!YTkAxAGEdu!vH=@d+5mSY` zWLTzBY~Tx>Z$YhxT?DYldvn<=Go^jHanj(1Zvn6Y?hAkoGXC0rls1W5)=i~N=Zv;M zYt`3OUXTYZS|{{~!61zwEdITRnCVkp&eBHiC2n>@-y9WmUJ6}`ba4T(0sn-ppcx9u zt<*!NdKO{>8l^eJqG!g~$ap}))G=7aDUw@3j~KY&&m3b==&TXmn-rAHPWWtnamM1M z=oOdq=$to>5e3YkEublS$z$;%hk_blX(&a+XCOAjxgKH7k#>;rM;>kVOgKI?qlg)r zWJo^Xo;%>oA^L6$2b5Xbf9##j!Db>eGJ;n*b0q~xUADmkby{=OwneU(H;lFm?EN%=dy^(0p^RSWJ8Prvis4YtDF01=avxH zuhF?NuSD`3VnmLd87`554>4Khn9`A@7^szwJtzk2VzBtyE0ah7pc8Tr7<|;yI2R>N zGIBu2s)POFej}=0?H65EoT_IJk&Tzd!)l@?lO;IK!GJ-576sQ9k`W;Vfy^XtWcB<# zIb46~k%@s3fk9hL4zxs?lyg9BkW$*H85MCGdio7nDaruBd1HM{&ZA9ICmTf!S)pK* z>1}Ma)+I;k?{7)BXy(y>M=o8F4HR0VW$UKxEXLM&NjYo7(o%j=6tktC24fI20~ZCC zQn0`kCJpdg)>dFMeUOl6%E50B@r5&QfGn8>6WRE?SjP3sF5;C&N{HlN_klYI33) z>5^Al*NtX6Ss64F>Ga6SaS9Sd8&nx@+Z%J8I6pQ&-TE0HGM<1TL*pHS3^u5II9Hyt z7^&MCUt?8rB*XR8C-SJc+mPPYE=^8dow<1V-1!SLO$)snt@2j=!%@?k9xX+yWADr^ pF633+F{e@NCy delta 1991 zcmeHIJ7^U_6lI5i8iNuP+bplpCL}X+@BFN_2>6MO_~8-m?9BLt7b3){DH8G1r4U8f zMg%J>A>E=vN=rYTMZ`~GA!w0C5d`O%6k@ZTRoc6kIp>}a`*3CC!OF<$>s{hvZ+`JY zUtXOA@DYL&1|xFIL85X#B$rTFUvWfqDpXatRSY-9aPjp`sjZHHXi`-HazIKkddVro zlniQH?^!Qywr(}6>&2QZ4mNXp*~`bp?fTVQHdUgv6ok|=n!(%LYf4@#u-ZV92Ak1O zY&j^Pa60tsLsvkL<+hHVU2bvU7#{3$b&!6d)(~(o&uTlO+m~LI8)xB~R9n z7LG)cx^iyoKI5tsdGJ+?D$5`#`w?^%6bPZMr{>0IcCQ$t%8=lBqD>YqkOB+=t%G1u zi_l~ho)%>rX8mM?@v;rFKL3T;lDxGp+MqqRD6RHdTBkiCS6mCQ1OBIm#&U$Tl}KJ< zzBXA$;FE~pgwEM<1NwKfGu8qsEj{9OxX{cD3Aa!M+g zFt&`>X!cS+&QH#FJAaH(q)E6aD=q-D_D-V(&Apc?r#!|jV_LJHCEs5^`@u$M~YG#w0xxD)~E{{dh diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index 5a50543445f630c03f8ce3458ff16a5f86bf3e91..70136fc5b7386cbcb4d429734726f6ca0996ce0c 100644 GIT binary patch delta 1770 zcmY*ZX-rgC6!yDs-aH`UAjmqb0##8c31AxwcnhOG^rt6hyEZZKGDD##)S9e_%}2-uIq~asJGkbI!M%@7_1`zP9JS zW~ou@mE)Ek_k{V&l9I|w6BfN$kdjnfkQiT7}h5 zs4yWfIp4umk6i>$Y181{YGGwr@lx*c%mF-T{gA_WPTK}on`P?qT**_tx@3!6z0&}H zKFKEwYGA2fX*WH-DV!eh3*lFW9fKMqOSknBKjN1O*y%I>`3U6Y0f(W6$lhdntYjQr zIoK1Cv>@nfjN#9MrYVS{Q$uedp2vpy6FBL_h@Vu~YtvI$Zwo@{qTz>;Nn2x6=)^HL zQ~-NVIM}7=sTFh`=fIR=F+s0+4zvxjr>``N}4-nGcrvM65E0r$uS9^ zaksc~1z*s`m02XCjhnstDjcj!0maY}l#IS!8XLdK(CR z812iqI3M_;Np@;vUW+TUVWnZU$Vk1aQ%BR%oOCS)ulUNQgo?X(WPt(wqV>+UKzL%TN2L@N)gbt&kkc^ki#Fq0yA zQ!}{;x@P+%{J~>42P@j2I{cv3gcsDsT5*%sv6=YW@EF=~h~V+-YkBWDP4I+w?Yu}} z;d>f=iRMKlNu$OhQsJNv_I4tepV>D6EkdtL^7JaaO+z-@$OuBiYg70;``rnN*Pmlv z#kK9=^bjQT8|~#G@~CgL`|^2xUk3X=*Ev?W4H{IHUsUfgFv$3@qh*M#Pev#583F3# zQpSRe11H$fZJ3OOqM4vY!4k2+ihEX6G5H-JDm}poS+210Rmdi*72OXD_CcsP?*$O7 z7row?&c;O8f4zz8&<{9dh8}RE2PVO5AD1@_PfpW z_GB+kYaK6v;lc7RYG;GoVt5k5Yu@=o?mB>+EW?q>m(5Bh+ij?e$ zLaHH&bWy;uUd2Swe+s24-ea>`unH%2zq^qk7X64~71P-V{W8iNs}W^chm5kO9Xkn` zV>K_x{0{7Q*NSxdj-jU2*%zeMxq9WH7c;ENA-h=n8)mCGAg*1(yDEejejQsZ+AsQC zfVXM&pIh>18`;r5d3!F4=Y9A{(XN_Aw70@XY`%kT1=kHv_=_FuM=>&(|2@>BR2;d7 HVvqj;PK{U$ delta 1784 zcmZWoeN2^A9OgOieeVkjTn2*3MFj~(5&5{607<)j5Uu6V>QaDGr$_-@>?Xqzo>zAZl~Ho-pM9+Mbji?hck<>eP771(1F^XA3a z?e?Vj{CV^8xjNtzf~Rz^X9Jz!Z>0|`x%5k~o3v}InKpViqlZqjtkyI9fn_u?!dHC) znU@d3>6^ZN2;ez>8BhbA0nSVGuq}kP1q|iC3_1jLhz#A+L%b~@9p)fsK#@1t)fx<| z%Qnd}Uz!qVLm*!s_!-n-Sv-|xlwv$B_w>RDS{$?;k$j+arh+K?*08&X=E=hc6WC~W zXou?fZ~0XE&WNvRWm6)piLfAtmxQeYX3^f4o?|xe4bLXXrKu5_DB=wfUnwY~^TuvQ znrs?IeWKd2nuXROfo9C`CNn$^WWrFDQj3s0^`te3m zp6Ngs|3m)CC_So!hSR0l4vgj^d!-+V(xVPqTIe7P`ay~f_{q*?1m*G=NoyDSQAdy` z4cTet0~dxVSi_^=YXPeG&Bc2O+1TG#%deKKBG|#xOIyua1LQ`k2&**1k6TwxR!C!i zT{CT6-H6qOKP45{$N{(vnp157=bI|0DcUi;`JU=({(bGQiguzuQv47Ts9xD&Oj)== zQ}8WaTzy2s7>FsGJ}1{*h#vzM+~modgB9(L-oM}MLM+}AWkwfmU|G0tz>MA2Lh$6@ zVtL5U;{-kY`(57=DE#1Vf1+84#MrH|pTZDF`}SOfm0xJ;0Yd2MPqWBKLg&s%;4}Am z5E8AQ$NXa)-@QL|DB}6!&Z41m!?U_uf?;*<}D6RZ79kDO zMCo`Wn~=s1Pec~UF&X+^nI!d*+t&b(>s9n=!69S&s%nI{PQ> zsF#zT-G*KdTw)!2q*3QYM-vKF_=|`ZTrwd{^c+Bx$sB8zfTLMsEBu+m3KP4s06{Fb z6=yuW^;Ckz&CPhwOlQL+QOvPk)lytJ;{gia<49LAh2^zl1>vr#``S@~>EgpvC{Qtz zEqo|G_aH1^19p*o({<_6P+7{sy+rUhDt> diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index 5bf2c05941096a97d63a8c5c9bf7e2c03955ef83..f77204522378407de52a52fef51985055eb04c06 100644 GIT binary patch delta 62 zcmew){z-g8BBNnWxv6PphGBtzvbkwmvavyGs)@0Qv5}>*nTe4>a!P7iqEV8Oxkai` RT55`6qFIvB=1GhRTmX9+6FUF^ delta 62 zcmew){z-g8BBNnuMsa0&j#0V3v2jwWaf+p(xk;*tfrWvwk%_5gQc9X-nu(!BQnG=G RiHW6YN^)|_=1GhRTmXZw6Epw- diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index 5ac808ca0a0bea442f1330a7a076fb79f5fc8077..db3d1d9990fe072471bbd636e9b30a4627142ebe 100644 GIT binary patch delta 68 zcmcckn(g9iwhj9@4Rgv(O*1nL3-puCP1BN%4N_B0j7^MN5ZVS}S{ggH6M_Py>3TY;Eyu<+ zu1j1KD37!s!9A6BRnjydN>wR|>>9B#Ezl?*Ncn*(2qZr8LNpCRD4_iCQN-Bi5#JlZ zT}>+f&WClqkJs6Ay~dbhj(Pp)_t!uA{q^Vnd>uVm|VNy3zOU|LvAPTD@!Z>f!B^iJt%Da7}PWLpn0LaNnlUv*8`1=MG;x`ugFG zqpOeHIJ)JqeoJ4tn2zjPY?7ojF_%cpTzI05%t}TUt+C2^A4fM|`pxp77cMPa{NxvY zeQiUHk;FLTy`>@(YG{sHYZAF~F$zC^U2#zVy6=4Hch@$~6ULP!JP0O4aF~>!-dLer zh$74J>xzT=*IoPAgKHO6OvVNkl;naY=VP`x`H+OPQP9y(UHV*U$n%#rUOe)RyVo|J zP@9QVmMJCzLu(u3oTZ#_E@TjtTN8LrhB@3?oCVM0 z*OdlceBsiU*ET9UlRT5gBm)!(Z}C?xO;o{?5cv32#XZb0IyQ_t|-P=@ayT{j8e_Fq_FLwCiFAw|g zJb$X%(*A%~H`lCbMjtw~xoxhmZbIC5K3Uz^J$$hGt*X0GRUiI|Y4i@!kJO{x`>yC- z-d(*ij{A1rapH=%GUJVP_rtx_Q*UXN&-~<&T17|4><8Mj_f??=Qf3dPT{>EAA6i1m z<&T~^TJ5MQSF=ynv{yb*rJ7PU`(#`D-9M@}clF`w{e%CXmv8O<<$>xSCNFOfoTzrR z|N5)dyZfn6o{pWVuB|cccK?a$=laR^A79-*d7|R|MB57|adQ?vRefqay|?j(4sTG^ zE3*j^7U&-FC-9e?i*t>FUcr?wc0d z)1RsS>g}$k-+=Ay!w*&u{8(@3e*Ux76Q6IJb%QJ0Z(KF_Sa;jH!T#a+xx@3vhZAtT z)V=bq!TDkXz}omeb(uoeD~l#F}?$?KR5l?m%A&j8+=7J z!V2vfs9kX(2+3f2t+}>_up9^z-P3ms4i1}~J&{y%;sX;bN*}WJT6k)ilQF2SS~q;G zY61u68lANx7WAtfOTp=6xfM|{p1S||mBA}jF=+eUL-lQUmSS$**=+qacjRQ+dSgR& zkuzuT%()9Z1>_SfCo)WqiL9fvUMFff?_PQxTiR%ce1o-GCy~%-urgS!Lvl=M9-Qnh zJXL?O+G1h=TRSP47r}5JLZ2Ua5?G^cUp!N9>>mG}!Pl#%6t=zYgF|w#6m|K6wr(A- zM_a~?vMCF!iC{8WNTn1ZmSZNmd-3(bfnk%9j6NdgF-nCY#5szjqnIK>DDG&#oO4x^ zX|i4koU=~CJ82R!E))XK&Z=ZW_t4S$Qngfw*`7Nzpv92wy~hSSmPqE7X{`t&5z|-3 z8^-!0F(Eo{y5py7Oh0p|6vh~?3K0+m9)#mmk||qhneg3#{~CO?I_pnT`{@3= z@7;U*&)$05y``(Ta&&2Hw%)U|z2nkg_oeG;Qp%n>bsKBysUv;u%2YJB_9Ki3Q0C$6i%P%S1Kaa_sTz>OeM zJAt1;svvbxu6=qvM!xpfgTJquLU`Ri@_Y5ZUsyeINXxGyw{(iIq%5Tz-;G$371>8i zBac);l4MJ#M=E4YP@M##vzIFp^g{4G&<9mIXEV8xOU7{?l@=-yBU0qf;Nl7+y`aW& z*6-886k>(AZVa)e6t_M9dcC=QK@HcokDaTV#Vm!=)Mp(c5ztdMWa@~-?(1xFcl`GH z;BXQ1vCdQFv?n4)>IFoXjSf`dy>IEm{Slq4KMNkfGJ_-@0K_$x5@eykDVZusvkG~F zux9nBmQL2PdRU>_Pn;WU+a<{^efXB$C+?ZtJcT*p7^rax3<&Tf&XO|#xzmiP31KW1 z>Vwvu$C8#_svoY-7LMpms9XJxI=2#arR|!bZckxVY_fI-9^p754Qdh6Q4Ro}}|M zm6c+)fAGzE|6PTU%aO*w;WMa37Yq$Oy0{?7wZbT(L}tj(sCLpcnHe6CvtpJC3*wq0 zr&-~^KNMeyDNNbl$!w%_pbdw0Q)YrSG+L)(Hq`qm`!}f&bbL3rtQxcZ+h+&wYoGX5 z-83|S(hX?JI4h8Q98xg~A5W2hP|w)z+;E5^Av9%~0*|OBO_nw}i+{A41wkmLHpyS0 zkO*19Db|6i79~)Qi3E--&pb-pDY{BAC+LE@T{UKV^jm`+H!!;#Ttb7%97;opErbs8 znj<@h0Q!oYx$fMlJ{y+`;b}T6oySV3l&<5-(WRZ50qfSnisA%VxPlCoHOa_jLfM|* zk~g?q-a;1gDd$V3lhZOpRHePdzzHFd`J@;_fiCS7SejS@y#+N$096igW3YiJx3xDQ z&6!3l#B}Ww&({0yD#cumET!ZWSeThYnNK1mR6r0x2uU9~Pz{JVBc{NjDF_D{MSw}6 z6Yp6xGM*JrhS*@INi0EUO5q5!ViL(kqoC4~0d=7EC%yxj{zbJ^h}k~9ucl2Y;%(mXdN;Z>&+@c5GGE8QG9w0Ep8qN2Kh~5<#;jZ1k#xWWCMrgcgMfixSU!Z!QjYEN})kFzxS=Bjh4_pNi_@Va>KVO|Koykgcl=0}K)nQe7~V29iB35rdZU02l+w`2HYDS5;JCI*GwFGrB`bK;_#XC9 zI|Wt@j%6=nrZO3xa-ONcQqcCl>-s=birGFetT!*A>cgC(lfh$VfQg}SCoGHr7}FuP z)q{g+?bsO9Uap4;04^vl7&;_~X?LFU9w44Ab@qIXhEFBWD()@u*lr+WK> z!aai3ZAm~vK+7U07sjs4xoU|bCu=OgdE{9RPef82iRV($7!qk=Ds1SQOZA`hM$_tn zCu=IjZNIuuZ@+=>63YCQ=Ydf7O0Mw||_d0LxVm zXeC}sS90a(!e+TQ&{bH_R0&!*V0|g+Av#3N!X~I5qlpS|c)*J@bfNY~GSITmUN|a9 ziN0nsaL}Xz2Tc=|;1N65?--O83D$dx8<3&+!NwT}KCuf+LEC@2VYs&egRdI1J$rq< zu*f9jjPj`JsKFX2$`Y_Lyh$W2_><#;e+k$TEF`MY=Mu=6JqAUH%2;F}XIkj|4U>w0 z2_He}L}(Q7hy>e{}?B=`lat#Rm3HK*M)k2$VFs}9y{)}~S4pG*Oi+DJ=rLNhu z$SNGqo7{`ieS8zNR^2Ue8CsC1?=-J+eLYjKj{&(pD*CySN8w z%N9bmkL;;8H}Ks_Ox&XYgz~Y@VSdO$P%oDEe%X{6INV@?bSt$%XId~=DjIf`gHM3g zFQ0OJlLZW!DA4ir5hO#LqVP6MNU`_g^{f^t1s(JIQXyu${`UG7nB%D8oaZPAy&wrh zgyuQSBjP0lRLax&<21Na$`EBCxxxH_qFDlq2FGBLhNdDGB@0Du20KzjYy+xFI0l}g z4G%)Z3T8%NA?RfOg_!MkezD%Zn~7a=S$^`6(CBCwXcx0!FKJK1_e@_^|XUsJB{PI zZsQtL@klEXxd*W$H7`J@1SOGE0|&RIBr5Px@c|0r1Bs@oL{ktF3F=Rg3XFXo*Y~=~ zU2O_~=OeN2x%=$79&?O2#+-im8|xqb#`^PrzK-5~==iCFN7%_7ocqM1rCKCG4B<>j z>tnWAP~!s;LRc9?h!_5K-Cx`>Y~nkIAB~H{{|avz-ibf|DyZQ@ac6H^Gkh#84!;_I zru4`!=f4|%`rwWYAHMszyYs-Yd+$8(L3jMVbZ>C?#^DDKUN?O1;ExUe`p^x-R}S7< zZ)>h^-CL_S59y(gy{>O<8lFF~Zus|i|N8Lx!`p@nM>Y=s^zb#q|2e#I_~79mZ#Vxj zUOhN`-8c??xY{th^|1Ngp1cr`>{x7YE-YuOlw(YAPQ5c)Y83wGGnM^TbHzi3{$Mky3E& zga}$&p4nt|g@-P@aPgsTpCaSH00z#5l+1VU;l%OCk|S(r2V}$ z)&7dM)ou90w9hYIKvTZvCNgH`b%??5>{vK6dxzAHk}q9o}Q#-kv#Bg<42D`@yt>qty+4 zV=TG!(bGq(tu-NP_Q{&|4acff6TbA!_3g92Uu_!IhpV^s{(oM+W%Mt{s(+lkyxn)a z+S>lxz17v-(kDONbGo{!#K69dC?ZSQ4edFc5jyH_( z231YIefDH^W4rCtH2(Oflc%QffAwVb-f?_evtRg3-@@yn6DJm1rNiviJVcu64b=eSi=@9O_R% z_|I?dt#7}uq4zhV|M=0~A61t=9O1(^))Tzop}*}d{py=tT^T)fb?-lyJ>I?JOQW-k zy+8P_57%t&eMUB#r5J3K-clu^j3z3jgEyKgA1pPa=Wg%a)*lF^i7}pa{}VnLL-0^G z(Il3s)U7*TZy4RRx&BnuB&#X$#IP)+Fxk22EMo@MTzUm;j9$63_fl01+&+7--u3f^ zxM9n-X3K}&krQdlO%2&jPM^llAqc?~7g1XyxW#f^Bq}p*X$Zuz(Tm^0c{eIxyG{fr zJr_)3vqWnFLXKAA+iLX8)AhNkFf8aq-CsT_y?gICu={=Qe$TE0rDR+*ScJ6I$oeu z$w-l)h8U-~Oo<8(KoTKi2dqz5i%2;ll}=g*;UXlxWSJPtT?i(J5g6t3Ra1zlCaGA8 z*q;AZy{Uac_1CtKo~xSya!4j4G|f>8s6L~N%1+`)LxKQoUpx&qd-SZPO7h#{dQrB0}nMc~>C>fv%+v;vqjV~BxY1gA2 zN~bp#6_p_mC9X_OIAZ`G<6*p*S14~nD(D9#G5{$OXo5}(z+^L$Fak%Lr4Fd=%o`N! z0J_YS)8G^9HuL#vuzJ`jaTLPp_UPw&TWDe-gA2)u3nBgRO6+>2HA^d1a$#O;?9H3y>e1B@F~>pls=hB!D(b_ z%t{#Nts*j#EV-9S#WYpH9pnaFYt1P~8K4n8gid7fOdz%mg=%J9iCGx!y{7-!YH{_@ z;|h1}s*&4gpXj}%{lfD=8>Jd2on^!q1hE8MXf-&Ig$T;y(+bTJen})$Wg-G=@&PBV zq(L`^qN^}2YLLDmGxXe~%`PX1ci{{L!$5C<8!4A|Di;eer%)@!Y)?OrvL@7ay$ovx zmc%2$4D$}s+!$?;7l}w4w1Y05DyTwNDUbGjyZ1NB3eRS4hp z#ZVeqB*AFBT1<4~0R6yKBaf99s>~`ut?x>iY9x$dr`}P+V49?K5P+TBB<^b(2^p0Y1Csnywn6co7?M4Y*`Q{me}kVz%cF z_GklQS~X<5_dE60?NpQ9mvo}Z8QQ>w?7bEcy|D8Hx-m%+U@6#GTVOMVrs)($pb8|Xt#r#(E{ZZfwt*42Q=Y(xP9~~QqtT+m z0BNdn3xOvpw-DB~k1W(TY~QZTGHgLlL)^vyb_K~NupQD%8Un0Y@Hd%?h{6bAl4R3f zN8y%MmY`Tj$;+NDoYoS+O52(M%%V(FMHvPs0j(wCGxI@b1~~#cUotI;z!RfYpi$Jj zUWY?9LnA0?&Vz9)`iLm^5u+H?2@pNOY)3L{jn0ZFXvHO2SPI zXf*Yxx*Q4$%-vxcqq7|GQFa(e#@P*m4JdL74O93?rnKo4Ay3Xotj+L=Pn?()g$`SW zd4xfO0HmFtLE*K49wuszP9@ah>VezGf4F8%A!=Ge+1na4`GN#9!70I~qIAK>f|Vdu z(LPF6Ol4EjB;e=)K;}fu60HM9XORO`@bLc^{DEeDe@uqVcC5*>vp zt_nfhvtL2YDurx6bW8v3JJ@#0m#M&$>?)!E2waE6O_?y>4#<1;S=wmt zw|nSqlrCf?NJ=?)+0%uCT7pz*Lla10@QSvY%Mb&Qb{6~$1%)D-B8LyrQ-*BNNu;nB z22_rEgdCG#{1C0qFv9^3d-KorAFBr1quJp|R9)*A(vYJ!1ZQq=lS${9$tuNc7k8pw zl|r@;?yNU84D1&K0STb@5A)zsGI&2)nk*ohXIY4*8+@X*8J$s~J2Qgbb&j3Qg1nP* zQn40A03BG(30iAHMP-a(LJ8}wOdb=fE1?k2i_TB29(J6EgF?`D{rl>7H6)=;jcI^Q zh6tlIl5M!n*&~D-gAODTsA6CV{PZP&|c6ci)0xPvN9aBK2;eBd=7c)j{GawUG| z1FzSZw#^4#^MTiE{4?sAH=7T<<^!+ksBJ#*nh(6@1F!kO>$@jy^MTi7JUDA6?wk+2 t<^!+!!0XkAt}DG+X)?G3srkTbKJc0kyk2eYx)MO6z6*!av=r_A$I!BH8$aH=FOWQ&&I|G0iy|MVG)k^X69iaML=WF5JN;8 zJGo-9NhP9{cO1GQg@1q`wt|RF5X8bRq!MRu_h63`rWUqZSmyhEpU=F{kKOMdZ#;Os zvG>&}d;OO8*WR%=wsZ8Fov9TaIv^JiOfFR!1Y)Y7wO9@UyHB1ucktxY2RBBGR&o|* zD+z;3;yp#Rv2cztkl+3M!;ia%4&3cOHbyF$34WYL=#fU{|y8q*Fd3{U)lJ!Xo+cq&c zDxBIlZ1XW8r0Kbzhx@}Q2GwBJs9Z3)%o?K=qc(Hmq0-f(vM_qW3jLwEe- zr~TpeH#@^O&ySn$^Yxo`^QF<7Epz8i`=Wxlip9rbEoOrh+jX^z%h9p}kOi@bxsnAJ zlmxXJ(FobAgDN>Bmktq6PyaG}G>lkPBZUNBJO-=`O#=`ZrMN)R&)NOHzIJB1_h9&9 z7<(8d_R(O*E`)o}uWjv~zWdzdpNGR!BS`j6$d$waDQIfwB~~#R978M%V#%0jJQ$B@ zj#4$0;Kg!jyEAc_7_lWKWy`ssH7t~Em^~MxDl?xT*26F-)`f8I(eR?T#uG)e71Fi$ zw%@(FdAL2LAmTL@4F)+1i*XGP<={dNpbL^chs{au{5gC!-0f{|rlO0N-`=_O#w!*N2YW&lOvKs?66WL zOqN_sl47kP!orl;bdq^y>t6d0$RWW3&zy8Z!AG`D3}1z>autNLv_h8GPU4BBLSLpCDjBf zF5460?O~XUw+o@U^1{dhMIEU$kl5me(RmvPU2b->nio3tMMa`_U}l+FNI(J5LUM#$ z>@hPk*%C}{;puF9rATQ{qC&edYmA>K(qt)RdKl(>x)5e&Y?+-X*ezW4VsIRjX`rQ5 zL_tR_QgRJkz)<@*DJo*)Bgg_S9{R_ delta 3746 zcmeHJJ*b^U5M?FB3j{<6mipxt+JyJ^XLe^+5E~VO=0`|l5yI^5tOkM#F-i6b4a|cJIS^&tg)!Mf1Ja}a1&cREsP5MJ5 zVu{68s3~WQuKAF#O4NV!t*dXnJ1p7>m;YFsAbD|Av1IO0sZ)`X8`v6Za<0nVqeewL zKfibJvT|Oci zZj1AsEcu>TKOE<4pPP@&#GM|(JBIanhS0K;1O6^$D zR@VZSKL7Q)xoRd!!3Ff0V-QF+aA*mV>OecEba4RByrRC2TJZ_VNPp`Xm#W%o`ph=oqF-?@sm$K^ZeP7HuqMKy0(7i z=xqB(^YF7HUQ6~dNzm{JR-%9_R0v~BQA%%-sM!_!j0IC{wxdm&7%BtTE!$`t2aBz( zY}Q@MKDnrtECAf8_sAt#D4ksnX=Sq!=)z{lPmeI~>$5`1x?FS5l>t(u<^`+TOfyle z%#M7oQ~Kw3^W=evt#YtMFxm`tkqS0+Re2MtvH804T8W7Z5Q9bkZ{xPh}BlC zWI6!$OPP)^7hc=gy7vAN@_Gb_gc8or!e zjY+>eCs@SWGB!%KEt3$G8kKR(>SvD?N;#!dQC#Y zP$Pj$Qmlw;iw8`k^j4Z1ZH;>!HyYAj4~=BHw|dmIUB^u$UbBz?Hc##ExBdOLzu)eC g_uA{W{r$GPQ}_4V{(jqiqx@g&xB1D92mU(rFIOo=h5!Hn diff --git a/master/.doctrees/tutorials/image.doctree b/master/.doctrees/tutorials/image.doctree index 0a9d492a90b30e8599e4d8effc544df8f2d9b871..ba1dae438a43cfd5a99cb6c8556d62c40ad93e81 100644 GIT binary patch delta 44303 zcmeHw37A#InYLB8`*yPk-9oeUb}#$VbaVCvkWCO=5KxrF1vsnN?3rM{l1~ zr@mUg_5Hq6=S$bt-?6=Z-+evQ zggQow-BLn3aOGr6HsamA685ajSehC-iemZ({)s$ScP%%J-N+4XKMZxbrKKA2-VUz7 z;B-G!0uST!JjDnd%>hT*x~iB~V0wlp=UTE6?{4qq=+4w_&yGy2zorM z_-%QHBSu%U5$~>TQ>rqnSxTtdUZ7w*!NQ7bYPMn;;A7A6F=EkO$ws`pi#~l8CL1Z9 zrs_r%xu&7Gt`qB~ZkTqc`mqs)vFNU3Bi`M{9erxEx@tKQR?CVpOLXL-S0i#%BL>HW zo+i61)rfcJf61iO7}Gxg^#1KfzI<}~*B*4b{#kp&i1rCz-pwx^m{@}rR~-9kwEtpP zkM^(ci;q3f*na;0fnEN5c+dV%&86p8cu8-EO&w4>HA?r9T;Dzk^%T`2-*L%yNl@qc?i|(*j=8>Un)p%0L`dmxW zbn6N1vYMIIBp`3K@4tE+TRxNYV?VAYjdGv^*!a1m$A4zD7k3#hTcVQ5?aDP3C%V&F z?ACr{A-RWry)S8cA4@rmZP!S}`|oF5Zea~MmsTkwm#?3wC=(QAT-MTCT(;^wa&~p$ zRh=C*$pAKP5IK0VGO26xeG5q2@t5j3qp=4DlTY`_YpydgolGvcmb*DpMsI_Yq_<<$xnI=*Sd1G-J&>V0ashPB?MrE z4u0<{0GeAU0GeyDHia~@<>N^&Apz{4TS(mpMk6=kJx1S!%R7cY^1X)NrEN0)Yd)B6 zCkZ~eTP4drkOjGUJ}Kk!^1&=OdOta*>5!s)d9hj?hpj%3ob@i3Ax8h)h5bd-{R_zE zcez%_HrZrH;f(^WIUGl)r74rJbK#ALr6OUBdd(fItcDt^Epylxjj!ihKRo_J$XC#{bj@4WY9?`Ep1wwS~_~^n5ARqypub91-XRKHG|r#zh$KV z!3VP>_luR}Qc56+Z@=Ya_S_ZZ7CJ=SPFAszw-KvIdk$u=TuBB} zY#f%+Bukj`F*38dVEIl-=dS%2si1WBV8JNto=<=U=MCnI#jo}HKjemvdxDAl&RhS8 zu}ShV$wlkMt)8<7CtS3UP5U@mcybp`>L4=eDiFE0v#0B?BBRk$`^q;EWL!n|&|CPe z(d~bzs${!2k!v}XQJaa?F%UV(2RfgBX)~4yZN#b$eD76l;H!E8eIZ%U!*W5N6AQ{# zUrpNSAG$8)?~X0zkCMfF4m9_Ue~+~snPz*B(&c0z8*&o{+rO3zwUztRC&?sAm0BUy z&3tstwYg7UNB&Cbv|1_FPIC2o*Atb}`L%5C7CJe7nz+imT|_5id7s&KWpak}=U4i* zul`g6T{4L6s3WHpZt5HiWCz(qJ}C#%R@;7f${id+v2DlDBimOD%>^`Ld!7zxz= zQz8+3mTZLJlYD`#-cF{Z&*$U2mDA|Q4pq`DVPcRsub?%gt#gp%DmHHinO!lLw+6S* zU(iOLl>>W5tdPmJ-9)aVzmW^Hgg5(DE!)~aCb7Xg$yBb9S>Hy|%>O!rzAcw59gBAC z-koGEsbGh1C1cnjgAPb9m)FIjy)4Ef7VVkN@zC$qw(s9IyW*qCcn;2T3)gRr+(-ejMEaXGz$EFSXw|?T{v27~`B$$*kkI*+$0l5HoqUoT7&^ZW z)?hN7SSJj@d$Grj>Gq>aBYWfvh(YgRuY7^1Rd?3qDb-zU=oiVei2HG~x&6R_$_mD* z+*v1dRYBt~NL}@n-K38EP%K0H9$lq}>V&#_md)Ek&gC`%>(jpdFE)LR-;g@$#X6~@ zp2fKLj;D9lG4*3)Ms)#!yArt?z>b2;+V|}qfR&!#6Gr1B&Fq%j$h9fUh4sFj)TT^L zW!wK1+CVdN5Bw|XL#gF5^=HH=a{7QHtH*z1rWSJO%qFD}~<1BW`zmdi4 z;B!Qys>#+oO9!ww9^kZ1cJ%vH=l@^*fV|oEb7Eky(;kPC!DtTCI=1Io;5;_l`yw7Y z^ekz>Z{-I061nSm?QlB#^3O=?2do{Y zyi8u~)DE-QqF<6>ACQXZSEwR-_Uy^p7&()zyp{B2nTNEx8V;K;1ouyj=GXYm8XZmwsC|4b*4cHZ9PZHsi?C+Ym@&d$kq za)^=cB=ncUSxVPbqR(IC&ge~lL+G1Q-K8_~;^lp)PiU$^&Tfpjh^H{SpB|gtck%|n zgSG2wsoTDN!E~xONE}mXU`Ow!P2^U#WEs7dtvZG7ZM++^*|@XyUi`0hVMG2D&u9=+ zq^CEqSC&(Q;(3l>^1k^B7KWu0+1UQ{IJ9Gz3}-*zpElFY4FV(F2s&Lb!fCl)HFP4S z+ZqH$cp9JI#@y8d=|Vz3-@tLNdiM4pI+osn1^@{^&lU`(IetqZN;5_K1|IuX7xa8q zC2MOV6WF0zT1UT!*#PV0;BFnAK%Yd<9P7NPj((c{THKQ;9k5w67|yXy`YdM7QMxBV z84>Wt1{nbtkU1Z_yMvs{4%E^n+P_iafz^#Xz@~i~+5U=@nLDqMW@x#pxQfc2JB^NE zd$M$4xozmK()o9q{rohlu}g-~v1N{pH0s_VG|TQELKmi8-BwiueaVIKY~fJal(J2e zO`AbS8Y$uZ|7x6W3Zaj${c#{rfhepxSfWWdQ9aBA^ z5&k};vPOs_^Ze+QXWu`t=J`3t7V+P(0w2E$SmC<_#!^GqeOxdYjT@y%f>Q)%UDPP>!aWIN0WYj75YMM_y2Ul^i{L>dTbMG5j;B9s z6uRU^cD_TO>b&K+P~~rQ+}h*PP2@$Eoj}d>vvT<^nm~U`D>Aa9OD0m4_Ra8)dRAl- zSbZwHVFI1XdQPIfIvWa#LqtPe;4)jVxqndOr>>XHamDG?Z>e@ zGLsFN1`ReH!{8ch!({qv;>p`U@W>*5Tk5YfGh(sGbk=qjMCU*~ZFnyw_KQS`?VAb< zvEvxAZIajx8KK9>XL9?Vpo<8bI-K6Zs%Ahj%$-fExr*q^mdv2z+4wVQ3rEowpGl{% zsnb%`EHfMH4P0#AY8b4n3;`xWJU3AZgeEA@0W?SgJO_iE^p-e*^VBUpxqHc)&9aBoCjy3IGpyvP;Ldr!gy&Q?ul3z^gUw*=>#V zZOP5_SBXM+NwV>eGeUWe<*he1wDV+3f$}`JM|<0IIz2Zl41dK!*^({UMqTR5i|LER zMfQ;k=?}?THtr&NKK*!B=AqYSJMz$r6B=Ls-2nEti|7ctE$PxrZcIKrAa~Wpw6cPJ zG0WO+r)O70osUeU4<@ZQC)eIZU4FWUNSr(!(q;6Stnf6y3-Vn&&28-Ri0-C8&L)N+ zhB|yXD-6Mp+2$BdXveJ|@mv4iacktIbTYps6!vyLg70R9zgf`#%{`>QIc6yo_FzUf z&>3{V5Rqu<$J#c~k?i%Q^m?N4JN;#1eLTM{(=ByFq-EVlrXDwf)1mtINh$=~Es|5+~eTRANC zWr- zGE`c`rMdaNQWp`{<0={V5awSM(_ho3O0UvprkrlypXpS}@hir)TN?lI5_mv(dG*CfHr>C%t zEyJW`JXN-omT|JYn4Tssvg(JS?%&)-pQPsu1eLM%$Wu4Z{gi@z{Y)v|z zmE7R=vDXf|{uD$)n{TIcD$eSBVj{ghY5bYw8aIyxVe#M?uYY2=MEQ}|7E_IlZWR%@*sVd&`XB1 z9Xg<>)ArG+G(rp5t4r9U`{+abmWV8`*-xj@D>`nyy`TP^-x6NK{-m!{9;PUkyHOH& zSY8y|RWOvtlHK~pSFu}P!lH2K>R#qOhQRMGkVD{?JNyWJiqI#;%>=vp7H=VAzXylQ z?YaxJuw9df%k3(l^Brs#$F884o9KTebpBn^d1JW5uAYC4Hd1!u<2;Nr*@4G_0~@lwL5JhFXnfT-=y?2o@Ed?l#iilw$hUCG;!R!FHZ3(S zch3`W4L=lGCaGrXs|fynz;~g~h_1G+*9c+Ts^12GbP4{jAc7fxj}73_-&4u{C5EjD zk@?}nGDxS>M@TPW1UvX7-PSdqJCObR_o*oTK$XV;cC5r>0GsX2c0Sot0uhUdQc6utCArrOUs&Q5w_ zL1ef%s2A3G5&P=*=pFBWVAbq5hkzCQm)1lW*JqxiyZ)QV!x$qz0*6dZkCkgN@OkRL z|H1rMS>ve}02g#AKl%_DvbS|CM!lMg-PracpQ%YtlFM-LpQ+B2*J&9WX3~*#)(C0Z zr!d^8Vc7^c$RyVGFB~;LCzY+J=1)x?E)0BuIyT$0ro8t^=_6d0+~B5s($8qvlh$MJc&NLg^O1>kT+;fc&dib0mLGhLeu;+SUSi8V-ay*&IU}WUm^qRg2b2=3uhW@T z1ypWldydi-WE&%I0P?zFWS8vGr`XSaUtq}}8kuj&?*M6@Alu6y&+@WUbRm*tSXp7q z3&?#*lKY_~cPO9S@7^dN_jUof*AjBSIY#bKQF4z6a&*ur8B*7b%A4MeZ_*w&zezva z&^19eX;l6cTiBsL12kwFC4H5eQN^bBgrs*#Lhr(SdY^xb_FyN!RY0($)M8k~zQI5;D8<$yEQD-j+9|?-Wq@s-*BpLIIBpi}xN|c8ERu7rLgZKnNGG zbN)&f7P?;#NZF@M=g!UUP zT&!JJrpD7c+(-R;ztOv1O07@soKBlNuI9c+QZ3>M;d%W;bTdjgSp@`NPQ>W(RH~jX z7%jzU{%9da=YSx0vNo5cnh9MYZYFZn%3DY|x?r@FqjNwUa`Z>GCY_pDT|nmbUY$Nx z6?-C;s-s^>Xx%Dk5tiFmk?LJR9~&*B?LP|1AKld>d3dz+NOq6T^GMiexj#EGTJDkj zA(?Dvs4d9-AtCoWIkn%87NK@-cy;PALVBH~TwT;#DDEryh^ABooWP|;f8oh$C%4XL<-{1d;CVF!LoTPoIc zJ~ffNARpM4T;jUBV8l1~mb&}Uh*Uj!lQ$Px9eQMp;JZJJk?OmBWa?Vldo1V4#JBIk z4mzo3`X6H?%l%=D@ar*KQI%alWp{5GhFN2!deg_|skbd-Qu%S%g=6zo+u5KD?M=@Z zD|H*5=R1ky($TT08C3<;?#az;N=+g3%CRDFdf?dX3tK+S`ZT9jR2A(0N7xO`spCoq zek6_gJI$$S^tQ1=W9-H-yJ(EZa+_OHM+x00=%&BU>F&-wprn3J=o4dQQ1%rK;p2DE z0P)%rtX@y8!~eGHsY~dOlZ&~mk(wbM5DMdQ(aTt&Fbe2>JK4LJTqulxh|M_-=p*)J zI4^vse+EsiG+wt-*Arx)+s?%1@~ZlprcRYXn&kfd8PpM%?H()luYl4a>|YX>Rk5GC zDV_inz47AxnY=fbPH&R&*@F{O7Zdi#6wZ&mQ$5&r{_AJGQ!Q-Mq*M)SnwmO=HT6j~ zvkRu;&%aIT`18K0ss8Nw&b#mMyCbJ{+$eDNh?tXH(BfS#(O1REEzd8`-H0#X8<1*74?%DUHZwys1eh z=rS{qtek%~X1#r8s+Jv`iC;%%rYhO(XQyh@Jq^XNP4@WNse$a2@1geo$fJ01dB|)u znl~Gbsvjq{^*wQpiYChsI^Gq?W|bCIv2BALo`FZjQ#bObp6GaregBkH<$$D^?E=&@ zP2wrHp0bExE~oe5kEfc&bHN<^g_-n#ld=B$nKLUjYvA%#S6saKvX$|wwJW^!m#tcP z@#1yCsSpIcH^c4}GHazag2g4pp~-|+F;q3#EPYZ;2B>zZvixgk5#UnE)Ab`2+pO~rC! zBlaEqYxss{sQjEEPg8UIH>Q3|vLy(|?2$#Oxg}|`w&wDI*)VVwLk%pPbcJ(yK+~{7 zqzf!R(6qq9`3m!Ym6}(U#aJC2D&$3>X&bSo`x;J=GX2nWa9mN~s=0%|P3<6AjNCJ@ z9wtsQLdMR+EOkYVEzMNTKndJj^*(sUnG!_V(N!t6BuTd8oU*~}iAz(p8C9H_WV)Un zMuw|8o@y$-&P_(>#IBKRyCOZmtig>GD|S6!b#We)V|kvc#D1jOK1u=|fQe-Ta{H#I zH<9{4aa`N?F(IvE7r) zo0?5iUp9UGx=V&`+&C^f)KWFyc0(U$RRu<9csRET@2{$%ZQz(E{&g60(-EqRe4lwvgm2%b?g}!EKR^-_+4z3G)&&A7WD2_c9THTQw zFm-Zza#^Dj`943@Pz`Vfp&9zI9-B_+TY3Qb#A~s_&Mhn7N-{W|(A4=`tx#IJ=DUWX z*k0t=0XjA;M+#bFanh`6Rr&m^R-9M5pf zIys2K{IaYWLV+3u-VplM zbpr5&G+x;fG=0vFYNiCq#CYACIwfmsY6OKBMwS{HCN?3&8^JE@rt1cnots!-J`S8- z5PA?P0|!;QN*KV?u>Hu^p#p_m-9#FFoVyqpisyx%0mJS_mWlNUZQI0K#A*(E^)*tG zq?D*q6xoD_AWH3uh*s&GSGPt^kKE9{u7*p|ok zSHU5C`Dx6(5kdq(gEEDZ46#Z$s!|UWMe_~U3IlGp_K-%)Gc9nnV&e!I6^NUl>GhIevw?YMsqia#%_>mC=5zeQK;myKP z4WZ5bM8a?YXpBZaCK4H(_Z&lw0=(&uLnPr3Yl+eiAzVtN;T%X0ZX#>~6u-tNqeM8O zLu2z{WO7TMO5aT~#mNdGQ?jMVaw%(Qzwv@f_RVKfJ+nB$(}kbz`5p|XZ>qi-n30FQ z#bK9b5ZJl>H$q)xlo;+7^gk>sI2fK{v6l}B( z)rU|3H=@wy+Tv?)b&Hdfk`|XB$+qt;A2?C#a#~?lZLze=)^|FLd~~q})n(eTp*t#E z92^1)D~#i7^}v%p)4Z2B>lHr&Rxs(Kr2Gc5srY7D`J$v1XI3x2b*aVcG-fkOOsvCY zG+o8VaW1}&V{)C)aswQiV8B~;aQp&Z_t}`P$%)x#aHOp1Ly_tx+%OZ~2_iE{9)wGG zBj|VpV!KI0=mc)y#BfDm_%ziCa4s6uC?pgoy)t-VHB#`{_JgUi`uC=6MmO&-Kkvf0 z1XaE`9X_K5cSv;{9E~9(0q~$2g`uhIwgJ=ZtEL`-BccDb$W(Js0$^DOfg8^8g`$9} zz)tuOSrf4k%_hVUz~h44jiP_h@pZG?(c zY)st>Vak7-Y9|c=q}EoUigcV=jB{k+xJ6cgup8ce*y%Jve-tMwCZJ|Y&}1!tOf`*D zRkMqIQ#3?|Iu8BC@C_&pALjw9j>XUL&}@}?r^ux$XN`RN%sMJ#7=A=!tp~WPrOtJ1Lhc7^K2z&hSaSvxdnqCK*Q-UsQTa;F_adEO9 z8(UM>)S}}=%r3%aD>&`jQot`zyOwKvfZJ4!AAoMcu?=$bew8}6EK}mt@WhWSu_pxv zssu|4HaZ5Elv*e*War`;2qL%xmpOv1qRf^Y2_Yd zA7{P0D#X%3%%Ur~gBO(}sPPQQPYfsoN6Yi5!PS8bnJ%16oF0y|r_O~vmXKTts)^w$ zLDiCm3x}t}E}F3u0kkzO6VL>LO}t1D`F8C4U36Uo>?m+T3t+GdTqgDn+X-|NFk%?G z4qI{nMnQ;FqZWs7i(%0W9N!P85+|z%x(-|me68bzt6XY8ZhMrvlVnR!hZ5o7A|$v7 zI*#xua@D&^s)3xzS1!{p03?S%+KL!O1@Q!01 zuaZo0x+dE@vkZ`Z36iYp^s<3j4h@^04R8P-ae%Y$**3H|3|8O*28j~DAfvj@ z0i^7LAOb)P5TnCL*^przE@=QO(=lA=rohP^7?;LWN_-WfizlcQ+ldHHSRP7WiuLka zgT0Hc)iEPgbWW--B`MSbgzh%iTM9fk1k>;m-~_>E!ij!>nx=gXkqI;-*vZoz=oSMX zFA@HtiZ8FgU-S(&|1Rz>b0-iGhN7A#R#OF20Op5J2o(yxL|~`EeaXFYUK(;#f~o{M zU}%a^bsfGi9r0EN(4n|`09twoeuT3Vc!)co4*_48h^j2^YXC~LLa>#l+5s+t*N{4L zfiwbjqdkDuZP4GX^yAGZK14)_DcTn%&6qV(5DV{wwwaVkZTy>e=L zT-Jkc$vq>ON#K0~l6Qf=1d(L}W%oLu4abH03n30B!erO;5H3cVhXuFrEtn`w+*bv0 z4Nt4^q$5-suo`F$;2d@U02nV(3*ZU%mWNrz$tLhd39RZfxC&UgUnC*&?Zp0QS1g_B*guQ+5xB{lYqpT=|CrnELf?1 z$(NW?EScZB#Hx9nma5d05+_i{;qZZ{cotL}KA+-Qx(k#0zAa$XATojO$JkHgnSEr>y&y)& z2@Z@+k>e78MxzRwjI0*|HJ&v@q5>c}01iNENCMh&Qi*R^g0y7T5|n+mVS8Ci2383v zN{+U`k3dA^D0UPDK7uX-eDOtV6al43`YKO>30$(v~ z_~JkfJS9Y;L4}+F4FiZPMXl6Fi4swZif>GmFFYl9v!HdU1?v#C(@RY$F=cib_%M&q zC&&*Y9D$|=l8Pb#1!%k4p<{rhAq9r7G&%UBROG2h&)87wNWTW)%}`Gq!Z`4J(~l5Y zBg1LH`0*qtU=X-1$oVQ^V#rF+WJkZ6o|i2}60eh`2W9;zun|JQ)#K@G=sqCu;5rUX zEBLBeB2yyvfX+wYfoM7a#0C@Yp*#Z-mmS4y{~WmeGVr$|v;(50AhyJ}t{exa0P8-2 zaiFWf7o7y#E%oH{*8);#z%_(Au=%&FJO_yplxQSc zApnd79t8jh^b%jqay<*jJ|U5hdKLU3y>~H%j0MaP>JMmL1lLzXvy|Il^uVKLqA zgbGo{QHr<}tP-?Mc5*{`{VaS-$ms&pBfp6Jn3j#M^j5519<4iu*Tbm=cL7=fT!o4t zp9h67);xs*07`0inSF&{fhoS%m%T(3Dq+M@yOu9;rPwsTb&2IX1|x>WCl*VI15_58 zF;{XhZkq6u;3I|DBZMi)e<5#sZds!NsR9Jd3qcG-F!)xO0;vi^@BmyAxkmGzL*BU& z?xl-7jvhyd?vOJ@u>q3MArb*03V38*NoLAQQ1;oDr_1Io)QXdiyIMAtpJAP#hz=%& zf(VzZPk85WQd9(%C?B%H*1jRlLMGxxT_NBc=nu$K08l5!hvi~ji9=qsg4&0hNCv0X z1Mg8od`S;@LV#i*F9y_Y>2QcluOpRPf}*qvr6{tM`^#$EKeMYB+x>i5&kX9mp!-dL z0v=*tAfm`;0huu!V0iGWy0{()Yn2$FhmA@PXq5o2E@Dx*mV5``I!lyS1euL7P&{Py zl?cFUfZijVUe1AI9mxSRui&EueMFI`La`L59I(~*rZeo-A*44(hcX;ZJzfgoFjg1PG!&3zQE4=QGO9XH z;R4YC&-lKtA)G?zp@rNp008bGi@>K8{ry*ztCy9aoR^CjI>%d`9ldhHip8tft_n^y z#!NtYp)x{lmI`DMGmY@+3h*gP#{g!laB)r5(cp!4IL%rBIMjxL<9?(A^a|hiM8PSC z&ymKABxKTvP|wskkPgcOpA_YFz$bjf3xF^5uDOY9DYDYQ7bmI+yI7-4P`iFs&qit* zUmn_fZ@OOw0S(}RFaWrVQKEhac^8b&*B$s*t}YCmgd)F)c;zEKob1>%=zUbEyvEhyYVY1YoN!455*rvli_%^74q%z7oP*VY<0X}G=NicGtKuBc(Kf&l>O?=yesKE_@qm5EKSwM_h zM?iTVmp)WLhbAhBRph1Y01Jd#hE71QI8ABw&M!r?s}&!5Oxie(Wk5XuBZj++F9B;D zJGCR7f92NC!B6J!r0T11pGS$fcZzkjEZDM z#6ySx2n@~s z$Byp<9S$55SzcbDWqY~{sM+dBy>-{|ch~VB_xeD09e;Nnzj#5RyN-hO8A;nAHyX*M7>-f9t_>X^cpu3J= zyqnNn$KPGY&kvC3uH$#}bIsj#{Dtoibgh%-gpC7zM6pcOC!n?+@psqp z%hOi>2iEaB{rjJClKAJ?C-CkcCqDF)zEGU$&j!7jUR=(<(4BGk>d*iR^ zp)DV8z{OsdUlv`_yf#|BYVG=+t@q>e+*^Au_xxyi^JVMSZHU(GY`vXdYr356UqPE1 zTPNa+ms|U++OU54WzpKsHafpL_;R-LJ~}wldK91S+FG+R^42zo8&)sBEb!JxolRe3 z2mY2G)Bp4MP|wz0p|^Hf^JOc%OF5yP?47@*M^zl)Ga0a)wY-@guxZ2A9xJ^S(fW_A zMvIL*N4Flr-7T#TQU2d+`tbj*?92b#tBU`Z&vQ%bQ=$!@-WD;VEn*H^#MrmA^096a zW8BjE8b-RMm5*gh>rU}sPJPRUrGq)G3C)|Zm2HRIFS_|72yGn-%JA4O_Cga6{6S86?z|Jt4N{+@n@(3Q>Y)!%AK z4QO4)s%gbE@_%;isc0d~cKx7Y!6}!aA-;)mFW78@-`a}5+UM2Pvbm(rH67wQTuiE2Euf_1&6Yw`#-MAlkWf4FBY5(&?a@cj@$CN2gE7PJbXe UeS&v7@;}q*bpzQ?X~n$%3!vb)DgXcg delta 44556 zcmeHw34B%6xi4#-lamkx5*d;Zl5;X334yTZfhi!MD4-zD7IBYa06_+)TZ(8!QLl;z zTy?03wXJpLVm;Q@EA+PBURwtoT3_31wOVbRt*y4#R^NZ^wUeA2?K$t&;(fn&WBUvH ztiAU7*6_{WTHm_$>allj8GG;TgXJ@puRHJbmC8AjRn-kt-rrG|kq1&-3^EV(|J&8DG*v-7rJXFeJ@%JXhB({OdS=7zC!|WmlUQmaMd=+VU$h zhOBr&=%~JLtC|@&mS<|R@A+OJhn8%}QBx%=Ra>L>ESNQ>A|o57<4c<3n3At)s_dAd zttyfY2%+TK5}LaxU8)XmZTgYJDl(4k$$@VxzHAy=DEqFjc&eo+p<}s*Wm{3_N><{{ zH7}{C$hd*-TY=~Lrt4_FA~_01jZRs%>qxFF##*uxZ;pIna7D&6WKRlwRk1uQkEGjy z7wD>O2YMLFimFDvD_My*_o81}k@j^(@pZ>lB~NoT!wU7lG+fV-bVrvwzNQzItiv1I zw+empRl~P^+jBk5(sVRvsY)2CiYa@t?gcT1l&Zv=+jaKfinQ%2rXDDoE+p|^2*Zfd-OxXxSO*ahPQ1rkM^H!=7 z@7pPt&c~|SmSRewFH4@KxfrtRN|r2PAq=duY(~wMti+q!xNX>&j3Wc(G{cuc4w@C1 zw&Xd!X@w>*MzuB3T**qjIrmPTQl&k+_^^@LckUUQeeiB8|L2&?$7QG7vy&I?ojM9N z&gpy9uAN8*XTN)I*!MwW_PE_Oc|Z5uy!+y#X-zUWo{%esksQ0}5K?#TNK&^{$*d37 zt6(;!)%n%Fca0c~F_Ec4{^w*OHO! zOG}8EUszR3el|>=CP`ByX<|lHoHdKov#L50e9DVf_RTtSY2k}ZE16MHmfJdp{52JU zN}^eXoz+Da^g>n?2FRn?;AXOKXg+v_&74KXM$kW5K8{`1QUDwceFC_mv2?80H2rT4nLIqZtw(M?=J!EPDTAxIy2diN0P>*4Oz%$RS}sJRQuok z`2;~J$1NoP($Uj}UJNhNhd)-6wCKa)gUK9D0$nV#fK>hcjZBXa{EJ7E^Z)L_G;`Fg zkNWZVw~+&8exXMOD4nKSfDcI(g=}~&sbRld(hnV?%AbY~Juh0>(&Nabc`TZ@lx`(m zd1%7x=DLpWLrJ;Q{v=99g%L_VytH2*q8Fdmhn^R$Z053lbP>Jac$wEPl;xUEBTrCr zf9_qE3?t-w4F8T|qkM8U`98bCCs$;vzTU#RP9VpUAF-b=C-2fTYZ&RKb=jGX?ey%L zY;{H&duGj`K^t61@Uo0^rk~k<@%GKzH*RlRKDxW7@&j*8qL)UM>v}8G&Vrg}ol5Ii z`3ka&UeBveEL+W6VB35$BD<`*refh^WhfX{mEAvKI=f&r8BU&NFCI=h*v#`u72C0r z)YFG**sR;=Z2DkLR=&lixf-_bHad=-u!>wye_F#{e2^YNpXTpcvTGh5Odqac&aI>d z>LY-RV%MFCVLzX%T1_lMD{8a5#z|FWwSxvN?^vE#-nP7b`Gkcp=Pp}AmJ&L;He3CD zE%gfTQCY5KEjgXi*4k)h*u=BRcsdakG7@QJAFn57|5r15Ufr>Qg#BMF>Up*0Y%-(w z)vwMblc?MCs_Puge-Er5oI^V3`sme=R&+I5hRqYRYuZM#ndg#odMieq+S1d;#Pi59 z{%Te#p_TtO8bmFh*23Yw-8;b@*C7DBSujNxqzRBcO+TEoS$g+Guv^H*2%+?jD&P{CE>Bt7R8VOU$V*nAJa*3ZYawUuP&<0zklTdOkEF*6`KL0qxaq8n@Jnq zWzT%Oj#XbsZl=@utG4W$RTb=|3&|G#-HMBd(ffVW$76cGPk$NshdR-ee$+Rmg=0;o z*tXGRf?(e!aqbi2vgtn~8x}(9fWBc&;=#gv5)IwWW+$Af)rX`26Syy8oGbfQz z71Ma{y2cD*yYHkjoi+yjYtO!LgqvQMXo);S*!9 zr+1JokrVwWGzt6qxlrjluFDI+tv6~@4$&n7qWYVFx~Zm3BujB2qr8Cgs2 zrKOkK=-GJ~!by;wOWyZg#{>^s~poU{|gvXPgfzP%9l?cwXm+64S+ ztm+%2j=gmQIf$Kf139l>(J1nlyw0D>LHv0PJK;uhTVJ*MuaXD*{TjoCF&$bj7CwwW z`oc}*pZco3cN00c_gD6-BZqL*Zm1Vnai;hr8teOFtmyPv9aQIt`Dtizb}IX>)X4sP zGx*lR`iR9IS>KPvevyT{$Yb=Bdd^|Xzr-ONSFT? zTcn{3J|atEn;#_&NmEy4w*Nb%C80vmJL?kKT8WotrD~h9&8v*9RBTmOD>Yd+@SBdQ zkf1tfmaMSd&qHRdd4v3kY8q?$4bhUe4kaRjbHg35W!F7V($_u)dt%<(P-E8qCut(+ z##GXa9;2h#uYOG$@chD0sK$$a9leqE6P3a| zZF&+l?)g0#%YW>8f<}eX?}@^HFWyb~CpSM8eG(1!g`u=8H}w1D8IqJG%sZgXW0QVB z#+DhnZDiQ)`^eZKieYF*C3izhyr7{HwyjmEs|I=*{niaxuhijqvcw0bs=x`QaJ@Jx zD1+PC(plyMGOik6R8yC1)3j~XmL)4U^M@ow*wFjobsE5c|EU--oX}_LxeTq{&iT`R za4=|IL)wMjTXy0lRoTV4PPYDMWK(|zvH9PD>|hY`b7a(~Fo?t0BR?li2cAJ3#-<)i zryp1bkpqKxxPUht#@=~>bRS>_aluRE***qw7~A<9((?H+2nGhRkp1#TGMwG;LsH8o zy-IF@>X1qdAO)nx08;cI#U1oFLhq_6FaI!bZme(xG>?TL-jTbxk{(J9oHokFd#y(Tp3 z|Lw;A7&m@q-1v&IkvW}vWGFq8kW1LM3M%aB)L(elznr^dIDLhXukaVbf=*RL<@Z%n zmyp|dc~^N=R5ms;D>w6=%%CfZ^`fpq4Dq?R7tit`PN3ag?54Nr#q7>e^p?g27~sb3 z-ACb{?!Od_`mK1>ulJ4m*|Cus8_#J~flb)Vme`Sg!@n#i_echg^W}=3!g_Wy|1yRdU`ACYM_<8 zV&r6+7=7KqO=H^Jzz!ct5qsmV(1$a$o~}VH?h0Mi5ShZ=4Z;+DvXNd&w>Ah{qQc!+zIFPe@t1uE8YhDVWT5jH4a!JVGb>S^OCLhh2MWZg^w|csdjg$NF_%y5Qw@fpl$St2KMenw5|HPd_h1i z(-RT7>}e3rj(ahC+`lvqy>57Gy#JB=CU?G{^lRL|%@T;8PC|JUoU34tpq=ch`Sf6R^8$JpJ8eFd;04<@AD{gv?GajrS644UB-E=su zVJ}oC>LNBpJ~w#H^q92ZSx@lgI69rrvlgTU&$80}c$SnFJZn-~@T?!j3)#!FqM6(h z&*Vj7CND@wUQf1i5nb?)cN^@6Ym(39=C|Ni1ZNw@%8sG)4=^0g{pc-e?!`&f4#w>5 zWWQfRw;W)o^EGe?xC7Wz$I){RJgi2#CmnhBQ!QeMZ=L{I`VV&u=Pe)9E`=^!4!1DWg4Cg+EaIT|E~O8{r@rP?dK^t>psP)+;L+-u%%DNp#bd@- zEIcd*b#`^#uWIh~!!?wZz^-K!_FJ0~2Jz3jEd@&&zL zPo+!Z4^NNFK84|~9vlT#hAyWo=xVfvxb;f(Brk5gfjzjK?j#$p?WPUvoHOVcdNJ>{ zRJjrLA`Npqdww|`e^6fVo>w+0i|Ub$th<}epc^xS`=7%*voaHfWePxT9Gn;6T(tsR z`Csu7S4F>@iMa9u8KH_!UP&*bKg$T-{|tX8RMEW|p^82L$k2RNW<*$~0L+#M%t}g{ zgjw?uI+LgKx34bH`NuW&w{&WngrzgGsn^o^C?jmwgi31Ta+ESWozkfLVR9BPcc5HOL7a=(`|&V zZ4wgw!wrz==SNMj7cL-4vNm_x*)$ndh~)5f(N|586|kg<{a}@_0*14{ewmJ?yPCw* z-_#UM{S8gg)aPD5m!3@MgMh(zMCABOG523<5_5k8W(9MP2BUa=LC0?&%yxg7E~l@> zt-mT-e;K{#(h?`0p2#&FLYETupBt$gJF{m(l9owPxT|_tqJ^DuA)SQHkBY>ipZDM= zd|ei+euTD`iRf4KNfiBx>Ld^X;{v&@OoYGoZlVhPd_X<9kZLs5EF|q7KH-VxK|Izh ztOKZZ?_5ONtKY!#<{1YsHwkolk*{7md$NP3%kPX=D;Bo#DotsQRtX`yZRgY0?7cfj zQ>{5Nq}l$9Y3DyG9}8rd_+eY1NGuz`!Z zR3&E-m}>Zc7DY%$r!@7-+zA;dn?Q7@{ z>3itwsq|R-A=-~6=X>aZkem}^XuXnicuPch<(=^hE;$!(r|S=<>6TAOPNnzjsdRGu z;rh4?lC!Fy|6gR=Zl}=>vf-@dHaeCZ#b(|HTYY{D=a+~s@4byaKu>QGjMC?&f>ADN z5z{`eC1R9!Gz))8LGu^$=2y{eEkZ_J+0su&U2rEI%$}Q=xQgMavY&_Q+b#X2)i+y& zw7M1G;;k)Lwul7>Xui>+aAa4qTkoRFstVS=hK;zJ9#JT+b_o69^1EpleFbw0{oy5a zAWu|n&mD9RR2}*Uz{jqPYx#`6)RMbtH+_s?=bJE7x9p*_NhRBsqmzWJqU;4gJ z+3Q97ENY)_Z{;#CSMv}YQ*7E^+KDX-EB4Z<_$LxDm;2*B+IXM=adAiP=ffPqs^%sp zR@~30e@|@`#tC6xJtUg0rO#6L zvv=<^qt>wJ=*j=h-591QeJaNIaYDstiDn5125WlIIN`;7Bj%DX$JG5|MBT!T`KOq= zxuQ|PHuWKqqOt0i*lu>}I4)MIPZ`%wtV|t}eQ}&wSUPJ+q*QDeC*=NNyho>u6H3L! zap941VWd=?`aIoFcZ?HC#aGAmDiu2bO(+#diR#&2rDAv7&Z77QS1K-if%=tnA9`9~ zjvw3m^;Eh){_woGjGN;HquM;A*8(2S=DYzj?45DK4104N7fSTCal!&Ff0N$HqXTdB zNT$>wy^`toaLi+GI_gG}3FD6}u>w$+MW9wv^^i!zAQC(4Z90*3?c}%vF?>%HM9(TzqNcL#AJG#E)xzz?@S)r# zAJb8k-abBxXFkkn;=0^(B=KWH9~dvR!hcO9CeyvBkdb&_uak8#3cGu&%0c8 zS)w!gFj5EiMXh00Kw$-N|2>+zD8ewDom80^OaDAxP}uw9BMN(Od~R2H;ut~?ZWF5e z@U~vc`f$9UtoHyHK91|g3(6`0@zfBZ^POCosHcaviPpP#D>j|h7AbulLlQqr(No)m zU*H!JLukual1^+BO46LReoE4`HnBu@oAAIt6A!dkL5fCnO$_rY0rQGB5m{d`GVuVR zceim3puF}VO!ysbxpPJ*5LJG-O>E?DiA(>hHgOlBPvFDIO)5$w#(taV7~PH@a3+Js zBja&voA8tJs@IK={GInM7Dl z&p=NLc>0OGUr(jy#UE~n%Q(gr^nc?)c|3h|J237m?E)uuv`08`O}pUf|EoQ*h3;+_ zSa&ynCoGNY+r?C0gQ4u2%rfPVcP6?BZI}=lc-#AC zqOj)m>{uzWs;U4ly4Zdx@rfM~4+#xmww#zn51$ZmkU10jVav_AN94r2gdP{cP2Ixb z&dI%}Cf*>#V=w55qv;B~f~VTUhmogx8EeuK%h+Yf#1QID5KQJBBQcw9j4Bc@7n+GV zgujdU$gNSE6CyrR0R8s-RXx+js@{r^xUYKGglJW7njjpe@|477gg!JuEbD{(rC8Q) zOc2X@6JYO}Oy;mn(-L#53&7+K61-%!4PNqQ4B<5a;Z<}D2IPCw6L6UR>Ci+o`_Ch3 zIeX^NL?atBJ29Ir+JsH=%VsC4Sp6^r7;l`N7!{SJkSxT;){4kdd}nrIq^OyigPI@C zOpIZ3=Jb@E9G7*9DtGgrkHV9hJ7-qn3!f|0pD&~n=->{)G57L?Np<9N%tVLam~ZpN z?%QYa>IA``UdC+meHPz|m$a8-Mr${{L#*ADj%e-74iU5T4^JG-u9}jlr5S`0rY1(E za2i0uzLMPwFiUH8lVNP={KQ};&Bx5{U62?e%6_#VF}SP}M=CV7|My5V(YXk97BA{o z=hS&9+dQvd*^Rv31M?D@&l%>3Pnd}(bwp<3U-@Jm&%ShI;&Ar-k%@YC>VibwfuDoO z7HnIPus&Cy+~Di(5C&hx&}iU8kHVNg-}N7{UF5Vl@d#|+@Knj?4O9Y|Ot`5P!KrE34pmjtV!22`)*}A*=dj*{IwLKTS+erjgvr z)I2rNT@RVI5Y#g45IKWF6*;z$;waZNH@TCfRTrtSbSp$|C{Ba4${gU#Z+mK5RxOP6!owk01VnGzsnw(YTmR1ze6@v%f*cKMX5 zb{ys!*BlMT^>od_nz-nhW(0v{$-3njq2=kJZ1`;PnzE6(3vNx#NT$Qk^b`|0mn>WJ zT+1=7z;*&;!tzx7zh^+m2!ejvyMlDPj;1kgJep; zw#2BAhN>uBcImoA$0SuURvbEc-BK~Cz?3oVCWd1oshB1?NKocVhAO)_{buU9-7}Mm zlj#x}+t|Cm2SP3S1@xUwC6+1RsB*-jla?(!dd}Ph%SvEsLG2PVrZq2}$bN8H+33Sc zj7k?{w;Y_}^K77~rf9zE;9Rle`%)Nqx&vG_a=YBbqGZ}|Ksh?-5%Z&Yj%Ei)Iu{1M z=O~WlSj@R7H8PjJB>B&z0r_HV#lbAPpcoklqT>vpVJIG!8d}#cv7mzNN`Yn{U6?pJ zQv$NdR$Y{+Nh_A@AhDchC>Vw&dzR-ZlCGMbBkta-bn$oC_qg z&CpdrR8kJub`3a(4aVY_s)amcnxh!_V`9j@WqO9~K>c|L3oUT61Xx|*WC^gEptOy% zE7|Ik%PKSIc<6@~dTxLY(76z~%YqQ>4(Gp-G*B!_2KoIA&&Q%EmanN;1PO!neC!QS z1B}q%EaMu|2+n9?Re6#;O;N#Md^ZUB$??GR11nek*Rlsmx&%nJxu#4m36Nd99i*l7 zBP~-=Y~KP^TN)Uauh@pFDMsL#wxKzyF6cXA7>&iV7_!BkKpa6{B^D^`PhLnzR}3Sa zg4)IB%je{E-6c> zaj@*qUrQ`Lz6898>-2~-tR8alL=wO@UEPtLP>+&Ln&A90q$?y5WEOH0#Do_3y5vBX zBMV;$0btq|5;od_<%P)ns7ks0m!v>wU?%~#y&I;9Jbg$g=;~U4)5T%nYPRP3`OLor zSRm4~Ng25ni$T>RI%CPZ5(lSU=mVHC&gYR8(1OlkxlZVWmWuR}h9=llv@jV@R{{rl z6EVq#hRl@~QbfuSGHPIls%FHJEEDQVh=h$i4I=&*`j+k>B`4B(8gl3%dt+|#Gl>UD zV+pw1-b%pU5zAWJ0Ywoc$%nhlQbhe!bmeA8t`mP{d?1g4cp@R@7+ ze)1-=sl?)F1!PkkFTMV?OU+fU3@b4zPf(ePtA^yLQmhnkw*Ru^f=mh6Cfk=S8<}>z0C_3{2@*$#hU?n8=|V|_77KcFOra~LJr8MP zW!v<8$S15e@`9R1fT2O%MYhWv6cG>?5@^aH1hs7-nX8Q)pOEQDLu&*O_@3p)s$vO< zv8q@CqQ?nqavGUf18_Secm=P=JR`fS4n}22CK4~WwondZ72boaLcUNF+KlF!Kv*5> zv4nJ~&}SWloVjvdbyV_8Bn@U`hnRCMfO2L9;36i3mjW7to+#P*(zrwiA`MZ-^c4dg zu-)CMnyJPiE7wnzL8-@j96@i;>oiX`!4Y9{S&jsq(Qu)DfycWt zXsSnNghc=jDcPQfWVoRNozaB)q9d(D=&M#N(Hz6lr2sT$deC-|DMAJNmlOvqHVi#q ztZ!_mm4M4$`%PjA(jgZG8?dFXBBk5>sn~x6Id%UGBpRXs+zecFG*z~%aFZR;fAK;fMZyYj;4hi%4pX`4rOds z;no3^#&42zamYS%-b%^oqA;CElr^xA-%1>mRvj2AMxa4$a3Fe+F_;@&NZ;%jm~T06 zBxzH19h)m79#T7dGK2(D3maG-DfB|nQlw)Eva`TPk;xZ2D5RciLLqTf95cg0!Kmw5 z7NG=}=zuSj;1aN9w&8|Y)x&lqf_oQjC``QVN$44ps2t#Tf)k~z*JltY#u4#eYS5okV;6n63NjS*0RTJ zE51rOpVu0~;$4`5@rWaG`&Ap$Dpp zCjiR|MZiH0f6K)xnLgMqR2gnqc&dRiwmS{JFX#_W2FH;gc)*r5$qb;cgUe%0;d{_M zC_P-{K+-)6rKc!(o4qKH9E|-Y#XAth9?Igd)jT?capt)Szg$4W)diA_6#j~4BTYRlQ3(1R zd^TVywhlIgv{j~sal?J(27wD!34f&SBKLp3+8Mx4;k)qoz>L*g*>qKy-SB0oJ}fvb zR!hWSO27_dCs1+N0b65(5H+(?%Oga?(P3p;20YY`1_HEo6@FF)+`&fj{je7g;T4yQ zUp|oUo(zjGl+|B(EP=L>-@A`&OUzrJ3@kCUm=NK+hf?NBaBy(#pDO@RTV%KmEX(uz z*%aKj1hyaA0hV5elO1}#5%|8NScn3|3^t;~M(A_+7`_$IfTqG!L0Uxz1s;5wn#Jx- zLtex_%Hr@X_UgRk(Z`nnZRS&=E^Ag#XaMd>+z+8}EewGS&gK!w2n|Dq{igzH(;R7G z1LA4~2!9thg+Td%vV#jb0$qW9B^!25I4xy<%K`LGByo$h1Nbm?xS3of08{cpAzlQ& zLenk=RuTAG0&L{8jD;XB3Xxz>W2TXc0NSw=fV$w@K>!1O5GmjHpx`bPcvEmAhN)=q zY(mY~_}wLlg=kPsgbpIuiK!re9Bd5kmeCANwsD;Ve(AW^0pQ&H5tZnGCq`5PcF4L< zP9ij*X!&jxA1-4P>JoPsSl|eu8p5$|$Z!Pt5|&7W24D{sxvC?d_DZZ%gera1R2)(5 zh{gBSE-_H$MFFfeoG0)m<73>JL`wgp40F`8xR_Z3P5A?x${AS ziY+@5ELqzzg)JZBV~9u`FcDEX_yJ+unTDi;AA?*W^RWk%hd=~{`9(noI6BV*a3x?n z?9sK!iD^?ev09d6yO63rC_;4%*EHcG0$Esk4q(9~z_<`h3TCroO1X!H7<3lI`7KtOfQ!QYjW~Z*6 zvA#Fp=6EKeg3t>PcY}Is+NJ>}2(bnS0KyqP(pok_aVW*`wE#|J2;uKimgonRRL#dVq9BEbvIImZ{oF$dBLq<>6>dc^#Q=^kCx9OsLfMBo?jW6N zuiFG}4ogDN&&3*Jt--}%m%`)$Hw_VjQ}akGqeG}8w5GsSsY84r++kuIus?7+6HK4T zcm5rMz*te>vBgsYuEV~YO?IYn(-5G*Qxn}=1RcTm@F8N^E|AdhbFiC1RwgwR_96-k1i3Nw?f@`ukbYYgI zivw2K-e;3z*yHylN2deuH3Y6<4*RfpVP`@{K{>>X^5NNHG&diS#C8$nHdkSkA*9VW z7eJwgKT-(;1$7Z=?b$8@3oi@}xVsS4*Fr;g6sXNu6tD?gTBi#l%ai~cTbFQy6$Qz5 zzm;knDeHNW02N{DP8+iC8M=}2)5pOfzx3Y>1C93b4Q7>pbQ;S>>ErqpF= zxy9!uzDhO~UnRXD01y_(&w{9SiFxZIHu$ZJj7l|y5VOIo!8l!0foZBk1BCBD0TmhW zNkLKz`JD;jYc&w70j2>#Z3}B}qSuJZIoN398Vp-YM#R1m?C65l62RSp9Y%`9-OVnZ z;nve_M72a*J5vH~$e#E~a#3lxU5_Pe(>|0W+f*Gy`5c%aKJE{M*Bs`OY3VG`AG;=&| z4L34WO5s5eilG685}_UVH(-e(%xxh^fWSRg%7+gyW{yI^Edd)D*?Bm=IB1)l^n5Zs zSLsJzy3}ddnc!S!)tZ&Tx?Y75t{Uj+V1d~G0$sv&Fh&<@paJgywv)vXr^ez}1hW0F zgC<3^4RcUz#R|dzC9t!gc8PiHbAgl^l^`|~(79m(^B3_Y9pZsI?_rH06b-4=Yh8CG z8xchd`5qgnjRx=n>J4^_U{fSyisbjv+ZCh%+q2*mu&^1$(mWGW!Cjb+?BdQv5GHJ+ z9tTJX=$;U6ArIgc104xBc&`zrhU-s*DFY+QhL6`p*bo5-n2S9mr$E7l;wa%JRbVW* zy=}uV^9}F^Xpvr?-k3(%00w7>Kn5J;NInm2MerQ9kp=&PF6VC`DFHhUbeDkbu%Eo2 zte>Q`^D7v8_C!L}aQVHO9yatK{sz2+Dv5v^Y{~$U%{-MjgH0x|KjHny&O&%8vE5bT z5?R(^)fq6t;$5C*AVY1#d}1#QlozyP;Wkp}riOz}335MnQXF`!5|@I@MO}KXmPd*3 zm8hMv^+`%p;pqwZ1_B;F1#brpTJR972q7T|V)w*;OWdw0jAfAGKrN%gRR0Ej27bilGfPj1!3rt4s#72T6L+r&JxR*NXKS2z}@?3T`xo zbb&sqz{6<3&xKD>4R$O-T79&LxLhD9z;49k5N6e|Ef{-;5l1$F$vyyu+=}}hwxkpV z4K(9QCOo^v!A5kb1<;GZ>*1CM8bYas=nG6s1&x@#9`@V7;2<`q!#cIN+Z*~D#2I&Y zI654Bnl8eNLVREcM+mFPF%>9#K3os*P9hqBpqGwK8~Iq9F4ci(7ZgH&#Xw6;dL>np z#?7;mCS$L+!7r}BzD=;wP%JM=PJW7XMtk|+D!Fz+Z2rJq!m*D^B`wsFM zi=xZeF^;QpL(EACscAxF>QJq*!wNcJJ_VNOK&)(*fDKFXt<=~qd5WCB@dTS;5D>`o zn?TKkHyl%sd4^~X99*)2JArL%WDNqz5W-yO(0=ZTKPYdk35>wbm zdzliWve}b=Oj+#q@nu!Xfg=M0M+Qo4fX^5D14jm;0|q5#Y~aYiz>$H0BLn#-at4kJ z6r5BTI5IGBWB}X9vAYRAA?#;`K8%x!2zcNaqvYZ?+<_wlC3a-z$G8WM444B)1_q7{ z3>+C4I5P0*XBGyI48+GQ`eFqGM+OFt3=A9@=zp+d;K;zhk%68w3j;?6;?t=m_SK6R zf!GN)aAaWM$iTpnflocNFmPlbI%F|$WMJUP0CF&t*aAOrWMJUPz^5Ei7&tO8aAe>U zM>+a$&?<3&rC>|Rz>$G|rxgZ{3>4kJA8)2CvGsl6$Ux7LmVqM!MUE;A92pomGB9vt zVBp9=-f@M2BLf3R28x}87&tO8aAaWM$UxDfEd}=7KlsSNNWW@O^k3g)eTyct7q`)_ zvgnQicG~-?WmRRh{qNObPrRSnKwi$x{UG)4l-!sb`d_J65@ZAW!(UVH$i6=!d2E+9JCULS65CtW8Jz9!Mg3;^VsH( zQ%da%xEc0}VXHT+UwKBbw)f?8E$qi1r_$tF_WH-EvE<4f73J+CXWL_O|X{;d%MI?icV+cLl|t7x~k-`O~lY)0ScQ z^AdkLYdHSAJaH5L4#Na@|ArUxS?qp=KOI?*Kd#BWLJev3cx`*nTe4>a!P7iqEV8Oxkai` RT55`6qFIvB<|f7mTmW$)6MX;x delta 62 zcmaDP@knArAfsVsMsa0&j#0V3v2jwWaf+p(xk;*tfrWvwk%_5gQc9X-nu(!BQnG=G RiHW6YN^)|_<|f7mTmX5u6LtUq diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index f881e1a95da085cd673c5b94ae843ebdcc51e0ef..120873598c49d2b5443d33b4e8c4b7fa35af42fb 100644 GIT binary patch delta 72 zcmeynf#dH6jtzS_4Rgv(O*1nL3-puCP1BN%4N_B0j7^Mk diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index e4a0b11e06bd9d864eb69f518f98061cfca19d56..77d4eb89ea0d728fbae4223b260f28a21e7d91dc 100644 GIT binary patch delta 80 zcmaESkooaJ<_(uPZF9;^O*1nL3-puCP1BN%4N_B0j7^M#b0{{R3 delta 68 zcmezMi0#)Swhae34Kp)}E7Nm~%Jq$nlTwXSEDg;~QcVmj42+FTOf8dA(k#s4a>^yBsI1GXZLadP-x6=c4a&iQtQIgOw7Ep5xynI| zF=dCcH`Q$S+Fx^Gw7t46#@mDY!nGF`#m2jb;%gU_c709A#&#fSKd*@^4HQy3S|x!2 zV-?mY2!#wesVq}Gp*4m9R7o`i#}H*;Z)|}|GjobM>l4klx5S>fPCDq2a;_R+ow*1a zj>BeZz|eOv>p*kDtOE?UpPqZ=;0@g?!7vm2*@J}c!}DgXH*&Pw^0Pxrs29Mn?&xbz#zAt68j delta 1973 zcmeH{%}SR+6vi14!A%8OK@z_H>0={0Gw005Q4oq+L|FzwwJ@1a|AK*{5fNH+2Ng7{ zx&jx1(7TIT1w!3GM6_z%9W+udg6Q3}bTym9JkOcm^UUtn;O^Go_V$oi>aRUqT$T?e z0epf;!eByfIY?CGW2TJ4`oIy9R16{Rd>cA?yYYlZI-Z2f79|);F65AnB&U-B|6#d*=t#=U|cLJe3G{fcwnxtG3RRtnuv?h?!+E+D2h9Kt9 zZeC!oS);7cU<^>Q21W9Y!csadA`?9^y7E_o>+D!?S8 z7o-H(EJ5eUgZ%A3c*CXP3SErov?Lv*Mwg|{nPQf0|2})h&d4Ybz05?$V9w43E`kb} z0_ITPxi{53>Xjd}Y^0oAWn*Rg3bWC(RbQ2qB~9q|vDBOhlh9jlDi-v{Qcgjuq&)|Zduu&srv*>aM=qcSDQM|*h~O*g z6u3tI&#gXoTKTnB>Tput-eTv@tFz1N)0|InK3?wyqZRTAE|%6O*XDa08{0azd^`B3(%+^trIehRfF(cDUs;Y+|4@OxnH zdw)#ZuIHT}FFSYH@up)pUhX}qaT;4-H#!@#&;Ov72ethB4{=b-|5eMj*7D1-pXa?S Ay8r+H diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index 6d05b778f78be13d3c931b24d35103afbee63ae2..1034c27884e1e28a5d3ebd9544f4c7666baee047 100644 GIT binary patch delta 64 zcmaFR#`vI(af213VNSWJX=a9Dfqt^NX{MieaKzlF{aD#;=Y5qfiue delta 64 zcmaFR#`vI(af213VP-~gWqOWLxxTS+QmS!^rJ=b=s)>Pxfw7T^sbx}1nq``ap+!=% Tfr*KUrD;lXa?0jx#;=Y5tL7AL diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index 461a0fddb2c738adb15acc58fbde76afc9538d52..37bc891c183a687134400c38deb33c79f657642d 100644 GIT binary patch delta 68 zcmbRFgJtFqmJM4t4Rgv(O*1nL3-puCP1BN%4N_B0j7^M9i9~O)|Ci|8ssvsEZ6U-{t*o=_M3wMNM-t^dcI{cO}Kh1dSJv z7_p!QT_m>U2Qli#jZk&f)0Mapq;7iI2#Syv0&(R+a8>a+w{WI}e(pVod6>h@cmDT# zFVFKnGrxZ8+rPuttE>Fnx0HJJEI+>;jVe*HoJo=tPHGY?rd+%T!q_ZIPTcDtp1ZO7 z!yBsu;5OiPU%cw0$AEi* zj|2COZmc$6QG=Dy6Gxj@)&|sHKHfasf9_cG^!)v`W6e9$_ow@R?%lhmA0BVcPk-?5 z>9>daKb~lg&EAhroNPw7b);0$xkP1+AnuAcNktv}FTd$L*YU%J}F!3%wNyxHvk z@bl)#eqkSc@1y%GzS;O+4&B$k{B*P0vtKk%4Nmp^YU4g}i^olFI=|xd*sY?DHhAHkiT;bKV6`ERva4uy$&6LAKZL+Vj$9{_z34UO4}$Pxi0ByS6_1 z>CyIY2RmbON|pr@E|W^qS#m}&PdNu(Oc=ef)1F-E5M3InER&WG(Y}lA?+3%m9s1wA-F~5d zgYKR7-Y(!pDl1HDq)@o^Q5GI!$k`=Bc9sr970F0pts~+#TawYs94+V_lH=2KUVpj$ z?x2%K^Bjx7p-d)uj}Xe_qLbj3De51&&>k3dZ?wM}RKxd=Ty9xcjsCsY+Rt|?GwC(7 zhkI~Qk&8h`nNci-f=W3{MMi}VvfvV~N6v-hRdKes;7L11H&eMZ80ugPBNED5ieBNl zR#>GXXlkU*i<#7-Pcx|ozjC>4`pY}*noy%6B2A(ytvtIl%${tN=cI)i4Ywm zH9M=d6gf#hpT3$bjnIOtgG;qeZ6M-jPk!;4$4`9v(PPil#&q{-TdCc~na%#q1Bcch ztEDteTqSOWkW7Jc6v2@k3{&V`a5@mNS#xz}#c>-7UQ|N#LPc$e3jv9?N=}r(?i+dINGI7An~14pT42|P zC@!t+EMUWgo2YYUW$;@P4+=d&=X_v82A!SM35U$1C}PhMWJb7QA}#lCz)I- zmFSBd+CY!CCF{O4c9(p?!3w!07s<&T=Td8E9^@XG6#uq(e{Z}rrAt%#e`-ocFr^Rd{V&}l1tkCg delta 6184 zcmeHLU5H&*74B`K>6n=|ZD(3*&zXB1LhQpZ**|Olth9ArjG&}R+EVO1jP3q4#Rx*9 zwn7kp(1Lw1!MdMn`%+M$kiO(pq0l}E;){g%AmT$yL5O|PC!wIY?wlKY$C}wb%N_Wb z&1KD5XRY;pYkzkxU47;kSD(4``T~FI%+t?)>8$w1Q7L_r5xIc`%rYrJp^q6eaO(pD z08}xA_}yy@Ke)CqBHT>aN7zsJ2;rlI1B6=$lbDYY4iXj#ON3hqw-F8zZYSJ9xRbC< zSRvd+xSQ~C!aamf5bo`-Ei_+NqnrB2Hk-?fBT;^IviWrR{E6oA>*se)H17`QN6TNA zmJXEh$>yuW2Y(-aJy?EysyQ(|_oq%b{mosbnxe@IZi@IJCu0fKORypxMuBth`G1C`gpTY z;HBmZqtoU2mm2Io{II9a9esNH$7c=@ZhwA=`Y$Pa@pAM1i=8&8f@RE@$bp4K}KNce!2epM0);aDNBZ#o#2fiYw5zx_u0!x1sTMdAkM zm>dZD%baquOiQJ;Nj&ewUOwOce$-Xoz?3W7?ZaEOkv$tC;d0jLphNuKU0JwmrSSOG#uj5SWn~d<0KA0Lwvw#2geoaMG@o{!(mT8FjV9<<^x|Hm>9?KYOn|T8?ftcOPEc zDJNrq2%y1|5HpexleHeX5XR964qc)A!?&7QV$h%G<+Y3 zVOFpR!V0Uv0QV`;kP{EAr>Xvu2D)cnn|7+{YB|gOSKIrP6xs;GHbC#lVJOTY?NjDG zEf@hTF{gA^fEs}1;IbO#G_EY7^2t})<#OBm?NT}Ry>_dA^IUs)^sUO&%!E9jJH7S9 zL#IA-{KOMA?(UAR^>1x^y&V2yd)H@c1rBWxBynO?io!dhaYV?RktQS9$;kcChSiv4 zPTVQ(wSj19qFFg>fkP0{7xx0uU{E5L$s=u6ABfypW*?*HBBdU9&lRMREq(>J0`n5+oawoiZAQqyWvE%~ez z<@NgzwNOFRt0E6T1MwLXQ;f$Lw4yhh7UorU$&t51L5s(0XAJR_Y=ZMb1d*pK*2pXu z^cdPav%LQM6XQ-6`VYXv{^96q;-bV9+A16^zKFrmaH9Ne#amjrUG# zh7xKS%NJKx?|DGZc-0O!P|S#s^hYC!L?@(nNzFr*W}wCr8$~^C#vdr{=`OmlP%D6{n>ZO_r~dVT!4p ztoT!A^2xd=`dWH$gZyN#hUUqJO)`_&nj}P_o`m=j=EceH8^yUG-U0b$a(PqiWceoX z$r()olXo|olC633y(Y#`77GJYgUQx+q$mHo9>!#9GI<@4x#Lb4lcmXI#kyqZ$5Q1hKWqQlTY0=nm$j6k#n=py>m>=KnF~|_{0um zx8PG-ki7vw3TS8lQ)`HQg0JN!TRbWuPUYrPk69RrQ#$$0)3rpa6q|hZ`F^5Q%THeY zGL5jx&4RCgi!koo%FF2P%V;q@)R)mf(2&bUzo019Zb}Aw?34__9*8ib;q;@vj3v|e zSTpKQPxE6`V>ARNSJ~;hHV8g2B~6$1XAEalpC0YYC^@~}kCB(l5M~aNAfw^-6aI|< F`2kmYaGd}E delta 924 zcmX@RpY`~D)(tB-4Kp)}E7Nm~%Jq$nlTwXSEDg;~QcVmj42+FTOf8dA(k#j;2{CeR_PKYCi5cjC$rqp4f$SE1Y74SA07wDt?0;$vvG3ed z`N@`#iiuOX`SfFEMxvCSCQ6mb7EoqpVxv4k;wazL%_^jm(6s=%};i_8TkrRnnijNy!G a)93gyN=~2P&&bOOGXhC$`#FEc|NH>giC&BV diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index ec9929230fb946feb59f9d50554eedda7a75e8eb..172421e27f35722af0aec1acca9e92d2293aa60a 100644 GIT binary patch delta 1679 zcmaE|jqAfUE|vz?sk|Fmj&K_0l$)AnW*8ReC!3q5B^w*0rkWU=7#mp{o0%9HB&VdN zB^o6enOme9rKP4ACYmJ~ZT`vm*Hqq?m4U&gpeWUjOIO#(z{ptF&`{UFM8Uw)%E-*h z#Avdvcc_}4o}PlCnWdhgsezu6v6-HwrH+D;iGhKYsZpwdm0==~Wo2nHd4hu}FN&(k z7afl2nd%u^_&VtqD*!=eo&wN>VlFN$HYsR;R8Hn`|HBElezKs)N>xKM3q3<~9iR*J z3@wcGKs+O$158bTZZXs|G&9pPGO?U|&m*20sB*G{=XpI-3q5lbD~+*QX$-UysB&^a zwE1LRSAo%>fCUBT8=06|CZ(iV zrkNO8BqbY|n3!0arX(k)Z2rml*ObwEvV*G#myv>@sg;qbm9gPuL+?;EJv}`ILla{? zBNG!nQv*Fq104k;69WS)Q=?P^E5k$sLn|vo1B1yMy-j(LRZZ@X**>|`kzY?&S5Md5 zNxxVD2r}~&4D<|(xwwoBjEr>+4Rs9=mMLhM0nMM>5c`J{E;uxsHOV ziJpU_T4J@;SV04% za;u!s~IOve(Pn0ngrq%k>i!f*#GQ(j?$QSn{4HmNnGro@Jj*5 zzP|rWQe)mMAZ+A$`da8ZNp)5R23=h&8Ii(Vf0)vECppKTAvMk&z04J-K(qVE4u5|EY#kx&|>1*99K z?s~uTyZ8Qm$GBr~JlpM#_kEtV=9+V^^$@J0B#VbliH$;`@E*%asi9El8YmQ6!Zl2I zMm5IuKKxI}MOxeCslA1Zo3WEQO3~QG!N%Uj=7q^^S92%l7xs4dIQcp6vER0IadB`K z=Hjybe_p_8@ARCj|Df>zKIFQCoQ^XJMPQ8lhn6Rn`vQfALOqs}P^f%ke23RedAtww}<2aiQV>p*`CuTA;0aj_wfva>o@YV*|N3y@QNES6wInmK+C%==7hd(dJ#0Y@9nSp^ zgFN>Bw3zYE1yb2{35|@82a~XAX5{2tt$5zwae1+Ixoa9J`j2^HVq)OeFaJ-U7|-U( znr1rle(y(==uz3D zJBz2;wCC4ya&j!;DxN)~;;dUQ_vv5#`}dKDhtLnP%d-!i_D$!m3aP>*Pji*p`vhjb z(_VHf`+O@M9T~yQ{TXcUvzLPMwc!s%9w1-)~sDKg%Rofm^1rf;Oo=LnXKB{q~3+i zx-FVt9;ofMo5~r;6OR394~07S`fy^-!j?Wf9H_5{_g%QdXOz_bp@f|?_U=%98}9t4 zFQs#&_?g?-vh7S`s_ockziF?%zV&}=rTs##t2yt>Q|ud)csjHNsV$0&iy^#z8;9{6 z!ar9W9=djroBA}RE2av^H~q$<^=fwAm}n%LO zQRWTPurhdA6o>X_BmeZnG1Jex4ND2n{&j0~pDd^MYZmLa|9G$^axqp|+SmiPihSvg z`-i?1fyjra>lNoe!aEnfFYJ6i`t2DBAN*ALVSB`bO~C{OMherg^W#o23o=8moeZ(} zi#GzuTQP1ut8?YpJ3SBM={Ve+?hOeI9siN~0A6}a(7|{3*RRhU&%SVX{99b#J0UlP z744p7X(MMmft$U3!zh+X*@D(bKXPV&k(~2-;|+ zT&$Pj6!$DLs;Wp{H8jqYL3m#4eb0r38nfYN*R8xpAbNZoHTyAE>5;VbRaEnmlkrHA zj#uuz=Rc@_jgDfVzFXXbXg=l%mwBts8X!lHj@mvwPvmlC6fJj~Ch{#$ zpbgqJx)~fVt1^ns;Zy&=^+~GV&?Mnb`RZ0G%jb}1%>qp)is~8~XeerYtRhV|u{3*wDBSPbKafQm zx2pPP#EnA5bkm!Zk@Hb1O8i#NBqx(6iB@2A>}GgB3$f7FN&7mC%WDqjcqKdXc*k?A zflTadjv&Zu8nS*aT9!tFKSkQjO~AlwM|!y1xi^7ByUFKa0;m4OmbR=c*2TZkrup@X zeoR#5moM{TmwRHWT3SJmV;Sd4>NdZXzCK^O(^PF59NlxY(@869ZOx`6cJ5O2tU5xh z(eub|3cl_bQg~?VLxbm0)~8Q_mxj-tg~H=Q&)>9{$Fg3qj(;xGoqq@kZdCqMfhFqc zkw4o@zihLup5|Zd_bTGiHFf`7q+drWnoa;Ij2aO5WLicJ*B1f+<8{7fxJ-2?+OMN= z@kaLjK(tx7A~s4YDpmLvd+)VpiLmF!{gdV9I1s;~5bh+-f4;X6_-tdC@lv2L`f*}f zcu1YUymKbSdg?m=(#9;m6h4GX3oaTTt_v>cg;5emK*w2Xa+fMKuzP>zqeO^Lw?aJ8M z$=*1Z&koMT7*o2}H&RZ$uD%~l7YC)|kC{^WR*pQ_Rj-|Vsjhae*jg)X`XT@1$#~jB zPi_7b^W0QdO3$_8YDgUb1mVs&ufy@@6|yuQ{+E|i&i!Rim4q0UCp-_=jY&fT4h|1@ zJAeC}+9I*{XYWLtG1hqI;;?$${JlQ^uSlQo+!Lnm+@1V(Q(cUT$!!Ln8}~29gqAH?8){<(P?0mQ&qmPJ0b6cq<76diJYxBJW`v zPq4ADv|td3G+#CyPFN3)jdfj$xo_V_HgxOtDydl6bGC`}|`Oa|2XQ~y?5KU!FfRsIvH44-9dYs<{aijIQBGHkv)>%ZJy zfVJwLC0`{c<>(eqzkhPP5ZPJLFB+P3?>WBv?>LsHpH14awb@Bg%^@UgND0#OIa$K^ zffF-#Z^D^Blb$HGrda$oW4^GlfLHs6hbFL0V-?Q{ zHtYA4y#CxvpL@GEAIjD7mO%8K9Q_-qyMCuzO=8bc78N>01`S`+gKHZbX}Frscmaxh zMNjze-w$8eqs0juA*Xp){H)sKWOwQKeCu`Oy&r;f%VRn34MJY7jqKoN!nJK#+S*=4 z;4kkUr78K!(~#iJO}qND-CoNVFND@T-W$APF?hAgU{;~?@#l+rfK7P)!}a>x6x60X z&oNGxm!SObR*57j%;)E(%^!8w7#As;huz}6&)YFZWnbT-`|O#{)2BD0&vf+lZxt36n$DbWx;aNQKoS&v z`I2B>G5(=*VMnm;Z$aT$kxqrSv-7~!{^H>?_VF)&6IU?$czjPeFH`@HrjOYk~FkkW?u&<97t@3 zdSUE;bX5qOTx(P8KNcGk9HL(EKXMx_hwc0SK5VX0D}Y3O_~GS* zpVN)A;}^N9f%mOPa95KFM7B|SoMeB#C%uKc$p%!e{{4#0q)gjyroo?FQAn*nx8jHJ zld5;QF%uKIHe;WS$4c2KXtEs%P|XmSk>5OJt?j(Y9K_-8q^2N;rj%R^uC3X09Zd)D5dm-`CuVKEWYdoB958asyqBU6?DF!-l z;RjouKH8m&(k~@ zp-KvS?RGP{Z#5ik10>MhxQ2V0td`#+9Wf&sF|xz9G}&p{<2J>tf$(OBVGXSves0w4 zj=KYFCGq~to}QlVT(R@(Na_R8MB691R|kaevr!AW*OuoDu=#JV&pKbv)+|Iw0v#@C z{AXoQx^g&a-?=_s;gP$pEOt&@rj7ev&*?gB-oV7fD+RJ(5j7`~z3=zRyiZ+GwcZ83 zjV7f*YjY#R!vVnjw>J-)Ac8>|iJdw8@O&NyE16bp;lAC1@9`pgfD zrWuyVaV~%i2s8x{eI+!pjW(0YO~3Su{ao!TE0P~V%hVUz8X6>}JXOxiO6>Yyi8(kp zfdBW79~iifniBf#62EDtA7{*? z;kU7OM7AH@olXVDx4@r12#izX8(#h!<#GO_Aab%8yYlz%Hwax=PQY@_S>W=rz?E28 zS+{%GN;C5Eu0fU|aJ&7!>Fg@JugQovX?w!DbZ+Pg*HX_3fJQj1?hS;H9-azQk{5f< zo*&K7e%2a;Djld%s5zHxUD6V9>%nJ-xko^pvF_i$e>`(}ZWx!4fWGqdhtGaC?HuG$ zd&AN1P~btEZv;o87mikFn$#Mzxn>+q^VN1Y>|awsmC7qA`C}+A`s3lzlmwf)f4RtL zfkxr+jP*!S3)C2AWUYUE5OUwB8vP7AB$%qCkS==55G3AC-OM?@K`EI<1qIyA*w>eA zjsJ#A=gT^27W69_0^%3GzFZp^83_a$DUm%mOV)JU{&{9}qRQH_@BS!irNW>@y9^z| zHlW?4C4kJ}9mtj&;xqWmutHZ*BIo-*5kl$!5w-WH-k|h-=W?q1e6Z|+zlffUCp(7s z#z)cPSquX|kAM5Cg0SQ}uzYAJ8jnT7@9AQ+ii(OgTaBk5iSElS9zXmVy~`m2>70D; zxl+XAO{nEUP|Q$oTbg@^$gtD)EOutWSAYRSo z#i^>A8hS>55A(mSg`MN5QjWt4U5I^6pcf8;Vb9aONs$`n+jwdMrTOe3e6`;*4!SSh6<9vw^M40#eMGzW4@M0;5&62D{+fpN^%;*3uw(o+8X?js*jpJ$0tx~7VYkM; zTR`AnHzPHQ7UF8%piBoC;Tbx!2Pwh z`|k}>Ky*KtIl49 zE2!0Pe%^#W_AyO58cHemW|?+arvlAd*N&$P-O_`9VN^K4GL-U@V)+j@i@fg>bQ*ULJ0MK1xV z-?W=ZfH47x^cl!A04SE9xGz?JRb}PvczJ|ajX}Lo5?-YTEo1^&Qv)oe(=fJ^uFbNC zht_TSC0R++#jEeB56EbJj_-h4Ch+`$>?bfF1R+DoxH=G51B(r%=dl!jJiX=9so0Bh zKoAO4c=J^QWLO+J49`9WFQTf3(ZCt&Tsi=Y5vJhM}1c#aJ;&eG1V15igrUHwW1 z*SiDAM@e85oL^V&PPxr^1GU9QDjM()6DXg8OL0#jNjpkcp`x^tXo0OGjaeWWF_V3Z zWoA(J@Z$f}ZWh!+hZ@6weiUzXw0!*kyeOi_XyotZ<7c)yA-kpd?%&S@M+H*PeKA@V zg(|Jzl~+<|GxC54;j#ZMf8?_2D7em*|&+@Cv_doQ`jS;hVhMmn_O3FOgu z{z-a{Su|S@jJF;r6NW)kVPWWK@l9AtEvN}xxT_5jWFNzvg(%HM^cW`^cvQ&++QpmS85HCy5G@^z?jy)XI8D-@N>Mv;nOviV8o!%Qk+cUUi{-)j)&r z4FnAm`~Da=HJJuH>WxR@nrc=sXlAwwO5lOxC zCV4r{lM^6UZ`c$*4zLypD^PriN0d;IEC1d%@K_=_KKB8RUSza&BzMRBL+>E-!W=K@ z5oU3UX-o904aeHA>oZNX@$vC`tB!)yiK5>BK9`P;k6%w!>U_$DW&~weNPak0Sv2^j zk|5g4moGh1p7^XjG5m($faTy_*sVE$%&Vw0)nCKI_t%fy*;OoS3(7!*=mE<^QXXx8 z!;7na`_TuFKS`EWR*zs!5ElReh(rN<8pIf~3!VaH&_8bjK?g#@8`TV2QsDQ$kNNr6 z;Z9s6X7;ol=@)sZce~M6CU2*LkOyO~c{MlvM;)2Sb~A?H<=GzEK1Wn|c=$26I$=<( zM9#Kb-C-}?C1$*+a)9uGVCL-dutCrie5oD4rtIQkyy|IJD&Iy|av%)#8-3s$9iJkh z<+xe9oRyi07D~z?Z1W^yP^w4peYR>x>yq3w6$sRt)lVr7Q;wZTwq6TrMMy|;ax!9E zKC^F#7t92R0hoaJpG{PSbD3YttS=Qk0kX zF7@@r$vUi}(dp6Fa;LSG)&ICNIDXU9)8AKJb{BHfUa@-q&Cf-IyjrQ zViYwzI$B}FKe;uAycxm2i%U>W+TiJ?)7gQa`^9FQ_d+yGh7NII;8WAj*PpM4-TOg4 zFQ6j$F^s^mvd6uKI^Q!J+#zqo4w^YdO5FdPQw7G>Z*$z%*4F=XpiSA`8qCAWKs2psOxcBcdPzLUESJ$U%Z$g|t zLd0<*E-%~wLu^#;pdob)UZ|q4kB36ctC07G zK1o{PqC0Ij|K~G$drKJtQho>-k|knUkfbi=rQwv_{e3+2zOk+8sLFbDUhHB)EMwTp zxMCcs6tiH@bsCqJK_NtpisRu@pMdE)w^qAq)6>I^v3ietqL(NANTM>Ox!(n6daD&@ z5t4-{>`4wb%7&jRfy*!g7{o1Qk)11B2lt2&7sI-w787Bf-vV%UzTfNLHZ@U*Q_Agq zW_+k^Y0jM-7N{3r4_Soq<+d=$Tqj)$YC#9o&s^nBgg}BLg#nDY4cvdK-+1Rhtr>u0 z;S~;t#ItFU)@Pq;JJBy@nt|sb@=n8+sGkYTXuo3>vAFf0NSbqp?rYyQpXwZBUzl_H zxEbze#^6)^szKELNebKmy4d-uamDhIKHJ-BP1o z07gX4huAa4Lb_&OEXap!g~V1`%u}HR#Yv!Rn`<_+m>1Cc#cssW+bC zNsktOiZP$6AknT$c4nrZvTxJ*hW+WSex{)4Sr_5Gh@WP>!3e#n{Ha9ss}>1rNDkk( zSOn;(&4wcbcAfGoz-&>7+hjBO1y9_Nx(gKBNf}*uoFlDlMOaX;_B0h3m+gob%iVD! zSZW)r`uTh5C%C>-3H-?2gBOXP!PVt8TB47rwZ?;D`#A(bK|Z|&lJO02>`-0YFqAc< zl?tcB{BQ=6-vP+-8y?JJ%}{W2MfL|I&yInUaK9L$zqq{4^uZT+BQ^N-o#63~^z$Vt z_Xa?N?ASxecM^*>b{Q7+K zwJ}69_=)h%HBhv%kBh@@Wiv!Z$0*~|&F%Jbb-r)hX8`L3b5!3=U#Tt}vWf!iTV7nu zw|{HN^c>J=ytX9}<^!0246OWJ`sLZO$Wxo$#qN4#ih*UyuTYQ>WkpOzwt$#=?`AF? zqIowLEE9GdC<;9nz=%R?+zGcwXr8#CT;H5 zyV8SZ3<9IRcK1R zVoh>fOm%g2BOt1uCpW<7S=rc-=1r2~CWjw?rCdo^-6=Z(=n%c%YI%#b15QeIMa50n zfPD48?|hbTN;EdF^dy!PAL>Ie8vm~MKrWk6IR|k%cj%I`N;`WIp&FutW#|>`CA~ujIn<0CVnkOzI_%8 z#g+iraL>F+xVV@Y`>!5CmVld~0>T!;3_7kLWVP7?!F6t1a73&vU>;|$E5>oN2fIiL z;osF+<9{AI-o>p6_6NEDEB~pgu5J%jCVYD9oVbn-#d|guS+JpY+^OM87-O%?WJj~D z!9!_j=|mxCM))pprsob`LF0-rwEaf7OwL&cs#p^zv>iQr@EyblB0ga6H48~-BC#;v z`bB!H6;$fl{x}JiLWgI->_^=FGaoS*;aji+&`JM69v?;>E`yP(gasc|JsDnJ&I{c; zaNr>dL}`Dz4_Q?WSn_pQROrohTU0<>!6@tw^zcYSm%6kdVoOK&Mzd;DE;L!Ygi|?X z^W}5Yz~>Z%UWJz^Ei6<__s4oN8H$+DJZ*?92rKvzWx|-X3Tm`^McCr5q*r($vgx{X8%j5mR^*}K--PVytf09xZ-13K)a02Qq^{LTSP zDSdZ|v0ESmQu@BZ6YYiIEP)#CHY0*4g4h*wm_=2aQH!|Wn5?#!<)aK3whH*UdIbg1 zFDfXRdBdb^jPN`yf&r{lq`!hN2$^g`{uDe|e&ysa9GOKx*Ntt&=? z%CK}a6v1Usc#rNz`_62=mmg-%w!q_0Qg9HY7NRokAU70)rlGvNe3Viy@@bHZ$6liT zt#cpBo{WCDw&1SEtZ|nwni3cEo(23sl&`o51EfmbCG>AKMv33PA6fokWtQCRCdgbX!c>Xp*-=S+ZQ zu=~&*hP>8lUUH|VpvNdbq{77nrw@3lb3jPZzc$e}@kYu8&oz~D)TVNb z%Cu)41W_nhXOT|}&3+iy0v?^c?3#KQZRfx9?)X;BcgrZNDqYx@E9hw8eL=+$WuBaz zMBo`(S^#gb-|(+?Ar@gRHvD_jWoG+?9PJuv!Pm4%6df`S6roY|w(+GqT! zO4*Pt0EZ9~US25*jOtoi&er#*>0m`cHZXH?c7SvR&^;bwwC=L(FrzMp<${KO%bY{= zhHLiMugTAR*4Ea5bsx)UyeQ5PdR8eqNUp#b3+k1d99K_5o-x)-QqlPp#K^kqgBcs^ zDqZM>(GWdKu|!P`FYdS_4HU>Dq-h7P-OBnpRBdr);+TY0Ro_3)9jANEcmcS)I6f_y zeb0FL8;U4gF&Mi(O|;Q+X5S)yI_9X4Z@7X>(6Z!|+0bwcXx|@+f~Z7_L!9G&dgC znK%(n+VJ~uyvV22=cB}fA_bFy-+* z?I9JwpA2*^U{FLwPw#`NPS(IRwJgi}nBDAQs}ns1r|c^?9YvUkuA^q}+#(IVYHn^0 zVB_USI_*RM#L@1y)=%g>`Cr8$br9fY*)Y2v9VQCu)ILfsAH6w#68Z|z<+Nj7-P{bE z+3FA0NwXv^i! zXc{x#q}cD=sua$)&6a#wA3t7!as*BoV(f;5guq6Xy)B47sLGKdlH;^qddcYe0zt%&B+AuJXaxM6r1c)fu@a&?mC83W>2Rm;%u zYqwc~{pV?b^#Y)?va!v%2-oJwS6TsWu)B%_a3?hXjlE-PP=t%-r&X1Ma4NzZdA$F* z*o>D4c#_cvNUJBb@ji|dgb6J78q9EG*cpsb7B5K-e5bp`xiBNh%Ecx7`0;fBIc}I= zff^0XgWXw|a(>k8A0K$N{sa0-=yDg6@I?)0w8;2HLW2kr>VHE^A!5q)m>XVQ^!jRQ z-==X)^nOT5Ul~$WwgfotXJzdG=7?1l3>#tM;o+g87Fcfd>c8v0;y)BXm!LGT>H>=bKU49t zV$pK`xx-J3c^OPJ^DKGj1a1~n0MJ7Z5o3UC@(6}atoa%_gMG=Hiqs2$6e}xaj*bpHh4Be(IG8W{CDRl`}La5~`&i*HP*2do21Vq>emv z(M7Z-4xc`Ljv6!(d;;CII+l|^L^-hj!a!gGY#VDw^^R4C6WV< z(7d|m{#ZiOc|2s3k@E6mQFKlU5piBb>g0wDY!A6`P%ZiQsN z>i}KH;A*RAYGQVfSBplEN1@+pSGbYv|6=Gg*# zz8SOxkuaBVeUJ#~o|B1BZTEqDn@(`a%dUi&tt?`tWDM#ayIMqIDz~d z_r$Rv+#5;+AmE#p+rq-a>Kt^PM8c^N&tItdDc^6`P?S)8>K>0npGq6re%x?dRJJIr z#EYYA{IAnAIrFR$q{DTVng?E;`54N{Q7k>>JV86eX;^zyT) zep^%^wGh&KX=#a>gF{+Xl@Ndw2o`)Z%E7R1sio#8=_I{J{>=1FWHBCUdKvL` z8n84eeStACL>E3UusGdB17x!Y9SYG=oLo6CA5)-MKu#FXd&GQ`;5-98@@r%y3+5DH zQFK^I)NeWJ6qKbd{gnm|apIcT>qM?A1qi*vf#0 zD@r6UNDJ5!0Cvp~UBr_m^t=QHsd7!uu#YOCbsAOE){VG)43+PGIs#LGNCZ`WJ5^~< z`-3S(IY{PA5<<1Eu9%P1Ggc)=3|TRsTor7+p6-SWTP@*yrM?X6gxN=n3K(Ykm3?2^ zc8X;ZHyZ2lluGpd5L~LPdXQF;RnQxqLRU=X?YL)Jq8^&E5izZI4~pvDKGSdxL(bzMDongazoW$&LlFf2($ zMLbZMz%96#SvWKhnYP>0%STv1LZ&{M6e5Ol+Pt3ZZ%%pMm2o|GN(vcxc=2Lx)4_Z| zK<6E5v1X&KJ-$fNB(fS5HRx)B< zn6&i$xhe$$1!Rx6M>R|{mRO5N)T%KgU$iIF0~dyJ3?v@Gjbpn&>^fD8YZ}%XI7(zp znymAWb>8*};>wFxf?xO)$;4MP;AjK z>v&ZpDfHH)9JQ$ZW%U4d1!PoIx7on>I7{I=hDgn%N!g-}Wt%pAj=45Pb#kN^X}%wM z0ZFn7>#tW0X+g;sh;i$RZ-iT-eUgVOYjNI##zw&7I z$UVyNz)l&S4)=Td_j|EW2BMkJ9O^t8unxJpo@X$m!fQ%@a>wn4hBl_tGrVBth1C_G zJ2^V_K`WxMscW)^~5Ex4oE zKkB-f5I!$37D%IT&XJ!Y3}&elPtPAQDcfdU`&Fn&@j!Zn1ELFP57OlYJ_9yYb={5A z6AiH6V5s9==fYUEz2R^CKf1-FAPEt2SFJv%C?yaN6d3p~I7hrmi%I@5(RaRHcKJiR z)|yMW9C3Hlm?(1U4>mkGB5QAjS#k}-Mzd`YRft6dZAqBlMa&hhEH+IkQW7es)94~O zN6ikwL8ZjBCuP)GlXC2>;+n*-IF^o|R>+6gu@%fKI!j7QVt};8rxx@@dhMNN1HvqQ zkn3-Im;P2~e%w-1_Zb${L)9g>KM_gWdL>^?mzw?Okf{`%;}2Xqc-AmO#Ov&NgS%sP z@8q-fC?^fAw5eKgN*7pRWll@-Fm?{?6vOjqQ(BN(hBbcv@okf6WiZc?xd6E0yy9YM za1dd}dxjY1H8$m``@?G0q+_$Ruc#E=qth)!9ZX2N;Dt00;z$hn%Pp(ozW=%U{l(`L zd*d8mq4&M<3vY-p)*r`eV%9zhB;cqqdE-|j$rv{-zE54Q9$Zx-MONXo^Bxy3Bqz&V zvaIsm(A7eV1~uJ+-S$5!?!H9j;sefYVRv&BhKscB&QqI}X}gb<^)FK$-8{CGu+uLm zeHWTbZr~^=ZTXq!DMq*KNqy#B)~&Ex1sXEW{$@s9*^&Vz#hPq0l`%Y$aj8F7+u*i& zV8Q~dl;1t!ynlYKx`;*IbYPy#DJlx{3(qinrdH}7+Qna zsRk|MI%`y(+>Ob}BaTH}kfY_;b>?{84{|KW(Qgv2Cs{odw5+BankdX>mLuJRk$Ikb>$uL;@ z#Y=|nN3}oh8~S)yy-Tf{fMIJgJQW8d7^nhwN*|1d#UvC+5Jh%+45`o)%?0`g24W&3 zOJGq#t3gtbI&jGsG3z7c7`SO{K(j|7 z36l`rNxGp?PLJZ_K+1v>155QkC z_`zQx8J5hfN#C>jUqs;G2Y`)u7p(Og*8uUHbWpQByzS*^-gVR!<46&THv&s9_hnnkkzXl5^&)o^PlEsm6sDeeE9ID$#W4(%PMch&-ol=0nbsjoV38!UWBVV z9}Hg3+b;?A?8RXZ&;4#nWR_S4^$kwM9h%4m5JR0sUP0)lxPTmFv!Bun3RpjQAC3#I zevJJLnh7}+09Hldv>h^hN51w1H^X8CknEnt_gTNc>ihBh&BV_*UXfeYhvaBi4huERi< z99p>eC3a8Gt+JYXBupA*7fE?~Y$+A;_>sq{Y9I*Yv0*jzpZDYDlK=vf-wm?}v=hbdikpRp5tQ5r2)+QW07vG{< z!O_k=l9l)slbLPNeLF|K_%CmFsuj8Ft#WsfA0%dKHBa-2-EIv<1fdU`hbOmWgCt(s z2fm8%2%5;;^dX6bkPiMF#n8T<_z{*z`OJe4#dkkhGn?kdl}J0%N#7LIX=wY_VDf+! zRj*S48w6bym}G_SvWNVURN^lj33{Ryq=P7a+ZSX6(xn1#t-rf1qH_U!FQJs1j&HN2 zRV@3@TAvF6h^vRMw1Bp_~y7W923Ys#GhP-qu~u>0 zX7nzWzpR`SmG44H4qE3Nl)~ax-Vk|q1Q!!BQ(0!=O_V*#{h3)%5b}HlIfDSzLTFqg zOHJyJSI0lK^7zMe`yy3M(sFiY8k%gItQH@GZ}R925CvbMom}MogqM8$kGL~`&=P49 zL-?;8yh8j>%5a){Ne!U5*G5Y_VazTF#~1JZaUSDC2skr7!$NI~-`y-z;08bfkqZX{S|rUZZ3f*5`&BE% z(Q2h%xATY$5;b=OV2Y#PRP@cN)p02eexRl*C%$Q?L7{wSQy2e8a_jM`tIFFF4t%5T zEbfgGAU{3Y0K;xZ3EkO*e#|*mRU=4&J2ZC3v_sg zX|y(Nq@_RbtC~>9uUurGz9H4kiE(G2W(zyGUmgiT5%6gHRRi?umZ+5e;rr>~#8C#N z+>|D3JWf;-(rj$<8qM;IBxWx!0O!a5(H;1?@>ZhchI}AaJN>DbD2ezFn3eLEUuPf-rjXQ;8QX zIqURgD0&V|zNT;Pq9!X;;Zh+&%nj{mV5ig5{~HN}ZVo8_$fxqS;2eU7KWD0_t_$zgii&@r z%`nfYAyV>3lqlY=suK?r18OEgN%iE$)K?izJ8TZ<{)j}I!(kVsy*PJtN*FE^IexVU zT9wcd6og3^4kX%e$T+3IEbyI5Hl3#y`sMiX6E)jHRoim#9J$E{GV_?HD}jTSQqb7> z?R})bK3Pow6{;1+%)!^KT~l*%kBeXR6SZdaE(NwPh)j||3m@3BHhaPc70Op(F~Q90 z7%Q}FIQujHc*|*&Y#n+S8MF5b;#hTW%k2=p4SV6H@bVr^@VNa{ZLS0Q%%8GUY(sA9 zWkS;T%_PZdkR-3tVt`;^=8g2tDsW@n+^WO!DeuhR{UD!HgN{e7R*;ty1&I!gSdRoI z9Xgh6RhON?Dql%FiFW#{^V<4?Sdwsh&EB31R_%il6F|)I7zZ2MTWD#vzk(F^mD~iC zmGF~O#$`H>rQ(EL%IapJE;~WEVFuT|xIb8G1#OA!;WDkKK8O4JMzER?VeQE2ERrJA zlSbq(Fi!z}$k1BnWl%7te}CnRSf|9i`$a0tU^Q~B>N39PX`?&U?doc#fS9PFK8t%` zOMHIulhNyVE(ij4tie-2d08xBNtig!Q3VBN-wqs;GldZqgzdtlL?F=PM$Fg;k;Dec z+1>G_f#jE;Dpejo8NPAjysD>Ja*&sPQ%)*0hWrK-zFp3#U&Nr<6M2os2?3B4SoeRT z7x8~?*VVWwv2ycjOm5YGTe5de&Z zo+z5fP0;KR z<_B5K3;dmIP`On@uZ6aMn|^5W3E%fa$Qno%&i6QA-#x#AHp@UP)z<8?yBCvhSY$2D zXvWIUqSV-8bVFZXAAD-)kWCqKrO9%*tkjrUGMiei2z0YSoA<`G4Co=jWkJXoP|Y4kFlbcg(v4C3h!AcLkDGA0g(uG}Boc4~T%ssy?mE*BJbt4WzrM;HZ+ zJNg=wE^j`|Xi72+8%D>!S{l;X?*2ghVWGm5J5R^)`8+g9s1Z#7Mk>rTn7|~>_K6n= zhI%oIs*xya#PxND6MZl^qyi0oID!SeIWQy3W9OMS-iH!4u!3S-jHkj`| zu9q+;?kZ5cLusP=yg>g2*xkccgMddcHrTwp2c02VR*fLZ%KaOQyEmW3z3a(yL{eout=DyKgYJ61Yd6?PChH3mHrwZ5^m=~JP=C-_y`iny%opu-4V zwO+R3P*Kkvkyqc%cpVEFSjMfA0%Kb4^!SIY7i2Jvxqen9m#@~L zPnfk!e?dyZI>@Rxde^cM)y!e7{^qR@m>_|0boATWfe92bh-b?1()B#(PeF^^@yU&< z0~qknD=iHgwESMi_-+BO**As!KG|orPxCXx_)zMR$*j~EazC-szXmlr~4FZh%sdT-s*j3eBNle4Cpg-wuHNR zfFE*o|0sLt(!>U@)+_GQv$E#f9G}cqiBz3gm`k(S`LFwOp|Y+jp8S419y|UzKvu7f zMO1zjo2F}235QEZq>EQx%*^`^W`%VEHO=6>)J?|Pu6X&+y42yixB+>3!Fdng$603d zACO}Q94}76E`c$n@BPc@8LvC|zg~*0@sHp%e-(8|Ib$zxRH0t}Lzz)RRW{BiQ7J4$ z!4B1%QVt}FQolw9pxva+j?800z^spzVZbOxYHF&`^*ek%-CtpThRz;6;2Lzq!EA>h z&4M1FpSaN@`mivZoRG8JkHo=m!-n`-#5HlbNlf|M&|h06q0dKXE98=`{eJh!dV+z0 z=sINbrhul^s#y>H=*LQRyjxY`j)PdrNj{a_F)6{kkGf6rUG>$XSWaPP%`si9{c3Qr z6@9?lkewk5m??yL2k3C`bgSz5b{DYgmbA^fR?Yi~Uup`3@zAgr4qAev6AUU4j!(_P z@yIrS&SP|TQoMvk*}i~LSQ$9-jRIE+A{}XX)S4$QX1b6Jo>&0sj4VAsPDfXBM;=9mJ7%iivU{E^pK~l#ge$7WZZFj|NcRa0#^5cs*+1qN)Wq7p8c|k8pLHQL8F| zl*0;jmSq>75km4Lr|c<_*mme8K`7^w9;i3I?%r1QiBxAqTVZQ~)4Tj2?!b;S0c`P_ zihYvCuCaI>x+@~iuq`_ZrZ7nXzz!27QHHPU@BNXFAKGBzj9UD6^Xb~^2_H*{UuRbN zl|^g=9YW1Y*J$fUHpX|pCP0Bd+6eI*XufkqtN(=adw?IQG<5Fu3$uE;40#^ssIm2= zkh+624!^@e>TXNL&`PbE4{SXrWq5~AQnFQO$;1(t=2O!Ct5Ml1EMy8hwenZ>d0pZX zuK#6Z zi=~PdE{i2qjQujYw&aMh|8+hhk)6iuUjhseeJa)d0A>_0ija8i{1h{#BmbeC+e-5$ zw#08+d|}cWW{RNi41=l}>3R&3l6?)2IQdaiFO@rY&ASUYCag#;s}gT5on%cu4%;A# z3@wrAZqCzT>QW@2#$Hef)MXZ^l|R}LFGXAY{mdn;<}rRy>&oh?ACy~ea`lG5xUH28 z{=>Fc#?TE!jzIy2A%h2Zq<}-`%k@rUP@Z3XJ#Q6d%vig59KZX}QNl z7+o(28KmW1uCls4GMT74t{y6vz=$i6^;>q?fQ<-EU|}*cAE

B*EmV`B0>OGUbv* z^-iUZtS!y}j-LK(d#2_twU#k4)*YnQh`~{b!N9`2P_f(4=z@bst16LItNcPp{b}5) z{ZgVvkA&ivo)dvoC1iS!GQ5X~d;wMF3I>oQ3@&hCvh!Ck6~>WcJ@)oy*;KOO5>O?- ziTrK{hYA=LS|bbn=yG$wPOivY!cIWVwe7dPiynB?4NSU)zLGtpI@Q2gxN^7}nVc>M zGc-ska>fdR>Cbk;G$%(@pf3&mYjjlq*~f0}O3inXq3>?iYoF#pWB`uC=>7YUZDxrF zYS6lzJ_=&1m)pG?`jMO~KP*?>`OZ+o?ZfTtM7f?>jnJ9cFkCAt#tvchlhdy(%g0{K zot5S2Vy51 zAy$#WYB?}S{lDHIG-yxWf8uLrd)v!G6PWgdl%dR|P;jFMsJV)lDc`}E|dEcCVpBMb{x{bmTS>wq(u}boIeg_KiMxVD1h;(GGG)s zpQ})LiY1kVLzaBtr|Ojn>(N;|PQ~VgmT-|?Q-2yL{hpTOBwXrlK|+`pPNSJ+l*!F& zS5PS6Po$v?o!FU0816O4EIBWq;BKkt-UfpW<|o}ryt<>Mg?xZ2!Y>_p1F{n^11ddD zqhx@nboP~SbIQre!wHxI3Aq;y;RfKN|6pIx!P1ZTzD^F;Ey2ZBvIXNfM=~pk?JU9tWf7I7V20Yb_qqt!25Oh2zgB5|K#@^A99;yD4xq zpF5NmhLsVgGf@Z;XJuLhQ#1Qmaci>XyveB-wT)@l)_oMQMn}N%=-1n5e$A7POx_~N zDe>TcEmFn`)30F~LBQaO6INK_i8Kc{NLsMM!C3vTd8b@~dj(y@An*;tV|RKLwYaXY zQk)O&TVq}QLIe!~EgdaZ^Z9vY0Y6-yTQrr{JV^?`AM2YE1z&_v7&qV1DxFy5=n3iJ zi7GX$$I53+$W!ROUdzqh;f~>g5*qp4()Rt`5(#Dxrg|DvhnyNe5z9);~yW2eHut=_G$sTH&{Kw3^2JdQ~a^>e_ z9_P!Yrv=yEwxEy!7S`S2$qiR%MJ?A{vE*S0PrO3E8Pe`z1wv+Bj0cmACUTkYY0hn7 za|e-W>cxNA8Ny}s{`6u!w>54H+!}?sg@qmXtwX@{4hmlt;~Mm9SxC4rpm`r9Oxt0Z z;z9w1-yp#@U{Xi7qu0HCCx?|7`(QGPS^unO4|PCKT*ZyHBdAZil9KVlOQ}+SOUk!H zlb!S}463A%?bJ}7#939XVRY>fGsm-983RILk`yvfJOt+iXnimA8M zzsfzw|H$;v?!}HetGawnz#FA*CwdFCA*t`=3-a&FUHj%prOVvuUv!voPz{EQkDHp< z3%%-h;V|E>*Neg;Nb>4lXX|m|b|lBp*Qy;0x$qkN#!T@rE|`8_yKzfD-FgeI7){d(enq!zJ3!0 zUEw^8$G(CNg9>MGPZn=?g>W>c-CRvlp3b)C-4kTZP zVkZrKg^4CO1me6YBy^o1wMF|dE|%`0G6$pD_uXEyD9#Ams^Irv_#nfK&}raJGK*75 z=)e7oJ;*8~nkYwFz7`cqHLcCwLG=)RS%A-IOvrFF1N0=nNSNi_HobcOZjJApBXITI zEiT51#9I}KtYu^=E8nuO$N$vI56A`y&eQzLLOr% zk0(gsEjj)(blHerf6>xsQ2|Cy_BIQH6|=tZKDkb+-&75AjrYEoHvRA-f)7} z-sUN*X^f z`A*;0H*VwlO{cJ<@;G-woUTh&xr)P*dk|$3w$p4rs}fZ^cKw-cE(W!gy+qTC7A3}5 zXmW{cJYy$*+_D>Vs*uI@;_mddh5w7W_YTLp|Nq8MsT9(%WoNG<6iH>T?46YnrG%7- zkdTo*GK!3lm6jPQBZRaxj54B2B~(^&KVDtm@Atm%} zjpy_6d<-h%`z@Ax?!A%qk}*G|l~VLIrsW){fTzTZ`d=|*2Mk@cR%&r5vs&Qh(b70p ze&F*kSK!)rUq(%GXGF~xM)$e}by}!jy?fX=vH84;bNLr^-F6ibJ>w&F z+}`S7-N7Hk%thNKr}&=EZq8JlSDSi2`+#7m0X-$5#oc*JDJnD)7q(bDh zS<$2<+E?jaN6tPN%$n3)xJ)mds{J&+YnOJEl?od5O!FFT<3mqU;xHUn+@@8-!tK?| z#A?uc!l1E5T6blmhLDaf^WGa@s`=OtX$g%MY~DE>(xC9xVMozx&U^)EV)3;@W1(Li zAA?&UGDGxP&__LiE$ddV!aw~jZI<@etNvvIV!r=PET(NlDKwgi$Lo8-LITh-xvP4w z9n~Fo)|KG$VyQTx^B-hcCattRK5j@`TcZR%r1oTS&9e5N&388Oz2Nnm2}vU@rn zYt~`7Fz@+Ew{}qNt{Z3BrCEvi_q4IGqIH=fDTl>g>rH-FOPsvIvchz3>Czfm(co&7 z57-KXg9W28CGH;WdjesXba>;Blzy6_X0VcMzNR`VU+V@u$ZTcn@f}Gn4ePB;Z>;Bd;v9Zsx8hrxTekp| zT+zG1*;n)Kf|!_M#Hrb_C42Uh>N0B?tm4~S#M!x$GY`t8)fIVe5R#G^x^XP0E7ke< z^&MBwDnUZgtvh;YZ4BBN00C^5H3(NBRo2JA(27C&mtXFVBRVM$9X_!8_J z_V$JtC@-uAmmg2(isET8=pJyt;+Dk}e$Pyeg3$BJJGgo0?4eU@+@9O(reBv7Vt7ZU zH&;^rN5Q;;Se}ucUH8C!<0D~@L8kk9X11ByYmT<4kHw^RLCtS8I&(9t_hP0^{SRd< zYrlQca_qWvV^22iO3szZH!n@Qw(*BWtlHdzBF>HZmfC)ow->RM3{8!XWGktHLyU`+ z$d7+m$8eyWoC~f z9J7Ev_ONXZoK-z=!std@ON&*>SNHxb{lWr%8;2q>nVQETe4d-p`Nz!>N-xfn96;H1WsMcSo<2_gX8J$ToAo7Rnf ziEj=OlIrfrFr(~%h7<@^LtS}sF@{Dez=t>9Wenwe^*k^{b$Q(wFOOor-XRH=!52n9 zs-pKC_W!eAE+&~S-|~0Ds#op)2OcJYy_BBC5E0sG`sLMnPO(1<@yt3_yp|`nZOgTB zI~ppKs)Aitd2Da+`B`V>mb6$=X4ir}7NV{N&xNR8wyl-hbwZY-1+3_JEdeaUmlaPn z}Q7|tgF#nj3+j3SB`&B27A`e-PQ_tVDOKMf>k9MEJjw>qqAO+$z4OnHs zz`(V#JHnT)_lb!$Pd%-&L7x33tBzIsRq1dvXP_0%_*(!KP?$=)@a|PqXXJr9qx)Dw zzYB(j%Iqw*H{HSZv~q2f&iwwNvW%aqrmatwX@WO8>)6H1Y~{|))t!;a?1K2lvu>b& zQEQEDOS_EydL~}qB=uC?>FW7+9giA)8o)@ZMBOyDE?{dLOa6SKS)zRNaIT2;G|g>? zVlEStqUOew*RJges>+k602zo91fyh7 z6j4clVxyF4U#9cttgGInX|dJKWND_R>-$Z54{Ftct9lt*II}C&WZ9(*?6FEoR4g)ID52|06Cj9KI`ikMFH-^#MI5cTBa}WA|acj-EeQ zxg^D!ML9($$2u9UOT^Np*A!jkBOuj)Sr@f;J6 zCO#t0lG5^54nEIpceG84orIA$6bXYIWJTT<@sK!r)0X62CXxuR>GV8qKJYi@-`|iqfrDA#q zi`t(rTZ_Cy5B3>a=S_I|pQvpV(Bw9X1#=f3bb!u6_EY|9nX=l7DTMT&0TywEu|T)-r9 zO)N!cEV-8wzm0mcbgTz&OY~at2g)0KGP~BMb+(+-LOu4qs6_?0Kky#Hp~kFfZbnC7 z%QB0`=CSTn7M)sQx19nkKbUtN(P@dYLHkLM8xNBnOkkDR!v<-Vuel}7pAB9tw3bNa zT$5%KnyVuCr!1z1Kbbbg?V<7D9u$CJPM(Yr)MU7KP!FmDu*=YI!9|Xo`a^cT+d$O@ z4&8o^@}l;j;zPC4eeySabBx)kntT<8R~N^mY+`2hG8PPp9Aj@zmHnaU*h%a4{l&T5 zK9kggPh1x^4aFTd+3DkEZ0f#7)|9dFc6s~$aWP?6<9F@q0_^OgfAV-w^X^(Yd22+q zYeppZ?s<_OW=T%ee=k0tH{VcfxZ$Zo1E>a?zxQUji&d2Us=odDdh$qusw8)!e3|3D zb8=P6PBB{#iX1Ym|EA`wmwXdAsl$#-PzNbjT4BbO<1DjMY^E=CXP=9wkzpN(Sbr5e z!>@%4hSj}{P3uH}S$2F*_AcwEivG6V+vt+HxVH-nGxK%GI;v_DZcIGR>ve-9g{ZQ@ ztuJ}?Zu_JGdr;cR=S*?YJx1cZg+AM;Aiz_FL=HO&l)^Z=c>0Yuw`(3K8a^UwAG0++ zvrC=jh<}#6iX)|tjYm{}P*zz~*%%T^jHAGb#Uuf65hiDIn-`>n6eI48Cb*=1avrmM zT6nzJR`;$?WL%`j{>_ln0DLG6^xU z;kme(MaD>Jqnl94;w?eAbv9_%;sw!V@04c)i&o)BR;0(9?v{H5|e9US?JrVx{D ze>A+bsf<0>DzUrr?QtAkL=;6&C(AaM&xOqpy zH~Cup-~@1m0}FE%K+i1mN!;f^yS!$mdvB<@nVR2ToUb5JEt5krZB%mC3PAe%4x^ne9rte-X8!ZfKb!?(_A#SpU7sf31S`{F$2tI^sHS{;e7;8- zWbICo;us6w%&H~l>)3E0>*R;x7XPBF;@@JaLns*4L-OU<1#DjCqw#?@+IKaE@g;71 zjgwv&u4T71U>7MdeXji(_Xq$QV?J&HYAep7<58BsO|nE@wcehu%4kvH%V1a@G39;nCr|TUYj6Iksk1@-2%mgbf zzi0*BV`Km{+Oy5&QUYCCDaSFn!sK!48WugTO4HUsQQulqu54>w80tMfcFz&QZq13U zSE@w@N_GB~kU^Ce{O7XyD~SXhwdka?8~kl=?`B*`mcJcaGvGle=}>s~bsM#YYOSR? zy$|g)L~csd2FW2AGZHdvYxL^FWmX4Euf@v2{Pfzb{C-2-RtDP2$hMIH$z5#pSb+86 zW&&G?*$Yd_LyrBe;!e4ypay_EalNF34$Rmm&N7&|KZN~|G`x_x-wRkvJn*7leX9kxG zfW$BjYjE1!wQ_9Fm4^)SE&-hFS>LuBKRGDG2;LT(lfnr`0qP`!%3Sqs+-QkH$IOLm zHI(OKEnC$jWrP2i*YPAr@zk76YIokp-YK2QbFW&&yAGWnc7%s0hlhJ{K!sq30edRd z578;K-Z9dzZcG@LJJGm!nkevRL>C8K)-MeG3muOJ+Re7ug3hkAl3c3nc$wcnK;)CN zS7EU{6}?YvMy3I~u6n$gZu)0oJ5`3^>wHHB62=bL>`#%ZyY5+iO6%y2H(M(Qy9{l% zBr3b9@{5%_{))4Hzs2P#ef-vHDUY+w(*-`PQGI6C*=p)dU}8H~YOzjjGKyVed^1bm zRe#rokWWnkUM3Oe20})4Tdv~+HJY1v|BjWE{d1Io*R7ki?Y^6uQHi^}5!l%$5PVCpbgnnH=-98vo8u)SR2nZKQWs+wYwu;Z$zE6D@-Sd_&)r}W1K~B>_t-(+ zxsBskWid7eoY+teq9zO|&-X(grgo71M&oRaBTdE>7?1=LmPyBnGsdZ;?@(GXU<3ZN zxdz&o>b#H0aM1`|>%C6~!PxM1{u!bbjn-DG4A< zADbfW;@p3pYUCM-J$Zal>;;s4b{{i_xl;-lldZ0GtfuywUBxRLt#$OPaqXn`jf?aC z9mXQ2Q7DY=r`X z#ikp^H%$B_un0(W=uCZ?!A9Wh3!ZO@W41@|s1Bs#mwNt%U#I3~ z2Xk_nO~lLtivl;AMwCKmqF=aEc&CBhKbtG~I+TXoM`!sd5u%ORQazKU18bhsML*)f07IK^?n+Lq(?-#-LbL>l_g}t0lkj(tFLqN>d+;f zy*9J3V7T+Ac!eN?|3BJkUBBdL?uey6)uBd_-d-47lu{oL%mLqEeW%={EttCqe& zjGY6z8u3n{B+<6OLbaGo>SsN*Y9sm*gMQWW0>`8ke^^tz9RrKj@qLX->AT{#XLQ>J z7cWuUV(P935qB)Px`#_|aQ5!i40NDTv==kgZ$`p{R$(;!48pakv=&&fr4d9{=WR zQ?r$s$HF>yUE)3Ky<*cD$NCs0lkSe3-pyHmeNM}`IqppJ)GLP_M4~q`UGzF+Reavv zsG#W6QhqWGjYm9mm!-R7}=-`y?R3a%wr zg*)~i{kWy#fZ*vT!+O)U!=G$q&Kp|am>m!w&QeNXW3>)`-lLNt8F+nIP0ZZYywyTv z^O{_rZIQH$YhFfqtTFnWn_)J(g~E_7C%QF$RhjU+4Li)ymDy>8N(6LRvfQ&RbL%pE zzggV2cKGMS$%3CM5;8jM!ls`>nZy(n<}|x(RoRnYP8obwr15rt9O+?Sur=;eD8L@x zT{og^*5s~lgO48~2Ni{JCB>Og_H4 zz4i#2Ow=mCueVDS_f5i-V6>XcX~s;e(9c}5a=+wDSAOYF9KqfX8H2eP3T$yn4w6VPTBtZAx2{d*+Px#!!*!1*0C@w|^?ya}#vdyQz!kn#J zclfqSWKx;iu+W;Q{uJnH3r7x>z0R83{&{1;pb5R2;?;04lSPYj)M6e`dAq+7Sz&RS znW!pqi+q^yK0dJ7~?k$ zoXQnUZ*7o?);e(~@5~0{ZxA6jj*ATHMsij}Y-)?$9g(=jMLyH-M&Uz;35z9z`tTXW zVJGSn0iS&vc%~K6A3=%^>o!IBBc1uyAE_nqeCl+5j3&*!B|%IVrsh<^$@LFriXQi_ z!DTaFt8<+d06Ii3hl*R|%>Y$d+JF>QS$;&M~1jH62C ziB+*$w2mS%%eQ-WtE9yJWkW<{%*3@q9+dS1LBR8uFT85mu<1nn#2yRqG+zsRh+n0L z_9;)u>Grh^8pW$#(%EvCh%j&NRaDnW8SohIxjwZg`?STukS*CIEULxkzIq3XpHKc2 z5f^_9^HPuriRVIWY;65pSpKadzj)yIn5e=@f#|cvC0Xc5&A=S+&do%7>#>tbCzJNt zK^Gu~Suzvtb=0!xyoHh?w|m@uV^q86z=h2;4$3BXye;U8mX5YitTJ{tvu!QN)p&R6 zFCPXL5KzBocv}Co zRd7fFoC!WzA49I%Cf;4$UcAvs8OG}4&rUaQh%HijG25KV%4EVE*9OQ2&HTa;Q=2G% znqTpdI70A7P12NL%18$H2!H{y4e7N{9j>vkN}sNC@~=b;ne< z-PF49WhwixfCPi%w0}oa9~xHJaigIDi3PHG*ct%B{qpV}9f)l(B_N{uM<2gmtlJzb z`)_YwpV0vLfKjf-z4^-~my~lVCuH{Zdn8MkI$K@u{)IY;{I-V2SO^#S}opyzr0+9dseP%_%f~m<4_bxOX zD_;z#(Cjf0v+)@~Z3kNVE)CNkFQCi(dS+XSPPV7v&R22D(*<#Cn2Hx8UF2K~mlKwu?mW5{u!-G*_Z(%!nizA8zX>r?5cpVei6dlNH8uYT(?r=n5|Mx-D8i z!UWe-y%lBs!-6CCwuBy@b@>%pXKi#|XRiFYt$Nq#0gqik{d~6>rkqevD9N+=5!^5h z58)$rH;K}%&->2X<2LQybpw87owA>v@E@GH;TZBmiBiA*{_b7R^7YDFfOX=FhFT9j zuOld=n6VI7x_9s2FFl~C+)*shx42)BuE?>$QYZWyP4A4}h-LqiOF`oHntleCPRWWs zgU$+09QF|st})Vfw1R*v4<^UQFmzZdwzA>bKvn`28{kcvLQ0vD_+7n^yckl!;jhy_ zcL#_xo?0K#VBxo7B!j2?rZH$AcJW+URJzcy*K~4o2Fhv{n+7NyJ|||@Cq*|+{saXH zRCV&8(Qttcd#S}yfjLi*TJ_rt&)xJ%?HB*{*>u4EY-RSBPclpl)!3Mprd+N_dA)Y* z+m%21Kq%Tq6sQ%zMFk~|yvRbpa_P22Rgp&5o8q8Y;AkQ0d1BbYQ}UbEIjsCyCU5WC zeq(RZ)PrB9H2U^r73lbEc!7|R$L^^uj?#8AA@Y@&+!H=5JT^c&wvS1vG&R1T7wtVL zxa-V-3k~Qh46P7`Yn0LvZ05Y*%@n z4c!D7n>lzY@JyMQnD`K?C()`Cn#iIxM#&E|dnzE1Ev$UR08m9X!su}Te92+qB zMls6fgolWi06rNY0T!>a2ds4)=j_QlD(;iU9%6i|t;%`RaM&!2q~ zg=>PG6QEndP6qQ`J0Igjo-t=lI&KOM=zzt~g$l&E48OnB+`XGkp5tB(7Loxx$GlFzGpA|azJ+R{rwS+L#Nw5>WC*Ix9 z_)iYr8*kQpQX7jH9&c7qOxFWNa7K;VIRDqwP#oYP0MEp<1}kTIu&U^mwg%0;Da*U2 z31gANAClLv$^9*wEW~kHzgl8(edg=rlh5d#MLD!~9BUix{`AB|%lD~6kI^YQt(rLQ zP^%AXw?#j$Ih9YZ$y1P}F}r79|GlvQN%oCySL*2m|Fw+MczW@kDZoY&3=kun|33}p z{(ttLtzpKmU}tV9lJ9>U?(=8iD$H>1GCTnpKsE-)<+(^Hx%ML|I);OSS!P>ow(=1BbvUIjRGgKk5S^~`^j(1$nYe-w?N-0@n}zB zP0I*#3+T!p!q1UVS}9GyT611}_8x77=lbUJjGEiS;-^mrEgd2%a=3I7$8=b0E>wn$ z@7658k9-@KY^7F0oarf;`?eqohFtE%VwZ%|L@aFJ9AHvuAR-ayiM{?T zjL)`lpZ!1u+P?B@IBqKyIZ?hNT*C3;g*9%+kE=mQ3qQV%l(R7A_kx8gxOt!IQ%Aoe zLTkfl+UNaFf&ERb3V5VWa4g;PW%mBbp>CM9H+eKH967W6vu~X9|1ERs0o?pc;ev^5 z6XI@*yYmh5Ro+i6;!^Wd;{Ju6UAmPG`o~h-rw=3%uWz55ct<>bTi? zrxJ^b?ge}2948tEP6t3w$8qn+R5tj%8^_F=4X$rI=a#-!y+sT_=3GGgGxo0v=Xlc@ zWM8+@jXW|g!0cgeiHdTvVL@o97?#s1pbv%CLbR|G$px6X4Nbj4Y7ES&C=}v$1nL5c zDH;kfy7t7ohI=5WrH5bLG@D0=&+{o_Wc?5r2{HSoG;NDhx)4UkIt&MZwGedDp?G4mf=KQsfS2uizMEP_VbTezvHb;kHDIG`}z6DJh2lbHiiy`EXU>q<4Dg;J=CmUx;a@a7*JX#6DcZFXLS2f$KTJ9eI_#?gsT;BV z2wk0cTB9tbqL5TM!p=@fxn5t-iTlfb>0KX%GM;scL4VIzSz?I*JuUh0#4dH(U4wr! zv8p~b-rWKt)o?u_lcI{@BA0xbKa=(=QIG_}U1XS;^TP-J#gu~1LQm$djYJ)WZv^)V z956$18Bo|PTd^(=;65gXzQj+f8iw4&2axIe``wFdkpaH&d)Ri!=Sec(8`uUSnu#?RxP-q-Q z08RnimB(Rn_yzvpZw>b?N~`j@JhjYTx>r_q8Hreu<6d$Lnt4XQE}skty?6iqZO~3C zVO^WhmA*4VTK-l{&~&u@4zP5T|IEXT(24i~XYM*VNM7lo)>vlOk+--TT8V0})iNl} z4(^dS#&E>o$vz^V5+`cV8z-_7hynSm{{xA1J%n`C#gOnGg^IlZM02~53HR^AwqvtM z6_a}+u-lk?GkBC+Nm!BZTdF3cP<@BYWoBg#Eu5&yjnS++|DVUQdp6%d4Lq6C{B1@3wgkU=? z%@N2EBi?@n{L%v7N93sXTBd3u2EN3^8VXHH zFiG-2#KgAq6`DJ@B~0y?>4(2F)+>dViS}d7_%)K*Lm`GM+aLVc!sg@<^Y@3i@%R0L z`S7-My;YQJfxoQImzI=7Z!gEM#C?^2Q(PypQ_H#DrIY24FV+f4;*@H`y$-L@%NkTa zYObJG;O@uLpsY=uwsO51w!Abqg3_L{*!mq$1(#s>(sZ1ExVSwiG$_uAKo9f6zlUBA z(!S=Apt7D~vz9{0P{c<(t|}zf7T(vERUTY8Jt!X#)mE1kLHES+f8XE{dY5rWwr)Ln z3m!YKU%qTEM@Gc!cken5UM6dP2>~QI{+D4kejBW_PoBH440yO=!F|D+JQ5>)|KBhx z5|Fjxhg6~Y8j`|5VzJPre?c6LNB3!@Q>r6_uk%iu8d+|4NHA4@|5ME2NJ8bI;FBX0 zd7Eaqw8BYl#2b7tD?DNM$B49=Eg#FU?WM&hnd z3a<0Vc^87v>>Y>6$#K+rr4Y95g?RRNeTef@%c1!jeS46~@djuQ-R~|=F5H*=I%)lL z4Rd>6KYP|>jkvN?r%uIwp+Q&fL`=am_nwnScz`3xa0<%C;L!<>jN}V|+F@>MJ1}Jv zsff_MovHRWs4xGVz7SqHZ9aN{WXW!cbRL#2?+^M9?`B5k;{PnfnS#AaOi?wQ+dWx& z#}J8*B!-3@{mZ}JFHFDC-?IUCJ^ORH<@5U*=3BPsLRn6HjE)_9glm6QP6e|{gZWy5 z1xeM6Cf4@_{?7;w&aRm7FU{u6cxL3aO(!Eoi_6Mdz{d+;u1!qX`EHKHmEc)@$4S9D ze^qy_qwFXxg;=WNOAKFJ^e1K+!dHEsUurD_ykiiw_~LMOP$_@khmX=yDK`mvgtDL- zp4YdKFi8SD$Z~Dp`8B+gBvcS_6BI#js=c=1)XX-Ck>DXQU`}y+Z}>}G)sGVoiIvL} z+(WUfKPycV?~oVZgoPLDHu+V-T(dyqwT$j$1gYITYxmeSlRQmAV#7Rh_ zy^vfnTsv9*7&74tcz}Oz)Kwu(w<<(aZeHJpcexYql7t*oBel&Fy3W})%zjZp#%{Lt z1!K0kjLQvWg2QDqi($+w~k|CQq<$sF8JD<4sE`#r!`lHiN_0!2SbnL$a1 z^>}J3Nahpnx9M|;7CFColvrirgd@2dYfm?7d9zE_ApC1z3r>4a#D9Hn zgOT7ZIN(s4kQ`fy9X=RiaW~oKzX|^ecCUEA0>lYj5S-@!TpApzykHZm*~I3`b5jO; zY|uuU=RXrO7We+a^0~7eIjlFwNmw8WwS`FgHj><8;gKIS(gu(8F0@}us85lvG2rv! z;1`mChhxTLK#}ZMw#kwo^uh4`4;mh4Fl|}3bh_&-e8Zve#nE2{+XEwQy;_)KD*J!f zx3Y;#NgV;H6o1zooi>T%IA5_;(-Rn*)&nSL)GPy*ROHV98bWb??g+|yT;6s;%csx0 zwsM_*PD>)dEOF)p1+hdI*suBSbhWph2X78hI4&^0a5XQHb5)A&>RLfW$}J?DB}u;) zc8_a&jJMjs=Je&y(v&M@ewm-0Gf%MZvF#kzk`q}BsA|YvOg=j*xgD+EE`LZu>lcKF z9gb=LH1YUA`NPMqHr6+j1CVm8ffx!&vYD+ z7?R%g0qc9D&0zP()hMQ?8)umncCyivl3@2!gHy+iL{LfmAH%;W7=x3vOXAQ1*qPPt zEZ@oJ3oxMnK*GPCxqkew=&x(00IGr3P(0BplE9+J=MCCch1K&sS)RikvlW5R^5wPv zh(VFKiSj)z=r^@+mgg$c4wDkNx)v7%9S)`|xVR|}V;w0l>QN%ijpG zOaB=m=2sYs(A3p94m5GYqLEjYI@SIp!TtLOb~r{O6w13_7+Ik`m4_e0%sYH@RXku$ z%Z3025@Vu-6I_9-91{PPLxnHKzP6r#_ABB9GNeWKSgY;ANrLb|9#}b17M%rKceIR5 z^VuId{@~WJS7J!Wi^$uc}t-W#};M`mmT$M+09B%vcp$m98434hf&I&KM4bfD&4L9*#k8=O-# zeGXEtQ!vUX~g7BI41E-7aYkfrje2>^inQ)Js!N!^~rzII+ z!41_}sQzcJ#i3f4;`X25yLK96Ofp4h{yocikh6H{FiyTVh!TRmNXUL(M6(6M)O|jBacD2OJ~k$$Q2-BQF}e4?S`S3F&|c<_cirrk*(q+tP|y|%(es+zSMv%QKtQn z-nHrfI`%6?lv0huo#f5M*8QP;Ac1ULzWpI|Qq>fkpa4&r$+tT?cTPe&V~)Be^!>Yc zp5(RxV$j%&s6jXbkbGE8B#Lj12U)d0TCP#5}5H%SI~T zeF}-caqzX`?nQS>4FV#9%+Hn%CF1|liT@iuffq_#wL{A3KeIxGIGk>nZg@$pReDX) zQpDjNP$&=)R`wY-^0qhW$+9m`Xzn9GT#o;jbk}R_x5|)c;r{*gp_3cVE`zp-=(Jzw z0+jA)vFXwVHX=r2tLuLkG2 zM!42S3Wc0vi2Tbzuf94u{;_g*djbxqbK7f0Qgm^;`PpRR0hR`5pJl4OE2E4GpBc1DS zn%;keM~;=PC4p=%hIKm!!Ht_U&NA7xWyz1GCOAe%_7ppM-5;J8{Vc zj>k4H-~Qi%$gG6_KZ3{*DbBF}&(bFp*juLr0l8d6KVO?Owcw`GF^_D-DoTu5P*#XP zB{J}QGD(;Hg5bTbbG9zog&7$fzs9x)rMuj*LPb5a(CteCh&!MMrHgo6iVl7+0)JvE z|2&8RfS__84KeS(BrZ5^6lyEL`(=j5Ltv>HyO6)Pri3!VJ@`EZQ%-$35+$OqJY*eHO+&Y@_Y zmoqQ7X-6$vUSGjZzt)OKX5!S60}FBXGy`va`)7FxxXA$Wabe)>@;eaXp8M$g@D52{ z>>D&H(#s`4^hTiP6c^y_b`xp0Mu>V){w(|M|*d8X;K2B##saXdH6S zs;I9Co1f*9uwQ(hR{iP0nXlGJ3vCQGFA3{9@)#k+Bnjb+ zVO>%Bc#)Bq>%4M@o#F^EbFLrme~>EOhTJRfcW+0X5XVMh!%^f=Q3#gs7bi1UBmq@N zdaiBwn+H3Mzrcfezv5MoXH%|9h=O9hp=D`@TON;_ih^ahiZC_Exj%w|DIoE#b3-IZ zsn0%WFG=wtY1r)M{ZA?{{O6N0X&c**t=qnT@7rc|P_xIs^363f8hk)*uPFF7BnV5B zCy*&d8jn27&XdTK{>_wP4A~~QEdd|yJMWpww?ZUIclh$I!6uL<{ucbm_mSTx|7Org zHKmi}SPeuV$13Vg@1uljd*axHBVl?)-Abm_vz6U-G^QPnq{La%Zz|LN&rF)-1AjS; z?6ANh0bu8S_^-X<>l~AAEN8tpn4yhidLr6*bBr{GR7wb6n1AZ3OwC&r(f@6rZW_6^ z)Dv{hgZJE7(VWDc44gbvO->%HeFxkUgl5ai{H!l7YWS>>qLW}A>}Hg&ygZ|YWQP3^ z$d^|S(;|wGE28V&R(k56vET*}_Y8oUcMn{xL)i(uj*fVdQ9htjXaN*mEqDxBsBeIg z1UFbdXo+SuI4jQV>HID2|CFL7eY|1m2-;$Df%Y~0l0yQhz37u=pS%1n0VFQeyY=aE z6_yPFL>yucl)Qp1p-dsoGqjukZ6uZa7jFH1^A9(E2bxEXLzNO7y}f}gd#Qh%@6ch>%N(iV!k{AJg-yFBY@k#=i364wxhY`cd zcOIp{?C~bVAYhoXKYMA4w2J7l2!(`HvD?nCjD+;o+M`3?f?^EcFYbvC*uzt4a%#kq zHBM<}9l@L-fXDDnBO9BR@bhwzNnp zfis*mYeW&K&T1<=?7kPbk>#Bu2lZ2nNoG_mgOK@0fke~AhI@BefE0bMcr`&<#oj({#!zi_KDU0lc(X3SA>ngX}OgoVus z&lQ{*NT*1HPjGVx3!tjPhs4(g+V~-w5)g83?Hk#zw|ZffWz{fNhu5n(l3>8Rf-}Z|=Kj4&fW*2EY z;BO2uE-|mz!AAZ=J`)yE|H0w<*D42L1*&peXz5`6@V3V>X3{34K0TDtMlNQ1QS4_7$DOSxQa5-9v*541o=T7yd?0%pvJFMix(tJGmgs_ zq+83Fp=atm1XAAkkvmo}`Eo*-Lw)1OU#CgQ_K95i$mi7smB@PnhzzV1j}UBO63Ye9 z8FMTIf--}4W%FsFT%0`+?-K%6BLwwgy}`X<{4If||24M;-yOv>SktJYVN+seW=0(0 zC^>MS!jKC8fcu4SE(}3kpjDuT0M!N>LF^fr$dP0u{X*jUw{CU*Z#sHW95U+>ji?6t zd>YJ>MrS?1oPaACi(BD~^?=}!(6zX@nB|_htNpXjDxz7zV`Ou}F2Na&ARdx4(KdqL z)PhhkwdVRYS;s^;DHWhvwf0ifEoGhBtQp_-&5=?TH3jER}q%fd)L^J~>1 zV+O;^8as0|Bx!zp$eFsrq6$xU7>B@98$O9lI49K6abwgQi)jf-+_N#-k|G2@D!5X? zb+(nwcY*z~1}0o2jO3$d&dr;&uqc5=74a7b4~+y^WcfVT20o4v9}Tt`3}LXRcy2v^ zuHb(uY7?<_PtsRh4+0zU+(W4bdo+f>iBao7rU3I~BT4O3UKnNk{i~``9fq+KPOr3V z0akRP5ceJiPK&1jNl3`!kHLt6#ty_{BmD7K@Q?h)jShi0G)9X_Rs%uXoES*%zASg&}`_~6K$j3SawpbFWA z%jX+SZ)#8%@CzzKE(`TJbfwt5Fq=f!n||R)53Bip2?U{L4X6oa1_=e?uq_%*WwY&rX2Zj#vnU@dk!LGw*`&%c0A2d}fBCqK^ zn&SlqEaKjX6bER=>^yDMW5oKPPlp$qrcC-p@C|9@MEeuBZR{$9fC7wIn*?vDTdm88 zlJ^uiRTq$$hTyJt=T#I8K)EAy%w4c;Aq&N^3*{OnL&xRm@Dr?LNH<&AENUUOxNBWj zzmYZu$7gCWXuD8lUlo_d!^U`jS61Qt5k$Y?;KtBxDvUf+8Fr~`P$dmTnn&!~z0-9H zKs?u0jaIf4K&b^h_cV!a%1zo1j(9{*0za+YXJ z&0BRz+U9)FpwYw!HCBgeGyS27A!DM+$VU{Bw}H3usdZGbTE)sL5zY^ z!MBD2PX6ytqze)sUGa+g3jlU_L6>5QCRHMMix?r}dPNCFKzqjKkAoHYo}f)* zt&wF+oFOn>0=kba|J3)E?BHdMZMaw~U3<9k4NKTmZ-N19^S@qafcd^u~QyyLjHtxI2}Rd#JeHKIZhPvixD6P+e<S@&;iK=>=>XPN!QE869qQ|mtosW%-$}K^(CgQFEAA~vW61?&sWco zhONQi|KWIAUUjX-QmkOiJ*ST~;dRMFq$gExjg#1fjgBM3pj7rFVwg}xf-VHX(^2}w ztB8K_V#D1B1A)4A6Q@zM`LY_mU4y(E-zE?bvCKhr-{|Je2m!MXUz#24!_w}6gy^x? zD=$gE5O?3l*#&Tp0rt_uz5+bC^LDW2iN5FjLz;~qr^@d(M7Le!^`@cvC)2*yTV0CF z%VSf|wuvBbUC;->{)LYUZZC2Y$HE!NsKL4{Re0voWWJ@wrP70UQ*rZy_J{hE^CT(W zkwIWbqnQ24)*qfRC>lOQ{W9#7=F%2QHcshb7FL$3{f^5Nj~lltDDAlMAF@G%7Xd3d zk9{8uFK?apy*`+izcDHT8e5_{#Nx%Pm_+qw1I-nNBQzxdsR3zpOC+L1)2Dqv~6S#;I0Ur+p5-eXV5brzQ|7x<4 z19>Izq~^}MkzO@62x?RZ#Di69pZsc756GL!ixbD~5 z!1MU_At^C40Z*66wZ$ULYiVt8BZ(l`3Zq9iFTLfRjv_Z}Mkg z)z@;{x@vp-yT_loqoO0E)i-xsH&z*@q@^K@cQb;z5ggb4cC&OV*p^t0sKF?NX8zIB z64^SdFYk(Y9D-+u-G6K7QLzAboD*?r2GfDWaAzS^T6wm)hD0=q#SPfiBP|n})zWJ*|cO zJ;_{e@Z|tKMHh&}=+Cy4n@0QD=hW&rWcC=}UuUH%ax3BPQ5lmcYP+m;qYj)3j%S1l zEJ0e~raAC7-E>OrY5#Q|Z>spr_;T%ZLC17@FB`CvAU$#NiDe<9`EC*RNq_#OEBs$P=_pWT=H~KaE4KidSr|gi>gbs)h z4x_bdZKNoH>Z)6}ZYA9a>LC=WL zG0Y~~8SQv1xm`u}{AUHw^FAFBn=kom#pG8MoWCR9I7Lqg3!G?^<_rWS)k4E}S0!pb z`D+o4Lxwo_!eEAzVRpA@PS3G+HdUaWXTH3lg1+j``k(%L@z}8Xdbs-=gI20DLxoF? z1;q~VLl=c31XlzmT?DYh?TlI&Jtn#u==#HOj^T_ZiFJLq_z20MQTTJYC6okik9M>2R!pg5s^O%+-E zhLW@5##Llq!hUn#*ayge>jZ6mM}(rWH$TYudsW#nx?c zrE#WSnYw6MPKEc+_|D1zOg+nQ4P2D+`J*edyzlpmsM(w zOOW+AGo7-D1gBM%Rx!icP|{wY-G%jSE8XtCSFcDUn%l{fZG@&<`CDg3hHpx7?4s6@ zpmz(P-XI?jflF8D()-tqO67DsH7V2&Lz#^}0zUsB$m_F&zFU3$sbcbvhz3^}DWC|( zGshj^xyIb*x@d~iqMhh&=KcC%&c;41U-Wf)nNysO?NuwTbEMtwlK9LkQEr2W+^)?v zlEpSO2WLi86FIq2aU=T-cf{bE4827Jk9;E*Jy`v~B}m+CYU<3*fn?|Xa`DaQ5KcX- z5`rd|^Z<3k)0Xd#S{&yEc?hxGuWCR>0yN#YicRjYhmS zOteP5c10t6f*s{-zxwv>K3K4z1QyqKJhy#1pp|V-KR!COLkRHIwI%@;hJqDQP7;J2 z(>+};n&GLFA~U#_0!PAIfW$pQZkCk+w+=XHBuZr@i;Ig(1F6QhM08Z!8|L{z zij9Eag4{z-nT_gF>FLeP?nA`@c^jd0;{%q@uU$oDC$49DoHE*M-b*Z-5MzBd#a3o# zgbLrk#>#_s8hXYxvVeXw?B(HDv4hw5Q5Kp2;M{&HDoWhr<@Ql|rx0oQPK#~_^HP_y4Ej1W z_E5_ZycGrxZ7%1cBcn84SgdKp2?v8rSJ&QQ?MfM#Wg%OoE=r4Po36ZM6N(Oa|7~xD zo6jNTqBfoy23#O0Zm>4vO2pA9B2`w9S!3OrT!eZN2odG&MKAy{q`*D4o`SlcXiNV2 zM+K4%;9ca_DW;>XyM9IFouv`~s+13##;s@AfR*B2K$b{)BdgaoCGK=j9p-0^F&EHw z1Ly!PhIl%mg2&O~W#Wa}j_OISdmIydf{0Pb;I62r3B&qgJjdEvOK!z6{TO&Yr+Dg< z9s$EghReexv}AjuWO4_h-A?DOh{i@qM31hbc)L3oh3emY#D!$Qb9ua4Q7yTV9F(CG zFH|aCd`2}^eNHq%%K=6ezfY#W*|A$h|7LxCR+TXFHqRsv9R@cRyDrt~G_PPrvbVKq zOY-r|u2x~+W2aug4gxGe9lBYO{nDrpBimla533z!!g8eHG2zU!%%t6&{8^KBr({lY z`@!2c?mPOFPsk$`)y67~o+nY%Dp1(q8dB6R;qr#x2(qngP`ji18TuXNEt}b;5V?9( z3V$3C6*>8uTjK<^S$a;kh?wGf3;EX{tpPNNh+P_$fH^pT-X6M z4oPc?kp_k=Oh9(~__mVoty@jE!EV6;o@j6qQUS^V+qR(CE4`X;&kAf?%uKfK%oV2~?DEwx zzk1ppD^bx;8hUvaV#c!O+Ej&NU-ARA-!iduH03t=^uE#`No(C|C0aBj^y<2CxW%Pt z(d8RF8HecCs_J)bn+~8|pEH<^#^7XDe)M^_XGhEsex&l2>7=!}dFoD!wV?+nh6m+0 zjR)XJI#`r(L4YOn#wK#t^wD^6v7L1CS3%83kzqDzngmVVZ!cqpmih)OzYX3S5)I~1 zfsyjh?%Y>7z;r2fK59H(4L-e2TpX)Se|*I-o_;|J%v%_d(5!7X9~F_TORf1ib_2~+CBDF+t4$8OHn$6m#4#aTS0CD&FPR)r`Ti|XdrNB{qErM zkLUhx3SRWlDO2sMaBC1PKH;l|KN3m1r6s9z>VnS$%<0BU20DX z^x5Cy$7%cEM4*D0jgh28--)1mSFCh&5P|BI(`Q)z74Sj*AI_BFNa(jT@)S}Q+cF*H z_)^5YdKqaX<%XD|nHhKIz!+&Ft!ce^MG5jOr6VXVt|A^k4$*-CJ2ijFL!IIESH5euJslwDlF+{@+^n=LRXvE5;-Dr=9NWIO81 zHr$DSF3A-Kt47i!%jP7rwqM&qC1P^Pzo~dlRg_b9`2ni#;Q(Gy`q7N*DCANsQ#I}? z8Kq`dTW#T6h;&NtW_CBBijaRf>?9i$&zw{$_QOt4HB@D1vo|a7cr;Kr*o2wUyOj%w zzgLaCuBg*P%~hyiVN)ThZ}1ylzV+R&&f0~xl^F{jyEdGr)hK$U_qhDykMk>E1CL&@ zvGDtJXsO}M&q2vz7s=OBR(7|X=+|zIVSMU%g!9*7KS!a}PcFtgt88IZ`Lw=MfKh0D zxWti1iBwyhI3KYz2{~*HtrXBrm304XUiI?a*CqdP%^u&yk{5I47QPl$H}hweGw@$FxYeGTSj59k8*F~P4%3xls2pHVqes%Kl>KQRwmxAZ(IJY7#?@6Ih}d3V-q5OGLP7OSnu(lWZep606ReZjE!x~*F6t5TJB z9&@^T2EaC&KAXUwuW*ZP88e<3Obm3h6I|6bu=k$zL4g}jMq=7rHyaJJANFU@3!oBW zeE?w?=9JRP%CQRz3%Y)tiVXQ`#;w0dZVbjnAXgLpprObIOy#enrvpDAc3%j(F|2g^ zBlHM*d#2f^4;TX)Zq!^kW^43XUexlX{SE}&13~uNEhVQIZc6pjW0&8YxNd9Lg%SgA z-a7%;9?g7kZdqq@aJYPbly5G@ncrAr&dxkLru(SR1_z_!;c~}?-x@tkz9&Ql)p&k$ zds%P^8>kuA>^=KITr#)*@m~98h0$@e&Sf;4UD7(usx}M0fA-*YW~NKrs#`^}ot3)- zY`lFdzWf?d%N!Qemb3WQm=b!s($9N+f`IYQVgs?$4|7)Y?QeXYJy;EkUA zpJ8b)Kg{mmle0}L#cl`3D-~K)FRNGS9^2a6^t{BqVAtC%2eu_1VWJ2#u3Gphj;Y-S zAWY-kS5^5Fn!vpd`}60#(WSVmm}ezf5^bu}Tw=G}b~apj?!~?Rv8@K@Z}t!Ox20{7 z{NNp5t2er^S~cV|Skl#Jr}=NcEj2FoagdR`E6rzNw1bT)dWSDH)u!f*)}1L`A9Mt+ zYSvi{&L+&A7dZFsxIFCsDxZnnT|4H@z7W7&V^c154HLs*aKUn0v@9&rc&+-+JDboR zr(t0hHWr?kJ9dv2x#$&r;$IH-=%ewLDX zdv&C5p<+UrwI%Z6y41#(ZikH38T0C^z04y0R~Z>;`)M|_8m7y==uRuw&X0;Rn0dNI zZbzDCnfc@Xeoj;i*d>GvO}ZI0RuHT3bEU53UJsXa~2cwD)YiRdgRK-ssYfw9dmYUmF=2Q3*FMLh?Lhw=Ew&@Rp(2WGQp!wLTC!zi zMzWJlLRJXb%2xJz&!_M2d%V9t-+y0+qeBj#^*r}|-Pd(q=XIV+J#sc;e)?7aEImJ_ zEk=FrlrcRRUgsnAGTY&6L&E?>VsYnLcJEH|(;2ey7d14KmH$H?WMOsVeTTr7+=g zG?GF`t)OfA6#a!GFYqtE%PAFiq(5c6(Q&?N#Do)EU#+;Ai?KbL{DgiT;4F+z-8^=P z|Kr8`#$I9fnK!ts;a`<9W+>y!NebetZoNJ!5?mya9Td}R(Oi4udDGGl*3#of3{>5! z1No_nVeIBM?{x)Y9zSm%V=TS(Blm0T)-;Jx!Otzc!Awe|{!KyMnyb#d0`gLkRWk!s zXj+OKKD_UUXaLW#H+E-BgR*XJ$ww9caayHrA&$p4jI3`}l1A z($H`qqz3Bt`kk*@??=7K5A9I7$`3R@q{jH#H3f!Ct)l05euo^jai+NB0#l>(Z|_g7 zuKaDk=bYrruX|OH!x>x(YxPaX`hh9WRRuLnuuTR|r(&yoQEQ!@=<`s2a*;PH>nDK=b zz#3k%@^KjaM*G9(b5TyGY^lNd=HGH#jYY_ezOIJ)abJ9W7vXhoM^f&=Br`5Iwf!0x zlD~VhTia*L-qXo1<=^izKI)gvE`Ec2h*O_D{Dxve!?pLEiQmu3f1}wpLiUYUL?%$J z#{OwduuA3M@weBV+1o3e4ft3dm_z{pQ;OdOO~`#YS9Nf2!Mr4)l*EZi=ej2;f{r3? z*UY?w#OKy8V?U-NL^4L5G=0cZDIz)M&d~$}Y4USdADv37=~CRJe4}jU_wrr;U2^A! z_RT#kaCLOtZZ?*4dh)R)_G8@;+G`Xd!|Z#dh8?!jOC8HoHvC#WWOnOZW>(jPtYZR9 z@92a(8ihu6HRKiggNuWbugKjU^m@S@8oPYLDMbDN*@qAtVeab3ZyH8$<_p>H!(cbm zS<+ayWuM!;)AvAyky;W(hga1>gG;4@6E_^L`52Bzut}e7kGk%+i^ahsKf&Vj1an}O z{Ig(BDa)KaLWYIB_Tky+4@R)CvB{laBkWA!sZiGUsilQM_4SGSSC3q}uAF>nV9v?r zPyKPinhiP);LnLyR#t9PHffAANYcFB_n9J|-)bj+7&VYA&`&%|qqdw#7~I5u{j6zd zE_p0}_g&Q_&ChsBpsUxeUzd+}={S_B&&T97EW^sI0rG}uaw|U%4-c_D5tEeSH{;%F zBt68X-4fLNi(#+oC`W5V%(pEJ=@swAEt=_fJSN+KIIrUBbJSj-= z7DHA|)HM*K8M6I#>__}{$W&PK0Lnvc)zcoZ5*vo6jMT0=ImG>1EgnB$F< zijFNc!$~bY1N>8OPtnBIqp}BDi*qgQ}dOvZ)x1VYwPb=9K{&4cko|79pHB+`e}8`9F|)e z!W-u%dCG?6p-UfIx`GbXGn_q3&A67Lox*9KgN8I3?J?wN*PK4~iczT6UZ(0Pza!l{ zO@17Wo?E3s9>=0Lx$@URf|r3>+1GK_<1YJ|Foa+c5kkour#~Xk)%P9TaZ1}8TX6@j zxVWHuy*pa%Ty|!kAfJc)?CxZZ=ddEA$bm6G&W z5rAi!Bi9*%&dDW~p%Ou!^_ti0^s$&{M`T>d?y#$twi_FAG!D#c@su+ai)`@Y|J~f& z{QS)ug=jSoCb_GPqrBA+7H_;13{YQSx!Y0Uv(Op5T_+IFE6eQG> zNU5>$4BSukcJE4xF?oVui1fQ`a4;@WnoD>-pz)^hYM3_^rU;@fJv}|qYaoWljSqj6 zo9pYYTe5m~=&8b`7q+Ha#!LL&g?n-fS=8Rq#y_eu5h*vxvJAyFCiaWm7*iIz7^3X!?FIot%%i-OyPOTgwfj z^~R{fp7M)rr0so~(1(2wM1tO?GP^16q`Ia~?XSDOpF2L8jDyh@Y^r}Fr@}A=+1=XO znyf3O2YOy0&cS-=C#JE>{xnDjBI3Wl-r!ptoo#>dh$eAy88hyND~f25e%?JPa`Y$} z=tvN*f})!z%aFft5yc+e+ZUk^g%#K*JY4j1^pq&|J56(cjU=ukpUxTlWc(t&UyNE} z*lKT@z-~UZ*tBs2=P6QupG1@iaD@>EC0TmZz;{hX!?ac!zD>ZSa7{+?Hy@Rvdmq zY|?IQM~@!GV=Z5)jz&-e)F&p;F^d8cE4 z=3E?ZAEK6;3N}Ei5#?d|OXW+2#GDV>l>lI=y*AtCy=G~aBNQM&*u}5VHdjzkkelal zq)wD-Q*v7QKz7nsQ~faOnh<>q@*;%l{emGuqxYj8dosU1pmPz~)!-o4*GOq$>bgyS z>sN|M=e)x910%S3Q$@uW@eP2|XUq>1k))s7p;ua5!PDu{CcoAY@vF0S59)`4w~~G{ z-Fn;1XBmYA3g$W(ilbSqx!~rBDcxv&p+g!u1RZ-DE$skQ6y)>tE0_L^*ew6Gz+ZbC z@W$)YpP&;8ud5#UgXF3lC3VHoPk!ZXmSX6>;X%-ghi+aU_}^zUb;|+P*=|asznY~q zSpp$3Z&4Rc&AUowTJdc&K{(XeQ z!^r=Rwwgkjg3Cu`)6TU0c~6A{>w<4o&SWZ8S(K$@tpEHi6`%}F{*qo=V;d_lGGk~c z0*!`cw}gEsF@-9eznpkVv7;|uL$NThrAA@0++Ox)$P8f@Vi>6X_C^KnfL=p8Yt}B>46FM=rfOh`=-wNpWkzPRZQqiU7XUB`sfN4 z-7h=1PW>5=1(>?DBeX`^maPYTlu68%cfT z{0`N(Hs@##Mp9LqmDB5(H@{=%jA}ety`KTG8+21N9MNbZ#xIDO+a|LZy;R?w)Ng|7 z)8#Xt*b3|=se46OHfp74y*_D2jlV||9Vyo5%b(gG+dENWg@OqRfI+_Pb9FTcXfg)d z7*AVg1do5zHi^%WNc6y)BXVU1(dX6>;43v(AHMv;xWhPe zgeztlpn5gESc9-|IKKO3VXmA7FSrjum4QZ+TYr10#qG)_g$y> zHnQ`C;=ssE_YPNKTgIF^nTfkk4|(XwjHF4tWE=9AwhTM%<@#qyVs^>JfYWC+B=FWy zR?*$YJ59gx`U8GUlgGa6QHb75Jx2DX<;;+h_ZFnsn*59+Z5Hp9OepS6*{1K@P%Isf zc%9Tm7w3D%dRonIcS)}>e;R1p$R77EH6Tsh6X3h86ss!p0O!5U=a(a%-D=$Wv}T76 zOYKnB7L5chvL3@NiQ!L&ycl#fc^7kjt=ZDh7dzb1Ql?9syAR__5D1KnBF{aD1nMuk zhtWpe#Z-=7DC6lBG;Ar5hBq~-`#*W&>mafF_4ApMU#A*}lS2-Ut8V7gQhj^TU##={ zH{Do@&@M&oy^AMCd?DMXyQ?i4Yfw@4lPC1>9w*wXW?p=m0O@A$cPiMNI3G}t%5m=h zF~^XoDyQ7cv`jfmvfFi%_YzEh0K#%cHnfMmZ(4Di@c7`qXU^(bVWM8DHb!!=FMv*= z`Hr8lAA)LMoZ})2W&DiagXu(~@jDU3|MioOQu5Uonpfy-HArh;$$akQv4KCU6d#-x znldswP;zHZv4P1YI=&>V%h(jCo}Ad-$ObC3LGZq=9!XM8{&=4EK=Xt>(tl&5ol7n~ z8GKpnKEp#7Pr5SyQ2crScc_Y-AOHQX2U~K2vZ@u2rhiWJY;C7?GWGYpe=Rys1Y%;M>9s(W4$CJRB6bL|LGtPTWe>@(ujYo zP-R9TTPzgBwIt~@H9(W@Z$DdaqzdL_j1H?-(nzYH!|juNY!XqsJ#P2W&pa~~*iiOI9|T z>r`FGn?ffk_hX4UYzyo`zVW$Rtd&=wK4%U9$VT zdH2$%mRC2!CfcX~AC{B=>_f-0qvO(RX?Me`+M8(>-sqpfGGy?IkJ70Xim6P#%bqK| zA+dguFF2esZndC$GGFO;Hi_PXr(dOpUsN@(&Re)zl;a)Gj*C}rHD-I+f|W>#&IOS> z<=fx5Y@xt@81jwFx^Q0e|{zW)9aPA_0q$Y@#_DTXc?YCddCoDAw25qqHOKsrW!sEAoKN#pQ= z?Yxs;L*Ad7^YxrPsm0J-+A3h&wD;V|^i4IdHjnFlnBG;l_SM_oB>qX(Z&xRac!X-S z?$b5s#*;eS z&HLCM&;QFhihB&xXd}AVh>%8O}SrU4zf2jU= z@`IvUOTc#b%p{9ThFY z<761XwA%^ic>!d|ve8fXX<*yIdlKTFBZm(kCSkK$=H$mE*%qWW1ML0V5~GmDNga29 z172>7#V*uN1GREVn%}x9LNc|J^>{hlZ^+1DJ@v@EIQP`>imIe%g<{xiuj<|^nos=M zJFe1G%Yvq4vcP|EhuR~UBBs@Sy~XoY{mI*yUZ0Oi@(!l^8Y*U=$B85|zgB%pGgrIe zAfo0Ku!%be;T%+D1aG1PhZU6*jH}Ga5)rKGv3#DkLLE-@0Arx6UN-V)ldf6{*?o`E zkMKKuiZGfb)x{Vds+oH2FiR5MRRN`ixZ#Kv?#uS{bV>cY-DhQMsn(VJ6DgN9Sm-#4 zzt0+LhSX@bcY0dBBKgs$)AbF-dDGjz{NbpuJK{jW9tJ%sYOC{HyBbAP(=LhM8~IlB zb{8LZJQ^Q>^ihEUqw9Bd$s9h`e24az;5c>a1DBGdeOy}S53&lD^k4 zH^bHAC416YX>98u<_gMnABAs)2~sg)L zw!FetkCXjex$;lPG;7YkS`zVUdr-Nb;&om5W4GDLk-zC0N&7Gx_(G+v;{3N0!=`WO z?-p^<$7`laS3kKbEiU5G<-KpgN|b-St~W&|T=mM@>4AVso-iFG#4X$}*t#C(vNjd?&yESiL z)eXrxhYl5|1TD90t+cv+JC}pQp)f^KFf_Yvh(;uL>vpH*h_COvCJ>D{cN(PKlG{|D zJRyH0+F}oGc0xh|Nnl(escRG80|0u+RzU^?D8txMAkqA||EPyNb2>8dPoGFA+|VrG zId~9LjAK8@EpMjL{xxCd+xH^>G8lS6Coiz-sK$t%rymHqPF;IPAV8~#NsgM8N=a&8 z4lMbw%i8l`pW+m)w$naFHZofzX1fUYc6BNS^vgXvMn*>Dy?2NWPd;R_-J9dYLhWp%^0>S?k9HC^Ua{v%b&JfdUYnp2EoDaV&RFZc&g zFV74}44i#3@-$ts@y<&1RbToeZUOeJ84=X%8MWPZpG?+xG0GWObs)dHZnygp? zUsUS-Od6&RuKTT3JSuiEh3@=Zb?h{Iq(og{Wb8ohrNU&g&%)7t*_G{qBE^ckqb;QI|_Yblw?JJJ#@^Q2;)z?S{>(W ze@3%UjBUq($Ocn4H+E1`eB?~FCUG*;?)Lfds3q3>>rkX%NkWGGbVXS8Ha-ShI&H_z zZ8Q?YCC$cfqwH-@HO^JXS1XDJ2`#fn9CkRh)pnPU{&7(IK#DgtHYO1ymD_!uykC?} zpKsQK)deED1bg5T1hKwzFn;OB~s}dPHJ-%_w{+ z4~M_Cp!?ZCrlXGI?Z7?Sy&=jLYWEv$^9tnzkG){}Ht#AGdG0+AqsElD+JKE|X%*c; z)!Eg$iQ0{tG#T~>rlP})$JlLcu5}hZJ=ANG>78{@!d`n`Vw(KOWM0&5cHichv^^85 z38&B{yT6&U$S}S72quz9`z$XYz1uIM@iYa9_We8d1qOvY1ulaX_F@~-UKFDhQbCq- zlgEl_hNhZRK77&I5vzMb&jFwmy7qFu)Zb=gqeLB&KC)3LA-DMP%vOq*BGRDywG@8yvQW6lsZ)ML*Cku%`amwLkfXd^?5nIFgJ*9(rxd0; zU>yAs-tcL4)BVXz6EWu3Rk-TT@im1cutpmMxbp2kq$S!k>vU{ZHPpo9Z_l9u%cUua z#O_~rsgKC-e)C$h>3VHEGeeT4;G*QP*Iviqt#so`@t%N{R8&=c+Y_(t&iL+r6FUJ{ zgy3WyQ^-<^-_ly?QB}|sQ(Go9%BJc&_)?zXhl&vA@7-sUR&4_giM3m?eeBfa58LTi zaTskDg!EnKf%1W=feEVqnU9GU@;3zSs-o(5sBh}`)Hm)^_ zTCt}3lW$9_v}iRV9hRJu->7V=brPbKn)&98SNj{H+;YQ4hhM;JoHDBY>dMZ)M?3~2 zkBsWcMQtqz4XhmlK?Z8V^kbI~i?;H!NIKwRfEkPr^YU19#3zO(1yDp@ zcU0LP_^R)g<)SXvH~HV(xvWVS<8Iq#aX+Tzy}8ZdGc)6FF0W)DJ(v=GSHsX;tvt}^ zFhqTX6yz@}bjEh1-BN7ukK^EN_IYX@2-<>Py4p)X#DJl( zjxeGUem8k!M(2}Ba_)Fa>jCZ6xohk0)RjNKNtWou>64ZzOdQwt94M%!m!PwZlFBh^ z7R?M9ZrA8=A0sRF;R~+G(lPwZwLJNFb zKi(Als}u%!?>}W>D+uJf6-J`rLBVlqYq8!dU&{+zl#KgF>Hg$DB3;$7- z$(9*&XHYRnSGYpsc051YPL^K^zrQw=$!Fur`*H8)H4UqKvDTtj!#qobx3*W)R@~BGP`s~8Pk@OS9K3o}uKf7y9nzW{s7^pL5BWZNkemQ+V1+v(COJSFZfopMAUqx$K37r%{Vx?lNBE z^a(a1-Sw^DL@SloAoi_h%?tOthMBr@QjzI*_TnDWU63CrjIdEW*J?`>)3andbJ*ld zoZQpC#Lh!nrq84AV@{@cZgti0yFT&*42Ds1T>^cK(fjKq!Av&9e(XMLX(* z42v2xbx)b!{5JK;(@90>0RURe>Jm*wK>6jWjVsmmExKX5G!vzEs97JkWo;@f-QasC z{kQUHQRPZ$(C6wA3*#m?8CPqW;+bgqa0%Mvme0!%wtNNV&T_9s;+0!)JB~oqq5D|2 z#pnw7lJDCS5_g!)PiPH|5Wpcc3y`irXp=e2LQYb5&WO0>QWKgylyz+J{J^HVEDiZh z$uB>A58>StVB+Rx*ix}iw&FpI1zqc%jhR^*+u!$&#`#8eeXT5MdD{HeEbMeorfqA` z4-bVIo!Pnj6(i?9l)TgaEp}H+m(|>VlVACFt6buo(lK%sQ;n1gfI=G!MiS)ExuZYU zFdyS{3XLdC1EXCAs23?W5FWc@u{Gi2?{qRRUvV`SO%Tsa)#T@F_S4*EY{Pc(7C$;; zCKKjgj{}{%@rubnL&p40ee`f&TeM!P2}p)-FGMoEi2|OAZ#2;HZJS3R-3VA{s^Ig- z;^Ht+`|yv4o{%Glp&c$0VIfMiB*FC@INrT66xA{q&y6MD2tIT$~}u#MeZyloy^?a&cq6yNJLQulObf)Dw3 zVS(^gi20SZ>R;Uu*looez3E4N98<>}MOamojBSyP;vJhDJrDw!`9oAf9cs2uN^#je z=pQ3y@L+m*j_aW%pY@}#?)E33u!7R3#Etgx-@kvO5Tsrv><_7F@iJF?Bz4O>F&0@I z%-b0SZ#qaS^2eIwcB!XoV?D4}+;=Xsoh(xw$r9Iw!-|oSlfjHlDdn($4w*PYA+Et2L0mIx1 zXU}>$p9@NALn9Ud7#Ru4FJXO!t_y-2840{waA>|W1l5+m;tugXP5zvDbHYQ$db;B^YoWiuC?+nOHsq) zTe2_iF?H21Ge1$zYvg&wmk!8Vav#$Mv}zN_Qyp|JPKZ5tv(}oMdxS|C}TbQfzsg@?PFdTq>_rH%FtCklef8@`L)ERW&R@vCG_LXuc_3IkxxC_ z&pe@J>bNFT5tcN?VZvO(r38dOk0jm_$#Mr?#}!2?D9iUSkN7v zp2+XELcybQ;es&VP6d86qGUh?1qwQYp>bnuY``AiW5*=ApKi?#DAswOd5St9`uL?< z>iyu8db8=UUcDC;v_h-v-xL)o_igZ*SoYyV70Gt{ZAfr#biXnh6B(fkO!|G#Uo7%xp)kKc(+9Fy`Hiw-?Hu)99 zos91X87Prs`(k@t_{K_6F3RAV3UNrA?tU*s@+# z_;lsB3D3Ci6Ani@ErrS2DHs!EVPS!8O({&u0wBrCMxf4zF2-59o~CBFS5#}|Y}?o5 zS@UXm_NMxqy<1uu-ium^Cu!(P|4&C5^WZV$o3+&5+9ho~nB#jF9+A9B0{d z=dsgyYub;7CUe=&S^dp*kt|~QsL;Tgx5bg|F=s_8MbH&-w}2KJ4W1!ATRGeN^2eov zuJj1r&lOB+wM3fzc@2h$a?MupGHJq~`=RX#h8Yb{k(DUV+`cNwS`nMjVC#Q;PV&BI zrWTBPWb97>^1+!;K3%$Y{XoTwE@j~*zwqOn?QitUUmeqI@$P_NjvDV>xeIL{G?E9~ z2jzq9xd$(wf7?vV5TM(S)b2{AF2pyy`pc<~r1$R$P{9AuUR2{{_}yH{%jjdp!$^277sY33C zB84~K=r*@c*YirAdMZrLlKWDNH~)bM)a}V1;^3XV{tv_PG&uCDtA!^XyVbrD_6mF8 zeICTJRvn`Ncu=VGUKH&~oIaQ?O(AnL6bU>qA9U)G#)FgwDjV`C{03YH#L9$-lH?{BA)v4}F$YaYv*mo;9VF#i@u(luNSp|n7zA0l>8>#o&-+^Yvh z>5fpi-aa1rI!uvXATX)%fZSdGb4L%#I;EMW-EETgtvURHiH3TXvYR^fG|miUshMgF zH_p(DbZ7~uoNaiv>KLu~tTVi^Uq$Zq?>6;~6JB#?K&gOTk`3C~1o+M0rJ3%1h>qNr zD#*9gZ-t1S5!(fx^Z_gz&Ki2L^8jb0267B)p6E<$Y*u6@vIz-0pp zOhGsN`>0OzuM=|%+q`5^L<1W`2LOu>{M(1UQ_K%vrk!q31H*LRPIKp`{$T4WR>|qC zRT`Od{x186UXULV2@a#4Jjog6>5^N2l`?5l{>kcv0N)bzpPUQ1b@Y9se1 z{bP2V;e0;`r)Zl129VvWZZ24@9j{@b*uJ@F=3t=NXInpR9X_1k_|EDW59VS5{J6yy z8Lb36I${305*-*ApE~DaSd=VR^z-b2VhgI%nme-y? z+G9?pa(!G=^5`kzdIjz%NUa8(2XdME%6&Jsf4ZF+%6LJqW$5Q$)XLyl{X{%Oa}tP% zY!_{hDtXXrT>&0nv0x2u=5dOBwTEw?0$+vhOxga02eDj_k#!GvF&mCPSIlcZJpfgO zfzhVe6Za-x-~NLRFTs?AHoqrGgJ{(J{hNLJj}AX0@N?upv7i*T|7p+g@< zW&)C6%@i&4(2)q?07NfL<)$~hslhe7RU(pqRVl1zvfMmtfSMuRc-F%Xltl1d^R84Kftl$AW@vQv2lp;WkTzOsw3O$o7T298e6wbGO5OEAS1Uk1^?Nbzelbz zxixv;1i-5rX9hjmJ>ggy;PELxvF^-P)NJG6;HUy6$jdJs+0w7OCb%-PssCguXZq!B zZg~YzC9Qynh|IqnoWSY7NLz`7PdkOMUq!iyrvkAk=2Lot1-M|$TTKwCK4A>F50p5N z`qX&INyI6P8$pngRu>6el%VL^+kY_iz5|I%K3-mZ5%W1uzJjNWo%Bv=ZbbvNk0$P4 z`|+;co4)@0#U9Ojn^p7-Oo(wUm%6hHMdJ_p@+ifh@jfN1A#mK$QSZZ!Rns(g~Uv~%xD&q-D^TwRu%BPmHPYhy-L#Op&?YP_e26|(Y= z(RlEvG<86aSlIQKa>b&~VTD8EE3j7BL%e3O>q>_EhMNnhnhaG4U_CQW?hy>0k8pIG zaV}YK{`?3{^^&!&l7J%Tg?`vHR2KBi3E_YveZtI=O`TxwPvVz&?=xTT6<_o>A~}?? z_IQ9Gibw~Wlh$63IRcf`5_6En|C#t&*juSVGQi}dWOtl#PdD-sW z4$r&$`6U6!2C{FTcqcj60+NbFXM4%I-2`NE+d&seuy{Ft(0%q`r~C4S4U3L3%v`-c z#xvT1IW)gcF#mGkv1a-5gK@fpM4H9RgtZEzRWEx8uiwCAX|w2g=Y@jaRM*in9N$FG zH?unq(oG;K%a05JAH+4KHF>_Xy;ytY5Bwd%)eVy&J{P&T-+zvO%dx zO-WHcb!XV0_z;9eT_=pgv>}jc0R~*bz>`ziP|hcwyOXdtnt%>@EBXMSFJ!|#u)Fi1 z)XY|Vh6zOLMhKAONfNa987HJSMmF9-hugLP=*C*_hQX^BFPcc+OEOo?%-f3b$s_wd zau?iqnE(O0TMiDo&alM{e|_-Z9V&Rz`#~*vQK%mpcFZ^D_f9!b@rNm0Y$rSfFgHNL z6>(mL(DoGgl%C8bixnx$PoU7h6U72?UuPoxDma1JA$i1Ta${p-a+)i56yq^U|A|Fn z2Rbyr>Un5TV84m3@Kpq_6ZTm{}uCE?!~Sk*l4{>N7yy8uoMgqs_Q zU_TcZOR1=+kVv>lk08oShM{!~o8|Vpogy5myiIev?O8EKhy=`VE?LLN6lp)P)i#k( z>0sCHC77|-d+fVzL0`|JLh$3ersSoLEm!XupAHiUugf2)F)e8N(VaGsD|n6(g>fH7 z3rgQg&GEfHVYAuVWq{RY{JV(FD*QyMIM$jtQWx`MV`D$ULTBc!`|{iTD)-rtNFodo zwexgNy6gFc*M#{%6|oy<7E+AXEDQg}3(FfBabN^w<^jhli35uKI;-7jqVFmy1I8U@ z2Ni*&{=gd~B3Tdg=0SnoOqwiOFhu8`I8tz)ASEf8VJ+F;0|xFT{X6wygqhFuzrfhO zmzA{)=^9AAm=2%D{vAvGxIJ93?Z&n{t7X!wXS#LCnV38w$ruedSJ=6uZu(_=;kBBT zL6LVEw%N7Cy%5zRbd8I9XYt~)EH zNAzah9B&FAzn9A`l%t77|MXfQ7XPh|toX_Aa6`};+!M@Qt(Tfmgp1bdhTw_q-_m{j z`0=-BcM$spDixiLjZfzxRoG&12U*3PJbgV7D$*q(2Ga=_L0dugz#FZWS}To@rQ(X< zBx<$nY-pjI5)l4=fVdqK&}DBzKVO?aEcuQgj*mzo94v6ZoH z%y4W(&n+z62vd?@SR5aJHxG)c?n+ajo904(4-1c|?WRKlQDO70aH+@!Eb=eNI0%N< zS-`txB?o$M=CIxJn}_X}+NryvPZKO?OgCUU(+n@)M8dkRlViP)!xEI%$(I!->MKJ= z>t++KQ_e9#H5 z-mh%5tdX+brL#@%*O4{ETIWI-7Co*oX_D*#rx(7TcYONa9e>2A_aN;10#?Xkn9&j= zvG~adkJOobwC;`8hm87>3@_qVJOqM@DJt(V_rU`kr9lVIPDAO$6o6?z3kfTnknhHr zbrtcD50lafq$tOg`MEit+df9i@kXCPPM(I6zM!}@+$ulzJz|~48S#G7t|+tHe9}rM zn=vULhqQWekr)^>-z(acp+{Wa<3+#DI}8S$m9y_5 zrc??2+fSaUu&bCl-7ISU@{v2X9Q_9f3CgBwlaY{Jy8L<7%P=pEBWrpsT!}l#EWy}+ zj-?C(i(c;QBkq-_Fe{wj9*I?Ql6AeSWbJZ9gnwnm=h{rB6)DUU{aXaEaN2>`>)f4* zN9hYu8JE^?yl8Nt*EdU+e-eNDj_2QxnFEGTGPUcahbdm zc~K3CE|+FL(&jHiX)*bhC)<=?WO0{7@0kSj$A>sh67n zZrX_;myKk{a>}9VR5o_XmR~bRBbWT=AG@~PWDJs_$qH36U5^s%oSFu_bg^pU^Hfnwfs9{;^ufV&6X@OcY- z&H{VDm#w`IiBw7Cv0>XVactkhj_5>glmkbovo40Bds-)pSFCPf{d9t=or45tt`nUL zA}=6bw+%^U>O^meQ5RZR_PwqPTQ9rAROW{DGj=SDGdF>_=fnCNW6hfbU5%u&Yi7&$MzF)Q5f3NBwKAdghy zy8QdlgppzYcccdL+d&N8aI>j5+L$w9u7aaE+i)ySf@Z`)=r>{z3$=WHrOpZ&Sm z+PSMM8(Ya7uh&Q@<0A!Jd3j>~M#=n*PT(=bZ8Be3m@>-xx+j20BMY7wg(R$PnCzqe z?^lY#<-CpmmMte4eKk?{{QJr#-Qd(Byo8B!9pmBTk7+q7iOrW8=&Hiz{!7`&7hckd zzs9=VH`Zb_U6DrMo-Yv=?@O<|m%co|OdO&2(_wa?Y`9T< zR?1U0IwNMvNj$c-VMm5>Y;NI@AfX;gSbh^ZHO`VF9$xlxwwGDg4G4S4vN6bh#x5eA zejhVsD{d-zv#LuTH-;+RsWs)WlvMHf3c;6&JsX&|e24LwY{$avqpYcAlh(N3i!%f8 zPdYV?f7lGuPGOxi%LnL$6 z`mpsnC1LsjY>e>Q@oqP3TgA5IINsxMz;MP_=cnY9BQ5AtgfTtb5VRMLMmqiG!{?(1 zXgWE!P><@*q-EA{7F>NDu&s?erb4&G4%9YjB%?Z`V6;hGTgrk*E+9;*iMIt0`8> zmyL_wL;#M6Dk(9F(}Mo^&E8@Iwg#jy1FXH?*v);I0IC2plO({a-trWQ!!|INhy=#( zMp_=F`<#xu7vV-mSW4WU{#kmc*m7MVU`3~RHcVFRS?ka_u9(Z}ugc6_P^%dwuS~v7 zxI#3HEdMeWPgDH3UAFz>@XH&wQFVE@6HXEXNcSs{#s?6u3`4*L2Bx`-WcYz2esybOTTj?k7UUXjATC_kNM~$b9-yk>Z z9d68$nWIHOP%qdpP5ZNG!i8=x- zM<7;Xh9iR3j(&+dyS5?u?Mqlub%k+Y6&yfmNGK&r;TY}Yg5NM#_0FZ;BglEXd<4Yp z^P;sHz7jhO72;}5%i&LmR`jvWKeH z4!|A!0TnHAQ!tdXNK{Q}%g(z4gdraXpSsJUgKMyF4ZK%4u$SaPR3<0v$62gC_E9!T zANeuPRzjUqY3qZmsiEy=y=|rlJ&n<4>~?h?lwMLK!V84)GRW)>&0tp=eVhmX z+VI{Nlgxj*72GN1H5!%MaEQh z4|&Wv*%Nt{k3AEKn6uifV_?_%GHt8C_cvXWN|o^}3j}o}z5@9(5W@xzUh1eN8 z_}M_`n5cYEq`n%Za=^ar!{cMB^^#jH^NZ?)uJf)K_8``}zk8{<7YST1HuW@-GeZif z6h?i4m#vE!H|9##bujLE=Jf*d6IRS9_xI9Ykho6}4~W2gd6uK`3|b4Pt#Hzw#grr5 zxaY+TjzYBfmbEi0kv^~{uEP#dj7y6+bZk~8a{XlH2%A_3oNF0Khkn44YY{Gm0_;r2 z(IVr0Wshyv=Gq62yA2!{dgZ`xy!Iwypem3M3!vj>Bx*qdn9~2V;MzTANZhGp89V)# zHXF?DGt7X3q&$e2O2|v-=(J}|U9xg18rVDaiHL)JCrM1Z6s2Z-F8s7hci#IydImo? z)_XS!`lq^T{(Gy{Zdn3JPvR?_4NE6*-R9siq-hkuE1p)LyQuc>%iKNjQxFp(eu>#b zrPKeuqK`(0^8XhPWs>33`frvYD04X|S)r)Qp>-_G7Z+BiCmHB8hI z(yWBOf8m(H)Mq@y46I_e(n_x$mRhR0&=2V3kybPZE@t7RU3!Z11ZuSWB90PZJH~_o zCMYa!OX2Rs^gBcE08wiK`4A#NRMg3JS*~B(=xZzIKK{7*Zv1lKhm7<#1)_>d^eVgZ zuh8#V=~=Kus=vYiL~^$J08vBS?OjOLDN}!N z>+MZHf8heKHjC>GZ(4~n(xT?724KfiuFKhN?d@+FsVOF4jaD)*y*EiBE$T_I8_jH>*^_1Md_{6R+T!K0lP8lYHs9BB7d~+62Y|kRI45|A1O!2p z;3I@FR3}kl&vc*X37N-@_Ps&WyY1`!!t0->k6ug){a`mnAdQ0JL^)wWps(eDs zprhm<2_kZSj+O6K*}%)rxX>1Kr$tCO67PHkr*RtLjCZJzEcHRw45!dp)qAPRuvE*$AQy0(e(_03?(GEA5eb;VD>=pTokT`spl z>jq~XZie6@AeV=T=HZ2d+#e@CbdgAe+pzr6UL6#>$;F|YLS4IPSj_^%K3DG`-LBeu z&%6IVGKqm;Cas5{miBWCJ1RCuE)iCC@NztRaUzNUbqPN-G#bfCtGJCPrC?I-tIc-2 z`z}4~#wkdPIYujDSf#6*pvEJ>q}<&5R!i-eVfm1`sadalwx4TP?HZNnWOp0?Do)QT z0@Cg+JP2Hc@a-O3rZT|H7XcX($yyb=^EOZl%Z=7rjrw%lhIB|IqA-3!#qL0YNSw9% zN*4l`OUzL3lI?xsh8`H-KLEIall1I(ArDK(Cf&&5h)=V(681!Quh{al3jegt$;_JC z+*wh4D_#>QO>dc9yTN0$exmG(x=s|&1X%w>1-q?yrF-f(yF0Nli3F#T=wm^fg^YyE zEwT?-Inju+Y1Pu{BjR~l$+}b1$zhD8SE2Keft>|L0%0e5<9}_*(JR=8+sTXr#xs~i zfA{M0hfNdydPJhQz1JE2&Y1-wNg>Qc~WArR@MrAM?IfNTGCaSYH~kftBIF z)cWMqZS+kHcZE@_9plkYJElEvAaklCH}zaAIt?>Gs&-=d6tn0E#A)}s(Bcvi73Eql zo~dM=0U)}au(TrX+VA;6G7pr@R6u<&Vn?)OP~D_*zqs;{h{8mG_#4fQYihlAi{Ec%{C5 znaI>ooo*p4a63z$%hpBRba9N0z&=w7^TZ<*Vi^m}z2+Zf%?t(DXQltI#+}E9y7m7# z;M7Ltcs1gq{`1wi`TynT?CiMD3eRRCIST$hzQL(Nt6tfuIF$)=1jMNay#}I61s^O{ zUuXcB&kkafh1Lx{bJ=nBAlDVcWbN$$<V9A?X0>0H$U^ z$0vCp<`Fs!#fD>Esu?p1o$W)mL`_B5-~cTr99_5V*a6+4PnHI{PH5v_yLL@YC>*#N z`tcy$WjOx1_IGZs6n}uZ8sxC3v5AG^jm{K05KwMNEjW)Fb_|w9V7Y+%1%tLe+dSjk zF8t;ve#q1X#otFI@!mZ$n3>a-dF`&GqspQGQ`>iVW8MG%qe5269!Zp) zvUee_j0oAGLYXN^3bI`_%B zuj~DOjpy_6d<=I6bMFr+O2-Ets-2YItN7HBO53vY^t#P0!(-7Zw@qD=uUp?23Ovq) zIR<_(rvNix?)2rqMjDu*;0@v5=o?_WfySf<5GQD!*c5mk_Ml#&iUm&&lkC}FA8PF} zPewjD5ms1!72ylSqp!6qTF*vssFEpYWye zHVB@+pDI}H_U>x|`!UBp$%B>yvLJ#JfSvm6*)x27^dwnb<{+YgYIWcI;C*wJ$7m+T z(h>gE=lahN{u-pZEKl-WKoJ4wl@N&v5f2W3Af8=*ujXRTn%2oxbgJ(jxv*d!g4eN6 zR`%M7eT11ee4!Q@VjvCXfqN7VbC5T{(*(~5w;CYiYun+h?(gq^4r%MeNQ6VurUBHI zNX#K1v&@X>OJsnA2#`8@6e8-Y{;z8kBu6D>Ii{Xx<7ykr5$I%n-)C3&8%d;O-FQY> zHONR&U|x*R0~`k3)Vu5A3F6v^;)`4>trdE>(bEy3LNLJs;TM8ySoMGd4%s!KS%xSD zfwQLlT!Z*qh+u$e^F8 zjA|RO(}3B)LIPy82E=P(?o4n^P;A3?U<_5I{Yf+DJy0v+_wXpt$Zpy^f_VzzHZe-a zKgP;H-7=x;FyLB=5V!_Bi$!y65Ns34B&4HVOKC)a5ib**OtPU>2Xk8cv8foP<(&la zL^?d*&NQ`1f~bA>@EE3qfDaDh{R+h!=M-(iW~l!Cb9S*Jsg3~$HVBidTOP&kPU0h9 zf5Dj0H4TwHCBx->Y3JNzcabt~a$$Lu~S_vQ0F|?x9 zYf~xkO(ZTeEXpd6xpO9)X2gvGytVNnn%+J_cFhWOWMipQu+y>{WMGg8hRCm7xy^Wewmw97le^?QVd}`K+D?F`E|1#_}bi2bed*ji7+|1_GAv4=Wwl$tNxpm1gJ<3cZ|dm zjU?EOMOZQZfF`-6^G@d^UA5-&M>@g*2nS>{>FwybH>vHqiEySG{KEcuBeTTMRCkj? zQ=CtPK_KRp^!~0e7injuu5zn+Ku3DwtSr2VD76Ob16DO)N29CS+H}Uhd60^F$N$I2 zM6_6Eu4Yg=R1M;HFjBmx=F-h=aPNExs?FHD5Xa(d1gT;@@J|FyZHN>s7mNZS_#pCs zv5SEXVgqUffLvX@fEoQe`27*CV0ENY!kh))10E2Xnf&hhDciw$7jpRh5WLgr&@@p9 z@Uj1q^oZ*pYGn)rj)>gF*|WU7><5Gkq(aF>+cQ_X)#Uy<`xBSMKF($g0`Ek-{N6ow z@S9+Y_c4oNvvSM4UKh{6a!c0DqFNQ$q{Kpk&s1y}UIvUJ;6GqgXo_7HYF+q1KIYOe zWHOu#kQ~8=?qIJh*j*=iwt*jBaqhpiax>|f%g{xJYHFym)0A;UtVoo zmEm$;q7b1m?;tuxni=NTSHZ53iV@`r_EniEhHX?+`jG))*_m(`_&6~;P)a=6g<}n$ z3HLAYPBHL)>rOtZq4jR`931^J!4+@Fl4VdA*=&xh=(W!t0gEx znCV5C6_t~0;(#EaE>Ju_L%3f8jsXUQ$JF+KcFj#h5)A2Gdp7M2K< zB44BI-I_)p?30ZZgOGD#szwc{cqUZ` zCnt36CT6Mwm~10|`)E?@3KJy)l>9-CKU*8aS?m7qbeB5UBYI@y^dDjT;Gmc_-USX~8Pl+e{-fAVk;pgc+Vm*t)A0;am z!H`E4f0gW1(9aI)E87dAGsni$2d^Cvyl1&M`;Rq;svbIsOuMS1S-OW}#ooJo`}U3S zv)t?76Zyb<+EA+6qB= zzTVuaTn}ajl-YdI^l~OAzu-Fm>R(4x3j{$Qb{g<_NzlvPy(_6f*k+zP!&|o}BRo}{ z&!1l2Vqe>&{&cTQgRr|v&5u8ss0uL61m}*J1npB}B;DOiL7`NytEFM87KK(YGpKvD zRLh72;k71)GFYiNs8M!lzaR))xb|CA;SY3sqge0ID~?Vaabz<2$=aQ!eKP|YYxh`O zelws9!Ev5}TLpUpgZ7Qp*xEq$z!E2HG5(5d^Y*aa@(seJdf|cso+vsPB7hlU>C6>4 z!~p)U^LVH^e)Fxhl1#e1&d@=vc^ktFk+}_)HZ;z!K(#@gL!cZG1K`FcxOp%SfrNp$ z68%&IT|APn-4ZmzeL>K|umK4?j36_hm?2CrS_Ky(g8aWT2gi%2O^HABu^KRGcKxNU z!eLkhOWv@q?xWc&4M#sK6(YeKe?P*sl0w!OACovJXUppC<~$~)X_q+1!l?r?H}WTJ zrt|M>XU(>cU4esR;*$=xKkimsqv?zi?)L~gfAM0d>iMF_+l14b-@UuTZ)PFp$NL$4 z34+i@N2Q%cku2<12_gGU%a37O0W6Pd@EfV#vWrl?un;FkCDFNMC6EHI80bDCPdli?B+ zpXC+KGn#0$Z91GzDG^sh%*vk3mI8s)f+IU&Y(V%aLT43Q)E9J9GhUo4=+3@IkszxD zAFJ{)u^a10%I2>({R}?x)~)Tw#|7g7jr){k5xht?5Mpn1e#I61oa2aexA!bJ*+1&J zgUonB4VQ>uxk({y)4AM`IrY2u-~lOOo^ZL4gRYU|gf**6=A`$mS4<*9-4%+@v?{+0 zCeq{`QJLV}f|rb8{=?2QIS*)GCI~kj_Bh~G)=RDHJNfcuB7@-IVtsf}k5kWd+fH8A z>j$mYQ6fY6kMbJq7l92wOfs`|*n*x=U12RC6;XfLpM2MS)n3W*l%6k3+)kOhH|fsX zIdvP#a57MJ3u`R7Nq-uvU(T@Bj_7AXo*gXWPN0Q+b2(e8%~ocKTAO-D{-cwzgV4#dJV?eu943ha8(?;6F9YeQR*y6crf6A2KsopRhH}ryhLz+J`&A8W^}N}N6FJX zB!0s*M(nWfglAE5Ubq*#>eEC$;jeC3GRnK-kKK$MB}!NMhH%E$ajgvf+-eXeq-ozU%XzOK)fJXut?@u_#LE=Q8+MTPTB zbZNy9Y~`AOnofmTZP|~HeXG>u9k}4|)ZSHc>$WfPPpce%?{i6&PfFLOkWQ-@bugT9 zf`)4@L|UIvrM2m55sT;GA~lCOjlC?Rw5-_I>-1?)L%{xzj!{A`CQX1pMI5=AZb-?= zg~CKufB(s|#5|N3&=Yhv+=XaOv*dRiS&7lNp?E&Zq3RO+T*iVwine0px|PtBbmMq> zzDx3tGyo6PfTPf}EFv9yY<+FnRniGPv>#Yl7$>5k00VMVIjJ^Hz46LxzpT0A))v7n z)ylv5_$1Z!%p{YFXWR6ry+XNy{I0`129}kC0U_+77URwa;yJ}0*`I0{DRfWEZ-tfd z>3Gj2e!q_?vF}?r7Qr-!=h=DXCW>HsOah zN*mR_@7Qx&m85=h6|$E9);()v-*PycgJisY7S-wcvZw^lPcK%8e35$5*P_ zC$}YLPftyi()z?#31Z49@c22NWJ`qmNP(hjHraAvq<0}oN8Tc5<#~00VfGJkgI?4a zJ+RcHKnIE+*X&p7qwvlT|=h=C;Hd@lLibYYRhxo;q@89$9&sN zGUDOrf?&#P9|NJIwmn8`Rv1M>7)vzWD1V-}w!$IWv(4<5FIDB4Y-!dUQtP-U_y{Nu zp%OtC5A(oCs$%@_2pfM?cpwXdrhvu<7FaK)I!`~$D%n(MjSq#|Y3wpoJXybaW0mz1 zGJMbDmoQ%@LLUg?JXo*rpVs&PpnQvPiOn6@cGI_IsWZPv(qd%N`MqY*>c6BGcR0P!$pq%x{Af+CdDSi@EYc=@W`lpxs$gWA=zvM#JRYgh|99e+N zp;RB`7WkBIG8HwXu)aVlT_er!;w$mU@oMYuuVK2d+%Bc^=pwQWvrf@mVcKg!=u%c! zN1^*cG0tu_6&_|ZC$@VfhCZxcSl}x;@%V?Zb1dA2(L%lUJS_fujdmop9JrBwu=GmB z9#KKuc)&}LDM1z(su9=ttFz+RzAdO_EANTXr}3>qDIF2q7694aTn1}4Bp{Xpl69;Q zAWBUzbopyTv4H|_Ff=7PBH-w4p(=3hH6_>&=9)BuBFBHx&1#2r=q&*=$7bZ!qih1J zP&3m=!Dzx?zTNi7ycCIEq2)|eRMcp=aGE-1Y1>+J9|UFy)!`xpzEGX?mg*vvg(Vlr zr)a5w4&r*@Prh?h{u+3Xw7}{6-RReZ(@4@Y9cJi(IycH8Uzpmu*nB=8$Ea^tX{bOG-xs^ zc^x?ge+Vm;A3Qou9ZW6Xmm_djCQ+}Dvxt$J z*|uov61jL|Dpg8{xdlbi-n@=DbHkvCv5bz|dgJwk5xJXh#C})tTIfb9l2dh4djzAB z=<#fE>B3hLurjUA^ylr&d`~w|M(lW?6GuyObX9s$YCmr+A5rs~-f;Ru^p1zt_hHw8 z_Hyi^P?j(Gz2EK(X&P3KgE`i|=`3wyp5c!S+qoLOQl)>Z-i24^uS1Dn_rR}BN!H+M z>v-XR9spbh+#i?TYtJRM#)?rfvf2rU>c_XY*vzz0b!!n}Jo55FpG`bN9e2mqYr65b z)^cj>P1B1le;fQ#1S=gZ_d_}Fc+Q-wUTSbS`QxIEm9+KNRd%C`UilwZ$F_${w0U2* zTfen_S*LK(zpiOJ(m3`OzbBoK4%hNmP21fOy=MPnTEEEOfPe6-yj<;5-UHEB_W$8K zf99u6;LZNW(*7gP!M78QJRD5SMeIBXDgj2+08yYU*>~VT*_7W5i#?y1!@~hBD?!7o z86|!W<-f|I|CtgRJ0^q~qYXw|r}b6k6gSdST7I%cYTHzwqr^&qwATJuI3JL^pq4<7 z27$t?;e?(bsQfhoFNg)n!-x=gZU3n%5tB;K?m?;7k_B9xUrr}}F{g=l*|}T{_M2nq zVpGXdmi|KQhQpM<;x<9wo(|m4^1ByYRF2Vi`(MLe839lspnm|U-LlD|` z>|oGn*syK!@UnUe&V7mj#UsZY86=b{?O5%}N`=hlH z__)nmj|O9$F_ayw?@(wwDnsF2qJ>>TMH(<|RL zHGcEw-8)W9k^b8L^e5A)ygrEP$P=nTu*w8ub>1*aXIC?ZzCE}%lE%6A$IHm=TVhOo z&=z5kjxh-4E z5qd3wBVr9_be4aBK&<7b`)+RC)RhR&!&n-75O6%fog{qOKR;<5hd^p3&3MwytDI`} z%&F?+=HY`&)9ntoM-Gk9DwXP+-&b7BPFMXF>AIbgUTwQ5yOX~^H=1Hl3tCalXl+gv zPqoDK>adVtNCW({FaX&I(NM(6qldYf&*}*v?3=I!z$uj}i)kU=FzRy(g5QN|nS%Zs zAp`-CT7;}~#Xw$oxM@hZSF_X*G66J%40VA5p`2F-FGXb{IwPhoM|udZ{Z@i1xBP zfOe4pKb+Dpn^*2|$nYT&;(!1Q>5GM{ryPaNYlO%1aZlrrW*8`7{o_l)Y6~w2EjnD- zo)dF(d3kDBb;QOpquARV*ZgqPnoP?V-4^FUiwps?J=b`JvlT9uPFTxYlIIGk2Xe2b z)dUN5OtLc7^_xZ}R|dD5z9?&}(KX?At`e*BQqzT8{B3{J zNKijT6fyG-&75_w6b?8QvK8y<5(biT*Dy300&#C!+nE;&;rA#DINC+TZ^El-;f$a~ z{jf)wTeg;~&EGB(ZuqxBupU)|NPS`{@ciW8iDd)2K_tVdln1kb@ zW9g6BIlGwT>)thaww>w5JH}o&6vc!^GBhM8tKRz44{mcLIvdo*J3vt-Xwo=)2pAn| z5Wo>b=X(vZ%(w3KJh=LD!qnf3@#Ufs$!-%IcE>9n&5j0o%+x`Y{BKwX6aZeOS$uuq z{DnhJj}#C>9Zt6i!pg@H?JhJiPjnmx06YIR>5HsP()0lKhwX9=$InnPwiE`5V4d8^ zb0KWhA8!fO%xXXs6tVCsyC7u)yn(9q+_Ld;(mb`$*byq7nv87S#M+N9uhKj7CWzIO zw#gd+-U`&cq7fQ(FxxMAawLD+WK1ly;?!(|tqbdwgXIbVnc|6hKJz?vwjvfgSHlu{ z5AFUV887xTHH_`U$)jIH1&*lprIqS?>_&pZ(3K?bc5c@U!bWq>5-2yKND!2(cw;EA zf+sPa_pWTO)c&)xQJ!^|iaCS}X@38&V?{dxb^5;vucGJJM%an)zb_Jz&fPLkCtP_q zjCCN&RMhoTv&P0^K)I+fk2*#e=P(?G3J_zo-=(Hva1lnyqp5rQ;Th2l3W<7^sSQ2l zIT3neFgR(vy~fn$JUZd{(m5lp2&4MYU54>Zlgf7=3$D<5$}H9P@Vn*si^|fJ(k`Dk znGyI36$R>Y4DqsTB>P3R&fA>L&ZZFzCC6@85*4g)lD^w~x(!`q1*J{fMCAT2VW0j? zd6BP0`0UOEz?!IsS)o1r$h%aR8GvZ~n}9W69uNLg`#{iWN9*Yc_K9X|p*~n&F?p$_ z92NpHLO7};E)Txj=ocaH5h$)19wL3Yj+LgFNrABzteQ@g-(-#zHTe_lf6VJrk4(dV zr6$ZLpD=aICj3yhdi;nvOW=Nj=TPTKrR^#z=(89Y8BaoD(k*N7C~@@5-kUls3bprA zwMqtI_6TFc$|mD?mM`?Eh2a3&C@|ROJGGGAlE@)$>ddDlt>cm3l-@8#y4Gr#ibkAB z{{!>T^J4=gp##X$Bp*(Q8WT9Rt&(?V-gJ-?F$FY^cDA>t!mtK(k*tneh{=Ja!-qX+ z^A@!J9H<$#o35xH;?F00qhSL8e-blpNEnFygG-L!AJ_iuDpkd zaet%}&C&;4u_Mu{8&;*x0~vt_-MTGitcXfrpiX+1`Z=$MoRjys_zSLED+zXV z@1rvCaL)?Qu4NgkpWPncwbS=-jY;+_JjNz2ebBiq>&4Ml&RgswE++AM$JgsX9BJNy8SdnT59;0geQsAyZWN5$ zRTCvLe7p~-NpK!HVUm18)G%D=jb>($v#eOiwKlVcVO5IrtvfY*`)A1vt2QC3b~g^} z_&00CSdj1tw!RNWf&imUCq+(pJtWJ8qe(2uyDO#f9B2jdCN>(TQH+Pw41M!5Qu$SC zk$a=_pP4X89!51YEQao-_EUS23p>b7fi{Q5pj&@J48{ z_xyFXNvzvA2g&LLnFBH=z^XT3U?eBzcP__fL#{FZt`CddmtbE6<i(&f_f z41yo{cONr~3S+yng}l1vaW@ca2Al^Lj||{*|MSP<x6CW9Q*5(n91>kSamB}SIQC2?pxO^IwoUiBt8_%Q^kteZO}gXh2N`1mp)y#a8g%3 z<^HVl-Xm|8nuOv-*DN1KB$ilHZoPX3b{^;_VLkz@TAlDqZw!9TZ-O{sF z%H!?*(kdf`=ZA{2p z_^SFnW<*R*Ra(Pp`bMhC1#l|}-*D%r4|o-_Ufo<%!nKR44~P;T?a|1u)WIy)FJHNy zFLhVpYbdSSw_H?9lJjD{sUi6ghV4j|=+Wsz+?2!+I)BhbF#f-H;L1};_N()C62BDa zJSLr|IIGn5&gr75L=PP@;Qst?2$mv961FGg$Z2cecjt;FwTt#8YxoXOL_W^@aB7Cx zL2&SMtf<<#|Jq0Sqn_3@E%9G6S#}KJH8Py$jy(?N)}&HiCjR&m->$KFMH4y5%n8Oi zK6<9ni*pLatwEFH6(xtS{L>L_$9+xYjR~0XY($rp26xSH?Mq7Cl6_&j7Q@r5-xQ3c z7lRN*bUI-068r_gSLHf%OR!SLcJhNrpP0T7OcvH_IhOLU2YbW!yG!Kyb6Qf(aXyD< zSEoOz;I{y%04mPs2^I(?1M1BFZEl5Jefg_E?20gQ&XR`*|h+MSKsWa8a#97S1SnTclVhT&nULMzSA+)E`8Nakg(D=Hh+gp zfKZPA`PuI|)*Svsu^i+2Z9r8{UpwaQ>b#nO~TWcP^3k2`-1_L)Sk*!+mHx$3XS zwtDSo`PutdV^wbb89sbCb;L8<>Ds0EnH>x7x=ZO71ix=BG>95=$8om!^%>!c(tu6#M8CFfb1aQPZ*oLGd0RuGs$tRXqXmwf zsbza$ynQX zwJ&7wF30KIg@Y0H`_s=3Cj4i3-HwxbOO2K83FTHV4-KXA+*AccWVvBxKXVf~sLc~4 z7DMp|zx|>5S$J=WY`W6rQ5E@(RW@9tWQ(5w6&tI~{Q7AjPb=nfTr@i%@h!UDK^^q` z0TO7TV07Er>pr`@Z7>4OeEYmq@lTqcWdt2gijI zje$5;AmNWK@(D>hbm-Qpsn(g8CKg&NmvE50T2R?z9%C$>-<#+xI;7B}R@ zNQK@0-2#K|{&lfUCv*I_77E0Tlm@P~Q?A<`eeh(2YDiD%!;G?4mX6f;m-DRVG52qHR4>UbWguM7Gupz9ri2M9)wr2)Y1R8(HV{V7|p11 zkw^-35#wd;9p<{`=A~Jy8<@oeRJ}&ul8SQDTz4<{Uc90Vm|M(6;n-c00&5Vsut*Q+j>=RNcE*r%ij?w^u}outz0{jCwoCT((I0CGne&{Hc_; zz_2Sx!0i5p??WY_rgGaf;D)eNJ$r4jpIIWBJGanRMn`#p7kvG2^XE!{9@{NGp%CwCpu2>)Zrd~yqaRw-j&uZwO~>^t@Vo08Brh$ zpxD8}tVd2`K{-Nw&lV-4RQ~8=MR$(;aa7>b*lQQjIr*hvrL)IdQ0x)Azk`obSA$pD zuI#SZHkku&=a+pC#fV9&Ngm2GcW5|0uJpbyEQv+Y#p7F`f=uwsE+g@)*=#F~|AiVq z`04fivRwRw^}zY2e7BygvwwNl3A4zI2#@U%Xg?#6?ld9#vE0(X&4 zWLnQJ_@>vu=vzbYphjM|?PNJ=xzOjb_jCW3i5ybK12x zHN2&Uj}6r2bNtDw(vTO>TbFwxc_7az-~8GQk(q;M0~V{_kY=S*2VX53e&_Ug6W@A4 zyTg&WgnDUJk!->;_q@URtNij)QdygdU9Nd0`_hk$S5{Sn!w-~ylhluV^2l*5n9fpq z5j?eYJ^!xfTW1#cl@Zcsne9iLiz+P*ODv%8kiJiY@0){Fml$ehqc$&f1x1CW; zDJq4dB%WrkMImr2Ah7Tz5-^`-$i7YE-yI(pb!)M|(45Uj`Rp|1`?ie3D$%VQYKECI z)@+@{pWmJ1%UW=(8U&@D;HCpR`HOsPCJZmXBb&UI2FF^#4{6=p`blZUiYJW@)+s)t z-c>Q{ch`T?-49k3-h0T`TqSUoR{76mxwL{P5^`2B+}jD&f>0Ra_jGUBrP223r7FTZGgW-OXIaSrNnnT0ketIrj|Rl7B2nwE311-Z|tMFjMVaMuT#u> zcj-NEMPLCzcz8gS9M_g}Zn3>9?Y$P))f*%ux>}nh(q3}d2M5EP7bJg;+4H6A@uk|M zR98x-^F<_TwOyg9>U=m?KSTLCH7!#Ab`RV2Rd13>%%*U3u#t zY;T#Yx9n|Et~TCPYBs}ZqFreOvf$#2#2 z71@-YZKlFnNB4{FK274@kMs4Ueby&Zj4M}8oZsJP@cGM^7BdT5qJq8|O;E?*Zn7$t zs;4z{o_X4>stcR!#I#2iiahhP`Uuu^rU%Mb!arnzCR_m)MdTQk+y)N4Bf95>2 zTz~Pvh_Cj4fil$ZnGsvqQ`G^|ke$8isbm(hyRx4cz4ZP}zTC9BmTgHn`E8JMYx$(M zUBAQ0>^2L7+F5$c#H^cQQp~#2NG`pk&t4BzEV4OO430UMAS8lNY}|olVtVX*J%m$m!cK{b;UzZ#k+LuOX^XswjZS!Q#us-ED^wd2v)%XH9OCNbs2WsM@r zvzs5r{WR(jN%Zfx_E_&-Ftt4%ZBy)7&r16Kw5QHhh??{`a-DBYF1y91V_=rPj^TaO zkHaA&%iXtTXmcYnT)07_gnRm(9MH?$4R|Lg$Q9i$H`PHK+M36W}+MlonZdx9#Cw?=`8vylXh2pu$gl@PIV4 z=W*?}C+^1s@7axeOV`~eX&zk8=^ zItMXH#+U?CMwBfvi)}Pr4>hvN9~oaTd9WnDeaOl1>IJ!GbGx}oy7!Jwb=7-9 z6C0hkfv*l)Kb&vT-Gk)@j>MC1$jx%e(d3FU5R}tC+vBUq3yvUKt(S~LR9}^jK2Bf1 z_mytg%P%xdU{9;tqW6yL%(S;u{^$YbZ2hFf@%NQ@A&9N2KCUl!Bt#it`6BAw8g2sDOTqu z!_%TK{uO21|4C8GTwz~sa_Obd2Bq8Hdp_4y*>VgTZWNYsE8JO~>`-Aq{?SvqXsUiA zwg{Rq%om(x=`b2s=cmA(+wktg`?+16ePC&aVLt#5#LqBgahUmR*u%@hrhU* zET6KV*!#P1=!zRneHC;#F!$fe{(d94b0=xkyxep4acxRbP)-+rJCvxtSrlW*zpP+F zMbP8?W}k|2)CGr`D4w;av!ceNm@eDSV-055_v0D ztO}hrDOjOn5i4O>YIZ8O1XoG>`3|{V)A18t9{y{pg7$qgHJrBT>Eq{>DWOulG{E|$ zuUfuz7iULfah=oBoxWoy))xF*`vU6ZzbcB=F@EuPS6q?TUm6-d9Q9H^9Poo`Uc`c8 zVe;MsWp{Zb<9GkGLV`tfD<-XYcRr_dLRW*^9zCM-epr6Sf5PJI*TvA|qGrW6Mijjj zdBMXE?wUp@d(oir%Wtu5X4#>hyLoo6UAX9(_wf@{PEUEr;ulYsuU|1Mp!x7XHrabs z*+Sxi@*;|zOzQTQTC7JRB>D+#lzWCw zgG`-PC+(rMpZL&t(7CGOX?OIw+RD-@crd=TofwKwo?P4vQy!)pk79moHLL z>^SCct3&bY^jk0L$Lmjqp2b#ty*MNr)#vN`r*gVVn!+Fqqr$@h{wlWn-`zC5MJhK3 zks5vKr}Ixbf8{^;-OW?r@BCKCpGBPUu$f8bD*8ywh>*tv`mRr8O3(E}LI&;R#g$GO z6Va#<;R6R$eYF+T@e;H$C!`lVH*g3#Ct7|A+%VX6tO`H%P&s zD>51%UP{?H;6Hutg6e@Ae(F4ru|794J@jP-&nAC|L z5wI=p({ktoW`V#y+=khf5}%)M5V7y`e?h;;=s-F5sWe#=`H4+;gf`%- zHncf+OJ3MB5F{JcKDiWk{UsgG2Br39okD??( z-^P>7b;G}`%}qA8DpB<;PZW-diQk|pK?=dLXc$1TWV`J{BllXs#l|jh1$}KX21gmu zqVbi^Z9{b7n55PF!kIleq<%_vVJ8!juwBK6=abGKUrE}S8uGg1v<#R!&@Vx3!r*2u`i79QA-ifd#K~yM zv$Z(2eYxCSaNaI%IB0#xSp$-*6Xc0_dLX8)tjNM8n)D&Aoh~2%&>~J)(4hbl0c`bT zvS3dVeCFTW{zCh37u9abo@LU9Y}=mL99MuskltXQ_JW$HPxPe$zY6<&ni&YPA!XG1{-?T+ZWbLc`>O^~e{?xEaW|jL zA^E9k;|Ap&@heBoiyVCp^8L5e)KQlGJ+SB_#vm;Z8^_BW z|L;SytAEvuaQ_3Z2LKhc#j~u!PyHZ0S>z_4aH~v?`Jp6Y^cJU(y7LK7sXR{ciy^t@ zhaTNg;l1^QlizUUzPb2cG1N1J3Sy}M9RW)ORz%mD3N3Da)eBBLlz}&YVzf8^$T%!_ z3Ar1Z8A3Ez%OLUixLdfj8%EnF0j_Oq-%I>1}Tv+Ej^;TxRHo7%+FUCdu#Iz zi->S}f&2}MNkYht@KylP&)_(Hc9c&W~gu>T@7O}DG({TO&H zimJD1r)-~B&XUrR+>L|k1&7g*qUs6_*u>g13%_xtk9vKv=g3bd$hZ+c5U$k?Wx`>h z4e@O-B;PsG#rE3w-m88V|3An1_R3-AmY?RY=N<;#toAp~7S(@op_z)^0s0Z!EI335 z849|Vz+AKs6b>b_%;VemVX6Xa3%}2W`KFZp>;x=}*)CykCO1PUmZ4;Vm=o%{=b?i) z9}MLsikq&e8cTCm-h^8c^v;kGa|W(t?+73N5{3hl*L0&SvM|Zt6r~^)w6CI*5Ho`+ z1r4%9HPo7%l5lQH)DyM$*$gNfZyz>tOaN+5?4!kaJS@THy{29D<{>lnn(baHP)9PK z*Y%`wU9#mtSp)us)c*Z;(@zBZVQ1l^rRTfAEOon&biy-UYdpc?V1B>IZ(}CQ{I0Cf zl&PCwRbF7Uix!U630upwo&ETT$C>$Ni#-N@1b-i5b1X&>{O;UnpOi*Fib>xCnhzVj z71Uas7dKVeNJhS9OvtpwX9NLHMn-T*)27GNnbDa^GEomy2+kclZXgZhN<2-_CF<(` zQjgOVl(}gydfJ4)f>=Gj7X$(PTYz#Wd*mmf*h&@*Zozp&>N%l1)_huJeIKjH{zQ+K zZjH@IP8D(p!P$l41C{`oO%skJ;E)pE)*_$OV&cw#ri|~>oYby(T^#0fAL@5tT326uC)g`qIdiP;MfQ)ri*t`bP9<{Q2sg}T2*~NttfRtI zOzl)|2{+X!UHR&%E1&n?_|bopHAD90B2-RodtM0J&nM@k%22?d67vC4f^OUNvX7@v zz)|1NZ$$Am2s0hBjbXr_$++F6ju^;-f$cqb>5)mO~srIDIF-^5&ooXV<0lnvZ5C8WK!Eec;~e3g$9iiwI)me zu&oh%0%lBTpQ|?ZwJIM+{9c1s3AZ;(#O?C>k38&w5WF!sQ$rJX&9A=cc@}(;u_-Xi z!q;iCGtKA$EZ%Z^sLnq)HpkpV$O*wn8;flu9q_XL<#9COH%)fE4a2#NsW-F-3?P61 zm65v1F0TCw#0i0$n7Q}G@Iico>dR0T!;SyJ0p?`D5fvRGBZi$D$GJ{UL=dZ!(B$Dw zjLFP!pJ$3K!rTx>`H@+-Nt4{H?6}^5VBsey^b#$hNGFVn@(faNE<^93EwF)1B}$(p zuajd4zn<9L$sMOR?Yz}u4+;++X)Ad2ATe#lqE=BUe({Dn!=&&8gc9%WY-OM>M=^+2 z9dtDJky3PLD-cK;e%Sn}uBZuH_4L>PN4R z1i!EnqMO}99-_R`F=Ml~zWURU_sf(2>UjA-EKJV5zd78;>2X|^dphd5PkvXI(EX$J zWSD~x|7h}zRv7<32Y<=ktc523Os|ZbDgS@``S*^*i%JLAZi()tz(2a$hFYbXCqn)Y DZKDZ4 literal 80961 zcmb@ucQ}^s|37|9(J;#1vS)UYZd(Z1iR>+8@62THl_Z-G5wfx>D}=0&z4zWDe$VUu z{`@}2_uubve2>G+%et@oyw3AE9^-ixs-h%|d!6Ds3WdUbBqyzgLS0fup)lTD#e$z0 z(O3|{|L!|K)N)q0Gk10~ax_CdHgdMNv2(V0ZhYI-%+cw&oh?7tJuZIE+m_DG_D;gw z+%Nw354h|cEx3F38}{KM*X-rAolq!zBji7fe6hUeC=3+pk+g({`}?(25BJn36&H;b zX>GqAj|wcmuOUn*P+?VJH@TrHk+0$N%JEjQkiN#Z@WWfus>S+SABpZ{ja?_Xe7T6o zl=aJ%XYx{|cdn)Ku~?+_j5LbP{2gEHddYX!q+F~go~7NRZMWEMz5d{tb;&2A2wpix zf>3GtSUIfMu0?j@@CAHtN>3Nb@}HkF#!1}%fB7ZPLaVyBx5%sS87q}7;iR*PPxY4% zsd_{XsYvcTyBy#CdepY|#kWx!uPq6Ur%$s#e88%xsBm8^Z7Zv6JXtB!Dl@(I@#9Ao zZSBw(qm>w_^P@JgtcC`f!NI}&;^Nk5-?Lc^-^uo$a-G!`6~u*4OJrWWxU!VfpD=(Ev zf}|SU#$8CSU%#$mU=V$B;;HM@b=PZ@+h_a6z`%h0ebJ+-08C*#RGQb$Bjg9if_Lwl zy|A;kmQq!{#npJWgRG|2{%4ZP%ZX^w6INX=(xmB~`Of1?v5VuL{7;`A!W*)4a5%J4 zyZMo{gvex9Z+u;?w&AYdQ~Od?wQF*?HWJ{}eII*wv8V0qcz1h1T^V;HT$w=TnQy4> zS6A3L!-ZeTZ|^%XZ&c6Xogd@-Y+?E|z(R#mmAv)~4X&U}`N)wk9-5gkSy@|`dL27b z3E3M?8F&gA&c1yZPEz_wr|O_~QkK@c*>(MI3vwCP)lXG;?xSz+=)CP&G>PDKUHVP; zCMl^6k4oqpnaSExZ+1~pQN&#V0iIT}@D}5u+S(M}*5TEX#_o41DdZ**$6liMoECmz zjOXPDHqp%%mNdK@hdYemZI#TtSy)(TGFoM45wU-#&~4H?i5l%5!`rGQKw)O_-T`a$ zvk|6AMCswg%jn1HqN!H`BwEQ#C-5-3a4O@L9P?D1*ycF4Ai*)bG zq0&;V2#|HES`2M1m}T2UO-QToL( zt*-a};9D_YQPek6zVGX}1+Pm$4 zR&mS8V%(;}V@OuSTdJnLIBGjudDnq;l3nuumS5FlVvD{NDt*a%sJP|d;bb(v=n*RY-@CLk4G{oyg{KTC@5}5%9I+nTpt)3nth{VJ5606Cnbeh`C>GPm_svSxIUFL zA|ZnG&a>BTw7yiyidgIG>+ahvq)#G88cYZK`d*3sTUM?`}HY^g~|6 zlh%l$7sSNG0gl%W=Y`j-M^85!dp;x~@a@ZBNZCfmk; z2Su|G=)cUn-nE=>UYy%~I}{=(e@q@Z)wno5G11*rfQyT31LtisTKS^ByZ_Ih)^6cd&V!Z0624ZlmnX}4Bhdfa zvwB&>+h*6w)BkbePfj{^-a%fn_A{1&Grs+^o%gDaP1n1-Qr?$Y?lKfK{%b#<3FkIP zQsm+S;>E-w)kX79P0G7>Z(EFwQd3jU%Bv=QQc~R}JdnDa+yDGvzr;6H5BgTXzZI6| z>TPs^#KuT$PG%+sseuggv$Xc~MREKJeUk)D}PRTDF#(bNx+ zXrFp8d5l;5b>-u&#-8}Z=@2TB;723JrNe5;>mE zly!2=wugM%mNvP5tP9)fJ{u_*Bgd$8+k3*N^sO=b1fl^dU(7Q6LNyCB%} z(mdJIybnfvqEke@h5r<3V}`d}O6dw3EPOf(>yf;D^BaUobcOYhqw*gG?)ule-4E=9 z8g_DwZ||&cdMqw3?%JyI{pH>DMon0{ z&`7pC>(9z3|82Ml9gaCoyVhn7T9w+4f7PE@i8UW1Q{G+Zl44Js!8h!Db4SR1Ybr#4 z7ZSAj{?OR=TK7^}( zK2i3*L?@H6k-NFN?x5d7U&K!lv};XjJTpUicd`>*H=6HA)T(i0YS>NPG<{K+pZ|^0 zuFhYD^)kvG$^@@PHx*fAD`CTAd?I1&W-Np3(d6mjW?Qjdt%|xjW`>2I6u^wx`6L4X zN-rAQkR`b<=O)Fpo5slJZuKc}XBHRZaV6b=z_PTml2lhG+-SV;(Y616{z|Xe^humZ>QgFf$3U1NYukZ9A@QR9yqiS(z zJ(uVX#y5SQ?o;Vh+8E{L=Kh+t=cygif%=cyX)f>Su^xxroct>@*W z_hISr?qd1MidCiS`ZJ$&!7+Qx@@Jp4+eCJLGBE7=DP59z*4iU>flj$=O#%l)qXPid zZI%B|RnbPxBF%@P)$+=5sI`C;^!`DRn*o|#`_iv8%P+z>f)ngjQoA9n33&tWIs7B= z#>j`qDMyunF2ilk&yJCW5B~X6W^gt`iYd&Ms#HE|*O&@jE*g+)X^QRF(3aV4{h>ET zwGHHW$6>7LhgFULUTA7-x5MSM9zTBk#%uHID%U;Vb1zLDold~b!%!C5ErwiNUCZuT z|M}d}A&>mEW{G~+-_g_UHfs z!pJ7?c}#jNQWxpg5I|gM)w%Nm!ik_u4F-I2G>z{oG&jpa$w2q?8L2hA6oEppANGgi zZVVKWc)Q~YezA#00J~v7?0X-Q7LatP^O>~bto^O9{yCJ0Lp>s+teb;}k3ZY({#*@6Rrx+O`^&?PmOxVd5af5XzGu9y8)Ko5Q|^7=Jj6eK zuf~hrE!R$rdc$oHh2$))&k^1EK~>{49Kd&YqbG;d#q(Iq3=DUg^lDv=HYe)e@>}4Y z|C_wPh4w?wd8&2(4c2MH4Vg(%eUTj`WC#Wk)0IO;^ zYT@4Tq=WRv2ZGh}bmx37UKs&QkSH3OnpsdcNTE)Ap4gQ(`eN!n9Y{Kp9W8n(rhbFu zx4KGcqYEQci_f0>R=}GwzJ8@>Je%jnKs8?c+brKm?{^GBm z4x-eks)s%ywEm^vk>+LB-JvO@z94-B4s7~{!O^7>uM&_rXGTl6fn684-o4mc`xa1%D zpWFQX63UGdCbF%WC;657fb`|T+V@WG#)y|2HQ09b`y?eiO4O?yC3Tmg+YmB3>4As|FXsNK|Il z*Ha^m^G_M2JQw_5*K;{Hph1R*tQi*GnRNNB$jf`(=v~D+;5@7x98I&)Vo{Nlg7hTe zbnqc2=KFI}wy#O9^NDtY4Z!iUO$3PpKB9RS5)qSAa$o&!F4P-wEevNBWS zl$Y)!ywIKcVD6=Ga_oz}=7%d=zscRw@~+$r# zZQoA&--(tqo(m(A1RDA_Fn;{4`1G^OrCK&W4|%o8*=j!a0%yR)#xqS^tr}fFvuhtie*m+7ZE(Jm1e@Rv#M*xJMOEgfPq+$6TrJim^+=#2fdFkBK}afkdXXC& z8%Fhuq2J^>Vs@Ay_5x*TJYKu`2&Zy!h#9edWhw5d05)qg{23!t}h(M5+Mx5)00hy8kY_l8~Lzk8^ug1j_IA*zkTw+Ie> z+IT|jmv%S}Kb*0C+Lym)ZE#AVS)}!yl(K%WPhor5Bzl`%GFee3$iwmW|8e^eXYS|6 zi`#&*aS%p2pP>F3v=Fal1%n^&?>im&AjK77AHKlv{#Ynhg7gH@WbmICK%2=gDEPiI zSUA1yj@o0)64`DhL}L42-&H>)+O`d@xY4Jf@%;#X%E4L6iWBa`oox{q@hh- zpt-k2&$gtHN_o69Up*W3piK7|XrYMDai@W!n;7c7%OCCP&4yF^7UHKFP_Y46#NVs> zBxXt};t(s0_WD_|{{PE^->Y}gkN*2jghkFa<9~ZP-_;-+H0V8E8&2s`E-rVW(WpWQ zBZOF7dHo9S2Kr_`s}Tqy&cf6eVo!6IzB>Y&oUR8~dgf)sxg2EVmqbvmWM`l(f}(?Ak-9(#N->e(GNmZwFn*4+!%D zdQ%VTbzk>btnmBDf$3SrFK$wfGZE6YXz1)n6@}w}3lNQ~c8#y@cp;_9Ytf`BW)i#uPCgpM%IALe*fj?kzyylT{hsZ; ze&xb6M7#9wS#0V^=XI2&$oMn3`Y1Sm4b5*rqal3iB|)Ftb|9`ypE zJx`I1hEv-y*U=X|DP2+xjoV=Z(>6JHv=*EbxP3LHhMXlL`ee4r5Ea{(1?$p0SJ;Z4 zRb1z8I5I9VP8Ap)v|^DFxB2PjG57OULPEk8UdOb(AuPVh)kMnd;{2bNxyIwixCj^6 zdI3bDdM-`@(Ml1vucxPn@|3Rv)I5*!r04)~!3$cSH~=A^i_^*3WQ(-#(LQ?&aFdH` zHiC8&5gf(U^sD7a+d>4AP2Y=`hz*py;g*mB>P{0gG^ej<@Tb zc%x0VuRu^$1-TXoyXajX*p;J!JkdbVbTTR{Nf6!jc)PTS^_k3SEFIpe4&d8P)gNe)!&FAsJDWkawpc|2fD7FvWLT;Q-X>+2y=+ znm;eQuTj!-H=gnBde+-O`mHUb*qQr6ejQapWR^jT9-QU+xe7;71TVrj8YY4444WnCwQlNV_kM=F2uwE_ z|LTH>lRrJW#BYCNXJ^-9j$f`=?|!gpS~cOxap4P9q9{Kn~MzA)4-qy(d_wJ%Ulw9TY=v<-Ln}6QTf-ha~W(9Z!4JsBLOEF zPMHRK3pfJJNcn;_Puss892ocvvOIsQr}HVSk!HZ@elq#BeJOjtMaag^W?&~AH`hruZ5~uNGu*4qp`l;L`{a2&w z3!}*XS}VSH{reoKe#XjuI21&p!#{e5G>}rq`3{W0&`R6!Fpx#EzI-737L{_ zo*)950M|qLA*|1RKJls2*C%7ar{ld=74AFjEZgw*JM2?Xmxb)7P?NzQe=jU9W@lwx z0y^?>sCwmN;gr2l&`}pNiCSwgwMaH0&QTd4dxXaKq z;CP+JMMPde1k@P|u~TviN=l=u(QUxh2n#v-Wg!{>?!kMXlVt$>mX?-NZK0j_9=pmY zEGVi{KOg+~gq5BB5(=vG4P-$GEk%rq1ysR!wl%WJ#o+#Pc#rlVt5fvN90CWt4b5ch1q0J*Xw<+oO%C265{C_@ zOrkpV`sq%|(Jbj+1Y&2?__2!2h&FV#9qoJB1V_I_(7Gn7wN(ZRi>>%jT0}(9FSoVf z-o-v`b`C4wQg5U)7x#dZJ=<4$T7Z>ruRpHApE3fgzK!$_Y7O~ zWQl<+QU(@_-uo@pbfn?PkYsUR!uIPjbCFi*CFmgY*V0!J5)Io}Zk`~=7#I6+<+C(B zIcI$B=N29ws%+y>X+BpuY7pH69(tzzFZyd{ooD+W$fp$38jm=}j0Eks|8Kq|s}xpd zsA(Wf)%o;M64VB$@2_WOjNR+?6W+Y}VO)AUR_-=Q__kGna4H@}B-XP}B=8X{cRAf_ z=bG??2fcs(1c|&n$S5y&QW>J*VwSH6$?VX|?ga|r$NS+#Z{Je{;MIF276jzI2fF-u zbe)xr&3|-VhLJ!5+Buky^s!ej`J>|68R7HS+FCg3YTd`ogdLros=B&3;VrLVJwS3A z^a=-!5dsTht=N|@UowENwM9`&@g+<1CI70?q!_bZAWuRC*x z^|4+e5lrLZaUX0skdHum zx65gF@3X4VZfl!$fFl6o%?tVsNNB)QLCw1w+(c+gytf_IXU~_?^?Ag`%V7w-CIHFc zlOU=;h{BN40u&IoTAUR%paL6g3)yO&}lKv9E{2%@thbNPgS=x_I^yAS~o2XF_rRg{5& zfjr5IpS3ul`0BpdEdZO!@g@rdjA_b#&R!mJymK4G#ncpHS zBg2n7+?a<98Z$U;KS#~@UV+17TuKH@R%9lOkYS+Juoj?jN7Ep!4h~qi6|Bi#OQKjg zQ{4_XNiyXQ?7X2>SkJU$4G-AaNag~6LB%lL*yJtrch=_F&r)5fN?S^+Bd_bK{$rCsW=7(-M@x z@$vDWrhGt1#=h;iqoMXgYA>y=NrTzan=O0%a{)Ti(NcEw%}{B>if7Z#!WgJ_(>S*r zcxkVtvqpNqbTHZ%LKbK;LQo+vVezprFt8sRL6_Zo6$%|30r*1j8O~jW^)(y^7<*qT zD(DjBzgr6YuoT$wC)8_Ocir_*fC%cfocsFtP&#}k&S7kDFc2&Sa*)9!&@{n4i}9`f zJmS>ZaLdo1vwC9bQa#m9gUZ&gdN?6333K}8x@5IF+O2# z!AD*P$OLgmdcmV(z*h6g4)2`*5k|~m|Mz*G*)k2T3Ym$0jV@R`UZ14`@?g0T2Jiu% z8yPhz@ZzivZHKjr%Mo4MULL&uod)FO`)))?J(C9qA|{p@(geic=^z-Dqz%qufdhdrAmlyTb@f51O_b@?>OWpv=t7;C-NW!)K%pVFk$L_5bYbM1~w7ckGn=mj$2@P9L5c z@sJtvC0F;Z+Y7<{--?t0ARDWcSM#flVRpiuK;$}94j46nS`31%47~hu{E^2no2`cGDR#sMlkK5|O#z4aK2g@9gZ@1H!7-<$|CQ{h0YVu8c4d2d{82 ztga3XX$6M>3NA{Vkzjh7oFdZI)pcgvZSvvEmk%Jt$7}_YGMlES7@ktZhGc5HCyNYQ&4@d!O_BX{G=HUSt3|8C6pDSg7B3!*6RN<-9KsY;1+pk5c|Z z$&!nf6Ww-ykDt~2T@`|2T9+?qcX!tT{PGMaq7Pix#I3Ch6Gq5xSNabu#9@3Iw1VJ< z@c|g;fHHx6M7Q;hjYV{KD>ctLz}wQpq)4K?M9GlTKS8K8vuJ(tq1JerZ2vBEDSdq! zkSu{WA+;CkET`6IBo4g3j6$c7W4x5!6ATptn*S8y0mGi-*7h$qmzi}!-LA23|EdSB z8#HxLZQxFCUA_GK_isN)SWAI0X_#coBW$*<%C4)Uf|doM2uw@N9bY$Qy$dCjAQbK< zWwA6yQmy;4$2(}VJx1WgBlQm?GvKil((fixW^KGJ^r#8%@)5eJHj;En6v541$fnTL=>-pQhMhSWDu_7S{dj#|cFphZP;18>cAEtZ`%KW+J(9C_fmOWOm)fgQ# z6Eq89kjk%r`SqaH{4pVHBV?9s)q}z&VqaEYumNBWXS>XR1SA8b; zCt-1J_t>2aH#J~RdYWNJG%o2?9jS9VUT^@VCV>k8Cpe}d*^;3f(QWaGPWb|SiDe{B zOGJM%C1OWxuuwF8belx~KzZ5-T)V;hTKUAbR0}ZEQGL9HG@k%8VF)$IPyj-L5zW^y zh`!Q!#EkvS|8SsVlkUHEjRoKmBxZp|80BbO>BHn1`tITn=s_*c)=1MGcJ;RgR2se8 zIir2U~X64#&p|2$7~2a-6#g)f^_5 z>;dDYWiu>C0-l0yVsnpDUS6ID%zZ!+PzS*F42BNw^?}Hba}$q=C|o}fI^LT%Boj4i zzur?Uf|!Dyc;ZgO_LC7!?GwRv7TK{Mh`$GzA-PC#^LK4O65X>CTzBYE;4db`9lrOSG_lm;Qp4(plH_)IKAIH)$dqy_1{W(59hPEJP!0CM=44NkR9R^kva?{#0aE2P>mWkR2Z-@cpFW`q2GV(U#?b2G9NPI zBNz3gt0|D6W?;IN(q#^i@O6_Bd~Qg0$J>!n5n>e+OAoedsjjto|ME7&kX1!iQ4vmJ zVj?PL{w|S1U+iSQ_ zg~$2q%T;k@pLuYmWqs6(etSe}^#~Q$xN#!_Bac??Wpg8>MzOS5mk#e;$RXX?>WH z2=AEWBAw-f$Dv)Oe7fRRT;ja1#lvJ}$UUT4{UcXy)QsB#ISt@#4fl_HXjBr4YJVlk z0~7_CD*#DB&$$Ltix;8gj?J{UYyCAm`B7U~f=LdE3L`D#egYH(gsDs-F%e6_b8-{@ z{wsctSVc!VFAVN#AG)3E#;mo(T^s0@!@?%d-xH0wb=kC2o&1k#klLWL9-9q_r;O1MwpBQK~gbQII-=^b0YRA;rMn_ zO`pp(M~NQzbAR$;c_M?@JcxxRuBq^`*Lb(H5<1yhe*FSb1Tyjm<#dD`ASledobKk; zjNIIZE=1_$TNb4rXd1XCG4PM0quFRxfb-UM&=7$3Z0xYq#GSQ_+&BFlBf;FAf2qvE zM+HNa*GPA5u7zy?Y9s&(G^gT~`)%c`?wmlXycRf!e`rv?&L^k0!p-Tk&zjBdWgT*J zpekU5 z9$}lW)MPPSN*EquC&)me7r&P}2nL8j8)FKJN?BC{o=)Y>@+S=CY9*OpgdY#|sbC0P9xlE&_E!b#_uwbTZX8+=ai zLx<~M3LdPF1{W6>$9nq_;_RS%^AluFAn?JYlmezD@GkA{dOnT>KsAFQ`ClyRL7OQ1 z5)C1$g~6ZHc-ZOece+n9UpvGxp}-;DK2d^(CkbW-bZgLDxW|}9lt+F?2tEr?-0O~A zlv~Eldhw6WGiH!tbcH8Z)@?a=m_v@Omt*{4G0GNR5;~1Rai7hJ z!BXS$?M_U|p={!BKsKJ~=(M@q9VnH=`4r~j0oVh&4)BgGNQhkvrE(X`drtthsR;<@ z<(s11OBLSb=KTuJHuh!|jH>{=ROq!hKM!e&LZuHfQO-`N#8tEyw_6Fc=+e!z@;{yV z9H&e3p@D2IT7yTfaol1g%X>7!*+P4;yFd90yN|L%37sB zamIooGN|XpmEO&=TOj$VO zd*aE8HKT5yW|!#ZHyn`vJUFk@pR4(B>3sxmgUT0O{uhQS8#g{p0e*i;{>{omVa8Q5 z`2!tZjAhD^&-03B4Z4JnmtrIE61b$ETwv_&P!Je%QSK*cIEHi({k9lT4skhd<;b>0 z1G+*U69NAanmd#=c5Y)<5(z?Fvg@TPEb_0^7jB2DKWWcZ7=747=qma zxK+UYuLeqb-KTM={|c4kSDFZ*Z=7I!+Mu3A^(T_RyC5WgCG!WrOp`l)E?@?Dw`z3S zUI+$XkABs+RITHyvA1JDca-d4E(v6&h5*@F07RTLG8J zQ7b6Qm1L}ey#~OA+#HZncRemuJa2N9j`y0kA4ETXjt=dgEg&KD_?#Fo%g7K+R+&BD zlb^vxE|z5?$!R9x5x6I~kDp*iarLr0*P1)m1^-Gb;k>YFTBs1Q?sA{{t_+)qa?K7q zt8UI~nUpX1*Peb7{`5{z{xuGdqfY-?De#}=oeR<#{;b}5EoFs0QH+%eu_Y=Z9nu@c zvHt8z9`{nZU~$?v9xtegLqP>!BdIfS-t$AyGb&=X_%0R>BFDTzRP(&GbhLyoR*$&T zyOTbNd7prXR3W^sb!n855lsK2%GX(Ku=9ruIv*Av=p54&ked-zX1na>_(b952+l}T z_j1UwiiCcN)-p=-X&%7K0O36OJS ze9C(VQ<8y#@7r_U4sZe;r0!AS?YfDNRL4ok>}N@r5TvGzwRe1;F?}eY@~C*P;qdOw zOJxsQ8qjhzXrhkB#I}%=zfWa9lIZ7L$?P)c2Vp2@@i{66L&`cPY}$F7{E#^8NdqP3 zwO!ShAYFpm_-%N5zJ`$j|KV$>llVz$gKmA44qNgsEZGw~-X%X;Z)`X1p!m{k%nQPS z=%a9zgI$yMx9(}pGoA@!xPCo01d%NBO$5Y`wOcgr_vO-u8>fX0=ZBM&yHl5jBnh2l z;-#VqX7UGZ?wJ5aLeywk*7Q_0g`#zaH%oUAt#K~}7i!QLCX zJR*Dy6v0jkl=YGWTD)M;gO1g7za14~+_eIDd%4So(0VyU{dXdRWCa#6*>He{wQ0-l zT$$xyaUqGm3dIwF&T#X?(9orLati;D*5bE~x4AayC|FFlSex<$I;E21W%x3a-4bvV zCnOy1MIRNj)hE2J*1NxKSjN!pNc;fJ+mk7#9JAw5$Q$GBnCbf1vvHt~a&B2MufNX; zeYN@0j~arYL6soWgdLTa2F-C~IsL}I^yJh(+r`U&W4QEWE}4;>x|V*rxq1;AU^p*1 zIUA|^oDNQ&O0m_h{x~FXggA8jEl+U)3XW0-^`T z?AGG?oV*{nxHd8TxP@)1Mpa?j9e^IlQ@~1IOJ+KpUWyPf{!zX3FzYuys=@ijoi>TW zLiOBj5VwKS)+>R4-C>o(pN#YByWyXixCG1m-aUPeXh~j6J#Y z&6%=*kq9G~Tc`h6@7#d_CJr8uWs9`qp$2BEuohwvQK~Y@N8kQktNBaZS#Ip<$o+7c zGNIfwiaiify-yDi{T%2?c$axo>FWJ9To$WHt%AoIi}X z&UQU;D9a$h$P(3j!GyA^D)>V`I1LY*jVb6`nySoK`hBc?!(+CkCa^1JbZ6FX=Z3#s!BI6);F4RJ zYFSl3kCMrj0PukbgdkQ|R^9`D>(K+L@DGIH9G~L1rD=qrvVoLbJ`w>_7dIAEsp;4S z#hI=FHmEV;y!SE7Aw`a{tWGCuTbj!!;QQ~w{Pee^4;OPj8`H)OH=XqrWS!?wa%qk)%~tcIKSTl4vI@sx^4V>=By_8Zk|1~|B;Js^JkOSF%;@U-w}k6sG;a8G$DT##os|Fiz541}Ark#?NOgI{c${&K*<3C#3jt zek#0?&jsh}7JPuAHO;b2>kyN*H?xI3lv!BwxVTVKA-FRXCfZ&K42H1fd1!w!kgo&!w+~%4F+`&wXz< zOZaWkp;hoqPW}Haib`RR$`6_)txfYWMp~1#MD)q|GVE=@ z+5Iv7c@ND70&5El^Kbppu`@c^Th{vO%m%@UVLD_+n7(QFK&Zk$$`V}=7$O(lGIssl z{-fz<*}WkUcWc9?m;fhQr<;OH-8S`sS!~B-=lC|GHO+X9b7dbbhidGq^e$%k^oh>g z^Gr_&;GP%Pax|Xfvtmn?Eczse$RiNW)gw(z=?`)f&zuoT`LsYcdDOVVz9WOI>onN^zC#q$c!V7~Nm-R~@XkyB7BF^@mc)vB%PFVd z4zjKIZ9f&(<|gX|cUv&m+f9!MxaJ!2beVSuR2y*TKZOq6loi~=+&hqqonG7b1W$&` zDUApO;~AK)_tPwFf#)J%7KhhqK~c0Rj``9a=~s+_!lS}}B?55+-GzHRVbdmk7Lb@A zcY%nF4bzV_U%!6+Jv{t#Xz2ag*9SMHd$_x7HUIRgd%jN4$C|Hcu6!#goYN?eDNp|H z>5aojLHNA|FcxwwPAX)J?p4zQI}AxX`~o#+KW37U%=^NmC|jY>c<+#H#(q^wneb9Y z5TxO--gcRT!_si?7Sm$bLqcHlhs^m*^kE?k1QlCj;XnjiC86eCco;IR_g5z9Cb@Erl~*kK z;ln4ZuUnoe&pw~yr^&#>L%{{%aa&MQft_RcE!M=M2h&Q_@=p64<`?1K#<)D0;Fx;S z2P_4^%zF)U2k`U`>! zAQFKZ@ZGr7u>1Xec$ymCb8$mF!;OpRT3nGKD9N>bW@AqS6xw1BfmMdr(&E#gLtsh} z9sr_3yCXIvh@K$4OVY=Rvl7MeyPRKn%v7nxIo8F|ZFo86iT@Y~)L@qZBqOIpxj(;j zi&sLoaL|!dEYPFCByS6s*q$(Q8sZJk222M~T18(GM`!1nSk_9Xg2FRBVv!C)_P75L zI3fDMT2V~77r98rmUoY^MtDGXG~qO4k=`V=Ze(D?YwJ5U$QDaWOH;>>vGJ(DX`Pk% zVrm~Ue<^{E-)sr*C(X^!Q`Xhb7$egUD)2O$VRftfh|h8J>Xu6ET=UIHvTebNs%>{F zpGI1!hj42@AhA6fAH|~PUsF+Rfy!=+8N%da8t8!Gus}(CUqdRp7s09g7TvEq=U=rL zBVFxKEp|KSS2(>i!=tlLiuUUK@BL=~@StoT^(QEtjDQ0P4dOM}scYl4q%c0ou>Di% zx^xe&1jD1!R_uR|=|tJ%9^rm^dng{6FEsuH2Rp3TG_E}V^_=4$O99yMtCufy&1`RtHS$Hh`91ka0uyX;Cyqhz>~Kyuz;49y+I~_B6I&F=b~l!evN0M5utEY z1Or84zRL$Iu^EqqhvO*w0NuS1w$0QC;rpYuhCHqAk3#=rPUo+zKUv5NiDb?^AWxNj zUH5wC^r4Ct5^FKFjw9IZzi$os5s7SAt@Fn`VC+v);!v#|&&dM`v_M1NGeq`UuV2;~ zli76{t^iUYQSn^4*rgVMWJR>q!-zbuN(T!x##GDAg7Px(HB-7^Qo-xs9qY{<(U3G& z-ge#h2l-UQp>)FX=nvXDAUcCZ1!im;G9wSB*OrVH=U>)kN-N!##7h6!jZ=G}Uo1o+ z8(zGJk2$qI-ZN3ylMdSE!{R}m#FA(* zKdb2nW?rcW#N)y3rUatt(cA*Hc9Wv_y*;k(E#6XOjvwREWcKGE4f`;g&>Fv#Ng!2e z{OMMyD5->pR(Eqi_v3%)Pu?tC(^z{3gtlMElUfOhi}@)c>-i1_DfBD46UO|%q()td zF%x2=eC%K_e}kSJ-C>`aFGo~Hm{-?#Zu&Fi+UqRU%cdM(gtC>#f>&_JBU_7@T$@`3 ziLQg~zn$Z}otj~fO0}+I+j18lDeax?ps%)4;3#0q`bf@;`H1RCXKt36@d@Skg|EfZ z)Ny%a-5b`1bQE9Yn?nEERnS+_=cHr_h7~{Zl&3BcNRuJqd;6G~&=*^pJHt^j$^CuE zuzo-4DVToC&X7dABL`nL-K~7v#@y8?pQ~8npz!B^SL(`V{;@CgU?14Ilh78vVa9t1 zZROsjxCT`UC4rR46@P%qoIQjnXqyzl1D1WPvd`sWV;O^1ns1fD{7;MV^o2TRVXx)y z!NC?Mr=_nmSCeGKiCp9MWD2lnY-Fe0mo&-spHTeh`0Z&hgen`w7giF;k;=R&EG#^= zdkm(XMh~5f`_}I@Rs@}xe8iQ(FkPat0+|{E z$A`O93M-*(;*I4L`#k#!x?)v48v7#@Rp$6>aPG3vH0y(0(b%nUr&3=e+wCcSN~ycr zc;Bt`W-4Xd%{!5QMy33NN_p;jVOR_=BeP?CS?qVlpsj?7Yo%+ipA8xdEB(s5X|dm1 z1JheLSOF`w%=gYZZYAc}NlVGC%_Y#eRQyZKR=i8C(QlBu2J>FP>*-@dIBEGJVq&Fe zf*by-|7|RZ855V{_a+|B$uU``qwz@S(IJ;4zSVDfwW3m2Ags&W>5uWwY^=j`bg!_3 zaB5Vr(+P(@OVqRcU8XDQ3%&U@K?P1EL;2adWbZf5e`qFc96G?m$Sn%WWZj_jt{Xm`s3YF_+H zD)@)J7ac0K6!Mti6ZpMdwBapq3h?hC+!-pQl##1icYR>cTrZYfkgLPGx)F-?Wq5%d z*Lof$zb63R9C;MMYkP z`G;39O`02Dg1P{B7mQC~Y53l_5@u_(qZ_*IjM9#*3L*QLO&>mOujMlEuCO<051Cps@eM|<|lJ>=(K(=Y1p6Mgz5cQSr}-st!e_zv5$LFqsgZN8+gv01G|KCwwwSLYYN8D0a-< zz8qS!hU@ldWtj*!4!yGuTC=NkLvl|G=CXxxd@g!-SY2}V!QVYKAt+(z z%v3Ji!|^pvEk5;KZe`#5&udh|FXIfHvThV|8r&wo-~1ExIRAcc)*ItS@oC|mgJ@Yj z>MD3%F`MX%IHwgKX5-dzpqG%O3Pzj5w(N-+MDGI~%u4g)TK3*V6V6(v(> zq@`<)xe8IitNm-SP-$9r$qXBr_C+pu8t-iLFV)axuI@ zztQMx?i073L~oYxQ{~5g{FS28sjSFI0M~$zGU@L;#sU-`A~X)Yb{U5`R1PZHdz}5I zI8*NRqNR$FWOr|>E_A5qM*{2+qIz>}mf3 zs-=C;hAhl|It_Jss=cU+jVSAIzlc0Tp5a0%^&qc=HjI@=tyV@14i8dkQR!hEtEV`4 z@<;0YX;(kCOM(pAq>}l7SDIx(JjPM=_>yp*meQ*T7Kh5zw+t|gP)1^BUX&LU&-W-* zrktoO`+Bu;!IejoDi$zai%c(Ive`am7(zW-KSPz(1B5<~2243*nEI9lAk2E22(Y!{GBZEq4Sb-$!Gf_C@%cG?EDshXV}#u_>%bqXc<+1HL_KM5JTzY^|JC2&-Qi($40WcL!xYuq$ujixYi zSZDfbA)Le)s&}vZAA{)ZcN)Q%n8>559pAY4zx3HU}VPP*o~7`eof|+`_KxSn8E+Y+;80pzT@}%et+Y-{<@B%<2*V$JL~;^ zy`JMS?vMM8PR;$d(HY67{fv%IUJ*vjfMaMXChU? z*G3_Z;U4Mdi&2Qi)m*&dbAiLC<+e6 z6~0Rt-4_>`*m_Vv6*=Oci+*n-bV|CDH_Dh@-?hF)Ta9J>alza!#oPn7kh7t5E6%EI zY8*f#)^wt!Q{O4)Z{0P{(htMc_!!XV@l9_FX)e3J+BI@1ZpJlziZd+0r_XFC?~@gG z;r1FRh|{Tx)09S@wQ@Mz^6%`HtoK;4)mgFordnEg1!MKh$b~Ukk@H)l{dIGOPDs>V zI^DTuej%lHVV_JZbxt9TbV5BJU;hPdEeTR zrSj)f@KVcU8fr9B+#Vq$ka@~1c|7h;bL{SoR=wMsuNa;$c8n~a-8rjhu*xy-8g*bQ zU(iSYz7F$~@xPDlSPdPaLOD_wM7sBO#T``*(yH5#`$INTv5}2QWeq+J%A&~nS|`4Z zef|0=b+zlho@M!uNtTAOtwjtE3ti*FasSYAVQUYQFZ$z;#-64BrJYTVPZj#5bEwkF zbuiRREmo;k-tls-_57eWY4V3l`ZSscjb~nz23OnjAEv9UGL`7cNMG4 zZ`ak@H&(A#&sILW3JSVj6TJ+%dao-S!8ONmOk;_152AYOQ@={O$y#0WIAwOX!A2Ll zO<^YYY6f;lROG`cU28`=`3LWAI1;9Xd=XJ&zMHf;*PJv2m^akU*>^G#lo3 z-&zG)fBZpjb>d#8tw*cFF8o&LN&|Z)n=RV*F=P+ivO6a7D4bV$mf!H5ZqfzCx4#sT zpydDM4L0oLFlkF4mrzWY@H_D(p5ySxvYY_R;Fy4Y#TomPn(DTSY`CVDzSHiNGKMu! z<+;#7{V|v^o|UIOH|VqfP!^j-Fr+g_79lA@uN^rM83cj&1oH%trNV&(dGrp*j;eYu z7hjKM+jE^^?xO+6Ek`G>w)-3!&8qi;pA^y@ky31>1U;99GA)6HN7W|j^W(6|+%^ZI z97GHy7mSw*Iq9lZt1x#!^s_f#Yam_PdAiiXq(-*W6j#gm2~Mi9?k69}AUC%z*NbZY zggxPbR+oMqt7j|xsT%vRo_VN!YdXi)xI{sVTz{|Et4B0cS=8<&(-ujZUA;E82df1m zNoCJP+4ZhZdjxQ3YyIJ;z7kUgK|ZDm;2ngkjdaMhwIRgCm%`G*!F1ogg_~2}J+$!P z?E=2c3c*FeuBsnSXfw)b~*&l$Lk~5iJKjk`Pl+0+sKQqLDAWxCy#}y zrlG{dME{l zO7M(4xJ@vc0nuEFbbcdre9^~BqaV!gVOUqHpDQ)rw`p)sliRlooD`8e8=6}WOXo}SbZQaa@)D- z!OnA#Bb024q@U@IVY;S>S^)Ya&;LH`K8?B&nS6)zmTv7@3>iZITT;Plog*w-RQ!pV z@+xib7Nf`l1oC1?6EOQC$;SuSez9S6O_&F8n5QYfw6onmA`2N_=FJOXg;zP{hvqAM#!- zqM7H@no{v!2O!Kx(T>gRo4+orL#wuLvFq00V&y!k{rsuwuLpQovuE-@rxRRz7fGoPk-S%Z0t)SlsdGgBG+hzuOb&`nlY z86Q7>{OzJ)&0SLsgJfG}ql~%@5BOy}DUi5E*txXwdCmWt)yO-85?}4pc)ml8)5@NC z!=6m`PYjiWB>A;Vvg_JuP~sya{;epwk@0KmQsPYWd-4%^yh10h(eA(VW-C+JbcLYf zS{y}iC?SJ3&!-khfo76geoY4Zbz;DGmo-3{=cR(gy6e9kH^0eL%WOMvT!B(?k7eXt zWRA>*SCK-}aiter58c-a)J*EV^T%MTOtpK(yXqJ!HLlyj?wb9=HHXVx+x&;Zep-7( zRYc)zgZfM6=C(T=W$hkU>a39l^;R2j=;5NN$jDiL2~sSh+>=M8Pnh;SEtuK0yVG%n zNMuq#@PO-N&L__pFL~F{U)w%=96cj7&Od&3x$!&treCCA0FyT88=@bXAWU`jsk-B1 zO&a4JY^uU6h72FHgM)XM@iK1p6?~Y`wDq=1ISp^>sfu;xq>gdwW3H7t^h#(EU+5B@ ziyPZ_r9@FxEHTbRM~ykw_`pJjg^hL)C(?M_pIE@q*`hXXqQnxzE!?JOIjA~Ll|G_B z=BCwryIvA=DzH<8jA!@uDbx!g8LBzYZv<_X{IUJ|jq6-Gs0Y&_$JK5%7HIKg3n~ z<7=oDQ)6`o-Bf16im?=pd-M%?Ba)(#&TT!s9JcdvM{d4f-#E?lDey|UaONY;anBY0 zSl*nsAA#P)wrjl9nF$_$&|wRm%ocK9_#B_zl9I zhD^E zpAc{$@Z{q?BZ@tzWib9xRX=`9HnlVTK9|64s_v3W8u?kX66XVPd`Cu#1|6=)#eGf^ zZsB9d=@X7zN9mp8;V5WI-r1(SA<~j=F|;GDF57%eevnDjTK(Vx|0k``5k$$CYkx<- zEXm!uo=bnHb8WwhT+VE-W184Rgys~B`VYzjd^7mI9hFgCn%Nt5YTfPe4Fj05yjW(ZXr4=JaO`xRC!d@ejF=x+i ziMN;Bpt+p>JDfT-)RL$clDR)ufPuQRTOsSMJv|bGCYwZmZ~>tnK`QUM~A*Y z3==g-WMEZmk`f=>*^0k>*)s|9QX=od>8X|#J<1*96#DBxX(DNN)YsQvbc;n>&B}XH zdY6ohH9AfRct}L6Cn$L2D%u*zctUFMPn<(iqbCy)@R51UZQFvdL*6(}O25=Stv&81 zU1|8aa_pqxOB-e`HVW=yA}B|{^2DC&cy^7BrL)}z#&>73{dq^c>&6W=zSa$= zq>_pq>-1kl+Kn4<31zjth&QQVba7YV7LiItO#rDDs!vzK!!a(|*4fD)nM1XI;5}}t z5nkg{JKUrzv?Su&Ke94N&Ll&MkFo%o5BK!sbavE}jxKry$Vap8-@oQ97$<#QbxNYu zsN-&VIXgripSw;W+q@6EJu>}9>~G*BL;I*FCHqd?1j)eHg_PJ0YU*;*^~A@;RYMVE zU6i~10)KGpfnS@GuO&MK-*zw$^ObM4*#vpTGsvk*OV1@f9skI_b11K{P2iy0rf^%) z*z<3i5BS}Q)cvhxzWK#i2Pz>bz{60Q-8oRM!8SlG5lIUMQ1F7)wYAsEsvb}=9lv1` zd$)bZ?Ur$m(si$@t#>@eze+w}nTA z9t@9ZA2V*qD^bDxHZN0H_3|WJ?q}x4tw}nrT(iFyeI6e1(_i6<)LEEi|EW`AS2^XL zhdUUq<2%Tj5s(x&F`X%{&FdA|Iq$inC9OFpc~>ToU zNLvm6<1`dnAp|9h+i&q4{28wJb^P7T1yb z_0*CNYTbluXd)yrU_wScHE9<|Ml@(JL|zY{MV!d^Q9K_%yIRw%r>AEIzQRNQnqkCn z@m@W@atW5_dogn&1NRr%J`ZZ*5C>~XME3YBkh1*{S2)yi%A?J}>n(3~(vzwL_0=|S^dUrHD(5}s&Nu?5+REZBJFw}%l75mh{YehMG$NeMQskOv=^s=rj#dyB4 z{66@=tyF)*;@!8Qq6~_z?1D^dkee3xW*6J3m|TK0Tx(z7Rd@MFgjC{|W$VK?Nqj0- zA6y+=VPH+AGiw;lOV7DL7shqlaLG7aRk6_Fw1J8q-N8{-h8=V&&<mJPHAp zUv?ajh?aUKlxjA9kV%0W@x-QwarE@FgQ3#<$L5}0c2!NvJ@?j^D~mPN=#%`0;cUa^ z0wb}N!g5zlUfaKOxVCqr zlpWqQrfcv6<4T1Vj?@8?^>du@Mg!T8PTFp;FK?UM#Kojl$wj}&rE;EP6A?1m`FYRP zRYUb2nf2FQQ!pBk+2&wcT-NT)#Qf^TuZ_$xCvR!)^j&Q*=Gb_0uz&axD#kcwQ8e}m zau%Q-Zxz}Ml{_-zYM5-n&~Y7vwJI4b^#e5AE4iL_L}1arY5Zphrail z)p^NT8@+FSYwRD5hFqnMw9g#-R7)MA-~VmelWM0!tz zP}gE8z0tLQ*Tq_?CF{l&(UuMQYm)8U42tTj*iMCeDDFGKjn9SK;irZP{mVR)MAHe* z_*9h>>hIDn1lkttdfeEN=i}$_AbWm~=C2T~m96uiEMvuKZhGI^m09bSU&`Fs7}a3X zEhN=xW%Pp|z6j?H#F_wY<;Zf@p1syFV*q*UMZc{XMs&^?sSL`<6!_Pgz@w9x+T zl@k+g9Mdt;YI!V<-)`4mDta2|w{N5B8JW$6G&)+j$&c^7`fete9+tAjxq{>FjRh_C zstpM&>8Gv)Z44MP>dITX=K3kXcyOpS{~b$J#)yf-e0NubtaMa**^!gZVLhEon_6-N z{oaSfu<%8%#xs^M;yu4U=5$=?G1}#S8&!|= z9vqohM8U{PTQpwlIHovJNI{kJ9gN+^lq%L-djCYX^gZI{kJxZ_&%?rg4$7%kHlK^M zOu^qB5->EtgFipPJ$>YO9Q}jn1kMnxjfiS6=$=tjv;kE)*bR@KWI#$cmrQdhQI~4| zdYE}g{44=zDd|?X)!eeB~RHKGzs5Z9TY~<5Yd*jOyBh z7UHZ3m)^W7StHp;m!9xQ5#t)2|=h*R|qWd=6rVk}KOpTXx;rIb=woN=pVb=%=v#!b%@&q{ZTwFopN&x%SVr5*@kw>h+CDy9m)Lx}b(pZEGU z-rdV+?3ZOG&8J~m{ZOJXgT9n;U6Vw1T}R+Ep0uz7t=}^~@qH6uKJkPnGH2jGR@?lI z9UTcySAOP}H_Nicb!9D?$$5K;vl|U*`gAkUP@@h~VO8kJB|tgEc<|5R0$P4kae=67 z=1P{9Z07Tpxrbg?yJUoASvO@-yq<~|Z)j#1*%n$~ICh*V-k9Byx--(KEsNJG@9Bu^9(cObOwJz~M z9JkesTef}J`rltI2fRxsLQk@?m=v3fX2y|zQ`?V_IQcG+QDbxy9BeOm>6uLR#U zH?c~}xvlEHS?ohY=5bZ#^|kl!I#?RK7K)K`_ED0#;j6wTcIbHR&JF49+^BhM;y3w3 zlP{f2-FRwZ%A;-VzP0aAG(~cUC>rI~m4W+CDyC54=HejrL*WV1Td0XMfi0L|VsBma z{NvwSy5Ks#r&ItL1}UK8$qdZ>L<2zwOUueCSn;b?Qm*HfI^koOs_>nmw~iQMl&3)-R6E{L&)F(H!5p zp*X)gDS;8fF5@{x$8;3+nqs~xw`jbEYewd-%Xe&XT{_EU|bRx%zrtx(!* zILT>SOXPW34o$Z$YQ*AYWLe}h@?O&f20Zzr$!%>Y8+0iCfZ-c@TWQ%M*GmCq5|wL* zO_(B&N>->&F-pHcAyzLoJHC!qA$-hszmL=4Tu%L~(=v12B{YE%aBx5|eHyQa)UF1c%eu}9-ch6te|KJpX$^iAFR<3SNIc5d@25zhZy)3g zumyp(iFj)vE<@t8@@aq6u^qxAvO4-Abh8|{4MiME-xnCJ($Wa2m67f0w{8|&WIcE7 zp;7<7Gm^d#TzZagb}3J5vwijUA+uW~+l0s?-Qx;T4IN@9Ex#z|1#T33ogeA`;)TKX zsf_P@*j+CkbA`^Vv~6LFnOEkOmrAXD(6xR21*^Anv$XRC`p;5eb0Rw{D5e#tGA|Q7WBaJ*=bl?eBDkEnJFhIXMI z1fvj)l_e@%*iK}c@WkJA$F#$jlo+F6_W&{4#5Yo@4W4!OIyKIT9txT|h$nhI=vJ;k zo^N=*=CU~}On;`gb{IQbbo#c<@O<|x7hIEjcSYuxiTJ=HE;|@VU2s$X8IU=OMq4)x z2~uAdeSuDdRYDMxZ@`y7*DW7oP$ zqB8=9glXwA?;I8P&u6vc%Drd{P}t1sl<~=3yAqN97AC!lOUlcO!s2Id3wd^^4qs#R)ld$i6pEp7l>a~ExbVz zmIsh0LN*tzL2Sl|{RRGSV$p?Rmzk|DO;h}v2Zo4kG0g3j9g@jB6Q-PSbzzzer6(lW z)9{FS@}W}E%R2G8zSqr8HQ7u9@g@_+G}lZ@qXJVH&p(~M^>Wkm|8%Zz_gA|+mU_c`Z`U`6y(a<>jvnM^QuI+}*w(t!;@p!D z2pfuzecG`vH3#!Z7`3kWyY$=g>-_dmZt7zn&z07m>GX8OzylnN{>(HGp>wkPvL>JhBq{fE6 z63lQR!{h7@i4K&!c_!yH{o=*F-@kr%sZD`_u&HN6E_X z@=CREdPALr%eoym8kxb0fa8(#$7(8A{8mpb3{?kEJ2*LgJ;!KGrKib=Cj=5s2sAMG zgm^+f3OGgeFls@93)^Vz^0*P<+NW#UKHgqXPLdS}o>jGxGvf768UH>)@ahTsPl+m2q7NzrxF zW3!3SJByaMoKUs~jUH-vXTB^g{-&a!Gz@glK9sd3eAzWFCf)c0w;>2xe17aeq>c2m zd_hwRrA8&~3=D+31=cw|ayw!=w?8bbr`)bREY-Sb(d4#?aEB*4I4Dw~|AF!=s1!N4!bMFm|e1b zz3a;O*qAZ|I#5z!;9^;tYT$e5b$ z@Bevu_zY*ns3!fJc2IC?CLSBKskzX(L7fbZB>5!W-Hi<5C$0v?O|_zJgTo1~0ywHL zAA{Z^s!wvU5wur!k7YD+Py~JZ1~imgcC*l-j!cHk@mWyP&MBaD^UCrlEF?Dbtt;r9 z)jv>v#Y@i*YYEcB)C(Ii9RXgwq zQx)_4-Wez#;mIT1m4%{!`H_x@=Ao>%YABPfi~J>nVH$@%g{>6a2cw`m_|P1tdPzb= zx$cnz-D#fn$~)MG8$_b%diNq+2POh@SG8CaGq7=X`PqG123`!@H?nUi^4t76IJJVk z)%q*bx!SmJ!MBb~6Yc1NZ$ArNJhtfeDLB)?bE2Ol)cE(>p_yc^-?pj;Lzu%>A|cD@ z7{BlP`#j|DC{&=Dg!ys*E>|}g48dmT$%hJ_dx_=+*Gq1HQPjN6e>8tWjk^}|W^8<{ z8I;v9^vX%x*pS?#!9n)T&p6G|m<$-ukl`{oB|$2KV!6A!JBm~rqctv1b)~J#J0Li= zyJ_#_*cj|?@J-|7?g|Ad2`^DruG`Oq|w(J?e&8wPM zv&&+Y7kwTcTWXrVscHS3FiDc(meY_htp3%n^xBPg=HY9e^Y`OTVWLUs+_h)!@DxTl zeP-RGl9G}x-|*lh+cD%Wecf$3FCk8$-4d7~(X!{Rl4i;8TfM z*&X(55WdeXnI_F+DzW%BRbk@Fd#1TJu4awlaQRmq58|I6wgE-9y)2EKtEo>8*Pihe zIp(+KR7{b88EsdWu-gtfmieT(Z!a=B>!N+$E~XrAve+u;5?s>4IVR}{giPxRhRuu@ z{)Ll}+Lx%G`frrFA~g=Ze>ishfw0l~|I<&8y^74i$QQ!9H)l}Cs)u)f`;=U&_g6V$ z?g4Qd3?L7`eMq~-XFb8#<>e8&0=M^Ck@k7Ws6yaG<@h7IL{}XXek|zBu zyDVBLKsE(HkKpUOcKhj8En)P|jcatD6mq1X&A#&h^{=UFv~ zoan_xKpGL>zm&AV@%iySKZ!7T>i7#sy?PRKqPUe%0&X$~I?Sd({T?nLe9onzy-R^d zyeCTu<4JYvGvXnk8^-!z*B!b2_{iNOy8KM||M4-F z|BD`MX`l60sRji!#p%cPz%Sahsi^Rb@Aw=BO}gQ``kMRVkAdWdD1Mu-p6w31aCTAr zW&3@YiPb!aiQl@8Mj4Arr@LWjofam82)-*H5_l9uDinWAp_0}$2GVFKim<#d0{{YT zez+gp2Y~=?x_)EluKp+N8ija~Ho%RS*s`vm;QmL(L$mlnXf5A1o9KS9CdyzOOsqC3 z$e&vsy{+bO9U;PwRO^`7ogD$|4#Jsuclu$##efBjTy{#P zV9xwe4+Di*R^YL%0W1&o4e*1ufD_1huTbeEmg4t@vlr(!BT^eGC~0mgk217}YylY< zg_zxOMCN~f3^buYN5G3SJLa=njB<4Afa6;c+qg@-i$nbXiWbNGxc)!W;z&~pw%1j@ z5U>y*I6_pA*~`48dIB#0=ub;^nVrq;_yfT^x>9FScDZzl#Rk z92kMs5(wPO?N182T(sD=b(05T9vPku=#@I-;Gn#VgACmg6y;&3@>K)QY?Nh8#rp?q zaQ?#=9bU+4Mn)ae7soaKD^+f`W%K6EGjP)#qTTyrUs{)0M>kT2&NpvB@Yn*s8p5au z`7tRdB($|-Y4|(31BCrXpcyi7WlJY(DskuMs_mg7$Ta=$KFk6F7XUy5J8+p;tr z^31nfvnj0U!QS#xVCOK4!)8;Ekr8kZ-a}xL-tEVO+Sz9I?kqpMY^soS@XL|+aHB)J znk`Ckb~R%uRW(3jqzpCv7tppHzQ5)RY-CTr^T#VEcGMGPBQF!+F2{nHHtl!sD48H- zcv-0{6Wnok8K(#)SfFl>(Fd!4xMtrtzU4NWOG(kI^_4F_ivJ37bN%qZT>M9O%f(<~ z=8tDcbcCQE>Hg8y-2D%Vjj<>N)_&&qk5Q3K5)*U_{eD{rEfJ$~)1`&J48X%M!DGIn zVCZ+pAp|llKA(2}Se)|nvp%XJ#gp`1=n*mfsTp7eb+)+c(>fF!l_sp?ZDaAGt zw`KtX!ppSr$Ag;D7;4$j5er(^shs>9w`pi2t~gNvXr zBnrzB*9?eFu~g9BBjA9jwcE=meqbp4Tq<|}jtmdE7{%+k-YzjCDd%8O>?Oh@tpXHQ z%nHadcpIjZHS({`^dsR3@TbK1+|%S6d~!Uch?;`MLxU++EnY7OeFJwOiy z`T18q07`Ob_Laa87ChvAhp>cpveDy{Jm~t(YheFR#30mx-f|Q%;WsfeD*>c$*4q6 zT=5Q0sf`9rlRf=QGIt6JY_a9ZcUc_V^pvetrXHaK%x=x$STyIMh-zF(dwaW8!&QEc zdfN=w0f!2B59vmi&52>?nUX7j)~M>QW8(qhu*3wD|Llk;bq=c;C##0d3@=A4AkPCj0R zA|F5aiV_mU8!t;OypI6vMuwk{V={QZT^QW@&1^-)D{l$~rtj-;tAzmzByLr~1}1L( zn#MPya|0o8ufG6JmyMF=SHqbuRlZKo? z-e;cR#&H1v0(jfhYGR8IT!dXEC#+Vh39b<^Ji-Dk1MH&Q@Cp(}#N-3W%vZJA{QTv! z=g)l3UaoefG@XdJFRF+Rac9?dm2l8K>UCWU=v6pe8R-z$5|jxJ7s6fZ^_n0iyeRcZ z!WMobieHEY24F2;ja!ZuG_k+_jkeDTqUugz6$fy4t0=@~oM;c>O5Mxb-__{f*$=+d z(Y&YCFDhxVa&^W`O}L^P8Bn1B)KM>DF zzl*&7qvGF*F+Pr8Mv4bg4*~~HMu6`VnT<3W3UW#{fG^uOTW!3xq-%L=Ny~r0m(dme z6*E}qv(Iy2GF%UeP8jkC2Ff(-0&Qjn>qv}EsAQ6o*W)0%I|(4+A*YTli(~3!b{+v~ zA-94tR6oF;1rfps2b-ie5p>5?8 zlT=4q!|o=>Hh9lE#iC&8p2UHoiD5L!R&ag5sA z?AEvP8W%vRcSCAFIz%So4kX%2 z5?KBP=4I8>#mTd%y4=U6CR8+Ky`>IN%dQf#5X5Y#XhMQY6m$a~82Mi|1$NoLAj5)_ z6lZt{Kp)(D!Mi0p%t%*m)yo8lhJ>nl0b=7db)kkq_84N?KlXS|9>{8(@e8@B7vP~x zfP`tE|A0F}kQNF9zbgTkC1VIl&R3#ij~rE;uBI--o+f8a1$HfF4JH;6Nt#b+kmRrd zf2;6BYzREdkL7kXEK>N*e3HoguVBdaOZl7{V9=K@lpZe`J zIj6u&BIc`vP2J}+_xgC1TUbok?Y}Y1>Yt}Rvc=L34a%D!G)AW-;qVqZ;~ij?irAO7 z8H=u}ym*=}KWd~jq{;k+!>uwbBLbz$Cl}tk3Qxi^FLEDmPaY+E+oWZtNvyDXbdKP2 zYtBDqj>ks`#WTAk+e0OWytoZ<~=yO3JwK=mP=|^C_mN{T`u9a zhqG>bP96*xSSwyEeqE+!O`Jqn_%CW!YUsb7=QUi3;7-}WNt0x7AMnz@NcjC++yC&~ zgehX;9IxI3n~v0;|MD(+t^!i`S0k=7e=$(-Zd29tDrAl*^Y{*J?mtG5m)bcU;w*GU zsJ49vFESeVCpdn*Uive-cg_Z%^Zz|-ijBG&FY@a?rG%MUhen6{J|kjBkN^F4^l#nY zsV`q_!6^rfvKV>)+qSl6Y&NGS-AY?sQ&`Jn){=zrDcv9Hp)}Tu!^&_6QqDX$A`i)D<~@i z9=s@dN*A?7Z{Ty-Z6bgMfBWHs(%96+V&0yy#*ohbXOe;!wJdTzBSowO);5e>lwdE& zflPID-ZR;J#yy=Nct)?!qw+D00D%ot1Zcbvv=QNme%pLu@4vC7VzjqE!+X07AW}NY zAB2{>oXj1Cavzm2RL@qV+voX*H90gn>>yaJqrfPl`MM0ZN0q~;2d9;1bY+LG0s~@M z10`ZZ(!A&Q7pkLkxKPCqBPW&8t8V` zFLhPgOp`<9P91|APX7(fs{YZbQVYx~36DN;1I2G9C`1C-B;Jwp$*2E){~vNLDm<4T z99#8PoJm22;H4t7|JQh_ySM%WFSR=2dW0$wBueF#O^XqTEy1^vR`_zP3$XjA9-7Bh z-N!~|mvL8%z+KVbiw$e@u*dojfbaX#Q(?V&w&uNm|A?ajJ12RcI@CuRa=!T)SDL6si)jrp<*5tbG(@iCdlj=|*ct;J9j|t#wgg}U z2+Ri_Pu#2VUHH&7C0-uT+V#s0JyhJ8HFBfLJJW3duDZI(%7Y4h8)}N;pXnL`AuF># ziQhp682wWfBT@HAW3duC=H8ctm&d`VG{4^I>Eih}llcF5N!*5-M4F#kc=9K&3&g6H zT#G$V7dKbUXG<`=RFG~1({)&7`IflB)FoXf{^|L>7g!_udh zv81F-glm~XF*|Z@;~qe$sK*XHaK@G>AZ73L?WFgDiEOQ!^n+6n> z!+V^bFfb}kQxJQ@>FZ}_b6B%^WA0us&i4)=J^<516;xnQ;C-Ht5|Hi;MisaTybSqN za;Z!QVf>PV6U_8)@4#MMf!Cvo$QX3)$SL0`?;mYZ7i;bN!ODu1u%?^8JX!Vg_1Qs` z8xU92OkG@f!d&%t=D9}Y&i{rSb?$#dj{5oazb8it3jS;LaJrsR2)o7jzhX$y6DX+d zpk(>l!y5dHJ2+Ffkt{peQlsVHAyJ8J*@^=H zdY0PnM-T1T4j>Nlt=xEGnc?bdnAhq5ooh_4fjX>1#r>#@8`uFtZqx#dH9 z-nVr0R@a1qfk6OD0#;+KK*J2p5a=->F{8*&WZXm`4vqhF1efqyTY1;?rPzE<$4Sf$ zY$(4V(%%bFmq(=){)s4^nVgKs&ZnYmirC1hlA>^71qCG?SVvMoG$1zWH)R-z2_3lu zNORI>53*4DFjec$sv7-a@AfWFrlYxG>694mIEH6oGW6xmIc*O06-G%B^z-F+8n<=1 zl+Pb-x-ht}IPT2%+FKHpTvz&{)CDVM`1jb(oJ9-{>s-_d;eLfCH=4@mGUEM0dVwJd z{5ptI==JV#Y&_w7aAm+%dx#d$&ps;o0dxiE?15PraCTQfZ)Uf|HpU5@g>y3gvr;%7Gb97}P539)34Vfs1QZG(^TbFb zpG;;7y?)I}sU(74LIc6g6OIqCdBgNHKGo7iNEaZo!?VPvHa0f4O^K~|iC0JgzX7d! z^mKv!fv>;modc+L;W?wKNO}Xr+F*mry`U_Cny7a!F{v?D7~aR9T%`vBjyP)|em?{W zkXT^efhhHt8~?@g1{~&DDEAUV3IcmHRL<&QE*l37pg;PSmMG8K;c4(dbi+pf944=@ zA0Z@p3L!ipQ^pTycF>dahsXqSIyiDe$`9!R`fp_1jV=g1S^RAyk3+?!%>6 z%sBA|zAhfyk(gb8#>GG4AG8?o#PCeh!ke>LjJJ2W`StKCHNkoh^d02uSI~Z}ae8F) zuL<6>%8kmdPd;EzP^u&OFkXbV4bEa^9`JWUuy-*;2OR>o1cqQX+ZJ}cWEh580Fr-q z`PWCDvsgm{1Q!*aJwJz;Nt+(TF_c_UT7_Vw-9w&A_`#rSIVm*_f#tqmFm_=3FDMNN z2t!d^yWR+^0%cJsAP7_jfjV9mr;-=Z(h=7%aoOC&}}D1d01lOx@DkTAhO|4r8L2Q9|2v)$%kU z4_OZXkaUPLpOSWjRX@+9yh!gP|{= z>){Kf-!^NGb#lp@5aa%lmS7F`CrAoL=JLXnr(6-;A0laVD#Q1|#;ux`^4ucL!GPb6 z@w&6g_NY70S+LoVQLJUANv}6FEpS`Jaf(hN9!(Su1GJP==imqGp}@m_q?Sssbj|P? zetdt(JMapD&1*3dSTz0=tCe+fI76lzG#@BNCO`uLkmdmDS5v3*USDk(f(U^^0k&jB ztvnL5QSfF%%>!=^|HNs4U%}6@iX$X(>^L1e1>vM{jk#1tq|l`Zj+wu(sI3WM#0sui zHgCaYfx#u{3;`TuM$@*U$i$6$A%4ephTMRE#2qaP#gK&)tCxvy)~FHmRu_TQpz_jI z3WtC1VO2Vnv}hp}IBZ!LP4ge02l)9qmN9EB`iG~xQc?W1wkJiS6S$Yq6ohoHy-S` zQ67SH2dF|-w5`vchUf-C$v>W2Wrx$A=d-X1GM2z21LP~{r5K!{K3jk&^;ywH#aJ50 ztU8(a`J4NP9wWVc8#1*#>%AJ|Ll~`^Z951l@Uog;#ok`XXHVK^x!M+fm4?$YSs<%mr!0fL%Ra6E zQzyuKG48lwTZ!_3G%i6E*Kv3G33GUdMGDT^g=QTx{0O-VF(W-^o7+~!qLmC&b>L=L zfn>*t1VA0aVBB`Z_z~B32^AK6ic(wBlaQ34-6ZoGBL_|_;8Q; z9@aJFuSa3ZSTufQF{)umQLzKkJ{`e8I0j(;i#((x9lM~()p_1Ej3eBbI<1DZ8G;Px zNoXiIMxYr|$?3o>kJ8_H1mRViWKRyCFtk$nbC4SnqZLZrJDZ9ydWRiAeEuR-W9e-JKkUVMXnH69 z$%oiR{tE-)YCC-ez1C?4V=oeyk}aC|aKwZhANTM&s@iQ-byGKIvwIRt<8*rGMg!CN zN5w~Sd{ko!lPe^Dh5ph$!S65_zq?WWbr|o%^3FZ6O9r{7la-XKA-}h=uKj1K7Y7yI z>e-xzm^C(vBXk*IY2jM1bixtm`A!HIV}vAL@}Af$5u!}Det4ICb&*n$_=B^Wm@`8L zid)$#Tw7!>&lA&dLuB>6V*)4mgKQ&ae#ocL?snQ8J99uw=zMSHOY}cTIC;&jEB(N&CEDJ zBgJq-cvl*ZU?i3h%Y6h00XolVwmnH}Y!$wjr*~dh}W&Aw+Oe)a=Y?E(8$N`zm%AE)bN($y7dF z5T?jcNTdg|W zzPFRjFflTQEaUzV+vJI)_M*Wt(_Q%vZ@DMc*EH;sH#Llcmz);Q-ltVno?AiB@}-;P%!kz11-v3ag;4c3D+y zaTgM9GA#}371RQMic{g{!TKdIGn^}xl_@Rr8*HXBTXp#_%O*)C>5!0;MA$fvw?ZsJ z6UckYoyt~E+swP!+D404zSL)z7N?+IW^VGZB-28+n`q<4r%@QmFDIB<=iQJyHUzEE zTUk5o2i+;+JEiB4FRnL8=4D418mU$u@(w2)8$FyWpwcF`@LqeZ+l=ekpcO4bbpbiS z9&bIoLc}mYgm!yD=^LFgC7i|iF;sZ2|HbOt7yPfAG9?UT`Yt1X0^o>)J5BGGDf|lt za>gj^0P3c0wzN*odarE8E|C76iZuH#oJSx}445T@Ff%}NNVTdBS#|9dLz*w zZhk_`%Qhq|zrw|i*4FA%$_9z*ue>wi=Bc0Ru_dMtrv=HEQ2rzoKk(qWl6QAps-XAv z46YsCCmDD9I-B@c?Y(hZR2c5IE7M$!x_qD|B(YYjv7Q2lBErIZ)B}eb|5oF9oWf#d zv9yU=Oq7rHv5EYg;dSr{^B7Q+Y)o_I)mYcLn-)&Va;__3q=@kH65=0xQ}n+G!3wtx z>DjTpRF}##I3-(0B{rV#plYPcH=?uRMZ0I?3uQS6;teF9l23i4{j3GAfBJd_&-Djd zVwjrFX+b{zhw9ChOfS6$rgv}9o)%~Ot-!{wbt0qnTB9u}_iD%-5YV+4Wvn!^xE;81 z=$jXD*7ZD;wTD_~ih0(AtTxKyJ}s4H~9M#rOuJhLc6+WfQ5h zA96kNh27fL-`;-{CL^bc{cV4w3*4tTXC=%g#l1<-QxZHYm2GrQJ-`yn4`C%YTA~@esi;hn;UXXvGL5a-na{zj+|EHCT+n?lZqos^jjt24eKaH)lkCil z`nT1bS5ZEsv6gbw^QNK}Mpwbz1gUMoNT}&h9!9a$1{<8oFKgE@h?)2qJA0*x-|KScm9$TE8?VqwaGcm> zow+_8&M2$)Li<)|u*>Q?0~@3M{<1fY#2V!>jMf&x z*I$te>JhQm%o@*|Jdh%NFokvV;iB^iJ(KkhPImmL3}s%&FLYHmrw0GF!*2;g${bJ` zBeD$a>N4cmiSh$t7HG%u5|Are+`XQoADYKztYMOT967x{sty9$*Wm^L$Rpx60AERQ zgq*pzxYzNaRe|@1xe(YhwwPw`qaWd*SwRIMGxsGSm2g-311d>$n~k(qvNt_gu`=in zF1duKY8@qxNWu0&fSpYje5sf@dzGy{Xn~LqA=$>zoy(?U@+r-q=U?z_4QzsWfP_R; z;Z2p}6oW%w!w4=>se>*B|dR{`xa3<+2rdsqS4y#*tb>6$CdpQwVdpkO$rYA ziR=7Z_C#}r%(9|5gdz?hi{ep2g^Pd+W?c5QmK*?kOAx~-RjTVmPn(HY)cDbS21u15LWH3Pxql7vn z_TZ)3`RULML$9w*2NK+Z>Rj0+GkL|l*2f3OSPbP|FL|4AT%5zwnmgX(j73i)n3RBO zecCIM{yYwDvR$9rC%#oE28W-L20j9Oa`E5<<{jLHfGqJ_11G;wW+rj;xMTW6nN-$6Iy##s{aCd_jrk zzPMzzU3~FOwT-PAipN~S#AoS{^57)5Vp1Fbu!&ZBke^2?_XVH8TX*KDoabF6$=oi| zE6dtfzs6qCKt*%AvPGOT25>8^R@PP5ZMZYb$1av=MzxkIB+5GMNtpl39Kk z9)&8g@y#5(NJl6i!#%IuJDg2x@cKvNNH?>B(ny5%9khtjUB?O6RGHgB5B z^!x7MlsGj=^|4Q^o=x^5*E;pW&UI4lCpFoSCc*X+DJ^^tu4-0R;_-!9@nfp(Mfz?o ztGm5V9gL%+v)ks4qwOMQRNWq@N)7XUc)qBTDkN!{Gq1Qo>#X(BzAVc=k)o`P49Qit z@po!i7(_~EH$F%aO+_c%ofHgB( zZ2PKxUwwZeTBy*Ci+eM@Z_@;b(kWd)6^ zH|@>h+^r>=b0PTaIdQgx`q+0xc|jh+;}Njvjn5*KgaXa6>KO|Ie&?dM5wm-Kz4W{B z1;<`0r*77IM|!vowvW4CKTbVt)uAD>x70VTi>6hq>YnQ4AIH%RHO~i?I-VRjcLlm- zf;xBJJ^UoY-yQTQh=wy!WzEnJ4Qa#KPkcBqi~lZm|CI3~ZOhvM9CiZ3T&zlZyY}Di z$6AiEg-@yMM`R*tGeW0UF>qPXp*cz1Vx!cVRAaR zO00EnmKBb%-~N8RS$lD{C(o1RkzV6Xr?#A|&z`xZdQuU|Fp_obU3fuqiwR65>IYAZ zaax;)xJu^6QB~464e|S`q#QkdoR@HLz}J29A+>b3+xEif)gp1b_fr)!h-AAQeCo!2 zplN+tsDsX(6eFLb!cigCzcJ5=GaVmQ$}-(w?H5jeG|tMm;O7Qg4Yz=43oGZ+Ra? zkR^Uly^qAk4&En&>)L&!vB6VVdv{^SE99CAVHv2C(9HwX=N{2RK; zt*-U%D?Ki5Knyi0$mK~n72CHYnQr)2`o-AKk|HPe#XiVo5J(F9X=J-TY^NBAnNZM-a$2YSTZl-KDW0RZTt3e%X{+s z1I{{84Q=1xxN>#wlu=WP)t=@z7H6t0%dUnDYZ_^1SaCf(Md35ZL9rZO4d{}r2=M1T z<`}J*^;kduexjg}Xjwz$h+6EUw#cHkeIsi~sim!rSB%Q2e05fpIt$ZK=Gi61J-nOc zN+X|p^_~|kExeSxwMrqgYsPK1MKdkLF@8F;fd6XW7*5o&iHX3ji8{2kBhl>mr(oCg zD!Hgg5}jTRse_6uX*>J*D7FHwPU^)B2fsg1!H|V;!pp?e)cX1P2d}EKc5EoR1$Vnf zTf-}FrLV6uq1(5XJIMCV8&T4JcHS+%^HZl>z{H0iKFS=qYE1N#JMOL%ji;jvS~2^x zLi`|wg6_^H39GofQ5f(&a*LAac3V@dZq%5rk=f|LnyuRtwC(f^Cxt05MqE)Dpb&lu zA*Lt1JnrM;^ZHDGOfxeB-MMP#>!Dtz2IpMP`Mcz39w`%{S03db4ZG3pn*G;evqNPy z4CSVM5M3xVvB=$s(|ZWg|+&ts^Mo9F1hq$nEG( zF9pE}#hxl8+-NzEU055&U^KIByDMen=!FiK_@G@Kcj6mVJ>_?D=2>Y+udTbvJvY5PJQh7rR~50Op%z9>cXMP4Y!M-K?`o-b!Pyu(fp3Lqmpo^oGt@@iBOC;s4} z-4*5Kw|38lojvtatx4eN9idd2%uYYsYZ*~zpQq9{uuwm3{XUj3WM_JCxirswRMCoe z6|Ea!_;Anh%u|}pbx^+0|7eiGEt-P;56f&>&QaxB?fe*SttO!s4Tac~DcX;K$kS^BZYQOgp_5ee=|7IidVCYR7cK8JhgxJA3EU@mo>D&Ra)jPSPWU@&Z*Olv z^Er8xU9zD%kAJH9bIV1(d}Qf)G$G`D%^bu6iCB)*6fJ*)u~}}Onsm|3OwsSd{9m~p zdliW4im;ALNKmrUIbU^q*S4bhhDqh(UMH5*RQD^9bO?t3%op?EOP-#rfE3T4KM!nU zsao*nZDMYotj$Zj7HAXXbpMQOEasn#!ly+@R8>nR$ggqDzrV=VkNqN1W7$L8@W zMMUr0*aTJI-f~PsgBD;j^@ou8<7YUhgo-3iTi%iCuvZ=s^rI0o3t2KxRk>RpbL7g) zL-YYZ99~ROG%!3Nw_@Akd^KdL3v!#&i)uCg(c%9VoCIW(yX?e=uSjp@oRAPCP5i79 z^+^6K)a`dQQo~Eo?2d8mcx5avYj_c2vyy2jx7nO^Ttx}MmbgtCqynCj=T58;sV$8;?}vQHZzyQ zaW7SB1Eb$qwZy&CZyA2YSe$TNDUKm^n<6Jm{EhLysiTgZ3$}61iR&4^%xq_71Jzi+ z|1Mf4fBERo%a+Z)xATVNbtkvoatL_bJO<~l;m!3dCOPD1AFD)4{rZ-=$SPfcyD6f1 z?X58?k^$hG>b_i(YA7CYW^Voa;)N7#MVv{2 zaHV3S&H^LOWY2R99d-=9ie%$g4MaZ3eLf~J=z8dOb8cezrhWFAJJZfMh-dYy#P#O4 z%k1n-npX}x%(C5PPlat>QEC9MU_&)!PU{WH6(crw6-jZL1F6S;UY43*R5oKPD)61= zhINT>S8-@UBF9i(S+7(09rM0Yt*xBbD-*+nqZ;RgAv^!!!*R^lqorKTio<6flKw;| zGGchL1&4|_dQC6n1AwmCIux>6i?RfeB^@9Vb1vRhhcJKWkWTy5ccQ9Wnik0R;AMnI~CwisksGx@v9c#PBRf?KzYhct(G3p6sCP zz8AAf>0l8(xg^`0YRQ=B%4OK5E&@cs!GXHiXh(8ei8#F)?2a_@CDq-kRY% z8Bo1Hz(uP>Tv$W5QPwqVhMV(BWX8QOaZ`Gt-+}zxlpC-+xXD`3hyn!Qw0SA0VC89DW9c#y&e=W^~$OV~FrRef9 zV4mplj%HhiMgOzwF9Mkl_V|C!y!TL)G2leR!pCuibx)CagVbA_8%y^x3TsYCiv=F< zdS)%r+SqhG5fv|LgI_{YLrS$l4o;gn0wk$g#h0Vy{@zk_d?Ez&8dk3s>^x@NNp&S-Tr)==8vE8G!(1nCuQ(K$F^-VQkQe_kEhZN3hQO_x+G#0yjg?g7nm`I@wiANvx;TRek0uMju9W@hs)ERF5Smg)BB}%}i;xtb!l(vyD%qK`R$oTlnanzsG zTcTLNlK<|26KH3K=RG1WBrLq%-^(JMOR|`)#)~_{%@xA~P#%{Ka}`X|K<&Y#bO1L5 z_I}T)=ffI3Z`=Sc=MlKkLskCtC7o?lACeo6A=gQ8Tk-CuI?WSq|K;OpDqqE%V^-OE z_i%P8BwoLIg&kJGeNl~rVEcb)(>O{LAr2C6tp*2S3Vs!2mS1|Ti#VFrIvo&Z*1SQ z&!xuyrj?ZyfM!kJr-bU_Whv_Wm7Jn(uEo*R{C4To?JlZO#v~l5s@b7hs6-Lpv%Y?_ z?#p9&e~JoFtO z7t%QqM^Q#4hIKT@weGpm$a$jY*lnpV(s|-`>t{v!B_9u%<}K1%1K?Ss@ja`qRGbyYa(Pfi;_|t zkRjutxm)1};j8zhz%i-Ku^W#!)-{a#GL%{Km|qJ#gKRGJMQxd9#7xjrD~VH z!{*nh%)wm?C-?9C{rmT^t(>A({``qF!m)xWBUHk^VzFAg{h24R(Zqia#GxzM+}RO5&i=Xkyvi@|GGK-e?pI2!CesJs&6ipKe2)|n zXc~(*y&`pLIICy7kW>A|-%>|6%$N^xxyZQPXtoe}9vP_!Viz=3QnXWDH~salGG7e( zWaywAvW4Q7L&@1kM=be2_gBrNHkc&TJq|uGk=dknDnwN6Al;#aBVlz$o%Sz<_j+;u zahJm!6Qv<(U;R0Rx;m2KRg8qrhoNn=r+!gCcjY zW|KxcJodj1`0c2@`7J{>;>{h^y_;MgL0}7dPlaNnlm%FfvEQxQe%*ytm^H}E&W>u< z-6)4$B`!uKU_ph_w*&_bG&GC+i>hj9oxq)b{`@&niDKYOtt2idAH%47LD2GE^`0TO z#K4DzD91tK0h&eB@czn*zh3ybq+H=sdFK{&z!p}F@wV_MP79`jO=)vRN^8Hs;&bG3-Nqoo`}ulbyVLD8>$lMTfi zl!9l|PYam6ZYG#jy}dA@2vkkFGd?~pBflf5f8J@PJe?dKE4YHJojlziHE$?WaT0cG z{r$mlad9QJaQkWP@25rfLV%nUn!P#-%Ng)94Kn=r4GTV+6_-x$6KC&?e4g(s!-({V zg}(z|r9kS}4+s#uD>mv;L2|s7eDM`p^@=OZ{Jx7TMO7fSzK zvhB}K4U4&`1W2SI$Z*bF-cB2#87jWq*s(76E#A+;o!Q?c?UlX+{lT`O)m%sA5H7X2 zQ1JG^;X}L^KikeA%Nq1)VbAv4*CO|Xr}B&D94TbEK6uLY#6Y!!gdxurZmP)17_s?w zW}|tf9vkhXgM?2(InY2UXQXFPNplS|oG z`&y6B46R^o@Ln*SlyL>&B(~*yP15Nn*QE1uFVue!WMK0!dl3=wfdF^zvFzP@av$BT zwsCL*2@w>Lh^iky&@A$y6Ha>e0G)S%ZvF0%gam~G=Hx(zm{`S+*8$q2$Q?1 zC{WXl)4BAwo7#(#C7 z=*#o-^Q-qO1SiyencOx*53{e%h}B&!I!Tcxc#geEwI?CMNwx7e`9A%fsgdg4`*wfg zx^HOR%};Hx=P=tdjb!b6Pb%Duh7`k&1UWbDn(I#tZ_6*}WNQCu@ZN@%|K-)avu`qM zMtslN1bwyTOxb=s=04M7oxEKJeIA2CB@fySs;3w0sVbiIo{)K9BgT8=Z%&2n65BY5hT&OI|MY!O903f8L_G1QIG{K(<(Aw|A+J(!@SGif z7yV3}W^!8si?>2h$H@$xFivNxcjtb*=yFdGKIKE7d%PgYBvIz8ljE@l`fUq`H&t*+MUImjK(Xv*>FAWyVIM$GGaS^?(QG~A9(TfJT+|{C5w%7sQv1(V1$a2$X(}+3 z`6#^K`l%?T@hUY!`E;JFC9C`+~i;F75WlccpKH3n_vO z-8jY`g-jeU{p3}qy*8<8ZY-^#!lH|c13l}H>FJZErhB(gQVuMx2un-*Ly!g)?GPqr zQa2X(kQ6gZCU}eO<64aOhn9EeS_{j_@UF}!PZu-)IPO55(7$m zQ*xAMxU8m>d7bDD_dz1K0b>W@s?sW3Wl`x!0IT6P#fE3OAFXneJM0L;8j|sSFNI)# z|7|G59KIIN5KGpeIp%byU$wC{dzD%VsaPN^C=(Xi;vOoKT$gGOyA< z#YJOxWLi7<43OY)N3JU^tfWT-x$$%BGv1YpN#p9k0YRZEw9b%Jj>=mcWJA`!U!bhDVPukKeyX`I( zBYz&I!I#85XONH-^IAnkR5fZ?<)zcNwzf7j1SqN8szvK^la@8bBIaHBB`w+~{7mgN zOTSHB>)Lj5Tl8TAfBO`x-!qHxH}3p)ZH#_xrSHkw2Q62o; zoXx1+eKg_>ItuVe>vh=0tm>NNx|Ph`S{wpH-YxlsA8VqcEuN#cYg(nBSI*KGG|x$j z;bDlb8KU1O*sme`b#~TekAfF7&W4T;cO$*9I>0adAFUPAf$E|cfkhmEi!IJ;QuU^& zPpVSQ{&fo9a%Amngdr#=?Ck7^o~oj*qiIf<4p77P1bF#1-@osJR`kz+6Pz&XdWdrg zC6fAA73I-wC!PkT3^+pw30$sbokOd0 zcO1gca9c*P18T52Phtoi{^4o-W3FlAp6$s`KyOPr;bUl0&CW##Lrb`j{@5(5J>)PnjgS;-!Eij%5-w^Pd*v zpGcu?OFR@EuvpA}=PIEg3&mdyPw{Tb)6F^lSvDlPsz=I9@n!J47qDl)lRIOLl>)Sz zN$U|25i)C>5KtDFJo8rkPDv+g_OhIzL5%h7iZtv%l$XA*hqQLD5;?|b_}Ipb8_aRZB%R?vGKg zFFKNaru`J!W&{VW81*j8>&(7E&z9GI@3_7rbsqarpdz+*b%AVur=XxfX3X|rrQ2$> z%7V82C%*Q0YjK6IDrC}<*a||?Z*Fc5<{zCRL9_x3@be`o!p}cUD(Q8y6+|%)L>Eyc zFgO?+1NhtU-wE&DvEy!&tl0U(>kkH8u`^OgzA)fRho3@p4}^!t*ROc*7Dtr~F7oj3 z5U7qtu72R7M+DLEW|^sUG z;}j3YvCPI&b+(N0jK1PaXDhF%1avEI*GdRsH@^I$`1pW~=Z-}ypz&6DYHR5MYhJAL zS=*;G-*=W!a9IW3e-OB9cV0~R4%P&nv-kz!}9j&G4-iC(>B$1MKp7|2QOu4=9?wpgzXFkIMH>`@Xp#+cZ&nUDiX?C;6YW z+mKnuZ7r=*<|@#%eB(a;P^TtRN+YPkIlzORX>C*Piz5tmiM=*)nj!fXx0cPG4~vCb z?MJP&w4xZB-x{C7Gm>;yV_ZQ&7!YGMYI$WPDbsJ_v5ldr z%&D};^&_N)&Sfyo-P+|Z&bk889Lb*fO;4)9JWvA(`Kg^3NJd|D|hI8 zWTDz%(_^~$M+Y6+Z}ldNHF`3?<`-n<5!-dy5PLkmPWl%B3RObW6~_%~@5e&PQr^>B z4zh^TU#Pt6`7(3QM-RM8t@?^A@eR}Jq@Fvmu>s8fysz}$<9$I$jp%ZjuDpMqHrA%M z$K7woLFy25Wmzo)BhiR6#)=;r8Un9IJ4i%%$-6PUJRS4t48DLp?vHBxWH+KR!jng% zORG{RinoTq0U8>@u9HcJ>R`FUM>ph7JH0x;D$Q}Kp|tHC9wPs=n_*<41oqv~ql%y3 zw#7@A=TN&#unDYm1+$uA!)2*rT zRcK`{+NnP?ivBt4KGE|R^P1guN5bnxDj)uAimI49i;;$wAul8Yp&0 zF@qR`Vh69Y?oe91R?c1YxF|L;oVBbRP)*ujE91NToB6$$o=tiPHzF4>^3$E+tV)34 z0eayr{a#q;l-A%)NXqv7K1?xA?LR;<5yPX9Ii9bg4xJF2%Bqz;nUrrcw~yBS5LVy2 zYx{{iZA6VxFr@GPjZ^etuHc_}{?U2621@?Nr3|06a;ziIRd42^ObhkaUOC?=^tM+) z(4mlH%eAz-iV{y|KSdosANm=X^~I(~Ues+vay##hLOa)FEF@g@;1kt@8NvGGVsHCW zo&0~QS|YdJsV((=R?~Bv$MG`dX=785cE62ePPxoWMn7u`FSN{|9XM4q`o}YAqW>Q( z+54n^WP3;h&r0$hcDC72*eWH^k-6Iy3poZ&u~)-n7j zT=s-^kla7w?8gQ})&Q0kqhxbCudB~H7kS#^)7QIvqoOeK>m>JNY`m)49>BND|D&gXO2c`sg=GD@ z2P%14=bi_1jAbQh#x#$?3AgjkEW@V$xM%g2=;evAj7b&~S`<)x@e3Q(kcmVW)p;*I z8-nYTU#O_awImLl{h@6v2VwH3s&!+@Eoa($ZWn%xuXwn-Y4NWYG1JMup%9xj>0R)R zrl{ug@jyAt4_eQIhJ}9b`L&uX-u=Kau|<|a0h2nrpk$o_7qtTGbKMkuE)g7D68?q8 z-`U@K$Zxyy(!GYpnziUdyI#g8FTSxGj#p3QakRFnwYlo zErZW}a0^4;ftnOR4$m@Q&Z<7zb@m&woqCNOBa`n>vi1&gOm}egzzuMVJt3=Zzde7Q z?GJC_sU3?|L_;gnt`!;#9F8iP~%?jl>Ib*otCgw+-#BhI*uP)oUXe7fdT_lDhc zxLuD|NVW);O4ug2^Wmk%qleY|v9kzD3<|X2i=v-TlDW$6y|De#@Uhuiruj87s}EUe zF!SC=7xHM^I7<;t;9y@6bAn3zv{m!#MNK6)?Hl(*N`QW1Z`dqbuhOAhr6JN!*k%qQ z_;{@%vYk+@AtV#B&F^~&bl*0RLEJ&6BbKHyFHD)l6da{Dk{mv++sBS6;7cHPIxoY3 zJW;oPZ2s|uO`5u^PZ*6%j6$2ojV4pG=Y$?IgJFV}Ysu?Kvpevi-2f&edCcH%LCN9)ehUe zYpSWW-e)N9N@tG&zRP^e}O8d&| zx1d!-kkU@OKp5qqazr+ZIHMx5EN=FqJ#ddFN5|$tPG8`Sf7Hcp+vja5;!tS}9E~#K zx@KTZFQ&6sY>Tk~6GjbJUp#QzPpQZ6b$T+hr1LTP*(}ac|Iz!t`xWfvr%kSn*`_Eu za1;y$&uXoUebD+dh`F6sikP6oYk^1$ckzI`l6hiOV(0mp#1xhj(I6G7* zSaJDPEXd_+R?h7*Om3R8Fn#%ck-a-C+WMDrq1m>(;+I}9YPHU9uR5Zc23)7w_xWT5 z_S+z3Z)tZ#TD>%a(<5D_fl|=EoT4GX$N zBTVM`QdMdn<*I=sYs((5TDwG#{m<^UH7j$4-OW7zN{|K|2Fx-l>cV&qihe`%12qlJ z3w|Ln;N;;mLwX?EsF5om$DYzT__|Ydc&k1iBbfHoG&GkWlm%8>PR1i_NTAvw_R}zI zRDUhGTI9f>$+J~~(shbe@X~Qt@m|TQi+1vZBNW!8zfyxGd8juGq@Mx%LBr%<{l z9=Owa6}@ckciVZTKvC)DJu(i3<*wST1-zuOw+y=i(^y%X6n3)qZuL5+!!)5HM8##> zj+x)5JFiT#uA4M++_94+&F|4)?mg9?sPIbRx^UJ|tl{DbLxodA0C|QFoa#s{-pcSi z=AyAcICa!#;mDV#DajkgEdcw&{0=G*p^a7}_s%S{7+;D1^HO4Igxas<^gx4PzlH6B zt>dM{;|Et*GP1nFRQdJ?pK9&d@lrsxFZo29AJx~LjP&&m3wspew2Csdc{@@T{{Gco zcsQ7mS9vamCn0q-U`>I|Lr9YT97ecxGEm&C3pwJSe?eGsub3F!UzetfpAV$>eEH#; z{79_#$ZxN{irVQ#bMRQT0_8+R?szGb@pk=E1^kDJU)aH|;F4n57oRc(=jNPlhu*Mj6ISap^DsH6@#I@M>=ZFe_8rI$!g@P2k5=?KlVNi)pen?0=8=D;ANgc_V(l%$7 z4^}*Uz#zdu@UPc<_3a<}n?HK+hS$$?UtBlhur_{}X_cVfq7o^x17eS$&KPBw2z zR9zjEr!ic9IfLA1uZiis*A;VQmfErpxA4oKWZ>VFOa2Wy2iSjK{M8G5Qp$T-470}k z`K$f_uuvG1tdxo%7N?BL23-~z2}Cf^iWo}{bUu(=OKRM4Hqqib6&W26g#oB!p~6FL z6D@mP-AdaoU7ppqthgbbMJZieBb-SLCU4Jpzw1&A78|MegjHPm=CR*8P;GzFJZv)G zc+6W7e^UO2j$g0gan?4GOS0kza`i56@qc((oZON^(?uddiy}y2%uFF_$4CPu&1M5; z+vCHMK3uQuIjx^eUz3`*s4`)l(u=&!co~MxYD{38eY!=}3k}C^_FDn>w~2MnH3qXz z2vcRx4|=P=&drno!d7mRJ(Mou!% zSP?0r5u|9mU3y=;=Hom#Rkr4>_lgvRbm6B>A2X#^;!Plou?Ngt`wR}inSIYezeym^+av0Ev>cl$=P z*A*QluRMCR6|mb5$xvkN@cOLBj3xw-<`+n^qvOR?3LyVAM2hh*h!qk3Cl8)d4SUL4lpJ9YGu zKVE1CaM~Lw;3GV|JnDGiR&fAftF>E4H z%vI%-EbJjP1;WW1I!7?^$(k%Z`_fkk3|k9}&8ToN3juoc!FM~;@czsKJAKuy>f*~P z_gWXPz3u%MGclF}gB273*tn?0ux{JpzlobuNLWtg5&iY6?hl@p`El@A8!#kZd8f>E zoGa}k*UFG3#OUqUxnqMO|f0`gbT;bq!!tH?SZv7$@_)J1-ukYW9FZz zzn-MZ+T?m^-;`VidwZjB9XEL4#PZVLQtEyL2I-S6-p98K^Vh5@v=)`V3=*{U^$5MR zzNhbZxa8QVd6@MO+5Fgz4iCG7=`8bAK54bA{Kve`CH5W?daE=dZdA1M?~N8$l$YN+ zST7Wq{BUJEE*M$!h|BT|WUT8?JkldI?QW&b+S3qwvciSq{8;|mzzN@${)zayX)Y5v zyuXbp7+Z)$SlCiWHR`+$*6J1x@@)ANx1}6yOinnv<=4eeQ$Sinc|Rx1 z0Vhq9r&5dom>{4v`lZrm%x4;C4LhuZs7mSJ>^h=#r zBi)X}-_gtcWxnw6RcdZ(OL&!Ew9J;#J={GVbh4-SofFOEq+fhFq4;u zZrXJCg*QX9MHY(g1utJTOdj8H20UExE~C3pk4$=e?xo9F3K5SrZqny$VvN7#E&>%M zD9DDF-}VCY#P1Nggo<$?4g-n<%Rpz*xgnNbmP+q_Eq*KXjM7#jw9@maL)&Gr$3E+6 zKtkofEf8e5!-U(5ahpK*#4W)Uk?#|r|1=^3f7?4(WoR%mhAYs^!b06grcKnL8MY>j ziXYvci`dkii@(z;=7T+dm~n1F!af&N#fR4pXa96H>fs?Ml6EthiUz%37P-&@6<3Z+uqYgi#dH2N_8wNW@ zbvBPPCjXr-FDHREhDK*(@FYEN_K7^Mk-&J&Fi=w=$-&H*I}92-%1K)A`%!Xs7F@kq z7X5sDk9M&f_>FX19ey-68r*5l5L0*OY{T@tmd2SZp4&$AkV079N4g9S=Wt5A`PUk; zHDEKqC~D+O{DFNJ?8sg^xz=@EqI#!QAS*Pswc1SBsMLMuUoQ?qSla|z&K}n!%w7vh zc0Q?fTByEYKzq!X>s0(NkI|qB(k#Wt>_lfg8R^Q*4 zAK?^1uL^zWt>Qo8|Hz`aMgZv~^JWdcuI0#TG`@cmdMbJg6+=UOFBktCJV&TSo5(Uc z2^lb-_EKpI$1D9h^^9KBzcIXWKTEbQ8w-G`eyGmPf;C52FXrZ+f7Zvd#s8W>bTKE} zxgQX8tm{$Z2)6F4Qtj3go7Hj_wVN%sy+qXksr=u0Mh{Z5`LfSe+3i$v17J$L=*Ebp42+6!dA2hNe7sC8-38SDDd#(auTchK z_;B>G3|H7uqEG^X%R>14gc}N0z_I=w-9@ZvwC}S=hVIrJbo0e{>`Lj4cP7$J<9mj0 zg}LqlleEPM1g|~uAmBn}aS#(aw74SY-vRqIEOhe4?c`&utg5=_ka9jl2MRYWpe!N* z0)QdzT&qo<(~g5G4|@*hPpG(^ea^$>oYzYFP9CfkR{XuoK?0a{GyU{jO=fBO(U^L; zHenXz>v{E~*EJPe|%7?frzrModcppXggWZTirbNOlp451&k(MUJ}piCCpdW{WoPQxZ-F zn;~b3lxb6eB|r$>qkUwRh&3F>{iF zVlP44#{VSUi#Jan8p3|jQjik>7`whv*+z?{_~Z-Q*1sF zG#lb8d$Y~hX$$~~FY|3JO<{ij`KsCVGKPodKVLxykI8C4K=9v}+O2CZ;OF-5>ltZE z&i21Ql#i^(<8#Y@zVtTb{onWt?0?BkL9IRFOwG)f{4Nth)!Xias~2?sE8utosfC#v zWs5fg6eKW1mMk5h!6pwaq4B2SJ#l{Si|J~$=|${s&!K%7TJ+giBqM3a&2BdN9nW;h z#%3$Z=c>JHt$X8i()dU0oe!no3))z4-e7!tZK~o|@7rvs&U=lknLe(455018G9q- z9V(KLhzRU>wXV~G_~#j+JNT(e^-DO0?Y@ z^Rn1G)^p-;5!TGu7*QXV<2U*Del2$8>09Yr1Y4eet=^fGp5%>X*&EZs?!yx-9<>;i(Hc$>@9P4)zuDn14S}Un)=nY+|-U*W(#I)L~O2L>(?y1WgtKG}M^QArJ2A6fTe5XtdBT|Cm zR!-HV#{?_1s_XrNIOjdO*wta4YUAs@2kr7B@w2a&t@IAkZp_g7(kXhaO`0+ZdbS2A z7aL&#VRj5&JA=A6M|AJeDH2`I=1sR5R$j0%1mp`2g!}vrua@oqtL_5T+fTJb@33Xd zmMR#~`O@VM35TBA${G1}5!NQVD=RDgro-w-5__$!tf~Yz<^%)E)+ftMdcxcE+*a1% zVnv6;K)ipm>_a>DNbMuUEU7pngIA9J4LiEi`Nr3;${9NJAcTFpxiU3Kd=Aexd?oiW z+M7ql`qBYv^ank57ECavPnJT{q>?VH`9oz`(8#vH^rW)2QNB+Ad(*z+8K-4=-iWbB*! zP!J&@D>dyw__v^nCq7?NIZDVkFy$bDT2a;a?uM|4NKSHd$Dx{ z+wm2U#UmqOo@+J#GsB3F5e*Nj=;0e<^B#auP{jfH`u*omojE|SYO|e+TQSVXah%oL zwz8?5@R@MvD`k=Vc3G)+2shRzShDPIBk(^;5~2IYO#Nxm$)ev16(u2Aa|_!gigEj< zS%N%q{2?=bsdUQG`EKnH6j92F4{o)-Y<2ss(V_L0IHe*evx7|lah;h@y6-<!T<=!<;C9XYHX5Gi_-1l%U3Qo#_%W>8`Z$h zAV|Y&ke)E8?fd;oasWSiZV5uL_k+ELxsEKqpxm*iobXfuaS;Pk2=Vp{U%jKSSlm2d zJnb1iAdM6}^EAtgBFm%EUgvkNvA^Eoe+L{x5#kIFn;%_n4JK|YAyM?q(CGv0skV{a zr*HIc2R4UY0L*xBAO;G3Rtm{TS>99jE^TKe|LgU*w7ystd~_xEXxJF)4C3d#fuPK4 zckCJq8cLlBEu&DqN8X5K0dOv%^_gYz5uW~n1AXq$?#o{t3kkIgcUZdw8wpS%?2vtj zch46Hal;%%W_7K9!@Jkxq>74=oE)*G26c}9<&1s<|N6_-X8b>8Wn>=SzD@S`8z2tk zvQHaqK`Z2xJHFSOu8W{t1Hq8PV|eGg55}9H$)5Cqu=EFTaD=6#9voe|dz3g|!`Z~O z$EmF0FZ^}~3d33o??ZyNsmv?Hb+f*+D{|PQOHQH#9#3qsQt#N&$qpa1`p1U`tlD3; zX5(4AKq3Eu{EdYN(55|GIwn88ldvL~d?6|#vLC}PB}tFi8Y0Er2Iz0hBuwJslj z+1LLf*a zqMI4X#)Q?w83nc1l)Y(M!b|bdA+0HFL1Ud2b{6RH(+gH{%TQNw10ldRzi1i^5?hW^IpFb_CA#es5To!5Z;9f3^`bO|RYv)eI2M9t#X4sthcfaB4@@%@R;r+(g#_C=y(H?O8I33`#bl)dAcY39N z<0itN&akJEt)AKn6=&7Pvgw8zQnfzupH-Z$Y_HPpA|I?KS7B%7Ac}BKB3`|R`-#9L ztI@dLHnuV%A_HKhL$zdv6g1ctyPhYv0O46<;*C<%(gv)pECvwQVNNgKfT8Sprrwbbv z0)0a5bqleNFcNxN>s&I&uRHYlW$pA+TF0Tz zYP&CfGY~W1%@~j*AnU{_=2?a|h6)Y=#&gzsf?XjF6y+JpMJkVzeY81ds;EO!!> z5HYGC95Y=;8(2tx`ep&QW3;P)j>c?beQoJ&*@`S-^FoBr?CaBgB@^vzJJT#>8L~V( z(k=t)ApLQqxYgZby#2zi7eMRT`ewEeGRQ<@a&)!wD2c=Yq0*9OfqUh!W3ce;CE}<% ztQrDwYKCgqoSy_AB`j$Ejz+n_p@Dccgn^CD%-2l8AG0?`l)e_ZWks zwY2$H*~U$M?oH1v{~nzS4gQ`a=zSOm&ZzdPi`Snt)9RU-H<$k2CCn6vZ7iY?F8y&r zFf~mva}YN|fvAdzjtHTM(xPn)B<2BJ=P;TCX{A3g(_WOYl&(d5oq4ERs`yN2DX4#m z20PQ62yY1ViY3*iA@wi%3rWOXiISD5IAStOHH$Ro-8Y1olI-5~w$E}Y5+*H*7!&&w zS7Y(rwD(~D##;YKHa;g)5G#pijWS~I>UYZO8-4Q}oXXy=t#D?dA`QZd^NyEeZt5r- z4W9Cg9-|DM>a30BtbjuJ2Pr;S-fhTv56f1A2sDU0L}LSJRC3ze=Z~(>g;#PK>go@P zn&@|%MgW$TDhA##@7>F!*w816w}t=JsrJSr;;&~|?cZ4OscvZrS@psWfKFTQ$CjbR zPxlL4Ce894xbD%F%^fM*uYj11S_<9=u}etIT){Nd)DITRHr5cqnjj);YE*PN?$;Vo zm8lYLyU^F8;+&Ye1`KERad@dRpkKUA9*q~fK{@doxnwf?Q1<~$K~G?mjww$S(15DD zvv^#1DesrgAHFT=I~i{Da8j#K_cpV8fSNM z;&(u1{suSUoZCNOn{w-V=@2{V7Tn%;6Ds!srmJS%K1Vo$6EqKzNG1z8;REoydOzHJ zHAykJ|H$5+nv8&_IZzF*ByxD^_*v&oq*B=8RiT?IE*UFDs@)<~zwQk2AOaVx{q=6q z#0y1!EpZc|sOT}~^E12l@O|9qa`*<*W6O$`<|t6y~`vKTaZ^b|Uq8h;rg8e^B4 z@5f6;GHBVxHsM*#EQBzT+mRQU>omI(Kv` z`jTZPrS91R4qvH*3_hk?1r$DeTe1r6 zi8PSel62Qixof%bU&v{8J$Nx6ggr1?Dq&j-BGy(0BE_^H>>+@;sRmgNL+{d+DO}zWpEXV z(@Mcy>N{*WD;x`Zx1ifZ&`}d!0rh;w6fQu7ku`A}Hxp(Fkmw+h5KcB8_Vt;dA~Km< zYeoJ-kw=`FA?Ni`XJU9v1k4H|5%sS&_E#Ybjm-DK;uCynjdeMAdJ^kaw+Vp8Z%p26 zNr-UKi`cRfgVhS3#mUS@-_S>VXV;rWA;xX#EG zLjQw2(lqCr*X}5V2UIO^L>K(UA8+2LRan|bq-c~mL&T3jP+8v=CE=)ubdJP!ycAFE zU$%&7_S!<&fdZ>|0|*kO5j|3%!Q+cYh1RYA3%43P`d{qT#`6CU&}|WEI-mPqCA^2+ z8hr;bwnF`x?f6xKXuk-9mAs1BRiKbx&C&P&7u~#=tv9^U=&8j|@ec>=UwPLrDz|`F zoM0;(PT0^LU7rn(df|g7geMrixTIpY_J-~^bDz83*{Ep%iG+b;6k3K8maTT_a(Uit zl_i~fZKm~c;`kGea70QtA8t%>>{(=g@}J|{>3QIJo^Wv+Tk=q5%=6MZ#xtgX4Ps@q&VztJ3b&JBRzXs{Kd0;Lld zvMNyg2`MP_y(wz~3utyOylf8&)-UjXCK@Yp(mHSu(+`1Oks6br=%qib$A z$FAQzxjMbERyN`Rt}&oi0(~Le9#K&MZ<<(6&#+GSlfUG^__P8*f-Qa7y|i2uLcfr2k|;yJYC6Qqw9Ge)GE@@rsy5S zIzYJaX1-hKIZ+m@`N^OcXBYd~n_EiDngFdlXofc-fpy;_{E0B{Cfzc0e#cO@^0q91 zXtfA8$&sN+_V9WRwG+f?nJVlT2(XZt^v=h-EFEOX())d5z1C-y5)jG4iKojxFb^iW zfrP?BCen-{8X|Y}DRbM@~hY%KrYF0^k-vszUL z0QVdw9>&I)e4TRGx(pgyCL;I|j+-_8YrXvg;#nRvr0+yw>9Vo52rr4D7dL)=fF0c| z!^XdxLCb)-*;BJC3CDXr?kFF;ValIR+l#>N#Q=i`?>$grx>+g}by~-^u-I zqyBVBd(0gG>u?r5B|8D)SYGP{s+H|JroM{Fj>Ju%GOi!eGydGEzeLN03siSv8cpc$ z(xITAZ}x~yI%*4q69w_lOdX*#3|f(!cMze(h(i4DhMMWJmKO}GYuK-UyG>xc z_NR9C;R<1y3?vI;T0~U#9{Mty`%HOan=z3$?|<*@{v+=GKfKv=`Exkrw{e*+_j@mr zJ^%AWBU*~=Z7;z}BM^=w?iV_Dq*(@!#D}s!yIc5f%5e$Ce{MvB?B2i9r`y#(PB`@v zez8$d@$4aT^FOmW!YG-jV-<)NiYW0c7mR&;${ZA_8~mn-_HVE~9ekL z`(L!Ob;Uj(R&Ib9+osX_ELFOH{o3azh^fYx61O8x#UqS=BMC^I=!1Mg@PO&hMR#|- z`xnEvIri7Iyqgjei~KHmb4Zc^t_P5yhH{$!5CM`%5rD^XR%u_w#hts4DQ`ps%eYM$ z5!=zWt&4Zn*rZb%G`{Dr#4Iy!zs{X*j4}1RvDQ$EDzv7dff~H#U$FOGMLRNK;KLWh zpqSRJEBgOVM32>Ptr7q4NVJpu|8(?uv09ZO{aVV^KdX(8H$(oOz#&U#gPfH?pp}V% z4v|WRP9LT5Y869Q97@|K$7bCx zV`xkWB0?GpASC33h-r3H43?%rBq0~FcScPIZ8WF^;d6&bA(lI^*M*b;^6BI~EP+6r z6|4e+XtQe@f+c9E9@k6{r&F?JU3iPN&>dy{v=GaAo8*ik4d#L!cKN@0p4M9eH2x3! zV>dBD^&@J`vkH>;3#OmaIQAc53peYhsg#R2^U6b#Y0VjLNh0b`W8sdASHrS~t6oi$ z5kO9m?;EFw7F3*!Mqj`#FL3-y)Ss9iTtwvp&JCuR_@%h@uhI@;)gNyN<|z1>Kr<%h za@XIDT=8g~&T3`;_QAGFF#-p4?Iu`w5RD=VC_)qf2@sRpr=?T?E_ZMz(KIe{Qws2Sf`!%|5Mv{xKsW2aUUyXrAP=Rq9iM1C81+xMMfwy zt6`5yBqWZKlsz)CQbvVP*|M?{QuazRQZ%2}_jfs;OUb>F`Z=X^io{eHb) z1DB00iagBM2>vCGOjBPmN*|~=^W4~fqx=-2-%jv(WWvYYplgLgb)HgWg2~GuwFQ8HD zvC8Y#tD|Px$UkAr0|VXp_mbcM+LsPg9t${Z@ci?p-#;1oVcOf((-VR{L_p?1AL>xO z5MT<=kw6|{z2w_0TYRINsSrrRs@iOjg13gbH3+_-Dh31ujQG4D)Yk{kcBEU15y4Wm z7}j`fzsQqV8pDjCj&D+|#85GV*13e2Tmk1xGKe8JZrH1WIzw3Q23 zZbaUc`tF(8+1L13&}PFR!W~B%%y2Q=!A&^d_q+nRKx)*SnyeZE`f-F=Kuz* zq@*MjKkf3mQk!FG+0I~|eWdt=gqWy|K9^9ukQ{)37|aF1>3~NDNL6rg8u~)U8X|!} z^$KD}i%0JceBj={8M^{70UDZGL_=UJL0OK<4Ps3wk7d{OY{)Js)D5E=3agCV5GYyq}n z_@UVJV4(n!AhdRHK3XdO=`SP3TmKV!D(oRp*T7+OKC~d0*Pm2MDI3i&D8yF@jXk&y zSWcoGtrnLLV-qu9^Bz|Mxd^L~C|Yob6S{hkCImfU@GwE`B%6c_2vddWl_EUZyMy|q(ff)y%boJIdr`0ET~F&st52MuMiafMK$ z(~md*av~A~d#=MiA4d`~Eq^|=g(Vy>1ZCi~!VY(s(XgAvbG@@JAdIjxxQ7#_Ua)z% zo%g@63g~M(VnGs>O^WMJ<1oZI4gWK|;AxGu_UR!$r?JSNa=B(R)8p&+KH1tj!>T-~zAqgQysX=h?L6*YkQq#^RB5xhn z4wj%%UfIv>;|!z&_pq(7Qec~UMnYQTAStKyoH|@oIv>aVXI*Aee4Cs&~N!y=G+$_K#;C_g8h5a9jU=xT`JAGdaV{xN(;N;}I9Vs-hiUGXT^*JmtSafP{ z1y@1|_yi{xS4`9i99~3Ii5A1e#a`|O$mI}hfb~rxL013YS-YRM^4$l2Xd=3O$n$r$ z%vh&S-&wh2ZdelVj znT}8|EIV^z?e_H|2%XRX7OYG@X1z#B0PD{C3iKED)F8~^YP?%(BQvj^a6&{4Y(U7* zv+HnWWv#TG7-}hoPb;=LKHak9)|8%KZ!2=&-NoX9*9*0GcNLfXD7OyH+1)Kg_dSmH z8C3m@$GOp{ow+API8pbDk0RU)iOVO?8`=uI&7GwTtFy3xdGN_GL6#i7?XiryqOC`x zlgD&oBDx&p9}!D}xO7E1PPMld7aetrZLoa}del9E_s=<_k(V-aQ}xX5#hRyS_cwp$B$Gh@I{0%J8>13d^xWSVP3K0m~2e&|~N%W4~DXsa|XBM(H!^^I}g=dHkEDe9vqSvpr4ydm~R` zu4lKW3!cuaDR6tn!TrAGiXtR-?Cz!oCbLS08-s4{5%c=!*yI#^AWqvTx2+*p8sP#} z=2A8Q7kU}4{@Tx|WZaKZz!ZIC`Bb7SR0hbgn#=b)!L`Xl`^IR7C+PI^nGnO`v?T3{ z(?-M^HZM8MJw;C#UoH0b#HHI;4kkqPe!RWHtRfW!imJ8H6td2PFyRI(orWY5che_T zY)h41tin{#y3O~{fKwh+l^hh%3=3s3YFl2v3aRJ8Vxy}N+Kyf&{98Y+_&~GTR4e-y zr!&N5Tw~_dWa)RQ<&m;7b&u%=o7)@;_1HIl$Bpch`RT5A)2$xr<3H{ghVh2($h#>o ze~Df8otaX3;PGl7mz~tycoQU}YzNQKm z0jeX^m9TR^bs1>}5ZEz|FQ)825JYAUrX&lU@p%nrIFI7VjH3*bhAp%tzlQzR!KtZy zL_rQ~%%e(tFPTj9o}yC0vd2U2>gozc=emhl5+IUdhl9@yv&ZRIq}(3mn1i~y;6TMR z!M~=hD8J98H+88nF?dk=Wv%)ry=U~R5@_ETW=8?5B@mQK z9nw@WM;YsKRai$OUVdw7L}QH-VW?nExEFo|L@ z4_X@wcjkJQTZ9x3d|q3d_AFI6%eJZZ>C^q8_dHXtvl0U*H1+3Df)OAC-c^c8J+9uF z)Sdo-jy1QxAlHWH?+%q=*Px0*-t-y=qRK_B%SsJq9j+T3(}WWTp_A}as>yJrG7MeB z-5Gh)=%lS2&jyKyyll2biH9UwmkCFmF_P!}7GF2N?*jjJ=87kyx|vkhDcmKmeb-Q9 zIz8t#$^Ni#joiwma78OY_0H*)H6n!_w5yifM~y1g-B5RjAkLO>{CoIp%i8ElB1$6IE? zTScZlz$1Z`uSP^=kD{0H97{q?BpZlHa2E4Zz_{> z+H5lN4aOxw$sXRqYSR)4jsV zz86mJkB#32quO8k=ZBshpW^};fco`6U#n|w{>MZQh>O>*x?Vm(OG1f{5(!N`3Vlu< z9wG=9cBh0SNGbtpPQgnbHj=p&C=GUdijoxcdve}swr=G7k)2)7Dli?P!K(SOnA=Hf zI?pIiGvg~pH}*$L0o9HG#kv1`7>eE@Gi4Deti?NFTt&P+?o ze+n8cXO&V{Q{@$lsn;qh&X5$B5&5$5` z09xiTPbJb~{sa#AmOOk&kE#P2Vq|&ZvM%x2;ZV0+>{RA2!!QKSSA`aT*pO{8LBR3| zhNUis0o_N(2cF*bLiW1-HR`y^t{-p4Y|5O?HxdTyzduNh849E_x4W))UF!A^`dN9E z=W>rO{G(0t9D1||U+hVFh*QmX364HTehqZOyoca|woVn}$D<9FdUrfpCv#2s$UCO` zK$2%h5Dq<QCVdKAk{cQ@Or-L{12MDgwcG=FRpc?8o1?(g0a@S$yN;iM z6||zOiNGR=M&|kR&RE;GAGEd9V09GsX+4>-_k!*E??>eDwa+tw>CJDo@5MQ5O-F2? zCZWXul!R*w0D$>vVRixD928^Ev5XWtT4sn{PYEwh3Ndb9WTV4+0CDgN@a#+%D=OcjMEY zyaxk#KRwyeF4>yki`qv@6&9~ZM2*A@2F%!u4E}wC!)4BF&}tRxJqpNYWM(pH*0o6f zPb9JrUkjlq0r#rFmAgO^=A!V~2nGfJM{cFWJXJi;>Ct@i6xeWJErr@ zM8}Ac0|ENOCzlWw637L}Da22POv3zg_@VD6c5~#BkTgYos8~S*Re}Wt@fW~-Z)Uwq zJ`6|#QfVUb9W@WaAOMa5u*$oV9-y1gR@abGcFEwgf7j;icRji9ZP>sp_f)&8YvIm` zKkU|moCi9Ta;(Mf6OB~oG^CcHDB>y?iyLbtN;VB#kd&~!?>%$g=4~x?`gtZFUtbKJ zd2t{R*gF6(01YTE=42mM#qT2x>_lin(%F^Uo6g4GC`JaUcgB&wmfStkr*B_Z>wClc zB0Fqz@PO@$SC)Uoq348r2n>HbIYRISnG<1Y4MSHYK7`fmezk|`+qjnkkUoLZv7sR% zLen9}`Q`^afqni4<^m)msn@M-i>m$jHZNUo74g$z>K`L zL$rYkDNxumbJ3+vlK1ROJf14z*L>@r(Be_`kefp1{(k)Sm%QYzK+miHKVLJv8z}tW zidMJ2b$ab0`#Nv@{?N&Oe;1Yx*{(m@x-VKMRe`aBvq%lE0Mx?RBSdEnNV%Rl;K1g% z#V7mE-nj86dwOv_)=R_kwD!n6jbzMR`N`EgRquD771i9i=ei2`i0|JM1rHW8R)5xQ zc+7QrjulN@YSv8Zov)CtA@&4pmPsX67XOps3aI%)zz&cSAcK&xp=Oa$-mVzU=4G|> z&ri)+?K6y0RKF`t+v|El>y$>~p>Dmc2LUTg{Lx6`eRY$=@SOkjrueTaF#k61OJdm8 zz0%9Qh4NODwT=EP>I_)Fk1hG7+zWNhD;t-F2h}EE%dfx-c>*%Q{Lu5w0NBs_J!%df z?G=?&Wcnpuj*ySWv>Mjw5pR;;_`2vfKg#bC$l~ z2gi&L#1}}?2OghMIN=v!v2S&C73d~x=5!tc?P`9@7jeP=^X?AyrLDWjdZM9YRy(4%cz6Dj{W)rovb%3q>Ol-;LA>Y%ym?A&iW{?EH|tfM`DlAu95UeGFf zoasa-|K2P4?L42g2oV&+ME6yPe9Kc*mR+T(WpCE$7C4ao2cW3I(kODe=R&&@R|v-| z)H^6}5|*m~1LCKdm+Nih9}qgDC!wooH5iwhaVYhvjdVop#uPX8ACX;$ALtF11(_D~ z`G2{(w^wDf6592i9GQDzq48r43I>)2`5l|MDX3#nXFY+)3}rL=9n=o~!|Q7gLXSW4 z-;f@CAg5Su`r)S!>tn@~A zjy3X=q5?scA4_`8tT*zrdHa3dnfUU!(23!}>N{r7JJ?Pu^}TMeVLxGdtKgrfV=zPh zl3AWlJO@3$KldM*ZQx*Nk-e1CwIQb~IbD*m?K@qa z5StU)%2m#Bb114&)Hfh#YWEmGB=5MswGXhbSLoWmWGQ#<$pm$zt7v#T=ZDU-7&t&&L%`>_=0qt9PJZz! z4y)XuA9|;kHYKMGHRs6&9Jm!x@Ldc);+Q@zwTurAwav1THjCVpx`sJknJEJGX4>Eo zc6Ts$d;H_|OlD@@@m;)(okin2_^!R-7L$IS|AS8a)T_`*a@4lY+A+OD?X#G2;-(ae z&C?UEd-;P*DxUW`yic(USyW$qbleXO#9SY?WTbD4yUqXWcBvYRCxrADE<6_8+Z-|J zDmpA)<;7b3228qloC5894y#?&^~c7%ZavESxXJ7xp7EMrto6byl5i0Q1Nk(D(gc_6Zr`Z0!NnI#KlNP7Szc8|m^tu8`8<>kTEE_I z_qps;_Jb>B0!F?=z<~*-B)p3d#!%zJEPRNe-1?YRdhk!W9;cW|CVGkO`J--OVUjbc zQ#Oi;I-A(TGNNQEpBcMqRR6^+;%4jqI0iHsu%ombG3I4I!=r4ZHluR*lKSXnZbZ#& zJ@`67g0y^T>0>~Z-fh?g{5Ml>1d6xoQ&K0_4l2yAFs1YEn>;7G1L*|zkCY$xpW4nL z{4iqf{5A%U?1yb}WxsH`AbB>N^f=C6=e~B% zYo}9N|LrY3TTzlC9YZ@iYo)#}jcg-c<3Bo`Swe45!!009ro7_Kb@Ump++TFgxK(Je zv+i`$9;)A|qs;j&Ehml)kx4T0Km3%4PBQ=UUiLffAN~FAeeUpMWOu359r3Jeuq8%Y z7(HMJKwt)X53`5YR{S_`E2mXTj*T9z;isQtd&%9-*qR_reCDU(SUQIh#(zNy9L7OmJbEhqtJPRy&XJ4c#R70AztNZvYFb?2NGecjOG+_v3k zZ>~GuP;6yiFywMf9d0-zujHkZ7S5o!^_P0+z1eW-qKO&znBQ>>0`xI1LhFA5_igo6 zNa>C?J`_>1C88zsvrbzz;QQM1TLV`rt&D^E++29AmZmiIUKm4Z{S%*(Y3Iv47AItTM)r4l z%ER>$2Wr0`{)1Hp8`%0cCg{R47A1_eDc|=86go*&<8z3t5V+sk!hIg4s}#xQ8SfQ7 z8B3k7nGBr~!()s^`EjF(Tt7b$7kIeSYuw%484u`V0EwWMYijTsfvjuCu<1E)i zM5gy_bLy%86n@aiRD}DScJ8)YXppPtz$wWRXybKF%{|snvEHmwqW8-3(O!?sEnLDo z@}u~JkC3l=3Ngli9r0+qd-gQ9jlBJvO0U$QpS)p}i(+)-Lt9c}ISjNPz1-@{f1eE~ zBfKf#_ltoAkqQ!Z^~62;&O`~18-6k#%1$Pnp-$`dZ+OKO=*918yvPBPR2RP44nY$5 zTP2Cra7Rqs3c%--i1ei*mrEVGobol6G^O3_f8t<(39gBF!O<1T*Pri|NWQ;=(`s`K1Q3g{U7my!S(0r$*YXMk$m0oJu|Enu>9< zCv)hJ8^<#KCY#zCX=ZwtAS(l5iyiL&P4Z84gp%gU^wDd;JaF(H&wdXDc%k*aj5&bg zwQyM({U3qrAd<=Gv@X}e`sF}tzx#@9-wx5A%~|_-bcIFU_d~{~CmpdCJ(EVfds!AH zjRqef9IBA!$=WvyN&vyuiHd5DN&#q&7aCDQEyc3Y+W7cz%re6(@^0fA&x{6@KDCRB z@#VlUFw4$1dJTUQG#O&h*%18dT0|AvuN@ulCS=sn_k@N+RhV9@+Sk(nS2_~)d z+azfmdGip(f?_T@I@;gHEOSkI;6CGNs&Q@uk(K(i*3PqK%?$h#9kD{8@VRV=)HK~8 zGWoHY-(t>D^MdWY4Yus%8yL<#FQ!{Odc%FVY|Xu^ zvc>*RC*2$y^-SvM;GV?N^$+dS%-o;6l579E%-rvoT=FAk-Dq{4qyxAfd8}ug*Yh)U zQqbe_yL;sW;*MbW09yf~+I;kg2o@rY*uav;#Q4dTUp^>A(cTl37w9o?FyLPRn1o{E z-r+C6QqU3Do85CwZ*~?6k78``XUoy0|7{T>Vf4N_6L{I9AMWREkySx16Eu`DUe}LN&J_%5Dtlxb5g4=V~bcFPN9gGMg{u% zx2oPr3tyCtsGl^Z4v`X`^@mv=s0ZjT@O=X>#|T^Q^4b$@yuSiXm$Ii;h)hTfs~rw+ zn#(JVzo>gKS8vOgJ6DuQJoNjkxzV*3Rj?)e631_O~39jwzq-TY7lYlT!PsY*#+D zN9J^XsMn4w=R0mwc^>mmLfg7`*?65o&7I`9;x@23t<$u>EX8*ieYlkFc0f5(+A@NS zXZU`pJ$-fK+=InkkNe0?IK1r>6tX$JNDLW;t zbT-4!>F8lSer4}1@632_U+noWapi!>(0NHl&ave?+VRUuTMJ0((O1sbZ(Y2WlrI<0H?1dq;vCQQ%QME07ECum)}xJ!_3#_5}I^5CV3`+>n0n zF(Awm>-_9%57?L3dBllQb$)k$?9$k4VcE=Kgx?**v|`{O*)15xaR1tU+2^jjI^8MU zpZ&xVVGjp1jRh}c>`sUr;P=?EeAf}|BfR*pGfg|UT`STDNr^FmTgs&1&yGJNPf^xc z_F0+B%2P?(E#RlTTmNvUV`;aeNL|+7+%cP{=XtijU@OQFOa7KrtAajn(qsK5^N`Fn zaP|nt%fZ1X_)-X!x`H&})`VF#!Bc=}j|xl;Yz9=D7?(lHdsIV1!|I^5bwUli&81R| z^RI_Hv;>NrYCiZFLs-lRmG*58b^pI1mxO(xg2gvJ`xWqExn?Izx<7aO?|$uvspY4y zk6l~b^V-CUOL81 zFB`xt-kW!GeAa!z&B}RFth{bhdh}?92Q74rQV~JVA3pf&1B6duk6;BDjz{;hUxNc# z|L0JUk%l>QKhQibXsDYd%_W-&G{tY1$Zk_o*nEryOeWC@(DEE+88VCYe<*h@R2dgC z-csR}z)THuc!*LSi`F+NI*NxG8VEB4+QmGa1Azg9CdOY@S|NFTXUgPc8LIPq(pzq& zg?|lnzMU6&y-U5YI3WF4JkO4}mdOm$%zp0TnEV{d%+>!$#=CyS&$_k9-#&R=*y(Li za*-zvzRDvOXZn`Z#(Qqe?z#9qB9J@Ow(ptl@5`5iO?GB>rpvBOeL8kyK%H8fVbqf* zd!VO!98?*dl8>+J2C7Pqtlswot8#W0WD0^;1`00f4m7F=HNd=*SQEZqtuc1R2p8jQ zu0QTChNV_IP!_q#j)P6<(Uxa>^(T*#TNB%r8Gopq=TFZTYW$*x7 ziBfFeF4NCSd4ooknJsQ~( zfr88<)#+7FXyzuf?3m#7Shv#QEmw7UpD1w@xX+s9tJT^KTvnYtbU01aU;E(BWUpHW zH%k;^XmW@4EQPAuO}=jG)efmWU`g+}M>J?ZUFzl6$0}%*Q`c4n9;!L`Y*ebR?X)YC zAMGf8BfB`gDB1BTJg^{1@bB}=3L{t5Jo78$v|9)HK65E~9zPe-@R&+oysC}VC9Dk=XeO#BLDba4lkrS&|hjQkwDgOhTh=$`QYkD_lT%J}P$sX&z&4wvBt;_Zf-SlhN80mvVT%3vvgR*z(|tN>gBoGrtPMyD~9(>P{(ZU7M&EloQ6Fs7Klj>4-3LqtUm6TAUTwp zuPZ%0o!(-fU-0NylCkyu$kfL!9dcT#w>+nxffh+*YN2rr8u)e3Ou|BA##?ox{05K= zx@W(Y6rF4R#N|cRJW};6wsL6nMRc~D9(iQLDJSZ8(LHlPJbZ)e%gA@S-#ka{n*Q0pkR>Py+H6p_AtZ_~!c?IsY+SkS=&uV|c4H0b=xMLE`?)U~pStS52g{+oC>+GAg1apE%ctNvKocHFxAn%M!{!h4EG$_imK ztc1`$jHmJKAf2YQ;kJw1BGqG-Zt{{R^=2xgB+||Mb3U6}H3aCxd&=3xcAYYa+>lS! zksV9{KQY!YR+zLD~GX+lxLrieaWf`5S{=mh%EHq!n)Yq|SlT1&~^>pswy> z@)qh{=1L~NG8Oig#V;{4UU)X#oHshUJDp?9CO&+Pxk`j-bb3=?QiR1e3;*Ar=G#Zup60O|ImyocnbbL*-xt6 zzHWI`iv>vvzzw&HTN6o*|ABwhK^0GfU5CoUqN5*QmnJBZ0{VThf#qSbgI)rK9fn$W z{sLnv31^N_@7q+Fuu`XX$he-eArX<*%uE!a3%t)>crEToJb!VJt9!(Rp5u#$)AR$q z`3c=v6$9@Fvse5rQ@?tc?hZAnH$SpQxcyV_>03Vz zjZaS|IlO7J=tSL#Q)(sI^yd(8TS7~4?zo!G;f`+4vynW)e>rFKf_}QY*q;!&c>K?N z?zzno-~HE&9b%ysfP?{G1);1WKm{H3!OvMk?sp!mzG6lT_RI;j_D}qQ&bKe zT+Pc!N)_8+*e3mcd+9G}h9673T+F%IIfky5+-vHsuC0r1iVx!DSKD|68LGLyoTqAY zRc^cGT&Nt?IB8q-vdh!>Or$6zKcn%(6LeN=f0a^A1~jMhqW7HN+3|bn$7ou3 zT6nTow`lB2mcq)1Ekg7+rD*g1XoDySF83C?zL;s(a1n#kMTPWEhSL!{62iaW&O@>0 zwjaE3Lj<@?8oF3(xm!K3Ogf%U{#YK6$?Bk49oU@IZzjLUD|j{wc+Z3&*=N*-YA_@B zh3$hY>tb(+^$G>bjNf(Ar9>{)a7#3`oxt#s(kfDxd5X>lr~XD#JKu$x!d{f#3TB9-5P!{E{? zk#GbP+SdI|&bZG=l3|Vip4`v-g5B&eAOQE}-8-S3rD&WYq}zX3UeM5@v!p?2p?!#r z!glA>89wm$y=}}%cY;MYBB7AFlTyiEHZNkM&i3n1Ac)}^C;|hDa00R_@#$MN7?Zqv zpD@(Sa2q!KmIP64h>Nu$w^%8+OnLjJtu&gk;>=b5V>j*|$xwPKb{AX677eE82@lGK z@*>^pN;3w5`m}y0je=`JMhu%>+HAoupb(@cAo19!-VRJ_8*V)Rm|jdC=g#e17{7JGV`DKpyMsZbm&dyh4lM`^zykbrLa_$TLfz>*N3kb-JzYAW4corL&g0|@}WEkuCeC@gdL zBp#b**+Rk)6eiG8D(rou3QruV&wGn5_bMG)&FZ6tFlt1J4ukuUR{zgD9q5);t_X4b7VwiN+eqtsbLL6@tWUdr zD!PqwnbzP=3f#zNvDG;7Vk#G`G@T)Ve;m*L`ZIMA4(O6G~fVlt&6V z&+eY(5p2njD2TB;_k3u2+ewpSV-vJ1lqC-xLoiTUaJzCcJt!#933wyagD+cCoz*g|^^VbaX4LG@tGu{h)hb^8-nd!b*VkO?UsV1Zu8!$ z!FU1MAoNzq76F37z7yfz=mz;@6fD?39u+w0}qE45F> z%ND!j*MyiznEw#gDA;p^cMq;%#4Nm%+}$PBE?@r^tp;jp{0YmAKxBG?2C;#JA+uac zhd;loz}b@yAJ;ZNr*OMxNajS_aQoJ8T^4orxQ!Vxj?$j!XN@Ogq5i zPz7pmH;X%IDx^4JyjSy|Ej#stm&50u8?WjgKmMrEw8}Qa`gFSTuWLNEeUc_>u2n)z zzKN8Nw>YSfYsq_}Ip{NKZxxM7*nz#7ns$>%6;D`Gz2Dobc2%5qft9WNjHN64w90{# zU1AQ#Omm;~o`R%;hSkR`b1d&%3A# z!-D*tlUzpCJ7tpEfm$|ZsD%?ebsW<8o1|B;upkUVup&_EO{}c@Kd@!sIw`Vkz{#h2 z1U)Iq(fk;)6H`oWuiYS#=6H8!?qm^YcM`b$?BWwPbj!202MHoLOQKk!ZDSur02<$nEfuE(HEPva}&bamVEy-K~fZS8=;%%G4pl zZ`5M7G_QkgQ(Eajp?#y1n?|M~aSowyEqw9(|5CSezgF^Lot=?t=a2*ApnJ=M)tib% z$u_1>(_Chv7>i7rPSSm9d)sJyT*Qf8Qc5JhrL#cx>YepmOCx^+*w4c@IZ{FL=4_aayMY=_EYA9)ElrNL^Bs)n=kl{c2USZohP56Up{|ir%!+@hF9GZpxLK z_}Cd3)$c-XBVEnO0)FUb?zhTVT0S-g`HqxpNAj;0vUsU0bi!&k%cnNZzP_L<`gh?NhZLVkBtelj)ywp9fWh$Hu&&8`}A~(QLy4?F+FDXCMQfcxBMJhv8*m z&bVqMX3vC36~a+g)tg(XI6rD~GuAo1BCXPiQJgM&_|5Q8eDc0=hMx1wwto;8%Ia;g zSs@&;&b+xvtQ~wbjr+P7gN1zK60(k|g?~9ok1GJa|EZ?64L6)eq6;fkJYVExn6f-Q zx%2Ecx&5ko#?VH^eI0%y=Q+g`G~o3c9%k(?KC-{rFf}EYYWBMH%UbzZbb;aCsQ$xQ z{ZzSj&&&UC%eP#fFZdB%Sv=_}`!cPZL+{Fw1tko608sAcyLEbb)%s8eo53gJyR~B1 zC*>p~2PTcEP+jGzDd^Dp>h=a_F39>RC578Yd9fxVq2~t;v-O*w8Pf&F{`6Yiw!Uae zf0>C!B6*%W!`x|jZ=vg5?MKB@xK8kL{Ua&Oxivx^A$d`aGC5^AG4{dr{p1PSvkVcl z@_EuNL@B zJ-tbIsY^1-&}uv~xY3T#`;xW1Et#!N`;K(DO6Mhg%vK%Nj1{0);b@ZfcoJ26g*=`r zyg~GNz-6Kn;V{hi(vi{RcD{9Q?u#q~-IAxlr=2&ycn(%1^kjE&UQW+r%>BvvFnT@c zLe?##&dt63nZlB&$JXhr9NFp@}sTV z26bmyk3s1~y9$<^%2%>%9Qh+rbVxJ`c{Lv$rdT(aT0rmp@coR1xXj(A*R5xqrnJ=T zI1h9d2jYE_Gjd{rNvv`9kS;eQmaaEaOewn_|~JqyAp_ zE_a|3LkCl)Acrx%CoZ!wlEKVtN`xf8zFQC}!aPH(rZb|*?*&hxmC8(SoBHl*G;*S5==(a?+eNXSW zrWhAXZr^r@vHt*v(&`=M$c642DJMbdiAn0*ob9WkM*AD`ZK}vNis{OV*Uu*8KC*kiYW3WX+_3wss{MqWlbK0b)JpG-Vo0ZYLKY;gCM3)EZI^u0JU%@!JvCc4aU*6$ol)%T(}!G< zeZkyPld~NvHV>bJA*_U^JEAEi-O>LY39ARnGZMKDoBioyO_H6c`uWS?hR`* z(+!OB8Tsiiy8huibzfC>{+8M+axFZdETl?dqKjmKYj%D4hE$eVcuhUJy~pVC%cj{rL5i$Q~#jb6VeaE&PI?ybr@TRU`j%9lF!@ z6>>_D_kaBXz6jhM#QsH|yLgdoxb5mn*j*C0g0ffC^~n#ThUSa`QJ-CJ%%(?)dZb1r z9&r`j=|%Yy__FF9FejI{etY8-8|KL2pAMEqJdnTUd)v3d63tfPzIS+J?s#PO>@FEi z1$`p0xhBd*m=9$fsPIQr6N(HUO(pa5(&Mp){yfFVxGT zG+0O8QU7ehnrl+%e0in=t!?Vex^ZHfVzcT-Tr)tukSmaBCR$W$^8P)6`YZ7@0SSWl z1%~e*&Oa~P*?EsyPQ~p#P~qhUS|Sn^E4QRt3h6u_-Z^hHDM* z7V&+d0hy@mUON7lh{BClsMxISt<7lk))Woq$+wa&htgH8ZtRGt2VG4sMIn@sHpFNW zHP2w<{wU~Tcm7=rCzvC&)I>%C)OE-9^LnADD6@*mZKHuB#| z9c|9wL-kp|fyggL;HUltpk zN|=7diu!kC1_O}5u(dk|w-Ldd`d@qz1u-DvFT&&SfWmHi3vVcAmpvmn+o_ZBT}A*O zZ`SOKM55s=1EJ)MyRJ3EMTS(E_{Xlx%(w0TWp`Mp{{PPF82LwKb}8!;iIvlagnzV- M>8Tf~p1Jma03d071poj5 diff --git a/master/_images/tutorials_image_44_0.png b/master/_images/tutorials_image_44_0.png index 785e7b6fae9d5fe3164e985d19f3c5a2cac19c7e..f6f4ffd2fa044c83848b141967a02472b77fd46d 100644 GIT binary patch literal 111955 zcmbTebzIcj8#Owhq9TYQA|;@7N=cWZw19Lsh;(*pLiXN2$U+53t0thKg53UU&-*d*8p1Oit|@`WM-fzg3LVA|clf>#*i zr1s%AKF62pj!HJBjxGlFCWu!Cj<%LIj+So?DVd7zl*ai)YHNNgL;GAz5l(v|%D! z(}#6`vufODr*t+eihGbmrT-b@+tP|rN`JmF|N2H+5W!uAclahpw2{bX$41R&@mB-r zuVCYFVzb@EZ+b|nzc4+r>AWT5w7EWgcyK6jo}!fMu~s*tviYZC{lqI%QDxd=cBy_P zsc+Xa)~HOgfRI_eNWbabwOge69(6X2@E`DsYeuso@_&Ew{JOgI;QwA-MaW2L{_mR~ z>N7~8zp+R^{R%V9TlCKpGCTTaQM3Gen*Z&h=*)jlD(c6GMV9@01491a-xxY}cI+1I z`GyY3U4LVoZ3l`>?N-Ic#`cen2DVf9)NUS#oDYe#&eVAnyKL!t{w+;aDZE?|xu6Q8 z5D9}HCF8TdntHzRrm5|@&)+vb0r1knJ#7DNkA_1Jgs*97(Clg5Y)d4SgzedpUF}}- z){l`qwaUZRf6ID4ie5la(9Nswn*{8?&0cKIwmms(eo|KV*XHuC%~7Dw(e)%D55kqc z)b_*rL!q-hkxNd*@98aX9$H%3;l9I$OE1rLtyxUO{}v{4x>0J&pL|rVcls33=u*G; zQ1D<_iPvEnr#D6Dqf6bo&QXiVS&P8#!+(3++}om~gbXmCOqRQXNbx>-8xkJAFjj1I z^ix9koqJvV(w^sWmtNc07}3m5m`hpRMW~JEm4+SC28@PTyvoVYaPR$$e``dDvJrjg zsrWn6xx~R3gN@TNX8Xs+Yh8i*cz24j$fY?`Y+}6VUOk zA&<&e%{%H36#mfXbFs(k@`ud(K+Wg=o8F|?TRuA<^?p!X?ocF>dn~l!dZPa~^?W?l z%GJi)9J|JOQ}J?ZrjAreNonmeJJp-yaN32!-NR#N%qV>B3dK=lfWyBJU~~SJ~&aU-@Who`wE39Goe!9`T6Xn5V^+&`-{hS5sfw%%Qo|MTV7k6-mm`m zSzGKzg*wCnZ>Q@PE?gHm!a)4)piBKxZZT@@rp-&%wzkGdOGn4f#}|Y?6xS_}*^jVY zR}jKSO?dM@=Y^O4&(nRSv))}Ei(JwPpUvT2QQy-|?4dA0%x5C5(0|5Q-EuSoBr54Z1ps?WgE5+_?Oxw#{XZU;VF_S(4w zg_m-9#3bXzpRJ4AbGAea3k$q<^H=I(s@3DDOFc z@4MXsmagZ{OZ35yTmF5TdYZiDNeB6EyWCBD)-!wdN{c)1f2*_=_?|7j`{ZK&$@Y(X z@?}q%!dnfGx*E>91l*Gy`9saPaxX52vxWW9I|&Q;7bx1*j#71pn>IeAfp`>cuoc@0 zeV$lBFEFE`qFna9|KGy!Lr4Yrq;4Od+~ZgxnK?Y~?JMXS(dc*OXi4wF z zhpt2Q7YBtI+N`t17XN$HpH|qE)QkP>ol2k6$|EQddAfP3d6N@*_Dt~!2~9CfYPP={ zF^oBgd6VUEaB$K_%;#?D9lbl5YQYl;DSgwIOSGicaH29&Ir6{u^*y`BH;LB{bN2j? z%Z`N4zQoZFI$^(*6mt0av)-+<+qcPh(}WMU0%KtN9w)0MR`;%+w)z0{|wPsS%1KC)^Me~baCxJsWn^J z^eZO^CMQ3tGY5!L`VI`dhPQOB)BVt5FlNaOt(xHDOJ1_uP}p1r$$u=^g@lAOZaUlW zruLYMWekWGsKVFA&Q5IDr~xyseoO8F^KwY{xxHg}?wozqZ|53=(sB4Y=g9w>F{Y@b z)6#-O!r5C_F>R}~iHL|A2Qnn) z4o_hXzYp9o5KyEFRAtV&5?^)q_8LMf%Tl}v9Yiuq5%H_Ni4AAW(t^7oNxtyDfK$@e zh$eT9HRYW~z!3egE7LVD3r*K4UZ6X!>3ahrHXL->gBAKe$6#V&q9?%S^*Z4~=ShZQ zPMMHP7}H8ia$7-f)e?Thq}OUvEoxsVnCDr9rEz&=jZ3!r{{njwp|6` ziLjm}dt!Jf{1H4|x9~x_!VTw|hdrkEdQ6psTv=r=;1me3uhF==J<yP zlF|k(M1eIfQZD;7J%K{uXiRfbYHE8=A`eg5NGaj3fqI$z9x>0cV~FdbC;a$THSecsDQw5#S;E#ZJJz2K-t`rvMI?5wb)}J+*$r4c z?CTAz_wco7a?_Ug*Tz0{Blo&6)6$%1>QFV^_u{tc3Zhwx&-jzu;N4#{6ONQS)~YsD zE43f%=9`4E7jbiYd3mj(P|xTInxP8z&(0RkSa2u8{{39pLm+CVzY&6hSxqhFzwHck0Yoaa~!_Z+OW9CO54U zSIaeV58UglK98C|g)}wElHU3@VqVT7*f1MjUoT8!nR69Y_jAF`8<3POFAnSoV8^jd zXZT)Od3hrzr~7aO9me=E(%0mL4hWW4R<>NX#;qmtMkcnqwOJpuwY9;b!xiX1q^CcE ziU9yiId6npj483l(AxTTtKnU>Z`#jjqn>39xF*;4B$5uU)0rJf7S3(YwYV-uO8nk& zjb=vIt?|+~Bd)zYJ?R5xUk{|jCYJ2ypumq++N5%%OGhwC z<(dT*ZpBLXXGrhv|M7LI65!?zxJM^PNglp1oTG%UrFY!^beSJ%*J+TZ8;lAS$i zd^Xn-xU+RJ-5>_Lif)5S*>VOZCfD>%Cq|=@o^|b;DUMT*TJdjOy%Q>a_hajwkFC+W z_Pk`vSd36?_edAaQS8#e{eJxn%zp)*d4bnFB!#|HLYIBxjBQYm>5qRc8>+oVZOAqGoH{@=g3#Ra45-(7beuO0B0j57nyx340DF-ajuIihbRhAle(HFu(a%UmNozPPqF z-|SeF5)t119*x%hdrVt~hoiAWnORvML%BRf>K4?h-I{zq&WUpsb9HkQwgz1w?be1F z7WdrFRwYE5r>4kM)zr`c6l$|2cg@`R6K3Y$`=}vEde`56*SCMa$7_aSaCvbK0J7(Yv*A&6@{C>hzKX~b!;E=5{$!{aX62f&Q)XNw z((1dF%I~VPHK0_@!@)CpGZ-Ov>xmCPza)i|W{g1~pca;EzGAUvb+l-j7T$0cfOFc8 zt*pHkV34NH{8=^6z}cA)J+5>R^Z(tN4Tl0vMS$J3vX@?1h?gKMPGhd|y=HZB>57FB zNqGC+Q1N1)OYfJ(!k1@z@$vDZtZ^-&q&ySzKa+nc)aj~O@Im@QN07@_y1CR6h_^5x zLGki&WFsW$fF(E7Rh6WPjryAw)7BIme8F}`g`*!YF1(=`ZcJ9-@k`Y zg7jg-5qssy$fBQtjKT9A&hy5t&%V54&mI-~REDcR{L#x>qHgSspAdj6;QJB2P=p|u z42!=Sz9Hm(PNCJ7Rjd2NQ#keWSo~6~EG>@$vwetk7CzyF2ar5ac$5_%RPtr)&=B8r z^SU(|sIl?7{s9iw-5Xbb?;Q_U+i)kwr=$cx*fcj|awLRsd~mEV%QF&tKWbe`6(c>@ z7E1clm;=I_F}<*%fr2~n70qG1)oOjRg{E1cr!{mdAt9mvS`87tOG_p(rFMDjv6e3Y z8o*Z1&wsWzY@TB~^KP*J@JH2oy}(u?Ci4svnj(xEjey@HC8^nXd2c}MnwJNA3eOT= zUg`f!X_mF^!^ql3cf3t=U~a0heTKul_tgFKnchspv~?g{tPc{m_rK9{|LG#owKy(1~YK&{-8{Ja=WZpYR3 zXxjkIC?xT&1oJ=ui9pF+dtHq&$yAgbg%GZuu!NLLB)5qD;(x)f_>$!S z8qZD6UQ~3NcdzV0R5N}l)azn)G^mgxZtq;#i%(2^-@ee)^!~ct{_1N0Q2?1BbPXYH z!xEx4&kM+nI9cGqAI}3n?aAQ)`k>EILUP zajn*EkJfuPDwUD|8{JM|&VMGH8VDbKGga~Z$YifFiP#_-Gmh86u)%Bj4 zW<0E?)>5c-mf0x!IU7l+p|SA`;?j_Nx((hBQI6G{wf4B3>xsqurVV)`jKDlWh(gtY z`5(>xD9~rFr6mye;o~Q#BUj3nfBZ@pVS;q?^TPntsa@lYd+XLMbzNQ6gKkCVbq+OJ zoeE7BfTwU6>DsIds{_Z2+TWACU27o$8XFO4UTW#pxBPtdTenH?lZJ*sp9ycz zz!zAxLKoDyuAJ{z!sl$J-Dy7c&_cY~{+Z$fWc(uIH83q1BjyY=9SeGe*ZzvP7o-G{ zdvM{1nK&ID9H2*52s6kOG~gOtm!ysAj550M`JRK(a>v@?7azG)EjR}U2M5Ik$tVSKf-1E5Vp z@?4Ny!p7#w^Yl9a+?JP@w>L`ra;b6o#2c4?Q89cvK6d+I$bL4}cTRSjLO4V-bf-kf|!Iucs!c zW-vDF*1H`6tjVRtOtvXmUnj+%Cz#wGdX>Ba=T^=_ZfB;$ccNad9aQIzdT?Sd%0(&j zFk|}pc1mXLG6I?*z|Pf{cyr(S+Aj(BI^CtE?RJ!-Gc$2XQGi_Egyne=H+=NGUbUpd zOc7$A?j`%fH7105hJM~iF5@U8;YaCOUoK<}`gKx@=R%Y{Q zq=Tk=VH|!^9?=cjeTbPc=|N^%Gc+J3yu;azuvCaR(;DRCxM;FKB|jwMj6QrUBrG-S zTrHt%F{+a%0#uW@O6|y4N?NJW-t;F{Zv!dai zDDpV89udxm1l?Wg`tE(sFP(+Vc~=`%c4)c+M~Z$0*+KnzfL<|&;9V0Xux&dz@?O}- zp5)o`scq1OV-(`v#jR8p-9E1Z&<&LUookQp4zC|n4Dxb&vk9n%-%Rwv^407DkZELO z1cwMC!;g&(%gNf>2kWkrDVcvBuj?NY{GG`kF}DhSshBwEpkJ$4|D-8MHrF3hQT}lR zUT?QMiXd)S=(TqWwub3phkG|5aOg*XGS5#BZ4T_5pE_0(s5708m0LUrBjbB_>jA4i zgeFvJl;cUo2mJPH>Zzom;$k!wQ0po2gVF}f^xfPv7^L2cYBby8Cbl{sRnKlo0I&dN zd*|Y?f#Pu1N5p&kJ;iS(y<==bLPFbxwoqJ__Wix7oRzw9H}i6mFJHc}J$(vuTbO1+ z0JM9(BY(Zd!i%-S+$ldu#WZbJCO_-fg~{ohmM}8{poo;bnyw&upu`&2B~3nqoovj$ z5~SVL($bQf_v`G;Q>($c^R$LfcQQgu4W#=}SoIMr@%`4x4P)RGWlGd*~8oloXV zpzh|z1~X6~Y0-vUBq~`F$zhfHx0lJF8bCiYG5(3q#K|q`^R4=G^p;XK!eWEkBHamZ zUpHhVHio*u>F>&d^+W4QQkd9)%!Tm}y{9uk?oi8Pb`ga7QidVyo4zXD|;vi@E+%zUWA$ayc=iukTdi$HW<$W$=z?js%9_# zR>COEE+P`%754Ak`t^kVguWKFL*30q!RXcpkBR9{9>Hw^h}7E%Q)mgpLqdAHC2k8$P%pVitR`ndinWED4>V~#ORFmG%QMC()<_f? zR2wrhTT*Pq3Gnj%*V_708@fD?^^_B;$ptzPGez zYH+0UuO#jci!AII#4EkFw&QvS+yA$H6|hvVNRR4?A2C$g@`eDQANdjzBv-h^Cq?y= zHP?|Jw?*AT7B9_;iMy1a=~g1Tn4SLJd=D86kmBr25V)?9nOy!`qAis}4&DVua#M^= zZQY`#qs*o&Z3}il)Ids=^W@Zz+wd6H5M(6;_Ph{J7@t6mZ6?iHPHi}QXf0Q#xK@t* zc&OuMvqEgCA+?L;;qGp`{refTF`V1CA4f`ljlWmXHl1Ov zB;&Oe9ciPD>KLu{2>vs2#lmrYe*WMat3^mz8DWf8)Jf60qq!-!<7((EFCVa?B;6PFzAE;R%pQ+Rnk(3&PFr{LhF%m$CmW7RM%R~d zX5}}!FX;?yn#e3gema?m7tGw$pzo?M7C+rgx^!-LfjHBd;Y`5sJ{d}Fp0fqsv3X_B z0BA6fWlq^RI0m`x9^RH94bOk@uB2Yvexk80ezxFiV!>J6!_{wmMJfAD@64S)Rym^Z zVRzAR14u{bP~?X3L+iiw-MX=bBkN9(!R2(nJ3E8TwVZ0$JbIHPWMpJqQCV?!f?gDr zmBDm}SvgtY{9v5b`sLQ9vE|?Cu~+`M+4q930%n#=;`Mu;o@V}doF!;3#=a^ahajP_ zv0TnwX&G7TqOQ5mjEQj54wu&j|sw@ zO6n+R1mCzmb34ddKh5q@Cv|rLh$=~q|6lt8OzoXS%WwF;4Mu=?(`{$C5k+cKinnFD zNZC@B>tfToRq@@1K32wqD#jwn|ldFf+|oujLPOVf(@}pf;ex zvU78PiT4G55>y#~|7)$E`#s)B-OyWkQ##I^JCeJ$*{R7J@VXn{n|^pquGh4*Y5gE~ zY`(u=AyMt8I6k`kpPmC(`MQ&fJp799!~}HIN95so8)w#s)IA|n1@toKLV%|A+5UqD z3MdG=vuWwg@OC5j5Mv4_H*;t2V~v2tu?c(5c$!;Qw0RZ5EKE|?6f_>|9j1sF>6cE0 zX_O{xvm4?zqfg^HotehEsn)2s4_b5OSv3nr%++vjic;m* zxZZmgXbo&~xvn2nBg;ikY40aCh4|M##6ymiAT#6Cq1B4#dN=4DSj*Bz0q3AfYwv3dj{)KWhbaW(`vsGu9eW2?)_cRb= z=4V9UVRl2tvbB13f9R&^4C8}oQ{7DBO{(xW^UupQ zRjzf|{3VeJ0>w#FYWlm~m9DNXEo-%MV)`34<=@AP04=s`IvXASnTA;k#BEv_yfO5} z@O}NCDj+zlR~-2#k(^_#l80=>qZvqG!8HV=80fQ*nHmq?mw|B)J{0*)430Y-q2jn zm(5ZHs)3tDevObQAboWQNQjN;ng?Kkcn%B0X)#+*X<>hJmoFxI>in6Ftrby#Id@}m znI&r|oJ9He_yDta@>4Drds*Ecu)ff}#*&+#4zqG9Ah!9pH? zzp_Q1g?XCV@7>Vf)F`I9E5gaemB}q;im5_*N7Tnh1USywSdYh(T~0_0?RByRs5L-J z|4REju06SU0rn9f&q;GxT!nO_y5H}As`|Blzz?It@Jvi)b8O5aFdD$L028QE@f)pN z&x26|0g&4l?KA*Fw6WgnlucOp8;Lj6RG6@qtUCCm_;&c%OoJovjF^V=e{A015;|fs zG8;6w z=U(^ilLO48fU-bIBxN1??@R6V{)+3=iChr|(Uhc!d>fbLy<;{o!2rosy$OmFOo{(& zMKCx?&wOTQ4t+wqRm|fEHWW}9mr)El!#yZinTWXl}k&^oQ z`UoJ3V242Qd7aE$t6MmsuYpa;$?BemZCaYPXOWJ_Z}P%PvDqHOCBvnu*#Zcx>L^ei zR5&GQ7&z~_k!i&j<36+)9CJ)kr9s@MFzk~*meuG@=e%7@?ytv2q%4hevh6lC=JkCZ zmF$WDt*K@G05EA-gOZXvMp{M3;+i++Lv$28XgdKfhi* zJRPa3#tkU`#ZpjN`2e`(yu3WpRT)NdeVuRo5S}<}@8iX9kKP}(p(jwp4mV<6Z%@$9 zDs?1#5PQrv7wiy_x_9guOn!LmX;oImh2;GPj~FpmIS2`BH3UqcB&9I$;B;k_WwOlUFL(ZYrUO(j1+zmW}R|KMN_R0WlHAEgx! z?_}afcQ*kKrK+krF&_d0GRVRRpzakdL!$bt7n=>V$wU*`$cTwwC&cqllVJN#4EA~n zQ-BDBwxn!Ml#g0z{~-jn4LB1}M$nl1gI2M+vZ`yA;_IL%TmkB*V`f~+ZB+fbi}Exb zigy?bq_YOOvyE#L$ZJCQFxSPIaOtu2-3#^~V|=A%|7M~Q$l|~_CfNuA3XuCi%!4oE z@Xy>V6_^ju!lBTZwuND86 zaHlLZvoCtb>?>4xzi*-p2ngsmFXyIqky;x87!CO8&Lb1tb@w4u*`S(MQ$;jjLn2aA zrQ%>1qQ}QI&^*$|SZNwGAmsHgT3pNy6@dB46Q+sCg&wI_{t{gg3D$rWq>uVNqN24y zAjEv7Sva+M0l?Cna~9AcP=REEu6Mw$AO*C~{`aRgD zk^Dv*0Lvg7+YZ)8YplCb=Xkid>A)5^*XS^aS6D2>sx#l6i+5mAltN*9hvm#Vuq}oBCi&3Xxa{PaDBYB&M?FAO_oZkjhe=y5&6hX z_pMOL!bi{_lyUA8^;wv5br>^gP|)QVXqKBY2jpL&?aADFGs=>N1TjMTyQE*sF(s$Y z0q^6>SZQQ?NkxfnVP%ZF~?7(e%8v-`&djd*vO7dd|UhZAq9OMV*h&&B2y6Hw2166<)MDT z7WD4--lCgW`W@gyCo7af`c}lC)Ztz+uJRKmSGKR-r8S;t$n@Piu9a5aIX#D7E&bX# zk?w8fBs&+^htoeb@>U9s@mxk?+>0Tve4o!fzvZEUH1d6~r!8jAti;njXh zc_Y!a-TuH9<()zB< zTF2e$R?K)Nm7BUUK31iNJ-z91Uw+=E;(s;D5}~SDtp0*KQRSYNDY@d$f%VUbm}1(h zZK6@+tv*@$*Ef}pI(k&IR2W?1BbCFrJ{!Mx;(L>+u;LP1=OBO_oN zsWlyplI=$nJsN1Se8`FVh;#4$J=D{%#EpYoI@7y@>(LwU2tHI-J`vKTrRvzi%sLkoEKyIZC?&|SE0eGeg3R;>h{QpnLS`mpzv21P)uqWbV=`?9IQhY5|NR;sM1y? z)|cH9cHO1~1{auZu#t?|@o$cp7noE^$tz~-I8KF`y!rCtAdtRJUFYrYQ_YIqr=}xL zTBz$qDJUYaVuXrM;!sNIZM(gu9GH*N_}o}UYp@JM1&Rb(EZ=&*7Fzmy(vhWEp?h ztHIqEJHFrToB2Bqi`b7gsE8ta2-SP;fhg!m1C*ChmU9WI)A1^_Ao}jY9 z_63y8du`V2`VcTffKEj2wf}l!wt?bF!x@KMs&D}<6nt^R+SQ zZqWzcrmBnvU+A+As1I2do*QyV@>ma=6ItZU!`guOvnuSmDJR(%*@JcDW?1^>g}?Mi zfbG^l-50ACf2p}oRCWhPH&Bvcy1YCGRdg%i%&c)Gz8p8z3y0QeX*#Hhg)?A=1eYv0 zlX7)bBuhC52H9}R>oc3Lq%B`fB}Pqv`4)^pDjZ1g40s~@bOH>Bs7!X{O2?J+?;eI3 zBg49-m&@PQ?mhLEb9SA7O2cU{07G%NF-P!&FRk+F&AqfB|MA$&d;ru@`p0Rh?PW3X z!(6ckhLiruAYc!C}zVoi=wl`1n`5 z(i;r^rV#ekee$hW!im-&$Q5&G(3rFv>6-aGn(KQ?TGPUT z$Kc8*xvcdzWaf4a3oS!?xCrxBexr=tdGQs~J<+u*3A{9< zn5!pZajhj5Q8?36xB#eB8Sevs-AWqQwNw#UWiiT1jUQBzNKQ^Jo~~fFhnYipfPbe^ zut{RKXOMHa?q&Tqu?G|O81`(L5iwE>nKv9y!p|;L|ME;q-SB@7xdgHvV_1`Sh&{5a zgT6hM{rRzAR$9#Sum+R-ptAqISuU;ct+?t4xjwnZn(mQ_U!69}pjAS1;I8BLeERVV z1~L$5Shix$SO!!VQU znGjPIlndJId8t|1tSu_F*Hinlk!_iWeOHC}DBSu^k_K>Bpss3eXAPkyHEW<9Wj2k? z1ldVxrojY+NOOH#J==|M$(=|lh|qVSX*+bfrKgtZ%ZF>aoU_JSHT4qVOCoB&%(2{N zL~YU^Dvk6K)L|XPlGe!1SW;*6(vmY}td)ySD0`8x*fe^R@0VhS^g^fXHmWUVoD8Xp z6b#!7X8H4#T7Y3P`Nm+3cDv_o$nbGX)d4-_lxPgob@k_rPZX_?ZV@yjyAp?ti#Cmd zeZI{~YJ=76v;uz>eD{RMzrHIts8BMy5DzfOf7(X$@S#5>GuS>^<0ktv{jeoSq%$Y? zjs=12^eq?i&)NPix9Ds(e5+(!=-`TojM%5-Pe;Nr#()F{D3HZX zo6aPs@Tu2y0&#Ql#b{qsRnr#h{kN5(y|WMi@sB!rg#PB0x;MJ>{@6H{BBopz+4u(J z_6>fLGr>A-S`Ab}h3pJx#;QQ5$X3C)wuSMtEKdQW8Wx&y^Kv#Jp-`~*Q$#_HDR79X%x+_4c8M-FuqnT~x4_*St* z&FdY>xYRn#4{C(BrxCvrP&pSIZqj%m>n0C8bqJ&GooQiH@uidrFR{COk?9M!4f1}@ z>R^BTvB~XcpVc*j33sFdkFQldT;EVJS_9J;+@V0*7$GRZ$zy(t*4g ze!z?&EmcS+8JpD z$(0En5`82N;$>HttTP`Lu$6wIX+8SjYm@#q6cw$nC6E&3$O@+5yKoV}l3OJKuSnO3 zDXQ{_zkz4HCN4IX4P-NAMyEre4gh4zjQ(f>518h~jwq|0bTBv=@`53;oSie|pv)GV z6s&+@2pIIrKVxza(hQOy{hT=ao?$Cs>*}VKEBT3vwl;LnlMzfXGscb1zo{9B8t&rp z?U8wV#N(eT7qw0vCs-(Z{)?09fPLT^(@LQ7)NYFL^FYDu1eY3OtDk)+a)ru}8X%Me z$Q|&1cAV;I zQG7yCrCN5|A5y68Zu_lpq*XXa<_{}oXCnqFV(k9NO#B;S-slc%JrYj=Y@~>$2 z%U|8#mK*GjurAlMdL_9SFS8JM^6p$yVAI8oX^L>V^ZbA#0SDXvxmEyifrK!DwNXno z;c*12yyLU2j;Q?|RQf8hwc;JjO=8Qz^EaEX0G!leqXMq1zXJm|71`|;lw+=L)YXOu zKGjz2QiZ%2z5ZsSkXgci1xajUQ;Rzl~biTx{L-y7;y7X`j2B z(%-qV-;Omd&+5T_L~a(5M@7j+L2Wj2VrR z(yM+%lj!!-0|Lif$9^Ld187l|K9t92>YT`o0eVwYQ?Qg{!j5ux7|*J5^Oy!+Z+o(2 zY>J4(Ryn+pd9CvqrDHk`%bgSnR&6jqgJui#u;Ag8gSw7R>);?hXz$TXU^Yc_v|wF) zOcMGSKZug>BZm4GhB;_OfWZv8|4x$u#mh&Qq_rPPxCix;J zHB#=*R`{h1P0tT@cVtP;pfgagQcpUU>~r+#De{Ns-D?;$FZg?CQ9W83iSD6t*?o5h zYvxYD6pbEx!BWxO{LVas+NEix+#>E10x|5hSM#%V_Ep49p4}R2EY7*>W%8y~cY5%- z_b;91M&H)*WgF*9>CWQpdh8H!KCuk%KH3ELGv#PjqBY;YP#daOpNY5G?m(9wa)+y9m$Q6mufEhgx-y&USW zt;)z*sPyut)ZyA@?&5LQEH(}rZn=iWxnsb6HzGe?`ICK!D=UKy!xfW+a58xzm#ga87Fo|Q%RGVyMMrV<_)>6|c4`G< z+lOR&m+U(q&42kl*=nJPL^+a_mX?B*8}003BeERYm+hWw`QrbnYpLJ7;1F~1c>iUK zKMh57*}juzNPEBZ&8wIo!h@9!ZB^EFN6`TBvM`t>1J)4fBaHR&Dwx9KlafA6*Z)Gk zb#)~IWur-7!6~cHn4|J^Y^GmdRx$R9sg|L4AXL-c?tsh&)R>NhQ&ly$67u6J2U{h<$O{dZ5g zt+S?(hwWc@z$*n#HHb9M7%ioRep+k&D#~kSZ5$O%m#)Na zx-yu300eBg@5*xT$q z;%OHZ5fA5-Hi~PPzQ&>#Wrd|DL*5h{lPTv_u4ys(4Z;<)wbo;4jIL`x()boU%i4|+ zKx0o($X0Kaye*b1?FhVDc0HJw07O&JRM6%huqeW<2Fye&E3Gt8OW_{m9OxGR?81-$ z!1v9?sOdffFC$dN6u8(1E-$p5^7d`#q&w5TU}&U&BlL&SXZ_YQ%_M$OeL^2(v^rfA z?Sei|ch^Fe{lX=ZaM6WLYjIcoxL)pbJH<^W7SBm+{&vx_)ZfEHDw5F8%8Ul4rs5+} zCZ*#Q=ZdIEWybq}^$(I3c6dRF0ptP#B1rFGyBt~P2yDu4DpU406|W%3+_ib`^Qu1k zmNI9njDdOOL7B<-&9MtljCXys_G%n>!=0N7t z=NMhwvXF)l$xw1%{7(VG^h3bq6SM^%69LK&y4}Gg2vE%P7QSB+<KPq$?!Np=}dbbt@vAwaX>Qt+(R8Xs(m&AHn1OQe71M!@cS*;KB^vBL*%ZmF~?24sHiWAlyxt3idVrZu%`5!d^RX|;4N9gFCE4h<+X|gB(;v& zm;VktMoOucPED0l$HOnCT{srCO(ow2ahn=tiD;p6paui!Pe~Hm%oc)c#~Q%o8!8a; zb1#8G>i1uck0#I4H0HxEnE4szl5rS)j+y;JOVoKDXYD;p$S18$R;T*rQu;#n?f$ON zJC24Z1J*4a_srd-T3QW?s`UL$!%1mHpHS@o-aon}KtsoTjqE;^g(Wcd;F{Ddh&BJr zJQ=m~T`snv+tzpi6F#FXZN@w^$MO4wV7L~>3np`S7BF5b(9?g6E9~OHm%8pezv{wB zZSpvjJWZ&A&L{D{-a5f8ADKrTeI3V$e4$wwFsmIS=7$)F+IZaE-64<>`CI#G?aE6w zQghn^sHe$_Uq7{4S6?%Bh5Hn6lLXj6h@!z?KefL-n;wfuk%T)!|3n@(97sr&$Fwc< zq5=-arcu!dmn**JNTAepIlbyPGkVC2h_h%4Zt66?CX)Gx)YHT^ed`y` zLRn=-t&)A~+4;p%c|7qF+*K&Z)J{8T+&i#VifF7>Flqab;`YOR#<9M z%*k*Mb$|OfYB%a|pd)HHrZ%A|%Om8(!gOoP_~#pWk{FHfN=4~ijsD-EFCH@{>ao)zzxE`9d#1{Ac&nE}7%Cg16kIw_=6Ut*`Vwy0fwg9mO=6+7Y*rx(1Xc z86lj`)goSX3Fj;#4dXWNEa#I~)5<`%4i!gVmxMbQM(ts9M>`9^NCnSimeb!SEU>$X z6?nf|%lRNqu1<0(_X%MO+k|HB>#y#Ddwy}e?2 z?#CC8K?)Ir;ewq|zpmJ!vX#}iPg66PV?#pODSMFJoF_sxZM)m6?jvh*<cyDD(?)I%mdZvFGO zHVjUbG-PO4Dn2k*jvu6o!Em0&?q?A?wlxWKzg+}oI%@pa*!R@$;SgYuax`$>z< z(Pd;Y)Ll0+Rk~WOO2;QwRmkatypm0$R@nDs_s3#FoS@>X=+EN*)?~xUcqIkr0anT^ zYTOouS5I+T6iAmrTZFcAKNpxMa7X~8kq-Lw`Vhe#^8VtJrx(*qKtf<)7e!bB*N+1o z*=niR_Q`CIWNR{v;*C$ec+zIEQN_* ztWsrG;J$4D53 zeV|+QDhDrXX~BNIPsqdmsA#E&XY+}#jE^Y=$??Fy0RqFeOvAnmICXffXKI5eE|1z_ z?oz=7zVdV^MAh6am~n{V~ApR|;o zavW|F&PC}fCB#`Qg$*$tSG%wMR;6s$?j-3oL7_@yvnHGA6MNLMhjRF%Vx(#AN5yiG zjnTVg4Gae*%vrdvKEL>N`71o8|KNiz#xt;$JdL&N?_(iOxcVJEU6dgBA|=ZXEWosd zmW=oPGu7$GzJ7OnplwPhot}G3yPlPTu<)fx_e(~XI&ZkBV7uD?2t9n}3MFUi(~|+n zcix=v2L~$pFKhs3E5tv{D}bBUJf^;>?23!i$wabcWIFmWD3vVn323aHkj)hFv&KINNgW z89$HjmFx7Nj{5mckqfipy%kdjcw|W4a~8k^5=ZMDPSOTq?h^o^j3KL(66AEVd3L=MUm!NYE{HK*W=&BclO!*y)z{B56g~U@yM9(k@K}hsPNL)w4M(P_>X%0`pIE7=yKzaOGgLw^lLJPKv|eQYAl7-*ar7S;vgPH&J4F|X93+T2@IAvF`b|p{XqEmS;@&%& z>;H}aCuvwM6582&B^i;Hl}azNvPVYt&T3G}<|QLqBs+v`5wfyLMgv7eR#x%7KkNNH zzkj~JbH2axJKx{$oX-1v-k;va>p8B+b=|M~b-UX9BJ|f$-{==Qx0YBc_pZJ#*?RB} z44g#q8ykD!>Opw5aPVWC)Uimf&yCz!JSZCE)kT{{nxc{_&kG}gD=;`NX#el#>~e((GO-Mq<&mK)nm4EJJUw$E5H zLzZ02YxJv7Flu-)p2JzuIquT(O5gQk`#74qGsV{xZ&R0WoWjNIHCJ`aXbz$+N^~A- z3)(z77sntL+74OS>8eFg6Wvmu*(MxzMP^}hyXWIYOIXB;HQMvzd6c}{;|10iQJ6N} za>nSd=3!aJf?OZ;h+KqF1mm^lmDS%{?G*PT;zb9F4Lo-wM`f-dzrFfgG$G1Ltmh-r zMDE!sey(As87pe_Owwq2vyNxIyTIn7Tbk(Dyvx784F9cKc)XNqKqQB~&$~>`1kFgQeIZYd&FVHP2TzUd=97chv?=iVWPqyEopGT|G2y z2tWI@yIzi;4aM=>)LI5|%jWajiw|}~V0+v}kI=)gBqG zx0wz4DY5?c2fzC zDUDj2VrsmTEF0BDrmv~6KFBdn^%@q7Ol0*{;ouo6S>J+Gh;*4R^{U~JPdEkXELRT8 zWzHc}PleFcxLDC-$EkoA)AX(?^jnF#5JxtQHbEgFaXS6&tXy-qHpi+|wz$oFn5&q# zzWQ~uYnA!T_3?Oz!oRef_S1chzdYa#Uhn2S?OB#~G_d;f`ITY#^ACr#%ZG*B5?7G+ za8n;#_f=qc_c_bUnZ*n|=ZoB0h=NbN{ z#Lo%tSqbm>mgf_M%6-i2 zw&OaH-f^^P*x$Lzc4MDrgs2AV6`>c=!M5{k(K~PH+j01({+=-JzPVZ$6gu-e;)Yn? zb^T+KVu5FAJb{J4s3k5NtT<#c6Pe|TtDN+<-ExyGicjTJ4x2LXt@PR_Kk&9ScuPWe zc;a)Jhp{fap*Gf<2&iZlQ#e9KtD6{lTuJUhH*mdrz z47}M&X>I)rh8?73$PQnvt*#ImILwpW)el?iE@o?nZScP}(bMQ^-~PO_TF89JosWat zpu?;nwnIHr6C*gFW7tZ!IpQ&X)~Q?^yu-kkV)zPC4;53cW6Rm{G|F??5}et3xbP<;7#&Ss@D*C$fWuQ$E43(Dkjs9$jT z9{ugW9?n=gPLt``r0bi#^+pa$36KWw2N{SoYMWb5IluT}n6Fa_8Z5<<&PA5*63)Qs;S@oFQRDbk6%qj3*Xzi9vBe9#RKKm3No|t*C z?2TT@kv50Q4+|y+I(Vx7SvGG~f2OxqImYE3tn^(yt6FWSSBb${J=&Z!nAsgqmowUM zvGx^9o|nMpy>_J0CcPp(Or0OW$0h~{$)$%L%94rKcXQl?54BA{m)5F)Sex|GeZ{5w zC7h(Bf)DQzyg>&zf;#_O>(^K9UYhN)?i<1kjyS8ewDqWh@-gSj*T-`By)VSRo^Wbc zft-p1_Og$uQEJk=x#JtVWt%ZhlA6ksk(KoYZjMFFzTAN&t!B!NZ>Xv3tu!|Z|N#4qR6V)KGgPlJVN5jw5VYH$vj&H3@UI&UPv4!2Ed2k zh8GBOh;s5t8;!j@O8xACP=btWc}vB}xcU2_v+ZM!Aql@9JdjS(<(cb^Ntkmgl$Tl; z6%P4_;2qK8>ecPNM)%M4@V%%9gCjK5WJ*+<0r&aCqKU-yz(8_KGuh!{-(>Q+rHTE{Mtgo!K{wGZ0_bmau2zu z$LQsvbi%Zg#ofDpU8-Z3(}_LJk;{4>0=lHvCYU2+iw>Kg!AL zN(KfsrMOl&REp$df)ir*3Y(CLnXUn=rd~-ulh~GT8qZd(Ul)*vaZV5@FL-f5XTiO! zLWj$S=T}4I?gG7CFB_6;-c=lN%1;h^a@g+K?s<1@G#@0{Ap0$>5G^Z}`+}+Rf?Nz- z6pivRyzkx}f*%w>09gJsz4hl;#y6zpcUc{Xtp5a09h#)5SL75PpO1Ip=E_Vm+;p^7 zJ@qa1<23=_Mh7xpVmY}NS?o$J-)EJ1kLNubu`!1k5*A{T0w^M*X@A%`Om&sUK2x%h zY2%M7jvk;J%co*1ybv*dvAnjzGDFc>RIMpjW2CH5XPkaEnX7tIjr1PEAjVA(*JKY~ z2{YPW0}+v|KKAa|r=D$5vGOamJzlkFgyH(*Gya>8YIsh7 zAJRVxcYkl2EgccHJUUHz$y=4&_s)jNZmhQ(@!^`B1Fx6e;yVrJ~ zXt;rP_P*7hw~0}Ik}KbfHtT`!QstQ&zRgv^Glr`UYzN8`1hmeOVbrtmK%%78W-x!r zb>LnP2RTKE#Cv@2)4Dyc`iduO@T|kbOn6s1EXfHC^wIDvqWs3Bb)X9DEJ+<>SxG%o z*J;@!>nkyzjms2S|B^{xOoFTI=ux%yNb#q<&HTPcr(HOTdQBx}8O{2&Y1YSjDcqBc zZ^jS@_lY|qmuTjYJz|;)TIE-bLLMc<%hSSpYbI6n@^U9`kB2_o_<>B~5(-<_9mF9# zE7&}FZdF38plQ^d!fN1REk-Efiu!(7_kAKOC)0PD98vJRh(`gJ6YvSx?r^g!J(c#< z4G4F88jb5qjJSX#1)7g&?8#J;0!)Ktk5bu_xs*J{T}%38GfW=2J~$e{?JDZ-`MYB-lyWr86|Y zedLhO2pW{rJ#4v+x*eo6^zqOY5s$Y%TUWG)#n)|Sr>Q_XNpG3`Sz-BQqb?qE9u*&V z+12KC*7}jM{Hg4{>npVQzkF?uzkKv7EDYphuvrhKrX*H@oYhs}Dr%CjvZZ}!csA@Y zQ-@g;-+|<^9O@f3921Gor}rzI~19s8%MHc*g2ZMPQsi# zooVMyi?`>{p+l&=?PxE(&ELOc&r;urBj(%y(D_`$Z15&o<^Bf=zp&bDadRF!rP*=k zbX$t)!by7d3(7ak)Kfp<*L&u{sVh?IvMW=-XIXQ)AhUMJR9R$f&+TeTblWAZbhe3V zP2e2jKUw_6%TK+2=6K`#%^Uw9I4)wqJv2EvSzur)vpl_bs4w*fY2OJ*EUpZ=8z5cn z126&xcwsR(WOlKh={Jbdd`yb=AWQtS)uh`L3<5(4>i0K8(-Iy{3udnA&YFt%C0OZYW}Cza zy699OSGmR?g;59Ra#v{+uRf0bePvq@$ZphjduHw4%NDiwiOgw+g5SF8vI&D9Q+KTC zpExEY#;WT3%sldZid6Hv)QeXO1JAjvtJ5D$QJeq1z)mhmnjS74*9^?x(Zp?)w;-)O zn(*~{{sseIXZ7vNQf+mL<(wlEWjgz^zj^iMa{WiuE$waHbC&x*u5QWyTLf?A{|T<| z|B-J>uzG=LLtOj6V8Nv$M^}f>t*%E5-nDOE9R`kke)RZUt+oJ&g%ELo5caCRhH!Z% zWcTaE#aEs`fLFk0F?SVk2NtCYjRs87#ieZtu!$fX2w&l}RyKB0A*87&;p6Oh| zj0Qori<uN!-Dt*5LTz& z9xneqB4h$w%#?ebv_$CwJlH@7b$70?Cwl+-+b#VwDj`s5g}iezeM7cj$YS_ zB%^G=>ehZgT$^<*&-%--96i|Y!r?Lfg+NA@t_)0VpeS7^o2p5az1F$1Z{>X*0TF#S z_de8n!UV>EH?d+CKiB^FuI>8^nMKTjWVHw&S)h>DXWE9@$iIM4Ae7}!+S%FFt?)9^ zEH3v{gnV4i{AhJ;V8ro1K8&RE=+@P`wZ(mfv-$r>&&-w6o_fydjOM<+70WBQMQnup zhRIAyco6>YxW95s_2+&9{ki_(a%T#GRaE74z(hWQa7~yZV4%c=$)PhLG5Uz5pAYR@ z+O#_4`#Y4lLVsAxGyh(I_o=VO6Nf=Y#l2+GSjNpGMwoS_T+x62<2};AL{M8n(}t&5aoje_^#V8ga*o4!beH8*;N^avhosGyh*edl?S?{{ii#s91`x*nGdy#iIPdzXxcVAREJ4 zNo1s*YilDFznO74D}f2sOdrS@2Rxb%)=>BFsVM}L<{V<%;`d7xfymuIj~lE>HH^&c zDT)3U0rdMXax9IV^JN9K*SD{G?3qsHU`}SFm`1q~|9X&fDhy$Hf1C zaCR2xtux+LJ5U;$Ri$=zm(QV~=^y>oC|Y(8eQ zVaypTLnsC!Wfy3Lr~ly*wuRO?AVhmXN2&(7H?Za)jenJ_@7KcO!Dtov4F7x=En4dp zkU)u^G@ucX^MSt|u(i{5N7Mj^vDfB_el}n>PzWfY77-xOZ?g*-nV;15m{jTj4WhQ^ z+qJ{BAoyOs*K)4{one5T0OTdcEhiuX0@{O|AC703XbHd+BMkw9%F-_jgbd?#EL1t! z@mzUzX6@qHkE)ebY*eTzw;WsCPav%^{tW6IEJ&E51=Ii?If54S7vmbG%z-Yi450k( zm_7+_`34?w#$d@#{{9ny;3S(mXXk=uhpAHH1;2UnAc1~HvlV}5)*2EL^5ygGeFOw? ztRn?q7*=lzhJ1PyJNf6h*^3ED4oe_4xC=}KltSMGZGT}uRha`0Du9eAE|7Z?e@+tv z(SSKxwbeUtx(tDPT-djb#vfq6&#omwtI}chkDZru?f!!S_4%}Jv%OD1Nulyo-8}kXu$v*+f z--0>u3a*8cq@+=k~8g9+~?HGdccoR&I>YQIpqnFpc|1@)nmkCcY{3$pEF%f>2 z%-%BVsVz9Lp7)4hLL5M&c;)btx{p4-{c~|Bv>HAlTnzyCasDnM9tDEi#7N^$|N1wE zL`(ntusZ|Si&}z||Hi%U6c}Yg_Z9BFYJXa0`=yzYk~9Lc-O8X;a{Ayl2uipSBgY9o zy4>n?C;{NGKt~P6G2CE#fK*FI1nh{hUZiNfJ+tXAKf7o|WNKR9BqsfE_lNXz~}|IK$C?%Kp?q$`Y9!>K!bz&_(3Qr@kvR%WC`la(5^wvaOj)1 z6^MCyk^jJM29uBF-gizO#IuIx9`9x@aFUTY{e#isO=P2sgPs2$J{Srp9x^;kc!uz# z&tJ^$!F&a1x?OsQGIGjF-UnWfso}UA%20VSQm#ngTC-xZ+6> zAIOnJE74RGaqX%JC?1dr|5LLvL@|!ul1M-e(bqqfsY&&7`3;wW8%HXwJj~7bJa|3v zk?@<~7m)e&-sF9Wn-IE*xAr07MEZ+i0az{?!~lD`N|U9Y$}Ke0`uGH55B@GDE>0np zgm(oF&ojyDuTk6PVBQ|xXJc3_$M=wY4k@IRk37Nf{mIJ;C&GJVX;8@@e7asJQh{(VtsbprU|Ql{sBn_bH~oVSH#A6*b0| ztFKdSBmkC(dkZT-=!#$$2ZB1ze>~NQa*c02ZesQTPWvbD=3?fOaF@@_mx$6P(arJ5bTJRCllcC)5dKBJk7dgHHa_hR*zFxy$8Z-R9wGJcvPtc+VW_BHw_&09(2A*TMlSxT;S2ZF$*?OS1S%?jkVL`;X6-)(t&B3Xbv7$6vEMu zPQ;P7gePeGxny4$r1GVBZn_^mS|8K0guV7YVjkgcRpa27r9Eo{V*#f#PU?p(hvJ)U zzvtMElq>cT_Wvwd3`pTY6TGjo`JybR@#eM?s(~+VQVGC`6YAEnmQa%cs}rEgC>~WQ~2PF;pa)eX;aY9D6E3*$gdAL)v+o!tcPT2 zDE#U%ZA+Q)&B?%sq=+Y?R{1*LjdJ1xTfPw@1!BheOie=bFJ1ng9vJx41(cqy>VpX% zu81S9kyH-V?!){|gFSV3MmL~1I9<$&&@&+Lyp=k#TOz%|kLKON0^f)@>nV@`!NW)3 z23NX$Y;M3^&+dv%opE2&4SX#!*KovZD^Qp32mLxVKc9~MvoiOk&Y zT3;XGzHu5SR5J9L_hP_GYA@|e+Af?rGCwP++`mbGyo*LO%ou1cU}zTVweEC%&t^Sq zB1)pM1P(VbmG$DqBbncsxpsJ3fnYcVM#&I{I+2z;d~J%IJRhO1)h=Zb5CI=3@>2XW zl~jdy5vMkhDs%9}uWz+By>K*D3rySR@tCuXa8b<3b&YTqjJ)-JEz%{1RFyOy6K#w9 zYTi?0`Wnon$p?Z=T&*VinqQF*wtc)WFdB2VX)t(h|0GEvI7y$S0xlfF-l>^x74kDr zQ+8s&zh@jm6%kDk7!QWup)o-;K^f5@^}ZSJK~8aTAWki0<#^NZe&O7MUW~s7c&=cv zz`tZ;7D3kW0Za|e7Dr*pa?eahE@F=OZ$|)W53+f(*Vwc>qnJlF-4p37cFSa{^Lvxv z4{D}BNkr^8L!M9I$t8VP2@o$ne%BiYjMeyKg#e9J`#CkWH0M>qBnjBqpf9c^F_2{b zxQ+$#c3)q*l@N+6{O~7^7-fL50B4i^>TeId3ZKhn2EYy@G$H{*t%TS`Jct;e1c(>O z;?JS zAglc1t1U2$63H1-QJ_-Z=UHrlmjcNPhG$W}qG^VA!>^>md@3*^>aZiM98x&EyYZ;zi@ju2&-dA-C@!VYfa~TI zyes5-c_dQ;rARo76-EG+Jdfg%Tgo>k8h?Thi;zatUOVsQlkE{9Ivm~yJx=Yi zO1u0R9)|$o*v&WvG49$wBdx4OTKREva}0K6)N7%G!WbKpY5EMm6=ZP=>#O6CeqpnP zgIVdgxd7Kx_pU(^jw0>bOyKDwzrcwGp6!|ZtwU52bW}LRQFuc-M;f1|s|J@Ls$G~A zKuZh&29-cCViN*JWq(i*H5)$ldXX|_*VuC@9m?DAERpMJGU(@kkHinf_}h1ST|8`1 zB~e_Ee-9zGk(H&#`ID(h4)Yajbv55WSy9Mn`yfM{ThV3KrMoa^r$(Xyb4WbP-h`bP zTf4%?b0A+Rveg@d$bjRt3@~hj@2nP%b zTiC-#ibNRj;{8n)uweiV-@i@~Wb)WQ#(0}y4*_Hc>R3Zg^Y5rBkdRdP9~4M%N%gzu z%&D#;bi0q?nrmdgMn;d*jmWvN&4SRw`UZbV5F9)-(LwjZ2O^x()AhDDV~-d;W3S&S zJjrd4a-EUkHkP7jFh`@xLmL@^Ts_rPr-VEETKct4=AA>07(~Of4~Y|f(V7~&`7#%O zA%RX?jVL$ey9fslq+Dnas0lJYm^JCH)<#1i=!R5l z;bmo-wUvlZi$4cg#dx;@)i=!?60I&4EGQsAfJ|NQIAO@?P(pfcbD*KU5~~_{_?%N5 z&SbOmoWUj=W#V$Y04;*x_D0ql!rco1nw>|Z?$12A6=FdSvR_O&^&bAriGVwUE2OP3eDKhilbYs#PEjwhBQ;ju?*iOQWIWI+H9tO+;K z!&^@jsc0r;8YnD$84;UeEHU=xASV%?ssz}XQE(D|8rTKEx-58hsEIVSbLf};jb!k# zcj3EW1m!i6rohpLE^)!cmrT|N>b3Tz;PT=4L21_pY>d~jY~x<>(#c;RN==m2Ll3+- z+lG}~ByT-CyX+5hyD0X03~!T}d3y-gmXP~2YKJh)4b&kqg95G+!SFkGY$-`S3~m%F zH)~fH!-EX|2P`!twi+(~ggJ&Vlr}XreZoEs-e51BUXVIAtDDy`VD`f2g}M@iFE~xV z;I9DzLh8xu)0_ET)iCxf$$U-SFI+iXtxU-$Oyoezhv+1sDLkkVff66@qVMPDtCvkh;IgSxpI{IkevPBFQ~8=5^6 z$@8DT#lgzXs8#&QL^fTu|MPoC{r<5SLD_Aw+A3yB->;@~NGDm9w8cmLV8L0B^$1Ty z%*t}beFkg`mESzRKWQ&XTHyEI6K391c31kq`=l4qfg0woZYvx(JXopYYC|v!jAP5x zj#f8aNq^_K$Fu1n!$#dZjzO`)b+tlnGeeHv%oK^}m)mB>yI+zK*y;M7BYOjf$D%1KO) zgAznk(Ol;e-+(d*Ihp9K;ed71Fy2@v44NY358Na)FrlCWH3{tFrIEv`1;#Siarazs zH(nCdM}7dUV7$Af%eF9`bKXs7NjUl}N1fxtlLsG1oGEznpeUWv?b6gUc7d-nNKpT7 zyTwn#dKO|^2b@=NF0Hg&T_1o5d``L{>qyCM5*gbp{-i*vR_cfC23|!PD^Vs07j3T) zuC6UiUVZA&OZTv3gGhDUKn$`ff)W}V8=ED1$Cf!_)m$_fX={@%8mcr7OyE~1y0HFH z^V7EmV2sd@;BHe+CIUl^+8}+u2#4j)=ktGU8N}<8(t!p+!}4%9x9U)0V&dsz59=V) zK(e`koEpccanAeh2XSly*ZwY2fv1Mt)lhRP-56H~M`2*#tZA=O45} z5GVY`ThIl7{RZAA;t%Xj>O9b@kn280f*|{|*wU!?FFJqZ=+7h4hQdpM%IdYdlx_lQ=6f}r#hle|R(ssys=n&bZMca<4M7Cp zEsfkiwqFh>4A>mRn?dLlyXX$?W{98Mf0ptCuo5)aEt%}cGk}sn)MO0>$+auvL4rN< zG{Sg|f(6A3E_;E$w5aHlWp_bALEg|vS}SCG#90lmElA{!BbZU~JA5vpH=Cap$tZ-p zi&WKdO0{OLqH`IiAVETW1jHEVenZ4J$Q6)m8lF7msz2zklQMEp1`}e$<+yt?$^rEe zac@xM>w@QWj-@($JOmK+;qXcagoL3s;c7W zQXMTVVS%v0R6~QlzZ7&>&Tc}p1E>*qwyPkVrQb`RPWP?*{udG!NjWDUD}Crj{Dc(< zTN?WxnJ!IGz7$a)<%(vVbv1-qh1cl(XJ&~VkC~N}$)9(nzE#RmHiM6>D`babg%0fx z7!JQ{w`p;9#nqd3{(jZ*so(f8N-rdG7d_a`UAo=YWos*aKhh5Q2of>mBk%;W&u*$W zK_&k7?IuWR;q|7B!ADTILzqKRoS*K3V2PUjVEB2)aHCx)^()a+Alca4*r?KzP{|{h z6JORig7qK2DeemyXgcsz3;%U0`L0c^A&0jA=)GX%>`dyiMT4NLhDvJ(H>n*NnANrf zX*V_P_t@Z?J>pP4+1jxryLSr;NuqC#QyR-+(;0Rln0fd^yGL9j;Qdfmd4rA4L}A!S zAM_EcwevI`I+?`s3VX?nz;~8<;m7xPaiw1D6^mFHx0hrzd-rua)JUY&TjYKdO?iz6 zQ6>K8jezFVsA$}=x)4 zk4U6q*Vb$HmF(|TsTHPS#4v%D_%=CBI#dkg#JK{LhGYsnFGyS zg@r@AbNhZ+J!rPlujg*tI*FBaIa*%c8_YMtzlh~B1iJ?38~+d<4ZKJBU0n$$p~e_( zk6!-^I^geZU+9@5*MG3y9=nb8?nx4b!P*1WG$5W)R0kG3P3E?Kq-f`GdkYOH+sQKW zn5D;xC)8Fl*U^L_Kr)8rPbeugQeakug>_@KFiN&(%1WcD!nMa$B1h z9poW0SrepE8*RG76LYz&1J}y*aVnE@R6XykuteyX)1D~krP*-vGWh|fp~Do}NmUH8 z^?>LVq(8Y(pA)%RM?GhZk-LZC#b9+&mrfr)hS(7c_(Jtv6~9QHS8_~zu`@Ksp?%d+ zNIjvQ92+`EYF1V?RS5i@W5}T7bn)4DrFhY?dyZ?G|Ii3k(b}JiHD)}Ng!cwg76s8QfmVn0B7`}J z)E`;4u9sY{pPhcX88H`1C@MQ5E5_;xx0e)M0uxxgf*K{CdYi1Al7BA$Ger0Gdw6b{ zKHJ~YlAsB{>y6iszSo)*c#|hapI*#hd@mz+a{<)}0XqlIHLVNtfv>!lM8S5!OnTIr zgO&%>GajTwe5LL#mbm=N-snuI$m^ePriX}bt;6!1W$Di5iD8mljq*1b-1I~9wj@10jd z^^CJHnVos(&Yul@*_ALW!S6;Gy^w!>FmVLxn8-QM3nSd3#DDQ^7GWK2ee`5_L)k$C zRhxnB7`-tfdUc$W%Z#&*)U5wD3pLtm$0$a;u{8+C(DOf>moznj5G58y;hPt%=HeUI zT|6h7|CBjef8X2SObaCR_L7|iM?lovCMqM7(I6#R&&8xY>BIp)3Lg@dS)rEIL50i>AbV!OK;jK0RtE7;y_%(AH=3d*Vdw zU>j*5?~$$Djz$MoP+&{%;%(o>jWSEaK!sJ}NbHvE-L9>3BDvc0aO!WZ34utd_fb00 z*7mzcN}n8OFWcz3)E>#hzp?TjBoIHW%$arF=_4k@<#W-6kDATy|70P^j^+Smhuv5Iq!hU@))8 z!D4Teo4k#x4Dy)EFQaaLo?RPe*n$HZZh%h2t6w8v@ZPijv;A}L4#gey-(Ge+)?HB- zu3v~zQe3`AIx=>+J$v^KitmS4GduK41A0IHHaIsCKC7N>nIxZ5`R$iQ(1m&_A&RR` zB=ysda!mkwmS@+0%tdInrjYR6JD`SPw)nbd}NRKXkmg(3xuRLiJNv z-S^FVWR5UpO)fRudUE7YQh3$Y`*e{tLk{G9@<&^K#`KTh_by4!VRxadQ}T@EA90dO z;JtLcmOyxaGo(9;WQLK3XGyiCo!@BA)uB&B>7O%~5FK~kOZ7W8v<1y5B!XJ{`h*SpOAq8Z2vQ|(74P+Lm!~|Lec;U5gR9*& z8g6Wv->qJj^6VM*ViM?X2yvn{(r;!w#OIm@4m>gV`j;# z;ZBsMY){nWywZ#D;G|ho)r+3#<^eC8_B^`(_?v9Zg(}ep@>3Ulm|5Qs`)IDzbDii1qTb=yZ+4uE41>WDL``A5zZqv@qYhon zvHa0^R;H+L5f3-PvLLP+v3?72m}oB)R{Z%vtar2jypH&`RZml(Cv{SppV{hjdgI2! zSZh~Uc&TWm>5EDCZfb!tewxnA3DKO$M;#W$ZgnCC(7k$XDWVQ59pLDAqm<6mH}{F1G5b(wE(FMwzLKKI`W(GgxRJ zv7?ddl~FJ+ZvXk&diiMmn^A8^mTO<%Pw$eI5YVMpu09n~M4G^gv4(`%DCGq;&x6wR za}+!u-KGXJbKll?idft_JWSD95YTkmd~9p5O@emVT%l3Mk3l54q^8J3-cSxPOB5nA zn#3q;M~v5L&$UE8B{BUEQwvWKy0GAcy2s4J4-F`U3^MtCvpG4x*DA9sA-tTxybsvz z;?qL|yes_@WH({tk!SXLoRob7nG#)=2hwf~cy3)h9v#MNm(Kl2?a8D!bZ2YXA(lX5 zwlb`gJyi6Z`=vLwzkXMwoV|uJrT>+K$<3PL4tf9M9H(0n6CXBlK4orRK3(P#&nU_m zZKJ|Hq}Sg5u_3P`k0IH9ST>KAR(G?Snp%}Go!Of)#wVob5jx513@?rV;>XmRiO?f* zM0{sc9Q)f_tQ1xWk%3W%>*CwufM2_?8XdUx{i~E=^A??2=H~Ba96xx!9h`coB&Rn- zDxHybm43Bz#EEvpO}IX?t#n%6uqmkb6U^w*FZyNT;uPFPkJ+S_wM1^8+IMkpV}xKX zeUmkshZllcfBqCkJA}X|YkFlT-{-eyQ;w)mDntkV64N;Iy;E2s_8BcQto^BLS^M2G z1hb|zqBYU{FDfc3n0SrRCiGZ|!{hHBLM(_Rt|crYYk^1`QHvkC-}w56E3rcxKI_5j zxY#iIZiapdLsA_c>kn2F!y$ViLGw!6p^!+kbp&c2#(%B~s+JH6cJ|bp=Yb*D9&#z7-ykx_5K|>6oD79GA+zKZp)k9iH*q^N6}XrouLrNt zq`V**w4?EZ;$D^4meGOPw3>Ti9D{E{BXS+oVK@@dmP`xi`5nSo*&acT7T7`m>fU;j zj)7JUODuB{4$2>FK+1_4JMHo9^?9_hcj~kRGo3^Bjfuz7?q}Lfy_=jlnb7b`{6+cK zxmUT2?>ryG$ay|czw}bnDT0F^WObIx2OmYPbK_xT!o!#LoD@BZG6FuDOKs`Sj#%#$ zFY-phAAM=r9_-uV-Kyw69>8X zF8AF9^%RN^#$hiRIeu_jy3%MBaXpy4KI$CAu;j5+u4l9Rk~;RPNby|$BjYGoZ!6rc zFqrx%-)>ic@x`X{9d+6g&W{eTn~;}v!sV8ihC|g-zCY}G+(IkXk`u|rcicqP{Pb+; zjF0P#&LFSp0FRl(5v48Y#v5(StDD!c_Y8}QZNJcJMsYy)RD+eF$=-F}?(`m&)FeG4 z&K&vs${bBCEqoiEU*yWpH14}AZFA-g>v7nGWT$x;7P9FCYQ zCUz$Q^Q+lgf+bJ_jK74*Z0ceR6fdt?qCMpCc)}R?@x?7B_vf~KAx|*z@-Ds4AJoZ5BwVrEdLd7S{E}Jcs_)7vUT=7W}z?Wl>T)S!WT|pLE#N) zx&B&TCyRpdTQevAv%j)EoKl3V3NJXCcGwn*6~G6e=Az>iu1N8B(+)vu^RLoj{bev* znT!pONJ|M`A|X_7!3t1&VLVeu2~H7wtt}Ts(_z_}TSZx9BqXI5}5F zMUK;4Hm`{Dpo1fq<2npyY4XR0K9M3OwpXu^FH6U0y(wyDP#0Cn){QcST?3s6Y?wr}J-cRWKKPVGl1Z7UtMPcp~#VLJ^&3W<-53kzj)6Et;|Dky+_(Bn6TpkYnNBVJaoMTp0&>Ji65z z#+9jJtpjVLAbKM;{4BQjVdDs+)7x88tOmc05>LwPt;4Z^DhaMLtVc%H&qQe9-W*Dl zRZA5C!x1nbg=Hisz6`Lg-?@n(`8Jf!Hofexu0d| zw~6{kb(mV=IGb52RS)Uks=(Ph`gzA6U+;vm+90(?C$CqoET=z5@H`5oX#;mLgpLRo&RHlN=SL;Q}H9_l)4d1@j|q2_qZh0ZLtZOjWCZi+bcSm ze1CCN_@2l1{#Oa&`*kfKt&x*nUOs1%@*4Xc5o9r&NH{fJrv`(O`ywC6pZ2u5@r4mr1>d*2;$k z0^bR>G8FBu>{z1%p1EiVkmd*BCF=9hN4S}L`}{oU?}6IWUttVJB@91fUvVGdMM4`9 zjzBC`s&Tv0%u?%FyMxP(e`hs*qbNQ(SSq2#8sS&)h(Y*+x{i?YB-feS#*(n|Xvhyh zuq4uvb0cnten`Wv2wN`Aq z^hFNu6K)pM<9b4@2fo zZfZuiC+1CesM~@p!v&K$4qRMPTKS5iW85YGu4q{RdUEiVfXs33!YjR#j)qG4>(1Z! zs>YO6p7`jJd|G_)+t`CbJN8L(MsS8VT;NqoSZCIxpc6W0^LaWPc7e$O8F%drAn zE0wudnF_BxvG3gB;5?+9@@0%^%K4}C+vcWbM!6EDwzsWiM{4~R<9Y=pNfGL;V^POi zC;yBcc9uEE<*8XKKXPq*#K`9l8@iSEKYv+&%%vnE$w@>;1`F&nWPU?C!^!(x zEQ}A(^>A(TYoF7;Wqc7%+nPA9X5W;2!Mt|EPw%7WFrJGxE~Pw6Rn)ntpsA z8z#gT2r;l)!<%0XoXLMKFPbGGbc!n0Rw^#Vrw_V)^u`Q?Bo+=s;wKpgLk&x<#aUUT z#{dPJaHw&~Eh(WzgOn&8d{MfDxVS3xV`0)oULt}91-FRpM{$e>KbO!sfv^Q35MPTR zf^SQ3Nr)-wugz##ZISs&vD)Fge2%aK;dddX!ba#jOr8l_I614AN$;76q0F!l$vbyQ ztSRQ@A*MLSM0JO4;=C~jxE45vhm&s$%F?ljMVzKB`GVnXdOoc@-W8?XACKUQfhzUS zRs?a0L@Qd$w|JEGBE^Sa>`5=o#l9v?Dv3r{CsrrWe8WB&97gD!cJ_y5Q1QZu_qO}p%yW$t;5h2>7 zP~8Zt3YK@>J^AG9-8=^$(O7t!G#Hra_hwnMS{H)YhB?mE;tDZ8UN$e(PKaNr&U)I} zxC!K+W@mPrKW<+!p_PV~0nxUmrlvrsZZNx2=X!;z)Ta~Al6P!c|AG6M&dHY#Oy#AZ z4YCs}PcejpvYY8uv=STR@Z9rP{+(*Ko1~&h8#5(*0v>kAD(#8bKD4GMp8G58+n3p> z%_roqRfWzOI~%D?UGm(3qe4PK=LP8oc-GWuGQLMRTt{nG95UiQek>9}lY_wgp|gU=8a6l_ zvN$EB2dnpAQ5@ZQ;NjCG5x;lR5ACzgYmb>xh`zqfp-}1h)X|fx{lw?8@GmKDJmhRd zy95{aPz?WIWCdO>;#h^J0AvwVntdN^J<9Z51QG(0T#7q(NShX6nc&Ty@fzd@0WBI> zjR-=-wMq*p++8s(lkb;;|POOVknWwpi_pB$|>$Qu3fA8dHH!<>CwNwb}T zJj82uef_sb6Fq!&03M`St;a*C#V4vtS`=L^y$pI{dtCH2ddGH3YlVQ!CW_|??|N0T zkw0MPuGYl}8|8QP^_Bb-gzJT%iNNi6Z>TPG2&BlX`ePX4xI;AN1B|d(?$FjvFL{(K zla-B{Pj_AWH9_fDuuE5R_i3nLxQoj?JMX1gR>IwkU`~&256XXV9+07@a#jpbJk!a0 zc}gd+{e#2~wdJ)3FX63|wGi_>w_#LU-lj17hqMxFf^?bvwJg|oSs4{M>b3j_4|DCJ z15^4l?&e?C0UYb-{Ndlu)VyP>91FL_z64Cs zTn)CqA}_Y_^sk2l3*i;g+E^*=_j((fq$JpUV=Fnw&vGQEUE2&S#oHd!rtg{$ zsk&v=Jc88f8>aAfGIl9GeYoMhngxw5HA`r+gZ#!D!K}_FPQCMO*r=XmKA&w~w7FEm zui&t)>mG&gG(6c$QrRj)sz;tVYu7kFRC90_!|ozX6;EjxOoIDyI$7Ov+)&<1Fus|< zK=HC|ry!a_BBl~1Kd4HVsIdLTe)#P+2-~kwde{g;1Asx%7-`&QC(ifXc(-@65RbBnt0$;C!?T%II-1V1FNE&dzahLfPmUSg{*i=vTBR$c& zAuFez+%6b~*bKc14HR@82rC-SPE1VHA~K;tW-QIkj{y*deaAAS)>E>rcu$(@mAY@E zAUyP#mPwC0zUO7TQelJ0)BEo%&b6><*}bF4xaP0!*U-K-;YJrzDx-VxPpa-+Sya+azzD?P`6D zIsAwyLz?xr|Dbn3;|;9yFM*`&Q={$UO6CbcpZS@xDuqb0!?Kg}%X2Jiwx zRMRxO>~#!2DP*rkkY8YKgwoC%oS-U?GbZ@p``}v*C)9sQ@4*Rz=`|ejRzC4vp&~rN zY(XmK*A*@RUrf)-KM)_uk}H4h8DHC&-Rei4tfXtfGft##y+XXg_?Fl#nWM%ZbEHoq zBOb$Pgli6;zDxE@`*Ts23jt@?b>AN5G4Y=3WS`54a#CQGkb3(3;mz8YiSnHB9j%6u z9y?}qlJtv0$M!(0lubOWnZTKraa{%MWBK6V;KvxwLPHIW5McL^o@ToFqs1!*jezGpYSp-}3p zUrhymyu3XJh0j=VqT9)`+{p||VbKsAxovu2ctu^a)$mzc(;qIS$9cy(M;x)yJN6f! z1p4L#dyL{`*Qr=H9mj7_B2K~mF%&8nLiqXPn|WWqgm6U6 z|5J2tr;9O_r;Jr(Cw4J=W;axs)XF9wL7TwEu(!fj4t`H!l^zVEu)-i|gaU|--a}t% zh=mi?5JiZr1BxM23S36KVF}IVgbxG%Er~b(v6Jc%9Ck*ou9}+_Yo9Lt89ht&HP*i= z3Jk5ZtPARS%j-VrJw8(ZhOIVk%sV&su&kG%_fs>BJ$+9ytv0P~#&R!W7}B~YD-~SY zLbkuoR%l{R)Kd)|9JUb#mLG+Zbre_^-ZZfB8LuirF(VP9s1-|*^v#!`yTB%_DtwAt3b_b zs-bE`qCcapm&9&gv0^%{|3Te%hjZD7Z+}w}MUzNq7#XQFWR)mcQTE8n%1Dust)yjS zOEM~wJtCVZdq!45g=`W+Dew8|d4KQw@B8oT=y;CjDC6sU-}m*ouJby_c1yHV4;?7q zl2)>Bdd(RoV`&npOBNbf*X2ik?u(+l%xVhcg1}9E?h!oCY6Hu`9i5bT7z#hIXFU|6e2Z~vq4-EQ|+S%zSYd&%B z15cikkq8|tGk9xQw-HQ;EJu7FYH-%mEXG;oK9*mL*yZGlK2f5xeOF%R7RJGDHpNEL zET>KBuHvU4B>67Bclj`|W{XgL=vEyMeZF&}dad_XwHz}rDL$3>-Q=Qow7u8SjN|Yr zv&kFyT<#4erTUCLpOnq?R#4t&U5~9WP30nR4gU zXl2Hi-2AD+emEgX+B4jRJ5_P4YlGcXjkPT0%B+&gH@m(IRrU(To7g}^K|Ka&d;qnJ zk-m1mk>dovNIHw6 zSc_(cqg4PDyI+ADtDH@(V_!#`6wmPRI&Ol*Zb4^*a<2)(>$xwEuqu^S`muT)9cv-U1N%?Jx!3PZ>Ox4pm43Qw)NRGU-Tv|l zu`xTh2iZJ1^jhY{P5Bn+jfr!X%yXDSm%nO0k>a>kTSrGl&X^4MM$E}s5U^f;eoO2M zf9}@u<7E&hpvGW9gHr}z_otsC->|Xwd3~E#&U17wDl)I1S1_rWV@W5`{L1T&_*)+y zn)`ET^GK9?%Sa06upNP9l#u1XCBv2}w7hw~@hFe6znVayU9gpM(<&sE&DNxwo6Qv} z&V6+iqUO!uG2KudIiq&x#-h9FlTc5Hki)XdhRpNYH)c1(qS<;pk%!|+>AHP6T}ehb zh%l7gKP@%+6}EY5`=cOV(T2Nu5nz>czF1E%phm@=wG*Hf#*T&x0XjkSJn0h|6Ki1 ztZ!snU_)}~DtC8d{nF~0Z%%Q6fx5h-boo&mb{k5_DbTUEezNPNHY{0lCpIL8Vi3`H zEAn7*PrvCaPEopRqep86M$%r7^^AT#E^mHH^G>@C%g7v)uMJS}wF8v@ib5EAvl`aiROCdta{0 zfE&~RI#xnbtXpxI(dl2cS^VrIOi;P zNI3>2OTBQVL_&T-hk8Stosi=ThGV4hk8j?1C2s|318YWNDE|1d%CKqlCoC<(vdy<| z5jo$R{RYV%nuji@c@nq9?xlFnjq z7`2a}sc6E0refb3R(a@1`6Gdo8&h9NZ4sU4jnz$jbR?6#Y)ywk4QG5)AZ?rw6K}@e zhkN5^jhXKx=MB4sKg~(28{f|_7isa1Nu$+ta*)_$q6!j*7#LCLjczP{xeI>8Hu^ei zX%!=MXZS&tCy*|oHVI85h}3Z>Lf}V&BOC(*foh0SwgBVHXZ-WF3BmCZ{YkDq+qB}v zOwz*QznLz}R_(cQ@`#IF!4shmgTI&k1bPl`kUnZ>7Hbf&yL)~1)=xI(Mn7iYqzFkg70UVct<& zN9BSojjRz(?jL9EUwO$$r$*=o+;FjDQp-k4+}D1%DdM~!k?fE)V;@b+AjI#O__pEJ z@UK@rosRdwG(z#W>;j+c8Zuk~4`>5;#{3GXn~KaM;8vO?rtA-% z-;}? zS;Cg_wf^mAePBN$nd~G!JER|B-V2| zT^3rkS{Z(>tHz_lcnaf|EhQ1~BIoJcL6p@r6khT=dYZ8c>oJHi1n9a9PL=VEaI{cwqhzk2W7c{TpA_ zf>Ljc%oqU88b)+{XQE3(BO6601&z-|Z?Ixhk*%|qmup)+DWyYar}8fJ3_`EjgH=^k z0oBwok7(fLf&DG)U$vdDD)tc>JNA%DxB4v32K1WAt7x9LPkyvn(3D!?SIxI;f|SXq zJvGM**dKp!XxMgmCERaK_cNr}I*H5aKhic-Q?fU|>TtmWVPgr~+CW<5>-f8pweamw zxSmt=;&7>Z|5&?zyKA27^bd9(+k0E@3Y@-w^Zgp;r~87;*T_-d+5Gw7;e$JFw;b>? z^lAvCWudmH*r&0H(@1t3S74*k#PNWlUdN*C3p&4l{&fHI=fbSWynEtQNK1YlWo_ zgd9osGuH}FSi?0Q&v~wX!b;`)C%$_zbB-f9uXZp$#4a+KL&(@~;?0pmhn~tO#Xk$q zDVW>0>i1)L+R-zqG>+QYcKVJ{x~=;Lb^_h6ll`caAmMm9ujh4I7b@7Z7zfk#N#~Jf zt(BdB!-XWxvg-Sb?|>vn6BaY5)8DM*T-O|z+BKrn_gzC9MHhTw_0Ud2%!Fl*hqana zineKRtXa7W>|{aV#e)(V4{{}DZjixISTa)+?zDq2Dh+AVp%+jq0MrJ`4w!-1fKb$Q zMdaA*uGYbw2Qr4+o^ZT?z8A+KILXkcUxU0K-ns#TOFJn`u0=QHU=FNsg&+B4VZl$o znpE6vunDCL3fvkt_flNBHQiDBm5a4Jol(7x;Mp%nO~h|Ux=ET7cNm&&^L59Z{7waT zgwcu>Ru}2THIL%qBg7DZPC%LA<4Os4d_{We1uik2QK^Sna#cK&m()Zn)A{9-yymy? z_s-@#?;BhZ*PuHaUEGmJ zCA>`_#d?S@yu91R553!eS`x^7+1B6H^CC_;({96JpdO#ExY#E~V=5+H6B zDh%F`{R6*KX)-4jtj;spU%#brDp|Eq()=w&du;bsnL+2^{f3Hd-JYqC-$!^(B$;*11Xu@8iY*~bz}O-wdNMH>lPdudU9jbv@PAM&br)p zT%ye`4Knqhi25ntImEnU@5GLg@qzs(`)#7@3Tl5%`ycbmPdXQ2pqGhi^wyFA3QDyi|R5ThO@ZeQyfe0ndr_)%HTNKTb^8KM39Z#!gqfJB!9^(n)Xq zxJK}k&u-VSor6XN%2y)w1oRkO8~^MauVFzK^GnlcMj!Q81v#_T;~8ZEP>~R413gI+ zits5|m#x+nj%GxA#J;X=1q?S|;G|5#ly-}!FfK-i3rQ5tH{68rh011LwSNZfR~2q$ z+OnNtpxJu-+qL7OYn~o)u~$BCa6D&_d28_RBdvwz^w0fH{&4&Ac#Dg*BHhKReQXRg zVA*ya(|yv`(1k$sWTwDcg`TvVxBrSe>}CS71R+hR0{}$Psu_e;0mp;B4g;?y8!Md; zW+3%j5hipKbs~cjBX`12JSSMAGh|mH?(*8U?VYEeMTLKD&Q|@d?4s*6`EYPJBuqLuzI@)aIa}6F(x7j}2`WY6iL$ zoSkTh)^=%kDIKi6lQHuOXSn7%rS5}hI|+W4QTA69ZE2?9m%Ob^n@+8NGVhH_gM@DB z(UB`jh3_ri*qQBN+-&^b&X3vHOyf$Po{as?`UNEV>O{hdy#3Fr6eq7QC72-?bq8Ks z_2kavMh8EAit$cOt^pbfA_&OUrR!lr04Kzbj_+Qri%!;W+!|V9n2;Tsb+G7o9@`Cf zvjgKXCV+U|W3;zqZjGzIW>{cx(s#k)Lrqo)wclKyz5K-!#zm)DBctoCKQifTJpOFY zV83XOq}luI)BtgsJ3k;FPtKxg$b61O4q?^g|-FTL7)h^N$#L)Jwm;E)&NhaDD@ ze1kUqs@zN0z6kN&wDp@TZr){R5Raf2_+1kS4@|w_&-wbM1D-;%DwO&g&u*V!a%+0R zVV#-Y_Vt&DV`p$I23gT#7rqTEDk%Zi2dVN>^}ZUL&-x{ykl{)Bb7?d3aVKrCNR_YT z3}L+)X3W`{ZL`Z^ecFhfluO2kQ!44_d1PPvR{d=}mfn9}SF~?mn%fJ1%@lRF8D9f< ztyF_<38PPT*a4g=mtF5ApN-ZIg!z1zc|HIUaOChBvN-^tfv_Z+qQw%Y%9SXsR$*(O z{WvvSIcef}Rc@#Rksh_UwCgXjL?dT52(RePoHp5eye02@KWhz$qvSe}@epvzc0Vy)Vl zCLrmOEF@F;aTMgnu;{2-lVkHNeT|x;t}wu8`Oa9Clz46Y&y`Va*nc7QFXnQ@Lrn%kjn zVgB}sq~nt#IwF6A6P{gA@_y18cHj7kYlBYNWDI9HO?jCE7^)XbT+|ajUOyno4m%LF zY4LETPYn{3k!!tIa|PZCw!0PNO;;hA6>DD=8v zLZd3_=Fp+AfmGK0%Z(yAnVDW7ZK+!|j<+!P)D(txCdP$p`}ag1>)-b%f55Kb+T_Qh zPb6GlKR^0(jxOO@(47}Y6o(wN*Y1A1ea%C?l;I4uV7n``zgk^Qi%#z_FnI>=N_FS2 zjr;0!Re~Mi007sV*W1=NM>y;kUM_p%#K>!`rPE}X(a!E)j_x^l#w{CL6K$MQl;H>UAJ>Cn;y2}lk_)lvT%V-g@6QvXgOTK(&W_-kq`c|TBn<}Tfc>Oui?fvD;mjH^WSaOY4P}``Q z*!4i0Fm0>gy6_B8Y=O<-%*L(|9Dj#Ts(G#SMN9kkpN}+3S{d2Bx>S(yr5_yOuIoDZ zt$GzMd@D_~iIvUxKfD#QB+3p!T_JmDm(vaR!E%=*ldx^GME8$56tOly01__Eb(jXn zG$;oy@JhI~4rDU~KL}+dZcgYNZc9B4(CNZ`N)&9pHYv>5uM;IBG{1pLiCM75x)r2l z<>wzL!0HJjFuD;ko5L?Y)mt6f>3@9Sj@vUg+}5tmP>u6)4_Q}7$-V$^ zhO0U2$iCR-x08;>;K}_*tisiXOy|a*`A*xZPa-)zSFl3@lc7DzF}L_mZq<#pQ4R0O zyEY-R+#0eQ1DKx21etBW-qPRG@ViLwpnR2~m~{3DyZs8QHQ1kL7{|SGe`4YgZx`Ab ziwC%TSFxgC&UGc!*dNiCI&xJf?B8SY#N#{Lx_dWNC#|NidOc4jUM zIQ$tJwyc%;-(O;X^Z(mV%R46*00CQUb5H5Qo7EdX_rTQrapxi|VGa|Ea~`E9Z{XH2 zv()UVU!p0%G!yjDZ4LR$FK_S8)GB*ynRF}~SavM(cLH()h;b|z$D~u)?_O+U*)mqY zfx+C&>%0^Dc<#t0^8U3!WUPCkM)wg_>d{d=Hy9eZIQ#^Qu_WO32Bjt&ks<4IG7t zg`my-%in}G-D1H0gX6u$larq8ur9)A{Vwsue3I@jhJV*ncRPM_op8`>R#X15V+a`l zzc2|nKq5zngTGVhY&3Qc6tDj{5{59>qg?yez*0OcF@4ii8_q{JI*a;zh-5fVbO9=# z%81fAE;r;UOys}l9M}7zw*@Yl#93n%1$s$h4UNtI>+-8Mqua3FF;BvKh+Q!bwza&oSEyT7n z)f_aGW#m0@LJODJw~_$S`_T;BpA*_{gL^s3p{MnST!6AT$aC^Ou~Pqs9{bA>qroq+ zD@(DfDE|!Dmm8XwHw3`@P&H;3<8P!#D1S}#{FNx|R{HM=`uXOHX0T(XfK_jG43tgN zo-4m+G(G1vZ;b2qC+jc#{Ys&o%*iy zB#Z8Qce4l6v`c4^Xdfs^nBM@0l2-EX*8_j44F3LzSVifF-~|-fqV{P3XG?%9B-F4k&r}PtN!=( zVk}N-avo!kHuYT}nrlsj;2<)#Vz4rAP)!mc@Cu42uUsWI z*B@NTwISOc@|u(-=C@%?w>V=?etXJi2L4(Oq&1U!^Xk~A47VZv6qmdGaLgeFc4Xm6 z5<+IGkt8x!LTUpU6_jF6_>*Xle`zBWP$+kvK(P1M>6O3JFnwepF7#Ml2|IZHd*wYF zuU`JzbalDvsv*)&hym<;yQZeZ&($1@loJaD%?|Fd_T!juXO?H12Woj@-@#at@|m@N zk(#g_NJ%OCT~y|aBDb1C#s%U4ifTwraa(-Lai@Bq`^kZSzf0zj?b)zFa*0Xi*4PTk z6L|-hcdWYLR3$ul9VWH`VAFr;Hjk|&de-~OZd9==%fmz(|9QQ^A{Ad)-3#~d|DL)^ zHuYclG6g9%va?r5a}Xi*3@yUIRbRavK5K)nW=@n?SybD{yoBHl?64pt0e{{LUbFKaMZMt9NrFOmeHTDeI5NWp7Z4FCHsC#fdjCQ##}{EaDRm!Lf%@8Bjk`GXkB9FOg&CDI3o$1ISr-5@PEQibMx1B~@|V{G zT+kaSH>d-41)pBnco=4i1jgvU>b`BNO)Nzv7CvDtF#7M@#4}Ceehd~Xw!@gxAM9-c zrtD-G2s+DN4yU{yxakE2wd#?Yr2oV2AS*^=gQpCw2!=8s9QXs~ zTbjmt{15&He-9=WJ{g}0tPh{;BX#P^u^E{RUA%4^vE#KYx`7{hNP{`@{2};y` z5O53QG$tl<|Duc#P)LqE+rP_80nNR^_WV8p|7>a1Kiu2q_oM#(kI%nzHtD7@CAW|1 zUF~IE|MMFPjwlnnx{)3wbC8*Av~m>jv`tK;KGW=+ed62;^b<~z7hx%hiSL4=N13P3 zyj9io&x!zcgj*7(c6Bs9$EBpSLJN7J$cup3kKzT#raq{**=+fo-Mz(D>uE3j@xal5 zdH{($aVw8)eh%j{=hDZ)DHC6#d&Z3f{PmZe z=+#Ea)SgKk#;Yi>@A^M;Ic#0}KIRqpx0Gz6$b3#;edJmEtuY9DlT;J2(OFu{!r7voskRyxch9#{uc)1xT2tWa z+^A(Wu}|6zP~e7m3}XjpSbX)s&Hic4thIuBBF3l8JciaB(wO+QJ92G+a9Z=}J*&W2 z0CO8>0bVZnH>tl1w_ufm`-E5}iL>7YJ5rqe?5<5CHSgM*g&)|>mLG~}J`VT}F28Ai za74i?`D-^$9T4eg#bG}< zRru%jOjhB&0Zs%Q+$&)**JO9mq0l_m@eakgzc-%ed_$7Ei=BoAf)}RNPD>nv{nc z1FQs3I!TuS&DhfR`^8b-vA~?D`0G8B$M9qDGLRvIbCNjK7KgZ<=+C-F&ze~<@|qhp z2>%45Do|mzymaZX1Dz2s9N7^Nuc42v)8QU`6q!|YJ&uMq7RkxP>KO?Rq(g&P4H6K1 zGh2ogZhPqm)eu+VJwm;~#s{7e$yKZEdi!cyJ{5+=_fOM!F;d;p6OxS*8q)7v&iU4B zBMhY`1=?3W1|2>*ob3q2#JP(%el$37xJ zy12R`^^HVvn8!F%w_B<^2Rq8Em{Z+wcL}2)vv4Cil+jTO6m;}fsfM#tqRJ`@yKW90 zCvF65%T(mXhDW6`RFdLg(RE3!H4i$=3z=B0R0dx@_2X#|7j12S@81p!)*|EiX+Fl? z67r57@WwVP|MRJ~623J{P`D{v^-^x+m$REQf9JB;TtzPMQT3}i)U zA3>Bsmk7xs+5v!P1?LJ%%g0(e(aNA|;94i2dbhZke<^0}x`jA`yU(-<>2|}M$?rx8 z$F<+PJB9w;l<3TH7vtK1KdLi+?eZYlSx+d9%X z9Zp0(xOt`&V9(l0zUHjiea9&{*1)a-x{k>k)SF=O*pkv7_Sa*RQNGADmTVZL0S>`Ld?H*e915oE@K7 zPNQHdYZ+3s_WRSIiuY-??M%KNseV2-oZrf)Wh^6)#!~+@+(TU=OJUnq*jv%PZg3{Y z8XC+U{xUSKPh*YOjDLI6v~TF~&m}kEa}I~y;7Y#9Uj|7rYT0qi7Y_$GF*LA(&;W?y z!JhWF)+sE4jxn6Gy0AsNv?VgO!gz36%m;T-sHOnmHe_v_X$xIBUA z4sz`F8VpaSVFx9O@lI%@B&7vuy+qFaX7q9kzln=(#!0>I(L)zR4*K1tQs@ZE(Xww2 z&D!j-y~;?tIWOj8Y4jR*DG=@m#R--fmQIu+6M>kw$LDp{R|p=8Q%QQMlLjBEH|W_` zTR-m<*5WWxS=;FX7hs&KFh785*=s5~fb;p=89V?`!r*n{nv)&{jse)#-Bn5Yu-WWT z8uir!@rn-r1w-IUqH91J2OhcZQIO4riw<=Z7uX z&U!WW4WC=1f>~r$4C_))!&S8({Eo5t!aBcatIYpb}+aMoH(x%Ea+)cT@K zA3R(r%xD(XMqQdBzU)lrM}u5<>JeL+M*cg)>xL06Bd}SL+gQYtl_%KTUDFllZ~P|} zWb*3b%~p=R^1(UW1M*~SZ~$ETe4DrD;nj2_@yLzA5C`GKDuG;{OJ>`Qx1dcX4r&Vr zkMG<-jfaiI!GLC#aQtxO1|+Cr>52b-vdJslUL=XEmZ`YE`*OMked}U}zq|9P<5-4e zKju+=^5)WRLCpEkK`^)xl7kqRY zchq~XrFr*n1Bx&h)G*6K_6~r1Ob+e8rX1PHz$TvnS}xdz(4&gU*VwN{C*pjNL`iRTyL_K<@(?_MU9n4fg6SNLuFl3-= z?vs-!x=7ayPSDR#aoowogaKLOQU{)Fy>qPWRa`kMJeiw^@lL6g6uq;2&^mSW&U@J& zp*1h+ufFNqRHoN;u(!^HwZu(|?kwE}ZB{O0<(w@e*(kgi$sF|Pk|3JF0FFVM2pPpr zh0#fAsW(Ry+pcr#0oSgb=7#RH z8ohrF)<0Pt{HJC6Czq2wpT9}Iu7n#YxI^D|_xj1XD?ak7)Z&pAa(vMK`Dc04_k^~= zFXgkU`)^N!{uNU-Hn|YefdM50_j46B9Qil_i8Cd7gvM*5e-6DlP!b3?Q%Ax3)dQ3` zx<}CLAc?2&j`f+&%SS>lnY`X_966WjB-LhGH2tzo-_hO*D_m$2QJV$Z$F^_4sv5e$cc>^X>N5< zd;=y8nqD@U4jG}3^fv4leJP?(|4 zr#!XIMqcg*wW-3vZb!jQ>t4P|`E(?#LxK`krI)0JN=lM(Sqp zYpGU+iGwdrD12xPrJlwG-!M5JA$9)P1)c@mWt)f zqSH}jLrrU!V;a659%0x~7i>8X`@xs(^m`=&cnv~sg&R-e>=gH#oE$9md8c$xWBN$G zqX@&N$t0aLz8B{&?KR%T$fxiNgb_IJ1JvE7Ah&m1Y3gLL4VN5!)BW1AANS z$#6D(vT-`Ae6lr^qQ(;qQe~%sCmW_?G%lnTkVM4usK)wkGiQL*B>&;p7Gp$-YcZA~ zD!<9*d<7aG`vjE>8~caslJ1@WKOC4&Wm-LT4<+=VdG~#NP2PdH9>$#mC|$ipPJo$` ztdG!Yt3GZtYY*5dBq;m%vFUEyE^N}LM(jnAONT%308qQ-B_Qxn<~ib%lA|LhMx@r( z9`6D_hOie&H;gc_-E*t~P2%{Y^CIGsC&&WCfI1Z*%2sfl4KcyARQ6%>JCtuLi zsL)FcQ}iFd-?ioU1W4br!K1NGx$)=^onJYuZY>PS7rB7Lj*Ud-z8n9Db6 zhHIFQWafz7LvmGUq1t&Mg%CUF#j?u-S@iTg`EfGAKSDcY%&|zlm&w5Q^d3IlkH|e! zJ@q*zp3&2%ZuGi;+IKHw5roJPUzSr9%O0qs1@Mh=$XI7ti8V4#I&QlV4g@cILr2^pr%@+g- zulgZu>_3K1=dypYkLIMPFY=1bkHG8Z83|A6$p$*|FLmPd$Z0IiZnYU?zEJM-LD=0vXPxhz^*Z@?j?z>uyGO zfEySD5f$NaHfE*wPOi`+(_0#Vi}0;5EyLG~E_Y;j%$EPpuh!WptPoJmL*EO*8?SKY zJ9E+LR2xs$)Q#2$r{`U4n_k zSBePZXOvZ50%yZB$p1L0Z7&RYRL`V;xu#`mh!q84HDW=AI;;Jwb!A%Lg8m#-;3S(2 zvwz)-;1cenop>-w;L_x^;|RPI+p*nx*hluN3wRDEXSSXsLBBm(0zRDUYYs>HxoG(D zx8xTBgu^C_8o(?b6A)o7O`RtJ^89CTM3% z-G7txt>8M@?T0m*j`Q>*(C&c|F-t~{I#$_{S0t)Zj3oMdCLM{BBFkyu_mmcgyAku5 z2hf5MZWuACMLH#M-y+KZq*K!Mc2!o<+puBGAn74c6%oX|Z=qC^iyt>Dm#;(3u{f(! zCto1N_@W?zNQDuckJFsU~4_h)Wo6b+(^$Uxo+An{4ycY4@(ikUpi) z3-P-lmc6naLJZP<$iHsU4X*WaMbADU;~REoQ;7ZLC-d|3ybm*R>cbeM@_Dop&$IV0 z<(VwzwUhXb5LShZSSzzn`JK`Sn#K9cXEcF=|bv7 zVMh@b)_Lv(fv`y>k#7w)O57p1V=g>>GS4>{Reonw!^M)KW~MDHFKxz9*ZGLCl9Qu5 zigCp6s!-2SSWqDWWpBdCklK9;VKWadA4$HX0e?MYtL2l)q?g+a?XFj{A z8lx>_qg6Q#8a%5xfJJOmwVXNpR&8WpfPuuOH!2g_9d%Uab*E~t(RA`th*1sE z_Q5m{rx`(oP#}R(t8+_zyl8V#@|q@ddV6#$+qedS1D#67^$0f~Jc60rqQwUI5Ao7=^-Zkw3NG(&0mEnZ{Y zGy>-wmF$bQ8Afi{J-$u**>2xIz|NLEJgY?nK5qn0@n5pV##n7XEQQ(F5l)CQtI;`u zt9DWn@i_9uCO?YBCC>3ee|lW-;472VrhsqB zo#SJK+MWj@XB^7{`$ zt!e1Fgm#K0T)4ev!5+%m8{f-mW)N(JSQG%7ub)SH0$0OE0WO;zrS5L+E~Jhd)lf zzT~=ZobWP;!5<9we)q4Gy7UYFbWiCzAI+JWns4IIDnZ??B>PNPFErkWYwg=I({SFc zHk6ls+I=)Wtj)aJ=rRS?@n#m`E6*-^X8k89Cw#)X4EH~xzCh2>( zU$Qwg4ezC=mAFtFVAGjVZB_dyqv1wE9`EpNo0l~UgYMU?Ik)bj->#j#ck8*iB^pT< zidf`hV=7f7X~2pyORwX^Y(ygW`u|QXXWUcVh zXF?-tb$uuNjDH--*A}A;{i%0;;$j%ffxq(6KSOeF>_VBpWIG*(sLLqG!G`ob>Dfi*0ao_vLao}Kz zsw)hY6PGkM)Ypu0xfoI{yQ*fb2x7|+e8Zsp3Wj!zA@P@Snx+>@Wo|kOYmWmzuqaHH z35m>ek)vVdYIzlR>do2?fQ}_xl!U;%)h1>Kc&~OO;FS%{9HPBDoZ7CcT9u~NvrpoJ zMf|m$$74D5>elR6$rGx*yFN&tfBOyzZ5NzLTrJ(|512-k;(aL4UO zHsNyr_{13^L2IWiLP7jSS`z`j2&;iA&r+Dj_e31i;8uAtmmqyA{ z)MLU5f*ML)#zFY4qn+Ir(pUWNZ5p&o!h?}EYZ0DP{JVF$3TGO*!Es~DIw%de7;fE| zO^x;(vnClp5j9>LAf$P0?Nb2&XqF+g9qj=D0ep4p9UWso9%Z05u@WZ>=%T(mc`i6% z4cuiPPWn`fzd4K8kOTb?XIH)(k)-=)%P*_e^?@2iC*H#}$ZlZXZoLaFu2xRJf4De=yo3BK&2J(7Z^zZmL>v{DTCkp@*OPgA-)M)K5{3j6`*#XqgDn zQXaTt3zp2J{yIAJ(5Y;37_kuTiSe_;Yf?)>qW$CV^7&s)yl&C|5#RwHHOJdlCKFMf zc|8h$Vi3Isx$?|&{Mz)cFLcRBdiEiEC01B?*fadL2Kbv?19nR?KD9bj`p03wsK$pi z!F?EM><+1Y$t|cBiZccfAm8<$D5|Iz#0cQ$Gzsl}OMB<+@rUcuwWr>JC~^%=Aj9j+ zuQI>%r71QiZW??>5w*ySx~WuKYjuHltXoBNZMA@wVUqq7Nc@-cBJwJL+0@ksiruYo zonq1rjpdclbLQw-)mjl@TLNAI6bM^VIk_wn)$ZFwnirnpVtf*lzjyRPq^Vrp3)cO7 zJ}C{4_r~)me5os2>d6jgRXgZ=mB*{@;UWF0S)RO*kiNVl;)7OesFa0!w?@D(N6^$qH_|AV}fUrwKH@}AJCPQJUm7FMFcJDsz z7;>kBb)Y4133)dXt{ra7=HP*(UB?Q^tax6UmbNuZdh4uL$0l?GG-4g!u$)pp8?-HrhZ zyGwSvf0;d;v}?51CNU<)O@9k60%lM?tM^mPh9a3Z!upOgl{PYA?1wq6BnK3CoNc%l z7R#S;b^C0%z0iQ>5BJilAE6+8ydSmT@uIrt(>r1J_C|;er^*ev*FM)zhtpq}y-6>qbr##sd3>F- zZ1xA7_Vzoa+@!iY`IT9js!;dGmcs1djG3!NSskMqEOXP2?iO*i%{uj$+fEwLdD8XR zq`q~$8(r~S^F^n4x+DD`PyJ?_2zELX_uu=M@=6`KhLl{wV>V_a+*R2S4w#c93Acs+ z=Y5_XFlsoWMC-+9gnc;-RuM*RE+(@qZm}*`XMcNt5%OFvZZ*`NQVm|#B4NzQt8(Ms!SIX<5reA_Ca=xmLCC^z`WPPwv!RlK`7UJRBO zT_|^)$)BXcMr$jNk|D&vfXB(Bg?$YoLaN{8dfPPA9BMNTKn(cIQepaHp?muBhJwRu zy#G8&RJ%22J!czYTzeehb6B#g?Voa_deSs>jtU6HkHLgPeE#QH%4jrp$ZYeAm)2g9 zPpBGi84sz|Q2e|)+_()v;g$7WzXDu4v%^dgY>X!W@kgIubyx49Y4DxHT3DkK*O&~F1OZna;$_OvTovNEhs!(b@ZHkM8Rh9^j>}Wj`7J! zA8=m?jSYL=|NN93Cl_Vb+p*KpE z*2}Ly)8FRjsgP2c{=uu-dOMm5!ucaIOLgi@h#>U?K0Iby^o!5UV3qlCQSZV>m@ck+ zA7a1wn62lHmC%=WqxR`qZ?@Q-c(nnxKcMZXj)=a%P*ln|_sDN4$g!3ocQ8XHGguLA25~+ytLvz3X97lK< zA@wmzUE<*%)v7rZ5+Dz-6PvdGcDk6he~8m2F`NF_o>AN2tgl>WRL9z(cKCwt5VyaK z^p!F84b+ISrN(mw861{Vznb`JZMK;TAFw<6ph4+W-Rwlb#%dfJw8E8!jYN+lhpPjla{$-lQO&?}u)6fwC5M^l~;97G9( z(JVf@fw-UoH^m;CUm-xMT9Bcuv8{9K39lySOT&6~E0b%4wr}44fGusKq;`CG?x$U+ z*!ib>zg*jARG&ZL$U1C;4FEB0qpO=<;8)(L)u*fBvMpZLw9yz3+3dT~iy!5Ebt5kv zf_VdiosQnwx&3ELblOCyKq^xC+_~Lh@>ilZz>S95^`z4b(>qOOX9V?dVGhKN267k>l8IS7^JyB zrTbA8K;QAl(lkn;KKldv(>K{?+pLcfok#tUhV|s@5E$CtB5v)lk6^QP?OxDIXFK6q zP<}gg%Pw_(37OIPdPN8AI<83Gq74=j<-U^we>}>B3g_NQ6qy|r_NMQY8>6aG5*gW+ zB;LWGvP*6udZUa^>_39~)4hkJR~qkfE!iivm{30{J|I@8p+a5QxrcYH;MnA|eM@@X ztr>t=AP9xmD9JP)bE{aptNL25Rr-A7_>!(>&JPc+qTSU|!!>_sih4tA>}{t4t9p22 z;;nZb;FY(?%wFYX&3k!4v4F{8ulGtlgZR#qHmQvcbyZZ`?p?gP>=rrr>Z4OP??5NL zz>wimAI{|q0!+j-gFa{Kl)N^NLCA*a+ZTni*K#o?=+WMbwynRuu1QR!^W{C36e7gC z_JxWl4w90Rbj=u!eJD~-)wgYOx)&E5mUXn~_kc-DSzeRxtoyM;U1NdWu^68(=nd{v)0uFJ(`u5FEj3U2)pM7j@nwB+&HkTOV%|l$nH)SVqbx#` z>?3}YWBO(B!-M&OF?)}`a593i0aheqPr%f1bhXgj6}~S}en?P=B6?eBI&%M1{_h4Q zY6Z^xg)w+5`6A*Ht>Y!M$jRYPlxUqk1;+Haa#3(-=I;Bp?@rf6ofU1gx&S^Qm=KXZmLESKAcY4Mn>qEURm*>MOgjaK0)- z9j-ZR#>J?R7qy(DcuN1=O@+?BDT$@G&E0~5ANKe&?%2NM=5gj>Uv5<%Ywkz-6yDbM z(5u4JuUOgoCy)Peuwa~yf5#@laC#)+h>GEi`ycJPc#fh+*?Rr@O{b#yBD8ah!%b*4 zjA`b|oc1iHGH=(%Yz`vTiP-7$DnAOwulJ>YI=ix;h1p#qh_0R9O7Hc!OtxCE%fu_3 z6)a(B=1-n1<2A~pZ%ZqTN{KKYdElKf>Qhb$UCYaHM=1|(I$-*NHDCnHAz4+tM3I}3 zcoa8nRJ)xWfL68~dj6p_b>NjhhE0DI@pFY9~ufsOmM&0@)-s-K|Ogyd{g} z8#{~QYu0}7r`Dq%SC2_KwY@Hd%YJ5h{toRrn~@UL+X9H0aBeL^cDQAaxXR^*2ccr) zHKOuOj6cP>-Oruk{p}t6^vi4ea8q98L)++*ZnJa$&RpYlEBuGInk~+=EaU3T{QQ>{ z)MAWoec+sd^#nfvkX~hkB2ObMI`Zj;>qs;lGCVJ+QeK;X!t`mc`KVRku-ua5z*%;l z-CJk1RueI>h)9y7>klyU+7^IYL$78c6votpU;X!QtCajIUEm;Ki}Apfbwn+87;GQ0q>`1RvVZm*5m7{^GbAHkgWTLZ3Si` z1UsgvY_gDKz~RNh$LK$|CgDD7`&=%sEgHa6FgdmRrMvns; zia{6N5?GRAo`8=L`_eUeR%*vZp{-ja&o1obo;%p1Q5NoZv#w=TNn$jETwd!1qX8e_ z--U{DJmrG6s@&SEqUjCnKdN(Z^xg}rt}BS|7am@#ApIz(^0&#)!@}3nHB$1#zrjQy z_(8DV^1RR{mX)9n33E-LeE_@%eE=?y&x7}vd=#dHWjF4!13rfK3R&VL0gV{GLP`ZJ z7`G${4~T}IG~gC{`~4}^dEaw3b9}0goIMo}P={MqExt)Ac6D_`uU1(u2 z*CXYXE#`^qcE}eBddFn*w##xMvc8+ON_L*Eo>U1`xxBibO}em`|7mrUvmdC4M|Siw z85gtL`rFQtkb^Hg2qV?jtJ; zkI}PD<7t3*`|S%Z0{uK+yuhDP{Os6R?-<#Zuc1o5Ar5DBCiR@poevg9^S9c{Iqw%a zV5(@n*S}!i$^}nvRlV4%!Ys+5wRx)-su~y#cX_fmGJVR~R-5U72Vze?E z)H@uDL9+X{$8Nl1pCFI|viE}@NLYSAhdl>=EoP)HfA|oZ?2ZGkuD!$Ona$IY$VfK> zZvO9gJHJ$XEBSAUmcqOtqpZFBHYc~JtGAO$Y<+!er5bfQ8%$u`kNFt`^dSy z6WiWdx@y`8*O+rlNJN_K_2Dt>SMpN~ZZL@B+1<(8nH+j3SZ1K>ecU%4N70BKmi64L zvd?Cyz5L-ip@t0tx>|ykQa;GkL3{$Jh9uY7J-p+iACWG-K*wco+BxYyswcl!17S@! zIxOl7;2^w8Aj?BD{o;iUU1@j9kL9di$Fsk;4;x}Q`p`95k(6 z_bY`$G)RP&JtJjnNM@9kt+Fz*H)%@4p2?_;vWbwH6ha|oWv{oL9g_U+XMK;~^*xU3 z`U|el;ppi7iI>;wJfG+D`55>6?U86Gm;}Mr-2*Y~l^f<>N8g&Df?c3H;PB>fRJ|A9 z@irq2Tp`cwN}>6Hk{p&e#5csy9yHywnp7;dAU5qlJC?a;W7V>)qpX6kIwm)oOTUXJn{)sHE>rniUCS{!r)X8iTT zsWnDqYtX3jYcWkW3$S=@^!x~KOB=2%o)hHZv}0+QQJZnkpgynkKv)eu`qmZY>MQO) z&hmWvd{&HHAd(~UrPfWa`;~Sq=5b~(Pl~bJjC3iCA8qUt$uRQT)?(1V7H8Tb9{QTk zG$?{eq)y>K8O86~Z=>xBnxwYbauOI_93SSXAi5ypNJGLK5RoC$c;jfU=8Kcdl2=QI z`PYrn#OB=Ho$|8PI_>dDmJX}!8+SgG<^77XTb05?2Kni!CI%$p)#SH}e8CLVvkcWDvZp3qf4R!7uHi-srQgYTIGoNy z2(>3{)2;gTsu|PY>h2^Ye=UB!Rs}*5bRi%X&2d`IDNTgws%JXo?{Z&UFb^$8K>;ih z=V%wc{O7KRn|~zeGQQEgYm0^~(i`P~XCj07VewkY2f}R>TjDj|)cYpn1u@;+)to2c zhVLO7cr1zTj~hn5jdF(9(WWTAk4nI90lHen$lg{Rg)AMSK8!bjDl9S0opgSikcgf_ zpV(vFEb@a4>9qBotzrL_lxOEiSozd3`&2~NnSpDPBze1s3WA=zEq6qdlKJ%(>4?GB zHE5k+2TGLK+jmHw8GOVZW$I9qhhzbtLzOlVbjXj2)ZHV8QiBOIs~x{#e#POMkGg(~ z^c<}50w2MwndmK4QWyxZ}|>@ z2h+E_>?a9qLyrt^*y^5idm!RBGzfX!qiPbr=5^I>V3HxMMczu;toK!Qh*dW|e^}OE ziph3h53Ro=AYcT0uG$r{0R9Gzr4)@#a|*$H4MD0sZH0~BGhb{et=nQn3OyDwMXD|S zi)jbWB~ebShuT?&R~s8^Y0u6$yB8DzRJAV6-lS*dn&Et@c=tz8n%~n z+ImxsepPGeu=5sjdheWHFxz!1OGooMH7l+E6VdLkLE+}d-j!&dqI=Y*z-c+=lA#u# zwM0`Qkoeilt%ut_?W1dkhk%3e`BZzZJ6Df6Y;UmDT)$rG@mlosM?ppAz$TM~CQH8Y zqdfE}($7O8Yz&P}d|ycS1r>HZ2oVVy;A7^>q$1^}`{a9HFBmP^S)7~T?9#Mztb0SN z@sUCGJ?6NEePmH0YUr(73#w9|Yf}@64T!=@dXHrUK|XLgkr_=wDA7Q&s7nXQpV59JVc65!rSqRjPpnP5tW>D5(KJX(wF#QOnV>x{@cGcAd_-@nU#_0s$~ z+WXFetS7Z5i>k#W%G@;|ZIM&rmeuRASCwRhbUpGvG2CL|I_Y`u6L~Ar(W{hYM`G-pHRW}IE>;E82a@*&-okjp zu_m^8pPdR9R(w;jsIcoAJx=b;YP|P5onPtNwwgs{ZIzX?DnD8=yu2oL zy#K|QLw?=XZ;Ys3bR7z#HnwXD=szwI@j`lP_jox^BzuGSVGp zTw(WVmgRO%_^HH;>;`A&y+n#lONC{{9_iSmz4o8pSSiyBXe!$kwHl&yU}<}%?ViMa z?|Y=*+fk{XQ1kEcj5|yd-8={D--P!y3h2;dI_s`wV9m?y+LW5T2SQI+pWqXNQi*TR zBUOgzQl+oXW~+Yi*I}Fv_+BARquQodE)}y>gBc1oTVz6R_Z_F!XEyL)JKZR#1kpZD7`YpC>c(rc=mw|l1cg#Os>mf>$WSt8j}VpQWP z;BfA!-1!%ynpc%CgS{t}K&O&3ye4{Nlgs&ElGl_e0cgPzN5Wo*qJT?EPZ#W^I&=42E793{_Toorx|_@R-1SBe9rS0r5wW00I7!20V2dm&a%#NWgOuM%0CT|{7xF|e>{K_O?v@pX1n z{UP1cyw+*C=F)P!zQw_uR>oc*;XT4IJq^9wt_St6j_&I4Q|$BfJ**t|CcY}YtGqja zl6%NR^glN$Sk~Y&CGqoc7k3J~uOUeyERJ0ruV!9m-q{k>o}k(?Ko=>TpV~Ttt4&qivM=|l21Wm zh={Nw<84js)d*db)U)55sihXMZ+5R&Fly-x`)Xm!!5ocyn|x-SPRLoj4*SundD|5V zF?p$9@-P2eWM^HP{bO=Ll5yQl&j(`G>%WIzW$@IsW>$Z$m>GUnEv%#l@VQYbaX z6DHi!U}iRUS|eWcZr607G!OS?llI%OogNqA0ByUq#;lHvbAwSPhZIe-keuY2D?A*trI~gco)cXm?_GHg_RH+ znxgiGP?dl*KbP|-AZ>8;;yaQcDqJ5ldno?)P4Da*)JR6am5bP6Ey|1meII}ef<$)i zoSiL?hOb0yRyYN*toH00ft}SdFa3~? zB0I=Mm-V71{2GKqjlxJS{CR$aCwWPmVP{B*60`jsq8R*geW_eGgXPyWWE*5$$0zHq`grulp-TS3N1A-8|bn5JFd=;oa;L3@?JR)17b1k z6bh(d*u`o4Va}7q`Hla85<$ ze(Vi3U_x39Dj{SKa7|S@<(l-l=<(KdS*6&scjOpk>?<#<(6zFyd(se3y0`D+j-7e3 z=e#-tHpZ1T)Z-FKkxSQl_HLt+?|ks++UVolQx4N%d!pIc_a!uUb=O^*b|#d&iXye> zzGnnR-%?9bF9&X$cN zDP^rsz)_C(f@ea{tCN;5GJ7w1X58+*4vA;eC&cOJ2b?yIx1}V|W`F%Qsh#{QzxOKH zO~Xq?iDgTkW#MCz%$YF1Jf$R$q}TP*k-E{)awLYPY9Yq(eN$+Plm@r*%&D2es!7NV zIUXgejz`_i3qMJxvHYvgs9`y#v!eQq*LsS^VLBA&^2AG;HbmD8WKYSXOa<0L+Tv z$-9t>W7Be2oi|73f~T(ak`D|~7(lf>`}LKPI|V}>#iWb-e0uUjjG^}aarJUhtFW-} zUqZ=*UIOMaV*m*uh*MV&w%(}L7Yky{_Zc}Fb?jct$-#xMUB+{|rIy8QRg)IY9iCBc zwG-5ICu@U5OTN7BIYre7w%}fd2Ff>eV9~I~Ki*51mziSgv96at=g+^NK-#`%I1$@U ziuzC2-rn9n&n#Bup4*!gV-!xdS!C8F@8naFcjNuoVlKioa*O=VDWV(!0VwiS;PnlfwP`|G7ypTm4EIHVKSb*1v?-1?v3|e~mmFJFUZ5UvjZh zK6Rn%_5BnPvrlsB!z4-Swjz{@)MIGryj)i?6Dcv)VL zjORL~AGaVcr1PIl7I~?qy=97_?XhvTGK1 zR;9M;TOX2=k;!8IPvh2wXXllapL3h~E*=_w=19%&%egE$^j{3(dxjm+$|(#k0)9`_ zs54X8&1cj+X@et66%;o$4e=-zZB|VCTCyLgXBd%?9`QB}e2Ca{c<3$cku`p<>3({3 zKI+Tt?HLirzlIN&hlG($xnJ&U?B^WAIRVRTfpGZqovYG|Zh|eFwRG$%y?H&mtkwzkYT?nbG6q z@^oaXnVHYS?HnF7&3bOnP0J%Dt(Bbw-^uZmsa(>kqkfM|#KDqxbx{$O^ZMbXo5#;hY;y4^nA(1g-kb}1A3zpSC;*)f z(G1n45oS`O2z+fd4^W$t^NoX^z3LpJ4h`?mj@-%rG8dwjb2V@vrI$<2zgg0xgyLEC9ohDZ?Qo>clQ|Wsq?p=lHyNpskIuv5 z4cqtb{c~B|;pqHUJ8Q-rcj7k*?y*z&Q2yVdj_KWGj?O;q(@nR@pIy=VMHY73A$Nbwk(HoI3k5kJgt*R?jUjN1B~*|tAt_>0!gTYSl?>zxvZzc`VDp9^e|Vm`^jIf zrs_M^4c9Gjuy20cG}?M>Z~9k;AJ!pf=}x?aal=BRCf_qy^a;`~QmUFXziFu+phnFM zi?f<(^e}kudT@7_vYQLr z+>RB6shOY6l-&?FF{`@3zU$W4@iRC=nPSf>2_}J&vfSgoAFEZ1PD@r!qgyhTj6X-d zoSjlv!vcadRDOZ2Q@-5t-hgguunVaNIto~%ykb?z9MI<5UWn2jJ|5I$RRg*8jpYn~ zKj8Gw7By}Z%HXO0a`oHsY`OG1ZSh(zzm`^F7uyF16Rl|u9#!NhPg@RrU8-Jb{3d%; zYNF5YX|)Yz1tZ$QK?GVYt6XQ@a4C8g;JOb6EasVu_^}q4FK12#eOaJ$dDpOm6q#&W zDELlIHlQWS z8y9i?VS)epSI8O3_P)x zf8sqPv5wHg5g0In-qq^;zo=^j8SYgro94{=df$eOT7vWgfY6A0w=s9(j{;5_QYEpL zL7DlCteh}j==l5xP9dxGO8*_gT8+K+Ap!i`w>F4viGrewBD>3V02TDU`Tt8-#5zEJ z@n*T#`)~3F;Th>>Et@wDK@!x7TV5Fo9=fyt_W_i|&}ZreN^S5KC0nKX#-cg_3fowE z`{!cWVvEYk_x6f5$6ip5WPcCP4cVBiF%vK<)B~J~eH!}S|K&T{3>JEZp??!zMU)`GE`^yR^C8-kHcwdkQHosJV zTC?%{>Bes2V|q&is6G)#+;DO4pZtWibnubTAY4VgPnN%fjMOvZ%V_d@ka4bxTIc|F z%@Z4=8$L%(y8d4Mef`_(>^PQ++2a1+kL16x=j6c zmU;!Q20!ZpDiX1}?rFYM%bGO)cUkw_8MyHQkubaXRei{G|Jq(e0Bk<9?`W$RVw!v? zkdzfhO#W}`qNchGIceqFOIbexN4jFaG5vO+!Q_t!T0*Gh`cAj|ZlCd}l_HVUPppd) zcLDPr;r{vk=*FDT>~Od`m~9}Q5D-x8rtl6EOYp`D-NvTkO_pp}y|E zv9bR5q4a*c>^-qw^mcu^(8xvSj_n2aiEli_c0q6u#a0{t;qaJ$q=rdjN%SrxEcb(t z^%p0_h*`sUPB-ov3c5G6`+|b$@N3a3PQsbu>H3tVcH%!cB2~-< z+V>MsHG)D5qGqYJe;7gE0_5@oUVjsbpe|y49UpA~NPq8MThHzb9GM9;@@;bI+*%w=Mg(x#<7cO(Bm9m49zLxkh>2zM^?ZNPTFNPTR!_|dzF_Wk z0_|x3=Rf;Fp^bT=xz-$CZFoyt+sa+ryoibb$biIjb?5}ZL_xn8?x`ArUF+H%+q=kF z_Itj8_v|VVylfauq&Wj37|^+sgM~#Y;Y9JO;#X_VV9|}WqB&f67AW=cA}b>%f6M{; zQe<7mTE=@@x%+E_KmwwoGZ&fTlfpMr|CpVGvdM2;RrlqKS)m%Bg6i80g@gUx*))XzKnEJ==!+IN><-5fwG_9ZR}@_ z{$9ZD?QbxmuIE1CAgm=|vhY$vbxA-eJ(KL~h|kb3_%3Mq-^A$-edOKJWo9=jxTSld_Kp(TT80V2~IVzK7{h{M$*=-u&Z zIioxGW|B4J+1B=rE?h?U4&_w1{((P2i563M!SjJ69tj9R+Sbp4HuJX^ACyF67Bf@j&_2r<&o$VXf3x(FW%HfZ+;QbRq#bl8eiQIVq{@)o zfCr*a@08c@Hf?rAE+zGC_Wr|>FMCe+TYlW1wgp@^WEa*2`u-ZW0IBI@U?)TC11Fj9 zrHEmHD+RBpwvZ7Z4zR1J0T2P*3q1%N;`&(>f02Ud6gYxNPf!w3{YHxuuW@#3uYAZu zmHmwPR)`c})c`fnLz)(fdHjWd23s4csj9-Ml?c83v5Xr*ahhA&MRTP`U4}X;FO_%D zbMP=+M2i$fQouFvN$@eyO3vGRYs4=}UElxx<%|O(-X&p%4dD?_Q~2r#$u2!FdO8oF z146VLkqlZ}-;6&7`aGK6^V~ZOB_dopII3@*Jn6~gR5nr^Wlk{RSZLus1*``2H}}2L z6z==6`{N5~Kd#+xXjtRwb~t?E;ll3+X#rOX@E8%yHmE6Sd-j}V`|-`OiR{RJ=Jzho z^aU&IzfO<27TYTAa`S0M>`Ry1sMo){_3|+!{Lof5$7u|IH_?nnsTlkzz~k(GHF9*Z z;^+j`ALa>IA@}~3I_$!oM)8Y)52JR!>;59Uksu>}KSFaFTvB2;z|36aj)Yb$QrXDL z!?e5GxZ^@BO#xvX2Nci`pC1rDn7#jr&(XfV;)f50QwHdkFCfzqYF-?&Xk-uo4k)ky zsKon|q-iTSEky8q&s_+EGZ60wU+@PK8wpa7)(_VT^y{Sz>>Ydy+FfTHWJWjj?B1N5 z7ZJtZM>H9sd3VPk!HGYMh^1fMW2h1Qv& z%K-WeFpv?;if65%PldLKXmG)j@`Br~aeL`X(yezES2QDltwU){2=5Q~7mP8yApQbB zm%=AH-RmNgo4lCvhd10Fi2XX|GWI&Y$5JDt#o0=f`C-cf)JnBO03jgV#QL5n+F91~ z++YR%R#Xj{wDE_`D1pqNB1bzd5p!~+FSgj?U(t@`_yM5>%xQ>1(HwB`3DSCK5nv~@ zQpSNj6Li6c92jU){RstP;ztby`D!o)9Xvt=Ywrgfuud@bvJ$ErEYpA5GNi4jN+X3$ z(MaQyJJ9}`>BgPd>KEK~*gPrOJV=D75WZp?2R)BrWVxD*Jd^C;5ulu7$~{ zxfgtTrEj7FT$MjIK?R9cH3WzM!(IZ&2Ko5~!Dxa45);F;R8FIFTa>xB;IA)_IE4Q3 zQgIaF%VWTgk(kRduya>{$}#5cNL&YjG8Dwa<2L=>58*F#ia4$@wYlxM#HX!wU3BYA zgy~n@;Uvch!7b3`A4DP#2=L5#Cy}HAE#5S<1ne=;0j~Wh{aZf4TEeYH3PAK=(2zWK zv4rW2#ng5?^4R~BFqelI1At47HHBRgk%Kt!LdnEe_ zlcu278SpjHmrolG!7ssfq?|$)TzlurtE=1zt|x=FSAAq7yGNG12=MH`K{o_asyv83 z8I8?!+vK7mM(o3~PwlHmnaEdb2th9hVZiyqM2#1I+C;R<@Z=gbnJNW?w;=lztixJJ zZ3$jXMk~zrk3hjgRD9w170RPODT*FqC5KoDMh@OXexviZo{> zW_unr7SmW@k4(}koA=?QYW|wlKAG;;kjIZ`6qgr2LoiN(MMdcdOB7$YGwD%H{53zC z86vUfVWx-a9j0&M5eI#!X|&z79D5}UI6wuU+lO`@wsRPbFtSu6e8gwy`rdA1Gz#T& zey#g5R1mtAmtXmGZ`&z(B`fkpQXxM63nzVggAF?sxdt|q)>kRs?RV}=fA`6 z0xViaRXH;1`c}wGk8(RXgzbY6E;BlgdZd0%3+TP z=lD12xs}#kw}!8TbFi@-_(vVayG5xAT08GwkG~!#llIt0g=UQMnwdBRH86y(3d-#UF?h5NPz51VBrGRIc z#)G-b!ZCh%W}C)lVa zO9MzhXeF}ac4r1d*n`JcIW3Fv_1TfriLE$iXtw)OKF={~JL42z_hcxLN|wz;Fd93h z)@jyu*3mCL>{>-qC0PPNQn_)Hn01Ak61@N|zwoJ+;!CG{dmb9h6KC3!Ow<>#SyzTF z5o!Qj0$P7~a2c-iM80@^I+aFGm&QeZkIyrb&If)^fmH)z&4l;5Y3~QlD~aQ$aIPSX zK&yzL7cf0We}+VQ+ee4f3pWn31NjB{qze$Q5j4{}&Mqb!o`W)i+}nAX4=wI_+~akW z8tRHviY*9M(dS3=7$;r2X0V;v_;OBP#=BpamTdv!#i@*a0f{trEllnW+fLHi`|Q^- z36oR@K!~6LLk}_D1A9FF9not4oCm==27Jrnmsc6foxoFGe|~jt!M7ukD*+s0TuuyVQ)pgZY zZvmBzw|Wwc7=$*GdZZ2qHjf-|T}0^hoT(;qpu{MIfeIRx+J+3glr4`5@^Eo z3qcN+LA}R_r0ARLxdw-!iv~AT;tc;%MyoXp`1p71c@Gbb1|#U}nm+rF-2A)*w8@eu zNbQ%>1Lpmc=tu(qvYr=JR82P0o3M zWT*Y=7lG|3P+iy=h}IJ^Y^#1vX0vael=1rT|D-Zagzao4@^S%k%t|ZC^x8&;Kl|F7SCrSC#TBXi4iNzhttlWWIOWD&y!@8mXx6&qKR@dAdmjn- z&c8!c5Z|Iv*ea1Pr6HCcPpbfq5h1F_o{0%!#A$n;yB~8%j0#l8)CNKJz5ZxlP2^Pp zlI}q0CcfQHE+5bAe?ij_#B%awku{~#=-dt1yz#i=gh0R#uO{LF$QK9=Gc9fUa?0)h z+~+-{`6^Bb=qb%GW!^>a0}@P}HVCpnEgV>0i(GaG^lrqdn9!@j^nlYevn$-NX$?{D ztM#QSwS$h*A3u)GSpcONbSTnMh-Wv1K4A6|p|_S^p=*BM`%Bk4WC$NI1{e{b8LUoX zY5tpEdQsacZhw^dz<~dL*j6Bh(U}{8b24*{%}&ft!qHzzvZek~)b9OTCU=g1o^wqT zPf4i*DZq71MtS7T6D}(LNM?uSppyqkxSiOPi1rUoI;`SXUBt{ z@Z-)uoU;7h4`{njH}6h$(NQ#M*Kl_F=!C={j${qyhZpr%JKdtVo0T@9i65CPmr{tpPUyyJ!yDgq$zIGe8MO5M&r*w1 z2QuL0h86PyeQopoS|Qzk9!2EZ78e1B!4TuscTL(O=#yIoDAN25RnRaBEWKzyK7Xv- zQw~gPJZ%8gE@dUJyN=B{BP#^1bnBL8JE5h!MosRW6CJ9-Dku7YncVf@FX5TmNa;J1 ztcGyCz>>>|GF5cm-8!dMYuDB_eY(Ofar-@sqo5W29S4P~C|b9uwh&tpZaJm}fpw;H zKJ!f?CD?fX=ZLQv^@r_yv< zgta~KYH80t9*vqk)PA?ES#Y33135EtH0$_SlZCl`#ECaGPE(DasG8S+O`6 z$aKlPi0`&(3ES8j8#gti+CI5wOb1Dn2GR8ax=aim=Z**-l-zMWH4chIb$%Z6h zKEzW>3^PG^PULAg>$LixF2$9IMEC9x`@Q5EX-*PT1seY_j@bl+S zH(S3C9$N%1C>3=I&;;?2C;b~i(BJhLJT8 zAT}_7&UbWG@6B7I%}80cU;OSgG>=_3BF5;qhS-^@?3eqS3SO8j>%3yEam&BNc-UgA z0H8dG7vYt@Igw<@zX#!3yU)FnK>?U{IvEt;Vee4YvF;f!KG2ixTI$dstYpFC zcsW<=_U-V8=W7^OXII&BGsVrz)GsESd})rb=(I-0>#OKe{w?DXmGMVJ;hLDif}O~5 zW%e>sFvQr}i~J0U^r>Z(#}7lJg9zoJdLNH+*u(KJ3j0AOSAgN9AlE5V+_>d_o(%(0 zSnYQ2yIxqMRMc_wQJCxOf`WpAu&C%=tPL8Db@2rCq-@}3W<&r8tFEqQ@Yb{&%~m$# zbE6+Ud%$_y)xAfLTe)ZU^w}7h+`GE+-HkO`j0%0zDbwv!5R(#lF?Or|?qX*m!ogg= zp=bFN8ago15gZ$A)*z=K<3wCv|E$qWq)=Id`CF0qlzm+|yL`H4x|WuqgV(z^uRo;} zz0xmCk7ua&4hhk^gy#fWGq8Se@@xN215o6Yd>$D&ANx3`>N>o(3sC>sH~dn z_h$>?Sa-7zrMi%PgZV%=W7sxdCtt;m3%Qba*!QLSpFSAbSe`i5JF6Nf!9Fdxz0`Va>jG zPAYgOsnoVFs=*vhQSEyN8CiF8k2!W!Gfm|UO|gX_wE~t18xk=Jr(eb77vUiUFczh% zzjyz+KU)=w0LbJZ!5U!@ru*X%dSM{^`*X@`dTj!(0i6$@?ZA7zDyqfVW&O}^PR=4+ z<1x1INNwBp6=TL0Nu&BnCDVJQcgK3mZ3~;`5>Ikn69vo?MAyBvY3GZ=^8j%o;IpQ| zGB5PY2#?@j{1wV~-14as;@b5aDnjKby1zV5)=w+3C_Xs%hBrLyfrQ9q zO5K=G?_Wi^)~U9QBTqq|hTI*W3L2>I;SsK1P^JQK5L$p1GB0+xfj#*RYYFk`)2A0x zE*BgApbh@mL(ZJa!ib|95E8-#Ljd&S8wdG|$SyWe0-Pyv|TT>ju3+}n`{MK;H`sMeh?{pzQ zHTd=(|HW9MO7rbrGvr|4AE7l~g$lpc3B{WBVarW?R+MT9b}}?YQdjq4w}|wm%T#R+ zF*eF*Elvr2J)6z(zwtUR;Z!I>7hQ-d&4UM+ z5nwpE`)HcX^+_JIyS}vqadwQ7l9D)i9-JX^gh}D3+XSd9T*;O7_QD&R8B-iH- z{!k1n?o4&;v=h4aLRLyDqy7X$a45k+P(@_Z$Bw0pUH3Gxx&GE5@^kDUurEFC;s?#C z#7Xk6URh`aAFB(DX^-9V-W1Ui%8$ro{tkOVGvmf1fK!P{$VlOlA9?(qtDVz4v84Hs zZTJ%CJV9O`u}OTe>6Xl zXRJ|kP_N=}xsMkm|M&s&dQYzKm76JZ4{L|4d*&to=`9hC;&{MW#TtKOrL)p0ic{u% z6tPI<-`lw>mXsRg1^W7ckN2ae6msdr4ln=_Ltx?A^91$T6`?bBA0rYmV(AKwUBUx| z2_?{Rg9O)%8z3W7e#kg8Uu}NLj;8%=F0ct@@9f%6aHVHH|CaOIJHTceyVbS%4uqaC zh7j?tJdB(~p%!$gD?+wA4utQS+I8OSbf{X^caAJuvGZ5S$u?o;7cku?&y5vC&^K95 zg^iGQxy9K0x)PpHA$!p*EQm#{rFj02S>4UDWn??t633~9=#~w4isQJa>KVzHf13bsIcZue87Apyj zTy~yPPHA~3*uk;I(N0;uq^HK~=*i;G$65ep-R#s^v7m$a5u<~oe%=MN6g5v2(d&!# z>5e{+H_!l9yqWX_3C% zRw|XclOKQS^>jQ7dGXA=EsgCddorb!rN^8!6Ip+Gy=^;a-xoWFT zGzn1dM3Ir`(cDCChTIOREvS?*I2175{3O*Z<6%*R(UnLPB-!K-?JVf^^hG7a+b1kB zNvu{l^no@DorD<4Wom(UCeS%gBaM)(`<=cl@6LZ+?c;VDvyMwrnIi?ynnvuLyAauS z*yF*k{)2)UdMKF1qbWUux*?VWD%;p2hY)pI2h1QhCXj(BI*`ky-JmReRjSQp@wKo% zj6Nfo-^?wp%<7V!xDrS4o;N3%G?`dg z@FkM`*qVRs<9u(*fr3(#3ZckxHzO?+9f8e;TZ6F9zRrK$n9?80dY}EeV4BT1)A{pC z!L(yqxgw>H6P^XwY>xjHdN)2gXP;=?9g$FWKv+S$MX?VTu<-0xof+0a=N`WFw0j3f>)FL2qNpQEx%G>zbFQ1wF zz4;lfj>i(daWfI*!UQN6N}`F1)06&=lr7gaawoSjY4p1#1;t$8*-cfbsj4As^WqET zop(WRXqTzkS7=hjt*(B&OCx38_W3A>nd*g>R5wS}b?>noUF$-D(j?Xgx?QIZW>aKq zw|rJD3Ek!@IV`Spm`S&BXTNc@4EH1BFAfw}?lp0dj7L%q_sA38CBm)qE$SkYKDdUe z0PaOo7LPObxQ+|ED!s|0zBY1@C!g@~`T%1Q)(AY)r~ZPgzVBgmPxTOgg`N*i9%5Q# zQoy%w@hYXP^l4(hoodITmZjBR{3?!w!qczn;m*)3&zB8B9* z79V=_bumGj&9v%t&Y?mDONe;(@u6_MDpUNM0>i%R!8vbZ4LwFGa>zOvY8H^Q71%Hm zYl`S5V^kbUN8>JT-1fH@{5;8vG-UIvgq33aUVP0G2|w5VTO{E?4)rs+j(Yhjd1-{U z&>v!tA3%|XaO)tCL=XHKMFBcbB$Q6SMJbD98FF49>kW!msPbdnx+TK>d)D2{8K;7K zQ1^(uTr<<~ftvH;tk`xswX-p{@8?FdceET0sejm(wm54(6`gR)c<`NfScIXN(ESr` zXLpiXJ^fE~y;`8kf5lOakEV55)`oI=*VLP~&P~;$3$BJmU<1QksFCI}wetRxMNH=5 zzzaONu1)G197`2DBon+@9$Y|XZy?-mRpy#)=USDw!&&9?Y<5rq>lTe8g zG(_)$c|E_=2MegbSx5`@q-OnXb))#I+>0wqJb?66uHUrshVO^8QX=DD_4yO18MdoM zo3rP8U}0WT7dyK^gHXLv)3hVe{=jAh-h|S%#clk0vc$YN)Y_noK(0Z*J(*h3IQD7X z@Fop0$@t8#x4QzPUQP02h>O;fw~H*|6)d~Quh$E|JV+c$BKK84g;dpNpFPKUcl=wS zR`xEKzfQMUqtH-ZyT`J-{O)NpDeiMdo0N6#XP(T`ndELCn3Ps{`K36)Y+(nl5>phZ zSvYtlDZ1n1T(fDtEg8;q6n*ihBn_)xl)R9FSAmbZSLW|OZpL+PH-TP5ZvT)`A?d=B z(TH=14cbTqkbof8m>i4T&dL@=Bf!s}YC~%H6!(d9l;xRfq;Z)R26OBsWO`WE$XufuED=8aW`^tAJt3AHMVI+k08W zv5utBg_LoU3k_WnnT7eTX^2p}5v^WsdJ+lAgh!Ki?;T9+Ad%4RV_@KpjH}39y~z{7 zV3^OjpY-OXA{O!*TaVCQDT!k30rlJwuFv*mY5jxVP zCZXqeqZ|0R^*!md>cb*iMsAzyrF&zZotBGi;MH*}5l02)3a2;@n|Ii2-qUt%gRp=Q z&9Zro9Yok1Nq^X!nc;arlgQ%9)y5F2_F;tjvzTf9+H^OyMqamC2#p4|H=`1$$aw`O zfdc;`88U>iJ5oO%U5AwF;$3fXO1+vhGKWWvfb50w7>YhLZe}rrcde06>9j_Yh}=24 z8kKj23GCbSf4`a)}FMi}p!<7^u}9KLX>o;*H`Qs>2-%0sQ12+zJe7Ntf8 z&l|rCTStGn-83^mnmZ97igJmAc=w#`<2Um5J$X@2C_XhdrvK8+R%cd5>tXuM;eDrb z)txaTORIFM?;MAMr-1jLyn}bUeQw8p?O42ZZJYTEZ)oZr&5NZNB1I!P#Y+0i45(vU zR8Knnrgu~QcKH&k?k*3annnleFak-|M+#o?i@GZ#@N8up7T+d3c0|_^)kDn8K}P8a zzb8uAgP2vD9_2s!afNZ_g5ZwvKhCedMErlM+_7TCdi&_!KToFBU;1= zG;3!qLHe|0m#C8)=Xeb`RY?td4mWqMFzYgNxh;XBlFqSbtz6@Ab~MI_Nv$7^d7!ij zt_CA3VrC?|wS-oyD>3IKTlD6ram75rPl9G)!GCNyuGeg!v5Hm|YWdn5W_fh@JWEOz zQ+hQIhJ9WgRa@0V%+hJA!*leI_K+Viw>&i(OB=H+ZsL!`}C-$BvKpu98g4!th*)JYjw#=48IZ6tTR$citWNQ92_F88dM2Cy$9l zb@hGRYbrKzvB+a&k8;btHi6;kEe(0ZbtkZ)1<%pqsy`G#zFy)dXeBL0r^c(T=Ax8_ z;yZ)b;L0mcC)8IEz~$Ps3*y@1xJzdiliHNM(G!>zBCMYF!SgLKPmJOYj$n+Pc(*j! z-fn)q_j9u|`Ec9|;SaAcUWKpBmT7J1SGrCH0dmF=6d-hP51>FH@K|2nU|cgegKwog zJ8pBqH%K-0%B14Yw!kxoh%=>^vMcGrD;17LM~bMUFP3t*jn24TAoR>Js)H44Kjc78 zR7S;hNmZv_VpTRWxtk)8ZGZgUddGTS605SZtUd2VJ&O;npH{Vym7q0QXC@gT(3jLQ zqE-=41^Ps5_4WhQ4-O6&K*xpu zozH0}W)+}R!mU%%j}QonF+M))14_w)dha3op4-ze7KbH7d<)|%E$LCChY$!^LYU6t z{_CHn!-QQrj+r#`XnL_D5Jq_&9X({8%Hkq|+~cQ8XD%;4iJyK7vs9vc03igOA;4wr?2Qsw!V+T^WV@M?B zHw$7j?|#I5H1wM$iz+-q!QIaM++W^h!Z2#3Q-;gR?4#RVNu8w9kb#l@=8h9Ud`$!I^)q4SQ$B zpQW53^t*@wt(dWpM*|-hp&&x#2rKY8Ry)P!WQyVU;d_E!Ta@s4^r%?863tI8EV+2_ z)OP}O2l;O=W*EPS2un6Fs|%irAj{P9>KQw#bj$fNwC6-thJl?YFdQ6rjsVkx(~DC8 zjUnRy|8iB!yaL}QpWm_Vl+w%kxyU+>#RJ3kjobA^KieHPV0~RR;(Xa>>&-+3b5#uy z>ASz5+VDc6O?hHv6E0Sw!nkmKAlYM99)>5hRvlr*o8Ub4gofw<+9)V^0RsYQe#hGz zCvb5g$N2uLfyU}m{h^qET2GaU$Oi^p&+fCsY!1+3)Gk*n%gB?1J#_NGvx$Q! zFcENm*jwN=ns{xt`C5fnw&mhbB1S4Xz(9%4Y1yA&lQ_azW9mtg zoVG;|J`GLnc@!7-`bhE3QK(Zf&K$Fy)dDS1ECs6$5_5#%2 zjWHnV6f|=L+>@f|lS_&SXFOk;_Vu2xv*8KNZn|A|MFuk78i{%Qn=2m{oH~-AFck8c zA~_(+l&c}FgyYj(Nf}+t!a-KPm;&XVgOhekHM@8DJY{+l*Fe+R`ga=e6kgiM)TcpN z!#%jpYT2AzLMiZYTxxMAO-xJ_ z`i*mL<$2$Cd&MhtE1m7z#zK_RhMgGsHWE|}1gjT@VdeFx)0+CX++6bG542jzBnX+x z$H_UJ?%H-tPm|+BM(pXfEYtM_ouqpygTpKXRb3N9*#>JR!ra>_sss%WlC#$a)GM`} z(QlilAak0|I%_{+`hHU`>vRT200o`@DXeO#-5-TtNF=HS|- z67CCbb(tomJE(FE^*Q#5IGk&-iMU5yd-mS9kG#sWEH%Qn8q>*m`pi9d&eR3Hh`ga< z&ZiRQaZY0%%k|dDOGZr&UymDcn$>3+iVwfXzJ?qb^EQ1KllFsq2iMmJgFx%^xuf^7XK9lEA>s$3GH^%qO z#;_j<*Da(bEEt%G2aI)kmcxpH(Bwd3OKl&#(|%hsMYU4dC4w|^=cRuP@d$Xg%{yLn zF_x?0bbV43tMDvXj8UQ~vMOx!YkKd5Y2zr@(^%VYmB%vfG@TX;7_q?sE1APQV;(Fy zhesbYj(v1R;bl^C&m(BY&>u*3b0?;!v{(E*R(<5cgNZ8Lrf(^hXP7vsyNZ5^FX-jI zqG~w2c+5sYA}@Sbxf~l;?9Ex`mIIFBEO;=)o&TdjdnaO!nm^|lI>q2FB85r$ptn$O zlXv?h^Lv*U;_izx2Rl!V$1Cf}1xvC8!;3ic(>ttX-)2co`_-ak#&3gYrC-6KzA*>AyCT`M)S2Ek_ZazFoo=~`ZU&00gv=J%1~Hu! z2dCi@fm-lP`7MG>8%kPY#yn;UXr1B@S6TF{e!KK;kTmAaq;a|7Ql9bKA|q_3bR-0w ze4KCNo_Up33f6G=r3td6xN?&pubo7!bPC0@r4SsbP!3`kPx=?h()S+ay$qj6E+)-R z87GmVs5OGqz!1R6vADc!?>Y3b(Sf}Al>6jj><{hDKTj)bIFjhQ5~+EM&!%xNHGS(O zjn92CFxMlE1U8Il7)U|1Sg;c##ZI9Y`$jM~ZoPg+QSScbn_0BQk0{%Z>~33h6^PAt zC^K_PZ2UAv6UJgt^D>2HKvy`1n>i3(#|*cd0qV+BhF*zI-RykNqJPvC3ouc8ZrFz1 zFozFsckSR&$`&(Hn%H*Et#@xuU7zYi zzkb-l$>p}G0QH`vh*9C^!LjRwUGag%@r@~gRUDDfZQ)do2#aVo)zJ#+sy^}}40r<8 zeQ^!OX=WC>3%nzTCN)=m7Vk1i_z%BviYIGm632+}=myO3g-VoX^F!O6lUAEtGF47D zxj!HH&=m3Td~Zf?H55l_YNv~O!l%yKblx%vi4!%Y@;YTx)HD!H3#x+484bY_?ZcN9 zwvYFnGMV~qK#|m06yox%d&OO<@&}V!(zDX)tl{Do=P6Elb5&gpX?h(eAG16^epcO_ z_N&XqP8W{uQ~P0fMK4NZOXsXlhWB2L$|IqtcvV&nPN-iw?7U&o_CPe<<=rRGGY8d# z{0b7>7OczrZaF(-?E7F-XR#hL>#gE{S}dq-t(c!DY@6uR;0Kmn<-Hf8>B2@{mD>Nw zYS<&?nUc?@v6|y&(5tRt=fIn_+cVsy%gQ_`AOK`QqJnEAHt|ohg9d4G|nt*DyalUiA#V_k7&XV4D zDAIqCb0j%}tu$LV#bIb}Ub^_erqrLBzm_BtRFelK+{hecsGqb6GahQ#235?%I}7gR z#%PDupwePDu&s}^{|Rbam_(!VIceK!9EUvdl$9m7^91TxZ0_PIZEceoxu4C=W2p2T z&VtmEF~Zi|M*q`RO=!EoYO#oLK+TTWczbgW9)N7y>?3Z)bybSQ${i1xKhN1bw$0P+ zECk*cr2KPRf`|bHIX<<#87ajh3uD%A8~y&){y0YcdowFQ&P8 zxC(q}(paccz*vL?14GCiGqdNmfoHyv2j(K?6cN}AK(o`E4R746tS3+P=5f=Z-~6#G zDs!E%a6ElV6pqjlyYlMsgx(vYO10x!d%bSP_C*e5d54wMUR@T;)i^(4+G<^3yKjr4 zdBc>H#Hd-fO?ki1v)PEJ3PX>|4`2T~7Q21p2zTKb1({2LTt@Lj@6?n;M|ea8$&X@%oV!hW@G7wx$k zzWt!Mm>F3}{PS$7Ym?LOeN+7yyf)6b1ZP?Lka7PGpK>GakknxV`lq!rXgF%>64kQnLrBnjLO@KR7O@G>y}f<1+so* z1)vkZg)?w_lKUe+!eE)d=e4oSd939Ui?)$#3>-?VQ=ll#0cVU+RiIl1-k-xG(q0twk z7d0d7H@6-;Zm%{J5qtOsE~iMf2O_6k-0f@9ODScsA*QA}w_2g6bJk$6T~pr@I{3XR;IIUpX94SXhIV|Q(Ch<1f^GHPOy8N5 zlHmpzD(%GbmD7E}Bv`tp^7E1g$>9r$KeE8}&yvmMJL1af!GU@;9LMtFD6(VnoNP|7 zg;cbjm)cIQq*|HiFeymF&J{Eo^!?f1XFxKLwPckKP*lqKylCJYm|qg8tGYY6;`@(1 zKO($3FNeF4hNr|zk%esP?5xjsr;ftUWS7Kgm?IrIW-^+coW#p2>i@g~ZVfnowI#M> zeg**!PHda|hbe}~xS#9DsB3yWH<_I?A1rf7sZ46L9yP3Dl6kq;e0xi7=RE^SSwOov z#kYh7SQjm=NpaU=MgpO)N;oGu_s!KQzXrq!W(II4h+HwKA~X{UGIChXD0U;Y6Y#VlLdGCa0EIM zvV8#CbitsogT-(q{q2N;q@@3ha>nTZrVTowf(De%4@J!n-%|b|%IPW^AlMKbkrLJ~ zuIXMi70Tga7SEU09JjY2!L|EPYS;Ls{?Tcrt7+B0DS1ALSjkm8$xey(Qgg4CmLz@P z>E`t;hxMNDAYyog!tcUF8LV88JkZF1z)G;>fJS1>0wWciim2->M!J=B+*}zVPbbeT zRw|fo4gtwGg4$HGBp^6HEsX+{5+oUaNE(mgO*JYYG6o5AVhpqw(;q%5Hs=WIif!&| zJbp%0-_5RSetd|X^JMGu95Y%+J|W)*Sst0PFQ-3$bZYCpBJ8r8B52!Z4cg)uYi80= zE$MDeJ$J@TH+{ji_)NyGO$KXM8>Vs8;J3Y3v6l{g-x%|ZJ5zfIAV%z!!7Q($?I$Br9#-9S}c$7#prtH1*ao= z3ws)LnLrQ7W9V_G)`Hqwyh=nup^)F21ovTc0S6iBEyCjenVDu zK58`5fwTD!E-gfS75C3KIr5(LGvq(|-`>>}DQoUIQNnjjuC~n0&&NOs1C-5w=-8vg80@CT(j&Bga-Lzp$mQsf2 zEmvZ(&HVB4le%L zzdq2zXIVuhKd8V2uG=_@&+pfsBUY3m}om4?4G3 zkGd-`^HtC^tLkX2n$*-H=|A=P4Re*9<1a@m+U^8(t^F!&(BSqgnc#ut0Nh~=^lwvX zxCKCo@!H_!(8o>ZokL1gcm!K~Nvb`?P+5BQ2Xqmhgu?aI3GW}p{njwifz**cO;k1 zNpq3ae1l}_tAo?emuK4~25bmn4-O<}i!frLKw~;w6p7W%g zjj4*=MK2?K-dI_BE`iZ-n9uRT?WK?3clGJ_q;{-N{}*1;_jv?Zoh}^IW2(ok3W7tJ;vS9K0K{f)nUzPkmICUW`51FdS>7lIc-LI@hHpD zQr+R3^Sspq64F#bKyV2atTP%mgPkp8JvW036WRXF)kPcsZLEVpBVfclrYy7VGhSq z=V)^2s=@s(s?j%QbGbr=%0hl~qDcj;XJ=Z9RdWWDQxCBQZfG{1<~iUR?xw4X7H4PB z!KDxNRvX4M#OY<XUqMcXRaV?8tV{;ygVkQ@&5|9RZtg%gruRF4!VB=QBtez>DAmUTrp?4Zqm zI^ionk4H|9ax(6E;GUEfCdK-eA}*LG_2klNh83*8kqq(^WYybKWxJ-@tx|bjeY0LX zLq*8cK~8XA_{0Sx)K8Q1gh2>}ju{-`f7Cy~FF60ODH0)5R8I$oBkqR@NCRfEqt}x};`D^FXz8;j;p4h~VZN z6H~Y^a+~mm{`~$!eziW+YW(wGoU8^pQf?IvGh}r*@y=Scch%~*e6KAWR|%L?LPGJ8 zRZiGfVAcxCwueIbpRzDmEDC1PdliKrI;m^+j)d&L$0Yp1qr=)nS?pvw2>ZH`nkS|m zbX^S+w9sP^JO&IrO^AgRG6A6oRjlmF)K#tlBf1djG*Q1Ny7_$8*gC1?cAL`;on3w- z(6+fgG0nhhdm_D9cuLbQ-?bc3S7fWAKZS$|sGT^RM$htR-YkD%6xjO2Yt&bq%%6|e z6RRHdpiS=eqCUC$v~jab*FUTHhWnZJjI(u_-Jb{^A?*u$Mb7pOIN$4*uJ=VpC%{Wf z8GR6i)<%H-w;Y86_%v2vxTwN8n#7hirSUk7I{$U!=D2L;@DEpy`W#9Wayo5J^Nd=Qc>q}UO^$A!#1mF z)zM~AWPWCx3y$6D6kXN-9LSR79ZohjO|3nzxDkGcwDmIe> z!wuH#c_R^TjGhOq60tgeqdW!|r|;TwuW591qB7Dn0YZ-eC%a z`%7D}DSI_2x<4s>bmztQiKhc+PL^*J%;M!}|JKmR5^MczSW!FvPrn=KsdkOH9#!d1 z>y9#Rs*n~{G!8@va+Qy2(xKp5&1T8zMO%mdZ@IfzyL-t`>MeL2o3F%NWHa}P)z5Feqb>$Q!im?`7xVs1$?(vq72LwrgY6)fSJMu8Zr6Xs&%l0BZ&+>qPK=P(Ehl|d` zq^c(e3$j~fORTARqPKX&Zjp+DY7$QH7;?@D0h=XkT7Z^8D)Es3sDV!Zs0tSDc%A!! z{kmP9XaDXx>QK%P&pO)al`LLpY^AKeaWA&gDLO9Z)uT$6OXGJ}WebkM2?VlTXp#xm zDS**_`@EZnn&CAs&I7sE^Js9U;xy0Sq|Zy-5*hfc`ocmw-P=9aSYtxdMHku9_Vk7L zQMEEjr2EXrGU_I5bt?OI?6hw>5U$fDt0x`u!i4U(S7EVDP^*5&Bd7^o8$s+i&N->v z`9uFbqvsc=FV{AU2xv+4pSl*UC4?_fir%dRp)d9K_xJg>{ocTod9v()HMAQsbs9#& zyk?VTZcM{pL(F!vy38YI^=>cWVsm?OAapY9Z>t<0ej4@;(1`)Zr^cLt!6KU@M5KQ3 zQ}eK9^M(2h|Bxr0x4!zMH0)5^D6>U5BBtR~h84L$SDg+$CA(5TVhlt}7$+unb6LOZ9KTbYEpP}V zO>8g--@6Z$gEQDOTM8$^keW~k!UzPaJtS?I-pGxXedPoe7rYQzj!~F7>7M2uymy0N zVPJfIxrw&^c=O~ukuj>D{F893f}6XIe3uGv7=o0$Weq{nLdl zD%Fxi`*UuAp_?kw#8URkE0tYrT1r?Fw@UyoWP03FUu>Xtzk|>gAWeZ1jj4 z3E%rGn{*$m^C(f0`kuUEQTFwhbvKVRm-)0aZGLylG=BkWp_L%1<|12v0J(Wy*~sQ- zNC8KHD6%7k>eNC?{aN%k8&YS4RsXPk`|IE)Rk5$-hJjEVqC08Y71C88b!L_qUWmXm z(3+v2n_gUDc(C8XcDSpGs|t$VjJ-v}bI#fm)n`=lBu|sxG+4N+b?P+kjFt8A!fVgMhwpH@hIdzo9SZKZeHh+p-l53i zlAJ`&?mne^it6WQhG!*q-0QZKD*{ih#Bz&yQ21PUCMCb8f_~+s_@0h?=4BGGr-UuC zRW0_}3EJz0xP2KOpS{#GNmo4j!!6=Y&&yBwVV?%6XdS9LY8ob%izcRfe|>vJonDv0 z1m!inS8&%6bT1rc0Bo(StT3MG8X1*+{!IA0B-YdBo;dF}6xZvhb0Ypwn~&PqJ&v%~ zM&VxEwdpgyDr_OOXUiU+u48;agop~|s0}EsCoJoADY=`nS`B?Z?UsgWttSw6OJ*AA`w4~(Zgfspg zXVj~LwaK|#N47n8j=JZSBDnpPUchm6(RV8cEqL4LUCF4Zz*)1ik96icsV-WDMc8cR zwm3oxts?*A{%a#bn8=JZ*zMrhCS{qa>C*S(-Lxyo&{in*RYfZibR{C4={rY(! zU&5Q#F8ZR7&D&N3E-3&KY-T9#AsQY(9qTmgXbmiS_so+SgGBVoYj^vVMs4eg9QwR{ zs~SUkpkMzjGGpv)aP@vm($Q+FKZY^yW%`|~L_7p2eI7U$7LCVz_8C*sUK$#R_dnIo5eQn zAkjTA#_kW(slEu+>=x&!g3|vx%l(dH4=yB#*wEPdmP9PT?6^M8hMi6qLp#29UUE|K9;(f zbCa)@GN|Trb54YZ9AWHIydr^niIGA`z+2{~-^3428?`)#e2uJ3PQLzNj&Ja^09pFtc)@xXta&UqL7W#f=5wQb218n1 zs=Vt{x)a75DNx3$tE+V{T`DIOf9%+(YR`v0-4cCaWXtQfLynQ|MbFmQ8+%2nGi(uX zf_n_n;t4_gH5|B&VA}BNsLh|RvTc%C<=8S~>(N*PQ1#H$_x*;Ueq&x|Sw?a;bzVLE zA=c2m=lmD=b4N%w%;wdvcUorC?#*cGt^46`fP7~nIS-_Ofe^irINF5SbKmutq!^DY zs`0PgV%YGVCPwXtHSNoseKG9A6>O)XhrF!kC*0i}zY1)B60sIYDVrs^`#0=sTvoPb zi3#$Otjsg@FzJB2%hJW4pmEuX$Kvkhk#CLAU`31*_C9NQzN#YAUxM(7|7X zg5eC5+F)xglO)z3u)T$9UM><@XiknL7YZ5$>U2W9g+9jDUkl_9{5)*wQw zkM1dWX)e8Sh+F{M38CXMz^%Qm^)go_OXi}!0P%!g=w7h)kP~Nw8^45-} zJ_^r%>2M~wg_nA6pcAeh=`qk~#xt6IX>aL1<<{6LkI^1r_lU~XQ z9yvRFIh2w^O|gFB+R&ngJ(moKL$cUUp?81xWqx{^@REUTPoblNt>9C~sTsI-y+^L9T22+aYWt4dP}6;a=U2nNz1}`P z#4KCCtyNe5>%`L1{L&$ku;W%Y%`M*J`L}mVeVR?UUwUTtCh4D_>2a&uzo$q38T?T* z?faj3*`CW@v4j=i{rl9<{Qg;%+1}e0@bBB0#1#MenUzqUQU3Q+q)IlDz~;d}bh~-} znWpwq{QvR8deiAE36NAvsLg$Ty82)r;XfJDve2@=WNd0?wt?`_!#7M34vr%Q>noA# zhX^B5B>w(bnCe>?xmf(JXgN@RaR=dINTkn0_&3G1_UUe`?ak_p-vpq5u)Er#xn!FJ zmvDTK40)^sBCFPQUr4#c#CGq$&DHXtHe6<2Ic4UrO=MTkYS-pSc~Fd{+?Ft?Z20x- z*Iy^WhRC(Uf5tl=f$091H3Cf>nu<%#!+eBiDPbktw75PjzbY`+k+TKfz}k_8i@#po zp80mPX*s9cnUU~G@?WrhU zy0~67wer_T7FC}3%oFe}EqX*<%Gu(`*m$dy$drmRzheIEt5;=iklSE?6M z;obVNZ%V3r-gj-t_c!4u2#w9^nig@>c`A6$y`U(8OGq=UrILq-ha)CY=dIl43wpYy z*;G|kbu!zsP-?qfCS|S6%s%J4Et6}-;qn*_b*SiQ*R7r|+chvyvvKr{5^k|g*N8j8 zVf2>!;4S>UB=DSs{grP>rFM+#V_A_&NV#t;KKuLjJ-vPT@|y zPMlzo!GG=wfC{uhvK8=b8Zb$y-$A4lrZFSn`bYcVqb`Z3vI+Gh8T7{ zwpx^DC@>qPnN~0v=Gsz%599VZ8RI-WE5m=c{;z1H!kPsC{9h|lM6Ta)P?px3 zdzK7{HSgc24Nv33(e+DJxF(7R6vJ_Nvk1vr;_{P^)BLOS)|OB2OQBMevN7Aw`|zULXQFSQ)a zW`ecs@#2*4TAlny zDrbUPgF^68m=CEyZ!~r<~!XM{wZ@T~P^QLfwnk z>sF-xKJ7Ps1%!BwZ~vfK8B&thoV+`D%bgC!#-6|$5}TaO=8qwK5pl)OVI6G><11Lf z7W<^S&m|)LX)pYY*EY;KuljdY6PBEpZKqB>=$BuOUuRw)FJ6Toh4Fg!61o?;fK@&| z=xK@cIf5qvHxKM7K`(+);QB!E$}XqQc)2-2S2zP!DJ{YjmF3&j8GkwNzaPY(2lJ%v zG2%kNht_JP`tIVvDXZc?Rv>QN$Jj?W{Sx*GBe{gv$pU_*)7)C^+E{Jc`}Yr1@2-ye z1PQwZlyu4NBVJPu;c!Xu*FqrT?%Ex=in&gC8*2?d^YQsf7`slD9dzFYxt;uqtQewFIH~mplpcTVcNNA|tkB>CqOeUqITroGN>9U@G@_v~-ZrWQn zdnh$s&v^Ti_}Cz{X~ZdwQgj>sM}$u$Kr%2RK+gjT3t_vXGzXT#_yROb3<2N>p(Fk0 zPCA+gKJ9(@^34A-&gm$e?8!4)ZcA!eHBFS8kfHf}*m+%SNA=v9uBWS~SBf?cJuT4chfPh|6+LtNm(2_Qi2we* zn#6blb1wXRU^NC=CLV0eywL0p3=BkQ`eMu@@(0Kholo$8@V*cm3u##t3|AY5;j}3H z0CKSCj`4Tt`~L0A(3fK(@Pum-A!^{M9_(AE8_pbWuf1A0!DTQvb;$T^NpIzS?@)8S zAxCN1p6Ab={k@0emfLFK0vUr?RiqY#-|8;)y}M$H&k3=<5a|++TO_RA{Z-5&*OlVk-LS!k0>)%;TO#Hk7$zRG-+)n9gKCvsR6HTykWwt82-=1+gn+vkjHcb$>kn! zzhRLE>&@ewTac`Q4#peyv`EY~0hu0ND+`tC?jArRlai8pVN3~QF&LUv$v2IYxn2gR z8!hj??dT}n!3`fT0)(qRSd1>=Id~l~$Ql^mLYSNSaL7EwPez}KxgJa9p9rtO zPa|BHtUGh>LqM&c{N7~r185I_J#io7I|0oQGJW(USjikn!v_xq2HF6SRH62T!y*R2 zPt(&G`pIwtNE(WKslHh5IpzUSH+J+smpv70Co%+*l zVvdQW7pUEMVAw@S28cV9FwTJeCg5l|cT*AF7NnM~qL%>hNg>_^ET(Sf(F25M2o`tv zbY8r8LCk-InKhntibBSR>D-*0&dd1iz)RR8mm1><$M)69yIdH|ag(56g7Zo={{}XN z55RxHgVak%OA(E=R=d6^@3Sg`2MuN-M2nH1&wytafFBSL!qySBAaZRszHZo&h*tw} z4&2$q!h*CYeevQ&mz|en6fDw?#5!FU_<~D`;3s@R_XO!qQ$#85R|xX}tm60M4#sYu zz80{B?(2A(4n^gBLs0-N_==;ErZG*UUi{B{ui$@l&+QN0b_5_s5EmYO0*{e+s_>cP zNrI(LRTaa3-`<$Y+bP_Hq}NOW3^WC?-CoEKN8l0`D5m!+*pD9{6Zrz&x-u^nZsV0N zC0%k@`M?6*t9H<{W4t`sAO~;OcKOduaOaXzQ|EP`&Bv7JhQxWjG1nsq*kBp}5yAEg zX21ADepiaLDAXQx*Jr<{OECP=EA!m&o^+9RUjQj)*;US*MEHHNZHCYo3p@N9B^gBq zC~V5b&5>;|3|{Bb*Ep|6@80O2R0N=5nw(tim?~e zUEi&+=ykaz6}}Vj%SYY7lSGGgTyt}??XRz_L4UjtA~=U!w7< z5GM2HmKFd~2x3}ZeM$~=Kef8HWE`hi3IGfpEkUM13yXsC1Fa9X{tsJ5%l!8#QFP9k zrzR&8CNQtQ!9h3C&RnTjPB@B^YIf4c@8QGR!3%Oj7*7dQ_mR0CY)Mp(=^>=X?VO3y z(T#oEFinuhTBH9^Kn;c}N@N$J!v|f0>jLAA=kY4a)5T%jVPUwNqcxQEcpA62>1is% z;BjDRe$iD(3|9v*MRb$pT<0f|*S=gC#xMC{@umIQGN+>qca3#V(fI8mrs@oWE>WTc zk8tQ#xVPG7@kTb4{WghaWUkHtLj>#7cV4^+5^ubqMec=q0qF~W^IBj$xDi?`U>M+9 z#!cJ$cMILsq4l6R0jqJ*P*1#}U=st#pn~6kf1`qfZ!)+PKnB7>CJuz9`pL9F!%?!A9@6R;~cwYT4n-5w4n)GWOK=74 z6TgeHb=KI7&Mbm32RA$5w@qy0Q@3r`Ru&`X-b3jKKhHmE*XZ{ju3Uoi6C5~Dv>;w0 zB3hs;#Sx4*QxPt6OL9S&>(*VjBt=b2@p@OTzuf3D!b{|6_ibvFC~#k8ckaD&v#^d& zsiqh)(SeeX@zsr!?Qn7d=4J%cx{z4BBy7O5D54fd_rOT*wNU}OCA|M#_}BsFVVCo% zz5T!K0nV52$vxrQ-QIIUGPu6MG8>x_oOZ-h1%z>@g6CS)@>)Tc=wIh)ZsNX2D}B+n6 z%M0D}Me)D(((E%;7;A4tyAWB62yGJ#D=157)#PUm$$R3$<6I;{PSD8wP3D5lngD0x zOu9jU^ox0q8NPV+v>CiC$b3sw_WSOhaY(w0kpqTaf(V6mde^pfRXe+{hy zG`=COF?A=h^~VMG)@^w!hCMVoX5<3k(?m0fGbosD+&)jMSdQK`NwMDAgK%G9G+v-0 zTdVc;>H1=qN4T0$((NgJ^z4Ikc zm$aGHwrp05|M35;T2g)xdw{zNVv*zS?P1<#Fhd3=1z8oIm5`8-uZjy4X)_%#)dvbd zfkjAbq03Qj{*I<$?9CdwhdGKgn^qMM+4aXLwzA{W2;Cmig#CiS{y16I5(8 zTrU`Y6(IiisbBVTSM7Gkr`q~{TE~a2LNr5Xxv>U|0_WFMo;o;$KBI8kgra8QGXF5=tKvOMof@}&++4EgY=AM~>mL@ZJ+5}y z;axL*))fpzuoOnjCr;_KjEwpiE!Ix1Sve?Zi9&&09=Z$46LpE3q6q)iXGmE{Q`%Z} zk6re5pGm~I9DbbFLJy0IihR%t;sUdL0AJAdcdr7hzlaAJuV7+Iovrf$XRsPARuO{K zzX-!d0F-Kxa>@1@f*NhVyuK>hzBXc2f;WWS%&&8hrcu)|T}F*9>8cO@XS;}E&w7K$ zLg4o7mm}n@t3K1a@1z8#IX->3VL~r5gK9(IrIwZ!m+4!xgNJX6ecy6gKA>gvLCdJN zmK3Aj=-_O}pASWwMgru7Kh6#`x1JTB{VR4TMZbzlr=@0zUT0}Z8lV!)o^KwQ7wGzf zRu1qU#e{wda950AIGLUbnWcLw={>h7_*C8AZN*mWy&JW z+y^$*=?6r%jnF%^OMO_0l@kd? z(DGskv&oe_u&K9l4%L*6$mBvkMBnqH-6fwtdp)&5M~L>|pB2}?9Du9OR@T3>JVXos zH!KH;8X(r+H8PXEKy?UaL5in}nC-zRwJXAuf~>Uq!Qf*fF@_WN_}#8E=ZF>;)t?~E zp?stRnDE|p5V!lg8?;@y&bqEiA+fFpg-66TdQwV4_n^0tLh^8t$eYB$rJ>DnjMe0V z&Ddls!kpr;t6a}Rhp{AG&ou?UNB23i`1Ncq(5lLAlsbciff3`KC6ecp4PuPfUGV4w zKmF(M58@GVpQC~xP~zs>JfW%B!E;zQ;><#~Wj8x?9;J#UoE_}-v@Zd8RQI1teX8a3?`alO-ITBg`409DZ8%T7~34 zPsb_prj(xRmAa;65SlVlC2EaO*+~X@eY%pubJ|YMI^?wOy8OGRIECFJHXZ&hxI6Rv zpDk`_nwQU=J&Qa9Q&(3*K7Tq-!d)4aQ%fj#^DyTslRbk;28Gr=UBi-;>lt0V&N{nP zggnUJG3X9)Q=00iS=ranxg1@wJS>o>i&b^!hdVpanBp~| zmc7$;$DslHeyqhXj1FJvU?tzo)h=jfIS~JYa84U16GD58?!>ETW^1WWZhh~*bne&J z=~Y5`j(aEZ`Urk6x^g~V3q#p=C1O8Kv2Nx;ujKM)40Z@oV7O_EQ@EwmID6Ab)t$6= z*`p{OWzNc9PX)g1Iewi5lR^d0ZzegpRrJ^NZY5?C)tUIKP$N2j%zyOoVdGBa)nDI+ z{TziO(S8bA0lI*@eS%%=a?xV@#Qbq##S81$8CX8V*DPaI6Xhbr%CVD?@ zk%!&t$B!QsdlWSzb6!2?C^$ZZk3+5j`+QjD=ifmW3IcuxQQ?UCfnh;K`BJ_kJqmyjm)=L8D}~0tU(Pnl{p#vQ^~0V1H}(kf zN`f6lf9}_ioTcknU2;hm6S~cJ(hr}Vaa0-i3oM&(iFX)3alguk=O*3dlQ27cJ{0e^ zo1@}&h2h2l&ih-~A5@V###Xg=TV_p15QT9@U^h64(( zkmi?N;D%p@)gSK2e)?hZYo=l^uan9F^g0C5b!~AF2tHMDPb!szqmRC&;&dS=jp|VF zuRJkojal|xI`u^d3um_z4HnkSgln~|$F!cY)bjnTpK&%X%GjkUb2o0;yt%Y*iu=_! zxkfiu<-OjWGV~S6B7Wbl7b(zn+yD#^uNF>Zd0@y9Lkbje$`?9okM|R&KE`S1!tVLG zoYy~N0 z1Ww%tiqQhAKEcl^W^YI-TxH6Yr#^i*`EI#Yz>>g$OUXKf;Uckr3#}$PGeCO;7J8SG)>W0egn^({$K|%c!Fd^n=S#8bz+-*|RY|}~&jV-G|&OazEw3R2qJ&4p! zyc*0Eq3z2x8!MMRjkp3QL_(|Ii9}U99aVVAoDkvcP&^;YU&$?|AEH(j0Ok=@VP9B=*z5$TH26v&0ZmIXxPzJXBVaw2Vu zz}m3H64JNFf}i`PS8{ukkEl(yK6clb?S;1b%36#?}meBt#kL8DzuOpP6B9VUM|K$La2=BfCy> z3Y!c%)GHXrxo@#ZW@?YUvlS-{AUy3x{d%^1uI;%k?w$97{gY3D`nK1ff`afX3EIqX zHlEx()ybqe#RGs0x^MdSm#T>K#uz`i2$AcMCzdkWfzY#7O#E^rU zh@(l{#CkRFz03l8s}0VTZ=3auceUnnN^DePI3a5pM0pFKKvQFgpo@WE5SgkzrRU|q zWf)7k4MzwDtH_$GBruP-yfWcTP?=!9L*%r}h8XMB;Sf$iEz8pUKAk1O@WTwOZSdZ2l)F0ns_w(x z5S}CR7@LW(3!HO+$ey1$Nn?Eeyoo=pbaTh}dwt%M(S9Rz6N`iM%Xo1RFMGm1Svy%U3m!@h-5c>jX|FfG)s)w1Rjmw(0Q+ z^0FRR+<67}LEIml_-LXD>KasSI70DA%QEK1c0et7`jlB+0IDIbaGy;_P4Df^w4PWW zT=*CVo+{+bZf+bDk{e0-{vzy^wYie|&0Vi4VS6m@p4B_<6>X$htR>|%dj1*{A2rWQ zik-E-6@3^!C?xY6#@hQ7ey49FtzG`F#$P#B;AlYS(QG*xhT05~Bk2@xJ^C{~y-cfN z+8}8udbpOjkPDqS^A`#U`iSuCyuOh!2Ge_q|=SsGQvGob%#oq%l(v}9^`fjsD|-FD86TY*ZeKcpegMI!z{wy3#jtj z|Gd;b+HMVBE-5r@gy)Psd%{-?U_|jJQb^(IF5`Pa(BDxoCJ>JdU?|W*8ee}&yBS&A za`II}ZKZptJG1^1o~|H1SAFoi!c*1>`$Q) z*{kql1$ejdf&AD#bel2Z0E_{W2J`~Y*7KY1-7?!cdj;OdL^;tsR1E6a14kSH+y5J|L3fc9z@0k}w;(S|0L%jOb{)h)( zJthkFEEawQDu}pFpnrnqI!mIgan%yeNYEUXxjFoVf#lYEUirMn)b6gmS*oslZv|~X z87&FF&8wmpNR6fo`SRq;UMkO@pNox^^*y!MaGlYvv4tWIB zawo=+hL{if(m7Kfuqd&0`&G!hstTlVTu0>OVYbr{LjbM;K%3b%CjNQ1->eorsq2o~ z-6jmIghYRn<;JkBH#W&`uO250FI~l0OJHvg77q8o zz@;Afq0j&mZ8uaNN+!p?P&Hn+Hc z3N|kt^^*+gv#s#qSopcC_-(mqaaKLq!%P=A#k+JFY&Ic`g0i&_a5~|4F!MN@EZEww z_@!mcW%Uw;a}cKmtL?VFpF&-H_3z>`cv%cD8H;9+{eAXSbXi}d-|ADLaQ>MEHx|f9 zkUg^)w&RIc#%uU=14hx&(ZPtsBK%n{>ZdAK+NP%_>&o}}_Nm7Cg+z{)`|TKew%13% zhcUqr;hAM;?U)>%RZ;N+VFv{OUhR3a??3Kf30QK`>5nHLq!u@$5~MhCZ!to#9_BgV zzeAC6docVKysMMn&$Q*(ME>j$Mowalb9{YqrC}7z(@l}FNpYk4<}n(I%?whufI5j_ z6~by559ZC+2B|HGWNvzWhO&a@VV+j3a;rP)8@`DAICVVic>FF5mkEg`{tv8934={ln3eSL|plXxm0Y^B{MJr192h$I0R z-@$fz`@y)no?86 z%wd{&{_As%drIWeBl}J;$cNwTjqDtHwJKWi{HtXYSC}>TTFcP~I3g=*`fdR*|QbODQYg%=GX ziS#E}_FWSTGfHDwS8bt{k7rb*l^W4`?ONM%B2`9p@>=(W_~C){G4`&)z3Zxy_rGo^ z9(3k55}xm9*>Zq)+&wFBUBmJ^`YVDkh+tnA2FmZDd~SO`FwOK_U&{1gJYqlrUM&%w z{km>H(1JIIcT`>*ZQPWtsuR=$at)3qAf#IR^A67?uvY%=SD>QX;w^hnL}dTw2(~b0 z+c8r$etmLD*K?cEx%}61q?s?8I{EUI8A%aks`^O*l)ae&XF|0^jH_P{Yc89Y_+{-G z3gpQw8LGw=#o`#g>_`}(4RJae@1SwwK;)WKO&KPc#EYqbSV2z{Iu~9x9Cy0r&#$>y z7K+*C`XFz#NFNXap?3ZqFkw_m8#D)eRI*Yi`^*2 zit_~xoYuz#qt>)AjeIh=<=U4S+#(uZ4`j}d&UX1+HUJi)t$Saw!NSzcO~f`jIE0sF zQ{`?ci);z*la~ziqYNL%#qD)73Mdb(6k~(w_pYdQ$M{i~$3w zH$wCC>4?>2gZz$d=zpOm+RJqI(_UfTj+2pFPS`{-cPLHDgwxa?IN`P$>d+>dt(KBl z|JJ`{FtdtVE<%-m+dZMXm3wY6s4}!Iw|)8(?G@X&l~*#R(kx*9_wTfK{?Z6HSkWRg zGqUSiu1QcDs_oaK@nAeGKPW!7L3F86%i@k>fswY|h7-OQUe#V}sq@^>7J@RW_f+$a zf6(Kudw~qhG`?9MuqCz(-@!a4TI!R%D5A@{(Z!8`R8WmbLzbrwe}<&@)|GDPq3?%;?uICjb6 zj@_d`%;{j&qr1ec468PV!>xjOSomF2;#d?gJ)T>xV)Cw`s0n`{8x~?u4wQ0n!*yT{!9W5!EXQ$-({ViT&Xd>?inpgpzfM<@q7A45=)e1#o=T3jfqTH`(4Oj^PvW1SoZ5WY zUm1C+@6x6fb_8geINEa!ee_*bqfx0jXwg+!7UFP5e_qX_*4i#eLD7}Afctp9(ru%~ z$i7qc(<{&JczAO2vX-%JqHSu0SqO0T^H%IL+Int}zOp7>tgC;0MOe@#fxEJVqwvM! zAUe(Sb;(X{?yC6VcD>y@t({jGSU5;CswQfu6|Q}L|Iw7bGkwSImFT1ZB1_}>8SMb! zyCpiyN86{`MO(VKxf!HG6k~Ss(IkgIOmrB{QodKv$P^>?a@YQtWLgfg+HE(Jj%PZ9 zb|-8$@BzB=7>-Yli)vogu-`7N_a>sAKE{*b@^n@Mm@ntr{#AWQ=TYuRUSAQshaO%mU*Y( z<&UUTR!yFeo=S1vir}Ow{@{bhipI*ndv3TUn^D3cBfppH6n_*v{`wy5x^x1o<-bK$cLp>XLMSf4y5I0IV`a_js$t#-C2@Dndf!)shFzYI?yHRSvg} z6!ls2n*?hccDaxS$puEiBZ~5es|}ev_ylLv?-z_$zq>d)Eb&-Pzk5tQPqOMGRsK(O z#ai?yWS6x6P}`=yW=XS~-=b)|CAVg@C7%6plwt`t@1K3o`SF&q%hpV2H07K3RN9`q zFIlYMu{!=MRP>mY2{wCjPPZaHEF2^tCCt0c)+yZv#WEfIX9^7uHRFw>Wm4i{xCy(u zx_+vm+_O?&8>_z4a^Ief;M^=Ajq!;=jWvJqP<@Y4y#5Kat2`#H0? zJl%IgX-M&*U*jvsst!RF@?e_H?IQQE4@{9K<$MiA?j(itT^7)YTW83L4sxYRwZoI651)=~O`N>8tnT$odx~bgj1j z$_(@acq&8}M*5?vY@Zyo=nEE2p2V1lEGd43Dj<@2o+^&FU)n^eqTa1M`#%+5<^aRM z>pU}yl@tJ+F(R@Qx)yKy>g#3Qbk1-MtEJa(o3P3q=!+rMN=Kl6SM6%^75rK$G%2`f zYee0&>xRsMGnN%-&+J;x8u$Jx;jHaqyAMvmgK~%Em&f5 zR&w+%>zDMlyjSNX)%==+jw33Z)$GP;|2Y|2Gx;H^35B3dt3_(fDJzDNlLlQbenDIX z@BIt{DuXyeUQI^O~H`i^MFi@^4Q?zWl(TS}Ot~x3z)Ti5OW#{+6?fTu7lQ%(A`T;u* zFkwFa{J9r1m-eTjI~ViI)fMvFKE@xc(bQ03dX?upd(FPM6dX7l_n@0$Q%O8A1gu<# z%^ygXShEw(9>sQ zCyz-kM!F62QdG)q_L$qRzGD{+t z8MlaGD)k6~T7mu->85P`hE1m17YYrz#(wQ-;}2&^b9tz+!>^=#=zMR)c9ntCe6Wnw+eq^mR8>?Qr__56{Z8Fz^j>I`c7kz~_n&0N&d(31o9tm=Uf8PEm+ zk!X|v@&qUbiU!;BGwM%Nt-W|gCFebtcLtEDk8j8X0=0OWto}_nA|I{R-3W zUa%8|G_Hf9AtZeZ&i?qx#Qy!umoFvfq!O~E>TZ&~gVel76m=}4)D9;w2`I$hJ(y}! zu~%bjmEFg5-fVNXk4%;i_>TQC&x+YGd#pe9vmgEU;O#Qrr50-Kf&=veLI?C#i^z;e zeY2M@y^*|eORQP(JxeLG?+r=D>WrXNb^c)o8=aI#%(`Zq#)B>il!|!&81;X9N;jz!JQrqWe=8a9R)RaHvA?tB49ymn+)tD{!9@e72HEXc@`8DwN%Q{u`43o5 z1G@kV6C3{b0$&~!JkOMi>MCiDR@ahQ^705sdu5w{=4++m)BD;|&@f=S_CL!X%#TpD zpt!F$^Js5U(u94=ntPyn<zP)v|aB4r0R?j7O-OnS& zSk*ppwDR$_D~UyugSzf1wKnlqH^?`QO4*oI!iztt4c#g*0uc!-`|M-+E8}OQLEFaO z>1k2FzOsUfus=;BsZWJx*vw=^g)y>iAYZ9if=bW5;wKA*bL$o#gYeA(y@$GO{;Q>C zB%z6go`c9g0-{W?lb+yx18fGt6*N@stJ52vDlpxd%fQ8QQth??QHKZfMSoegJ zdd&0SmOj<97*mm>U znp~NE9UhftYC5(dPA+wJE$6~}Nf(>=%ax156~0}qL8~IEu&G&G<=&_g630mE2^uTK zgm%trKKf3lV2T4mi60;tZl7cz#r+&X&007cOaYXomtR1LIIkmh>kgV6rdluMHy9f;hDAm|T z5Q%-DbR#))*W`y8pY|dZOIGOx@Pw5hF$END{&k_S=q)M#tbUY4)i<@MDw-eyPLz9Y zxG`7wGxoQHCK;&7vNRoLy|C7w-y=W;`RKkoU3-Mynqp zySefs>xZQZrX=^vkwRijU1^r@i+W2Jpydiu$%>>`63(C@Z zAE(*KEg6|%bmF#jxy6!nVF}g(_y138*Zogr|No6ByR49rvS$fpWmLxDKH1%lm5?oa zBzrW-K7@=yva=mTDdET_DHp;#*X8Jgx=&4Py&yvLn75y zexzo`=T&^L-q(@(5`r%V^#*ptW`^897?&Ft^ZM=d{zP584j&_E<&nDp3Wb9xkv10) z2)=>LIk=wCae5r~q|=fX9~;-3VgAe!LuvVsg_5NxKT>#7Rbh|!oK{gtnsgxLTjA^! zi#C1Hk)p*r*D{R%|u1WVb+;DKtBNW3mQK-$gzYZL6p0qV#(El=$I6*fXaw6s>CI>JD7$`x-rezlNA8q&cDh8!>ZfP4c0AX&el_NK zzsMdeXVFrOnHLb}PzcWbt<+m#tuj~7mb{}y-y=B={cT8CKzNx{*F9&f6pO|Ao>Iqm3K)#c43R@RM!`%4} zCBT#e-WdSAsU3Zi4~*+2wV_+2@HsOytHZO2sK{Y@Ks*GnzE)IM+caLh*TN(SX$NrX z1~3oKExJ^PU%5;z>Uf?e$9u~O^Wm&zE)QjCp%H`f&R?xMWAs7r>6{lf0V zPeuRcNng|cd;;51P0-tJA*+4CT>gAZXNB`gog^g4;p4IgV9?MsN>O=%GJ>pXV)Y!y z)1B)T^4$#k?7Y~UZ(Y1KKYfyTiTQNC&kgkMjx-nG4+MVJs6I-szS_$n@{6O4QHeSx zaW|KCTb$2#eToiV0Q8ZO#oE@=AY$``nhkgGMu4`7zheI^p?&AC$F%p)VJ{pLHmbk| zjCbfdAvm_7-&LW_mGCCl#IF?GHlSNP38vICLM|gZ^Rs865}a9Kt_;Pf;QXYRpZjay zm*%h}*X1abSe)D33cMn2({Pf1%jqYRv520BndbDv!>qs#imd27FNTiaJb7fJi~y#+ zHjnzHpqg#%!#Z(yVYBA2oTq(xM^tEgHlM_|^4wVaz&(Lw<$JznEkRtMIWX$kgxeE# zRf=ZlF9%yp;DIa%#F4un`fvDN>kQ`J9+>!4DP~k{W@&m*Av8bEin5P-3V zrs$Qi+SpJ{TCtaIc9wUmOppZzo)s9oD(SvYQ1AXzhl+*_xtafzcp&OGJf&C3JNG9D zpa`TA6P5q+FoNX%u{^Hsf}2lDOPD%eRH2vuI?D(ta?->wQJGEEaN5cQ=4w}#4j*5R z5dHcw@oJ(wdflI{ae0}kx2L6$#sc@+Rn~vy({xTq3@Nrbs83ScreIN#b|rZ&s7w@l zP9fifSYD?9rS@iJjYA@(Zy+nrUYh!w#c#eqZ?I3nA_>z9>dM%QY~0dNGoj|W6Opqf zI-N47Sh^qP_7Ryr8Mjc!o!R0ctemzgtL?YE4Y{TFZrMxi1*T+YmV@ha<5~g64(Xwcl_*YY{PH4}P^6sKh#0vh7 zmi(g;Tk4J+DlJf)9HKn*?uc7whE*HLU(Q(fK_#F^@Cy|OIy{0tz2~PVD%1&>Ji?yy z*MBpuA2e2}rPx}zy3$YY_xQq@7E0JR!FI(6{?fY4})+_$zd0A<4) z1~!FDx->!#_2BM;B1(IoK+*~)Nn9TaZ*EDFZ~MyNmxt6(juzKWLV5$MNQ+&owC5f1 zuJM!oBIS~TLN!Km{ghNCU0Ufhi<9?^sI@vzoRn|0ZeQFwubcS^`#}7lC40N=F=cYK zyor?3j#VSV1Aw3!ve1 zcF4V0?|;WkCouf$Apj3Bt^!;$U!EW%wf$(I^lb2n!afbsG5;Y}2b0C!x+>$*8DKSm zLD7x$#(k4|?A_>;&B#m(1y$lH4J>1E=WGhF%Om4I4-e#Gdxv`cGxR+X?GCi;<<0msvOH9R`37XwkW43{Q8QOL zAC={CnK6AA9FIs$^gb4`SqdcS@s5NabA1#DGHjTdtid@?7o>Cx)!Orte5F)9FmbHk zgPKy|{W*9kPVQiQL zAJ{S2R)|?)3C%j}ZDp6_i7)8o5Nla=Z~fa2 z1Yc-f-xd8s*D?skAzMZQCyuI2VwBr3dIS)*EW3fFsUR^+la&mNXz5Q?Q(b-#g27}0 zs2Mc18T~w+RK;T`Q%D1RjPl=bh%C z)#EeG9ll+aLsL&+LB8TKcLMGtKw!W=nmjE6_9E~*I6KpVQwpT;;HL&d$?8~=PVnUF zROz4g0k@LM553!cUJ@Y#`hZi2nDasGI5Tx2p9z4&kR}D(FE1Ejv8clJu~W3VR<87g zx06 zP}zo?pIm>XMEAE3hKsWx+*y@TEQkv-i2+@gm3<}4mrC)+yZ9!h5$T!13u_PY)m40% zCEAU0c7n|Fdr83!{L(_6epMBi;^7OBuLS%fXv%8S$KM9jiC75^T3@l7;}DxLAQtaq z7`7_KitUQU{ly_$YZfRd*37m_gV?3$B4q*O39~+W<0vqt6O1 zFEqNULD>py*Z`Q9W$}%`4}^vHHM!%(YBt;OE+I`H6eOvFid9b{bu*mjkYt+prH*+- z*&fW-;EzT2c-w4Q)5VntERzhL0#%@#A5~Z|w)mwmNJ;pZf6Uj*@u+06$L&tq`Hx!6 zi3`u7WfnmPiqz>Ko;1+Ce@EC35UN01vI7O0OqXfbsw zmI|v;w)J!@9TGQ@Q#JWnR>y9{Pk;fA|V0kOF2I@eu8!uRKOsb2Hl7%RDhmK zSbQgPMNwGH`T#m8>qW#;M)0!}B<4#u2^#Pm-Y&1F=b<1&94o_xnMog%Rc} zH0ub!cbAx8V%xRU)hRz*3{ojCQr{=dSuj~icH2>yMLlWz{_2d=7A#?Tzb}BG3@*zl zcs9Yigaimd$A|QB!UuvzfFidMb?kc*qCgfb{77pL*et;)KQ7UfJEFv?fvL zwOe~7z-fY;22AwA*Fr*{fbXRIms%Y0j;JY>5rYn(eZ%r3S54~D*pp@v;uw9?)mx|BhV+MRJ3 zk=6cZBM@5tckRymWyKPMJ%=df#INcx!Y5a>9YVE<;b8{qj3~?vv_N4;z1ePJgA#Wy zrCp1}Vcrc*`G2FHbX|P)@D&q*^SA3*yI~5qk^I0QINL(OJcSIzqZQ;J9~5T(Y(8s7 zQp*~jVG`)kKjEl->21rSZZgF!r_C%6&W>uzo(0v7e|8QIJ<134Q91+wvsf(gwRRrBXQ>M5*=D49{h{ zqQ3EAEG>bXFvgBTu?lEY8SjXxX~$+fl`K6;Zx4DwYh%yNmsP1@T9iNf)F{^IPC7(x z$XwfZs9}x1QIqBYc@?r5Hw2QPjY$n!OP9prTAin3`^ayNX5Bwgj}9L1cV^TN(F+*v z9SqcpV2(#e7Yr)RSLg@Kvn8vV>7Po(EailIM!M2du8vat*r=gr?>OHcxn_`9zP&uU z|01*5mod4)BR{yeLeN?$3mYVGr5pe`piqiL)M@moMbp&t8_(t4Isa#l^M@SlSfI6g zXp}gTvfm-!hVOmN=BWe?CrT@`pm%FoG}T1$oc~jG-5h5Idz#S?IW8P?gxL9y#84Pq zZ=^%_WsM!1_=zaKL6j9W<(ULJq0$@d(kiiy`h`N;)nEiPF6IS<6tNc;q=U79#On5` zU7qvZ^=XtZotnZyx1GFg_?J6MjV zBvQd)A6;9$@62i}W^c=1w z*tg&S0MF4+d4@(=*acUmr9IxkKfr%6b^*o99@ma|tAP_lTxy`;1klRb+FFDmK_OVz z4WxP7mei`adpXaYhbZAq1MrXIY1H_EJB&hz(GqKt)oH_h*rmYM~X* z1tRWH@`#=omT&6LY)@2MI41b>=}5eEW7#Ht;aCp!iH=$JnXa=ns!`11sm5x1CA^KE)!$Dd|jxkc{=8|Z|k+w!Ydk@n#<*w(jv_-uoQ!J4Ul(O zaTg8Nu7me`Xc;zo>TyDresnyk3T=~>BV}MZVCisO@k74jD!Z!3rgNw?!)Q)V)PvKB zr^-xd`+d(hv1Yp`6h~1$UgF{2Z1o=?&o*VD^A~P$)6YSRFb38)YBkdP!m1=n3!3sN zFP6iNeRNyV-=HWN5t73h7gXH^^M7)~fW{jI4v>C=CD*x_6G5@BB+0wv$39tPdO@Xp zyVKnt!aM*zf^!IiG+n!FLaRU~T6Ek6&eFq#VB#Nh@LK;3_|v@CX~e zQmz`2>E-ODqY@s`;7cP(c5S;Qz5D}M$WAsgJLjabo3?U~-KIT9heM7K&|}+GiTE#I zQ3uKf_@lzjvn&#UUqPYvJSZ;7bmeh>sm~iGA@q-ulCnMq7w{{9)gHJbBi<=6e}lrv zxR?S)d;;5l0y9V$f$YXuB)W5tjc3kR>xv8^hek7uJbu-|gcWMF2?}oU6F0=c0_?cq zlcYKza^FzujX%pN?qW$d^i>9}Rg|(|B%hNCnXYT3YQfAFZh7|re%(blw&@BD4aPNC zVt&hQCz&zl#}Ab%S5grI%yWLCijuw;nRXDa>^B+aWy@&mhv}RmuMG*HFtuqo&CcDE z1pIb{FuOn+hWzX50jyr&1b7KqLS_;Q1G6{JaHBMTj=wnkBcu{6D6)Ox|U@9kYh}RD)NiMsmawoSLEHQz zV5e@&W$=krLadHJu8^N_z3uI+Cg3cbr8(e)kC(TZviO_2p#oR{G$mGzArT+RjP;qU z8|`#bnjxNLMM=e|AjySsV^5;P2ZOhbubp)+xhY$~wvcZH?ofC_cA42o*2IHMskBTk zOraks#l$E7*~i@aVG~jPyh&eEiUbl2il^lkt#$9&y;7}U=3i#261UeI&0O9}J2VTr zN!rN_7QSKb>o#_%E9j+)=OQS@5y=h3J6<%;$>=y9Q z|M3nv4-y-4lCIKdW#hTX=DruqS_$M%;(THrqTg#Z7!xl-FRoF-k?OYA08jhQ?ErDe z8v=|NSbPA)k;ox9GXt=ST@G(l@4(B*Q}m29c;9?K3NBVy%piCXILhZr0jw|wkjNHv zJnnvwZcM*<(>wsp`;!En19*0s5WY-cH%D^9~--KLX+f7k=+=@50bZ`3d||+3lKH~UbBJ3zQC*(H|MJ)dSth; zheS`2zZbh2{;+gW&%9o#=OAO#cBA^8Z5mA9e?OvsUyi!;H+j?V)BkID>c$^ZMzZSCGV)V3T{ID|Glb-mu$Up|Mz|U#g2ShYV6C7JX~Ao4)*oq7In6b z3HDWX?~c-FGxlYYY!Y7RkA1ZWw@~ZhVPApI1NaL6_cjw3%uvKc*w>dU2d}lI+_%}( za%0z>NM%m$G#-tXPH$2-ogX(v&7-5{{Vy>z2a-y^?f2QQT&+FdO+O>oOp`3|$r|MF z*`o5*mO4lKo}k|+CAG8!UfR-?+0(VEdW7(^uMRUlX*d2>Zie2R4J7?tj%H}fRZko_ zmOel1pYM!e#r_8A*(_<60e53J*Z=OH%VcWaZ8hn*OT=p`v2ph%S9<^B1dE5` zrN-4d1@Bx|hH~$f7LBjz^Cx{yb6=$Cso-Agj^`R%Ue2%j{Mp>4{>j>L%{3qktW^l3b zQLb^_`iAX)3+nXpzCs~MFy5gT17fr9g%3IV{j_ge^XM&qQZK~1>+#3Pt^MjI`f>vz z#2qoQkeHZjy?uSpJ*JkV55zPyHGgLYGvFdlFve#$r;n!(OwG+Nz?(514FqpCosFOC zER9+TYL$*ZeRw^zo#oc8TL{GY#`&pCint4bawHuN;^a^N*(ZLLnPRO&$ zkb|c4(|@~pG7%eRe>Xa2PN!z(1kw+~JiODusoDA2>FRkw0jFV;4?SYjd*;CVU-yH?0C)lgmTTcrQS-LO z$B$+XZr{G0Ic49r-k8Tz^xthfX_dNGK(_QfHE?3RR-$oULRjj2<-RZN%=zg| zlsSI^!$kE9#*!!XAJ5WLQ`;N8k6{^ie9!KGU4Q=Kt|UY7@XELQC*SVRav2}0%^XBT zMt3`-`F=58(vEiIG=7<8bcMe#G|QjS{)y{pCCw|6gKZZ~H%_lh>YO`O>hb z|E4!ijWq7xpNF__Ezr%|ywS9EWA(7Qaj*E_hyM#XyUDniRkZXzpVwv}BMP4q5!=P)b6o9v{3TLC zMkZ=-POa^TT#Ar{{@Mq@4ls|`}P8{g!KPD(FpsAPW@8Bj7OP_9(o(zzeCtJzmeac)lEMd z`MBgWN9BWaev*FfBzg94-feeKd8_1ALlN3R=5%*h)cZ*AV_x3YV3ZF9XL^X83F#9i2K7M(hc2qY{bFLsSP3Qdl`^E{0X1X+S6gpe@s&CchAbGcg`k9EC ze-Sgy=Z7-qm*8D}3)6OvPgh?g_Kd!os5QBBId3QJtMh;HSIYcXwP%y7X`AaGtTL(c6++-^l;X zUXro$oJ=(Gxbnii=P^pPkNm!*KeqN&dpF8#;>q|8=iR@N8H=r~48bd>|CI?Syfy5s z|8JE|z5M^z*8lrrJr^l7vZQ%OBmh0{-@g>tg9(7I=y@E3vpBs$LQqSKoW{L-E%RF$ zMy1)KHjtXL4SBL5L2n$e(vcJuPj+MYP0OhnJeHXuhi5-3W=ZVH{Arh^#le)`pFOdj zrBjdrzcy%<@u)ZpetBXY7xC4Iw*!s77KNVMa=S`|Kj$D?R#Wr#@X#GH1AOY9htJI1 z+|%&L$gGKVQ+s=o6=&K#5Bi^W*ZZDTZV3G-$ZZvo=y-*jot^z}j`8fN+CF3LSo{}{XY*W z!W6l=xlQctODuh+iQn@z?)B5r(ze#moZ8cgIVu#lPuWxXG%@$#ht#YEN znv#bLasTR@jwMFc_U_qkrGD!R-?FVxkLbb3-=Tgzv981t(>yS671l?Rfz*(P>QV9a z!cin`1iq4z61Li#+<9vy7z%F(SVt+_Uo$T|yaF;#gOPIfpx^jf`{w4I*10?4sU*MF zh2eq<^#&?$_D?$&YN9OIh2fQapH_ybOGc$sshXECjx_4(>MCqx)C>$tcc>La={kP= zpoZU5%OzXg6R(@%fp?-Kx%BMWGlxGv_+TNwZnhG>PfboJ3w@ zCGk}K^rE}cA9>I4C-7)>jC7&M7;wLVGyw^C_Uw2A4R1#fgss_7!DG|-TfB$|WQiz{C=U96+L}7N%V-Bu^WBBB21VQkz(Q3I4yUW^tW||oL zo{>i=;Z4~;5c`&3QE0vTB~ZdHAP7= zkpA8h4QOHd`0=B|$v^BzyD-~U(LzLM7whwhi-#s9(Lj}>lW-*x5D<`xyZYlTe+^Uh zquUe&7X@jF|9MHjZhHy`$}-IzKfwYHM83-CigW9_Yuk!53vC3;^{`AWj#l@aOi?F*x;p!lsdO5gFt^oCGD8GBhY_})qSNP1n+$$r@xq0H5}0vE(*zJ3wM^)M?z+R`pb?>?4M zEsoa?qTvprpR%Its|kB5;7K92W+BMn+Buws3w9nZ2hjnWs)2P^y?3m{x2eWF8cM#> zGbH=I5~mkTzDG&FM%4uA2=WqKufHUF$Eteb3%N>@h?g`Y+#CGL;=uNQLJMqrW|2ezQyu^!6 z8Zles)dYb$$)`cG1kM&AWo9K@R0#ESEXhul2ZQbS8B9{T=ABV2z!{`?q~3$Rdd zG~t^}EtTQ|!}Ar?aM!b=4vb?9T7{Ns;x@sT>m6z*qZW`Zy|5)f?sa#&5<=1*c!t|FB&Le7*wie-UnI8Yk(yoV4#Y@ z>3`FMY5ntu8v;*{%@7$s^3Az^>hcBL%lLu$qc#SHh6=^{ZIhF9jVBmhR%W+W1v&8t#Y@kO*-l@&NnMD{FmzkBne`MZZ#Op`Am^Wq5n%tLV$iqrO zFtB?H(QXG1vNtwqVkt-6yq%N)1M6=qDU3} zx*`7x@fAYgKnf7``gaGiH{>ozrU3mG7Z*pqWj<(a=T7cpfh(?SHhJdc7X0x$m3EBd zoi=KzW`WhZpI$asAsz>dkMGs>7o>5Buajn-gs)h%Q>w>T~fn!osRAe)d z_wgf~0Do9%>WG19Aqf)N>UEHmY@6sX@doJb;Uul|&>grMr4-cOm$h_;e zlROh{C0NKpZIT)TNG4Qo*|pwEI2kS*8AEY9sHN>t4pKDP;mqSF_5=k5UBn*l&S#aP zul~~6RMA3(?A}^lvMQ6B6+QNnW+S_TO|bCrtgNh%aW*{~I+u1}`Bidtel+q-G8dS~OZprRKD- zfCNDS{0^FVlDnk zQyG8TTN{t*!9@2jy~@+RC@k4)UtN?%m^WM??=j>p_zYq&Ndv##RJ*_}>Fpv@v}1-z z2vyW)yF1k1AXC9pLNOj%agKWQF5p(J8-Ku_M*}uq4!xvQojpt-KVa->tjBGHK0msx z7&dwP=xH7^1pzZdRFUny{io3K!ox#%sU?^Jh-6$Vk{q3W5SbH&@w}``$dBG|7Uz?e zF1cmSpQKQ3fFiJ`siK{vgTfD07jg@vg+~Tr)opWkPJEiO@V%weLydBn1~(1>X6@%! zOsorUAAWTVFyu+hA}bh#LLQ2QgByxtcGUUy@(WU)M0LfSEjK#IC$K57aK-xS#XEw9 z_SKIg=>5{FhUOgdQ#i|F)Yo0>)kL6*#XEfy0M$yUBPEQY%&}?RkSFhTzLS#^ zAg~73-get(DE|mUT3%Y-I*RKt_U8;f7fFH8Fzvft-zA`uBF99i~a%fYFt-N7K3O_&Q;ah z!%h=nN>z*;g3!+>A>&&Y7T7vEIz|H2>r{~S1-}xqC_Rb|Kj(`2TiocaUuI#`(SQ@x zWv-*h4`CCprkKjQb4quYRd#~boDlYlCFU*iURb*+;B_fn!Ns;NI)qk13aqFslb>2H z;9A1!31Ub#&ngQXe^W>fwQL`s+MGt)640Bb_Xq0~ygocU9RG)0w=3gzbaSIFKoLN6 z!zsKXiIE&0c1OI!|M;l56;Q-ayTW57g2=k55)W*muAW#gpf*_zb}4bLNeau$k6H0I z>HO_L&(b5bMMj6 zO>R^5sK#}j)-S@}B<=I?iiv~6)nHOas09zS?U=60vczb4$@IsCN#7tTn+y<>Qp(NY zR1u^86eynq$o&$78{!fv1In!981UQvNNV@n=(vbD{UO;LpM`H9m64ooNdXzHv zqC&A=Nt>ck9eK9G?b?je;$qIFMRy&KTK zKrCK^ZgdXHm#E7s1+G5=x=+}S`#z6_T{7k`%1-e*lBvg#IX$oV{w_{ehP`338xj!( zK|zYUAgyApVaLo#-^}b#u6lPqZD1WuZ{n>uRmqdhHdtSM?F&mHYxih^HeVvt&Y`M6 zA<}E4H@II6Yh`9(p%_7q5Yk75@bK^eZN`EAFn?b^z&ZuC6yg?oSBp=?_6*Ql-MxDk z%J-kAtNG8PyM4~?WvkYuD@8@n8R&jL81RRiE!=&Bi5$9)&>Adq{?Yjicg?gAf?tKL zLLwa5K!im?dMkaMA6Rs1|GfXEHNE1zuRsd`@WsQOTMe_Odp#j<p*79n^cE~wD_GoSMicpcP&Rxg z*5Pb!Am85knvlKVZiS*(F+~?*`Q?ZTxj>c$Ws6a2ay5a`gGCYl={2sUf={oR=Gn(J zy$y4<7vHNW=~n2UXm~$Q$apd<{&ha05D;f)=Vf3*u&Ewer<RPF^&aw@?#D?TL_O-6KOPmlI?iOQ)}yjypD2seocx$I$Sj6kj4CvA^3R58!=z1Ge@S8W-#te(f zpysr}gWG8Jhdd}i0qMdgB^7acd|(Cw0W=%&T~KHBd{wS^vyrXvWi>w&zc2j6UXV7l zl{FWtDP=C;OO%5AhtOS|+@r5gf8?jzR6_}Y<{MfIMVb2=8cf&2aQt-WyN|{iaB12v z1j=D^fsKvY?W}E=qvJo~mR(I@(YS5a^&BFJ zS<0A&v+nl3#CXy;t12t!d1B0TF5gU#yLYqGaJT-z==R?a+8Bk5%b;ed7vgmTw#^#M zj~%ES#Iz@Zhj`d>Go;Z2i~u2L)Wpr-=49+Yr+RHKm0*TV`F-<*a? zq<&9JsR4ul$8(ficll4)39gdz>3}?N-SZdQY(meCnqJaPCjuSnaZovK8dSoA0YomE=qsT ziG__)11HP8@(bZBAstMghS`$CC#t{vL%YYPQrd;%YkJ2V*9k6;Y6m@${Bb*o;yVz6 zO3KQ5gQD%%a$+ zmiO=o?40Y%&1euml!)oLct*_Ab0V|S=iB>ZVm@h*s?y_Ac?aIOD`H-U6UR;A+rv+5 z^vc^%dSW(rw6KF)at3TGiqzWE*2p> zntnY@5r83_vr(iy=njgWc3*hdsW09GUP4z_*P(t&C2tt8P^kT_cn!YRAVR9m!+u|e z0#u=;CCzoB;bvi4V$59G!$$5Ulh-{;$NsXi&z}Q8iSEH55Wti}$8GTVasA`OvoxG+ z>c3jd^t4Y}(Bo?|+j}RE12iKTrn)a0^57m>b~(kP*&_NogG22D`!a^RFRBy7(2)cW zDIjjFx?d6dcqH06zD9V{TC(;>H_syqW`4E78LnY*{KtXb_|yZ-;~EJ)Wn!cQkIC47 zvOd|6&E`nPRb{`of9Yc&HZi)(8=hd5DiEOztAyf2aO3L*Kcz%N^9#)<@USr|3Y7Jg z#n)2-Ak?u-)B>$K8XT8(RmyZWXBHP}eajo?i$ID_{;h_mQWaCH%CyF3x1IdLKi^X@ zBeh258bBAkE9e%}X zU2XI^)!#ZTRU?CymqTp}LFSy{DICz1nVFeMg{9h=bs7@yluUL7ka-b==GVpd(TX-Z zZVwOtzSmMGk;EDuCfG!XzzAtSQDT+D{5A@Atf_Hq-6N;m6L9q+`B4`(*oQp)6Umz% z*K|eo`QLWFuQWfjopeN7mvY;(mGfLFB-1O8i}S8rUNPJf(>Q3<(&8KLaeEjMf_)PO=2ulCg3T;aI^SHy$t zL9GY`Z1b<|sK>5~+1d+^V%Rpe_2k5>KWA=V6PRImGPTsMhEpt~4SfkTeps4Vi(_{| zYy)5iR#k+suGwfjz9TG*W!vZD9~c31g9aWSSo>KA(UG%4coUld{6IONomj43=Gcmu z*?7Qk?cm{5k%ZZ19WgO6Cv8gYa~^X?mToIOhPFujMW+q`)e<<38) zS8VMa?Hvn~Tlk_$*b(hKU5+%IDzStg(`NpmA?%v0DJ2u+4hvhNm4Nb`>ubGg_im6ggU+hD%qE4=*? z5CedN0GEX}3+p0ly3did zELM_+zi}H*o__5n8404ciIvr5AO>pOwpbRImiS<0y`-anaadWg2K>)?k)Qqcfj>9U zdiq7sf&i6T_ zwJTU$iLaO&UG+oG|NcmXpPWe;@3(izNQ95`X+uK865p@868DFoz2jGd$12f#rc&i7 z8v$GkYkYLy#(|lg9T7T`{w~mRaPxy!f+MZBseJJ~9T?c-RO5f+dT>6F$nLJ~dYQ$? zR)Y~U29$!PERSC2gfut5lB7(Ju(YO_lD419;lrF)NDS&8yv$``>EJoxa z<{S(#_f~`|+X&lLQ#F-2gMK>5lJJLp|9RxVEAJ{CgUSd;S+J6NJFaSnKatjqGV$;0 z)=GL2znjrp&;LN7(@BW%h3}>~&JB01zt%){?;iia6dk^&Kx~WETfOa9?d)Il{^liJ zP4@0kI4NyK*@AXAz?!b$c65ght%{hdE2=1^GB$OH-Y&I+9Z2$4ff821g(GjrJR~1r zkLS=dJIvwgKX{-gumE5~#9v_5D$(n|p}59~KNIk}pc=if;&7rNj!e~4HR zk-U%h3sl?sngd&yAd=HORyna@g{3nzQ^kXzLonwL0ki>)7*^uju>LZ=?pj_~SGcc# zbMy}!dmvt(0*%NS`?&Zzbc|53wUO}-z*qr#g;OH=Z#EFx1TZap3N@;I`>D8i?rhQ>HaFfN>xGOxUGWMbB+nE$D@uqF9nWTHmdn`vAjhR`O?Qpx4?NMm4@mSC%MIP z=ypK#C!rV5vFWRgpsr8fnjWF&4D53dAD<{CAto-MNK2EzJiGkqr{w|L6P0gGVrkBP zHLrLIyoMUX^~J_57OvQdni0LO5griT34St_&oiw#IT}klln!LyV5NQa4NyrDV~Wa? zxqiEbK!n_iTlvYT`-RLrkC^j4mI5#iza9tQTLBGS^+ZMoGG&n5Rpbb)6I zvUpf{FQKPunjGM5k*jUE9c#>G=(&OG20|69dI6yf>J~Q-4@;`%!8;>ZQ>c5uPfi#2 z`1H#ymRYFt>4=(>s9Y*viw8bvLr?mdvedQ5iscnbk%wNjRg68jZf76U1{vzi?(#7q zFge|CxagE0vM{4nE&2V(4ezys=cF*k< z(fphc)s<(J536R7m!bwMdr!M=n3VdHV;Prxg>*JYTpb0bWTQ2fn-8DiWUxENgz=^F zNOWd73g-<_xgXMpZy$8bN_}_FTADDwiJ<2YYm8lu7v$Y>a81wUQo(%16DATpws(?> z)=Z4=YP*S|u1L3`=?6+x9TXdq+UxP3ENRQ70 zc`_8hk729lf6o55P&>Yl4Ajau!NJ!qUqJ0#qGkV53W70E_rSUqO(7J$D%;mO@S?B*(+#Tw=u)_)0AT`C-|ZEUFk;pN{yQLNnm z&9pqtgUfzP9~qB@O;8yD@e2LxJ$H0ePcznG^1MP4e0Sd9s|rI`wfKMR*sz3)_cF;XZ3`A`jCdLpDgO>!1j@%tobYh3~j^gKQ( z)X?kz@gx+QQH^Y%G^tEU-$?XK*{194TiS64Vtf8qm2LO1qbMEHa&gN|t7w#>iC6t% zjcnP<1#32`ar6c^)k4EFtt&>l4L|F6gqi+y7#Jz59&EWECi_k(%DJX9w}*qCqME@1alzbN;M`kHG!6l3H8E~3_u z#Iiq4Q8-!eNgM(+BfTz+>fN#egiN4P8K}^mf#>NGuSh^h0{HrQ`}Gf|05QE=KNAxZ z^)&Z^Xj9w$)<54oVj~1?0cF=}EtAKqUh*Hef7R3Igfd>ffRKI8J@vwIRWr0VbCpmy z`(~8q+S# zPO-kdSc--}uDKE>u{iGzQm5^VX&+CE=-jU~TSMJcDPoXxyNcz?laucP@sl?!C&};t z_Z9#k$J7<)M_t>uds=_}qP3~|Q0SXo_FC=nmoHh@Za!BS>`D@_+}!TrHFI^n4o*0* z3jo0!q98v-*Y`}9lk!FcJ_&TUfI}eI*~mf|m+_>A+O?^&YLZ?~)cVeT1U7h+cp zAiTkeBEZjOQX$Z?a`vCL(u=yDTcfZjeY1)?>UI=+^7_tuN9OS$>u*M`k@ol?)UR=( z1C`?OtA5%c&Co6nD`4YC-F>FMy?IE-8 z&ucuY(<$I!?Yh!8@09VlIDu^Xj~?FzYZ{t+z>&}Gm1n!$Otn?UbkDe=>d#VoyIzKI zs*>aUPdiao*7$qt&ycq_R&|K{9sGsX*Bv3weI*4(p~NW z(___QsN6}GY1+5(R#vvFV9Q2B79GXFk}z7DXtE2;=i4Ci_nsv~?;R}zz(|v=90h(P zR%#+FB3BD_DQ!N=5(mQt5cIO{bD%xHPftgKfA|hK@l@Ed>_dTig&YSi9w=}{k@x?| zR!rSXd4)?C>5@q%k>oJ^l#?T-G`{1$@DP4RI6pJ{2j{YXDLIULSGbMU<>(In++!n4 zX3=M02N4LAsza~F;KE;FOuFBujGfUpF9&>tDi=RV>VT<44RJ65?nQ=!i*h-1W)V-*J-!)4*Sv5s!w*swyFn6LRe< zxe38a1IjNDm<9$0Shf{7*IRKdaLPa&N8}p<)A?(GzDwWAllWvhXYpo3wlbl(P>*7K z#vM7HX30oY>}sx{>$NKzH?XvAC&m%P7VvbT{#@=4lF6x<->NALob1WKVPj>ZY)o;A zP|CKHdBXF>+1|hJ8s0cjD#*f{i;pwXJBS#~0xclP*^lQ&1?Z0`9>$@tYg3t(06WR~7 zY^bA!PsPNOQYrBAfYls&4bTlkaq%;<^sI?;?*u$96Qd)6_GWK$y+Sx-x=`>RC{jXR zU@8DVL7@QIOq(J!=vbWyOb>w4X*`EocL)54J(A))dF943RYQ&BjYpPG5Xn1+UrWS` z*;1+Nm)I0-McfzI-nlr5$6u6Hoca_v(Ub9V$kucHI!|NTJaekqp_wwhnp$*vwr<<@ zi|@x^2>bc-Av9X?gqGh}3VfbSnr;^*x2&}b^_Gw%MXeFvSeP6^$Apt5aaQPheCzIK zy3txlm{Gm>-d2*Hcjc}67Fo}7js1*0?NW*G$V`*33>d%eNJ$mDI&OJ1K#!&NPp+Re zv8QFl@P$)H>Q(-v@YOGE9KpBGtv;KTQ-d`L2ox<23TSyfXtyr~f+1)$OV!p-7Q)r4FHkB|fn#U5}oIxu-L3*#4lq*HHazwI=*w&C2e|M#ID_&4q z&}bT<8B4v@^UKP$L&CZ-3OBIh$pVvS>5MJCm^eS{>c=ctj z7WamC-U@f6z%(#{g`+l6{ytSTwp{+bc|r1-4D$+jT-L^KcBkxL=`In{{1Py|xd+xX z&xJ|Jl16L(C_Fm_w%A|u3iHi7QjS}g*YmO!w-bB}HJx?Rhq7k~2MXv9Yfc_3;X6JZ z*%9$F@-4RK-b4R68;{CO=S6EZM#|9jOAM~svCA_Wf4@8%H(V|$FOIGou+~nK#kR!86i@x@&ezjvbu1oq zx$bI>Q$h3TN6nK-y==9^I&NCcTpdxL6H%y>+Xi_42=F<{XGZJj2`AqJqz}0j6lA?M z1Mce}=YJHp{8Unc^>}J=4 z$xc7aofy`;5`)JR+(eLe!7!rsdST0LbKov1R_H^LP6CJnGn}aCTR^!-rhhLwkm@8b zrM|%@b;7b#hvrOenq`2ZucasF16pO?gRtluIU9Q#3ng z{c7nS{ADFIUrnVGpy~(-3G-1%=nmkkRCtCth54PElQ`?+}E2KMu)KPWZQa|xm1F>D5hpkG9m z1wpz&@QuqCM*0+Af(sVqp4#yH;+m4)0e9}J$ED-iJc*uJa*ZTEK267?=XPH2YV4sg zJ15+l_L0ohS6G8`bYsEx2K4`P!kWYuTW-qn<~RPh8Q&DcHEpXNMa{FVQTq1{5)lic z-+pFPU(1;e800nX?`Oqu?_iFkRF;evcZr3U`Y`kSPjF@Vg1{6OBrmsTml&Y!ZHV!* zV7hs+;KWXKP@OsX@4J=x!W*OD$s7A)C0O@7psl_xz0l75-i!1rFNWGuE`vUx=)HhZ zr3{v5hBYyDcBTNE85b89)+U4-?;HqE*C6H2tezXYTEZs9IOOg@_Qa!^;yxw8Mc`iJ zE9c~aEv9Vm*`Oi`9_@SfFrg4V#T6YPc63i=`Xrphuh03nezfyIv6g6^_TrM0X^-NQ z&<8ct(e8Y^8{#=}t;fbZ@5C|VQM6;{2~jKW(x+_yOgB+l*ipH!pyrH%DXy+4Y2`f( z@fp{Oa;v7btsn2^r(q!VLngh8v5{F#EF&M9BKf;I_5yHqw-v@wEJue^F?*0n70aIi z;(15S2}U}wpi$G)x62$`o)dwEpaTe{m*7){2S^cf!e8o72Vbu&Sil;Lg26?2oS!D+ z%K(4+V8nrqOuNuXr+d;YDxHh-wPS7g&QgE2QRzIWI|fEZ`c*|xzJMP>!!Q&A0WvAJ z%|9-2T=Gytb2I-SoTbjuDPZ{ZSW~ICZx}j3upF6||F~6Wptf@}Na2V3(CKxPdaFW^ zH?6Hz3+mjXhE`(Z1g~Ds@59+Y`pxwdAwJ-2bMvN#b|S@{m57JVUqaA1ok8>-Y&Y7+ z*Ou4{WT!oQ%eUQP#paLM;-8n1fOi9kJp=BsZ05PiIZ4xuZ!Yn2Z%~unOo9GyQXcDY zba)0G`0*$$h-u9}D%Out%Y8=@yrOj0>8YgDJs~s=dd%&_9*`cOr?HU`QC%5WOC*y|M&(dFdwS6yqxIrVYIIJ?2$U~(sa`_L-_b=zrf_Ux-?>e)r%tcwo`+7#7k zMQg2o4VLl`jkW~oyw;}HA_!-ag(taSMf}FJ6 z`V#$}$ZBb6x*IwzI-|Vw^N`cVT>l33&38$DVtCktYIdD1q1Dr|g${*^*9axgOgju} zo!*Wr$#ezx=+`uSZZJQtjurumf~Fsf$G~;f+>Dq$SrjQ63kK6>o@VOm4a%Xr$m?NJ zc+F?Alcn(%*9B8XZS?46u7`nvjq7PVz{m*fLSbFo6%|>uzHtF#VWY1EmhZe|`6Y)G zq`H0`Wp?qWO7eiUQ7wo1vlgBQx0vJG1^1`^dc?UddjDg1*pc~)kl!Gfp|~5p(Au8D zUeB^Zk!r7nq2B)0^N}~!aq;{y&7<$ui%u50ZqmG*a)B00I7? zXr*{x^*|(*p{9`z3W1tVA&I6Kbl}(ddP_uedaXmRX}=;8HDn8{9@t|+JZd*Bw>)8! zQg%4;BW73GA5D03fBJ!k*c-3N$lFWeYs>}07c-U>+GOp(Eet+!?7+rhx2>vvlpP>* zIbZ~kkEi4^2jl0n1g_AL?gu6A7#4P0$XMc=!LS9?VySiehjT55-OtW7M0E6g>TA}B z_ry3WettsUo|D}Q(9*ouc9)m+e}YQ<7`BXq!3Uln6kF&|pmIqOim+Gorf-5V&^|sr zCd}`T2$GlI+Nk>o)6o&$TC?m(ZVnSWj+H0j4Y!70i3)psTHSsn-G4=yQdA^qMs3;T z;53ap|v(axTzGFjR)O{3Lq0{82)#n*RI1Ib!>V*TKwNV%&sndce;QbqUu` z$F_o$ceGLPL%ZoUK(CN?qa?R4L*ynTBmfwW?t8`u_QFTSW4be79vNOy0BYbfWzVaj zmCwknhmRiV2x4c(p!^RO_nu;9SLqlFR!^M&Jg#7zN9|cxt-ZyQb#IEDj*CkOtL!c6 z?CKa-(Z)N+_h6-#=2ax*p2E$zer8`i!TKqBshfn`vrDxikU`2pT4j~WfU!s8R<@2X z+!-jbiZ?tK`h^0lS-K=uI{eU!o;iaq;;G#)zi<;mJOM3|n+j(H=-trvEM$GAt|iMT zvDT7oOe}?0jF`y_CtCf6yGepJ9_yT7uD=SC6%k6FV_Jyhzl7H8P;Gw=fP}%Cs>vlG z*ZpB*bUbPuwKb!cEe=Q!=Cr`w|J2?6;mg014FOfYL)jOFV+a1T2wwbYr!OQ4j!8&X zV5|p*5`2t>95PUC#0y~11%(U(dk&c83U8f3C4-*|C7F!?x)!dhVeQy?5*Wq+=?-gg zhv&dn+ykUO@q zb(e%u>4F22Jc!5HTm=>cxrp6&K3!7+|2$|%8{RQ)T$*yz$zYL4!dV;V23;5C?`$OT z{AEe|N|m|k1l+kR?&s!MvsP|P+^1+BjiFK}4vN-+f#{*UGQCWV7DRHgR9U=T(I^m9A1W@2?=VfUS1d&3 zrdE5W+8;dXo__78rli^1c-ARI?6>YUguXj;CUUo6jiO1gvrZ`hJt#!s)nv}FH;>nF zT>Oh>|3Mh&?~jYeKHl1fk(?Pivu<;K>>McsBUYBLsmcGc1P%-+|3FT|q>?_F zJ?#+WP$<2%wPIj;f<^=8&x$xi0C9H^b8j(Y(8ZHjX@yP{E55nbL0?h$86N@jELfoy z1S5zmIQg#7YDk8vF;G)C!+-*K=*ufA0;;O2o-{EDw1P`jZI+3X**lhxsdh4_6x5RC#G_;IL>zhJ)e3DN@+9iw z@~vKTR;)72$bIxqDalr;X;NgMp59zK{ejRQ4Y7!b2(X?Z*&7VF3-1lz(~UAJljOU4 z8R4gcsgRE6q(&;f31^@HrSh0+1 zoNv#K^CqNQ@4?s{3>XxiTs~f?c#>gg=O5wqAXlg5e^W$8UR#PO60b@u$+QK(^}Q4u zRH=_$eJa9ka*F$=?I}XbomLY?I|i|VwfEeIp0C8Pc4(M3; z1J4%N_h6VD&>F@1=Lu%^YzjM^{fUOIE@buP3&O7+mS-pAn1pZ4y`YJ4jOBX-zP0qS z>4z^qlrEiVe6Ax=ovXZ_OhQPdrjLLIF}LPcPmZy2lJ0nqh?U8D3a#p;?yZl%Kf^eK zei5gcCUcmf6(n>TZmGd)uQnueu)L+;DEBW9%Z^Hk$R8PtNGq z6}R@%n6bmSI*gAt^#*rFv{^5R9vX0Ujs@xrG>hxk(raaEArLo_Hq{f@2^a7P@+7vM zoJhjh8|WsZ9m5w`nbIybEP<;Jo*8BX^>|g|`4Ld$!Pq_z$lbC_ zAt?xuGR;92yxbjMw>bA>vUoK4?QxXY)sc4(8Iq1i*h8kwXLpAFy)2J^6C)#e-}T>b zd2Z`lD@2=Vd|}XYT)W`Wt{&?eKiFtavW)6kE6{yqPH(=;EaO?^6nE(4-D@71b`U@_ z-Z!vE>iFsKed^2jYdK!&UJ)1Q1x~BPy}4XSj%t5u4~l17B+}MlJ9s24J9 z6=RqI5CR}Ks@;AJb{vgc;IfCkqm%-l@ypXA7dSuIN!9lsK45wA#?2t!+1(Ya7-Z9= z_typ4kOL|!R*AhJLTL_oS?yZKtxd4H!bF!`<AKD3~KTDW8b|$KA)h?dg~GQ>zSo2EjbnV^dugo?X{5QJV7S zwu~u!ymA$1c~G@8_CqldH!Jy1D*YkvuZ%x}`b5=}Gi^zoFTIW$%wKhPDM&~pso>$y zi6h<>ei9QYh%TF$`q8H}*4176JTWm|Cbs++$>eD9jQO>iNzv z_OlYdM_dpsS7qL~nB85Th<`7XkUF>1N~zHMkU>J|V@k~tZvK7wQ$7jWL^WAjVDkp! z@V=0XCVhR(>x?glbjT&ot|W3SzaXq!u>Imm-)-ZW7n&dYjx`4x)De8`tQi|Jt=edDc9d6GwDfc*Ku`gz{)VB z5TD_{VV0w^X}W3Zi1QuXtS|~FogNG>m1~!Fp27$Sw#j%R4yXpEA1R*qeodEr24n8O zf3pC!3)ndf<^fwPxUu#YvJe=Wgt-s+Cci(rDhzyMK%)X>iluVJ#v86r{h$&3=@*z< zOx>lG!W5qruEF6t(5^fbmvDZNY(jU5(+&)m;4nin`a)Pj^a2orVdEkW^~Komr|W$J z>dc9TcB&grlMA-%*R>cDl_CdkRuSY}#&}}nONV{=#bfAG%oh}e%}e|GlY@GVhklxu zJsrorx~#X|ol-cRO!dQ|22)p>XX!`$G$!2brd!kI&Y`${Ve?5N1)5K#e%;o2Lb>KA z>Cw68u{7{C2w_L_oF_jT?Vdi(RCe5Ow*SM^GOk|ekGdM>4IL1ajB8-01q;}hkZd{Z z|H%OvA6lp@<*}Pz7(xpJkDZ+=q|e{?J=^*n#*3uf21x<&iE9R!wAH;jn>O@G(WlB? z7>&GfqYWA~I6?rdMh)BsztPT>v!JiA^Hjnxu_M__drP~nu(1+J{A|!vRgH?D z2U!?(qXFhZQutLL%v>3r)eNR1w?=iz@)`5c&>Hn5hw$WT-^|rmdXJ7hNb=!z_+S-Jiu*&0cz)RIUqK3TN25+Z`HFiUQewtE?w^#KoYPKW;ON!LpMk4A_OD!5 z7^P@2;&SmaT>R8uw~pP5Q}Txm!C7eoO_3zJ)6vgb>r4(EqBsf zJ0{?E!>xkr32H(fWhkQ9MsNq&_|G=0+)NRCpORttj^>K)=Sr#!-B)D%zh{ZRhZGU2 z+B+MjCj9DN8%baKX13eS&owkC`QWhDmEyP2n{Z((ls|E>60Mf^wb7@_<2wS*ziJp4 z{;i4$NwnN+a^m~pCurcha=m_L=*s#l4TO}Ej!3v`YVn`%a*NNzz6)+wyHS9r>7@eBICLZd1eWP@pUm@W9LD%gPlnK?!?PtVL!sZ8()JQq?oik)75L{o;f zBM?|}0{)K~Fjk#4xIFcBw^VFbQ>?ioC*#iT^!}nwA22&HMCGwxQpT4{=v66?A*^{F2U-VP29 zy6?VaISlo}?De1~%zbLplc0~J15T3hdK80%O2Z8f2%Mv$qf~!Ic#c+3*$UFGuiQpP zwVY!XFy$5`{XDoaZ{E-T8x|enGsO{OuQ>UCSbGm>uK)Ot_p3n>8YF}Y8KFXCD-kLy zqp~WLmAzL}{j#_GtTGbWC3}=)6%_x{fJbk47g@Avch zyx;HFcs?I5>54C>ru#1Z&^uauj^dyBL-j9BH903U4Gm+Jzs=d}hU+R)1|MpvBHxyq z88Wx1p!xPp){XFXwc*BvgQC^SX(N-(vUYq!F$w$5kza0*sg5*NU%YrAi?IW zoLXPwXl136YTwE6fFTcAkFD(l?04=}-ZPR!J?mtvyVf79>6T!M~ zLU&o}Pnu?*fE!8V-;PLRg7%TUNh%9tG9?>MXE~+0cofCOoP-75ha49-*T~~b<#gR3 z|I@B;R%GEvNxN3rY-zJn2>G+>)HZXU!ms|hEc~?tzZbgeuQF|oDk=;PaXEfA-q2|^ zX-lcu=}!NP=Clqgv3z9JKB=-yW+bWf@Xxj1lfCXizs}dfj9~cp?`*qt`L<5a-=m+oKP;$<3T+8sjS-(g&s7=&A$R&f_^a zmEGOW zLF}iJl0*j@j-`^!(zgfdU#Sb+i@D-piDU<@1MHHm4SU_TrL|-qZ6Z+%&4x4~sGC%UJ$WP`UD5Dir*P)RN? zR}Ay_n`)LCWSNI6vR@ieV%l|;?0Pnh;A73@Z{~TdPacs6M(;;vj*P#p<9si(hM}C4 zw{cif(~z~um!@h3@%G&D4-*RsO{PDf4Z+H(0+z~l>Gut-p~DirwVF+nKQj+#861kr z{Ik-jq1{JhL2=h|pL6<9s?x}?}yw_@bl<5(0C6vjHe{af4x z-q~CG<-{U1Vz}8)FiPFIJ)f)lJZot7d+ou3UQK!DvqOF2d5zW26y6AZw+poN>~=^A zkcftGHPv0U;m(-H9g3*}b#!FY&Ya~9f6zCLx^+eU@$&SNbLD-suoBcq5@n*pk@bgB zi-Xj2d>!W0$s4?Fde|xn@vLT_zRyz_3kkFWl7YNDUDQePlHr3~U?YxFA4mm;HC=a^ ztme)eLBqm$uDLNOi2-Fkh?FY&Z4Sk%5Yz@WZtjPYLPCk+XRF{C6?ZUgSG`t$Eo-yx z)*Fxz(jdiS7$hghPjw9vPAfVf-@7I_+s0rkA$OZg_~)a9xnZ01k%_{k(A>AoTvFD> zk!R`}#~ji!-X{emLxFjP4_K25#3Eu@Z)lv11TLIF)x*b&qv|+=vDp5Q!~M3e+js?| zE~<7$OEN64luBpr^^@h%ObGC9_q}BA;(sjM=O)>KnrsnGtGhh@%+>ej`5Xn4);W8! zBsv})wD;LP_V&#Jf9jCLVZo9Cg;T77MvwxuJs{sg2JH-YS&SkU z8Vy*>HcPI~46uUO}WrWY|Z7M?0@&Udy<7;|3W*IMnp8`Ju#xx*!BnI4`4}gs{_? zSK2|R3B^3fEr|YpcH|hj-)u&;6bhtdjc9I7k#*E-o;`b}*1&MD?5!Ui|IA$}!SJlS zxpT?tCi=qmeZon0iFPc_LVXiI5-4PwJd4!74B4T(Mwq6*lS|zUAK;zdCy?vl=3-d$ zrFy~ky2G*Qcoe%@UX`|t&Bwf6lYYE0DgUOE@ODwU_KXr|mIe<=ExOEpa@+H_@H|st zyJqnnH+cE^+1{j;_${1;;kq(hkrSj5PWhaREP~q)%jb6aOIT@g(jFg+yq578ma5iV z4M7%v1+8{Y)~(rn?12vYhjx#Sz1u_c1p3=1t9-)b<6K46xLC`!Kh*yIp>U!a_VgS{ zmjB>EN!G}%H5ngHk3vRv=f*iV#tu`X0)~nSp5n35xBhg8z7}s6DQWNuPLVF0S4v>M zQl`qPI(%zzU0LDWRQxe-e!KU*6TVqfgEfUJ4^#4o-zNUEQ!4)Dh&d-qN!voZKkwJ# ztTY4F`c)Ni3-XB{E5GKJHNSAhvR#+6*=CufVf>K3>~XuEAeEDStx9>emV;U3M(~_w zFU3KN(p!!aHr4)Vd`2(sV?m(7h%IK^_vE~Dp&st}$LQYqqeu?8rDJ-n#AC^`S;_3# zT9E!CpCi&=LpRv+A)vpGM*`y3wkjwgNfZ9_6y)Tsw?+SIKyQLb05<^azu`T9IXdvk z*}xT~SK_h<-9Y3*JNY}jc~CtYONpPldQV9P-fsL#EMV?EySn-(onW27vwrHaQy1Ti z^mUmb0#M-TqdoY?(oNu^;YUuXj~=w~Zyq|ldqs!(3R+#CptFY>l?a+eyknl{9yB`s zP@TQ{9A)ref0qs8yXGWeU#pC-4ep@qr4jX z4mUoWAhGM4Tb$l#%|{ZA^`uqCb79en0S24gmthRgwj7aAvk^Xd^1g$3#3#%&?|V(Eyp8<8;E6QUV*4xgL2v_TheFwa!+X3kv&uX=mv-FxwVbT z@?6|(krGq2fFS3)1V0Dzhhp=n44c-Y?KkJ@@b7%{gVG%WKEe?(BNYl6N4DS9xc*^e z=;kpCrJ)CA?SVR3TAcIT+6vspY@?Dnx8mqHMyzDM-_1%e$RY~9;t>iV3gPZLaH}Vm zh4UX?*m0RMCPwA9YCiu}tJ(kulBR)H=2pRkz+TQ+3ydz;(0{c(>)Dq%lgwy zojeV}6Q(lNDck5;uSt{o1HNB0ey;GnOBK-y@OIEPeygN#cDTlbPPv1}CyF&p zSh|ygGQ2~|*KEheSFzqb!D)}YW>!G{AyyFjBkQ7f_l`S5krvIw@@e6mLt8KGjx`h!VIfG=e zAcxs+<43vl@~_I-?rB6QB&tK$&H4PfUGTmLg|N7+lW7xQdGwkWlQona`Pf6xT?_DK zX1HuNe>!mN+)Uh!(j)XKmY2C=kB{lq>M_alVZEb?fiHe~%eeS#;`qBK!e=33W0c4Z zL}v*yDuM@e;6TTq>{y|tLayHllXLZ^&v=CX{D}BYQTQ$N8-<9-O{hIH+RQ%s@4B%8pfut1dS^uDj@wL(!n?So-#@ zoZ^>?Wc{Z*1?V?fMAHU8%Dvc)f+|r#bGHn;*5ZPQBvJ)?$XTm32b%>|Cvs- z0)%2!UWXji$U$H&$G89T>T5yk59jhN`Oc_))=bqT^xEK&U^l{E>LSVdxuGFVN+xRL zb(=ZSxz|5yuI?r8jVj!B!-h~f#wB!UaQLc8qkIoc3q0>6&p*HlMc{YPY(&m-%EN+5xO%D8TqZ z(%eVe;APDR@$b9&qG%%Plg(q7dl4^G-m^LORZpP(jX!tGMGeN!t6^OqdIS))4kf^} zYx|>ujNkyInTboZkA}X|6BqzGMw7p)gN9(erZogBpj>bm2#`_{kigJa=w11i{}U|( zWz!EY>pYHEsfM@(^-jPKiBF&P$7sPtl1PP7m0*Eeqe5;5MarCVCV=Ts;E0&Gc z=3l%6(y2vXKYteJW7a^`nRaoDd;$S=olUS)(#);A?i4<;1s}vly_d}y?wC6z*m&B+=>eZj@_rDQtHgTXw_Bvgu&-U zF--P7l7r`NmcIVw0p~loQsL%r0KNG&u9B#ncf{VaLg5mNgphhhosr;Plgz+6ZOZ7C zQ^!cp>nupzOgHl%Qn7@`|1xieW1dwZt(ZsL=(0bK-&wnK{}y{5!P)-Xc6%Zv7*CdK zpsF%@_#4MoM91pO41#+#V})4M`SyoDQ^{p>XVh4$JV;M!Gd*J!U+v1ypd~2d;Ff$y z!D``U%bVFvFU{lGIb?;Ftg_~6X$#3lcf@%Y9$1KFF{T;_Zi}hpi~s4S&rKJW_V42T zq<f`gDASr3hdu8GaTriFE-SBoW4y9zVjLSj!c!xn}|k9FY&IkodD9UMBE%yeFY| z$JU&7Ye{u;UUgZZmwHvxPbFC2iK^=ik z^6QC8;_L^?+Cl3;=W6ufO@`}6Tt__nLA)}TsDW5-SRWlM(Xtt8!fgbH4s5k3R9$X3 z82yPk9b8A8sb}suoVjsSbZ;T{IMiU3Yt;`H!3S0}tn`JdI_A`7QjpTfo1-!OM!@zF zEU9DZh19CWv$vjIEJX-FdWgkzP^;GXZFzC={Sz+M!BRY^#a+ER zHWtAN0N6~1wdaNK%QHgz_wR?WApCYo-2S-Ply3F|Rmz!lY zvXe%>{tDokGhLbX8oBAb;pQ5k?(^?3K_0nychhJcJWF6iJmTyj09`k%0Uf|0U~nRS2=KG~v1_1UmIC(UFCm*&@;8Y< zs|0$@CuZ}#9$Akt>Az#`&J2>4TRP6Y*l7aM43|DI{I=fsQvM#;A~I6>a&-AqwCfoR zJ@y)p+ zJboFm6=zKUM{a*(t9n2S#Rm^*TGA4%`A^|U{<$dhrKYnPbgo?{n~qY(!wsQ*&)yElFw-`Ij$3M9qxtKB1EWR`i?mQv$ac-FwQ zJ&Z`@wfHnL3{}tZ%S#(zeCsTD{Ur_ekSzkv|9{Ct?>|YbY>yvX*(wGCWdeXOBrT1e zm+>KPxl1K;?>(F`?d2N_ORMFZ?xc#Wjq$9X6nB49KzrJxLvPl+XDM!anRTs#cCCWH zyzei?dGQCxgMeUf461Hy>ziTed%;S(ZOc+=->THYruF(a>waKc zf!Ch2Fsy{4b%wxELx6n zO_Xm~kSg%u92bhP*TzV?&b~ZCARF11gW1kt@8*(OuGJOX_`5+A?_1PVY5N}@dii?( z=6+&vY^*hI9z*+1T z^K{^s>1n>w>n(q&=M_J+`r~~5XJmqt;Qu~(p?gkY0WPQai(b=U|j3w6bZZ%fZH!lXw079z>SM1@z6F8ux6Uy*<^%6dMZ5>wg>fyS z!niaWS?+f;$EB;<>sL;-&C0wP!Tens-GC#m(8cYKf#?5KVZG1TKX~Zw=RwD zy@{+Bj)pGb%1qu_kAYbqIJu3@WWyCs$=Moq;yU%tM&$okTb>&)EZ>+Y|J0Oto^W3L zy{>TUo2i--%bN6qRWz+pYVlz2@5iDgX^YYTWa}!#8!p%B*xnhvKt8#8A(-onS;2k#9oMj z2j!1J=Eg9B^-1f2_Y`a&gW0jPWoGutkY%+OOBpu&T{zVPaUy9D+kQZNp1iRc+qcX@ zyjy_6GPEtaq(`u05%T`B8Gq{^D+?1#h4HIm9)I4%SD}3FhlgcTbbMjuooB?~Q3z92 zQg<}(4(WJpzdL{a?xW*gGrr?Fx8At6biME4102A1=BGSyjS$G;7ofC`X#s4TOVw=? zz1W$55-E+?Hv%n=U8~DY;P1tdU|7_gHe?|l5r*<5`L!pTzuA5RzkYx~_PR*^AJFAq zQzKsBpflW^VL;|p2~>GgGyAWO61XD0X~^jL2SWm#djB{Z2-G#UrGm3YuB!+?cFWG zK03(PolI!pNiRT`8ms2-SWGX^nWt(M4XrL*A+Mdk;LK8f}W`|;r%?!^|=sC z<8}S&w}9k{KYLHVM6<*H*Gf()wEc+l z){|U#ij;?-qc5%!`J1>nB_y)DGS1DK8b4P>U239`d7$6(Mo{J2WKgPx}~G!-tT)$()o}J z8|uph5CU?1gq2YAgHDcT7z$^&Z4m#SRM5h2Azt7hkIaFFeCOIW#wgOnz6%Ph1n58t z2WhOzh*jJMf8{yJELJDYOf)=>1k1u>hH3_k(Gc_l-c2I#@9rO`4nRWvpH~qH3m#;- zzbxPLFVs#@&01`W^@oWOFI*Y4E@V0Op21JbyC#pqoC3VIN06w4nAEcs?+>3QS)=xI zvHK1?euvWs>r9J!tN?jN$WMr24($4XcZ=)OHTePY2H4WjVM8vBeH*Plocxfh;%&#h z+3uYFqO9yWY=rn`ED(I^u&LuzpbqqR zkP4!t02jSF4 zV1Q$s*a*=?z8O#>kk@qw|5T;28zg`&Y@x6)_k%j+QM8GQ{Fd_IDc;RfCe$00Mw$cORASfY@1XPA_au=c zA|&N4hEP8GACvQP-Sg}MN_D*Rke?HVyMy9VjCDEs0y?SoSJ}qGUs{#AiFy%b%$XLXNJKD;^#H#4Kx^t{f+vhx z3W0?`k$ksIGNl-0xfu~}!Tg%&LX7rkGbfV`RB!7`QN4#f159Yh$wy^}^^|rN_e@>N z`^PT0r_S`xs_w?r;O%+ zYfEY~lpoDytYma{NcWJx1Xj1$)7IJx4>+x6CoZLCV8P?5z`x>Y#FB)^$uqFZmOoq> z-;J(-)UOEre``+2J2U7}DGhuYutgDE>zlSfq_uJ*$gc2Zgy|oeV*uk7RcPgrdtZWQ zwL4UbmI4^HB;>w<&hOth=Afx*#z3z)psbqQWA%CwdIFrJSdlmelaFAG44z^FF7ZNb zbjHTaIJuoy=EA0~3>%|k->CbX{Q)th0Rj6@?kp=m>-tc2;rQ&{%P`$ z?8xPaCiJ=?b5K-&r0J~8nJ;~NNV0BZ?ld@b*z2KWX7yUSq2+@GO0q1g-t~^nDIp0> z5R~6wa3S(_2;2$A7N$Q~BRsfiW;XV?dds)DSMV)qtLWg=g9`zVCJ~K8VKMNt$`==0 zDz&2c(qiAq#5CWFr^#x<+s*SXg=OhWUt)d8zzd%{qzBm5aFF9^gVHyZynaX!x*d3k z1;01jOoUzzlwI|F*JH6Toi4F&om@+U-kn}|ND{6)BDltE5ap&~=nT-dswU#^R1e?! zq45_zXeu^#&7H!bOZ*E#9wZ9m#D#5rAdSu!_zc+dG*VlQ-WpyY`)EaW^=JdbON9VL zEdLEnG0#g=HeF(6GV-*_iJ1A-`39f;3 z^kjH?4(=2}OISZdI9voG+YZ?8N)lpc+?f!6?|zn1Kzv>R+Uso^6VpPi{eNVcG)XvR zun_QBh<4b$55mD7@oTyb_1OF!=wTpIe^2gA>lDlz{T2_eeEXYaAC|d93SG&}izBC) zs1bFCZwv(Xtd%gHHs|;XSKgM7gM=@7ev2x@PS32vmvX5^VN2)1F zIjSJ?#mF~^xPacpEeDS4Bw~(-6tq8q-Kw5zl*!t5zKD#|>XXt>Delxt+*NG%*G){e zBRE8oBKx08pXdhpl|I!F9nhZDesuBaZz;URfq?;xb07*vMBA*0W2VC+!{ay`q=ZBa z(msJBncxnH$D&}R9`BymTcN<>;hybFv-LiS*gnyt$AJXM2UH0-Kk@{=_sEI2@Zi)D zjM{}CiNPc3<82S$KhM~`U^S5WD}|R`i;3AS%&+Ix%AZX#-zWLqtwA(qkO75}OUVT?nd^p#?*tb;)xl=o(dn0DyrqfV2 z#|XK~ej*ki`gEz9B9}^Z^|vjonc{-u&7;|cQ9VC?Jm33eboylQ_$`}V*5AgmnUBA; z#x?yu`HnZfY2+V=f}xWL53uU4>0&eZKKbY9yBn{kf14lN_RwHd%=*tL>)*j2XAAYF z)F!SO>dy4qU6R#NKqKhm93Ig$O+}3_M8F>G zXJB@2>}jE%01kg_VmKC)TE?XK-E!*HC1O<&3t-~R4HN{xkjjfqY}RpVYVLfb8x=OY zfDHh)0_^$(gG7n{_kw0jsO`z7 qN!DHwi&c4a_C?&|6Y261%O|e3q#3$5m&fE| zH-h@a(YD2YQv97=CQ#i)IEdU%3JN|z@P{oK;c(lN)i&0B_XIzqH;=DJb`-3bbi2Wd zetxvNOQm~8ybV^5D||1*%IUnay`RxVpLmhcQeIIMEbTVW&Fb=ljPPwEw};80sT9#8 zax2&))Ys3Tn*hk9@?$n}haH&yrylr5Qcgs7aoOYD9^ULYi|Bv<)tKM9`bki=E|(M~ zG&Dfcyf045^KUYEY+yA6UjdOqO%3D*wPx&@sK@}2fS>g#2# z#Y>MiFVYPp7uSZo2Dfp_*$OEeZFL_FNJC%2Q-5HFh%gYTLMVU(fhgOnEGVe#x{y?m zc|s%kS#UIOwAc1w1y(boW2Kt{cWTPSPW@52IUhRBo5L5FACC4 zYEAI6Dx`r>YmVMYR0*=S<%FUD#BM+)628s@7>J5S<-m17W5P%qM_VEa4j-6(Tu9ekaLFxP4)2L01SOJFt;aYC*nZKAV}5 zk*abGf(7-9ehPqssFq>$%|78^MbeeUFz5x%{i}^?zCE(saVbyGdH6+3MYP57v&{pu zOp1x-DcKRzx2@GAZjWj=%8N`(BkIM$iORgPe#fbOWCq3Brp{DF4^5wVsr&R;%(vHz z?WTFM2e%ZVULJcX{Ry8j2XV|=ks;1~q%mpQ5&0`pe|!cwE}vZ2xQwZ31PKe7?0;yU z=H`%_%T~kB)}@~$G=d=jvV2vQyz!e()?1YVd)q`sgZo^IKP^MOI+j-x!^ysHKLv0M z^iP|g&z|1QCEnd0M1X2$!&ro_Y?o<&Y*|&ie5j zUret~NDO0flO|4G4*Ae#rX+n{`I$^^|Mt0hcY2&R4rh&%IvTUB7}k}ys=jE3e2l=i ztqV=>Dbv1v$f@|o?eY*Sj^6JR<30MLosi2$aI zCz1CsL$_B}Cv}h?nQd_sNA?ZP3(3SJEkbSl<(B)lCt2j5Q?*}f!Kg`GtsgJ@mcPqq z72U{l@5}g!EpS+5zASy^T-f7OlnwOdnEW6AtLb;d^a=|N1uT~dzn%%bIACsOwi9>T z^>tE2RONucj$AVto?EV$YirKcO_FhMRjo8VPgPgKCS$15P|B3NSFrrBR4pbX4g4T6 zn{6{wG*NjM|6T8{3Wbbr3X_=A=cc#UGW3g|moasxok{-p-_@j$;h`AVVa!#aY(z1c zTg3ErV{^XFyjy9SLLQ8M09e89d5a9&o2M1-ZqAiown5gX_IC0AU^<$(ka2*}ynK9> zd-zFNp%TQo=*6G?3SG5>aJQ#l&;Z|MZ@bvA0gP3{a|Brt-9+uGVrG`p`XeQ|uH@BU zHpdoMS%mN$(^rVo%T*oa+L@j6{2iv6`4Z9vBHL$F>%8!t?%sG<>zIShSTiA9AW*N+ zMj(LqX$CjXd$G$M8u2Rs)0M*2`wG#8< zn&_u-A$|pls`VU2y^?NO_xDKFr;XBKf5TnEGXRpe=6s|z?=;Y4Mj8ZpC>2VaI%t6QnX*lin#G||e zCp_dCm@?;un(Eu?rtni!B~uzw7l$cGM0wy^204ky-=RmI6o`_BISFI4mcHeeAp#Y6 z#agL*D*Dj8MNUigRq?kWtdkU0?@ymN@%-DR%oZ?Ac76r7W!z2&NDD;{0w8_$i!)E_ zV9bjbFZ(&?DqL&JmrLr0&T`W|fDjNZd1AnYmXG{>-c`Ea5`^)5-uT*WiCw%l6#l&B z+seaOPua`_^KVP7;54Za7c!7!WI>WS`ZBo!$}~4L+n6+Mr5C=2LR;2 zDXizg<3{Oywyq*1)1<{wq2{2T22-x3!UHO)M9pEXp@~0kNp%*LPq$ir6+g(H%S@N^ z+aN(bLV~VV@3dj!=5CMJq{-#ece(A@rFM3-e^c(r*#^G&n+R zeVA*A88e*FfTZ_S+{0e|?AIO^p-gI&^l+S3GY-(o`;|mu5fal0vE7i=stcp0%bBZ} zZdJEnA`$wXW!cFeSa5Fz!G z_}jy7i7evNvm3=x7WQw9yxPY#$zT~pSTaBVyY+pQ3h!ejP6l83yr*|CY|#6o<$26a zNPFj&aFI>6air;9%kGxwo9|CEFH{fMLhV3bgOf+9zCNtm-KOrib(h=43 zPgkib1(I=tY3hizaL{&#UbD@kE)Sp?l|!Z z(;9~M83z|z3g@(N4Q5nKIuZ8{kv^<u$$cg2(Cm2iCzy}Z*ajZmaHEeC$Lbk6T@rEe zz>B(X2F)xF8f>oKJoQ5^GGFhb7Rq~lKuUve zzbyf8W#4~Fq9UVb)wyIbtK_R-$V5s(h&kVwr?OVOz}}D_t7B)z=!E9tHNr3WJfQg> z3zUBw=cMsfZPlxOv2GW=*vif~vRP^gVQb0(R3!voOaBy3!1Hn|#cP0{$HoVPf2A@(~IP0R#sgy?>%kdM3( z5X^~g)Z>Qw5wbeG?oszgCiT>IE8aRYoqjZtyijE{-a3+b&?4zRW{e`iL$<3MVK+8% z==EMFH>M~4ZpPnznI0oIE26jc5|33uGl6sEXI{cHwQm<!&r(%CrP`IkjuN>~NrX zx=78kMd6Dit#spcpGErUwa|qGdj?8xw;1(aHHp{mY1K{Tr^84kuT|M2QYH z1+<{^3KaXdypMi~JBX=`lTIM$rT%%8^xm1-xItZkF3F3~eBwdFyT;K*5NtEAkmx3p zS{%D~kack1PPliGS2UUXeyF#Cmd?#k{;%}iYtfdzg#4YLs+(Bud%BH=Rq`L_^3@&) z42b=Tm_d;DzS0WMTP4x6Ui#h7+U9`KR2+NnLyQROeK5@K7(iBmX=`odE!}ti2@*SX z-Kc@YtdiqY4qpdwP z%WZj_)%_RTVDtP{G7f^!wfp=UQcY|ceKDHM&UsAKMFyWL?~_mwhjC`iX8ozKPr(DV z3vo1g2ic`GhDPSDR1|rNV?_{=v5c-jBvA}7&!a@lB7Bf=9ZS(#kvq4(+M*T>3JRpI zRCI0mdo?Z|DP`cfb;F)qWM|NHzx+!-FG$9Fh-teEaf2kZQBYw+H_`DkZr7s=nuk+b z%uw538<5#x-}qy_`R=?}dSu;bc_AKk8f5y|g-L1-AFUqFpEGf0_Q^w0!WOrLq*m4C z7U0*qE3h(W3N!N7yUg=ikG5{BjuLaxc#u2u_*YVuZA9V0D2W#p{*+F=`7s5kkKl#E z7vMMO>Ololc2CE^Rem9{_s(;5&uWQYvie-jLOu9v%=oWnXrt^&EKo#Kc}=Ka-Z{o{{yBRXUVWh&*{;P;J{HB~>)^;LCu`Wd8w$BgE#2a(Qy>^Obn= z8+YzdBQpkb2)RgF_)itlw7%uozMa?E-4fM9zE~KirL|n`E053=i;r|13MmQ?5UAEu zhz}{^diWx1!sDX2l7n9AZ1_;rnjZOy&!Mw9;He|s3IAhc@}2-=0Q2y_GWZ@7r7)MN z!V#+#x85dkt?QLvPbyz;t&O3~cGO`qOIm4?TGLIlF^SqnamMLK|4BfX?)-SBoA}HBh9B6^mTzds2Q zj+qZ}Wvi*>X1Kj@Ky~`-p!L7MLej!6?TE*Vwno%kd;$unUO+xUP=ig&wiz34OC0f=1emy5sJTHv{crAK+B+w%z`5{aI)H@&$MTZ*aLxWvqoXWz zy{p|${?DHu2mHsi!D}*P{qS~cQPshNFJ}h7XEA${UxaZu{G6Rf^7}l#3$a`yZfJ_5 zB!=OcO~(^;1Ed<~PNm#cx_go-hmQ(hntFGy4mq{`(p z3{Iv``WL)6(yQS;5hmy$u_Bd+sMTdCTnD9Bw64PQdGp_fjvSHV9aC~H?qQ`DoGU5b z+5EM(`bwA-cKa!cVSNzdZXP#&A@g;j$L`Ef0(Z4uFKzSIh~<58zIq3eC@yk6W$tY; zon6SS;<&t9P-pAB)votDOG6oSiID|H)d7fXFnxy(C|`dz`9pr)uKY?vD410>gP|!W zeKd+nY2Ua}<|cntaPGr@g-Nnm1&Y1StyhDJB9a+Di{^%^VjOPHm5(q%?S1+&AVBj? zCm-omsU@T3*9x`3=RzlDy>8d~U+i?1jEhsGmu(!F74yoBd(hPGR;xMoR+_~5c8ka_ zs;HC8(ou%DndCBA=#JDiSY;Ke4{ZKcO6*}Bh}c}dE@D!jvK=wo-5mcQ|nea65K6zNu) z>U$Y{wL5C~x83*uLhB+R{LxQCu~D#3&OFeS(dr{9-GWq;d*W^*%~hJ}qM)ag#^U5_ z(We|F^mkrtdS-GJ;W(PFyeXGbf@lKu4!BN6sRZ+r7Pc#=959)DVM#jD$+s>g7_T6o zQgVDjJ}fBy@KuiC+e7PBqtPnvkmCQWjNO&yBKB=Xyw3eviphOymaW-M#k%4NdaDbj znlBAk)Yt6v+uQ95BkBtI>@zhAk4;}%zS?{;Nce=eirx9x_U>19N3z%Czgg6UP}Evq z=&l*HG!Y&$ZVpVIoA~UDKps3fNNNA<+M9Z2YUgXw{a>rJoVFgK2sCI_F|_1NQXe>V z^M)six1c@MNrB$LnzM&NFSU+iK@gBIa2)6c`R+frjB~x(c~z;GHt9}>wEtT{uD9uC z$!~<=sz4>2bjA7#l=%PCah5kjUkYa!N-6}7U;E!~GjFQe*JhM=kKaF1hP4f?J@!_tZmeqOo(_>ZH1IJmtRaOjc~J6e z)~Q(Y_3vXAlSZk1A$yF%6mcg5Hg~3TtT=k`+%cO&Pyvj6Lw8aJMTYEwm<5)Sn7|jIgJf!UH zB&{=b^xo9SDpE%AQL>!tMvVpOo7n(gpFRb^DKKRaZKEA?#vRuEhJDVu@7U! zT(B6A8%e77)#rf=%TiKSywYfaw>{(ByOYx+X#JlkofKI)kw_d3Y3nyj4WMo*DBha$ zCFs;}R>>?Sf^b?3fOQD3p}C~l^V2#tpB3G-n;m42PgI^vO0_Ptvv2L(n$m7o?J1s@1!uuWYnWLozl638_6_G z&pouF4<&AC4#|fkaQZO)+QwDk&t8z>m*$bR=3!Q`>UlKrus}`oKyX#H+mss3TY|!&JD%% zPCjP@H2Lxpf|H;7w=#2)YkB9sf2UV4bTj>~hzxB<$@6-PFB^w>nwGk>9xI;Nq6+X1Lh~dbM+gFyaxz5c! z=xo|9NP9H!Lg2@#gY!>$QaNJFhHRJEOHVF)xlTEa0B>MuK}kB`Xm@sY2B9wGa%fo* zoeBM$#<9E;GKF8_gbPY~{jR%Cn#^sFs!sgplht8JM2K0{J|^EFJ(h2~^dy-bMZU>~ z8#>l7k>!9ym`DBXwQboHC!xB9Tm(`!tY38g;9-QGl$7mNT4*aT5J}*R)k)sB-M*h| zkTYOjzGgL3Ri)NgHFE$LB8NiQVP#9I=)jK;7xqx)QyaZ;zUsw!W)DsKmT$IG({FquoS02pjXk-fgUTvy`Oz+z!R%0LoPL!_6#0S z&!L*Pde*>}`o}oXicyP*_}lVXJJmSTs6qzUjyisJkMdo#QvYoT+YK%n^wL2I_ma21 zKRM_eVG*ZSsaRZp>T>2*yE_r{83x1KEKl5bIupuT^4osw-dH%J17#Ag{_SGp)I>zI z3pEgEsBsfIT~Q1UoDtWOx|Sz&RNUm4p#_D3&H9IW8p-ahYJawc$8+ADBY*B(S)H5~ zyv*im;546OV4Ut=BeBMMU)7KZ`uX{BSB9h8 zD!#L6=S{|c9i9&^gi{TC>0Y&K=r}21*PmaXGgB5!zeD(?B(0L+1kGE$icYdGR?g|M zyZ+>=z&7hN`S0G&ljS=sxr^4l?$TCK&NrOQypLP>#jrlt?FtLiwN%4?+h0fS7H-(F z1iRXH*7_ye|JNr)%7P~dHqVo{OV~_}P3);^t#S;|nt82JkJE2*{q^OP^$#9Ty~r=z zHF)q)DN6`@JUVCCQ=xMrxJ$wRtnqKB#7fe?KKvy~J)$?gXL;u3*Yf=Nmq}_Ddf!Sg zHn)T}`0^d^|G-J_?su*;A&72I*E3MH(fx_DBkysU;I;G2UEC+FXvFJ(glqTqV=>Pm z&`_2&I&Wg9$MflCi%%?#)m>459|m?N4G*B2%p$M zYDye2H5|TnK%}4)rIs|767k>rHM-rH19c5N>JY>tht_JXcKtN*<>bwCN@Sri@kMH3 z0mo83t>P+rTP<}C>>{VHKc{~9>d}`6NZjNPE*Y4nW9}QO<(NbD58N{|d7^3JlV*!9 z<%^c`{@>LL*5dbpUB|r?xlf-}PDVy)vF?M(7^k(#Z$=|MD@GGzR4q6(#QRerCuK^R2HvkP@654d^i8WS=>eSjnMvT zgi{U)972cNUaU`ficQbY`#jq4lA3Lc53T+hCAj{~PQAT-XWX$^(@xo&qW5WTBx{^O zI|ZU4;Da=_T)3t7$MoA(cGf3%>sRz^_y7L4UOy?RBS^`Xuj=Qy^jhmCZUP`P8?e>M=2v&2r(sEML3Y)$f+in|6G; zjUunP4z)s#-YYB)qSQRf`7Om(hZ=@?IF04lCg}FFtBr|mW!@8A5^P*7(K&pFOD=%n z>x8h<{)zx|&Ov{EdBx99Y89Ww*D4*&dco>A9>yNn*cdd48PO>P%2PaMkpsa2!E}-} z8qu)<$36O~kd;eG-7O4fr>16StmRe&VlmQBU`R@KPqc?rcFuH;-{W7q5-e3JxF4%T z_U;Y+$=DoaeEHWmc7bnDJ>1ECFBR*|3^57e&q4TrPBQAYX_F$Ud#(p1_-A~dSuq`{{UehVnG>Cc7`XBKp z)G<6{%i^q|iw}g;lJcG8R2JsqHwo%`*?>gZR>C<$dbQ)RLO4HF@^~oKe#4aW`$J5A z%*jrl8Zy$8oIH4^v^d=4>iEH>_VgEN!GyB{qJdnFn2-968zX{07Oao?1hvU*^W z;S2E-Ee7j-lVLn(V^y;n=h#KeF<>G}vloxHv{2G@*htrM2nx0`yC`a_iCDb2AGR=^ z%TCvBs1PM+ny~kZxN1qYX}7D4ez_M5ydO#9GaknZj%CjKztSr%ceK{juqiqcNp+m! z2`d#v;Q9sMs)V9{ppJ5EYSK*|W6kRsIXU}|@AY{F74Ibdc^2&Nk>y=ZsZG_-s6qrf zauTOFsJR0AXEtm5J{#+U@)Op@+8(JMUJ?7k3)7a|m;L$L(&@-iQXWZ)F z{Jom}Z}tV3WX4qHzKLl)^;?WdR!~~_v)!+lhK0wA-Eo&#RsY;07dhy}q{Xu%>{DDi zJzJ!1z0&!fhW)jLb?t)GA59mvZL0m!N?w=FkkEuf5Q~!y+HEAQn3krw&f;tlq~uIe4z7!#{92rGpfS)# z=z7oPp8>pjVQ6sCC(mLi$n?_w+jhGaw)>?OYx1_qG1SqKSlDVs6o=2&{dT0)-t^e` zmU^U+G_i+|D_fF5iF154wQh~NJWxeP&?iLfM-OiBL+JS+oj(K+KBTNf2N%V(&NsKi z70-!t3Z5NuY#B2&kcoPIYwB7iwP0Fy;*X((R72;U!eC{?LWWoRV+ZeEi7$TpwpDIZ zdE|P^LyH^O)H$sXpEbQjo%zl_F7LC5a$xO9-U6K!`pU3jCG(ziSa5_d+3`zATK=)D z!^Q(UrM@<`vlX`nOsxs--XhWwgn$M(e>aIPF+b4{U|EFl28))cd{Ht#|9IrHJ2H8q z1yoz1_|K;k;0;L8iq#;#L(>WkMyOj+POPhdYzlTr(&*S3s(Iz*tGpFtkt63>;~W%( znYL%E->g_mhiDj8yZ`vSGZ<$!y`<2+cV+Pq|Hp1&!^#ORc5(eH9Mmjkhp*dLIu>vD zS703N5p4-@8lDrZK00^bZYJFQb)EZ171_gP(>=hh65@Mw@JE}`ss!CL0h}C6hL{{p zyqtefCYCHjoji88^vlJKJfY{9!#iTUdOu$E;dLDab{Sva6V%lC?5$=$dro|7jZtH% zpRRF_59YgU(#m8b30P$v^40L_);wCfzMGltc2iqQ9a9~iEtUAi?MzJ>rRb>*4HSw! z!xVjIzcsyc$)y)D7X?L=>$}XJ&r{Ws|N5LVn@|_wl>3CeUK3gw<>ZhM2h1LV-v!(~ z_1brGFM@c(`_Gv~Qj3`-M`m1B7yhkh$;}e^lQYf&g)>4=8|<>yvqM}iojJ6jRogdc zp2H+S&beW5WVdjT21m;IH*2~A9cz5WdT|~XWvtCEI$!>H^9e9fh)N08*58T3gd*I< z<;oq&iskh4w&If(&MZR{gGbUXS5*va@RYSrZ9H$<<`&BrRn56nz9BxmQt4V&qcW?=W}Ut%X8`eopF40&{?e4>0*#Wo%OlR zdRJ=Mwst|-f0aP~e~mUrHDK<)}~9&zItA&1bM}KRvev(&2l3)6-^m zs){bt{9Bn*_F56P7z~7f69EbV8(9BhFjxePLRVJlc-6L?B0T|Q$?#vaxm|Q?_tRJ^ zpMSZuUJ!lX(zZG}8P%Kp&WH?^zL|JAi(-j!-@0G?@4T+&&Yov>mq)c<=kZWBarq0! zITdOxGd{B1|2#h4BO}RqVXlpO%XC$b$UDt4#H@gn4V0};$-$F3Gf<7d$XzpM<#cV| zT9<%MUCsUWqCS_=HpdNbASNJvyKI^JRxz_pLyh}2+2E4m6RljCgSW;0c-$>Fs&!Wm5ZfxudSO^= zIeJc?+zy#f)J27!`o$Rawy}L0mKaf$f~jqnKKXtTI6z0rNqJ>yTlL2g&366&g}nFv zr~3cn{||+RQQ3qN%B+-;6%`pF$02)!WbeHz%HAs>A$w-;k-e3@LMNN-&FB8?_5NPI zzkU9J&+Fpi;_|xWIOq9%JRgtyxZSRICUbFSRwAuE5IG`u%2zV!&1!x7=9)voRZ#&F z)X%S_#4SEQt9~q`uW^}F*x%qEQBkwL@m6}C@O{dB%6wCI`lxs+fZ{_I1OMidN=`lK1Iau0r zIwB0Zo%MLNO)^sJCaY-wnPq8o-ca9)J($c8p4p1M(#sgi5T^iW18igloHa^;E^2VE z=j0U+s`F=Pg@jBs4Pii{u zNMl0x8*QU|5O3BK7(NU>2;fFRNQR8ahNkYw$jFO{F+}qgRTQ!lLBkF%-zDjxF3RQ8(7qdzR>iBlauz5#9C08`=LW|FLJ9$w-+OxJb8D`1f?yRK_;aR0EYe5T zFX&tw@4T&Mt)z0W(4JcE`9g^+!|9Z1ph56B6j#2V35OOkH-zug1b;BKcgdI;0Du4p zPYnMb5w(B%^bR_3CJFDlcjj%RC<)euk96~!M17wzc5IZbN+;b2)_w7cxiRM^W072oPHYkP%(J*pli5TUS8#9l8l_KMl9+=4Re@A_ zReWJ^2zvj;MYq0{x$j$tgvX!EnI45rNzq(dxR!st%^cV0xp`YliMcv8mEd~=cID{- znk;v+6XoT%nop8z6OCBP+ZvRo%x>1Njyur}AC|%>OJ>trlaaNu0}D;es}@`-0+TGg zh4~iCw%YBxf6CB`o5p0dR~(9xM0&?mGoIhNme|v{V!vzJma@53*qsMT7HDO{77Mi< zWDr-2p8I_mK5&JWKDZpkwHj4CdF=tPOaw9@FbV=nN5o#+ianT?cJBX-wv#_1OtY!} z5DQjJHgcFbov}6nPvHdV(qY5&UzW%PIqv}8E%A`Rji(Y4&SZUsV?=bUBND`(VT+_; zg~gSxD*T`_cs{~4M{Y%G7~8#lOA4)I+q(6^537-ZSsc8*EPTOj+T`Cf4Yn>u^-ig@ zn4zbWx9$BitAY=x`A$mIEzfuFyZ6W_m20@9Sjw7@wUG4y*91gkK(@1wPyPuLY-D)G zNxUDavt?t;cJv&!gfj29ZwT8HQ%w!^TwY4+DNs*iQqllvTh}Wk;|+VOmN7DE`5GX? z!F)1jB^ohmBWby65KhupmuuucEe0hsx#mUD73FJqa*%w$jw)-(g=?zY)Zp$;k?&q_ zWVw(u>Z?C*)h9DYA$`{9mb)BC7KG^6l0qH0nS`^Ze%XE+z9bqvqtAsmd}}%C!e96M ziNsDE$8H*(*tt}p9XKvgKK00!z zFPv~{OaH+|!qlUXIBc7L>kGiXgeBq`sY-sPB$v{PJ!blGL!*p|6lbgZ@`P1rhywe= z$H8hV{pU7HHJMB(>B19AU4(n0GvaA8#2gA|_4&9eoL?AAr%=foPHb&gCeAWx-xwn3 zzTtMVG|TZ&ruJcp^-ummbQ{Oqs{OAZ>Hz@Nz1OR@-|BnH;0>rB#?U(G?t;6Hikb>ytdt|O~ebtgMAsw?fC?XTTM8p*aJW5Ki(@%Io|RHx%NrkLyO(GP(Mf?-CxRuy6^zwPD$juuw-}} z6BOYr{-7r}^E*83D>YL?b>5Ono%X-By2!QviOhGw`K^1orLX|=)_S4L)4v+!pV6L@ zkLx#Y+z@Z_fO3V>c|o@`0kmR4{y*_TRP}G0`U$JPWOlexsOP%ncU~k<@EdxZ^~N)! z*Zawz1LD1c}6VUP)z04*O3Q%c=qKIX^}tZYlCRS@ivah^u;a$Y$b_bl9eG6<*Y#b=Kf z&hh;>#@qEGBR zsNL5I#;Lp-xs#kZL;Y`;2Ol`VZDyORmK=TIJYSh3r}PGwK1deY>9@!hjl$~s`4*VQ zu-M-gboM?l zARkWJ87Zir&kq+|I(|c{Y0)2Coo_R<_sRXlzPO;D^;bpGF416YY+Ms?|3Fy{ssr$D z{c~$0eFFqM0fR`uA_avY1gyr`ME_;uqI92VjklRJFTiL(j zf&)cyFfJe<4Covgi^oFL@_U!qe5kCH3IHuZrqJ8>8B*EbQNU1S3T@j z>NVuuO<3CApXcAHy_i7~f44thleBBvE_bZ4vTOz^!8@RY&TCThRtk|u8LN7 z?$>-DT}#+z;>#y)3FDcsQnW90cYE&K%e2>F;`9zWUTs>bql;UI%&pGZc4x)HgBHAP z05|}zFDQ9|Rxp-Aqkowz|GGiiI;ddC=hULS0dB`~j$j)BkZWkXgIVw(8@lZK1RAqe z`x^#I{@;CeAWVU*t4)zrDACoH!!()94vWsj-cU^}E!8A?||(9{sb7GJ);wTqgwsinuSw!85jCpOAasVHD;L`-dZ4(v5N`stC|=# z=iw{;GE^$SQXlqIRi0SX%(G#wujg|u&G_Bq_KRv<(TL-q%+dbOFD}&47Y%+a%deC% ze%3NtfD4KOEc)f8)!7&TDP#@&vMxtXDYdUwPd|ZxLtNYjz0T4rta>VSqAde4oh z3tOO>>L+dOr#)FM<(Izc(@S?RK6j`^rA9mV0hDI9ovYIhqsPUVqdRoX&AWM>N6kVu zpC#V5rBY>ScDiYkNf-p607#x99mLNZ0nY?7t70Lg`a+>I$hgeSiID-RyL^0C z`uM0F_y>!*L5x`^;rX-Y+~l%w@0#6los(>f@9uR}lLVxS+1c6GfQa&CZ>4+s6$Eg` zym5HFW1;%?_Q?FhcFzqf8m+-&oN8?!%8<9vu`DPngDLQlvW#TZPK*9|M;t~+uQ4l@ zS!c$A?F(HdvmUUb3#IesO$!85I2z&L@{eSiA*vOx6f*4=MWN({7LwB#z~qi=rh$AKcn?)VMEtbjt<}`KxG^@S_i5Uf43Eq8-z_&!cJFQb zudW27Of=*Oj=J7X{6;F%XQT$h7$6Ld5S40?lONl9JK+Esx}SI0?gPGyx`Jq9MgI5t zMxB9F3_+11TESOAauGL$|ZNOCvb0el?1PX51=-;$ZPb zZD!ahl!^>-3xBpw50C#k5(V0w7DFrU;-zodG z6v{T$vl%UI$IUWc@aP1NCFXUfk5wG*z)Y%#aZXTTKt#!R!u2>XY?{Pb<*Xyl+Im$cL(QHn0D05*0XO6FT^nE;XX^hAQkwSg-RY*$`ZF;=k1G;LQ|Qj-z8DX zYZg1^{9-w&Kxif5fCm|DIetC&S>qPv&@KZiZ#3GCogrs@Jg>TaFMh&n5 zZ@UB{j5CD(f><123@GCLsc>F1(LSX4A3Q)nz)x_s>~ZyOmxVj&dt$lXb z9|0VP0`+UXg`vf)bixPR+YZ1U^B36!O5K#@4_Q8>TwJzVvGjL7Iaq6)lJDP@e{Pwx zLxidWnj6<44KhO;u!%Rooq+%d5mZZ-_OY>sO&1T!6aMZQAO_Zb*@V~NssauiGG+r9 z-6mR_G~e`haeBB8tW5$$R|akK3{1uH8W`ST zmADtM2q|?GLhJ_6KwwTHZUo>{BRoeK$$7>^(-h zeI;Y&jYtY#GRpw|MTF<%=H~VfG+A1Eywc&`3{;0;bjG{N)ryM%rQ6%qKD8se;O)Ox z@^9VK5}8P6)a=b5;@+~Q+)5M*fqLZI%*kz^5Io!yL)dX@8#GUY>6-{d{^B6q5-1#? zJWH!r%phDOMEE;-?%P>=2#*lK-7S6^Gp{5<{yp^j5RUN-&{4H^w3fC7fL6%xi*{-c zpWfrh3b+GD2wF4M)$HGOAbJBq`idxzd0HtREZ{vb5^AhqP^D_i&)H%c~u+)!{Es$bYc2#Qer7TIr;p9xPqVnY4;mUztJevsxt z;{o6NEZmmV0WbuO$GxtpBiX8HA`27>xdUaVCx`GMp;-9W=HaeQ*<6AP3I$W2TH+lh zeF545w;M1JM_{($71>H6nMT&ggu_%IpoJP2Y!SmGGWI98L6IAI=v1=u)i~PkBR}4` zQ^t|adNA}4gQ+9jcuNVnH)q~*>2|RX+)Qx9wQ%ZC&(~`q9=B{HLTU>l#|!dVyB4*_ z_G5BVGGZm1RVN2aR`b2rU6<6S7B}Mmy8*nQp>_tee${@LMRVTqXx=msq?^O#MSMN> zqdj02cJ;E!lvN8IzxD5P$f`$fN4d1zzjt@13qUh5raUU44Q_`kB&Y)f#~F2dH)ovLvwgLn0hT?%G77zn3X&G7GI zZTs@%U=qPIKW^Q@8Ev}?n9j14-F`0xMdqOj6l+S~7ht@iwbP|oVgvMbRcj|R*s^aC8@ zRY7~xHa)lj<_KqXVNYaXiu9)3FMy+-2VW08*k6Hbc{s5)Gmz)b10!@j5e%&{Wjyi{ z2r?(PdPfaacQ|$G?kJS7>iXc{N3jcrk3s^L=@xpIXUC`IJ#NJCKE1|PfO@txI)?!M zz}T|a7wrBHDONNxoZR_`pemnBXguA2cnYGya+5@Ze|w-+!Pm$|grDoW-=WQQ}csV*0Fk^|mrXGG%K%*v|8y1LR89 z?#ut}t6xXS7XRG`B&n`FtgQ9dJ}lOLY+-R5&=c<4FFeRyc9s=dCTx0y_x`?rn0<1J z@QlF*h0x#VSaq8JIg6(eRP0wZ#uEgUnGf8zt*tEtB>Y|=EiaD*VU_+3a;Q23tV0Xe zSy~ts)G3nrZ=*v!i)-))YWZXStN17cx3+it6kGcXb^sM@<$uq?MU@{3i)!Cbj}lKw zk--Nvf%s6606_1Fak0feq@_+^o#THmhp*Z2Q4aIp3RRK6BmIx2S@&7y|Nc|iOJ<%Z z1II=fzJNL9!dTKG*-gmWb-_fgDF9^GE`^tOvM2XIMbFXAeHIj-hP9vq7K zQu&M0#c**;$E`1dIS$lOfGdQ123|QJtDrSdqbFbA{3eM^KdEpJz?9fGd`!IVk? zIafK$OuA^q^b5Qo3~)&7nS}y1kMuTo!A}(cDj=uVN0VGJDEq-85TXyJNkqVESU_+Y z3xU}IGJv6+7sxv(DPWUUVyghWUP1yrBwm04gVO-0pV0n<@2HEoO3ndwRlUWE=^MhD z8C-K2?LGZ4v|t3&b(DdD^bPV_aPgrtK`sd&S1!#aG|j|v0Wu%>{O|>MCHMjdwo`_X z53=L_Ln?ud7k)4fNV&_DXAzO(QHnr-F7yjLLmF>~YIceNF$f4K_!YXIA9x8V zc6J)3pG0d*;vG0x#TSaDvFdq4NTCvGlS5X4a0tPEd(bUFOKo3N3nWC4iu^BRf)4~s z89b`9!0C0|n|=?Xx}Oi=%~e-dpYwhM?G(o@6Rk4<-G=#p2 zRLch{TfB-`5{xEc}vL|;QD8w&JK7nXxzaM zFn5#l)p?E;JL%N6Q|yEID}h@k^C95f*4Tf1qppzSKO!MG)!{Y+ixD0G=yikkW_#@1 zvj3UK2(A=f1+D{(y8(?3fat*g|EO5ajCKsxJ+R3E$q0nQs;z#R_SS`!6_DwHN)$E# z35euuYZS8a@n2BF6^7S=Hw5KbZ`)fY5T}5S*4b3+rHJ@SGF!ZCZGVrY3rfKQ(ycw+bDQvPKrRF|Vgw0;Xh=c% z2Iq2YEH$WB($@@nsjZ(u)o&eC6!dUiPzb94o906Y`Q#9 zvwznJ8v z1yn%gG&>IzW-*68sdCjQJjhd#jUZVe^4&QUw9Y|C0#7!G{XrtG!Ic*y`(?6B4Sz#P z2_ATLgPs2Pp1DowjIgNik&?O@ZtC;#ev#DmlzQ=!25jWTLWynMTPdJTgpUkc8i0ZU z^vfG3E|S=SyvIMC)Z`bp9EFh6P9T2qkeWjjEnFug2y-%(zTO`3gByx0FfiqT-_%%W zxyqv(=RpD>>5!s6oFMS_A?kmR9J=segNqJDk*@t1hn7l%K4m;=lGV-&sw~@opx_MW zGwdbsLIC;Fw(W*NmY__B;waLNfoqHutl(w+MI4GP2O=^JR3VRm#Ry+0PuSz(phO^( zu#kr|YyyoB>P*#8W*5-AjCQGD!~u-jxcM%l*n|{o$I|-8LVX|UUSL7~o16))_2hq} z6>k9Y7P{nGd3sQR1BE!EL`9kvz!O693aI5}V5F%*^vfkmBi5N|Upc|%!Wa9D4f_BH zfN6>DG@wI|90vM}IEHiX4QTe)c;aM{TaK{1VYhI0aVdax04rE%v-6&rT~o6<&z&-% z=Lyzy=vACeQ|6&xE2UFGCb{JjcfFwIjEa#b>^JK6^=^9baz(r+pbPnn7RHRD#B9&3^>OR={mpSXii=*`~SN zo7LB`v{Esbb*`Q)5wL+?V5SHhD)3}Lc};B>D$-EiUjW*VKM0hhQ*i-x1upt4F)3Oq zfyFLL!b-6NO#w1GCpgePgwGEL80=%%;`y98+dL?JuzKCnOXz3o*UPPnI^xV@?a|F1 z0>fEKGUSDD_rWC(4;FGfz&%^rO-@TAKq0$4lu6)xfr|k#KbWRo-@gFvDR45*OT2Yz zU0-*u9Ki2s{3gD8uj-)=@cIAE`%+@zT5ubnl3>QuzRNPCHjo`=yGsg&t1 z$>yal3Rl8YRO~X9*yiMT@UynRsNkg{}&K_8#s_pTGSBQvA zbu5kMne;TdDB;}(Ap<->I)og(2&EbL%plCuilked3k(jP1wJA&#|x5hYWr?g0kSw!aRTX@- zKbj-P$^awJ+1}dxgKGmV67~%`?4r*WCN}+hfLwnqC{E7HqcYQ@r4@oz?b)JrU863l z@doRR%kElYEr^w&(N5hChb26hFsT&!#r#$?XA$}Y+=i;1;=HEGY8Pl>!J4Ev?+(ua zI2%{vCbN3xAn5r(H)qY3Z}KFQo#O; zhhW13W^z5EG7epWxz6FZMIEnmD;3k^bm3yd`bOec`{iLT7|j&jF<`&k#IH1g>>TlO zH^}tjVjDDZcEKz-j5og#kY`228?AuuX)K4WFz1@xXrfGefe)8__$w zdC`AbRjNL{clND&^&Z3;fYnHN3>JEmR-H{TnnZwlHb7+wX&<)f!$XS@hzMW3Z^VJO zOtBF@bcQ0r0JbLhl9wleJGxl%s`T4{PuB?+R}USQ;xS=fiY~#pkDmk{W-tEyMCQ(Y zE!QOt9m|DXz}9~VVL2`8k!g^yKSN^8yX3e2qF?J-I^&c)+q+bL+8m`M5wX-h zTUIFLKxD_3^ntU3iUrkMusbJB;RB&1h-pFgjm-0!oYaDd2m+f(T~mjyKwk6cGe)kf zqs133pfCsSaV5P7;F93Mb7Yo!+4GqAdHl6m>-!RI=h{p-?Se61?sqT9%EZ>K(4^uJ zirU%F&HhY{F+{> zuXb4Xvg+=a-~Ut=6|Md@n*DK9gHmvYbY8AjURJgk#a_5tsI)(BVBXTYayda(ist^Q zb-git&!J4(kG(XHgPX{Zbl82N-cX+)>|%MmJ(LXjEw~Aob%t3z9>l_S;8)LWFS_J# zL(HQDwhjaUEiW%0C#wILusl7ch(%BdI5z`FUV$aCdmB)&&9Iu&2x|`bbmsogt>n`*)MgDNrnd-qM zJFFMO1M9PpoqcF89_ElB%fBX{%2=4Ja2~QCIIF<&g9)?t7vsJJkw2t;($x2YXnmg`83r(UAWwuX39=7l1O$C>*2)Q-mJr!P99fN;g&K%C?S1-YZtLZ=l9hBdJ_)a9W4fs_RXJVLw=kbiWbJS5nOUlwPcs({(RpuI?<^pi7vao~nP!YlA^ZGHWhvp9-GmhnN-u zIskl}?w+17{Ezhu)F@azXP|-8*u^&$0Qort$w2UH=Vf`~E#DLS^RnKX0K7%~MrWUi zh8ccu_&8&wBzevQSrKUF3F(VaPJ)9Fg;3;q1Vm?nK?en7sZfj1a9JrHu5lAY3b9D&gV_K6L13QH9$q72O6(bmYSYRa zT5q^`yKZflUClC?iMKBww(7FYZb7R?BEGu0O;-7Mle%un!N=UL%A#|Gf92?n(spg< z*ZThUSEEmIXmPm}RceSk-}B~{|Dl1XBSYeB9FcWEv~l5M2}2+Yf_)HbPtdf1Ejkll zIJzSzJ!-_fij`nkGXtFgQPT`WrvBVj!t}w$thD}3y+3{=U(o@33dq`!kyWlD9;!XB zl!TP_Ew{eol-~=eQ8Bo2PIbx1a6wYMlnkDje>C6*nBL;P*T?{^lPsd2;cY34_a1~JV(a1o#~N5Go@1QLIE=noDLBj?JY(*Q5_ zMJ)$P6~jKvzg50z$qiPSlcl!5Vu8RJDXnPjRtzO6XR%(;Cdspm|0d*%f3tUT|5+l5 z=$!S1ed>clb}2~>bB-+@4v!dyKI5*IQGhXj?0Tind+^H3_Jh7EZNAESK^MC!-QdDE z*MbpKwzvD}HE&&-5-)>BH#fQbOeQMAFOYGmmza7%PCJ*;E{>lXHDBksN z>$bs9*%TJAeRk24?-MF=T9mQZY;e9w^v!K1Vc4dj2MYX;I+@$m?|`lb%Nb^j-dY1M z4_i{Z^)*!c+o(rTTa2@kRRr;aledaKzcWy6|F(5_Y_?9U`XkH3f%gJbD$6zGB8yt_ z>F-O=;|N?OCMUrg6})Q|^jGKs`sNd|Z$P)eMRBy5SOTv@Q zYxBE@eb6dRi8miam}@{c7Lqu+A`S=B7hF+5UqLhv)iMC7 zIy*Zfj91r}8;L&_OtX}#V-9gC8a%_cVagtok!o#czQ|aA`6gxNffo@)4pJ@;!u#?dQ6H*=|rbK{Q=3$%2??cPid{ubG@;Y0uM2g zNCO=Dr4kTl4}5=b^0o!GF^DRWW;o#XGbhsjiM^jMK`0Iq2Nay;Ad{e!O|r@9i0=`i zCwWu4YX)p&$MZ=X2c`rMmTG5{Ti@wX&9&tfKNl5}b1UY?n3|^=TxjeZ_MG(fB z8ZEgv)SJ_Rt*PR&#Yqq7fo>(a_C@@+u;I+Ftv!VvO49S^cg14K({CF)O~s!TzbTe~ zSu`u^BC%+kLz?3ByA)j2+17&oyxW1dg32+@`ixrzzYG`G8G_!549&CJ;B3&?Kho;i z`KnudS#7J02BHt+;)?Wj-;{}!*UGU;vhB7RPZ~SK(;yh@s7*DTSm4pAXVr@|F(D8$K_@2eL9WERf>W*HOh!)^+$57YJvI}V6dCbu zjGS8-LA~BAvTF?1ld0$ceyqK{a`C)+-ZhyB@Cibt299y01_&z+I{anWD0OJpeokNx zyiW5F!XU`V5$Y;Ty6!XOEr9;L=|n{_rxlTkDaR6ihL%6!@DFQiF3G6JeEQpE90unf zQ`NnxXCi`Lams;PB3KY%>7YEJV{o#;utx(Zg_aVtF=(a(rN1zpSDjnbIy?djTM$e_ zG65?BsY!)PDRJ>ZdjqOe(3=rlt5Up6X-`Z#Btkm-NiMCu;;Wa<&ax`hr^#QzG$F|N z6^1xr@K|&Q6gk^p50Uf8EWthxDp0th6R*x@lVz1`$ECPRwcxxab$l0KVLN)Gn6!)^ zh~Ln6Dlwn%gL4Pzg8rLl1@&@Z5F=fs|F69bxsIbyZkhYwwRVy3RStqA5|eqDOB#&4Fo|=inp5NUjBG;l(U`sOzB+(5L%R85#qUN9Zjh$um6dv_wzEG4M%1K@a|C zxIi$dP(%3fsvukmayPa>%Gls*s%NSxM!H2KcNtYlAJN!4S1Qs-Jo^-$2!$F@yn&S` zR5}%ePe_>`>F|IQjp1;(C3jpj`wC2o23`i-aZlKG2U>lC@bj=wwkK?5Rm)%v~$I3KCS34l`yEOqtyaC+J@4lp&ERoH3M#9Qf*Jxq)f=<`rzrEErnlZq=f5VdgfaP*>5{LNtq}tAC!LJ6k5k3y%wys zpFh+D5!7u>v!kCTF5biN_Lr<|aXhNr4_@8)j#+uB>KYXmrMl?qc6p)MSD)n^8*e3* zYMNtg)zi=MIDOUh-C}}^y~G>BXt~1uQ)iz5H)-ZGqO2TJkqahKJ_-=yVx^Y7iA0-< zJyRpu$WyzYjVLTTZ}@2>SAEs+I8vvncm5zsa{v`J2%#Y%huwLicZ{D~{#}8zYJ35i z%&^gfqEunQMcUar{@Nw)m}EPg=C++9Z%X?-HrHyvXZVzCtw-43NBFqy5?N1bXqU*A zwWjv7veirnOxQ>P^h6c1*r0;LeLwbcGl5Pt&zMw_wQm1QD}i{Znt-QWG4-DO!{egS zhAwzmp&ve6Y(fcf6L)NYab9y%vkM-@SwU}~t>$xF-yzL_RxV7e%*rkc>{VzBT3lUN zsE0aF-_%sz*;hBcS@|S?nZ$E{#X5EV#H08VsY&>R4K<+{wN4gvV=8*PXG1N%rt}F| zvb41m{dQH99S;4p%s}Feipf)iu)qC|DNITzx48)jU#Q}=NByi8d8M@jaTs)e+DQq$ zAF;(srOj>`S`e_3e!wPdqTgtx(Ha#gQ1sn`o&&%AG8Hnl06H*G^Q4FC$?g(kLgxJ8 z3FHUqg^%pnzC^3#D33jQ8L=RGsJ7!Mlo{cjunI^0fBj%MXWG*~-;|Qavk2qNY?}sq!wf(Cv-lywzpX;3QJ2VA^bymg7SXP<3tkYcDTN0 zQ$psJGu4N*-AaW*Jm3h4i(m0?`f2`9MxiRKdq^+4szi(6DPDWQ0BQKS${6328LV*Y z-N6j~%I_(u?@Hk$1rx%0!gi1)KOqW&>iMN5#q~MpBSO>!N5?JOD8@D`{Z$-c(*DN6 zqG!AgI20~nTVw_rldCEZ-tT>^Ne z=(18YPsjAUhWV_}G4|6k=un|1?j4G{kN(|E&XJZ>XwdPzzcl-z;j?gh7WQ-eQ!1mc zR4+=&FF%Ay_8}eE(Jefa9H(H{_@L0`oj;rVg9OLy*NuexYvUKG>JDL)>z5Lus zQ`2{G&BokPWK*lP%^*&+iSaY4X|{1X z;XEBCyfj3S=b&>3We6p7y}bJd>Cwd0F&)g4FcvR{{0+z zS4w``wD=8J0j$n7KsLiCUG8OEBUe#rMT((e|fl7}sl z6?>JMweV8*<5Y)R0Q3K~^C_Y$`40 zfX9|bQ3$9Ex=wh{e@Zz+G8tH76eS zcKvN}Y;jCeG1RW-m{65q9!C*Gk6Kr zYYQ3tOyw-LSM_J#%UO|GF9mdfIT$&Gr;b-0kRDs|)8H?Cudh)N&Va23Bmm!`D;6wz zt(W3qUp1Yev6LM51Kq9f?9OWFK2r?;)lJrgY;}FY*oR?3XDE!rw*M@CA}!RuLrD?N z-5h)*_E)-Xj~2MOH~%D-_+P5$p(rO?o}i82-NGbo5drh zGjL)X2dkPtucIIJek3L=UwL3U!u00Niwm7lR*`nHT|;ZHRZ!|ZU0=c!%I%L*tC9^q z!xRF~%sZ^>4DTECz_e}mZUaoC7%nlRg`OaU61`C_bt(dP7-)1Ra#sUdLx@lDJ;D74 z^D7~_S9z!-_9v_@1V4)KOrIjySB$m)K;#FM0%ueQQLlkivWSBx9)WMbyOhJ*6fcz8 z$7EgA*dWptU^Kc+3Eli3Mn!6zN?+@kScHAW2YKMpgO(>UV*xNjpBEP-Qx7sBygF3lEki_cWe9$D#5$tOU+h zR=jVym<}j8p+i&V1euHemeQ9F&0PxrlfGPjCxh_!ACe;ml}kULwX;Td&_2qTblvQN zG#Wx@s%nLm3smn%n7>K{PLTe=qbF&8gte~I@Wda3S+1@%G*YL`% z{0BkZ5|#n512O)#iRjTLp=`YyTF%a)uGbkMTse{~94dK>L`6&9Jt1OBWA;;?vs72p zugprh{)QhplJQ!wn?qP{?9l;ghXHTjM{2}pD=Q!Ygp4hH#zu`h!28Z)B+jeX$>)3^ zo=8^3cQR;HD@UT0aO38H#QQC_EpMjliFsSRDLfZAzE`C$Z<%WDC%c3@TN9o}HAD}E zYmp_fn>tN78wG78Fv&LWS7=#HH{d}!31hrU@E1)#Fq)hS)?%>KN74(zw5}apK!QG=_ zoea(wp^C^u2mRImW`RRJxXf}I7bLSVrb@k>2qe~EaiyZ869=0J(REOG`H{ByHlAk| z&XU9TT7`*jcA%Rukj*i~sk|x~efNBTj~_>G)EnvB+S3h5x=i0Jzl~(0RRWws%JUUJ zJ2SqiiHYmlzY?OBGZ^J3zlJt{kw$B7s#W*k0>}NRx#Ljcz$c7L&Yf$(>w;=z1dcY43n)Lhh{?aICxvbAJwIj0^0o2q)cOYuZEOl0#qiYd3g|4$l4PMS+BH{+ z)b}vvlwHYd?0y@WbiO|#f^;j4?*eEIAsd3~FF0v&I`8o*^J-K@VS(lwWBT3<{k zMw$z;Doo6TT1CSffgS(Wt_T#gfE1HzyD6}I1R9gSGyb;`m9|8&no_+Dh2`$fPG+Eu zVg?xmE-(dgtmGaph5BekF_Uf@#>-n`CZH=DxuQ(*BpmuD_8Yy-M4g*nP6i#r_whKr zZ|Xe|AZL$UL`#qeGog&lQ5PE${URwUx4QRgmY-%j?1$PuG}#!u=f0K9P!Cvg5F@vv zbdUVnF;hJ;4J7lQP-i)|tfEFX??1}G81TOzz;S*f#rN6esrB)OVBeX3yuT7&aDuLg zW24*%JK8j^RE}S+6IqbT6=y?ND{H*S3^VK1ThPyaz4sN(THHb2!wO!1thN825Zg)p zjFbrBt+Mjw=q38p*-Un&eZ0NeiQF6gnuarth+G}$SM2NsX=zV6OCYBORW8UTb-^$I znx*!JUuTxr)>=T8Gcc$DL#GDvx%gO_;QzO`2FVuGFMC-Hk40eq!l=64jouSz za03v>TMjAa!!r*7{^!!t7d+zEm^l*pbZW=WRX?QB+d7K<*IOG zaC(U)+#aer;+)-|P+rYC@0<=j33xRS4EYf;9?Lg9`54*znB!oIyC#$U`9u=#GOg$H zuOR=cSZVuug60h=j%bfaWY^2sIPt{uo5EVdd_EyvCIHelTmC#GGn@Xb^+x(lPoO z%h=8vmd)n5?mGc=iccPYAdb)o_H>&lh*$UxkF|dj5chv3v{#8Va%~ks&jt#mP&T1!3uzby@daC&$qK^1?9t9h|&xT3)`F^Oy1{ zIU9JBKKaMv{tuyA=XwT+zRC5@#hp}ekY2~~-@Eq~5efrf4AfEQFX~vW>9~6w-{U`l z;7F5QsoYKtnp9F8U>4+g5?!rs;C4ITF=xq7#*l!iN$w2bc{8%DV#itLqPIksW77N; z(yMA}w6LR-k_l{yf>@@OIPM4^{j32r^ZT%w=-!c=C!B!{u|L1&VNe{kZ# ztP1(~X?5cr*K8gBIsPk1fQ!R?h713NQigTtylRql$d(-Y7BQIf|9`j|qE&-b13GWu z&jy_lGVd&Ms6z~72}u7Cs@C?a;~Bh^ufqJ|MF}X@J~R^KmQH_p6HOgL%Q;whl|O0w z*dY2IW_eyU!SLogEYIzyF$>dpZ0D(a^pqV%5<#P(ApBUc>!KU+nTuocIfkjubMX!h zg&eTvHSOXAAa!nTZob3K{Y4Gk|F*AD@cxIgAVF3p>bM>7`2dheISa}K?KZ&Rm!7tk z*NiQ`ZO|f3bo)^^kJ0z_nsn2cpY|EJ4xBHc4U76S)C4>((9l4;2ARMF&8QpD#4JpM z;p58g4OWp@HVu-Bm)L^%c{}={1&gTi-mE{u150)T>hZhvD`TEcek!-qlJ2#bEG_W^ z?F70oh+dU}p*DTaY2eja3zg;v`vL^MkEAXbNPR89AHRBjS*8aUVE%%cgy3 zd&kDIBG?#M7)m;4!V9hmk~~d|jCuDRRhpewG3;HfC3Yakru3i&E!IBA&Pt`3ZujV> zj7@5f+U{2;29U-;#oKO*(JZk83lkERT#L~e>AzXdXFPXepcTuQv>VdQ&)z5I?-WC% zR_owIxP&;zkS-o*s*0TM^uLYpi+H54Rwiz_0;KQMqTwg;f-z7qDBcXDGkg8?a4}Jj zK=3Q!>z=q@uBi?+3K5Gi&J2Zu0}v?;0_k-fhP_cEt|Wv>!KK|9lXfLJNh}RmGPY4t zB8_sheQiG?yD!L8QQ4zD(@cMJx-=sFDn>E3>KSO4f`|%csjd4v zCuE_~jkVFZ`(`YzmU#L_Q8Bgc1Brj zQPJgjMmqGR5!Pz#t!=rMoGn#O^5E$unezj3lZEap{#^p8jH*4qxOkv#vu$rMb8W7a zuH$nLLHthfCOT!h$?l1sM1MipLO zJQNZl1f`s>uP^z4b65=s!Vns%*5=2dbhqniU%z4oljMFZ{!B3SN^?oj81C<|6Nm>X z2s~!cGHqP=kp_xVFad(z&stUX;}EyL(Bq(tZ1x|lFEm@FHHe$W7DhEZoe6^zd^lXf z?utoiwhI_IRSGC% zK~N5DCx}7F*uR^6vkzD-Dhcs@))0ZoGwSa`kQ z+17lSaHZ{&Uu5pA(wMvwWzhx|y8P%Ryc)RvIcG1sO*ldP;xR6MBzrVj2JR+Qn*Jn%-=a|ciw~o}I`{S&fX{rVOt~;Qtg`&5sh{ckw z{RWdGArZ~KDRy+m1XGcMHQED?AN%ZklR&}L`P~MSwk0k+x7-B-dTyt?bl`6gxUf$1aV$Jt!y(RmlDR^ zEO^HKI3U*Quvj9wKvGO*KH{(Sn!|?Nd>>5aDi;6cOu)yXD-7y=1-k@&lzyX&p#9}K zM(SJIL#KnWQWLkrmlP5@X7z6n(BPmjQ#ekEg%L7|(FeP~raH&d`Xmf3n9DMydB`pR z9ind9@-qyCp$hEmo{65pU0Padlt2C{pAr8nm`XAaj0I>EL(4;RgxX} z{{5YC@K<%N!l*EkSd#vru+IctHdN{%MZ5&Q)B&b%OWh9bk(xcU@nDfmc=Tp@LJrUC zG`Fiy*qj^jAzV>jxlr&`xoL z|=?A{r|c{%8GJPbiN`f)is}UYn!|r^J`_3 zjoLBldhaWrYb(_CDJCi3unl(_E&ek3!lbfwzv)}&s&A+kQ~Z#ou-%&XI(S2(aR*am zZpyq8g|t>Zc!HxZ#9B>S)Ga6`=9+?M^8a30i{i+-%kH|z(E3782`%YxR5&C==(BZ( zhyUCV5V3REYUPT@1-X-2Pj?+k51}>_8oMqb(vcCiB+}9H(abT8eT(`hb>?jGR9b%R zZ4Q!0NSEEO+P^|rZ5g^1^kcTt1Zh{T&RyK=!zu_p4SK}q4u*jU+VJ)*J$xogRMGjn zHg??majjpCijiI;c-@V4y8T6QvDeZTNl{UPaE_1v@dj(gR7;(xOuoQ|A^+eAtshF? zlBAr)Ef*XP?7H5w+JF`WO8p2np8t4kg_btKRl(LoKWyiX@6QFzj^2E`-9Br}bG$$&XsiSuqY?|3!GGSp>-a}}~K32qdW*Rgho zKn7Ti%>-7IuqzUF6kH)gvI+~_nJ2q)3}XsHGV4b!BFnOuG5>a~UMlDa1}1(bNp zV(M~`tM)y9ObnipCvyuJ8$+2M3fKvDs&fj!(b=Bk-f_Ve7B3)U7OaD|9H#PoE zJlHv=e~&7&K_|8DqhG!Dc+~&Kr*mjt`$s(P*!YXr)x2iJU~Zdo*aEC0Tm{HaBK z{+kPjojX6P`GNC1V|SON7v7$?&`_*R_cfjm-P)bI*XEqRYEUg_*j%&81=8EAhJGOMHXV3@@G2gheo_? z8ON5-MR{}>X-6oP=m}ybV^XJX&w-To>qcmK3vBF=5Xp%*td)_sh`G{HFAJc3s zjc`y?Fqfr0Z#4EOU`_Y%YlW8$)sl7U0#-7WkvA{ilY6?$iMKjB&N$3q*~Qy{8LnzH zOl_Gg$0jCD@85piRle|r|DdO7;N~UkM~$dVm_GAu6ttQ*9pi#0{LRqJ*(*PVnVmC` zcpwxRFJcc~vi_jLogB^~r1w1W#rGge(oXI}O|`0cLz{LcjqLlzO;F6SkJL=9SC(?LyQN~m(DUgsAI zrmYr6AQZea@4R!iManZ z>R~wZw;vxJ7HM^VL;PI#-BHNB>h;e>Vrt*sgQoK7@rqfmRSPJ8(`+}4_UJF*aBj1Z z-BNli;^)mz5@v@d7CEVdR$eURY7F;;I_%lKyM|DC{%0C2*_Qb!{mD_@vaJ!Zr~9Q@ z6qzQP&Wk)d_fzBeBc0__wPPr@FG=F#(yUY*ezo&4QdV@x9VM#LZSPi{cFCNL5q*%< zBIoYj?8H-bnw7i2WV=KGld@O$i1{$~_}I2)3@^@}W;q@x+3 zluB&fNhk5Pj6c=8G%xhN>Yz6-z8Rg3S~`kx*69n%FkPaEK}lh5ZVpa+Uun+AqHp32 zQ#?8?g?&xsTOtP(n>rC#I3&4%d)%Lw#h)%|HhZA6c~&2T$#24GhG<7#LA%{q23n#;3n~ z&7P3K{>c@l)~Tj^Y#?>@)O1_ zRO#WP_y&pv(WQ(h4bzm3+&sbF{K3@XY`LE8p39Z_502)R+p7JC0)vW32Ht za#Fsu+U7pa_pCpj5Ap5($g65grzIE-^>@D0gcgC?R~3S-hbSA8$Q9{v-@7HyItSs| z|8nC&_l)aK7i5EdWt`*kBh{@-n3eXOuruXOm*Tj-=s0{V`ti2qD&aRZtFk*L*7Vk}5?Akao zcjp8<-Cpu2>)2oJmScA3^qWiGok$$qVR^{Qsu->SNdGUY%4QwgR|xk2snuIiCOj;{ zsfGRYk1}*jAvYiX+AN_}=;Rz2@kafpa$dyZeveDPZ^$?ri!O;f7IPMLLU}6|rM-pN zmtwK7k)j%nV+aTsLJLU@^?P@$JDu|xR&Uvzha!gp0@Rr2o4vSsE-pyVKZ}&<_pjL zO%FRNM|YQ9a+Bb+s^w&A+TF9)L%7LUM27E_S4-EPU3uSivahxAvZCV&t2zLA;|DHcvNgQBWQOx_ipNbi zYU9+!awJS`STt}9YMF&(f7sO5!XlYdr+V{rGi@*J$KW8N(a@h0O1dt6DS;N-(LsTR z4+X9~X++QbJI&vVxQaoCKD&GNPe(_7Y>&h+_veUz{dHX62f_?6Cy zvIB??Fad#|58+sjvB*T+&W}izHLmUHZM;t>Z#R7)$#uJkVDjtf-u^90g4wD!(>^Rj z-FvJ4!+oN=VEe0f76JuMpxOT?Z6(rPIz3t*R1!CV2Q$o);*C?9#8 zfFT_-=1bU8j3Q@RK{Uwb9LrF;s=BC8lC&5Y9TszL8#=PQ@#?BRuCJpzq{;nu)liyI zVR8PMzEvIYUpcqJ#y2GB9zte_X&|6OXMTQhk;>DUGTq42c|s%Ys_DUd#YRre+H%1e z>@4njQ+*l+f$FKU`BXzf#SiC}q~OjVrpt?omGW*Zs$HhGxKqysrz6qh+Xw36PYM6!r%-pLY4-$K6wlw<7Y&!7K_ zav^rm?a6|M8>ovh6$NBHC60F-Nl;Y~8e>Ge1Y*Y0QmOr6VQ4f}>W8xLONxdH$K&m_ zGc<-h6^D6}wgtN-C|wHKAR-$0)3wTA62>T$($}kj)ob1VUI7f#D?DUVb-JTE@FW%8 zmVNww6wHMw!=k2v?AL!jH@lY9$IIg`H9vV~Ape^-LY}aL|+9DYndW$A%2)GMK0xO>MgA7UjQ0y z{2xCiJWN^BIvq_D`aN6M-4#Zdx=WCRfM|^D`2LhKac2odI=`&q2a$3GlDvDtXufEu z=X?K)A-$t257zppwIvloqUY|66VdPW9Y2&ch*jNO^GTIHjimth|qXC zA&7x15+5t3-aLDhl15v6OYPwKQ)Y*$-aU}fj^ih%N@>Pli*~lVX4d42nZ%I9Aib4f}8KO1d7W3skV zM&G+6a+_KWWezqFWatvpr!0-~wQAa0CMUDUz4ivwp?FSkJdPZpfc{L33O^A7Y&>hF z7?Fu+C2|fGQVdUGECDbey2EyN7V^jUP~pK57yy(l@p(WaXS1N%Q3+@0+aAhEX|gKE zmILIk>XF%uJ+pSR^A4XIVAFk3f^hslg>#0Zt^S|9TZ9!78SeAneO8+8M&){1t~V$z z&M4$Z%z9dp7*4hQ71 zwOO6ryR$bPS=;huZj{T+WP+4^#M3 zzsK$kCM;}_Wtwm}yc>oEzN3j%!pE;h8<`${#5KQL@9@uaC!@QER{^XcT=9#G@arIR zWCkukuU{rKZu)A~H-ewWZ}n0&u@7IPkmiHkdn=#fO06N~l6 zB-r5|^&v{u=OStp6eR|VXHIGK9F`dM*CMHt&U16+D^l#)8u~lT^-iH-5r0HjrCsP* z#k6%%U53Uh^fNniRcL4?s5Shpe_*LsD@HRaZ8)GJtU+A(KWq@juhZ7(wWk3R<0 zzo_MJpnJ#U`JOgBv`TNOUv>Y4u&|`p3r5qEErg1Vk>pp=fc_hJu18c+YjNC#DKL$hp4pBUf-YsY&JL345()61G z*2?2vsPaY*)4Wj^9vvxs^1$p62rEDs<0v##le!^2)MB_Mg6=Qsp80m4UzXZ@Hl>qz z_N}F0Lt+JkGz5o#8a!6cp*foxIc(pO6wy)QI;h^%{vlFHXL^EHv{jrXH7)Byb&XtB zv+5Q{T;_ZBK&a3;6paT37Ykwt&jm8& z{{;}q{||KJ$<+@h>!6h&m}js%eF-pJdFo>4;INZ0wGx0h!j6~lZ)K#@m3U4MG1O-P z^OAlQgt*gFAZqa;q9QnNp%1f3=(ZM{xdOr)!J;HgcPq0(|3or7$Ip7)TK}kn?t`Hi z0utek6K*=)w?F?K^o3gQTVvRv+uy^^-S}Cx_-!mLfri3u(q!Lj^dEh%CAc#a3I-6I z@(6p@CW>`pB>^+UDYTAa1K?_H2;?^kPt@=(cr1VTGf}-ZaW-KQR5qpy(hH37;KmV% zS+r08ykdEIL+3M!<~21&?k4AX{$B*ihqGcQe|c?7G|0;vWy4gwRcLv^L;v`%RcelY zaJj3Dk^-C?!o~Jg=-;dmi~f+;CJq8FNf-qwD9{8WnsSgG3QGKrxfWjw?hkcH1651m zuc)#Yb-y34!_8thS;=MWgcP2TUDy-vmssJhgL51NX=Qx%?{ww1>P6S;?wOV9)&A+63R^9TI#bbu$zs4?H4eQt>s5o>S&#$k5cisd& z(nzQ4Y(f#<7{T-V^SAn+D}^jv`2cktBR&Tryryd@%=h@WR(f;oo6s7ioyXt)Fa=I6 zH$#tKn>;)Th7EzY0>ZT7Z1*}5u}4q)lF~w-Ro+?5?81wardXG^fGUwQ`Uyv=!747< zAbfBhbxEgvDJUQv2K;XR!-e(7NMHh;+=_bN7_QVAWEx%|fgMaL1?NIJtml!RIzCTHYb zZqQNH5hgK;8j}!dpAfh2htT^3Qshr;_0k@=pfhjoa~VAVP2Z#hN_ez2jdHl<-udn~ir=83htj3d_ zsiE4I{l{f-;8ubq%OeF&v?)^7uFZA~%ZWX1n*rQYll*lQ!QG#?*JO$&7f!Bx-8QuL z_ow0f^1hYYeJGI_eym#mVc9}@4k`Xm5fMicu(HX~4z7FA#RgH;xS+?sH3J+BRLlT;l_Z%`pa%&*N3>0U zo$`|2`Vw34R{pJV@^5eJH^8OUXqg__O`P+t=p)`(ko(`?ycZS$N>=;13hXSa?aL)| z!k&zu=8BhB%YJRI5}- zB3P*#Db~R%$hx0Bdqxf(E+*haw?%k&wuY%-#DEV);IoVLZrvFXvN* zzCuB$6+d42dDV7uppwO7@sBBzY<(Py0zzr*o0F#8iG(64EC$J1_r z>ZIRwbA63HFC5i<+R<=w%^q+-v}86n1n<2v+XJcPUw>W=qr10a2q2yNPuKOINC4*% z@>jKLJ?J)Y6@d2!8LxHT9FCA}zzNkQtiNgCCja^eyN@RM{^F~i<)iRK+2O@p+|M_V zsih458#Y`sL(Fd~Qa&oZ{+vtvl(jMm)-blyv$cPpMr3?(C&1KDHnsg`>aVa6w=-&$ z;M>}`wvIV|!)q0m!2%;RXk~*ge8k3Fc&U-EnpQNVdICXJ-QrDDG?9rSP&NF1Jf^{6 zYPV3Telign)OOZ!@pWFnA@FB5x;l_JjmAr0h5VM&C&*&B@{OfaCLQ<`YgeJ@maDis zi8=K%m0)KQD8S_3T2&hB%)Zp%Jz=+=-t~jC2Cav+YG8bS5o5}0+^*CSpv_Br6DhtB z)Mn46?|B5KG@wG7mDsJ>(t3sJRRkNAU~(Gb8e3<(LMgqzrLwA*vv5{~NK9kJ!`Pd@ zd+U&Y4c|FhpcP_|94X3sryMH=`W5T5|FfTae%5_l=Ba1elS+QWACKdA&L(kZR> zl>=}Nod)N_Oy|Fo6tza&sDO!0jxXxwZRr`s368uMk35e#r5gt8Jg~-qVR1Fa=z${=*z(Pb65DDZebd9J*;tQ$*g6acv+G}hv zVibJlzjFLL_#>oJCvlsi1PrNFmATQjmO{wH(Ch=1gpk?+1p!+=oL>-4U>7NHQbHSr zUlUq40l0b>a8)#EaM==2kr)*MZUE2;NRygM5&l37;RE>(&IVG!(~CTb5WE#kLMQU& z%YGOQke;9zhkywbNcdqrr(|Hy zRjE_!^gh8b0OIqB#i%KEZp* z>jujNb}PutF~%0SI&#f32d8p9Vx2>t37OY_G9UaecoqQFQOGiAl_sL3PbB9=ZpvG_vQlY%GdGKn0y*n=O!!}w)xi8#j291JTx``W5e zIJeWX`86_r&F*o~N&n*wBjkRfdKk~-KZqZp-^E7zg7PLLQ_Vc0N(c~ef--!bYPe2x@TUmcjBtMHtRWgh}{9JbhJ>V)f+c4u) zbg}=Gn3sXYe*h=c)c&Dfi@397zyK&)Y_FDK%j8u|l4QGVG)VXKa&tj)e#(w|apF0b zoo-dsZIh~>at2-|Q8y>kHCuz!%rms`?!+x0GabuGKx4od!K=cr@IJ^Tg|fNk9%2(f z3ohqQt|Xg`Ui8sN*yWZbkJ>cqE0!h(i9jJAx>ZsY!eRqFw^ zelktDs&eX1)dZO!Obf*6h@S1OPu`YXJ%J|dSnnbt_mDTk=!-D;bo&e*3eE`VGD+2^ z3`b12TYL${(pJLhLR@CPua%sAUth%q2JqV1K<1I{uRVySAl{vd32HnTO-QtyK;}me zS-p(40JHYg16*N^)ck}%Hq+Ym}$D1hM%DcDcolWr2{ z#~Mu5IOw74Xih^?gfApm#}A#T$7gA2BU*k0Jk+HY(+kbNP&||)0fXsnxtVmDt(E=e zJ$kNPJ6R8Y7uJi#agMBr@M9piFED9{oN)rnh3{Z;_Y?KhTS^N4=R4dwlE2)CRSw|_ zo(fFiNCNRIsR^Ugcqe?iQ@!8Z)&Xt>2RuRxP=s)s;VeNffHqvYHD)k(KC>&U&LtIx zT|S(&1fu)?DYL*|I_;I({_4Y4F4l2#p0wJ!1A(n!k13hcImH|PRIJ^ZU4C*C^*%%w z=rv$hDE-;<_H`lue}r$uN5chwR@X|8WgVt(w!ij>rsiPRmPh-n(mrJTpg$tC=TZ8Z zI_1Xl`ht-X*xvoKu8FYXbOJ5(?A)H7`##rz76+h%AV=ToXSMCYBy=ib}~ZS6F`qubfP{;@YeV2xN2Wfx;(V;m_Ocis%7-0O~1?_`RK zFF%`karO_oKqxIET0z4J9~u6-1f@n(tL&x63D6 zs*G*v%h|#)1UMpd{*!(4*Uc0*d-}&MuimAYqf8j$B8z!k&e9~07NaYVG{t1Sk9$#V zHCm3rmifq6416>KMCSQaY5$D@r*2+x#o?&dkq!Jj%3D|$pHV(@0A8GU*K3FsmDD24 z!n=8y18jns+ol7t{jfyDFJ?R)&Lz z@&tx{9qod<53?#ZP(azJ?=FLiUGt`zY*iVam-QWNy8Mg|^x7@AA46EExW!v8Nq}LG z_U_H*+dD4316sP%lAuesS?JG6Z#^OEXAx7NaX&)AB{TMXfy0Z@vyF8W{5&#atg}w9 zY?DT#GWCo)`pE^3ak^bh;!H(x#?kVO6vskv`{Nc0haOn(ZqYqCF-(3#!~Ody(qY9_ z#pFvQ+4l@=SC(Id7AM%UH?h-*(AQ9&ZyKUVU)o<35C@*iYn(o~JV=a=sfA~{`EX9E zr+`?9m9I3drq%q3rRv^&njrRVTSUT~<&O;K2wsxZ^iw!QP#G7K+t&vJ5!uXtJz9NN znJlQu?wiQb4#ft>L3GRYL{X^G`<01eC)DPebMoUMXGhSbFk=|kmwNt?g6Be4A-|au zQ@~jS;yAF0Se%hIsnarJXE1`^v;Q2DY`ZkvW6D|SX*%b=6h+dV(|x{d+%B!CF78aX zRXdT+?4hjs3j03s5eb2d(ldTa(vVCJJ0ua@bC`DPyHcHh^=-y6gf<(gz6%TG!M^S^ z{ril$W&y|i>K5lxw=>_W;^_6u& z#3$!|8ywPFtgHBd^ea2eUcFcTGO;W-TKt?drG(G>I09ug9>zWzq#Bu?Whvn&dQzUI zUr$|3z7YCutNLX2;?z;|xca>{2ftAy4SFV0N`B0# zp=du+$9}R&C-0W?|Gr8@a0JB}MHz&su$eMctd-9$hbxBL->j$EfC+v2?IWcewNksd zIl?nHG4nMJCx%q6iN|%N${dc0IP~Pg$~%d9rPK~B`Cf+XEvY06S?OJobxR`2Ax)**a6eJ<-Ksrf$4h{^==o zwGI=%q+Zy;;oak*a(TNL-fBNYpKeYSsR595xDE?Ld3najM>=7iOvV$$P;-IYr``;gxEIb(SEG%r##W7R?%U>Nji!cQtzV3T`lb>t%(uz|ZUl1eht5i9v z8p_TVc3ShaaGxjx;giaCYP1x%mIw`;hA(%-*MY5F|9&qlWIW?_wm-kuxt`%44KqpH z(VI8PwOU<%;-f~+bT05wir8rpkSb!&iX4}@V-ZJN5 zety}II%Bv)i1~9!p>M$5FJ`s-QJNc-m*=d5qm?qr*1SyZ3nko?+FGI3%(&FR!ON8M z2u^x38Mn+e@vq2<^GJdQL83zQ)}$f$Dijw?&JbC4)?iLLOk>b?n%usvy}|8n0_U1@-WtD_L&a=Du#_Km8ng4a%5nvNJJPlWk|a9k?m z3n{vky)3O0l`7|l6oYkgAiNiwooin4y*FnS74ySOwTeH_ls+G#LWG{l^|*h^HlTb= zKXzWj-CdTmRcKRFaOszcSk3Z6BSU6$D!S&T;M`7@*g)5U{DgOH0d-IP`$cv|I|>bz zF+M{_)FvNc`v-1W@xv(%nOAC^S>G@Y5*pV@G0~p>Xvh7vGf`W(cPh7g@Ocd^G-@dL zD89T<`)=l=vdr~21@rYr!n@Z(llJm1&M&-Rm$tfAv(rUCbM4AMsb+d<9i{4%ynK$Y zzZAy5Gc)`ua`l>5qfou}rYr3Qt%4C3M%{^nh=JiMYEA-c;t2HOByW+F(oq8dFXPQ& zURfQnL&~P#pPGE`)3Qp^sVojOl~0(>xDyT;&Xux*%mEn%G;Kd>TQ&+esVLGu>Mr_AU)jB2 zZTwzXeT70p@3OPG$RFCOVih2J#`sf1>JdCDX$2z0?rW3q_lpIqz4Hbypp&TAO~=AzjIRgPCC1xqG2%RJsMHr!^Hu0bJ{x9Nq@ z%>PfZE0Ewp41v(lc|5BBx&6d}yEFpKr4lIku?S%LfZ<#IPS^In_8lu*W2rSH5a`?y z49|>C^j2t_;9GaHJ$mxwO;69Gaq0@lZaX6p!y#$Qe8ekyQkr8MF>M8J6qy#0`)c#Q z`g-FFuplHaZ!SIc+a1ZqR!VF}6~>8b&${2+a$lq za1|x>KKX3(z+T)uAY3pqrvRy0ru6XpEh#am8(H>jligxcD#m#tX1?xaFC(Am#^mEhr;sZt}BJ+2!8mNRbw}FG@3~}9NBH1 zMQ1wd<70>6CotwfFx7cXLjQ_yF6Y9KW9zv*ixm5Y^4Izfw_8QT!*aIX`8-MYQm5;u zgOQ4+Pv7X5QS$DZZv{o7E~d}VI-7>8`bQ>7shzf_ z-~9#RG>LQfHafR&G~n#M?OSlS_ZyHd04z{tVJgDhQHvmnI91}x-@dtcfiv}RpY?mY^KTde z%LQ0-F86+qx$gn-X~_84ktY`Tu4?U>^XIC1{> zTK%nbTX_qphD+#+dZq&2mb9|7 zJ<9qy^kfGuz5{_`19TKdGlOR-qkj^IpJr%~AmK*V5g^w1qrh6Q*6$!MjqYXZrf1hO zX6!n=TF&POQ3`q*9Z7G#`u$s52zko^mxhCqN^vGSm^XgoEz3y6fiI74rX4Ukpi>L2 zDk`Wzzc1L)e;tUgx$?`>FEnSQLgH&uB`U%8kB{9GGzK?qb*{X>!gd zaWa>e!R*II1)aO%+D@q?X(?J!U15qo<_#e*L7;RF9`|cP_5p1S($bR4hg}N_ee$*W zOH;d80?ty@pa|AS^Khi?QjP`*Nj+SX;GkIXG3{sC>34>?Znx*}y|-?E-cx1UIp+93 zO^W8WFkwrht0u;5+^D`0BT}evsx-xHm+vAhtplE_PfjH9929g2-r?C*Nxgjrpio#!jUeqCDh1 zxbI(-e5d-cdvT*@B)!fza_)BFvsQ=f4K?|`7aY>^EzhN@f0|>e^f@q|@uK@5A25w! z=%z0FnDQwy$9#+U@#{yF)08g1?D#dsSVrEH@k_>xRTDZrOk*n0et>@m$06pYDQ)Ql zyT!=fJu$^Oy7~GPdZmbCo;r29P}0nsim6~xF0s=#G?CP*>wXx3&G(QI3^0#G400K!k1Epj48T%fk(&>l;W4ag%0C!(Um zy$XXLb(5D1Xqu2L?2oC}E{cjT4 z8DccSPE)xJRU9Nmmplwdpl~AjFTVMkNd4Xmi3chtawyw<|DMv!9o1FJFE!Zcudyj& zOHZ_pZS2_zGF@=PkGVTI3Nkr&+OnVbkz1eChGwLHFo;Js^G_MSt+2156-e|4$K9RZ zUsY7WYDu~%%N>C=cp3y|tdr&y^HEum?d;cF3}Z8ND2CJu|M5xRVa>hDuEKWMArLba z`b1Q0=TiADSUhQV{bE}MP63-7%pr7|6 zWC{;J-~#H0AKJBumm#9Z3?+oss1@* z?Lq=Z!!>;R^rTsr%v!T2ZoK3)T8Cyw-gZ3O`Sb>zx15ri{nvM>VYs>JsgFsL+vOOS_q56{QiVe!JORM&>e9R5`NBD5xiyvT#ka zUsZ|p*;-V{JI^a+CQjDKe7kZ@z^Ytt@S_r$W(ti!06Z{)Aw#S@l(lRH3zT$RMyxzL^g%TQ@2GmwOZ?m&;@!mYk9vo{_6dHle-U8#3CHHI6}~4fxIG@PkaZ) z8bt?$QP6489DZ5sMu`MfC1xQ8%o<4{3ob!s>C!aUsEP&BuIsnineOSE7px741$a_3 z(-y{5sHTo#rjeEaHMgXi@ReAz^A29&@#NNMjsr~jG6pHuXlbBo4u&Y2w~R+d!uhA8 z4VZRy-&Pfjwn~mxyryUsJ1psN*M{cT-)YRrJ!I5Th%xYES;D-S%tsr-$JJ*|}VgP?mlCs1a+gg&7jJVq#(} zl3yGb8MSGv$kQMx-557`$ba_f0i`Iv303Z0O4~GBi@sc&la>SH^MP=#d!Y&(mp02a z1>_kqHlL#(#VXa2nG#tEF|8MeEMOGq1vOivc?aPXh8nhMnGB*yPiQ;P#{q33HoP!= zHl}>1x=*vM_0j98GnQ$itp0Eop#4w!?9(v!H-FH{+L|7!b@f! zpzh$^m7#q@snG^tmQ!nzQ zL>l3|MI9G5D70XL_ni!ewS=$%5PA&a)a$OAcEY2uvAR0>%jy5{_ zDleX}cz$W?MX`RfZ*wvb0iswL0Ie*v<>t6Gm1`gOq}Ffk(2v$XGFnn-pj2;vy%YD7 z8AAkH)Lt1=@l7ldDLy#Lm5jCkpsvo9!}BvHKF3zP*S-7QerqoGGFf;kK4=OdunOFC&MG6?hX8%m5Mo{K#CUM8CcY-e}UF=K(;5_ z=nn3pS7=EA2?nVFF>FFLZH8dW00n`Lj17HK+~tgu%Hjq!ayK`}mFJ7*e?Ru!iH8oA zKwnf9;G`j&ydHXf^_)c9wC;x}U}HtJERKhnJzgVv{JX6;9Y-&7ucR~a{fL{i%HW(> zY#qkkVNxXA17K}O@mBuMS2!7_010^FyPI6YLl6ysz)qCxbmh^-D`gn6SGoQe!+`t^ zLxj|xA9+|E<860?X1MxhG5vx?%JOv1N2}ur~4eD+2x4-#`UH#PEo%Z|f zup9>JVtcDK@nVbtkpIxf5pV^0rXZnSMkz+x5}UtuR+vkae3ANkF*pw}jUo3PeuuGI z;4u?_I=G|mps>NaYkc0%_>9FuC{P-3`Eu zlB-f-1cJo~u?ChD$?^5CZM}!Y(xbobv`EzMlJhAweay3OQp9IV)5cks7h6Zn;FL-Z zks;7|JPpdZhNU9pEjiHvnrfL2JNtF`MZ_~uucvQCH{Ur0*nYfM^c4JGfs2>vaoGFd zt{6g_@bRrgq`)Z8ewgcU%s>-?hGJAH_twcBO`Pm^IlLXx0*@+QvNpd_II)Wulem1G zA~T69Ar=9mhevf^`47lAn#Y0Og_7#Zl{vTIcNpjHQ2rzndWR~6&Iq=x=FV_AZI(6L zrcA2dQxFwI(~)Uv)pIp4&f@udY%Ew%CA8|VnlT>(e>lMG*5vzSIqJmpQ%3Qb=C60u z#H*&H*^GX^)A&38sM}P{u@)b32b;0Ni!!%ZktHWjQtcnR>u%dPb07!N#xFt)?0a(M z>gD)arF_fyOtn& zYLm>aq8?V9XgYq(ij(*G#6rcakpyoixlKEEi--<|r_yd5t~Rff&5a5rKcM3MaRwwT zWJt}g$;{~x7Y$wlOMOpx(W#dyk@I!EV@~&-k8BA%{~oMMgO?pAptm3n(f>xWwp~9; zz`y8u25yE@cE6V_agCd}9Dmr1_Q1qm7;D2fpsvbGr^8z#E{6LGb}6U8+UBHdlaz58 zSE~4xJPa>qF554!v`P18d27yTjBRLs6lgmfp2^EdOX$_AT#pkXZ`@-nhHg8cjEHop z*2+pkF0vtIq;c<2ZM%92#a^Z}X$cl)!rH3i4FC}m$>?@&krm7Y*C@~t zGK>ZysF@iL7daEmfbums?GZSgs@Cz z1E08$!xK{zroGPong(>&FEB<aW7eWG5vr_Iaz6H3?tH0R5-;@&U0 zvuChp@TZ>R71##`JPpMy#jAQ=Gnb7HkgupS?Tl6I$=$e&A!p%!Tt`Ds{GKN%>?`zp z!2j8((bI&O0BCAf9h?YFmmQ{>g8B_JvZ<;+fBxY|dGYMu z>|!7E(ucR%?QPV@GEc$(sTz#BR;=GIEzi{;tZTq};5Hi$LJoP~iN-tQWu8rk{T#BHtr^O_ieAb_axteNQVD~JRD)*`4{7OZby2j`CL zM$56J?&&8HwQGCkXQH%i^?P%!TBI9JIhA9_>a*8PpW{eSO(P^I_#PnF13Or1lWb|L zK*w*&vWOrMbrq6dDh&K0kCAgA$UvloVX;x6vV3F>LD6ut29EM`oGiH-nQ_LaV_BVP zXk00ZI`<}Ud2?YbnUKyV=BZoD>;}-B$`1K8=vltF;&RU1ElEUXLwZ4YD|iN4wJH%NT+K$DhJPM6y&J&Cw_h{N~x-#Il}GDj1TXX4%l^#QfN%$1ZY5VbeZFX;$5M##auZxA&I!`+X{*@GR6W z>cup+!l%9%i;T#CqS)>LXRPm~j1K?KU5DmX#$ON9G46jE;alEtiHaU-XGY`>o}5($7$$ZhU;CV!E)jsqn|&+#e3&khgV4VijvXJ!KWMV77AAdXqNKY%_y z?uP{)S$my0GtP~9D+tM}yUahC-~OPsIkBP6v9|uq$zJO^LBY(^v=%XqoGn6*&H*Ne zCqjmu8m}w*w|(ij8Xd7e;=E8-t+wK);twU93!gJ$JIM8qFJ|g({uHY=eP(|StC*x6 zI2=m~({B4k#fD`h(I|p{X53+wG@6dMmmp@)@4T%DGs~2+pTeuX?<5= zW?Z=QR+gN)hvs)1IrGV`2f6%Q5&}nbjtZLGaPBIKQ$M23I)5!KI%7s!@>%2iSbbZ) z`J3s*!@HG72W~$XJ3nQyn3%^ZzD-ao$-qDR<4}>vHRBI&G!}02j_KI$coR;BSmEo} zucbCmQ^F(vrYY&3D^($g1{}=>c~ZUwV(Kj_v1#Pjt5QoRH$5!S?6vT&;@nWodn0D} zy3scMj6PlsH2>!6uuS^5%kO~QJD zdk7LBQdVfd8RuiPG=vx$$_Jty?&^X;jm#MDji?{$Pf}dM!u5Hj@~jOM3s6j;VXt(m zWtI?$BGW&stfoUn$3^L&7E5itt&qO(bKXlM)3>^d29uBjYO(Yz+lT*1l{1TTI4;IN z$lsQsr>|XT?cH1Apx?u*z)Bn1P2DEn-?EhW^X@AvVa_w7_L@&4Hrd>mF{++MQBlrp zS>hv8&dPwI*7$s$BcjPB`RsZ&1E*yc?b{a%?@;cGf|zdgbW9{?j+S5)000u)!bRIW zn^#QfgS*KA1}^e1WXPG;Ms1T#}X1brhN=F_o444 zC~PS7F4j-gX|u_aPV35mL_C!YhH<2@>_j&tQp0aKxlLC4PKT7`aQ;vXH833St7zcM zD{9q4KO9TUy1ntbam=L(j)dNEnFpc~*jP)O;j{k8a=u+3aZey-jUV zhYmD63Z;pR+c2P*)Jz+i<)>-2wqJ5M--$JLSd`UIiOhUqo$X@5$9Ap%6!%_*^@-mQ zWk#An7+t}As}fZ$LMCrq@Mu=SELOyPcGfpuc+Z2@ckg&pm9hf;y^iHRWBuFF#^S|c zRiNyd|608`%*`;({||?u$%{`sozrqZb5Eab6x4Q>Pn$n79Ae;0j7fM{_r53G#Cqhc zz;O>;d~wEQCefy%A*u0IadMqWt@}tHIvazuot7`>?IX)Y_>-qzKTnO;lX6M8K+*i6 z}dHo1@)z3IkUcS+#S$LW;vqLgA@y=qfYzTf(8Vxd&+Y>jbk^S|h)ZmFTRUf9j-@Ef%ehV>$4t%5haf=j#p^Io=!J_P%MM>w#KxSq+RAyq5 zO{NWbwG8*Kk3XffWMenHFHmfV2WFQ{u6+ZCZ^LMt*Kuy`D@E-s!ieifP~>@?Wu@P)x@eYeXE@}OCPklO%$vR zHOT6Oh#5jzl-%)u1IVE%I_)NtXB?y9SeQXIL07I!V{t|BDX=||X2L2$v`T?fAbf6p zFP5P>ApCFY8IhUC1)^I}Re7+^Q6NCsl=qA%X(FCt+%Na>u=v5rfYM7+rWq%qIry%S zg_kCaYb)B#Cb)M(zMu?*x} z_^~{-0%hKJA#R^8Se5c@DGOFh@piIR>+vVs$y=`agz3-@y+5e#-eRgIZ{ov%hwo>W zGAZ9j#KRu}SO(T?KUb8e$Ia~M7j~Xfi7&ECP951_zZ!#KTQnx^&J79@Z8lyZ30HqP zp4l2hle49XTYg1{q1XArULQ>t=U`RGQL8j=`m`w7C-mdLd@m!rRri&Pi2ljSOWL`S z2HhhuGuhYsyD~VB=g)egAr*L0HRBa0NX-AHAYswM-T^Dh;>-vQh*s#hUvHr^%!ED} z6Ha+n`RJ(F@XW5OoQQhxpz6)P@E`ykl<3fM6z#c<49tW_UtgqhVLC~a-XSNRN!~>v z(NzInnzAiSiQD%U60b$sab}_nw;Pd(Oq*G}{?p z|DR_Eve^p>(Nu3Jo1HqUWYX3mQi3eXTrJZ!jcxp`I2}duaaPdk{(30SckQ?s##}jv zqD2bjFFJ#+-I+S5mugFwX?j_1`?2~)~wLAv;HW?8e zlBf&sleyg9sb-K2IMZv>qhuSovkQeK6LlTtb87KIi*`&w-7U=|pLdsdThh(En~oly z>2$g0T%O-^r<>`L=ID49F}lCZVW)Qbk6n};kExEGxpGgywTwKLJ%6vG=Dkb7_i}uk z4Bx0c)L37$30=-Os^(^GWuOZyilZ3FF2Y)X`LQqwfPncoJhs4iCzy@@$c=qRtPrV2 zO_%~q3NyY2>|!Zl++~>bvsorIVhK-k)Rw{j!oXpKAwuV9&aCmnGeZYlB>V&SzAR)=&MaDRRtew_g$z8NO%&~=&YQ9 z;7xFqAh!Fh7BgmI$}FsROosPZh(L4=q7WH|hUm#p+mR6?BG4M?>Ai%vm$$|&r#cRDBE65W^`sn-Z24mdSD zEs)o!Wk?%m+tQor+0rX)t+A=e<_I@WzmTEQ)L|Gw<>%4%x%sS=`!e|}m%51NJte0^ zrA>3_93tlP(p4%P!kY9}rmDXzBCbnb&W%p4Dz)4ODq|jlTxZ^v4AHK%^DX0ZB+m?< zU};^ec;CF`JL5UIE#DkUyB2MrG(g655%*WNh^ISCJ)Kn#kLd8mbVoZt@?g9j^G5Lb zNgfun8%A!R8;QL)A`XhJ0<%U&ll`{NjxV$wXY5i0_Lq%)TbLJ(b`HBcxNYDBxptuQ z3-g%Fah<^P+Q)xYsxJ2^WhGhrkP!tVf|i|Q?p zMLKEuLcB_lxyshR^Vr9zeIGf76LLW6W8a`Cor2KzJp zf`(>2L^VS$ja~Y=>u6*C(z{C7ZPM|7b7%Sr}@OH}U z;-sS*(99vSk964l6|W$RH1o~Jt4F(>Sy+W>qttK2H5nn8NA!F;Tq4~Li6S(YkShqSz$L0tOajNRpb; zTOlzNw+LH8GrN^ALvxE`*$`+xs2(g1GA&o%D%FZtP5>87Q-P-DjJmSio2xM*E~*(p zor2aQdfz@CjDGUBfZ_$Mp>UA_b423{lO=QD3OyX|cGOyP_2# z8%NAIs8O1`cY?fU++Bj@CT8E3r05$JZ$xXZI`4>b&}ud>coDCh9?@*<>()^wD1Tok zWfexP{!|w zr?0d+TEjC0WCp=&hK3TRL4bUO8xvj$Q0s&xMEq9?IciBFcMO}U&7yfZMPL1yZ&PnX zc5>^e2g}xp`s;GOp3L%9ecN&B=JD7s77eDNd!vDiN7+w4Pb2G+ye>YLPJ4uV>E@Pa zMx?a#yWSvOLY0r0!A_+w{ylUoGq)f_G|1rX{F|MNB6JrDinndVFSl|LS1=T+WN;=iNR!}+6$>QCGW z4YM1~9YYfzw|rHuRpq42F`AOOZ7na-ED)V9YPjai8f{!upM5%j#A<(HLgVq!@G+B< zl+l0u`g6h({`?GDv@ujVu15Xf=it%e`v!`jTwhYl33|r0vi1%0V~n#lEg&(#u*I7z zDZ98G$HKP@eG19JK#^$!=?j<$VTas6s8^w3%v8_X^ZMYu%TJHzeXj50IbQmiq%XB? z@b=3;18Ws~uXO7f=gl$Ejr{1U3^Ag(m(YmwFs-wyuXT}Xah?Ja?YrHs8QX8Vr zHg6v#9zAKu7aH~8=G_Mi7QfUBkvd*%ZrEwLHAX`a%^0LtJlki=Pe(xl)1P!Evo%p#8ZTBc+9wu_(I~3*&N-! zPMJtMxKF5_$ou$KXVLt1%f6qJ%OK8>(^Z>a9VwS_d{9K%(kSt>{HnO7`i9Pq7SE^jgHh7T z%LTcAl(T%b16~fTt}Mjtpzqsm<$Hp%zoo46z{8H!pE6Se^rO`VCh{kPz&2%gs~khT zO&7H=1R{ho%hopcc&vGmrov&2evf)0qY(IvEV=ek&ra4K=*j^a|Ie6=wsEo!7^&w_vPt5ZpS-|~#-*EzR5bcp(nrc0OgJyvuk8K|Juh&kRC zZZD?U{ijm#x|z$NEv%9U0a(>pS~UCql9{#r=`wt-?9*IQB9%ij@Y*Z$dZvZ@MZv3C zT)M&5HKG{Yz@PJD)>XCk5J^!Qk8a_ds?)n=js(nURW5aq$`clXBs$^US5vL+rz=bz zWuWF^3qK3j7%^@a&LUJxMLU%scY%!@mC!@~)x!>vb|e|M$(N+iwgO^)APa{v`Yk}t zM6wF_Qq`!HV-v`~*EN<^3yCe>>rk`Ut zu6RDunlfE(VMSHrlXc9t=bcsihPC<%ID3xvT=Gq5R7cmeZ5)PmwPQ@hnq7y5Dva+5 zpUx4a559HxjIb9fo*j*Ll^;)~k(xfTSUP8jehY-d$G;tywkDQ|@as?C=bU%V8Xq&t zS64NTk%$gZ0mA|-Gx!w2oO$=@*ACi33Q?a89*JZWJg?Ow!` zAd&=F=M&1cvQpV-|kFTi4#m177Ky26j zwiIOm^pOm~YzPpZb~c1@4g=Hq5MUGVKihV?ssfKihjMcEsY9{ON$+E5p?LJzC0mV-h^+@H%LG1* z&jGDx4LJQkPL+kXk()4@Gf;HEW{wd{{)R_A1Z#_O<7$1xrU-OZb#DcMhiG0>E2~Y6x-c@RVPl=BCA%RLr7A1Vzyja0zlJ zu*NMIMG+(byLh==O9AnCU^puvIU#?NmX;<87+qV`v5g8Vp)AS(Gk9X6Z82ze9-7kz zXc*8~omGvwvtgzF`mKP`P+pK)%dP20sXDg?ng+Xc$NQQ~vWC7lXbce+l1G#Z(f7MpZ}FAz_B&ZanRPoAcjQJqVYhtz z>D~znPV1+qZ>0vO#zZj{B>HIOYPkqok*@ANDK34J1)mZ`36Ug=3)s}uBzoJxrPW5i z^{CqUwjV#{>z3|p;q!G&tW=NAuz%G;*FAHuO1#}a;n&FL=Gu@QT|E6MW?Dj*Gs$y~ zRLI<&>CZl0X31Twlj8BQH&-L=2BlVHf|*<3Wyjnhbti^1{W*^swXM~8gbIlu5=4=Z z)!F_FVnJ@w|C6Bf|G%#+mD58)LfB$j`YT<=f=_-Sl42g@ion(ZgLwHE^UT#;NyL^A z22&`Z26QNWh@=}r0XgGdgcKL*qHCMg%DFnH? zZmy1m60vmulU+b9)BEec{1{}pxn)3X0c8dW;U+*T5i$MsZ#AWqk6T6Mmnn~hOx=3y z62Av}D_>79;IR0F^c)o82c2}i7frnbh&(gm`;t^oEnpMU?h^TT=S6vYl9i7Djt*nG z?AWmTOg$kkS}Grxbp0M{+O&xSb2t27pGMqnR^ww5#H^p}N*VcOr{L3@i6(}OVxtBQhEa`TcR!&>n)>UmTZL$Ep@Rk228=g-+sZW@I z7kX|Y)MM6{b&Z5Za(*|A?^1}j`@H16xkLod>8!;3mz&0~-l@<{9c|3xt_ZnIVVl%L zm#Wnv5+9J)Xq1c3l+z;ZZnNNPDU$5hD{M!k$``V2>ygXF{>g1B8{LQ++;~D3^O?x< z+?WX6m=LTC{+F60TN{_^or@emU}yrGk&{Twf0Twpq^n^3Leez|Sq-2s1G8DOH0(Z` zda}Y?!+!?}u_t(6L1?<}=7O&M-{1Nq)$Sv!I>a|XY6&R`u{3Hh)7Sf$ZtK4#MQ)(v zo`DT{X~g@C)ckXr=Ln8WjkmE-F(7USt)wyvnRk)T9u~C?XsSnda3jL4B1UVL3lN*EV^$F_NVFUVQlT=(8&b#r$o zW-@}NLi`B^iy60-VIGqG=K9iLQ_y%Z8og z$EE&$_I3STLpd9j>tWpPUNy^DbtiGPG_h`dX(aStP}^Mm$fwj2R_`@?rqd1-gig?V zqivHuas8+1Yzm*JdAk#eOkzuF^I9w<`ELFVa=bS0jky@dwtq=%jO3ObD&7Br+K6Gt z3=FjhV2GAj#O;2q_Of~{+J=Zp_Fm83+z$ZoZ|l-sEz(t)K}uY11NN4#k%TuVF+!w# z#&f3Zt*zm|Rd6kzGwR1^-M!g9!_f52GfSmyqks|6*q~t=<1~%=k;Rn@+5f`nHdnnj z`8M#dDOZfoEq9F&(PW~x@LW?j#(5Cwt6R5b-WN%ymzoW{@|j3>tz4hB&Fm%eHK$W7 z?s;#Fd&?e=QrpX<<+PMU%Ri^uPC9_v%O zRXVJMTkyZpF0z)yfk08E)4?o21BVB37)l_i z7m)4WthLnCoaXf$qoCeTydv1Nm0g(}cPOI&hRzBCz+kKdFPmOjft-4@GjM1k6bjZL z;w6@VRfiLgh{JyJLP)P_~DUI<+Gf+{9n8jqGj+65G+Mxxk25B2M5Vm z_*Xv`R^Dh|o!Sm&7>dS5OmQU!>_KI#uct=>g#BME3Xd#e)4+nH_)RT{K^z&vBKcta zsk==*58uMFnVtRTm8dqm^zlhYF#$-2ZrYS?L7|M?F>D}sa|-FQZ2z+Zl2k+dN$ge7 ziWq35G`FQHh8NU-{&8n2;z0q-_xu?_N~iMZz*%Y(0w z@!FljeFQOLj$+8@`Y(tK%m<;r9p0>}IB6L&Cy~?G_H(sTZ>zYRPo~_1M@KLHdC_~Hp?|}>GqpdB>Uvk!I90YQ+||M6tkSQc*n*<&om4Vvt(UIDgzgO#aqD( z_(E#quc4K#?HHcFzYnYa?nJfYD8`J}<5m+O=)P%Ze4(CwJxG?_%Esmkb`;38UDy5! z2*w6+OC-#8>3o`hQ+1WXtmq4}iRwbV*9?g!MybOVD2pH)z&bE19;BnbH{mD-pBYlZ zkbPJC=M+|w z!@76^HDW3P>JCF>OjV?Q^QLc;(cQu6hSiy>&06}0&N-bT8y1UczYHUrD9VPYV_Jyk z5~2@o9-cszqQU7uI-lCsy}Ydwa60kRQK8D5#fu7#bCRP0okN*qi9U#;guq> zcf(@Dm}E5TUtC9T2#h@v;2zfB#pbDy!j@aCnGHb-URdQw=|ZKCg@h*yzv3g~#UHDP zzseh&HVnrMunS00>bAhpaeusBJ$|27lgRsM>cEAl&rheAG{UE^<&HOvDpk(6-zoq+ z1DI0ORc+&-miEfjm=r!AnW?iWP8yu9MYBp!fFT%^fu3mmo^2Euc7b3i3SN_|Z=F_O zkeJ6+c!|ISUC?kn(}_yykE;a8e>{T3Td|Z8Zn7zEsi>)7#{Z+f2i1H1ojIqq!!MGV z*Ai)0BzBo-8Ro;%Z&1_Fu=T0LZ8Es8T4MMxc?bBGaIRxJfUXzl9V@BC zeTf$}pO$NUD=`ZVFLdMJQe*-Uz&DEF(+y}G3wOI&HFB|RNH(`u8oyTP#E>KJ3%jPi zrzbOpn-Slz-T__j zrC8kf8Y>>OX;yYNs{0*lgELF*QwtPCR1MY}7BJFdWFR2_@PQiB1wKwXV&FNERfk@> zLdr**Vz4eqYHFm`9$WFCfA{-UPX6rh$@o^tu%VW@1LrX~uK!wj1o7ZdO7uhVvuX_T z->vSZW(t-qpb0dHZ8bqxEGsuR2~?wUI`RRZbxuCRd4NL#gtoUgD_Al$INjpG3Mc!;=zBKg3gwu`=G)yeLbMlcH5HA{a&pRip(MUz2 z2Lfec72!(9ha!>?J0}qyBL7My`+EDdbAEYwP*ITxb{@Pp>^xu%w8~wH{Jg5o^%-Mw zL|52nxGnxDb{eao5{gwke;q5xb#=N};LMp&oP8-NNBXQpnOIm*MmF6MXQGB=4vB$J zPanFiZb$oi&^jwC>vMC|i3#U2^iA-vg5~*(dG1*M?K4Zbjk*>_tHH(>B(Pr` zhF|?hcP61h=Zqv`FA->SNV#tG>LT@F=}O9xc>WEf5Mr0zhCKnG4lgX;>1k_74WOcW ztjGy623+=G;mgarbwl&5zGLPh3??|Mu?ow9eUT+|m!oLVdbA4LD|+b~rfHqW`pvP} ziwB83Y3ves2!zK5iY(FC!D1}aLb zA#u1{^Q?Mi-HR3S((9ROg5f&3pt`8bhIo@H6ZTAMDkim`1=L9E3}+BeNX0&f7Tzf) z;#VxFdV}z+BAwipRnoS-jO&xajWkb0}fA0|CCHhX_g3+olD5Ndy*8C=MJ_=Z6|FU`4Ja%R}npl%&|GnNKL zEH;h^Ym3Lxo3GWm@innot8?R^DtIkn==52FAy`i^)~~w9N;G8(Lu;^o)l55s2CT6X zO&YRE0wsv2bZ{E$*n_8cf^kfh=fKYIdfpb~#`no3;4CMaA{xG$$qf#eb)oyjs8t1NomlsRj z=x&@uhx`$^H?px8*E5-y{ba7hq{b-9z;swp;TOalfq++ z3G~skpIy7HJ4}*&HPzLtQC+ha+2caSw-S3|jUHmhxf!`4n?PHla|)$8;AznFUFE4* z9}o${LcmSL(D@lPT6?L{wO;E^o{h(XZ>ZZcKKLRTG|dzOOqcw+VLH6bsN%>E)}VxI>Ya zhs)R9-JQSp9CFcNXUi)tz6VkOhr-&<{yG)$VWcn2evh|RV3U4)661H#pc$D#q9F+h z5G9;dS(K3(xctZZF&H9$y?$NcV#}uKpBGDxSPkIlb9?JLI`#rq0$+-rJo!x#nql2b zyBC7(GfWEUafRtB9zJ}iuA|eiu^~lGO^yAY2-$>I!=aQz#n>-h=;DxI9RtcJpyr4; z1>o7^QFn)IE`lTYEj)I_D!$1G_tY2IMvIqAu@E_*59I{!>xl7=p~ zWs>~ME5@d680dQG(xr%m0v(eg%`GeXddm1|IAf+35IwnN=;MNjn8a&+Fd0Z~MT7~S z2gfpPl8clDLpIoe1Ar*7Fp@{%4F98DGTd-ID4p3BxCKF%__lYY;2}Zf0p-)3Z*+Ff zW!f4pIxg(b-}S{w?|s0@HtQns^7a)pH1d041T($YYT{mcaALn;ZT{TcoWo-HPkPLl zaVSN#le`e@$DzbqpqYJM52yw4=Ol;Py1!m|L9_0q8@9Do6ejgAs!E)+xC0)P*bps> zR*I%a&y=YUVXkf!I7|s>wAB|-u*7NV0E>j{p^#>iLa^?ayfsk~fc)L+OX}?6LPWyi znj_m5#~3(Waq$!FSCiVqE?B{6n3#C4<=fr1@yP2`=j*V4owWHx7~k`%szQk%cpwTQ zhxW^t7hz8yr$~AH-HmWOt7|dQ(Rl?0cTtr=9CP*MMo`c^sV4)(j9&nI@t#iI`W{p* zot40!S**@&7^DOYmK*?-cl9XXSb#;5*w*gFRZo2nmojZ!fBhYWIu}b4cMB%z+4Oz; zW<2jEiS1Ov_4jA`qplWhas5`v=>^(5kI@3LLZ*4;<=kN`%;}Xqjy`XkLRS6U{U}ca z-^=7=oE3?i?w?sQ9_e%xl@JnQ-`s!|NVnmLTZ*FT3yuSOFMN60@%9YfOqNabG`0~O z(%5X#!vOZRyQ!{Y=s9HJ`J>>?P)?V=h{sQy{rT#^v{RZ31yr`V;BiV}+4?W=`t&!%5 z^7H3UAO(e?d%a(TPpcX31`+>{B(k)$MDiqHHUKst25!3Y>esE$Rg4p$*dPu;l+M%6 z?m_CZ_nMtE+s*tyC}JDDe*uTv{}oHScjEDs5JT{9Ol}xO%crle4e)3YM4eb%H%p-LxGS4ZjNg7B2`k zG&bIXCyqb9_3sEK$K+7pivxe0KlN&G+Q9~E zYE(RLe+Po*`mJ_6ILq=7I10yCy#e;WeMe(8@>@+1{XqNcf>dHm-WV(O%)Iz=vSH8W9Jj@TQFSpp#HXEaY8nGF zf-_z7s@ffi!{hV3A1M;WWVFSaIY;mAls8p4ua?=pHzEK(Z+3e^iquS8c}6Pp33pGC z@GaGSq^BpJ8HL7GvTpUgb4tNxZ;#RPQ!QzweVyw;9#5sh5J&y!2r$w-`;^%GS2*}P5r0zlMNhOXa zOgsE>-r#Y`D=iJgirtM`jL6qUibRoSJ<_m}Z7}&cSuL%1Y7`FZ#-1Kx7=#z-Cj<*a zs`>d#{X?RlO=_=RnCb-%fi{|jQ`ei;zP(4E)XxI()Gsd60ZHkZhIEW=E`=+ov|I2e% z*U*66O(tKR$+z&Y%hP}bk3BeC2wz@z=8bP**}YSS>vzgu4+xjH9HOs&JZE$$g`9Ey zsirUq?p)TH$m~-_UVz2vQ{-pyJuEZh1_~Sg1VKQDM;g^b3hxK8(+LK+0wXi`a9axB z^iDM`EG>H|e{V7=ysK!(H>YJvmb4nhbKv1_rY6rrg)x>{`i5H-QSyO0kJ&IbDdN)S z+rROxCW*Zb+u}dw7)LU}el9Nhsn@&ff#;OaFM`2%j zCD_BPA#bDj`q%bY-kWJ9AGpuVF4r5_|4>adl<~SRj8X1D*ygvpoIdLDADwD&W)M>> z8wxQKKE9y3qYy{&vBEv|M()frJK3(Qj;sN`0AOIK1=K3SF$)**Qd9`4YTY~EB6pV z;kZU?UYm630n|NcRomNN+i1Y*-odJS@!Z;=nHHr|X>Y9mMy`E=h?UGm%Y5|)hO%Rq z%-?&IY?Y-8OiW`gp0&f^a3bQjc+jvTN+sUPQFUc^GI`hKeRO==>86q+S5y{O%;Vqo z@(;}Q1V_B|TL!kCRW$Aom=a_NHgfe3=qn03nvhNH1urVg=$Hq!?_tmAf~r{hZ2bDviBO$pPcC!5`g8_chvDi254R+G{Mo*Nfg4*`LQNGV1H;V=`yU1JCtSYx zIPp=wK~G(;-QkkkvHla+AIPvBR(1skiVk?TMMxj5GG03idgL3tRm&Y*b!TPx@|J@FZP~% zjYo&OVQdzatt2gl;`F=6L>L@IYB$BuKaym(p1yca@0 zJaYXzXeCOJZ)Ms>h5e>aHoHQCoNi&hKyL2|HioQgg;}+pifo4xbZ~~D)&`5zWE3IU z96?p6^215U9*_)A(Zqrq4sL7-_)8RU5gnQcWX6AxV2Po)m$;oNioRSYcV4M*VK(_^ zTaU7IvlGIzfBhm*1*VkxqJ-X~>3oW*Z+KXiH-WiE#DlP@+e*lPD+P|So70K(1u&2@(QU*wM{KFkCiW~YL0GNMo`dr zlNcK9usJK~@ZhqSMPt0ww%~L7ts~gG7gW~8D?=#Rh4xPi2QNwpJ`>oUku-dXvvF9tmh`7F`*yfC4f*NhMCIRIH_h;vPNu3YDJ{8k zj1A&XKju%<&L9s`W}+4beSOI#yw>PY{4ULmG=Be{dbRABB2dr;&J*Es+Y}A3B0txV z!+d`6?TW6GyfBN$ijQIHyNRoX;un*`Pu=Vpn-7RpWgT1H`{lXE;Z4cF?HLKF0Wr%g z9=40ZCZb2=yQQ{Ne~IY@s#+h_kainr;1yq@>G!Eylv2i<_x zd%Fk1X7xH4xhs*aPHy*>Bh`_u?ZDHeTt5}W{rn}yMiI;mICpSwbiuNym7>pt8TKJ< z0z3AFh5P+RhjxeUxfb-;QDEhi>pQb9SEOwKVB$zb1GH~wh#0wnAb^@0QWRLfaZNnd zW*f11{|?P~-3t!h)l_0F%7~*D)quXBq}n{Oj=&m&TL+Q#n}AnriLRQCvca(#;3+2( zYG^IFP3AhouS%TiPnGGrZx@kM_|blD0iP4if$H#m$(-jV>(tnp*Z9~iKHv8Tv58uf zgk;ptb;mBRJMHN|dMI@avDRpZjvG7PU%8mcZGIp(UrOqjP|vx?;YZ(ziQ9FxooZFB z>g&7sVI3niKpE9v>wq+d=jY7KrCuUmWVcNJy=FlONzX~J988g5yQ*4?q&++vekc`l zdn08Y$~^~{Dby;if8)4RNOkX9MIHMRZPYruq>kPxxoZIUQQYo%Gud#2v2p;u=z9E^B zRba=RgUnx(M|Zxr+kVbPEFr%lv;CO%dEwVCo@%Rw-KvwnUk(l06dN-rBJ%_Y#ozJI z;-D>n(--vm>%jPfTOsOXlv%hMKY#r~|4U&c1MmwKHO981mohy3^z1tbS+8gA2TH)Y zK@~%a0A)lqghic-3H>1@p#?4qyb28j^rYvUzTK#MPEm9!twY@4VSdNdubGR9s5(UF#enW zP-$=t>vId)&PYx1%bE1d8P|Ib??}mI7NRrsR59fo2r8N#7w~ZE$!L9iZqCywRD8?% z)XNL5La|RjNQTrKD3cq<`jH+>OuM)t5JncFZ~}3PWIs{b4Gn3xlbT$j(#@P2GGZ!p z3Lt$$o#ko*x5?;vJMDgr>Xo1J1BvzN5wYMCFBHf0AKwHC%yYiQkMVvJ1ic#fQB(aF zs?=nL#N9j(-{Ted-j3f$DS?Bi#O3wf+CbXs{QnoSVnuuPP-uY z*1xAECY(lAyFyM@aBa_~-s)@mReF2HA4;G1<;=mdhP3G<5``={&62rD_O8**oX*a^ zyr0t~MfT|Jz0&I(Kij^jf{6tp#~1*p=I#+hBIY=NNyo;O*cQqhfoBa(m*{Pi)5RkV zU@wTZ1~Vyo)nmkSyS}<4fKj|SA`Psqm0rYPFGHb)U-9%2km|qA&z=BV?134J^$!oi z!KW`6`}=DXEtv36<+o`ey2yF;9h@!@!KVs$f~Wl9ACxDXv%-UDFq`Bgc&3)m{d0?mYXki5t+&Q~{j zv2_x?sq<;A!*VQ4YdOwk%-H{1P3GF{_E+7Oy+ai&MW-+ITJHCuE`EMH8E)~Mjpk=g z%BjuL-RdWL&#e6B{Fya11M&Cnpia8^%9pW<7gs)51x`7ay)a1=lI4`aS3p281V zSDH7txy0kAkHu9L7jym0hUXum%ZM8i^NOiyjuy=Z_AhqbwCdZ@i2)?RvLL`xV&iYo zwtN%B(a?1crv$+;zkUr?3Ly9nU?^$|ZeHHzzZw4iTd?Mdqxq!mFw<1xkEK=641k4T zO3;rAuZyK5b@J~&wC=?HwYdHj+X0d$!P`pP`YmMhz$G@0k^WX?%TqnRJ*%!~myH2B z5uO?4Tz#SMEp>8x^+j2m((-AdKKO*`l?_F|iwm6<|HJZhK&6voj}n6+PrQ4d9QRm- z-IFhm1yn@h+Lz4*`#DN()YXwZZBmW3R+@G-+^Wz>!L&eYx$UtQ#fvL4T&wGq_m}KE zgYIu#Vj4A!wtKm7`PuzGtU!#8R*4-c zL(}g26-Mk44hW50a(WSo&DS zD-)xiKcD^l4q?K8%P94 z>v4D(1?kxz322L;)gl$yPbng=l$t~z=XSr`W|`!Wr}dg-VvD^4iQiFyBKzeg`SmX= zo5B1e9F%5$6e8|}f2G!nXI);&|7M%n!oyMHyPDkpEH`7)ftq&v-slP8J88WMcQMrP z<}=-%e#YPc{@c>e!yet4*A)1h`XnpIeJT(Pqxz3_zl%f47elsG9o!QcxqISvdeR78 zQ-gs3(TsAPYdwknVT#f>t~1Nqhdr0HC$&LZ6UQ!CcvPjcP!^Kn0{Nq>+0YO$L8d|$ zW~F2D1Z9*r^3A}!%(9Y+Q{9u+&qf2Epg|y{+k_m3ot~HZGr-#{hU|Vp`qO!_gafX3 zl>>1juvvbW!5jEgVlPdx4QC`eNIAMyA=pkppo8Utqy>7K;NW1D3yuP@ivLYt091so zK(Osm|4y!kFdyh~(3X~AJ`&Rs+&)!me=HdT=4FyjLaL4CK)V?v-trV>Z{8d~N>-@F zLPfRqYWKDa3)|@%4Frx|Q=Cq}*7xKdix8RTv-VfgDfIoN9xO{wY+Tx%)YgYJRnOC^ znZ3XISh6$x&u#3z3APrIO1)ySfyf;8 zswB!%ho(vfr<Qgz(yfM|3@uPJsg7Ncoa zt2|b$dOT40@IjwMrSJSs#&9^B87hZ_((f6~>oi$gm1iK~-@5$!bfnug5$?CGRz}KG zn)EamvR`#gI~%L}25>HymYIhy^iAp`I(jn;Qit z92e*c%3=UP!Jk zgxv|>ZJ7bWx5VMw4)oAarm`DWpu)$jthF$@3!~#;S;$?s&;3|2E7gjgJZiP`qtoHn zu4tzdr5Gh8C7QiNp0R8aLO{q|o?IUbelLc`N%TNzzX!+RtrA0zIgaK@Nq^%>Y~%WX zUv`pT6Cx{8>0(|E8zL0K^peHc=t;Xpmiqcoi!zRTk0eu@z4&j+!&OUbA%W+4Qg+EpgVW9_ zEV+BAhp$Mu$jb&bj)BI;y1Ba#@Z{Jr(%sX#dQ5ITo-+o1~f##X+mcKCD5FV%}l zX&KVky1-4T>*_Y5;f5}e9flmEXQ=Gjq?EQ2=EBynA(YM3Bh;s#-IrQFP4sw zUg1!;o9sA(H3VXw(3AWVprKEX*Y?53l>9~7rw4))Tcmw{=GW*Q3biylFC;4zOZEEo z>jn!^@cwlez0H&N#axJ;yD{HZhDW_FIcdx(yW7Hbeqs-9O^#OSUBJ^xPeb-ob{r)+ zH=XD2e28PcP<|Gm-l}QlHB$Pr#+3u{hOSM-nR-bNF zb778a{kK3|e(=SrD(bhXKS%gPTfg*@9g{73qm#>}bs$*JE|gZ|%j(1mbO!tU%Pyy3 zM5B+Z1c7uhY7zmF=wU)@pz!Qc+J_4Hw2VScF*T)RgWG93x!&LW##6-9hJ=#!#kCLS z_gfk6p&r#g{uOsNmH{J>NF`d?rD@mr&qjLoHB|31dvrXhhpUN_VX^%x zFO6X|i7Q<}N+5k^xb}NN(ld!mhmvmYI!v#T!EqJcn8SitSxU|O77T@l7HbBbku3^c@Pqld}M{Zxz=JaFTioZLx+v^ ztF+n6n2`%EjAjN5RaN#s`sK6MFNyE(la`x2_uxccj~Qy}NkXB5&|ji3a&^5A13W&; z!Qi{Q2(!xCngq%$wByh&h>ni_2z`Vir~mUwSgf&&Dyu(=1 zCjb07dxoHMav-+Q_Q<{-sRwAzBLrI2Dp@D36MO~UQu(Pq)#Dsva*C z@pxWmR6l(rlJa?b`XB!B=b4o1D)Y>Atn3#l?c)}|#|W5&mv6>W*u$fCZhYfNex!Re zeHLnX=z0DrFBsYP6^ta-u9HywIdbN%XO^3nZEi0u@6OY^MdPilDAJ&Oi5BC$%E9BM z=AQmj_XBT=kjP~!y#v+TMF4ggrUTtoTyQp_Q3Yj1U>xG7LB1dk_`uJnMT#aV@10S8 zX!YUJVnsd?ccDJWr{jm75Pm#FWO#sacOcNjj8KB9s%)gZSlF7iwVum%ABvSZ?x6Op6HT%_gOci=yyK-|0nkmrqii+R`hG`J(SS>&$m} zsNIaCAR7O{t>1@TBuidqXNArh<2FVtO7n=`2eXWA2>8txJxs1yir%&W? zjmk+Lt@*pYJd-Xta$jt(j&ZfL-!`A0XB_BX4MgOmIdlZGh+g(0U)Ap)SKx7e-Db8$ z#6gR$e0D+ArlW=-!MyGc$>pP+|_N-NFww zD1)+catPrN@@{d$t(?I*6BnB3y>Z%W_Mz?}4Cib&({pm#KQ%Q4F+7c5)TO^JxFUEP z#kM02g!~%;)t4Ua!$8t$XTlN&x?t_cjVkDe>Y>KlfDWd4_rmh>?N4PcH1K%LKy-;F zKUmW(3KL7K#9KMDR(A%2J2AFoXS)S{6mBpUGmsQSTA1c>(l4ATP^R*LNT}_LJv{s& zRb#26sYWw&gDK!2&ME-xL%Pv#<($PV8+k*KGg9l;qBJr;U;;y9{@S#d_r@CCSGlw+ zPN|M!yGZu(#4B>X(#*~u*d%U-3A-v|5~q-No2ICe_`C7bs$v&;`1Kr<8{E%|JN|)$ zN)UUYMG*rMvnXa(gy<)frf^pnhI_y5?GYB~93Gq9HlK0RR9zX-rGk9%a}N;sg0`0r z`v;}8&U45yLYaa`7ArcS?zti@`JwwdwZ$qbnSV%!}dOILq)lpzqzE zj-TQN6C61tR~XlJ`jg?aC_Z`qn5>Z2V42YQ)a-jTeh%!VksL2;8pn&4ZxQsl7^UE* zdLrt98AYM25FHhi_fU2ESHBHjBa%e(xvN}M?9MwJ$oD_b>Gto+ixn~?G)MZOz8Yj1cp|h ziw$_Vd^*lAdFoqv;=5M<9e#>;S4e{-y*d^(Cni6~U+F{fsr5tL0j%tX?h(tge^ z=n?qMiqE;0x4hyNX=O2w!w`sst+qC+bJ{sHKg+4CJ6W*sj$-Epax?U01~}c*^}W^r>HO8kstzxwI(GM2+URz{_a2%B-pg zKU_rP3X*N-Ur>rn%)FIsDQ)fgm1;pt`_xuV$%&s1s7deEEtQVHxSj>~Gjh7-c4UrJ%X9(qOlsCIaSdAxlYEuv|oY4X_7 zOSPD7?>SC3`Ahp;4r$z}+oOIQG8nR*LU%c(6BabtsMCyjLWRT>wjPxsb)7ERr1T|4 zON^q~?Y_kCpX#D<;rpo+onH>PzWmYFW+b@H|9sm!&Vt;CKabLG^HjaNFLsq7?8&xi zRj0CD7d@04BC@TyN5b;tWTlunOZRiQp;-&_Z4I6}g(jyL(nijTX$rq6o*PBGx<;F& zWr%FAd{CkKA_B*_Fhf)&2LBwp7TRhejc&yY#&yl#{(-r+pEDjXoFkM)WN1(>M6-IDY9B3b7~quV$x7*E!~^_Y&v*-MwiaQD96 zjaSd88|iatd=0eSzl#{0ee0tUS*gPzeJZDT{$b_8UNxcSQ1{Kw@&G;yExuo->+ZF0 z%7@FpTa}WA$eb$aT_}}5eDHkjn>Mw=+3k$vV?l-$whI+0O_v=%$MN5enA+%gl2JEW z-5P&#wlHy>3WoD z+v!)u-A-GpJOqjGr*2b z19ILH*Vz~Q#wA(W=w4q5HW0gt=6qu)D=}{{N?{aB*cB#4h^Vj|9b((eeUqQ!UtySK zDM)Ly>xuL}^;@I&tDMU)pn*?A2EY`b2z1}syfw+2F6atv`+@P-{oo>)U|Q7E7c&yP zbDM7BHFZRWTnR)JFOE#lEjRcbznp20J@smHq{e$Q;qxfZz^GL-oQfz zZ?^@ripCEA^LyuQY;9XM#s@663MA-3)>GjeLeX9Ej(g7R-lv%*9MljP8oTZwKbN$v z^+tY7^M*F0p&-jXGbHO6nXFNGCy^w{Xuk!?~qY zjtYl9$lp}cuuo^x(x*;kwf?Yr7#|n5r^rX+mgKaR-itjF?_BftoIcbNsr=k;BXXNJ6Rc|$S^UG>uzg0h=uL-Udi}w7f!}|WJ ze^HP^&bw@TJc^72+Z#lx2H08)&e?pxVuW+C26Q7pJ9I)2ut7|TUj+jzL9#bRauMx! zR4xq1pJQQ!V0yfvyE`NFw~UO8L^Wk5T#N1*#J)J`3GS2r(J-tZ4|>QtG-*^WjaU4L zkEc8#64n2-wv|8KG)RVQBc#Yh_QiYE?Yp4$qgRG$ghR+eG+sH^SSiX9M+6k`fMfn8 zZ=I=FK9uVQOGZ)c1zG{m{EbB_*zJQb&&{+!O~=Kw!DsU|OKknmKPWiyao7n@cD!XwpUg*M1?6x~gB5QK6bP0ExBkPjn_i5da-}}2z(*K z*N0(FxRh1Pt+p~2VM@)3o{RJ_b=b{)SDG}3tO;Nj|MP&!8E`)q_Y+kyq2XKeXf{l$z3N4P~PGZc^*wSY}aAcfBO32NC3Gh^c z=~UiJ&KQx@XK?QRHlKOfxzctsN2+L8av(aTLf36U>@P8m=t zpk@L1L0#GvKsQuyMAmkntOR}+&@LL^nlGjHTH~YZM+SFADDmK7!&a=260z+w*3qP~ zq=W>(MOYoQ^SDjTw-B5J@`rGdfKPBJU7J6@vFYtQJW>63-@c9Y>Tv1X-NCU5*Dni3 zxCPx~_fB(f5=#iFu5~>#s`xvjkL%mwPlme z#63$Tr>j^J>3G(@HR5L3P|l$TYuqN)9#@zpIs;j62%Q`*)9u!AyVSb4C*ti|5?b?%*n7icm-TNp>~SFL1LMfg6ZwI#eo zHpTGY_`p8`NQAACn9=3wsa-iTp6DF{k2x#J?|#!nbRRxPwWvzs{ zJ&j!Fd>wUEjSN0s_#2~Wt^5-e?1TCjuRfq9eE5`qoj!au%PgAj?kHNxzJ0H!e#3OA zaneyicF3kU50lyAMIqFuq z?&~_w&-b%VR%JoakAKRB>vfi{ElIo$(%`1*Mf)jPt^eckU@fE8m2qxoG-t4u;DM)k zN$TAvukU#%p1jdupB!@p#Yb|^&NEm1b&4;Wf064eQJ1UR@7pqawS0909E0NcuT6d< zt*^UpUdK<9sgxroYnQ=m_6!WvRR^->BN2fOwp~p|MrMS@w$L0Z3*tC~2=71>A|4yi zQeX#u5Fvn8{AHRYmfOGC3vpBdUF5^(?N}tD=K*YwITzBG=V<&jc(AGX-J}5+!yt8B zto-UmY1~30Y$t>t9o&`AQhTD#%WCJ_es4h{5I!Av#<18Ba2KmI@s4vc64N zLTLYuZNUK&EEJ5W0Eq$%+H$q~19EsoWwBpJ4KfOq%5jHCNbXE|kD$TJSFbktu+q}t zUuu;zk$08c-g}lp&&u8D-`kfI?}#YOe0Sfwv^IA;i44su8!vfd%+s6YYq)kU(l2?0 zbBlf|?O|8F^msQ9bvzyMYiWw2-#41?_-$9= z&J$;7elUM-ooU+6y2|x3JWn5>1=T`KoGY2JcRW094JFsE4WCgSE71xv+s&%+S@y7_ zSG$z@;6m3ylhuU&|I+-bRt0`5Fqo(>hDXO7J|7-kewgMX*B-&25evgV`Kk_Zd)ru6 zBVFg0Cg(Sk__0y)y56Ip5g=E4xzS z4)&{W>z2;9I{0^b~T0-%HWcdImywbt8iqYW3}{|455%ez+(2tpgN2~w>~{uZ?&^I<#rR!raC_UtWFURz0+r9nAF&|@r6H% zZAqR4HF2Gpgb>xQoY1Bk8Ezk5QN)^yY$DCjXqqdzY>le>INw9hdoQ zEzfHl&RGNc-6w^MzUa!Q2UkVU9+{+hay~AfCENdJIH$$>%iW8I%AQYtvb(C?Q3Xti z5gFiPUpOPU1I~uxTg4AbF1}#e8lT|W%wLB80lbqqD#!N6CQT1_(Y;5uV(ZrN_tNEV zWBTOcW>^-K`zfP9td^@AF*%Lc$wT|CDlI$ z7x&v`MPz*#VxPR`{OThXNGy|vBzj*Abc!LI=erS>w^0&x^1uZ|Y?$UyPIh)B&f6g1 z_(aaDpi)53-BKj!evejq8( zx!&b+)S~D%8wV+49ZMfc`=F}UJNRht#3larU$`H{S6Nv9HZgYFcln(Bn_AU1;cP6c zyb4m^$@5N&Z>W=l8H%4?I|o|xn6&cQZm%E3F_>faoz~kK+pY}IXlGAQT7r{>fy`9+ zNEnc-Png-AFVWkY_~$dm84z>-sRNZOHd-7UO72>6x|T^5KVWwH;C5V41V!ZqY_a*(IT0yIR6Q59)Ts4#E< z5uWv;qTBQH9>}oz-64`?n6Dw}0Be3h3mp(8P$ZG~#+Hp~T*&iWlxA@uLTjd3j928s z8-kh!9URo`r$Pmvc)dxWl@4byzuC%7ziZ=8|BzyS#;V;`mP-2T-SzLgcAwsSB2Q7{ z(QZ$y3mMq68uS@+jN-E}a|mUL4Ai#&HVF1P9}txyza zVIqH*;W)=m?_;Fk*Sw%RfCH*v4f)?L0Qd#-^7H+m4Li%+M=A_YFJuTP#QI8$v;>~R zruQov9*jyvi{kZ$+x3;-!ND~02F{Yfh2>cgM8qMd*47)ZP4|Z$U~&!}9OA_)k03Gl zHP={BA7@v`{~_eH_wSi-TO%c5la2SHo(!qltO^YUDB(c9D#dWDN(r|OjZ&6+!t?!932e+AEj|XR1xoF&Kbtlv5i3OF23z}x#_2zOC=k9<3afFS( z>b72#a@yjLl;L*zl&I+r18#Aa`CV3nl$qvv+kNK)JcVs@NC|!(4xC%9emJ?;#@?^W z4>!8u$h8D3CSmtYYX>$_V;15d?gyym-Dhr`=x8opk5)iq7wm2zypAknY}LIG!y^FK z3hvL}hwXb z-0|$BCXN*aK*o0a;neum*C`7Tj`9l3C5wM{W^^i$H!y5%LnPZ+q+tQ048(aj8gS>H z4A|pY?`C8wvJJ_`v6vLzycT2g8%|^{^ey~5Q~1)8OZRwB+v2X}c50vi>qp9*RrnW; z=DuXZ$hJ0~YnPnTj~#VAG?&YBdyRMHhF+mj%GmsWG2=pRVdZwM>Q2;|hGnhIfw~qG z!=DrF+b*wWuK2X;&M(%M7P1&@I3{yUZ&RT;orbq=?p**?-$)h~xxUerg9&NA&Gj(=l_wfPgXzyxDdS4R`wbm%(5N3V6D|L~vZAv9U4i zTU@gpg1%aJNv;O55aevBSFIbHupnZKaUCe%0&VM%G|Dz%h*H5&j&ex*#G7#X z5X0XfdWCpNd^pI?B8N%ile5g_ukW`Jf1$vcs!3ao#FW2A;tsn6JJM|XXl zrsj!5&jssHZ6kSt*;zXKR$sTt?v2(D>IAJh#$NQuWEW3FHP-u^m`f@tR1*G5N9ToKYMp#C(paAa5~#QDG0ES!I6 zQE;4T|0wF_xw(;fA3~B5_s?HU_A6-*5H8M{gjhp^iwS`yG{Og47rvB8RS`k5znbK| zzr_JCEW!CygLEr_AM7+~=|>Yh*Le*J04*iW#I zVsGoLE~pw|AWG4j+_qPQ5+-b3njIrq{WbZi>#NOwV-Ny;0|!&E>y_k2D`HN=FxOZ7UT_e*Hst7R2>Gpa5W8q^b&Ue`z z_!Oy=g79y$7&CX#Iw{TRY7zov5N(Ax*o$wg-fbU4YfcS_O5`wqabIzDD6!YzY&>1m3;uVUgQuh{Jb5am9{f~XTpI2QXo;{7$`{MMO`CevM&ZGA zv4ZAzU)>m;k2C5QE@sds!;r?pG-&;{W<>O%6^`#FY=oT+o~&Th`1!GEK^Z%;qsQs_ zM|T)OAxo(=BJ&LLzTok~+3uzC4&6u%As6RL|H-f!IEyI+h4@7>c_k==lJa5}r6yHdi9$qwAj z?4Ma{b_O_%Jkf~*p%Cd@kO{~^fNswRQi1Opj2~oZ*m7Xg!H$ei6uf>h5cX>M_$W>3 zw|BzL9Mal;xeGKGv>!ZW*heuu$CjL%)s{i$uX7V+A?1PAPKU1jv8Li45Q>yFZn|4pz_$*DW{qYA{NfL&JMHX*c@>b5v2_u~Oh|jrJLaKVNs>R%E-O z*{DNU$2WRRh;ar6eR#g;S$WR^XQ8TKyvX9YBQ{!KFgRK(wfEc<3j9&G=N1+EACb)r ze*e`C$c9LSAQ7Ga=FOqNJB?qt?t2%Job>2baMvuD)z>W&@`DTjew6W5zwy7OFg)K0yv zfZ7$JLWrB?_C_>FCzEMZXb$`iDGWIg;p=>MdKfAn2w-UIs!SV>^=gXB;Q%iz0Ei$$ zynIj2)Jv1<`kVxiE31^->-?VN8*bxOVVt&P%gwYmlSI`lv*gY^6iQoDdWiKidIa8N z8@rt!u?9u$k=p6V7y$t!AH4|i@$vbs%4nz&iB!XPir9oq98XsD1??r1wQv74lLza2 zl4|S5YTSnvzt$bQ)vd8fZ86|yL*-r@{SRC*W!{hd$1zr54Zzy965?U;*}B$2lbUy( zO)5+AL~`K{=`*Z3_iSGb7Z@U?cEjgnm&3}+j{IT1(Tw0YvFbeTT4y7A;aX}ah1oa% zdar-gIp^H1bGDSqV-_ElsUe|nS(~DZba>*0T5T0QE*Q3sQ+mNV#+vRl2I3%P;#CcD zC`8xj^RFTi8Y8fPkiR+X)(NuPhl4-(w>K|!6!Z39@)|;UKqc-_oE)l=o_zxv9s6fK zU3%{MB||?^=qf*LKi!dz0Xw8~NFf?m0}Lkij*;ux8HOkBGrQBdxG$kJx4@;@P1Y$U7OPQn)gyn-v11+1SWYxYa`%S{<6O3E7sR`X9exu=(X zJJ|Z&2m3wK9|MU4$d%D$vNJrpsb#Mt!K)<9`=Hv{N2Ij%cf#PM{VXxzE#DPl_#}?* z{nz7z)5?dz0p-pHfK9@jg0Ta97P3~nAIa#9h|#6PA`h*K7p;PcXe4R0*+?QpYjiXb zu8x%vVP*E6VP27lqGN3@-N10F3RE)B;Pb?{OU!VmvjRpX7r^Jo|g z_WYEidFODoAofQRe>{wCcybwHaGun$9Gp_{6t#6wip6)W0jP zZS5&W9K#HTw@;j;v+Hgs@S0yay|IJoaMKIM;|pGjR@=f#y!x7ZWHxcDe(TE^U)K}h ztJZC_8{*q1Yvs3CMs>GYLytUBFebLxkAzXFnzbgOEckhCLrW=-5=*!4( zBC!mSs&?N;lJ>lwU1IEGw6qXU1Y)wbk1g9~bf_%iz=7uud6z6(sYt7Sgq1J~|ZYrA}Zj$}fsa$Vsw%%)_ z_zwSUM*dohv1Ik8KTF{~>Rbg1)0bDzCT!L?nHn=5IuAw5U) z4}N0o{uCES?>&chXU<5-Ym-|016P=n2LAhSSGXv!Vpb1lP@uQe+L_8Gr4|;B!TR97 zOXSZPpIiad@BVN@5tH~%&iZq5-1o%Eb@`Vi@5Mzq#+PcUjej*9@t@|kpuZrHo%X8ldGKt5OpaA2A^Gv({(ekGFiZp)*}pEf&5#sK_iSRg(K$J#xA zoBLZDw74bD=9m&rE4b>ZTKe{qVKud-PEaz@p>SdGMV#HL+iCO?vY8hv?_YZBAx+m5 zZV};r$;LgRuJb=%!PRfWW(l#YjZG0XT<}yl%PdP?HSvQ@q-Gerxoqb*X|#eAbrUF|q%V zmT*p_dCvnG$UnX`Us)SeMoKvhyS7TevJ8-bhPGsv`!&qJD-fT9PbxnuwEaT(!%Z^3 zw+f8%iVJM!;{S3(ab{JzL}O2J?dZl~p_0SzO?zWOQEEypO-$Oayo@nDn)HoyQVID~ zELH0I_1Dnwfl7@Js#S$iRqj~)pBkv3>_LII4u!N*y{ zwY~0=14SxlI78~plrcq4aC5XO)o$Oo4C~vX6=wNU$gIKKXOSawHMh-ND$Xu%ldkKQ zBU5(nd0OrDA)!6)+>8!}c3%Azj8fw>*51m)3y3%w9`7Ee(O>?o*y3L2FE$8_!Kmbs zcz~i>mTKX{S=qC{a@giz4BzF7lPSqX zIMMrG?C~+zF#i$#<99V+wD@uV>lSH^0`5e2tO3Eki$MKdA2k_^}qy%@zJEhs~Wt{!_=GP70YhT6& z#w>b;I68!euL=1_)a;-$65c>xey{eX3Ik%$3{M|gE0);Td$g@=44K9(@-Iv1>+_Sd zqr8RafDz)rgMn|O=i^6z)cO5&X7=oqtwxi=%tGV!w=Z>WUNs1dn7L)R{0G;xx0*r4 zeJ{c%3=*V=w?!W{et7i0I+W}h-ar(v01$#AK-DDF>{CB5Xa(S!;{(qvE+X=u?-ww- zp~nyW5y=;&Qh1t+N-0VGsq|Au?U%}0RDydmTXe1;@^GPs?)@0`%kHPALP1*zzw`z* z`%DeaU;MhGde_x|i~US!_c)sKEV*HKTCcm7)xiflrLITmk_R=q|Dzs~4wp2Jm55V( z-r>d_`(&cRqWs5wzTtM~SWe z(Q$dIPa39ZKte?4Lq$;iM|8@e71zU$2AwQGr&uX4H4thd5h}u{fqb=_O8B1w#J!NL zBl-T48(-@HMh1K0$@PhgDk~;S$H-rnKXvseDgY<19wl^4fN$`CSTV7ykEyn+vj_1S zl=+G1Hu+qybSunz6`>*3b$)j+9kx=ajwBMuW%Tdxqb&~7pSPHHXB*iiu~10A&{lHS z%Jj7g95|v1FD=(ccsU7nl^p^BSOsE+fzbt+#Lzwq-6K+Bexpa#ryiE1l4|>`%(UY) z)Ntqrf!{T!LpD_6A;7v~Q#0IA8{8dh@ewZL0K@P77KYfO?DKzWdQm z4T{>=Rq0xp?bM&L5mgRF7U(mq?PyQmjnlMH=#dgp%>{NRN?zP*DE!66GNX7Hhly%% zOjtzl0fbMOcnOpqtZDceBMDlqX9iyntcsyV32k+#oK&fU`c2eF5q;KHsZ&!^I1gfI zZFL!9t>@}|_hq;OVk(h}6@8e3HxNyKfE>2Na0H{GVJr~O3K;eT`A){#CC2#BtFBmT zdZGx|BGC_nKv_K}`&&uQGf)Su;jZ}W_=;t^CFgG<8`WL{EQCvl4;bJkr>4*x&KIvI z7^xGS-@v%{a_MbeS0x_9wGJ#%wtbvW74F4MsD6dT6)FLoFQTHNe+F4^A+^d(l4SGW zOG66N{2u!#-<2p3Gu-F+j$+agAjZkmI@t)G9F13Odv5*;UD2}_*9vRu2+=)G!*O8F z>y4yrCHra7fmdPHchPDcoeBXHXsD{zOR5!A%Xi=&`8X zxv0Q2%&7m?K2QN%+4#s=RgyE&`(+BiyDe3;So|$peHNjR1~uGLr5HshhOI1%&qksu;jN*yO6nxZ>=lMEtYZC zqn{S{wFd1i3p8mW6h+XI~=;Rq&^ZWzwGM7a5BTetvTUNm&x#Y7oJROhyIT%B9-ixmhC~=EkQBv@p#GH^J*Ye$#44hUn|eHZJodto>Nw*!ym7+3t0 zErIF>Vu+JREX9y0fc*$z1ID51FMrloE7pY%-Uu-pIn!N6e~4C1^XPMF5`Q`i-9}8n z;EstUW$ugR1o|2w&d;CXO4&xSNXb3-PayB5HIqp^Vh&p4D?&lvi${0gT1cyWd3f&Z zC#|2F1A}C)-0I6yT6L!@hJ6;wTK~xFcF%_R^QZm(+EgqYylj5d+6|L;qB|3AKDo!;Pmlg%$( SRxuKOP&D;4o~xbv_kRG7djWI+ diff --git a/master/_images/tutorials_image_50_0.png b/master/_images/tutorials_image_50_0.png index 0ad47747ab4081ac17b12b6d0b3025683999d6ef..7df0995e5bb34c2ac04359d49f124b07d7613709 100644 GIT binary patch literal 9406 zcmaiabyQSe)b>!)Eg{`q(v1QN5+e+yG)Q+0NC}99fONwUN(?C?-5^pTIUvGFr|_de z8otB(t@W+-{q@e8J2UIfx#ym9_TJBa_H%Bu4pfbpfQ|qHfe=4aSA~J^YH;}C-2_5Bb#Z=78ijLvUrYo}*o zcjmr(e)gs4UtRwW%`VYTBZ#|T#V*Y*;?bC(HXsnZU#^jgNpYX-7)y|apiYOUfW@Jr zRG)yHm{b25-{V*fe0=kHa=+MvFfNXO5nXJkptgSF)jPQbZbiq-5Dif|JR>i3Ef}6mg?*4tLt?A{RKlU zfk|+-&wErMO2YY9L2E00Zf@?`5@`re$k3XX-)fTD*!+CF?NIvCjD3Dur&)Ud6}rK- zXSUwC#%oPO{^+Ne|4zsGdQKBKY64E2Dvj$2+&ix&AuLP@D>s*WYWDWrvT|~s(`K(f zc6Q!g2zMxFK7(Q`P8nJBW=lA8C@Cl?KtkPvR_Gnv+@6AgwY0X@1fIJ2Yt;nmQoncn zt}Qjk5zin4gLisJ3n(Rg`0)NoEOqp&{&;-W@UyAvU`|QbSq{;x53~#n_p7R^mM6>f zl<`=7cV;;|4%4dfSi|3|vVE$k&}=&zkpq7SS#$`@&dz@Si$X?_DRWTZKa`gj2q#;< zT)6G{-SMV%V9g7(`uE=qJ5$Kj!BEe=Z!6O$kn{bo>viX)8A8^FK<@SK_h?G))xA-rTltQE_0=z#ZqW-j z)D=e6eapSE2NA+S7~8+9upp*Q9vH5!u3nwJu{0~+A_yU&Ic_cZ!tKWtUd;>_mzM|q zN;kUMO(^7Zc3|=mxjj{2MJE4MaqfZPZVovih45ab>4Pt?(S0WwV&pZDZd{Xfgb!aaUWdB58RdUTzGQ| zTxD}_k0$?WmAe;sZg1}Ed0wWV{l_&v+lIi5%(rL#y%#6jy<=mE>cueY)7`n{ntmoq zWxRvdg=^>^5FBhw39&Y!yuQ1Cc(u(XEV*RNYVG2Ff3=N$-)qfA5&d2}M>3lEdQ%Pf zPC#Jb6TUPGaPfxH?Mrbfso1Jg4c&INW~UEhX@vU(8~=nY+}@l*LVx`- zL@0%r-^`;>@4#+CC>}&VUyPtJe`wl*WW{`Lj1`ZSCA`bIx;=7aWJL6fj`>e)WUKGaw~s1Oi9>6N zgEk(Z%^+H%teK*n2XgW2hj+rG+3gJRte3|Gk(7+==;-*=f0ryS|Lve|(t(AJH+2Edfgb!dt}8gU5YU28*{5a5yl;65fgFPn zGJ=TxW7KodnP!HN6=)^;m>CayYK_5f2t7~@ z($k~tI4%~py1qE^`!{2MaCJ1g(o17;hbSHA!|u?sgf!(`6u!Rx5tE!R5xUX6^W!U0 z2I){NT#`i)ZRbS`OmB{L?*jIBqdT)(`-veKqRgJ%&5nCW&z&FH3{nK04_Wl-Jy(dx zzd1&x%szPVpnGeo;$TwmIR>p%?vh87=vtud-CeYtyZ)W6Bou<2NJuTvb%)1cm-9Z; zX2!`Fi}7;1T@i#d`&I652(`7f{Wd>F?azz`8{PzOS2bD>CUYLvPVuCo{(cAc34CXy z$9Q&|g^D5AyR#y|$br3u^O4scS7)Bmxg%}KZS-$PH+s?qP3|nb407Wzf8&v#{9)~! zTcZH|aX`DshgprLNtxV7Peu=Wg@eh3+x9U@nB;jHi(zHS&N@|hAwxt;IskiLg7y@@ABN}kgd*-V}+!tSM@Fm^;yqDW;!pcAYX}|xL zH0aT8qx~q8fN7J?P5bpfw6w<}1SG;j*VEO(lqPV()_9}qE!Nqvd$8ErjoVxcReu6= z^;T%r$Y1QOdSahR0jHs*ib9ge|CNFy6MDPZ#Q2mIEU6xZ)V}^3RN}Y{{JjVGEOG0c z;@>74(P$6p52|c$Ria3iz&*WuMd}}4ue)Z@OU>?Td4WazB@d0RfXl{#W`6SV(-t9& z0DG#9q5Q@MC1DnRLK!LOvcltqz0+5_f0`YfoRk9tTTKIalhj!Ore zFdw+503e#3I@Zd?h3GF_HUSchC3AiiQl;F^bd%*R8*&pQE-r34^VRl6odY?@c(5}4 zc>-x=JaGvL)?8>|eSLkoOs?iFd@CGG-k?GV4FH-o?k0)HO6{K%eo* zASH8%@7CD~iZt-^vFo#|?OyT#eVhd;0?7ZFC5AgZJe;WzD5-@?y`+o8i0WaDZb0vd z5MhA}!Ry5rON^^vC5R=M-=Gc5X&az?{hKO+aw-DPt&;$&>=M%`R}hUU(h@`}4Ud&y z5F*k|(KY9h3EsJV1{IsWTcBn}}p1oCyJ^1f-l^S8a+NX z7TVAt`7>XMx!IHi46ub*8ILv+BV!0BXE?IfesmdlG&5TgUO+$qm#3_}ylEn;Y~R#J zQ8;mr8)Kz+sKiktzp}7UMe(4-@te4|jp&2FMoA?F4eAB-baZ#z)j^z~bxvs5%EE%# zMUox?<)(=K4!78?3zPPdW&m?DuckR#AMW{TJ2dwD_j?f28rq0qyW$*xeXAjsY)p<$ zPT#<+$>W|{(LQBDMq05@ME~SLqWIdF5^#e%nZY7~>s3T(Q@gYJS01aW;Zh5{fFM!4 zgn5PIJfc}d;bey)LK!MT8ADmnej4WiO9j?1 zQJur%VEG9V2?>-N#};E+1KjBCBZyE2A-GY>v^GM>q=5)m_}@2veab zKY1aX2egegpfwm|&M;UF+Q_$HLe{{%`4jn2@&LFx@bkZLNi%N0Bo3b>3dPLsA4W7YvESviR7c^z`%x-K4=} zjEsy9E-tAESq73pM*-@TS;>qc5K*r{=)k(D@vs-+vcS{G@vw_nQi?T^D8S5U>FAUN zs8ysHp1QjWe_Iln_gjf;dvd)g>+`Zixs;%>8-&GmFbIoqWme!(79~v}(1R42O@(L> zQ2Y5~au6IiG_>3-ba8As!x|V|!EM@2^71HFRyb&%ow%;T`mtHz}Hd*`1#)Dd5=g*4Kt>o5G9UF{&R(yAOK z62LCFnD)Vgtkg(;Za$$l;AD5KYZi@u82HbnuD-r|$CsT9uWRLCfb-;4O(q-zjPWYC zQ{2j}(S+c^lcpIL!wYy^T-@OxS8b*i7vTCu6~H4G5B$a^Cc@Iwsf$pKKXc`1R8&-? zeYWnK2kuCGh>!oJ%B9@T+iZhC`N@;C&Vjd(L>cODYS@El)gno*oo%mX5rAlpy$*|P z)Um8d>gsE(;h`XWr?(@fx6=>}b#;~=9v&3Pw8i@6Z=m%ThjF&Mk`7?Zi#ET93?xxO zw^-yVbfGEQ%Ksgm7a6kX*f8K>+rSiZp_<(#{${B;9D=L9t$=f~goiHdsmU{`2~fWq zS}PZ)vVBK|gbxEhiB`o_#*+qS=WVu2O~w`(T%OtS6-2Iv>0V0aXt(%-h$?Yp%NXk3 zIC^HQ?+E4RYU{Qn6BHB#5d%;-iHK$SK-xtz2aZ2bsq;N&*e*$n3)BTfz`92<2Yw8S z`NGflwNa`dtfU#zFURB9iM5S0ewy>8CBG3T!YXmJ1~~!L3w>Q(5FxXc@V9T@YK)6= z0%m;&r?qy&6J8n}ip-S-+a;6fJxh<+l0xqmXLiT;ff{fwL1Zdy1&a*6=hqTvS_e!4 z_wljv@c3elFch#fsj%OM@O0;NaPO-elnTZt9#<5)Js$5~$07r+-`Oi8?Ze!3awDElogPxa$=Va}zIu zM|9=4 z2MZY2;dNVzBa1V?0KvX}qOlOOf!~boI*RLB?Z(`#K6G7G+;@%WdgFYPb)lN%Cn0>h z>LG386mwVsIs7S;$gEY?rW+IMteHo-vEw1s#Kz*$X(Sk1Qe#*X zF=4+;SGJqswmKF=8OB#x4mn!!f63MC0+6RnzxMLiz-P0mO|fprC*ekM0nPsG%gvE2jbW{1vKgTnyJfs0 zC-QJaxsN~d86E?1jD7{$($>JQ;QJe>MDYN6v6B+n_B-01MgR2OS4DZO$3nP}zjDuU zkyHs#__qOVB76!Ozu?Nxj2E8+m!mD+2ndFK|-C(sd0)S71b+Z8Q2A@FXxkDmJNy(KoyYFSw+rulzKhpStM35pt;Q60#>k;3+ z{$?f1!6##l*@ThDVuEl)^7=_YJHRzj4|gZ0ZLbusU4zcR@rP?&~b26#_n8~AJAT2UExe0>T6N)D%SG{jzwC8 zm$$L+l25bg-SpWFoYK2u93+ZA(JvS68D?iWW9_;hT>HhR&K7z%&AG`ed4R0jCn3C% zx?vT|i$x)TL}f|og~c1pi8#d;#8M6rqZEj~mu>mtv4RY=cytc2gfaH%>yQs?s>Ju^ z`K7t!VJ;_mu?iN@KVDHqNd|wQJKMhngvGpCYBV45tQ3J+{E{h;8~3nQu1)r*M(xDI zk^OaCI3-50HxWt*6QyQozpo`^axCB2ec z$e(U9j9p(lpMc2-V)N%)WLW8Rk5*mu{xMrBy^pk|F{d-o)n=G_2vYUB8If?3K4H1f zTe@5|DXwa_6@ObjjRM^!fR-#flC-O1rG{dk6SS<*|t)VaG1KjWT6 z-^biY4bM2-SzE9Buczk^JTbi>ls!#@l_FXl14P*Dij02#udUAA7iOJ+Rel;T{f~yq zi?Zon1$F6q=4o#Dv`C-5Sx(7Ioxm+@T`J3pmCB1Jr#>w*g01_9Z~`1^8=FrM;mVaq$jTsvDXF3^YX=9s|51qnm1UzP`tj)f#n#dJAxuw< zc!ZZKNv|Ca*x(HiaDQ0J&=ReCmbVzx#Wjte-(vH-YNH2ffa2hHdwq%liKP})=D8mR z_z-ni33gfzD#qD7;1eSWE+_<_s;OaU<@HwlI@+2omh_=}jEtUIX--hjZ%!}34c~ZQ zfq~F77q0L!-kj^{{prIxQXQpt=zp$IbstGJbcC5{lP8u%ba8R9>aKtGjWMWR;oAv; z;Hl5~V*lnQ4`ADtwD*inOqP6G*HoU8(w%2a0b_l^di2?I31kS2aZnCH9tkDkd>|!C z94%`=_EAQR3@2c4nL=*565`{Rug;G^MF(WV5qh&K4kQ)f?{G5FYPDWjQ$O}3^}PM$ zz3*rk`WLq3V8gHTVlXMP|_0Lp;Zh!&)oTukz;#}^*vWQWeVNy#&jf~w@RS?fJk zZ0nlL`-Uy|j6cw4A}+pq5uWXB1-F$G(Qc%srxj<0?MhT_=IFsiL1$}ln0)@ z1B7AFMpQVrH{ULo)S2q!@M!y@2VIPFIk4(=YdUPFkJaQph;uKK?5Xk8(|$+R6pO9% zb9+W)-Byz9k3MHUxXO^;lisJl)h{tApEQnbMG2NWvfrm8 z_=PX0aKLfg{O3%W&ZycvZHCl~7gm-UGE_8M~MQP|koh@%Al-DcCiMv>Hfb zKPUUNt6b%Vy^v4pb4ZU+=KwN3c|w12ByOUSw-#ys^mbMDIbgQh7mY>!=OVs9XdM{9 z163igR^0$FrP%^5Z{@>s7+WY(&e}Qb&M#VS8I)=y$&OZcB2^ zVRm5Py||dsXVXEGs1I@{5ne4@WW2YdAxKDay3i*oR$e~t?!{m>g&=XPS0&xJ%mYY{ zrQ#3Dpt$0ocnpeV<&TL1le#i%58lB9Xz}xnxxYy`0|w1sXyR#1`HgT>46;S3bwhUE zc|X;(`en_;PkFI!EHy=w7g9vTTA3?OWTs&w6fZqBj&O#0%Ua_2sl6TyaMsezazlq) z2Ybe)6?U{>o*~EwS0ENr|)&vA>XL!C}+%<{+A z!nvmOB=^x%VIA(VtMv)&=loSe%uP|bt6 zuf-PYx9@Ms4n#zX<6C%HOnq$`jnJYa{k_Ssx_zjQAPwJ~)m2L@$B{j%7Q*PFajT)A z-h~~wZYgfrx7e=+Q>~=pzEAU_=UYB9eoHxwi&J@}C6xGQ`YVB?{&4cpnvFOh#H)cl zO}0AqDO(!)Se4qW z^7hjx^QxAS>hNNUqQ(>!8H&!~2a0mbbOT-p*sA{sHK)bXTGyZJB&#${v_^p7 zmr>OYvJ=hv>TUc_{{blj93vg<-^BqrDWN|_3Rg2@YXS!@d#g>Oi97lfNE2)Qd=-i!@pwuN8dV4vb-hC zY^calzPWo(40NaBl@VSZL;Y4%A*E=|VZ||f#Td2DaYBMJrIuGi5no%0uW*JYmtfwN zrhZjgofjgTFz>Az(?ZxAVFRo2<20u?gk+Ae(G_LS|8WCD z2+~}j$w85{tIVnEyJW!lPnoOi1zWp*>eo&ohk~wqp~wB@-3E(`kE_xWGz%=XX^PSU z%!nG5<5Azgle>uM8$aVC|FkpP|YI*Rpf^0{^ z9w5LbWv{q!mUM-|S0B1iwLg;$7si~Alzyn8?9S* PCDoh&Px2!116^?ow_n>l|^hkt)QgPneYHwijYVDN5Z_cWrCO6m{Kt2!#O?wKV9wZAFclV9hZjPfe@FFOM} z%r0r&O9pIs$V_XPsb~^^uI!S)TzIuHq=8RHaPH=0Vp@0~oqriu zocF5bqYOUpbAt#hjP<^VSOn!WV>sAfqf-i94%Cc~GPwv2ei1XWPVZI~;z z`BX{CyYjMzwyqwzfoc>0KPt6{P{NnoCm)fn2t6Nhn8Hm!-EEw;u{m4m=lUm7 z;gRHKLKzG{is-*fd@v|itI8kKR{D7KgpK@e<6$jf^R>BlAB|dBIw#b%A===5jHgDn zRL<}`8PbWw2sdv$T9pl`8rk1@H&R3?R&UcOsr*mB0JXwjaZ7p*`|ug4&OoArmE8ww zb#`|4YJ_*U(DD5Wsf2%poJE^KAj^YX*4^yAF*ZHT9g%_zIExW)s}>{9aSghb>Rcer zAH}Vn=AVAUpQdMQp6<0(Zcubox=S_6kr-J#X(OB42R0NvcK^s6|N95TzxDPq)Q<0v z5&=m?@Hjcil+=o{I(qQuK~12nVMYeWi!6!Rj1ld3TuJKKK+N+WqWG)jUjNR5{tfr0 zw81-jGs|*H%Mtz!@tolwILGhx0Qy^Y29Qv-8e7 zA)BW23=VFX$5bLEY-PGh6@F z3lxp*LFc0P?%i8OPo6J(w70jX$S#15X&Q?la-f{8^u@hs_TmJa4enN;VpV1#8}P>R zyLca_czAlJD+dMwq1^M|e=ia8{uJX5_pz|B-ajpba7DtZ0pUcVq5&g%!~$tV10an7 z8$94uPCgHa?WfL83j$%mFWli>VB5A1(E%Qc0O~xwq)QjrY`xPxCnvE%QL}*a&6%?4 zDfe5>iZq~;ul=9`2pI1sGX1mf)KpLcAlQD9-`db zFaCQ0my5eC_s~h(3E1S0tD=Di1VU_n^@~^Xq}Uz;Vfm^gE3NC3xtrzh`gHv4w0%8L zN#-XrFJ5Q$?R)X`7UVB(qMw%Br6_x92v5S1mZ@)-k5_*m9NG+fW+diSQa(=2{i4t^ zsbPYEae_dme8$P99iU ziQ4S?h7jJaTunBzh$#K&f49i)hUATDK?`Njnk!NQiFZR}-d`WrWGA~TN2H7V0G5ep z{{Q|nH4ar%Rz_fHY593C%j>)SRGq!fpriPojeI*7m+qbES{x4d#x~m*)qXmrqk;bX z8D?T)vaz-G^=k;hng60Im7b~Z!|y+S;O6FHBDp@_mdvSK@K3)Tfi?;XdeU~W>yn?J zf1TfU@LOfz$>V=>7pL<>0^8u@1xg9~`429_+S?r`xj6KzAXjVp)A$d*5^zHxg3dEx zqZ&`(#hLDRZ3faq#D0Fd{z11i*PoN3b2y5Mib_gH=YBG`*`OJ=$UsAbn1Vz9%L^^5 zqqTwaOoLjR#XsAX3JBOuNP+gF8LuBNu5KlYn%{M|ev*+Q5{`RCnP6e(Gym!oU0wZt z{-`hM@n{TgR49Y{`WGXY))3#LHS>v&2Ewa}I#u9(%iv=w8y=7KL2H+`Gn>I>L8qxN z=YdZwqpDl|Piy}C@%uGxo5R~h<$u`AI$dLp^&IkFd9N@PLH<~uJ;@@9x4~hY-Rtje zBjsw4P<+74=B0?oQ?uUl15}nAB)6*u2h|&1Zco%LGrqrFR#s;DAYdO4Z2g?4r${ZM zYcBBbi!Lh5aM`y|LPDM{s=xaf;_3CAph56qTB6$8LD5Kwvy}w7Pi2-WZRw=g6mHu| zV-Gd?AMpY-w6s<(?H7W7yPy2)5ET;>=*AD0rikpMvW$9|pwtj>=Kc$8#t*Lh{GfXp z9H#*SX8l1oqTH}PqTHZ%Eo{$)u}2T%zt@^F>yG6#i2YB5_U7Aj;6djHADf#qcm*pi z_xD`~k0LtW$tF@n-VAJi0NJ1O-$R3p+TGp#^k=K=y(07B=dL`tNKF$HC?u87`fhqg zMzza)TgyK$HZmD;It9k}QuHKJMn*rh=CQKcgtJ~dQ*R1YQm#SR+1d9`Dudt}PcA&a zyK%SuW-L-od)wr(ehrfC|5GH>t&3Xt?@lcqL@)yy9UTpME#k4Z@a?|F4alciXU~@} z(Z$8ZaYmf5&S64Gw$IWX)eJ$X+28Mzd~{5X&-C;{YlkFh$jQm=yZu^Cg=vW(QXCXW zVOmtD1s=~oYEIJ@D)r*~;HFfPIdB(IED;v=snG$)NoTt*L6MIuK3xL|3%<#iYiw+c zZ1u9Y^W7SoWi=I7^A4Z*@i6lDMt-d8*=mYqcMSaeqTX?Gsrbo-{ouCKR23cugGm)~ zp$pp0@}85{)1zD)%83Oja4=cf{?AYM=~MH=m0mjshp#<7w*&WsACR4P#qfq~2zviC z7C)WwP%PBmKMU|V8P|JBQ_q_1b8XVppYyV{xtWG5g@Dr774P%s&#tRUdRs*tM0Da| z?f*_HKP|i^xZ93n)DE+0_TKCIUhn93d2wocK~rPXw6VD{WA ze%nD0@*V6mF)`64=rY$&Ww}$BVrr3M?0$zJ6vF|FuEBD*XA;Y)WLa#i9i2@*)idc7 z6&0OY>WrLzIcd_()%M$BfLB67qJR0Is-r{t-*+{k*>B&!f7f?$;Z`Zs-T?)`YgBC! zvexqcJt@Gr;%c*hhbam{335f61KJ zsEbXFprxQAkk{7W9(VfrhpfOc5SNvg4+Q3S$5~9xzPWzOr*sjVra8#NkHy8T#ck68 zX8_5pinIOLX<#smYW=8k>oijbScTEb3 zyxwBU4SBxSpQiuW^U>U^QxnLS<=7`Nk=$)m&W$u6As_2ij2%0hJv$sPN2BpHBu>b# z>SfX_2o6%U)@ERY_Gl$R!vf$?NmjB%`NMae}{*vE{Ha+t9{eta;y z7f3lI`IqCe{b%!@q|=WE=w9n7T@LeOxx@PAwKbb;2jT6HwLG?iv;q4aw?s|`*04Io z>Ya^kC!Avw6JHly7Y?!9>w;;!EqR)CEJ6goFC}yV>b!XI!fClHI*PZ;H0a_bK7A!! zDS($NnAu6vGgb1hY-~)q4A@_g_8L)QtrnW|3FZ}~qc(Xt{*)t0xmuUK)A`dPzSr!_ zN%D12DxJf-!)RoS?InOW1Hcp8+uO@~tO-hjFSm4m0cLO<{84L5oWW~}PeV;@4)ED# z0M_8Ssogc@BZ~<77x1e#=i(z(qk(P&IxWmpHcg3NhCA>4cvRzTog`X*8sui*&(GUj zT~oi`O$`r|SUQRGZSCw>ZBJG{$-AsgB|~Cf{rz>2^W<#hzM$`+)vtr@2gPvK?TmpG zz&IvefGuhjnZJT8@1k+BD$}bR^fl$JqO9y4h#uYi1~QZKqiHLw*XkZ%v#Wv&3flc% zzp=fI84CJ$ROfM(oKaCx3xi^N-$2IQf%q)Ex#c?NyS`Z6O@~q8ZoLtTd85l7^5EZo zs4&P=yr`5%#@@3p0SDfK^r!M(Z~r^H$FkrYslf30#q4Ktq4@y*9WSxc($am95c!3L zA?@wv7<~QmiMlZRt+5ZEwkw)>KveY0pVc)qEP#MmJsK*iP7*DwB^zmyC-h%|c+j@joJr(j+?9jC}# zWrt&&@febTyavmzM8LB$@(;Rq8)w`JxLWqVe!anVEyT{}bk=*h{qlkvT&0sB4W0iE zuWF8@#QJ>y8un;?s9TQGM znu)dqrH$5PbJui5o^{-M@VqzvVXEK@*xF!Lshh@maTdtgAmWGaLH%@3j4B693jM0mlzRBI~rj z8rv^+ODclKpXyaB(D}-qw#qWP=}vMaTJiP9_gdj9iV+-yg=ULvP!AnV*|RU#iJy;` zK22YBeEIUFeyxpK2lP|Fj)p`?2mz%rZNCEKYIw-Q93qT)I zWk1R?@RRewt7B4i;l&$}*F)+aOr4s`)Sja1=kx^W3kyT)`m%{IHE&VF?N zyJICD1cgFDqFk;Wfc&upiCs1Ap+E02zmyoD9AAdurR- zMQxk;Cg@_@?9<7F(ZPrc_d%AaX~2Qp75xGwCkI#;Bug+5aEC|9TqcH|*T<3e`c%s8 zU$tOGI+{ok0AWtEpOY^CEd&!={Qb4-Doh*Jy&Pg}n9|qR*Ai3vV^@(S;rtX7a**Uv zKY#VBzg__+WoDfO+%2zxW@JcHeanl=IbUI&YI`Nt;4&X$((GkESz)4Z-WW^vKezW5 z)_0|CL3-~U0BAg#1WbYZ^%47@>jxiM%#W44201?)3X%s9ZfIoWwiM24F_bM4V8r9* z(mvblonKRPFU8dFQQ%R={6d0;q%=Lrm%~+Twb!m8-Pi7AH*i+Fsq>*DRXmA-A^C`Y zHEEGPpgCL453!%tv;AF{qlNOSt4WDMuM5q%2HTjdmp&~+_)Aq7H4;hY?1g#IFal2V z0ifjuGzH^(#oUGl3Lpi7J1sigy5XT$S6`eHD4L$0US-vLFK`a1)_nlHM*@w+lE3Lo z%gUbd?uXx~Xj+2-mA}q5-b?)7QJ|@xFuJPA+-GZS|J%OhznU8Qy|+h9 zz8`nqFCF-}{ySUGudTgrT1hD&AOLv{&_|d3W@P8rOG!)Bqg78)Edzr)T~tJH(RWhx zuXlemE`$1z6Q-54xje!p=Fq7?TTQu>ISk&$#1Q$2)9LB~DP(5;UX^7OQLtCQP@eP@ z7UQ^a;@5=2*(EwE_FVe2hy{S4sD3cFwJq)F1+M5~4mbSVnQ1 z=zwoyV{%}(s5dmPk0BoJAp-Jp&Sx2_(8LT=Zk~-vP#3)e&`^Od zO;(&PwA11ZW^th_CESWHT$T~9i;9-$7Qjx)i(?%VCT`nAR0xxUqPj9H{<^J3G)4UR3X&+_<0n=d&T{^ur?r0zAo}S@JoJtAI(rG z)ki*3RZ|o1*h94}wyybym8RD!{(-FxR8CA>8>%v$0)4?Y>nvnwXgEAP45^$XcplIg z3xIxhd6gknn2=EmPIL?G$fA)=ST=q)XUNuPDv+bM2rXQI7AKLG&rm@|cD_Z15+${w z)YQ~c#eHk!F;et#6Q5T5Y~LqjXdxxU`t>l{r>pT{Y>(O5eSET%3xB6%9w!AQ`?LL# z0(1d(7pK!0biKr?vp^rEGk-&Ak8x(8=wiDOu)foDdecOk-fnBjo};5xMMe1hHvLj+ zYSE7n{oN^Y?S(Ta{<|G6&&b__hII`!=6k<0#bWm zU;y%^(x_s?UQwTeLXt*>v}oL6Rh?_yzyG5-(5LAr3yfX8p+G*Z+gsI`)Z5@rfG`7% zu#R1cZRm7B8sj%rrU$v6JHz{EZ)@v^fcO_&g%3p)5Xuga4S{>p&W)BM1xmMXTzklC z>BZ4ofSy7os6$2$C+^8#K(^xRcSiI zL?b?jLkpZj3)iryKtIrvoSdB4+1d3>8TE82FKK_(`x#ww>g?nsi-4{2yRP=(?AYYj z^H58}J*qHmgsz!cCH1rwvJTliJ80{ugaIX7JQ|Kd;mb0T>e%Unz74zw4IbprCSU7b z+D=ts!1VCLD4>3UKz44-2wnAC(Rs$OCi3yw<4kqdOm*8q*jH|`JQUgV2KB~!J4LM$ z14Nx+xjl>yng{Lk(*H>tjyg-cla$U)1JeSnAg%X|o85~SA)}isFSV!NC5MKsOi@IJ zP<|ApB?2Ork&19lqTsS->BJ8=GV(S#nL;>Ay)93A?2!?ZQf<7a`hQy5*8?`lmoEk6 z6%??6Q;LP0;OB}#WEqWvjUN#}(k*4h>VE8&eE85YHKji-lze8##we7$g4I1Wa%giZ zxiz)xl|7j|oDsh+D|nsUmUh!S0yX0-WXv_mYcgqg7l<)kUESQ$(ugN^O4-Ie1$eEj zj*8Jm*wwe#RrbGOBhHQad3o28l9H+n%Z-r|vnxt)DH=RHLor=gaws>=cg;Rzf-K|v zWRDxUBB*agJqi`osw@dDLhS40BJT!lg0ZVhe>TR;@s=H3PY`5BG8T*`A8k3kOYq}R z(H3$c8!dTo?PB#`EXmN`KWR!x2Y^m;Q2R&upWH*M55|R8uz9G$6)Z|9acue8CbUrB zQ~Bftb09s*0`~Z}mj34n+*(E(hbHoo0~_V`=nlhpBhInodEArcv_6y->m=4UnZ}}{ zX-c#2<@>r!B8c~nt8kQ$c*XRpvZp)0{f1Zb;(?D3Qt2P-TzmKOqLPRc=7EftYX3Ebpnf_3Nu zM%}H>54RYq#p#Fv&;V2fS_mOQG~TME`{-__A~Ok5DBx5m@pPj`S9R;Padd`&X`9CE4EMw0xf9^pw-|mf z*ek9-efG=(6y|4Gas)TcoMs=k<25FMQ1@|~av{mxkl((D8}7oiu>3-g&c%G{VJ!E( zx+Wnb&iVwF9c>r zvCW~v1fG7gi^-`Lw*hmBZS zy?DVHn=LDb$Us@S_<7ki{_vgF1g7DTSYI1qF7vAfNCyTh~623PhsP-qPW&sI?J^OW~KxyGkFSL<%86eYz z$@E@ZkC3pz%>>2s$VdSj7;?%i^;zGL`cpN#V>QY{7ki|{Cjng@A>ya^9`nU9Fu6DJ){nsqE_)#u_3>DQ6LC*`43#|3?^NUku5r9R6VZ8Z;ec6*_fUyYNXv-+d z6zrLy0Y;XwLx8!My;j#c>eAU@9P)iYE?vruJGn?hC$tp&QNJDK_M>exb z!at;bzNYlGs5+T-?DJ4?SI6g@rKRi$1ft-fyV3%%_jYERDS;Omkj2LNFrO!n={|TgGB#a`X&!Jp2j|rAJi_0Hx)ItG}snmw-e_{h#w3*jb#{L z7Xmht?(gOSg}qGo+fWNP;gwBMx%utfkd18VWuPaA8YH|m?vsR$NP;R003wobS)T#w z+<_C#3qycz;Eyn^`Y6fku3R}NcD7gP!FO{ruGn}-h!V0??qLZetHOX?Y+m)o3KnOl zdx|!P_;9k{&@IqDNYUp~!;+ZLnzvuQdIfn6Bo=_X!x+64MHX@@%iAF` z0Oh*Be1XifR2heNFH^x_Z-4Brc@U+INGZgh#>nSi{mcBGkS-DvItPMlTA4z*udU1U zL@15cWH1P_S;&DhRaRh9Xk zG%z|Xs;PkGQZYTRTZaj7kFj8u#qwj z2~g^x7_?YTFKCEN@at;lyqe+a#iL|H{dhz|Z&zZ|dpOD=>AZG$~Xeug3|K1m8+8rL&;7(FLFmUlLQZ+4Bb#(fm1&;jd z&)H_&{QM9+L-GbYj3t=ccE!L&s`*J_Y9qPhq#`Ceo32epW~K|wlk)rBCrN}`9HWJA zr07T&n1fOhX;@q|2Y$yb$sA(H?=8NArU{#{p3Q7)vHk+IT`0(r86v!Wc!(W-76LIs z1U-RNiz@~?m72b1FVB1))vKCcM{|&P0I)v6 zM`&-H)!>ZAllrZQPB!X@^ExdSMO0heul2pu)M}b@H90q}uo{Vribzg^m!noI9=Q6* zya8t$zoYrFI`JfT0L~Uv(OC111J>uo=AfuT%WqG0`^N8Uw|Vc9r{K~X7BW$DWKTzG zcp@x%q*iMnTOoh`{8>2gfk@q#NdC(BC;V-mT?D%vw9`&!4jsbS2OQXrU9aMDS<;l~ zB!5l^zO*s2WvrLt=e`87DBdXGbzlCw2&h3ZD#93m!sCr*`NLNTw?lvyiA?LWF_&|w zMX?&R%07iBqKxvGh51;Jh2D-OQxYPoVXS11LTOKEwzyO)3>KhMJ(&7lrLr+qvQjvn ze^XSd=q+5dVIv#isKyGWX;s9b4sUB7uR3`tKE*FAMK3}hmMj0k^7LwweKay{nfp&J}p2S03N!tCHyswjLOo!<*qcDcDRZ#{-k3jfxX7*%F4Y=|_kpCQmX zG#;$P9bSz{08?*P43Jmq3=Ydi{|+OBq=%=ep4C6+2?I4!ffiS>FB(L-JErYua)eRb z3B^#+(thjd31d-sv}KDAJ=xJT_C>=ne!o(=eXaQyJxaOFWywmeLTKu(FeW_Gn7F6wc z<0%|ch(<52N+ZM%v^;m;ug@AV z+Np^GEokO%Y;k^v08Of^d1nVKm3&%fGKGH_{oH_ReCrL?WP1k&=25T_O{KjKLqEBx z)v#0>lJ-b1VLrZiEhMiHYjJFU&4Y(=ZIP6m(l@$};;x{O|HX95rZJ8vdZG%5UKs>m z`oRR&QL`ueQT)AFews4}wiHZQulE<@lM;8L9YsX{N{`Km2C)HBq+S}7;dvWQIu;Er z1U1*(&~tNH*O{JWO75GfVy1u)R+Up4HWDM?j#Nl6O+ysaKwC>@IEb9<4bQyn{II5- zqED%-y@q#Spu07Jb{dWa1Q^VDk@83;ncE@l!Ky)ei<)GZgm2{&(sa4}G=y*YCj)xc z6ag}V*R@ZHhD+hTQ##6LXiMlckZaPo=MA(Ep{<=Gl)f9z6i{IQ%s4j|1tuc;lOLzN zG5|r`x5Y3ix5m@a{}r{=3TUk% zh(hys;3iJ=*3i|}Xhy$6&ZU%f!-#llYMq29&$I zFrN%ZqWBo(k%s~+(;l_CLN&eeEYM9uo2jiz&7PD^+q^{JnxM2RX(3XBO4O~bc$=c{ zsNIoE{iP-5l1Pf`1>?%PkP5S(ae;@28h=DGYUAO3M$>7Jx(VzQ-qt*8a*wW~l5w#@ zP9h8yFf_`L&qV3=!m`70Vnz&AxFvN&T3w$4#_5cSpB^y$S%WHENG>7m*Li_s#v4^U zm7-%328WWqU{4Y(zU-SLwYja`G`oiIOjX#Lm}N<0Yw9%HH=<4@S{ynFPM3u$+`^*v z=$M@&@a!7(`dDH}qmgMt(d8*c;JiT!JdJ z3q>g;`Wf+suQ0{6Tw|QKE2WLYYFizSOKTtx{6&})LJlP;^Uwx6fSp8KL>%luCr%2D zleFp=a-tNvQK;Cr=$e|xf!v9HbF9Rh?mJKv{ORspo?>9IDaI8|d&cd?F+SqAXB#x7 zL}IjSF!6S5t2{=`lRJ(2!fNX&Ut@aihZ}ox|I2i-Wm-$=FG6R-@14m{0Jcq#QO4wt z#>H@xiy>Oji9*RqA%g-P^m}vHXt{)iFqSeW?#OrI1^r&oK3q6J+6Ua;S6~&Oah`pr z2HEEkkFu#oiVT(MStM6pN&Sb_Zj~*MN`-?{vAxum_CxrTlTT8_&g@dR?|2oUf5-6} zrY*ZS#hgh{sY$}tzBk13CjZJ692q9`QiOXI4ayHnY-#niIr+e?E8>%lTjM|hV#zyi zk%m9XxYHUR!GzPCiN&eHY|_Pr??F3_)9pg#6_E1u#joAfL`U4bnoabO`9LV3;-ex7 z`xjmJPk~4K;NI4501{Y#s@dYy!1n~Iuj~#ovuT75f zlg2)37Hh2mFSj1D+mbbvR3+_#Tj!ACcr~;Fa<6pn>8XJWy1A*^%d$0Xc z^4HJVNZ^!#MXSm)0Q>B7}w4%#he!wphMCY?_Z5DukncIUA<~6 k{NEq<`meFc!X=*5v}%@=g5Cr0h#N#nPF=P_=K0(I2dM&I{Qv*} diff --git a/master/_images/tutorials_image_50_1.png b/master/_images/tutorials_image_50_1.png index 7df0995e5bb34c2ac04359d49f124b07d7613709..0ad47747ab4081ac17b12b6d0b3025683999d6ef 100644 GIT binary patch literal 10069 zcmb7qbySqmxAtIQzz|9f3{nCj&Cnq*beGZ~ozl{RiVPjn4MPjkB~s!@4mC7NcS?&W z$anayyYBt(TlccWnWbmWyzf4HKhLwD{f29*D?snU?m{3CsFI?rHUxsF4BmU(#s`1@ zd#o}BUPL_Q^gVT4Y&^Zq-K`;N=AN!jE}l;I7W7`$?jH6o&iq`0T>KpLcAlQD9-`db zFaCQ0my5eC_s~h(3E1S0tD=Di1VU_n^@~^Xq}Uz;Vfm^gE3NC3xtrzh`gHv4w0%8L zN#-XrFJ5Q$?R)X`7UVB(qMw%Br6_x92v5S1mZ@)-k5_*m9NG+fW+diSQa(=2{i4t^ zsbPYEae_dme8$P99iU ziQ4S?h7jJaTunBzh$#K&f49i)hUATDK?`Njnk!NQiFZR}-d`WrWGA~TN2H7V0G5ep z{{Q|nH4ar%Rz_fHY593C%j>)SRGq!fpriPojeI*7m+qbES{x4d#x~m*)qXmrqk;bX z8D?T)vaz-G^=k;hng60Im7b~Z!|y+S;O6FHBDp@_mdvSK@K3)Tfi?;XdeU~W>yn?J zf1TfU@LOfz$>V=>7pL<>0^8u@1xg9~`429_+S?r`xj6KzAXjVp)A$d*5^zHxg3dEx zqZ&`(#hLDRZ3faq#D0Fd{z11i*PoN3b2y5Mib_gH=YBG`*`OJ=$UsAbn1Vz9%L^^5 zqqTwaOoLjR#XsAX3JBOuNP+gF8LuBNu5KlYn%{M|ev*+Q5{`RCnP6e(Gym!oU0wZt z{-`hM@n{TgR49Y{`WGXY))3#LHS>v&2Ewa}I#u9(%iv=w8y=7KL2H+`Gn>I>L8qxN z=YdZwqpDl|Piy}C@%uGxo5R~h<$u`AI$dLp^&IkFd9N@PLH<~uJ;@@9x4~hY-Rtje zBjsw4P<+74=B0?oQ?uUl15}nAB)6*u2h|&1Zco%LGrqrFR#s;DAYdO4Z2g?4r${ZM zYcBBbi!Lh5aM`y|LPDM{s=xaf;_3CAph56qTB6$8LD5Kwvy}w7Pi2-WZRw=g6mHu| zV-Gd?AMpY-w6s<(?H7W7yPy2)5ET;>=*AD0rikpMvW$9|pwtj>=Kc$8#t*Lh{GfXp z9H#*SX8l1oqTH}PqTHZ%Eo{$)u}2T%zt@^F>yG6#i2YB5_U7Aj;6djHADf#qcm*pi z_xD`~k0LtW$tF@n-VAJi0NJ1O-$R3p+TGp#^k=K=y(07B=dL`tNKF$HC?u87`fhqg zMzza)TgyK$HZmD;It9k}QuHKJMn*rh=CQKcgtJ~dQ*R1YQm#SR+1d9`Dudt}PcA&a zyK%SuW-L-od)wr(ehrfC|5GH>t&3Xt?@lcqL@)yy9UTpME#k4Z@a?|F4alciXU~@} z(Z$8ZaYmf5&S64Gw$IWX)eJ$X+28Mzd~{5X&-C;{YlkFh$jQm=yZu^Cg=vW(QXCXW zVOmtD1s=~oYEIJ@D)r*~;HFfPIdB(IED;v=snG$)NoTt*L6MIuK3xL|3%<#iYiw+c zZ1u9Y^W7SoWi=I7^A4Z*@i6lDMt-d8*=mYqcMSaeqTX?Gsrbo-{ouCKR23cugGm)~ zp$pp0@}85{)1zD)%83Oja4=cf{?AYM=~MH=m0mjshp#<7w*&WsACR4P#qfq~2zviC z7C)WwP%PBmKMU|V8P|JBQ_q_1b8XVppYyV{xtWG5g@Dr774P%s&#tRUdRs*tM0Da| z?f*_HKP|i^xZ93n)DE+0_TKCIUhn93d2wocK~rPXw6VD{WA ze%nD0@*V6mF)`64=rY$&Ww}$BVrr3M?0$zJ6vF|FuEBD*XA;Y)WLa#i9i2@*)idc7 z6&0OY>WrLzIcd_()%M$BfLB67qJR0Is-r{t-*+{k*>B&!f7f?$;Z`Zs-T?)`YgBC! zvexqcJt@Gr;%c*hhbam{335f61KJ zsEbXFprxQAkk{7W9(VfrhpfOc5SNvg4+Q3S$5~9xzPWzOr*sjVra8#NkHy8T#ck68 zX8_5pinIOLX<#smYW=8k>oijbScTEb3 zyxwBU4SBxSpQiuW^U>U^QxnLS<=7`Nk=$)m&W$u6As_2ij2%0hJv$sPN2BpHBu>b# z>SfX_2o6%U)@ERY_Gl$R!vf$?NmjB%`NMae}{*vE{Ha+t9{eta;y z7f3lI`IqCe{b%!@q|=WE=w9n7T@LeOxx@PAwKbb;2jT6HwLG?iv;q4aw?s|`*04Io z>Ya^kC!Avw6JHly7Y?!9>w;;!EqR)CEJ6goFC}yV>b!XI!fClHI*PZ;H0a_bK7A!! zDS($NnAu6vGgb1hY-~)q4A@_g_8L)QtrnW|3FZ}~qc(Xt{*)t0xmuUK)A`dPzSr!_ zN%D12DxJf-!)RoS?InOW1Hcp8+uO@~tO-hjFSm4m0cLO<{84L5oWW~}PeV;@4)ED# z0M_8Ssogc@BZ~<77x1e#=i(z(qk(P&IxWmpHcg3NhCA>4cvRzTog`X*8sui*&(GUj zT~oi`O$`r|SUQRGZSCw>ZBJG{$-AsgB|~Cf{rz>2^W<#hzM$`+)vtr@2gPvK?TmpG zz&IvefGuhjnZJT8@1k+BD$}bR^fl$JqO9y4h#uYi1~QZKqiHLw*XkZ%v#Wv&3flc% zzp=fI84CJ$ROfM(oKaCx3xi^N-$2IQf%q)Ex#c?NyS`Z6O@~q8ZoLtTd85l7^5EZo zs4&P=yr`5%#@@3p0SDfK^r!M(Z~r^H$FkrYslf30#q4Ktq4@y*9WSxc($am95c!3L zA?@wv7<~QmiMlZRt+5ZEwkw)>KveY0pVc)qEP#MmJsK*iP7*DwB^zmyC-h%|c+j@joJr(j+?9jC}# zWrt&&@febTyavmzM8LB$@(;Rq8)w`JxLWqVe!anVEyT{}bk=*h{qlkvT&0sB4W0iE zuWF8@#QJ>y8un;?s9TQGM znu)dqrH$5PbJui5o^{-M@VqzvVXEK@*xF!Lshh@maTdtgAmWGaLH%@3j4B693jM0mlzRBI~rj z8rv^+ODclKpXyaB(D}-qw#qWP=}vMaTJiP9_gdj9iV+-yg=ULvP!AnV*|RU#iJy;` zK22YBeEIUFeyxpK2lP|Fj)p`?2mz%rZNCEKYIw-Q93qT)I zWk1R?@RRewt7B4i;l&$}*F)+aOr4s`)Sja1=kx^W3kyT)`m%{IHE&VF?N zyJICD1cgFDqFk;Wfc&upiCs1Ap+E02zmyoD9AAdurR- zMQxk;Cg@_@?9<7F(ZPrc_d%AaX~2Qp75xGwCkI#;Bug+5aEC|9TqcH|*T<3e`c%s8 zU$tOGI+{ok0AWtEpOY^CEd&!={Qb4-Doh*Jy&Pg}n9|qR*Ai3vV^@(S;rtX7a**Uv zKY#VBzg__+WoDfO+%2zxW@JcHeanl=IbUI&YI`Nt;4&X$((GkESz)4Z-WW^vKezW5 z)_0|CL3-~U0BAg#1WbYZ^%47@>jxiM%#W44201?)3X%s9ZfIoWwiM24F_bM4V8r9* z(mvblonKRPFU8dFQQ%R={6d0;q%=Lrm%~+Twb!m8-Pi7AH*i+Fsq>*DRXmA-A^C`Y zHEEGPpgCL453!%tv;AF{qlNOSt4WDMuM5q%2HTjdmp&~+_)Aq7H4;hY?1g#IFal2V z0ifjuGzH^(#oUGl3Lpi7J1sigy5XT$S6`eHD4L$0US-vLFK`a1)_nlHM*@w+lE3Lo z%gUbd?uXx~Xj+2-mA}q5-b?)7QJ|@xFuJPA+-GZS|J%OhznU8Qy|+h9 zz8`nqFCF-}{ySUGudTgrT1hD&AOLv{&_|d3W@P8rOG!)Bqg78)Edzr)T~tJH(RWhx zuXlemE`$1z6Q-54xje!p=Fq7?TTQu>ISk&$#1Q$2)9LB~DP(5;UX^7OQLtCQP@eP@ z7UQ^a;@5=2*(EwE_FVe2hy{S4sD3cFwJq)F1+M5~4mbSVnQ1 z=zwoyV{%}(s5dmPk0BoJAp-Jp&Sx2_(8LT=Zk~-vP#3)e&`^Od zO;(&PwA11ZW^th_CESWHT$T~9i;9-$7Qjx)i(?%VCT`nAR0xxUqPj9H{<^J3G)4UR3X&+_<0n=d&T{^ur?r0zAo}S@JoJtAI(rG z)ki*3RZ|o1*h94}wyybym8RD!{(-FxR8CA>8>%v$0)4?Y>nvnwXgEAP45^$XcplIg z3xIxhd6gknn2=EmPIL?G$fA)=ST=q)XUNuPDv+bM2rXQI7AKLG&rm@|cD_Z15+${w z)YQ~c#eHk!F;et#6Q5T5Y~LqjXdxxU`t>l{r>pT{Y>(O5eSET%3xB6%9w!AQ`?LL# z0(1d(7pK!0biKr?vp^rEGk-&Ak8x(8=wiDOu)foDdecOk-fnBjo};5xMMe1hHvLj+ zYSE7n{oN^Y?S(Ta{<|G6&&b__hII`!=6k<0#bWm zU;y%^(x_s?UQwTeLXt*>v}oL6Rh?_yzyG5-(5LAr3yfX8p+G*Z+gsI`)Z5@rfG`7% zu#R1cZRm7B8sj%rrU$v6JHz{EZ)@v^fcO_&g%3p)5Xuga4S{>p&W)BM1xmMXTzklC z>BZ4ofSy7os6$2$C+^8#K(^xRcSiI zL?b?jLkpZj3)iryKtIrvoSdB4+1d3>8TE82FKK_(`x#ww>g?nsi-4{2yRP=(?AYYj z^H58}J*qHmgsz!cCH1rwvJTliJ80{ugaIX7JQ|Kd;mb0T>e%Unz74zw4IbprCSU7b z+D=ts!1VCLD4>3UKz44-2wnAC(Rs$OCi3yw<4kqdOm*8q*jH|`JQUgV2KB~!J4LM$ z14Nx+xjl>yng{Lk(*H>tjyg-cla$U)1JeSnAg%X|o85~SA)}isFSV!NC5MKsOi@IJ zP<|ApB?2Ork&19lqTsS->BJ8=GV(S#nL;>Ay)93A?2!?ZQf<7a`hQy5*8?`lmoEk6 z6%??6Q;LP0;OB}#WEqWvjUN#}(k*4h>VE8&eE85YHKji-lze8##we7$g4I1Wa%giZ zxiz)xl|7j|oDsh+D|nsUmUh!S0yX0-WXv_mYcgqg7l<)kUESQ$(ugN^O4-Ie1$eEj zj*8Jm*wwe#RrbGOBhHQad3o28l9H+n%Z-r|vnxt)DH=RHLor=gaws>=cg;Rzf-K|v zWRDxUBB*agJqi`osw@dDLhS40BJT!lg0ZVhe>TR;@s=H3PY`5BG8T*`A8k3kOYq}R z(H3$c8!dTo?PB#`EXmN`KWR!x2Y^m;Q2R&upWH*M55|R8uz9G$6)Z|9acue8CbUrB zQ~Bftb09s*0`~Z}mj34n+*(E(hbHoo0~_V`=nlhpBhInodEArcv_6y->m=4UnZ}}{ zX-c#2<@>r!B8c~nt8kQ$c*XRpvZp)0{f1Zb;(?D3Qt2P-TzmKOqLPRc=7EftYX3Ebpnf_3Nu zM%}H>54RYq#p#Fv&;V2fS_mOQG~TME`{-__A~Ok5DBx5m@pPj`S9R;Padd`&X`9CE4EMw0xf9^pw-|mf z*ek9-efG=(6y|4Gas)TcoMs=k<25FMQ1@|~av{mxkl((D8}7oiu>3-g&c%G{VJ!E( zx+Wnb&iVwF9c>r zvCW~v1fG7gi^-`Lw*hmBZS zy?DVHn=LDb$Us@S_<7ki{_vgF1g7DTSYI1qF7vAfNCyTh~623PhsP-qPW&sI?J^OW~KxyGkFSL<%86eYz z$@E@ZkC3pz%>>2s$VdSj7;?%i^;zGL`cpN#V>QY{7ki|{Cjng@A>ya^9`nU9Fu6DJ){nsqE_)#u_3>DQ6LC*`43#|3?^NUku5r9R6VZ8Z;ec6*_fUyYNXv-+d z6zrLy0Y;XwLx8!My;j#c>eAU@9P)iYE?vruJGn?hC$tp&QNJDK_M>exb z!at;bzNYlGs5+T-?DJ4?SI6g@rKRi$1ft-fyV3%%_jYERDS;Omkj2LNFrO!n={|TgGB#a`X&!Jp2j|rAJi_0Hx)ItG}snmw-e_{h#w3*jb#{L z7Xmht?(gOSg}qGo+fWNP;gwBMx%utfkd18VWuPaA8YH|m?vsR$NP;R003wobS)T#w z+<_C#3qycz;Eyn^`Y6fku3R}NcD7gP!FO{ruGn}-h!V0??qLZetHOX?Y+m)o3KnOl zdx|!P_;9k{&@IqDNYUp~!;+ZLnzvuQdIfn6Bo=_X!x+64MHX@@%iAF` z0Oh*Be1XifR2heNFH^x_Z-4Brc@U+INGZgh#>nSi{mcBGkS-DvItPMlTA4z*udU1U zL@15cWH1P_S;&DhRaRh9Xk zG%z|Xs;PkGQZYTRTZaj7kFj8u#qwj z2~g^x7_?YTFKCEN@at;lyqe+a#iL|H{dhz|Z&zZ|dpOD=>AZG$~Xeug3|K1m8+8rL&;7(FLFmUlLQZ+4Bb#(fm1&;jd z&)H_&{QM9+L-GbYj3t=ccE!L&s`*J_Y9qPhq#`Ceo32epW~K|wlk)rBCrN}`9HWJA zr07T&n1fOhX;@q|2Y$yb$sA(H?=8NArU{#{p3Q7)vHk+IT`0(r86v!Wc!(W-76LIs z1U-RNiz@~?m72b1FVB1))vKCcM{|&P0I)v6 zM`&-H)!>ZAllrZQPB!X@^ExdSMO0heul2pu)M}b@H90q}uo{Vribzg^m!noI9=Q6* zya8t$zoYrFI`JfT0L~Uv(OC111J>uo=AfuT%WqG0`^N8Uw|Vc9r{K~X7BW$DWKTzG zcp@x%q*iMnTOoh`{8>2gfk@q#NdC(BC;V-mT?D%vw9`&!4jsbS2OQXrU9aMDS<;l~ zB!5l^zO*s2WvrLt=e`87DBdXGbzlCw2&h3ZD#93m!sCr*`NLNTw?lvyiA?LWF_&|w zMX?&R%07iBqKxvGh51;Jh2D-OQxYPoVXS11LTOKEwzyO)3>KhMJ(&7lrLr+qvQjvn ze^XSd=q+5dVIv#isKyGWX;s9b4sUB7uR3`tKE*FAMK3}hmMj0k^7LwweKay{nfp&J}p2S03N!tCHyswjLOo!<*qcDcDRZ#{-k3jfxX7*%F4Y=|_kpCQmX zG#;$P9bSz{08?*P43Jmq3=Ydi{|+OBq=%=ep4C6+2?I4!ffiS>FB(L-JErYua)eRb z3B^#+(thjd31d-sv}KDAJ=xJT_C>=ne!o(=eXaQyJxaOFWywmeLTKu(FeW_Gn7F6wc z<0%|ch(<52N+ZM%v^;m;ug@AV z+Np^GEokO%Y;k^v08Of^d1nVKm3&%fGKGH_{oH_ReCrL?WP1k&=25T_O{KjKLqEBx z)v#0>lJ-b1VLrZiEhMiHYjJFU&4Y(=ZIP6m(l@$};;x{O|HX95rZJ8vdZG%5UKs>m z`oRR&QL`ueQT)AFews4}wiHZQulE<@lM;8L9YsX{N{`Km2C)HBq+S}7;dvWQIu;Er z1U1*(&~tNH*O{JWO75GfVy1u)R+Up4HWDM?j#Nl6O+ysaKwC>@IEb9<4bQyn{II5- zqED%-y@q#Spu07Jb{dWa1Q^VDk@83;ncE@l!Ky)ei<)GZgm2{&(sa4}G=y*YCj)xc z6ag}V*R@ZHhD+hTQ##6LXiMlckZaPo=MA(Ep{<=Gl)f9z6i{IQ%s4j|1tuc;lOLzN zG5|r`x5Y3ix5m@a{}r{=3TUk% zh(hys;3iJ=*3i|}Xhy$6&ZU%f!-#llYMq29&$I zFrN%ZqWBo(k%s~+(;l_CLN&eeEYM9uo2jiz&7PD^+q^{JnxM2RX(3XBO4O~bc$=c{ zsNIoE{iP-5l1Pf`1>?%PkP5S(ae;@28h=DGYUAO3M$>7Jx(VzQ-qt*8a*wW~l5w#@ zP9h8yFf_`L&qV3=!m`70Vnz&AxFvN&T3w$4#_5cSpB^y$S%WHENG>7m*Li_s#v4^U zm7-%328WWqU{4Y(zU-SLwYja`G`oiIOjX#Lm}N<0Yw9%HH=<4@S{ynFPM3u$+`^*v z=$M@&@a!7(`dDH}qmgMt(d8*c;JiT!JdJ z3q>g;`Wf+suQ0{6Tw|QKE2WLYYFizSOKTtx{6&})LJlP;^Uwx6fSp8KL>%luCr%2D zleFp=a-tNvQK;Cr=$e|xf!v9HbF9Rh?mJKv{ORspo?>9IDaI8|d&cd?F+SqAXB#x7 zL}IjSF!6S5t2{=`lRJ(2!fNX&Ut@aihZ}ox|I2i-Wm-$=FG6R-@14m{0Jcq#QO4wt z#>H@xiy>Oji9*RqA%g-P^m}vHXt{)iFqSeW?#OrI1^r&oK3q6J+6Ua;S6~&Oah`pr z2HEEkkFu#oiVT(MStM6pN&Sb_Zj~*MN`-?{vAxum_CxrTlTT8_&g@dR?|2oUf5-6} zrY*ZS#hgh{sY$}tzBk13CjZJ692q9`QiOXI4ayHnY-#niIr+e?E8>%lTjM|hV#zyi zk%m9XxYHUR!GzPCiN&eHY|_Pr??F3_)9pg#6_E1u#joAfL`U4bnoabO`9LV3;-ex7 z`xjmJPk~4K;NI4501{Y#s@dYy!1n~Iuj~#ovuT75f zlg2)37Hh2mFSj1D+mbbvR3+_#Tj!ACcr~;Fa<6pn>8XJWy1A*^%d$0Xc z^4HJVNZ^!#MXSm)0Q>B7}w4%#he!wphMCY?_Z5DukncIUA<~6 k{NEq<`meFc!X=*5v}%@=g5Cr0h#N#nPF=P_=K0(I2dM&I{Qv*} literal 9406 zcmaiabyQSe)b>!)Eg{`q(v1QN5+e+yG)Q+0NC}99fONwUN(?C?-5^pTIUvGFr|_de z8otB(t@W+-{q@e8J2UIfx#ym9_TJBa_H%Bu4pfbpfQ|qHfe=4aSA~J^YH;}C-2_5Bb#Z=78ijLvUrYo}*o zcjmr(e)gs4UtRwW%`VYTBZ#|T#V*Y*;?bC(HXsnZU#^jgNpYX-7)y|apiYOUfW@Jr zRG)yHm{b25-{V*fe0=kHa=+MvFfNXO5nXJkptgSF)jPQbZbiq-5Dif|JR>i3Ef}6mg?*4tLt?A{RKlU zfk|+-&wErMO2YY9L2E00Zf@?`5@`re$k3XX-)fTD*!+CF?NIvCjD3Dur&)Ud6}rK- zXSUwC#%oPO{^+Ne|4zsGdQKBKY64E2Dvj$2+&ix&AuLP@D>s*WYWDWrvT|~s(`K(f zc6Q!g2zMxFK7(Q`P8nJBW=lA8C@Cl?KtkPvR_Gnv+@6AgwY0X@1fIJ2Yt;nmQoncn zt}Qjk5zin4gLisJ3n(Rg`0)NoEOqp&{&;-W@UyAvU`|QbSq{;x53~#n_p7R^mM6>f zl<`=7cV;;|4%4dfSi|3|vVE$k&}=&zkpq7SS#$`@&dz@Si$X?_DRWTZKa`gj2q#;< zT)6G{-SMV%V9g7(`uE=qJ5$Kj!BEe=Z!6O$kn{bo>viX)8A8^FK<@SK_h?G))xA-rTltQE_0=z#ZqW-j z)D=e6eapSE2NA+S7~8+9upp*Q9vH5!u3nwJu{0~+A_yU&Ic_cZ!tKWtUd;>_mzM|q zN;kUMO(^7Zc3|=mxjj{2MJE4MaqfZPZVovih45ab>4Pt?(S0WwV&pZDZd{Xfgb!aaUWdB58RdUTzGQ| zTxD}_k0$?WmAe;sZg1}Ed0wWV{l_&v+lIi5%(rL#y%#6jy<=mE>cueY)7`n{ntmoq zWxRvdg=^>^5FBhw39&Y!yuQ1Cc(u(XEV*RNYVG2Ff3=N$-)qfA5&d2}M>3lEdQ%Pf zPC#Jb6TUPGaPfxH?Mrbfso1Jg4c&INW~UEhX@vU(8~=nY+}@l*LVx`- zL@0%r-^`;>@4#+CC>}&VUyPtJe`wl*WW{`Lj1`ZSCA`bIx;=7aWJL6fj`>e)WUKGaw~s1Oi9>6N zgEk(Z%^+H%teK*n2XgW2hj+rG+3gJRte3|Gk(7+==;-*=f0ryS|Lve|(t(AJH+2Edfgb!dt}8gU5YU28*{5a5yl;65fgFPn zGJ=TxW7KodnP!HN6=)^;m>CayYK_5f2t7~@ z($k~tI4%~py1qE^`!{2MaCJ1g(o17;hbSHA!|u?sgf!(`6u!Rx5tE!R5xUX6^W!U0 z2I){NT#`i)ZRbS`OmB{L?*jIBqdT)(`-veKqRgJ%&5nCW&z&FH3{nK04_Wl-Jy(dx zzd1&x%szPVpnGeo;$TwmIR>p%?vh87=vtud-CeYtyZ)W6Bou<2NJuTvb%)1cm-9Z; zX2!`Fi}7;1T@i#d`&I652(`7f{Wd>F?azz`8{PzOS2bD>CUYLvPVuCo{(cAc34CXy z$9Q&|g^D5AyR#y|$br3u^O4scS7)Bmxg%}KZS-$PH+s?qP3|nb407Wzf8&v#{9)~! zTcZH|aX`DshgprLNtxV7Peu=Wg@eh3+x9U@nB;jHi(zHS&N@|hAwxt;IskiLg7y@@ABN}kgd*-V}+!tSM@Fm^;yqDW;!pcAYX}|xL zH0aT8qx~q8fN7J?P5bpfw6w<}1SG;j*VEO(lqPV()_9}qE!Nqvd$8ErjoVxcReu6= z^;T%r$Y1QOdSahR0jHs*ib9ge|CNFy6MDPZ#Q2mIEU6xZ)V}^3RN}Y{{JjVGEOG0c z;@>74(P$6p52|c$Ria3iz&*WuMd}}4ue)Z@OU>?Td4WazB@d0RfXl{#W`6SV(-t9& z0DG#9q5Q@MC1DnRLK!LOvcltqz0+5_f0`YfoRk9tTTKIalhj!Ore zFdw+503e#3I@Zd?h3GF_HUSchC3AiiQl;F^bd%*R8*&pQE-r34^VRl6odY?@c(5}4 zc>-x=JaGvL)?8>|eSLkoOs?iFd@CGG-k?GV4FH-o?k0)HO6{K%eo* zASH8%@7CD~iZt-^vFo#|?OyT#eVhd;0?7ZFC5AgZJe;WzD5-@?y`+o8i0WaDZb0vd z5MhA}!Ry5rON^^vC5R=M-=Gc5X&az?{hKO+aw-DPt&;$&>=M%`R}hUU(h@`}4Ud&y z5F*k|(KY9h3EsJV1{IsWTcBn}}p1oCyJ^1f-l^S8a+NX z7TVAt`7>XMx!IHi46ub*8ILv+BV!0BXE?IfesmdlG&5TgUO+$qm#3_}ylEn;Y~R#J zQ8;mr8)Kz+sKiktzp}7UMe(4-@te4|jp&2FMoA?F4eAB-baZ#z)j^z~bxvs5%EE%# zMUox?<)(=K4!78?3zPPdW&m?DuckR#AMW{TJ2dwD_j?f28rq0qyW$*xeXAjsY)p<$ zPT#<+$>W|{(LQBDMq05@ME~SLqWIdF5^#e%nZY7~>s3T(Q@gYJS01aW;Zh5{fFM!4 zgn5PIJfc}d;bey)LK!MT8ADmnej4WiO9j?1 zQJur%VEG9V2?>-N#};E+1KjBCBZyE2A-GY>v^GM>q=5)m_}@2veab zKY1aX2egegpfwm|&M;UF+Q_$HLe{{%`4jn2@&LFx@bkZLNi%N0Bo3b>3dPLsA4W7YvESviR7c^z`%x-K4=} zjEsy9E-tAESq73pM*-@TS;>qc5K*r{=)k(D@vs-+vcS{G@vw_nQi?T^D8S5U>FAUN zs8ysHp1QjWe_Iln_gjf;dvd)g>+`Zixs;%>8-&GmFbIoqWme!(79~v}(1R42O@(L> zQ2Y5~au6IiG_>3-ba8As!x|V|!EM@2^71HFRyb&%ow%;T`mtHz}Hd*`1#)Dd5=g*4Kt>o5G9UF{&R(yAOK z62LCFnD)Vgtkg(;Za$$l;AD5KYZi@u82HbnuD-r|$CsT9uWRLCfb-;4O(q-zjPWYC zQ{2j}(S+c^lcpIL!wYy^T-@OxS8b*i7vTCu6~H4G5B$a^Cc@Iwsf$pKKXc`1R8&-? zeYWnK2kuCGh>!oJ%B9@T+iZhC`N@;C&Vjd(L>cODYS@El)gno*oo%mX5rAlpy$*|P z)Um8d>gsE(;h`XWr?(@fx6=>}b#;~=9v&3Pw8i@6Z=m%ThjF&Mk`7?Zi#ET93?xxO zw^-yVbfGEQ%Ksgm7a6kX*f8K>+rSiZp_<(#{${B;9D=L9t$=f~goiHdsmU{`2~fWq zS}PZ)vVBK|gbxEhiB`o_#*+qS=WVu2O~w`(T%OtS6-2Iv>0V0aXt(%-h$?Yp%NXk3 zIC^HQ?+E4RYU{Qn6BHB#5d%;-iHK$SK-xtz2aZ2bsq;N&*e*$n3)BTfz`92<2Yw8S z`NGflwNa`dtfU#zFURB9iM5S0ewy>8CBG3T!YXmJ1~~!L3w>Q(5FxXc@V9T@YK)6= z0%m;&r?qy&6J8n}ip-S-+a;6fJxh<+l0xqmXLiT;ff{fwL1Zdy1&a*6=hqTvS_e!4 z_wljv@c3elFch#fsj%OM@O0;NaPO-elnTZt9#<5)Js$5~$07r+-`Oi8?Ze!3awDElogPxa$=Va}zIu zM|9=4 z2MZY2;dNVzBa1V?0KvX}qOlOOf!~boI*RLB?Z(`#K6G7G+;@%WdgFYPb)lN%Cn0>h z>LG386mwVsIs7S;$gEY?rW+IMteHo-vEw1s#Kz*$X(Sk1Qe#*X zF=4+;SGJqswmKF=8OB#x4mn!!f63MC0+6RnzxMLiz-P0mO|fprC*ekM0nPsG%gvE2jbW{1vKgTnyJfs0 zC-QJaxsN~d86E?1jD7{$($>JQ;QJe>MDYN6v6B+n_B-01MgR2OS4DZO$3nP}zjDuU zkyHs#__qOVB76!Ozu?Nxj2E8+m!mD+2ndFK|-C(sd0)S71b+Z8Q2A@FXxkDmJNy(KoyYFSw+rulzKhpStM35pt;Q60#>k;3+ z{$?f1!6##l*@ThDVuEl)^7=_YJHRzj4|gZ0ZLbusU4zcR@rP?&~b26#_n8~AJAT2UExe0>T6N)D%SG{jzwC8 zm$$L+l25bg-SpWFoYK2u93+ZA(JvS68D?iWW9_;hT>HhR&K7z%&AG`ed4R0jCn3C% zx?vT|i$x)TL}f|og~c1pi8#d;#8M6rqZEj~mu>mtv4RY=cytc2gfaH%>yQs?s>Ju^ z`K7t!VJ;_mu?iN@KVDHqNd|wQJKMhngvGpCYBV45tQ3J+{E{h;8~3nQu1)r*M(xDI zk^OaCI3-50HxWt*6QyQozpo`^axCB2ec z$e(U9j9p(lpMc2-V)N%)WLW8Rk5*mu{xMrBy^pk|F{d-o)n=G_2vYUB8If?3K4H1f zTe@5|DXwa_6@ObjjRM^!fR-#flC-O1rG{dk6SS<*|t)VaG1KjWT6 z-^biY4bM2-SzE9Buczk^JTbi>ls!#@l_FXl14P*Dij02#udUAA7iOJ+Rel;T{f~yq zi?Zon1$F6q=4o#Dv`C-5Sx(7Ioxm+@T`J3pmCB1Jr#>w*g01_9Z~`1^8=FrM;mVaq$jTsvDXF3^YX=9s|51qnm1UzP`tj)f#n#dJAxuw< zc!ZZKNv|Ca*x(HiaDQ0J&=ReCmbVzx#Wjte-(vH-YNH2ffa2hHdwq%liKP})=D8mR z_z-ni33gfzD#qD7;1eSWE+_<_s;OaU<@HwlI@+2omh_=}jEtUIX--hjZ%!}34c~ZQ zfq~F77q0L!-kj^{{prIxQXQpt=zp$IbstGJbcC5{lP8u%ba8R9>aKtGjWMWR;oAv; z;Hl5~V*lnQ4`ADtwD*inOqP6G*HoU8(w%2a0b_l^di2?I31kS2aZnCH9tkDkd>|!C z94%`=_EAQR3@2c4nL=*565`{Rug;G^MF(WV5qh&K4kQ)f?{G5FYPDWjQ$O}3^}PM$ zz3*rk`WLq3V8gHTVlXMP|_0Lp;Zh!&)oTukz;#}^*vWQWeVNy#&jf~w@RS?fJk zZ0nlL`-Uy|j6cw4A}+pq5uWXB1-F$G(Qc%srxj<0?MhT_=IFsiL1$}ln0)@ z1B7AFMpQVrH{ULo)S2q!@M!y@2VIPFIk4(=YdUPFkJaQph;uKK?5Xk8(|$+R6pO9% zb9+W)-Byz9k3MHUxXO^;lisJl)h{tApEQnbMG2NWvfrm8 z_=PX0aKLfg{O3%W&ZycvZHCl~7gm-UGE_8M~MQP|koh@%Al-DcCiMv>Hfb zKPUUNt6b%Vy^v4pb4ZU+=KwN3c|w12ByOUSw-#ys^mbMDIbgQh7mY>!=OVs9XdM{9 z163igR^0$FrP%^5Z{@>s7+WY(&e}Qb&M#VS8I)=y$&OZcB2^ zVRm5Py||dsXVXEGs1I@{5ne4@WW2YdAxKDay3i*oR$e~t?!{m>g&=XPS0&xJ%mYY{ zrQ#3Dpt$0ocnpeV<&TL1le#i%58lB9Xz}xnxxYy`0|w1sXyR#1`HgT>46;S3bwhUE zc|X;(`en_;PkFI!EHy=w7g9vTTA3?OWTs&w6fZqBj&O#0%Ua_2sl6TyaMsezazlq) z2Ybe)6?U{>o*~EwS0ENr|)&vA>XL!C}+%<{+A z!nvmOB=^x%VIA(VtMv)&=loSe%uP|bt6 zuf-PYx9@Ms4n#zX<6C%HOnq$`jnJYa{k_Ssx_zjQAPwJ~)m2L@$B{j%7Q*PFajT)A z-h~~wZYgfrx7e=+Q>~=pzEAU_=UYB9eoHxwi&J@}C6xGQ`YVB?{&4cpnvFOh#H)cl zO}0AqDO(!)Se4qW z^7hjx^QxAS>hNNUqQ(>!8H&!~2a0mbbOT-p*sA{sHK)bXTGyZJB&#${v_^p7 zmr>OYvJ=hv>TUc_{{blj93vg<-^BqrDWN|_3Rg2@YXS!@d#g>Oi97lfNE2)Qd=-i!@pwuN8dV4vb-hC zY^calzPWo(40NaBl@VSZL;Y4%A*E=|VZ||f#Td2DaYBMJrIuGi5no%0uW*JYmtfwN zrhZjgofjgTFz>Az(?ZxAVFRo2<20u?gk+Ae(G_LS|8WCD z2+~}j$w85{tIVnEyJW!lPnoOi1zWp*>eo&ohk~wqp~wB@-3E(`kE_xWGz%=XX^PSU z%!nG5<5Azgle>uM8$aVC|FkpP|YI*Rpf^0{^ z9w5LbWv{q!mUM-|S0B1iwLg;$7si~Alzyn8?9S* PCDoh&Px2!116^?ow_n>l|^hkt)QgPneYHwijYVDN5Z_cWrCO6m{Kt2!#O?wKV9wZAFclV9hZjPfe@FFOM} z%r0r&O9pIs$V_XPsb~^^uI!S)TzIuHq=8RHaPH=0Vp@0~oqriu zocF5bqYOUpbAt#hjP<^VSOn!WV>sAfqf-i94%Cc~GPwv2ei1XWPVZI~;z z`BX{CyYjMzwyqwzfoc>0KPt6{P{NnoCm)fn2t6Nhn8Hm!-EEw;u{m4m=lUm7 z;gRHKLKzG{is-*fd@v|itI8kKR{D7KgpK@e<6$jf^R>BlAB|dBIw#b%A===5jHgDn zRL<}`8PbWw2sdv$T9pl`8rk1@H&R3?R&UcOsr*mB0JXwjaZ7p*`|ug4&OoArmE8ww zb#`|4YJ_*U(DD5Wsf2%poJE^KAj^YX*4^yAF*ZHT9g%_zIExW)s}>{9aSghb>Rcer zAH}Vn=AVAUpQdMQp6<0(Zcubox=S_6kr-J#X(OB42R0NvcK^s6|N95TzxDPq)Q<0v z5&=m?@Hjcil+=o{I(qQuK~12nVMYeWi!6!Rj1ld3TuJKKK+N+WqWG)jUjNR5{tfr0 zw81-jGs|*H%Mtz!@tolwILGhx0Qy^Y29Qv-8e7 zA)BW23=VFX$5bLEY-PGh6@F z3lxp*LFc0P?%i8OPo6J(w70jX$S#15X&Q?la-f{8^u@hs_TmJa4enN;VpV1#8}P>R zyLca_czAlJD+dMwq1^M|e=ia8{uJX5_pz|B-ajpba7DtZ0pUcVq5&g%!~$tV10an7 z8$94uPCgHa?WfL83j$%mFWli>VB5A1(E%Qc0O~xwq)QjrY`xPxCnvE%QL}*a&6%?4 zDfe5>iZq~;ul=9`2pI1sGX1mf)4w6IH&fk4PK)RhguYYlk#5D|dq zj^dsa@B;T%G4VEZxA*q7Mm>S(SbKZ8xO=-e*|7RNL3ug3yNL=)2#WHvI(mD1cu5Nh zx&Hqj2)d&jgvO3Lj=>DvX!+S*9=a-mHB@vOv8x3B*5-6gyl()LD^p^2s$0;r2Ws1Ud5+Yv8NBFY0 z9vLx+$EXUHsNATCpjKy9VJ9T_$^CIy-M&4aC%b-ewY+$7K0hSwNu4OlxSssrWN&V) z4ZE-?8Aple3JWKR*fuB##UrF6QS-ZN#Lu++Os~!(Vp_4Uo63Ul*3JLz!+2i0g_9E> z&eWmz!w;&>V%q~x^SxMFefL$>)Ck)wggUNv-81<`N%0o{eE(SMv5eq<)IgLdf8Atu z^20Wf?RNa@4}LVIcRj9>#T&H=eRIw(0<^e68~)_ zFE7!(rd9GaR5P~o%qjHS<-+sRc}I8mOqPPN=mF+HQb^K}-2p}@V)+Q^=hy6;&VSQclJsB#<9|zE_j$)qc7dV!5-}X?b}N zEl+zo=cPOJ-l5?61GB*04@G*=n8|Y8`2K!X&x0jJwg}4k`FZwabt1Ni&8;meQTq`} zmY{<$N<<9H{k@8&rTS)%u=2x)nSN)> z(dB#H<-~@cga%@1cp}C&Xn2shlnA23Vasa+mxVS{`Y3Q>(c8CLbAkKq2qL!Yqs-12 z;QOC|9m8_US&(p@#d+zruwvIS=(|IjM;uT~BM;qrjr{+K9N!x7>^*B`YwIc19av}Pe!$EfUiEAdXIF}VwV zIc)Y=;p^9m%=hz<90g;=dQjGMP3yh6W>j|d_Mm+|CBn+iPFb*?B;&lT*^K;gqsu3u z;KQ3tGJcdF7Xt1r1Yfu|U&iv}cj*QnrD7M{b#*DKn^s89pI={|gGj?|+xPa|dRIMz zj#3NoA>Q8JOS&O{XuQqU_|m&?3blpW4kQdcY4zFd9vmb(I+ytu`sR`9+BnOE@`7Ln z-#O3d%ixVXUv?();*JhxQHL+R2M59(=cDep5V_OlvE`hn)rv|=c=n??ks+6>EN3%g z!9Mx}@^t((3xBWnLp)mNf7DvzL6%y!t9xGDxVd)Jy4N!NKK{PP5~R^>J}&RRFFQRc zE~L?QHVWiQ&@aP+ZU^}b(|3c#2C^k20NZ#c!0e7eR5J%Q$w*mT{B?rJOAv{ zKmlo)_-rBcv&w#PT^$um@Y(Cj;GG{LViFRc_xIaRncbR}31qH*Pnxv)R9(*RpRSIp zvGiSET^x>uT+@8`@S*AG^F56J)$elozQ^wEk<%7|WB?^7Q!Z=1Gp@@&)1Cdh9~a4u zjWO;Zd%JWb=kW{12z4e8`h+=VaCGCy$hi^_$ED=YlVGQQ5||+J0y> zS|3WgcEj7(clBVohpv6`v0L*EUD;#WxIXr%sHj?ygf27hZ$LaYzp}afY#{!3f&N#F zT8)f%?kGy<5kQz^188SIx)1nvUYJ7^B+x1{%!Ck9a`Kf=ge<)P_`c&C&Rp+S=;&8} zf!T<5{P|XsaoJ(@33ms?4?#r4RvUQg1~AaPgUPhaFwN-%RD{ZYlJ$#-GBjpj^>R zipDoKN>Ii3^#WE^_b4<;~H=x zN#u*Oe#s8DoSd9qkOjRQi8AaTXKSs)V^oWas;YE?EdsW<0CL^ik26f#{OU{^U9ufr zU2l!a|81MA?(DP_la!3l$hbW|H^<-Tz9{#tLHo|T^@l`k`9Vh-p5Kfg=GDz_O_uio zAgX9-#XCAVQAsWa)zj0{19C_nwO0Y`;ppaeyQ-?n20(HJ1lTa}kQ<7S;^1X6;?5;O zhsQ;7w2|}OPB@T$V`3uMc5$-Xb3ARCSXRajKx5Sxcgt@njBxGfX>~J!P}@Pb|E_4V z`cmVp8{pZVBg`-e31GoX9LT|l=-3jr;O}L`1|mBa^`q5S2u!XNE1ju@6Fn(nk`pTr za$oxX{lkAhjAC?yKuF2Rmcbgey}7#HRFg-To8Kj8l7gt{Cuwt!FD{0B+5J~208%o{ zA3$kqefKQ@X?gqjSWKOp5=T#ZnpFC;1Z=W-KYON;f>T&lMnEBdd7!d;TAV1?{m!)B z&OnZd-1cy#59JRqU-fYz?)&!#@64L1)e@L+gv)OHoSnsac}ucr9NGa8yGm1VhR+;w z=_zyAOLGR+I}s4$uojw*e$isSfEqgOfGStok0tcmPAQ$d+u-Ceu|7@Poy{(Ra2vX}dFa7)X?C#|2KIt zlN;pObEwLO%$lQe;lee7c-o&1-{jID-{@|l0!e2reKj`iQ zx0Jz*>A2YIG1Qffq_Ygtzs?xOaL@ZnQ=RP0a0F68mPREPd%GiV3ON@*C}Wj{Wn_ZJ zFY2ht%U5fS{APdtJXnbrS^;FDVrWS7pz2ZNv+eK8+m?T&Gx$x}r?-Fo>Yi)%!fb$y z8vtSb`t6&sPbVQcQNJ$A47__k5OUdQTTT1rlzNDM{~sAR9CC=r6c&#Q?`lO zzRu6Tns4>xK##JcM~h7OGjdN$*S&u_e3vS?>DxLV(`VDP*RoAX9xdX#XLc4O2RLx* z`}gi$pW@0&lFCYO5<94Z%!#X4r;C}TUlNtb)`O&sjc;jX3ibi2ql#7j`r}880&A!d zU*!1sKmNqW#ev4X@RLbcUbY5RuI*y4RqFYl-zABnce5TW8`G*txY9>?BB|B2=7O-J zdd9|XsoLDh$nw`t49-uVE*}TryiEQ%JsoXWj!d80;*q8!Z=FlRMixQ2rcu?~dd9a# zM@K;giWpc8o865nf*SaV>nQ2ykcsIi31%wQnJBxv3k3uQmLBBqnn}F_a~0p85gc4S zR4_L7YqwBlr;6yY2D5xq`DmhI?Kr@ioDV|POryIha!0t57?@=orUtFd5^$6>M zlL3p59?y4})L-y*N~YmgF_K36KsdU=U|#=Mr|dkKt)}8@>Cdw*4>fcr=@3 zNxCze3DN;IjUmlhdtk9pB`+QX2Q1CmRj{87^VGL*Yz(h#)m=g6GelqpD{$BWHIrXckBFWf{jEY2^wiK3P#RClUhf0BYTvnwo)I56!~V zIdN;IZ<riFBPN7NLG**gN$8*c-V3|(%}gIYN{Zl-uhS9QO2 zVgOgCB9E>MICkbYZ=rpyM|6CA{8fw$TnW5)`}o*rZ3FAiTR6vpr^nu)+)(CZ(&Ehv z;$c%qpEATr+N1DVPod7FH)sl?ge$)5($?Euk8epO{ zN=PR;LbQmJa=Dy|)ZNR(CtqnM7FAO9hmGZsWVAy!?mrB2GDgQ@T{!-#f9;n7~P~}P^qkpyCZ7PN=Z}*S|>(HH)X&m zpcT>hdgCRbcZvVJo8+%wzw`_Z@yw^G5(kpO^o|2Cw3ke4v;C`{cM8YT(B61n%}lUt zQji+RT&Xa?HB8dpM1dzep9Tj9OAP$%wSALccrnEH{p$z-@&Mwqi!lg71(fEV>9c3z z-sS^KORV1J(bL-k#6P5f&IW?cWuO9+lldY_o%6*^y+bj$HxRG$APYIn+yJ|%N`GLc9+3mVRXin;k$hPzCSjn8>+$2YD`p_adik;T&q z^NrFz-nl0{FhU*va(0V+CDcnycgR10f5y@4JQ8b;BX_ilyC%uB?=HA z3t`#Hul2e%H{YzKy<$#0p_4L7F6qSQan# z5)c_ks~4YG85kI9eRdxK*tT6B4L8zRh?b{$-MxEPHrx<}r_M$n6_(1QtJx_@9ox0* z!;!6RV`qmCfJHD$+mODRMi<=lJs*h_ptDfXUpl=2SS$_Ip>_16=@I9x+CC28GA%K6 z3{hrXWT7H0RBlZrC}KoV-G3ssL;i*L$)gw!(ek-{aWBokcuBdqs}=8qi$?M49iNIpGNs4Y+FH=J=beuMFt|~#TSuuEmEbM8--xo zqRYhN{hlCmS~_SPil97g6+_!hduQ?;j(QGNiq(2rwF4{{6}D!k(_7&$`=w%FRgsl4se9OK__u;7j@JI|>B70+kkzuh z5$dp~p|RH}n`Tzs5|zy}Z<%WAQHtn!@tV7EOg8(^1fh>{hQkq=+OgByk$||$oM5}S zFD0iTt2BLw3NLU8EGkPnK||hbR?XRj$9j|QQnFCYW7+;CjPf@+o!gC1k2lwV)JD8K zgIFlJ>%!x_?``EH0}T$#Se|M4xC}J%lZ7|ye@8%hijo{H_0m+9A zmien|pEBXD{gbwK$Wg@Su`ohGAH`Cy0Jixj4&kM4c*nmc40FdeK-Y!yay~{6YGfcU zd11I7#QA(s`Ecn4&&+7Vq$3_kzAF{c@e)tmFi2%(WzsMv30dyS)#ZapyZC9==6Nyg|Pxg|yIHwxTvbpsEXN}8SWM$psS z=?Kkla(n1zGeLMnKL*8?I%J|UcH>iZ?u5izTo#-RAD1W+@t$}1q+82A1}*jHu7XBp zYV);Q)C_I1ki__(OI5v`XgV%GFUl}C>O9HxqFwy^UYfILc&Tl&M1dw!;MjlY-2pT+ zDhbqnxYAAIkMC#RiTPqKIRgHOW|MlGXW|=7Q{N3AEN`Hu;Q#lXxzY5-7KhFxB@w>n z=L(-Nb2!HE=7FHXpQOGl=SVC6{7gcHF2CdGN9TUT$?7>TO+_+=N0;Onb<+$NQVpap zeJA+WBihWZ9FYDZy}6I-D^08`X1j{DVH!YLoCh%j*#UU*O;uH2kxIOsL7rd=+S98` zF)XvWMJZ%UGJk~URgyaA*TqGO9%0H?su)Vo{G`)>c9^*x&yVy;KN*V*!vK2qR9%p& zClUvrNpGl!DL{anxw^Un29hG^R~Q%>pHSLxf5@d!)$k){_B$ZT`Ci;*4}7Tv&KPBO zE+q?fzbe*%N-JMv&vGr(<`A9|O0A4KqlIiem)9JhOhlv90HwesAc>Z8d(kAEE*dV= zIW$zpS_P`wGR)gT3_q7;tojW;5=Z?NMd6yYNGlE9O|8hxk((;TKsp6?vLIfL{{AsL z8xJzVMdF^Cs-7+JX~Ce~cqBGz8x`SUnaDlyuR@d>&@(Y9TUxRJ83!aLx7zp-qvSXJ zL!(b$a!*c95R+mJ4GpYJjF7Ah}{(B^KwG2`+eA?YqNvnnh*%?-~9 z-@>)N_~gUA@(Lpo&=tdOXo%n!=+BeL2~^eU-yjGTV@qQkv4e3b8%AjE`mJ+HPveW# z5gj+=L?&kP$}%T1X%=Xf0;@m-)X%`j73jFG?PH(tJa}odxVj%snn`oTiEo$_lZN&6 zE23g*p7|IrV)AU3g|W}~;7l^RN;#1!hqPpqC~1oN?{$oPk&~#f1*4t`5=LEkwhl}O ztDO96a}x@*Hc&-cf5=C!vx}fG9^#j}pC5kVPyYVe)LZV)Cdcp7)79TwlLmTDExHUE z3OPLq#e6Y_Uj9Fjxd!Ped$Oi5xt736tLAkKFU_A<>LnJ2a;M!h4fw9ZIt&GKO}VN? zS5N9q{gs>q1(>xDAmwu%JCJ-nyq(bsxVXIvtBX_R%L}95Z1t++0)I!}-Qxc9)u-!B z9l{>3wyZ1$v4h>=q>fF2w{K=$Hu;?RhfSc})sW`__Q-okEVW1p)f@lt7kTckYQ^(WSzr-?hgBOhQWvUY&On5}hVN&OwUKz5 z_HtvCJ?QSA#dj(^Eg~3P`qrMk+zAmr*lgD)-MLF|#wfPMur9neu~rhXm$4hOp6_{- z%$n1Z@~j<@V;S~nO>OkSMC#Zm>GKV*?W4v{)CEreggC%_mtS*={Jhacc@UQqwVX0K zL8pW1{7K0;pQ4}q9uVNOkhI35YzLRuF!r&!eAkfQ()<(j>oGZQ>^$)g6E<_9vZ}J= zzw4g*(?j#zwpPDvHT=dNrNzSwNVLr&c^`fj3)u*P4`IGUE-G8pNIEdRBZUdxwqFcl zM~;q4MGVIpYB72>dDTGUf18L7&dS4|3SX*!+yY2J+`3)rA_hb z$4%<#KfkA5_3KXo$=44@4Tf-}lYO3*FcfVksD><8!5;Bs+0S#+47kU@aS1-Bj<`q6 zFd<90WSDh_4wxrQ(niW{4}Z4bwXU|%>E#vQ_NY>CGLy<{3>}>_)S^>+#7;@1K*YAV zVN70vvuW>1^GFb}el0P|`DG(sygaMPss8N&^_PC$SFn?Sc45-h_n0YzWenXOs+lu+ zuGe3N`P@K}4PRAN74#Wj-jHTLmkE$pf$Mw{r*WbQz#-0-nlJ%y-7BUR+qaV{ZT^gS zO&Qm>@??0cVJ*BVRx}gFi$Unt%*+UV6zUkOzndyX_)I;UaqOJ)*+#wleJfaQ3cS+{ zo|myePanr!Ug^IhMB;jq0!sOtj4j-NPy*PHu;7nvWuq5=&%>^uT z5rUtA(|#EoG9-K$%l_>Ce{8W|Sc7X3papqSFGW8~XcJ&kHZgkqw?VDNY-{0#g)*f< zBcR!Occ6K6pY}YY@}e@->uc;1UN*i^&Gu@x?Xd9ibj|=eRx19JdA-Hcs^Mdo;2xPB<|u^+CJufLEB8x>Rn`h|k!7xs1oJ=%y&ou>V(u zi>28ko`Oa$T%KQ{D;qY`g|6(#;q~dt$koqu8SfBONHuluVV_?911$S;ZkMTVrO1-hZl0_l*@4JgA;eEA}E-^832w7a2K?q&b>Ui5Imp^^;q0BGj;(+$K% zX-;K`>d@=rUZ2Yya$+Wdyi1Al?14U?j)IG;j*7QEa=2~L>fxMyFfpYhMww*qAwrRg zEH#iqtr39+4)}5+ptY`}vGr=sz=l;+>n6hz1I{g_6G3CP@}tfcxcZ^i^hagr=dSmk zF5JX;1H0KE6}MEe7Jg5m+jZTDh>hj;f5tbsPX4t6v9sjeKi%2g?c1Ag)i*Yd%*kQ+ z=W`%pQY4SE3LZ?zD6@yW;)P_hvlpqUsvZE#dI|WjneGFx^$BvyhM-w5)GUq~Xhw2L z*z7#SsLFw-Vbb786+wxjcCL5Vx`U%LY4^2nBN(zXRPm%+OVnZVjS*N`t*kZ`-RWnf zq@=9C*GyJt%|qfzO)g@VwwT z7SuLhczFqeDRu_Ipn;cXo?v6B2cUBQ6g=BlSwYkinbT<+Jb`QUZ!fGInTL>K>IViK zhQ7i|*knceYbx2xR9#UHgLo^@XoKAmu$Pdi%pL}I2Wr>+K!12Q_;Pda@=h$=OR_RGWh%;9NNrwhA4 zA(R9()L+NP!+w6SA z`i%_>PwCYDWZ8_iA=DNxS8$^09^udpIlQbgm&$8cf40=+R%q}L>b0z6xl_VsKzeqWRJ0A zi^(#P-Fx@E=RAKs=lSD3=RM~;GvD)_`+IMn>$*PI=T0y)(PN%kN&S|&Cl!=Q6WQx5;+wu9SwiXEz@ z$5^@IVwuavavE33utgZA5%Rbfh&=z1CdS8EQH$-#7oCjicY{Y}PEWgi8YFb;oo&7S zaN#a$8OVmRnU$QQUjctiQlB$v3NTqStr;q62)vg5(sHg(=&MAPKxM+8*c@sf1y*mnCx)4bwh3L=q6O&J|{yxlcf-^Cxn^Vxyv+O=zLUS1uuA44YV zBTh-V*0nAS_oUd>4~J1M-<0tRkcp2WiW$=O$xD5&7U$#n2g)j~qBK|OAV+&dEh8hk zsLul6qND^-DJ(4fusdcuJT;Yw#fpX=;&XM?_^2Sqr+?b?JUk?(rl*;y$+xy}7oy>L z&$|{stmK4PhuPM9eqLQ&jXF{l{&AzIwlCznVAWripR5`A^Bbs#|6DC*qsxZLe503H--% zRQn6;ZBH*7Wk4Wmd>25d$|Bs|X|V{+@yG4=uYVgGt2q%_OLb;RAW!WP@l@cJU{C6J zVOadaq=Y#^+q$vi{;(h1Zv0^vZ@}CU;Y@utaFHQ&CoQ+#qw-^C{mtEPclHm*+tj@d z2&a1uZrY= zhl}80j>={$&4FQ@9E+Iwfu=wvG@|x!qQUO@HT!J3^q~YOeYbtF>$@F zuI|(3AE%SU-4De2X$a)cY=|^i*>U(yaS4g**RMaps0K(CoJ(?>RV0L7Oe}D~#W6r4 zv%H&V`ZBILO>Z`Ds)w%I643R>^CDzuvkz!DdL_bzx*F5Kc&8~^nbs*bukcyJB3b{5yF@6M3 zt86uTCDk!jZaa@unfGsgctmViOt*rQL5}ykZg$!Q%uv{5%x?!)c}*(-iu|Zi5f>M) z3L?3vogI@PktMm|T>M89U3myD3(F4BI=%LupbeCypr9axF{x$bQ9)8~wvbHV&ZZcZ z4n9ya%;WjFQXHfk}vS9cMKv7Q6GH2+* z#oR0UGf5qqzdw=&RBeikOYlm8TLM#4QxFIU1n$XsDhTAQ1#JZ2Jrg}8*}cR)EaDsl zNYU0pl61{tjpw8+k6Iv83=@;)zn=Id>E^peLiDe&3dJz({AoMG)V+V7;vl16??W&F z-A;J!_lV_+H2V{KZMs}<9@&h1`=$+^>jN#xBC=?9$1!m08yL_aJUpBts2F(!KrhQ# zKB;Il*X@7)F@(Z|<>lqyZ5U4jf@cwqMGT&GP>yP+k}mY>ge{xhnm!aDD}fD2zPg(^78Vc z#>ULhMQ(ya8J&}p(}VS~auFu#7a9T@-fbuTvMMS~Z~mE}X3i~QvcC8*7Up0R6GV}r z^V-V6hSp`)%07%OOTkN1OY6Lfs_O9Y@ROP5fLbEx1IK^56|X$X$r!)=)-;S3C^Q%f zi1z-HbcD?t(eseKO# z2jSr7?+R!oVJJqAx`k1B1qJ6me*Cymv((+KFNh8u6^3FkQQEUzd?EC9c6P=OAXg+L zZ~<*cGZdpCzrHJ5SXtF}1faU2*(B~lJ|KO^E9{ceC9H&)s2^w->G6lL27G@=<^6H@ zE)d&y_HBHNi;EDca=UPlL%I^#Bz#YH$6Y0hP|u#t#c_LUxVnm=v$Comt(eqT9KioI z^y`L_5~?z*${ednc6cBen1gb|jjd1T12?L>h9)Ny0PS7wIhR#dcJ)cOJU3-yNacwFzxmoMi~5y!$! z&CT0~>y=Ip4v@BkexK#h%2*+=c%96u8^4FN+q%*;nI)U5|AvFJF}~fZb%zZ=94P7e%GN`7U5ph={@N02dkZfw zFW~s;=bVVm5CX0zP0X=jTF%=w`+|1^cb1}0=dYROY9E5S+R;WWB(gG$=&^MWs`PMy z93DcHe`njkn4le%j)y+Kk>MOPHBE7FL>9h}<6l_lNKy(vR)R;IJpLZEg5iAJ`U)VW zL}2-3=T+OY+|%DBfosLDCOn!dR>C6Ikbk+EZ}#-Y=C5C!J4=0JkbE=h_wV1Eu~L9t z-6!RqWm{pm6+Axyr;uV;oVTv>H`29Upp~ViU_mm6%97LG%y(^(Ys2H2X)r-rmZ}s`Ez9;LS5NT|K?+FLcsBc$R}hLbd@P zqnOSaq?*~;^{elZ0C493FFU2fx9KG9TY1*UD+kNUa}U0{Zgq0|2ryCS)zz``9}dM2 z&CD>&-B$kq$Rqvj$ zEjL?8K`}X@P_`7n)qj)r|K+AwfH0`azuMJ$*&s@?4cO%sUG$Z+nip|=}P zF&4ch@%z3U1`By%Eb7S7=}h+dCwia{jP3=;Js)3>C2Yp`EqzJ7Y-IM&KeRCX+;$)Y z0_Fv9ibd3nLuB%a{;DHuP*tWlN15$%wPP~Uc-@B&9O>!lLr|hDj7HG-4xd32baePJ zZ)qv;L)T$2ytYtERSfo#f;6umwcv)d{m=FF>W7QE78VwHfGNAXyGjAScucaDo+KpD z?1!q0u+Y3IrA2j}x5=;(F)6_hJ?4#b6ktgZxRfNAqCfW~mM()iMCDTH8WxsiW^Vpu zZ_oeUqkj3nod6wRW{jUF9ZV!_ZU+h&u;9PR(7SwhgC>G2P%Sx$UAhLj;68>lSzcN<8(?7%Ra19MnYBl~T1^j4~fwh%K|JaDb|0|Q?#**8_- zKsW2Vpqn?Py?%;^vnl%I!)`B&8PI8;1xwhMP;DSb||a_&xxKQ`YUvG7bApHA{{xX<8jonnqX~K z#n?wC+{?jvP?(mjE%)7udkJ9MwznUG8T~aAKzXAJt^g&dkt_r#)zQ&07HOXOYkrk5 zCSV&aEy?a3lBqV&FdC#z)aU050)Z6*t~f>CSmL*_5Q!>{zw>|ywJ$O+Wnx}4bo=So zC<{#&p-C(N+wF#?G)R?EQ=>OXwN9+JM!UQk4Ef#TQOU!ACc;|a(!IUCbGyO7;cgA6 zZVK?Boc#P)hTT|G^ka%4&}&b-76Iacl*Kt#Wh-7vs_woe=4C;St{tvx_ihm8L)Ctl z$~0b{k)F!EC*-;*XM47C?nY!S!yvqpT|M^#SPI<;6l3D*)_aD&EJ(hFM5o($!fJQ3 zlm2eW>Ij=)%o428y3y~lcgwc!Yiz<|7i#fqrW~j8CEkU|05QoL$=a@Cj~Yqb`tHJ% zM`i3Z(Z%S-ac~uGKC-kFAXrOF>#4R72RAn^mX7^W*j2ZDM6_g|8EY)3t0+v-a{_{g zZud%5ezm>B<@gaU&Betvp>2|}^z6{WG8T)_7hwT@Rab=N^Zx$6W#L+O+dcGhe#_9L zE2`f`>*2%epo#*7wppp=)>$vo{EEEX4TS+TfuO|W$aKuD!{Qu2c{hN`31u380fF>9nhF1;gd_Poh5qN zYxd_)cm32D;283%tC>?ps%<3f{K!7Jl=S!ayLozQ%VxI!94!MbmI>7bV&#AqJ>s>q z8=usE!Uxr)4l%Ybp^{*w%?IxSqXuMZ2>P6p69NRKw5$vy9T^!J2n-M2eK`MxLc7pB zV|vn4VeBp(s!mmyl2}kGp7q-p1{36ZzI+X-jy~srV5+>zzyd7P^XJdO9$CM4XTu{w zu>??1tZg^WoYWx;U8<}a?n=-;2O{9Bf_a57WH3Y_EG^lPc3pFG0)X20t2w0LE!}sM z_8n3^dQd-mJ=|+2^Gd}NlaeN5A;tiO(9mrE{O%G~jP7hS5ibe-kbDHQ6m6y-Y&nE+bd-LvH z41TTs#}5%vF)^~p{-Pu>-n+~JEaC?i+YJw1)X8vG#(n+UvZCT|r3ipy&Amc5itIhmq66}+;<(-oUg|-a+d63AhtM5|)qJwM;1dxd~*7x){2z!-*5_ngzYLY|n?V(7Z zXP`tkv$xO9Uu$nC|1vKVX(UzwFl1xHX^hua;&BO5!0Zo4exl0pgdyhgBKS~LAR7UX z1F{j2h}hh!;Vaxp9oEs0?Oa{2_m@Wo#4862eD_xD?dzNL%{43r!2?-_8P#PDhYv7v zl%u%7VL+bHmBgr~CY6^N8DEzC^5499%Fy`k&YAQJ!e-YAxhU(@D`Sq{*tSS8bHPdSDc2k z+zks=B5D~&>+0(jwC=$0vLozhv7^vddRUk`zirlvo?Lj?>%*u4`#{)?w_<5&Y2FoD zRdZ5*2}xnIyPI0X;0ve-DRKv?EG>cRgXB6*)HOF}PICXPi%v;lhG+oTfRc6c7TGLJ z`pt_;E!({XC4No`ad9&^oDt|=3BJeWb5n)uhAkYPyk60q%qap=AlZ|EN2-Uf$4uwN zEPe~9VoZR3;NmYVt_~M+F6T;E;2Q|x+|JI z{~t^8#cAH4s6?tba!@AoD4(;*aQ%u8+EMV4yad$e_3PK4I+ED)5nO-;7c+F_g5yR8 zdTO$(?;6D;TkjlCA^ZojBr;dnC)bYf9RYAP7~bsm?NoFBCR-WT#JuBYm}H)?u&^uQ z;=Q)3nNWs!-2P_7866Bip?@w?$C7K*jZ0(PrvwjeMzv(V!A^RVfjK+rMYB|1Esr06 z*=F>7FsSx@|8DrVmb#BESPE22-FX1kKu{P@(gVly;a){w0lAMc3=i0NF?y4lKqIbh zT0z5lvku>Ne5?2Ur9M6H;F<@2o<|IBjISQy^G|;Cq;YU?Ses305S&6oc}h%kU0ywW z>tb<7<)5v8lrbg~#65ag5W|6iBtaUE_vEdOrtuQ?ncdi18TsZ?>-@|esT$!K=!AC* z+4*6Rt^5ePr7V5p(He}q|CY0N&BEgu8skVC}?ZrKRXzVxKuZ5AP@Y%j%?;vH}2;#5bS6s`lY+!^ne~by!;ja zEiC?};slc2)KBL&ZA2RLXdK@i_4K?#Y9cNa+CSZb{GuU7-m&Cm~WmFmh5++M8zkOscA^?HffkqzeFa;AhP-gvnb@%d(CBggP+1aCgVyZu!% z^?#@){!5|pfBVa5)?P)3>7Liq?*D%L`|p$CGpcuDikngC%e~-)8)BeiqFtfs5cNOu CyoI#@ diff --git a/master/_images/tutorials_image_50_4.png b/master/_images/tutorials_image_50_4.png index 37225d5e9616a7e678e07ba599f8aa5f6ae3b9c5..7415f5ad184e115e3b1556c34d2dbb609950ed87 100644 GIT binary patch literal 5982 zcmcIoc|4TwyPmOc*|PMrrx7t3gk;SyLXDC=`%c+nY}v9zNJ7MD?1mImlzqu}%F-BX zM#z@34N3O>JkB5IpYuEC^ErQ<`Mfjp4$r*r{ap8TU-xxS;w__Vr&t77AP~qY1AX1w z;GF=TK}-zbwY8X-4&JU{P?i`IUpGv!qrWQz?TGR7^2K<0I*A3j`UiOW`dpG#mc0ZQ z^T1&I0#p$Q@BdmL>+A21=-X`F1Q%iU)3*wMKsX#vp3riwGEWGEk7S^$Z5r}&1sCRL zVMYiI{sz}}sQIGrn z<;F?JNbNV~dd<#SHH`19dQCizHp5k|w8V^%%|B@t=?LVqn%kMhFA|zPi=6Kt>sZ-?cw2SROiz0>ly!sKWVAqu-Cmgwa|}M zwoPxnMit=JwQL+(2Yz-DxYIus21Z8>*hMwfsgW8Q8b8PG5hQeUbmBOX=OrZ#6a^&W zIRAd6<#^T?b+iutsF1_fusfIAefp+)`_@n(juWY`kOPyksDical6{%Z#vS}g(1Kal zdYz4Tk&L#J*cg~$%CO0)uK20mNZ&cmKw&t~tbLeQG+=;sS;%Q1hM~HCf^(;6P5~40rZzF4d{Pimj z8}X`iCKAr4h;QL3O%eY7{>^=ln7Gv3~pS7;&Sm6e|ZM{F6JCL#@Rm%PJ{cIWSJPXrTJf`~qK z&ih*{JD(AeX~FsHGaB8YCa-vY*Uz$tuZB$#bA4MAZ-)Ok9dfuiGP+fk_khKIe{94* zOC$6zjDeAHZH6Q2jIglqw}t>oj4dN%`Fq3ZG9w%k-1i_-3ya0R4PAFL-&z7P0h`noSbOXf|f0H>G|T37`lh{$9p3lK0bO85gM%^ zvZCVR+4Kl@5%tHnq~bDVEcm`s+S|2l0*B3(1Hlpy2W!PpPngqW-Q)w-iVCO0y-mo& zT%Sf}3;PJA@yMx&?U~%E1GnDloEr?CsiK`nhx_+`c5w-5Jm9&hxeJ3#zi2y~;s0-YT% zxNRd3U|;mmV%+#j$4cGQQxGgK%tO3qJ+-RIKdXjjcd5(7-aggrwYejp+;U5XJt*r$i(@U=j9RM{bWDz3}wL=u;WMhEZJh>eY1QCzN{~5fFDE#mtGgHlP z8p3o|EN;5=g`Lx{Di@Z4wV&M?%exB;QtZO2pEh2~4n)7*z^9<8M!^e3Ls1M7fPRn%C>N@ z;_GQ9v}_3|`+R>KAJ2dZ3Ig<}Z3>w(Z*98Ds)j+v{LNJ{&aNc=RLwo96AAhLfLh5!M`Ky% zBizy13AM4|IQl-XnedDBVz!Z5MQT)$S5Szd652$7PJ(*xcq**+?ao?QN!1bT4ejSd&mKI?pC8Y%_HTV7$Irp;rMC!)?poY$VewO(D~)D53FG0p9A_d7$G}L7Hur~eF?Ljsk56S z_MKxN?xpF&EUzRG+w)|S6jmx@4_csFJMA2PGyl*FsRgn5Hm@=KZeH(wqdIjx4qsCv zHg`DqqBYJvFO&h%cAyZ3$Ta*FL0H5HsrW$(Z#{1L{rh)EwJQk%J}`aw@ZpvjFA%() zS<&Nc3mkQX(3z(Z_ROd(&9L;(iMQ}(eS|EpsE8rXeC+CCYD$~;7gNOH=&igx?%gAj z5N%IzYQaB__E)c=Q1o8Pf|~oIeLo^r!$ikH_mZKuj`G`uKtTnDtbOJWU=IKU4f)f~ zsLd1&C!G-RxacpS?)2}b)sDW%txG3%fl8?)y{^nZ+9+F_%k>rKWGZ<7o=0@AKcRnO z;?%U0W_=*lT=DW{=k9cgWeSlL4HEsSoKpX9$Vw~nA3 zBYJ{g*?6dG?0QIx|BtKxmka%${zZxj*IErPINrKQQs6;B{nlir18wtbpX?}8a&nAJ zh;sPh-Y-}?zIDTNy0Rf=^w0?#u~-4Aq!`f1o}{F>GRu+_UhkB$pUdC8i36EVm$-iG&K;Hn zA~dy=7RmI|NbF*+xD!7;Ar_fs6YzEf{>U~_*%wr9 zG*k|Kis-Nkb%3_J)tt@fmO}^Hy2rN;D&cBE7v+qY98<$z5eS_fDT2nv#?f0_K_@;y zC2R{0Iy4u1!p!<^b^(y3YIsd~AyxH~kD>qy9O@#Sk68J?^#_+GYY0EO+vrGSFf}zT z0Lr?#xq0&Kr=nU<6BC(t!Zl&s%pO<<5IM>?8xNWwK%lYe9CxA^@LXy7(+9ijSxhVe z3W(#0I{}G26%|Nh9v)uaLZF{u3*gAi%*@7OodUb7*>cGYO%v=OF=l2~0@?w}s-Fhh zuz2|ZYNO_SY*fPqQ`aKAkq4!1V8EP|l$5Qn zoO=o|2apf&35$o;tMpV8RljClLtoa+uXkhrE z@s1~LZ=LcyGH-4`-%#{ z53d;4yfkj4m;rZEaQ*^~a9)p^MD=Mn@Ft!OGJ0nz-LQWjW0i0y< z93Prn*Vrgf4R_xC`^&@2iw>gP-0up9+&FNMd)(2X2lo2Lrhyw2Fvy9CiAjGT?&3hn z?F*lr@%9$i>?Rt0CIsH_aIf}T)2=>1S*RWV==s8%qg0XjYY>{RbJ zLzDYxo$P>Eq)I}_DeUodSrJD&r>W?p&c z^T{^k*kTWr?@MPoWgsff4X3C6-k<}u^1{PVsi^Zk*aC3Ez%cl!2mvruqK?!-Sq+({ z!zktz2!iB8I6696Mi3)@MM>$Aha$EvGC+Y)QDNEgK*^_d*G($vAGcCPj-mnMkw8$n zP5=vi7&jQCPIxNC^G`#-JV+O3qHcDVv$L}mwISZ|?aLIAtJ3euZaQL|SAppPwR6kL zin(kk5vW!i(eeCan1PgxOswM>P}FeAk_;Yc#i*;Hg}by!QGh0JF#U?Bh(sbNc6yX( z#UfVe-rM`LdVHgUi0uUuhGfU9lESnsy}%dCq;c% zs-56En1dj*h89lvT&}370QXWeX6-)ocwUOV?Oo2GXitCiLbZSPs!}O2LKUZ{E^h$R9w!5ccRR8#lALOd}M0nF~c<#v8 zMNCmeMN(<>T1fZ|SxrHK#wu&AS8WwIWjGZ{(?Vy!|7o$b6OdIuJ?_gF!=1yUH-#ki zmrw_{(s=SPvq3u8;VnBmb~Ce4g*#wg$fY0h*UaZYqtRV13XgTgL9*VYV6^t+uG#Gg zL2`Sfl4w9Pu^j<3p`%oig0oQ$0q@&(s2r{-`kz+vnd`rN>I4Bg@QMLJPdz<72*k|H z40PpYU9CNARBx(m1Ld}a0TP%kU`HKmMyD~VqhFBHnP0~00P-VtVHa6l7BN`d!pGw| zv5hN)bH^{S*?XOGY(lCSrfW}yx)qLZ{Pdo*gfpOwIoT7|R-=vu*%M-Mg%C^AQsWeM zD@NYCRK27;-`qSs6d|I7@b(26 z0InPmnkA{(6!4kZrrr; zn~CQBphJ^>HM%Iy?l1eP6nNgr!t>aL*P}|?nd@aFr;c>tE?nK(AYh5CrmWo6= z0hP)~?5`gEeMdDQMkyw*S{+B2*i z-ykk6N>|=n>lIiRQ)sM z%iJN==Z97Y!-J}@y%+utwqaH>S#&-K4e7y?2XpM$?c&v3NudV+i|bJQ zCK+>K{QLRVz6NoXl;%g1tEw6J@T&#bIn@ihZR^9B#_AgKMGqL+{VQqMJRl;V1<_Ox zMO$>L%;F2oz^UQv)JL0cO@wLHVaSdR1%9I{)>ZSqhxIy_#EbF4w6IH&fk4PK)RhguYYlk#5D|dq zj^dsa@B;T%G4VEZxA*q7Mm>S(SbKZ8xO=-e*|7RNL3ug3yNL=)2#WHvI(mD1cu5Nh zx&Hqj2)d&jgvO3Lj=>DvX!+S*9=a-mHB@vOv8x3B*5-6gyl()LD^p^2s$0;r2Ws1Ud5+Yv8NBFY0 z9vLx+$EXUHsNATCpjKy9VJ9T_$^CIy-M&4aC%b-ewY+$7K0hSwNu4OlxSssrWN&V) z4ZE-?8Aple3JWKR*fuB##UrF6QS-ZN#Lu++Os~!(Vp_4Uo63Ul*3JLz!+2i0g_9E> z&eWmz!w;&>V%q~x^SxMFefL$>)Ck)wggUNv-81<`N%0o{eE(SMv5eq<)IgLdf8Atu z^20Wf?RNa@4}LVIcRj9>#T&H=eRIw(0<^e68~)_ zFE7!(rd9GaR5P~o%qjHS<-+sRc}I8mOqPPN=mF+HQb^K}-2p}@V)+Q^=hy6;&VSQclJsB#<9|zE_j$)qc7dV!5-}X?b}N zEl+zo=cPOJ-l5?61GB*04@G*=n8|Y8`2K!X&x0jJwg}4k`FZwabt1Ni&8;meQTq`} zmY{<$N<<9H{k@8&rTS)%u=2x)nSN)> z(dB#H<-~@cga%@1cp}C&Xn2shlnA23Vasa+mxVS{`Y3Q>(c8CLbAkKq2qL!Yqs-12 z;QOC|9m8_US&(p@#d+zruwvIS=(|IjM;uT~BM;qrjr{+K9N!x7>^*B`YwIc19av}Pe!$EfUiEAdXIF}VwV zIc)Y=;p^9m%=hz<90g;=dQjGMP3yh6W>j|d_Mm+|CBn+iPFb*?B;&lT*^K;gqsu3u z;KQ3tGJcdF7Xt1r1Yfu|U&iv}cj*QnrD7M{b#*DKn^s89pI={|gGj?|+xPa|dRIMz zj#3NoA>Q8JOS&O{XuQqU_|m&?3blpW4kQdcY4zFd9vmb(I+ytu`sR`9+BnOE@`7Ln z-#O3d%ixVXUv?();*JhxQHL+R2M59(=cDep5V_OlvE`hn)rv|=c=n??ks+6>EN3%g z!9Mx}@^t((3xBWnLp)mNf7DvzL6%y!t9xGDxVd)Jy4N!NKK{PP5~R^>J}&RRFFQRc zE~L?QHVWiQ&@aP+ZU^}b(|3c#2C^k20NZ#c!0e7eR5J%Q$w*mT{B?rJOAv{ zKmlo)_-rBcv&w#PT^$um@Y(Cj;GG{LViFRc_xIaRncbR}31qH*Pnxv)R9(*RpRSIp zvGiSET^x>uT+@8`@S*AG^F56J)$elozQ^wEk<%7|WB?^7Q!Z=1Gp@@&)1Cdh9~a4u zjWO;Zd%JWb=kW{12z4e8`h+=VaCGCy$hi^_$ED=YlVGQQ5||+J0y> zS|3WgcEj7(clBVohpv6`v0L*EUD;#WxIXr%sHj?ygf27hZ$LaYzp}afY#{!3f&N#F zT8)f%?kGy<5kQz^188SIx)1nvUYJ7^B+x1{%!Ck9a`Kf=ge<)P_`c&C&Rp+S=;&8} zf!T<5{P|XsaoJ(@33ms?4?#r4RvUQg1~AaPgUPhaFwN-%RD{ZYlJ$#-GBjpj^>R zipDoKN>Ii3^#WE^_b4<;~H=x zN#u*Oe#s8DoSd9qkOjRQi8AaTXKSs)V^oWas;YE?EdsW<0CL^ik26f#{OU{^U9ufr zU2l!a|81MA?(DP_la!3l$hbW|H^<-Tz9{#tLHo|T^@l`k`9Vh-p5Kfg=GDz_O_uio zAgX9-#XCAVQAsWa)zj0{19C_nwO0Y`;ppaeyQ-?n20(HJ1lTa}kQ<7S;^1X6;?5;O zhsQ;7w2|}OPB@T$V`3uMc5$-Xb3ARCSXRajKx5Sxcgt@njBxGfX>~J!P}@Pb|E_4V z`cmVp8{pZVBg`-e31GoX9LT|l=-3jr;O}L`1|mBa^`q5S2u!XNE1ju@6Fn(nk`pTr za$oxX{lkAhjAC?yKuF2Rmcbgey}7#HRFg-To8Kj8l7gt{Cuwt!FD{0B+5J~208%o{ zA3$kqefKQ@X?gqjSWKOp5=T#ZnpFC;1Z=W-KYON;f>T&lMnEBdd7!d;TAV1?{m!)B z&OnZd-1cy#59JRqU-fYz?)&!#@64L1)e@L+gv)OHoSnsac}ucr9NGa8yGm1VhR+;w z=_zyAOLGR+I}s4$uojw*e$isSfEqgOfGStok0tcmPAQ$d+u-Ceu|7@Poy{(Ra2vX}dFa7)X?C#|2KIt zlN;pObEwLO%$lQe;lee7c-o&1-{jID-{@|l0!e2reKj`iQ zx0Jz*>A2YIG1Qffq_Ygtzs?xOaL@ZnQ=RP0a0F68mPREPd%GiV3ON@*C}Wj{Wn_ZJ zFY2ht%U5fS{APdtJXnbrS^;FDVrWS7pz2ZNv+eK8+m?T&Gx$x}r?-Fo>Yi)%!fb$y z8vtSb`t6&sPbVQcQNJ$A47__k5OUdQTTT1rlzNDM{~sAR9CC=r6c&#Q?`lO zzRu6Tns4>xK##JcM~h7OGjdN$*S&u_e3vS?>DxLV(`VDP*RoAX9xdX#XLc4O2RLx* z`}gi$pW@0&lFCYO5<94Z%!#X4r;C}TUlNtb)`O&sjc;jX3ibi2ql#7j`r}880&A!d zU*!1sKmNqW#ev4X@RLbcUbY5RuI*y4RqFYl-zABnce5TW8`G*txY9>?BB|B2=7O-J zdd9|XsoLDh$nw`t49-uVE*}TryiEQ%JsoXWj!d80;*q8!Z=FlRMixQ2rcu?~dd9a# zM@K;giWpc8o865nf*SaV>nQ2ykcsIi31%wQnJBxv3k3uQmLBBqnn}F_a~0p85gc4S zR4_L7YqwBlr;6yY2D5xq`DmhI?Kr@ioDV|POryIha!0t57?@=orUtFd5^$6>M zlL3p59?y4})L-y*N~YmgF_K36KsdU=U|#=Mr|dkKt)}8@>Cdw*4>fcr=@3 zNxCze3DN;IjUmlhdtk9pB`+QX2Q1CmRj{87^VGL*Yz(h#)m=g6GelqpD{$BWHIrXckBFWf{jEY2^wiK3P#RClUhf0BYTvnwo)I56!~V zIdN;IZ<riFBPN7NLG**gN$8*c-V3|(%}gIYN{Zl-uhS9QO2 zVgOgCB9E>MICkbYZ=rpyM|6CA{8fw$TnW5)`}o*rZ3FAiTR6vpr^nu)+)(CZ(&Ehv z;$c%qpEATr+N1DVPod7FH)sl?ge$)5($?Euk8epO{ zN=PR;LbQmJa=Dy|)ZNR(CtqnM7FAO9hmGZsWVAy!?mrB2GDgQ@T{!-#f9;n7~P~}P^qkpyCZ7PN=Z}*S|>(HH)X&m zpcT>hdgCRbcZvVJo8+%wzw`_Z@yw^G5(kpO^o|2Cw3ke4v;C`{cM8YT(B61n%}lUt zQji+RT&Xa?HB8dpM1dzep9Tj9OAP$%wSALccrnEH{p$z-@&Mwqi!lg71(fEV>9c3z z-sS^KORV1J(bL-k#6P5f&IW?cWuO9+lldY_o%6*^y+bj$HxRG$APYIn+yJ|%N`GLc9+3mVRXin;k$hPzCSjn8>+$2YD`p_adik;T&q z^NrFz-nl0{FhU*va(0V+CDcnycgR10f5y@4JQ8b;BX_ilyC%uB?=HA z3t`#Hul2e%H{YzKy<$#0p_4L7F6qSQan# z5)c_ks~4YG85kI9eRdxK*tT6B4L8zRh?b{$-MxEPHrx<}r_M$n6_(1QtJx_@9ox0* z!;!6RV`qmCfJHD$+mODRMi<=lJs*h_ptDfXUpl=2SS$_Ip>_16=@I9x+CC28GA%K6 z3{hrXWT7H0RBlZrC}KoV-G3ssL;i*L$)gw!(ek-{aWBokcuBdqs}=8qi$?M49iNIpGNs4Y+FH=J=beuMFt|~#TSuuEmEbM8--xo zqRYhN{hlCmS~_SPil97g6+_!hduQ?;j(QGNiq(2rwF4{{6}D!k(_7&$`=w%FRgsl4se9OK__u;7j@JI|>B70+kkzuh z5$dp~p|RH}n`Tzs5|zy}Z<%WAQHtn!@tV7EOg8(^1fh>{hQkq=+OgByk$||$oM5}S zFD0iTt2BLw3NLU8EGkPnK||hbR?XRj$9j|QQnFCYW7+;CjPf@+o!gC1k2lwV)JD8K zgIFlJ>%!x_?``EH0}T$#Se|M4xC}J%lZ7|ye@8%hijo{H_0m+9A zmien|pEBXD{gbwK$Wg@Su`ohGAH`Cy0Jixj4&kM4c*nmc40FdeK-Y!yay~{6YGfcU zd11I7#QA(s`Ecn4&&+7Vq$3_kzAF{c@e)tmFi2%(WzsMv30dyS)#ZapyZC9==6Nyg|Pxg|yIHwxTvbpsEXN}8SWM$psS z=?Kkla(n1zGeLMnKL*8?I%J|UcH>iZ?u5izTo#-RAD1W+@t$}1q+82A1}*jHu7XBp zYV);Q)C_I1ki__(OI5v`XgV%GFUl}C>O9HxqFwy^UYfILc&Tl&M1dw!;MjlY-2pT+ zDhbqnxYAAIkMC#RiTPqKIRgHOW|MlGXW|=7Q{N3AEN`Hu;Q#lXxzY5-7KhFxB@w>n z=L(-Nb2!HE=7FHXpQOGl=SVC6{7gcHF2CdGN9TUT$?7>TO+_+=N0;Onb<+$NQVpap zeJA+WBihWZ9FYDZy}6I-D^08`X1j{DVH!YLoCh%j*#UU*O;uH2kxIOsL7rd=+S98` zF)XvWMJZ%UGJk~URgyaA*TqGO9%0H?su)Vo{G`)>c9^*x&yVy;KN*V*!vK2qR9%p& zClUvrNpGl!DL{anxw^Un29hG^R~Q%>pHSLxf5@d!)$k){_B$ZT`Ci;*4}7Tv&KPBO zE+q?fzbe*%N-JMv&vGr(<`A9|O0A4KqlIiem)9JhOhlv90HwesAc>Z8d(kAEE*dV= zIW$zpS_P`wGR)gT3_q7;tojW;5=Z?NMd6yYNGlE9O|8hxk((;TKsp6?vLIfL{{AsL z8xJzVMdF^Cs-7+JX~Ce~cqBGz8x`SUnaDlyuR@d>&@(Y9TUxRJ83!aLx7zp-qvSXJ zL!(b$a!*c95R+mJ4GpYJjF7Ah}{(B^KwG2`+eA?YqNvnnh*%?-~9 z-@>)N_~gUA@(Lpo&=tdOXo%n!=+BeL2~^eU-yjGTV@qQkv4e3b8%AjE`mJ+HPveW# z5gj+=L?&kP$}%T1X%=Xf0;@m-)X%`j73jFG?PH(tJa}odxVj%snn`oTiEo$_lZN&6 zE23g*p7|IrV)AU3g|W}~;7l^RN;#1!hqPpqC~1oN?{$oPk&~#f1*4t`5=LEkwhl}O ztDO96a}x@*Hc&-cf5=C!vx}fG9^#j}pC5kVPyYVe)LZV)Cdcp7)79TwlLmTDExHUE z3OPLq#e6Y_Uj9Fjxd!Ped$Oi5xt736tLAkKFU_A<>LnJ2a;M!h4fw9ZIt&GKO}VN? zS5N9q{gs>q1(>xDAmwu%JCJ-nyq(bsxVXIvtBX_R%L}95Z1t++0)I!}-Qxc9)u-!B z9l{>3wyZ1$v4h>=q>fF2w{K=$Hu;?RhfSc})sW`__Q-okEVW1p)f@lt7kTckYQ^(WSzr-?hgBOhQWvUY&On5}hVN&OwUKz5 z_HtvCJ?QSA#dj(^Eg~3P`qrMk+zAmr*lgD)-MLF|#wfPMur9neu~rhXm$4hOp6_{- z%$n1Z@~j<@V;S~nO>OkSMC#Zm>GKV*?W4v{)CEreggC%_mtS*={Jhacc@UQqwVX0K zL8pW1{7K0;pQ4}q9uVNOkhI35YzLRuF!r&!eAkfQ()<(j>oGZQ>^$)g6E<_9vZ}J= zzw4g*(?j#zwpPDvHT=dNrNzSwNVLr&c^`fj3)u*P4`IGUE-G8pNIEdRBZUdxwqFcl zM~;q4MGVIpYB72>dDTGUf18L7&dS4|3SX*!+yY2J+`3)rA_hb z$4%<#KfkA5_3KXo$=44@4Tf-}lYO3*FcfVksD><8!5;Bs+0S#+47kU@aS1-Bj<`q6 zFd<90WSDh_4wxrQ(niW{4}Z4bwXU|%>E#vQ_NY>CGLy<{3>}>_)S^>+#7;@1K*YAV zVN70vvuW>1^GFb}el0P|`DG(sygaMPss8N&^_PC$SFn?Sc45-h_n0YzWenXOs+lu+ zuGe3N`P@K}4PRAN74#Wj-jHTLmkE$pf$Mw{r*WbQz#-0-nlJ%y-7BUR+qaV{ZT^gS zO&Qm>@??0cVJ*BVRx}gFi$Unt%*+UV6zUkOzndyX_)I;UaqOJ)*+#wleJfaQ3cS+{ zo|myePanr!Ug^IhMB;jq0!sOtj4j-NPy*PHu;7nvWuq5=&%>^uT z5rUtA(|#EoG9-K$%l_>Ce{8W|Sc7X3papqSFGW8~XcJ&kHZgkqw?VDNY-{0#g)*f< zBcR!Occ6K6pY}YY@}e@->uc;1UN*i^&Gu@x?Xd9ibj|=eRx19JdA-Hcs^Mdo;2xPB<|u^+CJufLEB8x>Rn`h|k!7xs1oJ=%y&ou>V(u zi>28ko`Oa$T%KQ{D;qY`g|6(#;q~dt$koqu8SfBONHuluVV_?911$S;ZkMTVrO1-hZl0_l*@4JgA;eEA}E-^832w7a2K?q&b>Ui5Imp^^;q0BGj;(+$K% zX-;K`>d@=rUZ2Yya$+Wdyi1Al?14U?j)IG;j*7QEa=2~L>fxMyFfpYhMww*qAwrRg zEH#iqtr39+4)}5+ptY`}vGr=sz=l;+>n6hz1I{g_6G3CP@}tfcxcZ^i^hagr=dSmk zF5JX;1H0KE6}MEe7Jg5m+jZTDh>hj;f5tbsPX4t6v9sjeKi%2g?c1Ag)i*Yd%*kQ+ z=W`%pQY4SE3LZ?zD6@yW;)P_hvlpqUsvZE#dI|WjneGFx^$BvyhM-w5)GUq~Xhw2L z*z7#SsLFw-Vbb786+wxjcCL5Vx`U%LY4^2nBN(zXRPm%+OVnZVjS*N`t*kZ`-RWnf zq@=9C*GyJt%|qfzO)g@VwwT z7SuLhczFqeDRu_Ipn;cXo?v6B2cUBQ6g=BlSwYkinbT<+Jb`QUZ!fGInTL>K>IViK zhQ7i|*knceYbx2xR9#UHgLo^@XoKAmu$Pdi%pL}I2Wr>+K!12Q_;Pda@=h$=OR_RGWh%;9NNrwhA4 zA(R9()L+NP!+w6SA z`i%_>PwCYDWZ8_iA=DNxS8$^09^udpIlQbgm&$8cf40=+R%=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 8cd04759e..c188b9882 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/tabular.ipynb b/master/_sources/tutorials/tabular.ipynb index 5792d9930..6ff8ff967 100644 --- a/master/_sources/tutorials/tabular.ipynb +++ b/master/_sources/tutorials/tabular.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/text.ipynb b/master/_sources/tutorials/text.ipynb index a1d728979..aae739258 100644 --- a/master/_sources/tutorials/text.ipynb +++ b/master/_sources/tutorials/text.ipynb @@ -128,7 +128,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index 030cf46ac..b158ef52c 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/searchindex.js b/master/searchindex.js index bbee2b9ea..ce5788c61 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 68, 70, 71, 78, 80, 81], "helper": [1, 13, 29, 33, 35, 36, 37, 38, 39, 40, 52, 75, 77, 89], "method": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "ar": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 25, 26, 28, 29, 30, 31, 32, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 82, 83, 84, 85, 87, 88, 89], "us": [1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 67, 68, 70, 75, 79, 84], "benchmark": [1, 26, 67, 68, 70, 71, 78, 80, 81], "cleanlab": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 68, 70, 71, 75, 79, 84], "": [1, 2, 3, 7, 25, 26, 30, 33, 36, 38, 40, 45, 46, 50, 52, 53, 54, 55, 57, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "core": [1, 4, 29, 31, 59, 61, 86], "algorithm": [1, 2, 7, 27, 40, 45, 54, 63, 65, 67, 76, 78, 80, 89], "These": [1, 2, 3, 7, 17, 28, 31, 32, 43, 45, 46, 49, 54, 58, 62, 63, 65, 66, 69, 71, 73, 74, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "introduc": [1, 69, 76, 78], "synthet": [1, 80, 81, 86], "nois": [1, 2, 3, 25, 31, 34, 40, 46, 70, 71, 75, 80], "label": [1, 2, 3, 4, 5, 6, 9, 11, 13, 17, 18, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 40, 41, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 75, 79, 83, 84], "classif": [1, 3, 7, 25, 29, 31, 34, 36, 37, 40, 45, 46, 47, 48, 49, 54, 55, 63, 64, 65, 66, 67, 68, 70, 71, 79, 80, 83, 84, 85, 86], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 15, 16, 18, 20, 21, 22, 29, 30, 31, 34, 36, 40, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 72, 73, 79, 80, 84, 87], "specif": [1, 3, 4, 6, 10, 13, 23, 28, 43, 47, 50, 53, 62, 66, 71, 73, 74, 77, 78, 89], "thi": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "modul": [1, 3, 10, 11, 12, 13, 17, 23, 25, 26, 27, 28, 29, 30, 31, 40, 43, 45, 54, 55, 67, 76, 77, 81], "provid": [1, 2, 3, 4, 5, 7, 11, 13, 19, 25, 26, 27, 29, 30, 31, 34, 40, 44, 45, 46, 47, 52, 53, 54, 55, 57, 59, 61, 62, 65, 66, 67, 69, 70, 71, 74, 76, 77, 78, 80, 83, 84, 85, 86, 87, 88, 89], "gener": [1, 2, 3, 5, 7, 19, 23, 25, 36, 40, 41, 54, 55, 57, 62, 69, 70, 71, 75, 76, 77, 78, 80, 81, 83, 84, 85, 86, 88, 89], "valid": [1, 2, 3, 4, 7, 9, 25, 31, 32, 34, 35, 36, 40, 45, 47, 50, 53, 55, 57, 58, 66, 68, 69, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 89], "matric": [1, 3, 34, 76], "which": [1, 2, 3, 4, 7, 9, 10, 11, 13, 18, 20, 23, 25, 26, 30, 31, 34, 36, 39, 40, 45, 46, 47, 50, 52, 53, 54, 55, 57, 58, 61, 62, 63, 65, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 82, 83, 84, 85, 87, 88, 89], "learn": [1, 2, 3, 7, 18, 27, 28, 29, 30, 31, 33, 35, 40, 43, 45, 47, 54, 56, 58, 61, 65, 67, 69, 70, 73, 74, 75, 79, 80, 85, 88], "i": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 80, 81, 82, 83, 85, 86, 87, 88, 89], "possibl": [1, 2, 3, 7, 25, 26, 30, 31, 33, 34, 36, 47, 48, 49, 50, 52, 53, 54, 55, 57, 63, 65, 66, 71, 76, 78, 80, 81, 82, 85, 86, 89], "noisi": [1, 2, 3, 25, 27, 30, 31, 34, 40, 46, 47, 49, 55, 57, 58, 59, 61, 62, 68, 70, 71, 73, 74, 76, 79, 80], "given": [1, 2, 3, 7, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 39, 40, 45, 46, 47, 50, 52, 53, 54, 55, 57, 58, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 82, 83, 85, 86, 87, 88, 89], "matrix": [1, 2, 3, 4, 7, 13, 25, 31, 33, 34, 37, 40, 41, 47, 52, 54, 55, 73, 83], "trace": [1, 70, 71, 78, 80, 81], "valu": [1, 2, 3, 4, 7, 9, 10, 13, 18, 20, 21, 25, 26, 27, 29, 30, 31, 33, 34, 36, 40, 45, 46, 47, 49, 50, 52, 54, 55, 57, 58, 59, 61, 62, 63, 66, 69, 71, 73, 74, 76, 77, 78, 80, 81, 82, 83, 85, 86, 88, 89], "more": [1, 2, 3, 4, 5, 7, 10, 13, 20, 25, 26, 29, 30, 33, 36, 40, 45, 46, 47, 48, 49, 50, 52, 53, 55, 57, 58, 61, 62, 63, 65, 67, 69, 70, 73, 74, 75, 76, 77, 80, 81, 82, 83, 86, 89], "function": [1, 2, 3, 4, 5, 10, 11, 13, 19, 20, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 75, 76, 78, 80, 81, 82, 86, 87, 88, 89], "noise_matrix_is_valid": 1, "noise_matrix": [1, 2, 3, 7, 34, 40, 70, 71, 78, 80, 81], "py": [1, 3, 23, 26, 27, 31, 34, 36, 45, 70, 71, 77, 78, 80, 81], "verbos": [1, 2, 4, 5, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 29, 31, 45, 46, 47, 52, 54, 55, 57, 59, 61, 62, 66, 70, 78, 80], "fals": [1, 2, 3, 4, 5, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 35, 39, 40, 41, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 59, 61, 62, 63, 69, 70, 71, 73, 74, 76, 77, 78, 80, 82, 83, 85, 86, 88], "sourc": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66], "prior": [1, 2, 3, 25, 31, 34, 36], "repres": [1, 2, 3, 4, 5, 7, 9, 13, 20, 25, 29, 31, 34, 37, 40, 45, 46, 47, 50, 52, 53, 54, 55, 57, 59, 61, 62, 66, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 82, 83, 85, 87, 88, 89], "p": [1, 2, 3, 7, 25, 31, 33, 34, 40, 45, 53, 54, 55, 59, 71, 73, 74, 77, 78, 80, 89], "true_label": [1, 2, 3, 25, 34, 40, 78, 80], "k": [1, 2, 3, 4, 7, 9, 13, 15, 19, 20, 22, 25, 29, 31, 33, 34, 35, 36, 37, 38, 39, 40, 45, 46, 47, 48, 49, 50, 53, 54, 55, 57, 59, 61, 62, 63, 65, 66, 69, 70, 71, 76, 78, 80, 81, 82, 83, 86, 87, 89], "check": [1, 2, 4, 6, 7, 9, 13, 26, 29, 30, 35, 41, 44, 50, 53, 57, 67, 69, 70, 71, 76, 77, 78, 80, 81, 85, 87, 88], "learnabl": 1, "mean": [1, 2, 5, 9, 10, 18, 20, 27, 30, 34, 36, 52, 57, 71, 74, 76, 78, 80, 81, 83, 85, 88], "achiev": [1, 2, 26, 27, 30, 57, 80, 89], "better": [1, 4, 31, 45, 47, 55, 57, 58, 67, 69, 71, 73, 74, 76, 78, 81, 82, 83, 88, 89], "than": [1, 2, 3, 5, 7, 20, 22, 25, 31, 40, 44, 45, 50, 52, 54, 55, 57, 61, 65, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 89], "random": [1, 2, 3, 5, 7, 29, 36, 45, 55, 57, 69, 70, 71, 73, 76, 77, 78, 80, 81, 83, 87], "perform": [1, 2, 5, 7, 20, 22, 26, 30, 36, 57, 67, 70, 76, 78, 80, 81, 84, 85, 87, 88], "averag": [1, 3, 18, 22, 25, 26, 30, 36, 38, 45, 46, 54, 55, 76, 80, 83], "amount": [1, 3, 77], "paramet": [1, 2, 3, 4, 6, 9, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 74, 77, 87, 88], "np": [1, 2, 3, 4, 5, 13, 25, 27, 29, 31, 33, 34, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 62, 63, 65, 66, 69, 70, 71, 73, 75, 76, 77, 78, 80, 81, 83, 85, 86, 87, 88, 89], "ndarrai": [1, 2, 3, 4, 13, 19, 20, 25, 27, 29, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 65, 89], "an": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 38, 40, 41, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 59, 61, 62, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "arrai": [1, 2, 3, 4, 5, 9, 13, 20, 25, 27, 29, 30, 31, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 69, 70, 71, 74, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "shape": [1, 2, 3, 4, 13, 25, 27, 29, 31, 33, 34, 35, 36, 38, 39, 40, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 69, 75, 76, 78, 81, 82, 83, 86, 89], "condit": [1, 2, 3, 34, 39, 40, 55, 77, 78, 89], "probabl": [1, 2, 3, 4, 7, 13, 19, 22, 25, 29, 30, 31, 33, 34, 36, 37, 39, 40, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 59, 61, 62, 63, 65, 66, 67, 68, 75, 76, 78, 79, 81, 82, 83, 86, 89], "k_": [1, 2, 3, 34, 40], "k_y": [1, 2, 3, 34, 40], "contain": [1, 2, 3, 4, 9, 10, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 38, 39, 40, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88], "fraction": [1, 2, 3, 7, 16, 27, 34, 40, 45, 57, 73, 76], "exampl": [1, 2, 3, 4, 5, 7, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 36, 37, 38, 39, 40, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 80, 81, 82, 84, 85, 86, 87, 88, 89], "everi": [1, 2, 3, 4, 13, 26, 30, 31, 34, 39, 40, 47, 55, 57, 58, 69, 70, 71, 73, 74, 76, 77, 80, 82, 84, 86, 87, 89], "class": [1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 57, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 77, 80, 81, 82, 83, 84, 85, 87, 88, 89], "other": [1, 2, 3, 4, 7, 13, 18, 25, 26, 28, 29, 30, 31, 34, 37, 40, 41, 43, 45, 46, 49, 54, 55, 57, 62, 69, 70, 71, 73, 74, 76, 77, 78, 81, 83, 86, 89], "assum": [1, 2, 3, 9, 31, 34, 38, 39, 40, 55, 59, 62, 76, 83, 86, 89], "column": [1, 2, 3, 4, 7, 9, 10, 25, 29, 31, 34, 36, 37, 39, 40, 45, 46, 47, 49, 50, 53, 54, 55, 57, 62, 63, 65, 66, 69, 70, 71, 74, 75, 76, 77, 80, 82, 85, 86, 87, 88, 89], "sum": [1, 2, 3, 20, 25, 34, 36, 40, 46, 47, 49, 52, 57, 70, 71, 76, 77, 78, 80, 81, 86, 89], "1": [1, 2, 3, 4, 5, 7, 9, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 75, 76, 84], "each": [1, 2, 3, 4, 5, 6, 10, 11, 13, 16, 18, 19, 20, 23, 25, 26, 27, 29, 30, 31, 33, 34, 36, 37, 38, 40, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "true": [1, 2, 3, 4, 5, 7, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 34, 36, 39, 40, 41, 44, 45, 46, 47, 50, 52, 53, 54, 55, 57, 59, 61, 62, 66, 69, 70, 71, 73, 74, 75, 76, 77, 80, 81, 82, 83, 85, 86, 87, 88, 89], "return": [1, 2, 3, 4, 9, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 88, 89], "type": [1, 2, 3, 4, 5, 8, 9, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 81, 82, 86, 87, 89], "bool": [1, 2, 3, 4, 9, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 36, 39, 40, 45, 47, 49, 50, 52, 53, 54, 55, 57, 59, 61, 62, 66], "is_valid": 1, "whether": [1, 3, 4, 7, 10, 15, 16, 18, 19, 20, 21, 22, 23, 26, 29, 30, 31, 40, 45, 46, 47, 49, 50, 66, 69, 71, 73, 74, 75, 77, 78, 85, 88, 89], "generate_noisy_label": [1, 70, 71, 78, 80, 81], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 18, 19, 23, 24, 25, 26, 27, 29, 30, 31, 34, 36, 37, 38, 39, 40, 45, 47, 49, 52, 53, 54, 55, 57, 58, 63, 65, 66, 67, 69, 73, 74, 75, 76, 77, 80, 81, 82, 83, 84, 86, 89], "perfect": [1, 2, 25, 57, 78, 82], "exactli": [1, 3, 7, 25, 26, 30, 31, 48, 54, 70, 71, 73, 74, 77, 78], "yield": [1, 26, 30], "between": [1, 4, 7, 12, 13, 17, 18, 20, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 38, 43, 45, 46, 49, 52, 54, 55, 57, 58, 61, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 80, 81, 82, 83, 85, 86, 88, 89], "below": [1, 3, 7, 25, 26, 29, 30, 31, 33, 36, 45, 46, 47, 52, 53, 61, 65, 68, 69, 70, 71, 73, 74, 75, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "we": [1, 2, 3, 4, 5, 7, 10, 18, 26, 29, 30, 31, 36, 40, 41, 45, 52, 55, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "loop": [1, 3, 34, 40, 77], "implement": [1, 2, 3, 4, 6, 11, 18, 26, 27, 29, 30, 34, 40, 57, 67, 69, 70, 73, 83, 84, 87], "what": [1, 4, 6, 7, 13, 23, 25, 27, 29, 31, 45, 46, 50, 52, 69, 70, 71, 73, 74, 77, 80, 81, 82, 83, 85, 86, 87, 88, 89], "doe": [1, 2, 3, 7, 29, 30, 31, 36, 41, 52, 57, 59, 61, 65, 69, 70, 71, 73, 74, 77, 81, 85, 86, 88], "do": [1, 2, 4, 7, 25, 29, 30, 40, 41, 54, 55, 59, 69, 70, 71, 73, 74, 77, 80, 81, 82, 83, 85, 86, 87, 88, 89], "fast": 1, "explain": [1, 7], "python": [1, 2, 30, 44, 57, 70, 71, 75, 77, 83], "pseudocod": [1, 84], "happen": [1, 7, 31, 47, 80, 86], "n": [1, 2, 3, 4, 5, 25, 26, 29, 30, 31, 33, 34, 35, 36, 38, 39, 40, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 65, 69, 74, 75, 76, 77, 80, 81, 85, 86, 87, 88, 89], "without": [1, 2, 4, 7, 9, 13, 16, 26, 30, 49, 57, 67, 69, 74, 78, 82, 83, 88], "ani": [1, 2, 3, 4, 5, 7, 9, 10, 13, 15, 16, 18, 19, 20, 21, 22, 25, 26, 29, 30, 31, 33, 35, 39, 40, 44, 45, 47, 49, 50, 52, 53, 55, 57, 59, 61, 62, 67, 69, 70, 71, 73, 74, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88], "distinct": [1, 40, 89], "natur": [1, 7, 80, 83], "number": [1, 2, 3, 4, 5, 7, 9, 10, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 34, 35, 36, 37, 38, 39, 40, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 82, 86, 89], "0": [1, 2, 3, 4, 5, 7, 9, 13, 15, 16, 18, 19, 20, 21, 22, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "count_joint": 1, "len": [1, 2, 3, 5, 25, 29, 34, 39, 40, 41, 54, 55, 57, 70, 71, 74, 75, 76, 77, 78, 80, 81, 83, 85, 87, 88, 89], "y": [1, 2, 3, 4, 30, 34, 36, 40, 41, 44, 53, 57, 58, 69, 70, 71, 73, 76, 78, 80, 81, 83, 85, 88], "round": [1, 29, 31, 40, 57, 76, 85], "astyp": [1, 80], "int": [1, 2, 3, 4, 5, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 36, 37, 38, 39, 40, 46, 47, 49, 53, 54, 55, 57, 59, 61, 62, 63, 66, 69, 70, 77, 83], "rang": [1, 3, 5, 9, 34, 36, 38, 40, 57, 58, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 89], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 7, 9, 10, 13, 18, 25, 29, 31, 34, 35, 36, 37, 38, 39, 40, 41, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 69, 73, 74, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 88, 89], "pragma": 1, "cover": [1, 3, 68, 75], "choic": [1, 31, 77, 81, 83], "replac": [1, 39, 44, 55, 70, 71, 74, 75, 77, 80, 83, 87, 88], "generate_noise_matrix_from_trac": [1, 70, 71, 78, 80, 81], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 55, 69, 70, 71], "05": [1, 20, 39, 57, 63, 65, 75, 76, 78, 82], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 70, 71, 78, 80, 81], "none": [1, 2, 3, 4, 5, 9, 10, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 57, 59, 61, 62, 65, 66, 70, 71, 76, 77, 78, 80, 81, 86], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 7, 20, 30, 36, 57, 69, 70, 71, 73, 75, 78, 80, 81, 87], "max_it": [1, 69, 74, 83, 88], "10000": [1, 29, 75, 76], "x": [1, 2, 3, 4, 7, 15, 16, 18, 19, 20, 21, 22, 25, 26, 27, 30, 31, 33, 34, 36, 39, 40, 41, 44, 45, 47, 53, 54, 55, 57, 59, 69, 70, 71, 73, 75, 76, 77, 78, 80, 81, 83, 85, 87, 88], "diagon": [1, 3, 4, 13, 31, 34, 40], "equal": [1, 3, 7, 9, 47, 52, 62, 84], "creat": [1, 2, 6, 13, 26, 29, 30, 31, 40, 57, 67, 69, 73, 74, 76, 77, 86, 88, 89], "impli": [1, 25, 46], "float": [1, 2, 7, 15, 16, 18, 19, 20, 21, 22, 25, 26, 27, 29, 30, 31, 33, 35, 36, 39, 40, 45, 46, 47, 49, 52, 53, 57, 61, 65, 69, 70, 71, 78, 80, 81], "entri": [1, 3, 4, 13, 25, 26, 30, 31, 33, 37, 40, 45, 46, 47, 50, 73, 74, 78, 81, 82, 87, 88], "maximum": [1, 7, 54, 62, 66, 86], "minimum": [1, 7, 16, 31, 33, 47, 52, 65], "noise_r": 1, "non": [1, 2, 3, 4, 6, 13, 20, 26, 30, 31, 52, 57, 70, 76, 78, 80, 82, 83], "default": [1, 2, 3, 4, 7, 11, 13, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 36, 40, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 70, 76, 77, 86], "If": [1, 2, 3, 4, 7, 10, 13, 20, 22, 25, 26, 29, 30, 31, 33, 34, 36, 39, 40, 44, 45, 46, 47, 50, 52, 53, 54, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 70, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "have": [1, 2, 3, 4, 7, 13, 17, 20, 25, 26, 28, 29, 30, 31, 34, 36, 40, 44, 45, 46, 47, 50, 52, 53, 54, 55, 57, 58, 62, 66, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "all": [1, 2, 3, 4, 5, 7, 10, 13, 18, 23, 25, 26, 29, 30, 31, 34, 36, 37, 39, 40, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 57, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 73, 74, 75, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "necessari": [1, 2, 3, 5, 7, 39, 70], "In": [1, 2, 3, 7, 25, 26, 29, 30, 45, 46, 48, 69, 70, 71, 73, 74, 75, 76, 77, 78, 81, 82, 83, 84, 85, 86, 87, 88, 89], "particular": [1, 4, 7, 10, 11, 13, 15, 16, 18, 20, 21, 22, 26, 30, 40, 45, 49, 53, 57, 62, 66, 67, 69, 71, 74, 76, 80, 81, 83, 85, 87, 88], "satisfi": [1, 3, 25], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 24, 26, 27, 28, 29, 30, 31, 34, 40, 43, 44, 47, 54, 55, 57, 59, 67, 68, 69, 75, 76, 78, 84], "argument": [1, 2, 3, 4, 7, 13, 19, 26, 29, 30, 31, 36, 41, 44, 45, 46, 47, 49, 52, 53, 54, 55, 57, 61, 62, 63, 65, 71, 74, 75, 76, 77, 82, 85, 88, 89], "when": [1, 2, 3, 4, 7, 9, 11, 13, 19, 20, 26, 30, 31, 34, 36, 40, 44, 47, 49, 50, 52, 54, 55, 57, 58, 70, 71, 73, 74, 76, 77, 80, 84, 85, 86, 87, 88, 89], "The": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 40, 44, 45, 46, 47, 50, 52, 53, 54, 55, 57, 59, 62, 63, 65, 67, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "rate": [1, 2, 3, 7, 27, 40, 69, 89], "set": [1, 2, 3, 4, 6, 7, 9, 10, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 35, 36, 40, 44, 45, 47, 50, 52, 53, 54, 55, 57, 59, 61, 62, 70, 71, 73, 74, 76, 80, 81, 83, 84, 85, 86, 87, 88, 89], "note": [1, 2, 3, 5, 7, 26, 29, 30, 31, 36, 40, 45, 50, 52, 53, 54, 55, 57, 58, 62, 68, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "you": [1, 2, 3, 4, 5, 7, 11, 13, 25, 26, 28, 29, 30, 31, 36, 43, 44, 45, 47, 50, 52, 53, 54, 55, 57, 58, 59, 62, 63, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "high": [1, 2, 13, 29, 31, 40, 52, 55, 57, 70, 71, 75, 77, 78, 82, 85, 86, 87, 88, 89], "mai": [1, 2, 3, 4, 7, 10, 17, 18, 25, 26, 28, 29, 30, 31, 34, 36, 40, 45, 46, 50, 52, 53, 54, 55, 57, 59, 62, 66, 68, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89], "imposs": [1, 7, 78], "also": [1, 2, 3, 5, 7, 18, 25, 26, 29, 30, 31, 39, 44, 45, 54, 57, 62, 65, 66, 67, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89], "low": [1, 7, 40, 45, 67, 70, 71, 74, 78, 82, 86], "zero": [1, 3, 4, 13, 26, 30, 33, 40, 41, 70, 77, 81, 82, 83], "forc": [1, 2, 3, 4, 30, 70, 89], "instead": [1, 2, 3, 7, 10, 13, 23, 25, 26, 29, 30, 31, 34, 40, 44, 45, 47, 49, 54, 55, 57, 58, 61, 63, 65, 68, 69, 73, 76, 77, 78, 81, 82, 83, 85, 86, 87, 88, 89], "onli": [1, 2, 3, 4, 7, 13, 19, 20, 25, 26, 29, 30, 31, 33, 34, 39, 40, 44, 45, 54, 55, 57, 59, 61, 65, 66, 67, 69, 70, 71, 74, 77, 80, 81, 82, 83, 84, 85, 86, 88, 89], "guarante": [1, 3, 4, 12, 17, 26, 28, 30, 32, 34, 43, 68], "produc": [1, 2, 4, 7, 13, 36, 45, 55, 57, 59, 61, 67, 69, 73, 74, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 89], "higher": [1, 4, 7, 25, 31, 33, 34, 36, 45, 46, 57, 71, 74, 76, 82], "opposit": [1, 89], "occur": [1, 3, 7, 25, 39, 52, 70, 71, 76, 77, 83], "small": [1, 3, 7, 25, 29, 36, 40, 46, 53, 74, 75, 77, 81, 83, 88], "numpi": [1, 3, 4, 5, 7, 9, 29, 30, 36, 38, 39, 41, 44, 49, 52, 57, 58, 63, 65, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "max": [1, 31, 54, 55, 77, 83], "tri": [1, 26, 30, 84], "befor": [1, 2, 3, 26, 30, 40, 54, 57, 62, 74, 76, 78, 80, 83, 85, 87, 88], "option": [1, 2, 3, 4, 5, 6, 9, 10, 13, 19, 20, 25, 26, 29, 30, 31, 34, 36, 39, 40, 41, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 76, 77, 78, 85, 86, 87], "left": [1, 2, 31, 33, 38, 40, 47, 50, 53, 70, 71, 81, 82, 83, 86], "stochast": 1, "exceed": 1, "generate_n_rand_probabilities_that_sum_to_m": 1, "m": [1, 26, 30, 35, 36, 45, 50, 52, 53, 54, 70, 71, 75, 80, 81, 82, 89], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 26, 30, 44, 76, 78, 86], "length": [1, 4, 9, 20, 25, 27, 31, 40, 47, 50, 54, 55, 57, 59, 62, 66, 69, 81, 83, 86, 87, 89], "must": [1, 2, 3, 4, 13, 25, 26, 27, 28, 30, 31, 34, 36, 37, 40, 43, 44, 45, 46, 47, 54, 55, 57, 59, 61, 62, 63, 65, 66, 69, 80, 84, 86, 89], "randomly_distribute_n_balls_into_k_bin": 1, "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 7, 9, 25, 29, 31, 37, 40, 41, 45, 47, 53, 59, 61, 62, 63, 65, 66, 69, 76, 80, 81, 82, 86, 87, 88, 89], "ball": [1, 75], "bin": [1, 3, 47, 70, 71, 83], "ensur": [1, 2, 7, 26, 30, 40, 41, 52, 55, 57, 69, 70, 71, 74, 77, 78, 83, 84, 85, 87, 88], "most": [1, 3, 4, 5, 7, 13, 25, 29, 31, 36, 44, 45, 46, 47, 50, 52, 53, 54, 55, 58, 61, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88], "least": [1, 7, 25, 29, 45, 46, 52, 55, 65, 76, 77, 80, 83, 86], "int_arrai": [1, 40], "can": [2, 3, 4, 5, 6, 10, 11, 13, 23, 25, 26, 27, 28, 29, 30, 31, 35, 36, 37, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 62, 63, 66, 67, 68, 69, 70, 73, 74, 77, 81, 82, 83, 84, 85, 86, 87, 88, 89], "model": [2, 3, 4, 7, 13, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 39, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 68, 70, 71, 75, 79, 84, 86, 89], "For": [2, 3, 4, 5, 6, 7, 8, 13, 18, 24, 25, 26, 29, 30, 31, 34, 36, 40, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 59, 61, 63, 65, 66, 67, 69, 71, 73, 75, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 89], "regular": [2, 3, 29, 44], "multi": [2, 3, 7, 25, 26, 29, 30, 31, 35, 36, 37, 40, 41, 46, 47, 48, 49, 54, 55, 67, 76, 78, 79], "task": [2, 4, 25, 29, 34, 36, 37, 38, 40, 45, 47, 55, 57, 67, 69, 74, 75, 76, 78, 81, 83, 86, 88, 89], "cleanlearn": [2, 3, 7, 19, 26, 40, 44, 57, 58, 67, 68, 85, 87, 88], "wrap": [2, 26, 30, 44, 54, 57, 67, 70, 71, 73, 74, 78, 85, 87, 88], "instanc": [2, 3, 4, 5, 7, 10, 13, 15, 16, 18, 19, 20, 21, 22, 23, 26, 30, 36, 44, 53, 54, 57, 62, 69, 70, 71, 73, 74, 77, 78, 87], "sklearn": [2, 3, 4, 7, 25, 30, 36, 40, 44, 54, 57, 58, 67, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 83, 84, 85, 87, 88], "classifi": [2, 3, 30, 36, 40, 45, 48, 54, 55, 67, 68, 69, 73, 74, 76, 80, 81, 83, 84, 86, 87, 88, 89], "adher": [2, 30, 57], "estim": [2, 3, 4, 6, 10, 18, 25, 29, 30, 31, 34, 40, 45, 46, 47, 52, 54, 57, 59, 61, 65, 67, 68, 69, 70, 71, 73, 74, 76, 77, 79, 81, 82, 83, 84, 85, 86, 89], "api": [2, 3, 11, 44, 54, 57, 68, 76, 85], "defin": [2, 3, 4, 5, 7, 11, 18, 25, 26, 27, 29, 30, 31, 55, 57, 59, 70, 71, 73, 80, 83, 89], "four": [2, 7, 75, 78, 89], "clf": [2, 3, 4, 36, 57, 67, 73, 76, 78, 81, 87], "fit": [2, 3, 4, 7, 30, 44, 54, 57, 67, 70, 71, 73, 74, 76, 77, 78, 80, 81, 83, 84, 85, 87, 88, 89], "sample_weight": [2, 30, 57, 78], "predict_proba": [2, 4, 25, 30, 36, 44, 69, 70, 71, 73, 74, 76, 78, 80, 81, 83, 87], "predict": [2, 3, 4, 7, 13, 18, 19, 22, 25, 29, 30, 31, 33, 34, 36, 37, 39, 40, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 75, 76, 78, 79, 83, 85, 86, 88, 89], "score": [2, 3, 4, 5, 7, 10, 15, 16, 18, 19, 20, 21, 22, 25, 29, 31, 33, 36, 38, 45, 46, 47, 49, 50, 52, 54, 55, 57, 58, 61, 63, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 83, 85, 87, 88], "data": [2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 36, 37, 40, 43, 44, 45, 46, 47, 48, 52, 54, 55, 56, 57, 62, 63, 64, 65, 66, 68, 72, 74, 77, 79, 84, 88], "e": [2, 3, 4, 7, 13, 18, 25, 26, 29, 30, 31, 34, 36, 37, 40, 41, 45, 46, 47, 48, 54, 55, 57, 59, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 87, 88], "featur": [2, 3, 4, 7, 13, 15, 19, 20, 21, 22, 36, 40, 54, 57, 67, 70, 71, 73, 74, 78, 80, 85, 87], "element": [2, 3, 4, 25, 31, 33, 40, 45, 47, 55, 62, 63, 65, 69, 74, 76, 88, 89], "first": [2, 7, 14, 20, 21, 25, 29, 36, 40, 45, 46, 50, 53, 55, 57, 69, 70, 73, 76, 77, 80, 81, 82, 83, 85, 86, 87, 88, 89], "index": [2, 7, 20, 25, 31, 38, 39, 40, 41, 46, 55, 57, 62, 65, 66, 69, 70, 71, 73, 75, 77, 78, 80, 82, 83, 85, 86, 88, 89], "should": [2, 3, 4, 5, 7, 11, 13, 18, 20, 25, 26, 29, 30, 31, 33, 34, 36, 39, 40, 44, 45, 46, 49, 50, 52, 53, 54, 55, 57, 58, 62, 63, 65, 66, 69, 70, 71, 73, 74, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "correspond": [2, 3, 4, 7, 10, 13, 15, 16, 18, 19, 20, 21, 22, 25, 26, 29, 30, 31, 33, 34, 36, 39, 40, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 59, 62, 63, 65, 66, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "differ": [2, 4, 5, 7, 10, 12, 17, 20, 25, 26, 28, 29, 30, 31, 32, 36, 40, 41, 43, 45, 50, 52, 54, 57, 69, 70, 71, 73, 74, 77, 78, 80, 83, 84, 87], "sampl": [2, 3, 4, 7, 13, 16, 31, 33, 36, 47, 50, 53, 55, 57, 58, 67, 68, 75, 76, 78, 79, 81, 82, 85, 86, 88, 89], "size": [2, 7, 26, 29, 30, 31, 36, 47, 52, 53, 57, 59, 61, 73, 76, 77, 78, 80, 81, 84, 86, 88], "here": [2, 4, 5, 7, 13, 29, 31, 34, 44, 45, 46, 47, 49, 50, 53, 54, 65, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "re": [2, 4, 26, 30, 39, 45, 57, 67, 69, 70, 73, 74, 76, 85, 86, 87, 88, 89], "weight": [2, 7, 26, 27, 30, 36, 45, 52, 55, 57, 69, 70, 71, 74, 83, 88], "loss": [2, 27, 44, 55, 57, 77], "while": [2, 3, 7, 26, 29, 30, 35, 36, 40, 50, 53, 57, 67, 76, 77, 78, 80, 85], "train": [2, 3, 4, 7, 13, 26, 27, 30, 36, 40, 44, 45, 50, 53, 54, 57, 58, 68, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 86, 89], "support": [2, 3, 4, 9, 29, 36, 40, 41, 54, 55, 65, 67, 68, 69, 70, 71, 76, 77], "your": [2, 3, 4, 6, 7, 13, 25, 26, 28, 29, 30, 31, 36, 40, 43, 44, 45, 46, 47, 49, 54, 55, 57, 58, 59, 61, 62, 68, 69, 73, 75, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "recommend": [2, 4, 7, 10, 13, 29, 31, 45, 70, 71, 76, 77, 84, 85], "furthermor": 2, "correctli": [2, 3, 7, 25, 26, 30, 31, 34, 41, 46, 47, 52, 57, 59, 74, 76, 81, 82, 85, 86, 88], "clonabl": [2, 57], "via": [2, 4, 7, 10, 13, 18, 25, 27, 29, 30, 36, 40, 45, 50, 53, 54, 55, 57, 58, 61, 65, 69, 70, 71, 73, 74, 75, 76, 77, 81, 82, 83, 84, 85, 86, 87, 88, 89], "base": [2, 3, 4, 5, 7, 9, 10, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 29, 30, 31, 34, 35, 36, 38, 39, 40, 41, 44, 45, 46, 47, 49, 52, 54, 55, 57, 58, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 86, 87, 89], "clone": [2, 57, 81], "intern": [2, 3, 5, 7, 8, 9, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 29, 33, 34, 35, 36, 37, 38, 39, 40, 41, 49, 53, 57, 63, 68, 70, 76, 78, 80, 81, 83, 89], "multipl": [2, 3, 4, 9, 10, 25, 31, 39, 45, 46, 47, 49, 52, 53, 57, 67, 70, 71, 76, 77, 79, 81, 82, 85], "g": [2, 3, 4, 7, 18, 25, 26, 30, 31, 37, 40, 47, 48, 54, 55, 57, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 87, 88], "manual": [2, 57, 69, 76, 83, 84, 85, 87, 88, 89], "pytorch": [2, 26, 27, 30, 57, 67, 69, 76, 79, 81, 86], "call": [2, 3, 4, 7, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 26, 30, 36, 40, 44, 54, 57, 69, 70, 71, 74, 76, 78, 83, 84, 86, 88, 89], "__init__": [2, 27, 57, 77], "independ": [2, 3, 7, 46, 57, 84, 89], "compat": [2, 26, 29, 30, 44, 57, 58, 61, 65, 67, 76, 84, 85, 87, 88], "neural": [2, 27, 44, 54, 57, 69, 76, 77, 81, 83], "network": [2, 26, 27, 30, 44, 54, 57, 69, 74, 76, 77, 81, 83, 88], "typic": [2, 26, 30, 54, 57, 69, 71, 73, 74, 77, 83, 84, 87, 88], "initi": [2, 3, 10, 26, 30, 45, 57, 74, 76, 87], "insid": [2, 30, 57, 76, 78], "There": [2, 3, 67, 78, 80, 81], "two": [2, 3, 7, 20, 25, 26, 29, 30, 37, 40, 50, 52, 53, 68, 70, 71, 73, 74, 76, 77, 78, 81, 85, 86, 88, 89], "new": [2, 5, 11, 18, 26, 29, 30, 35, 39, 40, 45, 57, 69, 70, 74, 75, 76, 83, 84, 88, 89], "notion": 2, "confid": [2, 3, 7, 18, 25, 29, 31, 34, 36, 40, 45, 46, 47, 50, 52, 53, 54, 55, 57, 61, 65, 67, 78, 80, 81, 82, 84, 86, 87, 89], "packag": [2, 4, 5, 6, 7, 8, 12, 24, 28, 31, 32, 40, 43, 50, 53, 57, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "prune": [2, 3, 31, 47, 57, 68, 82], "everyth": [2, 78], "els": [2, 70, 75, 76, 77, 80, 81], "mathemat": [2, 3, 7, 34], "keep": [2, 10, 11, 40, 67, 70, 75, 76, 86], "belong": [2, 3, 7, 25, 31, 33, 34, 46, 47, 48, 49, 54, 55, 59, 63, 65, 66, 77, 78, 81, 83, 86, 89], "2": [2, 3, 4, 5, 15, 16, 18, 19, 20, 21, 22, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 44, 46, 47, 49, 54, 55, 57, 58, 62, 63, 65, 66, 75, 76, 84], "error": [2, 3, 4, 7, 10, 26, 30, 31, 33, 34, 38, 40, 46, 47, 49, 50, 52, 53, 55, 57, 59, 61, 62, 65, 68, 69, 70, 71, 73, 74, 75, 79, 87], "erron": [2, 3, 25, 31, 34, 40, 46, 47, 55, 57, 58, 59, 83, 85], "import": [2, 3, 4, 5, 9, 10, 11, 15, 16, 18, 19, 20, 21, 22, 23, 25, 29, 36, 38, 39, 45, 49, 52, 57, 58, 63, 65, 66, 67, 73, 74, 76, 81, 82, 83, 85, 86, 87, 88, 89], "linear_model": [2, 4, 25, 40, 57, 67, 69, 70, 71, 74, 76, 78, 80, 83, 88], "logisticregress": [2, 3, 4, 25, 40, 67, 69, 70, 71, 74, 76, 78, 80, 83, 88], "logreg": 2, "cl": [2, 11, 57, 67, 76, 77, 78, 85, 87, 88], "pass": [2, 3, 4, 7, 9, 10, 11, 13, 19, 23, 26, 29, 30, 31, 35, 36, 40, 44, 45, 47, 54, 55, 57, 63, 67, 69, 70, 71, 74, 75, 76, 78, 80, 82, 83, 85, 88], "x_train": [2, 70, 71, 78, 80, 81, 85, 87], "labels_maybe_with_error": 2, "had": [2, 3, 57, 82], "issu": [2, 3, 4, 8, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 43, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 72, 79, 80, 84, 85, 88], "pred": [2, 31, 40, 84, 85, 87, 88], "x_test": [2, 70, 71, 78, 81, 85, 87], "might": [2, 45, 57, 62, 70, 71, 76, 77, 87, 88], "case": [2, 3, 10, 25, 36, 45, 57, 69, 70, 71, 73, 75, 77, 78, 83, 85, 87, 88, 89], "standard": [2, 3, 4, 25, 31, 44, 46, 47, 49, 55, 57, 67, 70, 71, 73, 75, 78, 87], "adapt": [2, 26, 28, 40, 43, 57, 83], "skorch": [2, 57, 67, 76], "kera": [2, 43, 57, 67, 76], "scikera": [2, 44, 57, 76], "open": [2, 29, 75, 82, 89], "doesn": [2, 57, 67], "t": [2, 3, 7, 14, 21, 26, 27, 29, 30, 31, 36, 38, 39, 49, 54, 55, 57, 63, 65, 66, 67, 70, 71, 75, 77, 78, 81, 82, 89], "alreadi": [2, 4, 13, 26, 29, 30, 34, 44, 45, 57, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 82, 83, 85, 87, 88], "exist": [2, 4, 7, 9, 26, 29, 30, 39, 44, 50, 52, 54, 57, 67, 68, 70, 71, 74, 80, 81, 88, 89], "made": [2, 4, 13, 57, 74, 77, 80, 82, 84, 85, 87, 88], "easi": [2, 34, 57, 70, 71, 75, 76, 78, 81], "inherit": [2, 5, 27, 57], "baseestim": [2, 30, 57], "yourmodel": [2, 57], "def": [2, 5, 11, 26, 30, 44, 57, 69, 70, 71, 75, 76, 77, 78, 80, 81, 83, 85, 88, 89], "self": [2, 3, 4, 5, 9, 10, 11, 13, 26, 27, 29, 30, 31, 36, 54, 55, 57, 70, 75, 77, 81, 86, 87, 89], "refer": [2, 7, 26, 30, 46, 47, 49, 50, 52, 53, 57, 61, 62, 70, 71, 73, 74, 76, 77, 78, 84, 85], "origin": [2, 4, 7, 30, 31, 39, 40, 44, 46, 47, 50, 53, 54, 57, 58, 61, 63, 65, 70, 73, 74, 76, 77, 78, 82, 83, 85, 87, 88, 89], "total": [2, 3, 25, 29, 40, 46, 66, 76, 77, 86], "state": [2, 3, 4, 26, 27, 30, 35, 57, 78, 81, 82, 89], "art": [2, 27, 78, 81], "northcutt": [2, 3, 25, 54, 55], "et": [2, 3, 25, 27, 54, 55], "al": [2, 3, 25, 27, 54, 55], "2021": [2, 3, 25, 54, 55], "weak": 2, "supervis": [2, 7, 70, 71, 76, 80], "find": [2, 4, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 25, 26, 28, 29, 30, 31, 35, 39, 40, 43, 50, 53, 54, 55, 57, 59, 63, 65, 68, 70, 79, 84], "uncertainti": [2, 7, 33, 54, 57, 76, 83, 85], "It": [2, 3, 4, 5, 7, 9, 10, 13, 18, 23, 26, 30, 31, 34, 36, 38, 45, 52, 53, 57, 67, 70, 71, 76, 77, 78, 81, 84], "work": [2, 3, 5, 7, 9, 25, 26, 29, 30, 31, 34, 39, 40, 41, 44, 45, 55, 57, 67, 68, 70, 71, 75, 83, 85, 88], "includ": [2, 3, 4, 5, 7, 10, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 39, 40, 43, 45, 46, 49, 50, 54, 55, 57, 61, 62, 63, 65, 67, 68, 70, 71, 73, 74, 76, 77, 78, 81, 82, 83, 89], "deep": [2, 28, 30, 43, 44, 57, 74], "see": [2, 3, 4, 10, 25, 26, 29, 30, 31, 36, 40, 44, 46, 47, 49, 50, 53, 54, 55, 57, 63, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 80, 81, 82, 83, 85, 86, 87, 88, 89], "subfield": 2, "theori": [2, 78], "machin": [2, 28, 43, 57, 70, 71, 75, 80], "across": [2, 3, 4, 5, 7, 10, 13, 18, 25, 29, 36, 46, 53, 54, 70, 71, 73, 74, 75, 76, 77, 78, 82, 84], "varieti": [2, 87, 88], "like": [2, 3, 4, 5, 7, 11, 13, 25, 26, 29, 30, 31, 34, 40, 44, 45, 46, 49, 50, 52, 55, 57, 58, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "pu": [2, 40], "input": [2, 3, 4, 7, 13, 20, 25, 26, 29, 30, 34, 36, 39, 40, 41, 44, 53, 57, 67, 68, 71, 74, 75, 76, 77, 78, 80, 81, 82, 85, 86, 88, 89], "discret": [2, 31, 34, 40, 54, 55, 59, 61, 62], "vector": [2, 3, 4, 7, 13, 31, 34, 36, 37, 40, 54, 55, 67, 69, 70, 71, 73, 74, 77, 78, 81, 82, 83, 86, 88, 89], "would": [2, 3, 4, 26, 29, 30, 31, 40, 47, 57, 67, 70, 76, 77, 78, 83, 85, 88, 89], "obtain": [2, 4, 7, 13, 31, 45, 47, 50, 53, 55, 58, 69, 71, 74, 76, 80, 82, 84, 86, 89], "been": [2, 25, 31, 34, 39, 40, 45, 46, 50, 52, 54, 55, 57, 69, 70, 73, 76, 77, 78, 80, 81, 82, 83, 86, 89], "dure": [2, 13, 54, 57, 69, 73, 74, 76, 78, 81, 84, 85, 87, 88, 89], "denot": [2, 3, 34, 36, 40, 47, 54, 55, 65], "tild": 2, "paper": [2, 7, 45, 54, 63, 65, 75, 78, 80, 83, 85, 89], "cv_n_fold": [2, 3, 57, 88], "5": [2, 3, 4, 15, 16, 18, 19, 20, 21, 22, 23, 25, 30, 31, 33, 35, 36, 40, 45, 46, 49, 50, 53, 57, 58, 65, 70, 74, 75, 76, 81, 82, 83, 84, 86, 88, 89], "converge_latent_estim": [2, 3], "pulearn": [2, 40], "find_label_issues_kwarg": [2, 7, 57, 68, 76, 78], "label_quality_scores_kwarg": [2, 7], "low_memori": [2, 47, 63, 76], "clean": [2, 52, 55, 57, 58, 67, 70, 71, 75, 85, 87, 88], "even": [2, 3, 25, 29, 33, 34, 40, 57, 69, 76, 78, 80, 81, 82], "messi": [2, 57, 78], "ridden": [2, 57], "autom": [2, 57, 67, 71, 75, 76], "robust": [2, 34, 57, 71, 76], "prone": [2, 57], "out": [2, 3, 4, 7, 13, 22, 26, 30, 31, 36, 44, 47, 48, 50, 53, 54, 55, 57, 58, 66, 67, 68, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89], "current": [2, 3, 7, 10, 11, 18, 26, 30, 31, 36, 45, 52, 57, 70, 71, 76, 80], "intend": [2, 10, 11, 12, 13, 23, 32, 45, 61, 65, 69, 70, 71, 74, 78], "A": [2, 3, 4, 5, 7, 9, 10, 11, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 30, 31, 34, 35, 36, 37, 39, 40, 44, 45, 46, 49, 52, 53, 54, 55, 57, 59, 61, 62, 66, 68, 69, 70, 73, 74, 75, 76, 77, 78, 80, 82, 84, 87, 88, 89], "follow": [2, 3, 7, 11, 25, 26, 29, 30, 36, 38, 45, 46, 50, 52, 53, 54, 57, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "experiment": [2, 26, 27, 29, 30, 47, 68, 76], "wrapper": [2, 4, 44, 69, 85, 87, 88], "around": [2, 4, 52, 70, 71, 82, 83, 89], "fasttext": [2, 43], "store": [2, 4, 7, 9, 10, 13, 15, 16, 18, 19, 20, 21, 22, 23, 26, 29, 30, 54, 57, 73, 74, 75, 86, 87, 88, 89], "along": [2, 36, 47, 65, 70, 71, 76, 77, 83], "dimens": [2, 38, 40, 59, 62, 76, 77, 83, 86], "select": [2, 6, 20, 45, 55, 77, 80, 83], "split": [2, 3, 4, 7, 9, 29, 36, 39, 40, 57, 69, 70, 71, 73, 74, 75, 77, 78, 81, 84, 87, 89], "cross": [2, 3, 7, 25, 31, 34, 35, 36, 47, 50, 53, 55, 57, 58, 68, 69, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 89], "fold": [2, 3, 25, 31, 34, 57, 69, 73, 75, 76, 82, 86, 87], "By": [2, 25, 46, 47, 57, 70, 86], "need": [2, 3, 7, 25, 26, 29, 30, 31, 46, 47, 49, 54, 57, 67, 69, 70, 71, 74, 76, 78, 80, 81, 82, 86, 88], "holdout": [2, 3, 57], "comput": [2, 3, 4, 5, 7, 10, 15, 16, 18, 19, 20, 21, 22, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 38, 40, 45, 46, 47, 49, 52, 53, 54, 55, 57, 58, 59, 61, 67, 68, 70, 71, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88], "them": [2, 3, 4, 5, 6, 7, 8, 24, 26, 28, 29, 30, 31, 43, 45, 54, 57, 68, 70, 71, 73, 74, 76, 77, 80, 81, 83, 85, 86, 87, 88, 89], "numer": [2, 3, 4, 7, 10, 18, 36, 52, 54, 57, 62, 67, 68, 69, 70, 71, 72, 74, 77, 78, 80, 83, 85, 87, 88], "consist": [2, 3, 26, 30, 40, 45, 86, 89], "latent": [2, 3, 34], "thei": [2, 3, 12, 17, 20, 26, 27, 28, 30, 31, 32, 40, 44, 47, 52, 55, 57, 58, 61, 65, 67, 69, 70, 71, 73, 74, 76, 77, 78, 80, 83, 85, 88, 89], "relat": [2, 3, 10, 15, 16, 20, 21, 22, 34, 40, 46, 57, 71], "close": [2, 3, 7, 29, 34, 54, 69, 70, 71, 73, 74, 76, 77, 78, 82], "form": [2, 3, 7, 26, 27, 30, 34, 39, 40, 55, 57, 76], "equival": [2, 3, 26, 30, 34, 54, 83], "iter": [2, 3, 25, 26, 30, 31, 40, 46, 47, 57, 80, 86], "enforc": [2, 26, 30, 40], "perfectli": [2, 25, 46, 78], "certain": [2, 3, 4, 13, 26, 30, 44, 57, 70, 71, 75, 83], "dict": [2, 3, 4, 7, 9, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 25, 26, 29, 30, 31, 35, 36, 40, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 65, 70, 71, 76, 77, 89], "keyword": [2, 3, 4, 7, 13, 19, 26, 29, 30, 31, 33, 36, 39, 44, 45, 47, 54, 55, 57, 63, 65, 70], "filter": [2, 3, 7, 29, 39, 46, 48, 49, 51, 60, 61, 62, 64, 65, 66, 67, 68, 69, 74, 75, 76, 77, 81, 82, 85, 86, 87, 88, 89], "find_label_issu": [2, 3, 7, 29, 31, 46, 47, 49, 50, 52, 57, 59, 61, 62, 63, 65, 66, 67, 68, 76, 81, 82, 85, 86, 87, 88, 89], "particularli": [2, 67, 80, 83], "filter_bi": [2, 3, 29, 31, 47, 68, 76], "frac_nois": [2, 31, 47, 63, 76], "min_examples_per_class": [2, 31, 47, 76, 78], "impact": [2, 7, 70, 71, 77], "ml": [2, 4, 7, 57, 67, 70, 71, 73, 74, 77, 80, 87, 88], "accuraci": [2, 27, 55, 69, 76, 77, 78, 80, 83, 85, 86, 87, 88], "n_job": [2, 29, 31, 47, 59, 61, 63, 76, 83, 86], "disabl": [2, 26, 30, 31, 83], "process": [2, 3, 5, 13, 29, 31, 39, 45, 47, 59, 61, 63, 69, 70, 80, 84, 88], "caus": [2, 31, 36, 70, 71], "rank": [2, 3, 25, 29, 31, 36, 46, 47, 48, 50, 51, 53, 54, 56, 60, 62, 63, 64, 66, 67, 68, 70, 71, 75, 76, 81, 82, 83, 85, 86, 87, 88, 89], "get_label_quality_scor": [2, 29, 31, 36, 45, 47, 49, 50, 52, 55, 58, 61, 63, 65, 68, 78, 81, 82, 85, 86, 89], "adjust_pred_prob": [2, 7, 49, 54, 55, 78], "control": [2, 4, 6, 7, 13, 29, 31, 38, 45, 53, 54, 57, 63, 65, 70, 71, 75, 76], "how": [2, 3, 4, 7, 10, 11, 13, 18, 25, 26, 27, 29, 30, 34, 40, 45, 46, 49, 50, 52, 54, 55, 57, 61, 65, 67, 70, 71, 73, 74, 75, 77, 82, 83, 84, 85, 86, 87, 88], "much": [2, 7, 25, 29, 31, 57, 76, 78, 80, 83], "output": [2, 3, 4, 7, 13, 26, 27, 30, 34, 40, 44, 45, 46, 50, 52, 53, 54, 57, 61, 62, 65, 66, 67, 68, 69, 70, 74, 75, 76, 77, 82, 83, 84, 85, 88], "print": [2, 4, 5, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 40, 45, 46, 47, 52, 54, 55, 57, 59, 61, 62, 66, 68, 69, 71, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "suppress": [2, 29, 45, 52, 54, 55, 57, 59, 61, 62, 86, 89], "statement": [2, 29, 45, 52, 54, 55, 57, 59, 61, 62], "big": [2, 29, 47, 53, 57, 78], "limit": [2, 4, 13, 29, 47, 82, 86, 89], "memori": [2, 26, 29, 30, 47, 53, 59, 61, 70, 86], "label_issues_batch": [2, 28, 47, 76], "find_label_issues_batch": [2, 29, 47, 76], "pred_prob": [2, 3, 4, 7, 13, 19, 20, 22, 25, 29, 31, 33, 34, 35, 36, 37, 40, 41, 45, 46, 47, 49, 50, 53, 54, 55, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 87, 88], "threshold": [2, 3, 5, 7, 15, 16, 18, 22, 29, 52, 53, 54, 55, 61, 65, 70, 82, 83, 86, 89], "inverse_noise_matrix": [2, 3, 7, 34, 40, 68, 78], "label_issu": [2, 29, 31, 47, 50, 57, 59, 68, 69, 74, 76, 77, 78, 85, 87, 88], "clf_kwarg": [2, 3, 7, 57], "clf_final_kwarg": [2, 57], "validation_func": [2, 3, 7], "correct": [2, 7, 25, 29, 31, 33, 45, 46, 47, 49, 50, 52, 53, 55, 57, 58, 61, 65, 67, 69, 73, 74, 77, 78, 80, 82, 84, 85], "result": [2, 3, 7, 10, 13, 15, 16, 18, 19, 20, 21, 22, 26, 29, 30, 31, 33, 40, 47, 49, 50, 53, 55, 57, 58, 59, 61, 65, 69, 70, 71, 73, 74, 76, 77, 78, 80, 85, 86, 87, 88, 89], "identifi": [2, 3, 4, 5, 7, 9, 13, 23, 25, 29, 31, 47, 50, 55, 57, 58, 59, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 81, 83, 85, 86, 87, 88, 89], "final": [2, 7, 57, 73, 82, 84, 85, 87], "remain": [2, 57, 68, 77, 85, 87, 88, 89], "datasetlik": [2, 40, 57], "beyond": [2, 4, 5, 6, 8, 24, 67, 86], "pd": [2, 3, 4, 5, 10, 15, 16, 18, 19, 20, 21, 22, 25, 35, 44, 45, 46, 57, 65, 69, 70, 71, 73, 74, 76, 78, 80, 85, 87, 88, 89], "datafram": [2, 3, 4, 5, 9, 10, 15, 16, 18, 19, 20, 21, 22, 25, 29, 35, 40, 41, 44, 45, 46, 57, 62, 66, 68, 69, 70, 71, 73, 74, 76, 77, 78, 80, 85, 86, 88, 89], "scipi": [2, 10, 40], "spars": [2, 4, 7, 10, 13, 40, 41, 73], "csr_matrix": [2, 4, 10, 13], "torch": [2, 26, 27, 30, 69, 74, 75, 77, 83, 88], "util": [2, 4, 13, 23, 26, 27, 30, 32, 45, 57, 67, 68, 69, 70, 71, 76, 77, 78, 83], "tensorflow": [2, 40, 44, 67, 69, 76], "object": [2, 4, 9, 10, 13, 23, 26, 27, 29, 30, 36, 40, 41, 44, 47, 50, 51, 52, 53, 54, 57, 65, 67, 69, 71, 73, 77, 78, 79, 85, 88], "list": [2, 3, 4, 9, 13, 15, 16, 18, 19, 20, 21, 22, 25, 26, 27, 29, 30, 31, 37, 39, 40, 41, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 75, 77, 78, 81, 82, 85, 88, 89], "index_list": 2, "subset": [2, 3, 4, 13, 25, 29, 31, 40, 55, 62, 66, 69, 73, 74, 76, 77, 81, 82, 83, 84, 85, 87, 88, 89], "wa": [2, 3, 9, 11, 29, 40, 45, 46, 52, 54, 66, 69, 70, 71, 73, 74, 76, 78, 81, 82, 84, 86, 87, 88, 89], "abl": [2, 3, 7, 57, 69, 76, 78, 80, 81], "format": [2, 3, 4, 7, 9, 26, 29, 30, 31, 34, 35, 36, 37, 40, 41, 44, 45, 46, 47, 50, 53, 54, 55, 57, 59, 61, 62, 65, 66, 70, 71, 73, 75, 77, 80, 85, 86, 87, 89], "make": [2, 3, 26, 29, 30, 36, 44, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 87, 88], "sure": [2, 29, 31, 36, 69, 70, 71, 73, 74, 75, 77, 80, 81, 82, 83, 85, 87, 88], "shuffl": [2, 7, 40, 69, 77, 81, 83], "ha": [2, 3, 4, 7, 15, 16, 17, 18, 19, 20, 21, 22, 26, 30, 34, 36, 39, 40, 45, 50, 52, 57, 63, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 80, 81, 82, 83, 84, 85, 87, 88, 89], "batch": [2, 29, 40, 44, 45, 59, 61, 76, 77, 83], "order": [2, 7, 25, 26, 30, 31, 34, 35, 36, 38, 40, 45, 46, 47, 50, 53, 54, 55, 59, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 82, 85, 86, 88, 89], "destroi": [2, 40], "oper": [2, 26, 29, 30, 40, 44, 55, 67, 74, 83, 87, 88], "eg": [2, 7, 40, 50, 53, 70, 71, 76], "repeat": [2, 40, 45, 80, 83], "appli": [2, 26, 30, 31, 36, 37, 39, 40, 49, 54, 63, 69, 70, 73, 77, 80, 81, 83, 84, 85, 86, 87, 88], "array_lik": [2, 3, 25, 31, 40, 47, 54, 58], "some": [2, 3, 4, 7, 11, 18, 25, 26, 28, 30, 31, 34, 39, 40, 43, 45, 46, 47, 49, 50, 53, 54, 55, 57, 59, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89], "seri": [2, 3, 29, 40, 41, 57, 65], "row": [2, 3, 4, 10, 13, 21, 25, 29, 31, 33, 34, 38, 40, 45, 46, 47, 49, 54, 55, 57, 62, 63, 65, 66, 69, 70, 73, 74, 75, 76, 77, 80, 81, 83, 87, 89], "rather": [2, 3, 20, 25, 40, 44, 45, 52, 61, 65, 80, 84, 86, 88, 89], "leav": [2, 31], "per": [2, 3, 10, 25, 29, 31, 36, 39, 45, 46, 47, 49, 52, 55, 58, 59, 61, 65, 71, 76, 82, 89], "determin": [2, 3, 7, 13, 18, 20, 25, 29, 31, 36, 40, 45, 47, 50, 52, 55, 61, 65, 70, 80, 83, 85], "cutoff": [2, 3, 83], "consid": [2, 3, 4, 7, 10, 13, 19, 20, 22, 25, 26, 30, 31, 40, 45, 52, 54, 55, 58, 61, 65, 69, 71, 73, 74, 76, 77, 78, 82, 83, 84, 85, 86, 87, 88], "section": [2, 3, 5, 7, 68, 73, 77], "3": [2, 3, 4, 5, 25, 26, 30, 31, 34, 35, 36, 37, 38, 39, 40, 44, 47, 54, 55, 57, 58, 63, 65, 75, 76, 84], "equat": [2, 3, 34], "advanc": [2, 3, 4, 6, 13, 52, 54, 65, 68, 71, 72, 78], "user": [2, 3, 4, 11, 13, 23, 26, 30, 31, 52, 54, 55, 57, 61, 65, 78], "specifi": [2, 3, 4, 7, 10, 13, 23, 26, 29, 30, 31, 36, 39, 45, 46, 47, 50, 52, 54, 55, 57, 58, 66, 68, 69, 71, 74, 76, 77, 80, 82, 85, 88], "automat": [2, 3, 4, 20, 25, 67, 73, 74, 75, 76, 77, 80, 82, 85, 86, 87, 88, 89], "greater": [2, 3, 4, 6, 7, 22, 29, 38, 40, 52, 71, 75, 76, 89], "count": [2, 18, 20, 25, 29, 31, 34, 40, 46, 47, 53, 68, 76, 77], "observ": [2, 3, 34, 69, 70, 71, 80, 83, 85], "mislabel": [2, 7, 25, 29, 31, 34, 45, 46, 47, 50, 52, 55, 61, 63, 65, 67, 69, 73, 74, 76, 77, 78, 81, 82, 85, 87, 88], "one": [2, 3, 4, 7, 20, 25, 26, 29, 30, 31, 36, 40, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 77, 80, 83, 84, 85, 87, 88, 89], "get_label_issu": [2, 29, 57, 78, 85, 87, 88], "either": [2, 3, 5, 7, 26, 29, 30, 31, 45, 47, 52, 54, 55, 59, 61, 71, 81, 82], "boolean": [2, 5, 7, 18, 29, 31, 39, 45, 47, 50, 55, 57, 59, 61, 62, 67, 69, 71, 74, 76, 77, 82, 85, 86, 88], "label_issues_mask": [2, 31, 55, 57, 68], "indic": [2, 3, 4, 5, 7, 10, 18, 25, 29, 30, 31, 33, 36, 40, 44, 45, 46, 47, 49, 50, 52, 54, 55, 57, 58, 61, 63, 65, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "its": [2, 4, 6, 7, 13, 26, 29, 30, 31, 38, 39, 47, 50, 53, 54, 55, 57, 59, 63, 65, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 82, 83, 84, 85, 86, 88, 89], "return_indices_ranked_bi": [2, 29, 31, 47, 63, 68, 76, 78, 81, 87, 88], "significantli": [2, 77, 78, 80, 84], "reduc": [2, 29, 31, 40, 69, 76], "time": [2, 7, 26, 29, 30, 40, 45, 68, 70, 75, 76, 77, 78, 82, 83, 85, 86, 87, 88, 89], "take": [2, 4, 7, 13, 25, 26, 30, 35, 36, 40, 44, 55, 73, 77, 80, 87, 89], "run": [2, 4, 5, 6, 8, 13, 20, 24, 26, 29, 30, 57, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 87, 88, 89], "skip": [2, 7, 26, 30, 57, 69, 76, 81, 89], "slow": [2, 3], "step": [2, 5, 20, 36, 76, 77, 78, 80, 84], "caution": [2, 4, 76], "previous": [2, 4, 10, 40, 54, 57, 68, 69, 70, 73, 74, 80, 84, 87], "assign": [2, 5, 15, 16, 18, 19, 20, 21, 22, 35, 36, 40, 57, 70, 73, 76, 77, 85, 86, 87, 89], "individu": [2, 10, 20, 26, 30, 45, 49, 52, 55, 57, 63, 65, 68, 71, 73, 76, 80, 81, 82, 87, 89], "still": [2, 29, 30, 40, 54, 76, 77, 83, 87], "extra": [2, 26, 30, 40, 44, 45, 46, 57, 74, 76, 77, 80, 83], "receiv": [2, 7, 26, 30, 46, 49, 50, 57, 59, 63, 71, 82], "overwritten": [2, 57], "callabl": [2, 3, 36, 39, 44, 49], "x_val": 2, "y_val": 2, "map": [2, 3, 29, 30, 35, 39, 40, 53, 55, 57, 62, 69, 70, 71, 76, 77, 78, 81, 89], "appropri": [2, 7, 13, 47, 55, 70, 73, 81, 82], "earli": [2, 77], "stop": [2, 77], "x_valid": 2, "y_valid": 2, "could": [2, 18, 25, 40, 54, 70, 73, 77, 81, 85, 87, 89], "f": [2, 5, 69, 70, 73, 74, 75, 76, 77, 78, 80, 81, 83, 85, 87, 88], "ignor": [2, 26, 30, 39, 44, 57, 62, 66, 69, 70, 71, 75, 77, 78, 80, 81, 83, 85, 89], "allow": [2, 25, 26, 29, 30, 33, 40, 45, 53, 54, 57, 59, 61, 69, 76, 77, 84, 86, 88], "access": [2, 7, 10, 26, 30, 57, 71, 77, 81], "hyperparamet": [2, 49, 54, 77], "purpos": [2, 70, 71, 76, 81, 85], "want": [2, 4, 25, 29, 41, 45, 47, 57, 70, 74, 75, 77, 80, 82, 83, 84, 86, 88, 89], "explicitli": [2, 30, 57], "yourself": [2, 4, 29, 71], "altern": [2, 7, 36, 40, 44, 45, 55, 68, 69, 73, 74, 76, 77, 78, 80, 81, 83, 85, 88], "same": [2, 3, 4, 5, 7, 9, 11, 20, 26, 29, 30, 31, 40, 44, 45, 47, 54, 55, 57, 61, 62, 65, 66, 67, 70, 71, 73, 74, 76, 77, 82, 83, 84, 85, 86, 87, 88], "effect": [2, 7, 26, 30, 45, 54, 57, 73, 74, 76, 83], "offer": [2, 4, 69, 70, 71, 74, 76, 78, 81, 88], "after": [2, 3, 4, 10, 15, 16, 18, 19, 20, 21, 22, 26, 30, 40, 45, 57, 70, 74, 76, 77, 78, 80, 82, 83, 84, 85, 86, 88], "attribut": [2, 4, 5, 7, 9, 10, 13, 15, 16, 18, 19, 20, 21, 22, 23, 26, 29, 30, 36, 54, 57, 70, 87], "label_issues_df": [2, 57, 77], "similar": [2, 7, 25, 26, 30, 38, 40, 45, 49, 50, 52, 54, 57, 61, 65, 70, 71, 73, 74, 76, 77, 78, 82, 83, 86], "document": [2, 3, 4, 7, 11, 25, 26, 29, 30, 31, 36, 39, 44, 46, 47, 49, 52, 53, 54, 57, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 87, 88, 89], "descript": [2, 4, 5, 7, 15, 16, 18, 19, 20, 21, 22, 23, 25, 40, 50, 57, 70, 71], "were": [2, 3, 4, 25, 30, 46, 52, 65, 69, 73, 76, 78, 80, 82, 84, 86, 87], "present": [2, 3, 4, 7, 9, 10, 16, 25, 40, 54, 62, 67, 73, 76, 77, 83], "actual": [2, 3, 4, 25, 45, 46, 55, 71, 76, 78, 89], "num_class": [2, 25, 29, 40, 44, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 83, 87, 88], "uniqu": [2, 40, 62, 70, 76, 81, 83], "given_label": [2, 4, 25, 34, 57, 62, 66, 69, 70, 71, 73, 74, 77, 78, 85, 86, 88, 89], "normal": [2, 3, 20, 31, 33, 36, 39, 40, 55, 76, 78, 83], "trick": [2, 76], "distribut": [2, 3, 4, 7, 13, 20, 22, 25, 30, 31, 35, 45, 53, 54, 55, 67, 70, 71, 73, 74, 77, 83], "account": [2, 25, 45, 49, 54, 55, 74, 76, 78, 80, 81, 83, 85, 88], "word": [2, 3, 39, 65, 66, 76], "remov": [2, 7, 25, 26, 30, 31, 57, 67, 74, 75, 76, 77, 83, 85, 87, 88], "so": [2, 3, 5, 7, 11, 20, 25, 26, 29, 30, 31, 40, 45, 46, 52, 55, 57, 61, 65, 69, 70, 71, 74, 77, 78, 83, 86], "proportion": [2, 7, 31], "just": [2, 3, 4, 7, 10, 25, 27, 29, 40, 44, 55, 57, 59, 67, 68, 69, 71, 73, 74, 76, 77, 78, 81, 82, 83, 84, 86, 87, 88], "procedur": 2, "get": [2, 3, 4, 10, 26, 27, 30, 31, 36, 39, 40, 45, 47, 49, 54, 55, 57, 58, 59, 67, 69, 74, 75, 76, 77, 78, 83, 84, 85, 87, 88], "detect": [2, 4, 5, 6, 10, 11, 13, 18, 22, 38, 48, 50, 51, 52, 53, 54, 55, 56, 57, 60, 64, 67, 70, 72, 77, 79, 81, 85, 86, 87, 88, 89], "arg": [2, 9, 18, 26, 27, 30, 36, 40, 55, 57], "kwarg": [2, 5, 7, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 26, 29, 30, 36, 44, 57, 59, 61, 63, 76], "test": [2, 7, 20, 30, 36, 44, 57, 67, 70, 71, 73, 74, 77, 84, 85, 87, 88, 89], "expect": [2, 3, 26, 30, 31, 36, 45, 54, 55, 57, 76, 78, 80, 81, 82, 85, 87, 88, 89], "class_predict": 2, "evalu": [2, 7, 26, 27, 29, 30, 57, 69, 70, 71, 76, 77, 78, 80, 84, 85, 86, 87, 88], "simpli": [2, 25, 55, 70, 71, 73, 74, 76, 78, 85, 86, 88, 89], "quantifi": [2, 4, 5, 7, 10, 31, 49, 54, 57, 67, 71, 73, 74, 77, 78, 82], "save_spac": [2, 7, 57], "potenti": [2, 7, 25, 31, 39, 47, 50, 55, 57, 59, 61, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 86, 87, 89], "cach": [2, 74, 83, 88], "panda": [2, 4, 5, 9, 15, 16, 18, 19, 20, 21, 22, 25, 40, 41, 44, 45, 46, 68, 69, 70, 71, 73, 74, 75, 78, 80, 85, 86, 87, 88], "unlik": [2, 31, 33, 36, 44, 46, 47, 49, 65, 70, 80, 81, 83, 85], "both": [2, 4, 7, 13, 20, 25, 26, 30, 31, 40, 45, 47, 55, 59, 61, 66, 67, 70, 76, 77, 78, 80, 89], "mask": [2, 29, 31, 39, 40, 47, 50, 55, 57, 59, 61, 62, 67, 75, 76, 80, 82, 86, 89], "prefer": [2, 55, 63], "plan": 2, "subsequ": [2, 3, 26, 30, 74, 76, 78, 82, 88], "invok": [2, 26, 30, 78, 84], "scratch": [2, 57], "To": [2, 4, 5, 6, 7, 8, 10, 13, 20, 24, 26, 29, 30, 31, 44, 45, 47, 49, 53, 54, 55, 57, 58, 59, 61, 67, 69, 70, 71, 73, 74, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "share": [2, 55, 57], "mostli": [2, 40, 52, 57], "longer": [2, 35, 39, 57, 68, 74, 76, 82, 88], "info": [2, 4, 5, 10, 15, 16, 18, 19, 20, 21, 22, 25, 46, 57, 65, 70, 71, 75, 76, 89], "about": [2, 3, 4, 5, 7, 10, 15, 16, 18, 19, 20, 21, 22, 23, 25, 27, 29, 33, 45, 46, 49, 57, 62, 65, 69, 70, 73, 74, 75, 76, 77, 78, 80, 83], "docstr": [2, 25, 26, 30, 40, 57, 75, 78], "unless": [2, 26, 30, 57, 76], "our": [2, 3, 7, 44, 45, 55, 57, 67, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "is_label_issu": [2, 57, 69, 70, 71, 73, 74, 77, 78, 85, 88], "entir": [2, 7, 20, 29, 31, 34, 46, 47, 52, 55, 57, 59, 61, 62, 67, 70, 71, 76, 82, 83, 84, 86, 89], "accur": [2, 3, 4, 7, 13, 25, 29, 31, 45, 46, 47, 50, 53, 55, 57, 58, 59, 61, 62, 68, 71, 73, 74, 76, 77, 80, 85], "label_qu": [2, 45, 57, 78, 80, 85, 88], "measur": [2, 25, 45, 46, 57, 67, 75, 76, 78, 80, 81, 86, 87, 89], "qualiti": [2, 3, 4, 5, 7, 10, 25, 29, 31, 33, 36, 45, 46, 47, 49, 50, 52, 55, 57, 58, 61, 63, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 85, 87, 88], "lower": [2, 4, 5, 7, 10, 22, 29, 36, 45, 46, 49, 52, 55, 57, 58, 61, 65, 69, 71, 73, 74, 77, 80, 81, 82, 83, 85, 86, 88, 89], "eas": 2, "comparison": [2, 26, 30, 78, 80, 85], "against": [2, 26, 30, 70, 73, 76, 80, 81], "predicted_label": [2, 4, 57, 62, 66, 69, 70, 71, 73, 74, 77, 78, 85, 86, 88], "ad": [2, 26, 30, 71, 80, 85], "precis": [2, 47, 50, 76, 78, 86, 89], "definit": [2, 5, 57, 73, 87], "accessor": [2, 57], "describ": [2, 7, 45, 54, 55, 57, 63, 65, 78, 80, 81, 82, 84, 89], "precomput": [2, 34, 57, 75], "clear": [2, 57, 74, 85, 88], "save": [2, 4, 13, 26, 29, 30, 53, 57, 76, 82, 86, 89], "space": [2, 7, 54, 57, 73, 75, 77], "place": [2, 26, 30, 40, 57, 80, 87], "larg": [2, 29, 57, 76, 83, 86, 89], "deploi": [2, 57, 76], "care": [2, 7, 26, 30, 57, 76, 78], "avail": [2, 4, 5, 9, 13, 23, 30, 57, 78, 80, 82, 85], "cannot": [2, 4, 9, 13, 40, 84, 89], "anymor": 2, "classmethod": [2, 15, 16, 18, 19, 20, 21, 22, 30, 36, 57], "__init_subclass__": [2, 30, 57], "set_": [2, 30, 57], "_request": [2, 30, 57], "pep": [2, 30, 57], "487": [2, 30, 57], "look": [2, 4, 5, 13, 26, 30, 40, 57, 62, 70, 71, 73, 76, 78, 80, 81, 82, 83, 86, 87, 89], "inform": [2, 4, 5, 7, 10, 13, 23, 26, 30, 40, 45, 46, 50, 53, 57, 62, 65, 66, 67, 69, 70, 73, 74, 78, 80, 83, 86, 89], "__metadata_request__": [2, 30, 57], "infer": [2, 30, 40, 57, 62, 66, 77, 80, 81, 85, 87, 88], "signatur": [2, 26, 30, 57], "accept": [2, 26, 30, 55, 57, 70, 71], "metadata": [2, 30, 57, 89], "through": [2, 4, 5, 30, 57, 69, 71, 74, 75, 80, 83, 85, 88], "develop": [2, 6, 30, 57, 76, 78, 89], "request": [2, 30, 57, 71, 74, 75, 81, 87, 88, 89], "those": [2, 3, 7, 29, 30, 31, 44, 45, 47, 57, 61, 65, 66, 67, 69, 76, 77, 82, 86], "http": [2, 4, 5, 6, 7, 8, 24, 26, 27, 29, 30, 33, 40, 54, 57, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "www": [2, 30, 57, 83], "org": [2, 26, 27, 30, 40, 54, 57, 76, 78, 89], "dev": [2, 30, 57], "0487": [2, 30, 57], "get_metadata_rout": [2, 30, 57], "rout": [2, 30, 57], "pleas": [2, 26, 30, 44, 57, 67, 69, 70, 71, 74, 75, 76, 77, 78, 80, 81, 83, 85, 88, 89], "guid": [2, 5, 30, 57, 68, 77], "mechan": [2, 26, 30, 57], "metadatarequest": [2, 30, 57], "encapsul": [2, 13, 30, 52, 57], "get_param": [2, 30, 44, 57], "subobject": [2, 30, 57], "param": [2, 7, 26, 30, 44, 54, 57], "name": [2, 4, 5, 7, 9, 10, 25, 26, 30, 35, 36, 40, 44, 45, 46, 53, 57, 62, 66, 69, 71, 74, 75, 77, 78, 81, 86, 88, 89], "set_fit_request": [2, 30, 57], "union": [2, 3, 4, 9, 29, 30, 36, 40, 41, 47, 53, 57, 61, 65], "str": [2, 3, 4, 9, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 34, 36, 39, 40, 44, 45, 46, 50, 52, 53, 55, 57, 62, 66, 69, 70, 80, 81, 89], "unchang": [2, 26, 30, 57, 89], "relev": [2, 13, 20, 30, 57, 77], "enable_metadata_rout": [2, 30, 57], "set_config": [2, 30, 57], "meta": [2, 30, 57], "rais": [2, 4, 9, 10, 26, 30, 33, 36, 57, 76], "alia": [2, 26, 30, 57], "metadata_rout": [2, 30, 57], "retain": [2, 30, 40, 57], "chang": [2, 26, 29, 30, 33, 57, 65, 69, 70, 74, 76, 82, 83, 88, 89], "version": [2, 4, 5, 6, 7, 8, 12, 17, 24, 26, 28, 30, 32, 33, 40, 43, 44, 55, 57, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 87, 88, 89], "sub": [2, 30, 52, 57], "pipelin": [2, 30, 57], "otherwis": [2, 7, 25, 26, 29, 30, 31, 37, 39, 40, 47, 54, 57, 59, 61, 62, 66, 74, 76, 88], "updat": [2, 10, 26, 29, 30, 57, 68, 70, 77], "set_param": [2, 30, 44, 57], "simpl": [2, 26, 30, 31, 45, 55, 57, 70, 71, 73, 74, 77, 80, 83, 85, 87, 88], "well": [2, 3, 7, 26, 30, 33, 34, 45, 47, 55, 57, 62, 65, 66, 68, 70, 71, 73, 74, 76, 77, 78, 80, 82, 83], "nest": [2, 26, 30, 57, 63, 65, 66, 89], "latter": [2, 26, 30, 57, 83], "compon": [2, 30, 57], "__": [2, 30, 57], "set_score_request": [2, 57], "structur": [3, 54, 73, 87], "unobserv": 3, "less": [3, 4, 7, 29, 36, 45, 54, 55, 59, 61, 65, 73, 75, 76, 77, 78, 82, 89], "channel": [3, 69, 78], "character": 3, "flip": 3, "nm": 3, "invers": [3, 7, 25, 34, 40, 46, 71, 75, 88], "inv": 3, "confident_joint": [3, 18, 25, 31, 40, 46, 47, 68, 76, 78], "un": 3, "under": [3, 7, 26, 30, 46, 53, 54, 83], "joint": [3, 25, 31, 34, 40, 46, 47, 75], "num_label_issu": [3, 29, 31, 47, 62, 66, 68], "estimation_method": [3, 29], "off_diagon": 3, "multi_label": [3, 25, 31, 40, 41, 47, 81], "don": [3, 67, 71, 78, 82], "statis": 3, "compute_confident_joint": [3, 25, 31, 40, 47, 78], "off": [3, 31, 40, 52, 77, 78, 82, 83], "j": [3, 4, 13, 25, 26, 30, 31, 47, 50, 53, 54, 63, 65, 66, 70, 71, 78, 86, 89], "confident_learn": [3, 31, 47, 78], "off_diagonal_calibr": 3, "calibr": [3, 31, 40, 45, 80], "cj": [3, 34, 40], "axi": [3, 34, 36, 59, 62, 69, 70, 71, 76, 77, 78, 80, 81, 83, 85, 86], "bincount": [3, 70, 71, 78, 80, 81], "alwai": [3, 7, 26, 30, 40, 69, 78, 85, 87, 88], "estimate_issu": 3, "over": [3, 7, 26, 29, 30, 52, 53, 59, 61, 71, 73, 75, 76, 77, 78, 83, 85, 87], "As": [3, 5, 67, 70, 71, 74, 78, 85, 89], "add": [3, 4, 5, 10, 26, 30, 44, 53, 69, 70, 71, 74, 76, 77, 78, 81, 88], "approach": [3, 25, 29, 31, 73, 78, 81, 83, 85, 87], "custom": [3, 5, 8, 26, 29, 30, 36, 39, 55, 74, 78, 88], "know": [3, 70, 71, 76, 78, 80], "cut": [3, 52, 67, 78], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 83, 89], "underestim": 3, "few": [3, 53, 67, 76, 80, 81, 82, 83, 89], "4": [3, 4, 15, 16, 18, 19, 20, 21, 22, 35, 36, 39, 49, 50, 52, 53, 55, 58, 65, 75, 76, 81, 86, 89], "detail": [3, 11, 25, 26, 30, 36, 40, 44, 45, 46, 47, 49, 50, 52, 53, 54, 61, 62, 63, 67, 68, 69, 81, 83, 89], "num_issu": [3, 5, 29, 69, 70, 71, 73, 74, 77, 78], "calibrate_confident_joint": 3, "up": [3, 14, 20, 21, 31, 36, 45, 75, 76, 82, 85, 88, 89], "p_": [3, 25, 31], "pair": [3, 7, 25, 31, 78], "v": [3, 7, 29, 46, 47, 49, 55, 70, 71, 81, 83, 84], "rest": [3, 4, 5, 6, 7, 8, 24, 46, 47, 49, 57, 70, 71, 73, 74, 77, 78, 80, 85, 87, 88], "fashion": [3, 59, 87], "2x2": 3, "incorrectli": [3, 25, 46, 47, 50, 73, 89], "calibrated_cj": 3, "c": [3, 7, 39, 47, 55, 67, 69, 70, 71, 73, 74, 76, 78, 81, 83, 84, 85, 87], "whose": [3, 4, 7, 13, 22, 26, 30, 34, 39, 45, 49, 52, 58, 61, 65, 66, 69, 70, 71, 73, 74, 76, 77, 78, 81, 82, 83, 86, 89], "truli": [3, 83, 86], "estimate_joint": [3, 25, 78], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 47, 78, 82, 84, 86, 89], "return_indices_of_off_diagon": 3, "frequenc": [3, 20, 45, 46, 53, 62, 83], "done": [3, 7, 57, 70, 76, 78, 81, 83, 84], "overfit": [3, 7, 50, 53, 69, 70, 71, 73, 74, 77, 84, 87], "classifict": 3, "singl": [3, 4, 20, 25, 26, 30, 36, 37, 40, 45, 46, 52, 53, 54, 55, 65, 69, 70, 76, 78, 81, 82, 87], "baselin": [3, 26, 31, 83, 85, 88], "proxi": 3, "tupl": [3, 26, 30, 34, 35, 37, 39, 40, 45, 47, 53, 61, 63, 65, 66, 69, 89], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 29, 34, 45, 59, 61, 67, 76, 77, 86, 88], "practic": [3, 71, 77, 78, 83, 85, 87, 88], "complet": [3, 69, 70, 71, 73, 74, 77, 78, 82], "gist": 3, "cj_ish": 3, "guess": [3, 34, 78, 80], "8": [3, 4, 5, 35, 36, 37, 39, 49, 63, 65, 69, 70, 71, 73, 74, 76, 77, 80, 81, 82, 83, 85, 86, 87, 88, 89], "parallel": [3, 31, 63, 75], "again": [3, 44, 83, 87], "simplifi": [3, 11], "understand": [3, 6, 25, 46, 53, 71, 78, 85, 86, 89], "100": [3, 26, 30, 55, 70, 71, 73, 75, 76, 77, 78, 81, 86, 87, 88, 89], "optim": [3, 26, 27, 30, 44, 77, 80], "speed": [3, 31, 75, 76, 85, 88], "dtype": [3, 19, 20, 26, 30, 39, 40, 49, 65, 69, 82], "enumer": [3, 26, 30, 69, 70, 71, 77, 89], "s_label": 3, "confident_bin": 3, "6": [3, 4, 30, 36, 40, 65, 69, 70, 71, 73, 74, 75, 76, 77, 80, 81, 82, 83, 85, 86, 87, 88, 89], "num_confident_bin": 3, "argmax": [3, 31, 55, 59, 62, 69, 76, 78, 83, 86], "elif": 3, "estimate_lat": 3, "py_method": [3, 34], "cnt": [3, 34], "1d": [3, 29, 31, 36, 37, 40, 41, 49, 58, 69, 87], "eqn": [3, 34], "margin": [3, 31, 34, 36, 55], "marginal_p": [3, 34], "shorthand": [3, 10], "proport": [3, 7, 25, 46, 78, 84], "poorli": [3, 34, 87], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 78], "variabl": [3, 5, 11, 40, 57, 58, 69, 70, 73, 78, 81, 85], "exact": [3, 34, 70, 71, 73, 77, 87], "within": [3, 4, 12, 26, 27, 30, 32, 47, 52, 61, 63, 65, 70, 71, 77, 82, 86], "percent": 3, "often": [3, 25, 34, 46, 76, 78, 84, 86], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 7, 40, 41, 53, 69, 70, 73, 74, 76, 77, 82, 83, 88], "wai": [3, 4, 44, 67, 68, 69, 70, 71, 73, 74, 76, 78, 80, 81, 82, 84, 87, 88], "pro": 3, "con": 3, "pred_proba": [3, 84], "combin": [3, 25, 70, 75, 76, 77, 78, 84, 85], "becaus": [3, 34, 40, 52, 76, 78, 80, 82], "littl": [3, 29, 75, 82, 89], "uniform": [3, 55, 75, 76, 78], "20": [3, 5, 66, 69, 71, 75, 77, 78, 86, 89], "Such": [3, 77, 83], "bound": [3, 19, 26, 30, 50, 52, 53, 82], "reason": [3, 18, 26, 30], "comment": [3, 39, 89], "end": [3, 26, 30, 53], "file": [3, 4, 9, 28, 29, 43, 53, 69, 70, 73, 74, 75, 76, 82, 83, 86, 87, 89], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 78], "handl": [3, 4, 5, 7, 13, 15, 16, 18, 19, 20, 21, 22, 23, 26, 29, 30, 68, 70, 71, 78, 86, 87, 89], "five": [3, 50, 53, 78, 82], "estimate_cv_predicted_prob": [3, 78], "estimate_noise_matric": 3, "get_confident_threshold": [3, 29], "amongst": [3, 7], "confident_threshold": [3, 7, 18, 29, 54], "unifi": 4, "audit": [4, 6, 9, 10, 13, 69, 72, 73, 74, 77, 78, 82], "kind": [4, 5, 69, 70, 73, 74, 75, 77, 78], "addit": [4, 5, 6, 7, 8, 10, 23, 24, 26, 30, 36, 41, 45, 63, 69, 70, 73, 74, 77, 78, 80, 83, 84, 87, 88], "depend": [4, 5, 6, 7, 8, 9, 10, 24, 28, 31, 33, 40, 43, 47, 54, 57, 58, 67], "instal": [4, 5, 6, 7, 8, 24, 26, 28, 29, 30, 31, 43, 44, 59, 61], "pip": [4, 5, 6, 8, 24, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "development": [4, 5, 6, 8, 24], "git": [4, 5, 6, 8, 24, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 87, 88], "github": [4, 5, 6, 8, 24, 26, 27, 40, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 87, 88], "com": [4, 5, 6, 8, 24, 26, 27, 29, 33, 40, 54, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "egg": [4, 5, 6, 8, 24, 67, 75], "label_nam": [4, 5, 7, 9, 67, 69, 70, 71, 73, 74, 77, 78], "image_kei": [4, 77], "interfac": [4, 67, 76, 78], "librari": [4, 7, 30, 50, 53, 54, 67, 70, 74, 75, 76, 88], "goal": 4, "track": [4, 10, 11, 67, 70, 75, 76, 78], "intermedi": [4, 6, 71], "statist": [4, 7, 10, 18, 20, 25, 45, 46, 71, 73, 74, 77, 78], "convert": [4, 9, 26, 30, 37, 41, 45, 52, 61, 65, 68, 69, 74, 75, 77, 80, 81, 82, 88], "hug": [4, 9, 77], "face": [4, 9, 13, 75, 77, 81], "kei": [4, 5, 7, 9, 10, 13, 15, 16, 18, 19, 20, 21, 22, 25, 26, 30, 36, 45, 46, 52, 54, 70, 71, 76, 77, 78, 80, 82], "string": [4, 7, 9, 11, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 30, 40, 45, 46, 58, 62, 65, 66, 73, 74, 76, 80, 81, 88, 89], "dictionari": [4, 5, 9, 10, 13, 15, 16, 18, 19, 20, 21, 22, 25, 26, 30, 35, 40, 45, 46, 49, 50, 52, 53, 70, 71, 73, 74, 78, 80, 81, 82], "path": [4, 9, 26, 29, 30, 53, 69, 70, 76, 82], "local": [4, 9, 26, 27, 30, 69, 70, 71, 75, 76, 77, 78, 80, 81, 83, 85, 89], "text": [4, 5, 7, 9, 15, 16, 18, 19, 20, 21, 22, 36, 54, 63, 65, 66, 67, 70, 71, 72, 75, 76, 78, 79, 80, 83], "txt": [4, 9, 89], "csv": [4, 9, 73, 74, 85, 87, 88], "json": [4, 9], "hub": [4, 9, 83], "imag": [4, 6, 25, 30, 50, 52, 53, 54, 59, 61, 62, 67, 70, 71, 75, 76, 79, 80, 81, 82, 84, 86], "point": [4, 5, 20, 26, 30, 70, 71, 76, 78, 80], "field": [4, 7, 26, 30], "themselv": [4, 85, 87, 88], "cleanvis": [4, 7], "level": [4, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 39, 63, 65, 71, 77, 79, 86], "load_dataset": [4, 9, 77], "glue": 4, "sst2": 4, "properti": [4, 9, 10], "has_label": [4, 9], "class_nam": [4, 9, 25, 46, 53, 62, 66, 67, 75, 78, 82, 86, 89], "empti": [4, 9, 34, 45, 71, 81], "find_issu": [4, 5, 7, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 67, 69, 70, 71, 73, 74, 77, 78], "knn_graph": [4, 7, 13, 15, 20, 22, 73], "issue_typ": [4, 5, 7, 13, 15, 16, 18, 19, 20, 21, 22, 69, 70, 71, 73, 74, 77, 78], "sort": [4, 13, 29, 31, 36, 38, 45, 47, 50, 52, 53, 55, 61, 63, 65, 69, 71, 73, 74, 76, 77, 78, 80, 81, 82, 85, 86, 87, 88, 89], "common": [4, 10, 13, 71, 72, 75, 76, 78, 81, 82, 86], "real": [4, 13, 67, 70, 71, 76, 78, 80, 81, 85, 86], "world": [4, 13, 67, 70, 71, 76, 78, 80, 85, 86], "interact": [4, 13, 76], "embed": [4, 7, 13, 54, 67, 69, 70, 71, 73, 74, 78, 88], "thereof": [4, 13], "insight": [4, 13, 80], "act": [4, 7, 52, 70], "issuefind": [4, 13, 23], "logic": [4, 11, 29, 31, 59, 61, 86], "best": [4, 13, 35, 45, 55, 70, 71, 73, 76, 80, 81, 83, 85, 87, 88, 89], "2d": [4, 13, 29, 36, 37, 39, 40, 45, 69, 81, 87], "num_exampl": [4, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 46, 69, 70, 71, 73, 74, 77, 78], "represent": [4, 7, 13, 26, 30, 37, 47, 67, 69, 70, 71, 74, 76, 77, 78, 83, 88], "num_featur": [4, 13, 26, 30, 44], "distanc": [4, 7, 13, 20, 22, 38, 52, 54, 73, 83], "nearest": [4, 7, 13, 19, 20, 22, 38, 54, 71, 74, 83], "neighbor": [4, 7, 13, 19, 20, 22, 38, 54, 70, 71, 73, 74, 77, 83], "graph": [4, 7, 10, 13, 20], "squar": [4, 13, 40, 57, 75, 85], "csr": [4, 13], "evenli": [4, 13], "omit": [4, 13, 52, 53, 77, 82], "itself": [4, 13, 26, 30, 82], "duplic": [4, 6, 13, 17, 18, 26, 30, 67, 70, 78], "explicit": [4, 13], "precend": [4, 13], "construct": [4, 5, 7, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 26, 30, 36, 44], "neither": [4, 7, 11, 13, 82], "nor": [4, 7, 11, 13], "collect": [4, 7, 10, 13, 15, 16, 18, 19, 20, 21, 22, 45, 80, 89], "unspecifi": [4, 13, 31, 47], "interest": [4, 13, 18, 62, 66, 74, 78, 86, 87, 88, 89], "constructor": [4, 7, 13, 19], "issuemanag": [4, 6, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23], "respons": [4, 13, 18, 57, 58, 75, 85, 89], "random_st": [4, 69, 70, 71, 77, 78, 81, 83, 87], "lab": [4, 15, 16, 18, 19, 20, 21, 22, 29, 67, 69, 70, 71, 73, 74, 75, 77, 78, 81], "nearestneighbor": [4, 7, 54, 73, 83], "comprehens": [4, 67, 77], "nbr": 4, "n_neighbor": [4, 7, 54], "metric": [4, 7, 15, 20, 40, 44, 54, 69, 73, 74, 77, 78, 85, 87, 88], "euclidean": [4, 7, 52, 54, 73], "kneighbors_graph": [4, 73], "mode": [4, 26, 29, 30, 73, 77, 83], "4x4": 4, "float64": [4, 20, 26, 30, 65], "compress": [4, 7, 40, 59, 61], "toarrai": 4, "NOT": [4, 29, 74], "23606798": 4, "41421356": 4, "configur": [4, 13, 36], "suppos": [4, 50, 83, 85, 87, 88], "who": [4, 52, 73, 78, 87, 89], "manag": [4, 6, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 70], "clean_learning_kwarg": [4, 7, 19], "labelissuemanag": [4, 7, 11, 19], "prune_method": [4, 68], "prune_by_noise_r": [4, 31, 47, 78], "report": [4, 5, 8, 12, 15, 16, 18, 19, 20, 21, 22, 25, 46, 66, 67, 69, 70, 71, 73, 74, 78, 89], "include_descript": [4, 15, 16, 18, 19, 20, 21, 22, 23], "show_summary_scor": [4, 23], "summari": [4, 5, 10, 15, 16, 18, 19, 20, 21, 22, 25, 44, 46, 51, 60, 61, 63, 64, 65, 68, 69, 70, 71, 73, 74, 75, 77, 78, 82, 86, 89], "show": [4, 20, 26, 30, 35, 40, 53, 62, 66, 71, 73, 74, 75, 76, 77, 78, 80, 83, 85, 86, 87, 89], "top": [4, 25, 29, 31, 40, 47, 50, 53, 55, 62, 66, 67, 69, 70, 71, 73, 74, 75, 76, 78, 82, 83, 85, 88, 89], "suffer": [4, 7, 10, 18, 47, 55, 66, 89], "onc": [4, 18, 25, 26, 30, 70, 76, 78, 81, 82, 87], "familiar": 4, "usag": [4, 29, 44], "found": [4, 5, 7, 10, 13, 15, 16, 18, 19, 20, 21, 22, 26, 30, 40, 67, 69, 70, 71, 73, 74, 76, 77, 83, 85, 87, 88, 89], "issue_summari": [4, 7, 10, 70], "overal": [4, 5, 7, 10, 15, 16, 18, 19, 20, 21, 22, 25, 36, 45, 46, 49, 52, 53, 57, 61, 62, 63, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 80, 82, 89], "sever": [4, 5, 7, 9, 10, 18, 26, 29, 30, 31, 49, 52, 54, 55, 61, 65, 67, 69, 70, 71, 73, 74, 75, 76, 78, 82, 83, 87, 88, 89], "dataissu": [4, 10, 13, 23], "outlier": [4, 6, 11, 17, 18, 32, 55, 67, 70, 71, 78, 79], "someth": [4, 5, 26, 30, 55], "123": [4, 70, 71], "456": [4, 69, 87, 88], "nearest_neighbor": 4, "7": [4, 36, 37, 44, 63, 65, 69, 70, 71, 73, 74, 75, 76, 80, 81, 82, 83, 85, 86, 87, 88, 89], "9": [4, 15, 16, 18, 19, 20, 21, 22, 36, 37, 49, 63, 65, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "distance_to_nearest_neighbor": [4, 70, 71, 73, 74, 77, 78], "789": 4, "get_issu": [4, 7, 10, 69, 71, 73, 74, 77], "issue_nam": [4, 5, 7, 10, 11, 15, 16, 18, 19, 20, 21, 22, 70, 71], "focu": [4, 10, 74, 86, 89], "full": [4, 7, 10, 29, 53, 77, 89], "summar": [4, 10, 15, 16, 18, 19, 20, 21, 22, 25, 46, 62, 66, 67, 86], "valueerror": [4, 9, 10, 33, 36, 76], "specific_issu": [4, 10], "exhibit": [4, 7, 10, 62, 71, 73, 74, 77, 78, 82], "lie": [4, 7, 38, 54, 55, 69, 70, 71, 73, 74, 77, 78, 88], "directli": [4, 11, 13, 23, 29, 44, 45, 71, 74, 81, 82, 85, 88], "compar": [4, 45, 54, 65, 70, 71, 73, 78], "get_issue_summari": [4, 10, 71], "get_info": [4, 10, 71], "yet": [4, 10, 14, 17, 21, 75, 80], "static": [4, 13], "list_possible_issue_typ": [4, 13], "regist": [4, 5, 11, 12, 13, 14, 21, 26, 30, 70], "registri": [4, 11, 13], "list_default_issue_typ": [4, 13], "folder": [4, 69, 70, 77], "load": [4, 9, 29, 53, 75, 76, 77, 78, 82, 83, 86, 89], "futur": [4, 7, 18, 26, 30, 45, 67, 70], "overwrit": [4, 70], "separ": [4, 25, 36, 49, 70, 71, 76, 77, 82, 84], "rememb": [4, 76, 78], "part": [4, 7, 26, 30, 31, 50, 52, 53, 69, 70, 75, 86, 89], "ident": [4, 7, 18, 40], "walk": 5, "alongsid": [5, 26, 30, 70, 76], "pre": [5, 7, 26, 30, 70, 71], "runtim": [5, 26, 29, 30, 57, 59, 61, 69, 76, 77], "issue_manager_factori": [5, 11, 70], "myissuemanag": [5, 11], "decor": [5, 11], "start": [5, 26, 27, 30, 67, 73, 81, 89], "ll": [5, 36, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 82, 83, 84, 85, 87, 88, 89], "thing": [5, 30, 78, 85, 88], "next": [5, 45, 67, 69, 73, 74, 80, 82, 85, 87, 88, 89], "dummi": 5, "randint": [5, 36, 70, 71], "mark": [5, 68, 82, 83, 85], "regard": [5, 71, 78], "rand": [5, 36, 70, 71], "is_": [5, 7, 70], "_issu": [5, 7, 70], "issue_score_kei": [5, 15, 16, 18, 19, 20, 21, 22, 70], "whole": [5, 20, 26, 30, 71], "make_summari": [5, 15, 16, 18, 19, 20, 21, 22, 70], "popul": 5, "verbosity_level": [5, 15, 16, 18, 19, 20, 21, 22], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 29, 62, 66, 76, 81], "intermediate_arg": 5, "min": [5, 36, 52, 65, 70, 76, 83], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 7, 8, 10, 12, 15, 16, 19, 20, 21, 22, 70], "instanti": [5, 13, 29, 44, 54, 69, 71, 73, 88], "477762": 5, "286455": 5, "term": [5, 7, 34, 40, 69, 70, 71, 73, 74, 77, 78], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 15, 22, 69, 70, 71, 73, 74, 75, 77, 78, 80, 82, 83, 85, 86, 87, 88, 89], "003042": 5, "058117": 5, "11": [5, 44, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 82, 83, 85, 86, 87, 88, 89], "121908": 5, "15": [5, 38, 57, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 82, 83, 85, 86, 87, 88, 89], "169312": 5, "17": [5, 69, 73, 74, 75, 77, 78, 80, 82, 83, 85, 86, 88, 89], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 70, 75, 78], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "search": [6, 7, 16, 20, 21, 39, 57, 76, 84], "nondefault": 6, "Near": 6, "iid": [6, 20, 71, 73, 74, 77, 78], "imbal": [6, 17, 49, 54, 55], "togeth": [6, 7, 34, 70, 71, 73, 74, 77, 78, 85, 88, 89], "built": [6, 36], "own": [6, 26, 28, 30, 43, 49, 50, 53, 59, 63, 69, 71, 73, 74, 77, 80, 81, 85, 86, 87, 88, 89], "prerequisit": 6, "basic": [6, 30, 44, 83], "page": [7, 71, 76, 78], "variou": [7, 10, 28, 41, 43, 67, 70, 71, 73, 74, 75, 78, 80, 82, 87], "sai": [7, 26, 30, 81, 86], "why": [7, 74], "matter": [7, 25, 46], "three": [7, 25, 45, 46, 57, 62, 69, 70, 71, 73, 75, 78, 80, 84, 85, 86, 87, 89], "_score": 7, "flag": [7, 18, 20, 31, 36, 46, 47, 50, 57, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 85, 86, 88], "badli": [7, 52, 89], "code": [7, 26, 30, 34, 40, 44, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 80, 81, 82, 83, 85, 86, 87, 88, 89], "issue_scor": 7, "outlier_scor": [7, 22, 70, 71, 73, 74, 77, 78, 83], "atyp": [7, 54, 70, 71, 73, 74, 77, 78, 83], "datapoint": [7, 31, 36, 40, 55, 58, 67, 69, 70, 71, 73, 74, 76, 84, 85, 87, 88], "is_issu": [7, 18], "is_outlier_issu": [7, 70, 71, 73, 74, 77, 78], "annot": [7, 25, 35, 45, 46, 47, 49, 50, 52, 53, 62, 65, 66, 67, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 86], "transform": [7, 36, 38, 40, 54, 55, 71, 74, 77, 83, 87, 88, 89], "dissimilar": [7, 73, 74], "preced": 7, "cosin": [7, 54, 83], "incorrect": [7, 52, 55, 58, 69, 70, 71, 73, 74, 77, 78, 82, 85, 87], "due": [7, 29, 31, 55, 59, 61, 69, 70, 71, 73, 74, 77, 78], "appear": [7, 25, 35, 46, 47, 50, 58, 71, 73, 74, 77, 85, 86], "likelihood": [7, 29, 31, 47, 52, 54, 55, 59, 63], "now": [7, 29, 68, 69, 71, 80, 82, 83, 85, 87, 88, 89], "u": [7, 69, 70, 73, 76, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89], "token": [7, 39, 61, 62, 63, 64, 65, 66, 76, 78, 79], "etc": [7, 18, 26, 30, 34, 44, 45, 63, 67, 70, 71, 73, 74, 76, 77, 78], "calcul": [7, 20, 29, 36, 45, 49, 50, 52, 54, 57, 61, 75, 77], "hamper": [7, 75, 77], "analyt": [7, 67, 80], "lead": [7, 52, 55, 77, 82], "draw": [7, 70, 71], "conclus": 7, "try": [7, 29, 31, 44, 45, 59, 61, 67, 71, 76, 78, 86], "veri": [7, 25, 46, 50, 52, 70, 71, 73, 74, 77, 78, 80, 83, 85, 88], "rare": [7, 31, 53, 70, 71, 73, 74, 76, 77, 78], "anomal": [7, 55, 70, 71, 73, 74, 77, 78], "articl": [7, 29, 76], "ai": [7, 67, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 83, 85, 87, 88, 89], "blog": 7, "unexpect": [7, 26, 30], "consequ": 7, "inspect": [7, 69, 71, 77, 78, 82, 85, 88], "neg": [7, 52, 70, 71, 75], "affect": [7, 26, 30, 59, 65, 74, 76], "extrem": [7, 70, 71, 73, 74, 76, 77, 78], "rel": [7, 25, 45, 46, 54, 70, 71, 73, 74, 77, 78, 83], "record": [7, 26, 30, 69, 73, 85], "abbrevi": 7, "misspel": 7, "typo": [7, 66], "resolut": 7, "video": [7, 75], "audio": [7, 70, 71, 76, 79], "minor": [7, 39], "variat": 7, "translat": 7, "d": [7, 38, 73, 74, 78, 81, 87, 89], "constant": [7, 57], "median": 7, "question": [7, 18, 67, 78], "nearli": [7, 18, 71, 73, 74, 77], "awar": [7, 68, 78], "presenc": [7, 78], "signific": [7, 71, 73, 74, 77, 78], "violat": [7, 71, 73, 74, 77, 78], "assumpt": [7, 71, 73, 74, 77, 78], "changepoint": [7, 71, 73, 74, 77, 78], "shift": [7, 71, 73, 74, 77, 78], "drift": [7, 71, 73, 74, 77, 78], "autocorrel": [7, 71, 73, 74, 77, 78], "almost": [7, 71, 73, 74, 77, 78], "adjac": [7, 71, 73, 74, 77, 78], "tend": [7, 25, 34, 71, 73, 74, 77, 78, 86, 89], "sequenti": [7, 26, 30, 44, 77], "gap": 7, "group": [7, 20, 75, 82, 89], "b": [7, 15, 16, 18, 19, 20, 21, 22, 25, 39, 40, 65, 73, 74, 75, 78, 84, 87, 89], "x1": [7, 50, 53, 82], "x2": [7, 50, 53, 82], "10th": 7, "100th": 7, "90": [7, 65, 73, 78, 84, 87, 89], "similarli": [7, 26, 30, 70, 73, 76, 77, 82], "math": [7, 77], "behind": [7, 54, 78], "fundament": 7, "proper": [7, 40, 45, 50, 53, 74, 77, 80, 82, 87], "closer": [7, 52, 82], "scenario": [7, 55, 70, 71], "underli": [7, 54, 63, 65, 89], "stem": [7, 54, 83], "evolv": 7, "influenc": 7, "accordingli": 7, "emploi": [7, 81, 83], "partit": [7, 84], "ahead": 7, "good": [7, 26, 30, 44, 46, 52, 55, 59, 61, 62, 67, 77], "fix": [7, 45, 74, 78, 85, 88], "problem": [7, 29, 36, 62, 67, 70, 71, 74, 76, 77], "deploy": [7, 78, 85, 87, 88], "overlook": [7, 52, 82], "fact": 7, "thu": [7, 25, 30, 46, 69, 73, 74, 78, 84, 87, 89], "diagnos": [7, 71, 76], "rarest": 7, "q": [7, 82], "fall": [7, 52, 61, 65, 78, 83], "subpar": 7, "special": [7, 39], "techniqu": 7, "smote": 7, "asymmetr": [7, 25], "properli": [7, 29, 35, 40, 41, 59, 76, 81, 83, 85, 86], "too": [7, 31, 36, 54, 76, 77, 82], "dark": [7, 86], "bright": [7, 89], "blurri": [7, 77], "abnorm": [7, 53, 77], "exert": 7, "possible_issue_typ": 7, "label_kwarg": 7, "outlier_kwarg": 7, "near_dupl": [7, 11, 15, 70, 71, 73, 74, 77, 78], "near_duplicate_kwarg": 7, "non_iid": [7, 11, 20, 71, 73, 74, 77, 78], "non_iid_kwarg": 7, "health_summary_paramet": [7, 19], "health_summari": [7, 19, 25, 67, 75], "health_summary_kwarg": 7, "tandem": [7, 75], "view": [7, 26, 30, 31, 61, 63, 65, 67, 69, 70, 71, 73, 74, 75, 78, 80, 81, 82, 83, 84, 85, 87, 88, 89], "sensit": 7, "ood_kwarg": 7, "outofdistribut": [7, 22, 54, 83], "outsid": 7, "knn": [7, 10, 20, 54, 73, 83], "outlierissuemanag": [7, 11, 22, 70], "nearduplicateissuemanag": [7, 11, 15], "noniidissuemanag": [7, 11, 20], "num_permut": [7, 20], "permut": [7, 20], "significance_threshold": [7, 20], "signic": 7, "noniid": [7, 17], "class_imbalance_kwarg": 7, "classimbalanceissuemanag": [7, 16], "data_issu": [8, 12, 13, 23, 70], "issue_find": [8, 12], "factori": [8, 12, 13], "datalab": [9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 67, 69, 77, 80, 87, 88], "except": [9, 44, 55, 70, 71, 77, 80], "dataformaterror": 9, "with_traceback": 9, "tb": 9, "__traceback__": 9, "datasetdicterror": 9, "datasetdict": 9, "usual": [9, 23, 77, 80, 85], "datasetloaderror": 9, "dataset_typ": 9, "fail": 9, "hold": 9, "is_avail": [9, 77], "serv": [10, 13, 80], "central": [10, 89], "repositori": 10, "being": [10, 25, 26, 30, 31, 36, 39, 40, 55, 73, 78, 85, 86, 87], "basi": 10, "collect_statist": 10, "reus": [10, 18], "avoid": [10, 26, 29, 30, 31, 38, 40, 47, 50, 53, 57, 59, 61, 70, 71, 76], "recomput": [10, 88], "weighted_knn_graph": 10, "issue_manager_that_computes_knn_graph": 10, "collect_issues_from_issue_manag": 10, "set_health_scor": 10, "health": [10, 19, 25, 46, 67], "get_data_statist": 10, "concret": 11, "subclass": [11, 26, 30, 54, 70], "my_issu": 11, "stabl": [12, 17, 28, 32, 40, 43, 54, 68], "unregist": 12, "instati": 13, "public": [13, 78, 82, 86, 89], "creation": [13, 30], "execut": [13, 26, 30, 70, 76, 82], "coordin": [13, 50, 52, 53, 82, 89], "behavior": [13, 25, 26, 30], "At": [13, 76], "associ": [13, 26, 30, 53, 80], "get_available_issue_typ": 13, "isn": [14, 21], "direct": [14, 21, 26, 30], "10": [15, 19, 20, 26, 27, 53, 54, 55, 66, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "_": [15, 18, 19, 20, 21, 36, 39, 40, 69, 70, 75, 77, 78, 81, 87], "classvar": [15, 16, 18, 19, 20, 21, 22], "short": [15, 16, 18, 19, 20, 21, 22, 39, 40], "item": [15, 16, 18, 19, 20, 21, 22, 40, 70, 71, 77, 78, 80, 81], "some_info_kei": [15, 16, 18, 19, 20, 21, 22], "additional_info_kei": [15, 16, 18, 19, 20, 21, 22], "near_duplicate_set": [15, 70, 71, 73, 74, 77, 78], "occurr": [15, 16, 18, 20, 21, 22, 39], "collect_info": [15, 16, 18, 19, 20, 21, 22], "near_duplicate_scor": [15, 70, 71, 73, 74, 77, 78], "info_to_omit": [15, 16, 18, 19, 20, 21, 22], "compos": [15, 16, 18, 19, 20, 21, 22, 26, 30, 74, 83, 88], "is_x_issu": [15, 16, 18, 19, 20, 21, 22], "x_score": [15, 16, 18, 19, 20, 21, 22], "val_a": [15, 16, 18, 19, 20, 21, 22], "val_b1": [15, 16, 18, 19, 20, 21, 22], "val_b2": [15, 16, 18, 19, 20, 21, 22], "report_str": [15, 16, 18, 19, 20, 21, 22, 23], "class_imbal": 16, "class_imbalance_scor": 16, "bleed": [17, 28], "edg": [17, 28, 52, 67, 78, 89], "sharp": [17, 28], "null": 17, "abc": 18, "believ": [18, 86], "priori": [18, 78], "global": 18, "anoth": [18, 25, 29, 39, 52, 55, 73, 74, 76, 78, 80, 83, 88], "abstract": 18, "applic": [19, 45, 78, 80, 81, 89], "typevar": [19, 26, 30, 52, 53], "_scalartype_co": 19, "covari": [19, 57, 85], "get_health_summari": 19, "summary_dict": 19, "label_scor": [19, 69, 70, 71, 73, 74, 77, 78], "simplified_kolmogorov_smirnov_test": 20, "neighbor_histogram": 20, "non_neighbor_histogram": 20, "kolmogorov": 20, "smirnov": 20, "largest": [20, 29, 36, 55, 59, 61, 86], "empir": [20, 35, 45], "cumul": 20, "ecdf": 20, "histogram": [20, 73, 85], "absolut": 20, "25": [20, 26, 36, 38, 75, 77, 78, 80, 81, 82, 89], "dimension": [20, 40, 69, 78, 83], "trial": 20, "non_iid_scor": [20, 71, 73, 74, 77, 78], "nullissuemanag": 21, "miss": [21, 26, 30, 40, 50, 52, 73, 76, 82, 85], "null_track": 21, "null_scor": 21, "default_threshold": 22, "37037": 22, "q3_avg_dist": 22, "iqr_avg_dist": 22, "median_outlier_scor": 22, "ood": [22, 54, 55, 70, 71, 74, 77, 78, 83], "exclud": [23, 62, 66, 70, 89], "get_report": 23, "overview": [25, 69, 71, 73, 74, 77, 80, 82, 83, 85, 87, 88, 89], "modifi": [25, 26, 29, 30, 40, 76, 78], "help": [25, 26, 30, 53, 67, 68, 69, 70, 73, 74, 75, 76, 80, 81, 85, 86, 87, 88, 89], "rank_classes_by_label_qu": [25, 71], "merg": [25, 39, 67, 75, 76, 89], "find_overlapping_class": [25, 76, 78], "ascend": [25, 38, 46, 77, 78], "problemat": [25, 46, 62, 66, 69, 82, 89], "unnorm": [25, 46, 78], "abov": [25, 26, 29, 30, 40, 45, 52, 55, 61, 65, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89], "model_select": [25, 36, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 83, 85, 87, 88], "cross_val_predict": [25, 30, 69, 70, 71, 73, 74, 78, 80, 84, 85, 87, 88], "get_data_labels_from_dataset": 25, "yourfavoritemodel": [25, 78], "cv": [25, 36, 69, 70, 71, 73, 78, 80, 87], "df": [25, 40, 66, 69], "overall_label_qu": [25, 46], "col": 25, "prob": [25, 39, 78, 84], "divid": [25, 46, 55], "label_nois": [25, 46], "human": [25, 75, 86, 89], "clearli": [25, 55, 77, 82, 86], "num": [25, 46, 75, 78], "overlap": [25, 67, 75, 76, 78], "ontolog": 25, "publish": [25, 89], "therefor": [25, 55], "vehicl": [25, 75], "truck": [25, 75, 83, 86], "intuit": [25, 46], "car": [25, 75, 82, 86], "frequent": [25, 45, 73, 76, 85], "confus": [25, 26, 30, 31, 40, 88, 89], "characterist": 25, "l": [25, 26, 30, 50, 52, 53], "class1": 25, "class2": 25, "relationship": 25, "arbitrari": [25, 61, 65, 70, 83, 85], "match": [25, 26, 30, 31, 45, 46, 55, 70, 71, 75, 77, 82, 84, 86], "dog": [25, 40, 46, 48, 62, 75, 76, 83, 84, 89], "cat": [25, 40, 46, 48, 75, 76, 83, 84], "captur": [25, 69, 82, 83, 86], "co": [25, 26, 27], "noisy_label": [25, 70, 71, 81], "overlapping_class": 25, "descend": [25, 26, 30, 36, 46, 53], "overall_label_health_scor": [25, 46, 78], "suggest": [25, 45, 46, 52, 74, 76, 77, 85, 88], "half": [25, 26, 30, 46, 75, 89], "health_scor": [25, 46], "classes_by_label_qu": [25, 71], "cnn": [26, 30, 77], "cifar": [26, 27, 75, 83], "teach": [26, 27], "bhanml": 26, "blob": 26, "master": [26, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 87, 88], "call_bn": 26, "bn": 26, "input_channel": 26, "n_output": 26, "dropout_r": 26, "top_bn": 26, "architectur": [26, 30], "shown": [26, 53, 70, 76, 80, 83, 84, 86, 89], "forward": [26, 27, 30, 77, 80], "overridden": [26, 30], "although": [26, 30, 54, 73, 87], "recip": [26, 30], "afterward": [26, 30], "sinc": [26, 30, 33, 41, 46, 61, 65, 76, 80, 81, 82, 84, 89], "former": [26, 30], "hook": [26, 30, 75], "silent": [26, 29, 30], "t_destin": [26, 30], "__call__": [26, 30, 36], "add_modul": [26, 30], "child": [26, 30], "fn": [26, 30], "recurs": [26, 30, 36], "submodul": [26, 30], "children": [26, 30, 89], "nn": [26, 27, 30, 77], "init": [26, 30, 78], "doc": [26, 30, 69, 70, 71, 75, 77, 78, 80, 81, 83, 85, 89], "no_grad": [26, 30, 77, 83], "init_weight": [26, 30], "linear": [26, 30, 74, 77, 88], "fill_": [26, 30], "net": [26, 30, 69, 75, 77], "in_featur": [26, 30], "out_featur": [26, 30], "bia": [26, 30, 77], "tensor": [26, 27, 30, 69, 77, 83], "requires_grad": [26, 30], "bfloat16": [26, 30], "cast": [26, 30, 69], "buffer": [26, 30], "datatyp": [26, 30], "member": [26, 30, 70], "xdoctest": [26, 30], "undefin": [26, 30], "var": [26, 30], "buf": [26, 30], "20l": [26, 30], "1l": [26, 30], "5l": [26, 30], "immedi": [26, 30, 83], "cpu": [26, 30, 31, 69, 77], "move": [26, 30, 36, 68, 75], "cuda": [26, 30, 69, 77], "devic": [26, 30, 69, 77], "gpu": [26, 30, 69, 74, 88], "live": [26, 30], "copi": [26, 30, 57, 69, 70, 71, 73, 76, 81, 84, 85, 87], "doubl": [26, 30], "dump_patch": [26, 30], "eval": [26, 30, 77, 81, 83], "dropout": [26, 30], "batchnorm": [26, 30], "grad": [26, 30], "extra_repr": [26, 30], "line": [26, 30, 67, 70, 75, 80, 83, 89], "get_buff": [26, 30], "target": [26, 27, 30, 57, 58, 83, 85], "throw": [26, 30], "get_submodul": [26, 30], "explan": [26, 30], "fulli": [26, 30, 44, 76], "qualifi": [26, 30], "referenc": [26, 30], "attributeerror": [26, 30], "invalid": [26, 30], "resolv": [26, 30, 89], "get_extra_st": [26, 30], "state_dict": [26, 30], "set_extra_st": [26, 30], "build": [26, 30, 77, 86], "pickleabl": [26, 30], "serial": [26, 30], "backward": [26, 30, 77], "break": [26, 30, 77], "pickl": [26, 30, 82], "get_paramet": [26, 30], "let": [26, 30, 54, 55, 69, 71, 73, 74, 76, 77, 80, 81, 82, 83, 85, 86, 87, 88, 89], "net_b": [26, 30], "net_c": [26, 30], "conv": [26, 30], "conv2d": [26, 30, 77], "16": [26, 30, 36, 61, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 82, 83, 85, 86, 88, 89], "33": [26, 30, 75, 77, 82, 89], "kernel_s": [26, 30], "stride": [26, 30], "200": [26, 30, 55, 75, 82, 89], "diagram": [26, 30, 84], "degre": [26, 30, 85], "queri": [26, 30, 71, 77], "named_modul": [26, 30], "o": [26, 30, 38, 39, 69, 70, 71, 75, 76, 78, 81, 82, 89], "transit": [26, 30], "ipu": [26, 30], "load_state_dict": [26, 30], "strict": [26, 30, 36], "persist": [26, 30], "strictli": [26, 30], "namedtupl": [26, 30], "missing_kei": [26, 30], "unexpected_kei": [26, 30], "runtimeerror": [26, 30], "idx": [26, 30, 40, 41, 53, 70, 76, 77, 78, 80, 82, 83], "named_buff": [26, 30], "prefix": [26, 30, 69, 89], "prepend": [26, 30], "running_var": [26, 30], "named_children": [26, 30], "conv4": [26, 30], "conv5": [26, 30], "memo": [26, 30], "remove_dupl": [26, 30], "named_paramet": [26, 30], "register_backward_hook": [26, 30], "deprec": [26, 30, 33], "favor": [26, 30], "register_full_backward_hook": [26, 30], "removablehandl": [26, 30], "register_buff": [26, 30], "running_mean": [26, 30], "register_forward_hook": [26, 30], "posit": [26, 30, 40, 75, 83], "won": [26, 30, 70, 71, 76, 81], "inplac": [26, 30, 80], "register_forward_pre_hook": [26, 30], "gradient": [26, 30, 73, 77, 85], "respect": [26, 30, 53, 78], "grad_input": [26, 30], "grad_output": [26, 30], "technic": [26, 30], "caller": [26, 30], "register_load_state_dict_post_hook": [26, 30], "post": [26, 30], "incompatible_kei": [26, 30], "modif": [26, 30], "thrown": [26, 30], "clearn": [26, 30], "register_modul": [26, 30], "register_paramet": [26, 30], "requires_grad_": [26, 30], "autograd": [26, 30], "freez": [26, 30, 69, 74, 88], "finetun": [26, 30], "gan": [26, 30], "share_memori": [26, 30], "share_memory_": [26, 30], "destin": [26, 30], "keep_var": [26, 30], "shallow": [26, 30], "howev": [26, 30, 40, 69, 73, 74, 77, 80, 84, 86, 87, 88], "releas": [26, 30, 68, 76, 83], "design": [26, 30], "ordereddict": [26, 30], "detach": [26, 30, 77], "non_block": [26, 30], "memory_format": [26, 30], "channels_last": [26, 30], "Its": [26, 30, 36, 46, 52], "complex": [26, 30], "integr": [26, 30, 67], "asynchron": [26, 30], "host": [26, 30], "pin": [26, 30, 74, 75, 88], "desir": [26, 30, 39, 53], "4d": [26, 30], "ignore_w": [26, 30], "determinist": [26, 30, 69], "1913": [26, 30], "3420": [26, 30], "5113": [26, 30], "2325": [26, 30], "env": [26, 30], "torch_doctest_cuda1": [26, 30], "gpu1": [26, 30], "1914": [26, 30], "5112": [26, 30], "2324": [26, 30], "float16": [26, 30], "cdoubl": [26, 30], "3741": [26, 30], "2382": [26, 30], "5593": [26, 30], "4443": [26, 30], "complex128": [26, 30], "6122": [26, 30], "1150": [26, 30], "to_empti": [26, 30], "storag": [26, 30], "dst_type": [26, 30], "xpu": [26, 30], "zero_grad": [26, 30, 77], "set_to_non": [26, 30], "context": [26, 30, 82], "noisili": [27, 78], "han": 27, "2018": 27, "cifar_cnn": [27, 28], "loss_coteach": 27, "y_1": 27, "y_2": 27, "forget_r": 27, "class_weight": 27, "logit": [27, 44, 77], "decim": [27, 40], "quickli": [27, 69, 73, 74, 76, 77, 81, 83, 86, 87, 89], "forget": [27, 36, 89], "rate_schedul": 27, "epoch": [27, 30, 76, 77], "initialize_lr_schedul": 27, "lr": [27, 30], "001": [27, 55, 76], "250": [27, 70, 71, 78, 82], "epoch_decay_start": 27, "80": [27, 73, 81, 85, 87], "schedul": 27, "adjust": [27, 31, 49, 54, 55, 67, 78], "beta": 27, "adam": 27, "adjust_learning_r": 27, "alpha_plan": 27, "beta1_plan": 27, "forget_rate_schedul": 27, "num_gradu": 27, "expon": 27, "tell": [27, 74, 77, 78, 88], "train_load": [27, 30], "model1": [27, 78], "optimizer1": 27, "model2": [27, 78], "optimizer2": 27, "dataload": [27, 77, 83], "parser": 27, "parse_arg": 27, "num_iter_per_epoch": 27, "print_freq": 27, "topk": 27, "top1": 27, "top5": 27, "test_load": 27, "offici": [28, 43, 89], "wish": [28, 43, 83, 86, 89], "mnist_pytorch": 28, "coteach": [28, 68], "mini": [29, 59, 61, 76], "With": [29, 74, 78, 80, 85, 86, 88, 89], "approxim": [29, 54, 80], "low_self_confid": [29, 31, 47], "self_confid": [29, 31, 36, 47, 49, 55, 63, 65, 76, 78, 81, 87, 88], "conveni": [29, 69, 74, 88], "script": 29, "labelinspector": [29, 76], "adj_confident_thresholds_shar": 29, "labels_shar": 29, "pred_probs_shar": 29, "labels_fil": [29, 76], "pred_probs_fil": [29, 76], "batch_siz": [29, 30, 59, 61, 76, 77, 83, 86], "quality_score_kwarg": 29, "num_issue_kwarg": 29, "return_mask": 29, "variant": [29, 45, 86], "read": [29, 33, 71, 76, 78, 83, 89], "zarr": [29, 76], "memmap": [29, 86], "pythonspe": 29, "mmap": [29, 76], "hdf5": 29, "further": [29, 46, 47, 49, 52, 53, 61, 62, 69, 76], "yourfil": 29, "r": [29, 57, 70, 71, 85, 86], "npy": [29, 75, 76, 86], "mmap_mod": [29, 86], "tip": [29, 31, 44, 76], "save_arrai": 29, "your_arrai": 29, "disk": [29, 75, 76], "npz": [29, 89], "maxim": [29, 45, 59, 61, 86], "multiprocess": [29, 31, 47, 59, 61, 76, 77, 86], "linux": [29, 59, 61], "physic": [29, 31, 59, 61, 82, 86], "psutil": [29, 31, 59, 61, 86], "demonstr": [29, 70, 74, 76, 77, 78, 80, 81, 82, 85, 86], "labels_arrai": [29, 41], "predprob": 29, "pred_probs_arrai": 29, "back": [29, 53, 70, 76, 82, 83], "store_result": 29, "becom": [29, 83], "verifi": [29, 76, 80, 83], "long": [29, 45, 54, 80], "enough": [29, 40, 76], "chunk": [29, 84], "ram": [29, 75], "faster": [29, 54, 57, 59, 61, 76, 78], "end_index": 29, "labels_batch": 29, "pred_probs_batch": 29, "update_confident_threshold": 29, "batch_result": 29, "score_label_qu": 29, "indices_of_examples_with_issu": [29, 76], "shortcut": 29, "encount": [29, 31, 59], "1000": [29, 69, 74, 76, 83], "aggreg": [29, 36, 45, 49, 52, 55, 65, 76, 78, 80], "get_num_issu": 29, "fetch": [29, 69, 71], "seen": [29, 76, 83, 89], "far": [29, 45], "get_quality_scor": 29, "label_quality_scor": [29, 49, 52, 55, 58, 78, 82, 85], "method1": 29, "method2": 29, "normalized_margin": [29, 31, 36, 47, 49, 55, 63, 65], "low_normalized_margin": [29, 31, 47], "issue_indic": [29, 52, 77], "update_num_issu": 29, "split_arr": 29, "arr": [29, 76], "chunksiz": 29, "convnet": 30, "bespok": [30, 44], "get_mnist_dataset": 30, "loader": [30, 77], "download": [30, 69, 76, 83], "mnist": [30, 67, 69, 75], "get_sklearn_digits_dataset": 30, "handwritten": 30, "digit": [30, 69, 75], "last": [30, 36, 50, 53, 70, 71, 76, 80, 89], "sklearn_digits_test_s": 30, "hard": [30, 75, 83], "simplenet": 30, "64": [30, 73, 77, 78, 82, 87], "log_interv": 30, "50": [30, 76, 78, 80, 82, 83, 89], "01": [30, 55, 57, 69, 77, 78, 81, 82, 85], "momentum": 30, "no_cuda": 30, "test_batch_s": [30, 77], "templat": 30, "enabl": 30, "flexibli": 30, "among": [30, 45, 78], "test_set": 30, "Be": 30, "overrid": 30, "train_idx": [30, 40, 83], "train_label": [30, 83, 88], "scikit": [30, 40, 54, 67, 69, 70, 71, 73, 74, 76, 79, 85, 88], "set_predict_proba_request": 30, "set_predict_request": 30, "encourag": [31, 47, 55, 58], "multilabel_classif": [31, 46, 47, 49, 55, 76, 81], "pred_probs_by_class": 31, "prune_count_matrix_col": 31, "rank_by_kwarg": [31, 47, 55, 78], "num_to_remove_per_class": [31, 47], "bad": [31, 47, 52, 55, 74, 76, 88], "seem": [31, 78, 81], "fewer": [31, 40, 82], "aren": 31, "confidence_weighted_entropi": [31, 36, 47, 49, 55, 63, 65], "label_issues_idx": [31, 55], "entropi": [31, 33, 35, 36, 54, 55], "prune_by_class": [31, 47, 78], "predicted_neq_given": [31, 47, 78], "prune_counts_matrix": 31, "smallest": [31, 55], "unus": 31, "number_of_mislabeled_examples_in_class_k": 31, "delet": [31, 67, 76, 88], "thread": [31, 47], "window": [31, 75], "shorter": [31, 50], "find_predicted_neq_given": 31, "find_label_issues_using_argmax_confusion_matrix": 31, "latent_algebra": [32, 68], "label_quality_util": 32, "multilabel_util": [32, 81], "multilabel_scor": [32, 49], "token_classification_util": [32, 89], "get_normalized_entropi": 33, "min_allowed_prob": 33, "wikipedia": 33, "activ": [33, 35, 45, 67, 80], "towardsdatasci": 33, "cheatsheet": 33, "ec57bc067c0b": 33, "clip": [33, 40, 69], "behav": 33, "unnecessari": [33, 76], "slightli": [33, 87, 88], "interv": [33, 36, 83], "herein": 34, "inexact": 34, "cours": 34, "propag": 34, "throughout": [34, 40, 57, 69, 80, 86, 89], "compute_ps_py_inv_noise_matrix": 34, "compute_py_inv_noise_matrix": 34, "compute_inv_noise_matrix": 34, "easili": [34, 68, 69, 71, 73, 74, 78, 80, 81, 83, 84, 85, 86, 87, 88], "increas": [34, 52, 54, 55, 69, 70, 76, 80, 81, 89], "dot": [34, 65, 76], "compute_noise_matrix_from_invers": 34, "compute_pi": 34, "true_labels_class_count": 34, "compute_pyx": 34, "pyx": 34, "multiannot": 35, "assert_valid_inputs_multiannot": 35, "labels_multiannot": [35, 45], "ensembl": [35, 36, 45, 55, 73, 76, 81, 83, 85, 87], "allow_single_label": 35, "annotator_id": 35, "assert_valid_pred_prob": 35, "pred_probs_unlabel": [35, 45], "format_multiannotator_label": [35, 45, 80], "lexicograph": [35, 40], "formatted_label": [35, 40], "old": [35, 40, 68, 75], "th": [35, 39, 40, 45, 47, 50, 52, 53, 54, 63, 65, 66, 74, 81, 82, 89], "check_consensus_label_class": 35, "consensus_label": [35, 45, 80], "consensus_method": [35, 45], "consensu": [35, 45, 67, 79, 89], "establish": [35, 85, 88], "compute_soft_cross_entropi": 35, "soft": [35, 75], "find_best_temp_scal": 35, "coarse_search_rang": [35, 57, 76], "fine_search_s": [35, 57, 76], "temperatur": [35, 36, 52, 61, 65], "scale": [35, 38, 75, 76, 83, 86, 87], "factor": [35, 36, 59, 61], "minim": [35, 52, 83], "temp_scale_pred_prob": 35, "temp": 35, "sharpen": [35, 75], "smoothen": 35, "classlabelscor": 36, "enum": 36, "get_self_confidence_for_each_label": [36, 55], "get_normalized_margin_for_each_label": [36, 55], "get_confidence_weighted_entropy_for_each_label": [36, 55], "75": [36, 70, 71, 75, 80, 81, 82, 85, 89], "from_str": 36, "scorer": 36, "exponential_moving_averag": [36, 49], "alpha": [36, 49, 52, 70, 71, 78, 81, 85], "exponenti": 36, "ema": 36, "s_1": 36, "s_k": 36, "ema_k": 36, "accord": [36, 47, 73, 74, 78, 89], "formula": [36, 38], "_t": 36, "cdot": 36, "s_t": 36, "qquad": 36, "leq": 36, "_1": 36, "give": [36, 55, 78, 80, 86], "recent": [36, 89], "success": 36, "previou": [36, 77, 82], "discount": 36, "s_ema": 36, "175": [36, 78, 82], "softmin": [36, 49, 52, 61, 65], "underflow": 36, "nan": [36, 45, 73, 80, 85, 87], "possible_method": 36, "aggregated_scor": 36, "multilabelscor": 36, "base_scor": 36, "base_scorer_kwarg": 36, "aggregator_kwarg": [36, 49], "n_sampl": 36, "n_label": 36, "binari": [36, 40, 47, 49, 78, 89], "worst": [36, 80], "class_label_quality_scor": 36, "get_class_label_quality_scor": 36, "42": [36, 75, 82, 89], "452": 36, "new_scor": 36, "575": 36, "get_label_quality_scores_per_class": [36, 49], "ml_scorer": 36, "multilabel_pi": 36, "binar": [36, 37], "second": [36, 38, 40, 53, 55, 70, 76, 78, 89], "get_cross_validated_multilabel_pred_prob": 36, "reformat": [36, 69], "wider": 36, "strategi": 36, "splitter": 36, "kfold": [36, 77], "multiclass": [36, 40, 45, 81], "onevsrestclassifi": [36, 81], "randomforestclassifi": [36, 78, 81], "n_split": [36, 77, 81], "stack_compl": 37, "pred_prob_slic": 37, "extend": [37, 77, 83, 89], "get_onehot_num_class": 37, "onehot": 37, "encod": [37, 53, 59, 62, 73, 74, 76, 85, 86, 87, 88], "multilabel": [37, 81], "int2onehot": [37, 81], "hot": [37, 47, 53, 59, 62, 73, 75, 76, 85, 86, 87], "onehot2int": [37, 81], "onehot_matrix": 37, "transform_distances_to_scor": 38, "exp": [38, 54, 55, 70], "dt": 38, "right": [38, 50, 53, 74, 81, 82, 83, 88], "num_neighbor": 38, "slice": 38, "ood_features_scor": [38, 54, 83], "95122942": 38, "83945702": 38, "token_classif": [39, 63, 65, 66, 76], "get_sent": [39, 89], "sentenc": [39, 63, 65, 66, 74, 88], "readabl": 39, "filter_sent": [39, 89], "lambda": [39, 69, 70, 80], "long_sent": 39, "headlin": 39, "process_token": 39, "charact": [39, 40], "s1": 39, "s2": 39, "processed_token": 39, "rule": [39, 75], "alecnlcb": 39, "entiti": [39, 67, 76, 89], "mapped_ent": 39, "unique_ident": 39, "loc": [39, 70, 71, 77, 89], "merge_prob": 39, "probs_merg": 39, "55": [39, 75, 82, 85], "0125": [39, 65], "0375": 39, "075": 39, "025": 39, "color_sent": 39, "color": [39, 62, 70, 71, 73, 78, 81, 83, 85, 86], "red": [39, 53, 70, 71, 75, 78, 81, 82, 83, 86], "colored_sent": 39, "termcolor": 39, "31msentenc": 39, "0m": 39, "ancillari": 40, "remove_noise_from_class": 40, "class_without_nois": 40, "any_other_class": 40, "choos": [40, 55, 73, 76, 78, 85, 87], "tradition": 40, "clip_noise_r": 40, "clip_valu": 40, "new_sum": 40, "preserv": 40, "value_count": [40, 76], "fill": 40, "wherea": [40, 47, 84], "come": [40, 70, 71, 76, 86], "major": [40, 45, 68, 77, 83], "versu": [40, 78], "value_counts_fill_missing_class": 40, "get_missing_class": 40, "round_preserving_sum": 40, "obviou": 40, "cgdeboer": 40, "iteround": 40, "round_preserving_row_tot": 40, "reach": 40, "estimate_pu_f1": 40, "prob_s_eq_1": 40, "claesen": 40, "f1": [40, 74, 78], "confusion_matrix": 40, "BE": 40, "print_square_matrix": 40, "left_nam": 40, "top_nam": 40, "titl": [40, 70, 71, 78, 81, 83], "short_titl": 40, "round_plac": 40, "pretti": [40, 78], "print_noise_matrix": [40, 78], "print_inverse_noise_matrix": 40, "print_joint_matrix": [40, 78], "joint_matrix": 40, "compress_int_arrai": 40, "num_possible_valu": 40, "train_val_split": 40, "holdout_idx": 40, "subset_x_i": 40, "extract": [40, 54, 69, 74, 80, 83, 86, 88], "subset_label": 40, "subset_data": 40, "extract_indices_tf": 40, "allow_shuffl": 40, "turn": [40, 67, 82], "unshuffle_tensorflow_dataset": 40, "shuffledataset": 40, "histori": 40, "pre_x": 40, "buffer_s": 40, "is_torch_dataset": 40, "is_tensorflow_dataset": 40, "csr_vstack": 40, "csr_matric": 40, "append": [40, 69, 75, 77, 78, 80, 81, 83, 89], "bottom": [40, 50, 53, 82], "vstack": [40, 75, 76, 77, 78, 80, 81], "append_extra_datapoint": 40, "to_data": 40, "from_data": 40, "taken": 40, "One": [40, 54, 76], "get_num_class": 40, "label_matrix": 40, "canon": 40, "num_unique_class": 40, "get_unique_class": 40, "format_label": 40, "smart_display_datafram": 40, "displai": [40, 53, 62, 66, 69, 74, 78, 88, 89], "jupyt": [40, 69, 70, 71, 75, 76, 77, 78, 80, 81, 83, 85, 89], "notebook": [40, 45, 69, 71, 75, 76, 78, 80, 81, 82, 86, 89], "consol": 40, "force_two_dimens": 40, "html": [40, 54, 73, 76, 78], "assert_valid_input": 41, "allow_missing_class": 41, "allow_one_class": 41, "assert_valid_class_label": 41, "assert_nonempty_input": 41, "assert_indexing_work": 41, "length_x": 41, "labels_to_arrai": 41, "labellik": 41, "keraswrappermodel": [44, 67], "keraswrappersequenti": 44, "tf": [44, 69], "legaci": 44, "lack": 44, "keraswrapp": 44, "huggingface_keras_imdb": 44, "unit": [44, 89], "model_kwarg": [44, 57], "compile_kwarg": 44, "sparsecategoricalcrossentropi": 44, "layer": [44, 69, 74, 83, 88], "dens": 44, "my_keras_model": 44, "from_logit": 44, "compil": 44, "declar": 44, "apply_softmax": 44, "analysi": 45, "analyz": [45, 67, 78, 80, 81], "get_label_quality_multiannot": [45, 80], "vote": 45, "crowdsourc": [45, 67, 80], "dawid": [45, 80], "skene": [45, 80], "analog": [45, 75, 80], "chosen": [45, 55, 80], "crowdlab": [45, 80], "unlabel": [45, 80, 83, 86], "decid": [45, 74, 75, 80, 85, 88, 89], "get_active_learning_scor": [45, 80], "activelab": [45, 80], "priorit": [45, 52, 82, 86, 89], "showcas": 45, "main": 45, "best_qual": 45, "quality_method": 45, "calibrate_prob": 45, "return_detailed_qu": 45, "return_annotator_stat": 45, "return_weight": 45, "label_quality_score_kwarg": 45, "necessarili": [45, 74, 78], "did": [45, 46, 69, 73, 78, 80, 85, 87, 88], "id": [45, 70, 77, 80], "majority_vot": 45, "ti": 45, "broken": [45, 53, 75], "highest": [45, 53, 70, 77, 84], "0th": 45, "consensus_quality_scor": [45, 80], "annotator_agr": [45, 80], "reman": 45, "1st": 45, "2nd": [45, 59], "3rd": 45, "consensus_label_suffix": 45, "consensus_quality_score_suffix": 45, "suffix": 45, "emsembl": 45, "weigh": [45, 75], "agreement": [45, 80], "agre": 45, "prevent": 45, "overconfid": [45, 84], "wrong": [45, 50, 52, 68, 70, 71, 74, 76, 78, 82, 88], "detailed_label_qu": [45, 80], "annotator_stat": [45, 80], "model_weight": 45, "annotator_weight": 45, "warn": [45, 70], "labels_info": 45, "num_annot": [45, 80], "deriv": [45, 80], "quality_annotator_1": 45, "quality_annotator_2": 45, "quality_annotator_m": 45, "lowest": [45, 53, 71, 77, 80, 81, 82, 86], "annotator_qu": [45, 80], "num_examples_label": [45, 80], "agreement_with_consensu": [45, 80], "worst_class": [45, 80], "trustworthi": [45, 80, 85], "get_label_quality_multiannotator_ensembl": 45, "func": 45, "weigtht": 45, "budget": 45, "retrain": [45, 85, 88], "active_learning_scor": 45, "improv": [45, 71, 75, 76, 77, 78, 85, 86, 87, 88], "active_learning_scores_unlabel": 45, "get_active_learning_scores_ensembl": 45, "henc": [45, 69, 70, 80], "get_majority_vote_label": [45, 80], "event": 45, "lastli": [45, 73], "convert_long_to_wide_dataset": 45, "labels_multiannotator_long": 45, "wide": [45, 69, 87, 88], "suitabl": [45, 73, 87], "labels_multiannotator_wid": 45, "common_multilabel_issu": 46, "mutual": [46, 81], "exclus": [46, 81], "vice": 46, "versa": 46, "rank_classes_by_multilabel_qu": 46, "overall_multilabel_health_scor": 46, "multilabel_health_summari": 46, "classes_by_multilabel_qu": 46, "inner": [47, 61], "find_multilabel_issues_per_class": 47, "per_class_label_issu": 47, "label_issues_list": 47, "labels_list": 47, "pred_probs_list": [47, 55, 77, 78], "anim": [48, 83], "rat": 48, "predat": 48, "pet": 48, "reptil": 48, "manner": [49, 80, 85, 87, 88], "box": [50, 52, 53, 75, 82], "object_detect": [50, 52, 53, 82], "return_indices_ranked_by_scor": [50, 82], "overlapping_label_check": [50, 52], "suboptim": [50, 52], "locat": [50, 52, 82, 86, 89], "bbox": [50, 53, 82], "image_nam": [50, 53], "y1": [50, 53, 82], "y2": [50, 53, 82], "later": [50, 53, 54, 88, 89], "mmdetect": [50, 53, 82], "corner": [50, 53, 82], "swap": [50, 52, 62, 66], "penal": [50, 52], "concern": [50, 52, 67, 71], "aggregation_weight": 52, "imperfect": [52, 76], "chose": [52, 80, 82], "imperfectli": [52, 82], "dirti": [52, 55, 58, 85], "subtyp": 52, "badloc": 52, "nonneg": 52, "issues_from_scor": [52, 61, 62, 65, 66, 82, 86, 89], "compute_overlooked_box_scor": 52, "high_probability_threshold": 52, "auxiliary_input": [52, 53], "vari": [52, 71], "iou": 52, "heavili": 52, "auxiliarytypesdict": 52, "pred_label": [52, 88], "pred_label_prob": 52, "pred_bbox": 52, "lab_label": 52, "lab_bbox": 52, "similarity_matrix": 52, "min_possible_similar": 52, "scores_overlook": 52, "compute_badloc_box_scor": 52, "low_probability_threshold": 52, "scores_badloc": 52, "compute_swap_box_scor": 52, "accident": [52, 73, 74, 88], "scores_swap": 52, "pool_box_scores_per_imag": 52, "box_scor": 52, "image_scor": [52, 61, 86], "object_counts_per_imag": 53, "discov": [53, 71, 89], "auxiliari": [53, 83, 86], "_get_valid_inputs_for_compute_scor": 53, "object_count": 53, "bounding_box_size_distribut": 53, "down": 53, "bbox_siz": 53, "class_label_distribut": 53, "class_distribut": 53, "get_sorted_bbox_count_idx": 53, "plot": [53, 70, 71, 78, 81, 83, 85, 86], "sorted_idx": [53, 83], "plot_class_size_distribut": 53, "class_to_show": 53, "hidden": [53, 83], "max_class_to_show": 53, "plot_class_distribut": 53, "visual": [53, 70, 71, 77, 85, 87, 89], "prediction_threshold": 53, "overlai": [53, 82], "figsiz": [53, 70, 71, 77, 78, 81, 83], "save_path": [53, 82], "blue": [53, 75, 78, 82], "overlaid": 53, "side": [53, 75, 82], "figur": [53, 78, 81, 83, 85], "extens": [53, 78, 80], "png": [53, 82], "pdf": [53, 54], "ep": 53, "svg": 53, "matplotlib": [53, 70, 71, 77, 78, 81, 82, 83, 85], "Of": 54, "li": 54, "smaller": [54, 81, 82], "find_top_issu": [54, 55, 83], "reli": [54, 69, 70, 71, 74, 82, 83, 88], "dist_metr": 54, "dim": [54, 77, 86], "subtract": [54, 55], "renorm": [54, 55, 76], "least_confid": 54, "sum_": 54, "log": [54, 55, 68], "softmax": [54, 61, 65, 77], "literatur": 54, "gen": 54, "liu": 54, "lochman": 54, "zach": 54, "openaccess": 54, "thecvf": 54, "content": [54, 69, 70, 71, 75, 77, 78, 80, 81, 83, 85, 89], "cvpr2023": 54, "liu_gen_pushing_the_limits_of_softmax": 54, "based_out": 54, "distribution_detection_cvpr_2023_pap": 54, "fit_scor": [54, 83], "ood_predictions_scor": 54, "categor": [54, 70, 71, 72, 85, 87], "pretrain": [54, 69, 74, 83, 88], "adjust_confident_threshold": 54, "probabilist": [54, 69, 70, 71, 73, 74, 83, 84, 87], "order_label_issu": [55, 68], "whichev": [55, 84], "argsort": [55, 74, 77, 78, 83, 85, 88], "max_": 55, "get_label_quality_ensemble_scor": [55, 76, 78], "weight_ensemble_members_bi": 55, "custom_weight": 55, "log_loss_search_t_valu": 55, "0001": [55, 75], "scheme": 55, "log_loss_search": 55, "log_loss": [55, 74], "1e0": 55, "1e1": 55, "1e2": 55, "2e2": 55, "quality_scor": [55, 83], "forth": 55, "top_issue_indic": 55, "rank_bi": [55, 68], "weird": [55, 66], "minu": 55, "prob_label": 55, "max_prob_not_label": 55, "idea": 55, "AND": [55, 74], "corrupt": [57, 85], "linearregress": [57, 76, 85], "y_with_nois": 57, "n_boot": [57, 76], "include_aleatoric_uncertainti": [57, 76], "sole": [57, 70, 80, 83, 87], "larger": [57, 59, 61, 75, 76, 77], "bootstrap": [57, 76, 85], "resampl": [57, 69, 76], "epistem": [57, 76, 83, 85], "aleator": [57, 76, 85], "model_final_kwarg": 57, "coars": 57, "thorough": [57, 76], "fine": [57, 69, 74, 83, 88], "grain": 57, "grid": 57, "get_epistemic_uncertainti": 57, "varianc": [57, 78], "epistemic_uncertainti": 57, "get_aleatoric_uncertainti": 57, "residu": [57, 58, 76], "deviat": [57, 85], "ie": 57, "aleatoric_uncertainti": 57, "outr": 58, "contin": 58, "raw": [58, 67, 68, 71, 75, 77, 80, 82, 83], "aka": [58, 69, 78, 89], "00323821": 58, "33692597": 58, "00191686": 58, "semant": [59, 61, 62, 79], "segment": [59, 61, 62, 79], "pixel": [59, 61, 62, 83, 86], "h": [59, 61, 62, 86], "height": [59, 61, 62, 86], "w": [59, 61, 62, 86], "width": [59, 61, 62, 86], "labels_one_hot": [59, 62, 86], "stream": [59, 83, 89], "downsampl": [59, 61, 86], "shrink": [59, 61], "divis": [59, 61, 70], "segmant": [61, 62], "num_pixel_issu": [61, 86], "product": [61, 76, 77], "pixel_scor": [61, 86], "display_issu": [61, 62, 63, 65, 66, 86, 89], "highlight": [62, 66, 70, 71, 73, 86], "enter": 62, "legend": [62, 70, 71, 81, 82, 85, 86], "colormap": 62, "background": 62, "person": [62, 76, 82, 86, 89], "common_label_issu": [62, 66, 86, 89], "ambigu": [62, 66, 69, 74, 75, 78, 88, 89], "systemat": [62, 66, 80], "misunderstood": [62, 66], "issues_df": [62, 77], "filter_by_class": [62, 86], "class_index": 62, "issues_subset": [62, 66], "95": [63, 65, 73, 75, 78, 85], "token_score_method": 65, "sentence_score_method": 65, "sentence_score_kwarg": 65, "compris": [65, 66], "token_scor": [65, 89], "converg": 65, "toward": 65, "_softmin_sentence_scor": 65, "sentence_scor": [65, 89], "token_info": 65, "70": [65, 73, 85], "02": [65, 70, 71, 78, 82, 85, 89], "03": [65, 75, 78, 82, 89], "04": [65, 82, 85], "08": [65, 78, 82, 89], "commonli": [66, 68, 70, 71, 81, 89], "filter_by_token": [66, 89], "But": [66, 78, 89], "restrict": [66, 76], "reliabl": [67, 69, 76, 80, 86, 87], "thousand": 67, "imagenet": [67, 75], "popular": [67, 80, 82], "centric": [67, 79], "capabl": 67, "minut": [67, 69, 73, 74, 75, 80, 81, 82, 85, 86, 87, 88, 89], "conda": 67, "feature_embed": [67, 83], "Then": [67, 76, 77, 85, 87, 88], "your_dataset": [67, 69, 70, 71, 73, 74, 77], "column_name_of_label": [67, 69, 70, 71, 73, 74, 77], "plagu": [67, 71], "untrain": 67, "\u30c4": 67, "label_issues_info": [67, 71], "sklearn_compatible_model": 67, "framework": [67, 81, 82], "complianc": 67, "tag": [67, 81, 89], "sequenc": 67, "recognit": [67, 69, 76, 89], "train_data": [67, 83, 85, 87, 88], "gotten": 67, "test_data": [67, 78, 81, 83, 85, 87, 88], "deal": [67, 71], "tutori": [67, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "faq": [67, 79], "feel": [67, 69, 71, 76], "free": [67, 69, 71, 76, 78], "ask": [67, 76], "slack": [67, 76], "project": [67, 85], "welcom": 67, "commun": [67, 76], "guidelin": [67, 82], "piec": 67, "studio": [67, 71, 76], "platform": [67, 76], "tabular": [67, 70, 71, 72, 76, 79, 80], "automl": [67, 76], "foundat": 67, "smart": [67, 76], "edit": [67, 76], "easier": [67, 78], "unreli": [67, 69, 73, 74, 87], "older": 68, "outlin": 68, "substitut": 68, "v2": [68, 73, 87], "get_noise_indic": 68, "psx": 68, "sorted_index_method": 68, "order_label_error": 68, "label_errors_bool": 68, "latent_estim": 68, "num_label_error": 68, "learningwithnoisylabel": 68, "neatli": 68, "organ": [68, 73, 75, 87, 89], "reorgan": 68, "baseline_method": 68, "incorpor": [68, 78], "research": [68, 78], "polyplex": 68, "terminologi": 68, "label_error": 68, "quickstart": [69, 70, 71, 73, 74, 75, 77, 80, 81, 82, 83, 85, 86, 87, 88, 89], "spoken": 69, "500": [69, 83, 89], "english": [69, 75], "pronunci": 69, "wav": 69, "huggingfac": [69, 70, 71, 77], "voxceleb": 69, "speech": [69, 89], "your_pred_prob": [69, 70, 71, 73, 74], "tensorflow_io": 69, "26": [69, 70, 75, 77, 78, 80, 82], "huggingface_hub": 69, "12": [69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 82, 83, 85, 86, 87, 88, 89], "branch": [69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 87, 88], "reproduc": [69, 73, 78, 80], "command": 69, "wget": [69, 82, 86, 89], "navig": 69, "link": [69, 75, 82], "browser": 69, "jakobovski": 69, "archiv": [69, 89], "v1": 69, "tar": [69, 83], "gz": [69, 83], "mkdir": [69, 89], "spoken_digit": 69, "xf": 69, "6_nicolas_32": 69, "data_path": 69, "listdir": 69, "nondeterminist": 69, "file_nam": 69, "endswith": 69, "file_path": 69, "join": [69, 76, 77], "39": [69, 70, 74, 75, 76, 77, 82, 85, 86, 88, 89], "7_george_26": 69, "0_nicolas_24": 69, "0_nicolas_6": 69, "listen": 69, "display_exampl": 69, "click": [69, 70, 71, 75, 77, 78, 80, 81, 83, 85, 89], "expand": [69, 70, 71, 75, 77, 78, 80, 81, 83, 85, 89], "pulldown": [69, 70, 71, 75, 77, 78, 80, 81, 83, 85, 89], "colab": [69, 70, 71, 75, 76, 77, 78, 80, 81, 83, 85, 89], "tfio": 69, "pathlib": 69, "ipython": 69, "load_wav_16k_mono": 69, "filenam": 69, "khz": 69, "file_cont": 69, "io": [69, 75], "read_fil": 69, "sample_r": 69, "decode_wav": 69, "desired_channel": 69, "squeez": 69, "int64": [69, 80], "rate_in": 69, "rate_out": 69, "16000": 69, "wav_file_nam": 69, "audio_r": 69, "wav_file_exampl": 69, "plai": [69, 75, 76], "button": 69, "wav_file_name_exampl": 69, "7_jackson_43": 69, "hear": 69, "extractor": 69, "encoderclassifi": 69, "spkrec": 69, "xvect": 69, "feature_extractor": 69, "from_hparam": 69, "run_opt": 69, "uncom": 69, "wav_audio_file_path": 69, "head": [69, 71, 73, 74, 75, 77, 78, 80, 85, 87, 88], "torchaudio": 69, "extract_audio_embed": 69, "emb": [69, 77], "signal": 69, "encode_batch": 69, "embeddings_list": [69, 77], "embeddings_arrai": 69, "512": [69, 77], "14": [69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "196314": 69, "319463": 69, "478973": 69, "289077": 69, "8170207": 69, "892647": 69, "24": [69, 75, 78, 80, 82], "898058": 69, "2561903": 69, "559641": 69, "5597146": 69, "620667": 69, "28525": 69, "21": [69, 70, 71, 75, 78, 82, 89], "709623": 69, "503369": 69, "913801": 69, "819831": 69, "1831489": 69, "208763": 69, "08426": 69, "321049": 69, "005462": 69, "2161489": 69, "478238": 69, "682178": 69, "053809": 69, "2424674": 69, "0914197": 69, "78334606": 69, "039537": 69, "23": [69, 75, 77, 78, 82], "569172": 69, "19": [69, 74, 75, 77, 78, 83, 85, 86, 88], "761091": 69, "1258256": 69, "75323": 69, "3508904": 69, "598279": 69, "237118": 69, "2500": 69, "leverag": [69, 74, 76, 78, 80, 88], "tune": [69, 74, 75, 83, 88], "computation": [69, 74, 88], "intens": [69, 74, 88], "held": [69, 73, 74, 75, 82, 83, 84, 87], "straightforward": [69, 73, 87], "benefit": [69, 84, 86, 87], "tol": 69, "num_crossval_fold": [69, 73, 80, 87], "decreas": [69, 76], "never": [69, 78, 81, 83, 84], "accuracy_scor": [69, 74, 78, 87, 88], "cv_accuraci": 69, "9772": 69, "probabilit": [69, 88], "9980": 69, "176": [69, 75, 78, 81], "006510": 69, "2318": 69, "008255": 69, "986": 69, "010404": 69, "1946": 69, "012856": 69, "469": 69, "013254": 69, "investig": 69, "100326": 69, "998723": 69, "998768": 69, "981028": 69, "998219": 69, "18": [69, 74, 75, 78, 82, 83, 85, 86, 88], "identified_label_issu": [69, 74], "lowest_quality_label": [69, 74, 78, 85, 88], "sort_valu": [69, 71, 73, 74, 77, 78, 80], "516": 69, "1871": 69, "1955": 69, "2132": 69, "worth": [69, 78], "iloc": [69, 73, 74, 85, 87, 88], "6_yweweler_14": 69, "6_yweweler_35": 69, "6_yweweler_36": 69, "6_theo_27": 69, "4_george_31": 69, "6_nicolas_8": 69, "sound": 69, "quit": [69, 83], "22": [69, 70, 75, 77, 78, 81, 82, 89], "blindli": [69, 76, 85, 87, 88], "trust": [69, 76, 78, 80, 84, 85, 87, 88], "address": [70, 71, 74, 76, 88], "underneath": 70, "hood": 70, "alert": 70, "introduct": 70, "mayb": [70, 71, 74], "examin": [70, 71, 73, 87], "your_feature_matrix": [70, 71], "toi": [70, 71, 75, 77, 78, 80], "train_test_split": [70, 71, 83, 87, 88], "inf": [70, 71], "mid": [70, 71], "bins_map": [70, 71], "create_data": [70, 71], "y_bin": [70, 71], "y_i": [70, 71], "y_bin_idx": [70, 71], "y_train": [70, 71, 78, 85], "y_test": [70, 71, 78, 85], "y_train_idx": [70, 71], "y_test_idx": [70, 71], "test_siz": [70, 71, 87, 88], "slide": [70, 71, 75], "decis": [70, 71, 87], "boundari": [70, 71], "frame": [70, 71], "x_out": [70, 71], "tini": [70, 71], "concaten": [70, 71, 84], "y_out": [70, 71], "y_out_bin": [70, 71], "y_out_bin_idx": [70, 71], "exact_duplicate_idx": [70, 71], "x_duplic": [70, 71], "y_duplic": [70, 71], "y_duplicate_idx": [70, 71], "noisy_labels_idx": [70, 71, 81], "scatter": [70, 71, 78, 81, 85], "black": [70, 71, 75, 85], "cyan": [70, 71], "pyplot": [70, 71, 77, 78, 81, 83, 85], "plt": [70, 71, 77, 78, 81, 83, 85], "plot_data": [70, 71, 78, 81, 85], "fig": [70, 71, 75, 77, 83, 85], "ax": [70, 71, 77, 83, 85], "subplot": [70, 71, 77, 83], "set_titl": [70, 71, 77, 83], "set_xlabel": [70, 71], "x_1": [70, 71], "fontsiz": [70, 71, 77, 78, 81], "set_ylabel": [70, 71], "x_2": [70, 71], "set_xlim": [70, 71], "set_ylim": [70, 71], "linestyl": [70, 71], "circl": [70, 71, 78, 81], "misclassifi": [70, 71], "zip": [70, 71, 77, 82, 89], "label_err": [70, 71], "180": [70, 71, 82], "marker": [70, 71], "facecolor": [70, 71], "edgecolor": [70, 71], "linewidth": [70, 71, 83], "dup": [70, 71], "first_legend": [70, 71], "align": [70, 71], "title_fontproperti": [70, 71], "semibold": [70, 71], "second_legend": [70, 71], "45": [70, 71, 75, 78, 82], "gca": [70, 71], "add_artist": [70, 71], "tight_layout": [70, 71], "ideal": [70, 71], "logist": [70, 71, 74, 80, 83, 88], "regress": [70, 71, 74, 79, 80, 83, 88], "remaind": 70, "modal": [70, 71, 76, 80], "regardless": [70, 71], "132": [70, 71, 78, 82], "9318": [70, 71], "77": [70, 71, 73, 82, 87], "006939": [70, 71], "007830": [70, 71], "40": [70, 71, 74, 75, 77], "014826": [70, 71], "107": [70, 71, 78, 81], "021220": [70, 71], "120": [70, 71, 87], "026403": [70, 71], "notic": [70, 78, 80, 82], "5221": [70, 71], "126": [70, 71, 78, 82], "046465": [70, 71], "130": [70, 71, 77], "068695": [70, 71], "129": [70, 71], "127": [70, 71], "076251": [70, 71], "128": [70, 71, 77], "083941": [70, 71], "2465": [70, 71], "is_near_duplicate_issu": [70, 71, 73, 74, 77, 78], "131": [70, 71, 86], "000000e": [70, 71], "00": [70, 71, 73, 75, 77, 86, 87], "463180e": [70, 71], "07": [70, 71, 78, 82], "51": [70, 71, 73, 75, 78, 82], "857172e": [70, 71], "859087e": [70, 71], "30": [70, 75, 76, 77, 81, 86, 89], "3293": 70, "025076": 70, "026534": 70, "050766": 70, "051025": 70, "home": [70, 74, 75, 83, 88], "runner": [70, 74, 83, 88], "219": [70, 82], "userwarn": 70, "249": [70, 78, 82], "228": [70, 82], "34": [70, 75, 77, 78, 80, 82, 83, 89], "54": [70, 75, 78, 82, 89], "039117": 70, "53": [70, 73, 75, 81, 82, 87], "044594": 70, "105": 70, "105121": 70, "133588": [70, 71], "43": [70, 75, 78, 82, 88], "168035": 70, "125": 70, "090878": 70, "37": [70, 75], "169462": 70, "109": [70, 75, 82], "194566": 70, "35": [70, 75, 77, 80, 81, 82], "196302": 70, "206314": 70, "average_ood_scor": 70, "32933380816554325": 70, "52": [70, 75, 82, 86, 89], "085049e": 70, "087324e": 70, "89": [70, 73, 82, 85], "92": [70, 78, 82, 87], "574261e": 70, "583757e": 70, "91": [70, 82], "314215e": 70, "341292e": 70, "specfi": 70, "new_lab": 70, "scoring_funct": 70, "div": 70, "rem": 70, "inv_scal": 70, "49": [70, 75, 78, 82], "superstitionissuemanag": 70, "unlucki": 70, "superstit": 70, "to_seri": 70, "issues_mask": 70, "summary_scor": 70, "32": [70, 75, 77, 80, 82, 89], "9242": 70, "is_superstition_issu": 70, "superstition_scor": 70, "047581": 70, "090635": 70, "129591": 70, "65": [70, 82, 87, 89], "164840": 70, "demo": [71, 73, 81, 87], "lurk": [71, 77, 78], "thoroughli": 71, "preprocess": [71, 73, 83, 85, 87, 88], "review": [71, 73, 74, 75, 76, 78, 82, 85, 86, 87, 88, 89], "8218": 71, "is_non_iid_issu": [71, 73, 74, 77, 78], "810274": 71, "826147": 71, "849587": 71, "855359": 71, "855485": 71, "821750488732925": 71, "auto": [71, 75, 76, 85, 87, 88], "conceptu": 71, "931818": 71, "522080": 71, "246459": 71, "821750": 71, "betweeen": 71, "864232": 71, "586131": 71, "235095": 71, "970324": 71, "825563": 71, "548979": 71, "221560": 71, "890575": 71, "533367": 71, "622256": 71, "199185": 71, "755724": 71, "499498": 71, "179601": 71, "948362": 71, "632385": 71, "292800": 71, "878267": 71, "examples_w_issu": [71, 76], "inde": [71, 74], "miscellan": [71, 89], "206897": 71, "041667": 71, "793103": 71, "071429": 71, "103448": 71, "928571": 71, "053333": 71, "101266": 71, "946667": 71, "portion": 71, "huge": [71, 78], "worri": 71, "critic": 71, "highli": [71, 77], "sql": [73, 87], "databas": [73, 87], "excel": [73, 87], "parquet": [73, 87], "student": [73, 85, 87, 89], "grade": [73, 85, 87], "900": [73, 85, 87], "exam": [73, 85, 87], "letter": [73, 87, 89], "hundr": [73, 87], "histgradientboostingclassifi": 73, "reflect": [73, 74, 80, 82, 83, 85, 87, 88], "standardscal": [73, 83, 87], "possibli": [73, 87], "grades_data": [73, 87], "read_csv": [73, 74, 85, 87, 88], "stud_id": [73, 87], "exam_1": [73, 85, 87], "exam_2": [73, 85, 87], "exam_3": [73, 85, 87], "letter_grad": [73, 87], "f48f73": [73, 87], "0bd4e7": [73, 87], "81": [73, 74, 82, 85, 87, 89], "great": [73, 75, 87], "particip": [73, 87], "cb9d7a": [73, 87], "61": [73, 78, 82, 87], "94": [73, 75, 78, 82, 85, 87], "78": [73, 75, 78, 82, 85, 87], "9acca4": [73, 87], "48": [73, 75, 78, 82, 87], "x_raw": [73, 87], "cat_featur": 73, "x_encod": [73, 87], "get_dummi": [73, 85, 87], "drop_first": [73, 87], "numeric_featur": [73, 87], "scaler": [73, 83, 87], "x_process": [73, 87], "fit_transform": [73, 87], "bring": [73, 74, 77, 80, 85, 87, 88], "byod": [73, 74, 77, 80, 85, 87, 88], "boost": [73, 76, 80, 85], "xgboost": [73, 76, 85], "think": [73, 76, 81, 86, 89], "carefulli": [73, 74, 77, 87], "nonzero": 73, "suspici": [73, 87], "tabl": [73, 75, 77, 80, 87], "358": 73, "294": [73, 82], "46": [73, 75, 78, 82], "941": 73, "7109": 73, "000005": [73, 74, 77], "886": 73, "000059": 73, "709": 73, "000104": 73, "723": 73, "000169": 73, "689": 73, "000181": 73, "7154": 73, "012085": 73, "061510": 73, "115512": 73, "124391": 73, "214163": 73, "2169": 73, "690": [73, 77], "246": [73, 82], "185": [73, 75, 82], "582": 73, "691": 73, "168": [73, 78], "915": 73, "187": [73, 75], "27": [73, 75, 78, 82, 89], "0014": [73, 75], "595": 73, "702427": 73, "147": [73, 78, 82], "711186": 73, "157": [73, 78], "721394": 73, "771": 73, "731979": 73, "898": 73, "740335": 73, "0014153602099278074": 73, "issue_result": 73, "000842": 73, "555944": 73, "004374": 73, "sorted_issu": 73, "73": [73, 75, 81, 82, 85], "86": [73, 77, 78, 82, 85, 87], "deserv": 73, "outlier_result": 73, "sorted_outli": 73, "56": [73, 75, 85], "96": [73, 75, 78, 81, 82, 85], "lt": [73, 74, 75, 77, 80, 86], "style": [73, 86], "font": 73, "18px": 73, "ff00ff": 73, "bac": 73, "unintend": [73, 74], "mistak": [73, 74, 77, 87, 88], "duplicate_result": 73, "58": [73, 75, 78, 82, 87], "perhap": [73, 78, 80], "twice": 73, "67": [73, 75, 82, 85], "wari": [73, 74, 76], "intent": [74, 88], "servic": [74, 88], "onlin": [74, 88], "bank": [74, 75, 88], "banking77": [74, 88], "oo": [74, 88], "000": [74, 75, 77, 88, 89], "categori": [74, 77, 88], "scope": [74, 88], "dive": 74, "your_featur": 74, "sentence_transform": [74, 88], "sentencetransform": [74, 88], "payment": [74, 88], "cancel_transf": [74, 88], "transfer": [74, 88], "fund": [74, 88], "cancel": [74, 88], "transact": [74, 88], "my": [74, 88], "revert": [74, 88], "morn": [74, 88], "realis": [74, 88], "yesterdai": [74, 88], "rent": [74, 88], "realli": [74, 80, 86, 88], "tomorrow": [74, 88], "raw_text": [74, 88], "beneficiary_not_allow": [74, 88], "visa_or_mastercard": [74, 88], "card_payment_fee_charg": [74, 88], "getting_spare_card": [74, 88], "lost_or_stolen_phon": [74, 88], "change_pin": [74, 88], "apple_pay_or_google_pai": [74, 88], "supported_cards_and_curr": [74, 88], "card_about_to_expir": [74, 88], "utter": [74, 88], "continu": [74, 77, 80, 85, 87, 88, 89], "suit": [74, 75, 88], "electra": [74, 88], "discrimin": [74, 88], "googl": [74, 88], "text_embed": 74, "No": [74, 76, 88], "google_electra": [74, 88], "pool": [74, 76, 83, 88], "400": [74, 88], "data_dict": [74, 78, 80], "84": [74, 82], "41": [74, 75, 82, 85], "38": [74, 75, 82], "9720": 74, "981": 74, "974": 74, "000150": 74, "982": [74, 75], "000220": 74, "971": 74, "000511": 74, "980": [74, 75], "000948": 74, "9122": 74, "994": 74, "676322": 74, "999": 74, "693868": 74, "697240": 74, "433": 74, "700874": 74, "989": 74, "713590": 74, "0656": 74, "160": [74, 89], "006237": 74, "148": 74, "546": 74, "006485": 74, "514": 74, "481": 74, "008164": 74, "008165": 74, "0000": [74, 75, 78], "313": [74, 82], "564102": 74, "572258": 74, "28": [74, 75, 77, 78, 80, 89], "574915": 74, "31": [74, 75, 77, 78, 80, 82, 89], "575507": 74, "575874": 74, "792019": 74, "258451": 74, "698890": 74, "183006": 74, "771030": 74, "to_numpi": [74, 85, 88], "data_with_suggested_label": 74, "suggested_label": 74, "charg": [74, 88], "cash": [74, 88], "holidai": [74, 88], "sent": [74, 88, 89], "card": [74, 75, 88], "mine": [74, 88], "expir": [74, 88], "me": [74, 88], "withdraw": 74, "monei": 74, "whoever": [74, 88], "outlier_issu": [74, 77], "lowest_quality_outli": 74, "OR": 74, "636c65616e6c616220697320617765736f6d6521": 74, "phone": [74, 75], "gone": 74, "gt": [74, 80, 89], "samp": 74, "br": 74, "press": [74, 89], "nonsens": 74, "sens": 74, "detriment": 74, "duplicate_issu": 74, "fee": 74, "pai": 74, "go": [74, 75, 78], "shortlist": [74, 85, 88], "curat": [74, 79], "mnist_test_set": 75, "imagenet_val_set": 75, "tench": 75, "goldfish": 75, "white": [75, 89], "shark": 75, "tiger": 75, "hammerhead": 75, "electr": 75, "rai": 75, "stingrai": 75, "cock": 75, "hen": 75, "ostrich": 75, "brambl": 75, "goldfinch": 75, "hous": 75, "finch": 75, "junco": 75, "indigo": 75, "bunt": 75, "american": [75, 89], "robin": 75, "bulbul": 75, "jai": 75, "magpi": 75, "chickade": 75, "dipper": 75, "kite": 75, "bald": 75, "eagl": 75, "vultur": 75, "grei": 75, "owl": 75, "fire": 75, "salamand": 75, "smooth": 75, "newt": 75, "spot": [75, 82], "axolotl": 75, "bullfrog": 75, "tree": 75, "frog": [75, 83], "tail": 75, "loggerhead": 75, "sea": 75, "turtl": 75, "leatherback": 75, "mud": 75, "terrapin": 75, "band": 75, "gecko": 75, "green": [75, 89], "iguana": 75, "carolina": 75, "anol": 75, "desert": 75, "grassland": 75, "whiptail": 75, "lizard": 75, "agama": 75, "frill": 75, "neck": 75, "allig": 75, "gila": 75, "monster": 75, "european": 75, "chameleon": 75, "komodo": 75, "dragon": 75, "nile": 75, "crocodil": 75, "triceratop": 75, "worm": 75, "snake": 75, "ring": 75, "eastern": 75, "hog": 75, "nose": 75, "kingsnak": 75, "garter": 75, "water": 75, "vine": 75, "night": 75, "boa": 75, "constrictor": 75, "african": 75, "rock": 75, "indian": 75, "cobra": 75, "mamba": 75, "saharan": 75, "horn": 75, "viper": 75, "diamondback": 75, "rattlesnak": 75, "sidewind": 75, "trilobit": 75, "harvestman": 75, "scorpion": 75, "yellow": 75, "garden": 75, "spider": 75, "barn": 75, "southern": 75, "widow": 75, "tarantula": 75, "wolf": 75, "tick": 75, "centiped": 75, "grous": 75, "ptarmigan": 75, "ruf": 75, "prairi": 75, "peacock": 75, "quail": 75, "partridg": 75, "parrot": 75, "macaw": 75, "sulphur": 75, "crest": 75, "cockatoo": 75, "lorikeet": 75, "coucal": 75, "bee": 75, "eater": 75, "hornbil": 75, "hummingbird": 75, "jacamar": 75, "toucan": 75, "duck": [75, 88], "breast": 75, "mergans": 75, "goos": 75, "swan": 75, "tusker": 75, "echidna": 75, "platypu": 75, "wallabi": 75, "koala": 75, "wombat": 75, "jellyfish": 75, "anemon": 75, "brain": 75, "coral": 75, "flatworm": 75, "nematod": 75, "conch": 75, "snail": 75, "slug": 75, "chiton": 75, "chamber": 75, "nautilu": 75, "dung": 75, "crab": 75, "fiddler": 75, "king": 75, "lobster": 75, "spini": 75, "crayfish": 75, "hermit": 75, "isopod": 75, "stork": 75, "spoonbil": 75, "flamingo": 75, "heron": 75, "egret": 75, "bittern": 75, "crane": 75, "bird": [75, 83], "limpkin": 75, "gallinul": 75, "coot": 75, "bustard": 75, "ruddi": 75, "turnston": 75, "dunlin": 75, "redshank": 75, "dowitch": 75, "oystercatch": 75, "pelican": 75, "penguin": 75, "albatross": 75, "whale": 75, "killer": 75, "dugong": 75, "lion": 75, "chihuahua": 75, "japanes": 75, "chin": 75, "maltes": 75, "pekinges": 75, "shih": 75, "tzu": 75, "charl": 75, "spaniel": 75, "papillon": 75, "terrier": 75, "rhodesian": 75, "ridgeback": 75, "afghan": [75, 89], "hound": 75, "basset": 75, "beagl": 75, "bloodhound": 75, "bluetick": 75, "coonhound": 75, "tan": 75, "walker": 75, "foxhound": 75, "redbon": 75, "borzoi": 75, "irish": 75, "wolfhound": 75, "italian": 75, "greyhound": 75, "whippet": 75, "ibizan": 75, "norwegian": 75, "elkhound": 75, "otterhound": 75, "saluki": 75, "scottish": 75, "deerhound": 75, "weimaran": 75, "staffordshir": 75, "bull": 75, "bedlington": 75, "border": 75, "kerri": 75, "norfolk": 75, "norwich": 75, "yorkshir": 75, "wire": 75, "fox": 75, "lakeland": 75, "sealyham": 75, "airedal": 75, "cairn": 75, "australian": 75, "dandi": 75, "dinmont": 75, "boston": 75, "miniatur": 75, "schnauzer": 75, "giant": 75, "tibetan": 75, "silki": 75, "coat": [75, 77], "wheaten": 75, "west": 75, "highland": 75, "lhasa": 75, "apso": 75, "flat": 75, "retriev": 75, "curli": 75, "golden": 75, "labrador": 75, "chesapeak": 75, "bai": 75, "german": [75, 89], "shorthair": 75, "pointer": 75, "vizsla": 75, "setter": 75, "gordon": 75, "brittani": 75, "clumber": 75, "springer": 75, "welsh": 75, "cocker": 75, "sussex": 75, "kuvasz": 75, "schipperk": 75, "groenendael": 75, "malinoi": 75, "briard": 75, "kelpi": 75, "komondor": 75, "sheepdog": 75, "shetland": 75, "colli": 75, "bouvier": 75, "de": 75, "flandr": 75, "rottweil": 75, "shepherd": 75, "dobermann": 75, "pinscher": 75, "swiss": [75, 89], "mountain": 75, "bernes": 75, "appenzel": 75, "sennenhund": 75, "entlebuch": 75, "boxer": 75, "bullmastiff": 75, "mastiff": 75, "french": 75, "bulldog": 75, "dane": 75, "st": 75, "bernard": 75, "huski": 75, "alaskan": 75, "malamut": 75, "siberian": 75, "dalmatian": 75, "affenpinsch": 75, "basenji": 75, "pug": 75, "leonberg": 75, "newfoundland": 75, "pyrenean": 75, "samoi": 75, "pomeranian": 75, "chow": 75, "keeshond": 75, "griffon": 75, "bruxelloi": 75, "pembrok": 75, "corgi": 75, "cardigan": 75, "poodl": 75, "mexican": 75, "hairless": 75, "tundra": 75, "coyot": 75, "dingo": 75, "dhole": 75, "wild": 75, "hyena": 75, "kit": 75, "arctic": 75, "tabbi": 75, "persian": 75, "siames": 75, "egyptian": 75, "mau": 75, "cougar": 75, "lynx": 75, "leopard": 75, "snow": 75, "jaguar": 75, "cheetah": 75, "brown": [75, 86], "bear": 75, "polar": 75, "sloth": 75, "mongoos": 75, "meerkat": 75, "beetl": 75, "ladybug": 75, "ground": [75, 78, 80, 85], "longhorn": 75, "leaf": 75, "rhinocero": 75, "weevil": 75, "fly": 75, "ant": 75, "grasshopp": 75, "cricket": 75, "stick": 75, "insect": 75, "cockroach": 75, "manti": 75, "cicada": 75, "leafhopp": 75, "lacew": 75, "dragonfli": 75, "damselfli": 75, "admir": 75, "ringlet": 75, "monarch": 75, "butterfli": 75, "gossam": 75, "wing": 75, "starfish": 75, "urchin": 75, "cucumb": 75, "cottontail": 75, "rabbit": 75, "hare": 75, "angora": 75, "hamster": 75, "porcupin": 75, "squirrel": 75, "marmot": 75, "beaver": 75, "guinea": 75, "pig": 75, "sorrel": 75, "zebra": 75, "boar": 75, "warthog": 75, "hippopotamu": 75, "ox": 75, "buffalo": 75, "bison": 75, "bighorn": 75, "sheep": 75, "alpin": 75, "ibex": 75, "hartebeest": 75, "impala": 75, "gazel": 75, "dromedari": 75, "llama": 75, "weasel": 75, "mink": 75, "polecat": 75, "foot": 75, "ferret": 75, "otter": 75, "skunk": 75, "badger": 75, "armadillo": 75, "toed": 75, "orangutan": 75, "gorilla": 75, "chimpanze": 75, "gibbon": 75, "siamang": 75, "guenon": 75, "pata": 75, "monkei": 75, "baboon": 75, "macaqu": 75, "langur": 75, "colobu": 75, "probosci": 75, "marmoset": 75, "capuchin": 75, "howler": 75, "titi": 75, "geoffroi": 75, "lemur": 75, "indri": 75, "asian": 75, "eleph": 75, "bush": 75, "snoek": 75, "eel": 75, "coho": 75, "salmon": 75, "beauti": 75, "clownfish": 75, "sturgeon": 75, "garfish": 75, "lionfish": 75, "pufferfish": 75, "abacu": 75, "abaya": 75, "academ": 75, "gown": 75, "accordion": 75, "acoust": 75, "guitar": 75, "aircraft": 75, "carrier": 75, "airlin": 75, "airship": 75, "altar": 75, "ambul": 75, "amphibi": 75, "clock": [75, 89], "apiari": 75, "apron": 75, "wast": 75, "assault": 75, "rifl": 75, "backpack": 75, "bakeri": 75, "balanc": 75, "beam": 75, "balloon": 75, "ballpoint": 75, "pen": 75, "aid": 75, "banjo": 75, "balust": 75, "barbel": 75, "barber": 75, "chair": [75, 82], "barbershop": 75, "baromet": 75, "barrel": 75, "wheelbarrow": 75, "basebal": 75, "basketbal": 75, "bassinet": 75, "bassoon": 75, "swim": 75, "cap": 75, "bath": 75, "towel": 75, "bathtub": 75, "station": 75, "wagon": 75, "lighthous": 75, "beaker": 75, "militari": 75, "beer": 75, "bottl": 75, "glass": 75, "bell": 75, "cot": 75, "bib": 75, "bicycl": [75, 86], "bikini": 75, "binder": 75, "binocular": 75, "birdhous": 75, "boathous": 75, "bobsleigh": 75, "bolo": 75, "tie": 75, "poke": 75, "bonnet": 75, "bookcas": 75, "bookstor": 75, "bow": 75, "brass": 75, "bra": 75, "breakwat": 75, "breastplat": 75, "broom": 75, "bucket": 75, "buckl": 75, "bulletproof": 75, "vest": 75, "butcher": 75, "shop": 75, "taxicab": 75, "cauldron": 75, "candl": 75, "cannon": 75, "cano": 75, "mirror": [75, 82], "carousel": 75, "tool": [75, 78, 80], "carton": 75, "wheel": 75, "teller": 75, "cassett": 75, "player": 75, "castl": 75, "catamaran": 75, "cd": 75, "cello": 75, "mobil": [75, 89], "chain": 75, "fenc": [75, 86], "mail": 75, "chainsaw": 75, "chest": 75, "chiffoni": 75, "chime": 75, "china": 75, "cabinet": 75, "christma": 75, "stock": 75, "church": 75, "movi": 75, "theater": 75, "cleaver": 75, "cliff": 75, "dwell": 75, "cloak": 75, "clog": 75, "cocktail": 75, "shaker": 75, "coffe": 75, "mug": 75, "coffeemak": 75, "coil": 75, "lock": 75, "keyboard": 75, "confectioneri": 75, "ship": [75, 83], "corkscrew": 75, "cornet": 75, "cowboi": 75, "boot": 75, "hat": 75, "cradl": 75, "crash": 75, "helmet": 75, "crate": 75, "infant": 75, "bed": 75, "crock": 75, "pot": 75, "croquet": 75, "crutch": 75, "cuirass": 75, "dam": 75, "desk": 75, "desktop": 75, "rotari": 75, "dial": 75, "telephon": 75, "diaper": 75, "watch": 75, "dine": 75, "dishcloth": 75, "dishwash": 75, "disc": 75, "brake": 75, "dock": 75, "sled": 75, "dome": 75, "doormat": 75, "drill": 75, "rig": 75, "drum": 75, "drumstick": 75, "dumbbel": 75, "dutch": 75, "oven": 75, "fan": 75, "locomot": 75, "entertain": 75, "center": 75, "envelop": 75, "espresso": 75, "powder": 75, "feather": 75, "fireboat": 75, "engin": [75, 86], "screen": 75, "sheet": 75, "flagpol": 75, "flute": 75, "footbal": 75, "forklift": 75, "fountain": 75, "poster": 75, "freight": 75, "fry": 75, "pan": 75, "fur": 75, "garbag": 75, "ga": 75, "pump": 75, "goblet": 75, "kart": 75, "golf": 75, "cart": 75, "gondola": 75, "gong": 75, "grand": 75, "piano": 75, "greenhous": 75, "grill": 75, "groceri": 75, "guillotin": 75, "barrett": 75, "hair": 75, "sprai": 75, "hammer": 75, "dryer": 75, "hand": [75, 78], "handkerchief": 75, "drive": 75, "harmonica": 75, "harp": 75, "harvest": 75, "hatchet": 75, "holster": 75, "honeycomb": 75, "hoop": 75, "skirt": 75, "horizont": 75, "bar": 75, "hors": [75, 83, 88], "drawn": 75, "hourglass": 75, "ipod": 75, "cloth": 75, "iron": 75, "jack": 75, "lantern": 75, "jean": 75, "jeep": 75, "shirt": [75, 77], "jigsaw": 75, "puzzl": 75, "pull": 75, "rickshaw": 75, "joystick": 75, "kimono": 75, "knee": 75, "pad": 75, "knot": 75, "ladl": 75, "lampshad": 75, "laptop": 75, "lawn": 75, "mower": 75, "knife": 75, "lifeboat": 75, "lighter": 75, "limousin": 75, "ocean": 75, "liner": 75, "lipstick": 75, "slip": 75, "shoe": 75, "lotion": 75, "speaker": 75, "loup": 75, "sawmil": 75, "magnet": 75, "compass": 75, "bag": [75, 77, 83, 84], "mailbox": 75, "tight": 75, "tank": 75, "manhol": 75, "maraca": 75, "marimba": 75, "maypol": 75, "maze": 75, "cup": [75, 82], "medicin": 75, "megalith": 75, "microphon": 75, "microwav": 75, "milk": 75, "minibu": 75, "miniskirt": 75, "minivan": 75, "missil": 75, "mitten": 75, "mix": 75, "bowl": 75, "modem": 75, "monasteri": 75, "monitor": 75, "mope": 75, "mortar": 75, "mosqu": 75, "mosquito": 75, "scooter": 75, "bike": 75, "tent": 75, "mous": [75, 76], "mousetrap": 75, "van": 75, "muzzl": 75, "nail": 75, "brace": 75, "necklac": 75, "nippl": 75, "obelisk": 75, "obo": 75, "ocarina": 75, "odomet": 75, "oil": 75, "oscilloscop": 75, "overskirt": 75, "bullock": 75, "oxygen": 75, "packet": 75, "paddl": 75, "padlock": 75, "paintbrush": 75, "pajama": 75, "palac": [75, 89], "parachut": 75, "park": 75, "bench": 75, "meter": 75, "passeng": 75, "patio": 75, "payphon": 75, "pedest": 75, "pencil": 75, "perfum": 75, "petri": 75, "dish": 75, "photocopi": 75, "plectrum": 75, "pickelhaub": 75, "picket": 75, "pickup": 75, "pier": 75, "piggi": 75, "pill": 75, "pillow": 75, "ping": 75, "pong": 75, "pinwheel": 75, "pirat": 75, "pitcher": 75, "plane": 75, "planetarium": 75, "plastic": 75, "plate": 75, "rack": 75, "plow": 75, "plunger": 75, "polaroid": 75, "camera": 75, "pole": [75, 86], "polic": 75, "poncho": 75, "billiard": 75, "soda": 75, "potter": 75, "power": [75, 78, 89], "prayer": 75, "rug": 75, "printer": 75, "prison": 75, "projectil": 75, "projector": 75, "hockei": 75, "puck": 75, "punch": 75, "purs": 75, "quill": 75, "quilt": 75, "race": 75, "racket": 75, "radiat": 75, "radio": 75, "telescop": 75, "rain": 75, "recreat": 75, "reel": 75, "reflex": 75, "refriger": 75, "remot": 75, "restaur": 75, "revolv": 75, "rotisseri": 75, "eras": 75, "rugbi": 75, "ruler": 75, "safe": 75, "safeti": 75, "salt": 75, "sandal": [75, 77], "sarong": 75, "saxophon": 75, "scabbard": 75, "school": 75, "bu": [75, 86], "schooner": 75, "scoreboard": 75, "crt": 75, "screw": 75, "screwdriv": 75, "seat": 75, "belt": 75, "sew": 75, "shield": 75, "shoji": 75, "basket": 75, "shovel": 75, "shower": 75, "curtain": 75, "ski": 75, "sleep": 75, "door": 75, "slot": 75, "snorkel": 75, "snowmobil": 75, "snowplow": 75, "soap": 75, "dispens": 75, "soccer": [75, 89], "sock": 75, "solar": 75, "thermal": 75, "collector": 75, "sombrero": 75, "soup": 75, "heater": 75, "shuttl": 75, "spatula": 75, "motorboat": 75, "web": 75, "spindl": 75, "sport": [75, 89], "spotlight": 75, "stage": 75, "steam": 75, "arch": 75, "bridg": 75, "steel": 75, "stethoscop": 75, "scarf": 75, "stone": 75, "wall": [75, 86], "stopwatch": 75, "stove": 75, "strainer": 75, "tram": 75, "stretcher": 75, "couch": 75, "stupa": 75, "submarin": 75, "sundial": 75, "sunglass": 75, "sunscreen": 75, "suspens": 75, "mop": 75, "sweatshirt": 75, "swimsuit": 75, "swing": 75, "switch": 75, "syring": 75, "lamp": 75, "tape": 75, "teapot": 75, "teddi": 75, "televis": [75, 89], "tenni": 75, "thatch": 75, "roof": 75, "front": 75, "thimbl": 75, "thresh": 75, "throne": 75, "tile": 75, "toaster": 75, "tobacco": 75, "toilet": 75, "totem": 75, "tow": 75, "tractor": 75, "semi": 75, "trailer": 75, "trai": 75, "trench": 75, "tricycl": 75, "trimaran": 75, "tripod": 75, "triumphal": 75, "trolleybu": 75, "trombon": 75, "tub": 75, "turnstil": 75, "typewrit": 75, "umbrella": 75, "unicycl": 75, "upright": 75, "vacuum": 75, "cleaner": 75, "vase": 75, "vault": 75, "velvet": 75, "vend": 75, "vestment": 75, "viaduct": 75, "violin": 75, "volleybal": 75, "waffl": 75, "wallet": 75, "wardrob": 75, "sink": 75, "wash": 75, "jug": 75, "tower": 75, "whiskei": 75, "whistl": 75, "wig": 75, "shade": [75, 86], "windsor": 75, "wine": 75, "wok": 75, "wooden": 75, "spoon": 75, "wool": 75, "rail": 75, "shipwreck": 75, "yawl": 75, "yurt": 75, "websit": 75, "comic": 75, "book": 75, "crossword": 75, "traffic": [75, 82, 86], "sign": [75, 86, 89], "light": [75, 77, 82, 86], "dust": 75, "jacket": [75, 82], "menu": 75, "guacamol": 75, "consomm": 75, "trifl": 75, "ic": 75, "cream": 75, "pop": 75, "baguett": 75, "bagel": 75, "pretzel": 75, "cheeseburg": 75, "mash": 75, "potato": 75, "cabbag": 75, "broccoli": 75, "cauliflow": 75, "zucchini": 75, "spaghetti": 75, "squash": 75, "acorn": 75, "butternut": 75, "artichok": 75, "pepper": 75, "cardoon": 75, "mushroom": 75, "granni": 75, "smith": 75, "strawberri": 75, "orang": 75, "lemon": 75, "pineappl": 75, "banana": 75, "jackfruit": 75, "custard": 75, "appl": 75, "pomegran": 75, "hai": 75, "carbonara": 75, "chocol": 75, "syrup": 75, "dough": 75, "meatloaf": 75, "pizza": 75, "pie": 75, "burrito": 75, "eggnog": 75, "alp": 75, "bubbl": 75, "reef": 75, "geyser": 75, "lakeshor": 75, "promontori": 75, "shoal": 75, "seashor": 75, "vallei": 75, "volcano": 75, "bridegroom": 75, "scuba": 75, "diver": 75, "rapese": 75, "daisi": 75, "ladi": 75, "slipper": 75, "corn": 75, "rose": 75, "hip": 75, "chestnut": 75, "fungu": 75, "agar": 75, "gyromitra": 75, "stinkhorn": 75, "earth": 75, "star": 75, "wood": 75, "bolet": 75, "ear": 75, "cifar10_test_set": 75, "airplan": [75, 83], "automobil": [75, 83], "deer": [75, 83], "cifar100_test_set": 75, "aquarium_fish": 75, "babi": 75, "boi": 75, "camel": 75, "caterpillar": 75, "cattl": [75, 89], "cloud": 75, "dinosaur": 75, "dolphin": 75, "flatfish": 75, "forest": 75, "girl": 75, "kangaroo": 75, "lawn_mow": 75, "man": 75, "maple_tre": 75, "motorcycl": [75, 86], "oak_tre": 75, "orchid": 75, "palm_tre": 75, "pear": 75, "pickup_truck": 75, "pine_tre": 75, "plain": 75, "poppi": 75, "possum": 75, "raccoon": 75, "road": [75, 86], "rocket": 75, "seal": 75, "shrew": 75, "skyscrap": 75, "streetcar": 75, "sunflow": 75, "sweet_pepp": 75, "trout": 75, "tulip": 75, "willow_tre": 75, "woman": [75, 82], "caltech256": 75, "ak47": 75, "bat": 75, "glove": 75, "birdbath": 75, "blimp": 75, "bonsai": 75, "boom": 75, "breadmak": 75, "buddha": 75, "bulldoz": 75, "cactu": 75, "cake": 75, "tire": 75, "cartman": 75, "cereal": 75, "chandeli": 75, "chess": 75, "board": 75, "chimp": 75, "chopstick": 75, "coffin": 75, "coin": 75, "comet": 75, "cormor": 75, "globe": 75, "diamond": 75, "dice": 75, "doorknob": 75, "drink": 75, "straw": 75, "dumb": 75, "eiffel": 75, "elk": 75, "ewer": 75, "eyeglass": 75, "fern": 75, "fighter": 75, "jet": [75, 85], "extinguish": 75, "hydrant": 75, "firework": 75, "flashlight": 75, "floppi": 75, "fri": 75, "frisbe": 75, "galaxi": 75, "giraff": 75, "goat": 75, "gate": 75, "grape": 75, "pick": 75, "hamburg": 75, "hammock": 75, "harpsichord": 75, "hawksbil": 75, "helicopt": 75, "hibiscu": 75, "homer": 75, "simpson": 75, "horsesho": 75, "air": 75, "skeleton": 75, "ibi": 75, "cone": 75, "iri": 75, "jesu": 75, "christ": 75, "joi": 75, "kayak": 75, "ketch": 75, "ladder": 75, "lath": 75, "licens": 75, "lightbulb": 75, "lightn": 75, "mandolin": 75, "mar": 75, "mattress": 75, "megaphon": 75, "menorah": 75, "microscop": 75, "minaret": 75, "minotaur": 75, "motorbik": 75, "mussel": 75, "neckti": 75, "octopu": 75, "palm": 75, "pilot": 75, "paperclip": 75, "shredder": 75, "pci": 75, "peopl": [75, 82], "pez": 75, "picnic": 75, "pram": 75, "prai": 75, "pyramid": 75, "rainbow": 75, "roulett": 75, "saddl": 75, "saturn": 75, "segwai": 75, "propel": 75, "sextant": 75, "music": 75, "skateboard": 75, "smokestack": 75, "sneaker": 75, "boat": 75, "stain": 75, "steer": 75, "stirrup": 75, "superman": 75, "sushi": 75, "armi": [75, 89], "sword": 75, "tambourin": 75, "teepe": 75, "court": 75, "theodolit": 75, "tomato": 75, "tombston": 75, "tour": 75, "pisa": 75, "treadmil": 75, "fork": 75, "tweezer": 75, "unicorn": 75, "vcr": 75, "waterfal": 75, "watermelon": 75, "weld": 75, "windmil": 75, "xylophon": 75, "yarmulk": 75, "yo": 75, "toad": 75, "twenty_news_test_set": 75, "alt": 75, "atheism": 75, "comp": 75, "graphic": [75, 86], "misc": [75, 89], "sy": 75, "ibm": 75, "pc": 75, "hardwar": 75, "mac": 75, "forsal": 75, "rec": 75, "sci": 75, "crypt": 75, "electron": 75, "med": 75, "soc": 75, "religion": 75, "christian": [75, 89], "talk": [75, 89], "polit": 75, "gun": 75, "mideast": 75, "amazon": 75, "neutral": 75, "imdb_test_set": 75, "all_class": 75, "20news_test_set": 75, "_load_classes_predprobs_label": 75, "dataset_nam": 75, "labelerror": 75, "url_bas": 75, "5392f6c71473055060be3044becdde1cbc18284d": 75, "url_label": 75, "original_test_label": 75, "_original_label": 75, "url_prob": 75, "cross_validated_predicted_prob": 75, "_pyx": 75, "num_part": 75, "datatset": 75, "bytesio": 75, "allow_pickl": 75, "pred_probs_part": 75, "url": 75, "_of_": 75, "nload": 75, "imdb": 75, "ve": [75, 78, 80, 82], "interpret": [75, 76, 78], "capit": 75, "29780": 75, "256": [75, 76, 82], "29": [75, 77, 80, 81, 82, 86, 89], "780": 75, "medic": [75, 89], "doctor": 75, "254": [75, 82], "359223": 75, "333333": 75, "640777": 75, "184": [75, 78], "258427": 75, "341176": 75, "263158": 75, "658824": 75, "337349": 75, "246575": 75, "662651": 75, "248": 75, "330000": 75, "355769": 75, "670000": 75, "251": [75, 82], "167": [75, 78, 82], "252": 75, "112": 75, "253": [75, 82], "022989": 75, "255": [75, 77], "049505": 75, "190": [75, 78, 82], "66": 75, "002216": 75, "000974": 75, "59": [75, 82], "88": [75, 77, 78, 81, 82, 85], "000873": 75, "000739": 75, "79": [75, 82, 87], "32635": 75, "32636": 75, "47": [75, 82], "32637": 75, "32638": 75, "32639": 75, "32640": 75, "051": 75, "93": [75, 82, 85, 87], "002242": 75, "997758": 75, "002088": 75, "001045": 75, "997912": 75, "002053": 75, "997947": 75, "001980": 75, "000991": 75, "998020": 75, "001946": 75, "002915": 75, "998054": 75, "001938": 75, "002904": 75, "998062": 75, "001020": 75, "998980": 75, "001018": 75, "002035": 75, "998982": 75, "999009": 75, "0003": 75, "0002": 75, "36": [75, 89], "44": [75, 81, 82], "71": [75, 78, 82], "071": 75, "067269": 75, "929": 75, "046": 75, "058243": 75, "954": 75, "035": 75, "032096": 75, "965": 75, "031": 75, "012232": 75, "969": 75, "022": 75, "025896": 75, "978": 75, "020": [75, 78], "013092": 75, "018": 75, "013065": 75, "016": 75, "030542": 75, "984": 75, "013": 75, "020833": 75, "987": 75, "012": 75, "010020": 75, "988": [75, 77], "0073": 75, "0020": 75, "0016": 75, "0015": 75, "0013": 75, "0012": 75, "0010": 75, "0008": 75, "0007": 75, "0006": 75, "0005": 75, "0004": 75, "244": [75, 82, 89], "98": [75, 76, 85], "452381": 75, "459770": 75, "72": [75, 78, 81, 85], "523364": 75, "460784": 75, "446602": 75, "57": [75, 78, 89], "68": [75, 78, 82, 87], "103774": 75, "030612": 75, "97": [75, 76, 78, 82, 85, 87, 89], "110092": 75, "049020": 75, "99": [75, 78, 87], "0034": 75, "0032": 75, "0026": 75, "0025": 75, "4945": 75, "4946": 75, "4947": 75, "4948": 75, "4949": 75, "4950": 75, "846": 75, "82": [75, 78, 82], "7532": 75, "532": 75, "034483": 75, "009646": 75, "965517": 75, "030457": 75, "020513": 75, "969543": 75, "028061": 75, "035443": 75, "971939": 75, "025316": 75, "005168": 75, "974684": 75, "049751": 75, "979487": 75, "019920": 75, "042802": 75, "980080": 75, "017677": 75, "005115": 75, "982323": 75, "012987": 75, "005236": 75, "987013": 75, "012723": 75, "025126": 75, "987277": 75, "010989": 75, "008264": 75, "989011": 75, "010283": 75, "027778": 75, "989717": 75, "009677": 75, "990323": 75, "007614": 75, "010127": 75, "992386": 75, "005051": 75, "994949": 75, "005025": 75, "994975": 75, "005013": 75, "994987": 75, "001859": 75, "001328": 75, "000929": 75, "000664": 75, "186": [75, 78], "188": [75, 78, 81], "189": [75, 78], "snippet": 76, "nlp": [76, 89], "mind": [76, 78], "number_of_class": 76, "total_number_of_data_point": 76, "drop": [76, 80, 85, 88], "feed": 76, "alphabet": 76, "labels_proper_format": 76, "your_classifi": 76, "issues_datafram": 76, "class_predicted_for_flagged_exampl": 76, "class_predicted_for_all_exampl": 76, "grant": 76, "datataset": 76, "fair": [76, 78], "game": 76, "speedup": [76, 83], "flexibl": 76, "tempfil": 76, "mkdtemp": 76, "sped": 76, "anywai": 76, "pred_probs_merg": 76, "merge_rare_class": 76, "count_threshold": 76, "class_mapping_orig2new": 76, "heath_summari": 76, "num_examples_per_class": 76, "rare_class": 76, "num_classes_merg": 76, "other_class": 76, "labels_merg": 76, "new_c": 76, "merged_prob": 76, "keepdim": 76, "hstack": [76, 77, 78, 80], "new_class": 76, "original_class": 76, "num_check": 76, "ones_array_ref": 76, "isclos": 76, "though": [76, 78, 89], "successfulli": 76, "meaning": [76, 83], "virtuou": [76, 80], "cycl": [76, 80], "jointli": 76, "junk": 76, "clutter": 76, "unknown": 76, "caltech": 76, "intersect": 76, "combined_boolean_mask": 76, "mask1": 76, "mask2": 76, "gradientboostingclassifi": [76, 78], "true_error": [76, 78, 81], "101": [76, 82], "102": [76, 81, 82], "104": [76, 78, 82], "model_to_find_error": 76, "model_to_return": 76, "cl0": 76, "randomizedsearchcv": 76, "expens": 76, "param_distribut": 76, "learning_r": [76, 78], "max_depth": [76, 78], "magnitud": 76, "coeffici": [76, 85], "optin": 76, "environ": [76, 78], "rerun": [76, 78], "cell": [76, 78], "On": [76, 78, 82], "unabl": [76, 78], "render": [76, 78], "nbviewer": [76, 78], "cleanlearningcleanlearn": [76, 78], "linearregressionlinearregress": 76, "assist": 76, "streamlin": 76, "ux": 76, "agpl": 76, "compani": 76, "commerci": 76, "alter": 76, "email": 76, "discuss": 76, "anywher": 76, "60": [77, 78], "excess": 77, "torchvis": [77, 83], "tensordataset": 77, "stratifiedkfold": [77, 81], "tqdm": 77, "fashion_mnist": 77, "num_row": 77, "60000": 77, "pil": 77, "transformed_dataset": 77, "with_format": 77, "unsqueez": 77, "num_proc": 77, "cpu_count": 77, "opt": 77, "hostedtoolcach": 77, "x64": 77, "lib": 77, "python3": 77, "site": 77, "1421": 77, "futurewarn": 77, "promot": 77, "supersed": 77, "_concat_block": 77, "block": 77, "torch_dataset": 77, "quick": [77, 81], "super": 77, "relu": 77, "batchnorm2d": 77, "maxpool2d": 77, "lazylinear": 77, "flatten": 77, "get_test_accuraci": 77, "testload": [77, 83], "energi": 77, "trainload": [77, 83], "n_epoch": 77, "patienc": 77, "criterion": 77, "crossentropyloss": 77, "adamw": 77, "best_test_accuraci": 77, "start_epoch": 77, "running_loss": 77, "best_epoch": 77, "end_epoch": 77, "3f": [77, 85], "acc": [77, 78], "time_taken": 77, "compute_embed": 77, "compute_pred_prob": 77, "train_batch_s": 77, "num_work": 77, "worker": [77, 89], "train_id_list": 77, "test_id_list": 77, "train_id": 77, "test_id": 77, "embeddings_model": 77, "ntrain": 77, "trainset": 77, "testset": 77, "pin_memori": 77, "fold_embed": 77, "fold_pred_prob": 77, "finish": 77, "482": 77, "925": [77, 85], "037": 77, "329": [77, 82], "830": 77, "49it": 77, "22it": 77, "493": 77, "87": [77, 82, 85, 88], "060": 77, "360": 77, "17it": 77, "00it": 77, "476": 77, "555": 77, "230": [77, 82], "327": [77, 82], "835": 77, "328": [77, 82], "73it": 77, "90it": 77, "reorder": 77, "vision": 77, "low_inform": 77, "odd_aspect_ratio": 77, "odd_siz": 77, "grayscal": 77, "exce": 77, "max_preval": 77, "7558": 77, "3704": 77, "3440": 77, "232": [77, 82], "166": 77, "9669": 77, "27080": 77, "707531": 77, "29412": 77, "713320": 77, "25316": 77, "717087": 77, "39719": 77, "729353": 77, "4156": 77, "734812": 77, "9590": 77, "11262": 77, "19228": 77, "000009": 77, "dress": 77, "53564": 77, "000019": 77, "pullov": 77, "45386": 77, "000029": 77, "trouser": 77, "21282": 77, "000030": 77, "0262": 77, "9762": 77, "000012": 77, "258": 77, "54565": 77, "47139": 77, "30968": 77, "000022": [77, 89], "30659": 77, "1004": 77, "6596": 77, "626646": 77, "55840": 77, "660608": 77, "53632": 77, "665615": 77, "50378": 77, "673237": 77, "2555": 77, "674185": 77, "10037509779939108": 77, "129916": 77, "981029": 77, "996466": 77, "855478": 77, "998550": 77, "54078": 77, "000031": 77, "plot_label_issue_exampl": 77, "ncol": [77, 83], "nrow": [77, 83], "ceil": 77, "axes_list": 77, "label_issue_indic": 77, "gl": 77, "sl": 77, "fontdict": 77, "imshow": [77, 83], "cmap": [77, 85], "grai": 77, "subplots_adjust": 77, "hspace": 77, "outsiz": 77, "outlier_issues_df": 77, "depict": [77, 81, 82, 83, 84, 86], "plot_outlier_issues_exampl": 77, "n_comparison_imag": 77, "sample_from_class": 77, "number_of_sampl": 77, "non_outlier_indic": 77, "isnul": 77, "non_outlier_indices_excluding_curr": 77, "sampled_indic": 77, "label_scores_of_sampl": 77, "top_score_indic": 77, "top_label_indic": 77, "sampled_imag": 77, "get_image_given_label_and_sampl": 77, "image_from_dataset": 77, "corresponding_label": 77, "comparison_imag": 77, "images_to_plot": 77, "idlist": 77, "iterrow": 77, "especi": [77, 85, 87, 88], "near_duplicate_issu": 77, "closest": 77, "counterpart": 77, "near_duplicate_issues_df": 77, "plot_near_duplicate_issue_exampl": 77, "seen_id_pair": 77, "get_image_and_given_label_and_predicted_label": 77, "duplicate_imag": 77, "nd_set": 77, "challeng": 77, "dark_issu": 77, "reveal": [77, 86], "dark_scor": 77, "dark_issues_df": 77, "is_dark_issu": 77, "34848": 77, "203922": 77, "50270": 77, "204588": 77, "3936": 77, "213098": 77, "733": 77, "217686": 77, "8094": 77, "230118": 77, "plot_image_issue_exampl": 77, "difficult": 77, "disproportion": 77, "lowinfo_issu": 77, "low_information_scor": 77, "lowinfo_issues_df": 77, "is_low_information_issu": 77, "53050": 77, "067975": 77, "40875": 77, "089929": 77, "9594": 77, "092601": 77, "34825": 77, "107744": 77, "37530": 77, "108516": 77, "lot": 77, "depth": 78, "survei": [78, 89], "focus": [78, 80], "scienc": 78, "multivariate_norm": [78, 80, 81], "make_data": [78, 80], "cov": [78, 80, 81], "avg_trac": [78, 81], "test_label": [78, 81, 83, 88], "py_tru": 78, "noise_matrix_tru": 78, "noise_marix": 78, "s_test": 78, "noisy_test_label": 78, "purpl": 78, "val": 78, "namespac": 78, "exec": 78, "markerfacecolor": [78, 81], "markeredgecolor": [78, 81, 85], "markers": [78, 81, 85], "markeredgewidth": [78, 81, 85], "realist": 78, "7560": 78, "638483e": 78, "897052e": 78, "548986e": 78, "924634e": 78, "374580e": 78, "4643": 78, "050286": 78, "065420": 78, "109420": 78, "111687": 78, "115403": 78, "3312": 78, "007136": 78, "119": [78, 82], "033725": 78, "103": [78, 82], "033738": 78, "238": [78, 82], "037825": 78, "236": [78, 82], "037843": 78, "222": 78, "614915": 78, "122": [78, 82], "624422": 78, "625965": 78, "626079": 78, "118": 78, "627675": 78, "695174": 78, "323529": 78, "522929": 78, "013722": 78, "675606": 78, "646438": 78, "anyth": 78, "enhanc": [78, 80, 82], "magic": 78, "83": [78, 82, 85, 87, 89], "liter": 78, "identif": 78, "x27": 78, "logisticregressionlogisticregress": 78, "ever": 78, "truth": [78, 80, 85], "092": 78, "040": 78, "024": 78, "004": 78, "surpris": 78, "arxiv": 78, "ab": 78, "1705": 78, "01936": 78, "ton": 78, "yourfavoritemodel1": 78, "merged_label": 78, "merged_test_label": 78, "newli": [78, 80], "yourfavoritemodel2": 78, "yourfavoritemodel3": 78, "cl3": 78, "takeawai": 78, "That": [78, 81], "randomli": 78, "my_test_pred_prob": 78, "my_test_pr": 78, "issues_test": 78, "corrected_test_label": 78, "pretend": 78, "cl_test_pr": 78, "69": [78, 85], "fairli": 78, "label_acc": 78, "percentag": 78, "offset": 78, "nquestion": 78, "overestim": 78, "answer": 78, "experienc": 78, "06": [78, 82, 89], "76": [78, 81, 82, 85, 87], "knowledg": 78, "quantiti": [78, 85], "prioiri": 78, "known": 78, "versatil": 78, "label_issues_indic": 78, "213": [78, 82], "212": [78, 87], "218": [78, 82], "152": 78, "197": [78, 82], "196": [78, 82], "170": 78, "214": 78, "164": [78, 81], "198": [78, 82], "191": [78, 82], "63": [78, 82], "121": [78, 88], "117": [78, 85], "62": [78, 82, 85], "206": [78, 82], "115": [78, 82], "193": 78, "194": 78, "201": [78, 82], "174": 78, "163": 78, "150": [78, 80, 82], "169": 78, "151": [78, 82], "precision_scor": 78, "recall_scor": 78, "f1_score": 78, "true_label_issu": 78, "filter_by_list": 78, "718750": [78, 80], "807018": 78, "912": 78, "733333": 78, "800000": 78, "721311": 78, "792793": 78, "908": 78, "676923": 78, "765217": 78, "892": 78, "567901": 78, "702290": 78, "844": 78, "gaug": 78, "label_issues_count": 78, "155": [78, 82], "156": 78, "172": [78, 81], "easiest": 78, "modular": 78, "penalti": 78, "l2": 78, "model3": 78, "n_estim": 78, "cv_pred_probs_1": 78, "cv_pred_probs_2": 78, "cv_pred_probs_3": 78, "label_quality_scores_best": 78, "cv_pred_probs_ensembl": 78, "label_quality_scores_bett": 78, "superior": [78, 84], "workflow": [79, 85], "speechbrain": 79, "timm": 79, "glad": 80, "multiannotator_label": 80, "300": [80, 89], "noisier": 80, "111": [80, 85], "local_data": [80, 81], "true_labels_train": [80, 81], "noise_matrix_bett": 80, "noise_matrix_wors": 80, "transpos": [80, 83], "dropna": 80, "zfill": 80, "row_na_check": 80, "notna": 80, "reset_index": 80, "a0001": 80, "a0002": 80, "a0003": 80, "a0004": 80, "a0005": 80, "a0006": 80, "a0007": 80, "a0008": 80, "a0009": 80, "a0010": 80, "a0041": 80, "a0042": 80, "a0043": 80, "a0044": 80, "a0045": 80, "a0046": 80, "a0047": 80, "a0048": 80, "a0049": 80, "a0050": 80, "na": 80, "60856743": 80, "41693214": 80, "40908785": 80, "87147629": 80, "64941785": 80, "10774851": 80, "0524466": 80, "71853246": 80, "37169848": 80, "66031048": 80, "multiannotator_util": 80, "crude": 80, "straight": 80, "majority_vote_label": 80, "736157": 80, "757738": 80, "782255": 80, "715585": 80, "824273": 80, "quality_annotator_a0001": 80, "quality_annotator_a0002": 80, "quality_annotator_a0003": 80, "quality_annotator_a0004": 80, "quality_annotator_a0005": 80, "quality_annotator_a0006": 80, "quality_annotator_a0007": 80, "quality_annotator_a0008": 80, "quality_annotator_a0009": 80, "quality_annotator_a0010": 80, "quality_annotator_a0041": 80, "quality_annotator_a0042": 80, "quality_annotator_a0043": 80, "quality_annotator_a0044": 80, "quality_annotator_a0045": 80, "quality_annotator_a0046": 80, "quality_annotator_a0047": 80, "quality_annotator_a0048": 80, "quality_annotator_a0049": 80, "quality_annotator_a0050": 80, "070551": 80, "216064": 80, "119178": 80, "alongisd": 80, "244982": 80, "208333": 80, "295978": 80, "294118": 80, "324194": 80, "310345": 80, "355315": 80, "346154": 80, "439728": 80, "480000": 80, "a0031": 80, "523205": 80, "580645": 80, "a0034": 80, "535313": 80, "607143": 80, "a0021": 80, "607002": 80, "a0015": 80, "609527": 80, "678571": 80, "a0011": 80, "621101": 80, "692308": 80, "wors": 80, "improved_consensus_label": 80, "majority_vote_accuraci": 80, "cleanlab_label_accuraci": 80, "8581081081081081": 80, "9797297297297297": 80, "besid": 80, "sorted_consensus_quality_scor": 80, "worst_qual": 80, "better_qu": 80, "worst_quality_accuraci": 80, "better_quality_accuraci": 80, "9893238434163701": 80, "improved_pred_prob": 80, "treat": [80, 81, 85, 89], "analzi": 80, "copyright": 81, "advertis": 81, "violenc": 81, "nsfw": 81, "ranked_label_issu": [81, 87, 88], "multioutput": 81, "multioutputclassifi": 81, "celeba": 81, "make_multilabel_data": 81, "boxes_coordin": 81, "box_multilabel": 81, "make_multi": 81, "bx1": 81, "by1": 81, "bx2": 81, "by2": 81, "label_list": 81, "ur": 81, "upper": 81, "inidx": 81, "logical_and": 81, "tolist": 81, "inv_d": 81, "labels_idx": 81, "true_labels_test": 81, "dict_unique_label": 81, "get_color_arrai": 81, "dcolor": 81, "aa4400": 81, "55227f": 81, "55a100": 81, "00ff00": 81, "007f7f": 81, "386b55": 81, "0000ff": 81, "simplic": 81, "advis": 81, "y_onehot": 81, "single_class_label": 81, "stratifi": [81, 84], "kf": 81, "train_index": 81, "test_index": 81, "clf_cv": 81, "x_train_cv": 81, "x_test_cv": 81, "y_train_cv": 81, "y_test_cv": 81, "y_pred_cv": 81, "saw": 81, "num_to_displai": 81, "09": [81, 82], "275": 81, "267": 81, "225": 81, "171": 81, "234": 81, "165": 81, "227": [81, 82], "262": [81, 82], "263": [81, 82], "266": [81, 82], "139": 81, "143": [81, 82, 89], "216": [81, 82], "265": 81, "159": [81, 82], "despit": [81, 89], "suspect": 81, "888": 81, "8224": 81, "9632": 81, "968": 81, "6512": 81, "0444": 81, "774": 81, "labels_binary_format": 81, "labels_list_format": 81, "surround": 82, "scene": 82, "coco": 82, "everydai": 82, "has_label_issu": 82, "insal": 82, "nc": [82, 86, 89], "s3": [82, 86, 89], "amazonaw": [82, 86, 89], "objectdetectionbenchmark": 82, "tutorial_obj": 82, "pkl": 82, "example_imag": 82, "unzip": [82, 89], "begin": 82, "detectron2": 82, "image_path": 82, "rb": 82, "image_to_visu": 82, "seg_map": 82, "334": 82, "float32": 82, "bboxes_ignor": 82, "290": 82, "286": 82, "285": 82, "224": 82, "231": [82, 89], "293": 82, "235": 82, "289": [82, 85], "282": 82, "74": [82, 85, 87], "281": 82, "271": 82, "280": 82, "277": 82, "279": 82, "287": 82, "299": 82, "276": 82, "307": 82, "321": 82, "326": 82, "330": 82, "333": 82, "261": 82, "319": 82, "257": 82, "295": 82, "283": 82, "243": 82, "303": 82, "316": 82, "247": 82, "323": 82, "226": 82, "239": 82, "240": 82, "209": 82, "242": 82, "202": 82, "215": 82, "220": 82, "229": 82, "85": [82, 85], "217": [82, 89], "237": 82, "207": 82, "204": [82, 89], "205": 82, "223": 82, "153": 82, "149": 82, "140": 82, "124": 82, "268": 82, "273": 82, "108": 82, "284": 82, "110": 82, "136": 82, "145": 82, "173": 82, "297": 82, "317": 82, "192": 82, "332": 82, "324": 82, "203": 82, "320": 82, "314": 82, "199": 82, "291": 82, "000000481413": 82, "jpg": 82, "42398": 82, "44503": 82, "337": [82, 88], "29968": 82, "336": 82, "21005": 82, "9978472": 82, "forgot": 82, "drew": 82, "label_issue_idx": 82, "num_examples_to_show": 82, "113": [82, 85], "candid": 82, "97489622": 82, "70610878": 82, "98764951": 82, "88899237": 82, "99085805": 82, "issue_idx": 82, "95569726e": 82, "03354841e": 82, "57510169e": 82, "58447666e": 82, "39755858e": 82, "suppli": 82, "issue_to_visu": 82, "000000009483": 82, "95569726168054e": 82, "addition": [82, 86], "visibl": 82, "missmatch": 82, "likelei": 82, "agnost": 82, "vaidat": 82, "inconsist": 82, "000000395701": 82, "033548411774308e": 82, "armchair": 82, "tv": 82, "000000154004": 82, "38300759625496356": 82, "foreground": 82, "000000448410": 82, "0008575101690203273": 82, "crowd": 82, "alon": 82, "explor": [82, 83], "resembl": [82, 83], "contribut": 82, "000000499768": 82, "9748962231208227": 82, "000000521141": 82, "8889923658893665": 82, "000000143931": 82, "9876495074395956": 82, "train_feature_embed": 83, "ood_train_feature_scor": 83, "test_feature_embed": 83, "ood_test_feature_scor": 83, "ood_train_predictions_scor": 83, "train_pred_prob": 83, "ood_test_predictions_scor": 83, "test_pred_prob": 83, "pylab": 83, "rcparam": 83, "baggingclassifi": 83, "therebi": 83, "rescal": 83, "transform_norm": 83, "totensor": 83, "root": 83, "animal_class": 83, "non_animal_class": 83, "animal_idx": 83, "isin": 83, "test_idx": 83, "toronto": 83, "edu": 83, "kriz": 83, "5000": 83, "plot_imag": 83, "visualize_outli": 83, "txt_class": 83, "img": [83, 85], "npimg": 83, "show_label": 83, "data_subset": 83, "resnet50": 83, "corpu": 83, "2048": 83, "embed_imag": 83, "create_model": 83, "rwightman": 83, "v0": 83, "rsb": 83, "resnet50_a1_0": 83, "14fe96d1": 83, "pth": 83, "checkpoint": 83, "strang": 83, "odd": 83, "train_ood_features_scor": 83, "top_train_ood_features_idx": 83, "fun": 83, "negat": 83, "homogen": 83, "bottom_train_ood_features_idx": 83, "test_ood_features_scor": 83, "top_ood_features_idx": 83, "inevit": 83, "trade": 83, "5th": 83, "percentil": 83, "fifth_percentil": 83, "plt_rang": 83, "hist": 83, "train_outlier_scor": 83, "ylabel": 83, "axvlin": 83, "test_outlier_scor": 83, "ood_features_indic": 83, "revisit": 83, "unusu": 83, "return_invers": 83, "train_feature_embeddings_sc": 83, "test_feature_embeddings_sc": 83, "train_pred_label": 83, "9702": 83, "train_ood_predictions_scor": 83, "test_ood_predictions_scor": 83, "mainli": [83, 89], "lost": 83, "unsuit": 84, "ok": [84, 89], "convention": 84, "aforement": 84, "hypothet": 84, "contrast": 84, "tradit": 84, "disjoint": 84, "out_of_sample_pred_probs_for_a": 84, "out_of_sample_pred_probs_for_b": 84, "out_of_sample_pred_probs_for_c": 84, "out_of_sample_pred_prob": 84, "price": 85, "incom": 85, "ag": 85, "histgradientboostingregressor": 85, "r2_score": 85, "student_grades_r": 85, "final_scor": 85, "true_final_scor": 85, "homework": 85, "3d": 85, "hue": 85, "mpl_toolkit": 85, "mplot3d": 85, "axes3d": 85, "errors_idx": 85, "add_subplot": 85, "z": 85, "colorbar": 85, "errors_mask": 85, "feature_column": 85, "predicted_column": 85, "x_train_raw": 85, "x_test_raw": 85, "categorical_featur": [85, 87], "randomforestregressor": 85, "629763": 85, "521450": 85, "954607": 85, "547234": 85, "338296": 85, "754531": 85, "619090": 85, "312295": 85, "806626": 85, "784048": 85, "identified_issu": [85, 88], "659": 85, "367": 85, "560": 85, "318": 85, "305": 85, "688": 85, "657": 85, "view_datapoint": 85, "concat": 85, "consum": [85, 88], "baseline_model": [85, 88], "preds_og": 85, "r2_og": 85, "838": 85, "robustli": [85, 87, 88], "acceler": [85, 88], "found_label_issu": 85, "preds_cl": 85, "r2_cl": 85, "effort": [85, 87, 88], "favorit": 85, "64404888e": 85, "06755306e": 85, "05302732e": 85, "66635743e": 85, "53166364e": 85, "synthia": 86, "semantic_segment": 86, "imagesegment": 86, "given_mask": 86, "predicted_mask": 86, "set_printopt": [86, 89], "sky": 86, "sidewalk": 86, "veget": 86, "terrain": 86, "rider": 86, "pred_probs_filepath": 86, "1088": 86, "1920": 86, "label_filepath": 86, "synthia_class": 86, "maunal": 86, "100000": 86, "244800": 86, "system": 86, "leftmost": 86, "area": 86, "middl": [86, 89], "infact": 86, "rightmost": 86, "discrep": 86, "4997436": 86, "95358": 86, "38it": 86, "3263230": 86, "783379": 86, "275110": 86, "255792": 86, "78225": 86, "55990": 86, "54315": 86, "33591": 86, "24645": 86, "21054": 86, "15045": 86, "14171": 86, "13832": 86, "13498": 86, "11490": 86, "9149": 86, "8769": 86, "6999": 86, "6031": 86, "5011": 86, "mistakenli": 86, "class_issu": 86, "aim": [86, 89], "domin": 86, "extratreesclassifi": 87, "extratre": 87, "labelencod": [87, 88], "labels_raw": 87, "interg": [87, 88], "tress": 87, "827": 87, "637": 87, "cheat": 87, "0pt": 87, "233": 87, "labels_train": 87, "labels_test": 87, "acc_og": [87, 88], "783068783068783": 87, "acc_cl": [87, 88], "8095238095238095": 87, "earlier": [88, 89], "raw_label": 88, "raw_train_text": 88, "raw_test_text": 88, "raw_train_label": 88, "raw_test_label": 88, "encond": 88, "train_text": 88, "test_text": 88, "857900": 88, "545836": 88, "826185": 88, "965809": 88, "792077": 88, "646": 88, "390": 88, "628": 88, "702": 88, "863": 88, "135": 88, "735": 88, "print_as_df": 88, "inverse_transform": 88, "fight": 88, "bunch": 89, "conll": 89, "2003": 89, "love": 89, "n_i": 89, "optional_list_of_ordered_class_nam": 89, "deepai": 89, "conll2003": 89, "rm": 89, "tokenclassif": 89, "2023": 89, "2400": 89, "52e0": 89, "1a01": 89, "1001": 89, "connect": 89, "443": 89, "await": 89, "982975": 89, "960k": 89, "959": 89, "94k": 89, "kb": 89, "mb": 89, "directori": 89, "inflat": 89, "17045998": 89, "16m": 89, "octet": 89, "26m": 89, "6mb": 89, "bert": 89, "read_npz": 89, "filepath": 89, "corrsespond": 89, "iob2": 89, "given_ent": 89, "entity_map": 89, "readfil": 89, "sep": 89, "startswith": 89, "docstart": 89, "isalpha": 89, "isupp": 89, "indices_to_preview": 89, "nsentenc": 89, "eu": 89, "reject": 89, "boycott": 89, "british": 89, "lamb": 89, "00030412": 89, "00023826": 89, "99936208": 89, "00007009": 89, "00002545": 89, "99998795": 89, "00000401": 89, "00000218": 89, "00000455": 89, "00000131": 89, "00000749": 89, "99996115": 89, "00001371": 89, "0000087": 89, "00000895": 89, "99998936": 89, "00000382": 89, "00000178": 89, "00000366": 89, "00000137": 89, "99999101": 89, "00000266": 89, "00000174": 89, "0000035": 89, "00000109": 89, "99998768": 89, "00000482": 89, "00000202": 89, "00000438": 89, "0000011": 89, "00000465": 89, "99996392": 89, "00001105": 89, "0000116": 89, "00000878": 89, "99998671": 89, "00000364": 89, "00000213": 89, "00000472": 89, "00000281": 89, "99999073": 89, "00000211": 89, "00000159": 89, "00000442": 89, "00000115": 89, "peter": 89, "blackburn": 89, "00000358": 89, "00000529": 89, "99995623": 89, "0000129": 89, "0000024": 89, "00001812": 89, "99994141": 89, "00001645": 89, "00002162": 89, "brussel": 89, "1996": 89, "00001172": 89, "00000821": 89, "00004661": 89, "0000618": 89, "99987167": 89, "99999061": 89, "00000201": 89, "00000195": 89, "00000408": 89, "00000135": 89, "2254": 89, "2907": 89, "19392": 89, "9962": 89, "8904": 89, "19303": 89, "12918": 89, "9256": 89, "11855": 89, "18392": 89, "20426": 89, "19402": 89, "14744": 89, "19371": 89, "4645": 89, "10331": 89, "9430": 89, "6143": 89, "18367": 89, "12914": 89, "todai": 89, "weather": 89, "march": 89, "scalfaro": 89, "northern": 89, "himself": 89, "said": 89, "germani": 89, "nastja": 89, "rysich": 89, "north": 89, "spla": 89, "fought": 89, "khartoum": 89, "govern": 89, "south": 89, "1983": 89, "autonomi": 89, "animist": 89, "region": 89, "moslem": 89, "arabis": 89, "mayor": 89, "antonio": 89, "gonzalez": 89, "garcia": 89, "revolutionari": 89, "parti": 89, "wednesdai": 89, "troop": 89, "raid": 89, "farm": 89, "stole": 89, "rape": 89, "women": 89, "spring": 89, "chg": 89, "hrw": 89, "12pct": 89, "princ": 89, "photo": 89, "moment": 89, "spokeswoman": 89, "rainier": 89, "told": 89, "reuter": 89, "danila": 89, "carib": 89, "w224": 89, "equip": 89, "radiomet": 89, "earn": 89, "19996": 89, "london": 89, "denom": 89, "sale": 89, "uk": 89, "jp": 89, "fr": 89, "maccabi": 89, "hapoel": 89, "haifa": 89, "tel": 89, "aviv": 89, "hospit": 89, "rever": 89, "roman": 89, "cathol": 89, "nun": 89, "admit": 89, "calcutta": 89, "week": 89, "ago": 89, "fever": 89, "vomit": 89, "allianc": 89, "embattl": 89, "kabul": 89, "salang": 89, "highwai": 89, "mondai": 89, "tuesdai": 89, "suprem": 89, "council": 89, "led": 89, "jumbish": 89, "milli": 89, "movement": 89, "warlord": 89, "abdul": 89, "rashid": 89, "dostum": 89, "dollar": 89, "exchang": 89, "3570": 89, "12049": 89, "born": 89, "1937": 89, "provinc": 89, "anhui": 89, "dai": 89, "came": 89, "shanghai": 89, "citi": 89, "prolif": 89, "author": 89, "teacher": 89, "chines": 89, "16764": 89, "1990": 89, "historian": 89, "alan": 89, "john": 89, "percival": 89, "taylor": 89, "di": 89, "20446": 89, "pace": 89, "bowler": 89, "ian": 89, "harvei": 89, "claim": 89, "victoria": 89, "15514": 89, "cotti": 89, "osc": 89, "foreign": 89, "minist": 89, "7525": 89, "sultan": 89, "specter": 89, "met": 89, "crown": 89, "abdullah": 89, "defenc": 89, "aviat": 89, "jeddah": 89, "saudi": 89, "agenc": 89, "2288": 89, "hi": 89, "customari": 89, "outfit": 89, "champion": 89, "damp": 89, "scalp": 89, "canada": 89, "reign": 89, "olymp": 89, "donovan": 89, "bailei": 89, "1992": 89, "linford": 89, "christi": 89, "britain": 89, "1984": 89, "1988": 89, "carl": 89, "lewi": 89, "ambigi": 89, "punctuat": 89, "chicago": 89, "digest": 89, "philadelphia": 89, "usda": 89, "york": 89, "token_issu": 89, "471": 89, "kean": 89, "year": 89, "contract": 89, "manchest": 89, "19072": 89, "societi": 89, "million": 89, "bite": 89, "deliv": 89, "19910": 89, "father": 89, "clarenc": 89, "woolmer": 89, "renam": 89, "uttar": 89, "pradesh": 89, "india": 89, "ranji": 89, "trophi": 89, "nation": 89, "championship": 89, "captain": 89, "1949": 89, "15658": 89, "19879": 89, "iii": 89, "brian": 89, "shimer": 89, "randi": 89, "jone": 89, "19104": 89}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [8, 0, 0, "-", "datalab"], [25, 0, 0, "-", "dataset"], [28, 0, 0, "-", "experimental"], [31, 0, 0, "-", "filter"], [32, 0, 0, "-", "internal"], [43, 0, 0, "-", "models"], [45, 0, 0, "-", "multiannotator"], [48, 0, 0, "-", "multilabel_classification"], [51, 0, 0, "-", "object_detection"], [54, 0, 0, "-", "outlier"], [55, 0, 0, "-", "rank"], [56, 0, 0, "-", "regression"], [60, 0, 0, "-", "segmentation"], [64, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [12, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[9, 0, 0, "-", "data"], [10, 0, 0, "-", "data_issues"], [13, 0, 0, "-", "issue_finder"], [11, 0, 0, "-", "issue_manager_factory"], [23, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[9, 2, 1, "", "Data"], [9, 5, 1, "", "DataFormatError"], [9, 5, 1, "", "DatasetDictError"], [9, 5, 1, "", "DatasetLoadError"], [9, 2, 1, "", "Label"]], "cleanlab.datalab.internal.data.Data": [[9, 4, 1, "", "class_names"], [9, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[9, 6, 1, "", "args"], [9, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[9, 6, 1, "", "args"], [9, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[9, 6, 1, "", "args"], [9, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[9, 4, 1, "", "class_names"], [9, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[10, 2, 1, "", "DataIssues"], [10, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[10, 3, 1, "", "collect_issues_from_issue_manager"], [10, 3, 1, "", "collect_statistics"], [10, 3, 1, "", "get_info"], [10, 3, 1, "", "get_issue_summary"], [10, 3, 1, "", "get_issues"], [10, 3, 1, "", "set_health_score"], [10, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[13, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[13, 3, 1, "", "find_issues"], [13, 3, 1, "", "get_available_issue_types"], [13, 3, 1, "", "list_default_issue_types"], [13, 3, 1, "", "list_possible_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[15, 0, 0, "-", "duplicate"], [16, 0, 0, "-", "imbalance"], [18, 0, 0, "-", "issue_manager"], [19, 0, 0, "-", "label"], [20, 0, 0, "-", "noniid"], [21, 0, 0, "-", "null"], [22, 0, 0, "-", "outlier"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[15, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[15, 3, 1, "", "collect_info"], [15, 6, 1, "", "description"], [15, 3, 1, "", "find_issues"], [15, 6, 1, "", "info"], [15, 6, 1, "", "issue_name"], [15, 6, 1, "", "issue_score_key"], [15, 6, 1, "", "issues"], [15, 3, 1, "", "make_summary"], [15, 6, 1, "", "near_duplicate_sets"], [15, 3, 1, "", "report"], [15, 6, 1, "", "summary"], [15, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[16, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[18, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[19, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 3, 1, "", "get_health_summary"], [19, 6, 1, "", "health_summary_parameters"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[20, 2, 1, "", "NonIIDIssueManager"], [20, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[21, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[22, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[22, 6, 1, "", "DEFAULT_THRESHOLDS"], [22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 6, 1, "", "ood"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[11, 7, 1, "", "REGISTRY"], [11, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[23, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[23, 3, 1, "", "get_report"], [23, 3, 1, "", "report"]], "cleanlab.dataset": [[25, 1, 1, "", "find_overlapping_classes"], [25, 1, 1, "", "health_summary"], [25, 1, 1, "", "overall_label_health_score"], [25, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[26, 0, 0, "-", "cifar_cnn"], [27, 0, 0, "-", "coteaching"], [29, 0, 0, "-", "label_issues_batched"], [30, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[26, 2, 1, "", "CNN"], [26, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[26, 6, 1, "", "T_destination"], [26, 3, 1, "", "__call__"], [26, 3, 1, "", "add_module"], [26, 3, 1, "", "apply"], [26, 3, 1, "", "bfloat16"], [26, 3, 1, "", "buffers"], [26, 3, 1, "", "children"], [26, 3, 1, "", "cpu"], [26, 3, 1, "", "cuda"], [26, 3, 1, "", "double"], [26, 6, 1, "", "dump_patches"], [26, 3, 1, "", "eval"], [26, 3, 1, "", "extra_repr"], [26, 3, 1, "", "float"], [26, 3, 1, "id0", "forward"], [26, 3, 1, "", "get_buffer"], [26, 3, 1, "", "get_extra_state"], [26, 3, 1, "", "get_parameter"], [26, 3, 1, "", "get_submodule"], [26, 3, 1, "", "half"], [26, 3, 1, "", "ipu"], [26, 3, 1, "", "load_state_dict"], [26, 3, 1, "", "modules"], [26, 3, 1, "", "named_buffers"], [26, 3, 1, "", "named_children"], [26, 3, 1, "", "named_modules"], [26, 3, 1, "", "named_parameters"], [26, 3, 1, "", "parameters"], [26, 3, 1, "", "register_backward_hook"], [26, 3, 1, "", "register_buffer"], [26, 3, 1, "", "register_forward_hook"], [26, 3, 1, "", "register_forward_pre_hook"], [26, 3, 1, "", "register_full_backward_hook"], [26, 3, 1, "", "register_load_state_dict_post_hook"], [26, 3, 1, "", "register_module"], [26, 3, 1, "", "register_parameter"], [26, 3, 1, "", "requires_grad_"], [26, 3, 1, "", "set_extra_state"], [26, 3, 1, "", "share_memory"], [26, 3, 1, "", "state_dict"], [26, 3, 1, "", "to"], [26, 3, 1, "", "to_empty"], [26, 3, 1, "", "train"], [26, 6, 1, "", "training"], [26, 3, 1, "", "type"], [26, 3, 1, "", "xpu"], [26, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[27, 1, 1, "", "adjust_learning_rate"], [27, 1, 1, "", "evaluate"], [27, 1, 1, "", "forget_rate_scheduler"], [27, 1, 1, "", "initialize_lr_scheduler"], [27, 1, 1, "", "loss_coteaching"], [27, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[29, 2, 1, "", "LabelInspector"], [29, 7, 1, "", "adj_confident_thresholds_shared"], [29, 1, 1, "", "find_label_issues_batched"], [29, 7, 1, "", "labels_shared"], [29, 7, 1, "", "pred_probs_shared"], [29, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[29, 3, 1, "", "get_confident_thresholds"], [29, 3, 1, "", "get_label_issues"], [29, 3, 1, "", "get_num_issues"], [29, 3, 1, "", "get_quality_scores"], [29, 3, 1, "", "score_label_quality"], [29, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[30, 2, 1, "", "CNN"], [30, 2, 1, "", "SimpleNet"], [30, 1, 1, "", "get_mnist_dataset"], [30, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[30, 3, 1, "", "__init_subclass__"], [30, 6, 1, "", "batch_size"], [30, 6, 1, "", "dataset"], [30, 6, 1, "", "epochs"], [30, 3, 1, "id0", "fit"], [30, 3, 1, "", "get_metadata_routing"], [30, 3, 1, "", "get_params"], [30, 6, 1, "", "loader"], [30, 6, 1, "", "log_interval"], [30, 6, 1, "", "lr"], [30, 6, 1, "", "momentum"], [30, 6, 1, "", "no_cuda"], [30, 3, 1, "id1", "predict"], [30, 3, 1, "id4", "predict_proba"], [30, 6, 1, "", "seed"], [30, 3, 1, "", "set_fit_request"], [30, 3, 1, "", "set_params"], [30, 3, 1, "", "set_predict_proba_request"], [30, 3, 1, "", "set_predict_request"], [30, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[30, 6, 1, "", "T_destination"], [30, 3, 1, "", "__call__"], [30, 3, 1, "", "add_module"], [30, 3, 1, "", "apply"], [30, 3, 1, "", "bfloat16"], [30, 3, 1, "", "buffers"], [30, 3, 1, "", "children"], [30, 3, 1, "", "cpu"], [30, 3, 1, "", "cuda"], [30, 3, 1, "", "double"], [30, 6, 1, "", "dump_patches"], [30, 3, 1, "", "eval"], [30, 3, 1, "", "extra_repr"], [30, 3, 1, "", "float"], [30, 3, 1, "", "forward"], [30, 3, 1, "", "get_buffer"], [30, 3, 1, "", "get_extra_state"], [30, 3, 1, "", "get_parameter"], [30, 3, 1, "", "get_submodule"], [30, 3, 1, "", "half"], [30, 3, 1, "", "ipu"], [30, 3, 1, "", "load_state_dict"], [30, 3, 1, "", "modules"], [30, 3, 1, "", "named_buffers"], [30, 3, 1, "", "named_children"], [30, 3, 1, "", "named_modules"], [30, 3, 1, "", "named_parameters"], [30, 3, 1, "", "parameters"], [30, 3, 1, "", "register_backward_hook"], [30, 3, 1, "", "register_buffer"], [30, 3, 1, "", "register_forward_hook"], [30, 3, 1, "", "register_forward_pre_hook"], [30, 3, 1, "", "register_full_backward_hook"], [30, 3, 1, "", "register_load_state_dict_post_hook"], [30, 3, 1, "", "register_module"], [30, 3, 1, "", "register_parameter"], [30, 3, 1, "", "requires_grad_"], [30, 3, 1, "", "set_extra_state"], [30, 3, 1, "", "share_memory"], [30, 3, 1, "", "state_dict"], [30, 3, 1, "", "to"], [30, 3, 1, "", "to_empty"], [30, 3, 1, "", "train"], [30, 6, 1, "", "training"], [30, 3, 1, "", "type"], [30, 3, 1, "", "xpu"], [30, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[31, 1, 1, "", "find_label_issues"], [31, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [31, 1, 1, "", "find_predicted_neq_given"], [31, 7, 1, "", "pred_probs_by_class"], [31, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[33, 0, 0, "-", "label_quality_utils"], [34, 0, 0, "-", "latent_algebra"], [35, 0, 0, "-", "multiannotator_utils"], [36, 0, 0, "-", "multilabel_scorer"], [37, 0, 0, "-", "multilabel_utils"], [38, 0, 0, "-", "outlier"], [39, 0, 0, "-", "token_classification_utils"], [40, 0, 0, "-", "util"], [41, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[33, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[34, 1, 1, "", "compute_inv_noise_matrix"], [34, 1, 1, "", "compute_noise_matrix_from_inverse"], [34, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [34, 1, 1, "", "compute_py"], [34, 1, 1, "", "compute_py_inv_noise_matrix"], [34, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[35, 1, 1, "", "assert_valid_inputs_multiannotator"], [35, 1, 1, "", "assert_valid_pred_probs"], [35, 1, 1, "", "check_consensus_label_classes"], [35, 1, 1, "", "compute_soft_cross_entropy"], [35, 1, 1, "", "find_best_temp_scaler"], [35, 1, 1, "", "format_multiannotator_labels"], [35, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[36, 2, 1, "", "Aggregator"], [36, 2, 1, "", "ClassLabelScorer"], [36, 2, 1, "", "MultilabelScorer"], [36, 1, 1, "", "exponential_moving_average"], [36, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [36, 1, 1, "", "get_label_quality_scores"], [36, 1, 1, "", "multilabel_py"], [36, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[36, 3, 1, "", "__call__"], [36, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[36, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [36, 6, 1, "", "NORMALIZED_MARGIN"], [36, 6, 1, "", "SELF_CONFIDENCE"], [36, 3, 1, "", "__call__"], [36, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[36, 3, 1, "", "__call__"], [36, 3, 1, "", "aggregate"], [36, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[37, 1, 1, "", "get_onehot_num_classes"], [37, 1, 1, "", "int2onehot"], [37, 1, 1, "", "onehot2int"], [37, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[38, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[39, 1, 1, "", "color_sentence"], [39, 1, 1, "", "filter_sentence"], [39, 1, 1, "", "get_sentence"], [39, 1, 1, "", "mapping"], [39, 1, 1, "", "merge_probs"], [39, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[40, 1, 1, "", "append_extra_datapoint"], [40, 1, 1, "", "clip_noise_rates"], [40, 1, 1, "", "clip_values"], [40, 1, 1, "", "compress_int_array"], [40, 1, 1, "", "confusion_matrix"], [40, 1, 1, "", "csr_vstack"], [40, 1, 1, "", "estimate_pu_f1"], [40, 1, 1, "", "extract_indices_tf"], [40, 1, 1, "", "force_two_dimensions"], [40, 1, 1, "", "format_labels"], [40, 1, 1, "", "get_missing_classes"], [40, 1, 1, "", "get_num_classes"], [40, 1, 1, "", "get_unique_classes"], [40, 1, 1, "", "is_tensorflow_dataset"], [40, 1, 1, "", "is_torch_dataset"], [40, 1, 1, "", "num_unique_classes"], [40, 1, 1, "", "print_inverse_noise_matrix"], [40, 1, 1, "", "print_joint_matrix"], [40, 1, 1, "", "print_noise_matrix"], [40, 1, 1, "", "print_square_matrix"], [40, 1, 1, "", "remove_noise_from_class"], [40, 1, 1, "", "round_preserving_row_totals"], [40, 1, 1, "", "round_preserving_sum"], [40, 1, 1, "", "smart_display_dataframe"], [40, 1, 1, "", "subset_X_y"], [40, 1, 1, "", "subset_data"], [40, 1, 1, "", "subset_labels"], [40, 1, 1, "", "train_val_split"], [40, 1, 1, "", "unshuffle_tensorflow_dataset"], [40, 1, 1, "", "value_counts"], [40, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[41, 1, 1, "", "assert_indexing_works"], [41, 1, 1, "", "assert_nonempty_input"], [41, 1, 1, "", "assert_valid_class_labels"], [41, 1, 1, "", "assert_valid_inputs"], [41, 1, 1, "", "labels_to_array"]], "cleanlab.models": [[44, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[44, 2, 1, "", "KerasWrapperModel"], [44, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[44, 3, 1, "", "fit"], [44, 3, 1, "", "get_params"], [44, 3, 1, "", "predict"], [44, 3, 1, "", "predict_proba"], [44, 3, 1, "", "set_params"], [44, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[44, 3, 1, "", "fit"], [44, 3, 1, "", "get_params"], [44, 3, 1, "", "predict"], [44, 3, 1, "", "predict_proba"], [44, 3, 1, "", "set_params"], [44, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[45, 1, 1, "", "convert_long_to_wide_dataset"], [45, 1, 1, "", "get_active_learning_scores"], [45, 1, 1, "", "get_active_learning_scores_ensemble"], [45, 1, 1, "", "get_label_quality_multiannotator"], [45, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [45, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[46, 0, 0, "-", "dataset"], [47, 0, 0, "-", "filter"], [49, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[46, 1, 1, "", "common_multilabel_issues"], [46, 1, 1, "", "multilabel_health_summary"], [46, 1, 1, "", "overall_multilabel_health_score"], [46, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[47, 1, 1, "", "find_label_issues"], [47, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[50, 0, 0, "-", "filter"], [52, 0, 0, "-", "rank"], [53, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[50, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[52, 1, 1, "", "compute_badloc_box_scores"], [52, 1, 1, "", "compute_overlooked_box_scores"], [52, 1, 1, "", "compute_swap_box_scores"], [52, 1, 1, "", "get_label_quality_scores"], [52, 1, 1, "", "issues_from_scores"], [52, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[53, 1, 1, "", "bounding_box_size_distribution"], [53, 1, 1, "", "class_label_distribution"], [53, 1, 1, "", "get_sorted_bbox_count_idxs"], [53, 1, 1, "", "object_counts_per_image"], [53, 1, 1, "", "plot_class_distribution"], [53, 1, 1, "", "plot_class_size_distributions"], [53, 1, 1, "", "visualize"]], "cleanlab.outlier": [[54, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[54, 3, 1, "", "fit"], [54, 3, 1, "", "fit_score"], [54, 3, 1, "", "score"]], "cleanlab.rank": [[55, 1, 1, "", "find_top_issues"], [55, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [55, 1, 1, "", "get_label_quality_ensemble_scores"], [55, 1, 1, "", "get_label_quality_scores"], [55, 1, 1, "", "get_normalized_margin_for_each_label"], [55, 1, 1, "", "get_self_confidence_for_each_label"], [55, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[57, 0, 0, "-", "learn"], [58, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[57, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[57, 3, 1, "", "__init_subclass__"], [57, 3, 1, "", "find_label_issues"], [57, 3, 1, "", "fit"], [57, 3, 1, "", "get_aleatoric_uncertainty"], [57, 3, 1, "", "get_epistemic_uncertainty"], [57, 3, 1, "", "get_label_issues"], [57, 3, 1, "", "get_metadata_routing"], [57, 3, 1, "", "get_params"], [57, 3, 1, "", "predict"], [57, 3, 1, "", "save_space"], [57, 3, 1, "", "score"], [57, 3, 1, "", "set_fit_request"], [57, 3, 1, "", "set_params"], [57, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[58, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[59, 0, 0, "-", "filter"], [61, 0, 0, "-", "rank"], [62, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[59, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[61, 1, 1, "", "get_label_quality_scores"], [61, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[62, 1, 1, "", "common_label_issues"], [62, 1, 1, "", "display_issues"], [62, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"], [66, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[63, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[66, 1, 1, "", "common_label_issues"], [66, 1, 1, "", "display_issues"], [66, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 69, 73, 74, 76, 77, 78, 81, 87, 88, 89], "count": [3, 78], "datalab": [4, 5, 6, 7, 8, 70, 71, 72, 73, 74, 78], "creat": [5, 70, 71, 78, 80], "your": [5, 67, 70, 71, 74, 76, 78], "own": 5, "issu": [5, 6, 7, 17, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 81, 82, 86, 87, 89], "manag": [5, 17], "prerequisit": 5, "implement": 5, "issuemanag": [5, 70], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 70], "us": [5, 69, 71, 73, 74, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "guid": [6, 8], "type": [6, 7, 78], "custom": [6, 70], "can": [7, 71, 75, 76, 78, 80], "detect": [7, 71, 73, 74, 76, 78, 82, 83], "estim": [7, 78, 80], "each": 7, "label": [7, 19, 67, 69, 71, 73, 74, 76, 77, 78, 80, 81, 82, 85, 86, 87, 88, 89], "outlier": [7, 22, 38, 54, 73, 74, 77, 83], "Near": [7, 71, 73, 74, 77], "duplic": [7, 15, 71, 73, 74, 77], "non": 7, "iid": 7, "class": [7, 68, 78, 86], "imbal": [7, 16], "imag": [7, 77, 83], "specif": [7, 86], "option": 7, "paramet": [7, 78], "get": [8, 70, 71, 80, 81, 82, 86, 89], "start": [8, 75], "api": 8, "refer": 8, "data": [9, 67, 69, 70, 71, 73, 75, 76, 78, 80, 81, 82, 83, 85, 86, 87, 89], "data_issu": 10, "factori": 11, "intern": [12, 32], "issue_find": 13, "issue_manag": [17, 18], "regist": 17, "unregist": 17, "noniid": 20, "null": 21, "report": [23, 77], "dataset": [25, 46, 67, 71, 74, 75, 76, 77, 78, 81, 82, 83, 85, 86, 88, 89], "cifar_cnn": 26, "coteach": 27, "experiment": 28, "label_issues_batch": 29, "mnist_pytorch": 30, "filter": [31, 47, 50, 59, 63, 78], "label_quality_util": 33, "latent_algebra": 34, "multiannotator_util": 35, "multilabel_scor": 36, "multilabel_util": 37, "token_classification_util": 39, "util": 40, "valid": [41, 77, 84], "fasttext": 42, "model": [43, 67, 69, 73, 74, 76, 77, 78, 80, 81, 82, 83, 85, 87, 88], "kera": 44, "multiannot": [45, 80], "multilabel_classif": 48, "rank": [49, 52, 55, 58, 61, 65, 78], "object_detect": 51, "summari": [53, 62, 66], "regress": [56, 57, 58, 76, 85], "learn": [57, 71, 76, 78, 87], "segment": [60, 86], "token_classif": [64, 89], "cleanlab": [67, 69, 73, 74, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "open": [67, 76], "sourc": [67, 76], "document": 67, "quickstart": 67, "1": [67, 68, 69, 70, 71, 73, 74, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "instal": [67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "2": [67, 68, 69, 70, 71, 73, 74, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "find": [67, 69, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "common": [67, 68, 89], "3": [67, 69, 70, 71, 73, 74, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "handl": [67, 76], "error": [67, 76, 77, 78, 80, 81, 82, 85, 86, 88, 89], "train": [67, 69, 76, 83, 85, 87, 88], "robust": [67, 78, 85, 87, 88], "noisi": [67, 78, 85, 87, 88], "4": [67, 69, 70, 71, 73, 74, 77, 78, 80, 82, 83, 85, 87, 88], "curat": [67, 75], "fix": [67, 76], "level": [67, 75, 78, 89], "5": [67, 69, 71, 73, 77, 78, 80, 85, 87], "improv": [67, 80], "via": [67, 78, 80], "mani": [67, 78], "other": [67, 80, 82, 85], "techniqu": 67, "contribut": 67, "easi": 67, "mode": 67, "how": [68, 76, 78, 80, 81, 89], "migrat": 68, "version": 68, "0": 68, "from": [68, 70, 71, 78, 85, 87, 88], "pre": [68, 69, 83], "function": [68, 70], "name": 68, "chang": 68, "modul": [68, 78], "new": 68, "remov": 68, "argument": [68, 70], "variabl": 68, "audio": 69, "speechbrain": 69, "depend": [69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "import": [69, 70, 71, 75, 77, 78, 80], "them": [69, 75, 78], "load": [69, 70, 71, 73, 74, 85, 87, 88], "featur": [69, 77, 83], "fit": 69, "linear": 69, "comput": [69, 73, 74, 77, 80, 84, 87], "out": [69, 70, 71, 73, 74, 77, 80, 84, 87], "sampl": [69, 70, 71, 73, 74, 77, 80, 84, 87], "predict": [69, 70, 71, 73, 74, 77, 80, 81, 82, 84, 87], "probabl": [69, 70, 71, 73, 74, 77, 80, 84, 87], "workflow": [70, 78], "audit": [70, 71], "requir": [70, 71, 73, 74, 77, 80, 81, 82, 83, 85, 86, 87, 88, 89], "classifi": [70, 71], "instanti": 70, "object": [70, 82], "increment": 70, "search": 70, "specifi": 70, "nondefault": 70, "save": 70, "ad": 70, "A": 71, "unifi": 71, "all": [71, 78], "kind": [71, 82], "skip": [71, 75, 78, 80], "detail": [71, 75, 78, 80], "more": [71, 78, 85, 87, 88], "about": 71, "addit": 71, "inform": [71, 77], "tutori": [72, 75, 79], "tabular": [73, 87], "numer": 73, "categor": 73, "column": 73, "process": [73, 83, 85, 87], "select": [73, 87], "construct": 73, "k": [73, 77, 84], "nearest": 73, "neighbour": 73, "graph": 73, "text": [74, 88, 89], "format": [74, 76, 81, 82, 88], "defin": [74, 77, 85, 88], "fetch": [75, 77], "evalu": 75, "health": [75, 78], "8": [75, 78], "popular": 75, "faq": 76, "what": [76, 78, 84], "do": [76, 78], "i": [76, 78, 84], "infer": 76, "correct": 76, "exampl": [76, 77, 78, 83], "ha": 76, "flag": 76, "should": 76, "v": 76, "test": [76, 78, 83], "big": 76, "limit": 76, "memori": 76, "why": 76, "isn": 76, "t": 76, "cleanlearn": [76, 78], "work": [76, 78, 80, 89], "me": 76, "differ": [76, 82], "clean": [76, 78], "final": 76, "hyperparamet": 76, "tune": 76, "onli": 76, "one": [76, 78, 81, 86], "doe": [76, 80, 89], "take": 76, "so": 76, "long": 76, "ml": [76, 78], "run": 76, "identifi": [76, 82], "licens": 76, "under": 76, "an": 76, "answer": 76, "question": 76, "pytorch": [77, 83], "normal": 77, "fashion": 77, "mnist": 77, "prepar": 77, "fold": [77, 84], "cross": [77, 84], "embed": [77, 83], "7": [77, 78], "view": 77, "most": [77, 89], "like": 77, "sever": 77, "set": [77, 78], "dark": 77, "top": [77, 86], "low": 77, "The": 78, "centric": 78, "ai": 78, "machin": 78, "find_label_issu": 78, "line": 78, "code": 78, "visual": [78, 82, 83, 86], "twenti": 78, "lowest": 78, "qualiti": [78, 80, 81, 82, 86, 89], "see": 78, "now": 78, "let": 78, "": 78, "happen": 78, "we": 78, "merg": 78, "seafoam": 78, "green": 78, "yellow": 78, "too": 78, "you": 78, "re": 78, "6": 78, "One": 78, "score": [78, 80, 81, 82, 86, 89], "rule": 78, "overal": [78, 86], "accur": 78, "thi": 78, "directli": 78, "fulli": 78, "character": 78, "nois": 78, "matrix": [78, 81], "joint": 78, "prior": 78, "true": 78, "distribut": 78, "flip": 78, "rate": 78, "ani": 78, "again": 78, "support": 78, "lot": 78, "method": 78, "filter_bi": 78, "automat": 78, "everi": 78, "uniqu": 78, "num_label_issu": 78, "threshold": 78, "found": 78, "Not": 78, "sure": 78, "when": 78, "ensembl": 78, "multipl": [78, 80], "predictor": 78, "consensu": 80, "annot": 80, "initi": 80, "major": 80, "vote": 80, "better": 80, "statist": 80, "compar": 80, "inspect": 80, "potenti": [80, 85, 88], "retrain": 80, "further": 80, "multi": 81, "given": 81, "hot": 81, "binari": 81, "download": [82, 86, 89], "objectlab": 82, "timm": 83, "cifar10": 83, "some": 83, "pred_prob": [83, 86, 89], "wai": 85, "semant": 86, "which": 86, "ar": 86, "commonli": 86, "mislabel": [86, 89], "focus": 86, "scikit": 87, "token": 89, "word": 89, "sentenc": 89, "contain": 89, "particular": 89}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 56}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 68, 70, 71, 78, 80, 81], "helper": [1, 13, 29, 33, 35, 36, 37, 38, 39, 40, 52, 75, 77, 89], "method": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "ar": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 25, 26, 28, 29, 30, 31, 32, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 82, 83, 84, 85, 87, 88, 89], "us": [1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 67, 68, 70, 75, 79, 84], "benchmark": [1, 26, 67, 68, 70, 71, 78, 80, 81], "cleanlab": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 68, 70, 71, 75, 79, 84], "": [1, 2, 3, 7, 25, 26, 30, 33, 36, 38, 40, 45, 46, 50, 52, 53, 54, 55, 57, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "core": [1, 4, 29, 31, 59, 61, 86], "algorithm": [1, 2, 7, 27, 40, 45, 54, 63, 65, 67, 76, 78, 80, 89], "These": [1, 2, 3, 7, 17, 28, 31, 32, 43, 45, 46, 49, 54, 58, 62, 63, 65, 66, 69, 71, 73, 74, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "introduc": [1, 69, 76, 78], "synthet": [1, 80, 81, 86], "nois": [1, 2, 3, 25, 31, 34, 40, 46, 70, 71, 75, 80], "label": [1, 2, 3, 4, 5, 6, 9, 11, 13, 17, 18, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 40, 41, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 75, 79, 83, 84], "classif": [1, 3, 7, 25, 29, 31, 34, 36, 37, 40, 45, 46, 47, 48, 49, 54, 55, 63, 64, 65, 66, 67, 68, 70, 71, 79, 80, 83, 84, 85, 86], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 15, 16, 18, 20, 21, 22, 29, 30, 31, 34, 36, 40, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 72, 73, 79, 80, 84, 87], "specif": [1, 3, 4, 6, 10, 13, 23, 28, 43, 47, 50, 53, 62, 66, 71, 73, 74, 77, 78, 89], "thi": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "modul": [1, 3, 10, 11, 12, 13, 17, 23, 25, 26, 27, 28, 29, 30, 31, 40, 43, 45, 54, 55, 67, 76, 77, 81], "provid": [1, 2, 3, 4, 5, 7, 11, 13, 19, 25, 26, 27, 29, 30, 31, 34, 40, 44, 45, 46, 47, 52, 53, 54, 55, 57, 59, 61, 62, 65, 66, 67, 69, 70, 71, 74, 76, 77, 78, 80, 83, 84, 85, 86, 87, 88, 89], "gener": [1, 2, 3, 5, 7, 19, 23, 25, 36, 40, 41, 54, 55, 57, 62, 69, 70, 71, 75, 76, 77, 78, 80, 81, 83, 84, 85, 86, 88, 89], "valid": [1, 2, 3, 4, 7, 9, 25, 31, 32, 34, 35, 36, 40, 45, 47, 50, 53, 55, 57, 58, 66, 68, 69, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 89], "matric": [1, 3, 34, 76], "which": [1, 2, 3, 4, 7, 9, 10, 11, 13, 18, 20, 23, 25, 26, 30, 31, 34, 36, 39, 40, 45, 46, 47, 50, 52, 53, 54, 55, 57, 58, 61, 62, 63, 65, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 82, 83, 84, 85, 87, 88, 89], "learn": [1, 2, 3, 7, 18, 27, 28, 29, 30, 31, 33, 35, 40, 43, 45, 47, 54, 56, 58, 61, 65, 67, 69, 70, 73, 74, 75, 79, 80, 85, 88], "i": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 80, 81, 82, 83, 85, 86, 87, 88, 89], "possibl": [1, 2, 3, 7, 25, 26, 30, 31, 33, 34, 36, 47, 48, 49, 50, 52, 53, 54, 55, 57, 63, 65, 66, 71, 76, 78, 80, 81, 82, 85, 86, 89], "noisi": [1, 2, 3, 25, 27, 30, 31, 34, 40, 46, 47, 49, 55, 57, 58, 59, 61, 62, 68, 70, 71, 73, 74, 76, 79, 80], "given": [1, 2, 3, 7, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 39, 40, 45, 46, 47, 50, 52, 53, 54, 55, 57, 58, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 82, 83, 85, 86, 87, 88, 89], "matrix": [1, 2, 3, 4, 7, 13, 25, 31, 33, 34, 37, 40, 41, 47, 52, 54, 55, 73, 83], "trace": [1, 70, 71, 78, 80, 81], "valu": [1, 2, 3, 4, 7, 9, 10, 13, 18, 20, 21, 25, 26, 27, 29, 30, 31, 33, 34, 36, 40, 45, 46, 47, 49, 50, 52, 54, 55, 57, 58, 59, 61, 62, 63, 66, 69, 71, 73, 74, 76, 77, 78, 80, 81, 82, 83, 85, 86, 88, 89], "more": [1, 2, 3, 4, 5, 7, 10, 13, 20, 25, 26, 29, 30, 33, 36, 40, 45, 46, 47, 48, 49, 50, 52, 53, 55, 57, 58, 61, 62, 63, 65, 67, 69, 70, 73, 74, 75, 76, 77, 80, 81, 82, 83, 86, 89], "function": [1, 2, 3, 4, 5, 10, 11, 13, 19, 20, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 75, 76, 78, 80, 81, 82, 86, 87, 88, 89], "noise_matrix_is_valid": 1, "noise_matrix": [1, 2, 3, 7, 34, 40, 70, 71, 78, 80, 81], "py": [1, 3, 23, 26, 27, 31, 34, 36, 45, 70, 71, 77, 78, 80, 81], "verbos": [1, 2, 4, 5, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 29, 31, 45, 46, 47, 52, 54, 55, 57, 59, 61, 62, 66, 70, 78, 80], "fals": [1, 2, 3, 4, 5, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 35, 39, 40, 41, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 59, 61, 62, 63, 69, 70, 71, 73, 74, 76, 77, 78, 80, 82, 83, 85, 86, 88], "sourc": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66], "prior": [1, 2, 3, 25, 31, 34, 36], "repres": [1, 2, 3, 4, 5, 7, 9, 13, 20, 25, 29, 31, 34, 37, 40, 45, 46, 47, 50, 52, 53, 54, 55, 57, 59, 61, 62, 66, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 82, 83, 85, 87, 88, 89], "p": [1, 2, 3, 7, 25, 31, 33, 34, 40, 45, 53, 54, 55, 59, 71, 73, 74, 77, 78, 80, 89], "true_label": [1, 2, 3, 25, 34, 40, 78, 80], "k": [1, 2, 3, 4, 7, 9, 13, 15, 19, 20, 22, 25, 29, 31, 33, 34, 35, 36, 37, 38, 39, 40, 45, 46, 47, 48, 49, 50, 53, 54, 55, 57, 59, 61, 62, 63, 65, 66, 69, 70, 71, 76, 78, 80, 81, 82, 83, 86, 87, 89], "check": [1, 2, 4, 6, 7, 9, 13, 26, 29, 30, 35, 41, 44, 50, 53, 57, 67, 69, 70, 71, 76, 77, 78, 80, 81, 85, 87, 88], "learnabl": 1, "mean": [1, 2, 5, 9, 10, 18, 20, 27, 30, 34, 36, 52, 57, 71, 74, 76, 78, 80, 81, 83, 85, 88], "achiev": [1, 2, 26, 27, 30, 57, 80, 89], "better": [1, 4, 31, 45, 47, 55, 57, 58, 67, 69, 71, 73, 74, 76, 78, 81, 82, 83, 88, 89], "than": [1, 2, 3, 5, 7, 20, 22, 25, 31, 40, 44, 45, 50, 52, 54, 55, 57, 61, 65, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 89], "random": [1, 2, 3, 5, 7, 29, 36, 45, 55, 57, 69, 70, 71, 73, 76, 77, 78, 80, 81, 83, 87], "perform": [1, 2, 5, 7, 20, 22, 26, 30, 36, 57, 67, 70, 76, 78, 80, 81, 84, 85, 87, 88], "averag": [1, 3, 18, 22, 25, 26, 30, 36, 38, 45, 46, 54, 55, 76, 80, 83], "amount": [1, 3, 77], "paramet": [1, 2, 3, 4, 6, 9, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 74, 77, 87, 88], "np": [1, 2, 3, 4, 5, 13, 25, 27, 29, 31, 33, 34, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 62, 63, 65, 66, 69, 70, 71, 73, 75, 76, 77, 78, 80, 81, 83, 85, 86, 87, 88, 89], "ndarrai": [1, 2, 3, 4, 13, 19, 20, 25, 27, 29, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 65, 89], "an": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 38, 40, 41, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 59, 61, 62, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "arrai": [1, 2, 3, 4, 5, 9, 13, 20, 25, 27, 29, 30, 31, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 69, 70, 71, 74, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "shape": [1, 2, 3, 4, 13, 25, 27, 29, 31, 33, 34, 35, 36, 38, 39, 40, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 69, 75, 76, 78, 81, 82, 83, 86, 89], "condit": [1, 2, 3, 34, 39, 40, 55, 77, 78, 89], "probabl": [1, 2, 3, 4, 7, 13, 19, 22, 25, 29, 30, 31, 33, 34, 36, 37, 39, 40, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 59, 61, 62, 63, 65, 66, 67, 68, 75, 76, 78, 79, 81, 82, 83, 86, 89], "k_": [1, 2, 3, 34, 40], "k_y": [1, 2, 3, 34, 40], "contain": [1, 2, 3, 4, 9, 10, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 38, 39, 40, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88], "fraction": [1, 2, 3, 7, 16, 27, 34, 40, 45, 57, 73, 76], "exampl": [1, 2, 3, 4, 5, 7, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 36, 37, 38, 39, 40, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 80, 81, 82, 84, 85, 86, 87, 88, 89], "everi": [1, 2, 3, 4, 13, 26, 30, 31, 34, 39, 40, 47, 55, 57, 58, 69, 70, 71, 73, 74, 76, 77, 80, 82, 84, 86, 87, 89], "class": [1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 57, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 77, 80, 81, 82, 83, 84, 85, 87, 88, 89], "other": [1, 2, 3, 4, 7, 13, 18, 25, 26, 28, 29, 30, 31, 34, 37, 40, 41, 43, 45, 46, 49, 54, 55, 57, 62, 69, 70, 71, 73, 74, 76, 77, 78, 81, 83, 86, 89], "assum": [1, 2, 3, 9, 31, 34, 38, 39, 40, 55, 59, 62, 76, 83, 86, 89], "column": [1, 2, 3, 4, 7, 9, 10, 25, 29, 31, 34, 36, 37, 39, 40, 45, 46, 47, 49, 50, 53, 54, 55, 57, 62, 63, 65, 66, 69, 70, 71, 74, 75, 76, 77, 80, 82, 85, 86, 87, 88, 89], "sum": [1, 2, 3, 20, 25, 34, 36, 40, 46, 47, 49, 52, 57, 70, 71, 76, 77, 78, 80, 81, 86, 89], "1": [1, 2, 3, 4, 5, 7, 9, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 75, 76, 84], "each": [1, 2, 3, 4, 5, 6, 10, 11, 13, 16, 18, 19, 20, 23, 25, 26, 27, 29, 30, 31, 33, 34, 36, 37, 38, 40, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "true": [1, 2, 3, 4, 5, 7, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 34, 36, 39, 40, 41, 44, 45, 46, 47, 50, 52, 53, 54, 55, 57, 59, 61, 62, 66, 69, 70, 71, 73, 74, 75, 76, 77, 80, 81, 82, 83, 85, 86, 87, 88, 89], "return": [1, 2, 3, 4, 9, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 88, 89], "type": [1, 2, 3, 4, 5, 8, 9, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 81, 82, 86, 87, 89], "bool": [1, 2, 3, 4, 9, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 36, 39, 40, 45, 47, 49, 50, 52, 53, 54, 55, 57, 59, 61, 62, 66], "is_valid": 1, "whether": [1, 3, 4, 7, 10, 15, 16, 18, 19, 20, 21, 22, 23, 26, 29, 30, 31, 40, 45, 46, 47, 49, 50, 66, 69, 71, 73, 74, 75, 77, 78, 85, 88, 89], "generate_noisy_label": [1, 70, 71, 78, 80, 81], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 18, 19, 23, 24, 25, 26, 27, 29, 30, 31, 34, 36, 37, 38, 39, 40, 45, 47, 49, 52, 53, 54, 55, 57, 58, 63, 65, 66, 67, 69, 73, 74, 75, 76, 77, 80, 81, 82, 83, 84, 86, 89], "perfect": [1, 2, 25, 57, 78, 82], "exactli": [1, 3, 7, 25, 26, 30, 31, 48, 54, 70, 71, 73, 74, 77, 78], "yield": [1, 26, 30], "between": [1, 4, 7, 12, 13, 17, 18, 20, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 38, 43, 45, 46, 49, 52, 54, 55, 57, 58, 61, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 80, 81, 82, 83, 85, 86, 88, 89], "below": [1, 3, 7, 25, 26, 29, 30, 31, 33, 36, 45, 46, 47, 52, 53, 61, 65, 68, 69, 70, 71, 73, 74, 75, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "we": [1, 2, 3, 4, 5, 7, 10, 18, 26, 29, 30, 31, 36, 40, 41, 45, 52, 55, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "loop": [1, 3, 34, 40, 77], "implement": [1, 2, 3, 4, 6, 11, 18, 26, 27, 29, 30, 34, 40, 57, 67, 69, 70, 73, 83, 84, 87], "what": [1, 4, 6, 7, 13, 23, 25, 27, 29, 31, 45, 46, 50, 52, 69, 70, 71, 73, 74, 77, 80, 81, 82, 83, 85, 86, 87, 88, 89], "doe": [1, 2, 3, 7, 29, 30, 31, 36, 41, 52, 57, 59, 61, 65, 69, 70, 71, 73, 74, 77, 81, 85, 86, 88], "do": [1, 2, 4, 7, 25, 29, 30, 40, 41, 54, 55, 59, 69, 70, 71, 73, 74, 77, 80, 81, 82, 83, 85, 86, 87, 88, 89], "fast": 1, "explain": [1, 7], "python": [1, 2, 30, 44, 57, 70, 71, 75, 77, 83], "pseudocod": [1, 84], "happen": [1, 7, 31, 47, 80, 86], "n": [1, 2, 3, 4, 5, 25, 26, 29, 30, 31, 33, 34, 35, 36, 38, 39, 40, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 65, 69, 74, 75, 76, 77, 80, 81, 85, 86, 87, 88, 89], "without": [1, 2, 4, 7, 9, 13, 16, 26, 30, 49, 57, 67, 69, 74, 78, 82, 83, 88], "ani": [1, 2, 3, 4, 5, 7, 9, 10, 13, 15, 16, 18, 19, 20, 21, 22, 25, 26, 29, 30, 31, 33, 35, 39, 40, 44, 45, 47, 49, 50, 52, 53, 55, 57, 59, 61, 62, 67, 69, 70, 71, 73, 74, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88], "distinct": [1, 40, 89], "natur": [1, 7, 80, 83], "number": [1, 2, 3, 4, 5, 7, 9, 10, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 34, 35, 36, 37, 38, 39, 40, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 82, 86, 89], "0": [1, 2, 3, 4, 5, 7, 9, 13, 15, 16, 18, 19, 20, 21, 22, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "count_joint": 1, "len": [1, 2, 3, 5, 25, 29, 34, 39, 40, 41, 54, 55, 57, 70, 71, 74, 75, 76, 77, 78, 80, 81, 83, 85, 87, 88, 89], "y": [1, 2, 3, 4, 30, 34, 36, 40, 41, 44, 53, 57, 58, 69, 70, 71, 73, 76, 78, 80, 81, 83, 85, 88], "round": [1, 29, 31, 40, 57, 76, 85], "astyp": [1, 80], "int": [1, 2, 3, 4, 5, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 36, 37, 38, 39, 40, 46, 47, 49, 53, 54, 55, 57, 59, 61, 62, 63, 66, 69, 70, 77, 83], "rang": [1, 3, 5, 9, 34, 36, 38, 40, 57, 58, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 89], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 7, 9, 10, 13, 18, 25, 29, 31, 34, 35, 36, 37, 38, 39, 40, 41, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 69, 73, 74, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 88, 89], "pragma": 1, "cover": [1, 3, 68, 75], "choic": [1, 31, 77, 81, 83], "replac": [1, 39, 44, 55, 70, 71, 74, 75, 77, 80, 83, 87, 88], "generate_noise_matrix_from_trac": [1, 70, 71, 78, 80, 81], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 55, 69, 70, 71], "05": [1, 20, 39, 57, 63, 65, 75, 76, 78, 82], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 70, 71, 78, 80, 81], "none": [1, 2, 3, 4, 5, 9, 10, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 57, 59, 61, 62, 65, 66, 70, 71, 76, 77, 78, 80, 81, 86], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 7, 20, 30, 36, 57, 69, 70, 71, 73, 75, 78, 80, 81, 87], "max_it": [1, 69, 74, 83, 88], "10000": [1, 29, 75, 76], "x": [1, 2, 3, 4, 7, 15, 16, 18, 19, 20, 21, 22, 25, 26, 27, 30, 31, 33, 34, 36, 39, 40, 41, 44, 45, 47, 53, 54, 55, 57, 59, 69, 70, 71, 73, 75, 76, 77, 78, 80, 81, 83, 85, 87, 88], "diagon": [1, 3, 4, 13, 31, 34, 40], "equal": [1, 3, 7, 9, 47, 52, 62, 84], "creat": [1, 2, 6, 13, 26, 29, 30, 31, 40, 57, 67, 69, 73, 74, 76, 77, 86, 88, 89], "impli": [1, 25, 46], "float": [1, 2, 7, 15, 16, 18, 19, 20, 21, 22, 25, 26, 27, 29, 30, 31, 33, 35, 36, 39, 40, 45, 46, 47, 49, 52, 53, 57, 61, 65, 69, 70, 71, 78, 80, 81], "entri": [1, 3, 4, 13, 25, 26, 30, 31, 33, 37, 40, 45, 46, 47, 50, 73, 74, 78, 81, 82, 87, 88], "maximum": [1, 7, 54, 62, 66, 86], "minimum": [1, 7, 16, 31, 33, 47, 52, 65], "noise_r": 1, "non": [1, 2, 3, 4, 6, 13, 20, 26, 30, 31, 52, 57, 70, 76, 78, 80, 82, 83], "default": [1, 2, 3, 4, 7, 11, 13, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 36, 40, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 70, 76, 77, 86], "If": [1, 2, 3, 4, 7, 10, 13, 20, 22, 25, 26, 29, 30, 31, 33, 34, 36, 39, 40, 44, 45, 46, 47, 50, 52, 53, 54, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 70, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "have": [1, 2, 3, 4, 7, 13, 17, 20, 25, 26, 28, 29, 30, 31, 34, 36, 40, 44, 45, 46, 47, 50, 52, 53, 54, 55, 57, 58, 62, 66, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "all": [1, 2, 3, 4, 5, 7, 10, 13, 18, 23, 25, 26, 29, 30, 31, 34, 36, 37, 39, 40, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 57, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 73, 74, 75, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "necessari": [1, 2, 3, 5, 7, 39, 70], "In": [1, 2, 3, 7, 25, 26, 29, 30, 45, 46, 48, 69, 70, 71, 73, 74, 75, 76, 77, 78, 81, 82, 83, 84, 85, 86, 87, 88, 89], "particular": [1, 4, 7, 10, 11, 13, 15, 16, 18, 20, 21, 22, 26, 30, 40, 45, 49, 53, 57, 62, 66, 67, 69, 71, 74, 76, 80, 81, 83, 85, 87, 88], "satisfi": [1, 3, 25], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 24, 26, 27, 28, 29, 30, 31, 34, 40, 43, 44, 47, 54, 55, 57, 59, 67, 68, 69, 75, 76, 78, 84], "argument": [1, 2, 3, 4, 7, 13, 19, 26, 29, 30, 31, 36, 41, 44, 45, 46, 47, 49, 52, 53, 54, 55, 57, 61, 62, 63, 65, 71, 74, 75, 76, 77, 82, 85, 88, 89], "when": [1, 2, 3, 4, 7, 9, 11, 13, 19, 20, 26, 30, 31, 34, 36, 40, 44, 47, 49, 50, 52, 54, 55, 57, 58, 70, 71, 73, 74, 76, 77, 80, 84, 85, 86, 87, 88, 89], "The": [1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 40, 44, 45, 46, 47, 50, 52, 53, 54, 55, 57, 59, 62, 63, 65, 67, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "rate": [1, 2, 3, 7, 27, 40, 69, 89], "set": [1, 2, 3, 4, 6, 7, 9, 10, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 35, 36, 40, 44, 45, 47, 50, 52, 53, 54, 55, 57, 59, 61, 62, 70, 71, 73, 74, 76, 80, 81, 83, 84, 85, 86, 87, 88, 89], "note": [1, 2, 3, 5, 7, 26, 29, 30, 31, 36, 40, 45, 50, 52, 53, 54, 55, 57, 58, 62, 68, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "you": [1, 2, 3, 4, 5, 7, 11, 13, 25, 26, 28, 29, 30, 31, 36, 43, 44, 45, 47, 50, 52, 53, 54, 55, 57, 58, 59, 62, 63, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "high": [1, 2, 13, 29, 31, 40, 52, 55, 57, 70, 71, 75, 77, 78, 82, 85, 86, 87, 88, 89], "mai": [1, 2, 3, 4, 7, 10, 17, 18, 25, 26, 28, 29, 30, 31, 34, 36, 40, 45, 46, 50, 52, 53, 54, 55, 57, 59, 62, 66, 68, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89], "imposs": [1, 7, 78], "also": [1, 2, 3, 5, 7, 18, 25, 26, 29, 30, 31, 39, 44, 45, 54, 57, 62, 65, 66, 67, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89], "low": [1, 7, 40, 45, 67, 70, 71, 74, 78, 82, 86], "zero": [1, 3, 4, 13, 26, 30, 33, 40, 41, 70, 77, 81, 82, 83], "forc": [1, 2, 3, 4, 30, 70, 89], "instead": [1, 2, 3, 7, 10, 13, 23, 25, 26, 29, 30, 31, 34, 40, 44, 45, 47, 49, 54, 55, 57, 58, 61, 63, 65, 68, 69, 73, 76, 77, 78, 81, 82, 83, 85, 86, 87, 88, 89], "onli": [1, 2, 3, 4, 7, 13, 19, 20, 25, 26, 29, 30, 31, 33, 34, 39, 40, 44, 45, 54, 55, 57, 59, 61, 65, 66, 67, 69, 70, 71, 74, 77, 80, 81, 82, 83, 84, 85, 86, 88, 89], "guarante": [1, 3, 4, 12, 17, 26, 28, 30, 32, 34, 43, 68], "produc": [1, 2, 4, 7, 13, 36, 45, 55, 57, 59, 61, 67, 69, 73, 74, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 89], "higher": [1, 4, 7, 25, 31, 33, 34, 36, 45, 46, 57, 71, 74, 76, 82], "opposit": [1, 89], "occur": [1, 3, 7, 25, 39, 52, 70, 71, 76, 77, 83], "small": [1, 3, 7, 25, 29, 36, 40, 46, 53, 74, 75, 77, 81, 83, 88], "numpi": [1, 3, 4, 5, 7, 9, 29, 30, 36, 38, 39, 41, 44, 49, 52, 57, 58, 63, 65, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "max": [1, 31, 54, 55, 77, 83], "tri": [1, 26, 30, 84], "befor": [1, 2, 3, 26, 30, 40, 54, 57, 62, 74, 76, 78, 80, 83, 85, 87, 88], "option": [1, 2, 3, 4, 5, 6, 9, 10, 13, 19, 20, 25, 26, 29, 30, 31, 34, 36, 39, 40, 41, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 76, 77, 78, 85, 86, 87], "left": [1, 2, 31, 33, 38, 40, 47, 50, 53, 70, 71, 81, 82, 83, 86], "stochast": 1, "exceed": 1, "generate_n_rand_probabilities_that_sum_to_m": 1, "m": [1, 26, 30, 35, 36, 45, 50, 52, 53, 54, 70, 71, 75, 80, 81, 82, 89], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 26, 30, 44, 76, 78, 86], "length": [1, 4, 9, 20, 25, 27, 31, 40, 47, 50, 54, 55, 57, 59, 62, 66, 69, 81, 83, 86, 87, 89], "must": [1, 2, 3, 4, 13, 25, 26, 27, 28, 30, 31, 34, 36, 37, 40, 43, 44, 45, 46, 47, 54, 55, 57, 59, 61, 62, 63, 65, 66, 69, 80, 84, 86, 89], "randomly_distribute_n_balls_into_k_bin": 1, "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 7, 9, 25, 29, 31, 37, 40, 41, 45, 47, 53, 59, 61, 62, 63, 65, 66, 69, 76, 80, 81, 82, 86, 87, 88, 89], "ball": [1, 75], "bin": [1, 3, 47, 70, 71, 83], "ensur": [1, 2, 7, 26, 30, 40, 41, 52, 55, 57, 69, 70, 71, 74, 77, 78, 83, 84, 85, 87, 88], "most": [1, 3, 4, 5, 7, 13, 25, 29, 31, 36, 44, 45, 46, 47, 50, 52, 53, 54, 55, 58, 61, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88], "least": [1, 7, 25, 29, 45, 46, 52, 55, 65, 76, 77, 80, 83, 86], "int_arrai": [1, 40], "can": [2, 3, 4, 5, 6, 10, 11, 13, 23, 25, 26, 27, 28, 29, 30, 31, 35, 36, 37, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 62, 63, 66, 67, 68, 69, 70, 73, 74, 77, 81, 82, 83, 84, 85, 86, 87, 88, 89], "model": [2, 3, 4, 7, 13, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 39, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 68, 70, 71, 75, 79, 84, 86, 89], "For": [2, 3, 4, 5, 6, 7, 8, 13, 18, 24, 25, 26, 29, 30, 31, 34, 36, 40, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 59, 61, 63, 65, 66, 67, 69, 71, 73, 75, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 89], "regular": [2, 3, 29, 44], "multi": [2, 3, 7, 25, 26, 29, 30, 31, 35, 36, 37, 40, 41, 46, 47, 48, 49, 54, 55, 67, 76, 78, 79], "task": [2, 4, 25, 29, 34, 36, 37, 38, 40, 45, 47, 55, 57, 67, 69, 74, 75, 76, 78, 81, 83, 86, 88, 89], "cleanlearn": [2, 3, 7, 19, 26, 40, 44, 57, 58, 67, 68, 85, 87, 88], "wrap": [2, 26, 30, 44, 54, 57, 67, 70, 71, 73, 74, 78, 85, 87, 88], "instanc": [2, 3, 4, 5, 7, 10, 13, 15, 16, 18, 19, 20, 21, 22, 23, 26, 30, 36, 44, 53, 54, 57, 62, 69, 70, 71, 73, 74, 77, 78, 87], "sklearn": [2, 3, 4, 7, 25, 30, 36, 40, 44, 54, 57, 58, 67, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 83, 84, 85, 87, 88], "classifi": [2, 3, 30, 36, 40, 45, 48, 54, 55, 67, 68, 69, 73, 74, 76, 80, 81, 83, 84, 86, 87, 88, 89], "adher": [2, 30, 57], "estim": [2, 3, 4, 6, 10, 18, 25, 29, 30, 31, 34, 40, 45, 46, 47, 52, 54, 57, 59, 61, 65, 67, 68, 69, 70, 71, 73, 74, 76, 77, 79, 81, 82, 83, 84, 85, 86, 89], "api": [2, 3, 11, 44, 54, 57, 68, 76, 85], "defin": [2, 3, 4, 5, 7, 11, 18, 25, 26, 27, 29, 30, 31, 55, 57, 59, 70, 71, 73, 80, 83, 89], "four": [2, 7, 75, 78, 89], "clf": [2, 3, 4, 36, 57, 67, 73, 76, 78, 81, 87], "fit": [2, 3, 4, 7, 30, 44, 54, 57, 67, 70, 71, 73, 74, 76, 77, 78, 80, 81, 83, 84, 85, 87, 88, 89], "sample_weight": [2, 30, 57, 78], "predict_proba": [2, 4, 25, 30, 36, 44, 69, 70, 71, 73, 74, 76, 78, 80, 81, 83, 87], "predict": [2, 3, 4, 7, 13, 18, 19, 22, 25, 29, 30, 31, 33, 34, 36, 37, 39, 40, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 75, 76, 78, 79, 83, 85, 86, 88, 89], "score": [2, 3, 4, 5, 7, 10, 15, 16, 18, 19, 20, 21, 22, 25, 29, 31, 33, 36, 38, 45, 46, 47, 49, 50, 52, 54, 55, 57, 58, 61, 63, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 83, 85, 87, 88], "data": [2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 36, 37, 40, 43, 44, 45, 46, 47, 48, 52, 54, 55, 56, 57, 62, 63, 64, 65, 66, 68, 72, 74, 77, 79, 84, 88], "e": [2, 3, 4, 7, 13, 18, 25, 26, 29, 30, 31, 34, 36, 37, 40, 41, 45, 46, 47, 48, 54, 55, 57, 59, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 87, 88], "featur": [2, 3, 4, 7, 13, 15, 19, 20, 21, 22, 36, 40, 54, 57, 67, 70, 71, 73, 74, 78, 80, 85, 87], "element": [2, 3, 4, 25, 31, 33, 40, 45, 47, 55, 62, 63, 65, 69, 74, 76, 88, 89], "first": [2, 7, 14, 20, 21, 25, 29, 36, 40, 45, 46, 50, 53, 55, 57, 69, 70, 73, 76, 77, 80, 81, 82, 83, 85, 86, 87, 88, 89], "index": [2, 7, 20, 25, 31, 38, 39, 40, 41, 46, 55, 57, 62, 65, 66, 69, 70, 71, 73, 75, 77, 78, 80, 82, 83, 85, 86, 88, 89], "should": [2, 3, 4, 5, 7, 11, 13, 18, 20, 25, 26, 29, 30, 31, 33, 34, 36, 39, 40, 44, 45, 46, 49, 50, 52, 53, 54, 55, 57, 58, 62, 63, 65, 66, 69, 70, 71, 73, 74, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "correspond": [2, 3, 4, 7, 10, 13, 15, 16, 18, 19, 20, 21, 22, 25, 26, 29, 30, 31, 33, 34, 36, 39, 40, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 59, 62, 63, 65, 66, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "differ": [2, 4, 5, 7, 10, 12, 17, 20, 25, 26, 28, 29, 30, 31, 32, 36, 40, 41, 43, 45, 50, 52, 54, 57, 69, 70, 71, 73, 74, 77, 78, 80, 83, 84, 87], "sampl": [2, 3, 4, 7, 13, 16, 31, 33, 36, 47, 50, 53, 55, 57, 58, 67, 68, 75, 76, 78, 79, 81, 82, 85, 86, 88, 89], "size": [2, 7, 26, 29, 30, 31, 36, 47, 52, 53, 57, 59, 61, 73, 76, 77, 78, 80, 81, 84, 86, 88], "here": [2, 4, 5, 7, 13, 29, 31, 34, 44, 45, 46, 47, 49, 50, 53, 54, 65, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "re": [2, 4, 26, 30, 39, 45, 57, 67, 69, 70, 73, 74, 76, 85, 86, 87, 88, 89], "weight": [2, 7, 26, 27, 30, 36, 45, 52, 55, 57, 69, 70, 71, 74, 83, 88], "loss": [2, 27, 44, 55, 57, 77], "while": [2, 3, 7, 26, 29, 30, 35, 36, 40, 50, 53, 57, 67, 76, 77, 78, 80, 85], "train": [2, 3, 4, 7, 13, 26, 27, 30, 36, 40, 44, 45, 50, 53, 54, 57, 58, 68, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 86, 89], "support": [2, 3, 4, 9, 29, 36, 40, 41, 54, 55, 65, 67, 68, 69, 70, 71, 76, 77], "your": [2, 3, 4, 6, 7, 13, 25, 26, 28, 29, 30, 31, 36, 40, 43, 44, 45, 46, 47, 49, 54, 55, 57, 58, 59, 61, 62, 68, 69, 73, 75, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "recommend": [2, 4, 7, 10, 13, 29, 31, 45, 70, 71, 76, 77, 84, 85], "furthermor": 2, "correctli": [2, 3, 7, 25, 26, 30, 31, 34, 41, 46, 47, 52, 57, 59, 74, 76, 81, 82, 85, 86, 88], "clonabl": [2, 57], "via": [2, 4, 7, 10, 13, 18, 25, 27, 29, 30, 36, 40, 45, 50, 53, 54, 55, 57, 58, 61, 65, 69, 70, 71, 73, 74, 75, 76, 77, 81, 82, 83, 84, 85, 86, 87, 88, 89], "base": [2, 3, 4, 5, 7, 9, 10, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 29, 30, 31, 34, 35, 36, 38, 39, 40, 41, 44, 45, 46, 47, 49, 52, 54, 55, 57, 58, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 86, 87, 89], "clone": [2, 57, 81], "intern": [2, 3, 5, 7, 8, 9, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 29, 33, 34, 35, 36, 37, 38, 39, 40, 41, 49, 53, 57, 63, 68, 70, 76, 78, 80, 81, 83, 89], "multipl": [2, 3, 4, 9, 10, 25, 31, 39, 45, 46, 47, 49, 52, 53, 57, 67, 70, 71, 76, 77, 79, 81, 82, 85], "g": [2, 3, 4, 7, 18, 25, 26, 30, 31, 37, 40, 47, 48, 54, 55, 57, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 87, 88], "manual": [2, 57, 69, 76, 83, 84, 85, 87, 88, 89], "pytorch": [2, 26, 27, 30, 57, 67, 69, 76, 79, 81, 86], "call": [2, 3, 4, 7, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 26, 30, 36, 40, 44, 54, 57, 69, 70, 71, 74, 76, 78, 83, 84, 86, 88, 89], "__init__": [2, 27, 57, 77], "independ": [2, 3, 7, 46, 57, 84, 89], "compat": [2, 26, 29, 30, 44, 57, 58, 61, 65, 67, 76, 84, 85, 87, 88], "neural": [2, 27, 44, 54, 57, 69, 76, 77, 81, 83], "network": [2, 26, 27, 30, 44, 54, 57, 69, 74, 76, 77, 81, 83, 88], "typic": [2, 26, 30, 54, 57, 69, 71, 73, 74, 77, 83, 84, 87, 88], "initi": [2, 3, 10, 26, 30, 45, 57, 74, 76, 87], "insid": [2, 30, 57, 76, 78], "There": [2, 3, 67, 78, 80, 81], "two": [2, 3, 7, 20, 25, 26, 29, 30, 37, 40, 50, 52, 53, 68, 70, 71, 73, 74, 76, 77, 78, 81, 85, 86, 88, 89], "new": [2, 5, 11, 18, 26, 29, 30, 35, 39, 40, 45, 57, 69, 70, 74, 75, 76, 83, 84, 88, 89], "notion": 2, "confid": [2, 3, 7, 18, 25, 29, 31, 34, 36, 40, 45, 46, 47, 50, 52, 53, 54, 55, 57, 61, 65, 67, 78, 80, 81, 82, 84, 86, 87, 89], "packag": [2, 4, 5, 6, 7, 8, 12, 24, 28, 31, 32, 40, 43, 50, 53, 57, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "prune": [2, 3, 31, 47, 57, 68, 82], "everyth": [2, 78], "els": [2, 70, 75, 76, 77, 80, 81], "mathemat": [2, 3, 7, 34], "keep": [2, 10, 11, 40, 67, 70, 75, 76, 86], "belong": [2, 3, 7, 25, 31, 33, 34, 46, 47, 48, 49, 54, 55, 59, 63, 65, 66, 77, 78, 81, 83, 86, 89], "2": [2, 3, 4, 5, 15, 16, 18, 19, 20, 21, 22, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 44, 46, 47, 49, 54, 55, 57, 58, 62, 63, 65, 66, 75, 76, 84], "error": [2, 3, 4, 7, 10, 26, 30, 31, 33, 34, 38, 40, 46, 47, 49, 50, 52, 53, 55, 57, 59, 61, 62, 65, 68, 69, 70, 71, 73, 74, 75, 79, 87], "erron": [2, 3, 25, 31, 34, 40, 46, 47, 55, 57, 58, 59, 83, 85], "import": [2, 3, 4, 5, 9, 10, 11, 15, 16, 18, 19, 20, 21, 22, 23, 25, 29, 36, 38, 39, 45, 49, 52, 57, 58, 63, 65, 66, 67, 73, 74, 76, 81, 82, 83, 85, 86, 87, 88, 89], "linear_model": [2, 4, 25, 40, 57, 67, 69, 70, 71, 74, 76, 78, 80, 83, 88], "logisticregress": [2, 3, 4, 25, 40, 67, 69, 70, 71, 74, 76, 78, 80, 83, 88], "logreg": 2, "cl": [2, 11, 57, 67, 76, 77, 78, 85, 87, 88], "pass": [2, 3, 4, 7, 9, 10, 11, 13, 19, 23, 26, 29, 30, 31, 35, 36, 40, 44, 45, 47, 54, 55, 57, 63, 67, 69, 70, 71, 74, 75, 76, 78, 80, 82, 83, 85, 88], "x_train": [2, 70, 71, 78, 80, 81, 85, 87], "labels_maybe_with_error": 2, "had": [2, 3, 57, 82], "issu": [2, 3, 4, 8, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 43, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 72, 79, 80, 84, 85, 88], "pred": [2, 31, 40, 84, 85, 87, 88], "x_test": [2, 70, 71, 78, 81, 85, 87], "might": [2, 45, 57, 62, 70, 71, 76, 77, 87, 88], "case": [2, 3, 10, 25, 36, 45, 57, 69, 70, 71, 73, 75, 77, 78, 83, 85, 87, 88, 89], "standard": [2, 3, 4, 25, 31, 44, 46, 47, 49, 55, 57, 67, 70, 71, 73, 75, 78, 87], "adapt": [2, 26, 28, 40, 43, 57, 83], "skorch": [2, 57, 67, 76], "kera": [2, 43, 57, 67, 76], "scikera": [2, 44, 57, 76], "open": [2, 29, 75, 82, 89], "doesn": [2, 57, 67], "t": [2, 3, 7, 14, 21, 26, 27, 29, 30, 31, 36, 38, 39, 49, 54, 55, 57, 63, 65, 66, 67, 70, 71, 75, 77, 78, 81, 82, 89], "alreadi": [2, 4, 13, 26, 29, 30, 34, 44, 45, 57, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 82, 83, 85, 87, 88], "exist": [2, 4, 7, 9, 26, 29, 30, 39, 44, 50, 52, 54, 57, 67, 68, 70, 71, 74, 80, 81, 88, 89], "made": [2, 4, 13, 57, 74, 77, 80, 82, 84, 85, 87, 88], "easi": [2, 34, 57, 70, 71, 75, 76, 78, 81], "inherit": [2, 5, 27, 57], "baseestim": [2, 30, 57], "yourmodel": [2, 57], "def": [2, 5, 11, 26, 30, 44, 57, 69, 70, 71, 75, 76, 77, 78, 80, 81, 83, 85, 88, 89], "self": [2, 3, 4, 5, 9, 10, 11, 13, 26, 27, 29, 30, 31, 36, 54, 55, 57, 70, 75, 77, 81, 86, 87, 89], "refer": [2, 7, 26, 30, 46, 47, 49, 50, 52, 53, 57, 61, 62, 70, 71, 73, 74, 76, 77, 78, 84, 85], "origin": [2, 4, 7, 30, 31, 39, 40, 44, 46, 47, 50, 53, 54, 57, 58, 61, 63, 65, 70, 73, 74, 76, 77, 78, 82, 83, 85, 87, 88, 89], "total": [2, 3, 25, 29, 40, 46, 66, 76, 77, 86], "state": [2, 3, 4, 26, 27, 30, 35, 57, 78, 81, 82, 89], "art": [2, 27, 78, 81], "northcutt": [2, 3, 25, 54, 55], "et": [2, 3, 25, 27, 54, 55], "al": [2, 3, 25, 27, 54, 55], "2021": [2, 3, 25, 54, 55], "weak": 2, "supervis": [2, 7, 70, 71, 76, 80], "find": [2, 4, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 25, 26, 28, 29, 30, 31, 35, 39, 40, 43, 50, 53, 54, 55, 57, 59, 63, 65, 68, 70, 79, 84], "uncertainti": [2, 7, 33, 54, 57, 76, 83, 85], "It": [2, 3, 4, 5, 7, 9, 10, 13, 18, 23, 26, 30, 31, 34, 36, 38, 45, 52, 53, 57, 67, 70, 71, 76, 77, 78, 81, 84], "work": [2, 3, 5, 7, 9, 25, 26, 29, 30, 31, 34, 39, 40, 41, 44, 45, 55, 57, 67, 68, 70, 71, 75, 83, 85, 88], "includ": [2, 3, 4, 5, 7, 10, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 39, 40, 43, 45, 46, 49, 50, 54, 55, 57, 61, 62, 63, 65, 67, 68, 70, 71, 73, 74, 76, 77, 78, 81, 82, 83, 89], "deep": [2, 28, 30, 43, 44, 57, 74], "see": [2, 3, 4, 10, 25, 26, 29, 30, 31, 36, 40, 44, 46, 47, 49, 50, 53, 54, 55, 57, 63, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 80, 81, 82, 83, 85, 86, 87, 88, 89], "subfield": 2, "theori": [2, 78], "machin": [2, 28, 43, 57, 70, 71, 75, 80], "across": [2, 3, 4, 5, 7, 10, 13, 18, 25, 29, 36, 46, 53, 54, 70, 71, 73, 74, 75, 76, 77, 78, 82, 84], "varieti": [2, 87, 88], "like": [2, 3, 4, 5, 7, 11, 13, 25, 26, 29, 30, 31, 34, 40, 44, 45, 46, 49, 50, 52, 55, 57, 58, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "pu": [2, 40], "input": [2, 3, 4, 7, 13, 20, 25, 26, 29, 30, 34, 36, 39, 40, 41, 44, 53, 57, 67, 68, 71, 74, 75, 76, 77, 78, 80, 81, 82, 85, 86, 88, 89], "discret": [2, 31, 34, 40, 54, 55, 59, 61, 62], "vector": [2, 3, 4, 7, 13, 31, 34, 36, 37, 40, 54, 55, 67, 69, 70, 71, 73, 74, 77, 78, 81, 82, 83, 86, 88, 89], "would": [2, 3, 4, 26, 29, 30, 31, 40, 47, 57, 67, 70, 76, 77, 78, 83, 85, 88, 89], "obtain": [2, 4, 7, 13, 31, 45, 47, 50, 53, 55, 58, 69, 71, 74, 76, 80, 82, 84, 86, 89], "been": [2, 25, 31, 34, 39, 40, 45, 46, 50, 52, 54, 55, 57, 69, 70, 73, 76, 77, 78, 80, 81, 82, 83, 86, 89], "dure": [2, 13, 54, 57, 69, 73, 74, 76, 78, 81, 84, 85, 87, 88, 89], "denot": [2, 3, 34, 36, 40, 47, 54, 55, 65], "tild": 2, "paper": [2, 7, 45, 54, 63, 65, 75, 78, 80, 83, 85, 89], "cv_n_fold": [2, 3, 57, 88], "5": [2, 3, 4, 15, 16, 18, 19, 20, 21, 22, 23, 25, 30, 31, 33, 35, 36, 40, 45, 46, 49, 50, 53, 57, 58, 65, 70, 74, 75, 76, 81, 82, 83, 84, 86, 88, 89], "converge_latent_estim": [2, 3], "pulearn": [2, 40], "find_label_issues_kwarg": [2, 7, 57, 68, 76, 78], "label_quality_scores_kwarg": [2, 7], "low_memori": [2, 47, 63, 76], "clean": [2, 52, 55, 57, 58, 67, 70, 71, 75, 85, 87, 88], "even": [2, 3, 25, 29, 33, 34, 40, 57, 69, 76, 78, 80, 81, 82], "messi": [2, 57, 78], "ridden": [2, 57], "autom": [2, 57, 67, 71, 75, 76], "robust": [2, 34, 57, 71, 76], "prone": [2, 57], "out": [2, 3, 4, 7, 13, 22, 26, 30, 31, 36, 44, 47, 48, 50, 53, 54, 55, 57, 58, 66, 67, 68, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 89], "current": [2, 3, 7, 10, 11, 18, 26, 30, 31, 36, 45, 52, 57, 70, 71, 76, 80], "intend": [2, 10, 11, 12, 13, 23, 32, 45, 61, 65, 69, 70, 71, 74, 78], "A": [2, 3, 4, 5, 7, 9, 10, 11, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 30, 31, 34, 35, 36, 37, 39, 40, 44, 45, 46, 49, 52, 53, 54, 55, 57, 59, 61, 62, 66, 68, 69, 70, 73, 74, 75, 76, 77, 78, 80, 82, 84, 87, 88, 89], "follow": [2, 3, 7, 11, 25, 26, 29, 30, 36, 38, 45, 46, 50, 52, 53, 54, 57, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "experiment": [2, 26, 27, 29, 30, 47, 68, 76], "wrapper": [2, 4, 44, 69, 85, 87, 88], "around": [2, 4, 52, 70, 71, 82, 83, 89], "fasttext": [2, 43], "store": [2, 4, 7, 9, 10, 13, 15, 16, 18, 19, 20, 21, 22, 23, 26, 29, 30, 54, 57, 73, 74, 75, 86, 87, 88, 89], "along": [2, 36, 47, 65, 70, 71, 76, 77, 83], "dimens": [2, 38, 40, 59, 62, 76, 77, 83, 86], "select": [2, 6, 20, 45, 55, 77, 80, 83], "split": [2, 3, 4, 7, 9, 29, 36, 39, 40, 57, 69, 70, 71, 73, 74, 75, 77, 78, 81, 84, 87, 89], "cross": [2, 3, 7, 25, 31, 34, 35, 36, 47, 50, 53, 55, 57, 58, 68, 69, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 85, 86, 87, 88, 89], "fold": [2, 3, 25, 31, 34, 57, 69, 73, 75, 76, 82, 86, 87], "By": [2, 25, 46, 47, 57, 70, 86], "need": [2, 3, 7, 25, 26, 29, 30, 31, 46, 47, 49, 54, 57, 67, 69, 70, 71, 74, 76, 78, 80, 81, 82, 86, 88], "holdout": [2, 3, 57], "comput": [2, 3, 4, 5, 7, 10, 15, 16, 18, 19, 20, 21, 22, 25, 26, 27, 29, 30, 31, 33, 34, 35, 36, 38, 40, 45, 46, 47, 49, 52, 53, 54, 55, 57, 58, 59, 61, 67, 68, 70, 71, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88], "them": [2, 3, 4, 5, 6, 7, 8, 24, 26, 28, 29, 30, 31, 43, 45, 54, 57, 68, 70, 71, 73, 74, 76, 77, 80, 81, 83, 85, 86, 87, 88, 89], "numer": [2, 3, 4, 7, 10, 18, 36, 52, 54, 57, 62, 67, 68, 69, 70, 71, 72, 74, 77, 78, 80, 83, 85, 87, 88], "consist": [2, 3, 26, 30, 40, 45, 86, 89], "latent": [2, 3, 34], "thei": [2, 3, 12, 17, 20, 26, 27, 28, 30, 31, 32, 40, 44, 47, 52, 55, 57, 58, 61, 65, 67, 69, 70, 71, 73, 74, 76, 77, 78, 80, 83, 85, 88, 89], "relat": [2, 3, 10, 15, 16, 20, 21, 22, 34, 40, 46, 57, 71], "close": [2, 3, 7, 29, 34, 54, 69, 70, 71, 73, 74, 76, 77, 78, 82], "form": [2, 3, 7, 26, 27, 30, 34, 39, 40, 55, 57, 76], "equival": [2, 3, 26, 30, 34, 54, 83], "iter": [2, 3, 25, 26, 30, 31, 40, 46, 47, 57, 80, 86], "enforc": [2, 26, 30, 40], "perfectli": [2, 25, 46, 78], "certain": [2, 3, 4, 13, 26, 30, 44, 57, 70, 71, 75, 83], "dict": [2, 3, 4, 7, 9, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 25, 26, 29, 30, 31, 35, 36, 40, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 65, 70, 71, 76, 77, 89], "keyword": [2, 3, 4, 7, 13, 19, 26, 29, 30, 31, 33, 36, 39, 44, 45, 47, 54, 55, 57, 63, 65, 70], "filter": [2, 3, 7, 29, 39, 46, 48, 49, 51, 60, 61, 62, 64, 65, 66, 67, 68, 69, 74, 75, 76, 77, 81, 82, 85, 86, 87, 88, 89], "find_label_issu": [2, 3, 7, 29, 31, 46, 47, 49, 50, 52, 57, 59, 61, 62, 63, 65, 66, 67, 68, 76, 81, 82, 85, 86, 87, 88, 89], "particularli": [2, 67, 80, 83], "filter_bi": [2, 3, 29, 31, 47, 68, 76], "frac_nois": [2, 31, 47, 63, 76], "min_examples_per_class": [2, 31, 47, 76, 78], "impact": [2, 7, 70, 71, 77], "ml": [2, 4, 7, 57, 67, 70, 71, 73, 74, 77, 80, 87, 88], "accuraci": [2, 27, 55, 69, 76, 77, 78, 80, 83, 85, 86, 87, 88], "n_job": [2, 29, 31, 47, 59, 61, 63, 76, 83, 86], "disabl": [2, 26, 30, 31, 83], "process": [2, 3, 5, 13, 29, 31, 39, 45, 47, 59, 61, 63, 69, 70, 80, 84, 88], "caus": [2, 31, 36, 70, 71], "rank": [2, 3, 25, 29, 31, 36, 46, 47, 48, 50, 51, 53, 54, 56, 60, 62, 63, 64, 66, 67, 68, 70, 71, 75, 76, 81, 82, 83, 85, 86, 87, 88, 89], "get_label_quality_scor": [2, 29, 31, 36, 45, 47, 49, 50, 52, 55, 58, 61, 63, 65, 68, 78, 81, 82, 85, 86, 89], "adjust_pred_prob": [2, 7, 49, 54, 55, 78], "control": [2, 4, 6, 7, 13, 29, 31, 38, 45, 53, 54, 57, 63, 65, 70, 71, 75, 76], "how": [2, 3, 4, 7, 10, 11, 13, 18, 25, 26, 27, 29, 30, 34, 40, 45, 46, 49, 50, 52, 54, 55, 57, 61, 65, 67, 70, 71, 73, 74, 75, 77, 82, 83, 84, 85, 86, 87, 88], "much": [2, 7, 25, 29, 31, 57, 76, 78, 80, 83], "output": [2, 3, 4, 7, 13, 26, 27, 30, 34, 40, 44, 45, 46, 50, 52, 53, 54, 57, 61, 62, 65, 66, 67, 68, 69, 70, 74, 75, 76, 77, 82, 83, 84, 85, 88], "print": [2, 4, 5, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 40, 45, 46, 47, 52, 54, 55, 57, 59, 61, 62, 66, 68, 69, 71, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "suppress": [2, 29, 45, 52, 54, 55, 57, 59, 61, 62, 86, 89], "statement": [2, 29, 45, 52, 54, 55, 57, 59, 61, 62], "big": [2, 29, 47, 53, 57, 78], "limit": [2, 4, 13, 29, 47, 82, 86, 89], "memori": [2, 26, 29, 30, 47, 53, 59, 61, 70, 86], "label_issues_batch": [2, 28, 47, 76], "find_label_issues_batch": [2, 29, 47, 76], "pred_prob": [2, 3, 4, 7, 13, 19, 20, 22, 25, 29, 31, 33, 34, 35, 36, 37, 40, 41, 45, 46, 47, 49, 50, 53, 54, 55, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 87, 88], "threshold": [2, 3, 5, 7, 15, 16, 18, 22, 29, 52, 53, 54, 55, 61, 65, 70, 82, 83, 86, 89], "inverse_noise_matrix": [2, 3, 7, 34, 40, 68, 78], "label_issu": [2, 29, 31, 47, 50, 57, 59, 68, 69, 74, 76, 77, 78, 85, 87, 88], "clf_kwarg": [2, 3, 7, 57], "clf_final_kwarg": [2, 57], "validation_func": [2, 3, 7], "correct": [2, 7, 25, 29, 31, 33, 45, 46, 47, 49, 50, 52, 53, 55, 57, 58, 61, 65, 67, 69, 73, 74, 77, 78, 80, 82, 84, 85], "result": [2, 3, 7, 10, 13, 15, 16, 18, 19, 20, 21, 22, 26, 29, 30, 31, 33, 40, 47, 49, 50, 53, 55, 57, 58, 59, 61, 65, 69, 70, 71, 73, 74, 76, 77, 78, 80, 85, 86, 87, 88, 89], "identifi": [2, 3, 4, 5, 7, 9, 13, 23, 25, 29, 31, 47, 50, 55, 57, 58, 59, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 81, 83, 85, 86, 87, 88, 89], "final": [2, 7, 57, 73, 82, 84, 85, 87], "remain": [2, 57, 68, 77, 85, 87, 88, 89], "datasetlik": [2, 40, 57], "beyond": [2, 4, 5, 6, 8, 24, 67, 86], "pd": [2, 3, 4, 5, 10, 15, 16, 18, 19, 20, 21, 22, 25, 35, 44, 45, 46, 57, 65, 69, 70, 71, 73, 74, 76, 78, 80, 85, 87, 88, 89], "datafram": [2, 3, 4, 5, 9, 10, 15, 16, 18, 19, 20, 21, 22, 25, 29, 35, 40, 41, 44, 45, 46, 57, 62, 66, 68, 69, 70, 71, 73, 74, 76, 77, 78, 80, 85, 86, 88, 89], "scipi": [2, 10, 40], "spars": [2, 4, 7, 10, 13, 40, 41, 73], "csr_matrix": [2, 4, 10, 13], "torch": [2, 26, 27, 30, 69, 74, 75, 77, 83, 88], "util": [2, 4, 13, 23, 26, 27, 30, 32, 45, 57, 67, 68, 69, 70, 71, 76, 77, 78, 83], "tensorflow": [2, 40, 44, 67, 69, 76], "object": [2, 4, 9, 10, 13, 23, 26, 27, 29, 30, 36, 40, 41, 44, 47, 50, 51, 52, 53, 54, 57, 65, 67, 69, 71, 73, 77, 78, 79, 85, 88], "list": [2, 3, 4, 9, 13, 15, 16, 18, 19, 20, 21, 22, 25, 26, 27, 29, 30, 31, 37, 39, 40, 41, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 75, 77, 78, 81, 82, 85, 88, 89], "index_list": 2, "subset": [2, 3, 4, 13, 25, 29, 31, 40, 55, 62, 66, 69, 73, 74, 76, 77, 81, 82, 83, 84, 85, 87, 88, 89], "wa": [2, 3, 9, 11, 29, 40, 45, 46, 52, 54, 66, 69, 70, 71, 73, 74, 76, 78, 81, 82, 84, 86, 87, 88, 89], "abl": [2, 3, 7, 57, 69, 76, 78, 80, 81], "format": [2, 3, 4, 7, 9, 26, 29, 30, 31, 34, 35, 36, 37, 40, 41, 44, 45, 46, 47, 50, 53, 54, 55, 57, 59, 61, 62, 65, 66, 70, 71, 73, 75, 77, 80, 85, 86, 87, 89], "make": [2, 3, 26, 29, 30, 36, 44, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 87, 88], "sure": [2, 29, 31, 36, 69, 70, 71, 73, 74, 75, 77, 80, 81, 82, 83, 85, 87, 88], "shuffl": [2, 7, 40, 69, 77, 81, 83], "ha": [2, 3, 4, 7, 15, 16, 17, 18, 19, 20, 21, 22, 26, 30, 34, 36, 39, 40, 45, 50, 52, 57, 63, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 80, 81, 82, 83, 84, 85, 87, 88, 89], "batch": [2, 29, 40, 44, 45, 59, 61, 76, 77, 83], "order": [2, 7, 25, 26, 30, 31, 34, 35, 36, 38, 40, 45, 46, 47, 50, 53, 54, 55, 59, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 82, 85, 86, 88, 89], "destroi": [2, 40], "oper": [2, 26, 29, 30, 40, 44, 55, 67, 74, 83, 87, 88], "eg": [2, 7, 40, 50, 53, 70, 71, 76], "repeat": [2, 40, 45, 80, 83], "appli": [2, 26, 30, 31, 36, 37, 39, 40, 49, 54, 63, 69, 70, 73, 77, 80, 81, 83, 84, 85, 86, 87, 88], "array_lik": [2, 3, 25, 31, 40, 47, 54, 58], "some": [2, 3, 4, 7, 11, 18, 25, 26, 28, 30, 31, 34, 39, 40, 43, 45, 46, 47, 49, 50, 53, 54, 55, 57, 59, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89], "seri": [2, 3, 29, 40, 41, 57, 65], "row": [2, 3, 4, 10, 13, 21, 25, 29, 31, 33, 34, 38, 40, 45, 46, 47, 49, 54, 55, 57, 62, 63, 65, 66, 69, 70, 73, 74, 75, 76, 77, 80, 81, 83, 87, 89], "rather": [2, 3, 20, 25, 40, 44, 45, 52, 61, 65, 80, 84, 86, 88, 89], "leav": [2, 31], "per": [2, 3, 10, 25, 29, 31, 36, 39, 45, 46, 47, 49, 52, 55, 58, 59, 61, 65, 71, 76, 82, 89], "determin": [2, 3, 7, 13, 18, 20, 25, 29, 31, 36, 40, 45, 47, 50, 52, 55, 61, 65, 70, 80, 83, 85], "cutoff": [2, 3, 83], "consid": [2, 3, 4, 7, 10, 13, 19, 20, 22, 25, 26, 30, 31, 40, 45, 52, 54, 55, 58, 61, 65, 69, 71, 73, 74, 76, 77, 78, 82, 83, 84, 85, 86, 87, 88], "section": [2, 3, 5, 7, 68, 73, 77], "3": [2, 3, 4, 5, 25, 26, 30, 31, 34, 35, 36, 37, 38, 39, 40, 44, 47, 54, 55, 57, 58, 63, 65, 75, 76, 84], "equat": [2, 3, 34], "advanc": [2, 3, 4, 6, 13, 52, 54, 65, 68, 71, 72, 78], "user": [2, 3, 4, 11, 13, 23, 26, 30, 31, 52, 54, 55, 57, 61, 65, 78], "specifi": [2, 3, 4, 7, 10, 13, 23, 26, 29, 30, 31, 36, 39, 45, 46, 47, 50, 52, 54, 55, 57, 58, 66, 68, 69, 71, 74, 76, 77, 80, 82, 85, 88], "automat": [2, 3, 4, 20, 25, 67, 73, 74, 75, 76, 77, 80, 82, 85, 86, 87, 88, 89], "greater": [2, 3, 4, 6, 7, 22, 29, 38, 40, 52, 71, 75, 76, 89], "count": [2, 18, 20, 25, 29, 31, 34, 40, 46, 47, 53, 68, 76, 77], "observ": [2, 3, 34, 69, 70, 71, 80, 83, 85], "mislabel": [2, 7, 25, 29, 31, 34, 45, 46, 47, 50, 52, 55, 61, 63, 65, 67, 69, 73, 74, 76, 77, 78, 81, 82, 85, 87, 88], "one": [2, 3, 4, 7, 20, 25, 26, 29, 30, 31, 36, 40, 45, 46, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 77, 80, 83, 84, 85, 87, 88, 89], "get_label_issu": [2, 29, 57, 78, 85, 87, 88], "either": [2, 3, 5, 7, 26, 29, 30, 31, 45, 47, 52, 54, 55, 59, 61, 71, 81, 82], "boolean": [2, 5, 7, 18, 29, 31, 39, 45, 47, 50, 55, 57, 59, 61, 62, 67, 69, 71, 74, 76, 77, 82, 85, 86, 88], "label_issues_mask": [2, 31, 55, 57, 68], "indic": [2, 3, 4, 5, 7, 10, 18, 25, 29, 30, 31, 33, 36, 40, 44, 45, 46, 47, 49, 50, 52, 54, 55, 57, 58, 61, 63, 65, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "its": [2, 4, 6, 7, 13, 26, 29, 30, 31, 38, 39, 47, 50, 53, 54, 55, 57, 59, 63, 65, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 82, 83, 84, 85, 86, 88, 89], "return_indices_ranked_bi": [2, 29, 31, 47, 63, 68, 76, 78, 81, 87, 88], "significantli": [2, 77, 78, 80, 84], "reduc": [2, 29, 31, 40, 69, 76], "time": [2, 7, 26, 29, 30, 40, 45, 68, 70, 75, 76, 77, 78, 82, 83, 85, 86, 87, 88, 89], "take": [2, 4, 7, 13, 25, 26, 30, 35, 36, 40, 44, 55, 73, 77, 80, 87, 89], "run": [2, 4, 5, 6, 8, 13, 20, 24, 26, 29, 30, 57, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 87, 88, 89], "skip": [2, 7, 26, 30, 57, 69, 76, 81, 89], "slow": [2, 3], "step": [2, 5, 20, 36, 76, 77, 78, 80, 84], "caution": [2, 4, 76], "previous": [2, 4, 10, 40, 54, 57, 68, 69, 70, 73, 74, 80, 84, 87], "assign": [2, 5, 15, 16, 18, 19, 20, 21, 22, 35, 36, 40, 57, 70, 73, 76, 77, 85, 86, 87, 89], "individu": [2, 10, 20, 26, 30, 45, 49, 52, 55, 57, 63, 65, 68, 71, 73, 76, 80, 81, 82, 87, 89], "still": [2, 29, 30, 40, 54, 76, 77, 83, 87], "extra": [2, 26, 30, 40, 44, 45, 46, 57, 74, 76, 77, 80, 83], "receiv": [2, 7, 26, 30, 46, 49, 50, 57, 59, 63, 71, 82], "overwritten": [2, 57], "callabl": [2, 3, 36, 39, 44, 49], "x_val": 2, "y_val": 2, "map": [2, 3, 29, 30, 35, 39, 40, 53, 55, 57, 62, 69, 70, 71, 76, 77, 78, 81, 89], "appropri": [2, 7, 13, 47, 55, 70, 73, 81, 82], "earli": [2, 77], "stop": [2, 77], "x_valid": 2, "y_valid": 2, "could": [2, 18, 25, 40, 54, 70, 73, 77, 81, 85, 87, 89], "f": [2, 5, 69, 70, 73, 74, 75, 76, 77, 78, 80, 81, 83, 85, 87, 88], "ignor": [2, 26, 30, 39, 44, 57, 62, 66, 69, 70, 71, 75, 77, 78, 80, 81, 83, 85, 89], "allow": [2, 25, 26, 29, 30, 33, 40, 45, 53, 54, 57, 59, 61, 69, 76, 77, 84, 86, 88], "access": [2, 7, 10, 26, 30, 57, 71, 77, 81], "hyperparamet": [2, 49, 54, 77], "purpos": [2, 70, 71, 76, 81, 85], "want": [2, 4, 25, 29, 41, 45, 47, 57, 70, 74, 75, 77, 80, 82, 83, 84, 86, 88, 89], "explicitli": [2, 30, 57], "yourself": [2, 4, 29, 71], "altern": [2, 7, 36, 40, 44, 45, 55, 68, 69, 73, 74, 76, 77, 78, 80, 81, 83, 85, 88], "same": [2, 3, 4, 5, 7, 9, 11, 20, 26, 29, 30, 31, 40, 44, 45, 47, 54, 55, 57, 61, 62, 65, 66, 67, 70, 71, 73, 74, 76, 77, 82, 83, 84, 85, 86, 87, 88], "effect": [2, 7, 26, 30, 45, 54, 57, 73, 74, 76, 83], "offer": [2, 4, 69, 70, 71, 74, 76, 78, 81, 88], "after": [2, 3, 4, 10, 15, 16, 18, 19, 20, 21, 22, 26, 30, 40, 45, 57, 70, 74, 76, 77, 78, 80, 82, 83, 84, 85, 86, 88], "attribut": [2, 4, 5, 7, 9, 10, 13, 15, 16, 18, 19, 20, 21, 22, 23, 26, 29, 30, 36, 54, 57, 70, 87], "label_issues_df": [2, 57, 77], "similar": [2, 7, 25, 26, 30, 38, 40, 45, 49, 50, 52, 54, 57, 61, 65, 70, 71, 73, 74, 76, 77, 78, 82, 83, 86], "document": [2, 3, 4, 7, 11, 25, 26, 29, 30, 31, 36, 39, 44, 46, 47, 49, 52, 53, 54, 57, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 87, 88, 89], "descript": [2, 4, 5, 7, 15, 16, 18, 19, 20, 21, 22, 23, 25, 40, 50, 57, 70, 71], "were": [2, 3, 4, 25, 30, 46, 52, 65, 69, 73, 76, 78, 80, 82, 84, 86, 87], "present": [2, 3, 4, 7, 9, 10, 16, 25, 40, 54, 62, 67, 73, 76, 77, 83], "actual": [2, 3, 4, 25, 45, 46, 55, 71, 76, 78, 89], "num_class": [2, 25, 29, 40, 44, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 83, 87, 88], "uniqu": [2, 40, 62, 70, 76, 81, 83], "given_label": [2, 4, 25, 34, 57, 62, 66, 69, 70, 71, 73, 74, 77, 78, 85, 86, 88, 89], "normal": [2, 3, 20, 31, 33, 36, 39, 40, 55, 76, 78, 83], "trick": [2, 76], "distribut": [2, 3, 4, 7, 13, 20, 22, 25, 30, 31, 35, 45, 53, 54, 55, 67, 70, 71, 73, 74, 77, 83], "account": [2, 25, 45, 49, 54, 55, 74, 76, 78, 80, 81, 83, 85, 88], "word": [2, 3, 39, 65, 66, 76], "remov": [2, 7, 25, 26, 30, 31, 57, 67, 74, 75, 76, 77, 83, 85, 87, 88], "so": [2, 3, 5, 7, 11, 20, 25, 26, 29, 30, 31, 40, 45, 46, 52, 55, 57, 61, 65, 69, 70, 71, 74, 77, 78, 83, 86], "proportion": [2, 7, 31], "just": [2, 3, 4, 7, 10, 25, 27, 29, 40, 44, 55, 57, 59, 67, 68, 69, 71, 73, 74, 76, 77, 78, 81, 82, 83, 84, 86, 87, 88], "procedur": 2, "get": [2, 3, 4, 10, 26, 27, 30, 31, 36, 39, 40, 45, 47, 49, 54, 55, 57, 58, 59, 67, 69, 74, 75, 76, 77, 78, 83, 84, 85, 87, 88], "detect": [2, 4, 5, 6, 10, 11, 13, 18, 22, 38, 48, 50, 51, 52, 53, 54, 55, 56, 57, 60, 64, 67, 70, 72, 77, 79, 81, 85, 86, 87, 88, 89], "arg": [2, 9, 18, 26, 27, 30, 36, 40, 55, 57], "kwarg": [2, 5, 7, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 26, 29, 30, 36, 44, 57, 59, 61, 63, 76], "test": [2, 7, 20, 30, 36, 44, 57, 67, 70, 71, 73, 74, 77, 84, 85, 87, 88, 89], "expect": [2, 3, 26, 30, 31, 36, 45, 54, 55, 57, 76, 78, 80, 81, 82, 85, 87, 88, 89], "class_predict": 2, "evalu": [2, 7, 26, 27, 29, 30, 57, 69, 70, 71, 76, 77, 78, 80, 84, 85, 86, 87, 88], "simpli": [2, 25, 55, 70, 71, 73, 74, 76, 78, 85, 86, 88, 89], "quantifi": [2, 4, 5, 7, 10, 31, 49, 54, 57, 67, 71, 73, 74, 77, 78, 82], "save_spac": [2, 7, 57], "potenti": [2, 7, 25, 31, 39, 47, 50, 55, 57, 59, 61, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 86, 87, 89], "cach": [2, 74, 83, 88], "panda": [2, 4, 5, 9, 15, 16, 18, 19, 20, 21, 22, 25, 40, 41, 44, 45, 46, 68, 69, 70, 71, 73, 74, 75, 78, 80, 85, 86, 87, 88], "unlik": [2, 31, 33, 36, 44, 46, 47, 49, 65, 70, 80, 81, 83, 85], "both": [2, 4, 7, 13, 20, 25, 26, 30, 31, 40, 45, 47, 55, 59, 61, 66, 67, 70, 76, 77, 78, 80, 89], "mask": [2, 29, 31, 39, 40, 47, 50, 55, 57, 59, 61, 62, 67, 75, 76, 80, 82, 86, 89], "prefer": [2, 55, 63], "plan": 2, "subsequ": [2, 3, 26, 30, 74, 76, 78, 82, 88], "invok": [2, 26, 30, 78, 84], "scratch": [2, 57], "To": [2, 4, 5, 6, 7, 8, 10, 13, 20, 24, 26, 29, 30, 31, 44, 45, 47, 49, 53, 54, 55, 57, 58, 59, 61, 67, 69, 70, 71, 73, 74, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "share": [2, 55, 57], "mostli": [2, 40, 52, 57], "longer": [2, 35, 39, 57, 68, 74, 76, 82, 88], "info": [2, 4, 5, 10, 15, 16, 18, 19, 20, 21, 22, 25, 46, 57, 65, 70, 71, 75, 76, 89], "about": [2, 3, 4, 5, 7, 10, 15, 16, 18, 19, 20, 21, 22, 23, 25, 27, 29, 33, 45, 46, 49, 57, 62, 65, 69, 70, 73, 74, 75, 76, 77, 78, 80, 83], "docstr": [2, 25, 26, 30, 40, 57, 75, 78], "unless": [2, 26, 30, 57, 76], "our": [2, 3, 7, 44, 45, 55, 57, 67, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "is_label_issu": [2, 57, 69, 70, 71, 73, 74, 77, 78, 85, 88], "entir": [2, 7, 20, 29, 31, 34, 46, 47, 52, 55, 57, 59, 61, 62, 67, 70, 71, 76, 82, 83, 84, 86, 89], "accur": [2, 3, 4, 7, 13, 25, 29, 31, 45, 46, 47, 50, 53, 55, 57, 58, 59, 61, 62, 68, 71, 73, 74, 76, 77, 80, 85], "label_qu": [2, 45, 57, 78, 80, 85, 88], "measur": [2, 25, 45, 46, 57, 67, 75, 76, 78, 80, 81, 86, 87, 89], "qualiti": [2, 3, 4, 5, 7, 10, 25, 29, 31, 33, 36, 45, 46, 47, 49, 50, 52, 55, 57, 58, 61, 63, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 85, 87, 88], "lower": [2, 4, 5, 7, 10, 22, 29, 36, 45, 46, 49, 52, 55, 57, 58, 61, 65, 69, 71, 73, 74, 77, 80, 81, 82, 83, 85, 86, 88, 89], "eas": 2, "comparison": [2, 26, 30, 78, 80, 85], "against": [2, 26, 30, 70, 73, 76, 80, 81], "predicted_label": [2, 4, 57, 62, 66, 69, 70, 71, 73, 74, 77, 78, 85, 86, 88], "ad": [2, 26, 30, 71, 80, 85], "precis": [2, 47, 50, 76, 78, 86, 89], "definit": [2, 5, 57, 73, 87], "accessor": [2, 57], "describ": [2, 7, 45, 54, 55, 57, 63, 65, 78, 80, 81, 82, 84, 89], "precomput": [2, 34, 57, 75], "clear": [2, 57, 74, 85, 88], "save": [2, 4, 13, 26, 29, 30, 53, 57, 76, 82, 86, 89], "space": [2, 7, 54, 57, 73, 75, 77], "place": [2, 26, 30, 40, 57, 80, 87], "larg": [2, 29, 57, 76, 83, 86, 89], "deploi": [2, 57, 76], "care": [2, 7, 26, 30, 57, 76, 78], "avail": [2, 4, 5, 9, 13, 23, 30, 57, 78, 80, 82, 85], "cannot": [2, 4, 9, 13, 40, 84, 89], "anymor": 2, "classmethod": [2, 15, 16, 18, 19, 20, 21, 22, 30, 36, 57], "__init_subclass__": [2, 30, 57], "set_": [2, 30, 57], "_request": [2, 30, 57], "pep": [2, 30, 57], "487": [2, 30, 57], "look": [2, 4, 5, 13, 26, 30, 40, 57, 62, 70, 71, 73, 76, 78, 80, 81, 82, 83, 86, 87, 89], "inform": [2, 4, 5, 7, 10, 13, 23, 26, 30, 40, 45, 46, 50, 53, 57, 62, 65, 66, 67, 69, 70, 73, 74, 78, 80, 83, 86, 89], "__metadata_request__": [2, 30, 57], "infer": [2, 30, 40, 57, 62, 66, 77, 80, 81, 85, 87, 88], "signatur": [2, 26, 30, 57], "accept": [2, 26, 30, 55, 57, 70, 71], "metadata": [2, 30, 57, 89], "through": [2, 4, 5, 30, 57, 69, 71, 74, 75, 80, 83, 85, 88], "develop": [2, 6, 30, 57, 76, 78, 89], "request": [2, 30, 57, 71, 74, 75, 81, 87, 88, 89], "those": [2, 3, 7, 29, 30, 31, 44, 45, 47, 57, 61, 65, 66, 67, 69, 76, 77, 82, 86], "http": [2, 4, 5, 6, 7, 8, 24, 26, 27, 29, 30, 33, 40, 54, 57, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "www": [2, 30, 57, 83], "org": [2, 26, 27, 30, 40, 54, 57, 76, 78, 89], "dev": [2, 30, 57], "0487": [2, 30, 57], "get_metadata_rout": [2, 30, 57], "rout": [2, 30, 57], "pleas": [2, 26, 30, 44, 57, 67, 69, 70, 71, 74, 75, 76, 77, 78, 80, 81, 83, 85, 88, 89], "guid": [2, 5, 30, 57, 68, 77], "mechan": [2, 26, 30, 57], "metadatarequest": [2, 30, 57], "encapsul": [2, 13, 30, 52, 57], "get_param": [2, 30, 44, 57], "subobject": [2, 30, 57], "param": [2, 7, 26, 30, 44, 54, 57], "name": [2, 4, 5, 7, 9, 10, 25, 26, 30, 35, 36, 40, 44, 45, 46, 53, 57, 62, 66, 69, 71, 74, 75, 77, 78, 81, 86, 88, 89], "set_fit_request": [2, 30, 57], "union": [2, 3, 4, 9, 29, 30, 36, 40, 41, 47, 53, 57, 61, 65], "str": [2, 3, 4, 9, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 34, 36, 39, 40, 44, 45, 46, 50, 52, 53, 55, 57, 62, 66, 69, 70, 80, 81, 89], "unchang": [2, 26, 30, 57, 89], "relev": [2, 13, 20, 30, 57, 77], "enable_metadata_rout": [2, 30, 57], "set_config": [2, 30, 57], "meta": [2, 30, 57], "rais": [2, 4, 9, 10, 26, 30, 33, 36, 57, 76], "alia": [2, 26, 30, 57], "metadata_rout": [2, 30, 57], "retain": [2, 30, 40, 57], "chang": [2, 26, 29, 30, 33, 57, 65, 69, 70, 74, 76, 82, 83, 88, 89], "version": [2, 4, 5, 6, 7, 8, 12, 17, 24, 26, 28, 30, 32, 33, 40, 43, 44, 55, 57, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 87, 88, 89], "sub": [2, 30, 52, 57], "pipelin": [2, 30, 57], "otherwis": [2, 7, 25, 26, 29, 30, 31, 37, 39, 40, 47, 54, 57, 59, 61, 62, 66, 74, 76, 88], "updat": [2, 10, 26, 29, 30, 57, 68, 70, 77], "set_param": [2, 30, 44, 57], "simpl": [2, 26, 30, 31, 45, 55, 57, 70, 71, 73, 74, 77, 80, 83, 85, 87, 88], "well": [2, 3, 7, 26, 30, 33, 34, 45, 47, 55, 57, 62, 65, 66, 68, 70, 71, 73, 74, 76, 77, 78, 80, 82, 83], "nest": [2, 26, 30, 57, 63, 65, 66, 89], "latter": [2, 26, 30, 57, 83], "compon": [2, 30, 57], "__": [2, 30, 57], "set_score_request": [2, 57], "structur": [3, 54, 73, 87], "unobserv": 3, "less": [3, 4, 7, 29, 36, 45, 54, 55, 59, 61, 65, 73, 75, 76, 77, 78, 82, 89], "channel": [3, 69, 78], "character": 3, "flip": 3, "nm": 3, "invers": [3, 7, 25, 34, 40, 46, 71, 75, 88], "inv": 3, "confident_joint": [3, 18, 25, 31, 40, 46, 47, 68, 76, 78], "un": 3, "under": [3, 7, 26, 30, 46, 53, 54, 83], "joint": [3, 25, 31, 34, 40, 46, 47, 75], "num_label_issu": [3, 29, 31, 47, 62, 66, 68], "estimation_method": [3, 29], "off_diagon": 3, "multi_label": [3, 25, 31, 40, 41, 47, 81], "don": [3, 67, 71, 78, 82], "statis": 3, "compute_confident_joint": [3, 25, 31, 40, 47, 78], "off": [3, 31, 40, 52, 77, 78, 82, 83], "j": [3, 4, 13, 25, 26, 30, 31, 47, 50, 53, 54, 63, 65, 66, 70, 71, 78, 86, 89], "confident_learn": [3, 31, 47, 78], "off_diagonal_calibr": 3, "calibr": [3, 31, 40, 45, 80], "cj": [3, 34, 40], "axi": [3, 34, 36, 59, 62, 69, 70, 71, 76, 77, 78, 80, 81, 83, 85, 86], "bincount": [3, 70, 71, 78, 80, 81], "alwai": [3, 7, 26, 30, 40, 69, 78, 85, 87, 88], "estimate_issu": 3, "over": [3, 7, 26, 29, 30, 52, 53, 59, 61, 71, 73, 75, 76, 77, 78, 83, 85, 87], "As": [3, 5, 67, 70, 71, 74, 78, 85, 89], "add": [3, 4, 5, 10, 26, 30, 44, 53, 69, 70, 71, 74, 76, 77, 78, 81, 88], "approach": [3, 25, 29, 31, 73, 78, 81, 83, 85, 87], "custom": [3, 5, 8, 26, 29, 30, 36, 39, 55, 74, 78, 88], "know": [3, 70, 71, 76, 78, 80], "cut": [3, 52, 67, 78], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 83, 89], "underestim": 3, "few": [3, 53, 67, 76, 80, 81, 82, 83, 89], "4": [3, 4, 15, 16, 18, 19, 20, 21, 22, 35, 36, 39, 49, 50, 52, 53, 55, 58, 65, 75, 76, 81, 86, 89], "detail": [3, 11, 25, 26, 30, 36, 40, 44, 45, 46, 47, 49, 50, 52, 53, 54, 61, 62, 63, 67, 68, 69, 81, 83, 89], "num_issu": [3, 5, 29, 69, 70, 71, 73, 74, 77, 78], "calibrate_confident_joint": 3, "up": [3, 14, 20, 21, 31, 36, 45, 75, 76, 82, 85, 88, 89], "p_": [3, 25, 31], "pair": [3, 7, 25, 31, 78], "v": [3, 7, 29, 46, 47, 49, 55, 70, 71, 81, 83, 84], "rest": [3, 4, 5, 6, 7, 8, 24, 46, 47, 49, 57, 70, 71, 73, 74, 77, 78, 80, 85, 87, 88], "fashion": [3, 59, 87], "2x2": 3, "incorrectli": [3, 25, 46, 47, 50, 73, 89], "calibrated_cj": 3, "c": [3, 7, 39, 47, 55, 67, 69, 70, 71, 73, 74, 76, 78, 81, 83, 84, 85, 87], "whose": [3, 4, 7, 13, 22, 26, 30, 34, 39, 45, 49, 52, 58, 61, 65, 66, 69, 70, 71, 73, 74, 76, 77, 78, 81, 82, 83, 86, 89], "truli": [3, 83, 86], "estimate_joint": [3, 25, 78], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 47, 78, 82, 84, 86, 89], "return_indices_of_off_diagon": 3, "frequenc": [3, 20, 45, 46, 53, 62, 83], "done": [3, 7, 57, 70, 76, 78, 81, 83, 84], "overfit": [3, 7, 50, 53, 69, 70, 71, 73, 74, 77, 84, 87], "classifict": 3, "singl": [3, 4, 20, 25, 26, 30, 36, 37, 40, 45, 46, 52, 53, 54, 55, 65, 69, 70, 76, 78, 81, 82, 87], "baselin": [3, 26, 31, 83, 85, 88], "proxi": 3, "tupl": [3, 26, 30, 34, 35, 37, 39, 40, 45, 47, 53, 61, 63, 65, 66, 69, 89], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 29, 34, 45, 59, 61, 67, 76, 77, 86, 88], "practic": [3, 71, 77, 78, 83, 85, 87, 88], "complet": [3, 69, 70, 71, 73, 74, 77, 78, 82], "gist": 3, "cj_ish": 3, "guess": [3, 34, 78, 80], "8": [3, 4, 5, 35, 36, 37, 39, 49, 63, 65, 69, 70, 71, 73, 74, 76, 77, 80, 81, 82, 83, 85, 86, 87, 88, 89], "parallel": [3, 31, 63, 75], "again": [3, 44, 83, 87], "simplifi": [3, 11], "understand": [3, 6, 25, 46, 53, 71, 78, 85, 86, 89], "100": [3, 26, 30, 55, 70, 71, 73, 75, 76, 77, 78, 81, 86, 87, 88, 89], "optim": [3, 26, 27, 30, 44, 77, 80], "speed": [3, 31, 75, 76, 85, 88], "dtype": [3, 19, 20, 26, 30, 39, 40, 49, 65, 69, 82], "enumer": [3, 26, 30, 69, 70, 71, 77, 89], "s_label": 3, "confident_bin": 3, "6": [3, 4, 30, 36, 40, 65, 69, 70, 71, 73, 74, 75, 76, 77, 80, 81, 82, 83, 85, 86, 87, 88, 89], "num_confident_bin": 3, "argmax": [3, 31, 55, 59, 62, 69, 76, 78, 83, 86], "elif": 3, "estimate_lat": 3, "py_method": [3, 34], "cnt": [3, 34], "1d": [3, 29, 31, 36, 37, 40, 41, 49, 58, 69, 87], "eqn": [3, 34], "margin": [3, 31, 34, 36, 55], "marginal_p": [3, 34], "shorthand": [3, 10], "proport": [3, 7, 25, 46, 78, 84], "poorli": [3, 34, 87], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 78], "variabl": [3, 5, 11, 40, 57, 58, 69, 70, 73, 78, 81, 85], "exact": [3, 34, 70, 71, 73, 77, 87], "within": [3, 4, 12, 26, 27, 30, 32, 47, 52, 61, 63, 65, 70, 71, 77, 82, 86], "percent": 3, "often": [3, 25, 34, 46, 76, 78, 84, 86], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 7, 40, 41, 53, 69, 70, 73, 74, 76, 77, 82, 83, 88], "wai": [3, 4, 44, 67, 68, 69, 70, 71, 73, 74, 76, 78, 80, 81, 82, 84, 87, 88], "pro": 3, "con": 3, "pred_proba": [3, 84], "combin": [3, 25, 70, 75, 76, 77, 78, 84, 85], "becaus": [3, 34, 40, 52, 76, 78, 80, 82], "littl": [3, 29, 75, 82, 89], "uniform": [3, 55, 75, 76, 78], "20": [3, 5, 66, 69, 71, 75, 77, 78, 86, 89], "Such": [3, 77, 83], "bound": [3, 19, 26, 30, 50, 52, 53, 82], "reason": [3, 18, 26, 30], "comment": [3, 39, 89], "end": [3, 26, 30, 53], "file": [3, 4, 9, 28, 29, 43, 53, 69, 70, 73, 74, 75, 76, 82, 83, 86, 87, 89], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 78], "handl": [3, 4, 5, 7, 13, 15, 16, 18, 19, 20, 21, 22, 23, 26, 29, 30, 68, 70, 71, 78, 86, 87, 89], "five": [3, 50, 53, 78, 82], "estimate_cv_predicted_prob": [3, 78], "estimate_noise_matric": 3, "get_confident_threshold": [3, 29], "amongst": [3, 7], "confident_threshold": [3, 7, 18, 29, 54], "unifi": 4, "audit": [4, 6, 9, 10, 13, 69, 72, 73, 74, 77, 78, 82], "kind": [4, 5, 69, 70, 73, 74, 75, 77, 78], "addit": [4, 5, 6, 7, 8, 10, 23, 24, 26, 30, 36, 41, 45, 63, 69, 70, 73, 74, 77, 78, 80, 83, 84, 87, 88], "depend": [4, 5, 6, 7, 8, 9, 10, 24, 28, 31, 33, 40, 43, 47, 54, 57, 58, 67], "instal": [4, 5, 6, 7, 8, 24, 26, 28, 29, 30, 31, 43, 44, 59, 61], "pip": [4, 5, 6, 8, 24, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "development": [4, 5, 6, 8, 24], "git": [4, 5, 6, 8, 24, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 87, 88], "github": [4, 5, 6, 8, 24, 26, 27, 40, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 87, 88], "com": [4, 5, 6, 8, 24, 26, 27, 29, 33, 40, 54, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "egg": [4, 5, 6, 8, 24, 67, 75], "label_nam": [4, 5, 7, 9, 67, 69, 70, 71, 73, 74, 77, 78], "image_kei": [4, 77], "interfac": [4, 67, 76, 78], "librari": [4, 7, 30, 50, 53, 54, 67, 70, 74, 75, 76, 88], "goal": 4, "track": [4, 10, 11, 67, 70, 75, 76, 78], "intermedi": [4, 6, 71], "statist": [4, 7, 10, 18, 20, 25, 45, 46, 71, 73, 74, 77, 78], "convert": [4, 9, 26, 30, 37, 41, 45, 52, 61, 65, 68, 69, 74, 75, 77, 80, 81, 82, 88], "hug": [4, 9, 77], "face": [4, 9, 13, 75, 77, 81], "kei": [4, 5, 7, 9, 10, 13, 15, 16, 18, 19, 20, 21, 22, 25, 26, 30, 36, 45, 46, 52, 54, 70, 71, 76, 77, 78, 80, 82], "string": [4, 7, 9, 11, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 30, 40, 45, 46, 58, 62, 65, 66, 73, 74, 76, 80, 81, 88, 89], "dictionari": [4, 5, 9, 10, 13, 15, 16, 18, 19, 20, 21, 22, 25, 26, 30, 35, 40, 45, 46, 49, 50, 52, 53, 70, 71, 73, 74, 78, 80, 81, 82], "path": [4, 9, 26, 29, 30, 53, 69, 70, 76, 82], "local": [4, 9, 26, 27, 30, 69, 70, 71, 75, 76, 77, 78, 80, 81, 83, 85, 89], "text": [4, 5, 7, 9, 15, 16, 18, 19, 20, 21, 22, 36, 54, 63, 65, 66, 67, 70, 71, 72, 75, 76, 78, 79, 80, 83], "txt": [4, 9, 89], "csv": [4, 9, 73, 74, 85, 87, 88], "json": [4, 9], "hub": [4, 9, 83], "imag": [4, 6, 25, 30, 50, 52, 53, 54, 59, 61, 62, 67, 70, 71, 75, 76, 79, 80, 81, 82, 84, 86], "point": [4, 5, 20, 26, 30, 70, 71, 76, 78, 80], "field": [4, 7, 26, 30], "themselv": [4, 85, 87, 88], "cleanvis": [4, 7], "level": [4, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 39, 63, 65, 71, 77, 79, 86], "load_dataset": [4, 9, 77], "glue": 4, "sst2": 4, "properti": [4, 9, 10], "has_label": [4, 9], "class_nam": [4, 9, 25, 46, 53, 62, 66, 67, 75, 78, 82, 86, 89], "empti": [4, 9, 34, 45, 71, 81], "find_issu": [4, 5, 7, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 67, 69, 70, 71, 73, 74, 77, 78], "knn_graph": [4, 7, 13, 15, 20, 22, 73], "issue_typ": [4, 5, 7, 13, 15, 16, 18, 19, 20, 21, 22, 69, 70, 71, 73, 74, 77, 78], "sort": [4, 13, 29, 31, 36, 38, 45, 47, 50, 52, 53, 55, 61, 63, 65, 69, 71, 73, 74, 76, 77, 78, 80, 81, 82, 85, 86, 87, 88, 89], "common": [4, 10, 13, 71, 72, 75, 76, 78, 81, 82, 86], "real": [4, 13, 67, 70, 71, 76, 78, 80, 81, 85, 86], "world": [4, 13, 67, 70, 71, 76, 78, 80, 85, 86], "interact": [4, 13, 76], "embed": [4, 7, 13, 54, 67, 69, 70, 71, 73, 74, 78, 88], "thereof": [4, 13], "insight": [4, 13, 80], "act": [4, 7, 52, 70], "issuefind": [4, 13, 23], "logic": [4, 11, 29, 31, 59, 61, 86], "best": [4, 13, 35, 45, 55, 70, 71, 73, 76, 80, 81, 83, 85, 87, 88, 89], "2d": [4, 13, 29, 36, 37, 39, 40, 45, 69, 81, 87], "num_exampl": [4, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 46, 69, 70, 71, 73, 74, 77, 78], "represent": [4, 7, 13, 26, 30, 37, 47, 67, 69, 70, 71, 74, 76, 77, 78, 83, 88], "num_featur": [4, 13, 26, 30, 44], "distanc": [4, 7, 13, 20, 22, 38, 52, 54, 73, 83], "nearest": [4, 7, 13, 19, 20, 22, 38, 54, 71, 74, 83], "neighbor": [4, 7, 13, 19, 20, 22, 38, 54, 70, 71, 73, 74, 77, 83], "graph": [4, 7, 10, 13, 20], "squar": [4, 13, 40, 57, 75, 85], "csr": [4, 13], "evenli": [4, 13], "omit": [4, 13, 52, 53, 77, 82], "itself": [4, 13, 26, 30, 82], "duplic": [4, 6, 13, 17, 18, 26, 30, 67, 70, 78], "explicit": [4, 13], "precend": [4, 13], "construct": [4, 5, 7, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 26, 30, 36, 44], "neither": [4, 7, 11, 13, 82], "nor": [4, 7, 11, 13], "collect": [4, 7, 10, 13, 15, 16, 18, 19, 20, 21, 22, 45, 80, 89], "unspecifi": [4, 13, 31, 47], "interest": [4, 13, 18, 62, 66, 74, 78, 86, 87, 88, 89], "constructor": [4, 7, 13, 19], "issuemanag": [4, 6, 10, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23], "respons": [4, 13, 18, 57, 58, 75, 85, 89], "random_st": [4, 69, 70, 71, 77, 78, 81, 83, 87], "lab": [4, 15, 16, 18, 19, 20, 21, 22, 29, 67, 69, 70, 71, 73, 74, 75, 77, 78, 81], "nearestneighbor": [4, 7, 54, 73, 83], "comprehens": [4, 67, 77], "nbr": 4, "n_neighbor": [4, 7, 54], "metric": [4, 7, 15, 20, 40, 44, 54, 69, 73, 74, 77, 78, 85, 87, 88], "euclidean": [4, 7, 52, 54, 73], "kneighbors_graph": [4, 73], "mode": [4, 26, 29, 30, 73, 77, 83], "4x4": 4, "float64": [4, 20, 26, 30, 65], "compress": [4, 7, 40, 59, 61], "toarrai": 4, "NOT": [4, 29, 74], "23606798": 4, "41421356": 4, "configur": [4, 13, 36], "suppos": [4, 50, 83, 85, 87, 88], "who": [4, 52, 73, 78, 87, 89], "manag": [4, 6, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 70], "clean_learning_kwarg": [4, 7, 19], "labelissuemanag": [4, 7, 11, 19], "prune_method": [4, 68], "prune_by_noise_r": [4, 31, 47, 78], "report": [4, 5, 8, 12, 15, 16, 18, 19, 20, 21, 22, 25, 46, 66, 67, 69, 70, 71, 73, 74, 78, 89], "include_descript": [4, 15, 16, 18, 19, 20, 21, 22, 23], "show_summary_scor": [4, 23], "summari": [4, 5, 10, 15, 16, 18, 19, 20, 21, 22, 25, 44, 46, 51, 60, 61, 63, 64, 65, 68, 69, 70, 71, 73, 74, 75, 77, 78, 82, 86, 89], "show": [4, 20, 26, 30, 35, 40, 53, 62, 66, 71, 73, 74, 75, 76, 77, 78, 80, 83, 85, 86, 87, 89], "top": [4, 25, 29, 31, 40, 47, 50, 53, 55, 62, 66, 67, 69, 70, 71, 73, 74, 75, 76, 78, 82, 83, 85, 88, 89], "suffer": [4, 7, 10, 18, 47, 55, 66, 89], "onc": [4, 18, 25, 26, 30, 70, 76, 78, 81, 82, 87], "familiar": 4, "usag": [4, 29, 44], "found": [4, 5, 7, 10, 13, 15, 16, 18, 19, 20, 21, 22, 26, 30, 40, 67, 69, 70, 71, 73, 74, 76, 77, 83, 85, 87, 88, 89], "issue_summari": [4, 7, 10, 70], "overal": [4, 5, 7, 10, 15, 16, 18, 19, 20, 21, 22, 25, 36, 45, 46, 49, 52, 53, 57, 61, 62, 63, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 80, 82, 89], "sever": [4, 5, 7, 9, 10, 18, 26, 29, 30, 31, 49, 52, 54, 55, 61, 65, 67, 69, 70, 71, 73, 74, 75, 76, 78, 82, 83, 87, 88, 89], "dataissu": [4, 10, 13, 23], "outlier": [4, 6, 11, 17, 18, 32, 55, 67, 70, 71, 78, 79], "someth": [4, 5, 26, 30, 55], "123": [4, 70, 71], "456": [4, 69, 87, 88], "nearest_neighbor": 4, "7": [4, 36, 37, 44, 63, 65, 69, 70, 71, 73, 74, 75, 76, 80, 81, 82, 83, 85, 86, 87, 88, 89], "9": [4, 15, 16, 18, 19, 20, 21, 22, 36, 37, 49, 63, 65, 69, 70, 71, 73, 74, 75, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "distance_to_nearest_neighbor": [4, 70, 71, 73, 74, 77, 78], "789": 4, "get_issu": [4, 7, 10, 69, 71, 73, 74, 77], "issue_nam": [4, 5, 7, 10, 11, 15, 16, 18, 19, 20, 21, 22, 70, 71], "focu": [4, 10, 74, 86, 89], "full": [4, 7, 10, 29, 53, 77, 89], "summar": [4, 10, 15, 16, 18, 19, 20, 21, 22, 25, 46, 62, 66, 67, 86], "valueerror": [4, 9, 10, 33, 36, 76], "specific_issu": [4, 10], "exhibit": [4, 7, 10, 62, 71, 73, 74, 77, 78, 82], "lie": [4, 7, 38, 54, 55, 69, 70, 71, 73, 74, 77, 78, 88], "directli": [4, 11, 13, 23, 29, 44, 45, 71, 74, 81, 82, 85, 88], "compar": [4, 45, 54, 65, 70, 71, 73, 78], "get_issue_summari": [4, 10, 71], "get_info": [4, 10, 71], "yet": [4, 10, 14, 17, 21, 75, 80], "static": [4, 13], "list_possible_issue_typ": [4, 13], "regist": [4, 5, 11, 12, 13, 14, 21, 26, 30, 70], "registri": [4, 11, 13], "list_default_issue_typ": [4, 13], "folder": [4, 69, 70, 77], "load": [4, 9, 29, 53, 75, 76, 77, 78, 82, 83, 86, 89], "futur": [4, 7, 18, 26, 30, 45, 67, 70], "overwrit": [4, 70], "separ": [4, 25, 36, 49, 70, 71, 76, 77, 82, 84], "rememb": [4, 76, 78], "part": [4, 7, 26, 30, 31, 50, 52, 53, 69, 70, 75, 86, 89], "ident": [4, 7, 18, 40], "walk": 5, "alongsid": [5, 26, 30, 70, 76], "pre": [5, 7, 26, 30, 70, 71], "runtim": [5, 26, 29, 30, 57, 59, 61, 69, 76, 77], "issue_manager_factori": [5, 11, 70], "myissuemanag": [5, 11], "decor": [5, 11], "start": [5, 26, 27, 30, 67, 73, 81, 89], "ll": [5, 36, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 82, 83, 84, 85, 87, 88, 89], "thing": [5, 30, 78, 85, 88], "next": [5, 45, 67, 69, 73, 74, 80, 82, 85, 87, 88, 89], "dummi": 5, "randint": [5, 36, 70, 71], "mark": [5, 68, 82, 83, 85], "regard": [5, 71, 78], "rand": [5, 36, 70, 71], "is_": [5, 7, 70], "_issu": [5, 7, 70], "issue_score_kei": [5, 15, 16, 18, 19, 20, 21, 22, 70], "whole": [5, 20, 26, 30, 71], "make_summari": [5, 15, 16, 18, 19, 20, 21, 22, 70], "popul": 5, "verbosity_level": [5, 15, 16, 18, 19, 20, 21, 22], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 29, 62, 66, 76, 81], "intermediate_arg": 5, "min": [5, 36, 52, 65, 70, 76, 83], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 7, 8, 10, 12, 15, 16, 19, 20, 21, 22, 70], "instanti": [5, 13, 29, 44, 54, 69, 71, 73, 88], "477762": 5, "286455": 5, "term": [5, 7, 34, 40, 69, 70, 71, 73, 74, 77, 78], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 15, 22, 69, 70, 71, 73, 74, 75, 77, 78, 80, 82, 83, 85, 86, 87, 88, 89], "003042": 5, "058117": 5, "11": [5, 44, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 82, 83, 85, 86, 87, 88, 89], "121908": 5, "15": [5, 38, 57, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 82, 83, 85, 86, 87, 88, 89], "169312": 5, "17": [5, 69, 73, 74, 75, 77, 78, 80, 82, 83, 85, 86, 88, 89], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 70, 75, 78], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "search": [6, 7, 16, 20, 21, 39, 57, 76, 84], "nondefault": 6, "Near": 6, "iid": [6, 20, 71, 73, 74, 77, 78], "imbal": [6, 17, 49, 54, 55], "togeth": [6, 7, 34, 70, 71, 73, 74, 77, 78, 85, 88, 89], "built": [6, 36], "own": [6, 26, 28, 30, 43, 49, 50, 53, 59, 63, 69, 71, 73, 74, 77, 80, 81, 85, 86, 87, 88, 89], "prerequisit": 6, "basic": [6, 30, 44, 83], "page": [7, 71, 76, 78], "variou": [7, 10, 28, 41, 43, 67, 70, 71, 73, 74, 75, 78, 80, 82, 87], "sai": [7, 26, 30, 81, 86], "why": [7, 74], "matter": [7, 25, 46], "three": [7, 25, 45, 46, 57, 62, 69, 70, 71, 73, 75, 78, 80, 84, 85, 86, 87, 89], "_score": 7, "flag": [7, 18, 20, 31, 36, 46, 47, 50, 57, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 85, 86, 88], "badli": [7, 52, 89], "code": [7, 26, 30, 34, 40, 44, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 80, 81, 82, 83, 85, 86, 87, 88, 89], "issue_scor": 7, "outlier_scor": [7, 22, 70, 71, 73, 74, 77, 78, 83], "atyp": [7, 54, 70, 71, 73, 74, 77, 78, 83], "datapoint": [7, 31, 36, 40, 55, 58, 67, 69, 70, 71, 73, 74, 76, 84, 85, 87, 88], "is_issu": [7, 18], "is_outlier_issu": [7, 70, 71, 73, 74, 77, 78], "annot": [7, 25, 35, 45, 46, 47, 49, 50, 52, 53, 62, 65, 66, 67, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 86], "transform": [7, 36, 38, 40, 54, 55, 71, 74, 77, 83, 87, 88, 89], "dissimilar": [7, 73, 74], "preced": 7, "cosin": [7, 54, 83], "incorrect": [7, 52, 55, 58, 69, 70, 71, 73, 74, 77, 78, 82, 85, 87], "due": [7, 29, 31, 55, 59, 61, 69, 70, 71, 73, 74, 77, 78], "appear": [7, 25, 35, 46, 47, 50, 58, 71, 73, 74, 77, 85, 86], "likelihood": [7, 29, 31, 47, 52, 54, 55, 59, 63], "now": [7, 29, 68, 69, 71, 80, 82, 83, 85, 87, 88, 89], "u": [7, 69, 70, 73, 76, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89], "token": [7, 39, 61, 62, 63, 64, 65, 66, 76, 78, 79], "etc": [7, 18, 26, 30, 34, 44, 45, 63, 67, 70, 71, 73, 74, 76, 77, 78], "calcul": [7, 20, 29, 36, 45, 49, 50, 52, 54, 57, 61, 75, 77], "hamper": [7, 75, 77], "analyt": [7, 67, 80], "lead": [7, 52, 55, 77, 82], "draw": [7, 70, 71], "conclus": 7, "try": [7, 29, 31, 44, 45, 59, 61, 67, 71, 76, 78, 86], "veri": [7, 25, 46, 50, 52, 70, 71, 73, 74, 77, 78, 80, 83, 85, 88], "rare": [7, 31, 53, 70, 71, 73, 74, 76, 77, 78], "anomal": [7, 55, 70, 71, 73, 74, 77, 78], "articl": [7, 29, 76], "ai": [7, 67, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 83, 85, 87, 88, 89], "blog": 7, "unexpect": [7, 26, 30], "consequ": 7, "inspect": [7, 69, 71, 77, 78, 82, 85, 88], "neg": [7, 52, 70, 71, 75], "affect": [7, 26, 30, 59, 65, 74, 76], "extrem": [7, 70, 71, 73, 74, 76, 77, 78], "rel": [7, 25, 45, 46, 54, 70, 71, 73, 74, 77, 78, 83], "record": [7, 26, 30, 69, 73, 85], "abbrevi": 7, "misspel": 7, "typo": [7, 66], "resolut": 7, "video": [7, 75], "audio": [7, 70, 71, 76, 79], "minor": [7, 39], "variat": 7, "translat": 7, "d": [7, 38, 73, 74, 78, 81, 87, 89], "constant": [7, 57], "median": 7, "question": [7, 18, 67, 78], "nearli": [7, 18, 71, 73, 74, 77], "awar": [7, 68, 78], "presenc": [7, 78], "signific": [7, 71, 73, 74, 77, 78], "violat": [7, 71, 73, 74, 77, 78], "assumpt": [7, 71, 73, 74, 77, 78], "changepoint": [7, 71, 73, 74, 77, 78], "shift": [7, 71, 73, 74, 77, 78], "drift": [7, 71, 73, 74, 77, 78], "autocorrel": [7, 71, 73, 74, 77, 78], "almost": [7, 71, 73, 74, 77, 78], "adjac": [7, 71, 73, 74, 77, 78], "tend": [7, 25, 34, 71, 73, 74, 77, 78, 86, 89], "sequenti": [7, 26, 30, 44, 77], "gap": 7, "group": [7, 20, 75, 82, 89], "b": [7, 15, 16, 18, 19, 20, 21, 22, 25, 39, 40, 65, 73, 74, 75, 78, 84, 87, 89], "x1": [7, 50, 53, 82], "x2": [7, 50, 53, 82], "10th": 7, "100th": 7, "90": [7, 65, 73, 78, 84, 87], "similarli": [7, 26, 30, 70, 73, 76, 77, 82], "math": [7, 77], "behind": [7, 54, 78], "fundament": 7, "proper": [7, 40, 45, 50, 53, 74, 77, 80, 82, 87], "closer": [7, 52, 82], "scenario": [7, 55, 70, 71], "underli": [7, 54, 63, 65, 89], "stem": [7, 54, 83], "evolv": 7, "influenc": 7, "accordingli": 7, "emploi": [7, 81, 83], "partit": [7, 84], "ahead": 7, "good": [7, 26, 30, 44, 46, 52, 55, 59, 61, 62, 67, 77], "fix": [7, 45, 74, 78, 85, 88], "problem": [7, 29, 36, 62, 67, 70, 71, 74, 76, 77], "deploy": [7, 78, 85, 87, 88], "overlook": [7, 52, 82], "fact": 7, "thu": [7, 25, 30, 46, 69, 73, 74, 78, 84, 87, 89], "diagnos": [7, 71, 76], "rarest": 7, "q": [7, 82], "fall": [7, 52, 61, 65, 78, 83], "subpar": 7, "special": [7, 39], "techniqu": 7, "smote": 7, "asymmetr": [7, 25], "properli": [7, 29, 35, 40, 41, 59, 76, 81, 83, 85, 86], "too": [7, 31, 36, 54, 76, 77, 82], "dark": [7, 86], "bright": [7, 89], "blurri": [7, 77], "abnorm": [7, 53, 77], "exert": 7, "possible_issue_typ": 7, "label_kwarg": 7, "outlier_kwarg": 7, "near_dupl": [7, 11, 15, 70, 71, 73, 74, 77, 78], "near_duplicate_kwarg": 7, "non_iid": [7, 11, 20, 71, 73, 74, 77, 78], "non_iid_kwarg": 7, "health_summary_paramet": [7, 19], "health_summari": [7, 19, 25, 67, 75], "health_summary_kwarg": 7, "tandem": [7, 75], "view": [7, 26, 30, 31, 61, 63, 65, 67, 69, 70, 71, 73, 74, 75, 78, 80, 81, 82, 83, 84, 85, 87, 88, 89], "sensit": 7, "ood_kwarg": 7, "outofdistribut": [7, 22, 54, 83], "outsid": 7, "knn": [7, 10, 20, 54, 73, 83], "outlierissuemanag": [7, 11, 22, 70], "nearduplicateissuemanag": [7, 11, 15], "noniidissuemanag": [7, 11, 20], "num_permut": [7, 20], "permut": [7, 20], "significance_threshold": [7, 20], "signic": 7, "noniid": [7, 17], "class_imbalance_kwarg": 7, "classimbalanceissuemanag": [7, 16], "data_issu": [8, 12, 13, 23, 70], "issue_find": [8, 12], "factori": [8, 12, 13], "datalab": [9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 67, 69, 77, 80, 87, 88], "except": [9, 44, 55, 70, 71, 77, 80], "dataformaterror": 9, "with_traceback": 9, "tb": 9, "__traceback__": 9, "datasetdicterror": 9, "datasetdict": 9, "usual": [9, 23, 77, 80, 85], "datasetloaderror": 9, "dataset_typ": 9, "fail": 9, "hold": 9, "is_avail": [9, 77], "serv": [10, 13, 80], "central": [10, 89], "repositori": 10, "being": [10, 25, 26, 30, 31, 36, 39, 40, 55, 73, 78, 85, 86, 87], "basi": 10, "collect_statist": 10, "reus": [10, 18], "avoid": [10, 26, 29, 30, 31, 38, 40, 47, 50, 53, 57, 59, 61, 70, 71, 76], "recomput": [10, 88], "weighted_knn_graph": 10, "issue_manager_that_computes_knn_graph": 10, "collect_issues_from_issue_manag": 10, "set_health_scor": 10, "health": [10, 19, 25, 46, 67], "get_data_statist": 10, "concret": 11, "subclass": [11, 26, 30, 54, 70], "my_issu": 11, "stabl": [12, 17, 28, 32, 40, 43, 54, 68], "unregist": 12, "instati": 13, "public": [13, 78, 82, 86, 89], "creation": [13, 30], "execut": [13, 26, 30, 70, 76, 82], "coordin": [13, 50, 52, 53, 82, 89], "behavior": [13, 25, 26, 30], "At": [13, 76], "associ": [13, 26, 30, 53, 80], "get_available_issue_typ": 13, "isn": [14, 21], "direct": [14, 21, 26, 30], "10": [15, 19, 20, 26, 27, 53, 54, 55, 66, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89], "_": [15, 18, 19, 20, 21, 36, 39, 40, 69, 70, 75, 77, 78, 81, 87], "classvar": [15, 16, 18, 19, 20, 21, 22], "short": [15, 16, 18, 19, 20, 21, 22, 39, 40], "item": [15, 16, 18, 19, 20, 21, 22, 40, 70, 71, 77, 78, 80, 81], "some_info_kei": [15, 16, 18, 19, 20, 21, 22], "additional_info_kei": [15, 16, 18, 19, 20, 21, 22], "near_duplicate_set": [15, 70, 71, 73, 74, 77, 78], "occurr": [15, 16, 18, 20, 21, 22, 39], "collect_info": [15, 16, 18, 19, 20, 21, 22], "near_duplicate_scor": [15, 70, 71, 73, 74, 77, 78], "info_to_omit": [15, 16, 18, 19, 20, 21, 22], "compos": [15, 16, 18, 19, 20, 21, 22, 26, 30, 74, 83, 88], "is_x_issu": [15, 16, 18, 19, 20, 21, 22], "x_score": [15, 16, 18, 19, 20, 21, 22], "val_a": [15, 16, 18, 19, 20, 21, 22], "val_b1": [15, 16, 18, 19, 20, 21, 22], "val_b2": [15, 16, 18, 19, 20, 21, 22], "report_str": [15, 16, 18, 19, 20, 21, 22, 23], "class_imbal": 16, "class_imbalance_scor": 16, "bleed": [17, 28], "edg": [17, 28, 52, 67, 78, 89], "sharp": [17, 28], "null": 17, "abc": 18, "believ": [18, 86], "priori": [18, 78], "global": 18, "anoth": [18, 25, 29, 39, 52, 55, 73, 74, 76, 78, 80, 83, 88], "abstract": 18, "applic": [19, 45, 78, 80, 81, 89], "typevar": [19, 26, 30, 52, 53], "_scalartype_co": 19, "covari": [19, 57, 85], "get_health_summari": 19, "summary_dict": 19, "label_scor": [19, 69, 70, 71, 73, 74, 77, 78], "simplified_kolmogorov_smirnov_test": 20, "neighbor_histogram": 20, "non_neighbor_histogram": 20, "kolmogorov": 20, "smirnov": 20, "largest": [20, 29, 36, 55, 59, 61, 86], "empir": [20, 35, 45], "cumul": 20, "ecdf": 20, "histogram": [20, 73, 85], "absolut": 20, "25": [20, 26, 36, 38, 75, 77, 78, 80, 81, 82, 89], "dimension": [20, 40, 69, 78, 83], "trial": 20, "non_iid_scor": [20, 71, 73, 74, 77, 78], "nullissuemanag": 21, "miss": [21, 26, 30, 40, 50, 52, 73, 76, 82, 85], "null_track": 21, "null_scor": 21, "default_threshold": 22, "37037": 22, "q3_avg_dist": 22, "iqr_avg_dist": 22, "median_outlier_scor": 22, "ood": [22, 54, 55, 70, 71, 74, 77, 78, 83], "exclud": [23, 62, 66, 70, 89], "get_report": 23, "overview": [25, 69, 71, 73, 74, 77, 80, 82, 83, 85, 87, 88, 89], "modifi": [25, 26, 29, 30, 40, 76, 78], "help": [25, 26, 30, 53, 67, 68, 69, 70, 73, 74, 75, 76, 80, 81, 85, 86, 87, 88, 89], "rank_classes_by_label_qu": [25, 71], "merg": [25, 39, 67, 75, 76, 89], "find_overlapping_class": [25, 76, 78], "ascend": [25, 38, 46, 77, 78], "problemat": [25, 46, 62, 66, 69, 82, 89], "unnorm": [25, 46, 78], "abov": [25, 26, 29, 30, 40, 45, 52, 55, 61, 65, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89], "model_select": [25, 36, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 83, 85, 87, 88], "cross_val_predict": [25, 30, 69, 70, 71, 73, 74, 78, 80, 84, 85, 87, 88], "get_data_labels_from_dataset": 25, "yourfavoritemodel": [25, 78], "cv": [25, 36, 69, 70, 71, 73, 78, 80, 87], "df": [25, 40, 66, 69], "overall_label_qu": [25, 46], "col": 25, "prob": [25, 39, 78, 84], "divid": [25, 46, 55], "label_nois": [25, 46], "human": [25, 75, 86, 89], "clearli": [25, 55, 77, 82, 86], "num": [25, 46, 75, 78], "overlap": [25, 67, 75, 76, 78], "ontolog": 25, "publish": [25, 89], "therefor": [25, 55], "vehicl": [25, 75], "truck": [25, 75, 83, 86], "intuit": [25, 46], "car": [25, 75, 82, 86], "frequent": [25, 45, 73, 76, 85], "confus": [25, 26, 30, 31, 40, 88, 89], "characterist": 25, "l": [25, 26, 30, 50, 52, 53], "class1": 25, "class2": 25, "relationship": 25, "arbitrari": [25, 61, 65, 70, 83, 85], "match": [25, 26, 30, 31, 45, 46, 55, 70, 71, 75, 77, 82, 84, 86], "dog": [25, 40, 46, 48, 62, 75, 76, 83, 84, 89], "cat": [25, 40, 46, 48, 75, 76, 83, 84], "captur": [25, 69, 82, 83, 86], "co": [25, 26, 27], "noisy_label": [25, 70, 71, 81], "overlapping_class": 25, "descend": [25, 26, 30, 36, 46, 53], "overall_label_health_scor": [25, 46, 78], "suggest": [25, 45, 46, 52, 74, 76, 77, 85, 88], "half": [25, 26, 30, 46, 75, 89], "health_scor": [25, 46], "classes_by_label_qu": [25, 71], "cnn": [26, 30, 77], "cifar": [26, 27, 75, 83], "teach": [26, 27], "bhanml": 26, "blob": 26, "master": [26, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 87, 88], "call_bn": 26, "bn": 26, "input_channel": 26, "n_output": 26, "dropout_r": 26, "top_bn": 26, "architectur": [26, 30], "shown": [26, 53, 70, 76, 80, 83, 84, 86, 89], "forward": [26, 27, 30, 77, 80], "overridden": [26, 30], "although": [26, 30, 54, 73, 87], "recip": [26, 30], "afterward": [26, 30], "sinc": [26, 30, 33, 41, 46, 61, 65, 76, 80, 81, 82, 84, 89], "former": [26, 30], "hook": [26, 30, 75], "silent": [26, 29, 30], "t_destin": [26, 30], "__call__": [26, 30, 36], "add_modul": [26, 30], "child": [26, 30], "fn": [26, 30], "recurs": [26, 30, 36], "submodul": [26, 30], "children": [26, 30, 89], "nn": [26, 27, 30, 77], "init": [26, 30, 78], "doc": [26, 30, 69, 70, 71, 75, 77, 78, 80, 81, 83, 85, 89], "no_grad": [26, 30, 77, 83], "init_weight": [26, 30], "linear": [26, 30, 74, 77, 88], "fill_": [26, 30], "net": [26, 30, 69, 75, 77], "in_featur": [26, 30], "out_featur": [26, 30], "bia": [26, 30, 77], "tensor": [26, 27, 30, 69, 77, 83], "requires_grad": [26, 30], "bfloat16": [26, 30], "cast": [26, 30, 69], "buffer": [26, 30], "datatyp": [26, 30], "member": [26, 30, 70], "xdoctest": [26, 30], "undefin": [26, 30], "var": [26, 30], "buf": [26, 30], "20l": [26, 30], "1l": [26, 30], "5l": [26, 30], "immedi": [26, 30, 83], "cpu": [26, 30, 31, 69, 77], "move": [26, 30, 36, 68, 75], "cuda": [26, 30, 69, 77], "devic": [26, 30, 69, 77], "gpu": [26, 30, 69, 74, 88], "live": [26, 30], "copi": [26, 30, 57, 69, 70, 71, 73, 76, 81, 84, 85, 87], "doubl": [26, 30], "dump_patch": [26, 30], "eval": [26, 30, 77, 81, 83], "dropout": [26, 30], "batchnorm": [26, 30], "grad": [26, 30], "extra_repr": [26, 30], "line": [26, 30, 67, 70, 75, 80, 83, 89], "get_buff": [26, 30], "target": [26, 27, 30, 57, 58, 83, 85], "throw": [26, 30], "get_submodul": [26, 30], "explan": [26, 30], "fulli": [26, 30, 44, 76], "qualifi": [26, 30], "referenc": [26, 30], "attributeerror": [26, 30], "invalid": [26, 30], "resolv": [26, 30, 89], "get_extra_st": [26, 30], "state_dict": [26, 30], "set_extra_st": [26, 30], "build": [26, 30, 77, 86], "pickleabl": [26, 30], "serial": [26, 30], "backward": [26, 30, 77], "break": [26, 30, 77], "pickl": [26, 30, 82], "get_paramet": [26, 30], "let": [26, 30, 54, 55, 69, 71, 73, 74, 76, 77, 80, 81, 82, 83, 85, 86, 87, 88, 89], "net_b": [26, 30], "net_c": [26, 30], "conv": [26, 30], "conv2d": [26, 30, 77], "16": [26, 30, 36, 61, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 82, 83, 85, 86, 88, 89], "33": [26, 30, 75, 82], "kernel_s": [26, 30], "stride": [26, 30], "200": [26, 30, 55, 75, 82, 89], "diagram": [26, 30, 84], "degre": [26, 30, 85], "queri": [26, 30, 71, 77], "named_modul": [26, 30], "o": [26, 30, 38, 39, 69, 70, 71, 75, 76, 78, 81, 82, 89], "transit": [26, 30], "ipu": [26, 30], "load_state_dict": [26, 30], "strict": [26, 30, 36], "persist": [26, 30], "strictli": [26, 30], "namedtupl": [26, 30], "missing_kei": [26, 30], "unexpected_kei": [26, 30], "runtimeerror": [26, 30], "idx": [26, 30, 40, 41, 53, 70, 76, 77, 78, 80, 82, 83], "named_buff": [26, 30], "prefix": [26, 30, 69, 89], "prepend": [26, 30], "running_var": [26, 30], "named_children": [26, 30], "conv4": [26, 30], "conv5": [26, 30], "memo": [26, 30], "remove_dupl": [26, 30], "named_paramet": [26, 30], "register_backward_hook": [26, 30], "deprec": [26, 30, 33], "favor": [26, 30], "register_full_backward_hook": [26, 30], "removablehandl": [26, 30], "register_buff": [26, 30], "running_mean": [26, 30], "register_forward_hook": [26, 30], "posit": [26, 30, 40, 75, 83], "won": [26, 30, 70, 71, 76, 81], "inplac": [26, 30, 80], "register_forward_pre_hook": [26, 30], "gradient": [26, 30, 73, 77, 85], "respect": [26, 30, 53, 78], "grad_input": [26, 30], "grad_output": [26, 30], "technic": [26, 30], "caller": [26, 30], "register_load_state_dict_post_hook": [26, 30], "post": [26, 30], "incompatible_kei": [26, 30], "modif": [26, 30], "thrown": [26, 30], "clearn": [26, 30], "register_modul": [26, 30], "register_paramet": [26, 30], "requires_grad_": [26, 30], "autograd": [26, 30], "freez": [26, 30, 69, 74, 88], "finetun": [26, 30], "gan": [26, 30], "share_memori": [26, 30], "share_memory_": [26, 30], "destin": [26, 30], "keep_var": [26, 30], "shallow": [26, 30], "howev": [26, 30, 40, 69, 73, 74, 77, 80, 84, 86, 87, 88], "releas": [26, 30, 68, 76, 83], "design": [26, 30], "ordereddict": [26, 30], "detach": [26, 30, 77], "non_block": [26, 30], "memory_format": [26, 30], "channels_last": [26, 30], "Its": [26, 30, 36, 46, 52], "complex": [26, 30], "integr": [26, 30, 67], "asynchron": [26, 30], "host": [26, 30], "pin": [26, 30, 74, 75, 88], "desir": [26, 30, 39, 53], "4d": [26, 30], "ignore_w": [26, 30], "determinist": [26, 30, 69], "1913": [26, 30], "3420": [26, 30], "5113": [26, 30], "2325": [26, 30], "env": [26, 30], "torch_doctest_cuda1": [26, 30], "gpu1": [26, 30], "1914": [26, 30], "5112": [26, 30], "2324": [26, 30], "float16": [26, 30], "cdoubl": [26, 30], "3741": [26, 30], "2382": [26, 30], "5593": [26, 30], "4443": [26, 30], "complex128": [26, 30], "6122": [26, 30], "1150": [26, 30], "to_empti": [26, 30], "storag": [26, 30], "dst_type": [26, 30], "xpu": [26, 30], "zero_grad": [26, 30, 77], "set_to_non": [26, 30], "context": [26, 30, 82], "noisili": [27, 78], "han": 27, "2018": 27, "cifar_cnn": [27, 28], "loss_coteach": 27, "y_1": 27, "y_2": 27, "forget_r": 27, "class_weight": 27, "logit": [27, 44, 77], "decim": [27, 40], "quickli": [27, 69, 73, 74, 76, 77, 81, 83, 86, 87, 89], "forget": [27, 36, 89], "rate_schedul": 27, "epoch": [27, 30, 76, 77], "initialize_lr_schedul": 27, "lr": [27, 30], "001": [27, 55, 76], "250": [27, 70, 71, 78, 82], "epoch_decay_start": 27, "80": [27, 73, 81, 85, 87], "schedul": 27, "adjust": [27, 31, 49, 54, 55, 67, 78], "beta": 27, "adam": 27, "adjust_learning_r": 27, "alpha_plan": 27, "beta1_plan": 27, "forget_rate_schedul": 27, "num_gradu": 27, "expon": 27, "tell": [27, 74, 77, 78, 88], "train_load": [27, 30], "model1": [27, 78], "optimizer1": 27, "model2": [27, 78], "optimizer2": 27, "dataload": [27, 77, 83], "parser": 27, "parse_arg": 27, "num_iter_per_epoch": 27, "print_freq": 27, "topk": 27, "top1": 27, "top5": 27, "test_load": 27, "offici": [28, 43, 89], "wish": [28, 43, 83, 86, 89], "mnist_pytorch": 28, "coteach": [28, 68], "mini": [29, 59, 61, 76], "With": [29, 74, 78, 80, 85, 86, 88, 89], "approxim": [29, 54, 80], "low_self_confid": [29, 31, 47], "self_confid": [29, 31, 36, 47, 49, 55, 63, 65, 76, 78, 81, 87, 88], "conveni": [29, 69, 74, 88], "script": 29, "labelinspector": [29, 76], "adj_confident_thresholds_shar": 29, "labels_shar": 29, "pred_probs_shar": 29, "labels_fil": [29, 76], "pred_probs_fil": [29, 76], "batch_siz": [29, 30, 59, 61, 76, 77, 83, 86], "quality_score_kwarg": 29, "num_issue_kwarg": 29, "return_mask": 29, "variant": [29, 45, 86], "read": [29, 33, 71, 76, 78, 83, 89], "zarr": [29, 76], "memmap": [29, 86], "pythonspe": 29, "mmap": [29, 76], "hdf5": 29, "further": [29, 46, 47, 49, 52, 53, 61, 62, 69, 76], "yourfil": 29, "r": [29, 57, 70, 71, 85, 86], "npy": [29, 75, 76, 86], "mmap_mod": [29, 86], "tip": [29, 31, 44, 76], "save_arrai": 29, "your_arrai": 29, "disk": [29, 75, 76], "npz": [29, 89], "maxim": [29, 45, 59, 61, 86], "multiprocess": [29, 31, 47, 59, 61, 76, 77, 86], "linux": [29, 59, 61], "physic": [29, 31, 59, 61, 82, 86], "psutil": [29, 31, 59, 61, 86], "demonstr": [29, 70, 74, 76, 77, 78, 80, 81, 82, 85, 86], "labels_arrai": [29, 41], "predprob": 29, "pred_probs_arrai": 29, "back": [29, 53, 70, 76, 82, 83], "store_result": 29, "becom": [29, 83], "verifi": [29, 76, 80, 83], "long": [29, 45, 54, 80], "enough": [29, 40, 76], "chunk": [29, 84], "ram": [29, 75], "faster": [29, 54, 57, 59, 61, 76, 78], "end_index": 29, "labels_batch": 29, "pred_probs_batch": 29, "update_confident_threshold": 29, "batch_result": 29, "score_label_qu": 29, "indices_of_examples_with_issu": [29, 76], "shortcut": 29, "encount": [29, 31, 59], "1000": [29, 69, 74, 76, 83], "aggreg": [29, 36, 45, 49, 52, 55, 65, 76, 78, 80], "get_num_issu": 29, "fetch": [29, 69, 71], "seen": [29, 76, 83, 89], "far": [29, 45], "get_quality_scor": 29, "label_quality_scor": [29, 49, 52, 55, 58, 78, 82, 85], "method1": 29, "method2": 29, "normalized_margin": [29, 31, 36, 47, 49, 55, 63, 65], "low_normalized_margin": [29, 31, 47], "issue_indic": [29, 52, 77], "update_num_issu": 29, "split_arr": 29, "arr": [29, 76], "chunksiz": 29, "convnet": 30, "bespok": [30, 44], "get_mnist_dataset": 30, "loader": [30, 77], "download": [30, 69, 76, 83], "mnist": [30, 67, 69, 75], "get_sklearn_digits_dataset": 30, "handwritten": 30, "digit": [30, 69, 75], "last": [30, 36, 50, 53, 70, 71, 76, 80, 89], "sklearn_digits_test_s": 30, "hard": [30, 75, 83], "simplenet": 30, "64": [30, 73, 77, 78, 82, 87], "log_interv": 30, "50": [30, 76, 78, 80, 82, 83], "01": [30, 55, 57, 69, 78, 81, 82, 85], "momentum": 30, "no_cuda": 30, "test_batch_s": [30, 77], "templat": 30, "enabl": 30, "flexibli": 30, "among": [30, 45, 78], "test_set": 30, "Be": 30, "overrid": 30, "train_idx": [30, 40, 83], "train_label": [30, 83, 88], "scikit": [30, 40, 54, 67, 69, 70, 71, 73, 74, 76, 79, 85, 88], "set_predict_proba_request": 30, "set_predict_request": 30, "encourag": [31, 47, 55, 58], "multilabel_classif": [31, 46, 47, 49, 55, 76, 81], "pred_probs_by_class": 31, "prune_count_matrix_col": 31, "rank_by_kwarg": [31, 47, 55, 78], "num_to_remove_per_class": [31, 47], "bad": [31, 47, 52, 55, 74, 76, 88], "seem": [31, 78, 81], "fewer": [31, 40, 82], "aren": 31, "confidence_weighted_entropi": [31, 36, 47, 49, 55, 63, 65], "label_issues_idx": [31, 55], "entropi": [31, 33, 35, 36, 54, 55], "prune_by_class": [31, 47, 78], "predicted_neq_given": [31, 47, 78], "prune_counts_matrix": 31, "smallest": [31, 55], "unus": 31, "number_of_mislabeled_examples_in_class_k": 31, "delet": [31, 67, 76, 88], "thread": [31, 47], "window": [31, 75], "shorter": [31, 50], "find_predicted_neq_given": 31, "find_label_issues_using_argmax_confusion_matrix": 31, "latent_algebra": [32, 68], "label_quality_util": 32, "multilabel_util": [32, 81], "multilabel_scor": [32, 49], "token_classification_util": [32, 89], "get_normalized_entropi": 33, "min_allowed_prob": 33, "wikipedia": 33, "activ": [33, 35, 45, 67, 80], "towardsdatasci": 33, "cheatsheet": 33, "ec57bc067c0b": 33, "clip": [33, 40, 69], "behav": 33, "unnecessari": [33, 76], "slightli": [33, 87, 88], "interv": [33, 36, 83], "herein": 34, "inexact": 34, "cours": 34, "propag": 34, "throughout": [34, 40, 57, 69, 80, 86, 89], "compute_ps_py_inv_noise_matrix": 34, "compute_py_inv_noise_matrix": 34, "compute_inv_noise_matrix": 34, "easili": [34, 68, 69, 71, 73, 74, 78, 80, 81, 83, 84, 85, 86, 87, 88], "increas": [34, 52, 54, 55, 69, 70, 76, 80, 81, 89], "dot": [34, 65, 76], "compute_noise_matrix_from_invers": 34, "compute_pi": 34, "true_labels_class_count": 34, "compute_pyx": 34, "pyx": 34, "multiannot": 35, "assert_valid_inputs_multiannot": 35, "labels_multiannot": [35, 45], "ensembl": [35, 36, 45, 55, 73, 76, 81, 83, 85, 87], "allow_single_label": 35, "annotator_id": 35, "assert_valid_pred_prob": 35, "pred_probs_unlabel": [35, 45], "format_multiannotator_label": [35, 45, 80], "lexicograph": [35, 40], "formatted_label": [35, 40], "old": [35, 40, 68, 75], "th": [35, 39, 40, 45, 47, 50, 52, 53, 54, 63, 65, 66, 74, 81, 82, 89], "check_consensus_label_class": 35, "consensus_label": [35, 45, 80], "consensus_method": [35, 45], "consensu": [35, 45, 67, 79, 89], "establish": [35, 85, 88], "compute_soft_cross_entropi": 35, "soft": [35, 75], "find_best_temp_scal": 35, "coarse_search_rang": [35, 57, 76], "fine_search_s": [35, 57, 76], "temperatur": [35, 36, 52, 61, 65], "scale": [35, 38, 75, 76, 83, 86, 87], "factor": [35, 36, 59, 61], "minim": [35, 52, 83], "temp_scale_pred_prob": 35, "temp": 35, "sharpen": [35, 75], "smoothen": 35, "classlabelscor": 36, "enum": 36, "get_self_confidence_for_each_label": [36, 55], "get_normalized_margin_for_each_label": [36, 55], "get_confidence_weighted_entropy_for_each_label": [36, 55], "75": [36, 70, 71, 75, 80, 81, 82, 85, 89], "from_str": 36, "scorer": 36, "exponential_moving_averag": [36, 49], "alpha": [36, 49, 52, 70, 71, 78, 81, 85], "exponenti": 36, "ema": 36, "s_1": 36, "s_k": 36, "ema_k": 36, "accord": [36, 47, 73, 74, 78, 89], "formula": [36, 38], "_t": 36, "cdot": 36, "s_t": 36, "qquad": 36, "leq": 36, "_1": 36, "give": [36, 55, 78, 80, 86], "recent": [36, 89], "success": 36, "previou": [36, 77, 82], "discount": 36, "s_ema": 36, "175": [36, 78, 82], "softmin": [36, 49, 52, 61, 65], "underflow": 36, "nan": [36, 45, 73, 80, 85, 87], "possible_method": 36, "aggregated_scor": 36, "multilabelscor": 36, "base_scor": 36, "base_scorer_kwarg": 36, "aggregator_kwarg": [36, 49], "n_sampl": 36, "n_label": 36, "binari": [36, 40, 47, 49, 78, 89], "worst": [36, 80], "class_label_quality_scor": 36, "get_class_label_quality_scor": 36, "42": [36, 75, 82, 89], "452": 36, "new_scor": 36, "575": 36, "get_label_quality_scores_per_class": [36, 49], "ml_scorer": 36, "multilabel_pi": 36, "binar": [36, 37], "second": [36, 38, 40, 53, 55, 70, 76, 78, 89], "get_cross_validated_multilabel_pred_prob": 36, "reformat": [36, 69], "wider": 36, "strategi": 36, "splitter": 36, "kfold": [36, 77], "multiclass": [36, 40, 45, 81], "onevsrestclassifi": [36, 81], "randomforestclassifi": [36, 78, 81], "n_split": [36, 77, 81], "stack_compl": 37, "pred_prob_slic": 37, "extend": [37, 77, 83, 89], "get_onehot_num_class": 37, "onehot": 37, "encod": [37, 53, 59, 62, 73, 74, 76, 85, 86, 87, 88], "multilabel": [37, 81], "int2onehot": [37, 81], "hot": [37, 47, 53, 59, 62, 73, 75, 76, 85, 86, 87], "onehot2int": [37, 81], "onehot_matrix": 37, "transform_distances_to_scor": 38, "exp": [38, 54, 55, 70], "dt": 38, "right": [38, 50, 53, 74, 81, 82, 83, 88], "num_neighbor": 38, "slice": 38, "ood_features_scor": [38, 54, 83], "95122942": 38, "83945702": 38, "token_classif": [39, 63, 65, 66, 76], "get_sent": [39, 89], "sentenc": [39, 63, 65, 66, 74, 88], "readabl": 39, "filter_sent": [39, 89], "lambda": [39, 69, 70, 80], "long_sent": 39, "headlin": 39, "process_token": 39, "charact": [39, 40], "s1": 39, "s2": 39, "processed_token": 39, "rule": [39, 75], "alecnlcb": 39, "entiti": [39, 67, 76, 89], "mapped_ent": 39, "unique_ident": 39, "loc": [39, 70, 71, 77, 89], "merge_prob": 39, "probs_merg": 39, "55": [39, 75, 82, 85], "0125": [39, 65], "0375": 39, "075": 39, "025": 39, "color_sent": 39, "color": [39, 62, 70, 71, 73, 78, 81, 83, 85, 86], "red": [39, 53, 70, 71, 75, 78, 81, 82, 83, 86], "colored_sent": 39, "termcolor": 39, "31msentenc": 39, "0m": 39, "ancillari": 40, "remove_noise_from_class": 40, "class_without_nois": 40, "any_other_class": 40, "choos": [40, 55, 73, 76, 78, 85, 87], "tradition": 40, "clip_noise_r": 40, "clip_valu": 40, "new_sum": 40, "preserv": 40, "value_count": [40, 76], "fill": 40, "wherea": [40, 47, 84], "come": [40, 70, 71, 76, 86], "major": [40, 45, 68, 77, 83], "versu": [40, 78], "value_counts_fill_missing_class": 40, "get_missing_class": 40, "round_preserving_sum": 40, "obviou": 40, "cgdeboer": 40, "iteround": 40, "round_preserving_row_tot": 40, "reach": 40, "estimate_pu_f1": 40, "prob_s_eq_1": 40, "claesen": 40, "f1": [40, 74, 78], "confusion_matrix": 40, "BE": 40, "print_square_matrix": 40, "left_nam": 40, "top_nam": 40, "titl": [40, 70, 71, 78, 81, 83], "short_titl": 40, "round_plac": 40, "pretti": [40, 78], "print_noise_matrix": [40, 78], "print_inverse_noise_matrix": 40, "print_joint_matrix": [40, 78], "joint_matrix": 40, "compress_int_arrai": 40, "num_possible_valu": 40, "train_val_split": 40, "holdout_idx": 40, "subset_x_i": 40, "extract": [40, 54, 69, 74, 80, 83, 86, 88], "subset_label": 40, "subset_data": 40, "extract_indices_tf": 40, "allow_shuffl": 40, "turn": [40, 67, 82], "unshuffle_tensorflow_dataset": 40, "shuffledataset": 40, "histori": 40, "pre_x": 40, "buffer_s": 40, "is_torch_dataset": 40, "is_tensorflow_dataset": 40, "csr_vstack": 40, "csr_matric": 40, "append": [40, 69, 75, 77, 78, 80, 81, 83, 89], "bottom": [40, 50, 53, 82], "vstack": [40, 75, 76, 77, 78, 80, 81], "append_extra_datapoint": 40, "to_data": 40, "from_data": 40, "taken": 40, "One": [40, 54, 76], "get_num_class": 40, "label_matrix": 40, "canon": 40, "num_unique_class": 40, "get_unique_class": 40, "format_label": 40, "smart_display_datafram": 40, "displai": [40, 53, 62, 66, 69, 74, 78, 88, 89], "jupyt": [40, 69, 70, 71, 75, 76, 77, 78, 80, 81, 83, 85, 89], "notebook": [40, 45, 69, 71, 75, 76, 78, 80, 81, 82, 86, 89], "consol": 40, "force_two_dimens": 40, "html": [40, 54, 73, 76, 78], "assert_valid_input": 41, "allow_missing_class": 41, "allow_one_class": 41, "assert_valid_class_label": 41, "assert_nonempty_input": 41, "assert_indexing_work": 41, "length_x": 41, "labels_to_arrai": 41, "labellik": 41, "keraswrappermodel": [44, 67], "keraswrappersequenti": 44, "tf": [44, 69], "legaci": 44, "lack": 44, "keraswrapp": 44, "huggingface_keras_imdb": 44, "unit": [44, 89], "model_kwarg": [44, 57], "compile_kwarg": 44, "sparsecategoricalcrossentropi": 44, "layer": [44, 69, 74, 83, 88], "dens": 44, "my_keras_model": 44, "from_logit": 44, "compil": 44, "declar": 44, "apply_softmax": 44, "analysi": 45, "analyz": [45, 67, 78, 80, 81], "get_label_quality_multiannot": [45, 80], "vote": 45, "crowdsourc": [45, 67, 80], "dawid": [45, 80], "skene": [45, 80], "analog": [45, 75, 80], "chosen": [45, 55, 80], "crowdlab": [45, 80], "unlabel": [45, 80, 83, 86], "decid": [45, 74, 75, 80, 85, 88, 89], "get_active_learning_scor": [45, 80], "activelab": [45, 80], "priorit": [45, 52, 82, 86, 89], "showcas": 45, "main": 45, "best_qual": 45, "quality_method": 45, "calibrate_prob": 45, "return_detailed_qu": 45, "return_annotator_stat": 45, "return_weight": 45, "label_quality_score_kwarg": 45, "necessarili": [45, 74, 78], "did": [45, 46, 69, 73, 78, 80, 85, 87, 88], "id": [45, 70, 77, 80], "majority_vot": 45, "ti": 45, "broken": [45, 53, 75], "highest": [45, 53, 70, 77, 84], "0th": 45, "consensus_quality_scor": [45, 80], "annotator_agr": [45, 80], "reman": 45, "1st": 45, "2nd": [45, 59], "3rd": 45, "consensus_label_suffix": 45, "consensus_quality_score_suffix": 45, "suffix": 45, "emsembl": 45, "weigh": [45, 75], "agreement": [45, 80], "agre": 45, "prevent": 45, "overconfid": [45, 84], "wrong": [45, 50, 52, 68, 70, 71, 74, 76, 78, 82, 88], "detailed_label_qu": [45, 80], "annotator_stat": [45, 80], "model_weight": 45, "annotator_weight": 45, "warn": [45, 70], "labels_info": 45, "num_annot": [45, 80], "deriv": [45, 80], "quality_annotator_1": 45, "quality_annotator_2": 45, "quality_annotator_m": 45, "lowest": [45, 53, 71, 77, 80, 81, 82, 86], "annotator_qu": [45, 80], "num_examples_label": [45, 80], "agreement_with_consensu": [45, 80], "worst_class": [45, 80], "trustworthi": [45, 80, 85], "get_label_quality_multiannotator_ensembl": 45, "func": 45, "weigtht": 45, "budget": 45, "retrain": [45, 85, 88], "active_learning_scor": 45, "improv": [45, 71, 75, 76, 77, 78, 85, 86, 87, 88], "active_learning_scores_unlabel": 45, "get_active_learning_scores_ensembl": 45, "henc": [45, 69, 70, 80], "get_majority_vote_label": [45, 80], "event": 45, "lastli": [45, 73], "convert_long_to_wide_dataset": 45, "labels_multiannotator_long": 45, "wide": [45, 69, 87, 88], "suitabl": [45, 73, 87], "labels_multiannotator_wid": 45, "common_multilabel_issu": 46, "mutual": [46, 81], "exclus": [46, 81], "vice": 46, "versa": 46, "rank_classes_by_multilabel_qu": 46, "overall_multilabel_health_scor": 46, "multilabel_health_summari": 46, "classes_by_multilabel_qu": 46, "inner": [47, 61], "find_multilabel_issues_per_class": 47, "per_class_label_issu": 47, "label_issues_list": 47, "labels_list": 47, "pred_probs_list": [47, 55, 77, 78], "anim": [48, 83], "rat": 48, "predat": 48, "pet": 48, "reptil": 48, "manner": [49, 80, 85, 87, 88], "box": [50, 52, 53, 75, 82], "object_detect": [50, 52, 53, 82], "return_indices_ranked_by_scor": [50, 82], "overlapping_label_check": [50, 52], "suboptim": [50, 52], "locat": [50, 52, 82, 86, 89], "bbox": [50, 53, 82], "image_nam": [50, 53], "y1": [50, 53, 82], "y2": [50, 53, 82], "later": [50, 53, 54, 88, 89], "mmdetect": [50, 53, 82], "corner": [50, 53, 82], "swap": [50, 52, 62, 66], "penal": [50, 52], "concern": [50, 52, 67, 71], "aggregation_weight": 52, "imperfect": [52, 76], "chose": [52, 80, 82], "imperfectli": [52, 82], "dirti": [52, 55, 58, 85], "subtyp": 52, "badloc": 52, "nonneg": 52, "issues_from_scor": [52, 61, 62, 65, 66, 82, 86, 89], "compute_overlooked_box_scor": 52, "high_probability_threshold": 52, "auxiliary_input": [52, 53], "vari": [52, 71], "iou": 52, "heavili": 52, "auxiliarytypesdict": 52, "pred_label": [52, 88], "pred_label_prob": 52, "pred_bbox": 52, "lab_label": 52, "lab_bbox": 52, "similarity_matrix": 52, "min_possible_similar": 52, "scores_overlook": 52, "compute_badloc_box_scor": 52, "low_probability_threshold": 52, "scores_badloc": 52, "compute_swap_box_scor": 52, "accident": [52, 73, 74, 88], "scores_swap": 52, "pool_box_scores_per_imag": 52, "box_scor": 52, "image_scor": [52, 61, 86], "object_counts_per_imag": 53, "discov": [53, 71, 89], "auxiliari": [53, 83, 86], "_get_valid_inputs_for_compute_scor": 53, "object_count": 53, "bounding_box_size_distribut": 53, "down": 53, "bbox_siz": 53, "class_label_distribut": 53, "class_distribut": 53, "get_sorted_bbox_count_idx": 53, "plot": [53, 70, 71, 78, 81, 83, 85, 86], "sorted_idx": [53, 83], "plot_class_size_distribut": 53, "class_to_show": 53, "hidden": [53, 83], "max_class_to_show": 53, "plot_class_distribut": 53, "visual": [53, 70, 71, 77, 85, 87, 89], "prediction_threshold": 53, "overlai": [53, 82], "figsiz": [53, 70, 71, 77, 78, 81, 83], "save_path": [53, 82], "blue": [53, 75, 78, 82], "overlaid": 53, "side": [53, 75, 82], "figur": [53, 78, 81, 83, 85], "extens": [53, 78, 80], "png": [53, 82], "pdf": [53, 54], "ep": 53, "svg": 53, "matplotlib": [53, 70, 71, 77, 78, 81, 82, 83, 85], "Of": 54, "li": 54, "smaller": [54, 81, 82], "find_top_issu": [54, 55, 83], "reli": [54, 69, 70, 71, 74, 82, 83, 88], "dist_metr": 54, "dim": [54, 77, 86], "subtract": [54, 55], "renorm": [54, 55, 76], "least_confid": 54, "sum_": 54, "log": [54, 55, 68], "softmax": [54, 61, 65, 77], "literatur": 54, "gen": 54, "liu": 54, "lochman": 54, "zach": 54, "openaccess": 54, "thecvf": 54, "content": [54, 69, 70, 71, 75, 77, 78, 80, 81, 83, 85, 89], "cvpr2023": 54, "liu_gen_pushing_the_limits_of_softmax": 54, "based_out": 54, "distribution_detection_cvpr_2023_pap": 54, "fit_scor": [54, 83], "ood_predictions_scor": 54, "categor": [54, 70, 71, 72, 85, 87], "pretrain": [54, 69, 74, 83, 88], "adjust_confident_threshold": 54, "probabilist": [54, 69, 70, 71, 73, 74, 83, 84, 87], "order_label_issu": [55, 68], "whichev": [55, 84], "argsort": [55, 74, 77, 78, 83, 85, 88], "max_": 55, "get_label_quality_ensemble_scor": [55, 76, 78], "weight_ensemble_members_bi": 55, "custom_weight": 55, "log_loss_search_t_valu": 55, "0001": [55, 75], "scheme": 55, "log_loss_search": 55, "log_loss": [55, 74], "1e0": 55, "1e1": 55, "1e2": 55, "2e2": 55, "quality_scor": [55, 83], "forth": 55, "top_issue_indic": 55, "rank_bi": [55, 68], "weird": [55, 66], "minu": 55, "prob_label": 55, "max_prob_not_label": 55, "idea": 55, "AND": [55, 74], "corrupt": [57, 85], "linearregress": [57, 76, 85], "y_with_nois": 57, "n_boot": [57, 76], "include_aleatoric_uncertainti": [57, 76], "sole": [57, 70, 80, 83, 87], "larger": [57, 59, 61, 75, 76, 77], "bootstrap": [57, 76, 85], "resampl": [57, 69, 76], "epistem": [57, 76, 83, 85], "aleator": [57, 76, 85], "model_final_kwarg": 57, "coars": 57, "thorough": [57, 76], "fine": [57, 69, 74, 83, 88], "grain": 57, "grid": 57, "get_epistemic_uncertainti": 57, "varianc": [57, 78], "epistemic_uncertainti": 57, "get_aleatoric_uncertainti": 57, "residu": [57, 58, 76], "deviat": [57, 85], "ie": 57, "aleatoric_uncertainti": 57, "outr": 58, "contin": 58, "raw": [58, 67, 68, 71, 75, 77, 80, 82, 83], "aka": [58, 69, 78, 89], "00323821": 58, "33692597": 58, "00191686": 58, "semant": [59, 61, 62, 79], "segment": [59, 61, 62, 79], "pixel": [59, 61, 62, 83, 86], "h": [59, 61, 62, 86], "height": [59, 61, 62, 86], "w": [59, 61, 62, 86], "width": [59, 61, 62, 86], "labels_one_hot": [59, 62, 86], "stream": [59, 83, 89], "downsampl": [59, 61, 86], "shrink": [59, 61], "divis": [59, 61, 70], "segmant": [61, 62], "num_pixel_issu": [61, 86], "product": [61, 76, 77], "pixel_scor": [61, 86], "display_issu": [61, 62, 63, 65, 66, 86, 89], "highlight": [62, 66, 70, 71, 73, 86], "enter": 62, "legend": [62, 70, 71, 81, 82, 85, 86], "colormap": 62, "background": 62, "person": [62, 76, 82, 86, 89], "common_label_issu": [62, 66, 86, 89], "ambigu": [62, 66, 69, 74, 75, 78, 88, 89], "systemat": [62, 66, 80], "misunderstood": [62, 66], "issues_df": [62, 77], "filter_by_class": [62, 86], "class_index": 62, "issues_subset": [62, 66], "95": [63, 65, 73, 75, 78, 85], "token_score_method": 65, "sentence_score_method": 65, "sentence_score_kwarg": 65, "compris": [65, 66], "token_scor": [65, 89], "converg": 65, "toward": 65, "_softmin_sentence_scor": 65, "sentence_scor": [65, 89], "token_info": 65, "70": [65, 73, 85], "02": [65, 70, 71, 78, 82, 85], "03": [65, 75, 78, 82, 89], "04": [65, 82, 85, 89], "08": [65, 78, 82, 89], "commonli": [66, 68, 70, 71, 81, 89], "filter_by_token": [66, 89], "But": [66, 78, 89], "restrict": [66, 76], "reliabl": [67, 69, 76, 80, 86, 87], "thousand": 67, "imagenet": [67, 75], "popular": [67, 80, 82], "centric": [67, 79], "capabl": 67, "minut": [67, 69, 73, 74, 75, 80, 81, 82, 85, 86, 87, 88, 89], "conda": 67, "feature_embed": [67, 83], "Then": [67, 76, 77, 85, 87, 88], "your_dataset": [67, 69, 70, 71, 73, 74, 77], "column_name_of_label": [67, 69, 70, 71, 73, 74, 77], "plagu": [67, 71], "untrain": 67, "\u30c4": 67, "label_issues_info": [67, 71], "sklearn_compatible_model": 67, "framework": [67, 81, 82], "complianc": 67, "tag": [67, 81, 89], "sequenc": 67, "recognit": [67, 69, 76, 89], "train_data": [67, 83, 85, 87, 88], "gotten": 67, "test_data": [67, 78, 81, 83, 85, 87, 88], "deal": [67, 71], "tutori": [67, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "faq": [67, 79], "feel": [67, 69, 71, 76], "free": [67, 69, 71, 76, 78], "ask": [67, 76], "slack": [67, 76], "project": [67, 85], "welcom": 67, "commun": [67, 76], "guidelin": [67, 82], "piec": 67, "studio": [67, 71, 76], "platform": [67, 76], "tabular": [67, 70, 71, 72, 76, 79, 80], "automl": [67, 76], "foundat": 67, "smart": [67, 76], "edit": [67, 76], "easier": [67, 78], "unreli": [67, 69, 73, 74, 87], "older": 68, "outlin": 68, "substitut": 68, "v2": [68, 73, 87], "get_noise_indic": 68, "psx": 68, "sorted_index_method": 68, "order_label_error": 68, "label_errors_bool": 68, "latent_estim": 68, "num_label_error": 68, "learningwithnoisylabel": 68, "neatli": 68, "organ": [68, 73, 75, 87, 89], "reorgan": 68, "baseline_method": 68, "incorpor": [68, 78], "research": [68, 78], "polyplex": 68, "terminologi": 68, "label_error": 68, "quickstart": [69, 70, 71, 73, 74, 75, 77, 80, 81, 82, 83, 85, 86, 87, 88, 89], "spoken": 69, "500": [69, 83, 89], "english": [69, 75], "pronunci": 69, "wav": 69, "huggingfac": [69, 70, 71, 77], "voxceleb": 69, "speech": [69, 89], "your_pred_prob": [69, 70, 71, 73, 74], "tensorflow_io": 69, "26": [69, 70, 75, 77, 78, 80, 82, 89], "huggingface_hub": 69, "12": [69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 82, 83, 85, 86, 87, 88, 89], "branch": [69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 87, 88], "reproduc": [69, 73, 78, 80], "command": 69, "wget": [69, 82, 86, 89], "navig": 69, "link": [69, 75, 82], "browser": 69, "jakobovski": 69, "archiv": [69, 89], "v1": 69, "tar": [69, 83], "gz": [69, 83], "mkdir": [69, 89], "spoken_digit": 69, "xf": 69, "6_nicolas_32": 69, "data_path": 69, "listdir": 69, "nondeterminist": 69, "file_nam": 69, "endswith": 69, "file_path": 69, "join": [69, 76, 77], "39": [69, 70, 74, 75, 76, 77, 82, 85, 86, 88, 89], "7_george_26": 69, "0_nicolas_24": 69, "0_nicolas_6": 69, "listen": 69, "display_exampl": 69, "click": [69, 70, 71, 75, 77, 78, 80, 81, 83, 85, 89], "expand": [69, 70, 71, 75, 77, 78, 80, 81, 83, 85, 89], "pulldown": [69, 70, 71, 75, 77, 78, 80, 81, 83, 85, 89], "colab": [69, 70, 71, 75, 76, 77, 78, 80, 81, 83, 85, 89], "tfio": 69, "pathlib": 69, "ipython": 69, "load_wav_16k_mono": 69, "filenam": 69, "khz": 69, "file_cont": 69, "io": [69, 75], "read_fil": 69, "sample_r": 69, "decode_wav": 69, "desired_channel": 69, "squeez": 69, "int64": [69, 80], "rate_in": 69, "rate_out": 69, "16000": 69, "wav_file_nam": 69, "audio_r": 69, "wav_file_exampl": 69, "plai": [69, 75, 76], "button": 69, "wav_file_name_exampl": 69, "7_jackson_43": 69, "hear": 69, "extractor": 69, "encoderclassifi": 69, "spkrec": 69, "xvect": 69, "feature_extractor": 69, "from_hparam": 69, "run_opt": 69, "uncom": 69, "wav_audio_file_path": 69, "head": [69, 71, 73, 74, 75, 77, 78, 80, 85, 87, 88], "torchaudio": 69, "extract_audio_embed": 69, "emb": [69, 77], "signal": 69, "encode_batch": 69, "embeddings_list": [69, 77], "embeddings_arrai": 69, "512": [69, 77], "14": [69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "196315": 69, "3194594": 69, "478977": 69, "2890828": 69, "8170278": 69, "892647": 69, "24": [69, 75, 78, 80, 82], "898054": 69, "256194": 69, "559642": 69, "559715": 69, "620667": 69, "285246": 69, "21": [69, 70, 71, 75, 78, 82, 89], "709623": 69, "5033712": 69, "913803": 69, "8198366": 69, "1831512": 69, "208761": 69, "08426": 69, "3210406": 69, "005453": 69, "2161605": 69, "478239": 69, "682179": 69, "0538025": 69, "242471": 69, "0914207": 69, "7833488": 69, "039538": 69, "23": [69, 75, 77, 78, 82], "56918": 69, "19": [69, 74, 75, 77, 78, 83, 85, 86, 88], "761095": 69, "1258287": 69, "753235": 69, "3508894": 69, "598273": 69, "237122": 69, "2500": 69, "leverag": [69, 74, 76, 78, 80, 88], "tune": [69, 74, 75, 83, 88], "computation": [69, 74, 88], "intens": [69, 74, 88], "held": [69, 73, 74, 75, 82, 83, 84, 87], "straightforward": [69, 73, 87], "benefit": [69, 84, 86, 87], "tol": 69, "num_crossval_fold": [69, 73, 80, 87], "decreas": [69, 76], "never": [69, 78, 81, 83, 84], "accuracy_scor": [69, 74, 78, 87, 88], "cv_accuraci": 69, "9772": 69, "probabilit": [69, 88], "9980": 69, "176": [69, 75, 78, 81], "006488": 69, "2318": 69, "008269": 69, "986": 69, "010354": 69, "469": 69, "013459": 69, "516": 69, "013478": 69, "investig": 69, "100541": 69, "998729": 69, "998768": 69, "980980": 69, "998217": 69, "18": [69, 74, 75, 78, 82, 83, 85, 86, 88], "identified_label_issu": [69, 74], "lowest_quality_label": [69, 74, 78, 85, 88], "sort_valu": [69, 71, 73, 74, 77, 78, 80], "1946": 69, "1871": 69, "1955": 69, "2132": 69, "worth": [69, 78], "iloc": [69, 73, 74, 85, 87, 88], "6_yweweler_35": 69, "6_yweweler_36": 69, "6_yweweler_14": 69, "6_theo_27": 69, "4_george_31": 69, "6_nicolas_8": 69, "sound": 69, "quit": [69, 83], "22": [69, 70, 75, 77, 78, 81, 82, 89], "blindli": [69, 76, 85, 87, 88], "trust": [69, 76, 78, 80, 84, 85, 87, 88], "address": [70, 71, 74, 76, 88], "underneath": 70, "hood": 70, "alert": 70, "introduct": 70, "mayb": [70, 71, 74], "examin": [70, 71, 73, 87], "your_feature_matrix": [70, 71], "toi": [70, 71, 75, 77, 78, 80], "train_test_split": [70, 71, 83, 87, 88], "inf": [70, 71], "mid": [70, 71], "bins_map": [70, 71], "create_data": [70, 71], "y_bin": [70, 71], "y_i": [70, 71], "y_bin_idx": [70, 71], "y_train": [70, 71, 78, 85], "y_test": [70, 71, 78, 85], "y_train_idx": [70, 71], "y_test_idx": [70, 71], "test_siz": [70, 71, 87, 88], "slide": [70, 71, 75], "decis": [70, 71, 87], "boundari": [70, 71], "frame": [70, 71], "x_out": [70, 71], "tini": [70, 71], "concaten": [70, 71, 84], "y_out": [70, 71], "y_out_bin": [70, 71], "y_out_bin_idx": [70, 71], "exact_duplicate_idx": [70, 71], "x_duplic": [70, 71], "y_duplic": [70, 71], "y_duplicate_idx": [70, 71], "noisy_labels_idx": [70, 71, 81], "scatter": [70, 71, 78, 81, 85], "black": [70, 71, 75, 85], "cyan": [70, 71], "pyplot": [70, 71, 77, 78, 81, 83, 85], "plt": [70, 71, 77, 78, 81, 83, 85], "plot_data": [70, 71, 78, 81, 85], "fig": [70, 71, 75, 77, 83, 85], "ax": [70, 71, 77, 83, 85], "subplot": [70, 71, 77, 83], "set_titl": [70, 71, 77, 83], "set_xlabel": [70, 71], "x_1": [70, 71], "fontsiz": [70, 71, 77, 78, 81], "set_ylabel": [70, 71], "x_2": [70, 71], "set_xlim": [70, 71], "set_ylim": [70, 71], "linestyl": [70, 71], "circl": [70, 71, 78, 81], "misclassifi": [70, 71], "zip": [70, 71, 77, 82, 89], "label_err": [70, 71], "180": [70, 71, 82], "marker": [70, 71], "facecolor": [70, 71], "edgecolor": [70, 71], "linewidth": [70, 71, 83], "dup": [70, 71], "first_legend": [70, 71], "align": [70, 71], "title_fontproperti": [70, 71], "semibold": [70, 71], "second_legend": [70, 71], "45": [70, 71, 75, 78, 82], "gca": [70, 71], "add_artist": [70, 71], "tight_layout": [70, 71], "ideal": [70, 71], "logist": [70, 71, 74, 80, 83, 88], "regress": [70, 71, 74, 79, 80, 83, 88], "remaind": 70, "modal": [70, 71, 76, 80], "regardless": [70, 71], "132": [70, 71, 78, 82], "9318": [70, 71], "77": [70, 71, 73, 82, 87], "006939": [70, 71], "007830": [70, 71], "40": [70, 71, 74, 75, 77], "014826": [70, 71], "107": [70, 71, 78, 81], "021220": [70, 71], "120": [70, 71, 87], "026403": [70, 71], "notic": [70, 78, 80, 82], "5221": [70, 71], "126": [70, 71, 78, 82], "046465": [70, 71], "130": [70, 71], "068695": [70, 71], "129": [70, 71, 89], "127": [70, 71], "076251": [70, 71], "128": [70, 71, 77], "083941": [70, 71], "2465": [70, 71], "is_near_duplicate_issu": [70, 71, 73, 74, 77, 78], "131": [70, 71, 86], "000000e": [70, 71], "00": [70, 71, 73, 75, 77, 86, 87], "463180e": [70, 71], "07": [70, 71, 78, 82], "51": [70, 71, 73, 75, 78, 82], "857172e": [70, 71], "859087e": [70, 71], "30": [70, 75, 76, 77, 81, 86, 89], "3293": 70, "025076": 70, "026534": 70, "050766": 70, "051025": 70, "home": [70, 74, 75, 83, 88], "runner": [70, 74, 83, 88], "219": [70, 82], "userwarn": 70, "249": [70, 78, 82, 89], "228": [70, 82], "34": [70, 75, 78, 80, 82, 83, 89], "54": [70, 75, 78, 82, 89], "039117": 70, "53": [70, 73, 75, 81, 82, 87], "044594": 70, "105": 70, "105121": 70, "133588": [70, 71], "43": [70, 75, 78, 82, 88, 89], "168035": 70, "125": 70, "090878": 70, "37": [70, 75], "169462": 70, "109": [70, 75, 82], "194566": 70, "35": [70, 75, 80, 81, 82], "196302": 70, "206314": 70, "average_ood_scor": 70, "32933380816554325": 70, "52": [70, 75, 82], "085049e": 70, "087324e": 70, "89": [70, 73, 82, 85], "92": [70, 78, 82, 87], "574261e": 70, "583757e": 70, "91": [70, 82, 88], "314215e": 70, "341292e": 70, "specfi": 70, "new_lab": 70, "scoring_funct": 70, "div": 70, "rem": 70, "inv_scal": 70, "49": [70, 75, 78, 82], "superstitionissuemanag": 70, "unlucki": 70, "superstit": 70, "to_seri": 70, "issues_mask": 70, "summary_scor": 70, "32": [70, 75, 80, 82], "9242": 70, "is_superstition_issu": 70, "superstition_scor": 70, "047581": 70, "090635": 70, "129591": 70, "65": [70, 82, 87], "164840": 70, "demo": [71, 73, 81, 87], "lurk": [71, 77, 78], "thoroughli": 71, "preprocess": [71, 73, 83, 85, 87, 88], "review": [71, 73, 74, 75, 76, 78, 82, 85, 86, 87, 88, 89], "8218": 71, "is_non_iid_issu": [71, 73, 74, 77, 78], "810274": 71, "826147": 71, "849587": 71, "855359": 71, "855485": 71, "821750488732925": 71, "auto": [71, 75, 76, 85, 87, 88], "conceptu": 71, "931818": 71, "522080": 71, "246459": 71, "821750": 71, "betweeen": 71, "864232": 71, "586131": 71, "235095": 71, "970324": 71, "825563": 71, "548979": 71, "221560": 71, "890575": 71, "533367": 71, "622256": 71, "199185": 71, "755724": 71, "499498": 71, "179601": 71, "948362": 71, "632385": 71, "292800": 71, "878267": 71, "examples_w_issu": [71, 76], "inde": [71, 74], "miscellan": [71, 89], "206897": 71, "041667": 71, "793103": 71, "071429": 71, "103448": 71, "928571": 71, "053333": 71, "101266": 71, "946667": 71, "portion": 71, "huge": [71, 78], "worri": 71, "critic": 71, "highli": [71, 77], "sql": [73, 87], "databas": [73, 87], "excel": [73, 87], "parquet": [73, 87], "student": [73, 85, 87, 89], "grade": [73, 85, 87], "900": [73, 85, 87], "exam": [73, 85, 87], "letter": [73, 87, 89], "hundr": [73, 87], "histgradientboostingclassifi": 73, "reflect": [73, 74, 80, 82, 83, 85, 87, 88], "standardscal": [73, 83, 87], "possibli": [73, 87], "grades_data": [73, 87], "read_csv": [73, 74, 85, 87, 88], "stud_id": [73, 87], "exam_1": [73, 85, 87], "exam_2": [73, 85, 87], "exam_3": [73, 85, 87], "letter_grad": [73, 87], "f48f73": [73, 87], "0bd4e7": [73, 87], "81": [73, 74, 82, 85, 87, 89], "great": [73, 75, 87], "particip": [73, 87], "cb9d7a": [73, 87], "61": [73, 78, 82, 87], "94": [73, 75, 78, 82, 85, 87], "78": [73, 75, 78, 82, 85, 87], "9acca4": [73, 87], "48": [73, 75, 78, 82, 87], "x_raw": [73, 87], "cat_featur": 73, "x_encod": [73, 87], "get_dummi": [73, 85, 87], "drop_first": [73, 87], "numeric_featur": [73, 87], "scaler": [73, 83, 87], "x_process": [73, 87], "fit_transform": [73, 87], "bring": [73, 74, 77, 80, 85, 87, 88], "byod": [73, 74, 77, 80, 85, 87, 88], "boost": [73, 76, 80, 85], "xgboost": [73, 76, 85], "think": [73, 76, 81, 86, 89], "carefulli": [73, 74, 77, 87], "nonzero": 73, "suspici": [73, 87], "tabl": [73, 75, 77, 80, 87], "358": 73, "294": [73, 82], "46": [73, 75, 78, 82], "941": [73, 89], "7109": 73, "000005": [73, 74, 77], "886": 73, "000059": 73, "709": 73, "000104": 73, "723": 73, "000169": 73, "689": 73, "000181": 73, "7154": 73, "012085": 73, "061510": 73, "115512": 73, "124391": 73, "214163": 73, "2169": 73, "690": 73, "246": [73, 82], "185": [73, 75, 82], "582": 73, "691": 73, "168": [73, 78, 89], "915": 73, "187": [73, 75], "27": [73, 75, 78, 82, 89], "0014": [73, 75], "595": 73, "702427": 73, "147": [73, 78, 82], "711186": 73, "157": [73, 78], "721394": 73, "771": 73, "731979": 73, "898": 73, "740335": 73, "0014153602099278074": 73, "issue_result": 73, "000842": 73, "555944": 73, "004374": 73, "sorted_issu": 73, "73": [73, 75, 81, 82, 85], "86": [73, 77, 78, 82, 85, 87], "deserv": 73, "outlier_result": 73, "sorted_outli": 73, "56": [73, 75, 85], "96": [73, 75, 78, 81, 82, 85], "lt": [73, 74, 75, 77, 80, 86], "style": [73, 86], "font": 73, "18px": 73, "ff00ff": 73, "bac": 73, "unintend": [73, 74], "mistak": [73, 74, 77, 87, 88], "duplicate_result": 73, "58": [73, 75, 78, 82, 87, 89], "perhap": [73, 78, 80], "twice": 73, "67": [73, 75, 77, 82, 85], "wari": [73, 74, 76], "intent": [74, 88], "servic": [74, 88], "onlin": [74, 88], "bank": [74, 75, 88], "banking77": [74, 88], "oo": [74, 88], "000": [74, 75, 77, 88, 89], "categori": [74, 77, 88], "scope": [74, 88], "dive": 74, "your_featur": 74, "sentence_transform": [74, 88], "sentencetransform": [74, 88], "payment": [74, 88], "cancel_transf": [74, 88], "transfer": [74, 88], "fund": [74, 88], "cancel": [74, 88], "transact": [74, 88], "my": [74, 88], "revert": [74, 88], "morn": [74, 88], "realis": [74, 88], "yesterdai": [74, 88], "rent": [74, 88], "realli": [74, 80, 86, 88], "tomorrow": [74, 88], "raw_text": [74, 88], "card_about_to_expir": [74, 88], "lost_or_stolen_phon": [74, 88], "change_pin": [74, 88], "card_payment_fee_charg": [74, 88], "beneficiary_not_allow": [74, 88], "getting_spare_card": [74, 88], "visa_or_mastercard": [74, 88], "apple_pay_or_google_pai": [74, 88], "supported_cards_and_curr": [74, 88], "utter": [74, 88], "continu": [74, 77, 80, 85, 87, 88, 89], "suit": [74, 75, 88], "electra": [74, 88], "discrimin": [74, 88], "googl": [74, 88], "text_embed": 74, "No": [74, 76, 88], "google_electra": [74, 88], "pool": [74, 76, 83, 88], "400": [74, 88], "data_dict": [74, 78, 80], "84": [74, 82], "41": [74, 75, 82, 85], "38": [74, 75, 82, 89], "9720": 74, "981": 74, "974": 74, "000150": 74, "982": [74, 75], "000218": 74, "971": 74, "000512": 74, "980": [74, 75], "000947": 74, "9122": 74, "994": 74, "676322": 74, "999": 74, "693868": 74, "697240": 74, "433": 74, "700874": 74, "989": 74, "713590": 74, "0656": 74, "160": 74, "006237": 74, "148": 74, "546": 74, "006485": 74, "514": 74, "481": 74, "008165": 74, "0000": [74, 75, 78], "313": [74, 82], "564102": 74, "572258": 74, "28": [74, 75, 77, 78, 80, 86, 89], "574915": 74, "31": [74, 75, 78, 80, 82], "575507": 74, "575874": 74, "791961": 74, "258508": 74, "699010": 74, "183136": 74, "771112": 74, "to_numpi": [74, 85, 88], "data_with_suggested_label": 74, "suggested_label": 74, "charg": [74, 88], "cash": [74, 88], "holidai": [74, 88], "sent": [74, 88, 89], "card": [74, 75, 88], "mine": [74, 88], "expir": [74, 88], "me": [74, 88], "withdraw": 74, "monei": 74, "whoever": [74, 88], "outlier_issu": [74, 77], "lowest_quality_outli": 74, "OR": 74, "636c65616e6c616220697320617765736f6d6521": 74, "phone": [74, 75], "gone": 74, "gt": [74, 80, 89], "samp": 74, "br": 74, "press": [74, 89], "nonsens": 74, "sens": 74, "detriment": 74, "duplicate_issu": 74, "fee": 74, "pai": 74, "go": [74, 75, 78], "shortlist": [74, 85, 88], "curat": [74, 79], "mnist_test_set": 75, "imagenet_val_set": 75, "tench": 75, "goldfish": 75, "white": [75, 89], "shark": 75, "tiger": 75, "hammerhead": 75, "electr": 75, "rai": 75, "stingrai": 75, "cock": 75, "hen": 75, "ostrich": 75, "brambl": 75, "goldfinch": 75, "hous": 75, "finch": 75, "junco": 75, "indigo": 75, "bunt": 75, "american": [75, 89], "robin": 75, "bulbul": 75, "jai": 75, "magpi": 75, "chickade": 75, "dipper": 75, "kite": 75, "bald": 75, "eagl": 75, "vultur": 75, "grei": 75, "owl": 75, "fire": 75, "salamand": 75, "smooth": 75, "newt": 75, "spot": [75, 82], "axolotl": 75, "bullfrog": 75, "tree": 75, "frog": [75, 83], "tail": 75, "loggerhead": 75, "sea": 75, "turtl": 75, "leatherback": 75, "mud": 75, "terrapin": 75, "band": 75, "gecko": 75, "green": [75, 89], "iguana": 75, "carolina": 75, "anol": 75, "desert": 75, "grassland": 75, "whiptail": 75, "lizard": 75, "agama": 75, "frill": 75, "neck": 75, "allig": 75, "gila": 75, "monster": 75, "european": 75, "chameleon": 75, "komodo": 75, "dragon": 75, "nile": 75, "crocodil": 75, "triceratop": 75, "worm": 75, "snake": 75, "ring": 75, "eastern": 75, "hog": 75, "nose": 75, "kingsnak": 75, "garter": 75, "water": 75, "vine": 75, "night": 75, "boa": 75, "constrictor": 75, "african": 75, "rock": 75, "indian": 75, "cobra": 75, "mamba": 75, "saharan": 75, "horn": 75, "viper": 75, "diamondback": 75, "rattlesnak": 75, "sidewind": 75, "trilobit": 75, "harvestman": 75, "scorpion": 75, "yellow": 75, "garden": 75, "spider": 75, "barn": 75, "southern": 75, "widow": 75, "tarantula": 75, "wolf": 75, "tick": 75, "centiped": 75, "grous": 75, "ptarmigan": 75, "ruf": 75, "prairi": 75, "peacock": 75, "quail": 75, "partridg": 75, "parrot": 75, "macaw": 75, "sulphur": 75, "crest": 75, "cockatoo": 75, "lorikeet": 75, "coucal": 75, "bee": 75, "eater": 75, "hornbil": 75, "hummingbird": 75, "jacamar": 75, "toucan": 75, "duck": [75, 88], "breast": 75, "mergans": 75, "goos": 75, "swan": 75, "tusker": 75, "echidna": 75, "platypu": 75, "wallabi": 75, "koala": 75, "wombat": 75, "jellyfish": 75, "anemon": 75, "brain": 75, "coral": 75, "flatworm": 75, "nematod": 75, "conch": 75, "snail": 75, "slug": 75, "chiton": 75, "chamber": 75, "nautilu": 75, "dung": 75, "crab": 75, "fiddler": 75, "king": 75, "lobster": 75, "spini": 75, "crayfish": 75, "hermit": 75, "isopod": 75, "stork": 75, "spoonbil": 75, "flamingo": 75, "heron": 75, "egret": 75, "bittern": 75, "crane": 75, "bird": [75, 83], "limpkin": 75, "gallinul": 75, "coot": 75, "bustard": 75, "ruddi": 75, "turnston": 75, "dunlin": 75, "redshank": 75, "dowitch": 75, "oystercatch": 75, "pelican": 75, "penguin": 75, "albatross": 75, "whale": 75, "killer": 75, "dugong": 75, "lion": 75, "chihuahua": 75, "japanes": 75, "chin": 75, "maltes": 75, "pekinges": 75, "shih": 75, "tzu": 75, "charl": 75, "spaniel": 75, "papillon": 75, "terrier": 75, "rhodesian": 75, "ridgeback": 75, "afghan": [75, 89], "hound": 75, "basset": 75, "beagl": 75, "bloodhound": 75, "bluetick": 75, "coonhound": 75, "tan": 75, "walker": 75, "foxhound": 75, "redbon": 75, "borzoi": 75, "irish": 75, "wolfhound": 75, "italian": 75, "greyhound": 75, "whippet": 75, "ibizan": 75, "norwegian": 75, "elkhound": 75, "otterhound": 75, "saluki": 75, "scottish": 75, "deerhound": 75, "weimaran": 75, "staffordshir": 75, "bull": 75, "bedlington": 75, "border": 75, "kerri": 75, "norfolk": 75, "norwich": 75, "yorkshir": 75, "wire": 75, "fox": 75, "lakeland": 75, "sealyham": 75, "airedal": 75, "cairn": 75, "australian": 75, "dandi": 75, "dinmont": 75, "boston": 75, "miniatur": 75, "schnauzer": 75, "giant": 75, "tibetan": 75, "silki": 75, "coat": [75, 77], "wheaten": 75, "west": 75, "highland": 75, "lhasa": 75, "apso": 75, "flat": 75, "retriev": 75, "curli": 75, "golden": 75, "labrador": 75, "chesapeak": 75, "bai": 75, "german": [75, 89], "shorthair": 75, "pointer": 75, "vizsla": 75, "setter": 75, "gordon": 75, "brittani": 75, "clumber": 75, "springer": 75, "welsh": 75, "cocker": 75, "sussex": 75, "kuvasz": 75, "schipperk": 75, "groenendael": 75, "malinoi": 75, "briard": 75, "kelpi": 75, "komondor": 75, "sheepdog": 75, "shetland": 75, "colli": 75, "bouvier": 75, "de": 75, "flandr": 75, "rottweil": 75, "shepherd": 75, "dobermann": 75, "pinscher": 75, "swiss": [75, 89], "mountain": 75, "bernes": 75, "appenzel": 75, "sennenhund": 75, "entlebuch": 75, "boxer": 75, "bullmastiff": 75, "mastiff": 75, "french": 75, "bulldog": 75, "dane": 75, "st": 75, "bernard": 75, "huski": 75, "alaskan": 75, "malamut": 75, "siberian": 75, "dalmatian": 75, "affenpinsch": 75, "basenji": 75, "pug": 75, "leonberg": 75, "newfoundland": 75, "pyrenean": 75, "samoi": 75, "pomeranian": 75, "chow": 75, "keeshond": 75, "griffon": 75, "bruxelloi": 75, "pembrok": 75, "corgi": 75, "cardigan": 75, "poodl": 75, "mexican": 75, "hairless": 75, "tundra": 75, "coyot": 75, "dingo": 75, "dhole": 75, "wild": 75, "hyena": 75, "kit": 75, "arctic": 75, "tabbi": 75, "persian": 75, "siames": 75, "egyptian": 75, "mau": 75, "cougar": 75, "lynx": 75, "leopard": 75, "snow": 75, "jaguar": 75, "cheetah": 75, "brown": [75, 86], "bear": 75, "polar": 75, "sloth": 75, "mongoos": 75, "meerkat": 75, "beetl": 75, "ladybug": 75, "ground": [75, 78, 80, 85], "longhorn": 75, "leaf": 75, "rhinocero": 75, "weevil": 75, "fly": 75, "ant": 75, "grasshopp": 75, "cricket": 75, "stick": 75, "insect": 75, "cockroach": 75, "manti": 75, "cicada": 75, "leafhopp": 75, "lacew": 75, "dragonfli": 75, "damselfli": 75, "admir": 75, "ringlet": 75, "monarch": 75, "butterfli": 75, "gossam": 75, "wing": 75, "starfish": 75, "urchin": 75, "cucumb": 75, "cottontail": 75, "rabbit": 75, "hare": 75, "angora": 75, "hamster": 75, "porcupin": 75, "squirrel": 75, "marmot": 75, "beaver": 75, "guinea": 75, "pig": 75, "sorrel": 75, "zebra": 75, "boar": 75, "warthog": 75, "hippopotamu": 75, "ox": 75, "buffalo": 75, "bison": 75, "bighorn": 75, "sheep": 75, "alpin": 75, "ibex": 75, "hartebeest": 75, "impala": 75, "gazel": 75, "dromedari": 75, "llama": 75, "weasel": 75, "mink": 75, "polecat": 75, "foot": 75, "ferret": 75, "otter": 75, "skunk": 75, "badger": 75, "armadillo": 75, "toed": 75, "orangutan": 75, "gorilla": 75, "chimpanze": 75, "gibbon": 75, "siamang": 75, "guenon": 75, "pata": 75, "monkei": 75, "baboon": 75, "macaqu": 75, "langur": 75, "colobu": 75, "probosci": 75, "marmoset": 75, "capuchin": 75, "howler": 75, "titi": 75, "geoffroi": 75, "lemur": 75, "indri": 75, "asian": 75, "eleph": 75, "bush": 75, "snoek": 75, "eel": 75, "coho": 75, "salmon": 75, "beauti": 75, "clownfish": 75, "sturgeon": 75, "garfish": 75, "lionfish": 75, "pufferfish": 75, "abacu": 75, "abaya": 75, "academ": 75, "gown": 75, "accordion": 75, "acoust": 75, "guitar": 75, "aircraft": 75, "carrier": 75, "airlin": 75, "airship": 75, "altar": 75, "ambul": 75, "amphibi": 75, "clock": [75, 89], "apiari": 75, "apron": 75, "wast": 75, "assault": 75, "rifl": 75, "backpack": 75, "bakeri": 75, "balanc": 75, "beam": 75, "balloon": 75, "ballpoint": 75, "pen": 75, "aid": 75, "banjo": 75, "balust": 75, "barbel": 75, "barber": 75, "chair": [75, 82], "barbershop": 75, "baromet": 75, "barrel": 75, "wheelbarrow": 75, "basebal": 75, "basketbal": 75, "bassinet": 75, "bassoon": 75, "swim": 75, "cap": 75, "bath": 75, "towel": 75, "bathtub": 75, "station": 75, "wagon": 75, "lighthous": 75, "beaker": 75, "militari": 75, "beer": 75, "bottl": 75, "glass": 75, "bell": 75, "cot": 75, "bib": 75, "bicycl": [75, 86], "bikini": 75, "binder": 75, "binocular": 75, "birdhous": 75, "boathous": 75, "bobsleigh": 75, "bolo": 75, "tie": 75, "poke": 75, "bonnet": 75, "bookcas": 75, "bookstor": 75, "bow": 75, "brass": 75, "bra": 75, "breakwat": 75, "breastplat": 75, "broom": 75, "bucket": 75, "buckl": 75, "bulletproof": 75, "vest": 75, "butcher": 75, "shop": 75, "taxicab": 75, "cauldron": 75, "candl": 75, "cannon": 75, "cano": 75, "mirror": [75, 82], "carousel": 75, "tool": [75, 78, 80], "carton": 75, "wheel": 75, "teller": 75, "cassett": 75, "player": 75, "castl": 75, "catamaran": 75, "cd": 75, "cello": 75, "mobil": [75, 89], "chain": 75, "fenc": [75, 86], "mail": 75, "chainsaw": 75, "chest": 75, "chiffoni": 75, "chime": 75, "china": 75, "cabinet": 75, "christma": 75, "stock": 75, "church": 75, "movi": 75, "theater": 75, "cleaver": 75, "cliff": 75, "dwell": 75, "cloak": 75, "clog": 75, "cocktail": 75, "shaker": 75, "coffe": 75, "mug": 75, "coffeemak": 75, "coil": 75, "lock": 75, "keyboard": 75, "confectioneri": 75, "ship": [75, 83], "corkscrew": 75, "cornet": 75, "cowboi": 75, "boot": 75, "hat": 75, "cradl": 75, "crash": 75, "helmet": 75, "crate": 75, "infant": 75, "bed": 75, "crock": 75, "pot": 75, "croquet": 75, "crutch": 75, "cuirass": 75, "dam": 75, "desk": 75, "desktop": 75, "rotari": 75, "dial": 75, "telephon": 75, "diaper": 75, "watch": 75, "dine": 75, "dishcloth": 75, "dishwash": 75, "disc": 75, "brake": 75, "dock": 75, "sled": 75, "dome": 75, "doormat": 75, "drill": 75, "rig": 75, "drum": 75, "drumstick": 75, "dumbbel": 75, "dutch": 75, "oven": 75, "fan": 75, "locomot": 75, "entertain": 75, "center": 75, "envelop": 75, "espresso": 75, "powder": 75, "feather": 75, "fireboat": 75, "engin": [75, 86], "screen": 75, "sheet": 75, "flagpol": 75, "flute": 75, "footbal": 75, "forklift": 75, "fountain": 75, "poster": 75, "freight": 75, "fry": 75, "pan": 75, "fur": 75, "garbag": 75, "ga": 75, "pump": 75, "goblet": 75, "kart": 75, "golf": 75, "cart": 75, "gondola": 75, "gong": 75, "grand": 75, "piano": 75, "greenhous": 75, "grill": 75, "groceri": 75, "guillotin": 75, "barrett": 75, "hair": 75, "sprai": 75, "hammer": 75, "dryer": 75, "hand": [75, 78], "handkerchief": 75, "drive": 75, "harmonica": 75, "harp": 75, "harvest": 75, "hatchet": 75, "holster": 75, "honeycomb": 75, "hoop": 75, "skirt": 75, "horizont": 75, "bar": 75, "hors": [75, 83, 88], "drawn": 75, "hourglass": 75, "ipod": 75, "cloth": 75, "iron": 75, "jack": 75, "lantern": 75, "jean": 75, "jeep": 75, "shirt": [75, 77], "jigsaw": 75, "puzzl": 75, "pull": 75, "rickshaw": 75, "joystick": 75, "kimono": 75, "knee": 75, "pad": 75, "knot": 75, "ladl": 75, "lampshad": 75, "laptop": 75, "lawn": 75, "mower": 75, "knife": 75, "lifeboat": 75, "lighter": 75, "limousin": 75, "ocean": 75, "liner": 75, "lipstick": 75, "slip": 75, "shoe": 75, "lotion": 75, "speaker": 75, "loup": 75, "sawmil": 75, "magnet": 75, "compass": 75, "bag": [75, 77, 83, 84], "mailbox": 75, "tight": 75, "tank": 75, "manhol": 75, "maraca": 75, "marimba": 75, "maypol": 75, "maze": 75, "cup": [75, 82], "medicin": 75, "megalith": 75, "microphon": 75, "microwav": 75, "milk": 75, "minibu": 75, "miniskirt": 75, "minivan": 75, "missil": 75, "mitten": 75, "mix": 75, "bowl": 75, "modem": 75, "monasteri": 75, "monitor": 75, "mope": 75, "mortar": 75, "mosqu": 75, "mosquito": 75, "scooter": 75, "bike": 75, "tent": 75, "mous": [75, 76], "mousetrap": 75, "van": 75, "muzzl": 75, "nail": 75, "brace": 75, "necklac": 75, "nippl": 75, "obelisk": 75, "obo": 75, "ocarina": 75, "odomet": 75, "oil": 75, "oscilloscop": 75, "overskirt": 75, "bullock": 75, "oxygen": 75, "packet": 75, "paddl": 75, "padlock": 75, "paintbrush": 75, "pajama": 75, "palac": [75, 89], "parachut": 75, "park": 75, "bench": 75, "meter": 75, "passeng": 75, "patio": 75, "payphon": 75, "pedest": 75, "pencil": 75, "perfum": 75, "petri": 75, "dish": 75, "photocopi": 75, "plectrum": 75, "pickelhaub": 75, "picket": 75, "pickup": 75, "pier": 75, "piggi": 75, "pill": 75, "pillow": 75, "ping": 75, "pong": 75, "pinwheel": 75, "pirat": 75, "pitcher": 75, "plane": 75, "planetarium": 75, "plastic": 75, "plate": 75, "rack": 75, "plow": 75, "plunger": 75, "polaroid": 75, "camera": 75, "pole": [75, 86], "polic": 75, "poncho": 75, "billiard": 75, "soda": 75, "potter": 75, "power": [75, 78, 89], "prayer": 75, "rug": 75, "printer": 75, "prison": 75, "projectil": 75, "projector": 75, "hockei": 75, "puck": 75, "punch": 75, "purs": 75, "quill": 75, "quilt": 75, "race": 75, "racket": 75, "radiat": 75, "radio": 75, "telescop": 75, "rain": 75, "recreat": 75, "reel": 75, "reflex": 75, "refriger": 75, "remot": 75, "restaur": 75, "revolv": 75, "rotisseri": 75, "eras": 75, "rugbi": 75, "ruler": 75, "safe": 75, "safeti": 75, "salt": 75, "sandal": [75, 77], "sarong": 75, "saxophon": 75, "scabbard": 75, "school": 75, "bu": [75, 86], "schooner": 75, "scoreboard": 75, "crt": 75, "screw": 75, "screwdriv": 75, "seat": 75, "belt": 75, "sew": 75, "shield": 75, "shoji": 75, "basket": 75, "shovel": 75, "shower": 75, "curtain": 75, "ski": 75, "sleep": 75, "door": 75, "slot": 75, "snorkel": 75, "snowmobil": 75, "snowplow": 75, "soap": 75, "dispens": 75, "soccer": [75, 89], "sock": 75, "solar": 75, "thermal": 75, "collector": 75, "sombrero": 75, "soup": 75, "heater": 75, "shuttl": 75, "spatula": 75, "motorboat": 75, "web": 75, "spindl": 75, "sport": [75, 89], "spotlight": 75, "stage": 75, "steam": 75, "arch": 75, "bridg": 75, "steel": 75, "stethoscop": 75, "scarf": 75, "stone": 75, "wall": [75, 86], "stopwatch": 75, "stove": 75, "strainer": 75, "tram": 75, "stretcher": 75, "couch": 75, "stupa": 75, "submarin": 75, "sundial": 75, "sunglass": 75, "sunscreen": 75, "suspens": 75, "mop": 75, "sweatshirt": 75, "swimsuit": 75, "swing": 75, "switch": 75, "syring": 75, "lamp": 75, "tape": 75, "teapot": 75, "teddi": 75, "televis": [75, 89], "tenni": 75, "thatch": 75, "roof": 75, "front": 75, "thimbl": 75, "thresh": 75, "throne": 75, "tile": 75, "toaster": 75, "tobacco": 75, "toilet": 75, "totem": 75, "tow": 75, "tractor": 75, "semi": 75, "trailer": 75, "trai": 75, "trench": 75, "tricycl": 75, "trimaran": 75, "tripod": 75, "triumphal": 75, "trolleybu": 75, "trombon": 75, "tub": 75, "turnstil": 75, "typewrit": 75, "umbrella": 75, "unicycl": 75, "upright": 75, "vacuum": 75, "cleaner": 75, "vase": 75, "vault": 75, "velvet": 75, "vend": 75, "vestment": 75, "viaduct": 75, "violin": 75, "volleybal": 75, "waffl": 75, "wallet": 75, "wardrob": 75, "sink": 75, "wash": 75, "jug": 75, "tower": 75, "whiskei": 75, "whistl": 75, "wig": 75, "shade": [75, 86], "windsor": 75, "wine": 75, "wok": 75, "wooden": 75, "spoon": 75, "wool": 75, "rail": 75, "shipwreck": 75, "yawl": 75, "yurt": 75, "websit": 75, "comic": 75, "book": 75, "crossword": 75, "traffic": [75, 82, 86], "sign": [75, 86, 89], "light": [75, 77, 82, 86], "dust": 75, "jacket": [75, 82], "menu": 75, "guacamol": 75, "consomm": 75, "trifl": 75, "ic": 75, "cream": 75, "pop": 75, "baguett": 75, "bagel": 75, "pretzel": 75, "cheeseburg": 75, "mash": 75, "potato": 75, "cabbag": 75, "broccoli": 75, "cauliflow": 75, "zucchini": 75, "spaghetti": 75, "squash": 75, "acorn": 75, "butternut": 75, "artichok": 75, "pepper": 75, "cardoon": 75, "mushroom": 75, "granni": 75, "smith": 75, "strawberri": 75, "orang": 75, "lemon": 75, "pineappl": 75, "banana": 75, "jackfruit": 75, "custard": 75, "appl": 75, "pomegran": 75, "hai": 75, "carbonara": 75, "chocol": 75, "syrup": 75, "dough": 75, "meatloaf": 75, "pizza": 75, "pie": 75, "burrito": 75, "eggnog": 75, "alp": 75, "bubbl": 75, "reef": 75, "geyser": 75, "lakeshor": 75, "promontori": 75, "shoal": 75, "seashor": 75, "vallei": 75, "volcano": 75, "bridegroom": 75, "scuba": 75, "diver": 75, "rapese": 75, "daisi": 75, "ladi": 75, "slipper": 75, "corn": 75, "rose": 75, "hip": 75, "chestnut": 75, "fungu": 75, "agar": 75, "gyromitra": 75, "stinkhorn": 75, "earth": 75, "star": 75, "wood": 75, "bolet": 75, "ear": 75, "cifar10_test_set": 75, "airplan": [75, 83], "automobil": [75, 83], "deer": [75, 83], "cifar100_test_set": 75, "aquarium_fish": 75, "babi": 75, "boi": 75, "camel": 75, "caterpillar": 75, "cattl": [75, 89], "cloud": 75, "dinosaur": 75, "dolphin": 75, "flatfish": 75, "forest": 75, "girl": 75, "kangaroo": 75, "lawn_mow": 75, "man": 75, "maple_tre": 75, "motorcycl": [75, 86], "oak_tre": 75, "orchid": 75, "palm_tre": 75, "pear": 75, "pickup_truck": 75, "pine_tre": 75, "plain": 75, "poppi": 75, "possum": 75, "raccoon": 75, "road": [75, 86], "rocket": 75, "seal": 75, "shrew": 75, "skyscrap": 75, "streetcar": 75, "sunflow": 75, "sweet_pepp": 75, "trout": 75, "tulip": 75, "willow_tre": 75, "woman": [75, 82], "caltech256": 75, "ak47": 75, "bat": 75, "glove": 75, "birdbath": 75, "blimp": 75, "bonsai": 75, "boom": 75, "breadmak": 75, "buddha": 75, "bulldoz": 75, "cactu": 75, "cake": 75, "tire": 75, "cartman": 75, "cereal": 75, "chandeli": 75, "chess": 75, "board": 75, "chimp": 75, "chopstick": 75, "coffin": 75, "coin": 75, "comet": 75, "cormor": 75, "globe": 75, "diamond": 75, "dice": 75, "doorknob": 75, "drink": 75, "straw": 75, "dumb": 75, "eiffel": 75, "elk": 75, "ewer": 75, "eyeglass": 75, "fern": 75, "fighter": 75, "jet": [75, 85], "extinguish": 75, "hydrant": 75, "firework": 75, "flashlight": 75, "floppi": 75, "fri": 75, "frisbe": 75, "galaxi": 75, "giraff": 75, "goat": 75, "gate": 75, "grape": 75, "pick": 75, "hamburg": 75, "hammock": 75, "harpsichord": 75, "hawksbil": 75, "helicopt": 75, "hibiscu": 75, "homer": 75, "simpson": 75, "horsesho": 75, "air": 75, "skeleton": 75, "ibi": 75, "cone": 75, "iri": 75, "jesu": 75, "christ": 75, "joi": 75, "kayak": 75, "ketch": 75, "ladder": 75, "lath": 75, "licens": 75, "lightbulb": 75, "lightn": 75, "mandolin": 75, "mar": 75, "mattress": 75, "megaphon": 75, "menorah": 75, "microscop": 75, "minaret": 75, "minotaur": 75, "motorbik": 75, "mussel": 75, "neckti": 75, "octopu": 75, "palm": 75, "pilot": 75, "paperclip": 75, "shredder": 75, "pci": 75, "peopl": [75, 82], "pez": 75, "picnic": 75, "pram": 75, "prai": 75, "pyramid": 75, "rainbow": 75, "roulett": 75, "saddl": 75, "saturn": 75, "segwai": 75, "propel": 75, "sextant": 75, "music": 75, "skateboard": 75, "smokestack": 75, "sneaker": 75, "boat": 75, "stain": 75, "steer": 75, "stirrup": 75, "superman": 75, "sushi": 75, "armi": [75, 89], "sword": 75, "tambourin": 75, "teepe": 75, "court": 75, "theodolit": 75, "tomato": 75, "tombston": 75, "tour": 75, "pisa": 75, "treadmil": 75, "fork": 75, "tweezer": 75, "unicorn": 75, "vcr": 75, "waterfal": 75, "watermelon": 75, "weld": 75, "windmil": 75, "xylophon": 75, "yarmulk": 75, "yo": 75, "toad": 75, "twenty_news_test_set": 75, "alt": 75, "atheism": 75, "comp": 75, "graphic": [75, 86], "misc": [75, 89], "sy": 75, "ibm": 75, "pc": 75, "hardwar": 75, "mac": 75, "forsal": 75, "rec": 75, "sci": 75, "crypt": 75, "electron": 75, "med": 75, "soc": 75, "religion": 75, "christian": [75, 89], "talk": [75, 89], "polit": 75, "gun": 75, "mideast": 75, "amazon": 75, "neutral": 75, "imdb_test_set": 75, "all_class": 75, "20news_test_set": 75, "_load_classes_predprobs_label": 75, "dataset_nam": 75, "labelerror": 75, "url_bas": 75, "5392f6c71473055060be3044becdde1cbc18284d": 75, "url_label": 75, "original_test_label": 75, "_original_label": 75, "url_prob": 75, "cross_validated_predicted_prob": 75, "_pyx": 75, "num_part": 75, "datatset": 75, "bytesio": 75, "allow_pickl": 75, "pred_probs_part": 75, "url": 75, "_of_": 75, "nload": 75, "imdb": 75, "ve": [75, 78, 80, 82], "interpret": [75, 76, 78], "capit": 75, "29780": 75, "256": [75, 76, 82], "29": [75, 77, 80, 81, 82, 86, 89], "780": 75, "medic": [75, 89], "doctor": 75, "254": [75, 82], "359223": 75, "333333": 75, "640777": 75, "184": [75, 78], "258427": 75, "341176": 75, "263158": 75, "658824": 75, "337349": 75, "246575": 75, "662651": 75, "248": 75, "330000": 75, "355769": 75, "670000": 75, "251": [75, 82], "167": [75, 78, 82], "252": 75, "112": 75, "253": [75, 82], "022989": 75, "255": [75, 77], "049505": 75, "190": [75, 78, 82], "66": [75, 77], "002216": 75, "000974": 75, "59": [75, 82], "88": [75, 77, 78, 81, 82, 85], "000873": 75, "000739": 75, "79": [75, 82, 87], "32635": 75, "32636": 75, "47": [75, 82], "32637": 75, "32638": 75, "32639": 75, "32640": 75, "051": 75, "93": [75, 82, 85, 87], "002242": 75, "997758": 75, "002088": 75, "001045": 75, "997912": 75, "002053": 75, "997947": 75, "001980": 75, "000991": 75, "998020": 75, "001946": 75, "002915": 75, "998054": 75, "001938": 75, "002904": 75, "998062": 75, "001020": 75, "998980": 75, "001018": 75, "002035": 75, "998982": 75, "999009": 75, "0003": 75, "0002": 75, "36": [75, 89], "44": [75, 81, 82], "71": [75, 78, 82], "071": 75, "067269": 75, "929": 75, "046": 75, "058243": 75, "954": 75, "035": 75, "032096": 75, "965": 75, "031": 75, "012232": 75, "969": 75, "022": 75, "025896": 75, "978": 75, "020": [75, 78], "013092": 75, "018": 75, "013065": 75, "016": 75, "030542": 75, "984": 75, "013": 75, "020833": 75, "987": 75, "012": 75, "010020": 75, "988": 75, "0073": 75, "0020": 75, "0016": 75, "0015": 75, "0013": 75, "0012": 75, "0010": 75, "0008": 75, "0007": 75, "0006": 75, "0005": 75, "0004": 75, "244": [75, 82], "98": [75, 76, 85], "452381": 75, "459770": 75, "72": [75, 78, 81, 85], "523364": 75, "460784": 75, "446602": 75, "57": [75, 78], "68": [75, 77, 78, 82, 87, 89], "103774": 75, "030612": 75, "97": [75, 76, 78, 82, 85, 87, 89], "110092": 75, "049020": 75, "99": [75, 78, 87, 89], "0034": 75, "0032": 75, "0026": 75, "0025": 75, "4945": 75, "4946": 75, "4947": 75, "4948": 75, "4949": 75, "4950": 75, "846": 75, "82": [75, 78, 82], "7532": 75, "532": 75, "034483": 75, "009646": 75, "965517": 75, "030457": 75, "020513": 75, "969543": 75, "028061": 75, "035443": 75, "971939": 75, "025316": 75, "005168": 75, "974684": 75, "049751": 75, "979487": 75, "019920": 75, "042802": 75, "980080": 75, "017677": 75, "005115": 75, "982323": 75, "012987": 75, "005236": 75, "987013": 75, "012723": 75, "025126": 75, "987277": 75, "010989": 75, "008264": 75, "989011": 75, "010283": 75, "027778": 75, "989717": 75, "009677": 75, "990323": 75, "007614": 75, "010127": 75, "992386": 75, "005051": 75, "994949": 75, "005025": 75, "994975": 75, "005013": 75, "994987": 75, "001859": 75, "001328": 75, "000929": 75, "000664": 75, "186": [75, 78], "188": [75, 78, 81], "189": [75, 78], "snippet": 76, "nlp": [76, 89], "mind": [76, 78], "number_of_class": 76, "total_number_of_data_point": 76, "drop": [76, 80, 85, 88], "feed": 76, "alphabet": 76, "labels_proper_format": 76, "your_classifi": 76, "issues_datafram": 76, "class_predicted_for_flagged_exampl": 76, "class_predicted_for_all_exampl": 76, "grant": 76, "datataset": 76, "fair": [76, 78], "game": 76, "speedup": [76, 83], "flexibl": 76, "tempfil": 76, "mkdtemp": 76, "sped": 76, "anywai": 76, "pred_probs_merg": 76, "merge_rare_class": 76, "count_threshold": 76, "class_mapping_orig2new": 76, "heath_summari": 76, "num_examples_per_class": 76, "rare_class": 76, "num_classes_merg": 76, "other_class": 76, "labels_merg": 76, "new_c": 76, "merged_prob": 76, "keepdim": 76, "hstack": [76, 77, 78, 80], "new_class": 76, "original_class": 76, "num_check": 76, "ones_array_ref": 76, "isclos": 76, "though": [76, 78, 89], "successfulli": 76, "meaning": [76, 83], "virtuou": [76, 80], "cycl": [76, 80], "jointli": 76, "junk": 76, "clutter": 76, "unknown": 76, "caltech": 76, "intersect": 76, "combined_boolean_mask": 76, "mask1": 76, "mask2": 76, "gradientboostingclassifi": [76, 78], "true_error": [76, 78, 81], "101": [76, 82], "102": [76, 81, 82], "104": [76, 78, 82], "model_to_find_error": 76, "model_to_return": 76, "cl0": 76, "randomizedsearchcv": 76, "expens": 76, "param_distribut": 76, "learning_r": [76, 78], "max_depth": [76, 78], "magnitud": 76, "coeffici": [76, 85], "optin": 76, "environ": [76, 78], "rerun": [76, 78], "cell": [76, 78], "On": [76, 78, 82], "unabl": [76, 78], "render": [76, 78], "nbviewer": [76, 78], "cleanlearningcleanlearn": [76, 78], "linearregressionlinearregress": 76, "assist": 76, "streamlin": 76, "ux": 76, "agpl": 76, "compani": 76, "commerci": 76, "alter": 76, "email": 76, "discuss": 76, "anywher": 76, "60": [77, 78], "excess": 77, "torchvis": [77, 83], "tensordataset": 77, "stratifiedkfold": [77, 81], "tqdm": 77, "fashion_mnist": 77, "num_row": 77, "60000": 77, "pil": 77, "transformed_dataset": 77, "with_format": 77, "unsqueez": 77, "num_proc": 77, "cpu_count": 77, "opt": 77, "hostedtoolcach": 77, "x64": 77, "lib": 77, "python3": 77, "site": 77, "1421": 77, "futurewarn": 77, "promot": 77, "supersed": 77, "_concat_block": 77, "block": 77, "torch_dataset": 77, "quick": [77, 81], "super": 77, "relu": 77, "batchnorm2d": 77, "maxpool2d": 77, "lazylinear": 77, "flatten": 77, "get_test_accuraci": 77, "testload": [77, 83], "energi": 77, "trainload": [77, 83], "n_epoch": 77, "patienc": 77, "criterion": 77, "crossentropyloss": 77, "adamw": 77, "best_test_accuraci": 77, "start_epoch": 77, "running_loss": 77, "best_epoch": 77, "end_epoch": 77, "3f": [77, 85], "acc": [77, 78], "time_taken": 77, "compute_embed": 77, "compute_pred_prob": 77, "train_batch_s": 77, "num_work": 77, "worker": [77, 89], "train_id_list": 77, "test_id_list": 77, "train_id": 77, "test_id": 77, "embeddings_model": 77, "ntrain": 77, "trainset": 77, "testset": 77, "pin_memori": 77, "fold_embed": 77, "fold_pred_prob": 77, "finish": 77, "483": 77, "835": 77, "539": 77, "331": 77, "310": 77, "388": 77, "63": [77, 78, 82], "93it": 77, "33it": 77, "492": 77, "87": [77, 82, 85, 88], "085": 77, "636": 77, "330": [77, 82], "290": [77, 82], "296": 77, "88it": 77, "62": [77, 78, 82, 85], "72it": 77, "476": 77, "305": [77, 85], "632": 77, "328": [77, 82], "335": 77, "373": 77, "12it": 77, "20it": 77, "reorder": 77, "vision": 77, "low_inform": 77, "odd_aspect_ratio": 77, "odd_siz": 77, "grayscal": 77, "exce": 77, "max_preval": 77, "7620": 77, "3692": 77, "3521": 77, "225": [77, 81], "166": [77, 89], "9661": 77, "40378": 77, "687452": 77, "54473": 77, "705050": 77, "29412": 77, "715470": 77, "25316": 77, "716273": 77, "52247": 77, "725283": 77, "9581": 77, "19228": 77, "dress": 77, "54078": 77, "000010": 77, "pullov": 77, "32657": 77, "21282": 77, "000011": 77, "11262": 77, "000014": 77, "0268": 77, "30659": 77, "000015": 77, "30968": 77, "258": 77, "000017": 77, "9762": 77, "54565": 77, "47139": 77, "000026": 77, "7834": 77, "42819": 77, "629362": 77, "51431": 77, "654330": 77, "55548": 77, "658364": 77, "51191": 77, "668572": 77, "50081": 77, "669703": 77, "7834321613629787": 77, "110901": 77, "974390": 77, "998733": 77, "937117": 77, "998755": 77, "53564": 77, "5473": 77, "trouser": 77, "plot_label_issue_exampl": 77, "ncol": [77, 83], "nrow": [77, 83], "ceil": 77, "axes_list": 77, "label_issue_indic": 77, "gl": 77, "sl": 77, "fontdict": 77, "imshow": [77, 83], "cmap": [77, 85], "grai": 77, "subplots_adjust": 77, "hspace": 77, "outsiz": 77, "outlier_issues_df": 77, "depict": [77, 81, 82, 83, 84, 86], "plot_outlier_issues_exampl": 77, "n_comparison_imag": 77, "sample_from_class": 77, "number_of_sampl": 77, "non_outlier_indic": 77, "isnul": 77, "non_outlier_indices_excluding_curr": 77, "sampled_indic": 77, "label_scores_of_sampl": 77, "top_score_indic": 77, "top_label_indic": 77, "sampled_imag": 77, "get_image_given_label_and_sampl": 77, "image_from_dataset": 77, "corresponding_label": 77, "comparison_imag": 77, "images_to_plot": 77, "idlist": 77, "iterrow": 77, "especi": [77, 85, 87, 88], "near_duplicate_issu": 77, "closest": 77, "counterpart": 77, "near_duplicate_issues_df": 77, "plot_near_duplicate_issue_exampl": 77, "seen_id_pair": 77, "get_image_and_given_label_and_predicted_label": 77, "duplicate_imag": 77, "nd_set": 77, "challeng": 77, "dark_issu": 77, "reveal": [77, 86], "dark_scor": 77, "dark_issues_df": 77, "is_dark_issu": 77, "34848": 77, "203922": 77, "50270": 77, "204588": 77, "3936": 77, "213098": 77, "733": 77, "217686": 77, "8094": 77, "230118": 77, "plot_image_issue_exampl": 77, "difficult": 77, "disproportion": 77, "lowinfo_issu": 77, "low_information_scor": 77, "lowinfo_issues_df": 77, "is_low_information_issu": 77, "53050": 77, "067975": 77, "40875": 77, "089929": 77, "9594": 77, "092601": 77, "34825": 77, "107744": 77, "37530": 77, "108516": 77, "lot": 77, "depth": 78, "survei": [78, 89], "focus": [78, 80], "scienc": 78, "multivariate_norm": [78, 80, 81], "make_data": [78, 80], "cov": [78, 80, 81], "avg_trac": [78, 81], "test_label": [78, 81, 83, 88], "py_tru": 78, "noise_matrix_tru": 78, "noise_marix": 78, "s_test": 78, "noisy_test_label": 78, "purpl": 78, "val": 78, "namespac": 78, "exec": 78, "markerfacecolor": [78, 81], "markeredgecolor": [78, 81, 85], "markers": [78, 81, 85], "markeredgewidth": [78, 81, 85], "realist": 78, "7560": 78, "638483e": 78, "897052e": 78, "548986e": 78, "924634e": 78, "374580e": 78, "4643": 78, "050286": 78, "065420": 78, "109420": 78, "111687": 78, "115403": 78, "3312": 78, "007136": 78, "119": [78, 82], "033725": 78, "103": [78, 82], "033738": 78, "238": [78, 82], "037825": 78, "236": [78, 82, 89], "037843": 78, "222": 78, "614915": 78, "122": [78, 82], "624422": 78, "625965": 78, "626079": 78, "118": 78, "627675": 78, "695174": 78, "323529": 78, "522929": 78, "013722": 78, "675606": 78, "646438": 78, "anyth": 78, "enhanc": [78, 80, 82], "magic": 78, "83": [78, 82, 85, 87, 89], "liter": 78, "identif": 78, "x27": 78, "logisticregressionlogisticregress": 78, "ever": 78, "truth": [78, 80, 85], "092": 78, "040": 78, "024": 78, "004": 78, "surpris": 78, "arxiv": 78, "ab": 78, "1705": 78, "01936": 78, "ton": 78, "yourfavoritemodel1": 78, "merged_label": 78, "merged_test_label": 78, "newli": [78, 80], "yourfavoritemodel2": 78, "yourfavoritemodel3": 78, "cl3": 78, "takeawai": 78, "That": [78, 81], "randomli": 78, "my_test_pred_prob": 78, "my_test_pr": 78, "issues_test": 78, "corrected_test_label": 78, "pretend": 78, "cl_test_pr": 78, "69": [78, 85], "fairli": 78, "label_acc": 78, "percentag": 78, "offset": 78, "nquestion": 78, "overestim": 78, "answer": 78, "experienc": 78, "06": [78, 82, 89], "76": [78, 81, 82, 85, 87], "knowledg": 78, "quantiti": [78, 85], "prioiri": 78, "known": 78, "versatil": 78, "label_issues_indic": 78, "213": [78, 82], "212": [78, 87], "218": [78, 82], "152": 78, "197": [78, 82], "196": [78, 82], "170": 78, "214": 78, "164": [78, 81], "198": [78, 82], "191": [78, 82], "121": [78, 88], "117": [78, 85], "206": [78, 82], "115": [78, 82], "193": 78, "194": 78, "201": [78, 82], "174": 78, "163": 78, "150": [78, 80, 82, 89], "169": [78, 89], "151": [78, 82], "precision_scor": 78, "recall_scor": 78, "f1_score": 78, "true_label_issu": 78, "filter_by_list": 78, "718750": [78, 80], "807018": 78, "912": 78, "733333": 78, "800000": 78, "721311": 78, "792793": 78, "908": 78, "676923": 78, "765217": 78, "892": 78, "567901": 78, "702290": 78, "844": 78, "gaug": 78, "label_issues_count": 78, "155": [78, 82], "156": 78, "172": [78, 81], "easiest": 78, "modular": 78, "penalti": 78, "l2": 78, "model3": 78, "n_estim": 78, "cv_pred_probs_1": 78, "cv_pred_probs_2": 78, "cv_pred_probs_3": 78, "label_quality_scores_best": 78, "cv_pred_probs_ensembl": 78, "label_quality_scores_bett": 78, "superior": [78, 84], "workflow": [79, 85], "speechbrain": 79, "timm": 79, "glad": 80, "multiannotator_label": 80, "300": [80, 89], "noisier": 80, "111": [80, 85], "local_data": [80, 81], "true_labels_train": [80, 81], "noise_matrix_bett": 80, "noise_matrix_wors": 80, "transpos": [80, 83], "dropna": 80, "zfill": 80, "row_na_check": 80, "notna": 80, "reset_index": 80, "a0001": 80, "a0002": 80, "a0003": 80, "a0004": 80, "a0005": 80, "a0006": 80, "a0007": 80, "a0008": 80, "a0009": 80, "a0010": 80, "a0041": 80, "a0042": 80, "a0043": 80, "a0044": 80, "a0045": 80, "a0046": 80, "a0047": 80, "a0048": 80, "a0049": 80, "a0050": 80, "na": 80, "60856743": 80, "41693214": 80, "40908785": 80, "87147629": 80, "64941785": 80, "10774851": 80, "0524466": 80, "71853246": 80, "37169848": 80, "66031048": 80, "multiannotator_util": 80, "crude": 80, "straight": 80, "majority_vote_label": 80, "736157": 80, "757738": 80, "782255": 80, "715585": 80, "824273": 80, "quality_annotator_a0001": 80, "quality_annotator_a0002": 80, "quality_annotator_a0003": 80, "quality_annotator_a0004": 80, "quality_annotator_a0005": 80, "quality_annotator_a0006": 80, "quality_annotator_a0007": 80, "quality_annotator_a0008": 80, "quality_annotator_a0009": 80, "quality_annotator_a0010": 80, "quality_annotator_a0041": 80, "quality_annotator_a0042": 80, "quality_annotator_a0043": 80, "quality_annotator_a0044": 80, "quality_annotator_a0045": 80, "quality_annotator_a0046": 80, "quality_annotator_a0047": 80, "quality_annotator_a0048": 80, "quality_annotator_a0049": 80, "quality_annotator_a0050": 80, "070551": 80, "216064": 80, "119178": 80, "alongisd": 80, "244982": 80, "208333": 80, "295978": 80, "294118": 80, "324194": 80, "310345": 80, "355315": 80, "346154": 80, "439728": 80, "480000": 80, "a0031": 80, "523205": 80, "580645": 80, "a0034": 80, "535313": 80, "607143": 80, "a0021": 80, "607002": 80, "a0015": 80, "609527": 80, "678571": 80, "a0011": 80, "621101": 80, "692308": 80, "wors": 80, "improved_consensus_label": 80, "majority_vote_accuraci": 80, "cleanlab_label_accuraci": 80, "8581081081081081": 80, "9797297297297297": 80, "besid": 80, "sorted_consensus_quality_scor": 80, "worst_qual": 80, "better_qu": 80, "worst_quality_accuraci": 80, "better_quality_accuraci": 80, "9893238434163701": 80, "improved_pred_prob": 80, "treat": [80, 81, 85, 89], "analzi": 80, "copyright": 81, "advertis": 81, "violenc": 81, "nsfw": 81, "ranked_label_issu": [81, 87, 88], "multioutput": 81, "multioutputclassifi": 81, "celeba": 81, "make_multilabel_data": 81, "boxes_coordin": 81, "box_multilabel": 81, "make_multi": 81, "bx1": 81, "by1": 81, "bx2": 81, "by2": 81, "label_list": 81, "ur": 81, "upper": 81, "inidx": 81, "logical_and": 81, "tolist": 81, "inv_d": 81, "labels_idx": 81, "true_labels_test": 81, "dict_unique_label": 81, "get_color_arrai": 81, "dcolor": 81, "aa4400": 81, "55227f": 81, "55a100": 81, "00ff00": 81, "007f7f": 81, "386b55": 81, "0000ff": 81, "simplic": 81, "advis": 81, "y_onehot": 81, "single_class_label": 81, "stratifi": [81, 84], "kf": 81, "train_index": 81, "test_index": 81, "clf_cv": 81, "x_train_cv": 81, "x_test_cv": 81, "y_train_cv": 81, "y_test_cv": 81, "y_pred_cv": 81, "saw": 81, "num_to_displai": 81, "09": [81, 82, 89], "275": 81, "267": 81, "171": 81, "234": 81, "165": 81, "227": [81, 82], "262": [81, 82], "263": [81, 82], "266": [81, 82], "139": 81, "143": [81, 82], "216": [81, 82], "265": 81, "159": [81, 82], "despit": [81, 89], "suspect": 81, "888": 81, "8224": 81, "9632": 81, "968": 81, "6512": 81, "0444": 81, "774": 81, "labels_binary_format": 81, "labels_list_format": 81, "surround": 82, "scene": 82, "coco": 82, "everydai": 82, "has_label_issu": 82, "insal": 82, "nc": [82, 86, 89], "s3": [82, 86, 89], "amazonaw": [82, 86, 89], "objectdetectionbenchmark": 82, "tutorial_obj": 82, "pkl": 82, "example_imag": 82, "unzip": [82, 89], "begin": 82, "detectron2": 82, "image_path": 82, "rb": 82, "image_to_visu": 82, "seg_map": 82, "334": 82, "float32": 82, "bboxes_ignor": 82, "286": 82, "285": 82, "224": 82, "231": [82, 89], "293": 82, "235": 82, "289": [82, 85], "282": 82, "74": [82, 85, 87], "281": 82, "271": 82, "280": 82, "277": 82, "279": 82, "287": 82, "299": 82, "276": 82, "307": 82, "321": 82, "326": 82, "333": 82, "261": 82, "319": 82, "257": 82, "295": 82, "283": 82, "243": 82, "303": 82, "316": 82, "247": 82, "323": 82, "327": 82, "226": 82, "232": 82, "239": 82, "240": 82, "209": 82, "242": 82, "202": 82, "230": 82, "215": 82, "220": 82, "229": 82, "85": [82, 85], "217": 82, "237": 82, "207": 82, "204": 82, "205": 82, "223": 82, "153": 82, "149": 82, "140": 82, "124": 82, "268": 82, "273": 82, "108": 82, "284": 82, "110": 82, "136": 82, "145": 82, "173": 82, "297": 82, "317": 82, "192": 82, "329": 82, "332": 82, "324": 82, "203": 82, "320": 82, "314": 82, "199": 82, "291": 82, "000000481413": 82, "jpg": 82, "42398": 82, "44503": 82, "337": [82, 88], "29968": 82, "336": 82, "21005": 82, "9978472": 82, "forgot": 82, "drew": 82, "label_issue_idx": 82, "num_examples_to_show": 82, "113": [82, 85], "candid": 82, "97489622": 82, "70610878": 82, "98764951": 82, "88899237": 82, "99085805": 82, "issue_idx": 82, "95569726e": 82, "03354841e": 82, "57510169e": 82, "58447666e": 82, "39755858e": 82, "suppli": 82, "issue_to_visu": 82, "000000009483": 82, "95569726168054e": 82, "addition": [82, 86], "visibl": 82, "missmatch": 82, "likelei": 82, "agnost": 82, "vaidat": 82, "inconsist": 82, "000000395701": 82, "033548411774308e": 82, "armchair": 82, "tv": 82, "000000154004": 82, "38300759625496356": 82, "foreground": 82, "000000448410": 82, "0008575101690203273": 82, "crowd": 82, "alon": 82, "explor": [82, 83], "resembl": [82, 83], "contribut": 82, "000000499768": 82, "9748962231208227": 82, "000000521141": 82, "8889923658893665": 82, "000000143931": 82, "9876495074395956": 82, "train_feature_embed": 83, "ood_train_feature_scor": 83, "test_feature_embed": 83, "ood_test_feature_scor": 83, "ood_train_predictions_scor": 83, "train_pred_prob": 83, "ood_test_predictions_scor": 83, "test_pred_prob": 83, "pylab": 83, "rcparam": 83, "baggingclassifi": 83, "therebi": 83, "rescal": 83, "transform_norm": 83, "totensor": 83, "root": 83, "animal_class": 83, "non_animal_class": 83, "animal_idx": 83, "isin": 83, "test_idx": 83, "toronto": 83, "edu": 83, "kriz": 83, "5000": 83, "plot_imag": 83, "visualize_outli": 83, "txt_class": 83, "img": [83, 85], "npimg": 83, "show_label": 83, "data_subset": 83, "resnet50": 83, "corpu": 83, "2048": 83, "embed_imag": 83, "create_model": 83, "rwightman": 83, "v0": 83, "rsb": 83, "resnet50_a1_0": 83, "14fe96d1": 83, "pth": 83, "checkpoint": 83, "strang": 83, "odd": 83, "train_ood_features_scor": 83, "top_train_ood_features_idx": 83, "fun": 83, "negat": 83, "homogen": 83, "bottom_train_ood_features_idx": 83, "test_ood_features_scor": 83, "top_ood_features_idx": 83, "inevit": 83, "trade": 83, "5th": 83, "percentil": 83, "fifth_percentil": 83, "plt_rang": 83, "hist": 83, "train_outlier_scor": 83, "ylabel": 83, "axvlin": 83, "test_outlier_scor": 83, "ood_features_indic": 83, "revisit": 83, "unusu": 83, "return_invers": 83, "train_feature_embeddings_sc": 83, "test_feature_embeddings_sc": 83, "train_pred_label": 83, "9702": 83, "train_ood_predictions_scor": 83, "test_ood_predictions_scor": 83, "mainli": [83, 89], "lost": 83, "unsuit": 84, "ok": [84, 89], "convention": 84, "aforement": 84, "hypothet": 84, "contrast": 84, "tradit": 84, "disjoint": 84, "out_of_sample_pred_probs_for_a": 84, "out_of_sample_pred_probs_for_b": 84, "out_of_sample_pred_probs_for_c": 84, "out_of_sample_pred_prob": 84, "price": 85, "incom": 85, "ag": 85, "histgradientboostingregressor": 85, "r2_score": 85, "student_grades_r": 85, "final_scor": 85, "true_final_scor": 85, "homework": 85, "3d": 85, "hue": 85, "mpl_toolkit": 85, "mplot3d": 85, "axes3d": 85, "errors_idx": 85, "add_subplot": 85, "z": 85, "colorbar": 85, "errors_mask": 85, "feature_column": 85, "predicted_column": 85, "x_train_raw": 85, "x_test_raw": 85, "categorical_featur": [85, 87], "randomforestregressor": 85, "629763": 85, "521450": 85, "954607": 85, "547234": 85, "338296": 85, "754531": 85, "619090": 85, "312295": 85, "806626": 85, "784048": 85, "identified_issu": [85, 88], "659": 85, "367": 85, "560": 85, "318": 85, "688": 85, "657": 85, "view_datapoint": 85, "concat": 85, "consum": [85, 88], "baseline_model": [85, 88], "preds_og": 85, "r2_og": 85, "838": 85, "robustli": [85, 87, 88], "acceler": [85, 88], "found_label_issu": 85, "preds_cl": 85, "r2_cl": 85, "925": 85, "effort": [85, 87, 88], "favorit": 85, "64404888e": 85, "06755306e": 85, "05302732e": 85, "66635743e": 85, "53166364e": 85, "synthia": 86, "semantic_segment": 86, "imagesegment": 86, "given_mask": 86, "predicted_mask": 86, "set_printopt": [86, 89], "sky": 86, "sidewalk": 86, "veget": 86, "terrain": 86, "rider": 86, "pred_probs_filepath": 86, "1088": 86, "1920": 86, "label_filepath": 86, "synthia_class": 86, "maunal": 86, "100000": 86, "244800": 86, "system": 86, "leftmost": 86, "area": 86, "middl": [86, 89], "infact": 86, "rightmost": 86, "discrep": 86, "4997436": 86, "173979": 86, "47it": 86, "3263230": 86, "783379": 86, "275110": 86, "255792": 86, "78225": 86, "55990": 86, "54315": 86, "33591": 86, "24645": 86, "21054": 86, "15045": 86, "14171": 86, "13832": 86, "13498": 86, "11490": 86, "9149": 86, "8769": 86, "6999": 86, "6031": 86, "5011": 86, "mistakenli": 86, "class_issu": 86, "aim": [86, 89], "domin": 86, "extratreesclassifi": 87, "extratre": 87, "labelencod": [87, 88], "labels_raw": 87, "interg": [87, 88], "tress": 87, "827": 87, "637": 87, "cheat": 87, "0pt": 87, "233": 87, "labels_train": 87, "labels_test": 87, "acc_og": [87, 88], "783068783068783": 87, "acc_cl": [87, 88], "8095238095238095": 87, "earlier": [88, 89], "raw_label": 88, "raw_train_text": 88, "raw_test_text": 88, "raw_train_label": 88, "raw_test_label": 88, "encond": 88, "train_text": 88, "test_text": 88, "858050": 88, "545854": 88, "826194": 88, "965814": 88, "791923": 88, "646": 88, "390": 88, "628": 88, "702": 88, "863": 88, "135": 88, "735": 88, "print_as_df": 88, "inverse_transform": 88, "fight": 88, "bunch": 89, "conll": 89, "2003": 89, "love": 89, "n_i": 89, "optional_list_of_ordered_class_nam": 89, "deepai": 89, "conll2003": 89, "rm": 89, "tokenclassif": 89, "2023": 89, "2400": 89, "52e0": 89, "1a00": 89, "connect": 89, "443": 89, "await": 89, "982975": 89, "960k": 89, "959": 89, "94k": 89, "38mb": 89, "mb": 89, "directori": 89, "inflat": 89, "182": 89, "17045998": 89, "16m": 89, "octet": 89, "26m": 89, "7mb": 89, "bert": 89, "read_npz": 89, "filepath": 89, "corrsespond": 89, "iob2": 89, "given_ent": 89, "entity_map": 89, "readfil": 89, "sep": 89, "startswith": 89, "docstart": 89, "isalpha": 89, "isupp": 89, "indices_to_preview": 89, "nsentenc": 89, "eu": 89, "reject": 89, "boycott": 89, "british": 89, "lamb": 89, "00030412": 89, "00023826": 89, "99936208": 89, "00007009": 89, "00002545": 89, "99998795": 89, "00000401": 89, "00000218": 89, "00000455": 89, "00000131": 89, "00000749": 89, "99996115": 89, "00001371": 89, "0000087": 89, "00000895": 89, "99998936": 89, "00000382": 89, "00000178": 89, "00000366": 89, "00000137": 89, "99999101": 89, "00000266": 89, "00000174": 89, "0000035": 89, "00000109": 89, "99998768": 89, "00000482": 89, "00000202": 89, "00000438": 89, "0000011": 89, "00000465": 89, "99996392": 89, "00001105": 89, "0000116": 89, "00000878": 89, "99998671": 89, "00000364": 89, "00000213": 89, "00000472": 89, "00000281": 89, "99999073": 89, "00000211": 89, "00000159": 89, "00000442": 89, "00000115": 89, "peter": 89, "blackburn": 89, "00000358": 89, "00000529": 89, "99995623": 89, "000022": 89, "0000129": 89, "0000024": 89, "00001812": 89, "99994141": 89, "00001645": 89, "00002162": 89, "brussel": 89, "1996": 89, "00001172": 89, "00000821": 89, "00004661": 89, "0000618": 89, "99987167": 89, "99999061": 89, "00000201": 89, "00000195": 89, "00000408": 89, "00000135": 89, "2254": 89, "2907": 89, "19392": 89, "9962": 89, "8904": 89, "19303": 89, "12918": 89, "9256": 89, "11855": 89, "18392": 89, "20426": 89, "19402": 89, "14744": 89, "19371": 89, "4645": 89, "10331": 89, "9430": 89, "6143": 89, "18367": 89, "12914": 89, "todai": 89, "weather": 89, "march": 89, "scalfaro": 89, "northern": 89, "himself": 89, "said": 89, "germani": 89, "nastja": 89, "rysich": 89, "north": 89, "spla": 89, "fought": 89, "khartoum": 89, "govern": 89, "south": 89, "1983": 89, "autonomi": 89, "animist": 89, "region": 89, "moslem": 89, "arabis": 89, "mayor": 89, "antonio": 89, "gonzalez": 89, "garcia": 89, "revolutionari": 89, "parti": 89, "wednesdai": 89, "troop": 89, "raid": 89, "farm": 89, "stole": 89, "rape": 89, "women": 89, "spring": 89, "chg": 89, "hrw": 89, "12pct": 89, "princ": 89, "photo": 89, "moment": 89, "spokeswoman": 89, "rainier": 89, "told": 89, "reuter": 89, "danila": 89, "carib": 89, "w224": 89, "equip": 89, "radiomet": 89, "earn": 89, "19996": 89, "london": 89, "denom": 89, "sale": 89, "uk": 89, "jp": 89, "fr": 89, "maccabi": 89, "hapoel": 89, "haifa": 89, "tel": 89, "aviv": 89, "hospit": 89, "rever": 89, "roman": 89, "cathol": 89, "nun": 89, "admit": 89, "calcutta": 89, "week": 89, "ago": 89, "fever": 89, "vomit": 89, "allianc": 89, "embattl": 89, "kabul": 89, "salang": 89, "highwai": 89, "mondai": 89, "tuesdai": 89, "suprem": 89, "council": 89, "led": 89, "jumbish": 89, "milli": 89, "movement": 89, "warlord": 89, "abdul": 89, "rashid": 89, "dostum": 89, "dollar": 89, "exchang": 89, "3570": 89, "12049": 89, "born": 89, "1937": 89, "provinc": 89, "anhui": 89, "dai": 89, "came": 89, "shanghai": 89, "citi": 89, "prolif": 89, "author": 89, "teacher": 89, "chines": 89, "16764": 89, "1990": 89, "historian": 89, "alan": 89, "john": 89, "percival": 89, "taylor": 89, "di": 89, "20446": 89, "pace": 89, "bowler": 89, "ian": 89, "harvei": 89, "claim": 89, "victoria": 89, "15514": 89, "cotti": 89, "osc": 89, "foreign": 89, "minist": 89, "7525": 89, "sultan": 89, "specter": 89, "met": 89, "crown": 89, "abdullah": 89, "defenc": 89, "aviat": 89, "jeddah": 89, "saudi": 89, "agenc": 89, "2288": 89, "hi": 89, "customari": 89, "outfit": 89, "champion": 89, "damp": 89, "scalp": 89, "canada": 89, "reign": 89, "olymp": 89, "donovan": 89, "bailei": 89, "1992": 89, "linford": 89, "christi": 89, "britain": 89, "1984": 89, "1988": 89, "carl": 89, "lewi": 89, "ambigi": 89, "punctuat": 89, "chicago": 89, "digest": 89, "philadelphia": 89, "usda": 89, "york": 89, "token_issu": 89, "471": 89, "kean": 89, "year": 89, "contract": 89, "manchest": 89, "19072": 89, "societi": 89, "million": 89, "bite": 89, "deliv": 89, "19910": 89, "father": 89, "clarenc": 89, "woolmer": 89, "renam": 89, "uttar": 89, "pradesh": 89, "india": 89, "ranji": 89, "trophi": 89, "nation": 89, "championship": 89, "captain": 89, "1949": 89, "15658": 89, "19879": 89, "iii": 89, "brian": 89, "shimer": 89, "randi": 89, "jone": 89, "19104": 89}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [8, 0, 0, "-", "datalab"], [25, 0, 0, "-", "dataset"], [28, 0, 0, "-", "experimental"], [31, 0, 0, "-", "filter"], [32, 0, 0, "-", "internal"], [43, 0, 0, "-", "models"], [45, 0, 0, "-", "multiannotator"], [48, 0, 0, "-", "multilabel_classification"], [51, 0, 0, "-", "object_detection"], [54, 0, 0, "-", "outlier"], [55, 0, 0, "-", "rank"], [56, 0, 0, "-", "regression"], [60, 0, 0, "-", "segmentation"], [64, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [12, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[9, 0, 0, "-", "data"], [10, 0, 0, "-", "data_issues"], [13, 0, 0, "-", "issue_finder"], [11, 0, 0, "-", "issue_manager_factory"], [23, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[9, 2, 1, "", "Data"], [9, 5, 1, "", "DataFormatError"], [9, 5, 1, "", "DatasetDictError"], [9, 5, 1, "", "DatasetLoadError"], [9, 2, 1, "", "Label"]], "cleanlab.datalab.internal.data.Data": [[9, 4, 1, "", "class_names"], [9, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[9, 6, 1, "", "args"], [9, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[9, 6, 1, "", "args"], [9, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[9, 6, 1, "", "args"], [9, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[9, 4, 1, "", "class_names"], [9, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[10, 2, 1, "", "DataIssues"], [10, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[10, 3, 1, "", "collect_issues_from_issue_manager"], [10, 3, 1, "", "collect_statistics"], [10, 3, 1, "", "get_info"], [10, 3, 1, "", "get_issue_summary"], [10, 3, 1, "", "get_issues"], [10, 3, 1, "", "set_health_score"], [10, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[13, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[13, 3, 1, "", "find_issues"], [13, 3, 1, "", "get_available_issue_types"], [13, 3, 1, "", "list_default_issue_types"], [13, 3, 1, "", "list_possible_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[15, 0, 0, "-", "duplicate"], [16, 0, 0, "-", "imbalance"], [18, 0, 0, "-", "issue_manager"], [19, 0, 0, "-", "label"], [20, 0, 0, "-", "noniid"], [21, 0, 0, "-", "null"], [22, 0, 0, "-", "outlier"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[15, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[15, 3, 1, "", "collect_info"], [15, 6, 1, "", "description"], [15, 3, 1, "", "find_issues"], [15, 6, 1, "", "info"], [15, 6, 1, "", "issue_name"], [15, 6, 1, "", "issue_score_key"], [15, 6, 1, "", "issues"], [15, 3, 1, "", "make_summary"], [15, 6, 1, "", "near_duplicate_sets"], [15, 3, 1, "", "report"], [15, 6, 1, "", "summary"], [15, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[16, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[18, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[19, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 3, 1, "", "get_health_summary"], [19, 6, 1, "", "health_summary_parameters"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[20, 2, 1, "", "NonIIDIssueManager"], [20, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[21, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[22, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[22, 6, 1, "", "DEFAULT_THRESHOLDS"], [22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 6, 1, "", "ood"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[11, 7, 1, "", "REGISTRY"], [11, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[23, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[23, 3, 1, "", "get_report"], [23, 3, 1, "", "report"]], "cleanlab.dataset": [[25, 1, 1, "", "find_overlapping_classes"], [25, 1, 1, "", "health_summary"], [25, 1, 1, "", "overall_label_health_score"], [25, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[26, 0, 0, "-", "cifar_cnn"], [27, 0, 0, "-", "coteaching"], [29, 0, 0, "-", "label_issues_batched"], [30, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[26, 2, 1, "", "CNN"], [26, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[26, 6, 1, "", "T_destination"], [26, 3, 1, "", "__call__"], [26, 3, 1, "", "add_module"], [26, 3, 1, "", "apply"], [26, 3, 1, "", "bfloat16"], [26, 3, 1, "", "buffers"], [26, 3, 1, "", "children"], [26, 3, 1, "", "cpu"], [26, 3, 1, "", "cuda"], [26, 3, 1, "", "double"], [26, 6, 1, "", "dump_patches"], [26, 3, 1, "", "eval"], [26, 3, 1, "", "extra_repr"], [26, 3, 1, "", "float"], [26, 3, 1, "id0", "forward"], [26, 3, 1, "", "get_buffer"], [26, 3, 1, "", "get_extra_state"], [26, 3, 1, "", "get_parameter"], [26, 3, 1, "", "get_submodule"], [26, 3, 1, "", "half"], [26, 3, 1, "", "ipu"], [26, 3, 1, "", "load_state_dict"], [26, 3, 1, "", "modules"], [26, 3, 1, "", "named_buffers"], [26, 3, 1, "", "named_children"], [26, 3, 1, "", "named_modules"], [26, 3, 1, "", "named_parameters"], [26, 3, 1, "", "parameters"], [26, 3, 1, "", "register_backward_hook"], [26, 3, 1, "", "register_buffer"], [26, 3, 1, "", "register_forward_hook"], [26, 3, 1, "", "register_forward_pre_hook"], [26, 3, 1, "", "register_full_backward_hook"], [26, 3, 1, "", "register_load_state_dict_post_hook"], [26, 3, 1, "", "register_module"], [26, 3, 1, "", "register_parameter"], [26, 3, 1, "", "requires_grad_"], [26, 3, 1, "", "set_extra_state"], [26, 3, 1, "", "share_memory"], [26, 3, 1, "", "state_dict"], [26, 3, 1, "", "to"], [26, 3, 1, "", "to_empty"], [26, 3, 1, "", "train"], [26, 6, 1, "", "training"], [26, 3, 1, "", "type"], [26, 3, 1, "", "xpu"], [26, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[27, 1, 1, "", "adjust_learning_rate"], [27, 1, 1, "", "evaluate"], [27, 1, 1, "", "forget_rate_scheduler"], [27, 1, 1, "", "initialize_lr_scheduler"], [27, 1, 1, "", "loss_coteaching"], [27, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[29, 2, 1, "", "LabelInspector"], [29, 7, 1, "", "adj_confident_thresholds_shared"], [29, 1, 1, "", "find_label_issues_batched"], [29, 7, 1, "", "labels_shared"], [29, 7, 1, "", "pred_probs_shared"], [29, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[29, 3, 1, "", "get_confident_thresholds"], [29, 3, 1, "", "get_label_issues"], [29, 3, 1, "", "get_num_issues"], [29, 3, 1, "", "get_quality_scores"], [29, 3, 1, "", "score_label_quality"], [29, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[30, 2, 1, "", "CNN"], [30, 2, 1, "", "SimpleNet"], [30, 1, 1, "", "get_mnist_dataset"], [30, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[30, 3, 1, "", "__init_subclass__"], [30, 6, 1, "", "batch_size"], [30, 6, 1, "", "dataset"], [30, 6, 1, "", "epochs"], [30, 3, 1, "id0", "fit"], [30, 3, 1, "", "get_metadata_routing"], [30, 3, 1, "", "get_params"], [30, 6, 1, "", "loader"], [30, 6, 1, "", "log_interval"], [30, 6, 1, "", "lr"], [30, 6, 1, "", "momentum"], [30, 6, 1, "", "no_cuda"], [30, 3, 1, "id1", "predict"], [30, 3, 1, "id4", "predict_proba"], [30, 6, 1, "", "seed"], [30, 3, 1, "", "set_fit_request"], [30, 3, 1, "", "set_params"], [30, 3, 1, "", "set_predict_proba_request"], [30, 3, 1, "", "set_predict_request"], [30, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[30, 6, 1, "", "T_destination"], [30, 3, 1, "", "__call__"], [30, 3, 1, "", "add_module"], [30, 3, 1, "", "apply"], [30, 3, 1, "", "bfloat16"], [30, 3, 1, "", "buffers"], [30, 3, 1, "", "children"], [30, 3, 1, "", "cpu"], [30, 3, 1, "", "cuda"], [30, 3, 1, "", "double"], [30, 6, 1, "", "dump_patches"], [30, 3, 1, "", "eval"], [30, 3, 1, "", "extra_repr"], [30, 3, 1, "", "float"], [30, 3, 1, "", "forward"], [30, 3, 1, "", "get_buffer"], [30, 3, 1, "", "get_extra_state"], [30, 3, 1, "", "get_parameter"], [30, 3, 1, "", "get_submodule"], [30, 3, 1, "", "half"], [30, 3, 1, "", "ipu"], [30, 3, 1, "", "load_state_dict"], [30, 3, 1, "", "modules"], [30, 3, 1, "", "named_buffers"], [30, 3, 1, "", "named_children"], [30, 3, 1, "", "named_modules"], [30, 3, 1, "", "named_parameters"], [30, 3, 1, "", "parameters"], [30, 3, 1, "", "register_backward_hook"], [30, 3, 1, "", "register_buffer"], [30, 3, 1, "", "register_forward_hook"], [30, 3, 1, "", "register_forward_pre_hook"], [30, 3, 1, "", "register_full_backward_hook"], [30, 3, 1, "", "register_load_state_dict_post_hook"], [30, 3, 1, "", "register_module"], [30, 3, 1, "", "register_parameter"], [30, 3, 1, "", "requires_grad_"], [30, 3, 1, "", "set_extra_state"], [30, 3, 1, "", "share_memory"], [30, 3, 1, "", "state_dict"], [30, 3, 1, "", "to"], [30, 3, 1, "", "to_empty"], [30, 3, 1, "", "train"], [30, 6, 1, "", "training"], [30, 3, 1, "", "type"], [30, 3, 1, "", "xpu"], [30, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[31, 1, 1, "", "find_label_issues"], [31, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [31, 1, 1, "", "find_predicted_neq_given"], [31, 7, 1, "", "pred_probs_by_class"], [31, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[33, 0, 0, "-", "label_quality_utils"], [34, 0, 0, "-", "latent_algebra"], [35, 0, 0, "-", "multiannotator_utils"], [36, 0, 0, "-", "multilabel_scorer"], [37, 0, 0, "-", "multilabel_utils"], [38, 0, 0, "-", "outlier"], [39, 0, 0, "-", "token_classification_utils"], [40, 0, 0, "-", "util"], [41, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[33, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[34, 1, 1, "", "compute_inv_noise_matrix"], [34, 1, 1, "", "compute_noise_matrix_from_inverse"], [34, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [34, 1, 1, "", "compute_py"], [34, 1, 1, "", "compute_py_inv_noise_matrix"], [34, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[35, 1, 1, "", "assert_valid_inputs_multiannotator"], [35, 1, 1, "", "assert_valid_pred_probs"], [35, 1, 1, "", "check_consensus_label_classes"], [35, 1, 1, "", "compute_soft_cross_entropy"], [35, 1, 1, "", "find_best_temp_scaler"], [35, 1, 1, "", "format_multiannotator_labels"], [35, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[36, 2, 1, "", "Aggregator"], [36, 2, 1, "", "ClassLabelScorer"], [36, 2, 1, "", "MultilabelScorer"], [36, 1, 1, "", "exponential_moving_average"], [36, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [36, 1, 1, "", "get_label_quality_scores"], [36, 1, 1, "", "multilabel_py"], [36, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[36, 3, 1, "", "__call__"], [36, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[36, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [36, 6, 1, "", "NORMALIZED_MARGIN"], [36, 6, 1, "", "SELF_CONFIDENCE"], [36, 3, 1, "", "__call__"], [36, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[36, 3, 1, "", "__call__"], [36, 3, 1, "", "aggregate"], [36, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[37, 1, 1, "", "get_onehot_num_classes"], [37, 1, 1, "", "int2onehot"], [37, 1, 1, "", "onehot2int"], [37, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[38, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[39, 1, 1, "", "color_sentence"], [39, 1, 1, "", "filter_sentence"], [39, 1, 1, "", "get_sentence"], [39, 1, 1, "", "mapping"], [39, 1, 1, "", "merge_probs"], [39, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[40, 1, 1, "", "append_extra_datapoint"], [40, 1, 1, "", "clip_noise_rates"], [40, 1, 1, "", "clip_values"], [40, 1, 1, "", "compress_int_array"], [40, 1, 1, "", "confusion_matrix"], [40, 1, 1, "", "csr_vstack"], [40, 1, 1, "", "estimate_pu_f1"], [40, 1, 1, "", "extract_indices_tf"], [40, 1, 1, "", "force_two_dimensions"], [40, 1, 1, "", "format_labels"], [40, 1, 1, "", "get_missing_classes"], [40, 1, 1, "", "get_num_classes"], [40, 1, 1, "", "get_unique_classes"], [40, 1, 1, "", "is_tensorflow_dataset"], [40, 1, 1, "", "is_torch_dataset"], [40, 1, 1, "", "num_unique_classes"], [40, 1, 1, "", "print_inverse_noise_matrix"], [40, 1, 1, "", "print_joint_matrix"], [40, 1, 1, "", "print_noise_matrix"], [40, 1, 1, "", "print_square_matrix"], [40, 1, 1, "", "remove_noise_from_class"], [40, 1, 1, "", "round_preserving_row_totals"], [40, 1, 1, "", "round_preserving_sum"], [40, 1, 1, "", "smart_display_dataframe"], [40, 1, 1, "", "subset_X_y"], [40, 1, 1, "", "subset_data"], [40, 1, 1, "", "subset_labels"], [40, 1, 1, "", "train_val_split"], [40, 1, 1, "", "unshuffle_tensorflow_dataset"], [40, 1, 1, "", "value_counts"], [40, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[41, 1, 1, "", "assert_indexing_works"], [41, 1, 1, "", "assert_nonempty_input"], [41, 1, 1, "", "assert_valid_class_labels"], [41, 1, 1, "", "assert_valid_inputs"], [41, 1, 1, "", "labels_to_array"]], "cleanlab.models": [[44, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[44, 2, 1, "", "KerasWrapperModel"], [44, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[44, 3, 1, "", "fit"], [44, 3, 1, "", "get_params"], [44, 3, 1, "", "predict"], [44, 3, 1, "", "predict_proba"], [44, 3, 1, "", "set_params"], [44, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[44, 3, 1, "", "fit"], [44, 3, 1, "", "get_params"], [44, 3, 1, "", "predict"], [44, 3, 1, "", "predict_proba"], [44, 3, 1, "", "set_params"], [44, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[45, 1, 1, "", "convert_long_to_wide_dataset"], [45, 1, 1, "", "get_active_learning_scores"], [45, 1, 1, "", "get_active_learning_scores_ensemble"], [45, 1, 1, "", "get_label_quality_multiannotator"], [45, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [45, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[46, 0, 0, "-", "dataset"], [47, 0, 0, "-", "filter"], [49, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[46, 1, 1, "", "common_multilabel_issues"], [46, 1, 1, "", "multilabel_health_summary"], [46, 1, 1, "", "overall_multilabel_health_score"], [46, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[47, 1, 1, "", "find_label_issues"], [47, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[50, 0, 0, "-", "filter"], [52, 0, 0, "-", "rank"], [53, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[50, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[52, 1, 1, "", "compute_badloc_box_scores"], [52, 1, 1, "", "compute_overlooked_box_scores"], [52, 1, 1, "", "compute_swap_box_scores"], [52, 1, 1, "", "get_label_quality_scores"], [52, 1, 1, "", "issues_from_scores"], [52, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[53, 1, 1, "", "bounding_box_size_distribution"], [53, 1, 1, "", "class_label_distribution"], [53, 1, 1, "", "get_sorted_bbox_count_idxs"], [53, 1, 1, "", "object_counts_per_image"], [53, 1, 1, "", "plot_class_distribution"], [53, 1, 1, "", "plot_class_size_distributions"], [53, 1, 1, "", "visualize"]], "cleanlab.outlier": [[54, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[54, 3, 1, "", "fit"], [54, 3, 1, "", "fit_score"], [54, 3, 1, "", "score"]], "cleanlab.rank": [[55, 1, 1, "", "find_top_issues"], [55, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [55, 1, 1, "", "get_label_quality_ensemble_scores"], [55, 1, 1, "", "get_label_quality_scores"], [55, 1, 1, "", "get_normalized_margin_for_each_label"], [55, 1, 1, "", "get_self_confidence_for_each_label"], [55, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[57, 0, 0, "-", "learn"], [58, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[57, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[57, 3, 1, "", "__init_subclass__"], [57, 3, 1, "", "find_label_issues"], [57, 3, 1, "", "fit"], [57, 3, 1, "", "get_aleatoric_uncertainty"], [57, 3, 1, "", "get_epistemic_uncertainty"], [57, 3, 1, "", "get_label_issues"], [57, 3, 1, "", "get_metadata_routing"], [57, 3, 1, "", "get_params"], [57, 3, 1, "", "predict"], [57, 3, 1, "", "save_space"], [57, 3, 1, "", "score"], [57, 3, 1, "", "set_fit_request"], [57, 3, 1, "", "set_params"], [57, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[58, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[59, 0, 0, "-", "filter"], [61, 0, 0, "-", "rank"], [62, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[59, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[61, 1, 1, "", "get_label_quality_scores"], [61, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[62, 1, 1, "", "common_label_issues"], [62, 1, 1, "", "display_issues"], [62, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"], [66, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[63, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[66, 1, 1, "", "common_label_issues"], [66, 1, 1, "", "display_issues"], [66, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 69, 73, 74, 76, 77, 78, 81, 87, 88, 89], "count": [3, 78], "datalab": [4, 5, 6, 7, 8, 70, 71, 72, 73, 74, 78], "creat": [5, 70, 71, 78, 80], "your": [5, 67, 70, 71, 74, 76, 78], "own": 5, "issu": [5, 6, 7, 17, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 81, 82, 86, 87, 89], "manag": [5, 17], "prerequisit": 5, "implement": 5, "issuemanag": [5, 70], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 70], "us": [5, 69, 71, 73, 74, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "guid": [6, 8], "type": [6, 7, 78], "custom": [6, 70], "can": [7, 71, 75, 76, 78, 80], "detect": [7, 71, 73, 74, 76, 78, 82, 83], "estim": [7, 78, 80], "each": 7, "label": [7, 19, 67, 69, 71, 73, 74, 76, 77, 78, 80, 81, 82, 85, 86, 87, 88, 89], "outlier": [7, 22, 38, 54, 73, 74, 77, 83], "Near": [7, 71, 73, 74, 77], "duplic": [7, 15, 71, 73, 74, 77], "non": 7, "iid": 7, "class": [7, 68, 78, 86], "imbal": [7, 16], "imag": [7, 77, 83], "specif": [7, 86], "option": 7, "paramet": [7, 78], "get": [8, 70, 71, 80, 81, 82, 86, 89], "start": [8, 75], "api": 8, "refer": 8, "data": [9, 67, 69, 70, 71, 73, 75, 76, 78, 80, 81, 82, 83, 85, 86, 87, 89], "data_issu": 10, "factori": 11, "intern": [12, 32], "issue_find": 13, "issue_manag": [17, 18], "regist": 17, "unregist": 17, "noniid": 20, "null": 21, "report": [23, 77], "dataset": [25, 46, 67, 71, 74, 75, 76, 77, 78, 81, 82, 83, 85, 86, 88, 89], "cifar_cnn": 26, "coteach": 27, "experiment": 28, "label_issues_batch": 29, "mnist_pytorch": 30, "filter": [31, 47, 50, 59, 63, 78], "label_quality_util": 33, "latent_algebra": 34, "multiannotator_util": 35, "multilabel_scor": 36, "multilabel_util": 37, "token_classification_util": 39, "util": 40, "valid": [41, 77, 84], "fasttext": 42, "model": [43, 67, 69, 73, 74, 76, 77, 78, 80, 81, 82, 83, 85, 87, 88], "kera": 44, "multiannot": [45, 80], "multilabel_classif": 48, "rank": [49, 52, 55, 58, 61, 65, 78], "object_detect": 51, "summari": [53, 62, 66], "regress": [56, 57, 58, 76, 85], "learn": [57, 71, 76, 78, 87], "segment": [60, 86], "token_classif": [64, 89], "cleanlab": [67, 69, 73, 74, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "open": [67, 76], "sourc": [67, 76], "document": 67, "quickstart": 67, "1": [67, 68, 69, 70, 71, 73, 74, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "instal": [67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "2": [67, 68, 69, 70, 71, 73, 74, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "find": [67, 69, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "common": [67, 68, 89], "3": [67, 69, 70, 71, 73, 74, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "handl": [67, 76], "error": [67, 76, 77, 78, 80, 81, 82, 85, 86, 88, 89], "train": [67, 69, 76, 83, 85, 87, 88], "robust": [67, 78, 85, 87, 88], "noisi": [67, 78, 85, 87, 88], "4": [67, 69, 70, 71, 73, 74, 77, 78, 80, 82, 83, 85, 87, 88], "curat": [67, 75], "fix": [67, 76], "level": [67, 75, 78, 89], "5": [67, 69, 71, 73, 77, 78, 80, 85, 87], "improv": [67, 80], "via": [67, 78, 80], "mani": [67, 78], "other": [67, 80, 82, 85], "techniqu": 67, "contribut": 67, "easi": 67, "mode": 67, "how": [68, 76, 78, 80, 81, 89], "migrat": 68, "version": 68, "0": 68, "from": [68, 70, 71, 78, 85, 87, 88], "pre": [68, 69, 83], "function": [68, 70], "name": 68, "chang": 68, "modul": [68, 78], "new": 68, "remov": 68, "argument": [68, 70], "variabl": 68, "audio": 69, "speechbrain": 69, "depend": [69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89], "import": [69, 70, 71, 75, 77, 78, 80], "them": [69, 75, 78], "load": [69, 70, 71, 73, 74, 85, 87, 88], "featur": [69, 77, 83], "fit": 69, "linear": 69, "comput": [69, 73, 74, 77, 80, 84, 87], "out": [69, 70, 71, 73, 74, 77, 80, 84, 87], "sampl": [69, 70, 71, 73, 74, 77, 80, 84, 87], "predict": [69, 70, 71, 73, 74, 77, 80, 81, 82, 84, 87], "probabl": [69, 70, 71, 73, 74, 77, 80, 84, 87], "workflow": [70, 78], "audit": [70, 71], "requir": [70, 71, 73, 74, 77, 80, 81, 82, 83, 85, 86, 87, 88, 89], "classifi": [70, 71], "instanti": 70, "object": [70, 82], "increment": 70, "search": 70, "specifi": 70, "nondefault": 70, "save": 70, "ad": 70, "A": 71, "unifi": 71, "all": [71, 78], "kind": [71, 82], "skip": [71, 75, 78, 80], "detail": [71, 75, 78, 80], "more": [71, 78, 85, 87, 88], "about": 71, "addit": 71, "inform": [71, 77], "tutori": [72, 75, 79], "tabular": [73, 87], "numer": 73, "categor": 73, "column": 73, "process": [73, 83, 85, 87], "select": [73, 87], "construct": 73, "k": [73, 77, 84], "nearest": 73, "neighbour": 73, "graph": 73, "text": [74, 88, 89], "format": [74, 76, 81, 82, 88], "defin": [74, 77, 85, 88], "fetch": [75, 77], "evalu": 75, "health": [75, 78], "8": [75, 78], "popular": 75, "faq": 76, "what": [76, 78, 84], "do": [76, 78], "i": [76, 78, 84], "infer": 76, "correct": 76, "exampl": [76, 77, 78, 83], "ha": 76, "flag": 76, "should": 76, "v": 76, "test": [76, 78, 83], "big": 76, "limit": 76, "memori": 76, "why": 76, "isn": 76, "t": 76, "cleanlearn": [76, 78], "work": [76, 78, 80, 89], "me": 76, "differ": [76, 82], "clean": [76, 78], "final": 76, "hyperparamet": 76, "tune": 76, "onli": 76, "one": [76, 78, 81, 86], "doe": [76, 80, 89], "take": 76, "so": 76, "long": 76, "ml": [76, 78], "run": 76, "identifi": [76, 82], "licens": 76, "under": 76, "an": 76, "answer": 76, "question": 76, "pytorch": [77, 83], "normal": 77, "fashion": 77, "mnist": 77, "prepar": 77, "fold": [77, 84], "cross": [77, 84], "embed": [77, 83], "7": [77, 78], "view": 77, "most": [77, 89], "like": 77, "sever": 77, "set": [77, 78], "dark": 77, "top": [77, 86], "low": 77, "The": 78, "centric": 78, "ai": 78, "machin": 78, "find_label_issu": 78, "line": 78, "code": 78, "visual": [78, 82, 83, 86], "twenti": 78, "lowest": 78, "qualiti": [78, 80, 81, 82, 86, 89], "see": 78, "now": 78, "let": 78, "": 78, "happen": 78, "we": 78, "merg": 78, "seafoam": 78, "green": 78, "yellow": 78, "too": 78, "you": 78, "re": 78, "6": 78, "One": 78, "score": [78, 80, 81, 82, 86, 89], "rule": 78, "overal": [78, 86], "accur": 78, "thi": 78, "directli": 78, "fulli": 78, "character": 78, "nois": 78, "matrix": [78, 81], "joint": 78, "prior": 78, "true": 78, "distribut": 78, "flip": 78, "rate": 78, "ani": 78, "again": 78, "support": 78, "lot": 78, "method": 78, "filter_bi": 78, "automat": 78, "everi": 78, "uniqu": 78, "num_label_issu": 78, "threshold": 78, "found": 78, "Not": 78, "sure": 78, "when": 78, "ensembl": 78, "multipl": [78, 80], "predictor": 78, "consensu": 80, "annot": 80, "initi": 80, "major": 80, "vote": 80, "better": 80, "statist": 80, "compar": 80, "inspect": 80, "potenti": [80, 85, 88], "retrain": 80, "further": 80, "multi": 81, "given": 81, "hot": 81, "binari": 81, "download": [82, 86, 89], "objectlab": 82, "timm": 83, "cifar10": 83, "some": 83, "pred_prob": [83, 86, 89], "wai": 85, "semant": 86, "which": 86, "ar": 86, "commonli": 86, "mislabel": [86, 89], "focus": 86, "scikit": 87, "token": 89, "word": 89, "sentenc": 89, "contain": 89, "particular": 89}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 56}}) \ No newline at end of file diff --git a/master/tutorials/audio.html b/master/tutorials/audio.html index 7c6243761..05fef815e 100644 --- a/master/tutorials/audio.html +++ b/master/tutorials/audio.html @@ -1076,19 +1076,19 @@

3. Use pre-trained SpeechBrain model to featurize audio
-[[-14.196314     7.319463    12.478973   ...   2.289077     2.8170207
-  -10.892647  ]
- [-24.898058     5.2561903   12.559641   ...  -3.5597146    9.620667
-  -10.28525   ]
- [-21.709623     7.503369     7.913801   ...  -6.819831     3.1831489
-  -17.208763  ]
+[[-14.196315    7.3194594  12.478977  ...   2.2890828   2.8170278
+  -10.892647 ]
+ [-24.898054    5.256194   12.559642  ...  -3.559715    9.620667
+  -10.285246 ]
+ [-21.709623    7.5033712   7.913803  ...  -6.8198366   3.1831512
+  -17.208761 ]
  ...
- [-16.08426      6.321049    12.005462   ...   1.2161489    9.478238
-  -10.682178  ]
- [-15.053809     5.2424674    1.0914197  ...  -0.78334606   9.039537
-  -23.569172  ]
- [-19.761091     1.1258256   16.75323    ...   3.3508904   11.598279
-  -16.237118  ]]
+ [-16.08426     6.3210406  12.005453  ...   1.2161605   9.478239
+  -10.682179 ]
+ [-15.0538025   5.242471    1.0914207 ...  -0.7833488   9.039538
+  -23.56918  ]
+ [-19.761095    1.1258287  16.753235  ...   3.3508894  11.598273
+  -16.237122 ]]
 Shape of array:  (2500, 512)
 
@@ -1194,11 +1194,11 @@

5. Use cleanlab to find label issues
 Here are indices of the most likely errors:
- [1946  469  516 1871 1955 2132]
+ [ 469  516 1946 1871 1955 2132]
 

These examples flagged by cleanlab are those worth inspecting more closely.

@@ -1340,11 +1340,6 @@

5. Use cleanlab to find label issues -{"state": {"f010c59fa4544f51a81502e94c47fb22": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9edf141ef1484fc4912eb106be47acb5": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "fa25c8a7048346c68d1535c6faea79f6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f010c59fa4544f51a81502e94c47fb22", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9edf141ef1484fc4912eb106be47acb5", "value": 2041.0}}, "035a36dc0c074bce8e805b7375453783": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "68ea06bd0a55428983bcedc0e4d2e547": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "e7714048563d40139e2674148f573f91": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_035a36dc0c074bce8e805b7375453783", "placeholder": "\u200b", "style": "IPY_MODEL_68ea06bd0a55428983bcedc0e4d2e547", "value": "Downloading (\u2026)ain/hyperparams.yaml: 100%"}}, "d3486b269885452ebd9220a59eb70097": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aae274ad00e142ef8469327e465b5608": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "53771cf18f2e47008d372cd011557497": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d3486b269885452ebd9220a59eb70097", "placeholder": "\u200b", "style": "IPY_MODEL_aae274ad00e142ef8469327e465b5608", "value": " 2.04k/2.04k [00:00<00:00, 203kB/s]"}}, "1acc8d7b46ae44029b99682085679b7f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5f13f1c43dc84da4b490318bb247eec5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e7714048563d40139e2674148f573f91", "IPY_MODEL_fa25c8a7048346c68d1535c6faea79f6", "IPY_MODEL_53771cf18f2e47008d372cd011557497"], "layout": "IPY_MODEL_1acc8d7b46ae44029b99682085679b7f"}}, "b645ba5d8646420fbcf5761b088adc40": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f85bfb31c25042b59e70b7acd5b3175c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "dc6eff535e8f4736a836ba8cf134b6ea": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b645ba5d8646420fbcf5761b088adc40", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f85bfb31c25042b59e70b7acd5b3175c", "value": 16887676.0}}, "7d915bd116c24b7bbccf1cad659c5238": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3d8116501d1a4ecc87eb9482980a653b": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "a4cc8913c023424ba911d734d9d02bc8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7d915bd116c24b7bbccf1cad659c5238", "placeholder": "\u200b", "style": "IPY_MODEL_3d8116501d1a4ecc87eb9482980a653b", "value": "Downloading embedding_model.ckpt: 100%"}}, "37c1536002be4ff5b8dde3bbaa2594e9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cf47f11bb37c486a8e0504acf52b239a": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "73cc96c4f38740cbaa6d212144dc8565": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_37c1536002be4ff5b8dde3bbaa2594e9", "placeholder": "\u200b", "style": "IPY_MODEL_cf47f11bb37c486a8e0504acf52b239a", "value": " 16.9M/16.9M [00:00<00:00, 51.4MB/s]"}}, "49a40348ff6b417c8d6e52e5640464f0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "21b41d8d53e14dd89b674d73fc01c9fd": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a4cc8913c023424ba911d734d9d02bc8", "IPY_MODEL_dc6eff535e8f4736a836ba8cf134b6ea", "IPY_MODEL_73cc96c4f38740cbaa6d212144dc8565"], "layout": "IPY_MODEL_49a40348ff6b417c8d6e52e5640464f0"}}, "39cb33a39dd8489597142cb26e01711e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bdd292aa36c347aba0b6c45f16666d96": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "bf24c8b22d8346fb927cb3cbc692c317": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_39cb33a39dd8489597142cb26e01711e", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bdd292aa36c347aba0b6c45f16666d96", "value": 3201.0}}, "58c337e9ab5b419a9cdf2f6423eaea2a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e9bf4b71803a43daa66fd0fe5d0763fd": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "da6b80a393324d8b93b72bfc7b480ddd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_58c337e9ab5b419a9cdf2f6423eaea2a", "placeholder": "\u200b", "style": "IPY_MODEL_e9bf4b71803a43daa66fd0fe5d0763fd", "value": "Downloading mean_var_norm_emb.ckpt: 100%"}}, "5b768ce206b74da7a3d929a29363abce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3c8fa74d660e4d57b006f382c4de7423": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "79a5c0e4c02c416ba84feda09b9cc896": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5b768ce206b74da7a3d929a29363abce", "placeholder": "\u200b", "style": "IPY_MODEL_3c8fa74d660e4d57b006f382c4de7423", "value": " 3.20k/3.20k [00:00<00:00, 332kB/s]"}}, "2bcba10314a341edb064758210135f7b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5e243a3d209b4965ade5ace19e24945f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_da6b80a393324d8b93b72bfc7b480ddd", "IPY_MODEL_bf24c8b22d8346fb927cb3cbc692c317", "IPY_MODEL_79a5c0e4c02c416ba84feda09b9cc896"], "layout": "IPY_MODEL_2bcba10314a341edb064758210135f7b"}}, "da06bcda94b047acb67d9a687d9255b7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d00953a061454c3f900855fd446435e6": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8bf7709f20864a359a76a36a1885e897": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_da06bcda94b047acb67d9a687d9255b7", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d00953a061454c3f900855fd446435e6", "value": 15856877.0}}, "14f6e4f3079949e192a74a3492d37446": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "39107a4c471844fab68e9174b0649197": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "afe2a591495546dd98406f95e87bc7fb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_14f6e4f3079949e192a74a3492d37446", "placeholder": "\u200b", "style": "IPY_MODEL_39107a4c471844fab68e9174b0649197", "value": "Downloading classifier.ckpt: 100%"}}, "e21d28a15a124374a97f75a86750b82e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a9bfc58f3dd24e4599965f29d71e0433": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "f7bb92a3c4d24f6e8e4e004b71947217": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e21d28a15a124374a97f75a86750b82e", "placeholder": "\u200b", "style": "IPY_MODEL_a9bfc58f3dd24e4599965f29d71e0433", "value": " 15.9M/15.9M [00:00<00:00, 44.1MB/s]"}}, "6ee73466521442f19a80883f1b7da77d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7763fee48c2a4f9fb5e8ff45b5cad49c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_afe2a591495546dd98406f95e87bc7fb", "IPY_MODEL_8bf7709f20864a359a76a36a1885e897", "IPY_MODEL_f7bb92a3c4d24f6e8e4e004b71947217"], "layout": "IPY_MODEL_6ee73466521442f19a80883f1b7da77d"}}, "ca1778c12bb746cb85204fef31cb2723": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b26873aa7db54e93ae8af978b74ca524": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c3cb752e0dca42cfa3ebf93b80bff3c7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ca1778c12bb746cb85204fef31cb2723", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b26873aa7db54e93ae8af978b74ca524", "value": 128619.0}}, "22220e7e970d4bdab058b0113259408e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "14e5e6a5ee2543bda9e8bac476621806": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "62b87b62b3f84aaf966cfb0268cd96ef": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_22220e7e970d4bdab058b0113259408e", "placeholder": "\u200b", "style": "IPY_MODEL_14e5e6a5ee2543bda9e8bac476621806", "value": "Downloading (\u2026)in/label_encoder.txt: 100%"}}, "af836e0b35854b19ba2f7789bcf34f8e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0830110c1f1c45c2ba3d5d793102325c": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "9d54b48f8b5e4f5ba04f2adbf3b3f450": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_af836e0b35854b19ba2f7789bcf34f8e", "placeholder": "\u200b", "style": "IPY_MODEL_0830110c1f1c45c2ba3d5d793102325c", "value": " 129k/129k [00:00<00:00, 1.08MB/s]"}}, "a7d3bccd401645fc8a11fe4c27901c7e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "52c3f65e4c744524a20d68f4fb5ebbf0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_62b87b62b3f84aaf966cfb0268cd96ef", "IPY_MODEL_c3cb752e0dca42cfa3ebf93b80bff3c7", "IPY_MODEL_9d54b48f8b5e4f5ba04f2adbf3b3f450"], "layout": "IPY_MODEL_a7d3bccd401645fc8a11fe4c27901c7e"}}}, "version_major": 2, "version_minor": 0} +{"state": {"5ccb8b07baf04769a1c340aa79bebfe0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "67f2e6e51d4e4d58b0e1175396a1391e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "527c72c3db214b67bc0ae05742cc1789": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5ccb8b07baf04769a1c340aa79bebfe0", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_67f2e6e51d4e4d58b0e1175396a1391e", "value": 2041.0}}, "675dcf1e7a534b3e83154279e8c1bcc6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d05b5353011345b5ab7fe6866e29aaf2": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "7200f73a3ee94377a3df8d775865e059": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_675dcf1e7a534b3e83154279e8c1bcc6", "placeholder": "\u200b", "style": "IPY_MODEL_d05b5353011345b5ab7fe6866e29aaf2", "value": "Downloading (\u2026)ain/hyperparams.yaml: 100%"}}, "775148660f914632b990f808c9f0b32b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "641944556d5d46999c8ead2f69d2dcf0": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "fbbcca643c844e6cb91547a869f2323e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_775148660f914632b990f808c9f0b32b", "placeholder": "\u200b", "style": "IPY_MODEL_641944556d5d46999c8ead2f69d2dcf0", "value": " 2.04k/2.04k [00:00<00:00, 356kB/s]"}}, "fbc243d47eba4612b5fdb9f1f34f5236": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c7cf888269404a3e8d7e9bcbc9feb461": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7200f73a3ee94377a3df8d775865e059", "IPY_MODEL_527c72c3db214b67bc0ae05742cc1789", "IPY_MODEL_fbbcca643c844e6cb91547a869f2323e"], "layout": "IPY_MODEL_fbc243d47eba4612b5fdb9f1f34f5236"}}, "2e2d76b1cf8d44ff8c7d109e7a4ce9ae": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1197055e3456479cb42594919ae81328": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "440a8d14fb5b4875b12bb6360e86405e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_2e2d76b1cf8d44ff8c7d109e7a4ce9ae", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1197055e3456479cb42594919ae81328", "value": 16887676.0}}, "d44f5681fe4749ba802269ee31a52792": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "417e2515ec01413598b74ef5747ac88e": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "a17830dd334e48d4a21af394f0654810": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d44f5681fe4749ba802269ee31a52792", "placeholder": "\u200b", "style": "IPY_MODEL_417e2515ec01413598b74ef5747ac88e", "value": "Downloading embedding_model.ckpt: 100%"}}, "0fc21ac4570a420bbaf4505dfdc460cd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d91c99c639e746f9bfbbcad9e2e0ce99": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "f036e36f1cfb4810904970aa02deb732": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0fc21ac4570a420bbaf4505dfdc460cd", "placeholder": "\u200b", "style": "IPY_MODEL_d91c99c639e746f9bfbbcad9e2e0ce99", "value": " 16.9M/16.9M [00:00<00:00, 124MB/s]"}}, "9cb1cb6a1fb649fbb9463ca3eae9f17b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c76378977c9145c98d498613685c0e70": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a17830dd334e48d4a21af394f0654810", "IPY_MODEL_440a8d14fb5b4875b12bb6360e86405e", "IPY_MODEL_f036e36f1cfb4810904970aa02deb732"], "layout": "IPY_MODEL_9cb1cb6a1fb649fbb9463ca3eae9f17b"}}, "746359e2e5b940cda8b78228eb6786ba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "57394531c6734077972502b4eb84ec5f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7ffc9bb8df0e45de9e8ec1c6dae5137d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_746359e2e5b940cda8b78228eb6786ba", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_57394531c6734077972502b4eb84ec5f", "value": 3201.0}}, "959168073cdc4f54949d9c8fd74fd9f1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "28ece83362af44e88ce1e78fb441a0a1": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "939b2a03d6614455abfdfc8494687f17": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_959168073cdc4f54949d9c8fd74fd9f1", "placeholder": "\u200b", "style": "IPY_MODEL_28ece83362af44e88ce1e78fb441a0a1", "value": "Downloading mean_var_norm_emb.ckpt: 100%"}}, "bdf0f2da3848486b9206b754cef07c0a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "11f27b63df6d4b21bd0433db1eeab22c": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "8a7f0f13b08b42b9b8f90594f195f412": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_bdf0f2da3848486b9206b754cef07c0a", "placeholder": "\u200b", "style": "IPY_MODEL_11f27b63df6d4b21bd0433db1eeab22c", "value": " 3.20k/3.20k [00:00<00:00, 584kB/s]"}}, "3d2bf63a4f7d4ada8bcadf3fa5bb31e9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9ec6feee8c2540829050b48dbb471537": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_939b2a03d6614455abfdfc8494687f17", "IPY_MODEL_7ffc9bb8df0e45de9e8ec1c6dae5137d", "IPY_MODEL_8a7f0f13b08b42b9b8f90594f195f412"], "layout": "IPY_MODEL_3d2bf63a4f7d4ada8bcadf3fa5bb31e9"}}, "32567db138a24ff1914c2274c9ee7334": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "db4a4108c3444c3e886ba4cb104c81ca": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0f0be45602d643eeacae872082f7f920": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_32567db138a24ff1914c2274c9ee7334", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_db4a4108c3444c3e886ba4cb104c81ca", "value": 15856877.0}}, "b1b8b4ea01e44e4887f932e4ddce91d2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c953ea00a63b400897b698bee77ce4ee": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "7cdd2d3e08954f4db11c3b080a0c8502": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b1b8b4ea01e44e4887f932e4ddce91d2", "placeholder": "\u200b", "style": "IPY_MODEL_c953ea00a63b400897b698bee77ce4ee", "value": "Downloading classifier.ckpt: 100%"}}, "03f16fd22e5b42e9a5af56c56d50e6a4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6d98e2af89c142b4a55c0e1360d6f551": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "9f2382f8cc2a40e8ad5985039eecf41a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_03f16fd22e5b42e9a5af56c56d50e6a4", "placeholder": "\u200b", "style": "IPY_MODEL_6d98e2af89c142b4a55c0e1360d6f551", "value": " 15.9M/15.9M [00:00<00:00, 83.4MB/s]"}}, "400d5eb74a804253a8c2221513464d60": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "85e06e383727491f8448980930b5ec79": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7cdd2d3e08954f4db11c3b080a0c8502", "IPY_MODEL_0f0be45602d643eeacae872082f7f920", "IPY_MODEL_9f2382f8cc2a40e8ad5985039eecf41a"], "layout": "IPY_MODEL_400d5eb74a804253a8c2221513464d60"}}, "8547b562133e46a0b91a295e4f3a3c00": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3f2e93a9b65145838d56313680bb665a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7152d14b11b24706a63baeeda4e01ba2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8547b562133e46a0b91a295e4f3a3c00", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3f2e93a9b65145838d56313680bb665a", "value": 128619.0}}, "95985c8035704ee49ba84d4d05959c05": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b4e2218b4c3b4af995814775f1e124a0": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "86fd170964a8476a9bc3a82d7523c426": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_95985c8035704ee49ba84d4d05959c05", "placeholder": "\u200b", "style": "IPY_MODEL_b4e2218b4c3b4af995814775f1e124a0", "value": "Downloading (\u2026)in/label_encoder.txt: 100%"}}, "8504b5025e364052a5d036ebf4fb2e93": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "809a90e482594f3593e69730c218760e": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "99e711466a0e4b3ea28c8792bccd237f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8504b5025e364052a5d036ebf4fb2e93", "placeholder": "\u200b", "style": "IPY_MODEL_809a90e482594f3593e69730c218760e", "value": " 129k/129k [00:00<00:00, 15.5MB/s]"}}, "403d44bdd3ec4a33bb1995e0b3a29f0d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4904aabcc0ff45a09118c5d491a340e5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_86fd170964a8476a9bc3a82d7523c426", "IPY_MODEL_7152d14b11b24706a63baeeda4e01ba2", "IPY_MODEL_99e711466a0e4b3ea28c8792bccd237f"], "layout": "IPY_MODEL_403d44bdd3ec4a33bb1995e0b3a29f0d"}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/audio.ipynb b/master/tutorials/audio.ipynb index 1ad4dff00..536bf304b 100644 --- a/master/tutorials/audio.ipynb +++ b/master/tutorials/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:05:21.490405Z", - "iopub.status.busy": "2023-11-02T15:05:21.489817Z", - "iopub.status.idle": "2023-11-02T15:05:26.875775Z", - "shell.execute_reply": "2023-11-02T15:05:26.871330Z" + "iopub.execute_input": "2023-11-04T09:14:33.058921Z", + "iopub.status.busy": "2023-11-04T09:14:33.058732Z", + "iopub.status.idle": "2023-11-04T09:14:36.154818Z", + "shell.execute_reply": "2023-11-04T09:14:36.154160Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:05:26.881580Z", - "iopub.status.busy": "2023-11-02T15:05:26.880944Z", - "iopub.status.idle": "2023-11-02T15:05:26.887617Z", - "shell.execute_reply": "2023-11-02T15:05:26.886317Z" + "iopub.execute_input": "2023-11-04T09:14:36.158120Z", + "iopub.status.busy": "2023-11-04T09:14:36.157500Z", + "iopub.status.idle": "2023-11-04T09:14:36.161065Z", + "shell.execute_reply": "2023-11-04T09:14:36.160474Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:05:26.891866Z", - "iopub.status.busy": "2023-11-02T15:05:26.891493Z", - "iopub.status.idle": "2023-11-02T15:05:26.899015Z", - "shell.execute_reply": "2023-11-02T15:05:26.898157Z" + "iopub.execute_input": "2023-11-04T09:14:36.163383Z", + "iopub.status.busy": "2023-11-04T09:14:36.163047Z", + "iopub.status.idle": "2023-11-04T09:14:36.167916Z", + "shell.execute_reply": "2023-11-04T09:14:36.167314Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-11-02T15:05:26.903692Z", - "iopub.status.busy": "2023-11-02T15:05:26.903296Z", - "iopub.status.idle": "2023-11-02T15:05:29.038767Z", - "shell.execute_reply": "2023-11-02T15:05:29.037268Z" + "iopub.execute_input": "2023-11-04T09:14:36.170490Z", + "iopub.status.busy": "2023-11-04T09:14:36.170122Z", + "iopub.status.idle": "2023-11-04T09:14:37.923854Z", + "shell.execute_reply": "2023-11-04T09:14:37.923069Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-11-02T15:05:29.043752Z", - "iopub.status.busy": "2023-11-02T15:05:29.043305Z", - "iopub.status.idle": "2023-11-02T15:05:29.068776Z", - "shell.execute_reply": "2023-11-02T15:05:29.065728Z" + "iopub.execute_input": "2023-11-04T09:14:37.927457Z", + "iopub.status.busy": "2023-11-04T09:14:37.926820Z", + "iopub.status.idle": "2023-11-04T09:14:37.939268Z", + "shell.execute_reply": "2023-11-04T09:14:37.938689Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:05:29.120504Z", - "iopub.status.busy": "2023-11-02T15:05:29.119834Z", - "iopub.status.idle": "2023-11-02T15:05:29.128756Z", - "shell.execute_reply": "2023-11-02T15:05:29.127685Z" + "iopub.execute_input": "2023-11-04T09:14:37.972749Z", + "iopub.status.busy": "2023-11-04T09:14:37.972236Z", + "iopub.status.idle": "2023-11-04T09:14:37.978086Z", + "shell.execute_reply": "2023-11-04T09:14:37.977473Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-11-02T15:05:29.132705Z", - "iopub.status.busy": "2023-11-02T15:05:29.132249Z", - "iopub.status.idle": "2023-11-02T15:05:30.385262Z", - "shell.execute_reply": "2023-11-02T15:05:30.384154Z" + "iopub.execute_input": "2023-11-04T09:14:37.980579Z", + "iopub.status.busy": "2023-11-04T09:14:37.980116Z", + "iopub.status.idle": "2023-11-04T09:14:38.641329Z", + "shell.execute_reply": "2023-11-04T09:14:38.640692Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:05:30.389517Z", - "iopub.status.busy": "2023-11-02T15:05:30.389205Z", - "iopub.status.idle": "2023-11-02T15:05:32.260251Z", - "shell.execute_reply": "2023-11-02T15:05:32.259150Z" + "iopub.execute_input": "2023-11-04T09:14:38.644024Z", + "iopub.status.busy": "2023-11-04T09:14:38.643660Z", + "iopub.status.idle": "2023-11-04T09:14:39.918150Z", + "shell.execute_reply": "2023-11-04T09:14:39.917452Z" }, "id": "vL9lkiKsHvKr" }, @@ -472,10 +472,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2023-11-02T15:05:32.265425Z", - "iopub.status.busy": "2023-11-02T15:05:32.265012Z", - "iopub.status.idle": "2023-11-02T15:05:32.313744Z", - "shell.execute_reply": "2023-11-02T15:05:32.312741Z" + "iopub.execute_input": "2023-11-04T09:14:39.921154Z", + "iopub.status.busy": "2023-11-04T09:14:39.920759Z", + "iopub.status.idle": "2023-11-04T09:14:39.943805Z", + "shell.execute_reply": "2023-11-04T09:14:39.943179Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -555,10 +555,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:05:32.317868Z", - "iopub.status.busy": "2023-11-02T15:05:32.317404Z", - "iopub.status.idle": "2023-11-02T15:05:32.324997Z", - "shell.execute_reply": "2023-11-02T15:05:32.323166Z" + "iopub.execute_input": "2023-11-04T09:14:39.946514Z", + "iopub.status.busy": "2023-11-04T09:14:39.946069Z", + "iopub.status.idle": "2023-11-04T09:14:39.949339Z", + "shell.execute_reply": "2023-11-04T09:14:39.948807Z" }, "id": "I8JqhOZgi94g" }, @@ -580,10 +580,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:05:32.329704Z", - "iopub.status.busy": "2023-11-02T15:05:32.328948Z", - "iopub.status.idle": "2023-11-02T15:05:52.890191Z", - "shell.execute_reply": "2023-11-02T15:05:52.888961Z" + "iopub.execute_input": "2023-11-04T09:14:39.951698Z", + "iopub.status.busy": "2023-11-04T09:14:39.951311Z", + "iopub.status.idle": "2023-11-04T09:14:58.185360Z", + "shell.execute_reply": "2023-11-04T09:14:58.184719Z" }, "id": "2FSQ2GR9R_YA" }, @@ -615,10 +615,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-11-02T15:05:52.895098Z", - "iopub.status.busy": "2023-11-02T15:05:52.894598Z", - "iopub.status.idle": "2023-11-02T15:05:52.904035Z", - "shell.execute_reply": "2023-11-02T15:05:52.903029Z" + "iopub.execute_input": "2023-11-04T09:14:58.188457Z", + "iopub.status.busy": "2023-11-04T09:14:58.188203Z", + "iopub.status.idle": "2023-11-04T09:14:58.192535Z", + "shell.execute_reply": "2023-11-04T09:14:58.191931Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -628,19 +628,19 @@ "name": "stdout", "output_type": "stream", "text": [ - "[[-14.196314 7.319463 12.478973 ... 2.289077 2.8170207\n", - " -10.892647 ]\n", - " [-24.898058 5.2561903 12.559641 ... -3.5597146 9.620667\n", - " -10.28525 ]\n", - " [-21.709623 7.503369 7.913801 ... -6.819831 3.1831489\n", - " -17.208763 ]\n", + "[[-14.196315 7.3194594 12.478977 ... 2.2890828 2.8170278\n", + " -10.892647 ]\n", + " [-24.898054 5.256194 12.559642 ... -3.559715 9.620667\n", + " -10.285246 ]\n", + " [-21.709623 7.5033712 7.913803 ... -6.8198366 3.1831512\n", + " -17.208761 ]\n", " ...\n", - " [-16.08426 6.321049 12.005462 ... 1.2161489 9.478238\n", - " -10.682178 ]\n", - " [-15.053809 5.2424674 1.0914197 ... -0.78334606 9.039537\n", - " -23.569172 ]\n", - " [-19.761091 1.1258256 16.75323 ... 3.3508904 11.598279\n", - " -16.237118 ]]\n", + " [-16.08426 6.3210406 12.005453 ... 1.2161605 9.478239\n", + " -10.682179 ]\n", + " [-15.0538025 5.242471 1.0914207 ... -0.7833488 9.039538\n", + " -23.56918 ]\n", + " [-19.761095 1.1258287 16.753235 ... 3.3508894 11.598273\n", + " -16.237122 ]]\n", "Shape of array: (2500, 512)\n" ] } @@ -677,10 +677,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:05:52.907888Z", - "iopub.status.busy": "2023-11-02T15:05:52.907427Z", - "iopub.status.idle": "2023-11-02T15:06:03.625042Z", - "shell.execute_reply": "2023-11-02T15:06:03.624121Z" + "iopub.execute_input": "2023-11-04T09:14:58.195059Z", + "iopub.status.busy": "2023-11-04T09:14:58.194608Z", + "iopub.status.idle": "2023-11-04T09:15:03.681718Z", + "shell.execute_reply": "2023-11-04T09:15:03.681022Z" }, "id": "i_drkY9YOcw4" }, @@ -714,10 +714,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2023-11-02T15:06:03.631737Z", - "iopub.status.busy": "2023-11-02T15:06:03.631099Z", - "iopub.status.idle": "2023-11-02T15:06:03.640217Z", - "shell.execute_reply": "2023-11-02T15:06:03.638680Z" + "iopub.execute_input": "2023-11-04T09:15:03.685164Z", + "iopub.status.busy": "2023-11-04T09:15:03.684713Z", + "iopub.status.idle": "2023-11-04T09:15:03.690169Z", + "shell.execute_reply": "2023-11-04T09:15:03.689411Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -764,10 +764,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:03.644669Z", - "iopub.status.busy": "2023-11-02T15:06:03.644182Z", - "iopub.status.idle": "2023-11-02T15:06:03.824976Z", - "shell.execute_reply": "2023-11-02T15:06:03.823711Z" + "iopub.execute_input": "2023-11-04T09:15:03.693142Z", + "iopub.status.busy": "2023-11-04T09:15:03.692713Z", + "iopub.status.idle": "2023-11-04T09:15:03.794138Z", + "shell.execute_reply": "2023-11-04T09:15:03.793157Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:03.829635Z", - "iopub.status.busy": "2023-11-02T15:06:03.828770Z", - "iopub.status.idle": "2023-11-02T15:06:03.848490Z", - "shell.execute_reply": "2023-11-02T15:06:03.847462Z" + "iopub.execute_input": "2023-11-04T09:15:03.796814Z", + "iopub.status.busy": "2023-11-04T09:15:03.796541Z", + "iopub.status.idle": "2023-11-04T09:15:03.806603Z", + "shell.execute_reply": "2023-11-04T09:15:03.805961Z" }, "scrolled": true }, @@ -836,11 +836,11 @@ "\n", "Examples representing most severe instances of this issue:\n", " is_label_issue label_score given_label predicted_label\n", - "176 False 0.006510 7 8\n", - "2318 False 0.008255 3 6\n", - "986 False 0.010404 6 3\n", - "1946 True 0.012856 6 8\n", - "469 True 0.013254 6 3\n" + "176 False 0.006488 7 8\n", + "2318 False 0.008269 3 6\n", + "986 False 0.010354 6 3\n", + "469 True 0.013459 6 3\n", + "516 True 0.013478 6 8\n" ] } ], @@ -862,10 +862,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:03.852661Z", - "iopub.status.busy": "2023-11-02T15:06:03.852187Z", - "iopub.status.idle": "2023-11-02T15:06:03.868624Z", - "shell.execute_reply": "2023-11-02T15:06:03.867661Z" + "iopub.execute_input": "2023-11-04T09:15:03.809201Z", + "iopub.status.busy": "2023-11-04T09:15:03.808822Z", + "iopub.status.idle": "2023-11-04T09:15:03.817024Z", + "shell.execute_reply": "2023-11-04T09:15:03.816398Z" } }, "outputs": [ @@ -900,14 +900,14 @@ " \n", " 0\n", " False\n", - " 0.100326\n", + " 0.100541\n", " 7\n", " 6\n", " \n", " \n", " 1\n", " False\n", - " 0.998723\n", + " 0.998729\n", " 0\n", " 0\n", " \n", @@ -921,14 +921,14 @@ " \n", " 3\n", " False\n", - " 0.981028\n", + " 0.980980\n", " 8\n", " 8\n", " \n", " \n", " 4\n", " False\n", - " 0.998219\n", + " 0.998217\n", " 5\n", " 5\n", " \n", @@ -938,11 +938,11 @@ ], "text/plain": [ " is_label_issue label_score given_label predicted_label\n", - "0 False 0.100326 7 6\n", - "1 False 0.998723 0 0\n", + "0 False 0.100541 7 6\n", + "1 False 0.998729 0 0\n", "2 False 0.998768 0 0\n", - "3 False 0.981028 8 8\n", - "4 False 0.998219 5 5" + "3 False 0.980980 8 8\n", + "4 False 0.998217 5 5" ] }, "execution_count": 17, @@ -969,10 +969,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:03.873201Z", - "iopub.status.busy": "2023-11-02T15:06:03.872566Z", - "iopub.status.idle": "2023-11-02T15:06:03.880593Z", - "shell.execute_reply": "2023-11-02T15:06:03.878738Z" + "iopub.execute_input": "2023-11-04T09:15:03.819463Z", + "iopub.status.busy": "2023-11-04T09:15:03.819085Z", + "iopub.status.idle": "2023-11-04T09:15:03.823767Z", + "shell.execute_reply": "2023-11-04T09:15:03.823209Z" } }, "outputs": [ @@ -981,7 +981,7 @@ "output_type": "stream", "text": [ "Here are indices of the most likely errors: \n", - " [1946 469 516 1871 1955 2132]\n" + " [ 469 516 1946 1871 1955 2132]\n" ] } ], @@ -1010,10 +1010,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2023-11-02T15:06:03.886485Z", - "iopub.status.busy": "2023-11-02T15:06:03.885904Z", - "iopub.status.idle": "2023-11-02T15:06:03.895979Z", - "shell.execute_reply": "2023-11-02T15:06:03.894718Z" + "iopub.execute_input": "2023-11-04T09:15:03.826153Z", + "iopub.status.busy": "2023-11-04T09:15:03.825785Z", + "iopub.status.idle": "2023-11-04T09:15:03.831847Z", + "shell.execute_reply": "2023-11-04T09:15:03.831282Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1046,11 +1046,6 @@ " \n", " \n", " \n", - " 1946\n", - " spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_14.wav\n", - " 6\n", - " \n", - " \n", " 469\n", " spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_35.wav\n", " 6\n", @@ -1061,6 +1056,11 @@ " 6\n", " \n", " \n", + " 1946\n", + " spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_14.wav\n", + " 6\n", + " \n", + " \n", " 1871\n", " spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_theo_27.wav\n", " 6\n", @@ -1081,17 +1081,17 @@ ], "text/plain": [ " wav_audio_file_path \\\n", - "1946 spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_14.wav \n", "469 spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_35.wav \n", "516 spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_36.wav \n", + "1946 spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_yweweler_14.wav \n", "1871 spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_theo_27.wav \n", "1955 spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/4_george_31.wav \n", "2132 spoken_digits/free-spoken-digit-dataset-1.0.9/recordings/6_nicolas_8.wav \n", "\n", " label \n", - "1946 6 \n", "469 6 \n", "516 6 \n", + "1946 6 \n", "1871 6 \n", "1955 4 \n", "2132 6 " @@ -1133,10 +1133,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-11-02T15:06:03.901407Z", - "iopub.status.busy": "2023-11-02T15:06:03.900833Z", - "iopub.status.idle": "2023-11-02T15:06:04.118777Z", - "shell.execute_reply": "2023-11-02T15:06:04.117801Z" + "iopub.execute_input": "2023-11-04T09:15:03.834419Z", + "iopub.status.busy": "2023-11-04T09:15:03.834045Z", + "iopub.status.idle": "2023-11-04T09:15:03.946815Z", + "shell.execute_reply": "2023-11-04T09:15:03.946244Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1190,10 +1190,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-11-02T15:06:04.122845Z", - "iopub.status.busy": "2023-11-02T15:06:04.122302Z", - "iopub.status.idle": "2023-11-02T15:06:04.327446Z", - "shell.execute_reply": "2023-11-02T15:06:04.326294Z" + "iopub.execute_input": "2023-11-04T09:15:03.949212Z", + "iopub.status.busy": "2023-11-04T09:15:03.948896Z", + "iopub.status.idle": "2023-11-04T09:15:04.054984Z", + "shell.execute_reply": "2023-11-04T09:15:04.054333Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1238,10 +1238,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2023-11-02T15:06:04.331730Z", - "iopub.status.busy": "2023-11-02T15:06:04.331338Z", - "iopub.status.idle": "2023-11-02T15:06:04.543356Z", - "shell.execute_reply": "2023-11-02T15:06:04.542382Z" + "iopub.execute_input": "2023-11-04T09:15:04.057462Z", + "iopub.status.busy": "2023-11-04T09:15:04.057087Z", + "iopub.status.idle": "2023-11-04T09:15:04.160935Z", + "shell.execute_reply": "2023-11-04T09:15:04.160385Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1282,10 +1282,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:04.548223Z", - "iopub.status.busy": "2023-11-02T15:06:04.547604Z", - "iopub.status.idle": "2023-11-02T15:06:04.742737Z", - "shell.execute_reply": "2023-11-02T15:06:04.741521Z" + "iopub.execute_input": "2023-11-04T09:15:04.163260Z", + "iopub.status.busy": "2023-11-04T09:15:04.163057Z", + "iopub.status.idle": "2023-11-04T09:15:04.268109Z", + "shell.execute_reply": "2023-11-04T09:15:04.267530Z" } }, "outputs": [ @@ -1333,10 +1333,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:04.748778Z", - "iopub.status.busy": "2023-11-02T15:06:04.748205Z", - "iopub.status.idle": "2023-11-02T15:06:04.754796Z", - "shell.execute_reply": "2023-11-02T15:06:04.753702Z" + "iopub.execute_input": "2023-11-04T09:15:04.270598Z", + "iopub.status.busy": "2023-11-04T09:15:04.270223Z", + "iopub.status.idle": "2023-11-04T09:15:04.273512Z", + "shell.execute_reply": "2023-11-04T09:15:04.272953Z" }, "nbsphinx": "hidden" }, @@ -1377,7 +1377,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "035a36dc0c074bce8e805b7375453783": { + "03f16fd22e5b42e9a5af56c56d50e6a4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1429,37 +1429,31 @@ "width": null } }, - "0830110c1f1c45c2ba3d5d793102325c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "14e5e6a5ee2543bda9e8bac476621806": { + "0f0be45602d643eeacae872082f7f920": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_32567db138a24ff1914c2274c9ee7334", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_db4a4108c3444c3e886ba4cb104c81ca", + "value": 15856877.0 } }, - "14f6e4f3079949e192a74a3492d37446": { + "0fc21ac4570a420bbaf4505dfdc460cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1511,81 +1505,53 @@ "width": null } }, - "1acc8d7b46ae44029b99682085679b7f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "1197055e3456479cb42594919ae81328": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "21b41d8d53e14dd89b674d73fc01c9fd": { + "11f27b63df6d4b21bd0433db1eeab22c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a4cc8913c023424ba911d734d9d02bc8", - "IPY_MODEL_dc6eff535e8f4736a836ba8cf134b6ea", - "IPY_MODEL_73cc96c4f38740cbaa6d212144dc8565" - ], - "layout": "IPY_MODEL_49a40348ff6b417c8d6e52e5640464f0" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "28ece83362af44e88ce1e78fb441a0a1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "22220e7e970d4bdab058b0113259408e": { + "2e2d76b1cf8d44ff8c7d109e7a4ce9ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1637,7 +1603,7 @@ "width": null } }, - "2bcba10314a341edb064758210135f7b": { + "32567db138a24ff1914c2274c9ee7334": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1689,7 +1655,7 @@ "width": null } }, - "37c1536002be4ff5b8dde3bbaa2594e9": { + "3d2bf63a4f7d4ada8bcadf3fa5bb31e9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1741,22 +1707,23 @@ "width": null } }, - "39107a4c471844fab68e9174b0649197": { + "3f2e93a9b65145838d56313680bb665a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "39cb33a39dd8489597142cb26e01711e": { + "400d5eb74a804253a8c2221513464d60": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1808,37 +1775,7 @@ "width": null } }, - "3c8fa74d660e4d57b006f382c4de7423": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3d8116501d1a4ecc87eb9482980a653b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "49a40348ff6b417c8d6e52e5640464f0": { + "403d44bdd3ec4a33bb1995e0b3a29f0d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1890,7 +1827,46 @@ "width": null } }, - "52c3f65e4c744524a20d68f4fb5ebbf0": { + "417e2515ec01413598b74ef5747ac88e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "440a8d14fb5b4875b12bb6360e86405e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2e2d76b1cf8d44ff8c7d109e7a4ce9ae", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1197055e3456479cb42594919ae81328", + "value": 16887676.0 + } + }, + "4904aabcc0ff45a09118c5d491a340e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -1905,35 +1881,54 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_62b87b62b3f84aaf966cfb0268cd96ef", - "IPY_MODEL_c3cb752e0dca42cfa3ebf93b80bff3c7", - "IPY_MODEL_9d54b48f8b5e4f5ba04f2adbf3b3f450" + "IPY_MODEL_86fd170964a8476a9bc3a82d7523c426", + "IPY_MODEL_7152d14b11b24706a63baeeda4e01ba2", + "IPY_MODEL_99e711466a0e4b3ea28c8792bccd237f" ], - "layout": "IPY_MODEL_a7d3bccd401645fc8a11fe4c27901c7e" + "layout": "IPY_MODEL_403d44bdd3ec4a33bb1995e0b3a29f0d" } }, - "53771cf18f2e47008d372cd011557497": { + "527c72c3db214b67bc0ae05742cc1789": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d3486b269885452ebd9220a59eb70097", - "placeholder": "​", - "style": "IPY_MODEL_aae274ad00e142ef8469327e465b5608", - "value": " 2.04k/2.04k [00:00<00:00, 203kB/s]" + "layout": "IPY_MODEL_5ccb8b07baf04769a1c340aa79bebfe0", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_67f2e6e51d4e4d58b0e1175396a1391e", + "value": 2041.0 + } + }, + "57394531c6734077972502b4eb84ec5f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "58c337e9ab5b419a9cdf2f6423eaea2a": { + "5ccb8b07baf04769a1c340aa79bebfe0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1985,7 +1980,22 @@ "width": null } }, - "5b768ce206b74da7a3d929a29363abce": { + "641944556d5d46999c8ead2f69d2dcf0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "675dcf1e7a534b3e83154279e8c1bcc6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2037,51 +2047,62 @@ "width": null } }, - "5e243a3d209b4965ade5ace19e24945f": { + "67f2e6e51d4e4d58b0e1175396a1391e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_da6b80a393324d8b93b72bfc7b480ddd", - "IPY_MODEL_bf24c8b22d8346fb927cb3cbc692c317", - "IPY_MODEL_79a5c0e4c02c416ba84feda09b9cc896" - ], - "layout": "IPY_MODEL_2bcba10314a341edb064758210135f7b" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "5f13f1c43dc84da4b490318bb247eec5": { + "6d98e2af89c142b4a55c0e1360d6f551": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7152d14b11b24706a63baeeda4e01ba2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e7714048563d40139e2674148f573f91", - "IPY_MODEL_fa25c8a7048346c68d1535c6faea79f6", - "IPY_MODEL_53771cf18f2e47008d372cd011557497" - ], - "layout": "IPY_MODEL_1acc8d7b46ae44029b99682085679b7f" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8547b562133e46a0b91a295e4f3a3c00", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3f2e93a9b65145838d56313680bb665a", + "value": 128619.0 } }, - "62b87b62b3f84aaf966cfb0268cd96ef": { + "7200f73a3ee94377a3df8d775865e059": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2096,28 +2117,65 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_22220e7e970d4bdab058b0113259408e", + "layout": "IPY_MODEL_675dcf1e7a534b3e83154279e8c1bcc6", "placeholder": "​", - "style": "IPY_MODEL_14e5e6a5ee2543bda9e8bac476621806", - "value": "Downloading (…)in/label_encoder.txt: 100%" + "style": "IPY_MODEL_d05b5353011345b5ab7fe6866e29aaf2", + "value": "Downloading (…)ain/hyperparams.yaml: 100%" } }, - "68ea06bd0a55428983bcedc0e4d2e547": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "746359e2e5b940cda8b78228eb6786ba": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6ee73466521442f19a80883f1b7da77d": { + "775148660f914632b990f808c9f0b32b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2169,7 +2227,7 @@ "width": null } }, - "73cc96c4f38740cbaa6d212144dc8565": { + "7cdd2d3e08954f4db11c3b080a0c8502": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2184,56 +2242,52 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_37c1536002be4ff5b8dde3bbaa2594e9", + "layout": "IPY_MODEL_b1b8b4ea01e44e4887f932e4ddce91d2", "placeholder": "​", - "style": "IPY_MODEL_cf47f11bb37c486a8e0504acf52b239a", - "value": " 16.9M/16.9M [00:00<00:00, 51.4MB/s]" + "style": "IPY_MODEL_c953ea00a63b400897b698bee77ce4ee", + "value": "Downloading classifier.ckpt: 100%" } }, - "7763fee48c2a4f9fb5e8ff45b5cad49c": { + "7ffc9bb8df0e45de9e8ec1c6dae5137d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_afe2a591495546dd98406f95e87bc7fb", - "IPY_MODEL_8bf7709f20864a359a76a36a1885e897", - "IPY_MODEL_f7bb92a3c4d24f6e8e4e004b71947217" - ], - "layout": "IPY_MODEL_6ee73466521442f19a80883f1b7da77d" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_746359e2e5b940cda8b78228eb6786ba", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_57394531c6734077972502b4eb84ec5f", + "value": 3201.0 } }, - "79a5c0e4c02c416ba84feda09b9cc896": { + "809a90e482594f3593e69730c218760e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5b768ce206b74da7a3d929a29363abce", - "placeholder": "​", - "style": "IPY_MODEL_3c8fa74d660e4d57b006f382c4de7423", - "value": " 3.20k/3.20k [00:00<00:00, 332kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "7d915bd116c24b7bbccf1cad659c5238": { + "8504b5025e364052a5d036ebf4fb2e93": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2285,31 +2339,81 @@ "width": null } }, - "8bf7709f20864a359a76a36a1885e897": { + "8547b562133e46a0b91a295e4f3a3c00": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "85e06e383727491f8448980930b5ec79": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_da06bcda94b047acb67d9a687d9255b7", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d00953a061454c3f900855fd446435e6", - "value": 15856877.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7cdd2d3e08954f4db11c3b080a0c8502", + "IPY_MODEL_0f0be45602d643eeacae872082f7f920", + "IPY_MODEL_9f2382f8cc2a40e8ad5985039eecf41a" + ], + "layout": "IPY_MODEL_400d5eb74a804253a8c2221513464d60" } }, - "9d54b48f8b5e4f5ba04f2adbf3b3f450": { + "86fd170964a8476a9bc3a82d7523c426": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2324,29 +2428,34 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_af836e0b35854b19ba2f7789bcf34f8e", + "layout": "IPY_MODEL_95985c8035704ee49ba84d4d05959c05", "placeholder": "​", - "style": "IPY_MODEL_0830110c1f1c45c2ba3d5d793102325c", - "value": " 129k/129k [00:00<00:00, 1.08MB/s]" + "style": "IPY_MODEL_b4e2218b4c3b4af995814775f1e124a0", + "value": "Downloading (…)in/label_encoder.txt: 100%" } }, - "9edf141ef1484fc4912eb106be47acb5": { + "8a7f0f13b08b42b9b8f90594f195f412": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bdf0f2da3848486b9206b754cef07c0a", + "placeholder": "​", + "style": "IPY_MODEL_11f27b63df6d4b21bd0433db1eeab22c", + "value": " 3.20k/3.20k [00:00<00:00, 584kB/s]" } }, - "a4cc8913c023424ba911d734d9d02bc8": { + "939b2a03d6614455abfdfc8494687f17": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2361,13 +2470,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7d915bd116c24b7bbccf1cad659c5238", + "layout": "IPY_MODEL_959168073cdc4f54949d9c8fd74fd9f1", "placeholder": "​", - "style": "IPY_MODEL_3d8116501d1a4ecc87eb9482980a653b", - "value": "Downloading embedding_model.ckpt: 100%" + "style": "IPY_MODEL_28ece83362af44e88ce1e78fb441a0a1", + "value": "Downloading mean_var_norm_emb.ckpt: 100%" } }, - "a7d3bccd401645fc8a11fe4c27901c7e": { + "959168073cdc4f54949d9c8fd74fd9f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2419,37 +2528,7 @@ "width": null } }, - "a9bfc58f3dd24e4599965f29d71e0433": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "aae274ad00e142ef8469327e465b5608": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "af836e0b35854b19ba2f7789bcf34f8e": { + "95985c8035704ee49ba84d4d05959c05": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2501,7 +2580,7 @@ "width": null } }, - "afe2a591495546dd98406f95e87bc7fb": { + "99e711466a0e4b3ea28c8792bccd237f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2516,29 +2595,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_14f6e4f3079949e192a74a3492d37446", + "layout": "IPY_MODEL_8504b5025e364052a5d036ebf4fb2e93", "placeholder": "​", - "style": "IPY_MODEL_39107a4c471844fab68e9174b0649197", - "value": "Downloading classifier.ckpt: 100%" + "style": "IPY_MODEL_809a90e482594f3593e69730c218760e", + "value": " 129k/129k [00:00<00:00, 15.5MB/s]" } }, - "b26873aa7db54e93ae8af978b74ca524": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b645ba5d8646420fbcf5761b088adc40": { + "9cb1cb6a1fb649fbb9463ca3eae9f17b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2590,71 +2653,71 @@ "width": null } }, - "bdd292aa36c347aba0b6c45f16666d96": { + "9ec6feee8c2540829050b48dbb471537": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_939b2a03d6614455abfdfc8494687f17", + "IPY_MODEL_7ffc9bb8df0e45de9e8ec1c6dae5137d", + "IPY_MODEL_8a7f0f13b08b42b9b8f90594f195f412" + ], + "layout": "IPY_MODEL_3d2bf63a4f7d4ada8bcadf3fa5bb31e9" } }, - "bf24c8b22d8346fb927cb3cbc692c317": { + "9f2382f8cc2a40e8ad5985039eecf41a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_39cb33a39dd8489597142cb26e01711e", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_bdd292aa36c347aba0b6c45f16666d96", - "value": 3201.0 + "layout": "IPY_MODEL_03f16fd22e5b42e9a5af56c56d50e6a4", + "placeholder": "​", + "style": "IPY_MODEL_6d98e2af89c142b4a55c0e1360d6f551", + "value": " 15.9M/15.9M [00:00<00:00, 83.4MB/s]" } }, - "c3cb752e0dca42cfa3ebf93b80bff3c7": { + "a17830dd334e48d4a21af394f0654810": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ca1778c12bb746cb85204fef31cb2723", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b26873aa7db54e93ae8af978b74ca524", - "value": 128619.0 + "layout": "IPY_MODEL_d44f5681fe4749ba802269ee31a52792", + "placeholder": "​", + "style": "IPY_MODEL_417e2515ec01413598b74ef5747ac88e", + "value": "Downloading embedding_model.ckpt: 100%" } }, - "ca1778c12bb746cb85204fef31cb2723": { + "b1b8b4ea01e44e4887f932e4ddce91d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2706,7 +2769,7 @@ "width": null } }, - "cf47f11bb37c486a8e0504acf52b239a": { + "b4e2218b4c3b4af995814775f1e124a0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2721,23 +2784,7 @@ "description_width": "" } }, - "d00953a061454c3f900855fd446435e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d3486b269885452ebd9220a59eb70097": { + "bdf0f2da3848486b9206b754cef07c0a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2789,104 +2836,81 @@ "width": null } }, - "da06bcda94b047acb67d9a687d9255b7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "c76378977c9145c98d498613685c0e70": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a17830dd334e48d4a21af394f0654810", + "IPY_MODEL_440a8d14fb5b4875b12bb6360e86405e", + "IPY_MODEL_f036e36f1cfb4810904970aa02deb732" + ], + "layout": "IPY_MODEL_9cb1cb6a1fb649fbb9463ca3eae9f17b" } }, - "da6b80a393324d8b93b72bfc7b480ddd": { + "c7cf888269404a3e8d7e9bcbc9feb461": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_58c337e9ab5b419a9cdf2f6423eaea2a", - "placeholder": "​", - "style": "IPY_MODEL_e9bf4b71803a43daa66fd0fe5d0763fd", - "value": "Downloading mean_var_norm_emb.ckpt: 100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7200f73a3ee94377a3df8d775865e059", + "IPY_MODEL_527c72c3db214b67bc0ae05742cc1789", + "IPY_MODEL_fbbcca643c844e6cb91547a869f2323e" + ], + "layout": "IPY_MODEL_fbc243d47eba4612b5fdb9f1f34f5236" } }, - "dc6eff535e8f4736a836ba8cf134b6ea": { + "c953ea00a63b400897b698bee77ce4ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b645ba5d8646420fbcf5761b088adc40", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f85bfb31c25042b59e70b7acd5b3175c", - "value": 16887676.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d05b5353011345b5ab7fe6866e29aaf2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "e21d28a15a124374a97f75a86750b82e": { + "d44f5681fe4749ba802269ee31a52792": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2938,7 +2962,38 @@ "width": null } }, - "e7714048563d40139e2674148f573f91": { + "d91c99c639e746f9bfbbcad9e2e0ce99": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "db4a4108c3444c3e886ba4cb104c81ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f036e36f1cfb4810904970aa02deb732": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2953,28 +3008,34 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_035a36dc0c074bce8e805b7375453783", + "layout": "IPY_MODEL_0fc21ac4570a420bbaf4505dfdc460cd", "placeholder": "​", - "style": "IPY_MODEL_68ea06bd0a55428983bcedc0e4d2e547", - "value": "Downloading (…)ain/hyperparams.yaml: 100%" + "style": "IPY_MODEL_d91c99c639e746f9bfbbcad9e2e0ce99", + "value": " 16.9M/16.9M [00:00<00:00, 124MB/s]" } }, - "e9bf4b71803a43daa66fd0fe5d0763fd": { + "fbbcca643c844e6cb91547a869f2323e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_775148660f914632b990f808c9f0b32b", + "placeholder": "​", + "style": "IPY_MODEL_641944556d5d46999c8ead2f69d2dcf0", + "value": " 2.04k/2.04k [00:00<00:00, 356kB/s]" } }, - "f010c59fa4544f51a81502e94c47fb22": { + "fbc243d47eba4612b5fdb9f1f34f5236": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3025,67 +3086,6 @@ "visibility": null, "width": null } - }, - "f7bb92a3c4d24f6e8e4e004b71947217": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e21d28a15a124374a97f75a86750b82e", - "placeholder": "​", - "style": "IPY_MODEL_a9bfc58f3dd24e4599965f29d71e0433", - "value": " 15.9M/15.9M [00:00<00:00, 44.1MB/s]" - } - }, - "f85bfb31c25042b59e70b7acd5b3175c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "fa25c8a7048346c68d1535c6faea79f6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f010c59fa4544f51a81502e94c47fb22", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9edf141ef1484fc4912eb106be47acb5", - "value": 2041.0 - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 2a3664b6b..cf3fb3bea 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1432,7 +1432,7 @@

Functionality 3: Save and load Datalab objects
-
+
@@ -1697,7 +1697,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"488ad1262e734030b6afb6538673f274": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e715e318fd204462905c6f31e4a06b17": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7b076a3ed7ea41e1a72913babf37b037": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_488ad1262e734030b6afb6538673f274", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e715e318fd204462905c6f31e4a06b17", "value": 132.0}}, "d7f74deadd39479fba87a619a1f26c99": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "79cfe0dbcee54032af9fd6cd531168ba": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "0ac7a1016867488da534dd4893d8461d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d7f74deadd39479fba87a619a1f26c99", "placeholder": "\u200b", "style": "IPY_MODEL_79cfe0dbcee54032af9fd6cd531168ba", "value": "Saving the dataset (1/1 shards): 100%"}}, "ab889e8d6b084286b62896b440506138": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "959b6824ab244def89a3bf1e39166e39": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "78834562b3d7404091a8995788fbfaaa": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ab889e8d6b084286b62896b440506138", "placeholder": "\u200b", "style": "IPY_MODEL_959b6824ab244def89a3bf1e39166e39", "value": " 132/132 [00:00<00:00, 5253.78 examples/s]"}}, "5a6a19e2c0134fe09648360bb2fc34ee": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "686e3447fcc34034afeeb20adeff7468": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0ac7a1016867488da534dd4893d8461d", "IPY_MODEL_7b076a3ed7ea41e1a72913babf37b037", "IPY_MODEL_78834562b3d7404091a8995788fbfaaa"], "layout": "IPY_MODEL_5a6a19e2c0134fe09648360bb2fc34ee"}}}, "version_major": 2, "version_minor": 0} +{"state": {"0b830909454a4538a0f95dfd5429fc96": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "654d8a4fb08641f7bb01ad666ae8215e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d0dbc9acefbc4af68fae5edb2752128e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0b830909454a4538a0f95dfd5429fc96", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_654d8a4fb08641f7bb01ad666ae8215e", "value": 132.0}}, "714d1ac1d9944275be536652d374f800": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9182627d36e844c9932644afc916f8d4": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "04bab5117cfa4b3b8d0e903dd87a6f7f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_714d1ac1d9944275be536652d374f800", "placeholder": "\u200b", "style": "IPY_MODEL_9182627d36e844c9932644afc916f8d4", "value": "Saving the dataset (1/1 shards): 100%"}}, "0b23e7e11d3d4d1f8d30fdf1e8b2c9a6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4ba643f819b94086a2ab7d91d6bb4c56": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "7800c9e7cba142a899815dbea7f48559": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0b23e7e11d3d4d1f8d30fdf1e8b2c9a6", "placeholder": "\u200b", "style": "IPY_MODEL_4ba643f819b94086a2ab7d91d6bb4c56", "value": " 132/132 [00:00<00:00, 10605.07 examples/s]"}}, "423f024249cb406dad7dad337c32ee1b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f5f0008f43c04dce869bbe61f6e304b2": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_04bab5117cfa4b3b8d0e903dd87a6f7f", "IPY_MODEL_d0dbc9acefbc4af68fae5edb2752128e", "IPY_MODEL_7800c9e7cba142a899815dbea7f48559"], "layout": "IPY_MODEL_423f024249cb406dad7dad337c32ee1b"}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 7fe2c7d0c..2d9e8efed 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:11.086934Z", - "iopub.status.busy": "2023-11-02T15:06:11.086595Z", - "iopub.status.idle": "2023-11-02T15:06:12.917767Z", - "shell.execute_reply": "2023-11-02T15:06:12.916683Z" + "iopub.execute_input": "2023-11-04T09:15:09.183339Z", + "iopub.status.busy": "2023-11-04T09:15:09.183150Z", + "iopub.status.idle": "2023-11-04T09:15:10.206196Z", + "shell.execute_reply": "2023-11-04T09:15:10.205458Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:12.922525Z", - "iopub.status.busy": "2023-11-02T15:06:12.922014Z", - "iopub.status.idle": "2023-11-02T15:06:12.928781Z", - "shell.execute_reply": "2023-11-02T15:06:12.927775Z" + "iopub.execute_input": "2023-11-04T09:15:10.209030Z", + "iopub.status.busy": "2023-11-04T09:15:10.208746Z", + "iopub.status.idle": "2023-11-04T09:15:10.212027Z", + "shell.execute_reply": "2023-11-04T09:15:10.211420Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:12.933655Z", - "iopub.status.busy": "2023-11-02T15:06:12.933299Z", - "iopub.status.idle": "2023-11-02T15:06:12.947575Z", - "shell.execute_reply": "2023-11-02T15:06:12.946455Z" + "iopub.execute_input": "2023-11-04T09:15:10.214512Z", + "iopub.status.busy": "2023-11-04T09:15:10.214167Z", + "iopub.status.idle": "2023-11-04T09:15:10.223374Z", + "shell.execute_reply": "2023-11-04T09:15:10.222763Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:12.951765Z", - "iopub.status.busy": "2023-11-02T15:06:12.951149Z", - "iopub.status.idle": "2023-11-02T15:06:12.960515Z", - "shell.execute_reply": "2023-11-02T15:06:12.959576Z" + "iopub.execute_input": "2023-11-04T09:15:10.225703Z", + "iopub.status.busy": "2023-11-04T09:15:10.225319Z", + "iopub.status.idle": "2023-11-04T09:15:10.230255Z", + "shell.execute_reply": "2023-11-04T09:15:10.229767Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:12.965024Z", - "iopub.status.busy": "2023-11-02T15:06:12.964445Z", - "iopub.status.idle": "2023-11-02T15:06:13.473895Z", - "shell.execute_reply": "2023-11-02T15:06:13.472813Z" + "iopub.execute_input": "2023-11-04T09:15:10.232748Z", + "iopub.status.busy": "2023-11-04T09:15:10.232387Z", + "iopub.status.idle": "2023-11-04T09:15:10.498963Z", + "shell.execute_reply": "2023-11-04T09:15:10.498370Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:13.478915Z", - "iopub.status.busy": "2023-11-02T15:06:13.478587Z", - "iopub.status.idle": "2023-11-02T15:06:14.094416Z", - "shell.execute_reply": "2023-11-02T15:06:14.092993Z" + "iopub.execute_input": "2023-11-04T09:15:10.501998Z", + "iopub.status.busy": "2023-11-04T09:15:10.501574Z", + "iopub.status.idle": "2023-11-04T09:15:10.866581Z", + "shell.execute_reply": "2023-11-04T09:15:10.865921Z" } }, "outputs": [ @@ -568,10 +568,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:14.099107Z", - "iopub.status.busy": "2023-11-02T15:06:14.098691Z", - "iopub.status.idle": "2023-11-02T15:06:14.147925Z", - "shell.execute_reply": "2023-11-02T15:06:14.146867Z" + "iopub.execute_input": "2023-11-04T09:15:10.869484Z", + "iopub.status.busy": "2023-11-04T09:15:10.869099Z", + "iopub.status.idle": "2023-11-04T09:15:10.893257Z", + "shell.execute_reply": "2023-11-04T09:15:10.892622Z" } }, "outputs": [], @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:14.152864Z", - "iopub.status.busy": "2023-11-02T15:06:14.152468Z", - "iopub.status.idle": "2023-11-02T15:06:14.179295Z", - "shell.execute_reply": "2023-11-02T15:06:14.178211Z" + "iopub.execute_input": "2023-11-04T09:15:10.896037Z", + "iopub.status.busy": "2023-11-04T09:15:10.895527Z", + "iopub.status.idle": "2023-11-04T09:15:10.905023Z", + "shell.execute_reply": "2023-11-04T09:15:10.904527Z" } }, "outputs": [], @@ -641,10 +641,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:14.184202Z", - "iopub.status.busy": "2023-11-02T15:06:14.183853Z", - "iopub.status.idle": "2023-11-02T15:06:16.596152Z", - "shell.execute_reply": "2023-11-02T15:06:16.594931Z" + "iopub.execute_input": "2023-11-04T09:15:10.907734Z", + "iopub.status.busy": "2023-11-04T09:15:10.907226Z", + "iopub.status.idle": "2023-11-04T09:15:12.151359Z", + "shell.execute_reply": "2023-11-04T09:15:12.150383Z" } }, "outputs": [ @@ -708,10 +708,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:16.602077Z", - "iopub.status.busy": "2023-11-02T15:06:16.600918Z", - "iopub.status.idle": "2023-11-02T15:06:16.651191Z", - "shell.execute_reply": "2023-11-02T15:06:16.648313Z" + "iopub.execute_input": "2023-11-04T09:15:12.154857Z", + "iopub.status.busy": "2023-11-04T09:15:12.154365Z", + "iopub.status.idle": "2023-11-04T09:15:12.183093Z", + "shell.execute_reply": "2023-11-04T09:15:12.182524Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:16.655531Z", - "iopub.status.busy": "2023-11-02T15:06:16.655191Z", - "iopub.status.idle": "2023-11-02T15:06:16.697388Z", - "shell.execute_reply": "2023-11-02T15:06:16.696260Z" + "iopub.execute_input": "2023-11-04T09:15:12.185873Z", + "iopub.status.busy": "2023-11-04T09:15:12.185641Z", + "iopub.status.idle": "2023-11-04T09:15:12.206777Z", + "shell.execute_reply": "2023-11-04T09:15:12.206148Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:16.701505Z", - "iopub.status.busy": "2023-11-02T15:06:16.701158Z", - "iopub.status.idle": "2023-11-02T15:06:16.726996Z", - "shell.execute_reply": "2023-11-02T15:06:16.726070Z" + "iopub.execute_input": "2023-11-04T09:15:12.209177Z", + "iopub.status.busy": "2023-11-04T09:15:12.208934Z", + "iopub.status.idle": "2023-11-04T09:15:12.224868Z", + "shell.execute_reply": "2023-11-04T09:15:12.224230Z" } }, "outputs": [ @@ -1068,17 +1068,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:16.732748Z", - "iopub.status.busy": "2023-11-02T15:06:16.730903Z", - "iopub.status.idle": "2023-11-02T15:06:16.776002Z", - "shell.execute_reply": "2023-11-02T15:06:16.775020Z" + "iopub.execute_input": "2023-11-04T09:15:12.227508Z", + "iopub.status.busy": "2023-11-04T09:15:12.227072Z", + "iopub.status.idle": "2023-11-04T09:15:12.249442Z", + "shell.execute_reply": "2023-11-04T09:15:12.248820Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "686e3447fcc34034afeeb20adeff7468", + "model_id": "f5f0008f43c04dce869bbe61f6e304b2", "version_major": 2, "version_minor": 0 }, @@ -1114,10 +1114,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:16.780177Z", - "iopub.status.busy": "2023-11-02T15:06:16.779668Z", - "iopub.status.idle": "2023-11-02T15:06:16.805160Z", - "shell.execute_reply": "2023-11-02T15:06:16.804129Z" + "iopub.execute_input": "2023-11-04T09:15:12.252086Z", + "iopub.status.busy": "2023-11-04T09:15:12.251505Z", + "iopub.status.idle": "2023-11-04T09:15:12.266752Z", + "shell.execute_reply": "2023-11-04T09:15:12.266200Z" } }, "outputs": [ @@ -1235,10 +1235,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:16.809517Z", - "iopub.status.busy": "2023-11-02T15:06:16.809018Z", - "iopub.status.idle": "2023-11-02T15:06:16.819879Z", - "shell.execute_reply": "2023-11-02T15:06:16.819052Z" + "iopub.execute_input": "2023-11-04T09:15:12.269428Z", + "iopub.status.busy": "2023-11-04T09:15:12.268926Z", + "iopub.status.idle": "2023-11-04T09:15:12.275934Z", + "shell.execute_reply": "2023-11-04T09:15:12.275414Z" } }, "outputs": [], @@ -1295,10 +1295,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:16.824396Z", - "iopub.status.busy": "2023-11-02T15:06:16.823917Z", - "iopub.status.idle": "2023-11-02T15:06:16.856890Z", - "shell.execute_reply": "2023-11-02T15:06:16.855650Z" + "iopub.execute_input": "2023-11-04T09:15:12.278501Z", + "iopub.status.busy": "2023-11-04T09:15:12.277989Z", + "iopub.status.idle": "2023-11-04T09:15:12.296579Z", + "shell.execute_reply": "2023-11-04T09:15:12.295940Z" } }, "outputs": [ @@ -1430,7 +1430,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0ac7a1016867488da534dd4893d8461d": { + "04bab5117cfa4b3b8d0e903dd87a6f7f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -1445,13 +1445,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d7f74deadd39479fba87a619a1f26c99", + "layout": "IPY_MODEL_714d1ac1d9944275be536652d374f800", "placeholder": "​", - "style": "IPY_MODEL_79cfe0dbcee54032af9fd6cd531168ba", + "style": "IPY_MODEL_9182627d36e844c9932644afc916f8d4", "value": "Saving the dataset (1/1 shards): 100%" } }, - "488ad1262e734030b6afb6538673f274": { + "0b23e7e11d3d4d1f8d30fdf1e8b2c9a6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1503,7 +1503,7 @@ "width": null } }, - "5a6a19e2c0134fe09648360bb2fc34ee": { + "0b830909454a4538a0f95dfd5429fc96": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1555,104 +1555,7 @@ "width": null } }, - "686e3447fcc34034afeeb20adeff7468": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0ac7a1016867488da534dd4893d8461d", - "IPY_MODEL_7b076a3ed7ea41e1a72913babf37b037", - "IPY_MODEL_78834562b3d7404091a8995788fbfaaa" - ], - "layout": "IPY_MODEL_5a6a19e2c0134fe09648360bb2fc34ee" - } - }, - "78834562b3d7404091a8995788fbfaaa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ab889e8d6b084286b62896b440506138", - "placeholder": "​", - "style": "IPY_MODEL_959b6824ab244def89a3bf1e39166e39", - "value": " 132/132 [00:00<00:00, 5253.78 examples/s]" - } - }, - "79cfe0dbcee54032af9fd6cd531168ba": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7b076a3ed7ea41e1a72913babf37b037": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_488ad1262e734030b6afb6538673f274", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e715e318fd204462905c6f31e4a06b17", - "value": 132.0 - } - }, - "959b6824ab244def89a3bf1e39166e39": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ab889e8d6b084286b62896b440506138": { + "423f024249cb406dad7dad337c32ee1b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1704,7 +1607,38 @@ "width": null } }, - "d7f74deadd39479fba87a619a1f26c99": { + "4ba643f819b94086a2ab7d91d6bb4c56": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "654d8a4fb08641f7bb01ad666ae8215e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "714d1ac1d9944275be536652d374f800": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1756,21 +1690,87 @@ "width": null } }, - "e715e318fd204462905c6f31e4a06b17": { + "7800c9e7cba142a899815dbea7f48559": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0b23e7e11d3d4d1f8d30fdf1e8b2c9a6", + "placeholder": "​", + "style": "IPY_MODEL_4ba643f819b94086a2ab7d91d6bb4c56", + "value": " 132/132 [00:00<00:00, 10605.07 examples/s]" + } + }, + "9182627d36e844c9932644afc916f8d4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } + }, + "d0dbc9acefbc4af68fae5edb2752128e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0b830909454a4538a0f95dfd5429fc96", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_654d8a4fb08641f7bb01ad666ae8215e", + "value": 132.0 + } + }, + "f5f0008f43c04dce869bbe61f6e304b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_04bab5117cfa4b3b8d0e903dd87a6f7f", + "IPY_MODEL_d0dbc9acefbc4af68fae5edb2752128e", + "IPY_MODEL_7800c9e7cba142a899815dbea7f48559" + ], + "layout": "IPY_MODEL_423f024249cb406dad7dad337c32ee1b" + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_quickstart.html b/master/tutorials/datalab/datalab_quickstart.html index 85f7902f7..17c9365a4 100644 --- a/master/tutorials/datalab/datalab_quickstart.html +++ b/master/tutorials/datalab/datalab_quickstart.html @@ -804,7 +804,8 @@

Datalab: A unified audit to detect all kinds of issues in data and labels#

-

Cleanlab offers a Datalab object that can identify various issues in your machine learning datasets, such as noisy labels, outliers, (near) duplicates, and other types of problems common in real-world data. These data issues may negatively impact models if not addressed. Datalab utilizes any ML model you have already trained for your data to diagnose these issues, it only requires access to either: (probabilistic) predictions from your model or its learned representations of the data.

+

Cleanlab offers a Datalab object that can identify various issues in your machine learning datasets, such as noisy labels, outliers, (near) duplicates, drift, and other types of problems common in real-world data. These data issues may negatively impact models if not addressed. Datalab utilizes any ML model you have already trained for your data to diagnose these issues, it only requires access to either: (probabilistic) predictions from your model or its learned representations of the +data.

Overview of what we’ll do in this tutorial:

  • Compute out-of-sample predicted probabilities for a sample dataset using cross-validation.

  • diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index 60fa59e16..8f2f23c18 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -11,7 +11,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Cleanlab offers a `Datalab` object that can identify various issues in your machine learning datasets, such as noisy labels, outliers, (near) duplicates, and other types of problems common in real-world data. These data issues may negatively impact models if not addressed. `Datalab` utilizes *any* ML model you have already trained for your data to diagnose these issues, it only requires access to either: (probabilistic) predictions from your model or its learned representations of the data.\n", + "Cleanlab offers a `Datalab` object that can identify various issues in your machine learning datasets, such as noisy labels, outliers, (near) duplicates, drift, and other types of problems common in real-world data. These data issues may negatively impact models if not addressed. `Datalab` utilizes *any* ML model you have already trained for your data to diagnose these issues, it only requires access to either: (probabilistic) predictions from your model or its learned representations of the data.\n", "\n", "\n", "**Overview of what we'll do in this tutorial:**\n", @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:22.612398Z", - "iopub.status.busy": "2023-11-02T15:06:22.611520Z", - "iopub.status.idle": "2023-11-02T15:06:24.407421Z", - "shell.execute_reply": "2023-11-02T15:06:24.406364Z" + "iopub.execute_input": "2023-11-04T09:15:17.241151Z", + "iopub.status.busy": "2023-11-04T09:15:17.240961Z", + "iopub.status.idle": "2023-11-04T09:15:18.276812Z", + "shell.execute_reply": "2023-11-04T09:15:18.276118Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:24.412394Z", - "iopub.status.busy": "2023-11-02T15:06:24.411888Z", - "iopub.status.idle": "2023-11-02T15:06:24.417488Z", - "shell.execute_reply": "2023-11-02T15:06:24.416529Z" + "iopub.execute_input": "2023-11-04T09:15:18.279854Z", + "iopub.status.busy": "2023-11-04T09:15:18.279335Z", + "iopub.status.idle": "2023-11-04T09:15:18.282448Z", + "shell.execute_reply": "2023-11-04T09:15:18.281896Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:24.421968Z", - "iopub.status.busy": "2023-11-02T15:06:24.421629Z", - "iopub.status.idle": "2023-11-02T15:06:24.435894Z", - "shell.execute_reply": "2023-11-02T15:06:24.434794Z" + "iopub.execute_input": "2023-11-04T09:15:18.284857Z", + "iopub.status.busy": "2023-11-04T09:15:18.284653Z", + "iopub.status.idle": "2023-11-04T09:15:18.293961Z", + "shell.execute_reply": "2023-11-04T09:15:18.293376Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:24.440505Z", - "iopub.status.busy": "2023-11-02T15:06:24.440183Z", - "iopub.status.idle": "2023-11-02T15:06:24.448131Z", - "shell.execute_reply": "2023-11-02T15:06:24.447154Z" + "iopub.execute_input": "2023-11-04T09:15:18.296070Z", + "iopub.status.busy": "2023-11-04T09:15:18.295872Z", + "iopub.status.idle": "2023-11-04T09:15:18.300839Z", + "shell.execute_reply": "2023-11-04T09:15:18.300214Z" } }, "outputs": [], @@ -443,10 +443,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:24.452825Z", - "iopub.status.busy": "2023-11-02T15:06:24.452429Z", - "iopub.status.idle": "2023-11-02T15:06:24.931958Z", - "shell.execute_reply": "2023-11-02T15:06:24.930835Z" + "iopub.execute_input": "2023-11-04T09:15:18.303529Z", + "iopub.status.busy": "2023-11-04T09:15:18.303094Z", + "iopub.status.idle": "2023-11-04T09:15:18.567124Z", + "shell.execute_reply": "2023-11-04T09:15:18.566431Z" }, "nbsphinx": "hidden" }, @@ -515,10 +515,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:24.936590Z", - "iopub.status.busy": "2023-11-02T15:06:24.936262Z", - "iopub.status.idle": "2023-11-02T15:06:25.528910Z", - "shell.execute_reply": "2023-11-02T15:06:25.527849Z" + "iopub.execute_input": "2023-11-04T09:15:18.569895Z", + "iopub.status.busy": "2023-11-04T09:15:18.569644Z", + "iopub.status.idle": "2023-11-04T09:15:18.876598Z", + "shell.execute_reply": "2023-11-04T09:15:18.875922Z" } }, "outputs": [ @@ -554,10 +554,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:25.533933Z", - "iopub.status.busy": "2023-11-02T15:06:25.533123Z", - "iopub.status.idle": "2023-11-02T15:06:25.539212Z", - "shell.execute_reply": "2023-11-02T15:06:25.538275Z" + "iopub.execute_input": "2023-11-04T09:15:18.879323Z", + "iopub.status.busy": "2023-11-04T09:15:18.878871Z", + "iopub.status.idle": "2023-11-04T09:15:18.881928Z", + "shell.execute_reply": "2023-11-04T09:15:18.881311Z" } }, "outputs": [], @@ -596,10 +596,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:25.544121Z", - "iopub.status.busy": "2023-11-02T15:06:25.543453Z", - "iopub.status.idle": "2023-11-02T15:06:25.588954Z", - "shell.execute_reply": "2023-11-02T15:06:25.587833Z" + "iopub.execute_input": "2023-11-04T09:15:18.884316Z", + "iopub.status.busy": "2023-11-04T09:15:18.883970Z", + "iopub.status.idle": "2023-11-04T09:15:18.908524Z", + "shell.execute_reply": "2023-11-04T09:15:18.907894Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:25.594410Z", - "iopub.status.busy": "2023-11-02T15:06:25.594019Z", - "iopub.status.idle": "2023-11-02T15:06:27.916110Z", - "shell.execute_reply": "2023-11-02T15:06:27.914889Z" + "iopub.execute_input": "2023-11-04T09:15:18.911234Z", + "iopub.status.busy": "2023-11-04T09:15:18.910772Z", + "iopub.status.idle": "2023-11-04T09:15:20.194066Z", + "shell.execute_reply": "2023-11-04T09:15:20.193296Z" } }, "outputs": [ @@ -677,10 +677,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:27.921397Z", - "iopub.status.busy": "2023-11-02T15:06:27.920324Z", - "iopub.status.idle": "2023-11-02T15:06:27.949763Z", - "shell.execute_reply": "2023-11-02T15:06:27.948863Z" + "iopub.execute_input": "2023-11-04T09:15:20.197931Z", + "iopub.status.busy": "2023-11-04T09:15:20.197064Z", + "iopub.status.idle": "2023-11-04T09:15:20.222305Z", + "shell.execute_reply": "2023-11-04T09:15:20.221655Z" } }, "outputs": [ @@ -814,10 +814,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:27.953786Z", - "iopub.status.busy": "2023-11-02T15:06:27.953453Z", - "iopub.status.idle": "2023-11-02T15:06:27.968507Z", - "shell.execute_reply": "2023-11-02T15:06:27.967447Z" + "iopub.execute_input": "2023-11-04T09:15:20.225137Z", + "iopub.status.busy": "2023-11-04T09:15:20.224936Z", + "iopub.status.idle": "2023-11-04T09:15:20.232471Z", + "shell.execute_reply": "2023-11-04T09:15:20.231808Z" } }, "outputs": [ @@ -907,10 +907,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:27.973131Z", - "iopub.status.busy": "2023-11-02T15:06:27.972617Z", - "iopub.status.idle": "2023-11-02T15:06:27.986777Z", - "shell.execute_reply": "2023-11-02T15:06:27.985846Z" + "iopub.execute_input": "2023-11-04T09:15:20.235256Z", + "iopub.status.busy": "2023-11-04T09:15:20.234702Z", + "iopub.status.idle": "2023-11-04T09:15:20.241554Z", + "shell.execute_reply": "2023-11-04T09:15:20.241033Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:27.992083Z", - "iopub.status.busy": "2023-11-02T15:06:27.991417Z", - "iopub.status.idle": "2023-11-02T15:06:28.006363Z", - "shell.execute_reply": "2023-11-02T15:06:28.005400Z" + "iopub.execute_input": "2023-11-04T09:15:20.243920Z", + "iopub.status.busy": "2023-11-04T09:15:20.243568Z", + "iopub.status.idle": "2023-11-04T09:15:20.251856Z", + "shell.execute_reply": "2023-11-04T09:15:20.251236Z" } }, "outputs": [ @@ -1122,10 +1122,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:28.011196Z", - "iopub.status.busy": "2023-11-02T15:06:28.010360Z", - "iopub.status.idle": "2023-11-02T15:06:28.026171Z", - "shell.execute_reply": "2023-11-02T15:06:28.025124Z" + "iopub.execute_input": "2023-11-04T09:15:20.254323Z", + "iopub.status.busy": "2023-11-04T09:15:20.253961Z", + "iopub.status.idle": "2023-11-04T09:15:20.263052Z", + "shell.execute_reply": "2023-11-04T09:15:20.262438Z" } }, "outputs": [ @@ -1241,10 +1241,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:28.031342Z", - "iopub.status.busy": "2023-11-02T15:06:28.030876Z", - "iopub.status.idle": "2023-11-02T15:06:28.045613Z", - "shell.execute_reply": "2023-11-02T15:06:28.044677Z" + "iopub.execute_input": "2023-11-04T09:15:20.265491Z", + "iopub.status.busy": "2023-11-04T09:15:20.265107Z", + "iopub.status.idle": "2023-11-04T09:15:20.272528Z", + "shell.execute_reply": "2023-11-04T09:15:20.271906Z" }, "scrolled": true }, @@ -1357,10 +1357,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:28.049709Z", - "iopub.status.busy": "2023-11-02T15:06:28.049342Z", - "iopub.status.idle": "2023-11-02T15:06:28.070099Z", - "shell.execute_reply": "2023-11-02T15:06:28.068752Z" + "iopub.execute_input": "2023-11-04T09:15:20.274914Z", + "iopub.status.busy": "2023-11-04T09:15:20.274557Z", + "iopub.status.idle": "2023-11-04T09:15:20.284596Z", + "shell.execute_reply": "2023-11-04T09:15:20.284062Z" } }, "outputs": [ diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 1b734feb4..70d680f35 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:33.982201Z", - "iopub.status.busy": "2023-11-02T15:06:33.981672Z", - "iopub.status.idle": "2023-11-02T15:06:35.602631Z", - "shell.execute_reply": "2023-11-02T15:06:35.601305Z" + "iopub.execute_input": "2023-11-04T09:15:25.403036Z", + "iopub.status.busy": "2023-11-04T09:15:25.402600Z", + "iopub.status.idle": "2023-11-04T09:15:26.380869Z", + "shell.execute_reply": "2023-11-04T09:15:26.380242Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:35.607678Z", - "iopub.status.busy": "2023-11-02T15:06:35.606748Z", - "iopub.status.idle": "2023-11-02T15:06:35.699828Z", - "shell.execute_reply": "2023-11-02T15:06:35.698417Z" + "iopub.execute_input": "2023-11-04T09:15:26.383744Z", + "iopub.status.busy": "2023-11-04T09:15:26.383447Z", + "iopub.status.idle": "2023-11-04T09:15:26.404461Z", + "shell.execute_reply": "2023-11-04T09:15:26.403961Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:35.704487Z", - "iopub.status.busy": "2023-11-02T15:06:35.704181Z", - "iopub.status.idle": "2023-11-02T15:06:35.965732Z", - "shell.execute_reply": "2023-11-02T15:06:35.964728Z" + "iopub.execute_input": "2023-11-04T09:15:26.406980Z", + "iopub.status.busy": "2023-11-04T09:15:26.406632Z", + "iopub.status.idle": "2023-11-04T09:15:26.579722Z", + "shell.execute_reply": "2023-11-04T09:15:26.579085Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:35.969664Z", - "iopub.status.busy": "2023-11-02T15:06:35.969373Z", - "iopub.status.idle": "2023-11-02T15:06:35.974881Z", - "shell.execute_reply": "2023-11-02T15:06:35.973936Z" + "iopub.execute_input": "2023-11-04T09:15:26.582067Z", + "iopub.status.busy": "2023-11-04T09:15:26.581864Z", + "iopub.status.idle": "2023-11-04T09:15:26.585645Z", + "shell.execute_reply": "2023-11-04T09:15:26.585033Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:35.978814Z", - "iopub.status.busy": "2023-11-02T15:06:35.978480Z", - "iopub.status.idle": "2023-11-02T15:06:35.991284Z", - "shell.execute_reply": "2023-11-02T15:06:35.990358Z" + "iopub.execute_input": "2023-11-04T09:15:26.587981Z", + "iopub.status.busy": "2023-11-04T09:15:26.587641Z", + "iopub.status.idle": "2023-11-04T09:15:26.596004Z", + "shell.execute_reply": "2023-11-04T09:15:26.595528Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:35.995571Z", - "iopub.status.busy": "2023-11-02T15:06:35.995226Z", - "iopub.status.idle": "2023-11-02T15:06:35.999637Z", - "shell.execute_reply": "2023-11-02T15:06:35.998739Z" + "iopub.execute_input": "2023-11-04T09:15:26.598476Z", + "iopub.status.busy": "2023-11-04T09:15:26.598127Z", + "iopub.status.idle": "2023-11-04T09:15:26.600892Z", + "shell.execute_reply": "2023-11-04T09:15:26.600300Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:36.003487Z", - "iopub.status.busy": "2023-11-02T15:06:36.003206Z", - "iopub.status.idle": "2023-11-02T15:06:43.684004Z", - "shell.execute_reply": "2023-11-02T15:06:43.682957Z" + "iopub.execute_input": "2023-11-04T09:15:26.603407Z", + "iopub.status.busy": "2023-11-04T09:15:26.603049Z", + "iopub.status.idle": "2023-11-04T09:15:30.200212Z", + "shell.execute_reply": "2023-11-04T09:15:30.199590Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:43.689242Z", - "iopub.status.busy": "2023-11-02T15:06:43.688272Z", - "iopub.status.idle": "2023-11-02T15:06:43.702508Z", - "shell.execute_reply": "2023-11-02T15:06:43.701693Z" + "iopub.execute_input": "2023-11-04T09:15:30.203433Z", + "iopub.status.busy": "2023-11-04T09:15:30.203003Z", + "iopub.status.idle": "2023-11-04T09:15:30.212845Z", + "shell.execute_reply": "2023-11-04T09:15:30.212359Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:43.707192Z", - "iopub.status.busy": "2023-11-02T15:06:43.706149Z", - "iopub.status.idle": "2023-11-02T15:06:46.097100Z", - "shell.execute_reply": "2023-11-02T15:06:46.095686Z" + "iopub.execute_input": "2023-11-04T09:15:30.215238Z", + "iopub.status.busy": "2023-11-04T09:15:30.214872Z", + "iopub.status.idle": "2023-11-04T09:15:31.528074Z", + "shell.execute_reply": "2023-11-04T09:15:31.527345Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:46.103692Z", - "iopub.status.busy": "2023-11-02T15:06:46.102835Z", - "iopub.status.idle": "2023-11-02T15:06:46.141276Z", - "shell.execute_reply": "2023-11-02T15:06:46.140380Z" + "iopub.execute_input": "2023-11-04T09:15:31.532578Z", + "iopub.status.busy": "2023-11-04T09:15:31.531041Z", + "iopub.status.idle": "2023-11-04T09:15:31.555292Z", + "shell.execute_reply": "2023-11-04T09:15:31.554701Z" }, "scrolled": true }, @@ -602,10 +602,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:46.147666Z", - "iopub.status.busy": "2023-11-02T15:06:46.145839Z", - "iopub.status.idle": "2023-11-02T15:06:46.164279Z", - "shell.execute_reply": "2023-11-02T15:06:46.163393Z" + "iopub.execute_input": "2023-11-04T09:15:31.559657Z", + "iopub.status.busy": "2023-11-04T09:15:31.558523Z", + "iopub.status.idle": "2023-11-04T09:15:31.571002Z", + "shell.execute_reply": "2023-11-04T09:15:31.570416Z" } }, "outputs": [ @@ -709,10 +709,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:46.170493Z", - "iopub.status.busy": "2023-11-02T15:06:46.168974Z", - "iopub.status.idle": "2023-11-02T15:06:46.188996Z", - "shell.execute_reply": "2023-11-02T15:06:46.188149Z" + "iopub.execute_input": "2023-11-04T09:15:31.575269Z", + "iopub.status.busy": "2023-11-04T09:15:31.574145Z", + "iopub.status.idle": "2023-11-04T09:15:31.588421Z", + "shell.execute_reply": "2023-11-04T09:15:31.587848Z" } }, "outputs": [ @@ -841,10 +841,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:46.197784Z", - "iopub.status.busy": "2023-11-02T15:06:46.196078Z", - "iopub.status.idle": "2023-11-02T15:06:46.213774Z", - "shell.execute_reply": "2023-11-02T15:06:46.212928Z" + "iopub.execute_input": "2023-11-04T09:15:31.592729Z", + "iopub.status.busy": "2023-11-04T09:15:31.591609Z", + "iopub.status.idle": "2023-11-04T09:15:31.604074Z", + "shell.execute_reply": "2023-11-04T09:15:31.603486Z" } }, "outputs": [ @@ -958,10 +958,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:46.219808Z", - "iopub.status.busy": "2023-11-02T15:06:46.218365Z", - "iopub.status.idle": "2023-11-02T15:06:46.238073Z", - "shell.execute_reply": "2023-11-02T15:06:46.237140Z" + "iopub.execute_input": "2023-11-04T09:15:31.608346Z", + "iopub.status.busy": "2023-11-04T09:15:31.607235Z", + "iopub.status.idle": "2023-11-04T09:15:31.620610Z", + "shell.execute_reply": "2023-11-04T09:15:31.620088Z" } }, "outputs": [ @@ -1072,10 +1072,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:46.242777Z", - "iopub.status.busy": "2023-11-02T15:06:46.242222Z", - "iopub.status.idle": "2023-11-02T15:06:46.256012Z", - "shell.execute_reply": "2023-11-02T15:06:46.255018Z" + "iopub.execute_input": "2023-11-04T09:15:31.623160Z", + "iopub.status.busy": "2023-11-04T09:15:31.622793Z", + "iopub.status.idle": "2023-11-04T09:15:31.631056Z", + "shell.execute_reply": "2023-11-04T09:15:31.630441Z" } }, "outputs": [ @@ -1159,10 +1159,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:46.261449Z", - "iopub.status.busy": "2023-11-02T15:06:46.260868Z", - "iopub.status.idle": "2023-11-02T15:06:46.276389Z", - "shell.execute_reply": "2023-11-02T15:06:46.275391Z" + "iopub.execute_input": "2023-11-04T09:15:31.633521Z", + "iopub.status.busy": "2023-11-04T09:15:31.633146Z", + "iopub.status.idle": "2023-11-04T09:15:31.640048Z", + "shell.execute_reply": "2023-11-04T09:15:31.639432Z" } }, "outputs": [ @@ -1246,10 +1246,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:46.280975Z", - "iopub.status.busy": "2023-11-02T15:06:46.280466Z", - "iopub.status.idle": "2023-11-02T15:06:46.294388Z", - "shell.execute_reply": "2023-11-02T15:06:46.293317Z" + "iopub.execute_input": "2023-11-04T09:15:31.642412Z", + "iopub.status.busy": "2023-11-04T09:15:31.642216Z", + "iopub.status.idle": "2023-11-04T09:15:31.649233Z", + "shell.execute_reply": "2023-11-04T09:15:31.648670Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index da0418232..ee560a9d9 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -938,7 +938,7 @@

    2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'cancel_transfer', 'beneficiary_not_allowed', 'visa_or_mastercard', 'card_payment_fee_charged', 'getting_spare_card', 'lost_or_stolen_phone', 'change_pin', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'card_about_to_expire'}
    +Classes: {'card_about_to_expire', 'lost_or_stolen_phone', 'change_pin', 'card_payment_fee_charged', 'cancel_transfer', 'beneficiary_not_allowed', 'getting_spare_card', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'supported_cards_and_currencies'}
     

Let’s view the i-th example in the dataset:

@@ -985,43 +985,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1124,9 +1124,9 @@

4. Use cleanlab to find issues in your dataset 481 False - 0.008164 + 0.008165 [] 0.008165 @@ -1705,7 +1705,7 @@

Near-duplicate issuesWe see that these two sets of request are indeed very similar to one another! Including near duplicates in a dataset may have unintended effects on models, and be wary about splitting them across training/test sets.

As demonstrated above, cleanlab can automatically shortlist the most likely issues in your dataset to help you better curate your dataset for subsequent modeling. With this shortlist, you can decide whether to fix these label issues or remove nonsensical or duplicated examples from your dataset to obtain a higher-quality dataset for training your next ML model. cleanlab’s issue detection can be run with outputs from any type of model you initially trained.

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 9df91a185..dc44b46d1 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:51.481971Z", - "iopub.status.busy": "2023-11-02T15:06:51.481669Z", - "iopub.status.idle": "2023-11-02T15:06:55.748996Z", - "shell.execute_reply": "2023-11-02T15:06:55.747845Z" + "iopub.execute_input": "2023-11-04T09:15:36.553680Z", + "iopub.status.busy": "2023-11-04T09:15:36.553479Z", + "iopub.status.idle": "2023-11-04T09:15:38.717664Z", + "shell.execute_reply": "2023-11-04T09:15:38.717078Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "236cdd64e2ec4826bf5499162ff0fce7", + "model_id": "f3f34222ca7043c4b136a6e5ef95924b", "version_major": 2, "version_minor": 0 }, @@ -118,7 +118,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:55.753700Z", - "iopub.status.busy": "2023-11-02T15:06:55.753204Z", - "iopub.status.idle": "2023-11-02T15:06:55.765076Z", - "shell.execute_reply": "2023-11-02T15:06:55.764037Z" + "iopub.execute_input": "2023-11-04T09:15:38.720624Z", + "iopub.status.busy": "2023-11-04T09:15:38.720146Z", + "iopub.status.idle": "2023-11-04T09:15:38.723637Z", + "shell.execute_reply": "2023-11-04T09:15:38.723114Z" } }, "outputs": [], @@ -167,10 +167,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:55.769453Z", - "iopub.status.busy": "2023-11-02T15:06:55.768997Z", - "iopub.status.idle": "2023-11-02T15:06:55.773743Z", - "shell.execute_reply": "2023-11-02T15:06:55.772862Z" + "iopub.execute_input": "2023-11-04T09:15:38.726110Z", + "iopub.status.busy": "2023-11-04T09:15:38.725697Z", + "iopub.status.idle": "2023-11-04T09:15:38.729243Z", + "shell.execute_reply": "2023-11-04T09:15:38.728617Z" }, "nbsphinx": "hidden" }, @@ -200,10 +200,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:55.777670Z", - "iopub.status.busy": "2023-11-02T15:06:55.777342Z", - "iopub.status.idle": "2023-11-02T15:06:55.924863Z", - "shell.execute_reply": "2023-11-02T15:06:55.923726Z" + "iopub.execute_input": "2023-11-04T09:15:38.731648Z", + "iopub.status.busy": "2023-11-04T09:15:38.731207Z", + "iopub.status.idle": "2023-11-04T09:15:38.783437Z", + "shell.execute_reply": "2023-11-04T09:15:38.782845Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:55.930337Z", - "iopub.status.busy": "2023-11-02T15:06:55.929880Z", - "iopub.status.idle": "2023-11-02T15:06:55.937958Z", - "shell.execute_reply": "2023-11-02T15:06:55.936649Z" + "iopub.execute_input": "2023-11-04T09:15:38.785843Z", + "iopub.status.busy": "2023-11-04T09:15:38.785463Z", + "iopub.status.idle": "2023-11-04T09:15:38.789711Z", + "shell.execute_reply": "2023-11-04T09:15:38.789080Z" } }, "outputs": [ @@ -305,7 +305,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'cancel_transfer', 'beneficiary_not_allowed', 'visa_or_mastercard', 'card_payment_fee_charged', 'getting_spare_card', 'lost_or_stolen_phone', 'change_pin', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'card_about_to_expire'}\n" + "Classes: {'card_about_to_expire', 'lost_or_stolen_phone', 'change_pin', 'card_payment_fee_charged', 'cancel_transfer', 'beneficiary_not_allowed', 'getting_spare_card', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'supported_cards_and_currencies'}\n" ] } ], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:55.943907Z", - "iopub.status.busy": "2023-11-02T15:06:55.943412Z", - "iopub.status.idle": "2023-11-02T15:06:55.949964Z", - "shell.execute_reply": "2023-11-02T15:06:55.948808Z" + "iopub.execute_input": "2023-11-04T09:15:38.792080Z", + "iopub.status.busy": "2023-11-04T09:15:38.791619Z", + "iopub.status.idle": "2023-11-04T09:15:38.795303Z", + "shell.execute_reply": "2023-11-04T09:15:38.794713Z" } }, "outputs": [ @@ -387,17 +387,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:06:55.956224Z", - "iopub.status.busy": "2023-11-02T15:06:55.955612Z", - "iopub.status.idle": "2023-11-02T15:07:03.427101Z", - "shell.execute_reply": "2023-11-02T15:07:03.426018Z" + "iopub.execute_input": "2023-11-04T09:15:38.797681Z", + "iopub.status.busy": "2023-11-04T09:15:38.797467Z", + "iopub.status.idle": "2023-11-04T09:15:48.120248Z", + "shell.execute_reply": "2023-11-04T09:15:48.119503Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ccd2ff966a224331ba87576dc1b583cb", + "model_id": "e511e2ae0df34b0785f65d2d9896abbd", "version_major": 2, "version_minor": 0 }, @@ -411,7 +411,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6f3fdd1e44734a38a1e4e79af6e724bc", + "model_id": "188508a8bb914f0181fd7770d36add4b", "version_major": 2, "version_minor": 0 }, @@ -425,7 +425,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2fbd72a11b38422db8cc2b7b6ea3c24f", + "model_id": "ab0236503c4244ca89641b8946acd4f5", "version_major": 2, "version_minor": 0 }, @@ -439,7 +439,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f035475e4b9d4449ae283a09b15d99e4", + "model_id": "f6de89c6c65341eabdf9febce459d412", "version_major": 2, "version_minor": 0 }, @@ -453,7 +453,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "514ddf8139274a3a9647d84cd184ac47", + "model_id": "b019f05692624c239026d8862df67d84", "version_major": 2, "version_minor": 0 }, @@ -467,7 +467,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f9fb3e20f3e343ae855437a44c7793f2", + "model_id": "8aa91303345c41398c3fe82ad1a2d93f", "version_major": 2, "version_minor": 0 }, @@ -481,7 +481,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "034f1b3e40334552b37a430a3d2ea02f", + "model_id": "6fa8eb2588e84204b9588758d6cb0cc3", "version_major": 2, "version_minor": 0 }, @@ -535,10 +535,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:03.433864Z", - "iopub.status.busy": "2023-11-02T15:07:03.433293Z", - "iopub.status.idle": "2023-11-02T15:07:05.389023Z", - "shell.execute_reply": "2023-11-02T15:07:05.388046Z" + "iopub.execute_input": "2023-11-04T09:15:48.123910Z", + "iopub.status.busy": "2023-11-04T09:15:48.123413Z", + "iopub.status.idle": "2023-11-04T09:15:49.349084Z", + "shell.execute_reply": "2023-11-04T09:15:49.348422Z" }, "scrolled": true }, @@ -570,10 +570,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:05.396370Z", - "iopub.status.busy": "2023-11-02T15:07:05.394793Z", - "iopub.status.idle": "2023-11-02T15:07:05.399700Z", - "shell.execute_reply": "2023-11-02T15:07:05.398941Z" + "iopub.execute_input": "2023-11-04T09:15:49.353971Z", + "iopub.status.busy": "2023-11-04T09:15:49.352688Z", + "iopub.status.idle": "2023-11-04T09:15:49.357278Z", + "shell.execute_reply": "2023-11-04T09:15:49.356729Z" } }, "outputs": [], @@ -593,10 +593,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:05.404601Z", - "iopub.status.busy": "2023-11-02T15:07:05.403184Z", - "iopub.status.idle": "2023-11-02T15:07:07.655074Z", - "shell.execute_reply": "2023-11-02T15:07:07.653952Z" + "iopub.execute_input": "2023-11-04T09:15:49.361358Z", + "iopub.status.busy": "2023-11-04T09:15:49.360294Z", + "iopub.status.idle": "2023-11-04T09:15:50.689128Z", + "shell.execute_reply": "2023-11-04T09:15:50.688381Z" }, "scrolled": true }, @@ -638,10 +638,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:07.661548Z", - "iopub.status.busy": "2023-11-02T15:07:07.660400Z", - "iopub.status.idle": "2023-11-02T15:07:07.694205Z", - "shell.execute_reply": "2023-11-02T15:07:07.693039Z" + "iopub.execute_input": "2023-11-04T09:15:50.692733Z", + "iopub.status.busy": "2023-11-04T09:15:50.692045Z", + "iopub.status.idle": "2023-11-04T09:15:50.722637Z", + "shell.execute_reply": "2023-11-04T09:15:50.722038Z" }, "scrolled": true }, @@ -675,9 +675,9 @@ " is_label_issue label_score given_label predicted_label\n", "981 True 0.000005 card_about_to_expire card_payment_fee_charged\n", "974 True 0.000150 beneficiary_not_allowed change_pin\n", - "982 True 0.000220 apple_pay_or_google_pay card_about_to_expire\n", - "971 True 0.000511 beneficiary_not_allowed change_pin\n", - "980 True 0.000948 card_about_to_expire card_payment_fee_charged\n", + "982 True 0.000218 apple_pay_or_google_pay card_about_to_expire\n", + "971 True 0.000512 beneficiary_not_allowed change_pin\n", + "980 True 0.000947 card_about_to_expire card_payment_fee_charged\n", "\n", "\n", "---------------------- outlier issues ----------------------\n", @@ -718,7 +718,7 @@ "148 True 0.006237 [160] 0.006237\n", "546 True 0.006485 [514] 0.006485\n", "514 True 0.006485 [546] 0.006485\n", - "481 False 0.008164 [] 0.008165\n", + "481 False 0.008165 [] 0.008165\n", "\n", "\n", "---------------------- non_iid issues ----------------------\n", @@ -766,10 +766,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:07.699189Z", - "iopub.status.busy": "2023-11-02T15:07:07.698797Z", - "iopub.status.idle": "2023-11-02T15:07:07.715950Z", - "shell.execute_reply": "2023-11-02T15:07:07.714943Z" + "iopub.execute_input": "2023-11-04T09:15:50.725572Z", + "iopub.status.busy": "2023-11-04T09:15:50.725133Z", + "iopub.status.idle": "2023-11-04T09:15:50.735612Z", + "shell.execute_reply": "2023-11-04T09:15:50.735040Z" }, "scrolled": true }, @@ -805,35 +805,35 @@ " \n", " 0\n", " False\n", - " 0.792019\n", + " 0.791961\n", " cancel_transfer\n", " cancel_transfer\n", " \n", " \n", " 1\n", " False\n", - " 0.258451\n", + " 0.258508\n", " cancel_transfer\n", " cancel_transfer\n", " \n", " \n", " 2\n", " False\n", - " 0.698890\n", + " 0.699010\n", " cancel_transfer\n", " cancel_transfer\n", " \n", " \n", " 3\n", " False\n", - " 0.183006\n", + " 0.183136\n", " cancel_transfer\n", " apple_pay_or_google_pay\n", " \n", " \n", " 4\n", " False\n", - " 0.771030\n", + " 0.771112\n", " cancel_transfer\n", " cancel_transfer\n", " \n", @@ -843,11 +843,11 @@ ], "text/plain": [ " is_label_issue label_score given_label predicted_label\n", - "0 False 0.792019 cancel_transfer cancel_transfer\n", - "1 False 0.258451 cancel_transfer cancel_transfer\n", - "2 False 0.698890 cancel_transfer cancel_transfer\n", - "3 False 0.183006 cancel_transfer apple_pay_or_google_pay\n", - "4 False 0.771030 cancel_transfer cancel_transfer" + "0 False 0.791961 cancel_transfer cancel_transfer\n", + "1 False 0.258508 cancel_transfer cancel_transfer\n", + "2 False 0.699010 cancel_transfer cancel_transfer\n", + "3 False 0.183136 cancel_transfer apple_pay_or_google_pay\n", + "4 False 0.771112 cancel_transfer cancel_transfer" ] }, "execution_count": 12, @@ -879,10 +879,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:07.720812Z", - "iopub.status.busy": "2023-11-02T15:07:07.720503Z", - "iopub.status.idle": "2023-11-02T15:07:07.729293Z", - "shell.execute_reply": "2023-11-02T15:07:07.728533Z" + "iopub.execute_input": "2023-11-04T09:15:50.738566Z", + "iopub.status.busy": "2023-11-04T09:15:50.738130Z", + "iopub.status.idle": "2023-11-04T09:15:50.743326Z", + "shell.execute_reply": "2023-11-04T09:15:50.742752Z" } }, "outputs": [ @@ -920,10 +920,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:07.732985Z", - "iopub.status.busy": "2023-11-02T15:07:07.732523Z", - "iopub.status.idle": "2023-11-02T15:07:07.743470Z", - "shell.execute_reply": "2023-11-02T15:07:07.742677Z" + "iopub.execute_input": "2023-11-04T09:15:50.746213Z", + "iopub.status.busy": "2023-11-04T09:15:50.745782Z", + "iopub.status.idle": "2023-11-04T09:15:50.752734Z", + "shell.execute_reply": "2023-11-04T09:15:50.752281Z" } }, "outputs": [ @@ -1040,10 +1040,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:07.747385Z", - "iopub.status.busy": "2023-11-02T15:07:07.746914Z", - "iopub.status.idle": "2023-11-02T15:07:07.757616Z", - "shell.execute_reply": "2023-11-02T15:07:07.756572Z" + "iopub.execute_input": "2023-11-04T09:15:50.754979Z", + "iopub.status.busy": "2023-11-04T09:15:50.754645Z", + "iopub.status.idle": "2023-11-04T09:15:50.760689Z", + "shell.execute_reply": "2023-11-04T09:15:50.760231Z" } }, "outputs": [ @@ -1126,10 +1126,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:07.761190Z", - "iopub.status.busy": "2023-11-02T15:07:07.760749Z", - "iopub.status.idle": "2023-11-02T15:07:07.770098Z", - "shell.execute_reply": "2023-11-02T15:07:07.769368Z" + "iopub.execute_input": "2023-11-04T09:15:50.762834Z", + "iopub.status.busy": "2023-11-04T09:15:50.762501Z", + "iopub.status.idle": "2023-11-04T09:15:50.768106Z", + "shell.execute_reply": "2023-11-04T09:15:50.767656Z" } }, "outputs": [ @@ -1237,10 +1237,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:07.774559Z", - "iopub.status.busy": "2023-11-02T15:07:07.773594Z", - "iopub.status.idle": "2023-11-02T15:07:07.789667Z", - "shell.execute_reply": "2023-11-02T15:07:07.788852Z" + "iopub.execute_input": "2023-11-04T09:15:50.770332Z", + "iopub.status.busy": "2023-11-04T09:15:50.769995Z", + "iopub.status.idle": "2023-11-04T09:15:50.778402Z", + "shell.execute_reply": "2023-11-04T09:15:50.777940Z" } }, "outputs": [ @@ -1303,7 +1303,7 @@ " \n", " 481\n", " False\n", - " 0.008164\n", + " 0.008165\n", " []\n", " 0.008165\n", " \n", @@ -1317,7 +1317,7 @@ "148 True 0.006237 [160] \n", "546 True 0.006485 [514] \n", "514 True 0.006485 [546] \n", - "481 False 0.008164 [] \n", + "481 False 0.008165 [] \n", "\n", " distance_to_nearest_neighbor \n", "160 0.006237 \n", @@ -1351,10 +1351,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:07.793374Z", - "iopub.status.busy": "2023-11-02T15:07:07.792816Z", - "iopub.status.idle": "2023-11-02T15:07:07.805132Z", - "shell.execute_reply": "2023-11-02T15:07:07.803987Z" + "iopub.execute_input": "2023-11-04T09:15:50.780572Z", + "iopub.status.busy": "2023-11-04T09:15:50.780238Z", + "iopub.status.idle": "2023-11-04T09:15:50.785420Z", + "shell.execute_reply": "2023-11-04T09:15:50.784959Z" } }, "outputs": [ @@ -1422,10 +1422,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:07.810343Z", - "iopub.status.busy": "2023-11-02T15:07:07.809776Z", - "iopub.status.idle": "2023-11-02T15:07:07.822393Z", - "shell.execute_reply": "2023-11-02T15:07:07.821590Z" + "iopub.execute_input": "2023-11-04T09:15:50.787416Z", + "iopub.status.busy": "2023-11-04T09:15:50.787215Z", + "iopub.status.idle": "2023-11-04T09:15:50.793173Z", + "shell.execute_reply": "2023-11-04T09:15:50.792641Z" } }, "outputs": [ @@ -1503,10 +1503,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:07.828212Z", - "iopub.status.busy": "2023-11-02T15:07:07.826681Z", - "iopub.status.idle": "2023-11-02T15:07:07.837224Z", - "shell.execute_reply": "2023-11-02T15:07:07.836227Z" + "iopub.execute_input": "2023-11-04T09:15:50.795712Z", + "iopub.status.busy": "2023-11-04T09:15:50.795316Z", + "iopub.status.idle": "2023-11-04T09:15:50.800957Z", + "shell.execute_reply": "2023-11-04T09:15:50.800329Z" }, "nbsphinx": "hidden" }, @@ -1556,45 +1556,31 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "034f1b3e40334552b37a430a3d2ea02f": { + "03cacde467a6494ca2fb5df15e83efff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4c8d99730b2046d688824649b95eb6de", - "IPY_MODEL_a7bcf9a0d60841b1a385d0d58d2ee7f0", - "IPY_MODEL_5285cec6f7de4479b58ee4a0a881edab" - ], - "layout": "IPY_MODEL_87d0dba21ae6410487b719c2af0827dc" - } - }, - "05051d9d023240a6bcd15d6a36ddfb70": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_df094d0493cb4a55854c38c6cacd18e1", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_db86b74660e349ce8b17c24e6725b3f9", + "value": 466062.0 } }, - "098c17c0cf9340548b89054b731f1c2f": { + "0b25d2fdb52c4e99b30f6dc16e31c863": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -1609,23 +1595,7 @@ "description_width": "" } }, - "0a71d8789af04031b5681cd97fbe2c46": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0e582d959e804877a93770fc3bfcd091": { + "0da48297bbce46fe847e470bf8a67376": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1677,7 +1647,7 @@ "width": null } }, - "0f8b89dc78b84de6a9f0c580fbb9b360": { + "0f392776020d40868b822524f8cdab8a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1729,7 +1699,71 @@ "width": null } }, - "117a27f5d28e409083c9741b2cde4136": { + "1805a093cbc449dc9768c3ea04ab4e4a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a2402c5b8e5e4fa19c08f857a9ed4162", + "placeholder": "​", + "style": "IPY_MODEL_88fe63ac6a8b42c7948d72534d01901d", + "value": " 29.0/29.0 [00:00<00:00, 3.79kB/s]" + } + }, + "188508a8bb914f0181fd7770d36add4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a5f855a7a4a546128c981d9a6df81bbc", + "IPY_MODEL_88a12fad03de42ea83199e23c9adde7f", + "IPY_MODEL_309d945318554b0b95fde0c37b02b85f" + ], + "layout": "IPY_MODEL_4705ba6245a54242b73386cc6e0d32ad" + } + }, + "1a367d19abaf4382a515dfb3561dce0a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_49c3f16d063e47ec91a4e49f3e8d58de", + "placeholder": "​", + "style": "IPY_MODEL_b7ba9e60aa1145988e90c6306abfeac5", + "value": " 466k/466k [00:00<00:00, 23.4MB/s]" + } + }, + "1c704884c8a94b64ad5993fb1e4b8eb9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1781,7 +1815,22 @@ "width": null } }, - "20c5c407f21744a8aee83fdfb72cb2e4": { + "1ec4a362022147e38f33d23f63e809c9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "25f276b03d184f81a9499a6239b23e91": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1833,44 +1882,28 @@ "width": null } }, - "2337422244a64ebc88af39bbe71386a3": { + "309d945318554b0b95fde0c37b02b85f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "236cdd64e2ec4826bf5499162ff0fce7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8b6d3d9852db45c49305584e23db0291", - "IPY_MODEL_e9710b082f4548faada92281745b6890", - "IPY_MODEL_b872796ad1084122aa115d874d8d9125" - ], - "layout": "IPY_MODEL_5dabef6f2823414cb4e327f5820ad04a" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1c704884c8a94b64ad5993fb1e4b8eb9", + "placeholder": "​", + "style": "IPY_MODEL_901ef5ec3ddd48f59ea9eb99f2c401bc", + "value": " 2.21k/2.21k [00:00<00:00, 297kB/s]" } }, - "279c5f57020045a59d56111d0f9a2e94": { + "33ac3ec641344d22a524f7d59b7e1933": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1922,22 +1955,23 @@ "width": null } }, - "28eca70b3df648ab9605d0f53b5e6dec": { + "33f0dd962a074885a899876a0989cbce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "2d36925735ed482f866821e85d3a4e63": { + "344ad37b80d2497eb4bb64287f85a859": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1989,44 +2023,28 @@ "width": null } }, - "2ee4005ec2e042edbc508658b8c1a3d3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2fbd72a11b38422db8cc2b7b6ea3c24f": { + "3630c50baa1c4b559f36a26f1651f6cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_37773132021d4cdd8743f02ed818d82b", - "IPY_MODEL_d2fa511c49cc4a5fa25085589248d050", - "IPY_MODEL_cf29f459fafe45b4a819825a641e1359" - ], - "layout": "IPY_MODEL_84d5ba7382ba49f8878589e059c7ac0d" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f54671bf7cd048759cf1a05a097f8f91", + "placeholder": "​", + "style": "IPY_MODEL_85b9ab16a7b04dd1b46cb9da73cbbb46", + "value": " 391/391 [00:00<00:00, 50.7kB/s]" } }, - "32eb4d0d8cf149c19c681ed767c14d9f": { + "37764ce857834b429e27911ac70d4f35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2041,7 +2059,7 @@ "description_width": "" } }, - "35d5497a88534d78bbfa7aa63d54feb7": { + "3bf3177965b742db94617c3fd9af1474": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -2057,36 +2075,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_82fb5dc124fb4723b365edfe2a9ff3ce", + "layout": "IPY_MODEL_8e4e9b300e66427692bfabbb2b93c843", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_97ce6711eb7140e69701c74b9e6b1a40", + "style": "IPY_MODEL_8520280fe61741e8a9582c3690854f9b", "value": 54245363.0 } }, - "37773132021d4cdd8743f02ed818d82b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_49d66db81ac7443abd26b6a5725ede88", - "placeholder": "​", - "style": "IPY_MODEL_28eca70b3df648ab9605d0f53b5e6dec", - "value": "Downloading (…)c41af769/config.json: 100%" - } - }, - "380d5964772b4055b89b6d2d2f5ef466": { + "3e6e44896553489b80bf1d421a67c5ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2138,7 +2135,7 @@ "width": null } }, - "3cc9899a243a4f04b900abb35a68e3f2": { + "43d9b8a67cec40c9bb1ba9f1bc782fc5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -2154,15 +2151,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a1dbe03f339e42a5a966590326ee0a7d", - "max": 391.0, + "layout": "IPY_MODEL_9c0133a7b4f84df49ec828706c20d794", + "max": 29.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_05051d9d023240a6bcd15d6a36ddfb70", - "value": 391.0 + "style": "IPY_MODEL_d7854ec753c84d19927de7f8bcc568a6", + "value": 29.0 } }, - "3fd520af59114092ad36a5d5ed38ec72": { + "45c79ca14ec34159b24ea9a4d694350b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2214,7 +2211,37 @@ "width": null } }, - "444828f530db4036a932d9124c1e2b8b": { + "45de78505d284205b6309110bc167ff8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "46c6bff39f924e3797f6638384a7d7d6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4705ba6245a54242b73386cc6e0d32ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2266,7 +2293,7 @@ "width": null } }, - "44e7906cb4ef49c588fe5579dce66d97": { + "4947b2a8b634400f88577379802fc024": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2315,42 +2342,10 @@ "right": null, "top": null, "visibility": null, - "width": null - } - }, - "4552db17365b47cba277c93ebc2e4ef7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "467088b2088b4be8807cbf8d8e2f157c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "width": "20px" } }, - "491e9b14cb93454eb723fccfd8520346": { + "49c3f16d063e47ec91a4e49f3e8d58de": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2402,80 +2397,23 @@ "width": null } }, - "49d66db81ac7443abd26b6a5725ede88": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4c8d99730b2046d688824649b95eb6de": { + "527ea75cd58d407eb0b876be622e8959": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_20c5c407f21744a8aee83fdfb72cb2e4", - "placeholder": "​", - "style": "IPY_MODEL_b9cb1799f90347edbcb55fd70b3bf155", - "value": "Downloading (…)e3c41af769/vocab.txt: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "5020757f57c94b2b8bd9cd6af131cbe2": { + "529155445d4d4a648aa54b15f6c842b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -2490,35 +2428,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_380d5964772b4055b89b6d2d2f5ef466", + "layout": "IPY_MODEL_f1225ab3146b40e1ba0df4130b56feef", "placeholder": "​", - "style": "IPY_MODEL_ea0b3922b6214456b0864f4b94ed9017", - "value": " 2.21k/2.21k [00:00<00:00, 165kB/s]" - } - }, - "514ddf8139274a3a9647d84cd184ac47": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8a2dc0999af744f9b722ad196650186d", - "IPY_MODEL_dbbc9040f5784046bb39697afb3111a9", - "IPY_MODEL_df611c9c209343eeb7a5e16605f159bd" - ], - "layout": "IPY_MODEL_0f8b89dc78b84de6a9f0c580fbb9b360" + "style": "IPY_MODEL_7f83a66806954f489c1798d3db5195df", + "value": " 232k/232k [00:00<00:00, 24.5MB/s]" } }, - "5271194b221e4cd88daddd3213c68312": { + "55fbe97d085a4dbca1da4bdd8480d787": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2570,28 +2486,7 @@ "width": null } }, - "5285cec6f7de4479b58ee4a0a881edab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0e582d959e804877a93770fc3bfcd091", - "placeholder": "​", - "style": "IPY_MODEL_098c17c0cf9340548b89054b731f1c2f", - "value": " 232k/232k [00:00<00:00, 12.7MB/s]" - } - }, - "533dfdd1970146fa95bec5bed00fd866": { + "67b0f9118ae34424be32ea8f33a72262": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2643,59 +2538,74 @@ "width": null } }, - "591042a596484155a5077f430f37aaf3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "6df247d3c2454afab8e21066f98899a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bacfd782401e4386a771217c36c332ae", + "placeholder": "​", + "style": "IPY_MODEL_fdfeb70759794620aaf2b8fa6cff711f", + "value": " 54.2M/54.2M [00:00<00:00, 249MB/s]" + } + }, + "6fa8eb2588e84204b9588758d6cb0cc3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f41c2d4eb2bd49e0a615438ced52b475", + "IPY_MODEL_a4b7a3c60a884b549cfb06dec33a8aaf", + "IPY_MODEL_529155445d4d4a648aa54b15f6c842b4" + ], + "layout": "IPY_MODEL_bbaa77c8b3fd4de994eea84187723a33" + } + }, + "709095c23e0047369e8c6e24c7b8c4be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cd321ea0f4db4690baaeb819db9b053a", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_527ea75cd58d407eb0b876be622e8959", + "value": 665.0 } }, - "5dabef6f2823414cb4e327f5820ad04a": { + "7923869ef4c64082af45666009319f72": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2747,28 +2657,22 @@ "width": null } }, - "6a11fd274747431b94efa79c09e44a19": { + "7a1b8f889a514f1c95c977cea2673ca5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_71bb5d3a2724446bb875fdb5dfae3dd0", - "placeholder": "​", - "style": "IPY_MODEL_b2e15f11644e426780b3d3ea8560683e", - "value": "Downloading (…)okenizer_config.json: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "6b0bbf8e65b443a6835fe8b58f03869b": { + "7f83a66806954f489c1798d3db5195df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2783,7 +2687,7 @@ "description_width": "" } }, - "6cd5da4ca5b3425c9107749fbd956346": { + "83c3cadf56354371a5194abe91b19dec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -2798,29 +2702,23 @@ "description_width": "" } }, - "6f3fdd1e44734a38a1e4e79af6e724bc": { + "8520280fe61741e8a9582c3690854f9b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bbaf238a6e0a4e08a2a5c00f8c5dca2d", - "IPY_MODEL_bdaa3b84c99d441eadd56f65429d276e", - "IPY_MODEL_5020757f57c94b2b8bd9cd6af131cbe2" - ], - "layout": "IPY_MODEL_533dfdd1970146fa95bec5bed00fd866" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "71bb5d3a2724446bb875fdb5dfae3dd0": { + "855404f800454a41b8f2e96d6caefeea": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2872,34 +2770,167 @@ "width": null } }, - "72edc9d5b9164d5d8d667cb8716bc918": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "85b9ab16a7b04dd1b46cb9da73cbbb46": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, + "_view_name": "StyleView", + "description_width": "" + } + }, + "88a12fad03de42ea83199e23c9adde7f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a3f33b047ab845a18d425413108ed1db", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f83571ed1f3546bcb7c5c61c2f7773a1", + "value": 2211.0 + } + }, + "88fe63ac6a8b42c7948d72534d01901d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8926c6d252e345ab80ea5ab1d5752767": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_25f276b03d184f81a9499a6239b23e91", + "placeholder": "​", + "style": "IPY_MODEL_f7b42ce171fd41479b814cd6892cfa8d", + "value": "Downloading (…)okenizer_config.json: 100%" + } + }, + "8a33d6746e084ed3a8103485b4189327": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e6911333fdda494fbd91d3d164b9f91a", + "placeholder": "​", + "style": "IPY_MODEL_45de78505d284205b6309110bc167ff8", + "value": "Downloading (…)af769/.gitattributes: 100%" + } + }, + "8aa91303345c41398c3fe82ad1a2d93f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8926c6d252e345ab80ea5ab1d5752767", + "IPY_MODEL_43d9b8a67cec40c9bb1ba9f1bc782fc5", + "IPY_MODEL_1805a093cbc449dc9768c3ea04ab4e4a" + ], + "layout": "IPY_MODEL_ee2b41f04f01474ca7bdbf79a822309b" + } + }, + "8d91ae5844614198836462023aa6f7b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8e4e9b300e66427692bfabbb2b93c843": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, @@ -2921,10 +2952,62 @@ "right": null, "top": null, "visibility": null, - "width": "20px" + "width": null + } + }, + "901ef5ec3ddd48f59ea9eb99f2c401bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "94e59078074f4430b3b512132a65be85": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "95e9baa65e5843c7958dbdd2cf2ca028": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_45c79ca14ec34159b24ea9a4d694350b", + "placeholder": "​", + "style": "IPY_MODEL_0b25d2fdb52c4e99b30f6dc16e31c863", + "value": "Downloading pytorch_model.bin: 100%" } }, - "82fb5dc124fb4723b365edfe2a9ff3ce": { + "9c0133a7b4f84df49ec828706c20d794": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -2976,7 +3059,7 @@ "width": null } }, - "84d5ba7382ba49f8878589e059c7ac0d": { + "9cb0e3da5cb34999b815c99923056cd0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3028,7 +3111,7 @@ "width": null } }, - "87d0dba21ae6410487b719c2af0827dc": { + "a2402c5b8e5e4fa19c08f857a9ed4162": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3080,28 +3163,7 @@ "width": null } }, - "8a2dc0999af744f9b722ad196650186d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_44e7906cb4ef49c588fe5579dce66d97", - "placeholder": "​", - "style": "IPY_MODEL_32eb4d0d8cf149c19c681ed767c14d9f", - "value": "Downloading (…)af769/tokenizer.json: 100%" - } - }, - "8b65e8471fd544dd8686fa54b9ce813b": { + "a3f33b047ab845a18d425413108ed1db": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3153,7 +3215,31 @@ "width": null } }, - "8b6d3d9852db45c49305584e23db0291": { + "a4b7a3c60a884b549cfb06dec33a8aaf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_344ad37b80d2497eb4bb64287f85a859", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_94e59078074f4430b3b512132a65be85", + "value": 231508.0 + } + }, + "a5f855a7a4a546128c981d9a6df81bbc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3168,13 +3254,35 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_cc442634d7984394bead06f2391cc0a2", + "layout": "IPY_MODEL_edac81cd3d1340b19486064f2379c65e", "placeholder": "​", - "style": "IPY_MODEL_6cd5da4ca5b3425c9107749fbd956346", - "value": "" + "style": "IPY_MODEL_83c3cadf56354371a5194abe91b19dec", + "value": "Downloading (…)e3c41af769/README.md: 100%" + } + }, + "ab0236503c4244ca89641b8946acd4f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ed2254a0c82e4ead86af4e8ad01300bd", + "IPY_MODEL_709095c23e0047369e8c6e24c7b8c4be", + "IPY_MODEL_d59f43ee28494d5e9276a20af273fc65" + ], + "layout": "IPY_MODEL_b946305d5dcb4b0a8585d02529f14938" } }, - "8ff8a0acfbb7486f88b0925e54cf0422": { + "ac30de3b75c2459aa4f4a6ffdf9346cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3226,23 +3334,29 @@ "width": null } }, - "97ce6711eb7140e69701c74b9e6b1a40": { + "b019f05692624c239026d8862df67d84": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bf8640ae7967495ba4bed196464bb2db", + "IPY_MODEL_03cacde467a6494ca2fb5df15e83efff", + "IPY_MODEL_1a367d19abaf4382a515dfb3561dce0a" + ], + "layout": "IPY_MODEL_3e6e44896553489b80bf1d421a67c5ed" } }, - "9ba71612a3ac4120bf2bc7f27a23a6f2": { + "b0b6f050d10146448e45bd3e7f948a84": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3294,68 +3408,95 @@ "width": null } }, - "9c4be9ab35d047119314d2e762835ccd": { + "b7ba9e60aa1145988e90c6306abfeac5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_279c5f57020045a59d56111d0f9a2e94", - "placeholder": "​", - "style": "IPY_MODEL_e70cdc721e2a4df5a1e62382d4d73b76", - "value": " 29.0/29.0 [00:00<00:00, 2.13kB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "9f8d9272b8f640e28529987f6061c450": { + "b8dc82aa552b4c83bcc019f3e4d879e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9ba71612a3ac4120bf2bc7f27a23a6f2", - "max": 29.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e0d010347a7340a6aff30adc733c8a7c", - "value": 29.0 + "layout": "IPY_MODEL_33ac3ec641344d22a524f7d59b7e1933", + "placeholder": "​", + "style": "IPY_MODEL_7a1b8f889a514f1c95c977cea2673ca5", + "value": "" } }, - "9fcb388b68b84fa6b1c551aaeb2e67d7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "b946305d5dcb4b0a8585d02529f14938": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a045511a46ef4c37b41b83cad949e48d": { + "bacfd782401e4386a771217c36c332ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3407,7 +3548,7 @@ "width": null } }, - "a1dbe03f339e42a5a966590326ee0a7d": { + "bbaa77c8b3fd4de994eea84187723a33": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3459,31 +3600,7 @@ "width": null } }, - "a7bcf9a0d60841b1a385d0d58d2ee7f0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3fd520af59114092ad36a5d5ed38ec72", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0a71d8789af04031b5681cd97fbe2c46", - "value": 231508.0 - } - }, - "a8d90567e77c4ad49552f0893acc8fcc": { + "bf8640ae7967495ba4bed196464bb2db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3498,64 +3615,89 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_491e9b14cb93454eb723fccfd8520346", + "layout": "IPY_MODEL_9cb0e3da5cb34999b815c99923056cd0", "placeholder": "​", - "style": "IPY_MODEL_bf8d1165d1ff4808a635ee143d79045d", - "value": "Downloading (…)af769/.gitattributes: 100%" - } - }, - "a9547caaceef4940893694211c7795aa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_8d91ae5844614198836462023aa6f7b3", + "value": "Downloading (…)af769/tokenizer.json: 100%" } }, - "a9cd2636d333460fab20268d011eb4e6": { + "c359d87f7a094597a2eca7e9394d623e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8b65e8471fd544dd8686fa54b9ce813b", - "placeholder": "​", - "style": "IPY_MODEL_2337422244a64ebc88af39bbe71386a3", - "value": " 391/391 [00:00<00:00, 25.8kB/s]" + "layout": "IPY_MODEL_4947b2a8b634400f88577379802fc024", + "max": 1.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ffb051730bc242d5bcf7b74b192a5dc6", + "value": 0.0 } }, - "b2e15f11644e426780b3d3ea8560683e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "cd321ea0f4db4690baaeb819db9b053a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b872796ad1084122aa115d874d8d9125": { + "d59f43ee28494d5e9276a20af273fc65": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3570,88 +3712,45 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ec8c0dec281e46fc85214e3400d7ff41", + "layout": "IPY_MODEL_855404f800454a41b8f2e96d6caefeea", "placeholder": "​", - "style": "IPY_MODEL_f964ce7cd5624f01b2b556f541dd8526", - "value": " 0/0 [00:00<?, ?it/s]" + "style": "IPY_MODEL_46c6bff39f924e3797f6638384a7d7d6", + "value": " 665/665 [00:00<00:00, 87.9kB/s]" } }, - "b9cb1799f90347edbcb55fd70b3bf155": { + "d7854ec753c84d19927de7f8bcc568a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "bbaf238a6e0a4e08a2a5c00f8c5dca2d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f3d39f8634f14dddaab567001084f9f2", - "placeholder": "​", - "style": "IPY_MODEL_cd0e070e34bd474490f982d6c2208a0a", - "value": "Downloading (…)e3c41af769/README.md: 100%" - } - }, - "bdaa3b84c99d441eadd56f65429d276e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a045511a46ef4c37b41b83cad949e48d", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f4315c54796d469494e41dcb5cf9d162", - "value": 2211.0 - } - }, - "bf8d1165d1ff4808a635ee143d79045d": { + "db86b74660e349ce8b17c24e6725b3f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "c4c625e47dae4a1cbb4ae76f0ce45b26": { + "df094d0493cb4a55854c38c6cacd18e1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3703,7 +3802,29 @@ "width": null } }, - "cc442634d7984394bead06f2391cc0a2": { + "e511e2ae0df34b0785f65d2d9896abbd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8a33d6746e084ed3a8103485b4189327", + "IPY_MODEL_e9d6ade99c384057a4384c56c57c6aaa", + "IPY_MODEL_3630c50baa1c4b559f36a26f1651f6cf" + ], + "layout": "IPY_MODEL_67b0f9118ae34424be32ea8f33a72262" + } + }, + "e6911333fdda494fbd91d3d164b9f91a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3755,94 +3876,15 @@ "width": null } }, - "ccd2ff966a224331ba87576dc1b583cb": { + "e9d6ade99c384057a4384c56c57c6aaa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a8d90567e77c4ad49552f0893acc8fcc", - "IPY_MODEL_3cc9899a243a4f04b900abb35a68e3f2", - "IPY_MODEL_a9cd2636d333460fab20268d011eb4e6" - ], - "layout": "IPY_MODEL_2d36925735ed482f866821e85d3a4e63" - } - }, - "cd0e070e34bd474490f982d6c2208a0a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "cf29f459fafe45b4a819825a641e1359": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_117a27f5d28e409083c9741b2cde4136", - "placeholder": "​", - "style": "IPY_MODEL_2ee4005ec2e042edbc508658b8c1a3d3", - "value": " 665/665 [00:00<00:00, 46.7kB/s]" - } - }, - "d0c027fd0c8840558bd09d63d47261b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_591042a596484155a5077f430f37aaf3", - "placeholder": "​", - "style": "IPY_MODEL_de87df10e1574a98ae12d24421a778a1", - "value": " 54.2M/54.2M [00:00<00:00, 170MB/s]" - } - }, - "d2fa511c49cc4a5fa25085589248d050": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", @@ -3850,39 +3892,36 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_dcb9bf0895c94300bb6dfa739fe2440c", - "max": 665.0, + "layout": "IPY_MODEL_55fbe97d085a4dbca1da4bdd8480d787", + "max": 391.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_4552db17365b47cba277c93ebc2e4ef7", - "value": 665.0 + "style": "IPY_MODEL_33f0dd962a074885a899876a0989cbce", + "value": 391.0 } }, - "dbbc9040f5784046bb39697afb3111a9": { + "ed2254a0c82e4ead86af4e8ad01300bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c4c625e47dae4a1cbb4ae76f0ce45b26", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9fcb388b68b84fa6b1c551aaeb2e67d7", - "value": 466062.0 + "layout": "IPY_MODEL_b0b6f050d10146448e45bd3e7f948a84", + "placeholder": "​", + "style": "IPY_MODEL_1ec4a362022147e38f33d23f63e809c9", + "value": "Downloading (…)c41af769/config.json: 100%" } }, - "dcb9bf0895c94300bb6dfa739fe2440c": { + "edac81cd3d1340b19486064f2379c65e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3934,134 +3973,7 @@ "width": null } }, - "de87df10e1574a98ae12d24421a778a1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "df611c9c209343eeb7a5e16605f159bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5271194b221e4cd88daddd3213c68312", - "placeholder": "​", - "style": "IPY_MODEL_a9547caaceef4940893694211c7795aa", - "value": " 466k/466k [00:00<00:00, 2.68MB/s]" - } - }, - "e0d010347a7340a6aff30adc733c8a7c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e70cdc721e2a4df5a1e62382d4d73b76": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "e9710b082f4548faada92281745b6890": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_72edc9d5b9164d5d8d667cb8716bc918", - "max": 1.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_467088b2088b4be8807cbf8d8e2f157c", - "value": 0.0 - } - }, - "ea0b3922b6214456b0864f4b94ed9017": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ea249a8b0ef64bf1b37002d0c87d914c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_444828f530db4036a932d9124c1e2b8b", - "placeholder": "​", - "style": "IPY_MODEL_6b0bbf8e65b443a6835fe8b58f03869b", - "value": "Downloading pytorch_model.bin: 100%" - } - }, - "ec8c0dec281e46fc85214e3400d7ff41": { + "ee2b41f04f01474ca7bdbf79a822309b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4113,29 +4025,22 @@ "width": null } }, - "f035475e4b9d4449ae283a09b15d99e4": { + "ee5dbdebc2114800aa103362604463a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ea249a8b0ef64bf1b37002d0c87d914c", - "IPY_MODEL_35d5497a88534d78bbfa7aa63d54feb7", - "IPY_MODEL_d0c027fd0c8840558bd09d63d47261b1" - ], - "layout": "IPY_MODEL_8ff8a0acfbb7486f88b0925e54cf0422" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "f3d39f8634f14dddaab567001084f9f2": { + "f1225ab3146b40e1ba0df4130b56feef": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4187,60 +4092,71 @@ "width": null } }, - "f4315c54796d469494e41dcb5cf9d162": { + "f1e9b644407e4ba58e46adf33fa96e8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7923869ef4c64082af45666009319f72", + "placeholder": "​", + "style": "IPY_MODEL_ee5dbdebc2114800aa103362604463a1", + "value": " 0/0 [00:00<?, ?it/s]" } }, - "f964ce7cd5624f01b2b556f541dd8526": { + "f3f34222ca7043c4b136a6e5ef95924b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b8dc82aa552b4c83bcc019f3e4d879e7", + "IPY_MODEL_c359d87f7a094597a2eca7e9394d623e", + "IPY_MODEL_f1e9b644407e4ba58e46adf33fa96e8c" + ], + "layout": "IPY_MODEL_0f392776020d40868b822524f8cdab8a" } }, - "f9fb3e20f3e343ae855437a44c7793f2": { + "f41c2d4eb2bd49e0a615438ced52b475": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6a11fd274747431b94efa79c09e44a19", - "IPY_MODEL_9f8d9272b8f640e28529987f6061c450", - "IPY_MODEL_9c4be9ab35d047119314d2e762835ccd" - ], - "layout": "IPY_MODEL_fee94c6f09754f11a559c039f5a278c4" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ac30de3b75c2459aa4f4a6ffdf9346cb", + "placeholder": "​", + "style": "IPY_MODEL_37764ce857834b429e27911ac70d4f35", + "value": "Downloading (…)e3c41af769/vocab.txt: 100%" } }, - "fee94c6f09754f11a559c039f5a278c4": { + "f54671bf7cd048759cf1a05a097f8f91": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4291,6 +4207,90 @@ "visibility": null, "width": null } + }, + "f6de89c6c65341eabdf9febce459d412": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_95e9baa65e5843c7958dbdd2cf2ca028", + "IPY_MODEL_3bf3177965b742db94617c3fd9af1474", + "IPY_MODEL_6df247d3c2454afab8e21066f98899a7" + ], + "layout": "IPY_MODEL_0da48297bbce46fe847e470bf8a67376" + } + }, + "f7b42ce171fd41479b814cd6892cfa8d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f83571ed1f3546bcb7c5c61c2f7773a1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "fdfeb70759794620aaf2b8fa6cff711f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ffb051730bc242d5bcf7b74b192a5dc6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } } }, "version_major": 2, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index ac4e96608..1e0c8fa38 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:14.260958Z", - "iopub.status.busy": "2023-11-02T15:07:14.260528Z", - "iopub.status.idle": "2023-11-02T15:07:15.997921Z", - "shell.execute_reply": "2023-11-02T15:07:15.996863Z" + "iopub.execute_input": "2023-11-04T09:15:55.451513Z", + "iopub.status.busy": "2023-11-04T09:15:55.451324Z", + "iopub.status.idle": "2023-11-04T09:15:56.446679Z", + "shell.execute_reply": "2023-11-04T09:15:56.445976Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:16.013207Z", - "iopub.status.busy": "2023-11-02T15:07:16.012082Z", - "iopub.status.idle": "2023-11-02T15:07:16.018835Z", - "shell.execute_reply": "2023-11-02T15:07:16.018013Z" + "iopub.execute_input": "2023-11-04T09:15:56.449564Z", + "iopub.status.busy": "2023-11-04T09:15:56.449205Z", + "iopub.status.idle": "2023-11-04T09:15:56.452474Z", + "shell.execute_reply": "2023-11-04T09:15:56.451875Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:16.023794Z", - "iopub.status.busy": "2023-11-02T15:07:16.023352Z", - "iopub.status.idle": "2023-11-02T15:07:16.047649Z", - "shell.execute_reply": "2023-11-02T15:07:16.046696Z" + "iopub.execute_input": "2023-11-04T09:15:56.455005Z", + "iopub.status.busy": "2023-11-04T09:15:56.454576Z", + "iopub.status.idle": "2023-11-04T09:15:56.467928Z", + "shell.execute_reply": "2023-11-04T09:15:56.467320Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:16.052287Z", - "iopub.status.busy": "2023-11-02T15:07:16.051740Z", - "iopub.status.idle": "2023-11-02T15:07:23.520032Z", - "shell.execute_reply": "2023-11-02T15:07:23.519037Z" + "iopub.execute_input": "2023-11-04T09:15:56.470593Z", + "iopub.status.busy": "2023-11-04T09:15:56.470043Z", + "iopub.status.idle": "2023-11-04T09:16:01.734004Z", + "shell.execute_reply": "2023-11-04T09:16:01.733316Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 1081d6d25..9127f0beb 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -932,13 +932,13 @@

How can I find label issues in big datasets with limited memory?

-
+
-
+
@@ -1193,7 +1193,7 @@

Can’t find an answer to your question?Cleanlab Github issues, Cleanlab Code Examples or our Slack Community.

If your question is not addressed anywhere, please open a new Github issue. Our developers may also provide personalized assistance in our Slack Community.

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index cf2007041..d2794eb6d 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:29.130107Z", - "iopub.status.busy": "2023-11-02T15:07:29.129501Z", - "iopub.status.idle": "2023-11-02T15:07:30.882464Z", - "shell.execute_reply": "2023-11-02T15:07:30.881333Z" + "iopub.execute_input": "2023-11-04T09:16:06.280481Z", + "iopub.status.busy": "2023-11-04T09:16:06.280290Z", + "iopub.status.idle": "2023-11-04T09:16:07.255845Z", + "shell.execute_reply": "2023-11-04T09:16:07.255239Z" }, "nbsphinx": "hidden" }, @@ -97,10 +97,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:30.887830Z", - "iopub.status.busy": "2023-11-02T15:07:30.887227Z", - "iopub.status.idle": "2023-11-02T15:07:30.893501Z", - "shell.execute_reply": "2023-11-02T15:07:30.892514Z" + "iopub.execute_input": "2023-11-04T09:16:07.259098Z", + "iopub.status.busy": "2023-11-04T09:16:07.258498Z", + "iopub.status.idle": "2023-11-04T09:16:07.262075Z", + "shell.execute_reply": "2023-11-04T09:16:07.261547Z" } }, "outputs": [], @@ -136,10 +136,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:30.897733Z", - "iopub.status.busy": "2023-11-02T15:07:30.897070Z", - "iopub.status.idle": "2023-11-02T15:07:34.547622Z", - "shell.execute_reply": "2023-11-02T15:07:34.546029Z" + "iopub.execute_input": "2023-11-04T09:16:07.264436Z", + "iopub.status.busy": "2023-11-04T09:16:07.264080Z", + "iopub.status.idle": "2023-11-04T09:16:09.206937Z", + "shell.execute_reply": "2023-11-04T09:16:09.206227Z" } }, "outputs": [], @@ -162,10 +162,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:34.553908Z", - "iopub.status.busy": "2023-11-02T15:07:34.552839Z", - "iopub.status.idle": "2023-11-02T15:07:34.615131Z", - "shell.execute_reply": "2023-11-02T15:07:34.613872Z" + "iopub.execute_input": "2023-11-04T09:16:09.210224Z", + "iopub.status.busy": "2023-11-04T09:16:09.209670Z", + "iopub.status.idle": "2023-11-04T09:16:09.245575Z", + "shell.execute_reply": "2023-11-04T09:16:09.244803Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:34.620878Z", - "iopub.status.busy": "2023-11-02T15:07:34.620238Z", - "iopub.status.idle": "2023-11-02T15:07:34.681213Z", - "shell.execute_reply": "2023-11-02T15:07:34.679814Z" + "iopub.execute_input": "2023-11-04T09:16:09.248684Z", + "iopub.status.busy": "2023-11-04T09:16:09.248416Z", + "iopub.status.idle": "2023-11-04T09:16:09.283859Z", + "shell.execute_reply": "2023-11-04T09:16:09.283195Z" } }, "outputs": [], @@ -213,10 +213,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:34.686921Z", - "iopub.status.busy": "2023-11-02T15:07:34.686043Z", - "iopub.status.idle": "2023-11-02T15:07:34.693038Z", - "shell.execute_reply": "2023-11-02T15:07:34.691987Z" + "iopub.execute_input": "2023-11-04T09:16:09.287093Z", + "iopub.status.busy": "2023-11-04T09:16:09.286592Z", + "iopub.status.idle": "2023-11-04T09:16:09.289772Z", + "shell.execute_reply": "2023-11-04T09:16:09.289222Z" } }, "outputs": [], @@ -238,10 +238,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:34.697396Z", - "iopub.status.busy": "2023-11-02T15:07:34.696809Z", - "iopub.status.idle": "2023-11-02T15:07:34.702099Z", - "shell.execute_reply": "2023-11-02T15:07:34.700801Z" + "iopub.execute_input": "2023-11-04T09:16:09.292245Z", + "iopub.status.busy": "2023-11-04T09:16:09.291801Z", + "iopub.status.idle": "2023-11-04T09:16:09.294565Z", + "shell.execute_reply": "2023-11-04T09:16:09.294019Z" } }, "outputs": [], @@ -298,10 +298,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:34.706971Z", - "iopub.status.busy": "2023-11-02T15:07:34.706590Z", - "iopub.status.idle": "2023-11-02T15:07:34.755062Z", - "shell.execute_reply": "2023-11-02T15:07:34.754205Z" + "iopub.execute_input": "2023-11-04T09:16:09.297131Z", + "iopub.status.busy": "2023-11-04T09:16:09.296782Z", + "iopub.status.idle": "2023-11-04T09:16:09.327250Z", + "shell.execute_reply": "2023-11-04T09:16:09.326619Z" } }, "outputs": [ @@ -315,7 +315,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ccdee57b5b0c4c699071d2367ce5bc0f", + "model_id": "141bccbaa1b84638b5597f17dac77695", "version_major": 2, "version_minor": 0 }, @@ -329,7 +329,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "462e18c7b9af4c8f8beb9d40c3c611ce", + "model_id": "9dbff80c15b240de879d1e056f4ecb98", "version_major": 2, "version_minor": 0 }, @@ -387,10 +387,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:34.760179Z", - "iopub.status.busy": "2023-11-02T15:07:34.759607Z", - "iopub.status.idle": "2023-11-02T15:07:34.770180Z", - "shell.execute_reply": "2023-11-02T15:07:34.769274Z" + "iopub.execute_input": "2023-11-04T09:16:09.333481Z", + "iopub.status.busy": "2023-11-04T09:16:09.333119Z", + "iopub.status.idle": "2023-11-04T09:16:09.339773Z", + "shell.execute_reply": "2023-11-04T09:16:09.339275Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:34.774840Z", - "iopub.status.busy": "2023-11-02T15:07:34.774200Z", - "iopub.status.idle": "2023-11-02T15:07:34.781222Z", - "shell.execute_reply": "2023-11-02T15:07:34.780137Z" + "iopub.execute_input": "2023-11-04T09:16:09.342208Z", + "iopub.status.busy": "2023-11-04T09:16:09.341844Z", + "iopub.status.idle": "2023-11-04T09:16:09.345466Z", + "shell.execute_reply": "2023-11-04T09:16:09.344927Z" }, "nbsphinx": "hidden" }, @@ -447,10 +447,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:34.785965Z", - "iopub.status.busy": "2023-11-02T15:07:34.785502Z", - "iopub.status.idle": "2023-11-02T15:07:34.796581Z", - "shell.execute_reply": "2023-11-02T15:07:34.795514Z" + "iopub.execute_input": "2023-11-04T09:16:09.348001Z", + "iopub.status.busy": "2023-11-04T09:16:09.347549Z", + "iopub.status.idle": "2023-11-04T09:16:09.354648Z", + "shell.execute_reply": "2023-11-04T09:16:09.353992Z" } }, "outputs": [], @@ -500,10 +500,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:34.801002Z", - "iopub.status.busy": "2023-11-02T15:07:34.800374Z", - "iopub.status.idle": "2023-11-02T15:07:34.863149Z", - "shell.execute_reply": "2023-11-02T15:07:34.861877Z" + "iopub.execute_input": "2023-11-04T09:16:09.357138Z", + "iopub.status.busy": "2023-11-04T09:16:09.356683Z", + "iopub.status.idle": "2023-11-04T09:16:09.392377Z", + "shell.execute_reply": "2023-11-04T09:16:09.391594Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:34.869047Z", - "iopub.status.busy": "2023-11-02T15:07:34.868200Z", - "iopub.status.idle": "2023-11-02T15:07:34.925957Z", - "shell.execute_reply": "2023-11-02T15:07:34.924584Z" + "iopub.execute_input": "2023-11-04T09:16:09.395481Z", + "iopub.status.busy": "2023-11-04T09:16:09.395094Z", + "iopub.status.idle": "2023-11-04T09:16:09.432721Z", + "shell.execute_reply": "2023-11-04T09:16:09.432052Z" }, "nbsphinx": "hidden" }, @@ -602,10 +602,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:34.931161Z", - "iopub.status.busy": "2023-11-02T15:07:34.930700Z", - "iopub.status.idle": "2023-11-02T15:07:35.164522Z", - "shell.execute_reply": "2023-11-02T15:07:35.163456Z" + "iopub.execute_input": "2023-11-04T09:16:09.436219Z", + "iopub.status.busy": "2023-11-04T09:16:09.435642Z", + "iopub.status.idle": "2023-11-04T09:16:09.557849Z", + "shell.execute_reply": "2023-11-04T09:16:09.557115Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:35.170585Z", - "iopub.status.busy": "2023-11-02T15:07:35.168832Z", - "iopub.status.idle": "2023-11-02T15:07:40.547312Z", - "shell.execute_reply": "2023-11-02T15:07:40.546183Z" + "iopub.execute_input": "2023-11-04T09:16:09.560789Z", + "iopub.status.busy": "2023-11-04T09:16:09.560295Z", + "iopub.status.idle": "2023-11-04T09:16:12.040267Z", + "shell.execute_reply": "2023-11-04T09:16:12.039530Z" } }, "outputs": [ @@ -761,10 +761,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:40.552571Z", - "iopub.status.busy": "2023-11-02T15:07:40.551493Z", - "iopub.status.idle": "2023-11-02T15:07:40.676098Z", - "shell.execute_reply": "2023-11-02T15:07:40.672369Z" + "iopub.execute_input": "2023-11-04T09:16:12.042972Z", + "iopub.status.busy": "2023-11-04T09:16:12.042768Z", + "iopub.status.idle": "2023-11-04T09:16:12.103682Z", + "shell.execute_reply": "2023-11-04T09:16:12.103033Z" } }, "outputs": [ @@ -874,7 +874,50 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "08f60b2d38cc42e98d82fe0f56dd6113": { + "141bccbaa1b84638b5597f17dac77695": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4eff796825b5464ea264226a4bd36975", + "IPY_MODEL_b04f04cf7fad483caf771b0f1ca8a8fc", + "IPY_MODEL_9a19f9fa1acd410ab9c16486477ffaaa" + ], + "layout": "IPY_MODEL_f96bb5f8df604a7bab038649c636c62f" + } + }, + "246e380a4a994540b62486b8e82fb3c1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f3ee9faedc8e4899aad5a45d7c7f834b", + "placeholder": "​", + "style": "IPY_MODEL_60bd2fd252ab478ab001929b4206271f", + "value": "number of examples processed for checking labels: " + } + }, + "2bc53b93d8a6496f8123b7eb0c23a27d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -926,7 +969,98 @@ "width": null } }, - "18a37037a9574d52a551d21367e26e88": { + "3ec9399bd9a34e9e94819378b87ee672": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4a64caa094f44935bb9695390dcf4b6a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7928b3a17da544c186382a3cdaf43e89", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3ec9399bd9a34e9e94819378b87ee672", + "value": 50.0 + } + }, + "4eff796825b5464ea264226a4bd36975": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e2b3e4d57d114c0497e05de8c71a322b", + "placeholder": "​", + "style": "IPY_MODEL_74ce91236f9b4fe0bf72c5f32ebc6838", + "value": "number of examples processed for estimating thresholds: " + } + }, + "5dfbb75320db46d9b2f224128394ad17": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "60bd2fd252ab478ab001929b4206271f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "63a780d9bbca4d439548ce6ad209e6ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -978,7 +1112,22 @@ "width": null } }, - "29be87873c58416eb0ee1d7873a88f2f": { + "74ce91236f9b4fe0bf72c5f32ebc6838": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7928b3a17da544c186382a3cdaf43e89": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1030,7 +1179,59 @@ "width": null } }, - "462e18c7b9af4c8f8beb9d40c3c611ce": { + "8007052054864226aff6d65b1adda807": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8628158fda1f4e639da89db46f448428": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9a19f9fa1acd410ab9c16486477ffaaa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2bc53b93d8a6496f8123b7eb0c23a27d", + "placeholder": "​", + "style": "IPY_MODEL_8007052054864226aff6d65b1adda807", + "value": " 10000/? [00:00<00:00, 1059970.68it/s]" + } + }, + "9dbff80c15b240de879d1e056f4ecb98": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -1045,14 +1246,35 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b56ab48a4c3c46a2b9e48ead88de0c6a", - "IPY_MODEL_f1692615cadb44af8ff5ab604bfa1936", - "IPY_MODEL_b90d98e84bc54c4592aa27c4b378bbd8" + "IPY_MODEL_246e380a4a994540b62486b8e82fb3c1", + "IPY_MODEL_4a64caa094f44935bb9695390dcf4b6a", + "IPY_MODEL_a91d60c3ca314e4bbdb754f2c8e10058" ], - "layout": "IPY_MODEL_29be87873c58416eb0ee1d7873a88f2f" + "layout": "IPY_MODEL_63a780d9bbca4d439548ce6ad209e6ac" } }, - "4dc973539e7e4a03881ec9afdc5f77a6": { + "a91d60c3ca314e4bbdb754f2c8e10058": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ab2df39fb78a4e4da43516943cff61fc", + "placeholder": "​", + "style": "IPY_MODEL_5dfbb75320db46d9b2f224128394ad17", + "value": " 10000/? [00:00<00:00, 838961.48it/s]" + } + }, + "ab2df39fb78a4e4da43516943cff61fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1104,7 +1326,31 @@ "width": null } }, - "56e33d930e5e41b8b875d65ebfd588d0": { + "b04f04cf7fad483caf771b0f1ca8a8fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cfabe39cd5ca41e18fa09451c8774df9", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8628158fda1f4e639da89db46f448428", + "value": 50.0 + } + }, + "cfabe39cd5ca41e18fa09451c8774df9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1156,28 +1402,7 @@ "width": null } }, - "760b788ae963482fa2c2ce2432891ed3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7fa432aa35274124beb8243aadf7c1f6", - "placeholder": "​", - "style": "IPY_MODEL_c6743068432746f4a189504a3a1be579", - "value": " 10000/? [00:00<00:00, 562525.68it/s]" - } - }, - "7fa432aa35274124beb8243aadf7c1f6": { + "e2b3e4d57d114c0497e05de8c71a322b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1229,99 +1454,7 @@ "width": null } }, - "847cad27ff1749f0b12f8082f6af6aa5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "97b765d0f7064c6aa31f0a050da307dd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a01f00be75094c449203ffa4de8c5d2c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "afada712686d44929e67e8bb3883e07c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4dc973539e7e4a03881ec9afdc5f77a6", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_847cad27ff1749f0b12f8082f6af6aa5", - "value": 50.0 - } - }, - "b56ab48a4c3c46a2b9e48ead88de0c6a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b86019c9f9ca44658d2e7cf5659be0e2", - "placeholder": "​", - "style": "IPY_MODEL_a01f00be75094c449203ffa4de8c5d2c", - "value": "number of examples processed for checking labels: " - } - }, - "b86019c9f9ca44658d2e7cf5659be0e2": { + "f3ee9faedc8e4899aad5a45d7c7f834b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1373,80 +1506,7 @@ "width": null } }, - "b90d98e84bc54c4592aa27c4b378bbd8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_dd63df6c7a30448a977f2f55dc3f69d0", - "placeholder": "​", - "style": "IPY_MODEL_e126efaa9be3440ca91c5691c2a6407c", - "value": " 10000/? [00:00<00:00, 648099.26it/s]" - } - }, - "c6743068432746f4a189504a3a1be579": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ccdee57b5b0c4c699071d2367ce5bc0f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e6313729a53e46c3a3d6463be4c8bcf1", - "IPY_MODEL_afada712686d44929e67e8bb3883e07c", - "IPY_MODEL_760b788ae963482fa2c2ce2432891ed3" - ], - "layout": "IPY_MODEL_18a37037a9574d52a551d21367e26e88" - } - }, - "db4777950afc482a9cecf7c70c1d37bf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "dd63df6c7a30448a977f2f55dc3f69d0": { + "f96bb5f8df604a7bab038649c636c62f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1497,66 +1557,6 @@ "visibility": null, "width": null } - }, - "e126efaa9be3440ca91c5691c2a6407c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "e6313729a53e46c3a3d6463be4c8bcf1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_08f60b2d38cc42e98d82fe0f56dd6113", - "placeholder": "​", - "style": "IPY_MODEL_db4777950afc482a9cecf7c70c1d37bf", - "value": "number of examples processed for estimating thresholds: " - } - }, - "f1692615cadb44af8ff5ab604bfa1936": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_56e33d930e5e41b8b875d65ebfd588d0", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_97b765d0f7064c6aa31f0a050da307dd", - "value": 50.0 - } } }, "version_major": 2, diff --git a/master/tutorials/image.html b/master/tutorials/image.html index fd03d0c4c..9ff1911e6 100644 --- a/master/tutorials/image.html +++ b/master/tutorials/image.html @@ -874,67 +874,67 @@

2. Fetch and normalize the Fashion-MNIST dataset

-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1257,7 +1257,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-100%|██████████| 40/40 [00:01<00:00, 33.49it/s]
+100%|██████████| 40/40 [00:00<00:00, 63.93it/s]
 
@@ -1308,7 +1308,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-100%|██████████| 40/40 [00:01<00:00, 34.17it/s]
+100%|██████████| 40/40 [00:00<00:00, 66.88it/s]
 
@@ -1359,7 +1359,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-100%|██████████| 40/40 [00:01<00:00, 32.73it/s]
+100%|██████████| 40/40 [00:00<00:00, 66.12it/s]
 
-
-
+
@@ -1467,9 +1475,9 @@

View report - 258 + 30659 True - 0.000012 - [9762, 54565, 47139] - 0.000012 + 0.000015 + [30968] + 0.000015 - 9762 + 30968 True - 0.000012 - [258, 54565, 47139] - 0.000012 + 0.000015 + [30659] + 0.000015 - 30968 + 258 True - 0.000022 - [30659] - 0.000022 + 0.000017 + [9762, 54565, 47139] + 0.000017 - 30659 + 9762 True - 0.000022 - [30968] - 0.000022 + 0.000017 + [258, 54565, 47139] + 0.000017 54565 True - 0.000022 + 0.000026 [9762, 258, 47139] - 0.000022 + 0.000026 @@ -2298,35 +2306,35 @@

Low information images - is_low_information_issue low_information_score + is_low_information_issue 53050 - True 0.067975 + True 40875 - True 0.089929 + True 9594 - True 0.092601 + True 34825 - True 0.107744 + True 37530 - True 0.108516 + True @@ -2349,7 +2357,7 @@

Low information images

Here we can see a lot of low information images belong to the Sandal class.

diff --git a/master/tutorials/image.ipynb b/master/tutorials/image.ipynb index e3ab6a49c..0d6c0c157 100644 --- a/master/tutorials/image.ipynb +++ b/master/tutorials/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:46.724798Z", - "iopub.status.busy": "2023-11-02T15:07:46.724482Z", - "iopub.status.idle": "2023-11-02T15:07:50.455232Z", - "shell.execute_reply": "2023-11-02T15:07:50.453968Z" + "iopub.execute_input": "2023-11-04T09:16:17.413380Z", + "iopub.status.busy": "2023-11-04T09:16:17.413192Z", + "iopub.status.idle": "2023-11-04T09:16:19.485225Z", + "shell.execute_reply": "2023-11-04T09:16:19.484667Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:50.459743Z", - "iopub.status.busy": "2023-11-02T15:07:50.459163Z", - "iopub.status.idle": "2023-11-02T15:07:50.465535Z", - "shell.execute_reply": "2023-11-02T15:07:50.464536Z" + "iopub.execute_input": "2023-11-04T09:16:19.488237Z", + "iopub.status.busy": "2023-11-04T09:16:19.487740Z", + "iopub.status.idle": "2023-11-04T09:16:19.491483Z", + "shell.execute_reply": "2023-11-04T09:16:19.490959Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:07:50.469150Z", - "iopub.status.busy": "2023-11-02T15:07:50.468858Z", - "iopub.status.idle": "2023-11-02T15:08:17.486180Z", - "shell.execute_reply": "2023-11-02T15:08:17.484813Z" + "iopub.execute_input": "2023-11-04T09:16:19.493918Z", + "iopub.status.busy": "2023-11-04T09:16:19.493550Z", + "iopub.status.idle": "2023-11-04T09:16:32.590696Z", + "shell.execute_reply": "2023-11-04T09:16:32.590055Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d05f567fc66047acb55847aaadfee70c", + "model_id": "1281c5f69432452d9bbc3f768aa9125d", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "612cefa3dd9347ea8c741dcdce1f8161", + "model_id": "4a71592e32144d348d484a0166e2664c", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "167ad04aa70d4431a7f93209fa3f0b90", + "model_id": "44f5e4f8bb604c8595fa0747a397c469", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a9c1ed92d1764f1dbd2c3822fa8b6898", + "model_id": "fe602eb6950c4adb8193e1b4d6cb1670", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "be5d8ecbd7ba4d20a2dd9b9089ba0b11", + "model_id": "7522bd2e46614a60ad0b06357b2d72f4", "version_major": 2, "version_minor": 0 }, @@ -232,7 +232,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "761c0ed328c449059ece5399e5ff1233", + "model_id": "1a75238303184efa8cd395078e0d7c99", "version_major": 2, "version_minor": 0 }, @@ -246,7 +246,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1d522d5ab30c4b468f5e76bca05a50cc", + "model_id": "1621d8005b4444ea93969df9e9d7bdd3", "version_major": 2, "version_minor": 0 }, @@ -260,7 +260,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d36d9d9cbc4845c4b832ff3271c15cec", + "model_id": "3bd0ca523aa04d828364731056c5a4a4", "version_major": 2, "version_minor": 0 }, @@ -274,7 +274,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9b275e24abf4422ab8fd76f997e0928d", + "model_id": "537a7e5193204b0d9f24067d8b0d6a48", "version_major": 2, "version_minor": 0 }, @@ -288,7 +288,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7ab5d79c93ad4df5a716ff45665625e6", + "model_id": "260d17ac03e143209527054d9ba8baa0", "version_major": 2, "version_minor": 0 }, @@ -302,7 +302,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b98270fd10c84b9cbbb081039967ba17", + "model_id": "3e0a2134ee9540998f353457d1bf4ddf", "version_major": 2, "version_minor": 0 }, @@ -344,10 +344,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:08:17.491364Z", - "iopub.status.busy": "2023-11-02T15:08:17.490982Z", - "iopub.status.idle": "2023-11-02T15:08:17.497747Z", - "shell.execute_reply": "2023-11-02T15:08:17.496695Z" + "iopub.execute_input": "2023-11-04T09:16:32.593037Z", + "iopub.status.busy": "2023-11-04T09:16:32.592832Z", + "iopub.status.idle": "2023-11-04T09:16:32.596857Z", + "shell.execute_reply": "2023-11-04T09:16:32.596344Z" } }, "outputs": [ @@ -372,22 +372,22 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:08:17.502016Z", - "iopub.status.busy": "2023-11-02T15:08:17.501243Z", - "iopub.status.idle": "2023-11-02T15:08:42.567207Z", - "shell.execute_reply": "2023-11-02T15:08:42.565180Z" + "iopub.execute_input": "2023-11-04T09:16:32.599300Z", + "iopub.status.busy": "2023-11-04T09:16:32.598948Z", + "iopub.status.idle": "2023-11-04T09:16:43.366361Z", + "shell.execute_reply": "2023-11-04T09:16:43.365648Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a11ed46d134748e790cad78f74d23947", + "model_id": "3168e4736ff2453499544e814fad0da2", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "Map (num_proc=2): 0%| | 0/60000 [00:00\n", " 0\n", " True\n", - " 0.129916\n", + " 0.110901\n", " T - shirt / top\n", " Dress\n", " \n", " \n", " 1\n", " False\n", - " 0.981029\n", + " 0.974390\n", " T - shirt / top\n", " T - shirt / top\n", " \n", " \n", " 2\n", " False\n", - " 0.996466\n", + " 0.998733\n", " Sandal\n", " Sandal\n", " \n", " \n", " 3\n", " False\n", - " 0.855478\n", + " 0.937117\n", " Sandal\n", " Sandal\n", " \n", " \n", " 4\n", " False\n", - " 0.998550\n", + " 0.998755\n", " Dress\n", " Dress\n", " \n", @@ -1974,11 +1736,11 @@ ], "text/plain": [ " is_label_issue label_score given_label predicted_label\n", - "0 True 0.129916 T - shirt / top Dress\n", - "1 False 0.981029 T - shirt / top T - shirt / top\n", - "2 False 0.996466 Sandal Sandal\n", - "3 False 0.855478 Sandal Sandal\n", - "4 False 0.998550 Dress Dress" + "0 True 0.110901 T - shirt / top Dress\n", + "1 False 0.974390 T - shirt / top T - shirt / top\n", + "2 False 0.998733 Sandal Sandal\n", + "3 False 0.937117 Sandal Sandal\n", + "4 False 0.998755 Dress Dress" ] }, "execution_count": 16, @@ -2005,10 +1767,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:40.062031Z", - "iopub.status.busy": "2023-11-02T15:15:40.061703Z", - "iopub.status.idle": "2023-11-02T15:15:40.076401Z", - "shell.execute_reply": "2023-11-02T15:15:40.075484Z" + "iopub.execute_input": "2023-11-04T09:20:58.249456Z", + "iopub.status.busy": "2023-11-04T09:20:58.249254Z", + "iopub.status.idle": "2023-11-04T09:20:58.258283Z", + "shell.execute_reply": "2023-11-04T09:20:58.257683Z" } }, "outputs": [ @@ -2041,39 +1803,39 @@ " \n", " \n", " \n", - " 11262\n", + " 19228\n", " True\n", " 0.000005\n", - " Coat\n", - " T - shirt / top\n", + " Dress\n", + " Shirt\n", " \n", " \n", - " 19228\n", + " 54078\n", " True\n", - " 0.000009\n", + " 0.000010\n", + " Pullover\n", " Dress\n", - " Shirt\n", " \n", " \n", - " 53564\n", + " 11262\n", " True\n", - " 0.000019\n", - " Pullover\n", + " 0.000014\n", + " Coat\n", " T - shirt / top\n", " \n", " \n", - " 45386\n", + " 53564\n", " True\n", - " 0.000029\n", - " Coat\n", - " Trouser\n", + " 0.000017\n", + " Pullover\n", + " T - shirt / top\n", " \n", " \n", - " 54078\n", + " 5473\n", " True\n", - " 0.000031\n", + " 0.000017\n", " Pullover\n", - " Dress\n", + " Trouser\n", " \n", " \n", "\n", @@ -2081,11 +1843,11 @@ ], "text/plain": [ " is_label_issue label_score given_label predicted_label\n", - "11262 True 0.000005 Coat T - shirt / top\n", - "19228 True 0.000009 Dress Shirt\n", - "53564 True 0.000019 Pullover T - shirt / top\n", - "45386 True 0.000029 Coat Trouser\n", - "54078 True 0.000031 Pullover Dress" + "19228 True 0.000005 Dress Shirt\n", + "54078 True 0.000010 Pullover Dress\n", + "11262 True 0.000014 Coat T - shirt / top\n", + "53564 True 0.000017 Pullover T - shirt / top\n", + "5473 True 0.000017 Pullover Trouser" ] }, "execution_count": 17, @@ -2138,10 +1900,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:40.080429Z", - "iopub.status.busy": "2023-11-02T15:15:40.080100Z", - "iopub.status.idle": "2023-11-02T15:15:40.087696Z", - "shell.execute_reply": "2023-11-02T15:15:40.086726Z" + "iopub.execute_input": "2023-11-04T09:20:58.260931Z", + "iopub.status.busy": "2023-11-04T09:20:58.260471Z", + "iopub.status.idle": "2023-11-04T09:20:58.265537Z", + "shell.execute_reply": "2023-11-04T09:20:58.264858Z" }, "nbsphinx": "hidden" }, @@ -2187,16 +1949,16 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:40.092584Z", - "iopub.status.busy": "2023-11-02T15:15:40.092269Z", - "iopub.status.idle": "2023-11-02T15:15:41.333110Z", - "shell.execute_reply": "2023-11-02T15:15:41.332043Z" + "iopub.execute_input": "2023-11-04T09:20:58.267759Z", + "iopub.status.busy": "2023-11-04T09:20:58.267554Z", + "iopub.status.idle": "2023-11-04T09:20:58.923032Z", + "shell.execute_reply": "2023-11-04T09:20:58.922361Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk8AAAGWCAYAAABhHmcUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeXidVbX/v2eex8xN2zTpnLkTlKlQKFAqYwtWQahUfoJyEa44XlTAi/cRRFGuXvCqFC2i3AoWBASsFGQotAVaSkOxLQmdMidnns/Zvz/i2t3nzXsyNWOzP8+TJ8l5x/Oud+299lprr61hjDFIJBKJRCKRSAaEdqxvQCKRSCQSiWQiIY0niUQikUgkkkEgjSeJRCKRSCSSQSCNJ4lEIpFIJJJBII0niUQikUgkkkEgjSeJRCKRSCSSQSCNJ4lEIpFIJJJBII0niUQikUgkkkEgjSeJRCKRSCSSQTDmxlN9fT2CwaDqtsWLF+OVV17p9xzPPfccFi1aBJPJhNtuu23A2x588EFUV1ejpqYGtbW1eOyxx7K2v/rqq1iyZAmqqqpQWVmJbdu2AQD++Mc/or6+HtXV1aiursaPf/zjAX/fychIy7i1tRWrV69GbW0t5s+fj5/+9Kd8W1+yevnll3HKKaegsrISVVVV+MY3voFMJsO333vvvaisrER9fT2WLl2K7du3D+p7TxaGQ7533XUXCgoKUF9fj/r6elxzzTV82y9+8QvU1NRwOT744IMDOg4AnnzySdTU1HD5NzU1ZW1va2tDUVERLr/88gF/38nGcMiXUHvejz76KFwuF5fh8uXL+bY///nPqK2tRX19PSorK3HHHXeAFsWIRqO47rrruGwvvfRStLe382P37NmDc845B/Pnz8f8+fPx1FNPDe6LTxJGWn+JXLp2zz33YObMmZg5cybuuOMO/vkPfvADfr76+no4nU589atfBQBkMhl89atfRWVlJWpra7F8+XIcOHBg4F96OGDjmEWLFrGtW7f2u99HH33Edu3axe644w526623Dnjbli1bmM/nY4wxdujQIZaXl8cOHDjAGGPs6NGjrKysjDU0NDDGGIvFYqy7u5sxxtjrr7/OmpubGWOM+Xw+NnPmzAHdp6Q3wyHjq6++mt1xxx2MMcZCoRCrq6tj27dvZ4z1Lat3332XHTx4kDHGWDQaZWeccQbbsGEDY4yx9957j02fPp0Fg0HGGGMbN25kS5YsOcFvO/kYqHzvvPPOXnIlSEcZY8zv97Np06axd999t9/j3n33XTZ37lx29OhRxhhjgUCAhcPhrH0uv/xytn79enbZZZf1e4+S3gxUvoTa896wYUPO5x8IBFg6nWaMMRaPx9mSJUvYU089xRhj7IEHHmBr1qxhmUyGMcbYDTfcwL7+9a8zxhgLh8OsvLycvfbaa4wxxlKpFGtraxvkt5MMh/4SarJ/9dVXWWVlJQuFQiwWi7FFixaxZ599ttexsViMeb1etnPnTsYYY3/+85/ZKaecwhKJBGOMsf/8z/9kV1111YC/13Aw5p4njUYDn88HAHjzzTf56PL6669HKpUa0DnmzJmDuro66PX6QW0777zz4HK5AADTpk1DcXExDh8+DAD4n//5H1x99dWYP38+AMBkMsHtdgMAzjjjDBQXFwMAXC4X5s2b12tEKznOSMt49+7dWLVqFQDAZrNh2bJl2LhxI4C+ZbVgwQJUVFQAAMxmM+rr6/k2jUaDZDKJcDgMAPD5fJg6deqQvv/JznDIty9IRwEgHA4jmUwO6Lgf//jH+OpXv4opU6YAABwOB6xWK9/+m9/8BuXl5TjrrLNO+B5PZoZLvkN53g6HA1ptTzcVi8UQj8eh0Wj4fUUiESSTSaRSKYRCIa6jjz/+OJYuXYozzzwTAKDT6VBQUDDg604mRlp/gdyyf+KJJ3DttdfCZrPBZDJh/fr1+MMf/tDr+M2bN2PatGlYtGgRv+d4PI5YLAbGGAKBwKi3z2NuPBGJRAJr167F/fffjw8++ACf/exnsXv3br794Ycfxve+970Ru/6WLVvQ3d2NJUuWAAAaGhoQjUaxYsUK1NfX45ZbbuEdqUhDQwO2bduGFStWjNi9nSyMlIwXLVqExx9/HJlMBu3t7XjxxRdVjdm+ZNXS0oI//elPuPjiiwEAdXV1+Pd//3eUl5dj6tSpeOCBB/Df//3fg763ycSJynfTpk2oq6vDueeei61bt2Zt+9Of/oSqqirMmDEDX/va17BgwYJ+j2toaMChQ4dw9tlnY8GCBfjud7+LdDoNAGhsbMTDDz+MH/zgB8P19U96TkS+/T3v119/HfX19Tj99NOxadOmrG1vvvkmampqUFhYiHPPPReXXXYZAODGG2+Ew+FAYWEhioqK4Pf78W//9m8AemRvMplw8cUXo76+Htddd11WSE/Sm5HS375kf+jQIZSVlfH/Z8yYgUOHDvXa7ze/+Q2+8IUv8P8vueQSnHPOOSguLkZJSQn+/ve/4/vf//6gv/MJMap+LhUAsO7ubrZ79242Y8aMrG0VFRWDcgn35Trsa9v777/Ppk6dyl28jDF2ySWXsIULF7Kuri6WSCTYNddcw26//fas4w4fPsxmzZrF/u///m/A9zgZGWkZt7e3s3Xr1rHa2lq2YsUK9sUvfpFdccUVWfv0JSu/388WL17MfvzjH/PPPv74Y7Z06VIe8vnv//5vdsYZZwz4PicTwyHf5uZm7oJ//fXXWUFBAWtqauq1X2NjI6uvr2f79u3r97iamhq2atUqFolEWCgUYueeey777//+b5bJZNg555zD3nrrLcZY32EjyYnLt7/n3d7ezsOpDQ0NbOrUqWzbtm29ztPW1sbOOuss9uqrrzLGGHv66afZlVdeyaLRKIvH4+yzn/0sD9/fcsstbOrUqezIkSMsk8mwb33rW2zNmjVDfQQnNSOpv/3J/uKLL2aPP/44//+5555jZ511Vta5m5qamMViYZ2dnfyzt99+m5133nmsu7ubpdNp9vWvf51dc801g/3qJ8S48TypQe7ZkaShoQEXX3wxHnnkEe7iBYDp06fjU5/6FDweDwwGAz772c/irbfe4tuPHTuGFStW4Dvf+Q6uuuqqEb/Pk5XhkHF+fj4effRR7N69G3/729+g0WhQVVXFt/clq2AwiJUrV+Kyyy7jyYjA8URjCvlcf/31eOONN5BIJE74ficTA5VvcXExDAYDgJ5Q64IFC7Bz585e+82YMQOnnnoqnn322X6Pmz59OtasWQOLxQKbzYbVq1fjrbfeQiAQwPvvv4+1a9dyT9ZLL72E8847bzi+8qRiIPLt73nn5+fzcOr8+fOxatUqvPHGG73OU1BQgFWrVnHP1P/+7//iiiuugNlshtFoxDXXXMM9HtOnT8fy5ctRWloKjUaDz33uc1ntt2RgnKj+9if76dOn45NPPuHnaWpqwvTp07POvWHDBlx22WXwer38s9/97nc499xz4Xa7odVqsW7dul7e6pFm3BhP8+bNQyqV4g9gy5YtOHjw4Ihe88MPP8SqVavwv//7vzj//POztl199dXYunUr4vE4AOCvf/0r6urqAADNzc0477zz8M1vfhPr1q0b0Xs8mRgpGXd2dvI8mPfeew+bN2/Gl7/8ZQB9yyoUCmHlypVYuXIlvvOd72Rtq6iowBtvvIFQKAQAePbZZzFnzhwYjcYTvt+TlROR75EjR/jf+/fvx65du1BTUwOgZ4BDtLe34+WXX0ZtbW2/x1199dV46aWXkMlkkEql8NJLL6Gurg4ulwudnZ1oampCU1MT7r//flxwwQX4+9//fmIP4CRnqPLt73kfPXqU79va2oqXX36Zh2X37dvHZ8AGg0E899xzXPYVFRV46aWXwBgDYwzPPfccqqurAQCf/vSnsWPHDgQCAQDA888/z9tviTojob/9yf6qq67Cxo0bEQ6HEY/H8cgjj+Azn/kMP1cmk8GGDRuyQnZAj+xffvllPph99tlnuexHjVH1c6mAf7kMGWPsjTfeYHV1day6uppdf/31rK6ujrsMH3roIfbd735X9RxbtmxhpaWlzOFwMLvdzkpLS9nTTz/d77YVK1Ywt9vN6urq+M8LL7zAz3vfffex+fPns+rqarZ27Vp+nzfccAOzWq1Zxz3yyCMj84BOAkZaxs8//zybNWsWmzdvHluyZAl36zPWt6zuueceptfrs7bdc889jDHGXf1z585ltbW17LTTTuMzPSTZDId8r7vuOlZVVcXq6urYwoUL2aZNm/i2L37xi2z+/Pmsrq6O1dbWsl/84hcDOi6dTrPbb7+dzZs3j1VVVbGbbrqJxePxXteWYbu+GQ75iiif97e//W1WWVnJ6urqWE1NTZZ877rrLjZ//nxWW1vLqqqq2J133sln13V2drI1a9awyspKVllZyVavXs3a29v5sb/73e9YVVUVq6mpYStXrmSHDh068YdxEjLS+iuipmt33303Ky8vZ+Xl5exb3/pW1rYXX3yRzZgxg8uciMVi7IYbbmDz5s1jNTU17Pzzz+czp0cLDWP/KpohkUgkEolEIumXcRO2k0gkEolEIpkISONJIpFIJBKJZBBI40kikUgkEolkEIxL42nnzp246KKLUF5ejkWLFmHBggW45557+PZzzjkHmzdvHvR533nnHaxcuRIVFRVYvHgxzjjjjCGdh/D5fPjhD3845OMnGyMhV1oXa8GCBZg/fz7q6upw9913IxqNDvPdS4CRlWF9fT2qqqpw0UUXqRbKUzJjxgzs2rVryNeVDB3ZRk9cpA4PD+POeNqzZw9WrlyJm2++GY2NjXjnnXfw97//nU85HSp79+7FhRdeiJtvvhkff/wxdu7ciU2bNsHv9w/5nFIxB85IyRUAli9fjvfeew8ffvgh/va3v+Gdd97B2rVrVfcdruUGJiMjLcNdu3Zh7969mDNnDv793/99GO54ZKAq5ZMV2UZPXKQO9zAcOjzujKd7770XN9xwA18mAwC8Xi/uu+++EzrvD3/4Q6xfvx6XXHIJ/2zKlCm89s+BAwewYsUKvoK3aAFfc801WLx4MWpra/GpT30KLS0tAICbbroJwWAQ9fX1WLx48Qnd38nOSMlVSWFhIX77299iy5Yt2Lt3L4CeQm933nknlixZgm9/+9sIBoP4f//v/+GUU05BbW0tvvjFL/J6Iffccw/mz5/PV/L+5JNPEI1GsXbtWlRWVqKurg4XXHDBsN7zRGG0ZHjhhRfio48+ApC97hbQU1Cxv3Uk29rasHr1atTU1KC6uhq//OUvAQC///3vs+6dMYaKigq+BMXGjRtx6qmnYuHChVi2bBn//NFHH8Xy5cuxZs0a1NTUYPv27cP4bSceso2euEgdHj4dHnfG07vvvotTTz11SMc+88wzuOGGG1S3vfPOOzjttNNyHnvNNdfgqquuwvvvv49NmzbhC1/4Aq98+tOf/hQ7d+7E+++/j7POOgt33XUXgJ61fhwOB3bt2qVaDVlynJGSqxoejwezZ8/mxhPQszDojh078KMf/Qi33347zjrrLGzfvh27d+9GJpPBz372M3R3d+P+++/Hu+++i127duHNN99EUVERXnjhBfh8PjQ0NGD37t344x//OKTvMdEZDRmm02ls2rSJLwA6FG655RbMnTsXe/bswcsvv4x77rkHb731Fq8wTh3rK6+8Ao/Hg7q6Orzxxhv4wx/+gH/84x9499138YMf/ABXX301P+fbb7+N//qv/8KePXv6bEcmA7KNnrhIHR4+He69RP044+tf/zr+9re/ob29HS+99FLWshtKLr30Ulx66aWDvkYwGMS7777LlwSYPXs2zjzzTLz22msoKyvD448/jo0bNyIWiyEWiyE/P3/I30fSw0jLVVm+bP369fzvzZs3Y9u2bfjJT34CAIhGo9DpdHA6nZg9ezY+97nP4YILLsCnPvUpTJ06FXV1dfjwww/x5S9/GWeffTZWrVo1qHs5WRlOGW7duhX19fUAgIULF+LHP/7xkO9ry5YteOeddwD0eCJXr16NLVu2YOnSpVizZg02btyIr3/963j00Udx/fXXAwCefvpp7N69O6tj6erq4rlzp59+OubOnTvkezqZkW30xEXq8NAZd56nBQsWZLnUfvSjH2HXrl0wGAx8CY6hsGjRImzbtm3A+9OaPq+//joefPBBPP/88/jggw/wk5/8BLFYbMj3MVkZKbmq0d3djQMHDmSV67fb7fxvxhiefPJJ7Nq1C7t27cJHH32EX/7yl9DpdHjrrbdw2223oa2tDUuXLsVrr72GiooKNDQ0YOXKlXjjjTdQXV2N7u7uYb3nicBIypDyJXbt2oVHHnmEd346nS4rP2Eouieuz7V+/Xps2LABoVAIzz77LB+ZMsawbt06fg+7du1Cc3MzLBYLgOz3Z7Ij2+iJi9Th4WPcGU/f+MY38Ktf/QrPP/88/yyRSJxwou83vvENPPLII3juuef4Zy0tLfjtb38Lh8OBhQsXYsOGDQB6Yuuvv/46li1bhu7ubjgcDuTl5SGRSPDYKwA4nU5Eo1G5WOwAGCm5Kmlvb8f69euxYsUKVFZWqu5z+eWX49577+XXJmMrGAyitbUVZ511Fr773e/izDPPxHvvvYcjR45Ao9Hg0ksvxf333w/GGA4fPjys9z0RGC0ZisyaNQtvv/02AOCpp55COBzu95gVK1bgV7/6FYCe9+Gpp57ia1fSqPRrX/saVqxYwRcbvfTSS/HYY4/xGUKZTEaGeXIg2+iJi9Th4WPcGU91dXV4/vnn8bOf/Qzl5eU45ZRTsHz5cnzpS1/CnDlz+H433HADpk6dyn+2bdvWZ0y2pqYGf/3rX/Gzn/0MFRUVqKmpwerVq+HxeAD0JKI98cQTqKurw5VXXolf//rXmD59OlauXIm5c+di7ty5OOuss7hbEuhJtLvuuutQW1srkxH7YaTkCvS4ixcsWIB58+ZhxYoVqKurwxNPPJFz/wceeAAWiwX19fWora3Feeedh6amJvj9fp6kWFtbi2QyiXXr1mHPnj0444wzUFdXhwULFuDaa6/li5NOJkZShrl44IEHcOutt2LhwoV47733kJeX1+8xDz74ID788EPU1NRg+fLluOOOO7Jc+ddffz1++ctfcnc/AJx11lm47777cMUVV6Curg5VVVWTNretP2QbPXGROjx8yLXtJBKJRCKRSAbBuPM8SSQSiUQikYxnpPEkkUgkEolEMgiGbDz5fD587nOfQ3V1NWpra1FdXY3HH38cQE/tBTHuPBCoKGFlZSV0Oh3/P1el6MFy11134bbbblPd9swzz/RZDXXz5s146623+jx/W1ub6jTPV155BS+88MKg7vVkZ7jfHaAnEXHRokWor6/HvHnzcO655yKTyQDIXgJAyQ033ICtW7fmPO9dd9110s7ckTqcjdTh40y0d0Ny4oxEuzxjxgzMnTsXdXV1mDVrFi677DK8+eabw3znY8OQ6zx95zvfQUFBAfbs2QONRoNgMMgLVw0F6tyamppQX1+fs7MbCfqqX5FKpbB582bU19dj6dKlOc/x9NNPq57jlVdegc/nw8qVK4ftfic6w/3uNDc344tf/CLeeecdlJWVAegpBidOb83Fr3/9a9XPU6kU9Ho97r77btx2220wm81Dvr/xitThbKQOH2cs3g3SubFgLK89XhhumRNPPPEEN7yeeuoprFq1Ci+++GKvYp002NVqJ0ZAbMh3eeTIEZSUlPAOyuFwYPbs2cN2Y0Nl//79fGZUTU0NvvOd7/Btzc3NuOSSS1BZWYlzzz0XXV1dAHpKt19++eUAehrKqqoqfOELX0B9fT1+//vf45lnnsGPfvQj1NfX5+xsN2/ejCuuuCLrs127duHhhx/G73//e9TX1+P73/8+gJ4S8rW1tXwpgaNHj/L7OPfcc3HppZeisrISy5Yt67eM/URkuN+d1tZW6HQ6PmUV6CnSJhpPTz31FE477TSUl5fnXATz85//PNavX49ly5ahuroaN910EwDwGTxtbW1DvsfxiNThbKQOH2e03o0ZM2bgm9/8Jk455RSsW7cOoVAI69evR3V1Naqrq3H33XfzfZULx1555ZV49NFHAfQMgiorK1FfX4+amho+NX7//v341Kc+hSVLlqC2thY///nP+fHKZZsmO6Mh89WrV+Omm27C/fffD6DHm7xmzRpceOGFqK6uRnNzM1588UWceeaZWLRoEU455RQeGcjVLvzlL3/hS/ZUV1fj6aefHtZ7zgkbIi+//DLzer1s4cKF7Oabb2Z/+ctf+LatW7eyuro61eMuuugitmPHjpznbWxsZC6Xa6i3xb7yla+w//qv/+L/d3Z2MsYYu/POO1lZWRnr6OhgjDG2du1avt+GDRvYZZddxu9do9GwV155hZ9j3bp17IEHHsh5zUAgwCoqKlgmk+m17c4772S33nor/3/Pnj2sqKiIHTlyhDHG2D333MNWrlzJ78NoNLKGhgbGGGP33nsvO//88wf5BMY/w/3upNNptnr1aubxeNjll1/O7rvvPv58GWOsrKyM3XLLLYwxxtrb25nT6eTbzz77bPbnP/+ZMdYj59raWhYIBPixAFh3d/cJfuPxidTh40gdzma03o2ysjL2hS98gT/3b3zjG+zqq69m6XSahUIhVl9fz/74xz8yxrJ1lTHG1qxZwzZs2MAYY8zpdLJjx44xxhhLJBIsGAyyVCrFFi1axD788EPGGGPhcJjV1NSw7du3M8Z6dPvuu+8e1HM5mRkJmZeVlbH33nsv67OnnnqKzZ8/nzHWo1slJSWspaWFMcbYwYMH2dKlS5nf72eMMbZ//35WXFzMYrFYznahtraWvfnmm4yxnr5gtNrrIXueli9fjkOHDuE///M/4Xa7ceONN+Lmm2/u97jnn39+ROttLFu2DL/61a9wxx134KWXXoLb7ebbVq5cyWtMnHbaaTh48KDqOSoqKnD22WcP+Jp//etfsXLlygGFibZu3YqVK1eitLQUAPDlL38ZL7/8Mq/Aevrpp2P+/PkAgC9+8Yt45ZVXTrpV3If73dFqtXjyySfx5ptv8irgVVVVOHDgAN+HqtDm5+ejoqICjY2Nqte46qqr4HA4hvjNJhZSh48jdTib0Xw3Pv/5z/PnvmXLFvy///f/oNVqYbPZcN111+Fvf/tbv+c477zzcO211+JnP/sZGhsbYbfb8dFHH2Hv3r34zGc+g/r6epx++ukIBoNoaGjgx4nLNk12RkvmTFEdadWqVSgqKgIAvPDCCzhw4ACWLVuG+vp6XHnlldBqtTh06FDOduG8887Drbfeivvuuw/vv/9+VnsxkpxQcNFms2HVqlW455578OSTT2Ljxo3DdV85aWho4MmGaoJds2YN3njjDcydOxc///nPs1ZgFvNWdDpdzqqqgy3j/uc//5mHDAbLQBrrk5GReHfmzZuHG2+8EZs3b8bSpUvxzDPP8G0jJfuJjtThHqQO92a03o2+ZCU+W71en3OZjyeffBI//OEPkUwmsWrVKvzxj38EYwxerzdruY7GxkasW7duQNeejIyGzHfs2NHn0lnnn39+lsyOHj2K2bNn52wXfvKTn2DDhg2wWq1Yt24d7rvvvmG/ZzWGbDy99NJLWet7vfPOO5g5c+aw3FRfVFZW8of6i1/8otf2/fv3o6ioCNdddx3uu+++fmfYDASn0wm/36+6LZFIYNu2bTjnnHMGdOzy5cvxwgsv4NixYwB6Vv0+77zzoNPpAADbtm3Dvn37APTE8ZcvX863nSwM97tz9OhRvmAo0LPcSmNj47C8jw6HI6fsJzpSh3uQOtybsXo3VqxYgd/85jdgjCEcDmPjxo244IILAGQv89HY2IjXX38dQE+y98GDB7F48WJ87Wtfw5VXXont27dj7ty5cDqdfEkXoGdZF8qTk2QzGjJ/+umn8dBDD+H2229X3X7hhRdiy5YteP/99/lntBZfrnZh3759qKqqwr/927/hS1/60rC0FwNhyNML9uzZg9tvvx2MMWi1WpSUlOCxxx7j2xsaGjB16lT+/2mnnYZNmzZh1apV+P73vz9ibv8//elPeOyxx2A0GpHJZPDwww+f8DmvvfZafP7zn8fmzZtx8803Z5Wof/nll3HmmWfCYDCoHnvFFVdg48aNqK+vx+rVq/G9730PP/rRj/jMnWnTpvE1fIAel/83v/lNHDhwAHl5efjd7353wvc/3hjudyeVSuH73/8+GhsbYbVakUqlsG7dOlx22WUnfK+33347zj//fFitVrz00ksoLCw84XOOF6QO9yB1uDdj9W5897vfxVe+8hXU1NQA6Amjf/rTnwbQsy7b2rVrUVNTg6qqKj5bK51OY/369ejq6oJer0dBQQE2bNgAvV6PZ599FrfddhseeOABpNNp5Ofn8+n3kmxGSuZr166F2WxGOBxGZWUlnn/++V4z7YhZs2bh8ccfx4033ohIJIJEIoEFCxbg8ccfz9ku/Md//Ac++ugjGI1GWK1WPPTQQ8P4VHIjl2c5QW666SasWLECV1555Qmf69FHH8XmzZuzZpRIJJKRReqwRCIZLJO7sMUwMByjYolEMnZIHZZIJINFep4kEolEIpFIBsHEKOUpkUgkEolEMk6QxpNEIpFIJBLJIJDGk0QikUgkEskgkMaTRCKRSCQSySCQxpNEIpFIJBLJIJDGk0QikUgkEskgGLY6TyO5vhOdW62qQmFhIRYtWoTi4mJ4vV6UlpbCYrEgkUggFovxaqk6nQ4ajQZarRZarRaRSASffPIJOjs70dbWhj179qCzs3NQ1x4uJkq1iKHKWKPRQKPRgDGm+l31ej30ej2cTicuu+wynHvuubDb7SgpKYHb7UYkEkFzczNCoRAikQgCgQCSySQCgQC6u7uRSqW4XE0mE8rLy1FcXAyLxYLi4mI4HA6+XavVYtu2bfi///s/tLS0oK2tDceOHUMymUQymcy5Vhrd/1CZCDIeKR0m+QI91eBpfbLReCbKa+eS74kymeXbH3a7HaWlpXA4HCgpKUFVVRUcDgdCoRBCoRBSqRR8Ph8CgQB0Oh1vy+PxONra2hAMBtHR0YEPP/wwa/mQ0UTKNzd6vR5WqxUGgwHFxcWYN28e7HY7AoEAOjs7kUgkEAgEuHwLCgrgdrthNpt5+3zs2DG8/fbbaG1tRTqdRjKZHNVnPpRrTcgimVqtFhaLBUajESUlJaiurkZ5eTmsViu8Xi8MBgNvpMl40mq1WcfH43F4vV6EQiF88skn8Pl80Ol0iMViCIfDE24V9PGO0nAym82w2Wx8cdd0Og2NRoPm5mbs3r0bLpcLjDFoNBqk02lYLBYYDAbYbDa+BIvNZoPZbEY6nYbBYIBer4fRaERxcTHy8/Oh1+uRyWQQCoUQjUbR2dmJWCyGvXv3oqWlhf9vNpthNBq5AZXJZJBMJrPegYnQeI41Go0GOp0OWq0WbrcbhYWFMJlMsFgssFqtXJb0LLVaLTQaDTKZDDdsMpkMEokEGGOIx+OIRqNZOqzRaKDX6/m1SO70t3Kwo9PpsoynZDKJeDyOY8eOobu7G+l0GolEQur7MEGysNlsmDVrFoqKimA2m+H1emGxWODxeDBt2jRYLBYu31QqhXA4jFAoBJ1Oh/z8fLjdbiSTSW48hUIhlJaWIhQKoaurC4cOHUIsFuM/Uj9HF4vFgpkzZ6KgoIAvi2IwGOBwOFBYWMjbZTKCotEoYrEYNBoNTCYTjEYjH1RrNBp4PB7MnTsXxcXFXMaJRALRaBSRSGRcyndCGE/KB6fX6+H1euFyuTB37lysWLECdXV1AJAlEDKYRIs8k8nwjjydTiOTyeCDDz6Az+eD2WxGR0cHDh8+PKqj45MdtWdot9sxdepUmEwm+P1+vvDqvn37cOjQIRQUFPAO0mKxIC8vD2azmRs2mUwGwWAQ3d3dyGQyMJvN3MDyeDxwOp1IJBLo7OxEIBDA0aNH+cjm2LFj+OijjxCJRGC1WuF0OgEAyWSSd6TBYBDRaHRUn9NEhzx/er0eFRUVOOOMM+B2u+H1epGXl8f1kYwho9EIvV6PZDKJYDCIZDKJWCyGUCiEeDyOrq4utLW1IZVKwWg0wmg08oETXcftdvOBlM1mg9Fo5LpN90SL8pJx3NXVhZdffhl79uxBPB6Hz+eTxtMwQB2j2WxGaWkprrrqKpx55plZnn+DwQCLxQKdTodMJsPb41gshng8Dp1OB4/HA4fDgVgsho6ODoRCId5mZzIZvPvuu3j22WfR3t7OIwdSfqOLy+XCihUrcNppp2XpHg1QGGNwuVzwer18sEODp1AohHA4jHA4jI8//hgdHR2w2WyYNm0aAODIkSPYt28fgsEg2traEI/HR8xjfCJMCOMJOG4UAT3Gk8Vigd1uh8vlQn5+PoqKipBOp5FKpXjjLB4jhl3Io0H7tLa2wu12w+VyIRqNwmAw8BdAGk/DC8nEYDDAbDbDbDYjFotBp9MhnU7zESgA+P1+RCIRLjvyami1WjDGkEwmYbFYkMlkYLVaYbFYoNfrecdKikyhPjKc2tvbeQdtMpl4w06kUil+LaDH4FZ+B/leHIdkSp4/g8EAp9OJoqIibjiRJ5AgQ8tgMCCRSCAYDHJPhN/vRyKR4IZVMpmE0WjksrLZbNxg8nq9sFqtMBqNcLlcMBgM3HgiPdfr9WCM8feBPCAWi4Ub6FKmJw49a7PZDLvdjilTpmDmzJkAjg9aRUOKYIwhkUggkUhAp9PB5XLBbrcjkUgA6PFS63Q67q1oaWmB2+1GNBpFKBQas3DVZMZgMKCgoABlZWUwGAyw2+0wGAyIxWIIBoNIp9PIy8tDcXExjEYjb0/T6TQ6Ozvh9/thMBhgMpm40e1wOKDX6xGNRmG325FOp7nMxyPj3ngSPQputxsOhwN2ux2zZ89GcXExpkyZAoPBAJ/Px918qVQKHR0daGlpQTKZhMlk4j+lpaXcq0GNpcFgQFVVFfLy8nD06FG4XC6EQiE+qqGwkrITlQwOq9WKvLw8mEwmaLVa+Hw+AEAkEuHhGRqNdnZ24t1330V7eztMJhPcbjeXocPh4CNXGpGIoVkyeilngmS5f/9++Hw+RCIRAD0hnWQyyUO2FosFDocDAFBQUMBz444ePYpgMMivQ6Em2dn2uO+nTJkCh8MBt9uN0tJSPoqsqKiAzWbjxqwypEbyFr1JZPwkEgmEQiEYDAZuCCUSCW500/uQl5cHu93ODXKtVotMJsPDwGRoAz16bjAY4PV6sWDBAni9XnR2dmLPnj1obW1FPB5HMBgcl6PciYDBYMDs2bMxe/ZsbjhT+JvaZTKCSI9IPvF4nA+ixMFRIpHg4VwyhvPz83HGGWegu7sbO3bsQGtrq5TZGCC2gdTmkgGt1WqRSqXg9/uh0WgQiUQQiUQQj8fR3NyMzs5OxONxdHZ2IhwOI5VKQa/Xc/03m83c4zxeGdfGk0ajgc1mQ15eHiwWCyoqKjBt2jS43W4sWLAAZWVlfLTb2dmJSCQCn8+HeDyOPXv24K233kIkEuENu9PpxLJly2A2m7lwybpdsmQJkskkmpqa4PV6EQgE0NDQgHA4jGg0ikQiIY2nE8Rut6O8vBwulwvNzc1obGzk+QpiKDWdTiMSiaC7u5vnsZBCUs4EeZrsdjvPYYvH40gkEujq6uLei+7ubkSjUR5/T6fT0Gq1PJE4Ho8jHA5Dr9ejtLSUJzIWFRXB7XZz4ysYDGZ5KwHIUAEAm82G+fPnY9q0aZgyZQrq6+uRl5eX5SmiTpCMJTEEQ/IgOZJuUpKp0WjkRnI8HgcAHsa1WCwoLCyEw+FAOp1GPB7PCteRvlKjTqE/q9WKM844A0uWLOEhehqAxWIx2REPEZPJhOrqapx//vk894X0sru7G7FYjOctkpFEXkHKbaEQK7UDJA+NRsN/FxUV4YILLuDequ3bt8sQ+xgitt+kZ6SzXV1dSKfTOHr0KI4ePYpoNIrGxka0tLRAq9XCarXCZDJxTzOlZthsNn4u6XnqB1IkcVaUVquFw+GA0+mE1Wrl+RMulwtutxtutzurwxV/KH8iFovBZDLxxGBqXMnDQSNfq9WaFafV6XTwer28M6WYPLn/6VgxAVbSGzEsYjKZYLPZYLfbYTKZeLKuaJCQEpJhG4vFss5FihWLxWCz2bj8SNaU5+Tz+XguDZ2D5EThI/I+kpeCvBd0nw6HgxtWEnV0Oh3sdjvXR6/XC4/Hk5VzqDQylbIWw+gU1qFBkdlsBgAe0iHvFP3odDruhewLMYRP+m6xWBAIBPi9k2dEMjQ0Gg0sFgvcbjesVis3jMQJARS6IXmQ3MiopvZbbJ+B7AknRqMRFosFqVSKG9uSsUWZ4iLOrqY81Vgsxo1k8ipTmF8cVNHxpNvSeOoHj8eDWbNmwel08sbYaDTC4XDA5XLBaDSioKAAXq+Xz94g5SRBWSwWAD2JobNmzQLQ0+ja7XbY7XZYrVZMmTIFZrO5l8FDAiooKMC8efMQj8cxY8YMLF26lE+LDwaDiEQiOHLkCNrb2xGJRHDs2DGeoyPpjdFoRH5+Pmw2G0pKSjBnzhx4PB4kEgl8+OGHyGQyfKYUgCzvDiUUi16FWCyGlpYW3rlSzJwa51QqxQ1dasytVmvWrCrl7Eu6rt1uR35+Pg8v5uXlIRqNcuOJGgL6ezJDnZ/NZsOMGTNQU1MDh8PBZ7qKDSEZT6IBAyArFENyod8GgwElJSVwOp288xW9VJR0TAYy7SOGEsS8R3pHxG1arRZOpxOnnnoqZs+ejYaGBu5plAwe0lmr1cqNXrEESDKZzJoVKybzU54pTSSgECzNmBXlC4DnNDLGeLhHplaMLco2kdIsMpkM/H4/nE4nH2zZ7XbodDo+05naWBoMG41GpNPpcT2YGTfGk8vlQl1dHUpKSlBYWIjp06fzhGJy84ozbmhKrGg80T6ZTIZ32plMBhaLhedNkSEmeo3EKdb5+fmw2+3cGCOPFM3s8Pl82LFjB/bv38/DQ7KxzY3RaERRURHy8/MxZcoUzJo1C263G62trTxJnBpLADycqtPpuEuXZtdlMhk+eiG5qUEdIyURm81mJJNJhMNhJJNJvp94DvJGUDgoPz+fh2/FuLtsnHsgI9dqtaKsrAyVlZUAkOU1FEuFiBM3COWMVrEkgU6ng9PphNPp5CE4+gmHw4jFYrysgeidJMSZtqIHjEI/9L45HA4sWrQIQE9+5T/+8Y+ReFyTAtF4Ip0h44kMqEwmw40d0XgiLwN5HcXtJH+xfAgNqoDjuWyA1M+xQPQgiwYUtb8U0XE4HHyQSmE58iSLA1RK06B3YLwypsYTKRtZoy6Xi08zpxo+ZL2KYT0x3ELnIWg7TYnNZDJcQGouQDGEQIpHRhl5RCiBjeoLud1u5OfngzHGi4GNRWGviQDJgkIwVqsVdrsdZrOZN3rkvhdnbYmzcsQfILuBVHozAPAGN5dxlUvZxRmANBoSE50lPZCM6IfkSN6BgeqAcgas+FttXzVZ93f+XJDsxZIJ1M5IBgcZqPQ+kBEEZMtTGdZRhlLVdF0pQzHEK3qdyMMhDo4kI4to8KrppihDtb/VvP+5jh+PjKnxRPVAXC4X5syZg9raWkydOpXHtGkUKo46k8lkVn4EufiVeQ/k1qeRMI2GKXkVON4JUDIquX3JKBNzbmi6tMvlQnV1NaZPn45jx44hGo3CZrMhEAigpaVFdRQ8mRFnsXk8HkydOhWFhYX4+OOPUVhYyGu8RKNRaDQa7vInuZL8xdk5ZNCQQSbOqAKyZ35QAT4xYVzs5MUp1C6XC6WlpTwsTAU5x7PreCzQ6XR85isVwlQbhKgZImoNpNJwouOj0SjXd3EfsVK48lrKRlrZWIvXoPeKDGYqdUH7yYHQwKBBEdVnstlsvMwEyUnMZVHmtQLH63GJRpTohaTBFQAe7mGMwePx8FSMjo4OnpcqGVnI6+xyubL0THz2YnSHftPfojwBdb0d74yp8UQhncLCQsyYMQMVFRWYOnVqlheHHjQ1msp8BtF7IXZy1PmKMzkop4Jc96KQEokEH7WQkGmGEJ2bwoZ2ux0A4Ha78fHHHyORSPAZf9J4yoY6J5vNBpfLhYKCAhQVFaGgoAAejwexWAzpdBqBQAAAeD6L2IiSvMTGlJSXXMEEvTMUIojFYjzsJyqy0kuo1Wphs9mQn5/P75c8n9IbkY0Y4qQwOEHGkxguy2WIiA2mGH4nnSe5qe0v/lar6aY2alXmW1F4n7zUyppfshPuHxrEiHmlVJdJOVFANKDE3EYAWYMjZZhX2ZlSWwz0hF29Xi8AIBwO9+rAJSODRqPhRjMA3t4q9Y76brXfarKaCEYTMSbGEz0gk8kEr9eL4uJieDwebtyIVqpSGMqHTUaVuA+ArARDceoxdawiuWYDKaGGnLbr9Xp4PB4UFxcjlUrxuLvkOGR4Kl36FosFXq+X56x0dXVxNzyNKmnkKr4PdE7xfSADS6z5JCaiajSarFmWonzJe+VwOHgNMQrzTiRFHk2ow6Sf4TY4qBMlz5Ayv00tTK9ENMbUtqmFCcmjYbVa+TIusiPuHwp5iu+CUkcBda8jRQeURpMSZaid9qX2ggxfyeih9Cz2116KOtefXuXS0fHEqBtPpDDk+q+trUVtbS0PjyiTr8VRhhhuExtY8vaI61tR9VlKUCTFEtexEuvMiJ4qcfosIXqi6MdgMKCmpgbl5eXYvXs39u3bh66urpF9gBMM8jzRqJRG+oWFhairq0NpaSk0mp417agMQV5eHl/XSswnU4bvAHCvVDgc5tXIHQ4HnyotzvqhhHGSJQDk5eXx+k6zZs1CWVkZdDodIpEIL9wmPU/Z0Iw3WoNM9M6R50jpDaJt/SF6kNUa2f7ymNR+97WPiMlkQlFREV8uqL29XdZ86geNRsMHQnl5eVk1nJT7icYUdbbUXieTyawVBAixvVWuIEHe4ry8PABAc3OzHPCMEplMhq8GQIMOtUK4at5eZRkKsU2nAc9EKAM0Jp4nevFp1fvy8nL+kOPxeNYoRFREtXouoiBIeFptT5G9SCTCZ9spi6+J4QEaOSlzI2hUBCDLA0LXoxXA0+k0Wltbx3U11LFCDK2KdXnsdjtKSkpgMpnw8ccf82dOs3VoNlU8Hs9SNDqnqGQAeLFLmqWnzIejYn0kN5K11Wrlq3zn5eXB4/EAAJ/VJRvj3lCStcViyWo0xVwh5SgzV+Kwklwepr4Y7IiWUA6O9Ho9Dy9T/TFJ/9ByWbQ4rOh96sv4FSeFiH8rIbmKtYDoGIPBAKvVimg0KtvfUYQiA/F4nCfsq0HvgNhvDmRApKz7NB4ZdeNJr9ejqKgIHo8HZWVlPGdCbGTVrFWgt2tQqUziZxqNhs/AED1PwHFhKddKU2v4c9X1ocaBvF12ux1FRUW8DD3VnpnsiPliZIyS50+clkx1PcQOS/Qw0lRWSkylECmdj5Zc0Wg0PHeJMcYXlcwVOqCyBB6Ph8fvxcZcrCc12NlkJytKz5MYrlaOIPujr1yovvYZyPb+vF7kuaYCnIwxvlC0XDNtYFDuC63gYDabexnAanlL4nZCmaYhDpBom/h+abVavlwTTeiRjA6ULkNV/wH08hoSYi4b9ZdUcojKFNBn1E+IdfnGK6NuPFksFlRXV6O6uhr5+fmYOnUqL2IoFkETDRgKsVAnSoJT5iCJU1XJpUvbRc8TfUYjZrqWUlBq1q/YCFDFY/JAVVZWwuVy4ejRo/jnP/8pk8eR7aUQp7MDPWESi8XCq47TWkbK3CbyVmm1WhQUFGDWrFmw2WwIhUJ8OR5xvbri4mLMnj0bsVgMhw8fhs/nU1VCrVaLvLw8zJkzh3ueSPlpNGUymWC32+FwOJBIJPjMvckMDYBmzZoFl8vVy+gk+Ymdnhq5RpbK8I7y7/7Op9ZRazQa1VABeRhpDbW8vDykUqmspUIkudFoNHA6nZg6dSry8vJ4XS5RDn0ZUMqcViA7j01pPInT46kWGHmwlZNHJCOHGLaj5c+ooCkZP6JjQixlQXmF9Df1D5RvGggEeC7seC7/M+rGE+U6UZ6JOBVc6dJT80YpPU+58iooXKSERpu0DwlXrTqtmjdKhAwwclvT7LHu7m7p8v8X4jOi0b1YT0v0PgHqtT/oHBRbFwuukYEqTnk2m81wOp1ZC03mUkCTyQSn0wmXy5XleqaGWhwVKZPNJysUcqfVAMTla0SPQX8Gz0BzmvrSQeV+g0UciDF2vJ4bjYwl/UOz7ShsB6jXX8tFrvZb+R6pGWUUtqN186R+jg6kN+JEHdErSCg9ibSPWGGefsTUDqUzZTwy6sYTeYTcbjdfDZ1CIdRhibFRZUhO/K0M8QDHlU8s3iWOXkTUPhPPn2vkK8b0KQ/KYDCguLgYRqMRPp9Prof2L8RSBWSc0NpWNNONRh0UPhFr8FCDSHIkVzEtA0IjGjLAaTHKQ4cOcUM2HA7zd0DZuJJBRvWiRK8SnZvcycqw4mRFNFBJrvS+9zUQArI7xb48SLk8FMq/lceI+tpXR6oWXqQFoc1mM9ra2qTnaQCQAUNrkIrhdPEZ9xWKVb4bAwnzUXtsMpng8XjA2PHluSQjD0WEIpEID5dS1XfSG3HwSm1oKpXKmplJ7b/JZMoatMRiMUQiET5Ji1D282PJmHiexOJ6lNwNgM9sEo0n5cMSFU1ZxVY50qUii2KeitioixazeB2xiJc4+qEOnTwS4qjVbDZj5syZKCkpQUdHhyxb8C90Oh03lqkkPxkhVAHe6XTC6/Xy0SMVs6QRCnBcblT0EkBWeQjReDp27BgPr4XDYT4JQVkJlww4qlFDBVPFsCzVAKIle6Tx1GM8ORwOvpQNhWQBZA0a1AYhSg+yWoiO/hd/K49RHqc0nPq7f+XUeMYYbDYbysvLEYvFcOzYManDA0CjOZ5jKOYN0raBlCBQGsbiMaJc1TxUNpsNRUVF3AMlPU+jQyaTQSQSgd/vh9Fo5G0pAD6opVxRoMfDbzabeV9JE02cTidvQxwOB6/2Hw6H4ff7+VJcwPirATVqxhMpBM1sE2vpiFPQlSNCtQYVGNiDVGtkxfPksmjVrqsWXlAaVTTLi2b3iYnokxkagYjGrpi/IC7vIRonZPAow6c0y0OZk0YyoZl3lAxM3kFxNo/4rim9lIS4XTnpYLIjznIVOzwxz6E/T5DyeasxkH1yoXZNer/UvBvk6Uyn09JzPAjEAsK5EobVUIZklPJQe1/Ekhik02J/IhkdyMlAs9ABdc+h6GUW+3axrRDr/4mDYOVC3+ONUWkhdDodryReWFiIadOmwev19jIuRFevuHivuF6R2ppJ4v/0mwRLnic6hzK3SRkSFDtiKmtAXiwxpi4u7wGALzpst9tRUFCAwsJCaLVahMNhhEKhcfsCjDRiwrjoRaLQDwC+dAstx0Grq1Ol8VQqhVgsxr1Ohw4dymqkM5kMgsFg1uKSlGio0fReK49CdHq9nufcieFdum8APCTh8Xh4MuRkJxwOY/v27fD7/SgtLcWKFSswe/bsrFmTsVgMoVAoqwEUG1ElSo8g0LtWzEB0SNxX2TmLRrI4pZ4a9FAohH379qG7uxuffPKJXCdtAJDHwWaz8WVZxA5PlKnSA6WWH5PLW6XcRu8TzXSm2XbjzTtxsqAWAaI+Vm0lAGq3qdYi1eGLxWLc6KWBcTKZ5CE/mlBECePjuc7aqBlPU6ZMQU1NDfLz8zF9+nTk5eVlzXQRhUIjGcZ6llZRJgXTfmp/i5DxQ94HteJc4uwgpYuY6gxRY0suSOrgxetT/o5Go0FRURGmTJkCvV6PtrY2RCKRSTtDi6YTiyutk/FEHjqn0wmPxwOz2YxAIMAL5lEdISo3QCUJWltbuWEsNqqicZtIJLK8W6LxRC5+g8HQq6ifmBdF56SwYiKRkB4J9BhP27Ztw86dO1FVVYX6+npUV1cDON4h+v1+3lAqdU6NvvJbgKEbTqJ3jCYukEFPs23pJxQKYe/evTh27BgOHTqUNQ1bkhsKfdtstl4TNAaaxyTqstLQonOJbbVoPDmdTrnCwwgievxEw1gsXizKnOQkrhARCoWycpjEFB1x7Vk6Zzwe5zNgx6vjYdR7AmrYxPXGqDOlDk6sF5HLYMr1v1K51Cxmtc+V4QHxRaBOWMxzEsN2ZIVTY6s0Bser8EcLUa5AtodRGRYTPYH0XJWjWPG9ocZWWZyvrx+6J2VYVw06t9jZTnYY61nMORaLIRgMoqurC52dndwoJT0B+p911d/zFN3+4mfKgY7y/nKdi95DMqTIS5ZKpRAMBhEMBhEIBLjhJ+kfcZCi9ODmkr+aZ1BtX2UahSh70ZMpXl8y8oiDImXJILFPJONINLJoICO25+IPHSsrjKPHQm1vb8eHH34Ij8cDl8vFPUyUOOZwOJCfn8+T/kQFiUajXEDkwclllNBnylipWkhATcGVoTha5JLWPSNvGXlDKNQUCAR4ovL777+PTz75BD6fD5FIZFy/ACONuF6YaHyS/KkTE0citEhzKBTKWl+M8uXsdnuWyxgAr0xOikmz9sRCa2SoAdnGmVg9XhkyoHBsQUEBwuGw9DwpaG1txaZNm/DWW29h+vTpWLp0KfLz8wFk12UTn+9gOzi1gY5oPKmFiEiPxdwKmvVJ4Vqj0Yi2tjbs2LEDhw8fxuHDh7F37150dXXxkKOkf8Q8VmUxYqVHSemJVPNQ0eeiftI+4jZ6n5SDL+VAWHJi5DJqKZ1CrK1IAyvKO/X7/byfBHreFVr8nSI7FLajiWPkdSLPk3jN8WQcj0pPkMlk0NnZiWg0CqfTicLCQp4HU1hYCJvNxoslOp1OAMfDZtFoNGuZFNEdr/Ywc3l8co1+lHkYpLBAzwwBamzJeBJzpjQaDV8vraOjA++//z46Ozvx8ccfc0Nqsisx5UTQNGJxREIGjpgsSF7JeDyOQCCAUCjEw2uUeG61WpHJZPgSLuS+p1wm8hJRvg3lrYnXEEc39AP09kiR4ez1etHe3i5znhR0dnbihRdegFarxcKFC+F2uzFz5kw+w5ImAvQXugHUq/ir/a80ktTOq/QwiuFj0mez2YyWlhbs2bMH7733Hrq6utDY2MjX15zsujsQRM8vzW5W1tFTeoSUXgblucS2mEI6pL9KA0oZmlcL90mGD9GpkUwm+UAXOG480VJY3d3dOHbsGA+pUnSAJhaIoTk6FwBuOImTfYjxJNNRG0aLsUyfz4e2tjaYzWakUim+NhEl54pFE6PRKPcmqCUiiogjErXw3EAfvDIZmWoLaTQ9Nal8Ph+CwSBisRja29sRiUTQ3NyMzs5O+Hw+hMPhcR2rHW3EWXNKV73Y4IleAtFDRMYWHS/mRYjhXdpGhhAZT7lqfJE8RUVV64TFWk/jaeQzHqAODgCCwSCam5thMpngdrsBgOe5kTzVnq9Sp/vSceXnSgNK3C56JTQaDc+f1Gg06OzshF6vR1NTE7q6uhAMBvli0FJvB4c4+FELr4r/A31Xlhf3FwfM4vujBhlRVP9tPFemPlmg9pj6durfKaRPMsglB/JM0xItap7H8SzDUTGeGGO8c0okEti1axcOHjzIy7OT25eKrLndbhQVFcFisWDOnDmorKyEXq/n7kCgdy4UCZKsYFIkcbvSZdxXg0vHkfeoq6uLux8PHjyI1tZWBAIBHDx4EN3d3YhEIujq6kIikUAoFJIzdf4FTSW2WCzczSvOYASQVYHcarXC5XIhHA7zGRsAeGkCETFBXKvVchc/hXmpY6fwDRVwE43hQCCAtrY2xONx2O12PoIVj6OlY2i7RJ1jx47h2WefhcPhwIwZM1BTUwOn04nS0lJMmzaN5xgppzYTuTrUXNuU+4jnImOdvNnU7nzwwQeIxWLo6Ojg+U0HDhyAz+fjRrRkcIjlApQhM2XoDsgeEIn7KOuwAdnhO7UOVsRqtcLr9SIcDiMQCPBQkeTEEI0Y8Te1t/F4HH6/H52dnejq6sLhw4d5v0mRAOWEHBrw2Gw2bgOIJX5khXEBceYbFTlUQ6PRoLi4GDNnzoTL5YLFYkFNTQ33UpHxpMyLIkQjSfytTHBTM5yA49YwAG5J05RL+tm3bx8OHTqErq4u7N27F21tbSPxyE4KRM8NQSNJscYH/U0hPiqSSQ2tmPdAjag43VUMB4quZJKzqITkctZoNIhEIggEAtBqtbxEglLRKVeGwoISdbq7u9Hd3c09O7Rkkd1uR0VFBYxGY9ZkCuo0ib4aSrXwvFJvxb8phGA2m+FwOBCNRtHW1oZ33nkHPp8PBw8eREtLy7ge2U4UaFaq6C0mlG2s2A6r5Tspc+Jo/1yeS/EeKCxLBRwlw4eanoh9eiQS4YORzs5OXnmc2kxRZtS2azQabnCLs6XVZvaNR8Zd9qvoQSK3n1iATc0NLP5Wy38QjSgRtX1JiEBPyDAYDCIej6OlpQXt7e0Ih8M8REcLGEr6Rjn6pP/F2Dm5epVhEzqOjCMalah1pmo/4nmURd0AcINc9Igp752MOjnbbmAwxnhJiWQyiWAwqOrtVeaniI0mofYZnUeEvITi+0VQWCEcDvOQu3LZB8nQEdeAFD3uau0zkDsk05dOK1G23aSnVqsVqVRKeohHCdGAovwlZQpGLoMXOD5ApUiR6MU0mUw8akWMp3y2cWc8AeDFEKmzstvtMJvNiEajfPaaKBDyPoieKDHJXJz2qBwViSE6SjymWVutra1obGyE3+/He++9hz179vBGWCzaKOkbalzFlbaB4+77cDjMJxSI7nwx900sWKo2Y0v0RIryFut7iWEjel/i8Ti6urp4ArrY8VKHTrWgqIK8JBu10Ft7ezveffdd2O12FBYW4tRTT+WjTNI5UY7i7Cu1jk9MRO7vPpS5N7ROVnNzMw4cOIBoNJoV0ukvdCjJDYXfrVYrz12lunyikayUtTIkowzbiflOap4qZVkbCq/n5eVBr9fD5/ON4lM4uVFL2KaUCIrOhMNh7migNByaQZ1Ld6l9Bo7PljaZTHC5XHC73Tw/WlyiZTwxLo0nsXAWAF6gUhz5q4XcRI+GqIBq4TtlfJ32Fd2HyWQSPp+PLzS7b98+OX15CPTnEUwmk9wwViaBKxeKpuOUxpPooRJDtmKtEbE+F0F5WNFotJds6TpU+I9mE0l6o3yuVBDParUiEAj08jypeQ6UEzxO5F7Ezpo8T5FIBN3d3arFL5X3Lxk41GZSZ6ncliuPSelVUttP3F/8TGmQkZ6azWbEYjHpeRpmlLohhl/J80QpLmJKhTgZKNfgh85N/TytfScu4Qb0XxNutBmXxhMVrjMajb0y9tUaXrXOlNyBtJ2OBZBlOCkbTXFf5QsiGTzKcJ2oSBSyE6e80v5kyIgJhKJRBGQrtDijT9yH6gwZjcasJXbExjcUCkGn0/GkdPGdoHAAnWu8KfB4QNmx0d/KIrhqSyupJaKqGTEDSRxVy6WiZWL6G8Hmuq5EHZKnGM7ua2AhGrRKw4nab7UityKkm6I3iq5JekodrzSeRhYymE0mE38HRC+gckKXeJyI2F7TAFer1cLpdCIej/PZ9rTveGp/x9x4UhtpUGgMAA/l0LZcSqHWcKt5KtTyLZTHi+5lMfdK3C42ApK+URpONJuN6oFEIpEszxMAbjzRGofUaNIoR2lIkZEkhurEEbHBYIDFYuH/UwOr0WjQ1dXFc3PouuIIl0ZAFHaS9EapB+JsR+B46FYZXlUawsrQel/XALLbDzpONKRDoRA6Ojrg8/kQCARUzyF1ePDQ7CibzcaLY6oNRgFk6b3SeBL1jI5Xa+PFd4lC72InrdH0TOyQS7WMDhqNBhaLhS/LQwaUst6WaOAq5SrqPLXrQI8Hqri4GCaTCZFIBEePHu3VLo8Hxtx4UkO0QslwGshDU3ZsfTW2fSWxKfOn+kpaHE/CHE/kCquKkDEkJnKTspHBJIbwlN4JseyEWtViOk7MpxBn9dG54/E4DAaD6rsmNvzKEZWkb0RDSOzklCF1tf2Vo0w1HVTTX6XsUqkUIpEIIpGILB8yjJCRQx6HvtpT2r+vkNxAQzN9FdikpGPpIR55lM9bGUIVEdNkCLW2XDSKzWZz1mLy45FxaTzROnE6nY6Hc/orXieOWqjzJQVT5tGouYapcxbXqKNcGJqJpRb3lfSGRoFUGVyZK6QMw9Kokuow0efkMVIuQEnbRblSWE70PgHHG1vyVkWjUZjN5qwREQAetqMOVlmMk3IqZKM8eGipHTEPAlAP99H/ylC7GkoDi94P0c0fi8Xg8/nQ3d0t16sbRki37XY7X8S9P5mppVso6+6JBrTY5ioNa+UASvQ0G41GGbYbYbTanoXdnU4nrFYrAPA+mnRQ2beqhd3EwZRYozE/Px9msxlHjhwZtwPWMTeeRC8PQR2pRqNBLBbjBlR/CwWKbmHyXInxdABZjbeIGKqjIovhcFh11Jqr0Zf0oNVqYbVaYbfb4XQ6eWVuZahTmeRN8W7alzxEFDYV5Sker9Fo+NRWseItkD2zh46nOlLK0VA0GuWuY/Ea5JKWFcYHDxkwfr8fQE8hQ4vF0qsDFPfvL79J6a0SQ7pKr3E4HEZbWxuv/C8ZHoxGI5xOJ1/mBui/crjSCy16HMR9yAOtZjyJ4V6lF4rW0ZTh9ZFHp9PBbrfD6/XyEKlyLTpAvdSI2mxpclpQyHXKlCmIxWI4ePDguDWEx9x4yoVyVKFUpP5cxLk+V458+ruuMrdG3E+ijppLlz4HkDXSpB9lvgpwPE9GjHcrXfzKH2UIIddIV6nkoqyVI2jlzB7J4KCwrJr3uK/8poF4nZSGlPL8ZEiLeXKEDLsPHTUvT385ablQiwQM1Pso7qssXyAZOcTIAE2oOdGilmK/QOE68vaPR10dt8YT0KMUtEAsgCyvwEDyHcSyBX3NvlMeJ+bG0AwtekEk/UNhO7vdDqvV2quWFoCsmRpUnp9W3HY4HEin0wgEArxSsN/v5/FwymkgY4jkSwYReYso1KY2+qGJAIRer+dVx5XGl9hIkDE40Dw8CXjeEVWP768zHKiRqsybUMtPTCQSCAQCCAQCskTBMGI0Gnk9HnHRb6D3pBxxUKP0LNNkDOB4vT6xTI0YNRBR5spQXo3dbkc4HJYJ4yMEGacmkwl2u52vYSkOUMS+FjjeF6sNlMS2lsoc6PV6vqID9SFUU0oc9I617o5ri4CMp2Aw2KtDU4Z8lMcB6knGamEjcTudHwCfiivr+wwOSvhTM54IqslCxhPlw1ChOzFEJ+ZAkHJR+QI6p1hOgowncbadmCMVi8WyFm9mrKeGkzJJnUazFLKjCrhiqQVJ31BnGI1GYTKZeAMpblcj1wBJ7fwAsryGSuOJlo2Ix+MD9mZI+sZoNMLtdsPj8eQ0iNW8wkrjiXIjxfacCiGLJS7UZCtGJdLpNIxGI8/DEgdYkqGhpqfUphoMBjgcDni9XsTjcXR3d/dabUOZRJ6rfIGYagP09A12ux2MMdjtdlgsFj7QFY1q8dixYFwbT4QyUZg+y2XQKA0tpaCU+yofvlLgufKkJLkhJVMaTkrjhHIYyBMkzroT8xyUK7eLPwPJg6PREuVUEGIojxphce0lumc6lzKJXTbO/SM+48EeN5CQjfi38n+Sk9oio7JzHTpkCIlh+VztrFqbqxZKp//VFg3ONUBWDnpliH3kIC8gpVMoy1MMVr/F8yrlSD90LbUCrGPNmBtPA7EglYpA+6nlwoiz6nIlhivdyrmuZzKZ4HA4kEqlZLLwICDPk81m40uaiDOhyGsUiUQQi8XQ1dWFY8eO8dL+Op0O6XSaFzZMJpOwWq3cOyQmBivzkkRPhBh+pUVqTSYTXwpGdPtTbTG/3w+LxQKr1dprIWCj0Qiv14vCwkJeeFEWT+0fZekRQs3bq2YAKVF6IcQQjtIYjkajfMFiWjZERBpQQ4PWkaPaaSJq+YZiOIcGpDQ5R6fTZS2ZI9aCo/wXceKH+K5QW0D75qp0Lhk6oo5SRMHpdGbV1hPlK07E6Ss1hv4WDS9lVMhiscDtdmf1GeNFX8fceBosSjc9fUbeCSA7b0k5elUqtth4KgVMhRVjsZjMeRoE1ODRWkVi6I3kkkqlkEgkEI1GEQgE0NXVhVgsxg2uTCbDjSsAsFgssFgsvOqsMvatNpolBaTwgMfjgc1mQyqVQnt7e5ani5ZpCYVCyGQy/L7FcxoMBjidTng8HjDGEAgEpPE0AETjSWkYiSUhxM/78jopR7miMaVM+k8kEgiFQgiFQnIx4GGEQuOUr9iX50GUjZjQTSVENBoN/H5/1oxMs9mcFTZXljQQz0tGFOm6rPM0PKhFZEwmE2w2GywWS1ZUgQYrymXP1FBup//FkBy13eTAyGQyCAaDI/Ath864sAhyjf6U8XKg7xyJgXzeV+Op5l4ery7D8Y7SoAGynz3lwdAaaKSA1NkxxngCInA82ZtGn7m8D8Dx5XfoNyl2IpGATqfjZS/EgmzUCfT3ncT3QTbQA6evBjWXsZTLgMqlw+K7IL4jakUVJScGeY9Ix9QGoEB2mgUZyjRLL51Oo7OzE5lMBq2trWhtbYVer0dRURE8Hk+W51gMvSpL1qjl40jdHH5oUCzmsqrplai3ud4L5f65wu9UfoKiEuPJUzwujCclomtXnOmUq86TOBVe3C7OilJ2smqNufIz8jxRBWqpkAODniOF4IDe01hplftgMAifz8c7uc7OToTDYa40lF9EhUrFEaj4N408yRgSQwmZTAaxWAydnZ3Q6/Xo7u7mnghyQdvtdtjtdlWjSFRkWpIgFArJ92GAiLkoYnhV7FDpt+jBoP8H8pyVnif6TFm9XnLiiHpGkz3EOmqEqEu0cKzVakV+fj4sFgsOHDiADz74AIFAAA0NDdi3bx/MZjNOP/101NTUwGKxoLi4GE6nE+FwmHudtVptr7ARAJjNZrjdbkQiEZhMpjF5NiczOp0OeXl5mDFjBvLy8mCz2QColwhRDmTobzHNAui9MgTtTzOfzWYzioqKYDab0dXVlXX+sW5/x6XxBKg3uNRBioJRxk/pc/E8onDF3Bu12LwIuabFxGfJwBBHpUBvBYvH49xVT6E5xnqKGobDYej1eng8Hh7ii8VifMYFNcpiR0lhAPI4URVxCheJVa7D4TAvvKrX67OK/amFAOk3vQ8mk0mGBgaB+ExzhcqVeqr8fCjPWgzp9FdgVzI4lEnDynCpWm03WvibPBeJRAKffPIJOjo6sGvXLrzzzjuw2WwoKirClClT4HK5UFRUxGfjJZNJRKNRWK3WXoNi4PgMXmWuomR40Gg0sNlsyMvLg9vtzlrRQQ2l4aRmYCm3iyFA8iRS2E6ZdzzW+jwujSeq/yGGUtQaVdGg6S88l+t/ZeyVGlvguKeBXIaSgUGyoUKZysUiKRGQRqAzZsxAZWUlYrEYd9MD4IYPlRYguaiF6oDjoxhahoMxxl39brcb5eXlcLlc6OrqgsvlQjKZRHFxMUpLS+FwODBlyhS+3ISylpMYPpYN8+BRGqRqbnrRsBpIzkSuhruvBl0yPNAAhcI3qVSKlxQgRGOZ6rqJ7ajRaITD4UAsFuM5hjqdDg6HAwUFBXA4HLDb7TCbzUgmk9wzbLVaVcM31FbE43HpZRwB6Nm73W44HA4eTh3IwCSXPouDXoL6YMYYr/lEk7bGE+PSIqAaIpSYJlqogHrNCOVIRBRGrpwHsTFXjpDoPvLy8qDT6bjCKhlPlvB4gRpLSvwkA4qSuLVaLbxeLzweD9LpNOx2O0pLS5FOp+FwOGCz2RAIBLBnzx4cOnSIr02mrCOivCb9Jte++D6UlpZixYoVmD17NlpaWvDxxx8jFothxowZmDlzJiwWC2+sAWSNfnKFkaXnaWCIRqdo9KgV1KP9gd5GkOjyFwc6fRlQUidHBiqSSTNYxQK14iCJwve0/hklGpMXo6SkhE/EoH1LS0tRXV0Ns9nMPcLkdYjH41mz9cTk82g0Cp/PB7/fr1oQVXJiUNiuoqKCt+uRSCRrObW+UOsryWAWF2Wn/FQqL1NUVMTTJcZTmzsujSedTsfXKhNLv4soi2SqJRAqhaUWzlPuJ16L7oPi+rkYT0ls4wXyIJHXSRm2oZk6APjsOcYY3G43XC4Xuru70drais7OTu6RGuhoUrn0CtDj0i8tLcWsWbNgs9l4HlV5eTlmz56dNarJZDJ8kWC1kbT0Pg0OtVCoMvTeF+I+ynP1dxwAKasRQGyjxVIk4ixXgowdGkTRNhpgkbeXdMtms8Hj8fAwHM22s9lsPM9JXB2Azkfro4kTTSTDB+UgOZ1OHkqlkPhgydX3ioMqSpWwWCxIpVLjbsA6Lo0nyuh3OBywWCx8hpPYKZKS9uVVUhZoVOsIRZSNLXXw4tR1Sf/QsxeNDPHZkhKQPK1WK6ZMmcL/ttls0Gq1mD59OpLJJAoLC2Gz2eD3+7O8FmKnKCqxsuYTAMyfPx9ut5t7NcvKypBMJpGfn89nz4mJxWpT4YHjuR6yQx44YqV+AL2eca6GlLYpB0HKULtSl5XGmexIhx/yElEnKk5VB3q3uWKOFH3u9/vR2NiIjo4OdHV18RzFtrY2HDhwADabjSeMM8b4OnoUKqJ2n8qedHV14ciRI+jo6BhX9YBOFmjQS32yciKGskCpMkIknkfN4SAWo6aEcYr6ZDKZcbfkzpgbT+KDpodpNpvh9Xrhdru5lSvWElEmf6slmoqdNFnI4nbx2srCi3Q8jYpo1p1k4FCHKU4vpXCe2OABgNvtRnFxcdb0Z5fLhVgshvz8fF6+IJFIcCNJLLjHWM8yPuSqV1Y2Z4yhuLgYJSUlvF5UYWFh1v1Sw61WSFGcZEBTocURtCQ31ACSl4KMZnHQI3r0+vJIqW1TM5zEv5UjWcnwQHmp5HkSZ7tSPScxJEuzpcXSBm1tbXjvvffQ1taGo0eP8mK1jY2NePvtt5Gfn88naZAHQqvVIhKJ8LwmagtisRiOHTuGvXv3wu/3w+fzje0DOgmhGZYOhwNarRaBQCDLOy8OlvtqG9WiRqLRRWE7ALyuFOXYjac2d8yNJzWUtXdyWbBKg0mZ3Kv8USI2wHS82MCSAUYdpih0Sd8ow1u5ctGA44n5YniPvI9utxvpdBo2my2rGrjSeIrFYojFYtzAURpPeXl5vKGnEIJGo+FTqGlfNWVW3r+s8TQ41GoCKY2ZgYbhcu2n5nmSejpyiPot6nhfbTLpJOlvJBKB3+/n1d8p3yUUCqG7uxt6vZ6XKAGOv0dqukkGVDAYRCgUUg3dS4aGOLghDyJ9JraXyiKmQ7kGIZ5rvA5Yx9x4UmvgqF5HXl4eHA4Hd9cq85ToQYqzPEQrmJRVTEYTk1RF96FaY0uFHOPxOMxmMwoLCxGJRBAMBlU9FJIeKNFPXOJE6QGg5VDoc0rOpsYxlUrBZDLB4/EAOC7vZDKJSCTCw3YkYzKCSNnIU0kjU6vVynMnkskkgsFgL88lebaA4x21+O6IXhLJwKEK76KXAuidSK4Mx6nlMSqNcNHbIRpk9Dldm9oQyfAg5oOKuSiit0npeQKAjo4O7N27F5FIBG+//Taamprg8/kQDAZ5u3Dw4EEkEglMnToVxcXFfOIQhdjFtoRknEwmkUgkeA03mTA+PGg0Gr7Ystvtht1u5/0teetpP+VAWUTUS7U0GuUxoi7TYJcm9RgMBp6TOpaMO+OJktIKCgqQn58Pl8sFk8nEH5iycRRR1v2hxpJis9SZii5msWNXGlDkkoxGo7BYLCgpKUEoFOLJxnQf9FuOdHsgzxHlrImdGylbPB7nI0QqfkdKQg0tNc6UWGowGBCLxRAIBHgCIRlbVIFYNJ6oQGIqleKNLI14fT4fkslk1sw5Zd4UfabslHN5QiXq0NqCFosla7BC3gjRcBL/VuZEEUrDSfRIKdsHSjom41kyPFAYhfRTHIiSzoheKcoTbGtrw4svvojm5mY0NTXh4MGDiEajXMfi8Tj++c9/4uOPP0Z5eTlmzZoFj8cDj8cDl8vFJ5mQrtK7lUwmeSFcKqgpOXE0Gg3sdjuvu0UlCqhPpdpdom6JbaiImKfal4FFg2m6PuU822w2uFwuvsbppDee1KCwHSWmAdmz7QY68lezcEWUI13lseJolpSU6pkozyMNp94ojQ4A3PMgGqzKnDPRQBGNXAr9iNOUxaVY6DriEipiR033JOZKiOUIco2ExPuRy7OoMxAdUDNwxN9DOafy3GqfK+uMSV09cWhmG3nlRaM3V3iVBjk+nw+dnZ0IBAJIJBJZITbyAFOeo8/nQ1dXF3Q6HfcMKycAiFEFcRkXyfAgFh9VDkAGGx5Xzsbs61jlQIgG15RCM9aMS+OJ6v4UFRXB6XRmdba5YqNA9swaUiL6nDpSMZFczIsR68WQ1UsjKr1eD7fbjenTp6O7uxsdHR1ob28flWcxEUmn0wgEAmhra+PPmEaHokKoJQ0Dx939NOOCksspByIYDHJvktLAojwmqh0SjUZ5JXEqOaH0PIrhX3JJi14oCkF6PB6UlpbyJV5kGKiH/ryv1KmRPMWkUmWnK55P7Vyi50r8TAzfiZhMJjidTmQyGVWdlYbU0Ghvb8e7776LgoICVFdXo7i4GEajkecekm6I+kW1mA4dOoTGxsZ+c5N8Ph9ee+01NDY2Ys6cOTCbzZgxYwZPJiZdjkQiCIVCCIfDCIVCiMViMudpmNBoNHA4HCgtLYXb7YbVau01y05sS+l/Nb1S6r3oaVLLYxMdGABgs9lQWFiIUCjEZT6WjEvjyWq18tlRVJNHTEwjcpV2VxpD1CnSseStIIFR407HUc0h0avhdrsxZcoUmM1mHDhwYPQfygQik8kgFAqho6ODr39EuU/0bPvqMJVyFRHDfWLHazKZsmrFUMiNZulRHSej0ciVVbwPcXRDHikynoxGI2w2G5xOJ4qLi6HX69HU1CSNpwFC4dpkMpnlIVRrMHM1vEovldLgFg0x8ZwGgwF2ux2pVEquTzlMMMbQ2dmJPXv2wO12o7CwkHsmlDWWRO8v0FPTrbm5GYcOHerXaxEIBLBjxw68++67OOWUU1BXVwe3252lq5TrFIlEEA6Hs2biSU4cCtuVlJTA6XTCYrGoLnckhtBF+huckJxohqZoWIl9OtBjF+Tl5cFgMKC1tXWYv+ngGTPjqa/RJU1zF4tkKpN21c5Ff6uNTvtKWBvI6NNoNMJqtSISiWQZcIM5x2SBRpiBQABdXV1ob29HS0sLN0RFQ1bpmlWTrdIwps/peLUON1cnqZYzp3assh5NPB5He3s7Ojo6eF6FbKCPo5QBdW5UrkLp5TuRc/e3r3gNuge6DxGps0MnlUohEonAYDAgkUio6hPJIplMch3y+/18tl1/UAJ5KpVCKBRCa2srjhw5wotoUg4jTRahgZmU6/CiLEsheoPU9Hkwz5/Op5w0ohxMk3FlNpuzPJtjyZgYT0q3nRIq/e92uwFku/Dof/FcavFP0YMknoOuS54JIpdxRt4ut9uNqVOnwmAwwGaz9TLQpMIeJ5FIoKmpCZ2dnWhqauIzZ8rKynD66afzWYtiArmYowQcz10i5aIGl8KuJHPlrDs6juLi5GkSjSGN5ni9KdHDJLqf7XY79Ho9fD4fXn/9dbS3t6O5uRl79uxBd3c32tvbEY1GR/vRThioErHVauWJvkajMUvPcuXGEAMxtMRzKMMGjDFYrVYUFBTwSQf95eVIBkY4HMaxY8cQCAQQCASy9JXyCElX29vb8frrr+PIkSPYt28fAoEAP09/uS8Uwj9y5Ag2b96MN954A/X19Vi5ciW8Xi98Ph/a2tr4LDtZz2t40Wh61iGlme9i+QjR6FEObsXjgeyIgthfi4Nm0YASQ73xeJwv3VVaWgqr1YrGxsZRegK5GdOwXS4DSizbT6OK/pJ51Vz24rRztVAR/a3WiCoNPHIZJhIJmEymrH2lsmZDVYLb2trQ3t6OdDqN/Px8LFy4EIsXL+a5R+IIhrxRYgFM8lKRIQwc9wqJHaZS/lSLRDyvaGxRQ08KTecWDTAKQ3R2dqKhoQH79u1Da2srGhoaeKVzSQ9qeUsULrPb7bBardzzM9TlHHJdS9RRZSgW6BmIiRWqlUg5Do14PI6uri7E43FEIpFeg1gxrBqJRPDhhx9i7969aGtr44MOZXudSxYUJty+fTt/j84991wetqOimFQrSjJ8aDTHZ07TwswUmhVlrOZJHOjgRBy0Uvsterho4GwymeD1esEY69UHjwXjJueJOjTxwYklBpReJ7V8ByA7gVzsMEUvkTLMJ55X6U0SOwOr1coXtpQMDPLiiDVC6PPBhHJEmah11n0doxaeU+Y6EeSlUs6sUysEKDmO8pmQ8eR0OrMqA/f1/HLlNfV33b50mAqwJhKJXss7SDkOHWqvaZBCM+TE3BUyZgKBAPx+P/x+P8LhcK9aagOBMcbzHJVT4aW3aWQRZ7nR8xcdEkq9HQz9HUN2AGOMh+3U6j6OBePGeKLGlnKdEokEotFoVrK40nASE8zI+hUTkmmkSTN9CFHoaslp4t/kgnY4HHA4HEin03yFcCUD6dAnGxaLBTNmzMCcOXNQXl4Oi8XCQ6EUxlEu+CjKQ/xMzUtF29TcvcrPxdmaZMQp869oCQlKErdYLHy0O94WphwvqOWd2e12lJWVwe12w+v18udMzzhXw6c2sKG/c4XJ+3pXrFYrCgsLYTKZxt2q7BMZSl+gyv9+v597FY1GI9LpNDo7OxGPx/Hxxx9j//79+Oijj7iRRQw0b5Bq6yUSCV5biNp/8kzLHMSRQfQik/xIx6g9FQfBat5EtWiR2v/KPp5mTAM9XuS8vDz+jo0148Z4os6UaklQAS5lR0oNtZrXQjR+xDL+YskCkVzHqgmcZnNRsca+GGuLeDxBZR4KCwvhdrv5SFUMy6lVmFbrHJWeQ2VH2J93g2SsNLrJ06l8f2i0pfQ+SfqHSgTQ9OZckywGm3ukNKLEc6q1E9TJj8dV2Scy1F5T+CQWi/F2USwTEggEeHmXzs7OIV9P6XkSPcbK6vKS4YN0iApVK0sAifvRbzUnQi696+tzGvCSkUapFGr1psaCsb+Df0EVRG02G68GTEqonLquzPZXJqCJnR9wvBqtmvdKGb4RlxSga4qFFYHjU9ep/pBy5oFU4uPQqtgUvqHlVWj02deMNzWPoLhdaXCJ29T+F8+nJn/ah5IUI5EI0uk0L1MhdhCSbJSyyRW2U5PbYA2ovsJ+SiNNLFUwHvIkThbEWW7BYBCdnZ1IJpPcWwuAV/0mT8VA6S8PStkPyFD68EODW3FNObWcNvF/8Vjxt3K72rWU/4uOD+qTacUAWih6rBk3xpPRaOTLsXg8Hh7bpKqyorJQx0oPVJypJT5ksdGmY8VziI24WrIpcFzoFA6ksJ3X60U8HofP5+NrqonWslTmHvR6PfLy8lBSUgKLxcJDsZRkqha7FmdwKMO2ohJT+E9NbqJXSRmWEz1dtF30PCWTSV5LKpVKYdq0abDb7chkMti5c+foPbwJgtq7TrXaCgoK4HQ6s2bCiYn54jlEvc51jVydKXBch4Hj4SCLxcKXdKDlYZQMtJGXHIdKFWQyGbS1taGxsRFOpxPTp0/naQ3keRLznAaCmE4B9JaJWIeNfmSbO7xQeQJKWxDTG3I5LpReX9pHSS4HBkF9OsmZ6sNR/iJNOBprxo3xRAtNWiwWmEwm1dWzCTHeCqCXt0jMa6Hf/S3NoJZfQdcCkJWnodfrs4otKs8hQwPHofwhi8UCg8GAdDqdtQCvsqGkzwjRW6RUysE8bzXZK88lypzyKjKZnkWFGWNZCe+SvtFqtbBYLL3C3H3JrT8PVH+jVzUjSFzAti+voQy1Dw7KL6XF04PBIJ+JRdD2oeYj9SUTZbsgjafhRaPR9Jow05duivmouc43GJTXo/5XOXt6LBlT40l82Q0GA1wuF7xer2odJQBZD038W6wHJFYsJY+QWD1cXBhY9FyoWc3AcaGJo2LKowB6vyyyEc4N5S2Ixq/oYRKVVBlqA9SNU9GjIV6HfiixlK6p3E7nUJ6TOgfKkVIrsijJDY1c1fIT+jOQlPJWO07UM6XHSjwHJRPT6JXyr0QDXjJ4SD8SiQS6u7vxySefwOPxoLCwEMDx0K3YAQ+WvtpR0mcqntnV1YVQKCTb3mHCaDTCbrfDZrPxxZhFlB5e8XOlZ4kQ++5c4Xu164hpFhRVslgscDgcfGH5sdDlMekN1NyxlElP69kpQylAds0e0Y2oDL+RYsdiMQDZOU/kBhStWDqHeE8UflML8ZnNZjgcDn5PRC435GRHHB2SQSImfYqGrVhVXpmnpkR0Gyvdx6JhRBMQxLCtaFxRzSeSOXB8PTaafUcJk+NhxDMRoNIeNpuNFyRV5gaqNZwDyWvr73jRC0EL2CaTSRgMBjidTuj1egSDQWk8nQCU85TJZNDa2op9+/bB6/WivLyc6xIZ0P15/IDctfdy6T61JT6fD5988gm6u7vh8/mk8TRMmEwmXl6GPO5Kmah5isUokJqXWZlKIZ6P/la2BWIxTqrhR+VvyHAaC10eNz0Bje7JvZ4rN6GvUB6Qvd6d2GEqvQ25fudCvLY4TVaG6vpGqRjib6WHiVDzIuU6Z67nrjxO9GSqbVP+KO9zsHWpJgO5ngM9r1xeh1wDjOHu+JRhHUqApRwOydARn2ssFkMkEkEkEskqZqtsMwd7/r62UYdJ69rRtaXxNDwow3ZK+hrUqrWxauenfcXjlH+rnYOMKHHpp7FgTDxPypLuQM9I1ev1oqioCG63m49YxBCbcuYdIYZ/RI8DPVTlbDu1zlLtHGTEaTQ9NaNoyqZawyuVNjcUOqGpzQaDgbv8SR5iUjeFWZVFUtUMZDU3sXKCgbgvvQvkVRKNXzG8RO8PNcipVIpPk6WVxQc7i+hkQnxu4vOnxsxsNvPZswaDoVfdLfEcyvOIn/VlHNPvXD/ieQwGAwoKCjB79mwEg0EcOHAA4XC413UmqzwHi9h2JxIJBINBGAwGxGKxLI99f/kpg33eGo0G0WgU7e3t0Gq1OHLkCA4dOgS/349gMCjlN0xQKQryGqZSKWi12qxSBUpIh8Q2N9ffYs4r/RZ1kLZT30FtMX1utVp56RtxuZ/RZMzWthNzjRjrKbdOYTuPx9MraVzsQKmDFSvNqo10yMhRLu+h9iNeh37Iuh2I8QRkzxiS9EAhOjKexNXXKUwmPi8xtKamqEqXvtKgouevrAguKi+NWKlTpfdM9CbS3xTSI4OA8gCi0Sg38iYrSoND9DaR8WS32/k+pFO5OlM1Q0lZ/V1E2SaI11EaT3q9HoWFhZg7dy66urrQ1tbGF6tW031J/9Czj8ViCAQC0Ov1iMfjWYbycHpr6RyxWAytra1Ip9PceAoEAohGo1J2w4RYFkCj0fAi01RwWtR90fEg9n+5JgmorQKi7OuVg11xMA0ANpuNF99ta2sbsefQF+MmA5YqyIbDYV6XhRJ9gez8lr48SGrGEx1D5xE7SFF4tB8JV6z7FIvFEI/HEQqF+N9qs0ik8maTSqV4HZh4PA6TycSVgJSCpqESZKyIzzZXmEf5LgC9E8DpMzLKqJMXY+hKg4w8TslkEsFgkNezkaGB4ygHCqKrXyyAqhZmHairXZSjOFValLdyti3tKxraYvkSWh2+r+8iGTjkyaUQGnmAhntwIXqWo9EowuFwVtVxmcM2fIghbtJnai/VZrGr6SmQe7k08TrKvhs43g+L7YjYrtDM/FgsNrnCdkDvmGl3dzd27tyJpqYmzJ07ly9GKArI4XDwAmy5pqaSAokdMimXCLkllQXAKBExnU4jHA4jGAwikUjg2LFjaGlpQXd3N/bs2YNDhw7xInHK7yQb4eN0d3fjpZdewvvvv4+8vDzMnj0bTqcTHo8HxcXFMJvN8Hg8cLvdvTx6YpiWUHqb1EY3olEsylU8n3KiAMk7EokgHo+jpaUFfr8fgUAABw8eRFdXF1paWnD06FGEQiFu+E1W1EJuBoMBDoeDT6igqvzUENKARq3onpp7P9f1aD9lg03nTSQSPHxEDS3QM1p1u91IJpOyYOYwQZ6n7u5uJJNJvP/++1zu9C6IHgNg4HW1xG3UeWq1WoRCIXz88cdobW3FsWPHEA6Hx2zG1cmKxWJBSUkJXx3C5XJx44XSWUgeoqdeaUipDZz66yfJ40QRKavVCo1Gg7y8PHg8HhgMBkydOhWJRAItLS1obGwc2YeRgzGbbadsDP1+P/bu3ctLAJSXl/MaOzabjSuj2+3O6YUgw4c8F9Q4x+NxXn+EBEaLDFJMl4RO05rJExaJRBAKhXDgwAE0NDTA7/fjwIEDaG5u7nUPYgFPSQ9+vx/bt2+HRqNBSUkJWlpa+KwcKk/h8XjgdDqzZJFLuZTlKMS/CdHgpvdAmTclhvJEYzkajSIUCuGTTz7B0aNH0d7ejh07duDYsWNIJpO8yKekB/F9p1IAtEqAWN6BdF4cxVKjKzaW4t/K6yj1XpQvDYa0Wi1fkDadTnNPGGOMT2+ORqM5J6VIBk88Hudt7P79+wEADocDc+bMQXFxcS99GUh+mZr8yfCOxWI4fPgwrFYr2tvbufdJMjxoND1LoeTn53ODxW63c11W80KJidu5ZtKJnmKx/VWmVSjTeSwWC3Q6HdxuNxwOBw/B02zPsRoIjbnnSfQixONxaLVadHV14ciRIwiFQlmF9vx+P9xud1apAtHlR+cBskM3YgVa+lt0O5JXglzNNIrp6OhAW1sbIpEIWltb0d3dzT1RfVnNkmxIJrFYDH6/HxqNBjabDUeOHIHP5+Muf3F2h9poRs3tmwtR/tTBK8tVMMa49zCVSqGrqwvd3d2IRCJoaWlBe3s7urq6EI1GsyrdS46j1GHSH7/fjyNHjiAajWa522nAQvmE5G0cjOdJDNXSNo1Gw+u6UdFGcQpzIpFAc3MzWltb0dnZyQ0sZY6FlO/QyWQyiEaj8Pl8SKfT8Pv9sNlsCIfDOZOMB4o46KHJGgAmfd7hSEDPOBQKwWQyIRAIoKurC3q9nqesANkhNyA795jOIw6s1PJQRbmKek9/x+NxxGIxnncVDAYRi8XQ3NyM9vZ27vEcC8bEeFLLUYjH4+jq6oJOp0M8HsfRo0ez4q16vR4ul4t7oZxOJywWC/R6PTeuTCYTt0wpSVmj0cBqtcJisYAxhkgkglgshmQyCb/fj1gsxt3OiUSCLylAxbdoCmwgEEAwGOTHKZEK3D/BYBD79++H0WjE/v378d5773H52Ww26HQ6HpqlmjwkY/pN7wIZ0GLuEnXElIsm1moS69KEw2Eub5/Ph+7ubi7vRCKBVCrF3414PI7u7m7E4/GcHftkRE2HE4kEOjs7odPpsH37dvh8PlitVuTl5aGgoIDXcnO5XDAajXC73bwgrphYrJazpuw8SaYkX6rrRh7Erq4uJJNJdHV1oaOjA/F4HMeOHUNraytisRhaWlr4+ZRJ55KhkUqlcOzYMfj9ftjtdiQSCXR0dKC1tRWRSITv158OqUUm6DjKP+3o6IDBYEAwGJQ6OQL4/X7s378fzc3N6OzsREtLCy96KhYdpsEoORyUciOZiTP3qM3uS9fpx+fzwefz8faZvIwdHR3w+XyIxWIntOD0iTCmnicRavQAIBAI4JNPPsnartVq4XA4YLVaYTKZkJ+fD4fDAaPRCJfLBZPJBLvdjoKCgqyp8ADg9Xrh8XjAGIPf7+fhmebmZvj9foRCITQ3NyMcDiMcDnNviGR4icfjaG1tzbldp9PB6/VyeZKMKbxHCkgeCzKYxZkhjDFeFJFCr+LfVFivtbUV8XgcbW1taG5uPuGR8WREqcM0WgV6DKmuri6en1BWVsbzKAoLC2E2m7nHl+RH7n+1kJrYWIsJwiTfRCKBQCDAJ3WQwXTkyBE0NTXxDrezs7PXfYuGmWToZDIZ3tnRTMtMJsMHH4OhL88+rT1Js/uk3IYf8r6bzWZutNDKGlRxnHQwmUwiHA7z/laZ9A2Az7KmAa+YBK5WqJqOo+hPPB5He3s7Ojo6kEql+GSBsWTcFMkcCANp5MRtfSlgfwlrkrElVwfX1yhzMDkU9JmU9cih1MWRfNb9nVvKWiI5cYazzxzoMWr99XjQZQ0bD3chkUgkEolEMkGYUJ4niUQikUgkkrFGGk8SiUQikUgkg0AaTxKJRCKRSCSDQBpPEolEIpFIJINAGk8SiUQikUgkg0AaTxKJRCKRSCSDQBpPEolEIpFIJINAGk8SiUQikUgkg0AaTxKJRCKRSCSDQBpPEolEIpFIJINAGk8SiUQikUgkg0AaTxKJRCKRSCSDQBpPEolEIpFIJINAGk8SiUQikUgkg0AaTxKJRCKRSCSDYMyNp/r6egSDQdVtixcvxiuvvNLvOZ577jksWrQIJpMJt912W9a2Bx98ENXV1aipqUFtbS0ee+yxrO333HMPZs6ciZkzZ+KOO+7gn//gBz9AfX09/3E6nfjqV7/Kt+/ZswfnnHMO5s+fj/nz5+Opp54a+JeeZIy0jG+++eYsWZnNZjz44IMAgD//+c+ora1FfX09Kisrcccdd4AxBqBvGTc1NeGcc86By+VCfX39kL/7ZGQ45N2X3vYlUwB49dVXsWTJElRVVaGyshLbtm0DAITDYVx//fWoqanBvHnz8K1vfSvrOMnAGA753nXXXSgoKOC6d8011/Tap62tDUVFRbj88sv5Z33p7LZt2/jnVVVVuPHGGxGPx4f0HScbwyFTQk1ujz76KG9L6+vrsXz58gFtA3Lr844dO3D66afDarVmXWvUYOOYRYsWsa1bt/a730cffcR27drF7rjjDnbrrbdmbduyZQvz+XyMMcYOHTrE8vLy2IEDBxhjjL366qussrKShUIhFovF2KJFi9izzz7b6/yxWIx5vV62c+dOxhhj4XCYlZeXs9dee40xxlgqlWJtbW0n8E0nL8MhY5Hm5mZmNptZc3MzY4yxQCDA0uk0Y4yxeDzOlixZwp566qlexyll3NnZyV577TX27LPPsrq6ukF/L4k6A5V3X3rbl0yPHj3KysrKWENDA2OsR67d3d2MMcb+4z/+g1177bUsk8mwRCLBVq5cyf7v//5vmL/h5Gag8r3zzjv71GPGGLv88svZ+vXr2WWXXaa6Xa1dTiQSjDHG0uk0u/zyy9lPfvKTwdy+RIWBypRQk9uGDRtyyrGvbX3p8+HDh9nbb7/NHn744ZzHjyRj7nnSaDTw+XwAgDfffBP19fWorq7G9ddfj1QqNaBzzJkzB3V1ddDr9b22nXfeeXC5XACAadOmobi4GIcPHwYAPPHEE7j22mths9lgMpmwfv16/OEPf+h1js2bN2PatGlYtGgRAODxxx/H0qVLceaZZwIAdDodCgoKBv3dJwsjLWOR3/72t7jwwgtRXFwMAHA4HNBqe17zWCyGeDwOjUbT6ziljL1eL84880zYbLaBfk3JvxgOefelt33J9H/+539w9dVXY/78+QAAk8kEt9sNANi9ezdWrlwJjUYDg8GA888/Hxs3bhyurz1pGA759sdvfvMblJeX46yzzsq5j1JnrVYrDAYDACCRSCAajarquqQ3wyXTgchtMPSlz1OnTsUpp5wCk8k0LNcaLGNuPBGJRAJr167F/fffjw8++ACf/exnsXv3br794Ycfxve+970TusaWLVvQ3d2NJUuWAAAOHTqEsrIyvn3GjBk4dOhQr+N+85vf4Atf+AL/v6GhASaTCRdffDHq6+tx3XXXob29/YTubTIwGjJ+5JFHsmQF9DQGNTU1KCwsxLnnnovLLrus13FKGUtOnOGSt1JvgdwybWhoQDQaxYoVK1BfX49bbrkF4XAYALBo0SJs2rQJ8XgcoVAImzdvRlNT0/B+6UnEicp306ZNqKurw7nnnoutW7fyzxsbG/Hwww/jBz/4QZ/XV9PZpqYm1NXVIT8/Hy6XC1/+8peH+O0mJyci0/7k9vrrr6O+vh6nn346Nm3aNKBtfenzmDPqvi4FAFh3dzfbvXs3mzFjRta2ioqKQbkL+3IFv//++2zq1Kk81MYYYxdffDF7/PHH+f/PPfccO+uss7KOa2pqYhaLhXV2dvLPbrnlFjZ16lR25MgRlslk2Le+9S22Zs2aAd/nZGO0ZPyPf/yDlZSUsFQqpbq9ra2NnXXWWezVV1/N+lxNxsTWrVtl2G6QDKe81fRWRCnTSy65hC1cuJB1dXWxRCLBrrnmGnb77bczxhiLRCLsK1/5Cqurq2PLli1jt99+O1uwYMHQvuQkZjjk29zczENsr7/+OisoKGBNTU0sk8mwc845h7311luMsdwhnb50ljHGgsEgu+yyy9gf/vCHwX25ScqJyrQ/ubW3t7NwOMwYY6yhoYFNnTqVbdu2rd9tfekz0VfYbyQZN54nNYbL5drQ0ICLL74YjzzyCA+1AcD06dPxySef8P+bmpowffr0rGM3bNiAyy67DF6vN+u45cuXo7S0FBqNBp/73Ofw1ltvDcu9TjaG063+m9/8BuvWrYNOp1PdXlBQgFWrVvUa9ajJWDIyDEbeufRWRCnT6dOn41Of+hQ8Hg8MBgM++9nPct20WCz42c9+hl27duHVV19Ffn4+qqqqTvxLSTgDlW9xcTEPsZ1xxhlYsGABdu7ciUAggPfffx9r167FjBkz8LWvfQ0vvfQSzjvvvKzj+9NZu92Oz3zmM/j9739/Yl9IMiCZ9ie3/Px8WK1WAMD8+fOxatUqvPHGG/1u60ufx5pxYzzNmzcPqVSKu2+3bNmCgwcPnvB5P/zwQ6xatQr/+7//i/PPPz9r21VXXYWNGzciHA4jHo/jkUcewWc+8xm+PZPJYMOGDb1cw5/+9KexY8cOBAIBAMDzzz+Purq6E77Xk52RkjHQo7x/+tOfsH79+qzP9+3bh0wmAwAIBoN47rnnUFtby7fnkrHkxDkRefelt33J9Oqrr8bWrVv5LKu//vWvXDcDgQAikQiAnhDDQw89hNtvv/3Ev+gk5UTke+TIEf73/v37sWvXLtTU1MDlcqGzsxNNTU1oamrC/fffjwsuuAB///vf+f65dPbAgQNIJpMAesJPNCtTMnCGKtP+5Hb06FG+b2trK15++WUsWLCg32196fOYM+q+LgX4l7uQMcbeeOMNVldXx6qrq9n111/P6urquLvwoYceYt/97ndVz7FlyxZWWlrKHA4Hs9vtrLS0lD399NOMMcZWrFjB3G43q6ur4z8vvPACP/buu+9m5eXlrLy8nH3rW9/KOu+LL77IZsyYwTKZTK9r/u53v2NVVVWspqaGrVy5kh06dGgYnsbJyUjLmDHGfvnLX7Jly5b1Ou6uu+5i8+fPZ7W1tayqqordeeedWfLMJeNwOMxKS0tZfn4+MxgMrLS0tNf7IVFnOOTdl972J9P77ruPzZ8/n1VXV7O1a9fye3nvvffY7Nmz2fz581lNTQ178sknR+wZnMwMh3yvu+46VlVVxerq6tjChQvZpk2bVPdTC8nk0tlf/vKXrKqqitXW1rLKykp2yy23sGg0ekLfdbIwHDIVUcrt29/+NqusrGR1dXWspqaG/eIXvxjQNsZy6/O+fftYaWkp83g8zGw2s9LS0l7HjiQaxmShE4lEIpFIJJKBMm7CdhKJRCKRSCQTAWk8SSQSiUQikQyCcWk87dy5ExdddBHKy8uxaNEiLFiwAPfccw/ffs4552Dz5s2DOqfP58PnPvc5VFdXo7a2FtXV1Xj88ccB9JSHz1XefefOnVi7dm3O877yyit44YUXBnUvJzMjITuxfH9VVRUuuugi1XpcSmbMmIFdu3YN+bqSoSH1d+Ii9VcCjMx7AADvvPMOVq5ciYqKCixevBhnnHHGCcnV5/Phhz/84ZCPPxHGnfG0Z88erFy5EjfffDMaGxvxzjvv4O9//zuf2TZUvvOd76CgoAB79uzB+++/j23btmUV3cvF4sWL8cQTT6huS6VSsvEVGCnZAcDy5cuxa9cu7N27F3PmzMG///u/D8MdjwzpdHqsb2HMkPo7cZH628Nk1l9g5N6DvXv34sILL8TNN9+Mjz/+GDt37sSmTZvg9/uHfE5pPAnce++9uOGGG3DxxRfzz7xeL+67774TOu+RI0dQUlLCa1Y4HA7Mnj2bbw+FQvjsZz+LmpoaLF68GB9//DGAnpEpLQzb1NQEt9uNb37zm1i4cCF+/vOf4+GHH8bvf/971NfX4/vf//4J3eNEZ6Rkp+TCCy/ERx99BCB7WQGgp2ZIf1Wj29rasHr1atTU1KC6uhq//OUvAQC///3vs+6dMYaKigpeYXfjxo049dRTsXDhQixbtox//uijj2L58uVYs2YNampqsH379mH8thMLqb8TF6m/Un+BkXsPfvjDH2L9+vW45JJL+GdTpkzBunXrAPSUmlixYgVf9Fv0SF1zzTVYvHgxamtr8alPfQotLS0AgJtuugnBYBD19fVYvHjxCd3fYOl7obAx4N1338WaNWuGdOwzzzyDZ555Br/+9a97bbv11ltx5ZVX4oknnsBpp52GlStXZr0cO3bswK5du1BeXo5vfetbuPfee7lSivj9flRVVeHee+8F0GP5+nw+/PSnPx3SPZ9MjJTsRNLpNDZt2sTXsxoKt9xyC+bOnYunnnoKbW1tWLRoEerq6rB69WrceuutaGlpQXFxMV555RV4PB7U1dXhjTfewB/+8Af84x//gMlkwmuvvYarr74ae/fuBQC8/fbbeO+99zB37twh39fJgNTfiYvUX6m/wMi9B++8806fS+5cc801WL9+PW688Ubs378fS5cuxYIFC1BWVoaf/vSnfP3YH/7wh7jrrrvw8MMP4+GHH0Z9fT0P744m487zpOTrX/866uvrUVpayl/0XFx66aU5lXf58uU4dOgQ/vM//xNutxs33ngjbr75Zr79tNNOQ3l5Of87V2Ewg8GAz33uc0P8NpOL4ZIdAGzduhX19fVYtGgRNBoNfvzjHw/5vrZs2YIbb7wRAFBYWIjVq1djy5YtsFgsWLNmDV8s9tFHH8X1118PAHj66aexe/dunHrqqXyNpa6uLkSjUQDA6aefLhteFaT+Tlyk/kqA4X0PchEMBvHuu+/ywqezZ8/GmWeeiddeew0A8Pjjj2Px4sWorq7Gr3/96zExlpSMO+NpwYIFWW7TH/3oR9i1axcMBgOvHjtUbDYbVq1ahXvuuQdPPvlk1orqZrOZ/63T6XKuJG21WvmK7pJsRlJ2lDOxa9cuPPLII8jPzwfQIysxRyEWiw363OLyA+vXr8eGDRsQCoXw7LPP4uqrrwbQEwJYt24dv4ddu3ahubkZFosFQM9yEBKpvxMZqb8SYOTeg0WLFmHbtm0D3p/k+vrrr+PBBx/E888/jw8++AA/+clPhvSeDDfjrhX5xje+gV/96ld4/vnn+WeJRCJnYzhQXnrpJXR3d/P/33nnHcycOfOEzgkATqfzhBLeTiZGSnZ9MWvWLLz99tsAgKeeempAK26vWLECv/rVrwAA7e3teOqpp/gSIKeeeioA4Gtf+xpWrFjB18669NJL8dhjj/FZQplMBjt37hz27zPRkfo7cZH6KwFG7j34xje+gUceeQTPPfcc/6ylpQW//e1v4XA4sHDhQmzYsAFAT/7T66+/jmXLlqG7uxsOhwN5eXlIJBJZ4Xin04loNIpEInFC9zYUxp3xVFdXh+effx4/+9nPUF5ejlNOOQXLly/Hl770JcyZM4fvd8MNN2Dq1Kn8Z9u2bXjmmWdwww03qJ53z549WLZsGZ/q/Mwzz+Cxxx474fu94oorsGvXLplwipGTXV888MADuPXWW7Fw4UK89957yMvL6/eYBx98EB9++CFqamqwfPly3HHHHbzRBYDrr78ev/zlL7nLHwDOOuss3HfffbjiiitQV1eHqqoq/PGPfxz0/Z7sSP2duEj9lQAj9x7U1NTgr3/9K372s5+hoqICNTU1WL16NTweD4CehP8nnngCdXV1uPLKK/HrX/8a06dPx8qVKzF37lzMnTsXZ511Fp8AAvQksl933XWora0d9YRxuTyLRCKRSCQSySAYd54niUQikUgkkvGMNJ4kEolEIpFIBoE0niQSiUQikUgGwZgYT32tUyVWBB4o9fX1qK+vR2VlJXQ6Hf+/rzWtJH0z0WR011134bbbblPd9swzz/S5HMTmzZvx1ltv9Xn+trY2VFVV9fpcLu9xnOF+Z4Ce9c3mzp2Luro6zJo1C5dddhnefPPNYb5ziZKJpv+SE0fq7+AYkwrj4jpVGo0GwWCQl1sfClQwq6mpKWe10VQqBb1+bAqqj+W1h8pYyGikuPTSS3HppZeqbkulUti8eTPq6+uxdOnSnOd4+umnVc/xyiuvwOfzYeXKlcN2vxOV4X5niCeeeII33E899RRWrVqFF198MWuGFdAz/RyArOM0DMg2evIh9XdwjMld9rdO1XAxY8YMfPOb38Qpp5yCdevWIRQKYf369aiurkZ1dTXuvvtuvq9ylegrr7wSjz76KADg17/+NSorK1FfX4+amhpel2T//v341Kc+hSVLlqC2thY///nP+fEajQZ33nknlixZgm9/+9vD/t1GmtGS0WDZv38/zjjjDNTV1aGmpgbf+c53+Lbm5mZccsklqKysxLnnnouuri4APZWGL7/8cgA9xk5VVRW+8IUvoL6+Hr///e/xzDPP4Ec/+hHq6+tzVsfdvHkzrrjiiqzPdu3apbo22saNG1FbW8vXYTp69Ci/j3PPPReXXnopKisrsWzZsn7X8ZpIjMY7s3r1atx00024//77AfR4HNesWYMLL7wQ1dXVaG5uxosvvogzzzwTixYtwimnnIKtW7cCyP3u/OUvf+HraVVXV+Ppp58e1nueiMg2evIh9XeQsDHg5ZdfZl6vly1cuJDdfPPN7C9/+QvftnXrVlZXV6d63EUXXcR27NiR87yNjY3M5XLx/8vKytgXvvAFlslkGGOMfeMb32BXX301S6fTLBQKsfr6evbHP/6RMcbY2Wefzf785z/zY9esWcM2bNjAGGPM6XSyY8eOMcYYSyQSLBgMslQqxRYtWsQ+/PBDxhhj4XCY1dTUsO3btzPGGAPA7r777kE9l/HEaMlosHzlK19h//Vf/8X/7+zsZIwxduedd7KysjLW0dHBGGNs7dq1fL8NGzawyy67jN+7RqNhr7zyCj/HunXr2AMPPJDzmoFAgFVUVPD3SOTOO+9kt956K/9/z549rKioiB05coQxxtg999zDVq5cye/DaDSyhoYGxhhj9957Lzv//PMH+QTGLyPxzpSVlbH33nsv67OnnnqKzZ8/nzHW8/xLSkpYS0sLY4yxgwcPsqVLlzK/388YY2z//v2suLiYxWKxnO9ObW0te/PNNxljjKXTadbd3T3o736yIdvoyYfU38ExJn5KWqfq1VdfxZtvvokbb7wRl19+OX7xi1/0eZxY8XSgfP7zn+eW9JYtW/DjH/8YWq0WNpsN1113Hf72t7/1G3c/77zzcO211+KSSy7BRRddhDlz5qChoQF79+7FZz7zGb5fMBhEQ0MDlixZAqBnqYCJymjKaDAsW7YMX//61xEKhXD22WdjxYoVfNvKlSt5kb3TTjsNe/bsUT1HRUUFzj777AFf869//StWrlyZtQxELrZu3YqVK1eitLQUAPDlL38Z3//+9/kSFKeffjrmz58PAPjiF7+I73znO0in09DpdAO+n/HKaL0zTFGabtWqVSgqKgIAvPDCCzhw4ACWLVvGt2u1Whw6dCjnu3PeeefxhYcvuOCCIeV2nGzINnryIfV3cIxZcLGvdaqGk77WLBI7Q71en3ONpSeffBI//OEPkUwmsWrVKvzxj38EYwxerzdrraTGxkasW7duQNeeCIyWjEQaGhp4Mqm48CuxZs0avPHGG5g7dy5+/vOf4+KLL+bbBrq+2WDl8uc//5mH/QbLQAyuk4nReGd27NiB6upq/r8oT8YYzj///Cy9PHr0KGbPnp3z3fnJT36CDRs2wGq1Yt26dbjvvvuG/Z4nIrKNnnxI/R04Y2I8jdQ6Vf2xYsUK/OY3vwFjDOFwGBs3bsQFF1wAIHuNpcbGRrz++usAehIJDx48iMWLF+NrX/sarrzySmzfvh1z586F0+nka/EAPevxUJ7NRGesZFRZWcmVRm3Es3//fhQVFeG6667Dfffd1+8suYHQ1/pmiUQC27ZtwznnnDOgY5cvX44XXngBx44dAwA8/PDDOO+887hnadu2bdi3bx+AnjyN5cuXnxReJ2B03pmnn34aDz30EG6//XbV7RdeeCG2bNmC999/n39Gi5zmenf27duHqqoq/Nu//Ru+9KUvDcs7NdGRbfTkQ+rv4BiTsN2ePXtw++23gzEGrVaLkpKSrHWqGhoaMHXqVP7/aaedhk2bNmHVqlX4/ve/P+Q1bL773e/iK1/5CmpqagAAV111FT796U8D6Fm0cO3ataipqUFVVRWfCZBOp7F+/Xp0dXVBr9ejoKAAGzZsgF6vx7PPPovbbrsNDzzwANLpNPLz8/nUzonOWMmoP/70pz/hscceg9FoRCaTwcMPP3zC57z22mvx+c9/Hps3b8bNN9+ctTbTyy+/jDPPPBMGg0H12CuuuAIbN25EfX09Vq9eje9973v40Y9+xGffTZs2jS9iCvSE7b75zW/iwIEDyMvLw+9+97sTvv/xwki9M2vXroXZbEY4HEZlZSWef/75XjN1iFmzZuHxxx/HjTfeiEgkgkQigQULFuDxxx/P+e78x3/8Bz766CMYjUZYrVY89NBDw/hUJiayjZ58SP0dHHJtO4mkD2666SasWLECV1555Qmf69FHH8XmzZuzZgxJJBKJZOIxuQtbSCT9MByeLYlEIpGcXEjPk0QikUgkEskgmBilPCUSiUQikUjGCdJ4kkgkEolEIhkE0niSSCQSiUQiGQTSeJJIJBKJRCIZBNJ4kkgkEolEIhkEw1aqYKDLUGg0Guj1euh0ukEtXdHXpECtVguNRoNUKoVEIgHGGIxGI8xmMywWC5YvX45zzjkHBoMBoVAIkUgELS0tePHFF3m1Z0Kn08FgMECr1apecyCTE9PpNFKp1ID2Heg5xwOjudSIzWbD/PnzMXXqVHR1dWHv3r3o7Owc8vksFgvy8vJgNpuh1+thNBoBAB0dHWhtbc1a9mEkmAgyHk35ms1mTJ8+Hfn5+dDr9bBarTAYDNDr9TCbzdBqtejq6kJbWxvi8Tja29vR3t4OjUYDt9sNh8MBl8uFefPmobi4GEajEU6nEwaDAbFYDMFgEIlEArt378b27duzlvIYCaR8B3Z9teek1+tRUVGBiooKXujQbDbD4/Fg6dKlKCsrw+HDh/H666+jubkZhw4dwgcffIBQKAStVssr9KfTaWQymRG5dynf3JhMJni9XphMJsycOROnn346vF4v749jsRh27NiBnTt3AgBKS0tRUFAAj8eD2tpaTJs2DYcPH8abb76J5uZm+Hw+HDt2DIlEYtS+w1Dke9LXeRJfqImgAJIelA3BiTYMuc6n0WjGvFOZjAz0uavJLddxufRbynfiQbKUbfbEpC+9HYrej0cmvPEkPmTxb6fTieLiYlitVthsNsRiMeh0OmQyGej1ehgMBpjNZlitVqTTaSSTST5qyWVwTQSBjme0Wi30ej1fMd3lcsFgMMDhcMDhcHAPItDjKSorK0NBQQHC4TCmTZuGUCgEjUbDR5rJZBKJRAKZTAaZTIbLSqvV8h+TyZQlb4PBAI1Gwz2LwWAQfr8fyWQSfr8foVAIyWQSXV1dCAaDyGQySKVSIzainQxQw2kymTB37lyUl5dzeRiNRqRSKUQiESSTSf5+aLVaOJ1OmEwmZDIZVFRUZJ2TvMtOpxMAEI/HEYvFwBiDxWKB0+mEVqtFTU0NvF4vIpEIDh06hGPHjvERca6FoyXDj9hxkp6SXhoMBhiNRr5PNBpFLBaDVqtFe3s7rFYrOjo6EAgEEAwGEYvFsvRRGlijg06nQ15eHjweD3Q6HW9PzWYz8vPzYbFYUFxcjBkzZsDhcCASiSAYDMJsNmPKlCmYM2cOACAvLw9utxtutxvFxcUoKCiARqNBJBJBWVkZfD4fWltbEY/HEYlEEAqFkEql4PP54Pf7x428J7zxBKhbtfn5+aipqeHu/WAwmKWsJpMJTqcTHo8H8Xgcfr8fmUyGn4vOoxRULtdzf9skPcpns9mg1+tRWlqK+fPnw263Y8aMGZg5cyZvQMlAcrvdsFqtAMCNI71eD5PJBK1Wi0AgAJ/Ph1QqhWQyiWQyCY1GA6PRyBtkr9fLDeR4PI50Oo10Os1dwhRiTSQSOHjwID755BP4/X7s3r0bTU1NSCaTCIVC0ng6ASi04nK5cPHFF+Oqq65CJpPhLvru7m58+OGHPCxLxlNBQQHcbjdMJhMqKiowY8YMZDIZHD16FO3t7YjH4+js7EQkEkE4HEZLSwsikQhmzpyJmTNnwul0oq6ujjfkzz77LP72t78hEonw90YyOqi1pyaTCQ6Hg4fqDAYDH9BEo1FEo1Hk5+cjlUqhra0NbW1t6O7uRigU4mF2xpj0Uo0SBoMBs2bNwvz582GxWJCfnw+HwwGLxYKioiLYbDZYLBa4XC7odDp0d3fzsLtGo0F+fj4f3NDAp6KiAiUlJSgtLUVFRQWSySSCwSA6OjoQj8fR3NyMI0eOIBQKYe/evQgGgyOeYjFQJrTxlMsNSB2ow+HgnXU6nQZjjHstqIPW6/VIpVID8ioxxmSYZwjQMyPDhxTH6/XC6XRiypQpKCsr62U8Wa1WbigZjUaej2Y2m6HRaOD3+9HZ2ckNp0QiwT0c4ojIbrdzI4gMLfJYEYlEgnsvDAYDnE4nLBYLdDod35cxJo2oIaDVark8ioqKMHv2bG646HQ6pNNpvvAyeR81Gg0MBgPsdjtvnGfMmMHzWhhjCIfDCAaDiEQi3HsVDAaRTCZhNBphs9mQn5+P4uJihMNhnvOWSqV4OyAZXcQBJrUJ5G0kkskkYrEYTCYTQqEQz1Ml/VTmk0qjaeShNtlut6OgoIDrpNPphNVqRXFxMe9rqc2Ox+MwmUwAAIfDweVGuY12ux1WqxUWiwUmkwkWiwWZTAZ2ux0mkwnxeByMMcRiMW5ga7XarCjDWDKhjSeCjBrx/1AohMOHD8Nut8PtdsPj8UCr1SISiUCj0aCzsxPd3d28sVVzA/eVMC4NqIFhMpmQn5/PO7K5c+fC7XbD6/Vi6tSp3MCx2Wy8Q8tkMtBqtdxbRApDn5EnQ6vVwmKx8CRh8hxSg6zRaJBMJhGNRrN+ZzIZbkxTZ63T6VBYWAidTodIJAKn04mamhpEo1G0trYiHA6jo6MD//znPxEKhcb4qU4cdDodysrKMHfuXOTn52P69OlgjCGdTiMWiyEUCiEQCKCjowMtLS1wOp3Iz8+H0WhEMplEc3Mzb2wTiQTS6TQ6Ojrg8/m4W5/CqhQWJg+zXq9HMpmEz+fjDXBJSQn3bASDwbF+PJMGaqPFNpX0m0LjtD2ZTCISiUCr1cLn88FkMqGjowNdXV3w+XwIh8NyEDOK2Gw22O12OBwOzJw5E1VVVTyCo9PpYDQakclkeNtKshYHqHa7HWazOauvtlqtYIwhEonw4+iHJm2VlpbC7XYjFAohHA7D5/MhGo3y92AsmTDGk1Lx1PKSxIfv9/vR2NgIq9WKqVOn8tFNLBZDPB6Hz+dDZ2cnfD6f6jnEzyRDx2w2o6ysDEVFRZg1axYuuOACTJkyhXv9lGFS0bNA4TWtVstDcul0OutYm83GjSbyZoijWVLgRCKBUCjEw3VkqNG+FEqcOnUqMpkMFixYgFQqhWAwiMbGRvh8PnzwwQdobW1VNZ5yhXknOzqdDvPmzcMll1wCr9fLc5eSySTC4TD8fj+6urrQ3NyMY8eOIZPJoKSkBHa7HX6/H+3t7QCAYDCI5uZmaDQaxONx3lCTQSUaTxSyNRgMSCQS6OzsRCwW4++iz+dDW1vbWD4WCYBUKoVoNIpUKpXl/Y/H4zw8097ejkwmg87OTrS3t8Pn8yGZTGaF7Qipe8MP5R6WlJTA6/WisrISixcvBgB0d3cjHA5Dp9OBMcY9//Q7FovxQarL5YLVauXtNLXj5OgAsttQmg1dWFgIl8vFvcqdnZ0IBAI4ePCgNJ6GitIDpFScVCrFpycnk0n+eTKZRDweRzwez0oEFjtxpSerr+uLSG9Ub8jVS94/+hERDSY1o5gSwsl4SqfTqsa0GJKl7eRlUl5D/E0eKAoLAj0eM8qx8vv90Gq1cLvdPIxEkwxkg90/BoMBVquVu92TySR34YtGM30meg5JhvF4HOFwmHsfSa6JRIKHYel4el9E2VO+m06nG3SZFMnwoNQVUVb0t7Jdp3xEkq+cvDH6iPpLZSRo4pU4yUfNiSG2udQ+k/5RqFbtvQCOh/stFgs0Gg3sdjucTicymQxvp8eSCWM85QqhiZ+LShWLxeD3+3nYJy8vD4wx+Hw+PpOKjCoSpPh7uO5xMkMv/Pz581FVVYW8vDwYjUZei0spPyC7VotSwRhj3OglZSSFZIzx+DqdBzhuOJPxRUondtyiy1iZRKzRaFBQUACXy4VUKoWzzz4bLS0tOHToED766CNEo1F+PklvaGTZ0tKCaDQKnU7HR54GgwFFRUWIxWLcrW+z2fhMHGqc0+k0TCYTb3Tp82AwiMOHD6OtrY17KoGeETHN1gkGg9zj2NLSwnV/NGvISLIHu+LghjyI5IXUaDSwWq3cO00J5JTzRAMW6XEaHTQaDTweD2bOnAm32w2j0cijNclkkveX1L7SIJTkS55hADyKYDQaodfrswatoqFFBjINmig0n5+fj+rqanR0dODo0aM4fPjwGD6ZCWQ8iSgVhzpbceQSj8eRSCR4crHH4+EdM8VLReOJBK4sfSAVc2iIce25c+filFNO4Z4dZXkBml0FZBvEYiMrGkPUgFJ4hhSSXL3k2aA4fCqV4oUx9Xp91rXF90dMRKX7p+m5FA5KpVLo7u7G22+/jaamJm48SdShzq+lpYV7jpLJJAwGA2w2GwoLCxEKhWCz2WAymWC1WnlOHOUtkcchlUrx8hNU8Pbo0aP46KOP+OxZo9GI7u5uPhuvo6MDbW1tSCQSCIfD/EcaT2OHqOtK40mv18PlciE/P5/nPlHSuCwvMfqQx728vJyXDgkEAlnee6XnSfTsUntNstTpdHA6nbDZbACO973kJRZTNsj4ikajyGQyyM/PR2VlJVpaWvDOO++Mef88IY0noHdSN3XC5O6n7H2LxQKHw8ET0Gh0S+EBUfDKcI5kaNBzNhqNcLlcfDYFkcvrlAsa0YilJNRcxGqf0fG5ztsfYuiQZgCmUileBVvSP9QYUpiNkvstFgvfh2Sc65nSseLoVjSqaNYe7UcJxzQ6VlYxJ0NbMvrkCs8rB03kdaRBjeilkHmpoweF7SwWC/T6bJNBlKNyFpwyn5Xab7XcZeVAVpkHS/I3m83cCz3WTFjjibwHwHEFslqt8Hg8MJvNmD17Nurr6/ksAafTiVQqhVmzZsHr9aK9vZ3P9BFj76LQTiSEN5kxmUyYM2cOpk2bhqlTpyI/Px8GgyFrdAFkT0tXe85iY0ohOrV8NEocJk+iqJzkMRL3pXMqyRW/j0ajXLkLCgrgcDjg9XrHhQJPBMTkf7/fj3Q6zT3CjDFeEFGcIRmPxxGNRrmH2OfzIRgMQqvVwuVywWaz8Xo/YtFUxhg6Ozuxf/9+WK1WPntPr9fD6/XC7Xbz2XpHjhyRne8ooxzgiCjz38gIpneAllYSl+GifSUjg0ajgcPhQElJCU/6VhpQ5OGn6AAZN3q9nhtcYp6j2kBXGSWg9gEAIpEId3Y4nU6Ew+FxMfiZkMaTaOyIGAwGntRbXV2NlStXwul0orOzE11dXUilUpgyZQqv/dPQ0MBrQFGYR8x7ohk8ylCeeB+S3hiNRkybNg3V1dUoLCyE2+3mHZw404K8DH15hsTkQTGUppYYLO5LP5QfQw2t0kAGjo+ERc+HmMRKycYA4HK5YLfbYbfbpedpgNBU9FQqxSu4kweYShIA4MaTmCQci8WQSCR44TwxyZ9yIUgO1DgHAgEcOXIEZrMZs2bNgtPphMPhQHl5OaZPn47m5mb84x//GMtHMqlRazfFASvpqmhEU04j5UwCyNJ5ychAOWgFBQVwOp2qA13Sb1ohgKAQO3kQRc+SEsp1SiaTvPwB1Yqiek+0Vq2aB2wsGPs7GCRKZaHQkMlkgtvtRllZGex2O89ToQRTWqaDBOP1ejFz5kxotVqEw2G0trYiGo1muYnVXpT+QkGSHqWxWq3wer1wOBw8OXAgDZ2aUSOilhMlhvTo+kovUq4GW/m5Ur7KsC511GazGQ6HA9FolCu45Dji7EWHw8EL64mDHiqGSAYSjTyVx1PHabFYuOue8t2oeKooc9EQpkKbNpsta7KAZPigJbAAcKOX8pmU1aCpPSZvMqVTkEeJZCMuKivOaqV3gZbfoeK26XSa57NJhhexuDENfgFkDTbJ0KWiwtTmki4aDIas2a6UF0VGFc2YpXxIMQ+ZZldT3y3DdkNAWUgLAF95mzxKM2bMgM1mg9Pp5HkRtOqzqIAlJSWYM2cOkskkDh48iBdffBGHDx+G3+9HW1tb1kwCcbQr6R+DwYApU6agsrKSjxTEhlFtqrjSSFGS6/mT8orKJHqE1Iqf5goVigovGmU0YqIQoEaj4QU/vV4vr1E0XpYNGA9QQrjVasWsWbOwdOlSGI1GHDlyBK2trQCAQCCAWCyGtrY2dHR0oLu7G16vN2uKMoXbKWdJo+mp7UWdNU2dFhtbsXaX2+3GtGnT+L2IEw4kJ45Op8O0adMwf/58aDQaNDc3o6Ojg9fXUhozRqMRdrsder0eDocDbrcbWq2Wp1CIqRhUSFWcYafRaFBRUYElS5bA6XQiFoshEokgFoth7969+Oijj6QeDiMajQZmsxkejwd2u53PVqVBDOUaBgIBhEIhHoInQ4tyDEVDmQobU0oEGcq0AgSF/EwmE5e/RtOzaojH40EwGJSlCoaCshOlBWRnz56N/Px8lJeXw2azcRdgOp3O6vTIICKDymq1Ii8vj6+bQ2EAUVlz0VeezmSGCqsVFhbyZy/mGvX1jMTtyn1z5UjQ32reIjJ8chlrAzk3bRc7aKqYDoDPPpEch/IWzGYz8vLyMG3aNBiNRgSDQbS3t4MxxmfEhsNhvpYZNZTiUjzKavBkMIXDYT7zDsj2RNI5zGYzXyORRrFi3p3kxNBoNNzjT4MNKoAaCAR67U+hHFqiqaCggHuQqKiiOFuWZC+2+1arFeXl5cjPz+d5cTTzUurh8EO6bDKZeE4iGUiU3kJGrFar5bPjSAcJUa8NBgMfyFA7QIaSWIoGAPc8kcFGuW9jzdjfwSAQlYgeJq1hRbO6gON5NWIVWmpYSRAA+DRzjUaDadOmgTGGjz/+GMeOHeMrtMtGdvCIoVJ67spFl3OFxXIZMaIhK3oQlYaSWuOplrPWl2EsGlxiHpV4bVrbyWg0or29XeY/KaDClDqdjtfm0uv1vDyB6EWmTlYtqZR+KLQDZBvVaoaQVqvloTqHw8GL+1FIXnwH5WDnxCDvQVdXFw/Z0MLrajqRl5eH+vp6uFwuPrBKp9MIhULo6uri5QiURhOlZRiNRr6mmt1uz6omL87elJwYNCOVEsTJ0KE8YHGJLPIKZzIZWK1WXhJG6d0XBzXiJCAyqMgjJdZ0E4+nwteJRIJ7LincNxbexglnPFFDSS5AWpRw2rRpvF4ExcDFEavyHBTSo5yJU089FXV1dXjttdfw4YcfIhgM8iQ2IDu+K+kbGiHY7XYA4It5iq5bpQdRzfjJ5dkTOz3ljEu6fn/nEa+pNMboHRGNKGooaN+8vDzU1NRwT8qePXuG9KxOVqiWVyqV4p4lvV6PgoICeDweZDIZRKNRPqMKAP9f7DgpR4o8FgC4h4N+xMriQE/bQBMViouLkZ+fD7PZjEgkgkgkklUZWRpQJwZjDN3d3Th48CDXbQqpqnkHZs6ciXXr1qGiooIXm6VJBLSMjlgMk6C1Jik1o7S0FA6Hg8s9GAzyEKDkxLFYLPB6vXxSRygU4romGj00oy4vL4+HY9XKuFDeq0aj4WviAeDeK8YYN34dDkev1A4y0mlJGKvVisLCQsRiMXR2do5Jvb0JZzyJXiRReLTIoDgdXq3cv2hUkZGl0fRUkWaM8URzup4y5CPdwv1DnicxXKf0PBFKb2Jf3qNc3imxoxUNnL5klavDFA0ptfIVtJ0mHRiNRr58gOQ4FL4RpylnMhmYTCbY7XaePBqPx3ljK+omkB2iFxtjURaikSsuBUHuffoxmUy8TpSU1fBB7WggEOCeCvJWiAMOkqPT6cTMmTMxb948Hnolj6TZbM6aPQkclzWlWRQWFsLj8WTlupFnezzkwZwsUMibJmmIS+OohcfJ0yiuOyoits9iP0AOD+C4rMkIFz+jHDhKKqd3hu51LBiXxpPYsamFeCjpjGY8iZWjRUVV66xJ6MDxWlEkcLHWjPI++st/muxoNBqeHE6jEGoMw+Ew0ul0lmED5F7TSCk/tX2U1wbQK76uRO38aucRw8LiPdO7RXWKCgoKYLVa4XA45LuhgHTKYDAgGo2iubkZoVCIh9GSySTa29sRCAR42JNC71S3S1ymgRpmJeQdFj1PNEKm34lEgo9kTSYTN+CcTief8SdrBQ0dWgpLp9MhHA7zUBotIhsKhXD48GGEQiGYzWb4fD4+u9lms0Gr1fIFo+lctFgsyc3j8WDOnDlwuVzweDy9ZvDKsgXDi91ux5QpU3i1f1H36DnT7DcaLJP+UQhNDNGJOUyks2JOm7iv6Bmm9pbOS/0IeSC7u7vh8/lUF2sfacal8aREaTzpdDo4HA64XC643W4eKyXrmFCG6+gcYliHcjGolAG9DMrjJH1DnV9hYSGmTJkCr9cLu92etThzLq+RCCmUOEIBsg0ppXFNv3MZRcoQn4hoTKudU3xfKI+HYvuFhYWIx+PweDwyXKCARq4mkwl+vx///Oc/4XA4UFRUhLy8PMRiMRw8eBCtra3w+XwwGAwoKCjgXilKIhWrS1PYTsyJEUuLUCNM7QBNm6f1LckjRevneb1enqQsjaehwVjP2oXRaDRrsDplyhRcfPHFOOOMM3DkyBFs2bIFjY2NsNvtaGlpAWOMz4Z0u91wOp2YM2cOTxgXZ1hRiIhq/4gFc8XQrcxPHR40mp5JAPPmzUNeXh6Ki4uznArkpKB+k+oxKWVBk7SoDSWZiflTZBCJM2TJeBLzTMWBkEajQWlpKTQaDY4ePYpDhw6ho6Nj1J/ThDCegN5Jv6RM5OJT8zL1h+hNEhPgBuLtkPSGkv6oDo9SAQbyHEVDR8112x995TepnSOX90n8XyyaSt+DjAOxgZf5M8ehcgMUSqHETjJ8kskkQqEQ/H4/n85OoR6g91IPgLpRLHqcxO3UKJMhJRZmFadCixNIJENDrWBxKpXilakTiQQ3kEwmE1/njEJvpF9Go5EbxDSA+v/tfWl0ZFd17lfzPKlKs9RSD2671YN6sBlt44mHcQAHTOIwOgwPkhCSvJCErMCDvMR5a0FIIHkhOCFgE7ATh8kmQAwY27wEDAbsbne7B3pSq7s11jxPqvN+6O2jXUe3SlJLapVa51tLS1LdqltVd99zzj7f/vbe5DAB81sxqYywHnsrB9IuuVyuOkKBb24B4y4RagQIqO9Typ1ePs7VWm3AXLiOh+RJU0uhXh22awAjUafFYoHX60VbWxsCgYAcYGqRPKO6UKqwmCZTKrjHveVGk7fRjbHRQeUJurq60NHRISsBU7kIo75HFBLjom/+PD4hGzm1jcJ63HYqta+CnCK+O6LX8XPyz0mfh2qV8KKsJI7e6PB6vejr64PX68XVV1+NnTt3wu12w+v1ysycsbExHDp0SDJNPAQH1N8jAGQlcm5Hsg1N9rRDTiQSKJfLmJ6exvT0tMy+ozARsaTpdBrJZFKK1jWWDlUKQQsehWSr1Sq2bt2KcDgsM+bUOYHr3fh8QBqoRhIM7TCtDiqVCgqFAvL5vCxNAACxWAwXL16UrY/C4XBdpACYc6ZJK8XnVArJE1NFCSIul0tmT1LtKADI5XKIxWIAgLa2NnR2diKXy2F8fHzNbd+SzhMNCnXAcJaIelZRdXF1gHGnSV24KQxA5yTniZrZcqX/WhtovcBkMsHv96O7uxvt7e3SeaLBsdBuhNuI/yY7qAxBszCZkeNk5LzRebnjrTJItBCoWjpyngDIejUkkNfO06zztGnTJoRCIVxzzTXYs2dPXYXxbDaLsbExPPvss1J8Txo5ziRx1oGcJ3WXSxO11+uV5TGomN/k5CSmpqakTUgAGwgE0NXVBZvNhosXL67BFbpywEMyXBeYSqUwOTkJq9WK7du3yyriFLbhpWSMxhn/mzJ11Y2tUQ03jeWBnNZ8Pi+ZQtrERKNRnDx5EoFAAJs3b67TC3MHmuZV1XGijRLVgqLMSno9ESG0ZlA2s9lsxvbt29Hd3Y1sNouTJ0+uOePYks4T0JzNIVEZhQUWO3gaXWTVyTLS1+gB2hwmk0lWlXa5XDKLwoi9W+y1VHeZK/EZuUMGNC5r0Cx0q34nXkROh+9mwYtkUlFEm80mSxhQ5gy1taEMGi425Qyyyvqqiy0le/AaM/R8nn1Lf1OGkFFmkMbyQe1SEomETCThfc4AY21hs40UhzqWlyrZ0GgOcp7sdjvS6TQSiQRqtRqSyaQsCpxOp5FOp+U4VGUvKluvhtf4WktOmNVqleVLqCF4Op2G2WxGKpVCPB6XBVhJa7dWFeVb1nkyAt+FeDweWTKeRKKc4TAqU8AZKQ5qWFosFuUOlSZybnzNRjWG2WxGKBTCwMCAFPGTTUjsS84ulYIwqjqu1oZpdq2bTZiqE8wZDJXR4Oej42pfJfq8tGPmQmYq/Gi1WpFMJpd66a5IUM/JUCgkWcharSYzqSYnJ2WxOyHmRMdUtZ0mUs4w0E8+n0epVJJib3q+z+eTWZ60WNMc4XA4UK1WpcbKZrMhEAigWCzqFPdlgs+RZK9cLoef/vSnOH/+PLq7u/Gyl70MfX19MJlMsrQH1zuRVpLsS4kmPJqgjmV6P6OQvsbyEIvFcOTIETgcDpw9exbPPPMMAGBiYkKGwfP5PA4fPoxIJIJ9+/aho6NDZlZTxIESCbjzzOtEud1uGUkKh8PweDx47rnn8Nhjj2F6ehrxeBxTU1Mwm834xS9+ge9973uoVCo4f/48otEostnsms25Le88GVFzVBwzEAhIDUOj0JDqQBktxjMzM8jn8zCZTDIzh2hojcWBBkBPTw98Pp8MwZDzQUwh7TC4NkllgjjVa0ThL4YNNGKQ+GOqRoPAnStyoCgTi+hsnu0FzBWUA2YbBm90kPjX7/fD7/dLxomcl1gshng8Ljuo12o15HI5CCHqNi8A6uzEM3mo0jDZhnSQwWBQFmi12Wzw+/2S/aJNEhXs9Pv9yGQyLdFkdD1D1SkBQD6fx5EjR3D06FFs374d27Ztk6Ftt9tdVzCXJxfQwmsEGpeqlMNID6WxPKRSKVn534hNcjqdSCQSCIfDuPrqqzE0NIRAIACz2YxcLifHKmkZKRxHG1Neo5FKDlEbpWg0iv/4j//AmTNn6jJhKaGE2GRVI3e50fLO02JxKaGgRseMnLBm0KG9WdDkpha5o0FDoRWqCUIhGaJ76fmq5m0h9mmhz6T+re5iafDxjEsa4PS4+gOgjvWg0ASFgbTjPVfrCYBsi5LP55HJZOQEyxlesgNNkkaaOO7cqvcaObYmk0kyUHa7XYbr6LyUJs1LIWgsD0bXkGxaLBaRTqcRj8frystQ1iVtSnj6uqpbNZlM8v7g91WpVEI+n0cul0O5XNa2XCGoelEV1WoVhUIB6XRaMsE80kA24nMogc+zpJcCIGuuEatMbDWv30ah3bXUOhHWpfNEkykZC2gcwmm0uKqLKi/MxQey0Xs3+1wbHUY3NQ0kqkDscDjqFkRiG7i2he8m1cVzMde5kaOkHuO0v91ul4Jj3rxSCCF3w6STMZvN8jGv14vBwUF4vV6cOHFiuZfwigD1nKQWPZlMBjMzMzh//jzOnj2LVCqFarUKv9+PcrmMdDotHR+n0yk7BtAP1XihkgOkp+LZOdlsFkIItLW1Ydu2bTKZhBbWjo4OtLe3I5lMolQqYXJyEtFoVOquNJYPNetKCIFMJoPnn38ek5OTGBoawlVXXYWOjg5MTk7i/Pnz0q608JJukgTFZHNgTrLh9XphNpsxPT2NkydPIpFIIBqN6jn4MqFarSIWi8m2OJSYIYSQ0gz6LYSQyQLAXPsuYhxJ5zQ+Pg6TyYSpqSkpj1CjAirDuZZYl84T0JwdMtLSNIMapiFakKMVPN31CH5tqbYOFTvkGRi0y6DHOGOlZtY0soWqc1L/Vp0n+pscKKqMTFkftDviOyCe8UOshdPplGE73aplFqRzI1vTTjIWi2FsbAy5XA7ValVeL7INhXMonZ3bWi2YyVuA8CxHi8Uii3FSujUxT1RVnEKIdExjZaDqCWlzdO7cORnmcTqdCIVCiEajkoWkoqg2mw3d3d2y9QbpDEmQTO9B9X1KpRImJiYQj8el86yx+qBQey6XQzKZRCaTQTabrettx+dv7vjwkDyNXwqpVyoVpNPpeb0NCa1k35Z3nowYJdqJ0q6EijMWi0WZ9sjpPv56MqJaqoAEzbwfFjFQ6jk0jEHXlmc20c3Od6QmkwnJZFLuMDjjQ8eNbG4EHos3CtE1+pw8+YBCbZQwYDKZ4PF4ZB0nYibpviHqmBZds9ksBZFGzVA3IqjTusfjkd0AyuWyrPMEAIFAAEII5HI5pFKpeefgVaSdTqf8m+qHkSNLdnE4HHLsUo81yvgymWZbfAQCAdkWpLu7W5Yp0VgZcLaQxhgJh81ms0x1LxQKmJyclI4TadmIpXA6nTKsB8yFxmkcUvbX5OQkxsfHpSPcSovrRgIPwakhdsA4e5kTFWR3Yv0pO5fWkVbEupjpVQNQRkY6nZadnyORiPRc1eqlXADO6WEyts1mk3H4SCSCSCSCXC6HbDaLdDo9zwnTA3Q+6NpSJWla4IC5sCjXNp0+fRqPPfYYMpkMhoeHce2119Y1+iSoDCO/9qqztJCDSwOWZ8t5vV54vV7UajWcP38e4+PjsFgssr0MFx2bTCZZn0SIubpDdrsdoVBI9rzTANxuN9rb29Hd3Y1IJIKOjg6Uy2VEo1EkEgkUi0W43W7k83mZVaP2pyLdGTmzAGTxxVwuh0wmI50ni8UCv9+PYDCIzs5OdHV1IRQK4fz58zh27JgM85PNent70d7ejtOnT+PEiRO61tMKwajMQKlUkjYmZioUCkknl2vYyEkKhUKyQGaxWITT6ZQFNqempvDCCy8gm83imWeewdNPP41sNotsNrtm4uErHc3WPiIfaIPDWSOal9U6UDSnc1aR12Dzer3w+XxyQ6tGFVohErQunCcVdNFpx0Kd7cvl8rzMAPUC0yLPF1oKJ5HolzIAtBZiaeDZUOSkErPHw3AAkEwmceLECSQSCXR2ds6r/ULnU2PejbBYvRvdE7whpd1ul/dTLBarE4u7XC6ZMcarHfPPxzU4mnmaBaUhUwPeUCiEUqkEn88Hj8cjtRBOp1OGa1TQvcNDqrzIIl1r2iBxxol+ZmZmkEgkUCqV0N7ejnA4DIfDITN1c7mcDC1qrAzUcUqbXQCYnJzE8ePH4fP50N7ejv7+fsnYkj2JeaLoQq1Wg8PhkHrJWq0mMzbHx8cxNjamK8SvIWicco0ozf3kMPEsamBu7qQ1gycT8YLVvOfkUiISlwPrYqZXaeBqtYp4PC4XuWPHjqFUKskQjMfjQbFYnFf0kgvDucapUCjg/PnzMJvNOH/+PJLJpKST1c+h0Rx0bWmy47sO3qeqWCwiFoshFoshn89LgaGa4WEUBiBwWlgN2xk9ZiRG5wMyl8shGo2iVqshHo/DarUiEonA7XbD5/PNy7jjYaVSqSTDyBrA1NQUfvzjHyMSiSAUCiEcDqNSqeDYsWMyBZkmWmqlAsxNxJylpMfph4dzPB6PdIRo8S0UCrKq+MTEBCYmJlAsFmG1WpHJZGS6vNPplONd4/KAlyWIRCLYtm2bzLyrVqtyDkgmk7LQJt0bxWJRjjdaYHWNrtUHd4L4hpF6ywUCAQCQshmyE623auYkVRXniUDAXG03h8OB/v5+OJ1O6RirWbGaeVoEjLKsSqUSRkZGcPHiRUxOTsJut6Ovrw8DAwO47rrrEAqFkMlkDOOlvKIwOU+pVArHjh1DLpfDoUOHMDY2hlgsVlckczHGWqxA/UoFp96pcz1nnLjDkclkcO7cOUxNTSGdTkv2kBgr2pE06nav0sh07ZvtTGjx5Zo3TicnEgmMjIwgn89LMetVV12FTZs2oa+vb57jROxJtVqV4slGNWo2EoQQOHHiBKanp6WO0OVyAYCss0R1mZxOpyxQC8xpJ7gOidsYqBcRBwIBdHd31y2k6XQap06dgsPhwLFjx3D8+HHkcjmcPn1aNjmlsV8ulxGPxy/n5dkwULWmAOo2VoODg7j++uvh8/mQTCalw1QqlXDhwgXJYJC9HQ6HLC9BrCLXSmqsDmju5jolEvZHIhH09PRACCEzZoktpA0xny+p5QoxhTSfUhSJGOtrr70W6XQaP//5zzE+Pi6dp1ZaX1veeQKa08BOpxOTk5OwWCxysSaxmdpvibMgfMBVKhXE43Ekk0mpx1AXwYUEcBr14JoyLs7nol9yOEjkr9oLMG7LYPQ4P/9iGCgjcTp1e89kMpiamkI0GkUgEECpVKpzAvl9xGP3jcpbbESQBgWAbLpNjitlLdLfxPCqzF6jyZKPRequzktIkDNLJRAooyuTyVzWa6AxH3wh9Xg8CIfD8Pv9ACDLURSLRcle0A+FhGiOoDAR70Oqsbrg15mSZHw+n0wAoc0uSTdok0KvJTKDdLEA5tV5IqeL9G1UBLsVsS6cJ4JKHwJzjo/FYkF3d7c0AKn2zWZzHYPEC3dxGjEajWJqagrxeFyyHUahnUaL9kYHhbpGRkYQCARktWBKS3a5XEin05iYmEA+n8e5c+cMQzU8PZ0WV1UvZYTFHON1pIyKt7ndboTDYZjNZpw9exaJRELupug1lCLNPy8t1tSPSaMeNGHSBArMbnq6urrkmO3r60OpVMLOnTvR2dmJYDCIYrGIfD4vmQe6H3w+HxwOB4LBIKxWKzZv3iwZDV4HCMCSel9qrCw4U0FwOp3o7OxER0eHzIYUQiCfz9cVLVXnXapET8kBtGCTU65xeUFh102bNsnyEzzyQNlzFH7nm2jSrQFzGybuDFM9QAAtnQm7bpwnEoXS36rjUy6X0dvbKylDmkxp4qbJmxfuooW6XC5jbGxMhpF4lhivdKzRGLVaDVNTUzh27Bj8fj+EmK3vQmJrp9OJeDyOZ599FlNTUzh+/LgM1dDAsVqt87IljZynhahbNcxDj/GsSS5ip8/g9/vR3d0Ns9mMSqWC6enpOj0Opd/zbvDArAOfzWaRyWQa1ifZyFB7RAoh4PP50N/fj6GhobrHe3t70d/fD7/fj3g8Lusw8XTmYDAIj8eDWq2GLVu2yGK5vO8gNR3Wmpi1hToW3G43Nm3aJNs4pdNpWYuLNIM05nnCAG12qGCm1+uVwnI9N68+VDtS2G779u2y/Ag5TvR80jBxB4kSO9SWSOQ0cUaLNquaeVoh8HALD5lQkTX6zdX+PNyihmx4GIleq6ZZNhMl0+P8s21EkCNLoZFkMgmfz4darSY1TdQVOxqNyvYcC4F2mhyXqi0zsiu3GXfiSHNF4cVsNlsnciYKmuudNPPUGFzzQtfZ7XbLkA3ZwefzwW63y4lXzZylkA1lyNntdqk7o0bB5XJZvo52s83CgBqXD+TwuN1u2ZqHh3P5JgeYX6aG5mAK/bXqwnqlg8TgVAiXZxnTWONrLw/F800rYCyr4AldrYp15zypIMenWCxienoax48fRzKZRCAQQDgclgbgxqVJlHY5tLNVy8EvFRt5Yp6ZmcH09LTMhBkfH0cgEIDT6UQkEoHL5UIymcTo6Ciy2SwmJyellohEopy2V8sUkKOjPrYYqIwVnZ9CusRcGNl/cnISX//613HkyJE6HReFlKrVKiYnJ2U4cmxsbEPfBxzqdbdYLGhvb0dbW5vMtNq6datszD0zMwOPx1MX3uOaCQB1DabpcXouVSX3er0y+eDEiROyIW0+n5daSX4/aXtdPjgcDml/ymAF6kXJfJGluZsvtuQ8UyShlRfYKwHcoeWbIK43BCDrJ6oicW5D2ujwTaha2obID3UNaDVcMc6T2WxGLBaTWT6bN29GIBCo0zgRjIzGF9FWNlirolarYXp6GrFYDEB9FhvtPniolK45bxBKg6bZ9V8q69Qo+46zR9Suw+i8U1NT+MY3viGLwPl8Ppnynkgk5Gt5g1N9/8yvyUKMUUdHBzZv3oz29nbpPJVKJcTjcRQKBXi9XukQcd2ikTaCWEl+f1GBUwq/DgwMoKOjQ07casE9ei9ts8sDm82GUCiE9vb2un6iPBGDQ9XL0GO8JpTG6sJog0GJWS6Xqy4ZhBxb7jwBkIw+VZun+ZcE5vw+UJ2nVh2bLX/nLXThuNiYU/P8h8Iv6k6FF3UE5gaq3slcGnhLnKVCDY/yHc5K2qOZbkrN9AMgWRGqmk7ZIBTKI4dbZ9ktDFocKRuWT6hUhJTCdVzjQpMrjW/OEvLfpJfTtbbWF9TsWr5oGi2gdB/xsK7G5YVRaI3baSGpC0GdhxeSVrQSWt554jC6iNRaxe/3ywrClN1FOohoNCorR3d3dyMcDksPOJ/PywJ6LpdL08BrABIL0gJKDi2fIFWbLNZGfPDyTE3KoKP34cwYZ79IU0efi1hOXpqgVXdGawl+TfiESDV+3G631DYJIeDxeGSWjd/vh9VqRSqVQjKZlIkFJELl7XWo1AU9RrYlUWoqlUIul0OhUKjToxl9Po3VR61WkyFvCr1R6J7XeKMxSH8Ts0G2pV6kOttubUDMEwn2KQLEIwPcdsDs/GskxyDweZjujVZmFlv3k6F5WQCugfB6vQgGgwgEAvD5fPB6vbDb7TLFOZlM4sKFC7Db7QgEAohEIgBmi22S88R3xEsdjGp4QmNpoFCM3W5HoVCoa53CQ66Xem2NwjTETvDMnkbOEzlalUoFhUJhmd9248DIXrz5NoVtaONCzhOJiYHZelGUXEAMFS2clUoFqVRK9hsk58lqtSIUCsFiscgCnJTJ1Winq3F5wJNzeFhWzbAlJpcWXx7KJSecbK2dp8sPLhinDSZtbgh8nqWyLo0Yeh625VXJW1k03tLOkxHUC0mpjdTg1efzwefzwWQyySrjiUQCiURCVqilBZnHXKk4Ik3Ei3lvgs62WzrIMSJnlTMHRP+qobyVeE8j0KJKDBhvI6OxsqAxVyqVkEqlMDU1VVfUMhQKyR0tOa1q9g6vVswdXmrJxNlkYqWMtBPacVobcPaBL5pkZ6owTws0bxBNThTZVWtUVw8Lzb28sDG3BY1bdR7njpDqJF/KfL9U/etKY105T0YZV06nE93d3ejv70dfXx8GBwfh9/sxOTmJU6dOIZ/P48yZMzh79ix8Ph+uuuoquWuh0F0ikcDZs2cxOjoq+/Oo77kY6EFsDKPMJmIZPB4PLBYLCoUCrFarFAsCqJtQlztQOGPJM3t44oDT6URbWxtKpVLDZrFG90MrixpbCULMlrPIZrOo1Wo4dOgQzp07h3w+j4mJCeRyOWzbtg033ngjwuEwstmsdGhpYqaqwz6fD4VCAfF4XPbToppcJpNJFmrNZDJ1TrnG2oIvtMBchWke6qHwPQcXjVcqFaTTaZTLZeTzeW3XNQBFatxud11lcdoIUdYdMYs2m00mBwkh6kLxfGPEWUgjDWorYV05TwS+eFmtVvj9foTDYbS1tSEcDsPn82FyclL2Tbtw4QLOnz+PUCiEQqEAu90uxb/UkiMej2Nqamre+zRznlrVqK0Gox0FFUCjmDll26kCfnr9Sl5r1aY0UGmAu1yuhrF2oyyylWTHrnSQbowc1unpaWQyGYyMjCCdTmNmZgZDQ0Ow2+0ytEPJILSw2u12WQAXgKztRNomj8eDTCYDu91e10xW22ftwYXgQH2FaTpGzYHJ0VIjAby0iS5Ku/poNP9S2RB6DjBXEJfmbppHaRNEdRS5NAOYk08spRjyWqOlnadGRjNKm+RGoG7c09PTSCaTSKfTdcUzybOl+lA0mfNzLTdk1OqGX2tQvNztdtcJRwmcKVqJa6lm9PD3onuC9HPNnKdmWXoazWEymeByuRAIBGR7FZfLhVgshomJCaTTackquFwu5HI5mc3Ia2zR2M3n84jFYpicnJSifpPJJBlEp9OJYDAIr9cr2Y5SqVQXMtJ2u7zg867X65XsBLEWVNk/mUzCbrcjHA7LVh00ZsnOPNlDY3XQbIyQvfiGl0DOEA+58gxqzvwT80SvWS9jsqWdJxWcxuMTIC/fTzvb8fFxHD58GPF4XFZ/Js0TMU6ZTAbxeFxS+wAkxbiejLge4XA4ZFNQCt2pTutKCvH5bpcGK/1NmVtutxsdHR0olUpwOp0Nz6Pvi0uDxWJBOBzG4OAgvF6v7ItFIfNoNIp8Po/z58/LpsLAnNNFlYyp4W80GsWpU6dw+vRp2UORHKarrroKPp8PZ86cQU9PD5xOJ2ZmZuY1B9bj/PKCbJdMJmWbHafTKTe06XQaZ8+excGDBxGJRHDjjTeiv78fwNwcQIk+AHT7nVXCQnIVIYTcwPDsSDpGr+ehO85KUSiedwPhBZLpM7QyWt55MmJ/mmXhkSCVNBCxWKxuV8NTYSlUxKlfTh1yQy4WenFdHKiYGmVOLRQiBRauGbIQVAEjv2cAyKwvo95LGssHpTf7fD74/X5EIhF0dnbK9j2UOJDJZKQonIv3uSaCdE7JZBLRaBR+vx8+nw/ArGMeCAQQCASkc06aOu0srS14th2xvTxMZ7FYkMlkZKX+mZmZOv0hPa9cLutMuzWCutYasfo8W1qdZ4H6sgVGP7xoZqtizZynS7ko3EAcNKlSGjQ1KaR6ImQQXtCQih9Shp1aWI/fAEuZbFvd4GsBI7s5nU5Zk8vj8czLblOv4VKuabPnGoVkedkCLlbUWFlQSI3CNcQKx+NxtLW1YcuWLQgEArBYLHKjU6lUZMiOFlHSTeTzeclikFDc7Xajr68PqVQKFosF1WpVljfQDvHlhVGiSD6fx8WLF1EqlRAKheZV5K/VakgmkxgbGwMAWaPP4XDA4/HUhW71OF19qOsfFbalKuJq0g1Qv8kl5olnVPPMPF6agI7ROVrdvmviPF2qc7FQ2M5ut8Pr9crFOJvNIp1Oy7grsUzUSDidTiMejyOdTtdldxiFjZb6/fQOdw6q82QymeD1etHX14dIJIK2trY652klw3X8nEb2VGvKLNSiZzU+20YBOTehUAi1Wg1jY2NIpVIQQqC7uxtdXV3SYSqVSvOKpbrdbmkvs9mMVCqF6elpjI+Pw263Ix6Pw263o729HdPT0wBmHS2XyyWLcmpcPqhV4YUQSKVSOHbsGHw+H9rb21EqlWQ/Q1pgJycnceLECWSzWYyOjqKzsxN+v1+GbqkBtJHWRmPloOpOTaa5IrcktSAnh8+bFIYTQsDpdMJut9dFeUgnBUCuzbxOG63prd65YU3DdkaL2UILUqOQHV1wnrlB4Tp6DvdmafDxZrRL/ayL/Xwa868L766+1roFI2aMh4iMEhS0nZcOGqNWq1XWespms7DZbJKNogQOmowrlYossMcztWgM02RMu9hqtYpCoVCXCMJFqxpri2q1KvVspJfhQmKeDEAdIAqFgtQg8o1pqzMTVxooDEctlNRoAWehCLzERCO2UGWweOmKVsaaOE+Nwm+LeR0X/QKznisVyaTdaKFQkLVkgPpimOQ0kWYin8/L+PtCn7XRoqkn5aWDMtuoLQewuD6Gi3neYsDPRecjjY3X60V7ezv6+/ulrobqkmhbXzpIq5LL5QDM1vry+/111D1VDS8Wi3KhpIKYtDGi0gVUZ4Y6Cni9Xikqj0ajMjRPDUx166W1AR+vpVIJiUQChUJBztXFYlHajeuYKpUKotEoRkdHUa1WsWnTJnlcFSlrrCxUHRMwl7hB3TwoU5q3S+LOkhCijiVs1IDdqDTNehinLS8YJzQScFssFrjdbllVPB6Pw2QyIZ1O1zlP5ECRAam+E2XiGTUTVcODeqCuHMh58vv9UsvCrzX/X8Wl2oKfn4sYiSqmWL7X60V3dzc2b94sF3K+mKvn01gceIYOJQyQY0Q7UlpcM5lMXULBzMyMdJxsNpt8PXUVoEmdykxMTEwgm80im83KauVG5Se0DVcPRskzpVIJ0WgUVqsV8Xhcbl7VSuLAbMh1cnJSaljJhsRQ6QrjqwvVeTKbzfB4PGhra0MwGJTjjsLs3AmiObpYLM7TGpOTBcw5TsRK09/rwYFaF85TM8aHdq0U+uGlCBbLZBi14mh1w613EP1LLMJSrvdqTpZcnOzxeOra+WgsDxRqK5fLMsOK7M6bwvJND9V4UjdNXI9B9xIVOCXBOe16ibEyCjNorC5UjSpP0DDSGPKFk5zpQqEwLzqgbbf64OOTQJsXKj9gNHerG0yeVcefYxSBWk/r7poJxhd7kfhA4hMmLbwkQI1EIshkMpicnJTF82iQclE5/aZq0n6/H6VSqW6B5O+jGafVAS12PGzXDI3YqMWwVEZo9HzSyHR2dmLr1q2YmJjA6OgoYrGYnAj0PXFpoJ1oOp2uY4Go9k+pVEKxWJQaKGrEXC6XZT0Yro8g1Go1uN1uDAwMoK2tTaa7Z7NZmdJOk73G5cNC8oxSqYRcLodsNisZQ9q4OJ1OmM1mJBIJWCwWhEIhVCoVzfxeRhg5RdQeiTfv5vpDI4dKXe+5IJwXt+U6qvVg25ZmnrgQXHWeyPulisVtbW0oFAqIRqNIJBJIJpPznCcqZ0CTKYX7qIcWPZe/t/qYxsqAGjqTFgVoXL27UWKB+rj6WDN7NdrtCDFbayYSiWBgYEBmmKivWw+Du9VAzlMmk5HaFZPJhHw+j6mpKeRyObl42u12ZLNZZDIZmM1mySirolKyg8vlQl9fH7q7u2XD4UqlIsc6hfr0GL58WGiskCYtl8shFApJ1pcaQ5tMJiSTSVQqFfT29tY5TyqjpbF64OQF6QyJ4QXqnSc+rum1Rk4Yd55ow8T7HK4Hu64L5snoMU4fEgtFgtNSqVQXtuNZeNwhM4qzL/XzLebzaswHLZK8FcpSsmeaUcUEIwerkX1U+1PNMLvdPi9stx4GdquDQjaU8cqbQVOR0lKpBGDOjnwM0+M8EYTmBLvdXueQl0ollEolrY9ZAzS73qpuiexKZWcAyILHvIWWxtqBJ21wB0ldX3nUhv+oITyuYVzsxrdV0PLOkxFIuOb1eqXq3+VyAYCs3ZTL5eoqR1MTWhKg0u6GFki1zhB3si7l+210LESvU52nvr4+mEymukKV/HVGIVsj4XcjLOa5qoDcZJqtQ9XW1oZEIrHmpRSuJNBkWalUMDY2hng8DqvVKkMBfr8fXV1dUkyeTCZRq9Xkjpc7RVSNPBaLIRKJyMxbGreVSgVTU1MYGxuT4nE1e1Zj7TAzMyOz7aikjM1mg9/vlzWgcrkcMpmMZKAahe01Vh/EPHm9Xlk3TS1gS0QFL/XCE7VI81gul2E2m+Hz+eqeR/Mvjxa1Kta0wvhS9SgE2p2SEckBAiAHG3VTV1kq8ppJZMrbgyzmMy5msdYDehbNdErUiywSich6LkbMUyP2qFnJiEa0r1GYjx7nr6VQnc/ng9vt1oLxFQLfoZbLZcTjcZw/fx5erxdOpxMejwcejweRSAQulwuJRELWhKKxarVa69gKCgNSNiRN6FRdPBqNIpVKyeeo0EzU2oG3yKLCihTO9/l8sFgssrF7Pp+v63223A24xtJBjDxlwVKYjeQw9Bzu/Kg12YhtpNA7FT6lEiZqjahWtnFLtmdR2QXecZkeIzaJt13gHbt5PQlyoHjGDWcauMHUWK3KfCzne2108FApD9UZZWMQlhs+5ec00kSpx+lxqqSr+9ytLHjiBhW0JMapo6NDlq6g8UqOEk3cVqtVTsZqFheF7AHU1QMqFAooFAqoVCp1n0U7TmsLtf4egTa7anFFNRVez7WXB3xe5JpErk/i7Vl4Mgg5V8Qa8jFL9jeZTHXlDDhz1cp2bsmwHV/k1FgqMDu4AoEAIpEIgsGgZI6KxSJisRimpqaQyWTkYDPSRwFzOx9VC2HkQPHHF/P9NGbBr6vNZkMgEJCOCekZuA2M4t6NGKNGou9mz6f3UEN1VHuEMrqCwSC8Xi9isVjDbMBGzJqGMWjydbvdqFQqMjvW5/Nh27Zt2LFjh3wu2YFaOlgsFni9XlitVqRSqXmp69VqFZlMBolEAh6PB4FAQD4+Pj4us++0rVoDpFfL5/OSVQJQV/yUFlxeXJHP6VzrqrHyMIoYeDwehMNh+Hy+uo0MZcrS2kqOLznB1I9S3aySno3OUavVJLtFa78RjGQclxst156FoIZUOIVHu1CPx1PHDNAuM5fLzSvaZSQMV8VsC33GxQxSPTnPQb0WFosFTqdTZtgZOa/cuWl2Tq6HIizmfqLnGT2XP4faQfCU3EZYywG83sDLBpTLZWSzWVSrVbS1taGvrw+lUgmZTEY2+jVintSMHHoe1QTiIYVarSb1TjSBa7QGuB5GzYzmm1wjdlpdEzRWHzQGXS4XnE6ndJ6IdSIHWC18SeuuutaSA02vIeaJ5oeFIj5rPe9edudpqUJsHrbjj/FS/jTBUvXibDaLUqk0L2ynLppkeDWLgze0NArpNcJCC/9GgtGN73A40NHRAZ/Ph1AoZFjXQ9UeNdNNLYcRbBTWo/Aw0cfA3C7X6F4x+mwaxiBHZnp6Gul0GgBkk1H6TSxyuVxGIBBAMBhEqVSSWZm8/xlnK9xuNzo7O9Hf3y/DCrVaDQ6HA8FgEMAsm0VaSI21h5ptx0NARg26eSHVRgUaNVYfRmQDPcb7URJbqM7tZF+gvvcd2ZOcZ+5Et2IJgzVhnhZS0fMLxCtQq8wTCcWFmOuZFYvFEI1GZWorOU68mSF5rEbMBy9rwAXMi3GK1Oe2kqHXAur39/v9uOqqq9DV1YVNmzbNq59EDpM6mPjEqt4H/Fo3GtAcfMdqpHkiloPTz0Qjk4OuU6YvDTMzM5iamsLJkyclM9zW1oa2tjZEIhFEIhFUKhV4vV5Uq1X09vaiv78f5XIZoVBIViWn1krkCFksFgSDQQwNDWHPnj3I5XKyrY7f70d3dzc8Hg9mZmaQTqc3/LhsFVAnCD4Hc+0aL2FBczXdN8Rgaj3i5QVnAPk44rq0arUqM19pPgXmnCeq7WQymaQkgtZ0k8kks+Bp80OMMznPHDpst8BzVNG2KgDnuxUSjKsaGs4+ERrdCHxRVhfqRjAKI2nUw2q1yoKmXq93Xs0egmo3APMcWfrdSN+kPqY+dzGv459b90VbPkjjkEql5CRI1aS5CBWYnWBdLpcMm9IxmqBJBwPM6WT8fj/a2tpgNpuRzWblhEz6GV1yovWgNvjlDIa6SeHML99kafZpbWGkQSX7Ga2vfJNKLCKPSNHaDqAuO96oRdOGCtsRFhPLbPYcPqFSuK5UKtWp9vn5VPaK4q20w1GdJ6Oq5ov9Pht5MDcTUbtcLsk6tbW1yZAribVVMTcfNDQQ+XHOYNIkrNrY6HOojjTdK/R83sLH7/dj8+bNUow8MjKCfD6/KtfuSketVkMul5MlCEKhEDo6OtDV1QUhBLLZbN3iSBm1ZrO5rkFwpVJBLpeTrVt4PTe73S5/ZmZm0NbWhk2bNiGdTiMajW7osbkeoIZtGtlrqfIPjZUB1UgkQbdRZIbsRnW8iDVSHSKyMzHK5FQRm2w2m+H1etHZ2QmHw4FkMolUKjVvXV4rJ6rlsu1UYxg9j0IpJFqjWi/5fL5OC8Hfz8h5KpfL8yZg/lweZ12KrmajTtBGmjIOt9uNwcFBXH311bL9AsXFjbRP5MBwrQN/H15fhKfC8gFlVDuKBi09RxUtArMD3OFwIBQKYffu3fD5fDh9+jSmp6e183SJqNVqyGQyAGZDuDt37kRfXx/a29sBAPF4HHa7XRa6JNaIN/2lzQ5NpGR3CgEQi0Uh4a6uLtRqNSSTSZw7d05mVGqsPRqFv7nMohlDrDVPlxc0xniilirgVwXiuVxO2pPCctx5ImeMSyK48xSJRLB582Ykk0mcPXtWht1bQRrTMmE7NSSzWHAGiYpwNQNlBVBxNqNSBY0+52I+mw7lzAcNBFoYaUHkN38jp2shZ5TvdjjzZMReGu1YmoEWcJ/PJ0sXaI3FyoAK3fp8PtkdgIuHCTTZ8s2PGuoxCrHz4n1Op7OuOrnG2sBoseOsMn8et7l6Do21g8r4q4Jwdf7lrHAjWzbzA3h3EFU6sdb3wpoyT41CXQs5INRQkrQTbrcbiUQCExMT8wrhEX1YLBaRy+Vw7tw5PP/885iamsLIyAguXrwo67/Y7fZ5Rl5sOO5Snb8rDWrYzu12o7+/H8FgEDt27JCFEDkrxFk+NcvGKAxn5ATxAc3ZQ7XdC/+cfHJWQ3y0EzKbzejo6JCtQhrVfNJYGFarFd3d3diyZQt8Ph82bdqE9vZ2eL1e6dhUq1WZiUclR3h4nZrDUrE+atHkdDpRKpWQzWZl3SBimEhYrEM8awc+XmmcFYtFJJNJWK1WFAoFAHMNwwOBAGZmZuSCyRM36J5QiyFrXD7UajUp+uZtVYC5eZY2zDS3kxaZj00eqgPmZ1vbbDaZQGK321tqfW0ZzZPqpDRzRkg7kUqlUC6XAczW5RkfH6/rvE2ghTCXy2FkZAROpxOxWAxnzpzBhQsX5CKutmpZSghONfpGhNH3drvduOqqq9Df34/t27cjEonA7/dLnRoJBokCJiEwMTxGjhN3dHiIlb+GHidnWhWkcr1EI0Ejpdx2dnYiEAhgbGxMF8xcBqxWK/r7+zE8PCxLC1BFcR5+pdA7tVTh/bCoIjHpLnw+X53zlE6n6wqvAnNhIO08rR3UzTHJJpLJJMxmM/L5vAzfu1wuOUfQfUELMS3G/D7RuLygjS9phXmRYf4c3vSXN+fmY5Nn4wHz53vVeWolrBnzxH+rxxotQHxRpN0oMLtD5TVcuBH5e9BzMpmM3NUaVbZe6HMbQS+axo4jZdi1t7fLRY5YAM4U0Q+vHMyfR8JxHlPntbuM6oXQ3+qiye8jXjyVv4b/7XA4YDKZZGkMm81Wp49S2TGNetD1oQbAbW1tspcdZduRzWkiNgrlkO1JD0MhObVYLtmVGgo7nU4Ui8UFi51qrC7UuZ02UE6nUzJIZDtKT1cXVh62NaoFpbF6EEKgUCggnU7LjQs9rs79C0ktuC1pvNPfVIrEZDIhn8/Pax7dKmgZ5kl9zIhxIAGpzWZDJpPBxYsXYbVaMTU1BYvFgkQiIRkkblBelTgWi8FisSCbzaJYLNaJwun56qS92O+zkVknYG5HQn8DgNfrxb59+/DiF78Yfr8fwWBQVqbl2W3k4DidTvkYVYqmqrOq0JfEhpw6BuYcJtrVEDtJIFExCccdDofcSVGojvfgo1piPT096O/vl1Ww4/G4ZEJ4tqCezOtBDkwoFMI111yDl770pZJRoHFNBTJ5/SYA0rH1eDwIBoOo1WqIRCLI5XJwu90olUoIBoPYvHkzQqGQbOFC4fpgMAiTyYRkMolwOKzZpzWAkUxDCIFkMokTJ04gGAzi2muvlYujw+GAx+NBJpMx1LlUq1WkUikkk0kUCgU93i4TyuUyjhw5gnQ6Db/fjx07dqC3t1eOX84Mka1pXhZCyHWYMmjJUaKC1jR/J5NJnDlzBuVyGUePHsVzzz2HbDaLaDQqn6NmSK8F1qTCuNHfRs+hi8L7GREbQcwRB+1eaLHjRTLJWKlUSsbLufPUqFP3Yp0hvXDOQv3+Xq8XV199NV7ykpfMC7lxh5MzT5xZoto+xPaoDSgpzEpOFlDvPKlMJIB5NYWAudY+vDgm/djtdlgsFkQiEXR2dsoaQslkUr6ePv9aDuZWBOkWqPnvwMAAhoeHYTab5eJHEyqxRbQj5Yyi0+lEIBBArVZDKBRCJpOB0+lEpVKBz+dDb28v/H6/nJjpHFS5PJFIIBAIbOjNzVqCz600Tngh03g8LscNbwGiJmhQKD6TycgQrR5vlwflchmnT5/GuXPnEA6H5diiJCBVagGgbnPJ12EKvVK2OzDnCMViMVy8eBH5fB4vvPACXnjhhXl2NmKnLzfWlMdu9sVVWg9AXSNIou555o3qAPEFTe2PRLoJir8uJlNPD9Klo1wuIxqNYnR0tC7kxjOruMOkhuWMyvKTfakwKjlKvDo4PWaUhck1T7zCMdHD/BzEQpFgvFAoSMGqxsKgsUe6pWg0inPnzsFkMklxt8PhgN/vh91uRyqVQiKRkD0qyW6FQgHxeBwzMzOYnJzE5OQkSqUScrmcLDmSSqXgcrnk36SToPPyBVpjbcDHMmkLq9VqXQiOHO5GpQqMKpNrXB7QnFsqlZBIJDA5OSk3MdSzlG+EGoX0LBYLyuUy4vE4crkcgLn1NZFIIBqNolgsIp/PN7TxWtv9sjtPzb6wkUicBgoVzKLdIy2w5XIZ6XR6XjsWbjBaGEl8Rs6X3++H2+2WEzOJzZfDIhmxVxsZ0WgU3/zmN/HCCy/A4/Ggs7NTlt4nBol2Lpy5IRtR6MzlcsnaSx6PZ97EStlYNPFSbzNq8cBpYQrVAcD09LRciKmxLLFNxGoRQ3XixAmcPXsW4+PjclADxuFKjTnQGK1UKvjud7+L0dFRWCwWef0CgQC2bt2KUCiEZDKJCxcuyHAMOddnz56VIb1nn30Wv/jFL+ScQK1zXC4XQqEQJiYmZDFT6nVZLBZx4sSJedm4GqsPvrHl44PGJXWFyGazcrx7vV45zukc5ICTcxyPx6XQXOPygByiTCaDgwcP4syZM7BYLDJTvb29HVu3boXH40EsFsPExIRsqVOtVmGz2dDd3Y329nZkMhmcOXMG0Wi0bg4lRoraKbXqRnVNmCcjb7TRAOADj1KTueDXbDYjnU7PE+/yxq68rD+dy2q1wu1214V6dMhl5ZHJZHDo0CGMjIygra1Npqnzopd+vx9+vx9ms1nuQik1mQYmhWSoRxnXzFDabKFQgMlkgsvlkqFbvqOl37zdyoULF3D69GmUSiVZZJXOwdOkAWBkZATRaBTJZLJOY0WfQ8MYZNNKpYKjR49ibGxMMr9UCqJWq6GzsxOJRALnz59HoVCAx+NBIBCAEALRaFQmehw5cgRHjx6F0+lEf38/QqEQAODs2bOIxWI4d+4cDh8+jEwmg2g0iqmpqZadgDcKONvEH+N194ghtlgsdbpEei4XFBcKBeTzeVkkVePygNbIYrGI8+fPzzu+adMmWK1WBINBjI6O4uTJkzI0Vy6X4XQ6cfXVV0sH+IUXXsDFixfludcTtHpSY83BJ1ajSdbouerzV+szceiGwMvHYuj3xdh1MXbXbKCGxtpiofl6ofm+lWES6/FTa2hoaGhoaGisETTzpKGhoaGhoaGxBGjnSUNDQ0NDQ0NjCdDOk4aGhoaGhobGEqCdJw0NDQ0NDQ2NJUA7TxoaGhoaGhoaS4B2njQ0NDQ0NDQ0lgDtPGloaGhoaGhoLAHaedLQ0NDQ0NDQWAK086ShoaGhoaGhsQRo50lDQ0NDQ0NDYwnQzpOGhoaGhoaGxhKgnScNDQ0NDQ0NjSVAO08aGhoaGhoaGkuAdp40NDQ0NDQ0NJYA7TxpaGhoaGhoaCwBa+487d27F5lMxvDYtddei6eeemrBc3zrW9/CgQMH4HA48Hu/93uLPjY5OYk3vOEN2LNnD3bs2IFPfepT8thf/MVfYO/evfLH7/fj93//9wEATzzxBF70ohdhaGgIO3fuxB/90R+hVqst5WtvKKyEjf/2b/8Wu3btwu7du7Fnzx586Utfkse+/vWvY8+ePdi7dy+GhobwoQ99CEIIAEChUMDb3/527Nq1C7t27cLrXvc6TE9PAwBqtRp+//d/H0NDQ9izZw9uvvlmnDp1CgAwMjICi8VSdw+cPn16mVfiysRK2JcwNTWFzs5O/PIv/3Ld4z/4wQ9w3XXXYefOnRgaGsLTTz8NoLl9n3rqKbhcrjobFgoFAMDTTz8tH9u5cyfe+973olQqLf3LbwCspX0B4N5778XWrVuxdetWfOhDH5KPNxv3uVwO73jHO7B7925cc801+OM//mN5TGM+VsLGn/70p7F7927s3bsXu3btwt/+7d/KY3/6p3+K9vZ2Oebe8pa3yGO1Wg3vf//7sXXrVmzbtg1/93d/J481m/ebrdGXBaKFceDAAfHkk08u+LwTJ06IgwcPig996EPid3/3dxd97M1vfrP40Ic+JIQQIpvNiuHhYfHMM8/MO3+xWBRtbW3iZz/7mRBCiGeffVacPn1aCCFEoVAQL3/5y8X999+/5O+nsXgbP/744yKZTAohhBgdHRXhcFicOnVKCCFEOp0WMzMzQgghSqWSuO6668TXvvY1IYQQn/zkJ8Vdd90larWaEEKId7/73eIP//APhRBCfP3rXxcvetGLRLlcFkII8ed//ufiV37lV4QQQpw9e1YEAoEV+54bFYu1L+GXf/mXxTvf+U5x5513yscuXrwoBgYGxNGjR4UQs+MxkUgIIZrb98knnxTDw8OG75PL5aTdZ2ZmxC//8i+Lv/7rv17al9NYdfv+4Ac/EENDQyKbzYpisSgOHDggvvnNbwohmo/7P/mTPxFve9vbRK1WE+VyWdx+++3i3/7t35b/hTcgFmtjmp+FECKVSon+/n7x7LPPCiGE+OhHPzpv/SV84QtfELfccouoVqsiFouJTZs2iSNHjgghms/7HOoafTmw5syTyWRCMpkEAPzoRz+SXus73vEOVKvVRZ1j+/btGB4ehtVqXdKxQ4cO4Y477gAAeDwe3HjjjfjiF78473mPPPII+vv7ceDAAQDAvn37sGXLFgCA0+nE3r17MTIysqjPuhGxEja+9dZbEQgEAAD9/f3o6urC+fPnAQA+nw9m8+ytXCwWUSqVYDKZ5Hvn83lUKhVUq1Vks1n09fXJY6VSCcViEUIIpNNpeUxj8VgJ+wLA5z73OWzevBk33HBD3eN///d/jze/+c3YsWMHAMDhcCAYDMr3bmTfZnC73bDZbACAcrmMQqEg7xmNeqylfR9++GG87W1vg8fjgcPhwDvf+U78y7/8C4Dm4/7QoUO4/fbbYTKZYLPZ8MpXvtJwbteYxUrYmOZnYJb5q1Qqi3rdww8/jP/+3/87LBYL2tracPfdd0sbN5v3OdQ1+nJgzZ0nQrlcxt13341PfOITOHLkCN70pjfh0KFD8vh9992Hj3zkIyv6ngcOHMBDDz2EWq2G6elpfOc73zF0gj73uc/hXe96l+E5JiYm8JWvfAWvec1rVvSzXYlYKRs//vjjSCQSuO666+RjP/rRj7B79250dHTglltuwZ133gkAeO973wufz4eOjg50dnYilUrht3/7twEAr33ta3HTTTehq6sL3d3d+P73v48/+7M/k+fM5XK47rrrsH//fvzZn/0ZZmZmVupSXJFYjn3Pnj2L++67D3/xF38x79jRo0dRKBRw2223Ye/evXj/+9+PXC4HoLl9AeD06dPYv38/rrvuOvz93/993XlHRkYwPDyMSCSCQCCA3/qt31qJy3DFYi3sOzo6ioGBAfncwcFBjI6Oyv8bjfsDBw7gy1/+MkqlErLZLB555BG9wV0EljtHf+UrX8HOnTsxODiIP/iDP8C+ffvksS9/+csYHh7GLbfcgieffFI+vpCNCUbzPqHZGr1quGwcVwMAEIlEQhw6dEgMDg7WHduyZcuSKOFm1KDRsenpaXHPPfeIPXv2iNtuu0285z3vEa9//evrnjMyMiJcLpeIxWLzzplKpcS1114r/uqv/mrRn3EjYiVt/Pzzz4u+vj7xn//5n4bHp6amxA033CB+8IMfCCGEePTRR8Ub3/hGUSgURKlUEm9605tkqPYnP/mJuPXWW0UikRAzMzPiD//wD8Vb3vIWIcQsDTw5OSmEECIWi4nbbrtNfOxjH1vqV98QWK59a7WauOmmm8SPf/xjIYQQ999/f11Y57Wvfa3Yv3+/iMfjolwui7e85S3iAx/4gBCiuX1TqZSk/M+fPy92794tHn744Xnvn8lkxJ133in+5V/+5VIvwRWNtbTva17zGvHQQw/J537rW98SN9xww7z3UMd9Pp8Xv/M7vyOGh4fFjTfeKD7wgQ+Iffv2XcrX3xBYyTlaiFnZw969e8Xx48eFEEKMj4/LMPl//dd/ifb2djEyMiKEEGLXrl3iRz/6kXztpz/9afG2t72t7nzN5v1ma/RqomWYJyOsNo0eiUTwwAMP4NChQ/je974Hk8mEnTt31j3n/vvvx5133om2tra6xzOZDG6//Xbceeedl1ekdoVhKTY+evQoXvOa1+Dzn/88rr/+esPntLe344477sCXv/xlAMA//uM/4vWvfz2cTifsdjve8pa3yF3PP//zP+OWW25BMBiE2WzGPffcI485HA50dHQAANra2vDOd74T//mf/7mcr7ohsRj7ptNpPP/887j77rvljvW73/0ubr31VgDApk2b8Eu/9EsIhUKw2Wx405vehB//+McAmtvX7/dLyr+vrw9vetObDG3o9Xrxa7/2a3jwwQdX6mtvGKy2fTdt2oRz587Jc42MjGDTpk3z3kMd9y6XC3/zN3+DgwcP4gc/+AEikci8uV1jcbiUdXhwcBAvfvGL8c1vfhMA0NXVJcPkL3/5y7Fv3z787Gc/A7CwjRea9xut0auNlnGerrnmGlSrVTnxPf7446ue3RSLxWRc9rnnnsMjjzxSR93XajXcf//98+jAbDaL22+/Hbfffjs+/OEPr+pnvJKwHBsfO3YMd9xxB/7xH/8Rr3zlK+uOHT9+XGY7ZjIZfOtb38KePXsAAFu2bMF3v/tdCCEghMC3vvUt7Nq1Sx574oknUC6XAQDf/OY35bGpqSl5b5RKJXzta1+ro6A15uNS7RsIBBCLxTAyMoKRkRF84hOfwH/7b/8N3//+9wEAb37zm/Hkk0/KbLj/+I//wPDwMIDm9h0fH6+7L775zW9KG546dUrat1wuy8wtjcZYC/v+yq/8Cr74xS8il8uhVCrh85//PH7t134NQPNxn06nkc/nAcyGDD/zmc/gAx/4wApejSsTy5mjjx49Kv+enp7GE088Ie1x4cIFeezkyZM4ePAgdu/eDWDWxp/97GcxMzODeDyOhx9+GHfffTeA5vM+0HiNviy4rDyXAfD/6UIhhPjhD38ohoeHxa5du8Q73vEOMTw8LOnCz3zmM+J//s//aXiOxx9/XPT29gqfzye8Xq/o7e0Vjz766ILHvv3tb4tt27aJa665Rlx33XWS8iV85zvfEYODgzKTh3DvvfcKq9UqhoeH5c+99967glflysJK2Pi2224TwWCw7po/9thjQggh/vRP/1Ts2LFD7NmzR+zcuVN89KMflTaLxWLirrvuEkNDQ2JoaEi84Q1vENPT00KI2dDcu9/9bnHNNdeI3bt3i1e+8pUyi/KrX/2q2Llzp9izZ48YGhoSv/3bvy2KxeIqXqX1i5WwL4ca1hFCiI9//ONix44dYteuXeLuu++W79fMvv/n//wfMTQ0JG3I74t/+Id/qLPv+9//flEoFFbkelxpWEv7CiHE//pf/0ts3rxZbN68WfzxH/+xfLzZuH/uuefEVVddJXbs2CF2794tvvrVry7rGlzpWAkbv+c97xE7duwQw8PDYs+ePeLTn/60PPb2t79d7Ny5UwwPD4v9+/eLL3/5y/JYtVoVv/VbvyU2b94stmzZIj71qU/JY83mfSEar9GXAyYhdPELDQ0NDQ0NDY3FomXCdhoaGhoaGhoa6wHaedLQ0NDQ0NDQWAJa0nn62c9+hle/+tXYvHkzDhw4gH379uHee++Vx2+66SY88sgjSzpnMpnEW9/6VuzatQt79uzBrl278NBDDwEAHnjggXntAvhnIfGaEZ566ik89thjS/osVzJWw3YPPPAAAoGAbKXx6le/2rAOiIrBwUEcPHjwkt9X49Kgx++VD23j1sVq2Ibw0Y9+FBaLpS47biE0er+nnnoKe/fuXfJnWOm5fGRkBPfdd9+SX9dyztPhw4dx++23433vex/Onj2Ln//85/j+97+PdDq9rPN++MMfRnt7Ow4fPoznn38eTz/9tGGxLRXXXnstHn74YcNj1Wp1ww3MZlgt2wHAzTffjIMHD+KFF17A9u3b8T/+x/9YgU+8OtjIxTT1+L3yoW3culjNObhWq+GBBx7ATTfdhPvvv38FPm1r4Ipxnj72sY/h3e9+d13F7ra2Nnz84x9f1nkvXLiA7u5uWbPC5/Phqquuksez2Sze9KY3Yffu3bj22mtx5swZAPXe8cjICILBID74wQ9i//79+Lu/+zvcd999ePDBB7F379666tQbEatlOxWvetWrcOLECQD1bQWA2dpdC1USnpqawhve8Abs3r0bu3btwj/8wz8AAB588MG6zy6EwJYtW2SF3S9+8Yt48YtfjP379+PGG2+Ujz/wwAO4+eabcdddd2H37t145plnVvDbri/o8XvlQ9u4dbGac/D3vvc9dHZ24hOf+ATuv/9+WSYCmGX5P/KRj+ClL30pNm/eXMd0cXz1q1/F8PCwYfmD73znO7j++utx4MABvOhFL6qrQq7i+9//Pq677jps27YNH/jAB2TT51OnTuG2226TDaM5Q/Wd73wH+/fvx549e/CKV7xCllb4jd/4DZw4cQJ79+7F6173usVfkMue37cAduzYIZs7NsIrXvEK8fWvf33e448++qh417veZfiaJ554QrS1tYn9+/eL973vfeLf//3f5bH7779f+P1+cebMGSGEEB/84AfFe97zHiFEfXPRs2fPCgDiC1/4gnxts6rmGw2rZTue2lytVsWv//qvi7e//e1CiPoUWyGECIfD4uzZs0IIIQYGBsRzzz03731/9Vd/VaY8T05Oir6+PvH000+LfD4vwuGwGB8fF0LM3jP79+8XQsxWxX31q18tyxX83//7f8XQ0JD8fC6XS1bT3cjQ4/fKh7Zx62K1bCOEEL/yK78iPvOZzwghhNi3b5/4zne+I48NDAyI97///UKI2c4dfr9fXLhwoe79/uqv/kpcf/31IhqNCiHq7Xb69Gnxkpe8RKRSKSGEECdPnhRdXV2G5WFe8YpXiFtuuUWUy2WRy+XEgQMHxIMPPiiEEOJFL3qRuO+++4QQQvziF78QbW1tYmRkRExOToq2tjbx/PPPCyGE+NKXviR27NgharVa0wbizdByzJOKP/zDP8TevXvR29uLF154oelzX/e61+Gf/umfDI/dfPPNGB0dxZ//+Z8jGAzive99L973vvfJ4+Qx09+NCoPZbDa89a1vvcRvs7GwUrYDgCeffBJ79+7FgQMHYDKZ8Fd/9VeX/Lkef/xxvPe97wUAdHR04A1veAMef/xxuFwu3HXXXbKB6AMPPIB3vOMdAIBHH30Uhw4dwotf/GLZfysej6NQKAAAXvayl+Hqq6++5M90pUKP3ysf2sati5WyTSwWw3e/+1286U1vAgC8853vxOc+97m657z5zW8GMMv+b9myBWfPnpXH7r33Xnz/+9/H9773PYTD4Xnnf+yxx3Dq1CnceOON2Lt3L974xjfCbDY31La+/e1vh81mg9vtxlvf+lY8/vjjyGQyePbZZ2XBzKuuugrXX389/vM//xM/+clPsHv3blmY8y1veQvGxsZw8eLFptekGVrOedq3b19d2OMv//IvcfDgQdhstkV3aW4Ej8eDO+64A/feey+++tWv1nXZdjqd8m+LxdKwk7Tb7ZadvDXqsZq2I83TwYMH8fnPfx6RSATArK24xqhYLC753Lz9wDvf+U7cf//9yGaz+OY3vyknBCEE7rnnHvkZDh48iPHxcbhcLgCzLT409PjdCNA2bl2slm2++MUvolqtYnh4GIODg/jYxz6Gf//3f0csFpPPaWafF7/4xfjFL34hQ60qhBB45StfWTe/Xrx4sS5s2wyNWsisZou3lrvD/uiP/gif/exn8e1vf1s+Vi6XGw6UxeK73/0uEomE/P/nP/85tm7duqxzArP9s1Kp1LLPcyVgtWzXDNu2bcNPfvITAMDXvvY12Y29GW677TZ89rOfBTDbRuBrX/uaLP3/4he/GADwB3/wB7jttttkv6TXve51+NKXviR3QrVaTfZm0piDHr9XPrSNWxerZZvPfe5z+MpXviJb7Jw/fx6vfe1r8aUvfWlRr3/lK1+Jz3/+83jta1+LZ599dt7xV73qVXj88cfx/PPPy8eaaUe/9KUvoVKpoFAo4KGHHsJtt90Gn8+H/fv3SzH7qVOn8F//9V+48cYb8ZKXvASHDx/GkSNHAAD/+q//it7eXvT29l7y/dFyztPw8DC+/e1v42/+5m+wefNmvOhFL8LNN9+M3/zN38T27dvl89797nejr69P/jz99NP4xje+gXe/+92G5z18+DBuvPFGmQb7jW98Y9GGb4bXv/71OHjw4IYQIy6E1bJdM3zyk5/E7/7u72L//v147rnnDClhFX/7t3+LY8eOYffu3bj55pvxoQ99SDpNAPCOd7wD//AP/yBDdgBwww034OMf/zhe//rXY3h4GDt37sS//uu/LvnzXunQ4/fKh7Zx62I1bPPMM89gamoKt912W93jb3nLW+aF7prhhhtuwL/+67/ijW98I374wx/WHdu2bRseeughvPe978Xw8DB27NiBT33qUw3PtWPHDrz85S/H7t27ccMNN8h+hw8++CAefvhhDA8P441vfCP+6Z/+CZs2bUJ7ezsefPBBvP3tb8eePXvwmc98Bl/+8pdhMpmwZ88e7Ny5E7t27VqSYFy3Z9HQ0NDQ0NDQWAJajnnS0NDQ0NDQ0GhlaOdJQ0NDQ0NDQ2MJ0M6ThoaGhoaGhsYS0DLOU7O+RpfaA2dwcBBXX301hoeHsW3bNtx555340Y9+tMKf/MrESttj79692Lt3L4aGhmCxWOT/zXpSLQV/+qd/it/7vd8zPPaNb3yjaTuXRx55BD/+8Y+bnn9qago7d+6c9/hGav2wEPQY3nhYTZvv3bsXO3bswJvf/OZFZdFqrDy0fRvDutYfgMD7GplMJmQyGUxMTCz7vA8//LA08Ne+9jXccccd+M53vlOXXQVAlprfqPVBVKy0PahB78jICPbu3Sv/vxx43ete1zCLolqt4pFHHsHevXvxkpe8pOE5Hn30UcNzPPXUU0gmk7j99ttX7POuV+gxvPGw2jav1Wp47WtfiwceeKCuYKbG5YG2b2O0zCyzUF+jlcAb3vAG/MZv/AY+8YlPAJhlK+666y686lWvwq5duzA+Pt6wv87Jkyfx8pe/HMPDw9i9ezc+/OEPAwD+/d//XfbR2bVrFx599NEV/cxrhcthj0tBIzsAwPj4OF772tdiaGgIt9xyC+LxOID6juxPPfUUdu7ciXe9613Yu3cvHnzwQXzjG9/AX/7lX2Lv3r0NK+w+8sgjeP3rX1/32MGDBw37Zn3xi1/Enj17sGfPHvzSL/2SrGL7wAMP4JZbbsHrXvc6DA0N4cYbb1ywD996gh7DGw+rbfNyuYx8Po9QKARgtpzB9ddfj/3792NoaKiuh1omk8Hdd9+Na665BjfccAPe+9734td//ddX7LNsRGj7NsGSG7qsEpr1NWrWe+bVr361+OlPf2p4jPc2I3zta18TO3bsEELM9jzq7u4WExMTQojm/XV+53d+R/zv//2/5XlisZgQQog9e/aIH/3oR0IIIWZmZur6rK1nrIY9hJjtPRUIBC75czWyw0c/+lExMDAg+ybdfffd8nm8N96TTz4pTCaTeOqpp+Q57rnnHvHJT36y4Xum02mxZcsWUavV5h1T+2YdPnxYdHZ2yr5O9957r7j99tvl57Db7eLo0aNCCCE+9rGPiVe+8pVLvAKtCz2GNx5Wy+bbt28Xw8PDIhAIiFtuuUVUKhUhxOxYpH5n+Xxe7N27Vzz99NNCCCH+4A/+QNxzzz2iVquJdDotdu3aJe65556V+7IbENq+jdEyzNNCfY0a4dvf/jauvfbaRb+PUMpa3XHHHejs7ATQvL/OjTfeiM9+9rP40Ic+hO9+97sIBoMAgFtvvRW/+7u/i49//ON4/vnn5ePrHZfLHktFIzsAwO233y6LZDbrfbVlyxa84hWvWPR7/sd//Aduv/32RZX6f/LJJ3H77bejt7cXAPBbv/VbeOKJJ2QLmZe97GXYsWMHAOA973kPnnrqqbr2MusZegxvPKyWzR9++GEcPHgQ0WgUg4OD+OAHPwgAKBQKePe7343du3fjJS95Cc6dOyclAN///vfxjne8AyaTCT6fb8X0lBsZ2r6N0TLOE9C8r9FK4ac//Sl27dol/+c9yUST/jp33XUXfvjDH+Lqq6/G3/3d3+E1r3kNAOCv//qvcf/998PtduOee+7Bxz/+8RX/zGuFy2EPFUePHpVicqNB2sgOwOJ7Xy21D93Xv/51GfZbKlazt1IrQo/hjYfVtLnVasVdd90lkzL+5E/+BJFIBM899xwOHTqEm266qWE/y4029lYL2r7GaBnnabX6GnE8+uij+MxnPoMPfOADhseb9dc5efIkOjs78fa3vx0f//jHZXbW8ePHsXPnTvz2b/82fvM3f3PBrK31gsthDyMMDQ3JRe/Tn/70vOON7LAcNOttVC6X8fTTT+Omm25a1GtvvvlmPPbYYxgbGwMA3Hfffbj11lthsVgAAE8//TSOHz8OAPinf/on3HzzzfLYeocewxsPl8PmTzzxBK6++moAQCKRQF9fH6xWK06cOIHvfe978nm33HILvvCFL0AIgWw2i3/7t39b0c+xEaHt2xgtk213+PBhfOADH4AQAmazGd3d3XV9jY4ePYq+vj75/0tf+lJ8+ctfxh133IE/+7M/a0gR3n333XA6ncjlchgaGsK3v/3teVk6BN5fJ5/Po1wuY9++fXjooYfwla98BV/60pdgt9tRq9Vw3333AZj1lE+cOAG73Q63243PfOYzK3hV1g6rZY/lopEdloO3ve1t+PVf/3U88sgjeN/73lfX3+mJJ57A9ddfD5vNZvja17/+9fjiF7+IvXv34g1veAM+8pGP4C//8i9l9l1/f79sQgzMhu0++MEP4tSpUwiHw/jnf/7nZX/+VoEewxsPq2lzl8uFarWKgYEBaasPf/jDeNvb3oYvfOEL2Lp1K2655Rb5mo985CN417vehR07diASiWB4eFiHYJcJbd/G0L3tNDSa4Dd+4zdw22234Y1vfOOyz/XAAw/gkUcewSOPPLL8D6ahoVGHSqWCmZkZ6Wi/6lWvwvvf//4118ZorAxazb4twzxpaLQiVoLZ0tDQWH0kEgm8+tWvxszMDIrFIu6880786q/+6lp/LI0VQqvZVzNPGhoaGhoaGhpLQMsIxjU0NDQ0NDQ01gO086ShoaGhoaGhsQRo50lDQ0NDQ0NDYwnQzpOGhoaGhoaGxhKgnScNDQ0NDQ0NjSVgxUoVrHapdPX8zZIELRYLbr31VrzxjW9EMBhEOp1GOp1GrVbDzMwMZmZmYDKZYLFYYDabkU6ncf78eeRyOYyOjuLIkSPIZrMN33+lExTXS8Ljcmy81Ovn8Xhw9dVXo7u7GzabDS6XC3a7HYlEAufOnUOhUECtVgMwa2+fz4dAIACLxQK73Q6r1YpSqYRUKoV8Po9qtSrrhLjdbvh8PlgsFqRSKSQSCVQqFWQymXl2XymsBxuvVbsDu90Ov98Ph8Mhu6Vv3rwZtVoN1Wq17tqVy2WMj48jGo1idHQU//Zv/4Znn312TT43h7bvlQ1t3ysbl2LfDcM8mUymeTcX/W8ymWA2m/XNtw5gdJOv5MSm7wENDQ0NjYWwbopkCiEWXNgikQi2bdsGn8+HAwcOYHBwEF6vF7lcDrlcDkII+UMOk9lsRqFQQGdnJ4rFItxuNy5evCh3veVyedHvr9EY3MFpxEKZzWb4/X54vV4EAgHs3LkTmzdvRiaTwfnz5xGLxZDL5VAqlVCtViXzBEAyS9VqFfl8Xtq5VqvB6XTCarXCZrPBarXK59ZqNXR2dmLbtm2oVqs4ffo0zp07V3cujdWB0+nEwMAAIpEInE4n2tra4HQ6sWPHDni9XnmPmM3munvEarXC5/PJ4y972cvk2I3H4yiVSkin05ienkalUlmT76ahoXHlY904T8DCDMPg4CDuvvtuDAwMoLe3F1u3boXdbkepVJJOEDlMxESZTCYIIeRiHAqFcOzYMdRqNWSz2bpFej1Qt+sJ/PoLIWC1WtHT04OBgQG0t7fjtttuw65du3DixAkcP34cJ06ckA4Rd47IAbZarRBCyFCd3W5HV1cX/H4/fD4fenp64Ha7MTk5iTNnzqBcLuOqq67Cy1/+cggh8L3vfQ/5fB6FQgGpVEo6T6sZst2o8Pv9uPHGG3HgwAG43W50dXXB4/HA5XLB7/cDmB2rBLrudrsd7e3tiEQi6OnpweDgIAqFAiYnJ3H48GHEYjGcPn0a2WxWO08aGhqrhnXlPAGoc3p4KM5kMiEQCKCvr0/uaP1+P6xWKxwOh3SerFYrLBaL4XmEEIhEIvB6vbJpYbFYxMzMjFywAb2ArhZMJhNcLheCwSBCoRAikQja29sxMTEBIQTy+TzMZrO0H4EcKQCYmZmRjKHVaoXVaoXT6YTL5YLH44HH40EymUStVkOtVoPb7UZnZycAIBAIwG63o1qt1i3cGisPq9WKtrY29Pb2wuv1oru7Gx6PB0C9PWlc8t9WqxVmsxlOpxMejwdCCDidTkxNTQEAJicntf00NDRWFevGeTKbzQgEAvD5fHC73ejv70c4HIbNZoPH44HNZsOWLVswMDCAUCgEh8MhwzskEgcgWSYA8xZhAOjt7cVrXvMaxONxxONxTE1NoVQq4cKFCxgfH5fC4mKxeNmvwZUCvhjS/8Dsgtrf34+9e/fC5/PBbDZjenoa2WwWHo8HHR0dsNlscDqdsFgsqFQq0imORCIIh8Mwm83S2fV6vdi6dSsikQgSiQROnjyJZDKJRCKBiYkJVKtVRKNRxONxWCwWWK1WdHR0IJvNIp/PS/G4+nk1Lh3E+trtdgQCAUQiEdjtdmk37jip15uzjbThoVCsx+NBW1sbarUa/H4/LBbLWnw9DQ2NDYJ14zxZLBa0t7ejt7cXkUgEN954I4aGhiRz4PF45AJoNptRq9VQLpfnTcSqSJw0FfQzMDCAt771rajVapiYmMDFixeRTqfxwx/+EM888wzy+bxsTKhx6TByRGw2GzZv3oyXvexlMJvNyOfzGB8fRzqdht/vR09PD1wuFwKBAKxWK4rFIrLZLEwmE3p6etDT0yMztzweDwKBAK655hp0dXXh6aefxlNPPYWDBw+iXC6jUCjAbDZjYmICU1NTcDgcsNls6O7uRjqdRjQaXfDzaiwdZrNZssGhUAhdXV0AZhlDCrNRmFxlhYFZOxC7aLfb4XK54HK54PP50N7eDpvNhrNnz8JqXTdTm4aGxjpEy88w5BA5nU74/X60tbUhHA5L3YPH40F7ezs8Ho+cVLkmxmj3yv+miZp+04RsMplQrVZRKpVgt9sRDocRDodht9sRi8VgtVpl6Edj6bBYLJL5IyfW6/XC4/HA7XbDZDLJkKnJZILb7UYgEJDOk81mQzabldefFlG73Q6fzwefzwev1wuHwyHfp1wuo1QqQQghyxnYbDZ5v1itVrhcLpTLZdjtdnmMh2w1VgZkd4vFMk/HBtQnaPDHjJ7D7yGdNauhoXE50NLOk9lsRl9fHwYHB+Hz+bBv3z6ZjbNp0ya0tbXBarViZmYGuVxOvo4mVyPqXs36UjUVMzMzkpWw2+3o6OhAMBjEDTfcgC1btiAWi+Hxxx/H888/j1KphGQyiVKptPoX4woALZZmsxmRSAR9fX2SNaAsu61btwKAdJjsdjscDgfsdjtyuZx0bs1mMyYnJzE6OopqtYpgMCifZ7PZYLPZkMvl8PTTT6NUKuHcuXMAgPb2dnR1dWHLli3weDzo6+tDJBKByWRCR0eHrPuVyWQAAKVSCdFoFIVCYc2u25UEymKtVCooFotSx8adnoXCpGppESEEyuUyMpkMEokE8vm83tRoaGisKlreeert7cV1112HcDiM66+/Hvv374fFYpE7VQrPlcvlOjExCUsJ6u6Vg0/UXB9ls9nQ3t4OAOjr6wMAjI+PY3p6GtFoFJlMBoVCQTtPiwTXqHR2dmJ4eBiBQABdXV3o7e2Fw+FAMBiUz3e73TCbzQgGgxgYGJCLJtn19OnTMoTqcrngcDjqShKk02k888wzGBkZkYxTZ2cndu7ciVtvvVVqZDi75HQ6kc1mkUqlAADJZBLZbFY7TysEutbcebLZbNJ2RuySEeheoOeS85RKpZDL5bTzpKGhsapoeefJ5XIhFAohFArB4/HAbrfDZDLJatEUqpuZmZGsxkK0vVG1cr6LJeeJRKy0YFP4kISuFosFExMTq/PlrxBwjZnL5ZJ1fTo6OmQCgMfjgdPplMJhNexKmVMqQ2Gz2eD1eqXDZLPZpPPMU9vJsXI6najVaggGg/IxEp3T+9C5qNaU2WxGMpmUAnXSvBk54RpLA2ciya6Xck3VULz6mIaGhsZKoyWdJ5pM7XY7ent7ceDAAal1KpfLqNVqkvGhXWetVpOi32aZNkaOFa81RDticsZocueamt27d8PlcuHcuXOYnp5GLBZbzcuxrkFsk8ViwdatW/GqV70KPT09cDgccLlcsFgscLvdcDgcMJvNqFarMgRLCyA5NbTY2mw2mEwmOBwObNmyBbVaDcViUWbeAUCxWITdbsfw8DCGhobqdDWkhapUKiiVSrLVS61Wk5lbW7ZsQXd3N8rlMnbu3IlisYiLFy/iueeek+1ceEKCxtJgNpvhdrsl07iYyvGqc6UWWCXH1yiLVkNDQ2Ml0ZLOE/Wds9lsCIfD2L59O4LBoBRxV6tV6TxRCICKJS503mbHaIEtlUpSqMzFqDQxb968WTJhTz311Ap/+ysLPFTX09ODV7ziFbjmmmuQzWaRSCTqqnhTGQlySojhoXPQfUHso8vlQk9PDwAglUohmUxiZmZGhnGdTid6e3vh8/nke5B9M5mM1N6Q8w1AMowej2deJuYLL7yAc+fOIZ/PAwAqlYp2ni4RvE6TOuaA+WH2hXpbcgG6Fo1raGisNlrSefL5fOjq6oLX60VnZ6d0WmhBVTNzeFinWTVotVyB0XO4VkpNjyYnzW63y1R40usUi0Wk02ld4YNfngAAO6JJREFU1fj/g4qROp1Oacuuri4p8OehLzVrkexDNgcgQ6kApKNMRUyBWWE3hXIp45JsRnaj35R1x4/TAk33klGGHYUbqYo5OXsUNtZYPLh+Tb12ah9K9X+eZcfPZbPZYLfbdY0nDQ2NVUfLOU8mkwnbt2/HL/3SL6GjowO7du1CMBiE3W5HoVBAuVyuW3xNJhOcTqcM4/CdKy2ARg2BjZwmYHbBdrlccrHloUEK5VHJBAB4xStegZ6eHoyOjuKZZ55BPB6/DFeptWGxWOD1euF2u9HR0YGbbroJW7ZsQSAQgMPhQCqVQrFYnOfAAKjTPpEzTExjpVKRx6xWq8yuqtVqsq2Kql/LZDIyFJtIJFAqlSRDAUAeAyDDvvQ4FWOkMBAlLRQKBZw+fRqHDh1CNptFNptFJpPRLNQSQIUyqTQEjS+jTDp6Pn8tadTouVQst1QqyUQDDQ0NjdVCyzlPABAOhzE8PIze3l50dnbKuksA5rEWtBDyukFAfQ0n1YFSdRP8GO1giW1Se98Bs4us1+tFsVjE5s2bZfbf888/v+rXZj2AHFm3241wOIyrr74au3btksdJn8QZoWKxKK+9GoLhLBL9TzqnQqGAmZkZlEolmfXI74VisQghBLLZrCw5QJ/NbDbXVSmnmmIAJJtEizA51YODgzLMdPbsWfm3rkC+dFBoXh2Djf4m0D3A2Sez2Sx1dBTW1dDQ0FgttKTzlEgkcOLECSSTSVQqFfh8PpnGbLfbpQNF4RteWbxRcUwjNMrMofPQ4i2EkLodi8Uia0FlMhlMTU1hbGwMsVhsw4fsqMaSy+VCf38/enp60NnZCa/XK5/DnV7KfqOwDf1NveU4e2DUi5Dbhzd7pvuBO9NGmhiux6LjPCRs5HDT8wKBAPr7+xEKhWCxWOqaSGsnamEIIVAqlZDNZuVYJpssVGbAKGzH7a41T5cXFC61Wq0IhUIIBoMQQiCXy0lGkTZKakFUo7FiZD/SOlIiEW2os9ks0um0LFmiy8asH6hzuFqDsdnr+Pjnc7M6ZxMJwrW1K4WWc56EEBgdHcW3v/1tBAIB3HzzzQiFQjIMRJXEaQDSoKIFEKjXq6hhHP4bQN1rgLmsHaC+ZYTL5YLT6YQQAsViEZlMBhMTEzh27BiOHDmCeDy+oWsBUYXwYDAoi4pSVmI4HAYwpx0TYq6aNzDL8qTTacniAHPsEXdsePYj/x+oL5xot9vlREusIDlKlFFH56CmwQBkPSe+OPN7hztdJETP5/P4yU9+gunpacmorcZAvdIwMzODdDqN6enpOqe2EfjYpcmW24fmAafTKdlLjdWHyWSCx+NBMBiE1+vFddddh927d6NSqWB0dBSxWEwWEyZHihI0SC9IoPHFxzyBStY4nU6EQiH09PTAarXi9OnTOHbsGHK5HKampjA9Pb3ozQudX5cdWRrU9fRSz0GaWB7p4eH4RqA1Wu1OwOs88sdzuRxyudyK27jlnCdgdhG7cOECkskkpqamkM1m5YWmxVJdRPlAMEKj7J1GITze7oHej1gnEirncjkkk0nE43GkUqkNv2hS016v14uOjg4MDAzU6YuA+utP+iJuO75LUHcURj9GzBMNLnUBVW1KEzU5xVSygJxydSdD5zCZZqufO51OlEol+Hw+2Gw2GVbUWBikIywWi9IGnElqVKaAj1sjdqKR3TSWh0bXk5ggj8cj+09u27ZN6hktFguKxSIsFgsKhYJseUUsLS8vwvVrfFMEAB6PB5FIBC6XCx0dHRgcHITVakUul8PFixdhMpmQSqUke9wIRho6jcVjJa6bOk/TptZIywgY96WlxBAj54lHEEjesRpoSeepUqlIoe+RI0dkP7M9e/bg6quvlhOkx+OpW0CNsFhj0+spFEi/nU4nqtUqxsbGEI/HZb2feDyOyclJnDlzBolEQmpvNipI50RNeZ1Op3RgjDIjAUgnyWq1wuv1ygFEINaPmEYCd4B4pp4Rlas6zfxzqOfgTCP/nNwx4yUxiBnzer0IhUKw2+1yh63RHCaTSbbm4RuW5VQG5/bVTMKlg2xDYXifzyfbJHm9Xsns2Ww2mM1m+P1+2Xeyp6cHFosFDocDnZ2dcLvdsnYbZcPysWi0eTUK2zkcDrlJIYbbYrFg06ZNcoGMx+NIJpPSQePZtZR0kkgkZIIClbrR98riYbRpWQgmk0ky/Nwx4lEjng3Na/nRe9J5gPq6fxx800yOE2lXqWXTStq7JZ2nYrEod/GpVAo/+9nPEAqFcPfdd8vmsZ2dnfD7/TLWTY5Lo/gnP9YMxH4Ac6GAQqGAkydP4sc//jGSySSOHDmC0dFRVCoVZLNZafSN7jy53W6EQiGEw2FZDZ5nKvKbnu867XY72traIIRAPp+Xj5dKJVnziTtInGGg605ODdmdT84mk0lO2vwcNPjo9RRGoPPyxsV8l0PHKLwbCATQ3d0tHf5sNqsn5AVAGZmhUEgufstlbnX4ZWVAGcXUb3JgYECG4/v7+2VRW1oMeZicxp/dbseWLVvqWF76TQsc1VSj8WakieJQGWpgduxdddVVMqmHfhKJhNRcJZNJFItFTE1N4ejRo0in00in04hGo/p+uQQs9ZqZTCb4/X60t7fPk2LQ3EpJQ9VqVYbf+ZwL1G9i+fytRof46+h+oMjQSpaVaUnniQYCAJTLZaRSKRQKBcRiMVlfJxQKNZwsjbzjpQrIufc6MzMjxeGJRAJjY2O4cOHCCnzTKw8LaVeA+pg5D+GRHonqLvFsSSM0E53y5zQ7BzDHPKlaOaPPbARyCo12QxrGoAnQZrPVFcfUWDvwsJnT6YTb7ZYsTyQSQTAYRHt7O3w+X13GKt37pAelciBU+oNrUcjZotdRZiTXsRrV8uNjnZgl3hGAo1KpwOFwIJvNolQqwWazyYXZ5/PJjRtpbTT7tHxwJ1kVbRMJ4XA46pI6uDNkMpnqIhF0j6jRAq5xVF/PHTN6Hd+wG80xy5l3WtJ5MkKpVMKzzz6LcrmMQCCAoaEhKdrdtGkT/H6/rE6teqoLDQxVyExanGg0iqmpKaRSKRw5cgTHjh2raxqrMYdarYZEIoEzZ84gmUxi69at6O7uloPGbrfL59K1Vgtj8jg4Oa0qo0iP04TLMy8p7KcW3aTXG4ULOL3Pi2WqgnH6jLwOFAnEp6encfHiReRyOc06XQLUsgONYKR30k7XpUFd4MxmMzo7O9He3g6Xy4XNmzfL4rbEPFHojOZIcnw4I0vjghwp1T7UBJovqHws01ysjm3+mfn4pZ6WNDZJSBwKheB2u1Gr1dDe3o5arYauri74/X5kMhmMjY3h9OnTKBQKiEajmJ6e1s2kFwHuhJDT6XA4EA6H4XK5ZL010gfT/M0dIr7B5hnR5GiTDc1mc9056J4B6je3/BzkgPHwL7FR6pqyXKwb56lYLOKnP/0pDh06hGAwiJe+9KXYunUrBgYG0N7ejs7OTlnrhzf2VWPqRuCDnztPsVgMzz//PGKxGA4dOoQjR47IEJRGPWq1GqanpxGPxxEOhzE0NISBgQG43W6pfaB6TKoTw8WhtHtQ63nRDxeUcxqWBgYNOLVKvNHuklP9FF4kGC3OPKZeLpeRzWaRz+cxNTWF0dHRuvCxxsIwsgnZbzEwYpd16G5h0MICoG4Mdnd3Y8eOHfD7/RgaGsLg4CA8Hg96enrqNqe8mCkA2R9SCCGbZ/OQCWeTiLGyWq11oT/+XBrTNF+QhEPVyhC7pYYPgdliu8Bc/S+LxYJMJoP+/n7kcjmcPXsWfr8fqVQKx48fRzwe187TIsAlDPTjdDrR09Mjs+Lb29tht9tlkWmK3GQyGSl5UFkjAFIywcvM8ELX5IDxe4TLKnhJDNLd8QxOuj9XCuvGeRJCSOfIbDYjkUggmUwiFArJi76YnetCE6sqWKYK0vl8XmaJaBiDHFDqHUe95qhUgQqVkifwVPRGUJ3ipS6YfPAbMVWAcRsfus9Ia0c9FiuVir43VhFGrJPRcxYzD2xUNGLruEPi8/ng9XrrBOOc3SEHx4iV5fOrql3iITnOJNDczcsWGDFPfHxzDaMa0uHfkbMOFFqkBZiygmu1GpxOp2F215WOxayH6vOJOSRHZGZmBi6XCx6PB16vFz6fTyYYVCoVuREul8symxlYOOtRjTTwDDquZ6IohZH+1ejeWMm5oeWdJ6MFrFQqYXR0VO5wcrmcfA55xY20J41uGE7zkSHS6TRGR0cRj8fr2m9wI+id7nwUCgUcPnwYsVgMPT09cDqd8Pl8DRkFnuVGJSmaTZ4qeMiP/ybwQUSDiiZt/t70/kbxcToHHU+lUjh27BjS6TQmJib0rvUS0GjBajbBqeOX21bXeWoOzjbR/UpMu8vlQldXF7Zs2QKHw4GZmRmMjY3B4/HAarXKxA16LQ+V8LArZ4iI/aXn8PmTdEdcX0rg7AMxkeq4VvWSvNgiZyxIHyWEQDKZxNjYGHK5HGq1GgYGBqSQ3O12z3PiruR7yEib1Oy5NL4GBgbQ3d0NALJdWigUwjXXXCNDd8FgEFarFYVCQSZUUUiuUqkgkUjI8kNut1vqXSlRjDtElDQE1GtTSVtHmjfSThIz6nK55P1Hnx3AihZRbXnnCZjvQFUqFVnVmwoV0vPUGhGN0EgQzAdnLpfDxMQE4vF4nZaFa6m04zQfpVIJJ06cwKlTp7Bt2zbs27cPmzdvbnityIHh1CwxOwvtFtSdJv9Rdzc81EATMm+7ozrQ/F7gOjoKAYyMjCAejyMWi+lw3TJgtKirUFkO1YGiRVQtmKsxB35N6DpTeINaKfX19cFsNiMej0unwuPxyNAeiW956yLORPESIEZOLIXiuL4JQN28Tc4QOWl8HFOIT+09yW3O2WRiwqvVqiwvk8vlZIZsrVbDiRMnZLcDVYd5pWMx7BPNeXa7Hd3d3di5cyeEmG15VSwWEQqFcNVVVyEcDsPhcMDj8cBsNkt9MC+KSolfuVxOhm7JeaK6byTkN5vNKBaLsk4Td9Z5MgAAWVKI3os24QQK261kQs+6cJ5ULKRtuNSbXt3VUN+zlUij3kjgGodyuYx8Po9cLgez2TxvQm1EuwP1zo4Rdc//NvrhUJ0i1ekyopGN7i+uuyoUCrJhscalwchOvGDeYl9Hjy1m47RRYcTykcCXSotwqKGTRmwsMLfAkt34bzoOQDpLjcZhI9vxuUB9zUIhN/r8je4nKvJJTLSR9nEjg9rhuN1uGdYF5sJ4dO9wrRLdD+TcUNIQOd08m55KFajlKoD6yA7Nu3Sc7kmur6NoBTnYdJzQ7B5eKtal80QMBe9LRo9zLDYUQMfJKKRfyWQymJ6eRiwWQz6fr4vn02/NPBmDFsBCoYDR0VGZ8rxp0ya43W5ZuE4IIdkmYE4wTDtd2pWooTeetWE0iZMInWxE94vRPaJO2rSAV6vVee1/KNRA4bpEIiHTpjWWhoWY4sU6UFxQqs4JGo1hMpkQCoWwdetW+Hw+BAIBlMtled35+KKFTa15BqCOLaaxQ+en39z54t0hjBwiAA0XPBqrvNMEH+9cT2W1WusWWz4P1Go1qcGh7O1MJoPTp0/XtfK4Uu8jdS1rBLPZjEgkgv7+fvh8Pmzfvh1bt26FEELqgKl4qtoaxWazIRgM1kkwKFxHjeBJt0SaZr455SwjgLrestRYXgghE3V46x+av00mU93avZJYt84TXzzVwcVhFFNXj6v/c2aBCqrxWKl2mBYHIWYz2OLxOMbGxiCEQH9/v4xP03M4I6U+ThMg35nyBVd1ngDjjBCjxwDUTcRqKIgWC/5aGqT5fB6ZTEaXrVgGFgrJNnud0Qam0ZygMQvVQTGZTPB6vejq6oLP55MZsQDq7n0u2uVMLQ9lk6aFyxm4ForbjMYsd3qA5iLiRvM8d8JofJJDxllr3jeN3pM2QpRRmMlkMD4+XseaXcn30WLWMZPJBJ/Ph97eXni9XnR3d6OjowMAZEFjntHImWMefi0UCrKEBTlFFN0xcqDV+RZAXbhWzZImh4n/TffnakWN1qXzxEGiQH4x+TEVzehdNWxHuhsSoWmnaemoVCqIxWJwOBywWq11LI06aHiYQGX1GoXc1OfxCZyf28ipNnotj4mr9i4UCrJFTzwe16HcZcLINoth8BqNw8XqHTXmYLfbEQwGZYaU2qgXmK/5ow0NHeMgHQvPruMbHoLKGi40t6r3BS9bwIXlRowVz8LiTjfN6TabDX6/HyaTqU4nw7/3RgCx7HQ9KTvR7/fD7XZLcTfZkYTdXAsHzJWQIfuQs0MOcygUQm9vryQoyInlayzdL7x0ELHKtVpN1hgjzR5l9dG9xEXidI+tpN4JWKfOE1/4eJNe7m02c47o70bUMA22QqGAVCol+yUZfQ6N5shkMjh06BB+8YtfYHh4GDt37pTV4WlQcLvx+k5quA7AvIlYZR6Mdqc0gPmEzWPrtFulon20I1J329FoFD/5yU8QjUYxPj6+ag0nNwq4XkVdoIH6BdNokeUMBzAXquFshoYx6J7mYTuaSwkUhqGMNbq2VGtHvf5ms1mKyyuVCpLJJAqFglzgVB0UYBw+UkPoQD17ROF8GrO0kBIzwZkwAPJ78d56vE6Qz+dDMBhEOp3GCy+8IN+bzxkbAU6nE+3t7XXV5W02G7q6umStPq/XWxcWJ6eJ6m4VCgXZpopfO2KdHA4HrrnmGgwODiKbzeLUqVOYnp5GsVhENptFtVqVThI/NzDnPAkhpMCfvzeAec4/2ZAnJqwU1qXzxEEDgWL1jZ6zlGM0IdCkYZTeqB2nxaFSqWB6ehoA0NXVVVdIkhfH5A6TUWkCrnVQQwE0iIxo9kbaCiPmiRZf2gWpk2ehUMDFixcxNjaGTCajmacVgLqQGo3TZuyEGoJtdB9ozNeQEdMSCoXg8/mQSqWk88TDn0ZhL7554eejsgdkAxojNEaNwB2oZnbjuiuubVTLJvDPw1/HJQH8nuENqsnJUz/bRgA1Ofd4PHC73bKqfCgUks3eeXiW6854CxRqukzgc7rFYkFbWxvsdjsSiQSmpqaQTqel3fjzeBiQPp+6MeLhQb4hB+oTvxrNC8uZJ9al88S1L0ahHKBxplSz4xqri3w+j9HRUZjNZoRCIdm+hXc4B+rDpkZlBLjjo06aXNfEoYYE1WMqy+VyueqOURVlyhwkcaPG0kATIDX+JDS7lo2cITX0Q5OorvNkDO488DCGmqnEw20A6kIjqqaJnBLavJJtSQfD26+ozCJnivlmiDvLFO5RGWae3cU3OTx0S5+HCjsS+0SFlumHNK7k6HGR/JUKIweRaib5/X4pEnc6ndKOVDeJshGJyaPrS8y9y+WSwm4SfvO6XVSA1Ww2y2rzPCRH45ev8/T5aM7g95Ca5clB97EO2zGQt0uesLoTarZT1VgbJBIJPPvsszh//jz27NmDwcFBBIPBeSyO2uOKh+qMdpgE7nDxgaTuQPlr6X/aYdOuh3ZapVIJsVhMJg/E43HZyuFKnlxXA8R0uFwuSf8v5jXNHqNFlSZiYDb8oJ2n+eBlAnj3edq8UAYT1wiZTLNZjG63W15XHvaijQUxQlRtulwuI5fLyRpu+XxeMgBqth19HjVcS++jCs+J3eILrqqV4ZoZ+ty5XE6Gh2jBN5vN0qGi7C21uOeVhkZEg91uR1tbG8LhMLZu3Yr9+/fD4/FI6Qowe30pBEdlWjwej+wlCMzV7aPNphACgUAAfr8fNptNVrD3er04evQonE4nhBBwu93SUeehOPrN63nR3wTu0PO5n4p1qiTLSmBdOk9GzBM/ZuRALdVp0pPvyqNcLiORSAAAstksgPndsbm9jBgkvsPgE2YjRkn930hbYfQelH5NiwQtLrTAaCwdfNLjAlOCunPklH0z8HASDydo1IPPi3wnzlkkzibRvU8aIqOsVDUkRg5LrVaTdubicXqOWstL1bKpn4vGJH12Ojdnq/h34w6CKirnJRVo08TfhzNSVyoabUqoFY/b7Za96mZmZqQjzB1rnqhF141eD0CyTsBcrShyfMkZJxuqjCGBP0Z/cyYLmO/gcsaUZ18aYTlkyrp0noD6HYa68C4FRjcRnZMWUEqtvxJ3IZcTxWIR4+PjSKVSCIfDOH78uIx/U5YHz5owcoh4NXI+aFUYhWj5xModLzoHL5ZHu6Z4PI7Dhw9jcnIS4+Pjspq9xtJBmhKfzydbKjR7rmp7zkwYOb5cA7PSFP2VBLvdDr/fL6tB8zHB6yFRuxuaA7muhVh/XhSRxiyxyJTBR5WgeVNwoD67lYfreHiefhODRC09KNzDz0efj8YyVaqmuk40vrnjRnMNhfeIRaH+nFdiUkijdbJYLGJiYkLOcWazGU6nU86FAOq0Tx6PB4FAQNqWHCtyOl0ul9S/kS0KhYKs8j41NYWTJ0/i/PnzUl9MGe75fH5eeJc7zPQ3B2em+PpB8w45d9yh37DOk1rT5VIdKA7u5VLarcPhkKwDsPj0Wo165HI5jIyMyIydcDiMcDiMgYEBbN68WQ4IXlRN3ZHyCsBGIlS+c6HFQNVDcPCYuNPphN/vR6VSweTkJNLpNC5cuID/+q//wpkzZ2T4QePSYDKZ5I6WJt2FQAzBQmJjk8kkdTC6SGZzOJ1OtLW1wev1wu/31zE4NB4odEIMAdcY0dxLJQkItGBReI56nJVKJbhcLqk5oqQRPh552IycGT6WHQ6HDPtQNpjFYqkTJ3MJBzlP9HitVpM9Nk0mk+wcQfcPzUmBQAAdHR2yhtGV6DwBxg4UaVIdDgemp6dx8eJFaXdyOsLhMILBILxeL9rb29Hd3Y1yuYxMJoN0Ol3HAFMWI2XhFQoF5HI5HD58GCdPnkQikcDhw4cxPj5et56r0QFa47kDz6uZ02/aDHAnn85Bjjd3ntTSRkvFunSe6ILyTIuVdGb4+YmG1JlVywcVMQNmHalkMgmz2YyOjo55YVij+DTZlwtfAeMaUCrzxJ/Lz2e0yAoh5M6TJoVUKnXFi0hXGyrl3sghWupmSG9ilgZiFLgInIMzQDyzjdtL1c2oryftINWEIgcGQB1jTOfkjIXKIPCFk34bFUPlC7ca7lF/1M/Nw4GUxLLR2EuuX+N958h5pobRnKknvRKVgyA2Uq38TnM/aeFSqRSy2aysoQjMMYdqQlAjO3LGkIcMyTkCUOccLxTCWyrWpfNksVjg9XrR1taGYDAoY6fcm1QHt5GuhcCNxQ0eCoXQ398Pt9uNyclJSTuri7TG0jE9PY1nn31WCgn37dsnmzvyHSgtoNyunJYF5jtPqoDUZDLVTcy0w6bz0URdKBQQjUaRyWTw85//HGfOnEEqlZICcY3lgdghYjOMsu3UbCuewmw08dFxYgXNZrOk/zWM4XK50N7eLsceT7Qg8PIE5FCoMglVk0b/86rRVADR5XLB4XCgWq3KGj20+HHRuslkks8F6hMC6J7h2iWas/nczecNGt90nML+auiXzuXxeNDe3g6Hw4FoNHoZrXL5oW5OeFFoOk4ZeJR93NnZieHhYXg8HnR3d6OtrQ1TU1OYmprC+Pg4Ojo6sH37dni9XlQqFUxNTaFarWJychJTU1MoFAqYnp6WPe16enoQCoVkWJZroMhpJoeMC8l5DahAICDr89F9PDk5iXPnzqFSqUhHkGvZjCQhS0XLO09GQkKz2Qyv14twOIxAICBjsFzI24hVaPY+dH4yVigUkr3Y8vk8pqen51GK2nm6NESjUSQSCbhcLgwNDUkhYalUqivjD8xNbnzXQ+BOMu1ammXCcXE5DxEAkLH9aDSKQ4cO4ec///mK0LsacyDniTQrHEY6NY5GGZYAZLViIURdOEZjPpxOJzo6OmR9J6C+hIeR/okWJ2B+qQO+meRjhResJLFwpVKRbIUatiuVSrBYLLJVDG2auCNMGyH+PpyFUDOwANSxWNx5ovPR9wdmNT2RSESG8a5E8HWRr2FUGJqu08zMDKxWa11Jgq6uLuzfvx9OpxNerxdOpxPZbBZTU1M4deqU1KS1tbXVOUwjIyM4d+5cXRam1WpFT0+PvNY0J3A2icTlVAKDMifpeW63G11dXfB6vSgUCkgmkyiVSjh8+LB0nuj+I8d7pebzlneejGA2m2U9Ceqps5hwTDOoThHtkn0+H8rl8rziaRrLAzk4ROtzh2axN7bRJKA6tOrOGJivWaO/ueNFFLNehFcOtOAup3kvd5xVap7bk1iIldhhXmmgHb06dy5kj2abRT5u1fGninONwt+0IKoCcqPnqoV0G31uzpABc0V5m90P5CjyVPmNAhqbZvNs2Q+fz1fXtJ133SgWizJMF4/H6+ZKNSQLYB77Q7XAiG2i8CCv1UbHXS6XZJk4A0psFdmLWDNq+cIzAzlTuVKkx7p0nqxWKzo6OrB582b09PTA7XbLC8oZhUsFvZ4oylgshqmpKZw4cUIe5781FoZ6w/IBVqlUkMlkAEDG3GlyVCc+vsvlNuY0PGeheGhBPU4hPnUR1lgdkHDT5/PB5/MtKttuMQsYZ0LoPfx+P4LBoMzc0badA1UVD4fDclffSLuk/m+0yWm0+VHDZ1TmgwTjfDwSqwCgjn1uxBLwgpuqOJge5040fW+jPnicgaYed/SZrkQ0Ggterxd9fX1SDL5p0ybY7XaMjo7i3LlzyOfz+PGPf4yxsTHJTvHNpsfjqWvDQ/XybDabXKuB+cUuuYaKa+xUJ4wXMiU7E5uZy+UwNjaGn/70p4jFYlJ+QU5dqVSSkhB+DyxnXli3zlMwGERPTw8ikYg02HLZJw6Tabbv07Zt2xAKhfDzn/+8biLXk/HiwSc2o91JtVpFPp+X2TNGbIFRqI7/zXcU6n3AX88n16WwXBrLBy1IVCRvoSKZi9khchvylGav1wuv1wshhAznacyCrk8gEJALmRoyVav9G/0AcywQ6RTpNXw+5psXWuhUXSJPPc9ms9JmKsOk/qjiYbVuHBe7E6uhLpz0m8JANpsN5XL5ig3bNYLb7UZfXx/a2tqwadMm7Nq1Szo058+fR7FYxAsvvIAXXngBtVoN2WwWpVIJkUgEe/bsQUdHR10zXl6Zvq2tTTKdVKqEh2XJfipbyDOvs9kscrncPCkPhXGnpqbwwgsvYGxsTDpa9B5k82q1Khnp5bLS69J5IsF4MBiE3++va8lxqcwTn6h5rNztdqNQKCyqGrJGYyx2IWz2etUB4udVU1zpmNHrVKErhw7zrC5okuRswUJ2V59jNLa5g05hAF7YUWMO3FkhBsFo3uRVxnkIlNuCFqWFQIJ/1Y5G7JbRT6N7RQ0HNnoNL9SpiuPpce5sXWnlLrjDCaCO4aFyBG1tbTKJgLenov52hUJBOiUkuZiZmUEoFILf74fX64XFYpHdGKjcA6+rxcPpAOqcWCPHmBcwpcw8Og9FDvL5vCzkWSwWZekKo7FP9z7P7rxUrAuPQB0wDocDg4OD2Lt3ryzExTtmL4ZRUCcKfmORp+p2u9Hd3S0L+11Jg6nVYLQ4Ngq9qXagyY+fh+9+aZCpi4TRRKyxeqBFmBwblcnloVej1xqxkaqmjeh/n8+HQCAg+5jpbMk5kFaEJ2jQrpyuc6VSkbo/WmDV8UPj04jpJXD2iX4ahWLVtkz8fHyBVR+jz6A28+bfRYjZRAJKCuFzA6XZ073jdrslS7LewcPZvLI/9Zdzu93o6elBIBBAMBjEwMAAvF4vHA4HKpUKqtUq2trasHfvXpRKJSSTSaTTaRn9cbvdMvPO6/XCbDbjwoULcsypYn/6HDxsxxN96Hl0nLfyIfsSQ0g6p4sXLyKZTGJkZATxeBzZbBZut1s6c9QdAoAslEoO4HIcqHXhPKkgL7mvr6/uwi41htloF0SG5NXFm/XLWikB2kaH0TWka65qnviukk/oqkNM9wdPeW/miDX6HBorAx5GURfdxWx6mtmLT84Oh2NeOQSNWZhMcyngpEPiPeQA1DUKpmtKr6XfRvYzgsoOqTakyAGxQ0YMl1F4HpjTOqr1gThokaxWq9IhJEeJNlakhSHx8ZUiGOfzJS8SSVlsfr8fmzZtQiQSgc/nQ1dXF1wul7xetVoNLpcLvb29qFQqshOE3W6XIT6HwyHLBeRyOSkgV+s8qdpSug+JieK1FIn5ozWY5nFijijsPzMzg2QyicnJScTjcck+8TpmvHE1la3gEYlLxbpynmjA04WjCVilkYH5k2yz3RF/TB2wPBarcelYqkPCY9l8QuU3PZ8seUozH5x0j1CKsjqRA6jbJfGFRGPlwcfUSoPCLVwHcyUsgCsFnnzBRbkEPp749SOnQ2V2CDzEws9jtDnhzrPKNvDn8DHO34d+q5sk/re6uVJrQqlZfUafjzMe6xk8c01tg8WvATkvvMwHvzZkT7fbLcsWUPYcsXrkpBgxSHQO+lHDuPweMtKt8Y0wH9/VahXJZBJTU1NIp9OypIEqs6HvysOxV6zzpMa4zebZ2k4+nw/hcFiWYQdQt9iRZ0mvXeyibTRIyUtvpnlSKWKN+WgUJmsEei61R6DGvFyXQA6RUajW6H34ToroarW8P6Xi0ntqe64syHZUuXglHShiDSjluVEV6o0Mym6ka6M2Z+ZhDN4Gg6rt87FH4BsaGkNGoTs+T/J5m7MNNIaJ2eCbJvV86sLHF1f181GWVa1Wk/cHD+OTU0iOE09/X+9aV5vNBp/PJ68psW20ttF6SQUyk8lk3XO57shsNiMcDqO9vV3eG+QAZbNZ+Ty1X6DJZKqrrUWbVF6Xi56vas44SUKPc+e2VCrhzJkzOHr0KIDZ+5ZYMFpH6HVCCDkGisUi0un0sq5ty98ZdAHI4Ly2k7rb4buOpThORuAGW2gC1o7T6oAcHtr58rYONFEbpTIbOVLceeL2Uida3k1eY+XBd/SLdWoWM7bovlB3rRpzIIeDs07qNeLOEBeUUxiGFkMVC11r7jzR51DHospC8NCc+vmMHDj1h45xR4mHkvgY55t0fh9dKcwTORBkP/p+QP01KpVK0qExqovFS0rQNeXMJFDP/hmNRc480fMJRk4wP5fKmFarVaTTacTjcdjtdni93rrMTV7SglgtYqyWOz+0rPNkxDz5fD60t7cjHA7DbrfLxZBqOPABrw7SRvFzAg8BUpsAipfqdg/LRyMHh9O4FC4gW1CLBqpGSzbgDrNReI07P9zW5GipYmU+Wetsu9UFjVGjULjKUKgObiO7NDqPdp7q4Xa7YTKZJKvDw3CcEQIgWTxV+6M6KLSY8Q0Lb7bdyKnh4Rd+XqO/uZ5Jndv5+fg9RWEoYp14hhj1aONtXWjOodfRcZqD1it42yKr1YpisVjn1JTLZSkA5yJ5YmpUPSFdH05QcIaIo9H/gUBAOnMk/FbXALoX+VxBSQ6VSgXRaBQXL17E6OgokskkCoUCgLm1gWvbuIaOjq+ENKMlnScjT9VisSAcDmNwcBBdXV1wOp2S/svlcrKHDYlE1Qm6mfPDQzdUxI0Gms1mkw0MjSZvHba7dPAbmm5w2hnS4FUHFu1yaOeiTuzkTJNAUHWi6X15XJ7vclcihVXDGDTOuAi00fP4b2Bh9kl1lNTFWQMIBoMAIOdOrk+hcColxlDIyuVyGTL53Gki0MLHGQtVp8iZCJ6yblTpXHWcVD2WymLyvmjUqou+J83f1F+P9zfj5+WbZcrMWs8olUqoVCrznFf62+/3w+/3A5htTUNhPc7Sc2eLHCf+GOmpgPpxamRTKnBN/eyobQ+J9nn4VGWT/X4/fD4fkskkTpw4gcOHD2NiYgITExPIZDIQQsiMP9Jv0XvyKulqi55LRUs6T41ANzP1qaGbni4GUcw02Bez+zQK9/EdGQ2opaZRa1wa+ETLa8vwbDuimDn1zB0kCr0Z7W4BzGs+zI9prD6MxuVirr/Rc1TKn59fs0/1IL2HkXOjLoYU+uAhLhp7BM5GGNlhseFWFc20iwQ+plVxMb2Ws0/kDJjNcy1IeAKJ0XvRc9cLVKdTBV0T/jyeVdlI56mOJW4fzvzx9+Gfh5+HnHTSLJPzpDrz3BEmB4oyBKn9SiqVQjablREF1ZHna4cqUF+urAdoUeeJG5mH7bxeLyKRiGwrYLVaUS6XZeVRal5JcV2iXJtNoEbeuHqjEGVIvX7Im9dYOfAdJGekZmZm5CRGduFhAdqhqLtion35LpUyTUgQri4EPJVXY3XAF7qFHBv1uFHo3eg1tBM26nu5kdHb2wsA6OjokFXeefFB2nTQokatSpLJJJLJZF2ms8fjkewBSR2MFi91M8tZXc7y8vm2UqnIzTAf382qjdP8Qe06UqmUbM+RyWSkFINaA2UyGcTjcVlxmuYMl8sFr9eLcrmMrq4uyWisBxCzGAgEZHSGlwjgoSq69h6PB729vbIwZjAYlGJxyqbjduCbUb55JajrKYFsY7fbEQgE0NbWJh+zWCyyiTTN91xvR0kFXANXKpVkg2E6F2me6B6w2Wx1YVkAkoEqFovIZrOSnboUtOwqYUQT+/1+dHV1oa2tTXquQgg5EDweT13FVAB11LAKvugaUcX8MafTKdsZEMWosTyotD4XCRIDSJMvDbxisSivvRoi4KE8tS6UzWaTYkKz2SxTco0GuK5MvbpYCiPEn9doR6uCJlIKD2rMYtOmTQCAzs5O+P1+eDyeOs0o7ehNJhO8Xi86OjqQz+dx/vx5pFIp2Gw22ausp6cH7e3tcDqddWUM+AaIt96gsUbjGqjP7uOPU3IIsRQUZVCLdHLWgxZJm82GarWKeDyO8fFxlEolJBIJFItFhMNhbNmyRbYGmZ6elk3fac1wu90IBAIAgL6+vrpswFZHOBwGAAwODmLfvn3w+/3yGtOaRewOEQB2ux3BYFAyQBTV4TqwZgJudSzy1/E1nM5BfRXb29vrXkf3HzmztFmmexKoZ7y48xQOhxEMBusYN35vcQeS2FS73Y5UKrWsjXLLOk8qyPulNFI1W6TRjvZSdw3qeUmHc6WV7V9LqDvHRnS/GlJQ7aw6wUb3gNE5CSQq5JME/ayXXed6wXJCaYt9nVFWjkb94sPblBixOHwBy+fzSCaTssq4w+GQTI5RaJw7M/wxHuLjmyZ1vBkt0jQ+uYNm9Hr6HKVSSfbIo1YhpN8idrnRPHIpBZdbAZQFR9W1fT5fXUYyd544O+N0OqXzyMsEcEmE6ihx5h8wrq1n5DwR6D7grBhnIukcJMmhMKuRY2232+cVVlVF4uQE843xcktRrBvnyWw2IxgMoqurS3rKJtNsaK6zsxNer1fW7yGBGK9Y22ghpBuCdkjAXKYBsR2VSgVutxtOp1PS2hrLgzpJE1NAmTE864IvglznRudRnSPa/VDtEp5pQ6FeTkUDc6G+K6m6cCtCXZg5luNYqe/BGUTtQM3i1KlTAGYzsKh9DXccaDGirCZykg4fPoyjR4/C5/Ohu7tbti/Zs2ePFJ83qgrOxyfNxVwYzBdhYphIk8jDOpx54uAtRxwOBxwOB/L5PCYnJ3H8+HFks1mcO3cO6XQau3btwvbt22Vikc/nkwJpmi+i0ShisRhSqRROnz6N0dHRy2egZWLbtm0wmUzo6OioY5BovbLb7XC5XPIaE8tDlbi5PII7TJzJB+YXW+XgY5uHWnkYNxqNSjaJ7h3OkHHHjYdwM5kMXC4XCoUC2tvb8aIXvajO2a5WqyiVSvPuRX7f0LlTqdSyE4PWjRdgNptl+XiK19OAj0QiCAQC88I1RuXgOe1LUAWKNOFS9km1WpViNbrhNJYHPmGS00KUO+0SuLizkb2M/uaF14ii5mJRXsSNQM7VQplgGpcOuua8u/1q7O5NJpO0pR6rczh79qz8OxKJIJfLwePxyLnTbrdLZp/YiHK5jGPHjuGHP/whwuEwtm7dCr/fj97eXjlH0jxLiyAtgLQo8/R/EgYTM2WkpaE+pXS/0H3CtS+08NE5+CYMAKampnDq1CkkEgmcOHEC0WgUdrtd1jEi0TLNOcTQJJNJ5HI5JJNJnD9/fl05T5s3bwYA+Hw+OJ3OeSFrI2dWZd74D7eNGnGhMaaOYRp3xBLyLGlykOLxOJLJJIB6W/PPp67dQH2NuEgkgq6uLvnZzGazZBtVSY2RmDwWi2F6ehrZbPaSr/e6cZ7ImHxxa6aZARZfF6bZcX4jEd2rF9alQ2X+VJs1Yh34LsToWKO/VUaJ7he+0+GTB99h6QV3daFS+EZapsWM0UbOc6P5YKODGNd8Po9EIiGZWXIo6HqR01MulzExMSEzmkhnYjabkUgkMDU1BSGELAXAYTbPpouTaJccH16wUl3A+YLLs/to7PJIAp2Dv5beJ51OI5PJIJPJIJfLSU1XLpfDxMQEXC4XEomE1DzxwriZTAbZbFb+Vr9XK4OuMTkkaki20XhQnSegfowaFVRV/1YJCHqca5DUeVWVWvDQb6PnEfi8Tr957S7VWVLnCVUbeylYV86Ty+VCIBCQlKQam+aDsZnj1Ej/YhQCor/dbrdU9U9NTa3GV7xioV5foD77ghxi1TFVQ2u8Jgx3mo3ejxYBIYTcHVPIgOsAKLwDQIYtKKNIY+VBO1NeAdgo1EN/LwTuEBO4YFxrFOdALVZGR0eRzWbl9aHQFV0ni8UiZQqpVArnzp0DAOTzeVy4cEGOV4vFIlth8LHjcrmkDbhAV13s1AW30QKshoB4twBq4UTPNZvNmJ6exqFDh3DixAmUSiXk83kAwMjICB566CH4fD6Uy2Xk8/l5omIKGVYqFdlodr3gwoULAGZZRZfLJZ1XYoKIAADqHSKjHw4jzWgjkLaK5ndqk0IMnxr14RnxzTY7PPRH64L6GHfI1R8eyiMdFb3vpWLdrBC0GHo8HmkQvoPhMHJ+FnN+/pteS6+nNEgS2WksDarTSpMo1yyo+hQ1c4O/lodn+XvQcRqMlK5LlXZ5SjaFDvjAVbM1NVYOnN3jAuKlhu7UMcqZRGDu3mrUSmSjgpyMQqGAaDQKYPEOKjDLXMVisbpwGmWnBYNB2Gw2BINB+P1+qUEiO/h8PrmQ0+ZXZaF44Vr1s6nOEwmfs9msZMZobEejUZw7dw4XL16su7empqYwPT29qO+6HpFIJGAyzRY4LRQK0hGi9Yo7rpxhV7WfauiMC65Vx1YF38zQxlRNKmgUMTIqqsnPqzZ/N7KV6jABmBdt4PfdhmCegPlMBHBpN/tSJlR+A/JMP46leOYaczDa7SyGvuXHFmIpOPXMHSLeCkB9b73grh640wzMr/ZOWEzYjl5vdGwlaPmNgEuZt4SYTRVPpVIy5b1YLMJms0m9EBd7UwkAYpedTuc8TYw6hxqNfb6Yk+i8UCggn8/LBb5WqyGVSiGXyzVcXK9UZDIZAKhjAHm9Jlq/TCZTXSIO38wY1dXizC53fDjUmnnALKtE2mSeSac6T0ZhdqN5nZcc4KE8cgip24hKqqiOE90jze6TxWDdOE/kwFDPJQq/rKbjQou6xWKBx+NBOByGEEKKEgEY3kgaC8NowAD1BS6NaHxyeOgcjXap9BiFbXilZKKVhRB1Wg86h862Wx2omxDOHgPGKdELgSZ3lZmkRUOH7VYH6XQap0+fnlfCxYhp4I6sukBzu6mhVw61Vh9nFTgrQk5ULBZble/dyjhz5gyA2XT8U6dOzbveFMoG5uY4nljBs+34uOKOq1EojNc9pNcBqGO3uP0aOcl87Kv3jrqx5XM2v5+4Fk59P+48FQoFjI6OIh6PX/L1XjfOE1DfVJTCLoTlODGL2eVSATGn06lDOksEd0zUgaPuNng8m4dijHQQnKVSQfcDDV7K+qHnq0X91F2QXnBXB3wMAzCc7BqhWWjdKKxrlEqtsTIolUoolUpr/TE0GBKJRNPjPIzGNaa0ppFkgcTXRuQEZwqJ6eNMIA+JAc0ZYiOo0QjudHO2jDtNagKKuhkmcOeqVCohGo1eOdl2zcJxJEQrFAqyWNtqvH8jI3PnqVHWgMalwWgB5Mc4eIjHiObl51MHDx+MVMuLD1QjR01jZcHDBITFssfqhEx/q3bmtYo086ShMQs1BEetUIjNt1gssvipEaPLxyk/zms0qZvepULdSJMjB0AWxzRysIzCfUbjnicGLLd6fEs6T40WUap0SzVIGmmPlurtNgoF8XNQ3x+K7XPauZnTpdEYfKCpC6j6GKeO+YBvpI9Szw/U1wkxoqZVOlpjZUG7R9oBm0ymOh3DYqE6xuqYJYFyuVyG0+nUzpOGBub62ZlMprpsM/WHYERgGP1vNHcvF0b6R6PH1L8bnUP9bMScLQct5Tw1Ay105XJZMgeNxKBLMd5iQwZEaTZy2jSaY7kOprrANhMWquCMBT2PQoPA7I6GO8PanqsHdafY6FovNZTHwctgaOZJQ2MWmllfWawb58nIMzY6ZhTnVJ/Ljxm9Rv2f0m69Xq/MGtFYPtSdi6pb4amtqsCU65f4OYD5TAS9ljtw/HxGtYY0VgdqmrRq98U4w0bPJXvSfcHrPGloaGisNNbVzGIkDuPHGgmT+XOM/m/2OC26TqcTwWAQuVxOO08rgGa7ILIjsQZkA57qapSNw8N66vnodaqjTfFvHvfXWB1woaeR87TYEhWNQnbkPJlMJpkmrWs9aWhorAZaLhVloYlOnSybUZALxWwXepyDFxjTGTxLx1KoYu7c8A7fRplxC90vjbRs9JjR/3qxXT2o5QgaMU+Epdw3PJlAZ9tpaGisJlqSeeLhFZpsKbWSa51UsTEXFTcL1y0WPPWSPovu0r4yaCQC5OUCqKYX9SxSK8WqYbxGYTugPjuEZ5morVp0Q9nVBbcxiTZp3PI2C4vZRAH1bRuohpcQQtd50tDQWFW0jPPUiEXgFYlpcVOdJ4LapkHVRACNW7fw1/DWEWoDWV0DaOXB7cNZJloAScdCzhPVFzHKyOPn5Ofm6bTkiJHzRAsu77WnGYvVgRoy5enOQONM22ag15PwH4Asxqk1TxoaGquBlp9Z1JANPcaPq5qJlXCe+OsoDEBMiF5YVwYLOaGqoLvR/+r56HH1Pmn0ntQqgod6tIO8OuBFMmlcc/aQjzl1HKvMolEIl/7nzWu1LTU0NFYaLe88US8knnZsMpnmOTGNxMJA83oPKnhKPG9cGw6H4Xa7MTMzA7fbvdyvteFBDinXkdFCSs5RPp9HqVSqY424wFsVG/NwEH8fnonFWQpysKhlgdPphNPphNvt1ozFKsBsnm0kGwqF6npv8QrFHI0YKbp3yHY8u85ut8Pn88lx6vf7tfOkoaGx4mj5FYKHb3g5dgrjAcYht0sFX2S5ODwQCMDv9yOXy8HpdC7/i21wcEZRFX/zhpQAGjo+dIyE5dzhUVkLeozra4jpoIwscp6Mmj9rLB90jf1+v7zWVqtVatB4KJU7xepGh98ztImiOYJ3kHe5XHC73Zop1tDQWHG0jPNkFGqhx6vVKkqlEqampnD69Gm4XC74fD7ZnZuLjI1o+kahOvqfP9+oA7MQs61hqtUqRkdHZfdqjcVDve7ENpTLZfm7XC7X6Zn4a5uF7LijZQRinuj5VJqfO8hCCGQyGaTTaUxPT6NYLK7CVdjYmJmZQTwex+joKNxuN4LBINxut7Qfz5YD6h1gVdtIv4mZJEfYYrEgn88jnU4jn88jk8ksuYK5hoaGxkJoGecJMC6WWCqVZGXxxx57DMePH4fH48Hg4CAikQhsNhs8Ho9kC4hF4AyU2nlb/VFZD5rIM5kMkskkKpUKpqenMT09jWw2i8OHDy8phXqjg64xv2blchnpdBqVSgWxWMzQYeGOEp1HDeXQMWo3oEJdiBuJxCuVCk6dOoUzZ84gkUjgwoUL2sYrjGKxiB/+8IdIpVIIBALYs2cP+vv7YbVaZR86u90Ot9stNVG8ESgwa79isSg3NNlsVjpQZNPp6WmcPXsWmUwGhw8fRrlcXuNvrqGhcaWh5ZwnFdSPp1wu48iRIzh58iS8Xi927tyJ3t5eOJ1OtLW1yRCAw+GYJzCvVqtyYuWsBu/oTtQ+z+aanp7G5OQkCoUCRkZGcPHiRXkujeWBd+3O5XLIZDIyDENNe3nhS9WBUv9WS0oYgTfEpPuB3rNareLixYt4/vnnkc1mF+xQrrF0lMtlnDp1CvF4HG1tbTLE5nA4EAqFYLfb4fF4pBMFQIZPufNE9iuXy8hmsygUCtKRqlQqOH/+PI4cOYJ0Oo3z588vu4eVhoaGhop1Jwa4FDZgMenPS6H2NSOhoXHpWO0wmlHpCg0NDY2VhEnoGUZDQ0NDQ0NDY9FYd8yThoaGhoaGhsZaQjtPGhoaGhoaGhpLgHaeNDQ0NDQ0NDSWAO08aWhoaGhoaGgsAdp50tDQ0NDQ0NBYArTzpKGhoaGhoaGxBGjnSUNDQ0NDQ0NjCdDOk4aGhoaGhobGEqCdJw0NDQ0NDQ2NJeD/AVh7pHsAEBhhAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAGWCAYAAABRknY1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5hdVbn/v6f3Mmf6TJIp6dPTILRASJAQqQFEQYhELqCocEVFLyqCeK8iyhX1ByoSlCJcBAICAkYCUkInJKSZhIS06af3tn5/zPOurLNnn8mUM5mZZH2eZ56ZOfvsfcq711rvequGMcYgkUgkEolEIhkR2rF+AxKJRCKRSCRHA1KpkkgkEolEIikAUqmSSCQSiUQiKQBSqZJIJBKJRCIpAFKpkkgkEolEIikAUqmSSCQSiUQiKQBSqZJIJBKJRCIpAFKpkkgkEolEIikAUqmSSCQSiUQiKQDjQqlqa2tDKBRSPTZ//ny88sorh73Gc889h3nz5sFkMuGGG27IOdbZ2YkVK1agpaUFs2fPxv/+7//yY48++ija2trQ1NSEpqYm/OIXv+DHXn75ZRx33HFoaGhAY2MjvvOd7yCbzfLjP/vZz9DQ0IC2tjYsXLgQ77zzzpA+97FCIeT7ox/9CKWlpWhra0NbWxsuu+yyfs/p6upCeXk5zj///JzHb7/9dkydOhVTp07FzTffzB//yU9+wq/X1tYGp9OJb37zmwCAbDaLb37zm2hoaEBLSwsWL16MnTt3Dv5DH2OM9hge6Njdd9+NpqYmNDc3o6WlBQ899FDO8VdffRULFixAY2MjGhoasH79egADj31JLqM9hn/729+iubmZy+Puu+8e1HkA8MQTT6C5uZnLcc+ePTnH880LkvyM5Zw90Ly8fv16/nhjYyOuueYaJBKJYX3GUYONc+bNm8fWrVt32Odt376dbdiwgd18883s+uuvzzl26aWXsptvvpkxxlg4HGatra3snXfeYYwx9vrrr7P29nbGGGN+v59NnTqVv94HH3zAdu3axRhjLBaLsZNOOomtXr2aMcbYhx9+yKZMmcJCoRBjjLEHH3yQLViwYISf9thjsPK95ZZb+slVyfnnn89WrVrFzjvvPP7Yq6++yhoaGlg4HGbxeJzNmzePPfvss/3OjcfjzOPxsPfee48xxthTTz3FjjvuOJZMJhljjP34xz9mF1988aA/l+QQhRjDAx1bu3Yt8/v9jDHG9u7dy4qLi9nOnTsZY4wdOHCA1dTUsC1btjDG+uTs8/kYYwOPfcngKcQYJvkxxlggEGCTJ09mH3zwwWHP++CDD9jMmTPZgQMHGGOMBYNBFolEcp6jNi9Ihs9oz9kiynk5EonwOTmTybDzzz+f/fKXvxzK2x91xoWlSqPRwO/3AwDefPNNvlu58sorkU6nB3WNGTNmoLW1FXq9vt+xjz76CMuXLwcA2Gw2LFq0CA8++CAA4KSTTkJFRQUAwOVyYdasWXynM2fOHNTX1wMAzGYz2tra+DGNRoNUKoVIJAIA8Pv9mDRp0rA+/9FOIeR7OP74xz+irq4Op5xySs7jjz32GC6//HLYbDaYTCasWrUKf/nLX/qdv2bNGkyePBnz5s3j7zmRSCAej4MxhmAwKOU7AKM9hgc6tmTJErhcLgDA5MmTUVFRgX379gEA/t//+3+49NJLMXv2bACAyWSC2+0GMPDYl+Qy2mOY5AcAkUgEqVRqUOf94he/wDe/+U1UVVUBABwOB6xWKz+eb16QDMxYztkiynnZarXCYDAAAJLJJGKxGDQaTUHeT6EYF0oVkUwmcckll+DOO+/Exx9/jC984Qv46KOP+PF7770XP/zhD4d83Xnz5uGRRx5BNptFd3c3XnzxRdXJc8uWLVi/fj2WLl3a71hHRwf++te/4uyzzwYAtLa24j//8z9RV1eHSZMm4a677sKvf/3rIb+3Y4mRyvfxxx9Ha2srTj/9dKxbt44/vnv3btx77734yU9+0u+cvXv3oqamhv9fW1uLvXv39nveH//4R3z5y1/m/59zzjk47bTTUFFRgcrKSvzzn//EbbfdNuTPfKwxWmN4sKxduxY+nw8LFiwA0DemY7EYli5dira2Nnz961/nGyGRgca+5BCjNYYB4K9//SsaGxtRW1uLb33rW5gzZ85hz9uyZQv27t2LU089FXPmzMEPfvADZDIZAAPPC5LBMRZztohyXgaAPXv2oLW1FSUlJXC5XPjqV786zE83Soy1qYwxxgAwn8/HPvroI1ZbW5tzrL6+fkgmeTWTY3d3N1u5ciVraWlhS5cuZVdffTW74IILcp6zb98+Nm3aNPZ///d//a4ZCATY/Pnz2S9+8Qv+2CeffMIWLlzIzc6//vWv2UknnTTo93ksUQj5tre3c7Pv66+/zkpLS9mePXtYNptlp512GnvrrbcYY4ytXr06x5R89tlns0ceeYT//9xzz7FTTjkl59p79uxhFouF9fb28sfefvtttmTJEubz+Vgmk2Hf/va32WWXXTbUj37MMNpjeDDHNm7cyCZNmsRee+01/tg555zD5s6dy7xeL0smk+yyyy5jN954Y855A419SR+jOYaV7N69m7W1tbFt27Yd9rzm5ma2fPlyFo1GWTgcZqeffjr79a9/fdh5QTIwYzlnE2rzskgoFGLnnXce+8tf/jK0DzfK9LeljzMKYdorKSnBAw88wP+/9tpr0djYyP8/ePAgli5diu9///u4+OKLc84NhUJYtmwZzjvvPB4sBxwKjiSz85VXXomvf/3rSCaTMBqNI37PxwqDlS+5aYA+t82cOXPw3nvvwe12Y+PGjbjkkksAAOFwGNFoFEuWLME///lPTJkyBZ9++ik/d8+ePZgyZUrOtVevXo3zzjsPHo+HP/bnP/8Zp59+OncVrVy5Ep/5zGeG+zGPaY6EeX7Lli04++yzcf/99+Pkk0/mj0+ZMgVtbW0oKioCAHzhC1/A//zP//DjA419yeAY6RgWLclAnzX5+OOPx7PPPouZM2cOeN6UKVOwYsUKWCwWAMCKFSuwfv16XH755QPOC5LhM9pzNqE2L4vY7XZ8/vOfx8MPP4zPf/7zI/hEhWVcuf9mzZqFdDrNzYRr167Frl27Rnzd3t5e7qP/8MMPsWbNGm4ybG9vx5IlS3DTTTdh5cqVOeeFw2EsW7YMy5Ytw/e///2cY/X19XjjjTcQDocBAM8++yxmzJghFaoBGIl89+/fz//esWMHNmzYgObmZrhcLvT29mLPnj3Ys2cP7rzzTnzmM5/hg/Piiy/Ggw8+iEgkgkQigfvvvz9nAGazWaxevbqfibm+vh4vv/wykskkgD75NjU1jejzHwuM1hgeiK1bt2L58uX4/e9/jzPOOCPn2KWXXop169bxDKG///3vaG1tBTDw2JeoMxpjGOhTionu7m68/PLLaGlpOex5l156KV566SVks1mk02m89NJLaG1tPey8IBkcYzFnA/nn5Z07d/K1PJlM4qmnnuL3ybhhrE1ljB0yNTLG2BtvvMFaW1tZU1MTu/LKK1lrays3Nd5zzz3sBz/4geo11q5dy6qrq5nD4WB2u51VV1ezp59+mjHG2PPPP8+mTZvGZs2axRYsWMBeffVVft5VV13FrFYra21t5T/3338/Y4yx22+/nen1+pxjt99+O2OMsWw2y7773e+ymTNnspaWFnbCCSfwDAVJLoWQ7xVXXMEaGxtZa2srmzt3Lnv88cdVn6dmSr711ltZXV0dq6urY9/97ndzjr344oustraWZbPZnMfj8Ti76qqr2KxZs1hzczM744wzeCaopD+jPYYHOrZ06VLmdrtzxukLL7zAr3vHHXew2bNns6amJnbJJZfw9znQ2JfkMtpj+Oqrr2azZ89mra2trKWlhf32t78d1HmZTIbdeOONbNasWayxsZFde+21LJFI9Htt6f4bGmM9Z+ebl3/3u9+xxsZG1tLSwhoaGtjXv/51FovFRvRZC42GMcbGVKuTSCQSiUQiOQoYV+4/iUQikUgkkomKVKokEolEIpFICoBUqiQSiUQikUgKwLhSqt577z2cddZZqKurw7x58zBnzhzcfvvt/Phpp52GNWvWDOmaDzzwAFwuF+bMmYPZs2ejtbUVt956K2KxWIHfvYQYTTlSz6ezzjpLtYinktraWmzYsGHYrysZHqNxDwDA+++/j2XLlqG+vh7z58/HSSedNCKZ+v1+/PSnPx32+Ucjcvwe3Uj5ji7jRqnatGkTli1bhuuuuw67d+/G+++/j3/+858IBoMjvvbixYvx4YcfYuvWrfjHP/6B999/n9fIUFKoEvzHKqMtxw0bNmDz5s2YMWMG/vM//7MA73h0oKrOxyKjdQ9s3rwZZ555Jq677jp88skneO+99/D4448jEAgM+5pSqcpFjt8+jtbxK+Xbx2jKd9woVT/72c9w1VVX8TYwAODxeHDHHXcU9HXKysrwpz/9CWvXrsXmzZsB9BUzu+WWW7BgwQJ873vfQygUwn/8x3/guOOOQ0tLC66++mper+j222/H7NmzeafsTz/9FLFYDJdccgkaGhrQ2tp6TBeJPFJyPPPMM7F9+3YAuX2qgL5ir4fr4dbV1YUVK1bw7va/+93vAAAPP/xwzntnjKG+vp63ZnjwwQdx/PHHY+7cuVi0aBF//IEHHsDixYtx4YUXorm5Ge+8804BP+3EYrTugZ/+9KdYtWoVzjnnHP5YVVUVrzG1c+dOLF26FC0tLWhra8vZ9V522WWYP38+Wlpa8NnPfhYdHR0A+goBh0IhtLW1Yf78+SN6f0cDcvwe3eNXynf05TtuKqp/8MEHuPDCC4d17jPPPINnnnkG991336CeX1RUhOnTp2Pz5s28srpOp8O7774LALj66qtxyimn4A9/+AMYY/iP//gP/OpXv8JVV12FO++8E+3t7bBYLIhGo9Bqtfj73/8Ov9/PC9h5vd5hfY6jgSMhx0wmg8cff5w32RwOX//61zFz5kw8+eST6Orqwrx589Da2ooVK1bg+uuvR0dHByoqKvDKK6+gqKgIra2teOONN/CXv/wF//rXv2AymfDaa6/h0ksv5cr522+/jQ8//BAzZ84c9vs6Ghite+D9998fsFfYZZddhlWrVuGaa67Bjh07sHDhQsyZMwc1NTX43//9X5SWlgLoU85+9KMf4d5778W9996LtrY27oI41pHj9+gev1K+oy/fcWOpUvLtb38bbW1tqK6u5l9KPs4999xBK1SEsjzXqlWr+N9r1qzBz3/+c7S1tWHOnDl47bXXsHPnTjidTkyfPh1f/OIX8bvf/Q5erxdmsxmtra3YunUrvvrVr+Kxxx7jXbQlhZXjunXr0NbWhnnz5kGj0eAXv/jFsN/X2rVrcc011wDos16uWLECa9euhcViwYUXXogHH3wQQN8O58orrwQAPP300/joo49w/PHH8+a8Xq+Xx+edeOKJR/WEPFxGeywDfe2kPvjgA16Befr06Tj55JPx2muvAQAeeeQRzJ8/H01NTbjvvvukEjVI5Pg9upHyLTzjRqmaM2dOjknu5z//OTZs2ACDwcDL0hcKn8+HnTt35rQdsdvt/G/GGJ544gls2LABGzZswPbt2/G73/0OOp0Ob731Fm644QZ0dXVh4cKFeO2111BfX48tW7Zg2bJleOONN9DU1ASfz1fQ9zxRGE05ks9+w4YNuP/++1FSUgKgz8oo+sjj8fiQry32s1q1ahVWr16NcDiMZ599FpdeeimAvvti5cqV/D1s2LCBWy2B3HvoWGa07oF58+Zh/fr1g34+yfT111/H3Xffjeeffx4ff/wxfvnLXw7rHjkWkOP36EbKd/QZN0rVd77zHfzhD3/A888/zx9LJpMFDxzv7u7GqlWrsHTpUjQ0NKg+5/zzz8fPfvYz/tqkhIVCIXR2duKUU07BD37wA5x88sn48MMPsX//fmg0Gpx77rm48847wRjDvn37Cvq+JwpHSo4i06ZNw9tvvw0AePLJJxGJRA57ztKlS/GHP/wBQN898eSTT/K+cccffzwA4Fvf+haWLl3KG3qee+65eOihh3hWSzabxXvvvVfwzzPRGa174Dvf+Q7uv/9+PPfcc/yxjo4O/OlPf4LD4cDcuXOxevVqAH3xVa+//joWLVoEn88Hh8OB4uJiJJNJHp8BAE6nE7FYjMdMHuvI8Xt0I+U7+owbpaq1tRXPP/88fvWrX6Gurg7HHXccFi9ejK985SuYMWMGf95VV12FSZMm8Z/169fjmWeewVVXXZX32uvWrcOcOXMwa9YsLF26FK2trXjsscfyPv+uu+6CxWJBW1sbWlpasGTJEuzZsweBQIAHz7W0tCCVSmHlypXYtGkTTjrpJLS2tmLOnDm4/PLLx1+TxyPEaMoxH3fddReuv/56zJ07Fx9++CGKi4sPe87dd9+NrVu3orm5GYsXL8bNN9/MBysAXHnllfjd737HTcsAcMopp+COO+7ABRdcgNbWVjQ2NuLRRx8d8vs92hmte6C5uRl///vf8atf/Qr19fVobm7GihUrUFRUBKAviPWxxx5Da2srLrroItx3332YMmUKli1bhpkzZ2LmzJk45ZRT0NbWxq/p8XhwxRVXoKWlRQaqQ47fox0p39FH9v6TSCQSiUQiKQDjxlIlkUgkEolEMpGRSpVEIpFIJBJJARiXSpXf78cXv/hFNDU1oaWlBU1NTXjkkUcAAK+88kpOTMRgefLJJzFv3jy0tbVh1qxZOP3005HNZgHklspXctVVV2HdunV5r/ujH/1IZhINktGQa21tLWbOnInW1lZMmzYN5513Ht58880Cv/Ojk0LLgwriNjQ0QKfT8f/zdS8YKj/60Y9www03qB575plnBqzgvGbNGrz11lsDXr+rq4vXrRN55ZVX8MILLwzpvY4XpIxzORplPFwm2r0xURg3xT9Fvv/976O0tBSbNm2CRqNBKBTiFZCHQ3t7O66++mq8//77qKmpAdBXBE1M08xHvroc6XQaer0et956K2644QaYzeZhv79jhULLlXjsscf4BPDkk09i+fLlePHFF3MCGwFwJVqrHZd7iSNOoeVBG5M9e/Yc8YKa5557Ls4991zVY+l0GmvWrEFbWxsWLlyY9xpPP/206jVeeeUV+P1+LFu2rGDv90ghZZzL0Sjj4TIW9watm2PBkXrtcbm67N+/H5WVlVzpcTgcmD59+rCv19nZCZ1Ox1MvAWDu3Lk5StWTTz6JE044AXV1dXmbS37pS1/CqlWrsGjRIjQ1NeHaa68FAJ5R1NXVNez3eCxQaLmqsWLFClx77bW48847AfTtfC+88EKceeaZaGpqQnt7O1588UWcfPLJmDdvHo477jhuidyxYwfP4mxubsb3v/99AMDf/vY33vqkqakJTz/9dEHf81hxJOQxHPLJAejbIJ1zzjloaGjA6aefzrsXPPDAAzj//PMB9C2QjY2N+PKXv4y2tjY8/PDDeOaZZ3hB33wbpTVr1uCCCy7IeWzDhg2499578fDDD6OtrQ233XYbgL52GC0tLbztzYEDB/j7OP3003HuueeioaEBixYtOmxLjtFEyjiXo1HGw+VI3Ru1tbW46aabcNxxx2HlypUIh8NYtWoVmpqa0NTUhFtvvZU/V9lU+aKLLsIDDzwAoM/A0dDQgLa2NjQ3N/MyDTt27MBnP/tZLFiwAC0tLfjNb37Dz1e2oDsisHHIyy+/zDweD5s7dy677rrr2N/+9jd+bN26day1tVX1vLPOOou9++67/R7PZDJsxYoVrKioiJ1//vnsjjvuYPv37+fHa2pq2Ne//nXGGGPd3d3M6XTy46eeeip76qmnGGOMrVy5krW0tLBgMMjPBcB8Pt8IP/GxQaHlylif7D788MOcx5588kk2e/Zsxhhjt9xyC6usrGQdHR2MMcZ27drFFi5cyAKBAGOMsR07drCKigoWj8fZN77xDfbf//3f/Dq9vb2MMcZaWlrYm2++yRjru5eOFnmPhjwYY2z37t3M5XIN+33lk8Mtt9zCampqWE9PD2OMsUsuuYQ/b/Xq1ey8887j712j0bBXXnmFX2PlypXsrrvuyvuawWCQ1dfXs2w22+/YLbfcwq6//nr+/6ZNm1h5eTmfI26//Xa2bNky/j6MRiPbsmULY4yxn/3sZ+yMM84Y4jdQOKSMD3G0yni4HKl7o6amhn35y1/m3/t3vvMddumll7JMJsPC4TBra2tjjz76KGMsd71ljLELL7yQrV69mjHGmNPpZAcPHmSMMZZMJlkoFGLpdJrNmzePbd26lTHGWCQSYc3Nzeydd95hjPWtz7feeuuQvpeRMi4tVYsXL8bevXvx4x//GG63G9dccw2uu+66w573/PPPq9aa0Wq1eOKJJ/Dmm2/yqueNjY3YuXMnfw5VZS0pKUF9fT12796t+hoXX3wxHA7HMD/ZsU2h5ZoPpqgSsnz5cpSXlwMAXnjhBezcuROLFi1CW1sbLrroImi1WuzduxeLFi3CH/7wB9x888146aWX4Ha7AQBLlizB9ddfjzvuuAMbN27kj090jpQ8hko+OQDAsmXLeJ2bE044Abt27VK9Rn19PU499dRBv+bf//53LFu2bFAhAevWrcOyZctQXV0NAPjqV7+Kl19+mVeNPvHEEzF79mwAfX1EX3nllZyK0kcSKeNDHK0yHi5H8t740pe+xL/3tWvX4j/+4z+g1Wphs9lwxRVX4B//+Mdhr7FkyRJcfvnl+NWvfoXdu3fDbrdj+/bt2Lx5Mz7/+c+jra0NJ554IkKhEO/DC+S2oDsSjEulCgBsNhuWL1+O22+/HU888QTv9TMSZs2ahWuuuQZr1qzBwoUL8cwzz/BjYkyUTqfLW2H2WGhlMJqMhlyVvPvuuwO2IDrjjDNyWhkcOHAA06dPx4UXXog33ngDM2fOxG9+8xveDf2Xv/wlVq9eDavVipUrVxa8o/tYciTkoWTLli08iFVtEs8nB2D0xulTTz3FXUtDZTCL9FgiZdzH0Szj4XKk7o2BZCV+t3q9Pm9LmyeeeAI//elPkUqlsHz5cjz66KNgjMHj8eTM57t378bKlSsH9dqjwbhUql566aWc3nnvv/8+pk6dOuzrHThwAG+88Qb/3+fzYffu3SO6JuFwOBAIBEZ8nWOBQstVjaeffhr33HMPbrzxRtXjZ555JtauXYuNGzfyx6gX1o4dO1BeXo4rrrgCd9xxB88k2rZtGxobG/G1r30NX/nKVw6bYTRROBLyUKOhoYFPgL/97W/7Hc8nh5HgdDrzjtNkMon169fjtNNOG9S5ixcvxgsvvICDBw8CAO69914sWbIEOp0OALB+/Xps27YNQF8cyOLFi/mxI42UcR9Hs4yHy1jdG0uXLsUf//hHMMYQiUTw4IMP4jOf+QyA3JY2u3fvxuuvvw6gL8h8165dmD9/Pr71rW/hoosuwjvvvIOZM2fC6XTy9lRAX4sqisMbC8Zl9t+mTZtw4403gjEGrVaLyspKPPTQQ/z4li1bMGnSJP7/CSecgMcffxzLly/Hbbfd1s80mU6ncdttt2H37t2wWq1Ip9NYuXIlzjvvvBG/1xtvvBFnnHEGrFYrXnrpJZSVlY34mkcrhZYrcckll8BsNiMSiaChoQHPP/98v8w/Ytq0aXjkkUdwzTXXIBqNIplMYs6cOXjkkUfw17/+FQ899BCMRiOy2SzuvfdeAMB//dd/Yfv27TAajbBarbjnnnsK+K2MHaMlj5GSTw4j4fLLL8eXvvQlrFmzBtddd11Ou42XX34ZJ598MgwGg+q5F1xwAR588EG0tbVhxYoV+OEPf4if//znPFNs8uTJvE8Z0Ocauummm7Bz504UFxfjz3/+84jf/3CRMu7jaJbxcBmre+MHP/gBvvGNb6C5uRlAX0jN5z73OQB9vQkvueQSNDc3o7Gxkc/jmUwGq1atgtfrhV6vR2lpKVavXg29Xo9nn30WN9xwA+666y5kMhmUlJTw0hBjgWxTI5FIjmmuvfZaLF26FBdddNGIr/XAAw9gzZo1ORlMkrFHylhypBiXliqJRCI5UhTCSiIZ30gZS44U0lIlkUgkEolEUgDGZaC6RCKRSCQSyURDKlUSiUQikUgkBUAqVRKJRCKRSCQFQCpVEolEIpFIJAVAKlUSiUQikUgkBUAqVRKJRCKRSCQFoKB1qobbH0mj0UCj0YAx1q8ZLtDXD0iv18PpdOK8887D6aefDrvdjsrKSrjdbkSjUbS3tyMcDiMajSIYDCKVSiEYDMLn8yGdTkOr1UKr1cJkMqGurg4VFRWwWCyoqKiAw+Hgx7VaLdavX4//+7//Q0dHB7q6unDw4EGkUimkUqm8fajo/Q+XiVDZYqz6X+n1elitVhgMBlRUVGDWrFmw2+0IBoPo7e1FMplEMBhEMBiETqdDaWkp3G43zGYzl+/Bgwfx9ttvo7OzE5lMBqlU6oh+5xNBvsDoypiurfZdlJWVYd68eaioqIDH40F1dTUsFguSySTi8Tiv+qzT6aDRaPhYjUaj+PTTT9Hb24uuri5s2rQJvb29Q3rtQjERZDxa8qU5GujrYEH9247Ed6J87Xxz9Eg5luU7lNfPt4bX19ejvr6ed6YwmUzweDw4/vjjUVtbi3379uH1119He3s79u7di48//hjhcJiPe6Cvsno2mx2V914o+Y6b4p9KhcpsNsNms/GGmplMBhqNBu3t7fjoo4/gcrnAGINGo0Emk4HFYoHBYIDNZuOtaGw2G8xmMzKZDAwGA/R6PYxGIyoqKlBSUgK9Xo9sNotwOIxYLIbe3l7E43Fs3rwZHR0d/H+z2Qyj0cgVq2w2i1QqldP4cSIMuImExWLB1KlTUVpaygehwWCAw+FAWVkZlyspR7FYDPF4HBqNBiaTCUajkSvrGo0GRUVFmDlzJioqKhAOh+H1epFMJhGLxRCNRqX8xgCtVguLxQKj0YjKyko0NTWhrq4OVqsVHo8HBoOBj31SqrRabc75iUQCHo8H4XAYn376Kfx+P3Q6HeLxOCKRSM4YlYwcjUYDnU4HrVYLt9uNsrIymEwmWCwWWK1WPh/TeNJqtdBoNMhms1zhyWazSCaTYIwhkUggFovlyFej0UCv1/PXormb/lYqyDqdLkepSqVSSCQSOHjwIHw+HzKZDJLJpLwXRhmSi6hY6fV6GAwGGAwGPicD4PO1VqtFd3c3rFYrenp6EAwGEQqFEI/Hc5SniTQ/jwulSu0Ls9vtmDRpEkwmEwKBAG92uW3bNuzduxelpaV80FksFhQXF8NsNnOFJ5vNIhQKwefzIZvNwmw2c8WrqKgITqcTyWQSvb29CAaDOHDgALdkHDx4ENu3b0c0GoXVaoXT6QQApFIpPjhDoRBisdgR/Z6OJVwuF5YuXYoTTjgBRqMRNpsNRqORT5qMMbhcLng8Hj4B04QeDocRiUQQiUTwySefoKenBzabDZMnTwYA7N+/H9u2bUMoFEJXVxcSicSo7W4lh1COc71eD4/HA5fLhZkzZ2Lp0qVobW0FgByFmBQpcReezWb5Rox2rx9//DH8fj/MZjN6enqwb9++I2oxORYgaz9ZHk466SS43W54PB4UFxdzWZGSZDQaodfrkUqlEAqFkEqlEI/HEQ6HkUgk4PV60dXVhXQ6DaPRCKPRyJVteh23282Vb5oHSO70nsiSQRtfr9eLl19+GZs2bUIikYDf75dK1SijZg02mUxwOBw5G2PGGF8/Y7EYSkpKkE6n0dXVha6uLvh8PoTD4ZyxS9ecCON4XChVIjSRGgwGmM1mmM1mxONx6HQ6ZDIZRCIRhMNhAEAgEEA0GuWaMe2gtFotGGNIpVKwWCzIZrOwWq2wWCzQ6/V8sNICTS5DUqi6u7v5oDeZTNzlQKTTaf5aAPqZI0fqCpQABoMBpaWlqKmpgcFggN1uh8FgQDweRygUQiaTQXFxMSoqKmA0Grk8MpkMent7EQgEYDAYYDKZuPXK4XBAr9cjFovBbrcjk8nk7J4kow+Nb6BPqbJYLLDb7XC5XCgpKUF5eTkymQzS6TRfmMVzxLFFlmp6TmdnJ9xuN1wuF2KxGAwGA1fA5XgcGSQDsvYbDAY4nU6Ul5dzhYqs/wQpYAaDAclkEqFQiFumAoEAkskkV7hSqRSMRiOfb202G1ekPB4PrFYrjEYjXC4XX5jJIkbvizHG53SLxYKioiJYLBa++Zbz8pFB/J5JNnq9PsfKTMq1yWRCOBzmoTuJRALxeJyPf2IiyW1cKVVWqxXFxcUwmUzQarXw+/0AgGg0yk3E2WwW2WwWvb29+OCDD9Dd3Q2TyQS32w2TycQXT51Ox03OAHJcBzTJJhIJdHV1IRwOo7e3Fzt27IDf70c0GgXQZ1ZOpVLcpWCxWOBwOAAApaWlPKbjwIEDCIVC/HXI3D2RboTxiPgdksxokGq1WqTTaQQCAWg0GkSjUT4o29vb0dvbi0Qigd7eXkQiEaTTaW6KZozBbDbz3bFk9BEtxW63Gw6HA3a7HdOnT0dFRQWqqqpgMBjg9/u5WzadTqOnpwcdHR1IpVJ8fJtMJlRXV3NrNd0jBoMBjY2NKC4uxoEDB+ByufjYJmvIaMZkHK1YLBZUVVXB4XDA7XajurqaW37r6+ths9n4RlVpraA5W7Q+0RhMJpMIh8MwGAxcQUomk3xDTXN6cXEx7HY732xrtVpks1keEkKbaADc1eTxeDBnzhx4PB709vZi06ZN6OzsRCKRQCgUkpbpUYDmZ3Hdy2QySCQSfC2m42TMoHXeZDKhp6cHXq8Xfr8fkUhkwo7TcaVU2e121NXVweVyob29Hbt37+ZBqqKpP5PJIBqNwufzcR87LbRFRUWYPHkyt0zZ7XYee5FIJJBMJuH1evlOyefzIRaL8ficTCYDrVbLtetEIoFIJAK9Xo/q6moeAF1eXg63282VslAolLNrBiDNzQVClL9Go4HRaOSD1Ov1IpPJ4MCBAzhw4ABisRh2796Njo4OaLVaHhBJu2JyEdtsNn4taakaXTQaDWw2G4qLi2GxWFBfX4/JkyfD7XZjzpw5qKmp4RaQ3t5eRKNR+P1+JBIJbNq0CW+99Rai0Shf1J1OJxYtWgSz2cyVa7I6LliwAKlUCnv27IHH40EwGMSWLVsQiUQQi8WQTCYn7GQ9VthsNsyePRuTJ09GVVUV2traUFxcnGNZotAIUqJovJLyo9Vq+VxMcqMEE3E8JxIJAOAhHRaLBWVlZXA4HHyBFt1+JEtxbiBX00knnYQFCxZwNzAp7WQJkYw+6XSab5BIqQLAldtMJoPu7m5uKOnu7obf78+JWZ5oFqsxV6pE06zJZILNZoPdbofJZOIBhqKiQoOVJtJ4PJ5zLVow4/E4bDYb3yXF43HE43EeR0WCo6A4ujYAbsImrZp2RLRTovfpcDi4wiUZXZQuHDFblOLo4vE4DzynHTC5KsSJns7X6XT9XLuSkUEbEjGbVqvVwuFwwOl0wmq18hgcl8sFt9sNt9uds2ESf0iu5CqgxBGacMlyTePcarXmxNvpdDp4PB6+GYrH40gkEnwOoXPF4GpJLjqdDna7ncvK4/GgqKgoJ95NuYFUzteiq5ZioEiRNpvNAIBkMgmdTsetWfRD4/RwyrDoJqZ7wWKxIBgM8vdOoRuS0UE5hkTvkqhwA4fukXQ6jWQyiWQymZPMMFEZc23AaDSipKQENpsNlZWVmDFjBoqKipBMJrF161Zks1me9QEgxxpEQZDiDiYej6Ojo4MPWIqpIWGl02k+sWo0Gp61ImaIKLOM6HXtdjtKSkq4m7K4uBixWIwrVXTT0N+SwqL8TskVlM1mEQgE4HQ6+QJgt9uh0+l45ibJiBZfo9GITCYjJ9gCU1RUhGnTpsHpdPKF2Gg0wuFwwOVywWg0orS0FB6PB2azmScaiK4Di8UCoC/uYtq0aQD6FlySq9VqRVVVFcxmc797gibq0tJSzJo1C4lEArW1tVi4cCEvsxIKhRCNRrF//350d3cjGo3i4MGDPFZT0gcpKTabDbW1tWhubobD4eBZmeImhZQqUbEBDrnwKYmE4h61Wi0MBgMqKyvhdDq5pUq0alksFm4FC4VC/DniwizG3NE8Lx7TarVwOp04/vjjMX36dGzZsoV7FySFRVSWxDJJlDgWiUR4uAaNYZ1OxwPXKXxDLQ5yIq2n40KpKi8vR0lJCaqqqjBt2jS43W50dnby4HSyNgDg5n6dTsddOyS0bDbLrRU0kNWgwUaBj2azGalUCpFIBKlUij9PvAbtfMgkXVJSwt0LYlzORNawxyviblccXCQ/skw4HA6u/JJ7j3a9ouJL7mKKz5AUDpfLhdbWVlRWVqKsrAxTpkzhCSdUIkXM8qJUeVGpoudks1m+6cpms7BYLDwuixQ00cokpvuXlJTAbrdzJY0sWN3d3dxS/e6772LHjh08HEAutLnQBtZqtaKmpgYNDQ0AkOMpEMtdiMkEhNKFI5ZO0Ol0cDqdcDqd3JVHP5FIhKfVU60yJWJWqGgxIzcTrRkOhwPz5s0D0Bfb969//Ws0vi6JgBi/rFSq9Ho9T0yh2CoKVidr1URmzJUquvnJDGy1WmG322E2m7n5l9x6YgaKWAhQ/AFyFRvlzgkAn3jzKV35FnExI5GsH2JwpqSwkNlflLOIOImr/a1mbcx3vmT4kNWYrIQul4uXLaFacWRVFN2DonudrkPQcYPBwDN4SUFWc9mK7iYa/6SskaWbEhSojp3b7UZJSQkYY7yY7FgUhh2PiFlbYq0hshYN9vtRZmuKv9WeqzbOD3f9fND8LZZ2oHtQMroojRpK2YvlUpTZvjRuJ1IZBZExV6rErLqioiJMmjQJZWVl+OSTT1BWVgbGGLc+kdmQAh3FTBCahGnSpomenqs0JZLQ0+k0LxJIwXHixEGmZq1WC5fLherqau62oEKj0oVUeGiH7HK5+pmTCdFKQb/pb1LCCaXSJRWpwmE2m1FdXQ2Xy4UZM2agpaUFkyZNgtFohMVi4ZYJ0RKRSqVyYmxoPCtjZ8gFRNYRspBQYDRwSAGgQGeSPylrYuwlpe67XC40NTVhypQpOHjwIGKxGGw2G4LBIDo6OlQtI8cSOp2OZ2lSgU81xVVNQVFTeJULJJ0fi8X4vSA+R6yMrnwttbEsbqTE16C1gTbDVFaHnjfRFuyJgDJjW0RM4qJYqmg0yr1EZrOZj2VKfKDnThTGXKmiG95ms8HlcqG0tBTl5eUoLS1FUVER4vE4MpkMgsEgAHBfu+hLJ3OvaFamRZlcQoQoJHIXknlSXKCVu1WtVgubzYaSkhL+fmkHLnc+hUej0XCrAgAuL6V1SRkAKf5WKmHieZLCQS78srIy1NbWor6+HpMmTcoZR6To0IKpjIkRrdLiJoWULcYYT0IQd7fKRTWZTHIXPk3qNDnTtcn9aLfbAQButxuffPIJkskkz0A81pUqMdyBXK2EOL6UZWqUiONVdPHS/UBzr9rzxd9q9crULM3KeC5yIZPFU1l3UCpVo8NA9wIptDQ/iFX1qRsGbZgmYgLJmCtVNNGRmZncPRaLBR6Ph/vTvV4vGGM8LZ58tWIbC6VpEThkhhR3PmIFXprIxWwicWCStcvhcPDaOuSGkAv06CL2WhwoRo4YaIek9tyJal4eL5A8qIdXRUUFioqKuNIjjkvlAqiWJUSyVi6MpFCLu1W13Wu+DDQltIjTcb1ej6KiIlRUVCCdTvNYnGMZsvTTT6EVEVLIyJKkHN9qrmAlopKmdkxtfFPyitVq5Qu6HP+Hx2q1wmazAQDP1KM1WG3cKdsMkQdJ3FCRNYoMG6K8TCYTj7VLJpPcAk2dMsYzY65UkaWKsnpoV1FWVobW1lZUV1dDo+nr+UflEoqLi5FKpdDV1ZUTB6F0AwLgu9lIJMKrrzscDlitVq6gAcgJVKfdLQAUFxfz+lTTpk1DTU0NdDodotEoLygpLVWFJ5vN8srLNBGqFRdU25mKPwBy7gmahGUa/cigCZPcRC0tLWhpaeHucGXQN1mIAOS47cTFlaxDYo+3WCyGcDiMbDbLN110DXEjJGbtkmWL5K/sIUYLAv0YDAY0Nzejrq4OH330EbZt2wav1zu6X+A4hzLwSkpKeBFO0SpF37fSlT6Y8SRaIwdyEakxmPisgY6ZTCaUl5fz1mfd3d0TyrU0Fuh0OkyePBmzZ8/ma3FPTw8vT6RUcsgKrNfreW05rVaLcDiMYDCYkyFPrnkx40+j0aC+vh4LFiyA0+lEPB5HNBrlfXm3b98+rmtAjrlSJZr+xZokdrsdlZWVMJlM+OSTT/huhgq7UWYIVWtVC04XJ1Yq4klZg8o4DioOSiUcaGBbrVaUlpbC7XajuLgYRUVFAMCzGaS1anSgXVAikeC1wdQgOZOs1SrZq8lIWbdKMnRoDFksFlRUVKCuro5/14lEgh+nRZQWZbWaQ6IiTMoz7VKj0SjP/hO71YvuejpPjP2hOYNisgDkWLbp9XQ6HSoqKpDJZNDZ2Smr7AM8uNtiseRsaMRYJKVlWBm3mo98FqmBGKoVmlAq1Hq9noeaUA1EycBoNBq43W7U1NTwDRAZISgsR0Sr1XI3ntPp5N1HyCpFRhCyQIsWbZKd1WpFXV0dSkpKEIvFeHu6AwcOjPs1d1woVbSLpcmPtFByC1J2IO2OxHPF4HSgTxhFRUXchE/Xo9YzGo2Gx0YxxngzXTXLBwBePqGoqIjH99BrigXsqF7SUDJjJPkhdxBVWAZyWw2JKOPp6H4hpVm8h+g+k53rR4Zer0d5eTmKiopQU1PD427EyVHNigj0d+WKCq4yVk6j0fCxJVqqgENjVdnzU23Rz1c/juYQum/sdjvKy8t52yOqj3SsobRUiS5RpdX3cAwUXzPQcwZz/HBWMlICqLAoYwxWqxVOpxPhcHjcL9DjAYpn9Hq90Ol0vJVQvnji4uJitLW1weVy8bmXGt17vV5eNkGpTFG7OYrRpFp3YhFnqmE3nhlzpUrcEYkpu0CfqdZisfAq69SrTRk7RdYtrVaL0tJSTJs2DTabDeFwmLe7EPv5VVRUYPr06YjH49i3b1/eDuZarRbFxcWYMWMGt1TRTUQ3lclkgt1uh8PhQDKZ5JmEkpEhuv/IhKzX67llQXT3MMa4Yk0uXdG9S/cXxcMFg0FVX75k8FgsFjQ1NaGpqQklJSWYNGkSL6IrVkQWFRty+5GsSHFWxjjRTpieS7EcottILMNAVhR6LeX4U7NKim4rquJNc0NDQwNcLhcOHDiAf//738dk0DopzdOmTYPL5eq3oaTvUlR+1ThcALuaxUs8nu96SrcjnaPm9ievAi3mxcXFSKfTiEajMnN7EDDG4PP5sGvXLh4fRWNSrZvI1KlTsXLlStTX16OjowN79+5FOBxGKpXiSSBikU/C6XSiubkZJSUlqK2tRXV1NRwOB98UhUIh7kocz4y5UkWTolgEUKwzI1qrAPXaQ3QNir0RC0HShEjnUQyX0+nMabCbb2GlgDmXy5XjghID7EmTVga5S4YPLbhigoG4QyaU2UD0HLJUibWuRBezcvGXDA2KpaJ4Q7G0iNIFq2a9Ulqq8sXmUHiAErJA0HPEjCKlTNWsVyLiHGSxWHjWsc/nG/cT+GhBbl2yFoiLpxhecThFaLAxUwPJR/m8oSIq74wdqlVGc4RkYMijQ4WurVYr37SSMUOUndPpxNSpUzFr1iyYzWbeyo0y5tPpdD+PE3Ao4aWsrIx7hsxmM7/fstnshEgiGXOlSiypQEoL9dqjzDuyMpAJV6w/QgGtNMjJZUStFGhXTBM+NeHdu3cvnzgjkQhX5pQDnhQ1qncl7oLp2uRWUronJcOHLBvRaJTHuFBLIpKlqBSTDNLpNPfnk+wolVqcSCn4kYKWCZlqPThot+p2u2G323mGLSlO4jhVc+2Jv9UmWPr+xeKvNEaVslF7TLx+PmuIWFSWXBEGgwEVFRUwGo3w+/3HbF9PcfNJczN9FwMpz0Cu0jWQxUnN0qT2t/IcUZYDbWLV3JRmsxnl5eUwm83o6uqSlqpBEo/HedJQJBLhhoSGhgbMnz8f4XAY+/btQzgchtlsht/vR2dnJ6//ptVqUV9fn3MtSmahcVhUVIQZM2bw4sFkzRYt0BNhXh7zGUOn0/HJmVqLkHJClZSdTic8Hg/i8TgMBgNP4ySLBHBogFMxTwA56dGiUnXw4EHupotEIjyoVlm5mxQ76jlGKaGi24D8vNQSQypVhSGbzSIajSIQCMBoNHJZAODKMsWyAX27HLPZjGw2y5VgvV4Pp9PJ25s4HA5eWZlaJlB9FEDWsBoKOp0upzAkBaIC4BmxolKlVJbE71zMBKPfSkuVVqvNiVcUF3TRkim+jlgEVpnQIMZEipYMs9mMqVOnorKyEj09PRNiZzwaaLV9TbCpLReFZwC5Lh81xVVpjVRz9dH/4m/lOcrzlArV4d6/mChB59hsNtTV1SEej+PgwYPHrHyHAmMM4XCYF+Cmn6qqKpx99tk46aSTsH//fqxduxa7d++G3W5HR0cHGOtLDKBm1k6nEzNmzOCB6lT0lTbAFFstehhovIqlVcY7Y65UAYcsDuLkKsZKiS0SRKWFvnyleZ+yxpSxFDQoKROQAhhJAxaz/kRXknK3TCgD1uWup3DQokgBjUD/CsrKHbG4MxUnVbH+mahcK5uzSg6P+J1STKHYSkpMsxetBGqLKTA4RVZtgRWvk8/SqPa6aq4opbJF2cGUbah0bxwriBmZyjEl1pYayHI0mGD2wQa8q6H2mrRGiHOEeIwCp49VK+RwUGbYA31zqMPhQGVlJZLJJFecqB9vNBrN6YBCChTN7aJhRFlEVjl+B+seHg+M+V0lBqqLVicyPwPgLWyopUEqleKTHu1g4/E4t1Lt3bs3R/miIDexqS4FyVE8hWipoptAr9fzWBHR/UDvG+gLWKf3R0HUkqGjZskgpUqt6jLJnWoYUR2yeDzOFWRSuFOpFHcd0o6HAtVljZrBo9PpeOX0srIyTJ48GR6Pp5/SQeOKxjalTYvNypXWKUKpKNE9QPKmayhjp5SuRXEjRRM4Wb3Ewr1iOyoAvFmz3W5HaWkpysrKoNVqeUr3RJjUC0EkEsE777yDQCCA6upqLF26FNOnT8/JxI7H4wiHwzmbE3GDo0TpBQD615sbzPcrPle50IsbYLFPJC3q4XAY27Ztg8/nw6effppzT0ryQ98hcMhKTJ1OqNbX1KlTUVxczDP4xC4KQG4ZFHGc0vhWU4JHonCPFeNCqRLjXYBDShXtFJ1OJ4qKimA2mxEMBpFKpXjVdbPZzMsiUOmEzs7OfoIS46+AvuKBojVMVKoMBgOsVisMBgNsNltOjR0x7oquSe7JZDIpdz/DQG3AAsgp6iou2rSIixX1w+FwToyU6IISe8aJrREoG2iiDdqxQqfToaqqimfoTJkyBcXFxTnZVaJSROZ8xvpSspVJI/Q8tb9FSG5kVVYr7ipmpIkTMVnQEokEH9vkMqYNmvj6FMep0WhQXl6Oqqoq6PV6dHV1IRqNHjOZvZFIBOvXr8d7772HxsZGtLW1oampCcChrLpAIMA3MUp5qJFP0SKGq1CJ1jRKOCCFnjJD6SccDmPz5s04ePAg9u7dm1OyRZIfNa9QJpNBIBBAZ2cn9Ho9ZsyYwUNkaGzReBHPUbNAAblFf8UxPNESwMaFBkACE02AorlZdK+JO1JRSEDublUZTyHuWg73Q+9J6XZQg64tDmDJyBEnamXKvThASWkSlS+aXMX7QfwRzc9SoRoeJB+xbyZthsTxLGbdiucqr6X8Xznpqlky1R5X7mxFRZw2UWIclej+o/uCFlqlkngs3SuM9TWyj8fjCIVC8Hq96O3t5RtO+g6BXAuUGoebE0UXvviYUjlWvr9816J7jxQssqql02mEQiGEQiEEg0GuEEqGB8Uk+3w+HndH8ZViyAb9pjWd5o6B3Ph0jnhfHO4+Gy+MuVIl9mISJzva6dLAEC0P1DQ1HA7n9G6iOA+73Z7jOgLAU0FpwaXsJLEAJC0GQK7SJhYqUwY/krugtLSUp45KhobaYKH7gGpJAYcsVFTnhILN0+k0YrEYgL57gJpuk4WC3H8USE1WKrJUia85EQbtWJHJZNDd3Y2tW7eiqKgILpeLj1NKDHA4HCgpKeFjTVRaYrEYV5CVO1gl4i5VPK7mPhKVbrXHDQYDzGYzD6632+3cukZWbgotCAaDPJFl48aN+PTTT+H3+xGNRo/ZBbizsxOPP/443nrrLUyZMgULFy5ESUkJgNyaY+IcOdRxpKYcK+O1xOeJ4RhinBdlklPohtFoRFdXF959913s27cP+/btw+bNm+H1ernrUnJ4lJXpgT5rJn2vlZWVOPHEEzFp0iRoNBpYLJacUBp6jJKJKFQD6B8rC/TfhA3nnhorxlwDoOA1qpQqWiBI8RGDjGl3THUzwuEwd9NRwLvVakU2m+WtbBhjfGIVzcJimXzRFai0ZtAP0N+CRRO1x+NBd3e3jKkaIeIinEqluAINHFKqqKWQz+fDwYMHeZYnWSMp8FF08dG1gEMNQcUkBeJYXTgHQzabRW9vL2KxGJxOJ8rKyvjYLSsrg81m48V6nU4ngEPut1gsltMuRnTdqCmz+SxEahOrWiwPjV+gLzOU5gdSqsSYLI1Gw/t+9vT0YOPGjejt7cUnn3zCFaxj+b7o7e3FCy+8AK1Wi7lz58LtdmPq1Kk8a5uSiNQWRyVq1gi1/5XKU754GyC3tyeFkpCszWYzOjo6sGnTJnz44Yfwer3YvXs3T+c/luU6FJRxUAAQjUbx8ccfY8uWLZgxYwamTZuG0tJSvgaTO48UXpqjyZWvhhj/prRQSUvVEBD9tcrAQ9EyJO5IRIuSGBAnDm6l+4GO0WRLSlW+2jcajYYHNdMCrDawxVpVE0HoEwWSp5iCm0gkuFtCbMKpBu2iqVWNctE91lw6hUCMSfP7/ejq6uIF/axWK2KxGE/eEIv2Ujo2VcXP59YB1DOAlHIbDMpkFaphR+Pa7/cjFAohHo+ju7sb0WgU7e3t6O3thd/vRyQSkTF3OGQ1BoBQKIT29nbeUgQAj4WlOVltjlTKeyD5Kx9XKlbicTE8RKPR8Ng9jUaD3t5e6PV67NmzB16vF6FQCNFoVMp0mKh9Z7R+xuNxBINBeL1euFwuuN1uWCwWPl/QPSSGCyhd77QBAw61qAPAO6Io4zbHK2OuVFGLCIvFwt09YqYOgJyK61arFS6XC5FIhGcEAeAlFETEwHTy85KpX6xrRSZkKiwpTr7BYBBdXV1IJBKw2+3cXy+eRy106LhkaChjaOg3ySuRSCAQCKC3txderxf79u3j1gNlSi4pwzRIqYovVcsm+cmK6kOHMcY3F8lkEhs2bMCuXbt4OyByvzudThgMBrjdbpSXl8NisWDGjBloaGiAXq/n7lugv5lfjNUCDgWvisfFeDtAPatM3Hgxxvj94vV6+Rywa9cudHZ2IhgMYteuXfD5fIhGo7w/GbXWkBzi4MGDePbZZ+FwOFBbW4vm5mY4nU5UV1dj8uTJPIZJWQaFUFsQDxe3Kj5HvBZtxMkySvfkxx9/jHg8jp6eHh4/tXPnTvj9fr5Blgwf0RVH62goFMLGjRvR2dmJhoYGTJ8+HWVlZejs7MS+ffv4vEFlFMiqTSEaYlFnql1pt9uh1WrR3d2NHTt2wOfzoaenRypVh0O09BDk8hNrDNHf5G4g4ZDWKxYApF2LmFYvuhVFlxINeqXPmAqTRaNRBINBaLVaXspBuYCTH5/ci5KhozZQxKwvam4bDAbR29vLK62LPnvxPHrMZDJxqyUp2WqZhpLBIcqEiuyqodFoUFFRgalTp8LlcsFisaC5uZlbtUipUsZdEaLyJP4WFSrRKk3XImi+AMAta1SCg362bduGvXv3wuv1YvPmzejq6hqNr+yowufzwefzcUsQtfWx2+2or6+H0WjMsSaI4w3AgJsYNRewUqbi3xQOYDab4XA4EIvF0NXVhffffx9+vx+7du3iRSglhUOUqRgv+emnn8Ln86G4uBhmsxlFRUVcsaX4RWrGXFlZyfsH0iaK4jPpNSgOMpFIoKOjg8fBjXd5jrlSBfT3o9L/YmwNuXyUpluxwCAtpmTpElFzKSivoyw2CYAvAKIFTfneSdmT2X+FR1zEKT5K6QoeyNdOCy9ZPMgySj9kfSEGs2uWHB7R4kQTJrnIlUqwWhyNWgyFqFyJqD2XlGigz/UYCoX45Nzd3Y1IJMJdfdRgWzJ4GGO8fE0qlUIoFFK1HIqyJssykKtcqT1G1xFRKy5LkJspEolwt+5EcBVNRNTW0Ewmg1gsBq1Wi56eHuzYsQOxWAydnZ05CSE0fsm6LdavI28ChQj4fD5ks1l0dnaivb0dgUBgQiSMjAulivynpBSJg4zSNilAVgwwFWM2xAJ/apkC4o5YTKcX696IpmvaJSUSCXi9Xu43VmrpZMok16S0VA0dtUBx0QdPmX60MJKbiTJCyWKpdl1SkCn702QycZ8/xQWJrWokhYOK8dJmw263w2w2IxaL8clRXIDJqixarsTgdrXigUD/VjeMMR4sq9Fo0NnZid27dyMQCODDDz/Epk2b+AIsFg2W5EfNhdfd3Y0PPvgAdrsdZWVlOP7447llmOShdBXR+WphEvnGsdr7EMvrAOC9PNvb27Fz507EYjGeEZzv/UuGh1o5hEQige7ubni9Xr5GUm1JGoc0V4uNy6meZDweh9ls5oVDu7q6sHnzZoTDYbzzzjtYv349tzCP95CNcaFUHW5nmkql+ESsDD5XNm6l85RKlWjREl0KYq0jsW4NQXFesVisX/otvQ419aVMB8nQUU50opuHLFW02xFdu2ISQ77BRtemwo/UG1BssQLI3n+FRhxXwKHvX7Toqn33oqVaHI9qbkBlv056rujuTaVS8Pv9vJH6tm3bZCr9MFDOjVRs12q1IhgM9rNUKed0MdYRGJlyo9w8k8UjGo3C5/OpFvVUvn/J8FF+j1QmAegrwbFt2zY4HA6UlpZi8uTJfNyTS54sVeQJymazPHPTZDLxTGOv14v29nYcPHiQX3+8M+ZKldLtJy6Q5PoTU+vp+TQpioHHorIE5ApeWRFWtHaRa0JsYSG6lsLhMPftioHQwCH3H11LLsyFgRZFk8nEXauiyy9fMUmlUivKmxZ4rVYLp9OJRCLBs9LouVJ+hYOKLhqNxn6ZmmqLrtr3L1ZTFs8FkKNQKRdM8blKBV0ydJSWCfpbWfhVrf2Q8lxl6AUxGAuEWqwWtcs5nNU53+tKCotYPqGkpATTpk3jcdBU/oYxBr/fzz1R5H4XK/RTzOxEa3o95koVgH4KFWXXUT2iaDSaY6kCDnWmp95iFGxOVg2lgkXKk+jyI+GTG5E6sZMWTZO21+vlcQP0uuKOmCweZPqWjByNpq9YnN1uh81m44qVWKmbZE73hNKlIE7iYm0Ug8GAiooKmEwmRKNRHDhwoJ9cJUNDzb1CLjYA3HVPx/Jlyaot2moWaLWYHeX5ottJjO0Sj4uuRsnAqFknyE0PHArjUIZaKDe5SvftQK8B5N5bdJ64SQ6Hw+jp6YHf70cwGFS9hpTv6KA29sR6YbW1tTj55JPhcDjg9/u5IpVIJLB///6ceySVSsFkMvHYWavVikwmM+HW1TFTqvKZ/UVISRIDyGkRJUVKdAUqd0Ji2rX4t9KyQQOUrkeB53TtRCLBi5YpJ2Bl0LR0/xUGMbicrFT53HSiG4hQuxfElF6z2ZzTxFtSeETroNrYyYdSvgMttAMlKSjjs/K9vnQLDR9RQaK5T2k5VFOU6W/lmFXKQU22yvk3nU4jGo0iGo3KEhjjALF2mM1mQ3FxMS8GLDazJ6uUGAdJfX0p7k5sLzdRGBOlSqPRcLOezWbrF4ukdBPQbkisZUFuN1J2xN5vdFxUcsi9J1qrgEPKFlm3YrEYL6Uvvidy/9GgVRYZpdiqiST88YxW29dQ2+l0wmq1AgDP/KTJWLRWiI+LiBO8WPuopKQEZrMZ+/fvl4rwKEE7Up1Ox933hyu8SPIii6QYL6mMp1RzIdK9IPbwo5hIyuBVi9+TjAxqGybGOgL5+7op5/h8KMe0sgI/Y31tq/x+P3w+n+znd4RRxj0CgNlsRnl5OcrKymC1WnmNOIrBozlAOXbF+GhK/AIw4Ypqj4lSpdVqYbVaYbfb4XQ6+ZemNMUrg8spHoaeSxYlsWKrOODE51IKvVihGzi0m6bfjDHu/1VqyLFYjLuQxNcg19REE/54RqfTwW63w+PxcJ+6slcfoJ6OrZb9SYss+fSrqqoQj8exa9cuWbC1AKhNrrQR0mg0iMfjXLE6XCNrcdyTpYuuLxYIVFOGRZcfFfmNRCKqlox8C75kaJBiEwgEAABWqxUWiyXHCqGsA3i4+CmldUsM71BaICORCLq6ungVfMmRRTl+rFYrpkyZgqqqKjgcDgSDQR6+Q4U+RaMEjWUa27T22u12HoozkdbVMbNUKV079DhwaIEUNVmlLx045MMX42GUcRdqQfCidqwMlCVNWbl4iztm5Q5LjPGRFAbREkmJACMt1ineV+T2I+uidAGNDuKYEhdFOjbQmMl3TC3A/XCvq4yxFJ8nGTkUoqFmiRwofmowViqlgqW8Pm2SxVhaQo7rIw8pQtSDkTZW+cahMqxD3ECJ+sFEYUzdf3a7nTdeBHIHjJj5RS0w9Ho97HY7HA4HMpkMgsEgT7MMBAI8XoaCJUl4JFBSlMi6RC47NWsHBbYSer2eV1lXKmXi4k83gQx+HR60azGZTLDb7by/mDhpihlhwCFXr9rkLcqKyjGQr1+8B6kmlqhMywm5MDDGeAN0ADnW3sHEzIjlFQbKBlSeJ8ZIUjYSKeiSwkJxTdTx4nAbzMFuQJWxkWqxcclkEsFgEMFgUJZSGAeYTCZ4PB6UlJTA4XDkGE1oLItjmuZkZbgNBahPtLCaMXP/5VOqCIPBALPZzJUq8tXb7XYUFxfnuARoMSWNmAQk7orFdGpSqsTsPzEGKx6P5zRTpSA6ZXA83Rzk+qOgOrEkhCQ/yiBVIDcd1+FwwOPxIJFIwOfz9at6rQxez1dmQXQlAX33lt1uB2MMdrsdFouFK9BiuyPxXMnwIaUqFAr125AoXfzK8wD1JBS1MAHxOF0f6JugaXxOtF3vRIDGViwWg8lk4psX8bga+ZRqtesDyPEUKJUqamGVSCQGFaslGT0MBgOKiopQWlqak2QkbnRE1JK8aF0FMOE2QmP2bmnxVCpUSqWFgk7JciRmAdJEzBjjSpeyds3hFkWxeCRpxmItG9GNQNljYm85es90LWXwvFyQBw+ZfMnsK8pyMHEYA11XudiK/nzRwigZPZSJJPRYvu9dqYApFWXlc5VjTam85YvDkowccZ4c6nmHU34Gcv+J64Nag3S5KRofiHIT123l34RoZZ5oyvGYWqpsNhtv7SJmdZCVKRqNIh6Pw+v14uDBg7xFiU6nQyaT4cXeUqkUrFYrtyaJwYzKuCdx1yMKjsrmm0wm3hKHBC72lQoEArBYLLBarf0aKBuNRng8HpSVlfFidLLY4OERF1qyYDqdzpzaYqLbT0wgGMj1Q3+LCpnSumGxWOB2u3PuOTkJD53BWPaUkyM9Ty0mUszyyxeQLo5ttYmXHjOZTHA4HEin0zKZZJRQls8g1CyHaoqREqVFSrkAixvdWCzGGz3H4/F+15KK1ZElm83ytkFkqCBjBf2I6zT9LYbpiB0vJtqYHbOYKrEXm+jCowmV6lnEYjEEg0F4vV7E43GuiFFZfBpEFosFFouFV8lWxsYoA1tph0zuQuqqbbPZkE6n0d3dnWMZo3Y11HtIvFnomgaDAU6nE0VFRWCMIRgMSqVqANQsCyaTCTabDRaLJceKSQNP2ZZEDeVx+l907ZHsacHNZrMIhUKj8CklaihdOvQYWZ2B3LgopUVDVOKUFmmlgk2FfePx+IRzJUwURKVKqTCJmV7i4wNZqZSWaVHJUlo2kskk7wsnmyiPPVSiKJFI8PEnlkcRf4BDYTtizCTNzdlsdsJZq8a0+KfaQCPIR0+1LWgw0QBijPHAZeBQkLnYCVttpwMcam9Bv2nBTiaT0Ol0PO1bLBRJwfKH+0yiK2ki3QjjAVK2xVg7tdg0cTJWW0iVqO2MxXvBbDZzK6jc1Q6ffN+dWjzFYK1Z+R4fSEZqrkHp4h19Btrs5FOi8ilW+eQ7kAtJxrGOH5Sufhr7tEESSxCR90ncMFOFdbGJ+kRhzCxV4pcJ9E+Xp47joVAIfr+fD5ze3l5EIhG+GFL8EhX2y1dFnbRhUpLEfkJkruzt7YVer4fP5+O7HnJF2e122O12VWVJXKCptUo4HJZK1RDR6XQoLi5GbW0tiouLYbPZAKinUSsnV/pbdAkB/Svp0/Mpk5MK1ZnNZni93pzrS/mNDDGWScyQzTdJillC4nExm1a5SVJbyJWPkaWKOiNIuRYecdEUF0/RbU+/xTFL/w9GJkpLFT2m7LghGVtIJuSlETPigb452WAwqNYcpDkglUohGAwimUxOuJCMMbNUiZop0H/hTCQSCAQCCAQC3MXHWF+ht0gkAr1ej6KiIu4qjMfjPIOLFB9x8JH5kSxUVDWdTNZiRWBq8JhKpaDX6+F0OuFwOHgRMqXbj35TViF15JaT99DQaDS8rYHb7c6pgK+GUqFSU7yUx0VXIiVLkPtP6bufSAN5vKK22NIGRxw7yjg4ely8jihjMQZT6QpUQuNSTIyRFBZxXsznjlXKUPn4cOZLut5EtGgcrYjzLJDbCo6OKbubKJVhKtZM6/BEkuuYFv8Ue/uIBTQpgLikpAQWiwW1tbVoaGhAPB7PSbUkhYhKIJBmrObyAw5ZLcSeQ+QudLvdqKurg8vlgtfrhcvlQiqVQkVFBaqrq+FwOFBVVQW73c7LMYjXV5o4JUOHKu273W44HA5eG2wwk2W+CVlUpgkayGSGpjg62QewsOj1ephMphzXudqCKio6h3Pz5ftfGW9FMgYOWZDJxSsZHZSbTTWXu6hwDSYuMt+maqDNlmRsoTCdeDwOu93OS+SIBozu7m74/X4YjUYUFxfzljR0T1BZDjH2eaIwZkqVwWDgGXSkWNEXqNVq4fF4UFRUhEwmA7vdjurqamQyGTgcDthsNgSDQWzatAl79+7lfZ+UdYyUr0m/Y7FYP6WouroaS5cuxfTp09HR0YFPPvkE8XgctbW1mDp1KiwWCxwOB+x2OwDkWDvyuTkm0o0wHiD3X319Pb8votFoTruTgVCzMtGiLTb0pfg5KqNRXl7O3bZSZoXDaDTC7XbzxANx9wqo1xZTuvlEeeSLmxEXcvqbXLz0PoqLi3k/MTUZSwvlyBA3lKIypFasl54P9FeORPe9qBwPpFhJeY0vqBir3+/n4588Q9lsFsFgELt378aGDRtQUlKCRYsWYfLkyQAOjb1EIsELe4uhOhOBMa1TRTFVyuJgFLBsNpsBgGfzMcbgdrvhcrng8/nQ2dmJ3t5ebsEarD9d6csF+gRXXV2NadOmwWaz8Tituro6TJ8+PceKkc1meXNl5YQgrVXDh2KcnE4nzxgRffNDQW1RpsfFxVmr7WvcnE6npSJcYKgqMrnDgf4tS5TFP5XWDaC/wqPmFlQ+T3wteh9URDgfMklh+KiFRSjduwMhPkd5rcOdB0DOt+MIMfuPsvdEd59Op0MoFMLBgwe50mwymfj59LxkMjkh5+Qxdf+Jyoc4OOiLJOXHarWiqqqK/22z2aDVajFlyhSkUimUlZXBZrMhEAjk7JDEgSYuzsqaVQAwe/ZsuN1uvruuqalBKpVCSUkJD7QTgyHV0n2BQ/0I5SAfOqRMWywW3tNR9LeLO2F6/kA1jJQLpFj8kQLVyXpBwZOSwkGZnA6Hg8tU7NUJHCr+OZAVSlkgWG0jI6JcaGmDJpZCkRQWsWo9gH7zZD7Fl44pFWelO1cpZ6XSJgPUxwY1N200GsWBAweQSCRQVFTUr8xGNpuF3+/HwYMHAQA9PT3o7e3l5XRo/ZyoGZ1jGqhuNBpz0tjJLUixTuTOc7vdqKio4C42nU4Hl8uFeDyOkpISXmYhmUzmFBejRZexvjYZ1BdKWcmdMYaKigpUVlbyeldlZWU575eC2tWKy4lBs+Q/FoPwJYODMjOpX1QwGMyxBopK+EDfrZr1Q1TGyP0HgA9kSl6QMhseoqJL8jKbzfB4PHC73dz6SAVdxckyXwkUIHeTRZZL8bj42srCv3S+1WrlsR0Wi+UIfBvHFqT4klWSNsTioiha8QeyYKkdU1OoxL+V1mfJkUM0UNDYCwQC2Lp1KxwOB0pLS5FIJGCz2bgcM5kMOjs7sX37doTDYezduxfl5eVwOp2wWCwwmUw8m1+tSv54Z0zrVKlZqpQxFMChQFPRTUi7YLfbjUwmA5vNllP9XKlUxeNxxONxrvgolari4mKYTCauuFHqNZkx6blqi7Ty/U+0wLqxRpxwydJHj4nft5iGPdzXIMRrSUV4dFDWeMtnWVQqUsrkD+WPEnHxpfPFxVVsH0VuZenqKyzihjefO3ew7rx8z1OzVEkZjj/S6TTC4TCAPquVWhY+lUqgWpSxWIyH+4jWr4moKI9ZmxqTyZTT6kW526C2MPQ4BYWTCyedTsNkMqGoqAjAIUGkUikuSHo+gH4VXmnHTFYtq9UKvV7PA1xDoVC/HTRZwoBDg18MgBZ3ZJLBodH0lVEgBdlut/PUW7IO0vMGKhwpLsRqbiLlOeJgJSWakhEMBgOPmZMMDjWZmM1muN1uFBcXw+FwwGg05iy6QK6yS3IXryeOYXGsiQHQSheE8r1QIeFEIgGz2YyysjJEo1GEQiFVy7Nk6FBXCtqY0jypDGBXuvXUxqhyg03XUFqj6HF6bbq/JEceUY6JRAI+nw+xWAyBQACxWAzxeJzHVopxUqlUCj09Pdi7dy/S6TSmTJnCj4uW54nEmLapoVgLccDQIppIJBAOh5FOp3nrGVr8KOiVgk8pk9BgMCAejyMYDPLAY1LCqOWMqFSReTGdTvPBmc32tb/x+/1IpVI5mXzKuCx6LF/1WMnh0Wg0sNvtqKqqgsvl4qUUKJ4qlUrllNEAkCMDETGObiDFiwYrvT4NdJvNBpfLxXtISqVq8KjFQpnNZpSWlqKkpAQul4v38kokEv0WRhHlzpYWSronaDMkFvQVN2ZKxYpcyLFYDBaLBZWVlQiHwzwZhd4H/Z5ok/h4gPqnWiyWHAWXXIOiQiX+rYy5IpQKlWjBUt47BoMBZrOZb4wlRw61TUwikUBPTw/0ej28Xi+i0WhO317RI5BMJtHZ2cl7ANO6TTrBRKw/NqZ3oFIZAcB3OeIEqYyVEBUXcVIlgYnlGcSWNPQ6YssKcfDTe6LXU5ZNyGf5EN+PbFMzdGhSVGsFNFQTv7KuyUDnKidnUtrJRSQZGeT+oyB1IDf7b7DjQ83yKKK0fijPFS0ctPin0+l+Vg2pUA3MYL4fNcVH/D2cayqvrfa4stahlOORQy0ekjatYrV7Nbc+Y4wbTShbULzuRGRMlKpMJoNgMIiuri4+sVkslpygZDL/qVVOJrM/ZXBRULter0c8HkcoFOLWJ6XiRXFSVLsoFovxyumUcq3cAYvuCXJRiFYrcmUWFRWhurqat7qRpujDo9Fo4HA4UF1dDbfbDavV2i/rTxl/l2/SFI+Lz1ErIKd0IwGAzWZDWVkZwuEwotEojwuQDA+qL0dBqOJmKV+MG5CbzUUWZnqcNkJiALsYHylO3jQ+KT5Sr9fD7XZjypQp8Pl86OnpQXd39xH5LiY6h7PkkWWX5mTlWMynbKldS7R0iY+JbkARk8kEp9OJbDarKs+JujhPBA634UkkEohEIgiHwzkZwORl0mq1fK0sKiri94/y+hOJMVGqstkswuEwenp6eH83+oIp/XKgQThQaxLRbSgOZpPJxNuQiK47yhqkOlRGo5EvwuL7EK0ZolmSzrHZbHA6naioqIBer8eePXukUjUIyP1XWVnJsz/UTL6iG0DkcIOO7pVsNpvjhhB3V/Qcq9WK4uJiGAwGdHZ2FviTHntYrVaeVUu138TEAyJfKyGlkkSbGjqX5EnjmRZ2Oo/mEtFa7Xa7UVVVBbPZjJ07dx75L+UohUI3UqlUjldAbTOTTzFTWrWUm2lRQROvaTAYYLfbkU6nZW/HI8zhlKpMJoNoNIpIJMLbylEzZcq2plCb6urqHKUqX4zkeGfMlKpYLIZgMAiv14vu7m50dHTwiU+cOJUuGuWAERdINXdivkGcb+CpxXqonSvujgOBABKJBLq7u3nNjUgkMuFSQccK2rlQkKtoPVKT01AGGV1PGSirVNJJ6TKbzYjH41IhHiQDWRyobIpY/FOcKNXGsvi3msVCHJ/KCX0w94XRaITVakU0Gs1R7IZyjWMV5TxKm0wqjaO07I/k2od7rvga9B7ofYhIeY4+A33Hyrgo0etDhgwqVZRMJo+KNXNMlKpkMok9e/agt7cXe/bsQTKZxKRJk1BTU4MTTzyRZ+eIgevKTtdkzqdFk8ookCZME6YyC5DOo7gZskyJSpJGc6helmiREt1Qdrsder0efr8fr7/+Orq7u9He3o5NmzbB5/Ohu7sbsVjsSH+1Ew6Npq/PI2WIkQuXrBpqNaeU5wO5FkxxsVTG3il3ulQdn1ogVVdXw2q1Yvfu3UfoG5i4KN2sSoxGI1wuF9xuN4D+jVbVLJFKRIuTeA16XbI4E/mUNrKOud1uTJo0CQaDgdfOUcaDSAYHdT+wWq1wuVw8A0+UgZryLDIYBUy8hjIEgDEGq9WK0tJSnrCk3FBLxg4KsYnH43wtNxgMcDqdvIZVJBJBKBTiFqvBGkDGK2OiVKXTaXR1daGrqwvd3d3IZDIoKSnB3LlzMX/+fB7bJFosyHolFvYkqxZNvMAhK5I4CJVmY6qFJF5XVMJI8aIFgK4tKmYUWN3b24stW7Zg27Zt6OzsxJYtW3hld8nh0WgOZYLa7XZotVq+YxHN/2o7mMEONmV8HMmc7i9SyE0mEzweDxhjOW0TJAOTT7GiRc5ut/OSJmpWJ7pGPveOWMZELTSA/la7H5SKH7l4k8lkPxnLMZsftbgocrvZ7XZYrVZuKRpua6l8ryXKTxmWAfQp706nE4wx1aboUq5jB2VwUzkimoupfI1Op4Pf70cwGOR9XvPFXU4Uxjz/lKw+Yo0ienwo5mRxp6k2AQx0jpqbTxlLRZBVS5npJ15DDuKhIWbdkeVBXECVLruhcLhzSGmm2Bux3s1QXBKSPmhDIiquYvaPWtsSZcwMkBu4Lm54xPGldBeK11Van0RFwGq1wmKxSBfvEFGOBVKqnE5nTjeCgebAfHFTh3vdgeRLxaGTyWS/VlNy/I4tNP5pDiBozhfHtmhEUatrNlEYc6XKYrGgtrYWM2bMQF1dHe9mT645xli/popqAWzihC1ateiYmttH+bioHdOEq4zvymQy3B9ss9lgsVj4Dm0iNn8cD4g73mQyiWQy2W+3IirXyntB/E3H1eJzxOfRY2SeBvp2vMXFxchkMqo7XsnhIVlSLFUymUQsFssJUlfKQEwgoHEoJqyQLCi7jFCOX3FeEF9LLI3icDjgcDiQyWRgtVpVP8NgNmTHGmqxqXa7HTU1NXC73fB4PHyupHky36ZETRmmv/O5Ygea761WK8rKymAymWC32+UcPE5grK/dXDQa5VYoAHxtt1qt3N1HWb7KdZw2aBNJpmOuVFGac1lZGdxuN3fLie49Na1VbcApd7BKQRxuJ0UCVU7ytOMWJ2vRuqK0VkkGj0bTF79GhSGVKfTi8+i32qKXb9AN9Dgt4KS8kUtXrV6WZHDQhEnfIZn/lWOUFmk1a7RynNFxtfsC6K9kK5U38fmUBUzFggdCWioHhkoZUCmUfIH/Q41tUipX4jXV7iGKj6PCkRNpAT7aEbNClbHJpDDR89Q2XROx3uOYrxw6nQ5Wq5WbkKnNDDW8HSgDT21nKh7PZz48nLKlZtkSn0PBzdFoFJlMhqdpx+Pxw07Ukj5IaRZ77ikn5XxK9EAWq3yvpfxfXKhJqaLqzEajUSrIw4Qq09tsNl7hmuIelaUTlFmeygQDcfMCICeLSGntUrrrSaaE+HrKUihU506ZcSoVqlyUYzCf+09t7h2qYjWQ+1A5T4glFWQs5PhCmf0njn1lUVDg0BinJCWpVA3nDej1KC4uRmVlJSwWC3cVRKPRHNeA+MWLGWFKt4I46MiNqDagRSuU0r0nWsbouGipSqVSvBZWOp3G5MmTYbfbkc1m8d577x25L28CQ2UUyH0qulnzLbTKHSo9R0m+BZegXRINeKqtQ7EZlCghGTpGo5G3pSkqKuIxahSoKio3NIbFnas4XknJFRdsMfZCdA/T8Xzjne4JcjGQ+8/j8SCRSMDv9/PeoKIVUypWfah9D1SHrLS0FE6nMyczT0zqEa8hyjzfa+TzIgCH5AscmicsFgtvL0VtcpQMdgMmKSxiUVhRsUqlUkgkEjn9dGkupsrqlKU/0ebiMVeqKD7JYrHAYDAgk8nkfNFivAShHCBKC5N4nvL5+VAz9SuvJQ566kmXzfY1Y2aM5QTaSwZGo9H0C/QfSE6inz3f9YaC8vUoBkSZDSoZGjqdjivLJpMpx32nRIybA9DPukTjTizeebg2JGoxOvRaAHJifagIIe2KldeYaDvkIw1lcSldqQPNvYezWB3O4qymHNE9R31gBzpfKlRHHtq8Kl3CovVafK7apnoijcUxV6pEKLBNnGxFi5S4+CpddoD6ZKgmFFEJoxpWYoCc0nevXBTErCaKwVIrPCfJj9FohN1uh81mg9ls7ndcuRsVH1daogiStVo9KvGaatcTLZO043U4HLyh90hSxI92xO/VYDDA5XLB4/Go1oECkKO0in+LdefESvhkQRKrpYsNlUWLtJo1EzikTImWEorFAfor63IBPjxiuxHl3Hc4xUk5Z6udJ8pAaeESr0EldcjiTPFd4uZcMn5QWqbz3SvinDyRGBdagNLPSpotfaHiRCpWZ1bGVygRBaJ0I4kKEwXUim4FUemimlXkEgAOmTUpG5ACrSfaDTBWmEwmXkaDLHzKWBa1Xa1ozVDbEStduuL16G+l9UIsMkoZJ1TmgxQqOTn3R81dQxmU1O9P6ToHcmvDiW5fpRuP5oN4PA4gN6aKXAWiBYuuIb4nGrNqrkKz2QyHw8HfE5HPbSzJhcpT2Gw2XixZGZemtqlReh3UvuvDnS+6ZjOZDBKJBFKpFC8sqdfrEQqF5LgdY/JVSKd5Vi2xQC3UZyIx5hqAcsETfystUoSa1SnfNfMJRHmeuKNWO6b8Ub7PodbVOtZRuv+UDKQsq8lI7fr0XPE85d9q16CFWmy/IRkc9L2RKyZffMtALkEgtx+guOFRyj7f73yIr01K3VBDBY4lBrIiKGv1KY8PJN9CId4P5DWgZBMZinHkUZO5OHbF5+ULDZjoY3BcWKrIfEu1bQwGA8/IIWuFGExObgBlUUG1CVnNXaQMmBWfS7thskKJk61o4iYFityV6XSap+Nbrdac9y/pD6XeUwxEOp2GVqvNKamgRIy9AXJr1Sj/FmPy6LeoaInBkfTaYoE6q9XKS3wEg8GCf/6jATG+ib57g8EAj8eD8vJyuN1uPp5FV50yE5AQ3XOiJZnGvjKLSG2zo3YNUu40Gg2/5yjeS4kcr4cQx444h5ISZTabeaanwWDoV/tPvIbyOuJjA2186Xe+H/E6BoMBpaWlmD59OkKhEHbu3IlIJNLvdaSMRwe1+yUej8Pv90Ov1/N6gBSL53K5kMlk+LpKoRcmkwmJRIJbqcU2VROBMVeqyNVHShUpJslkkpvuxS9UdNGpLcD5/O6iWZrceuJzxIWBguVpoJJGLe5q6W9yDdIkQ3FCsVhMtY+RpA+xfAHFywCHCjyKMlTGwihlqkStGrcyyFmpRItKOgDYbDZe0LCrq2vUvoeJjOiepx+TycTdf0VFRf2C1cUNEG2Q6DtXZt2K1iTgkAJMr632oyZjsp4NRqkC1AtdHqsoFRHROkVKld1u58+h7zufdVdNgRKfqxZDqVZ3TE2p0uv1KCsrw8yZM+H1etHV1YWOjo6894WksKh5kJLJJPx+P7RaLaLRKF8rLRYLnE5nThV82mhTSRtqb5Nvkz1eGXOlKp1OIxQKobe3F4lEAiaTiS9utNhRujtBghEHYD5Ts3JXC6j7acUAWZo4xBgbpaJG2nMqlUIoFEIikUAoFJpwWvVYIZrpxaq5JGuleViUV75JWFmSgV5HueACuYVexbZD9D9lsMXjcen+GwKZTAbxeByRSITXDqJEECA3znEgi5OaUkXn0HXEDY6oPNPzxJYXFFMVj8eRSCQQDof53xTHKSLHcB9K5VJ024tjR/kcAIMeN2pjW4yBE/8XUZbPEEtwmEwmVZeklOvoovyOk8kkotEozGZzTpcEmv+VMVUkc9HYoqxlNd4Zc6XK5/PhpZdewsaNG1FcXIzp06fD6XSiqKgIFRUVMJvNKCoqgtvt7rezVEvJVFqn1KwZ4iQsDmLxesrA10wmg0gkgmg0ikQigY6ODgQCAQSDQezatQterxcdHR04cOAAwuHwhLsRjjQWiwWVlZW8mr7L5eITNblrxOwQZZV7Qm0yP9xulCxUZFmhzvbFxcUoKiqCwWDApEmTkEwm0dHRgd27d4/ulzGBUX7PPp8P7733Hvbs2YOZM2fyZtmiguxwOGCxWACgnyWaIOuVuKFKJpM5bWqAQ7tbZQFZsbhgJBJBKBRCMpnEwYMH0dHRAZ/Ph02bNmHv3r282bPyMx3r41fNdWcwGOBwOHiQP1WoJyWWlGC1gr5qrvp8r0fPUypcdN1kMol4PM43RlT002azwe12I5VKyUKgR5B8c7Pf78f27dvhdrsxf/58bnUymUyw2WwIhUKqmaPpdBqBQAB+vx+xWGxCjcUxV6oCgQDeeecdaDQaVFZWoqOjAx6PB3V1dTw9u6ioCE6nk5sJlTETIsp0bPFvQpzgKWZDGZclugTFyTkWiyEcDuPTTz/FgQMH0N3djXfffRcHDx5EKpXixUsl+dFo+lrClJSUcEXGbrfzwaVmtRKDYfNl9om7WlF+Sveu0l1FzXXdbjccDgd3I1CVbTk5q6Nc9IC+8bx582ZeqqCuro7XcrPZbFzJcrvdea3LNObIIk3ypmKB9DwAvAm2ODfQpEyuxXg8jmg0inA4jJ07d2LLli0IBALYuXMn2tvb+70HsTCpJNf6QCULqGK+WEqG7gfR8kzjWNzIiH8rX0d5T4hzNCnQWq0W8XicX4csZ4wxXgolFovlTZSQjA7KWDrGGAKBAOLxOJxOJ7xeL5c5la1RK7RM4SChUAjBYJDLeqIw5koVcEjhicfjCAQC0Gg0sNls2L9/P/x+P/etipkmatYLNfdPPkRXEN0AynRt8gmTi8Dr9cLn8yEajaKjowPd3d3wer2IxWI5FaMlA0Pu03A4DJPJhGAwCK/XC71ez10yQK7rDujfuVxUrJWNr5XWBuXumP5OJBKIx+M5Azkej6O9vR3d3d3w+Xz9rCOSQyi/Z6orpdVq4fV6sX//foTD4ZwikYFAAG63O6ekQr4xLI5TsXsC/S26/8Qig1SZOZPJoKenB11dXYhGo+js7ITP5+OWq4GsmZI+lPKl7zYQCGD//v2IxWI57kBScimWTezvRtc7nKVKdA3TMY1Gw2uWxWIxXjKBNrHJZBLt7e3o7OxEb28vX4yVsVRStqOLct4lN57oytNoNKruPzpHrRL7RGFcKFVEKBTCjh07YDQasWPHDnz44YfQ6/V8Z6TT6bjrgOqRWCwW6PV6/ptioGjCFmOjaHBTDIVYayqbzXLLRCQSgc/n40F2Pp+PF4GkwDnSwBOJBHw+HxKJRN7JQtKfQCCAHTt2oL29Hb29vejo6OCDTCzGSoOSFkjlAKSFVcwkJJkr46gIcXL1+/3w+/1cvvF4HMlkEj09PfD7/YjH4+jt7T1i38tEQi3OJZFIwOv1QqfTIZFI4MCBAzlxc3q9Hi6Xi1utxDFMSpfJZOIWQ5qQNRoNrFYrLBYLGGOIRqOIx+NIpVJ8LMbjcT5uY7EYgsEgl2s0GkU6nUYwGEQoFOLnKZlIk/dooybfZDKJ3t5e6HQ6vPPOO/D7/bBarSguLkZpaSmvU+ZyuWA0GuF2u3kRWLHkTL5xSb9pARbnaMoGI6+B1+tFKpWC1+tFT08PEokEDh48iM7OTsTjcXR0dPDrKYPdJYWFvmOlhZcUInLXhsPhnFqANpstx9JJSWKxWAyBQABer5cHuE8UxpVSlUgk0NnZmfe4TqeDx+OBy+WCyWRCSUkJHA4HdxPSwkq7I5qgxUwzxhgvFEeuAfHvdDoNv9+Pzs5OJBIJdHV1ob29fcJlIIx3yNpnNpu5MkMVrqnCOskllUohEolw148y2BwAzxqlASsGn6sVhqTzyIqRSCTQ3d2Nnp4epNNpRCIRXnRSkh/lZEcLHgAEg0F8+umnOce1Wi0cDgesVmvOGDYajXxc2+12lJaW5pRWAQCPx4OioiLuViB3fHt7OwKBAMLhMNrb2xGJRBCJRLiVWzJ8lPIlCzPQp2B5vV4eg1hTU8NjJcvKymA2m7n1kOZgcg+queZE5Yfi58Q5OplMIhgM8kQDUqT279+PPXv2IB6Po6enB729vf3et6iwSUYHte9YtFSR5Yni4JQJBaL8KZQmGo1OuCz6CZvWlG/QDGQpGkgwasfkzubIU0h3zGDPUXMLSLmPHoNZ4AYji8O5c6QMRx+lnEbzOz/cteV8LRkPaJi8CyUSiUQikUhGzIS1VEkkEolEIpGMJ6RSJZFIJBKJRFIApFIlkUgkEolEUgCkUiWRSCQSiURSAKRSJZFIJBKJRFIApFIlkUgkEolEUgCkUiWRSCQSiURSAKRSJZFIJBKJRFIApFIlkUgkEolEUgCkUiWRSCQSiURSAKRSJZFIJBKJRFIApFIlkUgkEolEUgCkUiWRSCQSiURSAKRSJZFIJBKJRFIApFIlkUgkEolEUgDGhVLV1taGUCikemz+/Pl45ZVXDnuN5557DvPmzYPJZMINN9yQc+zuu+9GU1MTmpub0dLSgoceeijn+O23346pU6di6tSpuPnmm/njP/nJT9DW1sZ/nE4nvvnNb/LjmzZtwmmnnYbZs2dj9uzZePLJJwf/oY8hCiHfgWT41FNPoaWlBW1tbWhoaMDNN98MxhgAIBaL4YorrkBTUxOamppw7rnnoru7GwCQzWbxzW9+Ew0NDWhpacHixYuxc+dOAMCePXug0+ly5L9r164RfhNHL4WQ8W9/+1s0Nzejra0NTU1NuPvuu/mxgeQfiURw5ZVXorm5GbNmzcJ3v/tdLv+BZAwAe/fuxTnnnIOZM2eioaEBv/71r4f5DRzdFEK+RFdXF8rLy3H++efzxx544AG4XC4+1hYvXjyoYwDw6quvYsGCBWhsbERDQwPWr18PAHj33Xdx4oknwmq15ryW5PCM5ZwN5JfpQGN93MDGOfPmzWPr1q077PO2b9/ONmzYwG6++WZ2/fXX5xxbu3Yt8/v9jDHG9u7dy4qLi9nOnTsZY4y9+uqrrKGhgYXDYRaPx9m8efPYs88+2+/68XiceTwe9t577zHGGItEIqyuro699tprjDHG0uk06+rqGsEnPTYZrHwHkmEwGGSZTIYxxlgikWALFixgTz75JGOMsbvuuotdeOGFLJvNMsYYu+qqq9i3v/1txhhjTz31FDvuuONYMplkjDH24x//mF188cWMMcZ2797NXC5XwT7nscxgZUzyZYyxQCDAJk+ezD744APG2MDy/6//+i92+eWXs2w2y5LJJFu2bBn7v//7P8bYwDLOZrNs7ty5/LmMMdbR0THyD3yMMVj5Eueffz5btWoVO++88/hjq1evzvlfZKBjBw4cYDU1NWzLli2Msb552ufzMcYY27dvH3v77bfZvffem/d8ydAZ7Tl7IJkONNbHC+PCUqXRaOD3+wEAb775Jt+pXnnllUin04O6xowZM9Da2gq9Xt/v2JIlS+ByuQAAkydPRkVFBfbt2wcAeOyxx3D55ZfDZrPBZDJh1apV+Mtf/tLvGmvWrMHkyZMxb948AMAjjzyChQsX4uSTTwYA6HQ6lJaWDvmzHwsUQr4DydDhcECr7buV4/E4EokENBoNf+1oNIpUKoV0Oo1wOIxJkybxY4lEAvF4HIwxBINBfkwyNAohY5Iv0LcjTaVS/P+B5P/RRx9h2bJl0Gg0MBgMOOOMM/Dggw/y95VPxv/85z9hMplw8cUX89cpLy8f/pdwFFMI+QLAH//4R9TV1eGUU04pyPv6f//v/+HSSy/F7NmzAQAmkwlutxsAMGnSJBx33HEwmUwFea1jibGcsweS6UBjfbwwLpQqIplM4pJLLsGdd96Jjz/+GF/4whfw0Ucf8eP33nsvfvjDH47oNdauXQufz4cFCxYA6DP/19TU8OO1tbXYu3dvv/P++Mc/4stf/jL/f8uWLTCZTDj77LPR1taGK664gruVJOoUSr5KGQJ9A7+5uRllZWU4/fTTcd555wEArrnmGjgcDpSVlaG8vByBQABf+9rXAADnnHMOTjvtNFRUVKCyshL//Oc/cdttt/FrRiIRLFiwAHPnzsVtt92GTCZTqK/iqGWkMv7rX/+KxsZG1NbW4lvf+hbmzJnT7zlK+c+bNw+PP/44EokEwuEw1qxZgz179gAYWMZbtmxBaWkpPv/5z2POnDm44IIL8MknnxTw2zj6GIl8d+/ejXvvvRc/+clPVI+//vrraGtrw4knnojHH398UMe2bNmCWCyGpUuXoq2tDV//+tcRiUQK8EklwNjM2QPJdKCxPm4Ya1MZY4wBYD6fj3300UestrY251h9ff2QTMu33HJLP/cfsXHjRjZp0iTusmOMsbPPPps98sgj/P/nnnuOnXLKKTnn7dmzh1ksFtbb28sf+/rXv84mTZrE9u/fz7LZLPvud7/LLrzwwkG/z2OJQspXTYYiXV1d7JRTTmGvvvoqY4yxp59+ml100UUsFouxRCLBvvCFL7Cbb76ZMcbY22+/zZYsWcJ8Ph/LZDLs29/+NrvssssYY30m587OTsYYY729vWzp0qXsZz/72VA/+jFDIWXMWJ/7ta2tjW3bti3ncTX5R6NR9o1vfIO1trayRYsWsRtvvJHNmTOHMTawjH/xi18wu93OPv74Y8YYY/fccw+bN2/eUD/6McFI5ZvNZtlpp53G3nrrLcZYf5ded3c3i0QijDHGtmzZwiZNmsTWr19/2GPnnHMOmzt3LvN6vSyZTLLLLruM3XjjjTmvPZD7UKLOWM7ZA8l0oLE+XhhXlio1yCQ4UrZs2YKzzz4b999/P3fZAcCUKVPw6aef8v/37NmDKVOm5Jy7evVqnHfeefB4PDnnLV68GNXV1dBoNPjiF7+It956qyDv9VhiKPLNJ0OR0tJSLF++nO9mf//73+OCCy6A2WyG0WjEZZddhnXr1gEA/vznP+P000+H2+2GVqvFypUr+TGTyYSysjIAgMfjwapVq/Daa6+N5KMeswxnDNfW1uL444/Hs88+yx/LJ3+LxYJf/epX2LBhA1599VWUlJSgsbERwMAynjJlCubMmcOfe/nll+ODDz7IcTtKDs9g5BsMBrFx40Zccskl3Ar50ksvYcmSJQCAkpISWK1WAMDs2bOxfPlyvPHGG4c9NmXKFHz2s59FUVERDAYDvvCFL8h5eJQZ7Tl7IJkONNbHC+NKqZo1axbS6TSf9NauXVuQjKutW7di+fLl+P3vf48zzjgj59jFF1+MBx98EJFIBIlEAvfffz8+//nP8+PZbBarV6/Ocf0BwOc+9zm8++67CAaDAIDnn38era2tI36vRzMjke9AMty2bRuy2SwAIBQK4bnnnkNLSwsAoL6+Hi+99BIYY2CM4bnnnkNTUxM/9vLLLyOZTAIAnn32WX6sq6uLL66JRAJPPvmkqitKkstIZLxlyxb+d3d3N15++WUux4HkHwwGEY1GAfS5mO655x7ceOONAAaW8VlnnYX9+/fjwIEDAPrG8OzZs2EwGIb78Y96hitfl8uF3t5e7NmzB3v27MGdd96Jz3zmM/jnP/8JAFwGANDZ2YmXX36Zj7eBjl166aVYt24dEokEAODvf/+7nIcLyFjM2QPJdKCxPm4Ya1MZY4dMjYwx9sYbb7DW1lbW1NTErrzyStba2spNjffccw/7wQ9+oHqNtWvXsurqauZwOJjdbmfV1dXs6aefZowxtnTpUuZ2u1lrayv/eeGFF/i5t956K6urq2N1dXXsu9/9bs51X3zxRVZbW8uzx0T+/Oc/s8bGRtbc3MyWLVvG9u7dW4Bv4+ijEPIdSIY/+tGP2OzZs1lLSwtrbGxkt9xyC5dXb28vu/DCC1lDQwNraGhgK1asYN3d3YyxPhffVVddxWbNmsWam5vZGWecwXbt2sUYY+yJJ55gjY2NrKWlhTU0NLCvfe1rLB6Pj+K3NLEphIyvvvpqNnv2bNba2spaWlrYb3/7W35sIPl/+OGHbPr06Wz27NmsubmZPfHEE/y8gWTMWN/4ptc75ZRT2MaNGwv8zRwdFEK+IkqX3Pe+9z3W0NDAWltbWXNzc47sBzrGGGN33HEHmz17NmtqamKXXHIJf5/btm1j1dXVrKioiJnNZlZdXd3vXIk6YzlnM5ZfpgON9fGChrHxVuRBIpFIJBKJZOIxrtx/EolEIpFIJBMVqVRJJBKJRCKRFIBxq1S99957OOuss1BXV4d58+Zhzpw5uP322/nx0047DWvWrBnSNf1+P774xS+iqakJLS0taGpqwiOPPAKgrxVCvlYG7733Hi655JK8133llVfwwgsvDOm9HM2MhuzEVhWNjY0466yzVOuJKamtrcWGDRuG/bqSkTPa90NraytaWlrw9NNPF/idSwZiNOQKAO+//z6WLVuG+vp6zJ8/HyeddNKIxq3f78dPf/rTYZ9/rCLX4OExLpWqTZs2YdmyZbjuuuuwe/duvP/++/jnP//JM+2Gy/e//32UlpZi06ZN2LhxI9avX59TjCwf8+fPx2OPPaZ6LJ1OjyuBjjWjJTsAWLx4MTZs2IDNmzdjxowZ+M///M8CvOPRQRYK7eNI3A8fffQRfv/73+Oqq64qwDuWDIbRkuvmzZtx5pln4rrrrsMnn3yC9957D48//jgCgcCwrymVqqEj1+DhMy6Vqp/97Ge46qqrcPbZZ/PHPB4P7rjjjhFdd//+/aisrOR1NhwOB6ZPn86Ph8NhfOELX0BzczPmz5/Pqyu/8soraGtrA9BXx8rtduOmm27C3Llz8Zvf/Ab33nsvHn74YbS1teVU5D4WGS3ZKTnzzDOxfft2ALktFYC+ujaHq7Lb1dWFFStWoLm5GU1NTfjd734HAHj44Ydz3jtjDPX19byK8IMPPojjjz8ec+fOxaJFi/jjDzzwABYvXowLL7wQzc3NeOeddwr4aScuR+p+8Pv9KCoq4v9/61vfwoIFC9DW1oZFixbxewUAnn76acyePRutra246aabBnW/SHIZLbn+9Kc/xapVq3DOOefwx6qqqrBy5UoAwM6dO7F06VLejFe0lFx22WWYP38+Wlpa8NnPfhYdHR0AgGuvvRahUAhtbW2YP3/+iN7fsYJcg0fAGGcfqjJ79mzeXDEfp556Knvqqaf6Pf7000+zL3/5y6rnvPzyy8zj8bC5c+ey6667jv3tb3/jx1avXs2cTif75JNPGGOM3XTTTezqq69mjDG2bt061trayhjrq/QMgP3pT3/i5w5Uxf1YY7RkJ6Zgp9Np9qUvfYldccUVjLHc9F/GGCsuLma7d+9mjDFWU1PDPvzww36v+7nPfY6Xz+js7ORVmqPRKCsuLmbt7e2Msb57Zu7cuYwxxl5//XV21lln8dIK//rXv1hDQwN/fxaLpV8F8GOd0bwfnE4na21tZdOnT2dWqzVnPIvNzf/yl7+wM888kzHWJ2uPx8O2bt3KGGPs/vvvZwD4/SIZHKMl18Nd97jjjmP33nsvY4yxf//738zj8bA9e/YwxnJl/j//8z/smmuuYYzJ5ujDQa7Bw2dcWqqUfPvb30ZbWxuqq6uxefPmAZ977rnn4r777lM9tnjxYuzduxc//vGP4Xa7cc011+C6667jx0844QTU1dXxv/MVOTMYDPjiF784zE9zbFEo2QHAunXr0NbWhnnz5kGj0eAXv/jFsN/X2rVrcc011wAAysrKsGLFCqxduxYWiwUXXnghb9L5wAMP4MorrwTQZ+H46KOPcPzxx/OeVF6vF7FYDABw4oknYubMmcN+T8cChbwfyP3373//G2+//TauuuoqHDx4EADwj3/8AyeccAKamppw22238bi6t956Cy0tLZg1axYAYOXKlTAajYX5cMcwhZRrPkKhED744ANeiHn69Ok4+eSTeaeDRx55BPPnz0dTUxPuu+8+LnPJyJFr8OAZl0rVnDlzctwnP//5z7FhwwYYDIYRt5Cw2WxYvnw5br/9djzxxBM5Ha7NZjP/W6fT5e3GbbVaeYdtSS6jKTtaRDds2ID7778fJSUlAPpkJcYwxePxIV9bbL2watUqrF69GuFwGM8++ywuvfRSAH2uwJUrV/L3sGHDBrS3t8NisQAA7Hb7SD7eUclo3g8iTU1NmDJlCt544w3s3bsXX/va1/DQQw/h448/xqOPPjqse0KSn9GS67x587B+/fpBP5/G7euvv467774bzz//PD7++GP88pe/lDIfAXINHj7j8l195zvfwR/+8Ac8//zz/LFkMpn3Cx4sL730Enw+H////fffx9SpU0d0TQBwOp0jCqQ8mhgt2Q3EtGnT8PbbbwMAnnzyyUF1qV+6dCn+8Ic/AOhrifLkk0/yVgrHH388gL64nKVLl/Kej+eeey4eeughnnWYzWbx3nvvFfzzHE0cqfth//792LFjB2bMmIFAIACDwYDKykowxvCb3/yGP2/hwoXYuHEjj7F66KGHeAsbyeAZLbl+5zvfwf3334/nnnuOP9bR0YE//elPcDgcmDt3LlavXg2gL77q9ddfx6JFi+Dz+eBwOFBcXIxkMsljJIG++TkWi0k5DwG5Bg+fcalUtba24vnnn8evfvUr1NXV4bjjjsPixYvxla98BTNmzODPu+qqqzBp0iT+s379ejzzzDN5s4A2bdqERYsW8XTOZ555Bg899NCI3+8FF1yADRs2jI8guTFmtGQ3EHfddReuv/56zJ07Fx9++CGKi4sPe87dd9+NrVu3orm5GYsXL8bNN9/MlSkAuPLKK/G73/2Ou/4A4JRTTsEdd9yBCy64AK2trWhsbMSjjz465Pd7LDGa9wO5g9va2nDmmWfiv//7v9Ha2orm5mZ8/vOfR2NjIxYsWJDTIL2srAz33Xcfzj//fLS1tWHTpk2w2+1wu92j+TUcdYyWXJubm/H3v/8dv/rVr1BfX4/m5masWLGCJyE8/PDDeOyxx9Da2oqLLroI9913H6ZMmYJly5Zh5syZmDlzJk455RQe1Az0BVhfccUVaGlpkYHqg0SuwcNHtqmRSCTHFKFQCA6HAwCwZs0afO9738PWrVvH+F1JJJKjAf1YvwGJRCI5kvz617/GY489hkwmA6fTiYcffnis35JEIjlKkJYqiUQikUgkkgIwLmOqJBKJRCKRSCYaY6ZUDdQDSKyeOlgoYLWhoQE6nY7/P1C/IMnATDQZ/ehHP8INN9ygeuyZZ54ZsK3NmjVr8NZbbw14/a6uLjQ2NvZ7fDy1SBhLCn2/AH29G2fOnInW1lZMmzYN5513Ht58880Cv3PJYJEyPrqR8h05YxZTJfYA0mg0CIVCvK3AcKBCb3v27EFbW5tq4bd0Og29fmw+8li+9nAZCxmNFueeey7OPfdc1WPpdBpr1qxBW1sbFi5cmPcaTz/9tOo1XnnlFfj9fixbtqxg73ciUuj7hXjsscf4ZP7kk09i+fLlePHFF3OyNYG+EhcAxm39mqMBKeOjGynfkTNm7/xwPYAKRW1tLW666SYcd9xxWLlyJcLhMFatWoWmpiY0NTXh1ltv5c9Vdt2+6KKL8MADDwAA7rvvPjQ0NKCtrQ3Nzc28LtKOHTvw2c9+FgsWLEBLS0tOTRyNRoNbbrkFCxYswPe+972Cf7bR5kjJaKjs2LEDJ510Ek+f//73v8+Ptbe345xzzkFDQwNOP/10eL1eALkd0F955RU0Njbiy1/+Mtra2vDwww/jmWeewc9//nO0tbXlrQa8Zs0aXHDBBTmPbdiwQbXv1IMPPoiWlhbeh+zAgQP8fZx++uk499xz0dDQgEWLFh01feeOxP2yYsUKXHvttbjzzjsB9FknL7zwQpx55ploampCe3s7XnzxRZx88smYN28ejjvuOKxbtw5A/vvmb3/7G+8l19TUhKeffrqg7/loQsr46EbKtwCMVX+cgXoAiX1+lJx11lns3XffzXtdZZ+nmpoa9uUvf5lls1nGGGPf+c532KWXXsoymQwLh8Osra2NPfroo4yx/r2MLrzwQrZ69WrGGGNOp5MdPHiQMcZYMplkoVCIpdNpNm/ePN5HLBKJsObmZvbOO+8wxvp60t16661D+l7GE0dKRkPlG9/4Bvvv//5v/n9vby9jrK//U01NDevp6WGMMXbJJZfw54m9A9etW8c0Gg175ZVX+DVWrlzJ7rrrrryvGQwGWX19Pb+PRJR9pzZt2sTKy8vZ/v37GWOM3X777WzZsmX8fRiNRrZlyxbGGGM/+9nP2BlnnDHEb2B8Mhr3i9i7kXjyySfZ7NmzGWN9331lZSXr6OhgjDG2a9cutnDhQhYIBBhjjO3YsYNVVFSweDye975paWlhb775JmOMsUwmk9NHUpKLlPHRjZTvyBkzfxT1AHr11Vfx5ptv4pprrsH555+P3/72twOeJ1Z4HSxf+tKXuOa9du1a/OIXv4BWq4XNZsMVV1yBf/zjH4eN61myZAkuv/xynHPOOTjrrLMwY8YMbNmyBZs3b8bnP/95/rxQKIQtW7ZgwYIFAPpankxUjqSMhsKiRYvw7W9/G+FwGKeeeiqWLl3Kjy1btowX/zzhhBOwadMm1WvU19fj1FNPHfRr/v3vf8eyZcty2tnkY926dVi2bBmqq6sBAF/96ldx22238VY6J554ImbPng0AuPrqq/H9738fmUwGOp1u0O9nPHKk7hemSFhevnw5ysvLAQAvvPACdu7ciUWLFvHjWq0We/fuzXvfLFmyBNdffz0uuugifOYznxlW3MixgpTx0Y2U78gZU8flQD2ACslAPdnERVKv1+ftIffEE0/gpz/9KVKpFJYvX45HH30UjDF4PJ6cXnC7d+/GypUrB/XaE4EjJSORLVu28CB2sdkmceGFF+KNN97AzJkz8Zvf/AZnn302PzbY3lFDlctTTz3F3YdDZTCK2NHCkbhf3n33XTQ1NfH/RVkyxnDGGWfkjMkDBw5g+vTpee+bX/7yl1i9ejWsVitWrlyJO+64o+Dv+WhCyvjoRsp3ZIyZUjVaPYAOx9KlS/HHP/4RjDFEIhE8+OCD+MxnPgMgt4fc7t278frrrwPoC2TetWsX5s+fj29961u46KKL8M4772DmzJlwOp28FxXQ14+K4ngmOmMlo4aGBj6Y1HZIO3bsQHl5Oa644grccccdh83aGwwD9Y5KJpNYv349TjvttEGdu3jxYrzwwgs4ePAgAODee+/FkiVLuCVq/fr12LZtG4C+WL3FixdPeCsVcGTul6effhr33HMPbrzxRtXjZ555JtauXYuNGzfyx6gxbL77Ztu2bWhsbMTXvvY1fOUrXynI/XS0ImV8dCPlO3LGzP23adMm3HjjjWCMQavVorKyMqcH0JYtWzBp0iT+/wknnIDHH38cy5cvx2233TbsHk4/+MEP8I1vfAPNzc0AgIsvvhif+9znAPQ1kbzkkkvQ3NyMxsZGnpmQyWSwatUqeL1e6PV6lJaWYvXq1dDr9Xj22Wdxww034K677kImk0FJSQlPQZ3ojJWMDsdf//pXPPTQQzAajchms7j33ntHfM3LL78cX/rSl7BmzRpcd911Ob2rXn75ZZx88skwGAyq515wwQV48MEH0dbWhhUrVuCHP/whfv7zn/NswMmTJ/PmzUCf+++mm27Czp07UVxcjD//+c8jfv/jgdG6Xy655BKYzWZEIhE0NDTg+eef75c1REybNg2PPPIIrrnmGkSjUSSTScyZMwePPPJI3vvmv/7rv7B9+3YYjUZYrVbcc889BfxWji6kjI9upHxHjqyoLpEchmuvvRZLly7FRRddNOJrPfDAA1izZk1OlqlEIpFIjg4mVuEkiWQMKIQlTCKRSCRHP9JSJZFIJBKJRFIAJm7ZUolEIpFIJJJxhFSqJBKJRCKRSAqAVKokEolEIpFICoBUqiQSiUQikUgKgFSqJBKJRCKRSApAQUsqDLYdh0ajgV6vh06nG1ILj4ESFbVaLTQaDdLpNJLJJBhjMBqNMJvNsFgsWLx4MU477TQYDAaEw2FEo1F0dHTgxRdf5NWtCZ1OB4PBAK1Wq/qag0mYzGQySKfTg3ruYK851oyk3Yp47mA+q81mw8yZM1FZWQmDwQCLxQKj0Qifz4dPP/0UsVgM2WwWQJ+8HA4HXC4XdDodjEYj9Ho9EokEAoEAotEo0uk0UqkUMpkMrFYrHA4HdDodAoEAfD4fUqkUQqEQwuHwsD/jQEwE+QJHvqWOVqvl40xsEUXvZcaMGWhra4PD4UB5eTkqKioQDAbx/PPPY/369fweoOdrtX37RMZYzrEjwUSQ8Vi1TDKZTPB4PDCZTJg6dSpOPPFEeDwePl/H43G8++67eO+99wAA1dXVKC0tRVFREVpaWjB58mTs27cPb775Jtrb2+H3+3Hw4EEkk8kj9hmkfHMxm82YMmUKSkpKoNfrYbVaYTAYoNfrYTabodVq4fV60dXVhUQige7ubnR3d0Oj0cDtdvM5e9asWaioqIDRaITT6YTBYEA8HkcoFEIymcRHH32Ed955J6dt3GhQKPkeE5aqoS7okvHLcJXcwXIs9ekbL+STn9q4leP36EE51jQaTc7PUM+XHFmGK6eBzhvMXDDeOSqKf4pfuPi30+lERUUFrFYrbDYb4vE4dDodstks9Ho9DAYDzGYzrFYrMpkMUqkU393mU8QmknDHE/m+Q/FxrVYLp9MJu90Ol8uFxsZG1NXVIRQKYd++fejt7UUkEkEikUA6nc6xRJAlKp1OIxqNgjHGrRVms5nLW6/X8+dms1mUl5dj2rRpvL/jp59+mnMtyeiiNonSuKWx6fV6EQwGEY1G4ff7kc1mUVtbi5KSEgSDQWzduhUdHR1c5vmuKxl9dDodiouLUVRUBJ1OB7PZzOfZkpISWCwWVFRUoLa2Fg6HA9FoFKFQCGazGVVVVZgxYwYAoLi4GG63G263GxUVFSgtLYVGo0E0GkVNTQ38fj86OzuRSCQQjUYRDoeRTqfh9/sRCASk/AsMKUImkwkzZ85EXV0dl6vRaOTzbiqVgl6v5xZop9MJk8mEbDaL+vr6nGuSN8npdAIAEokE4vE4GGOwWCxwOp3QarVobm6Gx+NBNBrF3r17cfDgQW7hHI9z9FGhVAG52i/9LikpQXNzMzczhkIhvrgaDAaYTCY4nU4UFRVxV1E2m+23W1IOUI1GM6BGLQf04KDvmBZDvV6Pqqoq1NTUoLS0FEuXLkVTUxO2b9+Obdu2Yfv27VxREpUmrVaLWCwGvV4Pxhh3+RmNRlRUVMDpdMLhcKCqqgpWqxWdnZ345JNPkEwmMX36dJx00klgjOEf//gHotEoYrEYAoEAH7DS0jl6iIoQUVZWhpNOOgnFxcXYvXs3Nm/ejHg8DqPRCKPRCI/Hg/POOw8nn3wyPvnkE/z2t79FR0cHABxxl58kF4PBgGnTpmH27NmwWCwoKSmBw+GAxWJBeXk5bDYbLBYLd9X7fD7uHtJoNCgpKeGLKi249fX1qKysRHV1Nerr67mrvqenB4lEAu3t7di/fz/C4TA2b96MUCjUz5UsGRlarRY6nQ4ulwtnn302Lr74YmSzWe6K9fl82Lp1K3p7e/nztVotSktL4Xa7YTKZUF9fj9raWmSzWRw4cADd3d1IJBLo7e1FNBpFJBJBR0cHotEopk6diqlTp8LpdKK1tZUr4M8++yyfp/1+v1SqRgOlIiU+bjQa4XA4YLPZoNfrkclkwBiDTqfjz9HpdNx6MRgrFGNs0GZPydDQaDSwWCxwu90oKipCSUkJSktLuRUiGo3ywa1UdGhhpli2ZDIJvV7P/fsWiwU2mw02m41bO7LZLKxWK8rLywEALpeL77ooNkdy5KBxZTabUVpaitLSUrS3t/P4CorD1Ov1cDgcqK+vRzKZhMvl4go1KdySIw/Np3a7HaWlpVyRcjqdsFqtqKio4HOxyWSCVqtFIpGAyWQCADgcDh6HSlZlu90Oq9UKi8UCk8kEi8WCbDYLu90Ok8mERCIBxhhXuq1WK7RarbwPCoxWq+WWqfLyckyfPp0rNDqdDplMhjecp/hmjUYDg8EAu93O74Xa2lpkMhkun0gkglAoxONeyXKZSqVgNBphs9lQUlKCiooKRCIRFBcXw2w2I51O83V8vDHhlSqClB3x/3A4jH379sFut/OFWqvVIhqNQqPRoLe3Fz6fjwtR3OUO5Eagx6RiNTxIVsrvWK/XY/LkyTwwWavVoru7G+FwGDabDWVlZXxg63Q6pFIpHqhaUlKC4uJiaLVaPmjtdjumTp2KkpIS+Hw+7Nixg++qOjo6kE6n0dPTA6/XyxfrsrIynshAQevK9yspPBaLBWVlZbDZbJg1axZmzJiBkpIS7Nu3D+l0GvF4nO9+w+Ewenp6eKByW1sbLBYLurq68PHHH8Pr9Y71xznmsNlssNvtcDgcmDp1KhobG7lHgJJHstksn2dpTCWTST7v2u12mM3mnLncarXyDZVooSbFS6vVorq6Gm63G+FwGJFIBH6/H7FYDH6/H5FIZCy/lqMCnU6HmpoazJw5EyUlJZgyZQpPLInH4wiHwwgGg+jp6UFHRwecTidKSkpgNBqRSqXQ3t7OleRkMolMJoOenh74/X7uvqVwDq1WyzfDdE4qlYLf7+eKc2VlJUKhEGKxGEKh0Fh/Pf2YUEqVcmHLF8hKP4FAALt374bVasWkSZO4rzcejyORSMDv96O3txd+v1/1GuJjksKi9r0aDAbU1dXhxBNP5Mpve3s7gsEgnE4nqqqquOtAr9fzAa3RaFBVVYWqqiruMrDZbDmZJevXr8crr7yCDRs2IJlMIhaLQavVoqOjA11dXTCZTDAYDKisrOQTxOHer6Rw2Gw2TJ8+HaWlpWhoaEBLSws8Hg82b97Md7A03o1GI9rb27Fnzx5otVosXLgQCxcuxMaNG9HZ2SmVqiMMxc5UVlbC4/GgoaEB8+fPBwD4fD5EIhHodDowxpBMJrkypdFoEI/HuQfB5XLBarXyLO5MJsPPow2OGJJhNBoB9LmLXS4Xt3L09vYiGAxi165dUqkqADqdDrNmzcI555wDj8fDY6NSqRQikQgCgQC8Xi/a29tx8OBBZLNZVFZWwm63IxAIoLu7GwAQCoXQ3t4OjUaDRCLBFWxStESlymAwwGg0wmAwIJlMore3F/F4HGazmcfUdXV1jeXXkpcJpVQpUVqMlAsf7XCBvhuASKVSSCQS/QKexVgqpeVroNcXkdarwaHT6bgbjywQdrsdNpuNT6w04Wo0GlitVrhcLq5UUWkMkp3FYuFxGA6HAw6Hg7sI6HWSySR3F1DZBYPBwHfAer0eFosFyWSSD2hyE0qlanQhl15xcTGXs8lk4m49caOTTqcRDofh8/lgsVhQXFwMu92OoqIifl4mk+GLtWT0MRgMsFqt/MdsNvOEIHIHAeqbX9FyRS4dcW4QzyPof3JLWSwWaDQa2O12OJ1OZLNZ7o6SjBxRvlqtlifyiOukWEaIrE20lmazWSQSCUQikRxvQiaTQTKZ5F4HOp/mXXpOJpNBIpHgivZQyzEdSSaUUpXPFSc+Lrrw4vE4AoEAEokEtFotiouLwRiD3++H1+vlbj/gUI0b8Xeh3qOkD4qH0mq1KCkpwaRJk2CxWOBwOHjW39SpUwGAK1JGoxEmkwlGoxGRSARGoxEWiwVarRadnZ3Yu3cv0uk0D4YkZchgMCASiWD9+vVIJBL49NNPAQClpaWoqKhAfX09bDYbJk2ahJKSEmg0GpSVlUGr1SIYDHKzciKRQE9PD2Kx2Jh9b0cztIlxuVxobW1FQ0MDPB4PX5TVAs9jsRg++ugj+P1+VFRU4Mwzz8SkSZNQVVWF5uZm2Gw2dHd3Y+/evaNe20bSJ8OioiJMnToVbrcbRqORW/9TqRSfTykJSIyLJOsVBZYnk0lotVq+6WGM8eeLChhthmmxJhdSSUkJmpqa0NPTgwMHDmDfvn1j+M0cHZClsKOjA7FYDDqdjlsSDQYDysvLEY/HufvWZrPxzE1SqjOZTM4Glx6nzO6urq6cWnU+n49nd1L9wGQyiY6ODr52H8kaZUNhQilVIqLyIhb6E60KiUQCyWQSZrOZD3zSkMnfLipVJHBliQapKBUGClzU6/UoLy9Ha2srXC4XKioqUF1dDZPJBLfbzZ9PuyK3242amho+Iev1fbftrl27uF9ftGzQawSDQbzzzjvYs2cPt1CVl5ejsbERS5YsgcfjydkRMcZgNpsRDocRCAQAAH6/H+FwWCpVowSNN4fDgebmZixcuLDfwqkkHo9j48aN+PjjjzF79myceOKJPPW+oaEBLpcL//73v9HZ2SmVqiMAjdG6ujqeQh8MBnMs/kpLlWhpSKVS/CcajUKn03EXPnBobiarBd0fZIkkd342m0VJSQkaGhrQ0dGB999/X87fBYAxhlAohI6ODm5pSqVSMBgMPNaV4l5NJhOsVivcbjc8Hk9OGRv60Wq1PNwiHA7jwIED2L59O8/GpyLPlB3Y09ODrq4uJJNJRCIR/iOVqlFAGfdEuxoyO1K2CFlDKLCRtGkyU4oDXpwI5GAcOWJ2JqVYm81mHgdB2ZlU70TM3KEfcgGQm5CuSZklYpkMcQcMgFu2TCYTt3643W7+GJmdxXuHrutyuaDVauH3+3lgfDQa5ZO5vD+GDt0HlP1FbgLKFtPr9chmszyziDLFTCYT3x2LWbtiZwaj0QiXy4VYLAaPx4OioiJoNBru7pfZgaMHuYdIhiLiJlX5/SvL15A1Sy12VnQXiucC4GOS5neyikgKAymx5K6Lx+PIZrOwWCz8OWIohxp0rmitFJUtyiKk51G2N1k7lVXbKaZuvDGhlSrRPUCD0Gq1oqioCGazGdOnT0dbWxvPSnE6nUin05g2bRo8Hg/PLAsGgzl+XHGwjsQVKDlkndLpdJg6dSrOPPNMVFVVcYVXp9PBarXyRTadTvPgUjFugszF1EKIlOb6+npks1nE4/GcnQtlipBLSVxQKdaKFlva5VIMiM1m47VxkskkGhsbEY/HceDAAXz44Ye8rQ0pY5LBYzQaMXv2bEyfPp1bJindvrS0NKfuDAVAT5o0ie9evV4vDAYDJk+ezItIulwuAH1FQxsbG1FbW4vy8nI4HA4EAgHs3buXWytjsZi0XhUYsjRWVlbyYHOlYkWZf+TeIaWH4hgpy4tiapTJQjR+6TlUKoXmZir4q9fr4XQ6eaiApDCQUpVMJhEIBJDJZPj3TyUtRIOGOLeSR8jv9yMUCkGr1cLlcsFmsyEcDvM4KaDPaskYQ29vL3bs2AGr1cqzCfV6PTweD9xuN88e3L9//7ibgyesUiUqQSIGgwFutxt2ux1NTU1YtmwZnE4nent74fV6kU6nUVVVhZKSEtjtdmzZsoXXsCJ3gxhXRRkJ+aq2jzeBjjdEl19VVRVOPfVUzJo1iwcai4souXxIWaHdJ12DLBRGo5FbPKqqqgAAgUAAfr+fD3xy+1ZXV8PhcPDXoBiMUCjEK6eLad1k/bDZbLwnHf1s3rwZn376KaLRKIBDE4Bk8BgMBkyZMgULFizgypTb7YbZbIbL5eKWKPrurVYrr6adTCbh9/u5+3jatGmorKzkVmer1cqLC9rtdt7b0WAw8Cw0CniVciscFP9YWloKp9OpWsePrI9UcZsgVxDF3YiWKCU0P6RSKT4PUK0rkinVpFOzmEmGD8mPkkRSqRT3+FDpBABcqaJ5nKxayWSSF2wVCz5TLBxZt0ipDgaD2L9/P8xmM6ZNm8YLONfV1WHKlClob2/Hv/71r7H8SvIyIe865YRIZn/a+dbU1MBut6O4uJgLmdwI5C6gysxTp06FVqtFJBJBZ2cnYrFYThaD2gShzDqU9Ie+Z7PZjIqKCtjtdlRUVHAFVnShKZVj+l4pOBVAToVkUnTF7E5K0RWVY2o9RKm7YgovZZLQcZI1DW41NxG5LalcB03y5JaSHB6NRgObzYaioiLe2JpM+qLbgO4Hl8uF+vp6eDweOJ1OlJaW8qrdlGRANZDEe8psNvNCgRUVFaioqOC74vFY22aiQ/MrFc+l8SC6g8h6odPp+MZJHHcGgyEnu4vcuiRX2gBRPI8YByu6hSm5Rbr/RoboGXA4HNxFL87XqVQK8XicK05iey/xfMYY906Qi5bKJhiNRp7AJBYOpf8pHMNms/GMzvG8KZpwSpUy3gYAioqKsHDhQm6Bqq2thc1mg9Pp5H5b6pIumpQrKysxY8YMpFIp7Nq1Cy+++CL27duHQCCArq6unMwVUbuWDAxVVbZarSgrK8Npp52G+vp6rvgGAgFeK0xUbADkxFbRd59OpxGLxXiVXTIzh0Ih+Hw+ZLNZ3l5GTPGlAEsa+D6fj2eCiuZmUswoeJIeJ6slTdzFxcU4+eSTEYvFsGvXLnz00UcIh8MIh8MIhULy3hgEer0elZWVaGpq4nFuYq8wIHfCnDVrFqqrq3lCQjwe565fiqNzOp3c2kgLMBX7zWQycLvdcDqd8Pl8WL9+Pbq7u8dle4uJikbTVwW/qKgIdrudZ2fR4kmxMsFgEOFwmLuKSAEjSzYtwFqtFhaLhS/GsViMWz6oxx+5Dk0mE+LxOFKpFI+rKyoqQigUkiUVRggFolutVkybNg0LFy6E0WjE/v370dnZCQAIBoOIx+Po6upCT08PfD4fPB5PTqkLCruhmCjaWFEiApXgEOda8hjo9Xq43W5MnjyZvxdxIzwemXBKFdC/jILFYkFNTQ2mT5+OkpIS1NXVwWazcVNxJpPhAciia48ULavViuLiYt43isyR4k4qH2rHxquwjxT03dL3OnPmTDQ1NfHj4q6GLEg00Yoyot2LaHWi/ymOiiyL5AIAcmtgUYNOqsIdi8X4e6MgSIrFookaAN9t00Kv0+lgsVi4eymRSGD37t38b5nYMDgoTqq8vJy3JwEOuXaU32FpaSmmTZuWY3UgJZqUclpUxZRsm83GJ3dqc9Pb24utW7dKC/MoQDFOJpOJx9SQ4kRhFPF4nAcfUxyjWJsKOJTpRwozLaCUyU2yprZidK7oNjabzVxZlwwfkilZfSdPngyj0YhQKITu7m4wxrhcIpEIYrEY3/yKcjSbzTmJBOQuNpvNiEQiOZtZ0UpF1zCbzTz2kqySlAU6Hplwd51opaIvn3oEUdFA4NCiSJOs6MqjAQiAp8prNBpMnjwZjDF88sknOHjwIF+Qx6vwxhtUI8pisWDy5MmoqqpCeXk57HY7f46Y0UfZeCQj+puUWtEdJGYJ0Q8pXeJgFTPDxLRtpaJGz6VdMh0XLaFqsXP0PJfLhcmTJ6OoqAg6nY7voGV2mTqiKwAAn3jV4iJFlztZKSnmRkyjVypSNFZJAacq7KR8SdkUFsrAosB00dVO45fGG1kpqN8m1aFShleIiyn9ph+aWwwGQ07NI/F8Cgmg3p8Oh4NvnKSLfmjQZlWn0/FC2RRvWlZWljNXBoNBAFBNNhDnfFJ0xU2omoIkFoOmEAGr1crXB3EdGG9jekIqVSQAMhVTwOvkyZN5PROaSEUNWXkNcg2ST/f4449Ha2srXnvtNWzdupW7dEQfcb500WMdGgRU9O2UU05Bc3Mzr3gNHMogoSwdUQEOBoNcbsAha5Oo8NBj4oQtNsemCZn89PQc2hFThXTR3USBrQB4PSpRARddiaIyRgHw0WgUb7/9Nrq7u/lkLl1L/aHSFmTypx0txcLRoikuwhqNBrFYjMff0E5YKQuaB0iZymazOTXogsEg31HLKuuFw2KxwOPx8GBl6nBA7jlxDIuV78kCopxLqdinmDEMgFu7GGN8rDocDtXG6rFYjCclUPhBPB5Hb2+vrDU3RMilThnZsViMlz8pKipCNpvl45OSd+h/tZhZSkoAkONxoNdQru1lZWW8/hyV4olGo4hGozmV+sebYjUhlSpx0RMHLTXfFIvEibtTsaYJCZ2UL41Gg9LSUjDGeIA7vR4tyoR0H6hDpl673Y6ysjLU1NTkxC8BufITu5rTMdqJ0P+AupVKNBMrF1lxURYhRYpej3z31MSVXBKMMdVdMF1DNF8nEgleA41cHpL+iDWpgEOJB5Q0oJQXyZ4SAShTiHrAqQW3imOfrkEBzuJ8ICkM5Jqh4GOSlViWRrQ8UZafuFkSIfmJY5nOFWtTAYc21OJjNH+QFZOsKvReJUODQjPEchfZbBYmkwl2u50nFSQSCa4kK9tDiaE6Ss8DHac5V1yvKU5P/DGZTLzO1Xheg8etUiVqnuKXSL8pmNFsNsPh+P/tfWmYXFd55lv7vnb13i2pZS3WLllesGMMBhuME8xiZhz2YXliJgTIhJBkQhITQuYJyyQTJgmGLGbCkgESYxzCFsAmYBuDsSRLli1r6Va31Hvt+3rnR893+qvT91ZXd1e3qqTzPo+e7q5761bpfvec857323xCTuaSJH+vTIp4lhepVsR+5YKg/Du1szEvJSiOiiohU0yDHODPBxYv8Oj1epeQV1IaZHmYEyO+UMrKkvxT/h7yNUjpkL8nn+Rp0gcWY7Co7xy152jXSr+XCrQwknuY3HeUDk87W+6ap4B0PtGSqkWghZXHWfAq7ES46XelNLcWXq8XAwMDonq2vHkCUFcCheZnYJFUc1cfj5EiDwFPPuDncqWCu4DpOTCbzSJpKR6Pi84ICs2D5jebzYZ8Po+pqSlkMhnhjiuXy5ibm0MqlcLc3JwIi6AMQVLtuVKlR255PCXvjELvpSQFsj0VA6Y+jxST2y4egrYlVTJkUmWxWODz+RAIBESFbJvNJnZLBNntR9fgtafIV0wlF2gSkN+nYAxSb0KhELq6uoRLgBZQmuhoMqRBB0CUtyA1gl6nBZcPNh5nQYsu73DO5WCuivHdE4/HAhZJGz07dF3e1JX3HuMkHFhI++/v7xeZhplMRj0zEnggM7kNKGCZlCq6r5xIUbIJB51DtiWFkLsbSMkClj4zamO0dphMJgSDQVx99dXo6uoS5VLo3pJ9aF4lAs3dPbVaTSSmyOOMx2cRUeIZYXoZo3wBJhe9yWTCxYsXMT4+jvn5+Ut5yzoOpERSxvYLL7wAn8+H3t5edHV1oVAo4OzZs5iZmUEikYDNZkN3d7dQsWj+JsLE3X8U88y9E3y+prmYal1R1jYpWNRfMBwOo1Ao1Hk4LjU6hlQB9W43efcrS8bNgqtPciCzfJ7C8uBkxQhcTeKuQIp3ogBkIlJG915Wn4zOaXQNYFGp4q5i+fxGzxR3bSklRB/8HnFXHSdPRFK5PXjgKy2ivMM9X8Q55OdCKVWtBxFll8tVtxEl29C91pubZY8CsKg0y7E4fFxyd6/s9uNEm+IlSTVX7r+Vg7KxeXIJkSRS9alPKnXBoAQhQL/Wn966Km+aCVx9ps+k9YWX1ODzQDugI0iVXjAa1UIKh8MIBAJLahvRwNKra6U32RJBI5JmFAAnEwL59SsVtVoN8Xgc586dQyKRwFVXXYX+/n5RiI+3jNCrnCzHQ/EdKrBoM76Y0nEeL8NdRhz8GeC2I5cSLeBykLpM5PkEQ4Hpc3NzuHjxIrLZrFKpdGAyLbQxIVdRMBgUizB3AwEQxJrGM5XN4EoknUe7V97zkfd+JHvabDaEQiGx0Cq0BuVyGfl8Hrlcri6eMBqN4uLFi6LFSFdXlyBZ3H5kUwpsBxYVJ1In6PdqtQqXywWv1yvsTc9ONptFNBoFAITDYfT29iKbzWJqakqNxTXA6/ViaGgIXq8XO3fuxJ49e+B2u0UNwlqthsnJSRw7dqyuUwEvjcLjXoH6kA4CzcdE0mnjFY/Hxfw6NzcnsgGp20UgEEBPTw9SqRQSiYQIlr/UaFtSRROjvLhxVYl6AlFRSXlHxBdQmTXTzpeuSaSKik/yzBI1MJdHrVbD3NwcYrEYurq6sHv3bmzevBlutxu9vb0iHZYGHv8nu2n0qq7TPy7z8h0M3x2TqwCoJ2OyHWkCoEmAx0LJzxuwqLaYTCZRiDCXy2F2dhbj4+NChlaoh8lkgtfrxeDgoCBVVM+IiDBXG8i1b7PZxETJd6M8vkreRHE1i1zHNpsN4XC4rvigwtpAYyeXy4k+mrR4zs/P4/Tp0wgEAhgZGamLV+VxjDReZUJF8wSRaW5rs9ksCDc9L1Q3yWw2Y8eOHejv70cmk8Hp06ebUrMV9OH1erFp0yaEQiFcffXV2L9/f11F9Uwmg8nJSTz99NMihMPpdNbFNfL4Zdro0Ot6BJv6sppMJlFEdmZmBrOzsyJ7kxIjAoEA+vr6YLPZcPHixUtwh/TRtqQKaKz+ULAiyZPNTpTLuZK4hCyTKjUZNwYNDuqtR734qKSCDDmInECTc6P7LRPklU6aMuHWywrTi6uj54KKTlJMEG/PoLAUNFa5iw9AnRoJYMlEy+3Cs4R48oKsUvLXuDtIxVO1FkSq7HY7UqmU6G6QSCSQSqVgMpmQSqWQSqXEBkkOr5AVa9lNx+diImdWq1Wk8VOj3lQqBbPZjGQyiVgshmw2Kyq4U4FghZWBF/8kb4PNZqvrXkCKIgCRKcjVZ+4xkr08tJGi32nTymuY0fncG8E3XxQH3U7juq1JlR5ocbNYLKKHmNfrFcFt3LfO1QmuPOgtwtQokhZKAOIBkd1U/HsoLEU+n8fx48cRjUYxMDAgMjSNJjaedUfBkbJrr9H95oOX/yTI8Ri0yyZyxAOhl4upo+PJZBLPPfccUqkUpqendUmZwgJ4ELLJZEI2m8Xs7CxqtZpwoTocDgQCAWH7mZmZJa77XC6HbDYr3LAUv0GKlMlkEtXtafIFFmueqR6NrUU0GsWJEyfgcDgwOjqKn/3sZwCA6elp4a7J5XI4fvw4IpEIDh06hJ6eHtHYmtx6+XweJtNCg3RedoH+UfcDciV6PB4cOXIE3/nOd4Q6Pjs7C7PZjBdeeAH//u//jnK5jImJCczPzyOTySCRSFzam9WBoJ66lNlMZCqZTCKTyWBmZkYUWdU0TRDYSCQCYLE5PfcW0D/qiMDVfSrW6vV6Rayew+EQa7zD4UClUhExXDabDYFAAIVCoa1aEnUEqdKTcM3mhaKfgUBA+Fj5AiwrGUBjQlStVusqMPNMFIWVoVgs4tSpUzhz5gy2bduGQ4cOYWRkxPBeErEh9dFutwslaDl1gZNl+Z8eoeYZf0TEZaladjnz3TQ9F+l0GmNjY4jFYohGo2qxXgakNFDGXywWE0SJan2RW5C62ReLRdGEVdM0oUKQ9E+V+vm95+OfbEaNW7mtFdaOZDIpKmnrqU9OpxPxeFy0qtq9ezcCgQDM5oUG9pStRyEB5NajZ4XXIKSNGbUrmZ+fx7e//W2cO3euLiSAiDapG3rxmwrLw2RaKKLs9/vh9/uFQkWkJhqNIhaLicK9tdpCwV1N0+pECWAxA1/O/JSLJVOcdDAYFPUOqbcnqWUkflAhUr/fj3Q63VaJCB1BqppFsxJgM4u0HjlrBOUiXASXa0mmz2azIqjYSEXSCwznA9IoMUCPUMl2kMmSTMb07Kdnex7XxXtdKRiDYqCSySRKpRJsNpsgtWRXs9mMdDoNAIjH45iZmRF9GqmdEQWkEvH2eDzC1czr3PCdMbDoelSJBK0Fnx/1SAuNkVQqJcgz76nJ20kBS2vD8er6dIwSREjlIPWEu315eQ1l67VB7odqMpmQy+WQTqcFMeYeHT7meAkTPja5S17OyOVlbUixstvtQnmm61JyES/Z0C7oWFJFRuKSvpGqYUR05IWZF5Sj+jh6k0UjA7aTcS8lyIeez+cxPj4udiCbNm2C2+2uGwy0SAIQiiPFX1CpBdmFxyddWcHk7Wt4Zole7J0cP0fXoGeLEhh4gLqmacLtF4/HRZaSgj5qtRouXrwodpe063Q6nRgcHEQ4HIbdbkcsFoPD4cDU1BROnDiBZDJZZ0uqWeP1enHzzTcjFAohkUjg5z//OcbGxgxLYtCkXalUcOHCBaUqbhAqlQqi0SjS6TSCwaAIOKbkAR5nR2OUtwSjKt10TqlUwtTUFEwmE2ZnZ0WlfNkrsVwpFoXmQBsXUoTT6TSq1SomJiYwOjqKZDKJSqUCv9+PUqmEVColCJHT6RQdTugf1Z2i0ggUr8WzOWnTEw6HsW3bNpGEls1mUSqV0NPTg+7ubiQSCRSLRczMzAhVu13QsaQKaKwmcZdOM4NLjvsgRYJD7XxWBsqoi8VimJychKZpGB4eFkoFncMVLPl1mmi5wsRLZ8ikClgkVnxA670GLLql6DP5d6ddL38vuRRot5ZMJjfiVnY0NE1DPB5HPB6ve53H2ZFL1WKxYGxsDEeOHEEsFtO9XigUwu7duwEspNOfPHkSR44cUepEm4FcQtlsFolEAul0GplMpq73H41j2WXLXUe0eSLXT7lcRiqVEiUzZCj7twZUrJMKdpIyGI1GMTk5iWw2i0qlApfLVedVoM0whXHwMSkXAiXliTay5Dq0WCyiyCiV7SCliqqokyuSjrULOoJU6SlQxHypdx91MC8UCiL9lsuRsluHFkw6RpkE1L+O/vGKzsq1t3KUy2VEo1ExgLiqw+8/sLT8gezu03Pd6cXaGcVTcRjF6XEpWp6cKRaoUCggFoupbL81wmq1oqurC0NDQygWi4hGo8jlckgmk7ouVco+8ng84nnipTOMCBV1XgAggmzVwrvx4K482RUE6I9RvsElNYsSFeh54EkJCq0DlSDxeDxiDJFS7Ha7ASx0k9A0DdlsVneDyTtRUI9VctuVy2Wxmab1mBRsUrrcbjey2Szi8ThMJhNCoRACgQDy+Tw8Hg/6+/uFN6Fd0BGkCli6OFIGQSqVEp3SI5GI2MnwTANZqeD9oWiQ22w20e4mEokgEomIGIxUKrWEnKlJuTmk02kcO3YML7zwAg4cOIA9e/YgFAoJFwBQ379PDi7lbj8AdUoVsLRhp+zSBRbbmsiBtPSTngUqVKppi014eSzW/Pw8nnzySczPz2NqagqFQmED7uDlC7fbjf379+OWW27BuXPn8OCDD+LUqVPI5XJL7i0Fp4fDYdEKyev1wuVy6TbcpWfCYrFgZGQEhw4dAgAcPXoUJ06cUIvwOqDR3EibVlpYucokK9BA/caKzrVYLHU1irxeL3w+n8jYll35SrVcG9xuN7q7u9Hf349IJIKenh6USiXMz88jHo+jUCjA7XYjl8uJLEy5vyJvD0XNravVKlKpFLLZLNLptCBVFosFfr8fwWAQvb296OvrQygUwsTEBJ577jkRkkEbrsHBQXR3d+Ps2bM4depU29Sq6hhSJYMGGwU/2u12uFwu0ai10cAiYsUXYCp573K5xD+n09lWvtpOBDXdBIC+vr66FFpe9JMTKb0SCjRZ8uBHHgBpVIdIDoaUnwv+ORSUyQPt+fXy+TwuXryIyclJERytsHpQr7AtW7aIYOaZmRnDPl4OhwM+nw8+n0/EYhjVqKFnw2Qywe/3Y/PmzTCZTBgdHVWK8yUAjV2bzSZIEs3BNDZ5IVCgvi5ZpVIRm2CKwaQgZv6sGHk1FFYOKmdBjYtDoZDI1PV4PGKudDqdIgFFBs/65Vm41NuRK80UR0cKFf2rVqsidrW7uxtdXV2iBIvH40E2mxUuynZAx5AqeRGsVCqIxWKCCT/33HMoFotiYfR4PCgUCkuKefKAdB5Dlc/nMTExAbPZjImJCSQSCWSz2SWkSg3Q1SOXy2F8fBxmsxmhUEi0seEtKYBFW/MaYbzcAX8WuHIJoC5uikN2LcrHZFXM5XLVHaMKz5TJSGngCiuDybTQeNvlciEYDMJsNtc1XpUJN6+2HAwGMTIyIrL+zp07h8nJySW7Y2CRTPOCo8pe6we9TF2qJeh0OoX7lcIzCoWCGL+8HyT9o4K68tgkUuVwODA8PAyn04nJyUnkcrklWWBKqVobZmdn8dOf/hSRSESow+VyGc8995woZUE2opYyQH0Dcx5OwddgXh/Q4/EIgkRjNZ/Piyrq09PTmJ6eRqFQgNVqRTqdhs1mg9vthtPpFOt1u6AjSJVcBBBYqIU0NjaGixcvYmZmBna7HUNDQ9i8eTOuu+46hEIhpNNpXX87390SqaJijtlsFseOHcPk5KSoPyQv9o3QbGD8lYh4PI6nn34aExMT2L9/P7Zs2YJgMLhE9eHdy/luliuQRlmZcmNVYPkq3bwat7wYUKwPpYbHYjHEYrEl11FoDhaLBZFIBL29vejt7YXVakU2m0UulxPEimIkzGazaOJqsVgwPDyMG264AWazGRcvXsTo6Cji8XjdhMrdfi6XS3RckAOhFVoLnjRCc6DNZhOuo4GBAWiaJjLEaBNFGYC8xEKtttB6hloU0dgnrwQpKNdeey1SqRR+8YtfYGpqSpAqNf+uHZqm4dSpU5ibmxNxxrTRpDpRVFfK6XSKwtnAYuwcj3OSY1xrtcVeq4FAAP39/UJ9BoBUKoUzZ87A4XDgueeew/PPP49sNouzZ8+KvqG0dlMyVLugI0gVsHSXSTFVAOB0OjEzMwOLxYJgMAiTySSCGOWML70FGlhwU8ViMSQSCeEv5r3g6Ds0CqxUaIxSqSQywEhd4BXMOSE1Cjzmbh2uLBkpUPLfcvC73nm0eyapmnqRUUq/qku1elC6tc/nE3346J7qlc7gY83j8SAcDqNWq2FsbAzRaFTUvtL7HL5gE+FWWF/IpUlcLpewNbBYh4gKQPLsW9rYkIpBdpXrVBEZo8bcVPxZobXIZDJinrbb7YLM0IaSkgRIyQfqwy14vTAZfC11Op11ySeU6UllFFKplKiLRbXs2hkdQ6oIsswMLBIii8WC/v5+MfAoS4RXWwcWC5MBi8YtFouYn5/H7OxsXWaXXtaZ3kOiCNbyKBQKmJqaQjKZRFdXF55//nlRo4iaWFMhOa4ccfDq61RqQW9C5eRXDoiVCRldgyZocgfncjnEYjEcP34cMzMzmJqaaptO6J0Kq9WK3t5e7NixAx6PB6lUCs899xzGxsbEvaVdLLkJuMuA4jGi0SgmJiaEwsVj4QCIRt5UOHR0dFTEZiglY2Ngs9kQiUSwadMmdHV11ZVR4LWpaGPFYx8dDkddljApWbRRttvtgqi1U+bX5Qo+75JdnE4n+vr6xJpLWbx79uxBb28vgsEgCoUCcrmcGNNEwnw+HxwOB4LBIKxWK0ZGRkT2H3kKqD7WSnr7tgM6ilRRMBv9LhOiUqmEwcFBIS2TkeiBoIeCF5wjV1OpVMLk5CTOnz8vCssBi/5hvQBIhZUhm81ibGxMTIpdXV3o6urC5s2bMTIyIuIleN8/OUaCeoYBi9WTOWTyy4PN5ZIJAOoWbafTKWqgzMzMIJVK4cKFC/jJT36Cc+fOoVwuK1K1RlitVgwPD+Paa69FuVzG+fPncfr0aczMzIhdKKVcEzgRLpfLyOfzmJycxOnTp8UzwIvE1mo1eDweDA8Pw+12I5VK4fnnn0exWMTc3JxyAa4TZLJK7r8dO3aINHwiVHQ+jXm5oK/T6VzSeoS7hUkBoyKSSqlaX8g9cDVNg8/nw/DwsKgZR68PDg5ieHgYfr8fsVhM1JHiZTGCwSA8Hg9qtRq2bt0qPAKUdU2FQovFYlv19WsGHUWqCNwlwNNuyUVDP/XicWTViWeQ8ffqqRtAvQLCIfuMFZaCL5ZUENBsNqOnp6cuEF2+5wS6x7xAKGCsJuplgPJrNrIltT9Jp9NIpVJIJpMqJqcFINe81+sVLnYqDMnj6nhsFGUNkVpFky+5HPgmiX8OjXvuStBzFSqsD8gFSwUkiUwBEK4huZAvj8uSa8bxsUrHacOrsP7g6j6NS7fbDb/fD2BxbvX5fKILBY9f5kIIldgAFpRGTVuoO0nZ4aVSSbyP1MlG7sR2QkeSKhm0WBcKBczNzeH5559HIpFAIBBAV1eXGHh8UMsZZkbqyErR7gZvF8zNzeHpp59GIBCA3+/HoUOH6oqt8oxNGnD8NS5Dy6RKjs2hxRhYzA4kO/Pso3w+j/n5eaTTafziF7/AuXPnRBNfRaZaA7PZDK/Xi66uLsTjcczNzeG5555DPp9HoVCoKxZoMpnQ3d2NoaEheDweBINBUUGZ17HiqfgU6JzL5XD+/HnY7XZBjGnSVmO09eAbDj72eLwMAFH7TQ5Op3FICyefB8hlxBNXaNOsFyKg0DrIIRQWiwXd3d0Ih8OIRCLYtm0brrrqKtFlolqtihAKnpHNr0WxjnIsHQBRhZ1q0FWrVZw6dQrd3d2w2WzI5XLCW8DXh3Z6Bi4rUmU2mxGNRkXWwsjICAKBQF0MFUFvsJLsuFZipbA8qICcy+XC7t27RUV8apQqu3rlTEACVxxpQm6UmadXzZmeDYqjmp+fx7Fjx/CLX/xC1MhRz0NrwAPOS6US5ubmcOrUKWFvKuRJ9zsSiWDfvn3C1ZNKpZDJZISazBUOYLHnJJXvMJlMIui53SbfywlGSSVUP5AHOZNKwUkVsKg4VqtVUcyTxh/VqaKFVCZVyq6th+wtIIWpp6cHIyMj6O7uFqSqWCwiFoshn8/D6/UKW/O4Zr3YOHoeeLkci8WCcDiM/v5+mM1mbN68GT09PWJ+lwu9GsXfXip0BKla7mbRwihLhPwf+WjJyPSw0KCVgyKVpLy+IOJDvf30ymYsB9kdIGcF0ucQOEnj5/HdDn0vchW1y0DtdJArgFdA5648mhzljD9qlUGFffP5PPL5fF0iifyTj23lsr100HPR6bnijdzwBKOs3kahAgrrA57UQ+VKiAjbbDZUKhUx1mmzSmIFd+9yrxD/ScHsnZyp2xGkikNv8FCLGb/fLyquhkIhuFwuIfnPz88jGo2KDMGuri6xIyJ3Ak36nZZt0AmQyQ5XGMrlsghSpiQD3l4IqJeQ5YUUWFQo+LXp/XILE754c1VLEaj1gdlsRiQSQV9fn0iDn5ubQzQaFXFRfGNEEy6wkGHU1dUFt9uN0dFRjI6Oing8GZyY8b/pO9DmqpMn7E4CKVVOp1OMNdrY0lijBZTbSVYd+DjniobD4VgS1qHQOshJQsCCLRwOh6h2TrFTmqbB4/GIrEy/3w+r1YpkMolEIiHc9RSoTkRL0xb6BvIAdRI6KFkhmUwim80in8/XlbPR+37tgLZ/GvVulryoWq1WeL1eBINBBAIB+Hw+eL1e2O12kcqZSCRw4cIF2O12BAIBRCIRAAuLOJEqzsBXSqpkmVRhEXJSAP3OA4lzuRwsFgtKpZKulKvn8uO/c/VJzxZ8oaW/ldtgY2AymUQ1dJ/PB5vNhmQyiWQyqUuquE0oI9PtdqNQKGB8fBz5fN6wKbIeieblUzp9F9xJ4IHqlExEiyqB24MItZGyyEkzr8KugtXXD3pjjIqBOp1OEQdHggSRKrfbLeycyWSQzWaFrW02GxwOh2hZlEwmkc/n67xGVqsVoVAIFotFFBYtFou6oTntNoe3PanSgzyAKMXW6/WKJps+nw8mk0lUVY/H44jH43A4HKJCM7Do/qOFPZ1OCwM389kElf3XGLJSpYdGx2UFQr4ukST5PXrv4wuvjHbyzV9OsFqtolcbVannrS14cDopHDygGYBw4RPxlmMxCGoMbhzkQGYZ5P6TXT7kvuWxjUSsuftWVpK5+tjMOG1m3lFYGWjNLBaLSCaTmJ2drcuwDYVCQqEkO8vZnrx6Pn82qLUc9x6RiqW3CW5H23YcqeIR/wSn04n+/n4MDw9jaGgIW7Zsgd/vx8zMDM6cOYNcLodz585hdHQUPp8P27dvF8XlyAUYj8cxOjqK8fFx0Z9K/sxm0I5G7gToLYpGLjzZFjQo+XX0Ahn5wNSbbJXt1gcm00K/v0gkArvdjtnZWZw/f15kVgIL955cQ06nUxSFpaBXyi6ixqp0Hrcv/zz+UymSlwak/Lvd7rpK6rQAE2km4kzJKjROucuIL8g0H6wmDlNhbdC0hXIzmUwGtVoNx44dw/nz55HL5TA9PY1sNott27bhlltuQVdXFzKZjKgvRnalIss+nw/5fB6xWEz0g6SNlslkQiAQgM1mE+VWOmXD23GkisAXVqvVCr/fj66uLoTDYXR1dcHn82FmZgazs7OiiOPExARCoRDy+bxo5EvuQaqePTs7u+RzGpGqTjByp6CRq1eOqZIXTHkXS+fySRhA3c7XyK7Kpq0HESSLxYKZmRlcvHgR2WwW2WwWQD0xJhJG/RfJRjROS6WScDUAS9VFpVRtPIwUIUqfp3OAxUKSpECSm4gWX0oQ4WVPgMW4SZ7MoMbqxoMUY9qozs3NIZ1OY2xsDKlUCtVqFbt37xaqNCmQNA9T3TkqzA1A1Kai2CmPx4N0Og273S6ywRWpahGMBquRqwdY9NNns1nMzc0hkUgglUrVFQXlWV5UhNCo7pHe5zWDTngANgorvRc0qVIwIw0o7s6Tszv1ioLyOlUU08HVLGDRHUjn8GxQhdaAZ+Fls1lRb4paDdE5wEKLEtoYOZ1OoViQ/YD6ZAR6Lx+z/Hnjz4uqvN16NHKxUb0pvTFFJIli6fh1eKYYT1qh96i59dLAZDLB5XIhEAiINjMulwvRaBTT09NIpVIol8tIpVJwuVzIZrNibqbYK7JjqVRCLpdDNBrFzMyMeE64Wu10OhEMBuH1eoWLsFgs1s0D7fYstD2pksEXUnmCJTWDmPTU1BSOHz+OWCyGbDaLXC4nYqpIoUqn04jFYnUVnUmKbkeDdSKM3G1GoHOJ8NJA4nWqiChxl55Mljh4Zgm5JGgip5/kCqbPVLZvHXh7oWg0irGxMTFOecFPTdPg9/uxY8cOdHV1iQwi2sVy8sTTs+XFmCuSVBeHx/IorB3LhUXQGKbeb9xO3I7cBchVLHIZ8e4YfJNF30Fh42CxWNDV1YUtW7bA6/WKvo4UOjM/P49cLoeJiQnRjBlYJGNUWZ8aJc/Pz+PMmTM4e/YsnE4nQqGQIFLbt2+Hz+fDuXPnMDAwAKfTiWq1uqSpcrut0x1BqvTUokauIgqkIx9tNBoVvnwKeuPKRKlU0t0Fk7FWqlooH39rQESIFl/eQJlIkF5hTj2CxUmVnIXI38cLwCq0DmQTCkLNZDJi9yonDlCGbjgcrsvObSbOUY6not+JuKlFeGMgz8XymKQxqBecTpAL9cr/eDFQhY0BJZH4fD74/X5EIhH09vYilUrVtZJKp9MiGJ2SToD6TQ/FUSUSCczPz8Pv98Pn8wFYUKsDgYDouOHxeJDP5+uyPtsVl5RUrWYwGKkRZCxK96TmndQlW3YTEaniGX/yQsoH/kqMqAb6UhgRH77Y8mBUk8lU19qCapsAixOvEeHlpIgTcprceUYZnSO7GhRaBwpuTSQS0DStrlk5d+fSvacSKT6fD8lkEmNjY8hkMohGo+J9fLHmNtNzD+kt7Aqtg3y/qSAkVU0nG/HyCZzgklLFN0pcheYlFGQ3vxqvGwtyzXm9XthsNuEFisViCIfD2Lp1KwKBACwWixAwyuWysCHN6RQ3l8vlkEqlkEgkRIC62+3G0NAQkskkLBYLKpWKKMMgd0ZpR1wyUrVa0rGc+48CYj0eD8xmMzKZDFKplPDbkypFDVlTqRRisZjoDSZ/v9V+T73YDoV6cEJFkyPZiQrKUbNNOs6DJHl7EmBxsaXYOb1Fmz6Xuw94bA4vPKnQOmQyGczMzACACE7n8TS0mAILSlUoFEJXVxdOnTqFX/ziF8IFSIssuYQ56PngY5eeCR78rNA68HtNRImKQ3o8njrXLm8BRu48TdNEqQ3uNaD4GgDiGeF1jGjcNqprpdB6EOkJhUKo1WqYnJwUzeb7+/vR19dX1/Cc7EWkyu12i/nebDYjmUxibm4OU1NTsNvtiMVisNvt6O7uxtzcHACIxBQqNtruuOTuv9VkXxm5/ni2Fw1mch/ROXyBpomcXEvLfW6zBEsRqdWDkyDeB05uvlmtVkVGCYA64iS3RZDrVMlNm/kxhdaDxiEFnMvEh37yxuf0r1KpIJ1OI5lM1sVN0jjmY54TdL0kE6VUrT/IjmQ/OTGA24gg9240Kv7L36tXl05h/UHjjcYmlVew2WxCvaLELyLR5XJZbJxkzwQdp/mYikFTbCuvSdcpRV4vGalqFFS83PvktiIWi0UU/yT2S1WXeSo9ESxadMmnm8vlRHuU5b6rkfrUCcZuZ3C3Hx94vKs9LZS0y+ULMbcJDXr6nc6z2+2wWCwiEF2ubUQBzartRWuhaRoymQympqYALOw8qdsBKYMOhwM9PT1wOp3o7e0V2bs804fiM4BFF6/L5cLAwACCwSDS6TQmJyeRzWbr3ARqbK4P9GIXKSCZulu43W6ROk8bV06iNE0T45FnCspzLI1VvRZEChsHSj4gtdlut8Pv99e5aKlKeqFQEHaiQp+0MaINMSUNUQcUr9crgtnn5+dFiA415u6EFnIdtXoYBY5bLBa43W5RRT0Wi8FkMiGVSi2pT8QHLtW9ocxAPdeA7GZUu6PWge4tVxu4ukALLmUIUc0SisnRUy64UgksTr60k6LdM9U+4QOUFyPsBN99p0DTNKRSKTHJEsGloPVSqQSv14vNmzeL3p3VahWZTEZsdmhidjqddSqzzWbDyMgItmzZgosXLyIajSKZTAKAmOTloHWF1kEmVWazGR6PB+FwGMFgED6fDy6XS7iDODmi+bRQKCyJdSXyBSwSKq5ik12VPTcWRKqorRgRIK4wFotFxONxpNNpOBwO0ZKGvAu0eaX3U/wkkXGXywWr1Yrp6WlkMhlkMhlRnV1vw9tua3LHkKpGChGxZCoyx0smNOvS06tfowbs+oJPjI0K+vHjPONHjueQr0nQc/vIZIoTMn6NdhuwnQoesMrddcBi/Sin0wmPxyO63csZfzKIoFFiitPpXOIWUmN4fSFvTIDFEhaUEMLHNkEenzzLj5+j59FQNr10oA1NqVQSZUrIHrQJ5u5d7m2QxRDZ9U/9A10ulwh0JxWTNsp67uR2wyUNVG92cPAFjhvCarUKlSoUCiESiSCdTmNmZkYUFeNZYNwwNPBdLhf8fj+KxaKuy0AtrusDbg9SoShYlbsJyMaccPGAY+4uJJCNqZcUb9JJNVK46xBYdBnS91BFIlsLfr9pt0qvAxDBqQMDA6hUKpidnUW5XBblUChrMJfLCeXR4XDA7/fD7/cjEAggGo3WXZeeA6MsUYW1Q48sURsS3lSXx8/oES09RZHGMC8KyeO01Jy88SBlMZVK1alGVHeqWCyiUCgIz0C5XEY+nxc9O4kgyWOyVqvB7XZj8+bNCIfDsFgsSKfTyGQyKJVKQjTphHm57ZUqrmTIpIp2Q1ThNRwOI5/PY35+HvF4HIlEYgmpIhcPGYnchtSjiM7lny2/prB28MWVyAwpFHIRVnkC1gs85r/TYKegdnI70PXIpchJNJEu+h6dMHg7CXISiVw3ymazIRwOY2BgAHNzc7hw4YIozEtjmAJaLRYLAoEAPB6PIFXkPuBKFX0WT8FXC/H6gG96KU6GFAegnlTJblm9DbZMqmihJlKlbHlpQKQqnU7X2TGXy2F2dhbZbFaUTrDb7chkMkin0zCbzcKDJCcbkB1dLheGhobQ398vGjXT88LDMtp9De4YpUrvNS4zc0WD/Pfc/ccndE7U6H2ysdbir293o18KyGqfHEdldL95HIXeMaPfZQWKBjCXp2kR4M8DV1EUWgcjdw8dk0tpUIHQcrm8RC02mRbS9n0+n0izJhVS7zlQ43FjwccRJ07y/Mvtyv/JrkAeg2M05hU2HnJxZtq8kCvfYrGIsic8dlb2PPAEMu65oHAeitOirhrtTqY7glTpgQIivV6vyDJxuVwAIGpPZbNZITFSkKvT6RSBc3a7Xbwmu3zkxXY1/z+FBejFPpFqRO42vgvl79OrtsxVDqNYOFp4NU2Dw+EQRIoK0vFCoDR4qbgcBUoqtA7clnJJCwpmdbvdcLvdKJVKOH/+PGZnZ1EsFmE2m+FwOMTka7PZMDg4iK1bt8Lv96Onp0c0X+aBzETa9VoZKawPSKnyer2C8MqFH3lcHcXa8AQiitkplUowm83w+Xx15/GSGXKtOoX1BxGfcrmMyclJxGIxWK1W4fL1+/3o6+sTQeyJRKKuPRgnS1R9PRqNIhKJiPmXbFsulzE7O4vJyUkRtC5n47cbLnlFdaObstzkR2yYBi8RI2ChuGA6na7L8OKqFu2iaGdMJMtIKdGTphuhXY19KSErVTTR8no28k6UYmL03iu7avnvPKjd6XQKMkUZnpxU0WfKpRcUqWot+D3mhR15kgkR7Eqlgvn5eUxOTorXqGYZsNh/bPPmzXC73QgEAks2RrJKpQjVxoDHu9GiysMu6BxOiuSaRRTcTC4i6hlHqfxyjSs1124cuNpUKpUQi8UwMTEBr9crEk08Hg8ikQhcLhfi8bioaUVrLXXHoM0OuRMpO5jGMVVTn5+fRzKZFOfIaLdxfclJVaNjXO6nwcdVD1KfePl6qp5MAcp6LgY+8dJ75JpF9JNL1GtxVyoshewGoNdk+xD0MoDknzLoWkSgCbwtjvzZyn6th0xwKIYtFArB7XYjEokYVkuWnxGz2Qy3241gMCgmadmlqJSpjQWfZ3lMDY+b4W1q+Fgk0kXqJbcbqVOkcHKyJYcPKGwMeMIXFeokhaqnpwd+v1+syRTTyEvj0HjlCjIAkYxCLkNy59dqNeTzeeTz+SXZwO04vtvW/cdJjOyLByCCVSORCILBoFCaCoUCotEoZmdnkU6nl3Sq5/FXwGKqt+yr1SNW/PVm/n8KxuDSPb9XpFwA+gVief0aI7vIEzwRaqA+tV/TNLGT5tdS2X/rA76JKZfLcLvd2L17t3DjBQIB3Q0OVxOBhcm2r68PO3fuBADdjgg8Q5S7itW4bC30SpV4PB50dXXB5/PVLaCUGUZjkexJiSHUSki2I1XWpmvUajWhhnHVWoZe2IHC2kBzqtvtRrlcFtn2Pp8P27Ztw65du8S5lOlHrYcsFouoFZhMJpcU3KbuCfF4HB6PB4FAQLw+NTUlsgHb3ZaX3MexHLGic+RJkVgvxVJwpSqfz4tqzLzYnF5Auhwkudx3bGZSbnejbzRklYK/LtuUFlE95UG+XqN4N+72BVBX0RdA3Y5Xfr7U4ru+INtaLBZ0d3djZGRExDfycwD9RAWz2Qyv1yuKhMZiMcMFmSckqHG5/qB52eVywel01qmIvL+jXNCTd0aQ1Qv+Hhq3RMSW8yAou7cevLxBqVRCJpNBpVJBOBzG0NAQisUi0um0KF2jp1TJmX90XrFYRD6fr3Md12o1EU9F47ydcUlI1XILot75cvEwYsykRJDhqNorVWOW3X+yQkYDXq5jQyqKXE+j2XgqtSg3j0akVn5NnoyNlCq9yZZP4DTZyy5evc9UWDtobNLvwIJ6TC6DfD6P8+fPI5fLYWxsTMRO0PvIdtRYlRJUqD4OUG83chvRvMH/Kaw/9MYzvcb7wZHCyOdpYNF+QH1vQL7xoUWXPA+q1ML6gwjO3NycGHfUPJt+kteoVCohEAggGAyiWCyKBCAak6QwA4su/d7eXgwPDwv3ca1Wg8PhQDAYBABRe7CdbXzJlKrlsjb4TeMBy7JSRQGqmrbYkygajWJ+fl7UxSBCxYOiaRHVc//x8gty6nczpIqf287Gv9SQ06dllUHesXLVkdyARvFX8vWBxedItr+sVuo1dFVYG2iMAYvE2G63Y2BgAFdffTVOnz6Nhx9+GCdPnkQulxMTNs/2ook7HA6jt7cX/f39yOVyiMViSCaTdTajyZfsrFexW2F9YDSmObGtVCoi04tUDGBxHFNtKpPJJGLtaM43mUwia5sWXVJAaHPNoebh1qFarWJ2dhanT58WnqBwOIxwOIxIJIJIJIJyuQyv14tKpYLBwUEMDw+jVCohFAqJKuyUOEQEyWKxIBgMYvfu3di/fz+y2azoH+j3+9Hf3w+Px4NqtYpUKtXW9mxr9x8/hwYGH3w88JwmTqqZQeXt9d7DP9NoAuAKhuyeMoJyMxhjrfelUYsD/lMPeqSYXIwARCCsCm5eP/AYJ+7mpbIo1EB1fHy87hx6H6kTDodDLKgul0uoUXqqCJExpVBdeuipwOTKM9pUkd313PS8nhzP5tabJ9R4bh0oxi2ZTIrxTGOSJycAC8SYlGUqrMyVYzkLmJozh8NhmM1mZDIZQaQphosySNsZbZ/91+gcbihy+xWLxbosEX49We0if32xWFziq6XzZVLW7P9Huf+WB59o5UmVq1CcrNI5PD6KXwNYSn75s8TPMVKmlO1aD0q1tlqtCAaDdfWlcrkcyuUyPB6P2M1SrRrasZpMJvT392Pr1q2i6bL8jMjPj91uF6EB3M2kFtn1BZXHoEByvXFJc3G1WkU+nxcqk0yUeMkN7j4kdYPi63p7e+FwOJBIJIRqKW+Gld3Xjlqthmw2K0olhEIh9PT0oK+vD5qmIZPJ1IVoUIY+bYioo0W5XEY2mxUtbHg9SSqjYrfbUa1WEQ6HsWnTJqRSKczPz7f9/NyW2X/yINQ7j+qeUDAk1bqgrvfEgPnn6ZGqUqm0xLBy0LJRjM5q/m8KC2gUv0T3j+Ll6N7zbC7ZdczVCPkYt7esQJK6SddU1dRbD7PZLCR8t9uN7du3Y9OmTSLDJ5VKoVQqwefzobe3V9S5sdvtmJiYELFYIyMjuOmmmxAKhdDf37+kMjMHNVrmWWW8kr7C+oDcdTyBiM/nPLSCxnY2mxXhGeTe46SKSBrF15EN6XgkEsHIyAgSiQRGR0eFe0iRqdajVqshnU4DAPx+P/bs2YOhoSF0d3cDAGKxGOx2u9gUkcrEmyWTiEEEmBcCpoQVqnMGAH19fajVakgkEjh//jzMZvMSF287oa3cf3KwYrPgihMVj2sE2rmWy2WR7rlc+ftm1Sr6Pgr1WMk94aSHCsfpZYs0ImYEub5ZI0VqJTZWWBlocaQmyJFIpC4ekgJV/X5/nWKVTqfh9XoBLEzioVAIwWBQBLECi2592uVS5pnX64XFYkE+nwewWE5DuQLXF5w8AfoqMic8XKVoZkzK6wTvliEX7VVjef1AxZWp7yaAuqKeBBqfXNSgTE4jAYU/QySe8Grs7YxLrlQZucyWW4Sr1SpyuZzw7brdbsTjcUxPTy8pEEYqR6FQQDabxfnz5/HMM89gdnYWY2NjuHjxoqh/QdW0jb5Xs7E7Co2hN1nKCiGXi6mIHFcbZHegkfsPWIzRoJ9E0uSWNbQwK8WqdSBFmJqWh0Ih7Ny5U7iIKHvr9ttvRyKRgMPhEHFW1FQZAIaHhzEwMCDIGLkN/X4/AIhnJBaLwefzoaurCxaLBePj4xgdHUU2m8X4+DguXLigiNUGoFariWBznnAALM6V5Kal8UixsBTCQefKCzC9TmoIBUaTy1dhfWC1WoUb3ufzYdOmTeju7obX6xWEp1KpiEQTKm3Ew2yonycViaVMXqfTiWKxiEwmg1wuV/cMUCeUTqgf2FYxVXpxMHrnAYu+3WQyKdwDTqcTU1NTwmgcJB1ns1mMjY3B6XQiGo3i3LlzYpLVNG1Jy5qVuPLkwa7QHIx2KLToUvwUkSqaoGVipadCyTsjqo/ECRbJz7xVSicM3k5CqVRCOp2GzWYTpMpqtQqVuKurC9u3b69TH2iHS5N1Pp+vS6emliWBQABer1fUvKpWqwiFQhgYGIDFYsHTTz+Nxx9/HLFYTPQrU6RqfUEKFHe9ym57cuHRgsmb5vJsUZ4dCNTPszRuOalSWD9YrVYMDw/jwIEDogQCVVCncUoeICrmSUSZ+jlSYhDN7z6fr45UpVIpFAqFumeAlOhOmJcvqVLFf8rHjJQqrmYQ+wUWJlhew4LffP4ZdE46nRYsWs4SbOZ760G5/VaG5e63HEhu9Ld8Pb0YuEbPG7kIeRyHIsWtBZFhOX6N1AtSJuVackRygUU3P5Fh3i2Bty2p1Wrw+XzC/edyuUTTbqVAri80TUM+n0cqlRILJr1uNCb1IMc9yjFxlJJvMpmQy+UE4ZZjaRVaAx6O4fF4EA6HRa8/yv4jxZnbSy/5i5c3IteeXMSbNlTUiNnpdKJQKHRET9a2Uqrk1+RFknYl5FtNp9O4ePEirFYrZmdnYbFYEI/HheLEBzKv4hqNRmGxWJDJZFAoFOrideQsMaPvafT/USpVc+BxMHxB5IORsjm5ysQDyzmpkutP8c/hsRv0k65BOyYAIi6DAisVWgNy62iaJlx6uVxOkCi6/zzZgMZQpVIRhUDJrc9jNACIQq40P9BPInGkgJAbQm1+1g+lUgknTpxAKpWC3+/Hrl27MDg4KLpfcCWJ25jGJs0HlGRABIoKOdPzkUgkcO7cOZRKJZw8eRJHjhxBJpPB/Py8OId+ypsvhZWDiE0oFMLVV1+NG2+8UShTNN6o8CevPwVAbJQ8Hg+CwSBqtRoikQiy2SzcbjeKxSKCwSBGRkYQCoWE65/CdoLBIEwmExKJhMj6bWdcsorqer/rncNjZoD6VFtSmjho0qQAWF78kwZpMpkUkzUnVXRuI7dkI+gRMgV9cDefnJVJEyyPqdAjRHSMSDMnQnquY6500T+KyTCZFgsK8gbdCq1BuVxGuVwWsVAUa0MTMdlVL6tHz5b8eaFJltqX0OJMRJzq1lH/OIX1Q6lUwtmzZ3H+/Hl0dXWJKttUr4grEQRyB5GKwYv7lstlkZ0NLI7haDSKixcvIpfL4dlnn8Wzzz67pNK2nlqisHLQHEmJJJs3b8aBAwdgNpuRSCSQz+cFEebqM1eh6Tj19wyFQkin03A6nSiXy/D5fBgcHITf7xeEmq5Bz1A8HkcgEGh70eKSb8cbPfCy/AtASIx8IeWZBDIxkpUK7joilYJ8t81kBqkBujrI942Kv1HgIve3yxPhcq4/TsD0QPan82U3FE3i6XQaqVQKc3NzQh1RaC3IVqVSaUnXAr3xJ49lwnKLJVcpcrkccrkcstnskiQWhdaDCHKxWEQ8HsfMzIxYPF0ul3D5cNvruQYtFgtKpRJisRiy2SyAxXkkHo9jfn4ehUIBuVzOMHtbzddrB827NG7n5+dx/vx5mEwmEVROWb12ux3JZBLxeFz04KWxmM/nEYvFUK1WMTMzg5mZGRSLRWSzWVHaKJlMwuVyid8pTo6uG4vF2t6ml4RUNbopertSWoCp0BuxVSJX1P9LbkvDByoVmaOgRiJlfr8fbrdbGJyC3NeiOq0kuP1KgN69JJuVy2VEo1FdIiO3FuHEiv8NwHCxlBVPWtTl4PRyuYwzZ87g3LlziMfjuHDhQtsP3k4EkZxYLCaKNZJSJRfsBSDKMHA71mo1EUPDIfeDoySH8+fP44UXXuiYSbnTQeM2nU7j6NGjOHfunHDzWq1WdHd346qrroLH40E0GsX09LRw81cqFdhsNvT396O7uxvpdBrnzp3D/Px83dgnBYvalqhYqvUFn6+/973vYXx8XCT8AEAgEMBVV12FUCiERCKBCxcuIJ/PiznaYrFgdHRUqNRPP/00XnjhBbGmOxwOVKtVuFwuhEIhTE9PY2xsTGyIKFTn1KlTbb8xumRKld7uxGiy4woUpWDygHWz2YxUKrWkDQavus3jNehaVqsVbre7rmik8r9vDHg9k2w2i3Q6LWRm3tmeEyj6qfc7LcrA0uKfBLoWJ1X0mZVKBRcvXsQzzzyDTCaDeDy+rv//KxWaptXtTnkcnGxvcslSCQzuFk6lUsjlcnVj1WKxiCreRMaq1aog7YlEYsl7FFoPGpeFQgETExNLjm/atElU1h8fH8fp06eFi69UKsHpdGLnzp1CrXj22Wdx8eJFcW2FjQep++VyGSdPnsTk5KTw9JjNZvT09KBWq6G3txfxeBwTExPI5/OiwK+maZifnxcJYidOnMDJkyfhdDoxPDyMUCgEABgdHUU0GsX58+dx/PhxpNNpzM/PY3Z2tmOIc3tHfCkoKFwxaPWCKbuQFdoTeq5+vePKhu2BZtyszYgTzdhT3lR3AkxaJ31bBQUFBQUFBYU2hVKqFBQUFBQUFBRaAEWqFBQUFBQUFBRaAEWqFBQUFBQUFBRaAEWqFBQUFBQUFBRaAEWqFBQUFBQUFBRaAEWqFBQUFBQUFBRaAEWqFBQUFBQUFBRaAEWqFBQUFBQUFBRaAEWqFBQUFBQUFBRaAEWqFBQUFBQUFBRaAEWqFBQUFBQUFBRaAEWqFBQUFBQUFBRaAEWqFBQUFBQUFBRaAEWqFBQUFBQUFBRaAEWqFBQUFBQUFBRagLYgVQcPHkQ6ndY9du211+LRRx9d9hr/9m//hsOHD8PhcOA3f/M3dc+ZnZ1Fb28vXvva14rXPv/5zyMQCODgwYM4ePAgbr31VnHsT//0T8XrBw8ehN/vx2/91m8BAGq1Gn7rt34Lu3fvxv79+3HrrbfizJkzTf+frzS0wsYEPTsCwI9+9CNcd9112LNnD3bv3o0nnngCAJDP5/G2t70Ne/fuxd69e3HXXXdhbm4OAPDoo4/C5XLV2TmfzwMAnnjiCfHanj17cO+996JYLK78P38FYL3H8Hvf+946GzmdTnz6058GAHz961/H/v37cfDgQezevRsf/vCHoWkagMZjeGxsDC996UvF+FcwRivs++lPfxp79+7Fvn37sH//fnzxi18Ux7LZLN7xjndg3759uPrqq/F7v/d7woa1Wg2//du/jb179+Lqq6/Gu971LpRKJQDA8ePHccstt+Dqq6/G3r178c53vlOMXwB4wxvegIGBAZhMJiQSidXfgMscrbDvRz7yEXR3d4ux9uY3v1kc++u//mvs27cPBw8exN69e8XYBRqP7UZzd9uOX63NcfjwYe2RRx5Z9rxTp05pR48e1T784Q9rH/jAB3TPee1rX6u9853v1F7zmteI1x544IG6v41QKBS0cDisPfXUU5qmadrXv/517frrr9dKpZKmaZr2J3/yJ9p/+k//adnrKCxFszYm6Nnx4sWL2ubNm7WTJ09qmrZgr3g8rmmapv3FX/yFdvfdd2u1Wk3TNE1797vfrX3oQx/SNE3THnnkEe3AgQO6n5PNZoV9q9Wq9trXvlb78z//85X95xRaOoY1TdOmpqY0p9OpTU1NaZqmaalUSqtWq5qmaVqxWNSuu+467cEHH1zyPnkMR6NR7cc//rH2zW9+0/AZUFgezdr3+9//vpZIJDRN07Tx8XGtq6tLO3PmjKZpmvb7v//72lvf+latVqtppVJJu+OOO7SvfvWrmqZp2uc+9znt1ltv1YrFolar1bR3v/vd2ic+8QlN0zTthRde0I4dO6ZpmqZVKhXtP//n/6zdd9994jP//d//XZuZmdEAiPlAYWVo1r733Xef4bglu2uapiWTSW14eFh7+umnl5wnj+1Gc3e7jt+2UKr4LuLxxx8XbPYd73gHKpVKU9fYsWMHDhw4AKvVqnv87//+7zEyMoIXv/jFq/qODz30EIaHh3H48GHxnYvFIgqFAjRNQyqVwtDQ0KqufSWgFTYGjO34N3/zN3jTm96EXbt2AQAcDgeCwaD47Fwuh3K5jEqlgkwm05St3G43bDYbAKBUKiGfz8NkMjX9Xa8kbMQYJvyf//N/8MpXvhJ9fX0AAJ/PB7N5YSorFAooFou6dpLHcDgcxs033wyPx9Psf/OKRSvs+/KXvxyBQAAAMDw8jL6+PkxMTAAAjh07hjvuuAMmkwk2mw233347vvCFL4hjt912G+x2O0wmE171qleJY9u3b8f+/fsBABaLBddddx3GxsbEZ952223o6elpxS24rNGq+dkIZHdgQZUsl8u658lju9Hc3a7jty1IFaFUKuGee+7Bpz71KZw4cQJvfOMbcezYMXH8/vvvxx/90R+t+Lqjo6O4//778ad/+qe6x3/yk5/g4MGDuOmmm/C1r31N95y///u/x7ve9S7x96tf/Wq89KUvRV9fH/r7+/GDH/wAH/3oR1f83a40rMXGjex48uRJ5PN53HbbbTh48CDe9773IZvNAgDuvfde+Hw+9PT0oLe3F8lkEr/xG78h3nv27Flcc801uO666/A3f/M3ddcdGxvDgQMHEIlEEAgE8Ou//uutuA2XLdZrDHP8wz/8Q91YBBYWgn379qGnpwcve9nL8JrXvGbJ++QxrLBytMq+3//+9xGPx3HdddcBAA4fPoyvfe1rKBaLyGQyeOihhwQ5Onz4MB5++GGkUimUy2V89atfrSNOhGw2i7/7u7/Ttb1Cc1irfb/2ta/hwIEDeNnLXoZHHnmk7tg///M/Y8+ePdiyZQt++7d/G4cOHVryfnlsLzd3tyUutVSmaZqQZo8dO6Zt2bKl7tjWrVtX5BqSJcharaa99KUv1X76059qmrbU3Tc3N6dls1lN0zTt5MmT2tDQkPbEE0/UXXNsbExzuVxaNBoVrz355JPay1/+ci0ej2vValX70Ic+pL35zW9u+nteaVirjZez46tf/Wrtmmuu0WKxmFYqlbQ3v/nN2gc/+EFN0zTtG9/4hvaGN7xBy+fzWrFY1N74xjdqH/7whzVNW5CiSZqemJjQ9u3bp33lK19Z8vnpdFp7zWteo/3TP/3Tam/BZY31HMMc//Ef/6H19/drlUpF9/js7Kz24he/WPvRj35U97reGCY0cgErLKCV9n3mmWe0oaEh7cc//rF4LZfLae9///u1AwcOaLfccov2wQ9+UDt06JCmaQtj/7777tMOHjyo3Xjjjdof/uEfaqFQqO6axWJR++Vf/mXtfe97X8Pvr6CPVth3ampKhEv85Cc/0bq7u7WxsbEl542OjmoHDx7Unn/++brX9cZ2o7mb0G7jt62UKj2s1d2SSqXwzDPP4J577hEM+Xvf+x5e/vKXAwAikQjcbjcAYNeuXbjzzjvx2GOP1V3jgQcewGte8xqEw2Hx2j/+4z/iZS97GYLBIMxmM97+9rcvYeYKzaEZGy9nx02bNuGXf/mXEQqFYLPZ8MY3vhE//elPAQCf+9zn8LrXvQ5OpxN2ux1vfvObha38fr+QpoeGhvDGN74RP/7xj5d8vtfrxa/+6q/iS1/6Uqv+21cMWuky/fu//3u8/e1vh8Vi0T3e3d2NO++8c4nirDeGFVqDldj35MmT+JVf+RX8wz/8A26++Wbxusvlwl/+5V/i6NGj+NGPfoRIJII9e/aI63/kIx/BkSNH8Pjjj2P37t3iGACUy2Xcc8896O/vx1/+5V+27j+mAKB5+/b19YlwiV/6pV/CoUOH8NRTTy05b8uWLbjhhhvwzW9+s+51vbHdaO5uV7QVqbr66qtRqVTETfv+97+Ps2fPrumagUAA0WgUY2NjGBsbw6c+9Sm84hWvwA9+8AMAwMWLF8W5MzMz+OEPf1gnS9ZqNTzwwANL3AZbt27FD3/4Q5GF8s1vfhN79+5d03e9ErBaGy9nxze96U145JFHRHbet7/9bRw4cADAgq2+973vQdM0aJqGf/u3fxO2mpqaQq1WAwCk02l885vfFPY/c+aM8P2XSiWRZaZgjPUYw4RUKoV//ud/xjvf+c66159//vk6G/7bv/1bnZ2MxrDCyrEW+z733HO488478bnPfQ6333573bFUKoVcLgdgwc3/mc98Bh/84AcBLMTJxeNxAMD8/Dz+7M/+DL/zO78DAKhUKvjVX/1VhMNhfO5zn1Mxj2vEWux74cIF8fvp06dx9OhR7Nu3D8ACmSbMzc3hhz/8Yd0YNRrbjebutsWlFcoWACbNPvbYY9qBAwe0vXv3au94xzu0AwcOCOnxM5/5jPaHf/iHutf4/ve/rw0ODmo+n0/zer3a4OCg9o1vfGPJebLb6L//9/+u7d69Wztw4IC2b98+7a//+q/rzv/ud7+rbdmyRWQfEAqFgvbud79bu/rqq7V9+/Zpt99+u3b27NnV34TLHK2wMYde1uYnPvEJbdeuXdrevXu1e+65R3xeNBrV7r77bm337t3a7t27tde//vXa3Nycpmma9r//9//Wdu/ere3fv1/bvXu3dt999wlbf/azn9X27Nkjjr3vfe/T8vl8S+7H5YaNGMOf/exntVtuuWXJ+z7ykY9ou3bt0vbv36/t2bOnzoaaZjyGs9msNjg4qEUiEc1ms2mDg4Pa7/3e763xTlyeaIV9b7vtNi0YDGoHDhwQ/77zne9omqZpR44c0bZv367t2rVL27dvn/Yv//Iv4n3T09Pa1Vdfre3evVu7+uqrtc985jPi2Be/+EUNgLZ//35xzV//9V8Xx++8805tcHBQA6ANDAxoL3nJS1p7Yy4TtMK+b3vb27Q9e/ZoBw4c0K655hrta1/7mjj2a7/2a9quXbu0AwcOaPv371+yzhqN7UZzd7uOX5Om/f9iIAoKCgoKCgoKCqtGW7n/FBQUFBQUFBQ6FYpUKSgoKCgoKCi0AGsiVU899RRe9apXYWRkBIcPH8ahQ4fwsY99TBx/6Utfioceeqjp691///2iVH04HMbg4KD4u1UR/43aFdx55504deqU7rFEIoE/+7M/W/b6v/Ebv4GvfOUrS17/yEc+gkKhsKLvejmj1c8OsGCjt7zlLdi7dy/279+PvXv34stf/jKAhXZEclsb/l3uuecew+s++uij+M53vrOi73I5Yz1sx9tF7dmzB6961aswPj6+7Pu2bNmCo0ePrvpzFZZC2ffyhrLv+mLVpOr48eO444478N73vhejo6P4xS9+gR/84AdIpVKr/jLvec97cPToURw9ehR33XUXPvShD4m/eU++9cK3vvUt7Ny5c8nrlUqlKVKlaRq+/e1v484771xy7I//+I8Vqfr/WI9nBwD+4A/+AN3d3Th+/DieeeYZPPHEE6K4YCNce+21ukQYWLC9IlWLWC/bAcCtt96Ko0eP4tlnn8WOHTvw3/7bf2vBN14fVKvVS/0V1gXKvgtQ9l05lH0XsGpS9fGPfxzvfve78Su/8ivitXA4jE984hMt+WJrxcc+9jHs2rVLKF3nz58Xx/7mb/4G119/PUZGRvDAAw+I12XW/P73vx833ngjXvGKV+A973kP0uk0Dh48iGuvvVb3M5966ins3LkTPp+v7vX3vOc9AIAXv/jFOHjwIGZnZzE7O4vXv/712LdvH/bu3YvPfvazdd/jQx/6EA4fPoxt27bhk5/8ZKtuS1tgvZ6dCxcuoL+/X6RV+3w+bN++XRzPZDJ44xvfiH379uHaa6/FuXPnACwoUdSQc2xsDMFgEL/7u7+La665Bn/1V3+F+++/H1/60pdw8ODBK75q/kaN+1e+8pVCNZbV5UgkoltRm8NofH3pS1+q++6apmHr1q2iavQXvvAF3HDDDbjmmmtwyy23iNc///nP49Zbb8Xdd9+Nffv24Wc/+1kL/7ftA2VfZd9W4Eq2b+MmWw3w9NNP4+67717Vex9++GE8/PDD+Lu/+7vVfnxDxONxfOpTn8LU1BRcLhdyuZzoDQYs9IX72c9+hueffx7XXXcd3vrWt+r2G3vhhRfwH//xH7DZbBgbG8PBgwcF6dLD17/+dV0X0/3334/Pfvaz+PGPfyz60d1zzz3YuXMnHnzwQczOzuLw4cM4cOAAXvSiFwFYqJn11FNPIRqN4pprrsEv/dIv4aabblrTfWkXrNez84EPfABveMMb8JWvfAU33ngj7rjjjroB+POf/xxHjx7FyMgIfu/3fg8f//jH68gsIZlMYs+ePfj4xz8OYMGtmEgk8L/+1/9a1Xe+nLAR475areJrX/ua6NG3Grzvfe/THV+vf/3r8YEPfADT09Po6+vDo48+ilAohAMHDuCxxx7DP/3TP+E//uM/4HA48OMf/xhvetOb8OyzzwIAnnzySRw5ckRXzb5coOyr7GsEZd/m0LJA9Q996EM4ePAgBgcHxX/CCHfddde6ESpgoUr29u3b8Za3vAWf/exnEYvF4HQ6xfE3v/nNABYKnVmtVkxPT+te5y1veYuoENsMHn744ab7Tn3/+9/HvffeCwDo6enB61//enz/+98Xx9/1rnfBZDIhEoksOXa5oVXPzq233orx8XH8yZ/8CYLBIO699168973vFcdvvPFGjIyMiN+NitrZbDa85S1vWeX/5spCK8f9I488goMHD+Lw4cMwmUz4n//zf676exmNL5fLhbvvvls05P385z+Pd7zjHQCAb3zjGzh27BhuuOEG0T8yFoshn88DAG666abLesHVg7Lv5Q1l39Zj1aTq0KFDdRLaJz/5SRw9ehQ2m82wA3Ur8f73v1+49o4fP153zGKx4Kc//Sl+8zd/E7Ozs3jRi15U13qEEyyLxWLYhdvr9Tb9fV544QUEg0H09vau8H+ygOUqAV9OlYLX89nxeDy488478bGPfQz/8i//IgYf0Lzd3W53nbKpsIj1tB3FZBw9ehT/8A//gEgkAmDBVjwGYjWxiXz8vPOd78QDDzyATCaDb37zm3jTm94EYMGV8Pa3v118h6NHjwq1G1jZfNCpUPa9vKHsu/5Y9crxO7/zO/jbv/1bfOtb3xKvlUolw4Wq1fj0pz8tbhyVwiek02nMzMzgxS9+Mf7wD/8QN998M44cObKmz/P7/cjn86ItjQwj1x/B5/MhmUyKv2+77Tb87d/+LYCFsv0PPvhgXeuGz3/+8wCAWCyGr3/966LH3eWA9Xp2vve974l2FgDwi1/8AlddddWargks2J7b7krGpRj327Ztw5NPPgkAePDBB5HNZpd9T6PxdcMNNwAAfvu3fxu33Xab6Ad411134Ytf/KLIWqrVarq9yy5nKPte3lD2XX+smlQdOHAA3/rWt/CXf/mXGBkZwfXXX49bb70V//W//lfs2LFDnPfud78bQ0ND4t8TTzyBhx9+GO9+97tb8h/QQzKZFEFu+/fvR7lcxtvf/vY1XTMcDuNtb3sb9u/frxuo/tBDDzUkVR/84Adx++23i0D1T3/603juueewb98+3Hrrrfjwhz8sHhZgoTHs4cOHcf311+M3fuM3Lpt4KmD9np3jx4/jlltuESUVHn74YXzxi19c8/d93eteh6NHj6pAdVyacf8Xf/EX+MAHPoBrrrkGR44cQVdX17LvWW58veMd78BnP/tZ4ToAFhJJPvGJT+B1r3sdDhw4gD179uD//t//u+Lv28lQ9r28oey7/lBtalqAqakpvPKVr8QzzzzTkutt2bIFDz30kMhIU1BQUFBQUGh/qMCRFqC/v79lhEpBQUFBQUGhM6GUKgUFBQUFBQWFFkApVQoKCgoKCgoKLUBbkapGvdt41euVYMuWLdi5cycOHDiAbdu24TWveQ0ef/zxFn9zhWag7NteaLU9qMTJ7t27YbFYxN+N+iquBB/5yEfwm7/5m7rHHn744YZtMR566CH89Kc/bXj92dlZ7NmzZ8nrndymSNm4HpebjZV969EO9l11RfX1AO/dZjKZkE6nDQtzrgRf+cpXxMP14IMP4s4778R3v/vdumwCYCEFE4CqUbROUPZtL7TaHtRtoJnuA63GXXfdhbvuukv3WKVSEYkf1LFAD9/4xjd0r/Hoo48ikUjgjjvuaNn33SgoG9fjcrOxsm892sG+bbW6LNe7rRV4/etfj/e85z341Kc+BWCBOd9999145Stfib1792Jqagrf/e53cfPNN4uSBo888ggA4PTp0/ilX/olHDhwAPv27cMf/MEfAAD+9V//Ffv378fBgwexd+9efOMb32jpd75coOzbXtgIe6wGRnYAFjJtX/3qV2P37t142ctehlgsBmChrhuVNHn00UexZ88evOtd78LBgwfxpS99CQ8//DA++clP4uDBg4ZVoR966CG87nWvq3vt6NGjur0fv/CFL2D//v3Yv38/fvmXfxkXL14U3+NlL3sZ7rrrLuzevRu33HLLsn3O1hPKxvW43Gys7FuPtrCv1kb44Q9/qIXDYe2aa67R3vve92r/+q//Ko498sgj2oEDB3Tf96pXvUr7+c9/rnts8+bN2pEjR+pee/DBB7Vdu3ZpmqZp9913n9bf369NT09rmqZpZ8+e1V70ohdpyWRS0zRNO336tNbX16cVCgXt/e9/v/Y//sf/ENeJRqOapmna/v37tccff1zTNE2rVqtaPB5f8f/9SoCyb3thPeyhaZo2OjqqBQKBVX8vIzvcd9992ubNm7X5+XlN0zTtnnvuEec98MAD2mte8xrx3U0mk/boo4+Ka7z97W/X/uIv/sLwM1OplLZ161atVqstOXbfffdpH/jAB8Tfx48f13p7e7ULFy5omqZpH/vYx7Q77rhDfA+73a6dPHlS0zRN+/jHP67dfvvtK7wDrYOy8SIuRxsr+y6iXezbVu4/6t32ox/9CI8//jjuvfdevPa1r8Vf//VfN3wfrw7bDDQp4fHOO+8U7WW+853v4MyZM7jlllvEcbPZjPHxcdxyyy340Ic+hEwmg5e85CW47bbbAAAvf/nLRTPfV7ziFaq+lAGUfdsLG2WPlcLIDgBwxx13iOKBN95445IWVYStW7fiJS95SdOf+e1vfxt33HFHU+2gHnnkEdxxxx0YHBwEAPz6r/86PvrRj4pWHDfddBN27doFAPi1X/s1/MEf/AGq1SosFkvT36dVUDZexOVoY2XfRbSLfdvK/Qc07t3WKvz85z/H3r17xd+8J5Cmabj99tvr+gddvHgR27dvx913343HHnsMO3fuxF/91V/hV37lVwAAf/7nf44HHngAbrcbb3/72/GJT3yi5d/5coGyb3thI+wh4+TJkyIAlje8JhjZAVifvp3A8m2mGqHd+3IqGy/gcrWxsu8C2sW+baVUfe9738N1112HUCgEoHW92zi+8Y1v4DOf+Qy++93v6h5/5StfiT/+4z/GM888g/379wMAfvazn+H666/H6dOncdVVV+Ftb3sbrr/+etE65vnnn8eePXuwZ88eWK1WfO9732vpd75coOzbXtgIe+hh9+7dDQNgjeywFjTq31gqlfDEE0/gH//xHw3fe/78efH3rbfeij/90z/F5OQkBgYGcP/99+PlL3+52MU+8cQTeP7553H11Vfj7/7u73DrrbdeEpUKUDYmXK42VvZdQDvZt61I1fHjx/HBD34QmqbBbDajv7+/rnfbyZMnMTQ0JP6+8cYb8bWvfQ133nknPvrRj+r25AOAe+65B06nE9lsFrt378a3vvWtJZlhhG3btuHLX/4y7r33XuRyOZRKJRw6dAhf/vKX8c///M/44he/CLvdjlqthvvvvx8A8Pu///s4deoU7HY73G43PvOZz7Twrlw+UPZtL6yXPdYKIzusBW9961vxX/7Lf8FDDz2E9773vXU9zH74wx/i5ptvhs1m033v6173OnzhC1/AwYMH8frXvx5/9Ed/hE9+8pMik2h4eFg0fwUWXAe/+7u/izNnzqCrq8twot8IKBsv4HK1sbLvAtrJvqqiuoKCwhWN97znPbjtttvwhje8Yc3X+vznP4+HHnoIDz300Nq/mELLoGx8eaOd7NtWSpWCgoLCRqMVu2iF9oay8eWNdrKvUqoUFBQUFBQUFFqAtsv+U1BQUFBQUFDoRChSpaCgoKCgoKDQAihSpaCgoKCgoKDQAihSpaCgoKCgoKDQAihSpaCgoKCgoKDQArS0pMJGlvI3m82wWCywWCyo1Wool8tLer6tFgMDA9i5cyd8Ph+2bNmC7du3o1wu4zvf+Q4eeeQRlMvllnwORyckYV6qVg12ux1+vx8OhwMvfvGLce+992JkZAS1Wg2VSqXu3pVKJUxNTWF+fh7j4+P46le/iqeffvqSfG+OTrAvsLE29ng82LVrF4aGhhCLxfDss88iGo2u+noulwtdXV1wOp2wWq2w2+0AgPn5eczMzIi+XuuFTrDxRtrX5XJh69at6OnpQV9fH2666SYMDg7CYrHAal1YemKxGGZmZlAul1GpVFCtVuFwOLB582b09fXBYrHAbrfDYrHg+PHj+OIXv4hTp04hn88jlUqtu005lH3rYbPZEA6H4fV6YbVa4XK5YLfbYbPZ4HK5YLFYYDabYbfbxfcymUwwm81wOp1ifBKcTifC4TAcDgecTqdoU3PkyBE8+eSTyGQyiMViSCaT62KLVl2z4+tUtfrmmkymugeznXs+KSh0MuSxtdaxZnQ9eUwrbAxWc9+bOV/Zsz1hNi84vmQCRVjOZvxcjk5bjzuWVGmahlqtJn5fDjabDTabDRaLBW63W+xmfT4fHA4HbDYbfD4fbDYbgsEg+vr64HQ60d3djcHBQZRKJQwODmLTpk3I5/NIJBLI5XLr/d+8YuF0OrF582ZEIhGxg3E6ndi1axe8Xq8YXGazuc7+ZFM6ftNNN6G3txeFQgGxWAzFYhGpVApzc3Projhe6TCbzbBarTCbzfB4PAgEAmJs+Xw+mM1mYRuXy4XNmzeju7sb2WwWw8PDyGQyMJlMos9WuVxGqVRCrVZDrVYTtjabzeKfw+GA1WqFzWaD0+mEzWYTE7qmaUin00gmkyiXy0gmk8hkMiiXy4jFYkin00LxpPlEYfWw2WzYtGkT+vv74XK5MDQ0hGAwiFAohJ6eHvEMkI1sNhu8Xi+q1SpKpRLK5TKsVit6e3sRCoWEHU0mE3p6enDNNdegt7cXFy5cwLPPPotsNotqtbqhitWVDKvViqGhIfT29sLpdKK/vx/BYBAWi0Wsr6RUcW+SvMGx2WywWq11JInULovFAofDAbfbDQCoVquw2WxIpVI4duzYhiuUK0VHk6pqtVo30RrBZDLB5XLB6/XCbrdjaGgIkUgEHo8HW7ZsQVdXFwKBADZt2lTXGdtkMsHpdMLlciGfz2NychKpVAqJRALPP/+8IlXrCL/fj1tuuQWHDx+G2+1GX18fPB4PXC4X/H4/gPqdDT0Ddrsd3d3diEQiGBgYwJYtW5DP5zEzM4Pjx48jGo3i7NmzYmFVaC0sFgs8Hg+sVisGBwcFCd6yZQuuuuoq4Qog4hQMBsXkSWPZarXC4XDAbDaL8VapVFAul1Eul2EymYSbwW63IxwOw+12o1qtolgsikW2VCoBWJiUK5UKSqUSzp49i/PnzyOZTOLYsWMYGxtDuVxGJpNRpKoFcDqduP766/Gyl70MTqcTwWBQPA+0kSWXHrmGyA2Uz+eRz+cBAD6fDy6XC5qmoVwuo1arYdu2bQgEAsjlcnj88ccxNzeH6elpFIvFptYBhbXD6XTi0KFDuPnmm+H3+3HVVVeht7e3buxwUgXoK1B8c0WoVqvC1rRBMplM2LFjB2688UbEYjFomobnn39ekar1Ak3Oy7nsaDfrcrngdDrh8/kQCoXg8/nQ19eH7u5uhEIhjIyMwO/31+2OrVarmAj8fj/8fr8wusL6wWq1IhwOY3BwEF6vF/39/fB4PAAWCBRNoCaTCZqm1f0kpcTpdMLj8UDTNDidTszOzgIAZmZmDKVmhdWBxiARIoqDC4fD8Pv9GBgYwObNm5eQKrfbLQgUxc7wCTWZTCIajQpCVSqVYDKZhLrsdDoRiUTg9XoFOSICRmOYUCqVUCwWUSgUYLPZ4Pf7xc6YzuUKuELz4ApEV1cXhoaGxEbW4XDUnctJldvthtvtFuoEESz6nWxSqVTgcrnQ09ODcrmMSCQCl8sFh8NRF1NL84IiWOsD2ggNDg4KIaK3t1eIHJqm1cVUrQTlchn5fB7ValXMI7SBog01V7vb1cYdS6rsdjt6e3sRCARgtVrF4OUDVnZFkHuPlCly73m9XrhcLtRqNWFUeZDWajX4fD4MDg6KxVqh9aABY7fbEQgEEIlEhD1p0BpNnHSsVqstkZk9Hg/C4TBqtRr8fv+KB7yCMRwOh1B+I5EIdu7ciWAwiHA4jKGhIUF8PB6PuO+1Wk3YtFgswmw2171GrgOz2QyXywWbzYZCoSBsS5sdk8kkJmP+s1arieeFnimLxYKenh5YLBbkcjn4/X7s27dPKJnZbBbz8/N44YUXkMlkLvFdbX/QPTWbzYhEIujp6UEwGMTQ0JCYj2n+JeJD9iObc1tXq1WxWKbTaXF+sVgUCSlEsgKBAG688UYkEgmRiFAqlZDNZpHL5VCpVJDP54VaqbA2kHvd7XYjGAwiEonA7XZD0zRks1lhGxIcyuWycPvJsVUy6H3VahWFQkE8E6Ra8jmd5phcLodsNotisbhRt6BpdCypcjgc2Lp1KzZv3gyPx4OBgQExkCkbgXY75Kt1Op3Cn0/ZJzToiWnncjkRYwEsuiSq1SoCgQC2bNkCl8sFj8fT1my5U0FE2OFwIBQKoa+vD8CiNAxAKAlcpeREi9w9drsdLpdL7HC6u7ths9kwOjoq7K+wdlD8W29vL7Zt24ZXvOIVGBgYEFlesprM3fbkpjObzcK1V61W697r8XjEpErjkkiV2WwWKlOpVEImkxELKRE4OpdckkNDQ6jVajh06BAqlQrS6TRGR0eRSCRw4sQJzMzM6JIq+v5qzC+AxirFUR08eBDBYBBbt24VcTbA4qJI5IgWUQBClSByZrFYUC6XkUgkEI/HxUJLizTF7YRCIdx2222oVCoYHR0VGYFTU1OCYM3NzSlS1SIQoaLNaW9vL+x2OzRNQyqVqtvscjGDbKYXYG4ymerINs0FsivX4XAINdvn86G3t1e46xWpagEo8I1ia8LhsDA0kSqPxyPiLYhIOZ1OYRj6B6BOiaLJngfAc+OSCmaz2ZT7aJ1BuxuLxVK3Q+XkSV7k6Lh8Dl2L/nVCBkknwWKxwOv1ioBk+sfBiRS//3z8EXGimCh508ID2DmZprErfwb/SYoVTfLAwmRNMVzJZBJmsxnBYFAo11yxvtLB1T5aMKlshc1mQyAQQDAYRCAQqHP3UewLH7/cxUquWq4o0n0vl8t1v5OSCUC4C0l5poSITCaDbDaLUqmEQqEgPpuTuXaOx7nUIBvTT1rrXC4X3G43AoEA3G63ILc05oD6zQZ/HaiPoeLjn9uEPyOcWPHruFwuhEIhWK1WZDIZoV63U6JJR5Eq2mn29vaiq6sLL3rRi7Bz504xuGmw04PAMw/IzQDUp+QaLbB88HISpgIi1xc0QMrlMgqFAnK53BIyxBdLPfCMITq/VCohnU4jHo8LNVJh7TCZTPB6vdi1axf27NmDrq4u2O12lEqlJSSXwCdc7hqgc0nRoImdKx56CzZXMMnlS+fTM8AnbFK7+P+hu7sbgUAAlUoFL3nJSzA9DUaZCQAAOb9JREFUPY3x8XGhgND1rkRQRrTL5UI4HMa2bdvg8/lgt9tFyEVvby/6+/vFPByLxZYEKtPczBfOcrmMubm5uvmYwjDo2aD5nBNp/gz5fD6MjIygXC6jr68P6XRaBLhXq1Wk02mMjY0hkUggnU5jZmamLRWOdoDb7UZ3dzfcbjcGBgawfft2uN1uofQ6nU5s3769brNC44zWWjkznzZI3ENE7lxOoCjsA1hcB2jMVSoVmM1mHDhwAKFQCKlUCidOnMDExAQSiQTOnj2LeDx+aW6ahI4jVf39/dizZw+6u7tx/fXXY8+ePSiXy8hms2LHI++KgHr3EYGTK57mK7N1WdlSxGr9QDsXTqpsNpuIz9BTo/TAU+o5qUomk8hms4pUtQA0dtxuN3bu3Inrr79e7G7lMgjyGOKJBnyhBCCUCQp61csUo2KR9KxUKpW6zRX/bFkZ4Z8NLGycurq6hCurUqkgHo/jySefxNjYmCBVVyp4HOrWrVtx6623CgJFngCaJ2u1GjKZjFjgiBDZbDbhQSBQPI5eijx375IqAizOD/R+APB6vfD5fAAWCTsFwTscDszMzOCxxx7D+Pg4ZmZmkEgkFKkygNvtxtDQEMLhMA4ePIjbbrsNwWCwLq6JbMjHF/cGcEJEduWJLADqNjd0DVJByQVMnwEskqq9e/fiuuuuQzKZRE9PD06dOoWLFy9ifn5ekarVgIxCkysZgJgwwSiAWe91WbHiKof8T6/uhsL6gU/Wa8n44O9R2UGtAa+KHAgERCYWwWjMGYHGF08y0HPrGrl6jcZjM+OUuxkoI7FSqQjCcKWC7ECZnJFIRChWlH2pFwrBF2BaFGmh5XPrcpCVDL1/AOoIO/1N5J42ZD6fD8FgEPl8Hk6ns85tpLAIypQnwkxuP3Kv0wZJduXKypUMI9vxv4mA0WfR58khHBSGQ1n8hUIBPT09yOfzKBaLIgP4UqGjSBWAugJ/FKhGqgbtPpqZbPViOWRlSnYTkiEzmYwKdF5n0E4zGAwC0CdB8msy6eK/86BaRYrXDofDgR07dmB4eFjUfaMxyV0z8gZFBh+ntGGR464AiEB02sFy25Jd+bl0TRmyW5h+5vN5MW90d3fD5/MhHA5fsVmiNN/ZbDb09PTg+uuvx44dO+B2u+Hz+cTcK4dUkCpMduRxqpqmiXIWPL6VSifwa1QqlTolkjbOeptnIuP0Gnc5lctlmM1mXHXVVRgYGMC5c+eQTCYxOzuLbDaLWCymYqwYqM6cz+cTSp/NZquLL+R24MSKsvb0wi8AiKQDAr2Xq85UZ47IE30n7lqk8AAq65BMJtHb24tYLIYzZ87gRz/6kSifcynQUcyAlCragZBBqP6MLOlyX77egwAskioa1HIgOx/EvNaVqlO1vuB1pvhgMwpOlxdQPcLFlS9FqtYGu92O4eFh7N27V6TS0yRIPdzoXgONlSS+OHKXHE3WPJhVVid4phFfxPUWYD6+gUX3BX++ACAQCMDr9cLr9V6xShW5eRwOB4LBIHbu3InDhw+LDSwpCfJCKxNoshvFtRIB4llh5Nbn7iMi0ZQRRiqX3tiVY3j4fEBZg5SNCgBnz54V5yeTSUWqGCwWi+i7R8VaeQKB0VzLVUl6D41JOocnoPDjRKBLpRJSqRRKpZIQT4hQ0bNCY5Vc9n19fSgWi+jv70c+n0cgEMDTTz+tSFWzIBJFMh/5zunGyxMgn9Bl1YnvkGli5guu7A6kHVMulxO1cBTWD9wu8qQnL5hGC6hsQ4rPuVLVh1aClMRwOAyfz1cX77Yc9GzFoRdzxV2D9Pnybljvs/VcxrKKza9BnwVAFAqm+eZKisOhsgWhUAi9vb0iMJ3ukXy/G7n0+P3lqhWPj+LH+U96vzyXNwM9d5TD4UB3dzdMpoXyHDMzMyu7MZc5qJyF2WxGMplEsVgU7j8Oef6ln7Kt+TmcYOltjolAF4tFcT4RcILsdiQXbj6fRzqdFnUmLyU6ilTVajUkEglMTU0JhksVmuWqvQS+c5FJF5cpeTd0Dgqeq9VqSKVSuHDhAmZnZ6/44NX1BrkfXC4XSqWS2LUaScvyIOc7X9p1ezweMUlcqQpEq2Cz2TAwMIDdu3eLWmA8CFzPxSqTFxlGxIhn4sqvAViyMNNn6S3AfD7gZI0maVLCTSaTKGQaDocxNTWFycnJSz5hbxRcLhf279+Pffv2oaurC8PDw6I2H0/0kEtcAMbhFzxpgcYzVyCNCLLehlkm5jLB45+naZr4nl1dXbjxxhuRz+fx5JNP4vz582ouZ0gkEnjmmWfgcDjgdDpx+PDhOpe8nkDBf9J4ouxfWleBxbg6/h4eLkBKVS6Xq+vJS+dyhRmAeIaSySTOnz+P+fl5XLx48ZJvfjqKVJFPPp1OiyacRHj0FA2+49F7IHjgm5HaxRfxYrGIZDKJdDqNYrHY1K5cYfUg2VdehI1+J8gBz/QauW+JiCusHmazGX6/Hz09PYKI8FimRmNDVoqN4uDoOP9dT12icW5E4pq5Nh2nDZbJtFi9GQBSqdQV9czYbDb09/dj586dog4UlcoAsGR8NbrXXNmSa0U1CkLnm2GuaOh9nl4cHb8GHadCwJqmYWxsTMXGSigUCpienobJZMLMzAxyuZyofq+XwEWQ3eo8qB1YfAY4GZdVp0qlgmKxiFwuJ+LsCLJd6TMoTisej2Nubq4t3Lkd9USROkVSvHzTjQa23jE9N4KeqpXNZpFOp5HL5XDu3DmcPXsWiURCtbFYZ1BAYiaTWRIns1w5BD33Hy2WPEZAYfUwmRb7/HG7NNrNcteRfC1+nH7Xe81I5dIj2kbn0jGetQQsql/0t8vlEpWj5+bmrgh1k7cj8Xg8IrbGZDKJxYps3qg4aqO5WO/e0++NSDZXpPTGuHxOo/grTdNgt9vR1dUFAMjlcsjlcmqjzEDhNuVyuS5usVgsimQE2qRWKhVR1og3RC8UCmKt5MHnvGQCBZ5Xq1X4fD6RVczbGrlcLvHMVSoV8dkOhwOJRALRaBTnz5/H7OzsJa+i33GkqlgsIpVKicbHfFBy9kuv6e2kuPTP46hosNHEomkapqencfz4cSQSCfz85z/HkSNHhFqmsH6oVqtIpVJiMdNTETn4ZEuDn9ufZGhKMlCkam2gRAKv1wtgYYdLkx2l2ctuGT1SZOQG5IurXJeIPn+56/DPlBdjOX6H5g+uinR1dWHfvn1Ip9OYm5vD8ePHV3WvOgUmkwlutxterxfhcBiRSATd3d2iThjFulBT+Vwuh1QqJdLX5U0MYLyxpWwvuRyCHhGWVS6Ks+HvI5vSdU0mU13RUPlZqtVqCAaD2LFjBxKJBMbHxzExMXHJVY52ArVtozIUpEbH43HE43HY7Xb09/fD6XQin8+LAqvhcBibNm2Cy+VCKpXC1NQUqtUqQqGQyObOZrOirAWpWm63G/39/eJ9c3Nzov4ckTpKlKB2dOFwGLOzszhz5gyeeOIJ5PN5ZLPZS3rfOo5UUTAbpdkSjHbF8s6n0S5X3uVo2kKq9dzcHGKxGCYnJ6+ouIpLCU3TRKsJquTLbayndsiqhmxrnpqrSNXaQEoVd/vJShVBduc0UpuM1Cy+sHLi08iORqoDJ1hySRV+3G63IxwOi9i+y/2ZIZvS5oPqFPHCm3QOANGrkaBnE25T7g2QXbbyvaffZVIsZ/nJn0fn8GeEX48r3dReBwDm5+cve/uuFDwQnLtpS6WSaFrNa0tlMhkkEgk4HA4R/0pFl6nuG7leScHidqTwDJ/PJzJMKW4KqFc5SfwgRSyVSmF2dlYoWZcSHUeqcrkcLBYL/H5/XRYg3Xh+0412qPx63BfPa2EQaZudncWpU6cQi8UQi8WUPLxBIMnX5/PVuWqXc/01gvw8KKwMZBOXy4Wuri7hGiLpn1Lmjdw3/O9GrvlG7iQerG6kcsnX17sOd/PLMTu0eXM6naJlB38OL1eYzWb09fXhqquuQjgcFlXmiYhQ7Col9JALiNcnIvC5lV/fiHATGqmPJtNiGxN6L1Afl8U/h59Drn+yLSkjfX198Hg8mJmZuSLcuytBsVhEPB4XHRKAxRAcYOG+k8cmm82KGlcWi0XUfcvn84J8kRehWq0in88jmUzCZrMhFArB7XYDACYnJ4Wbj4p8U5Ymt2mpVEIsFkOlUsHc3JwgeWtZH1qFjiJVZMRsNguHw4FUKoVCoVA3UOR6NstdT+4xRgs3xW2NjY3hiSeeQDweXxLHpbB+oCa9oVAItVpNuJfWAnkCV1gZzGYzAoEAenp6MDAwIJqYU0E/Ui6MiBRBLhTYyG1Er9NPI7IkKxkcRJ7k1/hn8lo8NM7dbjd6enpQLBYRCoUu+0XXarViZGQEL37xi+H3+zE0NCTCIHg/RioKSioyLZZ0fyiAmGdWGoViAPUKJxFcPZJGLnyz2Sz6g3Ilha4tZ4aSS5oWaIrR9Pl82Lp1K3K5HCYmJi57+64UuVwOMzMzqFQq6OrqEveHCFa1WkU0GkU6nUatVhPKn8ViQSqVQiaTEXWnOOGlfoyzs7Pw+/3YvHkz+vv7MTc3h5MnTyIej6Onpwdbt26F0+kUGf/AQg05cj9PTU1hZmYG4+PjSKVSbdP8vKNIFbA4YElJ4vVMCHqxG/Q6sLRmBoEGNtWkIpkzlUqpGKoNBhFdquZ7uasEnQKbzVZXAJcvps2SVk6A5OKgzby/UfyU3jWM1Cr+txxXSYs4uZ1JndEjjZcLzGYzXC4XQqEQvF6vCEjn6h0RHr4J5YofsEiSCEZkajnIrmLuWjaKu9ILTuffjx+zWq1wu90wmUzieSaidrnaeCWgMgcUbkOkWnafE8nicYm0TssZwXKdMv48mUwmkf1HlfAtFosQOTRNg8fjqftu1WoV2Wy2rpzLpUbHkSoCDRReJ4VLk8vFXOjFAtBEEY1GMTY2JupScYVkJZO/Qmsgx7wYQS+eSpGx1oHKKPT19aGnp0ek2BttcLjywGNh+HlcWTJaEPUWUHlyp9/14h2JLMlzhl78jvx9SKnxer3CHZbNZi+r2kZ0j4lEejyeJc2P+WLI50uqek0g2/A2Nby+HD+Pfz7/HnRt+lx+jNe2MnreaIGWlVBuY1JWKF5uy5Yt2L9/P9LpNKampjA/P6/meOgTYh4qY7PZRFkjTqLoOSAXOmFubg4A4Pf7sWPHDlFklIhRb28vurq6RPA7ZRpSchHF+hWLRVy4cAEzMzO4ePFiW4keHUuqgMV+bsAiqaLdlNGAaBS/QX53KoA2Pz+P8+fP12W3KFK1cdDbMdIuqBkY7WaV7VYHk2kh86u/v19khfHCrPKiS++RA0wB/ZIJsiLZbLanHFvDP5uuy5UKWXHSmzdoUSZi4ff70d3dLQLzLzdSRRtKCiYmUkUuPP6PQAkkpCbzWBsCtYkBFkmzUWwjv/c8FIOuyUM7+PeRbSaTKllJpfdRBlmtVsPWrVtFHcJKpYJoNKrmif8PmVDxsUSuYO42B+rLkrhcLgBALBbD7OwsrFYrhoaG0NPTg0wmgzNnzmB2dhahUAhXXXUVAoEA0uk0otGocOmR25eSJ0qlEiYmJnDixAnE43FFqloBmggpjoP75On4alWKSqWCTCaDdDotYrZkXM5ugE6Enkqld04zipeCPmhn6vF4RFaYHvFdyT3WcxOt9TvKz4BR+YVGGyz5/0QEwuFwXNZuwFKpJFLSHQ4H7HZ7XfaVfM+4EimrTORC5e/lpEpWHOXf6aeewsVJE5Fm+XPk8a73Gle+ePNnBdSFwch9V3mcnEy8AdTVA5Q9PTLJ5QqxXhFRrqTy46VSCfl8XmQKtgs6llRR1P/Y2BicTicikQhcLteaCjvSQ5FOp3Hx4kVMT08jkUjUDTKjuA2F1kMviwdovPjKix0PkFR1qtYGs9mMUCiEzZs3IxgMitY0tKhRWwlyCQD17huyhVzFutFYakTQ5ABoeUMlF/Pk34MrVnzBoIWElBeK+fB4PKJ6fCKRWOmta2vQBrVQKODkyZMwmUwIBALYt28fRkZGROq6x+MR7cDonlHla3KxAvVtZbiaxN1D8ufLY5beR94IOa5LVq048aOfPPaLah0BCz0dKRZnenoahUIBx48fx5EjR0QJnSudWGmahkwmI4LAXS4XNm3aBIvFIophU0waEW9KIgsGg+ju7obT6RShNLVaDaFQCMPDwwCATCaD+fl5AAv22LJlC6xWq7h2sVgU8W1ceeQ1q/L5PBKJhCjZ0C7oaFIVjUZx4cIFBINBBAIBeDyeVWdw8IFMWQ+Tk5NIpVJL/MSKUG0s+OJoNNnJSoQ8SZPKYrfbRZq4wspAMVUDAwOi8jGRKpNpsW4VT183Uo64mqHnylsuJpIfM1Kh+MKu9zxwVxGPxaxUKnVp4MCCGyMcDgNYWAQuJ9B9L5VKGB0dRSwWQzgchsfjQTAYFC4X2pAAi3GO5A7lxJQSTDjIPUTBzo3GtFy/irsNeZAzV5aIANPf3KVJCzF/5mq1mlg/UqkUTp06hWeffVa1H2OgdTCXy2F4eFjcSyqJQJtTu90uim7G43FRgsTn82F2dhaTk5MolUoIBAIYGBhAuVzGyZMnMTY2BrfbjZGREXR1dQmSxLMF+TPF7UnFaKlXoCJVLYQcJ6M3ea7kWjRYueypBtmlg567gSbN5RQOvddUi5q1gcdUyK/Ju0lSGmi3KbtouNK0UlsaHZddPUB9fTNenZ8maXpd/gcsBr5brVYRH0Kk/HKbFzRNExWrSUmYnJwUNYT8fj/cbnedEsltyO+JnAGoF8soK4z89WbvbSNXv91ur2ujRGpcMplEsVjE3Nwc5ufnkclkRKD0la5QcZAySOSVxgWp0RTnRATWbrcL5YpsSG5zqm9G4442YHQdKhhKmxw5s1TPTVwqlYSi1U5jsaNJFZfw+S6F10nh5zaKu+E7H5pUMpmMbkzV5TihtiP4Am5EkppZjMneNJCVUrU26C2QNFHSxOpwOOqUBQrsllUIvhjzQPdmxpcRgZKPkQtPXmhpUqdJmVLDHQ6H2A3Ta16vF1u2bIHX68WpU6fWegvbEmSnSqWCXC6HH//4xzh+/DgCgQC2bduGSCSC4eFh3HTTTaJWEC9xQ/XK5FR6cg3K8VBGXgXuzpPjtWRVU35u6L1WqxXd3d2IRCIoFouIRqOiHtWTTz6JaDSKeDyOmZkZFAoFJBKJtorLaQeQukhj2WKxwOFwwO/3i7WXQm7cbjc2bdqEUqkk3KuFQgEejwfbt2+Hpmno7u4Wtg+FQqLAbiQSQTAYFLXPTCYTHA4H3G63cPNRX0buBibiTwJIu6CjSZW84MqDC2gclCq/RhI2TRD5fH5Jf0GFjUOjeJrl3qfnUuIqhbJl68BdaRR/Q7E3fKErlUp17hu9XShXIfWIlRxHJf8ukyr6nYgV32FT7SkiTzzVnq5LbiWn0yncf5dzyxpqoJvL5UTsWDAYRDabRW9vrziH3H6yG5WTHJk00zE+b+uNcb17qxcnqQf+GX6/Hz09PUin04jH4yiXy4jFYjhx4gQuXLgg2qooMqUP7gontZmIFNmNVClq6cRBBKuvrw8m02JTZIpRpAxMn88Ht9st/q5UKnC5XPD7/UJJlrNtKQM3lUq1ncDRsaSKSuKHQiHBlvkOyWjh5GTKaKCSqmG324UkTpPC5TqZtiP0CHEz8rzRIGukeik0B64I82BhoH7MmUwmJBIJzM7Oolwu1ylEdFxvo6MHI4W5kR05KSOyZzKZxGbJZDKJsgFcyeSLPu2I6f/mcrmEinUloVKpIJVKwWq1Ynx8HM888wxmZ2cRCAQQiUTEfeOB/7ywI1Afx2bkFuTEWibVjZQqDnI9m0wmTE1NIZlMIpPJYHR0FIlEAmNjYyKru93cRu2GSqWCQqEAi8WCcrkMYLGMEZEpUv+Beltye9EzwPuuUhFhug7N65T4QFm2tBGiIq2UcdzOYTkdOzvY7XYMDQ1h165d0DRNtJXh7S+MSBM3vJydRKzb7/cjnU7XtcJR2FjISgYnzEA9wSLbyXbm76PFlRcrVGgeRDJIbqfCn8DiRoTHTp09exbf+c53kE6nceDAAVx77bWiQrlMlI3iImUStRwhpueAZ+95vV5Rj2hiYgJTU1OwWCyizY7NZoPf7xffLZ/Pi+9E/z+73V7nsrjcIKe5c+TzeYyNjWFychKjo6M4fvw4nE4nbrjhBrz61a9GV1cXgMWsTt5SSo6lo4WVPotnB/LfSR2Rwzb4MyLXqaI6Rk6nE5lMBj/5yU8EiZqYmEAikUAul8P8/LxYK1QMlTEoUN3lcok6UKRU0VjhxT8pW0+PPAP1MXR+vx9+v1/8XSqVYDabEQwGl9id6qbRuaSmtqvtOpZUWSwW+Hw+4TOPx+OiiaO8E+K/6x2TzyF2TLtSo+sprD/ke99IfTRyF8mxHKt1Kyos9svk8TR8seSTaSKRwKlTpxCPx9Hb27sk7Z2u16xrxyiuTgaPu+AbpXK5LOJreJA6uRpsNhsqlYpuSAEVxqSg28sJy42FarWKVCoFAKIgssm0UHbhpS99KXw+X52yzyG7euXPIzvJxTz16p/x9+jF4NEi73Q6kc1mMTExgWPHjiGdTossP4XmwRul81Y0tCaSasXr1fFCu0C9es3drOR6p40LzSOkZtPcAiyqj8CCS5Hmn3ZdiztqdiBfrNvtFrIz70vEF0/ux9dbjOXj/L1ut1vED9RqNeV330DQINVrf2EEI5Iku40o3V/VqVobaNKkYFKaYClOiSbUQqGAaDQqgoTJVcDdPAB0xyFBdtfruQz1XII8Xoc/H9lsFvPz86jVaojFYrBarYhEIiINXM4ApIm/VqvVqeGXE5oltTIqlYoIIqbkBE6eAOOCu9z2clA7/a5Xp47P7Tyrk38Oj8OhzTYpjgrNw0g55naidZe7fHligexN4Eqy7EmQf+c2p3FI2ZvxeBzFYnH9b8Iq0FGkymKxoLe3F4ODg+jv74fD4RA1KnhwpFwDpVEgJN/x0Hv9fj+2b9+OcDiMSqWCCxcuqEG5ATCZTKImjtfrbUoRWE69oMFJGSoAhHStsHIQ2bBaraKOEV8AORFJp9M4f/48ZmdnkUqlRJ81nqZNgbB60FtQjYgVfw+59flumX6Px+MYGxsTbqB0Oo3t27dj06ZNGBoaWkKoqN4W7dqz2WxbZRq1CqvZ9ZdKJVEY0mq1iqwwvXIb8mfJCyqBYtm48swXWH4tsjHVvqLj9PzF43FcuHBBuKz5d1rL//tKgt5mh5MqureNBAwOOZRDfl2PyFG5hkqlgmQyifHxcUxPT4vK/+2GjiJVtOgGAgF4vV5YLJYlPcfkXZHsFtKbkOXjlJFAWQhqAd4Y0I6EV83lkAcs36k2ApEqXgNFYe0gcsVJC580qeVJNput6zovT9TywiaTKflYs4qVrFoBEJlt6XQas7OzmJ+fRyAQQLFYXOIe5gHr5KZo51iOjQbF0RAxbtatrrdQN5qj+aaXH+dEisfh0OvUxkQRp7Wh0f3j5S/oXHnN5Zsi/preem1E4GhcUrkPHrfXbugoUmW1WtHX14edO3ciHA7D5/MBaL6wHDeizIz5OV6vF8PDwwgGgxgbG1OL8AaBE1rKzGp0rmw7HsCutzDzqrxGNXIUjEEus7GxMQQCAdFI1el0iizcVCqF6elp5HI5nD9/vi4Wg+69LP03Cm7laOYYtz0v7Elwu93o6uqC2WzG6Ogo4vE4UqlUXWA1uZ759yWlKpfLKdWaQXbZAIu2pt9l6BFjI9vqkSk9cPvL4SCNvrvC8iB7UvNkghxQTucakV+j32WXrhwOIJOsds/i7jhSNTw8jGuuuQZerxehUMhwN6vHgOXjsqxMf/t8Pmzfvh2FQgHPPfecIlUbBJNpIZ4tFAqJRXs50C7ViCTxiZ5a1Kjin6tDrVbD7OwsnnvuOfj9fmjaQrFICvJ2Op2IxWJ4+umnMTs7i+eff14UhKRYNqvVKtQe/s8ohsYIRrtfHmPDg+fpO/j9fvT394ssorm5OcTjcUH+qJ8ZLz4JLChc1GRdpeIvgGJpODnmFbbpHD1lUVacCXpuISN3r96mmNxRjRTF5VxUCktBhT+p8rmsEhkRqeUIlXwNTo71PoPUbp5F2m7oKFJF7j+v11unZDSa4FayKyJQaX36vV2Nd7mBBo2cmq93Hv1sZnFTC2BroGkLpUsovTqRSMDn86FWq4mYqWQyiVgshvn5eWSz2aZcZVTjiKNZ2+p9R3q/3uaKkzuauMlNmclk6mJEyLXB46mUUrUURp4CPVeQfFz+Xe84f41/pt4xInrLZYepOWFl4G44o0SNZhTF5T7DCLIA0s5rckeRKgoipyB1i8VS169JTpeXJ9VGqhZQn8mgBt3Gg9Qkt9ttmP3Hd75cmTBSq+g4xdKYzebLMoNrI1CtVjE3N4darQa73Y6pqSkEAgHRasLlciGRSGB8fByZTAYzMzMiVolaXlBKNNnOSEHmrzUDeYzT9WkRoAbJemN7ZmYGX//613HixIm6OLFCoSASYWZmZoRbc3JyUs0PWFQTKCXeKPiY/00wUov0XPiNXIN6ShX1hFOxb62DkTuO/91MTJ3ecaNnhHuT6B/v2NCuHqSOJFW9vb2wWq11vfn0dqVc+pfjbGRD0muKUF1aEKlyu91Lsv/4RKxnI71JlM6j9G9N01Qx11WiVqthbm4O0WgUQH1WHS/SSmOISAxl/DXbpHylKlUj9xCpTY3ibGZnZ/Hwww/D4XDA6XSKuku8vQmRB03TmorXuRLAlTxOqpZTqGQYna9HquSFXY9U8UKUCq0Dv/c8OaxR+EUzWM72vH4ZuSGpzlU7omNIFY+5WC/5zyggTs4CUlgf0D1fS9NjvfgMeQKmmA9etE6hOdAEtxrIqvF6yfmNiLfebrtarSKXy4kq8bVaDVarVbgEZdKgsAi5YOdqFtfVunr13ksKtBrXGwej+KjlzlnJcflc5f5bIyjNnrKNqJAgyc5AfWYfgbuH6G+C0UDWNE24AICFmkZut1u4LlQ8xfqBYuZ8Ph98Pl9T2X/NTOL0bNDi7XQ64ff7EQwGhYtHTcDrC549xJu00ljTmyibnTi5gsmVaQp05QHUXEHjZJuXBqCWGTzgWT0fS0GKEN07oPkEg9WC25kXZqXvQ4piPp9v25T7ToZeGAYPu1lJYDrHcm5BObGlnTc4HUOqbDab6IxeKBTE5KxX3JND9v8C+qmc8rlU9M9ut4v2FDSJKKwPeCICFRRc7vxmJnFZEbFaraIfnKZpqpbNBoDGsN1uRz6fr2sh02zl/EaQQwB4/Rye+m1EqmgBpgVZYXlw9x93BxmhkXIoo1ENOh40zRd3YMF+hUIBxWJRkap1gp5HR45l5seXAz9H7utKpFmvhVG7EquOKNYjZ4TpFYVcDYzeJ1eHNipGqdB60CLbbHq9kcJhpHoQqSKS3q5++csB/F5TsLreAtxKOd/oOkSiSDHj7XQUVgdeEZ+XsqCfRm4hvWQiflzvPYRG8VT0WrsrGZ0Kvva2KhSmnd14q0XbK1U0MVP7EgpQ43VQ6DwZRkY3Corjr8vNVklWVq6i9QMRKiI8cuHWRqqknmol73Z5fzqfzycqaTdbmV3BGFwJIjtQ0oHH44HFYkE+nxf9OklF4vGKa4mtoe/AvwtdlxZZKlQaDodRLBbhcDga/l84VDzlUlQqFRQKBeFqk+NQ5fg1vULM8vzNX5fHpRwgrWcTlf23PuDChjzOWwnuqudjkMZvJ4zBtidVAETwMikLcsBrs+6/ZsDdCPQgXa7d6dsRpA7KwctGk6iMRuSa7EppuXLZBoXVQx6TwGJ1cuq1SNl/chkUen8rJ0y9SVnTNNhsNrhcrobuZb3YzGZU08sdso0oFo2XKOFzZzN9V5v9LP4euemuHKhOz5ciVa0D99yshVQ1EkEI3G7yuOuE8dcRLIFXUeWLbTOBrcvJi0Y75JX6hRVaA5qU14PskCuXtzlQLqD1A5FXt9sNh8Nh6OppFaGSXUP8syh7j+LpGpGqlcT+XMmQCQ6HHK9Kr5GCRX8bxcbwIGi5ZpXeNeifGs8bg/UaC2S/arUqbCvPGVwNbUd0BKnimUNGcVUrgRFJ0psY6PNUZfX1Bw0Yh8PR8ngnqm9C7VR4jJ6y6/rA4XCgq6sLfr9fuAD1YmoIa52o5UWex39QbSm3242enh4Ui0XRNUHvOopALQ85UJ0gj1uqmE//ZDceQS9eis7l7aj0ztFzIyq0FnpjdTnPwHKeJKPPkckzP9bu83ZHkCouPS5HplZjwGbjOdrViJcTOGlu9n43M4HKz1Arg6MV9MH7hVGw+nL3fTWTsPx+7sKna9Gib7Va4XK5lOu3RZCJkdEiy20in2fkKeCxWHrNe2UoQrW+WOm4XC2hWu7vdp+7O4JUNQpM1Du32cFH5+u9Tsd4NWbV2mT9IQdEcsiTcrO7004cmJ0GvZgHp9OJrq4uhEIheDyeJRuiZtz3RlhufMsxXry8Ak/PVlgb+H3kLnVOpJrZIDUzXxu5j2X3XzurGJ0K3jmBw8gmRtBbY43iF1erdF1qdAyp4k0yjSbDRruh5a7PJ2KTabE0PmW4FAoFVfdknUHSLrl6m2moTFipytjufvlOg0yqTCYTvF4vhoaGEIlEEA6H6+51K91+/Jp6Y54HLfO2Ks2QcEW8jEFzMd1b2b2nF/+it0E2Ikr8NbouP6Znp1aEhyjoQ2988bjURusyndvM8U73GHXUk8d3Rc1kEawG8vU4uVIT7MbAaPA2875Gr8k7XqVWtRby+KDMWbfb3bA6/kZAT+lupGqo56I5yIHm8oanmXHWaBNs9N5G6jMdU8SqtVhOrFiPMbORn9UqdIRSVSqVkMlkYLfbUSqVDF12yw0qOY2bF6yTBy9XqVKpFNLpNIrFoiJW6wyjlgd60JOSjY7x16lWFXU6b+cB2smgTDuPxwO73Q6g+V1oK8aZ7B6i72S32+H1etHd3Y3h4WEUCgUkEgkUCoW69ykYg7wHxWJRqPgySaW/5TI4srrBY1qbdeFzt5D8mfz6Cq2BPCcvR3ZWO371CDr/fTWeqI1G25MqTdNEITebzSaIDfefczTy4cvn8uJyMhGjVha5XA7JZBLJZFLVPdkgrERB0nMBLPdeIlXkZlRYHxCp8vv9otDmSuLgVjMx8+vTZ5DabDIt1ijzer3o7+/HyMgIksmkcPHLz57aRBmDh0ZQCrxc8kYvuYjfY06kyEZ6Qet0rvyTrkXhAnLJFIXWgO6zfF/X8x7rEeVO8DC0PakCFlN35SrMzcrKgH4mgjzBy61ReCXmTqnm2ulYy4Bp9n3yDlphfUB1wVaTAr2eY40WX4fDAY/Hg1KppDIBVwEe67pcD1YjrETZkBUKWZk2WvgV1g5aDy/FOrhRJK5V6BhSRbVQHA4HAoFAnaIE1BMkXqW5EWRj0SJLsnaxWES5XFZ1azYQRHYoBZ+jVTsUvQr9Cq0HlS/g7r9GMFpgm1G19GB0PtVN6u3txVVXXYXp6WmMj48jGo3WBVmrMb8ITmjovtA8SW1q+P1qJqFIvj7/Z+QVIPLLM7H5dyOyTO3MFFqDQqEgvDXlcnldPsNo3PO/eT/edkX7fjMG2hFVq1XRt81sNoteYjxlmhMqmTTpDXJK/+XKBfX5o1gB5fbbGBCx5UVe12Nho8lXTbzrC7PZLFrCkJtVz55GadNG6nKzO1ejGDtNW2isHIlEsHnzZphMpro+gHrlIRSWolaric2nnBlN5FSPXDWKx9GLl+EbZhqvNE/L728me1hhZaAQnFQqBQANvURrHTM8xg5YWlaBu5Tb1b7t+a0agLvlAP3AxOWC6PQeCFk6VhPrpYM8YBqlXhtBLw5DVjOVm2B9QaoBbwmzkvpQzSiVetdabvzT71RdX49cq3G/FEb3vtG9aiYGRraL/B75NaPFXM3Z6wu9DNqN+EyC3vPQjugIpYqgaRoKhQLS6bSYpK1Wq3APAs2nfcqLLqkXpFjxnZbCxoEUJKNF2Gg3awQe90Hggeqq/dDqoacmcFCdqqGhIeFWB+ozfHjml56LqZnJs5lz+TFy73m9XoTDYcTjcZWwsEboLba8ErpsX36cXuNzMr2Hl2zQ2xjxkjf0U8XAthZ68Wp68zC38Uruvd5aDNRn5xN4nGa7ztsdR6pKpRJyuRxsNpuQ8ckHz7NBGkFmvPQ+3uPvUrDyKx3cZ06DdzXEVl7s5QraZGe9uC2FlcFoEjWZTHA6nQiFQohEIsjn88jlcrr2NIqxaaRCGY1NIzVFb9F2OBzw+Xxwu93KDdwC8DlTtp/8nPAK3XJ4hZ4iLcdr8XP4+CZCpTbErYeeQiT/vpa5Wh7benMKLybbrnN3x5EqSuMlQmUUd9MMsdLL/qNBns/nkc1ml9TFUlhfEOEhpYrvVNfi/pOP8QxAhdaBtxniamOjbgirnRybWXDliZ6PeYfDAbfbrfoArhGyYrFSe8p1AzmWcy3qvbddF9tOBCcxa6khuJpjsk25+NGu8VRAh5GqWq2GTCaDaDQKl8uFQCAAt9sNwNjf2uwkztWLYrGI6elpJBIJJBIJ3QGriFbrweNcHA6HcBnx3e1qUvNlVwAv/qncf2sHv7c2mw2BQEAQFtoElctlYQc9cmykMBkFmzc6nyvW3JVACSnVahVmsxnBYBBerxfRaNQwO1GNd2PojRv5vuspUUaQz13OW8BtY+RKVFg9+AZXDg7Xu7/LjZFmbMKz+o2UKvpO7UqsOopUAUC5XEYulwMA+Hw+3QHU7IDSc/+ZzWZUKhWk02mkUimhiq3kugqrB1c6AOguxEbQW6D1JmZSqPQKEyqsDPLEZ7FY4HQ6RcYfNSTnk+Rybnr5PCNi1ei7GF2fn+N0OgEAbrd72RTt1bg2riQYzcGrvWfymNVbYPnvesfVfL028DgqvQ3temw49DZL8tzdTI3KS4mOIlU8porvOKmaLz+vmRsukyX6WSqVEI/HEY1Gkc1mdWVIhfWBybS0CnOzsW165Fdv8PGFXylVq4feOHM4HOjp6YHP50MoFKrbUcr2kclVo4VxJRsl+Xd5cabg6VqtJr4buSt5ZrH8f1WoB9+wNJpz9TpXLHcuLeZ6MVpGJApQDZVbCdm+sgoMrI/QwMmcnu3bvXBzR5GqWq2GdDqNaDSKSqWC3t5eWCyWJZKx3u8cRoGx9DOTyWB8fBzT09OYn5+vKzTHz1UTbWthMpmEC5aCyI0WuUbQczHxv202G3w+H0qlEpxOZ9sOzk6APAb8fj+2b9+Ovr4+bNq0aUn9J64KA4slURpN2lxR1gtyN3IT8Pfx82kTRmooFYN1OByoVqsolUqqNp0Ebg+uJFKVbaP7xd1FctKAkQvXYrEIG+mRNtnVy78fV7rVuF4buH15AgAfW3pdSAD9ZtZyBrb8utzDkbLwedw0jdV2dv+157cyAE2I+XxeTHx6O10+2IxUjkaxVpVKBZlMBul0us79p7D+0BuoemjWJnoTKw1MVVKh9bBarQgEAgiHw/B6vXWLm9GGRyZNy7nx9M4zUimN3ic/Pzx2RO89CsZxNM0QUNmOKxlzjdzEepmD7ewa6jQ08/zL99uI7Kz0dfm6MilvV3SkUjU3NwdNW6jyqnfjmyVR/HVN00SrhUwmg7m5OUxPTyOdTiv33waCxzsBS+25EtlZVjtoEpbrVCmsDI0Ir8vlEipVOByGybSYbMDlfPpHtuYZgvw4d+XQrlneSBltkDihk2sd8XZIfr8fIyMjSKfTiMfjGBsbE3GbCsYolUpIp9MwmUwoFAq6HgMjj4BevByfi+lnI5cfVznpGbNarXC73XVV/BVWh0aB6rKgwbN7myHZeudwdzw/h/8sFArI5XLIZrNLKuq3CzpqRanVaojH45iYmEC5XEY+n68btGSU5UiP3iJdq9VEY9VkMomJiQmMj4+jWCzqxgMoYtV6yAstUD+xGmWeNFI25AWYJgOq9K1qVa0MRrtHgtvtxpYtW7Bz507hWqXNil5sFREb7l7gn0OqIoC6PpwyUdZbcHnNOZqAiZgBC24mh8OBUCiEffv2wefz4ezZs5ibm1OkqgkUi0UkEglUKhWxyOm5640ULiO1kezJibD8PrquyWQSiRAARPZwOp1WpGqN4Io+udwsFososCpvbORkFBmN5g06Lm+aaVNGz1Uul0MymUQ6nUaxWGz5/7kV6ChSRZNjoVBAoVAQA8lo0C53LdmANIjL5fKShsoKGwM5y8RIqSKsxDZ8wVbZf60F3Uu73Q6XyyUy6uRYGsJyLj4OHmfBlSq6tnxdWaFsBJPJJGLsqMSCqlnVHGgjWiqVlsSdNoIRmaJr6p2j0B6g8aU3bzYSG5oZh3qvyWs0kbeVPG8bjY4iVeT+m52dhc1mE/FOfADyXRLfwRr5fHnBz1wuJ3ZdpVIJ5XJ5xUHwCmsDj6niLlnaqegtpEbXARYnZ1IoiCSrOlWrh+z+c7vdGB4eRjAYxK5du9DT0wO/31+nIpFdyaZ8V6vnztMjR3KdHF51nyCTtUYEnYLSzWYzenp6YLVakUgkDGtWKdSjWq2iUCgI9YJnUPJxx6udy/OxbCPuXpLdgPwfb01GametVkMymUQqlcL09DSy2exG35LLCnx85HI5pFIpmM1mBAIBeL1ecQ5XFpcjw3rEy8hFTM8CJS7R80bfo13RkaRqZmYGdrsd+Xxe14jcB8vrHMmGoN21xWJBqVRCJpMRP0ml4lBEav3BVQhuPz1XAKEZVZImYRqw5CZQMVUrgx4Bdbvd2L59O4aHh7Fjxw5EIhH4/X5R/oTc8pTNUy6XxSLMr6m3eAL1TdP5e+h1GqfyIszHvJ46QiTbYrGgt7cXgUAAk5OTqhBok6hUKiIEo1qtisxdIlI8c6xWq4lNKredrBbrxVnRHMDty4m51WqFy+USCUYTExOYm5tTpGqNICXSZDIhl8sJl2pPTw96e3uhaRpyuZzoOsJdv42q5BNkuwNLg9FNJpNQviuVCuLxeF3drHZEx60olUqlTkXiRjC6yXqkSp6o+SLeqG+UmlDXFzwlmgYOVyFl1w/QeEDyCZz/TXECKvV6ZdBTCSnjr7u7G4FAQLR9kZUlHjNHNubnUcA6H5P0U1aqZHVDHvvyws2vo/d+quDvdDrFs8Hjr2Q1TaHeFVMoFJDJZJYslPwek4olvy7HSsrxd1yNlBdpfrxarSKXyyGRSCCVSqnQjRaByFMsFgMA9PT0CAULQF0Cit5GyQh8HuHzud68ThugfD6PVCqFdDqNUqnU4v9pa9BRpIra1JTLZXi9XuH+M5vNcDqdoskyDTwe8AwsFparVCpip+x2u8X7aHJQ/f4uDcxmM9xuN0KhEFwuF1wuF+x2e90ul8NIweKLsd1ur8v2s9vt8Pl8qFarcLvd8Pv9ilStAHr33Ov14tChQ7jhhhvg9/sRDAZhtVrrFCe+eDqdTvEauWBrtZqQ+DkoUNZkMolAaGBxMaYYK3mCpVZHtJg7HI66GCBO3q1WK+x2OzRNw8DAAIaHh1EsFpFOpxGLxYTCqVeM8EqBnkegWq2KYOHTp0/jkUceQTAYxMjICIaGhsS8DCy2hiKbkS1ld69RPBw9dxS/xZ9BcgllMhmcOHECTzzxBDKZDKanpzfi1lz2qFQqeO6551AqlRAKhXDrrbeiUqnA6XTC5/PB5XLVJYYQVqokcZtWKhWRJEZqWDabxWOPPYbHH38cyWQSFy5caMtx2FGkihhzLpdDOBwWA5oWTwB1vnaHw7GkuKOmachmsygUCrBarWLyLRaLdS01FDYepBT4/X44nU7hnuOV8+XYDL1sTx7sbrPZxITucDhERpDZbBaycrvKyO0K+X57vV7s3LkTL3rRi5a47ngMHFequBJFmx3uOqIxSC4lk8kkyBdQT6q4skFwOBxiESfUaguN0nnRT/pnt9thsVgQiUTQ29uLTCYDk8mERCIh3s8V0naczNcTev9fHi81MTGBp556SmyIBgcHRfYYxTx5vV7YbDahONB8S4oSVxcp2wyoz/LL5/NifieFqlgsIpPJIJFI4MyZM3jqqadUAdcWolarYXR0FOfPnxc16Pr7++Hz+WCz2eDxeMTGhduMsNymlStU9DxRMhq1jIvFYkgmkzh27Bh+9KMfiePtiI4iVRxUBDSZTNa59jgxcjgcYrcKLCpV+XwexWJRLLjValUYLhaLIZVKKWJ1CVCtVhGLxTA+Pg63241gMAi32y2IlFzaQl64CdxVQLsdcjtYLBYRdElxAmryXRtKpRLm5+cxPj5e57oj15CmaXVESnbvETGW1UZgcZNE45RXQ6fXKP5RDlinz6KFm+aMQqFQdw1ejyeRSIj5oV3r4LQbaBGMxWKo1Wq4cOECgsEg7HY7vF6vmIfL5TIcDgcqlYqwB98Eczc9xWjxBbdcLovSDZShXa1WEY1GMTMzI9xCXNFUaA1oDi6VSohGoxgfH4fX6xV/kweAewa4+51fB6iva0XxcVyJzOfzSKfTKJfLSKfTIgEhFovpJpG1EzqWVBWLRYyOjuLYsWNCvrdarSgUCmJg0URJu1zepLdWq8FutyMQCMDlcmFiYgKPP/44JicnMT4+XlenRsVSbAwKhQIee+wxJJNJBAIB7N+/H8PDwyIQlezsdrvrkgzkeBdyC5fLZZF0QC5ETdMwNzeH0dFRpNNpHD9+vG19852C+fl5fPOb38Szzz4Lj8eD3t5eOJ3OOsWJVEGu9PBxSTam2lG0++W73GKxKAJnyS3IJ2LumqSdMwDMzc1hZmZGlEnJ5/N1cXV8U3bq1CmMjo5iamoKuVxOfP/lkiWuZNRqNczOzgr1//Tp0wiHw3C73RgZGUFPTw88Hg8GBwdFyQpy6fKWMkS8eawWbYzIHZRMJlEsFgWJz+fzmJ+fx9zcHAqFAi5evKg2xOuIQqGAn//85xgfH4fNZoPb7RbkeXh4GH6/H16vF5FIBHa7XXgcaANEcwIRo3K5jFQqJYp6RqNRFAoFZLNZJBIJcQ49AxcvXhTJL4pUtRiVSgWxWAwXLlyAxWKB1+uF1WpFLpdDPB4Xky9NzJSWCSySJHL7ud1uTE5O4oUXXsDExIR4v8LGolQq4cyZM4jFYgiHw8JeVKDRbreLxZbcvXqBkaRWUiZnPp8XBKtcLmNiYgInTpxAKpXCxMSEUiTWiHQ6jWPHjmFsbAzhcBhbt24VcWs08fn9fvj9fpjNZhHTyN1DdrtduH09Hg+q1aqwPxGaQqEgss0o3k7OBOMZYeSKuHDhAs6ePYtisSjiM+gadA6RqrGxMczPz4uilkblGhQWoWkaUqkUUqkUgIV7CAA+nw/79+/Hpk2b4Pf7kc/nRSIDuQIpC5c2SKROFQoFkSWazWYFIY7FYigWixgfH8fx48eRyWQQjUYxOzuryNQGoFKpYGxsTNiYEAwGsXPnToTDYQSDQWzevBlutxtutxs+n69u3FOcFLnw5ufnkclkkEqlMDk5iWw2KzxHcgZ+J+CyCSZp1YSnJs5Lj/XegchZJgrrD7ncAX/N6Fz5/PX6Thztuvu9HCDf7+Xs2ozd1RhuXzQa543GdafPzyatU7+5goKCgoKCgkIb4bJRqhQUFBQUFBQULiUUqVJQUFBQUFBQaAEUqVJQUFBQUFBQaAEUqVJQUFBQUFBQaAEUqVJQUFBQUFBQaAEUqVJQUFBQUFBQaAEUqVJQUFBQUFBQaAEUqVJQUFBQUFBQaAEUqVJQUFBQUFBQaAH+H5V5OUP5jikvAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -2225,10 +1987,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:41.337412Z", - "iopub.status.busy": "2023-11-02T15:15:41.337085Z", - "iopub.status.idle": "2023-11-02T15:15:41.351681Z", - "shell.execute_reply": "2023-11-02T15:15:41.350641Z" + "iopub.execute_input": "2023-11-04T09:20:58.925614Z", + "iopub.status.busy": "2023-11-04T09:20:58.925203Z", + "iopub.status.idle": "2023-11-04T09:20:58.933936Z", + "shell.execute_reply": "2023-11-04T09:20:58.933391Z" } }, "outputs": [ @@ -2259,29 +2021,29 @@ " \n", " \n", " \n", - " 27080\n", + " 40378\n", " True\n", - " 0.707531\n", + " 0.687452\n", " \n", " \n", - " 29412\n", + " 54473\n", " True\n", - " 0.713320\n", + " 0.705050\n", " \n", " \n", - " 25316\n", + " 29412\n", " True\n", - " 0.717087\n", + " 0.715470\n", " \n", " \n", - " 39719\n", + " 25316\n", " True\n", - " 0.729353\n", + " 0.716273\n", " \n", " \n", - " 4156\n", + " 52247\n", " True\n", - " 0.734812\n", + " 0.725283\n", " \n", " \n", "\n", @@ -2289,11 +2051,11 @@ ], "text/plain": [ " is_outlier_issue outlier_score\n", - "27080 True 0.707531\n", - "29412 True 0.713320\n", - "25316 True 0.717087\n", - "39719 True 0.729353\n", - "4156 True 0.734812" + "40378 True 0.687452\n", + "54473 True 0.705050\n", + "29412 True 0.715470\n", + "25316 True 0.716273\n", + "52247 True 0.725283" ] }, "execution_count": 20, @@ -2395,10 +2157,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:41.355714Z", - "iopub.status.busy": "2023-11-02T15:15:41.355359Z", - "iopub.status.idle": "2023-11-02T15:15:41.368410Z", - "shell.execute_reply": "2023-11-02T15:15:41.367065Z" + "iopub.execute_input": "2023-11-04T09:20:58.936365Z", + "iopub.status.busy": "2023-11-04T09:20:58.935999Z", + "iopub.status.idle": "2023-11-04T09:20:58.944013Z", + "shell.execute_reply": "2023-11-04T09:20:58.943511Z" }, "nbsphinx": "hidden" }, @@ -2474,16 +2236,16 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:41.373562Z", - "iopub.status.busy": "2023-11-02T15:15:41.373195Z", - "iopub.status.idle": "2023-11-02T15:15:42.224803Z", - "shell.execute_reply": "2023-11-02T15:15:42.223447Z" + "iopub.execute_input": "2023-11-04T09:20:58.946354Z", + "iopub.status.busy": "2023-11-04T09:20:58.946014Z", + "iopub.status.idle": "2023-11-04T09:20:59.415655Z", + "shell.execute_reply": "2023-11-04T09:20:59.414958Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdUAAAJxCAYAAAAU3CiSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZCd2Vke/tx933tfpG5JrZE0mpHkmbE9NhiPjbFxjDEQYqhAERNTGExBQgF2qpJUsYTCkAoBXIkxBjvBkExBgpmyHWBsbGO8MKtm07601Hv33ff9+/3Rv+f0e09/tyWNWhp193mqurr7Lt/97ne+c973fd7nfY/DsiwLBgYGBgYGBrcN52t9AgYGBgYGBrsFxqgaGBgYGBhsE4xRNTAwMDAw2CYYo2pgYGBgYLBNMEbVwMDAwMBgm2CMqoGBgYGBwTbBGFUDAwMDA4NtgjGqBgYGBgYG2wRjVA0MDAwMDLYJ94RRPXnyJEqlku1zDz/8ML761a/e8Bi///u/j+PHj+OBBx7Agw8+iM9+9rPquf/0n/4TTp48qX6i0Sh+8Rd/UT3/x3/8x5iZmcHBgwfxUz/1U2i1WgCAbreLX/zFX8SxY8fw4IMP4rHHHsOlS5fU+z7/+c/jyJEjmJmZwQ/+4A+iWCy+yitgYGBgYLArYN3jeOihh6yvfOUrN3zdl770JSufz1uWZVnXr1+3UqmUdenSpU2vq9frVjKZtJ555hnLsizrypUr1ujoqLW0tGR1u13r+77v+6yPf/zjlmVZ1l/91V9Zr3/9661ms2lZlmX9+q//uvXDP/zDlmVZVqlUsoaGhqyzZ89almVZH/7wh61f+qVfuu3va2BgYGCwc3FPRKoOhwP5fB4A8M1vfhMnT57E8ePH8YEPfADtdvumjvH2t78dsVgMADA5OYmRkRHMzc1tet3nPvc5TE5O4qGHHgIA/OVf/iXe+973YmRkBA6HAx/60Ifwv/7X/1Ln1Wg0UK/XYVkWisUiJiYmAAD/7//9P5w6dQpHjhwBAPzsz/6sep+BgYGBwd6E+7U+AYlms4n3v//9+PSnP43v/u7vxt/93d/hM5/5jHr+E5/4BBYXF/Frv/ZrWx7nS1/6EnK5HB555JFNz/3xH/8x/vW//tfq/+vXr2P//v3q/6mpKVy/fh0A8H3f9334yle+gpGREUQiEYyPj+NrX/ta3/ctLS2h3W7D7b6nLquBgYGBwV3CPRGpEufOnYPb7cZ3f/d3AwC+53u+BwcOHFDPf+hDH7qhQX3ppZfwgQ98AI8//jhCoVDPc9euXcM//uM/4l/+y395U+fzzDPP4OWXX8bCwgIWFxfx9re/HR/60Idu8VsZGBgYGOwV3FNG1Q4Oh+OmX3vmzBm85z3vwZ/8yZ/gO77jOzY9/+lPfxrf//3fj2QyqR7bt28frl27pv6fnZ3Fvn37AAD/83/+T7ztbW9DPB6H0+nET/zET+ArX/lK3/eNjo6aKNXAwMBgD+OeMqpHjhxBu91WhutLX/oSLl++fFPvPXv2LN797nfjk5/8JN7xjndser7b7eLTn/50D/ULAD/0Qz+EJ554AsvLy7AsC5/4xCfwIz/yIwCAAwcO4O///u/RbDYBrKt9jx8/DgB417veheeeew7nzp0DAPy3//bf1PsMDAwMDPYm7qmwyuv14vHHH8fP/uzPotPp4JFHHsGJEyfU81vlVH/+538ehUIBH/nIR/CRj3wEAPCxj30M73znOwGsG2in04m3v/3tPe87cOAAfvVXfxVvfvObAQBvfetb8dM//dMAgA9/+MM4e/YsTpw4AY/Hg5GREXziE58AAEQiEXzqU5/C+973PrTbbRw/fhz/43/8j+2/KAYGBgYGOwYOy7Ks1/okDAwMDAwMdgPuKfrXwMDAwMBgJ8MYVQMDAwMDg22CMaoGBgYGBgbbhHvWqD7zzDP43u/9XkxPT+Ohhx7CqVOn8Bu/8Rvq+be+9a343Oc+d0vHzOfz+LEf+zEcP34cDz74II4fP44///M/BwB85jOfwfve976+5/L+97+/73G/+tWv4m/+5m9u6VwMDAwMDHYf7in1L/HSSy/hXe96Fz7zmc/gPe95DwAgm83it37rt27ruP/+3/97DA4O4qWXXoLD4UCpVMLy8vIN3/fwww/j8ccft32u3W7jq1/9KvL5PN71rnfd1vkZGBgYGOxs3JOR6sc+9jF88IMfVAYVAJLJJH77t3/7to47Pz+P0dFR1VAiEolgZmZGPV8ul/GjP/qjeOCBB/Dwww/jypUrANYj0ZMnTwJYb/IQj8fxkY98BK973evw8Y9/HJ/4xCfwZ3/2Zzh58uQNOz4ZGBgYGOxe3JOR6nPPPYcf+qEfelXvfeKJJ/DEE0/gU5/61KbnfuEXfgH//J//czz++ON49NFH8a53vavHcD/99NM4ffo0pqen8dGPfhQf+9jH8Id/+IebjlMoFHD//ffjYx/7GIB1Wjmfz+O//tf/+qrO2cDAwMBgd+CejFR1/PIv/zJOnjyJ8fFxvPLKK1u+9r3vfa+tQQWAxx57DNevX8ev//qvIx6P46d/+qfx4Q9/WD3/6KOPYnp6Wv3dr5uTx+PBj/3Yj73Kb2NgYGBgsFtxTxrVU6dO4amnnlL//87v/A5Onz4Nj8ejNhB/tQiFQnj3u9+N3/iN38D/+T//B3/6p3+qnvP7/epvl8vVd9u5YDAIp/OevHQGBgYGBq8h7knL8Cu/8iv4oz/6I3zxi19UjzWbzZveW7Uf/u7v/g65XE79/+yzz+LgwYO3dUwAiEajKBQKt30cAwMDA4OdjXvSqJ44cQJf/OIX8Xu/93uYnp7G61//ejz22GP4mZ/5GRw+fFi97oMf/CAmJibUz7e+9S088cQT+OAHP2h73JdeeglvectbVEnNE088gc9+9rO3fb4/8AM/gNOnTxuhkoGBgcEeh+n9a2BgYGBgsE24JyNVAwMDAwODnQhjVA0MDAwMDLYJxqgaGBgYGBhsE4xRNTAwMDAw2CYYo2pgYGBgYLBNMEbVwMDAwMBgm2CMqoGBgYGBwTbhjjXU504wN4LH44HP54PL5YLP54PH4wEAdDodWJaFwcFBTE1NwePxoF6vo9Vqod1uo1wuo91uw+/3IxwOq63cyuUyYrEYHnroIYyPj6NarSKXy6HZbKJQKCCfz6Pb7aJSqaDVaqHRaKBaraLdbqPb7QIAvF4vxsfHEY/H4fF4EAwG4XA4sLi4iPn5ebTbbXQ6HfV6ft/h4WGMjo6i2+1ibm4O6XQa9Xod2WwWzWaz7zXYqaXCNzvGdwKjo6P44R/+YTzwwAOIRCIYHByE1+uF0+mE0+mEw+FQf3u9XoRCIXQ6HXz605/GH//xH6NSqaDRaKguXXrbSY7Jdo2NGeMbH9+yLDgcDsRiMUSjUcTjcbzuda/D6OgoqtWqmkf1eh21Wg3BYBCHDh3C4OAglpeXcfbsWRSLRSwsLGBubq5nft4NmDG+9c8cGhrCu9/9bhw5ckStxd1uF36/H4FAAO12W83VSCSCkZEROJ1OPPnkk/i7v/s71Ov1TWvxncTNjPFrskuNy+VCMBiE2+1GIpHA0NAQvF4vPB4PXC4XWq0WqtUqGo0GRkZGMDk5iWAwiGg0ikgkgm63i0ajgU6no4yyw+FAvV5Ho9GA1+vF8PAwwuEwOp0O2u022u02rl27huvXr6PZbCIYDKLVaqHT6ah+wh6PB16vF51OB+VyGUtLS0gkEhgeHkYwGEQ4HMbY2Bja7TZKpRLq9Tq63S46nQ4cDgdmZmZw7NgxdDodvPDCC5idnUUul0OlUtnSqO51OBwONcksy9ryxg0Gg/D7/RgaGsL09DSOHDkCr9eLQCCgDCnhdrvhcDjg8XgQCATQ6XSwb98+nDp1Cvl8HpcvX0Y6nVafq0M+pi/+BtsDGlJeU6fTiVgshvHxcQwMDOD+++/H9PQ0CoUCFhcX0Ww2lTPs9/uxf/9+JJNJxONx+P1+VCoVAMDi4uJdN6oGm+FyuRCJROD1euH1euH3++F2uxEKhRAIBJBKpXD06FHs378fzWYTjUYD3W5XOcSWZakWtaFQCMlkEgBw6NAhrKysoF6vo1wuo9VqodlsolKpoN1uK+frtcBrYlQ9Hg/i8TiCwSCmpqZw/Phx+P1+dSFrtRqWl5dRrVYxOjqKmZkZRCIRHDt2DDMzMz2TENiIMrggt1otFAoFNBoN+Hw+hMNhWJaFZ555BpZlodFoqEjV6XTC7XbD6XQiGo0iFouhUCjga1/7GmZnZ+FyuZBMJjEwMIBQKKSM8dLSEnK5HDqdDhqNBgDgjW98I972treh2WwiEokgHA5jfn4ei4uLKJVKANBjPAzW4XA44HK5AGwwFHZwOp0Ih8NIJpOYnJzE8ePH8fDDD6tJ1O12e5wcjqvL5VLO0n333Ye3vvWtWFlZQalU2tKoyvNj9MuF2ozf9kF3XgYGBnDw4EGMjY3hjW98I44dO4Z0Oo2rV6+iVqupcabzHAqF0Gg0cPDgQVSrVeTzeTz33HO3vfmGwe3D6/ViYGAA0WgU0WgUg4OD8Pl8GBkZwfDwMCKRCO677z4MDAyoAIhBEwMRzmM6x5ZloVarwePxoFarYXV1FaVSCaVSCUtLS6hWqygWi2g0Gq/JPH3NItVQKIRwOIxwOKyij263C8uy4HK54PF44Ha74Xa74fP54PP54Pf74ff74XA40Gq10O12VZQjDS0X1nq9rrwdHpt/dzodNJtNFR3rF7/dbqPRaKDRaKBer6PZbCIUCilPy+/3w+fz9dDGfr8fwWAQHo9HPe/xeF5TmnSnQjeKHCc6OHTKmC5ot9u2E0i/N3w+H2KxGJrNJhKJBJLJpJrMlmX1/H2jqNng9iHnL8eZ1F8gEIDP51NrQDAY7JmrTM0EAgEA62Pb6XTUekHjK+e9wZ0Dx0+mXgKBgDKokUgE0WgUXq8XkUgEoVBIralc/+lU08lm+sblcsHlcsHtdiuHimm5cDiszqFSqcDj8cCyLJWm4xrN499pvCZGNRKJqP1RSQt0u12k02kV/THkp+EEgKWlJdTrdVSrVVy+fBm5XE7lVJ1Op5pA9Xody8vLKJVKiEajGB4ehsvlwuzsLGZnZ1UkXCqV1MR0u90IBAIIBoOo1WpYXFxErVbD3NwcvvzlLyMSieD+++/HyZMnAQClUgnVahWtVgu1Wg0AUCwWkc/ne+jrVqvVszCbRXozaMyAjag1GAxicnJSjd+BAwdUCkBO0mw2q+hAUvntdhsOhwN+v19NchpWv9+voqCBgQFks1kUCgVcv34dlUoFy8vLimYsl8vK2+V9aAzt9oGLrsfjQSgUQiKRgN/vx9TUlErfrKysAFhfsGOxmFpkvV4vgA3mp91uI5vNolwuIxQK4ejRo6jX6ygWi6jVamg0GigWi7e905VBfwwODuLgwYMIBAKIxWIIh8PweDyK/vX7/QiFQor1qdfrahxlAAWsG0ca01AoBJ/Pp/Qx9Xpd5Vkty1J51na7jcOHD6v0XblcRr1ex8LCArLZLCqVCtbW1u54Ku41MarBYBAzMzM4fPgwqtUqCoUC6vU68vk85ubm1MShV8LFLJvNIpvNIpPJ4Jvf/Cbm5uaUSMXlcvVEqIuLiygWi4jH45icnITH40E+n0c+n0e1WsXVq1eRzWYVPex2u1Vet91uI5PJoNFoYHV1Faurq2rQp6am4HK5UK1WlXCKRrVSqaBUKqHVaqFerytPySzCW0MaKpfLBafTCb/fj8nJSYyMjODQoUN485vfjGg0qiIYYJ2RKBQKilXodrtoNptoNptqP1w6bITX68XY2BicTieOHTsGl8uFhYUFPPfcc8hmszh37hxqtRqq1arK8ejnaLA94Dj7fD4kEgns378fwWAQIyMjSCaT8Hq9yOfzqNfrSKVS2L9/v3J8KTyjtqHT6aBQKKBQKMDn82F6ehr1eh1LS0soFosol8sq32ZwZxCPx3HkyBHE43EMDw9jcHBQGVBGr2Qa8vk8CoWCMnBOpxM+nw/RaFRFpcD6epBIJBAIBJDJZLC8vIxKpaLYQ7JXsVhMsVsAlJitUqngxRdfxPXr15HL5ZDP53enUQU2PMxut6uiC6fTqUJ60n00Zg6HA5lMBsViUal4mYjmIJByoGCJF4+0bDAYxPDwMGq1GrxeL9LpdI9alIImuXgygvV6vQiHw/D5fD1JdHpgHo9H5W4ZaddqNbRaLUWL3C36YachFAohHo+ra032Yf/+/UilUhgYGFA0oMPhUNdQjhPHn/eOpI/lewhJCzLH73Q6MT4+riZkMplEsVhUCm4ZtRrcHFwuFxwOB3w+HwKBgFpYObfD4TD8fr+iBn0+n4pepCDR7/ejWq32qLLb7Tby+bxyglwul6ISqdFIJBKKKnS73YoBY/rIiAhvDy6XS0Wk8XgckUgEwWAQTqcTrVZLrfM0qm63W40dgJ610uFwqJwpsJFL7Xa7SjdRrVaVc8Q5L4/HPDpFqJZlIRwOY2BgAE6nE/l8Hj6fT83xO+Eov2ZGlYsaabZWq4VQKITx8XH1RSmvZ2Ry5swZfOtb30K73VaRIADMz8/D6XQiHo8jGo2i2WyiVCopfn1yclJ5uvv370e9Xsf58+extraGUqmkVGTz8/OYm5tT9KHD4UA0GsX+/fsRiUQwNTWFoaEhdLtdZLNZdLtdxONxHD58GLFYDPF4HMD6hur5fF6JYXw+H+LxuPKc9mLEs5VAa3JyEo8++miPh+v1elXeVFL8ZAY4QTnxmGtnPo2CNLIFwIYIikKmRqOhaGLSRjMzMygWi2g2m0q5PTs7iy9/+ctYXV3tURVyoTCG1h5S5U+1diAQUII/ltHJ3DnfQyc3k8mohZeGmSr9ZrOJlZUVFItFpXPw+/2o1Wqo1WrodDoYGhoCACUo7HQ6yjGvVCq4dOkSlpeXX+MrtXMRCoVw3333IZlMYmJiAvv27YPP50Oj0UAmkwGAHiNJh1dqGHK5HCzLUlEqnSrOaQY7+XxeiT4ZGHEedzodNcacixSwcr/tXC6nhKhzc3OYnZ29I8zFa2ZUgY1cGi8aL7oUFpEG7nQ6yGQyuHz5MizLQiAQgNvtVtQfFzjSt/RIqRiNx+PYt28fjh8/jnq9Do/Hg9XVVWQyGbjdbpTLZRQKBdsax0QioZTBwWBQHVcqEJPJpKIeOLikEEkt03Pbi0a1Hyg0mJ6eRiqVwuTkJMbGxtSCS7pIKrup2paiFXqtXLSlOIFlG8y76CIkUkwOhwPJZFJFMvl8HpVKRZ0j8/0cQyNA2xpkC3w+HyKRiCpNi8ViiEQiPQI05sPJHABQqZxms4lAIIBKpYJutwu32w2Xy4Vms6ly4hQ80sHy+/1q/ZBrCh1in8+HUqmE+fn51/gq7WywLHJ4eBipVAqRSAQej0cJPOU809N5AJQGplqtwuPxoNlsqvtGCo663a56XblcRrfb7akYYOqHda50uJmLp6iR6YFcLnfH5u9dNar8ohQaSOWtXAClV8n8isPhQCqVQiwWg2VZioZtt9tqEpKGdblciMfjCIfD8Hq9yhNqtVq4du0agI2BYJ600+lgcHAQhw8fRr1eV1FsIBBAIpFQfD/Pk4s+Gw6w3II5PUalpClIORisg0KkSCSCBx54AAcPHlRjxvuh2Wz21J3KiJCTjZNW0kCkfuTEpkcqKXiZgqCxpMfb7XZVFDU+Po43vOENmJ6exuXLl3H27NkeAZpxknpBh5TlEnRKueB2u11Uq9Ue5S9TQJzbrD2nuCUYDKo5zDxqq9VSQiSq8rmgr62tKeeb64M8v1QqpZpHhMNhlMtlLC8vmzl6iyDtOzQ01JP+ouBQ1yLQIaZTzHWT85YMAwVLZDM5L6kOZ2oNgKprpWqYxydkL4JQKKTuqx1vVCU1Rxk1Fy2gN7fabDYVBTczM4OxsTF4vV6Mjo5iYGBAebM0qpwI9EYYnTJHu7a2hmw2i+eeew75fB7BYBAnTpzA2NgYUqkU7rvvPhX5Mu+ysLCAQqGAWq2mxDBsPNHpdHpyrRxIRty1Wk2pz4ANZ4ILyV6Ebnii0SgeeeQRTE1N4dChQzh16hQCgQDK5TJqtVpPfls2daDjBUDdL3ISS5ESc22yzpSTUz8nvdzK6XQiFAqpnHk0GkW5XMbf/M3f4NKlS8qoGoO6GcyXJpNJPPzww5ienlZRBOc3600ZhfBxAEr/EAgEEI/HVb4dWE+tLC8vY2VlRY0TADVWVIkuLi6i0+kox5rjT1aCaZxIJIJKpYL5+XllrA1uHh6PB0NDQ5icnOxh6qhtkMp+/k2jSbqfRo+NHFhTzvfQgWq1Wqr0huWO0hYAUNGrdNjIZgLrYqpAIIBIJLI7jCq9DL/fr6JV6c3ImiJSueyYxFDe6XT2RBpyweVvWfMmveBisYh0Oo1wOIxCoaBKM5izo9Fndw5SRFSB0rOSHYDoafHc+VpGO6SQZb3VXq+B5L0QiUSQSqXUGJDqJ2hA6YXK98soUUafnLQ0yrIky64khn/z/VLABECxDLFYTLEVfr+/5/gGGyB1RwPHTmSVSkWp5GlEZS0hxwyAmkdclDnGdGRYQsXIhAsnqUOyRXytFMkA6HHUSBMzomUVwV6dm7cKXlfmN4He6yvnqayEIOMn1059XKVR5phIRlOyVvxMfW2WoF3gOrzjjarL5cLIyAgmJiYwNTWFmZkZJXs/e/YsqtUqqtUqarUaQqEQjhw5glgshiNHjihagd0zSAPoYhW5yJG/p8iBOVDWR509exazs7M4ceIE7r//fkU3kC5k67Pl5WUsLCyoXqPBYFAZWABoNBqqt3CpVEKhUECxWESpVFIR8+TkpDLc9LIYke01cLwikQj279+PQ4cOIRqNolarqRZ0nIzSuHGyyIkklX4cYy6oXITlBNQFRZxY+gLKyUahk8PhUOzKvn378MADD6BQKGB+fl51ZDJYB6nVgYEBDAwMwOVyqbpC1nDL8QB6nWA+xzKZa9euYWlpqafGsVarqUYPXJDX1tZ6WhTyWHKB5TpRqVSwuLgIYGNBdrlcSKVScLlcKJfLKBaLxrDeIiTlKzUP0rjSmSKL5Ha70Wq1VEBTLBbh8XhU/2ceh+O2urqKcrms5jjHV9fCyICLjYTIoHQ6HeVE3Ymyx7tqVIeGhnDw4EHs378f+/btw+TkpGpQz4lXqVQQDAYxPT2N/fv3Y2RkBKFQSJXJZLNZVX9ICX0kEukxosBmOk82XW40GorCI6Xr9XoVpeByuVREQpqK9AGl+rxh2KifarfV1VVUKhVUq1VFP09MTCAWiwGAUh3K+ta9AhnFBINBjI6OYmpqSi2i8nX6++w6Z8m8KseWrASwkTenFyw9aC4Adp/Fe4djTqGNy+XC6Ogo7rvvPmSzWcV8GGyAKvzx8XG1KFK0xxpuLnDAxkLMlIrMp9frdZRKJViWpZpDMG/KqJKUcrlcVmpOKWLhgs7PYcldPp/vaT7B82b+tVwum/K3W4RkDSkilc6xZINY8khHmHQw03AUqLExiM/nQ61WU/NOllHKOc2yO2lc6cgDUHXrkn7ebmbirgqVePLtdlv1ZyRPTsMJbLS78nq9sCxLiRFo4Jholjlat9ut6Fx5QYGN2iXLstTFZd5NLqpyoSV91O12VYQZjUYRCoWUx+NwOFTLLeYDJfUovSkOrKy73YuQ1KC+uPa7sXVBkDSwOjUsx90O8r30UOWksqPl5f8cb054g80gxSbpVgDKGQXQU/bAcbSj0uWCLPPYXLDJTMido+RxJB2oj7fURwAbLArP0eDmwPVWzj0ZePC6y/kqDSKwITaiQ8xx5XsZdElHR6d75WNSCCWfk00lyFz0u/deLe6aUeVEoAjp0qVLqgPK8PAwotGoktCz0QJpwbNnz6JUKinq1+v1YmRkBPF4XBlVj8eDsbExjI6OqjZVjUYD+XweS0tLKgKNRCJqQlLuzwsvaeRsNqtqYaenpxUlnEqlUC6XceXKFTid6034Dx8+jEQigU6ngytXrih6t1QqIRaLqUWG/Ys7nc6enLgOhwPBYFDVE1PoJaNLYLOoSadteSz9GspOXNIzls065ESTNaz0sKVRlSpCvo71yuFwGC+//PK2XJfdBAoSw+Gw2jmIgiJu5cX2nZKSle/XF2QAyhGXdcE0qrLmUd4nsiyObIh07KnPYJqA55vP5/es03uz0OlV5lQ5ltSzUIUv86Scg7pCl+MqnS9SxdwCTm6CQoZBj1b1cyIkFUwBomSztgt3NVLlzUxj53CsF+4y0vT7/T1RqtfrVfsoFgoF1VGFXTzYLYUUzuDgIEZHR1XROMURpJLYrYefIY2bpIg6nY5S/fr9fsRiMcXzsx0WB8zr9aom78FgcJNoiYMlu8joC8legS5Wk56iXaQqBQgySuVvncKVtI/Mp8nPl2PMBVW+Xn6mfi5ME7DBCIvUDTYgRUEyZ00DCmx0u7FjGQDYRg0cKy7UZJ+kjqKf48XPkZGsTA9JHQYXfYMbQzdkugGTLBR/yzIaXnd9XEgJk5lkFYZ0mnSKV54TP192YNMjZblhy3Y7UHfNqHY6HaTTadVoYXR0VPHkbJIAQNWfFotFZDIZlEol1SpuZmZGRXtsti4nGAVNXq8XU1NTcLvdSKfTiMfjim4mlUwxwoULF/D5z38eqVSqZ2cZFgzTwDYaDeXhsFm+LOdghMtG+4FAQG1tVKvVkMvlAAADAwMIBAJYW1u7W5f+ngGjGO5QIR0aXcHH1+s/8vX8W4JOjR7dygVcLgL6Z8lzlcckjc/Ih4pug82g08oFSwqRHA6H0kQAG+p5CTmm+jjI1+sLJWk8udjKLloUITJK0d8r0zoGW4N9BhjQ6NdMlsuwOQ/QWxIn2SNd70CjKJsCSSdN9gemgywrRPQ1gveMDHK4u029Xt/WUqq7ZlTb7Tbm5uawtLSEiYkJ7N+/X20qXC6XlcfJ9mUUElA16HA48OY3vxnvf//7ewYzl8thYWFBiYy4RduJEycwOjqqni+Xyzh9+jSef/551Ot1FAoFLC8vI5PJ4OWXX1adQahc/N7v/V4cP35ctTWTNwKVuzSsnJD1eh2ZTAblchmRSEQVu7OtFp2BarW6Jzu5OBwO1YeTohA9YuCk4AIqaSZ9AbYznFKoJr1hPbLd6kcaX/4tc4CMtE1EYw9pVKVYJBAI9DR4kb+BzblzQuZEgc0NPDhOjH654JIZI73HyIeOHQBV/wigJ7dqDGt/OBwO1bmMfX8pFKXRYnDC+lMaPjneesmNno/l/cO2o91ut0fVzXGXO5rJnL3MxzP44Xu8Xi9SqRR8Pp9K1W0X7rpQSV5Y6XHSw+SFZCmMnCixWAxjY2M9i51sY8hcDfOu3MmCEnwKiqi6lc0aOMBy8tPT4k3BujuZI5CLNL8LAOU1UV1GI0Hl4l6Mcri4csL1ExX1M3Z8Dti6i9HNKvnsji+fk78JSW3uxTG8GdhRc1I4wuelw6NHp3YUPJ+z+62nCQjpXPE5Vg0A2LTIyzy6gT0k8yAjSB36PaCPOx+TY203HznnXm3uk+MvP5v51TtB9981o+rxeHDw4EFMTEwglUphZGREbVgrjVej0VCNAFwul9qjj1t2RaNR5HI5fOtb38L8/HzPpOH2TslkEmNjY0qdyb39jhw5ApfLhZWVFaysrKBQKPTkOe+//34cP34cAwMDuO+++zA2Nobr16/jlVdeQT6fx9DQEEZGRuBwONT+qmNjY2qCBoNBDA4OIhAIKPGN3+9XHhH3Wd2rO2Pwug0NDSkanLltLmRyIspoVR7Djgbmc5yAklLmcfVaVY67rgDmsXTZPulrbnJucqqbwTGQDicAxS7JchkpSJILpp7f7nZ7e7nK8ZIN1GUkQvGSFEUFAgG4XC7s27cP999/P1qtFs6cOYNisQiHw6EcdKPq3hoOx3rdtmScJL0LYNP8o0OtOz4y160rdrlzDUWecotHHpNrBPUxNJJS0MY6dkkzu91uxONxJSLdTtw1o+p2uzE9PY2TJ08iGAxiaGhI1STRqHJ3A/bUdTgcSCQSmJmZUSIj5iOffvppPPvssz37qZZKJZRKJQwNDeHw4cNqO6mRkREVzYZCIbV/5vXr15VAyuv14vDhw3jTm96EeDyOAwcOYGhoCPPz87h48SLm5+cxNjaGfD6PUCiE6elpTE1NKQUyJy33gSwWi6hWq/D7/UgmkwgGg6rGirV1ew1O53rd7sDAgNojUY/6JHVnJ1iRkQ8nItCbX5PKUX0SS0+VeVGyInYNCWReEIAq4+KmDAaboQuVgPX5HwwGAazvO0xnBoDKswLYNG5yvFhbSJD1Yj2xVGozAmVpBsfN7/djbGwMx44dQ7VaxfXr19FoNNTCLRd/A3twHieTSZXiAnopVzujyrnJcaIxJLtIowhA9S5gzwCfz6fKHCX1T8ZQZzqlU8ZOTXIuswENgG2fx3e1pKZSqSCXy6HdbisvgbnMTqejmtjzorBOVfYMrdfrKsdJClHm0WigM5kM5ufnkUwmlQCp2+2qPq779+9HqVRS4iN5HrLmjaUA4XBY5U3pNbPDC8VJnU5HKYXZcEAOMovO2fpwL0J2NpFUoIxUZSMPfXLqUYxdPk6PYIHNylCZb5X0oMy7MldEyHM1C29/8DoBG3lQ7mkMbJRb2OWr+ZgUAPI5u2iIz0nIz+Z9xHw+txKU+TaZnulHZRr0gmkcqS2QxlIaSDl2dlSrnLOSndIdbJ3GJ3TKmMIzriM05Pp9cqcqMe6aUW21Wrhw4QJWV1dVM+vh4WEcOHAADz74ICzLwle/+lWcPXsW0WgUExMTSjl77tw5dRyHw4FisQiv14t9+/apScPNwIPBIFqtFp566ik8++yz2LdvH06dOoVYLIZkMolEIoFIJIIf//Ef72m23u12sbq6qvZWJdXs8Xhw3333YXBwUCmSW60WAoEARkdHUSqVcObMGVQqFbhcLjz44INoNBo4e/asil65iKytreH5559HpVLZ1sT4TgEdJdYwyrwzIxeyFHLySAPL/+WCyAmp0786pSh/AxtNQUgRWdZ6D1iK5chg0Gtme0xuQ2ZHZxlssA1Op1NtBM0uS1T/r6ysAECPwIStQmWZE+em3HiD4yoXTEkJc0HmsarVKpLJJA4dOqRqzbmNGLuf8d7UHSmDzXA619uvDg0NqRSenjvlZgis2Wf3JF1IxL85nnSAuHcuqXzSvoxWOddl5AlsOGMMhLg20Djzh13dqC7eTtzVkhrSn61WS9Gzbrcbo6OjANZFR9ylgPRcuVxGJpPp2R9TthJkpw0pBGo2m1hcXFRbr42MjKh6WG4PNz4+3sOlt9ttPPXUU5idnYVlWapNlsu13hPU7XardmuMbCORCMrlMtbW1pDP5zE6OorJyUk0Gg0sLi4inU73lF5UKhUsLy+jWq3erct+z0HmsGVLMVI4ZA5IB7HrlR6VSu9VPmZHPRFbRbGyRo75fLm1H8sCeP6mntEeumNDMSAA5aTKhiscR1kiIcdJZzKA/upfvleKX7hgu1zru9NQ80BHXG4VaEdbG9iDok06oIQ0ctSaSOMnx0uOmWSl+BoqfclUSlZBF8FJzYScxzSgdJqZa7+TpXGvifoXWN+qKRaLqZ67UmjEgWJEwLpQ/g1sdOfh+6SYQf7d6XRQKpUUdcv3crItLy/jzJkzKBQKOH/+PC5evKjKYBhRyy3pOKikiUnpZrNZtd8qB4/Rs8z9yRtgr4ETJRgMqqhEnyRyAlJEIJte6yIlWWYBoCdykYsxnS47yKJyNqfQF3n5HYzy98bgPc55oufbZCUAHSg5vpLqlTQv83B2n6UrSOW8AzYMOPtucz2QTp4Z2xuDRlPvXsY1j2VnyWQSlUqlp+KC48kuVtKZlTlXNvVhJy0ZVPEcON68hwh+PtfjWq2m0oIy5SS7Mm0n7qpRlc0S4vE4hoeHEQgEVPMHGie2r4tGo8hms8jn8yiXy1haWsLq6ipCoRAOHTqEeDzekzchx09RA59Lp9NoNBqYnJxUA0FD+corr+AP/uAPcO3aNbUHqtO5vsGy3+/H+Pg4HnroIcRisZ56K27xViqVsLS0hJWVFcRiMTX4zP9yckueX1IgewkOh0Pd7MxHczJwUZXGVW7RJOk+Oiry2hJSISqNon58Pg70llVwNyGem3yO30EvFTDohV4nSgWuVF9LGpe13roRBDaiGJnH1kV+Mvcqz4HjLtXkssqgUqmolANZCd5zBv1h5xyz3peak3A4jPHxcRSLRSwtLakWgwygeE8QHCcaOW4Z2Gq1kM/nVUCjv55iNDpmjDxJT3OzBY41jSpZSgY+24m7njzgAkXO3O12K8kzvR0ufpwYjUYDtVpNNYqgtyq9FWCznJ/vl3uc8hzIzefzeczPz+PatWvK03I4HCpn5vF4UKvVFL8vSwW4QLDpBGkkPdfH7ywX5L1mUAleU73Zui42IOzGWF5HSffxefmbf9tFQXafIcUqekSkn6cxqpuhXxs7x0RCRq46Na/nq+2uvRQ3EZLt4Pv0z+O53ej1BvZgGkQaJMni0fDapUk4BnSmpMBJjgOjSx67H3j/SIdcGli749uVfW0XXpOMvN/vx8TEBA4dOoRWq6W2S+t2u0gkEir3AgC5XA5nz55FNptVXZMAYHV1VcnlSUOwqQA/g0aw0WioyIP/nzt3Dqurqzh9+rTyhNgggjlVJtmXl5dVTvbQoUNK9MTP48DUajVkMhkVyeq5IHp3zBPYLdq7GVKKHwgEAEBtLN1vcupOisyh6gs2oxFGsnaLtZ5/A9AT+XCy89zo6PG9nIy835ifo5O2V8HrIhuWy8iQ15ARJ/OqjFw4VvqCymiWUSpzdUzzyGMTPA7Hj/eIzN3LdAGpX4ObA4VATN9xbSUr4Xavb93GncWoT7EsSxliyU7IOc31khS97HalO2CSAZT3nd5sXxpb3jdST7Nj61QlSKsePHgQc3NzmJubQ7FYRKfTQTweVwImh8Ohcp3pdFrJ8i3LwtraGmq1mqp/o7CESlu2tqIRJW1E0cmZM2fw8ssvY3Z2FoVCAc1mE5FIBIlEQt0czWZTKRUbjQYOHz6M6elpxGIxJBKJHiELANWmkPSvzBECUAsCn6eDsFfAPHgikVDOD7dQY10yJwtTBbpRldStNHg8PiMXeRy+nq/h33ppBh/je5gikJ8txUrsIcvX7TUnSYILGylUCgalIEgKUGh0gd5oVY8WpbhE5j4ltSyPLY8nm+3zmHIh14VpxF52jm4G0qjK6ynHg0aVBrXZbCpjx3VZshnSyQE2VNt8XJbZ6eVaXGN5X8lNyXlPSWeNzh/vwR1tVHW1ltPpVLnUYrGoLrzeM1TuaiIHkElxHpsLnryQPAaPKcUKrBVlY+VwOIxQKIR2u41isagiXL7H6/Uqo0/jTFq6UqkoI8kJzeNzoFutlhLe7FUxBGkZGU0Skobh9bGjdSWda0flyt92VLv+nMzJcYspSRMB2ERhMi8TCATgdDpVvn2vgnOP81Y6LjLi7HQ6KufmdDqRy+VUPTePo0PPg0uhE5/fCrxXdIMsz93Q+beGfqksWYNuF1XaOSw69S7faydQ1OesbpAJXdgkmS6+XtqP7XKm7qpRpfcgW0mtra3hmWeeUS0D6enytYlEQtWJ5nI55PN51a+XYPTK98uIhROYe67SmHJngmAwiKNHj6LdbiMYDCIQCChKinWvwPqiOjAwgAceeEB54cvLy5ifn8elS5cwPz+PSCSibopisYiVlRU4nU4sLy+rjk/sQLLdTZx3AhyOdaESO5lw02EpKJGvlcZPNtIGoIwyISeadLD4nKQf9QksX0tBHPfsTSQSmyJWHieZTGJychL5fL6HqtqLIFPE3V90hqFer6NUKqHb7SIWi2FmZkY1aMnn8+h2u8pZ5eJLuo7H5+ONRkPtOANsUIN6KoDpAN5fgUAAkUhEOcAy7yfXpL3q8N4KpFED1o2dx+NRLKPH41HXnuNCh4rQ57ukbZk20Bkq3lNSsEg9S7fb7VmvqaORokau7YxUZQpPGuHbwV01qnbJ4UqloibW4OCg6rTEm5tt7VgSk8/nAUBFqqSGgA0viYlyYINy5ZZy9H6oVvN4PBgeHu4Z1Hq9jrW1NZTLZaVusywLoVAIIyMjcLlcWFhYQLFYRKFQQCaTwdraGiqVCgCoXFGpVNrkHclWaHsN/N6k5iW9o0cLOjXLRZWgMEEuwDyOVJLqpTR2EQnvGwBoNBrI5XLwer0YHBxU7AjPhT+ksuPxuKqD3MugASQjJBW+nHONRqNnP10utnRugc0RA9cMnQ4mK8Sxs1ME6+POdA030ODjMsI20erNQTq8wIbC3ufz9XQp0ql9O+EZ/5b5TxpLHkOuC7rjRE0DU0oyKtWNpCzPk4JWuf7cbsR611Z2Rp3xeBwjIyOKz3a5XIpyZX6y212vPS0UCmi1WggGg2g2m4oCBqCiVWkMpTCCW7A5HA4MDQ318O2yNoneqjT4Ho9HNXzweDwIhUKqMxLfw0UkEAhgcHAQ7XYb4XBYGXvSwvTQgA16mZN7L0HWoUmKXkJf1Oj8AJvzXLyuOq0knRi75yRFazd55CSUdXM6lQVARd2sg9vLoHHSa3vtFi6+nuMhnWP5Y0cdSkqQn6NTw/JvzvtGo4HZ2VmUSiWVC2fEIql+Xdxi8qubwevFNcyuDpmP6w0b5NzUx5GMEpkpslN6xMrPIBvCqgugt+aYazwdL+mIS/ESy+i4bt9uGueuNtTfv38/ZmZmMD09rXZy8Xq9SCaTSvhBzyOXy8HpXG9zxp0QMpmM6rbDKIct/2i0Y7EYGo0G5ubmUCgU4HA4ehryB4NBVKvVnjo2FvvL6HZ6eloNHBVtgUCgh350u9d3OpiZmUE8HkcymVR51mKxqKhq2fBieHgY7XYb169fv1uX/jUHHRApIOgXEciFl2IHPYrlxJJCFE44+b+uIOZkkgsl38dFXSp96WCxRo7CKI4nN2u4E63Odhp4reRG5Ey/0BnWnSbL2mh2rjcDkKUUMtrlGMuSOj3fJvO5VNxXKhU8/fTT8Pl8uP/++3HixAlF/8lFWC/J26ocaC+D104KyeSP7B8g+xPwN4MPeW0pOKOh49adOo1L40wqVzbm8fl8qnMed7bhuQIbfafpLLMz3uDgIKrVao+BfrW4ayuBzKeFQqEe40QDK2lfhvTdbndT5wsZ2jNiJfXg9Xp75Nw8rr5pMo8DbEQkktrjROPA8z1y8eWE40CyLZZ+XE50Up/So98L0Kkd+bj8W0YGcmHU8zd8Xn+tbiz1x+z+14+lny/HUL6OPxzPO9HqbCdCH1/OG7vHgd7SqX7jaafQBvrXnuqfwfHrdDooFouq3ENvBqIbfPm4Maq9kJG9XBt1B0fm1e1YI7neEpLBkpGt3fjKqFVSwnKt0XUWdmkBshms2Lhd3FWjSvm6LBpOpVI4fvw4arWa8lgDgQASiQRCoZBSVTabTVQqFeTzebjdblXrWCwWsba2pjpnrK6uot1uo1AoqMkzOTmJ0dFRhMNh1Go1VKtV9Xk0thQPlctlABvKMOZvHA4HZmdn8fzzz8OyLFy7dg3pdBqlUgnLy8uo1+tKhOTxePDQQw/h0KFDKg/carWQTCYxODiIWq2m+mLuBXAPUpYhAf2NG0uZZAclaVT1iFUvmeB9pedqJPoZwG63q5p8kNWgtytVjYyqWFaQy+X2lJNkB5lT5biQCWIU32w2e+i1RqOhXrNVHkwumGSWuOBSpMJzYBTE+4eLZqfTQaVSURUHOtUrP4dOOKOk7RCv7AboRkp/Tkb85XIZCwsLqFQqKBQKqFQqPYygZBRkMCUVxbIki2Ms1wOuz7pgStLNem6XP7Js0uv1IhaLqePfLu66+pdGjIOSSqXwwAMPoNlsolAooFQqKRWZ1+tFoVBQVEG5XFb7mcZiMQwODqLT6eDy5cuoVqs9Houc1BMTE9i3bx98Pp8yqlT/kpqiMjifzysviIPPLktXr15VdYkXLlzA0tISgI2iZQqfWIcbCATUzUVxhNPpVHmdveIF60ZV9yyld1uv11Eul3uiQb4O2Kzelcfh84T0TPXH5fP8LE5ujiG3CSOFpFOSfr8f8XhcbQu4l8FrLBXXwIaBAqDERYxOa7Vaj+Mk6xWBzdEMDTTHiLQfS+uk3oLRL1/PzyPlLPPl+j1I51/m9A02583l4zJdAkAxhbVaDYVCQfVsl4JRfVzlfGUgJQWp/GxJ0Ushm+6U6eOqG9V6va7W7Gg0um2Cw7u6n6psZE1vnwlv0sOcCMFgUEV95OVJFYdCIQwODmJ0dBStVgsrKysol8sqApV0g9PpVL09eSFLpZLqriQ9H9J5ehJdesAUTxUKBRQKBZWz4UIcDocVxcvvFw6H1c1mWZaqx90rkI05+k1I3vyMDoDNdOJWkHTQrVA4ulHm53Niy0Vdile4GJB5MfTvOqSTwvtfLpQ65dePGtb/lo/plJ/da+zevxVlbBd56VThXocUEOlGUKdZiX7XUI94txpru9fKMhkeD4AqmZSRaj/ql7AT0t0O7urWb6urq8po5XI5pFIpRaPRIEmj6na7kcvllBgpEong4MGDGB0dxT/7Z/8Mhw8fxvXr13H06FEUCgWcOXMG58+fR6PRQD6fR71eh8/nU/uonj9/HufPn1fUcCQSUapeUsrcY4+fKymEcrmM8+fPo16v49KlS1heXla1q/F4HPv378exY8cAALOzs1hcXFT7rnLnekbHLCHYC+AYpFKpHtpbTka5zdPq6ipcLhdisdgmulhK8yWFRNh50v0WYLtoqlAoYGlpSam6eY/S6ZKTNBAIqM0B9vriK9kAOtB0aiUlTFGXFDDpjVl0tonHpMiFHXokG8XX6+ckqUDee8yx8niSOeP7JJVtsA6fz4d4PI5YLNajIeHc4TxioMR1lUGGVNzKIIOBhpxbUijGe4X3gC5G5DlQ4FqtVpFKpZQOh+lG/sh7RkbK2zXedzVSLZfLSKfTSCQSajs3SenQ65cTzu/3q56/fr8fqVQKY2NjOHbsGB588EFVw5rL5VThPjcflqpdqn7n5uaUyosiE15svo65H3ZU4g3Azklc+NfW1tRG1pFIBMlkEsPDw+h2u7hy5Qry+TycTiei0ShisRiq1SrK5bJSPe8VMJqno6RDepFsDcn32F0nu0WXx7ETQhB2uTopVgHWKcpsNotgMKjy+XyNVC1z4eD+vHud/gU2ogVZCsNFSxo4uWja0a8y0tXBhVVvHymft4t2pfEkHSw7Msmx1ctqDNbB8kJqDcjG2ZUicW7QibITD7FpBx0wjrc+PhwbUsFS1S8d4263q9Z27oXN48k8rB5Zy1TAduCuGlVSa4VCARcvXlRCIRrTsbExVfNJDt6yLNW8ngYsFArh6tWryOVyyGazWFhYQL1ex8DAAN785jer1ofVahWnTp3qGxXSQyoWiz0DwP6S3K+VZRY0nNVqVR0/FoshHo8rYZXH41GN+NfW1tDpdLCysqIaf5OC1ovVdzPoMHEi2kEqNBcWFlRjBdlIm9BpXrkoS2bBLlcmIZXFNPbd7nqTduZ9+B5ZxqF3CzJYhx6tysfkwsWcJ7si6RSdblDlGPLay6YvknLm/1sZWs5p5nNlU3g+LylBg3XwWsm8KK8ldSd0mOr1OqrVqtoLVYLjKEvVONdoHGUKjgJWvk93hpnKA6CMLssagY2e4zw3vYKD69N2Gda7alQbjQaq1SoWFxfx93//94hGo6oeKRgM4i1veQuSySS63fXmD7zoBw4cUL/37duHpaUl/OVf/iXOnj2rPCK/3483velNeOSRR5RX0+l0kEgkkEwmAcB24tZqNdX5iM+x/nRgYADVahWZTAatVgtjY2OYmZlRQqd2u42xsTFMTk5ieHgYqVQKPp8PrVYL6XQaly9fRiaTAbBe00jHgH2F9wro4dLp0Bc5GrVOp4OFhQU8//zzqgWg3O1EQkYzMtKQRpV/S4MqF1xOXlJUAFTenA6QFNFwMlK8JjdO3uvGVb/2so5U0mtutxuVSgX1eh3FYrFn/CQ9R3D8gA0nSPbVloZP3ld6OYZ8jo4t5zrrIak2BaDoRMNAbMDj8SAcDiMcDqv5ymtJVo9sQCaTQTabVSpb3UGh0ZXjojMJHA/2hZfzXKrKZT9nBmPZbBbLy8s97W5Z4cH5ymb/TDdSVX67uOsN9TkpstmsKi3hQPGCUE5Nw0MvI5VKYWRkRJXWXLt2DcFgEKlUCuFwGIFAABMTEz0LNyeyzJ/wQrvdbpWfkYuA7DcqLzJpXsr65cbGjMK46HITZI/Ho3Kz/Iy9JtN3ODZ6rOrydz7PCUcVODeZ30roYPf/jUQJfI3+2TLCosxeCm34nIxebySY2Uuwu966MyMNrtwO7EY0qy5mkZGsVH72o4zl+fDzdaPP9+u9qE2kugE91yyvuUyTcI1n4CHbxsrrqTfWkLWs+uPsNyDHTM+DA7052lqtpoIumbuX585gis9vB+5qR6Xx8XFMT08D6F2Q6LFalqVKVpiD4Q1uWRYKhQKuX7+OtbU1+Hw+DA4OAoBSa7IPL9W+NJrFYhHtdhvxeByPPPII6vU6lpaWUCgUkM1mMTs7i1qt1lPfRqGT0+lEIpFQtBXLd9LptCrxWVpaUjSCw+FAuVxW0a3M/ZRKJdU+kWUjewE+nw/RaBTRaFT1abXriANAeb+S3pOTlouzzKvIycbXSFED/wZ6Ixg+L0ULLN0CoBb+brfbI6yQ58oOLHvJSbKDHj1wPkjqF1gfy0wmo1I27XYbgUBARRt65M81gmkiyTxIxoDH5nuk0XU6ncpxtiwLlUoF6XRapZ2SySTK5TKKxaIqu6FTZyLVDVDnQJGSFHyROWBvcxpWvUOZNGp67SnhcDgQCoUQjUZ71lAAm+4LaSccDofa0KHdbiOdTis7Qcqa79XXj+1U8d9Vozo5OYlTp06hVqtheXlZce7cvYK1f9KjBTaS0Pl8HpVKBdlsVjU8r1QqyOVyaLfbyOfzyGQyqig/EAioOqlut4tUKoVDhw6h2WyqJv6zs7PI5XKKDuCNUCqVUCqVEIvFsG/fPvj9fuRyOVy+fBmVSgWrq6vKqC4vL6t6OSp8M5mMioKl87C2tqaOvVfg8XgQi8UQi8VUPbCk6XRKVvYM5QSgkeWiKvNrkroHNlSfNNA8LgBboyupZQqlAPSUfsndM/h6GtW9lB/vB914UqAiO5kB69csk8ngypUrajwDgUAPza9HLBwzeSyyT6VSqafxuvwNoOd8eD+Uy2Vks1n4/X6lheA9xjwvz8eUSm2AVDn7l8sx5Zzg43RQpcGTrJAuTNKvcygUwtDQkNKnsFWhTMEAm5s9sJVsq9XC2tqasgU68yDbJ7Lkj6Wdt32dbvsItwC2FKTXKJPcsm6VkDy5jF4KhQKKxaJSeukeshQzNJtN1Sc4kUioC8c8CpsSOBwO1d5QHoOK4GAwqCYwi5LloMguUVJRxsQ4vbJAIIBOp6Mk53shWuX1odz+RqIS3hv0buV9cTNUsDwuIxpJ+erv4eukB00nSfYC5bHkcQz9uwE7WlxSdRxXqvkBqMhCp3gJPTKR17sf/a7nZHlszkO5aTbV/bzPGBUZ9e9myDUNgO180sdD0v43Q6nrFL80yLpGgsfRNRR8v2Qe9eMDvfut2hn2V4u7ZlRbrdamJvKWZandaGT3Eqn+ymQyOHv2LMrlMubm5rC4uKi256rX60gkEpicnEQ4HFYSbhrSTqeDbDaLubk5dDodhMNhjI+Pqyg3Foupxg0s8SHlx63ckskkDhw4AJ/Pp3a6qNfrqrQGAAYGBjA2NoZEIoFUKoVaraZ25PF4PIpKHhgYwIEDB1CtVrGysoK1tbVdvyAzwohEIkrgICkhfZIxF8KtnILBoPJSZW5Gz3vZTTw9KuVnSsPO85Ot79gchOpy0kOku2REZURKm0E6kJEDN3IvlUqqa1kul1MCMeoRdEW1XKClWpRGmWtGv9w30LsdZD6fVzXsTDmNjY0hGo0qJ71YLKpN001Tj16wPDEQCACAUuWyPpUpMs4vGl/OHTINNIoy3647qrK9KztgyXVCjo3caUhGotxzWxcUMm3AkjmgtwHEbV+n2z7CTaLb7SKbzar8CPvksl2gXGyBjXxXpVLB0tIScrkcXnzxRZw7d65nElE0xM1xOdFIu5LqYTcnYP0ChsNhAFB5Gk5UGtZAIIBsNqtqTwOBAK5cudLTGo20UyQSUTvkBINBVY5DgRUN9ejoKCYmJlCv15FKpRTttNshJ6MUbAH2273JySq3CAQ2d1mxo5akYIzv4W8ZkXKSMVrh8XifsN5Zb5qv5/5MtLoOSeGzFpsOCxdKVgBUq1WluCbLpF9HmVPXyzdoYO2cGkkHyvGm4rRSqaBWqyljTiGLXGhNpLoZLD3Rt3yTbIReCsX3cH7pavx+YK93yVoBG3S+HB/JEvJe4H1Cm6DPUzppfEzfbOV2cNfVv8yHyI3DaeQ4+VgryNaDUtDAOla5HVChUAAAJSpqt9tYXFxEqVRCLpfD/Pw8ut0uhoeH1cbTBCMgnge954GBAQSDQUSjUVUvSZUyAExOTiIej+PgwYNqc/VAIKCip0AggHA43COUKhQKKj/AhWUvLMa88Sn2kaIuTjJuAUYnSypD+R6Z+9Qnid1k4PPS+HGxlYaRPzxPdvjiQixpJukM8J4xi+86pBEEesVLknaV0b5kDuhUy+upU3dkHWT0IT97q3OT+XN9zGSOnveCGdfN0PUPcqz5mJ1xlRGkfJ98jQQdM/21On0rdQ76udlR0TqjZZcaul3cVaMqDaoUCHQ6HdUk37LW5dC5XA6rq6tKLVur1ZBMJhGJRFCv1xU92+12cf36dYTDYTz22GOYmprC2toavvCFL+D06dNoNBpqv1XudSq9pGQyiX379qkENxVkw8PDShHGJvBDQ0MYGRlBs9nEzMwM3G43RkZGcPToUcTjcRXFss51bGwMq6urOH/+vNoIYHx8HM1mE+l0WkXuux0ej0cZKofDobqdcNcKMhJMBeRyOcTj8Z4IlQyEPnEA+/IaXeDEySlVqDIvzkkZCAQwNDSkPNxCoQDLstSm9fLecbvd6h4xWIcuFpKddeRmFlJgRt2BLGeRqlvpEAHo0UnIkpqtDCwjE9kXVtJ9vB/Yhc04S5uhaw90B4SP0ajqeXWplpcOsi4ypJMN9DZdkY40x7Db3djNRtbJyrltl5eVP5Kx2g7c1a3fZBG43DgWgGphx4tIKlZKqmXNERsoWJbV032JCzV7uMqJks1msba21lOX5nQ6MT4+3nOeLHKWnZioACWNwf6XyWQSoVBIKY1JCZP2opfOjQQ4sUkh7wWjyrGXBk2KCxilyGhGqn35Hjs1ppy4+gKoT0L9MTsal0pAGvtGo9GTA7YTOJm8Wy90BkEqcKUTo7MMcrEENkep8m9dzS1f329O6edlFx3J+8mgF3re0u562hk+Pg+gZ75tBRpo/XV275MMhO7UbfU9ZHndduKuGVWXy4WRkRHMzMyorXaYL+t210tpqtUqlpeXlaCB72OkSPBi8GJyAc5kMlhZWUE+n4ff71cRB/NhTqcTFy9eVF066vU6pqamFG3MvJ88ZqlUwuLiIiqVCs6ePYurV6/CsiwMDg4iEomg3W4jGo0iEomoz5C1i16vFyMjIwgGgxgcHFQ5170W3dgZONmAg52tGMlQnCCVmYxMKHbQxUfSk5b/95tgHAcpbPJ6vYjH4yoff/36dXQ6HUxPT8Pv96soS+aSjGHtzTNLIZdcbEnvc9zka+0WUB6XRo7RJbUKpAjle+VCr9N/MjqRHZxk5EU2ZK/Nz5uFzF/S2WSwYdcCEOhV8sqcqt6bF9hwuOW6r6dngA1hkYx4JXi/8PP5Om6qwPy+FMcxSLvta3TbR7jZD/r/e/s+8MADADZyZKRd2L5sYWGhR3LvdG7sLsHXS6qBVBCLfRcWFlCtVhEMBjE6Oqq2iaNBPXv2LCqViqpTPXr0qKqJGhkZwcjISA9tmM1m8eKLLyoV8qVLlwCsK98SiQTq9bpqw8f8q6yz9Pl8GBsbw8DAAEZGRhAKhdT32kvQc6DAhlGlQWUdsmx7RuUgJyonr8yvyQkkIww72b1OSUmPleOVSqVUG71cLqecMklX3wnV4E6HHBNpVMlAMV8uGRpey5uJLqVRJaVM55jHkveZfi9wrGRXNRl5MZJ2Op09LJrBOqiL4O40FBNyXsiAQrJNej05X8t5rEe/dJ79fr+id+ns0BDLbnd26R89GuU6QZU/KzIYvPH7bEfkelfdMdnbk16OnASSAmTNqKTe6KUwJyejEmAj7ybVuSyZ4cXlgi29JqkWlko1erBUDJK+dTgcaoHgwEglnDSYnKBclBkJU7SzF6BTdxIy4uANzomrC0ludFydltrK69Sf58Rj9MoyK9LRPFf5uXYU4l6GjDZoVIENh0YaUH0R1WFH1/MzdNq4H+T46jk1O8FNv3Mx2IA0WHbpFrvf0gntd0wAPUZSN4x2na3szkHmZjnONPKyp4Bkpzj2W53jreCuN3/gl6tUKmoRBaAiFkYtc3NzyGQyPd5ENBpFOBxWnYnq9XpPLVS321URz9WrV3HhwgXs27cPQ0NDqv0hZdpjY2OqXrXT6aBarSIUCqnuSTTGAJDP55FOp1VjZ0awNPqjo6M9G61zcabHFYvFAABjY2M4cOAASqUSotHo3bz0rzn0TjnAxqSgMC2fz6vIfmhoCB6PpycHRwZBlsxIsZIssZELu1ws9XOgM8eWlE7n+lZ97PRVKpV6hDUSJqe6AbmIsWELtwgLBoNKKMiORbLXqlzY+D+wsRjLSIfjJdkgCd0IyyiXdKJsSccyGubOt4P+262gw8maU655eipG0rWWZfWIw+SuU/IxSbfLe0mWPHU6GzsbSaaJ7JE0mJJGLpfLWF1dVTucBYNBpNNpdQ6MrndcpMovwJOnqEcqsBgxsrfuysoKgA2xA7cDo0qT9VKM/CzLUqU4a2trWFxcRCQSUaE/B8XlciGVSiEej6vt3dhEfXBwcFOUxKJw0szdblfRTn6/X1EdDsf6PoL8mwPLRYU1r4xY9wp0j5CPSdqNe9WyF2s0Gu3pLSqPwf/l5OWxZQ7PLgKRhpjg+NM40jFiATknsvw+wM01799L4Fwmu0QHiPQgy6ZoVCXtrl9fnUrW83NblVtICpEg08UGBLKukvP3RlS0Qa9hlddQ5s/1HDfHSqrn7dJAcizlnKITRAZTzj/JPMgSN/nD9EA4HEY8HldsJM9DqpJ3VE4V2KBngfUvyBufRf7JZBKJREJRbsViUZVjAFAGk8YsFouh1WohEAjA4/FgYGAAg4ODSqnLyHVubk6pc9kkghe1VqthcXERXq9XlU/IBZILfqlUgsfjwfDwcM8i73Q6US6X4XK5lEGWHhPrW/k99qpU3y56ADaa2JdKJdVzl96kTvXpP7z+dkIlPicpSDo5djQuwZIvOmpStSypJXn+BvbXRkI29eC811W+8r3SSZIGmMep1WqKudCNsh0tyePw9dzLWRoDmbq5kZJ4L0KfX3b7pAK9aTjZjUxqD3T6nSwBx4qpQBppAD2slczJ2qV+gI1GESzTGxgYwPDwsHKsZMOhG6WLbgV3NVJll4xgMKgUsTL5PTU1hbGxMQBQO9IkEgmMjo4qA8ndXeLxOGKxmFLq+nw+HD16FMePH0ckElE1sNyNhrWj+/bt61lY0+m0au59/PjxTVEMm//Pz8+r/VS73a6ig91uN1ZWVpDL5ZQwyrIsVZYRDAYxPDyMUCiEVCqlvK69tBjLqFEugJxYdGwKhQIcDgdGRkbUzhJ6BKrTrdJQ8nl6vRSdSApQnpOkoAi/36+8We7GIbes071jg15IwyQXOjqnnL8+n29TMxBeUzl2FIlxAeRmF7lcDsBGCzz5+cDmLeFoVL1er2qVSCNN50kaDFkBYLAOMoZU+dZqtR6HhAaPmxaUSiX4fD7V2EfeG1JfQz2FZJSk0eVvNs3Rx0Y617Lqwuv1otFo4Nq1a1hdXcXBgwdx+PBhVeUhO97JVNHt4q4YVV4gmbD2+XwqwqRR5ZdlflTmU5n/IKXErd04afx+v9pejJEh83XVahUul6snAuIEbTabyOfzKg8kF3FgY+9H0sbRaBSWtb59FLec43myDES+nwsDz1dSFXeqTupeg6Tz7G7aVqulOkwBULk4GakCm+vk9Md0L1j+rzMQkp6Xiz/vLSobZUTVD8a4boZ+TUjZyvpjed11upaQlB7vBdaeSyryZhZDOZZSnCgjMBk9bWf0slugr+Xy2skcuN5URXdC5d86tc/HmEazM9pyj2x93HSnjjubDQ0NqXtPzm3pfG0H7rhRjUajqkFCKpWC3+9Ho9HAyy+/rLxEv98Pj8eDy5cvI5VKIZfLIRgM4vDhw+r9LpdL7WEq1Vyjo6O47777VN9dionGxsZw/PhxVKtVtbVbIpFQtaX5fF71Hz169KiKKufm5lR5DGX7svRjdXVVGUTSz6SkFxcX8corr8DhcCCdTqPVaqFQKCiDPDMzozpCxeNxHDp0aNdPWstar//KZrNwOp2q/6+sF+QGBvl8XnmQNKq6GEXe/DLy1RdxO0NnJzTihKLz5nCs5+u5+JOytBsnPW+7l0HKz+l0qq3BpJCl0WigWCyiUCjA7/erOa+zDnZjLkswHA6Hin4kxS8XZDkWkiHhcavVKjKZTE/ZmzwX+fq9Pq4SjEApVKKOhdeLTXN4jSuVimIBGMiwNlRufymNG8eB9Cx1MqT9Jd2vO9iEHHOKEOm0s/UtqeU7ITK840Y1Ho9jZmZG1YIGAgFkMhk8++yzWFtbg9frVTRwNBpV7eyGhoYwPDysKJtOZ33HGhqp1dVVVCoVhEIhTE9PY2hoCKFQCPl8Hs1mE/v374fD4UAmk8G1a9fQbDZV0/tGo4G1tTUUCgUkEgkcPnwYwWAQ4XAYs7OzCAaDmJycRCKR6NlarlqtYmFhAV6vF6lUCslkEsViEdlsFo1GA3Nzc5t2M6nVamrDcofDgYmJCbTbbQwODuLYsWN7YtLWajWltkulUpsoVDb9yOVymJiYUM4XgL60jBQt8X89MpWvtfNEpVFlXTRz3zSkcqNyHdIz3+vgogdA0X26Uc3lcigUChgYGFDaBj1ileMq7xMusnR6eF/Izcf1cWB0K++fbrfb06i90+n0nKv8Pob+7UWz2USpVFIKed3oBYNBpFIpAFCbvnPtBKC0E61WC8ViUR2L6l6mzJgSpPqfAiW5lVs/J5frAOclRbFMHTIFIUWy2407blQlDy/pl1qthnK5rNSyUjIdjUZV1yUeA7DfI490XSAQ6Om2EQ6HkUwm0W63EQqFlHfFC8/3yR8Wk3OBIJUQCoUQiUQAQC0cHDwelwPIrcI46LVaTW1hRHoZ2GhjuBfA6ym76ei0jRQg0LsFNrzOfpGnPrn0SaIbWL5PHk/mZuT9SkZE7p8rhS1ywd7ri6/u5Mi5ToOnt+a0o4gJPZ+m52olHbzV9deNKtC7r6peT8v7TjprBuvg+uzz+VTNJ50fYENwBGykUmSDFb6G11wyC3ZzyU6/sFV0aZf+kfNU3gcca71mdTtwx42qLGOhgcpms6hWq8jn8+qLMfR3uVyYnJzEm970JszMzCg+nN5uOp0GsB4Bcx/TgYEBxONxRKNRVV965MgRTExMYGFhAU6nU9XFZrNZAOuN9AcGBtRnNxoNLC4uYnV1FbFYDMlkUpXdvO51r8O+fftw5coVXLx4EbVaDaFQSAkt2IUpk8ng6aef7lmAST90u13MzMzA4XAoEQzb4e121Ot1ZDIZNYZ22yzxPmA/5Wg0qiJ9ilbk9mx6LkxfxCU9xHwPn7ODdLaoFC+VSlheXsbQ0BDW1tYQCoXUNoWcoLIcYy+DUSPHRAqRGG2woT5TKnqESlBUxPuEY8z/OZ/kYiwhmQmZMyNoVD0ej6IhG40GfD4fQqGQcgC3q25xt6BcLmN+fh7FYlF1qePcsyxL1XZzzafKlr8lcyDBxxh4cA5SWxMKheB2u9FoNNQmKlITIc+D6wAjXWprOP7Ut4TDYSQSCVW+KUv3bhd3zaiyppQXmAIiO1BwNDExgXQ6rURBzWZTRbekkJLJpNqSjdSx1+vFxMSEytlms1kUCgWsrq4qQz40NIRIJKKKv6kIrFarSCaTOHnypBrQAwcOYHBwULW2Ys6A7dK4NdzS0hIuXLigKEMpOXe5XMjlcmrA/X6/UgrvdrA8ivlT3ZOUIhHujRsIBJQRZgQLbESe8rpJGscuMiW2oox0BoM59Ewmo2jLYrHY83l0mvTSgr0ILoo0lpznwEatIgV/UmDC5+ViK2tJ5YJp149Xr1Ul9ChWRihkH+g8sWaeFCTnbj/af6+iXq8jnU4rOpZGkkaVe1d3Oh2lvpUtIfUIUwqcnE5nT7ctWW7JjnQAVF5VrgMyoqXjTYPKoIkOFo283+9HOBxW793O/Pld7xp9M6UITIjn83nVdKHZbGJwcFD1Dpa1a/SQeIEkxSA3FXc6Nxox9LuQei2cZa2X7/h8PhVBUdlWLBbhdDqVEQiHwz2F5Trq9Tqy2Sy8Xi9KpRIqlcqeMKr6oigXUXqdskuLFLnopTicgHY5U2lQ9bG1o4AJKeNnXR1z4zLSkdQvX3+nxA67ATSmNE68ByQtKI2pTsnbzU3pzMgUUD+hkrzP7Epmms2mWqjtun4ZbEDPectUDqngSqWCdruNWCy2qTZVjoV0VmS0SUZC5shlFErYKYqZHpQ0PtkkCpXYPYtpCP7QOd4RkaqEfvH6odFoYGFhAYFAAJVKRVGHJ06cwDvf+U4Ui0U8//zzWFlZQafTURuSsxG6PDbpnXK5DJ/Ph5GREfWcHFwu4Oz6UigUkE6nEQgEcODAgR7RU6lUwtraGlZXV+F2uzE+Po7BwUEsLCwgGAyqxUS2YbSs9daG58+fh9vtxuzsLJaXl+/AVb73IA0V0FvEzSiPeXHSMqxrYxkGFzy7MiRp8GSEshVFqL8fgFKWRqNRNBoNJaCgcpETlkaUnq8xquvQKVzS96VSSXUsI5NEWo6LGxdTafQ4j+lE8Z5hvSIVp2xTJ50v6VzJXBpFLLVaDT6fD6VSSYlmZLtCo+q2hzRCjUZDGTuyj8vLy2i1WvD5fBgYGNjkQOm5bEayjDBlRMtomCkz9uCW2ge51pPWBzY2YrEsS63XmUwG2WxWVWBwjCVbuR3MxF0xqnIR0hPPduh0Oko9Rgm0y7XeQ/fgwYNIp9O4ePGi4sLZiYeCI/kZjFKZQ+GFlqpBPXKiqIJJ+WAwCK/Xq2hmTu5yuaw6OkUiEbUI9/t+NNbsR9mP/t5t0PMdwOa9GPmcjGQIParle+RvPVK90WJo9zy9X52u6nevStrJGFb76yQdJ1kfKMV8jGJ1Z7sfuyCPKelHu9fb3Q8y0pI1ldIgG2O6NaRCm3OFymqZEtHHUxcL8TVyHkknyrKsnty6hHS65HnprAUDJTpNukCN79kuFf8dN6rkxEOhECYmJnD06FElyWapjP5lqtUqLl26pMpnKL2u1+tYXl5GtVrF9evXVY4znU6rkhxSsfv27UMsFlP7qzJvwkS3bCxBUMxUqVRw7do1tFothMNhZDIZeDwezM7Oqj0/meer1Wq4cuUKisUiFhcXUavVVB5QwrIs5HI5XLx4EU6nE3Nzc6q38W5HIBDA8PAwUqmUUnbTQ2VbQOa3r169iuXlZQwODuItb3kLBgcHVb9PSeFJSA9XGlvuXSvTAbLon2Ak7XA4kMvlMD8/j7W1NVy5cgW5XA71el3l70kZAlBdu0Kh0J43qpzn1ApQNBgIBHo2fZcLMdC7f6ZcnPWo1+PxqMYtsvxFLsL8DB36gkz62OFwYGxsDPfffz/C4TCuX7+unDPO4RulqvYSaPxk3bAshWm321hbW1MsQKfTQSAQUOWOZIKk88RxkflUgp/B3CyZDpfLpWqd+d5ut9vDgHAr0Fwu17ONKNNMUhnM+5Tbwt0u7rhR5aIZjUZx4MABPPzww6ppOjvX6JOoXC7jxRdfVC3F2A7rypUrqs6RRqtUKiGTyai9Nj0eD5LJJN761rfiwIEDSmjCpsp8L8VPknqQ3uuFCxcwPz+v9mP1eDxYXFxEPp9XFJHT6USpVML58+dx/fp1XL16VSkJ7Yzq2toaXnzxRTgcDtXsYLfD4XAgHA5jcnJSqalJBfOHGyU0m021Z+2hQ4fwute9DvF4HNVqtSdfIqNdoLcUgpOSZVXcmYQTj+kAGcGwj7TT6cRTTz2Fb37zm0in0zh//jxWV1dRrVYRi8UwPDys6EI6hj6fD7FYbM9vas2FjqwNN6ugmI+Kac4L2apT5ltJCUtamMKTSCQCp9OJtbU19bkcez0/S8j7QX4eNRbT09N45JFHEIlEcO7cOTX/S6WSMrwG63A6ncpwkXaXzXtarRaWlpbUGpnL5ZQehfvT0ihK/Yuc28BGjpxOMj+P95fb7VZGENgQL8m5uLS0hOXlZbVHM8FzkTvj0AkkI3q7uOMrgRQLSdmyTG7bvYcXiqG7w+FQ3TzkRGK9q+x85Ha7kc/nlWqzWq327OpOo0q1InN9wEZNHTszUa3KYzISZa6PylYKm/o1KwCgymsAKBpit4MLHZWf7GrSarVUHkaquyk6Y1ONdDqt8nKsjdNzKTLy4WdyEZc7GTG/UiqVeugh1iQDQCaTUfkXMhJUnTMdUSwWlZhOsh97GVL8wxwVANVoQW6fx3kjF1UyP3R6pSBGbvWm07Py/35UL7CxAblsHkBqUKr1pWNtOir1gms5rxmpXjIEnMMsn+J6XSgUlKqa94GkiPWxlOMuy9f4uEwH8X6ik0S7wZ3FaBsIvlYq96VuY0cIlXK5HM6dO4dYLIYDBw4gEAjg6tWrqNVqqg5JL4NgzpNiB15sGkKpuJSyd16oQqGAZ555BpcuXVI728hFj6/jRJa0IQ2+3G2GohnK72XLrEKhgGw2C7fbrYxrP6PKjiQANhn63Yzr16/jySefVBHr8PAwfD4fEokEfD4fzp8/j2effRaFQgHLy8uqZvhP//RP8eSTT/aU34RCIQQCgZ48rS5W4D2lN1unAeWCL2uJOZ7Ly8tYWlpSSm0AWFpawuc//3k899xzqNfrqNVqaLVaqsPX2tqaqp/eq6hUKlhaWoLH40GtVsPVq1dV2zqPx4O5uTnlTPFaud1uVVcu2QZgo0k6Ixi+1+l0IpvNquiDYhdgYycifeHsdrtqO8hGo6HmXaVSwTe+8Q00Gg0sLy/j5ZdfRi6XU84cm8YbrKNSqWBhYUFtdEFhJjcSuXLlCiqVikrJURy6urqquuZJzQvHnDX/pJBJ57MmnC1ja7UaCoWCMrbcZYjOrUzzLC8vY2FhoWce12o1LCwsANhw9qvVKq5cuYLLly8rsdrt4o4bVUYGuVwOFy5cQDKZxMrKCprNpqIMdND70MFopx/o8VYqFVy6dGlbv8dWkHTUVuAk5Q2zFyJVYP36VCoVeL1ezM3N9RhVv9+P2dlZXLx4EZVKRTV7SKfTePLJJwFA1ZSxy1Y0GoXT6VQ0DrARkUjVtZ6f4et4b5E9KZfLWFlZ6emWJZHNZvGtb31LlVPxMxYWFpDNZpVnvJdBY+VwOJDP55XYi/k2OqSWZamFkds9MlfK8eJ7pUPNPLjL5VIsEl8vaxMBqJQRI+R2e32HnEKhoMYYWF9PXnrpJeTzeZTLZSwuLqptHrmLzV5wem8WXH8ZES4vLyMcDiOfzyMWiylnlD3PC4UCgHWnmmkg7tTFnCjz48FgEJ1OpycFUK1WVRc8Rr8MrCSrwb2t6/W6GuO1tTUsLy/3MKF8XOZN2Xp2fn5+29jDu7r1m7lB9yZ0dXU/yq6f2lPSP1KwpOfQ7I4p82j6737nYnf+enmOUYraQ7+e/a7RrV4zeS/c6Bg3+7jOjt3uOe4l3Op9b/f6m3Fa+o2JLmqye/5mzs+utvl24bDMnWNgYGBgYLAt2Nt1AAYGBgYGBtsIY1QNDAwMDAy2CcaoGhgYGBgYbBOMUTUwMDAwMNgmGKNqYGBgYGCwTTBG1cDAwMDAYJtgjKqBgYGBgcE2wRhVAwMDAwODbYIxqgYGBgYGBtsEY1QNDAwMDAy2CcaoGhgYGBgYbBOMUTUwMDAwMNgmGKNqYGBgYGCwTTBG1cDAwMDAYJtgjKqBgYGBgcE2wRhVAwMDAwODbYIxqgYGBgYGBtsEY1QNDAwMDAy2CcaoGhgYGBgYbBOMUTUwMDAwMNgmGKNqYGBgYGCwTTBG1cDAwMDAYJtgjKqBgYGBgcE24Z4wqidPnkSpVLJ97uGHH8ZXv/rVGx7j93//93H8+HE88MADePDBB/HZz35WPVepVPCBD3wADzzwAI4cOYKPfvSjsCyr5/2WZeFtb3sb4vG4eqxcLuOd73wnBgYGeh4HgJdeeglvectbcOTIERw/fhw/+ZM/iVqtdtPf2cDAwMBg9+GeMKqnT59GJBK5rWPcf//9+MY3voGXXnoJX/jCF/Bv/s2/weXLlwEAv/mbv4lOp4MXX3wRL730El544QX85V/+Zc/7f/d3fxcHDx7seczj8eAjH/kIvvSlL236PL/fj49//OM4d+4cXnjhBVQqFXzsYx+7re9gYGBgYLCzcU8YVYfDgXw+DwD45je/iZMnT+L48eP4wAc+gHa7fVPHePvb345YLAYAmJycxMjICObm5gAAL7zwAt71rnfB4XDA4/HgHe94B/70T/9UvfeVV17B5z73OXz0ox/tOabP59sUvRIzMzN48MEHAQAulwuPPPIIZmdnb/GbGxgYGBjsJtwTRpVoNpt4//vfj//8n/8zXn75Zfzoj/4oXnjhBfX8Jz7xCfzH//gfb3icL33pS8jlcnjkkUcAAA899BD+4i/+Ao1GA+VyGZ/73OeUAWy1Wvipn/op/OEf/iFcLterOu9KpYJPfepT+P7v//5X9X4DAwMDg90B92t9AhLnzp2D2+3Gd3/3dwMAvud7vgcHDhxQz3/oQx+64TFeeuklfOADH8Djjz+OUCgEAPjoRz+Kj370o3jDG96AWCyG17/+9fj7v/97AMCv/uqv4gd/8Adx9OjRVxVp0hH4nu/5HvzAD/zALb/fwMDAwGD34J4yqnZwOBw3/dozZ87gPe95D/7kT/4E3/Ed36EeDwQC+L3f+z31/2/91m/h/vvvBwB87Wtfw/Xr1/Hxj38c7XYbxWIRU1NTePrppzE4OLjl57VaLbz//e/H6Ohoz/ENDAwMDPYm7imjeuTIEbTbbXzlK1/BY489hi996UtKbHQjnD17Fu9+97vxyU9+Eu94xzt6nisWi3C73QgGg7h69Sr++3//7/jrv/5rAMDXv/519brZ2VmcPHnypiLWdruNH/mRH0EymcQnP/nJWzL+BgYGBga7E/dUTtXr9eLxxx/Hv/23/xYPPPAA/vzP/xwnTpxQz2+VU/35n/95FAoFfOQjH8HJkydx8uRJ/O3f/i0A4MqVKzh58iSOHTuG7//+78fv/u7v4uTJkzd1Tg8++CAeffRRFItFTExM4Md//McBAI8//jj+7//9v3jmmWdw6tQpnDx5Eh/+8Idv7wIYGBgYGOxoOCy9YNPAwMDAwMDgVeGeilQNDAwMDAx2MoxRNTAwMDAw2Cbc80b1mWeewfd+7/dienoaDz30EE6dOoXf+I3fUM+/9a1vxec+97lbOuZnPvMZxGIxnDx5EidOnMCDDz6ohEsGBgYGBgavFve0UX3ppZfwrne9Cx/+8Idx9epVPPvss/jyl7+MYrF428d+7LHHcPr0abzwwgv45Cc/iQ9+8IPbcMYGBgYGBnsZ97RR/djHPoYPfvCDeM973qMeSyaT+O3f/u1t/Zx8Po9EIqH+/6Vf+iU88sgjOHnyJN7ylrfg/Pnz6rm//uu/xtGjR3HixAl85CMfwcDAgGlPaGBgYGAA4B43qs899xze8IY3vKr3PvHEE1tGn1/5yldw8uRJHD58GD/0Qz+E//Jf/ot67iMf+QiefvppnD59Gj/7sz+LX/iFXwAArK6u4id/8ifxV3/1V3jhhRdw5MgRZDKZV3V+BgYGBga7D/e0UdXxy7/8yzh58iTGx8fxyiuvbPna9773vfjUpz7V93nSvxcuXMA//dM/4YMf/CAWFxcBAE8++SQeffRRHD9+HL/2a7+G06dPAwC+/e1v48EHH8SRI0cAAD/xEz8Br9e7PV/OwMDAwGDH4542qqdOncJTTz2l/v+d3/kdnD59Gh6PB61Wa9s+5/jx49i3bx++8Y1v4Pr16/i5n/s5fPazn8XLL7+M//2//zfq9fq2fZaBgYGBwe7FPW1Uf+VXfgV/9Ed/hC9+8YvqsWazedPbwd0s5ufncfHiRRw+fBiFQgEejwejo6OwLAsf//jH1eve+MY34sUXX1Q51s9+9rNoNpvbei4GBgYGBjsX91TvXx0nTpzAF7/4RfyH//Af8OEPfxiDg4PweDz4mZ/5GRw+fFi97oMf/CB+7ud+Tv3/F3/xF1hbW8MTTzzRlwJmThVYb4z/m7/5m6ol4o/8yI/g/vvvRyqVwvve9z71nqGhIXzqU5/C+973Pvh8PrzjHe9AOBy23W/VwMDAwGDvwbQpvEWUSiVEIhEAwOc+9zn8u3/373D27NnX+KwMDAwMDO4F3NOR6r2IP/iDP8Djjz+OTqeDaDSKP/uzP3utT8nAwMDA4B6BiVQNDAwMDAy2Cfe0UMnAwMDAwGAnwRhVAwMDAwODbYIxqgYGBgYGBtsEY1QNDAwMDAy2CcaoGhgYGBgYbBPuWEmNw+G4U4feddipAmwzxjcPM8a7H2aMdz9uZoxNpGpgYGBgYLBNMEbVwMDAwMBgm2A6KhnsWDidTjgcDjidTrjd7r40Fikby7LQ6XTQ6XRgWdaOpev2EjimLpdLjTF/LMtCu91Gt9tVPwY7F5zHTud6rMex51ztdrtot9v3/Lw1RtXgnoVcPPWJ5Ha7EY/H4ff7EYvFMDo6Co/HowytRLvdRqPRQLfbxfLyMpaXl9VjdjseyclscGcgjSOAnjHmb6fTCZ/PB7fbjVQqhampKfj9frjdbrjdbjQaDczNzaFYLKJWqyGXy237DlYGdx6cs8lkEpOTk/D7/fB6vfB4POh2u6jVamg2m8jn85ifn7/nt+I0RtXgnoW+6Eq4XC6Ew2FlUI8ePYpwONzzHr6v1WqhWq2i2WzC6XSiWCwqg2oW4bsPaVAZldCoSsPqcDjg9Xrh9XoxNDSE+++/H9FoFD6fD16vF6VSCS6XC4uLiygUCigWi2Y8dyB4H0SjURw4cACRSATBYBB+vx+dTgeFQgH1eh0LCwtYWVkxRlXC6XTC6XTC5XLB5/PB5XJtWgQZmQDrE0tGHq1WS9E9jUYDnU7nbp7+LcNEPK8edlSuw+FAIpFAPB5HIBDAxMQEYrEYgsEgAKDRaKh7xO4YbrcbIyMjcLlcqNfrWFtbQ7lcRr1eR6FQMAvyawSdjXC5XHC5XPD7/ZiYmEAkEkEikUC1WkWn01FGtdlsIhwOY3R0VN0D9XodpVIJpVLJzLt7CHItdDgcymi63W4EAgF4vV4MDg4iGAzC5/PB6XSi2+3C4XDA7/fD4/EglUphenoa1WoV5XIZlUoFnU7nnrMFd6yhvr6gORwOBAIB+Hw+BINBjI6OIhQKwel0wuPxbHo9814ejwderxcAkM1mkc/nUa/XsbS0hEqlcidOfVtABwKAyvX0y+Pt1Ml/J6T4/ShBAPB6vfjO7/xOvPGNb0QkEsHU1BQSiQTm5+dx+vRpFItFZDIZpNNpAFA0YTQaxdjYGAKBAKampjA1NYV6vY6XXnoJCwsLmJ+fx9NPP418Pr/t34cwY2x/bOZJu92uWhgjkQhCoRAGBwfx9re/HTMzM7h+/Tqee+45lMtlFb0Gg0EcPnwYg4ODqFQqSKfTqNVqeOGFF3D69Gm02+1NrMWdhBnjGx/fsiy4XC4cPHgQU1NTCAaD2LdvH2KxmGKOyC612224XC7FThDdbhfnzp3DmTNnUKlUsLq6imKx2PNZd2osbua4dzVSdblc8Hg88Pv9SCQSiEajcLlc8Hq9my48jarX60UgEFAeDgfF7b63mWtSGjxvYOdOuruJfpSvw+GAy+XC4OAgDh8+jFgshunpaSSTScVeVKtV5PN5rK6uAlg3wi6XCwAwPDwMp9OJ4eFhPPjgg6jVaqjVanC5XGg2m8pxM3jtwLnidrvh8/kQjUaxf/9+3HfffahUKigWi0in0/D5fPB4PEgkEgiFQhgbG0OtVkM4HEatVsP169eVQ2twb0AykE6nE+FwGENDQ8o5HhgYQKFQwNraGprNpjKwzKtHo1H4/X7E43EAQLlcxuLiIlwuF3K53Jafd7dxxywTFykukIzcOp0OWq2WomfkIioNK6M7t9uNYDCIbreLQqGASqWCer2uvFrSyTJHQ6OsqwF1qlk+3g92EfdWr5XnQQpDOgh+v98UW9vAzpDy74mJCTzwwAPKkNIgzs7Oot1uY35+HmfOnEGpVEI+n0epVAIApSSk0Q0EAqhUKmrRbbVacLvdGBgYwMmTJ1EoFLC0tISFhYV7ik7azSDFJw3q2NgYZmZm4Pf7cfHiRSwsLODatWuKrq9Wq3C73ajX63j++eexsLCAeDyOiYkJBAIBJBIJxGIx1Ot11Ot1Revr+VuDOws9UAqHw0ilUggGgzhw4AAmJydhWRYuX76MM2fOoF6vo1gsqii11WrB5XJhfn5eCRLHx8fh8/ng8/lw4sQJ5PN5FItF5HK5TWOqr7N3a8zvmFENBAIANiI2AEoCX6/XFY0rQ355EZhL9Xg8KvSvVCqoVqs9HDo9GcqxXS5XT85VXkgaYB16Tlf/u99v/Rjy+DSu3W4XzWYTlmUhHo9jYGDAeNE2kEZVd4aOHDmCn/qpn8Lg4CDm5uawsLCAtbU1/MM//AOuXLmi7ik6MHw/j7m2toa5uTk4HA780z/9E7xeL+LxOL7ru74Lhw8fxvj4OEZGRtBut/GNb3wDKysrxqjeYXBseJ35v9vtxszMDN72trchl8vhi1/8Ii5cuIBWq6XGWDrq8/PzcLvdOHXqFGZmZjAwMIDh4eEeSrjVaqn56XA4Nq0LBtsPGcBwPiaTSZw4cQLRaBQzMzOYnp7G6uoqvv71r+OVV15RZVG6CpxB08jICI4dO4ZYLIbDhw/j1KlTyGQyuHLlCmZnZ1UwpX++PKe74VDd8TaFMrfIm7nb7aLVagFAj1HV36dPgHq9jlarhU6no+hA5lxJCbvd7k21iHKR3cpo9vtb/u73Wv27SsPJiNXtdsPr9cLtdptJLWDnpMhyCgpV4vE45ufnUS6XFRVIqvdGaDabPf+TLanVavB6vQiHwwCAUCgEj8fTcw/JczTjdvuwo/iprfD7/QgGgwiHw6hUKqjVashms32PxXEtlUpoNpvodDo97JZdmsgwRXcXXAtJ48bjcXg8HlXWVi6Xb0rPEAgEUCgUlF0g8xcIBBAIBHpK54DNkfJW2E66+I4ZVTtD1ul01I3f6XRUVGkXFUjjSk+l3W6r98Xjcbjdbvj9foTDYaUi8/v9qNfrmJubQ6FQ6PFwaWSl1yo/S/9bPx8Zdd/oe/NzGDlJ4y5zxnsd+uLK3/F4HG9605swOTmJyclJlMtlNBoNvPDCC/jmN7+pKB/eG1IUZtcEQHrNlmWhVqvh9OnTmJ+fx+TkJN70pjchFothZGQEBw4cQLlcxtramqKSJfNgxu32QOdTltGkUikcOnRIUYRUd0oltz5n5TzK5/M4ffo0EokEut0uHn74YVWKUSgUAGy+xwy2H3aipGAwCI/Hg/Hxcdx///2IRCK4ePEivvWtb6FYLGJpaemGxwLW86iXL19WTlcikUCr1cL4+Dje8IY3IJ1O4+LFi6hUKj2pwLtN998xo6qLTDgByJXXarVNlK9dPk0egxcqEAhgaGgI4XAYwWAQ0WgUHo9HqQbL5TIKhQJqtZoy2tJw65NTj0D7fbbda/XvrDsT/QZVUhV7FVvlPKLRKB599FGcOnVK0bvZbBbnz5/HP/3TP6l8i8vl6qHd9QhTz9vzNfV6HefPn8eFCxfwute9Dm9605vUgj4+Po5isYhKpYJSqdRjtF9LAcRuAVkmzhemRo4ePYpoNIpIJIJqtapKaPgeGmN9brGW8ezZs4hEIjh06BCOHTuGXC6Hs2fPAuitgzXjd+chGQiWzwwPD+PQoUMIBoP49re/jS9/+cu25TD91lfeE263G0NDQ5iYmFB/p1IpXLlyBXNzc8qo8udur7N3RUIrKTQ5Iexet5VhJb1LCpW0LycnF1TSPj6fr4cCcrvdPeU7N+O56q+VudxbSYTzu+mS8b0OuThysSV9F4lEEIvFkM/nkcvlUCqVUC6X1RhzDKQzIxkJop+Aga9jjp+1jslkUtVS6+8z1OH2QBpUAPB4PAiHw4hEIuh0OkqAwjSRfJ/8W87Ler2udBXRaFRRwQZ3D3aRKpu0+P1+Rdez+Yod86MHWzyuTOc1Gg2USiWV/uOP3fy8GUdqOx2tO3bHScEOsNHIgXVpdvVpckHUE9YOhwOhUAjhcBg+nw/xeBzhcFhd4EajoYxWs9lEKBQCsJFrabVaCAaDCAQC6Ha7KJfLqsOOHf0rF2yeB/O5wPoiICesHvlKiouUJKloAEqZuJeh59YcDgcikQii0ShGR0cxNTWFgwcP4vnnn8fzzz+vBEe6ASVuxkniPSipw2KxiDNnzmBlZQWRSAQnTpxALpfD/Pw8rl+/roy9iVI341byVoRMifA9oVAI4+PjiMViOHfuHC5duqS6JPHYfK18Lx9rNBpIp9Oo1+vw+XyYmZlBOp1GJBJRn3uj3sBGHXx7sIsOA4EAZmZmMDExgXg8jpWVFXS7XeTzebUu2t1DOtMpYVkWMpkMLl26hHA4rOrVg8GgrRD1buOu7KcqI1UaG3qUjNa4qMobWv7tdDpVzarf71ddVVqtlvJ+aCQZnQaDQTSbTbWI8v3tdhvVarVnYtp5OHpEQ8Mo6at+31mniiX9zXPVxTN7DXashdfrRSgUUlFqPB6Hw+HA2toaFhcXUalUNk28W10E9fxos9lEOp1Gp9NBOBzG4OCgEs3o7zGR6mZwDG/W6bAbL6ZvIpEI2u22Kp/R54h0uOUxOp0OarWaWlsSiQTa7fYmtmGr7/BqHASDXug5b/boHh4ehsvlQrlc7lHry/fd7DWX7BLvBdYu3wvz844ZVX5BhufdbldFjaQFCP7N/BiwoRTmhXa5XBgfH8f4+DiAdc+0Uqmg1Wqh0WgAgFKJUszEkp1QKIROp4Ph4WEMDw8rQ5vP53saq3s8HnUuUpDE84hEIqpUSFLNrVZL0ZGMXmlE6Ym5XC4EAgGkUik4HA6k0+k9LXqxy1E7nU7EYjGMjY1hYGAADodDtZ2j0ld20dLZhFuZlPL19Xodq6urqNVqGB4e7kkt8PVUnJNxMdHMq4NcPMlYOZ1OhEKhnoYwrEWW+TBZ06pfe9K/nLfBYBChUEh1cdNz7Tq2cq4Nbh66w+v1ejEyMoLp6WmUy2VkMhnVh/vVHhOAMsyBQADBYBDJZBKRSKRnzm4V9OjH207c8TrVQCCAWCymlL8UfrCFmBSbMKGt07/AupE+evQoHnjgARQKBZw+fRrpdFrRvS6XC5OTkxgZGVH9QavVKlwul0qGHzp0CEeOHFGPszxDNlv3+Xy2ESqwnmubmppS9AP7xjJPyrIAmTPl4wBUgToAtY3RXoZebuV0OjE0NIT77rtP9eitVCrIZDKYnZ3F4uKiWhjJepAxkIvvjSaLfm9VKhXMzs7C5/Nhenpa5X7kBCVDcTNKYwN76I6q0+lUfV3j8ThGRkYQjUbhdrtRKBRQrVZVTvVGTgxLpLiuMFKlmJGbKtxsJG2wgZtxNPqlXvx+P2ZmZnDq1ClcuXIFCwsLqkfBrUA/brPZRLlcVkLV8fFxLCws9KTkdApZ1/TIubsjcqocCIqL5GIE9CajuThSSCTzXXwty2dCoRBarZaqYeRFonQ7HA6j3W6jVCqpyJH5T7/fD7/fr+hhesmy6FjP0cnH3G43QqEQLMtSBpXnYJcDkB45z5Gdpu4F7v9eA5kNRhfMzbALl+7d6nT7rUSq8jejHE40Wfusv6+fgGK3Yrso0X4Ls5wb7JRDp/tW986U+gy5cQe7mOmUox1281jeDehzi2k7v98Pl8ul5nE/PcStfA6FTrx/pD6mnxPWb83Yznl8x+tU5U0sa055AdgY2+12K6+S+RFeNBrYZrOJWq2motbp6Wn4fD4EAgF4PB5MTk5ifHwcuVwO+XweS0tLsCwLg4ODavKura2pTivZbFZRTIxGqtVqT76N34ETNJFIAFj3lBwOh2qNx2PI1oRsCE21MnfmodPAm2svQtLj8hpIo2qnsJbvZ29QO2foVs9FNu8+cOAACoUC4vG4Sl3YNRMBXrtWaHcLuoNoh35Rit1r9NfLORAOhxGNRuFwODa1I70VMIrpdDrYv38/Hn74YayurqpWlrf6PfaK4yRTMf1SUzc7xkSn00G1WkWhUEAmk8HS0pJi+W7mmP0+h6LPcrmMdDqNxcVFZLPZHmbDLhLVNzeR33m7xvmuGFXptcicJSMTFgeHQiEVidKg8jiMVsijz8zMIBAIKGGJ1+tFMplEPB7H3NwcnnrqKUUPJJNJuN1udLtdNaD5fF7lVKVRlV2fJM1oWes75sRiMQDrNVOSwtVpST5HSpg/suEF88t7FXb1aXRCZKTYz7BuF/1KA0+h0r59+5DP51X9M+8RvlZnIHa7Ye2HW80/6teFegRS/xSnOZ1O1Gq1V6WOl85xp9PB+Pg4HnzwQVy6dAmXL1++KaMqIRfcfq/ZDZCMAXG70SSwYVRLpRJyuRxWVlaQzWZ7BIevBsypVqtVZLNZrK6uquCm3/naRa+6YbV7363ijhlV5jb0vqz6RJSGqdFoqF1DGo2GmlSMImhYHQ4HisWiouyYM6EYamlpCdlsVnmrpJaZw+MuCLJpPylmeVPJyETK7QEoA0/DaEcLyrwfP19Ozr0apRIyvyE9yVar1ePgABtpBGlIZU62n9pcf04HP1unGjl2zNG0Wq1du6C+GtyqQaWamvukkublnIjH42pOBYNBTExMKDZoq8/St1f0er2qRrXb7SIYDCKRSKhmAaFQSH1up9NBsVjscZBvNRLbLeAaJqP1rRgIr9erxKiyIYe+uUkqlYLb7VZC0FQqpXQ03H2MkOMsU4VynZTj7Pf7EY1GEQgEFOvJ+0iur3b9hElD26X77HAr9/sdM6rVahXAOhVDxSYnCbCxoLZaLRSLRTgcDpTLZRUZUNlL2hSA6pTU6XRw6dIlNJtNDA0N4cCBA/B6vYrSzefzePbZZ7GwsKD2b+W+mrFYTCkLOdCsb2LOlapEKohzuZzKwzKKXltbw/z8vGq7yJuJnpKMuEhPyyS63jx6r4ERPMuq6BRVKhVks1m43W7UajW0Wq2eKKZararSCV5XyYBIWkef7Dp4/VlIzsfocPl8PoTDYdTr9Z6eotLB0h0jaQR2w9jKDmG6Y6n/vRUSiQSmpqYQCoXUDiVyEZ+YmEAmk0GpVML09DR+9Ed/tMfRlTXuvO5SPUzmBwAOHz6MWq0GABgbG0MikVDtLpk+8nq9KJVK+Na3voULFy6oHsNbNZsg9Gux08dZOrSSHu0HbsE4MDCg1k2u08FgUAnQfD6f6nJXrVaRSCTw5je/Wc13KdTknKGhpuEl88B5yb/5vMvlQigUgtfrxfDwMB555BFVikWBKvsU8DtalqVK9GRaZzsMKnAHjSq/BL+UHjVw8ZEtBKnAJWXAOjNePBkdLi8vo1wuo9VqIRKJwOPx4OrVq7h27RpKpRIWFxeRy+WUQIlRjsfjUSU0XHwpegqFQsrAkq5l03VGyBxcUhqybEaCCz2jVOZV5ev2eqTKa8OJA2zQOhwjshsUsfBeolGWOxTJXDhfo/8QfJ2k7fk4fyhyIz0J2NfWStixFrsNr8Zp8Pv9GBwcRDQaVSp8znXLWq8hJ+Ubj8dx/PhxFX1IESPHmOwRHTOuDZ1OB5FIpMcZ4w9FjLyXcrkcrl27hsXFRQBQx7mZ778bx/hmx9PhcKgt9pi2Y3BC9TYrOWQ/Ab/fr5wpWT7Ja8lxZlqQRpWBCw0l11vaj1qtphr+jI2NqcY6tCF6ox067/L+u5lrc7NjftfqVAGgVquh0Wj09PDUwcVOKoZJJReLRbWJbTqdVoXEbEe2urqqtnqiTB9Az+fRgNMQ05tiwTgb9cfjcYRCIRXFdLtdjI+PY//+/SgWizh37hxqtVoP5aHnI/hDx4ElO5IO3ule7q3A6XQimUwiGo0iGAxi//79iEQiiup3uVyYmprC+Pg44vG4ar6QSqVw8uRJ7Nu3T1HDdIJkcb/MjQK99c8ej0edg04VV6tVZDIZWJaF/fv3qzKp8fFxnDp1Cq1WC5VKRTllVKhTAV4qlTA3N6fYmd2I271PBwcH8fDDDyOVSmF4eBixWEwZSKBXb0GNhVx85RyWKRkuvtQxcPGjnkGmXfib88/v92NoaAhTU1NIp9PIZDI3lcfVqdGdPofJoElHlEZRal543d1uNyYmJjA4OKiuI4WcoVBIGdVAIKAYO8uy1Pqnb0oio2MaTAY9DGLknOb4sf6Y62wwGMTw8LDqPUAnS5ZmSci9doH1QJCBmlxHdGr8htfz1ofg5kCemz1cO50OVldXUSqVejwSucBJr4HGuNPpoNFooNlsYnV1VV2wlZUVlMtlzM/P49y5c2ogJHefTCY3Ne9nxDk0NKRoikgkouiDkZERBINBTE1NIZVKrV+k//9c6eEuLS3h61//OgqFgmqZyEUb2DCo7XZb5RNkkbtsNLHTJ+StwO12Y//+/ZiZmcHIyAi+67u+C5OTk2g0GiqvxQVSOkWTk5N497vfjWazqbxfllB5vd4eWoj3CrBB0/Je4sItF1cqTemMDQ8Pq4l17NgxDA0N9Sw2FMe1220sLCwgm83i6tWr+OIXv6iMqp7T3S24nXt1enoaP/ADP4DR0VG1pZvUKsh5Slqfn2mn3AQ2SrB4v8jyOEaq0hhLfYPP54NlWTh48CD8fj+uXr2Kq1evbilkktdhN22GQeeVBos7ygwMDKj2kSwlZHCQTCaVY8TrK8sX2Xij0+mgVCopgWk4HFYpHxpOXZQKoKfZCo2q7MRH9oE0Mpv8jI6Owul0qpwpy+V4P9CBiEajKmDjPVIsFnHt2jW1IxY1O8Ct3ft3vPevvNAykuunuJJqLOl9SlWfLhKS4PvpQekUM/OfUpVLioIOQDgcRjweV43VJe1kWVZPWYydekx+H75Hzx9sVS6yWyFpI0Ysw8PDPZEgPU8ufsD6PozJZBKdTqfHA6YnTYqH+VFGGzSaXERlrlzm4yqViqL+WNJlWZZaSGTEQ4U6DbnL5UKhUOhpMnAzFOJOBuezLjKxm89cKEOhEJLJJJLJJIAN4Zek3cncSGZB76wmowa5Tuifb5cb5GukgQ0Gg4jFYgiHw1uWcunnIKsSdnoah416ZNqLGoZwOKy6FXF+Op1ORKNRJfritaKYUNYHy9QfYN++VTIMdtdSpth0B4n3DR0CRs08Dz7PYIr3FZv8k/WicxcKhXqce8k03izuOP3LSBBY71yjc9jyb14YCdIHUtRECoK7ikh+nWrgZDKJVCqluPh2u418Po90Og0AKnKJxWJKieb1ejEwMKAWbXrPrGW9fPkyLly4gFwuh9nZWbW4SOECwZum0+mgUqnA7XYjl8up9oSkwXcbZM5RRhSkfiYmJnDs2DFEo1HUajUsLS2prlgAFO2k03XcCAHYKGeigEwqN6UogZOFRlVXYpMt0BXc/JtsixQvlUollEolZWwTiQQOHjyId7/73cjlcjh37hyef/55tcHDboPP58PJkydx+PDhHtV0IBBAJBKB0+lEo9FQkUIul0Oj0cD+/fvVBtPcbYiQOTVgY84AG06pjGT4mBxDne2QmyYwdyZ/yGywFtntdqt6ymg0ikQiodgvvp7iSW4JyH2bV1ZW7vIobC8ee+wxAFD0LcU/dDKSyaSK7OVPo9HooeilIyUrN3g/1Go1tcYzuiRkrpz/yzWUxpHjyfWeDrUcIz1S5efzWMC6fTp48CAcDodqP1sulzE1NYVqtQqv16s0HBcvXlQ9D24Gd9SoAlCbiANALBZTCxTVtxJSTCK9FylmYXMGNgmQ7+FFpox+cHBQ3QDtdlv1nuQAORwONBoNRCIRdcxUKqWES1Qhp9NpVKtV/OM//iP+9m//tkc5rJfK6L+5QDgcDuTzeWQyGQBQdMRug/REZXcbirVGR0dx7NgxAFDF23qOjNQMj8Ox7na7Sv3barXUJtQEx5k5eFKCsvGG7KTFcZa5HJk7ocCNCnbet5y48Xgc8Xgc0WgUExMTaLfb+MIXvoBXXnlF9aPebaBRfcc73gHLslS5XCKR6GktWa1WUS6Xce3aNRSLRbXRPEV+ZBY4T7xeL8LhMJzOjRpVfRHn/cTFVwqZGo2GKqELBAI9Pbrlgs3jcO3hGEYiEQSDQdTrdaWdoPqfBmFtbQ31eh3pdBpLS0uqleJON6rf+Z3fCWAjeqNRks1rZKqq01nfv5ZUOZ+XdeWSupWOLsdcRp+SuieDoa/rfEw6SXRcqfKV5Zn8XAYwzJPysUgkgunpaZX2Y2XBgQMHUK/XkUwmMTg4iFqthi9/+ct47rnnbvp63tE6VWDD0DFKYNTJnAqwdVcaaaT60T38W6pwZZkEB0F24OExut31beCYW6PBZH6sVCpheXkZlUpFed1ctCVtoKvDeJ6S3pDlRbJEY7eDDTq464zb7VY3OBXfstOW3fhK2oeQNJz0knkfyMkoF2f5Xr6Wnw9s1FjzvVLez0nMfIy+MPD3rQgbdgLYAjQejyORSKhtFxnNMdojhcge3lSIhsPhHnqv3/jK//WSM7u1QB9XuUboqm8eE0DPuNPBikajqhUq5zbr491udw+Dxe9M0d1OHmuyRDRYck3Tc4o6zS7nh5yjkp4FetkFOR/lc3p5iy5g4udJESjpWa6/nMf8LHnOupaCx2aUSwdMvk4K5W52vb5jRpW1p7wZKRZJpVKoVCooFAqqabksNZEnrhtbPS/L1+h5kmazibm5OSwvL/fcJOVyWRUc88K2Wi1cu3YNbrcbqVQKIyMjcDgcqutHOp3GxYsXVY2sZVm2JTJyQEhBUWhFeoJ0JQBlwHcLtnKMjh49ive+971IJpMYGRlRFGE+n0e5XEY4HEYqlerZbBjY8FBlobi+B66cgJwg+j0kJ5c02vSMud2cjHgAqEiW+flOp4NsNotsNqsMqSxkp36Agja5/+5OhsPhwPT0NF7/+tcrJfbIyAiazSay2axiC5ibdjg2RH1s6ylFInZbdEnhomQP5GJHx4YLqT73qDKlRoIGnnORbIXD4VBrj7znIpGIWpzp9DKqZh7R4XBgcHAQMzMzKBaLqrZ2J4/zlStX4HA4MDY2piohyBboYyYdFN773HaNoKAvEAioec5+7ZL9IQVvN0/kHKbx5NqvG30GTH6/X5VEcnylwbUsS50n53q73UY6nUaxWFTRL6Nbjj3P8zWnf0l/MRqxLAt+v1+pNQH0TAx9ktk9Jr0c+SX1CLHbXd8ElwuyLF+RpRWkmvL5PACo5hGWZWF+fh65XA7Ly8t45ZVXUCqV4Pf7lbcqt7ST5yI9KulJd7vdHhUy87y7CdLQycdYlD0wMKDuB+ZdyuWyYi9koT/Q691yQeWiKMdc3g/SA5b5E56LXBikB0wniRve02jy9bLFJFMQMlcD9G4MwQm9kxdbiUQigWPHjiGVSmF0dBSRSESNH0UgjNx5LUnlezwexdJQKKhDPiaZC0kT6mOu/y3FkbKDmjQAQK+4SN531FmQupalGcw3spNPKBRCsVjE0NAQEonEjo5Us9ksAKi9bBls0MBQj6AzMPJ+Z8mNTNl5PJ6eSBVAz+PyOX6unoLR13rJVOm0PgAltAI27AuZMfk+mV9nGkOuHRQiys5ur7lR5QWT3LaMDoANw2NnUG8GchGXA8Jj6+IT+R5+NqMQAMjn8zh//jwsa2Nrt3K5rGoh5WTVKRA72FFSMu+wW6AbKgBK7MCFlQ4VnQm9v7OMQJgXLRaLqgMOx4CtLMkIyC0EgY3ND3guNMSMUkjPMt9Dao95GW7EAKxrAMiyMH/PDlkOx7qQiQpkOgb8mzV0O10JTNGYZVkoFotwuVwqp02nkA6PXBh57ZlOkS0A9QVKpxhl7aFsACLZLP09Mp9GRae8L/VFlJCfIVkk5mfl/cXom057Pp9X4sOdDKp4Odb6Osp7WqdlgQ0dA7DRu1s6olz79WhUpl/6UfxyXdfXcrmWyrksc65SuSvvTflZ0jGQNDCFTnJHndfcqHIisPxF1mvKkgfJb0vcyOhsZTTlZNKPpfPrzItYloWlpSUsLi72DBKpQe4JqzcW0MVVdgMgB49e1E5fbCWkUeM1YmF9OBzG0NCQyj2VSqUesREXXKnKJPUyOzuLXC6nFOQsgaBsnnlZ2VlJ3g+kbdg+jbQyJ7SsaaWzND8/jzNnzgBYb1gQiUQQjUaxf/9+RWnF43E4HA7EYjHEYrGeVprcaYULyatpCn8vgSK+TqeD5eVl1Go11bVGGtVut9uTm5MqT5mfBDbnwjlWeo6NdD8dcrtcH7ARecgdb+hMAVAqTqpB5bnwc+U5cecpYKPHLXfRCgQCWFtbw9LSEtLpNGZnZ3Ht2rUdHamyHp81pLqxYftWsjiSPSDjxLWUzqcspeQ80K81nWr92ulrv+5Qcc0lk8Sx52cBUFEm70umjehsyVwpx7jZbKouTBQkko26J4wq0NusXEK2CCRuNnKz82rksfRj6q+XP5yk9LQbjYbaPUEaaVmrutUN0O876N7frXzfnQA7toFRG/NbktIj7G5SOelIvXHCsmWgfK1UieuOlHS8uMjrXraMkgEoow6sR8U+n68nyiK7wUlNWph5QHr1/M47HbJGu1qtKqdYF3ZIOk+mdXjtdFGfTu8Bm2tLb2YRk/eeHiXbGWkuynw9c3I8b65XXLPIQEgKmSwKHUTZJGAngs6mXSUDf2TZjP5d9evd7zk7IdJW102ut3brhhx7GfnaMRl256fbAnks+SOdsJvBHW/+QI+dk0vSfDdL/d7ogtodR5/AdguvfK1lWapWVb6HiXqev35xdRpLTlg+ZmfI+53LToXdDUtvVSoD5VZ86XQajUajJ//FqNLhcKgt/agm5fWiB0kj5nA4VJE5KXoAPd6ozONL+T09bio+x8fH1ZglEgklfJD9iJlXp0BDNpdIJpOq/WK9XkehULi7A7HNkDXmr7zyCkKhUA9rMDQ0hEgkomo8aaA4V8jMSHpW0nRAL+vDMaSja5eXluITmb+WzrqMivl+vlYyZHIt4nv8fr/a4pH3H5mQbreL69ev4x/+4R+QTqexsLCwow0qANUZiWVFDodjU3cwaQS5zsmx1VlDVndwCz5eW+prpD0ANq/XgH2AxLHUKXspPqTjRIdYX3PZB16uGVwHOKfZCCgYDGJmZkbdDzeDO2ZU5UWSoiWKGuwEJ8CNI7itjKp8r/x8acD7fSajIS7I0uORxcd67lAOtC7fl56xTmFJ0dVOh+5YABtGVXYwcjqdKs/qdDpVPlIaVblrUCqV6tk1yLIslEolVTMKQEWvvMeowgXQM5loQJnP5cRmDpa0MlWeTud6M3a/349yuYzFxUVF5fIzGIXL5hKpVAr79u1DKBRSudmdDBpV1mZ6vV4kEgn4fD4MDg5ifHxcdUkqFAo9Cyypdz0SleyAXAekY0W1tz4PgY0FlfcQxxvYWPy5aFerVbWQ83XSaJPek4JG3pcyQqPT1O12MTc3h6997WvI5XI9TSx2KtgOlF2SgPXqDbsoj79l6Yp0Zri2sok9nV/ORVL0kqrn+yTboa/v/GzJKkgaWoqouObKdYe/ZcMX2iJ5HOprwuGwKgPz+XzYt2/fTV/PO25U+1Gm/aJUnRbm6/mcfL/+PrvX9qMkOIj645Iy2gp23+tG6HfOuxV2ikEuVCy1opGloI3UGycGVYWywbZcuOVirH82Pw/YvKDLay+Ncrfb7aH6pXCKDT9kqQ0/gz/seyrLEXYy2LCFxoMq9mKxqBYd2YZUV0rK+WTHzOjjwOvP4/AxnSbmY7KmWEbJ+n2iO36SMZN0tX7f0KjK3zI1sRvU3blcDg6HQ3VQ4pjqKnl5vfi4/iONIiFZAF2YyMf4W0bCdukAO+pZ0r66UlgafhpQoLdLk1yb+J3JsgHo6VtwM7jjbQrlxZXlEroXImFnWPlaefPzgtnRBTIPJo9Lj8TuHPSJKakknb7lcfgjvTH5fnnudueyW6BfawoAGHVyQvLxSCSCqakpDA8Po1QqqV1iZJ0q6z+5zZ40uLzejGB57WXzBZnHo4jGbiGoVquYm5tTimXWKxaLRdVNh6UjwWBQ7c5hV28ZjUaxb98+tQ3Wq3G+7iWcPHkS3W4Xfr8f6XQa7XYbmUwGFy5cALB+vblxRS6Xg9PpVFEAhWd62kTOQ14b+Vpu8cXFUM/F8RgOh0OxBzR0+gKpN+PgwksRC7cNY7N3WX4lQREO1wLWce4Go/rlL38ZDocDb3vb2/CmN70Jfr8flUoF+Xxe5ZDpRMimPYTUI3CNlywVSw8pVtVTgjJCtTNw8vP0dZ/3C7UXUq1NRS9rz/m/TBdwPGWdLdNUsVgMzWYTL7/8sqoK+Rf/4l/c8HreMaNq56XrUcuN0M+w8redUZU0gp3hA/pTyLoikeesC2z6GVe+XhfD6O+zi5Z2G2jUZH0nPUNSKuzMw3aQnU4H5XIZ1WpV5eN4s3MDBf2e0FXgPD6vtTTo8nX6pKQn6nA4VHRWr9dRqVTUpOWEDIfDKg+j3zN+v181/5fb0u1UTExMwLLWN3Vm/9dqtYq1tTUMDw/D6dzYJoyLJw0WIwOOh25Y5XjITRHkGFGxC/RumM4fqfZkj24ZVYbD4R7Vtx7ZUCWqC5Lk/CZ1zHuZi/duUfBfvHgRDocDDz30kKKApQPBMeR3lmueXMNIu8s1U64Dcm2W9K1e5gRsMIF2QZMevPBz6YDplRl0CqQqXWe7ZKmjw+FQ9ciWZaFQKOD69es3vV7f8TpVPVq1MyY6ZStfawdecP3Cyw483ANQ9gSVnyV/8wagd8PHpaqR+R95Xnb0sV5krHvIMv9KanOnw86r5PXkj6SCCcrbQ6EQBgcH0Wq1EAqFlKGsVquwLEt1tJEdrPQFktBz9fqE1O9F6eDwM1dXVwFAqVwBKKqTJQP8rpJG5D0pu/fsdNBQRiIRjIyMKMOVz+d7OgnRCWIZmnSg5PWVC+PN3PtyztgxO3Lht8ux8b6RFQg0pjwPSV/rDrRcwNkBzW53rJ0M9rJOp9O4du2aEtkxvwhsKLr9fn8PxQr0zjGugdVqVc1fy7J6WB0aWqlf4XHsIn+5/nIdkXlx2cmMpXOBQADBYBButxuxWAz1el0xZ7wfaGRlcwvJbrFeOZ1Oq1LLm8Ed7f2rU6f9wnyJfgZLf16Cg0mvMxgMYnx8HKlUCisrK8hkMj2RiPwtBQrBYFBdYObNpFGW3qzd+fGm0L+39KakUEvetDsZ0tOTzossL+HCJRV7jETZopAUEduY5XI51Gq1nnIG3XjrKnJ9svcTPkhjKo0iJxAFK5ygQ0NDSkBjR2VyXCnGYtOKnQ5ufzc2Nob7778fpVIJZ8+excLCAkZGRlQumvczjZlkJ/RcF7BhVO1+gN4FWtKEQG+Uy8WQxfrScOuOMo/Dsil5j3Ks5WbcwIaoqdvtqhREuVzeVambTCYDp9OJy5cv46mnnkIsFoPf70c0GkWn01ENPGQ9No0S0JvXZCRbLpdRqVTg9XqRTCZV1Md5xuvNMWJESQGTnJ+6UJSOK6l9bp7A3tRsVxgMBhXLRFEhWSamGAAoBoJNXmisM5kMcrkcLl68iBdffPG1N6o67Wn3eL/3bEWN2lG4/J8TsNvdKPiXE10eQz8/SffKwmXpJW9l8GXUY/ecvmjYiTZ2EyQFK+k6YHOZERW/usPFhVIqhOWxefPrx7aj3+0iVT4vjSupYOm5SjrIzlDyvTy29MJ3OnhPszMWx5R0vHSiJDMh1aH97n057/T0ioT+fj3y1Z+Tx9CZMv2YclHX1wmeK51o2UBiN4EOYaVSQSaTQavVwvDwsFICS2ZQ9mjWWSMeh3/L+l3JFvCay12kpNiQTq6kaCUDAWykeehwc82mk8Q5SD0AO6NRLS5ZFHlMnle9XlftKuV2jzeDO07/yhpFqbSTUZycbNJDlYsd0NvXUX+/9GjYzWf//v1qVw1GsVyoV1dXUSqVeugl1qdxVw2fz4dCodBDH+sUFiNQ6TkDGxGbvJFkuzvZ5m0nQ44X0Os0SRbAjmol5I0tRUjMh8lImJ/JSSavoR516pQjj8/PkO3z5OSnuEruKWmX45GOkRQ8yFKbnY4vfOELcDgcPT1/uZUjDQ0jGckoSKMqDZeMLuU9QBGbfD2wse+xjIbsDKJsTsAohk6X3hKT4hnSmWRT7NYjLtatVkttssE9nXcbMpkMXnrpJSQSCQQCAYyOjqrtNqkRYJCiiwUdjo1+wWSZ0uk0gsEgUqmUeq0cV0aFZANkzlaOtzSwXGfoaFuWpfZDleVVtVpNdUeicadOQgqVZIqA94XL5cLc3Byee+455PP5W8qnAnfBqAIbxd2SHuVASEERL7pcgGm0APTc/JxQMpfCRs2BQADDw8PYt28fut0u7rvvPnS764XIlUoFlUoFL774IpaXl1WjbxpjblrMvq9OpxOrq6s9m9zqXq38fA4qy0P0HCo3Vpc3yE6FzhIAm3OquvJSRhR8rcy/Se+U24vJe0BCCg5oHKWRlAIInqsUScjOOXwPjSKNqt/vVykB+Toek/eCNKqkt3ZDTvXzn/88nE4nvuM7vgMPPvggAKgIhkaVLQul6pMLFl+nRxaSZeDzQO815WNcPO0cbb27lWVZ6hz4+bJRABd3Gmu24NP1EjwXt3t9R6pSqaR2KGI97m6CZa2L0WhUDx06pNY/GURwbsj7nnXbjE5rtRouXLiATCbT0woU2HA+ySQyMtQbeEhWUDZroYGU9e+yIxTXX0aZMmiiElg6T7zHaNx5P12/fh1PPvmk6vF8K7grrvSNqFy7v3VvVFJwuiKXCy8Hhx4LB4/9S4vForqI4XBYddHRW6npHrXd5zHytiyrR0ZOhaRd9B0KhZSXv9t2qdHHmAuSLtixo+4kDSiPJalj/TPkdddpY/4tI1o7Wk+PYvk4x5sRp+wKpefKJesi6W47KnEngouQbBnp8XhUYwy5gbsEr4G8/napAPm/LI/i+Oi5V6DXcZPHlO/pd9/Iz9SFdHzO7vXd7kZt6m6atxJU4bMTkbyunMOys5zUNfA5GkAyPjTMcuyczvWG99yeTR5P9oAGNhx2GlUpCJTGnqwVH5dby0lH3c4WybnK1zINxGj3VnDHjKq8oWU0II0MH+PrJZUqoz8qtoaGhpBKpXo8TXLowHoXkGKxqBoKVKtVjI6O4tixY/D7/bh+/Trm5uYQCoVQqVQQiURQq9VU/R13a5BJdwBKkcqcCtC7rRjPj4ozYN1T4o4qXJQHBwcVpfL888/v+BZncgz1BYyqu1Qq1UMXyhQAHR/JNkjmQsrwdQ9W/3z+1qkiuQDrESwnsDwXSSXq+6nK/A2/j05XMoqSOeDdgEwmg7Nnz8Lj8SAUCuHUqVMYGxtDOp3G2bNnlUhEOiUyQuV10+lfXj+Zq2buWq4NMqqwo+Dloqlfd925kUpfuReoXekcf1ifu7S01EP/Sudgp4NrYafTUSVuDodD0bTtdlttEyeFQuVyGS6XS6UCOp0OEokETp06pSoxdPV1LpdTdc2SqrcrryFk4wk90NHXH7vUju78MhACNtiQarWKbrerejvbOYw3wl0xqpIqkTe8Ts1JakeG58x7xGIxDAwMqMnASIjGMJPJqD0POch+vx+Tk5OIRCJoNpsoFArKwLlcLlQqFQDo6UEL9Er5WSrAAZfnRx6edEY0GgWwUWLA/Kzb7cbIyAgmJiZQr9fx8ssv7/hG3BL69yAtxNw0X8PrJyM6XVgkDR1pIWBzw3W7BY1GGejdN9OOdubzMscm84Fy8ZV7q8p7xE5AIWnv3QDLslCpVLCwsKDo0v379yMajaJcLmNpaUnt6KNTtxw/nQGSUQadED6m9/61M6D6PaDnZPuBn0+DYFdGIz+LizANDbcj1Gni3TDW1JxQHcvvyHufkSxTZdQacDxpVMnKJRIJlcfUtQ9y32Ku13LuAr11qXSY+LyMngmpp+gH3cmTjzOdQRqbbRZvFXe8TaGcTDI3pcvbaaD0C8kG7Myn8qLKlnayhyPLVAqFAkqlkpJ0B4NBzM3NYXFxUcm2Q6GQKpXhRGWXDTlppZetU1E08FxsKB2X4iWea7FYxNramqKRePzdCDpDrBuTztRWi5D0JGWOQ3fO5OcQNJBSJKdHs/xbLtj8LLtcnnxMP29pTHdTxGKHWq2GtbU1hEIhTExMIJVKIR6PY3h4WG08wPmsR3E67Wt3HeXr5CKqU8XA5lIpvtfu/qDRBHqdLJnHJfi//jrm+rjQ2nVr201ot9uYnZ3FU089hUgkgtHRURVtci7K/KQsiZEaB6A3Jwr0sg6yv7IUmvF1hBx3Od52TJB0ym9E/8t5DUDV1zIP/GrH+I7uUkNvn55nMplENBpVvRSbzSaKxeKmOlDSQU6nE4lEAgcOHIDf7+9pbcW6Uw6aw7G+q0g8Hke9Xsf169eRy+Vw9epVnD9/Hl6vV3kePp9P1bG6XC6USiW4XC7Vekx614xS+L/0pvj9uJuBbHHHm6XZbKoWd9VqVUnWZX53N8Lj8Shmgbua9FtUCd2YclPoVqu1KQrRJ400nna5VfkZhGwWoJ+ffK2kd/Xz1Q0C78XdNrZUvkYiEUxPT+O+++5DMpnE8ePHkUwme1Sx+jjJ3/zbLlfKyIHXut946PmxfowXKXwphCF0J00acymSpMPOfsf5fF41NditqNVq+PrXv46XX34ZMzMz+Ff/6l9h//79ANZTbLK0SK7VUlAoqwHk+EiHVbI/HGc59nx/v2PJe0qOOQM0HkvmVfmb810Gcs1mE5lMRt3L95xR1ekTUmyBQKCnnKQfTcaLzS4YFACxp6hsccX2dbFYTF0kbkUlKQ1e+FAohNHRURWJSKGC7sHK8+93nhxAOg8A1Ka3DseG1LzT6ajvLmu6diM42VhaciODSugMh6TopOjFzqjaRaU8F/m3NISSWrQzAJyoNzKSdsZ+N0WtnEe8Z8nOUEdA/QHHiLjRPb5VRKq/Th8XeeytmA+dadBfq4+dPK4s6+A16NdXfLeg2+0ik8moTRO4fupqfikMkkp8HsNubDhuck7JVIF0XnXHSb+35Jqtz2n9WPrr+Hn8DI4vq0PuyUiVXicpQNID7EpSr9fR7XYRj8eRTCbR7XZVYpgXkHmMbDar8qqMBGmkOp1Oj9CA3hJ/GAkDGzw8aw8pbFpeXlbREPOgpHK5M4nsG6lPukajoehOeYN4vV7UajVV68obqdtd7ziyW1WEAJQDRK+Wiy6je/4tDaKM8O2MmKRt+L/+vIyS7CaFjJL6lbzYGWE7OsluIZeRNr3x3bTgNptNvPLKK6jX60gmk7h27RoGBgYUFUzlqF4rrKuAdcjxl6yQnYNkxz5Y1sbWbpJuJB0tGQQpHtQFVPKYPC9GrIxgdpMWoh/oOJRKJVy8eFHNGa5zdmuXHmnaUfR2jBUfY/6Vn8NjSeGb/FzdYbMbw36ONqtELMvC6uoq6vU6MpkMzpw5g3w+j9nZ2Vfd2/muGFWWtJD2lBQqmzQAwOXLlzE3N4d2u60KyiuVCtLptKJs4/G4on/lThj8TBpTLuQ0aqSXKSpqt9uIx+Oo1WrI5XJKsZZMJntypMyxykhUp4iYH5UdSOSCmsvlkM1mN9GSuxkcFwoSGLXLom27HxmdykiS6BdpyMVWGr1+UatcAKSYqZ+htFtw7aJlyVToOoDdgEajgRdeeAEvv/wy4vE4zp07h1QqhYceegjvfOc74ff71eYDukGVhk2KjgjJNuh0Xb9IVo88+FquCbJGEtioF6c4Rqp/+0VWNKrlchnFYrFnN5zdOI8ZhbbbbeRyOZw7dw7lchlDQ0OYnJyE2+1Wa56Ezvboc0kXB/E9/GGwxUCJTCLL8rjuSqEjj2FXZiW/j/43WdNms4mVlRXMz89jaWkJ3/72t7G2tqby6K8Gd6VOlV+Qxk5/Tias5eOciBzASqWiGgLQ6MqJII21NIRer7fH++Uxq9WqarfGG4kXk0XtFCZI75efx0WAr280GqrFHZuxM/cgF4aboUF3OhixSbm8nbKPkFL5Vwt90e3nxPT7DP2cbiRCkt9JGhDpILAhyW4CaVBuyce2blsZGDuHZStW4dUaq34U/lbsg11Eo7+faSa5ycJW320nwe7ceR3Y+7dSqSglbL9r2e+4+m9dVGbHAkkHa6tj6ejHcMm/9THmuFJT82oUvxJ3tKE+0NtZqVAoIJ/Pw+1292zJpPP0ss6v2WxieXkZTqcTmUwGV69eVcdjfjQWi6kSGx6PuQAu7pa13iA5m82qOqlisaiO5XA4lPjJ7XajWCz2NNSXdU/8DKdzvYiZ+w5WKhWsra2p793tdlXdE+v7wuHwJpXpToWMNvRFkI3yR0ZGehTRstsNHSnZRg6AkuoTkrK1u2a6io+/ZQmUfK1O7UnY5c71KElSVXTI9IiK5VypVOrWL+w9Cn3ha7fbyOfzKs0iW8xJp5jXR94vdouqvI/6GTf+tltwCc75fs9LVblce6RwTW7bxxTPysoKFhcX0Wg0dp2j1A+tVks13A+FQlsqrOW49mN39DyqNMryPXYOGN/XzxHrp8+xW6ckVVytVpHNZlVq8nZxx9sUSk++Xq8jn88relUaQRlpSk690WioHr25XK5HteV0OhVdC0DtViAFToFAALFYTE1wLgJsYcXCfn4WsH7BaXDpodqJZOhx0UvnFkoEaSh+TiAQQDwe76GRdzIkPavf4HSc2BBAj+JkLgXYKOyWCvB+NJ8OeSz9fVzM5efaTUo5meUYbhXlsJ5N1sfxvm21WvD5fIjFYruCItSvK40QlbDsDytpOL6epU7yvfpYSPS7XnZGlQbRzgmzO75cO/QFWtYt6/nZVquFUql0yy3rdjo6nfU9jtlMRzeqvNZSXc00iK7ktYMda6DPY328aSsk7Ay4/FtXf8vjc99ku+/3anDHjCpzaNyGzeFw9Hh4pBVyuZzaaqtcLm+6ePLmly3jGJmynCUQCGBsbAwTExMolUrIZDIqauSC6/V6MTQ0pEp5WD4jJz8VbTK3o5+PnWesGxe+TnpJ3JibdZv9hDI7BdJh0uFwbOSV5bXQDZqclFzw5C4SugMjJ4/8/H4est15yajTLg8kz1Gf2HSwKKKr1Wo9Rp0iGLbUpKO3G0FDJNMjXLgkEwH0zhHdcZGQUSs/Q49a7dII8rddJGsXHZOet3s9z5epnRupQXey42Q3Lrp6V2pKpBhPZ9309buf4yRfI9cHziN9/uvjLD9Lvz+2ctQ41lLJLOfuduCOGdVyuQyHY7129NFHH4XH40EikcCVK1dQKBQwOzurlLmrq6uKSuXCyR/mRIH1fr1sJiD3zYvFYggGg3jd616HN77xjVhYWMCFCxfU8VkTOjg4iMnJSTQaDVy6dEmJhySdpTe5l4ZdGnhJZ0hHQe4jS9qZEXg8Hsfhw4eVSnin079beXUUGASDwZ7JavedqZTudjc6tchrLd8rjZxkQ/i3pP30hU5OYv6vP2/3m5GKZVnqfmJOkXs1RqNRVT7EPUiTySQGBwdv5lLe87DLf3a7XaWRYIMTSf/SaHELLvmcFInpeoN+uXA9OiX08bJLR/BcuaBSgEhDwfMjI0XFf71eV1UJO30DjBtBjovUBZBZZC9sij1ZYiV3ErJjfPSKCT6vO7NS3CkjTGlo+Xq71A2f6/cYWQjLstR9KbeM2y728I5vUs6ORj6fD6lUqoc+ITXKqFYq8XRjxhudr2F0ysH2+XyIx+Nq42Sfz6cuOhs3u91upfgl/SypO7vJqBtRO89LeuEANi0SBJtMk27ejgG8V6B/V3qd0iPcymOVlJxO5d6KEMRuDO0e4+fezGPyOO12G41GQ/1uNps94687g8wn7wbYfQ/On37lL5J6vxHsIg19MZbnor+u39jpc1MuxjIlYRdlcZxZabCbYRcRyghSDy50x7ffNZR5a7vcqPwtG+/0Ox8Z0Nzq99IjVbvc7u3ijqt/2d4sGo3i4MGDOHz4MBYWFlCv13Ht2jU0Gg3VL5L1ofLL6ZEHd8rgLu70PNjw+sqVK6jVanj00UcxNTWFbDaL2dlZNJtNtckyj8XBY05WRjz6xZaPETJKpaclB5+TMBAIqNzEuXPnVOnPbhE7UJAk63unp6cRjUbVJNKpFemBkjLlQsl2aNJ7tGMQ2F6S4H1AdabdIt+vvk7+rednZLMR1jl3u12lKue9SNpXeui7rU5VggIejk0oFEIoFOppksDSN+kk2+Xl5G8ddoZVZxvkbzvK2OHY0Gyw3IspKJb66J/ZbrcxNzeHq1ev4tKlSz2tRbeKincTuK7xXtY3AacDSaNq5+jYsRD9ghNdb9KPvbBz4vicfv52tbHSKeC6ofcN1pmZm8UdN6rVahXLy8vodDr4zu/8Tpw8eRIXLlzA/Pw8HA4H0uk0lpaW1CLFHqLyC0rRQK1WU+KicDjcs5Cura3h0qVLiEQieNvb3oZUKoUzZ87gySefRC6X27R/JhdJ0rHMn8gLrucNpYGVnhWwsYgCG8XTTqdT5dWKxSJefPFFVRJ0u9LtewEOhwODg4M4efIkwuGwakWZTCZ7RDp2QiJ5DWU9Z6vV6smby0hI96D1fDZrk/k/P8cuV6R/D92zlpOK76NRBaCcKJ6/7nTx8d2y6NpRqrJPKjeUYNN11nZWq9WeTan1fJ0dE6FfS9Ky/Sh9/i2Pyb9lVMS5Jx0vbqYhtynkenD16lU8/fTTWFlZUZtvcMwBbFqIdxvk/U2mkBSwLIWUOdWtqPmtYEcTy2P2S/nor5XQBWly7ZHUv94pSzrX/daMfrjjvX8pCmJ3IXqI8ksBm1vN8THpqVBIZLdjDMtX8vm8mij6LiVsRlCr1ZTgRA6O/E3PVj7O4xC618332b0W6FUSsynCTgaNSigUUj1+E4kEIpEIotFoD5XfD1tdT30y2eXU+nmm+sSWkU2/XIw0qvIxnbbSFxO7fDspM73YfbeB14XODLfK0q+LzF/qqQ+dCbKLYuQaYHc/2eXb7NIOLG+TbVL185DjzjWlVCpt6h28G2Hn4OjRHceS859iRH2e3KpmpF8Kzs6A9jOqdmAkLYWO/e7F7cAdm/GJRALAenT27W9/G6FQCI1GA/Pz80in01hbW9ukGmQRLrAhZafxtSxLFedaloV0Oq0mCAf12rVrWFxchN/vx8WLFxGJRJBOp3H58mVVi8SG9plMBtVqVdFzvCl0haAcaDnpbjQY+kSWUbdlWT0tDXcqhoeH4XQ6cezYMTz22GPKkDL5H41Ge6ghXgO54AGbDSv/l+IXSdvyuvExGY2QftaxFV1nR1kRfL2ed5eLjHwtH/P5fMrJ2O2wLAsLCwv4h3/4BwwMDODAgQOYmJiA0+lUNeTcBlDm2CXsIs4bfabd++zoX90JC4VC6r6ik09mhMwVdQ8rKys4c+aMagQDYJMjvVsg7295vbguUoTHrTYpICVLI4VekUhEdZiT0bzd2G41N7ei17c6JsGSR1lPDkBtgMLv0c+gvxrcMaPKC1oul7GwsKC4eHbm4C4A/KJcOOUm4KTbOCm4G7vD4UCpVFJiEO7jmM/nUavV4HK5MDs7q1qmcUecpaUlRUVzUvEm0D1d/abicxxAvT8tIyBpPKWqkAuxVD3aUR07CfF4HC6XCxMTE3jggQcQj8d7chPye9uJQwidauE11ql6vlYfGymIolJRh86A8Fg6dGeIn6s3UZeOFVMQTCcwmiUdupPH+GaRyWTwyiuvIJVKIZFIYHp6Gk7nesMACvQikYjSE8jSG/7utzhKJ4bQHTOdrtfHWL5frjmVSgX1er2n+5fcQSWXy2Fubs42etptkPNMny90GFkmxnknc6oMjlwuFwYGBpRDKdnJG805u3kqr7Udm7GVUW21Wj07C/GH34Oppu3EHTOq7I/JUoRut4t8Po+lpSU0m01ks1ll8BiV0qjKBVnmLLmwsYMLALWlGz+Te/xVKhV4PB5VoE/RhE4fU7RgF6Hwt51RpbjBLqrh8zL65U3J1+8GNWGlUoHL5UK5XEahUNiUj+y3UMqG+vzdb8IBvR60VBLK68pjcoMEYMPx6bdYyGPbjcWN2Ag7CioQCCAUCikqlE1GdjtqtRqWlpZQr9eRTqdVj28q/EkPy4hGpxq3Sp30e17eY9Jo2kEfSxnFyOYdpVIJ8/PzWF1dVemkvQqyepZlYW5uDufPn1f3NzcS0TcZdzjWtTLRaBTARoDUzwje7D3Q73X9wHlNx4n3IQDFRpRKJaysrCCXy22i+O3O4WZwx4xqNpsF0NuRZHZ2FsvLy8qA8nEaXtb9Ab1fhheQg1av17G4uIiVlZVNIhQZeeqLr/wsafxoVO1wqwPbj3aye91On6ysL56bm8OlS5eQSCQQi8UUzUeKmzc3qRbSRnr+EUBPnl1Cvx9kdMj3t1otnDlzBs8//zwsa104w967HHd5PE52lk3oHjFrovlduHAAUFFOo9HoeZ5NxxuNBpaXl7GwsHBHrv29hpWVFZTLZUQiEYyMjGBoaKincxo30+gHfT7YzQ3p6EpGo19O1o7O5OtkSkLeQ5Zl4dKlS3jllVeQzWZx+fJl9T67dMVug+58VqtVXLx4ER6PB6urqyq9xoYYFI1SaMj3s5ZVHxuiX05dvu5GUamMZHXHVTrS/J+BVafTUT0OqtUqnn76aVy4cEE19Nfff6vjfUc7KklY1nrhPLdhswMjyBuBoqTtwG6eIHcajDwqlQoKhYKKGGVhNWuBZVMMPUIhSOPeDB0jJ5ScdIVCAfPz87AsC+FwWO1IpJcw0ah2u12Vy5f3nsvlQjgcht/vV1Su3F2n0+mgWCyqvDwNOBuTyL0Z9wKYc2w0GsrrZ/25ZITsxt7O+PWL7u2MpN3CrTvafC+fsxNL0WlaXV3FlStXlEBJx05P2/SD3Xdqt9uKhZL3OTcLYTtSalM4h2RpzI0YH46VPi5blTXK+8AuZ0sqmp/vcrnQbDZRLpd7jGqtVlPMys1cj5vB7pYmGtxxkBb66le/qpL/gUCgZwKy1Mjh2NzgA4CKaCgWYf/fm4HT6VRdb+r1Op577jm88MIL6Ha7qiRHFzoRZDC44OuRKt/P85dKdTIm3LSBEW08HsfAwAA6nQ4uXbqExcXF273EOwqtVgvnzp1Ti7CM8PXeq8DWjRn6oZ9RvRHbJI2q/M330ljOz8/j6tWrqNfrPUEAHYLdaFBvBMta723OzU2k0eIYy/GTxtHOSbYbq36KYWlc+Vt3wHRnjfP6/2PvzYPsuuo78c99+771603dai3WYlmLW3jFYbGxIUAYQyA1DAwJIXFVCCGEMAFmkl+WYsgEgmcKmCRjAkyoCkmNQyYYTwJJcALBYINX2bJsS5bktpZW72/ft98fXZ/T33f6vu6W9KTezqeqq7vfu/e+++4557t8vsvRmUxWhbAkiD2duwmrdYVmyEqFosH69ZY5xvTQJO3OTEHuzsNMYJnGzh+fz4doNKrO8fv9i+KzhIytUpHNzs7ilVdeQaFQwCuvvIKxsbE2D3a559uJil8uGYLn6bFhLmIZN1+v5VOXso5pOHXKU5DXXUtzX3rVzN/Qt3xcCmvpu1wMVjrG9Pou9vxu6IKVhueWg90cvJhGPCv5POOpGlw2GKuWYIzT5XKpRBAmDum9PJmF53K5UCgUEAgEFhVtE3ZKdW5uDjMzMygWi8hkMiopwWB1sBFqsA0Wg3FJg6VhlKrBFQHpUcuabwDCbfHsvD+5m41sTbiUdSpjNaR/6/W66uZjYGBgsBow9O8awEanjQzMGG8GmDHe+FjJGK/vlj4GBgYGBgZrCFfMUzUwMDAwMNhsMJ6qgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXsCaU6ujoKHK5nO17N954I77//e8ve40vfvGLOHDgAA4ePIhDhw7h61//unrva1/7GqLRKEZHRzE6Ooo77rhDvffNb34Thw4dwujoKK677jr8zu/8DlqtFgDg8ccfx2233YZAIIB3vOMdiz7z3/7t33DTTTdh//79uO666/Doo49e3Bc3MDAwMNhQcK32DQDAkSNHLvsa+/fvx49+9CNEo1GcPXsWhw8fxqtf/Wpcc801AIA77rgDDzzwwKLz7rrrLrz97W+Hw+FAtVrFa17zGtx444342Z/9WQwODuLzn/88nn76aXznO99pO298fBzvf//78Z3vfAf79u1DpVJBqVS67O9hYGBgYLB+sSY8VcuykE6nAQCPPPIIRkdHceDAAXzgAx9AvV5f0TXuvPNORKNRAMDWrVsxMDCAs2fPLnteOByGwzH/GMrlMiqVCizLAgAMDw/j5ptvhtfrXXTen/3Zn+G9730v9u3bBwDwer2IxWIrulcDAwMDg42JNaFUiWq1ine/+92499578dxzz+E973kPnnnmGfX+fffdh9/7vd9b9joPPfQQUqkUbrrpJvXaD3/4Q4yOjuK2227DN77xjbbjH3nkERw8eBB9fX14wxvegLe//e3Lfsbzzz+PUqmEu+66C6Ojo/j1X/91FAqFi/i2BgYGBgYbDWtKqb744otwuVy46667AABvetObsHPnTvX+Bz/4QXzqU59a8hpHjx7FBz7wAdx///0IBoMAgLe97W04c+YMjhw5gq9+9av42Mc+hh//+MfqnNtuuw1Hjx7F2bNn8eSTT+Lhhx9e9l7r9Tp+8IMf4Bvf+AYef/xxpFIp/P7v//6lfG0DAwMDgw2CNaVU7UAqdiV4/vnn8ba3vQ3/+3//b7zmNa9RryeTSQQCAQDAvn378Na3vhU/+tGPFp3f29uLt771rYs8WTuMjIzgZ37mZxCPx+F2u/Ge97ynTVEbGBgYGGw+rCmleu2116Jer+N73/segHka99SpUys694UXXsBb3/pW/Pmf/zne+MY3tr13/vx59ffk5CT+9V//FYcPHwYw7x03m00AQC6Xwz/8wz/g0KFDy37ee9/7Xnzve99DpVIBAHznO9/B9ddfv6J7NTAwMDDYmFgT2b+Ex+PB/fffjw996ENoNBq46aab2hTVfffdh/HxcVsK+CMf+QgymQw++clP4pOf/CQA4LOf/Sx++qd/Gn/6p3+Kb33rW3C73Wg2m/jN3/xNvOENbwAA3H///bj//vvhdrvRaDTwcz/3c7jnnnsAAMePH8edd96JYrGIUqmE4eFh/PZv/zY+9KEP4bbbbsPdd9+Nw4cPw+l0Yv/+/bjvvvuuwlMyMDAwMFirsFosyjQwMDAwMDC4LKwp+tfAwMDAwGA9wyhVAwMDAwODLmHNK9UnnngCb3nLW7Bjxw7ccMMNOHz4MD796U+r92+//XbbTklLQbYtvP7663Ho0CF861vf6vKdGxgYGBhsNqxppXr06FG8+c1vxq/92q/h5ZdfxpNPPol/+Zd/QTabvexr33HHHThy5AieeeYZ/Pmf/7lKTjIwMDAwMLhUrGml+tnPfhb33HMP3va2t6nXEokE/viP/7irn5NOpxGPx9X/v/Vbv4WbbroJo6OjeN3rXofjx4+r9771rW9h3759uP766/HJT34SyWQSY2NjXb0fAwMDA4P1iTWtVJ966inccsstl3Tugw8+uKT3+b3vfQ+jo6PYs2cP3vWud+F//I//od775Cc/iccffxxHjhzBhz70IfzGb/wGAGBqagq/9Eu/hG9+85t45plncO2112J2dvaS7s/AwMDAYONhTStVHR//+McxOjqKoaEhHDt2bMlj7777bnzlK1/p+D7p3xMnTuAnP/kJ7rnnHoyPjwMAvvvd7+LVr341Dhw4gE996lNqF50f//jHOHToEK699loAwPvf/354PJ7ufDkDAwMDg3WPNa1UDx8+jMcee0z9/7nPfQ5HjhyB2+1GrVbr2uccOHAAIyMj+NGPfoQzZ87gwx/+ML7+9a/jueeew//5P/8H5XK5a59lYGBgYLBxsaaV6ic+8Ql8+ctfxre//W31WrVaXfF2cCvFuXPn8NJLL2HPnj3IZDJwu90YHBxEq9XCn/zJn6jjbr31Vjz77LMqxvr1r38d1Wq1q/diYGBgYLB+sabaFOq4/vrr8e1vfxu/+7u/i1/7tV9Db28v3G43fvVXfxV79uxRx91zzz348Ic/rP7/xje+genpaTz44IMdKWDGVAGgVqvhv/23/6ZaIv6H//AfsH//fvT09OAd73iHOqevrw9f+cpX8I53vANerxdvfOMbEQqFzD6qBgYGBgYATJvCi0Yul0M4HAYAPPDAA/gv/+W/4IUXXljluzIwMDAwWAtY057qWsT//J//E/fffz8ajQYikQj+6q/+arVvycDAwMBgjcB4qgYGBgYGBl3Cmk5UMjAwMDAwWE8wStXAwMDAwKBLMErVwMDAwMCgSzBK1cDAwMDAoEswStXAwMDAwKBLuGIlNZZlXZFj1wsuJql6vSZgr4VxW+k9rPYzXu3Pv1SshTFeLzBjvPGxkjFe9TrVRCKBgYEBeDweuFwueDweWJYFl8ulBnupL2JZlu2kcDgcbccsdSwhP4d/t1otNJtN9Tr/bjQaaLVaaLVa6u9Go4F6vY5arYYLFy4glUqt5BEYLAHLsmzH3+fzYXh4GLFYDB6PB36/Hw6HY9G4tVotZLNZjI+Po1KpoFwuo1QqXe2vYWBgsEmw6kq1r68Pt9xyC8LhMILBIAKBANxuN7xeL1wul1JcANr+poLkD5Wo/rp+jFS2dsKanyF/pNKkoK5Wq21KtNlsolKpoFQqIZ/P49FHHzVK9TKx1FgFg0GMjo7immuuQSgUQm9vLzwejxqfVqulxuX06dNqPGZnZ1Eul9etV2FgYLC2sSpKVSq6YDCInp4eRCIRhMNhBAIBOJ1OeL1eOJ1OAAsCVXqMwLzQtVOo8j1dqS7nqcrP0pVqs9lUzfypVBuNBmq1GhqNhlKqbrcbfr8fTqdzkadrcOmwLAsejwcejwfhcBjhcBihUEh5qTyGcLvdaLVaCAaDiEajaLVaaoykMSSvb5StgYHB5WBVlKrT6VQe6TXXXIPXvva1SCQS8Hg8cLvdHc/TBZ6kdXVcbJxAv7addywpRem1SuVbr9cxNzeHl19+GefOnUOtVkOhUOj6zjobGXa0v8PhgNvtxujoKK677joEAgH09PTA7Xbj/PnzePjhh1EqldQ5Ho8Hvb29CIVC8Pl8eM1rXgOHw4GxsTGcPn0ahUIBp06dwvT0dNtnGsVqYGBwOVgVpepwOOD3++H3+zE0NITrr78evb29yqNsNpvK+9OVYyeBt9Truve5kvOAxYrZTrlalqU8ar43PT2NwcFBRCIRlEolE8O7CEi2gV4kWQaPx4Pdu3fjDW94AwAgnU6jUqlgbm4OjzzyCGZnZ9V1AoEA9u7di76+PuzZswejo6OIRqPo7e1FMBjE7OwspqenlVLV78EoVgMDg0vBqihVehGRSAQ+nw/ZbBZOpxM+nw8ej6ctZgks7XVKpcn/5TmdEo30a+iQn2mnXPlDI8CyLNTrddTrdZTLZXi9XsTjcXg8HtRqNVQqFfXbCOyLA0MEwWAQPp8PhUIBtVoNk5OTyGazmJqaQrVabRvber2OfD4Pt9uNiYkJvPTSS8rI6e3thcvlQiwWQzgcRr1eX3S+UawGBlcXHo8HwWAQTqcTTqdThXQoa+v1OkqlkgrDrVX2b1WUaiQSwY033oiRkREkEgm8+OKL8Pl8GBwcRDKZVEk/VKr0BKVy65SduxR0Baxfi3/rClWP1UrIz87n88hmsygUCohEIti/fz9yuRwuXLiAUqmEmZkZTExMqO9l0BlyTIaHh/H6178ekUgEAHDy5Elks1k8++yzmJiYQLFYRKFQaDu/Wq3i3LlzmJqawpkzZ3D06FEEAgG84Q1vwF133YVcLoepqSnUajVks1lMTEygXC63xd3tmA0DA4NLg5SjdrI4Ho9j7969KmE1EAiohMNGo4F0Oo2zZ8+iVCohm80ik8mseH2upJKkW1g1T7W/vx9bt25Fq9XC3NwcXC4XgsEgQqEQWq0WyuUy6vV6W8au3aDoVCyP0yGVsB3k+7pS5efr2cP6fRSLRWSzWZTLZbjdbiQSCbjdbpTLZXg8HhQKBVMTtgLoYxQKhbBt2zZEo1FcuHABExMTmJ2dxblz53Du3DnbazSbTRQKBRQKBaRSKYyPj8Pr9eKmm25CX18fgsEgEokEYrEYms2mbQmWgYFBd9FJuVmWBZ/Ph56eHkSjUZWECADlchnNZhNutxvpdBqWZaFcLq+YTaLeuFoG8lVVqm63W2X20p3P5/NKqZKWk9m2wOIyGQmdipUZwRdjnUhlKhW1PJ/JMvSka7UaXC4XvF4vLMtCo9FANptFPp/HuXPncObMGRUL9Hg8yGQycDqd6vsZLEBSPcA8OxEMBlWmL9mKmZkZvPTSS8jn86hUKmo87Lx/zgE5nnNzczh58iQajQZisRj27duHM2fO4Pz58ygWiwAWqF9DARsYXB6k3JbeKXWB3+9X9eaJRAIjIyPweDzI5/MYHx9fdM7BgwfRarUwOzuL2dlZFItFnDlzBnNzc4s+d7Vw1ZSqZVnwer3w+Xzw+XwAgFqthunpaZw4cQJOpxPXXHONavrAbFoAbQpS9yJ1pep0OmFZFtxu9yJB3Ukpy+vxmrJkhkrQ6/XC6/Wi0Wggn8+jUCjA7/cjFArB7XajXq9jdnYWqVQKL774Il588UUkk0kcPHgQ0WgUqVRKGQ1GsS5AGkHMqna73Sp7N5lMKuU5Pj6Op59+GvV6XZXY1Ov1RVQt54LD4VDvNZtNXLhwAU8++SQCgQB6e3uxbds2BAIBPPPMM211xcZbNTC4PFCech1S7gHzbCXX4O23345rrrlGMYGNRgPPPfccTp48qeSu0+nE9u3bcdtttyESiSilOj09jX/+539epFSBxYb61cJV9VSl0pMF+pVKRTV6kF1xJC1nRxfoSUm6N7sSj0N/z+5/3hMVPWtTed9SKVB4sx6yUqm0edy6oDewN3ZIB4VCIcVssBa4WCyi2WyqxbZSBciwQjqdRrPZRG9vb1ttdKd7M+NkYHBxWG5Ner3etjpzn8+nqj5qtRrK5TIKhYJa9y6XC9VqVekIr9eLUCiESqUCv98Pr9erEpikXliNtXtVPVWZ1cWMS2D+AbvdbgQCAYTDYVQqFeW16K3ndK/T5XIpgShjntIq0mOuvJb8La8pz2Gs1+FwqKSjarWK2dlZ5PN5JBIJ9PT0wOv1wu/3o6enBwDg9/vhcrlQr9cxPT2NYrGIcrmMaDQKv9+PXC6n6EaDecjx8Xq92Lp1K4aGhhAIBJBKpRRDIGPpnRYOF6OkflutFiYnJ3Hs2DH09PRgeHgY0WgUgUCgzXjjvDHK1MDg0iCdGVnTD8zTuLt378b1118Ph8OBubk5zMzMoFgsIpVKoVKpYHp6GlNTUwCgdEYmk8H09DQCgQC2bNmCLVu2AAC2b98Oj8eDubk5vPLKKyiVSm0O1tV2YFbFU6WLX6vVAMxTAVRKgUBACVepVKUXqHujbrd7URKTpFh1qlUq505KlZ6n0+lUMb10Oo2pqSmUy2XMzc0hl8upUhpgXhFEo1HU63X4fD4VP+Wx9Xod4XAY1WpVeVwG89DpfY/Hg4GBAezcuVMlgOk1v5L6t4NUpvx/dnYW1WoV2WwW9XpdWcqdshINDWxgcGnoJGNdLhe2b9+OV7/61cjlcnj44Ydx+vRppNNpnD9/XpUd6ueNj4/j+eefh9vtxm233YZYLAaHw4EtW7YgFovh7NmzmJiYaFOqq4GrqlQdDodSqnrMVNKnSwnKpR6U3lpQNr1fiaWi07ROpxPNZhPVahWWZSGbzWJmZgb1eh1utxs9PT0Ih8OKzpWf73K5VDBeJjpxwwA9i3gjYrlJrRs68jefldfrRaVSUYaIpHcu5fMbjQaq1Srq9XqbsSXn5XLXXyouv1mhJ+xxLTDebbC5oLN+wDx7F4lE4Pf74fF4VCkcWTtm+dqtQSkf6vW6KoNzuVxwuVwIBALw+Xwd5eqG9FSZqMSMTtK/rVZLCU8AqqiXSlGPWXYql2F8lgtaNo9g3E33cOVvDla9XlcZyh6PB41GA7Ozs6jVajhx4gQee+wx+Hw+vPa1r8XevXvhdDrhcrkWCX6v14tIJKLum96rz+dDrVazDaxvJMj4Of+X0DOsufCkkotEIujp6UGxWEQmk1kRZa4zFnyNf3NehEIh9TfZDo4NGRS7a8oYu4mLLyAajWJwcBAulwvFYhGVSgWVSkXReQabC3RKpGHV39+PG2+8UeUxnD59GqlUCmfOnMHZs2eVketyuZSTArTLaK67U6dOYWZmBtFoFLfccgt27NiBbDYLl8vVduzFOFXdwlX1VJ1OJ9xut/ri9Do4AAAWeXzA4gQkHVIwcwCpmPUa007XkJQz/3c6najX60pIzM3NYWJiAuFwGF6vF4ODg+p9qdD5nTwez6LvT1q4U2LMRgHHy67GGFi+ZSQ9VZ/Pp5IU2Ai/0zl296Afo2+CQDA2r5fmyFi8nId6icBmh8fjQSwWU55DsVhUa8hg80Ean0QoFMLWrVsRiUSQyWSQSqUwNzenDGaHwwGXy9UW8pPXAxaUZTqdRjqdRk9PD+r1uuq2Zrez1YbN/uUCY1KSpH/dbrdStlR+3P6N+6zq1JwUfjIgrnunUpku5ekC83t0cneZQCAAr9eL6elpPP7440ilUqjX6zh06BBCoRDC4bBqmcUJINtn8TWZTEWP9WIozPUK3ZOze+5LKVaZQV2v19sUrH59u5piu2tKOBwORCIRJJNJJBIJtUtSPp9XDIp+PjMPpVe90cdxKbCkyel0YnBwEAcPHoTP51NU3tzcHJ555hlMTk4CuDwhx3Hm3xcTAtANPLsmLhToutFkZ+TXajWVZLlZsRIHR4bfgHnDletsYmICZ86cUbkSPLfTGOtyRP7v8/kQDAZVFjEziTuVLdqxlPrnXA6uOv1LZcX0ab7u9/tVbanL5YLf70ej0VDK1bIs1Gq1Nk/Ujn9nGQ69Yn62XakM0D54wWBQJSVRCc7MzOBb3/oWXnnlFbzlLW/BO9/5TgQCAXg8njbrivFX0l5MqCLfTyqEpTgbrVWhPkGl0XQpaDQaKBQKKqGILcsYJgDQsffnShaGy+VCMpnEyMgIzp8/j97eXmSzWTSbTZVhbHfNjTZulwNpfO7atQtveMMbEI1GVWOUV155BbOzs22lEYD9DlCdIONyNEbJCMlrLXWPVKI0zulNS5nA7RqlAQxAdXbj57ZaLeTz+U0bK9ZZG/maNG71jF9g3mlJJpOIRCJ48skn8eyzz6JcLquQDqnipT5br+Bgk5hYLIZYLIZIJIJ8Po9SqYRarbZI5uthHF6Hv7sR0lnVOlUqHk58ens81o6ulbw6j7Wb3MtRxp3ujZQtY6P5fF41enA6nYjH4/D7/UrB69CtI6ngec5m8HAYp7SbuPy93N/8n51X2BRCp4Uu9llybjGZjDF9r9erPGF5rB2NbTe/KHj1mOxGBQWaz+dDJBJBNBpFLBZTcelcLodoNIpoNNrW9Wqp8ZbQwwVUZMutfXk+ZQvXoFSqEmxGYKdUKZz5+TT4NsM6tsNyITSCz4Zy3OVyqe09G40GisViW+7LctApYfm5NJy4lpdbg5crQ5bCVY+pSq+uXq+rrEEW+JNakUqLAo2v6/FWuQerpF35/3LBah7P+0un0/inf/onHD16FPV6HXv27MGePXtw/fXXo6+vDy6XSyVg2Cl/OZncbreKwTJ2QOt3I0F/ttFoFAcOHEBPT0+bQGRDDLmomLQmO1U5HA7V/IGNtpn48txzz6lx51ySxoycAzTU9FADKSKOYW9vryrZmZiYUF6xy+WCz+dDLBZTjEooFILL5VIJF5L2P336NF544YUNTw9aloVkMom77roLIyMjGBkZUc+FGe5OpxPvfOc7MTs72zYG+l7EOuwYJT2T385TtVOwsjTO4/G0MUtyzVIgUziTWeK91ut15YEfOXIEjzzyiMq12CxGFLAgT6UisqNRCbfbjVgsBp/Ph97eXsXyXUoorFPojvLD6/VieHgYPp8P586dQz6fb1PY8nM6bSu67uhfWotMCGHvXAo6YEFxyvgovzzfAxYUrVwgurIF2l16fUECaKN6uZiKxSK++93v4u///u+xb98+3H333RgaGsK1116LZDKJVquFXC7XRhXoHZV4D2we4fP5kM/nUS6XN6RS1RGJRHD48GHs2LGjjfJOp9Oqb+/s7CzK5TIqlYrazo1egFSqvb292LFjB+r1On7yk5+ouCbnDctkpKCVrIgU4lSScotBMhDlchmTk5NKGTOOG4lEsG3bNgSDQcTjcSSTSXg8HgwODiIej6vt/qrVKlwuF06ePLmhlSqfTzwex2te8xpVxM/nzZKJWCyGkZGRNsOGQpDreKUxcN0w7hQHszOgpVKVnqtOX/I335cga0Uj7PnnnweATcVMSKw0DulyuRSDQeUqlerFhlPswjJUqm63G4ODgwgGgygWizh//rxt4uFK7vtycFU9VZ26kYqMliEXn4ybSApRTvylsnntFh/vQYIZuQ6HA+l0GtPT0xgfH0epVFKUUE9PD3p7e+H1elEsFtVAdgqk65SnXp+7USijlVioyWSyTamyvVi1WkUgEFA0O39TaQ0MDCAejy+iZJPJJHbv3o1Go4FAIKB6LtdqtUVjK5Oa+D7pp8HBQfh8PlVCxVjgli1bVBvDWCymdk7q6+uDz+dTAsLj8SAejyMSiajvVavVFIW40cZa1l0nEgmEw2Hs3LkToVCoLXNfz/jU6XNd6dl5l50oXTulaidk7YxrGWJaiczQm8zwGmQ5AoEAqtUqyuVyW0OSzQI7Zs4ODodDrSGWU8ofABflreqfSceFYZxAIKASG+3upVNcnTK9XC5fdt7EVVOqnKi1Wq3NM6TnwAQU1nuSimNZi6RoZdYhlbC+EPX/Owk4v9+PgYEBWJaF//f//h8eeOABFAoFZDIZ7NixA/v27cPNN9+MkZER5PN5nDp1yjYmRIVPz5nUEWOCjAXqBsN6ht3C4jiFw2Hs27cPr3rVq5RSJd1KC1UqukAgAACYm5tDNptVW+cxNMD9Um+55RYMDw/D4XAoKqnRaKiFKTM7JYPBsaBn7Pf7sWXLFhQKBXi9Xlx77bXYvn07rr32Wrz2ta+Fy+XC0NAQEolEG/sgDSSfz9eWyV6v1/HCCy/A7/crWnCjJDbRsIhEIrjzzjtxww03wOfzKU+da8DOSNZDMnxWQOcM8E4eaaf3dOjv0fDSvVL+rRsCMlNYvg7MhzauueYazM3NqUYEmw1yjJdqskNGZ2hoCMPDw0gkEnC5XIjH46oGPZfLraiW2W68KQfYXalSqSAajeLs2bOLMrw9Ho9qKRuLxdDT06MSYJvNJtLpNE6dOoV8Pn9Zz2ZVPFX5cPTEAbkzjL5YZSMIWetpZ+lIRbcUXC4XQqEQLMvCxMQEfvjDH6Jer6sN1JPJpOozOTY2hlQqhWazqQS6/CxgcfMBWrzSUt8IChWwD/Dzu3o8HvT29mLLli1tnqpkKoD55xEKhZBIJFR/T7Z0JCVMqgiAWpzMqqZSld25pNEmLdFms4lcLodcLgcAqtmD0+lEX18f6vU6+vv7lee5Y8cO9Pb2olqtIpPJ2IYl5FizXk7WvG4UpcpmJj09Pdi/fz9e97rXoVarKQpfD69wnbM8iQYn0N75TJ8PQOdyCvkZ+vsrSUhcbiz0NSx/mB/Ras3H2uPxOJrNZls2+maBdIhkWRuwWPGxzStZHdbps3yx2Wwqg/lS74VhGraBZcN9fU6wqiQYDKKnpwdbtmyBw+FQ3qnD4cCZM2eW/KyV4KpvUs4FIbPxdI9HKlHp5dF1l96Hnrqtx1blIHMBs0bR5/OhVCrh8ccfR6FQwEsvvYRqtQq/348DBw4o76XZbCqhynIgAMqDlkKW9CLjSLwHndbeKLSghGVZyrP0+/1t8Q5Z06t/dzYKsCwLuVxOlbTIBh40SugBOhwOFQ8F2jsxcY7wPDkX5PnSY5KJS6VSCY1GQ3kgMpGK4yiVtmRQGIPl+es93sbv6Pf70dvbi0QiAcuyVBKIZAhk+QqNSW7zyGQfXlPvfMO/+dvO8LQ7zs6ok7/luTolzL/tZIakp/k/4/axWAzXXXcdCoUCYrEY9uzZc0nPdj1Ayt1kMomhoSEl46RTASwkogJAPp9HsVhEJBLB8PAwenp6EAqF1Hxi8p/T6WyrVb2Y+wIWwoCS9Wy1Wti6dSte9apXqfFinJ+GeCQSUXOZazscDqvOTuyOZzdnlsOqeKrAQnyCcRpdOJInp3WhxzfkDiQrTfrhsVJAPPXUU/jbv/1bnDt3DidOnEC5XEZPTw/uuusu/MzP/Azq9TpKpRImJydRqVRUtifrUWm5UrCw+Fi2spM/neJ/GwGWZSEUCqkCb9KtpHjs4lQAUCqVkMlk0Gq1VHYwsEAxSUqdLQsBKKNMxtd1parH9Pj8pcIlW0FPmYlkU1NTmJ2dVV6KLnz5WbJpSTAYVBnitVrtsqzwtQCyQ7FYDNu3b1eCkG02qVTdbjeCwWCbwSuTwjiurVZL9WkF7BP8APuYqR7D70Q5Sg9TXk+nouUcARYUKEMTVKTMUqVH09/fj+3btwOASl7aCNCZFzo/VEj79+/HG9/4RkQiEdXEh2uDx4XDYTSbTZw9exbj4+Oq3ajH40EikVDrOBwOY2BgAD6fDzMzMxdNoXOty53PPB4PgsGg2sx869at8Hq92Lt3r2LMCoWCyqPgHs10dl566SWcOXNG5dfMzMysmAWRWBVPFVi6jlR6GVJI6tfQrcvlvrwudAGojM/x8XEVXwsGg0gkEujv70cul0OhUFAxQZkVqC9qed+dBEUnQbARQKuWCw5Am3enU+GEpAJZ48ix0q8vjSiOuVR6ZCL0seBn6vEfjoM+1+gpcwHyGnZCXs/2pmG1EVr0yRpDPp9qtbqo8Ymk3e1oVpmhTcp0qUTDy0Wn2Cl/y7+lZ93pNWDBKWCZHJmZjZ7pzdrPcDiMvr4+RKNR5a1SmdH5iUajaLVabT20JdPE9WdZlvJ2mfgloXuI+thxjLhto5S1lmWphEG/369CRtxLmRuk8Jos9wuHw8qAoDF5KViVXWrofXBjcqapA1DCkdSCHoukIJTbui0HLo5oNIpwOIxarYaTJ08il8vh2WefxalTpzA9PY2RkRG89rWvRX9/P5LJpKIimdwiBQeTVOR+rrxP+ZvnyNKfTsbEeofD4VCN1ZktK704HiMzYzt5JDLWLp8xO9/IRSRpR+l9SKEtf/OeJFMiBSPZCOnZAGjztHXDj2NLusvv92N2dla16FuvIEuUy+Vw7Ngx+Hw+nDlzBrFYDH19fbjlllswMDCgniWNIRo/k5OTqNVqmJmZwfnz59FsNrFz505s3bq1LXENWGws6wapXosM2NNyci5IlkM3ZPW4LGUJQxjAgsEkDYhSqaT6fZ8/fx4zMzMAgOuvv/7yH/gag9/vx7Zt2xCPxzEyMrKoNlsyQHKTlEqlArfbjVKphPHxceTzeSSTSVUuNzc3h2q1imAwiDvvvFMxF3YOE9c+E+OcTqfKuqaBc/bsWdRqNRVmCofD6OnpUdctFAool8vI5/PKaNcVNUvr+vv7UavVMD093WYErBSrtvWbpHxJxwFoE3iEjG902iO1E7g4HQ4HwuEwtm7dilQqhR//+Md44YUXcPLkSYyNjSGfz+O2227D3XffjUgkgng8rrh+1iDKPsS8dzsPRt6vVBDynI0IxqoHBgZU5q6kZ4H2LdaWGkM+Myo9zgcmF8mGElKp6T+6t8j/eU3GyGVCDRei3B5OZnLrSlX+HQ6HMTg4CLfbjZdeeulKPeqrBr/fDwDI5XI4fvy4UlSWZWHfvn04dOgQgsFgGw1HRVSr1TA1NYVMJoPx8XEcP35cPUPuO5xOpxV9Ko0XmY8gWQO9FtnOQJX3IlkTQhp0ertTGkZMnJOf4fF40Gw2kc1mkUqlUCgUcPToUZw+fRqtVgsf+9jHrtxArBJ8Ph9GRkYwMDCAoaEh1ciGjgawIOeotEibu91u5PN5nDlzBuPj4xgYGECz2YTL5VJKtaenB69//euxe/fuNkNWGrQcy1gspijdubk51QLzxIkTqiaVxjHZRjpnVKoy+dGOhYnFYsqjXReeqi6IgIWsSQa4aVUCi7cDs8sU5HV1SEuW5TeNRgO5XE7x5ZOTk8jlcoqLD4fDiEajKr7GeIpdAgU/k8piKSqbNVkyOWYjxFTtYll8lpKWWep8fRHpxolkJggqNrsYWad4mbxHoJ0B0b0ezkE76tAO8j1STrL5/3qGjH1KJQNAKSxJlelrloZRIBBQ5UnshQ1AxbWApZUqFaXOTNlR7HryilyjvKZcf/xbGsF6iEAa+tVqFdPT0ygUCpidnd3Q2zgyT4SxSlmdsRRL2GndU0mysQsb4zCLX7aEJE3Leef1epUnSoZDbl7CBh+co3JjDNLRDEPJEBTPpZHNPvRyXV9MuO6qd1SS2bEOh2NRqyqfz6cyNJkRxgdglzXbSaFyYdJicTqdSKVSGBsbU6UzTz/9tNrCze/3Y8+ePdi1axdcLhcymYxqr8bFxnsFFgQ7hYb0xgguxFgshkQigdOnT6usuI3QUcmO6u7p6cHWrVvR39+vBGYnhSk3SOBrnTKm5XnM1AUW5pVdDEQqAN1TlvEUjiPfl/XP8lqdvrdEIBBAX1+fivdYVnf7il5tDAwMAJivU41Go8owbDQa2LlzJ5LJJMLhsMqW1L0+Zl729vZi7969yhMMhUIqmUmn4/RnbwcpE4jlnvNSgl6nG2m0URbRKPB4PDh27BgefvhhpFIpnD9/HtPT0yt7mGsUeohEwuPxqLJCdiqil1qtVttCYpTpQPta9ng8qpSFnu7w8DDC4TCCwSCCwaDKp6AnSU9Uyo9oNIqJiQl4vV6VKEqZTLaE7JhlWZiammrzdCmP9XwdKvVwOIz+/n44nU6Mj48vkucrxarFVGVhvk7/UtBKN52Qnom8LmBf/+Z0OlXXlwsXLuD8+fMYHx/Hyy+/jLGxMfT19Sm6sre3Fz09PQCAdDqt+H/+SAEvk2SAxZ6q9HoYiKf3u1GyBYF2QUVFEovF1G4/S1G8ks7XY6y8tl4HRwXKsdUTkwi7mImk4uU9yDHWqWS7xKSlhLfH40EoFFLxnvWOcDgMAIjH4+jr61Px53q9jkQiAb/fryh0liLJcWTuAT0T0sOytEw2dwEWe5L0FGVc3u5YOYf4mr6jjWQgdDZDj/Hz3iqVCrxer6qtLJfLOH36NObm5i4pc3WtYSkWxuGYz2iPRCJwu92KXmXLWBkO0NeWNFLkxhUsp6GyZctQ0resC2dMkx4mKwg431jaZlkLSU/sP10oFJDL5dr0BWuteY98nY6R7Pbm8/nWB/0rIWk90r+d6hh1ZaV/Wd27cTgcal9Ut9uNYrGIZrOJsbExPP3005iZmUE6nQYAxGIxHDhwAP39/ejp6UE+n1fxOhmXo+WqK3DZ9kqnt3Xr7VIHaa3CTrmQ6iMNY6csZdxNXovzQY+byfi73kBCPlM5PnbJBfq9cGzIoNBwYt2aFBwcU0kH2oGlJRtFqfIZFotFTExMwO12o7e3F729vUgmk21sBCGNWukpyOuRYrVTcPJ1fazswPmkG9qkjfXsUHldXYnq73NucD7zXsi4bYQMb91w1J+FlGuyjAxYoIdlchqvyZ+hoSHVcIFKlAlGVGgcG64ZbqQh1zu3GZTJj1IfSEctEAiohKpCoaC8ajnPdM+aDlij0VAJepeCVVOqHABagqRXpWKl8JILsZM1y2s2Gg2VCBEMBlEul1VSwU9+8hP83d/9HYrFompFtWXLFrz5zW9WdWezs7NoNBool8ttD56fzc+gtc7sVC48SS/Kc2VsZ6OCxgzj0kB7sk8nD096pLRM2b2GAoxeTjabVYaPLnw5PrwX/TO44KSwp+FFIyyXyyl6vlQqqQYT7NAi7xVYWMiEz+dTO/MwHrmewe/G9pEejwdbt27FgQMHEI1GVc9juRZlUw27ZBAeYxcukcao/qwJuzi4VKx2lLu8lpQdevxW/gag1jXHn4k2fr9fzZmNArs1KpUp5RwZKbIQrEOldygVIb1cepWUg4FAAKFQqC0+allWW8taPZ4v78/v96vwCsE122w2Vb/2Wq2GM2fOYG5uTs1BXUZzPrjdbiSTSQQCARXquBSseiaFtGrtMr90ykZ/uJ1AC6hUKqnNrufm5jA1NaV2E2FSTW9vL/r6+pDNZpHJZBbF8XRrmp8tvSWdbtSx0bzUTnA4FurWAPuFCnSuU9YpPDvlpRtU+jV0GliHHRMi6UWZiEFBTbpZKmX5PQjp2UjLeb2C1Bw9EQCLapHletWZAl1RAu3ryG4O2IV85G/9b/0autfKY3ievJ5ulOmQxrE8V8YS1zvs5qf06mTFBh0E0qX87fV625wR6eDQQJaUrTxH7jDF58k5xr/JIrH2lXSvXF9Sf9DAl4aAznjqrzHm6vV6L8tYWpXmD1JY0mNlYlI+n29LBqpWqypmwQSHTnEUcuuMy1YqFZw+fRrf/e53MT09jaNHj6LRaCAYDOLAgQMYHBzE9ddfj0Ag0BY/0b0dO2pJTjI5YfTEK3paUtFsVDgc8ynprFtkDJk/ko4DFmqS9ebqnBOyXzAXFpMkeC0KNi4CnSXQDR07upgWLv/m+RQSktqXAlwyELxv7rNaKpUU1bWeM71vueUWAGjbJ7XZbOLEiRNqj1luUMAe2oVCQT1Pu/ps2SSCglcKzEAgoEp5dO9SX++6F2NH8etUsk752hlZFNZMVLIsS3WFks0DNoJS1eF0zvfCjsfj2LZtG4aGhjAwMNCWe8BYOjAfGmDdru6MyJAO/waAbDaLQqGAZrOpWD9gQeaSyZAGlgwD0VNttVpqX+ZSqYRsNqt6AMsN0GVJoz53gAUHiYyEpPsvFldVyttNfFoqlmWpOiJpERcKBaTTabRaLVWmwCQmPYlF1jU2Gg1UKhWcOnUKDz74oOrpSKX6qle9CqOjoxgYGEAwGFRKlcJfCtJOVLT0RKRxIO+NlAfvayMuQsLhWKhTbbVaKpOPShWAauEILFigkrYFFgQpBbOuVMvlcltSkaTnOyW08Lcet9fnEJPmqOy5MKkM5OYP/B9YENRMyimXyxtCqd58882wLAt9fX3Ytm0bqtUq/uEf/gGPPvoo4vE4EokEms0m+vr6VOak9BbosctnzmdIdsrlcqlifq4zdtiR42PX8IXGm92YAvZzwI4dka9zbrF/M1tNlstlRVcSG3E9O51O1YpxeHgYW7ZsURtN0MBgfJO79LA5js5GcIylYqUi5HOUz18PF8gxkbkrLFtjzJQ9u9mjPZFIKA9YXk9+npTfXOOcr3pJzcXgqrtO0sLTrUidXnE4HKjVamp/y56eHtWFiUJaDgS7ujSbTczMzKjic1oyjIUwQ7WnpwfBYLAtOUWfFLw3/tZpv04PXp4jJ9VGh/Qq9IUkIZ+v9DakNQosxLyo7PRsXfmje5N6cgz/lsKX15NeFKErbHnfemmO9J4kTcb5ul5x4cIFOBwOhEKhtgbqbIgia/86rWl9DtAL4bOXz5nHM89Ceo16/FM3xvTQAbAw3ksJSH187O6Z921HdW8UyFpNuxi47ljYsY5L0aZ6KEQfGzuZKsdZnk8Fz57M/OFrssqC982/5QYodnF9Hs/verHr96o3f6DVwCJbWqcypiotBnY/ajQaSCaTKvjMH3oLDodDNR2YmJjAP/3TP+HYsWO4cOECMpkMLMtSW7kNDw/j4MGDGB0dRa1WUw0hGo2GihPJicMJJT2rTgaB7oXX63UUi0VlTa1nAbscSJcxCYyGiizQloJKL1/hwqFhJLNws9msUliMeZC5sFOgeiKCvpibzfkSkFqt1paKT+9SblenG25sXsA5Ciw0luf9kQ6NRCLreszvu+8+WJaFu+++G3v27IHD4UCpVEI6nVY5C1SwHGNJ5crQCd9nJqbDMd/xiFQbmaRisYhsNqs2OmDsTQ+rAAt1xrw+wc8irbgSr8POg5WhCdKUlBP0kjcKIpEI+vv74fV6EY1GAcwzN+wgxb7ojG/Knaf05yDHwi4PRmcYOF5SwfJ4OQY0yKrVqurjOzU1pXaE4jaE6XQaU1NT6l4Z15XzUsZqdQNPJqhd7L7IV91TlW48KVHd4pFxl2KxiDNnzij3PhgMolartaV08zrs/NFqtfDiiy/i4YcfRrVaVcFzFnD39vaqjXNTqRTm5uZQLpfbtjMCFlvaurUkYadUgYVG4ozNrGcBuxwknQ8sZP528tAlDczzgXlly9g0BS2FJ2M5OhUrlepSRg89JABqbgALwp+KlRa79M74vuxHrHf5kXQ/a/LWM370ox/B4XBg//79ygBh/IrKVN/PmMIP6JwABCz0cZbZ8zRCqVRlOIfVAXqCSTege0dy/fI70QPSBfBGgc/nU+1F5ZZ9DMvJXBK73BHAPulJrkUqUr1WXFeqkm3QY+lkrmj4plIptcsVzymVSsjlcovmkHTeZKmklD30uLnGl+sepeOqK1X5Bfi/3a4j0l1n4sPZs2fx/PPPKyuxp6dHLbZqtYoTJ04glUphfHwcExMTysLgA+zv78fBgwfV1lzZbFbVsC43KSSdq1PUdrSFzJDkJNjIClV6c7oFyvf1Z2xH+0gl2Wq12owcqbDkHNGvRUiBrlO+rVarzSudnp5uW7y0VmWjbxli0Cln/T4cDofaW3Uj0P6VSgWZTEaFTnbv3o2enh4MDAygt7dXNUUgJSyfN2C/2wi9Pxpj9PyZ1MduSzSKKeh0r0fKDTtmQp9vS0GeL9e8/C3j+d1W7qsJeqhutxuVSgVzc3OKDSL9T8VEmpXQQyz63zK+qitQ3aEC7BuAUKZalqW67cmm/lI2kLWUypSfK2Op8v6ABYrf5XIhFosBmG8EdDH7Iq/aJuUEE4p0F5wPp9lsYm5uDul0Gk888QQsy8LAwABuv/12bN++Hel0GhcuXEChUMBDDz2E7373uygUCpiamlLUMgdk3759ePvb366E6fnz5xe1HbRbgFJw6pnBdnE3ZseFw2G1Iz35/o2oWGWcUSahAAvPS4+TAu0ULZWnTGBhdp9usOiw81x0upmLlEYYk6q8Xi/Gx8dx9OhRpNNpzM7OYmpqCqFQCHfccQf27dvX9jly4UqhKhcp5280GkV/f/+GGPN8Po/x8XFEo1EMDQ2ptoV79uxBNBpV28HJEgndmJAZ2qTdisWiMmCYnCST/ZjARGXudrtV8hvQruikzNC9G2B5pWrnrXLNSuOArNhG2d4PmP9ewWAQAwMDcLlcOHHiBF555RWVeJdMJtv2gibzxufOMIwdU0RDiA6UXI+Afd2xnVHk9XoRi8XgcDjUnsq8PsMu9LSTySR6enrQarWQy+WUEpZJhoRMliQ7FgwGMTw8jGAwiHq9flH7Il/17F/5m4KIcSspQCm0AChrNZVK4cKFC6rUhnGYSqWCYrGIqakpnD59WhUT0wOVQo7lHuxhKfl83ttSi0+PFegTSP7Wyy02gsdih06LSX+2BI0nHqPTQ9KIkV4Iz9UNs07Q55v+uiwTIeU4MzODCxcuIBqNolKptAkLYHHvYH5//TM4/j6fb10rVbl1WqlUUkks4XBYNUSXvVtlfS+weK3riktnByTFTgOoVquprHGZ3Cbnl/RA7Jini1GovL6+XuXa3kieKp875STHmzKUhmSr1VIlh5Lil9DZJ/4tjR+Z1Kav5aUYQ1n/TcaIeTVU7jyGil7OBf2+9Pvm/fA7BwIBJQMuBldVqXKR6FmhcpD0Tiv0DhwOByYmJlCv1/Hyyy9jdnYWvb29KBaLSKfTKJVKePbZZ5XXy0FJJBLYsWMHYrEYdu7cqTYXZpKKnUAHFu+Iwweut+GigpcZkBst1rIcOKH1/WWXM1Ts6FmeZyeE5TUvR5jp4QUqCRnPY1Z4Pp+Hx+NRPUM7zQt9DgML20+tZ6V65513wrIsbN++XXWbOnbsGMbGxjAyMqJaUtKD0cM7NIi4jjspJBmb9nq9iMfjqFarSKVSynMtFotK4XJPXZm1L2XHSg0vQs41acTxvqhsmNR2qQJ3LWLnzp0A5tfF8ePH4XK50NPTg5GREQwPDyMej6uyp3K53FZ+wnGV5SpcD7pi5bGd6HUe1+lvlrnQq+Y91et11Vud98Ht24B5ilgvp6Ezx2vr6zgQCGDLli3w+XwYHx+/qOd51WYEb1jGOfk6B4lCSQplSbONj4/j3LlzcDgcKoFCDpDcRYZIJpO44YYb0Nvbq5QqHyYftszik7EgOw9Hp5WYhMQAt6yvutiFvV5B+k4qVTm+UkHK5yspGF2odUInS3Olz1r3pnkf4XAYrVZLdd8ibZ/L5RAOh1V8tVKpqOQmCalQeR8bQaneddddsKz5DjjMQXj44Yfxwx/+EIcOHcLNN9+MLVu2tHkw0oOUipRCUe+4RXDter1epbTYRJ07mDidTrXzjR1taEf76p9jBzumDGjPm+B8pXe+UZTqrl27AABTU1N44YUX4PV68eY3vxmvfvWrEY1G1S5fzJinEqOhQadHN6p0lkk+w07j0cnTlc4KS7wYdgCgGuGzeRDZSmaYU5nLBDoax/wevP9mc7694pYtW+D3+3H8+PGLep6rUlLDv5cC+W0mfHBjXD7E5T6H1nAwGFSlOH6/v60XrTxewo7K07+DnoDBvznopKypuJm0tBHoIh1SENkpveUo9U7HrfRZLRWP4etLCdVO3rJ+7YvNOqUiWc/gLjWNRkP1dmXiIOe3Hcugzwed9rXzUqThxXVEY0bSsZLp0hPW5DU7sR2dII/T2Qj9c6RQ3giQXlqr1VI7trCxvL4HNNkpndnTKfml6FY76Iq0E5PIY2RGsnxP9hxYydrXvVUAbQ7SxeCq76cqacJOuw2Qu6fLPzw8DI/Hg4mJiRXVepK+CAQC2LdvH17zmteofSGnpqZU1qFO0+rUnmyBp3ueXNjSy3U6nfD7/SgWi5ibm8Pp06dhWRai0Si2bNlyWU2a1zJkPEOOqawr0ylXXchKXA7F2+naXIB6DI+ehix7kjFBSV3KOmV5r7oi4XncXGA9e6rsjvXKK6/ghRdeUHFnCT5LZrpLGlYKJXqidi3o7GBZFpLJJBKJBAqFAubm5hQrxGuzdpLJgDIEIz3WlcwlKVil4S1jdsC8nCgUCsjn8xeVFbpWwY51tVpNsQTxeBz9/f1wuVxqXfDZO51OBAKBtpCJTMKUVK9u0C4V49bXj52Xq4+RpHB5fX4GHRoZ/9XpaOmAycYRDO3JnIqVruNV209VF7TyGFK5/GLxeBz1er0t4wvo7IE4nfNb+LAP7e7duzE4OIjx8XFcuHChjZboZM3IB84HK4+jt8qBlpmhTqcT+Xwe09PT6O/vh9/vRywWW7SrwkaBnJj6M9UTBSQ6KVNp6S53rH69pSa/vvDkomVCDOedZCKkRSznq51ylWAd5npWqmxe0Wg0MD4+jlQqhXw+b+thdvIkeAwNGvls5dria1S6pOVp+ExPTyvjh2uNO6Xo98JryesuBX2u6WUeMl5Ho1/2ll3PKBaLAKB23eJGIxx7bgguDWQyCKRc9X7IsjGKXSgNsC9/k8pUKlRg8S5lkrGQkP93qpPXjWH+yBCOHUOxElxVT1UW1ler1WW7DDWbTYRCIZXaPDc31yY09fMY14vFYrjuuuswNDSE7du3q4QTJibJe9Kvow+q9KTt7k9SBPJYma3KsgCHw6GC/rL35XoHkzdYy6Z7pZeKpZTkUhavPKZTXE0/Ty4sOb/kjx3l3+lzgY1B/z777LNotVo4efIkpqenkc/n22LKdvFLyTzJjFw7AWhHu8ltFUk9AvOxTDJDjJlx+7VGo7FIQUvolPBy73fyTujRlUoltUXgegc3LGE9aiQSUXWeZABkw3s7dhHAIhkoX9f/1plJ3SiT61Gey+NkIwcaAQBU3wF5n7KUS5+X+vfg38zcp9FGZ28luKpKNRQKIZFIwOFwoFAoqBiNzM7il+IC6+vrw0/91E+pneCPHTu25PUjkQi2bduGd73rXbjxxhtVTdXExIRqj6ZbLrKWkg+ZD9KOkqAHzXMYW5C0NgeJGYxsg7d9+3bk83mcPXsW09PT3X/Qq4BAIKA2eef3ZAzGrpSIk1NPVrI7ZrmJrB9npxCJTkpReiKce50UKtBezqF7NFJ5yMW+XvH1r38dAFTbN9JjhBxjPle5NuixyDaD9DKA9mxRvs8MU5fLhWq1qmqYk8lkW9061x4VMGOvclckfXz0OcF74HfhfUuvlN+Nf5dKJczMzCCVSm0Iw/jChQuwLAtbtmzBwMAAenp60N/fj0QigVKppGh3erF6u1ZCxlmld6fHou1YHQCLlJ1umPN9AEquA/PGFpMJWU8q5TLPI5vI+7Qrj+PnysYt7GuwJpUqFxkpBS4k/TgJbvrsdrsRCoXUg+JikdaLz+dTWWGDg4MYGRlBLpdTe6hyIdspVvn58po69SD/14+3s65arVZbOzzW9K13D0ZCFsNLYwRYmVJczru4WEjF2kmhS3BuknXotODsvGO7zyBkzHa94vz58wDmPQBuDq/DjgGgYtIVlK6k9EoAPVbG9pQU6Lw2z2PLUmkA6/PJjvGw+1v+lh6rfhx7G19sT9i1CionlpIEg0H4fD7VkpLvAYuTEuVr/Ft/T0I/VqITI6iPBWUv6Wg6MtKpkfky0svUZXSnHAlS3FIWrDmlCixYD3I7MCpXfWFxwlqWpWqQDh06pBq2nz17VtUTJhIJ+Hw+7Ny5E9u3b0cikYDf78fMzAxKpZJKA5ewEwTSguZn21EDFAxUjn6/Hw6HQ9G8tLSB+Qk7MzMDp9OJUqmkmgFsFKVqWZaqK4zH44qOk1bmSuKhPHY5avVyIRNo2P3H7/dj7969qFaruOaaa5DJZOByuTA0NIR4PK4ScOS4LmU0cD6zrdp6jqkWCgW1HiWtTc9ebgemU3oshZGshR2oNKl8yXRwrUkPF5gfQ/b45v66Xq9XhWP0Gnj+vdzcku/Lnr/8XBr0691QsoNlWYhEIhgeHkYymUQoFFKvc2xkzgiTPaXRw/ftHJKVQCpuu1CB3OuY60t6taFQCNu3b1fb0XFv1UKhgGq1qjbDIKtBuS0/i/NaOk18bc0pVempUkAxrkirUy4ELkZZbH3DDTdgaGgIMzMz+NGPfoSzZ8+iv78fu3btQiQSwate9SocOnQIrVYL2WxWNYugQLCzhKQg4KBSuUpKS/7mQiefz+9GpVoqldSirFarmJ6ebmsIsBFibRJkE5LJpCrK1pWq7tHpFBFxKQpopYqYgpWLhsI6GAxiaGhIKU/pMXGsZbMQGS/nb907ZohgvSvVXC4HoH1cpFdPpcrXCCpRu5ijHneTTIFlWW2KWHqEXENMRKzX66rxCzc1lx4L71v3QDtBNwjkHKCnLCnEjYZIJILt27cjmUyqJCWODZWpjC8y25p0qlSqQPvz1tdMJ8ise91w1WPdkioG5su/BgcH4XA4MDY2ptpmUsGyzaHX61UtSim3mcWtK1X52ppTqpI6oYLTuXZgces/6Y4zi7bZbKpNc3t7e1UsLxQKwefzKVpAXlP/TEkHyPugItXpXYIDqsdZpcXUicZY6r31DBnU7zT5LtYLvdhntFSMRlKOwOIFy/dkzEbO15Xcy1L04noeb30sGWYhTSjpfvk99cxNaVRJwaiHYvSQDteuHW1Hik6WtunJKfq4rGQs5L1KOUJDm3FldpHaKKBypAKVa0I2ebAziAAsUkadZCCx1LOjspb/y7GUxpJMQGXDfbmmWVIj54FuFOn6R5Z/0mBYk0q1XC4jl8uh1VrYIaTRaGB2dlYtBNI6Mq2eXyYejyMSiWBoaAg7duxo25fR4ZhvkF4oFNRgyR1OAPuyh04LTle6dp4q25eRRqBVzW3kAKgWeLFYTFn1G83KZYY2a4PpVci2k3JRSGZACk1g6ZiL/lonw0i+x787xVItaz67lHNQgkKiE3Upv5edYpFe+nqFXhbhdruxe/duFWrp6+tDIBBoe0ayvIregGSMCPlsmMgELPRkpofILmv0ZOklN5tNxOPxRVvvMRZ2qSiVSigUCuqzHI75bNNMJqOSHi9cuKC85I0CKhImI7ndbjQaDVUKqCf/cO2yL3CnZD+5WQqw2DFZKiwAtK9z/lCWNhoN5HI5JXNlKI7ME7Cw37HH42mT13pNOo0zXsvr9aKnp0ftL7sSXNXgABUOaWDLspDNZtWCIl1GWpXClgMSDAbbyma8Xi/y+bzamocxWp6nF+vbKTNJ+dp5MtIyk4PMloiSFuLm1HL3Clr2wWBQxeR0L329w+/3I5FIqB0iZEaonkmrw06xAvYGEF+Xf9uxHnbQaUAJtjWT73PcOmUn6/ckBY38vPWuVOXYkHIbGBjAtddei8HBQUQiEbUPqtyonDQptw6Tm0PbPRdJFevJTTKmR+9UN5hZ+kHB6fV6L/k7N5tNVbtJ5cISmmKxiEwmg3Q6vahufr1DeqrymTOEoctCfX3KdSi9QxkmsWMQOrEVS4HX52bl2WxW6Q/KYrYnBNBG49Mw0O+PhgMNM2bukwVdk55qqVRSfVUDgUDbguNDpnVk91BpnbRaLdXFQ8ZkJd0HLAjs5ahcPZNYP1anteRndZpYko5IJpMYGBjA9PS0sm43Qn0bwexfJilRYHZSjBJ2Hqbu0eqQxo1+DBebvLb0JDt5rLyevC/92nafxfP4IxeojMmtV+j33mg0MDMzg5dffhm5XA6hUAjnzp1rO46Gr9vtRjgcVp6MrHVcijGS20Fms1lVk0qlrStV+ex1OdCp+L8TVU/ZwtIMZrRzl6xSqYQzZ85sqPVLlEolzM7OAgBmZmYQiUTatq3Us+I5x+0oWcuy2jxFKReAxd3rCH0e6O/pjBedJ5ZuyQx+OjvJZFJ5qKFQSClbaeDJ++dcbbVaKqFWb8e5FK6aUm00GkilUjh37hx6enpUQHxqagr5fF5ZFIFAQFGkcoBYl1SpVOBwOFQzBV0Q2jXq7uSB8jg9gUb+lvVzMsYjPVFeRw4qzw+Hw7juuuuwe/duPPnkk3jhhRcUjbQRYFmWSlRiFrauVO28fWBphSr/7wQ74SzLl6S1LWk8u8xuaUEv5/XalelQecoYIy3pjaRUq9Uqnn/+eYyNjcHv9+Oxxx5TJRjM0ufONcwK93q9SqiRpaIQ5LGyZIafm8/nceLECUxPT2Nubg5nz55Vmb6kd7l+mdlJ6o+sELv9AO3JMtIgktfR5QaVarVaRSaTQa1W23C0LzE3N4fjx48jGo3CsizFKtJzpSMk2RtpuEhlR6Um36exxGe90vIsjps0UPl5TqdTJanJumh2fLIsC729vSpcIJNWaRjpsVc6b5VKRW0iQRZkJbiqniq7KNF69fv9ymLQE5h0q4fX4LEyvVruhCEtKEL3PqWw1wfWzpPV6So7D1a+J+O8LpcLkUhECRfpXW8UyKC+naFDLOe1AivrlMT37Y6hESSVozRy7M7TWYmVJlPwfu3mh/RU1zN0yrzVmt/0OZfLwePxoFwuq7BHNBpVXdOoSPP5vEpiC4fDKuGQ3kK9XldKks3bKdiy2SwmJydx4cIFTE5O4tSpUyiXy22eKuUGt+dzOBzK02RpRblcbhtXu7CENK65bhkCoFLN5XKLNi3fSOCuTE6nE7lcDtlsFm63W+W56KVNwIJMlolBdmtNDyPI8+2YIvm/PMaugsAuO1lS2MFgEH6/v20XG3289c+kHGEymv69l8JVVarsGRoOh1WT+eHhYYyMjKi6p5dfflktKPaTlE2NaVEwyCx5dOkN6RmewEI8hwpYZoZ2gmzUTY+H19QpTm4LVi6XEYlEsHXrVgwMDKhOL8ViERcuXEAqlbqoneTXOiqVCtLptIpXyCJ9qWh1T0COhz52nbCUUmy1FkofOG9kJqg8Hmj3dOU1l5oP+r0xxMDPl+VSbDa+ETxVu+/AnWs470ulkopHca1cuHChrU8vFRYFHpWrfG6cK+VyGePj48hms8jn80ilUir3gutQ1gTn83k4HAsdlegZ6fsmyzVvR13Ktc04oN4RaiOBa7Svrw8HDhxQTkCrNR+yS6fTKs+FST6SkZN1yxxD5re43W7E43Hl4co6VrJ1doyTxFLvS6+T9yB/U/ZwPnRiM/k5dLQks9XT06M2llgJrppSbTabyGQyyOVySCaTiMVi2Lp1K2ZnZ3HNNdeoJKbjx4+3eYgyI4uLURb0yoEmKFD1PfSYnctkB3rJhJ2HQu+6Xq8rb4zH6kqbyVLFYlFtis49+SzLUk0rOEk3Alqt+axu9mXm7hUAVLmDtGb1uIpkJ3RLl9e3U3w6JGvBJBXJGNgdfzHJYjI+K0GBy89nfBlYsPzXM5YSJKRX9fHp5K2s9Lf8bNnjVRphOuQ17BSkPGY54ahnE6/kWaxn0CkZHBzE6OgoIpGI6iFQLBZx7tw5lQ1NSLaBne7IWLRaLUxOTmJmZgbBYBC7d+9WZY+s0wfayxc7rcVOc0PKCtkK1I6NYOiQ7+tKWnrapIxpEFiWhb6+PgwPD689pQosLBJmzjJ7NhKJqPIY8vjS0rCb2DrlJt+T/9sdLxephJ6Bpn+GtGDlcXLwqCSi0SgGBgYQDAaRy+UwPT2tYjLrnRLU0Wg0VGcb2ciDC0Zv7iGhexAyLqPD7tnbCUourE5zp9P1loLMUuZ969fS55fMRt+oWA3P7VI/71LO28hjR8hQFWPhsk0ka/8JyUbotZx0ZPi39Gjp+dsZqEutK50y1tFJVuiJhJ2uqzf6AaAMChoXF5MbsSr9tsrlMs6cOQOfz4d6vY6DBw8CmH84hUIBHo9HtRqkYJTxz1arpawk6alKYU73XSo7ad3o5TZ20OMw+gRh/V2pVFI0ET2V22+/HQ6HA+Pj4/jud7+LqakpnD59um2Hj42CQqGAiYkJ1Go1JJNJ9Pf3A4BiAqhggHbrVKdhZCKCtGB1ylhCjqkcF31c7dpUXoxSpUCwA+MvtIjz+TyKxSImJiYwNja2KQSzwfoFaXnGJV0uF/r6+lQlxtatWxfR7ox7U97JxhDA/D685XJZOU1sysBkUxkK4trUlV+ntdnJoJUyQK8/tTuHsokhAukcTU1N4dy5c8hms3jsscdw/PjxFbOLq6JUq9UqJicnEQwG0dvbi+3bt8PpdGJqakrRiLKQlwOl07fk+UlfSDeecVipVOWASeUooQ+OfJ9KU48BMjOM73u9XuzatQsDAwN4+OGH8b/+1//Ck08+2THjbb1D0r+MPwMLCR8siQAWsqTlM2SMHGjvuGVnodopKH089OxE3bDiOStVdsspXo4rswbZgnNubg6Tk5NGqRqsadjlIMRiMcRisTYGhhRvqzVfdlQqldqShOxi1fy71ZrfRKVQKChlzHWlU7XLUfzyugDaPE27qg5ZBkTI5jSlUkkpepbPnDlzBsePH0cmk8FLL72El19+eW17qpVKBePj4+omh4aG1GDqhd92yQG6YGSQWg4IBbMdjctr87dOIfJc+RqwEGvRr8/XpPc1MTGBdDqNsbGxti5PK43rrAeEQiGV4LBjxw4kEglEo9G2tmWkgmTyEpWfnSLUn+fFeJLyuvJacqzk9eyMKv2aKwGvTzYDWGggkMlkNsRYG2xcVCoVWJaFiYkJPPvss4hEIkgmk4hGo8qDtaz5jTMYc6QiY0kLaV/KYIb3KpUKZmdnUSqVVLmbVIC6fF7K6ViK5uUa05WqLmcIWXHCOlwa981mU3XNyufzKJVKF7WGV0WpplIpPPLII/D5fLjjjjtw8OBBlTXKFHYAqrE2a8J8Pp/q2EMhxnieDrtECYmlLCJgYVshPfWe5RqkQqSipXddqVTwk5/8BGfOnMHZs2cxOzur7lnSyetd2A4PD8PhcGB0dBRvectbEIvFlNLkogKgErUAqCxASdMyuUgqRn2x6LAzkIDOilCP2ehMhP7b7lg7SI+X84PzdnZ2FmNjYxuSnTDYOEin07AsC48//jhOnjypwm/hcBg+n0/Vn7N5gtPpRCQSUTXGsVhM1adTJufzeeTz+bbNT/R8C4nLkYUrWV92Wfvybz3+SgOg0Wio7lorxaoo1VqthunpaViWhVQq1aaYpKcKtHdRIk1BZScDzYQ+WJ0slaU8VZ5nl3ZvZ2XJe3e73ahUKpiensbp06cxNTXVpvRX6v2sB3BD8p6eHgwNDSEWiynLjgYEvVU9a1omoTHhQc+otutG1IltWIlilVhKqdrNoZXQUcACrVSr1VAqlTruQWpgsFbA0Mvs7KzqgR2LxRAOh+H3+zEwMAC/3682A3e73UgkEohEIkqZMuuXSpWtAy9cuIAXXngBp06dWuVvefWw6hsDplIpnDhxAvF4HOFwGD09PW31TtK7Y1KSzNgC7D2VTh4JIZXhUpSsFNjyb/L0ct/HSCSivLVMJoOTJ08il8updG5d+K93vOUtb4FlWbj22mtVfWC5XFZ7cAJQ8RbSv/yfsWd2OmFMg5l2gH12YCelapdR3ekc/m9X7sONEqSnTEHB4/TECul15/N5ZLNZNf7yWRgYrAcw/gnM50vIBh1MSgoEAor25W5FUh6zCxG3XdtMWFWl2mq1MDMzgyNHjiCRSODGG2/Ezp07AUAV63InGMuyVCs0oL0xN2GXYGQnmCX0GFwn70c/l9fl/bVaLSQSCfT398PhcGB2dhbPPfdc2z6Qne5hveI973kPLGu+TozF3IVCAblcDg6HQy06WfTN58r6NnbdmZ2dRbVaRSqVQjabhWVZquXYUuMCGbgyUQAAtV5JREFU2Cc66IpWKlIqTSYlsEkAGw6Q9pF7ebJfsyyTkbtvkEVJp9OYmZlBqVTC+fPn1a5MBgbrBVSKbOYxOzu7SK5KVsmuxlTGSGkkbxasuqdarVaRzWbhcDjU5t5S4FGwAQvNFYDOCpKQvVz5204g6zExO4G8FGQ/y0KhoLwUBuY3skClx1atVlXcm54mm3TIGCmw2DtkzGJmZgblclnt/kFFtRKlKqliGYeVf8tFLst8WDetK1X5PjN62cuX2d40mGQ9XjqdVgYCS60MDNYbNhqrdjVxVZWqndc4NzeH559/HuFwGIlEQvWZLBaLqvaPSUPpdBqhUGgRnSsVp13Ji/65nbxOKZTlBsRSMejnspyEZSO1Wg2ZTAbHjx9fUTxwPePLX/4yLMvCtm3bsG/fvrZt32QLOqbiy7EBoLoNPf300/jHf/xHpNNppZTlccuhk9K1e95SydHTlEpZ7uspM885F6Wnq9O/wEKryk4JdAYGBhsbV91T1eOXuVwOpVIJwWAQO3bsUD0W2RpQlkkUCoW22lXZmUMmv8gkmU5K1U6p2XkxAGzpYX5uLpfD+Pg4SqUSZmZmMDExgVKphHPnztl+/42gTIl/+Id/gGVZGB0dVbEVbj4vd7ew6xlKw6XRaOC5557D3//932Nqamq1v9KGGh8DA4Orj1Wnfwk7D4PxKkkf6ufYJRnp15HHyONkkwL9XP36+vv6PemJLZsBsrRJ0qsSK1VSG6HEyMDAwMBqGUlmYGBgYGDQFax8mw4DAwMDAwODJWGUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXYJSqgYGBgYFBl2CUqoGBgYGBQZdglKqBgYGBgUGXsCaU6ujoKHK5nO17N954I77//e8ve40//dM/xcGDBzE6OooDBw7gi1/8onpvcnIS73znO3Ho0CHs27cPn//859V7f/iHf4jR0VH1E4lE8LGPfQwAMDY2httvvx3RaBSjo6Ntn9dsNvFbv/VbOHDgAK699lr88i//MqrV6kV/dwMDAwODjYM1oVSPHDmCcDh8Wdd43/veh6NHj+LIkSN45JFHcO+99+Lpp58GAHzsYx/Dddddh2effRZPPPEEvva1r+Hxxx8HAPzO7/wOjhw5giNHjuAnP/kJ3G43/uN//I8AgEgkgk9/+tP467/+60Wf99WvfhVPPfUUnnrqKbzwwgtwOBz4whe+cFnfwcDAwMBgfWNNKFXLspBOpwEAjzzyiPI2P/CBD6Ber6/oGtFoVP1dKBRQq9XU/8888wze+ta3AgCCwSBe97rX4S//8i8XXeOBBx7A1q1bccMNNwAAEokEXvOa1yAYDC469plnnsFdd90Fj8cDy7Lwlre8xfaaBgYGBgabB2tCqRLVahXvfve7ce+99+K5557De97zHjzzzDPq/fvuuw+/93u/1/H8v/3bv8X+/fuxfft2/NZv/RYOHz4MALjhhhvw13/912g2m5iensY//dM/YWxsbNH5X/3qV/HLv/zLK7rXG264AQ8++CCy2SxqtRr+5m/+xvaaBgYGBgabB2tKqb744otwuVy46667AABvetObsHPnTvX+Bz/4QXzqU5/qeP7P/dzP4dixYzh+/Di+/vWv4/jx4wCA//7f/zvy+TwOHz6M9773vbj99tvhcrnazn3llVfwwx/+UFG/y+EXf/EX8eY3vxmvf/3r8frXvx579uxZdE0DAwMDg82FNaVU7WBZ1kWfs337dtxyyy34+7//ewBAMpnE1772NTzzzDP47ne/C8uysH///rZz/uIv/gJvf/vbkUgkVnxff/AHf4Cnn34ajzzyCK677rpF1zQwMDAw2FxYU0r12muvRb1ex/e+9z0AwEMPPYRTp06t6Nznn39e/T09PY1//dd/xaFDhwAAs7OzKsb69NNP44EHHsCHPvQhdXyz2cRf/MVfrJj6BYByuYxUKgUAmJmZwWc+8xl84hOfWPH5BgYGBgYbD2uKr/R4PLj//vvxoQ99CI1GAzfddBOuv/569f59992H8fFxWwr4C1/4Ah5++GF4PB60Wi189KMfxRvf+EYAwGOPPYaPfOQjcLlcCIfD+Ju/+RsMDg6qcx966CE4HA7ceeedbdcsFovYs2cPKpUKMpkMhoeH8fM///P4oz/6I2QyGdx+++1wOBxoNpv4jd/4Dfy7f/fvrtCTMTAwMDBYD7BarVZrtW/CwMDAwMBgI2BN0b8GBgYGBgbrGUapGhgYGBgYdAmXpVSfeOIJvOUtb8GOHTtwww034PDhw/j0pz+t3r/99tvxwAMPrPh69913n2oXmEgkMDQ0pP5n8tLlQjaa0PHWt75VleHoSKfT+MxnPrPs9T/84Q/j/vvvX/T6H/zBH6BcLl/UvRoYGBgYrC9cckz16NGjuOOOO/C1r30Nb3vb2wAAc3Nz+MxnPoM//uM/BjCvVD/60Y/iHe94x0Vf/xd/8RcxOjqKj370o5dyex1hWRZSqRRisdiKz6nX6zh37hxGR0c7KmQAaLVa2LVrl23bxUv5XAMDAwOD9YVL9lQ/+9nP4p577lEKFZhv60eFutr49Kc/jX379ilP95VXXlHv/dmf/Rluvvlm7NixA3/xF3+hXt++fTuOHDkCYN4g+MhHPoJXv/rVeNOb3oQPfvCDyOVyGB0dxY033mj7mU888QT27t27SKF+8IMfBAC89rWvxejoKKampjA1NYV3vvOdOHjwIA4cOIAvfelLbffx8Y9/HDfccAN27dqFz33uc916LAYGBgYGVxCXXFLz1FNP4V3vetclnfvggw/iwQcfxFe+8pVL/fglkUqlcO+99+LChQvw+/0oFotwOBbsB6/Xi8ceewwvvvgibrrpJvz8z/+8bTekEydO4Ac/+AHcbjfGxsYwOjqqlK4dvvnNb9p65ffddx++9KUv4eGHH1ae6rvf/W7s3bsXf/d3f4epqSnccMMNuP7663HrrbcCmN9Z54knnsDs7Cxe9apX4ad+6qdw2223XdZzMTAwMDC4suhaotLHP/5xjI6OYmhoCMeOHVvy2LvvvvuKKVRgfneZ3bt3433vex++9KUvYW5uDj6fT73PVoTXXnstXC4XJiYmbK/zvve9D263e8Wf++CDD+Ltb3/7io596KGH8Cu/8isAgL6+Przzne/EQw89pN7/5V/+ZViWhWQyueg9AwMDA4O1iUtWqocPH8Zjjz2m/v/c5z6HI0eOwO12t+0Qc6XwkY98RFG7R48ebXvP6XTixz/+MT760Y9iamoKt956Kx5++GH1vlSwTqez4044oVBoxfdz4sQJxGIx9Pf3X+Q3mcdy7RgvpV2jgYGBgcHVxSUr1U984hP48pe/jG9/+9vqtWq1uuKt2i4XX/ziF9U+qAcPHmx7L5fLYXJyEq997Wvxu7/7u3jNa16j9la9VEQiEZRKpY4bkXeifolwOIxMJqP+v+uuu/DlL38ZwHxbxb/7u79THaAA4Gtf+xqA+eSvb37zm4u6PRkYGBgYrD1cslK9/vrr8e1vfxtf+MIXsGPHDtx8882444478Ku/+qvYs2ePOu6ee+7B8PCw+nn00Ufx4IMP4p577unKF7BDJpNRSUCHDh1CrVbD+9///su6ZiKRwC/8wi/g0KFDtolKDzzwwJJK9T/9p/+EN77xjSpR6Ytf/CJeeOEFHDx4EHfccQd+53d+B7fccos6vre3FzfccANuvvlmfPjDHzbxVAMDA4N1ANOmsAu4cOECfvqnfxrPPvtsV663fft2PPDAAxgdHe3K9QwMDAwMrg5MR6UuYHBwsGsK1cDAwMBg/cJ4qgYGBgYGBl2C8VQNDAwMDAy6BKNUDQwMDAwMugSjVA0MDAwMDLoEo1QNDAwMDAy6BKNUDQwMDAwMuoRLbqi/HK5EWz2HwwGHw4FWq4Vms4lWq4WBgQHs3bsXXq8Xs7OzmJ2dRbVaRSqVQqlUuqTPcbvd6OvrQygUgmVZcDgcaDabSKVSmJ6eRrPZ7Or3Wq8J2N0YY3kNp9OJnp4exGIx+P1+bN26FZFIBJFIBIODg/D7/di2bRuGh4dRKpVw8uRJzMzMYHJyEsePH0epVILD4YBlWXA6nQgGg3C73di6dStuvfVWRKNRuN1uuN1u5PN5PP744xgbG8Ps7CxOnjyJXC6HfD6PbDbbNsbdGJ/NPMYrue7u3btx6623IpFI4NChQ9i3bx+y2SweffRRvPLKKzh//jyeffZZFAoFNBoNNBoNBAIB7N69G729vdi1axduv/12RKNRnDx5Ei+99BLm5ubwox/9CCdPnmyTGVcKZoxXdn2Hw4FoNIpwOIx6vX7RstrhcKC/vx99fX2o1+sYHx9HKpVqO6bTWNh914sZt5Uce8WUarfgcDjgdDqVcrMsC81mE7VaDa1WS73udDrR19eHvr4+VKtVTE5OIp/Pq2ObzSYajQbq9TparRYajQaazSYcDgdcLhcsy1LX8nq9GBwcRDweR6lUQjqdRqPRgNfrRTweR6vVUj+NRgPlchmNRkO9ZmAPy7Lg9Xrhdrvh8/nQ09ODQCAAv9+PcDgMl8uFcDiMSCQCj8eDSCQCn88Hl8ulfrdaLZRKJbRaLQwODiKZTGLLli0YGhpCtVpVSpOK1bIsRKNR9PT0wOv1olqtolAooFKpqLHs6+vD4OAgqtUqSqUSisUiarUacrkcSqUS8vk8zp8/rz6320bVZoDT6YTb7VaGUzweh9vtRjQahc/nQyQSQU9Pj+rLXS6XYVkWtm/fjp6eHuzatQv79u1raxPK8/1+P+LxODweDxqNBhwOh5o/119/PbZt24ZSqYS5uTnUajWkUinMzs5ecSW7WcF1zp9kMgm/3w+v14tAIACXy4VYLIZoNIpGo4FcLqdkaKVS6TgmLpcLHo8HTqcTiUQCiUQCtVoNExMTyGQyKJfLyGQyqFarmJubw/T09CK5TJ1xJbEulKrX621TqrRUm82mEp5erxcDAwPo6+tDpVLBuXPnkM1mUalUkM/nUa/XUSwWUS6X0Wq1UKlUUK/XlcCmcnW5XPD7/dixYweSySSmp6eRz+dRLpfh8/kQCAQAQA1UuVzG3NwcqtWqui8De1iWhUAggHA4jHg8joMHD6Kvrw89PT3YunUrfD4ffD4fvF4vACihVyqVlPfYarVQKBTg8/mwY8cORCKRtkXDa8gxrtVqysOZnZ1V1+rt7UVvby/cbjeCwSCcTidqtRpqtRrK5TJeeeUVzMzM4Ny5cygWi8ooM0r14uFyuRAIBODz+bB3717s2bMH4XAYO3fuRCwWQz6fx8zMjFrTxWIRHo8H+/fvh8/nU4aYXKeNRkOt8Uqlglwuh1qtBofDodbqrl27EAgEMDs7i5deegnZbBYnTpxANptVxrZRrN2FZVkIhUKIRqOIxWI4cOAA+vr6FOPk9XqRSCQQi8XQbDZRKpVQr9fVOmf/eF35eb1exTYFg0EEg0HU63VMTU0hl8thdnYWY2NjyOVyOHbsGLLZrOpHL8f4So/3mleqfLCdrAt6ovRcXS4Xms0m/H4/6vU6nE4nWq2WUqBer1d5nfV6XS1Ah8MBt9utlCwXMr2jZrOpLCV+Ln+73W5lAfF1s1DbQTaBXmkkEkE0GkUkElH/e71eeDwetd1erVZDo9GAy+Vqo/2r1aoaV2DeC6JXyrGjsKQRxjlQr9eVt0PPSVrQPMbtdiMSiaBarap7rFQqyijj9c04d4ZlWWrsAoEAQqEQ/H4/QqEQIpEIQqGQGnuuIxotlUpFrXmuOxo+XJc0mFqtFmq1mhrbZrOp5gQ/r1KpIBwOo9VqIRwOIxwOo1qtKqFLJsvg4iDHWLIRsVgMiUQC0WgUyWQSyWSyjTGKxWJqPLxeL2q1mpKtuhKkM+Xz+RCLxeB2u+H3++H3+9FoNFCtVuHxeOBwOJDL5eDxeNDT04NEIoFKpaLkSLPZVNfmOr8iz+RKdVS6HBdbUneMowIL3iEXUavVQiAQQCKRgNfrxa5du7B9+3Z1jhSoABQd0Wq11OLjgwagqEOi1WphfHwcTz31FLLZLOLxOOLxuLo3AMoLqtfryOVyiirmQK4E61Uwr3SMPR6PWgSHDx/Gtddei0Ag0EYL+f1+Nc40TiQjIX9T0QaDQaWEvV4vnE6n8mKazSbK5bIStqVSSY1LtVpVwoDCl5QxvxMt6Fqthmw2i/Pnz6NQKOD06dN48cUXlWdULpdX9Aw2+hjbIRgMYtu2bYhEIojFYhgYGIDX61XshNvtRigUgsfjUc9TGitOpxOhUAher1dRxBxfKtVsNotyuYxisYh0Oq0UZKvVgsPhQDAYhNfrbaMGuU5LpRJOnz6NyclJlEolTE9Pd9yFaiXYjGMcCAQwMjKCSCSC/v5+7NixQ9Hx0WgUXq8X/f39Kr9BX+dkEGngkFEqlUool8twOp0Ih8NKdofDYbjdbng8nkWMFucQw38XLlxAtVpVTGMul8OFCxdQLBZx/vx5jI2NXbQhta5jqk6nU3knVIwUrBLFYhHFYlENWCAQQCAQQG9vL0KhkPJAycPH43E1mLRyOJAejwcej6eNpyfPXyqVVAINLTPLstBqtRAKhZR1TEFuqOAFuN1uRfvu3r0bt9xyC5xOp3q/Xq+jUqkoA0fGvSlcaexwvKXw9Xq9youRcXdppdIIozdsWRbcbnfbHOO9cnx9Ph9CoRBisRiGh4fRaDTg8/lUSICeq4E9vF4vhoeHMTAwgN7eXmzbtk3F1MkAcewly5ROp5HNZgFAjZHf71fUHw2hRqOh4uOlUgm5XA6NRkOxIA6HQ61zh8Oh1v7w8DA8Hg/y+bzKp0in00in05elVDcjOMb9/f1qbTO5MBKJKPnLZE/K8EKhoEIq1WpVhWoIKkMazxxzggwlExIZIuQxXJu1Wg1zc3MoFAqYnp7GsWPHlPF19uzZKyKj15xSpXdKSIpN0nzSo+CDKZfLSKVSKJfL8Hg8aDab8Hg8KsmlVCop64bXpYXEeFm5XEalUsHs7CzS6TRyuRycTid8Pp8KkkvPmd6u9KrWq8V6pRAIBLBlyxaEw2EEg0FljPBZ0btYilLla3psnfOAClha3YzPkZoCFqgkOcf4uv558vqcc8FgEL29vfD5fMjlckr4G8zDsiyEw2EEAgHEYjHlsfj9/rY1qycMynFnmAbAItYJmB9rp9Op5gwwLxuYqETFS8i5xrHntcLhsIqrZzIZeDwelMtlRfMb2IOGZygUQn9/P7Zu3Yre3l74/X4lJzk2VH5co3ydY0uDmbK90WgoapdzwePxKIaC8wFYWKe1Wm3RHOH4cV5EIhEMDAwgGAxiYmIC0WhUecTdpILXlFLVFZaeuUWqUPL4lUoFhUIBzWYTk5OTSKVSCAQCyGaziMViCAaDimpiJi+THRwOB2q1mrKY+IBLpRJefvllzMzMKC4/GAyquB8A5VEx+5eWk+Tq6QVt9sU5NDSkyh2SyaRSojJRhM+IihDAIssUgMrs1J9rrVZr+0ypTHUhrQtcaeFS4ZNOqlQqbQu/v78fN910E9LpNPL5PKamprr9uNY13G43du3ahd27dyMUCmHbtm2IRqNqTOkJ2q0JHuP3+1UWsJwf9GhlSAiAip36/X4A8wKf4yWVNn9Xq1WV6LR161b09/djZmYGwWBQUf2XQg1uFjDhMBAIYOvWrbjttttw3XXXKTlJ5ZbP5wEsKEsJGfemAqZybDabCAaDiv4NBAJKUZNlktcpFottjhbQ7oyROo5Go9iyZYvKtZmamkImk7EtybkcrCml2unBSMHHgDStFmbgMks0l8uhWCwiHA4DmH/ogUBALa5qtaoEs8vlQq1WU9lnrFEslUqYmprCzMyMiv2RGrbzUml5656qtKY2K5gJODw8jFgsphYQPVQKLru4jj4XCJ3J4IKUafMUvPKH80uOC+eWPveABYHMuUZh0t/fr+LEBu0gzbplyxaEQiH09PQgGAyqjGo9jCPja/xbrm0aYDIJSY4lDXEaPnIs9YxPesdy3MPhsBLsqVQKbrdbGd5GqdqDoROfz4dwOIzBwUFs27atbR3SwQDQtsblOpPsEeUo5YNUoMyXkOWVkqWQa1/eI68t4/A01vr7+xGPxwEAMzMzXX0+a0KpygfArE4+KL7G0hpaLBRyDFjLeJplWW1JCYVCoS0NG1gYCGYQ0lPN5/Oo1WqoVCpq0Gld8z0OODOJaZmxVIOTSHqqm02xcrzoRcjFACwoPukZ8nXCbqHolqpcYNLblbF0nVrWFTkVs51il0YUADWP6vU64vE4kslkW1x+s4JCNhAIIBKJqORBKidJ/UmjUypAzg0aW/q8kLSfbhzJHAYyDMACTcnjAKj5ILOLnU6nysNIp9OIRCIqFHSlskTXK5xOp1KkIyMjCAQCSu5RVsrcF72CgwaNHA8JMpF2RjDlrS5TO1WJSCOuXq+r96PRKK677jrMzMxgbm4Ok5OTXXs+q65U5YNjQgrjm4yd+Hw+JZxJL8iFwmNJ1TWbTVXzRuqPReeJREJlDepdPLiIAChP1rIsZXUVi0W0Wi243W4MDg4iFAqh1WqpEo65uTlF/3KhbtZUfZm5GQwG1fPgs5QLR1q4+mLRPUlSOXYLDligC2WIQFL8HB855zotUD3xiUo9FArB5XKhv78fW7ZsUcbWpXbw2gjw+XxIJBIqxtbf36+EH9enXYMUrmXdy5HxcK51Pe5NUHAyNyKVSiGVSsGyLNVARIZ8ZG4Gha3L5cLw8DCazSay2SzOnj2rwkVGqbbD5XJh586dqgNWMBhUz79arbYZQJ3WKYA2A1tnjei4AIspfKDdqOpkaMm8GekFW5aFvr4+3HbbbZienlYZ/V17Pl270mXCzkvg6/pC6LS4JKS1K4U3US6XUSgU2gaiWq2qgLekkjjYpKKoaKX3o0+QzQ5S7Kz37TRmncYdwCLhqy8Y3TuV75E9YOmFndLUaeSVfi8Zp/X7/SqksJlB45eJKtIglWPVKQlN/+E6kx6NnWCWXo9MGmQNuv658vqSSZJxc8YGASCXy13R57YewTwTJh6SqgcWK8jloI+7/jmd1qU+J5aTI5xP/M069Eql0lZG2Q2sCaUqaUA9E5TF+TKjj8lBjLOwxEKWY1DIRqNRbNu2TZXZ9Pf3I5/Po1QqIZPJKCXNiUJPWG+NCEDFZBuNBmZmZhYFyHO53KIFv1kVLDtckSLlGOqQQq8TDcxYiGVZqvNOuVzGxMQE8vm8spApKOmVMNU+HA6jv78fXq+3La6i1xLrNJQeu5MGnsvlQiKRwJYtW+D1ejExMXElHuO6QTQaxc6dOxGNRpFIJNqacywlGPn8dcUrjRQKwqVCA8AC1cscCmankoaWXjE/S29RCgC9vb247rrrVIcmk+HdDtb/9vX1qaYpdnFNHXbGDf8GFio5dIUpoXu/Ukbrc0h+hpTTwHwNdSgUAoCu50asulKVD0fP0gMWPB4ZG2k0GigWi6oOkdm3duUsLECPxWLo7+/HwMAA5ubmcOLEiTZrGJinfAOBgPJydGtLKm5mt1HgAkChUFhWkGwWeDwe9Pb2qkJ/jqGc7J36Jev/s3UkMJ9UMD09jUwmg2PHjmFqakoVdjebTdXAw+12Ix6Pw+/3Y3h4WPUWpuEkvRqgXaFKIS4XpWRLXC6XStHn525mhMNhjIyMIBqNqhpRO3pPX1N2tL8dXSjP62Sskq5nm0oqWGZ+c0xlCEJ+Hn8SiQQcDgfS6TTGxsauzANbx7Cs+dKyeDyuQnMycchOGS5nOFPuk+qV65GGjx5TtyuPs1Os+j1ZlqVCifV6XRns3ZLZq65UJfRJzoUkvQMWiFPBSe9EtrjjA4rFYqolmtvtbou56V2b9FR9fUAkzy8HyY624OubVbmyYF8WZgMLysmOrtUXm4x7sbCfzdCLxaKK2zITl3Qv47cUpuVyWW2w0NPT0yZAOSekx6pbwXYZxBTewWBQxew2M9jbl3QgwfGWCSYSS9F/K4Hd9chUSIZJvk/BzfHUSz5oxLH0xmAxGP6QoR0p9/T1vBw9a2fAEnpdqv5b/zzKDD1ZSr8/KSt0w+Cyns1lX+EyYWeByC/GWAdb0bHPLpNP6H243W4MDQ1hcHCwLf45MDCAnTt3KkqoUCigVCqpxCcpQFk2I0tk5KJj39pWa6FZu7SMZEah7nFvNpD+3b59O8LhsIpfyc4oukBttVqKdeD4uN1uzM3N4cyZMygWi3j55Zdx5swZuN1uDAwMKPqV3bOISqWCiYkJZLNZpFIp/Nu//RsAYN++fdi/fz/8fj8SiYTq6UtaX6bty0VHpoSfwQ5dbrdbNRvZrLCs+bKprVu3IhaLqbEG0ObBywQxyUxJCpjXs/sMu9f1bGLOMVL8AFRcV3ZmYxKkNL44B5nBLDfQMFgADeZ4PN5mvPA5S1nYSZlKpWhH+9uVwFEuc4ztjCYpf2U7UpnYSpnO9pc0/iXreTlYVaWq0y52r8mYFoUbrQoW8bLhdiwWw+DgIICF5gzJZBKxWEx1wOEWQzIxgZ8tHz5gT0OSWpI0BSeGvNZmB9uHyYYZXDR6iYNUqnIx0cihh5rNZjE1NYWJiQnVWKCnp0fVQ0qvs1gsIp/Po1gsqmzOWq2GRCKBkZERtFotJBIJdX15P0t5qBxfSTPKfqabFW63WzWq5wYXkpqThrOE9FD02tVO0JkgXQiyiqDVas/RkH2BaTDblfGxrabxVDuDSYgyRq17k0QnBSvXvTxGrj9g8XjbMRtUlpLltIvF81hZv0qGczmPeqVYtRmzEt5d59+pXOUCJSXr8/lU/0nWjJbLZUXjNJtN1TeW27hx6yF+Bi0WtjpjeQ0XLWtTeV/MLNV70drREfwOmwVUOoFAQHkukqqXoIVI0OsrFArI5/OYnJzE2NiY6gW6e/du1ZQjFAohGAyqmCkzPz0eD/bu3YuRkRFMT08jHA6jWCzC4XDgxIkTKoGFJVxSeNKjYmtKGmC6YqBRptfObiZQALJOleVlrFeUZSxcO7J07WIg148Uvsspa11YU4bwnllvLueo3GiB7NVKknE2AyiHuSboEVJR6d4nIZWW/p4cm6XkpRxr3UOVrAedHnqqlCm8BzmePp8P0WhU6YbLLYFcdaWqc912ylRaQrK7DQDVxioUCuGaa67BzTffjFqthjNnziCVSqHZnN9thHE5ZouSLpStsUKhkKo95c4JpJmbzaZq2A9ACWO2NiQ4mfTFvtkUKzMEo9Fom9Ik0yDBhuh8xsFgEJVKBTMzMygUCjh16hSeffZZFItF3HjjjTh06JBS2KR+ScWycYfH48F1112HQCCAyclJHDt2DJlMBs8++yweeeQRhMNhRKNRRU1zXpXLZeWhUBFI+lfWW7JmNhAILPpOmwHSyGU9cjAYbKsLZOiGhm+r1cLMzAxmZ2fVNTpdW4euJPXjdM9Hr2mkcce5w11yeM8yOZGtDnnf7Au+WdbvcmBMVYba6ODolRjA4rGzM3pkuEV2ZJJOipSjMpygN9qRFD9j5M1ms42iZvZ/KBRCb28vstms2oP1sp7NZZ19hWBHH+iLRR8QDigXiOymwwHitl/M1mRyC+kfucG1tFg5QMxgBdpba+l0Jv/e7N6LpE7tIOkd6eHTWmUtcbFYRKlUUl2uuP0TdwySzbZlrIy7zBSLRRXrczqdKmubCtQuZiopImlB28096f3oFvhGB5+R7OMKLG4ByfFgPIy43DWiG6uS+tPBYygrqPBlVrf0fqXRsNQ83iyQ3qhkm+Rz4XPS24bK43THScoBabzqhpMeX+U1ZAMX3UOWoUMJeYxMulrX9K/uiepenVwcsodkoVBQwlCez44epVJJ9e6dmJho8zRpjTqdTvT39yMQCLT1JKUn2mzOb03EDYy5LRmtV9nkmVvE6d107OIHmwGsBfV4PMq6l5mWtCIp2Gi0kDZkY/RisYixsTGcOXMGc3Nzqsk6s4lJ2cgMRI4xaZx6vY6pqSlY1vx2X7VaDc8//zyAeco5nU4rajgajbbVr7IdYTQaBbCwCMlskP6nkInH4+jt7VWx3M0w3twMWiatAAtb+ck4FTtRAcDExIRiJvgcpWcp5wshFaUeWtGPk6DAll4K71smP1qWhUKh0HauZVnKeDPb/EExQvF4HF6vV4VT6JHK+LTecIXga5TZsmqDJY0Oh0PtFERF63Q6lTxhnwJ9I3v5uSynopfKGDmdKoLHxWIxlaNzuVhVparTAMDiBcPFIGlcJkLwOhwgLuZisaj6OcrmELQ46e739/e3KV3Sec1mU9HEMsEBWMhG7u3tVRmCR48eXdJD0S22jQophBinYutIadnKRDEqXz53yRacPXsWzz//PCzLUn2facx4PB61xRiwMA/YLrDZbCKTyaDVaiGZTGLXrl1wuVyIxWJq8eVyOczOzioF7/f7lUKVe8DyuqT7KZxlCCISiahyHbZE3OhgLXA4HEYkElHeHscdaC9fYJcisgTNZlMZVoRO8S0VL7V7T39NGuiUIzSCZJycnpH84Xfk3NzsyWiBQEA1dPF4PKqKgs+Ka1rPKbED5bUMs9jti8y1zxwXrl3Zk5nKXMZJaXhTHtFgphdMMHciEomoMr3LxZqgf+3oNBnfkD/SCvF4PIjH4+jv70coFFJepqTo+KDloqlUKsjn8wgEAos2yOaxbC7BiSIpBlpXbMmmZ6nxb9KBy02wjQIugGAwqMph5OLQj5UJIXrHIjtKnWNZq9XgcMwX55Mh4JhzpyFgIVnB6XRidnYWLpdL9W8GsOiz5GtkJUgpUyDbfWeZnr+ZmkBQWbJjEdBO7cmNJSQ9LulUjj1f171UnVrUX7uYe7UrlZKUoYS8Tz2PY7OC1Q/cIAOwbxdI45rxVT1kQujOlN3rdtfWDR87Y0eGoOyuKQ1l5gRIWX45WHWlKj08CjNaMQDaFgGP93q96Ovrg8/nw9atW3Ho0CGEQiG1Vyd7sbKGsFgstqXWF4tFAMCFCxfaBojn0FOtVCqIRqMYGRmBz+drKxUgFRKJRBbFGID2HXd43xu9btXpdCKZTGLLli3K0JExamBhY2IaJl6vF9VqVXkDtFg5yZkQRtagUCio3YBOnDihKCIuco4RhXqr1UIoFML4+DgcDgdefvlltZD8fj8ikYjydunFkGJmVjH32JV1cjSWuCDj8bhiRXRreKOCz5CZ1Fy3HANJj0vjhd4f/5ZG1VI1gp3oRDuBTcgkGHorbFLhcDhQKBTavB49Rsu4PL/vZobf70dfXx8SiUTbmiFkmQ3XBbfUpNyUrWYJOTdoMEunSle+0vDtFLeVG6nwPmUZVbVaRTabRbFYhN/vRzKZRKFQ6EoJ1aorVWBxfaCkdqQ1y2wvt9uNWCyGUCiELVu24JprrlETn94JsLBfn9yLUe5SUigU2lLDKQDq9bpabHzIFO4EPVVppdtZVPx/M3isljXfIINdrDipOR5yXPWyBT3JSCaIyK2bqtWqatZw4cIFZDIZZQxRKEtPid4rWYd0Ot0W55PeJV+nlU2lLpvC8zj5ndmoQu8etdHB9UIKl0ar/JEGqxx7riuZDS6TU5aKx0lFaqdQO1HAci3LpBS5bZx+LkMDxlOFMjiZOS3BtSMbajidTpXnIuuWl5KBso6Y15W/O3mrunEl5QsZEL4HLIw5t/IMBAJd64y2JpSq/oCAhYfIgeQiKBaL8Hq9GBwcRDKZRE9PT5sSZEIBvR4qSXqvctApAHUqivfE+6AFzoFpNBqYmppCpVLB5OSkyiaW1rYsPN7IilQHkwnYl1lum0XrlQuOx+bzeczOzqokEm4cTYZCehGRSASDg4OKjo1EIm30ohTi/Bz+NBoNvPLKK+p9ds5hSUyr1UKhUEAmk4HP50NPTw8ikYjK/GboQDIQHGd6X5upWQDjUbL/Kz15Ga5hHEwaJ3KM3G632jJMbvOlK09pnMp74G+7H65LlsdJ6l9ShLy2DBfJMhE7NmqzgWuCDVdY+ykVFg1Z9gTgWEvGSrI8Oj3LdSxbSUoGk+PDz+NvXXfIuSMZSHksDXomJIZCoY0RU9WtWB2k1jweD1qtlqox3bNnD3bu3Ilms4lKpYJCoYDZ2VnMzc2h1WopZZzJZFSGLwU6g9dsrE6hzQVECoKThLWPnBCVSgWnT59GvV7H3NycylqVGcAbneq1Q6vVUmUwzNKmEqJwC4VCSlFx4c3MzGB8fFxRtf39/W1KVZYxJZNJ7NmzB81mE7FYrG1TA93L7OvrQzgcRqFQwNzcnKp55UKNRqPqs6goU6kUTp8+Db/fj97eXsRiMQBQc6darSKfz7dlqtJDJw26WTwap3Oha5ZUjFJ4yTg4wy6k39kv2OfzqUxOHqu3AAXsFav0fqUcYUyUhg6zsin0KTxlOZVUqsz8Zy1ruVze1EqVBu22bdvQ29uLZDKpNrmQGbf8O51OY25uDk7nfDtPn8+HarWqHB4yB5KeBdCWyc9sXDILjIHKVoW8N8LOIGN+hEw2k3IlHo+j1Wphbm6uKzkRq6pUl4uRAAtWBie+tHwCgYDyTJn1mcvllDsvaSUuFj22p3uWuvUqE2h4HBWCXWax/t02i4AFFgqymbpOpelyuVRWLQUmO1ExW5tlTXKBkp6Vz5ceIRWwPl6kbL1eL2KxGMLhMCzLUhQw55Is7pdeFRPXeE4ul2ujl0lnSWub5Ttyfm0G8PvLtSk9EUIqK0mjA+0xdjtazy50Il9bKuQiaUDeB4UymSvde6H84feQntJmWst20J+xfHYcEyq+YrGIXC6n1q++PZx0puTz1ule/i3f1+eYzlxIpaozE/JvO4a0G1h1TxVYGCx92x8qNVoq5XJZUXPpdFplf2YyGVSrVUxOTmJyclI1COBxko4slUrw+/1qOzJJM9ATBqA6rfT19WFkZATBYBBnz57F+Pi4UgwssZATRS8P4OubAc1mE+l0GvV6HalUCrlcTnWuomJiokO1WkUqlVLN6BmfZmtCALjmmmsQCAQwMTGBl156SQnFubk5eDwetXenXECS1qPSnpycxPPPP49sNotarYa9e/ciEomoLkxcqJwHHo8HlUoFP/jBD/D9739f9ZV2uVyYmZnB1NRUm3FWLBbVd5mZmWmjvDcy6G3Quq9UKkpw6l6ILEWiIUqWietOJhNKD1XPs+Bn8z1Cj5vJhDGufbJM2WxWbfrAsZXxNhqGNNQ2u1JttVqYnJzEk08+iVgshlQqhXQ6rcpsAoEAUqkULly40FZj3tfXhze+8Y0Ih8MAoHabkrKS8pm5ElKGym5sNGil8Wqn6BmKKJVKqNfrKt+Gx/P7sN51bGwMp06dUpt2XC7WjFIF0KZQgQUrVraukko1k8mgUCgglUqhUqlgenoaU1NTKobi9/uRy+XUYFERMh5H70Na0Hrgure3F8PDwwgGg5icnMTMzIxKerEsSw0yv4f0jjejUs1kMmrz91OnTqn3+GwGBgaQTCZRrVYxOzuLUqmEkZERHDhwANFoFPl8HoVCAc1mEzt27MDAwABOnTqFubk5JbTn5ubU/p3xeHxRvI7UEePs586dw3PPPYdsNgu/349du3YhEomosIL0MqlUi8UifvzjH+Oll15CMBjE4OAgPB6Pqn+W81RaxJuJ9qdSJY1mp1Q59yk4aYgCUEqV3iNZCr0ErpNHwt/0TvjZkoHia1SqpVIJ2WwWp06dQjgcxq233ore3t5FSpWKVbIfm2Udd8LMzAyOHDmCUCiklGBPTw/i8Tii0ShyuRyOHz+OdDqNF154AS+99BJ27tyJ173udQiHw21xc7kxCrOvnU4nSqVSW4mLNMh0h0v3OGm4Uw5QNttl4vM+KpUKzp49i6NHj2JmZmZRE59LwZrYpcYO0l2XXTDotbJeSsZxaNU4nU5lDZMalh0+ZDkHF5Okhtxut0pgCYfDylIlrSjvmZ6tbjnZfdfNIGwlfaNToRSoTLGn58BnTo+HFBIAlVQWiURUPCadTqtWlDo9SwVZr9eRyWTaNjBn2EAmJejeEbCQkUrB6nTOtzaksu1Us7rZIBUgsFAew+x65ij4fL6OglGn9uySk5aC3fvyPJkwSCqXORKMs9ldTwpq3UDYrGB5TKvVwuzsLMbHx1EsFhEKhZBOp/HKK6/g/PnzyGazbQyhnVepP0s5XsBCcwidubAzsOQ15HUoC86dO4eJiQlUKhWVY8PjuGFHOp3uWtOWVVOqMlZpN5Flmv7MzIxaGGwHNzIygh07duD8+fOYmppCvV5HNpvF9PQ0LMtCNpuFy+VSlim79rBIP5FIYGBgoM1zJeXj8/mwc+dO9Pb2qlpGh8Ohtg3jcUxompiYUIpfjy9RuDCIv5mFcavVUi0d+bz5zGKxGOLxOAAgnU4DWCixiMfj2LdvHyqVCtLpNJ544ok2YdzX16f2zOVCrlarmJmZUckplmUhHA5jaGgI27dvV0YVjS/ZFDwUCrVt+8VrORwOo1AFaLQWCgUkk0lEo1HlzddqNXi9XiSTSUQiEcUiMV7NZyuFpiyj0GNrukGqC1g7hSzZA8uyVJ4FDS0ASsDq8Vfeo9mIfgGFQkGVvaVSKTz77LPwer0Ih8MqdMPwD9kjNqiX4RJpoFjWQoa2ZJooH+wyhgnJBPJ6vA7nZSaTwaOPPooTJ04ox0uuX7YylQmtl4tVUapyEttZLDI5qdVqqQzPZrOpdqSJRqOIx+NIp9OKwq1Wq6p/J4UiE5larZZS1Mw6lC3oKCDK5TICgQD6+vqwZcuWtiYO7BHJJBx+HoVyp4w0SVNsZnCy6xPX4XCo+jcAqqEDn5vf70d/f7/auebcuXPK6iyXy9i2bVtb83yOzeTkJHK5nKqd9Xq9iEaj6Ovra/NEJXUIQGUPSyq/G7GWjQbSqmRr2GGMnWm4zqLRKNLptDpWxmFlFjWvyZ+LZXfszqNCBaCoQWCeqmbDEcCeTqSnbejfecj2sDR87cA1y4Y5cm3pslA+dxmGkx6j7AMg6X59bsjxIa2cyWTw9NNP44c//GFXnsFKsGqeqny4+gOXGYGMjTmdTsTjccTjccRiMUxOTgKYb849NzensjuBhSxULhj2HGXyEWusZG2jHExSkbSgZOo1ayQpuOv1uvJgOinVldBYmwkyWQCAShgolUptwktmYLI705YtW9TxU1NTyOfzysOVFqjb7VbeUyAQUBuSs0G+pJT0xdnpdYN2MAmMTc6bzflevtI4LZVKCAaDmJ2dxblz59BoNNDb26sMKN1zkALXzju1e53rV54nZQoh6x1LpZKSAcFgUCkLWSnAOTYxMYHp6Wl1jMHKoWfsAp2pW70sSn9fV6r6cfr80D3bq4VV81TpAcqYjG7lkqopFApwu93YvXs3Dh8+jFqthhdffBFPPfWUer9Wq6FQKKgBpOfIHTRYb8Y6SdkVRKefaWUxWE7qx+VyIRKJqHIQJjL88Ic/VLFcKuJL2YR5o6OTpVmpVJDNZuFwzG9szkxB7ipET9PhcCASiWDnzp0oFAp4+eWXMTc3p7oiyYJ9l8uFwcFB1ZIumUyqGJqM29hRSMuVxyxlIG0mRVwoFPDiiy/C6XTi+PHjeOqpp9Q6CwQCts+JtPvQ0JAyflm3qtcsAoupYN2TBRYUJ7OEZaITsDC2lC2NRgPpdFp5orFYTI03KcBisYhCoYDTp0/j1KlTyugzWBnkODE+qscrOYZynGRjFR12ilVeC2hPFJTtD68mVn2TcqD94do9OMY92NCBhdzT09OLBk23Vp3O+X0cqRypLKVHKS0f3VOWBgB3SWFcgfFXYCGVW1IVEptJ2K4E+viTWpKJJTSQOPb0KkgfsomELN9gyIBjFYlEFDvBsiwmPEnhrC/SS42bXixluZ7RbC700ZbJP7FYDNFoVOUrcIy4qTwzPSU1y9j6UrATolLp6iEWfXxlKIcxP8oN5kmwbpo/bGQiE24MVg56/XqCGqHHxjsZrLoC7nSM3d9XG6uiVGUMq5My07l3Wpfnzp1DoVDA2bNnVb0i65CoQOUD7evrwzXXXAO/39/miQJQRfusNZV0IxcTGxfQCqbSDAaDSlgzHsDYC0sz5PeVvzcrOk16Sf+SUudYca/NQqGgxgCY73A0MjKC/v7+NuNHlsbQg3W5XOq6VNx6Yguw8tKnTnT+Zh5friOWyDBLlOPBfTI5hqRhgcWdknThyfdkvar0UnVvRM4T3gPnEt9jfP7b3/42nn/+eRQKBUVlM/ZbrVYxPj6OfD5v62kZzMOOrucYNZtNtcWi3DJRZxv08ZZYbl3ZrWFpqF/tdblqnqpdHMXuRx6fTqdx/vx5FAoFjI+PY3Z2tm2jam5ICyxkF/f19WHXrl0qiaVcLqsymkqlglKphFQqhXq93paQQCuVVC4zkmXHHrlHJBeuVKqdYkObGXYGBnsAs9UdnyWFJZUqny9ZBxbtd/ocXktuqEDjicdcarxbekdmfKEyPgGosZLPJR6Pt4VcuAY7xcfshC3/tzPEAfuNOeghyVZ1rdZ8wlw6ncZ3vvMd23lB6LXzBouhe54SjUYD2WwWs7OziilgdYTd+lvpeuqUqCSZDyrVq20MrZnmD1wcMnlIBx8UPRlanhTCcpB4Hbnbidy1AICyWLPZLMrlsqKHa7UaZmZmALRvISSbh1Op0orVEyP0TEKDBdgtGj05yE6o6pSwjJ/o5+kJEvoitruHy1GuBguwM5w60Xf681sqntbpuKWEK9/XFS7Xp8xoNbh06A6ELvvslOClGrQruRe55q82Vl2pSgXImjC67rK2ybLm+67mcjnU63XVlMGyLFWiQWuZ9WX8YWwHWCjs54NPp9N4+umnkcvlEA6HEQqF4HK58OKLL6r2eey8w1Ielvw4HA6cOHFC1TiRouL73MXBbkIZLEB6FIC9QSItUCaIsX+rHXUkqUfphUgvRlJ69Jz0EITByqDHxXTBxkQ/2WzFLi6qQwppmcgkyy90dotjJ+uP5XXIaEmK0ODSYZeTIJNNL9bBWEnctNO1JPXfqZvSlcaaUKpcCNybUe5EIK0ZNjtvtVoq+UjufCAzNuU+jzKGy8/iNYvFIi5cuKCo5FgsBsuy1GIMBALo7+9XdGM8Hm/zeM+dO6faYbVaLfV5zECVpRsG9tCVqpwThK4sJTotMFk0LmNwdtaznVIwWBn0Z6eXqfE9O6bIzptdblz0c6i05RhL6N14uDZN7Wn3oK8ZOQ8uVqFeiqzU47MyZ2LTxFT1eCnpWW4RxJKVcDiM4eHhtm2ipJKU+6dKWke2TEun0yoeyl6vPIexNlLLTJunlcP9PPk/B4ixVdlphb0kAbQpcJnlaGAPXanaKVRiqfeWogntjrW7tvSoDJaHTqnb0b9ca7JcSRd8eqyb0IWkXSapvsZkPF4atrriN2PcfZANYPc63ZCSx+m08Urpf2DBK7Vb46sZfltVpSofSrPZVH1Zi8Wiara+Y8cO3H777QgGg8jlciqrkItEdjUKBoPw+/2o1WqYnp5We3qePXsWlmWht7cXPT09Kp2f9Wj0SrmrAQD1mmVZSCQSSkHL8oBwOIzZ2VlFS1FZAwslAnJRmwVsD7IMst+vvmBkzFr3XuxiajxWF9j6cZLmpUJlnXI3NizeLNCpXF1YsmyF2bVyXdgpSBkKkNcF0Ebby/mg737CazEkROhxVaKTB21w8WC/7mAwqEJl+jrUFa383UlW6vSvdLDkNclGrMYaXnX6F1h4ULJ5Ah+Wx+NR/UOZlCStVi6WVqulOiYxsw+AyvxkDI7XlYteeka8PpWqbOosIROfdGpSF/oGy0On/JaigeyoJp0utPu7k/LVXzMx1cuHXVKKDNHoXqpUxrpitrum7h3bQSppu2uatXllQMOGjI++jpYaW7vxtGNBlmOkVjOMs2pKlYtMxjf8fj8CgYBKHKDXyHIZNmiWi8ThcKgaVCYuNRoNZDIZzMzMKErXsuYbasfjcRUfDQaDqFarGBkZQSQSUffG7cVYGkAqQ1o+mUxG7aPZarWUMUDr1+PxKOXMJCZj/dpDj7etJOZJkF5f6tq6xyuvKakphhBkZy+D7kCyS/JvGqe6Z6v/L1/juOljKpNU5N/yOhToZueZKwvdOJVlNJKCB9CWIyHHmJAGlJ0B3UmhygqQq4lVa/4gO+WwdRmb5TMZiUqVFk+1WkUmk2krGmfbQSYdSKU6PT2NSqWilGNPT4+6Jne7aTQa2LZtG2KxmPJIZZsyZvLyh54xG4TPzc0ppUqrjIqBNa6mGfvS0BeBHmuxS4Cww1K0kXxfp4r4Hl9jvNwo1e5C765DRcguWHZGp/Qw5Y9eh2pZVluIxc7YkmNs50UtN38MVg6dYrdjl2Qzj6WevZ1C1aHPHyrT1ciNWHX6V68flUKTipXtw7ill1w8ep9PAMrTtVuI+g4kPp8PyWQSPp9PfQZpaN6D7AtKCll2XpEDyu+gK1iDpaG3jVwKescqHdLz5DV1GBpw9aDTvXoyH+eC7oHI2Le8Bl+3W+8UrHItLlUPb9ik7qPT+rvUdbeS6206+ldaMaRWZT9eiXw+jzNnziAQCKjSFwBq43BCJgWxa1I0GkWlUlHWSm9vLwYGBlQ5TrPZRF9fn2ruPTExgQsXLmBubg7nz58HsNBCj/Fc7sjBfTuz2azqC0qvlkqZwsLQTEuDz83r9bZRRcBiwcr/l6J8pZCVrAhfW26x6Y0oDLoLGspc/7qB1Km+UB97afBSpliW1cYa+Xw+FY7xer2wLEvJG7YfNeg+JItgt4Y70bx27JGE3XmdPGGGFa/2GK969i8VkN3iAuZ3Kpmbm0OxWEQ6nVZ7qwILdA2VFhcjt2NjrJUKj80bqMCbzSZisRh27NgBr9eLkydPqnvi1lQsBeCOOqSm5c44rKnlQMofJknxOxsshmQrZBMGPf6px0btsjVXwgx0WtDyWkahXjmQgZLdzoD2rG3dwNbjsNLTlQ0gALQlEJJxYvgGQNv6NGvy6kE3bHXj+WLHQk9slJAG26agf3WKhr/Z3IG70lDh+v3+th9goWEyEw64iwwApeQYpw0Gg7AsS+1U0mq1MDk5qepho9Eo/H4/MpkMMpkMCoWC2ni5Xq8jn8+rHWm4K42cBFzwMimJAyoFh+khOo+lEgzsjrP7fyX0badEJ/39i6WN7O7foB16/MvO4JQ0r07v6kwFvVLd+NG7JVFuSK8VWOiYJQ1xO4G7VNzOwB524+D1etUWgLKDnX6OHexiqHbn28kAGRJYylm7kljVTcr5w4deq9WQy+VQLBbhcDjg9XoRDAZVM+58Pq9imVR0sqkD6wu5SwZpWy6i4eFhBINB5PN5HDt2DGNjY9i1a5favPrMmTM4d+4cUqmUqjctl8uYnJyE0+lEJBJBNBpVAoJgAgaTotgUQiY3kZ7e7Iu2UzxkqTiXHitbKkaqLy69S5MEhbQe+9aTpQwuDXKuy97Z/JEZoXIM7NgCGq1SqfK3/ppU2PIzeEwndsyM96VBV450YPr7+5FMJuH1etve0w0iO4/TTrECsFWyUi7IjnrcRWy5LQW7jVWlf3VvVdaFAgsuvFScHCAKYPLm3LnE7/crLp+LhovM7/erB8ySm56eHhQKBXg8HhUnlX18W62WonB9Pp+irbg4JRXF+5cTQhoPZtF2xko8z25+jp1Q7nQ/BpcPrgXJLEn6XhrXdooSgFp3do1UdOFspywZp5VGnBnn7oNOh9/vX7R3NWE3vktdr5Ni1d+X761W2dSqJiqx8X0oFFKJR1SqtCa9Xi/C4TCCwSBisRhKpRJcLhf2798Pn8+HQCDQtgUYY6vFYhG1Wq0t+y8YDCIQCKj9UyuVioq/ut1uxONx1Ot1RKNRpFIptRF5LpdTnZTkoqYn6vV6lWAgdS3pLvYzNvsxLg+7BbDUgloKOiUlz7ezlHkchb5B9yDLWGgAM/lP1qsDi8eIf+v0L6EnMMnx05vFNBoNBAIB+P3+RZ2WDLoHynXSv0Sn/JKljGq7eGun/2VuhWwmdDWxakqVE1/ui0kvUSo6n8+ndo+Jx+Mol8uIxWJ41atehcHBwbbFWCwWVXN7bkDOMhpggUJiW0Mew4efSCQUPZzL5eDz+ZDJZHDhwgWVRcykJ3rIVKoA2nbDAaCO8Xq9qiRns9O/K4FOAcoFY/f8lvJa7JSwFNQ6JS+9KKNYuwedVWISoVSqrDWX4ycVqaQZO9HAZKikV8vzaEQFg0GEw2FlKMtrGs/18kFWj3KbcW09pGLncXZSrkuNjd01mWOzGk1c1oSZptOnrVZLpcIHg0EVg/H7/cprpdcJLObfZYxGbobMBaovVP5wn9Rms4lkMolmswmPx4NcLqeuTW+TC9TlciEcDsPn86FcLqNUKilKWHqnZrEuDTvPo1uwW3R8fakYr0F3oYd7GO/UQyTSoJLhFbtyC12p6g0HJJgMKT9PhzF4uwOZI7ESdFqHS42HroB1Y7pTi1n9/G6P+aooVXptbGJfKBTgdDqRyWSQy+Xg9/uxfft2RCIRXHvttdiyZQsCgQACgQD6+voUJWxZlkoOqtfryGazquSGDR64Gw1jo+zKRI+S91AsFpUF29PTg5GREViWhZdffhkPP/wwpqenMT4+jnPnzilq1+FwIBKJYO/evfB6vTh79ixOnTqlPiuVSqk9Xg3mYWdx0qCSOwHZeZh6IkOnGI3MIpXXl8cBC023pRDX94A06D6kwOXYyOfNsdWZiU5xON0g08+X80HmaKwGNbgZwGe+VDKYXdhFv4adnJDHdlKqrVYLpVIJzWYT2Wz2qu+Xu2ptCumR1mo1lMtlOJ1O5HI5pNNpuFwu9Pb2YsuWLRgaGkIikVCeKlsS0pMlnctGDLlcDk6nE6FQCF6vV+2O0Ww2Vcck7kZD75WdmkhX+P1+DA0NIRaLIRaL4ZVXXoHT6cTc3JzKCqZR4PP5sHPnTkSjUTSbTVWqQ2WtbxlnYG8ZSgbBbsGtJJFpqUWqU8nSY5IMhHzP4MpAPnv5A7R3w5LKEbg4NkNnrhhykvSwqVO9cpDJYPrrwOL2k8RSSUh6GEi/prxurVZTLWKvdi7LqjbUp0LL5/MAoGKcrVZLUb3MygXmG0FIBeVyudT2brVaDbVaTbUs5CKSngu5fXZUId9eLpfVlnKlUkllCdfrdeRyOQCLtyNjk/5QKIR8Pq+SmohKpbJoxxtmFW92dKJddO9wpTEVu+Pl9fQ2lnaQgtsI2isDXYl2ommXq+deiUJdKu6+VPnWSq5vsDz0Gn2585hu4Eos99pS5+kMhTSOdSpZzrsNQf9S0QALu70AC/skNptN9PT0YOvWrfD7/cjlcigUCm1eDAeHDRyYnETFRvpBWqtsU9ZoNBCJRBAKheBwOFRzfPYYDgQCSKfT6O/vx8zMjNqCjkq1VqshlUohm80CAAYHB1VyEwdKv2egPRt1s2KpZAM7z+ViFauEjN3xfEkFy+vqlLNRrN0Fx0F2z2L2rxzXTgpVj5fJ69oda9f3WXpPTDLU47Rm3LsD+YxJA7PbXScZ2OnZ6+zFcnkR/F8mHC6lQJeL3V4sVtVTBdAx5shuSE6nU2XNEmwdyGxb0q1SKRM6tSQHm/RPpVKBw+FAPp9HoVBQW7oFAgGl8CkQJL1A6rpYLMLj8bRx9+wOZXDxkNbm5VzDTkF3WjxLeTYG3UGnePjFoBuMAlmspeJ2BpcHaUR1ongv5ZorOYbspJ0MuBrjuyayf3Ww1CYYDNpars1mU3VeIoVMT7VcLqu60FAo1HYeHzQTlVhXmslkUCqVVMxVWtBAewxI3iPLdUgnU1k3Gg0Tk7sIyAUILC7k15//UhSRHneRWaF6j9ilYIRrd6HHTO0EHiHHWqfudYNLj7vqsPNq2frU5/OZRKUrAK5X9h6Q67BTvkQnpbdSw8kutEAniqVcVysEt2aVaiAQQDgcVgFnGWxuNBpIp9PIZrPKI2w0GsrLdLvdKJVKCAQCahcc+cBzuVybUp2ZmVEPvdVqKe9YUki6UJc1d1SqjNMybd9g5dAXlpz4sgSiEz0ohTXRierRj5HHGYr+yqOTMiVkDI5Urq5Y9b8ty2pbr/pckkaax+NRPcFN84crA9bnezweW6Wqx7ilYWS3/pZa+3YKlXJcymmyoptSqZLKZYN60rsySYhepd7Xk14i+Xs9cK0vZlLIPI+LkyUeAFQWcSgUQiKRaGvkH4lEEIvFEI/Hkc/nTfuzS8DF0IKdFhfLMuxoQRljs8suNLj6uBgPRP69lEDU1zrQ2bAyZVNXFjJ23ukZ6+vdbvx4LXkM0Hlc7a7Pe7Ezzq6Egl2TSrVarWJiYgIvv/xym6fK0pdarab2MWXTfXqX3GRcBqt9Pl9bfRoHmwqbGb5sKMEt3TKZDFwul6pZTSQS2L17N6rVKvL5PCqVCrZu3Yo77rgDPT09ePjhhzE+Pm72abwE2MU/5eu6NQssXliNRsM2hV8mtumsg1TE0jhbKpniasZnNhKWonyl4SM3oacC1D1WO+OpEyUs91sFoGQBExkNugvLslQvgUAgoAxhO+aP46uvv6XGltBpZJ3dAhbkfygUUr3d9YY8GyL7dznU63XMzc1hYmJCbWhMepe1n/RkY7GYatrMYm4pWMntM45CpUlvltnDHEjucsMap2g0it7eXvh8PiSTSezcuRPVahWTk5PIZrPYuXMnbrrpJiSTSZw9exY+nw+FQsEs1ouE9Bz0uNlS0CkjLlL+TTCBTdYm6skM8porWWhXytLd6NAF5FLCVCYHrmTrRHltSTXKMZaxNmP8dh+WZbXFrTmGAGwVn53HKo+R42Y3B5byhNmukJ3y7Iz2bmNNKlUOiuzbKLeIYkzT4XCoDkgyfZrNH9jeMBwOq10T/H4/CoWCarpPpQ0sdOORCTPcjq5SqbTtYkNFn8vlcO7cOWSzWUxPT6tYrBG2F4dOniqw4MXYLSq54ADYps/beajy2vy9Ek/VYGWw8xwY3+rUvo5jw9CLHQ0ow0B2VOFS0O/nYs41uDhIx0ffuMKOYSL0cZU7luljL4+ViluCivVq7lizJpUqt2lj02sGl1ky4/P5MDAwoBRnMBgEAExNTWF6ehpOp1M1jpDK2efzwev1olaroVQqYWpqqk1gx+NxtZMGMD/ATH6yLEuV0ciSnvHxcXzve9+Dy+XC8ePH1e44ZkNye+hUK7DQxF72abbLFOykUGXsRvdOeb5sBCINNf26nA+dDCM9q9hgMewMIxq1gUAAXq9XtYcE2j1Uy7JUFzJpPPM9MkySwuvkdXAsdU+XgtbkPlwZUFazD3qtVoPH4+nYh5cs0lJZwbJHu51skOtWgg4at+3ctEpVeqqyPIUZusFgEMlkEtFoVO140Wot9PalUvV6vW2JQ7L0hW0LCRlb0weSiUz6LjTAwibmzWYTqVTKtCW8RHSKtQHLxzzsvFA7Wlj+XgrLfZ4Z25VDUvmyr/JSrINdhqjd+/r1lwoZ2AlsgysH2cu70xaL0vvsROvaGeHAYmZJN4zlGEuqf1MpVcuy1A40g4OD6O/vR29vryqZabVaSiF6PB6VnERKiaACpMKU1gsf6uzsLMLhMLZt24ZSqYR0Oq28VXZZYftEJiXV63WllB0Oh9oDVm4zB6CN7jBYDD3mBaAt7kF6sNVqqdgoqUO72JhMdgDavRNZlyrPkXE6WtXyvkxWaHcgBR89F5/Pp1gey1rY+AJoz/LUY6FSgMq4uD6uANq2fqtWq2p7RzJQrCdfjW3BNgvo7DCu6vF4VMIgALWnLV+z81R1yPkknRcymVK5cj6wNDMWi6mdyORnXAk5vWaUqtPpRCKRQH9/P0ZGRjA8PIzh4WG1C02r1UI8Hkc0GlWLhfshcpNwAKp5A/c+rVarKJfLikau1WrI5/OIxWLYs2cPZmZmVKyUCtrhcKh+w8ViUcVKE4kEenp64PP5EI1G1abpMzMzbcKDitXAHnrMk9Q8Fx+pQRoqTEKTbQepSPX6VFncbZcIodO/FN5c2LIm1ijWS4Odx1iv15HP5+F2u1UpHLda1CEzvWWHNDmuMhmNc4I/NH5brZYKx3C+0DinAWeUavdBYykUCiEYDCrlKkNt0WhU7TS23Obzdg3xZSlksVhUZZc8loZTtVpFLBZDT0+PMq70e+22cl0zSpXgYpQ1qrKhvswEZgkNhSO3jiOt4Ha7UavVVOclLtJqtao2Ry8Wi8pzIdVrWZbaOqhYLKqG/Rw4Dh5/M9mJG6xfjQLjjQY9ZqLTQjJRTQptaZkC7RasLKPREx/kufpYGXrw8mGXjFKtVlEqlZDNZjE7O6vyF6SRJBNL5DzodF09aUUaRrIfuBzrbDartom82tuCbRbIFrLlcrnNSKLTw/HWew0QnXIrgAX9wDBetVpdNF8sy2prXXu1HJ01o1SbzSYKhQJmZmbgdDrx3HPPIZvNolAoIJVKodlsIhaLIRwOo1Kp4MKFC8jlcqpOFZhPVJqZmQEAhEIh1cS5XC6j1WohGo0iGo3C7XZj27Zt2Lt3L44dO4aXXnoJ2WwWqVRKLWrSUqStOCC0cgEgm82iWCxiamoK5XIZ58+fx9TUVJshYNAOu8VTLpcxNzeHer2uklm4WFj+1MnC1P+2S2DQj7M7luNLb1nSkgYXB7sxzufzOHv2rNp16siRI2p/ZHo0sVgMHo8H4XAY4XBYhWMofEn7SiFJQ1bSgJKVmp2dVTtZpdNpVCoVzM3NYWpqCqVSCWfPnl2tx7Rh0Wg0MDk5iRdeeAEej0f1CWBTHwCKmZIg4wCgLWFUV5RA+xyTFRdcx/SOs9ksxsbGcObMmbZ9tPVrdBNrRqm2WgvbqblcLoyNjaFcLiOXy2F2dlbtLBMMBlEoFHDy5Em192ogEIBlWcjn82obNr/fD7fbrbxIy7IwPDyMoaEhRKNR7NmzB0NDQ8hms6pfby6XU8dK+o8eUiAQQDQaVZZvPp9X9HC5XMbMzAzS6bTxVJeB/mxYtsQxZN2wjFXLc+2Upl5z2snb1F/n2Mq4rN3mygYXB32M2ZcbACYmJlRewu7du5FIJBCPxzE0NAS/34/e3l5Uq1W43W4Eg0E1HgCUB0qWiNQfcy+4Ltl1bXx8XHmm58+fV5tlzMzMmNyHKwQmbZ45c6aNppeVHLKfgFyvXHc0bAH7Ejc7Q1seEwwGEQwGkcvlMDk5icnJyTZ5YnfNbmHNKFVCz+rq9MP3gQUvg3SfvliWqnG0yxjV74e/O9GFne7f4MrCjgrULdmlaFwzTqsDriW9RILv2a05u2sst16lfNDXr1mnVwdck51oeolOdK/dWHUaP9mulMddbVgtM7MMDAwMDAy6AsNvGRgYGBgYdAlGqRoYGBgYGHQJRqkaGBgYGBh0CUapGhgYGBgYdAlGqRoYGBgYGHQJRqkaGBgYGBh0CUapGhgYGBgYdAlGqRoYGBgYGHQJRqkaGBgYGBh0CUapGhgYGBgYdAlGqRoYGBgYGHQJRqkaGBgYGBh0CUapGhgYGBgYdAlGqRoYGBgYGHQJRqkaGBgYGBh0CUapGhgYGBgYdAlGqRoYGBgYGHQJRqkaGBgYGBh0CUapGhgYGBgYdAlGqRoYGBgYGHQJRqkaGBgYGBh0CUapGhgYGBgYdAlGqRoYGBgYGHQJa1Kpjo6OIpfL2b5344034vvf//6KrzU1NYX+/n684x3vUK89/vjjuO222xAIBNpeB4Cvfe1riEajGB0dxejoKO6444629//t3/4NN910E/bv34/rrrsOjz766IrvxcDAwMBgY8O12jdghyNHjnTtWr/yK7+Ct73tbZidnVWvDQ4O4vOf/zyefvppfOc731l0zh133IEHHnhg0evj4+N4//vfj+985zvYt28fKpUKSqVS1+7VwMDAwGB9Y016qpZlIZ1OAwAeeeQRjI6O4sCBA/jABz6Aer2+4ut89atfxY4dO/Da17627fXh4WHcfPPN8Hq9F3Vff/Znf4b3vve92LdvHwDA6/UiFotd1DUMDAwMDDYu1qRSJarVKt797nfj3nvvxXPPPYf3vOc9eOaZZ9T79913H37v937P9tyXX34Z9913H/7wD//woj/3hz/8IUZHR3HbbbfhG9/4hnr9+eefR6lUwl133YXR0VH8+q//OgqFwsV/MQMDAwODDYk1Sf8SL774IlwuF+666y4AwJve9Cbs3LlTvf/BD37Q9rxWq4Vf+qVfwp/8yZ/A7/df1Ge+7W1vw7//9/8egUAAL7zwAt70pjdh69atuPXWW1Gv1/GDH/wADz30EEKhED7wgQ/g93//93Hvvfde+pc0MDAwMNgwWNNK1Q6WZS17TDabxbPPPot3v/vdAIB8Po9isYg777wT//Iv/7LkuclkUv29b98+vPWtb8WPfvQj3HrrrRgZGcHo6Cji8TgA4D3veQ/+6I/+6DK+jYGBgYHBRsKapn+vvfZa1Ot1fO973wMAPPTQQzh16tSy50WjUczOzmJsbAxjY2O499578aY3vWlZhQoA58+fV39PTk7iX//1X3H48GEAwHvf+15873vfQ6VSAQB85zvfwfXXX38pX83AwMDAYANiTXuqHo8H999/Pz70oQ+h0WjgpptualNi9913H8bHx/GpT33qoq57/Phx3HnnnSgWiyiVShgeHsZv//Zv40Mf+hD+9E//FN/61rfgdrvRbDbxm7/5m3jDG94AALjttttw99134/Dhw3A6ndi/fz/uu+++rn5nAwMDA4P1C6vVarVW+yYMDAwMDAw2AtY0/WtgYGBgYLCeYJSqgYGBgYFBl2CUqoGBgYGBQZewZpXqE088gbe85S3YsWMHbrjhBhw+fBif/vSn1fu33367bSvBpZBOp/G+970PBw4cwKFDh3DgwAH89V//NYD5nr96H2B5LyzPscP3v/99/OM//uNF3YuBgYGBwcbDmsz+PXr0KN785jfja1/7Gt72trcBAObm5vCZz3zmsq77//1//x96e3tx9OhRWJaFXC6HiYmJZc+78cYbcf/999u+V6/X8f3vfx/pdBpvfvObL+v+DAwMDAzWN9akp/rZz34W99xzj1KoAJBIJPDHf/zHl3Xdc+fOYXBwUDWQCIfD2L17t3o/n8/jPe95Dw4ePIgbb7wRp0+fBjDviY6OjgIAxsbGEIvF8MlPfhKvetWr8Cd/8ie477778Fd/9VcYHR296PIeAwMDA4ONgzXpqT711FN417vedUnnPvjgg3jwwQfxla98ZdF7v/Ebv4Gf+7mfw/33349Xv/rVePOb39ymuB9//HEcOXIEO3bswH/+z/8Zn/3sZ/GlL31p0XUymQz279+Pz372swDmaeV0Oo3Pf/7zl3TPBgYGBgYbA2vSU9Xx8Y9/HKOjoxgaGsKxY8eWPPbuu++2VajA/JZuZ86cwX/9r/8VsVgMv/Irv4Jf+7VfU++/+tWvxo4dO9Tfnbo3ud1uvO9977vEb2NgYGBgsFGxJpXq4cOH8dhjj6n/P/e5z+HIkSNwu92o1WqXde1gMIi3vvWt+PSnP43/+3//L/7yL/9Svefz+dTfTqez4zZzgUAADseafHQGBgYGBquINakZPvGJT+DLX/4yvv3tb6vXqtXqRe2laod//ud/RiqVUv8/+eSTuOaaay7rmgAQiUSQyWQu+zoGBgYGBusba1KpXn/99fj2t7+NL3zhC9ixYwduvvlm3HHHHfjVX/1V7NmzRx13zz33YHh4WP08+uijePDBB3HPPffYXvfo0aN43etep0pqHnzwQXz961+/7Pv92Z/9WRw5csQkKhkYGBhscpjevwYGBgYGBl3CmvRUDQwMDAwM1iOMUjUwMDAwMOgSjFI1MDAwMDDoEoxSNTAwMDAw6BKMUjUwMDAwMOgSjFI1MDAwMDDoEoxSNTAwMDAw6BKuWEN97gRzpRGJRJBMJuFyuZDP51EoFNBoNFCpVFCr1TrehyzPtTvGsixYlgW/349EIgGXy4VMJoNUKoVms9nV77BeS4Wv1hhLuFwuuFwuDA8P4xd+4Rdwww03oNFooF6vo9lsotVqodVqodlsolgsolar4cUXX8Q///M/Y2ZmBoVCAYVC4ao/czPGi69l90xcLheuu+467N27F5FIBHv37kVvby+q1aoat3g8jlgshkKhgCNHjuD8+fM4d+4cnnnmGeRyucu+h0uFGeOLR09PD173utdh586diEQiGBgYgNvtRrVaRbVaRavVQq1WQ7PZRDAYRE9PDxwOB55++mk8/fTTyGazOHnyJKampq7K/a5kjNfcLjWWZS1SeBx0Ckyv14uenh4EAgEkEgkMDQ2pvr0OhwPFYhHj4+PIZDJwOBxwOBxwOp1wu93wer2oVCqYnJxENptFLBbD0NAQvF4vms0mGo0GgPmm+S6XCx6PB6FQCA6HAxMTE7hw4QLK5TIymQyKxSKazSbq9fq6XVDrCU6nE9u3b8f27dsxODiIXbt2YWBgAOVyGblcDo1GQy1Gp9OJ3t5epYTr9TrS6TSOHj2K5557bsUtL/X5aHBx4PqVz3Cp5+l0OjEyMoJbbrkFwWAQfX19CIfDqFQqSqlGIhGEw2FEo1EAwM6dO3H06FGcOHFiWaXKz6ZMkbLF4OqB65KKsr+/H9FoVClVaSjXajU0Gg0liwGgr68PW7duRSqVwvnz51f527RjTSjVpSwly7LgdDphWRYajQaazSb8fj927tyJ3v+/vTdrjvM8rsfP7Pu+YAY7SICrSIqUKEvyothO7MSpSlVylXyNfIJ8FN/mIpVUpcpJVBXL+VleJFO0SIEiwQU7Zgaz7/vyv+D/NHpeDihagmiJmK5CicKseJ/3ebr79OnTsRgSiQQuXrwoDjYYDKJcLuPjjz/G3t4erFYrnE4nrFYr/H4//H4/qtUqPv74Y2xvb+Ps2bP4i7/4C4RCIXQ6HXQ6HZjNZrjdbtjtdpjNZlitVoxGI2xubuLhw4eo1+t4/PgxMpmMLDyd8dRe3PS6v1AEaLXitddew49//GNEIhFcuXIFs7OzqFaryGQyaLfbGA6H6HQ6sNlsmJubQygUwuLiIs6dO4dGo4F//dd/xYMHD17IqdIhmEymE0cnToOZTCaYzWa5fi9yDa1WKy5cuICf/vSncDqdcv07nQ7q9TqGwyHcbrcMtVhbW4PJZILb7cb777//whmLdq7TNf5q9qfuY5PJBLvdDpfLBb/fj9nZWSwtLYlTtdvt8l7cz/1+f2yd5ubmMBgMkM1m8eDBg6/tb/sy9o1wqtpGo5FklmazWS4+AHF6DocDbrcbPp9PolaPx4NQKIRwOAyLxYJgMIhKpSKvt1qtCAaDCAaDcDgcCIVCKJfLCIfDiEQiCIfDaLfbaLfbMJlMcDgcsNvtY5Gs1+tFKBSC1WqF1+uF2+3GYDCAzWaTiKrX62E0GmEwGEyj3y9hXHuTyQSbzSZIg9lshtPpRCgUQiAQgM/ng8vlEkTBZrOh3+/Dbrej2+3CZrMJMjEajeDz+WA2mxEIBBAMBtFqtQQuZlDEdfuiAGmavX41s1gsssZWq3UMTfJ4PPD7/fB6vbDb7WNrRDTJbrfLvcG9HQgEEA6HUa1WxYHzdfwhoqQd/J8T+jwNZlxjrpvb7RanarPZ5LznDwMyrqPZbJa149ngcDjg8Xhk7fW69vv9sT3N37+Mffu1af9+lZvV4/FgYWEBwWAQyWQSFy5cgMViwcbGBp48eQK3243Lly8jGo0iFovhzJkzcLvdiMfjiEajqNfruHv3LtLptFx4m82GSCSCSCSCZrOJzz//HOl0GslkEpcvX4bH45F6W7/fR7vdRq/XQ7vdRr1elwPbZrOh1WphfX0de3t7cLvdiMVisNls2NrawsbGBtrtNgqFgkBRGgKbdLm/rQf0SR9IZrNZ0Aav14uVlRWEw2F4vV5EIhHY7XaEw2GEQiH4fD6sra0hGo0K/Nvv99Hr9QT+DQQCcDqdqFarODw8RKvVws7ODnZ2dtDpdFAul9FqtVCr1ZBKpdBut5HP55HNZscOXeP6fBnI8LSusfHeN5vNmJmZQSQSgcfjwezsLAKBAAKBAGZmZuByuXDhwgWsra3BYrHI+xAOHI1Gsg+JYpnNZqTTaayvr6NWq6FSqaBSqaDT6aBYLKLRaKBarWJ/fx/NZhP1eh2VSmWsBn8S63Na13iScV1cLheSySR8Ph+i0SgWFxfhdDrhdDpht9tht9sRCoXgdrvh9XoRjUZht9vh8XjgdrsxGo3QarVkb7daLQwGAzmre70eSqUSms2mlOW63S4ODw9xcHAgZ3G1WpXy0FdBJL6VNVUAcDgcWFhYQCKRwOXLl/Hee+/BZrPhgw8+QL/fh9vtRiKRQDgcRjgcRiAQgMvlQiAQQCgUgsPhkDqp0+mUaCgWiyEWi6HT6cDn86FUKiEQCCCZTMLhcKBaraJaraLT6SCXy0m0U61W0e12sby8jLW1NXQ6HQwGA7jdbkSjUVy8eBEejwe///3vZQM3m01xqnr26rd1470MM5lMQlaIRqN4++23MT8/j1gshqWlJdhsNhweHiKXy8mBOxwOYbVa4fP5njkgeVhwE7bbbaysrODKlSvodrtIp9Mol8vI5XL4/PPPUa1W0e/3kc/nX2pk+yqb0WGZzWaEQiEsLS0hFArh6tWriMfjSCaTOH/+PJxOpyBSw+FQ9g4hQ74H35sw/tzcHC5evAiLxYJ0Oo10Oo1ms4nt7W0UCgVkMhmYTCZUKhVks1khNE75EF+PsWzmcrkwOzuLeDyOlZUVvPHGG/D5fIIktdtt4b+MRiNYLBZZZ6fTKdlpv99Ht9tFvV7HYDCAyWQSNOPatWsIBAKoVquy7g8ePIDb7UatVsNwOES32xUk8eu2b4xTZV3E6XQiGo1ibm4Oc3NzCAQCssmq1SrK5bJAACQnNZtN9Pt92Gw2jEYjNJtN5PN5FItFufCj0QidTgftdhutVgvFYlEcp8/nQ7/fR7PZRKvVQqvVQjablWwzm82i1+vB7/cLo5S1VEKHdLKMtvP5PEql0sRD5aQi41fFPB4PgsEgbDYbkskkYrEYgsGgwO/9fh+NRgNWq1UykV6vh3q9DrvdLqQHnRHpWkyj0UCtVkOn05EaO52m2WyGw+FAOByGw+FAv9+HxWKRrLVer8v7Ac8S56Z2vNlsNgQCATgcDoHoHQ4HlpeXsbCwAK/XC7/fLxDuYDAY21u0SYxdHfSQIUo+xGAwkEPd4/GI81xYWEAoFILf70cwGES320W1WkWr1Ro7sKd2vD3v3mdiw/1ot9vh8/kEmXC73ZJtapiW/7ZYLHC73XA4HLBYLOh0OrK2PGN14DwajWAymYTA1mw2pevD6XQiFovB7Xaj1WrBbDaj3W6jXC6j0+mg2+2i0+l8LdfoG+NULRYL5ufnsbCwgNnZWfz4xz/G8vIyms0mMpkM6vU67t+/j3v37iEej+P69euyMfb39zEajbCzswOr1Yp2u439/X1UKhXE43Gsra3B6/UKvl6pVHD79m1sbm5ifn4ew+EQPp9PIIVyuYzf/va3ePLkCer1usCBzWZTGIe1Wk1ukEqlgn6/j0gkgnfffReVSkUgpl6vh2azKRudGZbx4HjVbdJmpINaWFjAO++8I7Vxr9cLm80Gr9eLwWCAcrksGyeTySCbzcLj8cBisaDRaIyhDbymnU4H2WwWlUoF+Xwe29vbaLfbSCaTUqth/dvn8+HSpUtjdbhSqYT/+Z//wd27dwU24ndnYDStrT7f/H4/bt68ibm5OTlcyWcIBAKSlZCZXy6XBTbk/cJ6HHB0v+h9w4O20+kIMtRutzEYDGCxWJBIJBCLxbCwsIDV1dWxEkGz2cS9e/ewt7eHfD6Pzz///AvZw1M73mZnZ/Hmm29KIkOYN5FIwOv1ot/vo1AoAAC8Xi88Ho+sB5Oq2dlZKdkUCoWx/cX9SkfL/2fyovd0MBhEPB5Hr9fD0tISisUiyuUyNjc35UxPp9NfSxD1jXGqZrMZPp9PGL2Li4tYXl7G/v4+Dg4OUC6XUSqVUCgU4HK5JFNlhKkzR90ywxqo1WpFq9WSmko2m0UqlYLdbkelUgHwNOMlbJvJZLCzs4NGo4FcLidMs1qtBovFMkZI6nQ6sFgscDgcQqBhPQ8Yr8vpA+K0G8kIfr8fS0tLkp2yXma1WgX6YWBSKpVQLpfR6/VQrVYF3dD1NTo8tmHU63XUajW0Wi0EAgF0u10ARwey3W6H2+2G1WqFw+EQpOHWrVvyXbjexlaMqR1vDocDiUQCS0tLgj45nU64XC54PB6B5RhwdrtdWXdedyOhyNiaQxKKJiLxdzyoeU9EIpGx17OvnWeHzWZ7uRfoFTLCsfPz83L2kewZDofhcrlQqVSk9Y2EJE0uslqtQmCq1+totVoAIM/V5E+iD/1+X5AGzTb3er3iVE0mEzwej3wHi8WCarX6te3hP7tTdblc8Hq9cDqdiEQiCAaDGA6HuHXrFh48eCCOymazIRwOS39aLBbDzMwMBoMBdnd3Ua/XUS6XUS6XYbfbEY/HMTs7K9FQo9GQRWy1Wpifn4fL5YLP55NWDELDo9EIN27cwIULF7C/v48//OEPqNfrmJubw+LiopCemKU+fPgQrVZrbFGXlpawsrKCVCqFDz/8UKj+jIz0AX0azev14uzZswgGgzhz5ozAQ6ydMKu3WCxjjE2bzSakhmAwiFAoBJvNhmq1OgbV9vt9YXx3u10EAgFhCrNeR7ifEDKjYG7Y5eVl9Ho9FItFPHjw4BkoeGrPmtlsRjQaRSgUQjKZxJkzZ7C8vCyQHh2pvtZ0gLp1jvuEe4QHK42HqyYb8TWa7dnv92Xf03Q2PDMzI//+9NNPX8YleqVMZ6IkFhJF4p7SxD+bzSasbpbtms0mut0uPB4PCoUC3G63cFtYXmN93Wp96rK63a7UYTV87HQ6YbFYMBgMUCgU5Cyw2Wzw+/1YXFxENBpFt9vFwcHB2P1zUvZSneqkfiav14u5uTl4vV4paFerVbz//vsoFAp4++238fd///ew2+1IJpPSAjM/P4+VlRUhBhUKBTx48ABPnjzBzMwM/umf/gnXrl1DvV5HoVAQdlitVoPNZsPa2hquXr2KarWKVCqFYrEosJDP58NPfvITLC8v4/bt2+h0OkilUlhdXcWFCxfgdrvlwP/oo4/w7//+73j48KFAGTMzM/jnf/5n/N3f/R0+/vhj7OzsoFqtSt2H1+I0OVVjEBEMBvH9738fa2tr8Hg8CIfDMJlMKBaLqNfrUvvkBqFTZZ0mGAwiGo1iZmYG7XZ7jFhGh8p2q9FohGKxiGazKYhFv99HrVZDo9GAy+US6JjrMxqN8Nprr+HChQvY2NhAKpUSpzqFfI83q9WKxcVFnD9/HolEAlevXsXCwoKwrFk3ncSoplPl3gKO0AQeqMxejX2mel109mPkM/A7so1jZWUFS0tLMJvN+N///d+v/fp82824bl6vF1euXMHc3JygjHSaw+EQ9XodOzs7KJfLQji02+1ybne7XeE7sBXS5XKh2WwKikAei8vlQigUgsViQbPZFCiZWbHNZoPP5xPuRT6fl8f5nHA4jMFggFqthnv37n0tZLWX5lSPcyDMUD0ej/QU9no9qYXV6/WxXie96fTGY/tLo9FAt9uVw5cKO+12W1plXC4X4vE4/H6/EJPq9brg9IQBA4GARF06yibhggtJZ0pCVavVEpKGz+cT8QmdpT7vmryqph0re301kQXA2AE56aBkj5q+HwaDgThKbhLWZPmeXENNFNP9jHyePpBdLpeUJZxOp/Qj6zrMtK46boTaWDdlL7GWDDVm+0ZoVztEOlWdXepMlL/Ta/C8Vhk+l/eSw+GQ1g+WHvT7T+35pvcxz0ruMRr3JFm7XAMN53Jd2+02AAjJkKiFUYaUryc6aPzhWc0yIe8TlpToZHXv8oldkxN7p+eYMUPlhTWbzTh37hz+8R//EW63WzLNarWKUqkk0W2xWITD4UCpVEKlUpE2iMPDQ5RKJbTbbelNJJwcCoUQi8VQKBSwubmJYrEoEGE0GoXP50MymUS1WsWtW7ekbjoYDKRVp9fr4fPPP8fW1hZSqRR+/etfo1qtIhAI4OLFi5ibm0Oj0cD169cxPz8vNV+269y6dQubm5uw2+2IRCKoVqtot9unJtuZtO6k0rMOqhnURlYnNxMDo+FwKKQWm82GWq0mtfPDw0PZRNw8DKBqtZqQV1g/ZeDVbrclgHI6nVKDpSN2Op0IBoNYWVmB0+lEsVgcg7P4d56G9XwRs1qtmJ2dxdWrV+WQrdfrY/2BvLbaNLzLIBnAmPNkIKUDG/2eWjQAwNgBrD+TrThkfjscDqnrA0CxWBxrq5ras8byjNPpxMzMDBYXF6Uuzjo5nWI0GoXf74fD4ZCzutfryfX3+XxS5slms4JMcC/zXGcCo/uVLRaLEBzJfSCzl2usYWMGTMFgEOfPn5f+ZWa1J2EvFf7lwaMjz+XlZfz1X/81vF4vMpkM9vb2hFjCzLNcLksfab1eF6fLpl4uIqMS3bMKAPv7+0ilUkJ6WlxcxHvvvScwARmAjIQikYjUgTY3N+X1rVYLu7u7or7EG+jChQs4e/Ys0uk09vf3pRB+7949ZDIZqQfzRjotPZCTyCV0qEYpsuc5VSIBlKhk5t9oNDAcDlEul5HJZKRlxmq1wmKxCGJAx0ynTFiZECA1RUn5Z/2GiITf78fc3Jx8Zx64pw1peBEj4/b8+fMwm81jJDMGULo2qv+t+4qNkByVeKxWq+x3jXxoxrD+t1bk0ZkuW6e4ziw/8fnFYnHqVJ9jRH6INCYSCTSbTWl51HXQYDAo68Z2GjpMu92OaDQq9VQKs7hcLimzEcVkex3vCyJWVOEio5tsfa4xHbMO4P1+P5aXl1Gr1VAul7+9TpWmU/ZyuSyNut1uV2BZl8uFTqcjRWXjRtAQsJY50xGrjnS0oD5hHs325AKaTCZR7QkGg/D5fMJIi8ViOHv2LPx+/xiphg7W7XZjcXFR/sZisSgKH19HQfzbaFwHTbnXmYX+r3GdNWxER2uxWMYauylLacx8uAZGGImfpx238XC22WzweDxot9tj0pVTm2x0VPoQpAPUThQYLwkY66ST+lP1+mmbxNcw2vPWjZKohPmndrzxTGXZhusyGo1keIWG2LWMKJ2tDn71uvIe4eN8DoMhfZayv5kZKkuAZBfr0p3+7tzTLpdLyn0naS/FqRpvct7AFosFn3zyCf7lX/4FHo9nTD2JkWmz2ZSJMJ1OR5iflLFi1sPXcCG4eZmF6FaKRCIhUniRSARnz56V/kifz4dIJIK33noLr732Gnq9HpaXl2E2m/GXf/mX+Nu//VtYrVbk83nUajWBD9rtNq5du4a33noLnU4Hv/zlL3H37l3U63WBsl+Gmsc3yYzkJJPJNIYiUGZSN4Rz0zGDJEysayuNRkM2WrvdRrVaFZnCaDSK2dlZAJD6OpmCrLVSs5nfbzAYCERJohI3tsPhkCzG4/Egl8s9EwRM7ciYfbjdbqlrUQxd17ONrTH6vwDGDjo+nwx7TXTSQbR+Lh/jf/WPzpR4+NtsNoRCIXS7XWSz2Wec/9SOjHVzn88Hr9crIhqsUbOswn1MIiCdXr/fRyAQgNfrhclkkj3KkgyzU+p1M3Gq1+tIpVLo9XpIJpOYnZ2FyWRCq9WS0lq5XEa/30c8HpcEh58JHJUZvF6v9E2z9fGk7M/WUkPKdS6Xw+7uLjweD86cOYOlpSURWnY4HNje3kYulxOxBS2griMZnebrg5xRMzMYOmRGpDzkO52OCPJHIhEkk0lRAvH7/QgEAlhcXMSNGzcwGo1w+/ZtlEolUXpqt9twu91YW1tDq9XCr371K+RyOVHvOK3kB31QMmplHcvlcsmwBLYy6UORjm0wGDwTkWqmLjNVPs/r9crjvPZUWuH/a5IED38AY2QKbkA9copOfmrHmz4IjUEVbZIj1fVT/Tu+jgcjMxXtNI32PDKgMQsmPOx0OuF2u6eZ6hcYMz2SfUgwokMFIMQ0nskaueBjvM5aMUkPUiHkSyNjv9PpSBsPgy0GxCQsUvsbONrfOgDT3IpvZaZqNL/fj6tXryIcDksmx95SwgHsZSMJpVwuYzAYSDZJyFZnqnztpAzCuLm4gSkiUCqVhB3c7XaRz+el75X124ODAzx+/Bj9fh/379/H5uamULspTJDP50UmK5FICExiNpvx4MED3LlzR8T6X3VJNB58+oBjpsjoULM7R6OROFvW4/SGmVQf4/sS4qF8If89iQmqnaaGl/kefG/2NANAKBSSvuapU32+MRgywoDMVPn/x7Eu9e/0ujFg1pkmAIH7gGcdty4FTXqOZoATHWEAN7XjjdeKE8P8fv/YmpD3MBqNRKmu0+mIDoHdbhcZQq2AFQgExKnyfqHWuslkQiwWw2AwgMPhkHnWrVZLWMPBYFC+Yy6XA3DEJKZ0Is8WnvevhFONRCL4m7/5G1y8eBG5XA57e3sYjUZYXl6WP5Bj2HK5HDY3N0X1iNlkIBCQEVGMmHQx+jh4yGjUeM1kMigUCrDb7SiVStjd3UU8Hkcmk8HBwQEODg7w4MEDfPzxx+j1evjd736HjY0NybhtNhtSqRR2d3dhMj1V9FhbW0MoFML58+fh8Xjw3//93yKfeFp0Ro2ZqtvtFuidwRNrLGbz05FQPDjZpkTYiHCSrrPQcfP13W4X5XIZwJEUpCZB6cNVIx38LyNq4IiFarPZkEgkAADhcHgKDX6B0anq1gdeYwBjZBPdKmV0iPpHqyxpFq+xPj4pM9ZBmJEoyDo7cNTPOM1Uv9jYR879HA6H0e/3xVHSqbZaLezv70vXxMzMjBBE2YfKMk0kEkE8HhelPCJQVMJzOp1YXFyE1WpFr9eTRItIocfjkT7ZSqWCnZ0dAJDWR6IRvI+IfL0STpXzD6PRKPr9PiqVikSb7XZbIFtjv5M2bgjN6NL/r3+v+5x0sdzYX8rn6eyIWSWZZdTz5Y1AGISHSLPZlEiIhwEFvKlpS4jjNBo3o45E9RpryJfRpIZrdc1cH5T6vVjDA8ZJcbo0YIR4adrp6rqrPtCnWczxZqxfAs/WOXU9k4/zMf38SfVX/b58D/6QbXoc5DzJJpUbTuvefFHTkK4OTHn99T6leAtRIwZHZrNZzmFjAmRsidKBFx3kpOELzHAJQXc6nbG9q9EpXUI0tnd9Vfuz1VTp8Kjd2263ZRpMMBjE1atXhXTy9ttvo1qt4rPPPsODBw9gMpmws7ODYDCInZ0d7O7uolgsSt+qz+dDNptFJpNBKpXC3t6eQMjVahVWqxX7+/vY3d3FwcEBstkscrmckJU4l4/qPjxc8/k87t+/D6vVilAohOvXr8Pv92N+fh5utxtutxvZbBatVgu3bt3Co0ePcObMGSQSCSnI65vqtJnFYpEBB2RWc4OQqMQgxDiZgtkEiWSszzAT4uHJ+4oTL0hgo5N2u90AIBuf0DwDKW5KRrUacjRmVVOi0pFp1iYPLR28AuP1aq3rzGupe0+NELAu7UwKxDQiNYkENYnQxM/i9yIbdMrwfr6ZzU/1upPJJCKRCMxms5AwWdZh4qA5FEw86BDZYhiJRCRbTKVSAI4GKXDtiUgyKeE8ZAACQXO/0hgQE57WiRoDe0LRJ2l/VqfKAjJF7vf29pDJZDA3N4fV1VUR5GYD/5MnT3B4eAir1YqDgwNEo1EcHByIzGA+n5cBxfx/TiPgpJt6vQ6bzYZ0Oo2DgwOBfTnpgDP+2L/EuYuj0dNpCI8ePYLP58OFCxcwOzuLaDSKy5cvw+fzYWdnB0+ePEE+n8edO3dw584d1Ot1fOc73xF1JyM7+TQZN9Dy8jI8Hg88Ho9sNMK7ZAV2u12pwwBHG4SsPdZq2NKknSqbvll3pxISD0wNKfK99efwMCC5jcEfoWpG05NaO06rGR2qVtYhCqWvHTMYY31TZybajLXx5zF8ddaqzZhB8311jzsFQqZO9XgzmZ7OPY7FYlIDZZmEASmfp0f+MZACjkorDodDAuxisYjd3V3RAWZLDF+r691kHLN1hgG6Dqx4ZjidTuFCcF3ZWcD67Enan8WpkpnZbDZFt5fZKv/odrstQsuEG4jJx+NxWYhwOIy5uTl4PB7JaMLhsLB8g8GgiGZTVCKRSCAUCsHn8yEUCskhzTYP1m0J20YiEbTbbczOzuLMmTPweDyYnZ1FIpGA2+0eY6Hqmg9Zp+VyWbRneficxk1rzGZ48xO2IVGJN7lmdDMCJjGB9Vgt1kBIStfFmP1wYzIrBsaJLFwTblxj/5wmSfHwIJN4akeQoM4wgHEikH4un2M8BI8jldE56zqq0Y4LcIx7zfg5POh13/vUjje9JwmtDgaDZ+RDCb3yB4DMvB2NRmMTqQA8sx46ANOkJwAS/BjvOa2tThUmZqVGKHkSQ/0k7M/iVLvdLjKZDNxuN+7du4ff/va3aDabiEajMk0kn8+PHZJWqxWXL1+WCOntt9/GmTNnMDc3hzNnzqBer+Ozzz7D/fv3MTMzg6tXr2JtbU2il0qlgmq1ikqlglAohLfeegsXLlyAxWIRhm88Hheq9sWLF5FMJmEymfDkyRNks1ncvHkT7777rrTmOBwO5HI53L17F5VKReqFjLBGoxEqlQrW19dl1Jz+e06j6ZoqAIFfKKhPAlqj0ZD+Xs7gBJ7eO1tbWwCONh0ZfBaLBaFQSEhF7XZbkIloNAoAoqplsVhkogbp9br2QqfN3kgeHPyudrsd5XIZzWbzz3AVv3lGgQyNPhhhPrZI8CDUMDBwRCw7rv7KoHVSpspD1Vgr1z/68CbsrOvvTqdTEIzTGPS+qJlMR/rObInrdruiZqczRiZDJtPTUYy5XA6j0QgejwfRaFQCGZZ7uK46Q3W73UI+SqVSksnOzMyMdVcQ3RoMBvB4PFhYWJD96vV6pf2x3++L1rPOrE/K/iwnO5vtKZq/t7cn7K1YLAaz2SySVzz0TKandGrKYnGiDVts2ArTarUQjUYRj8elmZtzE8vlMiqVitRBo9Eo5ufnsba2hmq1ikQigdnZWbhcLiwuLsr4qoWFBTidTly8eBE3b94c65/q9/sol8tIpVIIh8OYmZmRw5kHAXWF2SD9dSzkt8W0IhYAyTJ5TQjZakaw3W6Hx+MB8FQisFQqCazD1g1uYqfTKX2qvCfYj8xrXq/XYTYfyaexD5XOgJBgu92WyJqP8TvyHp7aU9MkEU0aYy2be9hILOO9cJzimDFTNZrR+Wky2SS4V8PDAJ7JVJltTe14YwZKxwQc9RNrCJhcBKJPRCf7/b6I93B9jIgG9xzhY5ZwqPVOURYdLA0GA3l/Cv7w7HA6nfL+vI+0vsFJ2ku9e/hH+Hw+rKys4Pz586jX69jc3ES328WNGzdw8eJFOJ1OhMNhoVZT+GF3dxfpdBrBYBAWiwVbW1uiptHpdLC+vo6NjQ3EYjFcuHABTqcTW1tb+Oijj0SVqdlsIhwOI5FIwOFwYGtrC3fv3kU+n0cikUAikZD6ZzKZxM7ODh49eoRcLoeZmRmZTE/o4eDgQODIQCCApaUlNJtNXL58Gc1mE/F4XHpydZ222WxKH9VpMTokrh+zGEJDxjomm8lJROBzmJGQBAFA6p2NRgPFYlE+k9kHNUlNpqMZmnqIvG75ACB9bfw9n8txcgCEKDG1cfnJSf3i+v+NMN8kB2iEBDV72/g+/Lfxd7RJ8CLvBS0kwYP7pNmgr6rpcg4TCRKW6DSBp9edgg9ut1ugX9bZG42GMHlDoZCUgfRaMfimnKyue+uJNjwzWOrRhEfdUkeOBb8XEZOTEOh5qaPfGMnGYjG88cYbePPNN+F0OqVN5Sc/+Qneffdd6V3qdDrY3d3FvXv3UC6X8Yc//AF3796Fx+PBxsaG6AJTApBsXmacnU4Hf/zjH/Ef//EfAjsMh0NhrZlMJty6dQv/9V//hUwmIxkuHeD58+fx6aef4qOPPkI6nRZ4glKJTqcT5XJZ5kTGYjHcuHFDBAgikQhisRiuX7+OUCiERqOBWq2GQqGATCaDjY2NU0V0MZlM8Pl8SCQS6PV6yGQyMs+U2QsnxpCA0Gg04PF4RB0ll8uN0eu5cSmkXalURKM3Go3C6/Wi0WgglUpJBLu6uiooArNcHgwM/LQQCEX1CRnHYjEpUUztqVHYnIceMwJ9oNG0Q6UZ2bl8HvecbnfRdVX93lpUQhNVaMxQmD3TkfJ5POh1nW9qk03XOpmJms1maU0MBoMixEAiItEh1jtJcCoWi6jVaggGg5idnYXNZpPeVABSPiDruNvtyuvplFutlmSlDM4pZ8kJZrw/6EBbrZbUYO12uxASv+qZ/NKHlHNzEObTU0f8fj9CodAYvs4L3+l0ZLBtv99HqVQSMXWm/NSA9Xq9csGYuRQKBblYbrdbhpY3m01RTNIbt16vy8JS47dUKok0IReAn03mMHVlfT6faGNSjo8ZEeGw02b8+0kaADAG+fA5k3pRNSzEzWxkUutaGQ9FrbTU7XZlWIOGJvm5vD/pFIzDGowtAqcVwp9kGq7TRCXgxTWS9TprM9ZPjf/+smYkRRlrr1M73ibVroFxdSsjAxyABC7GPUsHSM6Jnr8LHAVMfD33qNYjmIRo6HIOs10dhGnSEoOrb5VT5R/YaDSwubkJl8uFu3fv4pNPPsFgMMDCwoJMZid2XqlUBDJYWFhAvV6H3+/HtWvXkEwmRZCBkRBrqmtra7hy5Qrq9TrOnDkjY716vR7i8bj8kBhF4edgMCgDdwnz6vpouVyW6ShsC9B1IbZ4pNNpPH78GAcHB0in03C5XIhGo0gkEgJ3nFbjjcw6h9vtltq52XwkIQY83ZgkKLA+Q+Utn88nzi2fzwsDUTMCtVPUIv28D7UYCDe1x+NBv98XRjoAYR0Oh0P4/X4hLU3tqZENauwVBI4O4Bdh1x53qOnWF2By/6lmnfIxmnaWxjqrhn91vX9qk43XSivZ0VlRclBrbTMxobA+cKT32+12pR6vEQ7eTzx3SUaMx+MwmUyo1WqCFNlsNikpARDtX2AcetZ97xoadjqdCAQCIrz/VSHgl+5UR6OnqkNbW1swm81YX1/H3bt30ev1cPbsWcTjcWHNsq+T1O3Z2Vn0ej2EQiG8/vrrmJ+fR61WQy6XQ6vVQr1eRzabRSwWw5kzZ3Dp0iUUCgUsLy/Dbrej1Wqh1WohFoshFosJ25gHMLVdOdqNn8tDgOyxwWAgj2toQjNGM5kMtra2xmo2165dw9tvvy2w4mkzIyzHsW9ELVjDpKPjda3Vanj06BF6vR6uXLmC1dVV6X1jIzhwJLiuW3b0gc6aH0XAgaNolT+EMdlDR6iI8DIAeXwqZ3dkZGHSqRprmzqr0XZcDVTXSJlhGPta9fMn/fAxmrGNR7+/DsSm7N8vNs3i1wIpRrW6Xq8nXBaNYHCPE1ni++j6qdPpFIW7TqeDQCCAeDwOm82GJ0+eoFAowGKxIJlMSqBLp869Saeqs1o6VU2kYnmnXq9/5YTnpTpV3TOkYTtdF7HZbGMRDuFhKuT4/X6ZGuP3+wE8zSJI06YeMBeJF6zRaAgzNBKJjLVShMNhaelJJBKiLcym4mAwiHq9jlgshmQyKa/xeDwYDocyNozwMyclAJDojb25p1EwQJN92MbADWiUKqPWJ8kHGvbRUC4PY5YAeBiypYkZq5FdzDIBP5/3IKNbDSEZWaokUHi9XiEyTe2pTcoU9WM03fbCxyaRk4zva/y9fv5xTF+azoAm9c1O+hum9nwzMqU1g1pDvnRexoCKjpekJfoDysJq9rCGdPV8XiIf5ENoqJffRXcbaGIav79x6tlJrP1LOxXYQ0jpQYorsNZoMj1V6ZiZmUGlUsGjR49weHiIZDKJZDIpF42CDefPn8f8/Dyy2SwGgwFcLheWlpbQ7/eRTCaFoenz+bC6uipSWJybuLi4iGAwiKWlJbzzzjvIZrO4dOkSLl++DK/Xi+XlZUQiEdTrdbz11ltYXFzEu+++ix/+8Ifi+Dmt5pe//KVAvIlEQjIbl8slrUOdTkdaMPRBcRqMQUggEIDFYkGtVpNghBuILTPFYnFspF6n04Hdbsf8/Lw42FQqNbZRms2msP44ZxGATK8wmUzCKiwUCnjy5MlYnyoAqaFrZRatbco6cDweh91uR6FQkKBuakcjFnU7mdGB6vo1zVibM5KY9F7hYanfkweh0anyMOehqwdYU/QdGB8jRwdxmvbmlzFmkbz/mQRxwpTWQef+JbGTe5YZrNVqRSQSgdvtRq1WGyMUst+fwv0ABPIlP4J9rHp+b6/XEy4LORA2m21sBKfT6ZSWOiZQJC1+VXup7F/OLqUzNU4MYBbACTWVSkUa7Yl7U3c3Go0iGo2i1+uJmlIoFEIsFkM4HBbsnrVMZqXMdoPBoFzYpaUl+P1+nDt3DhcvXoTL5UIkEoHX60UsFsP8/DwcDgfOnz+Pq1evwmq1CmNtZ2cHhUIB+/v7SKfTyOfzUnznhichipv5tEXCNptNSFuaIUjpP5fLNSZbyU2qRzYFAgGB12u1GoCjw1X3tPr9fhnUQHYvId3RaCSyljabTXrZgCM1rElEC71e/BsIG03tqWmS16S6qIbf9POPg2yNDhnA2GsnZbvH7SuuJ+FIPSjB+P3576k934g6El5lwEOECIDsP3IZtNqSrqdy0o0eNk5+A/th2edKLXa2z2gFNXJcGLzx9VRu0sEanXG/3x8bH/qtylRJp56bm8Ps7CxisRgikQhmZmYwPz+Pfr+PWCwmlGvKAUajUam9kfzDweGNRgPb29u4ffu2zF3N5/Oo1WrY3t6Gx+PB48ePsb6+jlKpJNlMOByWXsjNzU08fPgQxWJRDm2qcYTDYWxtbWFzcxO5XA6JREJGF1WrVbRaLdRqNVy/fh1nzpzB66+/LtPmu90uwuGwKENVKhUsLi5ifn4erVYLHo9njIn2KhvJPzpa5cYjuUUffFRFYZSq+1HpUHUtTh+qnU4HpVIJwFOn6PV6JTsh65pKLLqVh99pOByiUqmMBUZaHo/Z8vTgHTfN/tUwG38/Go2EvMIM0ugktU1yzEa4XWfEwDg8bKyVcq9q9S3tRLVTnWaqX2z6uhNK1WvGzJ9OjU5Vw8R0hu12G9VqVRIku90On88n7Vm6RENyIVXtzGazlN5ardYYaZTIBL8Hjd+ThMjjhEe+rL00p2q1WjE7O4urV69iZmYGq6urmJmZwblz53D16lX0+32srq5ibm4O0WgUDodD+j9Ho6eaj59//jl+8YtfIBKJoNFoYHV1Fevr6/jggw+ElUv4d35+Hu12G7dv38Z//ud/Ip/PS5QUi8XQ7XZRKBRw584d/OpXv0I2m8XGxgb++Mc/yhD1+fl53Lt3D7/73e+QzWZRr9eRz+cFSuj3+5iZmcE//MM/IBwOIxwOC9FqdXUVjUYD+/v7CAaDyOVyeOONN4SRHIlEvhY1j2+iES0wjr/jpuGmZO8Y26U8Ho9ASsFgEGazGdlsdqwdRpNXTCaTXHP2QweDQVSrVRSLRVHtOn/+/BjkSKdPdaZ0Og0AEi2bTCa0Wq2x2v/04B03ZiNUG6MmM3/PWjZNO8jnOVQ6Ry0wYHSkxntAO3TyKsrlMrLZLGq1GgKBgATv+jMZ6E3rql9sGt7X5RLWNDXT3uPxCPSqW2dYUqnVajIvm/OKvV4vvF4vgCPOTafTQbFYRLfbxfz8PCKRCIbDoUwTAyCIJ3vW6dDJ1Gciw0CbyBiz35Owly7+QBq2htjI8tLsO2LoJK4ATxv8C4UCTCaTTJyhmAKzE2L5zWZTGMEUtOdBarPZZEguH6ckosvlkhmvgUBAelQrlYpoBLNGMxgMEIlEEA6HhcDEjIoMtGq1Co/Hg3q9Ln87m5FPi3GDaaagptHrg5LQLw9dTSjQfYQ89IzOjRAfD12t9NLr9USflL/jwaAzVS1NyDqfrvUd10N7mo2ZiV4POjZeQ93aYCQj8ed515L3jUZ3dE3UmKkCGPv8druNVqslfcrHfdZ0PV/MGDRx/0yC0zUKoDNC3ZJIBINBmYaL+TmahKTr5byfyM0wCoRMgvoBjD1+0vbSnOpgMEA2m8WTJ09wcHCAra0tOBwOPHz4EJ9++inMZjNWVlYErqvVauh2u4K322w2hMNhLCwsIJlM4saNG0IqqtVqQm7pdDpIJpN47bXX8Nprr6FSqWB+fl5qqhwddunSJZw/fx75fF4gxnA4jJWVFQQCAdEWPjg4EEgrHA5jbW0NVqsV5XIZrVYLVqsVu7u74tS5yJRFTKVS+Oijj1AsFkXgot1u4/Dw8JnD5VU1h8OBSCQixIB2uz2mEco+NOokp9PpMZZ4r9dDpVIRaJYjnyiC32q1UC6XhWhgNj/VjiZ5oVAooFwuC2mJUSuVuFwulzjvZrOJRqMhHADKpdFBcIyU1WoVveCva3N+m0wTRhiwMGOx2WwiwsKs0+12j7GsdbvVpD3BQ3BSq47xRz/O0sFwOEQ+n0ehUIDVapUBCzT2JTOoOg378suabh3UUDpFfUjsY4DF/cnf6yBa9/Y7HA6Ew+ExqJZ6vqy/koTodrtlvQAIQqIHNejvxD3Luc3U7qZqExOeb1VNdTAYoFAoYHNzU9L4druNcrmMXC4Hm80mLF8AAh/Nzs7C5/PBYrEgGAxifn4eS0tLuH79Ot544w1xqiQO1Wo1zM7O4vLly7h8+TJyuRwWFhZgtVoxMzMjPaoXL17EuXPnsL29PeZUl5eXx5wqGavaqVosFqRSKZTLZVgsFuzs7IjwRL1eR7/fRz6fR71eRy6Xw/r6ujgCn8+HwWCAw8PDU9NeQy3nUCgkTlXXY+g0Oag+lUrB6/XKFAwKfJB8xKiWNVpuWmaYdH5UtyISQSYiSUsUdyBZgcMRWCrw+/0CCzOCJkOd9VoiDqdlLY8zOkoGKEQBeO24/weDAbxerwTKeog88OxYNpqRFQxMdqjaeKjqz89kMgiFQs/IJrKvkvKUp3ktv8iIOlAakJwI7VR1uw1HfFLGkq1tLN+QsEhGPh0muRUkerrdbszNzcFqtQpKyXWiQ2R2TKdK7gShZJZ4eJZop6o1Cb6KvVSiktfrRTQalb7NZrMpUY/NZkMgEJBWGMr/saEcgBCNmMHoH43hkxXGKJmKPWR7kn3M57PvNRgMIhqNisQgM1v2xlJMnUQlMkZ58+gIjYEAszKd5VA8gqzXV910e4qGf3XDPW9yo7qRw+EYm3JCI1TkcrnQaDRgt9sxHA7lc0iA4j3Deg9fx+cymwLGJ5gYD3Z+XwBjEBTX/rSgDscZrw+DYl175jViQMSAWZO+XiRDOK639Iu+F9dVM8qPe//TvIYvalwv7mf9e8K6vN685my5AY5EOLjX9blJIRdCwrrPVbPxCRsD44xjvW/1vaXJTnTgmjB5kuv+0pyqw+HAzZs38bOf/QztdhupVAqNRgO5XA77+/uwWq340Y9+hLfeegvtdhv7+/uo1+uYnZ3F0tIShsMhYrEYvF6vqO/QuIEJGfr9ftncbrcbyWQSdrsdCwsLWFhYQDAYlCk48Xgc165dQyKRwHe/+1384Ac/kLYbt9uNcrmM69evI5lM4urVq7h48aIU5z0ezxi2T41iOlC73Y7Hjx+jVCohlUrh8uXLeO+99zAYDHBwcCAi/6+6saWFvWOsazITZA2cQxRYc+GIv3a7Db/fL1lEp9OBw+HAzMyMQLD8PVt3HA6HCOp7vV7Z4PF4HMlkUmBhOmQygXkY6LYOkqpIuMlms6Il7fP5xoQqTqtxjZmJUMqTWcxoNEIul0O73ZbAGjiSvKPCmHE/6ANxUqZqbMuh6czWZDKh2+2iVCohn8+LWIzRpqzuFzOTyQSv1yukIt77XG+LxSLoUrFYRD6fRzabhclkQjweh9VqHVNZCoVCEvRub2/L/ufaagYxnWCr1RK9do4E1b3ILPNoh9zv91EoFFCtVmV4CgNBowjNV7GXyv5dWFjAjRs30G63EYvFUK/XkclkpMn33LlzOHfunKT9xWJRYMPBYDCmx6tVVjQphQ6NF58Z8GAwQDQaxczMjGSh1I/lOLfl5WWcPXt2TH4rHo9jfn4eNpsNc3NzmJmZAQCRUdSEFWYwfB2bo/m3JhIJrK6uYjAYYHZ2Vthrr7ppEXqiDOwvozNjXYWwIeFV9q+ZTCZxqpxCQ/WsXq8n0ytCoRBCoRDsdrvAx8PhEMFgEO12W6ZnkNxAp6nrOKzN6myLm5qQEbWAWXM97WxgohE8yHiwETkgy5NSoYT++NpJ18/o4CY5VWN9ddJ78HmtVmsscJvalzM6LJJJWafkPWA2m6VmyR/26XM9CPuyD9Xj8YgTJs+BZTkGyTqRYs8qOQ1sfZs0FUl/JieFUaeA31v3UH9Ve2lOVePwVM4olUool8uo1+tCOCFhhVT4TqeD/f19+W8qlQIA7OzswOv1YnNzU7JBbs5yuYxz587B4XBgZ2cHm5ubKBaLaLVaKBaLMom+Xq/jyZMn2N7eRqFQkBoqoUO73Y779+9je3sb+XweGxsbWFxcxGg0woMHD5BKpRCJRHDx4kUZlN5qtQSK1gLSWg9TS+e96pubBys1ldmews0wqWeMRAL+jrV3RqLMVAkNV6tVGVLg8/kkM2o2m1KvZU2VazscDlGtVlGv14W4xHYMHs68X409lQwSIpEI5ufn5R4+jXrONC1bp9tadPan26D0wfci2aHOSnUvJHA06H4S5KcPVAZDzGb0dzR+xtS+2HS5xLje7B0lmUjDr0T2WJbRAZUm/enSHtEPJlyj0Uj4LgzKtXALANHnpi/RpQljMKb7Yb+qvVSn2mw2pV/s7t27SKfTouXocrnEybJh1+v1olqtYmtrC9VqFX/4wx9w584dHB4e4syZMyiXy7h9+zY++OADaZkBgGQyKf2Jt2/fxm9+8xvk83lhJ4bDYWSzWelz/c1vfiPQ0JMnT0Qv2Ol0Ynt7G7/5zW9EapBNyp999hl2dnZw8+ZN6WktFovI5XKSAQeDQZHBI/xI2IuQ4qvuVIGnAvSJRAKhUEjmzwJHUnJs1G61WtL/S1Zgp9NBuVzG/v6+BFwkKnU6HXg8HhmqMBwOZaMBQKlUQq/XQz6fRzqdFlISAxuSo9hiQYgIgPRG87nRaHQMlvJ4PDhz5gxGoxH29/elj/m0Gg8uPYVE9wGzPMI1ZJZivP/1wax7UY0CA5o9Osk5sl7G33HCFCF/1naB8baskzxcX2XTa8Q9pfkJ9Xodh4eHItbALJMoAdn7mmehg2s6Xe1Ya7WaJFicvUoEq9lsSgAPQJAJ1vTZ865ruZosOUk97cvaS3Wq/X4fnU4HrVYLlUpF1IYY3bIlRm8URjyVSkWG0TabzbE+VbZZ0HjQGntM2+02Go0GhsMhSqWSCOBXq1XpZT08PITD4ZDDtlgsolqtynPy+Tx6vR4ODw9xeHiIcrn89EL+/3+D3ujA+BQU/v3AkUN51Y2ZnVZOMpJ6jIcjf6d7yTqdjsDDdHw8mElq0H1sAKTGrckSfB9NpGA9hwQL/Z00qYZ/D/8mDk8nC/w0G7O8SWUZZpF6kIJ+nPvgiwJMfoaRCTypDsv/6sOfPdBc0+NeM7Xn26RrZFwDPV1Goz+aoKYDGL33NdKg0QaSW7vdriCK/CxmwHxPHTzTiR9XMzfeu1/VXnpLzfb2NlKpFB4+fIjd3V3B091uNx4+fCitDew7Ze3N6/XizJkzaDQaiMfjuHHjBs6fPw8ASKfTKJVKUveKx+N48803cf78eTQaDel/jcViiMfjiEQiePvtt3H27FkMBgN8+OGH6Ha7WFpawo0bN+TzyDx+9OgRzGYzLl68iL/6q7+Sg5gTb3Z2dtBut3FwcIDt7W1YLBasrq4imUxifX1dvt/nn3+O999/HwDw2Wef4eDg4JXNVM1ms9RBOAQhFApJtsh2GNbHJ0GDdF5UZGLQRfiXTG1S7LvdLorForTORKNRITiFw2F0Oh35HlrIgUxsRsTMYFhXZ93H6XRKRt1ut6Xuy7rwaTejIIbOHtvtNnK5nATCmtk5iYWpDz8jK9v4vOPISvp3+jHCiEQcjE6YgT5h/1d1j/6pxm4J8hiYFI1GIymhsKND11F5H5AwpANQJjgMlEl+MvJmeK8wu6WAEIO1brcrbXYWi2UMes7lcvD7/Wg2m4JkscsEgHSAsNTzVe2lOVX+cVtbW9jf38fDhw+xs7MDv98v00I2NjbkAmWzWTSbTSwtLeHKlStwOp04c+YMXC4XZmZm8Oabb0rPaDabRblcFuZnJBLBzZs3sbKygmq1Kk51bW0Nq6urCIfDeOedd7C8vIxqtSqj35aXl/HGG2/A5XJJyw0AfPzxxxgOh7h06RJ++tOfSrbDbIWBwuPHj/HgwQNYrVYcHh5ifn4em5ubSKfTKBQKuHfvnjiLnZ0dkdx7FY2EMQ5JCAaDCIVCIvdHOMYohK0dKzeh2+2W4QkkujgcjjEyGKXKisUitre3BX4PBAIYDofPOFU6bjIW2V9JBw8c1YPZ2qOdaqfTkfXX2sWn0XRmMalFwWR6OlQin88LOsQaGPkH+nWTHCowLqg/6fP5HXSrDh29PqC1Uw2FQhPfg0512mZzZORG+Hw+CWAdDgd8Pt+YUyUhSJdPuAYMWHhN+/2+7F2K+1B1jhwFve4kL/Ge4bnBBIxkyHK5LFOuCoWCdABQKtXlcsnfxUEv9Xr92+NUeaOyr9Dtdsvi0KnqNhYedKyt6uhRN4zzQOYm05J2ek4eC+LUoeSBzsyWBybnsWrmGbMYTV4C8Azez+/MFg/9GraTsE/WZDIhGAwKFPyqmoZ1dX/ipMb+414/6blGiFgbD0TeNy9qetMzQ+H31ixV/Z7c0KeBwf0i9jwIVUP5k5iZL2KTmL4vAtsaHyPzlPfj8yDBKRx8ZFzD4/p8gaNrzQBY7w/jWuvSmK5vksnLoEY/zkCcPa18b/oBDRUzOCeXhax+1ncZxAMYQzu+qn3tTpUXye12Y2lpCdeuXcPs7Cw6nQ7S6TRCoRBmZ2fhdruxsLCARCKBVquFVCqFWq0mc/WAcbFsWqfTQT6fFxF2wsf6YtNp+v1+kcujc3Q6nUgkEgCApaUlnD17dixryWazmJubEzUdY0bC11MBaGVlBTabDUtLSwI3F4tFpFIp3LhxA9/73vdgNpvx8OFD7O/vf92X/89mZFtyfXZ3d8cgIavVKnVOXV82CkIQFSCTl5rOpOybTCZ5DACCwaD0rZHMxDYcfh4/k1AyyQ2EnQhvkalO8o0O7PhdCoWCqD2ddpsExRpZu0Z4dxJsq99P11EnteBMOqiNwZjxOewCoGKbsQ6sg/OTFFr/thv5Lbyu7N1mdkfUwWQyoVKpYGdnByaTCYFAQBTJuH+4j7lvtAoTnZ5uzSG8m0wmYTabUSwWZfAFRXV0KyU5E6PRSEqDekwc0QrdbXJSvIiv3amyLsYa1+LiIrxeL/L5PMLhMGKxGObm5gTWjUajMnSaLFHgiNhj3DC8OJw+QfhQbyhmq5Sr0uIR7Hdst9uIRCKIx+NSAAeAUCgkPY4UYtdms9lkPitrdTabDbOzswItrayswOl04vLly3jrrbekFheJRF5ZaIk3tclkElgWOJo4wXUy9ivqQ5i9pHSE+t8ABIKnkySLnBJ4rI8yItX/1m07WrWFEBIAqf+Fw2EARyxBRsXdbleGm5/2g/eLiCDAs8jCn5oV6DqtsX1Gw8STEA79Hjwz6DT1a/m9jOzhqT3du2yHYx1VzyBlFsjn5XI56WfVYxYJ0XPfAkes60nOjaQnu92OQCAAm80mw01YZmK5ThOf+N6NRgPValXQQ4vFIj3LWizipNb6a3eqjDApWF0sFlEsFpHNZpHNZmGxWEScwe/3S2ZBR8lsodvtYm9vD6lUCu12Gzs7O3A4HNjf35c5qsPhUF7HjJG9rcViEZubm+IEB4MBSqUStra2kMlkUCgUsLW1hfX1ddjtdoGG7t+/j729PRQKBezs7ODx48dotVrY3t7G3t4ehsMhFhYWJHhglkW4s91uo1arCXM4k8mIzOFpaUJn7ZEjoHq9ngQ1kw5Zfc8cBxkDGIOOuCEJwRthXD5P/9fIytYbXQtNsD1Elxt4OOiWgNNs+noCR05WQ+h6/V6EbamdI6858Gx2+6dkvwDGlLk0SqK/30m2WLwqpq8PnSWDS86h1qP/SqWSKGwxQ9RtM2ydYW+50+kUR0cjDEz0kEz/0WgkXAbthPkdiURxz076/Ek98SdhL8WpavIRB35TPIHN90zfnU4nKpUKMpkMisUiDg4OsLGxgUajgWw2i3w+j0QigWAwiEwmg08++QSfffYZisWi9JjOzMzAZrMhnU7j008/xZ07d+S91tfX4ff78dprryGZTGJjYwN37tyRKQpskeHiHh4eYn19Hc1mU26adruNX/3qV1hfX8fKygrC4TDq9bpkrMPhUMg05XJZWMGhUAixWAwOhwOlUunU9DW6XC4ZSk8I2Ol0jmUI+gDjzc72Kx5+RuifmSwVVcxmMwKBgMD5VM9hhqproFqMo9PpoFariXwaazAc1JBIJOQQIcGFTpY/p/nwpePTB6WW7tRQHDAO9Rlh4UnvzfVlJmKEeCdlrQCegXVpFBNh8Gt0xpqLwbGTU3tqGvqNRCLo9XpIp9NoNBpCDCQSsLW1hVAohNdee03Uzbj/mDy5XC4kEgkEAgE596kTTGiZHSKj0QjValX2L2fiEnLW9wX3NMtAwWAQwJFut0au+F263e6J8CNeilNl5tFqtaTns1KpoFarySFrsVjGal/sRa1UKsjlcmg2m9Jb6na7pfeUajo8DLn5+Bip1Tw0AQgT0WazoVQqyfcoFovIZDIAIH2txWJRhB94yHJTVioVVCoV6ZmlHrDOVFl7azQaqFQqgu+ztngaTEvY0fkZ+9OMhyIP20nyYZPgRM3apFKV0dEdd3BrqEg7bi3yrx2F/h78e06zU6Xp9dCZ6iRykr5mz0NrjO/J+0YLh0xa6+Pen2fRcf2q/H7TTPX5xrqzDlABSDZITgWzWQZEfEyvicPhkICVDg442uf8LJ6n3KtaCc14D2nJQu5TfS/qUgG//0m1T70Up0pYbXt7Gy6XC+VyWWaQUhiAg7zz+TzK5TLu3Lkj6kTLy8uS5pvNZkQiEbzzzjuYn5/HcDjE1tYWyuWyjHZjy8zi4iI6nQ5u374Nl8slLTU+nw8XLlxAPB6Hy+XCZ599BrPZjHPnzuF73/seACCTyaBarQpE3Ww2ceXKFbzzzjsiXsHsZX9/H/l8fkyof2FhAZFIBFtbWwJPP3nyBADkBjktdTiq2VAVhZuHBLTBYCAj2cxms4jt+3y+sR5QssHpOAOBgESwFOUg4mCxWODxeAQ5oL40WeeMlslK10pMwJEiDDAOR3OOJMlW0z7Vp6YDIGOmygxWO8dJNUtj5gmMk4yMohHG5xnl7oywMK3VaiGfz8NkMk0MbDWsf9rXVRsDY4/HI2MS6bTYN6qhVeCotY79wPw90UnK0xaLRTSbTUF9iFrqNeA50u/3pWVuNBoJr4GdJdzHRLKYDPG7UzlNcyROsozzUlpqCP88fvwY5XIZzWYT6XRasksKKOfzeRwcHKBYLOLWrVvIZDK4dOkSfvSjHyEUCmFubg6JRAI+nw9nzpyRlH5nZwflchlXrlzBhQsX4PP5sLq6ikgkgmazKX2qN2/exDvvvAO/3y+wrdlsxgcffAAAuHTpEn74wx/CZDJha2tL5O3M5qdDr9944w384Ac/QLvdRr1eh9vtRrFYxMOHD9FoNAT+ZeCQSCSkTzWbzaLRaODg4GCsSf40WLvdliHuRCbYVkWHRcdE6UaO3NOiDNqpOhwOBINB0VymkywUCvL+a2trCIfDzzhV9q6ytktmuB4lqCX3CG2yRs6ggH17rPecZtM1VTpVABI8Ev7VEKtmak76oWnU4rhMQkO+um4+qf7aaDRkZq6u32mHPq2VP2sUvHG73eJUgSPHSWdlbEMjQZRQK0lO7BUlKkmSJ1m6rJkyw+WkoW63C5/Ph0gkItrfLKWFw2G5r5g9V6tV5PN52fsul2tM11tzYb41ThU4cqz1en1sVl632xWR5EqlAovFIo5XS1wxemQtxggFkQqv+0l1vyoPT7boUOCBhyd7aJk98XH+DIfDsYOWURHVYTjGyGw2S2M0a7TE6rmQk6DEV9k0scd4yPFakOCg63KMNHVNdNKP7knTpANdRzX+TPo9gLH3O+5v0T+nKTj6IjM6Q53ha5jVCM0aexX/VPtTrz/3orGGZiQ3Tdf2WdO8B/Z96v2g9452iEaYXq8/9yPLRDzrdQmB76FlbY2oBb+XzpIBCLqkh6lPOn+/Nexf2nD4dCoIKczsK2w2m8hkMrBYLMjlcqKmUalUBDYm/T2fz2M0ejrDkhBEJpPB5uYmyuUy5ufn0W63ZQg1MC4GQFjR6/UKxs+Mp9PpyJB0k8kkBXfOf+TAct4onCdITWLWZindlUql4HK5pC4MHLX/AKdrdqPD4UAoFEIkEhG4hUGJ0+lEMBjE0tISut2u9Bxzbmm5XB6rebDXlEPJ2Z5Vq9XQbrdlYzKw4fscHh5KVsLDPpfLoVarwe12y0xHKsE0m82x2g4hZ4qFABCW+J8qNPGqm25VajQacqgZ65fD4VDWjGiDhmyN7TNaeB3AM4/zPfn649aEzpRniLEur4UEpnZkPI95LrLNxeVyCWxLCU+z+akEpM1mEw4K4WPCxOQrkGHv9/sRj8el1cl4D5lMJiEhulwuVKtVORfYa67bdNxuN4bDoUDLi4uLuHz5spz3X9f6vtRMlUQkbWzAP840O6tWq0kGU61WYbVaUSqV5PBl1qg3CnAUMfEGIFTBw1LrD7MXlf/2eDyiL8v+VdYQPB6PCAxw8DE/l43J2k5rIzkJXJQK6/f7wu4jpMQMn5OMiFzoiJRoB52q1WpFr9dDtVqVCTcc68amcd4rnEhDtGEweDqvl84YgLA96VCZvfJA183rjJpPG5T/RaYzT926otm/wJHT5Ezi57VO8fm6pYYI1iSSkn7NJOM+JKtcP9+IQEzX9ciM7SccRM/EhTV0nufU/ua+Juqna68837vdLvx+P/x+v3RYUEeYiRUnjDFoZn842254H2kiE1s5q9UqQqGQtPeR5PR12Etzql/WdNbKAw2AKC4dHh5KoZoqG41GA3a7XXRgc7kcisUi9vf38fjxYxEIcLlcePz4MbLZLAqFAlKpFDY3NzEcDrGxsYF0Oo1yuYzNzU30ej3E43EkEgn0ej08evQIT548QTqdlkU1woaTWGmn0fR0Is2y0yxbUtpJUmAQpK+r0akGg0GJRqvV6tjGpCN3uVxot9vw+/3ymlAoJJGyyWQSQpNmKLNeSto/cER84CFgMh0N4Z7as1ki14vlHv28SftikkM1/j9rppMcqq6h0r7IMR5Xez3u80+zEeEZDoeiPMbzmEERmbpMfoCnikdUXwLGZ0uPRqMxUlK1WoXNZhsr91CpSfeJE/UbjUZjcrF8fwAic8ggjPuU58mkBOwk7KWfBka23xdZrVbD5uYmPB7PmH7jwcEBTCYTHjx4gMPDQ7RaLTx69EgkCe/fvw+Xy4UHDx5gfX0dtVpN6rVarmp7ext37txBo9HARx99JIfwxx9/jK2tLbTbbemNyuVySKfT6PV6+PTTT7G9vS2HhsvlGot8tTSbsW5z2oyDwq1Wq8D/3JyEAElAACBQbDAYlEHkzHT0PNVYLCZ6zQBkJBSdKjcyN2m320UymcTs7KyQoyqVCjwej8BOVF9hAOB0OhGNRgFAWr0oS0ghEc04nNr4iDbun2azObYPjG02wJGDm1Sb1XV5vt54lujD1NgSM2nfGet5zLZ0HW9qR6aFPHw+H+bm5jAcDoUD4/P5pDQCQAIp9o6zjk2UgGxf7uNms4n9/X30+31BCgFI2UUrOLVaLRweHsJisSCZTMo0qk6nM9beoxEHfjc+r9lsygCAk2R6v1Sn+mUcCiWqAIxFvFwcqi2RBMS6LQ/eXC4nvaxUcmLkYzabpXWm1WoJlNxut7G3t4ednZ2xzz88PEQqlUK320Umk0E2mx2rw2hH+lX+5lfNNOHI2KPGx+nEdOM95cdIf9dEBUL5hPPJwCVkT9Iambx8nIPqB4MB3G43ut2u/I51Wt5jxmlFjLB5EDOrPU2ksxc1Xg+timW047JS43/1e35R1mn8/Bex4yDnqY2bLsOwHMZsUwcnxoyRSQyAsXnZg8FgbK8T8mVJwEha0vuMjpHCD8yYtUodnSTPZT11aFLP6knZS3WqmljwohYOh3H58mUEAgGsrKxgYWEBwBHLKxAIiCDDd77zHXznO98ZI47Y7XbJYC9evIh3331XGoFHoxH8fr9AyWfPnsV3vvMdyThjsZhE2oPBABcvXsSFCxckg1lYWJCeNxbjjdKD08361Lge3HB64lCj0cDm5iZarZZEqKx7ut1uEd4gTAcc9fpSgSufz4vzZd2GNZlqtSpKLTyYB4MBDg8PUalU5HmsqVJNiwx0Bm10+h6PR7JtzVI/7cbDSweXVKcy1lSPq5vyv0byEABhhWsnaIR6jb/7ImOgpEXcNdw47VM9MjpSh8Mh7Wt0qLzmLM/oflU6VQr4UDEpHA5LBqoRCKJ9RmdKMR4+Jx6Pw2x+KrrP9p7hcCgOmZPO6DyZIDE7JYJ10mv80uHfP9XJRCIRXL9+HbFYDKurq1heXh7bNH6/H5lMBs1mE++99x5+9rOfwWw2y2QDAPjoo4/gcDhw9epV/OQnPxEYknqV9+/fR7FYxOXLl/GDH/xAstzFxUURAej1ejh37hwuX76M4XCIubk5VCoVZLNZfPrppwIJsh/zOALFaXaymvCjIZ16vY4HDx4ImSAQCEit1OfzoV6vo1AoYDAYyKYmlG+1WgWFYK3H7/djNBqhVquh0+mgUqkIwqBrNazHezweWXNdA9QKL8y0CUv3ej1hFZK5etrN2DYFHEHm2qnq/04iFBrfk6YPb+BZrd8/9XBkxqJbQwCMMb2nsP6RcdqY0+lEq9US1E+3vuggimgiRXIKhQJyuRza7TYWFxcRi8XGJtsAR/VOZp+anNZsNrG3t4dOpyNlnNFoJCRVlnw0KZWOlIgJJVL7/T7sdrtk1yeJVnwrGBa6KVtDC7pthr2OVO7gBmSNlRAgmbx8DYvkfA4L5m63Gx6PB8PhUGBEPU/V6XRKxMXF15t6CgeOm14v3aNG8oOut2jSiH4uX6+RCH0wGqFlYx3OaMZ+Sb5WN7GTVayha75OE6xOu1Od1IOsCSHGWumkQ8z4+pPYQxqyPO5x/V+eC0RRppnqkemaNzkKzAi12Af3sUYsmC1OalnSgS4Rg0ltanwfLRuq7zE6RwDP3If8DKPf0NKJJ7WHv/FOtVwuY2NjY2yMEDNCkpNKpZIsJnA03qndbsNkMonwcjgcRjAYFMhgOByKMDTHsXExOAKs1+vB7Xaj1+sJRZyblAetVpPRNnWsT03DLqxBMqI1mUySxZjNTwXxk8kk3G43YrGYMAxJ5ecoPgBjG1w7P90LazKZ4HK5RFowGo0iGo2Kg2SLDclGHDJfrVaxvr6OjY0NjEZPZzKSxMa6ay6XQyqVEmj5tJtm/XJdqtWqEFm4Pyj6wnU1BsyTWpR0cGR0lMfV0IAj/ebjWJ6a/cvMlMQah8OBbDb7NVypb6dR8m84HKJSqaBarUq/PuVC0+m0CPyQp0Bd9cFggEgkgsFgIG0zug+V81I1aUivNZMkk8k0NuVKn/XAs2WEWq2GSqUiLX1aD5hj4KgzcBKTar7xTpXSfvV6HclkEslkEp1OB/v7+6hWqzg4OJC5q7wgvNC6ZWI0OhKNMJlMwgZ2OBwCF3JyCjc4o1XCE1wErQCjC97ajDDVaYZ9SSpg/xqhIjpAZjImk0l60dj2RNlC1kFCoRCi0ajU6yiXRietlVnYjzYcDmWAAuUPyUDkuhJS1hMx6vU69vf3EQgEpG2LxAz2v2azWRSLxbGWkdNok5AFNvYTIuceMCILGiHgez3v/TW5RB+4xucD4yS5L8pW2ZrhdrtFM/rr7Gf8tplWO6PmAFE+v9+ParUqQ0/Id7DZbOh0OtJBwbOWwXS320WhUECj0UA8HsfCwoLUX1utltxHNDpTYxZK2VA+ph/n+NBGozFGmiNiqecin0S2+o13qmzuByAaj41GQ0Tss9ksSqUSLBYLstks9vb20O/3RbD/0aNHoqaTTqext7eHwWAgj29tbYkOMdm9nU4Hjx8/xubm5pgYAUWg2V7D2bA8NI47WE+zQwWOlFiYnTDrIBTEGhbHcGlJM63jqTNe7VRJOCMLmEGMZibqNg/CtfwMOlur1Yp+v49arTZ2r9FZM5tmsAVMbg057WZ0sEbTyI6R2HQcCWlSZnrcvwkz6u9jfD/j9x2NRlJL1+MCT/vePc50x4Mu4bRaLQk+dZ8pSUG8plp+FMDYKMDjZCyZIHG/UW2Nmt4Oh0OeT7U87k+ez/oe0R0JzxMe+VPtG+9Ua7Uadnd34Xa7MTs7i3g8jkKhgP/7v//D1taWLKTdbscf//hHhMNhNBoN3Lp1C/v7+yiVStjf38doNEIikYDX60W73cYnn3yC/f19mXc6HA6RSCQQiUTQaDTwi1/8Anfv3pVIyGQyIZ1Oi+Tg4eEhyuUy6vU6MpmMHPZc8OOISqfNeFhR15lKSvqHzeF0WsxiSGIAIMo8hO61Ux0OjwbFc0gCs9vRaIRWqyXUfDpNHgSUU5udnYXT6cTOzo4Ihuzv7+Pw8BDFYlEgatbWub7si5sevuOEIa02pY3XnWunZSUJ8fO99Hsed+Dp3+la2SQS1CTjdySDlMQXBlMnAQe+isZ9QAi/0+kIoZBjPblnyHXR/AOO7jSbzYIOkbti7PHnHrPb7UgkEjCZTMhkMtjb24PFYsHs7CxisdgYN8NqtcLv98t5wrZKfXZQkpTvf1L7+BvvVNnDCEB0JRuNhggxAJCFK5fL0pfKw5E0bpPJhGKxiMPDQzSbTWxvb2N7e1vwdJPJhEKhgEKhgFqthv39fezu7sr3sFgsiMViKBaLAIBSqYRKpSK1ukmj3KYH7VPTcLzOQI3Zqs5KeS11bYyRJduW9GbzeDyy0bkhNQFCZ6pEFPQhTOdOeUP2LvOe03U7raKkyRun2XRGYSyPGDN5lkw04UTX0IwtNZMyVJoxmz2u1HIcmqDrv1q+8Isg49NsmgConR/r13pW7Wg0GpuHSmMd1Gx+OplKD0oxohwMxMiPYL9prVaTsg17zrlm/H5sn+Sa6nuJ661V3k7CvvFONRaL4cKFCwgGg3jzzTfx+uuvo1AooFqtYmlpSZys1WrF1atXce3aNdTrdfT7fSSTSZEqHI1GOH/+PF5//XWBAuLxOCqVCvb39zEcDnH+/HlcvnwZjUYDe3t7ckCT+LK2toYLFy4AgPQ46v7Ura0tPH78eBrdGow3LjcGCSG8se12O6LRKOx2O1KpFB48eIBQKITBYIC5uTnpQdNDEYgeULyBKkzMfnnAcrOwt5REM9ZiG40GCoUCdnZ2AACbm5t4+PAhqtUqcrmcfC5H1dE0bZ+zJE+zZTIZ/O53v4PH40E4HJYa28bGBorFovQRm0wm5PN5PHr0CPF4HKurq1Jnq9frYzMugec7Q+2QuaYAxtphWEebREJptVr49NNPRe6OAcDh4SH29vZkxOPUxo3XmlrbNptNhFLo3DRXgmQmk8mEUqmE4XAohEPOPSaLmGvJPUd5QQbPDGZDoRCWl5dhtVoRCoXG1NOoG14ul1Eul6WUwxqt2WyWOjBh4pO0b7xTnZubw49+9CPE43G8/vrruHTpkjC50uk0SqUS0uk0TCYTvve97+G73/0ums0mgsEg0um0QMf9fh83btzA97//fWGm7e3tIZvN4v79++h2u3j99ddx8+ZNmcAwOzsrkKXVasXc3BwWFxdl41UqFXS7XemHNJvN2N7enjrVCcb6CZ2Rdm4Oh0PYlp9++il+/etfI5FIyBQRwjIUXgiFQmNRr9frRTQalZoKfziDVTeW07n3ej3k83nk83mUy2Xs7e2h0WggnU4jlUqNsckJJXG6hR5uPh1S/tR2d3dl2hShPIqZ60HlZrMZqVQKw+EQKysr+OEPf4hwOAwAMhCDJQIAkkXompexbma1WgVSJmrFSVXUhC4UCs/sy0ajgQ8//BAfffSR/E5nMEaSzNSOTEsCEinyer0yN5Xi9sBTLYGZmRlZy8FggJmZGcRisTF+hW6/MvIWjFlkNBpFKBSSTJeBNO+VWq2GQqGAcrmMYrEopTrWZpnxsstjEqLyZe0b71T1H8sFYbRhHDBrnCRiHNVFiJHEGF3fAyCCzbzYjHb5On1wGkkVx9kUPjoSzGfbCw83bkqtwELkoVaroVQqoVAoyLrrDcQaGCfMUE5Qw450oCQ4aXJCp9ORSJYbr9FooFKpyObT379SqQjLl2xBMhSNakGn0TQzlBCqrodpp8h6Vr1elzXmCEVd19LQ+qQfAOL0eB9p9RwytJvNpowJ0zYaTZ6cNbXnG0so3NMMNAn9ch0YNHOducYUWOFzuNe4/xkQ87zVPoD3h5Hdq1n5RD1qtZokPDwHNDytv7MO3L6qfeOdajabxe9//3v4/X7R7m00Grh//z7y+bwUyK1WK/b29kQEf3d3F7lcDoVCQaKfarWKdDqNTqeDfD6PYrEo48GI0afTabRaLaRSKaTTadmgwFEdtd/vY39/H4VCQTLVbreLnZ0d2eSn/ZDVVigUsL6+jkAgIEGKJrEQ8q1WqzIzt1Kp4MMPP8T6+jqAI7iPMoa6TuJ0OuHxeJ4hqHAtuIbGNijC91xDkt6Ma7ezs4Of//znCIfD8lmdTgcbGxs4ODgQBzE1iNPUmZ4OUEajkWSPjUYDP//5zxGJREQNh6gARVo4q3OSaIDOTPh+DKDoLFOpFMrlsiASU/vqNhgMkMlkpEwDPM0cDw8PsbW1NbaP8/k8/u3f/g2//e1vx8bCzc/PI5lMjtXANVGNaANwVDfXrTmEmxk4UTWJ5DJ2crTbbeRyOfR6PdTrdezu7komywB6e3tbuDanok+1VCrh3r178Hg8ACD9iE+ePEGxWJSNZbfbkc1mkclk0G63kc/nkcvlxAkOh0M0m01xhGSoaUYYH282m2N1oHq9PkaM6fV62N7eRjabHXOqpVJpSlaaYLVaDVtbWwIDxWIxAEftKAcHB9je3paB7lyL9fX1F2ZQG4kNL2ov8txsNov3338fFosF4XBYmIYMrKZrPG7MWicZ15Z7jLXsWCyGlZUV6VNmjTwSicDlckkvsdYX1llKu91GpVIR+chCoYB6vY7NzU3kcrnpGp2gDYdDKZlUq1W4XC7UajVks1lsbW0J4sPg+P/9v/8nLHuOWORe17wHLQRCRTuuNQAhqA4GAwQCAQSDQXS7Xeny4FzrXq+Hcrks9VsapRVJWqWvYFeHHnD+Vewb71RpRur8JIjouOcbf/enwLYv8l/dRvNF3+E0Gq/Dce1Gx12/4373vM/4OkzX8Y6DIaf25cy4J437WV9fPm4MoIz7X6/LdI2+fjOulbE2edy6HvfvSe87qWdZf55GoV5kb37RZ38VM42md9zUpja1qU1taidip5uyOLWpTW1qU5vaCdrUqU5talOb2tSmdkI2dapTm9rUpja1qZ2QTZ3q1KY2talNbWonZFOnOrWpTW1qU5vaCdnUqU5talOb2tSmdkI2dapTm9rUpja1qZ2QTZ3q1KY2talNbWonZFOnOrWpTW1qU5vaCdn/B1DKzGT0TA8uAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAckAAAJxCAYAAAApTkn0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eYylV30mjj/v3fe99qW7et/cXe22sc2SGLOIZBJwJkMgSqII4lEIoIkUEVCCEmX4JpGSQfljwmiYBIYoAwoMMwowCRLBHSBg493V7XbvS3Xt69339fdH/Z5Tn3vqvdVV7e626/p9pFJV3Xvf5b7nnM/yfJZjtFqtFixYsGDBggULG2B7vW/AggULFixYeKPCUpIWLFiwYMFCB1hK0oIFCxYsWOgAS0lasGDBggULHWApSQsWLFiwYKEDLCVpwYIFCxYsdIClJC1YsGDBgoUOsJSkBQsWLFiw0AGWkrRgwYIFCxY64K4pyfHxceRyOdP3HnjgAfzwhz/c8rmWlpbQ19eHxx9/vO31P/3TP8XevXuxd+9efPazn1Wv/+M//iOOHz+O8fFxHDlyBJ/97GfBxkJ/9md/hvHxcfUTCoXwe7/3ewCAZrOJ3/u938ORI0dw/PhxvPOd78TVq1e398UtWLBgwULX4K4pyYmJCQSDwTtyrt/+7d/GL/zCL7S99m//9m/4h3/4B5w9exbnz5/H9773PfzzP/8zAODd7343JiYm1M/3v/99fOtb3wIAfPazn1WvP/vss3A6nfi1X/s1AMB3vvMdPPXUUzhz5gzOnj2Ld73rXfjDP/zDO/IdLFiwYMHCzsNdU5KGYSCdTgMAnn76aYyPj+PYsWP4yEc+gnq9vuXzfPnLX8bY2Bje8Y53tL3+jW98A7/xG78Bv98Pt9uNj370o/iHf/gHAEAwGITNtvbVyuUyKpUKDMPYcO5vfetbGBkZwalTp9Q9VyoVlMtltFotZLNZDA8P387Xt2DBggULXYC7HpOsVqv40Ic+hM9//vM4d+4cfvVXfxVnzpxR73/xi1/EH//xH5see+PGDXzxi1/En/3Zn214b2pqCrt27VL/7969G1NTU+r/p59+Gvfddx96e3vx2GOP4QMf+MCGc3z5y1/Gb/3Wb6n/f/EXfxGPPvoo+vv7MTAwgNOnT+Nzn/vcbX1vCxYsWLCw83HXleTFixfhcDjw7ne/GwDw3ve+F3v27FHvf+xjHzNVRK1WCx/96EfxhS98AV6vd9vXfetb34pXXnkF09PTePHFF/HjH/+47f2bN2/iJz/5iaJaAeCFF17AuXPnMDs7i7m5ObzrXe/Cxz72sW1f24IFCxYsdAccr8dFzahPHdlsFmfPnsWHPvQhAEA+n0exWMS73vUunD59GqOjo7h586b6/OTkJEZHRzecp6enBz//8z+Pb37zm/iZn/kZ9fpXvvIVfOADH0AsFlOv/f3f/z0ee+wxRCIRAMBv/uZv4r3vfe/tfk0LFixYsLDDcdc9yUOHDqFer+MHP/gBAODJJ5/EtWvXbnlcOBzG6uoqJicnMTk5ic9//vN473vfi9OnTwMAPvjBD+J//a//hUKhgEqlgv/5P/8nPvzhDwNY816bzSYAIJfL4Z//+Z9x/Phxde5ms4mvfOUrbVQrAOzZswf/+q//imq1CgD4p3/6Jxw7duy1PwQLFixYsLAjcdc9SZfLhW984xv4+Mc/jkajgQcffBAnTpxQ73/xi1/E3NzctmN/jz76KD70oQ/hvvvuAwB86EMfUhmw3/jGN/CNb3wDTqcTjUYD/+E//Ac88cQT6tgnn3wSNpsN73rXu9rO+YlPfAIXLlzAiRMn4HQ60d/fjy9+8Yu3+9UtWLBgwcIOh9FiAaEFCxYsWLBgoQ1Wxx0LFixYsGChAywlacGCBQsWLHSApSQtWLBgwYKFDrjnSvKFF17Az/3cz2FsbAynTp3CyZMn8ad/+qfq/UcffVS1kNsq/u7v/g7hcBjj4+M4ceIEjh8/jm9/+9t3+M4tWLBgwcKbDfdUSb7yyit43/veh0984hO4ceMGXnzxRZw+fRrZbPY1n/ud73wnJiYmcObMGfzN3/xNWzarBQsWLFiwcDu4p0ryL/7iL/DEE0+0NSuPxWL4y7/8yzt6nXQ6jWg0qv7/1Kc+hQcffBDj4+P4mZ/5GVy6dEm99+1vfxuHDx/GiRMn8JnPfAaJRAKTk5N39H4sWLBgwcLOxD1Vki+99BIeeuih2zr2O9/5zqbe4Q9+8AOMj4/jwIED+OVf/mX81V/9lXrvM5/5DJ5//nlMTEzg4x//OH73d38XwNoWXB/96Efxj//4jzhz5gwOHTqE1dXV27o/CxYsWLDQfXhdE3d+//d/H+Pj4xgaGsKrr7666Wff//7340tf+lLH90m3Xr58Gc8++yyeeOIJzM3NAQC+//3v45FHHsGxY8fwuc99DhMTEwCAZ555BsePH8ehQ4cArLWhc7lcd+bLWbBgwYKFHY97qiRPnjyJ5557Tv3/X/7Lf8HExAScTidqtdodu86xY8cwOjqKp556ClNTU/jkJz+Jr371qzh37hy+/vWvo1wu37FrWbBgwYKF7sU9VZKf/vSn8bd/+7f47ne/q16rVqvb2l9yK5iZmcGVK1dw4MABZDIZOJ1ODAwMoNVq4Qtf+IL63MMPP4yzZ8+qGOVXv/pV1bfVggULFixYuKe7gJw4cQLf/e538Ud/9Ef4xCc+gZ6eHjidTvzO7/wODhw4oD73xBNP4JOf/KT6/5vf/CaWl5fxne98pyPlypgkANRqNfz5n/+56hH74Q9/GEePHkU8Hsfjjz+ujunt7cWXvvQlPP7443C73XjPe96DQCCgdgGxYMGCBQtvbrzpe7fmcjkEg0EAwLe+9S38wR/8AS5cuPA635UFCxYsWHgj4HXZT/KNhL/+67/GN77xDTQaDYRCIXzta197vW/JggULFiy8QfCm9yQtWLBgwYKFTrB6t1qwYMGCBQsdYClJCxYsWLBgoQMsJWnBggULFix0gKUkLViwYMGChQ6wlKQFCxYsWLDQAVsuATEMY9snl8fIJFrDMGC329Hb24tYLIZAIIDR0VGEQiF4vV6Ew2HYbDbkcjkUi0U4HA5EIhF4PB7E43GMjIzA7XZvOJ/NZkOj0UCtVkOj0cDKygqWl5fRaDTQbDbRarXgdDrh8/lgt9vhcrngdrths9ngdrvhdDpRKpWwsrKCUqmEZ599Fj/60Y9QLBZRqVQ2tM7rlBi8UxOGb2eMbwc2mw0OhwOGYbSNDbD27HgfhmEgEAggGAyi0Wggk8moloKv9zN+va//WnA3x9kwDDW2zWazrZsW3wsEAnC5XBgYGMDRo0fh9/vh8/ng9XoBAI1GA61WS/00m03Mzs5iamoKpVIJ09PTSKVSANbHwTAM2GxrNr+cT68VO3Wc79VaNrtuIBDAkSNH0Nvbi927d+PBBx9EMBiEzWaDYRgwDANOpxM2mw2FQgErKysoFAo4ffo0vv/976NSqbQ9d44r58Odxq3OueUSkNt96Jy8LpcLDocDAwMDOHDggFKGwWAQHo8H/f398Pv9cDqd8Hg8MAwDpVIJ5XIZNpsNHo8HTqcTXq8XoVAIdrsdzWYTzWZTPXguTP4Ui0UUCgUleHkvXMT8n4uX56SSnZ6exrVr11Aul5FOp1EoFFCv15XCnJ+fx82bNze01bMW1q2vY7fbAawLNJfLhXg8Dp/PB7fbDb/fr8bK6XSi1WqpcSmXyygWi6hWq8hms0ilUvf8me/UMQbu7Djr55JrkQrObrdjaGgIAwMDcLlcCAaDcLlcsNvtcDjW7PRKpYJ6vY5ms6mUJI1XXoNGcKFQQKVSQTqdxs2bN1EsFtW1dLxWwbpTx/lerGWOMbA2Nn19fejp6UEoFMKJEyfQ39+v3ms2mygUCsjn8wAAu92uFGpPTw9sNhuuXbuGq1evIpfL4eLFi1hcXNzwXV4PJXnXmwlwslMZnjx5Er/yK7+CWCwGl8ullGc4HIbb7W6b6LVaDfV6vW2i12o11Go1ZaVK767VarUtPL/fj76+PiVsqQTpvcjjeX63241wOAyXy4Xx8XHY7XbUajVMT09jdXUV5XIZyWQSlUoFTz31FObn5+9479luR6vV2vDMXC4XxsbG0N/fj1AohKGhITidTpTLZVSr1TZDK5vNYm5uDsViEVeuXEEmk0Gj0Xidvs2bG9LrJ2j4SK/h8OHDeOSRR+DxeJQsmJmZwdmzZ9V4zs3NodFoqPVJQ9rlcuHAgQPYt2+fMqDcbjeuXLmCQqGApaUlVKtVNQfIKrVarbZ5sVMV3hsR9O6Adbk7NjaGEydOIB6P49SpUxgaGsKFCxfwr//6r1hZWcH09DSmp6fbZPzhw4fx7/7dv0NPTw+OHz+OU6dOYWVlBV/72teUkny9x+2edNwhxRIIBBCNRhGLxRCLxZTycjgc8Hq9ymPgIuP7nOx8nQKWnqCZBQms03q6kuSxzWZTLSZgneqz2WzKe/X5fKjVashms6jX63A6nahWq4qufb1ojW6By+WC0+lUlJvP51NMAp+tHF96oR6PBwAUTSeNJwv3Bp3mPr0Eh8OhQhper1cZOZKKrVQqKJfLKJVKKBaLbUqS4ZFGo6E8TR7vcDjgdrsRDAZRqVRQLBYBvP4C9c0GykqXy4VAIIB4PI5wOAzDMNTYZrNZZDIZ9SPXaDabRT6fVwxSOBxGtVpFIBCA1+tV4TNJqxP3aqzvmJI0u3kKulgshne+853YvXs3RkZGEAgEYLPZUKvVUCqVYBgGCoWCUlhSkXFBUQDSE9TB96TX2Wg02mg9/f7ktXhcvV5HoVCAYRjw+/0IBAJoNpvI5XKoVCoolUpIpVLI5/PI5/OWUH4NcDgcbR5CKBSC2+1GOp3GxYsXUSqVlDCVcedIJILh4WEEAgE1v/L5PK5du4bl5eXX+2t1PSSdKtcSsMbEJBIJ+Hw+9Pb2qrGt1+u4ePEi6vU6stksyuUycrkclpaWUKlUkM/nlTCUrFE2m4XD4cDFixexvLysaPlAIACPx4Of/dmfhc1mw9TUlAqNLC4uIpPJqPuSXq28Vwvbg9kzDAQC6O3tRSAQwNGjR3Hq1Cnk83n86Ec/wtzcHFZXVzE5OYlSqYRsNrvh2S8sLOD06dMIBoN44IEH8OCDD8Jut2P//v0wDAPJZBJXr15V+oEe7L1kju64ktQTdAzDQDgcxv3334+TJ08qyxKAUpL6YqPicTqdsNvtaLVaqFQqaDQaSljyt1SCuqdZr9eV4q1UKip+KWOS8r4Z96JFGwwGUSqVAAClUgm1Wk0tbi50a8HdPux2O0ZGRvCWt7wFhmGgWCyiVqthdnYWZ86cUckZOvbv34/du3cjFArB5/Ohr68PmUxGJWpZuLvo5OUDa2Maj8cRjUaxf/9+RbE+//zzmJiYQC6Xw40bN9riyJ3WUL1eV2s5m81iamoKTqdTCeXDhw/j0UcfRSKRwNmzZ9FsNpFOp1Wc2uy+CWvdbh8yOYpxY6/Xi/7+fkQiEezbtw+HDx/G5OQkJiYm8KMf/QjA5nHhZDKJVCqljJ/jx48rueD1ejE5OYnp6WnluNyN5Kxb4Y4pSZmVCKy54bFYDOFwGIODgwgEAnA6nTAMQ018Ki1go5KVD4DUq34Nvqf/EHIxk5Y1SzTQjyFFC0B5McCaAHC73QgEAgCAUCiESCSCYrGoYmcWNkIfW8alvF4vfD6fotiY5ZZMJjdQLHKMSqUSFhcXUalU4PF4VFIXtzmj8SUZCXl9C9uHWexRvhcMBhEIBODz+dS6bzabmJ6ehs1mw8LCAjKZjDKEdLZoq2NDg9dutyOVSuHGjRvIZDLI5/Mqoa+/vx82m00l95ht6L6da1poh3xuXq8XPT09iMViAIDl5WWVs3GrMZZsRKPRQC6Xw+LionJiwuEw/H6/coTuVnbrrXBHlaT8Ai6XCydOnMDJkyeRSCQwODgIj8eDarWKfD7fFv8D0PYgaKXwfyouxif58CX1amZZ8PwMLPM1eqL8X96/3W6Hz+dT5yiVSiqmybipy+VSXmU6nUYul8PU1BSWlpbu1OPsavT29uLEiRNKqeXzeWSzWbz00kuYnZ1V8SnAPLV/eXkZP/3pT+HxeHD48GEcOXIEPp8Po6Oj8Pl8SKfTuHHjhho7shFyXlnYSJ/pcR89DV8+R0l3kTY/cuSIik05nU7Mzc3h29/+tspqzOfzaDQaKqavX8ssdGG2ThnHyufzmJubg8fjwcGDB3H06FHYbDaMjIygWCxidnYWTz/9NJLJZBvtyox2PbHHwubQw1PA2lp+5JFHEI/HUS6X8dxzz2FxcRHJZBJAu7xlrBlA2xiQBbx58yZ+8pOfIBQK4fDhwxgZGUE+n4fL5VLXlPL+XuGuJe7YbDb09PRg7969CIfDCAQCamHQknQ6ncpq4EOTZR36xAY2eo56TJHQ6VS95ENaxLoHzEHlfTKBgMk/DocDzWYT8XgciUQCDofDUpAdYOZ5+Hw+DAwMIBQKodVqoVqtolgsYnFxETMzMxuO189RLpexsLAAh8OBwcFBAFAZ1FxIzHDWy4MsJdmOzbxsPcXfLGOUQjAajWJkZEQZs4wTXr9+Hel0uu28cg3K65uxOma/q9UqWq0WSqUSVldX4XA40NfXh1AopOqgmRnPEhKdoZLntObE1qE/K6/Xi4GBAcTjcVy7dg0LCwtYXl5W9cxSdusyVyZdtlot5HI5zM3NoVwu4+jRo0pv3O06yVvhNSnJzRaYzWZDOBzG0NAQPB6PKqVg3ZQUXDLDlMcC2ECX8aHSo5TXpnI1Ow6Aqfeo369cuJ1+eLzNZsPAwAAeeOAB5U2urKxYCw4bFRuNjHA4DI/HoxI76G0sLi4il8upuAOP4W/deiWazSaWlpZw7tw5eDweRKNRDA8Po9VqKSXJ41+vBfZGx62eiR57NAxDZXX39fVhbGwMPp8PPT09KBaLqNfrSCaTypNjCKITc2Pmyer3pn9On1vNZhNzc3N47rnn4PV6EYlEFPV7//33I5/PY2ZmBpOTk4pN0DOmrbnRGWbykmAtq8vlQi6Xw+TkJFKpVFvTD339Sg9SPvdisaicjUajoc7L3BP98/dq3LatJM08MCo7Cbvdjp6eHuzbtw8AVMyOVr78vJky1N+jEtOVnaRN+BBp6cqFxwctaTdd6Zl9P+l9ElTqe/bswbFjx5BOpzE3N4cbN268KbNdO8V1AahxcblcGBoaQjweR29vL0KhEGw2G+bm5vDss8+qJA05RsDm1iMpmvn5ecRiMfzcz/0cDh8+jFarpZLDpPFkoR163F/+bebp1Wo1OBwO+Hw+uFwuHD16FO9///sRCARw/fp1TE1NIZVKYWJiAouLi6jVaqhUKgDaQx+349HrRjTPxfNduXIF09PTCAQCeOCBB7Bnzx6EQiG85z3vgd1uxw9/+EPMzc1tiFXrCtfCRmxmyLDBi9vtxurqKl555RUUi0Vks1l1jG6QEPJ8rVZLxZYZRvN6vfB4PKp0qF6vK7mgz827ibvSlo4LgvE7Btvl5KQw3EyAdVLI+gI2e1+3ODv9bXY9efxm1BCTRer1uqrXezMK5E6TVDcsAoGAykil8iqVSigUCqpcR2cVbgXWR3q9XuXl8MfpdHYsGbKwhk7P2mz9sDY4HA6rzlec96Q/GX/M5XL36isAWKNgq9WqKtcqFotK/rC8KBaLoVAoWEl220AnWSkrDOhgMGGuVCptaOKgG9Jm844ygUl7lL9czwDe2ErSLCZoBpfLpRYQM8wAbFCQ/FvSOTL+wWvpnR0YM5T3Ij0+Sd92ukddEOtUqrxPxkclRcxja7Ua8vk8yuUy+vr6cOzYMcsahTnF4vV6sX//fuzbtw+ZTAbT09MoFosqqaKT8WMGszhjq9VSHZS8Xi/27t2LaDSKpaUlLC4uqnkhqR4Lm4Nz32azIRQKwe/3Y3BwEO95z3uwe/du1T6sXC7j8uXLuH79OkqlkqmCvJO092bnqFQquH79OpLJJKLRKFKpFILBIEZHR/GpT30K+Xwep0+fxtmzZ5VQl4KX57ewDv25OJ1OxONxeDweRCIR1Ov1ttI4Nn4wO1aPCZt9BoBayx6PB2NjY/B4PFhcXMTs7GzbvLwX63jbnqTuIutg9xT23qzVam2KRVKb0nNgvFK+L8GJTKqFAlJPIpAPzsx66RSX1D1Rfp4KWWb3yXrMQqGAarWKeDyO/fv3b/VxdjV0uhRYK/vYtWsXjhw5ggsXLmBiYgLJZBLpdPq2hBLHBVifG41GQyVrjIyMIBKJoNFoYHl5WSlJaUBZwnANm8V2+Lrf70cikcDevXvx/ve/H/fffz9+8IMf4Ctf+QoWFhZw48aNDS3H9PPcqee92XlqtRqmpqYwNTWFeDyOWq2GSCSCX/iFX8Cv/uqvqtyBGzduoFwuK4FuUa+doTNsTqcTsVgMkUgEoVBI9VMul8tKHt4KnWQx54lcy8PDw6qr1vz8fFu/bsr7uzle245JMsOTN8ibZI/VWCyGkZERhMNhlb0IrLvSOpUJmNc6mgXnpaLVvQgZn9AfmtnfukUjKQEz71aeX8edtJK7CaQ/aThx3tC4yOfzakHpz3mr5yeazaayZmu1mrqez+fbYOBZY9SOWz0PUuW9vb3w+XyYn5/HxYsXcfPmTSSTSeU9AO2hitfrOUumh17t7OwsLly4oJRiNBpVpUedjrdgDuYcuFwu2Gw2ZWTIEiszNkh/rrqilO9TpwBr7CRroXUP9F6M1ZaVJK119ufjbh1utxuVSgXZbBa1Wg33338/3v3udyMSiagu8HL7KmD94Xg8HmXZMyirf2lJj5Fu1WtltqMk5XHyGma/6alSsJvdC1GtVtWOI29WSDqazyeRSKCnpwd9fX3weDyo1+vI5XKYnZ3F6upq27Y4W40dmi3AWq2Gubk5lUU7NjYGp9OJZDKJM2fOAGhP4nkzj9N24XA4MDY2hoceegiVSgXf/va3USwWMT8/j8uXL6NcLqPRaKj8A8kK3Yo638443Iqqk+EawzBQLpdx8+ZN2O12pNNpPP/886qOc3x8HAsLC0ilUhu6fllYh9kY2mw2+Hw+BINBOBwOFItF2O32Ng9Senm3okT189PgLRaLaDabautEGrzSQXtDKUnJR3OrG7/frxoEtFotFZs7fPgwotGoOk7vucoFpPdT1TMadU9BTmQpjPX3dQ9Q/x5m5zf7m/esJxnp9wFAFUm/maHHbA3DgNfrRTQabdvejLFcPXb1WiZ8s7m2FU8qlVK7R7BhumQsLGwf7Jc7ODiIxcVFXL9+HTdu3EChUEA6nVbp+kyUMgtdmEFfg5t9jueT2CwBj4Yte7jm83lMTU0hEAjgoYcewujoKCqVCpxO55aegYV1mHmSunOy1fwC/bzSYKZecbvdaDQapmO11fO/Fip9y0qSRf/BYBADAwPw+XyIRqMIBoNK8zebTRw+fFgpUXbmMKNEZfd4PhAzd50PjlaDbHIrv3QnhbcZzI6Rr8nSD7MF6vF4EAqF4HK50Gw2TRv4vhkhKbdwOIz+/n7VpoyJTq/lOUkjRS6qdDoNw1hrTA+gbSs2szorC5tjcHAQ+/btg9/vRzgcxvz8PJaXl9XeqjoLQMO303N+rWNO3CrBxsxAZtcsZufG43EUCgWEw2G1N6m+2W83YrsUpZmHzURGmdna6djtnN9s3Ox2e1vmup54t9XEHV15b+cZbFlJ8gZ7enpw8OBBhEIhDA4OIpFIqJgTt8SKRCKw2WwqiCtrGOmdtVot1eqNW+bou9TzS0kFK7NbZb2jfoweX5QPS7d25W/5t9nClH8HAgEMDg6q/QyZIPJmhW452u12JBIJHDhwQNXGJpPJ17x7iu7VA2t06+LiItLpNILBIIC1HSlYkFyv19v2HLSwOQzDwMGDB/HhD38YgUAAFy5cwOXLl5FMJrG0tKQSrjgOsobtduLL28Gtzmk2t9h3mb1GR0ZG0Gg00NfXpzxOei7dBjNZt531pysv0p2yY5rZMVtVRp3yPKgjWHIk8wtk+OtuY9uepCyFkA+L3VRouevYLGnCzEvbLKhrdox+bKfjzM7fCZu9z3NQsbOXazcusq2g07NyOBxqf0jWysqa2duFmfXJ+qpKpYJqtapiY/QkZTzbwq3h8XjQ09MDv98Pr9erXmcixWZegNnv16o8zVgmvQkIX5MyyjAMVaPLptksVGdeRSdhb8EcbD/IdWVGrd4JWSjLtmRG++2c/3bHd8tKkl3eM5kMfvrTn8LhcCAYDMLn82FoaAjve9/7MDIy0jZxHQ5HG4+sF4KyvkZy2sDGmN+tqJut/L0d6K45sJ70wYJqdou5dOkS0uk0XnnlFczOznaNkuxkHW72vsxelq/V63UUi0W1J+DKyopqW3W7MHvOnEdLS0t46aWXEIlEsLS0hEgkArfbrXYX2S5uRe/tZGz23dhNhQ2nE4kESqUSTpw4gUKhoGoi2S2J4ZVyuawMFJmvwLVOelPmD+hCVp9fbBphGIbyYFinx/8pbxKJhAr5sNl6KBRCNBqFx+PB0NAQEokECoUC+vv7VZ/X1dXVrjSiNnNMbjWnzVgbenc9PT1IJBKIx+NotVrKGOZnOa7SkNHf38xxYuyTG2+zD+9m6BQek++b0bqbYVtKstlsIpVK4erVq23FoseOHcODDz6IkZGRthvUe+7JWKRhGGrHcZnU0+nB6ZaoPsj6MWYUwWYwO1Zy7vQY6TnbbDYsLS2per/Lly9jcXGxKwTpZhNtMw+807gxFvnqq6/i2rVrbQvvToFefaPRQDKZxKuvvqoaXQeDQbjdbuTz+W2fVxfe3TC+W4XdbofH40EgEMDevXsxNjammIB6vY50Oo2FhQXFotB7Z0kIX+dns9ksqtWq6u3KWjiGUcwSfijU2E7OZrPB6/Wq2OLQ0FCbV8hGEn19ffD7/ejp6VHKNB6PA4Da2i6XyyEej6vs/G73JM2M3K0oS/09u92OYDCIWCyGaDSKSCSCZrMJj8djeoxkH3V5anZ++VmG5NjacjOYJQttJqu2ii0rSW4fJXvryWYAlUpFda+gIGUw3+xGb9c1l8p2K9jMI+ok8PXFqk8uWq3VahUrKysqjbzb4pFboaTN4Ha7VeazYRjIZrPI5XIq7ny3Ua/X1bZMgUAA0WgUlUoF+Xxe3QNbmG0HbwYF6XA44Pf74XK5VIq/NBZJX8tYJHu0VqtV1Ot1eDwepST5vP1+PyKRCKrVKsLhsCobobEtKTu9VzKw1vu5VCrBMIy2/UN7e3tVmIdladFoVIV/2FeUjbKBNaHN3UIGBwdht9uxsrKyZZmyU6F7csR257XNZoPH41G1yKVSSbUFNIN+rVvR7TR46/W6krVA+yYVm8GMhbwdD5LYspKkl1itVtVGqn6/X/VuTCaTmJ6eVhlkDodDpf7rNykzVM1iFZ28SL1kZLNsxVtZELoCMPtb3x6IdCupnFwuhzNnziCZTKr907oBt1pAt5pkfX19OH78uCoPevXVV5HL5W7Lk5PYalu5YrGI6elpuN1uvPWtb8Wjjz6KarWKQCCAK1euIJ/PY2FhYUuU7+3Gz3YK9O8WDAZx/PhxxGIxHDp0CD6fT219RQVGhdPb24vR0VEVk2dilEzYo6fI34wd62VhZJ2Y9yApular1SaEdU9D/z8SiajSH7I+bJFJutbpdGJ0dBThcFgp3xdeeOE1hwHeyKDBI8fgduByudDX14ddu3ahVCqpcqDV1dWOTBJhxgDqYE/nbDar6iPZ7nQzJamv1TvhRQLbUJKRSAStVqvtRl0ul1pEpVIJmUxGcci09OSE3+xLbMW66PTTCWbeKhfdZl6kGe0jj2fiQrVaVQXJb/YaSYlAIKBaSd24cQPLy8tbble1GSgIb7W42bCgXC7D7XZj9+7dqNVquHnzJlZXVwFgQxKAhTVQADJu53Q625Iz2MVI9zAZ16OSZBKVWTtJKSilkqQy5m8JeqwUulSwcs9X0rbcHB1oz5zktdxut6KSE4kEms0m+vv7u3pOSCOCDN/twm63IxAIIBwOo1qtIpPJIJ1Oo1gs3tKo3oqCohJnKI5MgFlC6K3OcyewbSUZDAYRCATQbDZx8uRJHDp0CK1WCwsLC5ifn0ckEkFfXx98Ph/6+vraalyq1WqbktIbABBygZhlrZlhKwHoW0H3JnVvVVJOMlmBVnI3gc+bG59yiyTpVbRarQ07KthsNrVLvMfjQaFQwPz8fEeqRGcV+PtW7f8IuRk2aTgKXLfbjXg8rq49PDwMAEilUvD5fCgUCqosQM6vWq2m9kZMpVJYXl42LU/qFhiGoejxgYEB7N27F7t27UJfXx8Mw2jrnsMxZxE5lZTc/UFvcG0Yhmo2wLGR2aRm8THdCJY111TITAKSQp/zk3NKzlW2zqMcYhIej+vt7YXT6VS7iHQTnE4njh49ij179qgwkfyOfGZy8whg7VmxIxE/MzQ0pDZDZgJVIBBAf38/9u/f35Z7ItvLdZIBXOsc40gkgmg02tagotlc2+T+2LFjKJfLG6oteD1ek8yD9Jq51uv1OqamptTelbfClpXkwMAAWq0WFhcXVbbgL/7iL+IDH/gALly4gM9//vOYmJjAvn37MD4+rhp+B4NBOJ1O5W3JOkk58TkwZoqQD2Mr1KzE7Qg0PfgrY2jSagagEhW6TUlKWm1kZASjo6Pw+/0YGhpSjes5GRmTlTTZ+Pg43vOe98DhcGBlZQXnz5/vmGIvM6C5GDr1wTVTnG63W9HfzGrk1kgejwejo6Pquxw9ehQHDx5EKpXC2NgYCoWC2t9SekaFQgELCwsoFos4d+4cnnvuOZRKpbbWit0Eu92OeDyOnp4e7N27Fw899BD279+v1oHMLajX60oZFotFpNNpVKtVpFIpVS9Mg4JbVTFEQdosEAgob46Z4kB79yrpMUpZIbNnS6USUqkUarWaUr6kV0nfUmkyZ4IClPEulra4XC7s27cPqVQK169f7zol6fP58O53vxsf+MAHkMvlcOHCBaRSKfU+DRnuw8r1l8lksLi4iHq9rppzRCIRJBIJ2GxrGy7TiKa8B9C2BySbNJBhlCAbAKxvd+bz+TAwMIBQKKS67dRqNYyMjODd7343ms2mSt6iMSyNLybvsTd0Pp9HvV5HLBZDX18fCoUC/t//+39YXl7ektzespJkXZTf71cCKJFIYGBgAHNzcygWi1hZWVGdLLxer9pgWQogMy56qwpms6Dza6EPOmVEdVLCcgF3o3fBwmuPx6O6kwQCAVUzRyUpMxN5HFuYsQ0da9LYdJxWJQAVH2LPT/lMWc6hMw68HoVfMBhUSpJ1cMxmZDiAQpOdeAAgHo/D6/UikUigr69PzVG73a6S0wqFgopvAe30YDeBApI5BsFgEKFQSHWhkVmIVDKNRgOlUkmVc7BhvVwTtOBl4Xmr1VJCDWjfwUU+WypaaVBzvlGY8v6q1aryOBj/5Gd5Ten10tOlfKJR6Pf71bm6DYax1i2tt7cXXq8Xq6urG+hLKh5gXa46nU7lDDCDmEYO1xXXbygUUgqPYyzrx5lcpbN0HBeW+TDhinOGn/P5fIoe9/l8bbS5NJI4rl6vF9VqVfWMjsViiMfjKr65VWxZSYbDYQDAyZMnsXv3bjgcDvT09GB6ehoLCwuKyigWi8ryKJVKbdSX1+ttW3QyGeBWzWolJUPL9naVk/QWdeWox0zkvVIZyGL1bsSuXbtw/PhxhEIhRdFwQZB+408sFmvbycMwDMRiMaysrMAwDPT19eHRRx9VgotKUvcQpBKUzMHq6ipWVlba4oy9vb04cOAAfD6fUmyMk9C65MJhXBxAmzAcGRlRmZg63RoKhdrSzn0+H7LZLCYmJnDt2rXXbVzuFmw2G6LRKEZGRtDX16eEW7FYVFZ4pVJRiS80hlj72Gg0VMYj0F7kTyXJUhAqrUql0janZLyZHruMOQLrRisNKApgeq30IgGoJDGuZVmHLXMq2EjA5/Ohv78fLpcLU1NT9+7h3yM0Gg1MT09jYmJC1ZL29fUpOpVJiTLURYOUZXyyCUMsFlNZ0HSI6KXRuKGxSwZRUvayNp7jwjHkfpX0ULl+g8EghoaG0Gq1NiR3SerV4XAgHo+rECFlDet60+m00ldbwbaUpGEYGBsbU7GKZDKJ2dlZLC4uqouWSiUsLS2pOIW0NriI+IDkwpAJGVJYckLrAvp2FKTudepJOhK61yoXPpUCEwm6CYZhYGRkBI899hgSiQSOHj2KsbExVKtVLC8vK9qR481JTYVHy5CZbn19fUr40HuTlFw+n1cCTVqv3O3+2rVrajPfhYUFZLNZHDx4EO9973sRi8VUqYH0aCWKxaKizmjokA2hwSW9W2DNCmaROmPsKysrWF5exvXr17tuzOn9Dw0NoaenB3a7XSlGtmvjllgsEeGYcy1SScrsV6nEqCSpyKSBqdOpxWJReRU0qnUDVv9NKpDnJu3GuJSkYpkIAkApeK/Xq2h3We/XLajX65idncUrr7yCnp4ePPzww+jr60M+n0cqldrQ0IVgqQcAtfG2nAOGYaj6UypHboVHj51jIMeY65aw2WyKCWIOCw1lypVAIKA8QHm/VMIyLkl2ibLEZrPh6tWrWFhYQCaT2Vaf3i0ryVKppB4UJ6PsdEEBRQ+SiQ/ARjqTr+nYSuZip2O3iu0k8Oh0K18nldNtdZEErTJacNIyNIsL6yneMq5MI0nGJCVrwJIheV5pPbLji8vlUlQMFRjPa2Y0yWQrWR8nqWFatWYshqwDJs2k72fXLaCSCIfDSrhIgcP5IDNd9Tgi/5ZKkseytrJer7eVekj2QM4xaQhLL9OMAZLjSSXI++RxjIfxe5Ft4P/6ec2MrZ0Kzn/SkKVSCZVKRW04TSNBz3qV60eOtZwTesIdzysznM3GVZcnANrKiHi/ckzMWCez8+jfnedm+GRpaQmrq6tKn20FW1aSV69eVa4s9+qj8IpEIorfLhQKmJubU8XbfIhSCHLiSsp0q4pUvr4VgSXplu2CAyPd+VarhUKhoIyBblSU9AYrlQqSyaQScHLi01BgXRmFExeRngBQr9eRzWY3JEQwiYLg8+R5Q6EQ9u7d27ZTjM/nQ6vVUg0DZLmBPh5UcrryJmTav6SA8/m8SlTx+/0ol8tKUXabJ2m32zE0NIT77rtPbVDAmDRjQzbb+n5+ZklY0qOUvVC51iX7QPB1Pk+On1S29Pik0aYrNMZUpSdLQ0sa9NykQTeCdeq/m9Y0dyryeDxoNtc2GDAMAzMzM6hUKorho5LUjWGpJIF1z5vKl55irVbDzMwM5ubm2uLJ0jgB1kNY9DKlkc2t19xuNwYGBhAOh9vGMJ/Pq6SxUqmk5IZcj7qBU6vVlLx+9dVX8eSTTyKbzWJlZWXLz3DLSnJ1dRWGYSghJwOmdGd5U7VaDU6ns82lNaNQ5evyS+rJEbrFApgrVQleS39ts/fNzqGXpsgOIzpN1y2QVlqxWEQ2m1UTW2YeUsjR66IAlbEmufAY15ILz0woUQlT+MnNVqVVKXeYkVSONKJkg3U5Z6RQ53eWr3Pu0guh4Keh1E0g1dXf36+8ZtKTTNAAsCHRw2wdM+mLDBMVE+k1jpvs9aonZhHS65TsghSEurcvPV4mI8nvAqzPORq6uozqJrCzEBMvi8UiPB6PqmkPhUIqtg+sy0XKYLnm5I9cw1SUyWQSMzMzbXKeYyBjz7qSpEypVqsol8sqoQ6AMnp4PdK59DqloSTHkZDe8+LiIq5du7ZhH9tbYctK8vr167DZbBgcHES5XFYZYEzvPnjwIGq1GpLJJObn59VxOu3Vaq1lt0lPUqdddNyOZWemRPWHKL1YXWnyNVq28jVm1XVb6QewnukYjUYRjUbbDCBJX/B5USDR4pNZosCtBY/00Ck4dZpPxqp5jBwTCkp9rKQnw9f088jfUvjqc1O3hLsJhmEoupVGjhxj0tr8rJlHLo1gySjwc/QsaXRI4SipNkmhSUpP/y3ZHc5ZNsCW2fTMgKTglwYegDbvlAK4m8ZXGpB8Hs3m2iYAhUIBw8PD6O3t3dA8nB68zEpmjE9SodJZikQi6O3tbcskliEbma3K96iMOS/oefJvzjt9vCTDIelf6eUC6xn0rVbrtnd62bKSfPrpp2Gz2dDT04NcLqe+jNvtRm9vLx599FHs378fL7/8Mk6fPq0mIyektPD4xemmU0DyYeiepSwF2ErMQBd+ZlYqYaYopfUk9y3jQmIySDdu0moYa6niw8PDiEajba/LCU5Iz5HNBvh5YrNnRIVKi69arW7IeuS55NZXetq3zIqUwrPTfcjXZQ0uX9fjsbJkodvG3Gazqc2xSWNzXcrYnqQudUUp54WZMSO9UlnwL+OWFJj6HOtkQPNeODf1uSfnjywul7KAMglYr9PrJiXJJBk+o0AggEajgatXr6pdVUizM9HSMAy1vqTCA6DmBJ8Z6dpms4mhoSFVMpJOp1V8ks9dhmEYI2XyTrPZVKwR945kko7MSua1abzzNX5OdnjiNSUzcjvYspLMZDKKF6bFT6HCzibNZhM3b96E1+tts+515cZFsRkdqkMXYtuFXBhboVk3u6YMPncTOOlYssP6IpmAxd/S+9J/CGl0bDa2MmHLzKDh/9Ii1sdTZwE6wYwx6PQe700+m26EHHO9REf3yGnASCNE0vP6sfwt54dkG8ySeKRClDS4nqDB4/V70ueaTqXrxpKk8LstJinHjz8s75HhD/n8ZCMGoL3TFdefzuTQY6Py4kbnZvNA6gOZOCUbAuj6Q5fFsmuTDN3cDWxZSVYqFdjtdsUbl8vltoe5a9cuJBKJtpseHh5GoVBo8wKpIPUSEMA8wUfyzdIz1L1Fvq5DF9pyAXIwpJCVSSmkCHT6j/z+VvY320kIhUKw2WwIBAIqjsF+jHKSy8kox5YxQvk8paCVQo6/ZayJtIiubOXnOed4XT14LwUuoXukErqg1ylbsiX1el15Qt0iRCkcZTYqswALhUIbtUrWR3p+QHtinFRG/M2/JSVWrVbb2ooRZsaL2frWGSIqNr2sRIJxUJlhSTSbTeRyOaRSKdVBqFsQDAaxa9cu5U3lcjlFbZMlo5fFxKpWa33j8kqlomQ4d1sB1veOZQekZrOptiDjXDGrn6WnLsNVvAefz6eSxqT3zwQ9OR95z/qc0Q3nUqmkWvCl0+nbWrtbVpKkwdjeiXFJWqCjo6MAoHhput/MEmw2mxs8AGBzJcb3dQtfV6SAOQ1m5qnqLrncRQCAGkBy5jLmxmMkZdCNSpJ9PF0u1wZKWaej5VgwfVtOZiq8TpSZtESZ5MHXCTnWUslK48pM8OnGldkckl6SPI7zii3uqCQ7KdudCNKVXMd8DoVCAdlsVtFfVJ6UAWbrWEIqL1JtknmQJRryR/cq5G/APM+AwlNX0roxJjv2UIDzPtmogq31tlNo/kaGYaw1xhgdHYXb7UatVkMul9vQpIEKRxpKpNvz+TzS6TSAtT2FqfC4TuR2aNQLstk99QM/S0OanZr4PpVkLBZT98FOTtws3e/3IxgMtoVZ+D0BqPpYGtqGsZadvrS0hHQ6ffeVJFEqlZBMJpVL7ff7TYUK4zjkvQkpzOSgSO+tkxDq5F0A7R4B35M0AY+XQV09CM3PyMQBM/pmM89kJ4PP5lYxX8JMUcpWX7pykskvnSixTtfh8WbH6dmRuvDtpCjN/je7tqwNlHN9p4Otu7xer6LWms21JiAs32Ihuf785HPm67qHJ1kjYGOHLXlcJ2WprzV93ZkZwp3+18/BucHvLhVpt0DO30qlopghyjc99quzesB6OMTs+UkZIOPV7K4k8wsIOhr8PL1cJlnpmbZM3jOj6DuNP++t2VxrZEGlfDtjuy0l2Wq1MD09jdOnTyORSODRRx9FX18fgPUOCF6vF0NDQ8ojy2QybRah/GH/Pbr9+kaswLrFQmuEClV6CgDa+HO9H6R0z5kSbZYYwuvJnQ0kXSwXuz7w3QDWmemp/jJ5Sg+M62UXfF0WkxP8WwojOZ60PuUxen0cYD7G0jiipckxIovBecjPbQUU2nqSUDeAbb56e3tVY+pSqYSbN29ibm4Oo6OjiMViagcfPTQhC/J1xQe0j40ez5JjyWN4vLyOHv8izIxXXSZIgU8Z0ClGZrfbVRipm0q7OOdbrRbm5+cxNTWlNgPweDwbthoD2jcaYJIMAEXLy0x2OQaBQACBQKDNYK3X60qu05OUYFs7npN0LuF0OhEOh9FsNlWZD7BeYyuTt/g6vzfru5eWljA/P49UKnX3PclWq4VUKoUrV64glUrh5MmTbfGhRqOhYjjNZlO1MTOM9bRwChvDMNSOANVqVbWiAjbSJdIakoF1M89BClAKXl6ftVOBQEDFv8ziHBTaLCqX1+Jnu9GT1Ms3gM1Lafg3hZ9Ok+selzyvTP3WMyP1MdEFK+eHVNzynmRChzynmXe7GW3Iz+keULeMu8fjQTweVzSaYaxRYqlUCktLSyq7WRo8ckwldarT7ADaxsYsY5W/9TUsx3szr11Xmp1YA0m/8XW+Juk5PZOzW8DvnU6nMT8/D5/Pp+pHpRFj9kPZCbQbL/oaA6Da/UlGqlwuI5PJqGfLkIps9kCnRdbM8rdU0syQbrVabU1I5JhL44f6gv1aO+13eSvcFt3K/fUymQwKhUJbhhmtRz4UbmPDuhb5kOm1yaJwXUByEOmh6BluUhAC7Rls0v1n7U25XFa9CumGA+uCwO12IxwOw+l0ql6TBL8Xf7ptMUmvgEaCPh78m4JGLhzSK3xPt1DlWNG44nPvZICY0b9yDunn7eTF8n3+1uea9DbMIIV2t9BxLperbRcVAKqlGHu2sv6QjAqwXjtXr9exsrKCVqvVFteUtZbSGDKDPu7AxlZom0EKRz2ZCNjoTcpr6fNMb7HZLTAzBGVNqFQqcj1LBgZoN6Ile0CnSF93fOb0QGV8Ut/3ldeTSV+6ISWbech7rdfral1y7KQBXS6XVc/pe6IkqZGj0ShmZmawsrICn8+nNslk31Y2N2aHB8Yv5WRmAJcKVfcIpAXKQSB0oSUtEJ5HLlyfzwen04np6Wk899xzWF1dxdLSEhYWFpQr73A40NfXh5MnTyIajSISiSAWiwFY7yrBxs+yxrNbQIuONUwy+0wXVpIaA9o9Lk5coL3VmEzZlhSJ7jHKBSCzX/V4NtBe5ybfNxOuXDQyMUHGqLlopXDXPRy+v9NhGGsNBPr6+tDT06O2A6vValhZWcH8/DwOHDgAv9+PQCCAbDareq+yhm1+fh5XrlxBpVKB1+ttS8CQm+V28hR1Y1dXlBK6cczvoB+ne/7Sw9X7gfJ9ygrZtadbIJk1gklYMhudz4JOAZ81ZTMA5WhIT5HPS2cLZIkgPUGpRKk49Xvlb53+lZ+RThDvj/9LJc3EMXqSsrvSdrBtJUkvyuVyqWAoH6zU4nq7KVr+Os0m6c1bWZt6jU6nzxHSu+H75XIZKysrWFxcxMLCgmqjJHfB3rVrl5oAANR987vIxd9NkAk38rtuBjPhB7RPZrkQzRI29P914ddpvDmnZKxJXt8M8nvxGDMhbja+ZhTyToZM3KGgY/E5e2TK8AifB4Vps7lWLsI4HrMV5fOjsSSfnfxbsgxmHp4UlLoB1ImaNcuwltDnHa/fiYHYyZDyV85nKaMJjov0uqXM1mPPQHvMU15PZ5AkRSurBvTP6ufh8bo80ueITLTUv6PMwL0dbFtJyhvIZrOYm5tTm+ySL+aXIN/scrlUlpHchJNegkzekA9IUmq6VaF7kFLQcZHQ4q1UKrh06RIWFxcxMzODV155BclkUnXOofK02WzKow0EAjh27JiyMAOBAEKhkArudyNIe+iTV1qFuvUnJ6WZh9BpMptZh5KulYlRck7p98a5Y3Y9s/8JSffq7ark+aUi5rZB3WIc+f1+5Uk6HA7k83lks1kkk0msrKyoeLyeTch+nFzXtNar1SqCwSAikQii0ajKppSZiVJ56XS8GS1oRr8R0nPQPVSOm6Th5Oco6KkouC1ao9FQJV47HVwfLGmR8WE2EZCsmFSacox4LilvKQNlmY8cTz13BFina6VBArR7itJA1w1fOZ4M5fG8PJbH00vO5XLKIeKm4NvFa1KS6XQas7OzqFarGBoaQjAYbNP0TMzhw6aFmsvl0Gqt9wLk+fRFw4UlH7q09HVajMfQSgkEAggGg0gmk7h48SJeeuklLC8v49KlS8jn80r4AevZuaurq5icnITdvtaSaXh4GJFIBMFgUHWlz2Qyt/vY3tBgTFKWA0j6WvcyJaQAMlOG0ho0DKONUZBCTafEGOPmOXhOmd0qKVjpPcg5IRexpNnMunvI++Lx9LqYvdcN8Pv9GBgYQDweh91uV0pydXUVy8vLqsZZen00PrnBNS315eVlLC8vo6+vD/fddx+i0Sjy+bwS0LJDilzDpPSllyB/66/p0M8plSDvl3Na0oq8PpWDw+HoOiUJrIeJ+DewXgsOYEPxv/TI9Fi/lNFmG19Lo1auW12e6waNNIKlnNCNHSaF8vrMbqXckvfHpjeZTAaLi4uYm5szlVtbwW0rSWpzWiJ69hrQXiohA8OkavRMSp5Xjwfx781oE/maXCQ6L80EBJvNpopTAahdCuTWKkxgIPe9GfXXDdDjCUDn7E/dW+sE6X3e6tnplCehUzFm59KpOrnwNrt/s3m12ef0tPedCo4L43D0DrjPIIWmhDSa+J4sBWARObMWmRNgGO0dUvgj5YVZooZUnJ3GUDeKdG/RLJnE7Idjy5hbN0GXy3yueomO7r3pXncnKlpfe4Q0mAHz7c74N8dAP0aPM0pjl8dKBS1fk20GX0sewZaVpE59tVpr264kk0m43W7F+UoBywXEoDnjfLTG+QCazabaH0y677JpsU6zyYcEtAeKGRQul8soFAqYn5/H5OQkrly5ApttbVugaDSKQ4cO4dixYwCA5eVlZLNZLC0t4ZVXXkEul8P8/Dyef/55xONxRKNRDA4OdpwQ3YBisagoZz3uKn/rC0FanDobYBZ/kpRYJ8Em42AMzMvjpXLj/5IW5HcwW+TyWPm+Tvvwnnldlg91Q+IOsOZJ9vf3IxqNolQqYWZmRtWTZbPZtv1S6ZFUKhXkcjn1nOPxOJxOJ+bn55HL5RCJROD1etXrMofBrMG0VH5mRrYUpPJvQn9NvqcLVDPFS2Fqt9vVvqGdMpy7BfQkKWvNsvX5vGVinAyP0QGRhqO+JoGNWcdyrekyXHdu9PVLD5LX0hkv3gu/D42917pet6UkeXOcbOzrxwxVM7pUKknDMEypDOnm81qSGpHXl56mpNGkNUIByzZM6XQay8vLWFxcRCAQQH9/PwKBAMbGxvDggw8CAKamprCysgKXy4XLly+r47j/GKkn+Ty6DeT49QJjM6+yk7EgBVAn2kb+rStJ6bHxOp2sfv0eqCjlXoV63EouSH2RdgI/x3T1bvAkAahyp2AwiGw2q3qXFgoFtSOLPl4snWKWL2O0hmGonAMawo3G2gbZLCVhmYk+9hK6MpQlCXIcJczGQ7JIVISygYUuOOn9sutLN0MqGzO5TUgZrK8j6QzJMdINXrOcEakEzdY/0N4IhvKDTJ80wPkd+L+8rv7528WWlaQZ5aV7DJLa4JfVLQb9ochUf35GWgZmFqLMppLXkALUbrejWCxu8G55LYfDgWAwiJ6eHhiGgUKhoGKS8l5kMglfk5OmmyC9RF2x6BNtM+pTQh7fiarRaRyZ1l0qlVTqtpmSJF1opoj1e9WzI+X7ZlSf2Y/+3Xcy5FxmSIKJNmZjpT9b6an5/X709PQgGo3CMIwNcS6GK4CNO4zI85kpSeD2MotlQqBZ4o/+LDop4Z0MKn/5LIGNslg3IqXzQZmsG7ydWCOud7NETGn08j2CMr+TYS7vXXqk8py8JlkfuaH07WLbSlJ/jQqIgyELOyUnLAUcFSNrbGw2G7xeL1qtlmqiLNuT8bhOlr/McGTjAofDgUwmo+IsMvmDmYr9/f04cuSIei0UCqFQKCiLl6/LMhJJB3bi6HcqJGUijR6gPbYnf5sVX+sUC39LIcnPyfkArD3fUqmkunSQ4tMpGMY3enp6EIlEAKzv9KDHVOVvSeHwO+k1nVKomsVuugVkeOx2O3K5HObm5rCystLWyFyuQd3YkJ5IT08PACAej8MwDGSzWVUiJsMoQDtzZGbc6B6/GWNxO99Vn398XVJ1OoOxk0EjnzWwZnWici1J50MmxJl5erK2XTJ7Zl5lJ0ObkLLdzKuVHdTkMfJ7SqYDgGqSEYvFXjN9vu2jzR6wGaUlrQldwFEYS4uSX1oKZmmBmC0guWgkVacLQf3+5bWYGeXxeFStpFyg+sDz9W5TkMC6VWbmcenPkWPZCbfyLnWqFWivs2WxMykT6RXw+ZPyk/fRyZPUlbyZwaV7jPprZu/vZMhnTxqVWY+3UkryWdDgjUQiKptdxrmkHOC1pAyQskBeW75vpig7Ge7y+3GdMlFQfk7/flK2dQuoKM1e30yZybElpFyQDpJeYSBlo4wzdro/fb2Z/S0/v9lvgmzineigtG0lGY1G0dvbi1AohGPHjuH48eOIRqOK3qS1KBUWrXH+ljuD6LwzF5dOvUjlqi8WwzDaWqpRqHo8HgwMDKDRaKiuD+zyY7PZ8Mwzz6i2etyEdHJyUrWqi0QiGBsbQzweVzEWYL2xc7fFLmTPWlqKMtVaPne58MzouVtNTLMFwHGvVCoqvkVv0zAMNVcodGXsEVjfWV5XZGZKtJMS6ESvUnHfbteONyKoGOm9M3mOVBX7uQLr8Vi73a62MALWtk9qNBro6elBq9VS/TXZBkxPkCLrJCk6oLMnuRUP8lY0qvycZAZoAEtWqNsMX+ldyfnMtSYZEsphWRpD6HkAMklGUuLSE+fvTg4LIdmK7XwvwmzTAeohxqRfC7atJGOxGI4dO4ZYLIb7778f999/v9Lasr+jWWxSF2pUmNIjlQF23QrQLT35cGWHeg6w3+9HJBJRChNYEwwUBj/60Y/wL//yL7Db7UgkEggGg8hkMipJJxKJYP/+/YhGo21ZjRQY3bafJI0X9tOlF0cDx0yYUPDoXr0eu+j0nOTClLQclSTLCKRVy8Vts9na6FUeJz19nWaT5zHzTPTYlYx1VCoVVWDfDeBaMAyjTUl6PB4Eg0GlJA3DUE01DMNQG+Y6nU7E43EVqggEAqjVakgmk0qJmlH3ADaMg/6afH0r3oaZh6/LH46tNMT1XUy6SVFynTAhT4Yh5M470jjhWuT6J8i2SRkslSLQvoG61AM6bS9/m91zJ+hyh/OFTB9lgbx/1nC+FmxLSdJjI98rrU1psXSa6DqVoT9A3UvUP6+nBMsHZjbBSad6PB4kEgkMDAyoBdtsrnUAyuVySukBa4qCfSj5PbnxrFTw3YzNLD4zT14/Rqdq9PnQSRjK42nxyzZn+r3ox0qFJpW02XFb/c4SMl7ZLeDzAjauPwndI9CNCSk4eV75ntn5zOhO/fNmilL/eyswkzG6rAFuzYDsRGymkKhkKBM7rfFO/5s5Lfrft7qPOwWz+STn5e2GSm6Lbj1w4ADi8Th6e3vh8/lQr9eRzWbVjh9yh3m66DI4LrOt9L5/jB3Qk5RJHfzim01k+SA8Hg98Ph8GBgbwS7/0Szh+/Dhu3ryJH//4x1hdXVUCr1qtIplMqjqvkydPIhgM4vjx49i/f79KMEqn021CpVvBsZGGh1l8ViozoL2zhpkAkrSM9MqlJUjhS+pU9tRlAhbnkWxTJSlYSfHJ65oJYb0nbydIT7Vbxl/SbU6nE36/X3mAukHIJiB8TjJ5R3awoeeyGaUtr7+VewTMBeBWIMdcyhrOZenpskyl28Iom81Xp9OpOpOVSiUVk5YyHNgod6XR1ImZ4Wt66EL+1v/Wj5XQ9YReAUHYbDY1lmzQzy0ZmQS4HWxbSbIAOZFItPVrrdVqKJVKbfSFpFgo2Ki4dBdcZhZKoaoLXL4uHxavRWXMRSp3vX7ggQdw6NAhPPfcc6o9naRgKBwikQh27dqF/v5+7NmzBwMDA7Db7chmsygUCup73K5V8kZGJ0uRMKOkdIEpU7LlOTtZ6voc4bFSSHPfO16P4y3peBn37nQ9M9pOKgqz56F/V33T2J0MOYfJpnBu62VTkoHRG2M3GmvbEXH96RTere5hq9jsXGYCVZ+7OuUn5x7nk97Hd6fjVs+XXZe8Xq8KdTG0IpWSzuDpP5sxB50ocf1vM8apE2RCmM5Oynskk8iuUjQCtoNtK8laraYagzOxg9YkO+zoreiA9g13dctGV5KyxyCTNaSwkhYuHy7rsKRnw4XL+/N6vejv78epU6cwNDSETCaDZDK59iD+//c9MDCAgwcPqs1oeR+6Ir5V3dVOhPTC5PjpNJpcGPycWSzajLoxG3u5eAxjLf7F7Zbcbre6NhtqS4HOuKTuxeqxSF1Z8/OyvEO+J9+XNGs30a3VahWZTEbNZa/XC4/H09aJRY6P2Q+wkWqlV7kZXQeYZ5jKz2/2/2bHbObF6mtWCnAzw7BbYLPZEAgE0NfXh2q1inw+rxQiPSy9R7LuJTKkZlamIZWaLiMkzAzorbAOxK1ofPmedNZeS5brbW26vLS0hEajgb6+PuW+ejwe1XpONhPmlzerwdHr0TgIMruVX7iTSy+pO/0BMouVzYuDwSBOnjyJ3bt3o1qtYmlpCfPz8wCAQCCgsvoGBwfVRrOcTHThKUDYZb6bFGW5XIbdbleUpl7eIz1FnYbVY1tEp8QZXSHJ+IjX60VPT4/KQOQYc0cZMhJ8j3PQZrOZJlPRgJJeAgWC3C9P/568P87J26Vr3ohotVrIZrOYmZlRbSITiQRyuRzq9TpyuVzbd5XUut4yjHOAtLhscaZb9mb3wffNcDsKS6fgOnklNM7lcd0ak7Tb7RgZGUFvby8ymQwuXbqkNtbO5XKqllJf13KtNxoNld0tDUs9IUtiK4rSTKFutsa41s1yD+T9y/Cey+VCpVK5pYdqhtvaT7JSqagMN30x6JScLlCBdcteNhqQStNM+Zh5JfTqpJLVvZZWq6WaA7DtVCwWQ6vVUnVdABAKhVTCTiQSgcPhwOLiotqxRCp63ZLuFnAsOwXwNxsT/q8bNzrMrE9dUJIC0ikVZtI5nU5VBM+EKnk/uqDj8WaLUPcM9WPlWHcbg1Cr1ZDP59tiOKw9lcYqYfa3LpTk+JsldEh0mlf6+9uBPh8lzNatNAK6EVI2cu/QZrPZZkxyrM2MC7medOPRjAno9JoOM4/STFHKc21njMwM+dtlCLatJLllkPQc9ZsyuxkzulXStZspSX3Smy0EuQBkzIR0gtvtVjU9FLayftIwDHUvq6ursNvtKj1eHsNzmu2SsNORy+Vgs9lUckon44AeXicKjkpJGlCSqjGLb0jhxSQK6bnQeqRVzMQCKQR4LQk5D8wMG32+6rSR/Ey3UXErKys4c+YMgsEg9u3bh6GhIdMcAGA98QVop7SBdY9Mp703w2bKaTMjayswO056uGx8zXVtGMaG7jHdgkwmg+vXr8Pj8WBwcBDxeFyxgGwAQYcFWF8/+mb1Eroi03MSgI1Z5/prtxrbrbxvNsd0eSLpZLnv7HZw20pSUl+6+60/IH4hWv2SC2fhv+5V8gvLL2/2tw4uAql4uahLpZISwBTybNDMrDwqCKkkZDYl71XGbLoFmUxGGQdSMfF7SxqcsWKpfOQzk54af0slKeO7BM9js9lUXSupbWDjfpEAVE0nsRldJuNkekKP/pqZMqVy74aYZKvVwuLiIp5//nkEg0GEQiGMjo6aWtzSGif0hAmZS8DPd/La9L/1a23mCXbCZvKB65txt0KhgEql0kbby/Z53TC+BHd08Xq9qjmKw+FQ++TG43E1jtJAkI6ENEI7eXdS3gLmLeTk2JplperQHSD9df19nfXinJTM5+3I69tqaicpVWIrF9cXwK1omM3+lveiC1qz++FD0wWztDpkmyWzxAOZKNKNniSfCy1qs0kllaJOQcpnLxWeHnsG1sdfPme5GM3izPIaZu93glzY+vzY7Hjer3wW3eRNcu9Uw1hr8F8oFBTrwhpooD2WLGNBnQwSacR08izMnuGdeK6dzisVt1k4iOu+25SkdBTK5bJKuGR/a6/Xq76/7lGaGSs6g0TIc5jJDJ5TP9+t1m8nQ6vTOczkhXTCbgfbVpIyVRpoL7CWjW71G5YWhF5vJYWp/Oxm1oP+t4yP8vySgjPbgV4+ODOKTQp6t9sNr9eLQqGAZDKJlZUVlRlodj87ERw/7hlIo0CnNWQXHsB8H0DdyNCND53WkZ6oPJ+ZdSqP11P7JaWizxkaQfr9ynuVFG6z2VS7YqTTaVSr1Q2dY3YyKpUKUqkUyuUyXn31VeW17969G4ODg9i9e7fKZmcyl1Q2usHL95gDAJhvpsxnu9l60Y2u7VB1Zvcm4628R7JK/Ew+n1eJS93EEAFra/batWtIJpNIJBK4//770dvbiz179ijDn9DHU69WkAaFhOzXy3Zw0qjUwy9m43grJShf02W2mdNSrVZRLBZRKBRuO9Fy20pSptRKuo0TX38A+oOSGYQ8j+5dSC5ct97NFosUsFSIuoKVHPtmmY06eB7ZliuXyyGZTKJYLJoO6k4FnyMFI5u+67EJSb12ojp0wQi0b4ytJ3HJ93XqluchHSaZDCZj8fOkgQl9XOU1Oi1U3peMXzHLWWZp73Sw7WC1WsX09DRqtRoCgQBGRkZUuQCfgdnalmMrBSuTqiQ7I8fUrDMXzyd/69cwO0aH9GbkPGOiipQTNH55Ttmar9vQaDQwPz+P+fl57Nu3D+973/tw+PBhRKNRFQaTa0LGpvmsZItIrkVgoxLTa5r1Mbtdj+5WoRQzuSGz0m8X21aS8oGwXk1Oflk2YEZZdnKf5W8z724zy4LX1h8UoTdUll6I3o1FQnrH2WwW+Xwe8/PzmJ6extzcHFKp1AbrpRuUJdDu+dOQ0dPlAXNDRr4vx9KMatdjg1Kg6pBziouPxg+tYTODTH4fQp9D8pz6fekeUDfRccDa92NfWq/Xi3g8jp6eHoTD4Q1rSz4nfY1J6lKuw07j2UkOdFKWZlTerdabDLHoylPGuBmzfC0JHm9U6MxcuVzGjRs30Gg0sHv3bpW8I589lYrD4VAJmux+BWzcJ1j+LTPROzkfurwgNnM6Oo01HS6CDFCpVFIsyGvBbW+0ZRhr2+OEw2E0Gms7a+hCSj50XYHpsSx9UZnB7HPSS+l0vN1uV11+ZGGppM70QQfWPc1KpYKpqSmsrq7i+vXr+OEPf4jZ2VnF73cr6BWwPpSeQad4lK44dWrNLIBP6EKy0xwwU2IEaXY9MUgaSNLj0cHrkjbi8TIuyUSzbkKj0UAmk1Ge5MGDB3HkyJG2LiUyJis7Yem0OQWmnC+dPHa+z7/l62bYjE3S6XKOnfycnDukWyn02Zid9HO3QDoClJHLy8v47ne/C6/Xi8ceewzDw8OIRqPqudfrdRQKBZUBTCXp9/tVDFOOv1RQlA0yccvM2OlkKG/G0mzGIgLrJX7VahUrKyuYn5/HysrKa5bRt+VJSsHHh2W2Z9lmXuKtrgFs5KV15apbqp0ErB4wljQC71tvYCA/32w2kcvlsLS0hKWlJSwsLGBhYWHTe9/JkM+RYwysxxL43HTBZzZxZcckvfSDn5XXldfXYebp6awB3+P9yTiovrh161kWycu4upnS7zawrWSr1UI4HFabKFORye8s6W5dWfIYM9YIaKdlO423/LuTct2qp9HpvFKYA+tlXdxqrVughzaANS9xdnYWhmHgyJEjqjEKwez9SqUCu93eVjon+yVLuUCYjZ2ZHjBjlcyOka/daszZOIBjmc/nVab+a8G2leTi4iJefPFFRCIRlMtlrK6uwul0qmwp9sqTHLZcGLTKpcXOvzdztaWQojVvphz1eFmzuVY4G4lE4Pf7sbKygkuXLqlALicOJwDLQJgqzs4jCwsLSKfTWF5eVn1e9fvrBqq11Wohk8ng6tWriMVi2L9/P0KhUJt1KCetpGAIOcZSqcgFof8tf8txlTA7Rj8/sK4kSc/q80oqQbOm5Wxm0Gq1kMvlVEJHoVDoqv0kJWRbSenhARuVC5s5SOghDOm1Axu3UZLrU77Gv2msSHQyTsyyVeW9t1rrDfOlJ8PuTlTY6XQa6XT6NcWv3miQYRK5dvmsa7UastmsaqISCoXUdmm1Wk2F1Lj+zWplua/k5OQkJicn20rkzJhFevJMAOX5dYZCGtdmf+u0ORV5oVDACy+8gPPnz2NhYaFtezszJXwrbEtJtlotzM7O4kc/+hG8Xi+Wl5dx48YNhEIhjI2NqT3lotGoUpAM4stgvjwff5vV0OnX5ueYOdUpw4r1UFSYLpcL8XgcwWAQi4uLeOaZZzA3N4disag6jjDlvVgsYmVlBdVqFaurq6oFH8/HespOz6cbsLKygnPnziEWiyEej2PXrl2w2WyqpkxSaKFQCH6/H8BGQ0b3wqR3apadKpPBtpphaKaEKcgl5cP7azabbc0hstmsalfF+2DWI7DWYCGTySCVSilF2S3jTJBW93g8KjNVT4CSn3W73W3NHvhM+QxlxjKfldx/VV/fZnNEhy7sdQpferfSU+VPLpdrU5LA2nzz+/1KLq2urmJ5eRmlUunOPuDXEZSZQPvG13zG5XIZ6XQaLpcLPT09SCQSyqhoNBoqq98w1urMJRVNb5LP79KlSzh9+jRKpRIymQwqlYpai/oxbAPKvUsZ1qHC5PqVrJBMGJWJexxDyoJUKoUf/vCHeO6551R2K7DRa93qOr6tBuf0wpLJJJaXl1GpVBAIBFCpVNSO5E6nE6VSCX6/X1kOZrQnIYvXJZWnL1QqQR6jxx2427ruxZTLZTgcDuRyOaTTaZWdyg2WK5UKPB4PSqWSikukUimk0+mupNc6gQskk8nAZrMhk8kgk8m0FV4zNie9OTlO0pM0oyrNLH858XUludlkNvMUZdxZCgSZfEKLOJvNIpPJKEOIMVcK9Ewmg3Q6jUwmo+ZVtylJYF3xMB7F7ktcs7Lsh+uPnwfalVQnL5AC1owlMPMuze5P/jYztszoeABq3VPGGIahmrnb7Wvb4JVKpQ3UYzdCelPVahXpdBoOhwPJZBKhUAjAekkdx90w1nph61425XWlUkE2m0UymUSpVEI2m1W9oKkkpSdJeet2u9s8VipJSe3qniK/A89dKpXUTkH1el2t13w+f0fqXm9LSebzeZTLZVy4cAGzs7NwuVwIh8NwuVxtOzfIvSOla0wBRZebliwfBh8qPyuVrFm2lIx3SSEmKQKfzwe3240LFy7g5ZdfxsLCQpuw5/WpZJnt1kkgyphKt2FlZQWvvPIK/H4/yuUyLl++DJ/Ph/7+fni9XuTzeSSTSTSba03HuR0Zf3fyFmQtq1Rc+iSmt75dYdUpZilLfng9/s0Ca16TPSypJNkEv1gs4ubNm1055s1mU5U+TE9P46mnnsLNmzfVtnYyY537D9Lj5POQoRWueTaWbrVaKiO8WCxiZmYG2WzW9D42gzSadNpf/jYDE/B0upUNE0gVlsvlrvIkJczm7vXr1/Gtb30Lfr8fIyMj6O/vbwtXyLUgEx352+Vywev1olar4cUXX8SlS5faNoCQxq80ZilvSfPrdKtuAPG37g1SUUqDvVKp4ObNm6Z5JlsxvHUYrS1++lbxtq3G42RKMekdh8MBn8+nOGpaETJY7Pf7VSxEuuJ8gFLJ8kHL2AkH/erVq/j+97+PpaWlLd3vrb6r2ePbqYJUH0On06l2DgiHw9i3bx9CoRBWVlYwMzOj6BgaR9xflFahVJZ6LNksLi1LiUiNyWfZaY5JxcjFSIErvVrWBTIbm8qS12JNpBT0ZEv0QuSdOsbA5ms1Eong2LFjiMVi8Pv9iMViajy5VrkWeS4Zm6bQI2UdCATQaDTw0ksv4cyZM0ilUjh79qzafeeNhG5ey3xN0tDydbvdjr6+PsTj8TZ5zPdldqt0VkiXNhoNPPPMM3jxxRfviie+Vf1C6HF0vnY7Y3zbJSDbvRAhPQdZd6ZreNkblB6iPEYOtvxbUj2d3t+pE/9eQz4vMxpMf6Zmk1CnOs3OqVNtt4pPdQLHXt6nTvXq9ySVtqTx5LzrVoq1E8woarP3O1noneaBtQZff3RSEvo60cdIvibl7L1aH6/nfNmyJ2nBggULFiy82dAdTSgtWLBgwYKFuwBLSVqwYMGCBQsdYClJCxYsWLBgoQMsJWnBggULFix0gKUkLViwYMGChQ6wlKQFCxYsWLDQAZaStGDBggULFjrAUpIWLFiwYMFCB1hK0oIFCxYsWOgAS0lasGDBggULHWApSQsWLFiwYKEDLCVpwYIFCxYsdIClJC1YsGDBgoUOsJSkBQsWLFiw0AGWkrRgwYIFCxY6wFKSFixYsGDBQgdYStKCBQsWLFjoAEtJWrBgwYIFCx1gKUkLFixYsGChAywlacGCBQsWLHSApSQtWLBgwYKFDrCUpAULFixYsNABlpK0YMGCBQsWOuCuKcnx8XHkcjnT9x544AH88Ic/vOU5/uRP/gQ9PT0YHx/H+Pg4fu3Xfm3DZ5aWltDX14fHH398w3ulUglHjhzB+Pi4eu0rX/mKOt/4+DgSiQT+/b//9wCAGzdu4NSpUxgfH8exY8fwwQ9+EKlUakvf14IFCxYsdB/umpKcmJhAMBh8zef5tV/7NUxMTGBiYgJf+9rXNrz/27/92/iFX/gF02M/85nP4G1ve1vbax/5yEfU+SYmJtDf36+U7+DgIH7yk59gYmIC586dw+DgIP7kT/7kNX8HCxYsWLCwM3HXlKRhGEin0wCAp59+WnlnH/nIR1Cv1+/INb785S9jbGwM73jHOza89+STT2J2dtbU+ySeffZZLC0t4f3vfz8AwO12w+v1AgAajQYKhQIMw7gj92rBggULFnYe7npMslqt4kMf+hA+//nP49y5c/jVX/1VnDlzRr3/xS9+EX/8x3/c8fhvfvObOHHiBB577DH84Ac/UK/fuHEDX/ziF/Fnf/ZnG45Jp9P49Kc/jf/+3//7pvf25S9/Gb/xG78Bp9PZdr+kYa9cuYL//J//83a+rgULFixY6CLcdSV58eJFOBwOvPvd7wYAvPe978WePXvU+x/72Mfwuc99zvTYj33sY5icnMSZM2fw//1//x8+9KEP4ebNm2i1WvjoRz+KL3zhC8rzk/jkJz+JP/zDP0Rvb2/H+yoUCvj617+O3/qt32p73eVyYWJiAouLizh06BD+x//4H7fztS1YsGDBQhfA8XpcdKsUZn9/v/r7bW97G06ePIkXXngBkUgEZ8+exYc+9CEAQD6fR7FYxLve9S6cPn0aP/nJT/CTn/wEn/rUp1Aul5FMJnHw4EFcunRJne+b3/wmjh49iiNHjphe2+Vy4SMf+Qj+43/8j/j0pz/9Gr6tBQsWLFjYqbjrnuShQ4dQr9cVVfrkk0/i2rVrWzp2ZmZG/X3lyhVMTEzgvvvuQzgcxurqKiYnJzE5OYnPf/7zeO9734vTp08DgHp9cnISX//613HkyJE2BQmsUa26F3nz5k0Ui0UAQLPZxDe/+U0cP378tr+7BQsWLFjY2bjrnqTL5cI3vvENfPzjH0ej0cCDDz6IEydOqPe/+MUvYm5uzpRy/exnP4sXX3wRDocDdrsd/+2//TccOHDgNd/TpUuXMDExge9+97ttr589exaf/exnAawpyfvvvx//9b/+19d8PQsWLFiwsDNhtFqt1ut9ExYsWLBgwcIbEVbHHQsWLFiwYKEDLCVpwYIFCxYsdMA9V5IvvPACfu7nfg5jY2M4deoUTp48iT/90z9V7z/66KP41re+ta1z/t3f/R3C4TDGx8dx4sQJHD9+HN/+9rfv8J1bsGDBgoU3G+6pknzllVfwvve9D5/4xCdw48YNvPjiizh9+jSy2exrPvc73/lOTExM4MyZM/ibv/kbPPHEE3fgji1YsGDBwpsZ91RJ/sVf/AWeeOKJtl6rsVgMf/mXf3lHr5NOpxGNRtX/n/rUp/Dggw9ifHwcP/MzP9NWDvLtb38bhw8fxokTJ/CZz3wGiUQCk5OTd/R+LFiwYMHCzsQ9VZIvvfQSHnroods69jvf+c6m3uEPfvADjI+P48CBA/jlX/5l/NVf/ZV67zOf+Qyef/55TExM4OMf/zh+93d/F8DaDiIf/ehH8Y//+I84c+YMDh06hNXV1du6PwsWLFiw0H14XRN3fv/3fx/j4+MYGhrCq6++uuln3//+9+NLX/pSx/dJt16+fBnPPvssnnjiCczNzQEAvv/97+ORRx7BsWPH8LnPfQ4TExMAgGeeeQbHjx/HoUOHAAC/+Zu/CZfLdWe+nAULFixY2PG4p0ry5MmTeO6559T//+W//BdMTEzA6XSiVqvdsescO3YMo6OjeOqppzA1NYVPfvKT+OpXv4pz587h61//Osrl8h27lgULFixY6F7cUyX56U9/Gn/7t3/b1ummWq3esa2ziJmZGVy5cgUHDhxAJpOB0+nEwMAAWq0WvvCFL6jPPfzwwzh79qyKUX71q19FtVq9o/diwYIFCxZ2Lu5pg/MTJ07gu9/9Lv7oj/4In/jEJ9DT0wOn04nf+Z3faWs398QTT+CTn/yk+v+b3/wmlpeX8Z3vfKcj5cqYJADUajX8+Z//uWp/9+EPfxhHjx5FPB7H448/ro7p7e3Fl770JTz++ONwu914z3veg0AggEgkcse/uwULFixY2Hl407ely+VyCAaDAIBvfetb+IM/+ANcuHDhdb4rCxYsWLDwRsDrslXWGwl//dd/jW984xtoNBoIhUL42te+9nrfkgULFixYeIPgTe9JWrBgwYIFC51g9W61YMGCBQsWOsBSkhYsWLBgwUIHWErSggULFixY6ABLSVqwYMGCBQsdYClJCxYsWLBgoQO2XAJiGMbdvI+uwk5NGH4jjPHt3MPr8bx36hgDb4xx3inYqeN8r8bYZrPBZlvztZrNJprNpum9OBwOHD58GIcPH0YgEMDevXsRj8dx8eJFfO9738PKygqKxSIKhcI9f+a3ut6WS0CshbV1WAtr+/B6vRgbG0M0GoXL5UIwGITdbm9beHa7HYZhoNlsol6vo9FoYGFhAfPz86jVasjn8/esreBOHWPAWsvbwU4d53s1xoZhtF2Lz4u/Y7EYRkdH4ff7sXv3buzevRtutxuhUAherxepVArT09MoFAq4fv06rl69ikqlgnw+j0qlck++w63G+E3fTMDCGwPBYBAPPvggDh06hEgkgsHBQbjdbtRqNdTrddhsNrhcLtjtdtRqNZRKJVQqFTz77LN4+umnkc/n0Wg0rN67FizcQ7RaLaVkdK+y1Wqht7cXP/MzP4NEIoGenh4kEgm0Wi1l0I6OjuLhhx+GzWbD6dOn0Wg0kMlkMDs7q5QklfDrZbDsOCVpGIbyKLZjLUmPxIwSsHDvwLGz2Wxwu91wuVyIxWKIxWKIRqPw+/1wOp1q0clxJnXjdrtht9sRCoUQj8fhdrtRKBSUh1mtVq1xtmDhdYLdbgcAeDwe+P1++P1+2Gw2VKtVNBoNFAoFVCoVuN1u2Gw2OJ1O+Hw+hEIhtFotLC4ubjinYRivi6J8XelWCktpjdwKwWAQfX19cLlcbZbLZkqzXq8jk8mgVCqhWq2iUCig0Wjc8t5ud0Asiqb9nDwvlZbH40EwGITH48EDDzyA8fFxBAIBDA0NIRQKYWZmBmfPnkUul0O5XEapVFJK1WazIRqNYteuXUqZut1ulMtlXLlyBUtLS5ifn8fExASy2ewd/z7ETh1jwKJbt4OdOs73coz1a7lcLkSjUfh8PoyNjeEtb3kLgsEgpqenMT09jXq9jkqlgkajgXg8jn379sHr9ar1nUql8L3vfQ/nz5+/J/f/hqZbKUAZZ9rKhPR6vejv74fP54PdbofDsfYV6F0C2ODyVyoVOBwOZLNZFItFlEqlTZUkz/N6WS7dBCo3YJ2acTqdCIVCCAaDeOihh/D444/DbrejVCqhXq/j2rVr+OlPf4q5uTkUCoUNwfyxsTG8/e1vR09PD06dOoUHHngAtVoNAwMDmJubw4ULF3D58uW7qiQtWLDQDkm7RiIRRCIRhEIh5UFevnwZP/7xj1Gv19VnE4kE5ufnEQqFcOrUKbzlLW/B6uoqnn322dfzq7ThdVWSrVZrgydpt9vhdrthGAacTifsdrui47xeL9xuNzwej6Ld6FE6HA6lMHnOZrOJRqMBh8OB3t5ehEIh5PN5OBwOVCqVNgVdLBZRrVbVcdvxbi2Yo1MsIRwOY9++fYhEIvD7/chmsyoJJ5fL4ebNm8jlcqhUKqjVahsMmlKphKWlJVSrVYTDYXg8HthsNrRaLSQSCfVTr9dRKpVQLBbVXCOssb272IqBydCJzWZDKBRCIBBQhi/XJem5XC6HbDZrUeg7AHa7HZFIRDF+y8vLaLVayGQyaDQabWNYrVaRy+XQarWQy+VUrDKRSGDPnj0oFotYXV1FrVYD8PrEJ193JakLQL/fj97eXrhcLoRCIYTDYSQSCTz22GPYu3cvLl26hB/84AdIp9PweDwIBALKM3G73W0KrlKpKC/y0KFD8Hq9SKfTmJqaQqlUgt1uh91uR6VSwfXr17G4uIharaZiW1vB6x1UfiNCp77lojAMA/v378ev//qvo7e3F9lsFq+++ipWV1fx1FNP4caNG8jlclhYWFACUkcymcSLL74Ip9OJl19+GeFwGL29vfjgBz+IU6dOwev1YnZ2FgsLC7hx4wauXr2Ker1+W/S+he2DcWQanJ3gdDrh9/vh8Xhw4sQJHD9+HB6PR2U+5vN5LC8vo1Ao4MyZM3jppZdQq9W2zDpZuDfQx8Lr9eLAgQM4ePAgbty4gaeffhrZbBaZTEbNB8qHYrGIqakp5Qj19vbC4XDg5MmTuO+++3D16lWcPn0aKysrbazUvZwDb7jEHafTiUAgAI/Hg0QigWg0iqGhIZw8eRLHjx+HYRj46U9/qqxQJn74fD74fD7lPTabTbVYXS4X+vr6EIlEEAwGUa/XUSwWlfdZLBaxvLyMTCYDwIrZ3AnIOKSkYQzDQCQSwaFDh9DX14dXXnkFk5OTmJubw/nz53Hp0qVbnrtcLqNcLqvr2Gw27Nq1C7/0S7+EeDyOnp4e9Pf3AwCWl5et8bzH4Jjcyuvj+nW73ejr68OBAwfg9XoRj8fh9/uRTqcxOzuLfD6PmZkZOBwONBoNy8h5g8PpdCIajaKvrw8zMzNYXFzE8vKy6Wfr9TpyuRwcDgcymQwymQz8fj96enoQCoVQLpfhdrsBbJ53cjfxuilJwzDg9Xrh8XjgdrsRj8fh8/kQi8UwMjICl8vVtsiuXbuGcrmMxcVFDA8PIxqNqvdsNhvK5TIqlYrKlAKAbDaLlZUVRckypXhoaAgAlKVbqVTQbDbR19eH1dVVXL58Gfl8HrVaTbn5nb6DhY0wE2I+nw+7d+9GJBLB7t270Wq1UCgUMDk5iRdffBHJZFIZKcRWY8KtVksl7jz//PMolUoYHR1FIpHA6uoqXnnlFfW57Z7bwvYgmRWz5+vxeDA4OIhQKIRoNIr+/n74/X6MjY2pPAPSbvV6HV6vFw6HAwcPHlTG7czMDFKpFGq1GorF4i2T8CzcfRiGgWg0ilAohN7eXni93k0/L0NtwJoxvbS0hHPnziEajSIWiymnxuPxKH3wehhId0VJboWCNAwDoVAIiUQC4XAYx48fR29vL2KxGIaHh+FwODA1NYW5uTkAwMTEBM6cOYNQKIQDBw7A6XRiZWUFyWQS1WoV6XQaxWIRHo8H4XAYhmFgdXUV165dg8PhQK1WQzabRX9/P44fP66sFCaLDA0NoVwut9F9xWKxLchsYevQvQgm6ezfvx8DAwNoNptIp9M4d+4cvv/977d5h8B68hVgPo90OrdQKGBiYgL5fB7Dw8N4y1veAr/fj6mpKRWDlgtMWqXW+N5ZbPY8/X4/Tpw4gT179mBgYACHDx+Gz+dDrVZTMeilpSXk83kEAgH09PSo5hJHjhxBOp3Gv/3bv+HKlSsqfqUrSSv2fO9ht9vR39+Pffv2IRwOIxQK3fIYOTbNZhM3b97E/Pw8BgYGcPLkSfT09CAWiylKvlqtqnV8L9fvXfUkzax1m82mgvM+n0/V0LjdblX/RuuRFkS9Xke5XFaWJSkap9PZlqBDmpUPkZ1ZgHWvUd4DfwCoZCCv16t+ZL2dHnB+M3mRd8LrcjgcqqbR5/OhWq2iXq8jn88jm81u6rFv5b5I26ysrKiuPYFAAD6fDy6XSwlTPSZiCdG7A93idzqdcDgc8Pv9iEQiiMfjCAaDqh6WSVaVSgXZbFYl6fj9frW2HQ6HCsdEIhEYhoFMJgPDMFCv17ecR2Dh7oDxZL/fDwBqjW+VwSFzxxpKygSfz4dgMLihC8+9YoPuipKkkqIyarVa6mGxm4rP58Pg4CD6+vpQrVZx48YNvPrqq4qKo3UZDAbVwyKd2mg0UKvVVEsjxh9dLpfKcAXWrNaBgQF4PB5lubZaLVy7dg3AWj0Pk30ymYwqDxkZGUE0GkWhUEAmk0GlUsHCwgLS6fTdeFxvaGzHYtvMgnc6nRgYGMDY2BgKhQKuXLmCQqGgMt906O2tNrsWsLYgJycnsbKyojxHm82Gnp4eHDlyRHXxSKVSbVmVUnFamZOvHXK8+LfD4cCBAwewb98+xGIxnDx5EkNDQ5idncX/+T//B7lcTgnIRqOhPEQaOrI9ocfjwdjYGI4ePapCI9lsFtPT05icnFQxSwv3FlxrBw4cAACsrq5ibm4O09PTG7pg3Uq5lctlVSNZrVbx0EMPYXx8HBMTE3jxxRdvy6B+LbhrnmSr1VIeIz2xVquFYDCIPXv2IBgMYnh4GP39/VhaWsLZs2dx/fp1FItF9Pf3IxwOq4Scer2uPDoKNgDIZDJYWFiAzWZDLBaDz+dT6ePAmgWSSCTg9/sxOjqK4eFhLC4u4tVXX0WhUEAsFkMikUCz2cTq6iry+TwMw8DAwACAtZgmadx8Pv+mVJLEVin0Tp9xuVxIJBIYHh7GtWvXMDU1hWQyiZWVlU2V5FZRq9UwOzsLAOjv70e1WlWNB/bt24dkMolsNrtBScrrWXHKOwP9GdrtduzevRtve9vbEAqFVHPrGzdu4Hvf+x5mZmY6Hgu0C9WhoSE88MADeOc734n5+XkEg0GkUik0m01MT09b8cnXCVxru3fvRqFQwNTUFGZmZrCwsKA8/K2yb5VKBVevXkWxWFTj7ff7kc/ncebMme5QklJY0jpnhpLf70cwGITf70epVML8/DxWV1dRKBSUJSmbBNBrZFE5qViXy6Wom2azqZJ1SLGydpJ0LpOE2P+TdZhUwqTrmJZut9vh9XpV8XskElGlIYxjdmru2824lSLR35ct6JhNzN6N9CDuVEKNpF4Zv7Db7QgEAqhWq2qO8LNWPezdhdfrRTgchs/nQ29vLyKRiApj5PN5lEol0zrYzVCtVrG6uoqZmRkUCgX4/X4YhoF4PI6+vj6USiXk8/m2+LaFuweua4/Ho36q1SpKpZJyMDi+eq1yJzSbTeTzeSSTSYRCIVQqFZV86fF4FDN5rwyiO64kaaUDUB6k2+1WzQBGR0exd+9eOJ1OvPTSSzh//jzK5TJWV1fVxA4EAgiFQigUCmrST05OqnT+kydPIhKJqN5/lUoFyWRSdWahxxkIBNDb26tqL2OxGEqlkqJy4/E4RkZGUCgUcP78eVy/fl1lX3q9XgQCAbhcLtRqNbjdbvT39yOVSuHy5cvI5XJt37WbaB6dYtXjeNtRZDR4XC6XorcrlQpmZmawtLTUltG6nfNvRsdSkAYCATgcDoyNjSEUCuHChQsA1ualtEZ1Jd3pvN2MW9WQ6v1zAXNqVWJoaAhvf/vbEY1GcfToUZWhurS0hLm5OczNzZl6BWap/ryvfD6Pp59+GtPT0xgcHMT999+v6irD4TDS6TRefvll3Lx5s+M57wRzYWENHo9HZaGygTmTry5fvoxqtbptz69arWJ2dhbLy8uo1+vYs2cParUaDMNAX18fisUikskk8vk8gLu/Zu+KkpQ1chSwVDqhUAiRSAQ2mw35fB5Xr17dYBG4XC5l9bPPXzabVR6n0+mE1+tFJBJBtVpVdCh3gqDF4nA4lNfq8/mUJ0mPhoFmACr7lclANptNLbxaraa6QtAD1b/r61XDc6+xXU+P/RhpcZIuZ3FxuVzekidp9mw73Uej0UCpVEKhUFDdP2q1Glwul/qMHn+0WhGuwez7mylI+Xen5xUKhTA2Noaenh4MDQ0hFou1lXAUi0XTcdiMoanVaqpdocPhUIYwmQm/348rV67c8jtKWFT77YMJmF6vV8lYp9OpFJmOrWSmNptN5HI5AGtt6wqFAnw+HwzDUElBZi0n79YY3jEluVmHFY/Hg/7+fvT09KCnp0e1EOMDNgwD4XAYbrcbPT09aDQaqltOuVyGzWbDwYMHMTY2hnA4jMuXL2NqagqBQEDtADE9PY1araYEMb0XdplPp9NKEXq9XpXJCqwN9NDQEAqFAkKhkOoNWygUcPPmTbRaLZX84/F4MD09DcMwUK1WlZB/M9B2ZgYBv7cUbpysNChIdfN11rexFlWeXxeOmxkenRZao9FoKykhtS+TunTo15Lflej2xJ5O81c+m1vNcdZBBoNBHDhwAH19fYhGo/B4PCoUUigUkM1mUSqVTDPG5ZzSQSqu2WyqXszlchkulws9PT1wu93YvXu3CtEsLy+rdpO3890tbI5wOIyDBw8qbzKXyyGXy22aabydvIZKpYKVlRU0m0243W4cOnRIUfX3KkfkjipJCkF6hsxuDQQCOHjwoNpw0263o1qttm2+uW/fPkSjUcTjceW5MQ4ZCARw8uRJ9Pb24tKlS/jhD3+IYrGIRx99FIcOHUIul8PFixdVP1afzwen0wmPxwOfzwcAWFxcVMkc9GYDgQCAtXjpwYMHVa/BQCAAm82GV155BWfOnIHT6cTb3vY2HDp0CPF4HHNzc3C73VhdXVXxyW6DmTdhpiTJFjDuKF+ngRQOhxEMBlUXllKphFQqhWQyiVKpZFq7KK97q3vUFxbjy5lMBqFQCLFYDPV6XcXFb/W9dYUvLdRuVZR3SokEAgGcOnUKu3fvxtDQEPbu3at2a2Hjjkwmg5WVFdWzd7Nr6eNfr9eRSqWQyWQwMDCgxphGLEM08Xgc8/PzeOGFF1R2paUI7zz6+vrw1re+VTkrKysrWF1dva0NkylDgPVOXcViETdv3kQ6ncaePXswPj6OTCaD+fn5DZT63cJdrZMkrel2uxXVCqxbiuSzvV4vQqGQ6r/KchF6mw6HA16vV+1JRqquUqnA6XTC6XRu8AKkN8lz1Wo1JajZYIBWJpUjt17i+bjA7Ha7ohXYJYjN1uv1+rYTEN7IuJPChOPAZCnGOJksdTeeGQ01npv1ddvBm4E6v12Yedyk1BmiiMViSnlxowKOfblcRrFYVIXh2wXHlhtyNxoNFfNuNpuqm0+hUGjr1kID51axVAtbh8vlQiQSQTQaVcly7GAmcbtUqGwhytLAer2+KSt0p3FHryQpR4fDoUo8+vr6sGvXLgwODiKTyWBpaQmNRgNvectb8LM/+7Oo1+tIp9OoVCqoVquYn5+HYRjYvXs3jh49ikajgbm5OVy/fh1Xr17F7OwsyuWyUpT1el15jqRXbTYbwuEwRkZG0Gq1VMPk2dlZvPjii8hms9i1axfGxsbUsXzwpAZDoRCGhoaUoue1uDPJ3r17cfz4cZTLZVy4cAGTk5N38nG+oWCWwMPXOeaNRmPDYqDRwew0wzCUoNS9cHqft6qRvNV7Ena7XRlSTLLayjn5Xfh93wx0+lZARSibcdjtdkSjUUQiESQSCRw8eBCjo6OKxZFjXCgUcPXqVZw5c0atX0L34uUz7xS7Yn0llaTdblddnQYHB1Gv17GysoJ0Oo3V1dW2piPMVO8W4/ZegqV24XAYo6Oj6OnpwbVr1zA/P4+lpaW27OKtGpxSxnC8S6USZmZm4PV60dPTg3w+r2LZNLzu9tq8Y0pSjyGwTdGRI0dUfVxvb6/a9BgAHnnkETzyyCNIp9N4+umnVcbj0tISWq0Wjh07hvvuuw+pVApPPvmkUpCLi4tqd2t2dWAiDoUhaVU2EGD68OTkJJ5//nnMzMzg8OHDKo18aGgIkUhECVJmxw4MDKh+sFJJut1ujI6O4vDhwyiXy0ilUip+2a3YTGCZTVRm/1KAkUqRMedbneO1Pk+OHWPVW8FWlPSbFXa7XRmjMmt5dHQUQ0NDiMfjGBsbw9DQkPLoWZLF/sk3btzAuXPnOo63Ttt3AksBWEZEYzYSicDhcCCRSCCfz2NlZQUzMzMqj4Ayg3PQUpLbA9e13W5HMBjE0NAQEokErl+/jqWlJaysrNwW3QpsXHOlUgnlclllqZNOZwWDZAjuFu64J0kwMSYYDMLr9apAOuOCrdZag2uWAaRSKaTTaTQaDcRiMVWnyEXGHw4MW1Y5nc42q58Lj71Bp6en0Wq1VMpwvV7HyMiI2jV7cHBQUafcv46Zc3TvDcNAo9FAsVhUcVJmTsbjcVQqFUUVd5tgZaYxs4X1hCUaJBRYuuBjPatM3OHYcl7c6ZguPRGZWUtlSeptqyU7pGq70ZuU7RnD4TACgYCiMWW9sjR+3W63SsShl+5wOFT3LH0dkGbXvYk7IdiksJaKVWa4h0IhNd7AWnZsuVxWvWKZvU45w8xoq85yHXrMnw4HW4hyjJkwx8YvdwpcdzTQgLVkvFAopPQKx/dulIO8JiVpluVI2O129Pb24tChQwDW9gBkphnLLM6fP68aFV+9ehWrq6vYt28f3vrWt6oegJlMBul0WvVuDYVCuO+++xTdGY/HkcvlVP9HLo56vY4XX3wRzz77bFvv1b6+Pnz0ox9VTXij0SgqlQouX76M+fn5tqwpr9eLoaEhlUmXTCYxMzODq1evYmVlBSdPnsTJkyfRaDQwMTGBy5cvd1ViB8cwHo/D6XQiGAzC5XJhYWEB169fR71eV+U1TLZiPKLRaKguHKOjoxgYGIDb7Uaj0VDP1W63qyb1d1r5MJZNJcdyn0QioZJHtqKcuasBd1fvpiQt5gr4/X68853vxMmTJ1EulzE3N4disaiaddALJ9Xa19enqFSCPXIBKGOTmc00orY6xjrtbgYqSApqMhWtVkvRuI1GA3v37m2jcdkMn7sGMcOa3ZiKxSIuXLiAmZmZrjKIbheS/mYyjdvtVsxbf3+/CnEVi0W1nnUa/U6AXmutVsOhQ4fQarWQSqVw9epVxU7eDdwxJWkWqPX7/YjFYiiXy0in08jn88r65NYoTOOenp5GPp/Hrl27MDIygng8jmKxiGKx2NacmhstezweRKNReL1eldXKxUWrYmFhAXNzc4qKodAeHx/Hrl271CLLZrOYm5tT3mq5XEaz2VS7D9TrdSSTSaTTaaTTaaRSKaRSKdhsNvT396PZbKo98LppYdlsNvh8PuU58Dc7YDD5ikpSxhhJhzA5S/bgZP0qG0XczfuX3pLMdt4K9WoYBtxuN8LhMOx2u7KSuwV8JqFQCPv27cNb3vIWFAoFRCIRZDIZRCIR9Pb2qhAGk9cGBgYQCAQUnSpDLexznM/nlZdpt9vbEqm2glspSP7QEJLxbio/er1MyguHw2i1Wqr8pFarKSW5urqKxcVFZDIZLC8vd9z/8M0InQUgmxeLxdS6JsPE/td3msLmWgwGg2g0GojH4+jt7VWy/W7iNZ3dbCKHQiH09PQgGAwiHA6b7iBNAdrT06MKgWkVcOusQCCAfD6vGo8Hg0HVrJydcAqFAl599VWUSiUYhoGenp62hTsyMqL6eC4uLiqPkwtqamoKN2/eRLlcxsrKinLlg8EggDVPktmvLAup1Wro6+tTA8OaScZldjL0rEWn04lEIoFdu3YhEAhgdHQUgUAAw8PDyqKjJ8kicRYBk948cOAABgYGEIlElHHk8/kwMjKCYDCISCSi4r5MvJABfGA93k1ajYaWpNrkT39/P4aGhtQ84Q4S+/bt22AIUXjL+BljbUxI4bxaWFgwLZDeqWBf20gkArfbjUwmg2w2i4WFBaRSKdW2kRncfF4MW8h4ILA2Z6SxRKFJ2tbhcCASieDBBx/coGT57AG0MUJUsjKuTXZg165dGBgYUOEXNhOhF0lKleEYqchJsUpl63a71Y4Tcr9aC+2w2WzqWdFYJtWayWTU/LjT4NxiNUIoFEIul1N5JGZ11ncCr1lJ6jfS39+PU6dOIRwOo6+vr00IyWMMw8DIyAiGh4eRyWQUjTc6Oore3l4Eg0G1q3Wj0UAikUAikVAUkWEYWFhYwIULF1RscGxsTA1Us9nE0NAQhoeHkcvl8IMf/ACXL19WcSnDMPDSSy/hf//v/w3DMHDfffdhdHRU1W46HA7VxQNYEyhU0vPz82oRnTt3TlnY4+Pjr+Vxvu7Q0/k9Hg9GR0dx4sQJJBIJjI+Pqw4Y6XRaeYV2ux2ZTAYXLlzA8vKyKo1hR5RAIKBeq9Vqav9QCtNarQan04lwOKyKzmlckUEg1SepU9kzkvfrcDgUZc7mEvV6HS6XCw8//DDGx8dVnJS7hVBhlkolVb/LBvuyld7LL7+Mq1evdgVbYBhrLb4efvhh1V91cXFR7ayxsrKCUCikDFbWLdPrkp4DGRy9jpZbzTHm6fP50NfXh1/6pV/C+973PpVEw2xnKjTGDOU4hcNhhMNhxULQoKU8Ic0nt7fjHLLb7WqczWpeySjREO7t7UWxWHx9BmYHwGazwe/3IxwOw+v1qizjTCaDxcVFtdXVnUSr1VJhEpYE9vT0qPwR4g0XkwTaaxKZERqJRFQAX/+cTKrw+XwIhUKKtqOlKGugSG9xhw8KrVarpTxAl8uFcDgMp9OpPIFGowGfz6c2YGaiAQBVp5VKpTA3NwfDMDA2NqZKSeipMMZBS5PlDMFgUC3+UqmkaMTt1uK9kcFxolKS+wCyaTzjjlRQq6uryupnQJ/lF3yeAJTylPWtDoejrTOL3BuU16HlygYFjHkx7sWMS8aWZBN6u92uGt17vV7EYjGVsUx6iPsZklpmC0O22QoGg12VnOXxeJBIJFTCDj3JXC6ntquiUcmxkwlaUrHpFCjXDrDew7nVWtssIBqNIhwOK49edkjiOFBJcp6wFo+xcdL+ci9SndKVmY/0VM1KTGRCivyxYA5Jc1Om6kmbMumLcv9W60Z3uuT4cD7p3n+nsq7brcs0w5aVpK6hqXhcLhei0Sjuu+8+xONxRCKRts41VBzcYJXHUlCGQiGUy2VF87CvJ70CZrAmEgn4fD7Vw7VYLOLq1at4+eWXlWBl6zEK6FKphMnJSZRKJbWfYS6Xw//9v/8XdrsdZ8+exerqKgDgzJkzmJ2dRTQaxZ49e1Tck70C2ZW+Xq+rRs2hUAg+nw/lchlXr17F5cuXd7QA1S3sWq2GlZUVtQURPT9JhbIsptlsqgQdKYRkpiDPz51WPB4PgsGg6sZjtn2V7OijU6wU2Dw/g/crKyu4efMmisWiqtWt1Wq4fPkyFhcXEYvFlEciaSFSrJynkuYF1ro2XbhwYUePMcHwxPHjx+F2u3H69Gm88MILKBQKWFhYQLFYRC6XU+ENtoLjsXK8dMHGZ8rPGIbRVhMpM9A5d1jvKLs3yY0SSqWSOmcmk4HdbldGNClWGjA0rkj56w0teN80kNgmkdnry8vLmJ2d7aokvNuFDH3IjGU6OJS1zHA+fvy4ckCKxSICgQB6enpUVrnUH8B6khc9Rc4BJsmxOxcdKSpKUumS7tfDNHcK2/YkKfyoJP1+P4aHh/HYY49h7969auIBa9lz9BZIufGLUEkGg0Gk02mlJBcWFvDKK6/A5XLh1KlTOHHiBAKBgNpjcnp6GtevX0cymcT169fxyiuvwOfzIRAIoNlsIhqNKo8kn8+rTvJOpxO9vb1YWFjA008/rZprk1bJ5/NwOBxqE+hYLIaRkRH09PSo/SZXVlYQDoexf/9+BAKBtv6y169fx1NPPbWjF5ZeH8iNrWdmZuBwONS2N7qSpBEyPDysyjo4yRcXF9uamJP+YpLT0NAQ+vv7lWfCbv8yEUMXwvI3hSwpu1qthsXFRUxPT6NYLKKnpwfRaBSlUgnJZBKXLl3C4OCgyrbld5FCWV4bgKJzlpaWcOXKlR09xhKJRALHjh2DYRj4h3/4Bzz55JNt8cB8Pq/WONkSWVpDpcN6Nan8WOwtkzrYlFqWa3Ac5byiQSS9B3r50pMleA9krqRnKJN6+Jv3xVKmUqmkEk4KhQJWV1cxOzvbFcbQnYD+HBj6CAQCisVhLsDRo0dRKpWwvLyMQqGA3t5eHDx4UNGycr0xhk25wtK6er2OfD6PSqWCdDqNGzduqJ2YOL+oJPW+vHdjzF6zJ8lSDSZcEM1mU1lmMtZFSoRCSBeCcscIWitOpxOpVArZbBbLy8tqscRiMezfvx8ejwfxeFwlGXBhsqURA70ej0d19mHWLCkYBvIbjYbKgrTZbCpexS1f2HrJ4XCofdNIE8nntNOhW/tSMMn3mElI+otUN+k10q8cEwDqNf6t0168htnf/F9P7JHzUq9ppECnwOf2Z4xRyTovAG1zVFJGcj/MnQz2T+Z3kda5VFQya5Wv8beksTtluEt6TEIaIZIO1b0MXp9yg/fUqV+wTOCQx+oJHTw3Fa7u+cqEojcjpJHCEJcMk8XjcZUfQDnP8Jjc65d9u6WxJHUBx0l6mSzlczqdKleBxm8oFFLnYAw5GAwiFAop+UzP0ixh9HZx2zFJu92Ovr4+jI2NIRaLqYA+4w/VahVzc3NYXl5GIBDAnj171JZFLMSn9cYSDj7caDQKn8+HAwcO4OjRo1hZWcE///M/48KFCwgEAiqB513vehd+/dd/Hc1mU9XokWJptdZSvaempuDxeHD8+HEMDQ2p2ASTe2TZCK3RPXv2YHh4GPl8HjMzM8qjopXDQeKgMKuO8dVuAIUIrW25uziFS7VaVXsDsvEDFwVpU6fTiVgs1iaw2KaOQpb7gMperrcKwEthLoUk48ak13gv7JDE13K5HIrFoqqVBaDmLY0rJn8lEglVytLX17fjPcmhoSEVR85ms8rY0aFTlxxTGRPy+XzKiJRWPdeU7vVJsOuNpPNkTFN6q2aGtMwdoJeh5z2YUcIynEDvUX4XGtjdspa3C+6o4vP5VC0kY9PMNxgcHITH40G5XMa1a9dgs63ttMT8A3Yv41hSicoQhlSSAFSSlqTEq9Wqkq/MSzEMA4ODgxgcHFQZrmT6FhcX1bhudx/LTtiWJ6lP1FAohL6+PiUgZUEnlebNmzcRi8UwPDysrEeZlCNTsWnty008udv4jRs38Mwzz2B4eBj3338/PB4P9u3bh7e//e2oVCq4cOECFhcX1cKjp5DJZNQDZkcQfkYHBzUWi6G3t1e5+8ziY9YcBS29LArUrewysZOg02e6d8cxX11dVdluAJQ1SSEl08RJtcsuNkzOup1aOmmZygYCurC02WyIRCJt+5PKnUEo1Enj5HI51Go1JBIJdW5STDtdeIZCIWVMMqbcKWVf99Llbwo62TxCZrrS8OFr+jnJxOh9chl75tjxGD02LVsNSsNFjrlU7LqilMqd85RK9056IjsN9AAp33fv3q2yyMnUMWeENeQA1LaGzEZm6RCNbJ1ZkPS3Yazt3uTz+VTMk54qjyUzabPZVPJWs9lUXdOYfEZ6/54rSTNe2u/3o6enBw6HQwXXZXmAx+PB0aNHlZWXzWaVtdlqrdWdkb4cGRlR3W8YK1xcXMTVq1eRSqUwOjqKRx55RD3ESqWC+fl5nDt3Ds1mU3V5oDXpcDjUIAeDQZVUxAxNxiRLpRJcLpdqYMA9I7moKLR9Pp+i6kgB83sUCgXcuHFjg8W600CFQSVGz56en8wmoxfN+ka9dZsUMhSWbEso41zS0t/Ks9OzDqVw5D2zCwtbCU5OTsIwDGXE6RSiVKiSWqUCYFPlVqvVFdmt8XhcMTc0FsyaJMiEGgBqnZOKlDXHm9GaQHvMUf6WihDYuKfkZs9axhfN6mUl7SrnIu+fST9c41S88jt2O7gW5XMLBoPYu3evalrPxBtCUtxOp7PN6OJevTQ0ACi5oRs6+lgxh0UfUx7Lki6yDcxrGRkZUYzQ8PAwyuUy5ufn1VZ8r6WXLHAbSpK/Sbfu3btXFesXi0VMTU3h1Vdfhd1ux8///M/j7W9/OwqFAq5du4a5ubm27MHz588jm82ip6cH73nPe7Bnzx6cO3cO//qv/4pMJoPLly8jl8vB7Xbj1KlTeMc73oH5+XlcunQJxWIR58+fx40bN9pq7OSOHn19fSo7b9euXapucmRkBLVaTcU3fT4fHnjgAZw4cQLhcBiRSGRDnCUWi6nC+Vgs1hbXyWazuHTp0o5Xktxfk7Fgt9uNRCKBYDAIn8+nJjEAZYGz7IetqaS1KON8nLi5XE5ROIwTy9pIHkvBaZaKrwtWHuN2u+H3+1WTApvNhtXVVayurqqG1/yOFMDSkpWWLRMNuIsEY9Pd0FVp9+7dMIy13sqrq6sol8uqoYcEswuZiMdYLq10jh/pNJkLIBUcBRyVre6dyrg0sL7m9LiyFM56nJg/epxSV7Qyc5IlLJVKRRnAnN8ya7KbEQqFMDo6qqhUluiMj4+jt7dX0at0crLZbJsxxDaFLpdLPddqtaoqEEiF64YpQyJyXCULRKNczg+GQ2jgUT75/f42hq9UKmFiYgKTk5OYm5vD888/f2+VpHSVXS4XfD6f8hToAebzefXA2awcWBOsMvmBRd8sOGcTAdm9gZbK6Ogo+vr6VEd4YC3lP5fLtbW/koJOdgxh8J8ecDAYVK2z6B0y+UcGqvlD5ctJw3PSqzWrF9pp4HNlY3qPx6MC9LLOUVKnANpikLQUJe0maXYKWLknnO6B6HSMDvl5+b5cbBxXUjQ0pDopXf08ci7JbjDSQt6poLVvGIZiU8y+E8dZNnSgISRjlfpakT/6+eSPTqfqn9Whzwszz7GTJytBY0xmRvO88n528lreKmTdKWU2N0kPBoOqYQezx/VacHqQlJnSUdBlACE9RcpqYGMeAueI2Tk4VlSmzWZT1UCXSiXMz88rBqhTJ6+tYtuJO2xHxBpBh8OBcrmMS5cuYWZmBsFgULWdYks4ud8jlWOr1VI7hMRiMWSzWdy8eRPXrl3Dq6++itXVVVV0PDAwgCNHjqj9xBKJBOx2O6ampjA1NaX46Hg8ruKJHNhKpYJCoYB/+Zd/Ufeyd+9ejI6OYnp6Gjdu3FDKnr1lqRQjkQhGR0cV9ULLiAO6srKChYUFpNNpzMzMIJvN7uiFRSVy+PBhvPWtb4Xb7VbZu9FoVC0U9jCVG1IzDgC0e2mBQEB5oexiw9f0+A9jl/QQJCRN1mnR0Mo0DAO9vb0IhUKYm5tTdVb0ECkgmTQilTEXNhWJFBZ2u70rPAzW/larVczMzKBUKqnOUhLscMJxkTEiJslJ5cn3KYwksyApTEllmgktncYF0OZlkNGQrJH0JAkzYcuxpyygwSYFupkh1a3o6+vDAw88oEJI3FUplUphZWUF/f392Lt3r9opKRqNolartW06wQ472WxW9cLl+2z3pxu2VFxAu7wA1ntG8zM8np4saVbOPxmzZIxbdmdbWVlBLBZDMplUHdy2g9tSkuyo4/V6VWuvixcv4vLly3jooYfw4IMPIhqNIhaLKc+BwV5argAU580m4/V6HVevXsX58+exvLyMYDAIv9+P/fv3o9VqIZFIIJfLIZFIAAAuXLiAy5cvq4XCWhr2X+TApdNpPPnkk7h48SKOHTuGD37wg+jv78fVq1cRjUbRaq1tiVUoFJRFRCXpdDpVFieztziQKysrOHv2rFKSZoJmJ4E083333YfHH38cHo8HFy5cwI0bN9RzYjYyx5VKDYCK8VD4cDGwU00kElFNBFiEDKwrJib76DFBCl1mv5p5DIZhtCWB9fb2qkA+4+BUkuwSw/uVXTuYWMS5zQ5SMkuvW5RkpVLB7OwsCoWCqmGU4PqhEenxeJRnyW480gvj/5JJkOOme25m3qNUVDyn9FZstvX2g8xklnOG59Hj4masBhWkVJJvJgXJdXLq1Cm104/dbsfy8jJ+/OMfY3Z2FjabDYcOHWpbB1SKVJL5fB42mw1LS0tYXV1VrCIpedZSyutKA5lrisaU3W5HKBRS4TMen8vlFHPIhDoaX/xhnkQ8Hsfw8DACgQCWl5cRiURw5coVrKys3H0lSQHCOkJpjdFjZFyPVgktTwpY2chY7i9JwSezIJk4UiwWFc/NhBLuhM5sSp0ikRYKA9SkdiWtKmmjZrOpBKts4izjLPzfZrMpoavHVXYimOWn16B1orKkQOtEc8nnIakxPWZFK18XbjKzVq+P4/s8l1xk9PzkJtzMeKbSlPNNKmQ9Zsbf8h52MuT3ZlyuE91KxoDJbLoXr8cNgXVmQXp3krY1mzPyeUuvkcKUVCCzUGV4RdKk8jtKuSLHUf4t26dR4O708b0V6I3Lhi6y4TwNETKFlNNkagqFAvL5vFKO3BBCJtno4RP9f32d6caMTstzfLh2GUbhMaRcdUqVzk6tVsP8/PxtGUHbVpLMJgoGg7Db7apbDq3ySCSCo0ePIhaLqYbJyWQSk5OTWFxcVJOcQiudTqudIOhl8GGPjo7i6NGjCAaDqukyE2fYu3PPnj2oVqvIZDKqj6r0ZliQevz4cezduxe7du3C2NgYwuEwbty40dbAPBAIoFgs4plnnlHFq9FoVHkphmEoeqHZbCIYDOLEiRNIp9O4du3ajleSy8vLsNlsWF5exsrKCvx+v0pYAdYXAa34VqvVJqxkaYyM57EOVtYumgkjXSEy1k2jSgb7JVWjp/+zZy8tUu4SwabnFNgyK5t0sTTgeE/SU2aW604Gx65SqSCZTKJQKJh+L2YGAlD9bBuNhkry4LqgF6fH5Wk0t1qtth11pMcPbIzzkmaTZR4y7qWX+Ogwi3kS3LidNCBbZzocDpWktF1PY6fB5/Nh165dCIfDOHjwIHbv3o1QKIT5+Xm18f2uXbvQ09MDv9+PVCqFdDqtevuWSiXMzc0hn89jcHBQhc2oVJnIyRwUynTAfEtF5qjI+SB7aNMoYr06sJZYtbS0hFAohJGREXi9XtWvmWEherInT55U9d4TExPbfl7bUpL0yKhQbDabilnx5rxeL/r7+xGPx9u626yurmJpaQlerxehUEjFd2jNGcZ6xhMndywWw65du5QrPzs7i127dmFwcFB5mP39/cjn87h48aKydChsaRna7XZVQN3f349YLNYWT+V3I+07OTmJXC6HgYEBFYuhIJCF14ynsjxkp4OWYT6fV52SZK2RWbKE3k1D9xJonXIxSC8GaO+8Ib13eu5M9qHylf1V5VhLi5Q0DUtBuPsImQyZmEO6hwpdzh29Vk5SQzsZMvmGrcB0xUADpVAoqDiu9NBllyIaS3ocWZb3cMx0JanHpaTC7aQkzbwNaSyZeY28hvQ+abBzznKudbsnSboykUigr69PZe4vLi6qJC6GwlhGVa/XMT8/j+XlZZTLZSwtLaFYLKq9ZFkm5vF4VJtKSYNTdsp1pXv5komQGedUmM1mU9WkszSr1WphdHQUHo9HyX8AKj/C4/FgeHgYNtva7i4ytLJVbNuT5BYlVArcTJmLbGlpCS+88AKi0Siq1arKlOzr6wMA1WeVLj+p01ZrLcU4FArh7W9/O/L5PHbv3q0WKAUUd6JmzIgF0YxpkS6lJSFT+Un75nI51Ot1tYkyvYalpSW4XC7s27dPUbhcRHJgSbUCUILmThWuvp6gV0Cqm43ImSIvEx84JpImkcpRKkmdAmXMQlqP9Gx0ypWCU487yR0deF2ZLSf7wLJtFbd7onDUE3F040qn4ukV73TwO8jNzM0UP7tJ0cjQvTfGgPia2S44VJJS0OmUPtDu/ek1dDxPJ3pWxkDlexKS5eHaBtZKIKi0yT51u5KkczE8PIxwOKw8/JWVFczMzKgx4DhxPbjdbsTjcZTLZbXGqAvIFLCRC9Ce9U5wzKVRZsYG8H05T0KhEAYHBwFAGcKUT5TjsgxJrmeza2wV21aS0WgU+/fvh8/nw/T0NGZmZrCwsKAK+S9cuIC///u/V5ur3nfffXA6nTh8+DCGhoZUYo3dblepxvV6HblcDvPz8xgeHsYnP/lJ2Gw2zM/PqwbZLAydmprC5OQkbDYbRkdHMTIyoigxbt80MzOjqDZaQ8lkEuVyGblcDsvLy3A6nZiensbNmzfV5s2NRgMPPPAA/tN/+k/Ys2cPZmZmcOPGDeUN02OmMGdzdFK9Ox3smAGsZzGzTyMzzJi0IxWaFJ5ScRE0KpghJ/cm5OSlhy49DBkzkkYLu+I0m2sNK1izKvtJsu2gzWbD0NAQisUikskklpaWVAsyxiv4ORpTANr2JKSwZjPmne5JMpbDnsOdCueLxSKWl5fRarXU3JCsAdcTABXHkpBGjVSuVMqdlKRZjFFnJ/hZ3TPQY1zyN/8mC8G4W7O51oyEXtLd2DD4jYRAIIBjx47h0KFDiMViqt3mlStX8NJLL8HpdCIejyualD+hUAj9/f1K9tVqNcTjcZUXsrq6qrJbAShFC2w0XGiAmnmSMsxCw8tut6O/vx+JRKJNibNxfjKZhNfrVQ4XDR6uaxprt4NtK0mn06m6vzOAKht8F4tFzM3NqXRcWa/YbDaV8GVHHGah0vtjCzun04lSqYTFxcW2L8fer8Bagb9MOuBDpqUTCATaKD5aRLScZEA6n8+rJIZoNIrBwUHkcjkVuJZJGxTk9Ki4hdROh8w6lFQHrTZ+hp/TPUkdkhLj/1w0svaQ5+LzlAlDQHvCj/RidGFL71d6BoZhKDZCWrBUgtJz0AWqPH83JXboxf6bfU7u8wi0Z4lyDQHrDcr1eSAFoBzPWylJ3WvU/5evyXvi+2Ywi1Uy0UQ25t/p43srUDZGIhHVOo6OQDabVU059JAK44ukrev1upLlfI56w3izpD4z6EYR55scS9nRh9ekUmYN51bmwXaxbSVJ4VGr1ZBMJjE7O6v6mwLrG7myj2c6nVbFnZlMRmW9AsDc3JxSVKlUSu0MzzjEyy+/jImJCbjdbuzatQu7du1qE2SlUgkLCwsA1q0WCmL+zc9Kocw41djYGB555BElCGq1Gg4dOoRKpaK27Zqbm1PbLOVyOYTDYezZswculwvJZBLT09PIZDJIp9M73sMgaEjoFiGfo6QxgM47n3CuUFnpZQAywYclQsB6o3J6J9JD4b2R4qd3KZWvzWZTnXV4j8FgELVaDT09PVheXsa5c+eQy+Vgt9vb2m55vV51LZ2GpHW60xM7ZLlHLBaD1+vF/Pz8hs9Vq1Wk02mVe8Bn4Xa71ZjyGdlstrbenTIZRzeW+JqEzkTItbvZZ/mZTp4Kf2SNJvsws4mIy+VSnYdkn9FuBcMGpVJJMTz1eh0ulwuRSESVbfl8PnWMYRhKTsuYfrFYxOzsLIC1nAbOE2Yk60lW0gCV4yplgQTnoOzXK8e/WCyqagSn06lYKzJMVPgy/rxdbFtJ0pqWew1y0gFrQoatzAConc7ZS6/ZbCIejwNYU5JsSs7JycAsALz44ot45pln0Nvbi+PHj+P48eNtXumLL76IF198EYZhIB6PIxAItClJaaVKYc1G1Xv27AGAthhbOBxGuVzG3Nyc+ikWi6ppwODgIHbv3g2Xy4VMJoMLFy4gl8upJr/dAKZas7RFWorS2jYTTvr/nLQ2m009ZzN6TwboWUBst6/tO0kanTu9cHuuer2uGhRIJclYhd41JxgMolQq4ezZs/j+97+PqakpBINB7NmzR8XOGcNmvE4Kad3z3KnIZDIA1jNWaTRSiBEMcwBQCR2GYaj+tVIZkpKVxqlOdfF46QHyelJA6l4F0LnRurxfM8Um2R/+MFkpGAyit7dXhX+YAbnTx/dWYPy/WCy2NdhgLTONB64FrgMqVrKALM3L5XIbYoxykwOZnNfpfghJi7ZarTZDTSaHcT6Rbq3X6/B6vW2Na2hAMwdG9p/dDrasJKPRqBJk+XwehrFWL8O6M04sWilut7utWXk2m1WepBSw8geA8ihstrX6G3bdYXYUFSk9CiaZML4grYx8Pq88otXVVeRyOQQCgTalyMFlIhAnBj0GGcfwer1q4FutlqJ+mf3VLZDUp24B6nEjWRclaVJ9snO8GNuTyTKyxpRCVQbuJXRKVFJnclx5b+wiwgXFOSPrwGgMcF7R0NJb8UkKdieD4QrGmTpZ2FwHzDo2G3+ZwCbrTSWlqnsJUlFKyNdkzOpWnwPWPU55jE7Jyu9UqVQU1UijnwbYTmcKbgUZj6VxQAeCjRp0Q0XOf8oHUq5m9a9muQm8NoC2NW52HULqCimv+TqvS+NMN6Z0WcVyn05xeDNsWUm+973vVV/u5ZdfRqVSaetgQGoum83i+vXrKhsSAFZXV/Hqq69ifn4ezWYTBw4cUNo+HA4r7V+r1TAwMIDjx4+rUpH9+/crSoDdQVZWVlCtVlWHHL/fj9HRUQwMDKhyk1KphFdeeQXnz59XA9lqtXDkyBGMjY3BZrOpbC6Hw4GDBw9icHBQCXN6tixLYcNsJnzQwllYWEAul+uKxB2ChgjpClkDx8nItn98thJywlIoyV1DOF8oxHg855CuaKnkZFxM3w2g2WwilUqpRBIukGg0ikQigVqthhs3bmBpaQm5XA6HDx/G2NgYgsGgYjsoLGKxGA4fPqw6BAEb+33uZFy8eBEAsG/fPgwPD6uaQR200km3yjGjl85nT88bWG/OAKx7hVKAytIQnYLVFakUeLrwA9aNJnqtVMoA2u6RiYUsHVhdXVV13dzsgC0M5ZZ/3Qi/34+xsTEcO3YMy8vLmJ6eVoZif39/m3Ej16r0KnO5HPL5PAAoelU2j5Djb0aPSzpeGszyNZkPIO9HQoZWXC6XclbYyIbXIisVj8dhs9lUvedWsGUleezYMbRaLUxPT+PSpUsoFApYXl5WD4oolUpYXl5GoVBQ21Mxdjk9PY2hoSH10Om50Wuz2db2/GOzAm7+yZhmOp3G8vIyrl27hnK5rBJ/PB4P4vE4BgYGlKAsl8uYnZ1VjQHoBQaDQRVbJE1K1zwej6uMPiYrcOC5ETTpR3YrYQlMN4FxYpbWAFDjRbDmjY0BAPOkHumFkMrSY8Y8v65waZTou41T4PL6soYqlUopxczz+nw+VCoVLC0tYXp6Gg6HA4ODgyqNnUxAOp1WjSLYjYTKQ1L2Ox0LCwswDAP9/f1qfpvVjzEpjRuMS2aBQlEeJz0NKizdm5MZskB7pivR6W/+3ymupHuN8nNU1ly3+XweDocDxWJRsU4smDfbNqyb4HQ60dPTg6GhIdU9R9KoMhlRhkckW8g1KWN99NQk9LGUc0IaNjqjqJ+DxrSeQCab09Bgk3kT8lqkXrmP6R1Xktw9njVWnSaqrIFLJpNKQI2NjaGvrw+JRAIzMzNIJpOIxWLo7+9XiTKMO01OTsLj8WBpaQnLy8uqow4TAwYHB9FsNlURP3e0pmCXiTgU7vF4HKFQCLFYTJUbcKsVh8OBVCqFixcvqofOhBEmcrjdbkXPsHxBJjNs9kx2EkgjZzIZJdBkxwygfXsjqbD4LKhIdCtfLgppYeqvy8QASdvJ/ql8XVK+0quUWazZbBblchmrq6uq/IdUayAQUIYby0Q4hzhHCBoPO92TJLVGZUErnb1ZuW74TPgMmNkok5f0eJL+o4+1GfT3trOOzI4ze0022mZsmjFofi8qjG6oeTYDE2lo9LAyQW5jBqwrQRq3elYy0L5louyvK0t+iK2MpxlVLuWHZCHk+1JW0GCm0cz9J0mhsz7U5XKhVCqZ9is2w5aV5OLiIgC01UWZfXn2ZuWNLi8vo6+vD4899hiGh4dx6dIl/PSnP0Wz2cTjjz+OkydPIpvNKsG0vLyMH/3oRwDWEgyYZEABmUgkMD4+rnqvysJjxj2lN9lqrXVg2b9/P8bGxtDT04NGo4FsNotAIIAjR46gXC7j4sWLmJubw/DwMB555BHEYjEVp2i1WiqQnc1msbKygmw2i1QqtaFzTDcgl8thdnZWCUjGo/n96E0D5pmFzJRrNpuqrlFSs/oC4FyhN8nEG8aa6X2ymTU9fGB9o2WbzabqpGTDZMbN8/k8rl69imvXrqmG3W63G295y1vw4IMPolKpYHFxEZcvX1bttzjHACilksvldrySZGeSbDar+lm2Wi1VWJ7L5VRaPceO7zMcIZstcHyA9dpIaeRIyszMM5S/eQ79c9KTMYM01qTA5X1J1orGj9/vRywWU32fuYkB65+7Cczx4E+xWMTKyopiT6hIWPLG2kk+N13pSQOIpRe6ktRDK53uyyxLXsb+dUUIQBlqUkmzmTqwrujJCnFLsPvuuw+pVErN/a1gy0qSCoeLw2wi0yKlQCQNGY1GEY/HsXv3bsX780sGAgH1RYD1/piNRqOtiS4DysDabhXsHUu6Txa5M9mA8Sy3262SgOT+lxS8ANSkYZ9PWRsEtCsG7plJBdptYEySnoUUbnw2HH8zugxYF2oyGUePdQDmqf+ygYD0YKW1KD8vvU8qXF6PQp30iqz5o0cViURUKy0Zh9HLPeTC28ng/fO5yNivHEuuZdKPnP9m2adyHPS/N/MUZayR534txmYnz1IqUdmukIKd7FK3Ju5QiTG0RNpZ9jJmyEtmBMs2ofJc0vjQDSK+zrWuj/FWIWPQXN/s8yqThXRZAEDlDsjSP+aWNJtN0xh8J2xZSV6+fBnAWr1ZLBZDo9HA0tKSel8+RH45uvSVSkW5+dwY0zAMrK6u4vz58yrrkDtqUJCR8qzX13ZIZ+yI1Ce3TmE5ChsYZDIZ1Go17N27F319fSqLj1Ykywf4oGu1mkoF9/l8qlyFmzrz3m22tbqg69evq25AZrTTTodM3JEJGVL40XrU4wQSMsuUE1p+XipN6V3SiAHQNl9kvEGn8GRcg510gDWvOJPJwG634+DBgxgdHVXxdCpCbu8TDAZV83s2/w4Gg+q8LLrulrHO5XK4efOmUn7svsKscIKxZSa0yFiwpL2B9lIeM6WpQ3+WeiasTOrYDHLuyGxIAG3zTlLmct5RxnRLYxAddrsdg4OD2Lt3LwYHBxUNyfXNHz4rOY6djBzp3XH9yeYSZh69VJy8lkzSkdeQ5We6EgbQphBpBPDeeZwsK2NZimw6sJW1vGUlef78eRiGgUOHDuHAgQNotVq4fv36BmtNTjwOABsEcE861lAuLy9jYmJCfQkqRCowbuHCTWGZgUhly6bn7ErPOBoH7sCBA9i7dy+q1SquXLmCpaUltQkzPdZisQin04n+/n4cPHgQmUwGk5OTbQKB9WQ2mw2FQgGXLl3CtWvX2jyiTkHnnQiWtrhcrjbLWlpsMkAvLT6gfcscqdgMw2hrXq57m4RMkCGNSkufnhwXkW6cMbZGpoFK0OFw4NixY4hGo5iZmcGzzz6rdgVZWlpSSWP79++HYRiqsUUikWijgjttK7UTwTi/0+nE8PAw+vr64HQ6sby83PY55iIUCoW2hClJf+n0m5m33ykuqc8f+VqnZ2221qSC1I9njR9ZJz3Bg0ZAN7QdNIPD4cDIyAjGx8cRCoWUwc/1zTUnY41ULLpykmtPzgHptcnzyK5nZvS6TPTiezIGKa8nZQzHmfFUhnj4fWWclH+7XC6Vsb/lZ7fVD7LPZrPZbOunJx+cvggotNipYWlpCfV6HYlEQu3iUalUVC2by+VSPQHpLvMB8WEzC7HRWOvHmkwmlTKmK84HRZ7aZltLE2axM2snWejOc/N7sUCWFgkAtUM7Owh1a3AfaK+PM6Oe5CSW6f58zyyjkR6C/OmUAcnfkvYD2jve6BSQzKqUAX19Y16+x/Hmd6CQkFsp6Qq4mwwhYD1JSwoe0txy1wZgvQSGn5OeAF+X3oKZMLzb32WzJDoKcOk1ySzorbbq2+ngOEpnQVeGndYjYRZa0b0y/fNyTkjlKl/Tz8v1p2fCy3Pq9yHLgOQ98TWyR9sxdLesJHlRllEAaPMmdG5YegmLi4v49re/jaeeegr79+/Hr/zKr8DtduP69eu4efMmfD4fBgcHVbcb1jna7XbVGikcDsPj8SCTyeCf/umf0Gw2sbKygtXVVfh8Phw9ehT79+9HJpPB3Nycal2WTqfhdrtx5MgReDwezMzM4LnnnkMmk8HAwICqE3M6nSiXy8hms5iamlLnZZ3c1atXlbJnFxI5UN2ywFqtliqDYaay7g1QmDIwbzbhuHB0D8LhcCjBJBWTtPyp2OiNMhksmUyqpAqpxNjQgnSZVMqMQ5OSZ3kSdztnpl+9Xsfc3BxmZ2dVE/9wOKy6kXT6njsRcs7SUKRRarfb1V6tZHCA9dAJNy93OBxtoQ3S4jRMpIEjBa+cFzI5Q4JjB6wLyk6f1WEWHweg6FT5W2ZvZrPZrhlfMzSbTayurmJ6ehperxe5XE6VxTE0wZgsPw+ss0ISOvUpn1unmDSwHr8E1kvIJKTOkAmgMhYpryOPI6TzYxiGqrfnfJahtK3K6y0rSZlpxBZW0mXt5Em2Wi1kMhm88MILcDgciMViePjhhxGLxRQNymxDUmH5fB65XE7FPg3DUFTt/Pw8Lly4oD6Tz+fR09OD48ePo7+/H4ZhYHZ2VjUEKBaLcDgcGBoaUs0CstksFhYWEI/HVTcfCsJSqaT2vgyFQsravnbtGhYWFlTQWH5vfaB2Omq1GrLZrKIr9XGlkqSX36l7hRRYpDtkrZWk5mX8SMYieD80enK5nDLU5Pv8jCzbMAxDNXJmn1+OIdkLshPcbmdhYUExEKzBpfXdLWMsqSrOZ2mF+3w+9Rnu2cdYHr1MGhnco1PWy+mQ1+r0vv66Hpvs9Fk9FtkJDPuQjdA7aunlXN2GZnOticLy8rLae9Hj8aCnpwfRaBROp1O1d5MGjTRWzLxKfe3yczoTw3VNx0pmwcqyDkmDM74oWSBZKibvgdCZL8l61mo1pNNppFKpbW15ty0laRhrm/Dmcrk26tUsWK4fyy89Pz+Pn/zkJ4hEIpifn1fbG7EQ3GZb2wKrXC5v2K7FMAwlJKUQlYvY6XRiYGAAtVoNsVhM1UYlk0k0Gg1VdymD9XIndL/fj6GhIeV9MDalu+hmC7VbQIHCH1lvCmykRHUDSY8NyR+Z+CMD+PI46UmSamFskseyjaBsjcViYVrIMnjfbDYRiURUsoJM3uLffr8fg4OD6OvrQzQaRTAYVAkOMit2p8PMguf6s9vXdogIBAJotVpq3czPz+P8+fOqR3IwGGyjqmV8T1K4nWhXM1p9K9A/r9N8+vkJlgcwLEOPg+GdN5OSZGtRhqL6+/vblBsdg82ea6dxk0aLpOppjEklJz1NGX6R55ef5fk6GUT667oCp7zf7nZo22pw3mqttSOamZmBzWZDtVpFIBBQNVWduudTIdXrdTz77LOYnJxEIBDA0aNHceDAAdhsNkWd+v1+vOMd71DdMOgJhkIhVfR748YN9YVpYbAWzufz4dSpU0owktK7cuUKyuUyFhcXVRP1UqmEVCqlEnN8Ph/6+/vx8MMPo1wu4/z583j55ZdVZq184JJS5nfsFlCJ2Gw25PP5thZ1MmAv47nAurWpG0202GlYyVivjHsB6519aNzwHDabDX19fWi1Wm3JAKSEm82mKg7ndmz0Fql0d+/ejUQigWw2i8nJSZW4wIL6/v5+7NmzB7FYDHv27EE4HFaUYiqVQrlcfl3G405DN2Tr9TqWlpaQSqUQi8Vw8uRJJBIJXLp0SYUuXnjhBSwvL2P//v0YHh5WYQoqRZ2+lJnNOu0uY02dDGsdUkjKbEpJ0wPtQloKclLElEXN5toeklNTU8hkMsoY6FY0Gg3Mzs5ieXlZeW9M3hkZGUEoFFJOgt5pR47dZkpSV1B0qpgRLmUGS/rI5nAuAO2bIsg4uR6a4XXMFDP/lowE2aJ0On13PElemFlgVE50Z291UX6RVCqlFNPg4KAq1v7/sffmMZZdd53457593+rVXtV7t3vv8h4ncYgThyxEiYHRBBihKJFnBEkGhhHgMDMwGoTQL4BggMyQCRkGacIoVhAkYUgUJZDNTuw4jrvddrsX91r79vZ9/f1R8zn1fafuq6W7ut1VdT5Sqareu/e+++4557t8vsvhTiLBYFBtXcQereyQwh+m8dKl572wuJTxS5nSzfgkYw+0ghm45iCSo2cWLQdZCvrVJsd2AJOtOClZVLwey1IaEFLBSbpN9wQoNGXsgnEtKXjleMtYlazjkzSqjGdYlqUEJeukJE3L7GtS8NwqiJ70dui0sxoYjwoGg6ofMmOM7MA0MTGhSqmkopK0ufQoAfuaSgnpRawHdlmycl52m1vSKOMccDqdykjaTqU9dmi327at2HK5nKKedWXV7Xnoz1j/HP6WMkBmscvfvIYcUxkHlZ7kWt/PTnnKz6Cs2Oha3vBWWfl8HlevXlWU19GjR1GtVtV+bFRGq1llkp9mwXqlUkGxWEQgEFCZpKlUCgsLC/D5fIhEIrCspYbVx44dQ7FYVDGmYDCIwcFBxONxtFotXL58GQBUWzlJHXJvymaziUgkooR/NptFqVRCJpPB5cuXUSgUcP36daTT6Y4u+RwA+Xu7gUkaLpdLbSvUbreVkqHiZMKHzG6UCpGQE5X0qDxP0q52WbN6bEoKYctaLkfhNWQ8hJl8QGfiwIEDBxT1yjZ3jEGS1pUJO7rHu12gz+lSqYRLly5hfn4epVIJIyMjAJZ2s/f5fKr3JTta6UKPsUnGJ+1iVDrFritKqYD1Eivd87Sj3uT/PFYKR45rOp3G9evXMT09jYWFhW05vmuB9cDtdluV3AHLWbCscZahLaD7WrfLX5BxQZnLACyvT5nIxd92PYV1xcd7pQzRS1Dk9Uirb3TXpg0rSbb08fv9ePjhh3Hs2DG1/2KxWMTk5OSK/cUkpGXAhJ1KpYJyuawyUdPpNDweD+bn5zE3N4dgMKiScpLJJB544AHU63WMj49jYmICPp8Po6Oj6O3txczMDM6fP49yuaxoIXqM9XodgUAAw8PD8Hg8HQuHXYBu3LiB73znO1hYWFDCXN47B2U7Q8aduUNGu91Wezcy+YF0ioxBrUY/S2tQFnRzgktBqlO6QGfDAFnqIRNG5HmSLWBM0+v1IhQKoa+vT90Lrykb7ctY53ZK2pGw88iKxSJee+01VXx+8OBBtem1w7HUlKPRaCCXy6nOWHLMLctSdcwSkmLX74Hnytdk5rSdV8BzdG9Ep98IuVckjd7FxUVcvnwZN27cUJt47zRwz9Bmc2kfVl1J6gYJ0NkBR3qJdvkJsr6RZX4AOoxPhjEYGiPsGujr4y0/326dyrnJ+u+NNoy4qU2XaVnIPQdJ01SrVVX0r1NsfLjsyclNkhkfzOfzHZ6kzKzkA6R1A0DtiSaLQ/VB0iFpIdl9h1l62WxWFRVLbDTBYCtDxhKpEDmp7OIS0mOQNCihC0JakroHodN0OrWq3x89F0nBydZa/J9zUBa56zW+dt9dnr9TBKiMMdK7ZjN4tvWiAqNC5G+v16u8SHoPHHO7UgJCepMyXibpXHmt1ZSkfF0KTvk+ZQlDKXIzhJ0G+Sx0hahTooQuY7vR3asdL3/srgN0MkjyPux0ipQhwHJbPNmxB4Dtd10L61aSnOB8cI1GA+Pj46jX6+jp6cHY2BiSyaSiTSlgudgYqGWdFYVVs7m088frr7+Oq1evIhKJqF1ARkZGVNySWx3Je3C5XOjr61MeCNP/9+7di2azqRY3ANVpoVar4fr162g0GpicnMTk5KS6T2aAyf3kdAG6ExYSFw7jz2zr5nA4OgShNHp0T1BfOLTkGBOS+zTSumcNo4w/8nz9mhJ6bEwKXMYoHQ4H8vl81zZbnNPM2A6FQqoWkMlL262BhP48dSEWiURw6NAhxONxDA8Po7+/X5XGVCoV+P1+7N27Vx0bCoXgdDpVgpdkCuzKOeQ96IaWPo+6rT07IU7QYJfGNsub+MP+0N2SDrcbONcJZvhyj1zZvq9er3dkietsjXRgdHrUbjzkbiM0XmRdrRx3aYhLRoHX5/1IipZOFPVNIBBAOBxWOSrtdlvVud+WxB1507wpxi0AYHBwEPfcc09HLQxjPi7X0pZEFD7cruqVV17BxYsXUSqVMDk5iStXriAQCGB+fh5+vx+xWAyxWEwF2FnYTjDJhq/xs/r7+1cITtkwYHZ2FuVyGa+//jouXLiwLuG3ExYQQQuc9YOlUgmBQKBD6ehtqbrRacByZiIVEWPRcowYY2ZWbbddRnSBy/dkrElamX6/X9X9Aat3gOG9+Hw+FVvjtmvbtfG1nZKhoREKhVRJzPHjx7F//361WwrbFvb398PpdHbEswidql7NE5S9YKWylLEwuzi3HXh9Zi/rnmSz2VR9nlkSsBOgy3BguWk/i/dp1MixkwaM9N50Slw+Y7tEG5mdynOYZNfNOKIi5N8620Bm0bKsjjwHhvJCoZCqsQfQsVn0erHhZgK8WWr4arWKXC6nSiyCwaBSbDyPGXIul0ttNdVoNHDx4kVcvHgRc3NzStkyiQdY2hz20qVLKkFEp1Zks1r5On9krInt5EqlEhYXFxXVKgfA7rvuRHAy0ggZGBhALBZT7d2AldljVIA6RUa028u9fOVn8G9geWKzETEnvowfSHpGjjGAFdQaaUAq5G7fUyb5cOEyKYFxjO28zyBgX6RfKBQwMzODRqOBeDyukuC4XmXjfzJIUgDLeKKEPhZ8zpwfbLCu0+L6OXbXkp9RqVQ6NlHm50xOTiKVSmFiYmLHKMhu4F69lNOJREKNJVkVKiapDGmsSsUkkxuBlWMk17JuIHULrehyQnqv1EFSrlAnSLaLxv7NNq7fUFs63iitfKaNV6tVfPGLX4Tf78fo6CjuueceBAIBRcFIC4BKslwu48KFC7h69Sqq1SrS6TSA5W4vhUIBL7zwAs6dO6fuwU4A0muVBaLyQfO+9V0/GDDWMzNpRdkF/3cKKPzC4TAOHDiAhx56SBVjS4Ui54TMBKUXqsc1uDAkxcJYFyk7xrbC4TAcDseqTaftYhiEjHnaWbWcQ6yhBNCx4Hn9QqGAqakpLCwsbNgC3WrQn+fc3Byee+45RKNRpNNpzMzMqPZ+lUqlI3Ti8/nUc5TCVG90TvB/lmNMTU1hamoKuVwO586dw+zs7AqvBehsU9etLEB6qjJGxdrphYUFlZ2byWQ29RnezeCYyHHO5XK4cuUK4vE43vKWt+Cee+5Rm8rLUioqGxm71ecLvVI9IY/jQdkgwW5nuqcqf+QcklmxvB4b1kciEdVSUcbSGT4rl8s3lXS5YU9Sfmm65/V6XQmQRqOhNvbUWxy1220sLCxgYmICxWIRV69exfXr11fQafwiLC3RwQfKOCMTf27F0pcLUgr2nQhORk62np6eFYtLXwCkaGUiAIWU7q3rc4leG40vSZHyevp42HkneqzEjl7SDS2ZcSfHnwqTjaB3UtyKKJfLymtMJpMIhUJqgwFubVepVJRRRYOV84AGkBxngv9Tcc3MzODatWvIZDJ45ZVXMD4+3mFcd/MydMjXZChAyop0Ot2Rd7CToM9fNg6hx0inJhAIoFQqdSS9AMtt3/T4P69NB0Mmdcr39YQ+qTjt6Fo5/pKlolFOg5zXlYljnHvMWr/tniTBB8G/dWSzWVy9elWl2nMvQB5bKBRU7zyWFtzMPQDocN1vtSzDLtV8p4KTnFQMt5LiRPX7/QiFQiuEFo9hglY3SIuQz7tWq2FqagqZTEbV4DIZa7Ugu07v2NG8Mh6qU4C853a7rRqlS3pmamoK169fVy29dhLYx5hx4rm5OWWQMrbM7FbGqYHlMZXjrBst/M05tLCwgPn5eVVrzevQGNvIupTXp6CWWY3bmTbfKJi443K5cO3aNZw9e7ajNaH0CqWikYamNEzldVkFIcMXBI9dq+evVJJybfP60ntlu0QaX2SipqenVXnizSjKW1KSdkilUsjlcrYUC8+XdS03Ay4YWVdzq4ptOyZl3Cz4XOnJT0xMdGQtMluMVAmAjokpt6eymwPSo2TiRLVaxZUrV3Djxg0A6KBY5Dn8W75OIcrYhLRoZTNrKkB+P/6m1UsKTpYGcdNmnr+TwJoyy7IwPj5uqwTtxqcbVjtGJoDoMWgZc94o9HkDbP86542A5T7NZhMXLlxQNcQPPfQQBgcHVeKeZI5Ik8vEPZ1V4vpinoFOu0v6lB6flOuSzdPLN6QOkUyT9Hr5vXK5HF5++WXMzs7iypUrd0ZJrgWm898p7HSv73ZAUhr5fB4LCwsqmYZJWABULJETlA2TGb+UVqYOLgqWV6TTaSwuLqptyIBOqoXn8LdOq9FDkLEK6RG32221abPM3OPCk0qS4QNa2RvZVmc7QRqyN0tVvdGQ47YTx3A94Djn83m1QXkul1OlPkxwZPmXpL6loyJZGa5DmXSpr196+pItkMpPT/xh8xeCdK0eB5XGL0s+Nro9loTVXudZ67EUDZawVRejPok9Hg/27NmD4eHhjgA6O6rIWJHT6VQ7c5BulVlrksqWr6XTaWQyGVQqFUxPTyOXy3XcU7fSDbv5KC1QmWGp/+ghA74uFaiMt9vRc1t1jAGzljeCrTrOGx1jp9OJ/v5+JBIJRKNRHDx4EPF4XNVJW5aF/fv3Y9euXR0UaqlUQiqVQqvVQjAYVKVi9NZlkp7MT5D3KT180uOyDpKKlBteOJ1OxONxhEKhjlrYubk5TE9Po91uqxh5NpvF5cuXkcvlkE6nsbCwsIKRWGuMjZK8DdhuC2u115n9xgYBrKNk2YWMS8kCYmY1zs/PY3FxsSM79mbu+04/8606xoBZyxvBVh3nWxlj7jMZCARQKBSQSqXgdDrx8MMPY2xsrINVWlhYwI0bN9TWhPF4fAUFr1OggH2TCMoAslFOp1Mlz7E0KJ/Pw+12Y3R0FMlkEuVyGQsLC6hUKnj99ddx7tw5tNttxGIxBINB1Zt2tbyGtcZ40+lWg+2HbpNIJlZID44Wo56RZhdz0N/bzPu7XTBKxmA7Q7I+ci1LA1Yeo69joLN9nGR1pHKU15F/25WN2cmKbj92x9wK1u1JGhgYGBgY7DSsvkmXgYGBgYHBDoZRkgYGBgYGBl1glKSBgYGBgUEXGCVpYGBgYGDQBUZJGhgYGBgYdIFRkgYGBgYGBl1glKSBgYGBgUEXGCVpYGBgYGDQBUZJGhgYGBgYdIFRkgYGBgYGBl1glKSBgYGBgUEXGCVpYGBgYGDQBUZJGhgYGBgYdIFRkgYGBgYGBl1glKSBgYGBgUEXGCVpYGBgYGDQBUZJGhgYGBgYdIFRkgYGBgYGBl1glKSBgYGBgUEXGCVpYGBgYGDQBUZJGhgYGBgYdIFRkgYGBgYGBl1glKSBgYGBgUEXGCVpYGBgYGDQBbdNSY6NjSGfz9u+98ADD+Db3/72mtf4sz/7Mxw/fhwnTpzAyZMn8fnPf169VywW8ZGPfAQnTpzA4cOH8clPfhLtdrvj/Ha7jXe84x2IxWLqtUKhgHe/+91IJpMdrwPA2bNn8ba3vQ2HDx/G8ePH8dGPfhTlcnnd39nAwMDAYHvhtinJ06dPIxwO39I1jh07hmeffRZnz57FP/7jP+Lf/bt/h8uXLwMAfv/3fx/NZhMvv/wyzp49izNnzuBv//ZvO87/kz/5E+zfv7/jNbfbjaeeegrf/OY3V3yez+fDpz/9aZw/fx5nzpxBsVjEpz71qVv6DgYGBgYGWxe3TUlaloVMJgMA+P73v4+xsTEcP34cH/nIR9BoNNZ1jXe+852IRqMAgNHRUQwMDGB8fBwAcObMGbznPe+BZVlwu91417vehf/9v/+3OvfVV1/Fl770JXzyk5/suKbX613hXRIHDx7EyZMnAQBOpxMPPvggrl27tsFvbmBgYGCwXXDbY5K1Wg0f+tCH8Ed/9Ed45ZVX8PM///M4c+aMev8zn/kMfud3fmfN63zzm99EOp3Ggw8+CAC4//778cUvfhHVahWFQgFf+tKXlEKr1+v41//6X+N//I//AafTeVP3XSwW8bnPfQ4f/OAHb+p8AwMDA4OtD9ft/oDz58/D5XLh8ccfBwD85E/+JPbt26fe/6Vf+qU1r3H27Fl85CMfwdNPP41gMAgA+OQnP4lPfvKTePjhhxGNRvHQQw/hn//5nwEA/+W//Bf8zM/8DI4cOXJTniAV+0/+5E/ip3/6pzd8voGBgYHB9sBtV5J2sCxr3ceeO3cO73//+/FXf/VXeOtb36pe9/v9+NM//VP1///3//1/OHbsGADgO9/5Dm7cuIFPf/rTaDQayOVy2LNnD1544QX09vau+nn1eh0f+tCHMDg42HF9AwMDA4Odh9uuJA8fPoxGo4FvfetbeOyxx/DNb35TJd+shddeew3ve9/78NnPfhbvete7Ot7L5XJwuVwIBAK4evUq/uIv/gJf/vKXAQDf+9731HHXrl3D2NjYujzKRqOBn/u5n0MikcBnP/vZDSlzAwMDA4Pth9sek/R4PHj66afxa7/2azhx4gT+z//5Pzh16pR6f7WY5K/8yq8gm83iqaeewtjYGMbGxvD1r38dAHDlyhWMjY3h6NGj+OAHP4g/+ZM/wdjY2Lru6eTJk3jkkUeQy+UwMjKCX/zFXwQAPP300/i7v/s7/OhHP8K9996LsbExfPzjH7+1B2BgYGBgsGVhtfXiQgMDAwMDAwMApuOOgYGBgYFBVxglaWBgYGBg0AV3XEn+6Ec/wnvf+17s3bsX999/P+6991783u/9nnr/7W9/O770pS9t6Jp//dd/jWg0irGxMZw6dQonT55USTwGBgYGBgY3izuqJM+ePYv3vOc9+PjHP46rV6/ixRdfxD/90z8hl8vd8rUfe+wxnD59GmfOnMFnP/tZPPnkk5twxwYGBgYGOxl3VEl+6lOfwpNPPon3v//96rVEIoE/+IM/2NTPyWQyiMfj6v9f//Vfx4MPPoixsTG87W1vw4ULF9R7X/7yl3HkyBGcOnUKTz31FJLJpGlFZ2BgYGAA4A4ryR//+Md4+OGHb+rcr3zlK6t6h9/61rcwNjaGQ4cO4Wd/9mfxx3/8x+q9p556Ci+88AJOnz6Nj33sY/jVX/1VAMDc3Bw++tGP4u///u9x5swZHD58GIuLizd1fwYGBgYG2w9vaOLOb/zGb2BsbAzDw8N49dVXVz32Ax/4AD73uc91fZ9068WLF/H888/jySefxNTUFADgG9/4Bh555BEcP34cv/u7v4vTp08DAJ577jmcPHkShw8fBgB8+MMfhsfj2ZwvZ2BgYGCw5XFHleS9996LH/7wh+r/P/zDP8Tp06fhdrtRr9c37XOOHz+OXbt24dlnn8WNGzfwiU98Ap///Ofxyiuv4Atf+AIqlcqmfZaBgYGBwfbFHVWSv/mbv4m//Mu/xFe/+lX1Wq1WW/fWWevFxMQELl26hEOHDiGbzcLtdmNwcBDtdhuf/vSn1XFvetOb8PLLL6sY5ec//3nUarVNvRcDAwMDg62LO9rg/NSpU/jqV7+K3/7t38bHP/5x9Pb2wu1245d/+Zdx6NAhddyTTz6JT3ziE+r/L37xi5ifn8dXvvKVrpQrY5LAUpPy3//931ft737u534Ox44dQ09PD5544gl1Tl9fHz73uc/hiSeegNfrxbve9S6EQiHbvSYNDAwMDHYednxbunw+j3A4DAD40pe+hN/6rd/Ca6+99gbflYGBgYHB3YA3ZKusuwl//ud/jqeffhrNZhORSAR/8zd/80bfkoGBgYHBXYId70kaGBgYGBh0g+ndamBgYGBg0AVGSRoYGBgYGHSBUZIGBgYGBgZdYJSkgYGBgYFBFxglaWBgYGBg0AXrLgGxLOt23se2wlZNGH6jx9iyLFiWhYceegj/6l/9KwwNDSEYDCIYDKLRaCCXy6FSqcDtdiMYDAIALl++jEuXLiGdTuOZZ57B5cuXAXSOAb/XZo7LVh1j4I0fZ6Knpwd79uyB1+tFq9VCo9FApVLB5OQk0un0G317ALbuON+pMeaaBZaeVbvdhs/nw/DwMMLhMI4cOYJ3vOMdiMfj6thWq4VyuYxGo4HTp0/ji1/8ImZmZtT5AOBwOGBZFtrtNlqt1m39DmuN8bpLQO6WhbUVYBZW9+tz4rfbbViWBa/XC6/Xi1AohEOHDqGvrw8DAwM4fPgwfD4fFhYWsLCwgEajgVKphEajAZfLBY/HA4fDgVgshmg0ikqlgvPnz2N6ehoLCwu4cOECCoVCx/cySnIJd3It68/e7XYjmUwiEAggmUwqJZnNZpHNZlGv15HNZlGpVFAqlTA/P6/6Ot+OcVwLW3Wc7+RaBpaUWiKRQDQaRSwWwwMPPIDh4WH1frvdRqFQQKFQUHMgFAqhUChgbm4O5XIZZ86cwcsvv9zRplSef7uw1rV3fDMBgzsHp9OpLMlmswkACAaDiEajGBkZwb/8l/8SY2NjSKfTmJiYQDqdxve//30888wzqNfrHZamZVnweDx44okn8PDDD8PlcuHAgQNqsc3MzCgluVUF3VaHZVlwOJYiOq1WS3kZu3fvxuDgIJLJJPbt2we3240bN27g+vXraLfb6Ovrg8vlwtTUFHK53KZufmCwOZCeXrPZhGVZGBwcxD333IPh4WH8zM/8DI4fP44XXngBX/jCFzA9PY2JiQlMTk4iHA7jkUcewd69e7Fv3z586EMfgt/vx1/8xV/g0qVLKBaLaDabHWtdKuQ7DaMkDe4I7Cxby7Lg8/kQj8cRi8UQCoXg9/uRzWZRKpWQy+WQyWSQTqdtm+B7PB4UCgWUy2V4vV54PB64XC51HZ/Ph0ajoc6V92AU5xsDh8OBYDCISCQCn8+naNZ6vY5GowHLshAIBODz+eDz+ZRhZXD3QB8PGkN+vx+xWAzhcBhOpxPNZhPVahX5fB65XA65XA7ZbBatVgu5XA75fB7VahVutxt+vx/hcBixWAxOpxOFQkFtNvFGr1ujJA1uOzjJGVuQ1NvJkyfx6KOPwuPxKM/xxo0beOmll5DNZjE5Odk1JtFoNPDjH/8YhUIB0WgUx44dw+DgINxuN44fP46hoSFMTEzg+vXraDabcDgccDgcHZ6swe2DjCdxzD0eD4aGhnDgwAHMzc3hu9/9LorFohKioVAIx48fRywWQzabRTAYVAqUbMIbQbsa2McfHQ4HvF6vYgjuvfdeNBoNfOUrX0E2m8X09DReffVVFItFFAoFFY987bXXMDU1hampKdTrdcRiMfh8Pnz4wx9GKpXCN7/5TZw/f96WjbjTMErS4LZCWoG6snM6ndi/fz/e/va3o1Qq4fnnn8f4+DiuXr2K5557DrlcbtVF0Wq1cPHiRVy6dAnJZBJ+vx+hUAhOpxN79+7FwMAAarUaxsfHO5QkzzVC9vZDf8aMR+3atQtzc3M4ffo05ubm1LE9PT04duwYIpGIYgQqlQrK5fKKbezeSApuJ0IqSa4fp9MJt9sNn8+HgYEBHDp0CFNTU/jCF76A559/XilTOU61Wg3Xrl2DZVlIpVJot9uIx+O477778L73vQ+zs7N49dVXcf78+Y7P3ZJ0K4WO0+mE1+tV1IgUjPLL0fLg+7QQW60WqtXqXW/dGwv25uBwODoWis/nQzgcRjAYRCAQULRMOp3G7OysolfX85x53Wq1itnZWVy/fh1Op1NRdn6/f4X1a8bv9sKOHvP7/fB6vWrHnWq1inq9vsJYabVaqNVqqFarAIBQKKTer1QqHXEqeX2DOwNdWfn9fgwMDCAUCsHtdiOfzyOfz6NWqyl5vpqSq1arKjEvk8mgVCqhWq3C4XDA7Xar497Icb5pJcl4ktfrRSAQwODgIILBoPpyOm/NQKzb7YbH4wEApFIpZDIZVCoVTE9Po1gs3tq3uY3QvRAARuCuAzSipILq6+vDqVOnEIvF0NfXh2KxiPn5eZw9exZnzpxBpVJBpVJZ9bp6pmyxWMTzzz+PV199FQcPHsS73/1uJBIJXLt2DU6nE8DSHJSGmPFEbg9IkUlvo7+/H8PDw4hEIgCAxcVF5PP5FYZxs9lEoVDA4uIiAGDv3r2oVqu4cuUKstnsCtrc4M6B4ypp9MHBQTz66KOIRqMIBoO4ePEi5ubmOjLL6Tw1m011Hp2lfD6P1157DV6vF7FYDCMjI8jn82i1WgiHw6jX6yiXy2qe6DL4TuCWPEnpasfjcUQiETidTng8nhXWJJWkx+OB3+9XsQUuIpfr7mZ+5QQxVuz6IZkFjjetz0QiAb/fj1qthlKphMXFRczMzKz7uhKNRgOzs7OYnZ1FPB6H3+9HPB5HIBDoyMTTzzeKcvPBMZfPOBAIoKenR639crmMarW64tm3223UajWUy2U4HA5EIhG0Wi1MT093XE/+mPF74+D3+zE8PIxYLIZCoYB0Oo1sNtuRdEPFpjOMDodDjbXb7cbi4iJyuRxKpRKApfi1ZCG7MZS3G+vWTPT+eKO05prNJur1OvL5vPoicjIT1PwulwuBQACtVgvZbBbFYhGVSqXDUpC0LRWTtEIIndqVr3eDXWbWasfK+5BJH1T4Pp/PZN91gUwRBzqpt6GhIcTjcdTrdVy5cgUzMzNqcfBc6SnqkLSbpHPb7Tbq9TpyuRyCwSB8Ph/27t2rvJN8Pt+xcA0bsLnotiY9Hg+CwSBcLhey2awSqHrWcqPRwOLiIhwOB0KhEJLJpMpaJuSYmbG7c6AHKZ+51+tFJBJBJBLBxMQELly4gEwmg3w+33EO/yZ0Q4rH1Wo1tFotxGIxDA8PI5vNqsYDct3eydDcupWk3+8HgBUChl0ySJsy5V7X/LTm3W43vF4vAKBYLCoOWipJr9cLh8MBl8sFp9PZEbOUD5oKVYduceh/d/utX0NeX3aLqNVqaLfbiMViSCaT6nkYLEMP8EtEo1Hs27cPiUQCr776Ki5cuIBUKoVsNqvOlRTNakpSjhHnXbVaRSqVUp15Tpw4gXw+j5dfflktXs7Huz0OvlWhG8s+nw+xWEx5/Pl8HvPz8yuUZL1ex+zsLHK5HIaGhjA4OKjimfo6NQryzkAqMn28fD4fent7EQ6HMTs7i2eeeQbValV5knZKUmcCeH16lQDQ398Pr9eL6elpzM3NoVKprGDz7jpPUvcggeU4Y6vVUgW/Uknq5+lCr1KpoF6vq2JU0rcej0dRsC6XS8WSaEHyodslCcnf3f7WaRu7Y/XvKhUhPUp2fnG5XGbB2sBuIluWBZfLperg6vU6MpkMcrlcxwLciHeuf06r1VIZkZZlIRwOq3i4wRsDl8sFt9ut6FQySDo7xPcty0K9Xldr0M7zMLgzsHvmTqezw5FxOp1oNBooFosrmj+s1+unA8K8FjJBuhNyp5m7dStJO8XUbDZVFlOz2VRen511LpUlvYRGo6HOi8ViSniGQiG4XC5VEF6pVDA+Pq7aVnFxUWnSwlhLSer3I73itb43P4e0r24hdfN4diJ0toGv0fhh1qnH40EqlcJrr72GUqmkvLxbRblcxuTkJMrlMsLhMEZHR5HNZnHu3LlNub7B6tDXh2VZCAaDSCaTqkHE+Pi4Yp70c2k81+t1RdMyW9nhcKiMeJMfcPsh1zKfudfrRV9fH4LBIHp7e9FsNleMpZSrdiENPdO83W5jcXERr7/+Ovx+P3p7e9Hb24taraZCfW8U1q0kdT6ZioFFvuVyeQXFKs+x8yg4AH6/H319fQiFQggEAohEInC73apMoFAoKG6aSlgqYl1B6h5it8+2O1b/zrpx0K2MQMbeDFYmxtA6ZBzX6/XC7XYjk8ng6tWrisK+GejnMVu6XC7j4MGDGBgYgN/vVyEDu3MMNgd2a8OyLNWNpdFooFAoYHp6uuv5LP+ggCTd6vV6V+Qn6PPMYHNhZ/C63W709fUhmUwiHo/blvBJeWnHFuj/t9ttZLNZ3LhxQ7WpHBoawuLi4hue1HlTn27HLXeLG62mKEmnkrKkp8EHS2VIapO7BfChkcLRrcnVFot+rIyFbiTmwe9Gapk1nwb2YCIGvUgAHRS63cLZCOTxtGyLxSIajUYHe6GfYwTr5sDOKOWa9vl8N011M3zj8XgQjUbh8XhUsqD8XDOOdw7MG/H7/XC5XIoi1cNsqxkudp4k81sCgYBiEpmfwmPk7zuFdStJmcACLDcGcLlcKs7ExBYqHkmJygQOepzBYBChUEjVyIRCIWWVMD280WigVquprZFYqFqv1xEIBOD3+9FqtVSvP13Z6TFROTCMhwJL1pG0WHTPlLERfhfGYVnPt57avp0EfUL7fD7s2bMHvb29ancAu2QsnsM49VoLwi4xoFKpqFqtPXv2wOPxKANso9c3WB9kUgXXejAYxODgIAKBAKLRKIDunY4ko8PxrNfrKBQKcLlciEQiOHbsGAqFAs6dO4dSqdQRZjGtBm8vpEx1uVxIJBIYGBiAz+dDJpNBq9VS2ekcS643uzHXdQKwFCah58gysRs3bnTIZbtM2duNm9pPUloLVB4M4NKbkhlIUmDKrERSKaTfPB4P6vW6yoyi0qP3GAgEUKvVVKIMz+c2StI66ZaxKu+Dio4DakcTyb/1xAHSzbxXvW3WToYdaxCNRtUWOTptZnf+ehaC3XFMIGDzbDtP0niRmwu7sIXH40EkEkEwGFRU6XrOl+Ecriufz6fKQZgdv1a4xGBzYJfQ6PP5VEkPuyexty7P2cjYkI1j/axM3JHHvBFrdt1KkrQm40qtVkt5de12u6MUg38zAwropNb43vDwMIaHhwEstSdiZhRjEuFwGPF4XCX3MDgcDAbRbDbR39+P/v5+pTgzmQwajQaq1SoajQbcbre6F7tAcjgc7qD+KLTZLovKn+fwfSpVv9+Pnp4eWJaFhYWFHdMPtNvk1xeIfM3pdCIcDiORSCAYDK7pxenjJX/r96KDbIRlLe1X2d/fvyImudp363Zdo1hXh/7MfD4f+vr6EA6H4XA4kEqlkE6n1frudh5Rr9eRSqXQbDYRiUSQTCY7Ssh0A9zgzoBKUmf+9H0gV1sv3YzbSqWiWESXy9VRYcDz7jQ2XCfp9/sRjUaVlcfibBZ7Mh3Y4XCojDQ719rtduPIkSM4ceIEstksTp8+rXr41Wo1OJ1OjI6OYmBgAM1mE16vF6VSCU6nU9F0Bw4cwOHDh9XrExMTKBQKKJVKyguV9VXSgwSARCKBPXv2oN1eyqwqFApKEctkExlz5OsAVBslAMpr2QmQnpnOEuhePI9hY+uRkRHEYrGOLEUd3ZKv5BxazUKVGzQHAgHs27cP6XQaoVDI9nhdMXIe65+vJ4wZLMPOE4xEIti3bx8ikQjy+TwmJydXKEk9u1wKz3K5rPaUPHbsGHbv3o1MJqNCL5wThja/s6DBG4/Hkc/nkUqlVL27xGqK0u41htFI2zIEpstvwN4Qv13YMN3KZBu9fEIKRwpRWRslY0+0Euiy1+t1eL1edV0KqUAggFAohEajgXw+rzw7PjzW2pGOpeXBmKE+QPqguVwuBINBtNttpSB5D/I8fTDkPTI92a6pwU4An9VagoolIBxnYH0JVt3+XwucA5L90Bfcej/b4OZAtsXv9yOXy6nmId2MSX1MmIDFWCdDMnaK1eD2wc7wpUdfKpVUiEwakDfDuuhOjIw565sk3ElsuE5SWv7So+CX8Xg8KjuJJR3NZlO1FpJt3WTfviNHjmDv3r0qa8rtdmN0dBTDw8NIp9PIZDKYnp5Gu91Gb2+vUlTz8/MoFotYWFhAKpVSzXDp/THAL72QVquldi6Jx+MAoAqY8/k8MpmMuoZsRddoNJRiZLYtY5n0rHdC02W776jTXnZ0azAYRDweV1nK3TxJmVgjX9MNnm6fLcFxqdfrcLlcCIfDitbplgTQreZ1J4ztzcKu2YfH41EJeRcvXsS5c+dQLBY76mFXE3pMwPL5fCiXyx1G1kYy2g1uHlyLADrGtb+/H7t371a771BGS0dkPUpNskY6U0QZHYvFkEgkUC6XO3JP7hRuSknyBmVLMNl2LhAIqMCr3DSV1j0AlcZdqVTg9/tx8OBBtR9gb28vPB4PEokEYrEYxsfH8cMf/hCFQgGBQACJRAIulwutVkvRpJlMRsUkpZKUXYFoEdEqcbvdKuuuVCp1UKY8j8fLJBC3261+ZAOFW6n120qQC2e1YyScTidCoRCi0WhHYsZGYhbr+RwdHBeWETD5y86gkdcytOrGYDcnmLgTCoWQy+Vw6dKlFaVSq7EQbG/m8XiUMc0sZX03CoPbA7txdblc6OnpwfDwMMbHx7GwsIC5uTkUi0Xb8MtakBUJsiSPsjYajSIWi6Hdbnf0d75TWLeSZMxRWuG6tQ90xuaq1SqcTqfaH44lEvTIqCgty0Iul1P7xQUCAZU8k8/nMT09jVQqhUKhoJJ4ZFCXQlA2USelK2lQaenqtTdU2FR0dnQfFab8fGnR7pQFS4ue1l+3xvPtdlsZLRwL+cz4LEmhyR/Zj5Vjy998n/Q76VveCxWjvId2u60K2svlsmpMwRg675u/5c4F/J7M4jPoDhrKkmr1+XzKqNUNIz2OKV+TgpZj7fF4VDyM7e3kvoXETjBW7zS4djkO3O2pWq0qplBiI2MgFSpL+tLpNFqtFgYGBhRLSSPrTu4/vG4lSQ3Oicm/5SS3LEvtwGBZFgqFAtxud0dPP9KUAFQnnWaziddffx21Wg19fX3Yt28fPB6PolAzmQxefPFFTE5Oqv0rWTsVjUaV0GNGayAQUO3PuEsHhXSlUlEP3+VyqYc+Pz+PiYkJxa3LBtsAlDBn2YleVynjoNsVHONEIoHdu3fD5XKpbDQJWVOazWbVjhwyLkiammUhrVZLHUNB6HQ6kU6nkU6nUavVVIKALCyPRqNIJBKqnZns6EIFyTjY6OgoHnjgAczNzaFarar7YvYlFaNscMHXG40Gbty4gbm5uTfi0d8VWK2sioYSu7EEg0GMjIyoOknG/qVB1a1MQC+zApZ3m/B4PDhy5IgKtZw/fx6FQqHDsOpGzRtq9tZA45i7fpAVWlhYwOzsbAeTtt6EKjnGPLZareL1119HIBCA1+vFe97zHgDAj370Izz77LMoFAqYmZlBJpO5fV9WYN1Kkha0tNKBlUX3MgOQGabNZlMJKsbxnE5nh/c2MzODQqGAer2OcDgMt9uNq1ev4vr168jn85iamkI6nVYJO7RM3W63Sj+mB8i4BXs+snE6d84ul8vKg6WHwt6hssxDgouQXqSeCAJs/5gVx1jWrDEZQ4LPiJ4D655oeMjnyBg0sLQ7iM/nU5S6VFDlchm5XE5dnx5KIpFAf38/2u2ljZdZq+p2u1XdFl+LRCIqW9rn86FUKsHn8yESiXQoSRlX571Wq1XMz8/fqUd912G10hi+3m63VcJdOBxWVCuNSjuBqStJ+Tl6/gMZh97eXhQKBRUy6Xad9WZVGqwN3YNkm0DLslAqlZTjJLHeZ60f12g0kEqlMDU1hZGREezfvx+hUAipVAoXLlyAy+VCKpXalO+1Htx0nSQAVfgpO/XroHclM2JJ3eZyOczPz6NWq2FhYQGFQqGDnpubm8PCwgLq9TrcbjdisRgAdHweFTIVq9frRTgchsvlQjweV43TY7EYgsEgqtWq2vl6eHgYu3fvRi6Xw/nz59WuEVKYy+8h6TzukE6lT69juyzCbhm9DocDyWQSR44cUc9T9yTp7bfbbcUG9PT0KK+C13W73di3bx/e+ta3wrIs5SnIfTpHRkbURqzXrl1DOp1GT08P9uzZo7KfWdpBoZrJZHDjxg3U63UcOXJENS/o6+tDq9VSBe7FYlGxDQDUHCUbIRV9oVDA7Owsrl+/fkee/92GtTKYZYJWOBxGT08PXC4XCoWCCrXo5+pxK/360vObn5/HuXPnlNEyNDSkuvHwGLtErG5/G6wPbDDv9Xpxzz33YN++fRgYGEA0Gu0IT9nhZks0ZFJnq9VCIBBALBbDgQMH8Ja3vAWpVEq1t6xUKkilUrc1DLKhOknLspSV2Gw2MTc3h3w+r5SEbs3J+AOVKz2LWq2Gubk5xS/Pzs6iUChgYmIC58+fV/FPUqg9PT1IJBIrmqnTI+zr61NFruFwWGVgDQwMIBAIYM+ePejp6Vn60v/vXmkNTU9P43vf+x6y2azKppK9JqkcG40GXC6X+u1wOBAMBjsaF2znhUhvenR0FD/xEz+Bnp4e21gshSQLyDOZjHpWjCvQuLrvvvswNjYGh8OBcDgMr9eramV57VarhWKxiHPnzmFubg4jIyO4//77EQ6HVTya5/t8PhXHrtVqSCQSqgnzvn370Nvbq5LKSBczVs44J993Op2KYVhYWMClS5dw5syZbT3Gq2E939vtdqO3t1cZRAsLCwDQdYeX9bAvzWYTV69exT//8z8jGo3i6NGjOHz4MCqVigrd2MXGDW4dwWAQQ0NDiMVieOKJJ/De975XJSvmcjkli3XINqBrQT+m1WqhXC4jn8+j0WggFothYGAAwWAQR44cQSqVQiwWQywWw9zcnGIGbxc23LtV1ilKT0tXkNIKlF6IrF9kiYaeNCPB80mz6pQu44cy65T1VFTooVBIpRGTepUpx7KMQ96vfh/Asmes733YzZPeTuD3pCERj8dtF0E4HEZvb69KttBbksmAezAYVONGi5WGEJN0aJz19fUpj7C/vx+RSETFo51OJ6LRqEoWabeXesP6/X7FDHi9XjSbTQQCAUUXl0olFAoFAOiggakkC4WCCg280Vv2vBHgWpDr3S5rkQYNY/ahUEh15qLykiVjdl5Gt8QdPn/mOLC8jA2217P25D3vVCPnZsD8gFgshr6+PtV3eWFhQVGsXDd2ORkb9SalLJXtTjnmzG5OJpPo6elRoZz1KuSbwYbpVnpqAFRmWTdKQ2YOyteYFcUkH9mbFeiMbzLbNZFIoKenpyOlP5PJKEuV8YpoNKpiVh6PB8lkUglKCl/WUl6+fBkXL15EOp3GtWvXOjo8dNvos9lsolgswuVyIZ1Oq3Z09Iy2K6gcGYulZ20nMAuFgorrkpInfe1wOJTAk7sGyEUALHsYMn4dj8dVsk6pVOpgJQCoZhDValUlhMkEAmbHVioVLC4uwu12dxhcFPTtdhuVSkXFItmXcqd5KnKbqsOHD2Pv3r0dCVJEu91WG2fH43EcPnxYeR+MAQ8ODmJwcBDAUuxZ1soCUFvuyXAH1ysA7Nq1C/v370c8Hsfo6CiGhoYwNTWFgYEBVSZC2lxuXEBwVxiu1Z3SHetWMTw8jHe9613o7e3Frl271BpiWCISiWD37t3wer2q7aBd+cd6FBiZvWQyiePHj+PkyZMYGBgAAJUvwjDX0aNH0dPTg/Pnz2N8fFyt2W6e7a1gQ0oSgOrZByxNdk50uxRgmQwh6xRZoiGL/d1uN/x+f8c5LOAPBAKIx+Po7e1VD59ZjIuLix0eR7VaRTgcVtfs6elRiTzMsl1YWECpVMIzzzyDr3/96x2Zsbplqv+mkrQsC5lMBouLiwCgdlHfrqCS5LNkrM6O5qrX68rKlCn8pMZqtZratYVKjoX+jPHKGDjjTqyXYrIAk8GobJntptes8nwKTypX2cGJipRsBw0lMhw7pVGEBPd0DYVCePDBB/HWt74VrVYL2Wy2o5l/vV7H+Pg4pqamEIvFcM899yi6lXtIDgwMYGhoCA6HA8PDw4hEIkoxsrMOaW8avIw3NZtNjIyMYN++fYhGoxgeHsbAwAAGBgbQ39+PSqWianCpxEm/cU2mUimleOXGBAarY2hoCD/xEz+BwcFB1f1M9q+ORCIYHR2Fz+dTjoud4bweeDwehEIhJBIJHDlyBA899BA8Hg/a7bZieyjrDx8+jKNHjyIYDOL73/++et8u9n2r2FCdJLCsuGSNGz0G2U5IoltdlKRhJQXDv2WWKRNuAKiMWd4HhRvPKRQKsCwLxWJRKUBmYObzeczMzKBYLKo+kkwkooLkPevZcrKAmcFlKoNqtbpthKgddc7nIw0JPVHJjm7Xr8dryZivzHiltynnhG6oyPfkfXBsJBMgDRdZsiMTTfT5B0AZADuZmmMCUygUQiQSUbFd1j7z2cjaaW6Uzk21OT7RaBRDQ0NwOp3o7+9HMBjsqH2Vu+hwfjH7uNVqIZlMqmtzHH0+n/I0uFk7AOX9y3nAe6pUKkopG9iDnZL8fj/6+/vVRhBynXHNhkIhjI6Oqn66DJcwjEY5Lb1LKWsZjmFyZTweR19fn+rMJfcXlqCsoCcLANevX1fM5GZi3UqStY/c64uJOD09PSgWi8q6lEk8QGdgXleeelyTx0gByAU5Pj6OmZmZDk+zUCio+JOkaK5fv666QrAQNZVKKS/y0qVLqkaTmbd6SQcbJdCzoEHABdZsNlW9JQClkLcDZGYvKW/WpYZCIeXxMQmH56zVU1PGrVjbKD1RaaRwHDifJF3KBC1StzLJhwuRXisXGj1Zeox6ViXQ2VWKFulOpFmJcDiM3bt3I5FI4ODBgzh06BDa7bby4CWbsGfPHrXRQCgUWrEDz/Hjx1VyXSAQUB6CHq+U40zGodVqIRaLIRqNwu12w+fzoVarob+/H+9///tRrVZVRnU3w3ZychLXrl1DKpXCN7/5TaTT6TfkmW4FJJNJvPvd78a+fftwzz33YGhoSHVO43pgEw+yBrVaDfPz80in08hmsyrJjjJXNgWhLPH7/WqTCdbVjo6OKspV1tbq8piv7969Gx/96EdRKBTwd3/3d5iYmNh0lmDdSpJp/rT42u02fD4fPB5Ph5epW/0S+mvSC5BWuz7RW62WcuP1cgt6JLxWuVxWtBvLD9rtNiYmJpBOpzEzM4NXX30V+XxepRGT3pOJBjJRh9eXApYZWLSMGCfdLrAbKyZDsU7V5XKpGAHPkfS6HaNAg4O1kbr3qSswnX6Xlqi0MvU5pFusVJKkiqVC5Y/c35KlSDtVQQLo6JvZ09ODZDIJAIp9abVaqhZVtp2UMUGyPP39/ejr61NjojMErL2TnY2khyqNb6dzad/aUCiEo0ePdoRrZOybf7fbS/2eQ6EQZmdn8aMf/egNe6ZbAYFAAEePHsWpU6fQ39+vjBOOjWRwent7sXfvXljWUt/rXC6HVCoFp9OJa9euIZPJqCYuVJQejwe9vb0qc/bkyZOIRqPYu3cv9u/fDwBqwwmGRziPCK5Z7sTUarVw9uzZDrZos7Dh3q1Mz6cQ5KIAOmmwm4FOyclrUSnq2VI6BccsWGCpXu7ChQtot5e3wioUCsrLkDuHyHvuFluUnyk9XXkf2wHSwpdxvWg0ing8rhKsJCVpp1SJbplnukElFZyeuCPpUZllScqmGy0qhavMmiOkJ0vhyr/527KWG1Qwi28ngMqPMV7u8ye3k5PetzQ85GsEx1luzM5jWRZE752fTVnDrEY5z7rR4ZLmpdCkgF6tX/BOhsPhQDweRzgcxp49ezAwMIDe3l4EAoEOupRrSToqst0oWZ7du3cjFAqhWCxidHRUPXvWwDN5i8ldbPqSzWZhWdaK6gHd+OW8kvHloaEhPProo1hYWMDVq1cxOzu7Kc9m3UqSXiLLNWS9oKwz0ycysZYSWU0J6oJN9zSlAGRT5Xa7jenpaUxNTXUsdhbHck9M2XaO9yG9IX3h8zOpIOnJbqeennxeEh6PB319fSpr0e4YYDmwbjdedvHFbkaVHjMka0DjTBpHzIiVnyuvbxfzlnQy41fyfb7G8pRardbR6WkngAKIhd3scsN4k24kUnhJtoVzRJYJsO+mzJAGlgWgbAlJxQlAde2Rnj/PZzyTipG/WTa2k7OU1wOXy4W9e/finnvuwa5du3DkyBHs37+/o2aZa01669zGUD7TcDiMBx98UPXnlgaVzIzVHYxisYipqSk4nU4VQ+b7kk2i0uR57AB34sQJ/Jt/828wOzuLz3/+83deSQLLlp8uHGVLOGK9npVd4oe8ln5Nu4QQXZHS86hWq6ozvVS6MntStyrX8x10L3cj33ergQKH7eIYTwK6W/ISurKSr/Fvu7HW6VYZ9O92fWmgyc9ay2jTP18KfwrbbqzDdoedwqNXptc8rnYN/X9ez26XHgpkffst+be+diXlTnqWng+vpYdSDJbhcDgQCoVU05ZgMAifz6eyjulg6E4JgBVhCbfbjVAoBJ/PZztG/DxpCLVaLdXfu9lsqlwTYFnuSzku5woN81AohJGREeWpMnx2q+zBhpsJkF6VLrgMrK5HgNgJQ11YdqPv5MPSPUx5bLvdVrWS8hxJvzDGKSEfpuTBu1HBdvG47QKv14sTJ05g//79iEQi2Lt3L8LhMBKJRMfEtYNuzMgx02OO8hg58fm6rvi6fa78DLkzBIP9nKdUgvRs9HGTY8k4bLlcRjAYVC3udgKczuVNAjwej/LkpTEqjU0ZvwdWGkYUjKRDWf9Kpcbr0OuTyVZM4AOWY9M+n0/Fy9j6jnvXspVlMBiEw+FAoVBAqVRaUeO508Fx4HaFb33rWxGLxdQens1ms6MMi+tHGqyUoezjzPpieoIE1x//ljFszh/SubozxjVNSpe5ETyu3V5K1uvt7YXL5cK9996LcrmMVCqFixcvdu34tB6sW0lKASWTePQC4G6WfjespiTlufLzpULu9pmkXvVtlHi+TgtKC0Xf04x/S6vFrtSAx2wXeDwenDp1Cu985ztVBrDDsdRejtSaHfiMpLWvG0byXF1R2ilJ3QjRk3T4mh3bwGsy4cTpdK5YwBJyPrMMolKpKCW5U+g6puf7fL4V9JiM+ZF2070ECTkPeC2Z3ENBzGQdCllmJ8v4JJVgLBbD4OAg/H4/8vm88kgKhQKKxaLKvnY6ncjn80pJmr1Cl8Ex9Pv9OHDgAB555BEVQmInK+lYyDGTjkq73Ua5XMbi4iIcDgeq1aryPAmpGGXyF6/JzHleT8phyhvWVDNRi+UmjUZDbeoeDAYxNjYGl8uFK1euYHp6+s4qyW4UZTcvcjWKzE5ByvPsju3mQdgJbelxrCXY7L7XWuh2z9sFVIgs1+Bk5ORfzShYjRVYDzYyHnKO2CllCV0Jr0WfSiOIAmOnKEkm7DAmpcftacXTytcNG7lmdQaIdKik0nU6lAKcHie3saNxTmNMxpfpldLzpRKnYDaeZCe4M04ikUAymVSlVfp4EjJRy44GlcfpxoikxLtRoPqc0c+TVD2pWc4nzkuuU5ap3Wp4ZMNt6eQHymxAu7gSYacoeayk0nQqTp4jLVV5XVlqoP+W1oi+QHXvRCaEyLiI/CzdQ7G7l+0Ep3Npt4Vjx45hYWEBzzzzDGZmZnDw4EEMDw8rS45Cxy4O2M3T1xM+gM55Yuddyv/tBDIXEReKHa0PQFmklrXcIEEeK+/d4XAoYcu47HYb524olUqYnp5WCsrv9ytPD1jeW1Z6FKRIZc1ju91W88TpXNpKi1uZUTHWajWUSiU1hhwX9tDN5XJqQwR6NHLf2FarpbyFSCSCZDK5QplPTU0hlUptm3rmW4VlWbj//vvxi7/4i+jv78fevXvV/KYCkolzslMVAMUGSGVFtgmASoyU3ZmAToNTrm2ZOS7Lu0jHynIQMgdclzSKeL9MuJO11zeLdStJu/oTnVJbC90UJX/bCUR6iDIzys5Slcfzb1nGIK1TXYB2U5Y8XgpFXVHy/dXic1sVDsdypxT22Z2amkJ/f7+KR8mEDjvFaGe42L1P2BlUdrHMbsfq40fwf5k6rmfh6sfrwp/JOzsFtVoN+Xxe9bhlLJH/k2LjexR80nqncCNdKjNP6Z1SGMpMVn4OQybcrowCud1uq/1qZZtLy7LUHqHAskfTbDaRy+WQy+VWbO22kzEyMoLHH38cg4ODHXF72fdYrh0+e7nBhKwSIFUrPUbp9ctMdVnKJZkpuwxpPcGL7Sz9fr8yuvTEPbtmNTeDDddJ6gLITjnoFKk81g5SIEn3nQ9GWp/VahWFQqEjMUP/zYcl+XSp0GQGnLwvO7pWUga61yIpBS7q7aIo+V3Z0q9QKGB+fh7T09M4ePCg6nzCBSDHcLVrrvWZ6/lbV7TyfiW7Iceb58j9B7vdk250ce6QxtspnqRsIC8pSmmwsgGAbClo90y5FnUjg//LDjwcP26szXXKxgIUiFxv/HyZ5LPad9kp49cNLOVg+d7Vq1dRLBYRiURUDbTuQUpZJ1+TDJ2EXDeyBSUVpV0JiJ1xy3MIzjs516iIGavO5XK4cOECzp49i6mpqVtmDjbUu1WnKrlYgO5CZ62YoJ1SoSBkXVMgEMDw8DB6enowOzuLxcVF1YtVV5KyI08gEIDX61UUEHeIoJKVsTW7++Nk0L+3zovzfTYx2OqQ2Z+VSkVRXZcuXcKrr76KI0eOIBAIIBqNqonJCatbhzq6KUo7pae/bscYyNelQSRr7SQdrLdDs6N65ev8XjxX3/ZrO4O7tbAfJ9DpGTLtHuiM7epev6Tn5LiQniM1pndhCgaDCIfD6pxSqYR2e2lXIJYokErlLjIAOoQy75kt7rj7zE4GSyS49+qzzz6LeDyOo0ePYu/evaqWnE4Jd9yR8UhSqJKFs1NyZBYIaczqTT6o7GSc2rKsDu9UGsj8YTb0/Pw8ZmZmMD8/j3/6p3/CD37wA8WG3NLzWu+B3eJxqwkMuyDsasfIa8vF2Gq1VG9GBpZX82YlFUu3m/y0TEFeTYFL197uPfnDz9kukNQijRUaF/l8fkWP3rXGtxu12g2rKdLVlG8377MbHd/tOP11aRXvpMQdPQ5E6KU0UmDxff1ZyqQfu5iyXd9ezkGdKpdZtbyWZAlWYwf0v3ci+KwYF15YWECz2UQ+n+9QUvK563PertxH/y0ZGH09kQrVDWtdtutGslSSeuyzUqkoGZVOpzE/P78pYbAN0626m6uXY+iKg6/phcEAlAUpH4ZOt7ZaLfh8PvT19WH37t2qUzy9TCYVzM3Nqc4PVISyjioUCsHr9SKbzXbQtXIy0KOUzRHkQADoiL/J7b1kAstWR09PD3bv3q3SqXO5HPL5vErN17ukyAXUjQZdDetVnqtBF8qrJXTx7/WGCQhu6L1ThCwpTEl50rvM5XJq2zxSaMyKlDvryDpKzhX2PCZ9TUEp+4OSoeG2dJZlKU8xFAqphB4m+7AEgIKW8oNUcSwWw7Fjx7C4uKjCBjsVfN5OpxPFYhE3btxAOp1GMplENBpVmaEMc4XDYeVgUC5Swcm4PmWh3Wfpa5DnSflA40ceJyET81gDXygUMDk5qXZ78nq9atP3kZERVCoVZDKZFclDG8GGlSSADs1PJUmLT8YraEVIr0wmeng8no4uDsyWonLkouGWLbt27UKr1cI999yjShKKxSKKxSJefvllzMzMqIw7KtdYLKY26uUgzs3NKfpIJnBwYOTnc9C42PQYJDl8PX65VWFZFnp7e3Hy5EnEYjEEg0Fks1nkcjm1gTJLAqTgW8tbvBVFuN7Ytu7tELJURVem66WEOcf1LiLbGbKZgKw3LhQKSKfTiEajHUqSz42lFqxz1HMBuN8jMyGpIL1er2oGQKEmBWwkElHKkltmFYtFVKtVlXnMz6ec4WfFYjEcP34cCwsLeOWVV96Ap3n3QMrmQqGAa9euwe/3q1IQaUAODw8rGSoVjfQEpWKk0yPzAHRl2A26DNZB3cDStFAohFKphMnJSaRSKcTjcfT09KDVaqG/vx+jo6PIZDIoFot3RklKrEdI6X9LV5kPl7uJ6y45FxODu1yklmUpS8GyLORyOTVAcuHQ05E7QEirx+7z6BnTwqVVQ8/BzjvmQAFYkdywlSGFI7C86wNgnx2sY72e5Fr052ZjNeplPd6uTBbZyZCCUWY8UhnyWUnh2O1HQhpcMhMSQEf3HCb0MNtWv5aMgcrQAb2nnQ5Jt9JRYeOFfD6vukxJJ8EucVMmWQGdDV902lUfH92IlcfKuaTfN+cFS0OYtMX7ZPYzN3CuVqu3PObrVpKSipJd/PUyEBn/kdSl9M4CgQBcLhf6+vrQ09OjkiJk2jcAlbLNIHKpVMLg4CCOHj0Kn8+HGzduYHx8HMFgEMViEeFwGOVyWe1fJjvD8KECUItNbvQqU5h5f0wvBpZqxvjAqbx7e3sxODiIer2Ol156CZOTk9tCgLI7fyQSUTGLXC6ndqpn02hJk0iLEVi9HETH7VKQUmgDyx1Dut0rocebeYzf70c0Gt0WY7wedIu9+/3+jsQOlmJwrEnRSvqM12MSHXf1oIBk7gEAlcwjZQ6pQMuyOoxmCdbw0TimEU7vlIl2O2X8usHpXNqsOBqNIhwOo6enB263G5VKBefPn0dvby/e8pa3YHh4WHmGlON6+MnOYKaRpENXqLqSlfOM15AspCzpyOfzyGazKJVKSCaTaseRubk5VKtVRCIRHDx4EIFAANevX7+l53VTStLOCuB7+rHyS/Ihs/gzGo0imUyq2Ac9Nyq3xcVFBINBtaC4E8Po6CjC4TBqtRqy2axSWOTYAahCU93iBaDqvPTaGxknYaIQ662oHBnfdLlcGBgYULz3K6+8ojbq3epwuVwIBAKqeDyfz6sWVbTg14r36bgTcUl5LTkvZUxsI4259Wt6PJ6Oxss7AbqxQOXDvRvlptsUbDQy5fOV1BvZGfm+pNLoIUqDnA2zpYFDI5wGMD0LmevAz+aat2tKstPAdRwMBhGLxZTszOVySKfT8Hq9iEajGBkZUU0eJFugJzXK9XYrCYx6SE/qEV6bG9+zF2+73UYoFFKtI7PZLBqNhgrRFYvFFdnOG8WG29JJ+pLxBmDZ0pD7wunFnZZlIRAIIJFIKBefD4Z0pSyraDabivLLZrOKCkgkEggEAhgfH8fU1JSqfQoGg8rV1oWibqHomZl8XyYr8IfX4cLmveZyOczPz6sYDK+/1cGEJCY6cXfxVqvV0Q+XuB3febNjmExbp9dD5kImHuhNI+wUxGp7V243yGcmPT2ZZCOFJ2DfToxMksxfoCch1ynXqpQxkkbj2NGg5lp2OpcaassmAbJHr1So8nvsVHi9XgwPD2NoaAgA1EbKkUgE/f39GBwcVHKPhoVel65D9woldGXX7X3pXUojVmZG83jWacu5FY/HASyxfleuXFEM2K2GwTa0CwgnLd3eRCKBSCSiCs5rtRpyudyKOkR+KYdjaWPPffv2qUJ0Kh/WPXLhWZaFeDyOWCyGSqWiMrCuXr2KCxcuwOPxdDRCZh2l07nUzNjpdKJcLqNSqaiEIJkkwP9lejO/XzgcVrVY4XC4I5bKeis21l1cXFQFrNulDMTn86GnpwderxcXLlzAuXPnVM9LZgmvFnPQvYSN4mbP1RN3pNXbbDZVohc9ZZl8QEGqJyRJ42qnZbeyQLtQKHQU4dO4lcX5evIOsLxjEJ8/25wxoafRaHRs5MyxYbxM0rWpVAqpVErJENZAs46yUCggm812GHJ+vx/JZFKV7ZRKJUW77mREo1E88MADOHr0KC5fvozTp0+j3W7j8OHDOHnyJEKhkNpvl8lPkgkA0MHCMaShl4UAqytVu2P0dpUyB4Lzy+lc2m/S7/d3hNGSySTcbjfS6TQuXbqE8+fPY3FxUTkwN4ubanDOGyXtovfv7Ea30YLnBKfnKTNambZtWRai0WhHIXE2m1W0iuz7FwwGMTg4qCxUGevQLRx5/93uk9ap5MC58S4pJm4cy+9O73erC1BJiTFOkU6n1fhKxWJ37kYpzM1GNwUtlSWVp1SAeojAbhxlnGSnQDccgJV0tp3nzt8yq116CdJb4PucY9I4kbQrY46UGTLJR+Y9SNpVv5dutc87CWwm0NPTg8nJSWWo+P1+9PX1qbWvG4yUqzLOfzOwU6ZA9zpou+Qs/V7a7aUmE9ylp9VqqZjlrVYdbLh3K1OtHY7lXalpbbRaLcRiMbVrRD6fVw2QKaCKxSJSqZSKS9JTo9JhH0g+CEmTkOIsFArq4TmdTkUNMtFnZmZGFcUyPkHqtNFoKE9SdgCRFBEXI5MPeC8ejwflclnVWspMq+3UyYOepNO5tPvCzMwMnE6nStqR8SZp8UnqklhPrHKzEnf082WRucPhQCwWU3OXdCuzoXUj0O6eWBe4U4RsIBBAf3+/SoygMuKzkp1UpCCTa0jSnVK4yn6eso4ZgBLQsjl2IBBAb2+vShyid5jL5dTnJpPJDqVIw5aeRigUQrlcvuUY1VZHrVZDKpXCzMwMJiYmcPXqVQBQCS8yWUffN5hYrQUhFaoOytnVkua6va6vOWl8yRp8vpfJZDAzM6M6gt0KbkpJsgSDNKOkLFn0DwCXL1/G+Pg4Go2GojkY3yJFGovFFN1KC5FfigKMzZFJ/2SzWUXnMsmGBcPlchnpdFpx1IlEoiPGyFiF9BQl1cY6LmApCxboTJlut9tIp9NIpVIdA7edBGcwGERfXx8sa6nl0+TkpCoqZuKOhE6NSNh5ZWspzlsBryetVd4vk03kPckGzVJB6vfFZIdwOLyp93s3IxgMYmhoCD09PYrWlGNJ41MKNtLa9XpdGdSyrpqeHuOLXH9sWEB2iTKF4+L3+xGLxQAsU31M3Gs2mwiFQujv7wfQWdNM4x1YqrPkPoc7GWzhFg6Hcf36dVy6dEnFdWOxGCzLUvWlUgHxR48ry45M3da2ztqspgS7yQRpAJE1kOwAx7nZbCKVSmFiYqJDN90sbqpOkl+Cykt/j9mPUmDywXDiAks7WdM9phKVD1N+QanYmOEkB6lSqahNVVnszoXC+6xUKiq2JnsR8vNkEkGtVlN9Cx0Oh5o03NOOk2U1wbpVQQ+L30cmZ+h0q06drfUMui2izXp23Shvqch1q3gtcF5QqG8ng2g1cA3LbFP9fbt4tDRCyC5IGo3PX57PZyvpMykUpTyhkJRrXF5ffqY8346224mQMo7hKxonrAoAsKp8s3t9tee6EbmwnnN0zxHo3P9UzotbxYYanMsbApYyTjOZjGouTAtN1k4ym4yWR61Ww8zMDBwOBxYXF5Wrzy8eDAYRjUZVBhuvFwqFFIXKeOTi4iJSqRRarRbS6TRyuZy6lmVZKhnI5XIhl8t1NDiXVAI/w+FYaquVyWRUOcn8/Lz63gz+M97BZgLdqMatCtJflmV1jKn0JjmBabTosWCiW3yP2EyBJRernsQjY196rMXuOvK+JFXIzOmdAHoMVF4yFgh0loNJy173LGTskcdKtgjobFKhxyf5GiFjmMViUXXv4VqUhrqeK7Fd1uitgCUU7KLFMZufn8fVq1cRDAaRTCYV8yLHVMaVgZVxerscEKKb8WoHfS3bHUdjiTqG4b/Z2Vkl+zcDG25LJxcI++KRzpQTXnqC0gqvVquqx2o6ne5ocutwOBQ9CkDtCiATfljQTa80k8mg0WigUCgoZUzqhinhlmUpBUprQ7dkuYBIt7bbbRSLxRUDTiqI2XOxWGzVZJatCD5Dab0zvuT3+zs24KbRIoXcarhdCqbbIpILW1ec670ezyOTsZNKCKRXRmGk028AOkoF9KxgfWwodOXckl6+bszwHIKvk0GiVyRbRvJ6MrljuzE+N4tWa6m0h+3/+LxZjM+8Epb5kEkg9Q2sbBaiG8PdPMNuCk8/TofdeZwjDJfQ8clms+p7bQbWrSSZ2cltqyzLUj0SAaiuFul0GlNTU3A4HCgUCisWi0wVl7tJ03Nk+YXf78fQ0BBGRkaQz+dVY2JguRzF4/Ggr69PlZ6w3IMPk9aFtGJluYekYCR0qoavSUu03W7D6/UiHo93eFLbAd3iiLL8Z63ju2GjtAqvvxbsFpHuDXarh1zrujrdul3GeS1wTTNDUKbnU2hKYdRutzueD0uv5Ps0MAF0UPo6bUoGQ44PQzscP5fLhUgkouqpKTR5LRo1sqRkpytIgvKPCYmtVguTk5P48Y9/jMHBQfT19akYcLeMYEmf82872bAWbbpWCEZXyDwPgEqwbLfbuHHjBi5fvoz5+XksLi5u6HmshnUryUKhAMtaql185JFH4Ha7EY/HceXKFWSzWVy7dk1lns7NzalFROHEH7m/GDsleDwexGIxFeiPRqMIBAK477778KY3vQmTk5O4ePGiuj5rEnt7ezE6OopqtYrXX39dJdPwAcoiWEIqaqmwZTxDKn65jyZpXnrIsVgMhw4dUlmw24nKsTMS2IVI33l+I0qSuJ3Cqtu93IwHKONfNOZ2CiqVChYWFgAsKSi52TF3+8hkMmg2mx3b2LHvp6yDBJbXnkzS4Q+VMbOo2Q6Sa4rbIAFQ98GOWKRVWY7F1P9wOIzh4WH4fD5ks1nFeBhFuTwWDK2Uy2U8//zzeOmll3D8+HEcOHAAo6OjSt7JZgJ2FDqwcnNkYGWrOb6mMzXdDNy1xooMIwB861vfwv/6X/8Li4uLmJqauqnnYocNb7rMjjderxc9PT3IZDLqGFKR9DpZbwOsVE6MG/AYeo8+n08VG8diMQwMDKiGAXzwcj9DZrSS7tVTgnWBqStFO/pFp+b0JB318P5fUToX/XZZfN08SX385LGrKcnVrMXNvu+NQl/odtekJa3HX7Y76CmSMdLLZGToQlKdNITb7bY6VzdESeXJ3s61Wk15mbLzDoCO7bPkMX6/H06nU/VW5nUqlYpal1Sqhmpdhs6OOBwOpFIplMtlxONxlVwp1/dqXp7d37pRKq+xmuLcyBjJMqNSqYTr168jk8m8MTFJolwuY35+HpFIBPv378ehQ4cwOTmJSqWC69evo1qtqv3iZIo4v7je8LhSqSjlGwqFlBBqNBpYXFzElStXUC6X8cgjj2DPnj1IpVK4du0aarWasiJ5LWa80tqX2bH6ApevEdKL5GKUA0dB4Pf7VfD7/PnzqlRlu8SqCoUCpqenYVmW6oXLMZFdkgB0LLKNYD0LwU5Rr+e6a8VG1gN9wdKT3Em7gLTbbTXeumcgY4ZUgnpplYwxAp3tx3RPYq1nSuVHBctkIq5Jjg/pXJ0Wp+crQ0Q7Fdx/lzHdvr4+VKtVpNNp5PN51ZuakEpyvRnCMsasvy6vq7+nX9fOWZEGq5Q7fX19OHXqFBYXF3H58uVN2zN0w0qyVCphZmYGzWYTjz76KMbGxnDx4kVMTEzAsiwsLCxgenoarVZLucKSsgKWFSVjHkwUYaE2hfH8/Dxef/11hMNhvOMd70BPTw/OnTuHb3zjG6oLjNyRhEWspH0Y0JcekFzswMqFyzgKsNyjEujsgs+Eolwuh5dfflmVsMjekVsZxWIR4+PjsCwL+XwewHKwX990WSrJ22mlbyTYr1urG722vlhpbMmay50AhhvIEBGyPk162Yz/6UpST5yiAJX1bd0YCQpF2YmLbeeYsEFw7ZIWlx4kG57Q29zJYO1zLpdT+0gyx8LtdquNl4FOo0gqpW7rUZerazE1hN319JCPfryUO5ZlYXBwEA899BDm5+eRy+XuvJLkZGOSq3vmIQAAtLRJREFUDLvPMC1c1tDxi+mTXtKWfPCMG+o7crDcIpPJKNpGTz9nXQ+ztOTCBTozcqX73y1xQypReZ7dsUBnpqzeYHmrgt59Op1Wz8zv93dQ4XIB6dalng6u09TrVaT6s95oAoBcYLeivPV5vJPoOhqsdp4knwcFlRRYelY7f8vSMJkMwvOZXMPPkaU7UihK70HvtsLr1Ot1JYukTOmWhLKTQA9S9/rJzMVisRWMiVzjN8MCdXtfeoerHaNDGsI0wjwez21pGLFuJckO67lcDs899xyCwSCq1SomJiawsLCA+fn5jhRwGRsAluuoZJ0jG5C32221ywTbyDkcDly/fh1TU1Pw+Xy4dOkSwuEwFhYWcPnyZZRKJaRSKdVgfHFxEaVSSQ2utGLlg7Xj2LkAVxt83bOQXnG73e5oYbfVMTExgW9961vqWZ44cQLxeBxHjhxBT0+Pav/FWjeOF7N85TOWNYbSQOLz09te8Vi7Z7nWwutm0Nh5lnbH6gsPQMeONLrRtN1BCs6yrI4YFcsHuMmBZVkdnZgYD7KspWx4/Vmz8YcsHwoGg6rDFT+b1wCW5lhvb2+HsmSbS4Z2uKVeJBJRCWasyaQRK0tFdirI0mUyGeWBBYNBHDx4EMlkEv39/UgkEh2bGpMp0PvhSsh1L8uFNut5SwOJ8lu2LoxGozh8+DBisRii0eimfCawASXJCVwoFDA5OakmZbFYRLVaRS6XWyHsZEcemSFIQcm9ykjrMeAfDofhcDiQyWTUYrx27Rp8Pp9aYLVaDdPT04r65aDoQlYXyrpXwEWo89u0iKUyZMxDT+QAOgvWtzJosJw9exYejwc9PT3Yu3cvYrEYRkZGkEgkVCtBJnNRScrOLNJ6Z32VnSdBWpzzRS9W5j2tBbtnb2eldnuN15CvcYHLInq7OMt2BeORXq9XlXrIcAjrZqU3ydgfyzLYlk6ey9CE3HiZyXpsa0clyWfNxD5gme7lZ3GDdX2jZ46n3IJPp453ItgDG1hyfpgAdejQIRw7dkw1DdHXo4zz2nnkOstgR8mvhW5ry46J4jUph/x+P0ZGRuB0OjsMrlvFupUkU7nZwqjVWmoiOz09rRrmUoFRoFBJSqEoY370IuSgcQssfib3OuPmmfV6XRUQl0qlFXQthZpOC6ylJGXvTnkOj5W7R0gBz+MpSLcDSKnTuh8ZGUEkEkFvb68qz+HElBYj4792SlLGhXWqhVnJfE/3JNerlDbTk+S9kJIC7Hdh387gJuh+vx8Oh0O1MZOhEfk89HaNQKdXLoWoNKgZ5uA6lgJYF7jyb7vYqLwnygNpgO10BamD+SDcQYMdtfQkRj5Tu9IOQv5v51RIbNQIBlY6Mrri5XyVFRIyg/pmsW4lmUqlACzTpvV6HdeuXcPMzEzHJJS9ANlLlV+IkA+81VrqcDM1NYXZ2dkOl1r3DHUvRH6WVGZUknZYbbBWCx5LqrDbdbeLh8H9AyORCH7iJ34Cjz76KILBIAYGBhR9RupKF3hA9+2VqGRkfIoNJXgM0Fl2oWO9lOtqSnItRSe/CykmGnI7yZMMBAJIJpOIx+NwOBxqA1vpjelJOJJhoRElnxm9OmnYyhZ0lCG6wcmWlMDyWpO7A+lN6gF0eLXsDW0UZSd8Ph/i8TiSySQGBwcxOjoKYOUaAJb3B10LrJUlg7CaYtVBo4nQ8xmk7qARxHnk9XqVkxWNRhGNRtX+v7eyQ9OGOu5ItNttFAoFVeBrBz37rBuYpLMZ2CkC7HaCgof7hfb19akWfNwsm7srSAVkt62OVEzSQ5MxSr2GjZN/NUvV7vWNeHnrSQKiJ0kqEbi5hgRbFcwUZxmX3J2D6OaR6/Fn6RHyWKlUOWdWM46oBO28S3ktaazpdLmRD52gJ8nkPFYjlMvljjAJsR4jlWua8Us7o5nHrnY9O+XIc+Q4yw0YGP5hOHAz8ghuahcQg50BLhZuR8S95vRWY4SkJdnfVULPggWgYlT6ApKCcK2FqVN8t/J95d9UkszkPnfuHM6fPw8AeNvb3nZLn7UVwPyAcDgMr9erjBkWb8vOSzLrmaBxoVOyDJtQkOkGkmwcIq8llS8/n8k5pNgAKFrYsiwEg0G0221Eo1HEYjHUarUdv1UWYVlLHdSOHj2qknVkiKTRaKhaccnkyfMlJAOYz+fVNRiq0xXuapBGDz+nWq0qZlLGs3mPNJrS6TQAqE48LGO7WRgladAV9PBTqRSazSYSiYQSSnZ0KuvSuO+iviD0RdVuL+3Nyeb0sucmhSsXGrCy+YO8z/UWOevQPV8djK1ks1m88MIL+M53voN2u43/9J/+04Y+ZyuCXa8SiURHgg67W8nNCQKBgG2yhN2Yd6PCOQZ2NbeSTmVGrD7/OF9kwlEkEoHT6UQul1MZm0ZJLqOvrw/33XcfBgYGVA9UPkNS3DqbAiyvRb0kB1hSZvPz88jn86hUKkph0sNbD+zi2+l0GgsLC3A4HCo3wuv1IhqNqg22a7Ua0uk02u02wuGwys69FRgladAV7fbSTiipVAqNRgPRaNQ2rkOqg9adVHT69fib9Nfi4qJqDCEzSCW9qfeNtLtPwF64ruc76t+Fn8VrOhwO5PN5pFIpZLPZHUPZyeS7QqGAVCql4oz0smUyhR21Zfes7I7R8w90wcsQAJWkbLYuwU5YpAs5J0ulEgqFAorF4i3Fp7YbZOtBemO6kqRRImHXwYygYZ1Op22V5FoeqT4fpJJcXFxUORFUkuwrzO+Ry+VUAulm5IoYJWnQFdVqFS+++CKmp6fVriysP5Pp9lxEpOTYeFom6jDo32otbcmTyWRUGc/c3FyHMgSWdxNYzcvTcTN1qmtdm4q3Vqvh8uXLmJ2d3TFKMp1O48KFC/D7/ajX63j11Vfh8/nQ09MDv9/f8ew4DyQdKpMq+JoUujIGyYQgWUokBSQ3TKcnS+UnGxAAUImA9Xodfr8f8XgcbrcbZ8+exQsvvIBMJoPr16/f8Wd5N6LdbuPq1av4h3/4B/T09GDPnj0YGhoCAGUMM9zQjRGQSZt8bWFhAd/+9rdx+fLljp1iNmrEct4Q7JgELNP77K7EutlWa6mxy/j4OBYWFpSyvxVY7XWu+FuN9+wkbFUh2m2MGYdKJBIqXZz7aDIWROGlK0lZP8fSnXQ6jcnJSZTLZUxOTmJqampLJMTYxUy3Ija6lp1OJ3p7exGLxRAKhbB//37EYrEVnbL0THRZAiZLgNhWTqbn1+t1VUJEBchrtdtLmfLc3zUUCqkWaqSBCSrcZrOpNg92uVz44Q9/iO9+97solUqqU9h6sFXHeb1jvHv3bhw9ehTRaBT3338/Dh8+3OGly8Q6viaT9GQSH5XU5OQkvvCFL+DMmTO37futhY2M21rHGk/SYE3I+ONqNW92P92OJVbLaDS4O7Ce8dTf73ac9DhkbaNeBykpXF6LSni1+WR3n/J8M8860W38ZBap/lq38dWzWLfLs163J2lgYGBgYLDTsD2ajRoYGBgYGNwGGCVpYGBgYGDQBUZJGhgYGBgYdIFRkgYGBgYGBl1glKSBgYGBgUEXGCVpYGBgYGDQBUZJGhgYGBgYdIFRkgYGBgYGBl1glKSBgYGBgUEXGCVpYGBgYGDQBUZJGhgYGBgYdIFRkgYGBgYGBl1glKSBgYGBgUEXGCVpYGBgYGDQBUZJGhgYGBgYdIFRkgYGBgYGBl1glKSBgYGBgUEXGCVpYGBgYGDQBUZJGhgYGBgYdIFRkgYGBgYGBl1glKSBgYGBgUEXGCVpYGBgYGDQBUZJGhgYGBgYdIFRkgYGBgYGBl1w25Tk2NgY8vm87XsPPPAAvv3tb695jT/7sz/D8ePHceLECZw8eRKf//zn1Xt//dd/jWg0irGxMYyNjeGxxx5T7/393/89Tp48ibGxMRw9ehT/8T/+R7TbbQDACy+8gDe/+c0IBAJ44oknVnzmd77zHTz44IM4duwYjh49ih/84Acb++IGBgYGBtsGrtt14dOnT9/yNY4dO4Znn30W0WgU4+PjuPfee/HII49g//79AIDHHnsMX/rSl1ac9/jjj+ODH/wgHA4HarUa3vrWt+KBBx7AT//0T2NwcBD/9b/+V7z00kv42te+1nHe1NQUPvzhD+NrX/sajhw5gmq1inK5fMvfw8DAwMBga+K2eZKWZSGTyQAAvv/972NsbAzHjx/HRz7yETQajXVd453vfCei0SgAYHR0FAMDAxgfH1/zvHA4DIdj6atVKhVUq1VYlgUAGBkZwUMPPQSv17vivP/+3/87fuEXfgFHjhwBAHi9XsRisXXdq4GBgYHB9sNtj0nWajV86EMfwh/90R/hlVdewc///M/jzJkz6v3PfOYz+J3f+Z01r/PNb34T6XQaDz74oHrtmWeewdjYGN785jfji1/8Ysfx3//+93HixAn09fXhHe94Bz74wQ+u+Rnnzp1DuVzG448/jrGxMfzbf/tvUSwWN/BtDQwMDAy2E267kjx//jxcLhcef/xxAMBP/uRPYt++fer9X/qlX8Lv/u7vrnqNs2fP4iMf+QiefvppBINBAMD73/9+3LhxA6dPn8b//J//E//+3/97PPfcc+qcN7/5zTh79izGx8fx4osv4nvf+96a99poNPDd734XX/ziF/HCCy8gnU7jP//n/3wzX9vAwMDAYBvgDcluJfW5Hpw7dw7vf//78Vd/9Vd461vfql5PJpMIBAIAgCNHjuB973sfnn322RXn9/b24n3ve98KT9MOu3btwk/91E8hHo/D7Xbj53/+5zsUr4GBgYHBzsJtV5KHDx9Go9HAt771LQBLtOnly5fXde5rr72G973vffjsZz+Ld73rXR3vTU5Oqr9nZ2fxz//8z7j33nsBLHmvrVYLAJDP5/GP//iPOHny5Jqf9wu/8Av41re+hWq1CgD42te+hlOnTq3rXg0MDAwMth9uW3Yr4fF48PTTT+NjH/sYms0mHnzwwQ7F85nPfAZTU1O2lOuv/MqvIJvN4qmnnsJTTz0FAPjUpz6Fd7/73fhv/+2/4ctf/jLcbjdarRZ+7dd+De94xzsAAE8//TSefvppuN1uNJtN/It/8S/w5JNPAgAuXLiAd77znSiVSiiXyxgZGcF/+A//AR/72Mfw5je/GR/4wAdw7733wul04tixY/jMZz5zux+RgYGBgcFdCqvNAkIDAwMDAwODDpiOOwYGBgYGBl1glKSBgYGBgUEX3HEl+aMf/Qjvfe97sXfvXtx///2499578Xu/93vq/be//e22XXRWg2xRd+rUKZw8eRJf/vKXN/nODQwMDAx2Gu6okjx79ize85734OMf/ziuXr2KF198Ef/0T/+EXC53y9d+7LHHcPr0aZw5cwaf/exnVaKOgYGBgYHBzeKOKslPfepTePLJJ/H+979fvZZIJPAHf/AHm/o5mUwG8Xhc/f/rv/7rePDBBzE2Noa3ve1tuHDhgnrvy1/+Mo4cOYJTp07hqaeeQjKZxLVr1zb1fgwMDAwMtibuqJL88Y9/jIcffvimzv3KV76yqnf4rW99C2NjYzh06BB+9md/Fn/8x3+s3nvqqafwwgsv4PTp0/jYxz6GX/3VXwUAzM3N4aMf/Sj+/u//HmfOnMHhw4exuLh4U/dnYGBgYLD98IYm7vzGb/wGxsbGMDw8jFdffXXVYz/wgQ/gc5/7XNf3SbdevHgRzz//PJ588klMTU0BAL7xjW/gkUcewfHjx/G7v/u7aoeS5557DidPnsThw4cBAB/+8Ifh8Xg258sZGBgYGGx53FElee+99+KHP/yh+v8P//APcfr0abjdbtTr9U37nOPHj2PXrl149tlncePGDXziE5/A5z//ebzyyiv4whe+gEqlsmmfZWBgYGCwfXFHleRv/uZv4i//8i/x1a9+Vb1Wq9XWvXXWejExMYFLly7h0KFDyGazcLvdGBwcRLvdxqc//Wl13Jve9Ca8/PLLKkb5+c9/HrVabVPvxcDAwMBg6+K2t6WTOHXqFL761a/it3/7t/Hxj38cvb29cLvd+OVf/mUcOnRIHffkk0/iE5/4hPr/i1/8Iubn5/GVr3ylK+XKmCQA1Ot1/P7v/75qf/dzP/dzOHbsGHp6evDEE0+oc/r6+vC5z30OTzzxBLxeL971rnchFAqZPSQNDAwMDACYtnTI5/MIh8MAgC996Uv4rd/6Lbz22mtv8F0ZGBgYGNwNuKOe5N2IP//zP8fTTz+NZrOJSCSCv/mbv3mjb8nAwMDA4C7BjvckDQwMDAwMusH0bjUwMDAwMOgCoyQNDAwMDAy6wChJAwMDAwODLjBK0sDAwMDAoAuMkjQwMDAwMOiCdZeAWJa17otu5Nitgo0kAW/VhOG7YdzWew9v9DN+oz//VnA3jLMd9Pu6G57x3XAPN4O7dYzvRqw1xpteJ5lIJDAwMACPxwOXywWPxwPLsuByudTArXZTlmXZDrDD4eg4ZrVjCfk5/LvdbqPVaqnX+Xez2US73Ua73VZ/N5tNNBoN1Ot1TE9PI51Or+cRGKwCy7Jsx9/n82FoaAiRSAQulws+nw9Op1ONAQC4XC44nU5ks1lMT0+jWq2iUqmYXrxbCE6nE8FgEF6vFy6XC16vF06nE263Gy7XkjjiOiwUCpibm0OtVlOv6bBb//K49cgcA4PVsOlKsq+vDw8//DDC4TCCwSACgQDcbrdaFHKyy7+p8PhDpai/rh8jlafdQuBnyB+pBFutFtrtNmq1WodSbLVaqFarKJfLKBQK+MEPfmCU5C1itbEKBAI4ceIE9u7dC7/fj0QiAZfLhWq1ilqtBsuy4PP54Ha7ce3aNTzzzDPIZDJIp9OoVqtGCN5FkIpLHxeXy4VEIoFoNIpgMIh4PA63241gMIhgMAgAal1OTEygWCyi2WyqNat/jpxTBNc0sDzndOPYwGC92BQlKRVXMBhET08PIpEIwuEwAoEAnE6nshiB5YWjT1qHw2GrIOV7upJcy5OUn6UryVarpbwUKslms4l6vY5ms6mUpNvtht/vh9PpNIvtFqF7kh6PB263G6FQCIFAQHkZcrzluZZlwe12IxwOo9FooFKpwO12dxg8Bncf3G433G43fD4fgsEg/H6/MpzJEHDMKScCgQBCoRDa7Tbq9boyXhuNxrrWoKEcDTYDm6IknU6n8hj379+PRx99FIlEQgnAbrCzDOVvu/fWC/3adt4rFZ7uVUpl2mg0kEqlcPXqVUxMTKBer6NYLG76ziXbHXbj53K5cOTIERw+fBh+vx/JZBJOpxPT09O4evUqKpWKEoj0JF0uF0KhEA4fPgyXy4VLly7h4sWLqFQqyGQyKJVKXWl4Y9zcXthRmwy17N+/H3v37oXb7YbT6YTL5UK5XMbi4iIajYZihdxuNwYGBhAOh9HX14fHH38crVYLi4uLWFhYQKlUwo0bN5BKpToM1rVCLwYGN4tNUZIOhwN+vx9+vx/Dw8M4deoUent71cRttVrKO1tvcH6113XvcD3nAd0TA6SylJYs35ufn8fg4CAikQjK5TLK5XLXzzBYP5xOJ/bs2YO3vOUtsCwLhUIBtVoNqVQKL7zwAlKplDrW4XAoNuLEiRN4+OGHkUgk0Gg0kE6nUSgUUCqVUCqV1PESHFvjad4erKagnE4nRkZGcP/99wMAisUiarUaZmdnkclkUC6XUa/X0Wg0lPdIRmrv3r3wer24ceMGrl27pih2zg27+KOBwWZiU5Skx+NBb28vIpEIfD4fcrkcnE4nfD4fPB5PR8wPWH0y6wF6GbPk/3aJN/o1dOi0nd1nUpDSc2k0GorS83q9iMfj8Hg8qNfrqFar6rcRvN2hW/jtdhter1cZVV6vVz3nubk5FAoFLC4uol6vdzxX0mztdhvFYlEl7rRaLSSTSXi9XiwsLHR8jlSKZoxuL/i8JbxeL4LBoIolV6tVxcyUSiUsLi6iXC4rxqDZbMLhcCCdTsPhcKBer8Pj8cDn86HRaKCnpwdutxvxeBy5XA71eh2lUqkrQyDXtBl/g5vFpijJSCSCBx54ALt27UIikcD58+fh8/kwODiIZDKpkmCoJOmp2QX4NxLz65bxpitZu7iWjHVKyM8uFArI5XIoFouIRCI4duwY8vk8pqenUS6XsbCwgJmZGfW9DFaCNBrHtdVqIRaL4dChQwgGg4hGo8hms8hms3jhhRcwPj7e4RESjEs1Gg1MTk7iu9/9LoLBIHbt2oWxsTHkcjnMzc1hdnbWNjnMCMnbD/0Zx+NxHDhwQCXlzM/Po1gs4sKFC5ifn+9QcjKjtVQqqWSeRCIBn8+H++67D/fddx/K5TJqtRqi0SgWFxdx5coVNVe6GURm7A1uBZvmSfb392N0dBTtdhupVAoulwvBYFAF3mktyoxUqaykMJPUJ4/TsZaHIN/XlSQ/X8+O1e+jVCohl8up5JBEIgG3241KpQKPx4NisWgonnVAj1X5fD6V3OX1elGpVFAoFDAzM4MbN250vY4UpJOTk6pspLe3F16vFz6fb8XnGQX5xsHr9SKZTCIYDKLZbKJUKiGfz2N+fh7T09Ndz2NJj9frRT6fh9/vx7Fjx5BIJFCr1dDb24t8Po9Go9FRNmIHM/YGt4pbUpIMwnu9XrTbbTQaDRQKBaUke3t74XK5OrJJgZVlHRI69SkzXjdS8ySVo1S88nwmCtDTrdfrqnbLsiw0m03kcjkUCgVMTEzgxo0bcDgc8Hg88Hg8yGazqpbPLMbu0BWVx+NBLBZDOBxGOp3GjRs3kM/nkc/n13W9ZrOJcrmMVquFUqmESqWCWq0Gr9eLcDisMpPlfON9GNxeOBwORa/6/X4Vvkin00in0ytYgm5JeqRIK5UKWq0Wrl69iueffx5OpxOWZWHXrl1otVqrJgZKmLHfXKxW5iPBjGbS50zE6yYz78a1etNK0rIsZb3Tgq/X65ifn8fFixfhdDqxf/9+1USA2aIAOhSe7uXpSpKLwu12d9Q88fjVEoHkYpMlHhwgr9cLr9eLZrOJQqGAYrEIv9+PUCgEt9uNRqOBxcVFpNNpnD9/HufPn0cymcSJEycQjUaRTqeVEWAUpT2oqKSi9Pl86O/vRyAQwKVLl/Diiy+iVquhWCyu65r1eh35fB6VSgX5fB6FQgHVahU+nw+JREIlgjBRjPPGlIhsPnSh5nK5EI1GEQgEEIlE4HQ60Wq1MDMzg9dff13VIfNcncmRBjGNoHK5jLNnz2J2dhbxeByPPPIIDh48iFarBa/Xq85dK/RisHmQsnW1Z+z1ehUDVywWVd0r49MSktljaOZuwC15klKJ8WExmYWNAxiPApa+uK7o5LX0JB3d2+QxqwXi9ffs/uc9UXGzNpL3LRcqvVDWTOoeCuu7jADuDjmunBOsj2s2mygWi0qprRe0RuVCotXaaDQMDX4Hoa9d1kRyncma440KPh5fLpeRyWRUQh3XHefR3SRUtzu6rS2OO7Cc6xEKhRAKhRQtDiwxQdK5YELe3Ypb8iSdTqearI1GA7VaDcCS9eB2uxEIBBAOh1GtVhV9KZWmtEKoDFlYDHRaFnygAFbELHkt+VteU57DWKnD4VBJOLVaDYuLiygUCkgkEujp6VEZmD09PQAAv98Pl8uFRqOB+fl5RfNFo1H4/X7k8/kVySbbGWspIT0uKA0qGiL0FpjdejMLxePxqAYEvb29aDabSKVSyGQyqlOPbmTp96/fq8H6YPdsHQ4HAoEAotEoXC4X8vk8Wq2Wkg0AVhig+jU5X6hwLctCrVZDOp1WnXh8Ph/y+Tz6+vrg8XiQyWSQSqVUZvp6vByDjUF6/vrYuVwuHDp0CAcPHlSyn5UNMmlPsjuWZWFhYQGvv/66ilfncrlVjZ03go7dFE/S4XAobwxYElxUMoFAQH0xqSTlItEXGxeGfCCS0tSpTT2bUd6fzGLl/YbDYTidTmQyGczNzaFSqSCVSiGfzytLFVhS9tFoFI1Go6OXKI9tNBoIh8Oo1WqoVqs7SkkC3RWlbrxwTGhUUVkCy8bPzXgBVLh+vx+tVgs9PT1qTslaV/0+9fmmwwjW9UMXWiz9CoVCiiVoNBodpVJSSeqUm1SQbDpgWRbq9TrK5TLa7TZmZmbg8/lQLpeRSCQQDAZV3JP3dDfGtrY69Ex1+WxZ8/zmN79ZORd+v1/lqDDJyuVyKUPK7Xbj6tWraDQaWFhYQKvVQjabvevG7JaUpMPhUEpSjznKhbCaRbeaR6K3kpNNyNfzIHValPERehi5XA4LCwtoNBpwu93o6elBOBxW9Kn8fJfLpRKV5GJnA3e7HpLbHbo3v9rrTOig4dHb26viv7cKKstoNArLslAqlTrondXmijTYjOexOaByk92sdKN2tZAJj9GNXxn6KJVKaDabynjlOjS4fbBbI4FAALFYTDlELPWr1WpwOp0olUrIZrOKIueP3++H2+1GNptFMBhUobparaa6mkn24Y3ELSfuBINBeDweRbe2223lSQJQVBqVnB7z6yZk+dDoZchmBPRE7DwCaUHys5mB6/F40Gw2VbH6xYsX8cMf/hA+nw+PPvoo7rnnHrXA2VibAWav14tIJKLum96lz+dDvV7v6A6zE2Dnua8Gj8eDwcFBRKNRHDt2DG95y1vg9/vx4osv3pKBQYMsEAjg8OHDiur58Y9/rOg3/V71hb6WwN7OuBVP2s6oYGckn8+HVqulPEk93myXk6DT3rK3stytJ5VKweFwIBwOY2BgAC6XC+l0eoX3uFPHdLOhM3r8GwBGR0fxtre9DaFQCPV6XdU5sztSN6qdDkd/fz+OHj0Kv9+PhYUFzM/Po1Ao4NVXX121TOhO4pY8SX2LG8aVaC0AWOGRASsTcnTIRB+mDMuOHECnt2oHSefxf6fTiUajgVKphGq1ilQqhZmZGYTDYXi9XgwODqr3pYLmd/J4PCu+Py1ZSe8ZrITT6UQoFEIsFkNvby+Gh4fh9/uV93ezoMHlcrnQ09ODUCiEGzdurNuTXM/72x12sf31wk4hcTzIyOjxZjtP0o4ilXEvKRMqlQpKpRL8fr8yVFm2dbPfw2Bt2D3TcDiM/fv3IxqN4urVq1hYWEAmk8Hly5dXVXKcH5Zl4eGHH0YymYTb7Vbx5StXrqz7Hm43bjlxh0k60spglhMfBOsR6c3xdak4paXJBSSTdeg9SuW4micKLJUacPeOQCAAr9eL+fl5vPDCC0in02g0Gjh58iRCoRDC4bDKvuMi1pNK9OQiepR3e3bW7cBGkyNITfv9fjQaDUxNTalaU7vz7WJK0uOUW5wVi0U4HA7V5KHbeNh5K4yTkHnYid2TNnPucq2Fw+FVd+3QE6h0Vkhf11Jxcsz9fj8qlYpKHJTH7GR24HaDPbojkQgOHjyIWCwGn8+HYrGI8fFx5PP5Ff2t9fHg+mXbz0qlgkgkglgsprpnAVDtC5nv8kbglulWKh82Mefr5JxpVfr9fjSbTaUsGYyXnqLucQLLZSP0WvnZdpYo0EkBBYNBlaRDpbawsIAvf/nLuH79Ot773vfiZ37mZ1QmVj6fV/fL+GW1WlVlH1SQ3P6LlLBsubcTIA0VmXrfbTx4jsx2vnjxIizLwvz8vC31ptc28jW9eUOlUkE2m0Wz2VT1raT9dejxc8uy4PF4EAgE0G4v9YRdz3fZ6thMj0s/3+l0IhKJoKenR60LXUnaGT5SMcot9XTlSgqXsoTJctVqddX7Wg+22zhvFvTnEQ6H8fDDD2Pfvn1IJpMYGBhAq9VCJpPB2bNnUavVVlCs+rU4rrVaDYVCAX6/H/v27cP+/ftV3XM0GsX09LRi9t4obGqdJBWJ3BtOJs/Y0aMy/sBj7TId16Jou90bKVLGFguFgmoc4HQ6EY/H4ff7lcLWoScdSIXNc3ZawgdpZskG2MX5iHa7rfYQ5HlcRA6HA8FgsGMR6EXFVJI6hcf4l+7VclcabuLL+5EMBsc1EAjA7/erOShjYbq3s5PG+GYhjRlgZbcrgmO6HugJPFS89PxNfeTtgZ03znUUiUSQTCYRCoXUcbVaTTXyWC+Y5FOr1ZQh3W63EQ6HEQ6Hkcvl3vCkyFuOSUqvi2m+7GSjZyxRCfFL83U9XilbTUmak//bCWUJPYU8k8ng61//Os6ePYtGo4FDhw7h0KFDOHXqFPr6+lTgn/WcujKX3hA3/PV6vchms6rzy07aX5JNxemBc7y6xZhItfb29nZshcR4BC1RSbfZLQyOKQWjZVkYHBzE4OCgqpf0+XzYu3cvnnjiCbXAdHpeCm4mmdRqNZw/fx6Tk5PI5XKYmppCqVTqUNjbxRiy+w6rpfdv9Npy4/JaraaUmV38UjdE7K6nH8+1pl/3VrEdxnazYBcjZggtEolg165dOHDggOqjXCwWkU6n13yGuuItlUqYnJxEqVRCf3+/ksEDAwNq3em5IN2udbtwyzFJZilxYbBUgoKTilDGF/nw+R6wrDhlvE9XnkCnZSq9UEJSq7RoS6USvvGNb+D//t//iyNHjuADH/gAhoeHcfjwYSSTSbTbbVX0LBWiFKi8BzYj8Pl8KBQKik/fKUqSiunRRx9FPB5HKBRStbByrDhe0oiyaxV36tQp3HfffbbGSbfYM4uSdfDzR0dHMTQ0hHa7rQwl/TieT6OuWCyq7zI3N4fFxcUVe1Nu565KXCt2FOdGIHMJaBgzNml3rN3fa11fhmj42nYdlzcKupKk7GMN7NDQEPbs2YMrV67g3LlzSKVSyOVytuOgswZSVlQqFczMzKBQKODgwYOo1+twOBzKoM5kMrZKUhrUt3vsb8mTJEWqU6pUVFxwesG4tMylt7FatqqdFcp7kJBUYCaTwfz8PKamplAul1X8qaenR+0cUSqV1MLrZuHqrfT0+tDtuEDXohh1j97OoGFik50xI69DxSkbS+j/6+hG4fE9OyUqv5Os6aUgl6zHzQjwrYZQKIRoNNqRmc1ECmnQyh+uL5fLpXZvkQpRrn8aINwXkgl+cn5I2FGwOoMkG6iHQiGV2cokPT1vQS85AzopfL4mS9g22iJxJ8CyLLW1XSwWUw1f6vW62gibstQO3V5nNQET72q1mnK8OLacOzq1ftd7khR69Xq9w3OjtcE6SdYblstllMtlVYYhFx0TKOhx2MUZ7LLj7B6Q3+/HwMAALMvCP/zDP+BLX/oSisUistks9u7diyNHjuChhx7Crl27UCgUcPny5RUxD/5wkVHhk9qhB21Z1i11jNmKoBAhldloNFQm22qKhfFDZpNSmBWLRZVVbNf4XhfSOl3K60ljhruE6N69bLbP8aJAJ200PT2NTCajGA6pULeTsrQsCwcOHMBjjz2mWrwVi0VUKhUsLi6iUqkoRccwg8vlQigUwt69e1XK/0svvYRcLqc2AuAOOfQ44vG4KpOSiTkyYQdYmczDsZZ1yUzW6e/vRzgcRiKRwMDAAHw+n9qTlHXRlmXB5/MhGo2q0gJ6JJVKRXksXMeLi4uYn59XpWG5XO4Oj8jdBRqoHBen04ndu3fj8OHD6OvrQzgcVp1yXn75ZczPz6u9XIH1Z7+Xy2VMTU3B5/NhZmYGmUxGGTzBYBDxeFxlvJbL5VUV8e3CpniS+gSn4AKW247JRra0CKVwk7WGdin8UnGt+oX+30K2LAszMzN45pln0Gg01IbQyWQSQ0NDGBoawrVr11Q/SMbX5GcBK2kHTp5uPQy3O2gY1Go1lX4PrEzQkF5dq9W5pZG08KvVKgqFgi0lw9+6wJSfReEnE3NolJGWk5nJetyNc48JXYwxS8W4nZSjRDKZxNGjRxEMBrGwsIBsNotSqaToZ5fLBY/HowwcbnF24sQJxcRMTk7C5XKhXC4jl8t11E6z5AdYEobcJ5LjANiHNajkdJlQq9XUXqSJREIld9CrjMViKi+CyVvJZFIpbXZ2Yd9luS0es6LZQ9RgpeESiUQwPDyMnp4eeDwetFpLu7TMz89jZmamQ4HZxTTtwGTKarWqDGbWVLMGVjZteSNwy5suU4hwcdglvUilKL0wWVAqYxlS2OrWiHzgFIAcQPZzfOGFF1AsFnHp0iXUajX4/X4cP34chw8fxp49e1SPwHq9rspXACgPV1JNdPVJ//EedBp5uwpSCrNIJIL9+/cjFothcHBQdfGXqd6rxZ04VswqptKsVCor0vcJO4NIF6hUclKJ8r70+9GNHWDZk6xWq0gmkzh8+LDaJ5T1XrI0ZC0jbStgdHRUdazhfo03btzA+Pg4LGuphIvtAnWaslqtqn7HmUxGxegHBwcRDocRiUQQDAZV6zGWgoRCISSTSXUdgvODLI1kl+hxOhwOZWSzkX00GlXGUbu9lA05MjLSQf1Kqk62k2TWO1kvGgFyLu0EbISutCwL4XAYvb29CAaDKJfLyrDi7kiSudmocdluL22mPjs7q8o//H4/IpEIBgcH0Wq1MDU1peh9eV9rfb9blc2b4kkCy913OCFlCjgARbGxZlKPNcmNmdebBMNj/X4/ent7kUgk8OMf/xh/+7d/i4mJCVy8eBGVSgU9PT14/PHH8VM/9VOKHuRgBAKBjnrIdrutMnMZ/5DlDjIOy8/vlpiw1aAbN8AyNTYwMIAnnngC99xzj4r1MnZDD8HOE5RJL3axLrvEGh4v70V6f/LHzkCRny3j47JZAK8vmy7v3bsX99xzD+bn5+Hz+bCwsICZmRlFB3eLj241nDp1CpZloa+vT3mAp0+fxosvvoienh488sgj6O3tVY3JCe67euXKFTidThSLRdVMZGBgAIFAQGU/sl5SxiFZviO9fHoHLOkgBcp5J5P4gKXxisfjat3yOslkEv39/Wg0GkilUigUCh2df/jZwHKWJj1Qlh54PB5Fw253SLq7W7KNfnw8Hsfu3bthWZai2Kenp5HL5VAsFm8pjt9ut7G4uIjLly8jmUxi165dCIVC6Ovrw6FDhxCLxdBqtTA9Pb0iXqyzTvL1bgzXRrApnqS8wW7WPyeqrKHUr6F7jGsJJGlt8thKpYLZ2VlMTU2pRRwMBpFIJNDf369iL2wQIJMW7BJQZEKRTq3aJa1sN1BoBQIB9Pb2YmBgQE3otZQUz2fskuUAEnaZa/pik56+Pldkko4cN9K58v5kyYC891arpSg5NjsIhUKoVqtqD8PtBLYCdLvdigbN5/PIZrOKHqVyo3KRHh8TLWStKzdZJs1Kw4frRu4WZFmW8vS5/ugByox56VUSNLLZuUkv5WFz7Eql0sEu2CUEcW5KRbrdxnozQLnNNdJut1UDctm+81ZRq9WQzWY79oR1u92IRCKoVCrKuVoPNnMcN2UXEHoDbO/FWhcAiqqkMLSLYcmkmPVkldGqj0ajqv3V66+/jnw+j5dffhmXL1/G/Pw8du3ahUcffRT9/f1IJpNqF3tSfNJSZcac3M+S9yl/8xxZqrJdPAxd2TmdTiSTScTjcQwNDXUwAHpclmO3WkMICkvJQMj6Wd3YoJCmoGXWqR6fJKQHaWd48TwZAuC9ymzXQCCA0dFRxGIxlMtlXL161fb5bFUcPnwY7XYb09PT+MEPfoBSqYSFhQUEg0EEAgH4fD61GYDMO9A9eGa3WpaFWCymOh5FIhG13nl+Op1We3ySoqM3xzGRiVUcDzk3AHTs8yrvjXOyUqlgenoahUJhRXcsfU7IDQxk2GA7rOW1oM/lbnPb7/er2G80GlXF/vV6HW63G36/f1M871arhdnZWbRaLczPz+PQoUNqjO+55x6MjIxgZmZmBUOpfwe7sbtVJ2bTtsqSFKukLGR2nLxpYFk4SSW5FrhAGVMZHR1FOp3Gc889h9deew2vv/46rl27hkKhgDe/+c34wAc+gEgkgng8rjKkmGos+8jy3qUgtbtfvi+V6XZdVE6nE4lEAqOjoxgcHFS0s7TOpeCRHYgkfS6pa+kZUFBJjw7oVLAyu5ieoIxrA53UkYSdl68bNJyDMpEkEAhgeHgY1WoV09PTtkbTVsahQ4fQai1tXvzDH/4Q+XwewWBQ/ch1Idcox4njwCQXPk9uft3T06PmCmuoS6WSSphJp9Oq9yp31pHjrHv5UklblgW/349YLNaxbjn3aISRReKc0+cXvxONZWkk7QSsdx57vV4kEgnEYjEVJwSWPH8mZm2G/Gu325ibm8P8/DxSqRQefPBBjIyMIBgM4sCBAwCAM2fOdIzPemjizcAtt6XTaQouItItMmAuE1/4v53H0c0a4HssF2k2m8jn88hkMlhYWMDs7Czy+bzqvkLrh3EH0n1SsOsJGVLgdqOOmVEpEwq2U0xSPmum0QeDwY64DvcLJPgMqDhpaMiEDDtl1s0zJWRMUdKodnFM/Xvof9v9L408AB2JWNtBIa4GrlXSzUy6kQl1OuQ4SSMZWM4R4F6PVH4ykcouAUoaXZw/MulCzjsAHZny8hqykYm+wQK/L8/X0S0UtF0h5ZtMzNLnPOdFJBJRyU3AkvIkBbtZz0syUqxZlrssce9KbmVIStbOsLFzxG4Wt9xxR2Z/MvYkJ7DP50O1WlU7iwOrdzDppiC5wBhfdDqdSKfTuHbtmir1eOmll9SWV36/H4cOHcKBAwfgcrmQzWaxuLjYURLAewWW084lBaQ/fHrEsVgMiUQCV65cQaFQQKlU2hYdd6h4OLGcTicGBwdx5MgRlU3I5ArpcdBgYechqWRksoxkDahEpTcuqTfOC9lBCYASmNKr0fvn2gkAniuvwzksG0OQZeB2at2apW9lMKOV9LXT6cTQ0BD27t2LcDiMUCjU4T0Dnd69ZBSkAcRM4Pn5ebRaLRWfbLfbyGazSlFSsFKZSSZKjh3Hl5/PGGY+n8fc3Jxqjt1oNDA6Oopdu3bB6XQq1kg2FuFGBLwWlS9DJ/SKeN/bGQ6HQxn5ck1wvkvEYjEcPnwYiUQCvb29SgaGQiG4XC4kEolNe15SWRcKBaRSKRXG8/l82LVrFx588EFks1lMTk4ilUrB6XR2KG+C84V5BbdSPrJpMUmZhabTrTKTTdf8Mp4grwugQ9jKRcJFPD09jcnJSUxNTeHq1au4du0a+vr6MDAwoAa1p6cHAJDJZNSWSjKtXCZ96N6OnUfChRcIBJR32q2EYatBj904HA6VYcbvy8QLJlfwNw0PTkaZbMPx564Q0jOQyorWqfTwZeyXnoFe4sF7kpRcNy+IP3ZGEQDVeYc/27HzCrOxJcUYiURUYT5rB+0S7LjW2QHF5/N1XLfRaCCTyaBSqXTs+MPMZpmsI41RKbB1z083frhVVrFYRCqVQrPZVPsRAlCJPVSANIiBlbXd/DxZ37ndKVfOf+lpU27r8Pv96OvrU3u18lmFQiG1C9RmPC/dqK1WqyiXy6jVakrexGIxjIyMIBQKddRUsuSIkNUHDocD+Xz+jVOSEtJVJt3ajbayo9skJC3LL8pJz+1xWq0Wrl27hpdeeklt9AksWT7Hjx9Hf38/enp6UCgUFA2kC0hem5/J5AFSNzqdrNOC242Wsess4/F4VJq/9Bw4vhwT6X3KMach0m63VTKITMyQwsquRk0mhOnUtlSuEt08SULSalSSOr3HFmfcvYRCZDsoTV0BSlaIrECtVuso1+HrPEen0bmeZPMQKkkZlgDQMY/4o5fYyPHQY8psAtBqteDz+dBqtToMHVmWRS9HerV8T3qs/P52Xsl2gMvlwuDgoIoXR6NR9V3lc5Bry7IsDA8PY/fu3apfNZUNHR6WDC0sLKhrAMvMnMwm5xygTJVevFTY4XAYx48fx8DAgNrnt9lswuv1Yvfu3ejr60MikUA+n++odZXhNN5HpVJBKpVSDUZY2TA3N4dUKrW+Z7dZg0BFxNoqWm96Zpwd5aUPkLwmBS/jYjLw//zzz+Pv/u7vUCqVUCgUAABDQ0N4z3vegz179gAAFhcXFRUolZy+sPmAKZQZd5QCVZ67HS1OPZPQspYLy2VDBVp2VHxUYvQodUjqVV4bWPY+OA66sKSCbjabyOVyam7RcqQxA2CF4Cfs4pJ8TfYUZbsyZkVSCDAOYreZ7FaE9PwJ6RVwHesxHxm35ViSOqVAlFY8u1+RTSqXyysoWnkPVMqSldLlgmVZqnuO0+lUdD6NaOlpMnFHGr5ynCVrwXsFlsMO2wkejwf3338/HnroIYRCIZUUI2UaFaGMzzL0QPnOkArX5J49e/DRj360YxMLUrLcTpAMUrVaVV26AoGAKi3r6elZ0TqQ41qv1zv2i33wwQdXhHs4B1nGRD0j5129XsfMzAzGx8eRyWTw7W9/+84rSUJSozJDTQ/GS8G2niQJWvy0BnK5HFKplIpN8GEFg0H09vair68PuVxOPWC7Lg2cIHpikbRw5fES282LBDrLXDjRZbmLfgwno4wvdlNOMplHPneez0VIb0UKZr4vDRXdaOE96ePSzZDRY5JyTgLLpUssOZA9arcbJMMCdMaO7SCzRHmuXPccF65ZqfTkGpPzQcoFnZIHVqbxS4pUxpR537IcSc4VeX/6XNXn+naAZFvi8bjqjDQ0NIRwONzxbJi4RW/dspaaBszOzqr6U65PGkp+v1/tuCMbQrBPc71eV1S77N9NJUd5LXv+siGE3HyCndPY9IFtCWWmey6XU3FluTsVlTSVJje64LxbC5vSTEBy/BR2TNRhYB1YEni1Wk01D45EIgiFQh2LR3qd9Fj45arVKq5cuYJvfOMbmJ+fx9mzZ9FsNhEMBnH8+HEMDg7i1KlTqpaH58j4F+9RLhDp/nOx0bPRE5Esazm7dTtanADQ39+P3bt3Ix6PY8+ePYhEImi322pzVC4UqaR0lkD/TSpbJkwAyxYj0Nn4GlgaJ3b1cLlcqiUW+71SmK6X/tZpO/0zmYlJAWFZS11p7r33XuRyObz88svboq+nHpcDlulIsi7MLmSSj/5sJX3G/yuVCnw+H0ZHR1X/ZLIPtVpN9Ulm7FnGieR8sTNO+VnVahXZbFYpM+5i4nK5kMvlVMIVPUXZ8IBKUiYL8W9S9pyn2wX9/f3YtWsX4vE4Tp48icOHD3fQ4MDyM6fMlpR0NpvF3NycYnxIo9PjozdoWVZHZyqZVUojiZ/JxCE+Z2aq8qder6uuSZyD9CqLxaKKPZNlZBKS7PzF+dlut5UOGRwcRDwex/z8PJ577rl1P8Nbmg1SoUkrjsHWSqXS0ffS5XKhWCwik8mg3W4rKoRJPdLz5PG6RXD58mV85Stfwfj4uLIYg8Eg7rvvPoyNjWFgYEA1Mpbb38gYYzfqV7d45RZK0hvWLeTtBMuy0N/fjwcffFC1oQqFQsoilAX9uoUuaTw7D04qVU50San7/X4VN+L4sXlyKBTCoUOHsGvXLuRyOUxOTqoaNzsBrv/dja2QMU+pxHm/fX19CAaDyGazmJmZwfXr19dlfd7N0HMF5JymMcSxrlQqK7xsGfvj+qpWq3A6nejp6cHo6ChGR0dRKBSwuLioenumUikVc/J6vUrw6WtRfo5MqGLrSPbWjUQi6OvrU94H26NRsUslznEGljOm9bAJ5+92UZKWZSGZTOK+++5DMplUSpJNxfVMVso5+T6VpNwGjR4fnRjKccp+AB1KSj5vKldZZsR1zPlUq9WQyWSQyWQ6lC3fo9LjWFH5yjktWQ7Kfnqfc3NzKqFzPbjl2SCFpbQC9aA7Jzz3H2u1Wujp6VGCiQ9XUiHktVutFhYWFlCv1zE3N4dSqaQoVrrgsVgMPT09CAaDHYkHOrXKe+Nv3YLtpvTkOTJ+tp3AZxQIBNDX14dYLKaSVvQffcztkjF02DVf0ClTeiT5fB61Wg0LCwtIpVJKODIuKOlBu+9h95qd8pTH69+HczAQCKj5th3AZ6ErPjI2QKe3qYdI7FgfAGrd5fN5lTeQzWaVwpWfbVf+tRY4R6rVKkqlEtxut8o1IKUomQAASrjzN+/B7pnIXIXtApa2MAYo1xqhh0V06lyW+Nk9J2lkyHaEOlaju+Xn6rS6pOOBzox3ea783G5ySMq4aDS6Lhl+y80EqKkZu6G7LhcZKUrWNj733HMqbbu3t7cj5V6mJrNN1szMDL7+9a/j1VdfxfT0NLLZrLIMkskkRkZGcOLECYyNjaFer6sGA6QG5MOTFo60ZropeN1LZrE0s6S2ulchQdpi7969eMc73oFYLKaUkqRbZMmP7JQCrFR63egzSYFzYVUqFZTLZVy7dg0/+tGPkMlkMDU1henpaYRCITQaDVy7dg3RaFRlvlUqFUWz2AlBSafK8ZXJJfQg5G/ODVk0zW4jWx20wuVzYXwIgKJHZUxSMjyE/J9rKp1O4wc/+AHcbreiR+kxyo0CmB0pFZoOadiSuQGA+fl5LCwsIBKJoFwuIxgMYv/+/di/fz9KpRKuXr3ascsMaWDKIpmMx3lL6pWJW9sFgUAAAwMDSCaTagNsrmPOAV2ZSKXj9/vR39/fEXNkRqncA1jKeMA+P0D39HSHg/fRbi8lhJGyBzrlCpWcXuspZZDc+YXXZ05BtVrF6Ogo3vSmN91+JcmHoQfpdYuAE9OyLJRKJdy4cUPVwQSDwY6JKRNG5B5w58+fx/e+9z1FBVmWhUAgoOohBwcHMTw8jHQ6jVQqpeq0ZANt3VrhwNgpOjslCSxby4x7bCclScWQSCRw6NAhRKNRvP7668jlch2ZygA6Jmy3iczj7BaLnJy0MLmA5+fn8corr2Bubk6NZzgcRjKZRKPRwNDQEAYHB9Wi16+l/9YNIS543TrW759K0u/3dxhcWx12xgRjklSOsvMQ0F1J2oVaFhYWOvbyBKD6f/JaNLZkTFtfS3ZsRbPZVJRqvV6Hx+NBuVzG3r171QbPzHSlMiadK6lVfd3T8JOe0HZY2263Wz17UqKyLAPAirVBMJ5H45DNBqSMlmMny6m6JczxurwPmfMhHSuZtUrdIetu9cYTEnyfGbicywzZ1et1xGIx7N69e11jfMtKUnePyWnzYdjRaSwEHR8fx7lz5xSt2tPTox5crVbDxYsXkU6nMTU1hZmZGZVmTJ67v78fJ06cQF9fX0fgXq+BsnuIdrEqO4GqHtT/85ZJ/243BQkABw8ehMPhQE9Pj0r9lkJTWoF2dLOdINVpPZ4vY0WcQ3JC2wk1WVMlP6ubQtatY/2eVqOGpeLkHOHC2+rjrlv7ujEoDQbCLlwhBSTHjMpJ1kRa1vIGAnLtrUZv6mPD8+hF0JMhvXv58mXlAU9PTytPlcKUhhg/lzJCNlTg/W+nXAOPx6O6KFF2yaxfuxAKsFxaJRsycE3Sa5SGC8dGhtTIKkrwHMYxgc6qAinfZXkR78mOppV/S2UrS5J4TVLygUAAgUBgXc9w0zZdJmTKrVw45MNbrRZSqRQymQx+9KMfwbIsDAwM4O1vfzv27NmDTCaD6elpFItFfPOb38Q3vvENFItFzM3NqYdOS+PIkSP44Ac/qBI+JicnV7SZ07lq/s0Frwtaad1Kzp3d8JkkIJNYtgsef/xxWJaFvXv3qq1w+Fsv6+Gi0sffsqyOhQisNFSoJDmOUrDyPO7jKS171vJxV3ReQ8YmdZq3m0egjzcXOc+VwpLn06re6mPO5yefm2zUwDWrg89CN4zla+12Wz0jKeh4HK8j54nO6Mh1xzGR6zoWi8Hr9aJSqah2d1evXsXXvvY1xTBRierCWM/UpWdEGSUL27f6OPNZsLEKyyP0NWtHObKTEr1DHiebgPAa0iBxOBzI5XI4c+YMpqamlPELLK81n8+HkZERxGIxpcRZ88prsoJAGsN0pjh39O8h2UHpnUpZQ486Ho+jr6/v9nuS0hsDOlNv+bekSrjwmDWXTqfVLgvMiKWSLZVKmJubw5UrV1SKMB8AJzRjU+zCw0w86b3YeTJ23wFY2WiZ34m/5eLRFcF2QG9vr1pYnNi07OwEI3/bGSLyODslKSlv6ZFIiy8QCKiCcLZLk6njHFu9ztFu/OTf+vvSs1jtO9Cq3g7C0+67rjaW+vO08xAk0wAssy9SaOnXonGiKy89VsZjHA6Hig/LgvNMJoPZ2Vm4XC4MDw+rkg7KHZkfoXsc8jPtYnRbGYwfslG49Nq6zXXJokhPnL8p43XjiNdkpnEqlVrxjJ3O5UblnBvSYGNZlzRQ7Ywm3qv8W5dJ+o80fpkhe9uVJK1PGb/Q3V1+aULSaDMzM2g0Grh69SoWFxfR29uLUqmkXPWXX35ZeaX8MolEAnv37kUsFsO+fftUQSyTS/SFxb/1weIA6HsZUmHLYLJev7dd0d/fDwAIhUIrJr+coHq8wC7GJYWpLhyldSgFNsfrnnvuQTQaVfWQ+XweXq8XIyMjqtE6u8N4vd4VzeVXo/DsXqMAlgtSj6m3222EQiH09/dveePIznAF0EF36/Sb7lUD9kJKUnEAFNuiCyq5Rqko9c/U2QDp8dFbZVkA5Y3L5VJbO/l8PrURdKVSQalU6rgusJz9yu9IQ4hhgK0OuYsH1zAT1vR1LZuucLxkcqLOzOgMkhxbxqelHOFYMZkoGo2i3W6rdoCMT0oKXHqictwkK6CX7sm5LRkLef9skn9blSRvSMYJ+To9SU5cmfovb35qagoTExNwOBx49tlnV3gUcpcOIplM4v7770dvb69SknyI3E9O9nGU1q3+QHRLiAPJmi+Z/WhHLW43SCUpF4sUVpa1XBaxmtVt97y6JfHwPXbpGBwcxIMPPtghwFutVkd7Kzap6Gbx63S63Wu6UuTrpGj02A2bvW912ClJrjddSeoJTXbeGK/J30zq4FqS80D31uyMT92jlOcxoY+b/bbbnY25nc6ljcIlledyuZDJZJSSlNBjVlSQ28UwppKMRqMdG5zLXqlkZljzKuUi61P5fPSEGTmH5LhynQLLzzifzyOXyyEcDqNUKikDimwR62kBdKxLQs93oeHEz5SKUN6r3sWr1WqpTkK33ZPsRmvZgV+QnDRjCnpBa7fP4ZcOBoOqdERSLrpVI2FHDenfQV/s/FsGo9m3kHSg3Ph3O8DuGXajoLvFreS50nPsJhRlTFhSPBRWcnxksoUsHViv12j3uXJRMxtO7lxiWZYyBNnwfKt7GFLAMJFBKkv5Wz9PYiNz/2bWiTSqdMHMeUQhTi+FtZ5282q934FzcKsbxGvJZv2Z8HtLh0I3jtb7uSwpkgk07OLEHBK93lGXD5Llsbtv/q3LFjt5pbMeUvmvhVveT1JucCqtE3mTdNtpZY6MjMDj8WBmZmZdN+pyudDT04NAIIAjR47grW99KwYGBgAAc3NzKqtNt/7s+HDdPedncyClF8ouMKVSCalUCleuXIFlWYhGoxgaGkI0Gt0W1ibBdoEsPnY4HKrfIpWH9CblpJQeu65YpXDj8fI8uSABqPZT+vU5nkyk4jl2AnA9C5rWMRciywkqlYqKg/N3vV5HOBzGrl27buEJ3x3gmvP5fBgeHlbNown5nCVFJYWpLryk1ymNVmYD2ym71dY95YiuKClcSaFOTEyouuhUKqXi1hT2bE4vDS35uTIxjMYQm51vZSUpZaHd1m+UgZzbwDKbQzaQ8lAm0OgJeXZGiMfjUTuHsNWdLJ3z+/0YGRlRjo6k3GUsmXOM80lnNnRmUtKtsgevpGt5j9xmbT0G76btJykntX4MqRwKpXg8jkajgWw223GsrvEJp3Np/7JYLIaBgQEcPHgQg4ODqtBcf4DAygWoeyl2VhQDyLyWrP0sFAqYn59Hf38//H4/YrGY6lm4XcBONlQYeoCb35XjrXuSusdo9zewUlDqY9VqtWwbBEhly+w7Oedk3Gu94Hyg8JSfR+OLvSN9Ph96e3vX/0DvUshsv1gshlarpYSTTKiS4ymfrW6960lPuicCrCzHWUtB6t6BpPQ4/9gIO51OI5fLIZ1Ow+fzoa+vD5FIRH0nGZvqRv3yvqgYtnpNrF2skQqHRi6/N5UQy3Q4zmQY+CxI1+o0u/4M6dR4vV5Uq1Xk83l1D81mUzVb5w4xnF+S+tUNNN1okw0hODdkApCdoa47bevtw3xLniTbwrndblUusJpn2Gq1OrZpSaVSHYpRP4/bGMViMRw9ehTDw8PYs2cPms0mCoWCStSR96RfR4+p6AtDvz9JAchjJZ/NzjAOhwPxeBwul0s1Vt7KmJmZgWVZiMViAJYVCJUIKXPSJlJJ2nkavEY3ylang2RsmO/Lri9yzGRsZC2lKO9Lv1cKXWnIyfelBS2t7q2MXC6nBCaNDZZMUEhSQHYzOuxoS308bwbrOZfzz+fz4cCBA2o9lstluN1uDAwMdGRPMoFEeiwyxsm5SsqWgn4re5IyrsrxLJVKKJfLKuuY61dSnnIN2Dk8ck7onqQ0bPx+PyzLgt/vV3t+cs6xwQE7MAEr16h+PTuFp885O6NdesXSa2TW722nW0OhEBKJBBwOh9opPJ/Pq7id/LK8wb6+PrzlLW9BNpvF/Pw8Xn311VWvH4lEsHv3bvzsz/4sHnjgAZXAMTMzo2qcdJeZ/0sBTXpQCnD+Tw+X59DKkjQyB4O7GdAK2rNnDwqFAsbHxzE/P3+zj/OuwOnTp2FZFiKRCB5++GGVOs7JxPpQSXPISSafu3z2+m9geTFIT5WTWc4dObmlALWjuXVvRf6Wx9hROBJ2yQL87tthu6yJiQm0222USiW1i0Y4HFY9ahk/kkJHt8T5W3qTusCTWEsYrcfQ4RzhnoTcYJ19SenxMMErn89jenpaJXnRAJBhFzJFrVZLNTlh67WtrCQZLpGNx1OpFBYXF1UyD7PEI5EILMtSDeTpAOnsII1WO09Sgo1h9PVl58Vzrsms1G7rXMoOO5kiZRLXuNyAWzY98Pv9t793KycZ+WpuSaVno+qT3+fzqU029c18dbrO5/MhFAohGo1icHAQu3btUqm7sreknaKUn69bJDxHp/D04+08lXZ7eZcEACo4vdXpGQBIp9MqDgl0ZhRK2kNPlpK/pSfICan/T+gUGCcyz9GvyXPkZ/Jvu3HqJuSo8GVyB+dzN6+JAlqf31sRzPJk/E3mFXAt2WWDd4NUlPz/dikYjh2TdHp7exGJRFQHlWaziWw2i2KxqO5BNjaR80iyRZIOBFaXKVsBeoYuZTR3SOEuHnwukinTlZ6unOQxUn7K8Zcde2SnJbnWpSLTqXzeM6/d7V7k6/JHZrDL8AEhwyxrPst1PfEu4AMg/cHArLwh3iSDxpZlKSvn5MmTKp1/fHwcuVwOwWAQiUQCPp8P+/btw549e5BIJOD3+7GwsKBoFV1YyQcgH7Isiu9G+clBYw2Ww+FQngNjUsCSlbqwsACn04lyuay8rO2gJK9duwaHw4G5uTlUKhVFV7GGib9lHZzdpNbj1DxGLlp9ccr37egbHkPYjbdkBnQlKo/TPSE7xchFxMJ12eBiK3sYAJQRxFAGv6NuFEnoz0l/ztIgsvPeCbtnp7ML3Qxb/mbT8kAggHK5rLZKcjqXttSjjCCzVSgUOtaoTrdSWJIxoPG/lTE6OgqHw4He3l7VlEM2IGfYgBvZc+1xL17KQ+n4yG3lJOsjmTl93ellG3YlQzLnQcoHfd3yM/T5ID+f0I0g/Tp2irMbNsWTZJyOcTnZQJc3w6Avu7sHAgHcf//9GB4exsLCAp599lmMj4+jv78fBw4cQCQSwX333YeTJ0+i3W4jl8up5gOr7UEnF7O0JmRzAPnAuNjpWcgieRnroJKs1WqYn59X/weDwY7g9lbG5cuX4XQ6MTs7i3K5rAQnywSoJHXuXy8f0Bsd87fsWNRtAfA1fQHI16Wnox/bzdOUnyU9Wmko0ZPg+MuOMQBQLBYxNTV1y8/5jQY9yXg8jkQiobob6XVwulK0M0bkGuNvOwNGwu59/bP4OdJg4rizp3AoFEKpVOpoes3YW6FQUI0o8vm8ytiWcDiWG3XXajUlo1iLuZWxZ88eOBwO9Pf3IxgMduzaYVlLcVq9nC0QCKjWdXQM6O0By04R1500dCUrBHQmgHGOSBks6VxpkOhr0Y5OBTqT9LqFXviezDGRumE1tknilpoJ8IvLAK7+fregK3lhZtf19/ej2Wyit7cXPT09CIVCCIVC8Pl8Kyg4PQAvP09/aJLrlg9PPkwpNOX9SovTbrGv9t5WBMeSsQkaPAQnnN2kBOw9ATshqB+rv2/3PO2utdr1V4OdIrV7T2dEGJfc6pAp8Xb9MLsJHsA+Fsxr8Vz9dTvY0Wv65+jvkdKTgo77Skq6lLuEML5qZ3TJ69h99laPSdqxMnaQGa/Se5RzoBvt2W2Nr/bc1isb7FiE1eaW7iXqusbuc+6IkuTmuO12WxWINptNLC4uKoHKra5kTz7eWDweRyQSwfDwMPbu3asScfgTiURQLBaVJaJTIHYPrpsVqytRO0+SmVf0oFhbxG23AKgmubFYTPWN7CY4tiqKxSLGx8dRKBQQCoVUTSJZA92Ts5uU8hlL689OOPH5SZpP9wT1ydztmevH2XmU3f7mvdNQIIPA7iHpdBrz8/NbWngCUH2SnU6noluZ6MIMUXqWwEohKdeOPg6rja/d+3b0WTevkr8dDofaaODSpUsq/qbXxXELPjbFl80ppHfK+SUp9q3uSUo2D+iea9FoNFAsFlXyUrVaVc+MhoJOqwOdJSZ2SlLKeckwEVJ2263F9Tofdk6PlDvSy5WxUca1b6uSBJYblZN2tSwLuVxOBWPpypPG1N30YDDYUebh9XpRKBSQyWRUnJMlJdJF1xeOhKR/5HHyb9264kNjVhs38+RegmwOzPO5zyUpCd2L3sqg8ZNKpQBAjSGwTKPKpBcJOytRX0g69akLXOkldFN4+sLQF+Na36/b//KanH8UNhQm2Wx2yytJuZcmjVu5ubYcc2DlmEnor3XrwiTfl8kxOtPUDXKe0FhuNBqYnp7uUAhct3JPWq7fbsaYTt3JnS+2KvRcDMB+fVIxchwajQZ8Ph/C4fCKOSDb2unyTsrbbh5bt3VLxWVndMvz5Tl2sPM6+TcVN8FY6W33JMvlMnK5HHw+n9qexuVyqfrFdrutqBC7BUBPrN1uq15+MqZJa1fy3LoFo1sRkiaze1j8m6DnwM+ys4Kl8PZ6vUgmkxgYGMD8/Lxqxr4dsh6JQqGAqakptaN7NBpVAkTy+0DnxJSp9d2eZTeLVnqhdsH9W4HdAuumZPW4Kr1IKpD1Lqy7GUzz179Lt+etrzMZkwTWX/IhLXydfVhLSdp5FpQv+rzSawTtsjEJPabKY+Q83IqYn5+Hw+FQWb58LjQw7MZazod8Pq9qoWkwMKbI8+w8QTtIBai/Znctu+tuRAbYKd9u8/G2Kslms4l0Oo2JiQn09PRgz549SCaTmJubQ6FQUK51IBBQlKS8eVowtGJYnC9vmlad/OI8n+/rHgsXhX6stJw4GagApZUhr0P6RQr8cDiMo0eP4uDBg3jxxRfx2muvIZvNbvlGAkS73cbs7Cx++MMfIh6Pw+/3Y3BwEABWZAcCywtLKkn5PqlZmSRhp2R12FmUa9233f92r+vJBnxd0sEshi6Xy8hkMshmsygUCrYbyW41ZDIZOBwOtUG5ncJaLSYp94bVnx//lgKK5+megZwnMinDDnZGrlyXzLwEOhUfv5+uSO0aSMi5K+nbrYizZ8/C4XBgbGxMGROBQADhcBitVqsjXssxYHiBHcYYLotEIraetR0bJGG3Bu3kgp0j081AWY3VsFvrqynI9cqWW/Ik2WUnHA6rWB7TqfWEHt1y4DVkrYy0BKXQ1TV+N/rAzvqz8zT1h2c3yPI9GSd1uVyIRCKIx+Pwer0d3u92QblcxsLCAlqtVodSkF6iXvAvn5OdZah7oqs9c4fD0VGysx7o1qdUsvJ1u/N0T5Lfk0KXxpzsfbmVQabHrsOQXE+rPbPV4oxAp0cgr6tfh1grBiXPl59N4S1rtuVOJnbywM4T1uXLer2MuxXZbBYOh6OjvSOfESsE5LrkM5DPjvJOJvfIdWvnHa53vekKtNt1JPRr2t3PWtfQz73tSpL1R+FwWDX9HhkZwa5du5S1cvXqVTSbTeRyOZUwoAfQWSJCK4Z1T1Lg6pYogA4rmILbbmFIMEOx1Wp1WJ9SQPJzWHxbqVQQiUQwOjqKgYEB1U6pVCphenoa6XQaxWLxZh/lXQeWOrAukIlYuiVuWVZHSrjeZQfoTPumJ9kN0quwW4QSqwkwna7VF4/+ty583W43IpEI6vU6JicnMTk5iUwms23GmF2T2ImE648xdia6lEol5HI5tNtt1X7SLo64Wgal9PpoxEqPnZBj3+0a3WSB7pXqSSOcm3a1j5JR4H2xWchWVpKEVEjBYBAAVAihXq93dCqSJVD8cbvdSh7rrBqw8VCInAO6otQNpbUUnbxmN5A51Cl3tqW7rc0EWq0Wstks8vm82r9tdHQUi4uL2L9/v1p0Fy5c6LAeJF1DJcWkiFqt1lHYTPBLyUJWYLm7vcPhUNlr8kvr1i4A5f2yTZWkEHWhyuSNUqmkNnkeGhpSVBybIGQymS0dv9CRy+VQLBaRyWQwOTmJ+fl51cJKb+8n6dNuG7nqnqZdjZL+vm5xSqxmpQIri5p16Hsm6gKe+9txgd24cQOZTEbtkrLVwUb2cnPxWq2mXg+FQsqb5y4orLHrFle2q0WT80PGCCm0JB3azdPUFaRujOlCVaf25H1JilXOMVkCwRZu28UgApbXSygUQjAYVOPKjkusM5XPUtY28vlwc+TNuBcZ3uB2idJpIXTWYqNgG0NdSVLPrMcQuqXsVk4wZoYyOzQSiahyDma/6nU78hr8rU/ybhyzfrwsS5CQ/9vRrNJ7lMfpC9jhcCAajWJgYADBYBD5fB7z8/PIZrPbhoKToCChp6F72fqPHT1uR8fKHy48uzFfax7Yvb5Z9JhckHwObCqxXcaZhqXe9IPgWtJbtQEraU/pvenCzE6h6tewM1Ls/u52Dn/smCCptO2S/Si/9DVvt9n7VkWpVMLs7Kxi6ZhdzM5oVJK6XJZKkt15PB7Pim5bstmArLGUckCvSiD4/GUFg4xZ6jLHTh+sNm8oZ2gQeL1eeL1e5HI5FAoFpTzXwi0pSaJSqeDGjRuqdunEiRPqRovFIjwej2otJyetDLBzV3rpScqJL7u12D3AbgMhoQ+CpA84oI1GA+VyGa1WS00qn8+Ht7/97XA4HJiamsI3vvENzM3N4cqVK9uiuLwbaHHRg+QY0QOXHryM29oJR2mYUBABy2yApMl1oaWjm4fJe17tf/09uzlWq9WQz+dRqVSwsLCA2dlZ5HK5bTPW6XRaMSH1el2Noc/nQ6VSUW0JuasPn5OMy1P4sQeoHGcZo5exLvkasBzjlpAC2A4ysY73pAtYqRB1xc05RY+xVCopRcD9Q3O5nCqB2spot9t46aWX8Kd/+qcIhULo6+tDPB7vSNzhWrYLg8h1yGcNLCdUMuREZ6FUKqFUKsHpdKr8lHg8jpGRkY7NEoDl8WWtPeVuqVRCo9FQXZUkZO9kfQ7pzJZkFhl79/v9an/g733ve3j55ZfvnJKs1WqYnZ1FMBhEb28v9uzZA6fTibm5ObUdlizS58PW6VLWU9KykZaJ3HfMjq7TE0IIOw9InqPTRJZlqXgE3/d6vThw4AAGBgbwve99D3/xF3+BF1980dZ73U7gBGQtKxeTTLGXdaVyDPg8ZQxDevwsXpaCU1eMkinQYaco7QSs7lnI1/WYCL8bN4otFovI5XIqrLBdUCgU1DzXY8aVSkVRy1QeHCspiKggQ6FQh4ClZ6bvvGBn1NitV2I1ik0KSJ1e1deyzhLpzBPb0VGJk3beDuPdbrdx5coVzMzMwOv1Yt++fRgeHu4YH26q3O15y7UnM1KphDKZDKanp9W8yefzcDqdaius4eFhHDt2DJFIBKFQCOFwuGNsuKE9m3WkUinUarUVOQBkdVhFIOeAbCZB5e33+9UG0jzW7/cjFAqhWq3ilVdewdWrV28/3UpUq1VMTU2pDxweHu5Io5adO2RGHSGFGI+RsStpydrRpvKhSRdcviYtUEK255LX52tUAsDSXouZTAbXrl3r6AKkf9Z2gPSsOfH0ribMRuZ46cJJCizpvesUuGxMYMcGdBOwdq+vR2nyPthtQxpiFJbFYhGzs7PIZrPbLt4swf1gmeZvWRay2SxyuZxiDFiITyFHAUnjiZsVSI+RPX5ln2U7wxaw9xjX8ia7Gb1rKUnOVxrkknbW90hdbzeWux2SLs1msyrRTpbBkRVaDVwDspzL4XCo5i8MSzDMxlyTVCqFiYkJ1ReW3bs4RvQka7UaCoUCcrkcGo0G8vn8CoUoaXDp3cofypBKpbIivun1elXuy0ZKuTZFSabTaXz/+9+Hz+fDY489hhMnTigLhbtdA8s7W3MXAp/PpzryUCky0KpDLhy7xSMVqh3YGUcuVingqQz0vpbcAeL555/HjRs3MD4+jsXFRXXPOoe+HcACYiawMLORFifHUFJXOuQO4/oC5LOWY0WBzYYUMvahg89Z9zj1Yme7c4ClxBU2eJaeKgX69PQ0XnzxRczMzPz/7b1njJ3peR58nd7LnDOV5HCGndxl20IVe62sdrXeRFhEAuLECozAcSD/cAH8J4lipCAwggCOU4w4PxzHCfxDMRzbgGXFMqREK2m1S2kjcSlyWZZ9yOnt9F7f7we/6+F9nnnfmcO6nMPnAgZzytvO0+77vu7y4ObNmwOx0bIOl8uFYDCI4eFhDA8PY3R0FKlUCmtra/D5fFhdXcXExAT27t2r0ga4QFGQ6KXgdFZApzPZjk7sgB2col2dhCDPsfOPShqWz0zFiEXRC4UCPB6PKre53UHq0uW6u1/kwsICgN54jH4CY+yUG/r8JGvAWANGUOdyOczNzSmjSe8DSYfKLfjsqnpJJUsaM7pSJRUl/ZnJitzPvrCPREi2Wi2sra2pRpGCRk/KlVV2uBDqEY16oICErikSm1mSPE8uqvwvaSTZCXx2n8+HRqOBtbU13Lp1S/lrnJ5vECBpNUmXynbiIOYiIxUPngtsDN4A0EPRyv7nQsZ2d5q8sl+l0sPJymfVj+VrWg+6kOQkL5fLWF1dVb7IQbUk2c5+vx+JRAIjIyMAgGQyiUajgZGREezevVtp4Bz3dguULFnGzxiQwaAR3Z/oxBIQTgqxk5Dkd3YLpPSVyyhqSTfLAvZco7Y75HrKLIInAY6Fer2+7aPCH4mQlMjlcrh27RqGhoYQi8WQTqd7ShtJjU6G4UorwImK5X+7yWE3cbei6eRrTmJJI8bjcSSTSXg8HhQKBdy4cWMDDTAIE0kHhV+1WsWVK1fUbizc51MKQV0wSh+BHfVKC52h5NVqVe0Iv7S0hFKptMESkNa6HaQluVl/8DsG5ujCnQI3m83i+vXryjc3iELSsizMzs7i7bffRiqVwokTJ7B//34VMOH1elGr1bCwsACv16ssb9LTst1YfYsBHKy9LBVip3q/xGb+SR1SCOqKshxzdnPd5boX1CGtqFKppHzP6+vrAzmvDR4Mj1RIWpaF9fV1nDt3DqlUCi+//DL27t0LAConizttkO7hHm9OuXO6ULSzHiXkwHcSiHbnSgqGvH0qlcLY2BjcbjcymQwuXry4ISR+ECcTf2OpVMLZs2cxPz+PeDyO6elpxONxxGIxDA0NKV8lfQGMggWgWAK5aPFY7l8IAJlMBsvLy1heXsb//t//G1evXlX3l4oPoVPqD6Ko6HSffr6M/hvU4CzLsnD9+nWsra0hFouplCbOHZ/Ph3K5jJs3b/bMPdk2tMZbrRZmZmbUzjEzMzOKtuRcl5DshEwV6rcM3GY0vKRcZd9RyLvd7p460/S50v/carUGIrLV4NHhkVuSzWYTxWIRbrdb5ZZZlqUGqfRN0FkOOAs8Qk4m/ncKBNAFo07hbgaZtyOjG+nHGkSh6IRu9+5+fXTMJxKJnv6TAT20NhjwUa/Xe/wQtDApJElrZbNZZDIZZLNZFd0mqVBgayFp8GDgXO10Oshms1hbW9vgL9b7gLQ2mR/SrNlsFtlsVhWhKBQKaizo7hE9RcPJheKErXzV8lmlv5mBOqRVKSS9Xi/K5TIqlUrP+DYwAB5SSNotVtlsFpcvX0YsFkMqlVL7STL/hRqo2+1GPp9HNBp1dMBTu9Qn0VaWhD5J7PxVTkKW20Sx0kir1UKhUMDVq1c3HLuZZToI6Ha7KBaLKjw7n8+rhGK5Gzzbmykim/kk2Zess1kqlRTlOj8/r+i5zdp2ENv64wCD5DqdDj744APMzs5usOjsFBVJU9NaY4J2q9VSeW8yr81pftsxRJths+N0BUo+v7QqG41Gj2vA5XKpGswU/AYGhMvqc8XZzIEO3PMXURONRCJ4/fXX8YlPfEJZZbKIudt9dz9JmTspNUzpYJcBHU5C0u5n6PlQch87ea78PaVSCYuLi6rI9/LyMmq1GmZnZ7G+vt5Xo27XRfx+gpAeR8DSdmq37fSsOpz67mH6dDu3x2bYrr9rEAMKHxe26uNHTrfKG0vaE7iXYyMpUf2czaIS7egUPdIR2FhazO76+vf6M0krdBB9Ug+L7bp4GDjD9KmBwUb0bUkaGBgYGBg8a3jw8uoGBgYGBgYDDiMkDQwMDAwMHGCEpIGBgYGBgQOMkDQwMDAwMHCAEZIGBgYGBgYOMELSwMDAwMDAAUZIGhgYGBgYOMAISQMDAwMDAwcYIWlgYGBgYOAAIyQNDAwMDAwcYISkgYGBgYGBA4yQNDAwMDAwcIARkgYGBgYGBg4wQtLAwMDAwMABRkgaGBgYGBg4wAhJAwMDAwMDBxghaWBgYGBg4AAjJA0MDAwMDBxghKSBgYGBgYEDjJA0MDAwMDBwgBGSBgYGBgYGDjBC0sDAwMDAwAFGSBoYGBgYGDjgsQnJkydPolQq2X738ssv43vf+96W1/jX//pfY2RkBCdPnsTJkyfxC7/wC+q7//yf/zOOHj2KY8eO4fjx4/jqV7+qvvuTP/kTnDx5EkePHsXRo0fxH/7Df9hwbcuy8NprryGZTKrPvvWtb6l7nTx5Ejt27MCLL77Y/482MDAwMBgoeB/Xhc+dO/dIrvMLv/AL+N3f/d0Nnz///PM4ffo0EokE5ubm8MILL+DTn/409u3bh8nJSXzzm9/E+Pg4CoUCXnrpJbz00kt49dVX1fn/6T/9J+zbtw9nz55Vn7355pt488031fu33noLn/3sZx/J7zAwMDAw2H54bJaky+VCPp8HAPzgBz9Qlt0v/dIvod1uP/T1X3/9dSQSCQDA5OQkxsfHMTc3BwD46Z/+aYyPjwMAEokEDh8+jNu3b6tzL126hK997Wv4Z//snzlef3FxEW+//Tb+wT/4Bw/9rAYGBgYG2xOP3SfZbDbx8z//8/j3//7f4+LFi/j7f//v4/z58+r73//938e/+lf/yvH8P/uzP8OJEyfw2muv4bvf/a7tMd/+9reRy+Vw6tSpDd9dvnwZP/zhD/G5z30OANBqtfDLv/zL+K//9b/C4/E43veP/uiP8PnPfx6jo6P9/lQDAwMDg0GD9ZgAwMrlctb58+et6enpnu/27t1rffe7393yGktLS1az2bQsy7Lee+89a2RkxLp9+3bPMR9++KG1a9cu6913391w/tzcnLV//37rT//0T9Vn//yf/3Prd37ndyzLsqyZmRkrkUhsOK/b7Vr79u2zvvGNb2z5jAYGBgYGg4uPJbrV5XL1ddz4+Dh8Ph+AuxTqCy+8gDNnzqjvL1++jLfeegv/43/8D7zyyis95y4uLuJzn/sc/sW/+Bf4u3/376rP33nnHfze7/0epqen8corr6BYLGJ6ehpra2s9x9Tr9R7/pIGBgYHBs4fHLiQPHz6MdrutqNJvf/vbuHnzZl/nzs/Pq9fXr1/HuXPncOzYMQDARx99hM9//vP4gz/4A7zxxhs95y0tLeH111/HV77yFfziL/5iz3fvvvsu7ty5g9u3b+O9995DPB7H7du3MTIyoo757//9v+Mf/sN/uCkda2BgYGAw+HBZlmU9lgu7XMjlckgmk/jBD36AX/3VX0Wn08GpU6dw9uxZ/O7v/i5effVV/P7v/z4WFxfxW7/1Wxuu8Yu/+Iv44IMP4PV64fF48Ju/+Zv4uZ/7OQDAG2+8gTNnzmBqakod/9u//dt488038cu//Mv44z/+Yxw4cEB99xu/8Rv4pV/6pZ7r3759GydPnlQBRgBQKBSwY8cOXLhwAXv37n3ErWJgYGBgsJ3w2ISkgYGBgYHBdoepuGNgYGBgYOAAIyQNDAwMDAwcYISkgYGBgYGBA564kDxz5gz+1t/6W9izZw9eeuklvPDCC/g3/+bfqO9fffVVfO1rX7uva/7RH/0REokETp48iRMnTuD48eP4y7/8y0f85AYGBgYGzxqeqJC8cOEC/ubf/Jv4tV/7NczMzOCDDz7A22+/jWKx+NDX/uxnP4tz587h/Pnz+IM/+AN8+ctffgRPbGBgYGDwLOOJCsnf/u3fxpe//GW89dZb6rNUKoV/9+/+3SO9Tz6fx9DQkHr/j//xP8apU6dw8uRJfOYzn8HVq1fVd3/5l3+JI0eO4MSJE/jKV76C4eHhnjqvBgYGBgbPLp6okDx79iw++clPPtC5X//61ze1Dr/73e/i5MmTOHjwIP7O3/k7+I//8T+q777yla/gxz/+Mc6dO4df/dVfxW/8xm8AAFZXV/GP/tE/wl/8xV/g/PnzOHz4MDKZzAM9n4GBgYHB4OFjDdz5J//kn+DkyZPYuXMnLl26tOmxf/tv/2384R/+oeP3pFuvXbuG//f//h++/OUvY3FxEQDwf//v/8WnP/1pHD16FL/1W7+ltvF6//33cfz4cRw+fBjA3eIFfr//0fw4AwMDA4NtjycqJF944QX86Ec/Uu9/53d+B+fOnYPP50Or1Xpk9zl69Ch2796N06dPY3Z2Fr/+67+Or371q7h48SL+5E/+BPV6/ZHdy8DAwMBgcPFEheQ//af/FP/tv/03/PVf/7X6rNlsPpL9JSXm5+dx/fp1HDx4EIVCAT6fDxMTE7AsC//lv/wXddynPvUpfPjhh8pH+dWvfhXNZvORPouBgYGBwfaF90ne7MSJE/jrv/5r/Mt/+S/xa7/2axgZGYHP58Ov/Mqv4ODBg+q4L3/5y/j1X/919f7P/uzPsLa2hq9//euOlCt9ksDdPSP/7b/9tzhx4gQA4Etf+hKef/55pNNpfPGLX1TnjI6O4g//8A/xxS9+EYFAAG+88Qai0SiSyeQj/+0GBgYGBtsPz3zt1lKphFgsBgD42te+ht/8zd/ERx999DE/lYGBgYHB04Anakk+jfi93/s9/K//9b/Q6XQQj8fxP//n//y4H8nAwMDA4CnBM29JGhgYGBgYOMHUbjUwMDAwMHCAEZIGBgYGBgYOMELSwMDAwMDAAUZIGhgYGBgYOMAISQMDAwMDAwf0nQLicrke53MMFLZrwPCT6GOXy+XYPi6XCy6XC7t378YLL7yAZDKJ4eFhDA8PAwA6nQ46nQ6Wl5dx4cIFFItFrK6uYmVlBd1u94m2+3btY+DR9DOvsVlfEvox7Oddu3bh+PHjSCaTeO6553DkyBF4vV643W64XC60223UajV0Oh1UKhVUKhWUSiWcO3cOc3NzKBQKmJubQ61W67mHx+OB2+1W9+Zft9u979+5XfvZrNf9Y6s+7jsFxDR6/zATy/n6FJJ6GyUSCZw6dQqTk5OIx+MYGxuD1+tFLpdDsVhEt9tVi5/H40EgEIBlWVhZWcHy8jLK5TKuXbuG1dVVx9/1KPtlu/Yx8PD9rAtAl8uFQCAAv98Pv9+PVCqFYDCIfD6P5eXlnlKPiUQCL774Inbu3IlUKoVdu3YhEAigUqmgWq2i0+mgXq8rhajVaqHb7aqxI9FoNFAsFlGv1zEzM4MbN26g3W4rIcvn4/8H6bPt2s9mve4fW/XxM19MwODJgYuXZVnodDo9342MjOBLX/oSPvvZz6Jer6NcLqNWq+Gdd97Bj3/8Y3Q6HUQiEfh8Phw+fBif//znkUqlsLi4iMXFRSwvL+NP//RPNwhJfXHdrove0wRdALlcLoTDYcTjccTjcRw5cgSpVAo3b95ELpfrEZLpdBo/93M/h8985jPweDzw+/1oNpv4+te/ju985zuoVCpYX19HuVxW93C5XEgkEkgmkxgaGsKrr76KQ4cOwe12w+fzod1u46/+6q9w584dtNvtB7IYDQycYISkwccKWiDRaBSxWAzRaBTdbhfNZhONRgO1Wg3lclktfH6/H/V6Ha1WC51OB36/H/F4HNVqFdFoFJFIBO12G81ms2cRN8Lx8cHlciEYDCKRSCAWiyEYDCIQCPRY/rQyk8mk6udOp4N2u41Go4FKpYJisYhyuYx8Po9KpdJzfbfbDa/Xq4Rqu91W1/R6varmciAQUIKSFCuVMqmYmTHxeEGFmH1n1966stXpdJ6426QfGLr1MeBp6+R+8aTpVp/PhxMnTuDYsWNIJpM4duwYxsbGcOfOHfz4xz9GPp/H3NwcFhYWYFkWvF4vPB4P0uk09u7di2g0in379mH//v2o1+v4yU9+grm5OaysrODChQsolUpwu93KP9Xtdh+ZlbFd+xh4dHQr2yAQCOCVV17Byy+/jHa7jWw2i2q1iuXlZVy7dg2dTgcvvPACjh07hmg0isnJSSSTSSwuLuLy5csolUq4fv06bty4gVarhVqttmHrvEAggGAwiGAwiMnJSQwPDyOZTGJ6ehrhcFgtsM1mEwsLC8jlcmg0Gsjn82i1WlhbW8Py8rIjdetEx27Xfn7cc1kKPn1Oeb1exONx1V/xeBwej0cpRQCUEsU52el0kMlkkMlk1HFPihEwdKvBUwN9IfJ4PNi/fz8++9nPwuVyoVgs4sqVK7hw4QK+8Y1vIJPJ2C5es7OzOHfuHPx+P9566y1MTU3B7/dj//79mJiYwNWrV3Hjxg2USiUAvQuGsSAeHnr7eb1e7N69G5/61KeQz+fx/e9/H5lMBvV6HYFAAF6vFydPnsRbb72FZrOJGzdu4OrVq7h06RL+z//5P479LNFoNNBoNFAoFLC6ugqXy4WJiQkUCgWk02mcOnUKn/70p9HpdHDx4kXMzc2hVCphaWlJ+TpXV1d7Fl47QWmwNaR1aCfIPB4PYrEYYrEY4vE4RkdH1Z7BjUYDHo8HoVAIXq8X3W4X7XZbCc9SqaRYoqcF20JIulwueDweeDwepQU6BWOwA/maiyIpmgeNcjN4dPD5fAiFQgiHw4hGo/D7/Wi1WlhfX0cmk8HKygqazaZjP3FBbbfbyGQymJmZQTAYhN/vRyQSQTAYVGOAxxs8POwsyEgkgkgkAq/Xq/zIwN0+HhoaQjKZhM/ng9vtxq1bt9BoNHD79m3k83msr6/3WIz3o8BYlqWEpmVZmJubw/DwMNxuN+r1OkKhENxuN7rdrjouEomg0Wj00LEyCvZZxYMEtklXBiOSSaP7fD5lSfr9fjQaDbRaLTSbTbRaLbhcLnQ6HXi93p7rRSIRTExMKAqeQrVUKj3yPYfvB0+NkNws8pGaSTAYVH4J/VguqF6vF4FAQHWex+NRCzAbu9FoGEH5hGDXr8lkElNTU0gkEtixYwcikQjW1tZw5swZXLhwAdVqVfmkdGpMUjydTgeXL1/G2toahoeH8dprr+HQoUNYWlpSE/Bp9HFsR1D5lP2YTqdx6NAhRKNReL1e3L59G81mE263G/F4HNPT03jppZfg9/vx/vvv46tf/SpqtRrW19dRq9WUwPL7/Yp2k35E/f76X6VSwZUrV+D1ejE7O4szZ84gFovh5MmTmJ6ehtfrxZEjRwDc9WWvra2hXC4jm82iXC6rcWVHvz4roAEC9O+OkIaGz+dTPuiTJ0/i+eefh2VZKJfLSjlZXFxUfU1hRzcI4xF8Ph927Nih9gCuVCpoNptYXFzEuXPnUCwWH1MLbI2nSkjyv5wgnJyBQAChUEhZIdQS2VlSSIbDYeXo9/l8KjCg0WjA5XKh1Wr13MMsoo8fsl+ZJpBMJlXEarfbxcrKCm7fvu14vg7LspDJZFTAR7PZRDgcRiAQcLQkn9XF8GGhCxTLshAKhTA6OqqEJKkypoSMjIzgyJEjCAQC+OEPf4iPPvoItVoNpVIJzWZTpfJwkd4qf1YGggBAu91GLpeDZVkolUpYWVlBOp3GwYMHEQwGEQ6HkU6n4fF4MDIyooLCPs4F92mDVBBk324FHkNBFwwGMTw8jH379qHdbmN5eRnFYhGVSgW1Wg2VSgXtdhudTqfn+pJ2jUQi2LVrF1wulxojjUajxyhy+g2Pcw3/2IWkbur7fD4EAgH4fD5MT09jcnISwWAQqVQK4XBYWZIUkroZzonHqDqv14tWq4VMJoNKpYJWq6XysEqlEvL5POr1Ou7cuYO1tbUn/vufBegDOBQKYefOnUgkEuh2u5ifn1e+I0JP22AqgH490q4M+CiXy2pv0FQqhXq9viHZ3Pgl+4ddugfp06GhIezdu1cFZjA4Ix6Po91uo1Kp4Jvf/Cba7TY+/PBDNf9kX7bbbeXbogWp943e3/J8KWBJzd26dQsejwfj4+NIJBKIRCKYmprCT//0TyOXy+H9999HoVDouZ7T+Bp0SKvQLhrczm/r8/mQSCQQCASQTqfVGu3xeHD+/Pme9bZYLCKfzyv2TmcJKDTJ+hWLRQSDQaTTaUSjUYyNjeHUqVOoVCqYn5/HnTt3NvgrH3d/faxCUmox0nwfGhpCNBrF66+/jjfeeAOhUAjDw8M9FiJ5bb3RJUfOv26325M2UK/X0e12cefOHdy6dQvr6+v4q7/6K1sh+SxOnAeFXT6iXbslEgns3bsXqVQK2WwW165dw9ramhKSemCAPoklGNrfbDaV0tNqtZBKpWBZFtbX11Gv13sWQYP+oPv+u90uvF4vgsEgfD4fdu7ciePHjyOVSqHRaCg/MufZT37yE/zxH/+xinalv5IUn2VZyie51fxycsP4fD61FlSrVbTbbVy4cAELCwt47rnn8PzzzyMUCuH555/H9PS0inK9du1aT77us5pPq7cBYUdFyzSsHTt2IJVKYc+ePfjkJz8Jn8+H73//+/je976n5iIFI2NB7NrU5XIhn8/D5XJhcXERXq8XiUQCP/MzP4NUKoXJyUk899xzcLlc+M53voPFxcUnHtTzsVuSOpj3lkgkMDw8jNHRUYRCIQwNDSmaVfqbdEuSgpELLf0ozWazp4pHu91GtVpFqVSCZVmIx+MqlNzk2D1ekBIPhUIA7ka0kY4h7leg0UdJyyQYDCIUCsHv9/ccZ/rz4UAqle6PUCiEYDAI4N6CS/8T/Y+ZTKbn/EcljHQLk+tBpVKBx+NRFDzzaRlhGY1GEQ6HVT6tiU/YCLv5x75jXmoikVBUu9vtVpZ8o9FAtVrtKSLRD6gweTwe1Go11Ot1+Hw+RCIReDwelQftcrlUvz4JfKxC0m6CTE1N4Qtf+AKGh4dx4MABJRjL5TIqlUpP3htwT7tx6lR5L/7R+oxGo9i/fz+Gh4exurqKZDKJ1dVVXL58GcVisUebcnpeg3uw8/3ZtRlpmmQyiWvXruH69evKf0Ewn+1+2pyLZCAQwOTkJFKpFNrtNpaWlsxC+ACw89uHw2EcOHAAIyMj2L17NwD0LFj5fB4//OEPFYVuF4Al5+LDPh99oDI2oVgsotFoYHl5GfPz8/B4PEgkEkilUojFYjh27JgK5rt48aKKkLX73c8SdIpVWpBUPOlrPnbsGKamppDJZPCtb30L1WoVN2/eVO4O4C4rKNtyqyA6GjatVguXL1/G0tISduzYAQCIx+OYmJjAz/7sz6JYLOLChQuYnZ19LO2g42O3JPVG27VrFz73uc9h586damKxwDEnhKzNSOi0kE6v6Y5/l8uFSCSC4eFhpNNp5PN5JBIJ3LhxA7dv31bOfSMgHz38fj8SiQQSiQRqtRpmZ2dV7U5gc6rWCbRiOp0OAoEAJiYm0Gg0sLKy0qNUGdwf9D4IBoOYmprC9PQ0RkdHAUDRqwyg+fGPf4wPP/ywRxDKgBs9eONhnk23JrrdriqGvr6+juXlZfh8PhW8E4lEcPDgQfj9fty6dQu3b9/u8U8a3IUelU4GIRaLKQPm0KFDOH36NE6fPq1yUClQ2eaEzEJwol0ZR9Jut3Hz5k1YloUDBw5gcnISwN3SlZOTk8jlclhZWRlsIWknePTINXYQ/Y7yGHmuk7B0ioYE7lmfsgIEk17X19d78nf05zR4MNAPRT+S1+uF1+tVVDgLWevn9Nv2vL4M6pI+K8L05dbYTDH0+/0YGRnBjh07kEgkVE5qJpPB+vo6FhcXUa1WbS33J9329XodS0tLAO5awDt27IBlWQgEAooqZLGDR1mNabvDzqp2u90qSCeZTKJUKmF2dhYrKytoNBobfLtSQerHSnc6tl6vY3V1FZ1OB+Pj4xgeHka328XQ0BCGh4fRarV6rFcnN83DjL0nLiSlRSctPmoebrdb+QX1vBo9n0palE71AQmdbgWAWq2GZrMJl8uF6elp7NmzR1mYPKfT6fTc41HQRM8iSHkFAgGV+hEMBlWUcb1efyifpNvtVvU7GfHabDYRi8UMG9An7BROvc3i8ThOnTqFT33qUyqquFwu4+2338a3vvUtlMtlLC8vb7g2LQzgyfXD2toavv3tbyMcDuONN97AxMSEim+IRqNoNptIpVIoFAqo1+uoVqtmjPz/0BWGQCCAT33qU3jzzTeRy+Xwzjvv4M6dO8jlciqug0owcC+gTmIrASkZBlqVuVwO7733HoLBIN58802cOnUKw8PDePHFFxEOh7G2toaLFy+iWCyqbAbduHpYfKyWpHwvK+owCIMBNi6XS1kIADY0viymq+f66A2lC8t2uw2fz6dCjtPpNHw+34Zz7KxYg/5BJYeBHrQmWW9TBks9CDhGgsGg6l8WwDZRrVujX/97IBDA+Pg4pqenUS6Xkclk0Gg0sLq6ikuXLm2ouSrxpOdNtVrFnTt34PV6cfToUdRqNRWdG4lEVLCe3+9X68yzPrd1K5CfeTweTExM4OjRo7hz547y50o2jkygbozY3YOwC76SrGK9XkepVFIVnSKRCCzLwujoKIrFokpJkfcHHiymwQkfm09SNpTP51NJySMjIyrFQwo/WgfAvU1VdXpWdrDe0bp/RB4rfZ4MNNApGLPQ9g99sFJgTUxMIJ1OY3x8XCWRB4NBRKNReDweVCqVDeke/Q5yCmGyAFSAWFzArmiy3SR6VhdKKoJ2i6PX68WOHTswMjKCqakpZLNZXLx4Eevr65ibm0M+n8f8/Pwj09z7ocf76Se5WOdyOdy8eRPxeBwjIyOIxWKqWH61WkU+n4fb7Ua73VbpYtsZdm24VbvaFS2n4RCLxdDtdjE3N4fFxUVUKpUN1hrX0q3Ytn76TebM8v3MzAy+/e1vq2jqqakptFotJSRpXD2qwDDiY7Uk2SHBYBB79uzB+Pg4JicnVTEAfbEFeosFONFDcnscQjqgZRkm0gK5XE5NJlb4Yb1Bg81ht7jKCWdZd6uzHDhwAHv27MG+fft6wrqHhobUFkj95s3pkHQrn6HVailrodvtolarqXGk+7752u73PCtCU/+d9OmGw2G8+OKLOHXqFDweDxYWFrCwsIA7d+7gww8/RKlUwsLCQt9CUp+3m40duzzo++knPtPCwgI++OADJBIJHD9+XDFTU1NTiEQiWF5ehtfrRb1eRyaT2fZCUq5xevCUU7uS4pQCKpVK4dixY0pIXrp0CSsrKyofWcKOYr1f8Jn01D7m3d66dQvDw8P4whe+gJdffhmtVksJTeboPmp87NGtwN0OjUQiqjqGjEZ0Su2Qk8Xue6dz7UCByo4hbQdgQwk7g43op30YHceix1wI5R6BDxuFykkuxwarw9gpVVs977Pe78xnpfLBQAkWflhdXcXq6irK5fLH5s/r16JsNpvI5/OwLEuVMWy32wiFQkgmk6hUKmrtGYSydf20i9Mxcp7QYAgEAuh2u6oohM7I2NG0jxrVahWtVksF5nGTBOZcy7x5PcPhYebzxyIkdUotFArh4MGDeP755zEyMgK/368Cc3SOWmpC8r0eBUvolea5MANQ9BsXVtK+L730Enbu3ImbN2/i6tWrPYLyWV84+4G04qVvmMUbOMm4CA8NDcHj8SCbzT7UfRlIIovcOwnHrSyQzWi+QQfbbHp6GqdOnUIikcCRI0cwMTGB1dVVXL16Ve3ksbq6imaziXq93vf1t6LipD9JP3ar907XXF9fx0cffYRgMIj19XWkUikMDw/j6NGjSCQSmJ2dxfXr15HP59WemIMGOwvS7jvZ7q1WC4VCoSf9jpWNAPRsOEFmDrg/A0V/rX/Ga5L6Jy1erVaRSCTw2muvIZfLYXFxEXNzc2g0GsjlciiXyz3P8qBR7k9cSNoN/FAohL179+L48ePw+Xw9VVIoINk48hryR9PU1/2UeuEBaVVI7p2CMp1O4+jRo9i1a5fa+84IyfuDXR+T7iyXy6osoMt1N0GZFKmeenO/96QmySAwWpZOx/fzmcSzICClMrp79268+uqrqvBDLBZDPp/HrVu3cPbs2S1Ljj0oHtanZYdcLodCoQC3243bt2/D7/fj5Zdfxuc//3kcPnwYo6OjKlpyZmZmIJmErdrVji5vtVooFototVoqEI7zF4CKK2ARAPoE+2Hz9DVVrsfymWQ2A1PH6DuOxWL4qZ/6KXQ6HZWby2j5crmsztvs/lvhqaBbWVu1UqkgFAr1+BxlY9tF3vE1F0UeK2Hnc9JBX6V+D2mtDtqkeRC4XC6Ew2FV1FrSGrofErjXftyAlZGtRDAYRCKRAABMTk6qlA0KTKd21wMGRkZGVFnBTqejxgIjGd1uNyKRyIZdY2T9XxkkIAsyD3r+HCODue1RKpVCKBTC5OQkotGoqrTi9/sRi8UwNTWlCj/o7UnItpTuDMuyehZTPdBCt2TknOX44jyVCq/MiWWxbJ02lAq31+vFzp07VWFu/bm2O/gb2G8ul0vNDVlfF9i4HjIITgpAPWqUAXeBQEDV1JYpe1splHYC0q7fmeVgWZaifemeKZVKPWVKqRTrfa8bVPeLjy1PUqLZbGJ2dhbhcBgTExOIRCKKcuUPlE5nQmoY3HJJNqp0JOvnAr0WKRcJ0gnFYlFVb+EE+jg3/nwawMmyf/9+/NRP/RTC4TBarRZarZYKqPJ6vRtqqHLCMRd2aGhI9cfw8DAOHToEy7LwyiuvqInJ6EOmhwC9ZbK4mPG1z+dDKpVCrVZTO8l4vV6MjY3h0KFDaLfbSKVSSlByjJACplXU7XZRKpWwvLyMarXas4vIICyeduCOGSwS8Prrr2PXrl0IhUKIxWJqE91oNIpDhw7hV37lV1Aulzf4etlGskYy818LhYKq67m+vq7altQdxxH7pt1u91yfDBP3lmX/cmegZDKJoaGhng0SOK91BZtbNsViMYyPj6vo9vX1dbXX5Xbva7Jq6XQae/fuhcfjURZWtVpV41sqH/wfDAYxPj6ucpnZxhSEHo8Hu3btQjKZ7KFb7RQMJ4pXumHsIIUy5yoFYjAYRC6Xw0cffYRwOKxcdHw2ZkcQMkdXv38/eCryJDudDorFItbX1xGNRnsEo2796ZYeKVRqwbrjVvopnTQKGdnlcrnUPmb0m9G8f5YhNfehoSEcOnQI8XgcjUYDjUZDBV9RUWGRBjrW2+22WiRDoZDqB+755/f7MT4+jlgshkgkgnQ6Da/Xqwod8xkA9Ag0LsjtdhvFYlFRQRTKkUhE7QjCeq58Po47+qH4FwwGUSqV1LW5i8igwuVyIRqNYnh4GJOTk3j55Zdx4MABVCoVVdc0GAwqq3xiYkJZa3Y5xbRSGo0GyuWyqpPK3UAWFhZQLBZRq9VUlCTHEVklKSQZPEIWYmhoSKX2RKNR+P1+DA8PY3x8HMFgEKOjoz0LuKTbLMtSRURk0ZJms4lqtdrjb9vO4HgNBoMYGxtTwqVUKsHj8WB9fR0ANghJWpEsG8nPuDZa1t2iAfF4XDF+tODthKFdUr9UOHXrUWcOJQMhmQAWz4/H44jH4wA2utPs2uNB8LEISf5gms6RSKQnN5LcN7U+OwrPsiw1sQCoguSyw5mwzg4ENmouNM9J1zYaDSwuLmJhYQHZbNY2pNmO9h0kkL7yeDzKFyXLye3fvx87duxANBpVO8zTAtRzXP1+vxrUFGK00GkZUJnhfQGonSRoVUiNVE4ATpxut4tyuazqcA4PDwO4t0i4XC5MTU1hdHRU5cPSumR+JsdYtVrFrl27VDL6jRs3VNEJXSgMAizr7k7y6+vrSKfTas4B2ECXkn6WAky/Fo+Ri1swGFR0u8vlUrtEsKQYLUkqJqTMpSVJhZU0Hzdg56JNi8ey7pYzc7vdSlmTSjMFI3AvGIQBZO12e8POMdsZ0WhU0cqpVArValVF8pbLZfj9foTD4R6BxP0cg8GgyiHlWsz5y1xS+iIfJFCHsDOGAGxYE+zcIs1mE4VCQTGB09PTaDQaSKfTqtgAxxWVMSpt+Xy+r2f+2AJ33G43wuEwkskkksmkMtmZlxWJRNDpdHr2oKMWw0YrFovI5XJoNpuKJgmFQsoySaVSSKfTANCz0FLwMQpSOoQrlQquXLmCGzduqJqETsJwEJ37wL1c1EAgoHIbqcz4fD4cPnwYhw8fRigUUjuPUymRdCmjkzudDvL5PObm5tSiyLBtn8/XQ5vTz8l+l34UWoler1ftDsNJZFmWqh3abDYxPj4O4O4isW/fPgQCATz//PPYtWsX6vU6stmsslzkrgUsIkHh/P3vf18tuqQcBw2dTgfZbBa1Wg2JRAKNRkONbbZ9s9nc4Ce2o6B1BYZClNscWZaFiYkJW8Gr1/+083NLn6O0YvQgvlKppJ4VgLIWgXuLLUsk+nw+JJNJ7Ny5E36/X1G1gzC30+k0nnvuOcRiMbXnZ71eV+tlPB5HOp2G2+1WmwxIX/Hc3BwWFhZQrVbVGknIWAQAPf+l0LNTLKWP2C6WhONO9jGVZjkua7UalpeX4fF4MDY2hn379illVvouGaXLMnpnzpzpO23piQpJfeBRSFFQ8RjdIrRLfCWoKXDDXforqLnKCSevoQeWyInIIgKD4sS/X0hag1X/pZBkYetAIKAWObl4sf1Z0b/dbvdEJ0tqR/5JC50LpgyeoXVCy0D3hUlrk4yB1+tFJBJBIBBAJBJRQQbVarUnIIvMBi0R4O5EHRkZQTKZVEIyFos96e54IqA1wGRstjHnAff+pEUhLUaC/cF+ljmrsn9pqekVUvRIc92KkNHr8rpSGdNjEXhtucByjFC54jOTwXKKiN5OkC4kCgz+RrpEGICXTqeVMJPuEs5bOadkLW3JNuiCks8gq6NJ6BQvjwd6Ay1pwHB95r0k/UtfttvtVixDNBpFKBRCo9FAOBxGs9nsMcQYkPRUCUndeU5/1dDQEGKxmOoMagicEGwMPRLL7XYr+mZ1dRXXrl3DhQsXMDo6iueeew6JRAKxWExp/pwkcuJxUQegBKPf78fhw4cRiUSwsLCA+fl5R2E5yALUsix4vV4899xz+NznPqesKQY85PP5HiEI3Ovjer2ORqMBt9vdQ3OkUil4vV4MDQ2hVqupZO4dO3aoAVsul3t8SXI8cOJKOk4qQFNTUxgfH0c0GkU0Gu3xSbrdbtRqNZXXVywWlWXB65A2luNwx44d+OIXv6jGY7+00naCZFi63a6qsTszM4OzZ8+i3W7j5MmTGBkZUfOItXYp2ORCyNfse/1eAHqUHmkZcBHj4irdJdKqpbIkFVxeXy6ydpGOHMfdblcJEI7HQVGMaSAUi0WcOXNG+ZwTiYSyov1+PzqdDlZWVtDtdhUrxD6g4ksfsAyKYf9IgSUjS6WQlp/rxpAT7IwijieOC6lcu91uxUxxDnOMygImgUAAhUIBiURCufS2whMVkvp7VuSndi8DMWQCKQA1gPmeQtLr9aJareLGjRt45513MD09rbbz2bdvn+LbK5WKEs56p9K/yVyg/fv3Y2hoCABsy205BQANCjhwfD4fDh48iNdeew2NRkNtoluv11EsFtWiRgHHBYa5VKRI2H6pVAqpVArBYFAFTwQCAezcuVPlY5XLZQQCAQBQY4LjghQohS5wz6fk8/kwOTmparfyd8gdXSi8GXWp59XKxZ071o+Pj+Pll1+G2+1WhRAGETrtHAwGUSgUcP78eTSbTUxNTal6u6xWIy1JuWgCUO3YaDR6rDf5mn0pBaC06OXWZ3JdoG+b9+F/ufByIdXdKaTS6Urh51JwDkLKDxmPYrGIc+fOIRwO48iRI+r30n9bKBSwtramaNhGo6GimcnyJRIJtTZSOPG/FJxSuZH/9dQcwD6xn+NACj+dbeCf3Oib/S7HjcxqoB+cbiD+1zeFdsITE5J2ARfMkePOEHact6RadYoFuNewtGhqtRqy2SxcLpfK5dpKY5HUkdt9N52k2WwqzURaS0AvpTAIWqcdpHDi79cd5/0oC1wMObFk1QyddpXnAP0n7/NZqfjwvZ3PzE5D5e/g88gFmdelkGVg0KDBjhZlUATTcKhQyrgAO6qbKUHSMpPz2M59IoWdtFDt+tEuFw7orcdL2PlPpZXDsSdp2kGY0yyrCUAVI2cwnF2wFf9L1wY/pwtCBjjqVqJ8z9dArztL72feU6fp5bHsG929Iv9LNoHMBL/neiBdK/fb1w8tJO1+tJP/UGpoHo8HO3bswPHjx3sKAdCXJX0ivA7z32j6s4ILNVsAyGazOHv2LKLRKI4dO6Y0E8ln69QMtUtWlN+5cyeSySSWlpZUKLk09akZyfDkQQIHD4s9LywsKA2eGpwUcOxjTiZadsDdjW/r9bqiPknzyFJWuj/JsqyexUtarJIB4LOSRpdULF/LoulS+2XAkLQc6JMhs8Doy2KxiHa7jcuXL2NmZgaWdTenc1BALZ/+OM7FXC6Hq1evotFooFgsKk2dxemlRc725vWkFQD01tKUiyXHiZ4qwHFAxoBWCtcG6SOV19WpW95bX/TpO6dFBdwVJkxZ2e7YuXMnLMtCNpvF0tIS/H4/du/erXJAuc4CUJaX7mdkO0gLjfNS0p2SgpXKixReuvJjp8DKcaH7uiWNy2hVbn3G+9CNQgOJPtVQKKTWJFLrjPJ97EJSpzoIO0tAfxjSpRMTEwCgfALyR8tG1c17UnGkCDgZa7UaFhYWVMKpXdiwnFC6duH1elVgCn2e1KLls/fr9N2OYFu0Wi1VWIFC02ljZH0scKGVliQVDMkYOGm1MiBDXltaoFyIpaUifV2SxpPPKf0owL0JKSc/oyFJQzWbTaysrOD27dsD2e9ybhG1Wg1ra2toNBqo1+tqkeTm51RmJH2qa/n6oigXPGlxAL2+J51B4r0AKDpe9rtU0kmV6/NbCkngnlLERZ79rVu62xHxeByWZakiDkzDIisk20OfD0BvoBTbR+87nQXSLUB9/Zdz2S61Tq6r0qiR1+ezyiA+nksmEYAqf8kcdwpLCtn72cP2oYSk1BAkNqPJZJL38PCwqpE6Ozur/FR2FAsbWGr+MgFcTihZBYILND/nMewELvrUVGl5dLtdVXEEQI9Tm89n19GDBNmW3W5XWYpSeZGUiN2AkwoUBY+0ONjeesKwhL7wOoE+LplaIK0K+V/+Dk5G6ROX/hGmmzA3b7svoHbQrep+IOeVLgz1NrK7rh7sw3NkRKRcIOUc53nSx8VrkOXRaTfJPkiligqhHIvbHaRbOV5peXGHk1AohHg8jm63i0KhAI/Howo02Cm5nU6nZ0cd+SdjPLjGSmGq09uAfQU0vV91mlZ+x8A8MgJUcO1kB+8vGUMnd4wdHpputeOHpZavTw6/3494PI5kMom9e/fixIkTatPWfD6vkrz1ScuBT8Hmdrt7nM2yKj23UHG5XD0OfkYzSWqP1wqFQirghBpUIpHA6OhoTz6gDOqQv3szxWC7gm3Gmqj83XKA6T4dOR507ZN5iaTqAKhFSeZFyUmhWwKSCdCPY0StpG8pNOXEl9/L38MxxIlEDTSRSKDZbKqw8kETklJhdHIf6MKP/U4FSs4vad3JxZZzRlr3ToLPbnGUQUJ8BrsgPLpHeF35n+NE0vL8jHmCgyAkGcUaDAbV2M7n81hZWVFrG/NVWX2HzBmrV9HSomIrKW+pIMnAHb2YiJQHUlHRrXV9fksFSs5x4N4Wbnr8ChUdSfNLYU5FQWfEtsJjCdyxExj8oaySEYlEEI1GVZIrf8BW+zfa8dou190gIAo6lkKjFiUFrZ2Gq3PrtEiAu9QOozCZFyijrQYddk54fWHbjFbncUBvBCXP69eC6aetpaDW/VByEjpZppIilAs92Y9Bptn1tnE6BsAGASa1eBnopI8NnXGw0/Z5nJ0SJKHfX/YNhaW0UgmnccaxMyjsEPtDtwhZKYdFPxhfAUDFfEjlQ59Luntks3m7meGgrxlSIZbfyTEkx5WsyiaVLzm+7MbQgwRnPbLAHTs/Ih9EJqBPT0/jhRdeQDqdxoEDB+By3U3PuHz5Ms6cOQOfz4fPfOYzitrSBzyDeejf4jZLX/jCF3Dy5Ellfvt8Prz44ovKApWNwz8ZntzpdFCtVjE7O4vvfOc7WF1dVWkMLOy8f/9+VRyYkY6ZTGYgfBhOsFuM7H6vPug3UyKkpug0kewoE7tnkp/rFqLdsdLPSe2StCq1S/o65OTSfZ+DBjvFQn6na/nU4nXaSioqdv3AhdZOWZXHynN4XUJaGbrVKc/TF3tJ53a7XZXqQj80y1wOgiUp80+Bu+3Lqlf06TKITlre7E+5NsrCArri4fF4VAlAPfpV9gNwr6IVsHH3D0JfD7jO69enG4igQsAgJPYjjSafz4dKpYJSqdRjJfeDRxK4I60wu4hPn8+HdDqNWCyGY8eO4a233kI6ncaOHTsA3PX3ffTRR3j//fexa9cuAFCCTl8ISftJqzQej2N8fHzDzgEc/NLPpE8WaiMcCLOzs/jmN7+JW7duYWpqCgcOHEA0GsXIyAgSiQQKhQJu3LiBYrGI2dlZ5PP5+/LjbEfoQoaQ1Jt0ytspSnbnsG94vn6cvA6fQz6PXCx5rJ0lYCdQpf8KuFc0XV/Y5bPoASWDhK0UG7aLHmwj21unujlXAWygQ3VLcys2wW4hlefr9JwMRJLPRWaAPnZaUzJYaxDms5OQbDabKgecSfZSSHKtlPmP7XZbuTLsLD1Jp+oCkp8D9wKlJOQ6YUfH0n3GtZpKjxSSXJNoIfP5yQCGw2H4/X4VvXy/EcyPhG7VTVz+kEgkoqjVyclJ5eOjSc86nmtra8oX2Y8pzMkq7yn5cF0D1RdsOy1GaseNRkNx10xf4ObAHs/dGoHhcFiFxnP7mfvZnX07YjP6RD9GUih87yQw9c82638ZyLHZuZtRNk6Q1pQ8Tw8iGWRsRZH1OwZkP+gC7kGUDP2+Ttau/Fyf71vde5CUH7u2kFuSyZQdlqIDoKxoxnS0Wi0lVEhxAr2KihSKMmpdn3Myqt2un2QkKz+XBSWAe8os40NIG1MpkvETMmhPCnuZDdEP7ltIysVCatVs3EAggFgshlAohBdffBHPPfcc4vG4qmJDbaFUKuHSpUtYWlrC4uIilpeXVcPoeVe6xk9ButnCpy/OUlBKDpu5j/Rncr/BRqOBXC6Hubk5pNNpvPjii3j++efRbrdx5MgRtNttzMzM4OrVqygUCjh79iyuXbt2v8351MOOrgR621UOON36kn4GO0pPThYGjki6TlqpOu0r/+xoObtnpxIn2Q5aOJyA0uKw01gHEXr0oQ7dcgc2pmDYCSrd6tOpWzmv7caEruDoiozsQzk2+Z996SQAyT4NgvUoQQtepnvQH1ksFlEqlVAqlWBZlqquUy6XUalUEIvFcPDgQQwNDaHZbKJWq/VEigMbi5nr64OUETLOhP/lGm7HDOnrfbfbxfLyMhYXF9FqtbCwsIBGo4FoNKoqbXG7tFarhcuXL2N1dVW1h9vtRr1ex8rKCgqFgio00w8eSEjqg1a3yLhr9b59+/CJT3wCyWQSBw4cQCqVQiaTwdzcnPL/ffjhh6oyOxtRj6DUIRdnfSHUF2eebzcJ5DVYr5JJ5swRzOfzCAQCCIVCGB8fV51pWZYKQ85kMpiZmXlgLflphx1VSdj1kV07yP7QKUt5ben7k+H9+jNsZknqAtNujOi/TY4p6XvTq4oMKvQ22uw7fZ7pAk+eJ88n5JixYxrkXNVjEvi9XB/s5hzZJp0VsHuGQROQwMboUeCeEkqGjCUDaYmVy2U0Gg3EYjGMjIxg586dag5YVu/WhDrDovc13/N+MkBPCk5an3ZjjNYfAzqLxSJarZbK3y0Wi0in00in06pQwPDwMBqNBrxeLxqNRk+JS26EIes294P7FpJ2AzwQCCCdTiMUCmFkZASTk5OIRqPYu3cvEokEXC4XZmZmcPv2bayurmJmZgaVSgXXr19X27B0u90eR7JeVEB2Pj9zuVw9k0AeY2fOOwl1XoumPSNlAaBarSKTyeDy5csqUGjPnj0qOnf37t2IRqOYmJjAyMjIwE04qbQ40W12i5ROi+pCVmqgTjSpDidBp38vr2/HIlAQynHCsSS1ZX3CDmqFJTn2ZbSjE/Q55KTEkAnQlRI7i8FpTtop5dInKi1Z/b52CzePtftepjZsdzDWQrYVwRSPbDYLy7KUr08m6XNvVq6HFFhkDO2UXifBLIvh65GobHd9rslC5UwJDAQCqta3y3U3oJLb1zEASxfGchxRSFYqlcfrkySFIRGLxXDixAmMj4/j8OHDOHXqFCKRiNpOaXV1Fe+9957am+zKlSvKh8e965ggGg6HlUPZroPZwPJ55GvZcToVwGPkoi+juTggYrEYEomEKstWKBTwjW98A6dPn8aRI0fwpS99CXv27MHo6CimpqZQKBQwMzODtbW1gVtAdcFgR7npShP7Uz9eHssFSdaEtTuekAsZn4v9pwtH9iUFm17yTk48SRXqObB6BC614kHrYzIpTCbfymLezIKzE2q6JSjz2/Tryuvr81b+pyC127rJTjjKz+wYAsYkyAjO7YxwOAzLsmyVHm5WEA6HkUqlVL7k2toaOp27Gyqvrq6i3W4jFoup/SZlHiL9epKOJZ2rC04ZPKRD+iGlO4QlLBnd6nK5EIvFsHv3bnQ6HYyPj6tdm1is3O/39xQUkWs7i9ivra2hUCjc10YFDxW4wwEWCoUwPDyMsbExTExMYHJyUgW20FG8traG+fl5zM3NYXZ2tifIhbuNsz6g3cDWoU9UO/qEgpKwm3C6RszJQoqBVThWV1dRLBaRTCaVJhKJRJSlzG25Bm0BBZzDtPWFS2Izqs3JItXPle91a8HpvvKedr6mzah8aXXaLbDSHz5okIKjX0tyq+vJiGdiq77v51h+rs9vp2tsdm1dwRoUSp2/w07od7tdVKtVlMtltTm6/O1MoajVavD5fIq+5FpIQUorkQXUSeNKIelkYepKC5/Z5bpHvzICWX7H4hUAetgPjludDZLgM95vms8DC0m/348jR45genoao6Oj+OQnP4mxsTFEo1GUSiUUCgVVEDqTyeD8+fNYWVlRxaIlZGM2Gg3k83mEQiFVjJf0CSGFICEnlJ0Fqlsxkq4lR84aldVqFdVqVfHW5OM7nQ5WV1dx/vx55HI5HDx4ELFYTFEW0Wh0oOhWOwvRiR4D7IMv7CwJXkvmsAH38tdkEIm8h6RwZV/zGNZj5KThM0mKiJNSWpBO95DpDlSY6BoYJHBhYvSinaCwY2PsBKU+r/T+t1O2Nntvp2DJ+SvHj93YlP0sr2UnHPn9IAhKlqULBoMIh8MA7lW3oiUJ3HWVHTx4sKf/XS4XCoUCGo0GMpkM5ufn4XK5VA1jWo202uhz5PoJ2O/eAmzMq5evpVXPOUxmj2kq/KP/lK6uUCik4lrkPpJer1f5MavVKkql0pNLAfH7/Th27Bj+xt/4G0in0zhx4gTS6TTW19exsLCAfD6Pd999F++8847avkpqGTr4eb1eRz6fRzAYVGXM+L2+qEm6TFqgMsrNTqDKBZT/pZBkPo1cCLgrxOrqKs6dO4eFhQV4vV4cPnwYnU5H7YY9iFaGhL4QSaEjP98Kdr4ffdHidSV9zuN0+q7b7SoHP7dek3Srfh4XWifrURbU5zmNRgPVanUg+1jPGbQD55/0+dgJMd2VoQtGO0G5mcVo97m8n94fup/S6Ti78TYoPkmWo2N8BfuBLoPFxUXUajWMjY2pvqeby7Is5PN5AFCKobTCZLI+MwS63a6yNKVrQ+9DGeyjB/7I/SY5J8PhMNLptBLedNGQMh0eHlbWMBVZulIoJCk0WUygXC7f1xzuW0hysQiFQsphOjY2hnQ6rSrOswrN0tIScrkc1tfXUSqVFO3qlJsiuWs5sZx8klIz3GpAy8mxGSfOKCoKZic6jnvseTx3N5+V9UwHYXLpsLMm+b5fgSivxQnE0HuZ7rHZgukEnRIF7iVEU0g6WcLyGnbXsrOcBzFwB7i/NgecqW4ngbTZ/TYThP08ny6oNzveyTVgN462M7guuVx389VdLleP1VetVuHz+dR74F6uuE6V2rkoKLCk8komiGOAhULs5pedkKSxw2P5TDLWgMqrz+dTlddk4QN5f7mjj4yovd/527eQTCQScLvdOHHiBH7mZ34GQ0NDeO6557Bnzx7UajXcuXMHlUoFFy9exLvvvotCoaAsSkl52YEClj+IO4qzsWjKc99AO5PdaQEk7BzJLITe7XaVpbu0tKQ0J15XXpNRuaFQCFNTU1hdXYXH41EBSIMImRIhP9Mji+0WGWlpyiogMvDGbmDbLVxOi5meKtLtdlEsFnsml6R07PI6+Zz67gUEKfdyufwom/apgZwzWy0i0jerK1FO15RwUkT0c7ea0zxff2/3W5zcAIS+2G53zM7OqteHDx9Go9HAlStXUCqVUK/XsbCwgLW1NRw4cAD1el359qLRqLIOKeQ472VAjF06B7/nHHeCbrXbsYD8nhti+Hw+hMNhRCIRtNttFYCTTqcxPDysPqeLjJZ0p9NBoVBQEbsP4irpW0iGw2G43W7s2bMHr776KtLpNEZGRjA0NITV1VVcvnwZS0tLuHDhAk6fPq22ZOkHXEABqCoKUmtgpwH2UWz6a6cJxU6VVEAgEFA5kZlMBvl83nHbJi6UKysr8Hg8WF1dRalUgs/nU88/CBNMQvfZAb20G+HUF1LjlLu76FX65bF2CyfHgQ5d46QGy/7w+/1q+x85EXWfmi6A7caYDGcfRPTzu6R1oZ/TrxVJPIzlJi0aO3+j/j3PsWNA5LgYlPmbzWYBAMlkEqOjo2g2m5ibm4PLdTeVI5fLweW663skXUofIOcp0Ds/ZdAM209Gv+tbUNkpUHpbUzHW+4+RxhSOXq8X8XgciURC3Y879DArgnEk/C4QCKBer6NWq6kKanaU+1a4L0vS5XKpnBSPx4PFxUXcvn0ba2truHTpElZXV7G0tGS7MW+/EyebzeLSpUvIZrOYmJhQCfzcHVtetx+NlJB1OSkkuWM1N9SdmZlRlRz4zJxkTpoytS1u2zVoCygVlM0S+2UkoxR4OnQt0YnishNQ8junc2TtR/aDnvumjxl9Akt/tv5/UKNbucAxOnErbZttaOf32+o8eb7dd1vRpfIY/bV+vc0oYfknoyWlX2w7I5PJAAAikYjaN3JoaAjJZFIFsjAGhAKz2+0iGo32RLE6zQ/5GSGVT71tdUjGxi6iWsYj0HDy+/1qCzCPx4OhoSFVuIZRuLR0aYXWajVVrEZakvejDPUtJHfv3g2Px4OJiQlVXu706dP44IMPkM1mcfHiRWSzWSWx+SDyx/aD27dv48///M+RSqXwsz/7s8ppywgn2fBSy7FLHZGwo1l4rXK5jA8//BDvvvuu8qMSTp3Mc6k9lctl5PP5gVpAuXgyFJx5S3o0Gl8DUBqpLujk8fR9OC1kuhAl9GvqE1YqUXJcSN+H/J59yAWei6R0D8j+H6QC2BKWZamoXYbzO0GfY3YW22bn8bX8rx/H6/YrKPXjpQB3siLZx9JvJus/b3dcv34dLpdLVc7xeDxYWVlRBb7pViqVSrh9+zZKpRLS6TRGR0dVJKhM06Ng0tvGsixVtFxfW/uxKOXaIZUv1l6l4O10OojFYpicnOzZto6BSAwsonBnX2azWdy5cwdLS0tYWlqyDeLbCvdNt0qLLpfL4c6dO8jlclhcXFQRUbIh5P9+UK1Wsbi4iEqlovyEAHoEpB3Np0+KrawTyaGzTuvy8jLK5fKWOTT6gis18UGDDLKRFLRuFch2dxqAUrjZLbT6cU7veQ276+sTz86/qQteuahuNnnsxt+ggIwBlb5+0C9LZKfoPAzslO5+riuVIjulWfqvtzsqlQpcrrvUKq2wcDiMaDQK4F7+JH11fr8fQ0NDCAQCSjjZoZ+56dS+8rWca/octYuaBqCsw0AgoCKxWVqPO0PpSi8NGPpiH8SI6VtIFgoFuN1uFa3a6XSQy+WwtLTkmHdip0FsBVZFKJVK+N73voeVlRW1xQp/tIQdbdfvRKQ2WS6XcfbsWayvr2+ZaBoIBJBIJFQt13Q6jU6ng0qlgrm5ub5/53YA0yoKhQJCoZCyJO0GMOEk0CQDoFvyuoYpBRY1SV7HLlhIQrco+F8GZuhVhOzKYkk6iNdlCsigCUnLsnr8SnJRYi1jnYK0Uzo3m+92SpFO18rnsftMHyd2zyPf27FG8lqk8vhs3FidY3y7s0KWZWFubg7f+c53EA6HEY/H8clPfhLZbBZerxfr6+uwLAsXL15EPB5HOBxW9Vr1eW4n0KQgtaNLdWymfMp7WJalGB05F3O5HK5duwafz6cquvF8jmHegywBjS3uNGXnS98KfQtJWonlclnx2ZlMBktLSz2Fb/Uff78DjXSty+XCwsIC3n77bfXd46JBSJvKivlOCAQCGB8fRzweV/Vaa7UaKpUK7ty5M1ALKGm4bDaLeDyuaHZ9AbFrL7nQSspdXwClZaZT83Iy6hq/bsnymroWKr9nwjRzYi3L2hDRKq8vJyi1VTnRBgmsy0maC+jdb1UKSckIEDq7Y8fo9CNQncaVfC37v5/1xYkGlLQ6WTI99mG7Y2ZmBvPz84jH4/h7f+/v4ZVXXlEl55aWllAqlfCTn/wE4XAY+/btU64QzlvOJ84V9jkpTztWyeVyjlLn+dKil4GSRCgUUmsDv19fX8f6+roK2GEJ00QiAa/X27OjC1nCUqmEtbU1LC8vb6nIOaHv0cAUDSbV84ek02k0Gg34/X7lr5E1MvWI0q0gfwip0EcB2XnUFmlZ6Pe3s1bY4YlEAjt27FCFdbngMol1u2ufEhQMtVpNLZa6FdmPImSnlevX2ur8+zmOz9TPeZtRw9KK5BiWltYgggsMA3ictglzshQepm22Urz6hZ1g7ocm3Ixq365gupXP51OV0Difme5Rr9dVMCbXayqUMhJdlg3VhaCEnnalr6MUuHKtJXisTNkDNgbOkQ2iccNjeD9ZHEZG60r0O8b6FpILCwtwu91YWlrCysoKIpEIXn75Zezbtw/lchlzc3Oqwno+n0er1UI+n1cJ99K/+KThdrsVhz08PIwDBw4gGo0qR7XksuWGnnI3Epr3sVgMu3btUvmVN2/eRCaTUSHXgwRuiH3z5k2Mj49jampKDX49V0rCzqID7K1GfZLZ0XLyOycaSF8MeS/pm5Q5mfJYHbo2zcnIepeDaEkS9Xpd7aFaKpUwNjYGy7JUNSm9z+z6qJ/FZzOavB8Fx4nS1d/r9D0XWjk+H4Txetoho7wZxXr69Gncvn1b7cG4f/9+dYzP58Po6ChKpRK63S4SiQQikYj6noKRvkwZxa4zOTqk5W73vewnyTDJ8+R15O/jFlpu990C7MyvX19fx8rKSk+2Au/Fa/WLvoVkLpeD2+1GPp9XFWf27duHWCyGUqmEK1euIJfLqQAYVpLPZDKqHNDHJSRdLpfa4WNoaAgHDx7E8PAwJicnMT09rRLMWbSgVCqh3W6ryvIejwepVArRaBSRSAQ7duxAIBDA5cuXcebMGayurqJSqXwsv+1xwrIslEolrK6uwu/3K/8Nv9OFpG5lEvIcuQmuLtgeVIvXBSWAnmfS6d5+LF9Z7JtaK63qQVtQJVqtFjKZDJaXl9FsNlXqF5OzH1QobnWOTtFu9v1WAlJ/bXetQYfcSBy42683btzAjRs3sHv3bkxPT2N8fFyV0+QuTGQMw+HwhmhWFhyQkPNOloCUxSakAaJTqzLSXc+/3YySl5XOuKMHfejcEmt5eRnZbPa+6rTa4b7Id8uy1N6KQ0NDOHLkCCKRCLxeL8bGxpTfKh6Po9FoYGxsDMViEfV6Hbt370a1Wu3Zk0x/3e3erf/H0nCsssPP9dB0LoDSUgwEAipdJBQKIRQKqSRZn8+HkZERTE1NIZFIIJVKqe/ZEQxQYW4OqQNuTMpqDy7X3T0yr169ivX19YFL/wDuBauUSiXVd04J11sJPOmTsBNqTtdw8nnon/G1Hkwg0z9kHiUDUuysUP52Wh0cp4NsQRIsfh2JRFCtVjE2NqY2JJcF/3WrTwZVARvTMO6HyrSzJJ2sS7s5ZycU5fiTf7olNChzeLOxWqvVMD8/j3a7jXA4rLaa2r17typhJ9NjOGfkGizbU/qr+VoP9LIsq2erLXktSZfK4/lf/hadxbJTjumLlMVhHgb3LSSvXLmClZUVDA0N4ed//ucxMTGBYDCI48ePIxgMql006L/hAkPatdFooFKpoN1uq9025Pes/cq9HLPZLJrNJjKZzIY9wMibBwIBTExMIBaLYWxsDIcOHUIsFsPOnTuxa9euniTXYDCIeDyuqANqMbQYZYPLKEh2SrlcxvXr11Eul/GDH/wA3/rWtxTXP2jodDrI5/NYXFxUZZ82W+jshJUTNcoFSqc/pYapp9no1ql+PSkEeYzcN5BKlCyJx2tLpYi/XfrnmIs16CgWizhz5gzu3LmDnTt34oUXXkAkEkE6nVZpBU4CSwZl8L0UotLHaycEN4OTJanTdPxe3leOE8uyVDqZzNslY6BHW29XOKXJAXeDMN977z2Vfz40NIRYLIbXX38dk5OTsCxLrdE+n69n02XOHZnvTANCWpoM7OG8A6Cq3zSbTayvr6tIca6xdlG1eoyIrgSTBmbfMo5lfn4eH330kZq7D4P7DuNiMmqpVEI+n0ej0VCCh4EsMuGaD04/X71eV3Sm3LaEFmc4HEa73VadxEo2pVJJabJsINKh9BUODQ0pGjWRSGB6ehp79uxRfDUrMUi/Gjtd7srOjuLWS7Rq+T+bzSKfz2NpaQnz8/OoVqsP1QlPM+6nEguxmeXXz/FO0avyeLvrbvZeXhu4J4Sl70O3KoB7mumg5kfqaLVayOVy6Ha7GBkZQSKRQCKR6KHb7yeP0M5K34qifdjv7QK3pLVrx2rIcwcBm/0OUuoA1JZTLN3mdrvVeJf50cC9XFopJKlcyHvKzaxZWo7HSUZGBsMxfkCvqkb5AaDnWeyUcPY740qKxeKmG2v0i76FpP4wzWYTH330ESKRCFKpFI4ePYpUKqU0B/LD8kd7PB5VCo7BAPomnuVyGXv37kWz2UQul+vZ14zbFHGycnuXQCCAkZERRKNRFX0aCoWQTCZVR8qqDlzwKIAltdtoNFQ9w3w+rzht/tVqNaytraFareLWrVsPbco/zWA/s/oGy1UB2NDHcvHkxADuWWSkbnSNUQ589hH3taOvWNbalVqlXOykRiotC7lISz8jo3V5XLvdtvW7cRwUCoUeJW1Q0Ww2sba2hnK5jLGxMZVoDkDVwLUrbu4UtOGErahTu+91ild/7XSfzdgMWYZO7lf4rKDZbKJUKsHlcilDgIGKoVBIsS+cM3ZpckzZazabPUwOrXXuUcp8d6/Xi2g02hPhKpVUfTxJZsIOPJ/KfD6fR6VSUfn8PPdBFaC+haSkSrh4nj9/HouLixgbG0OhUFCU59DQkKooz+K04XBYFQSQOTayQaUfiA5Z7hGYz+cV5cWFOhKJqOtHIhHVGTLvTVoOvA+1GUYrsmh5oVBALpfDzZs3USqVsLCwgDt37ijrWO5iwes8rFP4aYYUktxGjCkQ7EtpgUv6g4JTRhJKWkVOJqnIuFz3kro9Hs8GZ78u/KRFSDpYhorLMaaHphPyHP5u2cdUlh5VOtLTjEajgeXlZbjdbuzYsQOFQkEpFMxd41wAthaQm1l9ctHbakszvb+IzQI89GvxnnIcyLQGzudB8E32+/xyG0OyfaRhpZsCuJegL5k1WQeWYDQtq/2wjUdHRzEyMgKfz4dYLKZoXDu6W7c4gY15ufRz8rmZ081arTKgR/oy7xcPnDXLhuAkWl9fh9vtVpXYfT4fyuWyEmIsQkuOm40vrRAOaJ/P12NWc/Gis5eCSQbm0EIF7g0QaYXwNUP5abUWi0W1mXKxWEQ2m0Umk0GpVEIul1PpLI/CbN+O0ANX2J56CLhOf9rRbBJSgFF71c/TfUmEFJBOi6fTPeWxUnvlGJRBXFIRklrpoINzhW4OBu3YBebwtQ4ZyCPHhe5Tkq/169j5oZ2+dxKUunKlf8+xJ2MonpV+Jjivq9UqCoWCqipGC1IKK5lGpbsipGIj/+Qc5jnFYhHVarWHVZLXlvnIOsXKz6gYcz3P5/M97ONWLEO/6FtISh8j/7NEXblcRrVaVeY5HbkUhCwjxPqByWRSRZqmUim1ZxgtCIYk00phCgYbkQ0orUUZNECOu1KpKEu0WCyiVqshk8ng+vXryqeaz+fVAGFgEfcfI824mQaia7yDBMuylPVULpdRqVSUhmjnz7HzE8rJYteO+jkyoVlfiOXCa+fA1yeunKC8pt0CyHtw93Pgnqa6vr6OpaUlZLPZgUzzIez8cisrK/jRj36E4eFhFRUu3RYcA1Sa2N6ySpGdf1DeU29vaanq/ig7uk2nfOVrvpd+Z/me1pPLdXfLqPX1dWQymYGswaxDX7darRYuXryITqej3GfDw8Oq+AotbZmFIH3UpGNp4Ph8PnQ6HYRCIVURB4AqE/f222/j6tWrPaySHYMAbKyAJSH9nMViEblcDvV6HYuLi+o6D7s29y0k7TQ0csDFYhErKyuO50ohGY/HMTw8jFAohOnpaezcuROhUAhjY2MqD5E7f1Bwut1u9V8KQblvoJxs1Aar1SpyuRwajYba+3Fubg4//OEPlVmeyWQeOCDDTiAMEqRGxwr7tCjsHOf6ufwv/Q76gqVbcRRo+kLnBCfqjdeQNLuu8crnBKAKCMjjGeHLILVBhr5A5fN5XL9+HWtra/jEJz6Ber2u2B+5cOkLGqnMzfpQKrl8T8HFBZiWvLyuHezuY8ca8HOpMNHPzFxuBhU+K2DbtNttzM7OolwuY2JiAqlUSmUP6NGtso/4PWlV+vUZTxCLxTAyMgKv14tCoYBCoYBsNosf/ehHOH369Ab3mKyjDPSOJ7vvgXv9XyqVUCwWN0Qoy77fjP53wkMXKexHSEjrr1qtqkjWQCCAdrsNv9+PfD6v6FPuRJ1IJNTreDyuCtrynlKLkAFADLxhagZ9mtVqFSsrK8rUd9pA90EE36AJSIILF9u41WopH7NcKPXBzuAsvmeKBf2GdnQtg3UYuMPr6AKW58nzuejxeGlJ8tmCwaAKQgF6KUEAPedIOpah64NWdlDCTuAFg0EMDw9jaGgIkUikp7iCLCzB84GNypHTYqVbl/I7CmEpJOWY0c9xup9u7fI76a+W45R067MQxUzIdicrmM1mMTMzg2q12rNFnqRb+cccWualc43mXAqHwyiVSvB4PMowWV5eRj6f3xBZrkcfA/cC7iRryM/1ft3Mn6xTt/eDhxKSeu4TgA1SHIASXlxwuKPI3NycorgY/CFLwaVSKQwNDSEcDqu0jkgkgqGhIbVZMv1FtBRzuRxmZ2dVoXRGxFILYpFqvndadAmnBn+YRt9OoIBkAE+5XEY6ncb4+HiPQGIfykApy7JUH9HCl5NAX2TZ76TpnaxEHRSSkUhEPS8h6XgZ3apbMECv9clxeePGDWSzWayvrw80Dcc2kcImnU4r2m18fFzV8pSUu90+rrqvGOjNd5Psgk5/s3g1g4RkJK0dtSrf65/p/awfK38z15NnxfeszyXSlZVKRVVcImtA95nsbxlkx6BMGjnye85ly7KwvLyM5eVlVKtVzM3NqfEgFS593Ni5c5x+j5Nb7InRrXawEyhO5qysrtAPbeVyuZBOp5FMJlUh3lQqhXg8jlarBZ/Pp/IYa7UaFhYWkM/nsb6+jps3b/b4GB/kd0k4NfKgC0iCA5DtaVkWAoGA8jtwkNtFLcuFSGrwdpNB0ip6VDKweRURHqsvcE4+D0ntSj8nhSRrQAJQboVBp+H0uev3+5FMJjE0NIRQKNTTj7pfWv459ZNcFKWQ1K0/sgnye12g6kqqk+KqW8jyOPm8VKSfNUtSgkwRA7aAewVbZLoXGR7Ok2g0qoQpGSaZWgPc7fulpSUsLi6i1WqhXC470uNPGx5KSOraofz/KEB/JzX4aDSqCgeQumNUWi6XQ6VSUVV87MrYbfVbOJnkJNnMdH+WUKlUcOXKFdRqNezbt09pkDIdQNce5QIE9PofZZUMgsJ2K41RQtJ8W+W4SepNt2os694m3AxWAID5+XnMzMwgm82qhWMQYecTBu61DxdJSYHrfkm7oCwJO4tdr9vZ7XaxsLCwIfxfnqfnacrnlPchc6T7wbmAk91ot9u4dOkSZmZmUCwWUS6XH2XTbmuwjdhHLCbAsUIFkuyL3BhAUqOMaK1UKtsuF/WhhOTj1Lgsy1JCz+VyYXV1tWeRlcfxWeQkkt/dzz0f5LxnAcViET/5yU9w69Yt5PN5JJNJxGIxtU2YXIQYxSw1Sk4iOvjp55CLqxR4TtSaDrkQ2wX8ONH/9F9IfyeDk5hSBAA3b97ElStXkM/nUSwWH1FrPl2QiosMhgM2UtCdTkfRZ1KZkefpLgy+5nv2t/Rt04phkY5MJqMoeCm4ZWCevJedkGw0GigWi8o6ZN5eOBxGIBBAq9VCpVJBs9nEuXPnlBK4nRbwxw0ySIBzrqqTq0p+L+faVnP6acNTvbuobEwzcD9edDodpWHncjmsr6/3FBgA7i1+WwlJWTDeTog9jJCU//laV+ZkhLScvFJIMgAhn8+r3znoY1BvZ6ZBsRQl6xOzLWhR2J3r9Jn8XH5PAckUgdXV1R7r1s7id7oe+5vVZGQ0vNvtVgEmUkgynW2Qi4M8LLYLPfqo8VQLSYOnByxXVigUUK/XsbCwoHySuqCTPgtJn8odAuTip+NhJqPduXaMh07BSbpW+jHn5+dVkf1B9UnSH8f2YHstLi7i9OnTiEajyGazuH79OiKRCEZHR5Xrg7tGyMo1OgXO17p1T8HY7XYxMzODmZkZ5HI5nD17FvPz8wA2p8iJzXygckslgsGB0geZzWYHtn8NHg5GSBr0hXa7rSyJtbU1XL169WN+oieDZ0VjtqPCstksstks/H4/6vU61tbWkEqlcOLECYyOjvYISAAbqmfZBeYAvYE7FJbz8/O4cOEC1tbW8P777+POnTuP5Hc9K/1n8PhghKTBA8EsPoOHrehRXbg9zvub8WXwtMBlmdFoYGBgYGBgi/43hjMwMDAwMHjGYISkgYGBgYGBA4yQNDAwMDAwcIARkgYGBgYGBg4wQtLAwMDAwMABRkgaGBgYGBg4wAhJAwMDAwMDBxghaWBgYGBg4AAjJA0MDAwMDBzw/wFqVRRd9E8OsQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -2514,10 +2276,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:42.228758Z", - "iopub.status.busy": "2023-11-02T15:15:42.228401Z", - "iopub.status.idle": "2023-11-02T15:15:42.262904Z", - "shell.execute_reply": "2023-11-02T15:15:42.262036Z" + "iopub.execute_input": "2023-11-04T09:20:59.418331Z", + "iopub.status.busy": "2023-11-04T09:20:59.418011Z", + "iopub.status.idle": "2023-11-04T09:20:59.434230Z", + "shell.execute_reply": "2023-11-04T09:20:59.433564Z" } }, "outputs": [ @@ -2550,39 +2312,39 @@ " \n", " \n", " \n", - " 258\n", + " 30659\n", " True\n", - " 0.000012\n", - " [9762, 54565, 47139]\n", - " 0.000012\n", + " 0.000015\n", + " [30968]\n", + " 0.000015\n", " \n", " \n", - " 9762\n", + " 30968\n", " True\n", - " 0.000012\n", - " [258, 54565, 47139]\n", - " 0.000012\n", + " 0.000015\n", + " [30659]\n", + " 0.000015\n", " \n", " \n", - " 30968\n", + " 258\n", " True\n", - " 0.000022\n", - " [30659]\n", - " 0.000022\n", + " 0.000017\n", + " [9762, 54565, 47139]\n", + " 0.000017\n", " \n", " \n", - " 30659\n", + " 9762\n", " True\n", - " 0.000022\n", - " [30968]\n", - " 0.000022\n", + " 0.000017\n", + " [258, 54565, 47139]\n", + " 0.000017\n", " \n", " \n", " 54565\n", " True\n", - " 0.000022\n", + " 0.000026\n", " [9762, 258, 47139]\n", - " 0.000022\n", + " 0.000026\n", " \n", " \n", "\n", @@ -2590,18 +2352,18 @@ ], "text/plain": [ " is_near_duplicate_issue near_duplicate_score near_duplicate_sets \\\n", - "258 True 0.000012 [9762, 54565, 47139] \n", - "9762 True 0.000012 [258, 54565, 47139] \n", - "30968 True 0.000022 [30659] \n", - "30659 True 0.000022 [30968] \n", - "54565 True 0.000022 [9762, 258, 47139] \n", + "30659 True 0.000015 [30968] \n", + "30968 True 0.000015 [30659] \n", + "258 True 0.000017 [9762, 54565, 47139] \n", + "9762 True 0.000017 [258, 54565, 47139] \n", + "54565 True 0.000026 [9762, 258, 47139] \n", "\n", " distance_to_nearest_neighbor \n", - "258 0.000012 \n", - "9762 0.000012 \n", - "30968 0.000022 \n", - "30659 0.000022 \n", - "54565 0.000022 " + "30659 0.000015 \n", + "30968 0.000015 \n", + "258 0.000017 \n", + "9762 0.000017 \n", + "54565 0.000026 " ] }, "execution_count": 23, @@ -2674,10 +2436,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:42.267665Z", - "iopub.status.busy": "2023-11-02T15:15:42.267314Z", - "iopub.status.idle": "2023-11-02T15:15:42.279280Z", - "shell.execute_reply": "2023-11-02T15:15:42.278046Z" + "iopub.execute_input": "2023-11-04T09:20:59.436922Z", + "iopub.status.busy": "2023-11-04T09:20:59.436555Z", + "iopub.status.idle": "2023-11-04T09:20:59.442455Z", + "shell.execute_reply": "2023-11-04T09:20:59.441913Z" }, "nbsphinx": "hidden" }, @@ -2722,18 +2484,18 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:42.284954Z", - "iopub.status.busy": "2023-11-02T15:15:42.284327Z", - "iopub.status.idle": "2023-11-02T15:15:43.037624Z", - "shell.execute_reply": "2023-11-02T15:15:43.036755Z" + "iopub.execute_input": "2023-11-04T09:20:59.444739Z", + "iopub.status.busy": "2023-11-04T09:20:59.444364Z", + "iopub.status.idle": "2023-11-04T09:20:59.897736Z", + "shell.execute_reply": "2023-11-04T09:20:59.897071Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUoAAABzCAYAAAD+K0vUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmwklEQVR4nO2de3BV1fn3v+d+SULuJDEBxbEIEpIgYhVtBaFVqAoWq1VaHZXREatO663VsdrOz+mIVls7dqit1RkvbaVjlbbWCyLWC0Kt3GxmvBIgBJJDkpPk3G/r/SPvs1h7nX0ucA7Zx7PXZyaT5Jy9d7K/53nWetaznrW2hTHGoFAoFIqMWI3+BxQKhaLUUQ2lQqFQ5EA1lAqFQpED1VAqFApFDlRDqVAoFDlQDaVCoVDkQDWUCoVCkQPVUCoUCkUOVEOpUCgUOZiQhrKrqwtjY2O675122mnYtGlTzms8+uijaG9vx+zZs9HR0YFnnnmGv/fUU0+huroaXV1d6OrqwsKFC/l74XAYV155Jdrb29He3o6LLroIPp+v4HuaCIqhW39/P7797W+jo6MDM2fOxK9+9Sv+3v3338816+rqwqRJk/CjH/2Iv79r1y4sWLAAM2fOxMyZM/HCCy8AADZu3IjTTz8dp5xyCmbNmoU77rgDqVSqoHstFsXQjBgYGEBTUxOWL1/OX8umWU9PDxYsWMBtUWTz5s38nFmzZuH6669HNBoFAKRSKdx2221ob2/HjBkzcO211yIWix3RfReTYmh43333obGxkd/zypUr047R0zebLwPAW2+9hXnz5mHWrFk45ZRTsHnz5rzOKxhmMHPnzmVvvvlmzuM2bNjA/H4/Y4yxvXv3svr6evbZZ58xxhh78skn2bJly3TPe+SRR9iKFStYKpVijDG2atUqdvvttxflfzeSfHW74oor2N13380YYywQCLDOzk62devWtOMikQirq6tjH3zwAWOMsWAwyKZNm8befvttxhhjiUSCDQwMMMYY+/DDD9nnn3/OGGMsHA6zs846iz355JNFuKtjS76aEcuXL2fXXHNNRtuSNRscHGRvv/02+8c//sE6Ozs1xwaDQRaLxRhjjCWTSbZ8+XL28MMPM8YYe/zxx9nChQtZNBplqVSKrVq1iq1Zs+aI728iyFfDe++9l91yyy1Zj9HTN5sv79+/nx1//PGsu7ubMTau//DwcM7zisGERJQWiwV+vx8A8N5776Grqwvt7e24+uqrkUgk8rrGokWLUF1dDQCYMmUKmpubsW/fvrz+digUQjweRyKRQCAQQFtb21Hfy0RSDN127NiBpUuXAgAqKirw9a9/HU8//XTacS+++CKmTJmCuXPnAgCee+45nHHGGTj77LMBADabDY2NjQCAOXPm4MQTTwQAuN1udHV1oaenp5BbLRrF0AwAnnjiCUybNg1f+9rXMh4ja1ZXV4ezzz4bFRUVacd6vV44HA4AQCwWQzgchsViATD+GS1evBhOpxMWiwVLlizR/YwmimJpmI189JX57W9/iyuuuAIzZ84EALhcLtTU1BTl/8nFhOYoY7EYLrvsMjz00EP46KOPcPnll2PHjh38/bVr1+KnP/1pzuts2LABw8PDmDdvHn/tnXfeQVdXF+bPn49169bx16+//npUVVVh8uTJaGpqwsjICH7wgx8U98aOMYXoNnfuXDz33HNIpVLw+Xx49dVXdRu1J554Atdeey3/vbu7Gy6XCxdccAG6urpw5ZVX6qYsDh48iL/+9a+44IILCr/RIlKIZrt378batWtx//33Z/0bsma56OnpQWdnJxoaGlBdXY3Vq1cDGP+M1q9fj9HRUcTjcTz//PMl0fEU6q/r1q1DZ2cnzj33XLz55pv89Vz6ZvLl7u5uhMNhLF68GF1dXbjpppsQDAZznlcUjlmsKgCADQ8Psx07drATTjhB896JJ554RMOhnTt3sra2Nj4kZIwxn8/HgsEgY4yx7u5u1tbWxjZv3swYY+yll15il1xyCQuHwywajbLLL7+cD0VLnWLo5vP52FVXXcU6OjrY4sWL2XXXXccuvvhizTE9PT3M4/GwwcFB/tpNN93E2traWG9vL0ulUuzHP/4xW7Fihea8kZERdtppp7Ff/vKXR3+TRaZQzVKpFFuwYAF7//33GWOZh3R6mhFvvvlm2tBbZGxsjC1btoz96U9/4n/z3nvvZV1dXezMM89k99xzD6utrc1+o8eQYtjdgQMHeKrhnXfeYY2Njaynpyenvtl8+cILL2SnnnoqGxoaYrFYjK1cuZLdeuutOc8rBobPetPwIx+6u7txwQUX4I9//CMfEgJAQ0MDvF4vAGDmzJlYunQp3n33XQDA448/josvvhhutxtOpxMrV67U9G5fVvLVraGhAU899RR27NiB119/HRaLBbNmzdIc8+STT2LZsmWoq6vjr02dOhULFy5Ea2srLBYLvve97+H999/n74+NjeH888/HsmXLNBNApUw+mo2OjmLnzp247LLLcMIJJ+C2227Da6+9hkWLFmmO09MsXyorK/Hd734Xzz77LP+/7rvvPmzbtg3vvfcenyQrRfK1u+bmZp5qOOusszBnzhx88MEHOfXN5stTp07Ft771LdTW1sLhcODyyy/nNpntvKJQtCY3C/j/PVQ0GmVtbW1s48aNjDHGXn/9dQYgrx6qu7ubHX/88eyVV15Je6+3t5f/fPDgQXbSSSexN954gzE2HhldddVVLJVKsVQqxW644QZ23XXXFefGjjHF0O3QoUO8Z//www9ZU1MT6+vr4+8nk0k2depU9vrrr2vO27NnD5sxYwYbGRlhjDG2Zs0atnTpUsbYeEQ0f/589rOf/awYt1lUiqGZiF5EmUkzQi+i/PTTT/nnEI1G2aWXXsruuusuxtj4hNjQ0BBjbDwy6uzsZOvXrz+i/7OYFEPDffv28Z8/+eQTNnnyZPbxxx+nHSfrm82X3333XXb22WezSCTCGGPsxhtvZKtXr855XjGwF6/JzY3T6cRf/vIXrF69GslkEvPmzUNnZyd/f+3atejr68PPf/7ztHNvvvlmjIyM4M4778Sdd94JAHjggQdw3nnn4bHHHsNLL70Eh8OBVCqFH/7whzj33HMBjJcpXHfddWhvbwcAzJgxA7/73e8m4G6LRyG6bd26FTfffDPsdjuqqqrw/PPPo6Wlhb+/YcMGWK3WtIhp6tSpuOuuuzB//nxYrVa0trbi8ccfBwD8+te/xtatWxEMBnnJ0He+8x3cfffdx+L2j4pCNMtFJs1CoRCmT5+OaDSKkZERtLW14fvf/z5+8YtfYOPGjXj00Udhs9mQSCSwaNEi3HPPPQCAkZERLFiwAFarFalUCrfccgsuvPDCwgQoAoVoePfdd+O///0v7HY7bDYbHnvsMUyfPj3n38zmy/Pnz8dFF12EOXPmwGazYdasWVi7dm3O84qBhTG1w7lCoVBkw/AcpUKhUJQ6qqFUKBSKHKiGUqFQKHJQcEP5wQcfYMmSJZg2bRrmzp2LOXPm4P/+7//4+wsWLMCLL76Y9/XWrl3L12vW1dWhtbWV/14OZT16KA0LQ+lXOErDHBQyZb5z505WX1/P/v73v/PXBgcHNWupzznnHPa3v/3tqK5/1VVXsUceeUT3vUQicVTXLJRkMsmSyWTRrqc0LAylX+EoDXNTUET5wAMPYNWqVZrla3V1dVizZk3BDbjMU089hYULF2LFihWYPXs2tm7dildffRWnnnoqOjo6cM4556C7uxsAsGnTJs3uLR999BFOOOEEAIDP58M3v/lNvgvR1VdfzY976KGHcPrpp+PUU0/F+eefjz179gAYLzFasWIFzjvvPLS3t+PAgQNFuy+lYWEo/QpHaZibguooP/zwQ6xYseKozl2/fj3Wr1+PP/zhD3mfs2XLFmzbtg0nn3wyBgYGMHPmTGzatAmzZ8/Gs88+i0suuQT/+9//sl7jmWeewbRp0/Daa68BAIaGhgCMbwLx8ccfY/PmzbDZbHj66aexevVq/POf/wQwvk3Wtm3b0NTUdFT3mwmlYWEo/QpHaZibok7m3H777ejq6kJra2vOG73ooouOSFxgvOD05JNPBjAu9uzZszF79mwAwMqVK9HX14f9+/dnvcYZZ5yBf/3rX7j11lvx0ksv8Z1eXnzxRWzYsAFz585FV1cX1qxZg7179/Lzli5dWnQD1UNpWBhKv8JRGqZTUEM5Z84cbN26lf/+4IMPYvv27XA4HIjH44VcWpfKysq8jrPb7Ugmk/z3SCTCfz7zzDOxfft2fPWrX8ULL7yAefPmIZlMgjGGn/zkJ9i+fTu2b9+OXbt2YdeuXUf8t48UpWFhKP0KR2mYm4IayjvuuAO///3v8fLLL/PXYrFY0fasy8YZZ5yBXbt24aOPPgIA/PnPf0ZraytaW1tx4oknYs+ePXxbMHFvv927d6OyshKXXnopfvOb3+CTTz5BIBDA8uXLsXbtWh7Cx+NxbNu27Zjfh9KwMJR+haM0zE1BOcrOzk68/PLLuOeee3DjjTeisbERDocDN9xwg2Zd56pVqzR7QK5btw4+n++IcxsijY2NePbZZ3HllVcikUigtrYW69atg8ViwXHHHYc77rgDp59+OpqamrBkyRJ+3qZNm/Dwww/zNbcPPvggqqursXLlSgwODvIt5BOJBK655hrMmTPnKNXJD6VhYSj9CkdpmBu11luhUChyoFbmKBQKRQ5UQ6lQKBQ5UA2lQqFQ5EA1lAqFQpED1VAqFApFDlRDqVAoFDlQDaVCoVDkIO+C8yN5rOyR4vF4cP7556OzsxNerxc1NTUAgGg0ilQqBYvFwv8+Y0zz5XQ6UVlZCcYYDh06hEAggO3bt+PVV19FOBw+Zv/z0ZSfHksNvV4vlixZgo6ODng8HlRXVwMYX2GRTCbTNKTvpCGtlVUajmvo9Xq5htFolGtIyP97Jjt85ZVXTKlhZ2enxg5FDbPZYan68oQ+hTETTqcTHR0d+MY3vgGbzQa73Z7zw6Sbs1gssNlsAMY/jEQigXg8jo0bNx5TcUsNh8OB9vZ2LF68WKOhqJOMrCFjjC9dUxqOaygjaipitVphtY4P0MgOY7EY3njjDVNquGjRIl0N87FDoPR8uSQaSrvdjpNOOgnz589HMplEPB6HxWKBw+HgxpeJZDKJRCIBxhgcDgdsNhs+/fRTXSMvZ5SGhSNqSE5KGpIDZ0JpOE65amjof2Cz2eB2u1FVVQWn0wkASKVSiMfjYIylDXf0YIwhkUjw3oi+vF4vwuEwH3qWKxOhIaVAyhXSsLKykmvIGOM751D6JxvJZJIfZ2YNRTs8Ug1L2ZcNbSjdbjdaWlrQ0NAAr9cLYHy3j5GREd3j5SGPOAwiUR0OB7xeLyZPngyr1Qqfz2d42H4syaahOKShPBBBRptLQ4vFgkOHDpW9hk1NTZg8ebJGw0AgkNa45cpnkZObUUM9O8xXw1L35ZKIKCsqKnh4nUql+Jec9JV/lnso+kDsdju8Xi88Hk/OcP/LTiYNKZokxIZS1C2bhh6PxzQayveaSqV4lEjoaSg7vc1mM62GenaYTUORUvdlQxtKj8eD1tZWNDc381lX4LCYNpsto0GKglPDQFRXV+MrX/kKqqur4ff7EQgEJuBujCGbhgA0+R09J6cvPQ2nT5+OSZMmYWRkpOw1bGtrQ3Nzs2ZjV9kO6Xdx5pZ009OwpqYGM2bMQE1NjSk0zMeXRb+l3Llsh2LDWiq+bGhD6XQ6UVtbi7q6OrhcLgDpvTbNxpJ4JC4JKpYYEF6vF83NzQDAr1uu6GlIWCwWPhtLEabVauVOLud7zKxhXV1dmoZiw2i1WjWjHHGCTI6YCI/Hg+bmZqRSKVNoqGeH2XyZIsRMIx+gdOzQ8KF3ZWUlqqqq4HA48jpHNEpqAOg1Etlut2PSpEkIBAIlMWN2LMmkodhDk04A0vJFYq5SPNfhcKC6uhrBYNDUGmYiHzt0OByoqqpCVVWVaTSsrKxMG8WIOoq6iQ2kbIel5suGfnoulwv19fVoaGjI2FvIxkriUsJX7o2o925sbEQ0GuUzcOXK0WgoRueihuLQyEwaUjRUX1+vGdlkQ7RDu93OZ2tJw1QqBafTiYaGBkQiEVNoWFdXh4aGBrjdbgD66TK975nssJR82dAljBaLBW63G263m4fleuRTViHmOaxWK5xOJ5xOZ84awi87ooYU2egZ6JFoSFGoWTS0Wq1pGh4Nog3KdljuHImG+ZQJlZovGxpRer1eHHfccWhtbYXT6eR1UtmEloeI5NgWi4UXrDocDtTW1iIYDOY9pP+y4vV60dLSgpaWFjidTr6iQdQpWyNJs5J0TjweRyKRgM1mQ3V1NUZHR8t+2EilLS0tLXA4HIhEIlyDXCkLAJpjRDu02+2oqanB2NhY2TeW+WgoIjeW5MtU91tqvmyoB9jtdp7XoNCbkudENgMVZxzpd4qG3G43XC7XMV3XWgpYrVZUVFSgqqqKP2hJnlzIpAG9J2tIjabL5YLL5Sr7iNJut6OiogKVlZWwWq1cQz3d5EkdQBsBAVo7VBqWhy8b2lDKQ5NEIpGWcwSgOYbEpshHrrFMJpO8NyrnFTmEzWaDy+Xi+ujVrQHja3D1NBTzQmIiXaxnLXeoBpCGjWJFhei8oh1Sp072JpYNyfqZSUNq0MgORQ1pKaO4coex8dU45MuihqXky4Y3lNTjAukNpVh0SvVtJH4gEODL9AhRWLrW0eabvixQQylqKBfr0+wh1bfRa8FgkD+7mcqGZCfXy3mWG2LBudhQynWRtJwOAHfscDiMeDyu2eVKdHIzaeh2u+HxeHhDSf4n3r/H4+F2SNoEg0HEYjFNQ0nF6qXiy4Ynn6hGDUgvHKc6K8YYotEo/5mOoR1yqEEVHV38oModceca2SnF1QyxWIwfQ9jt9oyrJ8SevpyRayNFOyT7JNsihxaPsdvtfH293EGZRUMg3Zfl10UN5WNIQ7mTLxVfNrShpCJU6sWpByGxPB4P7HY7wuEwBgYGND0O1b1RVCkKnEgkEA6HEQ6HDQ/ZjzV6ReVifsfr9XINDx06pNHQ6/WisrKSr8kV85nxeByhUMg0Gtrtdo0dUkNotVo1dujz+TQaUl6O7NDMGpIvkx1SByHbIWlI51VWVmLSpEm6GpaKLxveUMrLwYDDkwxUK5lKpRAKhfh5NARyOBwao6VzxeGjGdDLLxK0uUAwGEQkEtHoRQ1ApokLs2lIyPdNtZLJZFKzKYPYAIgTYyJm0VD2ZVkH2Q7F1TkVFRUaXxbrLEvFlw0felM0pFduYbPZ4HQ6EYlE4PP5eC9FSeHa2lp+vJwHoSLVci8PEjsU2dmpkNdutyMSieDgwYN8GENRVE1NjSa3RrjdbjQ2NiISiZS9hoB22Cg6KjA+LHS5XIhGo+jv7+ca0mRkbW0tj55EOzSbhmRvenZot9t52VB/fz/PO8q+DKAkfblkGkogvcGjXigWi2FwcBDxeBzRaBQWi4Wv/9TD5XKhrq4OgUCg7OvXAK2Byr0xaRiNRnHo0CHE43HEYjGuoai/iMvlQm1trSlqAAFoOgvZDsnJo9EofD4f373carVyDfXqAqkRNYuGmYIe0Q5jsRi3Q9GXM0WipeLLhjeUYk8uviaG8YlEghewkoGKeQwxryQn4s2A3n2K+gHjGoqPKJDrAcWkORUJy9coZ0Sbk7+IZDKJWCyGeDyOeDyu0VCcqRXt0IwaZntNtEOa/NKb7S41Xza8PEjuhfSMNBaLYWxsjM8gUnE6zXpTGE+7KcsPMSpn9DSk18UoSdbQarXyRhGARkMq79C7bjlC9ykPG/U0HB0d5SkgssNMGtJEhpk0lIMeWUOaOBRXgGXSECgdXzY8ohQRG0sRWi1C4splBED6sN3sZNMwHo/zSTI9DeXSDjMgd9R6ULSTj4aiLZpFQz0y2SHZ4pfFlw1tKMWSIKfTqTFWsWeiEoFIJIJgMAiLxYJwOKwxRDkK1Rs6lSNynZk4lBY1jMfjfMYxGAzCarUiFArl1NAMiM4raig7KpX7RCIRjI2NwWazZdTQbGTyZVnDWCymsUOLxZKXHRqtq+ERpZyL0NsQg/JqZKDA4eJpMbQ3m4MTeqtI5F45mUwiGo0iEonwXaJFDWXMpiU5OqGniaghOTlpSJhFLz307FBG1FD2ZT1KRU9DG0px5QKVq9Dv4vAvkUggGAwiEAhgYGAAqVQqbUt4aigzzaCXK7KGNByU7z0ajWJsbIxrSEvHRDJpWO7Qqhpxj0m9td7RaBSjo6MZNZRHRJSXy9V4lAN6dkivHamGpejLhjaUNItI5SoOh0OTsyBhIpEI/H4/hoaG8PnnnyMej2N4eJhfR+x1xJC/3I0TgCZnBoxvfiGusSVCoRB8Ph/8fj96enqQTCY1GoqIw3czOHkqlUIsFkM0GgVjjBeXy/laWcNEIsE1JKcmB6ffxRncckbPDvXyj6KGX3zxBVKpFIaGhgBoNRQ7m1LQz/Cht97OIXrH0DKmcDjMzyFkYQH9J8CVK/lqGIlEEA6HeU4om4biiohy15CW3OmtJ5ZLW0hDWlInayhf1wz6EXp5XiCzhrRC58tgh4Y2lPT86aqqKjQ0NKQlckng0dFR7N27F8PDw3ydKC0lozCfvotLHsUJn3KFNKysrER9fT03Mlp3SwSDQRw8eBB+vx+Dg4MAoNGQNucVIyEy5nLXMJFIIBAIYGxsDPX19Zp13qKTBwIBHDhwQKNhJBIBAI3u4sRGNBrlG2mUM/F4HKOjoxgZGUF9fT0AaOyQdAwGg+jr6+MaMsY0GtKae3FzDRp1mnroTYldMUSXSwXE/FooFOJ1fnQsTQCJvZC4PVM5k0wmEYlEEIlEeM0ZoM31UP1aMBhEMBhEOBxO0xCAxqBFDcvdyUkf2mFfLo+SawBJQ6pFJagAna5ZKjvfTATky9FoVPehYQB4LSoFMXp2SPWUoh2ShkZiaEOZSCQwNjbGi3gpIpQhp80Uessz3slkkn8Y5T7sSSQSGB0d5TvYyKVVhOi0eoirnWiH6kAggEAgoBkalSOhUAh9fX0AgObmZjQ2NvKOV+RIJhUYYwiFQujv78fAwADfJrBcicfjGBoagtvt5nMOmdJAR5L3jkajGBoagt/vN1RDw4fefr8fXq+XF/BSVCM/N5kcXc5/AOmlLDRLHgqFDO+JjjWxWAzDw8PweDx8tZK4LyIhdjZ6GhJk3DSUotU85UwkEkFvby9isRimT5+u2d9UtMN8co5iJETDzIMHD5Z9Q0nr4GkDFr3Za0C7qCGbL9OxtD0g7fVgFIY+yEMOq8WaSBFK+IqzuTRjLpYjiOfp7ahTjoidCKC/MQEdJ2tI9anio1YJyhfRMtFyhxo/q9UKh8OhO7LJpCGtXQa0s952ux1Op9MUz8wBDjeC5I+ZRjZiSky2Q0DbDtBmGg6Hw7wF5+KKCFlc0XGpmj8UCvEVJ6FQCH6/X3ets8PhQEVFBbxer67Blxu0tJNKrGjoIxqqmBsiDcPhMIaHh3nSnbSiyHTSpEmmeAojcPiZQl6vF1VVVQiFQmlRIOV5RQ0DgQB8Pp9mMoca2urqakyZMgUA+LOuyxkaTjscDrjdbt3Im+YbgsEgt7NwOIyhoSHuw3a7nbcFXq+XPxs903PrJwLDuzlxKCPXoBGUSBeT4lRmQOG4vLEGiV3u0ZA8HMxUlkFF1eLkDGkor9Ch/JyZIkrqmOmeM0XlooZkl6IdikNOu92ueRaPGRDz3Hro2SFtuaanofjwPCPt0NBPL5VK8VlveaZMXqdMa2ypURgaGsLu3bvR39/PHZs+BCoaJoMvZ+RZb0C7P6WYtxVr10jDnp4evkJC3MafMcajzHLXEDi8a404BJdTQaRhNBrlObbh4WHs2bMHPp8PAPjqMvG51maIyOmeZTvMpKFoh8PDw9wOAfAdhWgGnTQ00g4N9QCxPEh+bKpekSqtnGCMwe/3o7e3l9diiQ1lKpUyTY6SSi7IeQH9pYgU+VA9WiYNgcNPGMxUhVBuUOcgl0LJHbZcF8kYw8jICPbv369ZoUOdl1jJUe6dDZXxiXZI6PmyrGFvby+Ghoa4HdIcBPmy0VvVlcxkDvXotA+ixWLhOUy9cgLKdVBRud5wXfxermTSkIyKlpUdrYblrh9weEKBtKLIkuxQrLGU9aDNHSh/rreyxCwaynYoakhLHDNpGAgE+AIIMQoVl9GatuCcht4UVdKyMIpiyEDlsgDqhfr6+uDxeABAEz2WwiL6iYKiaIoqRQ3FaFPeoYUiyn379sHtdqetRBGXjZV7LWoymdQU48t2SLrKkzuMMYyOjmL//v18soYiSBohmUVDMY0m+jKlHWg0qGeHFFG6XC5uh2KnTQ2waZcwiqsX9CYk9DYmIGgmnD4AOk9cSWGGhlLWULxvsUfOpKGYcyPKfZgoI68nFmv8xEhJrsml4WYoFNIsscs2mVGukIbyCFD05Wx2SFUGpaqh4Q0lreOUHZWMkGbE5POGh4exd+9e/gQ8IH2LpnLPTwLaqFzMsckaylF5KpWC3+/Hnj17UFtbq5nEoOS5XsFwOSLuHiQODSnvTTYq5zDFqLyurk7z2AJ5Qs0MGtJstqwh+XkmO6TJnJqamrR6VMpP6lXDTCSGz3qLYbXcC1HyXM6v0fKwwcFBjI2N6a7NFa9TztBEjfiIDACaiZlM+bVgMIihoSGuoTxLaabOhnJrmexQLIgWCYfDGBwcxMjIiCZHKepnBg317FBceUMa6uXKZTsE0ncRMlrDkokoxeWJorjihqoi4jN09IbeZmksabhDGgLaJZ3U2ehpKCbeZeMtJSM91pCT06QXoNVQ1ElGbGAJUTOzaKhnh0B+nQ1N9OhVHQCloaHh5UGU+JWHjcDhHJreZA7VY1FuSG4kjQ7VJ4pUKsXr0kQDpWGfXBBNUO6NhuaZGkozFJyLZWqiI5P9kIZ6OUq53EVEXvFUztC2fKFQKC0VBhz2ZbmhFDWkHKU4kikVDQ1vSbJN/ev11oSYgJcnMMwE3bfekBHIT0NxhlY+3yzo6SNGQ7k01OtozIaeD4uTOZmicnnCVrbDUpiUNbyhJMQokHrycDiMsbEx3c1jSXi93Jw421vu6A1PxMmDUCiE0dHRjBrSUEnvwVp6RdjliJhmEL+LdjgyMpJRQzE3J6ePzLIfJZC+ixctQQTG85B+v193M23Zl+lc0Q6N1rBkGkpCNDKa8dbLa1DInimSEo8zG/lqKJfDiMl3wFz1qHIO7Eg0zOTIZtJPD1lDObVB6Pmy/L7RQY+hDaXFYuG7tsgF41RuICbYRcReSJw1N8tMLUEa0o41ckNHk16ZNKSyDb2o3CwObrVa+XZoestexTpVGbF20OwaOhwOXQ3FWtR8fFnedhEwPpVhaENptVr5ziBispYaPXmvPxGaRaOZNHmtuFkgJ5c1FAuAs1UO0KodedhTSvmhYw3ZITk5QdFgthwlDb3F0hd56G4WDd1uN9xut6Z+lDTMliuXfVm2w1LwZ8MjSr2SHiD7OmNRfL2yDDOVBwFHVzsqr+jRu55ZKgeAzBqSDWayR9JQntQRc8dm0DBT2oLIpJ+eL8vlfqYvDwLSa6REw8yGWJelV5Zht9sN3xV5IsjU0eST06Ght7z8jpLwTqcTDoej7B1dbCBlDeXljSJ6pS3idaisxegtwiYS2Rbz2dBCjCj1fNn0O5zLHIkQehGlfK1ybyT10IuGMiFGQ/I15Nlzs6A3sslGJg3pWmbY6q9QyJfpZ6KU7NDwhlKvHABAzkkZvb0B6TqEGXJD4syqqGE+Qxax4FyvtIWuX+6QfvLyT/o5m7OSHcpb2ZkpxwtoR4KyVrlyjbQYQm9kQ9c0WkfDG0oAug6aaThE0JA7WyGw0eJONJm0ykfDbPkjMyB2Nnr5tkwdN0WTmfb8pGubgUwBS6b0ECFqqMqDdBDLBkSB803e6u2ZaLaJnEwa5jtjqLe9mNkoxA7FSRzRoZUdHp2GperLhu8eJG6KAWi3V8omjrjjC33p5TfKHeqJ5c0I8nkUhtJwHL1603ztUCzD0ttgxCwair5cqIalaIeGR5R6WzKJ5COQvAIi32iqHJDLUmTy1UFPQ/F7OSNHhfI9F6KhWewQOLw5bzlqaHhDSRENkD5kzDdsFzcEpUjK4XCYoixD7I2B9EkxmnnNpoO4Cgowp4Z6dkiQptl0kO2QIikzaSjOXhdDw1Kyw5JoKOUwWyTX7LdYOE3nl8KOyBOJXHQv/pxvZyPml8ymoZ4dEvlG1qIdipNCSsOj05COLxU7NLyhlDeWlYXONcEg794CHC44N8NjQvVyQ4Q8pMx2DcrRiQ0lrR8vdw317FB8T/yeCbJDynOShmaxQznPq1dilq+GpejLJbFxr7wpqjiDmMvJGWNpzwYX1z+XO/lomOsJdqSh+JAxWpnjcrmO+T0YTT4a5tq2jzGW9qA20tAMdkgddqbORs496lHKvmx4HWWukpZcvZDFYuHLFcUHEYk/mwm9kooj0VDcj9FMGmaaPDgSDcVcmmiHRkdDRiCngHJNOtJxdrtdV0Oj7dDQhpKMiwzM4XDw92w2Gx8S6u18Q7hcLkyePBlNTU3weDyw2+1wOp18J5NyN1AamtCXqKHVatU8eD4Tsob0mXg8Hng8nrLXUHTQYmjo9Xq5HXq9XrhcrrLXENA+wZOe502v5+vLDQ0NmDx5MioqKkrKlw3fPQhIn7Chn7OtoyVsNhvcbjd3cOp5KK9hBvQmbArRkGbKS6Ennyj0Vt8crYYUEZlpUwwxAtfTMJ/d8vU0LBVfNjSijEQi8Pl8iMfj2LFjByoqKuByueDxeBAIBLB9+3b09vait7c3Y35oaGgI77//Pvbu3YuWlhbU1NSgv78fu3fvxv79++H3+yf2piaYaDSK/v5+xGIx7Ny5syAN9+3bh+bmZtTU1GBgYABffPEF+vr6MDQ0NMF3NbFEo1EMDAwUxQ737duHlpYWVFdXY2BgALt37zaFhsXy5S1btqC3tzdNQ6N92fCGsq+vD36/H//5z38QjUZRVVWF+vp6BAIBbnh9fX0ZxfX5fNi0aRMaGhrQ1dWFKVOm4NNPP8WWLVswODiIwcHBCb6riSUcDnMNt27dikgkwjUcGxvjnciBAweyavjWW2+hoaEBnZ2dptMwEongwIEDGBkZSbPDQjT87LPPTKWh6Mtkhw0NDQgEAtiyZQv27t2b05f//e9/o6GhAR0dHSWloeHjAXFmVt4OPtvO0oS8fEy+lhnWLheqIZV2KA2VHRaC3lJEWcNcs97ijvylpKGFmeETVCgUigIwPKJUKBSKUkc1lAqFQpED1VAqFApFDlRDqVAoFDlQDaVCoVDkQDWUCoVCkQPVUCoUCkUOVEOpUCgUOVANpUKhUOTg/wFs2UydQEdXHwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK8AAAB2CAYAAAC+o8OSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkK0lEQVR4nO19a2wcV/n+s7PX2Yvt3cRxrnYSx+TmxE6aplSVCo36IQSomqQoStIWVQotFKpKlAISFBD0Ay0gCrRQKKAgaKuoVAoRDSVUSSpBi0oJCQmhEJI6VzvxbW3v/Xb+H/x7j989PrO7iXftXf33kSzvzs6cOfPMO+/tvOeMTQghUEcdNQhjpjtQRx03irrw1lGzqAtvHTWLuvDWUbOoC28dNYu68NZRs6gLbx01i7rw1lGzqAtvHTWLsgtvd3c3xsbGtL9t2LABR48eLdrGc889hzVr1qC7uxudnZ344Q9/KH/L5XJ45JFH0N7ejmXLluHZZ5+Vv129ehXbtm3D2rVrsXLlSjzzzDN57b755pu4+eabsXr1aqxatQpvv/02ACAej+P+++9HZ2cnOjs7cdddd6G/v//6L75CmElOAeDVV1/FmjVrJD89PT0AgG984xtobm5Gd3c3uru7sXv3bnlMsXtRFohpxE033SSOHDlSdL9wOCw/j4yMiEWLFoljx44JIYT41a9+JTZt2iQymYwYHBwUra2t4tSpU0IIIXbt2iW+8pWvCCGEiEQioqurS7zzzjtCCCEuX74s2traxOnTp4UQQiQSCTE8PCyEEOL73/++2L59u8jlckIIIfbs2SMef/zxslxzpVFpTo8dOyaWL18uLl++LIQQYnR0VESjUSGEEF//+tfFo48+qj1foXtRLpRd89psNoTDYQDAW2+9JZ/0Bx54AJlMpqQ2Ghsb5edoNIp0Oi2/79u3D5/61Kdgt9sRCoWwY8cOvPzyywCAEydOYMuWLQAAn8+H22+/Hb/+9a8BAD/+8Y+xa9curFy5EgDgdrvR1NQk+xyLxZBOp5HJZBCJRLBw4cIp8VBOzCSn3/ve9/D5z38e8+fPBwAEAgF4vd6i5yt0L8qFivm8qVQKO3bswHe/+12cOnUKO3fuxIkTJ+Tvzz//PL72ta9ZHv/b3/4Wq1evxuLFi/GFL3wB69atAwBcuHABbW1tcr/FixfjwoULAICbbroJL730EnK5HPr7+/HHP/5RmrjTp08jHo/jzjvvRHd3Nx555BFEo1EAwEMPPYRAIIA5c+agpaUFIyMj+NznPlduSqaMmeD09OnTuHDhAj70oQ9h3bp1eOKJJ5DNZuW+r7zyCrq6urBp0yYcOXJEbi90L8qGsupxIQQAMTw8LE6cOCEWL16c99vSpUtLMnEc77//vuju7hbvvfeeEEKIzs5O8dZbb8nfn3vuOXHfffcJIYTo7+8Xn/zkJ8XatWvFnXfeKR588EGxdetWIYQQH//4x8X69evF0NCQSKVSYvfu3eKxxx4TQgjxu9/9Ttxzzz0iHo+LZDIpdu7cKU1eNWAmOV2zZo3YsmWLiMViIhKJiE2bNokf/ehHQgghent7RSqVEkII8ec//1k0NzeLnp4eIUThe1EuTGu2wWazXfcxixcvxi233ILf//73AIDW1lacP39e/t7T04PW1lYAwOzZs7F3716cOHECf/rTn2Cz2bB69Wp53Ec/+lEEg0E4nU7s3LkTf/3rXwEAP/vZz7B161Z4PB64XC7s3r07T4tUMyrNaWtrK7Zv3w7TNOHz+bBt2zbJ29y5c+F0OgEAt912G9atW4d3330XQOF7US5UTHhXrFiBTCYjheCNN97A2bNnSzr29OnT8nN/fz8OHz6MtWvXAgA+8YlP4IUXXkA2m8XQ0BD27duHHTt2AAAGBwelL/ePf/wD+/fvx8MPPwwA2LVrF44cOYJkMgkA+MMf/oCuri4AwNKlS3Ho0CEIISCEwGuvvYbOzs4ysFBezASnu3btwqFDh5DL5ZDJZHDo0CHJ26VLl2SbZ86cwfHjx7FmzRoAhe9F2VBWPS4mTJwQQvzlL38RXV1dorOzUzzwwAOiq6tLmrif/OQn4oknntC28eCDD4qVK1eKrq4usXbtWvHcc8/J3zKZjHj44YfFkiVLxNKlS8Uzzzwjfzt48KBYtmyZWLFihbj55pvFm2++mdfu008/LVauXCk6OzvFjh07ZD8HBwfF9u3bxapVq8SqVavEtm3bRH9/f/lImSJmktNsNisee+wxsWLFCrF69Wrx6U9/WiSTSSGEEPfff79YvXq16OrqEuvXrxevvPKKPK7YvSgHbELUZ1LUUZuoj7DVUbOoC28dNYu68NZRs6i48L777rv4yEc+giVLluCmm27CunXr8OSTT8rfP/zhD2P//v3X1WY4HMa9996Lzs5OrF27Fp2dnXjppZcAAHv37sXdd99t2ReKonU4evQoXn/99evqy0ygzuk4HBVp9f9w8uRJbN68GXv37sXHPvYxAMDQ0BC+/e1vT6ndr371q2hubsbJkydhs9kwNjaGvr6+osdt2LAB+/bt0/6WyWRw9OhRhMNhbN68eUr9qyTqnE6gopr3qaeewp49eyTJABAKhfD0009Pqd1Lly5h3rx5MkEfCATQ0dEhf49EIti5cyfWrFmDDRs24Ny5cwDGtUB3dzeA8UR8U1MTvvSlL2H9+vV49tln8fzzz+PFF19Ed3c3vvnNb06pj5VCndMJVFTzHjt2DNu3b7+hYw8cOIADBw7g5z//+aTfHn30Udxzzz3Yt28fbr31VmzevDnvZv7tb3/D8ePHsWTJEnz5y1/GU089hZ/+9KeT2hkZGcHq1avx1FNPARg3neFwuDLle2VCndMJTGvA9vjjj6O7uxsLFizAv/71r4L73nXXXVqSAeCOO+7AhQsX8K1vfQtNTU146KGH8NnPflb+fuutt2LJkiXys9UolNPpxL333nuDV1Md+P+Z04oK77p16/DOO+/I79/5zndw/PhxOJ3OvJK8G4HP58OWLVvw5JNP4tVXX80rt/N4PPKz3W63LBv0er0wjNpKuNQ5nUBFz/LFL34RL7zwAg4ePCi3pVKpkmtQrXDo0CEMDw/L73//+9/R3t4+pTYBoKGhASMjI1Nup5KoczqBigpvV1cXDh48iB/84AdYsmQJNm7ciDvuuAOf+cxn8IEPfEDut2fPHixcuFD+vf322zhw4AD27NmjbffkyZO4/fbbZVrnwIED+M1vfjPl/m7duhXHjx+v6oCtzukE6rUNddQsasvhq6MOhrrw1lGzqAtvHTWLuvDWUbOoC28dNYu68NZRs6gLbx01i5ILc25kinWpoOFE8X+zd+l8pmnivvvuw9133w273T7puGQyiXA4jEQigUOHDuHAgQNydjC1Qf3mbZcbN9ruTHK6devWPE6Jq3Q6jXA4jHg8jtdffx379++vWk4rWlWmgl94LpeT26mj9N/v92Pu3LloampCe3u7XHopkUggl8tJ0gKBAEKhELLZLN577z00NzcjFothbGwM6XQ6jwB+Azn5/H+tQr0e/plzOn/+fDQ0NGDZsmVYtGgRcrkcUqlU3go4Qgg0NTUhnU6jtbW1qjmdduHVaQT1Qv1+P1asWIHm5mZ0dHSgra0NmUwG4XAYqVQKQgjkcjk4nU40NDTAMAycOHFCLtWUTCZlkYqOxFL6UCvgnNKDDeg5Xb58OebMmYOOjg60trZKTkkoOac2mw3Hjx+vak6nVXh1ZsZms8HhcMAwDPh8Png8HsyZMwfNzc2YPXs2TNOU+xqGAYfDIYm22+0wDAM2mw0NDQ1YsGAB/H4/AGBsbAzJZFJq60wmI7V9rQqqFQpx6vV6YZqmXIdt1qxZkzg1DEO2QUJYC5yWXNtQLv9MNS9utxsNDQ0wTRNdXV1ob29HMBjE0qVL4ff70dbWhgULFgAAstmsFFyC3W6HEAI9PT04c+YMxsbGcP78eYyMjODixYs4c+YMEokEhoaGEI/HtX2YKqbT5y2l75zTtWvXSk7b29vR0NCAtrY2zJ8/H7lcDslkUroNQggYhgGXywWbzYazZ8/if//7HyKRCHp6eiZxOjw8XJDTqfBcdT4vkO8nAePFy6ZpSp+so6NDPvGmacI0TWQyGelXkaagtkigGxoa0N7ejmg0CrvdLs1hX18fbDYbnE4nEonEdF/utII4dTgcME0TXq8X8+bNw7Jly9DY2IiFCxdKTZzNZqWbYbPZ5H9gIh5pamrC0qVLEY1GYRhGHqeGYSASicwop9MqvB6PB36/H263G/PmzUMwGJTBmcfjQUdHBxYsWACn0ykLnqPRKDKZDIQQ8n8ul0Mul8szj7lcDqZpwm63Y+HChQiFQvD5fGhubkYikUB/fz+i0SgSiQTGxsaQSCRw8eJFDA4OTicFZQHXSh6PB4FAAC6XC/PmzZPXTZwuW7YM8+fPh8vlgmEYcv3hVCqFXC6HeDwuBRkYt2QejweGYSCbzcI0TRiGgYULF2LWrFnw+/2YM2fOJE6j0SiSySR6enomcVpuSyfbnU63IRgMYsGCBWhoaMAtt9yCjo4ONDU1YcGCBXC73XC5XHA4HFJoSUjJv4rH48hkMshms8hms3A4HPD5fHA6nQgEAnIBZboZmUwGqVQK6XRamrihoSFcuXIF4XAYhw8fxr///W8Aky0C31YMM5kqI04bGxvxwQ9+EB0dHWhsbJScOhwOyWksFpPaNpfLIZ1OY3R0dFLAFggE4HQ64ff7EQgEpCCTpUun00ilUhgaGkIsFkM4HEZvby/C4TDeeOONvEX96Dp1WaZCqAq3wTAM+P1+eDwehEIhzJ8/X6a4AoEAfD4fXC4XnE5n3vQRh8MhBRcYJyAajSKbzUoBJs1Lx1Pekn6jAI/ym4ZhIJ1OIxQKwW63o6WlBaOjo4jH4wiHw3kpo2qGjtOGhgaEQiE0NDRoOSWuKGjmKUceS9jt9jxOaQlTug+GYcDpdMJms8kpP+Q7E6cjIyOIx+MYGRmZlIYrJyouvF6vF7fddhva29sxe/ZstLW1we12IxAIwOPxyCX1Y7GYdAFcLhf8fr80YW63WwoZRbjZbFb6dI2NjfLJJrOYTCaRyWSkq2Gz2eDxeNDS0oKWlhak02nMnTsXQ0NDOHXqFF577TWMjo7WRCZCxym5ZJzTeDwOu90Ou90uNanT6ZSCGYlEpDYm7etyuTB//nxpxWjgIhaLIZFISOUhhIDdbofX64XX65WctrS0YHBwcBKnleC14sLrcrmwaNEirFq1Cs3NzVi8eDEcDod8/wMRQxqAk01C7PP5pFYgUGQcCARkUj2dTkvBpnldlJskLeR2u+Hz+SCEgN/vRzweRywWg8vlqjQVZYMVp3TNmUwGiUQCQgg4HA7JKblmlJIEMMni2e12LafkglH7NptNunlutxumaSKXy8Hn80llVGlOKya8wWAQLS0tCIVCWLRokQwg4vE4bDabdAnIrFDEm81mkUwmMTw8DIfDIfOK8XgcPp8vT/BN00QikUA4HJb70Y0jDU1al8xeKpWSfTQMA6ZpYu7cueju7sbAwAAuXbqEgYGBStEyJQSDQcyZMwezZs3Sckq+Ph+soOum1JbD4UAikYDX65Wc2u12GUd4PB4tp5RS4wMQdO94uo1ctJaWFnR1dWFwcLBinFYsYFuxYgU2btyIWbNm4bbbbsPSpUsn+UE0wMBTXwDkkw6Mjwx5vV75hJOQ0w0iQqPRqHxBCgUIZK7oHCTEXGubpolLly7hxIkTGBoawuHDh/NeUlIKpitgW758OTZu3IjZs2dbcgpADt7wvnFFQdaMLJw6OkYPAefUbrfncU8c823EqcfjkZwODg7i8OHD+Oc//3ld1zqjAZvD4UAgEEAgEIDb7c67eK4N+eiOSrQQAul0GslkErlcTkbOPOjg7gcJvGEYkwp51DF5/p38wVQqJQOUagT1k9KNOk4B/RCtjlNyKagN2o/qHYhTnmPn7fJz83NSXt3n8yGZTFaM04oJLw06hEIhaarIpyUS6GL5mgMqCfF4HIlEAna7HbFYTOYquVtAx3Fks9k8X46Tzwc6qE8NDQ3IZrNV7fv6/X4sWrQIwWAwj1MKdPlDzc04kJ+i4sGc2+2WqTCeDiPh5Mdb1TToOHU4HGhsbEQul4Pb7a4IHxUTXnpJn9/vlwLHNS0fEy9UzEFPPw1aULqLfFc+UkcpHAKdj+9H7gNpfkqreTwemKYJh2PaBx1LhsfjQVNTExoaGiQfdI08jgCQ5+9zzQpMLFJit9uRTqfl/VELb1wuV57g6YZ+gYl6CH5vKZ5IJBIV47Rid8rpdMLr9UrfiucJudvA843A5MEC7q/ybeQ+8G2FwH1r/pn6RJF4NS//5HA4ZGqK8qsA8sw5kB9MqbxRiotrS54T5+1wLrgiIHC/Vy2LpGyEy+XS1mKXhY+KtIpxzRsMBmXJIpHCq8LoiVeLbbhwkU/G/2gbB90EFZRiUx8Cbg7tdjtM06yof1YOOJ1ONDY2Ss1LnNJn7hqp7pdu5NCKE4IqrKoA8+N5WSa5bF6vF6lUqvY0Ly+i4WbLSlOqpo1rVb6N738jfVKP5QKgeyiqCdRH0mRWnBYb4rba73quXdXoM8FpRYRXjXq5eSPiuYYgt4K7EDqXgJfuqSkw9Tx0nKp1eR/4CBwNilSr22BlVXigxH1ONaXI2+C/E6e82IlnIFT3g7I+PANBLgcA6TtPB6cVj050wshNDAkSF3h+rK4d+q574olgbgpV00hmVgghg0BKw1Wz5lX9SuKC88mvl/bj9SEqVOHlDwMdz9tS3Thql3NKbkNNaV6bzSYrmXw+nyy8icfjSKVSeW4EMFF8Q1VPauDB2+XbrdI2KohAOq/uxtAN8Xq9yGQy8Hq98Hg8eWP4MwkrTmOxGNLp9CQBAvIHKbhG1bWtfi7kctA5SuGUfN5sNiuHo3kNRTlQVuGlfCmfdmKaJnp7e2WOFsg352ReDMOQNaa0D/1XieV5zGL9oVE5fk5uUrPZLJxOJ4LBIFwuF4LBIBobG5FMJjE2NjbjlWbEqdfrzeP0ypUriMVikywKcex2u/Mq8FTorCDxolpK2o/OQTMtdJyS5vV6vQiFQjJwb2pqkrXU5eK07JrX4XDA6XTm/VcDNqs/+p23xz+rQ57qufln9U/N93JTyPtNf1NdrLlcoL7x/qkja7Sfer2qr6trG4B2X6tji3HKBV+VhXJzWnbhdblc8Hg8eSNVapbAimg1paIb4qTvVpqZawPub/H9eI6U2qNzuN1uOeFwdHR0xjUv55TnYYspAxIsp9OZN1OCjlXdMGqLoIsTyA3TPQzEqep2CCHg8Xjg8/kAYFIdxlRQEc1LQ47FnniVbJ4C4pFyIS2gG0HjRNM2fowa+PD/LpcLXq83z5+cSaicAqVZHp4nB/KzO7w6zEqz0jH0n/u5HLpcshpcUxkmxTXlQkXdBnXwwTAM6d/q3AT+nT+dqonXZR104A8Bv4kUKOqIJJ9OHWqeKaic8iFgoDinVoLOhY3vp2Zx1NFNXRqTc6rTvDSCWe7BirILL5kIp9OZNwcNmJjVSmPqqvkoJiz8idaZT3U/XrsATCTNKfKNRCKTNLBpmmhsbJTZkZmGzWaTBfTEKS+cKcSpyhGHqsW5UOpcMQ4upDRtyOv1Sk6pPbrvpmkiEAggkUhUt+alp1DVkARVQ+jIKQXF0i2qkNP5qA/8O9+f17hWi+bl+dJSOS0EK59fl2FQwc+t+sXcXeGoFKdlF14aVVFNHNUxjI6O5l0ML5FUC6p1gRqdRzcmr27jeWU6D033Jn+aTBmVBJIZpnTQTIM4JbOrxgCZTAZjY2NSaXDfVOWUeCFTDmCSqbdy43T9ovuXy+XkXDg+AldpTivi81IlkTr7l6a00zwpl8slfU+eZ6T9uTbhAZxOeHVaQBViOg8tV8TLCWmomPtn1SK8KqfcJKfTaUQiEdjtdjnBkoSKxwhWGpk44dZIJ8BWrgf1iRQC55SEl/Lt5ea07MPD3HSQlqCAI5VKIRKJSAHxer3a4zlUn9bqv+5YXb+SySSi0ajsFxVyE7gGqxao5pj3nYTXMMZnXZumWVB76gRRFWCr46z6Rfd1ujktu/DydAoFFmQuRkZG8J///Ac22/gkvVAoBJvNlud/EXRCrPOnrHw91TekwGJoaAg9PT0AgIULFyIYDMpAiPrq8/nyUlMzDc4pFZFTvXRvby/++9//ymA5GAzmcaq6VbSNuNH5/wQrbU3byRePRCJ4//33AQCLFi1CKBSC0+mUFoKmBJWb04prXnqiHQ4HstksRkdHAUyexavW8+rapTZ1GkGnidXjuY9In7mWoAeE54irAZxTXi+rclro3cPFzHUhzq+HU/J5+T2tFKcVy/MCmGSeM5kM+vr65G9U+MIdfLU9wvUKLfd1+eDH6Ogoenp6YBgGWltb4Xa75UNGDxr5l9Xi81KwA0CuceFwOGQB0bVr1wBALpEFjA8MkM+ptqfGE4XOzY8BJlwA/sCPjo7i/PnzMAwDixcvzhtdrSSnFQvYhBAyr0fFOlx4I5FInvCS78TbUtvWCXAh35dnGYBxIkl47XY7Nm7cCLfbLRfU4JFxtQkvzSUjTt1uNzweDzKZDK5duwYhBGKxmBRWugZajBuYnPqycgv47+p+vKoMGOeUlpWlmILuNa3nUClOK5bnpVQNrxEVQshJg8lkEslkMi+dxZ9mnQ9rFfXy8+v6w9ulBfvI5HL/XM1mVAO4b8kFBpgQRlrVRsdpIZNf6vn5Zx2ntOqROsrGayp0Q8tTRcVG2Ej7AhNJaiHGFwehFQb7+/vh9/sxe/ZsGIYh0y2qaSMUGgrWCTs98ST0udz4QhpXr16V2Q9yKVKplHxxiBotzyRIy6qckntGo1qZTAZDQ0MYGBiAz+fDrFmzYBiGdDNUTnXFOKpi0N0HcgGAidx4JBLB1atX4XK55MNDDxMtO8WnL5ULFRmkUNe/Im0MQC45Sks4UQRaLAfIA7br2YfnHEnzxmIxuN3uvPSQWjNQDS4DgR5+VYhIGGhNMeKU/EtuposV81hB3UfNfFCBObks3JrxWuJiluBGULGSSAra6KkjMz02NoZ4PI6BgQFcvXoVhmHIlSP5EKLuQq1uBN+fD3XyG5xIJJBOpxGPx6WGB5BXc0wPn9frrZr5bDabTfq3pHn5MHY2m8XIyAgSiQSuXbuG3t5eAJDBKHGqG9Sh9gH95FadpgYgByZoQcNkMqnllM7pdDpl/6tWePngg+o20GjayMiINDNXrlzJW4eMO/WFcrrqECn/z3+nAJKWLqIVISkqJ8HgfiI9fDQDY6bBBx/IpyThpYxCOBxGJBJBX18fQqGQLNRROeUZg1IsGAmfWifCNWsqlZIro1txWhPCC+gzAOoTTP4Q+b8UlFyvWbHSzDwzwQNHPltYNwwNTJjjahBcgs4SWXFK8wXLxam6jSsWchnIJbMa2idOy23Jym4X1eIZ6jR9t9nGE9nDw8NyKXjSLvzi+P4qVHL4vjy3S2k7WiqV3kXBLQJfbI40NWmsahFgVeupf+TTDw8Py1cWkGYuNORL39WHQ6eAyIfmdRY0Jy0ej2s5Vd2Gqq9tAPJTXdwE8d/5SzjUJ/NGL1An0Pzm0gRPK63LH7hq074EVaNxV4qsGWVN1PSU6loVuz6dBdVxymdZ6zjli6VUvfDqOsiFhjQJX3Jf1bK6z4VMGg/Y6Bzk6/JInA+E6NpRR5CqBTrzry4BwBdusRIW7lLxbeo+6me6Z+R+FeOUB4iVchsq4vNagRPNBwWs/EwukNzXsgo2VM2Sy+VkNByJROR7w7hlULWT6kpUA6yEif8H8tfgVTlV21AHgoq5ZwTStqlUCrFYzJJTDlIINaF5Veiq/wttvxEU0h68qL3QOQvdyGqEFadWmMp1qcdyTVzKsZXgtCIBmyogfBsXJEpq6wYIdH/0m9V5dcfzIJEPV5JbQYl0XUBULdDV36r8AhOvQ1Cjfw6dH1tIsKwCYwCSP64U+DY6jjRvuSdglv0OWS3FpJLN/TP+VwqR1IbuQeH7qYKve6jU/lar9i2VU/pcKB1Y6jVa7cfdOVXx6LaVUmtxIyi78KojOaoAcfBCmEqYFivh5udXl7BX03vVgFL5BEpbBlbnL18PinHK76t6DeVE2YW3EMn8MzfjumwDUFi7lgorDaSaOJ4iq+ZsQzHBLVUhTJVPK07JdaH7yhVB1QtvIaiE8ZSZuiRRKccXQilEqQ9QKQIy09A94Byk+XScTvWaSuGFWzN+XCUsWVk9aNJmqkDQbxykIZLJJIaGhgCMv4yuWHBWTIDV49WUGO8PJfVp+gwFFtW0Yg4wUXpYLGVIyoBeGAhM5lTdvxCsXJBinMZiMTlETXxmMpmyc1r2VBkPHHQBlop0Oo1oNAqPx5M3B0uX6tIFdDr/TRdRA5hENFX784Jp7jZUg/Cqab5CnNI+NKPY7XZbzmujtnibxdJsOv4LccozDbx6r1wou/DqUiVW6TMr88K/W5lzNV1kFRHTdp3vRVVR1Y5CnHJwy8dhFX+o20vNPtBnPopHv9ELCqk/umPLhbK7DfwFy9ThUnOsXHitTL/6MOhSc+qxXKNSfS9VYdH0lWp9CxBpUuKUb+cCTJzSlKBCnPLvqkLgbdNnK6HnAS4AuaBLJBKR7kIlUXbhVR32QiapWCK9VJSyvy5ooMAGgPTHqsFV4OBBrZWPS6BgTReklXpdpcQU9F83rE9KaTp4LLvwUnEyvVnR6mkm86JWetHv/OLJRdCtrM21q64/1BYvjyTtHY/HEYlEYJomPB6P1jeeaRBXVDdL12tlzUhDq9pXBXGqum60v+pb65QQzWrmiwBSEGyaply9p1IZnIr5vMU0L5k4q1WydRqAR9zUtvpaJUA/ykfTZvgaDjS7gtb14kJbLcIL5HNF18r9W7rWQu+gAPJrrXkgqGpq4qgQB7QfzVmk9qnajBYFrKQiKLvmVf1Q0nDZbFYucMehC7SsQNpCJ2A8y2HVjqrd+dviuZauJsGl6+LZBkqHkaa18vmtvquZBl2QfL19o+885inUh3Kg7JqXBIJmkeZyOYTDYTnXSl1DSw2urMA1At9G4G6JlQuhPlRk4vh8Ozq+mgSY3AY+25ne7TAyMnLdnJLg8gAY0OeNaX9g8gxgVdNzTml2Np+TWNX1vFYpMRJo3Tu4SgkQCvlualtcoxTbn/uNpZ5juqHmeWnbVDjlsLreUttQ91N98VLPdyOoiM9LppgI52YPmBywWWUdCKUKrU4T61JtBF7VpqaDqqm2gVuzUjhVJ5mqKOZm8O2cVzWW4EEwwapmuuoDNtIIao2nLh/L1wezMlsqivmxOpK5ybMq/uHHq2Z3psG1LK/T1XHKFUcxTgtZJ/Whp22cU3U0Uj3+erT/jWJaXiKorrVFN4SGEV0ulxzKpBvENYxVqketn9BNP6HzRSIRDA8Py+WP6HdeTcYXR6mWJU5ttolViIpxSpo3m83eEKdqDlcHntGJRCIYGhqaxCnnkzIS5P+WExV597DH45F5Puo43QTySWOxGBKJBFKpFPx+P5qamuSFc8Eu9BSrN4/2oyWk6HyZTAZXrlzBuXPn0NfXJ4WTp3r4ijS8rzMNm218/Te/3w+fzwev1yvXfSuVU1pelnLqqlWk86juFc8kkIal1GQ6ncalS5dw7tw59Pb2IpvN5r2p0+12yz8KDqt+0REO1TfjQkjbyczxsXs6VpeXJFiZNdqXzk2DJpFIBCMjI3nLEulMb7WDXxt9J+g4VYNnXWCqE2DOK+c0m83KBfSIU3qZCj9HzbkNqVQKPT098uXILpdLrhyYzWZx6dKlSfm/s2fP4he/+AVCoRCam5sRCoXyFswgjahLtXDho5tFL21Jp9MYHh5Gf38/IpEITp06hb6+PoTDYblfb28vzpw5g9HRUdlX0l79/f1V8f7hVCqF8+fPY2xsDOl0WgZJFJhdvHhxUj/PnTuHX/7yl5g1axbmzJmDYDAoLZFhGHkjiroYgP4om5HJZBCJRJBKpRAOhzEwMGDJaV9fn+SU+hqPx5FMJnHt2rWyclp24b18+TIGBgbk29T54nC9vb2TOt/T04MXX3wRpmli48aNWLlyJUzTlG9hb2pqQiAQyHMDePqIgj7y95LJJHp7exGNRnH27FmcPHkS0WgUAwMDiEajACaGUq9duwan04l4PI5AIAC3241oNIpEIoGBgYGqEd6LFy+iv79fCi8tsCeEwJUrV7ScvvzyyzBNExs2bMCqVavg8XjQ1NQEl8sl3wXCaxO4RieBJauVSCRw5coVRCIRnDt3DqdPn9Zymslk5FKn8XhcvoeCFEK5Oa1IPa/OXbAyJSRIvPJfTQEVOw/fj29XZyfrcpJ0DA9mpsvslQreL/LXC7k8VHBEbkMp94HOU+g+EY+FOFUzIdTnSnBqE9V0l+qo4zpQPZn4Ouq4TtSFt46aRV1466hZ1IW3jppFXXjrqFnUhbeOmkVdeOuoWdSFt46aRV1466hZ/D8OXe44Ro7dywAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -2741,9 +2503,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK8AAAB2CAYAAAC+o8OSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkK0lEQVR4nO19a2wcV/n+s7PX2Yvt3cRxrnYSx+TmxE6aplSVCo36IQSomqQoStIWVQotFKpKlAISFBD0Ay0gCrRQKKAgaKuoVAoRDSVUSSpBi0oJCQmhEJI6VzvxbW3v/Xb+H/x7j989PrO7iXftXf33kSzvzs6cOfPMO+/tvOeMTQghUEcdNQhjpjtQRx03irrw1lGzqAtvHTWLuvDWUbOoC28dNYu68NZRs6gLbx01i7rw1lGzqAtvHTWLsgtvd3c3xsbGtL9t2LABR48eLdrGc889hzVr1qC7uxudnZ344Q9/KH/L5XJ45JFH0N7ejmXLluHZZ5+Vv129ehXbtm3D2rVrsXLlSjzzzDN57b755pu4+eabsXr1aqxatQpvv/02ACAej+P+++9HZ2cnOjs7cdddd6G/v//6L75CmElOAeDVV1/FmjVrJD89PT0AgG984xtobm5Gd3c3uru7sXv3bnlMsXtRFohpxE033SSOHDlSdL9wOCw/j4yMiEWLFoljx44JIYT41a9+JTZt2iQymYwYHBwUra2t4tSpU0IIIXbt2iW+8pWvCCGEiEQioqurS7zzzjtCCCEuX74s2traxOnTp4UQQiQSCTE8PCyEEOL73/++2L59u8jlckIIIfbs2SMef/zxslxzpVFpTo8dOyaWL18uLl++LIQQYnR0VESjUSGEEF//+tfFo48+qj1foXtRLpRd89psNoTDYQDAW2+9JZ/0Bx54AJlMpqQ2Ghsb5edoNIp0Oi2/79u3D5/61Kdgt9sRCoWwY8cOvPzyywCAEydOYMuWLQAAn8+H22+/Hb/+9a8BAD/+8Y+xa9curFy5EgDgdrvR1NQk+xyLxZBOp5HJZBCJRLBw4cIp8VBOzCSn3/ve9/D5z38e8+fPBwAEAgF4vd6i5yt0L8qFivm8qVQKO3bswHe/+12cOnUKO3fuxIkTJ+Tvzz//PL72ta9ZHv/b3/4Wq1evxuLFi/GFL3wB69atAwBcuHABbW1tcr/FixfjwoULAICbbroJL730EnK5HPr7+/HHP/5RmrjTp08jHo/jzjvvRHd3Nx555BFEo1EAwEMPPYRAIIA5c+agpaUFIyMj+NznPlduSqaMmeD09OnTuHDhAj70oQ9h3bp1eOKJJ5DNZuW+r7zyCrq6urBp0yYcOXJEbi90L8qGsupxIQQAMTw8LE6cOCEWL16c99vSpUtLMnEc77//vuju7hbvvfeeEEKIzs5O8dZbb8nfn3vuOXHfffcJIYTo7+8Xn/zkJ8XatWvFnXfeKR588EGxdetWIYQQH//4x8X69evF0NCQSKVSYvfu3eKxxx4TQgjxu9/9Ttxzzz0iHo+LZDIpdu7cKU1eNWAmOV2zZo3YsmWLiMViIhKJiE2bNokf/ehHQgghent7RSqVEkII8ec//1k0NzeLnp4eIUThe1EuTGu2wWazXfcxixcvxi233ILf//73AIDW1lacP39e/t7T04PW1lYAwOzZs7F3716cOHECf/rTn2Cz2bB69Wp53Ec/+lEEg0E4nU7s3LkTf/3rXwEAP/vZz7B161Z4PB64XC7s3r07T4tUMyrNaWtrK7Zv3w7TNOHz+bBt2zbJ29y5c+F0OgEAt912G9atW4d3330XQOF7US5UTHhXrFiBTCYjheCNN97A2bNnSzr29OnT8nN/fz8OHz6MtWvXAgA+8YlP4IUXXkA2m8XQ0BD27duHHTt2AAAGBwelL/ePf/wD+/fvx8MPPwwA2LVrF44cOYJkMgkA+MMf/oCuri4AwNKlS3Ho0CEIISCEwGuvvYbOzs4ysFBezASnu3btwqFDh5DL5ZDJZHDo0CHJ26VLl2SbZ86cwfHjx7FmzRoAhe9F2VBWPS4mTJwQQvzlL38RXV1dorOzUzzwwAOiq6tLmrif/OQn4oknntC28eCDD4qVK1eKrq4usXbtWvHcc8/J3zKZjHj44YfFkiVLxNKlS8Uzzzwjfzt48KBYtmyZWLFihbj55pvFm2++mdfu008/LVauXCk6OzvFjh07ZD8HBwfF9u3bxapVq8SqVavEtm3bRH9/f/lImSJmktNsNisee+wxsWLFCrF69Wrx6U9/WiSTSSGEEPfff79YvXq16OrqEuvXrxevvPKKPK7YvSgHbELUZ1LUUZuoj7DVUbOoC28dNYu68NZRs6i48L777rv4yEc+giVLluCmm27CunXr8OSTT8rfP/zhD2P//v3X1WY4HMa9996Lzs5OrF27Fp2dnXjppZcAAHv37sXdd99t2ReKonU4evQoXn/99evqy0ygzuk4HBVp9f9w8uRJbN68GXv37sXHPvYxAMDQ0BC+/e1vT6ndr371q2hubsbJkydhs9kwNjaGvr6+osdt2LAB+/bt0/6WyWRw9OhRhMNhbN68eUr9qyTqnE6gopr3qaeewp49eyTJABAKhfD0009Pqd1Lly5h3rx5MkEfCATQ0dEhf49EIti5cyfWrFmDDRs24Ny5cwDGtUB3dzeA8UR8U1MTvvSlL2H9+vV49tln8fzzz+PFF19Ed3c3vvnNb06pj5VCndMJVFTzHjt2DNu3b7+hYw8cOIADBw7g5z//+aTfHn30Udxzzz3Yt28fbr31VmzevDnvZv7tb3/D8ePHsWTJEnz5y1/GU089hZ/+9KeT2hkZGcHq1avx1FNPARg3neFwuDLle2VCndMJTGvA9vjjj6O7uxsLFizAv/71r4L73nXXXVqSAeCOO+7AhQsX8K1vfQtNTU146KGH8NnPflb+fuutt2LJkiXys9UolNPpxL333nuDV1Md+P+Z04oK77p16/DOO+/I79/5zndw/PhxOJ3OvJK8G4HP58OWLVvw5JNP4tVXX80rt/N4PPKz3W63LBv0er0wjNpKuNQ5nUBFz/LFL34RL7zwAg4ePCi3pVKpkmtQrXDo0CEMDw/L73//+9/R3t4+pTYBoKGhASMjI1Nup5KoczqBigpvV1cXDh48iB/84AdYsmQJNm7ciDvuuAOf+cxn8IEPfEDut2fPHixcuFD+vf322zhw4AD27NmjbffkyZO4/fbbZVrnwIED+M1vfjPl/m7duhXHjx+v6oCtzukE6rUNddQsasvhq6MOhrrw1lGzqAtvHTWLuvDWUbOoC28dNYu68NZRs6gLbx01i5ILc25kinWpoOFE8X+zd+l8pmnivvvuw9133w273T7puGQyiXA4jEQigUOHDuHAgQNydjC1Qf3mbZcbN9ruTHK6devWPE6Jq3Q6jXA4jHg8jtdffx379++vWk4rWlWmgl94LpeT26mj9N/v92Pu3LloampCe3u7XHopkUggl8tJ0gKBAEKhELLZLN577z00NzcjFothbGwM6XQ6jwB+Azn5/H+tQr0e/plzOn/+fDQ0NGDZsmVYtGgRcrkcUqlU3go4Qgg0NTUhnU6jtbW1qjmdduHVaQT1Qv1+P1asWIHm5mZ0dHSgra0NmUwG4XAYqVQKQgjkcjk4nU40NDTAMAycOHFCLtWUTCZlkYqOxFL6UCvgnNKDDeg5Xb58OebMmYOOjg60trZKTkkoOac2mw3Hjx+vak6nVXh1ZsZms8HhcMAwDPh8Png8HsyZMwfNzc2YPXs2TNOU+xqGAYfDIYm22+0wDAM2mw0NDQ1YsGAB/H4/AGBsbAzJZFJq60wmI7V9rQqqFQpx6vV6YZqmXIdt1qxZkzg1DEO2QUJYC5yWXNtQLv9MNS9utxsNDQ0wTRNdXV1ob29HMBjE0qVL4ff70dbWhgULFgAAstmsFFyC3W6HEAI9PT04c+YMxsbGcP78eYyMjODixYs4c+YMEokEhoaGEI/HtX2YKqbT5y2l75zTtWvXSk7b29vR0NCAtrY2zJ8/H7lcDslkUroNQggYhgGXywWbzYazZ8/if//7HyKRCHp6eiZxOjw8XJDTqfBcdT4vkO8nAePFy6ZpSp+so6NDPvGmacI0TWQyGelXkaagtkigGxoa0N7ejmg0CrvdLs1hX18fbDYbnE4nEonEdF/utII4dTgcME0TXq8X8+bNw7Jly9DY2IiFCxdKTZzNZqWbYbPZ5H9gIh5pamrC0qVLEY1GYRhGHqeGYSASicwop9MqvB6PB36/H263G/PmzUMwGJTBmcfjQUdHBxYsWACn0ykLnqPRKDKZDIQQ8n8ul0Mul8szj7lcDqZpwm63Y+HChQiFQvD5fGhubkYikUB/fz+i0SgSiQTGxsaQSCRw8eJFDA4OTicFZQHXSh6PB4FAAC6XC/PmzZPXTZwuW7YM8+fPh8vlgmEYcv3hVCqFXC6HeDwuBRkYt2QejweGYSCbzcI0TRiGgYULF2LWrFnw+/2YM2fOJE6j0SiSySR6enomcVpuSyfbnU63IRgMYsGCBWhoaMAtt9yCjo4ONDU1YcGCBXC73XC5XHA4HFJoSUjJv4rH48hkMshms8hms3A4HPD5fHA6nQgEAnIBZboZmUwGqVQK6XRamrihoSFcuXIF4XAYhw8fxr///W8Aky0C31YMM5kqI04bGxvxwQ9+EB0dHWhsbJScOhwOyWksFpPaNpfLIZ1OY3R0dFLAFggE4HQ64ff7EQgEpCCTpUun00ilUhgaGkIsFkM4HEZvby/C4TDeeOONvEX96Dp1WaZCqAq3wTAM+P1+eDwehEIhzJ8/X6a4AoEAfD4fXC4XnE5n3vQRh8MhBRcYJyAajSKbzUoBJs1Lx1Pekn6jAI/ym4ZhIJ1OIxQKwW63o6WlBaOjo4jH4wiHw3kpo2qGjtOGhgaEQiE0NDRoOSWuKGjmKUceS9jt9jxOaQlTug+GYcDpdMJms8kpP+Q7E6cjIyOIx+MYGRmZlIYrJyouvF6vF7fddhva29sxe/ZstLW1we12IxAIwOPxyCX1Y7GYdAFcLhf8fr80YW63WwoZRbjZbFb6dI2NjfLJJrOYTCaRyWSkq2Gz2eDxeNDS0oKWlhak02nMnTsXQ0NDOHXqFF577TWMjo7WRCZCxym5ZJzTeDwOu90Ou90uNanT6ZSCGYlEpDYm7etyuTB//nxpxWjgIhaLIZFISOUhhIDdbofX64XX65WctrS0YHBwcBKnleC14sLrcrmwaNEirFq1Cs3NzVi8eDEcDod8/wMRQxqAk01C7PP5pFYgUGQcCARkUj2dTkvBpnldlJskLeR2u+Hz+SCEgN/vRzweRywWg8vlqjQVZYMVp3TNmUwGiUQCQgg4HA7JKblmlJIEMMni2e12LafkglH7NptNunlutxumaSKXy8Hn80llVGlOKya8wWAQLS0tCIVCWLRokQwg4vE4bDabdAnIrFDEm81mkUwmMTw8DIfDIfOK8XgcPp8vT/BN00QikUA4HJb70Y0jDU1al8xeKpWSfTQMA6ZpYu7cueju7sbAwAAuXbqEgYGBStEyJQSDQcyZMwezZs3Sckq+Ph+soOum1JbD4UAikYDX65Wc2u12GUd4PB4tp5RS4wMQdO94uo1ctJaWFnR1dWFwcLBinFYsYFuxYgU2btyIWbNm4bbbbsPSpUsn+UE0wMBTXwDkkw6Mjwx5vV75hJOQ0w0iQqPRqHxBCgUIZK7oHCTEXGubpolLly7hxIkTGBoawuHDh/NeUlIKpitgW758OTZu3IjZs2dbcgpADt7wvnFFQdaMLJw6OkYPAefUbrfncU8c823EqcfjkZwODg7i8OHD+Oc//3ld1zqjAZvD4UAgEEAgEIDb7c67eK4N+eiOSrQQAul0GslkErlcTkbOPOjg7gcJvGEYkwp51DF5/p38wVQqJQOUagT1k9KNOk4B/RCtjlNyKagN2o/qHYhTnmPn7fJz83NSXt3n8yGZTFaM04oJLw06hEIhaarIpyUS6GL5mgMqCfF4HIlEAna7HbFYTOYquVtAx3Fks9k8X46Tzwc6qE8NDQ3IZrNV7fv6/X4sWrQIwWAwj1MKdPlDzc04kJ+i4sGc2+2WqTCeDiPh5Mdb1TToOHU4HGhsbEQul4Pb7a4IHxUTXnpJn9/vlwLHNS0fEy9UzEFPPw1aULqLfFc+UkcpHAKdj+9H7gNpfkqreTwemKYJh2PaBx1LhsfjQVNTExoaGiQfdI08jgCQ5+9zzQpMLFJit9uRTqfl/VELb1wuV57g6YZ+gYl6CH5vKZ5IJBIV47Rid8rpdMLr9UrfiucJudvA843A5MEC7q/ybeQ+8G2FwH1r/pn6RJF4NS//5HA4ZGqK8qsA8sw5kB9MqbxRiotrS54T5+1wLrgiIHC/Vy2LpGyEy+XS1mKXhY+KtIpxzRsMBmXJIpHCq8LoiVeLbbhwkU/G/2gbB90EFZRiUx8Cbg7tdjtM06yof1YOOJ1ONDY2Ss1LnNJn7hqp7pdu5NCKE4IqrKoA8+N5WSa5bF6vF6lUqvY0Ly+i4WbLSlOqpo1rVb6N738jfVKP5QKgeyiqCdRH0mRWnBYb4rba73quXdXoM8FpRYRXjXq5eSPiuYYgt4K7EDqXgJfuqSkw9Tx0nKp1eR/4CBwNilSr22BlVXigxH1ONaXI2+C/E6e82IlnIFT3g7I+PANBLgcA6TtPB6cVj050wshNDAkSF3h+rK4d+q574olgbgpV00hmVgghg0BKw1Wz5lX9SuKC88mvl/bj9SEqVOHlDwMdz9tS3Thql3NKbkNNaV6bzSYrmXw+nyy8icfjSKVSeW4EMFF8Q1VPauDB2+XbrdI2KohAOq/uxtAN8Xq9yGQy8Hq98Hg8eWP4MwkrTmOxGNLp9CQBAvIHKbhG1bWtfi7kctA5SuGUfN5sNiuHo3kNRTlQVuGlfCmfdmKaJnp7e2WOFsg352ReDMOQNaa0D/1XieV5zGL9oVE5fk5uUrPZLJxOJ4LBIFwuF4LBIBobG5FMJjE2NjbjlWbEqdfrzeP0ypUriMVikywKcex2u/Mq8FTorCDxolpK2o/OQTMtdJyS5vV6vQiFQjJwb2pqkrXU5eK07JrX4XDA6XTm/VcDNqs/+p23xz+rQ57qufln9U/N93JTyPtNf1NdrLlcoL7x/qkja7Sfer2qr6trG4B2X6tji3HKBV+VhXJzWnbhdblc8Hg8eSNVapbAimg1paIb4qTvVpqZawPub/H9eI6U2qNzuN1uOeFwdHR0xjUv55TnYYspAxIsp9OZN1OCjlXdMGqLoIsTyA3TPQzEqep2CCHg8Xjg8/kAYFIdxlRQEc1LQ47FnniVbJ4C4pFyIS2gG0HjRNM2fowa+PD/LpcLXq83z5+cSaicAqVZHp4nB/KzO7w6zEqz0jH0n/u5HLpcshpcUxkmxTXlQkXdBnXwwTAM6d/q3AT+nT+dqonXZR104A8Bv4kUKOqIJJ9OHWqeKaic8iFgoDinVoLOhY3vp2Zx1NFNXRqTc6rTvDSCWe7BirILL5kIp9OZNwcNmJjVSmPqqvkoJiz8idaZT3U/XrsATCTNKfKNRCKTNLBpmmhsbJTZkZmGzWaTBfTEKS+cKcSpyhGHqsW5UOpcMQ4upDRtyOv1Sk6pPbrvpmkiEAggkUhUt+alp1DVkARVQ+jIKQXF0i2qkNP5qA/8O9+f17hWi+bl+dJSOS0EK59fl2FQwc+t+sXcXeGoFKdlF14aVVFNHNUxjI6O5l0ML5FUC6p1gRqdRzcmr27jeWU6D033Jn+aTBmVBJIZpnTQTIM4JbOrxgCZTAZjY2NSaXDfVOWUeCFTDmCSqbdy43T9ovuXy+XkXDg+AldpTivi81IlkTr7l6a00zwpl8slfU+eZ6T9uTbhAZxOeHVaQBViOg8tV8TLCWmomPtn1SK8KqfcJKfTaUQiEdjtdjnBkoSKxwhWGpk44dZIJ8BWrgf1iRQC55SEl/Lt5ea07MPD3HSQlqCAI5VKIRKJSAHxer3a4zlUn9bqv+5YXb+SySSi0ajsFxVyE7gGqxao5pj3nYTXMMZnXZumWVB76gRRFWCr46z6Rfd1ujktu/DydAoFFmQuRkZG8J///Ac22/gkvVAoBJvNlud/EXRCrPOnrHw91TekwGJoaAg9PT0AgIULFyIYDMpAiPrq8/nyUlMzDc4pFZFTvXRvby/++9//ymA5GAzmcaq6VbSNuNH5/wQrbU3byRePRCJ4//33AQCLFi1CKBSC0+mUFoKmBJWb04prXnqiHQ4HstksRkdHAUyexavW8+rapTZ1GkGnidXjuY9In7mWoAeE54irAZxTXi+rclro3cPFzHUhzq+HU/J5+T2tFKcVy/MCmGSeM5kM+vr65G9U+MIdfLU9wvUKLfd1+eDH6Ogoenp6YBgGWltb4Xa75UNGDxr5l9Xi81KwA0CuceFwOGQB0bVr1wBALpEFjA8MkM+ptqfGE4XOzY8BJlwA/sCPjo7i/PnzMAwDixcvzhtdrSSnFQvYhBAyr0fFOlx4I5FInvCS78TbUtvWCXAh35dnGYBxIkl47XY7Nm7cCLfbLRfU4JFxtQkvzSUjTt1uNzweDzKZDK5duwYhBGKxmBRWugZajBuYnPqycgv47+p+vKoMGOeUlpWlmILuNa3nUClOK5bnpVQNrxEVQshJg8lkEslkMi+dxZ9mnQ9rFfXy8+v6w9ulBfvI5HL/XM1mVAO4b8kFBpgQRlrVRsdpIZNf6vn5Zx2ntOqROsrGayp0Q8tTRcVG2Ej7AhNJaiHGFwehFQb7+/vh9/sxe/ZsGIYh0y2qaSMUGgrWCTs98ST0udz4QhpXr16V2Q9yKVKplHxxiBotzyRIy6qckntGo1qZTAZDQ0MYGBiAz+fDrFmzYBiGdDNUTnXFOKpi0N0HcgGAidx4JBLB1atX4XK55MNDDxMtO8WnL5ULFRmkUNe/Im0MQC45Sks4UQRaLAfIA7br2YfnHEnzxmIxuN3uvPSQWjNQDS4DgR5+VYhIGGhNMeKU/EtuposV81hB3UfNfFCBObks3JrxWuJiluBGULGSSAra6KkjMz02NoZ4PI6BgQFcvXoVhmHIlSP5EKLuQq1uBN+fD3XyG5xIJJBOpxGPx6WGB5BXc0wPn9frrZr5bDabTfq3pHn5MHY2m8XIyAgSiQSuXbuG3t5eAJDBKHGqG9Sh9gH95FadpgYgByZoQcNkMqnllM7pdDpl/6tWePngg+o20GjayMiINDNXrlzJW4eMO/WFcrrqECn/z3+nAJKWLqIVISkqJ8HgfiI9fDQDY6bBBx/IpyThpYxCOBxGJBJBX18fQqGQLNRROeUZg1IsGAmfWifCNWsqlZIro1txWhPCC+gzAOoTTP4Q+b8UlFyvWbHSzDwzwQNHPltYNwwNTJjjahBcgs4SWXFK8wXLxam6jSsWchnIJbMa2idOy23Jym4X1eIZ6jR9t9nGE9nDw8NyKXjSLvzi+P4qVHL4vjy3S2k7WiqV3kXBLQJfbI40NWmsahFgVeupf+TTDw8Py1cWkGYuNORL39WHQ6eAyIfmdRY0Jy0ej2s5Vd2Gqq9tAPJTXdwE8d/5SzjUJ/NGL1An0Pzm0gRPK63LH7hq074EVaNxV4qsGWVN1PSU6loVuz6dBdVxymdZ6zjli6VUvfDqOsiFhjQJX3Jf1bK6z4VMGg/Y6Bzk6/JInA+E6NpRR5CqBTrzry4BwBdusRIW7lLxbeo+6me6Z+R+FeOUB4iVchsq4vNagRPNBwWs/EwukNzXsgo2VM2Sy+VkNByJROR7w7hlULWT6kpUA6yEif8H8tfgVTlV21AHgoq5ZwTStqlUCrFYzJJTDlIINaF5Veiq/wttvxEU0h68qL3QOQvdyGqEFadWmMp1qcdyTVzKsZXgtCIBmyogfBsXJEpq6wYIdH/0m9V5dcfzIJEPV5JbQYl0XUBULdDV36r8AhOvQ1Cjfw6dH1tIsKwCYwCSP64U+DY6jjRvuSdglv0OWS3FpJLN/TP+VwqR1IbuQeH7qYKve6jU/lar9i2VU/pcKB1Y6jVa7cfdOVXx6LaVUmtxIyi78KojOaoAcfBCmEqYFivh5udXl7BX03vVgFL5BEpbBlbnL18PinHK76t6DeVE2YW3EMn8MzfjumwDUFi7lgorDaSaOJ4iq+ZsQzHBLVUhTJVPK07JdaH7yhVB1QtvIaiE8ZSZuiRRKccXQilEqQ9QKQIy09A94Byk+XScTvWaSuGFWzN+XCUsWVk9aNJmqkDQbxykIZLJJIaGhgCMv4yuWHBWTIDV49WUGO8PJfVp+gwFFtW0Yg4wUXpYLGVIyoBeGAhM5lTdvxCsXJBinMZiMTlETXxmMpmyc1r2VBkPHHQBlop0Oo1oNAqPx5M3B0uX6tIFdDr/TRdRA5hENFX784Jp7jZUg/Cqab5CnNI+NKPY7XZbzmujtnibxdJsOv4LccozDbx6r1wou/DqUiVW6TMr88K/W5lzNV1kFRHTdp3vRVVR1Y5CnHJwy8dhFX+o20vNPtBnPopHv9ELCqk/umPLhbK7DfwFy9ThUnOsXHitTL/6MOhSc+qxXKNSfS9VYdH0lWp9CxBpUuKUb+cCTJzSlKBCnPLvqkLgbdNnK6HnAS4AuaBLJBKR7kIlUXbhVR32QiapWCK9VJSyvy5ooMAGgPTHqsFV4OBBrZWPS6BgTReklXpdpcQU9F83rE9KaTp4LLvwUnEyvVnR6mkm86JWetHv/OLJRdCtrM21q64/1BYvjyTtHY/HEYlEYJomPB6P1jeeaRBXVDdL12tlzUhDq9pXBXGqum60v+pb65QQzWrmiwBSEGyaply9p1IZnIr5vMU0L5k4q1WydRqAR9zUtvpaJUA/ykfTZvgaDjS7gtb14kJbLcIL5HNF18r9W7rWQu+gAPJrrXkgqGpq4qgQB7QfzVmk9qnajBYFrKQiKLvmVf1Q0nDZbFYucMehC7SsQNpCJ2A8y2HVjqrd+dviuZauJsGl6+LZBkqHkaa18vmtvquZBl2QfL19o+885inUh3Kg7JqXBIJmkeZyOYTDYTnXSl1DSw2urMA1At9G4G6JlQuhPlRk4vh8Ozq+mgSY3AY+25ne7TAyMnLdnJLg8gAY0OeNaX9g8gxgVdNzTml2Np+TWNX1vFYpMRJo3Tu4SgkQCvlualtcoxTbn/uNpZ5juqHmeWnbVDjlsLreUttQ91N98VLPdyOoiM9LppgI52YPmBywWWUdCKUKrU4T61JtBF7VpqaDqqm2gVuzUjhVJ5mqKOZm8O2cVzWW4EEwwapmuuoDNtIIao2nLh/L1wezMlsqivmxOpK5ybMq/uHHq2Z3psG1LK/T1XHKFUcxTgtZJ/Whp22cU3U0Uj3+erT/jWJaXiKorrVFN4SGEV0ulxzKpBvENYxVqketn9BNP6HzRSIRDA8Py+WP6HdeTcYXR6mWJU5ttolViIpxSpo3m83eEKdqDlcHntGJRCIYGhqaxCnnkzIS5P+WExV597DH45F5Puo43QTySWOxGBKJBFKpFPx+P5qamuSFc8Eu9BSrN4/2oyWk6HyZTAZXrlzBuXPn0NfXJ4WTp3r4ijS8rzMNm218/Te/3w+fzwev1yvXfSuVU1pelnLqqlWk86juFc8kkIal1GQ6ncalS5dw7tw59Pb2IpvN5r2p0+12yz8KDqt+0REO1TfjQkjbyczxsXs6VpeXJFiZNdqXzk2DJpFIBCMjI3nLEulMb7WDXxt9J+g4VYNnXWCqE2DOK+c0m83KBfSIU3qZCj9HzbkNqVQKPT098uXILpdLrhyYzWZx6dKlSfm/s2fP4he/+AVCoRCam5sRCoXyFswgjahLtXDho5tFL21Jp9MYHh5Gf38/IpEITp06hb6+PoTDYblfb28vzpw5g9HRUdlX0l79/f1V8f7hVCqF8+fPY2xsDOl0WgZJFJhdvHhxUj/PnTuHX/7yl5g1axbmzJmDYDAoLZFhGHkjiroYgP4om5HJZBCJRJBKpRAOhzEwMGDJaV9fn+SU+hqPx5FMJnHt2rWyclp24b18+TIGBgbk29T54nC9vb2TOt/T04MXX3wRpmli48aNWLlyJUzTlG9hb2pqQiAQyHMDePqIgj7y95LJJHp7exGNRnH27FmcPHkS0WgUAwMDiEajACaGUq9duwan04l4PI5AIAC3241oNIpEIoGBgYGqEd6LFy+iv79fCi8tsCeEwJUrV7ScvvzyyzBNExs2bMCqVavg8XjQ1NQEl8sl3wXCaxO4RieBJauVSCRw5coVRCIRnDt3DqdPn9Zymslk5FKn8XhcvoeCFEK5Oa1IPa/OXbAyJSRIvPJfTQEVOw/fj29XZyfrcpJ0DA9mpsvslQreL/LXC7k8VHBEbkMp94HOU+g+EY+FOFUzIdTnSnBqE9V0l+qo4zpQPZn4Ouq4TtSFt46aRV1466hZ1IW3jppFXXjrqFnUhbeOmkVdeOuoWdSFt46aRV1466hZ/D8OXe44Ro7dywAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUoAAABzCAYAAAD+K0vUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmwklEQVR4nO2de3BV1fn3v+d+SULuJDEBxbEIEpIgYhVtBaFVqAoWq1VaHZXREatO663VsdrOz+mIVls7dqit1RkvbaVjlbbWCyLWC0Kt3GxmvBIgBJJDkpPk3G/r/SPvs1h7nX0ucA7Zx7PXZyaT5Jy9d7K/53nWetaznrW2hTHGoFAoFIqMWI3+BxQKhaLUUQ2lQqFQ5EA1lAqFQpED1VAqFApFDlRDqVAoFDlQDaVCoVDkQDWUCoVCkQPVUCoUCkUOVEOpUCgUOZiQhrKrqwtjY2O675122mnYtGlTzms8+uijaG9vx+zZs9HR0YFnnnmGv/fUU0+huroaXV1d6OrqwsKFC/l74XAYV155Jdrb29He3o6LLroIPp+v4HuaCIqhW39/P7797W+jo6MDM2fOxK9+9Sv+3v3338816+rqwqRJk/CjH/2Iv79r1y4sWLAAM2fOxMyZM/HCCy8AADZu3IjTTz8dp5xyCmbNmoU77rgDqVSqoHstFsXQjBgYGEBTUxOWL1/OX8umWU9PDxYsWMBtUWTz5s38nFmzZuH6669HNBoFAKRSKdx2221ob2/HjBkzcO211yIWix3RfReTYmh43333obGxkd/zypUr047R0zebLwPAW2+9hXnz5mHWrFk45ZRTsHnz5rzOKxhmMHPnzmVvvvlmzuM2bNjA/H4/Y4yxvXv3svr6evbZZ58xxhh78skn2bJly3TPe+SRR9iKFStYKpVijDG2atUqdvvttxflfzeSfHW74oor2N13380YYywQCLDOzk62devWtOMikQirq6tjH3zwAWOMsWAwyKZNm8befvttxhhjiUSCDQwMMMYY+/DDD9nnn3/OGGMsHA6zs846iz355JNFuKtjS76aEcuXL2fXXHNNRtuSNRscHGRvv/02+8c//sE6Ozs1xwaDQRaLxRhjjCWTSbZ8+XL28MMPM8YYe/zxx9nChQtZNBplqVSKrVq1iq1Zs+aI728iyFfDe++9l91yyy1Zj9HTN5sv79+/nx1//PGsu7ubMTau//DwcM7zisGERJQWiwV+vx8A8N5776Grqwvt7e24+uqrkUgk8rrGokWLUF1dDQCYMmUKmpubsW/fvrz+digUQjweRyKRQCAQQFtb21Hfy0RSDN127NiBpUuXAgAqKirw9a9/HU8//XTacS+++CKmTJmCuXPnAgCee+45nHHGGTj77LMBADabDY2NjQCAOXPm4MQTTwQAuN1udHV1oaenp5BbLRrF0AwAnnjiCUybNg1f+9rXMh4ja1ZXV4ezzz4bFRUVacd6vV44HA4AQCwWQzgchsViATD+GS1evBhOpxMWiwVLlizR/YwmimJpmI189JX57W9/iyuuuAIzZ84EALhcLtTU1BTl/8nFhOYoY7EYLrvsMjz00EP46KOPcPnll2PHjh38/bVr1+KnP/1pzuts2LABw8PDmDdvHn/tnXfeQVdXF+bPn49169bx16+//npUVVVh8uTJaGpqwsjICH7wgx8U98aOMYXoNnfuXDz33HNIpVLw+Xx49dVXdRu1J554Atdeey3/vbu7Gy6XCxdccAG6urpw5ZVX6qYsDh48iL/+9a+44IILCr/RIlKIZrt378batWtx//33Z/0bsma56OnpQWdnJxoaGlBdXY3Vq1cDGP+M1q9fj9HRUcTjcTz//PMl0fEU6q/r1q1DZ2cnzj33XLz55pv89Vz6ZvLl7u5uhMNhLF68GF1dXbjpppsQDAZznlcUjlmsKgCADQ8Psx07drATTjhB896JJ554RMOhnTt3sra2Nj4kZIwxn8/HgsEgY4yx7u5u1tbWxjZv3swYY+yll15il1xyCQuHwywajbLLL7+cD0VLnWLo5vP52FVXXcU6OjrY4sWL2XXXXccuvvhizTE9PT3M4/GwwcFB/tpNN93E2traWG9vL0ulUuzHP/4xW7Fihea8kZERdtppp7Ff/vKXR3+TRaZQzVKpFFuwYAF7//33GWOZh3R6mhFvvvlm2tBbZGxsjC1btoz96U9/4n/z3nvvZV1dXezMM89k99xzD6utrc1+o8eQYtjdgQMHeKrhnXfeYY2Njaynpyenvtl8+cILL2SnnnoqGxoaYrFYjK1cuZLdeuutOc8rBobPetPwIx+6u7txwQUX4I9//CMfEgJAQ0MDvF4vAGDmzJlYunQp3n33XQDA448/josvvhhutxtOpxMrV67U9G5fVvLVraGhAU899RR27NiB119/HRaLBbNmzdIc8+STT2LZsmWoq6vjr02dOhULFy5Ea2srLBYLvve97+H999/n74+NjeH888/HsmXLNBNApUw+mo2OjmLnzp247LLLcMIJJ+C2227Da6+9hkWLFmmO09MsXyorK/Hd734Xzz77LP+/7rvvPmzbtg3vvfcenyQrRfK1u+bmZp5qOOusszBnzhx88MEHOfXN5stTp07Ft771LdTW1sLhcODyyy/nNpntvKJQtCY3C/j/PVQ0GmVtbW1s48aNjDHGXn/9dQYgrx6qu7ubHX/88eyVV15Je6+3t5f/fPDgQXbSSSexN954gzE2HhldddVVLJVKsVQqxW644QZ23XXXFefGjjHF0O3QoUO8Z//www9ZU1MT6+vr4+8nk0k2depU9vrrr2vO27NnD5sxYwYbGRlhjDG2Zs0atnTpUsbYeEQ0f/589rOf/awYt1lUiqGZiF5EmUkzQi+i/PTTT/nnEI1G2aWXXsruuusuxtj4hNjQ0BBjbDwy6uzsZOvXrz+i/7OYFEPDffv28Z8/+eQTNnnyZPbxxx+nHSfrm82X3333XXb22WezSCTCGGPsxhtvZKtXr855XjGwF6/JzY3T6cRf/vIXrF69GslkEvPmzUNnZyd/f+3atejr68PPf/7ztHNvvvlmjIyM4M4778Sdd94JAHjggQdw3nnn4bHHHsNLL70Eh8OBVCqFH/7whzj33HMBjJcpXHfddWhvbwcAzJgxA7/73e8m4G6LRyG6bd26FTfffDPsdjuqqqrw/PPPo6Wlhb+/YcMGWK3WtIhp6tSpuOuuuzB//nxYrVa0trbi8ccfBwD8+te/xtatWxEMBnnJ0He+8x3cfffdx+L2j4pCNMtFJs1CoRCmT5+OaDSKkZERtLW14fvf/z5+8YtfYOPGjXj00Udhs9mQSCSwaNEi3HPPPQCAkZERLFiwAFarFalUCrfccgsuvPDCwgQoAoVoePfdd+O///0v7HY7bDYbHnvsMUyfPj3n38zmy/Pnz8dFF12EOXPmwGazYdasWVi7dm3O84qBhTG1w7lCoVBkw/AcpUKhUJQ6qqFUKBSKHKiGUqFQKHJQcEP5wQcfYMmSJZg2bRrmzp2LOXPm4P/+7//4+wsWLMCLL76Y9/XWrl3L12vW1dWhtbWV/14OZT16KA0LQ+lXOErDHBQyZb5z505WX1/P/v73v/PXBgcHNWupzznnHPa3v/3tqK5/1VVXsUceeUT3vUQicVTXLJRkMsmSyWTRrqc0LAylX+EoDXNTUET5wAMPYNWqVZrla3V1dVizZk3BDbjMU089hYULF2LFihWYPXs2tm7dildffRWnnnoqOjo6cM4556C7uxsAsGnTJs3uLR999BFOOOEEAIDP58M3v/lNvgvR1VdfzY976KGHcPrpp+PUU0/F+eefjz179gAYLzFasWIFzjvvPLS3t+PAgQNFuy+lYWEo/QpHaZibguooP/zwQ6xYseKozl2/fj3Wr1+PP/zhD3mfs2XLFmzbtg0nn3wyBgYGMHPmTGzatAmzZ8/Gs88+i0suuQT/+9//sl7jmWeewbRp0/Daa68BAIaGhgCMbwLx8ccfY/PmzbDZbHj66aexevVq/POf/wQwvk3Wtm3b0NTUdFT3mwmlYWEo/QpHaZibok7m3H777ejq6kJra2vOG73ooouOSFxgvOD05JNPBjAu9uzZszF79mwAwMqVK9HX14f9+/dnvcYZZ5yBf/3rX7j11lvx0ksv8Z1eXnzxRWzYsAFz585FV1cX1qxZg7179/Lzli5dWnQD1UNpWBhKv8JRGqZTUEM5Z84cbN26lf/+4IMPYvv27XA4HIjH44VcWpfKysq8jrPb7Ugmk/z3SCTCfz7zzDOxfft2fPWrX8ULL7yAefPmIZlMgjGGn/zkJ9i+fTu2b9+OXbt2YdeuXUf8t48UpWFhKP0KR2mYm4IayjvuuAO///3v8fLLL/PXYrFY0fasy8YZZ5yBXbt24aOPPgIA/PnPf0ZraytaW1tx4oknYs+ePXxbMHFvv927d6OyshKXXnopfvOb3+CTTz5BIBDA8uXLsXbtWh7Cx+NxbNu27Zjfh9KwMJR+haM0zE1BOcrOzk68/PLLuOeee3DjjTeisbERDocDN9xwg2Zd56pVqzR7QK5btw4+n++IcxsijY2NePbZZ3HllVcikUigtrYW69atg8ViwXHHHYc77rgDp59+OpqamrBkyRJ+3qZNm/Dwww/zNbcPPvggqqursXLlSgwODvIt5BOJBK655hrMmTPnKNXJD6VhYSj9CkdpmBu11luhUChyoFbmKBQKRQ5UQ6lQKBQ5UA2lQqFQ5EA1lAqFQpED1VAqFApFDlRDqVAoFDlQDaVCoVDkIO+C8yN5rOyR4vF4cP7556OzsxNerxc1NTUAgGg0ilQqBYvFwv8+Y0zz5XQ6UVlZCcYYDh06hEAggO3bt+PVV19FOBw+Zv/z0ZSfHksNvV4vlixZgo6ODng8HlRXVwMYX2GRTCbTNKTvpCGtlVUajmvo9Xq5htFolGtIyP97Jjt85ZVXTKlhZ2enxg5FDbPZYan68oQ+hTETTqcTHR0d+MY3vgGbzQa73Z7zw6Sbs1gssNlsAMY/jEQigXg8jo0bNx5TcUsNh8OB9vZ2LF68WKOhqJOMrCFjjC9dUxqOaygjaipitVphtY4P0MgOY7EY3njjDVNquGjRIl0N87FDoPR8uSQaSrvdjpNOOgnz589HMplEPB6HxWKBw+HgxpeJZDKJRCIBxhgcDgdsNhs+/fRTXSMvZ5SGhSNqSE5KGpIDZ0JpOE65amjof2Cz2eB2u1FVVQWn0wkASKVSiMfjYIylDXf0YIwhkUjw3oi+vF4vwuEwH3qWKxOhIaVAyhXSsLKykmvIGOM751D6JxvJZJIfZ2YNRTs8Ug1L2ZcNbSjdbjdaWlrQ0NAAr9cLYHy3j5GREd3j5SGPOAwiUR0OB7xeLyZPngyr1Qqfz2d42H4syaahOKShPBBBRptLQ4vFgkOHDpW9hk1NTZg8ebJGw0AgkNa45cpnkZObUUM9O8xXw1L35ZKIKCsqKnh4nUql+Jec9JV/lnso+kDsdju8Xi88Hk/OcP/LTiYNKZokxIZS1C2bhh6PxzQayveaSqV4lEjoaSg7vc1mM62GenaYTUORUvdlQxtKj8eD1tZWNDc381lX4LCYNpsto0GKglPDQFRXV+MrX/kKqqur4ff7EQgEJuBujCGbhgA0+R09J6cvPQ2nT5+OSZMmYWRkpOw1bGtrQ3Nzs2ZjV9kO6Xdx5pZ009OwpqYGM2bMQE1NjSk0zMeXRb+l3Llsh2LDWiq+bGhD6XQ6UVtbi7q6OrhcLgDpvTbNxpJ4JC4JKpYYEF6vF83NzQDAr1uu6GlIWCwWPhtLEabVauVOLud7zKxhXV1dmoZiw2i1WjWjHHGCTI6YCI/Hg+bmZqRSKVNoqGeH2XyZIsRMIx+gdOzQ8KF3ZWUlqqqq4HA48jpHNEpqAOg1Etlut2PSpEkIBAIlMWN2LMmkodhDk04A0vJFYq5SPNfhcKC6uhrBYNDUGmYiHzt0OByoqqpCVVWVaTSsrKxMG8WIOoq6iQ2kbIel5suGfnoulwv19fVoaGjI2FvIxkriUsJX7o2o925sbEQ0GuUzcOXK0WgoRueihuLQyEwaUjRUX1+vGdlkQ7RDu93OZ2tJw1QqBafTiYaGBkQiEVNoWFdXh4aGBrjdbgD66TK975nssJR82dAljBaLBW63G263m4fleuRTViHmOaxWK5xOJ5xOZ84awi87ooYU2egZ6JFoSFGoWTS0Wq1pGh4Nog3KdljuHImG+ZQJlZovGxpRer1eHHfccWhtbYXT6eR1UtmEloeI5NgWi4UXrDocDtTW1iIYDOY9pP+y4vV60dLSgpaWFjidTr6iQdQpWyNJs5J0TjweRyKRgM1mQ3V1NUZHR8t+2EilLS0tLXA4HIhEIlyDXCkLAJpjRDu02+2oqanB2NhY2TeW+WgoIjeW5MtU91tqvmyoB9jtdp7XoNCbkudENgMVZxzpd4qG3G43XC7XMV3XWgpYrVZUVFSgqqqKP2hJnlzIpAG9J2tIjabL5YLL5Sr7iNJut6OiogKVlZWwWq1cQz3d5EkdQBsBAVo7VBqWhy8b2lDKQ5NEIpGWcwSgOYbEpshHrrFMJpO8NyrnFTmEzWaDy+Xi+ujVrQHja3D1NBTzQmIiXaxnLXeoBpCGjWJFhei8oh1Sp072JpYNyfqZSUNq0MgORQ1pKaO4coex8dU45MuihqXky4Y3lNTjAukNpVh0SvVtJH4gEODL9AhRWLrW0eabvixQQylqKBfr0+wh1bfRa8FgkD+7mcqGZCfXy3mWG2LBudhQynWRtJwOAHfscDiMeDyu2eVKdHIzaeh2u+HxeHhDSf4n3r/H4+F2SNoEg0HEYjFNQ0nF6qXiy4Ynn6hGDUgvHKc6K8YYotEo/5mOoR1yqEEVHV38oModceca2SnF1QyxWIwfQ9jt9oyrJ8SevpyRayNFOyT7JNsihxaPsdvtfH293EGZRUMg3Zfl10UN5WNIQ7mTLxVfNrShpCJU6sWpByGxPB4P7HY7wuEwBgYGND0O1b1RVCkKnEgkEA6HEQ6HDQ/ZjzV6ReVifsfr9XINDx06pNHQ6/WisrKSr8kV85nxeByhUMg0Gtrtdo0dUkNotVo1dujz+TQaUl6O7NDMGpIvkx1SByHbIWlI51VWVmLSpEm6GpaKLxveUMrLwYDDkwxUK5lKpRAKhfh5NARyOBwao6VzxeGjGdDLLxK0uUAwGEQkEtHoRQ1ApokLs2lIyPdNtZLJZFKzKYPYAIgTYyJm0VD2ZVkH2Q7F1TkVFRUaXxbrLEvFlw0felM0pFduYbPZ4HQ6EYlE4PP5eC9FSeHa2lp+vJwHoSLVci8PEjsU2dmpkNdutyMSieDgwYN8GENRVE1NjSa3RrjdbjQ2NiISiZS9hoB22Cg6KjA+LHS5XIhGo+jv7+ca0mRkbW0tj55EOzSbhmRvenZot9t52VB/fz/PO8q+DKAkfblkGkogvcGjXigWi2FwcBDxeBzRaBQWi4Wv/9TD5XKhrq4OgUCg7OvXAK2Byr0xaRiNRnHo0CHE43HEYjGuoai/iMvlQm1trSlqAAFoOgvZDsnJo9EofD4f373carVyDfXqAqkRNYuGmYIe0Q5jsRi3Q9GXM0WipeLLhjeUYk8uviaG8YlEghewkoGKeQwxryQn4s2A3n2K+gHjGoqPKJDrAcWkORUJy9coZ0Sbk7+IZDKJWCyGeDyOeDyu0VCcqRXt0IwaZntNtEOa/NKb7S41Xza8PEjuhfSMNBaLYWxsjM8gUnE6zXpTGE+7KcsPMSpn9DSk18UoSdbQarXyRhGARkMq79C7bjlC9ykPG/U0HB0d5SkgssNMGtJEhpk0lIMeWUOaOBRXgGXSECgdXzY8ohQRG0sRWi1C4splBED6sN3sZNMwHo/zSTI9DeXSDjMgd9R6ULSTj4aiLZpFQz0y2SHZ4pfFlw1tKMWSIKfTqTFWsWeiEoFIJIJgMAiLxYJwOKwxRDkK1Rs6lSNynZk4lBY1jMfjfMYxGAzCarUiFArl1NAMiM4raig7KpX7RCIRjI2NwWazZdTQbGTyZVnDWCymsUOLxZKXHRqtq+ERpZyL0NsQg/JqZKDA4eJpMbQ3m4MTeqtI5F45mUwiGo0iEonwXaJFDWXMpiU5OqGniaghOTlpSJhFLz307FBG1FD2ZT1KRU9DG0px5QKVq9Dv4vAvkUggGAwiEAhgYGAAqVQqbUt4aigzzaCXK7KGNByU7z0ajWJsbIxrSEvHRDJpWO7Qqhpxj0m9td7RaBSjo6MZNZRHRJSXy9V4lAN6dkivHamGpejLhjaUNItI5SoOh0OTsyBhIpEI/H4/hoaG8PnnnyMej2N4eJhfR+x1xJC/3I0TgCZnBoxvfiGusSVCoRB8Ph/8fj96enqQTCY1GoqIw3czOHkqlUIsFkM0GgVjjBeXy/laWcNEIsE1JKcmB6ffxRncckbPDvXyj6KGX3zxBVKpFIaGhgBoNRQ7m1LQz/Cht97OIXrH0DKmcDjMzyFkYQH9J8CVK/lqGIlEEA6HeU4om4biiohy15CW3OmtJ5ZLW0hDWlInayhf1wz6EXp5XiCzhrRC58tgh4Y2lPT86aqqKjQ0NKQlckng0dFR7N27F8PDw3ydKC0lozCfvotLHsUJn3KFNKysrER9fT03Mlp3SwSDQRw8eBB+vx+Dg4MAoNGQNucVIyEy5nLXMJFIIBAIYGxsDPX19Zp13qKTBwIBHDhwQKNhJBIBAI3u4sRGNBrlG2mUM/F4HKOjoxgZGUF9fT0AaOyQdAwGg+jr6+MaMsY0GtKae3FzDRp1mnroTYldMUSXSwXE/FooFOJ1fnQsTQCJvZC4PVM5k0wmEYlEEIlEeM0ZoM31UP1aMBhEMBhEOBxO0xCAxqBFDcvdyUkf2mFfLo+SawBJQ6pFJagAna5ZKjvfTATky9FoVPehYQB4LSoFMXp2SPWUoh2ShkZiaEOZSCQwNjbGi3gpIpQhp80Uessz3slkkn8Y5T7sSSQSGB0d5TvYyKVVhOi0eoirnWiH6kAggEAgoBkalSOhUAh9fX0AgObmZjQ2NvKOV+RIJhUYYwiFQujv78fAwADfJrBcicfjGBoagtvt5nMOmdJAR5L3jkajGBoagt/vN1RDw4fefr8fXq+XF/BSVCM/N5kcXc5/AOmlLDRLHgqFDO+JjjWxWAzDw8PweDx8tZK4LyIhdjZ6GhJk3DSUotU85UwkEkFvby9isRimT5+u2d9UtMN8co5iJETDzIMHD5Z9Q0nr4GkDFr3Za0C7qCGbL9OxtD0g7fVgFIY+yEMOq8WaSBFK+IqzuTRjLpYjiOfp7ahTjoidCKC/MQEdJ2tI9anio1YJyhfRMtFyhxo/q9UKh8OhO7LJpCGtXQa0s952ux1Op9MUz8wBDjeC5I+ZRjZiSky2Q0DbDtBmGg6Hw7wF5+KKCFlc0XGpmj8UCvEVJ6FQCH6/X3ets8PhQEVFBbxer67Blxu0tJNKrGjoIxqqmBsiDcPhMIaHh3nSnbSiyHTSpEmmeAojcPiZQl6vF1VVVQiFQmlRIOV5RQ0DgQB8Pp9mMoca2urqakyZMgUA+LOuyxkaTjscDrjdbt3Im+YbgsEgt7NwOIyhoSHuw3a7nbcFXq+XPxs903PrJwLDuzlxKCPXoBGUSBeT4lRmQOG4vLEGiV3u0ZA8HMxUlkFF1eLkDGkor9Ch/JyZIkrqmOmeM0XlooZkl6IdikNOu92ueRaPGRDz3Hro2SFtuaanofjwPCPt0NBPL5VK8VlveaZMXqdMa2ypURgaGsLu3bvR39/PHZs+BCoaJoMvZ+RZb0C7P6WYtxVr10jDnp4evkJC3MafMcajzHLXEDi8a404BJdTQaRhNBrlObbh4WHs2bMHPp8PAPjqMvG51maIyOmeZTvMpKFoh8PDw9wOAfAdhWgGnTQ00g4N9QCxPEh+bKpekSqtnGCMwe/3o7e3l9diiQ1lKpUyTY6SSi7IeQH9pYgU+VA9WiYNgcNPGMxUhVBuUOcgl0LJHbZcF8kYw8jICPbv369ZoUOdl1jJUe6dDZXxiXZI6PmyrGFvby+Ghoa4HdIcBPmy0VvVlcxkDvXotA+ixWLhOUy9cgLKdVBRud5wXfxermTSkIyKlpUdrYblrh9weEKBtKLIkuxQrLGU9aDNHSh/rreyxCwaynYoakhLHDNpGAgE+AIIMQoVl9GatuCcht4UVdKyMIpiyEDlsgDqhfr6+uDxeABAEz2WwiL6iYKiaIoqRQ3FaFPeoYUiyn379sHtdqetRBGXjZV7LWoymdQU48t2SLrKkzuMMYyOjmL//v18soYiSBohmUVDMY0m+jKlHWg0qGeHFFG6XC5uh2KnTQ2waZcwiqsX9CYk9DYmIGgmnD4AOk9cSWGGhlLWULxvsUfOpKGYcyPKfZgoI68nFmv8xEhJrsml4WYoFNIsscs2mVGukIbyCFD05Wx2SFUGpaqh4Q0lreOUHZWMkGbE5POGh4exd+9e/gQ8IH2LpnLPTwLaqFzMsckaylF5KpWC3+/Hnj17UFtbq5nEoOS5XsFwOSLuHiQODSnvTTYq5zDFqLyurk7z2AJ5Qs0MGtJstqwh+XkmO6TJnJqamrR6VMpP6lXDTCSGz3qLYbXcC1HyXM6v0fKwwcFBjI2N6a7NFa9TztBEjfiIDACaiZlM+bVgMIihoSGuoTxLaabOhnJrmexQLIgWCYfDGBwcxMjIiCZHKepnBg317FBceUMa6uXKZTsE0ncRMlrDkokoxeWJorjihqoi4jN09IbeZmksabhDGgLaJZ3U2ehpKCbeZeMtJSM91pCT06QXoNVQ1ElGbGAJUTOzaKhnh0B+nQ1N9OhVHQCloaHh5UGU+JWHjcDhHJreZA7VY1FuSG4kjQ7VJ4pUKsXr0kQDpWGfXBBNUO6NhuaZGkozFJyLZWqiI5P9kIZ6OUq53EVEXvFUztC2fKFQKC0VBhz2ZbmhFDWkHKU4kikVDQ1vSbJN/ev11oSYgJcnMMwE3bfekBHIT0NxhlY+3yzo6SNGQ7k01OtozIaeD4uTOZmicnnCVrbDUpiUNbyhJMQokHrycDiMsbEx3c1jSXi93Jw421vu6A1PxMmDUCiE0dHRjBrSUEnvwVp6RdjliJhmEL+LdjgyMpJRQzE3J6ePzLIfJZC+ixctQQTG85B+v193M23Zl+lc0Q6N1rBkGkpCNDKa8dbLa1DInimSEo8zG/lqKJfDiMl3wFz1qHIO7Eg0zOTIZtJPD1lDObVB6Pmy/L7RQY+hDaXFYuG7tsgF41RuICbYRcReSJw1N8tMLUEa0o41ckNHk16ZNKSyDb2o3CwObrVa+XZoestexTpVGbF20OwaOhwOXQ3FWtR8fFnedhEwPpVhaENptVr5ziBispYaPXmvPxGaRaOZNHmtuFkgJ5c1FAuAs1UO0KodedhTSvmhYw3ZITk5QdFgthwlDb3F0hd56G4WDd1uN9xut6Z+lDTMliuXfVm2w1LwZ8MjSr2SHiD7OmNRfL2yDDOVBwFHVzsqr+jRu55ZKgeAzBqSDWayR9JQntQRc8dm0DBT2oLIpJ+eL8vlfqYvDwLSa6REw8yGWJelV5Zht9sN3xV5IsjU0eST06Ght7z8jpLwTqcTDoej7B1dbCBlDeXljSJ6pS3idaisxegtwiYS2Rbz2dBCjCj1fNn0O5zLHIkQehGlfK1ybyT10IuGMiFGQ/I15Nlzs6A3sslGJg3pWmbY6q9QyJfpZ6KU7NDwhlKvHABAzkkZvb0B6TqEGXJD4syqqGE+Qxax4FyvtIWuX+6QfvLyT/o5m7OSHcpb2ZkpxwtoR4KyVrlyjbQYQm9kQ9c0WkfDG0oAug6aaThE0JA7WyGw0eJONJm0ykfDbPkjMyB2Nnr5tkwdN0WTmfb8pGubgUwBS6b0ECFqqMqDdBDLBkSB803e6u2ZaLaJnEwa5jtjqLe9mNkoxA7FSRzRoZUdHp2GperLhu8eJG6KAWi3V8omjrjjC33p5TfKHeqJ5c0I8nkUhtJwHL1603ztUCzD0ttgxCwair5cqIalaIeGR5R6WzKJ5COQvAIi32iqHJDLUmTy1UFPQ/F7OSNHhfI9F6KhWewQOLw5bzlqaHhDSRENkD5kzDdsFzcEpUjK4XCYoixD7I2B9EkxmnnNpoO4Cgowp4Z6dkiQptl0kO2QIikzaSjOXhdDw1Kyw5JoKOUwWyTX7LdYOE3nl8KOyBOJXHQv/pxvZyPml8ymoZ4dEvlG1qIdipNCSsOj05COLxU7NLyhlDeWlYXONcEg794CHC44N8NjQvVyQ4Q8pMx2DcrRiQ0lrR8vdw317FB8T/yeCbJDynOShmaxQznPq1dilq+GpejLJbFxr7wpqjiDmMvJGWNpzwYX1z+XO/lomOsJdqSh+JAxWpnjcrmO+T0YTT4a5tq2jzGW9qA20tAMdkgddqbORs496lHKvmx4HWWukpZcvZDFYuHLFcUHEYk/mwm9kooj0VDcj9FMGmaaPDgSDcVcmmiHRkdDRiCngHJNOtJxdrtdV0Oj7dDQhpKMiwzM4XDw92w2Gx8S6u18Q7hcLkyePBlNTU3weDyw2+1wOp18J5NyN1AamtCXqKHVatU8eD4Tsob0mXg8Hng8nrLXUHTQYmjo9Xq5HXq9XrhcrrLXENA+wZOe502v5+vLDQ0NmDx5MioqKkrKlw3fPQhIn7Chn7OtoyVsNhvcbjd3cOp5KK9hBvQmbArRkGbKS6Ennyj0Vt8crYYUEZlpUwwxAtfTMJ/d8vU0LBVfNjSijEQi8Pl8iMfj2LFjByoqKuByueDxeBAIBLB9+3b09vait7c3Y35oaGgI77//Pvbu3YuWlhbU1NSgv78fu3fvxv79++H3+yf2piaYaDSK/v5+xGIx7Ny5syAN9+3bh+bmZtTU1GBgYABffPEF+vr6MDQ0NMF3NbFEo1EMDAwUxQ737duHlpYWVFdXY2BgALt37zaFhsXy5S1btqC3tzdNQ6N92fCGsq+vD36/H//5z38QjUZRVVWF+vp6BAIBbnh9fX0ZxfX5fNi0aRMaGhrQ1dWFKVOm4NNPP8WWLVswODiIwcHBCb6riSUcDnMNt27dikgkwjUcGxvjnciBAweyavjWW2+hoaEBnZ2dptMwEongwIEDGBkZSbPDQjT87LPPTKWh6Mtkhw0NDQgEAtiyZQv27t2b05f//e9/o6GhAR0dHSWloeHjAXFmVt4OPtvO0oS8fEy+lhnWLheqIZV2KA2VHRaC3lJEWcNcs97ijvylpKGFmeETVCgUigIwPKJUKBSKUkc1lAqFQpED1VAqFApFDlRDqVAoFDlQDaVCoVDkQDWUCoVCkQPVUCoUCkUOVEOpUCgUOVANpUKhUOTg/wFs2UydQEdXHwAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -2761,7 +2523,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK8AAAB2CAYAAAC+o8OSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAWwUlEQVR4nO2dfXAbR/3GH92dTifJkt9k2Y7t1E4aasvyW0wayIQhTUObZNoUmjCFlpZJxtBCM9OBUmBoAwXyB+V1pjOlpTAlTDNAKQGmpJ0Q0gSGkGmgdtK6DnWbguPEjhNjS7b1etLd/v7Ib7crRbZlW25yw35mPJZ0t6vd55777nf3TpKNEEIgEFgQ6Uo3QCCYL8K8AssizCuwLMK8AssizCuwLMK8AssizCuwLMK8AssizCuwLAU3b3t7O6ampnJue//734+//OUvs9bxxBNPoKWlBe3t7QgGg3j88cfZtscffxzBYBAtLS1obW3F3r172bZ//vOfWLNmDVwuFz760Y9m1DnTNgDYvXs3li9fjuXLl+Phhx/Oq69XgkLoCwD79u1DS0sLgsEggsEgBgYGAACjo6O49dZb0draiqamJnz6059GPB4HAPz+979Ha2sr2tvbEQgE8PDDD4NeoI3H47jnnntYfVu2bMHo6OiC+zsj5D2ks7OTHDlyZNb9wuEwezwxMUHq6upIT08PIYSQQ4cOse2Dg4OkvLycnD59mhBCyNmzZ8nx48fJU089RW677baMOmfa9te//pUEAgESiURIIpEgnZ2dZP/+/fPv6BUiX317enrIddddR4aGhgghhExOTpJoNEoIIeSBBx4gX/jCFwghhKTTaXLzzTeTJ554gu1nGAYhhJBkMklWrVpFfve73xFCCPnRj35Etm7dSkzTJIQQ0tXVRR566KGC9i+bgkdem82GcDgMADh27BiLntu3b0c6nc6rjuLiYvY4Go0ilUqx5zfeeCPbXldXh6qqKpw9exYAUFtbi+uvvx4Oh+OyOmfa9txzz+Huu++G2+2Gw+HAjh078Ktf/SrvPr+XFELfH/zgB/jiF7+IJUuWAAA8Hg9cLherf2pqCqZpQtd1xGIx1NbWsv0k6ZJlEokEkskkbDYbKxeLxZBKpZBOpxGJRFi5xWLRcl5d13HHHXfg+9//Pt544w188pOfxGuvvca2P/XUU/j6178+bfnf/va3aG5uRn19Pb70pS+ho6Pjsn0OHTqEUCiEVatWLaitg4ODuOaaa9jz+vp6DA4OLqjOxWYh+p46dQqDg4P48Ic/jI6ODuzatQuGYQAAdu3ahdOnT6Oqqgp+vx9NTU3YsmULK3vs2DG0tLTA7/dj/fr1uO222wAA9957LzweD/x+PyorKzExMYGdO3cuogKLaN4333wTiqJgw4YNAICbbroJy5YtY9vvu+8+fOtb35q2/LZt29DX14f+/n7s3bsX/f39Gdt7e3uxfft2PPfcc3C73YvTiauYheibTqdx4sQJHDhwAEePHsWxY8fw5JNPAgB+/etfIxAI4Pz58xgeHsZbb72Fn/3sZ6zsmjVr0Nvbi7Nnz6K7uxt/+9vfAAAHDx6EaZoYGRnB+fPnUVJSMmNwKgTv6WoDHWLmQn19PVavXo39+/ez106dOoVbbrkFzzzzDNauXbvgdi1duhRnzpxhzwcGBrB06dIF1/tek6++S5cuxdatW+F0OuF2u3H77bfjlVdeAQD8+Mc/xl133QVZluHxeLBt2zYcOXLksjoqKiqwefNmPP/88wCAp59+Gh/72MegaRpUVcVdd92Vs1whWTTzNjY2Ip1Osw4cOnQI77zzTl5lT506xR6Pjo7i8OHDaG1tBQD861//wubNm/H000/jIx/5SEHa+vGPfxzPPvssotEokskknnnmGXziE58oSN2LxUL0vfPOO1mkTKfTOHjwINra2gAAy5Ytw4EDBwAAqVQKf/rTnxAMBgFcivamaQIApqam8OKLL7LjsmzZMhw8eBCEEBBC8OKLL7Jyi0ahZ4AASCgUIoQQ8ve//520tbWRYDBItm/fTtra2ths+MknnyS7du3KWcdnP/tZ0tTURNra2khrayub7RJCyIYNG0hJSQlpa2tjfwcOHCCEEPLmm2+SmpoaUlpaSjRNIzU1NazsTNsIIeSb3/wmaWhoIA0NDeSrX/1qoWUpGIXQ1zAM8uCDD5LGxkbS3NxM7rvvPpJMJgkhhPz73/8mN910EwkGg6SpqYns2LGDxONxQgghjz76KGlqaiKtra2kubmZfOMb32CrC2NjY2Tr1q0kEAiQQCBAbr/9djI6OrqoWtgIEZ+kEFgTcYVNYFmEeQWWRZhXYFkKZt5XX30VmzZtQkNDAzo7O9HR0YHdu3ez7evWrcMf/vCHOdUZDofxqU99CsFgEK2trQgGg/jlL39ZqCYDAPbv349169bNut+ePXty3hOxmAhNZ0aZd0mO3t5ebNy4EXv27MEtt9wCABgfH8d3vvOdBdX7yCOPoKKiAr29veyy5cjISCGafNUjNJ2dgkTexx57DF1dXUxkACgrK8N3v/vdBdV77tw5VFdXs8V3j8eDFStWALh0cNeuXYuVK1ciEAhkRKRHH30Ud9xxB2699VYEAgGsX78e4+PjAC6tXX7+85/HihUrcP3112cspI+MjOCGG25AZ2cnmpubsXPnTrau+V4jNJ2dgpi3p6cHq1evnlfZF154AV1dXTm3PfDAA3jsscfQ2dmJnTt3Zlxlq6+vx8svv4yenh50d3dj37597CoRABw/fhx79uzBqVOn4Pf78ZOf/ATApStB/f396Ovrw9GjR9HT08PKlJSU4I9//CO6u7vx+uuvY2BgAL/5zW/m1a+FIjSdnUWZsD300ENob29HTU0N+vr6Ztx3y5YtGdfOeW644QYMDg7i29/+NkpKSnDvvffi/vvvB3Dp/tGuri60tLTgAx/4AM6cOYOTJ0+yshs3bkR5eTkA4IMf/CC7+vTyyy/jnnvugaqqUFUVO3bsYGVM08RXvvIVtLW1oaOjA6+++mpGnVcSoenlFMS8HR0d+Mc//sGef+9738PJkydht9szbmecD263G5s3b8bu3buxb98+PPvsswCAr33ta/D5fDhx4gRee+01rFu3DolEgpXTNI09lmV52tsF+fsBfvjDH+LixYs4fvw4Xn/9ddx5550Zdb6XCE1npyDm/fKXv4yf/vSneOmll9hruq7nfX/pdBw8eBChUIg97+7uxvLlywEAoVAItbW1UBQF/f39+POf/5xXnRs2bMDevXuRSqWg6zp+/vOfs22hUAhVVVXQNA0jIyPsppMrgdB0dgqy2tDW1oaXXnoJu3btwv3334+KigrY7XZ87nOfw/ve9z62X1dXV8Y9ns8//zxGR0fxwgsv5Bzment78eCDD4IQAkmSUF1dzT7288gjj+Duu+/GL37xCyxfvhzr16/Pq62f+cxn8MYbbyAQCKC0tBQf+tCH0N3dDeBSPrht2zY0NzdjyZIl7HbDK4HQdHbEvQ0CyyKusAksizCvwLII8wosizCvwLII8wosizCvwLII8wosS94XKebzsfX/Fea7VC40nZ58NBWRV2BZhHkFlkWYV2BZhHkFlkWYV2BZhHkFlkWYV2BZhHkFlkWYV2BZhHkFlkWYV2BZhHkFlkWYV2BZhHkFlkWYV2BZhHkFlkWYV2BZhHkFlkWYV2BZhHkFlkWYV2BZhHkFlqUg3887H+jHviVJgizLAC59BbxpmtN+7Fl8G+vMTKepYRjTlrGyplfEvDabDU6nE6qqoqSkBDU1NZBlGcPDwxgfH2e/Rk6/AFmSJKTTacTj8Sv26zxXOzNpOjY2lhEYJEmCzWazvKZXzLwOhwMulwt+vx9NTU2w2+2w2WxIpVJIp9NIJpMghECWZciyDF3XkUwmLSv0YjOdpgCQTCZhGMZlAcHqms7LvDabbV7Djdfrhd/vh8vlwpIlS1BaWgpN0+DxeAAATqcTbrcbpmmy1wAwoe12O9LpNDsQhmEw8a08/AHz17S4uBiVlZXQNO0yTQkhTFMeSbo01dF1HaqqIpVKMU1N00QikbCEpnM2Lx1yCCHsL1/q6+uxceNGVFRUoKOjA/X19Th37hxOnDiBiYkJ+Hw+JBIJqKoKj8cDWZZZJE6n09B1HYZhIBKJIBaLIZFI4MKFC5YRezoWqummTZtQUVGB9vZ2XHPNNTh37hy6u7sRDofh8/nYie/xeCBJEtPUMAxm3Gg0img0ing8josXL7J04mrWdE7m5b9bay6RQlEUyLIMj8cDv98Pv9+PyspKVFZWIhKJQJIkmKYJSZJgt9uhqipcLhcURYGu60ilUjBNEw6Hg00+6HurqgrDMNjfXA/+lWahmhYVFaGioiJD16mpKVYX1dThcMDpdEJRFJZG0LkFTRvof1VVmbmvZk3z/kEVKjIvdj5FXS4X2tvbUVtbi7KyMtTV1UGSJEQiESQSCUxOTmJ4eJjlX7quw+FwwOv1QlEUqKrKcjf63pFIBNFolKUN6XQa4XAY4XAYuq5jampqxt8qm+0L7mYyES3LH9CFftHeQjQtLy9HbW0tZFnG1NQUEokEJiYmMDQ0xDRNp9MZmtrtdjbHyKVpIpGAYRgIh8MIhUJIpVJXpaZzThvmeqA0TUNbWxtWrlyJaDSK8fFxTE5O4vDhw+jr64OiKNA0DbIso6SkBEVFRUwku92O4uJiOJ1OyLIMVVUBXPoBO7vdDkmS2LahoSEMDg4iGo0ikUhMK/RMIvMHkx/G+e00X6RRqhAR6Upo6nK5MjSVJAmKokCSJGiaBkmSMDw8DEmSWIq2WJpml8979MlrrxwNmu1NvF4vysrK4PV6EYlE8M477yAej2NychLRaBSRSISlADQtiMfjsNlsUBQFhmGwnDcWi7HIQSdtVASas9G0xG63Ix6Ps9wumUzm3S/an1wiZ+8zW//nAj2Asw3PXq8XPp8PRUVFC9I0nU5naMr/miUhBOl0mpVZbE2z9ZyLpnNOG+jSFSGE5U25WLlyJW688UaYponjx4/jzJkzGTkWHeKAdycssiyzx/xrsizD6/Xi2muvhdvtZks9/Hqww+GAqqrQdR1DQ0OIRCIYGxvDhQsXFn0paKFpgyzLUBSFGWcmTTds2ADTNPHKK6/MW1MaYb1eLxoaGthETpbljPpUVYWmaUgkEhgeHkYkEsH4+PhVo+mcv1ya5qG80Nlnj81mQ3FxMerq6pBMJlnnsxtF66RCzHQlyDRNRCIRyLIMh8MBRVFYfYZhwG63w+v1IplMwuv1QpIkxONxdqIVMkryfS1EXYqiwOFwsAnWbJrqul4wTePxOEsz6NyCXtCgqz6qqiISicBms11VmuZt3urqakiShBUrVqCxsRGSJLFZK11yAcBmp83NzWhsbEQymcTq1avh8XgQj8cRiURgmib7HV1d19lEgR40Qgh7TF+nBysUCqGxsRENDQ2w2+3QNI0ZGQDS6TSqq6uRSqUwMDAATdMQj8dx4cIFRKNRltvZbDbWVl40PgejkYqiqiqb9ExNTSEajeYtdD6aAmBpEK8pDRLBYBCNjY1IJBJYtWoV03RqagqGYbClRF3XEYvFMjTlr7DRx4lEAkNDQ3A6nZdpSg1Kj2lVVRV0Xcfg4CBcLhdisRguXrzIVov4YJJryY/qymtqs9mgqiqKi4vZhDMSieSt35zMqygK1q5di02bNrHIlkqlWB5ETWkYBmpqanDttdcikUhgbGwMPp8P4XAYIyMj0HUdkUgE8XgcsVgMo6OjGWuPfDpAxaZC2+12NDU1oaGhAUVFRaisrITT6cTk5CQmJycBgM2ki4uL2ayZzqZp5KamyF5640WWZTnDzEVFRaiurobD4cCFCxdYG+cL1XTNmjW4+eabIcsyWx3gNY3H4zAMA7W1tVixYgUSiQRGR0fh8/kQCoVw/vx5pikNBmNjY5dpSvNgelLQgGC32xEIBFBfX5+h6cTEBMLhMIBLJ67NZkNZWRlM00Q4HGZ5Np340YDAB55sTWngoH8ejwc1NTVQVRXDw8NIpVKFn7DRKBuLxViDdV1nZzHNrYB3hzl6INxuN8rLy9lwn0qlEI/HkUwmEY/HUV5ezg4YrY8ag16goCIoioK6ujqUlpbC5XKhqKiIDbmsU/8vkN/vx9KlS1FSUgLDMNiPT2uaBgAZdfPt5vNF3rxOpxNVVVVseI3H4wsyL9WHaqooCus31ZRe9jVNk2mq6zrTVFVVdizoikAikYDP52PRm2pKozp/sw7VtLa2NkNTTdMy0heaJ/t8vgxNfT4fW5vnRzN+fZj6gs5feE3dbjeqqqqgKAo7UfPNp/M278jICCRJwltvvQWfzwdVVaGqKiRJgtvtRlFREYtq9EaakZERAEBVVRUqKyvZQQHeTS+okNlDW/biOB8ZKyoqUF5eDrvdDqfTyWbBuq5n7FteXo7rrruOGSSVSjEBgXdzO/qY1k/hJ1T0IDudTpimicOHD+Po0aMZ5p8rVNO3334bZWVlGRcS6GVdepGBXiIfGhqCzWZDZWUl/H5/RoqVnXZRnWk/+TSJx2azwefzoby8HIqisGW00tJStrJAy/l8PjQ1NSGdTiMSiSCVSrE20v3oX3bk5TWlk25ZluF0OmEYBo4cOQJZlmfM03nyNm8sFoMsy5iYmMDFixehaRpcLhcTlkYzeobSzsmynLFWS4d0vlP82ml2zpsrmecX2en708V3XjxN01BSUpJRdrpbMGeKoPyMnY4cfX19KCoqylvomTQNh8P473//C03T2EgCgEVVGtVoGkDXb6fTNLuPvJmoptlrq4qisGNHgxKvKa2H15S/S43PebO1zfV+1Ly0vbymBY+8tANjY2N4++232QxZkiS4XK7LogRvTE3ToKoqE4PvCN8JKj5PrgkUP7TTx/xByrUWy0duerJk941/z+zX6PvTof3kyZMYGBhYUNpA32N8fBynT59ml3GpZlRTOlrwWjmdTtjt9gxNeQ35SSzfL17TbB2zgwltI2/e7Pbn0tRms2WManQ7f2x4Y9Noe/LkSZw5c6bwOS89c+lNG7yQdJ2SF4gXm3aMCk238x3j13Tpa9kG5VcJsgXk33umPvD70DbyKQs/CmSnM7QNpmmiv78f//nPfxa03kk1HR0dRTKZzGgbjYQAptWZmpRqStvOR15+rZcfQabTlDfYdBdPckVSCn+TEdWGHlM+laCjCO3DfDTN27x0wkAnBLzp+GGDF5A/+6kZ6dCUK6Ly4lLx+X15EfLpYC4hebLNS8meNVMj05PLNE3EYrEFrzbwmtIrYfzJz09u+Lybhx/uadt5/fhAwAeGmTTlzcuTffLnIl/z0skybRshBIlEYk6a5m1eOjGhy1Z8o6iA9HH2FZ1scqUBuUSg+9KO56ojV5nsYQ9AxmRltgNAy82Uz4ZCoQWbN1tTfuimETX7hOdXdCjTpVbZTKdpPlE1+1jyIxJfNhf869kTZL6+uWo6p8hL/9N1Qt68VGg6vObqLP+fP1DZneCh2/kzOVfZ2XI2GknziSa52ppdXyHud51JU3qy8Zryfc41yZyvprwGueYE2YGI1jfTpezsNvF9nk7zud6XvaCPAVEz0LOFPs4l4nTmpY/5bdnweVeu2Wt2PblytZlEm6t5ASw46k4H1ZReKeM15duSa1K6UE35bdmaZJ84tK35aJDr5C+EpnO+MadQ+1mdXOaZK0LTTOaqacE/gLkY0eh/HaFpbsSXjggsizCvwLII8wosizCvwLII8wosizCvwLII8wosizCvwLII8wosizCvwLII8wosizCvwLII8wosizCvwLII8wosizCvwLII8wosizCvwLII8wosizCvwLII8wosizCvwLII8wosS95fOiIQXG2IyCuwLMK8AssizCuwLMK8AssizCuwLMK8AssizCuwLMK8AssizCuwLP8HrCc374KV5soAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK8AAAB2CAYAAAC+o8OSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgR0lEQVR4nO1deWwc5fl+Zmd39l6vHdtxLhPndMw6duo0TaoICEmoSSkqpChCpaUprqClFVVbaNRLVeEPoJUKCCkQWgQ9FVpUGjWIRi6kRQWphBJIIEUiBw52nNjxrr3r3Z095vv94d/7+d3JOnESjzMb5pFW9u7cz7zz3t83ihBCwIGDCoTrUp+AAwcXCkd4HVQsHOF1ULFwhNdBxcIRXgcVC0d4HVQsHOF1ULFwhNdBxcIRXgcViykX3vb2diSTybLLVq5cib17955zH7t370ZHRwe8Xi++/e1vlywzDAPf+ta3sHDhQixatAiPP/64XPbYY48hFouhtbUVy5cvx+9+9zu5bHR0FFu3bkVrayuam5uxbds2UHHRMAx873vfQywWQ3NzM+644w7kcrnzv/hpgNX83n333Whvb5cfn8+Hxx57DACQyWTw5S9/GbFYDLFYDDfeeCMGBgYAjHH4ne98By0tLVi+fDnWrVuHDz744KKu9ZwQ04iOjg7xyiuvnHO9999/X+zfv1/88Ic/FPfcc0/JsmeffVZce+21olAoiNOnT4vGxkZx8OBBIYQQ3d3dIpFICCGE6OnpETNmzBAffPCBEEKIH/zgB+JLX/qSMAxD5HI50dnZKZ577jkhhBA7duwQ69atE7quC8MwRFdXl3j44Yen7sKnCVPBL8eJEyeEz+cTJ06cEEII8ctf/lJs3rxZGIYhhBCiq6tL3HvvvUIIIf7yl7+IVatWiVwuJ4QQ4v777xe33HLLxV3QOTDlmldRFCQSCQDAa6+9hvb2dsRiMWzduhWFQmFS+1iyZAna2trgdrvPWLZz50587Wtfg6qqqKmpwZYtW/DHP/4RALB+/XpUVVUBAObNm4eGhgYcP34cAPD222+js7MTiqLA4/Fg48aN+O1vfyuXbdiwAZqmQVEUXH/99XKZ3WA1vxzPPvssPvOZz6ChoUEeO51OI5/Po1AoIJVKYe7cuXKZruvIZrMQQmBkZEQuswqW+by5XA5btmzBL37xCxw8eBC33nor3n77bbn8iSeewE9+8pPz3m9PTw+uuOIK+X3+/Pno6ek5Y73u7m7E43F88pOfBAB0dHTgT3/6E3RdRyqVwgsvvIBjx47JZbt27cLIyAjy+Tyee+45ucyusIpfjqeffhp33HGH/H7nnXciHA6jvr4eM2fOxPDwML75zW8CAD73uc/hmmuuQUNDA2bNmoV//OMf+NnPfnZRxz8XLBPe//3vf3C73diwYQMA4LrrrsOCBQvk8rvuusuyiztw4AC2bt2KnTt3IhgMAgC2bduGxsZGfOpTn8JnP/tZrFq1Smqer3zlK+js7MTVV1+Nq6++GkuWLDmnVrrUsJrfV199FclkEps2bZK/7dmzB4ZhoL+/HydOnEA0GpUPyL59+3Dw4EH09vair68P69evx1133XXBx58MpjXboCjKRe+jsbERH374ofx+7NgxNDY2yu/vvfcebrjhBjz99NNYu3at/N3v9+PRRx/F/v378c9//hO1tbW48sor5Xn99Kc/xVtvvYXXXnsNLS0tclklYSr4Jfz617/G7bffDlVV5W87duzATTfdBJ/PB03T8MUvfhGvvPIKAOA3v/kNrr32WkSjUbhcLtx+++1ymVWwTHibm5tRKBTkBXR3d+Pw4cMXvd9bbrkFTz31FIrFIoaGhrBz505s2bIFAHDo0CFs2rQJO3bswMaNG0u2GxkZQTqdBgAcPXoU27dvx3e/+10AQDabRTweBwAMDg7iwQcfxH333XfR52olrOIXGOPqz3/+M7761a+W/L5gwQLs2bMHQggIIbB7927EYjG57OWXX5ZZmr/97W9ymWWY6ggQgIjH40IIIf7973+LtrY2EYvFxNatW0VbW5uMhrdv3y5+/OMfl91Hd3e3mDNnjgiHwyIUCok5c+aIv/71r0IIIQqFgvjGN74hmpqaxIIFC8Qjjzwit9uwYYOIRqOira1Nfl566SUhhBBvvfWWWLx4sVi2bJlobW0Vzz//vNyuv79fNDc3i5aWFtHc3Cy2b98+1bRMGazmVwghnnzySXHVVVedsd3p06fF5s2bRUtLi2hpaRE333yzGBgYEEIIkc1mRVdXl2hubhatra1i48aN4vDhw1N78SYoQjgjKRxUJpwKm4OKhSO8DioWjvA6qFhYLrz79u3D9ddfj6amJnR0dGDFihV44IEH5PJrrrkGL7zwwnntM5FI4LbbbkMsFsPy5csRi8Xwhz/8AQDwzDPP4POf//yE50KZiXLYu3cvXnrppfM6l0sBh9MxWJqJP3DgADo7O/HMM8/ghhtuAAAMDQ3hwQcfvKj9/uhHP0JdXR0OHDgARVGQTCbR399/zu1WrlyJnTt3ll1WKBSwd+9eJBIJdHZ2XtT5WQmH03FYqnkfeughdHV1SZIBoKamBg8//PBF7fejjz7CrFmzZFI+HA5j8eLFcnkqlcKtt96K1tZWrFy5EkeOHAEwpgXa29sBjBU3otEovv/97+MTn/gEHn/8cTzxxBP4/e9/j/b2dstLmxcKh9NxWKp5//vf/2Lz5s0XtO2uXbuwa9cu/OpXvzpj2T333IMvfOEL2LlzJ9asWYPOzs6Sm/nGG29g//79aGpqwrZt2/DQQw/hySefPGM/w8PDuPLKK/HQQw8BGDOdiUQCjzzyyAWd83TA4XQc0xqw3XvvvWhvb8ecOXPw7rvvnnXdG2+8sSzJALBu3Tr09PTg/vvvRzQaxZ133om7775bLl+zZg2amprk/xNVnjweD2677bYLvBp74OPMqaXCu2LFCvznP/+R33/+859j//798Hg8yOfzF7XvYDCITZs24YEHHsDzzz9f0sLo8/nk/6qqTtgqGAgE4HJVVsLF4XQclh7lvvvuw1NPPYUXX3xR/pbL5SbddzoR9uzZI3sRAODNN9/EwoULL2qfABCJRDA8PHzR+7ESDqfjsFR429ra8OKLL+LRRx9FU1MTVq1ahXXr1uHrX/86lixZItfr6urC3Llz5ef111/Hrl270NXVVXa/Bw4cwFVXXSXTOrt27SoZ8nOhuOmmm7B//35bB2wOp+NwehscVCwqy+Fz4IDBEV4HFQtHeB1ULBzhdVCxcITXQcXCEV4HFQtHeB1ULCbdmDOVw6onC1VVsWzZMixcuBANDQ1YvXo1otEoBgcHMTg4CJfLBb/fD0VRsHfvXvz973+HrusoFApyHjI6byvT2Re670vBqdvtxvLly7Fs2TLU19djzZo1qK6uRiqVQiqVkusJIdDd3Y3du3cjm80im82iWCyWnPel5nTaZ9Y4nwt3u92IxWK47rrrEA6HMXfuXPh8PkSjUdTW1sLtdqOqqgqqqiKbzSKdTiMej+P999+Xpc6PQw3mfDhVVRVLly7Fxo0bEYlE0NjYiEAggFQqhdHRUbhcLgQCASiKgng8juHhYcTjcbz77rs4ffr0pI8zHZhW4VUURTZtGIZxThJIS9x8881QVVVuk0wmkU6noWkaamtr4fV6AYyR2tfXh1OnTpXU6Sc6Fw673JDzhaIoJddyrutQVRXNzc3o7OyEx+OB2+2GoihSeDVNQ01NDTRNQy6XQ7FYRG9vL3p7e6Xwnu1cOKzmdNo179kuyOPxQFVVeL1eRCIRhMNhRKNRqKpa0qnk9XphGAY0TZPbBINB1NbWQtd11NfXI5VKSW0shDjjYRFCXBKzPdXg11GOW7fbLTkNh8OSU/rd5XLB5XJB0zQUCgUp0KSBZ8yYAV3XUVdXh2QyiWw2i0wmA8MwLjmn0yq84v9nWikHl8uF6upqRCIRzJs3D2vXrpVTMmUyGbjd7hJB9fv9knjDMFBXV4e2tjbMnTsXuq7j+PHjOHr0KN577z3ouo5MJnNG51WlalszDMMo+7vL5UJVVZV0uT796U+jrq4OsVgMhUIBiqJA0zSoqopAIACv1ys5FUKgvr4ey5cvx+zZszE6Oio5PXTokOTU3IY5nZxestnk+BOqKApUVYXf70ckEkF9fT2WLVuGmTNnoqamRgqdx+OR65pNpd/vR21tLVRVxbx586CqKlKpFHw+H4QQyOfzZTXF5QSz1qOANhQKoa6uDkuXLkV9fT1qamqkIiG3g5QD58Tv92PGjBlwuVyYN28eXC4XRkdH5Qya5FZcKk6nVXg9Hg98Ph+8Xi/mzp2L6upqeL1e+P1+eDwe1NXVIRqNYubMmZgzZw7C4TA8Hg9yuRyEENA0beyk3W643W4YhiGXUU+rqqpoampCbW0tqqurMWvWLORyOWSzWeTzeSQSCZw6dQqZTAZ9fX1yrttKhdvtlhPfzZ49G9FoFD6fD8FgEB6PB7W1tYhGo6ivr8cVV1yBSCQCr9cLXddhGIZ0E8hVAMaE0jAM6LqOfD4Pl8uF+fPno7a2FjNmzCjhtFAoYGho6JJwOq3Cq2kaqqurEQ6HsXr1aixduhShUAj19fXQNA3RaBShUAhut1t25OfzeSmg3B8DUCK0RLSmaVi6dClcLhdisRiSySQMw0ChUECxWMSRI0fw5ptvYmhoCLquV7zwapom44OOjg4sWbIEkUgEDQ0NMjMTDoehaRqCwaDklISXNC65EIVCAblcTq6Ty+Xg8XiwdOlSqKpawmmxWIRhGDh8+DD27ds37ZxOi/CSwEUiEcyaNQuRSATV1dWoqqpCIBBAIBCAx+OBx+MBMGb+yBzRTOYul6vkN1qHAgfaTlEUGIZRYg4Nw5B+XDAYRE1NDRRFwcyZM5HJZJDJZDAyMiLzmJUAM6fhcFhq2VAohGAwCE3TpE9LvAAo4bRQKEh+VFVFsViUvAJjroeiKCVuBnGqquol5XTSzegXGkWqqooZM2YgEAigtbUVGzduRFVVFSKRSEnQBYwHdKR53W436urqUFNTA13XEY/Hkcvl4PV65RT8HOTbxuNxGaDRlJt0A3O5HDKZDHK5HE6cOIHh4WEcOnQIe/bswcjIyKRSeGZMd5GCcxqLxbB+/XpEIhFEo1GZo+VCB0BySu5ZdXU1dF3H4OAgdF2H1+stCdg48vk8hoaGbMep5ZqXgoZIJILZs2ejtbUVkUgE+XxePuXcxyIzRakwYCxwIP82k8mgWCyiUCjIFA/dKLfbjUKhgHQ6jWQyKdcDxtNwmqYhFAoBgLyBdPNIO9s9kCvHaVVVlbRCJGDFYrGEU4obFEVBMBiEEAK6riOdTqNQKCCfz8vAWVVV+SkWi7bk1HLh1TQNixcvxvz589HY2IhcLodkMilJFUJId4DMVbFYlEQqioKRkRH5Ag/uKqiqCp/PJ80Xad5EIgFd10tIKxaLcLlcyGazcrZvEvrq6mq0trZiaGgIPT098vVMdgXndN68ecjn80ilUtL/JwEmTulDAS0wNp9CoVBAMplEoVDA6Oio5JSsHvGXy+UwPDwsX5bCOVUU5ZJxarnw+v1+rFixAqtXr4aiKMhkMkin00ilUtB1XZpOSoGRb0sBxalTp+ByueDxeBAKhaCqKpLJJJLJJFRVRTgchtvtLgnsiFyXyyXfLUGmizSMy+VCTU0NgsEgGhoasHbtWiQSCbz88su2F14zp5RzHR0dPYNTcgNIIRiGgZMnT0q/NxKJwO12I5lMYmRkBG63WwbNFLSV45QXfrjWnk5OLRdeRVHg9/sRDoelgE0UaHETwzUprev1eiVZpFlof0Qg3x8RDKBEu5MGohtCETtlNOwOzillWogjM6fc7zVzSv8DkJwC46myfD5/Vk75MSkwm05Op8XnDQaDqKqqkg4/Rbf8jTs8yKBImsjN5/MQQiCTycjfaRIMeicYHYv2RUSTkNPNomPzoMTv98u8cjgctpqSi4aZUxLGiTjlH+KUeEmn0zLrQD0inHPS4jwANHMqhJD+Ma1PnIZCIekPTzWmRfNqmga/3y9LkgDKRrW8cYc0I/ff8vm8XIdMFz0MRB7tG4DUtABKiOagIIYyHxQk2hmcU/Llye0yp6Y438QP15SkWWk5F066R2YtbuaUjsN7LDRNg8/ng6Io8qGYakxLntd8gTxLwF0AACU5Wr6teX/04RrVXHIuJ6zUkEL+NdfE5gYgO8N8XRQXKIpyBqeU4+UPNf0182x223h+ly/nUFW1pNGH543NpfypxLRV2MhPoqefNKeu6zIFw5uduZaYaF/c5+Ik879mst1uN4LBoCSWllH1rpJg5pSuZzKccoHkXE3EqXk9zqnH40EgEJDCy3PL9EBZAUvvFteg3PQA46adzBKBa4CJ/nJiuSBPpEXo+HQ8rmHND4fdNa8dOeWZItqOL7eKU8uEl0yJ1+uFx+OBpmky7QKMN9cA4xPF8UCCAgZeqqS/uVwOuVyuJLgDIAsX/DegNHDhZowyEPSblSZuKlApnFIMYjWnlgkvkcD7cPnFq6paUkkjX4kn1znRPOVDeU2qBgHj2oO0jjmrwP8nMnlzCddgdkUlcMp7I6zm1DLhdbvd8Pv98Pl80g/iwgKMP73UPGK+cPK3yG8jn03TNBkN002kfZsJo32Q1qJjASgJauh87IxK4tQcpPMHZcr4mNK9MXi9XkSjUTnkhJcoeTKdAihzspt8MNrOnEYjgmkMFk+yA6XpMjoONfRQsUPXdXljy6WE7IZK4ZSOY+aUbzsVsNTnpTFmvDJjjnS52THnfs2RLTdXtF+e4+TBlzltxtNjZE7NQsrPgQcudkGlc3oh3WVng6VuA/Xq0lOcz+eRzWYBjN2IUChUUj83+1PmfCR9yETx4IIn2c2E02gDv98v/UUz0aRxAoEAqqqqkMvlkE6nbSXAduWU+9pcwGl7v9+PaDSKXC6HVCo1ZZxaKrw0PIV8LGrVI7K8Xi8URZHlTU4mNzNm559uAk978RykuWmdzJvX65VCStU+7pu5XC45hMblciGTyVhFzwXBrpzSNuSKmDkNBAIIhUKyKcv2wktmiJs4+h1ASZeTuf5uhtkUkS820fr8RlCahxcleHMQgW4SnTeVou0EO3NK25s5pWORNp9KTi31ecms8CiXhpDk83k5QwtVt7LZrDR35fwjevozmQx0XZcEUtcSHYPIp7QSDyyy2aw0XVTX5+kjTdMQCARKyql2gV055VML8C5A+pDFmGqFYHmelwdAwHj1h1r5eAmRSJqMWTGXMM3gPhtPlFPek1I6/HfSLOaEvF1gZ055McScWrOqWGGp28CjTDJJwWAQ+XwefX19SKVSqK2txaJFi2RSnS6Sm3FzwEGBl7m6Q3/pN57MJ42QSCTQ398PwzAQjUblEHGekPd6vTJdZCfYldN4PF6WU3oYSJNPNaeW9jbwygwFSIFAAJlMBv39/ejp6UFTUxMaGxtlEGImtZwPRkl4Dh548Aia1qPAZmRkRI4kiEQiJUNeSHitIHqqYHdOw+GwHOjJA0NyR6YSlroN5pwpXQQNMUmlUnJAJS03mzhugrgwlTODPL/JyaYgrVAoyOEydF40BJwfz66oBE4BSI0PoORhMbsTFwtLhZfMC0WjHo8Hfr8fQozN9Njb24toNIpsNitHRlBjCfefyGTRhfOG63KEcF+PJtLIZDJIpVIYHBxEX18fPB4Pli1bJkfR8hs31VHxVMHOnPb29kLTNLS0tCAcDkvLAIxr9aluObXU56WL5cJB5iOfzyOdTstJi4k8/pQCpU88Pc0TaREegAHjfprL5ZImjiJjirKpzGpu47Oj8NqVU5pkhI7n8XhKgmJ+3lPJq2UhNSX8uX+kKIps5xsdHcXg4CDi8bicjhSALH9ymC+Yql80FJsvp6CETCa5BdlsVo6QHR4eRjKZlG4DaQRebbOj9rUrp6lUCsPDwzIFSTEEn1HdCj4trbBRBQaANCGUG8xkMiVEU4RK7XjmJDrXBDSxCPW0moWPlyk9Ho8cSp9KpZBMJjE8PCx7W6mbisDr9XaDnTmluTVIeAGUWLmp9neBaRxJYf6NCKMSJ92IcwkOmR/ez8orORw87UOahZLxFA3TcjoPs9axGyqF03KB3lTD0gobTzmZTTJN80SR6ujoKGpqauD1ekv6Dsz+maIoMicJjE/KV84skdahWXQ++ugj9Pf34/Tp01JQabpPGklAmsOOoyqIU3N52E6cUpWS7j1ZMj66e6pgueblKRP6jUikXlM+98LZtARty00an9y4nEai/WWzWXlDaS4tHkzwAKfcvuwAnioD7M2pOTVmRSBsaaqM+1T0IbNG0S3/zawVJvrQdsD4SAAii0fhRDQAZDIZJBKJkjm96Jj8uHb2eYHSm29HTvl6Zk4rTvMSMaQRqHmDiCJiJqqLm0uZZ1yAqRJmbt+jbVKpFIaGhuQcaeZp/rkZtbPwAigRKDtyagbvF6mIVJkZXIh54weRbJ5eaKLtaRvSNOUaSMzb8Zt9tsYTK02cFagUTq3icVqme6IGcGC8Hk5PKE1dGggE5AR4ZvNiNmuUjOfNInwd+t+sRSe6MeUCGLvD7pzSMSoy28DBT9z8dBuGId+BwAOoiWA2ifyJ59txsidDXLmUkJ1hZ07PlmabSkyb8NKTz80Mfedz6/K2v3L7AcbSNcFgEMB4uZI/3VT7p3wlaRI+RJuOTb4c+WWk0SpBeD/unE6L2wCUtvKZZ2yhMiLPsZ5tf/Q6LNIY5oiabiIni1eO6JwoPUY9DvSxa3kYKJ1u6ePO6bT08/KUizmfCkxchSlXyjR/5385yeXOhd9EXq83ZxysDDIuFmbffCJOzc04hMuJU0sbc7hzryiKfDEHvcCD1vP5fGe8W4LX0stdtHnYDu92IvAcrs/nQygUknPGApDDxvkrSK3q+p8K0LXytFM5TmlmnWAwKJtkLkdOp0Xz8ieYZt0mE8dviDkCBsqTzG+E2RxOpCU8Hk/J8B7SWJTMp2Px2r0dYa5eTcQpNetwrUi4XDidtoDN3FNLF0daIhAIQAgh3+dVDqQB6GZxE1ouQub+Ns0kzueLNaeYuGmzq/ASzsYpjTL2er0wDOOy5dRS4eUX7nK5JJHcxHk8HvlSQSEERkZGkMlkzqgMmX08ej9FOU3BNRNpE3oBCZk40ljZbFbuoxI072Q4pbnKQqEQisXiZcvptOSDuIkzlzIp5UJPr9nZL7cvvs+zHZM0B3VImRvP+SR157NvO2AynJI5v1w5nZbeBqrwFItF2Xmv6/rYCbjH3vtFb3g3BxblQNPI000qFzUriiJffpdOp+H1elFdXS1fnEIuyvDwMPx+f8kw8YkidTvA4XQc0+rzUv4xk8nIJ5P8M8o2TAblkujlUCwWkc1m5etLA4GAHJQohCiZUBkonRfB7nA4nYaWSLOvZI6MuYnjeWFKm5n3AYz3p55rFhi+DUXGvJGb+l75MBWe4rMbHE5LYanwms0FBRfZbLakUdrr9cLn80nfiXypiaJUHmhQCZQHGeYEOWkIHlwAYxF2JpORY7yIYLuOpDgfTmnC58uZU8vzvNxc8P5Tc9TM/aHJmC9g4gYQDh5Z8/o6b+czp3Xs7DZMxKl59IN5vcuRU8vfSUGTDwNANptFPB6Xb2UnTFT35tEtJ5669nngQiYLKJ1+nm4GPf18P9RJZZ5wxK69DeU4zefz8kXivKrF+wmAUqG8XDi1TMXwKTApEqU+01QqVVIepid4ogszJ8t50ED74NvyJ5+2JQIn6oDi52LXoG0iTsuV3KkkS8JqxuXA6bS4DfyppFG65vJhOdeBL+e/0Y3hyW9OTLnGHzOBdON1XZezLZIvx2cftxvMPJHQ0eQewPj1lgvM+H5oXaAyOZ2WKU7phMtpXh4Zm/0y7lvx71SzJxPHbwBvQqFtaD2al4ACHV3XkU6npbZxu8ffSUFT+9sJ5TjN5XJIJBJIJBLyOuh6iVOXyyWjf9qPmeNK5NTSu8OJJvNlNisTEUMo96SaA5Jy7Xfm9ek43ISSKeRpHfMNsRvOxik36+ag6VyoRE4tnXSEUmB8Egqz75PJZNDb2wvDMFBXV4doNFrSVE0oJ9Q8rUPam5NJ6SHDMJBMJjEwMIBkMinLpUQy37+dh75zTsn3JVPPtWkmk0FfXx8Mw0B9fT2qq6tLhvlzcCVC2pOyQZxTgp04tVx4zbOnmH2wbDaLgYEBuFwuRCIROcMg18bAmd1JnGg+7ISDAkF6V0M8Hsfo6KgslVI0zRP3PAixm+Y1c8qnZ5qI06qqqpKGccMofdeGOTVGzTW8WmcWXrtwapnw0tRDNBCQZnAxD5NOpVI4cuQIkskkamtrMXv27LETY3O5lvOBqa5PkTKPevlfOo+TJ0/i2LFjGBgYgGEY8qabfW07a94L5XTWrFlSkwKlQbA5K0DCbeZUCCEfFrtwapnwUv6R6uwAZF8p7/fs7e3F7t27UVVVhZqaGixZsgRCiJI38pifVtI8RCJ/jSkAmSIiokdGRvDGG2/g9ddfl2/HoVEGmqbJKJiCR17ytBPMnAohZHA0EafV1dVYtGgRhBByEmqzb0sZAU3TZNDF534A7MmpZcJLM2fTqFSXyyVLmLxFT9d1DAwMIJvNIpFIIJ1OAzjT3+Xg6Rxurgh0Q4j80dFRDA0NYWBgoGQ/5J9RMzeZTO6K2AkXw+lE+V4SYs4pKQZ+D+zIqWXCe/z4cXR3d8Pr9cLv98Pr9WJgYABHjx6VE7Rx6LqOV199FadOnUI4HMbs2bPlGKlgMFjiOtCTDYyTTzMjUotgoVDA6dOn0d/fj0QigQ8//LDkeLlcDocOHcLAwACqqqrwzjvvQFVVDA8PY3R0FCdPnjzjHC81LoTTf/3rXxgYGLhgTjOZjNT4duNUEZN8FM5X3ZfL13K/bCItoCgKGhoa0NHRgWg0irq6OtTU1JQk3HmwQqVSmuA4m83KVzodPnwY77zzzhnzkpnPkV5yB6DkfWL8jednw4VqEztwSp9ynNLE0cRpMpm0FaeWad5yaZlzgcwUmSz+oWDCnF/keWLzd/KFzdUh8zmSv0zBX7mbYgdMNadAaRHCzCNPf/H8rV04nbTmdeDAbrBfPsiBg0nCEV4HFQtHeB1ULBzhdVCxcITXQcXCEV4HFQtHeB1ULBzhdVCxcITXQcXi/wCuj10nXJQJMAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -2771,7 +2533,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK8AAAB2CAYAAAC+o8OSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgR0lEQVR4nO1deWwc5fl+Zmd39l6vHdtxLhPndMw6duo0TaoICEmoSSkqpChCpaUprqClFVVbaNRLVeEPoJUKCCkQWgQ9FVpUGjWIRi6kRQWphBJIIEUiBw52nNjxrr3r3Z095vv94d/7+d3JOnESjzMb5pFW9u7cz7zz3t83ihBCwIGDCoTrUp+AAwcXCkd4HVQsHOF1ULFwhNdBxcIRXgcVC0d4HVQsHOF1ULFwhNdBxcIRXgcViykX3vb2diSTybLLVq5cib17955zH7t370ZHRwe8Xi++/e1vlywzDAPf+ta3sHDhQixatAiPP/64XPbYY48hFouhtbUVy5cvx+9+9zu5bHR0FFu3bkVrayuam5uxbds2UHHRMAx873vfQywWQ3NzM+644w7kcrnzv/hpgNX83n333Whvb5cfn8+Hxx57DACQyWTw5S9/GbFYDLFYDDfeeCMGBgYAjHH4ne98By0tLVi+fDnWrVuHDz744KKu9ZwQ04iOjg7xyiuvnHO9999/X+zfv1/88Ic/FPfcc0/JsmeffVZce+21olAoiNOnT4vGxkZx8OBBIYQQ3d3dIpFICCGE6OnpETNmzBAffPCBEEKIH/zgB+JLX/qSMAxD5HI50dnZKZ577jkhhBA7duwQ69atE7quC8MwRFdXl3j44Yen7sKnCVPBL8eJEyeEz+cTJ06cEEII8ctf/lJs3rxZGIYhhBCiq6tL3HvvvUIIIf7yl7+IVatWiVwuJ4QQ4v777xe33HLLxV3QOTDlmldRFCQSCQDAa6+9hvb2dsRiMWzduhWFQmFS+1iyZAna2trgdrvPWLZz50587Wtfg6qqqKmpwZYtW/DHP/4RALB+/XpUVVUBAObNm4eGhgYcP34cAPD222+js7MTiqLA4/Fg48aN+O1vfyuXbdiwAZqmQVEUXH/99XKZ3WA1vxzPPvssPvOZz6ChoUEeO51OI5/Po1AoIJVKYe7cuXKZruvIZrMQQmBkZEQuswqW+by5XA5btmzBL37xCxw8eBC33nor3n77bbn8iSeewE9+8pPz3m9PTw+uuOIK+X3+/Pno6ek5Y73u7m7E43F88pOfBAB0dHTgT3/6E3RdRyqVwgsvvIBjx47JZbt27cLIyAjy+Tyee+45ucyusIpfjqeffhp33HGH/H7nnXciHA6jvr4eM2fOxPDwML75zW8CAD73uc/hmmuuQUNDA2bNmoV//OMf+NnPfnZRxz8XLBPe//3vf3C73diwYQMA4LrrrsOCBQvk8rvuusuyiztw4AC2bt2KnTt3IhgMAgC2bduGxsZGfOpTn8JnP/tZrFq1Smqer3zlK+js7MTVV1+Nq6++GkuWLDmnVrrUsJrfV199FclkEps2bZK/7dmzB4ZhoL+/HydOnEA0GpUPyL59+3Dw4EH09vair68P69evx1133XXBx58MpjXboCjKRe+jsbERH374ofx+7NgxNDY2yu/vvfcebrjhBjz99NNYu3at/N3v9+PRRx/F/v378c9//hO1tbW48sor5Xn99Kc/xVtvvYXXXnsNLS0tclklYSr4Jfz617/G7bffDlVV5W87duzATTfdBJ/PB03T8MUvfhGvvPIKAOA3v/kNrr32WkSjUbhcLtx+++1ymVWwTHibm5tRKBTkBXR3d+Pw4cMXvd9bbrkFTz31FIrFIoaGhrBz505s2bIFAHDo0CFs2rQJO3bswMaNG0u2GxkZQTqdBgAcPXoU27dvx3e/+10AQDabRTweBwAMDg7iwQcfxH333XfR52olrOIXGOPqz3/+M7761a+W/L5gwQLs2bMHQggIIbB7927EYjG57OWXX5ZZmr/97W9ymWWY6ggQgIjH40IIIf7973+LtrY2EYvFxNatW0VbW5uMhrdv3y5+/OMfl91Hd3e3mDNnjgiHwyIUCok5c+aIv/71r0IIIQqFgvjGN74hmpqaxIIFC8Qjjzwit9uwYYOIRqOira1Nfl566SUhhBBvvfWWWLx4sVi2bJlobW0Vzz//vNyuv79fNDc3i5aWFtHc3Cy2b98+1bRMGazmVwghnnzySXHVVVedsd3p06fF5s2bRUtLi2hpaRE333yzGBgYEEIIkc1mRVdXl2hubhatra1i48aN4vDhw1N78SYoQjgjKRxUJpwKm4OKhSO8DioWjvA6qFhYLrz79u3D9ddfj6amJnR0dGDFihV44IEH5PJrrrkGL7zwwnntM5FI4LbbbkMsFsPy5csRi8Xwhz/8AQDwzDPP4POf//yE50KZiXLYu3cvXnrppfM6l0sBh9MxWJqJP3DgADo7O/HMM8/ghhtuAAAMDQ3hwQcfvKj9/uhHP0JdXR0OHDgARVGQTCbR399/zu1WrlyJnTt3ll1WKBSwd+9eJBIJdHZ2XtT5WQmH03FYqnkfeughdHV1SZIBoKamBg8//PBF7fejjz7CrFmzZFI+HA5j8eLFcnkqlcKtt96K1tZWrFy5EkeOHAEwpgXa29sBjBU3otEovv/97+MTn/gEHn/8cTzxxBP4/e9/j/b2dstLmxcKh9NxWKp5//vf/2Lz5s0XtO2uXbuwa9cu/OpXvzpj2T333IMvfOEL2LlzJ9asWYPOzs6Sm/nGG29g//79aGpqwrZt2/DQQw/hySefPGM/w8PDuPLKK/HQQw8BGDOdiUQCjzzyyAWd83TA4XQc0xqw3XvvvWhvb8ecOXPw7rvvnnXdG2+8sSzJALBu3Tr09PTg/vvvRzQaxZ133om7775bLl+zZg2amprk/xNVnjweD2677bYLvBp74OPMqaXCu2LFCvznP/+R33/+859j//798Hg8yOfzF7XvYDCITZs24YEHHsDzzz9f0sLo8/nk/6qqTtgqGAgE4HJVVsLF4XQclh7lvvvuw1NPPYUXX3xR/pbL5SbddzoR9uzZI3sRAODNN9/EwoULL2qfABCJRDA8PHzR+7ESDqfjsFR429ra8OKLL+LRRx9FU1MTVq1ahXXr1uHrX/86lixZItfr6urC3Llz5ef111/Hrl270NXVVXa/Bw4cwFVXXSXTOrt27SoZ8nOhuOmmm7B//35bB2wOp+NwehscVCwqy+Fz4IDBEV4HFQtHeB1ULBzhdVCxcITXQcXCEV4HFQtHeB1ULCbdmDOVw6onC1VVsWzZMixcuBANDQ1YvXo1otEoBgcHMTg4CJfLBb/fD0VRsHfvXvz973+HrusoFApyHjI6byvT2Re670vBqdvtxvLly7Fs2TLU19djzZo1qK6uRiqVQiqVkusJIdDd3Y3du3cjm80im82iWCyWnPel5nTaZ9Y4nwt3u92IxWK47rrrEA6HMXfuXPh8PkSjUdTW1sLtdqOqqgqqqiKbzSKdTiMej+P999+Xpc6PQw3mfDhVVRVLly7Fxo0bEYlE0NjYiEAggFQqhdHRUbhcLgQCASiKgng8juHhYcTjcbz77rs4ffr0pI8zHZhW4VUURTZtGIZxThJIS9x8881QVVVuk0wmkU6noWkaamtr4fV6AYyR2tfXh1OnTpXU6Sc6Fw673JDzhaIoJddyrutQVRXNzc3o7OyEx+OB2+2GoihSeDVNQ01NDTRNQy6XQ7FYRG9vL3p7e6Xwnu1cOKzmdNo179kuyOPxQFVVeL1eRCIRhMNhRKNRqKpa0qnk9XphGAY0TZPbBINB1NbWQtd11NfXI5VKSW0shDjjYRFCXBKzPdXg11GOW7fbLTkNh8OSU/rd5XLB5XJB0zQUCgUp0KSBZ8yYAV3XUVdXh2QyiWw2i0wmA8MwLjmn0yq84v9nWikHl8uF6upqRCIRzJs3D2vXrpVTMmUyGbjd7hJB9fv9knjDMFBXV4e2tjbMnTsXuq7j+PHjOHr0KN577z3ouo5MJnNG51WlalszDMMo+7vL5UJVVZV0uT796U+jrq4OsVgMhUIBiqJA0zSoqopAIACv1ys5FUKgvr4ey5cvx+zZszE6Oio5PXTokOTU3IY5nZxestnk+BOqKApUVYXf70ckEkF9fT2WLVuGmTNnoqamRgqdx+OR65pNpd/vR21tLVRVxbx586CqKlKpFHw+H4QQyOfzZTXF5QSz1qOANhQKoa6uDkuXLkV9fT1qamqkIiG3g5QD58Tv92PGjBlwuVyYN28eXC4XRkdH5Qya5FZcKk6nVXg9Hg98Ph+8Xi/mzp2L6upqeL1e+P1+eDwe1NXVIRqNYubMmZgzZw7C4TA8Hg9yuRyEENA0beyk3W643W4YhiGXUU+rqqpoampCbW0tqqurMWvWLORyOWSzWeTzeSQSCZw6dQqZTAZ9fX1yrttKhdvtlhPfzZ49G9FoFD6fD8FgEB6PB7W1tYhGo6ivr8cVV1yBSCQCr9cLXddhGIZ0E8hVAMaE0jAM6LqOfD4Pl8uF+fPno7a2FjNmzCjhtFAoYGho6JJwOq3Cq2kaqqurEQ6HsXr1aixduhShUAj19fXQNA3RaBShUAhut1t25OfzeSmg3B8DUCK0RLSmaVi6dClcLhdisRiSySQMw0ChUECxWMSRI0fw5ptvYmhoCLquV7zwapom44OOjg4sWbIEkUgEDQ0NMjMTDoehaRqCwaDklISXNC65EIVCAblcTq6Ty+Xg8XiwdOlSqKpawmmxWIRhGDh8+DD27ds37ZxOi/CSwEUiEcyaNQuRSATV1dWoqqpCIBBAIBCAx+OBx+MBMGb+yBzRTOYul6vkN1qHAgfaTlEUGIZRYg4Nw5B+XDAYRE1NDRRFwcyZM5HJZJDJZDAyMiLzmJUAM6fhcFhq2VAohGAwCE3TpE9LvAAo4bRQKEh+VFVFsViUvAJjroeiKCVuBnGqquol5XTSzegXGkWqqooZM2YgEAigtbUVGzduRFVVFSKRSEnQBYwHdKR53W436urqUFNTA13XEY/Hkcvl4PV65RT8HOTbxuNxGaDRlJt0A3O5HDKZDHK5HE6cOIHh4WEcOnQIe/bswcjIyKRSeGZMd5GCcxqLxbB+/XpEIhFEo1GZo+VCB0BySu5ZdXU1dF3H4OAgdF2H1+stCdg48vk8hoaGbMep5ZqXgoZIJILZs2ejtbUVkUgE+XxePuXcxyIzRakwYCxwIP82k8mgWCyiUCjIFA/dKLfbjUKhgHQ6jWQyKdcDxtNwmqYhFAoBgLyBdPNIO9s9kCvHaVVVlbRCJGDFYrGEU4obFEVBMBiEEAK6riOdTqNQKCCfz8vAWVVV+SkWi7bk1HLh1TQNixcvxvz589HY2IhcLodkMilJFUJId4DMVbFYlEQqioKRkRH5Ag/uKqiqCp/PJ80Xad5EIgFd10tIKxaLcLlcyGazcrZvEvrq6mq0trZiaGgIPT098vVMdgXndN68ecjn80ilUtL/JwEmTulDAS0wNp9CoVBAMplEoVDA6Oio5JSsHvGXy+UwPDwsX5bCOVUU5ZJxarnw+v1+rFixAqtXr4aiKMhkMkin00ilUtB1XZpOSoGRb0sBxalTp+ByueDxeBAKhaCqKpLJJJLJJFRVRTgchtvtLgnsiFyXyyXfLUGmizSMy+VCTU0NgsEgGhoasHbtWiQSCbz88su2F14zp5RzHR0dPYNTcgNIIRiGgZMnT0q/NxKJwO12I5lMYmRkBG63WwbNFLSV45QXfrjWnk5OLRdeRVHg9/sRDoelgE0UaHETwzUprev1eiVZpFlof0Qg3x8RDKBEu5MGohtCETtlNOwOzillWogjM6fc7zVzSv8DkJwC46myfD5/Vk75MSkwm05Op8XnDQaDqKqqkg4/Rbf8jTs8yKBImsjN5/MQQiCTycjfaRIMeicYHYv2RUSTkNPNomPzoMTv98u8cjgctpqSi4aZUxLGiTjlH+KUeEmn0zLrQD0inHPS4jwANHMqhJD+Ma1PnIZCIekPTzWmRfNqmga/3y9LkgDKRrW8cYc0I/ff8vm8XIdMFz0MRB7tG4DUtABKiOagIIYyHxQk2hmcU/Llye0yp6Y438QP15SkWWk5F066R2YtbuaUjsN7LDRNg8/ng6Io8qGYakxLntd8gTxLwF0AACU5Wr6teX/04RrVXHIuJ6zUkEL+NdfE5gYgO8N8XRQXKIpyBqeU4+UPNf0182x223h+ly/nUFW1pNGH543NpfypxLRV2MhPoqefNKeu6zIFw5uduZaYaF/c5+Ik879mst1uN4LBoCSWllH1rpJg5pSuZzKccoHkXE3EqXk9zqnH40EgEJDCy3PL9EBZAUvvFteg3PQA46adzBKBa4CJ/nJiuSBPpEXo+HQ8rmHND4fdNa8dOeWZItqOL7eKU8uEl0yJ1+uFx+OBpmky7QKMN9cA4xPF8UCCAgZeqqS/uVwOuVyuJLgDIAsX/DegNHDhZowyEPSblSZuKlApnFIMYjWnlgkvkcD7cPnFq6paUkkjX4kn1znRPOVDeU2qBgHj2oO0jjmrwP8nMnlzCddgdkUlcMp7I6zm1DLhdbvd8Pv98Pl80g/iwgKMP73UPGK+cPK3yG8jn03TNBkN002kfZsJo32Q1qJjASgJauh87IxK4tQcpPMHZcr4mNK9MXi9XkSjUTnkhJcoeTKdAihzspt8MNrOnEYjgmkMFk+yA6XpMjoONfRQsUPXdXljy6WE7IZK4ZSOY+aUbzsVsNTnpTFmvDJjjnS52THnfs2RLTdXtF+e4+TBlzltxtNjZE7NQsrPgQcudkGlc3oh3WVng6VuA/Xq0lOcz+eRzWYBjN2IUChUUj83+1PmfCR9yETx4IIn2c2E02gDv98v/UUz0aRxAoEAqqqqkMvlkE6nbSXAduWU+9pcwGl7v9+PaDSKXC6HVCo1ZZxaKrw0PIV8LGrVI7K8Xi8URZHlTU4mNzNm559uAk978RykuWmdzJvX65VCStU+7pu5XC45hMblciGTyVhFzwXBrpzSNuSKmDkNBAIIhUKyKcv2wktmiJs4+h1ASZeTuf5uhtkUkS820fr8RlCahxcleHMQgW4SnTeVou0EO3NK25s5pWORNp9KTi31ecms8CiXhpDk83k5QwtVt7LZrDR35fwjevozmQx0XZcEUtcSHYPIp7QSDyyy2aw0XVTX5+kjTdMQCARKyql2gV055VML8C5A+pDFmGqFYHmelwdAwHj1h1r5eAmRSJqMWTGXMM3gPhtPlFPek1I6/HfSLOaEvF1gZ055McScWrOqWGGp28CjTDJJwWAQ+XwefX19SKVSqK2txaJFi2RSnS6Sm3FzwEGBl7m6Q3/pN57MJ42QSCTQ398PwzAQjUblEHGekPd6vTJdZCfYldN4PF6WU3oYSJNPNaeW9jbwygwFSIFAAJlMBv39/ejp6UFTUxMaGxtlEGImtZwPRkl4Dh548Aia1qPAZmRkRI4kiEQiJUNeSHitIHqqYHdOw+GwHOjJA0NyR6YSlroN5pwpXQQNMUmlUnJAJS03mzhugrgwlTODPL/JyaYgrVAoyOEydF40BJwfz66oBE4BSI0PoORhMbsTFwtLhZfMC0WjHo8Hfr8fQozN9Njb24toNIpsNitHRlBjCfefyGTRhfOG63KEcF+PJtLIZDJIpVIYHBxEX18fPB4Pli1bJkfR8hs31VHxVMHOnPb29kLTNLS0tCAcDkvLAIxr9aluObXU56WL5cJB5iOfzyOdTstJi4k8/pQCpU88Pc0TaREegAHjfprL5ZImjiJjirKpzGpu47Oj8NqVU5pkhI7n8XhKgmJ+3lPJq2UhNSX8uX+kKIps5xsdHcXg4CDi8bicjhSALH9ymC+Yql80FJsvp6CETCa5BdlsVo6QHR4eRjKZlG4DaQRebbOj9rUrp6lUCsPDwzIFSTEEn1HdCj4trbBRBQaANCGUG8xkMiVEU4RK7XjmJDrXBDSxCPW0moWPlyk9Ho8cSp9KpZBMJjE8PCx7W6mbisDr9XaDnTmluTVIeAGUWLmp9neBaRxJYf6NCKMSJ92IcwkOmR/ez8orORw87UOahZLxFA3TcjoPs9axGyqF03KB3lTD0gobTzmZTTJN80SR6ujoKGpqauD1ekv6Dsz+maIoMicJjE/KV84skdahWXQ++ugj9Pf34/Tp01JQabpPGklAmsOOoyqIU3N52E6cUpWS7j1ZMj66e6pgueblKRP6jUikXlM+98LZtARty00an9y4nEai/WWzWXlDaS4tHkzwAKfcvuwAnioD7M2pOTVmRSBsaaqM+1T0IbNG0S3/zawVJvrQdsD4SAAii0fhRDQAZDIZJBKJkjm96Jj8uHb2eYHSm29HTvl6Zk4rTvMSMaQRqHmDiCJiJqqLm0uZZ1yAqRJmbt+jbVKpFIaGhuQcaeZp/rkZtbPwAigRKDtyagbvF6mIVJkZXIh54weRbJ5eaKLtaRvSNOUaSMzb8Zt9tsYTK02cFagUTq3icVqme6IGcGC8Hk5PKE1dGggE5AR4ZvNiNmuUjOfNInwd+t+sRSe6MeUCGLvD7pzSMSoy28DBT9z8dBuGId+BwAOoiWA2ifyJ59txsidDXLmUkJ1hZ07PlmabSkyb8NKTz80Mfedz6/K2v3L7AcbSNcFgEMB4uZI/3VT7p3wlaRI+RJuOTb4c+WWk0SpBeD/unE6L2wCUtvKZZ2yhMiLPsZ5tf/Q6LNIY5oiabiIni1eO6JwoPUY9DvSxa3kYKJ1u6ePO6bT08/KUizmfCkxchSlXyjR/5385yeXOhd9EXq83ZxysDDIuFmbffCJOzc04hMuJU0sbc7hzryiKfDEHvcCD1vP5fGe8W4LX0stdtHnYDu92IvAcrs/nQygUknPGApDDxvkrSK3q+p8K0LXytFM5TmlmnWAwKJtkLkdOp0Xz8ieYZt0mE8dviDkCBsqTzG+E2RxOpCU8Hk/J8B7SWJTMp2Px2r0dYa5eTcQpNetwrUi4XDidtoDN3FNLF0daIhAIQAgh3+dVDqQB6GZxE1ouQub+Ns0kzueLNaeYuGmzq/ASzsYpjTL2er0wDOOy5dRS4eUX7nK5JJHcxHk8HvlSQSEERkZGkMlkzqgMmX08ej9FOU3BNRNpE3oBCZk40ljZbFbuoxI072Q4pbnKQqEQisXiZcvptOSDuIkzlzIp5UJPr9nZL7cvvs+zHZM0B3VImRvP+SR157NvO2AynJI5v1w5nZbeBqrwFItF2Xmv6/rYCbjH3vtFb3g3BxblQNPI000qFzUriiJffpdOp+H1elFdXS1fnEIuyvDwMPx+f8kw8YkidTvA4XQc0+rzUv4xk8nIJ5P8M8o2TAblkujlUCwWkc1m5etLA4GAHJQohCiZUBkonRfB7nA4nYaWSLOvZI6MuYnjeWFKm5n3AYz3p55rFhi+DUXGvJGb+l75MBWe4rMbHE5LYanwms0FBRfZbLakUdrr9cLn80nfiXypiaJUHmhQCZQHGeYEOWkIHlwAYxF2JpORY7yIYLuOpDgfTmnC58uZU8vzvNxc8P5Tc9TM/aHJmC9g4gYQDh5Z8/o6b+czp3Xs7DZMxKl59IN5vcuRU8vfSUGTDwNANptFPB6Xb2UnTFT35tEtJ5669nngQiYLKJ1+nm4GPf18P9RJZZ5wxK69DeU4zefz8kXivKrF+wmAUqG8XDi1TMXwKTApEqU+01QqVVIepid4ogszJ8t50ED74NvyJ5+2JQIn6oDi52LXoG0iTsuV3KkkS8JqxuXA6bS4DfyppFG65vJhOdeBL+e/0Y3hyW9OTLnGHzOBdON1XZezLZIvx2cftxvMPJHQ0eQewPj1lgvM+H5oXaAyOZ2WKU7phMtpXh4Zm/0y7lvx71SzJxPHbwBvQqFtaD2al4ACHV3XkU6npbZxu8ffSUFT+9sJ5TjN5XJIJBJIJBLyOuh6iVOXyyWjf9qPmeNK5NTSu8OJJvNlNisTEUMo96SaA5Jy7Xfm9ek43ISSKeRpHfMNsRvOxik36+ag6VyoRE4tnXSEUmB8Egqz75PJZNDb2wvDMFBXV4doNFrSVE0oJ9Q8rUPam5NJ6SHDMJBMJjEwMIBkMinLpUQy37+dh75zTsn3JVPPtWkmk0FfXx8Mw0B9fT2qq6tLhvlzcCVC2pOyQZxTgp04tVx4zbOnmH2wbDaLgYEBuFwuRCIROcMg18bAmd1JnGg+7ISDAkF6V0M8Hsfo6KgslVI0zRP3PAixm+Y1c8qnZ5qI06qqqpKGccMofdeGOTVGzTW8WmcWXrtwapnw0tRDNBCQZnAxD5NOpVI4cuQIkskkamtrMXv27LETY3O5lvOBqa5PkTKPevlfOo+TJ0/i2LFjGBgYgGEY8qabfW07a94L5XTWrFlSkwKlQbA5K0DCbeZUCCEfFrtwapnwUv6R6uwAZF8p7/fs7e3F7t27UVVVhZqaGixZsgRCiJI38pifVtI8RCJ/jSkAmSIiokdGRvDGG2/g9ddfl2/HoVEGmqbJKJiCR17ytBPMnAohZHA0EafV1dVYtGgRhBByEmqzb0sZAU3TZNDF534A7MmpZcJLM2fTqFSXyyVLmLxFT9d1DAwMIJvNIpFIIJ1OAzjT3+Xg6Rxurgh0Q4j80dFRDA0NYWBgoGQ/5J9RMzeZTO6K2AkXw+lE+V4SYs4pKQZ+D+zIqWXCe/z4cXR3d8Pr9cLv98Pr9WJgYABHjx6VE7Rx6LqOV199FadOnUI4HMbs2bPlGKlgMFjiOtCTDYyTTzMjUotgoVDA6dOn0d/fj0QigQ8//LDkeLlcDocOHcLAwACqqqrwzjvvQFVVDA8PY3R0FCdPnjzjHC81LoTTf/3rXxgYGLhgTjOZjNT4duNUEZN8FM5X3ZfL13K/bCItoCgKGhoa0NHRgWg0irq6OtTU1JQk3HmwQqVSmuA4m83KVzodPnwY77zzzhnzkpnPkV5yB6DkfWL8jednw4VqEztwSp9ynNLE0cRpMpm0FaeWad5yaZlzgcwUmSz+oWDCnF/keWLzd/KFzdUh8zmSv0zBX7mbYgdMNadAaRHCzCNPf/H8rV04nbTmdeDAbrBfPsiBg0nCEV4HFQtHeB1ULBzhdVCxcITXQcXCEV4HFQtHeB1ULBzhdVCxcITXQcXi/wCuj10nXJQJMAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAK8AAAB2CAYAAAC+o8OSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAWy0lEQVR4nO2de3BcVR3Hv/exd1/ZzWuzSZqkJJRKstm8Gku1U8dSCrQdKErroCA47URB6QyjiDpCFbV/iM8ZZhAEB+vQURGrDham1tLqWDtUSVoIqQSKpmmTpo3JbpJ97957/KOe49nbTbLJJrR3PJ+ZnezuvefsOd/7vb/zO+fe7EqEEAKBwILIl7sBAsF8EeYVWBZhXoFlEeYVWBZhXoFlEeYVWBZhXoFlEeYVWBZhXoFlWVTztre3Y2pqKue297///fjTn/6UVz179+5FS0sLgsEggsEgBgYGAACjo6O49dZb0draiqamJnzqU59CPB4HAPz2t79Fa2sr2tvbEQgE8PDDD4NeTIzH47jnnntYfZs3b8bo6GjB/V0sFkLHJ554Ai0tLWhvb0cwGMTjjz/Otj3++OMIBoNoaWlBa2sr9uzZw7b9/e9/x+rVq+FyufCRj3wkq86ZtgHArl27sGzZMixbtgwPP/xwXn2dE+Qy0dnZSQ4fPjzrfj09PeTaa68lQ0NDhBBCJicnSTQaJYQQ8sADD5DPf/7zhBBCMpkMufnmm8kTTzzB9tN1nRBCSDKZJCtXriS/+c1vCCGE/PCHPyRbtmwhhmEQQgjp6uoiDz300IL2770iXx3D4TB7PjExQerq6khPTw8hhJCDBw+y7YODg6S8vJycOnWKEELImTNnyLFjx8hTTz1Fbrvttqw6Z9r25z//mQQCARKJREgikSCdnZ1k37598+9oDhY18kqShHA4DAA4evQoO+u3bduGTCaTVx3f//738YUvfAFLliwBAHg8HrhcLlb/1NQUDMNAKpVCLBZDbW0t20+WL3YvkUggmUxCkiRWLhaLIZ1OI5PJIBKJsHJXIguhY3FxMXsejUaRTqfZ6xtuuIFtr6urQ1VVFc6cOQMAqK2txXXXXQe73X5JnTNte/7553H33XfD7XbDbrdj+/bt+MUvfpF3n/PhPcl5U6kU7rjjDnzve9/Dm2++iU984hN4/fXX2fannnoKX/va13KWPXnyJAYHB/HhD38YHR0d2LlzJ3RdBwDs3LkTp06dQlVVFfx+P5qamrB582ZW9ujRo2hpaYHf78e6detw2223AQDuvfdeeDwe+P1+VFZWYmJiAjt27FhEBRaGQnQEgF//+tdobm5GfX09vvjFL6Kjo+OSfQ4ePIhQKISVK1cW1NbBwUFcddVV7HV9fT0GBwcLqtPMe2Let956C6qqYv369QCAm266CVdffTXbft999+Gb3/xmzrKZTAbHjx/H/v37ceTIERw9ehRPPvkkAOCXv/wlAoEAzp07h+HhYbz99tv4yU9+wsquXr0avb29OHPmDLq7u/GXv/wFAHDgwAEYhoGRkRGcO3cOJSUlMx70K4VCdASArVu3oq+vD/39/dizZw/6+/uztvf29mLbtm14/vnn4Xa7F6cTC8hlW22gQ/hsLF26FFu2bIHT6YTb7cbtt9+OV199FQDwox/9CHfddRcURYHH48HWrVtx+PDhS+qoqKjApk2b8MILLwAAnn76aXz0ox+Fw+GApmm46667cpazAvnqyFNfX49Vq1Zh37597L2TJ0/illtuwbPPPos1a9YU3K6lS5fi9OnT7PXAwACWLl1acL0874l5GxsbkclkmEEOHjyId999N6+yd955J4uUmUwGBw4cQFtbGwDg6quvxv79+wEA6XQaf/jDHxAMBgFcjFKGYQAApqam8NJLL6G1tZWVO3DgAAghIITgpZdeYuWuZArR8eTJk+z56OgoDh06xPT4xz/+gU2bNuHpp5/GjTfeuCBt/djHPobnnnsO0WgUyWQSzz77LD7+8Y8vSN2MBZ3+mQBAQqEQIYSQv/71r6StrY0Eg0Gybds20tbWxmbJTz75JNm5c2fOOnRdJw8++CBpbGwkzc3N5L777iPJZJIQQsg///lPctNNN5FgMEiamprI9u3bSTweJ4QQ8uijj5KmpibS2tpKmpubyde//nW2ujA2Nka2bNlCAoEACQQC5Pbbbyejo6OLKUVBLISOn/nMZ0hTUxNpa2sjra2tbFWGEELWr19PSkpKSFtbG3vs37+fEELIW2+9RWpqakhpaSlxOBykpqaGlZ1pGyGEfOMb3yANDQ2koaGBfOUrX1lwXaT/iiMQWA5xhU1gWYR5BZZFmFdgWRbMvK+99ho2btyIhoYGdHZ2oqOjA7t27WLb165di9/97ndzqjMcDuOTn/wkgsEgWltbEQwG8fOf/3yhmgwA2LdvH9auXTvrfrt37855/X4xEZrOjDrvkhy9vb3YsGEDdu/ejVtuuQUAMD4+jm9/+9sF1fvII4+goqICvb297FLwyMjIQjT5ikdoOjsLEnkfe+wxdHV1MZEBoKysDN/5zncKqvfs2bOorq5mC/EejwfLly8HcPHgrlmzBitWrEAgEMiKSI8++ijuuOMO3HrrrQgEAli3bh3Gx8cBXFwP/tznPofly5fjuuuuy7o4MTIyguuvvx6dnZ1obm7Gjh072Frxe43QdHYWxLw9PT1YtWrVvMq++OKL6OrqyrntgQcewGOPPYbOzk7s2LEj64pQfX09XnnlFfT09KC7uxt79+5lV94A4NixY9i9ezdOnjwJv9+PH//4xwAuXl3r7+9HX18fjhw5gp6eHlampKQEv//979Hd3Y033ngDAwMD+NWvfjWvfhWK0HR2FmXC9tBDD6G9vR01NTXo6+ubcd/Nmzdn3Y/Ac/3112NwcBDf+ta3UFJSgnvvvRf3338/gIv35HZ1daGlpQUf+MAHcPr0aZw4cYKV3bBhA8rLywEAH/zgB9mVqFdeeQX33HMPNE2DpmnYvn07K2MYBr785S+jra0NHR0deO2117LqvJwITS9lQczb0dGBv/3tb+z1d7/7XZw4cQI2my3r1rv54Ha7sWnTJuzatQt79+7Fc889BwD46le/Cp/Ph+PHj+P111/H2rVrkUgkWDmHw8GeK4oy7a2D/L0BP/jBD3DhwgUcO3YMb7zxBu68886sOt9LhKazsyDm/dKXvoRnnnkGL7/8MnsvlUrlfa/pdBw4cAChUIi97u7uxrJlywAAoVAItbW1UFUV/f39+OMf/5hXnevXr8eePXuQTqeRSqXw05/+lG0LhUKoqqqCw+HAyMgIu5HnciA0nZ0FWW1oa2vDyy+/jJ07d+L+++9HRUUFbDYbPvvZz+J973sf26+rqyvrvtkXXngBo6OjePHFF3MOc729vXjwwQdBCIEsy6iurmb/ovLII4/g7rvvxs9+9jMsW7YM69aty6utn/70p/Hmm28iEAigtLQUH/rQh9Dd3Q3gYj64detWNDc3Y8mSJezWw8uB0HR2xL0NAssirrAJLIswr8CyCPMKLIswr8CyCPMKLIswr8CyCPMKLEveFynm8y/W/y/Md6lcaDo9+WgqIq/AsgjzCiyLMK/AsgjzCiyLMK/AsgjzCiyLMK/AsgjzCiyLMK/AsgjzCiyLMK/AsgjzCiyLMK/AsgjzCiyLMK/AsgjzCiyLMK/AsgjzCiyLMK/AsgjzCiyLMK/AsgjzCizLgnw/73yg//YtyzIURQFw8SvgdV2ftoz4NtaZmU5TwzCm1c7Kml4W80qSBKfTCU3TUFJSgpqaGiiKguHhYYyNjWUJLssyJElCJpNBPB6/bL/Oc6Uzk6bj4+MwDAOZTIZpKsuy5TW9bOa12+1wuVzw+/1oamqCzWYDACSTSei6fonQqVQKyWTSskIvNtNpKkkS0uk0MpkMkskkCCFQFAWKolhe03mZV5KkeQ03xcXFqKyshMPhwJIlS1BaWgqHwwGPxwNCCJxOJ9xud1YZWb6YlqdSKWiahnQ6zcxtGAYSicSMw6JVmK+mXq8Xfr8fLpfrEk0BME0Nw2DvAWABwWazIZPJME11XWeGvtI1nbN56TBOCGGPfKmvr8fGjRtRUVGB9vZ2XHXVVTh79iy6u7sRDofh8/mYoB6PB7Iss6ih6zozbjQaRTQaRTwex4ULF9jQd6WLPR2FarphwwZUVFSgo6MD9fX1OHv2LI4fP46JiQn4fD4kEglomgaPxwNFUZimmUwGqVQKuq4jEokgFoshkUjg/PnzlggKczIv/91ac4kUqqpCURQUFRWhoqICfr8ffr8flZWVmJqaYnXJsgybzQa73Q6n0wlVVVkaQXM2OsTRv5qmMXPruj7ng3+5KVRTj8eTpWdlZSUikQhkWYZhGExTTdPgcrmgqipSqRTS6TQMw4DdbmeTZPrZmqYxPa9kTfP+QRUqMi92PkVdLhfa29tRW1uL8vJy1NbWQlEUTE1NIZFIYGJiAkNDQyz/ymQysNvt8Hq9UFUVNpuN5W70syORCKLRKHRdRyKRgK7rCIfDCIVCSKfTmJqamvG3ymb7gruZTETL8ge00C/aK0TTsrIy1NXVQZZlRCIRJBIJTE5OYnh4mGmaSqWyNNU0jc0xcmlKj0M4HEY4HEYqlboiNZ1z2jDXA+VwONDW1oYVK1YgGo1ifHwck5OTOHToEPr6+qCqKhwOBxRFQUlJCYqKiphINpsNxcXFcLlcUBQFmqYBuDjMqqoKWZbhcDggyzKGh4chyzIb+qYTeiaR+ROEH8ZzbZ+vHrm4HJo6nc4sTRVFgc1mgyzLbNvQ0BAGBwcRjUYXVVM6r6Gjad6jT1575WjMbEOJ1+uFz+dDUVERIpEI3n33XcTjcUxOTiIajSISibDhig5h8XgckiRBVVXous5+ZTEWi7HIwf/yIiEEmUyGlfF4PLDZbIjH4yxfTiaTefeN9me6/vGvF3oo5aPPdHi9XpSVlcHr9RakaTqdztKUTtpon+jcgqYli6mpuc9z0XTOaYOiKFBVlRlnumWWFStWYP369TAMA6+++ipOnz6dlbfStAH434RFURT2nP6lEdbr9aKhoYFN5BRFyapP0zQ4HA4kEgkMDw8jEolgfHwc58+fX/SloELTBrp0RQhh+X0uVqxYgRtuuAGGYeDYsWPz1pR+ntfrxTXXXAO3282WJPn1YLvdDk3TkEqlMDQ0hEgkgrGxsStG0zl/ubSqqrDb7WyCZZ6REkIgSRKKi4tRV1eHVCrFDGVuFK2TCjHT1TUaReiQSHM2ekGDzqY1TUMkEoEkSYjH48wUCxUl55qf5lMXzUP5gDCTpslkcsE0jUQiUBQFdrsdqqqy+nRdh81mg9frRTKZhNfrhSzLV5SmeZu3uroasixj+fLlaGxsBAA2vNBlLABM/GAwiMbGRiQSCaxcuRIejwfxeBxTU1PQdZ0t0aRSKcRiMRZxCCFZV9jo80QigaGhITidTjQ2NqKhoQE2m43ldrTTuq6jqqoKqVQKg4ODcLlciMViuHDhApuF8wcp1/IUTY1opKLvaZqG4uJiNuGMRCJ5C52PprIss9UVXlM6429ubkZjYyOSySRWrVrFNI1EIjAMg/02cSqVYpMvqiPVko/u9AQIhUKXaEo1ose0uroa6XQaAwMDcDgciMfjOH/+PKLRKNNUkiTWVqovryeALE2BiysbdCI5NTWFaDSat35zMq+qqli9ejVuvvlmKIrCZqU0D6LRUdd11NbWYvny5UgkEhgdHYXP50MoFMK5c+eQSqUQiUSYyGNjY1nruYZhsJyNHkAqtM1mQyAQQH19PYqKilBZWQmn04mJiQmEw2EmiCRJKCsrg2EYCIfDLCekkxQqNH9AeaH5A0IfHo8HNTU10DQNw8PDSKfTBUUfqumaNWuwceNGFtnS6XSWpvREr6mpwTXXXINEIoGxsTH4fD6Ew2GMjIwwTePxOGKxGEZHRy/RlM9r+YBgs9nQ1NSEhoaGLE0nJycxOTkJAGzFp7i4mK3u0BUKGrkBsM8DLjUvTfd4MxcVFaG6uhp2ux3nz59nbcyHvM1LjRqLxRCJRKCqKvsgwzBYo+x2OwzDgCRJbJnG7XajvLwcmqaxy5J09ppIJODz+VikoZGWRnX+Zh2aA9fW1qK0tBQulwtFRUVwOBxZQy3Nk30+H5YuXYqSkhLoug6fz8fWPPkowa9l0pkvzQt5od1uN6qqqqCqKjtRC8n9aJSlmlJtqAY0XwX+lzrQ40A1pcN9Op1GPB5HMplEPB5HeXk5Cyy0Pnq86AUKXtO6urosTWlqyIzy3xPZ7/dnaUp/0NvhcABAVt18u/l8m9fU6XSiqqqKpYHxeHzhzTsyMgJZlvHOO++grKws60ICvQRJF8TppcehoSFIkoTKykr4/f6socs8nAFgZqWGzdUJSZLg8/lQXl4OVVXZMlppaSmbBdNyPp8PTU1NyGQyiEQiSKfTrI10P/owR176HACbzCiKAqfTCV3XcfjwYSiKMmNOma+mb7/9Nnw+HzRNg6ZpkGUZbrcbRUVFLKrRG2lGRkYAAFVVVaisrLxEP/qaf86PLrnWUiVJQkVFBcrLy2Gz2eB0OtnKQiqVytq3vLwc1157LQtk6XSanejA/+Yg9DmvI/+cmpj6xzAMHDp0CEeOHMky/0zkbd5YLAZFURAOh/Hvf/8bDoeDnaEAWFSlUY0OWXStka4d0uGHdsR8+x5vJnrWmtcRVVVl0ZUebHpBgz8xHA4HSkpKsuo257y84NN9HjUvbW86nUZfXx+KiooKirxU04mJCVy4cAEOhwMul4sFABrNaF/pSagoStZarVlT89qpOefNNUHiLwbRz+c1pQ9eU1p2ulswZ4qg/CoIHTmopvkGhLzNSzs/Pj6OU6dOscu4VGQaeelZyB9wp9MJm83GxDBHN35yQDEfDH7oMb/Ht5E/SOb20/r4MpIkZUULup0Xnz/oNNqeOHECp0+fLijnpW0dGxvDO++8w1ZyZFmGy+W6ZDTj++xwOKBpWpamFF57Xku+z+YJlFlffiXJbMRckZvXlO8b/5nm9+jn0xT0xIkTGBgYWPi0gUbD0dFRJJPJLEFoJOTFoOvBtOHUpHTIpp3lz1p+XZI/M80TKH5CYJ4UTLdykAv+hhgqKh3O+FSCjiK0D4ZhoL+/H//6178Kirz0M+jNRbzpzPrRttF9qH68pryO5jVd+t5smtJ28frN1gd+H9pGPmXhRwFzOkPbMB9N8zYvnYTRiQFvCvPkhs9nsj6MG+6pMHR/+prPL83RgDeW+VKiWWSzqLnI17x0EkLbRghBIpGY08x4Nk0TiURWf/n0hj/ReU1pe6imuSIqHwSozrNpOlfNeMzmpdAThJ/z0Kt49IJTLBZbnNUGmkTTJRZ+6KZnv1lIfqbMdyLXkJVLJH5/81Blrstc1pzX8akBLZsL/n3zxIOvLxQKFWxes6ZA9kSGRkWzprnaXoim5jpylTGnZwCyJtWzBQpabqZ8dq6aziny0r907ZUKTTtB8ySzgLmSd9785g6a96PvmyccuXIt8wGm9c10KdvcJr7PuSI4jbyF3u86k6Z8QKCa5jop+b/z1XS6srPNLWgkzWfUy9VWc31zvS+7oH8Dog2nV8okSWK5Id/AXMk+L1Su/Xj4XNYsTK6DZT5xaFvzESWXqLkMU2jUnQ6qKa2f19Tc1+nMy/djLpqadTX/5cvQtk5n1LmaF5i7pnO+MWeh9rM6uU7IuSI0zWaumi74P2AuRjT6f0domhvxpSMCyyLMK7AswrwCyyLMK7AswrwCyyLMK7AswrwCyyLMK7AswrwCyyLMK7AswrwCyyLMK7AswrwCyyLMK7AswrwCyyLMK7AswrwCyyLMK7AswrwCyyLMK7AswrwCyyLMK7AswrwCy5L3l44IBFcaIvIKLIswr8CyCPMKLIswr8CyCPMKLIswr8CyCPMKLIswr8CyCPMKLMt/AP4RN+9/t8geAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -2800,10 +2562,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:43.042003Z", - "iopub.status.busy": "2023-11-02T15:15:43.041266Z", - "iopub.status.idle": "2023-11-02T15:15:43.063535Z", - "shell.execute_reply": "2023-11-02T15:15:43.062613Z" + "iopub.execute_input": "2023-11-04T09:20:59.901332Z", + "iopub.status.busy": "2023-11-04T09:20:59.900984Z", + "iopub.status.idle": "2023-11-04T09:20:59.912996Z", + "shell.execute_reply": "2023-11-04T09:20:59.912397Z" } }, "outputs": [ @@ -2931,10 +2693,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:43.068144Z", - "iopub.status.busy": "2023-11-02T15:15:43.067582Z", - "iopub.status.idle": "2023-11-02T15:15:43.075702Z", - "shell.execute_reply": "2023-11-02T15:15:43.074794Z" + "iopub.execute_input": "2023-11-04T09:20:59.916394Z", + "iopub.status.busy": "2023-11-04T09:20:59.916056Z", + "iopub.status.idle": "2023-11-04T09:20:59.923233Z", + "shell.execute_reply": "2023-11-04T09:20:59.922675Z" }, "nbsphinx": "hidden" }, @@ -2971,10 +2733,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:43.079865Z", - "iopub.status.busy": "2023-11-02T15:15:43.079197Z", - "iopub.status.idle": "2023-11-02T15:15:43.409874Z", - "shell.execute_reply": "2023-11-02T15:15:43.408809Z" + "iopub.execute_input": "2023-11-04T09:20:59.925742Z", + "iopub.status.busy": "2023-11-04T09:20:59.925490Z", + "iopub.status.idle": "2023-11-04T09:21:00.125081Z", + "shell.execute_reply": "2023-11-04T09:21:00.124497Z" } }, "outputs": [ @@ -3016,10 +2778,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:43.414736Z", - "iopub.status.busy": "2023-11-02T15:15:43.413716Z", - "iopub.status.idle": "2023-11-02T15:15:43.427617Z", - "shell.execute_reply": "2023-11-02T15:15:43.426636Z" + "iopub.execute_input": "2023-11-04T09:21:00.127777Z", + "iopub.status.busy": "2023-11-04T09:21:00.127410Z", + "iopub.status.idle": "2023-11-04T09:21:00.135726Z", + "shell.execute_reply": "2023-11-04T09:21:00.135225Z" } }, "outputs": [ @@ -3044,47 +2806,47 @@ " \n", " \n", " \n", - " is_low_information_issue\n", " low_information_score\n", + " is_low_information_issue\n", " \n", " \n", " \n", " \n", " 53050\n", - " True\n", " 0.067975\n", + " True\n", " \n", " \n", " 40875\n", - " True\n", " 0.089929\n", + " True\n", " \n", " \n", " 9594\n", - " True\n", " 0.092601\n", + " True\n", " \n", " \n", " 34825\n", - " True\n", " 0.107744\n", + " True\n", " \n", " \n", " 37530\n", - " True\n", " 0.108516\n", + " True\n", " \n", " \n", "\n", "" ], "text/plain": [ - " is_low_information_issue low_information_score\n", - "53050 True 0.067975\n", - "40875 True 0.089929\n", - "9594 True 0.092601\n", - "34825 True 0.107744\n", - "37530 True 0.108516" + " low_information_score is_low_information_issue\n", + "53050 0.067975 True\n", + "40875 0.089929 True\n", + "9594 0.092601 True\n", + "34825 0.107744 True\n", + "37530 0.108516 True" ] }, "execution_count": 29, @@ -3105,10 +2867,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:43.431554Z", - "iopub.status.busy": "2023-11-02T15:15:43.431165Z", - "iopub.status.idle": "2023-11-02T15:15:43.757572Z", - "shell.execute_reply": "2023-11-02T15:15:43.756492Z" + "iopub.execute_input": "2023-11-04T09:21:00.137869Z", + "iopub.status.busy": "2023-11-04T09:21:00.137671Z", + "iopub.status.idle": "2023-11-04T09:21:00.327214Z", + "shell.execute_reply": "2023-11-04T09:21:00.326665Z" } }, "outputs": [ @@ -3139,10 +2901,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:43.761942Z", - "iopub.status.busy": "2023-11-02T15:15:43.761652Z", - "iopub.status.idle": "2023-11-02T15:15:43.769921Z", - "shell.execute_reply": "2023-11-02T15:15:43.769058Z" + "iopub.execute_input": "2023-11-04T09:21:00.329642Z", + "iopub.status.busy": "2023-11-04T09:21:00.329426Z", + "iopub.status.idle": "2023-11-04T09:21:00.334240Z", + "shell.execute_reply": "2023-11-04T09:21:00.333731Z" }, "nbsphinx": "hidden" }, @@ -3179,43 +2941,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "038e08f4d921423cae59c57cd58abc34": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "0811fa4996d049e090febc06ea32c8be": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_aced78e0b4a54c3b957bb7b58ff5da71", - "placeholder": "​", - "style": "IPY_MODEL_cc7fc197cdbb4d8483276e815a588e7c", - "value": "Downloading data files: 100%" - } - }, - "0c8b474086ff45a28dcb688a6b1416d0": { + "027bb356c11345ccb3aa18600812711c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3267,7 +2993,7 @@ "width": null } }, - "15dcd9ce4dc0435f8131ad9cc2cf4892": { + "02bf43de662141e39a7779325411ac17": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -3283,37 +3009,30 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8040f9b0c58a48e581c1c91e2988cd98", - "max": 5148.0, + "layout": "IPY_MODEL_e5ee4f3a98a342c8b7d48ced17eda826", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_2963e32f9ee245ca9c016edda288f9e7", - "value": 5148.0 + "style": "IPY_MODEL_e3e3d730a68d43139c8ea8493328c162", + "value": 60000.0 } }, - "167ad04aa70d4431a7f93209fa3f0b90": { + "0303aac63e5e4fc5920a61bcfe83b03c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fe6e299677474b5db54e378feb494bd4", - "IPY_MODEL_586f6cf72ec145cfb78b3bec580a9a0c", - "IPY_MODEL_f52f6d96ff4f4ffd85aa3dadf61fcc4b" - ], - "layout": "IPY_MODEL_2c48d181aed8493c9dfdcdafd512107c" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "16f0bcb2b29a4013ae1bfc39aeae305c": { + "05cc2250105a418aa4367d257cc0414a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -3328,34 +3047,28 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d1e9973a7d4a4efdba048a2e719cd651", + "layout": "IPY_MODEL_a86812a0e7f54fb9bda9262ce674e5a7", "placeholder": "​", - "style": "IPY_MODEL_452d87c16daa4fd0862c167ca6e2a8c4", - "value": "Generating test split: 100%" + "style": "IPY_MODEL_f899b4d1f050489aae5ee2acd46db8ed", + "value": " 4/4 [00:00<00:00, 747.15it/s]" } }, - "1790c08d664442409bc55b6b2e7dacf7": { + "0653198644094413a6b086c098ae9033": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f7c076b2d484403b94bf9cf6614a53c2", - "placeholder": "​", - "style": "IPY_MODEL_57b0fd9c4b604a31be5f93e528981694", - "value": "Downloading data: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "1ab99b9b405f4b889e0ee7bac870df8e": { + "07f1eb3ff3314ffcba31f27c19bf10d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3407,43 +3120,7 @@ "width": null } }, - "1b15dd21c7454f82a7e3b1aade1337a5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "1b1c5fba64c14d2784e32bfd006ab230": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9e939aaf314543ec81d38ed9a6e10943", - "placeholder": "​", - "style": "IPY_MODEL_eb58eaa1c1954e64b0090ac631cf0dad", - "value": "Downloading data: 100%" - } - }, - "1b62c4a2a7fa4cd48cf790f910023cad": { + "0912d37c17124722bc87f291ffe6382f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3495,29 +3172,7 @@ "width": null } }, - "1d522d5ab30c4b468f5e76bca05a50cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f28ad72bcab343d2a0a5a8f8d4d57e28", - "IPY_MODEL_b3faa01b617f407e8d1b152a2fb85c2d", - "IPY_MODEL_e342db7c6ad14b17b36cf29d3dc944df" - ], - "layout": "IPY_MODEL_6a5e9f8649ba42b9953f16261b99c9f9" - } - }, - "205fdf80156f417fbf78fef5bcf91f56": { + "093cf0b3d78a452cad534e131f55e56d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3569,7 +3224,49 @@ "width": null } }, - "20dcf93499714ee19ae5551c1d19da4d": { + "0e527f8d03724332b69c612398bf8e1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2b795a7c7a0c4438a773acbd8c9f6ee9", + "placeholder": "​", + "style": "IPY_MODEL_3553e6f7b5ff4c849db31836723aba4f", + "value": "Downloading data: 100%" + } + }, + "0fe0428e0e864c05be692c67935ed544": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c68ba05b52a44fcf8cede8858221a21f", + "placeholder": "​", + "style": "IPY_MODEL_690f7c9744144ac3b673a489998a31fc", + "value": " 10000/10000 [00:01<00:00, 7426.21 examples/s]" + } + }, + "10d6a459a3de4918a150b33482d8f94e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3621,7 +3318,7 @@ "width": null } }, - "218bea2a05724fbfa1f4efa38b744a6f": { + "11b1fca65ff84c24b4ae4471199365a0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3636,43 +3333,29 @@ "description_width": "" } }, - "2516c9abffa24f1ca7f345cd5181796c": { + "1281c5f69432452d9bbc3f768aa9125d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a71041b7e65840ceacc14617a97b2b6e", - "placeholder": "​", - "style": "IPY_MODEL_711ed2bca2084ab2b54e91947ac1108a", - "value": " 60000/60000 [01:16<00:00, 759.47it/s]" - } - }, - "253002c0917842f6899d59d681edafca": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_506a4171567d403abcc301f62515c0c9", + "IPY_MODEL_97948cf5069f4fb8b8b4b42413105a21", + "IPY_MODEL_bc0897bb0c9a4310991fa46279bae3c2" + ], + "layout": "IPY_MODEL_612b79dbe9dc4d4a9df3e71d740d1505" } }, - "281a2c3c6242441c8cc20537c015d265": { + "12f96b7aa9f74dd49b8faae0ab4d8bd6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3724,7 +3407,7 @@ "width": null } }, - "28b0314091b54a0e9d01442159a3674b": { + "1430047be29e43e3ad2d016ff6d9dda0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -3739,63 +3422,29 @@ "description_width": "" } }, - "292910b6abe14a82bf100bed726476f5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "292c5ed4289a42cc9e075371ae69c495": { + "1621d8005b4444ea93969df9e9d7bdd3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4e1f844593454005a6ae8b6438e1161b", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_292910b6abe14a82bf100bed726476f5", - "value": 4.0 - } - }, - "2963e32f9ee245ca9c016edda288f9e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a4de7f9653574f5e938e4598410da12d", + "IPY_MODEL_f07878bc520a46b7ba6a998b866ac201", + "IPY_MODEL_2fdc3253647c4ccd98fc336147123490" + ], + "layout": "IPY_MODEL_a50faee2fea343bf94b52d1204e1a79a" } }, - "2a4b0dc0c4a14bd082e2d072bbfc841e": { + "1637af5e927944aa9a2712f05182c7e9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -3847,52 +3496,10 @@ "width": null } }, - "2b83c0f239144261921fca67e904e75e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1ab99b9b405f4b889e0ee7bac870df8e", - "placeholder": "​", - "style": "IPY_MODEL_038e08f4d921423cae59c57cd58abc34", - "value": "Generating train split: 100%" - } - }, - "2bdff68ec5d24f65a203ba93c047ad59": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e96cef50a8df40d087bdae15b405f49e", - "placeholder": "​", - "style": "IPY_MODEL_3af93a14e6ca49e296f092fe25b4229b", - "value": " 60000/60000 [00:15<00:00, 3796.97 examples/s]" - } - }, - "2c48d181aed8493c9dfdcdafd512107c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "17d3881b74754a51ba0df691d25c9cf2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -3941,22 +3548,29 @@ "width": null } }, - "2cf7bdb4a529481e9133f4b0ac4975c2": { + "1a75238303184efa8cd395078e0d7c99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a27d46aefff44a1fb6de7cd868f0e90a", + "IPY_MODEL_e8844724612d48e8bd56a5d09bfba9ac", + "IPY_MODEL_30e08809a76e452f8316a747aa3735a9" + ], + "layout": "IPY_MODEL_701a760ce04a4697ad3712a07459e6cd" } }, - "2ddd67149d6b482dbf3fe7161822d0c5": { + "1f00d58c20cd4a78ae391d7f5da662fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4008,7 +3622,7 @@ "width": null } }, - "307de2c8b62c441a9268876370811e96": { + "23335ca0a6e6468ea633ccdad870019f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4060,7 +3674,23 @@ "width": null } }, - "3260af91315a4ce19d3dd5418bc74f96": { + "24acdfa125d844c8ad0083addbd3a43f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "260d17ac03e143209527054d9ba8baa0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -4075,14 +3705,59 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_55af92ba72df4db0a81672b1f35b9e1c", - "IPY_MODEL_e02d68f14b7543f88334666e0bd315f8", - "IPY_MODEL_2516c9abffa24f1ca7f345cd5181796c" + "IPY_MODEL_6e9aa0810d4f4d8885223b01a604e468", + "IPY_MODEL_fcab5be83a8144b6a413a329d9da980d", + "IPY_MODEL_66d82dd27be8492a9968efb499efa374" ], - "layout": "IPY_MODEL_d2d0f95ce92b498ea0372ff90b1ee069" + "layout": "IPY_MODEL_d9e47029a70144beb3253e67eb8a8f4f" + } + }, + "26a56455075e410a8500d528a01214da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c45799282b214919a12cbde5d89076a0", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bdbffa13cb094da8a21d3c002b496dc5", + "value": 4.0 + } + }, + "27453c4f2cf844829d80d562563bef2b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_334ab97de942446baa98388dc7cdf2e1", + "placeholder": "​", + "style": "IPY_MODEL_edb2626ea7fe43cba9657b7cb42d5634", + "value": "Downloading metadata: 100%" } }, - "35906c636117467c89b0ac0ae8c0a0ab": { + "2879f2ebffe144ea9c57752bc1eb8f92": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4134,28 +3809,23 @@ "width": null } }, - "39bcea738cbb4a26b4a7ca4d87c69a0f": { + "28ebb4a711c04c5dbf3f58db63ce416f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_281a2c3c6242441c8cc20537c015d265", - "placeholder": "​", - "style": "IPY_MODEL_9dd65b2a67f74220b1b21b97fb3fb804", - "value": "Downloading metadata: 100%" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3a3676e45a4a4f4d9cf748aa7a617f1d": { + "2b795a7c7a0c4438a773acbd8c9f6ee9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4207,7 +3877,7 @@ "width": null } }, - "3af93a14e6ca49e296f092fe25b4229b": { + "2c0da79efc3f480bab81a9bce04b4ae0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4222,7 +3892,7 @@ "description_width": "" } }, - "3b7ea58f9080466c940c18d2babb2d3e": { + "2d6e7172b5fc4d9c8921a9862fd50d29": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4238,15 +3908,131 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_49b1e9d1dab244d1a4c9fe6910e10f0a", - "max": 4833.0, + "layout": "IPY_MODEL_bd826af1a92f487a8c7933ba7199dd4a", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_41d74c3e5bce4034869f9cbf304475ed", - "value": 4833.0 + "style": "IPY_MODEL_fae2438f83af4331b446e19b3beb96a0", + "value": 60000.0 + } + }, + "2e5d3051ac3f463ba4e2b037b3bf6a6d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e29bc7e5e4dc447a807eecb7ea072516", + "placeholder": "​", + "style": "IPY_MODEL_a56574785d994197a25f60e59fef2ab3", + "value": " 4/4 [00:00<00:00, 3.89it/s]" + } + }, + "2fdc3253647c4ccd98fc336147123490": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d9bdd15f8e9b4565bbfa4b273eb7fbb0", + "placeholder": "​", + "style": "IPY_MODEL_4b8a109637c94f2fb478c35089dd98df", + "value": " 4.42M/4.42M [00:00<00:00, 88.2MB/s]" + } + }, + "2fdc9aa7c44a4c26ad2ca301e097ef9b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "30e08809a76e452f8316a747aa3735a9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ffb9563a9f2e447ead263097568bc49d", + "placeholder": "​", + "style": "IPY_MODEL_f221ee9541074b83ac6544e40a87ebca", + "value": " 29.5k/29.5k [00:00<00:00, 3.33MB/s]" + } + }, + "3168e4736ff2453499544e814fad0da2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_de7135124236426bbb2f54381d665d0e", + "IPY_MODEL_02bf43de662141e39a7779325411ac17", + "IPY_MODEL_56db53d371014197b923bdbb1a79530a" + ], + "layout": "IPY_MODEL_d87280dc535b4a6786403d3b38c77930" + } + }, + "32415e8d4fb248f0bd09a01e50f9e3ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "41d4c17aec3048a09d36ba2cd7bb1d66": { + "334ab97de942446baa98388dc7cdf2e1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4298,7 +4084,7 @@ "width": null } }, - "41d74c3e5bce4034869f9cbf304475ed": { + "34b22502df214166ab4c1267bcd108e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -4314,7 +4100,22 @@ "description_width": "" } }, - "43a0ee64b6e44fc29c490ab217442403": { + "3553e6f7b5ff4c849db31836723aba4f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "3590bfe3b36048d69c9784740855535e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4366,22 +4167,7 @@ "width": null } }, - "452d87c16daa4fd0862c167ca6e2a8c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "49b1e9d1dab244d1a4c9fe6910e10f0a": { + "3a24bc725d8e41cb922300a958614055": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4433,7 +4219,7 @@ "width": null } }, - "4cc01f457f1d4b749355a005e7598a2e": { + "3afa28a9cfcd446885b76512d5f589d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4448,59 +4234,29 @@ "description_width": "" } }, - "4e1f844593454005a6ae8b6438e1161b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "3bd0ca523aa04d828364731056c5a4a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0e527f8d03724332b69c612398bf8e1c", + "IPY_MODEL_464236d59746418eb9e9e65b8eead657", + "IPY_MODEL_5874762017e64cdfb45f5bfc4156fcd9" + ], + "layout": "IPY_MODEL_7f1c64576071479594ebb33e3841c81b" } }, - "4e5aef44d5754aea9a04e783a247d5fa": { + "3cfa4f7f077f428da6a2d2f06a8d25a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4552,31 +4308,7 @@ "width": null } }, - "540aacf86dc84c70bc6608a1b039b6e9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7d74598aab5046599b49115a603ca10c", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fe0cffd29643463d87406f6447b990d6", - "value": 60000.0 - } - }, - "55af92ba72df4db0a81672b1f35b9e1c": { + "3d814e5b1946422eaf756314bbf61644": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4591,94 +4323,79 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4e5aef44d5754aea9a04e783a247d5fa", + "layout": "IPY_MODEL_6443cbc94e88493ba1591b9bda2a36d0", "placeholder": "​", - "style": "IPY_MODEL_aa1d356cf8c94487b3051735a5ce6450", - "value": "100%" - } - }, - "57b0fd9c4b604a31be5f93e528981694": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "style": "IPY_MODEL_0653198644094413a6b086c098ae9033", + "value": " 3.13k/3.13k [00:00<00:00, 416kB/s]" } }, - "586f6cf72ec145cfb78b3bec580a9a0c": { + "3e0a2134ee9540998f353457d1bf4ddf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_79d62771dcae4dfaafd6dca5b692ce84", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c0e1059bff5a45b1890c91ce4b8f8b4e", - "value": 8845.0 + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b041eb1dd72b47cdbeaf6c763fa45a1f", + "IPY_MODEL_78049c4e3feb46a4998a572dd69d3106", + "IPY_MODEL_0fe0428e0e864c05be692c67935ed544" + ], + "layout": "IPY_MODEL_eea61fb21379446e864476d046f65f47" } }, - "59cb7a9d9b90423893dbefd541ecde8d": { + "44f5e4f8bb604c8595fa0747a397c469": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_205fdf80156f417fbf78fef5bcf91f56", - "placeholder": "​", - "style": "IPY_MODEL_dce6cd24d28d438a80c01cd3323ea676", - "value": " 3.13k/3.13k [00:00<00:00, 206kB/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b99980af9bf54a949ce22bd15098cc19", + "IPY_MODEL_55fa5385724d432b94007ae87ceef468", + "IPY_MODEL_fb72fc40aada40419e654f1d7757871f" + ], + "layout": "IPY_MODEL_c4ee0629bee942a8af4877750a3f259c" } }, - "5c1c69a26d054448b47c7e0e21c04bab": { + "44f77843e7b04295927aa31d88fe3a0e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_20dcf93499714ee19ae5551c1d19da4d", - "placeholder": "​", - "style": "IPY_MODEL_b6802c1b13294dafa045834671fb2a3a", - "value": "Extracting data files: 100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7b77e6a6426f4fd5abc187e7ca924a99", + "IPY_MODEL_2d6e7172b5fc4d9c8921a9862fd50d29", + "IPY_MODEL_ebeb11467e494d1da1e11c4c1f020a4b" + ], + "layout": "IPY_MODEL_bdb87db508984dbc9ff20f8feafc73ec" } }, - "5e69092a40ab41d18155799662c1d79a": { + "464236d59746418eb9e9e65b8eead657": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -4694,15 +4411,30 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8a323c9e3f424d3a9d3add0fec5a3aa6", - "max": 3126.0, + "layout": "IPY_MODEL_869b46ed61dc450999ff10f98e125875", + "max": 5148.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_6ad2b5fe64d44ca49e12cfedca2a8a87", - "value": 3126.0 + "style": "IPY_MODEL_630ba679044f419abdae032b67e77e9d", + "value": 5148.0 } }, - "612cefa3dd9347ea8c741dcdce1f8161": { + "466f32eb8a2e4aada841ec3262131ff2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4a71592e32144d348d484a0166e2664c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -4717,30 +4449,29 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_39bcea738cbb4a26b4a7ca4d87c69a0f", - "IPY_MODEL_5e69092a40ab41d18155799662c1d79a", - "IPY_MODEL_59cb7a9d9b90423893dbefd541ecde8d" + "IPY_MODEL_27453c4f2cf844829d80d562563bef2b", + "IPY_MODEL_c0e1e47095d24c20a096bd7a54642482", + "IPY_MODEL_3d814e5b1946422eaf756314bbf61644" ], - "layout": "IPY_MODEL_7229d8a4884144d2963426ec7964a354" + "layout": "IPY_MODEL_07f1eb3ff3314ffcba31f27c19bf10d2" } }, - "616df3409ccb46fa9e17f565608fd38e": { + "4b8a109637c94f2fb478c35089dd98df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "64a6d2c65ba44d598a00ab1a0bb19a7a": { + "4d3f1d92201b4f6882b0a4efe4c27937": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -4755,7 +4486,44 @@ "description_width": "" } }, - "6a5e9f8649ba42b9953f16261b99c9f9": { + "4e0149a329f4494bb563bfadd3dce0bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "506a4171567d403abcc301f62515c0c9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dc9041c668a349fb846d5286bc22c688", + "placeholder": "​", + "style": "IPY_MODEL_9648095aed574f23b250c5bd580d6c91", + "value": "Downloading builder script: 100%" + } + }, + "50b5ebc5f3a24736b202b3c679427280": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4807,60 +4575,89 @@ "width": null } }, - "6ad2b5fe64d44ca49e12cfedca2a8a87": { + "537a7e5193204b0d9f24067d8b0d6a48": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e1032ef202124bcbb4295a62f0fbcd7e", + "IPY_MODEL_5ee813a8a46740c3aab89f6b599ad39e", + "IPY_MODEL_2e5d3051ac3f463ba4e2b037b3bf6a6d" + ], + "layout": "IPY_MODEL_17d3881b74754a51ba0df691d25c9cf2" + } + }, + "559d94ee3b454e26afb08fa107d536d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "6af441dc94b9428c80d498dab6d90d7f": { + "55fa5385724d432b94007ae87ceef468": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b0d70013d8cc4363bfad3cb8e5f29622", - "placeholder": "​", - "style": "IPY_MODEL_e26a48ee9488421ca9916f3462179bb9", - "value": " 10000/10000 [00:02<00:00, 3750.69 examples/s]" + "layout": "IPY_MODEL_f5fb26d2b1a144548fec9eeffa1d5884", + "max": 8845.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_28ebb4a711c04c5dbf3f58db63ce416f", + "value": 8845.0 } }, - "6ce7b0e758cf4736861384747982cc7f": { + "56db53d371014197b923bdbb1a79530a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1637af5e927944aa9a2712f05182c7e9", + "placeholder": "​", + "style": "IPY_MODEL_2c0da79efc3f480bab81a9bce04b4ae0", + "value": " 60000/60000 [00:10<00:00, 7986.29 examples/s]" } }, - "6d6b8fb83021442099598400f697851e": { + "5874762017e64cdfb45f5bfc4156fcd9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -4875,44 +4672,172 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f4de3fdbf5a04ff3aaca95ba3f8b7bd1", + "layout": "IPY_MODEL_1f00d58c20cd4a78ae391d7f5da662fa", "placeholder": "​", - "style": "IPY_MODEL_d9609b0893284e26972c993b8b39dc0b", - "value": "Downloading builder script: 100%" + "style": "IPY_MODEL_1430047be29e43e3ad2d016ff6d9dda0", + "value": " 5.15k/5.15k [00:00<00:00, 631kB/s]" } }, - "6ff7c27f74894cb8a78e9ae05ac3ac3b": { + "5998de2f3dd44e269565585a0a171f29": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "59bc65670bd04511bc2fb1a592dd883d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "7028e5c434574d56953b37507185302d": { + "5a5755af220a479ba1a7b86e8b86ce1a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5da9d463909242c6aaaff23086751219": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "70d07d6da2554a7eae14ce6e993fd80c": { + "5ee813a8a46740c3aab89f6b599ad39e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_23335ca0a6e6468ea633ccdad870019f", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_59bc65670bd04511bc2fb1a592dd883d", + "value": 4.0 + } + }, + "612b79dbe9dc4d4a9df3e71d740d1505": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -4964,22 +4889,23 @@ "width": null } }, - "711ed2bca2084ab2b54e91947ac1108a": { + "630ba679044f419abdae032b67e77e9d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "7229d8a4884144d2963426ec7964a354": { + "6443cbc94e88493ba1591b9bda2a36d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5031,7 +4957,7 @@ "width": null } }, - "72509aecafaf46419ab5eca56d1d07b7": { + "66d82dd27be8492a9968efb499efa374": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5046,65 +4972,29 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_70d07d6da2554a7eae14ce6e993fd80c", + "layout": "IPY_MODEL_96436149605e4d58a0a7c03ea821de17", "placeholder": "​", - "style": "IPY_MODEL_218bea2a05724fbfa1f4efa38b744a6f", - "value": " 5.15k/5.15k [00:00<00:00, 324kB/s]" + "style": "IPY_MODEL_c4bbd3871bf344b09a69017a586b09a5", + "value": " 60000/60000 [00:08<00:00, 7511.12 examples/s]" } }, - "7276206ef29b48fda0ab685ae2f4c5b2": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", + "68d210cf8a9b4be3a3bcc96402332748": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "73ba91dcac0d4c1c9d4846ccb0fcf091": { + "690f7c9744144ac3b673a489998a31fc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -5119,7 +5009,7 @@ "description_width": "" } }, - "757ddd8a9bb34d09a3a6b77b4aaf4857": { + "69421edd53374a1db153e6ea9902e51a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5171,29 +5061,43 @@ "width": null } }, - "761c0ed328c449059ece5399e5ff1233": { + "6dfcd217c55e45fb879053967b360d09": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6e9aa0810d4f4d8885223b01a604e468": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1b1c5fba64c14d2784e32bfd006ab230", - "IPY_MODEL_7dea94a63af149118f75e89bfa70876f", - "IPY_MODEL_f0f61bf74b254944b94ba220d2a246ed" - ], - "layout": "IPY_MODEL_e9bec30e2317490d9a4382b936bf0bd9" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bec7614f7b424808aaad478bd2501c59", + "placeholder": "​", + "style": "IPY_MODEL_2fdc9aa7c44a4c26ad2ca301e097ef9b", + "value": "Generating train split: 100%" } }, - "79d62771dcae4dfaafd6dca5b692ce84": { + "701a760ce04a4697ad3712a07459e6cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5245,44 +5149,7 @@ "width": null } }, - "7ab5d79c93ad4df5a716ff45665625e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2b83c0f239144261921fca67e904e75e", - "IPY_MODEL_f704a3dccb5b4420a10abea93f101b9a", - "IPY_MODEL_2bdff68ec5d24f65a203ba93c047ad59" - ], - "layout": "IPY_MODEL_d93ca8c757794d2da6227cf1e7712637" - } - }, - "7c1cf24d94b14fecb4bb58664192beaf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "7d74598aab5046599b49115a603ca10c": { + "721e24bde61d45ec9d5009c3099c7a49": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5334,31 +5201,7 @@ "width": null } }, - "7dea94a63af149118f75e89bfa70876f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_43a0ee64b6e44fc29c490ab217442403", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b2f678ecb4f843cfb6f045127c9c6000", - "value": 29515.0 - } - }, - "7e1cb1ffd78f4c55be8f128a66a37d1c": { + "736c417bd25f4e20bde338512436ced7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5373,34 +5216,35 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_da0be24acce84f42b8dcb0fc65be50ed", + "layout": "IPY_MODEL_bd09722abaf84b51b5c5eac4e0a25cc7", "placeholder": "​", - "style": "IPY_MODEL_28b0314091b54a0e9d01442159a3674b", - "value": " 60000/60000 [00:24<00:00, 2183.18 examples/s]" + "style": "IPY_MODEL_f0f9dff1082942a486ea2ccd7065dab2", + "value": " 4/4 [00:02<00:00, 1.62it/s]" } }, - "7f9dcf4693b64884a760553f66173507": { + "7522bd2e46614a60ad0b06357b2d72f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d71666b44f7a4dada421af0312873de9", - "placeholder": "​", - "style": "IPY_MODEL_64a6d2c65ba44d598a00ab1a0bb19a7a", - "value": "Computing checksums: 100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e4216a625ef3489b8a292ebdd193b9b1", + "IPY_MODEL_dd8c9c8ff61b4a218c6324f1c004a434", + "IPY_MODEL_ffc51b71be434d6499331e6c7f2709d4" + ], + "layout": "IPY_MODEL_027bb356c11345ccb3aa18600812711c" } }, - "8040f9b0c58a48e581c1c91e2988cd98": { + "76e24cfe61d04e9bb249db7e36614b9b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5452,28 +5296,31 @@ "width": null } }, - "867c25e156564b75b1a3478e0c27fcdf": { + "78049c4e3feb46a4998a572dd69d3106": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3a3676e45a4a4f4d9cf748aa7a617f1d", - "placeholder": "​", - "style": "IPY_MODEL_73ba91dcac0d4c1c9d4846ccb0fcf091", - "value": " 26.4M/26.4M [00:00<00:00, 55.5MB/s]" + "layout": "IPY_MODEL_937d5f2b03e642fa83468fd96849ddcb", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_24acdfa125d844c8ad0083addbd3a43f", + "value": 10000.0 } }, - "8909feaa0dc7413aa28a55b49e391869": { + "7b77e6a6426f4fd5abc187e7ca924a99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5488,13 +5335,29 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0c8b474086ff45a28dcb688a6b1416d0", + "layout": "IPY_MODEL_12f96b7aa9f74dd49b8faae0ab4d8bd6", "placeholder": "​", - "style": "IPY_MODEL_7c1cf24d94b14fecb4bb58664192beaf", - "value": " 4/4 [00:00<00:00, 2.33it/s]" + "style": "IPY_MODEL_3afa28a9cfcd446885b76512d5f589d2", + "value": "100%" + } + }, + "7b82b6a2804e495fb202b1d1a942b498": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8a323c9e3f424d3a9d3add0fec5a3aa6": { + "7f1c64576071479594ebb33e3841c81b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5546,68 +5409,7 @@ "width": null } }, - "903d37d4295940cf8e152671be03cb85": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_35906c636117467c89b0ac0ae8c0a0ab", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fab815f8e2a647d6b4d66b089b7db947", - "value": 4.0 - } - }, - "91782d261dd84e97914beee2a8925a8e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7f9dcf4693b64884a760553f66173507", - "IPY_MODEL_292c5ed4289a42cc9e075371ae69c495", - "IPY_MODEL_b052f1ad208f459ea8374b6d83019b8e" - ], - "layout": "IPY_MODEL_ac7894d4d13244b79762d4261411d28f" - } - }, - "9529573278a14cfebeeb127ac35b59ee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "969a86fb72864592907227476c004e9f": { + "85f21b994a514646a81e121fa7e4db46": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5659,7 +5461,7 @@ "width": null } }, - "97b5a1af5d93477f8c14662092693155": { + "869b46ed61dc450999ff10f98e125875": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5711,29 +5513,37 @@ "width": null } }, - "9b275e24abf4422ab8fd76f997e0928d": { + "8fb8e1b75e5e46a5b8325de4ce8a72ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5c1c69a26d054448b47c7e0e21c04bab", - "IPY_MODEL_b791fda2d47747dfb5ac7e3e67610aa8", - "IPY_MODEL_8909feaa0dc7413aa28a55b49e391869" - ], - "layout": "IPY_MODEL_ee346b4fa8194857bf89bf2d2cb10b2c" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "92d06fbfea054a8e88e09151581d7306": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "9cf36dbe475f42408e19d9b5a04d082a": { + "937d5f2b03e642fa83468fd96849ddcb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5785,22 +5595,7 @@ "width": null } }, - "9dd65b2a67f74220b1b21b97fb3fb804": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "9e939aaf314543ec81d38ed9a6e10943": { + "96436149605e4d58a0a7c03ea821de17": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5852,29 +5647,97 @@ "width": null } }, - "a11ed46d134748e790cad78f74d23947": { + "9648095aed574f23b250c5bd580d6c91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "97948cf5069f4fb8b8b4b42413105a21": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d382bff8f725441898de0b7b48057514", - "IPY_MODEL_540aacf86dc84c70bc6608a1b039b6e9", - "IPY_MODEL_7e1cb1ffd78f4c55be8f128a66a37d1c" - ], - "layout": "IPY_MODEL_307de2c8b62c441a9268876370811e96" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0912d37c17124722bc87f291ffe6382f", + "max": 4833.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_68d210cf8a9b4be3a3bcc96402332748", + "value": 4833.0 + } + }, + "992ce557afcc45bdb10cacf473041f5b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9e06f9ab1944486aa10fbe17b8738ab6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a27d46aefff44a1fb6de7cd868f0e90a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f0aa3b6bcf8f4c94bd864090213842e8", + "placeholder": "​", + "style": "IPY_MODEL_4d3f1d92201b4f6882b0a4efe4c27937", + "value": "Downloading data: 100%" } }, - "a1a9fcb84e7a48eb9e75412f4f7f409f": { + "a4de7f9653574f5e938e4598410da12d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5889,13 +5752,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_dd9e627d2c4145f8898572e607734b98", + "layout": "IPY_MODEL_5a5755af220a479ba1a7b86e8b86ce1a", "placeholder": "​", - "style": "IPY_MODEL_4cc01f457f1d4b749355a005e7598a2e", - "value": " 4/4 [00:06<00:00, 1.41s/it]" + "style": "IPY_MODEL_92d06fbfea054a8e88e09151581d7306", + "value": "Downloading data: 100%" } }, - "a24e81a4b4b34b6497deb2cdfa772651": { + "a50faee2fea343bf94b52d1204e1a79a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5947,31 +5810,7 @@ "width": null } }, - "a6850e0cf7cf411083eb402a1f7ffcdf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_41d4c17aec3048a09d36ba2cd7bb1d66", - "max": 26421880.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_616df3409ccb46fa9e17f565608fd38e", - "value": 26421880.0 - } - }, - "a71041b7e65840ceacc14617a97b2b6e": { + "a55eba05af564a53815c6845a477c3a5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6023,29 +5862,7 @@ "width": null } }, - "a9c1ed92d1764f1dbd2c3822fa8b6898": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0811fa4996d049e090febc06ea32c8be", - "IPY_MODEL_903d37d4295940cf8e152671be03cb85", - "IPY_MODEL_a1a9fcb84e7a48eb9e75412f4f7f409f" - ], - "layout": "IPY_MODEL_9cf36dbe475f42408e19d9b5a04d082a" - } - }, - "aa1d356cf8c94487b3051735a5ce6450": { + "a56574785d994197a25f60e59fef2ab3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -6060,7 +5877,7 @@ "description_width": "" } }, - "ac7894d4d13244b79762d4261411d28f": { + "a8505ed4316d463cb93e002611334bca": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6112,7 +5929,7 @@ "width": null } }, - "aced78e0b4a54c3b957bb7b58ff5da71": { + "a86812a0e7f54fb9bda9262ce674e5a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6164,7 +5981,7 @@ "width": null } }, - "b052f1ad208f459ea8374b6d83019b8e": { + "a9e316fa834343b68f168198f909c51d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -6179,166 +5996,98 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_757ddd8a9bb34d09a3a6b77b4aaf4857", + "layout": "IPY_MODEL_093cf0b3d78a452cad534e131f55e56d", "placeholder": "​", - "style": "IPY_MODEL_2cf7bdb4a529481e9133f4b0ac4975c2", - "value": " 4/4 [00:00<00:00, 407.53it/s]" - } - }, - "b0d70013d8cc4363bfad3cb8e5f29622": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b2f678ecb4f843cfb6f045127c9c6000": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "style": "IPY_MODEL_6dfcd217c55e45fb879053967b360d09", + "value": "Computing checksums: 100%" } }, - "b3faa01b617f407e8d1b152a2fb85c2d": { + "b041eb1dd72b47cdbeaf6c763fa45a1f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_daff3c773de94946ad2bab4b8ebcfc09", - "max": 4422102.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fdbea6608bb947daa73550a82c368bb2", - "value": 4422102.0 + "layout": "IPY_MODEL_85f21b994a514646a81e121fa7e4db46", + "placeholder": "​", + "style": "IPY_MODEL_e4b42dbc17714e4cb8ff523f30fd08e4", + "value": "Generating test split: 100%" } }, - "b6802c1b13294dafa045834671fb2a3a": { + "b8c2eeaef9cc40408a21e61164f3e589": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a9e316fa834343b68f168198f909c51d", + "IPY_MODEL_c401551c61cd4405884c3527f0bf2c49", + "IPY_MODEL_05cc2250105a418aa4367d257cc0414a" + ], + "layout": "IPY_MODEL_3cfa4f7f077f428da6a2d2f06a8d25a3" } }, - "b791fda2d47747dfb5ac7e3e67610aa8": { + "b99980af9bf54a949ce22bd15098cc19": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_daab8b6aa44a448885d76496cf4e849b", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7028e5c434574d56953b37507185302d", - "value": 4.0 + "layout": "IPY_MODEL_d57a4ba27f6e455d996784f19305358b", + "placeholder": "​", + "style": "IPY_MODEL_5da9d463909242c6aaaff23086751219", + "value": "Downloading readme: 100%" } }, - "b98270fd10c84b9cbbb081039967ba17": { + "bc0897bb0c9a4310991fa46279bae3c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_16f0bcb2b29a4013ae1bfc39aeae305c", - "IPY_MODEL_d7481eede9c54285b1abe9c1c559588c", - "IPY_MODEL_6af441dc94b9428c80d498dab6d90d7f" - ], - "layout": "IPY_MODEL_feba6d70d1f54daba5f2b892640f3ac6" + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_10d6a459a3de4918a150b33482d8f94e", + "placeholder": "​", + "style": "IPY_MODEL_9e06f9ab1944486aa10fbe17b8738ab6", + "value": " 4.83k/4.83k [00:00<00:00, 553kB/s]" } }, - "bc54a691b3b846ee88158a6f8c5f16d8": { + "bd09722abaf84b51b5c5eac4e0a25cc7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6390,7 +6139,7 @@ "width": null } }, - "bc9480a82b074d8ab28bafaf83d8e64a": { + "bd826af1a92f487a8c7933ba7199dd4a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6442,29 +6191,7 @@ "width": null } }, - "be5d8ecbd7ba4d20a2dd9b9089ba0b11": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ffd120466aa9408d93784aa48cb4312c", - "IPY_MODEL_a6850e0cf7cf411083eb402a1f7ffcdf", - "IPY_MODEL_867c25e156564b75b1a3478e0c27fcdf" - ], - "layout": "IPY_MODEL_e0c93f77843745e581caa31d1a7f19db" - } - }, - "c00e00711ebc47538c4c510ba4422d0d": { + "bdb87db508984dbc9ff20f8feafc73ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6516,7 +6243,7 @@ "width": null } }, - "c0e1059bff5a45b1890c91ce4b8f8b4e": { + "bdbffa13cb094da8a21d3c002b496dc5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -6532,59 +6259,107 @@ "description_width": "" } }, - "c52ea24aec5648228ce51f7c3e9f346b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "bec7614f7b424808aaad478bd2501c59": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "cc7fc197cdbb4d8483276e815a588e7c": { + "c0e1e47095d24c20a096bd7a54642482": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3a24bc725d8e41cb922300a958614055", + "max": 3126.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_34b22502df214166ab4c1267bcd108e5", + "value": 3126.0 } }, - "d05f567fc66047acb55847aaadfee70c": { + "c401551c61cd4405884c3527f0bf2c49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6d6b8fb83021442099598400f697851e", - "IPY_MODEL_3b7ea58f9080466c940c18d2babb2d3e", - "IPY_MODEL_f1d76f8be3bd4023a4857f4f416821b4" - ], - "layout": "IPY_MODEL_e713287ee87a4d40a382b0631b536755" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d2c2127712304611b576e27909001071", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7b82b6a2804e495fb202b1d1a942b498", + "value": 4.0 } }, - "d1e9973a7d4a4efdba048a2e719cd651": { + "c45799282b214919a12cbde5d89076a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6636,7 +6411,22 @@ "width": null } }, - "d2d0f95ce92b498ea0372ff90b1ee069": { + "c4bbd3871bf344b09a69017a586b09a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c4ee0629bee942a8af4877750a3f259c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6688,65 +6478,7 @@ "width": null } }, - "d36d9d9cbc4845c4b832ff3271c15cec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1790c08d664442409bc55b6b2e7dacf7", - "IPY_MODEL_15dcd9ce4dc0435f8131ad9cc2cf4892", - "IPY_MODEL_72509aecafaf46419ab5eca56d1d07b7" - ], - "layout": "IPY_MODEL_2ddd67149d6b482dbf3fe7161822d0c5" - } - }, - "d382bff8f725441898de0b7b48057514": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a24e81a4b4b34b6497deb2cdfa772651", - "placeholder": "​", - "style": "IPY_MODEL_253002c0917842f6899d59d681edafca", - "value": "Map (num_proc=2): 100%" - } - }, - "d48761e18d36445daaa903b736e4bdd3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d71666b44f7a4dada421af0312873de9": { + "c68ba05b52a44fcf8cede8858221a21f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6798,31 +6530,7 @@ "width": null } }, - "d7481eede9c54285b1abe9c1c559588c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_969a86fb72864592907227476c004e9f", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fffd6541a6714298bda7704e8ca87ab6", - "value": 10000.0 - } - }, - "d93ca8c757794d2da6227cf1e7712637": { + "d057832ec8be4cce8b0f68d794d903bb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6874,7 +6582,7 @@ "width": null } }, - "d9609b0893284e26972c993b8b39dc0b": { + "d150295da13a4f6990dcffe7be732503": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -6889,7 +6597,7 @@ "description_width": "" } }, - "da0be24acce84f42b8dcb0fc65be50ed": { + "d2c2127712304611b576e27909001071": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6941,7 +6649,7 @@ "width": null } }, - "daab8b6aa44a448885d76496cf4e849b": { + "d57a4ba27f6e455d996784f19305358b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6993,7 +6701,7 @@ "width": null } }, - "daff3c773de94946ad2bab4b8ebcfc09": { + "d706f2f9b57f4381a09209864a913ca5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7045,22 +6753,7 @@ "width": null } }, - "dce6cd24d28d438a80c01cd3323ea676": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "dd9e627d2c4145f8898572e607734b98": { + "d7dcb58725a24c6fb1989b5897028a13": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7112,31 +6805,7 @@ "width": null } }, - "e02d68f14b7543f88334666e0bd315f8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_f98701b031574129ab50c61935ad389e", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f282773aef224356a1f8705ade97a1c6", - "value": 60000.0 - } - }, - "e0c93f77843745e581caa31d1a7f19db": { + "d87280dc535b4a6786403d3b38c77930": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7188,43 +6857,7 @@ "width": null } }, - "e26a48ee9488421ca9916f3462179bb9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "e342db7c6ad14b17b36cf29d3dc944df": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ec5cb2bd2c404a0199e2497abed562cf", - "placeholder": "​", - "style": "IPY_MODEL_9529573278a14cfebeeb127ac35b59ee", - "value": " 4.42M/4.42M [00:00<00:00, 47.4MB/s]" - } - }, - "e713287ee87a4d40a382b0631b536755": { + "d9bdd15f8e9b4565bbfa4b273eb7fbb0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7276,7 +6909,7 @@ "width": null } }, - "e96cef50a8df40d087bdae15b405f49e": { + "d9e47029a70144beb3253e67eb8a8f4f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7328,7 +6961,28 @@ "width": null } }, - "e9bec30e2317490d9a4382b936bf0bd9": { + "daf90e236faa41c0922e212140e77826": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d057832ec8be4cce8b0f68d794d903bb", + "placeholder": "​", + "style": "IPY_MODEL_466f32eb8a2e4aada841ec3262131ff2", + "value": "Downloading data files: 100%" + } + }, + "dc9041c668a349fb846d5286bc22c688": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7380,22 +7034,73 @@ "width": null } }, - "eb58eaa1c1954e64b0090ac631cf0dad": { + "dd8c9c8ff61b4a218c6324f1c004a434": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3590bfe3b36048d69c9784740855535e", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fcd35b0293524453a68d23c0a8539e19", + "value": 26421880.0 + } + }, + "de7135124236426bbb2f54381d665d0e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a55eba05af564a53815c6845a477c3a5", + "placeholder": "​", + "style": "IPY_MODEL_0303aac63e5e4fc5920a61bcfe83b03c", + "value": "Map (num_proc=4): 100%" + } + }, + "e1032ef202124bcbb4295a62f0fbcd7e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5998de2f3dd44e269565585a0a171f29", + "placeholder": "​", + "style": "IPY_MODEL_992ce557afcc45bdb10cacf473041f5b", + "value": "Extracting data files: 100%" } }, - "ec5cb2bd2c404a0199e2497abed562cf": { + "e29bc7e5e4dc447a807eecb7ea072516": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7447,7 +7152,44 @@ "width": null } }, - "ed50ad1dd46f489798d7b9e8cf22f305": { + "e3e3d730a68d43139c8ea8493328c162": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e4216a625ef3489b8a292ebdd193b9b1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_69421edd53374a1db153e6ea9902e51a", + "placeholder": "​", + "style": "IPY_MODEL_8fb8e1b75e5e46a5b8325de4ce8a72ae", + "value": "Downloading data: 100%" + } + }, + "e4b42dbc17714e4cb8ff523f30fd08e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -7462,7 +7204,7 @@ "description_width": "" } }, - "ee346b4fa8194857bf89bf2d2cb10b2c": { + "e5ee4f3a98a342c8b7d48ced17eda826": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7514,49 +7256,31 @@ "width": null } }, - "f0f61bf74b254944b94ba220d2a246ed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c00e00711ebc47538c4c510ba4422d0d", - "placeholder": "​", - "style": "IPY_MODEL_f2f1f336fe4d409db8834fadeecb5de7", - "value": " 29.5k/29.5k [00:00<00:00, 1.66MB/s]" - } - }, - "f1d76f8be3bd4023a4857f4f416821b4": { + "e8844724612d48e8bd56a5d09bfba9ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bc54a691b3b846ee88158a6f8c5f16d8", - "placeholder": "​", - "style": "IPY_MODEL_6ff7c27f74894cb8a78e9ae05ac3ac3b", - "value": " 4.83k/4.83k [00:00<00:00, 306kB/s]" + "layout": "IPY_MODEL_50b5ebc5f3a24736b202b3c679427280", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4e0149a329f4494bb563bfadd3dce0bc", + "value": 29515.0 } }, - "f282773aef224356a1f8705ade97a1c6": { + "e8a11c40685b4ea19c771689d8ccacd3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -7572,7 +7296,7 @@ "description_width": "" } }, - "f28ad72bcab343d2a0a5a8f8d4d57e28": { + "ebeb11467e494d1da1e11c4c1f020a4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -7587,13 +7311,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2a4b0dc0c4a14bd082e2d072bbfc841e", + "layout": "IPY_MODEL_76e24cfe61d04e9bb249db7e36614b9b", "placeholder": "​", - "style": "IPY_MODEL_d48761e18d36445daaa903b736e4bdd3", - "value": "Downloading data: 100%" + "style": "IPY_MODEL_11b1fca65ff84c24b4ae4471199365a0", + "value": " 60000/60000 [00:28<00:00, 2065.78it/s]" } }, - "f2f1f336fe4d409db8834fadeecb5de7": { + "edb2626ea7fe43cba9657b7cb42d5634": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -7608,7 +7332,7 @@ "description_width": "" } }, - "f4de3fdbf5a04ff3aaca95ba3f8b7bd1": { + "eea61fb21379446e864476d046f65f47": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7660,28 +7384,7 @@ "width": null } }, - "f52f6d96ff4f4ffd85aa3dadf61fcc4b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bc9480a82b074d8ab28bafaf83d8e64a", - "placeholder": "​", - "style": "IPY_MODEL_c52ea24aec5648228ce51f7c3e9f346b", - "value": " 8.85k/8.85k [00:00<00:00, 555kB/s]" - } - }, - "f704a3dccb5b4420a10abea93f101b9a": { + "f07878bc520a46b7ba6a998b866ac201": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -7697,15 +7400,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7276206ef29b48fda0ab685ae2f4c5b2", - "max": 60000.0, + "layout": "IPY_MODEL_2879f2ebffe144ea9c57752bc1eb8f92", + "max": 4422102.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_6ce7b0e758cf4736861384747982cc7f", - "value": 60000.0 + "style": "IPY_MODEL_32415e8d4fb248f0bd09a01e50f9e3ae", + "value": 4422102.0 } }, - "f7c076b2d484403b94bf9cf6614a53c2": { + "f0aa3b6bcf8f4c94bd864090213842e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7757,7 +7460,37 @@ "width": null } }, - "f98701b031574129ab50c61935ad389e": { + "f0f9dff1082942a486ea2ccd7065dab2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f221ee9541074b83ac6544e40a87ebca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f5fb26d2b1a144548fec9eeffa1d5884": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7809,23 +7542,22 @@ "width": null } }, - "fab815f8e2a647d6b4d66b089b7db947": { + "f899b4d1f050489aae5ee2acd46db8ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "fdbea6608bb947daa73550a82c368bb2": { + "fae2438f83af4331b446e19b3beb96a0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -7841,7 +7573,52 @@ "description_width": "" } }, - "fe0cffd29643463d87406f6447b990d6": { + "fb72fc40aada40419e654f1d7757871f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_721e24bde61d45ec9d5009c3099c7a49", + "placeholder": "​", + "style": "IPY_MODEL_d150295da13a4f6990dcffe7be732503", + "value": " 8.85k/8.85k [00:00<00:00, 1.10MB/s]" + } + }, + "fcab5be83a8144b6a413a329d9da980d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d7dcb58725a24c6fb1989b5897028a13", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e8a11c40685b4ea19c771689d8ccacd3", + "value": 60000.0 + } + }, + "fcd35b0293524453a68d23c0a8539e19": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -7857,28 +7634,29 @@ "description_width": "" } }, - "fe6e299677474b5db54e378feb494bd4": { + "fe602eb6950c4adb8193e1b4d6cb1670": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_97b5a1af5d93477f8c14662092693155", - "placeholder": "​", - "style": "IPY_MODEL_ed50ad1dd46f489798d7b9e8cf22f305", - "value": "Downloading readme: 100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_daf90e236faa41c0922e212140e77826", + "IPY_MODEL_26a56455075e410a8500d528a01214da", + "IPY_MODEL_736c417bd25f4e20bde338512436ced7" + ], + "layout": "IPY_MODEL_d706f2f9b57f4381a09209864a913ca5" } }, - "feba6d70d1f54daba5f2b892640f3ac6": { + "ffb9563a9f2e447ead263097568bc49d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -7930,7 +7708,7 @@ "width": null } }, - "ffd120466aa9408d93784aa48cb4312c": { + "ffc51b71be434d6499331e6c7f2709d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -7945,26 +7723,10 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1b62c4a2a7fa4cd48cf790f910023cad", + "layout": "IPY_MODEL_a8505ed4316d463cb93e002611334bca", "placeholder": "​", - "style": "IPY_MODEL_1b15dd21c7454f82a7e3b1aade1337a5", - "value": "Downloading data: 100%" - } - }, - "fffd6541a6714298bda7704e8ca87ab6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "style": "IPY_MODEL_559d94ee3b454e26afb08fa107d536d8", + "value": " 26.4M/26.4M [00:00<00:00, 115MB/s]" } } }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 2a57c2348..4c9b8d038 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:50.076934Z", - "iopub.status.busy": "2023-11-02T15:15:50.076608Z", - "iopub.status.idle": "2023-11-02T15:15:51.959838Z", - "shell.execute_reply": "2023-11-02T15:15:51.958366Z" + "iopub.execute_input": "2023-11-04T09:21:05.973237Z", + "iopub.status.busy": "2023-11-04T09:21:05.973042Z", + "iopub.status.idle": "2023-11-04T09:21:07.004958Z", + "shell.execute_reply": "2023-11-04T09:21:07.004368Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:51.964615Z", - "iopub.status.busy": "2023-11-02T15:15:51.964073Z", - "iopub.status.idle": "2023-11-02T15:15:52.440669Z", - "shell.execute_reply": "2023-11-02T15:15:52.439559Z" + "iopub.execute_input": "2023-11-04T09:21:07.007607Z", + "iopub.status.busy": "2023-11-04T09:21:07.007341Z", + "iopub.status.idle": "2023-11-04T09:21:07.274232Z", + "shell.execute_reply": "2023-11-04T09:21:07.273590Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:52.445757Z", - "iopub.status.busy": "2023-11-02T15:15:52.445377Z", - "iopub.status.idle": "2023-11-02T15:15:52.466633Z", - "shell.execute_reply": "2023-11-02T15:15:52.465415Z" + "iopub.execute_input": "2023-11-04T09:21:07.277243Z", + "iopub.status.busy": "2023-11-04T09:21:07.276981Z", + "iopub.status.idle": "2023-11-04T09:21:07.289260Z", + "shell.execute_reply": "2023-11-04T09:21:07.288763Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:52.471098Z", - "iopub.status.busy": "2023-11-02T15:15:52.470786Z", - "iopub.status.idle": "2023-11-02T15:15:52.866752Z", - "shell.execute_reply": "2023-11-02T15:15:52.865827Z" + "iopub.execute_input": "2023-11-04T09:21:07.291448Z", + "iopub.status.busy": "2023-11-04T09:21:07.291245Z", + "iopub.status.idle": "2023-11-04T09:21:07.524446Z", + "shell.execute_reply": "2023-11-04T09:21:07.523793Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:52.871309Z", - "iopub.status.busy": "2023-11-02T15:15:52.870894Z", - "iopub.status.idle": "2023-11-02T15:15:52.924852Z", - "shell.execute_reply": "2023-11-02T15:15:52.923703Z" + "iopub.execute_input": "2023-11-04T09:21:07.526959Z", + "iopub.status.busy": "2023-11-04T09:21:07.526749Z", + "iopub.status.idle": "2023-11-04T09:21:07.553849Z", + "shell.execute_reply": "2023-11-04T09:21:07.553313Z" } }, "outputs": [], @@ -427,10 +427,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:52.930641Z", - "iopub.status.busy": "2023-11-02T15:15:52.930283Z", - "iopub.status.idle": "2023-11-02T15:15:55.351474Z", - "shell.execute_reply": "2023-11-02T15:15:55.350167Z" + "iopub.execute_input": "2023-11-04T09:21:07.556150Z", + "iopub.status.busy": "2023-11-04T09:21:07.555953Z", + "iopub.status.idle": "2023-11-04T09:21:08.855565Z", + "shell.execute_reply": "2023-11-04T09:21:08.854845Z" } }, "outputs": [ @@ -471,10 +471,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:55.357720Z", - "iopub.status.busy": "2023-11-02T15:15:55.356363Z", - "iopub.status.idle": "2023-11-02T15:15:55.399564Z", - "shell.execute_reply": "2023-11-02T15:15:55.398628Z" + "iopub.execute_input": "2023-11-04T09:21:08.858593Z", + "iopub.status.busy": "2023-11-04T09:21:08.858046Z", + "iopub.status.idle": "2023-11-04T09:21:08.875057Z", + "shell.execute_reply": "2023-11-04T09:21:08.874421Z" }, "scrolled": true }, @@ -599,10 +599,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:55.404394Z", - "iopub.status.busy": "2023-11-02T15:15:55.403817Z", - "iopub.status.idle": "2023-11-02T15:15:57.155524Z", - "shell.execute_reply": "2023-11-02T15:15:57.153900Z" + "iopub.execute_input": "2023-11-04T09:21:08.877460Z", + "iopub.status.busy": "2023-11-04T09:21:08.877078Z", + "iopub.status.idle": "2023-11-04T09:21:09.756163Z", + "shell.execute_reply": "2023-11-04T09:21:09.755465Z" }, "id": "AaHC5MRKjruT" }, @@ -721,10 +721,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:57.160920Z", - "iopub.status.busy": "2023-11-02T15:15:57.160109Z", - "iopub.status.idle": "2023-11-02T15:15:57.188012Z", - "shell.execute_reply": "2023-11-02T15:15:57.186914Z" + "iopub.execute_input": "2023-11-04T09:21:09.759003Z", + "iopub.status.busy": "2023-11-04T09:21:09.758483Z", + "iopub.status.idle": "2023-11-04T09:21:09.772803Z", + "shell.execute_reply": "2023-11-04T09:21:09.772262Z" }, "id": "Wy27rvyhjruU" }, @@ -773,10 +773,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:57.192920Z", - "iopub.status.busy": "2023-11-02T15:15:57.192426Z", - "iopub.status.idle": "2023-11-02T15:15:57.345895Z", - "shell.execute_reply": "2023-11-02T15:15:57.344707Z" + "iopub.execute_input": "2023-11-04T09:21:09.775362Z", + "iopub.status.busy": "2023-11-04T09:21:09.774896Z", + "iopub.status.idle": "2023-11-04T09:21:09.856549Z", + "shell.execute_reply": "2023-11-04T09:21:09.855846Z" }, "id": "Db8YHnyVjruU" }, @@ -883,10 +883,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:57.350993Z", - "iopub.status.busy": "2023-11-02T15:15:57.350140Z", - "iopub.status.idle": "2023-11-02T15:15:57.680661Z", - "shell.execute_reply": "2023-11-02T15:15:57.679683Z" + "iopub.execute_input": "2023-11-04T09:21:09.859455Z", + "iopub.status.busy": "2023-11-04T09:21:09.859138Z", + "iopub.status.idle": "2023-11-04T09:21:10.061506Z", + "shell.execute_reply": "2023-11-04T09:21:10.060865Z" }, "id": "iJqAHuS2jruV" }, @@ -923,10 +923,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:57.685588Z", - "iopub.status.busy": "2023-11-02T15:15:57.685200Z", - "iopub.status.idle": "2023-11-02T15:15:57.721756Z", - "shell.execute_reply": "2023-11-02T15:15:57.720702Z" + "iopub.execute_input": "2023-11-04T09:21:10.064310Z", + "iopub.status.busy": "2023-11-04T09:21:10.063840Z", + "iopub.status.idle": "2023-11-04T09:21:10.081054Z", + "shell.execute_reply": "2023-11-04T09:21:10.080559Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -988,10 +988,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:57.726378Z", - "iopub.status.busy": "2023-11-02T15:15:57.726002Z", - "iopub.status.idle": "2023-11-02T15:15:57.747437Z", - "shell.execute_reply": "2023-11-02T15:15:57.746440Z" + "iopub.execute_input": "2023-11-04T09:21:10.083399Z", + "iopub.status.busy": "2023-11-04T09:21:10.083200Z", + "iopub.status.idle": "2023-11-04T09:21:10.093511Z", + "shell.execute_reply": "2023-11-04T09:21:10.093027Z" }, "id": "0lonvOYvjruV" }, @@ -1138,10 +1138,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:57.752527Z", - "iopub.status.busy": "2023-11-02T15:15:57.751917Z", - "iopub.status.idle": "2023-11-02T15:15:57.919362Z", - "shell.execute_reply": "2023-11-02T15:15:57.918041Z" + "iopub.execute_input": "2023-11-04T09:21:10.095900Z", + "iopub.status.busy": "2023-11-04T09:21:10.095537Z", + "iopub.status.idle": "2023-11-04T09:21:10.194540Z", + "shell.execute_reply": "2023-11-04T09:21:10.193805Z" }, "id": "MfqTCa3kjruV" }, @@ -1222,10 +1222,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:57.926723Z", - "iopub.status.busy": "2023-11-02T15:15:57.926280Z", - "iopub.status.idle": "2023-11-02T15:15:58.203808Z", - "shell.execute_reply": "2023-11-02T15:15:58.202338Z" + "iopub.execute_input": "2023-11-04T09:21:10.197452Z", + "iopub.status.busy": "2023-11-04T09:21:10.196961Z", + "iopub.status.idle": "2023-11-04T09:21:10.339452Z", + "shell.execute_reply": "2023-11-04T09:21:10.338757Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1285,10 +1285,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:58.210095Z", - "iopub.status.busy": "2023-11-02T15:15:58.209694Z", - "iopub.status.idle": "2023-11-02T15:15:58.216560Z", - "shell.execute_reply": "2023-11-02T15:15:58.215685Z" + "iopub.execute_input": "2023-11-04T09:21:10.342254Z", + "iopub.status.busy": "2023-11-04T09:21:10.341935Z", + "iopub.status.idle": "2023-11-04T09:21:10.345872Z", + "shell.execute_reply": "2023-11-04T09:21:10.345221Z" }, "id": "0rXP3ZPWjruW" }, @@ -1326,10 +1326,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:58.221394Z", - "iopub.status.busy": "2023-11-02T15:15:58.220957Z", - "iopub.status.idle": "2023-11-02T15:15:58.230369Z", - "shell.execute_reply": "2023-11-02T15:15:58.229182Z" + "iopub.execute_input": "2023-11-04T09:21:10.348453Z", + "iopub.status.busy": "2023-11-04T09:21:10.348084Z", + "iopub.status.idle": "2023-11-04T09:21:10.352509Z", + "shell.execute_reply": "2023-11-04T09:21:10.351961Z" }, "id": "-iRPe8KXjruW" }, @@ -1384,10 +1384,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:58.234828Z", - "iopub.status.busy": "2023-11-02T15:15:58.234400Z", - "iopub.status.idle": "2023-11-02T15:15:58.317870Z", - "shell.execute_reply": "2023-11-02T15:15:58.316817Z" + "iopub.execute_input": "2023-11-04T09:21:10.355014Z", + "iopub.status.busy": "2023-11-04T09:21:10.354652Z", + "iopub.status.idle": "2023-11-04T09:21:10.394876Z", + "shell.execute_reply": "2023-11-04T09:21:10.394226Z" }, "id": "ZpipUliyjruW" }, @@ -1438,10 +1438,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:58.323285Z", - "iopub.status.busy": "2023-11-02T15:15:58.322716Z", - "iopub.status.idle": "2023-11-02T15:15:58.421165Z", - "shell.execute_reply": "2023-11-02T15:15:58.419972Z" + "iopub.execute_input": "2023-11-04T09:21:10.397359Z", + "iopub.status.busy": "2023-11-04T09:21:10.397004Z", + "iopub.status.idle": "2023-11-04T09:21:10.445078Z", + "shell.execute_reply": "2023-11-04T09:21:10.444533Z" }, "id": "SLq-3q4xjruX" }, @@ -1462,13 +1462,7 @@ "\n", "\n", " Noise Matrix (aka Noisy Channel) P(given_label|true_label) of shape (4, 4)\n", - " p(s|y)\ty=0\ty=1\ty=2\ty=3\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + " p(s|y)\ty=0\ty=1\ty=2\ty=3\n", "\t---\t---\t---\t---\n", "s=0 |\t0.76\t0.0\t0.15\t0.14\n", "s=1 |\t0.06\t0.92\t0.06\t0.0\n", @@ -1516,10 +1510,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:58.425576Z", - "iopub.status.busy": "2023-11-02T15:15:58.424941Z", - "iopub.status.idle": "2023-11-02T15:15:58.591569Z", - "shell.execute_reply": "2023-11-02T15:15:58.589907Z" + "iopub.execute_input": "2023-11-04T09:21:10.447501Z", + "iopub.status.busy": "2023-11-04T09:21:10.447059Z", + "iopub.status.idle": "2023-11-04T09:21:10.553777Z", + "shell.execute_reply": "2023-11-04T09:21:10.553071Z" }, "id": "g5LHhhuqFbXK" }, @@ -1551,10 +1545,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:58.596729Z", - "iopub.status.busy": "2023-11-02T15:15:58.596215Z", - "iopub.status.idle": "2023-11-02T15:15:58.775916Z", - "shell.execute_reply": "2023-11-02T15:15:58.774429Z" + "iopub.execute_input": "2023-11-04T09:21:10.556971Z", + "iopub.status.busy": "2023-11-04T09:21:10.556454Z", + "iopub.status.idle": "2023-11-04T09:21:10.660442Z", + "shell.execute_reply": "2023-11-04T09:21:10.659717Z" }, "id": "p7w8F8ezBcet" }, @@ -1611,10 +1605,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:58.781830Z", - "iopub.status.busy": "2023-11-02T15:15:58.781422Z", - "iopub.status.idle": "2023-11-02T15:15:59.131735Z", - "shell.execute_reply": "2023-11-02T15:15:59.130558Z" + "iopub.execute_input": "2023-11-04T09:21:10.663430Z", + "iopub.status.busy": "2023-11-04T09:21:10.663004Z", + "iopub.status.idle": "2023-11-04T09:21:10.865957Z", + "shell.execute_reply": "2023-11-04T09:21:10.865357Z" }, "id": "WETRL74tE_sU" }, @@ -1649,10 +1643,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:59.137015Z", - "iopub.status.busy": "2023-11-02T15:15:59.136429Z", - "iopub.status.idle": "2023-11-02T15:15:59.500836Z", - "shell.execute_reply": "2023-11-02T15:15:59.499499Z" + "iopub.execute_input": "2023-11-04T09:21:10.868729Z", + "iopub.status.busy": "2023-11-04T09:21:10.868174Z", + "iopub.status.idle": "2023-11-04T09:21:11.081753Z", + "shell.execute_reply": "2023-11-04T09:21:11.081068Z" }, "id": "kCfdx2gOLmXS" }, @@ -1814,10 +1808,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:59.506258Z", - "iopub.status.busy": "2023-11-02T15:15:59.505387Z", - "iopub.status.idle": "2023-11-02T15:15:59.518360Z", - "shell.execute_reply": "2023-11-02T15:15:59.516928Z" + "iopub.execute_input": "2023-11-04T09:21:11.084422Z", + "iopub.status.busy": "2023-11-04T09:21:11.084171Z", + "iopub.status.idle": "2023-11-04T09:21:11.090978Z", + "shell.execute_reply": "2023-11-04T09:21:11.090391Z" }, "id": "-uogYRWFYnuu" }, @@ -1871,10 +1865,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:59.523331Z", - "iopub.status.busy": "2023-11-02T15:15:59.522610Z", - "iopub.status.idle": "2023-11-02T15:15:59.882143Z", - "shell.execute_reply": "2023-11-02T15:15:59.881131Z" + "iopub.execute_input": "2023-11-04T09:21:11.093448Z", + "iopub.status.busy": "2023-11-04T09:21:11.092993Z", + "iopub.status.idle": "2023-11-04T09:21:11.311419Z", + "shell.execute_reply": "2023-11-04T09:21:11.310713Z" }, "id": "pG-ljrmcYp9Q" }, @@ -1921,10 +1915,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:15:59.886969Z", - "iopub.status.busy": "2023-11-02T15:15:59.886374Z", - "iopub.status.idle": "2023-11-02T15:16:02.103520Z", - "shell.execute_reply": "2023-11-02T15:16:02.102244Z" + "iopub.execute_input": "2023-11-04T09:21:11.314187Z", + "iopub.status.busy": "2023-11-04T09:21:11.313830Z", + "iopub.status.idle": "2023-11-04T09:21:12.374953Z", + "shell.execute_reply": "2023-11-04T09:21:12.374232Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index a5bad1bde..a182817b6 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:08.260336Z", - "iopub.status.busy": "2023-11-02T15:16:08.259986Z", - "iopub.status.idle": "2023-11-02T15:16:10.014087Z", - "shell.execute_reply": "2023-11-02T15:16:10.012937Z" + "iopub.execute_input": "2023-11-04T09:21:18.171864Z", + "iopub.status.busy": "2023-11-04T09:21:18.171672Z", + "iopub.status.idle": "2023-11-04T09:21:19.173197Z", + "shell.execute_reply": "2023-11-04T09:21:19.172500Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:10.019512Z", - "iopub.status.busy": "2023-11-02T15:16:10.018596Z", - "iopub.status.idle": "2023-11-02T15:16:10.024194Z", - "shell.execute_reply": "2023-11-02T15:16:10.023041Z" + "iopub.execute_input": "2023-11-04T09:21:19.176270Z", + "iopub.status.busy": "2023-11-04T09:21:19.175883Z", + "iopub.status.idle": "2023-11-04T09:21:19.179377Z", + "shell.execute_reply": "2023-11-04T09:21:19.178773Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:10.028764Z", - "iopub.status.busy": "2023-11-02T15:16:10.028387Z", - "iopub.status.idle": "2023-11-02T15:16:10.044189Z", - "shell.execute_reply": "2023-11-02T15:16:10.043058Z" + "iopub.execute_input": "2023-11-04T09:21:19.181870Z", + "iopub.status.busy": "2023-11-04T09:21:19.181485Z", + "iopub.status.idle": "2023-11-04T09:21:19.190837Z", + "shell.execute_reply": "2023-11-04T09:21:19.190210Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:10.048046Z", - "iopub.status.busy": "2023-11-02T15:16:10.047727Z", - "iopub.status.idle": "2023-11-02T15:16:10.160423Z", - "shell.execute_reply": "2023-11-02T15:16:10.159259Z" + "iopub.execute_input": "2023-11-04T09:21:19.193291Z", + "iopub.status.busy": "2023-11-04T09:21:19.192820Z", + "iopub.status.idle": "2023-11-04T09:21:19.241206Z", + "shell.execute_reply": "2023-11-04T09:21:19.240501Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:10.165107Z", - "iopub.status.busy": "2023-11-02T15:16:10.164753Z", - "iopub.status.idle": "2023-11-02T15:16:10.202210Z", - "shell.execute_reply": "2023-11-02T15:16:10.201137Z" + "iopub.execute_input": "2023-11-04T09:21:19.244183Z", + "iopub.status.busy": "2023-11-04T09:21:19.243928Z", + "iopub.status.idle": "2023-11-04T09:21:19.263512Z", + "shell.execute_reply": "2023-11-04T09:21:19.262914Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:10.207198Z", - "iopub.status.busy": "2023-11-02T15:16:10.206799Z", - "iopub.status.idle": "2023-11-02T15:16:10.213646Z", - "shell.execute_reply": "2023-11-02T15:16:10.212633Z" + "iopub.execute_input": "2023-11-04T09:21:19.266097Z", + "iopub.status.busy": "2023-11-04T09:21:19.265795Z", + "iopub.status.idle": "2023-11-04T09:21:19.270060Z", + "shell.execute_reply": "2023-11-04T09:21:19.269386Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:10.219815Z", - "iopub.status.busy": "2023-11-02T15:16:10.219102Z", - "iopub.status.idle": "2023-11-02T15:16:10.277905Z", - "shell.execute_reply": "2023-11-02T15:16:10.276680Z" + "iopub.execute_input": "2023-11-04T09:21:19.272815Z", + "iopub.status.busy": "2023-11-04T09:21:19.272395Z", + "iopub.status.idle": "2023-11-04T09:21:19.301227Z", + "shell.execute_reply": "2023-11-04T09:21:19.300697Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:10.282667Z", - "iopub.status.busy": "2023-11-02T15:16:10.282265Z", - "iopub.status.idle": "2023-11-02T15:16:10.340680Z", - "shell.execute_reply": "2023-11-02T15:16:10.339529Z" + "iopub.execute_input": "2023-11-04T09:21:19.303818Z", + "iopub.status.busy": "2023-11-04T09:21:19.303429Z", + "iopub.status.idle": "2023-11-04T09:21:19.330467Z", + "shell.execute_reply": "2023-11-04T09:21:19.329937Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:10.345490Z", - "iopub.status.busy": "2023-11-02T15:16:10.345171Z", - "iopub.status.idle": "2023-11-02T15:16:12.875032Z", - "shell.execute_reply": "2023-11-02T15:16:12.873964Z" + "iopub.execute_input": "2023-11-04T09:21:19.333088Z", + "iopub.status.busy": "2023-11-04T09:21:19.332711Z", + "iopub.status.idle": "2023-11-04T09:21:20.666514Z", + "shell.execute_reply": "2023-11-04T09:21:20.665859Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:12.880246Z", - "iopub.status.busy": "2023-11-02T15:16:12.879335Z", - "iopub.status.idle": "2023-11-02T15:16:12.892666Z", - "shell.execute_reply": "2023-11-02T15:16:12.891506Z" + "iopub.execute_input": "2023-11-04T09:21:20.669978Z", + "iopub.status.busy": "2023-11-04T09:21:20.669281Z", + "iopub.status.idle": "2023-11-04T09:21:20.677286Z", + "shell.execute_reply": "2023-11-04T09:21:20.676612Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:12.898089Z", - "iopub.status.busy": "2023-11-02T15:16:12.897695Z", - "iopub.status.idle": "2023-11-02T15:16:12.922715Z", - "shell.execute_reply": "2023-11-02T15:16:12.921743Z" + "iopub.execute_input": "2023-11-04T09:21:20.680259Z", + "iopub.status.busy": "2023-11-04T09:21:20.679674Z", + "iopub.status.idle": "2023-11-04T09:21:20.694418Z", + "shell.execute_reply": "2023-11-04T09:21:20.693842Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:12.926501Z", - "iopub.status.busy": "2023-11-02T15:16:12.926196Z", - "iopub.status.idle": "2023-11-02T15:16:12.939820Z", - "shell.execute_reply": "2023-11-02T15:16:12.937801Z" + "iopub.execute_input": "2023-11-04T09:21:20.696918Z", + "iopub.status.busy": "2023-11-04T09:21:20.696565Z", + "iopub.status.idle": "2023-11-04T09:21:20.703526Z", + "shell.execute_reply": "2023-11-04T09:21:20.702954Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:12.944111Z", - "iopub.status.busy": "2023-11-02T15:16:12.943753Z", - "iopub.status.idle": "2023-11-02T15:16:12.948820Z", - "shell.execute_reply": "2023-11-02T15:16:12.947790Z" + "iopub.execute_input": "2023-11-04T09:21:20.705996Z", + "iopub.status.busy": "2023-11-04T09:21:20.705748Z", + "iopub.status.idle": "2023-11-04T09:21:20.708844Z", + "shell.execute_reply": "2023-11-04T09:21:20.708245Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:12.952843Z", - "iopub.status.busy": "2023-11-02T15:16:12.952502Z", - "iopub.status.idle": "2023-11-02T15:16:12.959523Z", - "shell.execute_reply": "2023-11-02T15:16:12.958276Z" + "iopub.execute_input": "2023-11-04T09:21:20.711409Z", + "iopub.status.busy": "2023-11-04T09:21:20.711210Z", + "iopub.status.idle": "2023-11-04T09:21:20.715384Z", + "shell.execute_reply": "2023-11-04T09:21:20.714753Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:12.964802Z", - "iopub.status.busy": "2023-11-02T15:16:12.964451Z", - "iopub.status.idle": "2023-11-02T15:16:12.969013Z", - "shell.execute_reply": "2023-11-02T15:16:12.968037Z" + "iopub.execute_input": "2023-11-04T09:21:20.717858Z", + "iopub.status.busy": "2023-11-04T09:21:20.717458Z", + "iopub.status.idle": "2023-11-04T09:21:20.720920Z", + "shell.execute_reply": "2023-11-04T09:21:20.720434Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:12.980844Z", - "iopub.status.busy": "2023-11-02T15:16:12.979008Z", - "iopub.status.idle": "2023-11-02T15:16:12.989986Z", - "shell.execute_reply": "2023-11-02T15:16:12.988910Z" + "iopub.execute_input": "2023-11-04T09:21:20.723228Z", + "iopub.status.busy": "2023-11-04T09:21:20.722933Z", + "iopub.status.idle": "2023-11-04T09:21:20.727805Z", + "shell.execute_reply": "2023-11-04T09:21:20.727267Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:12.995976Z", - "iopub.status.busy": "2023-11-02T15:16:12.994591Z", - "iopub.status.idle": "2023-11-02T15:16:13.066669Z", - "shell.execute_reply": "2023-11-02T15:16:13.065421Z" + "iopub.execute_input": "2023-11-04T09:21:20.730385Z", + "iopub.status.busy": "2023-11-04T09:21:20.730012Z", + "iopub.status.idle": "2023-11-04T09:21:20.762668Z", + "shell.execute_reply": "2023-11-04T09:21:20.762025Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:13.071750Z", - "iopub.status.busy": "2023-11-02T15:16:13.071260Z", - "iopub.status.idle": "2023-11-02T15:16:13.079810Z", - "shell.execute_reply": "2023-11-02T15:16:13.078603Z" + "iopub.execute_input": "2023-11-04T09:21:20.765515Z", + "iopub.status.busy": "2023-11-04T09:21:20.764994Z", + "iopub.status.idle": "2023-11-04T09:21:20.770319Z", + "shell.execute_reply": "2023-11-04T09:21:20.769694Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 34c8989c2..66b4a6932 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -63,10 +63,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:18.966439Z", - "iopub.status.busy": "2023-11-02T15:16:18.966106Z", - "iopub.status.idle": "2023-11-02T15:16:20.814821Z", - "shell.execute_reply": "2023-11-02T15:16:20.813757Z" + "iopub.execute_input": "2023-11-04T09:21:25.590800Z", + "iopub.status.busy": "2023-11-04T09:21:25.590272Z", + "iopub.status.idle": "2023-11-04T09:21:26.642282Z", + "shell.execute_reply": "2023-11-04T09:21:26.641658Z" }, "nbsphinx": "hidden" }, @@ -78,7 +78,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -104,10 +104,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:20.820437Z", - "iopub.status.busy": "2023-11-02T15:16:20.819648Z", - "iopub.status.idle": "2023-11-02T15:16:21.370040Z", - "shell.execute_reply": "2023-11-02T15:16:21.368875Z" + "iopub.execute_input": "2023-11-04T09:21:26.645149Z", + "iopub.status.busy": "2023-11-04T09:21:26.644694Z", + "iopub.status.idle": "2023-11-04T09:21:26.928998Z", + "shell.execute_reply": "2023-11-04T09:21:26.928381Z" } }, "outputs": [], @@ -269,10 +269,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:21.375149Z", - "iopub.status.busy": "2023-11-02T15:16:21.374736Z", - "iopub.status.idle": "2023-11-02T15:16:21.399929Z", - "shell.execute_reply": "2023-11-02T15:16:21.398831Z" + "iopub.execute_input": "2023-11-04T09:21:26.932173Z", + "iopub.status.busy": "2023-11-04T09:21:26.931729Z", + "iopub.status.idle": "2023-11-04T09:21:26.946021Z", + "shell.execute_reply": "2023-11-04T09:21:26.945486Z" }, "nbsphinx": "hidden" }, @@ -408,10 +408,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:21.404239Z", - "iopub.status.busy": "2023-11-02T15:16:21.403724Z", - "iopub.status.idle": "2023-11-02T15:16:26.691118Z", - "shell.execute_reply": "2023-11-02T15:16:26.690103Z" + "iopub.execute_input": "2023-11-04T09:21:26.948534Z", + "iopub.status.busy": "2023-11-04T09:21:26.948092Z", + "iopub.status.idle": "2023-11-04T09:21:29.586248Z", + "shell.execute_reply": "2023-11-04T09:21:29.585519Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:26.695818Z", - "iopub.status.busy": "2023-11-02T15:16:26.695434Z", - "iopub.status.idle": "2023-11-02T15:16:29.720322Z", - "shell.execute_reply": "2023-11-02T15:16:29.719085Z" + "iopub.execute_input": "2023-11-04T09:21:29.589342Z", + "iopub.status.busy": "2023-11-04T09:21:29.588814Z", + "iopub.status.idle": "2023-11-04T09:21:31.123982Z", + "shell.execute_reply": "2023-11-04T09:21:31.123375Z" } }, "outputs": [], @@ -498,10 +498,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:29.725465Z", - "iopub.status.busy": "2023-11-02T15:16:29.724662Z", - "iopub.status.idle": "2023-11-02T15:16:29.744941Z", - "shell.execute_reply": "2023-11-02T15:16:29.743775Z" + "iopub.execute_input": "2023-11-04T09:21:31.126914Z", + "iopub.status.busy": "2023-11-04T09:21:31.126519Z", + "iopub.status.idle": "2023-11-04T09:21:31.143779Z", + "shell.execute_reply": "2023-11-04T09:21:31.143259Z" } }, "outputs": [ @@ -543,10 +543,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:29.748857Z", - "iopub.status.busy": "2023-11-02T15:16:29.748500Z", - "iopub.status.idle": "2023-11-02T15:16:32.216115Z", - "shell.execute_reply": "2023-11-02T15:16:32.214068Z" + "iopub.execute_input": "2023-11-04T09:21:31.146265Z", + "iopub.status.busy": "2023-11-04T09:21:31.145963Z", + "iopub.status.idle": "2023-11-04T09:21:32.459675Z", + "shell.execute_reply": "2023-11-04T09:21:32.458895Z" } }, "outputs": [ @@ -584,10 +584,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:32.221724Z", - "iopub.status.busy": "2023-11-02T15:16:32.220226Z", - "iopub.status.idle": "2023-11-02T15:16:37.821810Z", - "shell.execute_reply": "2023-11-02T15:16:37.820832Z" + "iopub.execute_input": "2023-11-04T09:21:32.462599Z", + "iopub.status.busy": "2023-11-04T09:21:32.462011Z", + "iopub.status.idle": "2023-11-04T09:21:35.279336Z", + "shell.execute_reply": "2023-11-04T09:21:35.278687Z" } }, "outputs": [ @@ -622,10 +622,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:37.826727Z", - "iopub.status.busy": "2023-11-02T15:16:37.826042Z", - "iopub.status.idle": "2023-11-02T15:16:37.836636Z", - "shell.execute_reply": "2023-11-02T15:16:37.835381Z" + "iopub.execute_input": "2023-11-04T09:21:35.282049Z", + "iopub.status.busy": "2023-11-04T09:21:35.281530Z", + "iopub.status.idle": "2023-11-04T09:21:35.286525Z", + "shell.execute_reply": "2023-11-04T09:21:35.285890Z" } }, "outputs": [ @@ -662,10 +662,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:37.841496Z", - "iopub.status.busy": "2023-11-02T15:16:37.840738Z", - "iopub.status.idle": "2023-11-02T15:16:37.848770Z", - "shell.execute_reply": "2023-11-02T15:16:37.847782Z" + "iopub.execute_input": "2023-11-04T09:21:35.288688Z", + "iopub.status.busy": "2023-11-04T09:21:35.288481Z", + "iopub.status.idle": "2023-11-04T09:21:35.292633Z", + "shell.execute_reply": "2023-11-04T09:21:35.292078Z" } }, "outputs": [], @@ -688,10 +688,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:37.853119Z", - "iopub.status.busy": "2023-11-02T15:16:37.852470Z", - "iopub.status.idle": "2023-11-02T15:16:37.859797Z", - "shell.execute_reply": "2023-11-02T15:16:37.858709Z" + "iopub.execute_input": "2023-11-04T09:21:35.295093Z", + "iopub.status.busy": "2023-11-04T09:21:35.294715Z", + "iopub.status.idle": "2023-11-04T09:21:35.298072Z", + "shell.execute_reply": "2023-11-04T09:21:35.297484Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index 5567885b3..64dd8fc1d 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:43.008632Z", - "iopub.status.busy": "2023-11-02T15:16:43.008295Z", - "iopub.status.idle": "2023-11-02T15:16:44.917722Z", - "shell.execute_reply": "2023-11-02T15:16:44.916482Z" + "iopub.execute_input": "2023-11-04T09:21:40.284425Z", + "iopub.status.busy": "2023-11-04T09:21:40.283890Z", + "iopub.status.idle": "2023-11-04T09:21:41.326271Z", + "shell.execute_reply": "2023-11-04T09:21:41.325665Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:44.923385Z", - "iopub.status.busy": "2023-11-02T15:16:44.922328Z", - "iopub.status.idle": "2023-11-02T15:16:47.899900Z", - "shell.execute_reply": "2023-11-02T15:16:47.898193Z" + "iopub.execute_input": "2023-11-04T09:21:41.329335Z", + "iopub.status.busy": "2023-11-04T09:21:41.328693Z", + "iopub.status.idle": "2023-11-04T09:21:42.796096Z", + "shell.execute_reply": "2023-11-04T09:21:42.795370Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:47.905514Z", - "iopub.status.busy": "2023-11-02T15:16:47.904896Z", - "iopub.status.idle": "2023-11-02T15:16:47.911481Z", - "shell.execute_reply": "2023-11-02T15:16:47.910505Z" + "iopub.execute_input": "2023-11-04T09:21:42.799236Z", + "iopub.status.busy": "2023-11-04T09:21:42.798826Z", + "iopub.status.idle": "2023-11-04T09:21:42.802270Z", + "shell.execute_reply": "2023-11-04T09:21:42.801614Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:47.915566Z", - "iopub.status.busy": "2023-11-02T15:16:47.915070Z", - "iopub.status.idle": "2023-11-02T15:16:47.925856Z", - "shell.execute_reply": "2023-11-02T15:16:47.924765Z" + "iopub.execute_input": "2023-11-04T09:21:42.804794Z", + "iopub.status.busy": "2023-11-04T09:21:42.804342Z", + "iopub.status.idle": "2023-11-04T09:21:42.810039Z", + "shell.execute_reply": "2023-11-04T09:21:42.809523Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:47.929979Z", - "iopub.status.busy": "2023-11-02T15:16:47.929675Z", - "iopub.status.idle": "2023-11-02T15:16:48.914821Z", - "shell.execute_reply": "2023-11-02T15:16:48.913818Z" + "iopub.execute_input": "2023-11-04T09:21:42.812350Z", + "iopub.status.busy": "2023-11-04T09:21:42.812143Z", + "iopub.status.idle": "2023-11-04T09:21:43.431738Z", + "shell.execute_reply": "2023-11-04T09:21:43.431087Z" }, "scrolled": true }, @@ -237,10 +237,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:48.921007Z", - "iopub.status.busy": "2023-11-02T15:16:48.920180Z", - "iopub.status.idle": "2023-11-02T15:16:48.932694Z", - "shell.execute_reply": "2023-11-02T15:16:48.931266Z" + "iopub.execute_input": "2023-11-04T09:21:43.434628Z", + "iopub.status.busy": "2023-11-04T09:21:43.434383Z", + "iopub.status.idle": "2023-11-04T09:21:43.440512Z", + "shell.execute_reply": "2023-11-04T09:21:43.439985Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:48.937251Z", - "iopub.status.busy": "2023-11-02T15:16:48.936874Z", - "iopub.status.idle": "2023-11-02T15:16:48.943853Z", - "shell.execute_reply": "2023-11-02T15:16:48.942838Z" + "iopub.execute_input": "2023-11-04T09:21:43.442863Z", + "iopub.status.busy": "2023-11-04T09:21:43.442413Z", + "iopub.status.idle": "2023-11-04T09:21:43.446609Z", + "shell.execute_reply": "2023-11-04T09:21:43.445987Z" } }, "outputs": [ @@ -552,10 +552,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:48.948346Z", - "iopub.status.busy": "2023-11-02T15:16:48.947958Z", - "iopub.status.idle": "2023-11-02T15:16:49.924508Z", - "shell.execute_reply": "2023-11-02T15:16:49.923044Z" + "iopub.execute_input": "2023-11-04T09:21:43.448942Z", + "iopub.status.busy": "2023-11-04T09:21:43.448604Z", + "iopub.status.idle": "2023-11-04T09:21:44.074289Z", + "shell.execute_reply": "2023-11-04T09:21:44.073541Z" } }, "outputs": [ @@ -611,10 +611,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:49.930257Z", - "iopub.status.busy": "2023-11-02T15:16:49.929650Z", - "iopub.status.idle": "2023-11-02T15:16:50.102027Z", - "shell.execute_reply": "2023-11-02T15:16:50.100818Z" + "iopub.execute_input": "2023-11-04T09:21:44.076863Z", + "iopub.status.busy": "2023-11-04T09:21:44.076645Z", + "iopub.status.idle": "2023-11-04T09:21:44.168997Z", + "shell.execute_reply": "2023-11-04T09:21:44.168317Z" } }, "outputs": [ @@ -655,10 +655,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:50.106977Z", - "iopub.status.busy": "2023-11-02T15:16:50.106538Z", - "iopub.status.idle": "2023-11-02T15:16:50.116989Z", - "shell.execute_reply": "2023-11-02T15:16:50.115775Z" + "iopub.execute_input": "2023-11-04T09:21:44.171517Z", + "iopub.status.busy": "2023-11-04T09:21:44.171310Z", + "iopub.status.idle": "2023-11-04T09:21:44.176108Z", + "shell.execute_reply": "2023-11-04T09:21:44.175565Z" } }, "outputs": [ @@ -695,10 +695,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:50.121708Z", - "iopub.status.busy": "2023-11-02T15:16:50.121315Z", - "iopub.status.idle": "2023-11-02T15:16:50.727187Z", - "shell.execute_reply": "2023-11-02T15:16:50.726232Z" + "iopub.execute_input": "2023-11-04T09:21:44.178455Z", + "iopub.status.busy": "2023-11-04T09:21:44.178104Z", + "iopub.status.idle": "2023-11-04T09:21:44.553030Z", + "shell.execute_reply": "2023-11-04T09:21:44.552347Z" } }, "outputs": [ @@ -757,10 +757,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:50.731975Z", - "iopub.status.busy": "2023-11-02T15:16:50.731399Z", - "iopub.status.idle": "2023-11-02T15:16:51.257454Z", - "shell.execute_reply": "2023-11-02T15:16:51.256406Z" + "iopub.execute_input": "2023-11-04T09:21:44.556460Z", + "iopub.status.busy": "2023-11-04T09:21:44.556063Z", + "iopub.status.idle": "2023-11-04T09:21:44.890588Z", + "shell.execute_reply": "2023-11-04T09:21:44.889922Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:51.262629Z", - "iopub.status.busy": "2023-11-02T15:16:51.262021Z", - "iopub.status.idle": "2023-11-02T15:16:51.933274Z", - "shell.execute_reply": "2023-11-02T15:16:51.932377Z" + "iopub.execute_input": "2023-11-04T09:21:44.893789Z", + "iopub.status.busy": "2023-11-04T09:21:44.893348Z", + "iopub.status.idle": "2023-11-04T09:21:45.275927Z", + "shell.execute_reply": "2023-11-04T09:21:45.275276Z" } }, "outputs": [ @@ -857,10 +857,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:51.938388Z", - "iopub.status.busy": "2023-11-02T15:16:51.937872Z", - "iopub.status.idle": "2023-11-02T15:16:52.725775Z", - "shell.execute_reply": "2023-11-02T15:16:52.724383Z" + "iopub.execute_input": "2023-11-04T09:21:45.279277Z", + "iopub.status.busy": "2023-11-04T09:21:45.278881Z", + "iopub.status.idle": "2023-11-04T09:21:45.739514Z", + "shell.execute_reply": "2023-11-04T09:21:45.738868Z" } }, "outputs": [ @@ -920,10 +920,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:52.731966Z", - "iopub.status.busy": "2023-11-02T15:16:52.731247Z", - "iopub.status.idle": "2023-11-02T15:16:53.473091Z", - "shell.execute_reply": "2023-11-02T15:16:53.471986Z" + "iopub.execute_input": "2023-11-04T09:21:45.744207Z", + "iopub.status.busy": "2023-11-04T09:21:45.743816Z", + "iopub.status.idle": "2023-11-04T09:21:46.195187Z", + "shell.execute_reply": "2023-11-04T09:21:46.194502Z" } }, "outputs": [ @@ -966,10 +966,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:53.477888Z", - "iopub.status.busy": "2023-11-02T15:16:53.477367Z", - "iopub.status.idle": "2023-11-02T15:16:53.845656Z", - "shell.execute_reply": "2023-11-02T15:16:53.844556Z" + "iopub.execute_input": "2023-11-04T09:21:46.198027Z", + "iopub.status.busy": "2023-11-04T09:21:46.197642Z", + "iopub.status.idle": "2023-11-04T09:21:46.422276Z", + "shell.execute_reply": "2023-11-04T09:21:46.421581Z" } }, "outputs": [ @@ -1012,10 +1012,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:53.851117Z", - "iopub.status.busy": "2023-11-02T15:16:53.850348Z", - "iopub.status.idle": "2023-11-02T15:16:54.126415Z", - "shell.execute_reply": "2023-11-02T15:16:54.125128Z" + "iopub.execute_input": "2023-11-04T09:21:46.425001Z", + "iopub.status.busy": "2023-11-04T09:21:46.424615Z", + "iopub.status.idle": "2023-11-04T09:21:46.624623Z", + "shell.execute_reply": "2023-11-04T09:21:46.624007Z" } }, "outputs": [ @@ -1050,10 +1050,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:54.131061Z", - "iopub.status.busy": "2023-11-02T15:16:54.130005Z", - "iopub.status.idle": "2023-11-02T15:16:54.136059Z", - "shell.execute_reply": "2023-11-02T15:16:54.134978Z" + "iopub.execute_input": "2023-11-04T09:21:46.627540Z", + "iopub.status.busy": "2023-11-04T09:21:46.627176Z", + "iopub.status.idle": "2023-11-04T09:21:46.630922Z", + "shell.execute_reply": "2023-11-04T09:21:46.630388Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 0fe98e5f3..04681aa17 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -926,7 +926,7 @@

2. Pre-process the Cifar10 dataset
-
+
@@ -1271,7 +1271,7 @@

4. Use cleanlab and here.

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index 59c2b89e4..05e62c249 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:16:57.851137Z", - "iopub.status.busy": "2023-11-02T15:16:57.850587Z", - "iopub.status.idle": "2023-11-02T15:17:01.436396Z", - "shell.execute_reply": "2023-11-02T15:17:01.435214Z" + "iopub.execute_input": "2023-11-04T09:21:48.697377Z", + "iopub.status.busy": "2023-11-04T09:21:48.697181Z", + "iopub.status.idle": "2023-11-04T09:21:50.609377Z", + "shell.execute_reply": "2023-11-04T09:21:50.608645Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:01.441469Z", - "iopub.status.busy": "2023-11-02T15:17:01.440854Z", - "iopub.status.idle": "2023-11-02T15:17:02.009348Z", - "shell.execute_reply": "2023-11-02T15:17:02.008267Z" + "iopub.execute_input": "2023-11-04T09:21:50.612814Z", + "iopub.status.busy": "2023-11-04T09:21:50.612261Z", + "iopub.status.idle": "2023-11-04T09:21:50.932638Z", + "shell.execute_reply": "2023-11-04T09:21:50.931923Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:02.014157Z", - "iopub.status.busy": "2023-11-02T15:17:02.013614Z", - "iopub.status.idle": "2023-11-02T15:17:02.021162Z", - "shell.execute_reply": "2023-11-02T15:17:02.020049Z" + "iopub.execute_input": "2023-11-04T09:21:50.935481Z", + "iopub.status.busy": "2023-11-04T09:21:50.935262Z", + "iopub.status.idle": "2023-11-04T09:21:50.939757Z", + "shell.execute_reply": "2023-11-04T09:21:50.939273Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:02.025482Z", - "iopub.status.busy": "2023-11-02T15:17:02.025079Z", - "iopub.status.idle": "2023-11-02T15:17:16.116758Z", - "shell.execute_reply": "2023-11-02T15:17:16.115753Z" + "iopub.execute_input": "2023-11-04T09:21:50.942058Z", + "iopub.status.busy": "2023-11-04T09:21:50.941852Z", + "iopub.status.idle": "2023-11-04T09:21:56.335284Z", + "shell.execute_reply": "2023-11-04T09:21:56.334668Z" } }, "outputs": [ @@ -242,7 +242,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b9472a0e1af842379eacfcf729a6e73b", + "model_id": "3a8ce117c43c4a819acb7107cdf05f96", "version_major": 2, "version_minor": 0 }, @@ -361,10 +361,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:16.121362Z", - "iopub.status.busy": "2023-11-02T15:17:16.120939Z", - "iopub.status.idle": "2023-11-02T15:17:16.133997Z", - "shell.execute_reply": "2023-11-02T15:17:16.132880Z" + "iopub.execute_input": "2023-11-04T09:21:56.338217Z", + "iopub.status.busy": "2023-11-04T09:21:56.337752Z", + "iopub.status.idle": "2023-11-04T09:21:56.342967Z", + "shell.execute_reply": "2023-11-04T09:21:56.342335Z" }, "nbsphinx": "hidden" }, @@ -415,10 +415,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:16.139004Z", - "iopub.status.busy": "2023-11-02T15:17:16.138162Z", - "iopub.status.idle": "2023-11-02T15:17:17.120606Z", - "shell.execute_reply": "2023-11-02T15:17:17.119574Z" + "iopub.execute_input": "2023-11-04T09:21:56.345429Z", + "iopub.status.busy": "2023-11-04T09:21:56.345057Z", + "iopub.status.idle": "2023-11-04T09:21:56.879578Z", + "shell.execute_reply": "2023-11-04T09:21:56.878919Z" } }, "outputs": [ @@ -451,10 +451,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:17.125044Z", - "iopub.status.busy": "2023-11-02T15:17:17.124458Z", - "iopub.status.idle": "2023-11-02T15:17:18.056556Z", - "shell.execute_reply": "2023-11-02T15:17:18.055672Z" + "iopub.execute_input": "2023-11-04T09:21:56.882140Z", + "iopub.status.busy": "2023-11-04T09:21:56.881886Z", + "iopub.status.idle": "2023-11-04T09:21:57.364034Z", + "shell.execute_reply": "2023-11-04T09:21:57.363321Z" } }, "outputs": [ @@ -492,10 +492,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:18.062729Z", - "iopub.status.busy": "2023-11-02T15:17:18.061889Z", - "iopub.status.idle": "2023-11-02T15:17:18.067845Z", - "shell.execute_reply": "2023-11-02T15:17:18.066838Z" + "iopub.execute_input": "2023-11-04T09:21:57.366505Z", + "iopub.status.busy": "2023-11-04T09:21:57.366300Z", + "iopub.status.idle": "2023-11-04T09:21:57.370065Z", + "shell.execute_reply": "2023-11-04T09:21:57.369524Z" } }, "outputs": [], @@ -518,10 +518,10 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:18.071716Z", - "iopub.status.busy": "2023-11-02T15:17:18.071364Z", - "iopub.status.idle": "2023-11-02T15:17:45.248022Z", - "shell.execute_reply": "2023-11-02T15:17:45.247048Z" + "iopub.execute_input": "2023-11-04T09:21:57.372238Z", + "iopub.status.busy": "2023-11-04T09:21:57.372040Z", + "iopub.status.idle": "2023-11-04T09:22:10.543759Z", + "shell.execute_reply": "2023-11-04T09:22:10.543067Z" } }, "outputs": [ @@ -580,10 +580,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:45.252258Z", - "iopub.status.busy": "2023-11-02T15:17:45.251672Z", - "iopub.status.idle": "2023-11-02T15:17:47.782132Z", - "shell.execute_reply": "2023-11-02T15:17:47.781343Z" + "iopub.execute_input": "2023-11-04T09:22:10.546683Z", + "iopub.status.busy": "2023-11-04T09:22:10.546249Z", + "iopub.status.idle": "2023-11-04T09:22:12.164959Z", + "shell.execute_reply": "2023-11-04T09:22:12.164310Z" } }, "outputs": [ @@ -627,10 +627,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:47.789932Z", - "iopub.status.busy": "2023-11-02T15:17:47.789457Z", - "iopub.status.idle": "2023-11-02T15:17:48.216848Z", - "shell.execute_reply": "2023-11-02T15:17:48.215711Z" + "iopub.execute_input": "2023-11-04T09:22:12.168405Z", + "iopub.status.busy": "2023-11-04T09:22:12.167858Z", + "iopub.status.idle": "2023-11-04T09:22:12.427085Z", + "shell.execute_reply": "2023-11-04T09:22:12.426397Z" } }, "outputs": [ @@ -666,10 +666,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:48.221413Z", - "iopub.status.busy": "2023-11-02T15:17:48.220606Z", - "iopub.status.idle": "2023-11-02T15:17:49.267570Z", - "shell.execute_reply": "2023-11-02T15:17:49.266636Z" + "iopub.execute_input": "2023-11-04T09:22:12.430311Z", + "iopub.status.busy": "2023-11-04T09:22:12.429951Z", + "iopub.status.idle": "2023-11-04T09:22:13.101325Z", + "shell.execute_reply": "2023-11-04T09:22:13.100587Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:49.271994Z", - "iopub.status.busy": "2023-11-02T15:17:49.271436Z", - "iopub.status.idle": "2023-11-02T15:17:50.078748Z", - "shell.execute_reply": "2023-11-02T15:17:50.076580Z" + "iopub.execute_input": "2023-11-04T09:22:13.104559Z", + "iopub.status.busy": "2023-11-04T09:22:13.104313Z", + "iopub.status.idle": "2023-11-04T09:22:13.577839Z", + "shell.execute_reply": "2023-11-04T09:22:13.577166Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:50.083397Z", - "iopub.status.busy": "2023-11-02T15:17:50.082570Z", - "iopub.status.idle": "2023-11-02T15:17:50.522569Z", - "shell.execute_reply": "2023-11-02T15:17:50.521469Z" + "iopub.execute_input": "2023-11-04T09:22:13.580468Z", + "iopub.status.busy": "2023-11-04T09:22:13.580080Z", + "iopub.status.idle": "2023-11-04T09:22:13.825305Z", + "shell.execute_reply": "2023-11-04T09:22:13.824572Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:50.527039Z", - "iopub.status.busy": "2023-11-02T15:17:50.526259Z", - "iopub.status.idle": "2023-11-02T15:17:50.764244Z", - "shell.execute_reply": "2023-11-02T15:17:50.762970Z" + "iopub.execute_input": "2023-11-04T09:22:13.828442Z", + "iopub.status.busy": "2023-11-04T09:22:13.828083Z", + "iopub.status.idle": "2023-11-04T09:22:13.917161Z", + "shell.execute_reply": "2023-11-04T09:22:13.916570Z" } }, "outputs": [], @@ -853,10 +853,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:17:50.770647Z", - "iopub.status.busy": "2023-11-02T15:17:50.769773Z", - "iopub.status.idle": "2023-11-02T15:19:38.809676Z", - "shell.execute_reply": "2023-11-02T15:19:38.808376Z" + "iopub.execute_input": "2023-11-04T09:22:13.920515Z", + "iopub.status.busy": "2023-11-04T09:22:13.919874Z", + "iopub.status.idle": "2023-11-04T09:22:52.033664Z", + "shell.execute_reply": "2023-11-04T09:22:52.032884Z" } }, "outputs": [ @@ -893,10 +893,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:38.816602Z", - "iopub.status.busy": "2023-11-02T15:19:38.814717Z", - "iopub.status.idle": "2023-11-02T15:19:40.967954Z", - "shell.execute_reply": "2023-11-02T15:19:40.966789Z" + "iopub.execute_input": "2023-11-04T09:22:52.036418Z", + "iopub.status.busy": "2023-11-04T09:22:52.036201Z", + "iopub.status.idle": "2023-11-04T09:22:53.206075Z", + "shell.execute_reply": "2023-11-04T09:22:53.205419Z" } }, "outputs": [ @@ -927,10 +927,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:40.973511Z", - "iopub.status.busy": "2023-11-02T15:19:40.972381Z", - "iopub.status.idle": "2023-11-02T15:19:41.261733Z", - "shell.execute_reply": "2023-11-02T15:19:41.260488Z" + "iopub.execute_input": "2023-11-04T09:22:53.209216Z", + "iopub.status.busy": "2023-11-04T09:22:53.208585Z", + "iopub.status.idle": "2023-11-04T09:22:53.396717Z", + "shell.execute_reply": "2023-11-04T09:22:53.396119Z" } }, "outputs": [], @@ -944,10 +944,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:41.266011Z", - "iopub.status.busy": "2023-11-02T15:19:41.265666Z", - "iopub.status.idle": "2023-11-02T15:19:41.272301Z", - "shell.execute_reply": "2023-11-02T15:19:41.271221Z" + "iopub.execute_input": "2023-11-04T09:22:53.399434Z", + "iopub.status.busy": "2023-11-04T09:22:53.399222Z", + "iopub.status.idle": "2023-11-04T09:22:53.402557Z", + "shell.execute_reply": "2023-11-04T09:22:53.402055Z" } }, "outputs": [], @@ -969,10 +969,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:41.276254Z", - "iopub.status.busy": "2023-11-02T15:19:41.275795Z", - "iopub.status.idle": "2023-11-02T15:19:41.290645Z", - "shell.execute_reply": "2023-11-02T15:19:41.289459Z" + "iopub.execute_input": "2023-11-04T09:22:53.405158Z", + "iopub.status.busy": "2023-11-04T09:22:53.404796Z", + "iopub.status.idle": "2023-11-04T09:22:53.413780Z", + "shell.execute_reply": "2023-11-04T09:22:53.413267Z" }, "nbsphinx": "hidden" }, @@ -1017,7 +1017,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1e7aeb213d534e2db195138f236fd0c2": { + "1511c8396956475c985de09b595f1904": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1069,28 +1069,7 @@ "width": null } }, - "2d144b2f99774ffaac01c5c4ec4fc379": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1e7aeb213d534e2db195138f236fd0c2", - "placeholder": "​", - "style": "IPY_MODEL_cb7027054add4a6296c264af28ff9df2", - "value": "100%" - } - }, - "355bfbcf91f24a419c79b2fe8c89694a": { + "1f523b7201c14b909621af5658027c5b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1142,7 +1121,117 @@ "width": null } }, - "3ba3e8cf6362488b819cd8bad3a0a143": { + "3a8ce117c43c4a819acb7107cdf05f96": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5ea610936c5d47efb83ce045c4bde840", + "IPY_MODEL_f69091a533504896a2c8f28a6661c4dc", + "IPY_MODEL_853a3adeeedc4b3e8b13129366e2f490" + ], + "layout": "IPY_MODEL_fbf96cbd8dbf42ba87a6176239c55824" + } + }, + "4a12fd81945c40ac967f11edecdb3e3c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5ea610936c5d47efb83ce045c4bde840": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1511c8396956475c985de09b595f1904", + "placeholder": "​", + "style": "IPY_MODEL_7d6231edc946457aa00974869e60bfcd", + "value": "100%" + } + }, + "782bfe85dbf5491e95dd9d1350855c80": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7d6231edc946457aa00974869e60bfcd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "853a3adeeedc4b3e8b13129366e2f490": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1f523b7201c14b909621af5658027c5b", + "placeholder": "​", + "style": "IPY_MODEL_4a12fd81945c40ac967f11edecdb3e3c", + "value": " 170498071/170498071 [00:02<00:00, 95482714.46it/s]" + } + }, + "9a7fd7bed93d4b2fac47868e043501b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1194,7 +1283,7 @@ "width": null } }, - "587637739e8741eba9241eb8e12ef52e": { + "f69091a533504896a2c8f28a6661c4dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -1210,36 +1299,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3ba3e8cf6362488b819cd8bad3a0a143", + "layout": "IPY_MODEL_9a7fd7bed93d4b2fac47868e043501b1", "max": 170498071.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_e5ae1eac3d4f487c9566b9a659793dfc", + "style": "IPY_MODEL_782bfe85dbf5491e95dd9d1350855c80", "value": 170498071.0 } }, - "810e2bd013044c62a6cd3bb81ec06409": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_355bfbcf91f24a419c79b2fe8c89694a", - "placeholder": "​", - "style": "IPY_MODEL_e24517e4b8b74874b789fec65e6b03b4", - "value": " 170498071/170498071 [00:05<00:00, 35376540.01it/s]" - } - }, - "8d588339dc134e209405ce96ac054bf0": { + "fbf96cbd8dbf42ba87a6176239c55824": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -1290,74 +1358,6 @@ "visibility": null, "width": null } - }, - "b9472a0e1af842379eacfcf729a6e73b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2d144b2f99774ffaac01c5c4ec4fc379", - "IPY_MODEL_587637739e8741eba9241eb8e12ef52e", - "IPY_MODEL_810e2bd013044c62a6cd3bb81ec06409" - ], - "layout": "IPY_MODEL_8d588339dc134e209405ce96ac054bf0" - } - }, - "cb7027054add4a6296c264af28ff9df2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "e24517e4b8b74874b789fec65e6b03b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "e5ae1eac3d4f487c9566b9a659793dfc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } } }, "version_major": 2, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index b3b4950d9..a670be679 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -94,10 +94,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:47.065880Z", - "iopub.status.busy": "2023-11-02T15:19:47.065501Z", - "iopub.status.idle": "2023-11-02T15:19:48.929522Z", - "shell.execute_reply": "2023-11-02T15:19:48.928324Z" + "iopub.execute_input": "2023-11-04T09:22:59.201314Z", + "iopub.status.busy": "2023-11-04T09:22:59.201119Z", + "iopub.status.idle": "2023-11-04T09:23:00.237150Z", + "shell.execute_reply": "2023-11-04T09:23:00.236534Z" }, "nbsphinx": "hidden" }, @@ -109,7 +109,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:48.934496Z", - "iopub.status.busy": "2023-11-02T15:19:48.933600Z", - "iopub.status.idle": "2023-11-02T15:19:48.975723Z", - "shell.execute_reply": "2023-11-02T15:19:48.974591Z" + "iopub.execute_input": "2023-11-04T09:23:00.240049Z", + "iopub.status.busy": "2023-11-04T09:23:00.239640Z", + "iopub.status.idle": "2023-11-04T09:23:00.259100Z", + "shell.execute_reply": "2023-11-04T09:23:00.258616Z" } }, "outputs": [], @@ -157,10 +157,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:48.980484Z", - "iopub.status.busy": "2023-11-02T15:19:48.980160Z", - "iopub.status.idle": "2023-11-02T15:19:48.986273Z", - "shell.execute_reply": "2023-11-02T15:19:48.985435Z" + "iopub.execute_input": "2023-11-04T09:23:00.261358Z", + "iopub.status.busy": "2023-11-04T09:23:00.261013Z", + "iopub.status.idle": "2023-11-04T09:23:00.264150Z", + "shell.execute_reply": "2023-11-04T09:23:00.263562Z" }, "nbsphinx": "hidden" }, @@ -191,10 +191,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:48.990814Z", - "iopub.status.busy": "2023-11-02T15:19:48.990231Z", - "iopub.status.idle": "2023-11-02T15:19:49.236220Z", - "shell.execute_reply": "2023-11-02T15:19:49.235131Z" + "iopub.execute_input": "2023-11-04T09:23:00.266621Z", + "iopub.status.busy": "2023-11-04T09:23:00.266152Z", + "iopub.status.idle": "2023-11-04T09:23:00.381520Z", + "shell.execute_reply": "2023-11-04T09:23:00.380987Z" } }, "outputs": [ @@ -367,10 +367,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:49.241255Z", - "iopub.status.busy": "2023-11-02T15:19:49.240881Z", - "iopub.status.idle": "2023-11-02T15:19:49.730318Z", - "shell.execute_reply": "2023-11-02T15:19:49.729255Z" + "iopub.execute_input": "2023-11-04T09:23:00.384009Z", + "iopub.status.busy": "2023-11-04T09:23:00.383807Z", + "iopub.status.idle": "2023-11-04T09:23:00.649275Z", + "shell.execute_reply": "2023-11-04T09:23:00.648644Z" }, "nbsphinx": "hidden" }, @@ -410,10 +410,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:49.734868Z", - "iopub.status.busy": "2023-11-02T15:19:49.734443Z", - "iopub.status.idle": "2023-11-02T15:19:50.165414Z", - "shell.execute_reply": "2023-11-02T15:19:50.164418Z" + "iopub.execute_input": "2023-11-04T09:23:00.652085Z", + "iopub.status.busy": "2023-11-04T09:23:00.651874Z", + "iopub.status.idle": "2023-11-04T09:23:00.868731Z", + "shell.execute_reply": "2023-11-04T09:23:00.868029Z" } }, "outputs": [ @@ -449,10 +449,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:50.169654Z", - "iopub.status.busy": "2023-11-02T15:19:50.169281Z", - "iopub.status.idle": "2023-11-02T15:19:50.176664Z", - "shell.execute_reply": "2023-11-02T15:19:50.175658Z" + "iopub.execute_input": "2023-11-04T09:23:00.871465Z", + "iopub.status.busy": "2023-11-04T09:23:00.870993Z", + "iopub.status.idle": "2023-11-04T09:23:00.875707Z", + "shell.execute_reply": "2023-11-04T09:23:00.875082Z" } }, "outputs": [], @@ -470,10 +470,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:50.180933Z", - "iopub.status.busy": "2023-11-02T15:19:50.180628Z", - "iopub.status.idle": "2023-11-02T15:19:50.192803Z", - "shell.execute_reply": "2023-11-02T15:19:50.191845Z" + "iopub.execute_input": "2023-11-04T09:23:00.878168Z", + "iopub.status.busy": "2023-11-04T09:23:00.877690Z", + "iopub.status.idle": "2023-11-04T09:23:00.884163Z", + "shell.execute_reply": "2023-11-04T09:23:00.883526Z" } }, "outputs": [], @@ -520,10 +520,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:50.196755Z", - "iopub.status.busy": "2023-11-02T15:19:50.196395Z", - "iopub.status.idle": "2023-11-02T15:19:50.200810Z", - "shell.execute_reply": "2023-11-02T15:19:50.199742Z" + "iopub.execute_input": "2023-11-04T09:23:00.886843Z", + "iopub.status.busy": "2023-11-04T09:23:00.886482Z", + "iopub.status.idle": "2023-11-04T09:23:00.889200Z", + "shell.execute_reply": "2023-11-04T09:23:00.888667Z" } }, "outputs": [], @@ -538,10 +538,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:19:50.205459Z", - "iopub.status.busy": "2023-11-02T15:19:50.205107Z", - "iopub.status.idle": "2023-11-02T15:20:11.240316Z", - "shell.execute_reply": "2023-11-02T15:20:11.239392Z" + "iopub.execute_input": "2023-11-04T09:23:00.891647Z", + "iopub.status.busy": "2023-11-04T09:23:00.891286Z", + "iopub.status.idle": "2023-11-04T09:23:10.976778Z", + "shell.execute_reply": "2023-11-04T09:23:10.976130Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:20:11.246384Z", - "iopub.status.busy": "2023-11-02T15:20:11.245481Z", - "iopub.status.idle": "2023-11-02T15:20:11.257032Z", - "shell.execute_reply": "2023-11-02T15:20:11.255924Z" + "iopub.execute_input": "2023-11-04T09:23:10.980105Z", + "iopub.status.busy": "2023-11-04T09:23:10.979457Z", + "iopub.status.idle": "2023-11-04T09:23:10.987274Z", + "shell.execute_reply": "2023-11-04T09:23:10.986677Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:20:11.262333Z", - "iopub.status.busy": "2023-11-02T15:20:11.261823Z", - "iopub.status.idle": "2023-11-02T15:20:11.268473Z", - "shell.execute_reply": "2023-11-02T15:20:11.267458Z" + "iopub.execute_input": "2023-11-04T09:23:10.989739Z", + "iopub.status.busy": "2023-11-04T09:23:10.989371Z", + "iopub.status.idle": "2023-11-04T09:23:10.993056Z", + "shell.execute_reply": "2023-11-04T09:23:10.992553Z" } }, "outputs": [], @@ -689,10 +689,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:20:11.272383Z", - "iopub.status.busy": "2023-11-02T15:20:11.271809Z", - "iopub.status.idle": "2023-11-02T15:20:11.277155Z", - "shell.execute_reply": "2023-11-02T15:20:11.276208Z" + "iopub.execute_input": "2023-11-04T09:23:10.995509Z", + "iopub.status.busy": "2023-11-04T09:23:10.995024Z", + "iopub.status.idle": "2023-11-04T09:23:10.998894Z", + "shell.execute_reply": "2023-11-04T09:23:10.998345Z" } }, "outputs": [ @@ -727,10 +727,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:20:11.281064Z", - "iopub.status.busy": "2023-11-02T15:20:11.280541Z", - "iopub.status.idle": "2023-11-02T15:20:11.284957Z", - "shell.execute_reply": "2023-11-02T15:20:11.284110Z" + "iopub.execute_input": "2023-11-04T09:23:11.001060Z", + "iopub.status.busy": "2023-11-04T09:23:11.000861Z", + "iopub.status.idle": "2023-11-04T09:23:11.004219Z", + "shell.execute_reply": "2023-11-04T09:23:11.003679Z" } }, "outputs": [], @@ -749,10 +749,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:20:11.288916Z", - "iopub.status.busy": "2023-11-02T15:20:11.288363Z", - "iopub.status.idle": "2023-11-02T15:20:11.309515Z", - "shell.execute_reply": "2023-11-02T15:20:11.308555Z" + "iopub.execute_input": "2023-11-04T09:23:11.006476Z", + "iopub.status.busy": "2023-11-04T09:23:11.006234Z", + "iopub.status.idle": "2023-11-04T09:23:11.014962Z", + "shell.execute_reply": "2023-11-04T09:23:11.014430Z" } }, "outputs": [ @@ -894,10 +894,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:20:11.314119Z", - "iopub.status.busy": "2023-11-02T15:20:11.313348Z", - "iopub.status.idle": "2023-11-02T15:20:11.611177Z", - "shell.execute_reply": "2023-11-02T15:20:11.610312Z" + "iopub.execute_input": "2023-11-04T09:23:11.017441Z", + "iopub.status.busy": "2023-11-04T09:23:11.017105Z", + "iopub.status.idle": "2023-11-04T09:23:11.161849Z", + "shell.execute_reply": "2023-11-04T09:23:11.161245Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:20:11.615471Z", - "iopub.status.busy": "2023-11-02T15:20:11.614620Z", - "iopub.status.idle": "2023-11-02T15:20:11.869834Z", - "shell.execute_reply": "2023-11-02T15:20:11.868986Z" + "iopub.execute_input": "2023-11-04T09:23:11.164498Z", + "iopub.status.busy": "2023-11-04T09:23:11.164138Z", + "iopub.status.idle": "2023-11-04T09:23:11.298709Z", + "shell.execute_reply": "2023-11-04T09:23:11.298096Z" } }, "outputs": [ @@ -995,10 +995,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:20:11.873829Z", - "iopub.status.busy": "2023-11-02T15:20:11.873227Z", - "iopub.status.idle": "2023-11-02T15:20:13.134834Z", - "shell.execute_reply": "2023-11-02T15:20:13.133939Z" + "iopub.execute_input": "2023-11-04T09:23:11.301397Z", + "iopub.status.busy": "2023-11-04T09:23:11.300978Z", + "iopub.status.idle": "2023-11-04T09:23:11.899877Z", + "shell.execute_reply": "2023-11-04T09:23:11.899158Z" } }, "outputs": [], @@ -1014,10 +1014,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:20:13.140029Z", - "iopub.status.busy": "2023-11-02T15:20:13.139300Z", - "iopub.status.idle": "2023-11-02T15:20:13.288320Z", - "shell.execute_reply": "2023-11-02T15:20:13.287423Z" + "iopub.execute_input": "2023-11-04T09:23:11.903096Z", + "iopub.status.busy": "2023-11-04T09:23:11.902888Z", + "iopub.status.idle": "2023-11-04T09:23:11.984976Z", + "shell.execute_reply": "2023-11-04T09:23:11.984398Z" } }, "outputs": [ @@ -1056,10 +1056,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:20:13.292458Z", - "iopub.status.busy": "2023-11-02T15:20:13.291950Z", - "iopub.status.idle": "2023-11-02T15:20:13.308796Z", - "shell.execute_reply": "2023-11-02T15:20:13.307235Z" + "iopub.execute_input": "2023-11-04T09:23:11.987536Z", + "iopub.status.busy": "2023-11-04T09:23:11.987328Z", + "iopub.status.idle": "2023-11-04T09:23:11.997192Z", + "shell.execute_reply": "2023-11-04T09:23:11.996682Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index adb189f6b..ee6e80c7e 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -948,20 +948,20 @@

3. Use cleanlab to find label issues
-Multiprocessing will default to using the number of logical cores (2). To default to number of physical cores: pip install psutil
+Multiprocessing will default to using the number of logical cores (4). To default to number of physical cores: pip install psutil
 

-
+
-
+
-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -1361,7 +1361,7 @@

Get label quality scores -{"state": {"1a4a4c89993b498ca899f4c673a31967": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "48adca308515462783aab0def8f0a0f2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "fbade7b119ea4248afefe80635667e1f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1a4a4c89993b498ca899f4c673a31967", "max": 244800.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_48adca308515462783aab0def8f0a0f2", "value": 244800.0}}, "6c451d82295e499588505bb478f5bd16": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e5219f954e8d43768dd7d762412bfb20": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "6e24c07364bd4b17948143439fc58f57": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6c451d82295e499588505bb478f5bd16", "placeholder": "\u200b", "style": "IPY_MODEL_e5219f954e8d43768dd7d762412bfb20", "value": "number of examples processed for estimating thresholds: "}}, "f9c4d44648924f979ce88b91227af28e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "98c06d8a46434500867fe0294d789636": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "4c8bc77d820d4282854741bee154e1c0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f9c4d44648924f979ce88b91227af28e", "placeholder": "\u200b", "style": "IPY_MODEL_98c06d8a46434500867fe0294d789636", "value": " 300000/? [00:00<00:00, 3267270.46it/s]"}}, "a9e3d0bbd92240e0a56f5496440fcaf5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fbc0d7f26d9247179cfb96e1e7b0ba8a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6e24c07364bd4b17948143439fc58f57", "IPY_MODEL_fbade7b119ea4248afefe80635667e1f", "IPY_MODEL_4c8bc77d820d4282854741bee154e1c0"], "layout": "IPY_MODEL_a9e3d0bbd92240e0a56f5496440fcaf5"}}, "24dd143ed2ba448d94f10899d484892b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "de3fe1a51b674d8789f5a88414c2db1b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "13eb9c0cbc954f3fbddb12c5caa71076": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_24dd143ed2ba448d94f10899d484892b", "max": 244800.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_de3fe1a51b674d8789f5a88414c2db1b", "value": 244800.0}}, "4aef34e310df4cd4b2b99cbb2311899b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2b545da6bd574f0d9c6d17e002f15459": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "e5d9341859e940e5b45bb442c984b722": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4aef34e310df4cd4b2b99cbb2311899b", "placeholder": "\u200b", "style": "IPY_MODEL_2b545da6bd574f0d9c6d17e002f15459", "value": "number of examples processed for checking labels: "}}, "8ff4a9ebe2bd49db9045bbf364378cd2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c5e60034cbbe45289b901ea62cc68152": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "d0f29056e04243b4acd9c61d7c224d9c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8ff4a9ebe2bd49db9045bbf364378cd2", "placeholder": "\u200b", "style": "IPY_MODEL_c5e60034cbbe45289b901ea62cc68152", "value": " 300000/? [00:02<00:00, 104686.04it/s]"}}, "803fa576923546d4b5d7780b388aa8e7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "490a3ec3e934490597a189fec0c08f71": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e5d9341859e940e5b45bb442c984b722", "IPY_MODEL_13eb9c0cbc954f3fbddb12c5caa71076", "IPY_MODEL_d0f29056e04243b4acd9c61d7c224d9c"], "layout": "IPY_MODEL_803fa576923546d4b5d7780b388aa8e7"}}, "bee87ab3a18f4628b4bfac3bac906cb9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "754331747aa246a2bf0979ae42f39841": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3fe893e9cb074fb6979e66b5b31eebe0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_bee87ab3a18f4628b4bfac3bac906cb9", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_754331747aa246a2bf0979ae42f39841", "value": 30.0}}, "9625c66a291c4e5dbf9e0501ddc65fe8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b5faea0ba92848b6a77424999ab22c2f": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "690812e5d4144c8f8ab304af50d68ad6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9625c66a291c4e5dbf9e0501ddc65fe8", "placeholder": "\u200b", "style": "IPY_MODEL_b5faea0ba92848b6a77424999ab22c2f", "value": "images processed using softmin: 100%"}}, "5c6d69ca414f47599f7cba68ee7ba817": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ea51e4fd77b340ceb4fd52644594fb8f": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "812fdea5e8ec479894189d90365b4189": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5c6d69ca414f47599f7cba68ee7ba817", "placeholder": "\u200b", "style": "IPY_MODEL_ea51e4fd77b340ceb4fd52644594fb8f", "value": " 30/30 [00:03<00:00, 9.92it/s]"}}, "576bf9da24944c91b1c8bc615fa1d2d1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6795c80077d140ce9f4dd03920b4a9c6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_690812e5d4144c8f8ab304af50d68ad6", "IPY_MODEL_3fe893e9cb074fb6979e66b5b31eebe0", "IPY_MODEL_812fdea5e8ec479894189d90365b4189"], "layout": "IPY_MODEL_576bf9da24944c91b1c8bc615fa1d2d1"}}}, "version_major": 2, "version_minor": 0} +{"state": {"77edd80b429e45d39849720a4eeb1f7b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6f83735803844606be9739f114a365b7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "57fcac44a3cd416997cd2477e0bf387e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_77edd80b429e45d39849720a4eeb1f7b", "max": 244800.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6f83735803844606be9739f114a365b7", "value": 244800.0}}, "bbbb45e5407c4bf18ac3f1ccbee9d748": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "009a47328894418e843ca3ec8420bd91": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "3761ecf2e84e47daabbb57ef6d218054": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_bbbb45e5407c4bf18ac3f1ccbee9d748", "placeholder": "\u200b", "style": "IPY_MODEL_009a47328894418e843ca3ec8420bd91", "value": "number of examples processed for estimating thresholds: "}}, "5e03a630e1a241549cb6c3e77e57cd33": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3c5edd0b9d4e4499bda5f98f9ba46904": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "86b8f04425884ca5a2482855c8d2738e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5e03a630e1a241549cb6c3e77e57cd33", "placeholder": "\u200b", "style": "IPY_MODEL_3c5edd0b9d4e4499bda5f98f9ba46904", "value": " 300000/? [00:00<00:00, 5527815.88it/s]"}}, "fd5b6b5537e942bc98e2e986632ed3ab": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "455f6efc5872419fa7d6c42efed407b7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3761ecf2e84e47daabbb57ef6d218054", "IPY_MODEL_57fcac44a3cd416997cd2477e0bf387e", "IPY_MODEL_86b8f04425884ca5a2482855c8d2738e"], "layout": "IPY_MODEL_fd5b6b5537e942bc98e2e986632ed3ab"}}, "5d18223055d34c699eb705bdab96b440": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6e0f918bffff4fbca25c674122c58853": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "200a2c77194d4a418841660c052d814a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5d18223055d34c699eb705bdab96b440", "max": 244800.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6e0f918bffff4fbca25c674122c58853", "value": 244800.0}}, "78d56f243f7f4005a4265beabbf61e84": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a734c7bb722c48748fad4371fcb5dd90": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "10c1504edf5943c4ab82d5f24f33d9bc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_78d56f243f7f4005a4265beabbf61e84", "placeholder": "\u200b", "style": "IPY_MODEL_a734c7bb722c48748fad4371fcb5dd90", "value": "number of examples processed for checking labels: "}}, "00fef66b61d1416398c1efcb77f46b58": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b0dd94fd69b5408883fe83ebdbd4fe72": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "8e1a25dfd1ca4d3c8139c4de181d0784": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_00fef66b61d1416398c1efcb77f46b58", "placeholder": "\u200b", "style": "IPY_MODEL_b0dd94fd69b5408883fe83ebdbd4fe72", "value": " 300000/? [00:02<00:00, 106197.75it/s]"}}, "aca5add058e74841a64a2e46854a41ce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "644d8d222bb7434d9224bb6b3207e61b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_10c1504edf5943c4ab82d5f24f33d9bc", "IPY_MODEL_200a2c77194d4a418841660c052d814a", "IPY_MODEL_8e1a25dfd1ca4d3c8139c4de181d0784"], "layout": "IPY_MODEL_aca5add058e74841a64a2e46854a41ce"}}, "b3c279f317e2476aab7c57f2e8a3a31a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "19b7b667441e4917b38553de2257c5d2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "75e7065dccab48ffa50528355bb9be1c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b3c279f317e2476aab7c57f2e8a3a31a", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_19b7b667441e4917b38553de2257c5d2", "value": 30.0}}, "806297cbc2204d75ac65af5422e24653": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "728dc1729c1a49dab3c1ce6565e7f32a": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "0f1041d0f96948fc87d88009fed951ba": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_806297cbc2204d75ac65af5422e24653", "placeholder": "\u200b", "style": "IPY_MODEL_728dc1729c1a49dab3c1ce6565e7f32a", "value": "images processed using softmin: 100%"}}, "684d9aa8b6944accaf63060960666374": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fc0c5ee77f8a4184ba5ed21457a32bed": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "52878af6cac1444cb5261f83bc47ffab": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_684d9aa8b6944accaf63060960666374", "placeholder": "\u200b", "style": "IPY_MODEL_fc0c5ee77f8a4184ba5ed21457a32bed", "value": " 30/30 [00:01<00:00, 23.35it/s]"}}, "1911366edfff4e0f89132a7add4fbcbd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e95126e9ebc046f8b7f0709a9b140c47": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0f1041d0f96948fc87d88009fed951ba", "IPY_MODEL_75e7065dccab48ffa50528355bb9be1c", "IPY_MODEL_52878af6cac1444cb5261f83bc47ffab"], "layout": "IPY_MODEL_1911366edfff4e0f89132a7add4fbcbd"}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index e0ec17e8a..0f2351858 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:20:18.629281Z", - "iopub.status.busy": "2023-11-02T15:20:18.628532Z", - "iopub.status.idle": "2023-11-02T15:20:21.268148Z", - "shell.execute_reply": "2023-11-02T15:20:21.266691Z" + "iopub.execute_input": "2023-11-04T09:23:17.004234Z", + "iopub.status.busy": "2023-11-04T09:23:17.004042Z", + "iopub.status.idle": "2023-11-04T09:23:19.239153Z", + "shell.execute_reply": "2023-11-04T09:23:19.238424Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:20:21.274248Z", - "iopub.status.busy": "2023-11-02T15:20:21.273266Z", - "iopub.status.idle": "2023-11-02T15:21:43.613773Z", - "shell.execute_reply": "2023-11-02T15:21:43.612463Z" + "iopub.execute_input": "2023-11-04T09:23:19.242178Z", + "iopub.status.busy": "2023-11-04T09:23:19.241784Z", + "iopub.status.idle": "2023-11-04T09:24:31.056224Z", + "shell.execute_reply": "2023-11-04T09:24:31.055397Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:21:43.620191Z", - "iopub.status.busy": "2023-11-02T15:21:43.619823Z", - "iopub.status.idle": "2023-11-02T15:21:45.359965Z", - "shell.execute_reply": "2023-11-02T15:21:45.358871Z" + "iopub.execute_input": "2023-11-04T09:24:31.059482Z", + "iopub.status.busy": "2023-11-04T09:24:31.059051Z", + "iopub.status.idle": "2023-11-04T09:24:32.043644Z", + "shell.execute_reply": "2023-11-04T09:24:32.043005Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:21:45.365414Z", - "iopub.status.busy": "2023-11-02T15:21:45.364801Z", - "iopub.status.idle": "2023-11-02T15:21:45.371456Z", - "shell.execute_reply": "2023-11-02T15:21:45.370540Z" + "iopub.execute_input": "2023-11-04T09:24:32.046564Z", + "iopub.status.busy": "2023-11-04T09:24:32.046079Z", + "iopub.status.idle": "2023-11-04T09:24:32.049513Z", + "shell.execute_reply": "2023-11-04T09:24:32.049002Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:21:45.375901Z", - "iopub.status.busy": "2023-11-02T15:21:45.375104Z", - "iopub.status.idle": "2023-11-02T15:21:45.383715Z", - "shell.execute_reply": "2023-11-02T15:21:45.382594Z" + "iopub.execute_input": "2023-11-04T09:24:32.051864Z", + "iopub.status.busy": "2023-11-04T09:24:32.051664Z", + "iopub.status.idle": "2023-11-04T09:24:32.055948Z", + "shell.execute_reply": "2023-11-04T09:24:32.055410Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:21:45.387438Z", - "iopub.status.busy": "2023-11-02T15:21:45.387115Z", - "iopub.status.idle": "2023-11-02T15:21:45.395222Z", - "shell.execute_reply": "2023-11-02T15:21:45.394281Z" + "iopub.execute_input": "2023-11-04T09:24:32.058141Z", + "iopub.status.busy": "2023-11-04T09:24:32.057948Z", + "iopub.status.idle": "2023-11-04T09:24:32.062001Z", + "shell.execute_reply": "2023-11-04T09:24:32.061458Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:21:45.400142Z", - "iopub.status.busy": "2023-11-02T15:21:45.399417Z", - "iopub.status.idle": "2023-11-02T15:21:45.405440Z", - "shell.execute_reply": "2023-11-02T15:21:45.404491Z" + "iopub.execute_input": "2023-11-04T09:24:32.064269Z", + "iopub.status.busy": "2023-11-04T09:24:32.064076Z", + "iopub.status.idle": "2023-11-04T09:24:32.067045Z", + "shell.execute_reply": "2023-11-04T09:24:32.066531Z" } }, "outputs": [], @@ -333,10 +333,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:21:45.409559Z", - "iopub.status.busy": "2023-11-02T15:21:45.409281Z", - "iopub.status.idle": "2023-11-02T15:23:08.878184Z", - "shell.execute_reply": "2023-11-02T15:23:08.876873Z" + "iopub.execute_input": "2023-11-04T09:24:32.069245Z", + "iopub.status.busy": "2023-11-04T09:24:32.069057Z", + "iopub.status.idle": "2023-11-04T09:25:23.986399Z", + "shell.execute_reply": "2023-11-04T09:25:23.985696Z" } }, "outputs": [ @@ -344,13 +344,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "Multiprocessing will default to using the number of logical cores (2). To default to number of physical cores: pip install psutil\n" + "Multiprocessing will default to using the number of logical cores (4). To default to number of physical cores: pip install psutil\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fbc0d7f26d9247179cfb96e1e7b0ba8a", + "model_id": "455f6efc5872419fa7d6c42efed407b7", "version_major": 2, "version_minor": 0 }, @@ -364,7 +364,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "490a3ec3e934490597a189fec0c08f71", + "model_id": "644d8d222bb7434d9224bb6b3207e61b", "version_major": 2, "version_minor": 0 }, @@ -407,10 +407,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:23:08.883027Z", - "iopub.status.busy": "2023-11-02T15:23:08.882641Z", - "iopub.status.idle": "2023-11-02T15:23:10.189720Z", - "shell.execute_reply": "2023-11-02T15:23:10.188525Z" + "iopub.execute_input": "2023-11-04T09:25:23.989704Z", + "iopub.status.busy": "2023-11-04T09:25:23.988999Z", + "iopub.status.idle": "2023-11-04T09:25:24.737069Z", + "shell.execute_reply": "2023-11-04T09:25:24.736390Z" } }, "outputs": [ @@ -453,10 +453,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:23:10.194580Z", - "iopub.status.busy": "2023-11-02T15:23:10.193840Z", - "iopub.status.idle": "2023-11-02T15:23:14.027461Z", - "shell.execute_reply": "2023-11-02T15:23:14.026369Z" + "iopub.execute_input": "2023-11-04T09:25:24.739788Z", + "iopub.status.busy": "2023-11-04T09:25:24.739456Z", + "iopub.status.idle": "2023-11-04T09:25:26.815649Z", + "shell.execute_reply": "2023-11-04T09:25:26.814981Z" } }, "outputs": [ @@ -526,10 +526,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:23:14.032407Z", - "iopub.status.busy": "2023-11-02T15:23:14.031504Z", - "iopub.status.idle": "2023-11-02T15:24:06.999821Z", - "shell.execute_reply": "2023-11-02T15:24:06.998894Z" + "iopub.execute_input": "2023-11-04T09:25:26.818208Z", + "iopub.status.busy": "2023-11-04T09:25:26.818004Z", + "iopub.status.idle": "2023-11-04T09:25:55.823288Z", + "shell.execute_reply": "2023-11-04T09:25:55.822614Z" } }, "outputs": [ @@ -546,7 +546,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 9070/4997436 [00:00<00:55, 90690.57it/s]" + " 0%| | 17107/4997436 [00:00<00:29, 171063.23it/s]" ] }, { @@ -554,7 +554,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 18511/4997436 [00:00<00:53, 92808.93it/s]" + " 1%| | 34625/4997436 [00:00<00:28, 173478.59it/s]" ] }, { @@ -562,7 +562,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 27792/4997436 [00:00<00:55, 89947.99it/s]" + " 1%| | 51973/4997436 [00:00<00:28, 172726.04it/s]" ] }, { @@ -570,7 +570,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 37460/4997436 [00:00<00:53, 92550.24it/s]" + " 1%|▏ | 69426/4997436 [00:00<00:28, 173432.65it/s]" ] }, { @@ -578,7 +578,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 46727/4997436 [00:00<00:53, 92078.61it/s]" + " 2%|▏ | 86770/4997436 [00:00<00:28, 173320.07it/s]" ] }, { @@ -586,7 +586,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 56095/4997436 [00:00<00:53, 92612.29it/s]" + " 2%|▏ | 104275/4997436 [00:00<00:28, 173905.69it/s]" ] }, { @@ -594,7 +594,7 @@ "output_type": "stream", "text": [ "\r", - " 1%|▏ | 65383/4997436 [00:00<00:53, 92689.10it/s]" + " 2%|▏ | 121666/4997436 [00:00<00:28, 173345.27it/s]" ] }, { @@ -602,7 +602,7 @@ "output_type": "stream", "text": [ "\r", - " 1%|▏ | 74656/4997436 [00:00<00:53, 91892.86it/s]" + " 3%|▎ | 139002/4997436 [00:00<00:28, 172522.49it/s]" ] }, { @@ -610,7 +610,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 84199/4997436 [00:00<00:52, 92984.48it/s]" + " 3%|▎ | 156460/4997436 [00:00<00:27, 173160.68it/s]" ] }, { @@ -618,7 +618,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 93501/4997436 [00:01<00:53, 90862.93it/s]" + " 3%|▎ | 173778/4997436 [00:01<00:27, 172892.55it/s]" ] }, { @@ -626,7 +626,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 102896/4997436 [00:01<00:53, 91782.98it/s]" + " 4%|▍ | 191068/4997436 [00:01<00:27, 172673.55it/s]" ] }, { @@ -634,7 +634,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 112356/4997436 [00:01<00:52, 92616.71it/s]" + " 4%|▍ | 208336/4997436 [00:01<00:27, 172431.89it/s]" ] }, { @@ -642,7 +642,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 121837/4997436 [00:01<00:52, 93269.13it/s]" + " 5%|▍ | 225864/4997436 [00:01<00:27, 173289.20it/s]" ] }, { @@ -650,7 +650,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 131446/4997436 [00:01<00:51, 94110.12it/s]" + " 5%|▍ | 243240/4997436 [00:01<00:27, 173428.63it/s]" ] }, { @@ -658,7 +658,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 140863/4997436 [00:01<00:51, 93566.08it/s]" + " 5%|▌ | 260609/4997436 [00:01<00:27, 173505.71it/s]" ] }, { @@ -666,7 +666,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 150346/4997436 [00:01<00:51, 93940.46it/s]" + " 6%|▌ | 278119/4997436 [00:01<00:27, 173984.08it/s]" ] }, { @@ -674,7 +674,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 159958/4997436 [00:01<00:51, 94586.84it/s]" + " 6%|▌ | 295575/4997436 [00:01<00:26, 174155.30it/s]" ] }, { @@ -682,7 +682,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 169425/4997436 [00:01<00:51, 94607.37it/s]" + " 6%|▋ | 312991/4997436 [00:01<00:27, 171762.41it/s]" ] }, { @@ -690,7 +690,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▎ | 178888/4997436 [00:01<00:51, 94404.44it/s]" + " 7%|▋ | 330493/4997436 [00:01<00:27, 172729.29it/s]" ] }, { @@ -698,7 +698,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 188330/4997436 [00:02<00:51, 93943.38it/s]" + " 7%|▋ | 347915/4997436 [00:02<00:26, 173171.78it/s]" ] }, { @@ -706,7 +706,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 197726/4997436 [00:02<00:51, 93792.22it/s]" + " 7%|▋ | 365286/4997436 [00:02<00:26, 173331.10it/s]" ] }, { @@ -714,7 +714,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 207107/4997436 [00:02<00:51, 93381.42it/s]" + " 8%|▊ | 382644/4997436 [00:02<00:26, 173401.75it/s]" ] }, { @@ -722,7 +722,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 216698/4997436 [00:02<00:50, 94123.69it/s]" + " 8%|▊ | 399987/4997436 [00:02<00:26, 173106.09it/s]" ] }, { @@ -730,7 +730,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 226194/4997436 [00:02<00:50, 94369.61it/s]" + " 8%|▊ | 417480/4997436 [00:02<00:26, 173648.83it/s]" ] }, { @@ -738,7 +738,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 235632/4997436 [00:02<00:51, 92475.28it/s]" + " 9%|▊ | 434876/4997436 [00:02<00:26, 173740.44it/s]" ] }, { @@ -746,7 +746,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 245163/4997436 [00:02<00:50, 93306.94it/s]" + " 9%|▉ | 452252/4997436 [00:02<00:26, 173738.78it/s]" ] }, { @@ -754,7 +754,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 254502/4997436 [00:02<00:51, 91682.82it/s]" + " 9%|▉ | 469627/4997436 [00:02<00:26, 173413.70it/s]" ] }, { @@ -762,7 +762,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 263681/4997436 [00:02<00:51, 91109.18it/s]" + " 10%|▉ | 486997/4997436 [00:02<00:25, 173495.87it/s]" ] }, { @@ -770,7 +770,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 273205/4997436 [00:02<00:51, 92320.25it/s]" + " 10%|█ | 504348/4997436 [00:02<00:25, 173494.21it/s]" ] }, { @@ -778,7 +778,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 282444/4997436 [00:03<00:52, 89136.57it/s]" + " 10%|█ | 521789/4997436 [00:03<00:25, 173764.12it/s]" ] }, { @@ -786,7 +786,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 291958/4997436 [00:03<00:51, 90871.68it/s]" + " 11%|█ | 539166/4997436 [00:03<00:25, 173546.26it/s]" ] }, { @@ -794,7 +794,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 301139/4997436 [00:03<00:51, 91129.27it/s]" + " 11%|█ | 556717/4997436 [00:03<00:25, 174132.74it/s]" ] }, { @@ -802,7 +802,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 310831/4997436 [00:03<00:50, 92831.82it/s]" + " 11%|█▏ | 574138/4997436 [00:03<00:25, 174152.96it/s]" ] }, { @@ -810,7 +810,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▋ | 320130/4997436 [00:03<00:50, 92266.18it/s]" + " 12%|█▏ | 591554/4997436 [00:03<00:25, 174032.35it/s]" ] }, { @@ -818,7 +818,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 329368/4997436 [00:03<00:50, 91877.68it/s]" + " 12%|█▏ | 608958/4997436 [00:03<00:25, 173901.23it/s]" ] }, { @@ -826,7 +826,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 338905/4997436 [00:03<00:50, 92909.63it/s]" + " 13%|█▎ | 626356/4997436 [00:03<00:25, 173921.90it/s]" ] }, { @@ -834,7 +834,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 348203/4997436 [00:03<00:50, 92822.65it/s]" + " 13%|█▎ | 643749/4997436 [00:03<00:25, 173758.48it/s]" ] }, { @@ -842,7 +842,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 357766/4997436 [00:03<00:49, 93655.92it/s]" + " 13%|█▎ | 661125/4997436 [00:03<00:25, 171272.16it/s]" ] }, { @@ -850,7 +850,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 367441/4997436 [00:03<00:48, 94577.22it/s]" + " 14%|█▎ | 678375/4997436 [00:03<00:25, 171633.25it/s]" ] }, { @@ -858,7 +858,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 376978/4997436 [00:04<00:48, 94809.80it/s]" + " 14%|█▍ | 695728/4997436 [00:04<00:24, 172194.03it/s]" ] }, { @@ -866,7 +866,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 386612/4997436 [00:04<00:48, 95264.17it/s]" + " 14%|█▍ | 712979/4997436 [00:04<00:24, 172285.78it/s]" ] }, { @@ -874,7 +874,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 396141/4997436 [00:04<00:48, 94281.14it/s]" + " 15%|█▍ | 730331/4997436 [00:04<00:24, 172652.23it/s]" ] }, { @@ -882,7 +882,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 405690/4997436 [00:04<00:48, 94637.65it/s]" + " 15%|█▍ | 747605/4997436 [00:04<00:24, 172675.70it/s]" ] }, { @@ -890,7 +890,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 415157/4997436 [00:04<00:48, 94567.52it/s]" + " 15%|█▌ | 764875/4997436 [00:04<00:24, 172420.84it/s]" ] }, { @@ -898,7 +898,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 424646/4997436 [00:04<00:48, 94659.31it/s]" + " 16%|█▌ | 782216/4997436 [00:04<00:24, 172715.82it/s]" ] }, { @@ -906,7 +906,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▊ | 434371/4997436 [00:04<00:47, 95430.71it/s]" + " 16%|█▌ | 799506/4997436 [00:04<00:24, 172768.07it/s]" ] }, { @@ -914,7 +914,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 444093/4997436 [00:04<00:47, 95963.50it/s]" + " 16%|█▋ | 816784/4997436 [00:04<00:24, 172728.51it/s]" ] }, { @@ -922,7 +922,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 453691/4997436 [00:04<00:47, 95876.32it/s]" + " 17%|█▋ | 834058/4997436 [00:04<00:24, 170555.55it/s]" ] }, { @@ -930,7 +930,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 463280/4997436 [00:04<00:47, 95578.36it/s]" + " 17%|█▋ | 851296/4997436 [00:04<00:24, 171095.65it/s]" ] }, { @@ -938,7 +938,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 472925/4997436 [00:05<00:47, 95797.11it/s]" + " 17%|█▋ | 868509/4997436 [00:05<00:24, 171400.02it/s]" ] }, { @@ -946,7 +946,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 482719/4997436 [00:05<00:46, 96434.79it/s]" + " 18%|█▊ | 885748/4997436 [00:05<00:23, 171691.75it/s]" ] }, { @@ -954,7 +954,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|▉ | 492443/4997436 [00:05<00:46, 96672.04it/s]" + " 18%|█▊ | 903051/4997436 [00:05<00:23, 172088.38it/s]" ] }, { @@ -962,7 +962,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 502230/4997436 [00:05<00:46, 97027.21it/s]" + " 18%|█▊ | 920358/4997436 [00:05<00:23, 172377.43it/s]" ] }, { @@ -970,7 +970,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 511934/4997436 [00:05<00:46, 96091.99it/s]" + " 19%|█▉ | 937749/4997436 [00:05<00:23, 172834.26it/s]" ] }, { @@ -978,7 +978,7 @@ "output_type": "stream", "text": [ "\r", - " 10%|█ | 521546/4997436 [00:05<00:47, 95104.39it/s]" + " 19%|█▉ | 955034/4997436 [00:05<00:23, 172746.84it/s]" ] }, { @@ -986,7 +986,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 531306/4997436 [00:05<00:46, 95838.66it/s]" + " 19%|█▉ | 972362/4997436 [00:05<00:23, 172902.69it/s]" ] }, { @@ -994,7 +994,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 540894/4997436 [00:05<00:46, 95412.52it/s]" + " 20%|█▉ | 989653/4997436 [00:05<00:23, 172821.44it/s]" ] }, { @@ -1002,7 +1002,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 550544/4997436 [00:05<00:46, 95718.10it/s]" + " 20%|██ | 1006936/4997436 [00:05<00:23, 170734.00it/s]" ] }, { @@ -1010,7 +1010,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 560118/4997436 [00:05<00:47, 94223.63it/s]" + " 20%|██ | 1024240/4997436 [00:05<00:23, 171417.33it/s]" ] }, { @@ -1018,7 +1018,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 569547/4997436 [00:06<00:47, 93850.32it/s]" + " 21%|██ | 1041507/4997436 [00:06<00:23, 171787.71it/s]" ] }, { @@ -1026,7 +1026,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 578936/4997436 [00:06<00:47, 93086.22it/s]" + " 21%|██ | 1058705/4997436 [00:06<00:22, 171843.35it/s]" ] }, { @@ -1034,7 +1034,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 588371/4997436 [00:06<00:47, 93456.05it/s]" + " 22%|██▏ | 1075971/4997436 [00:06<00:22, 172084.30it/s]" ] }, { @@ -1042,7 +1042,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 597758/4997436 [00:06<00:47, 93573.74it/s]" + " 22%|██▏ | 1093243/4997436 [00:06<00:22, 172271.07it/s]" ] }, { @@ -1050,7 +1050,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 607242/4997436 [00:06<00:46, 93948.30it/s]" + " 22%|██▏ | 1110549/4997436 [00:06<00:22, 172505.21it/s]" ] }, { @@ -1058,7 +1058,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 616639/4997436 [00:06<00:46, 93237.36it/s]" + " 23%|██▎ | 1127801/4997436 [00:06<00:22, 172161.35it/s]" ] }, { @@ -1066,7 +1066,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 626069/4997436 [00:06<00:46, 93550.74it/s]" + " 23%|██▎ | 1145072/4997436 [00:06<00:22, 172323.05it/s]" ] }, { @@ -1074,7 +1074,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 635702/4997436 [00:06<00:46, 94374.13it/s]" + " 23%|██▎ | 1162330/4997436 [00:06<00:22, 172398.71it/s]" ] }, { @@ -1082,7 +1082,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 645376/4997436 [00:06<00:45, 95077.36it/s]" + " 24%|██▎ | 1179899/4997436 [00:06<00:22, 173383.09it/s]" ] }, { @@ -1090,7 +1090,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 655035/4997436 [00:06<00:45, 95525.84it/s]" + " 24%|██▍ | 1197434/4997436 [00:06<00:21, 173969.15it/s]" ] }, { @@ -1098,7 +1098,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 664589/4997436 [00:07<00:45, 95058.37it/s]" + " 24%|██▍ | 1215034/4997436 [00:07<00:21, 174574.75it/s]" ] }, { @@ -1106,7 +1106,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 674097/4997436 [00:07<00:46, 93653.73it/s]" + " 25%|██▍ | 1232578/4997436 [00:07<00:21, 174832.39it/s]" ] }, { @@ -1114,7 +1114,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▎ | 683468/4997436 [00:07<00:46, 91902.80it/s]" + " 25%|██▌ | 1250168/4997436 [00:07<00:21, 175149.38it/s]" ] }, { @@ -1122,7 +1122,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 692674/4997436 [00:07<00:46, 91946.07it/s]" + " 25%|██▌ | 1267684/4997436 [00:07<00:21, 175073.62it/s]" ] }, { @@ -1130,7 +1130,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 701911/4997436 [00:07<00:46, 92067.26it/s]" + " 26%|██▌ | 1285192/4997436 [00:07<00:21, 174999.14it/s]" ] }, { @@ -1138,7 +1138,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 711191/4997436 [00:07<00:46, 92280.15it/s]" + " 26%|██▌ | 1302870/4997436 [00:07<00:21, 175529.47it/s]" ] }, { @@ -1146,7 +1146,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 720423/4997436 [00:07<00:46, 91532.63it/s]" + " 26%|██▋ | 1320550/4997436 [00:07<00:20, 175907.61it/s]" ] }, { @@ -1154,7 +1154,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 729853/4997436 [00:07<00:46, 92349.79it/s]" + " 27%|██▋ | 1338187/4997436 [00:07<00:20, 176042.81it/s]" ] }, { @@ -1162,7 +1162,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 739092/4997436 [00:07<00:46, 91457.30it/s]" + " 27%|██▋ | 1355845/4997436 [00:07<00:20, 176199.69it/s]" ] }, { @@ -1170,7 +1170,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 748430/4997436 [00:08<00:46, 92024.32it/s]" + " 27%|██▋ | 1373466/4997436 [00:07<00:20, 176132.68it/s]" ] }, { @@ -1178,7 +1178,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 757636/4997436 [00:08<00:46, 90929.76it/s]" + " 28%|██▊ | 1391080/4997436 [00:08<00:20, 175815.39it/s]" ] }, { @@ -1186,7 +1186,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 766999/4997436 [00:08<00:46, 91724.81it/s]" + " 28%|██▊ | 1408722/4997436 [00:08<00:20, 175994.03it/s]" ] }, { @@ -1194,7 +1194,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 776617/4997436 [00:08<00:45, 93037.78it/s]" + " 29%|██▊ | 1426392/4997436 [00:08<00:20, 176202.24it/s]" ] }, { @@ -1202,7 +1202,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 786092/4997436 [00:08<00:45, 93543.08it/s]" + " 29%|██▉ | 1444013/4997436 [00:08<00:20, 175832.14it/s]" ] }, { @@ -1210,7 +1210,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 795617/4997436 [00:08<00:44, 94048.66it/s]" + " 29%|██▉ | 1461599/4997436 [00:08<00:20, 175837.27it/s]" ] }, { @@ -1218,7 +1218,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 805415/4997436 [00:08<00:44, 95221.08it/s]" + " 30%|██▉ | 1479225/4997436 [00:08<00:19, 175961.07it/s]" ] }, { @@ -1226,7 +1226,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▋ | 815028/4997436 [00:08<00:43, 95488.59it/s]" + " 30%|██▉ | 1496845/4997436 [00:08<00:19, 176030.58it/s]" ] }, { @@ -1234,7 +1234,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 824583/4997436 [00:08<00:43, 95502.64it/s]" + " 30%|███ | 1514543/4997436 [00:08<00:19, 176311.98it/s]" ] }, { @@ -1242,7 +1242,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 834213/4997436 [00:08<00:43, 95737.46it/s]" + " 31%|███ | 1532175/4997436 [00:08<00:19, 176073.01it/s]" ] }, { @@ -1250,7 +1250,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 843788/4997436 [00:09<00:43, 95082.60it/s]" + " 31%|███ | 1549786/4997436 [00:08<00:19, 176081.12it/s]" ] }, { @@ -1258,7 +1258,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 853318/4997436 [00:09<00:43, 95144.37it/s]" + " 31%|███▏ | 1567395/4997436 [00:09<00:19, 176049.87it/s]" ] }, { @@ -1266,7 +1266,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 862915/4997436 [00:09<00:43, 95387.60it/s]" + " 32%|███▏ | 1585001/4997436 [00:09<00:19, 175920.31it/s]" ] }, { @@ -1274,7 +1274,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 872455/4997436 [00:09<00:44, 93711.54it/s]" + " 32%|███▏ | 1602594/4997436 [00:09<00:19, 175701.32it/s]" ] }, { @@ -1282,7 +1282,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 881833/4997436 [00:09<00:44, 93256.19it/s]" + " 32%|███▏ | 1620165/4997436 [00:09<00:19, 175208.27it/s]" ] }, { @@ -1290,7 +1290,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 891164/4997436 [00:09<00:44, 91816.53it/s]" + " 33%|███▎ | 1637773/4997436 [00:09<00:19, 175467.02it/s]" ] }, { @@ -1298,7 +1298,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 900595/4997436 [00:09<00:44, 92541.25it/s]" + " 33%|███▎ | 1655320/4997436 [00:09<00:19, 175440.17it/s]" ] }, { @@ -1306,7 +1306,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 910514/4997436 [00:09<00:43, 94503.23it/s]" + " 33%|███▎ | 1673093/4997436 [00:09<00:18, 176121.76it/s]" ] }, { @@ -1314,7 +1314,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 920756/4997436 [00:09<00:42, 96850.08it/s]" + " 34%|███▍ | 1690900/4997436 [00:09<00:18, 176703.20it/s]" ] }, { @@ -1322,7 +1322,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▊ | 930486/4997436 [00:09<00:41, 96980.53it/s]" + " 34%|███▍ | 1708584/4997436 [00:09<00:18, 176739.96it/s]" ] }, { @@ -1330,7 +1330,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 940426/4997436 [00:10<00:41, 97698.96it/s]" + " 35%|███▍ | 1726287/4997436 [00:09<00:18, 176825.45it/s]" ] }, { @@ -1338,7 +1338,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 950200/4997436 [00:10<00:41, 97461.55it/s]" + " 35%|███▍ | 1743970/4997436 [00:10<00:18, 176731.47it/s]" ] }, { @@ -1346,7 +1346,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 959950/4997436 [00:10<00:41, 96876.34it/s]" + " 35%|███▌ | 1761664/4997436 [00:10<00:18, 176791.76it/s]" ] }, { @@ -1354,7 +1354,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 969641/4997436 [00:10<00:41, 96125.24it/s]" + " 36%|███▌ | 1779354/4997436 [00:10<00:18, 176820.48it/s]" ] }, { @@ -1362,7 +1362,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 979257/4997436 [00:10<00:42, 95310.50it/s]" + " 36%|███▌ | 1797037/4997436 [00:10<00:18, 176587.78it/s]" ] }, { @@ -1370,7 +1370,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 988791/4997436 [00:10<00:42, 93924.27it/s]" + " 36%|███▋ | 1814703/4997436 [00:10<00:18, 176606.95it/s]" ] }, { @@ -1378,7 +1378,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 998237/4997436 [00:10<00:42, 94076.97it/s]" + " 37%|███▋ | 1832364/4997436 [00:10<00:17, 176464.15it/s]" ] }, { @@ -1386,7 +1386,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1007649/4997436 [00:10<00:42, 94064.19it/s]" + " 37%|███▋ | 1850080/4997436 [00:10<00:17, 176670.69it/s]" ] }, { @@ -1394,7 +1394,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 1017104/4997436 [00:10<00:42, 94204.90it/s]" + " 37%|███▋ | 1867748/4997436 [00:10<00:17, 176482.45it/s]" ] }, { @@ -1402,7 +1402,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1026683/4997436 [00:10<00:41, 94674.83it/s]" + " 38%|███▊ | 1885397/4997436 [00:10<00:17, 176285.68it/s]" ] }, { @@ -1410,7 +1410,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1036153/4997436 [00:11<00:42, 93813.18it/s]" + " 38%|███▊ | 1903077/4997436 [00:10<00:17, 176437.75it/s]" ] }, { @@ -1418,7 +1418,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1045582/4997436 [00:11<00:42, 93950.64it/s]" + " 38%|███▊ | 1920721/4997436 [00:11<00:17, 176204.46it/s]" ] }, { @@ -1426,7 +1426,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 1054979/4997436 [00:11<00:42, 93461.49it/s]" + " 39%|███▉ | 1938342/4997436 [00:11<00:17, 176139.39it/s]" ] }, { @@ -1434,7 +1434,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██▏ | 1064927/4997436 [00:11<00:41, 95247.67it/s]" + " 39%|███▉ | 1956042/4997436 [00:11<00:17, 176395.85it/s]" ] }, { @@ -1442,7 +1442,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1074620/4997436 [00:11<00:40, 95746.89it/s]" + " 39%|███▉ | 1973719/4997436 [00:11<00:17, 176506.39it/s]" ] }, { @@ -1450,7 +1450,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1084197/4997436 [00:11<00:40, 95581.93it/s]" + " 40%|███▉ | 1991414/4997436 [00:11<00:17, 176637.28it/s]" ] }, { @@ -1458,7 +1458,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1093757/4997436 [00:11<00:40, 95516.54it/s]" + " 40%|████ | 2009078/4997436 [00:11<00:16, 176465.69it/s]" ] }, { @@ -1466,7 +1466,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1103310/4997436 [00:11<00:40, 95011.94it/s]" + " 41%|████ | 2026735/4997436 [00:11<00:16, 176493.47it/s]" ] }, { @@ -1474,7 +1474,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1112813/4997436 [00:11<00:41, 92704.01it/s]" + " 41%|████ | 2044385/4997436 [00:11<00:16, 176271.86it/s]" ] }, { @@ -1482,7 +1482,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 1122334/4997436 [00:11<00:41, 93437.15it/s]" + " 41%|████▏ | 2062013/4997436 [00:11<00:16, 176201.48it/s]" ] }, { @@ -1490,7 +1490,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1131902/4997436 [00:12<00:41, 94096.07it/s]" + " 42%|████▏ | 2079634/4997436 [00:11<00:16, 176082.70it/s]" ] }, { @@ -1498,7 +1498,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1141785/4997436 [00:12<00:40, 95497.21it/s]" + " 42%|████▏ | 2097262/4997436 [00:12<00:16, 176140.35it/s]" ] }, { @@ -1506,7 +1506,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1151342/4997436 [00:12<00:40, 94873.11it/s]" + " 42%|████▏ | 2114888/4997436 [00:12<00:16, 176172.74it/s]" ] }, { @@ -1514,7 +1514,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1160835/4997436 [00:12<00:41, 91622.58it/s]" + " 43%|████▎ | 2132506/4997436 [00:12<00:16, 175695.12it/s]" ] }, { @@ -1522,7 +1522,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 1170023/4997436 [00:12<00:42, 89779.58it/s]" + " 43%|████▎ | 2150076/4997436 [00:12<00:16, 175462.51it/s]" ] }, { @@ -1530,7 +1530,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▎ | 1179022/4997436 [00:12<00:43, 87711.22it/s]" + " 43%|████▎ | 2167623/4997436 [00:12<00:16, 175297.73it/s]" ] }, { @@ -1538,7 +1538,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1188026/4997436 [00:12<00:43, 88375.60it/s]" + " 44%|████▎ | 2185153/4997436 [00:12<00:16, 173533.40it/s]" ] }, { @@ -1546,7 +1546,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1197258/4997436 [00:12<00:42, 89519.12it/s]" + " 44%|████▍ | 2202705/4997436 [00:12<00:16, 174122.58it/s]" ] }, { @@ -1554,7 +1554,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1206623/4997436 [00:12<00:41, 90727.52it/s]" + " 44%|████▍ | 2220230/4997436 [00:12<00:15, 174456.53it/s]" ] }, { @@ -1562,7 +1562,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 1215835/4997436 [00:12<00:41, 91136.38it/s]" + " 45%|████▍ | 2237764/4997436 [00:12<00:15, 174718.35it/s]" ] }, { @@ -1570,7 +1570,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1225094/4997436 [00:13<00:41, 91563.46it/s]" + " 45%|████▌ | 2255238/4997436 [00:12<00:15, 174589.67it/s]" ] }, { @@ -1578,7 +1578,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1234258/4997436 [00:13<00:41, 91555.86it/s]" + " 45%|████▌ | 2272750/4997436 [00:13<00:15, 174745.28it/s]" ] }, { @@ -1586,7 +1586,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 1243419/4997436 [00:13<00:41, 90723.08it/s]" + " 46%|████▌ | 2290339/4997436 [00:13<00:15, 175085.10it/s]" ] }, { @@ -1594,7 +1594,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1252780/4997436 [00:13<00:40, 91577.71it/s]" + " 46%|████▌ | 2307894/4997436 [00:13<00:15, 175222.43it/s]" ] }, { @@ -1602,7 +1602,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1262043/4997436 [00:13<00:40, 91886.82it/s]" + " 47%|████▋ | 2325417/4997436 [00:13<00:15, 175072.62it/s]" ] }, { @@ -1610,7 +1610,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▌ | 1271235/4997436 [00:13<00:40, 91622.14it/s]" + " 47%|████▋ | 2343150/4997436 [00:13<00:15, 175747.77it/s]" ] }, { @@ -1618,7 +1618,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1280410/4997436 [00:13<00:40, 91656.98it/s]" + " 47%|████▋ | 2360805/4997436 [00:13<00:14, 175986.01it/s]" ] }, { @@ -1626,7 +1626,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1289578/4997436 [00:13<00:40, 90857.47it/s]" + " 48%|████▊ | 2378415/4997436 [00:13<00:14, 176017.59it/s]" ] }, { @@ -1634,7 +1634,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1298667/4997436 [00:13<00:41, 90143.22it/s]" + " 48%|████▊ | 2396017/4997436 [00:13<00:14, 175863.34it/s]" ] }, { @@ -1642,7 +1642,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 1308067/4997436 [00:13<00:40, 91284.16it/s]" + " 48%|████▊ | 2413604/4997436 [00:13<00:14, 175411.51it/s]" ] }, { @@ -1650,7 +1650,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▋ | 1317642/4997436 [00:14<00:39, 92609.59it/s]" + " 49%|████▊ | 2431146/4997436 [00:13<00:14, 175200.46it/s]" ] }, { @@ -1658,7 +1658,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1327247/4997436 [00:14<00:39, 93631.66it/s]" + " 49%|████▉ | 2448694/4997436 [00:14<00:14, 175280.41it/s]" ] }, { @@ -1666,7 +1666,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1336883/4997436 [00:14<00:38, 94443.63it/s]" + " 49%|████▉ | 2466223/4997436 [00:14<00:14, 175163.40it/s]" ] }, { @@ -1674,7 +1674,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1346587/4997436 [00:14<00:38, 95186.13it/s]" + " 50%|████▉ | 2483740/4997436 [00:14<00:14, 174977.65it/s]" ] }, { @@ -1682,7 +1682,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1356108/4997436 [00:14<00:38, 93568.43it/s]" + " 50%|█████ | 2501238/4997436 [00:14<00:14, 174897.75it/s]" ] }, { @@ -1690,7 +1690,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 1365472/4997436 [00:14<00:39, 91671.36it/s]" + " 50%|█████ | 2518740/4997436 [00:14<00:14, 174932.91it/s]" ] }, { @@ -1698,7 +1698,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1374804/4997436 [00:14<00:39, 92151.63it/s]" + " 51%|█████ | 2536243/4997436 [00:14<00:14, 174960.80it/s]" ] }, { @@ -1706,7 +1706,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1384177/4997436 [00:14<00:39, 92573.82it/s]" + " 51%|█████ | 2553740/4997436 [00:14<00:13, 174935.61it/s]" ] }, { @@ -1714,7 +1714,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1393442/4997436 [00:14<00:39, 92070.68it/s]" + " 51%|█████▏ | 2571234/4997436 [00:14<00:13, 174763.47it/s]" ] }, { @@ -1722,7 +1722,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1403074/4997436 [00:15<00:38, 93301.38it/s]" + " 52%|█████▏ | 2588807/4997436 [00:14<00:13, 175048.63it/s]" ] }, { @@ -1730,7 +1730,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1412638/4997436 [00:15<00:38, 93993.80it/s]" + " 52%|█████▏ | 2606312/4997436 [00:14<00:13, 174083.68it/s]" ] }, { @@ -1738,7 +1738,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 1422225/4997436 [00:15<00:37, 94549.01it/s]" + " 53%|█████▎ | 2623722/4997436 [00:15<00:13, 174080.30it/s]" ] }, { @@ -1746,7 +1746,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▊ | 1431923/4997436 [00:15<00:37, 95271.13it/s]" + " 53%|█████▎ | 2641131/4997436 [00:15<00:13, 173894.67it/s]" ] }, { @@ -1754,7 +1754,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1441687/4997436 [00:15<00:37, 95976.62it/s]" + " 53%|█████▎ | 2658522/4997436 [00:15<00:13, 173390.61it/s]" ] }, { @@ -1762,7 +1762,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1451287/4997436 [00:15<00:37, 95526.55it/s]" + " 54%|█████▎ | 2675962/4997436 [00:15<00:13, 173690.37it/s]" ] }, { @@ -1770,7 +1770,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1460859/4997436 [00:15<00:37, 95580.79it/s]" + " 54%|█████▍ | 2693332/4997436 [00:15<00:13, 173567.04it/s]" ] }, { @@ -1778,7 +1778,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 1470419/4997436 [00:15<00:37, 94985.15it/s]" + " 54%|█████▍ | 2710690/4997436 [00:15<00:14, 154354.97it/s]" ] }, { @@ -1786,7 +1786,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1479920/4997436 [00:15<00:37, 94978.75it/s]" + " 55%|█████▍ | 2727237/4997436 [00:15<00:14, 157415.55it/s]" ] }, { @@ -1794,7 +1794,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|██▉ | 1489850/4997436 [00:15<00:36, 96265.93it/s]" + " 55%|█████▍ | 2744650/4997436 [00:15<00:13, 162131.99it/s]" ] }, { @@ -1802,7 +1802,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1499900/4997436 [00:16<00:35, 97528.73it/s]" + " 55%|█████▌ | 2761967/4997436 [00:15<00:13, 165299.91it/s]" ] }, { @@ -1810,7 +1810,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1509655/4997436 [00:16<00:36, 96697.46it/s]" + " 56%|█████▌ | 2779223/4997436 [00:15<00:13, 167409.80it/s]" ] }, { @@ -1818,7 +1818,7 @@ "output_type": "stream", "text": [ "\r", - " 30%|███ | 1519741/4997436 [00:16<00:35, 97928.74it/s]" + " 56%|█████▌ | 2796297/4997436 [00:16<00:13, 168383.69it/s]" ] }, { @@ -1826,7 +1826,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1529537/4997436 [00:16<00:35, 96901.94it/s]" + " 56%|█████▋ | 2813588/4997436 [00:16<00:12, 169719.61it/s]" ] }, { @@ -1834,7 +1834,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1539610/4997436 [00:16<00:35, 98034.62it/s]" + " 57%|█████▋ | 2830909/4997436 [00:16<00:12, 170752.36it/s]" ] }, { @@ -1842,7 +1842,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1549418/4997436 [00:16<00:35, 97876.75it/s]" + " 57%|█████▋ | 2848236/4997436 [00:16<00:12, 171498.76it/s]" ] }, { @@ -1850,7 +1850,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 1559229/4997436 [00:16<00:35, 97942.80it/s]" + " 57%|█████▋ | 2865562/4997436 [00:16<00:12, 172021.89it/s]" ] }, { @@ -1858,7 +1858,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 1569026/4997436 [00:16<00:35, 97616.51it/s]" + " 58%|█████▊ | 2882790/4997436 [00:16<00:12, 169463.52it/s]" ] }, { @@ -1866,7 +1866,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1578790/4997436 [00:16<00:35, 95548.04it/s]" + " 58%|█████▊ | 2900192/4997436 [00:16<00:12, 170808.48it/s]" ] }, { @@ -1874,7 +1874,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1588355/4997436 [00:16<00:35, 95460.25it/s]" + " 58%|█████▊ | 2917509/4997436 [00:16<00:12, 171507.92it/s]" ] }, { @@ -1882,7 +1882,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1597908/4997436 [00:17<00:36, 93963.19it/s]" + " 59%|█████▊ | 2934736/4997436 [00:16<00:12, 171731.55it/s]" ] }, { @@ -1890,7 +1890,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1607313/4997436 [00:17<00:36, 93401.06it/s]" + " 59%|█████▉ | 2951966/4997436 [00:16<00:11, 171898.29it/s]" ] }, { @@ -1898,7 +1898,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 1616659/4997436 [00:17<00:36, 93281.07it/s]" + " 59%|█████▉ | 2969307/4997436 [00:17<00:11, 172348.65it/s]" ] }, { @@ -1906,7 +1906,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1626544/4997436 [00:17<00:35, 94919.84it/s]" + " 60%|█████▉ | 2986696/4997436 [00:17<00:11, 172806.10it/s]" ] }, { @@ -1914,7 +1914,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1636399/4997436 [00:17<00:35, 95995.41it/s]" + " 60%|██████ | 3003981/4997436 [00:17<00:11, 172744.18it/s]" ] }, { @@ -1922,7 +1922,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1646273/4997436 [00:17<00:34, 96809.28it/s]" + " 60%|██████ | 3021345/4997436 [00:17<00:11, 173010.61it/s]" ] }, { @@ -1930,7 +1930,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1656092/4997436 [00:17<00:34, 97216.57it/s]" + " 61%|██████ | 3038721/4997436 [00:17<00:11, 173231.29it/s]" ] }, { @@ -1938,7 +1938,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 1665898/4997436 [00:17<00:34, 97465.45it/s]" + " 61%|██████ | 3056046/4997436 [00:17<00:11, 173203.89it/s]" ] }, { @@ -1946,7 +1946,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 1675649/4997436 [00:17<00:34, 97476.09it/s]" + " 61%|██████▏ | 3073414/4997436 [00:17<00:11, 173344.08it/s]" ] }, { @@ -1954,7 +1954,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 1685399/4997436 [00:17<00:34, 96724.34it/s]" + " 62%|██████▏ | 3090771/4997436 [00:17<00:10, 173409.52it/s]" ] }, { @@ -1962,7 +1962,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1695090/4997436 [00:18<00:34, 96776.32it/s]" + " 62%|██████▏ | 3108113/4997436 [00:17<00:11, 168324.46it/s]" ] }, { @@ -1970,7 +1970,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1704770/4997436 [00:18<00:34, 96663.96it/s]" + " 63%|██████▎ | 3125016/4997436 [00:18<00:11, 168529.37it/s]" ] }, { @@ -1978,7 +1978,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 1714511/4997436 [00:18<00:33, 96883.28it/s]" + " 63%|██████▎ | 3142341/4997436 [00:18<00:10, 169921.70it/s]" ] }, { @@ -1986,7 +1986,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1724336/4997436 [00:18<00:33, 97285.65it/s]" + " 63%|██████▎ | 3159703/4997436 [00:18<00:10, 171017.41it/s]" ] }, { @@ -1994,7 +1994,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1734066/4997436 [00:18<00:34, 95297.20it/s]" + " 64%|██████▎ | 3177078/4997436 [00:18<00:10, 171827.46it/s]" ] }, { @@ -2002,7 +2002,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▍ | 1743605/4997436 [00:18<00:34, 94602.00it/s]" + " 64%|██████▍ | 3194444/4997436 [00:18<00:10, 172370.64it/s]" ] }, { @@ -2010,7 +2010,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1753295/4997436 [00:18<00:34, 95277.53it/s]" + " 64%|██████▍ | 3211801/4997436 [00:18<00:10, 172725.63it/s]" ] }, { @@ -2018,7 +2018,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1762943/4997436 [00:18<00:33, 95631.27it/s]" + " 65%|██████▍ | 3229190/4997436 [00:18<00:10, 173072.49it/s]" ] }, { @@ -2026,7 +2026,7 @@ "output_type": "stream", "text": [ "\r", - " 35%|███▌ | 1772511/4997436 [00:18<00:33, 94916.96it/s]" + " 65%|██████▍ | 3246591/4997436 [00:18<00:10, 173351.31it/s]" ] }, { @@ -2034,7 +2034,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1782007/4997436 [00:18<00:34, 94190.95it/s]" + " 65%|██████▌ | 3263949/4997436 [00:18<00:09, 173417.03it/s]" ] }, { @@ -2042,7 +2042,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1791436/4997436 [00:19<00:34, 94217.64it/s]" + " 66%|██████▌ | 3281334/4997436 [00:18<00:09, 173543.51it/s]" ] }, { @@ -2050,7 +2050,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1800931/4997436 [00:19<00:33, 94431.65it/s]" + " 66%|██████▌ | 3298701/4997436 [00:19<00:09, 173579.12it/s]" ] }, { @@ -2058,7 +2058,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 1810461/4997436 [00:19<00:33, 94686.10it/s]" + " 66%|██████▋ | 3316060/4997436 [00:19<00:09, 173258.64it/s]" ] }, { @@ -2066,7 +2066,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▋ | 1820293/4997436 [00:19<00:33, 95767.16it/s]" + " 67%|██████▋ | 3333425/4997436 [00:19<00:09, 173374.67it/s]" ] }, { @@ -2074,7 +2074,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1829929/4997436 [00:19<00:33, 95939.87it/s]" + " 67%|██████▋ | 3350764/4997436 [00:19<00:09, 173260.11it/s]" ] }, { @@ -2082,7 +2082,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1839525/4997436 [00:19<00:33, 94548.44it/s]" + " 67%|██████▋ | 3368166/4997436 [00:19<00:09, 173485.48it/s]" ] }, { @@ -2090,7 +2090,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1849240/4997436 [00:19<00:33, 95315.64it/s]" + " 68%|██████▊ | 3385525/4997436 [00:19<00:09, 173513.14it/s]" ] }, { @@ -2098,7 +2098,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1858884/4997436 [00:19<00:32, 95645.40it/s]" + " 68%|██████▊ | 3402877/4997436 [00:19<00:09, 173300.45it/s]" ] }, { @@ -2106,7 +2106,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 1868452/4997436 [00:19<00:33, 93853.75it/s]" + " 68%|██████▊ | 3420208/4997436 [00:19<00:09, 173234.68it/s]" ] }, { @@ -2114,7 +2114,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1877939/4997436 [00:19<00:33, 94135.76it/s]" + " 69%|██████▉ | 3437532/4997436 [00:19<00:09, 173228.65it/s]" ] }, { @@ -2122,7 +2122,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1887360/4997436 [00:20<00:33, 92375.70it/s]" + " 69%|██████▉ | 3454882/4997436 [00:19<00:08, 173306.07it/s]" ] }, { @@ -2130,7 +2130,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1896608/4997436 [00:20<00:35, 88410.75it/s]" + " 69%|██████▉ | 3472213/4997436 [00:20<00:09, 166460.65it/s]" ] }, { @@ -2138,7 +2138,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1905790/4997436 [00:20<00:34, 89382.45it/s]" + " 70%|██████▉ | 3489491/4997436 [00:20<00:08, 168299.47it/s]" ] }, { @@ -2146,7 +2146,7 @@ "output_type": "stream", "text": [ "\r", - " 38%|███▊ | 1915201/4997436 [00:20<00:33, 90751.60it/s]" + " 70%|███████ | 3506830/4997436 [00:20<00:08, 169793.76it/s]" ] }, { @@ -2154,7 +2154,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1924571/4997436 [00:20<00:33, 91611.99it/s]" + " 71%|███████ | 3524180/4997436 [00:20<00:08, 170887.42it/s]" ] }, { @@ -2162,7 +2162,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 1933867/4997436 [00:20<00:33, 92006.99it/s]" + " 71%|███████ | 3541534/4997436 [00:20<00:08, 171674.35it/s]" ] }, { @@ -2170,7 +2170,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1943083/4997436 [00:20<00:33, 91586.72it/s]" + " 71%|███████ | 3558960/4997436 [00:20<00:08, 172442.22it/s]" ] }, { @@ -2178,7 +2178,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1952348/4997436 [00:20<00:33, 91861.51it/s]" + " 72%|███████▏ | 3576383/4997436 [00:20<00:08, 172974.49it/s]" ] }, { @@ -2186,7 +2186,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1961884/4997436 [00:20<00:32, 92894.58it/s]" + " 72%|███████▏ | 3593814/4997436 [00:20<00:08, 173369.85it/s]" ] }, { @@ -2194,7 +2194,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▉ | 1971436/4997436 [00:20<00:32, 93674.12it/s]" + " 72%|███████▏ | 3611224/4997436 [00:20<00:07, 173587.30it/s]" ] }, { @@ -2202,7 +2202,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1980809/4997436 [00:21<00:32, 91876.51it/s]" + " 73%|███████▎ | 3628635/4997436 [00:20<00:07, 173741.16it/s]" ] }, { @@ -2210,7 +2210,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 1990008/4997436 [00:21<00:33, 91067.98it/s]" + " 73%|███████▎ | 3646013/4997436 [00:21<00:08, 166951.89it/s]" ] }, { @@ -2218,7 +2218,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 1999391/4997436 [00:21<00:32, 91877.40it/s]" + " 73%|███████▎ | 3663388/4997436 [00:21<00:07, 168929.96it/s]" ] }, { @@ -2226,7 +2226,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2008929/4997436 [00:21<00:32, 92910.17it/s]" + " 74%|███████▎ | 3680864/4997436 [00:21<00:07, 170640.98it/s]" ] }, { @@ -2234,7 +2234,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|████ | 2018447/4997436 [00:21<00:31, 93582.38it/s]" + " 74%|███████▍ | 3698281/4997436 [00:21<00:07, 171681.41it/s]" ] }, { @@ -2242,7 +2242,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2027898/4997436 [00:21<00:31, 93855.06it/s]" + " 74%|███████▍ | 3715743/4997436 [00:21<00:07, 172550.43it/s]" ] }, { @@ -2250,7 +2250,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2037447/4997436 [00:21<00:31, 94339.89it/s]" + " 75%|███████▍ | 3733177/4997436 [00:21<00:07, 173080.99it/s]" ] }, { @@ -2258,7 +2258,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2046962/4997436 [00:21<00:31, 94579.28it/s]" + " 75%|███████▌ | 3750586/4997436 [00:21<00:07, 173379.77it/s]" ] }, { @@ -2266,7 +2266,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 2056463/4997436 [00:21<00:31, 94704.79it/s]" + " 75%|███████▌ | 3767988/4997436 [00:21<00:07, 173569.12it/s]" ] }, { @@ -2274,7 +2274,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 2065935/4997436 [00:22<00:31, 94371.94it/s]" + " 76%|███████▌ | 3785481/4997436 [00:21<00:06, 173974.70it/s]" ] }, { @@ -2282,7 +2282,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2075380/4997436 [00:22<00:30, 94391.40it/s]" + " 76%|███████▌ | 3802976/4997436 [00:21<00:06, 174265.34it/s]" ] }, { @@ -2290,7 +2290,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2084956/4997436 [00:22<00:30, 94797.78it/s]" + " 76%|███████▋ | 3820407/4997436 [00:22<00:06, 174232.97it/s]" ] }, { @@ -2298,7 +2298,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2094437/4997436 [00:22<00:31, 92255.52it/s]" + " 77%|███████▋ | 3837833/4997436 [00:22<00:06, 174144.19it/s]" ] }, { @@ -2306,7 +2306,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2103678/4997436 [00:22<00:31, 90805.62it/s]" + " 77%|███████▋ | 3855261/4997436 [00:22<00:06, 174183.69it/s]" ] }, { @@ -2314,7 +2314,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2113047/4997436 [00:22<00:31, 91646.12it/s]" + " 77%|███████▋ | 3872681/4997436 [00:22<00:06, 174060.75it/s]" ] }, { @@ -2322,7 +2322,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 2122223/4997436 [00:22<00:31, 91157.18it/s]" + " 78%|███████▊ | 3890088/4997436 [00:22<00:06, 173810.48it/s]" ] }, { @@ -2330,7 +2330,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2131448/4997436 [00:22<00:31, 91475.73it/s]" + " 78%|███████▊ | 3907470/4997436 [00:22<00:06, 173597.21it/s]" ] }, { @@ -2338,7 +2338,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2141012/4997436 [00:22<00:30, 92706.76it/s]" + " 79%|███████▊ | 3924836/4997436 [00:22<00:06, 173614.94it/s]" ] }, { @@ -2346,7 +2346,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2150439/4997436 [00:22<00:30, 93167.25it/s]" + " 79%|███████▉ | 3942215/4997436 [00:22<00:06, 173664.46it/s]" ] }, { @@ -2354,7 +2354,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2159761/4997436 [00:23<00:30, 91893.33it/s]" + " 79%|███████▉ | 3959582/4997436 [00:22<00:05, 173614.93it/s]" ] }, { @@ -2362,7 +2362,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 2169077/4997436 [00:23<00:30, 92263.82it/s]" + " 80%|███████▉ | 3976944/4997436 [00:22<00:05, 173514.71it/s]" ] }, { @@ -2370,7 +2370,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▎ | 2178607/4997436 [00:23<00:30, 93162.60it/s]" + " 80%|███████▉ | 3994296/4997436 [00:23<00:05, 169785.32it/s]" ] }, { @@ -2378,7 +2378,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2188133/4997436 [00:23<00:29, 93783.13it/s]" + " 80%|████████ | 4011766/4997436 [00:23<00:05, 171234.42it/s]" ] }, { @@ -2386,7 +2386,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2197515/4997436 [00:23<00:29, 93503.39it/s]" + " 81%|████████ | 4029378/4997436 [00:23<00:05, 172681.06it/s]" ] }, { @@ -2394,7 +2394,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2206868/4997436 [00:23<00:29, 93224.17it/s]" + " 81%|████████ | 4046982/4997436 [00:23<00:05, 173677.05it/s]" ] }, { @@ -2402,7 +2402,7 @@ "output_type": "stream", "text": [ "\r", - " 44%|████▍ | 2216266/4997436 [00:23<00:29, 93445.92it/s]" + " 81%|████████▏ | 4064596/4997436 [00:23<00:05, 174408.91it/s]" ] }, { @@ -2410,7 +2410,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2225612/4997436 [00:23<00:29, 92537.56it/s]" + " 82%|████████▏ | 4082212/4997436 [00:23<00:05, 174928.13it/s]" ] }, { @@ -2418,7 +2418,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2234869/4997436 [00:23<00:30, 91490.22it/s]" + " 82%|████████▏ | 4099710/4997436 [00:23<00:05, 174843.93it/s]" ] }, { @@ -2426,7 +2426,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▍ | 2244149/4997436 [00:23<00:29, 91873.44it/s]" + " 82%|████████▏ | 4117395/4997436 [00:23<00:05, 175439.90it/s]" ] }, { @@ -2434,7 +2434,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2253603/4997436 [00:24<00:29, 92660.05it/s]" + " 83%|████████▎ | 4134978/4997436 [00:23<00:04, 175554.65it/s]" ] }, { @@ -2442,7 +2442,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2262908/4997436 [00:24<00:29, 92773.23it/s]" + " 83%|████████▎ | 4152546/4997436 [00:23<00:04, 175589.88it/s]" ] }, { @@ -2450,7 +2450,7 @@ "output_type": "stream", "text": [ "\r", - " 45%|████▌ | 2272269/4997436 [00:24<00:29, 93020.00it/s]" + " 83%|████████▎ | 4170135/4997436 [00:24<00:04, 175677.63it/s]" ] }, { @@ -2458,7 +2458,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2281573/4997436 [00:24<00:29, 92522.34it/s]" + " 84%|████████▍ | 4187704/4997436 [00:24<00:04, 175460.52it/s]" ] }, { @@ -2466,7 +2466,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2290901/4997436 [00:24<00:29, 92739.51it/s]" + " 84%|████████▍ | 4205251/4997436 [00:24<00:04, 175313.88it/s]" ] }, { @@ -2474,7 +2474,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2300293/4997436 [00:24<00:28, 93087.84it/s]" + " 84%|████████▍ | 4222783/4997436 [00:24<00:04, 175284.97it/s]" ] }, { @@ -2482,7 +2482,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 2309603/4997436 [00:24<00:29, 92346.99it/s]" + " 85%|████████▍ | 4240396/4997436 [00:24<00:04, 175535.22it/s]" ] }, { @@ -2490,7 +2490,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▋ | 2319018/4997436 [00:24<00:28, 92880.83it/s]" + " 85%|████████▌ | 4258015/4997436 [00:24<00:04, 175728.02it/s]" ] }, { @@ -2498,7 +2498,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2328308/4997436 [00:24<00:28, 92854.55it/s]" + " 86%|████████▌ | 4275678/4997436 [00:24<00:04, 175994.86it/s]" ] }, { @@ -2506,7 +2506,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2337595/4997436 [00:24<00:28, 92059.18it/s]" + " 86%|████████▌ | 4293425/4997436 [00:24<00:03, 176435.62it/s]" ] }, { @@ -2514,7 +2514,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2346804/4997436 [00:25<00:29, 89424.72it/s]" + " 86%|████████▋ | 4311165/4997436 [00:24<00:03, 176721.61it/s]" ] }, { @@ -2522,7 +2522,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2355808/4997436 [00:25<00:29, 89599.58it/s]" + " 87%|████████▋ | 4328909/4997436 [00:24<00:03, 176933.08it/s]" ] }, { @@ -2530,7 +2530,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 2365193/4997436 [00:25<00:28, 90847.24it/s]" + " 87%|████████▋ | 4346679/4997436 [00:25<00:03, 177159.49it/s]" ] }, { @@ -2538,7 +2538,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2374709/4997436 [00:25<00:28, 92108.22it/s]" + " 87%|████████▋ | 4364396/4997436 [00:25<00:03, 176849.67it/s]" ] }, { @@ -2546,7 +2546,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2384132/4997436 [00:25<00:28, 92736.10it/s]" + " 88%|████████▊ | 4382082/4997436 [00:25<00:03, 176724.05it/s]" ] }, { @@ -2554,7 +2554,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2393613/4997436 [00:25<00:27, 93351.40it/s]" + " 88%|████████▊ | 4399823/4997436 [00:25<00:03, 176926.94it/s]" ] }, { @@ -2562,7 +2562,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2402954/4997436 [00:25<00:28, 91830.23it/s]" + " 88%|████████▊ | 4417516/4997436 [00:25<00:03, 176911.60it/s]" ] }, { @@ -2570,7 +2570,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2412485/4997436 [00:25<00:27, 92854.97it/s]" + " 89%|████████▊ | 4435208/4997436 [00:25<00:03, 176887.24it/s]" ] }, { @@ -2578,7 +2578,7 @@ "output_type": "stream", "text": [ "\r", - " 48%|████▊ | 2421779/4997436 [00:25<00:28, 90933.59it/s]" + " 89%|████████▉ | 4452924/4997436 [00:25<00:03, 176965.90it/s]" ] }, { @@ -2586,7 +2586,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▊ | 2431030/4997436 [00:25<00:28, 91392.85it/s]" + " 89%|████████▉ | 4470651/4997436 [00:25<00:02, 177053.85it/s]" ] }, { @@ -2594,7 +2594,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2440572/4997436 [00:26<00:27, 92579.42it/s]" + " 90%|████████▉ | 4488406/4997436 [00:25<00:02, 177200.29it/s]" ] }, { @@ -2602,7 +2602,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2450126/4997436 [00:26<00:27, 93453.12it/s]" + " 90%|█████████ | 4506186/4997436 [00:25<00:02, 177377.80it/s]" ] }, { @@ -2610,7 +2610,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2459856/4997436 [00:26<00:26, 94595.27it/s]" + " 91%|█████████ | 4523954/4997436 [00:26<00:02, 177465.07it/s]" ] }, { @@ -2618,7 +2618,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 2469687/4997436 [00:26<00:26, 95700.03it/s]" + " 91%|█████████ | 4541701/4997436 [00:26<00:02, 177061.52it/s]" ] }, { @@ -2626,7 +2626,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2479262/4997436 [00:26<00:26, 94757.76it/s]" + " 91%|█████████ | 4559408/4997436 [00:26<00:02, 176764.72it/s]" ] }, { @@ -2634,7 +2634,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2488743/4997436 [00:26<00:26, 94367.51it/s]" + " 92%|█████████▏| 4577176/4997436 [00:26<00:02, 177036.43it/s]" ] }, { @@ -2642,7 +2642,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|████▉ | 2498184/4997436 [00:26<00:26, 93768.32it/s]" + " 92%|█████████▏| 4594897/4997436 [00:26<00:02, 177085.81it/s]" ] }, { @@ -2650,7 +2650,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2507564/4997436 [00:26<00:26, 92745.06it/s]" + " 92%|█████████▏| 4612737/4997436 [00:26<00:02, 177475.21it/s]" ] }, { @@ -2658,7 +2658,7 @@ "output_type": "stream", "text": [ "\r", - " 50%|█████ | 2516842/4997436 [00:26<00:26, 92614.18it/s]" + " 93%|█████████▎| 4630485/4997436 [00:26<00:02, 177320.83it/s]" ] }, { @@ -2666,7 +2666,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2526275/4997436 [00:26<00:26, 93112.19it/s]" + " 93%|█████████▎| 4648218/4997436 [00:26<00:01, 177208.30it/s]" ] }, { @@ -2674,7 +2674,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2535771/4997436 [00:27<00:26, 93658.01it/s]" + " 93%|█████████▎| 4665942/4997436 [00:26<00:01, 177215.82it/s]" ] }, { @@ -2682,7 +2682,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2545410/4997436 [00:27<00:25, 94469.38it/s]" + " 94%|█████████▎| 4683700/4997436 [00:26<00:01, 177321.22it/s]" ] }, { @@ -2690,7 +2690,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████ | 2554859/4997436 [00:27<00:26, 93709.86it/s]" + " 94%|█████████▍| 4701523/4997436 [00:27<00:01, 177591.06it/s]" ] }, { @@ -2698,7 +2698,7 @@ "output_type": "stream", "text": [ "\r", - " 51%|█████▏ | 2564233/4997436 [00:27<00:26, 93261.25it/s]" + " 94%|█████████▍| 4719283/4997436 [00:27<00:01, 177169.73it/s]" ] }, { @@ -2706,7 +2706,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2574001/4997436 [00:27<00:25, 94569.29it/s]" + " 95%|█████████▍| 4737001/4997436 [00:27<00:01, 176413.38it/s]" ] }, { @@ -2714,7 +2714,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2583461/4997436 [00:27<00:25, 93426.77it/s]" + " 95%|█████████▌| 4754644/4997436 [00:27<00:01, 176211.85it/s]" ] }, { @@ -2722,7 +2722,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2592808/4997436 [00:27<00:25, 93036.88it/s]" + " 95%|█████████▌| 4772266/4997436 [00:27<00:01, 176034.99it/s]" ] }, { @@ -2730,7 +2730,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2602403/4997436 [00:27<00:25, 93896.64it/s]" + " 96%|█████████▌| 4789870/4997436 [00:27<00:01, 175981.22it/s]" ] }, { @@ -2738,7 +2738,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2612198/4997436 [00:27<00:25, 95098.76it/s]" + " 96%|█████████▌| 4807469/4997436 [00:27<00:01, 175720.15it/s]" ] }, { @@ -2746,7 +2746,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 2621961/4997436 [00:27<00:24, 95849.36it/s]" + " 97%|█████████▋| 4825042/4997436 [00:27<00:00, 175296.96it/s]" ] }, { @@ -2754,7 +2754,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2632277/4997436 [00:28<00:24, 98029.42it/s]" + " 97%|█████████▋| 4842653/4997436 [00:27<00:00, 175536.63it/s]" ] }, { @@ -2762,7 +2762,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2642083/4997436 [00:28<00:24, 97899.25it/s]" + " 97%|█████████▋| 4860207/4997436 [00:27<00:00, 175530.68it/s]" ] }, { @@ -2770,7 +2770,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2652234/4997436 [00:28<00:23, 98975.80it/s]" + " 98%|█████████▊| 4877960/4997436 [00:28<00:00, 176127.14it/s]" ] }, { @@ -2778,7 +2778,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2662136/4997436 [00:28<00:23, 98985.03it/s]" + " 98%|█████████▊| 4895723/4997436 [00:28<00:00, 176573.55it/s]" ] }, { @@ -2786,7 +2786,7 @@ "output_type": "stream", "text": [ "\r", - " 53%|█████▎ | 2672076/4997436 [00:28<00:23, 99106.59it/s]" + " 98%|█████████▊| 4913440/4997436 [00:28<00:00, 176750.98it/s]" ] }, { @@ -2794,7 +2794,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▎ | 2681988/4997436 [00:28<00:23, 98037.86it/s]" + " 99%|█████████▊| 4931210/4997436 [00:28<00:00, 177032.76it/s]" ] }, { @@ -2802,7 +2802,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2691874/4997436 [00:28<00:23, 98278.14it/s]" + " 99%|█████████▉| 4948914/4997436 [00:28<00:00, 176888.67it/s]" ] }, { @@ -2810,7 +2810,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2701705/4997436 [00:28<00:23, 98187.00it/s]" + " 99%|█████████▉| 4966741/4997436 [00:28<00:00, 177300.08it/s]" ] }, { @@ -2818,7 +2818,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2711752/4997436 [00:28<00:23, 98865.50it/s]" + "100%|█████████▉| 4984472/4997436 [00:28<00:00, 177142.17it/s]" ] }, { @@ -2826,1863 +2826,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 2721899/4997436 [00:28<00:22, 99640.43it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 55%|█████▍ | 2731905/4997436 [00:29<00:22, 99763.53it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 55%|█████▍ | 2741977/4997436 [00:29<00:22, 100045.37it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 55%|█████▌ | 2752124/4997436 [00:29<00:22, 100467.38it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 55%|█████▌ | 2762172/4997436 [00:29<00:22, 99687.71it/s] " - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 55%|█████▌ | 2772157/4997436 [00:29<00:22, 99732.02it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 56%|█████▌ | 2782132/4997436 [00:29<00:22, 97775.84it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 56%|█████▌ | 2791919/4997436 [00:29<00:22, 96981.10it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 56%|█████▌ | 2801832/4997436 [00:29<00:22, 97611.98it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 56%|█████▋ | 2811637/4997436 [00:29<00:22, 97736.46it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 56%|█████▋ | 2821434/4997436 [00:30<00:22, 97803.78it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 57%|█████▋ | 2831300/4997436 [00:30<00:22, 98054.62it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 57%|█████▋ | 2841320/4997436 [00:30<00:21, 98692.92it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 57%|█████▋ | 2851192/4997436 [00:30<00:21, 98579.72it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 57%|█████▋ | 2861052/4997436 [00:30<00:21, 97812.85it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 57%|█████▋ | 2870836/4997436 [00:30<00:22, 95820.65it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 58%|█████▊ | 2880531/4997436 [00:30<00:22, 96149.23it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 58%|█████▊ | 2890153/4997436 [00:30<00:21, 95807.99it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 58%|█████▊ | 2899739/4997436 [00:30<00:22, 95214.80it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 58%|█████▊ | 2909394/4997436 [00:30<00:21, 95606.89it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 58%|█████▊ | 2919303/4997436 [00:31<00:21, 96639.44it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 59%|█████▊ | 2929223/4997436 [00:31<00:21, 97398.40it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 59%|█████▉ | 2938966/4997436 [00:31<00:21, 97276.49it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 59%|█████▉ | 2948696/4997436 [00:31<00:21, 96338.31it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 59%|█████▉ | 2958560/4997436 [00:31<00:21, 97010.17it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 59%|█████▉ | 2968264/4997436 [00:31<00:22, 92231.41it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 60%|█████▉ | 2977913/4997436 [00:31<00:21, 93455.77it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 60%|█████▉ | 2987439/4997436 [00:31<00:21, 93962.46it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 60%|█████▉ | 2997473/4997436 [00:31<00:20, 95833.26it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 60%|██████ | 3007258/4997436 [00:31<00:20, 96426.20it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 60%|██████ | 3016919/4997436 [00:32<00:20, 95697.86it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 61%|██████ | 3026536/4997436 [00:32<00:20, 95833.60it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 61%|██████ | 3036180/4997436 [00:32<00:20, 96010.04it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 61%|██████ | 3045788/4997436 [00:32<00:20, 95727.54it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 61%|██████ | 3055366/4997436 [00:32<00:20, 94282.17it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 61%|██████▏ | 3064909/4997436 [00:32<00:20, 94567.25it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 62%|██████▏ | 3074443/4997436 [00:32<00:20, 94792.22it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 62%|██████▏ | 3084278/4997436 [00:32<00:19, 95848.77it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 62%|██████▏ | 3093867/4997436 [00:32<00:19, 95503.45it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 62%|██████▏ | 3103421/4997436 [00:32<00:19, 95039.86it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 62%|██████▏ | 3113161/4997436 [00:33<00:19, 95738.91it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 62%|██████▏ | 3122965/4997436 [00:33<00:19, 96422.20it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 63%|██████▎ | 3132872/4997436 [00:33<00:19, 97208.48it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 63%|██████▎ | 3142884/4997436 [00:33<00:18, 98074.73it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 63%|██████▎ | 3152869/4997436 [00:33<00:18, 98602.82it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 63%|██████▎ | 3162731/4997436 [00:33<00:19, 95864.31it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 63%|██████▎ | 3172335/4997436 [00:33<00:19, 93859.36it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 64%|██████▎ | 3181900/4997436 [00:33<00:19, 94376.07it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 64%|██████▍ | 3191682/4997436 [00:33<00:18, 95383.50it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 64%|██████▍ | 3201561/4997436 [00:33<00:18, 96386.20it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 64%|██████▍ | 3211210/4997436 [00:34<00:18, 95027.53it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 64%|██████▍ | 3220999/4997436 [00:34<00:18, 95868.61it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 65%|██████▍ | 3230595/4997436 [00:34<00:18, 95783.18it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 65%|██████▍ | 3240263/4997436 [00:34<00:18, 96045.98it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 65%|██████▌ | 3250142/4997436 [00:34<00:18, 96855.41it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 65%|██████▌ | 3259832/4997436 [00:34<00:18, 95873.53it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 65%|██████▌ | 3269424/4997436 [00:34<00:18, 95481.35it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 66%|██████▌ | 3278976/4997436 [00:34<00:18, 95319.45it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 66%|██████▌ | 3288655/4997436 [00:34<00:17, 95754.10it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 66%|██████▌ | 3298342/4997436 [00:34<00:17, 96082.92it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 66%|██████▌ | 3307952/4997436 [00:35<00:17, 95901.86it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 66%|██████▋ | 3317544/4997436 [00:35<00:17, 94769.80it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 67%|██████▋ | 3327355/4997436 [00:35<00:17, 95757.60it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 67%|██████▋ | 3337007/4997436 [00:35<00:17, 95980.50it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 67%|██████▋ | 3346811/4997436 [00:35<00:17, 96592.22it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 67%|██████▋ | 3356473/4997436 [00:35<00:17, 93217.64it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 67%|██████▋ | 3365959/4997436 [00:35<00:17, 93692.45it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 68%|██████▊ | 3375470/4997436 [00:35<00:17, 94104.98it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 68%|██████▊ | 3384895/4997436 [00:35<00:17, 93858.31it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 68%|██████▊ | 3394294/4997436 [00:35<00:17, 93875.68it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 68%|██████▊ | 3403798/4997436 [00:36<00:16, 94218.78it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 68%|██████▊ | 3413709/4997436 [00:36<00:16, 95673.70it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 69%|██████▊ | 3423327/4997436 [00:36<00:16, 95815.08it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 69%|██████▊ | 3432974/4997436 [00:36<00:16, 96006.88it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 69%|██████▉ | 3442577/4997436 [00:36<00:16, 95965.89it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 69%|██████▉ | 3452176/4997436 [00:36<00:16, 94451.73it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 69%|██████▉ | 3462094/4997436 [00:36<00:16, 95848.26it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 69%|██████▉ | 3471883/4997436 [00:36<00:15, 96451.47it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 70%|██████▉ | 3481533/4997436 [00:36<00:15, 95618.80it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 70%|██████▉ | 3491488/4997436 [00:37<00:15, 96778.02it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 70%|███████ | 3501501/4997436 [00:37<00:15, 97772.92it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 70%|███████ | 3511285/4997436 [00:37<00:15, 97788.79it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 70%|███████ | 3521458/4997436 [00:37<00:14, 98963.50it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 71%|███████ | 3531357/4997436 [00:37<00:14, 98716.10it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 71%|███████ | 3541231/4997436 [00:37<00:14, 97759.13it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 71%|███████ | 3551175/4997436 [00:37<00:14, 98254.23it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 71%|███████▏ | 3561003/4997436 [00:37<00:14, 98168.33it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 71%|███████▏ | 3571101/4997436 [00:37<00:14, 99002.59it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 72%|███████▏ | 3581003/4997436 [00:37<00:14, 97932.18it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 72%|███████▏ | 3591165/4997436 [00:38<00:14, 99023.64it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 72%|███████▏ | 3601137/4997436 [00:38<00:14, 99227.75it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 72%|███████▏ | 3611063/4997436 [00:38<00:14, 98878.90it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 72%|███████▏ | 3620953/4997436 [00:38<00:14, 96122.71it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 73%|███████▎ | 3630583/4997436 [00:38<00:14, 95217.62it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 73%|███████▎ | 3640309/4997436 [00:38<00:14, 95806.95it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 73%|███████▎ | 3650383/4997436 [00:38<00:13, 97258.07it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 73%|███████▎ | 3660197/4997436 [00:38<00:13, 97514.15it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 73%|███████▎ | 3670130/4997436 [00:38<00:13, 98049.43it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 74%|███████▎ | 3679996/4997436 [00:38<00:13, 98227.15it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 74%|███████▍ | 3690275/4997436 [00:39<00:13, 99586.05it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 74%|███████▍ | 3700396/4997436 [00:39<00:12, 100066.97it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 74%|███████▍ | 3710837/4997436 [00:39<00:12, 101363.54it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 74%|███████▍ | 3721091/4997436 [00:39<00:12, 101711.26it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 75%|███████▍ | 3731588/4997436 [00:39<00:12, 102685.06it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 75%|███████▍ | 3742038/4997436 [00:39<00:12, 103225.17it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 75%|███████▌ | 3752367/4997436 [00:39<00:12, 103239.17it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 75%|███████▌ | 3762692/4997436 [00:39<00:12, 101970.51it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 75%|███████▌ | 3772904/4997436 [00:39<00:12, 102011.30it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 76%|███████▌ | 3783108/4997436 [00:39<00:12, 100230.32it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 76%|███████▌ | 3793139/4997436 [00:40<00:12, 99071.74it/s] " - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 76%|███████▌ | 3803393/4997436 [00:40<00:11, 100088.06it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 76%|███████▋ | 3813409/4997436 [00:40<00:11, 99290.95it/s] " - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 77%|███████▋ | 3823344/4997436 [00:40<00:11, 98804.27it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 77%|███████▋ | 3833228/4997436 [00:40<00:11, 97570.66it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 77%|███████▋ | 3842990/4997436 [00:40<00:12, 94726.44it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 77%|███████▋ | 3852480/4997436 [00:40<00:12, 94575.68it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 77%|███████▋ | 3862029/4997436 [00:40<00:11, 94838.13it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 77%|███████▋ | 3871522/4997436 [00:40<00:11, 94166.43it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 78%|███████▊ | 3880945/4997436 [00:40<00:11, 93805.53it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 78%|███████▊ | 3890489/4997436 [00:41<00:11, 94285.33it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 78%|███████▊ | 3900097/4997436 [00:41<00:11, 94803.59it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 78%|███████▊ | 3909691/4997436 [00:41<00:11, 95139.02it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 78%|███████▊ | 3919747/4997436 [00:41<00:11, 96751.85it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 79%|███████▊ | 3929425/4997436 [00:41<00:11, 96539.01it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 79%|███████▉ | 3939081/4997436 [00:41<00:11, 96139.15it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 79%|███████▉ | 3948720/4997436 [00:41<00:10, 96208.65it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 79%|███████▉ | 3958765/4997436 [00:41<00:10, 97473.16it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 79%|███████▉ | 3968834/4997436 [00:41<00:10, 98431.37it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 80%|███████▉ | 3978899/4997436 [00:41<00:10, 99093.18it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 80%|███████▉ | 3988810/4997436 [00:42<00:10, 98915.84it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 80%|████████ | 3998703/4997436 [00:42<00:10, 98413.56it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 80%|████████ | 4008592/4997436 [00:42<00:10, 98521.22it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 80%|████████ | 4018625/4997436 [00:42<00:09, 99057.10it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 81%|████████ | 4028532/4997436 [00:42<00:09, 98828.79it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 81%|████████ | 4038416/4997436 [00:42<00:09, 97939.35it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 81%|████████ | 4048212/4997436 [00:42<00:09, 97562.89it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 81%|████████ | 4057970/4997436 [00:42<00:09, 97281.07it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 81%|████████▏ | 4067700/4997436 [00:42<00:09, 97270.31it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 82%|████████▏ | 4077428/4997436 [00:42<00:09, 96897.82it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 82%|████████▏ | 4087119/4997436 [00:43<00:09, 95302.34it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 82%|████████▏ | 4096658/4997436 [00:43<00:09, 95324.88it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 82%|████████▏ | 4106206/4997436 [00:43<00:09, 95368.21it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 82%|████████▏ | 4115909/4997436 [00:43<00:09, 95859.59it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 83%|████████▎ | 4125836/4997436 [00:43<00:08, 96872.74it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 83%|████████▎ | 4135526/4997436 [00:43<00:09, 95337.95it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 83%|████████▎ | 4145067/4997436 [00:43<00:09, 94365.65it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 83%|████████▎ | 4154510/4997436 [00:43<00:08, 94201.41it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 83%|████████▎ | 4164123/4997436 [00:43<00:08, 94769.51it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 84%|████████▎ | 4173653/4997436 [00:43<00:08, 94924.36it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 84%|████████▎ | 4183635/4997436 [00:44<00:08, 96375.99it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 84%|████████▍ | 4193276/4997436 [00:44<00:08, 96245.58it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 84%|████████▍ | 4202966/4997436 [00:44<00:08, 96438.20it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 84%|████████▍ | 4212612/4997436 [00:44<00:08, 96050.51it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 84%|████████▍ | 4222629/4997436 [00:44<00:07, 97265.12it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 85%|████████▍ | 4232357/4997436 [00:44<00:07, 96298.29it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 85%|████████▍ | 4242320/4997436 [00:44<00:07, 97285.27it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 85%|████████▌ | 4252052/4997436 [00:44<00:07, 97112.33it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 85%|████████▌ | 4261987/4997436 [00:44<00:07, 97776.35it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 85%|████████▌ | 4271767/4997436 [00:45<00:07, 96067.38it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 86%|████████▌ | 4281834/4997436 [00:45<00:07, 97424.59it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 86%|████████▌ | 4291584/4997436 [00:45<00:07, 96104.10it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 86%|████████▌ | 4301254/4997436 [00:45<00:07, 96275.76it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 86%|████████▋ | 4310973/4997436 [00:45<00:07, 96541.34it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 86%|████████▋ | 4320632/4997436 [00:45<00:07, 96443.61it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 87%|████████▋ | 4330333/4997436 [00:45<00:06, 96609.79it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 87%|████████▋ | 4339997/4997436 [00:45<00:06, 96594.70it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 87%|████████▋ | 4349850/4997436 [00:45<00:06, 97169.52it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 87%|████████▋ | 4359586/4997436 [00:45<00:06, 97222.67it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 87%|████████▋ | 4369310/4997436 [00:46<00:06, 97029.13it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 88%|████████▊ | 4379014/4997436 [00:46<00:06, 96857.54it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 88%|████████▊ | 4389013/4997436 [00:46<00:06, 97784.38it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 88%|████████▊ | 4398793/4997436 [00:46<00:06, 97553.43it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 88%|████████▊ | 4408779/4997436 [00:46<00:05, 98237.63it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 88%|████████▊ | 4418719/4997436 [00:46<00:05, 98581.33it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 89%|████████▊ | 4428650/4997436 [00:46<00:05, 98796.78it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 89%|████████▉ | 4438531/4997436 [00:46<00:05, 97196.47it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 89%|████████▉ | 4448591/4997436 [00:46<00:05, 98200.06it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 89%|████████▉ | 4458417/4997436 [00:46<00:05, 97098.07it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 89%|████████▉ | 4468445/4997436 [00:47<00:05, 98035.61it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 90%|████████▉ | 4478627/4997436 [00:47<00:05, 99156.56it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 90%|████████▉ | 4488790/4997436 [00:47<00:05, 99887.77it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 90%|█████████ | 4498783/4997436 [00:47<00:05, 99722.75it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 90%|█████████ | 4508758/4997436 [00:47<00:04, 98780.73it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 90%|█████████ | 4518640/4997436 [00:47<00:04, 98331.67it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████ | 4528647/4997436 [00:47<00:04, 98844.91it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████ | 4538865/4997436 [00:47<00:04, 99828.46it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████ | 4548851/4997436 [00:47<00:04, 99138.44it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████ | 4559279/4997436 [00:47<00:04, 100663.33it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████▏| 4569630/4997436 [00:48<00:04, 101509.35it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 4579890/4997436 [00:48<00:04, 101831.93it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 4590076/4997436 [00:48<00:04, 100861.36it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 4600166/4997436 [00:48<00:04, 99295.69it/s] " - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 4610103/4997436 [00:48<00:03, 98466.29it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 4620148/4997436 [00:48<00:03, 99045.33it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 93%|█████████▎| 4630159/4997436 [00:48<00:03, 99356.34it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 93%|█████████▎| 4640188/4997436 [00:48<00:03, 99628.44it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 93%|█████████▎| 4650154/4997436 [00:48<00:03, 98431.81it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 93%|█████████▎| 4660002/4997436 [00:48<00:03, 97722.44it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 93%|█████████▎| 4669778/4997436 [00:49<00:03, 95994.96it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 94%|█████████▎| 4679489/4997436 [00:49<00:03, 96318.02it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 94%|█████████▍| 4689589/4997436 [00:49<00:03, 97697.36it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 94%|█████████▍| 4699479/4997436 [00:49<00:03, 98049.37it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 94%|█████████▍| 4709289/4997436 [00:49<00:02, 97428.95it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 94%|█████████▍| 4719036/4997436 [00:49<00:02, 97029.64it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▍| 4729046/4997436 [00:49<00:02, 97935.73it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▍| 4739051/4997436 [00:49<00:02, 98558.07it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▌| 4749142/4997436 [00:49<00:02, 99255.19it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▌| 4759070/4997436 [00:49<00:02, 98633.54it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▌| 4768936/4997436 [00:50<00:02, 98529.40it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 96%|█████████▌| 4779200/4997436 [00:50<00:02, 99752.95it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 96%|█████████▌| 4789281/4997436 [00:50<00:02, 100057.57it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 96%|█████████▌| 4799289/4997436 [00:50<00:01, 100036.98it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 96%|█████████▌| 4809325/4997436 [00:50<00:01, 100126.34it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 96%|█████████▋| 4819339/4997436 [00:50<00:01, 98946.14it/s] " - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 4829238/4997436 [00:50<00:01, 98387.66it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 4839080/4997436 [00:50<00:01, 98339.25it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 4848919/4997436 [00:50<00:01, 98349.84it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 4858756/4997436 [00:50<00:01, 97583.02it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 4868517/4997436 [00:51<00:01, 96032.90it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 4878580/4997436 [00:51<00:01, 97380.55it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 4888325/4997436 [00:51<00:01, 97263.08it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 4898056/4997436 [00:51<00:01, 92999.80it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 4908186/4997436 [00:51<00:00, 95388.08it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 4917762/4997436 [00:51<00:00, 92480.12it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 99%|█████████▊| 4927555/4997436 [00:51<00:00, 94039.44it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 99%|█████████▉| 4937576/4997436 [00:51<00:00, 95832.70it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 99%|█████████▉| 4947305/4997436 [00:51<00:00, 96257.39it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 99%|█████████▉| 4957079/4997436 [00:52<00:00, 96692.45it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 99%|█████████▉| 4967041/4997436 [00:52<00:00, 97552.34it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|█████████▉| 4976833/4997436 [00:52<00:00, 97656.53it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|█████████▉| 4987059/4997436 [00:52<00:00, 99026.84it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|█████████▉| 4996969/4997436 [00:52<00:00, 99008.16it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 4997436/4997436 [00:52<00:00, 95358.38it/s]" + "100%|██████████| 4997436/4997436 [00:28<00:00, 173979.47it/s]" ] }, { @@ -4921,10 +3065,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:07.004177Z", - "iopub.status.busy": "2023-11-02T15:24:07.003584Z", - "iopub.status.idle": "2023-11-02T15:24:21.929718Z", - "shell.execute_reply": "2023-11-02T15:24:21.923257Z" + "iopub.execute_input": "2023-11-04T09:25:55.825872Z", + "iopub.status.busy": "2023-11-04T09:25:55.825456Z", + "iopub.status.idle": "2023-11-04T09:26:02.410315Z", + "shell.execute_reply": "2023-11-04T09:26:02.409656Z" } }, "outputs": [], @@ -4938,10 +3082,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:22.060539Z", - "iopub.status.busy": "2023-11-02T15:24:22.059597Z", - "iopub.status.idle": "2023-11-02T15:24:30.741531Z", - "shell.execute_reply": "2023-11-02T15:24:30.740502Z" + "iopub.execute_input": "2023-11-04T09:26:02.413180Z", + "iopub.status.busy": "2023-11-04T09:26:02.412906Z", + "iopub.status.idle": "2023-11-04T09:26:05.542557Z", + "shell.execute_reply": "2023-11-04T09:26:05.541883Z" } }, "outputs": [ @@ -5010,17 +3154,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:30.746803Z", - "iopub.status.busy": "2023-11-02T15:24:30.746453Z", - "iopub.status.idle": "2023-11-02T15:24:34.191649Z", - "shell.execute_reply": "2023-11-02T15:24:34.190542Z" + "iopub.execute_input": "2023-11-04T09:26:05.545221Z", + "iopub.status.busy": "2023-11-04T09:26:05.545016Z", + "iopub.status.idle": "2023-11-04T09:26:06.858877Z", + "shell.execute_reply": "2023-11-04T09:26:06.858253Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6795c80077d140ce9f4dd03920b4a9c6", + "model_id": "e95126e9ebc046f8b7f0709a9b140c47", "version_major": 2, "version_minor": 0 }, @@ -5050,10 +3194,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:34.196699Z", - "iopub.status.busy": "2023-11-02T15:24:34.196353Z", - "iopub.status.idle": "2023-11-02T15:24:34.537309Z", - "shell.execute_reply": "2023-11-02T15:24:34.536129Z" + "iopub.execute_input": "2023-11-04T09:26:06.861566Z", + "iopub.status.busy": "2023-11-04T09:26:06.861363Z", + "iopub.status.idle": "2023-11-04T09:26:07.077063Z", + "shell.execute_reply": "2023-11-04T09:26:07.076442Z" } }, "outputs": [], @@ -5067,10 +3211,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:34.541876Z", - "iopub.status.busy": "2023-11-02T15:24:34.541548Z", - "iopub.status.idle": "2023-11-02T15:24:43.821516Z", - "shell.execute_reply": "2023-11-02T15:24:43.820377Z" + "iopub.execute_input": "2023-11-04T09:26:07.079766Z", + "iopub.status.busy": "2023-11-04T09:26:07.079564Z", + "iopub.status.idle": "2023-11-04T09:26:11.625674Z", + "shell.execute_reply": "2023-11-04T09:26:11.624980Z" } }, "outputs": [ @@ -5143,10 +3287,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:43.826121Z", - "iopub.status.busy": "2023-11-02T15:24:43.825388Z", - "iopub.status.idle": "2023-11-02T15:24:43.995273Z", - "shell.execute_reply": "2023-11-02T15:24:43.994128Z" + "iopub.execute_input": "2023-11-04T09:26:11.628520Z", + "iopub.status.busy": "2023-11-04T09:26:11.628314Z", + "iopub.status.idle": "2023-11-04T09:26:11.694822Z", + "shell.execute_reply": "2023-11-04T09:26:11.694107Z" }, "nbsphinx": "hidden" }, @@ -5190,31 +3334,22 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "13eb9c0cbc954f3fbddb12c5caa71076": { + "009a47328894418e843ca3ec8420bd91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_24dd143ed2ba448d94f10899d484892b", - "max": 244800.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_de3fe1a51b674d8789f5a88414c2db1b", - "value": 244800.0 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "1a4a4c89993b498ca899f4c673a31967": { + "00fef66b61d1416398c1efcb77f46b58": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5266,7 +3401,49 @@ "width": null } }, - "24dd143ed2ba448d94f10899d484892b": { + "0f1041d0f96948fc87d88009fed951ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_806297cbc2204d75ac65af5422e24653", + "placeholder": "​", + "style": "IPY_MODEL_728dc1729c1a49dab3c1ce6565e7f32a", + "value": "images processed using softmin: 100%" + } + }, + "10c1504edf5943c4ab82d5f24f33d9bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_78d56f243f7f4005a4265beabbf61e84", + "placeholder": "​", + "style": "IPY_MODEL_a734c7bb722c48748fad4371fcb5dd90", + "value": "number of examples processed for checking labels: " + } + }, + "1911366edfff4e0f89132a7add4fbcbd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5318,22 +3495,23 @@ "width": null } }, - "2b545da6bd574f0d9c6d17e002f15459": { + "19b7b667441e4917b38553de2257c5d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "3fe893e9cb074fb6979e66b5b31eebe0": { + "200a2c77194d4a418841660c052d814a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", @@ -5349,31 +3527,51 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bee87ab3a18f4628b4bfac3bac906cb9", - "max": 30.0, + "layout": "IPY_MODEL_5d18223055d34c699eb705bdab96b440", + "max": 244800.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_754331747aa246a2bf0979ae42f39841", - "value": 30.0 + "style": "IPY_MODEL_6e0f918bffff4fbca25c674122c58853", + "value": 244800.0 } }, - "48adca308515462783aab0def8f0a0f2": { + "3761ecf2e84e47daabbb57ef6d218054": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bbbb45e5407c4bf18ac3f1ccbee9d748", + "placeholder": "​", + "style": "IPY_MODEL_009a47328894418e843ca3ec8420bd91", + "value": "number of examples processed for estimating thresholds: " + } + }, + "3c5edd0b9d4e4499bda5f98f9ba46904": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "490a3ec3e934490597a189fec0c08f71": { + "455f6efc5872419fa7d6c42efed407b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -5388,66 +3586,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e5d9341859e940e5b45bb442c984b722", - "IPY_MODEL_13eb9c0cbc954f3fbddb12c5caa71076", - "IPY_MODEL_d0f29056e04243b4acd9c61d7c224d9c" + "IPY_MODEL_3761ecf2e84e47daabbb57ef6d218054", + "IPY_MODEL_57fcac44a3cd416997cd2477e0bf387e", + "IPY_MODEL_86b8f04425884ca5a2482855c8d2738e" ], - "layout": "IPY_MODEL_803fa576923546d4b5d7780b388aa8e7" - } - }, - "4aef34e310df4cd4b2b99cbb2311899b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "layout": "IPY_MODEL_fd5b6b5537e942bc98e2e986632ed3ab" } }, - "4c8bc77d820d4282854741bee154e1c0": { + "52878af6cac1444cb5261f83bc47ffab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", @@ -5462,13 +3608,37 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f9c4d44648924f979ce88b91227af28e", + "layout": "IPY_MODEL_684d9aa8b6944accaf63060960666374", "placeholder": "​", - "style": "IPY_MODEL_98c06d8a46434500867fe0294d789636", - "value": " 300000/? [00:00<00:00, 3267270.46it/s]" + "style": "IPY_MODEL_fc0c5ee77f8a4184ba5ed21457a32bed", + "value": " 30/30 [00:01<00:00, 23.35it/s]" + } + }, + "57fcac44a3cd416997cd2477e0bf387e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_77edd80b429e45d39849720a4eeb1f7b", + "max": 244800.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6f83735803844606be9739f114a365b7", + "value": 244800.0 } }, - "576bf9da24944c91b1c8bc615fa1d2d1": { + "5d18223055d34c699eb705bdab96b440": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5520,7 +3690,7 @@ "width": null } }, - "5c6d69ca414f47599f7cba68ee7ba817": { + "5e03a630e1a241549cb6c3e77e57cd33": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5572,7 +3742,7 @@ "width": null } }, - "6795c80077d140ce9f4dd03920b4a9c6": { + "644d8d222bb7434d9224bb6b3207e61b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", @@ -5585,37 +3755,16 @@ "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_690812e5d4144c8f8ab304af50d68ad6", - "IPY_MODEL_3fe893e9cb074fb6979e66b5b31eebe0", - "IPY_MODEL_812fdea5e8ec479894189d90365b4189" - ], - "layout": "IPY_MODEL_576bf9da24944c91b1c8bc615fa1d2d1" - } - }, - "690812e5d4144c8f8ab304af50d68ad6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9625c66a291c4e5dbf9e0501ddc65fe8", - "placeholder": "​", - "style": "IPY_MODEL_b5faea0ba92848b6a77424999ab22c2f", - "value": "images processed using softmin: 100%" + "box_style": "", + "children": [ + "IPY_MODEL_10c1504edf5943c4ab82d5f24f33d9bc", + "IPY_MODEL_200a2c77194d4a418841660c052d814a", + "IPY_MODEL_8e1a25dfd1ca4d3c8139c4de181d0784" + ], + "layout": "IPY_MODEL_aca5add058e74841a64a2e46854a41ce" } }, - "6c451d82295e499588505bb478f5bd16": { + "684d9aa8b6944accaf63060960666374": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5667,28 +3816,23 @@ "width": null } }, - "6e24c07364bd4b17948143439fc58f57": { + "6e0f918bffff4fbca25c674122c58853": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_6c451d82295e499588505bb478f5bd16", - "placeholder": "​", - "style": "IPY_MODEL_e5219f954e8d43768dd7d762412bfb20", - "value": "number of examples processed for estimating thresholds: " + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "754331747aa246a2bf0979ae42f39841": { + "6f83735803844606be9739f114a365b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", @@ -5704,7 +3848,46 @@ "description_width": "" } }, - "803fa576923546d4b5d7780b388aa8e7": { + "728dc1729c1a49dab3c1ce6565e7f32a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "75e7065dccab48ffa50528355bb9be1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b3c279f317e2476aab7c57f2e8a3a31a", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_19b7b667441e4917b38553de2257c5d2", + "value": 30.0 + } + }, + "77edd80b429e45d39849720a4eeb1f7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5756,28 +3939,7 @@ "width": null } }, - "812fdea5e8ec479894189d90365b4189": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5c6d69ca414f47599f7cba68ee7ba817", - "placeholder": "​", - "style": "IPY_MODEL_ea51e4fd77b340ceb4fd52644594fb8f", - "value": " 30/30 [00:03<00:00, 9.92it/s]" - } - }, - "8ff4a9ebe2bd49db9045bbf364378cd2": { + "78d56f243f7f4005a4265beabbf61e84": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5829,7 +3991,7 @@ "width": null } }, - "9625c66a291c4e5dbf9e0501ddc65fe8": { + "806297cbc2204d75ac65af5422e24653": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5881,7 +4043,49 @@ "width": null } }, - "98c06d8a46434500867fe0294d789636": { + "86b8f04425884ca5a2482855c8d2738e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5e03a630e1a241549cb6c3e77e57cd33", + "placeholder": "​", + "style": "IPY_MODEL_3c5edd0b9d4e4499bda5f98f9ba46904", + "value": " 300000/? [00:00<00:00, 5527815.88it/s]" + } + }, + "8e1a25dfd1ca4d3c8139c4de181d0784": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_00fef66b61d1416398c1efcb77f46b58", + "placeholder": "​", + "style": "IPY_MODEL_b0dd94fd69b5408883fe83ebdbd4fe72", + "value": " 300000/? [00:02<00:00, 106197.75it/s]" + } + }, + "a734c7bb722c48748fad4371fcb5dd90": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -5896,7 +4100,7 @@ "description_width": "" } }, - "a9e3d0bbd92240e0a56f5496440fcaf5": { + "aca5add058e74841a64a2e46854a41ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -5948,7 +4152,7 @@ "width": null } }, - "b5faea0ba92848b6a77424999ab22c2f": { + "b0dd94fd69b5408883fe83ebdbd4fe72": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -5963,7 +4167,7 @@ "description_width": "" } }, - "bee87ab3a18f4628b4bfac3bac906cb9": { + "b3c279f317e2476aab7c57f2e8a3a31a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6015,95 +4219,81 @@ "width": null } }, - "c5e60034cbbe45289b901ea62cc68152": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "d0f29056e04243b4acd9c61d7c224d9c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8ff4a9ebe2bd49db9045bbf364378cd2", - "placeholder": "​", - "style": "IPY_MODEL_c5e60034cbbe45289b901ea62cc68152", - "value": " 300000/? [00:02<00:00, 104686.04it/s]" - } - }, - "de3fe1a51b674d8789f5a88414c2db1b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e5219f954e8d43768dd7d762412bfb20": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", + "bbbb45e5407c4bf18ac3f1ccbee9d748": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e5d9341859e940e5b45bb442c984b722": { + "e95126e9ebc046f8b7f0709a9b140c47": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4aef34e310df4cd4b2b99cbb2311899b", - "placeholder": "​", - "style": "IPY_MODEL_2b545da6bd574f0d9c6d17e002f15459", - "value": "number of examples processed for checking labels: " + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0f1041d0f96948fc87d88009fed951ba", + "IPY_MODEL_75e7065dccab48ffa50528355bb9be1c", + "IPY_MODEL_52878af6cac1444cb5261f83bc47ffab" + ], + "layout": "IPY_MODEL_1911366edfff4e0f89132a7add4fbcbd" } }, - "ea51e4fd77b340ceb4fd52644594fb8f": { + "fc0c5ee77f8a4184ba5ed21457a32bed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", @@ -6118,7 +4308,7 @@ "description_width": "" } }, - "f9c4d44648924f979ce88b91227af28e": { + "fd5b6b5537e942bc98e2e986632ed3ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", @@ -6169,52 +4359,6 @@ "visibility": null, "width": null } - }, - "fbade7b119ea4248afefe80635667e1f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1a4a4c89993b498ca899f4c673a31967", - "max": 244800.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_48adca308515462783aab0def8f0a0f2", - "value": 244800.0 - } - }, - "fbc0d7f26d9247179cfb96e1e7b0ba8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6e24c07364bd4b17948143439fc58f57", - "IPY_MODEL_fbade7b119ea4248afefe80635667e1f", - "IPY_MODEL_4c8bc77d820d4282854741bee154e1c0" - ], - "layout": "IPY_MODEL_a9e3d0bbd92240e0a56f5496440fcaf5" - } } }, "version_major": 2, diff --git a/master/tutorials/tabular.ipynb b/master/tutorials/tabular.ipynb index 8d0fd6c82..217257915 100644 --- a/master/tutorials/tabular.ipynb +++ b/master/tutorials/tabular.ipynb @@ -112,10 +112,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:52.403751Z", - "iopub.status.busy": "2023-11-02T15:24:52.403144Z", - "iopub.status.idle": "2023-11-02T15:24:55.321093Z", - "shell.execute_reply": "2023-11-02T15:24:55.319992Z" + "iopub.execute_input": "2023-11-04T09:26:14.227663Z", + "iopub.status.busy": "2023-11-04T09:26:14.227182Z", + "iopub.status.idle": "2023-11-04T09:26:15.212316Z", + "shell.execute_reply": "2023-11-04T09:26:15.211713Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -150,10 +150,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:55.325899Z", - "iopub.status.busy": "2023-11-02T15:24:55.325031Z", - "iopub.status.idle": "2023-11-02T15:24:55.407331Z", - "shell.execute_reply": "2023-11-02T15:24:55.406275Z" + "iopub.execute_input": "2023-11-04T09:26:15.215403Z", + "iopub.status.busy": "2023-11-04T09:26:15.214916Z", + "iopub.status.idle": "2023-11-04T09:26:15.235839Z", + "shell.execute_reply": "2023-11-04T09:26:15.235339Z" } }, "outputs": [], @@ -194,10 +194,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:55.412458Z", - "iopub.status.busy": "2023-11-02T15:24:55.411745Z", - "iopub.status.idle": "2023-11-02T15:24:55.541363Z", - "shell.execute_reply": "2023-11-02T15:24:55.540273Z" + "iopub.execute_input": "2023-11-04T09:26:15.238481Z", + "iopub.status.busy": "2023-11-04T09:26:15.238110Z", + "iopub.status.idle": "2023-11-04T09:26:15.329845Z", + "shell.execute_reply": "2023-11-04T09:26:15.329270Z" } }, "outputs": [ @@ -304,10 +304,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:55.549193Z", - "iopub.status.busy": "2023-11-02T15:24:55.548764Z", - "iopub.status.idle": "2023-11-02T15:24:55.560020Z", - "shell.execute_reply": "2023-11-02T15:24:55.558764Z" + "iopub.execute_input": "2023-11-04T09:26:15.332128Z", + "iopub.status.busy": "2023-11-04T09:26:15.331785Z", + "iopub.status.idle": "2023-11-04T09:26:15.335399Z", + "shell.execute_reply": "2023-11-04T09:26:15.334801Z" } }, "outputs": [], @@ -328,10 +328,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:55.565875Z", - "iopub.status.busy": "2023-11-02T15:24:55.565072Z", - "iopub.status.idle": "2023-11-02T15:24:55.582451Z", - "shell.execute_reply": "2023-11-02T15:24:55.580752Z" + "iopub.execute_input": "2023-11-04T09:26:15.337668Z", + "iopub.status.busy": "2023-11-04T09:26:15.337318Z", + "iopub.status.idle": "2023-11-04T09:26:15.346344Z", + "shell.execute_reply": "2023-11-04T09:26:15.345860Z" } }, "outputs": [], @@ -383,10 +383,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:55.587578Z", - "iopub.status.busy": "2023-11-02T15:24:55.586640Z", - "iopub.status.idle": "2023-11-02T15:24:55.592536Z", - "shell.execute_reply": "2023-11-02T15:24:55.591525Z" + "iopub.execute_input": "2023-11-04T09:26:15.348716Z", + "iopub.status.busy": "2023-11-04T09:26:15.348343Z", + "iopub.status.idle": "2023-11-04T09:26:15.351129Z", + "shell.execute_reply": "2023-11-04T09:26:15.350613Z" } }, "outputs": [], @@ -408,10 +408,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:55.596771Z", - "iopub.status.busy": "2023-11-02T15:24:55.596446Z", - "iopub.status.idle": "2023-11-02T15:24:56.635869Z", - "shell.execute_reply": "2023-11-02T15:24:56.634620Z" + "iopub.execute_input": "2023-11-04T09:26:15.353527Z", + "iopub.status.busy": "2023-11-04T09:26:15.353192Z", + "iopub.status.idle": "2023-11-04T09:26:15.928677Z", + "shell.execute_reply": "2023-11-04T09:26:15.928049Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:24:56.640308Z", - "iopub.status.busy": "2023-11-02T15:24:56.640005Z", - "iopub.status.idle": "2023-11-02T15:25:00.989643Z", - "shell.execute_reply": "2023-11-02T15:25:00.988407Z" + "iopub.execute_input": "2023-11-04T09:26:15.931657Z", + "iopub.status.busy": "2023-11-04T09:26:15.931448Z", + "iopub.status.idle": "2023-11-04T09:26:17.146550Z", + "shell.execute_reply": "2023-11-04T09:26:17.145742Z" } }, "outputs": [ @@ -480,10 +480,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:00.995271Z", - "iopub.status.busy": "2023-11-02T15:25:00.994213Z", - "iopub.status.idle": "2023-11-02T15:25:01.012991Z", - "shell.execute_reply": "2023-11-02T15:25:01.012008Z" + "iopub.execute_input": "2023-11-04T09:26:17.149825Z", + "iopub.status.busy": "2023-11-04T09:26:17.149014Z", + "iopub.status.idle": "2023-11-04T09:26:17.159757Z", + "shell.execute_reply": "2023-11-04T09:26:17.159231Z" } }, "outputs": [ @@ -604,10 +604,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:01.016886Z", - "iopub.status.busy": "2023-11-02T15:25:01.016605Z", - "iopub.status.idle": "2023-11-02T15:25:01.024264Z", - "shell.execute_reply": "2023-11-02T15:25:01.023260Z" + "iopub.execute_input": "2023-11-04T09:26:17.162383Z", + "iopub.status.busy": "2023-11-04T09:26:17.162088Z", + "iopub.status.idle": "2023-11-04T09:26:17.166180Z", + "shell.execute_reply": "2023-11-04T09:26:17.165582Z" } }, "outputs": [], @@ -632,10 +632,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:01.027970Z", - "iopub.status.busy": "2023-11-02T15:25:01.027698Z", - "iopub.status.idle": "2023-11-02T15:25:01.039586Z", - "shell.execute_reply": "2023-11-02T15:25:01.038573Z" + "iopub.execute_input": "2023-11-04T09:26:17.168600Z", + "iopub.status.busy": "2023-11-04T09:26:17.168248Z", + "iopub.status.idle": "2023-11-04T09:26:17.175925Z", + "shell.execute_reply": "2023-11-04T09:26:17.175410Z" } }, "outputs": [], @@ -657,10 +657,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:01.043156Z", - "iopub.status.busy": "2023-11-02T15:25:01.042883Z", - "iopub.status.idle": "2023-11-02T15:25:01.253028Z", - "shell.execute_reply": "2023-11-02T15:25:01.251907Z" + "iopub.execute_input": "2023-11-04T09:26:17.178277Z", + "iopub.status.busy": "2023-11-04T09:26:17.177983Z", + "iopub.status.idle": "2023-11-04T09:26:17.299026Z", + "shell.execute_reply": "2023-11-04T09:26:17.298369Z" } }, "outputs": [ @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:01.257524Z", - "iopub.status.busy": "2023-11-02T15:25:01.257141Z", - "iopub.status.idle": "2023-11-02T15:25:01.266509Z", - "shell.execute_reply": "2023-11-02T15:25:01.265585Z" + "iopub.execute_input": "2023-11-04T09:26:17.301590Z", + "iopub.status.busy": "2023-11-04T09:26:17.301213Z", + "iopub.status.idle": "2023-11-04T09:26:17.304808Z", + "shell.execute_reply": "2023-11-04T09:26:17.304310Z" } }, "outputs": [], @@ -714,10 +714,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:01.270788Z", - "iopub.status.busy": "2023-11-02T15:25:01.270475Z", - "iopub.status.idle": "2023-11-02T15:25:04.624319Z", - "shell.execute_reply": "2023-11-02T15:25:04.622820Z" + "iopub.execute_input": "2023-11-04T09:26:17.307165Z", + "iopub.status.busy": "2023-11-04T09:26:17.306803Z", + "iopub.status.idle": "2023-11-04T09:26:18.717919Z", + "shell.execute_reply": "2023-11-04T09:26:18.717176Z" } }, "outputs": [], @@ -737,10 +737,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:04.629721Z", - "iopub.status.busy": "2023-11-02T15:25:04.629314Z", - "iopub.status.idle": "2023-11-02T15:25:04.654741Z", - "shell.execute_reply": "2023-11-02T15:25:04.653807Z" + "iopub.execute_input": "2023-11-04T09:26:18.721272Z", + "iopub.status.busy": "2023-11-04T09:26:18.720753Z", + "iopub.status.idle": "2023-11-04T09:26:18.734689Z", + "shell.execute_reply": "2023-11-04T09:26:18.734045Z" } }, "outputs": [ @@ -770,10 +770,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:04.661075Z", - "iopub.status.busy": "2023-11-02T15:25:04.659079Z", - "iopub.status.idle": "2023-11-02T15:25:04.772591Z", - "shell.execute_reply": "2023-11-02T15:25:04.770770Z" + "iopub.execute_input": "2023-11-04T09:26:18.737248Z", + "iopub.status.busy": "2023-11-04T09:26:18.736805Z", + "iopub.status.idle": "2023-11-04T09:26:18.805845Z", + "shell.execute_reply": "2023-11-04T09:26:18.805210Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/text.html b/master/tutorials/text.html index bdd3ca7e9..9bf94ace6 100644 --- a/master/tutorials/text.html +++ b/master/tutorials/text.html @@ -964,7 +964,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'visa_or_mastercard', 'lost_or_stolen_phone', 'cancel_transfer', 'card_payment_fee_charged', 'getting_spare_card', 'card_about_to_expire', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'change_pin'}
+Classes: {'card_payment_fee_charged', 'lost_or_stolen_phone', 'getting_spare_card', 'visa_or_mastercard', 'change_pin', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'cancel_transfer', 'card_about_to_expire'}
 

Let’s print the first example in the train set.

@@ -1108,35 +1108,35 @@

3. Define a classification model and use cleanlab to find potential label er 0 False - 0.857900 + 0.858050 6 6 1 False - 0.545836 + 0.545854 3 3 2 False - 0.826185 + 0.826194 7 7 3 False - 0.965809 + 0.965814 8 8 4 False - 0.792077 + 0.791923 4 4 @@ -1312,7 +1312,7 @@

4. Train a more robust model from noisy labels
-Test accuracy of cleanlab's model: 0.9
+Test accuracy of cleanlab's model: 0.91
 

We can see that the test set accuracy slightly improved as a result of the data cleaning. Note that this will not always be the case, especially when we are evaluating on test data that are themselves noisy. The best practice is to run cleanlab to identify potential label issues and then manually review them, before blindly trusting any accuracy metrics. In particular, the most effort should be made to ensure high-quality test data, which is supposed to reflect the expected performance of our diff --git a/master/tutorials/text.ipynb b/master/tutorials/text.ipynb index b60eecfa6..54533810f 100644 --- a/master/tutorials/text.ipynb +++ b/master/tutorials/text.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:10.122653Z", - "iopub.status.busy": "2023-11-02T15:25:10.122329Z", - "iopub.status.idle": "2023-11-02T15:25:14.212505Z", - "shell.execute_reply": "2023-11-02T15:25:14.211471Z" + "iopub.execute_input": "2023-11-04T09:26:23.366362Z", + "iopub.status.busy": "2023-11-04T09:26:23.366167Z", + "iopub.status.idle": "2023-11-04T09:26:25.371985Z", + "shell.execute_reply": "2023-11-04T09:26:25.371363Z" }, "nbsphinx": "hidden" }, @@ -134,7 +134,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:14.217035Z", - "iopub.status.busy": "2023-11-02T15:25:14.216558Z", - "iopub.status.idle": "2023-11-02T15:25:14.223246Z", - "shell.execute_reply": "2023-11-02T15:25:14.222307Z" + "iopub.execute_input": "2023-11-04T09:26:25.374977Z", + "iopub.status.busy": "2023-11-04T09:26:25.374461Z", + "iopub.status.idle": "2023-11-04T09:26:25.378040Z", + "shell.execute_reply": "2023-11-04T09:26:25.377464Z" } }, "outputs": [], @@ -184,10 +184,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:14.226863Z", - "iopub.status.busy": "2023-11-02T15:25:14.226423Z", - "iopub.status.idle": "2023-11-02T15:25:14.231963Z", - "shell.execute_reply": "2023-11-02T15:25:14.230944Z" + "iopub.execute_input": "2023-11-04T09:26:25.380304Z", + "iopub.status.busy": "2023-11-04T09:26:25.379999Z", + "iopub.status.idle": "2023-11-04T09:26:25.383278Z", + "shell.execute_reply": "2023-11-04T09:26:25.382764Z" }, "nbsphinx": "hidden" }, @@ -218,10 +218,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:14.235928Z", - "iopub.status.busy": "2023-11-02T15:25:14.235211Z", - "iopub.status.idle": "2023-11-02T15:25:14.367541Z", - "shell.execute_reply": "2023-11-02T15:25:14.366488Z" + "iopub.execute_input": "2023-11-04T09:26:25.385578Z", + "iopub.status.busy": "2023-11-04T09:26:25.385225Z", + "iopub.status.idle": "2023-11-04T09:26:25.434736Z", + "shell.execute_reply": "2023-11-04T09:26:25.434198Z" } }, "outputs": [ @@ -311,10 +311,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:14.373440Z", - "iopub.status.busy": "2023-11-02T15:25:14.372430Z", - "iopub.status.idle": "2023-11-02T15:25:14.380670Z", - "shell.execute_reply": "2023-11-02T15:25:14.379719Z" + "iopub.execute_input": "2023-11-04T09:26:25.437036Z", + "iopub.status.busy": "2023-11-04T09:26:25.436740Z", + "iopub.status.idle": "2023-11-04T09:26:25.440303Z", + "shell.execute_reply": "2023-11-04T09:26:25.439763Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:14.384636Z", - "iopub.status.busy": "2023-11-02T15:25:14.384285Z", - "iopub.status.idle": "2023-11-02T15:25:14.390442Z", - "shell.execute_reply": "2023-11-02T15:25:14.389415Z" + "iopub.execute_input": "2023-11-04T09:26:25.442561Z", + "iopub.status.busy": "2023-11-04T09:26:25.442201Z", + "iopub.status.idle": "2023-11-04T09:26:25.445812Z", + "shell.execute_reply": "2023-11-04T09:26:25.445190Z" } }, "outputs": [ @@ -341,7 +341,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'visa_or_mastercard', 'lost_or_stolen_phone', 'cancel_transfer', 'card_payment_fee_charged', 'getting_spare_card', 'card_about_to_expire', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'change_pin'}\n" + "Classes: {'card_payment_fee_charged', 'lost_or_stolen_phone', 'getting_spare_card', 'visa_or_mastercard', 'change_pin', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'cancel_transfer', 'card_about_to_expire'}\n" ] } ], @@ -364,10 +364,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:14.395218Z", - "iopub.status.busy": "2023-11-02T15:25:14.394920Z", - "iopub.status.idle": "2023-11-02T15:25:14.401331Z", - "shell.execute_reply": "2023-11-02T15:25:14.400418Z" + "iopub.execute_input": "2023-11-04T09:26:25.448243Z", + "iopub.status.busy": "2023-11-04T09:26:25.447884Z", + "iopub.status.idle": "2023-11-04T09:26:25.451250Z", + "shell.execute_reply": "2023-11-04T09:26:25.450634Z" } }, "outputs": [ @@ -408,10 +408,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:14.405772Z", - "iopub.status.busy": "2023-11-02T15:25:14.405475Z", - "iopub.status.idle": "2023-11-02T15:25:14.410857Z", - "shell.execute_reply": "2023-11-02T15:25:14.409911Z" + "iopub.execute_input": "2023-11-04T09:26:25.453673Z", + "iopub.status.busy": "2023-11-04T09:26:25.453305Z", + "iopub.status.idle": "2023-11-04T09:26:25.456638Z", + "shell.execute_reply": "2023-11-04T09:26:25.456093Z" } }, "outputs": [], @@ -452,10 +452,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:14.415091Z", - "iopub.status.busy": "2023-11-02T15:25:14.414778Z", - "iopub.status.idle": "2023-11-02T15:25:20.963319Z", - "shell.execute_reply": "2023-11-02T15:25:20.962309Z" + "iopub.execute_input": "2023-11-04T09:26:25.459171Z", + "iopub.status.busy": "2023-11-04T09:26:25.458778Z", + "iopub.status.idle": "2023-11-04T09:26:34.217993Z", + "shell.execute_reply": "2023-11-04T09:26:34.217281Z" } }, "outputs": [ @@ -502,10 +502,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:20.968574Z", - "iopub.status.busy": "2023-11-02T15:25:20.967937Z", - "iopub.status.idle": "2023-11-02T15:25:20.972144Z", - "shell.execute_reply": "2023-11-02T15:25:20.971221Z" + "iopub.execute_input": "2023-11-04T09:26:34.221388Z", + "iopub.status.busy": "2023-11-04T09:26:34.221154Z", + "iopub.status.idle": "2023-11-04T09:26:34.224277Z", + "shell.execute_reply": "2023-11-04T09:26:34.223638Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:20.976555Z", - "iopub.status.busy": "2023-11-02T15:25:20.975881Z", - "iopub.status.idle": "2023-11-02T15:25:20.980203Z", - "shell.execute_reply": "2023-11-02T15:25:20.979150Z" + "iopub.execute_input": "2023-11-04T09:26:34.226480Z", + "iopub.status.busy": "2023-11-04T09:26:34.226275Z", + "iopub.status.idle": "2023-11-04T09:26:34.229085Z", + "shell.execute_reply": "2023-11-04T09:26:34.228534Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:20.984525Z", - "iopub.status.busy": "2023-11-02T15:25:20.983587Z", - "iopub.status.idle": "2023-11-02T15:25:24.801367Z", - "shell.execute_reply": "2023-11-02T15:25:24.799760Z" + "iopub.execute_input": "2023-11-04T09:26:34.231350Z", + "iopub.status.busy": "2023-11-04T09:26:34.231149Z", + "iopub.status.idle": "2023-11-04T09:26:36.428283Z", + "shell.execute_reply": "2023-11-04T09:26:36.427568Z" }, "scrolled": true }, @@ -571,10 +571,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:24.808489Z", - "iopub.status.busy": "2023-11-02T15:25:24.806642Z", - "iopub.status.idle": "2023-11-02T15:25:24.821246Z", - "shell.execute_reply": "2023-11-02T15:25:24.819869Z" + "iopub.execute_input": "2023-11-04T09:26:36.432204Z", + "iopub.status.busy": "2023-11-04T09:26:36.431208Z", + "iopub.status.idle": "2023-11-04T09:26:36.439636Z", + "shell.execute_reply": "2023-11-04T09:26:36.439129Z" } }, "outputs": [ @@ -609,35 +609,35 @@ " \n", " 0\n", " False\n", - " 0.857900\n", + " 0.858050\n", " 6\n", " 6\n", " \n", " \n", " 1\n", " False\n", - " 0.545836\n", + " 0.545854\n", " 3\n", " 3\n", " \n", " \n", " 2\n", " False\n", - " 0.826185\n", + " 0.826194\n", " 7\n", " 7\n", " \n", " \n", " 3\n", " False\n", - " 0.965809\n", + " 0.965814\n", " 8\n", " 8\n", " \n", " \n", " 4\n", " False\n", - " 0.792077\n", + " 0.791923\n", " 4\n", " 4\n", " \n", @@ -647,11 +647,11 @@ ], "text/plain": [ " is_label_issue label_quality given_label predicted_label\n", - "0 False 0.857900 6 6\n", - "1 False 0.545836 3 3\n", - "2 False 0.826185 7 7\n", - "3 False 0.965809 8 8\n", - "4 False 0.792077 4 4" + "0 False 0.858050 6 6\n", + "1 False 0.545854 3 3\n", + "2 False 0.826194 7 7\n", + "3 False 0.965814 8 8\n", + "4 False 0.791923 4 4" ] }, "execution_count": 13, @@ -675,10 +675,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:24.825858Z", - "iopub.status.busy": "2023-11-02T15:25:24.825237Z", - "iopub.status.idle": "2023-11-02T15:25:24.833419Z", - "shell.execute_reply": "2023-11-02T15:25:24.832299Z" + "iopub.execute_input": "2023-11-04T09:26:36.442055Z", + "iopub.status.busy": "2023-11-04T09:26:36.441746Z", + "iopub.status.idle": "2023-11-04T09:26:36.446028Z", + "shell.execute_reply": "2023-11-04T09:26:36.445374Z" } }, "outputs": [], @@ -692,10 +692,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:24.837715Z", - "iopub.status.busy": "2023-11-02T15:25:24.837120Z", - "iopub.status.idle": "2023-11-02T15:25:24.842301Z", - "shell.execute_reply": "2023-11-02T15:25:24.841421Z" + "iopub.execute_input": "2023-11-04T09:26:36.448403Z", + "iopub.status.busy": "2023-11-04T09:26:36.447922Z", + "iopub.status.idle": "2023-11-04T09:26:36.451565Z", + "shell.execute_reply": "2023-11-04T09:26:36.450960Z" } }, "outputs": [ @@ -730,10 +730,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:24.846365Z", - "iopub.status.busy": "2023-11-02T15:25:24.845780Z", - "iopub.status.idle": "2023-11-02T15:25:24.850942Z", - "shell.execute_reply": "2023-11-02T15:25:24.849598Z" + "iopub.execute_input": "2023-11-04T09:26:36.454005Z", + "iopub.status.busy": "2023-11-04T09:26:36.453511Z", + "iopub.status.idle": "2023-11-04T09:26:36.456848Z", + "shell.execute_reply": "2023-11-04T09:26:36.456229Z" } }, "outputs": [], @@ -753,10 +753,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:24.855071Z", - "iopub.status.busy": "2023-11-02T15:25:24.854741Z", - "iopub.status.idle": "2023-11-02T15:25:24.867911Z", - "shell.execute_reply": "2023-11-02T15:25:24.866749Z" + "iopub.execute_input": "2023-11-04T09:26:36.459464Z", + "iopub.status.busy": "2023-11-04T09:26:36.459016Z", + "iopub.status.idle": "2023-11-04T09:26:36.466508Z", + "shell.execute_reply": "2023-11-04T09:26:36.465973Z" } }, "outputs": [ @@ -881,10 +881,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:24.873797Z", - "iopub.status.busy": "2023-11-02T15:25:24.873186Z", - "iopub.status.idle": "2023-11-02T15:25:25.261875Z", - "shell.execute_reply": "2023-11-02T15:25:25.260990Z" + "iopub.execute_input": "2023-11-04T09:26:36.469002Z", + "iopub.status.busy": "2023-11-04T09:26:36.468626Z", + "iopub.status.idle": "2023-11-04T09:26:36.709208Z", + "shell.execute_reply": "2023-11-04T09:26:36.708493Z" }, "scrolled": true }, @@ -923,10 +923,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:25.268461Z", - "iopub.status.busy": "2023-11-02T15:25:25.266538Z", - "iopub.status.idle": "2023-11-02T15:25:25.695806Z", - "shell.execute_reply": "2023-11-02T15:25:25.694867Z" + "iopub.execute_input": "2023-11-04T09:26:36.712450Z", + "iopub.status.busy": "2023-11-04T09:26:36.712004Z", + "iopub.status.idle": "2023-11-04T09:26:37.006255Z", + "shell.execute_reply": "2023-11-04T09:26:37.005617Z" }, "scrolled": true }, @@ -935,7 +935,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Test accuracy of cleanlab's model: 0.9\n" + "Test accuracy of cleanlab's model: 0.91\n" ] } ], @@ -959,10 +959,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:25.700871Z", - "iopub.status.busy": "2023-11-02T15:25:25.700305Z", - "iopub.status.idle": "2023-11-02T15:25:25.708850Z", - "shell.execute_reply": "2023-11-02T15:25:25.707940Z" + "iopub.execute_input": "2023-11-04T09:26:37.009494Z", + "iopub.status.busy": "2023-11-04T09:26:37.009061Z", + "iopub.status.idle": "2023-11-04T09:26:37.013220Z", + "shell.execute_reply": "2023-11-04T09:26:37.012649Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index a2e47534c..2d604deeb 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -857,16 +857,16 @@

1. Install required dependencies and download data diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index 6e3a1dadb..47ef32c52 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:31.547394Z", - "iopub.status.busy": "2023-11-02T15:25:31.546506Z", - "iopub.status.idle": "2023-11-02T15:25:33.874027Z", - "shell.execute_reply": "2023-11-02T15:25:33.872542Z" + "iopub.execute_input": "2023-11-04T09:26:42.213668Z", + "iopub.status.busy": "2023-11-04T09:26:42.213136Z", + "iopub.status.idle": "2023-11-04T09:26:43.527461Z", + "shell.execute_reply": "2023-11-04T09:26:43.526752Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2023-11-02 15:25:31-- https://data.deepai.org/conll2003.zip\r\n", + "--2023-11-04 09:26:42-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,16 +94,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "143.244.50.90, 2400:52e0:1a01::1001:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|143.244.50.90|:443... connected.\r\n", - "HTTP request sent, awaiting response... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "200 OK\r\n", + "169.150.236.99, 2400:52e0:1a00::941:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.236.99|:443... connected.\r\n", + "HTTP request sent, awaiting response... 200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -116,9 +109,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", + "conll2003.zip 100%[===================>] 959.94K 5.38MB/s in 0.2s \r\n", "\r\n", - "2023-11-02 15:25:31 (6.50 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2023-11-04 09:26:42 (5.38 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -138,22 +131,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2023-11-02 15:25:32-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.204.17, 54.231.160.57, 52.217.231.65, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.204.17|:443... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "connected.\r\n" + "--2023-11-04 09:26:42-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.168.17, 16.182.68.129, 54.231.166.249, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.168.17|:443... " ] }, { "name": "stdout", "output_type": "stream", "text": [ + "connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -174,23 +161,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 0%[ ] 118.90K 521KB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 6%[> ] 1.11M 2.43MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 45%[========> ] 7.39M 10.7MB/s " + "pred_probs.npz 38%[======> ] 6.33M 31.6MB/s " ] }, { @@ -198,10 +169,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 98%[==================> ] 16.05M 17.4MB/s \r", - "pred_probs.npz 100%[===================>] 16.26M 17.6MB/s in 0.9s \r\n", + "pred_probs.npz 100%[===================>] 16.26M 58.7MB/s in 0.3s \r\n", "\r\n", - "2023-11-02 15:25:33 (17.6 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2023-11-04 09:26:43 (58.7 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -218,10 +188,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:33.879577Z", - "iopub.status.busy": "2023-11-02T15:25:33.879227Z", - "iopub.status.idle": "2023-11-02T15:25:35.563876Z", - "shell.execute_reply": "2023-11-02T15:25:35.562737Z" + "iopub.execute_input": "2023-11-04T09:26:43.530634Z", + "iopub.status.busy": "2023-11-04T09:26:43.530385Z", + "iopub.status.idle": "2023-11-04T09:26:44.518033Z", + "shell.execute_reply": "2023-11-04T09:26:44.517397Z" }, "nbsphinx": "hidden" }, @@ -232,7 +202,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@afafe4e9f59240c0d7d1dafbd1dde3532e2a41df\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@19efa9ab0bd65981fc4e9e1966bbb4564081966d\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -258,10 +228,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:35.568365Z", - "iopub.status.busy": "2023-11-02T15:25:35.567762Z", - "iopub.status.idle": "2023-11-02T15:25:35.574662Z", - "shell.execute_reply": "2023-11-02T15:25:35.573725Z" + "iopub.execute_input": "2023-11-04T09:26:44.520951Z", + "iopub.status.busy": "2023-11-04T09:26:44.520445Z", + "iopub.status.idle": "2023-11-04T09:26:44.524139Z", + "shell.execute_reply": "2023-11-04T09:26:44.523623Z" } }, "outputs": [], @@ -311,10 +281,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:35.578785Z", - "iopub.status.busy": "2023-11-02T15:25:35.578117Z", - "iopub.status.idle": "2023-11-02T15:25:35.583153Z", - "shell.execute_reply": "2023-11-02T15:25:35.582212Z" + "iopub.execute_input": "2023-11-04T09:26:44.526666Z", + "iopub.status.busy": "2023-11-04T09:26:44.526180Z", + "iopub.status.idle": "2023-11-04T09:26:44.529385Z", + "shell.execute_reply": "2023-11-04T09:26:44.528883Z" }, "nbsphinx": "hidden" }, @@ -332,10 +302,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:35.586699Z", - "iopub.status.busy": "2023-11-02T15:25:35.586408Z", - "iopub.status.idle": "2023-11-02T15:25:49.528234Z", - "shell.execute_reply": "2023-11-02T15:25:49.527067Z" + "iopub.execute_input": "2023-11-04T09:26:44.531824Z", + "iopub.status.busy": "2023-11-04T09:26:44.531385Z", + "iopub.status.idle": "2023-11-04T09:26:52.439981Z", + "shell.execute_reply": "2023-11-04T09:26:52.439303Z" } }, "outputs": [], @@ -409,10 +379,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:49.532817Z", - "iopub.status.busy": "2023-11-02T15:25:49.532446Z", - "iopub.status.idle": "2023-11-02T15:25:49.543261Z", - "shell.execute_reply": "2023-11-02T15:25:49.542272Z" + "iopub.execute_input": "2023-11-04T09:26:52.442879Z", + "iopub.status.busy": "2023-11-04T09:26:52.442629Z", + "iopub.status.idle": "2023-11-04T09:26:52.448555Z", + "shell.execute_reply": "2023-11-04T09:26:52.447929Z" }, "nbsphinx": "hidden" }, @@ -452,10 +422,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:49.547607Z", - "iopub.status.busy": "2023-11-02T15:25:49.547258Z", - "iopub.status.idle": "2023-11-02T15:25:50.330234Z", - "shell.execute_reply": "2023-11-02T15:25:50.329066Z" + "iopub.execute_input": "2023-11-04T09:26:52.450897Z", + "iopub.status.busy": "2023-11-04T09:26:52.450468Z", + "iopub.status.idle": "2023-11-04T09:26:52.843977Z", + "shell.execute_reply": "2023-11-04T09:26:52.843256Z" } }, "outputs": [], @@ -492,10 +462,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:50.334792Z", - "iopub.status.busy": "2023-11-02T15:25:50.334444Z", - "iopub.status.idle": "2023-11-02T15:25:50.344687Z", - "shell.execute_reply": "2023-11-02T15:25:50.343690Z" + "iopub.execute_input": "2023-11-04T09:26:52.847083Z", + "iopub.status.busy": "2023-11-04T09:26:52.846696Z", + "iopub.status.idle": "2023-11-04T09:26:52.851927Z", + "shell.execute_reply": "2023-11-04T09:26:52.851397Z" } }, "outputs": [ @@ -567,10 +537,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:50.349163Z", - "iopub.status.busy": "2023-11-02T15:25:50.348798Z", - "iopub.status.idle": "2023-11-02T15:25:53.878811Z", - "shell.execute_reply": "2023-11-02T15:25:53.877194Z" + "iopub.execute_input": "2023-11-04T09:26:52.854342Z", + "iopub.status.busy": "2023-11-04T09:26:52.853981Z", + "iopub.status.idle": "2023-11-04T09:26:54.749676Z", + "shell.execute_reply": "2023-11-04T09:26:54.748895Z" } }, "outputs": [], @@ -592,10 +562,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:53.884326Z", - "iopub.status.busy": "2023-11-02T15:25:53.883304Z", - "iopub.status.idle": "2023-11-02T15:25:53.897999Z", - "shell.execute_reply": "2023-11-02T15:25:53.896964Z" + "iopub.execute_input": "2023-11-04T09:26:54.753157Z", + "iopub.status.busy": "2023-11-04T09:26:54.752394Z", + "iopub.status.idle": "2023-11-04T09:26:54.759451Z", + "shell.execute_reply": "2023-11-04T09:26:54.758872Z" } }, "outputs": [ @@ -631,10 +601,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:53.902373Z", - "iopub.status.busy": "2023-11-02T15:25:53.902039Z", - "iopub.status.idle": "2023-11-02T15:25:53.934615Z", - "shell.execute_reply": "2023-11-02T15:25:53.933424Z" + "iopub.execute_input": "2023-11-04T09:26:54.762088Z", + "iopub.status.busy": "2023-11-04T09:26:54.761717Z", + "iopub.status.idle": "2023-11-04T09:26:54.779102Z", + "shell.execute_reply": "2023-11-04T09:26:54.778598Z" } }, "outputs": [ @@ -812,10 +782,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:53.939676Z", - "iopub.status.busy": "2023-11-02T15:25:53.939086Z", - "iopub.status.idle": "2023-11-02T15:25:54.001248Z", - "shell.execute_reply": "2023-11-02T15:25:54.000165Z" + "iopub.execute_input": "2023-11-04T09:26:54.781675Z", + "iopub.status.busy": "2023-11-04T09:26:54.781294Z", + "iopub.status.idle": "2023-11-04T09:26:54.812221Z", + "shell.execute_reply": "2023-11-04T09:26:54.811719Z" } }, "outputs": [ @@ -917,10 +887,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:54.005615Z", - "iopub.status.busy": "2023-11-02T15:25:54.005259Z", - "iopub.status.idle": "2023-11-02T15:25:54.019524Z", - "shell.execute_reply": "2023-11-02T15:25:54.018511Z" + "iopub.execute_input": "2023-11-04T09:26:54.814796Z", + "iopub.status.busy": "2023-11-04T09:26:54.814442Z", + "iopub.status.idle": "2023-11-04T09:26:54.822845Z", + "shell.execute_reply": "2023-11-04T09:26:54.822342Z" } }, "outputs": [ @@ -994,10 +964,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:54.024085Z", - "iopub.status.busy": "2023-11-02T15:25:54.023715Z", - "iopub.status.idle": "2023-11-02T15:25:57.422363Z", - "shell.execute_reply": "2023-11-02T15:25:57.421225Z" + "iopub.execute_input": "2023-11-04T09:26:54.825181Z", + "iopub.status.busy": "2023-11-04T09:26:54.824816Z", + "iopub.status.idle": "2023-11-04T09:26:56.592022Z", + "shell.execute_reply": "2023-11-04T09:26:56.591412Z" } }, "outputs": [ @@ -1169,10 +1139,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2023-11-02T15:25:57.426694Z", - "iopub.status.busy": "2023-11-02T15:25:57.426334Z", - "iopub.status.idle": "2023-11-02T15:25:57.433970Z", - "shell.execute_reply": "2023-11-02T15:25:57.432833Z" + "iopub.execute_input": "2023-11-04T09:26:56.594750Z", + "iopub.status.busy": "2023-11-04T09:26:56.594322Z", + "iopub.status.idle": "2023-11-04T09:26:56.598656Z", + "shell.execute_reply": "2023-11-04T09:26:56.598107Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index 46d5b3baa..f418f1df5 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.5.0", - commit_hash: "afafe4e9f59240c0d7d1dafbd1dde3532e2a41df", + commit_hash: "19efa9ab0bd65981fc4e9e1966bbb4564081966d", }; \ No newline at end of file