From 2adc0e93aae0f27aceebb686e441caeb026c9c78 Mon Sep 17 00:00:00 2001 From: elisno Date: Fri, 3 May 2024 22:24:40 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219 --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3248 -> 3248 bytes .../benchmarking/noise_generation.doctree | Bin 81345 -> 81345 bytes .../.doctrees/cleanlab/classification.doctree | Bin 290603 -> 290603 bytes master/.doctrees/cleanlab/count.doctree | Bin 283717 -> 283717 bytes .../.doctrees/cleanlab/data_valuation.doctree | Bin 26580 -> 26580 bytes .../cleanlab/datalab/datalab.doctree | Bin 174487 -> 174487 bytes .../guide/_templates/issue_types_tip.doctree | Bin 4354 -> 4354 bytes .../guide/custom_issue_manager.doctree | Bin 31452 -> 31452 bytes .../guide/generating_cluster_ids.doctree | Bin 6318 -> 6318 bytes .../cleanlab/datalab/guide/index.doctree | Bin 12087 -> 12087 bytes .../guide/issue_type_description.doctree | Bin 133532 -> 133532 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5445 -> 5445 bytes .../cleanlab/datalab/internal/data.doctree | Bin 105136 -> 105136 bytes .../datalab/internal/data_issues.doctree | Bin 77301 -> 77301 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 64553 -> 64553 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4573 -> 4573 bytes .../datalab/internal/issue_finder.doctree | Bin 46989 -> 46989 bytes .../_notices/not_registered.doctree | Bin 3440 -> 3440 bytes .../issue_manager/data_valuation.doctree | Bin 79832 -> 79832 bytes .../internal/issue_manager/duplicate.doctree | Bin 75245 -> 75245 bytes .../internal/issue_manager/imbalance.doctree | Bin 68346 -> 68346 bytes .../internal/issue_manager/index.doctree | Bin 5282 -> 5282 bytes .../issue_manager/issue_manager.doctree | Bin 80662 -> 80662 bytes .../internal/issue_manager/label.doctree | Bin 88614 -> 88614 bytes .../issue_manager/multilabel/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/multilabel/label.doctree | Bin 79258 -> 79258 bytes .../internal/issue_manager/noniid.doctree | Bin 91271 -> 91271 bytes .../internal/issue_manager/null.doctree | Bin 68181 -> 68181 bytes .../internal/issue_manager/outlier.doctree | Bin 75599 -> 75599 bytes .../issue_manager/regression/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/regression/label.doctree | Bin 108542 -> 108542 bytes .../underperforming_group.doctree | Bin 120431 -> 120431 bytes .../datalab/internal/model_outputs.doctree | Bin 78458 -> 78458 bytes .../cleanlab/datalab/internal/report.doctree | Bin 34190 -> 34190 bytes .../cleanlab/datalab/internal/task.doctree | Bin 57819 -> 57819 bytes .../datalab/optional_dependencies.doctree | Bin 3451 -> 3451 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 100920 -> 100920 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 407995 -> 407995 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48525 -> 48525 bytes .../cleanlab/experimental/index.doctree | Bin 5365 -> 5365 bytes .../experimental/label_issues_batched.doctree | Bin 158466 -> 158466 bytes .../experimental/mnist_pytorch.doctree | Bin 555175 -> 555175 bytes .../experimental/span_classification.doctree | Bin 34890 -> 34890 bytes master/.doctrees/cleanlab/filter.doctree | Bin 94218 -> 94218 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4492 -> 4492 bytes .../internal/label_quality_utils.doctree | Bin 19410 -> 19410 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 85348 -> 85348 bytes .../internal/multiannotator_utils.doctree | Bin 46750 -> 46750 bytes .../internal/multilabel_scorer.doctree | Bin 183513 -> 183513 bytes .../internal/multilabel_utils.doctree | Bin 34042 -> 34042 bytes .../cleanlab/internal/outlier.doctree | Bin 29778 -> 29778 bytes .../token_classification_utils.doctree | Bin 69171 -> 69171 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 212686 -> 212686 bytes .../cleanlab/internal/validation.doctree | Bin 41565 -> 41565 bytes .../cleanlab/models/fasttext.doctree | Bin 2465 -> 2465 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 5009 -> 5009 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 106237 -> 106237 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 165197 -> 165197 bytes .../multilabel_classification/dataset.doctree | Bin 67275 -> 67275 bytes .../multilabel_classification/filter.doctree | Bin 86794 -> 86794 bytes .../multilabel_classification/index.doctree | Bin 4916 -> 4916 bytes .../multilabel_classification/rank.doctree | Bin 47085 -> 47085 bytes .../cleanlab/object_detection/filter.doctree | Bin 38032 -> 38032 bytes .../cleanlab/object_detection/index.doctree | Bin 3852 -> 3852 bytes .../cleanlab/object_detection/rank.doctree | Bin 149811 -> 149811 bytes .../cleanlab/object_detection/summary.doctree | Bin 166920 -> 166920 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 98688 -> 98688 bytes master/.doctrees/cleanlab/rank.doctree | Bin 113711 -> 113711 bytes .../cleanlab/regression/index.doctree | Bin 3738 -> 3738 bytes .../cleanlab/regression/learn.doctree | Bin 222189 -> 222189 bytes .../cleanlab/regression/rank.doctree | Bin 19815 -> 19815 bytes .../cleanlab/segmentation/filter.doctree | Bin 28604 -> 28604 bytes .../cleanlab/segmentation/index.doctree | Bin 3788 -> 3788 bytes .../cleanlab/segmentation/rank.doctree | Bin 51266 -> 51266 bytes .../cleanlab/segmentation/summary.doctree | Bin 69021 -> 69021 bytes .../token_classification/filter.doctree | Bin 27210 -> 27210 bytes .../token_classification/index.doctree | Bin 3934 -> 3934 bytes .../token_classification/rank.doctree | Bin 60167 -> 60167 bytes .../token_classification/summary.doctree | Bin 79104 -> 79104 bytes master/.doctrees/environment.pickle | Bin 15619288 -> 15619639 bytes master/.doctrees/index.doctree | Bin 42320 -> 42320 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28116 -> 28116 bytes .../tutorials/clean_learning/tabular.ipynb | 130 +- .../tutorials/clean_learning/text.ipynb | 1676 ++++----- .../nbsphinx/tutorials/datalab/audio.ipynb | 1168 +++---- .../tutorials/datalab/data_monitor.ipynb | 1370 ++++---- .../tutorials/datalab/datalab_advanced.ipynb | 348 +- .../datalab/datalab_quickstart.ipynb | 130 +- .../nbsphinx/tutorials/datalab/image.ipynb | 3104 ++++++++--------- .../nbsphinx/tutorials/datalab/tabular.ipynb | 138 +- .../nbsphinx/tutorials/datalab/text.ipynb | 172 +- .../nbsphinx/tutorials/dataset_health.ipynb | 34 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 730 ++-- .../nbsphinx/tutorials/indepth_overview.ipynb | 210 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- .../nbsphinx/tutorials/object_detection.ipynb | 186 +- .../nbsphinx/tutorials/outliers.ipynb | 500 +-- .../nbsphinx/tutorials/regression.ipynb | 202 +- .../nbsphinx/tutorials/segmentation.ipynb | 1054 +++--- .../tutorials/token_classification.ipynb | 151 +- .../tutorials/clean_learning/index.doctree | Bin 3019 -> 3019 bytes .../tutorials/clean_learning/tabular.doctree | Bin 60765 -> 60765 bytes .../tutorials/clean_learning/text.doctree | Bin 232719 -> 232721 bytes .../.doctrees/tutorials/datalab/audio.doctree | Bin 336273 -> 336275 bytes .../tutorials/datalab/data_monitor.doctree | Bin 286623 -> 286623 bytes .../datalab/datalab_advanced.doctree | Bin 199380 -> 199380 bytes .../datalab/datalab_quickstart.doctree | Bin 149271 -> 149271 bytes .../.doctrees/tutorials/datalab/image.doctree | Bin 436294 -> 436294 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3292 -> 3292 bytes .../tutorials/datalab/tabular.doctree | Bin 119368 -> 119368 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 154225 -> 154225 bytes .../tutorials/dataset_health.doctree | Bin 325916 -> 325916 bytes master/.doctrees/tutorials/faq.doctree | Bin 210677 -> 210677 bytes .../tutorials/indepth_overview.doctree | Bin 222071 -> 222071 bytes master/.doctrees/tutorials/index.doctree | Bin 3139 -> 3139 bytes .../tutorials/multiannotator.doctree | Bin 137334 -> 137334 bytes .../multilabel_classification.doctree | Bin 64488 -> 64488 bytes .../tutorials/object_detection.doctree | Bin 140179 -> 140179 bytes master/.doctrees/tutorials/outliers.doctree | Bin 104189 -> 104189 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 17310 -> 17310 bytes master/.doctrees/tutorials/regression.doctree | Bin 106940 -> 106940 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 1994473 -> 1994473 bytes .../tutorials/token_classification.doctree | Bin 176661 -> 176667 bytes master/_modules/cleanlab/dataset.html | 10 +- .../_modules/cleanlab/internal/outlier.html | 5 +- .../cleanlab/object_detection/rank.html | 15 +- .../tutorials/clean_learning/tabular.ipynb | 2 +- .../tutorials/clean_learning/text.ipynb | 2 +- master/_sources/tutorials/datalab/audio.ipynb | 2 +- .../tutorials/datalab/data_monitor.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 2 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- master/searchindex.js | 2 +- master/tutorials/clean_learning/tabular.ipynb | 130 +- master/tutorials/clean_learning/text.html | 18 +- master/tutorials/clean_learning/text.ipynb | 1676 ++++----- master/tutorials/datalab/audio.html | 2 +- master/tutorials/datalab/audio.ipynb | 1168 +++---- master/tutorials/datalab/data_monitor.html | 16 +- master/tutorials/datalab/data_monitor.ipynb | 1370 ++++---- .../tutorials/datalab/datalab_advanced.html | 6 +- .../tutorials/datalab/datalab_advanced.ipynb | 348 +- .../datalab/datalab_quickstart.ipynb | 130 +- master/tutorials/datalab/image.html | 38 +- master/tutorials/datalab/image.ipynb | 3104 ++++++++--------- master/tutorials/datalab/tabular.ipynb | 138 +- master/tutorials/datalab/text.html | 2 +- master/tutorials/datalab/text.ipynb | 172 +- master/tutorials/dataset_health.ipynb | 34 +- master/tutorials/faq.html | 8 +- master/tutorials/faq.ipynb | 730 ++-- master/tutorials/indepth_overview.ipynb | 210 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- master/tutorials/object_detection.ipynb | 186 +- master/tutorials/outliers.html | 6 +- master/tutorials/outliers.ipynb | 500 +-- master/tutorials/regression.ipynb | 202 +- master/tutorials/segmentation.html | 10 +- master/tutorials/segmentation.ipynb | 1054 +++--- master/tutorials/token_classification.html | 16 +- master/tutorials/token_classification.ipynb | 151 +- versioning.js | 2 +- 176 files changed, 11672 insertions(+), 11614 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index f2b840da0..69c417082 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: c8f3b436f39041513be97de336431583 +config: 47ea9e984875f53348d8764fbfd1e9d8 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 9d50db517c1934130a70cd3f80c2f446fbdeb142..9215b258906872206cf4e5cdfbdb029d2af4aac0 100644 GIT binary patch delta 117 zcmdlWxj}M6IHO@nUUptdVSJ^2iitsr1rVksCYo9#nI)TBrh*6F%7jQo=YI10(q-oDwA^Di4&TDv!Y z5^!W9Q|o(SR#vjK_H5oL*+HJIJ)6JD)N_z&tC3nKc@fmJxk9^ynM_+(>a&sS*BqlI zWH@-Uqxp4qvK(8od9VFKPBOJJdp(pQOKbe(^?F>J>r(T`i&wDr$#tm$o2TUk$Wq{f zhMs#8 delta 1464 zcmX^3o8{ndmJRWYhPjDV7HJl_>H6j=#sBrh*6F%7jQo=YI10(q-oDwA^Di4&TDv!Y z5^!W9Q|o(SR#vjK_H5oL*+HJIJ)6JD)N_z&tC3nKc@fmJxk9^ynM_+(>a&sS*BqlI zWH@-Uqxp4qvK(8od9VFKPBOJJdp(pQOKbe(^?F>J>r(T`i&wDr$#tm$o2TUk$Wq{f zhMs#8`66b=P~BrZBPrP|Ir-1YlD-+S(NzH`oG%sClz zPB$@kU#Kh8*K;{s+)-N6Q6|4Dt*wX4+C1%^(sr-zY4dsxmK^eWblqL*)!pt^k2%af z05W6er(rm=pPE2>Oduc{;M~%Aq~Wv{X^a76W7W@iF(&SW29a%3ADhsm*QRsoY= z=CB|@CfOuUVW^SMA^`Ny^q_Y;*cX`W+r>gKxv`KPhsou;*#t}u?_DeY^-frmZp@BwbD-w-PG{-MYrVr-2!0p@;Ww$Haayox?TJwZyY&{UN8U zq-;WQo_H#cOi zh`E$3daEiUYO*duy0~aPUAbyc!ir=;N0G_+f1)Cq%~fiUzam|##nc`}6MDLuNs$6& z6uBf?HY9D%BE!N;BIft1RW#;R#+tyzv>d7_W+=){%%Ps-66^=klML`Yso+8e*Qg+0 Yz2LxVcauzi`at4h>yb|Kp+DmK4Qw|Y&;S4c delta 4197 zcmbuCO-NKx7=}6L-tn)Qt~NNP2vI2gNzOQ?V*P@N9XxXBmoCd*CC>#m|NnCVpO0}JLxa;?QzW3bkeCM3$Sk`nb zYo?jGx?2Z4?Vj$A;_^1P(;ak{xynjCp`fRvOn&aeB_-{l3TKU z0Lb*+pN@%%Mpe@*v~9+UGVV(p{m+B>Z$R=|W7Qv5FsZ)kx9gKj7NfseNr5aHUIb$f zNa;61{Q+#%1BUIOpa!-yD)jf${xYw;!O4tCP#L#NthhVW|c7c zWey7iWRgwt1cvJQECN9POb>dui+zE~-aV`bCN~wb<1o2mFPnnN{RdbJI0ove$;rOv zVspNp=1#GpNHQJz11>*ir)?TMtLCq^ z;}zJ%Oe43@nwJ-W$Fy07jik#-Y5yEi8+|%ltap5t|NI<9s*+tzmwh+r*t;JPI0+Gzg>v;;jvt zD`F1CPH$CZOik8BNEZifq$?fPB&Ta; z8AmROrVUA(v&gV8lZb`=YBf!iD-+G&Vww&$6w?*uCg#vUatRIs=}887o>XulgKJcf ZuU@cWwYx~BKYb{1vH3_R`OqJ8{068)vcdoW diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index 13a96809088699170536d7dfb713f28e5601d833..641064ea4aee9ef030b1852f0194be81e0b15e61 100644 GIT binary patch delta 3571 zcmX@QLh$Gc!3~~_h9!B~c_oGMmHH_r1}PRmn3kAmYLR4?Y-W;do@$n4Zf0a)Y;KmC zYG`7fYG{~fwz-ONCmGtNA2ejK-Mo-_wJ_;cg7r?`C0;_h*2#>nL7O*9?BgO!Yxw5x z$`i@(EYQ~Q%>rs2Ok~=spvlcbrq<26!Q|T7XAnxR)@q({zXM%ORoI=0qhH@S{I;M+!qW5Mb7T;LpXZT%E>o?Kf!qqmT&wKe_= zxhaV;se#DEq)>~O^z;i%684+d)y)ecORN55KXu9J zu~Ceon{Qpb%}Kr)oAvHk*^{n)df;P5i|GbZjO^QQNHg9d!vRPpD5)_XF(%y&z!21* zyy2C^_P8j<fW{7X+-pD9wM7sX%z;I;dCtV*X^qjY!_{3PL zOP*$n$?KdnrgO$Hi*A3ez;v3A0#mj-8!$PFl5PMf{-!TrWRckZ$CWACgmeR@FYITE zo6h}`Nnrc8DyAwC(oNV7G~ovsO&O5Qk=vDLGaZm5-BJ{PPh{HuW;;`#0qMqoGtlG@ zA&SY^rv(Bv4~H%u4GQ${zr&8pPK^nKH6j=#snL7O*9?BgO!Yxw5x z$`i@(EYQ~Q%>rs2Ok~=spvlcbrq<26!Q|T7XAnxR)@q({zXM%ORoI=0qhH@S{I;M+!qW5Mb7T;LpXZT%E>o?Kf!qqmT&wKe_= zxhaV;se#DEq)>~O^z;i%684+d)y)ecORN55KXu9J zu~Ceon{Qpb%}Kr)oAvHk*^{n)df;P5i|GbZjO^QQNHg9d!vRPpD5)_XF(%y&z!21* zyy2C^_P8j<fW{7X+-pD9wM7sX%z;I;dCtV*X^qjY!_{3PL zOP*$n$?KdnrgO$Hi*A3ez;v3A0#mj-8!$PFl5PMf{-!TrWRckZ$CWACgmeR@FYITE zo6h}`Nnrc8DyAwC(oNV7G~ovsO&O5Qk=vDLGaZm5-BJ{PPh{HuW;;`#0qMqoGtlG@ zA&SY^rv(Bv4~H%u4GQ${zr&8pPK^nKH6j=#sf@9{>OV diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index 975da834380740223dba41181fd06527ea90f274..127902433f0b85ae910e86ffe72972ffe991a7e8 100644 GIT binary patch delta 4228 zcmbuC-%C?r7{__vwWV9yvLEI}WDWXtqpNi`BBV(n<%U|03=(&aJIgj4D`&EjejrIm zhIkkUg5feuVimEMc!RK;q8gcb@=CI+ZuCaFFQWJ4U$C#7>(BFfp67kuA4gxX>kIam zLE=s&;)&Fiu5?|*Qy=k(FDlDNeTvjAdAhx-q$%#(@U>rp9`w8C!3AE4Gpy>Zk!k@TU~*wr9v zJ<}gRtp^7N04p=ne^H|{=m(6NIS$gTyB1&^NFl;nhZd2Oi4-ogcOyTMT21uC=yjx4 z6Kx-hqSp5DG-|z+$)nb1`eW3(^3Z~!!`WUG9nCeNwI(Ltqt@9eoD#R|6X z^DOdsA%$j^Fl5x6Fe=%Fh2Ldh&GSni?HH=fFFBcOd5L4V-twF{_;8K{H(>#|2oQ3C zY^_1ggB{leTh9M{BL#4^%>Y*2`CXKMY>|Z4k%pCvC^J=H4^FR=bD*5>{6&geFt5IQ zKP~4`N+*y!)Qrd7Rd*qX$+lqV#Qr z(g<*8h!(MvJ)jGA7w_w!RoK=Ij6bdBH7d goux~4|G0pk+@~>M-nfAKky%^&k>AXH)3l5J1C>EQ8vp0--8%NU{|`mCk0ivin#mgkE6D>JLc5N@qJ; zJ3xV=A4hvp>r`Aut&!_~ z)Ovovhgy#g4gywYB>tjCb=U(KHFF%?x9?eiaUj_))-tk;oJ=HpjlCQDiPUPMr^kno zT1~WdB8*yFCljc(JDEYPbNUn1y86h1qNAxOijJq7&{|{D?@{Z*400)J=18#Fx2V;g z`HG_bFRlQaj*;vzYOHt_MA4$xXMtozcLVIpn*cTr0hXRWXot=vFKftkU{Y(i`Yy^pxlDqaNW;oSl=*V72j|wvMNrQ7{vx>@m{;F_ zn3nJ`rBlcwR_vDb0ApL}-AX)zJv?=Q7J)0sMG2pF;c}~9<)Otqeu~y?q6bzkqV(;A z((rL9NORc9?$ZUkkN36Fa%}7RCZARC$`DOr#s9|}BXq4~ynMN#o?>iZoMd2TXl7!Onq*;Q2870@Mn-9=mIf)tCI*H{ Ph6agg$;O+@S-N=uFk2CG diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index 93758ea2108fd868111711e5fd9cf4f57490cb17..70ab4b31fa439b7e2b4b6b2f11b2d01befab83f4 100644 GIT binary patch delta 64 zcmccfmGRD3#ti|Ch9!B~c_oGMmHH_r1}PRmn3kAmYLR4?Y-W;do@$n4Zf0a)Y;KmC SYG`7fYG{~fwz-ipx)J~ixD~Ge delta 64 zcmccfmGRD3#ti|ChPjDV7HJl_>H6j=#s@q{G^1fjUUptdVSJ^2iitsr1rVksCYo9#nI)T@q{G^1f|VwFXjMQ*yjd5W=tagu?Vp_z$AYLbPK84wzq8X2XfS{kGnn-~}- Q85$&}B^z(H6j=#suWYdBdJul zHkt~DlMyjSa{#KidKdqiH-iW&sCEAXDiS_p2vZjB(h@FpU0n*p%ece62Q;tL%XmxS zo;+B+oY#4KaP@Lt?RyPWXLqSs0vR9TCO>1)QNH;6VXWR!z8+}9Y8~avtM{R*Gr|3+ z>eZ?SpiNv{eF@8Rf*Wd9xS*LP#JTzco{xC3Hren$K;hU%_l4m#qG8jgIDxnr-_F_1 zd%?bmrpA1}(=>(+Iw4}MK5;KmDV{Xn#cJSK>(>SZ?GoPI9&xjOfc@=vfV7F?>Kp~X z8uMYZci`^MH?Z#6@OilOa{efu!KQ8tn{oCV){zdeMR=d)ja?#H0QF&+oe-UlA*i)LEI-~RMBnxJPKCE`kz!Q;Oa!Y_5l zi^KEsZ@u6gg!h5T6%XIU?uss9E|^^RXg3%nHWwzb2zQ9y3d4G9BMtEJ|H_v^19dpc z@(H_ba&Y->0gad%@(N#KS!L9w!O^jb0#>$}ewT;*)Qu(6X@+77$|EZ%jtz7XNqQyi z({Lh{ljpGAaON@}q<)hO2&p_3q5&Nz3h$MfFlA5^*~;ZoZAzmC z-rBj97Qlomc^h6}ee()+X>iPLr+`!`??hu^8&M=dncap5+-{~KnL@MuzlphaBF#!X z);~d7E3d^UiU#bN9giIEq!$V_rc=>QrgbhvRWjL4^*VNPOeey$RUX|>ZFp!6*_fgh z4ZNlB%Prqw`V;Pp;c%Q!6LxcSh-{@{-9AdiGINAdcwQV5`+CV;408II&I&AIlT#z~ zI=&2xnCy#4eln)B6*)Ga^>0wcaBxCrD;y@d=_IYiw<1U4l5=Nh5MKy~#8M2Z)jZ|e delta 5702 zcmbtYZERCz6wVpkZqV+o>#}T(NC)W{I<@V}Mh7DsZVMw!)@-3647v|kow^MHw~Vne zjDpc18@!s=AjJLPj|u9`iM&6=NTRlmgiyyazF?zy%ahF5TxcRy%et5@)j z;{64%dL=*N@59wAd1K&dP@TQyVijck7`Fr&gHG_}2S>4bC-~h^2UhC@U)^{RRhnB(ZoNWKXf}lOZzt1ObWQIA|c?(FJD6P#? z@KebEHhUND?S3BXo&#TkORwZNQ(0{4j<78v2P}TCcN+IzEY1wr;Mw zJDbnXUI%BvH(%?FVCMP!rym9}sBn#^K(zmkPkz)&8~Cg5|3VXVpQB8?Rb%nVAB*9a zy6eT|dFM`J0*i9j&Q{Iin!ZD&r!Ya2554h7zO)`sS`+pOQokWI} z_~hSV+N`c8X)7AA`*wWlWH&ujWH6noPO{~N2-T>8UP_qQ$upgb(N1;z5Ov_8wN&#E zwHe^0#;=uuQTh$;i{)}$93$-J=n}bVOMZNuN>%nK4dHolNu28?e=(@J6DBLLf=$hi z)3f+8tYC63BK6Ls$yVgq0`i}*j^W6($yT^bYTIerjBiDr#G@9^(Fnc}E{W76B~t$j UG^@IoDeQw1xmW4$vEQ!#50vX%Hvj+t diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index b283f145795f184f165033399f3b3eda32f4f831..5448048cf6caca685aedb53398c2fb8822ae404d 100644 GIT binary patch delta 2705 zcmex*o8{|mmJOkdh9!B~c_oGMmHH_r1}PRmn3kAmYLR4?Y-W;do@$n4Zf0a)Y;KmC zYG`7fYG{~fwz-Xwi41L%9Tj6Xi!%3fk!~YM>tsW|1~PTd7Z%RZuCb5&{;GE44nx5oEZO&#j?LGzaY@Mv8%{MvT z$Ac{0;6R@2E5W-t-uE~w*+xigz80KJp4UMx5Sc7jDY*GtXe$Q=F3^r&O}+~xHn%12 zW1_(JFDcBFXkVUwm=f($*-@1ET_snR%uEK1Jc-R83r!x TFn$vvBM5*kyX}HHj87N=z)Vt^ delta 2705 zcmex*o8{|mmJOkdhPjDV7HJl_>H6j=#stsW|1~PTd7Z%RZuCb5&{;GE44nx5oEZO&#j?LGzaY@Mv8%{MvT z$Ac{0;6R@2E5W-t-uE~w*+xigz80KJp4UMx5Sc7jDY*GtXe$Q=F3^r&O}+~xHn%12 zW1_(JFDcBFXkVUwm=f($*-@1ET_snR%uEK1Jc-R83r!x TFn$vvBM5*kyX}HHj87N=@I?&$ diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index 5dcc372e530dc800098a283913dc7ae4824e2d97..2d586823997fdb1e28051f17c086a41ed40a3350 100644 GIT binary patch delta 1137 zcmZ4agL&l-<_*4#h9!B~c_oGMmHH_r1}PRmn3kAmYLR4?Y-W;do@$n4Zf0a)Y;KmC zYG`7fYG{~fwz-b6g^6@+lOGxuOkN-^uz53!j}Y0~o5|E^B`du7y2K%7^0aTZlC@B1t0WnKKsm2m<+9u9M8Xb-LGm!0R9+roB#j- delta 1137 zcmZ4agL&l-<_*4#hPjDV7HJl_>H6j=#sB1t0WnKKsm2m<+9u9M8Xb-LGm!0BsmmjQ{`u diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 0b792ed9630256289b4275cdd7208816dca3497d..2db4787f11418d518364b547ab32c6aaecd9a343 100644 GIT binary patch delta 122 zcmcbsd{=pcKcituUUptdVSJ^2iitsr1rVksCYo9#nI)TxacKi}k;?gEp$^td*EGUO5^-xWY(Qpwcq z5TLzzhetTM5#SJDu=$+tV=_`XFuBHUb_kGXCfnf#o8>|_lNt4!6QX6wOYL!!fm%0f grnA|S?Qq`BrxacKi}k;?gEp$^td*EGUO5^-xWY(Qpwcq z5TLzzhetTM5#SJDu=$+tV=_`XFuBHUb_kGXCfnf#o8>|_lNt4!6QX6wOYL!!fm%0f grnA|S?Qq`BrT){J& zJgqY(@7HGC{7~pLFIhH&v~z5(RSY06#6a4GH?LIoWhdMAXtH#!-uzAH7YpfHH!B($ zFp;ipvZB$3%|@nI$kqDXqKCWy-mp2u`V+afs@r#vYwHBZALQDa>AHekTR*w~Bg59s zirziUWW;G>&XURX(ZZ9z>F{k{?7xPL)HE4lgv4f>&`xsv4AZ_ToUG6WYTsNRT}O${ zuVP=35#n%vA57Gv#P&PMk0`Nyb^1~=B5iYH&N(i!lFQ7=4Rzd`RVq}t$<)5UjBWCS zF0Sdt>Wm_jt#TbES5&BOp51boT;~Wl3v9NSP{B{Sb2dMmAIwI&Hekfh-287@83&nK z?KUux;n&TDyF|&UU=Tmb+#m{70) delta 2628 zcmccdp5?}SmJQL2hPjDV7HJl_>H6j=#sT){J& zJgqY(@7HGC{7~pLFIhH&v~z5(RSY06#6a4GH?LIoWhdMAXtH#!-uzAH7YpfHH!B($ zFp;ipvZB$3%|@nI$kqDXqKCWy-mp2u`V+afs@r#vYwHBZALQDa>AHekTR*w~Bg59s zirziUWW;G>&XURX(ZZ9z>F{k{?7xPL)HE4lgv4f>&`xsv4AZ_ToUG6WYTsNRT}O${ zuVP=35#n%vA57Gv#P&PMk0`Nyb^1~=B5iYH&N(i!lFQ7=4Rzd`RVq}t$<)5UjBWCS zF0Sdt>Wm_jt#TbES5&BOp51boT;~Wl3v9NSP{B{Sb2dMmAIwI&Hekfh-287@83&nK z?KUux;n&TDyF|&UU=Tmb+VMhvL{ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index fd4785c5d5a672d7063e9c93e327bcad64cfea8e..0c61618ae146bd014e6b1c5dbc55cbf79319f7c2 100644 GIT binary patch delta 2632 zcmaERn&s_jmJNZ7wk3Jlc_oGMmHH_r1}PRmn3kAmYLR4?Y-W;do@$n4Zf0a)Y;KmC zYG`7fYG{~frk|3ZT&!Q5Us{x$I(eeK@#ce!a~TauHU_A*WICq`BmZO}mO`?$_f1}{ zEVem<^&kt`+Jz?zgs^OW&t<_%rV#>)team8EaoL!JICZu`9EaqK18-o;mH#A_Ey*R zOL7Z9n4IYA+q_!&C1qjHx;b03fxN^6ihWS@v2H%3eUypJaDW*Rr{6=VD-IgIq|_CS zrYk6P#U_i#lsaOU^)hDCLv!;)`%v=o&{}XDo^;J7&+8EF;vV10^EX8MNADs^YG14xde4{++eiFjkO@^kf1o^!q3Kr}1v)&k*4zQ~QP*!OdTa ztN6*&zFDs&nv*=OlM{M)H;47HvQeO2V`>Vywtw*A-5fc8D!I0UwC`SKMy~DtX>5}} ztmBz%5*svqx;UfiW~+^d$V&j(ljF}zPuB70*}Q+x1Tu;mU>brOF?s(U*3IGv*N|8L zW^ax^zlevd*aW#iZS&zfpEStQ-akE_hmm!A6&vGQ4)P2D<|5YZIs%MgWTuDdy;6)E T+r7jYrN|3_lI_5@+Y?3r_fk+E delta 2632 zcmaERn&s_jmJNZ7wz-K_7HJl_>H6j=#s)team8EaoL!JICZu`9EaqK18-o;mH#A_Ey*R zOL7Z9n4IYA+q_!&C1qjHx;b03fxN^6ihWS@v2H%3eUypJaDW*Rr{6=VD-IgIq|_CS zrYk6P#U_i#lsaOU^)hDCLv!;)`%v=o&{}XDo^;J7&+8EF;vV10^EX8MNADs^YG14xde4{++eiFjkO@^kf1o^!q3Kr}1v)&k*4zQ~QP*!OdTa ztN6*&zFDs&nv*=OlM{M)H;47HvQeO2V`>Vywtw*A-5fc8D!I0UwC`SKMy~DtX>5}} ztmBz%5*svqx;UfiW~+^d$V&j(ljF}zPuB70*}Q+x1Tu;mU>brOF?s(U*3IGv*N|8L zW^ax^zlevd*aW#iZS&zfpEStQ-akE_hmm!A6&vGQ4)P2D<|5YZIs%MgWTuDdy;6)E T+r7jYrN|3_lI_5@+Y?3rPG1i} diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index dfe0330025a51aa2ba272ceb3c23b412ad67cd3f..df4958b6f2594030e326cbe611e4e43d1be3fd77 100644 GIT binary patch delta 2563 zcmex0mF3q|mJNZ7wk3Jlc_oGMmHH_r1}PRmn3kAmYLR4?Y-W;do@$n4Zf0a)Y;KmC zYG`7fYG{~frk|3ZT&!Q5Us{x$I=OL|@#ce!a~TauHU_9QXL17**JM_fI`VXHR$%?h zLY~&i3an0l55z>Ofn66Dw8kFW81tidkP1+ zMiiNC<|sW(wsxQkHq`KLo>}KYei%TESlz6|NvSWZSN%viZV1 zGJ~*f@`5#jo1<6skymWAZCH6j=#s0l55z>Ofn66Dw8kFW81tidkP1+ zMiiNC<|sW(wsxQkHq`KLo>}KYei%TESlz6|NvSWZSN%viZV1 zGJ~*f@`5#jo1<6skymWAZCq3V^X1x{+{!_&_T7{DH=Ff~kf*(CvR}BsX3?3y`AB#CX2%uo zkbHP&N{A5p1->` z2V4{-uXgO(tZ>toOj{@G5cB Q%WhChihuiJW5!~30K7;n5C8xG delta 2506 zcmbRCjb++5mJN}NhPjDV7HJl_>H6j=#sq3V^X1x{+{!_&_T7{DH=Ff~kf*(CvR}BsX3?3y`AB#CX2%uo zkbHP&N{A5p1->` z2V4{-uXgO(tZ>toOj{@G5cB Q%WhChihuiJW5!~304Fx=xc~qF diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 5797441d60a75b6091f1476c7dae34ff28fc47f2..40a104e9adc8494871024e626bcf6d712be90975 100644 GIT binary patch delta 3034 zcmZ3sg>~5$)(xJFh9!B~c_oGMmHH_r1}PRmn3kAmYLR4?Y-W;do@$n4Zf0a)Y;KmC zYG`7fYG{~fwz-P&0vXyS8@A+3w}@cmpZtxvkaSyt+Uq7aqzG@;WQ}7XTf6vXUoIh5 z^0aT}6JX&ZPwV7^a!<(AxzbK}bGpK0S+cc9lc^IF*2nD6lONU+n`2xX$V(`on3mYQ z*nJ@r*^Zak%y1yPl@gK!#XIjT`#hh65ESnJeetoxTXYu zGPQ4RNclpZ!{<&uX3w`dAmccB>3z}WSGlg_h4`Y)Oa%|gbM&Ik+lr&fwe?BqIdW}n zt;{3W)??M%$+b10UXNT`0~^)FSzny5tL8f+v znZlc&%{oS=_RTR%qR8`e{p9`G+?xwmHIVCXkoGm3bmhtP_x>W`&2uiDBCq5CIv%K9 z^ZGS1{l0nq-B@z{z5cG?=Ce=5Imz_5{yV|VOW&uG7vJfVH^@j$e*Z^k^SK}Sq*W&3eQ#;fF20icY_x;@aH d@iv+Ir}ujU1L3I;<2Ej`+@G@@*t&kl2mtt=*kAwv delta 3034 zcmZ3sg>~5$)(xJFhPjDV7HJl_>H6j=#sy1yPl@gK!#XIjT`#hh65ESnJeetoxTXYu zGPQ4RNclpZ!{<&uX3w`dAmccB>3z}WSGlg_h4`Y)Oa%|gbM&Ik+lr&fwe?BqIdW}n zt;{3W)??M%$+b10UXNT`0~^)FSzny5tL8f+v znZlc&%{oS=_RTR%qR8`e{p9`G+?xwmHIVCXkoGm3bmhtP_x>W`&2uiDBCq5CIv%K9 z^ZGS1{l0nq-B@z{z5cG?=Ce=5Imz_5{yV|VOW&uG7vJfVH^@j$e*Z^k^SK}Sq*W&3eQ#;fF20icY_x;@aH d@iv+Ir}ujU1L3I;<2Ej`+@G@@*t&kl2mnm8irWAH diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index e2bcdd76538e18362038507c03c84c4e3380b58c..516eaf113b50a555556316b8f76d9f4b38d2fd89 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr#5fUUptdVSJ^2iitsr1rVksCYo9#nI)T@)F0r}O;yoq)jpow7oXhJ=zA;(IqA2zySRgZFNp8l^|B zts7(RlVR)TgYi~mXag4CdpEyKVkR$M_inzGHjRvk*}O1&2Nzj+c-G|iI$WFe%K5p; z)V{VsXtPvv4nLXNv!`<}j+snefj?_9Q1@n|nezq7wEVpe+vHeluFY#!>yzjGqRn;N zw~`mtMU(5c>uhG)vyhi8$Ah#>PhNkWdvngIRvz+=*u4HalO|c(XKk-xWc)#1Lt)l- zdv3-=Hq!0geo>IojGc6Sz-&2ddcO*z;AGbw0^2`JGG62)&yejvL+bd*(%ZBh*eblm F2mp`IaH6j=#s@)F0r}O;yoq)jpow7oXhJ=zA;(IqA2zySRgZFNp8l^|B zts7(RlVR)TgYi~mXag4CdpEyKVkR$M_inzGHjRvk*}O1&2Nzj+c-G|iI$WFe%K5p; z)V{VsXtPvv4nLXNv!`<}j+snefj?_9Q1@n|nezq7wEVpe+vHeluFY#!>yzjGqRn;N zw~`mtMU(5c>uhG)vyhi8$Ah#>PhNkWdvngIRvz+=*u4HalO|c(XKk-xWc)#1Lt)l- zdv3-=Hq!0geo>IojGc6Sz-&2ddcO*z;AGbw0^2`JGG62)&yejvL+bd*(%ZBh*eblm F2mo$2EfoL& diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index 77e41d8d0155e50c887db2cc249163fbfc994e1e..f71a7bc005a440914834dd20dd3330b290f31772 100644 GIT binary patch delta 2980 zcmZoa$=ZIBb%QsfVM$(gUP)nmrGAQuL5c+srX?ntS|phzo0%k=rIQPd0Hpmw?Q$lvJs`2!v9X6t+c(!YKc>WHo%R)E+6)f1d7Vcov0b;fgA&{8`hwl(v|qe4Y4f`)o5*nZ=8JbaILUMHW}fH97|7D*>2sABxwp59GN$m5X~K4( z2?sSu*9OjUvWa{7U5YBjni!68NZC{+k_=FJvYPiWp delta 2980 zcmZoa$=ZIBb%QsfVQylTMVdu!y1sdev4L@tftjJ1iA8FXg^?K$8k-s!rKMULq!^nR z7$zASB&H=BZ?0jyPKLJ0g7fkwe`0PR-9oU=1zf_LRaoz`kf(j~0IQPd0Hpmw?Q$lvJs`2!v9X6t+c(!YKc>WHo%R)E+6)f1d7Vcov0b;fgA&{8`hwl(v|qe4Y4f`)o5*nZ=8JbaILUMHW}fH97|7D*>2sABxwp59GN$m5X~K4( z2?sSu*9OjUvWa{7U5YBjni!68NZC{+k_=FJvH diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index 0ab228faac478ab0703e52aaa5934dd0a150a50b..dcde770f78f93b9c07fa32e7ffa2d26d890329f4 100644 GIT binary patch delta 2688 zcmbuA-77<39LJmO%-J#%$pvu=&5gF%cFrh66f4CIlDuq8u@X5#lb57iXqtyyke3^j z3!9(Bl~%jijVlz9TyrB_$;(du0^fD6KYhO6=lA@cbG@p$Ue$!_Rb}#!e@Gtbo;3H_ zEq%_!*YEK-oL;e4wD(Fr(JP5%7Mmpcd{(>Uvsyi(nboN6Y{$gWv8tW3{+nk{6@zSD zmq}--bt)L2g~%Y?=+iV1%4pA+ht&?6`ZHx{37hM0#q&h;K8$)&{V}L zO*$xhkhqdKdf+Rivsh(DH|C8LC@>?3Z3(q5I4)2tUw!~s>8YYo4fcF>Eds{G_A;uh z8Ap3g)YYPaXBylny3}}&1dc|gn5!k9Y|UNB9ZulnY6&8z{AVtt&9-wqcp(*cc#^TV zc0yaE^xo=OPR9J@jU>~1y59s2jBO1VsM~*tJa@{_1ld5bu~R*;lnVYRW{@;zHiEcu zEsY97FUV`J*cCjs{(=0a6ntkpo#fql)UM#i`zNVT_XWxe%fOAJXe6Es8K+oyRLg=_ xdaA#CM&=!QSfP(wKk%ke=s{}$Lkq7Qxt}BGjC0@iS(Be+F`0b*RbroH7L8t`=<)SR2IfpRvu!;`aYZ|4{5Q{@s)tx4 zGlxzx>J>0P2a!R#QEQYC%4k0dfdGc<@{%G}W>i zeI}GWNL={^df?%TIjl0H8^d}U6qu1kT1KslmNV4KSM38t|A*#e+7K?mZx zH4PPqUXa&bw#)c=F_;Y1=^$EJOw`QvVH-VAu)9T diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index 7f1700e9fda130b1bcf5d5e6e0f459d566c7a304..4d9ce13c9aa3f2e28330a62cecb543df762eb217 100644 GIT binary patch delta 2944 zcmX?qj^+G0mJPm)h9!B~c_oGMmHH_r1}PRmn3kAmYLR4?Y-W;do@$n4Zf0a)Y;KmC zYG`7fYG{~fwz-b+8X4NAe^g2bLbi7C%`>@VSjp6G zAj`TrU%-=#Z0#JIOQqS!2sW_a4P+0IZL#p=U2+~|>IQ}RDS0V!11&*YV)I7T26BB3 z(*93Ru$%W?)j4*qm>;f)d-G7~iGD_C9kPN^GBQd72X2^=&&S zvAxBr+IfXKlmt?>Z_s1=o674G9cgS%3Wh5ysc# X>bLXa*#2LV@gN!P!R^3ya2yi=EXApu delta 2944 zcmX?qj^+G0mJPm)hPjDV7HJl_>H6j=#s2bLbi7C%`>@VSjp6G zAj`TrU%-=#Z0#JIOQqS!2sW_a4P+0IZL#p=U2+~|>IQ}RDS0V!11&*YV)I7T26BB3 z(*93Ru$%W?)j4*qm>;f)d-G7~iGD_C9kPN^GBQd72X2^=&&S zvAxBr+IfXKlmt?>Z_s1=o674G9cgS%3Wh5ysc# X>bLXa*#2LV@gN!P!R^3ya2yi=0a{(G diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index 3cfd8109e2b750b41402064ce62245f468587918..949fe1fc72bf8846ed46807ea1a6fba0ad86db11 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr#5fUUptdVSJ^2iitsr1rVksCYo9#nI)TUFBvTm%b z8*{zPJ`oCrCc>jvI(-h+*R6l!9?#M4G0m$vyiUJ1=G3~>BTmilw>zAEyWOMFRaOQt z&eUn%ZirPcD9J^Wm3+!~14h3z&2I(Ba^M9|_nGN>;|L;L4y@3dol{6w65ZSKXA9Ky z3Mp-O6#!*whAwoRw^WZ3Q=cO~nfjCmdrfqwOKGlNRbLE=p8`mIw3P0%ASub&B-}B? zu0;P16w$H19hyT`wbKUd1gucU*(FppH(EixCcLw#s$u*!pi1SyarBfohZfLuZ$}D1 zv-;+zc+bfO-XFK>SCoak(KOQh|1viEbbxSNF7~VmZz5S9W`j5`cAa4#c3^z+%Oqj a?l@|GgBRhOY_bJ%FMo|1#nJ;dwEZ6oqhBKc delta 3483 zcmbuCK}eHf7{_^Q-?Zi?w$h0uNDvW~?>1ZOP`PzlDkBgMI-3YB{qUO6r=C+lGpvmcm6&9=l_46_kH;)oBGP8 zKHI~rp|NSF-x-?dJn6G@yN5fhjxOi8$7yq@pZ$c*<{v-BefBPH^;r3s-)pC7Rt7M^ z_^fExMXMLo$Yq0>e9CtnM!zyF?gYqk;H60Q8tF#k2qIh#QQ3+1>%$OXCl~Rpu0Auxq4M~F*N)V#I@a~U1yt2>L5H1y9CeJYpsLx671V3oJCCaB{BHnNDhJM>r@Z;f5}NLvZ~44C~YWo?foOCh*MMHr@N@g27RVG%7JCG)qe z5sFX4+u{XgpoO2y4S0#w0xKPc@T9zdgdIaCmk-v-B**!+tM&4+gPqkwz0ZkE(|);j zntjC%?iQa=c|}HC?0FO3M4~*z25?;N8)hH&V0_}s6l<5OAr=8ckZOS^*!s?C;;jjH Z3^l*S%gI}8ss(bd{TemOm4|F__dkRb28#dy diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index cf5ac3643bcd0c23b63030875247697f2b4b57b1..96d8b9461b088581774ce22b8fef3ddbaca403b5 100644 GIT binary patch delta 3969 zcmbuB?MqW(7>Bv1bGp=YmX-7ZA(nx)Q@Tlzk)aujGO`b0Y1>>VrDcsQO|if<8s&JR zqo(K~7)C1QO&uh12JMR&C!%?P1ym=a_R9Tde@BR8b*dLcq#?haHV* z?C2%HDEy8Pr=K{B_E~>&BWm@XYD2B&(=%vHGvxuGV1DMVjRvP^ebq;#SS2tix}`)m zRQJRHW+gDqinkR>SVwo%*@2jZj=CG}V%E3(qfwx}-fU^XtkWFZmXG#&#CHW-+i8A% zAGR7FRHD6Jd}u{`Rk|*t*0nwBQ0q=bLaolns{t!3fllOdR05-%KKL2A%$2~9nA*2W zxF*)f!7@6?MK3yHBj59!94s|Qj%k~ANNhTs%Fc<*I1vARd^5McD+7v_7cDd_n!cEM zYWBnb@M3B~HE!Q2PsMBp$3^=L<{dDmXH7pNo>z zr)5OQ5B!cg5l&B2Ybt3BIHt6R+X^4PKywK|0RQ+$4fF&F@GmcGe7tJ8L#dfS5!&d> rTb`3qjb}Or%&q``26o)zLy1J?9T2|5pVzCUY8Q04eWMpW@Mj6?Mu&muxQ)s(NhNf6x8ZG7W zMx&#B29I=tt0<(AteyIabUbFv&2ZbxR0{@JrLGb<~0OXc<~Np{PUtI}f^oiqzjey2~= zn5s|F@Smz=;6 z-tK6?tOll7t!Y6LHqaflxj;<9Kt1($G3#6Y(IC)XZ#Fk$)+vr@%}0AZ?7NDs?G(Sh z4_i$Ss?c69K9ta2)y^xZb#3=L)VfoZQLF3mYQV~BpaZ!a)xZeb20kN~xf&Q0lY3VQ z_xKtmSVjl9=tX->_<7Y%UXmX%NcDnKp?BYz#&L!w8Q zX&Djn1HZFY%-K@43sp1<98>zkZH1pZPqXnr0RQ+$_4EV@@Gr0Ee4J*zLn-M%5&GyW rTb`3ii(@(p%&;*AO7TlFFQ1)lLCV*Z5n2Lwp>ppP#cB;f`kC?v2OPDP diff --git a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree index 1b95c220980e5716f6f9c81af86d96f164d49fc0..a04fad6cb9220aad3825d8e3b29fedffb2c902be 100644 GIT binary patch delta 4920 zcmb_gT}V@580Of_xz$!3t%X*E2$toxvU6lq5(Gw4Dbht#DYZ>36=mz!Xw8(;q?NC< zeyO`|s+BJ}5H*b=q;6IqmSt2zSt3yeA(fqZM$l!?Vw}t8=X=ldKHp)JBbvz(&Fvk6 z)m^=}+FiTzka>5eWp|eHbC#5>$tsn~q|7qeA(hI~D$8nFayYD+vcqaEk+@mV0x-I> zVHc;&*fZnb6~jXqIECy$fp$t22C41&vi@{VC(+l{SH~=b7!;9x% zibnm$!un{`-zNE@QBPe`fWENARCy*gbskM0L(i;{L^7|?u`go~R40v8i20t5xKVx) z&A_kNUSaSCHm}bIwwmv3=*5QJ#OWJrFtbg(J!cFst5i@ezst2@nXIDT0zIwurShkI z89Q?o_ZB<_)!AZqfU0D%>v&y}P74GxQ6@DKsktsOB+oZFb6d)I$qXXioz|v51_EcH;env z6rqb_@N50sl7x&_|1Hpf!oY>+E0Oz52@zLbogD`#djoaTopJH{apdUUz)^m3vjNB) zdjnYjjJ$y+8tTfn-NTE*8`w|gPVrA!{AzDQ60g#jIKM+iN<)FOxpM+h?tAQ^&5ded zboE@oDNMZRK6FQ_4osZ<0O?s$;B0>+0b9;}kH-L*qIiHVhqP22dIM}p1kK}5E08S- z!*@N5BiWut8P7XF0}6wGFj>gu;TJ2BmQY+UztJHr5pp>xZ_?2EIhM;uCy)_D7}`G% zBTN5BUrVRHbOQ7Hi$G65ziz@w_~XQKWZ@$o=;MS)c{#Bh`fmLnH1~dhA0AHs?RX*W zu3d10Ho|ywuuUUC6{3toB{(}%0KYh#LB&B1QU?+71(epjCHTc4%m+!7tuXp;iNbq0 zPSbEb^`F@kJe?>c;Jal!7cXf2c}c<$?j=k?MdvpMQx*wJk&aO_E(XU_gdsiPL;dr~ L7_6`eb7Ou3xu9QV delta 4920 zcmb_gYe-XJ80Og2xz$$9a-kL>g5BJit8I-^fe$6iIxHasbdo2M|l}xAcb6r2EJPF^v z@KQYLHx|{#qy8>E7>|1Pl5+HgEy%VcVN>Vf6(i`G6=oe7R;oCdI{>Pa!d!v*o{YHG zG8oUmuh?E;@H#f+mjPSNw>I=(!*1Xe8$FoW2HsjY0+^L5Xg|L%wqcocQ%|{?)&;Zq zOPK{bvzvR$pMmNu+MS>(iFOsQuT&|4U`D+@((X&7s^J6da{3YTGKG>`_6{Hikl_zt z?>c&Oq`=l~@VPy)XU110MZKp;YtfMU$5EcYzZu9ZN4?!hUZdV7ETzq!4k<)j7$4av*$kvNJATKZzVY5I)XNZ`J{s z<3QL7z$g%IprN}3w)=Qd1i}Z&(50I$i$Awpk;Kb1dM@j^8s{6$`16L@et`*lHhEAYzDTRd!LK|FiG(cU5+Ygd-N@^B~xhr`m7q+ zk{Eo)qhzw!b13&kCul%o2n}Qi#r%43719!t3+A^fq$Q$W7nP1{T1FGOYIqD8!4$*o z(bve*PwOk`%(pIJe*X}t>G$^{oP`S5x2FqDb=sAr;>(?fDcz87fT|hHx)23aV_|6v@gImLeS^XIvNgnk5XW0Uz?8 MPufVeD9lUv3*o%u@Bjb+ diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index 73af0d0b2e90e6596988465b94a346e399c3cd7d..5e830fde876e903eeee0d08fd8c8e9f5b406e51f 100644 GIT binary patch delta 1062 zcmeC{X6ox^+ThJ-Sdy2WS5g>Xsh?tEkYWLZX^DxZ7D;BwW+utzsb)#$W=00a=4Pp> zh9>5zhK7k|n`;>FvyrZC@rnPn`?t>$qS*X%}c{fS;+Ed(&pUgIx_qTOovIE>*Cos$+9(Oa$gqjWVy`8 LI_X{nY5DaIxS zhDnA7iD}8kn`;>FvyrZC@rnPn`?t>$qS*X%}c{fS;+Ed(&pUgIx_qTOovIE>*Cos$+9(Oa$gqjWVy`8 LOOKfdpI56jNOvh!!3 zL(XN=nOt__?Y(4JN@~`ZGK_95t|XLjLN%4Rs)VF2RWVIDteUcHD4civaoWd74-V0O zeE}o+%;m?WUi$9N0AfQ+@p98QL~LkjK54G22dsK0RtO!Xp1`qvlJ($0gMG|e zYKlJUk3WYR0a%Q;5IRD~>sP%kr(3kwg|oA3jH|kzUw(`eYilo=3uH zue(ntQ0q?rUDWz%5VkH34Im+`#@7%kwgwnU zpvU85sP(VW2B0h_+pwj~aP4&$+UM?MFHr2|h)Pq>kQm6>xXXTeEMt@^_uWKUAFFvn z9vbTielfcW6fNvLH=n_#9HqJWCZ2uY?gRUN6!Eh1WgN8&yz^@od+#KwEZyc?KTO1~ z2PLj7?IZiPP|MuHfg&{ZYuvS#K%#PmQ?b-Y9h-N^|IWpp4GEmVWh2GXKjeO2S5n(* w;Ev5#|5Jf=1ekrg+3(?nGGrGQSK!mzeMkZYF7365EpYx9_@9fiw71fF0Y2>7p#T5? delta 3077 zcmbuA-%C?r7{{5@;U+Gf>?UXs7#kGyo^#fAR4Rqxk0Rs57?q-&xg8OIz#wr95<$91 z3Bukr{H72=lb)0o*&=$yayHcLB;)X z$feAi1>Mr;r?1B|n$XfBro^IpHm$2M`_pcys+H{#87(T5v?5GvO5?oim)ki;Mr4%s zTZ$OT|2!dF8lX461wd@-7QbuTM8u{(%YQC3w*Xcn@{peddpjX?jC#X|&Pg^RKU$q* z_EIf+VcgzOy#Or7TU39e;|;|FNPJDb+yoUn%b)sufRSVt#%|t2t%-iv`gdRnwVouR zXs^42lc@FE$TigZ@-A#$AH9Qwu$Ee+qUz`855mpP6UDVu9q5%^kA5Q4t)&XQHogrQ zNuq}n>;h0$GF{kG3S6Jo&^~u(`hjB4MpT{~Mq;4k(jMpOv5iTp_V|c$L5}AM zd1&k-`2O+-plE65mDL4o%1K&TZR6!hqZPYe*aJU3by@7kSr;wE~3zK0E~3zK1PVwFXjMQ*yjd5W=tagu?Vp_z$AYLbPK84wzq8X2XfS{kGnn-~}- Q85$&}B^z(v%5;ni0Cfoy1^@s6 diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index 612c0948140c2ca0969d21c0bb3509ad4dda3233..b0b72ebc7fc23af14e5e4b0fbda438ce1e3dd5a9 100644 GIT binary patch delta 1253 zcmdlng>A3;BiVSe@e}Mo1 delta 1253 zcmdlng>AH6j=#s3;BiVSeRU)=xz diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index ebf0f5f5093d76834e5e329fd991603ae27dd2f3..f1678c6ae11b55a1770898e484917067b604e3d7 100644 GIT binary patch delta 13101 zcmbuGdvJ_r6vpR#m&8Uko2&b!4Phe43fY8~B%-NNLJ*?lf<%c+#3d>&l@>u85gT4L zw5T$uk=nLL5SL+69c{{Jq6QJ^#a*=_Dopg<-Ok9rd3N&m^Zd>^?|IMreeah&R@dfO zU7L~w8n|H2%sC6PQx}J(_cNzQ%D-uoCx=H)u}rn}n;MZ}nG#_MGxv?KWMuT|7m?AY z&tywzde+qWq4TpA&YPNH&FlTT^$?xu(`*;19A&Fh+;mJTs=K?HtZQ3jV{+RP!vPhO zT9+97taH;e+X>@U1+qx6hPHFJKJxby_r{TzE!L+i7K+2i_Q=0X!@{tIw%gHg(EilsYJ5A1YlreKabaKl3G;t7*=7l&WUO zq0~R;!MRp0Ohl>QFG@voJ(D{Zm0nnuk4hh}NI-L~{cs3MJ+o>8N-fQgL#f-=JwvHs z1p`p3VMAY(dZj1@rT$VJgHjJ~jz+14pVp()z-{R$wae!wRQmJIrKt4w?ipyV5BKDt zRN5baN^M`k)bc|x_5H)}&Kdb_9a`ZVJP0k*(WCHeDmlI#rQSWc5tX(*a~756mcu9A ztaIy7s`dO8bX^S{4pLBiiY(=S=_oL8U;~tiw)E$41MyZ8$=TYj@diWXfkAJIBYSIh1n_?QDf>f>~ z8Vi<~%T@XZt5Y#E2IE9Qr#7?ns8oddMCvnvb zih{+vW|P{Y`8VbEuoF2Xhu#2=Bayd39VL>MQh<1oOIHE9-GHS*u^T8BS@~oV#%gUE z*M3BvNckKwNSmCNXbjV=^b@G%Z;EMWYfvm24wF&Dm1*AM1EXT$;Da;@_^#(zMwVXL za1Y#Px&bD^!%Hc}9}qh_*IYs2aPMSZmgPGzM2+MAl~e+pCCLG3= zszD;tN8Js&uylzA{td?YkT9yN+7_LQLW;e)AxJ&g0gT=5;3j&Assw;`FORal`DaWkLRjJQO^`4T4$*bT(M$lHK7yckn9XW6so1oH()vQ z39drtGR?rAd(~^eeT4Jmw>t>w;L9ubtJUaO5DuGV$5exOQmQsKzYMQ}Vd;|D%@qex z6RfomEAFZqFRN8=q0`El(<`rrd+OG3SK|s0H3gbC#|CPCz<&=msgjIqOD~tAiB8s9 zi%xr0Z}F%=OXk%{ni+jeL-G>QMY1D912un^aqV;|Bq2j`8giIbn-vTO z$FjR`qsOhiHr@HqY3+yhAYS}cD~lnoM<%1iVChhgK5RG_H|vhJ+?5g-gmm!YRS&dA z_$|dgWY|c02z>ZB#*}pM=PE@%X#f|5TN(Av@LGK5qi=#=4jMyb?DFMcJB*hO#qdbn z6RG<&c>vA~*N>qm4@<8*Xiu_tl+xn zqD2!@Y-GPv`g!#6k5ez|`S28wVh_%))HkC8fY;pCgW<*xd!RoAc04CM)t@0bOI;FQ zdagIZ7h1i%-Ml!>!)-Xa;w&B70Y5cxd{7Ya8S+N1s)Jj;NAtVY{tFeBKQp=R^B))Q B8dd-R delta 13101 zcmbuGdsNPM9LLY+cZnxGJzd=|Tcnd)k5Xczk~PPO5Sb#WkW0ldxlCJxjqt?R95&22 zG)MDn`v|$5oMy+?I9BH5l6E0vwp=Do_I;jb=jh+w&*|^?`}O&JzMt>s`}=)=JtrF4 zpJ-@b97jXuP0tBW51%(PXkcoHIV8m#)<0}Ocv?z$aG3lH2@MWTPa9-T4H;nWpVHqv zJ$*(49@RF1VaC@wlC6*mH0OqO-6voX1KnW0F< zq?Tm{Z%bCPW<6!BRv?QwOHjvFmWMvx;@(7Zw?=#Rz(TS6SReY7YFHT7ppIKxLDI?A zSU<(BIzdUNWO!i8mC2?3A>n?M!CoCTiC@E>CZIO)D3DME)ZKrNL#YJ~7f|ZcC-5`kAOBXN)PxssH$^o)1*u#~ zGyyCzm#g#-%8hSDUZ_@crFE#bmy!CS+D9g;N3|=xDGaT1oG(?N+>`Ao8M!@@FYR2? zh1R0n8?VtuG+#q^%0;;WJ!w0tO$?+B$VHv4R%`mw1eCkPOvg~|k0G=lt+OeNq5v-E zhSNEeSv#2K08HB@65ky{U!dGxku(D3nxZKb<=z@j(J1%q+cX~4em#;lquQIJ34JBt z$}xmKPjU4)$^!PEhDJf(GB6f(4>GUQjPUNcD z6akC(&Lg#T%WukUVaIdt#qR6GmoP5QL9I6KBHUpLhg)X32Wag7e7;k9l zT>BBZA?35jAZ-@6L1Rd_&`+S2zbT|W?Le_;JW56pQ>uB04~$9}2Og%ez;`|SGP3l_ zhI`;X(@ii59#uk9eE_k&bIlbL3inRN60@q z8kO~M0@7h5BDQt0FeQ^4Pwb$$p{>lnbyF_E4IJvH>;}HFI>vv+K*iLog^EIzy>KAX z>n>b^K@rMEWCiTIXvAAe3@R2EXDOQKGDfyg*LRd0xQ%T#ENwnPrlEb9NCzKL(^LQd zJjhE`E}+q{^tuk8i1v!aE>+w)a*?tQjlo`6mNrX$(E(?#>8JulI2D7C4(`0zqMYr4 z26E<dWeS`v?N}WpqbIv279Sk8a@wlHY9fuxmk8(ke}wmGOj&Ng(PH14nq#MXmbO> z;8=F|9rU=h)h2+CoYj8l1meYCwXzuUdSp6U43-X0(1#7j;%3%qE1fBUK}ZL8UR|#> z!EY(HA;U(}d&7s1eN0IQAFfjL(*|%sxUEs|2Cv0;p88h!<)Epzj9tDQ?1J&qp%5O4 z`@?n5W)Hv_q528*(J!Ene?0Ayo)1p}DR$-TN_`tT0C?>kJrHjE;ClT5u;V%Iss0SfS?Ut_ z@^ifjzR>FH;o{E8t}dg{6=&(t5%{Tr{eyytO_MirRh?b(U0dF*wqK~Q{F%vh&;I~Y C@y-4K diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index 6667fa9ed63a2ee8ccc1b8e86f51b469b6ebd0db..eb17c7e9dc831591777db44bc9243a787854b024 100644 GIT binary patch delta 1676 zcmeDE&D8swX+tohZAo5sUP)nmrGAQuL5c+srX?ntS|phzo0%k=r8Io;7wZ@2mlh?bPCnSEGRz;@mn?FdLro`qn87DGr z2Kzf$ZXG4IuTku!#P%o3;gs0^OwExJ+b?M(Q)2rAZA%t1lgtD`{>^I)R&r3F{e>m7 zB$?VBLZvo$1{;$ZbekPQow&%f`Fx`IX4wQia&11JXijdB&6gM5JU`2XOq(ZzwCChh qagycl*v%znGTfwV-F&cdyAJ8vfW>(5=0EESc*xQkwE6w+d5i!*t|&|Z delta 1676 zcmeDE&D8swX+tohZEj+fMVdu!y1sdev4L@tftjJ1iA8FXg^?K$8k-s!rKMULq!^nR z7$zASB&H=B>!;)=7wZ@2mlh?bPCnSEGRz;@mn?FdLro`qn87DGr z2Kzf$ZXG4IuTku!#P%o3;gs0^OwExJ+b?M(Q)2rAZA%t1lgtD`{>^I)R&r3F{e>m7 zB$?VBLZvo$1{;$ZbekPQow&%f`Fx`IX4wQia&11JXijdB&6gM5JU`2XOq(ZzwCChh qagycl*v%znGTfwV-F&cdyAJ8vfW>(5=0EESc*xQkwE6w+d5i#Y5dDS# diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index 104bf72acaaf0ddd775fd6b8407aec76999ee273..35275987bea33a7450a1a230b9db93daf23f3e2b 100644 GIT binary patch delta 117 zcmeyW`Big6IHO@nUUptdVSJ^2iitsr1rVksCYo9#nI)T*Us^+zW=>2`4vD6ITdPwVlQZu|!KY9W}CymyH%ODw9 ze1(yGW@#@r#gp846T#4|G4XE7dSBjOI*11LzQ1cdP#!p0e)YrkxOJ3G<>;bV*i8ct z6n@c5zk#8vCJ*i>wGT{Ywj7%_;Q;r zpzvD#j%nIim%#OauGA$ME6~Qe1gB=`bzOqWEJc9pt+s_tFuc};MS(_f{Yukf^> zBsh0@aid6|fJ?`$pJx)bi5(?s27ZoALz?-%l7r1w$jKfRDJG6BlMif@7Si<*xO%Ha z#(t1Xy!=LXa3#}18YWt?eN3~=AF_+b6*_>%R}F=Kbi5twkYeXHDIRvKNKUc5K`DdV zkP=dJWS#X6;^!{qEV6!*%Zn{RrQo(6Dlg0=TN+eUp&wS>0_T7!5K{02`0yl~Fv_Y! KIER#9ZT|u7TqEcJ delta 3290 zcmbuBOK1~O6oxs|rt}df(NIi%MkLrSr1OYlA{1H_L3GigVnI+ElNk_03t|=n(lii3 zkZ2wBss%-Y7HmQ76%K-F>mw+LN;k!A7lPnQAyL7FcbY}kbHc2@@BioCIrmO}wIjdU z@yr4>GiJxlc*g4ApVAdQsTisei>H%u%@B{iPt(kFLP_Z{MNO*8n0Zd;cVHs{bA~D= zA8gstdl8L2P zG?LFQAD~U~6nEYvXlUMV;A-1tmxIPlD-g=RV z9}vQq-@s2?NgIV>vXi!tHp~41KR&L(VQPHcQ2Ga_x@jGsqeO5BDl z3eE8i-aFvWJ<DctZH_1Zz4~Ie@{l H(yy-nko(X8 diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index fbe46a97d58713bc925bac56800cd211dbde6ea9..6661ada51b7368e0f9b97e8e51eb4bc8e9cefe62 100644 GIT binary patch delta 15985 zcmbuGdsI}{6~@=OckaC~2#mu+e5Uw_(waCJX23Q|5MuyMiXst2MC4&W0U;V2jH1hk ziCUI%mYx)CSi}lS>vL*$QmxczYY13ONEAbZSgA_UDq3QsM0(~Z$*-_#zH#5^3wZxWXi^z)1u`P+TO}0D} zY0Jq8kBH0(56`sOx3GRdRUMq-@RuzHOv>wWy!`E#v|>zduksIYbb2iX=|Vol(e3*a zq*~6rtNhPMaNr>hIiNsxU+$<5?gC`?>fp6@(<;R=b@&u4Uza>=F>1O!F=Dvm(v&|U64(&|UIdK*}zq zm!0B&?}1vKl?16*IR<9kGego+$DWKNq_Jc2N*$G%tC6O5N>64_M5*@NwE)!-lXng! zI+j73*O}+B!UI6CcBfP=$ws9?s|L_q>sRNY)RxkjDD~_caIP(7$tbmDLou4`oj2it zA8q~>N}axS4w~zR+noqSQ0L`39wC*S>~QH`V#0(&&Q~sPq>{^3Ytj9eWF<)*lZ-rDY$&)MF=LYRM^h z=j5Hfk5*Van~0W4ItQOkYQtfay11zvmA=z_5tW)-;G53;H>wR8!9r1O=O{LSYAZ%F8(Qb0v8)5-_KjzYvDchZQl4U! zC^x~vD$sm4PG)wLd)msjq1tbwSQXmO)2FgHlxuyCeTr)9Vp$DPXWH;QJC8CS#<3KD z>Ad`?KY<|+P`Y;POKdO7ElFex(0o@XF)PZQpUjd`?)((?0;-KqV|!68U&N6A3rNgV zy(sf^7Fz-AJ>IjP<@19@EP$>oWs#mZgiymW7LPiRh~ej`*qJ~G9e$NP;hDpR)oc^! zP((Fr*f7QYXK)fLumCW zairFI=tAsIExTEf4~XYa9AI9&xt2A81|$p|LqIWq`yBJ-xyjN@syodV0A1r+0AaHU zUjFaSGb8_X6KeyLAYt%YARu-&F8@=3Si#_HED>&??k+YII4xbhFT}pI>lUj*cAnmX zf9Pd5f#e@+jr=%gW0Uh9pL7Y$LQPP7q7I6M!xV1h|HgKlHm5h%6$ zx}P|SBHjlh&Y-bjQYs?W+qS(#^v$SAk`->-R;zRa7=~OMenyn^Ch$?KtLLx0DEZUE zS<)jIFC4yw6JMAty^GXc-!VdLq>X9P%ZS6AQYnR&WJsYoOR!&QVksV@Q6=0|z5j6d4+jd;al)7`bo=rv8F8`Qs?Pa^!K5@{vr?OYX?cFDGKh<3TN4$3uDl8q z&>1`lm&?HXrYGKgTk&>9@b@ldBhUnT1j1z}a1tCps%{55ULaGcQBfbjJN*TdivN4G zHBj|IrzaXdM$HD++4X)R#C~KBQ~iLqI+|lu*CS6SpY^H>Y0*1W==u%678^c9@@3wjkE?D?o75VOii+t$5dJiCz=q-ojwhDEyyTpdm=rBBxW4NTM>AMNakeckKd!i7a%^6dB`U`f6A=>~w=5?vGDiGGStBF!mrb$c zMMYa8aw06*`MFW{t!w~L)dZ(I{AG&)lk)myUjFvWS}7*CSNjJzy1WWNx{wcZ^!WY| zsg^VEYX7qm9C(OB4k(u0mpf{Ly8)TKCU~9Qv|4dY9XSQd*Ch`hJs->2CAWO94O^@t z$G-7fQRzoN==XBJ(xPNpj+E#QjGARni5}^=JmrrFIleH*Zb?)elM+f1x=Vf=NZF|K(IGz^Wop~N#c@PNJ?v$!!d8jmK^&pyS!Dw)rP^q~UzUj=L??tH@ZCB8B{qhUAhfN*r zD0O#d9h&Q{>;FNil{XHf)SKNs0F{R=WosSlZ`)ApzPob(tUj7n^`1hhtPj5G?tJw- zlsdD2I-2V<11%`^z+fgwrNfMU31TTmVd$7hks7;&a{p{(Xh+qZ8p4p*88Ks0fr-sW z%bag!29z5V%*<%1J`G`eP;JO47KUoOLfIgytsKK*&^nilW1T3se*#;Iz2?|Rd74$B z+++)@MDyJg$?PcijFoLiwO_}vYP6qcOl65E*ZLg$7}eG%uv(zbwDEa%0cAc)Wa$9Y zdHK;mGD9AqbnUp8*glk7mckaI`L0Q2R+PISjisU71?lVsRGXB^_Muw7m?8fckeI3Z zQ0AFjwhGvLymtdD;)hCD09`F$v7R`DP~&ozggTIj;U}ornLr2~d6hlonZw34Y%}Ok zLbYqz2*v$pa1tx97WlZqxpKMhZDmV<+lkkVk>>LyJ6I5ZRLQQnAGB^j!r+{WiVtwc zky`7a3$Z`7?qMZ9Af7*Uka_WzI@SalkT7rz1I7HU^URm$r%AJ@{tR0Pbd75Pgw1An z`M`S40 zg^J6i%gFtvM|@$MbO=qC3$Y&!-68!v$oNNnP(WO|QeH^*AIrm$V@(&wPL+?10?GVNrtHJlFO<7L0}=+uO_(^3 zqKoArK;9(sUWrVvdcBG&*5h_%Bi71y8709<$&zV2Wz2X>j#4{XhaS*oqlwR z!J8UR%lF~2Q+JsDq1=gXaIQNX`b73c7U2I`aN*$1muE|6%59ZnzmKkmh-N5R`emcH zM-CTdL#7pUAQ8g?4HP@e8A|o>hP0=btQykqd`l8u+QfHrbOvoHoAP zbjsjGBla7bJr3!AUR&!86T&@+%bTWuX6Qq2M7`&^a0sQ&Hbc`$Fc7lz8Oq^`2yq}K z_8ab@LxC%c`ay&7#6`vKSuKQ%4-FWUUig0j{TNvrqD=Jc7!eM^eDr>UnHPU%c#&#H zD3$0*Kp%`#tnl&(aR60>E9-$N-8FW-HBC8*;;At~c^4hK=-wP<6xzJCxTQ)1Ln3N`NQRW?-`q&i13CvuYEvWFq`>`bVQ0i`;O!xVcGPflT_k_|{+5 z1en}@QANJF>|F11y56cbz~p(C)J1U4i?683Fgd+l-3gPcI@DH}Jo=i7d`-hu?Sd{9 z`E1)Io^wOp0O$OAw^|0=7%uX!@2J<|f<@d@k?%gZ$cG=O_W?4A-ku1jd+?FEAGqrH zTv=N|J&#pnFeM>g4O|t@GG*=VRh8WrRD~9sw2#2Fzco1>s9i!Mp)q4L8CWnq4RVat zsu6O0rk2NVTC{7x)#21qR;2cCU?LYkAGGqLd0H61`{$)`ovO=)gv(AK|L=qm zz?)OF;jWL1Z7*r>1B>xpKN5a3jqX>LL}k5!sn1C#QPg!4+-E+CJc<6cU5lB48)Wd* t5U*X7e^E;W9ss`$BkP718{t71B*OT>qX#f$7u)rVXi#h9!B~c_oGMmHH_r1}PRmn3kAmYLR4?Y-W;do@$n4Zf0a)Y;KmC zYG`7fYG{~fws{&O9~s&v?^jCMY{`6snRFXLS|^`s*TW> z!kcCJ>&f$S8CZLm;A|!eY+o%BMqa2vY~L+mK#BIHGB3#py3PBQZjcvbm75(^(+$ZA yuGGzT;rasPX`O5rF1%SR!-kDa?FY(bH?!uea*(He^MUeGKC-l?Y(CZ2zz6`O**FaV delta 976 zcmX>#f$7u)rVXi#hPjDV7HJl_>H6j=#s*TW> z!kcCJ>&f$S8CZLm;A|!eY+o%BMqa2vY~L+mK#BIHGB3#py3PBQZjcvbm75(^(+$ZA yuGGzT;rasPX`O5rF1%SR!-kDa?FY(bH?!uea*(He^MUeGKC-l?Y(CZ2zz6`{iXOcH diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index 80e4dceacf8774e60c0936159eb4d51475894f59..bebdd1046116ff2e9129c0237b89fdbec01a2c24 100644 GIT binary patch delta 1139 zcmeBrz}oeIb%QsfVM$(gUP)nmrGAQuL5c+srX?ntS|phzo0%k=rIR$VGIev1skM{4fSD|qz^Es(LGPQzjekm(LW{`okcPV}&BiJ@?RA0bJmVb>W+Zl*&K4Una zJne?lFN8A+ZoX&DC`p#}Q2jxnDci``&pNq5LU_9Y52FWp=^X3`up!fdhOln`F2Z;~ pntbO7PJeI1sJz|RkWrtT0#mjFO;Ix>%K(GPo!tD}Tk{xO83Bi*XyE_= delta 1139 zcmeBrz}oeIb%QsfVQylTMVdu!y1sdev4L@tftjJ1iA8FXg^?K$8k-s!rKMULq!^nR z7$zASB&H=BPp)A+K!&c3>IR$VGIev1skM{4fSD|qz^Es(LGPQzjekm(LW{`okcPV}&BiJ@?RA0bJmVb>W+Zl*&K4Una zJne?lFN8A+ZoX&DC`p#}Q2jxnDci``&pNq5LU_9Y52FWp=^X3`up!fdhOln`F2Z;~ pntbO7PJeI1sJz|RkWrtT0#mjFO;Ix>%K(GPo!tD}Tk{xO83A<0OlJT9 diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index 1c0b6544cb077a36938a56c9dac4259577fd31e9..2a0044dec66bb75619561cd2428abcd40392f7f2 100644 GIT binary patch delta 117 zcmeBC?or<0&uCbZmz`Hq7+ynMN#o?>iZoMd2TXl7!Onq*;Q2870@Mn-9=mIf)tCI*H{ Wh6agg$;O)-7`vIt&}PFLzykoJ#~?=l diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 55f90a12998ece35060f4d907a76a704b3a0d81d..379b0acf692dea1fbb8e0cf968ab1b9dc041127a 100644 GIT binary patch delta 480 zcmcaKo$=Ci#to^Ah9!B~c_oGMmHH_r1}PRmn3kAmYLR4?Y-W;do@$n4Zf0a)Y;KmC zYG`7fYG{~fws{&O6B*hjGfKp4R%KpBrq;H6j=#sOyV*2!`W9Gky5e-kH5d(7lJlERz2V&0JxTo1Xy z+9%65uy2-6iV!8s1<{lF8bl}e#RzQHsE8sj_@X!SHDt(>Y5N3Ksm(GAxH%}$es)E+ z8d=(7CiCBA+kE=`b{_JyZ|1+7WkH_S?QCL<_2hXvX1kC)qoEF2_67mVcmC~Hy&3x% E0nN@G(EtDd delta 1690 zcmaDdi}lGY)(z2&hPjDV7HJl_>H6j=#sOyV*2!`W9Gky5e-kH5d(7lJlERz2V&0JxTo1Xy z+9%65uy2-6iV!8s1<{lF8bl}e#RzQHsE8sj_@X!SHDt(>Y5N3Ksm(GAxH%}$es)E+ z8d=(7CiCBA+kE=`b{_JyZ|1+7WkH_S?QCL<_2hXvX1kC)qoEF2_67mVcmC~Hy&3x% E0cXbXb^rhX diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 5b268ed39072ec0d2291ff0094a3abdc9a1f7f13..0e39c10401388ba2092089ba77ff383e8973256f 100644 GIT binary patch delta 1932 zcmbRDmTBHwrVZ(gh9!B~c_oGMmHH_r1}PRmn3kAmYLR4?Y-W;do@$n4Zf0a)Y;KmC zYG`7fYG{~fws{64D;e4*e`HDAtj|1=JgxUgcjx4Vx>Gh!VH4sYOY4ly`TQ2-xOJiK zjLijt>zT;1b>`-mB9q9ob>?PQ@x$cWdP(Xtxmx?>j*+WXUg-w8em$tNgB|u zs*cP!kDn}{CbgNdwVS+%gJ?JF)*#pM>-)twvrbasA~Wbf+AqvGL9XMwj6^rvE^eVj Ud)i7ya#Gz#mfX#(TW2x?00}B;ga7~l delta 1932 zcmbRDmTBHwrVZ(ghPjDV7HJl_>H6j=#sGh!VH4sYOY4ly`TQ2-xOJiK zjLijt>zT;1b>`-mB9q9ob>?PQ@x$cWdP(Xtxmx?>j*+WXUg-w8em$tNgB|u zs*cP!kDn}{CbgNdwVS+%gJ?JF)*#pM>-)twvrbasA~Wbf+AqvGL9XMwj6^rvE^eVj Ud)i7ya#Gz#mfX#(TW2x?0Hyyo+$Fe{0QbVjGK9?}S;hZfM%%$DJ*6F8I0WZE*eTr1m& z;Y61~k|KI&0jmQZqav-B7Ahh_qC}JmqO2aOhbZgZF_e0nZ{j}xzVG}0&;Kmk7a`M& zkm-s-7HzHd)o%5>cVt&N?Ntlpw@FdvFQ{-;x}24H9#=)4E61Lj=kjM9$u8|oUjRC-v@oyqQ!hmMFmw@ciDiUtk0Ul-z7AH z!Nd5lxs+n=yw5s>JKMN#(h1O62DkCHl)14`@MdN&vGA6u2eGcJ{KoX{SludrGqVh< zS>>N*Ek|94W_N+E=hn;vNj~1b5k*sTPobqM^AlpAsZe?P!cuG^s=1}WXN6p=nWezM zQ;Sludc!!Ix7y75i#zZDQlS*0o4LK@5Vi|d?k#V@s#baX`a8gE@u1rTVDfrU`O1o6 z6dm^5L`G5x9Fqr?nIG_`AY-Wnf_!6rAJSnR{kdfiQm>BYH-%8w&~^=Q1d~V53O_Y{vBxGz`U#dzGGLqYjNrZm;9yY#US7~X4MbVGXDUy= zdmhp{Tn$zd#+<(J9}S0=pnwYw!13wALFxegUppPYh|&UTZW{ zv{Diem+TI!xuXTHgK^!k4YFv~mMscx> zKw~3&F`6YwbeEIOmMF8Vi-H#&K9YkxMn=n!0u$M1t88l>d4=32f0WXMxq+OBB1)Pj z1xBKjZzDax4w3J=@YH@3(-I;sE+xz2jE+x>DS`g-ML$hWh& zb)Q@VCgX1@o0#*2!~(Paugtrro189l@W5G zW`Z*oUS*RwJV2h!!Dh^>S*&z?XCiF{_UcF*bb(We)F84a(xSA;V+c8}Pr(Kp75NTY zJOeQ8SxqbABj+^9HHimqnmR3VSU+b)&0d-eR2ya!TWH4Q$bI$D8`xr3rWnxZLcn}X R;8BPcVlSaGA^#5N)87hIUKjuX delta 5860 zcmb`LTS!z<7=_te$0kQ-8Y>+$Fe{0Q@{D7q4`~R}Ll@A}%r3)>j^UW8iB^tXj+JE> zV%X7Pkfewnx`5RNw^5PSOBxjs5m6#a1yNQH)kBoE&lpO*&6+sR-&*Vc_rEWk7Xj0Y zfa$7>EUR`kWmRNVZ%tcT?ob?VCDWdnk>zn`rDw{|u_Qgc!jr9(J2Diz+pf4O${cCs zHD&c_^)(GU$~?^POl9}T1AE9Sk}Tl~5nl*~YVG~h!px?;dkHegNQ?_wIj z;6Z%UTud={K42Zeoo&2o+DXt^2DkC{goTk%@MfkIS$NCL!&ui8&G&TAo`RvQ_K}h2_0?j_>kZ;X58lUz?#}Cm?;);r!-ZVDj+_*_ zBdZ(E=k^axm}@>y`FI976m{2(FHnbdbjG(8z%B^Z`uzKLwAPzHegUppZv<)7UTZW} zv{Dicm;eJP4fUP&7pm*3NZoDK_sEm*c zH5Z(*;3}I$+YouW0GlzdX0g)AU9q$k*sEi0&;?G%QiDjFN(+)gk0Io^J^>qWOyt;U z;T*uUcO7*{ht6q|YZU!Xnm8+TSU+b)^?n);R2yVtTWHGk(0%pLo7wWrR57H{Y`}a% R;9-E~V=ti+A^#5N(BIp<$x{FT diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index 71c0ded396222aa278ee0da55e0492867d5e69b4..44097ace71362cecc8a321357882bffd604fb56f 100644 GIT binary patch delta 1199 zcmey>$@Hs}X+u1tVM$(gUP)nmrGAQuL5c+srX?ntS|phzo0%k=r^{_sY_&N1N&20&V-CenOw+| zzWKg#069Sf(t2D~REUg-DdY*C++`-QxyFKtjRNg*_Dea))V@ZPYjdba4m$ hlc#-iUczPaA}f4yUIPE-8)$@Hs}X+u1tVQylTMVdu!y1sdev4L@tftjJ1iA8FXg^?K$8k-s!rKMULq!^nR z7$zASB&H=BPoBW|lMG#jJYky!nAeeGAyDh&f@c27A*_XDSzNWbfb9Y+=~_1z^1LR` zz4e=U_~$c`ZsX*MQuUjog__B+6{NLK#GhPSd&Mu4p>^{_sY_&N1N&20&V-CenOw+| zzWKg#069Sf(t2D~REUg-DdY*C++`-QxyFKtjRNg*_Dea))V@ZPYjdba4m$ hlc#-iUczPaA}f4yUIPE-8)cg+Q&7?-cP*{>V~Dmc>bvcXJDG=3rA`B~Sb2 z-Q1_ib2rFliOq(56PU=e8K_-+bGG1NX4189ju+iWo}*JYZx&yoMY@fX<3(L3=krT! Ye(Ds?NrCoLK66#c((bbPPEi>n04hl4s{jB1 delta 731 zcmccgg7MM|#tpuVhPjDV7HJl_>H6j=#scg+Q&7?-cP*{>V~Dmc>bvcXJDG=3rA`B~Sb2 z-Q1_ib2rFliOq(56PU=e8K_-+bGG1NX4189ju+iWo}*JYZx&yoMY@fX<3(L3=krT! Ye(Ds?NrCoLK66#c((bbPPEi>n0L}x`uK)l5 diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree index e0771eab17524f8d4fa2226c5c84523e12ada120..b372bc5f90363592c3d2d98736582b24a5218434 100644 GIT binary patch delta 1705 zcmdlyhh_5|mJP*>wk3Jlc_oGMmHH_r1}PRmn3kAmYLR4?Y-W;do@$n4Zf0a)Y;KmC zYG`7fYG{~frk|3ZT&!Q5Us{x$Iyq2EZ}L6HyM`p20@RtcIgEJ$BY9eQJIJ;5qJ%#gwr&oT zdQXOpn+s(>kzpG!CG~GsRwyOIMzGch%k8^1nYR0h@ou&%HX+w`kaqFXIC(N{pD)e6Sz@XZ zxweC}-<_r_OQ!7w+xRwb*`h$E?VAg>Jux89=FK0To0Dnlwz-K_7HJl_>H6j=#sQJIJ;5qJ%#gwr&oT zdQXOpn+s(>kzpG!CG~GsRwyOIMzGch%k8^1nYR0h@ou&%HX+w`kaqFXIC(N{pD)e6Sz@XZ zxweC}-<_r_OQ!7w+xRwb*`h$E?VAg>Jux89=FK0To0Dnlj zvXH?mp6r4%+gQjhZ0@i;!(cQ{mbnCiIyAwlfQj)35fbMti4fnGxj*1b`t$euc`oO9 z&dJ;HCFA&#@mdkfY4-2;HwUU(H+b{2y#?y8*5i4;pxRbr%dfHfY}IyKZg!sC=JVy` z+kH7X9-Gp_CIQuqwNQ?59mk|1Xw#S!r#1k|>!e#(WPzlOGCOfQQl%MdqfANOj^*o@ z`m~=gs$X`j-HK9cGs;lvYwLFbR5@cE24u>N)h{<@j-b*Hp6x-UquFh!^yj<_sPrkj z50yT%sRQk)YqJ2T(&C5!WZ|CPe9?_c&u%@4<~g)&CrUl%Y6qyY#661=zb(!Kh~es< z-+2I~-YA9ciqM>%+J&5=aKPW}-T~w)OUkFwJSQru0Ae`U@hT5W9k1?2smtCyD0Ojf zCrVAP&jqORaKk;6_`vT3h~dV37brogw+?PVsoifjqtx>)btv`nTZ1TdvAqkWS`U8; zP^G0~2qk(u_X0%qIMmD9BQ7oU7WB*Fu9s12&hh(eK}gbjphpe0QP`(o{C!f7}9sM3s?jWQVpUKpawXUu_7~Fy21ij{a5s-B^yAe zbN+9p6Z1c?Xc0Bf%yj=Q>oa1hh>#VjR{FSA7%0D#7^!8Bnb6q?MG-O)dxGlGPM>E6 zZ1Fon`J{@rIc60_>3f+xNzJ4|J=*{F$iaU2%tWfKrr#~2v0kNC*`@w^yZzF~c28gD^|^^In|Xv*VSTF&PMXcCW2u5aQe zqOfD7giJmw<^~#b@m6qeg-l2_Nr{AmFi`2M{20zRP-%6NxQqe-YH)b&0uG+;r{=5BrzZD7}XW_sx~_oB-nsh`(_T5&{j zljw}(W{MuCw4Aw09Zj2fo+S3nI&6;A+A^{dUw3s(HOz+;3;x6s$W^G|>f9$S%W)d0q#^bM+) zql?GW+(Uj9y;@WgN?PXY&_`&dMUyOUnKa-#gH-)TVC-TkO_Q`Tik?JG7Fb47U5+I} NORSL8|AW8R{|BW^@7MqU delta 7878 zcmbuE`%jxy7{_x?*A{7|E%*BtoHZfnT8gYJlh$R5q#0W!BNGQ$C@_!~*%rf4GABy5 zWFdoBJlO?jwy}_1*xX@xhQVl@EOQA2b!dW90Tbg7A|%dP5+S}VbAP~>^ylyQ^IXpJ zoRhcXOUCgfiV4kRnAz40huym4a$P-5mfrY(>Ogy1yjcKLX>mmXvPe&FJnuoJXSVJ`^Bj6{2TDC#+zwEs*E5R}zb$b9#7K3| z?bwS_ua`o1MR-n6?nF*eB;ap$Z3l9d-tuWQ&xwjEfEWpOyvm1C$E&+h>au?~N?ok) zM5&pLxd2rjYPyRO?+4ugG18dtTD&Or=DrOmwfoKeDD_-x14_O0)*wnm`(GKXz{oNWIkCi&2AeT6Cfn)}CBMseOGF zDE0WqH&E)rnMRbl*na_~ZW(~7o{Ix0wdZmHnrq|LzfkGFvIUhI2|mN_;Yx(+EpL{E zBPXJup(~SBqwnf5sZuqnm4UIucu4M2UYm}U+SvwdTdc?zew#FdblW!?lI=ttt%FAeHudSb`1=5XMq}DlRLT4i!Mc72_4yi{wbDkNn z#qSE|lP=okm{t7vfc=B#lunf)RLbl0=_`qk8wHx#D(_U zzuK(4V8x#cJWi-|3w`}N{{#r(krk;{O<*ia-=KOq z7V|`!d%&-tSBq*wDa(8v`UuUoXi~*ZlLmZekgER(j9n~cXi`>2(U+{r0n13L%h63u@0Pu{lmll9lX~=D3;7ppcIe?e=EmW|I$o zKAW$(p5Y+R_RSys&XVtM)6EW{JDAC{8JN~hCp&}+Z|;knMTrYm$D8m_;DXih!kbHT z^2v9B-sXfNc^0x=pf@?8NMtjA`E~M>kKSa3Zn@13Z7LMFVzWZGiYVEh(A~U$!8}F) DmmMwd delta 1783 zcmcb6gz4@PrVYW2wz-K_7HJl_>H6j=#s3u@0Pu{lmll9lX~=D3;7ppcIe?e=EmW|I$o zKAW$(p5Y+R_RSys&XVtM)6EW{JDAC{8JN~hCp&}+Z|;knMTrYm$D8m_;DXih!kbHT z^2v9B-sXfNc^0x=pf@?8NMtjA`E~M>kKSa3Zn@13Z7LMFVzWZGiYVEh(A~U$!8}F) DHs}GP diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree index f8d2fbd197882ce40aefdbdc1950e392203aab59..1f51213d6301dab006033c1ae7a10b1a0aa12114 100644 GIT binary patch delta 62 zcmZ1|yij<9AERMOUUptdVSJ^2iitsr1rVksCYo9#nI)TR delta 62 zcmZ1|yij<9AERMzVwFXjMQ*yjd5W=tagu?Vp_z$AYLbPK84wzq8X2XfS{kGnn-~}- Q85$&}B^z(9XH?<<062OPFaQ7m diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index 7cf79d8a6a406ec5cc40b8f17b0de0a7a2eec55d..863f7815d08f622c7679eeb142f206fed6128a1e 100644 GIT binary patch delta 117 zcmbQJK2d#xH=|)mUUptdVSJ^2iitsr1rVksCYo9#nI)TM{WR-Gb5b< delta 117 zcmbQJK2d#xH=|*0VwFXjMQ*yjd5W=tagu?Vp_z$AYLbPK84wzq8X2XfS{kGnn-~}- W85$&}B^z(9VO-2chPD6>M{WSHbs%#9 diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index 279e4768c4e3daa42bbe5b88b4603d9079a36fcb..97a652b8fadace0fb196a6a926684533067c0649 100644 GIT binary patch delta 4131 zcmbuCQAm?f6vsK`=G>NfLksp8x;*JLleW{(PHr>diTI z$_w^*U$ieC3*NMb9k#GbeBGU$jjoW=r8v5r5hdhQ>TL~9B@(eaoDsXdQ(+0Xq1w5O zq}$vqSh!Y$lT!a9*h}W?<0!e0Bs~VU(D1MTEjO}1u7TYW^3vw-yKr)r^pt6KE@kPq zpG7;DiHiy_SD+kMYk++?`}`p8RHBQAP)Z+3jq8XlVPM++3G5XM3ua415ECIf_K(2G zoXI%yn)5{%S;y^DvJ}doSC*ps&S6=K%rKRus2Z7&rMNKKElUx(AC{$vj)i0?u99}# zP;R}>V(NE;ne@^(xDjKi@e^vCl&nk_lQwE5i=PeT*;ESW!d9khkpOJuNfsAbKKAQr zZy64l*wQ7`+5^|w<<}m>{?4rx;lY~TozWr@Ov`&{G70Bd|Cd_iVq~V}AzY03$mD7f zIhOf~gcoY|;M;5=O75knD?v-L8!EQ&V-eT>{~j84^mi+6_O?A(cBAEhTpb$v(g;DM zN6G>gqV3Cd0DT2E$uuBYK1?_M{7CAs-nN;xi z&9IKk5z&HbC?~DdLT|OeTO>rzV|Dr>Z#oG}SP)T(j#>kt;gjv4$0cfRsp+_Ixq=Hv zFD#WVKlEt8MwLl*Pbo-3j&2YhyVZp delta 4131 zcmbuCUr3Wt7{+HcNrKNgivYBWsSw|zQ4V}ci24s;6^(M2JyZCW-$nh|S|VqS<9 z!U>Lrs07kgHaOt9l3FDM7FZE^A%kuV?V>>!7AbU`t9#$Wcl|u)_rB-6@58q>pT9Mq zpY(z=+7;I#TD05I5Ki}uDqWGwDvQG{-R@;1 z)#hQH1?$x~DfK^w{ba!vL&<$4(Okk7)kk?~xrP1F2KGwGi<`dh!O2;oxm3S=g?Oro_XDi4Yz8M_^$M zi5T*lb46HK$DK2>6z)Nt@9M&aM^V!5ZJ4Ga?bJEBk070T)^Smm1_^WY(1-T#We0Sv*nOn9eVoG0-Z>Y zq#f+U*nfb3JP0$mhv22cq?T7yf(^F|a|Y{H7{YDBoI&X^KqgbpAZ>#SNCGZ;5J8sD z$Ex8I^4y)?8&3i<4ZYl|z!Ry%uc&|w!Cc#8_0T6pa8CoL#1NL#4i99I10TsV4Z zkrRsPKp&XM#;Y5ArU(4k9lh-7R)FE4;TO1vw433+$+^N diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index 61a19eeff961b654c4a589a2e371b84efa092f50..b78dfd459972ff03bc7dfdf88c3eb535605ebcf4 100644 GIT binary patch delta 1709 zcmX@x#dWreYeO`nVM$(gUP)nmrGAQuL5c+srX?ntS|phzo0%k=ri^9GZX*hIZ7p@Yv1gs{DYlzZIcbHDmOpY zzE4gFfwbo6ePANfRyLzYwwAgrBG=Y~o{z~%gpSIIprp^b**a*R7#YC~)z7}UDD%fo^7K!3FyNZr{gzQ= zyOav!4MFk^+1_Wy=#)gd{_Tu28M(Pg*Eb!gFJb%K#f%Z2i^9GZX*hIZ7p@Yv1gs{DYlzZIcbHDmOpY zzE4gFfwbo6ePANfRyLzYwwAgrBG=Y~o{z~%gpSIIprp^b**a*R7#YC~)z7}UDD%fo^7K!3FyNZr{gzQ= zyOav!4MFk^+1_Wy=#)gd{_Tu28M(Pg*Eb!gFJb%K#f%Z26;B{a_-?*6EvXi|!)N*6EvLC0>(jtANZ0GHl&!C>KXwluq9quB5_BRuI*1*4B8y zL7vvdyA7Sl(wRPa!gr<3r6o6;B{a_-?*6EvXi|!)N*6EvLC0>(jtANZ0GHl&!C>KXwluq9quB5_BRuI*1*4B8y zL7vvdyA7Sl(wRPa!gr<3r6oH4<=lg=$h0Cgwkq5uE@ delta 751 zcmeBL#@e-vb%QsfVQylTMVdu!y1sdev4L@tftjJ1iA8FXg^?K$8k-s!rKMULq!^nR z7$zASB&H=BZ?0kFBSYJCgFwdg%}UJknMt=2q_=o-DtjS$T2m$m@TqQ|z@g1brvA+V zd`HOiGRSVN&6fq9Fp+6DP`~EpQV~fua`hWr72a$nZ74;Fett8r8glgq@UczKJFl== YWb=M$3e4D?cYb0c>H4<=lg=$h03PhqrT_o{ diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index 45c807727f7a847363ce340da2e34a3a7277629e..0aadfab455a6e3b64f0ee01156db9d9771e50c2c 100644 GIT binary patch delta 139 zcmdm@wnc42A){SMUUptdVSJ^2iitsr1rVksCYo9#nI)ToZrkLIOv#h&*=xztnJ`&^M{@Fe0pZP+99gUs86mNG zDc=GzybW|e*cF@K3ow!AeV8Z2H*XS=Wg*WKn-e7ek?Z&bNtw;uGQHvC*$j?>cuua( eJ|(&2x&Rc3AR}_iD(%T~1tH6j=#soZrkLIOv#h&*=xztnJ`&^M{@Fe0pZP+99gUs86mNG zDc=GzybW|e*cF@K3ow!AeV8Z2H*XS=Wg*WKn-e7ek?Z&bNtw;uGQHvC*$j?>cuua( eJ|(&2x&Rc3AR}_iD(%T~1t@qq-&e(z>~5$Q7DF&Oszo*b|nB@<&p*f delta 474 zcmbQRl4-(9rVZYVhPjDV7HJl_>H6j=#s@qq-&e(z>~5$Q7DF&Oszo*b|nDoU4>o% diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index abb59fe48bbbbae0da6e6d093488406f40ed5830..59813f5248b21f53ffc8161be85d5b2628beaf16 100644 GIT binary patch delta 117 zcmeB?>yg_K&uCbZmz`Hq7+ynMN#Hvo**Bm@8e delta 117 zcmeB?>yg_K&uEyNSY?rBk(;h>o?>iZoMd2TXl7!Onq*;Q2870@Mn-9=mIf)tCI*H{ Vh6agg$;O)}F!qw8&5wB>Hvp^{Ald)` diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 6136f46ef46672c5f6e6df09243661745267a7a2..40d34d8867920b5e1d3a99295ab1b1c13485bd98 100644 GIT binary patch delta 1704 zcmdlyiF5NL&JFI2h9!B~c_oGMmHH_r1}PRmn3kAmYLR4?Y-W;do@$n4Zf0a)Y;KmC zYG`7fYG{~fHo1cFEg8BN3i@q+!eqxpp4RD8-I@3&Z(uDXOMBJkGi)E($a-ea}W(7wBPtvt+ZtR*!PHt)JO5410Qllv8 zHUg8q|KtEUj>!pLl-A12r zCYg?yUZB7vz8x4C)dJ)>0AfJhN=BbN@(kGSCBdY{O`hKAK)rI?g;bbWl*ux{Z#%HW HpT`IQ^MDpb delta 1704 zcmdlyiF5NL&JFI2hPjDV7HJl_>H6j=#sa-ea}W(7wBPtvt+ZtR*!PHt)JO5410Qllv8 zHUg8q|KtEUj>!pLl-A12r zCYg?yUZB7vz8x4C)dJ)>0AfJhN=BbN@(kGSCBdY{O`hKAK)rI?g;bbWl*ux{Z#%HW HpT`IQ^PB1F diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index eed780896bb31fc4ede7f351d6e2c9b65b75f81a..f3f28c60be1775798fae1c58652f8ba334fdcb5f 100644 GIT binary patch delta 2429 zcmbW&%_~Gv7zXgp^)&_&vk=$hD~id?m~m$^Aqw_q?am-8?XF9+=NYm@_s%J0Dw^Ub08r zj)+%$Gr?eoH>89Wci5vTA&=7TaCsC>bGkj6(-~CsRYriy_$Kspez|@p?O~dpa+W2G zisE%hu2HG!yAYxqbXC5KtT*G^pdZUEcGLvLE8nr!1j*GWU~4jN1tr<)E>UVUKBGr% zYraQYPg_>d*0k*yY)yI{prp5U4W$K20ZMPYZvdr?&z}Q5w*)=*Tmy}I#+RVs{^2~R zb&gy^aWhB*6Nh6ERVkWEmS9wmrW)w{V%&~#+J1d0!l=IeT0@r4omPw+qcW4Z-^!-3 zt5W|11{&E^B{;!RfYloTD=XuZUF-(?EvQ_i`8Mdsaf=-_M$yuDtTje*`3cw>k2*m~uBuCvTD8yUQJd=T z(bm(36|^zGR=~-M_(UhW!F~%m7b%%#-~`=sOg6U?MO-&n$cBY*5fXHyZ~4O- zOO&MVEa9ek{ytkY(#PU?>ZYrs&Pp;V%NpnuyYKyGAK>o)lDJ6XJ=i2%_Df&j+AU!# K`Ngm_*7XaF&Co3X diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 861b6583f91f97f5fa90d31893967b303f9d6b97..d04c74466580d7265c4197f7370dabbfb47fceec 100644 GIT binary patch delta 1486 zcmZo@W@~6>+u+M+Sdy2WS5g>Xsh?tEkYWLZX^DxZ7D;BwW+utzsb)#$W=00a=4Pp> zh9>5zhK7k|lj|4{lcDQ_n$hMZOsiPP(>i@cEhGQr1MG!lX?NYcoP(7-n_VX_=MdU# z!pqA_md!4c9i&({?-mkZCr|rk2dM~h;^>1K$YzesqB5(vNVj?O2elLA+3L1gUvqaq z={8P=I(TyW&R{ZiFE}Z?*=JW9dC}}LdBI7g&6)delILxR_L~QjnaFm$(&o!YQYo?h z{IM7^ZQs1$qzD_C4xg}>YqRl%17svJaFm0z7u{|*B+vF~VvMZYi+LGM$+RA+u+M+n44H-k!F#bu5X@VY+#&ZU}k7$Vv(9;VPpn`#->I_X{nY5DaIxS zhDnA7iD}8klj|4{lcDQ_n$hMZOsiPP(>i@cEhGQr1MG!lX?NYcoP(7-n_VX_=MdU# z!pqA_md!4c9i&({?-mkZCr|rk2dM~h;^>1K$YzesqB5(vNVj?O2elLA+3L1gUvqaq z={8P=I(TyW&R{ZiFE}Z?*=JW9dC}}LdBI7g&6)delILxR_L~QjnaFm$(&o!YQYo?h z{IM7^ZQs1$qzD_C4xg}>YqRl%17svJaFm0z7u{|*B+vF~VvMZYi+LGM$+RA*+BIKMRvET2a;o0W@WmECtS({MS)?`i4qI7D%w%n$D;|LGEIK8OOf8Z!Y5`8PXlL9auHrV*~)( Cigs)O delta 2066 zcmZ4ggKhl}whiu#hPjDV7HJl_>H6j=#s*+BIKMRvET2a;o0W@WmECtS({MS)?`i4qI7D%w%n$D;|LGEIK8OOf8Z!Y5`8PXlL9auHrV*~&I C6GO}Z diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index 8dcd96ec434b1527d7bb6a20e6a13d98f68b7d8e..eb72e7f8192320c4586309a68043fc0b3505e1fa 100644 GIT binary patch delta 121 zcmbOwJ4<#$Fr#5fUUptdVSJ^2iitsr1rVksCYo9#nI)T1=e)h2f0n1R>PTdM$&~Mc3}ou zM|z9JD(C~U=;KWv2rLRk5|Y?WUk2;02&4N7dN=6f_Wb2s|Nj5yd7tNfp7SouYb^3csT1s6lW%6qc2Dg_r>CJj+vnQlCdGxKWZ5}-oa+i8SZg)@@Bg!`b zGaQKuUel=Bjb-a?BFA#D$h`GGjW5M92=|KAre7+E2HeRk5FPh89Uxj=brd^puW_;0 zX$)7{#Qr^6wt08n8DM+)(-O5%*t|uU1b3}DdZlQTzp4@@Dc0G%tt^+U1QP;rK zDC%m=BvDt(Yz%c>^{Nte{V@lR?aE|6wwvq4{F@0Uv@Gg{_O-3uJW3A_C`n`?OU_Tr z14=Z{yeU`eSsm|dSF$O;Lpcd-*8db7r^D)TF>*FL<9;rr~&!H429s8j>f>9dukfZE8^GIAv4HsrwJXnd%gt)!v?_7)F9 zqbr5XtARnB7}L0G7t5lNa;9Q;s@9MqBt@o8unma)d7iqPuJ*BUV1@HE%q486_XDgk z7qI{Hyx2$|FR*^sA{2_rI>iR7%`1@1q94rOM=zaf3o?oSCeCHzcKWnd4WQ>o@_AOU Q#eCv&Tvd>KjVH2x1BmSp(*OVf delta 4106 zcmbuCTS!z<6oxtbj80AJI8zaae5fo8tUTk`I8i>OffiWftqVCbreh^D)~M0tK@oc} z1Fa+NVqz-Df-Ji1bU|QID3XxGymT{|-ik1Kub@2xU0%;G=lT2pwf0(jt+VH+v*)L? zANUnlIC$C{@`hWBN}JufyGi%BJSE|H^Vv5hc5S4>= zW~FnZO7{UsrN+=lEPS_}Iru3tt- z%m(cLJTKPM$BV32Uw}d(StnV4m3ak{S@eS0*U?L-+Kf!%zln31xSc+&Rs-nyk$j%z QZ8D#@99QKeU*qwN-z_ht#Q*>R diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index 38bf60279087501a5436c3b877f8494b58aae1f5..939481e583c7242fe1c5502e42effcda29d4b1ea 100644 GIT binary patch delta 479 zcmaDpi}Cp^#tpHIh9!B~c_oGMmHH_r1}PRmn3kAmYLR4?Y-W;do@$n4Zf0a)Y;KmC zYG`7fYG{~fHo1@SHW|7eh&ye*!}N@cJgt*|d-G3r;VUFdcl6|Y!or(F`2R7Jr+xE1 h;frKw-TXj&8#&?oKs;`H6j=#s$%S`TJHkcgA#y@!zQxBO&Z0=$9XChNC)cRWTwd+pK oR~DMQgGYFC8T(ci3eDNPgXbO_WoC$P)(|H6j=#s$%S`TJHkcgA#y@!zQxBO&Z0=$9XChNC)cRWTwd+pK oR~DMQgGYFC8T(ci3eDNPgXbO_WoC$P)(|jdq#FcIHO@nUUptdVSJ^2iitsr1rVksCYo9#nI)Tjdq#FcIHO^1VwFXjMQ*yjd5W=tagu?Vp_z$AYLbPK84wzq8X2XfS{kGnn-~}- d85$&}B^z(!f%(t`<_+$Qh9!B~c_oGMmHH_r1}PRmn3kAmYLR4?Y-W;do@$n4Zf0a)Y;KmC zYG`7fYG{~fHo1cFAsM>lSv@yjW|C$iOY1Q*bnO=?+T6kRkA*C)Wt(+*yvYfi{Q_m1 z<@xf-@aE?I0_!-*a%}wOzfv>#$keK))gDZiR`<#Eo#LBq>P~Z!r+ssM=QSHLw92!F KZoYjioe==jjo;<~ delta 707 zcmX>!f%(t`<_+$QhPjDV7HJl_>H6j=#slSv@yjW|C$iOY1Q*bnO=?+T6kRkA*C)Wt(+*yvYfi{Q_m1 z<@xf-@aE?I0_!-*a%}wOzfv>#$keK))gDZiR`<#Eo#LBq>P~Z!r+ssM=QSHLw92!F KZoYjioe=;?I?U<- diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index 195c105645bc9c5931174732efe3c57ef1bc6775..caee1b7dfb1975054090d621d8862fb3fd5f2a39 100644 GIT binary patch delta 1026 zcmbO`n`Q27mJPm)h9!B~c_oGMmHH_r1}PRmn3kAmYLR4?Y-W;do@$n4Zf0a)Y;KmC zYG`7fYG{~fHo1=R73sRBU*u-=-~58fk%>IL(UZ5b7LupcXR<#R|KtyX!kdq>DY8;# zhWO@Ao=s!~8p!)FcZhGk$Ja(?Fo4b2{6TO&g>I18Y%Eeii5r07DY4mK{3#2$;aM*w zxcQLGZhlJibL;-}B3Hkipy=jl6~Vle=&x?8^Cnk+zNoH6j=#sIL(UZ5b7LupcXR<#R|KtyX!kdq>DY8;# zhWO@Ao=s!~8p!)FcZhGk$Ja(?Fo4b2{6TO&g>I18Y%Eeii5r07DY4mK{3#2$;aM*w zxcQLGZhlJibL;-}B3Hkipy=jl6~Vle=&x?8^Cnk+zNo57`1z^A%7oimR-OQSX?@aH6j=#s57`1z^A%7oimR-OQSX?@a@lnq86mz| zgZBU#-UhlK<_hu6v-#(e7X&aPBsRYhYNfyxn|VcNQ|f{ki5h0|gK~3;%q&Vguu85! znM~X7w1{uM+f+oR?VInk2o{lP^WJYln|r=1l4@lnq86mz| zgZBU#-UhlK<_hu6v-#(e7X&aPBsRYhYNfyxn|VcNQ|f{ki5h0|gK~3;%q&Vguu85! znM~X7w1{uM+f+oR?VInk2o{lP^WJYln|r=1l4uzUV<@BM22!y#R7PxVtzy;9cI-M2REmBY<@<#X1R7~HRSzrh1K zjfm-5x_H-e=wG*lgfiti$99P=-KA_|Z0EAEC5x9T8=II|qIB8B5+xF1=ich7@LjaC zCfDDl=w5bEzahPQ4%)fj-cKYis3KDwEG=e72?nuO` zDIV}Pw6cdU-l4#JO;m9%6=)8cw4iF~a2ZJMI#Z8wxOr~5n-6UpEA82@YvOSJ_e2Z7 zqo|AX@-FD*t40>)3W1fSD;42NfNE{S4ZxA6G0*F2<$Fh3_`izS`RbA3eB4MKzp`B{ zP`7u>xoGf!@95#x-4%SLqQQKxU0PI11c;Bxi9j__`fD&Sp#TVxsn1Y#4 zYcJ=|7WDAfids1@c-z{haV`i(t~MJ`9WDHT?s}@stx;b7w@xm;NP*}Dd3G7U zzgQuz)Xpcxb{68dcd=1R^8>n62UpgN(8>~r4<WFW8;GGgQoC*1c+co z>X!Vrs7THTveqm%3W^}XWaTr8+647K?CRm1p!l*8ey_UP%|X0D2my4}+j{E^A{uu! z6C-f+AWA=kO;Y!0{$U3T|63t1FY0RMuSFH+4V}zj@|)pCQHlvG)Py6GcXf;aM;hkf zKo_FoO}A*l9h!71PF#r?UqO5&HO0y&?6RV~Bs_d4-QYp(95ZNg{uc#*q;oW1II1@G zed^r0)Rgdi8`DN-5T9JY_G3eXg1-{>E9$wZ2%*K|p{FoNF5t-zHU3iDpZM5lw=d4{ zFG5(Ngb=8Fug;--fvy^#@1q7O$lq%4+q#xU)DBHY(St&e#FW3OINGKl4n!fgdPQ1E z`{a+xOVL)oWQR!J)y~Ql0VS#wD7y3S?y=%=$0h&y&vbd}fTdijLDp**k!D9MC(<(_ zeNn6-(qkgsKCzKVdx>;(_a-78B2uqHnM9gPq;9nZ=?Ia)ctKiEq%jKx>Ebvd);b`F ztBG{x6(lf=iFC@che)%CRAAj9B4rWjSLIP6Z6(t2?BhgQL8P{y1?d2h;>MpOzfB|3 z&bfk=Eg6Sv|J&-*oGNTsV^CBIE4()0J%iFAob zil7@rx=N(fYPX1Vi%1X6cZl>-@}F_2_%_k^h&Ye@7=I#{NN0(Z_^Tk@AX13*5&3Nj zkqT!#CDIil)&KmQNb`v_@b4Ey+CZcwdGCm{gGdJPdm=4G(zxmJ!t4GZ;&t+4rSF^w zd%{{GjjbXk(n%uSOAw^VL>e(eMt(~pQa`zcNV!DX^hl7-5a~>)o%{xg6cj5+Pp~vj zp1M>JH!mA}K4xk>4&5Y4;sLIzgn{d=v8979z#(7$=BRiFj~PQ}W||B0a6w zoJfa>bp4DV%_dTVM}oASNDp&ckeo}1)M`m9B0V5dp1C!Vwh^gNM?tzwq>=qvk0U>B zB4XT!w?tY=B+G~=V(f^3NbmbBlVWK(k&aBum1F4?k>I{+3M`!_QpVD?L^?>MI`v&< z{M$?-J?bh*`-#*kakF_G{&5Zw57z2q!O}V+HLZDh+gKY2$>K5;=~e&ir4|8adme!-v~{JbGW_@e_ne9{nC(41blU7wv=kmr_I_yR+V z@*B4GCSZm4;syB$d8_>+oq)&t^IIyvg)O7JDdI{DKhw0xzJMfl%-iR3@5 ztIk&+5i6e4>&U#3Ww?v@&tksvY6G7!GJ>x-GKQP=Kcn%JMy=!$_!3)c@|8w8`0fJ> z^6E7;xGdiMOKq+gE(a7ZYf$ljtgFRs{U=2Dtcv{Vxy3;4X=4a~dQ26*_}FrMCSQYJ zHMb(aYFu@G``AiIj=|kG9>B*Uv|=EBs#Af4+C<3MRLID;m{T3`UcvWEj^z&gvxt>* ziwp4g#+T-=rL^Z_&}9V{lrjhLwWrrWS7ra-)rnb@nc5B+uNP5k%Q@B1Md|;#h-kk2 zylVf*nlZK#vMcVtuw66876(;t+CnMW+gLq(&7EqbUIoZXPz56e)!-34x(4@TK3^y` zEt}}H{KRT}%((KzV@9Q85?4`u4Se#DAP|4Nsg|ETqZi+5PBp*2h{A7SqI|@x3O_gu zA*-F;1{GGFFSnu*pFAyuKeRyOa~nD85J~YdW6N_biDCE8))H*loF-fi-?-k&Pk=SK zc{^Qm+i;wlA27rS(z-Sarh2_We8;!qqcjdCA5vg-}ZTLq9e)~$S zVch9b4RaSa|Ou zGw&T*3^hV#)HF0A4bX`hWk@5WUQ>;)yw;7B2zganF*zOz;OkHmgaQ}avv`XJdI>_@ z$j?n{#jWBWq{r~HR~6tZt!ydBqXC?|$%f+mqpbya_o}}9`Ryjb8GjpK;didY_R0LG zml{`lxfjSaigHK!KCAC@cla&q2k;99c(^qvm4q%>$hTNigs+&U;D1@;=6KYY3QnFo zype&&xCv|Byga=+rJjQfVBllcnL&~)N5Q*?mf(-ih~<%|@;Pg9nC#^DtsBSfL2e^t z!&>48uCE}+;{sm=aEm)Njx3jM~`Gr*X!X`~vr%pZl^&H%(Q!(O&=lJoPej*VjTy8?}czl833lWg2 z<+}-OfM{bGR89*nmBcRYL1u5UVHN*i6h3iap&w%|c10Ww<9^&-K5em+AF-_jX*UF; zTaY3aA@dn{J0HTA%}@p5K?*KBL2$y5p(=iTMlsa&nD}Kob^Mp@y~yP^GA@$NYyN;p z?gAk+XN%RJ3x{^M1w9b>31o(D+!hjRmv$+^g?$4(aBoprOMgl4@m|`H0No2yr&Hyx{iB*Q>bg2*}A7U#TRGMS-C| z_&hFW$&W!YH3$z-aP7te&8(CpzRI46AUsOJrzYc5gZZpI>*RQFf===AhX#Z1k8^_f zZU+a03pnv+|6soVzGOb<;7C6Az!;EGV_pzHeBWDe{t5c^>)yd2_vBoBW(eQ)z-TZ! zdu|Y-yo}F1G=}eRB$)r@WFk=QUaJAcK4I7+%r%Ylat3fATIzwKfG!d&<_H%ZoI&>pSt|-s<=x-}O5Wy}Ty_d8?u|{FZmwfq~g~*8Jm?NC2~Z>KrIo z)z1wCu$@c)yebx8$9-EG0PIdwVF3s{6>;4HKtigsL$!o!!x3I^q?EfulilPTq{(7I z{^ZAC?h!5erHW&?^#G8^_^f7!E!EsvDJdGn=()r|Ytq`lrBimH7H&tNaO17qK*4lC z;@}bjg)8Xfno*6;aB*KK(fM9(YoN%oDDHqj6kdzw*7*u4%x#h~LWBF2IU9Uff@`h- z!^RiX!3Gt$xs>tiN*rrYKm^;5GVNH6qk#eU)!;S?ZUBeW;|@y%XROtjyCD<_i!|eI z3*ik7ZMa7?Luf~C19JtBoGzgQm6JFH$ZHU$g+sb>jU}Y2AgBkYonM?YLupSgRmQ47 zj1LihWy*WzP)<*iyGCQR;>HRZCv!JwZN5+A+J&-~mdA507y`Hx7NHKh9kdRbo!kv( z9TC)pd%4xr3=I!*#i^ZU9>e+~b$E4(i=)Yg=l#jem;K4mZ0;q^p!k*hh1!4R9qzSU zKv?mRn;9e|E4}8P(6gmKa3$$w!@h8P>Dg+W=rnb3lUVeY(y;`I4$`yFgGC=gSoN5D zW5|Ah4(cqGpu(^r9jatRb-$9Q+kMEXbmp(73I+6 zzCofanqkRsQ3(Z`7CYh*!gcN$C^13wi2(wSabW+6BAtlg;u7!0Rl%!?2`W(UrAPzP z%E-gOVO@q47Mvn_A_5sHP7QQS6FpQ3N$o<>UQS5nEE0)mhP)-BRrKuYWui~??4~q- zhC{1F_oIZ%ww@C$pkOV36$QzKv;A{Lrzk@0-$WN^((_295(^osKNbDLU|H~w`lYZb zs4>Xc(6%?#+0E1P$F#rrADp##ip zK+0ipD7<=5{1Xib`(g1Wn!J5Pyq2nM?g{Y{R-zYAiVHDz&`EIN8SxBS%hKn?i&;7J zzaUOwY&nzQ(o5pLl!N(-IF*${+*NTXvmXA+_V;D$ZnE3r;VtocW)4N}idRrQ+`T7W z&Z-AXuJ{3vFc&YEAdWdTReIr9!5Fz zdB>s$h`Nr7%*Crd`c-i1GrK#A{uDQ490xW7J0sg#;44m&WGBNtu*xApTheBV%y79= zvY$3wy&@%yomey2!YkQMn?ik*(z>kPEjdrmj@u(i6if&| z?3ZZhS;HZTofcgCgrovxHusDqh$c5(kOa}oPF|K=p|x0dU1FkVuiTRCpkS$YB-!-r zi2IU1DThf9B$a}Mx?O!C`A89d&6D_g#rf|f!{}wUkCH9HB=7D!(gzgaqDY!Ylb0k? zG~6I&nx&8)qh}L>rAd_TZz`#WX3&RAee=s)t@Jw0drBvrPxJOMOD8Z6Ia|O%cIhN) zJVgO%rBH!XtCG^6twQo}W9i>iFBh9i_pvNVAdiXzaRvLkLHu(Ey1Dzal#>XN*{ijb zM&^z7(o>9;AlPBBaDucqRoS|(QeVuC?b&igdK4ZB%LR94|Kn^P>`|GrCqQ6e5ll^saPnRmCV9qyZIIK2X zYGsV~IFKCOPYR0G?mrFoULY+b6{g7>mq?2SjHrNJS4o#s!)Vv~EAe`rvLSzufhiYhI2t zim}VfFF*m}^#&RIIak_+^1kp$I*rCox2Mu=^lX7w(u=e~m3)=f2@&F~y-b!&qwjUN z?00(hm0i}$!ZwbG19LV@G$1Z4sW&KJL8b)-n#fe(?g;5<@a893A;HAOD$2Gpo7jgh z7b-rohRoMUx2i2eca%u`R=uvQEj8|zMluU?P^1k@S_57;lQAw>#Q_AMhCwaRT@#_| zwOY!=!ECCH2DuZH(qQ#?*)~SEBnXY*!fvuK5%&zP?;)EMjFvm&Yt@N>)dtCWGB$+- zwltW%Jjn`X)~nMM?inU4#pu}iSZ=svr0gNJ=j_q4nbeVsj+aTOdsm+*tH7)Zv;d_5 zbB@ZLIrwj;(f2@=}9K-5N2&Nh6T24;Zn$<94S)CvbY<0_RAa5+EhPPev2ul3BNB*4J z;fq)P$smLnS6QA!t23d7d@IdRt(JTtO}?lt_l;LK*Ol*~1EnEx{=B7|`t#;A^XFaB zLY__YPHN}RTcd+N@2igfyj$btXK3E3-TirM_w?s|)61WCdmnik&D(j9Kd)ir9W+UvLGzZL;m`X%#h-WSEPvjPbNqUU0yr<}L!T~` z1D~HS_UCQ7RKA1aMy&SZUQ74mj$Z4}TY0_w2+bR|&7b#DhClDH9sa!Kcgb_)pz0UY zc^5n&mjx6*5XDc+fTP9>`<#-Wq0Uz8tb8$btGr8c7frge`T}Mtd~;hqTN6mY zz(TL(zVY7LJbzfEy_0{YVX+}tQA!H33b?}I?_r89)UKN~3SU^X)GB;oVbCdB({aZ* ztD+RkZ7Vc%`{A|`tnO8W8@b2$4ptqow332lRRrJ00u6q>69lJMR=i0J6)Y>DJ~TVL-9uqy>H6{!l6x!CM2L#3pJE|{tL6jM>96R;5;OS- zRfZ^rVk()#6f7(F`9N2ODu)LwGPGh*ad7YLZ8O-W4wiv_e+Frx zqgK!!xlaMF8lr+3O#2VuPGYM!$}>2KC97jOurzams&|dL@!Z;f?{OoeCrWG zr$W%tJ~^nJ0v$)r3=*3dibwiKPgIqBq=GNk2F2p8pO`atdr&xoIYB;L=B^+wCU*CL zP=WMALItKA4f0|`Y(5!u3mba!nV>(hoP0584>oA|D?wq{VD)YX4Z_ER4};nvB}3E8 zpc^ckB#?eJ z$(CSZsqXe*Qqh_2U{cX;-r$2cUu5B638Dd`D+JHL3fNsScmTF|RGr{p6i%>Y^WYa) zaklos+1S(HbqLPF$K#!X58~tagy8M?SgK3#7KR!?RD&fLf6Kt&y(I(im>|&P_8kSh zxhA-u-)-7v1a}Gw9JA2A;0ah&TMh?vDske9Wd)!227$^6YYT$kLqZgwceGv$hkgnkj$H@G21xuItOaQu zLd>wZJftYgtnZ)YKvd2Z>`6z$LLOlcSYr)w;ut^W4k4bi!W(jmVfq0zwL+hY;Fv-o zYq4@7i-f$z%GCc9QU?29!}=k_|86x5d5QhuM9UE3Z;M)o5T*8S6GD_)tetRt-9Dro zHcElcAtuII3TbJAK-KrRJs@s+hzvCR7NUiZ`i2ZgO}C)jeG@~da+gmE@v=0i`O3xR zKva%_WsC1WU|cY7K}c;Jtz{R5kp3rZNk}qop5~;7T*2Dyyf!2l+pO>A5GU5=tX&~F z46Z?KHt~R9vqFbL60yzZTnIUab>IA|V6*$#A(L<*biEr=7azAg3|WI6zxlI}9r!4F zE!gtT?}9D2=Y`b5*MIsDax}2OsM>k02Q-=5Gv24+UulLZ`vuWkNHtkz&e*=3wI}tA<`;A7U!=rD|C23W`fQIq1!dSm|8qPl*W{HeW;$H;{I+u2q0iL+_gDWg!KS31Pg`i zVYd)O7OH|HEBBCKoI|HW?O2&PmjtCMZU{5toL`18lmUH(R>SE!OItg%wrn4y#XL16@47opsZ4SU|Ce2iO(?M~&yz+AekS4mvj z5~Ue8r>cvMzN`iL3jmBg{f)K#9xJnO|N$!L0a3ng*vZ|#)CvD4#~q@8J< zs3eYEq`Q(hwy3AF0Ip|rKc$_;fluPe7P442T#q#3-qtqcL*L+?s~`G)d31ImNj z%G#iH%@z@Gc}EP?Un*%pbgpt)z<>Y&(hcq1 z9w@~u-4d#pz!2VlqMX1m_5ywcfDppr^JmJnO7LQD6&+0fsGO_<&Zx@a@F%HiiImhF zJ`Gl(M{KYX;NehJ>0lu#F{pl}XMZ=UhAV`#!(1w~)0*UM;87)ugydbXstUcVNO9F; zitCP5HK56{KdCxu*|ggU^odi=0xc>j>VhV(B8q^1O;jw)PsnlYAUWqw2&~*x6~q+R zi!}+rW>Kr*^X966^Mlq;j`zuvE$UEnWfNeXdQpCX7PoV*y;#Dk5u?VXN z8ceGmvh*+L;`(q>Pt|25Xg?`L2YU=t^%4nm9*$7;VXInwcy6Ss1WUYNIsjd)0!2ot zG@znYV+5T(Njt#c@v1Wt!V5l}tU`~`V2!~eQ&s6SIb@n@DNVX(_>-4YR2CG%IPce0 zsyiV<^66Gp7nzW3w_A0LMBwtj` zV6#9En0`rhpQXJ)M0!B$6;(&-1v9RxSZ?4Dn4Q@wrboBP#R)f6T_}g^zpCc2>fzgM z)nR5mw8~MT-I*jfx8G;C#r0g(HD(Ug9;(ppbi(2AW7RxXJ-m3L^02g%#1?CxtEy5C zpI)k_{r4Oof;q&}AY8G8br<5o@?P~(2wLF&lgS?tR)5&+D{A2W`w9SZarSB6RKnr9F6v)U;u$BK;>sH z8O-Xa_DDdJoX~J6?V?6M;bsEX?5RFL>#OOlMtd;H+2kbk0-7OenEF0V8pf*E(`42p z^>(U;dDGNASQZLMg`Ir39FCc(W^K3|0D^F7wmOyB&z(T6g0IlJ3$vy%0{A8|%0d6N z7A^SxF-#8oELOkPu{FS`QWah zR=uQd&d{Xe{-6OMh(+%iLSfVu^$wwffiJSv8Powc-B2G2794Qo1NBO|;H*WTs}q<5 zO8rG`0*C)LEQI^tsY7Tb?tD=1Wvv86h$UzcH2dz49S5iJMN~(*W-ARNn^Lo%WhPIw zg$j~_9O(sny7t)lYEy3Ahn!$_{gN9)FXS9!^(|A)580(2vgRHr_ zrl4{e&3VD^?6DdLqsj82WuX65lMLpT(+n1d7clWBO*BoesDx{mkrxsUdsWd4rQZ3r zx~4F5m1fsQOCBA^n}UC+lC_@ZoKU5&^)v_QAnQyc4dYm?A@CJ~+8$iF+l@8o!Czve z=}mEsau+JXVaw+J8r^NBxy3jtY5N+I!N@Wy{$vV7-##gbfMDI#nnzOZ2v~Xi z7dvRML34tkC-9?!q{nxRaP&rvS^|FRyiEg_ZPj!W;bb_}ZP)A!7S8^S6!P+~HIv0cGWxCNJ`pl(}4}0+HPEsgq5WXjvy9f`r z3?D2($I@-XKRZF{{1LQ1YkJJofoY?{*D%&c_=Je_?Hw~*Hah&eidzi_%?KYVLB|)f z!;gv3am&2$4)_={KYR*4KW|aE6w3>jgqOp|E6ar6W75JG%8-0!Z8$WbWAdT!BOE$b zI}&~wA2r9qZ{y>urAK3I&7_wvGbE6_3ZOZZ`&uf^B!llW-50e;?5v zC%+%l9>Y8)ofhiX@T|5Tw#$MW+B5j~PPeqk<5$D7ceDn4jLXq(!RPDciQ{#vUxc-MaM6||s*Y}9IO= zSLw!x1R7N|I+itFS}i;59j<%DY7oNZj|km#%4N18FfRLzy5 zf?{sCbrad_GaAYwb$>D_1tKEoT^GbXibd-tu@>K{knTA{@mLR|;fEqRbfcbdm=dF7 zS!N|L2a4-%Q%$Zb%?^`OMt6kKq#a?Ain_02kdWLAy~?kuZZxgc+3Gr$c@3&nM}QC& zFsp`+>FwTr1b`6GjIWl?#Av0Cpo1hk2z>3KD-BN8(YY(c>A|3-awAX1t zMj@RUa`C!2>N^RYS$#(+0CY>#sbK#uy6%jYr#unNUyMBfB~rDgE(HGFL+1>L2*5C) zVLe?h=g_ZV;uD;M{!>==R-I(owU@e(*bXHbg z5CJ@6b|!SO3Yr({oPqFH0>@I+I^7+ts{q#hjaC7R579LP1+mZqX&t*6H_cI+hJpr1?XL3UJt^cq%@{NspjKTRGvrbF*hCT9no(5;|J z&neweA&FL;jvhmcw^ce@B005oQ_q`-BeB9d0fOuAI?j2_QSp`tcIa z`|)%ab$clEy-T{I9wBeWI~{tr8!3D8AG&3%?J`{ZNmrfL_sdtE%OF4&*6I~3OQZj= zD$A~(5+(I5Kog5T1dOxk>HHuX2`@8jBS?+0& zI#&I5TL~&X(>H=UqV>m-Y zHIww0nFBbfP<9CXK1*L$CiLm;=j+jHt8tG4%nS9?S*=N6V;1R0G1m_x0ED0f)tBfQ zM?P@?p#%ffW_>7d^!N27D3T`8*58w+XL<)Nw&*{g?J#L&0D<%`EP1+qBsIdkwR)CU z))1fj7i#W0eShY-B3R$P-&Vn=oApdPL-HwM7@^l&xlNzK98#Fl{3dt8a9EXt-}VI% z>3%2@P?HYoe+?v{(6c0EbTVMiMlt^8w7wb*ty-7-p(VZ&P-x{BpoHG5`hI}~Sw2=E zk$|>Dl+sB-%x%5<$L?zS4gCP>$f3Um6ly{N5EY5RM@!=apEn}o~4cbHwEj?D1uf8SNXrgB3xQ;m|1ouM+wpb~Le&>CVuH-fX^>M%n= zrinnZaTIu+Xy^!fISuHO8f(};sd3a|Y!Am744Go2m{^N}1>GPGpTFG0AJXi$JfUqo6kwyUuh zjEOO9CeCw7uLB>88p1(*gux7Lr499wNkNZT1Iv~ZUr8!By{ut1i(~l^93Z!$p$15{ zYD&U36%1XF0^z|*2J~);EcmgyL4y76YfXbH7#)M-426TxG4^NS*g3(F&9eODE1PAw zfv?T%ZqUe(^1}NXwghD8A^i-0F)J@?si80|J-|>9tEj^u1KOjI1-(NI=%s>L@YPU* z2&oXf8D-cO5XBZ_3`~!h5FHb5u9$4tja}{C1Vbhx6^MYCzKDTYz~re0w2vVR{5;(N z83_n+d2)u~0kgS?F51sBNN^L8FxPM@ASyZY3~?-@gM736HsA0PYvs~H!_k1K)LLwK z&#D!OoOloR*J;ZQ=t=u5(0R3CcR*||rW=@EyoD6g16*F4i#}Sm4fP0QBY}96p&qtY zqphq#BtSw0d6%(kp$O(o!wyV^ymCmi*Ps=ean(M9{+F@{GRU z10YP)1>$$Zm%m3;3ST`ipzU8-=&d=1OSqRA{kvf%YTaS*2ZNYlof7xsq?jO(RrWzJ z_%1QZAliq%(^nHXl`~!lgueg`5wHi3#ymmB3z&aiu(1s0T|i@u#Jy(&y|EU9(?P`l zIAc5~gKcNfp7EU08Z~(oVnJ!68jM;R^MkbH2dMFu|?i9;flG91-7G&{%|J zu#AW&fh@@#3ut+yy6OK(AhWbliyJ@^QhQ4pX-Ktd@nUJ4#Z7BwWh|Jj0N-n@$HO85G*Oy z6)bLTyy{a5N>in5{n=<@R7wwsz;PHuM<*leu(kup=xww>TQ_64Uj?lbee4GGG%|g0 z5$U!AM8JJ^8+XQv~AY8Z=Nc&4?bmCCM=}jL9+~ zshVd*`!dMcUs8?LX!7;~V}@8byJWF(aX=hE?+wO*74|Yu`yi@~Lqf=aE31qwFM>u0 zQ=l{5c#0)fh%%jrj1FNV+rEv)dX!DXHdZ!C00Bn9!5PMjEUm7OQWOl@Y0MIA243to zvdlp9vD!i7t-#oP-D^Z2Ai>TAZXPhQ?7GKnAks~F>V3VA8f^@L2uQ8+=9+?G$uq`R z4#AaUo*APA)4}eqjQwcxNuIGHO_us#98Qx5z8KHbX+*aR|Dg}2+p-$!JCZ?yXhK2}?Mk7?WHhtp+6*$_MN>Gy}v^R~X)p{Rq z($TY~uBM7oA#b;y{>z5+HkG1z_x3lT6;`6p`-4r#S)LvymCe|1L~GOSvvm+XiWMU! zH3sJrT_Q6A-uBNw3A_4!#|j6fm!=Zi5#~A#vU-4m!M2A^0A3!s|p5$2r!*x%NM!$$?v8ma!{m71syp30ksp!=TSRx z{G$ndOA;#&IKD8&8L6rHn@I&r|7mK#vSdlvA%v( z0HHfT(OgqUpf7GltMiB1hiQndNGfRTk<-jF?nMYG!dK`UxXp~O`tc!*^qTKd`*km9 z&R~f6d^UHZ&FEw2B#>$qHTPs`#u3<1u%dTi3q-H8;6g!z?G=B6|4paCYjI5 zgbWRbnNQISo)KoW|Bry(7->e2fs^F2(dJ#Ww9Zq^uc<4>&oJ8=nrigA0CR6pe74yP zOV2U4VdB0S&sRG&;K<0ft>B4yX7q>xQF+VxW;C%ORnRXo7g2E2gr{-iSDJUR zl#9BBGH~Q-vqQv9gNxUgXGyqh;i*vcUeEGi<3=;Xvsk#Z`NH6_2_nl_5PwrCgWors zU$Rukj{sI|GqY^JLI7KZb<_geQDcRaQD?XL54O5wLN_$GVrkkCi-n-r6|(}QRJCeh z`@`l^N^BQ=JFMPOb2vy2vzXzP3+6i_bb8BW^By*a3n40GKck`vLlr!7&HOo#I;sFd zKp(EVYi4N7 z_%}0pC2}@s%UN#x_XHrq=)lrB9$jcz1XdKXgn-;UTOoK*VL6Fgj)_VOiznuz&GB07 zuy&Y5&!Uij!Ni4IanvCPd)0t{q5Yw^u-!iMYl_tEw#jl8liFha-yk)>ZeeQ6 z{#7@J%aVmj<#{aU1JM*jRUE-G@g#i0N?DXJw}@pWq5>zxSk7_i*rF=xsPq*T5cK3qDj>LCc&y} zEmD|myJH-Vm) z9~ZM~SUT11O|65$k`h*yl_PZREKs$hm98AwOIeXurh|~O))x$Q@uAt_)pFMNEN+bu z7C21w_yvSY{RIx}~6PE2{?der#2P zydB zgRkTR*?+Nq4~&XzhV=}la(QNeR3^=~GL7zWWgxQB8_eQOs`XSr3R%9u+LWcSB`mfr zvu;H!V8=8Rf#?{$%36kHvlgeY&0o+yDwvGs;U+5@&8Nc)TLe(B%^J-x5Qd21Ow=F2 zaR;qvpq&m|9L7U|bZ9*);66Pj$lFd>nLaZ?oa)F$s}4vmM4RBI%hsiscHOI1^nSH; zXwDYkf4gpd!5ob7^52x8YOLJ^&?x*DSRu!X_Gi-0tN_(i3OC^^r~cXhk21O^4i{R+h23&`6jkXw1K+G@l%BqOsjW1_ARQv-tA+{H2(b|-Rw->`8T<{PrnfghgZ<$!&1h@R zGU6u)WW;~MW&V9XG0_YbhxFp4UPEI;jlI~G~P~!mD}0Sh(8?;>}*3L{&e`Rn+=Wl z)6sq}8yfMa!~01#G~!Q(X9n9^v-lh`-W-@a(uVf7r^5wfY$U=vjuQ&^j<=;Tf~JD7 z8;)sE`-{zkk;_iEO=CeKtz_~X+YSs;inpy|a8T@6WQ^{Bi^vxR(bf?ZUuk1`+8hB42Jz`O3)p(kMkfztSJ{3SgQ`m{ z8W6kIc88%}|3J0FH|uP_u|x`i$-7|l;5!u+!JN&uV0eF<&8q-4M_Y8zw8ti>&4O#`AT4U z2!LFhZ(TCsn0?9iOrQjQxn?^MxOLsvZ6}yj=Obr_CvMs@MS|DOxNX}XIIqaNs1FGQ z2BMI7M=5Q8U^^NJ77i~vZ1T{?G$r|m9qq8o6We9VtHyKNk-&L9cwsBW(xehzPNlsP znWTW_sR;@&e5E@S+TYsHu0Ya+och4-WC*$z?DNU?k=c#}q2ZslU#Y%g|F#`u)fd6a z`DXhgFgE)+`#H*Hfy5pdn@Tb}d+d?=yj0lFP&Ow*>?}`%VJCnHYY}S`zd(N{8dPl& z)f>Kxupefbvk38V)n)}**X>gDl!-+K@;XHIfzR#sT`c2A0+_Ws8|`YV?vjF}ny%sS zRU!KnW~{0oZ3W2^e*VUbBeC{hL_$y2p}f64WA{H82+(LHALy&uH9&FDrUtX;N2S23 zmF(qZLgzERhJ7S+fM@(|iw0@$tY%O(w1OPIuV)`97I=?rWS>oYI&)LIggGuq3GsEK zmGDb5`vt)r;fm=Q>MMYuY&vR zTWGTNVLJ*`l6T4p`z@-B{%7p{S_BHi*nIo8vZvl~3&-82T-;1M9D6_F*z^GaUTJZjhp5${+TN zQtmd!90z{=)6TdFs|M1Qth5&G;oe`I)JjCqa!FEhg)Hpdr(-|IT)rYfV-aZ?J$e>Ca9GZm^?Zfl1b zme4xdi3EzvbPkpmqWMZu!K-@5c$VhYhu{F;$~e@pqRH{O7=vH=U|4Qdk!zK!P@i(C zwe=Xde9wF>v!MgM-;WrtX`EvRBO!ROiG%4r2w}A4k=YK1HFvC{CMwj*v7M0!AXqzF zJDBDl`D|LYb?m2XTpb)NuL>Yo%XSxZz>JQL)65P->JyjXI6~PtyE<4#iupC$mgrzw z4MGUhLGnZgy(?0sk0V_o_{|?ltbRiPqv7;{j=vcdL=k!qah#wEsyf`Ulg)W3*3A)) zw}G+QJlcWg(#&Q++!JP5{_vt9KoRYVuy^}JXycgU%^ z=zX);pqutgKGD;4K<06g%2c z3u1;?O2fm?97Tn31mu2q)MS|>;#y|Db$piz%2I!Jv}9ElbbfQ}l8|8yd@gdLMNXps z0WznOxvfHw5yCh3nk$@W>PHZZhd9yHk0jMfXDwD|hH9M?Jr9V7VX%kM$+W_b)d%8_ zyUehG#fc_ugw#>H6HVGka<<2bCT%1+I?CCI)$XA9GnWdajEt@XFBfx$gbAeIRB~2e zwK+zNfS;>6(fp0j8&S)N=5HkVvXK+b-$?RdODCGYk>r-vPG3k3ZsSDrH*$7;yc5me zNU~s}6V2a9@<~r8n!k~xuD=t_-$?S?K<5xfV~vJrGB88IO&4ycjEU}15LhNTS?4Ao zeyURj=9IWA1y55FI>Cg=&NVDPno#0y3{Zb?Rsy5Sy3vb$C9aOZ`HPd~R*MfRQFsJI zKh3#V43c}7)PSQY&T|Z-1s`Bv`1361MHbKVA;f{%g9=*UoB7TpB`6b8QU~?|Cwh%@ zLFD!;S39qY1fG-DI$7?rCgHv%Q@$KLods@=$yv#?BYK)0#H>n*tG_N4hLN<-KGyOQP?c>SDQ%moNVPAPC3lE z?p)xr-YqA~i_d)6eKT)6nbw;90C4VI=Tb_h@_pylfLwlWu9InYmCvThL+3uq#`46u zDl{njDE?p$dWag%;zC$~ zreB;J15)vsKb>c2d%5zPb5kH#yG^d;EDN|k4ab2DmCG%}+ES_OPg=!w!LC38jGz{R zF`=%jffz3iB68oT@eXTTEXxM}sAwVBSnGNg5GAayLNHA4I!$>!HM%kaupm`clG*k3 ze}Pv`n=6Czk~;r4c+GOTn5N7BQoB3SwUzREP{0*P^iX|uE$Au{*f1fl1RAB1TXhFx zTzwc8v_XCylg!scg}Zc3%DdXKEd1tU6*os~@vL<;d{)!N^j_h7tej>pE3DMSbu2Jd z<*s!rg@<;ow{~5WlVKHvom@8~0rKGTIh$%u!a@bYXI(`45V1`wD9l*=5P^ruyBv`Kry#FkS?VXM04~Q zj=Ll*A-pT+W|^(xTc(*6+&v`-r(&IgWk7NPj~Z^P?CvZ9sW%4H1!QSrd<{4A(gXt3 zzFdp*(+Tp~; z?kg;QfDl%a_fUWtx1*y$Zhf}~z@S1ZaLp&e{jJ;srQB6v?|Qk`ZY^+5aGPQO_HJ}r zfw1q;iOJHa>~%0F-rb3142dq@1MXdP(>9PKAWZ~?&SiT1+(1@ zk7$B?sI)omhqR4JO?B@JsA91T+|MXh%wjjo4&i)WSC_b1mH^<&H1`7ZsTl<19MmMt7XCxnR^8H@f3YlJCyC zOR)@l5cp!4ch!wQ*@hvvUiU+exarogjOH;Uh_6KN07G;K_!U*v@s{k*v?K@HfL31xs?c5j-ntPGt z*3up{_aez9ByIr22m`3WjQA0)1Z3d$O9h-1FO>m2Bh$ zRESW|vNUCc*O5}!J@D2;&m{>6`R!*N-2co|j$z&h^1(7+d4>pjhZWy?4sxWHF!;Sc zdFv0)7J7EUN6$3Wq#zr?;(z%weEZv0a*=PTCe~GsM4baUJD_Uh5t^)CJreB{AZI_+h)j?P$?o+dYtYN~ z$3>c08j63hL*dyGw3!hZ0YV>o7zRra;Vl*@fxkLNvg}kw2tb&KjERqAn%n0iXu3qE ziHNSivBXH0TYLFf)w@SB&F%9M?)Hp4MA>ZW6UlM|lwchx(=#*@u_dP3jU5oV zS75VXa3sr9y!jQIJS387YM+l_8y-1t$M7w!#+<|tJBUv^H<2u5uDUoYghQH|I@!(B|$WY-Wn;lakx6=;LIhQrKC?I(k z<(7Go5=Jlj5oYH6$m7&{2@4}xo|DM0DB<;HQRF+8G1b3d4la${MR`qF@xQ@Ky)u$% zG2&mm)~$}*L3#CB%j%&&8sOc!$XLb!1BF5R&-=pW+aiZEcOvRcn>4`E@Lek%8B!dB)QV$Mau&uIm_l{dWjXPZx3O4;9jIRg>hg?5a{wi$yhI19w3}{R`8*__z10-3lhqnl;Z-T=~UUVn;lD!X{*3bKn83wfsGW@O_>w>vOn!>ap-Y?8h&c@e+ z!1Qa;z2V`}-YCYlsvksCQ7;E3^z2+0yqn@($}-#_ugKZpmBKGmy-Eq_f3~v*8dAKG zEKQ5%leZW6d9K$1(f4GSMp8ZmmfNrB+EH-%Jns!LsRfw4z|IFNY&z;?8I$K@xsH38CSv&ryH9%24QS#_qtAF*#;XMD z-g)!@>zA`$rioZSn@<uYk#kIJ*3{G)}0!t6> z?kw)b7k60vo0)rC*x!Gge$PJay-hOjyywiBGkykNX}Jwr->h*^#JW;cV^yhm8Sd7= ztg^D|HDB0Xed1A#0fN&fb)R8t*D|>Nyap=jDJ8NDR=ui0M>o8rI=`)fIkv!I-n^^v z0x{MCnm9o$kQSe@g}V&ye5vsXkv%JmWl-?F##&JYog`AU3SL`DQHy7k!>C`@QT@tD z>EanH5J)O3rHg0$)x|}63Um03f)5}?Vb{x&L4GWR8#^0ZwR}kqsXiq+xL1_!K(-bG zNRz~>bgyM{RWIRSZ3}5h4x(L z=^>5uxQ*EElPx-_2MN7dgWmk3mwF>RR|5#of=4i2mnfy$>xWqm0fn{i^v4W$-L7nz&P?HX0>NWrD5c97j%`WRWY z29RQy6bNl4tyaf8059=qTLoO~x*FjRc;h4XE9wJ?h zt_1OCYlzF!FUOWxr{{zcJG?zn>W3MBQgyW!#-C;9NY$9}Cr9AXSe+J1>G+e&I%Khw zjz9Tp_KFf^#I2EfqRTXIgY?&<=gT%q={haX;o#244`PzIl>y?mCMqD)>OLr*QG_j-$9``i@|(T zdKod3N7D}Hi(h2m;R*pv6OIt@KpN~o+3?`X#~xBYI@v?!3p1WeFIdr!+rN?`_R#T+ zDzB~K3J+gPo8uHc9KOAk1|ZWCn%18Tx+HB(GD2mZKOS| zirC-C%dFCO+ED&}d2ex-r7~-&Yc1RV`>A=(&uwIwp%70y)?Rjk*+K0xvZKiCUpvV# z8%%ljpIl@#GWS$+*j;w~_p^t6p+mi4X*GQ>m&hp6K#!_3q0v~McO zMzZYt`pXbuZaIWQRoMwmlyxtQG(orM z>vr&9sBA4(x%z4J66>!2_&brNYF{^?3u))5M4|TR1|&PmHc>A-3K-=mOWtYIlqc--AWm~q-`q5*UB&#N&JNF zQdq4ldALR90{-h|^v2VvaH~K@ZazREfk(dh3S7fbmX46hsEc^4eY%*f8j5GVWmGPIVOzA4kiR(mR9%%(O2sNoQSUB4JXoM zU^7SJ_SnyjC^dh0fM-&G%tmqy=&8jOHj+z1PW-fDZdL$#>_@Y6hj?QE#`lod-2;Xa zsjQw0sbUTo|NH)x13;6Ufa*3R?^^cFh5QfFrEcoRB<+?@z zLquNs<^h#(YdKB0|T}0W44yWdj-G16t4% z)$DcGlmHgyiM>vr7QmuIvDdU20qk@(dvzfJ<;7%?a{_J)9~`= z*8{qfH4OtWQ@N~^1S90*>a{BZyabuZ-)jR9-RNITXxRDy%mDirgz$|4heacF`YQl2 z&iDmu$Cd!hp!*ku?pp)yi)`BL2snmw99-FcPxqEpVuk;FCIB(a{e{=^a{+HetW_5SFlQQn z@~V9~05fnVi^>EpBn9%S;+^ZCZUk%*{rsLgs4DgokdJ!@+zU95acchqlm0N^x>$ta zj{^=N%=>=;-#iKU=l_A%`R4)jY&G+uWcRE84_*V_1YpL|zmy|ad+7UsDr4b01EUe0Dh9qxi1!@7scHvU zUn|fBQ{b=r22LO}7;YoD+$^vuVjxR60uO`h+9r_2=3!EeXdlR8^RU<4E`fA4lE23P z8JLHt6hN~Wfh-UY`@w*MKo*FHy=t}uvOqlSwcYkWy5p0-T6PDb!cNmN%_jxn z*C`^~@%i##pcbJnW*SR>ZuabaGB6p5vXHRjoj|WCsf2JsWKm4ebW)IT-5L7c2vmq( zVCTKSe=(z(pI{>&1zr#p-Qj6q53wX(y$pOHzCL^xSSXg-y03v{F?#`dZlN14I?Wgp zR1;x&CFxX}Zy zHVHy3&JaGCQl(kY-v}N<$_I~!4b6j4o61;XLKFLw#zjGm$*2}V9M zB$)>?yLEfSf4~3wsrD9WOTM+8v`=4wqJA-0GHuLrbA@;xsPJ@?vpM62k z(Y1*qG&>kX1F3VnX>|naPer$*J{E+U*!ZcNk0*j?oH5Sk;OU?vr7EdWXM-f7L!Esg z2s44icmdTCoxtXldR_}UUMfnlH-Z*ndhnFU8DUTLt2;r7zYh}Z1U7yQve*jc?v{>>k@n!tA}=O!S9hC}bk2Z^atU1wO)3Vz5WPoZKUDV3{DWtpv;Y1_@G~*{FExTsVoTtREO-!RI7n5u zjcv5=1WT2{H886a6k$CXw6%I~@Ye);VkRp%LTFO3`!9Fz=BEbtLt`~94Dtro+~DnK zg#3LM{ortu;Fp+bGA@r|K*h3<-yvA(DE5lUtoFe)DA}FL*Q|_&gf93ZWw3niFhK zu1ah?$etKq4{~jvy&HdnuhWAQtctU=kl;CJov?g>=2K4aBOqB2OhdhK&75CY^15tM zFb$@|KW(uj_yc1159>s&C;3~0eaW?OcY0q=mtZepo-yxza6P!UF<4R}(5KD8N0EMc zJxPr&~`7=G}77LNu6w8I>kV|< zQ7~qrmnCMKp2YM0BTY(5eqyr_I@`;C zu)l2xo$ckXiJd~|Y%hB)>>ffVd-;dT-XV0dm%mo%AJPNu_ZA%U_ZN0F-5e5vS}@{f zr|4OuJ4_oB(h=FRuZLTcL#}yC&as=H(}~^Pi!Q`yXA|!-f#drECV0Q@Knd4lNz7xM{#rQ1RlTTv=$J44o#ipsiOAFX(wWq%Y(3 z@@mMyQWR7fGWSu43zWYel2Dq`;xPWCYo6QMx%Qz7?7D(V*)LSfv6Cj7Wg?mCIpP#1^I)wB!v%_ahB>cJ8ad{!$Pyq%&=2m%%CR1dDlbP~9zql3g^bUm zWV~Puh)^JLTXct1Io53nq<+Erk}e<1^ghxc2eirlm!6|hei~V~IlT&`-wL@e~fMTNJM@4TeNf(3Mf=YiSr6+B*&bZ5R9}dW7hS}MSD`kSz!lN zTFCwIwewf3j-*a2`2|{(+!e*QmJ`hQgKICZgWQw!wvqRRFP-Eb)I7kotNaQQuG!4d zaxa+JTdpkjlVoHc>OuDI32`K^8cW>aM}PS`W`pYnVcjOrgU~!2z&20*2&vFtQ05Mm zS1C0Lp(y1ApLu(@969U}NG+HodP|_*QpfyB*)j6%IFl|x^n-C@~eP9%Q4{0Uwv0S>NhkS7&;MUq7Rl?-v|o*g^Rv zB;)`x`;(OiX>vZKGen$}FJ@JM`|xLHgzn^#zcGFhXzkpB9HI^d$IIwm<4{5qi+#o3 z7ibgQRYD`W%ERQCbt)=E4|43*uYE;gyiN=B*){oKRy{l3#P+Lt0LA5f#o2eUeMQdA z58UpfyNNwW*B5esag6)&36*T(6Zvo^na6XyWEAr$vi<5&_*%Y^<-h4IwoAxml0n3K zbVslU*_(6SiS%C~_aU?+m1?C8SX@Et z+A1>9q>L^KM=(1ns-a0S1bRAOVM|ucPVgdUr+DR%@y-g`2LyU1eGSqb^&q#MF4+Ni zDaKPPfaD5_Jj_Z7t+>MEFVM-~1`^2(;hgKjet|(G;131noGYKrewBBlOkp*}a%)nM zEOQ5tDriV1{`xdP;fnHiD-;$oFj#@v%dv>2g)1QnQ)x2xCr6bE%q=i9_Xcn#RB=d9 z23Z!aSb=HODGZ@7;_&iAgu+_XZkZUxBb0$NVgvOGH+M2?rOb<5%~p7j`~?bMIAd0% z2<1g;e3B7Nqpf@V=*QHGq<;B;N%@p?} z!l!#%C|(x7wo+u;2%lDLuP7^OEV`4Tf%xgtZi=NMZoS?Le^l$oN`{dnin|w50hRJq?B`R*RWB?#N2skWd^K;p|Jh*@_vWskqKp z%oj~%*CNFW)Xe`1MMp?qt_VQ1AwV^ML=^c3q@96|5DI}WL_H{Z&loN zBKxbJtxWdRXc0nQ&GM;1Vh-Wm_}L*h9KiLkqLGzk6?8hPaK`9%h^Nv-Oed*L|2VEV zi?9_202JULM*08A-G>yMMfq@w(oU$2SI;ThTT51vMEBB^dy(cUYPM#kvOc4-Axnwb-SpF1 zei)VCOJlvRFuA633uc(hIdmFmGjXEnJtv=1isMq!pg0bDr^frQ>82eH#;bA zVvB_Xq<2=9XZ;X92ic>Wa;7cqqB-?eUZNEn?)F!HqhCVNVC5jp0x;KC_5@`G_&ip5 z4$BiLf{D>uFjZ-b)K(~IGFMrJoJ!ADfMvFFEs{$pP?&X?{R31Lq2zY$Y=0QPRCyVj zJws>Y|z>QFZvLwck?FBaqlz$+rBUNXi6163dtCJ?KC~&y8 zRjEXB$b|{Jm3NTJ$R#wfCwX$YjTcnhr?h2OTJ^BYF<1N-&QvHq+aUT@C zzN0*ACz&Tq`k9}3+7g$?%K3X3tToxIZ|x3c zUMeH4gx8$c%1~6xP9cfUg)o0IV@~5HWc3rJhh}yu1`*Rj)nu;~{U0Am1in{xwB-cJ z^3TeNIFUJEES&$M1f+x_Lf{W2y*G(zj+~c-jzO{kDjsT%l$M@IWSwp3T9HV5htP3I zB23S*Fx@c}ca*1uO~10CJq0#1T|-gh;1Vc5x6pbh-z_3kCI!k+hr;rq^*qTjueM&$ zIXHA5YC@wJ5GdeaPoa*)Cx`A7YmRezXfo{C1gV*a|UOql#fPYAMfcMzyes<#39icI^;aktpj_ zC_{8znz+Hv$gohM2uXTomj8`^i^##(teSw; zLuQWZFv6gK3UE%$zFJ*;G1RW7x`62=bN!uasA?s0NNR#N$DU19s92+%!_(%fCL)Ih zt?+u7*jk0zI0=i|s%XSqUL&V;z^DLnI;s?cpCOaGsJdhAXjxYkjp|5=lq19bRE@>L z6!cKtLRX2f-l|%nGDu(5cr1s*{ZtRp9I^+NaM&_fg&9I}vwE1PI*qOub%v`9q8>Jn z#OvYiC>3g!nG29IRzgp z;r?vA9(?Ai?xQ*6FHq5)9lR{mi&O+#FFGw&eL$Cm-7?i6k;9A?su@@gr&g+-p!HCH zZ3&0R>+u|_7LC|VCox0lol+g&Qed=Bi}rK*e0e&^njK6uvy zcynBRP<2PNsCh?JU9c9l{-~;W0Cw;MrUfP3-+efVYQTlW{m-bTilX@ajW^8N=T)uI zrPAb*YM{vB`4!bntU9IFRBh25!fvYOiyUs>#_OT{9o1+whs67;MIwiH4^^0LaNHi0 z|ET()Ib=Rn^$~Pr$mieN8$ER(@Kpx&&?BGvQg9hg1iA=Z?9g2EsHk}YSaNe&S8L) z`mD&Ik&AlC?{k1KSG56MCH%{&=|v@61)g4N%wB6QMPqL@YI%_-zFR^4K;&?xqI&i3 zt3dGfH7ctgq4lt#ih7dBA-kFy-Ip6vT|GdA@s_F4jb}iBx|%q6Y#6LYPA+wa*&*r! z=nDEnQBpZBhpCY>sNKO&t*(Wfv+NGunvzl}j8mf<&zD+tMYLtCi&u{li!>z(ZyAG= z)ptdh?rG{CSR)^kuKp}q#`G*TW`jGgawm-HX(F30W;JHDkHbvKDe)d7YpT%`b~|dR z)#&n>QdeD56y-yGHDZPYHa1Y#L1(|FvAU0#eRwl9dfv26b2Vz=o)?3rmAbCTVM!Y` zV$KqpwN;0sRS?~wqy*-7QlsaGPIgu=6{Q%`P2CAwL#A|BUlL*Z^i(58VM1%Nyq6k3 zTczx)rfccERo&8GJq0Vu;{j^aX*_BaHA$E8YCjO0WQr| z%dPmz(uxWTu&#}>ae!s{>RUEkGMK(h{SHm+MZN28PCaRN1JG#&joG zVnP#FAm%gr!O(THIt#PAkiz7EZl`)VMg=S}p^4q0_dfMh!BW8YkeY6X`2Bk?C|CnB z_qkp{Y|g1~{5}9s02+&ySt}T?s_Ds3{%Uhm{n1u+!+{9ut-e*jU}F0IX;$r`=Ne@l!T^tCVTwiCxWe2xTB~rf5-6i5Aj`oPZTP>UZSGD8KOmBvnjBsgQw6!i z<~H%2$;@;b=eIB;e7*?Y(io01&|<_gU~dkWBej)7Dm4msBCD3BjE0Q5;W=2*fWqt& z1$xpnd=Td5I9`3%_6~O;JJiV@{QNsK=o-FK^#7hcaeCqvnZnk=sEAjV_(^JKm@zoK z0iv=%)zRT=Fja)6Ye+h;j<{*Vgz?sz9KwPr1NP__)Uy;ajTehh5EuXXX9Iv zZ3W>TWW%m-fB3vHoCYH13g};mHw{9uJ;>P95N*lpoAFn)jEq44Hp zUQzr&=(R807a=ZCgd96Ts%j_0+hVRXqYyR0?QVEmK|5s3!*I-qo52tY;{h`sgiaw5ivhJLVC1gfpzK9FLE zBYYt2YZ4KL={D1J4Pa2Kh)tqzN@y2x8__O6PM?SoWw>t1qoEO)X+?_A23`z{=qCEk zt|KC7TnO$u{6|NW6<_1VMzj*CZkiB5@6%>KSTSZYEfN0HIrAcZhybe>M9>2l{L}M0 zB2M#9%faSd5$6$gUg)=m+)s!li3cJuw@Pu-p#aWMa4;fA?D&>D9#Pz#`f(z{%N0>g zHdczPO$OeKa3;=`;}vk}dITzp9)kf2)7M#0nf=p|QBS|D67|SU zk!MBqxR@iOJrS12ExLc}NH@-u*tUv%k3<2Aa?nAbYwi+xQzWMA7P%5LddhK)t_NL* zMgE1@-$+z&~7`CAT71iCvmT41(LTa%7b)DNg54*{}E-6i6>Mnq#voH zk8*)YAyFqp`8p_~?u(K%)kX~#9q+5msH>t-*Gy4AM4_JKM6D5vd3mF#x@e*N#zdAQ zjXOm-%v_#GPrHmw>JG9tQFAd}2QC=H1B#~=3uiu^Vz3Y#EI^$y0 zV-al9b-Y+JU6QMkZ!MC0g8zf4c9@P?!8Q~?5vpV6YH5*K$cEm@p5$tVpC@RH(Q>4| zIgBsy?hx%lI*p^V15bJFi(cxlE`B*dhuGk(usTciJe0|tBx+A7f%zGyOJ)_H$ z?~()$QZy~OHMHmwT`0hkpdQhf!8RYDQB-l47@X@J{QyxDgrUTV)ybY<7!s`!OoYrF z9*tS#=8{q@Unm$6?IxPrxzW)dG3F+8=(Z%gLA{C5nHX~`M%WCOCr3L62_ED9_UIRg zF{PlV$1js3$(-ZS*dZ5uIT39aED$O8G5R0T-kd%~dyDOf>Pz$+@zaQJ(eK1p&5!8n zqQ~pv5c6F$$U)9AXT*MLWAB)<=qZHT^-|p6OK^-1G1eFKLJ_>-tU89?=gXUq`H?YF zu?@bUjTw#Uj`6~)(k*2Iv^T`4&;~>ioFT{@^G;-@%#9J}Lknxg>=sS*Ox>7iZip@; z=h%31$`t6)J|4(xvC6{cE-`z=av#<$<`Htm%}f?7O_>IR2E~}r%A*KQ zP%2W+lS3_@Uya3valP2jiPH zBTYLtFGmV4g}IRYdohk=;OUqq2+%wK#8{xonV2e=hJqy~G_f6VxDtceNkswr2nRUp zU5&}MCGpw*?qu7onDsbG@}NRd%qdK}K#AnR%)2q$tOO2CAH-lbSaX1OV;$o@?rpl0@x9a3%%neE>+XfPAJb^S(->JE#mez#v3N&X!>J$aRhSUKm%Xc znXBm~a!RYOIf1m*ToT$?V+Zq^YEqpA0Y7%qpn_#`gWzC^T{SC2Q~ms>W`g)StGDJy zu>tqjXhl=~Fj(U$zE&Jw@@c!#8f)>>f#Wq(#n&oRO3eE6RLu&}fHzIoj1_-ioL%w* z+1wJlx0+vK_uCef*nOXTO+PW2^)jkSoR`Waw|~Sqg56q8imjl&rW-YVk!A6-74{+h zL9QJIM%vQkORd zJ97NErttT90p*3-K9^IZX$^U&G*_)8BcT3S%>c||3j-k(#E!f>q4go1cf>V@C)ZI` z8YtFB8>*3v2b#ZrUk`*PA3*XVl#a0Zp(e$e0)2X{!R#I9KyF3U4ilbg9xz6-SDK|* zMs9kUBMf=1>58%9u*0!!h{7t?A69xXKXnq`ur;|HlPfB-W(fyfO-H} zG$pnpd%DbumD|#1-2B)-X;DK#erzfw1Rs~i)?|NYt&CmEzW=l?wz30#mM@I$fHbNh zBz$M=K%5;7AuV>r?nI`AbGu_TnAV!AcL?m-8yka6Jd~{3AB)*BPct4$o*#%kf|GbC zX>%xc_V1?!n(qjETFP)LR>rL6_LW#UvjXQEu}>xR`RQitDfT>aJN5^E-ieK5-+#X! z>&iU3%cIzL>~rhKu~*si=9Ac+?DIL#V-K)r<5#ge*wgoI>}mFV{61F8tWEYgwj0Bl z{VmpoKDVrlb7o%`TE*$v^Mg&?F!psnhd6ik^YLZl_OQ>hT;t}j=Og#H8ti*#uQ*Pl za``w;qnuCNbw=ZbZ`^10yT_H|c*Ap`O5DHf@151+Xt3oGuvi**m_6GC#sxB*X(4d~ z*wZaE&YnFhsD=FJMaC)F-zQ_@B<%O6W8=75wrk_k+2_^?aqjGMucWw}EZ?`uasObP z-H>K+1Ie?i*&d`RXnTO0F;3-9odgf{U*8nxLArK}^@ZV$Q z0dw0p#ORXHaxENZ;88y>4>w;iA#q#ch>l$=BQrAEoIXkUT}VA+!Si^q}9Q=!@sXZ z;{GyjEjS#GTTjIya4ZfHja9%1JrNhfFxsDv!}vMQ!}_eiW7GLK%p4HMsCF?fiScN2 zC2lWPA2!$G_ArctH{<4FG2(6u`sj5xZZ{Ug{eIjJ#>4#|l!eEu|8B?yNW%#1Zcl7H`YO}#azn(VQTF;+CB)nEgzw+ z#B>`Tqs3GfiZvM~Yqai+*kY}=8B?oGl6D8Cm&Vm^i#~JbA&9s#n@x`sR7m>t!k%9}CDv{71alT}oO+9#<#j^+c6o^d!o#k${=R4x2Ll`P=i)8E4bTFdxEw0>j!8XF&WAZ z)o#GF`W$}JC~CnQW@;T^;25npYnV9mm6Np_8T0xxP)1S$4HP<@k-k4i+kufa=WENb zXM<&09qakcS*wj^f1lr|oq!Mmrfk*DW<)t_{Vpx)JP`%y1CqVk&8#!EWxw_UQ}5V= z+EWNdY=|z*766?sIN~hHCyO5Wr4yTL+I0w@$|q#b?!4hnysv9tA^@8Gqpb@QZ)lS- zX3i25n%IuG>`3>a_cH4nlPh<%n0=!ZsnGYzeX$erqXYGB=Sg~0# z0-*?g@bIgaUXGJbn*PvYqIdikZA*c!E~efTqxcZTkUAc)+g?|O>4;bCn`LyEP?UsW z0#$iEiUdpCbP?=%)kD_@U4D(9X?@9kbvV!24k4M#Ufr2VJ z4Wsz9nn1OxOjn4c+MG0s(uo(iHL0L$4Nv8|j}lR#q`pE&FK{cP^M&f6x_+$e7pioa zjtkW=&&dTYsC5ZQTjU7-q|53=Hxg=HRZ6}^=uY7(28Y4~eW8N%0Xjm9_MpnRYS3XO zASp&3sExWJq#p9%V76`~D-DB1hl%CG2`tamp~49B#BQ~9V;O&g3)bts1U-OfOAJ3_r{|- zV~h|eMlRA7e~j=#2`(9+qqBgtIUB4SiZ!8W zdAcHo(PNly85ZOCa2+aeFt>twqjc>UfdgZ7%drG}$LTO}SRibI?lH@|;$$6WyAtQ$ zV~P$HEtn^MJ6+d=5y&NY;aAVnp+W_70u|@#1~LM(=cC-9BvL;FJ}%Iqb|i5EJs0Wd z{hj&b+7i4QR4vn?f&_B{>sRWAF#@VJC=GCoNo#ee2*EsY^#a{YMqtM#-9~H$sQi}> z6&{!qI9RBg$_UiirrUre0NZt_*ub2CWw$`!!CpLpl>Mb3P;^MBhVe)7)sP(1p`rqF z4Y-{WYC+F4crSe7EXoNAO-b|fI$$>7dkJrZ11{_CFpS36beMhgToDtm>wMT?W92P; zvuIURigtO%UEOjfMBD?sEzWyLyLQ-`wE3}a3L}v6Ojm%#SpHmx3IxoHV9zVvMn<69 zTZ{%E=bg?0bLf-jUFKii7MAzk&$>-m;j4Ysp`!nC0$D$FqZxsV5BFq&|gmAM>+jDM&O*69N6m?9%m^MPiQ8GeeIG>dO=NH|v)$ zE&Au`(XC)!O+6~2FDH;yM?aSl_@^G;6fzs=?=lQ|WBqWfDK~GTcd?-u-CF2T6ZveW z=WI)T7seyLjeZiAM_yaOFZAtzZx}Ci)T82D@&ei3Mc~jMHQ+i-D1tsC^ysOYGb8m& znGik3=rLOsxgr*i)jwev6DH`M>JBLJQk(ihc|uU^89623w(;&d{Uc_EHTr zCrz^Gl1Jryy?Bu&4c^;=wHN0X=#e9M0TL+W69(k46zlbVa`S`k%k;Y#TIedQ@A?&u ztk%;_BKag?J+}V+inervz8ZSPiK^d`T%N1;fdO0eotb;)t9L)P>D`b$KTgdN*6h^Z zq;N21pWYA44m3yfn8h@xdP+YP;~QwYjzFXKe!*^8nC*%zF`d#c9;0$%rZuJ#LF-?Rt)D2Y2NXucq# znkc3xIYQ!H$gW*_G1ls_nem^H+fAC2tMlSr2^k#T91bstuZpQD-44XpBBpUP2=c(u z;Vt3Dig*d8&J@GAlhlIvs*pD>e2IkI*brZdbZu?#PRtX+gUF<{@#m=qTda#e%PLd& zhIj{7O4?2F^bkQlwAm8>h-o-`d;DvJBtR)VMN)4KZx6>Ovdkk-#M@&UXl^nrOfS$d zy_IY!(zAR|Bbi{bGjvLV)ek- zD*@jfp_t{ssc%9Y#)KIwIGLA#3bVvTqKTad4ZLdy^+qP}hQMxYf}`v27Z2fZmxo1^ zClj_L(=C0o6RMV>CS0^60W$?yj8+*W%Mv;;7uace!g|)fsI)4f5_`t1N$AO3;fD1I zm)PGUHzv51rBAXefu7UKhZTDg0xHwz*&7MBSo#gO68^>5F4r*)m|GRw6(KCzE}_wO zTSLmj1PSvMX-^Y)A1VBKLJUgR(!~0|1lv`AOOT@2i7?w>{*Q#)OnC##CSGRBs^yZn zi9H?M66u+|e7NMESQiszx2iO;EeW)aRFL=86TkevRRIO~i#d%;Ap)`W3V~R&(8Sw} zSb{1s5Od6%;?^g(bcxPFVBJt{BCe}RVSvKS!0eJ{9N>Gy#7^k4qlw+fxYjgC?82K7 z1U5BEw4r;@0XhoGn$%fPR$|x0BBrcr-4h#n{(d0{Rr_azUGrtV6ETiTd{qjl1<-U% zVw?jdHGfLtb4G65w8XzLqaf}n^6p1DvS_(uq380%c+Ar4e_+I*yNy>TvTa##bZufV zbM)^D5+Abad%ZAGf_2w~Q>6iSHL!GdB6_IJVSt9-oye-~jgyH1%op08O&r6BPP&lz zkbU0kPU1ZFxyOUViR|;mj}w<*x&c3x!vgKHFuB`d#@oc+*jWZa3B_1tfrdDK%xqwm zBxxJ#u2>wC4${U0%6lfAbfM4te{a^)hI54S6Ir@~wB~2`~JVJC`pwV@g zIbtoE6)I49*rsckm6P<2v7XR0X%efBl{+UrX6)^|C%Lj``JPEToapm>UeeIgvHwpP zU7%rft6@e*KTEe5&xQ1!o>T?KcZzx^f%j9BDl)5gpOwVhhR3s$=s9aTx|^58EAF%f zNr~+5OZiEAnfPRJQVr&^cdbm4F*Q6WOuEO!KDIr{nLRJ>N_x-mP8~>^Q#$ck=v)>W zc?8Tlm2?QxH~c9&#i|aj7n0H#wK`Xm*kTbJxt{ceiFDwmAkyP|NjfG{z?-C}Occ)# zNtM}C^(pBSOBeE^bRsQ;Cl1M@vAq;ltAd2^)iRglX>@Np?5LWoaHP*CLCF!N(lxA8 zC%2~}k_s`&=>8mceH6$A)SBd%Ou^N($(GWUTS)+2LIdcwhbc+PA*IouBT&FatW2L9 zl6Ns5x~6XOLiV?zVX{-{sImyUghtR+KydS9Of-F=A?8}7Sd*c9%jAQY2%FsM-Hg%O zp=bBx&1iK|1aI=)5>2Di_fEdc>dD%^$!}OYvv5!{J;Rz0bB86*MD=gkoOVgzT%dt- zRm}E0W+xBFdT5GPnPkpSE=vz+M#ncJ_yFu{wMF98|}_d2cbL^C4=v!KoW5ydDA=`&OI zu!44&mEw+85)EF9pAg}ZZ)>bh*~FA`WnIc8^rU!6*jqxw-j0EyT`3!x6PtPdr9y&a6E9Ea= zDj{13CYswR;-SNRpHli#z9jZ*%4CG##W}e^>u)IoG5&-h0Ok6Oxrj!NsWVv7zAc-& zfIX+WrH*7zAJ5b|?D<#u)amS*Q89HCd!F-4-NK%u{z#q3wC-Ia^@%%uN}^H=nD#g6 zQZKOQsMOSX>{;EEx}QBC)k@vYo{Jl$E@RL1R;domCFOJyaEiL59`_WL1$&04-ek7H zHCJy;s;IeJV^i&DPg+=5|1>!@7E|?$_2*BDW~BDV6~I6tdT(Wt>caSh%uij80~!IN z7o;9U7UBr7T9i7NnbOcDcmlVUrk+I;Xt^S_J0oy;Rq8^l213@PW?|M|XhDtu#d?9j zqJq>VSOT9nrlPh+a{{CON?pJ-Aca&+hy#u>W^3w7v<4pSNaedC$L&tV?26Y`JYm0fEl{oYlg2E`S5RQ zIpG+8(bv=?NTQ7h#ViMDKT?k}mTp#Qs~O83_GudS{7^RSB+{@Nf!RIHfTl$gJCbeH z>w7_(N7_2tQVV6`SUD{lSir*>Kj3s$+C9c@lPPUJn+`DNrg<`}YgH=^b%PJD6IB|dIhJ&abj{LGcQ0|Gd+obr zk-U-JJRrDD+S&+&D=LPuz@+(U9a#1MlArd8iTr+X+RO6v`CxlmT~@Jld((Ea&%f~uF|C|!OpK?a{KKESOZuWh-E5i5Zt_t7xyDoemcQb82 z`~Js0;rrbWgzwut621?7oc4%yKiyxaT|k@KPerZ%nD!jA)b&$Q+1}|~Q9FFnxuUjI zOxIVS1mCOEYcoY<#iVmZImM=PMg0|*&K1>5m%ft;s!kEUf0HVFKQ~?YzENiSOD3q% zl8)KtD$?nbnnth8{b=yc5OdF+T{b%U756n)6>mNTKhSIG>7L3(sY?G zNE5a&eKnKz#xmjixhsV4lUE7f+pS5z$E1C-DSZZJC5lQb#Cif6>#4c7qzJm5OP65W zB#&8D?;{XSWY(MXB?1g&eMtAg3}h)zFOof|xt*|NAO9s? zhcVbEVM1=Te)e*4w3KU78#g$p8r9o zS37BFWY2_F8O=rO`KxWlL5ZN{G3_(9im#TA8JjTOM4H*Ju4C(;8H*)Hg&PdkoofJH7QhN)>3B@Awk z%ot`%mCMl!}3GAh5ow40ofZ$(L!nU;a^iT{HZF+C#% z(_8)tQxvRsq+#wezA{oyb2BjG*`H`!Q^t82n=nm!F^mVXjjZJh6PIR8$868wFa_%~ zD!{ygjQN;3c#4oo6#E)`koa%u@nF9@qq85YRP0KEaW^s|5M}@rGu&Qs6r>L`BB`pO z(LWijt?BdN(~O1=^jY;?#t{j9K7OB3$B8}@B$=_!^f}Navxt4)xO^t@pwACMne<@F zQCO$Q94DpEm|B^4sgXma2AO3TzN~rXY)|^!*DJH58+|H9Wu~z7Jtk%LaHP-2voh;3 zoTRmxAKB-zTQYMnt0q*QNb+e)h6mUk&fHCN78;?er!uhyDZI(k*}k?94F8xps7$dG<*f`h zNVg+mZs=CKENr(kbhV)rgPja?llW0ccQd@Rqfc#l!y1|wJg#aO$84czb;BX{d2Fy@ zE-RDEY6BO|5@RUDEN#%T;Xd@D1ca90>t8+!@>h}p-4g7Tn;eP%yFRusIN2}|p_*y# ze|kWChM|^30x&bv@YzoC5T@i9P(Ajlta0L$LTeg4$p?$!1H!*IYiVc*eQO$Yi0VvO zVgf4+{-oCyLt`?snZYA={7z+$PF>l*9-TXM?$NDDUuDbi(3a8kzt+u~MMO7`Y!MmW zBC1tn^QcHws5&aLRjaV@s8(TN%_14zpD?tp;f6Ko+O?-U>C(`!2Pe~?@OL9aV?fE{X8EbAaKB zt?;^Rs9~U$@TwkRSSteuT*C=W`%qkTK>o@omqB2q z0n_IFw85_DZ+Md9s|=42<#q0|!2;oH4EdP8HcL$EY%ySlt2FH>VXU~T(9pn6vYPnp zGGKz3QlLq&e7C_H(+%N?2kbW-x1t2n4jIdCb|pvP+iz1?ZGFik$^6?K96cMQJp z^}V4C(z-di3lx4b&~f@|So+QI)t){V*=9)`=yQp477gCM8v3|qU1U#_dlsEKTn)}1 zS*wu>ZAcnd$@1m$knRT!m5K7Q#2M!LWZC_ctU{J3*}ckHsP!VMw}wFTp<%&SLuB== zQ%oqEkgSvJc}^_|wLC%)YCu%hI;1cS$iUbvcT)c~ErlX&)^G|hbTj*=WJ!_LO~8b> z^sK{-y>(U=Js(0@8?&rz>GOgmt3H!LSwAb6716NfSwk=fzp08Ez~ru3Pf9pX>XY>W z&6y%q1=WD8-Hh|=!C5mI$I+v*-cr{M114r=Fs_GZW^HFO44Iep2Ggf!#ag&NYq3+Y znqeE>4ri{XFsA^)sTHX ztB^hIZf0dT)2I1K)*<${_cLz4Q2A9BJ%P6xl0Re>F%8uCo>hfOoN8@si0LUaiAm9f z>o%Y+Yov2PqIo@XHy%fttO%D_!Dz(@ruZA{m!Z%6K;tte_ym^{&)gg(s0T1JaKRYpJ~<4uGF6lft_Y;3%QnT_R%`!_QlvZ4eMS{gC&ojAsxRz`n} z_ITp;ZH;Fbfk7RNo3R>@bTYajhIWJ#xYNx@_hc+4n|l~B!Ol2FR4-#Iv<5o%HST8w zlmm>2h=)K4po0H$;)n8tyhjf+V!E&#!)Ao>AX@lYqm5gc@Hyk~1Wt`N79xg?toVnJ z@k@;kpq*|U>C9NL?URm+j2<&v8-2lcvGF3ZVhsU`+l>ka-Wtg^ts;vpx`@KPBa^|qnp1d-+dVq1a(brm3 zAPm@NT#gi300s(7BWx{(?Z=GwCG@%Q1a)!r+3S>%9!Xsc!557EZ0K|O72_$)6dD&n z+0*Dpnm(Z-bO`kJfY>|6Gq!>VUQp$caVpZLn-B&J6u2uB;oLLhG_;o23@}y%*SAJ` zQ=Mp>Pu_~gdGDh!1GA(%sab5wr3%^}^_{Syj^j(q(9l2Sodtf|&loYT0>_Rh3PG^)K}^jYlv9ifczL z9okkm&BZt!+GQ9>HU^uHOYR9>AZ1@?J8~?sK~l?97iud}Y9K5z z>7X)Urf_)Lyd;yi&LUuc(JJ^-be&1u_cCH8i23Vsj2l8kdyCfMzDlY!8Py+uSq(X%C~o zt96MU7Pd7_`F%Y=vv#J{=a2Z^UBgvBk6qQ4ADe zlCY)YW}&G)Mh`y`T(_G>iON{9vy^PycAHRhnm^fm-)ovHvRQq=w5(LRDSya>S{VJw zrt(qKbdk;enF}uT)SEd&t*yAsz7ih3o zWwNW0s}dUz()6)^dnjj>eL#eLST?&4W+jGm-2KnPGGOhVjoNcrfKDff!Tdvfh-$yfhf?#)2u~WP*0wHUhtHlRcA}Y z*X-zQCt;WX9pbWYU>4A+|BfI{<|?besq}1A`0ZkZ4lvx1JprR8j&Qqnwm+SDQYzqJ z&Fn46{ze2)nBmCI6xV|r>AYU40goox>#-b|Iyp>P5@X2rA~y=CP$QdV>k&;P>w!^T zg~|+arl7JN^lOv70?(^ZSy7;LZL2Z_?zPL-qnu6m?7ncaYjzI=5$M)E`%#%>OqT5+3kvn5wD%aUchBn_8Nqotla8B(w^+4BDa6{XD=43>Y5|jv&7e$CrjiQ zeJ=Yb!f;{8)$CxqV(+!$dNJ=8x3km5Rw?anc1J|3M1ea%_Py-$81Y$RLKEAORrj*p zNkL6>Psn^&;#8DwsR>0p**0W^zgV#VDYYF;bW)~*p|2k~`GjJXb` zwz?;nQ=N<5Uq_R{^lQ~69HmaK$6%3-70-+SdQT^3kX3QD4gwf{F!qn-3 z-sUF)EwX!nc@d(jQmn~PWsrFa#)f#}?nBJ?W#8;-9>FG&fJ_~NlGY=3=uH91eP0{4)tTJyB zKlR;c-YuHv<4xwKj)HmC-)XiNf7^Yp`4y&Jpu1=(-ha*G zkVR4q;smZ=%$16}8xSwaQHVpN!S*@DMboKlP8G3pw!l57xM(_g)vGW*bZ%=Nl?xl$6|wV3C~%CDVqOa+6hO!nndNC6dht*d`??Y zfGsIG+eM4ZOUr@c^2*NnD3+o*H)n~M%%)+^5@g4}9+}j}R6zD6BjN?#jW; zf);PS@|@|?4+OTC$PAW!!EHOFS*dm@`__03+(~MFSF}TvL133y? zsukyBIR}1U7N9_rkz$O1v{N}Wq-!CuKAVHt!%g!Z0nN|lpe}ymi32X=(2XjEWX`3W z`M)nb;TX>^=Ul~1Z}G$fZshc21m4`j6G$n_sejaH6+?_m6Y5)|5RD zW0Uqg=L$6>sPZ=FgbjT@`aJ_;1gEeeDM7XzHY=N$$`tt=O8$n0gl?&MH=3u5nUF^e!l zp~8iAx#}G)mQo1xE0nB@WwVvQ?`b#7)KZB03qQr5mg#F3Nh|*Gjf!x;z~WR!WJI=ar0%Qf7>jtMFl>jVda25o=kQ>c#Z@pr zu-$J-6a}e!)Dj`SE;wy*6koSqu*k*N57#U-?gFz~*mJ{jRunq_u4N#i^(z+IOg28T z%p%Qe)k`N+o?4FnzO50y5iS3j1r_c~^2XAh(7vEA418hnL+F-p1bV2|WoAN6ci~{` z%5%A%n!V^bQJ|0>b|k++J$F*$UkjpJND|y~XTbVT7SxUfo_O3>%Q`E8L&gsaX4?^i z*|H`V)jQ-AhFIs$7bz(1axuI8ILsvb+#3jQA?PryOfFq?=0&lqY%Xdi+#AbiDC3fA zhcGUn0#vmYvj5W~7Zdw}tKghx?kBVgCYR4$AgVy`n~Rwd=N$4Y=EfrYKdWE8NjvYF z;Uu(m1zXrzH5YXaCx;ncp=L!`TP^pi6{+}t?7eq*R7KP<{w|~^gd`-CKnlIX_JWkq zK}vw^rfiZ;?!CJ=ebWnuNQp?7&VY18igXZ06r?E9lp?4g9aN+!MX-avGxyFe==Z(J z}2kl)8?ErGiT9rq) zxD~Xx+!5zTUwc10Za?MDG-sSQ%lZ-_3$3_wu|Dom8TSe+V5aAj58WSK?i z%`tHe(5W_Y;kbWwTmi-TlgV+BwD@?2o9aU|-Bg#%j)N@}iE7o{IFoFLapj^o1=Wce zOXEf`xOt+;IVk$>MPD>`V3-=eyDm=8OfLb0XTB5H+C$ccqnqO(Z9zhM)4OhMDBczK z6GgiG19xqYy>TNcRm(qe*E$ZxHK1*$9F6PFG;<^b{^)lu0F6Bx=ZQ??Ms~p~K94gn zQ%PW9fYm~#61{)MCD0q^;^2ZViQaox;^2A&skrx=yEyHJThE7l8@G)%sCUz4%J80B zapx$6x9_{Tkn=F^xStGc;1f5nu)kczoj1&`;qz7{4MI)&m|21c*FvA~f`=D!9XuVSO51b<{T-(gV)K%@l6rJ7%I5;(8O*oq&O@V%@bI0IGAC+!OVx3v(1pwD9PetuDO~O2M?$D9HT;&;PHj#GZY6$ ziJ2v;li0bc)SSVx@+rN%d9-;s#lbelJe8FXGpfuVG2nm!hbOfAnXj3rv39?2qM2!a zA+exjviV(#gK3(XVVQ%NhZ0;c-OThISn1{NGtH2iAgSZQ+2)Cid{}#Tj+t2-XU{iR zP!z%!vRj4$i_CruINy}$8Iz;&2|YNc5QL9Vf{9CHhi_+e3zLGnLEvJIDia@1@Ez= z&}FxoX)#CAh6f**CsIjF`q2D3t2S)kXJ$GNDB+NO(40|QtG$UO3dua+ zqT6Oj7?fOR*L&vatb9qo|AIInz-a^?{FAvqMQr&a^Jt1#``_5dZtU-7rae~4el&by zUPlFX@-OoYR^})amJ`fMQ{rKHo#No{ZDF>fdLIkZZ37Y?qWvwiC=LheSr}uyQv6$> zMbFHKv%zj0N<%Ho(ZyR~7M4qN<*=ZtvBggL@G#uMY|EQAvoPIuBgx`av}F#(p}3`m z<#@XUW=$&#`?$z!YndS9u%Ls5Y1*;aT#8j4Ei5~IL=^ED?rE;_KuM+LVd$L6(g2bc z%;EUsZk9J0=20@lZ+lwovcbXDz7|-?B}Nf<=x>3wDyevTfCX*{m5NITS=P{^`DM%R z^tH5DOJh&D!DO?A={uwcK2C^1G3k~@xTDn)QCA`mr>0tpSjG(jh5=X#MQW47O;%Ng zo2(vLZnExYyUALcYl)(-eN|{_!LsKd(Gv8U1(NT}E&hHoElb8*m@@7pS^(H&d6t9M zPqNgbY(G5B5>1Q0&a_0*V%vF^Z)q`Nk>x8|^jv1?&q536TrYI*$BTjZ$Xk|sJ~Azz zZnPX>k;^k+AzLl=D3_HxE!U_@wZN9IXszE~3v4<_I(PO%3+!M^MZ*!xHh;PJ+Zl_< zN)SGI-txUSrRADsEaTAWg#b=_H2i*o7ryFhoNCt}mY!(%MMo2u|I4nuLM`-*&%Gddg`H7y=~KmG(us^BwhqE}o9#7*|cTV9MP0tO{N7}5m$AB=y^Q|8*YpSZYo z`f&VCMl;h3rLVZq3;~L2-0#zP4Ktn+7zxE@C*t7%tQ3n`KXaiNayEW1Gm1oCP~_L~ zAt+*hybe!47ti!DbhlVAz}g_Ah%aA>H?b(PG;Ex^AU$dC-FP2lGIVNyzW6pi6d(CE z-be@M@87t{?{hnzDOtqb3x-~3ppVn<#WQ{LkI;{wJc<{+Wa;ew-G$!Uf5cy9mOMag zgae+&ucxEtlR60>P+K_1BLULeq;Z$*mGCw#2KyvH;)7Is(AQmC;h*4&ZTi$pI71t> zsh@C?7QKSqui+5)Yk8sW*9;94j?uOujT45kNVR$EgptU1^UzTII3fXVF(X=xpSDPN z$iN*8!0u236w%(rle$0ZJW=6_W@;SSF<}x#cULDjX&GJIq(vy*q}^1xNjs=Xh+`ye z09tVrMpCnw1RwdD$4#b$->H+|(<6at0}zOm!D0X#Ov&xpHvzI-Bnf-z_3s}dU(P$ihus71YZ{SM<8N=NLQ!v#Ds*a%!X>*ql=;V zR&v5{26d4G3kkvpsR?>&LBmrMsDIZ82~+6^JCTv_X=AqKr(S6PWpf0Ynqg~-`;1Tc zxsI&j!(K}WVy2ov#J49UoTt)1J1yY}75ViU318CU(U}Qw!c0Rik_B5-b!;%f^I;ECUUo^+or$B!mzyhhzWk3Abb} zqnF=x2~)o_p)>8KR$}n*b;4B`bCNK*Ab^0e}I{F?sa{FF6c)$EsH` zKVNK&t)C?fr;c^+=Lt`kgC_}CpK}RgDQ2I4oiLaMGnfVT#WSxaT&FX>!*^T~*l{-@ zltl*#L7*r3D^CXxCjCdv3T4|CYR|YF_!i zkw|T2T67|l`0u=h&zlWhVr#ke@KwNE0;(J9#}RSifC!(#^}(q#?w z<;yOx2ZtmUGpi{9ivX-QJ`kIT=o~XEKGC(x(JL_#PL@lIACQvRjdFW7m*|QJ3x&il z7|ux$qNE(QD10_2v4an4m6$aM4Jb)m$1vdBNp*9_75SsVrHS7#0O>tG@nv+fXOb7* zT$b3F!HOdngea6gI+5j@y#SyDk9#HY3r{p+Z+0*e$0fe=?&Z@U&auSK zJ`!f=&{43(`#UCuW5t=oPK@G~VdIa!Oe~;?_B)^0i2+f(@^WH!U72Um*Atmm?g2z5 ze*GI4&vxBRWSS}h%SNG@3lanImvXD#!?V2aSv|mDfc&nto?5Go9ZQCZjOi`cEA!!>$vR~IE*npL& z2vsG)Q5vcEkvb_rc2@YRA*qC6guA`w6|}0gphw^IN@BULer5lph`F8ZKKNct(xSR( zb+|AHo$8mwaGNRyP_YbJiJK2k;uR<}N(jWWW0OvMDsIYGg1lo%Vz}TP5sJ`=r*Ix- zd3+LF*l9}{5{$MbC$XgLH~%)NJ9@*G9EkkWk^=DODM_;x5xf zjG4ESSmI-VkS||tu;xw@Q(m0G2U3ct+^DNuYB3DiH=tI;1GZ729~%S=t;r@gRELcQj*Xg zlf5S686j5xy42+1O<~puMqFai)kv#98Wd#JpvmFZzu5GJLfP|^bv&Ni%*xksVdfWQ zZNm`cVXl?+buSl?KRZ}i3c3S*eYYnI7*z+YTq)|w1 zuXMLUmbg?L+sitMVObx6kYiE7lcYe@C3#>t-aOc9_ICNFTZ62!f9f~VdW2=x^f%z% zsOLCOFTB=b&7}cNt0Xt6zgh{Y!xs+;!Fy7yy&1hpEQ+b~y)Q~^m)`_0w*$^Dxs1uQ zGOZX%1Q3`wBF9=m(O%??#2SbDPPEP@!3z0^7`{EjDpHHY&9bt@CIy1*KU(`H+j&_E?% zzLh0Vk?;dpHv(n#um83cZqAWLLh=SHWPeM=hnuViXyo$o4l7fP;zkz7489z5H?4?8f#E$nWUUPdL(w7DJY4^_HOOV) zQNms7s<OV3GAj8yx03&ANp8=uE=NMp?id!omU^I7U5f^x zVj-F3yP&Wh*9hf)1Z!xc?a5y=ki~tJ9D_f0B=4(>dQB_}#`Ch0hlk3=pQ@4{2QY#p zUt11De~QV$sA5_&%eEsR#-Ul6!{}1mmg&g@y(PSm_q=2l@8JR%iDTy{i!9#!83f0| zWcW%1VHk2OPF~5zB#FF8ylY8v){9|ta(OZwKa{YUyegSxXYv_k$KFcb_F~v{T$}s_ z#U}WjWR{5U88#^!k~3Zmo8rxG-gMfQ%(D9P44a(o$pR}jIDKdGr<5%{-b-eQ0-qr= zes{7+$Lp_ql8p>T5d*Nx;flHPn(R9tC&RtH+mplb_{+&mcUu6sES!HWxxKG!JJ#P$ zPL_u&4ttmkc^i^(x${$Uf}dQBdz$>4hg?jpn{u5}Gr~J%JbmqYU<#ZBkzU&rloAmx z7cX>3sb5bn{$WUgs9tI?yIaaYFS&RtCZ(FzR`pF8=qcBJG00t;H6&#Vt!+Qj4Pjqg z%4i?C?cfx5+e@~TK@_guk&;A_T#=db9z{JXF9j}xlW^#op8~OjRD4*FvLsM0E+3mx zJ&e^n1jWJ}eD7x|x-cpz?0q9;9;*f-0uBKi3jKl<9>)_2#o3`t!;YmYTbb;&F}Jas&+ zeHi6#`+AGi!?f1cF0~Iua$DC_7n{pfsV+8m)1-E%>Ncr+>Thjid}j-(OrIkH4epP& z*1gmiU&u^7?(5?C2SusJ896S4LsPr;2*A;0sc`y4V(6r4scw$XNNpY<*Uns&x|1rE zWmziZJV|YztWLd3Ykypy+Jn}1-D7=GJ}%XG*)MWFVMj`4=i@DweoSP&T_Sl>Gm!H69dds6u0zlHkZQayW7^# zG4VrR+ce6@DMM{<)7oBU+hAH;lx*Yu*-TGww13vQ2n<=urFC6CA}iBIeMIjZ+jy1< z3(zG4MvxL-58Lu>CaV1FDs7D@)~6=eDygJWCfn*Us&344@#k-|ZTl6MNo@%GTgw&rUC=Gj=Lq`ep0MAZIH*KoXdzO4m|%1IF3Je5Ybv)6xU zgT2Ee?0bg*5ANMObvPmzOx0 zw!dRzx`gE!gu|O`_bE0&cG23lbELKy3P>|Em7f;`5J58~1zGqwgLXx_= z+qQrqZY1=KMG+J7;aK^TK|$zhkD(sO=ZUQ$T4wU9ht{vKwZ$_J*go|}gG`ZOxZtQQ zk&))HsLEavh}MRu1)|T!rZvE8Keavalr#hH{MpZF^|(gU7aTU%A0|Pi@Dd{ykgqwaB!9Ac&?Tm5_dh|n_7l@GyWbV+FJk9+2)&GM7c zZBpPuH|UkL+l=Pu8EhZCdu*CQwkG)a#5DM{6frEg-?TKQ?=nh=cUha(9ObWR+5pd- zlXfLoMtsd|7vfu2r!jrum%zpV+vzXkxM_RZZi;#N?zHI*+4w9XFwMsmJ7j;e>2w-H zvKPs+YJ|YcG?^Qe;f40Mx#WdTWb^P@g6Uj5>Um~R2z(t-sE-O`)Na>OlqrLUp2=li6e_LUoaFf=`#Hs~}m9j*-`+{OFi(gSGQi}C3q zZ4j574o7>W1|w|gaFK{qyvnDKp|yFAbYJ?~q|9{qCY;pZZD;yeKe?zIoesCNNVU2N z=@GOjOiiz%5FSiV|BOO7IV*h_?V|Ji^uDz1_@(J*Ltj80@z(9>v5~U0jN8+xw0fUT z&tr7UvU&nk0q34e-$5}}UP_-xIsD0Y>4B8|Z||pHp$)!xoZgHU>-?U+meTzGlk@}h zwdvlROE6FTIhSB&1#)4u?XF<1fL@pDG74OLwA6!%by4&SUeH1gTt2c@r!?DC^ zZU=zUeyRW;+V+wcPOIXWPLN3hdD%LD6c{NqLIq>fn&7+DTz7@yJ=}gGm+z(cO2+)^ zG>+x&@Mow-H|0H1LAy(y=&wbkX{cg-r)Pc&Zr=DAzK&TogA*CqjR1Uiq?}8p ze*F!u39Gkq!(vHWCj2A-EbyHPf$mN$o5w*)`U=mX!6q4ysT3B$_W+!9}jSbXUq2NMKBH}3uk2NMLTxceCAMT@6Sa90E6+5?xkw(vCv z()PFO94t>t#hKr7Fb|cA%fIIq)su^Zf9AgQk&DW|IPxU~cx~rX9!jS)LqqUqb@h->ca(>qL#nkL=f`--#p|c}t`Tyv#XTPOrKAQw z+~-$#%Ee_r^RNjb)vABv=hNDAPx&Grxi;Bb*iVa{f`ke`#bnv*-VGPt{rAGepu%jE z-U7ZU`gv9~@FbwgyWx{n(2rR4;<^o&rFRO(@A9!YM z5PC)+fRg0>AjUaEfKp4aCHvr`s=t zqL~H7UT7?`H^BEl7uEyrGM6@=7nru|{{}b!U%x1vC;0BUE{KFLEpG|y$nQ^o6cPyj zt$q@^GULDHjw2GC46u94`1}7ZEU53of0wVll2K`65dn+=a9sTc$2|V$f2R8uIYfJY z9+%~um;Kjo3wqj%@w#UAVMIVbN7&yZ&n;1QNfB(#?UEuiZ)vYj2v)VXHzfoQ>tdG# z9IdqPCG9V(>^?*xZW`@gwjNZ#u`K>i&#$o{4;{9Zp&et%4y{X^33 zC5ydE4bR<^?2>}LF~$BSVQBj|>^oVK`Xsr{{J{|ps%l^DVk634V{fqFu{|8y*4qDM z<|l!R0){&3p*EZC(YW~ry9Ro|miJ|v+U=2fcx|uD!&&=e9>yJzc_?mDiJ5yb!Km_SVMxAz@C z5<1WRBICdQH%9>(nc)gi;>*oC;t4WBcln5I2wj%~#8E7hUkK&$&}R+B{fb+1{M_q& z^G-<7SY!@YV@#qC`l_+WvQP71xM)UyHWAM=LoBxU^E#bdt0j?_Mi5kCuyf4vXJ-$;GQDL|8K- z!vJqRC4NYYV?P&v^^|KTpA%unNorvIS{%aSq=7&S>fBX~M3K6Trr3T%Osg+ZiO)S0 zmon1!45ANi{M4Yp3JW9eKOXvunRzx;wk+zrcoxf9-84|5;u}CNkV&nLdFa~xoG1v zTw2k^?k4<(BV!k(>z#}YxT{)vtt89cpnXopa$0*nH=`4U+psv}Fs=QuBm>T*Nv|C& za~Bs>WQ<}QI2M$?Fw+Cw4S{^-sbe$D9`fjEU!6fmPxNaUOqp4d&OU=3J}JXN$(c37 z&Adoa@n2tM*nMP~bok1J?%P*0 zidocHl8FnpH{N?A<28!-sM~JD-?*2tjO8oS67XT6m;CYGrx^i_neh1!shHC;^EDr-xT{m9%YvNgoCz!W(%&a^ z&4iVFsn}nYxvrsHd^#}GHN3tYoY}pxT-%b*l&x4WzAt1ZQa&YRXZ}R(Rce8|3uRHJ z%lLg;oC){4N?mL&&1~W=7tf7x*RFguGl159IMEGZ_9QowF;g<(OZO6lCsQ*a*)tO8m=y?Wlb76cvykK4Cu|OHeLY(O`dcAkM z>AC;Do9R3DWOkv9e0VSuQYs2^%F+gUw&N zSvLNno9X(?Zub6lB~zdfif_8n>3hqK&coYo_HMbG33tp(aLa#mH)wM|a}ljQ^&s;E z?Rd*CnIcQ}6?l&L1p!$t@P~h8>M7@aeX|N!1_gn&DVE_T;%o#kTpz)o2%cE>BTKA~FIxtqI-Coj3X*w`b>rJ-59 zvRo`w^>#P7+9%7!!m0hT&QN@vL$Y=SDCWu2@!Z6$RSebF9qw6=JKF`MaN^D_uR3yA-Hp>#oGe9GI zWwU%51wDgswRd(NL1lQqY?hS}0tf?-<5+@A7Z$!)Jv{qIqASg<+0$5z`!h%#Q?u9C z2S{J!W_R_4r)OFAw?6Q^^J;ca^6W4v8v(ue;FN6G?U{#{%*>ueo}K4sk72p1QtEkD zMz#lfx0N*<_gInr84w~{f~bwzOkb*Y!^G1!XMY?B*p1wq-H}jJ^-1-(?u(7<#gKQ*_aqpRyaEQ~k5U@ybWpk6G3;0Ng0t(l%k zmb;l`M1~aQ93Z@?SDM4(1tns7m*w~~3*%~qG)~aQ%A8fK9JoFvrvWnpQ^w{zA{=;i zLJmukjl_Wut8)f3*jplk{!*I9cT;nG`~V5*vfkTMavCgXmK%97@Z7mRr%gS0Ufh+F(jK0st2viQeWTksBR%1nbuTB0n5vI{ z%4r0g!51FqG$hZ5zvN`G#P>jDuLY?&LHNRxoHJoADnEWosl4AHw=SdfB(P{ow;uKI zxQ4l*fq>-vR=LB#yx|)ia?8o@WK-^)M(`XsGIus1;(T20E<)t2B>8uXl-!%-w;!MT z4I%oTm^+QMtIW!Ud%G{}(=*_S4I2fbwli~s(TG8LL1^qdeZ27E>ACL^mJFDi`xYVT z_QKpw^$Zub$V%@KMD%JkNV|Y2zsj|Zxw@!CZRP3q?s}m0Ly;3OGV!MbrlEk zt;#%ICk6}%5ClM?(9sa54F#>wV_9GVD4Fuw(%0+rJ_LNwqD^_|-=hN`vdP=Vviu3} zjY7)sx;}X6uDo?2fPl2XWIdXym1ZSdGTIeiZ?t>zvR8-1<%qadF{z_ zd0nSJso&t|JVDyO65!m#Vr$&2AcO=HWno!odN9hFD^Il^H*i{fKr%y`Iay{p0H_4d zjBvifGWV8V-rU?dny5y*R?fHny`mxsMnP-m_bgf=z5JxDvxp#2(80Nq6@gtHod=mY z5TSJLA_$ySJ6Uq?BqG{qomyrD{xUdc5(H*;bFxe?Bm}O$41_2gQywYa2^9W1$L%`wEMb4uh;Np8NbDkrvzVQm@E%L0h z${FMb&juTv$I0(2o1CY}bL$o-ObZX$DDEg@SO66^8)$1<16ReQvM_I92=A0 znkCF4xT10Gou0V!fc%|qgnt>5U-?4d5Pj!|IG0MkX10+ipIh;I9v`4&mNmgav+eqULU z-+&PJ(;AsMpRSXcv+JGwU^0A;yel(j-Y%Irj`w8dXx^8Z6S60NIbp{3kL35K9m|dEwrgf~N%A7(;F`5M09*~!ACB#->q#KMS8p$e(%DeXx!_CAy|K?pi3VHi$qYx0A?@2?N$H6--yI3>J|Rl z2%d$l3s;aK64J2{&buANr#ls{BhOd56doYY?#jZeWGF=#+C7V6BxrY|h+<#>d%@I7YTc4GZd!*y=;D`!+Zm{lQZ1xK?5kfDUSj~DYJMpk-TSVv3+{Hl z@O`-U=9dn^*z23+?;id9z&-+_yBNYVIBVJ?g3admO<1<-4Ut~@MkBHvdfr6gv2 zUwA~u3&q?moc;d%zTp~H_08=zS?3gIqI8yxMq|7YPDKUqF!y^9LG-cmbXbM4?@a-cWojZ)iw28HFl~n0I0Be^6Wx-8UC`p{N$}O`$5( zR8{2o_ZZ@Bs-j4iAOzkUf#Fi4cUd$XUd}?x^hGQy-0<$pXk7QA5EL6;+5w+36tx1$ zT?q_Ep52Sq{d*3eX8`lBrbXh!9z}Oqtdt8(19Bsg6?Ym~biE$xcp@kawH;8@07cI% z3dbWXMcFLFz(e8sU zIJ&leTm%OOTDtBuy8BTPLjpA*3v;TEi@s$TB;;KL@9NP0_sV=w)hF=fp^isbhKvO1 z)QKXSyfKu1v%SsizE8@>i7cHnGqfv6Uh#?owMV5%S zd{H#5t^^7XIbQ_#l@j9c}PqM;F6bmuR2YqBz}KE_!xw*PiHD43|qw4F;%-+c%MmWF&rI}nmXqc zpYf54qZSwMp>3m973(QS#r4HKDa&_mF22Z+sV$-TkFnkM{o;j+E3%oDuDH;AQ2ZhR z!XFH-aQu;yp$KlM2*(rl79V67-bjJ~_hSU2llzOOv!O5ytvFO1h^`zfrgyCdA1t2b zfs|JV1*7es6t8_zsFAqtk>U}I)XB(UK<;oI872H#F-tfNoO(uRBz}0JIP`^3BK(TP zTTd6iN%2ZPTg+fpi3Fd=Yt9$N2`ozt5}26Qmmm$W+u%5S>|*gkNNN}Y7nPeX6~lt) zg<@()SN~YtikWa%2XNgt+yII2!{T7nV_$I)u6|Jb9$c3XDuajqQtaa+7ae~U50SZp z4=74j(gwxeB{24-wnKbNj?mgx^-I2xiXqrPtmG5g;CjQ7LvUuEzGqy)Z+L5e-v zm%t%asTkC;1P<^?#eJPhRJ4J@SOTV5sy${ZnMk`x@8y0?)7$;p^*$v#D86fklrY`B zD>1*I>-kW$rEO_AJ~guBUVWMQ-Xlw7=HvTZ3CrDlvVKUgW9t{tn>VM~OKwm~#}<^h zxV^BV#KrALuarE6k8iXY9D+T@l?;~$GZtPeX-!$NXiCX7T08BH5}TjQtKS#88T8qk zZU&86QUW)XOUxX;#@(R#I(LIp>q}B7+#XxpjQ84Ba))+NXIDvkD#h-5N{-Unh6hSm zzMYMM+n;+$?8TWUOTK4NW<37$l2D4pnlDS>Ll4mp28G}T7fZaUCUpG9&C5yOl{}$s z=ie!TKtbZf<9j6#C`iTXMfve_F;qX;-$5K+*Dhd4mW}W>3Dj#QtT-g%`v6F`N~Dx%cZx% z;q+PsHQF_Qnt{pMH z^cq97_BV2#*M_zo(izTH>hKU>zn*=ow9eJ-T82!4Eb?i=*C(b?ID!uCgyy~#7 zl;xxzpfdySSYNt{#X-Q!FV%&ZUY$j`n#pu>%en9E)8Wg6!|bY zmM`^(tnJg^oNI!j`~+Xiy4)GfX%`k_LU0tfmZ2w%A$Rxu%cF07LHGz zD1{S5+iJ$^!l1Ij?;gTvNFX zXLT$)LZ0f*W%oekaSLsklRRg4D_hEP1{8RjfTE|Ahu|YGmrY`%ScdS=De-_|W#@dz zsI+*6p)3nL%CY{RRQ%Z?Ea6~9yrUClltEmmAwz$;hn3>US&yv08Ts`XzS6p zmE0gCO<}*?UG`!jK`-os_Pt;BGn>jsp(|(0ddL&nls#o97zUnX`(-dv;B#nS8Oy8| zI3yv%OP0jjsraA&@$>UT`(NMI7>y84`JgM`!!#oHKv|`SVlg^?sO<0yP@Ij29xk)J z2(j7Neyr@hI)F;VXJzYO2$gXs%0gZYm7%B0mJ(EMpDANBeNhoZMfAn?P zJB(vohJdQN4Ypw0rLv!bfEdZPE&QRZ0UCF`jLwAT{#XX5wHM=@pUb``&jC-%Aa!%` z&V%I_Kr8Sv&vLjsdogx;m&3)ii*bZ+`4iHtX>j=&^7~#$d3gXlGos32^e@Kh=H{ zL&T-?JyG7l3ty!V+5ci&0*@6OXQ9v#n=_b2cRzb;Q8 z96oxryfOKG{bqUnpcfczJyH6=^Fes#ujSb<#$*Bp0T@rbWwCoIN;{3|4lY+SEG(#XSs6_RGX7E}>K=sMJ}Vj|)5kR}zAhz6gDklVi%CAS~d zyy6o=ca!#V{jCmi{lZQ%97~sqkH~vXG!-^R4^3Tw%XSB&mVGN$DXyWFA5D(L-}J4h z!@wxqsDH&zEzk%)EEqS;;CN-lC2zU7ySn1O2l`_I zd_nJ>Ov23?5#-zT&Mqa;vzF6@zGT<7U#Ugj?{oij8&U;)!=FTKYWquGij*Lv^3~eRY4u z>%PzZt~^#z+FWrBKe$sdN&(M)KU93;0Z;#j6>wVa8vf*Q1*9fk!`pwUSQnt!BF`^w zc#PJfFFi(o{O@%fANL&HD^Rfo`-hJH0RZCPqDTMg0ndl6M_=%U=ZVgvgZ$xn#W*_1 z6Q1{bj0WA>f^q-RAJ>KFn8BlcNc)MyM#J&VE%@}v(UASS1y4#CeTV$LIC*p(QeT!f z`cLV%FdFiVx8Tgo(Z7=4T<++mUhu3c8hu+q>PtrJ!xblG!oGWB^ud2m6S}tPjYjDH z%+V7SCvn-V(UG2t4YFeHm_NEV%U#(nfc4QP&82#i5|@w0iOXO4qrPG#f!hU7*z!ut z7lV6B4>xw*toK?V4&D9A?ulr2Ol36sA*Qk+I^GLPO|uquKzDjoHbYA@7kZk*KOyWh-<%dtoS22^$)sh?q(}D*(N7Ll|1syYenN(5JGgzmUl}GaM;t z1zApXrC((f>gQb88uiIt7=bi-3&T)J?!p%6QJ=~tD7fjOaC9wqVVEKXjX$`#CCbfP zXnheN!94&-_x_bT2q~cG+- zRyIN)3tEF#6dfFAH1Q^l!6-P4CZpOU(_3pR31Z4-AUcxQ*tHxGEUI`;YvMJW$-(Qi zcD2d`I6KhFMJuL8)!arzr>0dl!B=)yo+JX%IdnRupw=54TDy`nDYaUW(>hE>yIM5q zRT6?xwX~7}zHz8>&?v9tRWMcgA9T8UQA7N&(U^egiZ$r3x5f;P6hK-=jYGp5bxJLO zHyLgT9h}75x9WQcrof6bZZ%~=+TD_K28fc9-1 zGdx0DQ`ac%+5|O9*)+y45-@fMqDg7gYIIr^h*c1jqCpEk4L}>ZHh+E?Ua?^g&>{#9 z9SF#w0isoc$U6*15p>g_1et49m@AmKPZ6cm@}O@HtwE*Zw4%vw1VAbih{UesMY|C_ z7*-vIuMVhMuZXU>XHJ89pBtl$HrCuNk7h$F6uWCoRFu}h=~bLYD;R-=YK_TgaOefC zTBlK~l)PPy$G&+7%dL90~hfFd;qn#^mVvBrpkyHtnn`flzbPF&7YF-66at^Q!b|omCofkk0bVe{YD7gFFFg)&!s$`GIn#~s) zKe#FkkN9}ZRK?g@#H4Bg{SF?Hlr}83U;m+LHS4CR{d;RujeJv^TBLSDtBa}{M%7H1 zi0=28)FH~Q;gt?f<8YWjLOiGB)Fy}0uI5BR)M!Klo;`vHl^3;w#^BIsj5;;gOf8ra zV3Vk`gCP(cCUp8iH63VC29s8=tEn!82m#9$maHzqua7kHDA6GXcfT$SFg;gnjP$T?KJ zQU#8!(h4SM&+`VblHiL#Lg3WYRiXH*tr{@Y*mVZM2!xve zC}=y_3em)amr<((y$*AsC-*5LYwj7Xw4YQ*X=~~8T28eIeR^$7n@)Peb7RaQI1DP{ z#z4EYyw(JA5e-U%!EPYqT}eb!;1OA~$43uJVI-#So;*b{)={Hql%~Irm|9fQ@%Pp> z^UD5geAPk}y0&pbYjpqXYR@R8LBp$oP`y#D(VBqu0;kmJjJ!!uISgtZkGy;`-y@RO zYeZ4hYV|4zp?ISmq-8Y1SFZG&171K|_e=<*&J6sWQll4mtxBiTiW(#MJpoF*M(ePH zgCd$qhgdB=tI+ZXV}?i9+%vC1r+w!tQICgXe4|vngV(482+2f~)~@1sL2CzBsD`ji z5VYVfj?53G=2CEIlqRL!q*L=Cbi3Bb@mi&c*Q+%SlU6{zv#Ofl6_>`WRe;UVa1KGk z8S4lN<$4kq*PPy5N7gKs%ACyi>}V7(x9$?jA<67 zw`&c0l>?lz=+NqnDjp(3yHcy+G)htHP~wpT-U54J00RJl2+tY7^9r2CNCF2VP;Q4P z1Hvc?H{#DC1sw;BF(_3gmDZ>OMhR-IUKDj24n(L$E2p2NuDQ0J(d@0&s#-ffeYaYL zwzjGALft&7T6Iz@pBryFQKtkRtMw4*X~7EefVfU&R2x*B7Q!}4S}g%D4i1>SOfj|= z;n@E^dTLh9e~wI3%{()@eOWC8p=(>K<*^nCv8Z6;!564S5_9Q|N~2l@K0vS0YehZc z_Rn#-bET29^S~2`wG7}Rv^=i@ujbHe1^8EkMz#WXK5N(f>551r#Lt{k&_l?kHHdmn zG;j`35f}pwB?m!Q>D*8pRDANhBC5vD9XjM6S``;rOUEnkf=AmFT2(*FVTb5cXSeHl zqe1IX=}iW`NeMPouhN3)RHJQsCeXnaWl)2B$?Qv`*20L?b1J>oq*LitcJN>%Fx)Yw zF&%BZPOsy6jgm8n&{kvMKvzY(4#t`ws!b*YdJoQgK=nI{=vokvW5`Nd zT11hlo819uk%0!J@j4NLNsV1J!2i@n-25?#HXt@vL14*iAu!RZ)JBsi8cYVT3Mw5; zjzr=D-Lyd5qA{sd0$59}Lr`)Md4SabD+oqPX@7pu)zUW_zqVQxT}#(`bl}D$J=)c# zsv$Zv>11#hji!rk*t1v?jEG4uavGIR2O+Wn!gH7c>LI`~IC!PW4xgr~20vHx-0^uo zSBt2We;<3gn)OutduzUC*15-CWX(jOk;;>8BsUkSf+?0Af+eLv4~k{dfiN^`0iQDQB zgNOLgq%?s;##a}f1S#s&b`AUq+!aj4;0=>QW7pe7SfdcNb{?%9J;~+XK+{zQK?&1M z2%QaT(0EZ4Olp(euGK0zn2A603^n&GpxHT~q&4?!SD^>Js$!#*4w!s7v??(B4v5*o zhQQQP1V8QI^&Brn_CN(#3|_5-0NtR|YI#_;0c!!`f=M@ca}h&e53^2_N`RnJW#k12 z-{2F9wa(m1jf$r%4WV#tK124(!m ztgaTO>D|7q7NQV1ddatWMSw3bi5gynU`orWAgqNYGFT`ui6#?BUGerjaBaEODIO65 z&l`CNQ}iH37>yhVRtb|FSVppQ5TlXB4ry5=3f2rbSY>huIweG2YO>HG@;t;1YCC9# zK^|Y7G&OcCNa1!KSJ9$dwAP5mZ=BFO%3dP|B7zyY5-m@v@{Q8zLGSFK(hi3TViTBh zYmA~v1=zww(k@L6z$NI^Y6GmTsRbUE2Mn+p1fjEF0R4k$8w}Cs-J2E`6<|pMoP|~g zLk`v{U;-*?bl@Uj24|3`MUs1qsIhMpQ#46aYsZpro6T3XiP8uTlqtff`da!OhC=>+08Xi^_A;x%qk)-AoMbgqe_-YoE;qQa57ES%f z;H!mmS~B=r`%Z5dRWo69kp!ljN~K-^(<8v5AxvLj-2WAw5K8kLIf>=WlFVZfVrT-?%;S0ELEt%1!~E{nXD%A z`baI^YSAl|RU@No=~i07>x#n1RMm@uVAo(!sYHmP)LIP>wi^O0SOl?ypMar9rUiu_ z5u(h@BDm=;r>xm8?#y*%Stws%N`6dU9Z7mo$rN*J6!hrA> z41nGN>*yQ|FL(h^)pAORAMEgtOh%-j0>cBOKpYBu(3@bE4n_uIVOZpGs8H{cISuit z+{y1KqH69GW_RG*qH69_BM+}8Z&bDEtm&eB&aFWV#PhJ$M={ z6y6Q$B>uPb|KHO8e@p-W*p~Wl>A$9JhyRxT|6BV1=dR2@7a0Fr`v2cH9sXPT|8MF4 ze@%$_Z|VQPrT?1u9{yYU|8MF4zoq~Gmj3@+`X~EP|5$zeZ|VPk-F*0O>Hoi_f5q5Z z_GtcF`u}g~-?icJ-_rm8KbQW|oyds+xMb3+gS-?-K0p%zo8hIy^L~ z1icFXjfMZl;Sw~yTTjJpxW#XL-4k_gZCtQ=%%CX9dxGpINc4i_FgOYTNh*TYq=l0W zu+a(`1tcBA&2m8x$$L6IBx!0O(Gs$|v>FrSABY^Mv+L|~s+6)b$q}=HG992ulQucFH&Hci;AIQBzK0TmG4ryfT!g3COr>4fmHMl6_GXfh=T5|Qb((6?vHMq zH_okY*GaE^ZrdDo7xj=wp;AMlHRL+!AmdjDX=;!;1ObvL;%f^b@iz(%9;nm;?6WGB zu%)cC!`3P!8`)u77}5xoQp&t5@fniZY7)#pjtW3hMNLZi&uze(+2wF2tkgmkf}99B zVI@*9K~jSr5;T;Mhy?lRpm;{kp*9L8rCy{Nwh?M0obrO)S&~-(*#wYW3#zOYAOS=N z=S6y3CpVwfB^( z^>D~&ZM72398+CCO0QOmaKH-^DIwz%dgCGC29(qQ!$QxSRMcE-gS4AS6Xaz;`Wu`q zQ)%^j$XkRXT}H^w(ZfLrwIC;{jCed}ouZi$GBF_CN(b4@TF7^XWD0l#HrQ1TQH|=S z5|T**X04r%zgw-Yty?KYWzxjz)=>_y5MZNJ8nUSmi2z1D?3%*~2spxHf|G1+%Lf@m z8Z}S~NkAHsx2DvPj4;R^fE-3pV91IX201Fq55@q7kYB449B>8!GS$hJyV0S716$CM z#$n(Lkjv*jkyLB3eLG0AlC`9@*pwWWD+3-3dR*2G1Nm!qNt&p=#WqQzY9sD z|3~6;Ey~INeG|PFuBpga`{u7zjUsELi6?66%6o=fI1^;3aFB`tiV6w9kj9{MfS&_L zWJjvgG2ziPQNb&&N3E8!f84V?q$O~}%02Ky97MYwJ2I>27SPkqJfYWNh z=|M)m7Dk;C-~(Vf-qbaA3@3gHmQ}|_t847lp(hC*T~XljYX2xWtOMGnS3_1W&;n;% z1T}b3NH&B42g0RBlLzgEBR+b_CWa&`6=ZqAsRDzbB8Ru^kdh=h+?d&uATb{fnrPvG z0^|vTiPeKwAlW>So)2RI@^hYdX0>!JrC&zX)-$+f75eM<32mbsCP+SkK4{W*&An>LnK@Nd&7JDxT$RS#s@rzfo1S-R8aUkr z_FQWK%Kpn(G%S_4+-;nYMV9J5qHf)NBC;L;!=h_^%1Goa>x|L|zFsN_FJS9_DZ#bLx+$Mag>*}kUJJ?z zE)foDz*%2NZH2UPjRwxuffUAp(UP;lU;x$By$=1bAN(3HyT-0b+=yl#0KXxN(2U?OUX)dYepH2GNJ%&(GJ2kv6_r{|>>^%r z{$Rw*=}bcA;^Gfj7V#o>`*A|-C+@Kl{#{ITk4GGbqx2}dEwMhHSO^i*k0`3fTs#vf zeI5Lrq2Z9a^uxIm+!-47nanKbqq$vNRRqb#0}>QXU=cff6qE$qHtA(>7z8^nF2EdJ3C1NhO?*m;=nTd@A!3#f z`2}Za-<+hbOidHk2}>I@x1XyT*J{`hap}yr7+?=oY!~>Kdwh6+B4r)g1WT$B3uB=m zu?G^)=o4lZ3k1EmM^^=q>k0pRB6sE=9M0-0AFqyEGg319MHEl%2!}ZYXrz>o608%2(Y><$8Bn9;OOlKcD0YoAKQwUr*q!9=a z=0V^Wo~}4TOFRghqxjCl?Yv-2$ee3hZ&miA)RME=%uqielZUT24u*D}rq|nwe)sfr zX81BKKYEfYgRNJrtWj$#<`!hNBv~y5NgT7YT9T}mOA!&TZ$o+jLr)(&om2ztm|()gHYkUje1t&G>tl8;ko6@nc_(RALgT z1kW)L#0doGDNw3#A*lBG(98Qm;97bk#%%wMU$im?`EK+&{;P*pf96J)s4-c57&7o? z5ziJ7LCXMwhymM3TSalHCJrw$tz~5oz5Bmx5t_%eO;6xHpkIhblzh)|>Yy76?O&{jF zJt$z&(Fq(Brs)92ID7^KSOJ_14~{!(>?^f5yD}Bh6&k~DIxC7xNQAI`z`nq|MI{}@ zzT@W;(RHF0#BgA~V#ZRs#?Keube7Wv+%4Wl_znTfgti+1&?*oTFjb2QDPnyyctZB2 zbcN21H=TW%3mic-!|^y!wfN6?@R9*J6eDC+brhp`+yd+bMTK^7|H0M>nx~I|dB)Bg zuL_2}e4h!}Xc~m8yn@oiYYB`XGZp-RNM#^`hmrVG#VvzyhGu)<1Tm|CUka%Fw2&8#B}Av~3ZnF@e2W z;$F~4RUEtE2v;zK1(de|fB?<82cIf$6+o0>Fm(X{ZSriwXN!*rSAv>~F&KnYtOY@| z{NUcjK(G>c2(Yid2ASoY}*b>B~SW8mQ`@S=J78O%J|uQP5m~n!wqv8bd8O znLzc3slZxhSVzKvYIZR2i81st{$(NYS^_N0ho#p5ty9oJz-aaYsZ5zl@qM5|4@MpS z!L%BR8x#IA9~UR)t6huOpT^BU75oLe1{F3PAb5H%=m>r(9*aTP42EFLPGJ9l)*1&q z$Xf*#hH3pU?b^Od08l}?ii$@CW=9-D@S((_qXsMAN$o^Q&#k+98M~Z`UX$mjw$>QsoaVIMO9vNVtFaF#XEQ;i?kB zdJSS9?P4-DjcwWq#tBfH54b--ReiuR;{?j8@v`lKItOf?IT@F{wFp~VWn6$O1K3;G zmhos{SioY%YpA*seCFo1whYZjH3mM7chipW_nTTox8)G<%uM=5O{{5Z27%mwsT%r zaIk7z{>eJXW`9?pNA(@B_KVpY>#+13bqdKj4kx@9a|k>QiZ`K4zimB zMc!h|iGj^riC+o`m$*BaiW3dsn4x8$Wq|i~;(%h)s`?t_-)4*q|H^8gz%hb23B*=B zf}abfPkye9Bc7S7Y|49!*z&zFJ3NM~G1{|{(cyrh#(@oIo`8)g^U}gv#^x3RFP2V0 zvS7mi`W)0DpjkbhD2^l=Wz|Bu%FsN>d#hG>GqtRxivu6dZ?E8JLq~+d%~%>R=aGQG z-vxlVjSD~;or5sWwhfTuAuq}E+u%cEE2oObXOlHJ!=SaWGG&;kEdY)M56q_bs+#@>@eRaq4)7U* zCBEH)d&cs^M?M$|R&z9{0s*TGp`HhjaS`pSfoco-jrX^R|89ns!@}H7apRF{*Q(`D z2z%?`0u%}#aHM~h8~BR&@dPVzFW`9L!?IOox-4jfcNZ|#;+KubKI}GztDO(OLxCzq zw#4z>oUl`R&qewog@j=4O>Gc>B_>YN1& zicBU)7sl{;VZlqc;iH60iyvG(fW|=i){v)USJlf896v!4_mMP%Gyz_=9k9p{>f^|b zRlrdRK)9BPaVX(Cz$4QDG}R#AGn#l=$Hi}^y7}@$GPZACcs4tfealTuuFQqIzK8{k z1Sh>H!f!BwKN_Mqdp_rkrZbBD!OZ#+4ZR<+9~l4P46f3CO1AKF5|?h9Zqn-v=&PPC z`;YROPEH&+SWNzS0BkaZ968r=#t|OJP(@+w0%qxo;d~8}e>5BeX%nAVJh4Hak5|(_ zoH;E#_@?6-=KwtH1yin!7exxk2M_m5oY}y2w2o&PnyoS!TZU$Xnz1?ko~l?i`8Hrk zoGkrh8^MJ}7I3^W;*S}9ubK&e=I9B2G3d&H0PBww7(UVnAT#0*%ja4i;-)is9FZ6o zs4y#)BTqGK00db+DL?`Z)BvioW<@V!%AND?cew1EW@T~ua%X57FX06XZgi1$gP@Eu zQq2Ir7KliDAnvn8#H-5i)U_Or{oqKKRS{<5!IKNeABF+{AY5BvR3yeQkR3QU5|@A{ zWf=ch7#SXtcuED}VNB*Afdn`hJ_b~3rWQ?@*9;9tOcz~~f0Z@kUje}!lqD zJjeuA-4_Hp6G2=)r>0Gbt@=W(eGfM#_peuQ7_%Re7RM_&+S*LP7Ns+ER^`FNnA857 zBz=O3LF@w85Wi8-fknV#ej(DMNvrb2JreX}iCS~CD`<$kHMk_Rb8^%Y3`8PtaKPoj z01z>-iQ>+y7nU;~<35uj7=agfIP&;W$lyGS4;W6d>WXO#dRX}1_N~K}H1D!+IbgaE zYTkvjpqI1{ye1BIZ2GufBWU4m9f9`*I1lQ~0W6Jb1gv-!UTN~>;Ge@*Nnrx?Z!E61 z`am+rN0-A4ItSb;ad}0)5-`{@RCR;{AU&{>n`6|wGqmhA4>Pt6d*qC%RUl`(!n_Us zjMZcb@X|>*;iKU|;TXVyoU9s_o%eq~m}nAI@qWK&rU-{U+iYPY3!at6CAE)+XACz+s$9jP=iigm|r}? zJ*dAwa^%HVO`dkm)t6ozzjE@$S6y{YT>q$+RxG?tZ9R8kj^R0Z;V#F2`@~5O^?LF2 z9K(P5!ib~4RsY1vSH-4X86P~tJ^13QCN{M?Q8#PURxGS<^}k#42Z!<;KRsvtC1)>m zxSQU-S>;W2>#7x1-*NC;x;j+(xeFirMNf@1{&wEN?|0arP!`aizx0x_=RF$pfrXNkb=PE5-cxb{6RFb zETS1&j;bMlTy&bN(zeyOPH8t3cQOl*55NkHfL`p1c&&=d0Z<;mmf=8A4WLC#9Ji*m zDGrja+lT)w&Zsd!mc)nBUkw%v*CeT68Q)T|u?Mb-?4nkOp9wz+=(jj4zNzo|x%X zW%|;20(5C5U=Whc6PFRtM@T`A??=pEg+ICW^3hHc#Xtm+yAKC!fVIfY3oaj?8Bwal z6-0eKaAi+JtCQUs8uy#Vrwr|CzlnW?n>wg3_Act*9s`-T6uh>tpIXrqUu)b>!~`wQ ztH3VdD2$^;(Y+TB$*3I^36t%2i^M{7Q58sf?Il-GR)U~ZkhjepIeQu`z*fh zX2)}87!ugIJzB5YxVW?N)cVEWw*Bv0F=*wohzn3T@bUblvh?Dm4sfCbDFE*y%na-s z&DNb&wx!fti*M>2S94E-!O7=`sOvqSDiwV#C zRcfpxCo=&y#5$0$Sa2y}tR!^AJJI8(tz-Yd0yJD{*NJ;pAbyU8YioqjT+B{ao=N(I(>O?!^~59F9iGX-RTJc`w#>R~v7u?WJa^+74~YO2fFESFElbs%C|keo9;(5qp82@esd8_xz16nJFxB^t+T>wH4tp8TowYM;@AgyM{#2V| z^th|`!PYK3FY%d(#+YAt&O{JqNNSH?M_7QCs=>JWzV>FPeId2>uZ#N_Yu46|$rYp? zK%2u6VBYXQ^-AOq4jB;;Kn0yu9T-`=&~0BPT4r|nmPc#9>Db!m1w8A;T0h+ch}hvB zU8IhFuJ(xkP$Xdd>ABkOj;1@q)yS>29S_xTsH0C+&p%&VZd-1cn!A7OzcnePk@9=d^pL?%;^-;O=Vw2etiMdCFRL@tO~$ zi~mERfN|o7x|5sT>!oTxuFbJ(Y2MAnA4xacmi+Os`}$RMFaPHkkbX9p#+zHaab3r$ zjA%44rP{j6F@`6F*wF{iTf3frUdUQeu!7}b9y9^eSxuLvmmugGG{-y%vGG9@J0igl)xRL*6@suhT*n{Vn8x9A5`@d zm!0XV%Fr}{Vjgu{$%<}dh{kP{eD#F#5vwQ>6u7r~h%b;JQb2n3OPV0P1c(8+84rL2 z%7=5Z#aGzJI*frr85b<$-ewda0V9xwjxio zZR0WXOl8}y#vAskZ3~tS!l4h3S+56Vbha9tUcr-x(fdQyz<&}vYB_F;ha_3%2nLYk z<>4sK%>XQi0Me`i?2xG_NQEYRXq50-+@QV0IWcX4@dfL#T7uD_1K#LCZ$8^*eP;AW zhE~Zw?^Si9R*Wny^Oc60L2g!pTMND}CtlQ|L~IZrgcG$#a96#^D+lM>1?V8`c9`Y`fLZNs`_w$bU;<@CTEMdj|^RAdi4>^Sm?6aq~mh59ikURjz zMMz-V@z%uw9XRER`I4-i+y=fFaIqq-RmWMBz*xrtf~`bYt0K+$CmXkFaeXwauB2dy~AEAzmhcT?0P{G zw*x_IY2(q1p%ROrt036~p;+j_NNW%v#Ig(zZ#8z(d<&i38N%5@CZ<$a#}EVelut%0@s2$_&9SBR!zhX zDJ+6O-v)d!LbA-@zPisB!N{uldViIKs>AGM-}L*0UB++`M^o6Gk!5H;rhckiaf*we z4BMs!J9hz=}j0U1b9H1PheGh85J{jtap^ywyV}o zSmASLXjTV@dDNmyRtyCjKJE_-w6dTd5bZ>+6MvM@8G?|4-k{+)YbBo{2STtosz6|m zlP`co9$=Zr;ILr8^4{i{m|P6J;!3ubFwq8#2PFFm9`3}h2E$R{je(NI7k}K$2OMtu zrU^{bj_H}&W>7+E;^WKQqe9`*pr=_JNF2v>ocalHAYdipA+Wm)xLSgTB0i#9nnEEK z&pf}4lk*ZmvCJeQbR-Lf4zi5_Jiv@YE&+wS&@g?}?Z>G_ycFEtZicqtW*NFJd@vfs zo#D$Yb_Nsou*I|EAQDE2u3{!}d3B>up}lPlp>t34j(C=lp`cc63;=y~>oD2fv0n6s?V zFk{-O#24}szeK!FkmDlQ9{_-eL?)Q&W{8EAOu)WjCiJQmKBrBygq}$}i$`tUw#@6Q zB!>@KQYwQSD9Z@cuk`yE3`uCEstH(_p;3hx?^X4KX0}uN(#wW) zKt<#alzL2if)nl@B`7Zt4G6A0N(~=4)?jNr(W#JedLr(}9hFP(mmVI1p$FE6EAs3#dBT z>ooR9iQsty%1-z_4-lzCBwaPZvVi791ISTFu2{>)PJkUUCFTyI)d&_BU4{h0g9pwr zcmg^5#%9?wV?6rQUflvmX zI>!{C5WtxsRSNh_@ur+puodPQ$2AY9U=*mJ$H1~eWS}BGIz)!A3l=mT%n%BI%OQf= zD`|}2AYp7{6G!c~EACw#|i>sp+?fAXZBfbK9%w-z^*5A>{D}BBeg;gJQTd z5!sP(Bb4`}J zo`mHAGyk(6C4m$J)s(sO+mV(n7?#ZuSPXz9!q|cVN${aX0LF@g#-#Z@42>g!W)uMh z8O>jXIhNBICovMr0MHX6~mvB0AnQ)jVv=vPh8afSr zZ)HcYZ65hwbF`p++vsA1qj4fdF+fU`5C|M(6Ci;b`U!H_Nt!vZq;wt`SB#`R9Djh8 zzyMJVi--dh04NR0Vt~?guD%{d`Iwat0f&U3L%^pbJj1rksa>+)Nz$r75JhNn!7D@4 zKzBuFdYu_s1}ed;j!LW;GQ1PS_@Q&d@X&{Uo+AL#u~# zwjRn=yga`h=qaJnh&u4pie64w7{>Adcuvd^x|keW9v@Nz`J%!xzp=FQ+$-8R?X4dM zv*>P4Z1#iHV)AKvR)`6+;eoAc}EVsS0}8KRpq^SP*YGWLxJo&xjqI*MN2-X%(p>{J<-)fpq^}Fuwi;6Vhc7>sFmwA><*23>jac5%6%chjEqU4S@hb76M`p_p zqmlzy#S=CCP+TEQD3ZPsSR)W>aN&U!5`qr{_89$_oAi7EzA)i#fWLbd%Y5PI&Z&8GJ z+1_Dwhz@u&vCENqkM9K!0&FdId2>2C!C(k;E(rQ4#+K?~$h{<~t47%f(u{hmNVM9L z*vARdMHS~Z(lH9=9~=OcI$)HX5QCV6t!#E{mXUVVzTq;pre^tR^tVmB_($n1b)P@6 zypz)p)EL-YRZ+i<|s7uBjdrnybaD);>xd`|mz)%CmP`;=Z>QBYp6 zJs>L}`hsgf20=pfD+SC+On!!$1Pok3*$DYXfO|;HBpzXb7#L8PVPaOkAyfZ>8Qo8C zd=MS1*kRD^A+2!!M7X3h2v#Eax-v9tB3ox_RcrBUMlT;y>M8Yynkhce_{!0r=_omh zurredl3lxs;{*oMxRpaTgI(A(O_(|AGK@_N>?Zpu8E+v`X6Ud(7`65vrSNvMGC?Br z08#;u!YPu26lt+Q&mm(Vxu;N8G=ZkYsz^x3u?)?K=-80%u@a;5V62eE%&)i5FVJs* z(}$3QenFI$ptEoehiQ@gC}d38f5Vp!w|%3)r3u?2o26Z=0{rGRxfXa~IA8>TS7TnX z&JZ@dK43gRUcnpGYw_M{yk$^aBN8H*Fk#7@#ioJ24Jb@mGdlOEg)AfZmN5(v_+Nt1 z3dk;sRZL>2UjZ}4(?iZXOI}zBMuu(6mNq{_%U)CEAxq2&S{8{^fkdnXDzn-Xid6Xl z#|c)$Uok2eSG)m+os;*eB)uvc9dduk=@X+`HKRlNrf4Xx0MbFs)yXX3aLEM8`?;Fv$r9tAZm7YLk;a6mKAO05~MG1|t!sTMTB8w=#Q^ z0>`h1VG4za`6wPj0Ef|uLG~&51Nm8l=&UMZusX3@o2M^eV(nV4GM89}mcjBfmzWdV z9`JUEZY(I+l3;FyKzsx4huo_nwd6HU85;FdAVCmU5)5JO*4!*ynVQwuGFnCqlm>jw));2XIJzbnA;LkWFMxR(i4_G6 zD9FHFS~6k=|C{FEXc-2mg=R5gKR08Ci{luXyg z>?h}6K^|Otw=c^qeS*L^*^f_)HI`vwwm7;GfMM5LA}nh3>OxMs@O^or;>$}9_+$;1Od(gP(&2H-e5XIa>XaYhj8F(h)9Q;79V`b11S z*c-hZY(bGkzJy<(iDQzYz{Bmyg0Kdj&aUa8xya(HOwca5}KxIq@^+0t_}LX*77~xQKxncTa&)Hxa0K3>;Xr z(IN`GDK2>+Y>K6c&xh@YHJBfefA$SqIye%h+BS;9#%mtQU^%Q5LA*zE0SjNgO;dr2FXph_Up>WxQX6Ob-M+!SBQ$knfiB5V@Jz zIw}DxvshV%X3fuVXK2y#01;j`B2XG`j;c!{d$K_w5aGgx1Rp1y3eGGBJakEF%2sTX zCSIDor=!fYCe=Nus_llS1(tP&dD&uJX6Uqo+>9fQ&3B>vy>h;VOo(v|JX}AH^@y$! z9HYpZE*g3;l9@|v@wo^`dV&^{t%2w%pJaeXtdvMNR9}*44^5VO;mEm#7FQ!xFpCo8 zb%5Rp5@RC|pol==s>be*_kszio1x*T*4meV<8IUFjxXl=R&`q5#Yqm50A?Q&XyeL3 z7#%vX}n35z+5BJvJ(Ws0!9kt1Q+(>`Oyt2+2qSe`=lTj z=U}!KpIA5XeTj-=IyvIOR@5#m8oM-8^GoXI`kl7z;-xAu@ff0e99tG1bm`ScdOSyX zJR>GvL%?2$y*E@EY%WOR+2ezk;kAZB2K`J_);>V7UeXG%*;|5S2AAOGf~44GZAPu7 zXlOrATX>CR=t$o|jbnzdim1GQZ9Gr83RYBR9f`A!#92q;W?t?sqy+(e>v+&oOLA5Iud6ciJRP)vyQ|~-q%@2;;bWa){(fm%XbU6 zkE|o{&-*cF9f`A!#6Jh4l654`IudKg<*Xy|1^s5u9O3Sl!S6QfNSt*f&N>p?x-VxP ziJN&xXB~;Nj>K6qz|bF3ed+;;bX_&w6_Qn=_TIlY2{Vk*p(elM8d!kvNl6 zZ`P4`@~NjEcl;@nvyR07(T6$fNSt*f{?E9oSx4fmBk{jEFlQZ!vyR07<{oW25*yXY zl_zv`+^W1cv>LDezGvm;{~lytp#0tHr&SNMRi~e|r>%PTg!Pv=ZZ)oYZ{>yU9M70Y z{vAJAS@erD9aWsOr;9pw&2?Sp*Y01*-zuYazZ%-XvBa!b=O6!+pC#lrkAMp<w6sQBoP~W)Y zruR`FU%I+LeR$mTqRz34Dlfk+?v-h5-*y4!pI!Uow4QqwT>@a6S`$gyldUt4z*(Cx>3z8SF3fO%BAA&mqyKP z>na?FF6-}D_kg~XXTLc}B^<_}wd*cCibzx7Mq^-p0BrzL8$h8EK=va7UF`RQ&P$9j zL3IL(TLNx{N5a?$2qsLNz-2*@1-_UdXR<^reFZo(6B8ED<}f&Wgn{s}l12%DSg?(Q z;1PmAXC=JK(6C?4**O1Hu!!v%tu)iS*L||CBcbGRVAef^27<#@1?Wc*n0BJRtHIu= zBJ+hn_nF}|L>KzV9srV5xKi-IiPsh=cVOKCVT~w&0ChOc!wzzMfw4+dkq3AI@^+C; zBTNHTaYAClabxVr6-2h#w;NQ~gCys&Z&Kp`E^`qz2pk4OK}<{;*e8VE`zphJuh&Zq zk2h|H;aicAaj$^hf;s~R197|oKmz$3V)OapLy#`=34UtqR29HXK34} zuJ~kK*ahMh(Vrk|fX547BcT7lA_}GuIfP>2sD)`0_JMyIW544kwh54a30q~rfkCJS z@5&5qC0tEHTYVsJ63GT`DIk%+ZiWF8B~B{_#B79BQM00#p`+C@HLdbM(|2WRS;x0- zE!=U0+8EhUG|)6%vwk8#osfSIh%#_P2*V>`4hSiLgNNAHbV#JNaRB27Iy3+X1n?7d z%;Y7I)I$;o{>b!lDnXGZ4j|(au9o0!A{r|NXdHl8@+SZiBM=rQCX5NdoT2%s33?7} zfKAI@fMyFfh1Ey@Sl3TxmDe9GE%P>8dPEa|b zmdOE8eK=T3mdPE)V6#llgyFYkHCZOtB%QQaO#dG;x$}*Ji|<*|QF+_kILi1Yys0xPS2czK!=9eH-s9->dH2e$QZI!4vm)U*=e4s-`|1zyALJzI{deMJjc|`YRo) zj1x{=|8ZN#6XrP|eF93O>5H!|FlL^y{vW?kVbpW}bLXz-?+?av=RQz$mU`jSQI@`< z{e}ld{Zc)`{8^hHFlKFj@ZsK$8_l<65K4Y&ZN`>&9{l}e6_~JL@chY#pj?Q?%g4hxg{G zztuwaPCh)LSRMaQ$fXA!e!Qcqx)}1(e+qf;M#%APHryCie@Q_8<){r^JE<>UfE+wt z$Z+JL!N$Z18~S%}ylH;h#@}q{@=L!>Ju`7bSFPDGT(J#frgkQo0_nOUWu@MTnzm8@?`fRr{-feF7jv;JW~Kja3H0BlY+I`mO}O-qh7_g0U~9wLcFP zZ@gxpntncYk3VMP`<+$KYamZQZR3b8>hT{LpmpbOyr#EuAH%Psui1D^t{QS0>1By#M?mw@5B?ARs-YNFdP++8ryOfkqs&Z#}HM?{7SdT#U9YTTn=Q z+HA_@z{VL0pgUkX1HfVepbiip|8dr;^a60CF$Fc!ObLfuA26VPNq2(E2sC*VMWjFh zCd3mlVJA%_B$AzQN(3Vwl!dssuyGF&C7U3=NZ+O5n(YwvAelliNPq z*w00d63T*60LQuE zBui|t%+MJ_T!2=QfSjzXj4jEMfYm`KQXP*+IaiW|*Ge&$p;eH2`^j&?j_GVzq}8w+ zq83Lz``OttkwJ!zlSFeC2(;~o;m*Rr@X_pg%dWTVdTY)N{*SJ=^VR3hc{#@Q&P_KL zsP~_pP@+zJATM7<{G0Cn1!5u=%$|m;Y*TTmT5{SMdB!QxO;;7FGdKNyl-d{nLt7)> z=Ee@K)rggQa*fV2HvRC6rNxRHHW?K+)PMh>dimIEU82FYxywe=qU(Km5JS-z)sR z%HM1Jz0Tho{JqKFAB`8LZ96+o;^`0&!0|W;hKLN3cCCzDP(eW2$Szt%x)yDU%2-N^ zH-ArU!?+bD(<2bV2pRy2fm}-hP7pS|l1CeG;E+{g#!|Y*2_I~`-Kl2fZXayqJGReg zz4CLYC)#X(y|a3L3*>#d{HPYUfjpr=$gZzIe%^EYRYgGQV?ZGH5pdpQGbGnAiNhq@ z5xR9SgkxsP;tYj=XO)!2qszAMy-A(&19cz!j5PDWcaWcK5wdRqKpW)?4k`zTTyxFH(8KcQmoRVExDU9r-z% zz2j6cS?!x8xW%)wwxOddi0}jub}U9BC@dF%xCf$@lHm&DNEnTOGi5uOU6`}Tz~E+s z?uiYAG&*5V+yi)RIAqj4z5E4-lhigOjbrlhCFBHQ=#g@f4CyQET!xuMBSWL6irs17 zo|@oY=~Z(A_e@kpJxK^cLO3wTH9$H>V=)&X#Q8}vfISB(UJ$rJR0k{=9O}v#-&hvG zco>t!1zxh8f-~qZGx6R{;JzpmC>rI>3Ws)d??nKN5+!9lyhdkqa3ExRNGz_w4iahc= z*=;VSMc7PU0M@46K(#>0%rG@uK=ozlx|k&w_H^2RlLDI8N?st=Akv@215s8Tu%_6f zFx+7a#{TJHshv2Je4H^7m62zUTm@J#1yGbt5Y&9mj*M9ZK+F9Y&gXo(;uc2Eby#_n6D+mH*6%$m_ z3X(}x(1<;lk^$}w_`$k0@MffxeWT{d1?LCb1_8AU+%r|obOS*>4uGUCCPwV^5srk_ zU;z8s_JU+0Cykw%9)uKlWHje6EQpZ47`9$)rzA>>O1`^lz@AUVc%{=YI5}ziIMIX;-+ zXa=e)qXgzWu+tpI*_Frv7=-JXY4q`Y2UP}kxZPCGk0`#k*t?>5SP3KpvH3g7Y>ROk?bBAwk_CyGAZDy zK_(cI^pH-3Qe?U%HHxIqz#GLJNs||#5hJ}7nS09wMOxA%VWS1P85J`a%3(pH6+~s* zRxQ;3Os#_8Y9T&Xk%fRXek^#>n2>>-d<3Kb;Yapuwk0zao-^phYX((~KS+ikahO2| zgS17i7xsWE<=BqS!2F0nbp#I^#+CG{fOQ8+K0(?_4}k4xxkxsRF}asf_xDBQskCpo zTB|xTwfuf^#~{_PbXmR{8s9OJi4X~t`kH&6phY9&w?@$>u_@xB>~>R9Se^bT~kEfap59F4BjUhsjhC`A#iR2=P(Pjbw&&ZXaKLp7RLaNIuI3jZz ziBnPpa7_*ta`_&X_S?Q?b~}+E?OQhS|20n|e^4c!47jI}i^%WykaeDA!uN1Neq|GB zz!_sNh$EkQJOce6AXxlBEV1JHA4aX9q6l4U(*k{Ef`nexx8SA>>4|`r!6KE(S8M09*}xxnOlyMp!)O zEdZ%|+}sBpZu@2{NzN?EYo*zbP_%_KNRYkV%xr-uXQp=vy9NCkaRwA@mo7t1vVMoO5NiBO)`}b3H_N1mm4zee;!_SA=lUnwqmOZIu zPihYsH#Oz=4bI#{1>Hk}r2)U1{JVzlJ01E})y!%*UR_q(FmY(WSBiGC z6kSYdI5NT=D1-FkP8Tlq2D$c^q6hOpm#I z@TyyX-%zf0-EmWw|37@mUIM1q_M1LR-7&qPbMtOw6lUlFFhFx^}I7rp)e+Ekym zsNv3ko9d@7Z3qvV`cb=I{px}hQ~$z0=l);$9rO7P{@yZ9UHbO2*^c+szTCu9YOFKS zUpgoK%M0I_c{MJ2jrn+t*RK?0fv3j$6qFfbr=W^>Gu5G*O zABkLbYym&rJDQ*FFG!rL{&gJGI}hd!QSUvGYNt-`!QH&E{C3`Ji2*7tmk%AwrRxo< zJG+p}Wf3l)EKF3YaivfPE1uAkn|~k5Pd|8i=BTYb6XP5W>g(Q#e(KKiO1rDBH&g#H zy(rYK7locWJJ~}$EtkI=z-3AA#5wBw{!kNR$v&#SH#hbcamicuQp5Ws${k6wGW}r> z@`LIpU(ux~@oRNSAE6fqOl_bWgg?{tyndH~b@}G_POC~2^kRR0|53*Kw3IhbZSK!g6J;W} z1~8}LA^IB zQJ@|j#EoyPQ7Kfz2Xpzkbm`*3lq)RceWu*iSfomaaAWK-+*mp!5mi4HKuvkB(WL@I zxe=AGe`bH9Q*D;Z12PD7S`Sq^jLUaMB>JzMxO0elO0Fh`xLG`$zFq5u8dkBhmwI40 zHy-zJ`P`(Pg{t2OF8y-3xcZ28q-af?rY;%G<(9L5(?xY0$(MGL9%-1nvsf)2N#QD) zK3kXV?4jC~GJPI1r;q-^nf#zmm8rk4G;yKYFZJwud}qFzF^U_P%cxTBEY;D^w{Cf4 zXNkJn!;OE+$mnu^mdnC?E@y}Mq)IQBi+x<`FMLNX2Orf`_%t7vpUD)}Q{^Qe?|Pq1 zff0UI@G4o$8~lk2RA=cx{eEN1c;fP5T)x})ojz)dT)ru@PB-okaQUq)a^3hta;fB9 z^t1hfT+TU~OBH&jpIR@Mon+1GXNyBzJ|_#8XU|qkdqVy2)Po&Yh3SXX5nL?{C+4V= zWJ*rD=$(P;j0g|hB3sDdwbvb|YL8(4{UpCtj^Ve5pZ@(w`E8uKOP0}dn-=#{xkpmf z?R~kt{m8_vst@zZIO(WF(4kfqnq?wt)@@Yt!O>I`Wg@7;y(@dGNu#Nzw{+rZU#~pN zEYf!jMQVHSTj`hY9IalE%em4`Uv0SEuYO%FPsk^1El*5PzdI7DY;0n=8ZT@0U*p&3 zNu}+S;}{-$Qg+YFChnS~UX;sDvJ0H^ z{c7q@pLO`v)W?O&`5fv~p?VATu~37AdP*q2P+Np57iy_crwX-IsPlySgHRU=wN0q2 zg}O(m>xH^qsKr7p7V3`AXG1m!`3L!Nqfk!>wMM8Hg?d(~9YWnK)Vo3@h5EBl_X_oQ zp>7eX^%qbN3zaL>E}=?op|%SZ66$TJ*;9`ba;N+_L8#A#nk3XRp)L{Xb)l{m zDlODJp>7gtnNV*DwMM9wLOm?h142C|)T2VZBGjEiC4@=|wNI$~XAAkIkS`1MPod@s z)&5JUI-v@L+9yU_Xu^LQ1wE+Bh+(3trqGHq5dRPqfpC*`belfLVYdNV?zBX)RRJW z{tBv5s9r)Pgc>N+0-7lEDxqE!YK~BU6zW!? z{zs_Wh1ww0dZFeE^|(;)3H5?d&kMC(sMa9ZFC_g?U)Ka0A z2z9qm>xFtqs6|3ODb!s;y)4u!q23ni38CH->I0#^5b8#uz7y(Aq1qjQ`benmLe&f9 z?k42ZLXH$_uc|*eQQ&w+F zM8uUfaazMr;k z*ZrY&S9SW3X&uz8A9m&$Pe&6kS!HrRN;NOD|EjiK)lZjECS8?y#wxR-xavot@RQ*CjadJKpJUw7WR*ih0M_J2la%mHDo7BD~w0-_em3o!%)jMqhUDwGKXR zjG31B(t2|A6^X7bo-9#I9&Xb{HPqL%GnQPHXtY|d-E;7(zHObaPMvyrclBldJDrRd zuSsmR%1GnuY22z&S~Pg!p{>+qecxexyEE(;&Y+ve_j_l6k(iOVmXYuGPM$GwR^o3a zsivqzj&b>%#GkBN)i)%*wr+iK?9Lpuu=B|S)#4ixos4^KOc++7OKwW!w9-|nqskg{ z)bQFwH#NHQ{vpPj3uG$jMz$_Y^s@@>>)DuN{B%pAn|W=xY7_0OTe=bb{L$a+>Sjz? znt01nxxVLU$I68NtZf(t;_)- z6=Z)^-?5;(s+hO7lX2%giOtp>o=55#T-wgK^*)&xy14$)y*$6GTJwFflTo)`CYQeB zIf>zHaHcyLa~?>%Z~e$b@2}kTxowR*9!k7v{U~pvc$;2o>$kf)tGn8FYi~AgY)HId zm2uZ5I;)y^vcszHa{H-@6OwsG!=}WO)?L<1cW(4hbMo`rsL#f7xABq0>(*VSU}xjG z#}b`e$(xm^lkZCOR<+~udZ{0V^l5LDY?gH=?`-gTR+q?<>~C~?I`NZ3y|ViqCi}hp zy{f!>s=d1X_FdDOo$(yc(e3}ZbC=>~;SmlTed0UXcP<_T3d!p0R1a%KZ~E*ZHp{E>Y8twOUc1y_R@Isad=TC&?;R zabr{S>)%N9VWQl)D_9FJL>}XeRh!a zd~uL`=F7xu+R>kjfN&G17SYZwXMuM%=aY;KDjr zJ-2qJ)hRRnk?8G^>wIJVchV_Bs=|LI-f-M*y#Fs5LjB7}Kd`26H#Yy6_}-!FzH6Lz z@DSfl`5nm<)TRGy9AK<*B!BA=GEa>9BR41cm|1+)81}1uU6Q=7S>9v}eE8&d)oVx&snz*tG2CKuqp^f`bTy5Ydv$+c~!gejGo8I8|!Bd-FENg_MvS&FfRE&R+$6$HB~{GPO2gF zen*4Nyr~7xG$yjU?QWN;)-$)bGh)@Uo(1Z?Gg6(5-KQjXSa-LE z%;(CCoYRv@>qqwjxakiS$wk(OHhoixs=uUHf%FkJel9walRUn%GA$(^U>)b@6&nhm`>7~lU|R^PwhE>!g$-tDN`?MUSr1?MGU zU%JemQ&X(AiOFxQ>rE%8hAOVR8mCT5E^w$bpMl+@v@2BSO<^PlJewY%UYU}tSO0i6 z-OZR+nPgM_{9($V&Wox$pJ1a95!d)2CZo-Dz7h^;z#$nzecdfTS*&uG_35pq^zCDD z^ZPDLZnJJj+NS!ch9P~*6#TD~@zKS}KRcB7jbt-Uhl=o#*O4&lyC;g&#!GpxhfYDd z=yO?ewnNA~wdLF7aOHly&k*I_RM5d3mTuFM>#W-kmZpX)&##Mysx`xk*dNZKQ~XyX z->_~s+?^b;>hnHFsQSkc9cEo6!ztAoldee~-^y%Z%o?+bBh-#!o*s6se4j3q^ZVp+ zRw3QalHV2u)Yj1ydV59^;a$Jrolo$BTW>7_fov9c`p-W6j()dIMZDYA{;7Q9>g$uQ zSr6`*pFB%#Ii{q&+VYPf?U@3+;Zt*E9_z*z&r5pD#tlmPt@m)PO^#4g-lsc8b=%!R zdAic%oQ2Y{_w9tkqFe2$_TNH3PJajK^!!_;A0hLM&le{-IS8q!ZiH%>S=?W3x~tgg zv#Cp^&-Cp-3``9-YL+K+t>XIAYi1V@F!rrX{>>`Xp)Z{#KdPyuU9q-YJ?e0$^JL-z5qSUJG?w1)S{l;^alvq7?v~Q#&M!#pi#al`MC9?du?)<;dvz4rIlHzVSaL$swj4P)YhvQ zlBXY&NmMs0d6e2$xI1Xhtgf4-D|DUmxZ3w#$v`!`=WeEk%&GI9l>U(0#*t486NNlV zO}W4sP!+AY|IcR+-rv0?8MGQ+^K$b}GMGhHC92lXd-F4tcElv$Cn z@73glR_e`R%pw%=F*SNrlbkmA&Ex=wT<5C`{+Qh3c-S~{Tau%O{^iUa$q)G@)R07s z{W3~VYBm1Wx0!=mV#xuV zkMRB78fDAZ&#>>Z{^fSvS*}iM>p3nW=VURDc_;azRfbVMRHmKs9GfaKuG^jDoT{r} zjXss(eqXyW#jic3@pc{mtC2-|Omc zF1g_!B{?tZJBNKlsd=iH{E2MK`u5}*P4&8ebXhZh<)??=F2BEMh^m>(7{B?M$TIpt z{X)5+5&fEN4}beY=Ii%IvP)~D#gzT@a>bOUt@@AqlX8Tc!d5+d4d?DDUnf7XuD@8! zgqzanM&BGj_P8V^5pmRDbH!CPR5r%%F@&ivaF6#HNE>5sJowL zI0rgXGAZTVr_5mD@-jmV=6$2}3KVx+O&<6zRjl@P?mI}i7Y=Qw>h5P>eYt(=S?h6k z+q8B2z#Bty%q`*bjwudcy7og)*AML1ULAO!dC(&#^}KZ(11b4vm#TMcH@4@cI3+lHQ%aA<>)lf)sFg)c%O+5ent=wrh-IU{Xx~Zw z5YY;HTTEu9tL$JZQN3q!2H49h0x2P|d7pS}Kec$l7-baSJQuMxlykpgVj&kKFKm=o>o{wV}rUFZS!d#ez803Saj z<*=@~b%r|BO}7q9vH9vY^?p}(d%uu5uG>eXIBM(aXy`Ys)HA1ZywRq(>%H_{`B|ui z_IXoCrjYptdy})3Nj@J)9WZ}YHKS9q*|ht17M>&`+J-ni+KRvC`}E zbsrSVA6q}X4qvzI=ssTgQWjls-HmBa+6J>7c zH{!u!>#LF0#3*d#n7r`U!bQM!xP3IVECa1bv1=*%`iv!Hg92k}9rAz9abL&q7 z`TgbXcYs>5bzr`#FWcRmi_ff5}LNXRou_cdJwV}aQzuk6)e7U~U z)G;nqmpiyv-Thdy*m&zIS!nw9d#@&kn|CTY4$d{#VUOR+YSXtxaFW}l#>v;F;KKSx zSd8_|z8eO&F@F2|6sKIdWAGXyTA77RQD)uXp$0PKF6&7xu;}+#T;G=?tH=PyUY}x5 z))nh#^zF;nCY{Fhb5rc-`VKulUj4LtaC5=(v3b&6`ZklpdZSBs472vf_vWYIXZp2x znvGVML}s)~&I%0aV0dmxaV-4$S&oI;Ec(#m)M=|;lcSud!b@t|6kj*C*GiX9SjNOQ zH^rq4#^gJi)Ej|isT&+}ov&oGQFSj38PRN0^sY$VYu(oS9k)kv8XD4FO<4+)IDeIN zwmfY_R;Li)HM!*W)Cnf3^h2HxhLoFpc+y>|2CIDe8d-3<{OYv_%k%56o9&7h-Ya9R z-%f9;x_MzT226%=(|3deD$k2Uea%G9Z~q|Ua@d3178#=aA=#>QyG0vPPh0O}0Es**)C2_R-YU4t4qw@D+R!E>X`O)x=UhdpvcML$33U8#bqk zTAAdgCsU_eWbQMmvn=wr&!whV%sda1`ZjhqpKG`eW)NtNilqveE08`LQ8&wnfGhsb5><_EhRLlT-}RFjem# zF}j&Bvwo-W4E_9#yHXsqgfvS|Nenw$?fcH%!BqL4xhI9-tV{aeOT}8L(}Yh`-}Dly#qI6qbNlG8Q%UP-t(>SiY2;9~wIgEJ@Bb=`R==ON z2yEy~i*qg+Szz4yx73-|y9kpoP{O@$mNfQ%m+EWXf*h-MsF59vso#qrrE6lhEKyr; z8989p-6PwpoVt-6%+GuHN7({&5xp`0>pS+_hM!Vx)teOQ^{ijU7T?r)z)R@b*p^^81yTG!GJ>hy1D zTKE3j9n;PG!k{mFt<>gA+4S+tnW!2T(dSxWvAt{ha)(@FX&8orVymaLn{i!ky3YC$ z15dF!a7$^fn!K#Ey;^b;|I>%>Y58eblYTIFHbOBPH-_;R-euEVHlG^{(g@#QJ&8tK zyZ(Gym_AK?@zkyX#(6!{QyuD*XV8dWT0-S>rk3WZ+jp+(WOV7BUZU?5s5uwz>?r01 z=Gs}idmA71Nh7G}XPV3yMap&lsLsZh#fRN7(Aj>0M&;#Q1xABA-MW?ekeITJ1O3w9 zT9wFGtvY9SPh-TuG#ietxW0gw@f<%Y#~3v@%|7`hJVQ&!#y(ngH;G}sH*$psLpElMAp{TqohAhI=i_(M~!-EXH5&=r;smw zg1Y-<~buXYHTubRHOjavNc#r;(6xr_6R8D(i^puWw(byLoQwZ-cBuSa!IlY8&% zWGo7%;c)tP)9bb|E)S=X=k$*k%))-tX~DZamFJ0T+naLfZAYYI$fX0=O10zFjH4K{ zNdr-he05ZMnnTDuB{nftUz6^smi*boZ=)N|QAeJX?qe(}Pv2?% zSlft}ab$I47qz6$Uuax-j7)GTZX9)-^qqck$<*{D^Z8L$AS)-BkG`Upr%J zMVft8SH||2qq=^P=G=LSuNy|*GXA&7-(KDFmo&QTGn!Ycix|_-O2c9G!-wkT;Syu< zIq9dYJ53!{WXwKSrjRZ!Hcxfg6x`JIpIz2=4NBtbCh!| zT}QoL)w4_d1?tBid7rvT>H21s8C3Qs>zWQ4te#(2*4a=|nFYEc=_+GsRT_PxTpQD> z(?43b4t@BP)xLc7<|LFX^=p0Yjb|^CtwtATbbhkPx=Yi4x1K!s8OHX@4}F_hO_?E| z|6BF?6ZX91>#2%sn4{lZna0|o-|n#P>#C-_!D#lH&aVECs}FXho*+B+GHCmMn???h z2UqTB?7iwOU%}?4OvxzXL7)x&>6 z%X!l5rp_`-u1{lL*M$ysj;Fi7r}}O{V=rUQ+%$&=eOr{+#-w>^tPlDc2Gd(LxI#lz z$?!4l)wH3QJzkri<}e|*jk=rDF0-W3uqZvqdI;8|7fq4c*WKSyomTActG3K%kfV!b zlWp-HbzQOVBC2hd%;J6F#Sb!U6t@uSsgY%{u* z7L&E6dUqGq^;A}nUYLKmJ-yi~C_QiNyEBdas2|iOcy^5<pSb|bUJ6|{KZ!SufzD)=@EI($xhsVg_IE4x319ciYycSHJj4!On_A>J2yeeQcN z(np>0UZjJ%bW`_E#zULZ9RJKRVz1cWiZx7`&c>QY(jQxQ;7h&qkE=e96d2nclg&^b zF*ZISyh=a)<*__X-*hz^j5K;u{p0iN_=dUun`fOU)CteBYrJfH_iUPT$K1=|&P}ef#j5r56rD2-7Cr6x^gM@HDpU&{XCaOWsU#!qU%h7RxcVZA+tV($@zz zvNtYzJ?&8q>7%-<_daRN2UA?un!c@Ho!SQ|kK<#kZ*QkRwC-Rn$T4Oo(`Y=*mkF`{ zbVZBjA6=jppSw8U=+l_ST&Qm!+&tuaovQu-@7if(YsUB;>G6-xr5kZMj;Y6fL+7=5 zSNaw*PfU3^YRpu8iBIe@I$!n65&0I0L@NrmnAb6%AJ+c8&k)KfK0)3r2TRV~Wc=sBeGEjJW!M z%ya!9d!JX;-aDqJ0mp>HAF7QP>TN9l=0DU{zHoGB;}3stdP~{8d#jooMi;3c=Z@~6 z7M{xv^T&V4#v!$_QF+x#3rFV|4gYNFEWNiI?CsxKEwXu=U0{6nW17Q)JovGh@o%muanVPHG6EERSl!tqZU1QQ+MAia0S(YN5-}{S>*TK z8=tbCJv5oh_l(Xne(cf6W+1g1G>Z92H^AESs?v$aw8Jszm=45@H5HOK3#p3n$8=Dz z#XRH6;>PCFaOLjCf$|)l4>P&D+S!PLSZdVWResYk7LRd`SuVR z8R3CX3_sW;db6f7L&g-Ux*q-x#{Q8_op0=2V9y>x0LHd6h#c5KV7XhgV>Yo_U7ResF4 zHfq)lY!Kt7!2kQ7(TIGhOT(?<#CMLv)O1!OIspA+)23J?59S$z&S^vesqY}YQheU- z?uPr^Mg(5{W0Po5r0OS(>tYN$@8I;qg~Zwg^&9*!cQ?wjiH+8#vUyS?YBXJi>3MT9 zyQwa?=b~}B2Cv#QjStpilt&w_O;7xI^t<#nDykYeFX@Uz*fcnfATR6dgHNiuf#Y-3 z15t#*i!VBC;Ti1W96F@9bk?ee#vzOU7R}nCOPdYWU{(L^xNfTJz2n*&wU-~PfJ06% zn_A56av%?71^m2>krR4&u-c)9rMgRjfnlm#jQkS2N2j-&R zHdSt%eQncTrJYLDG&;zb^83cmtdA3~3(aI!E!gce>Si3AEo=yb`7M`2>&> z)-h`4Nss9t>yrpcyLXT2!ZRlnsJgFDaI4cBWM`k>2m`&qn|9(*^G;kndUN9mj@Q)t zyVLy*=R%s~;(SpOoOkbuMaGUr%szgp_-<#h@${{Yf0m0nFBe;D`Ccw2Ou?Ep?7lWR z>bs>Ub~ip*s>>J+%Nr32uH4e((^0&NkE`F7wv@38Rx#BLBckLRTlwh%B7yppxzSQ2g8#^l3cOQ3GHPMrM88hx^yxM{8FHs|bLov1ZEnG3Qp!lb| z8gFvQb-sa(v9OgU#jUxsSx4Q+C-+v9-KXTMjf0U5zFjMWF2&WH*V9OS$#>mq=8>o5 znYRn?ZA4k|zu5ZffT+^%Z^t4e?7;3;?Cv#D#KwlT$3oXGbQNU~5m7m|*e#gXM2vN< zwUL<{f}$cOx^}*w=iHg=^83F3%(>_Doaa1sp1$`C2a6h&zHLjwX#?}vAgv23K(I(lapfiCWYan#t}G!!QBcDZ)_^wqnX{M3{_hQ zqu#k+bUzO6`Us1;fZ1J&Q%aJGwZlma4Oint5*$3!1qUm84<_Zws`I!`v}>z5xl4Kd zD5ByK(MMSv*H`x7J+qM5+UM9E`AK5r;9y6^c#xmDOCGvEuSr z_}L_^wm2AfQplhPR{r+OBRxK!^vE89TU~p|P3Nw~q#75EIB_?V8d1X2C)nmZMC}Z@ zB<4WYhL8pnS+T1N)i{lGW?$i=h-~Qb!)!V&dmWc&mcTT2zXAlC(mgw`c`~Z?>@H+*ZE z)XiC{@d4BQf5W8QpOPXmHjKVoV&%=d-Sj)Pa$hivJ=2G=$S+ADCNQQP7{-tl7fP7c zy#jT(DHdVh&`t;&?{6(HU}q`dN7549k`J+t$Jc{F6gg{_0Nj|?-PskP|( zr|wQvv^Q1;=d)U|isfKOA99gmvRmKSL4Mp*l=bBI3fOe$){B9?=Bc#K@!v!FDlxYg=V>2J+X z04vcR?JnM|FKNXj#^QL_JeM@Sv?K2l^8P^&l8_LVS1iRJg~V2cl2S2>yMz%ORmCAN zR9M`eo)x9*l^taj$LqNyh~s!VQ*;j+d$ea>8h5Oxvy@WZim^k_LmQOn`@7z`CAFsY zydAvX0$@P-KDngCTGop?7~M(7oG9jU&zv;pYENhVZQI9ntXOfdGSoB2bE4Nh`{a;r z)U#qo@_%wM_nn$gvNo_{>%t-Y!OGQlYE{zi_jID%&2eIvv$6G<9xUB#VpIg?84Ma* zl%gytLDF9D67u`6U7h$wMnZ4G2q4r;IM%@O;Q!>IxJR%2QmJ;spB0;eUs3lBux>Wdgu}Rz)4wICcqb>t53&xV`$rvTG%W^OFOu&8 z3bJ_^Z2MT3P6`1j2rof&4`XAj}eI5;GC)_yrD=y6|HeO-HDgfLu={Yxfhm*PaF z-t^5wSlzlxDWj~IxmgAkY)^sp#FgupomzbC>qO7$B)UqkMq9D|VnP0>h!dRKv0r`( zUqE5%lsae#?W#0OIHe#hBmtL4_YFwXrryX3{&{S{VB zs?77G>a*HfhWvI6Dx)8RjUdrN*p;xVbsHlaRa9Som8`fj!ZQpwvKsqfmsCESM8c^!q+8|a6FOLvKp1(N6z zNK=a3V_kn<7bAWS+F<%nIf~2tN8}>7_4+dC@=5huNj0PFv3i>2B}t727fH zjMX75Ek0}AidR&8u{P$9=ntJo$;NkcERaiH5c4#6EGYl7;~pnbelP5^N(5d5fNzG9G~uJQJ$;VAyI<-@>mRU}2)ti_vmp$C;*t1Pu4oA@PxRbz z`d6=nuU>IN^;J|8i|}A1L@2>)oc`&ngil``8gP*9M!$mRRvw3wuHi7d^*_b9!YcSG zpsSm$q=c_raY-&fF?QZfi7=k5lR~z2*H*z5%7jAZ5yyK$hfRl)eS8(^8oXtr;fI01v zNfAL&$zNa56279%D<$T(!PZzgA6@;bhPd@Pb4yS1+Hint(OOwai)Dzv9dN;RQr6$2KR-6<)O~6tRpXfmbalpfX7B0-#<$wE84J-W?uhh z8tTb!=A@GP^f$6H@kj@n)4k4`^l=dDVT8Pi)lqn{Jzy~89Fcd)wE$r z#z79n1t|E_R97jqmTd;Us2t!Za7Z2KoIA)-;5T(dfx+h`v9_ZorzaQqzf;v;^+dLg z97l(T&k-}l-LUU>sC+}z!cys8Ls1K_M>s}=n~jmi)sYwxnl=#?fJeR>z$NeL$zC)! zuw!ApF^V^{VQbC7e7w)Wr7TnNCP@q1WPAs?1p^vaMUhreIc_UPw2)S!7Vwxyzt#4s zqE(}oTc+60;(E2Q;Z&D{`EI&;Tia(l&q+YMxD?Rdw!pOVAU@&pYj&>-4r{GB>BsTi z&Tx}bk>+=_b%@U4STDTpXlrf)n^$V#V>_!qS3FsKl%5v4df^KySMGS>46m8$L3@L-QaI4F6gPgHZMVw`sw`p{x*DU@OBQW6dqez z((yqkf3tb^ikHd{wpBI>KCcuIAS$09p9k88*&lx&VhglCCJq%Hf(3>Tw^>Z|VK>$n z@cuHEx*l;XEnbgAOWu%TMv2OOumaZd%OA{*(MY>1IZUR>7+V#*aY*QeQ^(ro+aKM= z+psNR^iGfs!y`X#o@iTbf9x{J7Ga_@FHjobn_+7peVQ)P6XDX5nPPNd(e*pz*3$Obw$AvDCkKk=a8rY+GZ^Xvyd1}VZgXw5 zaF*hQnXc!h4{HMqmqrnSo=k1R@7otKKCD+HchLUfn(4XvnZ@ln((}jA6L3PvI z_A^xJT$rt%N$`2`x|FSj)FIq9!p={NwRMnOB5V_MUJ73dOJPx|>oQx6{n51Cw#)u_ zYK3jB{c%*ZZMpr?W0e?%#uh{dT-VqZ(9cSav=6Sa)iwz}uk>N9ZIS(P>3Z85`(u-h zHmvhlAU(#0yE1;vwZ(>coFCh4v*E3New@3*hHGJdJh996)su?cfia*;?OuI`oItrt zJ#ZMqjT55W;O*t^bxMpCf|stGwvqkuk2Asy7%g#D%pClfan6Q)7(d2du(h{8I$yL6 z)*s3I#8ygL{kN^IJt+B-4T~!gfwVMR8OiIat&Ba$_nH_0IVkRvt+Ety-B#5ebnb=? zNBf-2ja#-3_Q%S1Y`76+w0WX!xIOO8XSU+foqINH%5nr?>~VN5!e`Ppl>24?hW?E< zSjG~`PZnLJU@D}3IW$_TLMk~G!_-$*m@*#oNcHbyw9y~0CfknMAEO>%IMLCeskRmN zN0-O8uKFV-ytkE>!k*Y#*@M(H+h}`G>?d0l>CbdqQ+v>jXJRIJ@%J73i>@ti=FA~n zDuvKR_<56(UW&ZnF%L}{YpW-o+fOoVAv!P3dTYCEf9(Cv*4O@sto&|| zfLxT7dVdu4C=^J@3MLSKZ1}}C#x8{nm5}ay74_(G>W+Ri$UdFg|FHR*cIZcg$A8#r zn7}NXXv-&k{b`E?BZZsfR#^dJ1CUR8kWGdShkt|x!Ua?w`kF)TK>nXlq!Bq~*gPKd zNV}cnE%wJjF7g@sV~t!gHt;Nv&0U7c@#9?&8GVl*qjSqRLE^`;d1cS6`s0%PGEVFm zT~bg^wm;4;ET`HZCwR%K{c%t+84EI&ZC*k~597z@C1rHMH5QC>a8}iW>XwnaQS1`O z5Vxz0Tm$3Q5)5JKWo2}3evBwDqXY8e)rxX!`(w!}GDapw&s3HFv7;Mm$cOFdP;dE} z9Sx`>AG4!X>d9~IXpM&Qc>7~)W06HxHn6FD#EzD0f$G-LsjcKsc7b_q4`e@4lR?WlRQJkS34eT_f^CZM#5vcEmZZ<5@{{&;M%yx#see5!oa{@8lD z9BY5fI#Wj9V~wk3$v;gL{Q#whm$DYrHWp=t7LhI=_j-~CTwX!#SRlLCglk0jp-2S+8gUG8g8C~g@W43ECh#5QG z(VrS_lEso?x?{<(bFTy$Q>GLj$n|0QoWvAa4S6Z@+3$;poDd_37posS#4sPoCn{^@-3 zuyZ;e-7}q!6T78DJmHhhCp$Z&^C`sM=)ehAbUsDc4V{k%`=Im5!4BvUL3p2oh;Tgz zWp{eC$omCqKKAL%PC`93luOa!7uia94)B3IB0E4b0mGabm}DP$Rs?K~%Vm z^Xba|;t*dri$gsLPjL_tZsJfu!bcq92?udL&g>lybs=2CLACG;hq4Hta1ap=;e1N5 zH#l%`1s5#T2uE-r!V4VoEnL7MQ22jCeBt~J@rCC%hzPfD;DpaNq$?c00Tj;O5J7l) z^KoT2Z-^&+ydg8f!5c(`cQ>Eh?Ai_SgkLuh;nXb{fx@L5lnQ@tD4}rXhQOtQnAnRO z!h{PqgbDv`J}&IM4V54~w?Ra>Z38EKwjo{NunnB>)&@!8strW=X+vg&lQy5c?4S+t zgm*TdKCbMW4fz(1*^q?r%7#i1F4<6t!XFz%g)=sY2v2O#Cfu-r2p?=nNjP9b4u$tM zaKiH%Qo2uNuE=c~3tx#P>+@h#3J*erJB`eejBLkB(P%wW{<*OK3CGxo{d*>JJDAZ-|n*-kA z@H5POjFw)N3sn~_B|=I*M@VV$Qx-qNxOq6n;+%+qpJ8Yf+Hh)O!K_QOQ%2O}f>|Hn z;vi#MJL-5%4lE$5T*&{?$tjC@3Vw#6HmTNwl~qj9^z52Ei2HLSmvJfNMEB(Sj^q+M zphzyU;6#gZHAHgx1teTbMsh{`;zrFjWf9y)4jY|`8~a}_*gXEfta(Bv?vG5|OxpWB-?@D zgjqzIzXwmv#(~25WTg3LCeAeNzhT)jaXB(`GqbZ6G0a4ooicGQnYdh;IQN+tPepF@ zh@P1O^JL=kW#WXzig?0;BiVF+apmvoVPXi1G*`^TRnEl0x`SDbF!xBdbD>7(gu(yf zvcuK|C&nivn2AeB(Zj^}6lp$}iMx=Ao8#`pTEt)#X`Tx%SSZ!mKQjg1ZmEk3gO4;P zX5y@Nj=ewX0?PkF_x~4q@IO$n`O*Ji=CuEXp8YTM@_(U>|AqejU+BYspkVINk!H_U z|1EBwOkBQ9T!Bnnp-fznOkB}ST=7g?Njn#;S6}H&fn_ss=GjWwOaaA*M)iZH5 zGjX*X9PA&>D~3m52x7R5x1ccONlk{O^M& zjUOVNzAd*jnV!;*J8~nChIc_?XrfN`>g0(a=kOK{lYWVEE7KEcT_QG*9`+flFwa zG0r0JH3r&1a|k_5MhY=fwG?cmO(~S{0BSCg_CT&sS`3Mh{5T^!B*nr_RN_30g61Bx zvZE4rQ@Mw7Rnunjdx$l3D$RQ+&%}#O-yb5;XH+s(E@V1O4N@VZ(2!Jlr)e9xJ(8;y zu<3gBx!?T3KL^yOQRhb})pCk~gh``okD%lby?P`UYA1$K>Jy{ix3O%hAg}pvhZHW!doE=?}RMe zaV*?TETU%wBYCk6vhXg*!kZuq?}045#IW!V$if>S3){Daw?7u%{8)JJV_}=Mu$fxe zJ}tcOvG9~?VOzBDlwx5^3}r(MZw7~!7M-B)sVkczM6&LERs zGkEDW&MKZ#$qWX^WXRpX#p_(IH!L#v4H9}xbKb~JKu)}oe*^jX1~cMgYV=la4KnL3 z&ek52^cF`ck17AZaxW0`zc@;JOy~Z^jPjWBykp6p@8mY%R=tDH<0QR;%VJ`WImoAy_Y+HRR6$a$_EZRp_3mUmI zHk@C^_ffnk=yW-EcB|^L!mPJZ1bKf!Ek)3RFR1bey8A`$3sU2&>;p36tK1Xh##h-7 zq|`ULAIQva9QOA&4lDMZ!^VE+uuI?N77%g%A^W&<(jo1{eis)kZ$8U#KUk}vo3oMf z#vfR~L{Q2Pv|R*M|0#D7+JC|jBIxW-v}DA}d`frx4p#uJ+^Y!Whd`*CNhyKlM3718 z4076}^Z?0|Rp|#ZCMyJQQhZjW7fAkWN*@90fix z4`Qd9wF`UL?e`|V&901s_<$VBK#&tTSYz&-NP9ok%&GJQS)dbJPGuOl7Ea1gkgZNi zJ<~>#ogjINK07JCARU~Qes1DW%A7GDiFUA1Tv?^Ea6DO^+&`mLPm!AoBHX2_F3K2? zRW8ajkUXx+R1k}+G7BVUE@d{zf?UcRcm6Mh;wzyn1gEKyl@xD+>&N;u{)3zoGPB&2 z=^!6;66CJ@0q&8zG6AHw2Xj|Elu6)Pcp}}cG{{pK0dmn3VOyzjZe=3KzTC*gR;rLk znd!Dw)sIG^H7-8{ca%=v+ye32s3p7~X9-CWjf`rl88m*ll`HnYo@- zV4}C_QWX|yRTZkO6i^kdV5RF-(Oa!lts1J?O3~GjX)FD#h5}h>Ty+Mm)lr95YEy$F z9H_xuv6|?+R+?86#k0~Qo$Kh0er=^#Z=~>?u6rweK`PY(_?#kYDMQ_#iyG+KBx@FP z-KJToRZ$q9-{0jcP)aey88U-vqd{3Fsu^THHYZbEr9B0_E$OPB$JpkAy^x~=y+w{{>F&bV8CO6Nbekw@ z+!)mnMH?Fl7; z9!+Yl%yqjbQd>0!sWlo)rsm2Z;mXQ`?srsj>R}znBJ9yPs#!tgMEKHTkBNhepoZ?z z^A<48dlc9b)^U$)EtP5RtkGjKVvU@fl``BFZ{elNnAPslg;vVAQY^J(I;1Mk&T8)v zv*v)+JH$fj-ddS~9pOK%m4zTZ+bAI*avNna$nf8kWgwq^Q&xd2Ys(^q+bN;oHnmfh zfYfZylOv-&qSH~u4=)ZHjr zaBQ?649xpWq6@w3ik7@Z@4LdHZ;`(rtmqb<@PldHq9WZmfeGDMCT#$cW2ER z-I2eQ`19R<4+T26&tGH4$=;c#LZbH1HVt1V}Dt4C$_BxZ5ZdkA^tl3j3 z@mMJTs-&3rVsO-&D@*>=&Uo=PX|#$V{9K`*5PxVgQQZf>lg$WT|heZVX~?ZB-fGD2fEi$R(}*{9d+=B zjGHhSpZfhiPR{NxkZ7BA2@5E(n(M6ZEd7?pe|)hf*W#nVG{Qao^Y-Y zfmtQejNe(~mEW-{N~BUlFf;-jf+;4E?hSzNpw3l1KwaI4UN5Fr?PP|Jwl6 z9{VIo9>IA`8^MLII#TI~BqxvLhKV1E#@;Mj8@)G`^-u$(_fTqM!XREVaA9ULc>NQUI?8Sjs6-!`Nm*26!&=M-LsLG+>zPn z)XXcMq@FyhR}wwn43b#X&fsYHx4Va5K0+`i6DeJjYngI(Ax1x zGlou#NA6z7#b0T;>6H_AO^EdKu?aL{u7Y%7}`HU>FLIQKGotpGP2?Vc?O{M zgy#c~z@VTp(;X}S80s;RV{D(uYCcWGIKmO@UPi==mub*Mr2z#@Ztg0|~MPewh)P|9T3K@53MVJ>6}tSJWXogYe zo{rXtA_UBAClPIheC^B^c%xLxtvYBbeuM@lVXMEAc?&UJ!f!xc2rc^)Jtv0LKe>vl&&MzmLzCun8fWKYjEo`o1u*{@>b-!q z?q0y)hXow3RS3ofR9pyyi6LC66&G@Drs(9ah3M!pRCJNzuV=%zk;q143S1zTsEd?B z2)(oji?0}}5XucO2OqxUaCE)kQs{js3Z6opESP{&XqN?Hm*|oOW9=n!4ns%1M4iL1 z6u(4aVHmnD(Ty++CYPw{Vx>ARKKm|4geNp@F`D=Z-4fhx%2*7M-PAc8;BML$jx6q` zui;2xH}zYBGVP|#OHl0H^n3{-Y$n$TH0fpvihyZsrmGQX?#=iMBg}%EDSRn1znPvb zMG3_fyZI${9_Du2DbEU}6yeL~iuRr1W?B~sZK-rJ64jkbZp#oqmBuc^aFv zrr^J7U_=T9tyh|Z#IA>BDfD_h6e;xE2J{Gp7H>cuD|BZAvZqj)jY=ywR0#f4t~}Ij zsze7iqotQ_R0<<>=SGh5dLt$Qh3ds9U3A&?H6h#Co4Rg=Y~(I{`B_5l?Km`0=yD9p zdv3xU#=5;~L;hu5YQ6>X_=MEWZbb@3ZcLFRj$y%^-DdWEOa<{ijf8a>&e z_`0PD;k82$T5%}7*@3Yjr360dJG~GFm_`eBA|GjVZ6`*QG%B$R<4YQub#inUQck0v zyI?YD)MGc39lMd$G>L+P6ziXex;U+oL$?7ob}u3u$!8@jACe1WWMt|Jh61 zl+r}h2S*?qbKDVi@(CmAA-WTbT*CCUNK21 zs)nl;^RX0%qE+IqMXyS6{bF``kR#d|eJr!VPqnmS{*?>rqik;h?h=p zj$lwpr!GfXWXn;sO*%b4iq%Lu`AHaC(rLE@Ei34Ir2OW12{)x zb#nDI(t>0>iv-0Z$#Zl$p25OrP>JVg%o*lRo?($Z2`I)j@=id_UZXjJyFlv`(0wk@ z(*!idKJq#Xa1k{+i!Ql{EN7LDr53SeJVS=RzRqdy8#l$hl%D@&dV3aCmP}2~L2WWw z&LIv4S^V=PZmZ05aY?0*ydk)$vd1|?Z_lA2&rsX*sKcccd>*MDpbh6?Vh8BMd32ov z)ZqfawKU=aI>cH!b^%3LOCEnAY%K-+r8K~q{Hni{;{6?G@>xbU7}-Eis(CpiUtoiKB28TenJy%rmxcccGCGFz#HAmP+h5SjW3 z5=PTN`eO>jdvIUIeimEBd@CKJw=`y3qe+p>opLSDuMJjMzUXt^FXGn7cWAZ|G>cZ zE7au6197GO zOTju1j3~N-10wWwrcj@fM(A2;;y*am!ibUU29_1)spAbyfQRYO4Gh|cqi^C+6)%L` z#Hrq4dVdoKUx#VdEu4lOCXd@V@j6WFZetvMO3!cO@B}w1-mF%TKAyJqE+>;RN$3y}!p`?*61x{5O3>Q9j4bX8TFxE@EXjcj1{TNLGno`eM+|EG`H=d7_A~aWn)85?ol`{IR-K`YSvMCgoth99*6ZreEF@LPU zdo$tpF&)QK`hC<+Jhe||vMm{tR6PCANuLy~M&e0I!HgYG9uGLe=m)6Bc)IZbEB<(@ z@(?Gw@f7_KRTfXCRF?GDNo=Yz)Hy*ke0+Wr-8zLom~Zh&sc%Z4DUVRb1p4a{S~-Dg zKE|nc0q0P6D=W86QY@vCtabK{7-oNI|jLg8T!xl;g z(IYRytL*!q<9~@4XW&F2?u}9m!T-Eb7U;oS@#$WzMft1H{I`m)2PfxT+mt1|fbZln z6xcL>K6?8W4Y`GU{#B;yQB-^)^dm067d`n`>F&f)66(-_blfuj{tk_@hE~5*>VW+7 z4t;11xxB|(3RCKPROlL7@*ZW4p!e^Uh9EUQpePZv>;sA%5&aQOA3>u(;<5^Nryo%p z5!C(@j`kx+`h+Hppt7HFULHZKKZ~&FFB}x~g@e>D%4GdwwnB4Et@xq1dGK`B@|#jE z+X}p=weKq{%>NB_j{Dzl=)Dni?;B^Q`F9*wMbM7#=v3m47mXA_lYhXPA}I9-gTMV` z@W4+2t}LmVO*dDDsqOH4OC60xLNk*(8RU>jodx2ZRs92GYgTnCNU?0{bdYGBFYYufWh<8pk7$hzy$E)O|2I0&{z#(D6q6z zQ%~rXyV{+`wN_mqx32(7x0SpLs(v8z3aU{c`3tF=K#mqtV?g>8hT^UCqp-RQWM>f$ z>*S?w2KUlS-3GF}D0B6Tsq4VqDWSeokCemc@A}O3YoLaMOKYHpflO@3+|P!{e;6%kr1m#mr}Rduzw33~x)NbsC3B#I z#`G#vlENCRZE@>)voR_OSEx^9A44nw?6Ra>b0Kx{2gmA7eLOIX2es@RIT8?Drx;HI@^kqT|lU9GgG zjoJz1RT~t@N(+8dLqXizsw+S?w}mlSseU`uqm^#9V{lk|mi*dYUFF8>@8MOD(c$=e zu=eUKs_LzJK(N~3(#j=1BH1X?`l1ZDGVRBlsXy`=MJxNGjW5%i{xICj)M)_9aF475(4hCI+CcQA zdvs$U8tWd-8-!N6N3{p5M?umDGq^TDJqXS>P(1>Y{deZ1-_fl1Xy_1(HuuPLD08QV zqUr9Dc^JChJ<2m2UGE+p8IDnSA(bAXjsyuC0i6q}=}0vJR%x9&FWQ< zuA|l4AZ5m|Na`583$c*4k5&H$88?ne{qgEWaNozPXF<*csTV*NOkl3vMD--NtbeG- zK~DX_+_XvRDRA{BtK+bV+Bz9Vb&Fn4#vp!+0;Z_bKx|WBaJQ)URCQ)9zS`Wr4TiIw z0;Z}1>CALBFUICulThIwJFG#V0AD^ zzq#rtcfJ#yc@hfoL-T&%tS@7(+6uw7=c!F_8#!*C+7M*NJhczV&w1)7kWqiC!$5B6 zq~3gW2)Nbr)iEGB7pNmZ#w}2XgCs8Cutp*3@8H&jpb2+Tj)hFdEyTpOj$#+8)j_m{ zYEO{bi`4EQA&Z!k7hx1zM`c6RLAVL~GZd3$BApFY#Z_Dh3yczXcNV0ONcSzsZX$Vw zsiX8exG_%HjE-@lZtK*pbU#dWMQC~$GL=Yvi`76~=(P)kUc2Z*Zs9CcD4Z3}42RVv zQd+n=6r}SK2IH2X>Jlk;gc<-cAp)gJq`MI)P9im1%HW2joJNjF3}uNlB9gi5k*uuo zGE`q8ZPkfK6h{~z#X4_9u}G8UoY2PQEa|cWi;+Z{w1T<&D^SCUiSF26v`L@=c5Gfzc%9cf|6ToF7tX~poI$`CJNN-4;2{LvS#*jpMv5F=ASHrFo z>F?FB$xb`*Q>+y3@#Xo z`du(o)UO{c-GGT7SEw5xyPdvlK0 zfrG{&5I+=n)*dMS0l{+xzjJFIKOUj@p*IPRsJZ`bR4^+#-@h@)(st^x2~D+~j&4Gt zf6>QHSWEpy^){;$oca25;LG1T&aIt4^Jz+i=goXFaPoJg)i%*{Q-+P@r9 zr|P*bl7w6rNfM*2EG`|brORn?iWvD z+QjYODXdsxXy+-GEOQzS7(*LRV|c}-Up%LA*R45Ge^TWZVcRa4qyY%O$&TmP=Oq9CimWwEY}cb&>Pv%`r6lJd3KOcc6#7~WIbTFyi=hb@Sg0Ufn?p@(p z=z5jGrB^xmY}YUy#n8NKT=}1`p-3q-<{u2uDRkx^G(`$EzRu*xbxc0sZeW1EMAL7m zRYA7hz~Fs}Ufoc;f;7L0Rna91y@^HgC9>VbEOCii-NNi5(TrQ@brQwh0{Daq-&TD= zM%+fSPbm2|hKt?Q@{anO>u!C0Ic}p1wS1%&rl336y?jknt45#lDS)nlOVm3k&Tg7; zSDol4q|GBOsECmk9Jr|Xp9s4={&6~}b5Y0zBw`fXO@Ad~KHE)I@1ZF+)2e&O;$}*} z2NT*%p6nZ!=A{VSLz3Z*($NR);&MibU7%$WCXg`4*rI zS*?Ks$dU?dBbAmYh?PnnDpaM?G8IOdN+mQHUMj89N#6TNEtMkg!$ecbJ(KhoKLe1V{@vBg@PF}xNdx2~FFH8mCzgP+@ z^z2{GMALUHx$+&R9ECo;ovf=rsD{J8CD5?tVvAr%{a`81K?3>Id?kMj1Ns{fQ!^ z(XOB9WN9lsHSs%H8-(Ax+DHU6Gikqr#ONejR?RoNxC5n)O9mCB(OI=JI7N@hifGH} zT~=)Z$nb24v79bv(?)~T%dQOuS(#lM3i2hpHVNnL<8x^3L8Khoe2^wNwMdX_IkhDq z{hYK#AP=3ii8zw)<*c;@S?jFL04eCAg@bHy(fZ+P^oNVq2c)+v5=x?Tu39UQ?76hr zAb;l4!a&^Jv=+Gj?Bb?11qpLQk?zpHZdwOihBkHA+IoiS&9yCtdqGF)R&@wo%W&7K z;+S4_*BXKp@PPg+G|vN(uh26O?GKPap4xbj>z>+Jkfynr+nXC%NT*l1wdNqz^JqaJ z8}cCQ=~N^yN{*YdES>(%hx$vWzWKF3LDc-(RFIwpw3fIXSXn@; z4syN#^1OoF3TnMTelMtX1vywy>jsj&kk%L%2rUX}6+uQ6(mH}1C|QluFx*pmJ8z!y;NEkYZj?jcZLWRNOh*>xBsCC|glY+=>Pk z)dE4z7u5#4@m<8N?YLjKwVeV>X5@r+9+^ubgp+P7CBc+^TQ2lzS3GVkZz@6MAzs*X{`w^QeT!vyIi0O zWwZd0MP*RleRQh~B=?bLSyag)3M{MD1&J=J4FUO57Ltpoe>s>Pn_J<)AZ} zx|P>PfE+Im$z&>C0gZfy7FIyrpP|1iXhD>ah?nx4R@6G<7S&Qw>jIKg5%q9@8dXBY z9iS&O{YiW8FH0fG;Qw5T1X;@XQrSk(Ao_TXa zY=Ju3D&)Zlp=-@iuDM^&}*rU&F&O{)*ms+#5t5?M`~3F1~=3(*z4 zYUV`qy4h;cmFikk9V&`Hs#|t!8vcW~hE^QHgKB8CMARDE5a(EtXq8S*^dS56`c$i? zR?-wp-D;u&V`*(ov~etb*10y`=y$PX@kX`8(o1h`vdaw-`A>YDOu;Xwc~M9$t+MF` z#n#d$x$O}_mwG#832)klHcgzCkD6|pUYSPMhVAa5)wMN$Cl>j;3w7uDC}O+sPzu}&1w_)cZYSzoJS+Js{-t(OyrwCtzrIZ|Kq zL4c`&whLrW1MM(KKtpY*iSQ@1Xmp}(jbOnyiE=kaLlA{F*7kzbYofum4Bcp= ztubvNb5m_HNJ>*J(0PMM|HMKkdb4atO`6sWsy2|VnYK$0$+FmqHth&+P1l;EXe?Yk zoLY6#>eApAT5nw_G7>JXzb>dnuUf!dHjrOSly3v6EiveApnz6dwDU!g%*OprJVAjoyEeTC~w3K(4pJczKZq|EA3Wx&NEC0_2aj zD9c51Z>L3@E=pV5X{&OWPE)ha$oXm7&{^x}d|D({=Ayk!HM?lNbg0iY9Rk4H$_QV*wgnISVW;>r01zYtUnao(}M^$=h6-+0o zTQ9Af6Nij?r5nqwURp~X*^xox>S*PtX>VV9ql9y?t@w6Bx!vx zLY}0S{^$Y(B~rQuK`+j=SY$LQ+b?qjSUBCEp#YnK4%J?xTYj+7>I5Z zN!JEy!<=^r;e@iz^kUzdnly3{28kUMF-Yr~i$i7>aLy85jxvtUDNlI^W3bvm0fS*5 zJLvsj%rT3pe}GmAWI=$|#d)#Nb*r2+nVxK{MmYkJ>&4VFP+PBuBvp2%d9H9z)#`Vx z2SQf1WtJ9|;82T2|sG-_RkUqn-e{_Ls4V@`w+@?k}Y&fcO zF{KXI&gvnZnmN;rB62fIAA$LBF$Ij&_JMee(x!nd8l`P;UN3SNJJ6YuOUoT;iW!sJ zdfH&tdgtO0rPZ&JmK&}4>FAg?Kr2zJIq;&oXSCKIQJltLkXcW$W6%uispnYq{PkoS zr(FTLHcqe(IZLYn;yX*5YdS(VbmBJ~#X3TJXJeUkgzC=G z&Vam|qa}e{3)aZ_h^V-(W1Xq^Fu5W{&DAFA(6w>SbhhU%KN>I(LljH(7!RpwyXw-b zdFYo6)edr|1Ap!+OdbBzI_uCZKpWTYszMk4gz-Kk@A=5xL)tnYGxbBty#NExL)yJS zTjC^q9GQpAqIqGce{%??z=yOi1ciS{Efyl959#MZZHqIDnPxeYdSrKHy0Zv<;UN_d z)n=I%(3()pI1A`Us5aDjflya77#Xr0s82B#4F3%6457FMT0N>2hL{UzW*8>f1@t@& zLMmg6tKX>U6m?pI!SX)sTZ7iP zPsP`2Bc1Py)Ry13r*?j=)>VgAJ+i0PYMtii#8T6q=~i=L9ftY)lz+Xp9AxKuECx6{ z=o!YT^KvQbyFv5Uq0<7&dB>a5H)!41iGjHgT#qbVVLpo&)6D0Q_{av}&I`_XhYi3* z2f)FX9GtnH8^^w40RMP0aLoXc^D=PV09=bPaC1$tBaNJ;7`ZJ(j9253Xrcq)M3Wqx z`A}t+w;8~LMhqwhP{Nl1%>bJDF_3HkbGyTd0MdA1AW6MgB-H@!3}E1~0rVQgK$-zu z*MW2cXdJ*2&kdkQAOkNAApLg+UIPf$3tMbDBX10m12Y)-R{)QNIn2eofXM0x2f)?w z$-$WmhH~&11L(Yzfo}#-ecBY=Jr{V9N#tTIROvuO9uxP!EzqSS!}VnP2qim3QwluX^mE2G9sD0HJP#0R)%UHJAmmMX0=4N6)1LV3p$?oOxGu4xVTL z{faR#*#Q11!N4>Fm{N*?nFcVX3lCD%@xQ&vjt40pKMq zA+gN>#4B0=b{fDK9oWPDk82%oX$g`2hDd^**8>7rBidztU6wfP0JvR_IyiHh9(>#Y z3c;%*G@demjyiBg01-kXoN;6chR8Vw!YVH~I5Up%g@%g;u&EIPmki*m4qP#SCXHF* zngMLlf$Ij)vk6Pwv;!D__Up)PL*$hX+%xc<2p6O|%4`PvQ22e79fgA=a0c8R zK(M*&NJcyzh}n4*19=SKsSe~5z-Yrlz+Iu3wU)^l*?-S`3l8X6ct$z=>QGJwZA(8K`bD3)ku05_I1 z(82(U2g7Fzw6-#kl{(PI0BRCTv^9W9s~Bi+043Kj(9r;fZDhd50K{8^NTrJboYsM^ z>%{tZt7y|(dg;3h5dm=NdpbDtip{K{w*jo&!GOO3^xw%qKLhaF#lQdq5bk1-i$Mku zv`3$R0}SNxUKaV?0EFWh#2IP;C1V*FZU9%}7#L{)xsNhnHUQyJ20F$VfN&rKU>ty8 z_GZRDV}MK$BH@nG|KZ@wPRBXIWCK_j&%jgz5N>3kV7dVu*MXS^&?kWt~{ELAQ1DJD#fkg)JR0k{u(ETb)EEd3C(b5;LF%ZFkSpRZU zM;hUH!&2m8xdEKgfoK89LPM^9SYovUUL34uA`L%)yx#!mSSEPZ+?uR}7pofD*46h&O;6I*=fMU`}If28*0CMDTyX zLhA(s*zk^liv}>`Jp-2vAn5}GR}3KZBLmkApw4Fot{cGgAA0}0X&|XTSmd?=bot4^ zT>)Gd)zJ%|RUv0d4uGq}COG4(D+H?!fP?QlIPq$#h@D~p!F8M%d1xS?b>NW!ymDrV zCkD{em4T-Q(A$lHX9nQo&cF);_~607D+6enpMebSe4KNS0*t&hL{{j)I|J}4$Pym} zV0=V|(tLIRT-dJ;&OEgU%YQe3JH;6IX#iu&2Qy+??@;-wJOkMbU}FUaau`6fiVQdz zKw2dRTns?GTZ?SvGJrx=8E`j%bJZB|T>t+HyA$x5uCIUKGDyT2Bx1@$3?WD=nnn?+ zq8is&w5Es%a*%|GqV)PHHN}{4YKo!ec_>$@s+p?sr@32&qE~6Aw7Pz6nlOUh|CG={~yHwS{x4ycr z8GEp%4rftQU`BHW9|6jhMDKt7L_Tc6U1|wXswDIX5O9rPs4EcKnxVeHuOBcp5cs(b zLy$m9TZYC2R=z3i+pz>om$M4qAy_~+cE7r@%{1_h4bwGaB9;i^Ji`TIJ2AX3a92S~ zfkmCEht-G>3GKrBL<(G0&_*D#EB9zCkl&4=y+GV23>^e0wG+-PO5ku$28#lE|LfY9 zrL%Mysi3RC?+UsToTj@Y6Pf5SYEKP(cYI2+Tr>T zmKf>McPK-wK)HB^IDyRyh6oHB#y#Q%D9;p5a+m-mmja9sc$}afe~BW^M{}2v0&5f` z3s9~p43Z-7wSvzDD9;pnj3fA(?vB_Dh6x(@?)Z{xeEsPnGErfNNxI!AF`Z$uz+?qe z1e(s^9$yPwR4`p&@=WeAQ=sWAhE#zksp|1JN96i!?lMnc&0K~B0&C|pqzkM|V^}0$ zUC8i_K=2}lB?6dWL^pRCftBwd|K%(h(q)!{l>$!`tR~=j;D=Z6E^9ULeY#%PjEq&> zyis8J8ivgRwK0*L9)DX!XlgmmYr8<$I)6($Xhnp`8(4=?tzal`H!2rJzY@`uyo@e-7gO!K0 z>#9MC!LY+kf!LD_w*~SPWD1Nt#Xar{JXeq-K*_=|Xs*CB1^N8?$LE#y3wJ4yE=|ue zJP_EZ;E{muIqvb7z$*n$2xOf%j{95#-`2l%&A56=J^ua?iTI6&d@WEtlc7Y09x^MN z!I9usxCKb9r18Z|_$<++QufPV!BUxD}B8TDB;E1U#xSgb0MxU}!2Zs3t=*fw?{m zVFHe|0C@a`i@YL9H{KVR9Kg_0pl%>Tgus#p43PqEjTqVpOli!}R^YQ>hV~5n`a{{> zaNG{k(9fyyHpCJQVc!!U*5I3-axD&luwFvv6|Mb`snP>t7FU>yfFr)uDnoTF>T zpf9+2p1?f?3k2#S4;}_c7ofy=fJFeSI)>jomT#oXip2~|1X?d;SSIjb8AFCZSO&vN zftD*7RtwOI5gd1oK)tnAmUSd6=}(fdo?)W~zOkEi%{a1=o3{$kViF9wUEsYf3_AsC zA7$pfGr0fHn6sU5R;k3Zga|~w$7M*7}EAZY0hVue$ml!SzoKx^$0xRF^r~k`c zew8lSzcO4Epye+(vugq$USs%Oz;=VdF0jkaa8n@cCc|w3ERf;HU#3XsyWHijz>hf$ zIRfFi47md3^BM95))z1o2vCwiocjX-*GCMG09N(SuFhkYzobi}7Yt7X{9iFV6F6PM znMQpfP|}&3M=UP1OE#cP?M#ibotJkp|U`@FN3GRc|Qg(0ZN95<5m+m zRF9#CK&Sc)-U4>35?_(wf!xJk;H84v0y7(Mk2(U?8Zy)q*q|U#AR&l*G!)2J&}fBK z-|@8k2q)h}x?EEbB0$TJ(4(oq-gg+9349jH5GL@l8AG^0wJ?VF1*~~WT8dCEM;s zz{b7|-3U(6E|ld6=h;I857|rCj5`Ck`7?nNF${eKHVp*e{Z~Jc`lGl@w7`NCh8O}H z9n|*=hCv$mpo6KFP0f@&3Fj2Aft!cvn$c|nH;*9LME&VGt3ew#JB7iW3~V#)C5@PiuA;LBFKD#OuBcl;)@_%1E1C+ zT{GU>%+22jv_P&S^j{(nwToeyK=0iQ83OTEOfbVfD@C^MVOTA24u5#`SR+8c1_M|p zK-q!-8w4gP*d*Y*pL=W(@WnhL?6Qp?|9oRT53}r$E=!Iv>=L+toZ&lxA5Jpt75L^C zhJ6A-__7*@*)KrZK>ikX@MFc3}pqX zTaghJ`;-@X70Tc)@bF!RN&?aEF?a~{4`-+%Fz zkuFnPGx!Po6v>FuV`2s)Ks=WNArV@c2hkTcmu&S+v%` zXYm2mzMv(J=JokIaxJ-tbv<5>Kax(^4^^QR<#2qjm3Cfq)XT!hHe7K z6nrAkdkFXFDbPHg;ZuPF219Rwp2HaW3Je*k9)JBsoJMh%0Rr2uF!aW8FxO~nq zSYX;%hM@$s=+am@j$xPvzB@*6jbDGaPUQAP-EI`5GK>^(HyM%z)-Pj75qPzV;d24X zc8j}o9D$wAViz*s0w!qSv#@@ttH#_-+&)R**mj1=0%vzKOc9{8xES(l0=%^1TH^N% zGc@oqX6c$y`v5o37Vx*8WSL8X*VPh6GbCxmkP9^M26n$|A6;H#@7Py#N_`vBMgI>9j+We1`QJ_=p>+_A@olQ_Wj6 zaPu}@GeQb^?;Qdyo-phx0(|~C_>AQ{>GImag-&6wKtx%FeF81K81@t7(pe10uP|bl zgBtiO4(Xb)&4-&03k20+ILgm|Ji?L&EXSqGl}(}`Q3sx!Z=h0pwot{Knq%aXWZzX|NXuS^223v|aXP6BQSjK!}{0{$Sl zLB}XJl;O4pK18Of(eD9X>4F#Rk;H3GcP#n*tynTlIeQv=^WKDuT!#LtSN*^dBkrArv)@jIe` z+8VgOwT`YD?)cGBwAUlpN;_OoJ2cS1I|NZ}8a0R9=Kf7IaC3;R8Efuvb5nua$P|t7 zn-Sck0lFhsG+lptPYaLGT-S`N_<2(_w-9KFpE?D!5}-uVfYtzu=1aqnX94j)zLO#~QJ9MNPK1`{^v1snBft$PPny~=Cp^E120zL41s(>B@ zOKE^}J`A5~-~oE;n$gYb$L)PZoC6v93zTlkFo57T4T;s)bc|RHJY<}%8EN=gW;72K zI2Fz?Okh}Zh6Dos(O2WI7AzyB3l?b8AfpAaJe%Nifl&&^3(Qi-ok*Y;Y|}22H1K&& z)-_{%TN)A9zeV!f^D(9iy!?n^mO!fx408l(VO=+lF`qyddIQom@Ie<*4WE|PVsA7r z)-cpcE3KC5s&Uf7<7Ei6?82~0pkG&pH3Cz+GprZ*2@A?G=q7?ybWkh^C)lci&uP1= z(erQX-rT-Rw;S$p40{A-8Vvgc{u$12fWV|PVJ9%yD?`K!!v={ z)eL_Nq<+irO5o{Qh7zmwLBHI<;3UvwGlPqOiPJKFzGBa?9;CDUE}z@$Qab^kWqnJ9lX*P~sLtYXPj6r$O2X z%)P_VP5|rXsYeF^tePk2C@@GtX9e^isFKTFx=9x-q^Es)2n4G8=Tm_-3i=StrhBjv zejpyZ^w+@m-~g%}pk}PKr{-7<+#H9RRkg<#a{Ex-ZmfUEFiZgJ?P-Jrfw6xwj1-us zjxkzb`ZMnFxxl064C4j7U#SPdM3L!gkVyo%dWqj=tz3$Z`;`Vh^QpRKoPWbZP8SGs z=Kiw;N|j`oBQQ>lIG=$Z1PNuhOS*K)DaT+6V6i`)#S#H5^(R;^FjB!v0$jYrqO#iD z<68}U;%jxypmqNkz`8-CQWciX0{hem+X!aSkfS5G$4(7A~La`y3ZY31v7XFu57S83AMwpk2-hY-`SNQ2^NlsK@2i zbP(lp0JtacQM*$7 zC1AeD!jHI1p}=efj|A>VagWCWSqh#B4D8H3{ub!1;FZAKF5IKUxAgeqo08a##R;Nd zhyoXZr+vAHo4~!E3}pq7-hggi1%Y5>H2_o+pfm>nPl5Hltt?eV3e{n12y|88BY?~Y zG>E^zdi7@rAi(zvm>t}od(_jwf0sb2;Q~AIS0-_D5Cc8_xV^EopN--65CM~PT(HR1&~aEPO_x{QYjF$7C<5e0&5!)w@AyS*3?{(0MtFa} zn0v%);PV`&Ym}dX21p>V@(vrOvW%223uiKn7MQKzbAkG4++(}|ayQVZ69tgDfnbur zG<8~E5uBm(ys%k4{=U}2Cpul%D4_$5FiW7vDuy`%76tPKkm7-MNf$V^nE@Hd@cSop z&@I~-mMFmMFCTQ7v`^Z~?JES3`+al}{L=Fh*v0ej>m{Q-^sOtt& zK~RS+0#SPywtq{{e>}#C{Vcnri|;{(JpxD)L4)igz?Vu`i*udffCj!H2X&2dMo|Bs z1duU;;HZGpb#?!r5Sew6yPOt45((Pp7lFE07|sj4yvA^e0N)N_W>Fr)uNwHYuId^k zm!J`^EBFLEAh!gGUAl}_Bis^5y~jN=1%~G`WD6kK1dWl)U~af=Z_eo@`lWLk2^9EJ zsRRmq*+j+ns=!xqRGY7gpH#6y6=zj}FE6PJz9yw&jw;+!h*{Ty}qO%?g7SfGm2s<@&Gd=pGPFREgpDmJPD-+NNq zGMe6n5?}FAf$vwTz}JXWOjQNGxuqJuv!mjaD(Jgz)Us8vNfoPALEl!QjlKy)f$!m{ zps(Ce&{s()=z9zl_#(kdC4FOng1#9*L0804*i}JSjZvdZzbNPuFABO)i-In{qM*yH zDCjCB3c6~Df-dZ#pbKdz=n@hNx-5j^m@4QRjuln9ScBrGDh{cFu6_XNA_oe(RDpsn zFQA}L?Xltpii=>(T7bG^zjb`eY!$%QWf-}1vPprj)LBD_v@9;Z(vcSw}U9? zZ4L^0y+=W>lql#G5e2=xpr9vX6!heXf}XBW(9;77ddQ>r!~8DG9?2QZ=B3s%lOktS zNsHK5sVx5Sr@E9VF*m)wal#C~i|lXni>e3B+js5$=J~sJH@A6jTLZTRZ&!WOlJ=LP zanj#bpR`*)xRHKSOwC)z=QEqd`AoLGtlOgE_L?lMn0Yn}j&9mGDPc%DM#jZUK5srz zA9KQGHS*$O?Aa_VI#}ZE&i|FnKTaiG-g%}Z@)KJ?fWR0-#}x~Q4{Q1eoQ$OBBDTzlCHTZ&rfZ#OTsmKix=ON}(^ zalR)v>Nc}=9?sy+Q9cx|&GPM?!fGDMwR<435%+j~oO|pj)+6oB5!UT*Ya_SyZ&z!j zO*+PhT>HQDDC^E*x$u^%^S{;V9-;sK zOZdK6OIp&;yt}QKnh{fxzNv44y-Z1ZEX^|=p4sdyd%9SY z+0pqN{|OGi&3Bli9zR#g?DW812HBk+K0rdJ@ek}3b-d*PPU48{!0msKoqXE@-A=t- z^;@{(ybCT&r_l4rk_~uCciM=}&lJ6)O$n+Fp=b+juF+;PZGNQ9blSL3mt>08(Pji~ zR?;SkHrr`)k2e3M&3xK?OPg7=IY1lhAli?0%xL)y!OeDl`92djl7GZAkStL&EL8&h!G2c6eY_^Lz`ty9>QeAiv%1cJ}IK zmowALo9TbqLtW_g0{siO&hbSu!ot7obzSBW)if`z9aq^L@R{AsMZIvCtv8MJcQj_1 z(U0xbk!WuGV|zVkdetx!=Zy7tK=a~MdtfQ`0+Q-yZbx=6q;o!F`aeO!&>d#v z6T80)y@22VAs?@=Vg`R>cR_c0zlP+4h0BpzamN$8PZfH_o0!hmZc)&!LXlx+J>hJY zjh@=4mZejlh<_as_%oY3vvITV^jkV064g#A{L+VA=*FO+S3VT<%7GI4T&Kc@Z zyJNP0hP-4`%$dNl^pYo|x)<21(1X^^EPQ5n#rZ#dhV+#C%?8iy&5&Yjz;nBI0F9}x z|I)7N4KdyG>ar(ad_HJf_1wO!T_EOpVR8ZzgQ=8aFOU&TMFB_!rXoM205iU`4UYID z>r#7qt7v@P0vnFLK{78D*^tFcMU}hj=!<)pu9Qteb}JRVL|QB3uI+rC zTi;eIOK)wHjjq>Alo*|Ej_g~ZhHY`gt-&dMex!4_@emu12EWu%kRwtcu}w!tC>1S5 zDkv4LLJlYu9d*;uyJd7Vw;V;b-g|CEw`fmqj*ZpGI-_#j^g!wu6&-7(qtK6Z^qECR zw~&K{`=uD&!W~MCHY0mi^e|iZsp?^?|L3h*?Ymx}aXUt%7e@<``b0&Kkn==Er;zMK zMdgO*=s(DAqU>E{F;S7DL6L1~`0d;vPkQ@q6pVv#^bYcn7~5=%2jBjnt0%pgH%d>1 zaI_UELyRA64{f*W*Y>GAG_oEq2@M{*Y@fXYSy0ht>K>Czm%(;$U96d$`0~NKj z>*&QzifsEozH>Rqmp)Dy3m-u^%0k`%6+J}40Ar?Y>*se4d-~DG3}ZuS{6q~$W3jTG zqZH#GtkB25nV5qCA+|%a??iUTuJ^s=6gtbr8Sd~e2RQrty)-SOn_tOYPJb|GV418(&r!}-avPbc4GOjidJGlu8P)UC9ZMBcD8S(Yh=r> z`F3EH=%_@;v367SD}@D^DoWH*is8AM{vxSX-H_`p-y=PZ-@eIb}rs zn6dH6Ekgo>{9>X<#3!^Y8k(yyV_SAgOo-#1@NO)#y0;&EOk(_?_=F*TgW|`;C&woy z_zfKA7fgN3TQ4%b%y*w>R{1}V7yN%8uP=^Q?f-c^v%hzimzn5s$IVP^J)wea?eom> zAC>frnlLSW;ltn>W<+F`ODU_Rp#u_tS2z9ZWK|DDjvBo9SsFW7#*mgD8W%Hs^w4PB z2P0xejVo#$=U{nm&Wp_Q4u0uispL2zZ|~R;zW?HV!Mq)Z((4SQ@6HzE~5cqDEK@rlQ?g z1;$Z|@!K#bdc=oBwQOX2KP79x?5=ca!03r3S!!{X;}RWxi$z$Y^rD-}hqrO0;Q@$QlEK6I_Y@Y)RFC;>~QRFr`=QYxD0kDnId*42%4RI;&-hDube zskW`56xrNb-c57&q{|qFwKs&LqkSo|?X=u&zS;8>wS6!O!qJu#iuS&^d(o?0Hky)+ zI}@Dgfo6tmimJ7@Vs^deO*hdlm8PL1N0VphC>>AZ%39!Ej*1T8)4Z|C);lVDLhFy{ zVu^7K7ljOtF5@Pt=n?8FDuovZ6}jSqiHef&N8~8Q@W#&gv-~Hto3GiWNhep^hpE|D zqpdtyyb$kZ)Es&Dy*l#6TRUapcpX?xo_bNRpg1g)!1vM{F5E% zxT3Op0x~x~$gX29dz0PV?9n{4vRS=rL4|*xddd|&Ka?(AdQjY8b7YnK0c$JglnNg0 z*8tB9L!t-8Cy$Ovh>c73YvMN|W^DcB*qGsXvWOlW6FWL_RFGfM?t!-OQaR6EU28;j zz(cXB8JT;dx-UIEqdG=SDtgepmxq(X|M=%pK#^^vd(NxcO>u|en(9*sNA7>?sKF~8 zJ%6L4@tE#y9JZ|r%{iT7rE6bC2&QkV`O`j_x2>WiOxRY@Da_PXQF~0$R?!*E%~sJ_ zOv+Z#Jxso@4(<5{^M=(7;#ABJR#9A>jw%n;(K^fxR;})s16;I+L}x~7`xLW%RclDHj&7#t zXcT7ps@5B0=}(_CZJP5v+cf9gJu!}92W_ne=k|7Lnnvg4IvdR#HNebW6&=QuT@`t) z)=@Sl=^AOaGx53h2wywx`3EN5s`M|0)iymWI> zPG;prU)=F9Uq8F$WzO?2bao5!`(#{FT+f(M=55dHs?M>AN#o3mzmM}M{xJ12lZWIb zxD>rhxIQFri#f2@A6{mQ#`!+x>%I9dW|R0li#gdNr=e|Kd|pJT`~QA}U}i1PYf|(7 z_ol#1Je}oltD2G5Vrt0`qGnA?M>_jtPczB8(8YC5)D}Ffz0H+hWO!X^ys0Z;*y6Z4j)w1A=grpUbQPk zC&$sx@QjX&=HKfsdf6`JU@1$@K4#L~JWsP`K)$=PyMx8U3=YU|=QFw!cL*S==xV?pgr8Tve<8wX1}YODNqTl9#S(WBzW7Io?1VCh0#N^zI?MEu?y58K_z!7|D8sgqwd@+$|+ zeAOi`C6=BWH7m`I#O>pJC#4Q9sPMHh#9XsGr|_MpybO!f1yn)N1necbGb@ zqGgyft)f!z=*X#=js|0Tv}&D)dC@9*iV4w1uI=Q`{Kw;b(`nqFKZ9^IB3eiF2T^3Z z-td0P;FdS2S0JV+tJ%%zn47GkL`+Inkq>4gt7s9XA*<*^%s)16*iskVFI?L72#v9P zDTJd|xL~ZJLAao-qN%v1t)c*2vQ?2cF4U^%39iPfs3vCn8b@qr8W+s+arnj7%Tn+| zy|TwJezGy(x(huuxt|;5ZEKNIklLUs-b&$TRxuHlzm-Wb0<)+G9?Q4aCwtpottfB_ z_q<7cdSR-onkD-#=C~R+ZB?%o)bJ>Kh{t{E>Pq7}oKLA^8&puxKDZ2hk7FcZ@~N@Y kw%5Dx^}7M|m5$+y$)su?Y8}iX;GqcPFn%l#4rMva^xvsrsH@9p5^yY+DM^SYS$RvnA*H@bQFj8d_@!&j1Tg^oI$ zP?TTMDVCS^^zb`++WC83>w$}%Z_D|d5>+@i*mk3`n?IOXl8=kFa1}w#v(`#zukKtU zw|;JhHprxV(vYOV$wT4dx;{cy6do z{Jrkc{G5)Fe0-W)J2yieL>iRTzYm|;F$!cZces)EsQOc>iI0zs=8A#k<*Sw8S9OR4 z@#Q1!$b6}DhQ{zVzm0F()x{b4cy*r*d57}; zd!WtDpb_rr5(O?ky=9M@oAHnI3PvE;6U9-p_9kT73N#yWE~CujXle(7pNqzZi$=*B zh0`3VC`2G%E7r?JWzD@4#oupV8|-{O!p5g|wsXd;1$T_R)o&+}iIWl~BqszG@9E&; z4LwTIq(kAltx+SFB!hC#Fs`5#&z^X{wrPQ zf*KtnQ9dLV!MO?s&KX)nlHmtQDUD)KIK^hYa4IAjMZoOsTu~IgwS-LA@n_F3q-j@W z|NGxG<(V5Z=8Z5ZQl1d0>F`-ZIz*(I!?TEVkVtR3FDBAPBIWK|PNZW*8XCHeNNb72 z#R$>^B8Bx5q)a098YxH{(unwOu^=8G(&n4%3CwgNtx#+r(tRS8T$DqkEkvqbbO({P z6DjQ7E+TzLq;}R^BHbj?{56nBzYyupPC?3$rD5$CMjRwRE+9X)G2{{H4w0t4Jxrvj zMB1l0LZmfBO7a{d(qkf3`{g8&<`AjlCqbG*q;++^BflLbQVq*FBJGm>FAX*Sw9!Q( z&Lclgzjm2OM~GDAi6HGHQkLX8`Ry!`4lenDNE3-v??XP3mJ(^z)B8j^K_pj|pNMpd zNHrS^(vL_=o2JaW@re95jr{oGe{YDipGe;Lw?tY-Bx|xDK_azT^Pc>+he)p?)LA%! z?hz^cgCOl7(v&zY`RyW+)_yHWKVvCP$sZQP8|24#DUqb=6(W84gPusIiFEU*iAWEL zbaaoINHd8fYh@wQW+HXZu@dPnk)qGJi1a;?Dp@>4xe*NL=mMNuLxB+{h;aYR}~q?cKOltrYbqsx%rekD@THf4!4pGarYh6&;i zM6AB30{L+>B)?rI(w4flh{O}A z$0tGhiAXQ3X|>6Z*N8aTS%*lQh;;o*T_QaqlK<;^M9L-7Z$kuWGLdc#sZV~pMWoz{ z4T-duNMqIsQa+K+JQJjCL^}Rw!!%NLB@s)Ux(Hk$T>1 zy&eCyn@9)7UfVgM5)$)>_;e)_k#vSgvzmU~g{2EbI+NP%AePn>srvolheq)EsSUZS z{BvLe`w}E-zUe>>_k`~>FhPlX?OAh+^2?@0^F`)a_+o=n`2O39^5d6U`NIP%@(%`= z;IjsL_~e;Q`O?em{OG~G__>4Hgk`4S9v&T;kqo%JjAY(7rWiS>$IK?AB0lKH!6o_c zhBo0B=4e!X2lVVccu4PV{G}WxpE)E-nwheZ@0Zb&uQR?Q-)(MJzR8%Hk_$Wxn?l&1>{K1(z{>qk4+%d$zC`i;8lxS>?;XU)+;G(LulAkzoBwv1HDV`fy zp6@!+hkzf<8C8MXfd5RNGpd{7*UHawmLQh zj~H0FQly!v4a z`8X3_C#xZ<#bS~dR0 zlz1NUh}O&$Z1xa5vSB*aiN5I#Tu#2_lrltD+1$*OHT>)`^?2GIpENQ$Br^pMap({n zR9r8R1hU%lAD4&;UM{Ug8;hEi@!=~ixZ1E%2@X(4?)9`-2?iMX5J$Si}_fD%z zs&r3_!|OObw#!+W0X+1VyO zZoW-YD8{jU@ZgN?Qw>)RP3}LmU#ZlQg%cqZRl=h*rgwjSXFh$Y6{(E}YJ6B{a5y~u zD}L^RS|NC}F0?ClVQp?1?i=`K3)K-_y7cbfdq|fq7(6ot@@2NVdF`TF!44s7pf3au z;)MX_E->=P=ho$CE>Q5X3yr*NTMAc#k6&m9&6U-){G35wBO3@m|GvnGjEIMQ%(8TD zoCKv0;uT37nGnSAw?CArP~fLUZe z&{l8d;McEQp~RDlKwGGX<2SF5R^q8e!M@tu48Ha165L^a{OVZlIN`E=by5n)ROF3&EMHR zfy5PdCUz3dTmJaw7?fPNC&BZVfT{5CB-Fw#x1rd^^BHUlKdP)M2h^E+#Bn|RHxI5ZH}<&W>u5^Wxl-NCV7z@s}M z{PTT7_?rjDfvP{FeCu&wI9HxeIxsT4Vwo;+rBeI%M1^oX_A zKtTs;JVp?Y4y7U6<0(skNq6umYJ-;_c6d5>4jtVWG#j%?$B#Ri&W}4ae$LS}{`0YP z{`1jv{?n-tUUlLfNF1{X6^_5>(~qDZPNwl`=*Kiv>C=f2WV_vb=;>#Cmop>z=4VxW zuQQMN)bED#zn>l%7T2W=rFn+$c=j9a0)O}HDA4>lQl`@7!606HK7?<6VHn@?{3!nG zbEEkh7e9jjAI>ZIvloVNW%!yGNAX`=8pD^q{2tuhi|X#bG#DIuhLpN}ZZK#rLwhz| zaiEz-;?*+T1M+tR`8yr|Rnj4ZPwG&Mzj@WDz*D-EOZ>a5)w!!XDqI`P{ohX)0uN^} z?s$H^ABP}1eLq9V0I@AWVnS28upQO%XLH;WQ05y+ect%vP6jBLhUEoFx*3rE(7b$b)1CNW`x5j@*ZzWsJvyj^iaRzS}R^Y{z%u(_R|*ywAoR2Y|?9rGT*P0XHK=C{}yMJ)(Qdzvar(!-jw0_RzgG zImt;H;1;RmC8c8vksP3VpM*-@hOyc)&%zal3rrGws1Wwwc_i6VQDFWelGc>^w2~4H zRcL(~$yc-}t0?(QwTP-JSxIB$R4vI}S^?IVoMd$2Ojxa{B!TL(kW3PRWdv?F zr-EHyN^)4H%1EcCAkHdPfhD>9^gw;7Qz*FeL81leUpG{P0cR6JAril`0!8_u23R#p zx=`>4_}M5;XQhqW)4(?-=>eAY0cH#lLObfs`3~t!MsLQ#bdPi!BMEew+9MsB6)n}U znSmTX1m2F8o}rrTE-JlD!+Fsc((_s&T1PdIcBB;^HIj~#344b&msX_3{jH@onkJ9i zN)zbbHXWs#XhKAGla4`s4Nkvhy`*1LFjZgaXPO)4{?eng_;i5uHZA@zQ2H}1UK%WI zL~%=wkoKeqt4B+Jp%t>nO3%|`TADPER%kv!I-WB7aguZ@j^b)Q6VzzW4 zqZ>&8yFiCuC7nU#DGL3U8H-8}>6eQC2kxNx|Gw=8CwVWBU8#B$Y!0NnU_tO^sdNUL zms6oPTl$RVjC-ZDCo4?RRnqQ)slbx8(%Gyq7uHEPQ#La;va^}DNot^M_HC5{RyMD5 zq=9a5*G_ge2X;x{P^FISmd;{j^JuNjhZ47?%cvc0-<2+9wSz5RdW6{*<9?J5r5t2GvHPO( zBk3__4oe?P*HR8`f0Zs^wL|7p=?-RJJbW%4PC4{_#bO7DhK{Pt&1>ETO>p8pdpJt| zkTzzV2et$|qC42&Q%;uZB-1^x!X?v#_!$x_T9>?_(@dM{Z?T0EE{LyKX;A)~Ks6w4_L?E-ONHdA(ldpj17ZWKU_) zxmD(-#b(=NRcUeY4%s`Z%gSA{Gjwm-ZdtP6Lil!{Oh@;c4$7Rg;d;kpRVcIBr(_|t zxbdtkgdTSMg6tC2V(m4Vh3>udy=*%Ln|n)kmF^vRPxc4pF!8>uT8NO55ud9`qXRNJ!hukAwdP*eF| z)Gp^*$oI0GjX)9A45a_{y$VKrEuSP4k}{>8oF?V<1o;U@{sJsOuu51wN#2K=Y;AXW zAm_&SkdLKyis&O(P`?*RmB)+GL3+1Mmt#?NPNAfiAjjJq5ayM0&Sc4HO-yYd1Gh z*qE~+dwA+<@T{eR@pM%)fB>{Gq&2!+B4}Q>jY1mAX4qJeKOr?6)=E@tWeiG!&;-u! zp@@)hhv2$iiix4fnVoG?|eh3G)c$E(DVjQQ1H$BQIO8m1=`Gor6gJ1c(Nk}oSx-ylj^G$8#7FwZZUFCdQ z{H2~UFk9W!K)IVvlZG}6)-B&6SocoLVBKY{l~-xqi5-J=Yj+CPecCx#cT1x36sw1O;>wY&ZST|#YaucoFFfCYDH9lB(+c&|wgC{C; zXx;MDgLPkL1nVxI8LZnmGiZkx5Ul%Xez5MWg~7Tl7Avr^O>yB9ytXqAZ zGLP1c*cz;RJ||dr`1WAk$~%>J=uj84U#S$8KM>_l8_`+ghkZ{dPtjnjds?}WhSiJn zN)Ii1uPUcAGYurnV)*=~a+Xd^!oXtBl!4janis*e$bO}KPt#(3sHz+#{VYNiNQ+H6 zRUj?e=v9HVFd0sl~Fix?d_ym7)m&Tb3IjQ4B-+0bi$jxRA!cuumB;wk1AUt zuqo4D^{ps2^#`a@ShA>qO^uzFb_*}(tL{?R{KYDk6PN`Ql}lBnsk-%7sCtN@2pp?b;jsQnRV&JK z<0{o-%5&8^70U$(%oC!%W)Y>>af?VRHrlFsODVP3p_(H`T{v*3YP7f<7zI`63ODZR zfq$>ajI6v*HJ@VrctF)xlxDXNs@_v8{d7b%MHJQ_M^$B67O%+l^+Bn_o%IlYr@9>u zil5gS;JO>Cq70oNL||3vklFN}3f(qIhF9Z#)g{4X@cjc-b6TPOW0g)&9*+K16)*HF z@azi}x~qvCw(6CtIjtanr`o3$_Fj^PbVWlV9=7XPLpsvKa$F(ONMY}>G9j%)gktQM zA-_|EGBrXvunaP~l+ZXZ;D=jQuvHtX0R8_6(L-0=kljkbP){3&^brjk4)3-MSuG6i zaBioN$6A5@jQ$}36SheW37GJU!67b%P@(6@klZk#SZY#8Bb88`HY4PIzmwX zQ%GnfmYfQJY2ZF>=ut|2R#a$78m;Fnp#jIvvxNp6JKPx>u)`8>XuuA`{GpraVdaa5 zzR?J3R<05{ni}eO)zG9+kY7s|2`kkP{XpZPR;$pP)KDc8LeWJTVpK`z&^%ha(j{~= zEzV8~T~3R&yM-=c&=?|(7t!Vp3<_OeR!sN-?PQe_USAzLfW}~loX{>I;t^x_hEAZC zJa8!VCGAfRoeQl>^DX>t=sp@o-~SY}+2)@^k5lVRcoK@1PQ;S6ehszK@a*?Iv=hr| zlR%1ugBP!E#()=LVG7VE)~JWWeh(cXL?B3hAF2m=_HZkVQ-+mfS=0W#6^L57Km+n( zMA+4EL7QFnFfHvd}f_!$KHWXhJ^)mMv0w zK$B@xdt7dFC3x&g3vLKtmSM6Fm@?r;vmzzbPnJ!$^e zUl0};F=-lU5!-mkb8ge_V5-lEh5QZ+dAgDZ`wgkTnT*RFpcGvb|+dU!%j#VYhm)xCH6$R|gWLc#JxbAR%#T)&xOg*TXN= zfw5~*WpyA;W;9UmqqN&MQwNqF$6KodX`)F`2hwC`qB_v0^-NX=(xhrnbs$Y5d#jDq z9F_a4H7r?xI*I!5&`|Y$h0v2_j!}oQER-=0KsYL}Wmq)@bf>9HQ8l|vQU@lgF;mom ziE79+bzq`edZs!sTTsnb2TqsXpQoNgqkQ;$^-9`j6<@B7q#8F}qyCmfV>AE?r*L8G zE$YEVz}$Hw9pJ)vb8(Qm!CD10yrv$;Fi%9MmaX`09AUt4U44@Q;Qmc@JnJ$t zhPon4I3onchU393HG0xyS-v_PR=cgfCFM2(OTKzDn;M1C079eBA@sPfma+_yNGkyl z-g~6}hG8lRf(QU1M8YSJ)oav9!4`MqQE=5e^&}0q5f+ncHp$WUMyTcnhqhb8HFZMK z_Ki{V1j~2Lnr~HT+tZ`Dg5@uLnoJ4Wp7m>*;d=Hs&0BnYWJOI!yzT#`roW!ed|g1_ zW}2B`Md?8eK=Y?jB|!h?8peopg8VzT)G)q!JzA1R|oi7S@=%mSzf*O+s>A>%ank+Uvh*Yc0s!QTYO+3u#tvRXY zjtP;}Yq%ywB5-;zQqz}>6F|82;P<06J~=x;J5bfGGlMR_%R9l)@fy^jVoSjXlQig& zCsNFtqFF_YL#JvM)1r5Juy`RuV>1eMKd#W+3KNPyZ_#v92*r-OG)Hvo6fZL#id@!I zxRiC{lxDu57)U>-na+;a7Opz4xyOkCuwT-2rmmlUMKenb)Q+nfgNRgZ3zKeWx=}9I ze$Zr!;qvLG<`AP@a_?x+r9G0M+wO_;&b55h{ zfz6+2vM7z;f7MJCL&Ne+)0VY=NH4Fe0^H^Zn~+Af*P3@iN(1j7%;6FM^}&`OQ7_1- zTLDVKCk?ve9=mMb!wA;g4!{|qL=qttPinO+0=>Y1#8FXY1Z$QDSovT(RYY0wtYX6= z=22D`)DetBAt+!akBFEio>l3{h+dS{x~Pa5q66ZZA>ur1CxCT>DB{t|gE&uOi&!d} zP`o|jsu)5z1$}U*Gh#hu)!!4bL^P|7-U#$4Gtu%pe?+QiyqiTLE>gUG#Ufbytb*Wr zSUlpk_~1$`9nqRv?Rc60fYonhBR0rH+DZ?MSC;*|zVOraW_hDizloJva z4%~wxlwj6(T0KZDXI%idcZ+Bn7MRI921JY&5v7#@ZULee)-uQXJ;Jzeg6XN+ELtIExb_|` zn#O6@(c;C4+HDkU&QxtLsTkGWe54YNouL&oepCho<@_w|Tv55;23ie#3bfZmSstT+ zPcpL-3|M2+gU|0Gl(6qY?K6WYGv#RI@MezotT<{IC1!{Arcn$R?FVfL`1*!vIgB}@ zl}Q638-HHgN>pAF++uf45isVGcDpdJ!C$Uwb7+WeyskYMDun2$``YD7p;+RHwyUV* zL(N*ip}$P?;l5Yeu%J4(-fH)VQ3oR2GBjaYeh%iDi_@XRBze|ZsoO$R&Y{-rQ;775 z9Hd9;WUy0|Zh1fnP{*XxgZ!%+D~vbm4vLB$q>j)6KrJXi{{=P$%(Uv-Qw{!b=>lEJ zNsrD%_dYM8Lyz(iZTA$_p>y~`2UAQ}iS{3-OX-F%u9YAfd8TrK=yO)oxftCA(<|w& z3Nsd%{G~3I7ME2Ea_?P3haPk!++Wtx6=x)jr}5Rnc^7&ES55<6#US;M4R!nJH11Rr zorr0n01gni3JjQHQNWu`b?7m5!h2eapf;^r1+}@|R`M&|a@J*6o#dx)-+h%UYg=sZyu1}cA1LJy~o(Z$OH(Q|ja zPSg?+*;6dnQjcjIcs$3!-+pQ zqnP8j!phk?4Z?yAR_Y$gxd)&{k8Ms+vfNfJ=(t|T_?}HC$bNXs3CC>Ep*!r|{hI6G zk}bL(5}_EiO}8^tDE_cdhrS9zD*Sp~7fma;f6#eovE?mYD~gbNPj?o*F&TsL&vcWd zLNWHG?lrAY@}2HIC+w~GURQ!54E{qmMJMbH3y)k)4?7$Yi5^KNU^{e?_2smJDe|t3 z%M_ki=zi*o88j>xxsK7m5E=M}gv*5HFCv%7(Kfeg55)$P0L@I}&*lZ=W8Gyo9$0k4Mf^qiyRekzp7o@ml2Xc>mWo zBG2G$^be8O@b-_Jk%#ei|Lw>!xZZDfBS&GLy`M!6k)rM07m>SEXgl{qxW_4Y0{U|qHW6jd5)hpykwwBUg z#>YJ?ttahoEu%k)<>BS@Jwnj-ZdLtQe0)N@9$-FinhMA7YOa@sBYAIv{u$=Gu8VMd zN|Js$mfv;Lzr;9?ll2MMo^@07TD-q)U;Qh*zhQs<9Ru3NOceMnoucQINY0+AuYv33 zXX^LjdW+`hpWyZ$?6F{=LihdKBdc;1{>_CcJHSN52{G|Ld+^fo0i! zeFwbl@<9IpZ)-o&zreqjf2=2dm;It2iS0S=xqc#USNdB274}!tk9u_7?f~@urC)>P z)AFdn`1fidQ57-&A(2re4&tMt>SNq*jZr+dv)vy>?7pyQR1sY7aG5A#zsu#KUSWS9 zuM+hZ*W1@HDh=!PWz(o{u>J=-MYY3zH};D1VLny*Mg4{KtTZ~RImVefF{*|hZBK)! z+MNu+bf9~q2$C%&PEm6~}anpsq16>7N!Io`qkoNYL5`Oh8s&|M6fA=RPR{6jG zb(-6>(8s#qop({=CERq_P!T}EX zyOjX>eKh`gqYMleG9emYqS$7ZcKi*Da&V`_P>F5oCIEmwa>Gid0hb)#P`GFb6@~~I z$R9F72X2HKHn8KhfX;BkJ4TB@WRdd{fkq9Tf$cOlQL6>)6KQzLNCP{j1$+}_m`1tG zGKu4|&unPL7QA+#ZDptpW)(rt29npiopc&LNd*gC_ZlWJIw}C_go}$)5!h?q@819M* z23Vr1;iD9s$r}*{I^L0o!m9CxF;v&nwG3=4D5@)hR>6z44TD8_0HXkeqJa5z4Hgkl zb->s^Zia%tdKt=sC*n>+zf{hy*&WNym9k{lc!NIoDvqO|FlSCNfYgoCBVFug! zkGQuI$cr$9!?v9ay(Il&vW+4PeD#eX zQV6b$%b~KjPMV<>~9TU31a~KINi`gl&cW5EjQC( z7sC%CkjJ9J4gqMOb-uwZRu?sJEjDNY3cD)6u-NckOhzG66b^-63N$Y@)D{ze@ZM^} zNM%8P2m5U{q|#pQx2*=Yd*Nt*il9~CkjbckPjd{N#P|{fpiDqJ1tsvG+YN3pu7%mV z4V{GvJ&ZVD_yIjBgXZ?|!$AXj_c1BH$usPu#k?a1^zw4DcknU8GFtSVFyIGl&|zF2 zIDEv=0@Ubgiw2D^pd_=cvV?)0kyZux>zDyi9$_sDE}b%56hOA04&o)B3E~;f8Fo|X zyXOsueL~%wR|a(NIB9#*8^aPYeLP(AyP+1<`NKzp$0WcO*Be!AXLppuZ%GqW|lQF-oa1^1t1hT_^nYyefVVsHR`xW`{V(ui z;iF#02VxDZfQTx3NeZF%p`UTye?zU>0AsRPrw}WKfuA-R%fp^Sj7vqUioFshg{( z6uy{m+{Q6KO{61-FWb0)O)Ky>WG75r&YnX5 zfKsk9j-pndv&P8wc!vF-{PNct2e9T*fS(#Z+GM=W>dGJrsQTF06fWOt%wUXDLAPtvZ&ExMKk?{NJy?!4^tWEUQuDzA)8<$`BKJ zQEBr8OC&5AW*Uk<5VpdsgF7NjX4Z8Bh6OXy%`WgP+0+@NxJ~*h8LL^piG!aIv;#sl z&1A|&-!en|Ks}p@?Xe>P3Lq%@$mn>xX*KH#9kFVh)zcIUfA*S&QD*&%m{@xq3_7h=B=6-|t1Odw+Umxze# z0PcQa(t-TOrrIFgt}6@MS21-HYzNO(Goja{kN{NFHoZZg2gI=$R@d|ieQOXGt<6j} zTCDeVusA5mbd2@P7t)3@Lcuzkan^(#m)p~%Ltg^K!RhU1VtdSj1SbuFq5VyNiZF9y zaB;DzI4nQVR8(*|>^Ini9+4+ztT5Ds?qVdxKZluK2{{iwk2Wn6VE`d=TaPs{K5$f6 z`KsxrT{Kc96HIGFu!1O`*0Bz-*sm~sis=UB(rcP&tq3lHg^o`*-52Fp(nBQ7G|6a> zGjO&kS2U|Tb4<;|m`Tv>$9bk-sjcqLH*FKms_sJ5YcaNhC<)NXN)qV{mYUF0$|OMt ztu(C`&F$POQy@}g6-4WBCJYYgMNR#61L&2`)>%*oBtn){r#zp6q}CAdelSc35ydV25V6OqE$PC*Z9};bRPy z@0!pP1H_Jh-Z!Bq21xP10~2~;fD|)+GmRAn8EAcLdd+%0CD3dL$dug<1)pVR1w_vd z>=1N=Q#kWku^I``5J96Sb_n-!A!c-MJuc>knf+9YiaK)?9q~IF%@st%Ych!xIKXZ; zF!mS_ndORvggM;pHorvQ0LF8Uy+zG-)=54>Yy%P(nABNi%^J`qua<>8Nt0FHtOcVN zm(~_Yivm(^d9z+10rr$N(_Cv)(L6zfM+$M6{>d2*vn!h`QL8_xZazjGbg;I0k_ZQo zMhx&nLo-ivq)5X6|MN}EgJ@v4XkjidqLn5fv7^}xLS?18gN5zPmxW#lm8hk*d~LRf zuv8O>;8Bj}Z$j&#xGv^8jI(fuVb2u2#63N-eyZD0?-0xZZHp) zAtJJ^Vu-W=2#2nyhvb;gu|>H+sSs4i4)aCiPH=OVc@Mjl3X|&y&ENk=N90 zoTVL>ZsW#gFBX?v}==W!Sd2P%pWUr8fS3{Q!#}@4qm_ za)s?FaX~fECD&|)oyS{BlX6%p|D+PsGt+vciBKiI%OHao9363>qzzTo22H?+~ zmQ@U=WiRcr>|k8`z>9k=$sG3`thnD|QF1qh@fRGmZ2G_R04+9JOM;7`x5MG)W0u`g z5Z}zDgTqc)%1VUdp6@JHw(-%MRnA%sX!0#C@OGxZExd8g(o_Hi6)#$5GkH0Pse#=u zS;osij?*0pf4^pFOX+t0-ZEJxFn@d7!uSrEU@L4FA@Si2!P-X_I+FLhZ~0R&EEx5Z zh3%Fdf(a4kDz>gtIR4RZmPJZ%vzprgPQFF`NctJnj~snxL7%t9eh01(7PgbVg38uU z77Z-_houqQxmJNA0*MJ1JlHbS>ZZ<|ps{{Qix(oTi$xd#paxu^WWJ>{FveNYg@;38 zrfryW8*nhzN}t*oXt#D1c!Gy+>k8%|Czwvy$ZKVMkyVhG6OQs*Z&L^NENabR=LC_S z=qd*3BI=g3_GX(_dUMNJ2Zn>E&s+vLxrTK%d+*XoI4N?rmes2gSbhG=x-vv4?r3dA zuR9@JXSKB|!-V46Bx{OND0+Ka@6Za`KGqg;Veg<+>uH5hY&_hGKC49#d?T&s#>qql z>TGU|vZA#V*}G(nbti4D>tyRQ8lQ>NtxmR{-3u?yvL0X?)4c#4+Z${J7C9K_i`CB4 zx^*CLREM_k*c>Z*YJ`}(%{*%k^`CKpwS)@rU0OO};&SUwmN%NBp`!wymuZJtE3Hxq zD7~GF6sayjc0w<-wq@%c3zIB$ z$*KYw@pe5-IAkrS1`R4Z4WPkcD;hH*Y*u*bto4>eV1D3&m2G`ms5yw5+b7mXi2$K! zVBQt$`~O6L4M0%n!JUKU-_q2#&d4};#dB;6e?VxU(Cirp>zIoeDoy2{z)Z7Hs6V>b4lR%R_}5$r*ALecMUpmMci z<6tZOn%ZiJZYArzRSPor+Hbc;+=*5_)(Z^+>sQZ9gl87<&Jc z4c#X}!s*D*HgpRXDNcQ2^U(?iUf2dufNF1Tn`!am2b)uvRKjAPZQoNn=%w}!;-hfs zY1cYTHE_Uv}E+D5gBr=;+MvDJ;=O{I~H+CGEvP}KB9(5J1PaTy4amxjub^0^82Gol^TxwHKk zqaFYe8J*>c3CT^e@4(*J+0Fi)XhI#6?ca$ZB*dMhm;ExPbS=exQ8cA*`r0e7W+S$d zKxys(`#DUh>md6DF_bc2H3)$bL+oW4domP$$+@HKzsV4n=i^vI2%}_;vU>&HR;JtE zGdk_>Kocj}A7Uf*o@_tMW~9I4Ilr}k7E3Jilr#h?r`u0rVi#uoH^e5+va_y|0vba1 z9Q%39>G@nc|-E(KW|!Hoj?+06nv*lLeuTq$65n6}sc8M940V84plwmxJ>uPR&s?S}>YpN|Og z)?;>!h<3oCb9N(;osG4?jTh{Taf=Nu+tJG$7eMP(p@ko>*?$p{+93WXdlX!D+ddeN z5oFvfc0Vv~w*JvxlCdYlR$7a&m56H1r}jBwD5gc;iU6N~j<&$Puk5SvWP|X`eHq}H z{m!0V(R3^0SjD=cAsi73UCdmrpGG+V4xX&B4$>)fP7|2;$2+pcw1B!a1&FxrnhN#bI()c=FQz%Bia>;E znGQS^gXMU~3dZ=x&P{;}7C96gcSl&y{Jhw~xSpv1;%_)Y;a^J}I>vqn12h7Y9ywj0 z*f~dM5VzdH_Bx1S7-@`frR<9pj^Csp{bpw!sJO;)i*2TX@g~COYaKtbrV#?@0S+E? zkV|7#LFOi8s(V`|2heB9dkzJbTxHUeHgXeA|7;VKLTd{=mV$1j1?3?UCaGOb<{<)qR}vJIXIh=KPQNRZ}=wldizEf-8PiInno*N$?*FbHe|| ze#vTQYf+s&4n4d^>IYv%IS(-|hXhsKw-D5ePBDGq6Q^@0>ui&Bz#7vnJxnd;l(5}g zOk+15UJVDSk6mFPv7EKg4MTYqo!?4?5v@~YXM%_>tp^}&B+iS`0Ao$34yX<|v|!e} zm<$+S%~@F?3{BH&J4cD?AJXePHRM7Gh!3x#gs&Sq(X&KkL>|?|IZNo+p|ypR`DzI< zI%$PmDEZLRi7u4jP=(jqIMIa?Qp|1Vbg@q1ga&?a&^1c@c26G|ndnrB@NaF9m=rr4 zmg?(lD`K#(4Kf{$^03W7C%WcB)I2l9iLSYj;)0P*bj^hnCy#Xw5Rqu8nd_cp`1?fX zTGqu0G9f`JDqLylo#jMVS_rpa7COD#v;&6imMon*y`%IO9e1evKen5ZE|SYq`}4E{-=B z3q03Y2Dl$P8Sf9Q0QwcZ9RkoNLc*Z-iL;x6n+k_KcbepAoAJhZP7aozt=yoXr62xa zZ|OzR+d6pSqm%W9lB_|lR=_>l?E>nCuFjxxhzq@aqoIp&6hLT+@Xlu^`YdL)qlyk3 zl)A354VVO}iQM&$F;4LD;I{@Ydb6Ne?YbccC2CYLfX5o7VtzZ96_(MvI!XkhOAIcy zmm?MnG^Bx-jjr*GbD{u<3w)~J(!#11*ZWfJcEftJJs}`yqh8^N1?St@kAMqztygjz zyU>e5i91^~b8Tm*1rIcL{V2vjn;)Y4x`wxMt)NaT*4D-Lq6R@t0=J``i}flIaT)<> z)4{cma`JR?vAxnl;Iw2{Q5VeV>^dphPR){Bd6bj8yNhw!TAoZT>}hb*7*{T3 zGB}Nu2~1CS)fHop^%Gn>DU1G-U7JPNv0*v9;9R}GPEpw&b0e16>eU?Xid1{-m2b~O^y zNateC;voG;?;)to4dPeW?LxQ15krOUb)j2fNb&N%V5>_G1otK%a*bnqqau#nB#7?4 zp^*!d&jwLTo_C??Drxr31y@JLd1t^?a)?f7Z=z9f_IpH+H|<*Lbuuwk~8nS z?CkNHl=Tu#BuX9btOuos+RDR2k6k6@pwYG}2FU&9s>7a=Nx3gwpA`Z{?R!@n5qd-S zC)ZAyKtZ7p?B0 z_{+TwVLyZWkwoC$%j{;ojR_*ae5&_hryDI13B_4HH(DZ+;+PnB6A@tm;vRc6AY)W) zHF%+vJ1jzA{JfgGiii-vpi%IByc?|*3CWRl-Ds^yioZ5-qqQO_K4{}cYeiDr+|C_H zz9H@1Xst;0u1j>IwIV4NO?IQTA}K!V?M7=wQZx*3qqQO_ej4N+%IGzev#lUnMNC(L zIQ*f-v9Z010^3A4^8zZp-0hIuNp1zB2|?l%_Z_y84CGyMw*l$DxaqS{#;NXw=mju? zr8;mp!~LB|P$&F)ru!UYv|(zU;O%+t32I=esxW{(z>VJXUesfS%U8NDqt};VmJ`>w zS+DRQ{BH2cT6bl}&H)n~0$;3m?-MKr_iuLJLa%y3wBWk!Zirq0gNv!V-RSv6Qmnt% zjhT9I37H#+ev&_^H4eZyya;(euWIiz4M*>IX&#o zIrmhyhkc7-C7z3PGkxgx&-T&i$@1#g-AZ`pnma4tpzqyVMdCYiZ@QV!ZzKIkfIH#r z+wR4bRP}rAEn-Q*J^60d#Z)luoUr)=_g>1%_Q<_cG^@owyO}RJVOv4e8KAdo;SdAe zpSc-V422YY_?!Ebhzz678~M^bj87{0q7t1|=2;B)-8|q<9Lx}KNu#QaV*fe-k<3SfxNkkpec^FR^ z00Pxi?|IA^Ofb{nsYhM(v)Plw=psTR)#~}kNJG%0j>D5fO(J)T<1*9ZVZ9|%;Np$; zY@uB47xA#B0g6JCG53DD+^NV;pf@~wY`)Hig*#|bS?CHRGVi((` zEyz#z>Og8Oj~u4f@i1TGBT#o+dTg*-bI%bG#%T+h|L!dUueI}>Q-bDqB>8E6oaMMW7dRn)~=paI+u|b57-%^A32Pu?~jl*nS{?qfG%v z9rd7#r$oCKCp>6nOo|83c+kq26gOV*G-g#4HPgP(()jIl&$p~sP%#wxdV*&nWqACl z2d#w(!!O=?&{~)jOaJA;ukyv|_TiI_JjE=J#y!#KCMEu;A$LfON3tdNCyCA=ZRCDQ$+yk6E3 z1g)dH!i8UWwH!A`xP|joCGR@6N75?fR`K?hA)Ko9i&g;XMSNPgwYs;fjGH1LlamJH zYkS#G8Wi#AVE;N^7wZu4VwbNyh_CNuym$uC@u`JQ9h`6Ay&(men!!4d+t~XPVy-TdM~lY1VNcKxM&@a{}md;RAUW9oYLEd`YUkAh_cvZE z9FX9>BN6C#>f&WRr+^!V7ZSbwSZ9ZXIRemt27M6oyXU+Xkodbi0WR$3)eGi@2YYz8 zvo81lhR^n0t73&bPi`L-7XIS~c$LsGz>7|mlOT9F(98PX5<(KKL!EH?U@!B^zX0Wn zVcz|em29N+xRZm45*%?IiCt%Ie(|?@`gL zmQVFEFaHZzwaD-;6@-jZV8Vp+}%+B;apncWcx!%2^m8_WMeN6F6FZ43rxm<|f z@_bKJKWdDC< zzZM6*%v0fj{nQ}81bW6xa>9!)Ze#z#m{VSKahnuho%WVvou%Oh;ET&%^l?anwdGn6 zcH|AOj&YSC#AR^J573(50MS)vbS{*%()}ki5(&l1KYP&yXR?=j5^VeIFTuTYpL$<1 zUT`KfAX@2Hmw_TFgAJh9yTAwCnyW*`yL{HZ$vBu*kJh&)4kAw(Gc%j z!Mb1!Kt;i+Eqv$-D&ZE|)`wP&q&TLt53L$WaYzpzS~Zel^PVvb>>i7~?fSweb3Y$*z zp|_h5=zbZ#K!#PA8RYrrEMJzW26O!A4W;PCCX?Z>Sw3`M1Zm5)z?UWpHL&)y2yZue zzbpt{Vuf#y2M-dN|`Bqf~zoWIHEp+5O8C+Nz#+k+DPVe$$}HU2)5C)40xgS zR|0t_QM^x{}Jx=O|LE-dlVcaB5bKVAvjQ*V3+usr#lZ-E?b-G2)EfBQ?=?*A#=pulv--}Xb(JVi*`m*ZP$J-8I6#$%0#oRW(sg);E1x(UD%RdK!J!|G&a|~ zO3|DGZ9(;D^yv6em=qs<5pT=Zir$X5Kh=&Nh<|VQRdg$Co{i0-W7+zK0{SQ$Py0H9 z_S2)IK==b6+q8+oq4-Br1bN7vKN(T7FkC3>bwfOW#LiP4OwBmTkA33c6~ zvn7b!_T*@`MbEzwYxRs~JS*`psN21x4`OnQ`bMAlZ!A})e>CICiGPu+I52t-Cih}+ z^zr|O+@zt=jOQr+Mb0rI`Ws9xdsH;rX@!3w78?_N5_jOQ(xTa(%r1loQF8o(!5U49 zW_$Lu5E#xhC;WbLG~=lX3iTo-+KL{?jHc%+I%h<0!%3^1EiP#bV96Pa&2yq zZ#y~)i}vzY6(4?isp#Gp^vszG4M~TV)DJu=5r72nlSp+rI#t?%7^H+f17B zBK{q+-_N+NEQ}&K^knx#gzJ<^0Q5oDcIdJ=tq*+AE=k?eq-lyf#a$Mc zrMN@US=`-+)wP9FQLYnxdmz30x%Nk^h!lUTy_OMaD)X~SBd<&OA-^kfjWqo!lWvvL zevnd-%y%*Lrnt zzoYE>+Wzx$14*QZ1Mc34$263^Ba$Kt#kC%LWdM9EFhO!8CU#%N zOX!x(QWYIk;s;~W5}HE&T3huV2tamH;@f+>{2=jd3ANwrr?&=j>tR2bcq^fskNPcl zB3r8~GD+tK9YV;dzx>b(llRuY;Y_ZyFu{>b!^?+~(9Zr&)NsMCJI=#{NTHj525ElD z4>ug+&-ak>*Iv2ochH7xXr=HV>#qBqMGeb1UVm!5>31176T$%+ldmpSE0V#7%Lfpn z%GZeoJoF28BomDaZ*uGr1l=M}{|a=*3qRO6$N3I;<+l>gw=t=_wssl%=(S&g6;^0W zzy9kNU=08PfU4y8OMcBrR;a%hd36an6cbkE%a8Lv_^Iq9EzSJmhuyFWUe=#h`sRlm zhe>Wxve|#BFj#vVe`NM3=J5UL3tNBW_)B=`I0yd|f=k=d{R(q>X}?H+ zY?TI-!L&Ha-vu|;gWL!JAf53sC)OX*3Uj@TOz=nV(r1L+wf;`l5TdV={2|vF=dv%= zDlU?2b<+KjAM<|J&_9{}u=9hnD$${x@Q22e_5N|#1{P4-N$G;u)bSsIo9pJXH6eR` zyXZ_IUGObjCsv>so&4Pie53oFmhI?&!z!q%{r$b@w%-0dU63IIl+%RX8Royy3hg!_ z#e*(Nqecp!3eP!^_N$@i(rc{0=(!Y5^+)eZV*~|$vY#vMI>Y~wJ$EeHX0AVWA1w`C z?BCv=)1>QG`VWzU98Fm3Z;NeG0I@sI3q>B4_`A`n>;2)#W>x{{KgIsAe3BPWZ}R_Y zm7>7`MT#|^j`-^i|1((sfe4={ji+uM_SfRZQ@r&`l#YOWe!?FXNOLg@&iKOuXW^EGZ8j!kGjYgNOz&(fdQYaf&w?oqlHlcA=uyw=H-LB zsj$*Kx)?x>mxkEung$FN)U*WwC3tGn=-pNU&e)C;5Sm7>whed(i~O0IZg&X4j>b6D z@0|jYaWiDFTXtPQZwi}{|8^y_8kF*;6NUzqhIRIg)`}4U*ik)0C2XTG4H*^C3fqSL zKbD@E7B;?EC=sCKLHb`0=txG^*Vja9eOu z9tb#U4VMQ81JHwW&Sln-fR%!a>39I{`#yKQY4pp9fES{+e>xL@-Vx6J8OMHrWIhVGE-V-R zB;XLvi+;epc^dGy)tt`12w)riS-{`@%6d+N-k|#+KLiVX7jQ*z^8F9%mOtRmeGF)W z4EQBQfp?I>9p2xECOQYkAP;C^&;LmC#Xi3FqnFDC?n4f+I2=#XHK}IcBL}Iq9~&Il zUNn%Ul!2x2&eVtH{}TImUxWq@b3^-fAHwoUk>b4--KC^hP|Buf69Zq%B+i$T1OE`5 zholE$2gqCwyY9VoDsejqDi6whpsmez!ojb(j?se+w)`))$E^KSlJ| zfWVE|kufLxV`Q8&A&_kyX53B{1+uNftf-w8$hHo%V$`BQwsn{lWlI9h-M^zt1KHML z_Uo55fo$tAD-J3SWLt+>F}5U-Z5?LC4m$$b)?rpO?GD5yOy^cN?;P$zUmgrhKq^x5 zPqrnPAJfzIWMHZ_NNgK0g;RPeVTZ(Ekw&B|ERrT?ZUnl}em4S@B8Kd|ANZdYea@dz zM?Ma`D2&kQSzs?=rB^QlABy6mw}D%QMb~`^biu8;@j616&gULoj{y%hF7R}b1_jhZPK@1;;~*TA5`LZe^gL6JhEDG@{{?@Erb3- zaw%RD)QWB>2>K7%$PxxX0H7*qb|) zT@V@>78xGhrXX4s3I9_^s8ns+#Dun1hlhq0goU%LXG>Ef_U(dT)<*ff zhX;x46!Z}<EA*h`dcK88Rj=aBC%bj{n4mymDtp7u8DqiukrHO<_vxDy2N%}G@3_6X+TTII@ z4ni+D0I3$!D@%i5Y{8xCz>1(#)^M4yDhNB9K!FRK8^CEa-Vk)&8X7?xgU}NRTqTXS z1o;Rq!)VY|Yq-?k9`qgQ#I*R&pzDIh+&w{etfA3wU(gFA4OZP3)0PK=;D`Zko;F9U ziLZ;P`dAQpZiRFCa3Tnj@o_E(PX`^bMlYk!2FXN3opm7yJAK7jHMwQjmFdH)xr?q^9M62c1I_0=)Hf$kQM%Y`=yB%y|*yDqMN{D|GGV zP}AQ8p(phLV8x1s?}8-np&LI0nM4@&`Wke_8V$Yu7E~6gAquSa3FWBlf~}%a)*)Dj z?QnDLws8*j5?sc)1>^Re1rZL_!9DmLHs)}Eww}Qbg3Iqd!Pq_>hiXth7#oHqVVYMA z{zt@|W>u`?5?w8LH&QRuSR>fnN`9^#e9{_^J>wtzJ94zjR8k}@k6Ee=u8o{~V<;oZ z+4C3qmIz{W4s1uO#s+&~r(if-XiBh@a$lN@TbLd^z$&~JTZ4RPnf%}#R-t@v9bA73#vdpdIx79BhgQC`R*FqjHa{5hA95|7UtlRNTNJ!b z{Mu?s@O$i9E3UhR+hA|awQvtOysBHUw>0Bg_%661y}vP7W)bY;=HR1N#Qu>KUQ=7h zbm>ovAS-uSiUamoWQyJwoPnJ<tV0TST$Tz2N?3aDkI1z6pNsV5X}36dWu3cjhsX!KbRWZ@a9wGIx5e|C4 z25IVBUnQg$w%^K8_|*6OnjtXt%_a8o4}qy~Uc46^0#o0-ct#mA3)^zB*HDp$|g}ZD+Fe}Ijw2>5SaDmMZ0<-Fzd~WUz>)Qo$yF=i*HP783ME3{D%GQ zLtxgM7n8e$z^pebZtWQYlivJCW#15(^ybC#14DXQ6(;Xoy$EN~3=R1Ut3I>u{In8m z+SriJ*1%C%33km#Hi9gATqTppR)(xYO#D@sdHa*1ts!p2YgNc6RPC-r+^Z>cq<(50 zPr7Y&$P-*BWiiS!Qz#8IWY9*%A zZglDPkj15dL&naKHF$x#(RI5*3alb>d~XQs5gtMM9tgo5yj+QPKNvFDDh?};NXpP1 zw@w)wPlUY3)f;Y=Jeqnwq$2Z-bLZ=M)83au`ZLYEyc#kXZ=yUh=W&P|Eq6U6$qF5D zl&YkAq1>I;x)tJXCmTT{?uQ)1)+q2n4vE{o$FXvzM0$XdLXy3sB# zLXeAJD#17Skj}K)47sBTHp=Y2>qjuRyN4vEIv3!d#oGe3nu`iK$a zz?Tr*jvX#mFRJ<$vKZGuRif2w<@bRDwRMoY;yMwWgozmczUV}^Im<8M2H8KMkn0=d zrK#3U{#6Fb;rVXz+~w7g5;Du1sJoB+rd7lMz?J?{UjE&}X>A3$9QR?P66trfFc0p zA+^)THF8f95+=tD&IQN4JD~G1FA`*iWX@jX)JXXjx?Lq7#Z;LXA;;~W{0W-^_8Att zy2Q$HyT^V4V??Xa2XS(A6qA&hCoe}sljK_&ug9s@3E3UM2!M&jPvVmMcg^ zBl*8pRbYUl0GDM6G$BppN!AI=7``aJ??fxLlGm`VB3qzdw3cfu6cgLZ3AR_o?NQiC z?nV0A%KOvLUF4puK`PT-egz8&U6=HkW8~g+QeU~!9Ae3+eh_f>?g?=subRQ?iSGmD z>zHe<`yCx|&F>-b9!F|dD1VGq?*Agq878mx{{@KvQaLHy-X0;hVpzo0N#;)$ftEs` z)v)m6GFFb;8qWKN7F0MeY@ED=0VYk7<5Fq;0Hi>3C$=vm3{izBXUlz9hjA%mb?6Uk z#jHXB@Sc@M<*cgE+jHfUnCEs~Ajc*5vgk?xzFR22fQ>L_h0*>iuac zc{tg-KhT*Zu9rVW22;UHf~40r$WzSGili6+PatT%QC`Vf;xp&V9mw}>(CrGPR@Yr0 zhDHG`*-V+%+aX_MRW!`IUWxRxmG`5S_e=3L?4bM-77;>rL%Q~aJlGst>GLyE_w~qM z=wQk~34l6E-Pf8IVKfh@gXsJwW)R>$-gW=i}a`e!Njda;vI%=KYFS}e;w@n z{F;0StIeHnVtaBFxCJm%%(`byC$%qie}M0rF0@fJB4yq|2Ui+pzkCX^O?oOH!DRD% zft8Jzas4Ry2j4gSf#UyK>XB~x7u_ReU=&1si;Ws)HjV^>W<>&B& zvt=m-viC`W)Dla)X<(4i5+Z>_0VZX=sdSNJK^rQmu!K!ME30PTF?4F|FyLJ>*^2P<%ETz&$fS3(p9 zY*79mDpko*r2=Rz>YB)HwtQM#Pt3tTJZtv`(`0y=wPkF z-2+%vA0OsTuH`Dql7;gX73dkGA`Og6yz>=;}R|ePORtlH_gKHZ_BU`vScT`kjIt%Ec=*0e>-b1m4 zJ)hNAp~Njv`C;A|PKhWQK-xF(mS$w=Pz8DjBkDm6X;Jo)14$UI5XWpa9;R5$oX38Y zVyV?CWY`q2k%^0b7Trv<3jH)z0VmVUCxa&_a7(=Z->{b^DsEWqPyumaR(Dmp2s&p1_Nz>mBe) z;R!hvp?T=~T9F0DB-{Q~3_*q?^V{6$vA2p8tba2U3Y=Tw)~Easx+=3{GZGV`^op5l z&6XSvX^=k8@3K*rvjsI>bWkF#NoCKy^NArVWoOB z%R?fv-qSiFZ@jD|5?oF>nrURSuM+zW3#?L)eygC|XO%`;R#yJTh+M3yTxN}FDpgl* zw~9#Lni7#`wXGwf@>e1=9mAZ1O4(GZHJ)-MoWXOLj0jUM#Hob>SUYSZ1JAahVVDy7^TK4BI)tUo{Y$LjdBT28BDWnsB5CKH^Uj8tn6nE&e{~^LxwXo z9cvtk&;1PLUaZe@f$C%{8!;jqa+C|K5$L;K`3>8_1R@!8XM|x+7@^|#-b*4e%L}fYpX`J$$Ra^l@&*;scs~0UDsd-(;zD9{x!&|fv9boX{z@v|s(fl4p{>e_5|?Y+lu9fYUh|CdOKx=TZslKC zLKYPA@N&BfwBkOc9dqgGhn48LA`aPHdC85qpMh~)@k!+=tJpCp3Q$!UvCs?3C}-JG zlGk=)m6;#h-APa#w@akiU1cSbm~87o3`6Xh`kz|d)-DjN7qdDcdDkAC_`nO+L6 zNw1ZOrI296_d-}zGGlhL=4AC#rDyCc?C3>JfSa1^Ed~F_Gv5ckQ+BokrOo`LoR1^N z(cy(M^X#w=jC`E`)A$fvfM`(4M8?I^kL93Wz#1{7vXicHirNLtUKV`t4h2 zb#`Ah=dfN*aGl{5M%jJ(ieXWXa2;7QY<}5a=OyZ|V`xR9tY5w~(R6F>PIpFzg$m1f zk<9EcPvZVXS%E5aVKWe-|L-dtXqGXIcmw0RZNj=ksGz1!VM??&6=!<6k--zg9N7u8 zp46>pSXp1dgijMsWms)6ObVEvDgsi!Rbf||o=wGJ!yMpxk%rx^h(lJfuzOK9PHIsi zFNQ5g;A}h*Ta$!d3VVxqHmR=4NS9p>TZ&OPdzc)*6*e3BVv_wJOnjLrb0^Hsh7?bz z=0R%T4_k@^qyTsj6}jUQjHYF!1Ai;qIkNZYN#l-sH&Q8C-L{JtvZ5f8`wKZ^FS5SV>?Pcnw3E+ z8`vkyoONe{3e#``kDl}&jp{m5aXo40Bvnsg!IvqjBAf+#(i&;1?Pw0aXQ=uJ4tCk9 zsaOuNI@L8a2dY<@1cwSn)kG|Z>^#+BghNp<&Bnho$~sMk<+0n?M?esrpds*T`~ z(j4!Oy<4cxqs{QFK-FAuXxs*`he>T!_YfTDqV_6C%gk%!luj5G(7etng%oERO7KQ#l2Lw5PBfoAHw>o>Ix2|ziI-O!{Gs{M`#YYgDo6NhNvcC zIXo&9?Zh)!FP`80h+_Y`Kn=pgL;vQV12U7V%2-JE$o-6eis~OtWeFs zayYe8^%Sj#Mr$n`o~*}ns9tOZhxMB+b+hzVeBF$ps-tK#0@QiAz5T(jr zc*m@FUey+DmFAaJg9V2dS5z~x>h!y&YLDg+c2hM^aJYRNuZMDXRb$W`k{_rR2@Y=` zss6y~LHW0;ADTnwk z&0&zU`mEs4)J?tQ*E!IzGHM;VN>nYYhO=-aGkB|4{QB#qNZZUueHX2Qd*#&+1&1pY z)vK`_YFAc2M(bfiHT7h{A-AR)-Ip6%OFc-y`1q^Qjb}iBx~3RBHVIZECzpECSt05J zXsdizSSrWmFg0=pwI{8jR@X(&S@xtpu@U#pFXNI~L*2%|asy_+On4Y7aj)gg)S5Fgcx*63&urO2dEYV|B9W{Ew?$5evHQGK? z8mQ|CQQkLFkNb5|=*GtC`smlMX{PQcULW34jh;7cSD+3>bBJxDZXh@;X{ScaS<;s6 z)#2#ZM|ZMVU|ttBdVc6+S2Y|X&zqv5J=9%(-H=jKG^MBdl7Q*gTaBJETi!>FpRH2% zSN9eiN(QQ@U`2T{NS$qmd$LvYaii7S1YrJn zY&85CaK;4nDgl^VgbipyT41`X*2SO6b(^WahWi`tkK<-}_ z@2LK&dbyxudsF?vPWsj5zIvVOuLBdVYUht?cbffLU7mxLrM=#(eJ~N8fl&a9#B}1= z!!s)<#*wez)z6WV!1JzTPnE<;)UH&xlTcVyr||PKNlP});prX-Y#2V)A$!JyGu*Be z-V5W4iz37GNMTCiZ#2^{+!v!*a5wU& zI@ObJ+oz4Yhp!Z&->WxHPrM=nY<-N1cx6ePtaha{hJ-gpR2Eu&O!yj%dEvPxr0eQL zd)j<_I2>od<7Kl+;d@0DQ5J>&Cw`5d7Vax_UobQLvd~xdobV$E!USHNM-CrI>`fh) zg*zjua|92%d_{P&p!0D}_)Uy=@u2?46^Mmr&L*}d+l#|J$%b9wRq3aV;gHRlt7YI; zylW7^_9SC=fZN@iAMHsdH;71~V7Z0y`&v7_E9)y*v()FztIk~}D+kw^7m z%n0S^tuNtago?hEisV22}OAl=tIA`H`QhUXg7-`hlN60s?% zL&R-FyFl~$MT{)XbxR%(i@?k+0zy0b&+v#IB6fBk88KhP&Z=V~TtqQ`Tm6zZ z9fUh`*8u=mT6{1fPxPY89*;10r@o(v@GgVE-B>BI9vOTy!j-sIPE^oK*CVQ7hCmF4 z0!)8bNly;XB8~`^-F_aiSQMxJ6R}GaTfB-0$1J$!FREx08HQy^2KpuUq8WCPSA`P8 zoFmOtom?Z$RCl^Xo)J{%x<}fT#;LXyiRtB|psgxKRz~opAnd-%h&NA(k8DfankFk~ zR9s{r;>{}n!A-K{;%tk02IN@OBR52z73y&_Mn-!fNOF%J*f!FgGbMIyBHtlVD4-m4 zl;|3}Mcx#|G(93$Vn$DSWuhC>?!zOuAQm|i_Ar5my~+CT$@cWv=t!}qiKdK;tSDl9 zw@Hzgg!k2(9(fbf4dEnr&56uKSXUyc->uca}6)b#-KU5gRktMfMj||JoRN zNd(93yCWxv8|v+k{9WAe@Ni^*Om~4RYGH1QBYkxyvZ4#Z^cDmH2riPoH{6K4FU-H> zR^%$trD^&oa*foyP~X>)JB4RI`W|^s$aB;t>ZNERj@m~xC@X0s%r~mFHKLU#g{z`G zNtd*gG4!t*Q4UU42w8>H*G9R~$stiEgnXS8Q4fS9EfS)Jh`{?QJL;+s>Y5?yyAbMW zUep?4=H*SJ8lZ)$GB&a-Y1Spmapv-5*w!*Gr6=`o7c~ddb>P-xcogswgrU~M~P3q~o%lSBWmf z>WKhMIqF&~dYrK0O8@9}BHFeMkDe@kwU3T|jDAHYZL}{fN{G(GHWU;PYGLMT!DJ?~ zp>L`extdkQi^l4sp-%KY(H=c*82wBX zA2o~ajOi2eo=Mf-(dEcDS&}EYGcC0(ZPhJ$s{~7edPQRf+kAiqsA8!YJ=Zt-A)+Qo zLx~fsQ@yBeXmqUPB4p->Xv~*xE-7GDpv5Dj-G#fI8x#Ej<8D%it|Zl+Hk=fljd3?K z!e)B8DB2Yc_hO^3cRQm0L5wLSJw17u8cAj!kH!wU=;ssB_Q4X7vLB-V7XIe^G1^D8 zC#uiUZ^W+=U!&iOV(jh>(0D+F&?C2iPn>Lo*7e1>R*vXb7KY~ z6;BzUFyNkrF`<&bZCx4j9MdfDY5RpU)TQab^)aXkOF-aTa;wsQG$znnwo}?!{N!ZJ zN`!=bXK~`A7-#b8R1D^W;N8DtOtkr#m};0tfjvy%VSD0uB?hx}3IO^^J2o3$jmfnm z-#b?DAlq-ntVgH!o+RCAbBk767UUpFW`9AYEA zzRL5M8CVsxei3s9t%3(HV@iYyR=;im*a28x9Dy7>(Abym z%#ZCOIAt`7J%RMqd=lC$)}GF75u5HR3HYH)>^?L-4wl?Kc7<@&Prt=Z6vaRK#(pAt4*=E^{1(^D})1YnjSk&+@POjxxs&q z#qUeav-th?`4+$Lw=i~qc+6%QXc8AD^2wd;mz=2m+SoKZNqsFg#`Z_r;zuj&O9s-| zy=2Q4-%K)mTkKi{Io7A3!?(xoz;p?qdsB{%+#lOiCR;%7ABdf0FQZZqr`sEyJvn|n zcI&TGqCg3?MlSD8Y+G7*D)wqA8KsTR#ty=KQDGniK!0z>=+o<{x=aD< zgDq$z>tXDcU)KYH#|M$Z2&EI<{3tff27o?3iN&lE=RodvVw`Bwv)G4>k^igMrC3Jp zT7M@x^mS}^jQfTij%!D{ExA#ZuKW=Dk;%09bL=Vv6$=mnAaQ_TwXd;Vdjw|a7*DZx{0j1%3b6ng3hyZlal(^39 z>h?#R+zzhs^WuI3Q`6#wap^#aepnh;hy9(iGHxyV_mAu1Dm%ip+}5~GNT(V~!gt0E z#`)1u(rQ=SPUN%n-0rwoOgjkb9ZGlYjf+7(JdCW`ABR~R4=)}@UL1%!f|Ga{X?G|N zk*<%zdq+BemFcNCf95r}uf)lj7r5StdnSYH$D47d*!9TmI5_45u6N@i*}s2#5Lbpp zbhpQGZ`toQPvWk!>&>TeJK68EU&I|?*JiKc{$$q*|HhqW*C+4d5}3F7e~RnDaAtjt zbAxNi%6M1y&s$5yYuWX^ZTxWd&jTFeJ=pCNT;lhz-*d{u&t})h9`Uu=zq@+Ja~hS) z#d8{EedDh)8vj&?|HSTlQaPSCJO`@9|HuB`Su-ATDpR`HFa9vQb_k3QWH{48;s>#- zduY4^yOvi=@1GkPuVjCpjER@A`%lNkbG7V9h|grd+a$$%u;0B?;%~C|{+k;AHzwE( zZ5cn9JinUjNm|f^UesM5ukwH(!OsF{WQg}9-Fw7Upd*^a=fc~_g%~Go9_?0ZmtX>`8mno>m z`uJ>Sz%HBO8?e6*m&D)4^uXE6iCd?557zjjCZb-(FJq|L$j!@sUY z;_)(mEpm}#7_m6CFTB! zM`WF)fbj}5`@-LS>kW@jjAmP-)9aek$Q z)9mLi)e?|ZLBb~ue9F14I9NS_u|8BQVHLY}3rP6P!dNGH!VE-bh=!>X&O!Si>9$-% zLM5i#@R$TlWdW=rS`?e$!H6wRNNCB_YMYYqCxV!yRzpUDE6FX>y%V{Ym2llm^RMiL z28?EKZUUyc;07}zJJ3R7LbNLo-QG0eI3qryWkO{}d~w@^i%8;qNNA~tl}UHU1bcEV z+{2Tsvu)@=sw8*mPET}6_{LgF?#s8jCv;$fWcEh+G6?eHO)hjxp9DE`g?j@MPOv6_ z{h)-VOc0l02^%m?KZpN*>5>;Io|)i42aiqgVXYHqzOpD`BV*oZ2Fg<`&=jE6jP!%q z37r^O)7+iMBy5P_9{USDxHJ1@_xcT8?xTT&4Ubh zoUrxRWukx;k7?=Pxjr=YS;C%D((AqcNx$}k6Y8qH}!)gruT+>20%wMw{Nw|PCjnarS;F_1$w58AF znh!FeVbVyUfivJrYbwxMp_&20A2z5oBXIt}U*<+Hs5MDQ7v%_5Nw?L>?j+Qvx*z!( zp*dv*8B7isaLIlYhHgRqHi(kg6!82Xi%}giRWoG)Pej>GFIH zDz`8fz`dSkoZzsgfd^@)Sz+;^M{8w(XT}V@=3Kh02K zhK2(%Dv+$XWRM0{r}5g|eTb$fF2EGhX@#0Q0%pW;4Q4F|x9jl{8dR2H{&2(58rTKG zML9oKgBe9}mx zPQiH%75)%(3Gb7GE^8pmFn6o2*EE=|DqJIzu4^FW1Bcmm3*U^Ex?@FCKI5Kdxez7i zA>KRZK7!66wt8)TqM0H%)P1g5h=p1HLW9aO%x$sfm1d*hF!W!H9%$ZMjU#41DSv(G z|1_``l)J*&PnyM871aEqK_wXG9CE&E#t04%Wm@zgLuI2yB^c%$cG_tnu`bucI7cmJ zl{SaD@1(tq9`JQ?(QXkOLd$5;4c9PtEh@n<7vOtYEu5sn^>Ei)y8`PEG3B(V1jC%e zF<L2x0V&|IM`nc`FS{pQ9;^` zzpetQ+4(zIi%Kxe1sI^veiR%=glRD=**MG-l@^m=m_mmbviWiqM8x20!{}ITOCiO_ zcrCig^wnsi1e=ygTFfFku8gh8T2yXf{%}y5rC#`CYBAdEh@J#e|Vr#3rCi5 zt0?oe=q9tUjuw?$m~+Ufubm?}{MQig8QG1skXx9GlF&@s3tPtunrq!`C77YDw5ZPv zY^v~VYb_kj!r2(xX)!x4xo!&ETLQ<}PWZO;QfDnH?I!22qnoz95JlZni}_T}Vfy{1 zeTZ&L-TG)J2o7udY0;CX@B3>}35K}i3a(ZcbIT)X$@Ymu`B5-J7Mrvj_|QfzSi!LSPLxl9YW z89BMcRoM9UGay;5h1|s)FmFA!YW@tkbc41g`uiA|!iij-qxPkPO0->V%^x4XZ`Zmb zdyt%(6J4`YdsAu`=&XHOH#9**kL&KF@)~skU3)}}`M6K3pVCgn1Q2+xGljgvpD}CG z;o&;;>=o@U%vwzLFoB25(ptB)kaCzg3oH!QreZcgb0$SEv=xy$s6#_vYG2z+BvkLU zkaL*xdGb*UIfr@i^>^)AS42?ca=@t8Sjsn&x)(&1KgPi$fw+9iji zBrd^JY_3>%*qze!L`XW!1)7tU2wC!Yaf~j}2eays<6fx)I)lu^HL*&kfN)f}=*Gs0 zkb0Pt`m=c=q#owQ$pwjV*s4f#+a*Sr9kY`ajtMx93P@=0>tzTT5?(+L&rht5sX;vsB-SN{@sRU*@R;z{^u~%r8Ky3oVLV8Babk5^ zI6i!djNI6eSc!CR>)=6*6T^eZB`f3@J%l`tRXH$WzSUpMD|{mEeZ^5zA9dAy087(W-p8i1!`}U|le^ z>~2gFEF-*=_$Q`rv4;sf>_+cAOnfQCxbrM=7$zSL2ZI#CeMuV2m89`Xs!FGqO1daj zSu(&r2{UFlqk7VD4oNPejauQB)ED74goClf#4KUgU>Z?ANsCn*1sFdO!NY4N4f6T* z?gRxowK4rnc&-Cos7;z*QS##4#!2-s7UN$0ze$Mc>>f#*MCEAOCkfxD0obzCxqnhT z#;F-Gda^JHUpL`lX9DSn?PH*N`gGayqL8n3Gx*4;-2+Mkf)dxSIpd)1Zgf= zFMGwVB*;_Di*!#Cu%2AkA=fY#)cP9K{536t|^mkCJ2} zy3~J`WbT5czDNoz^Xt`yRQF46^i!f@_17dn6h{HGozDB7bX%x%qDwNQo#cvZ((aEo@fSONR zj7^Srlz6S1k_>rIImJ2ClJ{ciay?VN z3wiu|r$DA-{_Fk1l%Cef^FQg1DWp5DX`Mft@!Uw?=_%Fdgf3BUW%S+Dl!~IpRR1Hz z+zx%5l>+IHxf~^PQ_Nvt$@~;Zf6RY5qBw=7E%P*6D}kKxR3vN76q|r5wU^YAyCAfK`i@xsZ|}*tNTw zA{LC&%hyvNB{JuH{-#CLkM~m`B{Kgt`b`R?MCQd>?^7TpGA|~7Oo5chycqx8I#CzU zr;e#(upKH^YlEcxS*6WF-MHsp#G*Zz%xF zjjCf)%^^aakeY0rZ7tc731my|NT;NvhFGIZCklXzgq6SQQXyqBSL2@zQXyqBFE(zH z`q`>i5SBNYK;C2p4K7HvAnzK?d(*Rs_ z0IW>1=cT&9#@*;RS~xp3LBz7tb5p;gs}0MbOdx}DYkGWn>T?N^99fl$`KZr$QUDAR z-e&aOM*c5gA~e~*~eCCi?LOmLIUKA=vvOR zCy(xv2HBH2lL`IP%+s<>2c|*#Wd3W&khFD}JXqY%A${_7$rvPiMjB?70k75o<3clM zra|Up&Z+z#X)?6VAn!4L)`%xfuDv=9k|uK|f3HhBjGi#EBuyreG;IE`5Y3HmsQ5R}}A7Nna+4q(=Jh!a#nt z)313*k9kC;FBG=guSq{BiX=UKf+&U?(l?3Xhq~#jMR8Np^ckYqpiTOJqS&&F+AKrVEwd8kcTwZ@%YaQ9A15qFL)z$(6pc`T$I;)(oqWl`NJLdrxyu-D19g$vy+{}G(4RCS&BuZ&GB@^syPZU3782& z{`y*H(#_iv?Egw%hP7tP^XW&>*1UBoeY4Qy;;ZSHReD^M57*L{U|LmpxE*Qnce*2) z{G?GK-ElA7*^++Z+QamJkP)LD19fy6|H< z)a*AosIL855ynz0k< za80SvBSVMg2M;@u?X?otjKtLW|ADDNPv>O7@qfIxw%?F3QH&W|=+=&`6_9KG0|L~OtX?t_-2}we5hikvb>~DyYS3(q2wkpnPw$djLS4D`CxpeS;?a` znQMhIQqnB&lO_{h1L#+B+JdS`eR@0shGkvVnNMc`$Ms^Oc zXk_c4%fe(vA3D%Jd+<*D^6ZNqobl_TP=J90FE~Qj>&(T! zjzBn(Ki*_6kzi=f`%GV?nfs93-wW)eRT_z(Gc_281v(t2F)jR>`ND?epXudIhsm;* z!uejHCmQ9L#ZDJz#aXUdpT)1sys~P+ab4`!YZbGiB=?{-s%1d~z<<5#m*ouS-LV_K zDzk2&KK;JPY(u-nW;ODVNZrz9!F&vZB!hFa5XNJwZ$kjlhqUl1XHO3rvtX+%=Xg3l zYXqiU;fM=gL-NH}Z+o<-9U5gVu#?zUZjtq;VEd$17G`_=|6n^1$n0uQliFkz2*26V zKIdQ8abV+Jxz?!pnXR8ry!$T1?uUYu=Nb?3L9A7r6gVzre%$>o>#>5tTarY{Rgi*!CEIcK_csm z;8k%>7G|jZ1CZ-WKQ{|C2W^J&BzBQ?E6_1qz7a5DSu9mZedTvT94}rd|Hds%OJJf?jx* zmE$NC!`^05nN0-87ed^2ELxu2% zZe*{LiYtcP%XW}ND|(U*t1Y<7oL^?2!gN7Fo@Da( z$QULN*Y~LBN_W`ny4y+|oHA z9;@1y`tpgt~sM|1;OpGXYAh+{$o2{Z3T1V$a-kWsq5hyKN>zdI1 zb#xj;#31ZpLRaXjl0GH6W@J=LooC#HoyuNay0ibfv>XuKHo8kYWmIc*sJb9DGAuGY zx=lf}DiZ#uj!>!EwuuRCtquY^L&%B7AD)?-m$ZEhr|ud=jcvg8X&Xj zsO&O3s4bJwmAVZGUH_;g#piF7B}Z53o*+=pUDlas_!`|pOlO`wOzM~DFr#63cC<7U z-L+NM7zP+OTY8YdUAkR3Atux1yLCR8{tghCOb6}P9fwf^<52&Q4%4ycFq;qSN@1!q zf4KKC-Cn^V{iF`_d5FU-IHmJMbLe?i_gHY~cwV;{Ym1W?beQD26a?^skq|S(`)j)K z*w-iB(5=S|{J8!$+|xl)3eF+xp>6_}!;D9|8knIDaOgq0SA*_eQBgfl+UvD0-Ii3` z-qM@Qeg#2s;ayz?`sJOjG}6^Mwj160Q3ulkOh~%rtL{0B`dM+KUCwJ!-0Yge2BPfO zF=cWf=J8@Pj~tlv%c;QSBRvo5Dih^pnJb;+n`3X5w0w?`^nT?W z)Yml7ViO8)xh#ZCua&b)Nahui13gPF!(FvS$gL3;AtyxTpgy0#I~$X4OD=nmMz6t0 zcM@_&IB?6+{%JXW$SNrz()i4r!$K6#oE&JxB>wuGH!w@XjP$^i1N~NB)Hce2T?o85 ztstidCK&<~g%)+sc`5{$+%M-nS^&VQPE~_)U|kv~B`eGsC8+)}I_JI=`ssv8IWdCu zrI|UaVRnj%HDzwjJ#MR^`GuP)h(GPoaUJ9Zg4(Hqx#iyro zsteAQF6F=)H_rL_<(v(oxb|ue^e6bQ&9CRcna;fEb2BFfcF!^ST0G4u5x@F9&v`F2 zB!89TBVJMGea=~-tcY(p?m{i~Z1g#p?m1Hn3B7c~ma1L!Fsa4j3LLMeKaN$71eRQ0 zUrLayTUDQ3T9U0eP=7;cXP!#m-A($nN|HVtGwKHFysuG}yw&UXl3^VRGRYT%eka1J z=AM%qsdnXtC#h!CzeAwN>gZdOKlkK$(cO9avY6Td2>&5o>@iqRq@L5ox_XlX>2|EZ zgG4vgpTc1+pck9zFJWexfye?nu%-S`DTzZ~Ydt3C8i(1_Mqd@9L;mpk_WCn|!=z67 zC0ISky6D{zLrlUs-0h)u!ze!)RINWbXUIZzM;0s#&)FsAX)`~jL~lsDrh+#&*9Vr{Z_;nmbt=EGGVFSktR&nk8+ir z=jZ1Tr$u_tnQiqIsNG`yMPyYQN&&ZrBpY>Gp|?T0YG?9to!*`9UZbCmWYU=eLa`GF z#|}9rk?Ztjxo~%>ei^1A0i`u3?vt-qA!iTk?a3=$8BeO;t*>As)JF&H(=SI#D*;mg zhQkq9?WD(#=`YBn;)WCY!=gCqlpa2g@f+eU=sVg<#jRKLyD;;9T%zuiuU92)0)2dG z++F<{J4qOCTJ5oZD$>216OOs2R09{<<*B}vkm&An{cyD274&jNTIOFpoPsHw_36LD zS?_<)r=giLTmrZb^x7vq9N5BD+w7|zwbFy@Q(1Jq96e@ZP?R?Ng^QcvBAOtF8{=Vs z)#{vESuaCdj22r~Hw+@(hUIzE=n94)rp2(j_TFSwWrI{JmR2!LK#-(>Yi}b_>sQM# z9utkAgE5$F3^p8>9b;2X8ARFN)t(#+F%KYo*dPJZR)zY;8c?$=KM>Bx8wQmEDn_jV(`)(x zG$YYafN(IbRtl;)%2;Hj8!&yAA1tP47;G>;x^KE+I&ESw9I^uzHR>4F|GHTyu)tI? zrh(BktpS7pc=w)02Eeb44~(YXZ6ys% zZg0T!8C!NRtVX~4KxYH2ojyj+bTeRPez^iudl(!stu#E`fec784yEn-8yr1>1v~7J zY#VQYLE#5O1-fy9!2qr?bFu-mUzEX9-y*|MWWek|;9)m1u*guIyxLSdkW83rIE!Mnhha2R1KDXM75Ci+)b!{ND&O`R<}fO=4;V@i7Wn~G?vMfXJ@yAe<)en_jLN3t zhAmc6QJgf4vd%z*&KQO=D&NjoX`sI64XE?jxK@ge+Bj{!WEjYp47!5qdj8Pv+p7i{ zrk4Q-{po@`h6|--$7ru-hU1vwB!F}zd#7CYq|aX&o-?GYpAFy8NUuug)+ASDww|QL zld2tQ*;2U&80ICH+%cGsJDgq7)a#|GjYlqO)u;u5T$^t6rQgfumSLfWH;T2&=88tq zSU$J3J@9N?C3iMv4tir?Za+HTKNoYLFolPwvF-xnL>tO;&jUd!SLb@Lt2R2fB6RL) zrHMHgJh#x=4ufQAnWb|xvk19 za;CVlJsr?4cLko;R%Jzr(zR{M5PH8ut`-$sdgk`0C%fnNLJ*-ndgeZcYA<5KDTC`plDmNY-g{xLn*F|NS?)uq6Lj*b+-#)F zH6(j4Uv{LOHs!W7b0OY4%{AU_SMC~wXv|asShpv4E~EJO{@hKhhR!*XyOLc~Pf8;6 zJC}O};i+`!)!bl+MN)`baotS#pWC^athtH0mpcg21_Np*ntMO@JVt2tFoB2d$*TLg z9;CRAu{X_rlq+MF%6XQ1j9JjN z$6!?dlAFQeY=`f;m=$sitfbhu6Vo=bXSdoLAG6p0?POeoGhnNk_C|lgS1{LiHV(m5 zYes~;`kq^s4k~MW3I0SodmE21yM>oCa{Jl&8vkN{U#Vc+$*wah85dz{Ab(T0(#F!H zjNAyTPp2C_=|8oN510yg>sva|C|X~yAY)TZuh8-e3a?;IC|wc?_JM1Q2xED6?H^-o zhpB@eNyc^l4@M%&tA#7}q<%wR#t0U3OpJ9!4F;QOz$T@Io=HzS_r#*>9IL#yCcrpFGgl z_!Kyi^@EI<;T-@K(Q3aNr(j%!KiqSuv6vaK<_O~^M9t$EGe;T+AP7)+csz6YQ{#EyZxFacgaJe*fIK`b=3KwZ7&EaDHIb#omDaa4t zEfC1CaXeD-W)Npu z=CiSqxidf$WqArVO6lg1#|_ZbB`=gU!IM1lxB;4a<_%zfUn!s0fQb=SIj<(h0vm_q zK@x-qH+;yDah=-H=0SP0!LE`MxP|8}!YKcLFzuy1V$GxSPO@MYl9<CCl?#Gn$TT^Uh&%g@G#ghpVb|=%0BlWU>d+SGd4kd6=mo^RgwcX@!gJ ziDq}+D@2f#9nY&rOZMcYW7NhTCP$l@#IA$y`|~iZ9iWIrQMV4{DeS;aHh7TA$MO&z zO$t~=NJ&Q0j8l1kmXcoYc{UHT;2K^(k`|oHL!D2?9}c*X2WvXG3RYjrn~1aMNc!S( z-c`(`5$7=IMqY2hq10_WhqOC+)es#>0vy`WuaBXE;G}Oy-#y7ouz}jeV@$@2JlNU6 zG)hDN&HK|VNB+~C)O}R< z>w|m~EY0S{O?6GMex4Uc*Ej9Jj6cEkc(gqsnBbJ+k+hHXhJL{AZC6ReF{z9_OeNoO=#M4!ReI=rho0E z;*F`Md`w7GT zG}W@kqS^G>E|ZhwXw+`MDOrft;HW7=6z88dIf>%73nsZJzQ1OIoDR(Xbk7abSs~@Z zd#1sdhSRM2KvtKiY@HM(raUtp#W)sQ-nH<#DFEXHvNxuV1bUSf=-_`$RWPdM2(Y2m zZDvv(4{1~D%5(W%v3t=oniL>C?LjNv|C!Ds6q4kgKZCCSXhN+M;17@gVp>-U2*i9h zVHWlg9}ys|<*W)7PZSXePX4$(a#pt-)# z$Ey=gLfe+NqdTkTqt1}!FeA#>sYut>%>TlK;XUkKe)*^DWb5eoko-e3xaKMH;j7L% zYOBtF2`Z;=BlEAIIy`Sook&sQ|6%VvqocT?hT(U?-Np@@VzAfr4%-XWbkmD>UDo#6 zGqXGH>t4W^8bS{cFana$lF&jApwL1Kp@a@eFvavxLrX#`@LtW#nvm~#>=W_+`Oe8X z7-?o_u5Qr|C?XuwFX}Ntxc^`g;W|U3^yIp4 zRMZ7RK$tlS)@9b?yU|g5Nx3>U>Jj-JS))#o>y+fE4Wz8cM#235dR)mxZ6f7tdsGN{ zZf$zhX+n6ZBdR{lBoe_G4Idrli@TOamD18IKtSk^;t*U~7Bv+R6R1av$3)ddr&~sa z;J%ZhatOZLr$%)o^x5V{!8*oz++<$V0PvhRV^LH95p3B+Ih|? zs+$+0{v^m>y&83bh-CeBu`InQs%V$nQTxgL7e7R80K>%V?nT`t&zCCTb0lJs;*B%1N-=b5*vmw-Yson= z=ZO@LV8>&f-llIUdYlOpOx=;SzsU{9^f4`@=<<*g0!^MgyqhU5L9K~29qry> z-K6Hgz;qKN?p31WnWlNP9B^@%E>J2_0iKX+I!6#N7no>*CxHVi3QZ|AQ>s(BDWd{1|oCKCjTzckT&Jw<@A zWv_{9gPQPi`Tuo!{6x*bl4vzs#QyYo_a4#tBHj6zA}A8t0FR)`6RW96u6k*B?$cK zW~TO$IuA3|26ur2;ojys1cA+U%q!?PP>6r`HPajzOGbJH_h8eS!ej%uKU|T7a>#xtZPyvRauZ5(J*KF;fi{ zJ}?zxWjiy~8W&(6jo~QdGU5k>Ea3}Ab6qrkktqa!)!Dq5V(3HkDjMJJZngnTJg~PJ zWiu8EM4*UdbA8;- zVh$y-w=m0`m}t(UQB4941Gof&(?@oZhO88kh7M^W4cF2|8c?RW6M61%u31HmyZ<|8 z$Pq6#dwV%?|8RntDlbjI9l%WmF5pE|%%MaMc!pU)%Dc189Z6Y#zWEnY)>&k}L&{%1 zGMi~|2VwU>5e+Z+ApcEf4}9`t^F0qBfSg`|PpmUjeVwZcCI*#5{$Vpo6_Hn%B8IWpVtvc^suJ z2<&N!uiQ4zB#chKZ+=bz3D13GK0yoB7#Ez&JF+O6Ky4e zj|q(amI%H>P;?C8=Hv#^e-SmG*f{zUxo-`Nrd4C1Ie(Ni&E$plwT<>bmW}o5;<)C~ z?W?@W;#Scg(0CIkF(Pyf(3cRTlR8F2`fVj{tB4kS<9%gxE+HyG7u}Q)JFZJKtSnXH z*ly8UYOUTh$K;E>dq>Lwvgi|g^pB=l3?(Azfdp^|2Sjft1dJXMT|p2u4U3*Z5Wf~B zUhgzVpYet3nYQRAG>8k%T#*{>kKx4gKmr+b=^+j0UqgbE&N=W*IB<0I0Rr*cvC$*k zplmfcx&vXhd3y9F8e9dg%vob{LuF4d`=R)!gBqekbE1RMAKeDm!BC6za~j#*+0jzh zI&4|=`!vSt%%Md!npQnH007(;-A+ul(Y;8C zcScvzB)YwByZfi6I=I2U=;*g2fq)TDIrTme{SL@LbVawnc5>;=;plCYzM}^Mk%VCX z7ZcT_+<1}q9|w1MZbI-tlUu8#ppm3x-VLbXI_YI{5JTxVSx3S zlXbZAYP69?hXpHnwd_(|wD%#9Yt*-|i@v=b9fXhEjy4dTk=>8(Ol^JyFb2S6po51$ zj_yW-BGEql;^$}{Y*y5h9e+6WOi7qimNIA$Y zW*aGG9xsbCs0O{l({21&Yrl28qwLsuy#S{9da; zOd<{SOjYw`q+ZfmsT!~k<7txRD zD576SA)^1iQbd1?I)+F#+o-|fLU}Att zre|?sOw1Ence3C+Qy{(*A49dphFFvUU`Jw%!RbO!NMelCN2$4(>BJ_!Oo_SNfI>Dx zf3dI96pE&&SR3J96Jnl|QLZp78}d$!KP}OSz{K~b#8eP@e>Eef4q@ZjSusBlx$l@A z16!CX@&0)+32)OvW4s2%ko8mCZn0?Nejmn+pgHMi?x!&Ws#NCj>KHRYyYIS~mNb?G zz7PV}yw_56ASQ!9-9Z`Abth6mcQO11Fz|iFB$e-g7qQ1$7`pU}AtNi1@(8m^d2j zU~JVJ&%PFOqiP&=_<>UfpFfNVqESEs69LS+c<7TDvV4JeK8sP)U?+5$iND1xcXAAw zUO2IfcnQL#HEMtvf&e==jBCZ(35ubvu{0>+30|@HoY>)U{;`2n^7M+06VYiBETS`| zerzBu$I#wSF8QJRgZvu8cFx#`Rn~POG*)tqN#U_W-U>Qy*D|((u+6ni?0Mp}F1C#o z!i|sH$NmiLzzbEeS;UFC>0|5A{ulTwjQxwPB(yz5l$v- z>J>YXnh9n7VuSIx$XFS1QWFNnZlzX50to>mcf5aCEF$B%xae46hM-eyENnHd#JU7P zlr+P{3LzT9#ongLlLu=OGOOhHd`4_r57`AV+pAweEKPFD>uj%1zhCx6g9~G?Q&?lq z39$pwsqS%ZctcTa0}B6)oDk$Fc~mUTCK>=xfX9!H{niyFM>G#W{P`8o>{WRA z(frso5)P{oJq~vk#!jNER3Lhs?+NUD6Jq4n8d1Y*RZINf; zH)5$Kx&cHge)pD>XWQ?@_NBmtc*K!tQ|tvl{QbjN__#cgBWnH7$*m_p$5Nfn^BQck zmribN`y?)e62(F2)zVmhJkTxfMJMKAqxV zt1aTWy8vK~)@l;!>zy)5jIi#8)6pq2IkKJ42!XExOesj^@bF<$dEq(Um_h z`{G|B;^x&xTdtHxqSJlimi>FTi2>Fyigg>@WM~{Klg+~K42!FDmF*X!nziOQnze93 z&w`hiJ@L}$I2r6q>=+e*Hpj=&B;Pi<9oH4TXN~to-bryj_-sPlT-fsn0C9meu2*fb zdYFk@Cl{;lOo*!+@bB4%obAYwt|G~bQYTvKqDOZvG}{*d)KIi)P3P>SF$@pP=Y}K z#usOQ83!Ni5)_a<6n95dZfyA`?uv(aH}ZU39}g5hFDei(xg2Mt8Da>`C9R=RJK^)G zfxpricAGE=I!U*z>sAbP6KzM)q6WTAIlHH8xRy#C;%P^XjiSnry7sup(Z@ zHKXZLUqkSgSsg3 zf^wiI4)^!BXeddELw`3Z@Vv$rww8#Om)t@#JB^vtInz-AZqz<)GB(*H>G%NY#rP zONiu%UAtJ0N_Vezwagav1CQ%rnL;s7Pa=U~DCY%u-;VM9L-2+H7L&W!FWrl@i2YKZ z5tbt~L!~!ByQA*oUET01vn5jsW17cR5&D~@iqKsNmR^*-h(L!sif*0V2rsn(&Z11l zq*|yZiJa)W<3<^l(Gt=t9aTt=&Z$DWTb@Nu843(To7TYY+}kAQv-Ot!QmpdT=a$a2Y!Hw}b9Py1Vn)EU zK>F0=Zp#rVB;K&!LX+$Yu*Tr$2Q2Goe6aBHutS!~k`!+rrojONn3gnstI+&A-&h!_ z`R6ArG#SqV82u>=)#fna3FIc2NaKRK57hGhyx|BabD7DS`K@SY8A`n_K;3J#9xg|BzK7+nP7vp(@nozX?z_^Rk4D84GX zs2{(8Cb|$9bNakRj4lvF7bUoJ)A;KWX^J-SuV^BRH^54f#i_S&@z|1o+!3;c0&Y_1%tbGBaI1S-V+f|wFyF?fq=zXz2i$H@jUNWh550_ zD$HjMjBi5|UIx=&4;{#C1jCh(=MS#MfIjKXWskDtVJ z6aJ=cg1iot5A+G;z$`qWb3%+8lob&P^T>5p?}Qiv=TM}09XBXpFS%|wLVSK>RKhe5 zxHcw;zn`!s#FF=0+7r@9yK_<#j(~T?aajp)#MmJ$&rUc%${RTe>wKY{JuYG15L)RZ zEsFQVdrl;1gC*`__nQgxX%z+$a0tM8;O;*p7znqDe@qa#I^=OeJfUjMFA1T9`on)D zxDcw2zZAK^$`bdJ`_0`G1+IPJnfNui9_J@s*9}ZuNv?O+PZYR3JS1^0xxOJ6e=lm9 z_&vEE+B$J0X?J<2M1fl=%0z)%ZPkf`iL{HmCVIAlasroloF>8q)#;0Jt|r#Q6{(3Q z0HT-*x+^d78%nN;;Lz00-F$I)QDQVm0vFFn6uCAlQRxHM;}#_zBHZe`Byknt;*Xys zJ|WkYYZ8Z$>-L)xAqDFYmTeK=`~LI9eME;Bewp|+p*rbE;#8V=&q-}7l<*F0BSL2r zzp5fR=W^n7T9Pqva2QegeRo8J7u-u+Nf7P!Q(`d@`CG%&<ppaIQ0quE{9%wQ^1auoHR?FeT1deb zA>CmQ*LcaqhA7q#ix^`b=x&xT49;&2>mh{z%#m` zCo9?npc%`p-%v0GAe4*CWX(UeQtgL-4WZRa>#JHKHu^Qz^>2mEmbF%@Gc;afb9lY= ziG9&q&xfzOd3nSFf?Tw!^xBBB~Yz2ttgZ0u{nq2|sCYu_V4QQ*8cRv@I8zgR=yU~BTg4==69b;ElUyC(ZE^(QTOHMAv_G z(tS#I^cuDY-Z3soCVCV6&E%w1Nnm|uBvE}sPC)#$`;|s$+$^OV%3j&1E}s2<($xSF z`;~K@*l+qIiRz1^Z#3Y8&8w37dyBkYza?phL`dVK zI3c0a>FRl<89JWM0(vu~&WFUM=Bi-AgmQ)+0X_2f9uSCzg%q~I6D}qdxB#=BS0Jcd8BL51o_S zfedkAk7U>>zZf6wm3-Y3%FhNT=aBo2Mkt1oSGc!24%S;dA1jnEk-53@*w5JZcoZ*zb9it;@TI{Lj+!dl6fVRT^JZ4 zg2=lu@V(B(IHU*j1u4%(FndTjw-O7|Jv~fqfO5vT~N_1hNt3ha}?f)?TQrh7+Csg&DF*4zQ;7A>jz$gqDXor zY$T|d;rx0|n)+TcpV{mJ{2RWA`IeqI0b&^baWO-aBmM?nVfg2dm|toEO81vBbp60< zBExXz3T7;&#tEzGD~#S1%6m5$m|6$8hxFWB~oB?aDHi-luf7T_^1EF7c00C#s|;TZJ=_(u=c2TTV4;mf8{jQgDg z*>U5BEX`&j0sw;=zVvc3Lfw*`#uEl8jO=-G?b?kUOb8u0kQEqk zcQ7k3;J0BcBG1h+vF?PTg%)-N#iEjvBEdxE=zc1@Q1+lImTZfDPGgJyy=|Z~jks3G zFN<|YN7GrFwSt~GY%cQ3WOqtQ>a*N`k37*J@DfbcA2Yqcgb^hQZ2En`kgJ8?p}Dw=6Q&B zIeTlzHys1f?l8_DDZFejfNjMk{Ci^2h<2O_L;rl5##-RzyA*8(^yj3{jQ-i4i*g6v z4AXE2=>Sc}N3`5eG{^%MlX0$*TTu%T2ECyjvveQHD7(E~Y}3;=>Br)jz} zAZ8f4>U$*!&CbbpL*tOGE`D;BTSMHaz@-fp9M!7u8-RWAjmumG!FTr!4vxU8z|HP) ztI758M;si4Sb>}W#C4*^f8zst7&_%+a~JXV{)1cK=fr=zr>&GyX@?;K7z5xa0Ee43 zwh5wn9%_RDbOqihw+SM*Hn9mJZ_>=>M@Un)vB6Sg1s>8-d_G)ZgMoGhu2kAQi0JPa zY;NTDN8N02YE=c^)x$QKyw|gzc2LfwSy_ds;c$KAiCL*M%ayV~g#APEPyKF6gBDDUqL-PuoWkenx+5PoU=K zi%a$pJh;-n4KNV7SnsyI8M)~Ez)rK6C}_F>b;3jYHDXKbBRiZ~U4d^uu|Fbop8r+E zf6edq9Acv(GG5@zom%`!VyoLd_?CpOD?a>4iZLyT{j$)Bdi*}L|8A!ND59cCJ0xqs zQ^%&s0av`y#RfdhvGY%d@+S0GL%xC{4j}JhOCz4@XeejHu;zUy*NSrFd?+0X6LCa1 zZ}&tIPdf#m?QQrk=)g?JZQAi2Xj~jnG93qWl;c%u0PcuO(fN9;6&!(2e$Ugi<35Ra|d78-( z0S6Sx(|j*UWMaY~ey4;(tD!u_{#Oh*)Tikz1l$jfmaA&MLfTUCLjeqWTHWp_D0y(!DoA+ zhXa+t$e6{~ML8evA$V^I-;h$vGjU-luWm1R9K2%{-y~eDJ~+(Zf(ah*L-^WBo=g#u z>Za5Dmr`}yS^hVe${}~BUf}mjcP$tBK{Q=75NJjnI`LsBOqDIZIB2Q*3fRI0ven)0>O+IOu}4oP>{wM{u7RmZhYadK}& z#}u0J3f`9 z%0P@tQbtf3ju|B{Om#uSj$f#cr;ST7yNK4)W>Sh|J>l=9P-P+sI{O-S!zn4eM9!R9 zRm?m7e#&&|ZptDeeu13sAEca+h-~~(l~O!glA@tDo;ll6T8O9f-&&ROqvRqyS2>BS z`+3T*6mv|Z6Eb6f{kcShX?GQAbM~j;U^;JXM&rLtX@KO~lo0&t`xKjpD3i9|JJJ30 zT1q~R8VfRU!gj}dZl=5=AwKec72@wbPFX_pWm^Gw_)lv+@vfICzV$_es|-$kNsXxh zETduSM=qkqHw;VNCh5ghd8*ULeAXm&qjWc;S?W75RSsTvd;3(U2RYXvl}y|dS3I#( zDw((^)xOHq)o?;AslM!=>NKzK2BdavAl_}prtX%WeZr;2N_>h-PyI>qSBW`QO(^nG zMdufQZ|A3eA-%StFtwq(2<*a`s=Ld_rus;CznokJVeXVFBqOG!u9G0Vn4Y>o^17eQ zPyK{q(NoY+V&bh3d>0`E`+bmV^b|#t_(>|&_eq?F-3r0?5$fOtt5c8pid5#}RA+b4 zb4L|DPj*%@{qxExa(CK}z3Y};7tJu5oVJemyE`C(?K+7koi=?}! zpQfIa8s7M8Do>GjgrMh$Uf`3~6o2_DRVQ)Y(=#oH#wZA^?LKK6Bo^)sOmnh(c2JsA z$Gg`{bLzOPL7J1@5n*Xgc6V-;=47{Di!>*@`?pVXvO8Ll_O+yS9XeMv@uEvr6YILA zIW;t`N1Bs`%AQpZT4R4BY4y;PW6grF zH=FiuZIm-DHUO=#r_G_Gt`7!)6%^3`25cs}BJUe;&~9XY8XW8*V6v+)jq2QrthB-S zlcKcGX}VRwWH9=zD6JL#vn1^s7XcCceOcNm3bGJkGHx_E?Hx)?`rx1`X-m9CBo4lx zrlLCiK%%HV(HENSt+F4}`=aE&>2mQ{jP z!JyEBA?bC|>AvY9n6;!2q;dYQ!M00GU*jjL<_M|tG2%PnG`bxH= zr~g7T9|FKe;)cJc|K=m&*VHZJt|W^_ei?2OEvg0?L)^s&=EyT<_)%C4xHT1qj%-bB z*{;83UzDpeXlA&D!^KBxGH7-&DTigK@OW*;3%~@AHDv(ns&4E55B7^cW_7h&zDa@c*O%M?1S(M>TEsSd= zf}Nmsr5P(|xp`wu2Gu9m1?;Dd%lMgaVC=*UniL%Y#+Q>a22gljB7(j`lE@F!Gd#Qi z31KV7{b?C>7c|Zc!HV*X1C(Y4u~I(gi&7S4G{FdEtoHzA>$@x?+Y`!dYcg8af%5Y9 zjD$8&8n0zsA@}Rw&luqfW!mG6IO3`f{*+N4ID;?!l2MP8&wkBFqZumzl|2?DX87Yv zFEY*rJE{EYr9|bEx|y{p)kgq}rgiRC2am6p8RQE{mN(CYP3pVw&9<4vgOOi|#cCS|sz3AtVakF8hV7qyz5 z8GwdIX8EIWYkRrj4`ybrB`oPTFY{wU(*1>*?MYdGNoE&9a@2~<1(b5_fR5^xUbB;q_$ zE8_e~=d8`NIHQOO8EsMHkSsVk`ax!0{8vQQpeoE0`eqHF#k>lzFYXbU)s*m@9WLVU z87<=9GeN|E9+UMwjpjhaHVFNYnspvEk4=k2U-fLQLYnj}>L_()VU{<#(yMh4_Rq-r zjK-{(4Ozjcb{N+bDOxzZaEGj{4l>z%l=OR0{dt+3Kc48wI_!!*3E>8y_Y1N)}`gai;}p_!d}I?|CT z4zGTx>o9wOWCk^M(2Q;XPywDD>KIKk_7+~=(8Mu{s7CANj*tJnq9OrCP7B9f8m$ms ze$mR2M-a$q>sU^U!1i{I1JoP{RXDa21kS4*G?{w>5iKCKzL#Sgtq9)j?VviURzP5AKgSV*K>Y#q2;>fQT&GsTUk5vK z2?A-u94l!#uywe@he8AxI1os>3YTbl{fmxqtfpvNG~bUcj*kiP{SzIVXo>&O>Yy5X z3gWNLh(4%{qv!q+o8v2L@hejt3kU~}q&YsL4u3Bw>#lRa7s#jLtLq(b+Q3x2X`=&%f>ZI>&5lY^CVuWn zhb|c(*#*5Cl$-ZB?vQfPUdLuq4%+X4bKj=oD~BC1z&ETt=7{o!a@x0!OXPR^_l{4= z@7|SSsB!VCqb&(lTyHuO2wvA=ze%ExyFoqtN&l7d(((tZN9)ZJq6Kbu#?t4%y8p`>)q9-SJvw zb}k{cu{OJcu;RHcdmbTqdY5eYr214mE+V@HP1Gfzp1k{#JMPpk`|~QSe;t%v`c~i& zfOEsOM`puGB2#gv=xjk@JYus2g?Sd2eFWOVyOOd6g_*)+3knmay&*gt(tpip)8_T4c`lwb=p0nvQH0 znKOU8$Q=6@B6HL`Mdk$V&R$BGvE`un{)|J}LI7?#oV|vqh|AIJ#^m=Vr?bNevwEG+ zK1s@eitL-D-CwR|dx14>znguIpmY8~b~{hF{3Sb|JXP>}c0Zb|F=5C~$3@^MDZk zG&G0UA5LzTLp9GqATMyMsE0SU$=O$B67O`%X+WbAPG|_Ax#OPdoRD|(e;YpbK@QcSja9HPz;Y$dseD-u9O^z5t3S;NBG-|ta)wgq9}*zL ze1Zp>v){cguCqSpM;g_56AS_{fq2rEoJqul+_&eD!5v0li01D0Wlj-Iq$ISl&pmfA z8vkx?Al4nq>DY_H9}zGZ!0aKojrGp`ok+Z-PVR5@q0DWOyNsAfV7pw{IyV)cX`j2A zl%qT5!tp6naaTp|HDXGkdhz$m2J!dFoyFh#cNKqc-CO+qP9O32IsL@nM@HtJC-1i! zCjS1zaPjxqBgNlGm~xMk-^1d?->)QyzrSl0e~(Pgy+`^ARcdadw-)zOJlv7{1+{KF zwWbB0o0m%luh>$UyOwazwKP{rO8xlU<+%0nY$R3f?xqC%UtM})o5Kez^B)0>lOA@D3al)BggDVQ?-82$i z{w{Y51vNshg)obK?fcy86aYZygAu&ziXQ)v+YxuJ$lVD?a^7tkfL$wd;d@g;wd`8% zS~%*H+%??F&7|pm-e~8*+alT;U453@P&}tfNOw%Rn+u;ABN(EHhq-hA-@y;Vr9b9A zrF49+Iolco!cATp`S5BaqKU-(e7x{x@N)X@GrS_(VUyP zaF(i77J#4pm3t0OFeQRJ@1BqDUI`L!$G0s_Ya!n-SK%_ z7WPL$o$}t3%@gy9;Ly#sC`ge$hM_ zVjzzAB+uq5+}pM$?|dC(>gExN&fq+nd1k>63pzTUoMsqT#>nw6U*yfEP_}tA|| zGR!`c?}Pu?nb%1syN%oK&THZ(`}S|?c{>igr8#Z-D$f=Dv8d379v;ja^Y66@Fs+XP z$ZZO%Anzi0SBv(2QRIQjzRn9k?T*mchydyI$vmsLXq0?356+?psS5D+n%vcIk z0lZmy)5q?j|M`4zP)YE7pc13H=mQ94Q`bGsjK+fH{toP8;S@P&u^Na>@HSa+g9B@ z*)BiDO}yJrmEWeJSRFqoAGW9nubGGB!?r-7+HP3>9O>EP=KOf6VS^>V55?4~lcx$a zy!qcx;z4i{PcO`|`3Kzv9^)?Q`K?82P(gM+#Rs3?Yzf1eKTAACg1V2+-zAumx|H6>KK=IroC^Wl(nUEVw|fgZv6^lk$%s@&4I*1>d^C_3F@qcf6tO z(53*6BwDw+d#v<`1eyT4xLauij3(Cps!+Qvi;buL>=g#&jI7pgbFsR@? zif)M5(Gax0#T7U_xm969e0oH|V?U9PLCAeX0ZcGg@lnPWP$gx*Zeq9}41I(H)MwZV zZW8jca|#6RO)V)9xOZ!GfiEHRr*Q>IV2L>DodPYno;I!EDY-6vufX92<^6>s8}=*~ z*^v2R0i6E54tHNE-VazU-ru*TAd|e`VWY^#=bH-tBygT>D}W;|*WvcN3o6L9+x~)q z6g>_G+Rg$TaYZooRKZ;eMZ*)$76cI_7JOHbL6EI=S!7D1TOw16e<-L!?oWOoGUfK; zf?4GG{GY}5rv6s2id-vR6u{)pI((^C;Q?=u3SRu{nOaBY#j%d!a zNKbrFUigw`9l@Dl0&eL^8#)5hs@%t?b$5Di(s5;OV?Af~Tg*T|2u)f|%Q<&@~ za0k!qT!>x8swtxIcTcfu9awlTSggh-7p6-OoU<2(xr=veWfj6^YQkT9)=>zXsfFr< zoI=>?EL6Ma6}FR_7+q3$$V0q4d_v)MidgG^qYZW?S833tnT7A6>$^upqVux~;iv*~ zZ2#YVqC_vc>RA3D1Se(tppG9FjzyJo7uCT{KP*&G8oU727ajScC;p0#pbVUEG(yOUa`4w zvj_%1+giAymH-idiVIyRJxMkUaHXU9%XSxjLMeX&B@MUTTgdsLsTbM>qeXiQVbZIp zCODh3U2b0r8L8(1`% zk|835*Qd>jW88j2iXe4HU{I>LNMcZObWv}K(yj4DJ0(iT*^54r1g%Lcf`hFDO1otj zK_3YPw7t>_o$6K61tr7TjyPd=(MbwZMous$^xfVfnutRHFz#YepTCW5>+di6+y!l_ zV-7%<4i(W1Z{L6#h6f)mvQks$L@o^5jum}TOT??gi6W{_kZ}Dq!0{)G0{VtFz65#hmJO^RE}AU-iWhn+XqWH5MO`fKKUI z3-NEO$LJ*2zO?i9bG=|rpKg~$C? zJo@dV1Q3Gphkq1zaTR6r@Ky09iNN))C5xqMtapi1_gmK~aq9l}z9mkLo$p_wkO=&? zUP+;7JUG5#NwH)-H$$r+d@iqoz&0t_E-|A`o2mzXZ(H@i>h@Jl*gKX;P8_#Umkgz5 z9Q0Ao(QtmV9N+3)Qj3CnxPIS~pPI^cV(-+F-(*m_q?cUwg7SJnNrfAfyGl!bbeHX1 zwPsR@Yb{7+Siat^F8*?AiK&+J3c*zeY?@Kh;mup9&i<0l_{FReI5~SKu06lxr3;j` z7L~xV+fLkkX$hPy>jb!TO$qD@*ok|uD~ToLhZ{<4q?Bzg*Z-~P zqu>*>@aU??hEed5OQ>z{J_@u(c>QqSQCn+^)tLiE{U%k*hm7hXLApL-6fE8d&!U)7 zm!tRo_h-_0V~j8+A*1tt55SUFmLa<|uDB5yGszQ5R)mwWMHF%Mi3}VPPct z;k{7@{yh_r^2F5o=*jF+lVzK6(VS6XuCkBO2!3-I{=9rtPnrY5odEr&3|cx04_Z3f z!yg?i+1LqB+&H?~TLDBJbs(e!*+L)Gf7)1IRJ+m4>3H3a(M=|!pq{18(5RlJK`0`9 zVJq}JqBIP(Nna>OkGhw_m&!91hN2Y_rAqWy>cVg|q(^CEq~$)Vhe9JtbrkRR%~%+W zR`e`=h&J~rm7`$C!XOmbr?e3Y?p@jdSu+ zgz9E343QC7FqhPUe2(3PGi&94H}-& zC~XFVj!_!b3WY(dvZ+-{G(mlGT6hf)>Cl-Or44ZA_|lKO!i@@}jZ?E~HE+;rIEH6A zo5IHHcr~X`FnWa&<=%O3YK>1}fcP;0W$jfgy34?n9v#%Cs+W4N!pY=E3+6)L6Ppi}XzR%74| z46C+j89S#^D2;la!?{z-vt2?JDkG!hR64s3C^V>zEQnOC)@W@yo7#x3-#AqdkM}$^ zLngP`H9CWVS7~$_gT|;}jY_3Lr_pLuyiEbmqky4huIGSN4K1tC_$6gSYiL=P za7u+jmzH_SL8ExBk_EK|t}A#BG*{2-H7cz}$tblv-rpPO2s83_4X*HN-hrCa#u+aaxVdz-e?!n?l2@LF-r^%tXU;ET_=f@zXD-d?^dB zp;0w@T7RrEtlBntbX|T*iTqcW$s03zrP^TNR5n&+(`eLsqfMpM8uePxd>dk}PlCi3 zx3LK>VRnU5$uU|Z10I0od4o<1WH5|D10qzYQEu0d8{qNn<^vU45G1Fut8_+Iqf!_Q zM!lL>8I^WkuP~_eh&eGO2w&@0wpJ#uu5GnSjRM#*rCeV_%gc97g&C*7({+)2b6K+v zijJC$UY+t2o0gTe4{xf|D77rFGN_fDU8C3N7==cyF(`EgR&V222G2$Fb6mn|@NTk4 z?+4>+jW$k~jjLWlOjBrb!0@=FA;bFg9h_8yUK-zg8oWVueA6~fY#)y7H|Gb-Yaj~c zE}7pp4D?^8H|SZ71{|2qre|y%uVz&WtwIkn1J(jfqGT0H#-QiG(v^0N(f~%MGAa~2 zuP3U=E7A3UNkNjKsg!CvZ?J;~*lgf&R7Sgs1)Nnnp0jfr<=+jh`sP^!da|!d5HUapptIqCSMzgSLUlT$0{R2! z#^67tQ3Jk)QGsi=e3(9J50 zcD)8-3-EYa9b;3nN=B{MX!W3XMg$y$&)N#s1@57m2pB^I1l9%Kt~!b6-n6b7^ilEV z)9UKk#S-fZYF*wSw0e>@yKHQM{5zJp%6V|&HddpBFcj!lYmI7#=arn%W>fJxn-2H1 zfVY&}wM4Nr3a!$v27k^&cSoXC=<9if3Z%5TxNNCRu2n&|p@*njVFXvn8zDy2>v_9M zWdv(n-g%b|zVDAh(@VOJ>h&|fJz z9cz~~QVqV-4useMQHcEP2BV#~0gAj%sepJ4Ur(P3ot7P_10QQ+G@ukp9(*heb!=KC zbQVgzPJuwXosm@y%?f%cuc1|RrUy8F-fwKvFkYvCURP&;SPER54y2$4#{fMQn74sP zvRY$<@$g&3&GRtq)eON057{TW|b_A*D#El(HIyd z#GQ7aS*PZeIy=0~+c>QVQwS5ot8X1PNsKsNt_rQb;SsaT!E3uut&2(;j15MEUCIL6 zYm`G?M~b|GRY1?I(JH{+AWnrig9lMCMnP8nr=bV05ffq1P+zpkS5dv&=Fy>nV~5n#@?3kl5-p1>^OQq;4^mTW?KYnDv)~NW1~tqYX`tiM!Jtx5&4`s# z5?n&nYVaH|J)%&s5NIh4FtKAZ!t9rwgV87gfrBiCC{eA~vNod)rfQThs)SL5-oV0K zo?5GgKFuhFSv55*XeU=~n}R?TXryUuE4fhzwhpraI;|ci?wH9VU88rlAj5v~P41{Z;*Wh(pn48iu5Va`D#Hbo# zd965qB6eamw5b)mL``jy(WD-wCXQ{Y8Ta<_pst4Z`fuqe57u(i$NQ(J8eCRs~bf9LquvX3*iMn_+@O&e^n}kv87QL+8tA z)nHyKm;q6O(!nhytUa8nim^a>4MeHc!YnpxRKqNXLIGVJbdxIRILFq*IhrYJAhxWw zWgVITv0!)&EpzDlJ7oi*D*=>L3^*pcPQySatcGb7=!Dc@*{sSS&WeV@mu^G zPz%E_EjTZ=0Y+IcBaWXwAG2R3XUUwfR;gnZI>HW^M1=8+O%H=2jT**c;t(>thW6BG z?k~`HRo5J+wxjD`PSm5zKzZH61cfO|f{PLSf zCUdV_EB3#+`~T+d|C_s))|CEXrvJ^||8w2ozq$MW=I-BEQu%N0UW^$3o4bEwz2LvO z`>_A!?*E&+|8MTTnni>E=I;N81&ROW?*E&+|8MU8AM+p8FLnGkcmLnq{eN@!|IOV? zi(~)I-T!UX;J>;1|0VDJ|G#th=&xN<>)@g(VBy%fqOtHd z4*tgDL^L6)yX+p`{OyF=Cu`kZhxV73Map3v%AkW)N65G4A%zjrw>U@yBD*}4kix)A zIa`nlaRE!;xj2SiL=xS_0um;w$bxJj4z-l2P5f_TX z7?S#6fQ5Zn9fl-y$en_14X^~sLN1LR)*rh}ajwNx-zZCxw^WU*YZJ*_%GAi4o76^gdn*v>Wf-7wDfgKKjGNdq7@)^=%r& zWRgailUlde8veG>4SDAbY@{(liYH`7!lI|$K(b#n45Z207|1~q@&avY8!QSNAX6PO z_F?rDRyQF>9ky2}A^%0ICwaHRf*d51R4W#}{>=!p28HC_d|FpMx70$O*7Gax2Zz@{ zl^u=vVp5wht=6bfu&}ksrhv3{18mcP^=r^2NWEoL;K4USR)v_RtFu9p4P@3qnh)gg zLM}N2yJ8gZ7-TN!h(t-MptySm)`GQmBbcnt067k@{H$de9u~=gR7luRBS@ii<{ekx zKBGrZN+(5yR@*k}lsHy}-a9qXPp)SmV*(OClq$%=uq(heAm7EVG8&8un;p_(gxxc8 z&@;G6#K#a902zo%*qQ=aSxQ(3hP)VYwfpG%u<-QH5Z4PXm0dcnT20K!&TDF~G(l7~^U= zR;4i-AT7WS`CvwtlSX~jw##b}WKKiIRt=3pGP@GZX*mf_4SR1=%MOsI^S7mMaC)#+ zfwk*wkS+%KJitrHQ&d2*jGl*#0l!hHPB*;`!(LK=oSrk091wJ;%tvFB}E8It2-l)slo@s;Moc3#)B5*ruU|-Ukwp z^(>_9a;#RZgucqg=%sC4ddLZ6Z7R+PxiXMC3F#)VVT(7yUKrRn2T3B==Q;C9w2&LE zQbGQ&4(yj>6z~j)R6(qgVU$YTv*p-_kVaU2t7??@10+xjyJqCj`9O+4WOhTR z2015?AOoo)JmmBP%N3km+LoXzhiwV4V}plWFR~#@Lw4msE+VS}#bqETNWqZkqX7=D zGj=8HO{l(UVe?FlEei`A`+A*nN1>a+!u0CDcV>`W1TKqgxgt~GKoy_^n~-2nA!v$H zEoS%&xt^gQIVJ2JwLuo4Mx|1+V01PuB&34vDKvQeyh%%CBqriuGbHhe8pvX?-GP=ey`Du``o$bo^$W1&w0-0`8*f*S$1)oqH5Zc zIj0IONfavFr#u|1;`oXq8*OjmjXj{|Lp9zYcrRyJmCubsDaa{5E^To_r z(6lUls)pIzhu0@+o|9<-6c*TSo~dHN^M_4b|KqtcS-Zk`+5wUV*F}H!I>`=)I-GNP z*6p$e;@$`5KWr;XU9jo=nXX)YG*JKT`mXA>=-ff20e@*(vjxnDw}{K@W=zS~@V00= z+6Tt(qBr?XysD)z;Xeo1lfHzH7A{=@aZQZ4{eh61KB+%2iQo#RZmY<_I$)aK={`6$ zvsqmR>ln(Me(1I=;fbybJOgE)YvOEq3J`0V=KesH*~R8A9By|)k#-@a8& zd~?E8s7=f;0(!(Df*BSWz@TEQqt~;AHc+HKS5*KfBpfkOtpz$x_W+RS!*RoJtU3Pf zukg7^Rcxe8P5WT(iFVu*Qj|%ppN)%J?uT}O_9QKFjm^D?(;`_EyDMree$R* z^+`u-8EW>_CF4`zUFNc8u)WjTMQX%o-EBLz(}RWEEY3ULZfRafF%E#s=7 zDE0TKHOH|kB=|j5#+Z@U^=Q7(j?+^ODI@>EV$u=dr!f&4631GK~q{v_h&lsxPUQj5TR00NkB4Abc=P03{{^xeD(_9|z} zQWZ9Rr*dqV*WM0u4d+F4ScpGB_0Wh|v;7?4xFHHCv)CT&a2voh!db45q%K^^AvnWW z3`hyK8xCzWqa4Ri7>M!Lj{yA%I70!aaQ1K(j5)kY;6j`byDU%pG{pv0@ny?h91o-{ zRUe4%`*q$ac23XfbQ~GL^-;!|Gj+*vD0~N;hx3FgRUvo`0oSCT!VrQfna_YA zi*F8N5Eov&3VpPzS+#(PVC@Bu0f_=0h_oT>!T}Btt&}sincthDWa~rH6s$jFowIm|putT!?TD#AdFGU+eOjLE zrtFxZ7MLau)gdGMkJZ+6=9K2EH18;bjFV9hn2>6}Q&@Y00oZ;*K_;t+6W$uDQK2S; z4B5%4ZH=$YNd-Yq*si)8&ZlQQ#L=ji`T$trbHT*Kf(Ed`!t)SAsJ zdRoYXnl#00z8jDNDNA0mWWG!7iOfIM?t*_ez)_gb1E?cV4J%{BBm8(&KWt}Squ4zQ z{-rX1m|x4_$qU1s2#X%XLX0{XhN@YDO~{zZ+2i+D!G%HX1R=kHTNR!{nW{OG=N#Pn zn73ME0PU>JPH=5P&@D8) zKt4Qxi(FKFC=!ZT^kC+JZUD5YESMmZ1c)nr3Vnt?04yk|uBn9q*n|M0m;_y3mzRDB zm@oujRB9Iz9X}Iq*r&i*Bq4xlinms>K+2+hLStmDWB~KrJ`boqxJMZdth5mCF&wJg zE;n>gCj0<4YnRv0oDLid{&{aW0GqU&@OlA{c*5$M&zE)IG#zkHUr?Y-4RRF9siX&z zLg6xp*&5RANO;qq=54n1OT+Es_79wA>LNkms;2eJ)olHuIly`XM1qqRkQ)r`Eoiat&i4PSH5N7Q-e@pKP&)q0^T!E_=ex znlK6pIP(DTBG{9vA-whb0Ty}8S-|9wWm8qn1_DAYFc89-4#Qm7311dVR9TWZ8#R)O zpk5eKpa8>w0l{8^nP9a9TWIyq)P=(TX5Z#!@T4lwB+k~$SJ1_>RK{BiFbQ%*;Wvcn z%n9Bb=tjWojn*&&aRhb=%r9SyRw)E{P9cy5@K@#X3$-sqs!SxzauGLQ8zo8Q*X!y!eC&~zZ5R@$^nl8kQWp2i- zOcv(uBlXVAV)ISY5-s3+Df=I^bq9kh(o|3rkyPq$f;?UZl;-mVx$czRk)Iiv%|(Q` zA1L#FXtfA5;C5Lf3Pd|QGrAPy=rD!}*%qJ~05g#=kgPJ3&zBvBAC_1UN<>NkREzTk zej#vlku8W%WjhV%tvQ;~lnO(iY`oHxYSQ`YjaLXZ*lJ1zi->UmlpE0W0GMug;b_W$ z36?jzVi{Wx(1C!1&|f|CY`Try!r-MRD2-s(ed~Sc>LLLxqN&8yu^NE>iiWzFTqve zp#u;JjTR)kW^kq75+NesW;1U_t>`l!7?Kl285?C7!%-fn4$yx=p$G>%Rt<(#@6SvQ z#FXWFU2aPqOj)vyUEx=o*>Vl{`m~47O~NEf*`@#KQoReZx5T zPG#ue*d>_?jprYmFD$-kjCOx&)CYa38m6q}kV)MsJuU3xscXxp>F70%HqA#VqRX76 z7JMMJSGU@zFFTFf6sJ|z8$Z&`LzvPWe ztEXOK-Y}N@alv0~YTv{Kqt&eA7cBl=j~hIGjZIx!v7l@2a7T$%%2|`77*+en1-Gd# zCokw^bUtOlsW!Fvqy>NZKS>&D`!?gJGZy@Eg@fok?yw&c zIuFN!L3c=SXFkF=5&sW_kUL-^TGOV|h}L*?!QOp#B1s9;nVSqDPY}KyvUdS@@^TnL zkYy7%rAgf|_d`$s?vqmzLPrAo3vnU?LdiU{v}3lB)3hDd~*{=%~XrVZR1N5Ih0 zaG)k((XB(v)TR2>@HcOoXeYQKr{MpwSbb3zo&aHXnB2VZl@K=D1$kef8h#H6wggK8u(z<+ir=Z(wgN=d1}elk8^Pde z2!zX-8~6^e4WLb(29Z9AjhLp?YV*V|U8x$)urYp9g*^aZGz8v4&Le3MU{3&z!4DDZ zn~2&TD+D+JJ3$?C&ddQjkzpZH2>Gkvci?O+?2QQUtI(L%XTE@KTyEe|oW=>apnL=% zQ;;_to^gI-9loY1(~JV1rbuEfTRdC)-@U1S7V(>%rGYZF{->n{V3yn*s`@xp4nmny z;|T#U1WyFcnb^g~#@ivnv8U;@LerFl*??6^)i5nwZqjti76GQfvZkuAGJ)CDglF}D z0WifkK`KYc&Vg#`uXFus+CSHKQn!43)3KSsmKkiebOSsy*cxZ2|9-F?Vm#M=;q$q! zi$Yh!k#*6zBLV!vM&lG#mBayDJ=O%gMVt7+uycIwEKnqQ;tPVE3RC2)PI? z8$icM6&!oerV*MKr(fQ+I}`~Mr3?IRsD_nJSi^95VL?xB(s!e~C&EJxpqbeM6vvvY7A>^sYC6ghtZA^;um6|yd~B9~RmT0%Tb zH@v8TuOg9^kJc`5q)vjHgwAeLY3-fowJsw#x@~i9S2c1~t)s2C)QRWPH_y~os6DE7 z)PK4=MD2ODHpjSeRc%+>L1_xrwp(l4TiLAnsCKkk{J`2y>Z1>9%hg%8)Rw1Ae6$*P zTW##1B+cHaSoQp*wm9W$6|4GBYC9P{@2GvKbrB(KLr%1>5WJ$WilXtC}4pnKu>8&Q_yt~Tk8R=5#9A9{} z_Ph42iJB=jKTMUsP@64P=5k8SFZfS4h8R@3-IlyvWvsAJ)U91y2>iG{z%K|E6ZjAWkr9adK(~O{@v3V)TW@rvNd%5x zJk{F1O6@{X7Yc!2hrv&1oPY%302d~bDXdw*yCBA7T5zOEWI2`%*sd!Vq@M29rSI4F zZ{^oDTcO^4Pd@P9+_F0Kgb$=cH&0Ng7JXQoBN-f2&vX8LB7;PI4$dH1xUS+e4|=Te zmO<4Tt?fR%&;<6+{12uJz&;SZG7elJI3tvFjadn45?PgS?w7UYxu{$8OxU`~PCS*s z!vZLBqX>fr#f8o6vH*rtr_#-I!>_f|PPO~+fB_E6ghTvXuNR<_Y&kr>2r+X3G@9+6 zCXv!ndy8L>yK>2{ z3F@ua5huK|WKL`K{;MST?sX9_bn)wLZ;3eQ6~x2e7V*aXr6tB^u_bkfsvnL(+?c=g zD3^L6MuNUaE_F~fU?B;q%XWtC8OSXLH4w?_5KdhY7i^5064_*%BVaAt%rdwpsW^`} z6oL9X0Arrup_AZ8)5!vsZ%~p|k+28KIf4n}>jo2d82(OB$RO65Ia#DBze@eH&+?P) z5-c}W*}&19>W;q4yWsyr%T(hE;*}G6J^^?j)P8{ap^bBTg~*q^pKv}iyx?ks*AI9i zUST*ixW%zad@79M3!r$lO9Wm>>q0)Fp@I<%Rkcq@T@2_7Awy*=nc=ms_LFS{)$d%BWAfxC-R78w>0*+5m7 zU*Aow9l3nqaIfbemP$O_oKU{e%*m{L7zWLgHf znx>6fK*Q5?%ocbbC{9z=n)bBN$hwrDtGpWz6m z1>n$5kAZg&xIzpt;_@7j?px-A=oY$UJX76%fqYhN`e5lATM}vg0{~YyZj^^VpA1I`}IUR)9IWPy+z{$af8gyt1%kr=w< zBdQ4N%}B4oI)X(l0z%q{rw|m7KyTealbg~UTOpsoa3PEafgHs88uoeNVaLM@e0Z71 zz_nGZL#a#kn~}Ry7m5j~5cj~+la>!Eb@@u0^Ow^XoDp1@c{dNv26P$x+al0mgT;5b zli?^*ZxUdv6))T^E9Wz=QnySC2r8KARK2l<9R{bLR25d;hzNJ2`6@G10Mz4GIN*#4u|8XF zJlLTUc<-fckm!feH)?QLB=`av9?TN~AnRC=ad>3=eewCTG*2{+>oq}qhypHm1WtKT zDB#}oJJ~s6c=q64VSue607sfaP3Ce4nNt+%7Xz|iRX(=VQR;S3^4NXsPnVOB8CXtOv}>(_uJI%;%+fi zm_<|d#TLUbO@-;0aF;!@qM#_{H)%2+%ah4h6Jc?|OpG%vgMpsr#P|(s0ls5=iD^mi zD=grQBNPvrQ6YNw(F2$d3I7nRQgc4X@4(axBP{pA+XcRCu!*B%vdR)r2DhRbZvbal zmwCRS9Td`*tR3r|xW}d_RfpD&3 zT%XO)nbQVxk3KNO`ePj9fI{fHS~k z3iUKQFcNdHW3I&M3YM=a!kOkjm+4h&I&E{Q`ZrhfQRQlR*KCO3gI-oMeLi4kF6MB6 z?Sg&_8lj3~7B56HVLZfKZp*PLjoHbp|B9Dph+|XgrfOmHPt!kJsE29lOhVqM?{_cd zgdp`-X~!nEBusFyW1|GI$AUnD-h@{(=Th)TcyKv6LN+e&L3oJaz;wjM33Cp%OniLs zsl&+=hct<-k_>iJ#TrKN2Z)34$_v3D;ODeXES&+iNLc$|Ye=5Lr77E^{`&FKinL|p zN8?nJKUtb%XTf2^=5%xR<1NEg7_%lX!Mun@$eWnN7)3R>kNfb%ul6%*%E1+$?pOld zLI56dnd}C83zp%pghP~U!Z0!6!-_W~VJ+C7x}0!tM*>Er!CK}>Q>MvCX-`=syaPJc z4I|BICngl`eGtFne8f=|QwO|BF0@>nlkkGKHj;!xfhC87Qo<8K0m2Row`pvePJA`- z|FkIB3DCj0pOX_?NWpQ^V^MR<&W;mA*htDu;*4o!^B%N0(i96F2mIwlsY?}CRKJ?_ z)6&7&Wq4t`ONjy{$8UC)(kf;QHjDHfKSnzaJ-tMH!Sfvpq07?W(^zUPe=|M2ASFoA zGJzJMYtr<{U<({W>Pl-QlSubf!mK|~IgZ`dj$lLRLw?NdgvUVPkYnFSSi(VhFunUN zR(emU%Euh$#mq_nWW6I^hfJHW*|V>%vd*}xSr+m6L^*;|%EeSH@p8n;lvRdJjX4m_ zGj3dbQxzM~YneSwv8H40wwIRX6u~!7l(T?L&UmA9J`A;!6OUmi!z2vT+hft7EEmWy zOPq^9AKZnDi@Adr!AG7w7w)UpIwd2lh~ro^N}~0+aYGLKptItj8SX-~M~HpQ>EDsM zU^Yd?!imH}nW|8t_PA7ebon4Vj?n}ypzpyNB7V}i0^)ryCXX_BF)Verh;qlk9JD;oc5#w)QeP}DF$Vd4nT9E55xwZ$}Lni_BF zB0Xlfw#7NiyQ|6XEYEMp7;}{d)w-XS7TVePdLMCo}7gK+f*nCPPXP=9h5)h8jRM}!C&9;ZKS*jml1gSr6o0?w9%4a3Gj zY!eJ!(C?tSP$eD!8c8c6+G6U0tJHB5mrVfhk*d%tIjDE4+TqLE+u80{2iZKb_XB`j zh9^Iy8=QkhoW7cXGi;d%;NuCi^A#%$vmoj(vE49b!4Cweh0~*E;Vbym8jq70kmSOW zMec4w&u|nb(SV!=kOoWyX-dUJKtw5f>Ox`8@h%%x1VW^`28#-Vz|R6)O&}fZXj|q4 z!@@@FgXP3>q-EH(vnv#{IDf21oazt`#S6o|uiCWJ)a{;u`H;OPJLWK|1Lkg+k2tc# z-awQgVJ50EiYML8ZZc(=0gC`BU7^}eqn&ZD9 zW5^^b5B|c&k`lI;tnjIhyRc@RPavY)Wi#1}!K#z0Sy~cBr0$L_ltWMIDr>SGrv4~z zbK4=hLL@@yBsP{T;KW{|K2ZEHJi)|eELJpXk@&lN;1PuQ3ZHNGEH3PZc)xRy%h#HV zgSi>2qNWHegB=!Q0z3r5b>J7@aW1N{9_vjJE0_$gR0Vrn*6>PMGEsGw%y+7Nk1y*` zR7Mn3_K=((una{)s3e4l!s6|wiv@kw=<;GI_QNbGrW$tq>~4q_6d-ge@#=6N7Z^~X zp@YK^WR20siY~M-tQ;_&a9WK<$({@d)O+pglkVcANma7hMf;{KS*>QWGh?$fo>+qV!^%>Z5BP;#q5EOxaMz5 zx1i%f^u@-Dn50Yhl2GlmTN0 zt!Gw%Ng>3%&A4K3?E`!#9|_$7F+_C7Nsd#LkM$c%2oS&D%Fe}kC1;;BaPi#G)a$)nsfu6NfPK_W?EPQDEdP61%*A%VO zVv$PIGh1*0dQ(@JTZWrSG?DtF)HiJ*a)BcZ#!&FMZVc3%R>E-=gq0VIsnZumuWtv+ z(_|Mye`Y%5z%aro5mkjXk9jHN^uR{z5gJ{w-kEC}n+LQ3FV?UsP)f21z$i(uXUMcL zn)nXdm8C47GyI1emQ5^5Q#2cGOJx-M2H+ZYjVwYO7_gV|VE)9&%_g5Mz9!t=fB$mM zHep4r!obMx2SX1Qau1yttbhv!JHK09d|;`?gJOrG86`_}Xl!t((Jbb$209693i8_J z6|-_OerLMkHH#+aLMcjSUn9s}J=Q=%&=Hvcp_PU8jlj5K4TW;3ntmGeSPWJ~3nVHc zDlZ!y>@pyZp+`Z%B*G|L(kcn**|A6nJuHPxRem*&GkqobKcoUd~5;P2p1#DEKqvbc{v^-Zr<|} z&@wg3M%5q5VfEhL8!$4aZl)ID+0t~;7F#r!U{h3_Ug9kFq%< zphmM~1yP=e8i{R;xzZy1>nmiEaD8D65>hNs=J3KYV9~YVDN;*D-JLY*vvuR38t}ZR zK$w*PcnD27!TP+gQn_Rsk+d^{HBVKt*Hk1^mJCclgFW;<4Raj5lhY%&2ZI~xJYXJ9 zodq!Anq zC6zIu$Z8T08^UJcwoO&2xgw-1(6AlDUzN)3 zF{>cS6PgC*l{__Lgr#nm7HVOd4%tHGlnVOKwN(|+r_sKSGrQYUeOI+pLtnHRq&k8E z4apURjf^V-*0b%$7SG-V=ukK$hi0@UW_$R?g^rqITDbBE8VMvPB#IQAbDGyruW3c> zDZJGYR<#4iVtOZjW2-h7&cYCy)g}qX$r13hZlh76eVLn6fBh@WPCMLWpvS4II)? zj>?4Ci_zvKgr`2g0>5HfmUYY+d+MUi(Dn9oMISWEI@qz^as)xVb}x!J;2vo6IJApY zQNu81Viu{K$8L=S2+nP*U7UfT3Buth@n6{``#cV8X1i1DA zkd`>6WiEZV(%sM&{dA?8^96v7RHd30eTG^;)-q49nF7ffrDpjBZ_2I>>>A!$kbycq z@b1D|X06m|u#G10!!(MdX`>eGeyKZW%k7;&0#npllSx0#SINvXP*waovt3bDq^iaR z^b%VJVclr}M69n6u@hmS#*8X%GL3Q^1KvOa1OR{o8v>YJoV^5H%am^bbX-j+Urc&J zujk>6k&|M^qo{ElNkRvV|CqUb(4!6TMCzhPzO?j2JKLjFr8Zgh1;7O6hCP5x(|878 zOknC{=K|0YkhQ6lp!kT=1iT0mN>nWZ9iU$dg&toMAj~u8f0oL{yn#uQ$lA;(fM-E7 zab%5glJiBnTA69HD@t9c37$w-rsmHx)kb#C%z5ymvqm!3SZ|p=Ad1F0jgw_l3AQLh zf%Sq2lPC?W_skSxtU{^dm{)ub&9e!8HeCcJ6T<{Y-9b4=fg74C?i5OdsVBt=S7Di8QG)bmzwH9#3G`+RvU~@_8dJHz2B#Tmi zl&U*+#bC9s>+%&D@Nfn^oBM4)8SrohJe&a!XTZZm-OGT7TiQBOBCeY(jcFj!8SrohJe&a!Ye;*G zlj#h2xEW$O10K$RhY!YdXTZZ6^pOD%H-{}}z{45v@B_HzrbF;Hg+s`IhyOilIRhTX z-zozh&VYwA;Nc8-xDnspVvCjm54V6VXTZZ5@Ni2|cLqG10T2IM+;RpyoB^+;oO%_E&!8x_B)F*fD6^{P%r!({7+jkf>({S68{r(1kjblx)S|J| z`>U_UOz)w_Pv%t~ET2A9U3J*>ZmRf#RRh%b=dCJHKa@`|P~Pf?d#JwU(|!N_v&Og! zR@rPTLo<4+jZ;>&QSV>0s!)A*;VOIQ>hnTV&W)TkY1;Wy2vMZ+j-1{{MGv1oP<5ZO zs+$TQG2O22y>L};)%}R+-EC*#Gg8}MO}l8-8UNF~RQ;4y4JtH^tUsQ%s)u@T{Pf<| z%UJJHqAosnMmLpvG4K1w@zeXMZWpiWs_wmbRZo?F)b!qJ+4$*Q)$XIFAM!uWW!`fa zuj20(lD>u$KwktPw;))3*(d*Qx1b3U z4Ngcx;2^SBy`I>8Jwv6vSF(xCld)0`CxXZ&;lu7cK&)-y-@l zz0V=Vak=Y$035Zv{5jucpn_W0jAOjB2;BZzzyUFLeoRI$DzCs`-i}f5T zJ1BvwaIqnl7(R@|An=l*AI?kh>N8!S>VCLMc==M4=`y*r(v)ek$F5(q?JTv|dv`lK z9>^hF-pgvjZpf4ZI31Va0FRMNsBV3YBo9!^^Akjd5V^VWf%3wAi(4!n%+T5ek{<$J z0Q6#bX@%kOfF4c!*YTlrLllFnm__iArbLV2A$5V~SLFUMH(SmAX=z*a<&SsS-9p3T zFLgC%dw>y<*kZ7Y(#fDcgf<&K8))bQVQAcZNoTz@W$-w|FO!2-b2p>dR0e1xS;xMo<7cwP4 zD=O?aRW4X5AY;-DBqo!rZ~;K`>GOLa$1Q{14NqRkVxTsHS;${wK!gEnbGnjEzKWEE zYHBQ}I%w1tiRU??K1#jKhn=wW5N-$`LdYIqk_x$@*T=OJ_f8@tm05i+&FUnsm5p9{ zshh0@iF4|n8fxLwm!|%7D6D%gnc2gh=BrG?ho-o5zW#R~n_2cU%U)*LYgEWG%U;UG zHnZ%t>6>x|$}D>aX)FJCEqjL;ea^poVSC#H=GOV_`iC&wlwW=K;nv3e$(Z%SW52_2 zBir`^WAu!>2Nkq>pp9Cyu3cB-ie+~XIYdPszprH8t6T3jUfp_+pFQi=yG!N`Y`Di5 z*l=(8yXrvVo)Tl>|GwX6J}6Mf&)D5j?LGSb3v6}9@yFc%QCs!c z#0i!O43kCA-)$;*`n%mdOcU4#r`h z3tw3KZl2mU8nJI|?TLNVJ>yBcV*lF5+N&x15vTnu;(6yI9@l2wbpiFjdc+?_uj|}F z{ZxxMY`lo0gAbP&l_#$2pRGQc9;)t=rElB1%Uj+mQMTd)*x))a*0Yml%5vtox>q9b*v6zpttaR(!u3!u6W4pEw!> zQ-b7`FaA(SN6C_E&x(e%LDSna9u!OG|MLcQ({HYYnv zQ+7~|X|v&!v}J2HrtR;o&$YwL3@xwFOY?pN@+N#X#9tmZWKfX$lH~n?8d%W6yctB? zM6-g+tcJR02L_d!Kj1XU&P+BYtR+r}LD`l=3@R~RiCqPa8Vt~E>%)Y~6ISYU#ai}} zG^IA3rS9yspy^%R-UFiw(zu1Q&%A&@I3Xkc|9CyKB!u`KECNZHS?eAkIjs*%m~Yju!_?s zO*rAmamP>kUmam*s$ZX;pJQBKwBg2Xwk@K16{!)P4eNiey4ZVfes?2KwjrxjZS0bt zXH-;exU`3wd-}SO#^0~p(Cc?ABeyTxovXI*c&PKdORn8uTypKkcR#RgGkD!2es7lZ z-kJIce~dw+#^3Awy}{pK`FqoNXX;yHA`Y0NiL^wFVJx)(8Za871BAn{^Adw10M(dQ zThgY|YRk{@w>TCf>NX)F!UPP09G^uFiz)Gc2rq+n0h6&ACpb+aD^BpK@4t0xky_ej zYl+drwsl5pHLx4vlWn%X-f_h~qz7~5$C?)qkMAa8{ws+43btO_+uXm~n||=|{)GDz87xo+g#5ziE0;mH zFKoTOwR)`pG5E^Xuksy1f}O$+42d&KTNN~gguUS0#zhPa!nFsiN==(eS8BVRTkp54 z7oQ{Z*iTZV<7vbzeigCeSHxbnZTGgeR}r@@;`9)%1D&D9>xaRT$Wlazm!N|j80whD zCa#AFjuucGb4_cA|B;IIIj2_KM&$JUFC{VgkynCTUMM(GiE2CqHjM;49P2hC)U#KS&d(t&;eUy8Nyi{GHgt(_ zVscJY6E?$9Ek1SG!?r%DN>(A)EO**+b-W+W9U{bO@PE)E55LxKh2LGn3G|-#@Fj7+mYd)tq0U^oeXdzt98G4BG zAql-=#ueSzZWb7_)U%5Ov`C&Wq-mfQcFQz9v+Q8ccw!W$s5yn$uDZ&B`Ou$zIQ#g&q{wc(O^%D5! zgQbvg63v8Z0={60UPA~rHYR`+7@|1{%n}0+;$#Tu+1|4AfDe+6CsFPs2muFSP{?+( zLMrmou=K*+OSCt*w3&Kq0udhMs69x$B7^Win{AN6rzlh%7Fpp=Tc!??kUZHNXb<|` zU=GT{L`#*>(9m}aEjQad7`};OXALus#3kTCH6g*NQ%>4xK39Z8SE1hw_=FL*aMSE% z#Qq^VYoMA*PGX-!IL#iJkz4Ka5bcPdxXohMr7KyFG)J0(3BfmS+qhP4x2pHe>jB$s zS@Xe0;5JyhF(j~cq!EGywSnwb;-0fuJ3Z#iZbc19v-CD2-AvO`Ey5tA>76Z(^9Y8O zs`?s+aRS+(t{p?HbHp~|0xqrwJ^*ES+zJduOa4v&$4L<7p_q9LvLM0 z6fI&Ru|Fo>NCakbs7#ZHRWG6KT~Nmcp`HceQY8UQ!BRlTMnH1S;NQsIp1Rney8WbW zC)v{!Yx3P5dh)i;MVt`}1c&$s0y}caFeAL9lOSC#IBTtFM(9XP`c8}mE{OC9KETeD z7Y@`&h`MSsNJQN?%L!ly=d2g9TRGL0NZTCpO7up)9im^iwfdP622vO7aj6qOU+-cL zN>MP;AtcO}-OI3M;*ubotU?4#A)d4VUP1(a^7x$1C%%x^$;`rZ!fG5OFa;qZBhc#y zi02c8`C5lcsC#`WOPmVgQcL6nreW6PAaUBvc<<@-Mm;B*;YoxV zI7KtH2*(OHc&gs%J9uGprmi>%D{h7-N%K`E<%=el4x>m#d;q8jG7~_1tzl~b9!Z$M zX&)0eP$Zg(n4AJIi4)|<3FM6)D-o($Ov389`@B-H@4U|}I@OBIajKz7iq ziMwtF@HXj~(-dt2#M70G=H*hi&e}Gni1@WIdt;f!R0tBUCLj?=#;n zyKsL4^CG4ghCqf9T=g`YF!1}_fcwnls^aMR53{hjy~Mc#V8kL$TqdSZqLV;u??=rJ zS2qSSy3giFT{3BPP?B^-69CPx&>?fxn}cTNjU+Cst9hhxA8L%bD$ zZ+;>pLS-H?ClfRFRO&5Nb4@aJWBFSIXid{WTSPKp2a&1*{mB7Wl={omdw0$qq?&*# zm9^WB&1~T^Te!>?uF<%V*}|pRG-kGNnJwJx%oZ-Qg-h-oGh4W3@qyB8b~0Ny3H6uR z!ezE_nJwJE?t%a7E!-ikR&+Iv>{WklmhC|kEBJkJ{lMRQ46NR{ZFetY#<2R>kv6Y7 zaaw)14sM6bGpfuv$`w%8EUdqxH9-Q@FAM8`P0)^ zcX-{UZn^Ept&8xhUtL;%TBn1OtI*>5XXRDesk5)HFX@sj(d~2$cDbGExXbG&{6F(0 zPI!zrEZ;5RmU0iCCMf_Qe8cx{`LQbCK{)nnN?r)U$oQs z+4X0)Xs1VJ*MIjft@GHN`m_F@`H~ZqbKLYCwf=_s8+sPE{lgzdjQH1a&@_e&#!xHU z|3c&Z&&SUv|I#ju8oxSYVSVTS7d~X(q9yhGy=^R7^0zZ*+n!RN=SH8j#Z+;Aw4Zt< zFM5XZxT5`+dEYNoXXZzbQr~-{{Z;K*(LQQ#ezaV5@5bdhGooG9AG>mSdyvbUAL`XZ zO~HDEZyO4ur>f_iNVzK;dZK3*FuP!IIx#?L*u-0-(pZ#Ae7m+b~5FYl4d zHThg_=^F2BhsBujOwQLKAmW%o*O{AUnHw9o=fyoM-1e0Wmhie?Mn1k&&%aZ`SzV} zAKhDx9YnbmrBT0nW)L@WrS)|CcuTnaU^tgE+t0{St4rvUCywN@&*11;>J^c08yu}t z8>B)VL!y&Z+i^%oKYL=KdTI!n-d4b+uC>5Wvbst7<84Eu=cyl$LORfSd%g+`HE1{)3?IW~?QnYGmC`$&JN5KVs_O`DTq7+!V+5};)PdAgL%F5o z*I&w=?%B~z&6CR->6tefRB_)9ySu20*~he#k8Y>(MsoM`UMY9=r+y%p>-CFErl+~Ne3+4J_Lrz! z9_r-Tv;VQZNS*45j#cr#-2FLmae>Hg%z7&tqfNmxq%0yIx$LFoy1P zv&?B@-`R178a9?2$Bg1~(b(urb%xYXX?gT2wMTw?`1LD0s^8l3YP-rwcT0DE8*^B6 znVLHg>73Jd7O0MgbK^>x;-(xPy;B{K{xb52=ncvt-;q0e=U7#6BuQSC5r6fO(VJAZ zqUG(etcA<$3=QWq!&cmDbhBPJ{Rd7krs;dnMk*Y^n*yd zMQZ&e(v2eJigceyeMS0Iq@f}$70EBsJfzu^j}-Am`SC=N9vA5xkyeOwfk-cibfrj- ziFCb4Z;G^3r0YalEz+GLtrh7Nk)9OkHIZHs>3xx+A}tVUuSn0#7V#?)SBvzsNQOvR zUm-myQa6$Ih*T`nUqmVusa~W*MEXReqeW^E=~R)TB2|g>x=2$+`cR}9A}tc>#;>wx z|6%ev5m(BO?}~J{NZUo)DAL;^JuA}9BE2Ef^CC5f^s-1Fij)xP83~SLiPZ6H zq?IBSiu8p@14UXT(rmYgJ475S((NK0FVejtoi5VTBGrhrT%=1ynlI8Ek^Uyq%_1!m z=~j_G66t=C;vzjJ(pr(87wKb>wu-c=&1}S7BHkcBek#%~k-it{DUn+3L)t4+7m*$j zsgFo^i!?-}jUxF(+91*qBHbZUg-Gv+bhb#ZiZofIT9K|mnmzd*5wDXUmx#1Pq%|Vl zDbiMv9u`T7^n^$ci1e~Zbt3&uq`O4gBhvLEeJRpgBK;)N6C$| zw~07Hqz6SBg>?DCHkVDUzI6G_<%1`q*qy}^+wS=2hLsn^2B;m!M>pDH#)1jat86Ox z;`XUp(_3&tbfT)P-=3%H?%&?k_~nG?Oq*QitKENV=%~)T~xe1M?L&(U8xa2C%V}Bam?`v{bL_hK0PM~SCH); zjK?aY&ziSa{?L$PEUJqBWTmb+$x3Z(2}gHXKRSjbvv5Ayy0f}7kmz81SrdIVd3$Pf z$jX;n_f+*;>N*&?=SN?$ZtN+GSw%0tr%j&WxF8Bakbcu?8xlG9ceyCqN?#g|snH&$ zsJ0X3r>|>1!;$H2R+P_)q*qo3JShg+gkMM*zXOf5r5)j4-$XB(YwioTo7X@UH9$I0cz46*;$I)9gGP# zH@?l{F3Bt$D|31qlWL>&$)|Y_#e1|0sqvzA3K!qxTy zx>Zu2pQxr@M2FIS{QVWtD{OL|ujH%M&mVQ_tZF;G(^jqC+o_vzhmxmH@5|Fo8;<$6 zFif`ClUe+Hi=^Q?Up@N;#SYuED_2c>B(IAaJ$+{fW8H1ho2=XVt@Lfjo1HtW{cm;7 zR<)Py=wMubNAw9Zjd8;2=#N(Nb57xflF75x*qxob8ntVpFaOK!X=A!}RTX93vdvC< z-`&wo|61a4xm}D^_clJ=^e%J$v9rC}vM{%uam)SDH}!*k)#%o-Y?Z5W;ewl6kfrK3 z&?Zkl7=6^rcS>>cLwUNB8b3ImXKZ>n`jmB>k3h}&DYw0`eqA(X{V45dtlkj)*18^h zJiTngBhi0a*ZW4(&iZr99bG!9jqbee>d>=dc}9oFqOVzLq&pe=9*_QDT{pc4HJYuQ zXXUju>`yd)wKf`x#(0&EZ!15#u8^dADw222VRI?YKe1Sihg5>H@qSVUjK53Pc7~q^QiLrc5P*Y zJ3!5UEqb&%;XAAMsPA5jzM_7K9}FVAgdCVR-Zb(?&e{9-)xwoK}qpQO(=ZJgIdqZ3!YlI*hfSagJq%Y5UUc=T*j zdMm+)@*7m6+mpX--VvQ_-aTYj^gL5~{GI6ersRA#da)_}We=lB=QsMj=!K^A)ceth zDY-u6ZS~zTA4eyc(jA{fFE^zDpYgi-?uO5k(x@+!(#u~(=b3lU*%!Uml>WXyI^C3J z|2;axlsbLKye7FQK7WMq()ThOU*C3T^KsklN5*Y!?oO+bZ}>6V(?^^`k*cL zXPaCzyH?S=8AYs<`g+PCF^AgnGlflT8)F-ye=HwIcOH`!Yt_oUcDT7dyM1h~b?rQl z>t8#@nD8Y1%8%oHRPL$W+pFAPc6L@9CU?&^dUcL5W_4~`3S)x}M{bO1TVGccF`&Ne z73&LQVfPNoae4PH#u@psiOn)sWZqZJ>CwHt@kO`TLoJJ`ThhIUqJ%u-+a9r}&ASH0 zbg{CK5)4YX(z@PTnCP?ez|Ib8Z2#_AYV=g5wsn1DH(T!`Un2$fQYZB8kz>rX$5>?b zn@VNLl+#OXarIysUmeXeRu#t%v9j%OEQ`wi{>e8`cU}?gsLJybd1}s|dlVS^2gY8v zGTL`F8U3{|)!IBa`+#cY$k^4=bW#&ttu_gatC{e?%?jg56z zd!MB2E^GM@Ip!JH4UeHm==a-O78|4%*Y#*;%r1?c`fqaVs&c*EJE;+OZSP?8cg2>q z%zLF5Wx@GrkDN`OWREb&)YD3xa%ya9Gjr8#ema!nkFfzpRv>mUv)t*i{AS{Wn` z?d;NQRpeaU!Ppv%Ei%&>^sn}<%;d>-@2)DZF6gQ%TkY!HY!=^jXzXz-U-@){Pe(t} z<>NA=a9f-Ix<*ci*c&J$IzDNXm4OAETGE>mM2jE|0wZL^Z#%GXi- zb6jk&WYfp!enKp6mHkUaY^7C}UJiI++VWgiqDWQvcbq78zV2%Ksj;JNj~c~)j4iR* z9#zku9y>xkx1+GVs{B)4mfG>-j*dp&X|WC5Gq_jOiZn~UjEz!z56f$>CT%J#Uila+ z-o&$FTjcS@vF&}-l=1N*^S=G*!a}vbxJ$N9G~=9DwM|WbZ2MHxa22kk34eRS(xO#; zWo)DE4da@SObz9KqqVU&_EK}INmcoI%$kh8td`d1I$vphhjlVr%^B3ISgoz^nQc5A ziPc%RldYSla+mh%sVa+mbv2j$4d=$*GSjTs7Vl?lJU>>_N?lhtxH@)(^*mXfY;2wp`@$-!(=}XonH~Gm%7E*j zmGq+F$)fgj+Lfj1wo}xLb7L=APtJ-lYJb@fx0|o?)}B}oqty*Dlym(JO;1XW5@ zdztY(ZobSn+#aoRyXPtH?R|yE-ZRn361G z|Lw6I*6qCoywRN8T|-qx>v(VD*wqI=Sh1*2z|`SZu8E;b=`0r?kStg9ajVt$($^Dr zOXcb}dYB$yy^&5t#zWMepB(McnPpTwAQh?e82)_YYc1}J`bm|V169S(h18(T0B3H9-EH1AavzEL=?o-Px;ZQQ z6gkZ<_tIZtZ<~n}J!YudyQi;LEgl`uHwrh&hwEo}`~+n$ct1zg&87?J?OXT>-B%^c z+@E={?wBICu1iH-b}$}&N>*C^G(B~wsyw^MtM*3ed2OCO_(4h>sP?xi$}!3}>w!X+ z#)#)*!>t$Ie>k7U3lCBiSM_b9_CG)#^)KrFCxw&p1XUj|$};Ggw4p9?e+kd%jQ8#- zYF?Koy(V?pa6v3N!O2m>%Wp8j-KgGvE!y93{WUhg#>F4sjD2mp(HQqutX(TE*W9_Y ztD3Ye_8z|-Rv-J#roLaBm?|d~)oRiPR!_YH@_H)rBxhfvB%bjIFt7=b99-S+-N8E#n@PKoo`I~Ciayjp7U+2xRw4@4ZR6Caeq_-x z)SG@a$ATg4RNa8y+2)+FEi3+vnP%lTtonO977tSU-x$nk{5;=`-auX*(1K%x}(>v@|XLSHJhs|3gh%#dC(ZrE6!Z4 z^I!=ZYSi_KceAeLNn?LeJkPu~x)#UBTetKSv2j|z!Obe|o&IsQ=Q^i~WwfWh-J;U^ z4vNzub-@gICfXLsHx6VH)hm`78fQw@DVYI%2bKF2A5-@fpE+=3{4*P;hZy*#s3}F! zZfc2(Dt!F-=m6taSA2m@#5}d{@VHy;eXD;z<4aE*Ly!LPpA~5T^;dQ)QB!xp3Z-Y@ zB47MA>vk7~$?czq$AfDB*#pc0Z?1F019672WU*;f9DAP5OfMDtCl45EFcoianT7G( znD~d*k0Zv#$EnWq`gAi#UysA$jDN|);4Md(*%>4nVC7sF+n!^fes#8P-F!^ESF>B9 znFUwQ9?(wh{mB8>nXFOWkC)!7-)sMwG->X{c;8kk`z$tuoU5Lp`kuXWfYIy3I64_3 z8;NGU8>Vu%4D6vC9&6P%tL&|_ zWdP|kzwM9rRh3T<9H90LEN(tHf0!gATc=4jq<&KpMw!`0RvlD~;S9(3naK@jjr9Mf z+_%IA4pei7#tV$~=gE+kJI2h(an!ocI$!TPZ&!)AuH$Z9TfU zU22?qWgPv}e1_G-sJuFk0Zm_1&{4+58S#&-YdytIyQ^eKvo*it>^Pf8otzbkj&e=B zt@Uy`xqgMI*T!=cD}BCk)7r!m-W_rDC|w5o04t|y zJ&UdJzIk<=RZVAi*P6yWno`OdWUvOY0nv$=gS}QkT5EH@FvM-3QlU8MGPwUI)ii4! z`>?dAzN4pT{T*9|_iL_FtymX7*2+?L5{B#~tZP|ASB3`nQ?mySZLeOQ*N|r{do<1t zZ*WgmAAl7XsMWobtIv0j#cyC;>dhjua8sP6T#HXW5kJ8adp#XL#S-T{8?Us)zi*CT zWQiBQ5D%N8;<1o&z7+4MR?qHZ*>WQ<#}ifo6JCv*XgzbYD(70WYxjKOZ}9V@Rz zJ7s-tx?dR`dT6tG_Uzqp*`i1V9J(i7-Ab*Q#S{zPq*`sbHfd>F`FnF;lYQ^$|v!;Feg<81x))6UijwmF3(x*C^% z9zW4a$&Vw|wEiQy7(Kp>92*)s4t9)*g`gP2XwKwaItz<8LNTvR;tS`P59qM~qzg{fGi% zTH6GjKpwMx>Y|)&OWPZ(vl1BBb#{D~r0t?6cE&h#!gnLG)Qr#L9gKI{Czy+L68T)k z=MK>6N?Z^Ko zP^G8t>bS|?cvl~+d{LO_wbDH@&*)s7U;)vOC2fIuNxSiw8#aivXt`ZcyKkYNRC;b@AS{XI>ucbGqpPE57Qb-vQ4PWAUC z3e@7yTv=-U2d-@6p)rZa%-hDa@&wDCPDyDUjfsaRKC!OLFKK9F9Cu`b@uTlkGlNv; zhdrH*GmlCz-1LuB@gQ~9k?vgO_%zYMxa8=>ChHF0I>@LzHi3mqQW|{gH_abfd>Ri` ze$7MIPE7p8x+CwPc!%C<<0Lm@u8_vLp(635b(^^iGvEc>sqa(9e{S+*8H-Mm@urL5 zWiT!2_tGCT<&TLEtm|Yo^j7;Wb$3*6{z$oZo|f2XJ;_Pr*Gcg#8BjVC-TP*2NOV?< z`?)(A3(rX~^XfaKAEX@f+&RXbmC`7>c)mDUJRdtqm7lY#ooao@tUTk<@WItmSChc9 zrE}7sRJqEXuZHX`%TXKGxUI;dYy@nowBWBJ~8cO=$Zw*^F?-ZYZk`O7;KYy$OzdK8yd@=W9i zrqFh45|3DSbVtrT&(lfW{Q7KiyE{2#N3TXrEVHeVQubBY_J}bu4XXr zuoKWle03OwUvNgExAD~j$vHvka>>1|@sEcR2W;veRZM6ATnp8VbxdeyN0JlTr|S~f zcDOc=W()=;TMm6a%|R9J-4o=~+@lKByB`I!)UM;PE&lD11f~*6W3bA!Yh@;KyS=yV<$UO~;U7uDB%bx&3IL6BkgWCBFao=Ln{5^g(Dt*r#mbJ8=3jcQIP z*2TzsHgSPXty#gTHt^fYYRbxn0mfCEW!6VzynY|cF?v5Qub{7|IvU9R>rvf}$`?h= z&_8Zm15l;n&kg9|FDHJoeq^Vaqj<8Pnl#{$UaEXaWtMv5CpOzJzAB5HesJHnJgC#u z{XD9(a{e+Z+j#4BX(qGq1Du2D+gpAaJy>0_j6MJNf0Y?Q-_|>7eY^a{(EzyL9Nj^^ zwxurL7`!!sPA_Rzj*90Po$C{Qtk;*%F>|b#vdf|Nw%(Cv-1@f!r@uPK{Tq_+OpZ+9 ztv>2wmikFdmJ*#tcE`rnMB-*E%gu#k$pq0!s-;M6+|M^Wyd!auO?|PP4HYQnYW3U- z%qyMWNwCX8#D4HYqQuy|TRND&-rI{jzW9WtW8XvX^j7ni@LJh>r5@zA0F&hI0OP0k z5_dIa;Zl{ykLhB3`GL#|I-h;xXs!B>q&v#BvFDRSRx9%s4d+s4HjM3{W*qCzR?l^! z%OCl9!myqM?9@}`e$Ia?F4@)AIO0p0MRXqauM=&oJa}!F8r!El+qh`IOu@QLY#}|> zmaE3}H0Jz0vD5mIf_b~k$K)DJttdn~Cm#RJ5*PoN_{BZI@Jj5^pFXiR;rzu0l-7;Jm38&DMV zkNP_$W5d(7fw`wC<%~b?>Zl&BAmSh{P(0|X`gU?)qLTbHCRgn(IXv4q zwpRoD>3{ch#dvOC(5JClq*oee7Bw*8>vE~kBCA|IxQDqLN|pVA!#k@zxB9VW$nx`# zeh1gxoM#UoY;+jdzyhF)9R4i>k~Ikvz4;2A7;%!($|H`*Yqr$Q9nz3&aZF!1#zn&# z`dg1^^ArQHlUn@75rJmUv@UHx1<=`YCS_);HjEtGQ}uO^rOPkp{U$gMe!q&WvBhem z>&PsFm5+_1e)`>4G1alsby8an8|yY3__nf!WDnJoi2nGoRY!7S?)GFGtk3^i>E+I` zIm&+0Sb&a!##+^lySJLRns&z69;UuzKcoRYP|7yw-=O34Ye)xPdEwZ6gT>Igz4D9( z?A4cy?WW$i4!A_bYeZ?99N9ZHdqFk{q&Ezw{KiO7PIYa?#vw5*v0fg5r6D=1HO&aQb9dPd=N}tDTIdHSoh7r@++AIbp{F&lEXa?W&S?0-x}95+$WbG! z8tjJqtj65-zQYS1dbCxT;XS7Tl}qQA{ARmRUfDQ{NFG=}8`x#Hcvs5pW}F&Mma8;0 z6#d`&ii*7PZHzN&8nEE%2OD2TInErPrRM$08Q`VoB?q-$5>(y5@g0q+lN)=Q)Yi&} zkLs+RIhWKcE^KHv*OjP^|2V3P>U_^pS!(b3Y`*TE(trY^%NlzL&BOMmt1*3A!(YrF z4Sq~^aJ}vxavl{^aajY~4E>Ny76z+$a`BjSWn-U}nlb1N*gADmP6Be2etz+chR?0% zlhY!T%|DK6Z#+FqW~um4cJE2oop$P!YZ{JLhm1&W;kR7Vz>>%{=0(AFGO2c2`Rmbx zRON@+U`*#qchz^bqEz|e(cRS4QO9&q<#+$tI-^~GeKL)Kjf5G}cgOa*>X{oU=FZj0 zL*&5=q!_OA|39|AIv}d_`+LV?P(tiP>{jfqb*;s~#zJfzyITxY1`7j@Ep{sgUQrNO z(Ov9j<_3!0v94Y3=Q(%gD!=dh&zyTc&w2Vh=c#+o5KanmNT(L1;$VS!-c=}sPwOxa9Cr)#g`}mqv zEa1TNE7dp;{q!I=_Thd7sEvfhHmwtRoZW#W@Rd^$n!f?Dm+i#c2yZr|;-C?aUKIES zU3Kz?>O((H`sJfn;+;QrQ!3_U5iFt8aaqNZP>Q@1^}sK`^nGjUGe>kB?mMD~k7-*- zYP!Q2lhs}F*_HapA<5(FRU^DNg)~Y?9rmPR2~>MO3RiJos)aTjbk-_%Uuu|1@VN+= zq&cLZ1EL7b^BZDIqlE=zo_8=`>bCcw=$!folQvH;E)j$ zq=d5J^pNA=63UJI&ZSnu3A=(fqE3rp$01^>l3t%l#T^y%m>=Az$z7zLGiQfFQty9+ zDf&Ml;V0V{l!DKtVk6EWJRVVB5Ar|SzBuJ<)4^5Rdm;6fBUsF5(#A`v*zRRaNV;=H z^fZIeguLYYPb%(ihIhy&6}g^@qhJo<)hT+#LyEd7>>z_|?a=+M6y36YE-5ip%zqrh z*4(?T%~guFr{ai>K~_W5zc2;m@-HHtQ-tx?#lIroobUP-q0!m>z4W7)w_0i=N9Llj zB{Vin7mJJLkrr(x!*0TO5*H!JNSz^HJ1&H7_Na zF;>IFgyDRW8smtAY0!-p-Bn9VYoDb)bb!3#-|#{hg>7qbTE-s@YOhk;Q`AQ1L0N~_ zsZ&gXcN|)Od7D~@d>(c5l05$v6O0IvUcXJn0+@xcrOZP zFq7@3fTK1;6@XNi)GW3HfuuD|EkcVj*-DZBw9a^;G+SpEvMk4L^-DGz-i_N&)$XL0 zmadp>j|77k+#yt!jrIAd2`r~aaeO_SmlC9DWOnjGa;AkQYCjA%KGs*S{a{Q z_M~Eo&IX?0X$!{fcB11XlAvH7lsKnLeyNd{4XVc>Y|Wp&Q!zsXbwbHc$qH~8eY!Qu-Z@6YC-XD`)4bX7ZV$Nd<9V$wcy~!+q>kEFy~-AaWKxVeg+qku9P=I z{!hfEsomTqxnjn2x$%BPDY9~^1m zC@Y5q{e0`-4b7ma4grPeboy>DsegN+=pNND(coj^0@T(Yqw-Zf$BQh|aev!%li(d^ zM*f|I@-UAVfze1`)I8K-Uw}KkwgzBfAST8gT|`r`3|oLPT`{J);6#B=kO%E<>(WC~XHqp7*w4c8^NG`RfM@{4I29 zpbek9ymY>i)26TOEFHAL_Tba#JhUPR)tqm)m!j`MwrJ`h+dZZDezxH_KKp?qDE?@A z+W@36DwA`$kZ+(3mK8jX!UhRd5s&&c&%t4~Vl?JKkL(iG$G?V12tg0CB)9(FLHL0A zV5y#2smX^PF4D{4Htc~pnBQtvN7`VRndiG1k8vX5Z;;E-4diQI0smGSjIkFqxj0AyehAo@RZqZkuEiM^qvmAtONs zuk|y}S7X{V8y4Hli!WWIA2V!NO*0=Ijt$JdLAcFFzF0HY?`5W0N>3MB_6>uzf3O&b z|3}cbW3Sv)-vhUebLZHw^zCyJ?_uDR^dj_r9y+8-9L|>dhuA_*;?awKJP?b%a2w2M zOfMgbI)F7}>jk38IG9%(KZEE$Yo3bkSH&B55TxJiA(Y&bGx{-9WgCx+XylmDz< zg{aByUfHFX#Ww6TIhglFoEn0&P}F|xs#2C>4&q?xV7P6ci8?OFK>7LQ{OuJeb@*oI zXz^QVn{5(&E=gNu!z*+Ah&K$&>5u&O9L?TqgDF20SXJ7%M(DK=;w5BZvX!7KE*e5( zra0b6y}nM2&&Urr!Q;={V>ckjO`n|aMU>uX!|EM;E-8AG4Tl-x@t16(4hEH@)zvWj z*4ZKw+SC*y;Q#kozwb7r>)Xn)A)@u$Y|*B5QoHRU`Bwp$2KkHlRy!dT-vcip9oZ?W zibpTvRh|EC8(ytvo{wr#$zvv}?2qQs%e`N;R3~Rkl|CQ_6L`l6>J^W^dA)IfkNzsg zyMv;zo<1g|`? zB#+LV=fr4bzVb<|rhJ$GJ(!4HE{7^99zD zYr-NhkN1LdNc(OWd5TvLB<+@Mw~5YlKwt6lFuNU<`Lhf1;N{^YyKS;b@VO++zbLqP zWSb>DS8Z4$a}X{MJ~@JTfBPlPR%oYBx-Ao3QH0IDhc#H$H0O5R{l4g1@Ms`$AG0pM z=KV{z+8+p;#=*jhN(ql_uXJ9*H=)n?5le_?VoAhOd>e#BT;G3Z)Uw-iuDQy z^QR3WIPy#T;*l@Wfwf)>GcN+AqW_9z-2xk`k2jlw=(38MNB?I#ZCWKwcqfKWz#-ch z;kjZERXz;GeE7jO9wXy0#Q2PAkx6{m*BeIray;_g@yQnM2F3@N4MvHQ@N_M=>>_DEQpiP`PW!XS@|6m$wpwO)9SSX$?1$1<2B z@<XM76TF_ggPBC#Ho;tJcbGafzG^Jq7RBjD21*z5*qf+c*rwpt5$D9}X5bds4&l_BA+XI){xGI~?gz z5vjT3EqUooMf)U^c=RGZ-gvrmJUre^8}E4CYDr}~HUb>X8%G4^rTwL~JoIBIdSp{o zJJ!t{>|5TB`;lt)#U_edjfD;xp*Pi9m+Ba-UuuX(0FMJIEbpZ7T6Wy?bbAF!_(mx~ zr|Y0ZuiiPtscK!c!ZGPiUC|2fkDw2DmXPa1>dH|ZRnxD_r8pKb;H$?r~ z6!@hT$~F?Mz%slB`rg>S8AmxD=pt@~lFg9Xn9@#rvaFeC3h=o|T!|Bs%u8ctPsI1& z#$jCF=Au1Vh7BmogkPM5SMSB=@Kale_TXTVBOyoZ{GYZqQ}D;hIi+c>>=R6pd*z}O zUhq~s@?8PXCV_42lc`6Ha})TfjlD7Eo*1m*+xXcrDez;FcA_2lac6t`4##6(fBPZF zV~I}ojgH4_o$a$6kNvya`{<8!wVVBt>4X&3-R@!n-4$RjD(KlB_CkWD_tg0xz3e#8 zNuG^vf$y27bUF}C0F`BRYp4pUf3y;zw(U{j}pTZ~>Y@M}0!=Atstp z9EE1*Jw3xd&p)Z8lYvCjPW;iMEiL*D6IxV&j(Ru0o5__y8sNErZC+YDrdtV2i z^N78vv}UO@hyLY`uM<{v@s0AdH&;r52m)>m848qr~LEXx^>%GLFY~+wBz{k6}CQSjnwofT~$1nAs5dvR&&-}ai0pvV6Rqt8K&KG;i2rOw++ID)!guzz#Jiv4J> zAT7IOujmLmf7y-+pL4WbwYPCRR=;k?wKAivZi)`#$Anw<*Craj7^WCrmWoj$J9OnX zi8HSf*sbre+Yg$yNj+sT3<|_yh05P>!VS|F({lamrmPxN*0fymO|!2O^vrE2C+OmI z%&VY*_w3t1$urd6Mr!-Oo=-3xyV`Tp#dmgZY1Kn}Gl9H0XRjf-K1Qp6Nq>DkH^qH~ z501r8>%;M;s3(qA%e2sS!CLH9FMm>WQ){fB|W##6M$8r_qWe$OVD$17}=*}uK%q7c? z^p&4E&|x)XSPn*O)RNyi&^mSHF^+H7Yn4Dz2(-l=CE_tYSu@F@c{2ImwyM!fjTeM36gI* z9=-dEj)PPl$!DNE*MS}#Bp-7;&KM%M$;8P>sl((&4s^nBd5+`JWu)l18K=Y-AkE=u z?f20r#`i?AX2Z~y4vv=V;nT)M?5;kKk+(S>qsPf>^hX*IBG;8xPLRDFL8m9mFrXY^ z>|_~BUw&*iRX*T&be}F`hG2B-4Eei>PNZPoggdo`wB#IA%8`yo-$f!XMw={=rUh}IJ`y1qJeoV8hoYZ+eA#kOE<v_?xrR z&7rV>MfQot#iN&m#>L3s$NUH7aQ%_cuK1txXt|UlsLWx}3@ml_h_G1vXo-<$IUdpa z7zmT|L4V-Kt`!}KMPoM2kCUrHCq!O&bado_lQOI=^T@ES)Gl5QaPXY#t5c$xM7ZRe zC{&FfA0&xB=g08Vaz5Op2m$Ggyw$`$^ZZQgFwZX=d&~3lWLJ59ZtN$|FB3b-^Yda4 zd49TkJU)c{|<>Q z7Cz%3BV6Bs2)}oJ?(Fo=FEe|*11H?wp-jTp9pVc|cL0TxJ46s3?!XE6b`TN1?I0o? z+kq2a?fi1HOFO?j?9UGQ3TJkRAUxS2`@6zt8pE)a)>9K%Yg{ba={1`e&vv;a4Lry3XgIKJSK>VUCAL# z_>n`Ha3bgD${ys<2*Q0FM1=1+aKdpM@)cg=zzLUekQDynK!me66h?T8^UK9v;t)@` zi1X{7ogKuX+`>B?vJkG}&2HF@mE?=f&_$+S4#C(}fWT7Un zr?jNb7vz3mkF@qfDfW|@SaL6&Xw&jq<+rl>5m`_G+?sQN|OhevTZ*K8St#h~O? z4(ED0p>Ru%TBhFww@3(x&J4FS_yr2LG|IpYo2iSRW69wexRJkd!Isg#vX-$KxbYdd zi5a-b8Msjw^bCd9%W%t>4BWU3+=L8V@T3gvlnmUo4BU(i+^h`Tfec)922N;$XgZ-B z;j9jV6WS4O`4&7mGY1O4m*JKl8939FU&AtI;Id}qrf1<)gmDSCxMbj5GjKUFaPHG# zMMY`!h@Ke&y)tmQGjKv}MLeO#;jF(uIibITTgPESk$-YRqknS6o@EVYR+yu3OYvuV zpw5-dz-58Li-=+rAj1q?;vGFqSfy~wUm3XM4BRYt7fwZ(sBp_{aKR!`ot>K@@LE${ zRM+*J891ARW5<)afbzdk+W$i7{{sbE?*9*FdGx=~)BlBD{4ezSf1$Vk3%&mZ3U&-; z&t|_?*DC{;I|G+D1D8JoS18P3M?C+GQGZyDjCG~ALa1D7`gS0DpdI0NVXD>rem`;ZZ% z`}c)!QR(k%a#NEjfy_6s)K8$_1&O5@Iyt73*Mfw?l>w81H|1ugN79a)@@12UW1cF& z^VAcXmnxS*Dtl7p&ZblJJyrfA&t8;U%ma08u-w`0zhNForfxR5Pqm#K!d{CpPlfB8 zm;u1W>qMA)a3M8Kn8VWPzD=HQIzSe?+#W8SV(oHq4`JaU(F@kNpGBs}cDac8sg5ls zHyMI!sFxrb?UCg+W?`Tqzk|MjGd-pjirm@km^T+vlmhTHJyj4PhU%%{B50lp5yxzL zl+wVNE>Lw%9%2fiwVFJ_TX-B6ReW_c6TIHW;Ah53{G5x+gvy?!QfbIntlN<9U7DCC z7dM4TlqMH8nd0ckZMmX{u)YX<1@qg_BGL2P$TwE1eFsZ!(``DJE*CK!p-1U*nc~7w zLh{43ERYn7IFauh*hWj|8Cj59Dpk2FS2SIxo_DdHPQhza@^sUEa=9lLFDMptLj3Jx zh{+`y~Gbz7kWNku(tgy zcIx^7DX*tF59Io$?G*O_ZFLf#;K;rn`ufB2J}esqL#fC^IiT$|M|#(;VNFu$hFFt` z6{4tQVH+SXyS_}}HaiSc+>e)xBD{J!!nfbW&)ug&Xdfj$l#3J>Ye*4n&x%!xl1;2y zgmp%fkAZpaXIVhs9?JQH6^GbmZ-{mF!B5um_{mX2L=Ywg5$@qM+I!R;pbk=%}#U{>BoS$P{3%DX5lZ=$TchqCe(%F094$|KdvOEoKxQ!B5^ zth{-$^4`hHTPG{;oUFWYvhu#k%09!bylJxXp2=#l3KMAMEt8dZOjcg0Sb4u>txcSu&=AX#~TWaaIV6}uyB zq^!IvI2(kRwtCTFO-$f%DNZIsu#+d7s{KQP}Vyut6eDXa6;L+b?8J(6%)2QzfH8@ z7<0>0xr2|GNG$m=jaYKIqb(+^nzPC>%M5nb3fJGtS)P#BGaMK^A&X8iUci_p(7!KmjDq>?rQ8Z6>?Q120;Ro_JAqVt zCAS5c^@_o3uW(Y4K;>UEIO(gm$TA8Z!n9VBG-R0 zL!P4M|H{9EEch2j>=Y&aEB6NRek*qcnebNb4sziwW|&h{_&=5m{7-J~b4s*8`ZfGa zz2$6yqhiw3TVO9G{U`rn+DqBqA@gJ^{Z4M^o-E>Ay@Q|U9yo=3FPEoqZ_jMB;hk)T z%#L@cZ8E)lC$|Qv^Pb7<_i}S^$vQEAkpBeN`2*T4nIb-L1nmP#mrRvDq6L#_+($G> zGNpV(1(K=QCzkA|ldYfRN~T40Yii5s%n*UYy1G)ND?gCQg8;4E) z#$ngK$xYli-KC9@?#osb{#CBT{z+Y-LaaUM6!@J>w);E!DV?5vN8hGXogZ>LkoiAQ z&2&2d13jG{QB>)K-!TfHh+_&6GMfZMy-bQX79Z10N?VY>O-g5w!kLtwAd@md@&Nsl zN$CpWomuHFK%HF5tOSCqoJHvivLuT#3gl}RWf;idtV$n{a2YGQw@KNMX++L}|8}ybCDRbRUd9WAR-=cs0cZa)q-ilR;KyS7w0Z%%RK#S(-zc z1>)|eOrZ{il&loyrc5*~j&xV1Qlj8zxhta~@X}owOScOG80ewk+6X}|b)t~n{wTVV z7umsmV_iK)J5Qw$)@VaLl_4NkJeBbvf8&?I@#60x4P+YPOKpmQ^OZam0q%5wRt-u_1bseX#jI z_wmHL2ON26IdsNCaw!irSxD2$qZSM4na%}PP{zA+8msamjqErzE>-}UM+<*zi*s>& zzlvzG(`2cLo;ppoiWr5bsdgpw#%YSGgnFMQ*UD&<(=?^BGR&R-n50ozq?U?1Ute#e z1}|xa=zD%84`kX^;bcx$K_8u_GF35BPt&5RXt&e!Qs+ARqN`3*tS|D7A)Bw#!%dt3 zTViS=(T=Ss&{rst@HD17E31ZL#^7Z|Bo#y7sv+SR8d@D`#L%Vc%3wXROA|ycg?}Kb zskG8vhb^hW@gi%WCNYsUp#m{9q$X4@hR)VR2gXp@T1r0J<2pUrl!!3fedMGAGNa}_NA9_)>s_4qu^_6l6-CZALi=dnhpsW!zr2$HFl&AqR zK1$|>(1oKkzad8bQ8G1B=77v=B*4hVFhfUaR%2y0$Pb;H*#w$&l-@PLI6X?kn=*H= zDKz9L^=_t&1-aA=oq3cR{f>MtQ19QBX&|Y;D+@pZn=A7{?l)H!fsFY>Sq_q^g|ZrC zT?-Z|(NYNox3{IT1f*UoCV#h57K7{3T3HC9wpPMGhO}YsRT~ug0*(Ds2?lxdCv)Td zl)2#E`=Jmal(((Y0c22H82b=9(N+ln$=wb!M+glEaSIWRU1tZ{?)o0l#U<%=-O44% z=jBb;+>Rl}BCfk3GIsYbBA0qq&Q7!1qfbI;etYzA2t8=8^alC8gVFsAW ze}AY%2qpVNPeQ05nQgza(6Q{DF6Q}aI6Kb%L3Uy1 z7NE3nzbg`IVnb;5d+>7gL56qjLsN>G4dJx`N&^Vr3P2UY=v{!)9Hd?k)Fh0i_CSfk z@Bxj|4#cx3iWx=$J(WM*!bGxR=FIr#7griPM5#yA))AR^pk-#9%Xh)FJPA}rx3Mk^IO4M3~) z&Rruv1;c#}H6DbyK8#upQhMv@WbOdDs~xx|x5u~iMRuUB*fuSzZtP$uQiEfO5sg$VsNK8Ev?HY;6P$I8UoZggC zu%;3{9fj#dqAsHqe;-c0>~^Hyct>W(2sG~ks~0+!l1HP^v6OEN)}paAb`07jmQIdg z(0wdyO)L!>iweck@v$(4vE)7u+7e5B#xWQ@PU+|-ZZa+7|3<2%QmEM!r4B9I)+DF1 z2C>w8Jj)&& UwK;dJl!vxr#SlT!N8W~HkCO{QqspUkay`Eg%D@g9sRngXU2p%bN z{7mlYL@q)7NnD;~lc2A$^kfp3wb^7QYbJBzk0*0hwWqL1_!MVZm3v6M$phLrRcS;O zrYfFDp#D^t_*hywl@oY2mD{7`G|pq)G;~2MeVxYXbeoPb5lhFWW9E&eLNhS!$I|Q> zX!KZmIs>z7EOnpBl80u(Ajgu&EObvSO`OF!T$;sU<$}4!!NHuvjbNCKSSmi7TWZ2= zu3_?Qu0`%ST#J5lu%(Hmm^mzBo(n~erM7cfWZhh7ek?tl%Z*uQ9!yaz&6>w)o}UNP z9ZUH`pzE;|6vC+-4H01Ee2(TfUumVc`j=Wbc66;n2_Z1#;+uP8j}}X}=X3W}TfjNa z*2(1s(8^dUy^yOmYau6oZ6OwHvE&=dO&J=B(REv>h*#GvbnrArSM*dxe6wDbszhTJ zyiGqs(FnJxi&Y8qVaeUSQI0BsSsWTG^#!YI>=C+Vg~dNYxx&x@N2ptv(g4%| zvWLNH9idu_l**OFS*+zgPGW!AhJ6!9v3f#}MDT3EWBnT$t`z$Dskl?s9+9#L<298& zFG8}Z)NL_pnMwy2qt2<6b%_$_o+?tAhW(l)S9liq14lCWl)IqOY^k(wiPGAK#WqJm zEDQ&-`dYm2I-@MtDbG@9(RG@(6l!;!ZZ1{&x`|tV%LyDFTK?Wb#h1hN4nEngh0w@l zN*_J+C9cRV+BWL9Sb@v%z;=15YPeDqBJILa((AM%9K}zeGvQE+6w0?8TAV_Ymt%F2 zLh^EGY6`Vl0c}j7%{uwA0zH>PJyt?*Q|Q=A4$HX;iKWo6RZ35H{+qlkI6}2}o^sSz ze9KJumf4stQ^+j>dX+-mBhYLqbR+^=kwPw!T#A55PV{gjYMMgsghgoz%_Pp^7D3Zf zsMKnVr4(Aa8l}Ha`&VNy+^27=(dzf9^BP#F`?NtPkJdnBDP>!W9F|hgwNTBaw0kYU z{q)aTMA%Q>>yY$*n!FCfZ9iRFheGV9V(X!B`)R^@Xy|^rupSZ8=-GOdIt|_spjc@% zZG+MnBz6O|EsZ{HK!h}EzY!xVjUqN;UQQ!zBl1h5N}H5sAfq;Myu+JV!jdjObuz&doxrwjn-~fnt~{sIln?%STbk}DxF5rTa@N*;@u95tr5=T zH#LTv5OnpGpe|VnA9Uhk|6uoAPIXPAMq4?>>08l8X>?{QXJg*RDYn<7245jQtfzD8Y{pkNQ_+K@Y=0+v zIzx@9Cn-}bgilh7SoFwAS{{pIkdt&iR%r-gKB2UAJ1J7gG7nKk%%?dC3jVP==g9KZ z?gZACCu!RWw8csKc0#FYT1AylqV}QG_9S#M6praplTfmqMAD&DDh^{L6z>J1mZ6j! zhvo{Ug7MIfP?`+l7Ai8LuG=sXxC|si3O3#N=KgsBFC<{Jhn{2MVdZq z`4t1J=cv%wWQ-Vv{z^s-6e@5A<60rh8Kq7!A|87h1l~%=An0jiazD))U|}g``cth7K23 z+IpzC>b9u3=l)r=-3dnMSqeu6*g_u=B#bTy5=T!3*+k|PWX}7Aad>;^X9B!k(39td z{-~Y5h92mOwSXS#T;u%`mltk&=n@06yY|{b%Nl*0?(3uA`vy$S0C!3G$5A3$mI{ z2x2E2NG~?2nF?q7B>}dmdgg33-^14aOrDLV9?BNc9Y*wL=#HP6uOj~o$Oo2AkZZJ9 zkd?GYkOz3-51HQ-b*lzT@-u-euVGj8Ymd@aRhR(;uyCd|W2({rh{%7d7pP3({ zrWcXV0tysFk!D=Pv7PA#KK{WvB$*ne zVR}oZ$TZC3$@Df2)l8<2x0xKg&0*#{O#0oy9yOVg?qJoMOa;<8!o+kmNHW>evGh)+ zns;%koJ>)7QTJrZagQbY>m>Fbru%#3eIG}U_h|Ng-1%6Ncr& zbwv{X3(opTDMGg&C^d9^Q*L~n`oyaU)qaS%_8!fBh&I1RPaY~ILEIlHH9(p@QcCIK zgOLo2Bbg4SaI!yAdU%TWjfU2-1gvxYZQ-iLzO?+YQk-&h(Og}JOdK{)oN4W$36HUs z-9s^tvHspeA0DG^_fW?ts3gEA$~d!lP04bl2K<5LgVXGmPnEi+cnW^14AMh(S4R0~ z<|;$Eo}u#bH0&9+MDcX%8ColzYCMM;#M7GR=*M_mUMqw3SdYq>=#X~3AcekA+UwBT zvLJ$FI+@B-_Icxw9+Efr74UZT_E;mjV#GV!$N6>hKM>BlQ)!K_vBC!+p&icrLB ztOw%h$!pxT#8c24Ws;ukGrV%&>;=Bq`uYaF8Be|c#d&o+ssAcdbb%50;OOPfJS8dk zEm|&~F27aAyKtowYtYFjIFlanpHdqaz+3-An=hi&|Da-vDEB)ovKCRdcWAyvMDI|+ zbo%iQt%G~u_b78Zt$UASrgX~w0m_k16F=ap4fnDi(2wcV@gw$Z>6G*l`jbwTKjBsgpss=|(toF}3Zt5z_VO;O3;~;Uy ztj-e`#IEXGkPEJAQ!G8)v#X6j{IaX9u>x786D_+s3S8S9>P(PxIgqPN-Q3hZSe+bo zQ+tAVx~uC!_PMKjK>|F~J=C{2n#ILa-RsV`#_|fZ8-6Ifv08=vz0`rUudA9%54^k* zf%u_njhumPx~X27S6LQQJ}*x5FE4c;k{+FlNs-*@4r*E&IsBbljRHP2kGccIGq1W6 zM9Pawt--yl>JPFgpSl9XJHNUaBr!iCtf77d5Md3O3#z+84j1IGE``)B;64;mw}Wgb z%v{qVsM{LSil}QrrW94z>lep&kD<_akI|v3YE|;DRwO&MEvWj_{=BLySAzj>ZoBL zGwL$uS`SrvOn3{kmuUsPt%rK9ptkh^E+n}=8U}aB4N$;^bfE!sX(3H*i1uGdr5mY- zKvEkq7}8jc)^C)%xnZ5!&5f=OL^sbaQxcznHc|US@?I0PQ!=g(}rnJs|Ge9KCUx_BU7m1o_w;)jCZ}|4>6g^0!b|f$VDmojFZS zTdHe7Qa#8_9$-*b?Km5LDD*)n`3CKKZB-@>OyeVjvSV|6FNPHHg-~HVV_d8v)UHK z(pe4FZ<}YfMt=Aqe_xa_u{#E)C=6s4b%B;eP>HV4)d))HiV+h*f!&Zr1ikDAU5%gx z-Jx?4R4f3)A%ac@FxRCA3KKz(dO%lk_1sfkpIDt_ zi@x+y1G0H}R12hjz-chRE2WH|Z+512v zkJ6$*H5#O0U-g(9i@Og)j_$+Aw~<;Eao~@$gzAiQ3J-?qIZ6qGF)Ll5ibK?)AghKT_Y2f=sG11kGE7YX z`Fogp24smvJrB}jxOxqw(g+rLF+%+dT=YowZ;&aYm^2-&o(1PJMoj`q8KWkHEFH_7 z|2Xv|IJfa?EXdjM%*~yk#(`@x5pzxm9hivm5kj9PVp0ns%OrIQ$h}DzJ0TP_S)C4| z>Lg%_8UjuOap%409C5#mAG&JBL>+#tk_Y)rQ=5`H74|uV9!|xK8bU*+VN%0A_cV0@ z$cX7o-cDENgPS@7Mk<89&ft8e%;XHdf#@074E$A>`6l%6w6CJ*h2F_N8LFm$KbtFi`IcfvkVo#Z))&)5J6jJX)Z30cp5U?F6!HA#?W^ z!iL|a%Asl?HtUN+)y5#_Lov&QQ8}yHOTQ4!`3l9v4|QCrwx={J8YPS#TT!(zDiwzM zhSAb6b)bH;dfx>XU-w-oC_?Q(?G~XTVbpVx+7Bddkvb5h_+oW{E_=!ivZvh0v<9-b z7sK3z(VN9A)NKhW7DgwQsN!~l(jCxAffXEK>IzQNzCsbC^N*tC+Xw|gbW%)JUry)c@! zin+(D&;?=CHG=bqi@@qDjH*U*R_h|wvEbZEov5cer7=>S(wIDts&MqZOs!7-Yv9m0 zaJ7nSU-ueWGg-pu3qc{nX!2^9zA$>f+F2sL;{NDIKQhMkYyC$K$X#87!4n487OF+h zif^;iJLv7`xsKbh_&RQ+uytJ4H|w~E{nvBj#;oVI%D;izW6B0@58DQ4TNpLo$Rb-e zA}o%wY*L$MkJFWX!bZ4b4nt+4Z`aFCiBW24^0C+Rgxbf^zD=lo9C=4!tjFOlLLCkA zEeZ+8QJ>A|wKz)L40YT@rY%^PZlWez5J93tThuQ2lMfzDVMyP9ry4|~x2nYvwtOoZ zMO1MQ-cB?Ht#laIs^v;dE8w{ke`_y)XKZD4X z$r4M;_h88rOKy9i2C+10FUlTEkN0Akj_b~S>Nx#sbIo7q@il*u&k?l`HP{c;kEPc8 z(GCL@+C(P+Y0vPZ*C#?qgM)JY&ohZyud ztWE&8{V=DQ_Xu-gM>w%8N4YdJbn@R(jxZpG)4UqPB7Vm>qxfSiSxbTz#nJ(ZxiZJO zhMSLbn)za3@nVT$IiA-E^Z**+1hyHml=mb|YAmfgiOCz+vT<0d#nRz8maG(y-if8% z@i4x)ojt`l>^{X|B@?(RYZEvJ&qNF*d}fr$P4Fs_Yt%Q1OMNMcOWp7CQQ>eUI}Dt~t+1yI;U06-$dQaHD6wsE+%2Z(VIpYJOUEQLTx4 z>XeJ*~Z@e7D>QbFoGI;IO1WT}|~XK?&EfA`A3sn+Jl^Z=fer>E#U!+ElXKgcV7p z%Qs)Hdka zb^30D9$u$lI}*K4Uvx5AhDl4o=Tlfvq)>SU%928)Kr)32sED3I>r`lE3YF8Kc`39- zCq>ebLkg`;gN~+9{@Wb3{5ESU3LSi)4m3NDlqsq_9IaM;h`IPa^?3+g zx=$$&F%<4o<3~`w`?OOhIUi$!UP=QVtF=MaK1N-alIaPWb14mef^7EF?I)O^_fx~C zDBgZL{uCz(`>Fmj4AT8{;u(s!pK3lwUH8-B=V+DvRO1CyB8_IhKtHF^p%>Wbr;*!B zwVQtNn?E0pne*qPA8*xqh7V>lL}Ff|ENNtZg;q(UF|X7fAm?6j^wO^}hosTM*H}oT zk@{Ng22$e;ZWo zH2ec6p6~(Z8);PZBbR&1N919ns~^>d;%501va-?GPv{UEX`fJ08@2e%WdCQ>&_uxiH`ihU`dK7sEOZTEfBwH+E4_vGHLxm_UObtlO`^f zduP%bfUM30@iX*2lQtG)OlC-)q3fBo;UG=2XnjF8WzhzLWXY;cz^(GstXeCOq^#OJ zkQUjraFAQsv?U+|U9^QD&t0@}xOnbs)>?pUH*3>Cd|b7~Ap2dlp15c>XVbqLN#$8olBbp;+b2U3S!NT#MaZd+-R)zG$4;Q7vy0cZ8At;UacuEk2mGjDuZ0i zivn(^eEGDlAS3c=9YEspX&pg4@@w^R_1h-DRu*Jzeyt72$^4K!NnQoC<{(`QXe~k3 z7tp$aye*)KyW+M5(JLqEU_rFRDtcZ}s|Ql15R%3XZ6UN$C><+=2%+R&SQEFy!wYNu zKrR+W|AkWJB50RTT2n-`fMh9(s)XY3iple$=-W{0=*=SW-r6W|m5MRAyqGo&+!vh- z@?nt+KAJ!7Xo?os8iDjGjvTJh$>PwZmGq%F`e7ycme7JgmX|>N9*|N3k`Jh0Ni@Mt z8eUSX2@+LO8vv4}6eMrbpi1ELX3#fTHwAccgT@H0!K>w9P ztOYcvJla8_E9JG{L2_4sMkq9|0{T*+FBKrE(CCWD<^)AoMA1*s%ZgfQkUW*N+8}R3W|P*zE{zDgY>GZwK3ljg`L*I zh0^=NGw9{2S`8g~hQE$E)of~hD(B}j6@YN=o4$;VJnjc7PHRQFG zs#IsPwK`N}D}Al5O*G?GtKTe*{9UNoDy<}~uYu9Dl?v6=4uYJksV&k461(BgOvc-* z)3RFV%4oV%3#}iG^E9n1U0#U=Ktye17fm_pXuIk1DlKc~FpCRm)9hU+XI+f9XtLDR zmYELH=ep>uI$RQmDQ*Sr2)MKX$ovCb$9JsE@`! zNKG1OYe4J`w6*39BI@z=F60$vZ%(Hgq5(G0(}w844b--g7O4xkgt<`8R*UOWiN;7_ z11)K+Z3d~@1omeGB{o5N8>nYfZ4t=Brm#&L$kI%UG~pEIcc_j^mftamRJ!;(`c0)a z&9$XwRpdNi3;yG3qrC}v|DpYfkYRslvp^pIp{)X$*#Zfxl)t4&N;=R|Tb*J)wld3TS6i*8nPp0xb)l=Go zwYj>$?Taq7IMH64uC&)iAf!G?GE_|z!&K< zf2|z?G=B`zWz?!8?CCPv)DdQX8GY}l4bjsX_|S!#UbdH^m7O@9I2>5i?27@f@ z3>&hHQai(DZ6lv9Fo)ZyZx`sza?*6tt1HIsa@yY&mSH&+>83@2#COy7f(+}f&2$l; z7hA%=(d`CWB`O$zT$aY;!LmQG~vyh&X+x*+&s?@QqmX~}o zuf`v)^w3J0HdB_KT6+qwt!2%2`G?DIi+v)}_xjMxo?2@&N2`;?OmDtVD@*_Ngl*nT z!+SxqH&fx>+Av*UR1PzB4A64Zrrugrgk0{eb<#uPyv&p|nF`YHeY7Szlr1;@JM0sj z>F(+S!@Zeq^?_}_L=6McK$mEBpw<5*RBAS6k}Wi9Hk5A*dCox_ZK3!%uu@y7##~HGTWHf!V*qX0+4w5B?=1klAFdy7zkMOr6B8NLWzaxrqTHb)QlS!t%|Fu5>o zTZ~1^MS3Vg#5ehtD|^v^1NS$h=p|Y)({WS-Gt+S@wiHXbT0#tutMw-H|Zn zmnjEfzPL;yNDBdZL)s*>a3f&JEIS&7R%?xQXwg+OrG2>QOfTLd*TKH;rto!GU+$)&>tVik)B5!omAlD%gSOJVTVyig3Hteu zYxU{v1{k~D)Nmt)(Qb;{sD-lo0{(J*!757<-u|+PSHp(Z0e4z(c!TFR%R_uv4&ba4 z;NX9poTZi<2cI*5i=GTzFo4^+7`S8r*^4l6Wo@uCk8D1SToWRWS4bGR=>#~_R3~RS zQl5kD29REl0mT5k+cTgUKqG$!ZX3YtPH-Q9ilrM!YF8GyX8_lGGw{Fwx&|`v$N(rZMnV0H;JB%%07_dndrn@zKdy z@`ZBnX9H-vjDfEPP&?=mfOi$T<8`h+c|RPmVGYN$J2+FB6Zytw>8p@UD@_rn^W)ykcZ24ySzpdO86vd2hk( z5y9mPaByEIz`^~ToaKuid!PZ-gZn=uH^cyfi|Z*^1mb)jNr;Se0-WS%CuhM+Ng{Zh z0rV`wz(fNW@6Esz1DNE)z;pu`QG$V40D|>QSC?jFjv<1#m_#-q27q^%1hCKm3RYww z%m92VF|fn{HtR(VH-LX?u*6COC|xy}kw^od7o zz_w}(Y&QUNbq01B0A7p|QTFoq<5tIMra%rDB8hrg4++3{*%%T>odEaCF(+qvRFe~k zHGuqh{TT9b2GB+a5(Hqppd1X5znlmsne5~&IQ$hUoHc;W^%(fa0KVwJIRj__=NyP~ z!2pD}4gi-7pi2V=t~dbLp94B_%@BF112+tyTSJa>%K#QPV!&nq4|PB`fHLsrfqYd1 z5biwyq#3~cmI4U2+%XWpRxEPY0KV(MeFIqH#}W?>U`$&E9vgsoFAUi{HGn)F7(2nt@gZP;4y&Z46-0CISkUI#j?7wg|O zqCv0fweKWE1i-cL;^Zu=wr~pF3?O1B0|5rmYZn7O4Zwdl1HBDk;~oYA4PeY(ef|wH zkO%u%q`v`FIKaR_0}y^l_0M4dAg3SPh`ld6rlt0ITTfWeWk9TdxvRsC@Gw1m zr2)k0K%@YSk6TczHBNvNSm)#{mo9P!8w_Ca4F)zDK&P7wZ07OLNqXL5WUC=^K?k-Q zKp`7T>@)!J0whYY+W^Md8Q5z8A9Y~A0Zda^;-CR2!73w%3}j^*14jg4e5-?OjyVCY z>~SY&S%6P_5PZS_*1u#R&H%h$F>uNNgfAaNNfbaZ=P~j%BYznpsXCBs02}{fiL(YU z?HvRE7y$mFU8H)>075@7aKQj-d}82|0Zjd_kH0Gha_>8fTr&XSAPA}65WotdJze1v z2tcY6;O4Lkj-B=hk3k4lod5@?IXO#TI2c0k9Rmoi;ljvW1No!__YL5snI#??fN(B^ zL>?P}csCTlQv>jGXW+R3y!T+>r2#a|!@z4Ed|Yym|JT)>2gY=LaRARAvBnYv*$@(I zLQqSJYSBjQwAM(83=&-}juG zdrJR#_uS9DZ<$GE-n=*WoBVhwI1ZeCjz+0eO zYX>{}{Oc?7ejDymQ($o@Lu~;{nuJyA2!ym_2oU)7J%)M$KXqVeAdv6@Ln8tUKa@@# zS%Rd?IR#A!me7O!UOm`m8u-Ds&@~$3N{7`_U}#r{)&lnwgbFO}Mm;P>Tal3NyiR+8 zs|q>@Q1T}1<^zGeo(!D?qIxrYC{Vc%Lzn>NbHX;l70~BjR}7tnbdxSLmKM-M;D&-; z1T==$$U<6r^ysUBpN>zcRy>lHn+Is%=0UnYw5nF?kJH2s2m%n`V#V4lFtFS*B; z0!`;LBnmu9RIk5`=k zg8Wvotd=hG6|5C_qF_A%hB0B{^cr4eqXvFXH|v_QdL1`!6h}_L^Qh>%u<4{ivwA%x~=g%`Dn@Ny+n1H7W&pyQPvj%>WFX@_b zcP}?z7WfQ_v$26I0;dl!{6@f|rf*$fxS_$qo3!bw@#-+Q-x8o<*4X47fm{Vy0^?3` zk9z{o732tbp5Y!31fD6#1A>u3l2Fzkft1y%|<`B~UGk!43mk)h6#|GdK`%!mDEs8JsonK3sLp zm{!2eZUQtO9J?r03^@NkFJvhrT{gHlQkQZ9(HIsEC@(Wimw;b61|NZU+!_1?CY5KXB@kJG!CxS|B12t)JCzs$70~PN ze;zFLrAzNB3=IW5t1>hesN~5IED&6sp{c;I8Vt<@lDrvO2sqRP;Puy1q=+QdXe~g4 z+X0~hbpjdM3Q)#3^k^?Y3Elu51ZFj2_&}gv5JM*hKL7mLgylo&ax{b?OrU3ThH!zg zEg8BA(1>~Lw}(LVdknnUhM@x0dox54SolSh@iEH?=`vvu!zh8o2!_!DX^{*u0TTi+7T)8I({C4`qtL;4utS1!7|vrVF$m%P>Qr;y8wx0$)vF zm_@LL(x)5ckjfOvGi(s3yV1h3iG+u# zQ}zlR{8kP8VAFKX_+cwIZx<-q#*iWKPCCObfm%ly_6Yd>z_6ErUw<_B06Voxm$t_k zz7yE+Bg1}yNhcT%3Q&GMY~!#%$Z3Y70#_6q6UhHbz5b4iG(5}eoD`^hj^VVxit`L- z1eRW4I43}v`EVc?1l%q$TogF3;1>c5KkKJ|;V!>Qm+W5|t_pZwWw<8r{xyah0@j-h zHi6wXhFbzHZZX^uK%PH-{bh-CyT@Jb2^`8{$PsAyfZ>5a**u0kfzA00`2rIjF+37* zEo3MJSk%9r|6`WFq)WpW3{M37iWr^=oVIhK=lO+zvlGKhf$c5~MFRU=8D9SjZutMh zM(o$<|No^W85{);mu7Gl$ST9&D)4hz1~-9W6&Okh)UV1=MxcE)hH`7@{saF945`6V zUb=ka#ZXb8r4NIL0L>`Du~!l3v{o~4FIm_oP06vQU>6%fnikoK(Y+b`JSAfz`Vv}D8T*W9uzIv(lYT(0Ks%yqOY23U_pbdVk2mO}|gzaWnDbOGPIq0!k zV3Y;-s~~Gdw(n(FFK`|og3x1w0R1)!V3R;eyn_L@2+UBhO@K0DqDQ)b55`mhcJS+; zAFRhwmYvdNIffdc%Wi>(NI?boM&Q6nhHnLyon_c3KuJ!q%J%{nE-@Ssuw43;<&ena zYYayOTHRpyf#5FvT`0*Gwt8Fx|6NY%n(^Q^H=h<5jEiCPKO=AggMI+#0Qdzv+T_c7 zEElNDLIO(Fg)Wyg@IEf?3*iIXmfb3q_zzq$&0h_KF&X2kImPO=` zCoFdap1fel5-3;1a8JPYnjuFZ!pWI-`hWmW5+($=GCb74M^T__#=(jfZvR7srgLEn ze+oENWq2&mw>ra9fgRoq&jlLzGW;#D%a7q7fjzYtUh(;t5A?i0i``m%cvhuQEdS=SLnyhA86p_PE^C&7?ORf=8rUR za~EARP7mU>y8rckqpv`#Q4F65>^B(t3-le$Fi>E` zIQ9A)EaEtxy9^OXR`96+<(S1YGfco`BExWjxsw=165u_Xlg-j9qc!l;5yLe;|8Aeg zE5zz{BR`R0oPfK@5GSyCB}0Nh(K?2S0%tceOeT=@ggA<+8u%zI({dt{F#v<+WD`G`PvIiXe|R5QD_I*#6pLu&56^>!m#(ziWv0 z4Ft<*g~s@8L%?PYyvMCn!-*23L{)RT25#P=YesMZuf0>C%@c;*#enOdgU?vLkuI<7 zU1*Qr3bZZFuuq^(6^8E#R?<;KBl{y(IjDh;;;^n6JG{C1s6YdMhGYEx$6KIWzu3ZY z=`yo1!%2aHV20BI4?-Bu2y|(|a86)Cdxi@Flol9!xk#{)4%|X{DpynBk@X|i!4>6`(J&cx&5AQH_F8^x9Q_Bd+C1-=Gu zeyM9l%tCH167XKm@LC{!1B3lKy~T^07#sy$(kv{_B2V`)xC(r^m%&YdavtNbN(oSw zV?Y^!-uoHK2~ehE^e8WI@gPIRb#(pD4|c?177yw2*BOQ?0`tx>coN`KEY4H-*-&h? zh6a9qymif}j~^68voApk^)HLu$becJxWC0;R}FXk+$h@X65!(~uK3gn^)&Db4XB3C z%qk@+`Zw0V&B3~6Y{0LRqPeNS9sE)$pcz3rZGf_-(*5suwD1;M>6&r1kXL9U5c-1Q zU4a_*uC&Q^1lhDnO0^2;pnj4cJs36!%(A}Gb-Upn#jsZZlb~sn z`vm@pX4p@_)1Rl#VmPFM_i;qmXm&Jh;Fv&*IEE7z5loY&E~f=9PGUGK5U=)efdIEe zc;Ymza!CX4^s=rQ-_PLU#U|1)k>R#Laxz1fKza&8w!mtW;eo); zl?)FFZqjkC*}?Eg10QE0*ZA{i%o=WgtlN!+>lmI1V4^l1`QHMGUo#X5Jl)7(w_fjb z`W6O9fyQYJE&}*DOgr=P729e{@vLrcuS4wwe3SvYW?(`$9YTG9kIynR5_s<%L$Cm* zc+)B&0$r~#v=G2lZ}hMjtwesl!CgWH>~1r(6L@}$p@TqDCPPPoxe7iMh{g;?97q=d zObsXKrhr}ql^?M5lrCiz^brW;V>Lbz*q~ql0q&;R84d9>@!0BM4g3raq1qy9URK1- zLp5-76lxaLKB|D*N9uNC^B)YO1+En`j1idhC&M^_WVMfYfqBok$3%g`=L}N>yo%I| zV4BE0wUHSF>*&a7(mEd4|1|KC&(<}AW~`%mo&aX66U-MV;moj5V6xicA_jgDU;;a> zlPXP0yCR2oDn$t4#RnY9jzEH3VamGaCtr5gyF~L_%6#;=`u^fb%AL0=xqdB=;_E9 z#H-xaz)we}t{FGlbMrlc=nf3`1v+;u!CwOAi7e^NT?zyiC@2(o7{)yw3*1%kOyJXQ z+~aS7{tAi&lDcybyRYf>#}6g8CyOIQ!3YH|0#65W4>y7PeHls%+*VLdAgCYrs2~ua zz(Zhje+zf1DpH_!Q(XYL2IwE%TOeD3pTK7IXQ)kpF9R?-crdS0R|EfD0;z_t1~7(i zEH^h`pw}O_HF@J$lKGy!B#pjBoF%vFc=KLUJ_!kHBK^*2WgALu+?GeTDJ7Um1| zS;w$YAY8#BftW4aBURv38iPr2gm#*~gJHP>oPT+zE2W)sGT^Y+2y9R*>_nlqa3!64 zY@i-zXp_T^F>KaATTBQrw(7cZbQgC>7YN(SknuIW|M50Xe9y95x*(|o9migQfod=N z2snX5sq5ThzXpCF2X)Q3cAT4!2)z1<;g|q2K=AW_LIepQXs4$IDqLnbD^TYO!v%qt z*BCAlY^7)8crL@Q8u+lT>Y9=AJ2zif&>Jf(yUSveE|b(2ZVM#d=N?%CNGn0dnJq9@ zt@41u+z;}$)^CwkYR|USFB21)rHk4nf!lsHZRDrKMsqMZh7OP^eDvqfF-$hcFC93#A z75K)I5a0DtF-sMzRdGTUr&N*Y^e*@LQdJMAVvQ>BwI;3qohojrg1%V?;%h@Ha?C|p zwn`TIeiAkMq7DUpJ%?huD(K52)aaWF6!g^riUq2muL4k`Ti__@9yAKNO^kx>^`fAA zx+wBgLHAoxqx-5T=(Z$^jm6I)-O59iZk?f+rwY0egc{x7K|yzIP|)2O6m*XT1>F}x zLAN_l&|M7_bZ-I$-A_P4m+L6#0vZKfD5IcDR}>jEL=Gig@S&jVDHQnTl?u8{K|vqB zQP78M6!eJ|1%3WQL7!_-&)@8^VrQ3>8h|WVJ+f`yDY4(XmByWedYjv1+e*7Febef>nQvCTJ(>kY1T`8vW<)ABn*3H%%AkY1&Bbr)?E|dK z-cqx54)*lb+cx9!BJR56E%s>E;@>^u-sT$*u6py}f1B16H_=m^oLDpE=#lDX#QCpF z(4$|i+f48KwuWvi->mwj+&toDPQPy}g|ta%_DiuH=EGQ5+-tUZ5X$ zR;=gD&w@<@*Sr=f{{h^O9Y@HGz<;8%-|zC{H@KfFPK zZn$I4$4|%Un{xiV3mrUenhScRbUW{6e)$Oh&iq(Bnl}0ONj>&vM|1QG^^i`ysVR*w z@#8%C7N%Wt!!7CrdS98p1t<3rv~byq#eIra(c%y-;%E^`i@mfkXmN!Ww`lR0787W( zn-pAfskGQii<7j-q(vSrEJd`OM~ie?oTJ4}TG-KX%%tcSS}dZ)PqY|D zi+!~CkrqGG!a|Fqw1}a_*R)tp3zHU`Xi-3md$d?ci@#|xdy5yAlPO$Fi$Ypt(87`S zzTX;Ch`fw0bkazylVTs?Yj$5X*`2R7$LD z4*ARGj`W7({z8H-WCi@IIFBJ#r4vb_k9l$9Ky;y#47&9AXmd6Ep0cfk z3!QEftD5%7wyId?j2ZUC=7;=VF;9>VaI3lKiLFy*dQj8UBSDd&YOBnGC&=P;(`@k+ z={J+igHLVEz37P1g-(4a=r~c(sSm{#)BTyPC8w1`ZMNCt8IpgVBdlWnlWQxVVma>S zX0*q%*)_q~XP$p%3pUR^vz0MRKeyE_O&@Zn;lHmf+RdOpY&E6pR?~QH^QuiJLv=fr z4p3cF@NH*Wlh4qGX-#`>TiG#?J_Q;%NDijbioHNqFcsBCIxrRaA`O`Fz&f_=?{_bC zI!yiNw84U-Wk~3yA}ca^siyRC8@%qZ;N;2M=d!^4{A`+l11mWMe(j&!}WKeUL*&ML)i)qma%z>W8!~ zs`WOKu^4y0{quJ3P6Kw(Cb~obI9h^qCn_pLo)Z)}Bk^No_T(TAh$Ur=QI+j=LUR*ghz^Ii(!Xn|QAB^cR>W{_KEBXehFjgr<0 zH}0%%=s{No#)~v`;i$uQimZWdnd8cO(B*=WhO`kXN5vE5i!f}~j4GKAn}pECgR$^B zgrmnuY@ni0n~q-GDvlD2(dX$QnCpW5f~>DU%KWN<&wW~dNg;Z0bQkFbRP+b(3K;jT z)`^)%Jv``Y#Mn|2zaYZVBus!e=2{ml$eh;Ghb~bJH!lcBFYD^a5=fCX@OI{}em-;s zV^n_^!cllz9i73vZDX(1%ONX0#DgwyjMtdltR`De??sXI_vTrfYCFuUYMnD6E5JUG zu6vA82AVk9h3UR3T8jy|D%y;hx5hWts{^xK+lSHxlHrCqu4)o)FU)OKk?%qs0%vqNu|hIeRbB8ik4ZljWL)PswSNlN)&^sp~`k*#;1y^U}mR^JkxYEaEFeLNpw6z zTM10KRBOcQD8cYp??C@=zC)vt`8q5aWF1$OebvF*HalyZz1clrnX~z-Teh3&KJ{)H)A@du zpG(P-!=i@!n!!&Rdt0a6&)Qwi-H07ECcaTzLQFv9q)~C9!RDCfS=G#S&$EK-{ii7? z(AT$?@7RDiztGVQd?$yF4)kq|Dg|a^@4HpZ8HYE!nX&Drma|THku{~Wvv=5pxv5M3 z2&!(nzjxQA#N=>)d;BOtHM9JP%xZxcSB3Za@BsVpv7}{3Mny))kBq>9#6;51=5cGB zefXbd9$f}Yrimv)$&nm{LrLd>RAb0qs=7Nv?pFnv-*uP|@Y$h7Ww@2<1E2VD;v z9WfD7O`)v)Cq>p%J?~zt`R)N~n~Zr@YKqpEm|&%%ftXpPqK24KrJ_BUOT|%w@f+r9 z;V%&!7TVBSdcxfy3wqE6w$T?8o75C1hvho@8dI5+d9Bh>6ecezTY*_iD%y_eN-Ao< zks|9s$9q4t96(p>MwK)OM`JMINJXnL(?~_r{P1%R+`7J@j+`6mXrx4*O|@+gp~!kY z^j?a)2i*)XEd3!I9UDlIb!OLltN|_wA#Tl7Xo#_A9 z4Bi%2(|WOdcHLG@uhL2t@E)Ruz0brQ5EZ53EmB2oaK}YO`*BmixN5E6C3|YS&cD!_ zKdymrbQu@WDk{V^w2De>(2?s#9gW4iBDW@BvIiZG`FTiBAG3SouC7*(1=&|4_@;(Y zfOir#*4!QU2UO&Pn*u6oiLa)f$D-^&`zY(!qU;uq=ItV+ zpSR)BO->4ii?jNGc+m=FU7c_kIW#_Y zJUYY&mMng~x8Kpz)9mK?(AjFZ-gtQOYUY+F93R<*D&OYw{99o)!L1F|jo6j`U1 z&nc?abUPhtsizQ*-2c{5y&@ewf32e_7!+-6x28ACIh|mk`$a}D{bmJ6-Wc7iqOlm( ztfEsG&#ay1S61DRHd1YO199^WDGV|t&=gzSVh|~yjVqlVqCF`PGdl^iq>Kvv5MAU1hI;) zW9TqPt&C|HG_3F|j22eWUJMgf(It!zR?z^A3+5=n2&&{v|G}2bPkgLr({q;8Zc4Y? zjE)%it48l`#fV=OC1I$qiUwnhuZkLDY_IW~HT7c7XH6~mN5+{Jqixl=+eD12RZ&!w zjw+7S(I$+jRjuwAIa|DjL}$in`vhZTRcmmZj&3FBXgtQps@9v6$`ywR#=OD&ppFJ_ zsW#W@j1L^n50WDtvJO~39PyyPW7FewoURMdouhgf|Ei*+82GB9D(iKWjiIi_aqAW1 zfvs(WE41eC7`m!Pz2;!ds)}CjEshe557TJpxHwvu6A@@Fk@g_BL#gGoUTX|THI`e8 z3LXU2Ers_XJEIc@kQz&^?^Mo>?uy^Q*f=b=kwgE(bV|MAV7BwjEoE*k%r9pqPtGr8 z{yZW#)?D{{zK=P!T5f&w@yOhv=CDz@8_Sd|IVxss?D%-!p|N8pn~|k6YnjQ>cS@OM zpWiNTP8*q9)?8mbvy!>9^*U$s_fx@crti)iER5W7W>)Xto0$<~?v$`zFmfA&n5Ea` zHnNUiliPl_V~4Or^WxfkFW027?KoL_nd7G3^)kB$=D9e9?F_qa+WY5uIoiT5#phHv`|vVmq<>yLr}FmU9%hn%UVW#k_Tjb6 zL;iWbZguR#8_~*@Our?$l`v+J&%?p?;jKvBBVuBQMGTFN9Y1W;7;G3nzRc~R_TlZR zy>!HgsQ8H32~p#tBgYoEy>B1hiP|c@*%lEK89#p1q~b0g*@yR_E+x3jsMv&J@9k(G zZZW6T$*WpprhRy_>JpVOl-~A=yQJ8MFE@A9$*bYC%0B#S{A5L5fYT=X@O@@coxD~~ z`|0yT>$-VCPW1V~jIE1)Uw9UI@r@b!z1h9&36BjmaDe7}TKc$8D|+iw^~536Cu zeKBlUMOQIgSVdJG@GI;%r`Q?&FhIDtA4Ucn*Q_f7^ICn;V{V#86r_3O5yFXjK%8!Lusz#;92pEyZwI6}^vfvbe31m-4V+MUQ#3ja4fk z9KDNMrYahS`>!gRja!i_s*O8;D)PeZLKQv1JxCSRz#Twip0!?3{(NuyOV)3@<{zkA zItAO0GlpDup*L9f^W(j&D<R-Ps)HWgWOK-=(ET zI`#P&Lo(H9&gK}4X{1{xUeB*ysWi^m*zQwTSK6-qg#>@=v4Z?gL8a!ai delta 64 zcmca`is`~BrVTBOhPjDV7HJl_>H6j=#s3*?8N}M)f9jL diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index 203dae244d2ad8d818ffffc805f09e5a7c73f405..cb712ff8bbdde1dec0872280d9bd1f310c05d7ea 100644 GIT binary patch delta 63 zcmca|oAJtR#tn-Z4NLN}^GXWiEA>-M3{otBFfB3B)FR0&*~}!_Jk>18+|0=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:39.546763Z", - "iopub.status.busy": "2024-05-02T13:37:39.546284Z", - "iopub.status.idle": "2024-05-02T13:37:39.564144Z", - "shell.execute_reply": "2024-05-02T13:37:39.563693Z" + "iopub.execute_input": "2024-05-03T22:20:49.720716Z", + "iopub.status.busy": "2024-05-03T22:20:49.720228Z", + "iopub.status.idle": "2024-05-03T22:20:49.739927Z", + "shell.execute_reply": "2024-05-03T22:20:49.739408Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:39.566210Z", - "iopub.status.busy": "2024-05-02T13:37:39.565866Z", - "iopub.status.idle": "2024-05-02T13:37:39.568803Z", - "shell.execute_reply": "2024-05-02T13:37:39.568375Z" + "iopub.execute_input": "2024-05-03T22:20:49.742704Z", + "iopub.status.busy": "2024-05-03T22:20:49.742139Z", + "iopub.status.idle": "2024-05-03T22:20:49.745441Z", + "shell.execute_reply": "2024-05-03T22:20:49.744874Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:39.570761Z", - "iopub.status.busy": "2024-05-02T13:37:39.570457Z", - "iopub.status.idle": "2024-05-02T13:37:39.659272Z", - "shell.execute_reply": "2024-05-02T13:37:39.658831Z" + "iopub.execute_input": "2024-05-03T22:20:49.747634Z", + "iopub.status.busy": "2024-05-03T22:20:49.747320Z", + "iopub.status.idle": "2024-05-03T22:20:49.806186Z", + "shell.execute_reply": "2024-05-03T22:20:49.805597Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:39.661380Z", - "iopub.status.busy": "2024-05-02T13:37:39.661046Z", - "iopub.status.idle": "2024-05-02T13:37:39.837557Z", - "shell.execute_reply": "2024-05-02T13:37:39.837059Z" + "iopub.execute_input": "2024-05-03T22:20:49.808922Z", + "iopub.status.busy": "2024-05-03T22:20:49.808402Z", + "iopub.status.idle": "2024-05-03T22:20:49.999289Z", + "shell.execute_reply": "2024-05-03T22:20:49.998695Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:39.839579Z", - "iopub.status.busy": "2024-05-02T13:37:39.839400Z", - "iopub.status.idle": "2024-05-02T13:37:40.080704Z", - "shell.execute_reply": "2024-05-02T13:37:40.080115Z" + "iopub.execute_input": "2024-05-03T22:20:50.001853Z", + "iopub.status.busy": "2024-05-03T22:20:50.001474Z", + "iopub.status.idle": "2024-05-03T22:20:50.256968Z", + "shell.execute_reply": "2024-05-03T22:20:50.256329Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:40.083030Z", - "iopub.status.busy": "2024-05-02T13:37:40.082712Z", - "iopub.status.idle": "2024-05-02T13:37:40.087047Z", - "shell.execute_reply": "2024-05-02T13:37:40.086575Z" + "iopub.execute_input": "2024-05-03T22:20:50.259220Z", + "iopub.status.busy": "2024-05-03T22:20:50.258872Z", + "iopub.status.idle": "2024-05-03T22:20:50.263472Z", + "shell.execute_reply": "2024-05-03T22:20:50.262965Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:40.089042Z", - "iopub.status.busy": "2024-05-02T13:37:40.088636Z", - "iopub.status.idle": "2024-05-02T13:37:40.094738Z", - "shell.execute_reply": "2024-05-02T13:37:40.094308Z" + "iopub.execute_input": "2024-05-03T22:20:50.265646Z", + "iopub.status.busy": "2024-05-03T22:20:50.265295Z", + "iopub.status.idle": "2024-05-03T22:20:50.271613Z", + "shell.execute_reply": "2024-05-03T22:20:50.271155Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:40.096709Z", - "iopub.status.busy": "2024-05-02T13:37:40.096404Z", - "iopub.status.idle": "2024-05-02T13:37:40.098892Z", - "shell.execute_reply": "2024-05-02T13:37:40.098467Z" + "iopub.execute_input": "2024-05-03T22:20:50.273894Z", + "iopub.status.busy": "2024-05-03T22:20:50.273553Z", + "iopub.status.idle": "2024-05-03T22:20:50.276357Z", + "shell.execute_reply": "2024-05-03T22:20:50.275889Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:40.100883Z", - "iopub.status.busy": "2024-05-02T13:37:40.100570Z", - "iopub.status.idle": "2024-05-02T13:37:48.280445Z", - "shell.execute_reply": "2024-05-02T13:37:48.279822Z" + "iopub.execute_input": "2024-05-03T22:20:50.278464Z", + "iopub.status.busy": "2024-05-03T22:20:50.278132Z", + "iopub.status.idle": "2024-05-03T22:20:58.837552Z", + "shell.execute_reply": "2024-05-03T22:20:58.836915Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:48.283163Z", - "iopub.status.busy": "2024-05-02T13:37:48.282636Z", - "iopub.status.idle": "2024-05-02T13:37:48.289498Z", - "shell.execute_reply": "2024-05-02T13:37:48.288979Z" + "iopub.execute_input": "2024-05-03T22:20:58.840267Z", + "iopub.status.busy": "2024-05-03T22:20:58.839876Z", + "iopub.status.idle": "2024-05-03T22:20:58.847049Z", + "shell.execute_reply": "2024-05-03T22:20:58.846527Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:48.291518Z", - "iopub.status.busy": "2024-05-02T13:37:48.291340Z", - "iopub.status.idle": "2024-05-02T13:37:48.295047Z", - "shell.execute_reply": "2024-05-02T13:37:48.294605Z" + "iopub.execute_input": "2024-05-03T22:20:58.849050Z", + "iopub.status.busy": "2024-05-03T22:20:58.848866Z", + "iopub.status.idle": "2024-05-03T22:20:58.852924Z", + "shell.execute_reply": "2024-05-03T22:20:58.852358Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:48.296793Z", - "iopub.status.busy": "2024-05-02T13:37:48.296621Z", - "iopub.status.idle": "2024-05-02T13:37:48.300060Z", - "shell.execute_reply": "2024-05-02T13:37:48.299610Z" + "iopub.execute_input": "2024-05-03T22:20:58.855016Z", + "iopub.status.busy": "2024-05-03T22:20:58.854711Z", + "iopub.status.idle": "2024-05-03T22:20:58.858006Z", + "shell.execute_reply": "2024-05-03T22:20:58.857501Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:48.301880Z", - "iopub.status.busy": "2024-05-02T13:37:48.301712Z", - "iopub.status.idle": "2024-05-02T13:37:48.304699Z", - "shell.execute_reply": "2024-05-02T13:37:48.304258Z" + "iopub.execute_input": "2024-05-03T22:20:58.860256Z", + "iopub.status.busy": "2024-05-03T22:20:58.859804Z", + "iopub.status.idle": "2024-05-03T22:20:58.863171Z", + "shell.execute_reply": "2024-05-03T22:20:58.862732Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:48.306442Z", - "iopub.status.busy": "2024-05-02T13:37:48.306271Z", - "iopub.status.idle": "2024-05-02T13:37:48.314058Z", - "shell.execute_reply": "2024-05-02T13:37:48.313603Z" + "iopub.execute_input": "2024-05-03T22:20:58.865244Z", + "iopub.status.busy": "2024-05-03T22:20:58.864931Z", + "iopub.status.idle": "2024-05-03T22:20:58.873645Z", + "shell.execute_reply": "2024-05-03T22:20:58.873063Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:48.315848Z", - "iopub.status.busy": "2024-05-02T13:37:48.315678Z", - "iopub.status.idle": "2024-05-02T13:37:48.318297Z", - "shell.execute_reply": "2024-05-02T13:37:48.317836Z" + "iopub.execute_input": "2024-05-03T22:20:58.875848Z", + "iopub.status.busy": "2024-05-03T22:20:58.875637Z", + "iopub.status.idle": "2024-05-03T22:20:58.878803Z", + "shell.execute_reply": "2024-05-03T22:20:58.878298Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:48.320093Z", - "iopub.status.busy": "2024-05-02T13:37:48.319925Z", - "iopub.status.idle": "2024-05-02T13:37:48.441214Z", - "shell.execute_reply": "2024-05-02T13:37:48.440667Z" + "iopub.execute_input": "2024-05-03T22:20:58.881152Z", + "iopub.status.busy": "2024-05-03T22:20:58.880794Z", + "iopub.status.idle": "2024-05-03T22:20:59.014729Z", + "shell.execute_reply": "2024-05-03T22:20:59.014156Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:48.443331Z", - "iopub.status.busy": "2024-05-02T13:37:48.443015Z", - "iopub.status.idle": "2024-05-02T13:37:48.545728Z", - "shell.execute_reply": "2024-05-02T13:37:48.545193Z" + "iopub.execute_input": "2024-05-03T22:20:59.017194Z", + "iopub.status.busy": "2024-05-03T22:20:59.016781Z", + "iopub.status.idle": "2024-05-03T22:20:59.123045Z", + "shell.execute_reply": "2024-05-03T22:20:59.122411Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:48.548016Z", - "iopub.status.busy": "2024-05-02T13:37:48.547588Z", - "iopub.status.idle": "2024-05-02T13:37:49.040465Z", - "shell.execute_reply": "2024-05-02T13:37:49.039932Z" + "iopub.execute_input": "2024-05-03T22:20:59.125601Z", + "iopub.status.busy": "2024-05-03T22:20:59.125265Z", + "iopub.status.idle": "2024-05-03T22:20:59.623879Z", + "shell.execute_reply": "2024-05-03T22:20:59.623233Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:49.043117Z", - "iopub.status.busy": "2024-05-02T13:37:49.042657Z", - "iopub.status.idle": "2024-05-02T13:37:49.131459Z", - "shell.execute_reply": "2024-05-02T13:37:49.130787Z" + "iopub.execute_input": "2024-05-03T22:20:59.626604Z", + "iopub.status.busy": "2024-05-03T22:20:59.626200Z", + "iopub.status.idle": "2024-05-03T22:20:59.735511Z", + "shell.execute_reply": "2024-05-03T22:20:59.734904Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:49.133661Z", - "iopub.status.busy": "2024-05-02T13:37:49.133339Z", - "iopub.status.idle": "2024-05-02T13:37:49.141955Z", - "shell.execute_reply": "2024-05-02T13:37:49.141411Z" + "iopub.execute_input": "2024-05-03T22:20:59.737975Z", + "iopub.status.busy": "2024-05-03T22:20:59.737507Z", + "iopub.status.idle": "2024-05-03T22:20:59.746497Z", + "shell.execute_reply": "2024-05-03T22:20:59.746018Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:49.143844Z", - "iopub.status.busy": "2024-05-02T13:37:49.143670Z", - "iopub.status.idle": "2024-05-02T13:37:49.146220Z", - "shell.execute_reply": "2024-05-02T13:37:49.145783Z" + "iopub.execute_input": "2024-05-03T22:20:59.748549Z", + "iopub.status.busy": "2024-05-03T22:20:59.748357Z", + "iopub.status.idle": "2024-05-03T22:20:59.751198Z", + "shell.execute_reply": "2024-05-03T22:20:59.750759Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:49.148144Z", - "iopub.status.busy": "2024-05-02T13:37:49.147850Z", - "iopub.status.idle": "2024-05-02T13:37:54.645951Z", - "shell.execute_reply": "2024-05-02T13:37:54.645348Z" + "iopub.execute_input": "2024-05-03T22:20:59.753223Z", + "iopub.status.busy": "2024-05-03T22:20:59.753038Z", + "iopub.status.idle": "2024-05-03T22:21:05.304818Z", + "shell.execute_reply": "2024-05-03T22:21:05.304193Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:54.648455Z", - "iopub.status.busy": "2024-05-02T13:37:54.648005Z", - "iopub.status.idle": "2024-05-02T13:37:54.656640Z", - "shell.execute_reply": "2024-05-02T13:37:54.656181Z" + "iopub.execute_input": "2024-05-03T22:21:05.307121Z", + "iopub.status.busy": "2024-05-03T22:21:05.306897Z", + "iopub.status.idle": "2024-05-03T22:21:05.316181Z", + "shell.execute_reply": "2024-05-03T22:21:05.315729Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:54.658648Z", - "iopub.status.busy": "2024-05-02T13:37:54.658337Z", - "iopub.status.idle": "2024-05-02T13:37:54.723492Z", - "shell.execute_reply": "2024-05-02T13:37:54.722863Z" + "iopub.execute_input": "2024-05-03T22:21:05.318230Z", + "iopub.status.busy": "2024-05-03T22:21:05.318047Z", + "iopub.status.idle": "2024-05-03T22:21:05.387573Z", + "shell.execute_reply": "2024-05-03T22:21:05.387062Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 58774a79b..caa3f2c41 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:57.804859Z", - "iopub.status.busy": "2024-05-02T13:37:57.804392Z", - "iopub.status.idle": "2024-05-02T13:37:59.142610Z", - "shell.execute_reply": "2024-05-02T13:37:59.141972Z" + "iopub.execute_input": "2024-05-03T22:21:09.354623Z", + "iopub.status.busy": "2024-05-03T22:21:09.354237Z", + "iopub.status.idle": "2024-05-03T22:21:10.777441Z", + "shell.execute_reply": "2024-05-03T22:21:10.776744Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:59.144920Z", - "iopub.status.busy": "2024-05-02T13:37:59.144750Z", - "iopub.status.idle": "2024-05-02T13:38:40.069504Z", - "shell.execute_reply": "2024-05-02T13:38:40.068821Z" + "iopub.execute_input": "2024-05-03T22:21:10.780051Z", + "iopub.status.busy": "2024-05-03T22:21:10.779824Z", + "iopub.status.idle": "2024-05-03T22:21:54.904003Z", + "shell.execute_reply": "2024-05-03T22:21:54.903350Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:38:40.072006Z", - "iopub.status.busy": "2024-05-02T13:38:40.071649Z", - "iopub.status.idle": "2024-05-02T13:38:41.144536Z", - "shell.execute_reply": "2024-05-02T13:38:41.143998Z" + "iopub.execute_input": "2024-05-03T22:21:54.906583Z", + "iopub.status.busy": "2024-05-03T22:21:54.906244Z", + "iopub.status.idle": "2024-05-03T22:21:56.059453Z", + "shell.execute_reply": "2024-05-03T22:21:56.058793Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:38:41.147135Z", - "iopub.status.busy": "2024-05-02T13:38:41.146624Z", - "iopub.status.idle": "2024-05-02T13:38:41.149860Z", - "shell.execute_reply": "2024-05-02T13:38:41.149339Z" + "iopub.execute_input": "2024-05-03T22:21:56.062349Z", + "iopub.status.busy": "2024-05-03T22:21:56.061885Z", + "iopub.status.idle": "2024-05-03T22:21:56.065288Z", + "shell.execute_reply": "2024-05-03T22:21:56.064811Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:38:41.151955Z", - "iopub.status.busy": "2024-05-02T13:38:41.151564Z", - "iopub.status.idle": "2024-05-02T13:38:41.155359Z", - "shell.execute_reply": "2024-05-02T13:38:41.154844Z" + "iopub.execute_input": "2024-05-03T22:21:56.067491Z", + "iopub.status.busy": "2024-05-03T22:21:56.067170Z", + "iopub.status.idle": "2024-05-03T22:21:56.071116Z", + "shell.execute_reply": "2024-05-03T22:21:56.070663Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:38:41.157350Z", - "iopub.status.busy": "2024-05-02T13:38:41.157037Z", - "iopub.status.idle": "2024-05-02T13:38:41.160371Z", - "shell.execute_reply": "2024-05-02T13:38:41.159859Z" + "iopub.execute_input": "2024-05-03T22:21:56.073204Z", + "iopub.status.busy": "2024-05-03T22:21:56.072874Z", + "iopub.status.idle": "2024-05-03T22:21:56.076491Z", + "shell.execute_reply": "2024-05-03T22:21:56.076037Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:38:41.162419Z", - "iopub.status.busy": "2024-05-02T13:38:41.162107Z", - "iopub.status.idle": "2024-05-02T13:38:41.164772Z", - "shell.execute_reply": "2024-05-02T13:38:41.164346Z" + "iopub.execute_input": "2024-05-03T22:21:56.078540Z", + "iopub.status.busy": "2024-05-03T22:21:56.078228Z", + "iopub.status.idle": "2024-05-03T22:21:56.081127Z", + "shell.execute_reply": "2024-05-03T22:21:56.080608Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:38:41.166771Z", - "iopub.status.busy": "2024-05-02T13:38:41.166367Z", - "iopub.status.idle": "2024-05-02T13:39:15.391652Z", - "shell.execute_reply": "2024-05-02T13:39:15.390969Z" + "iopub.execute_input": "2024-05-03T22:21:56.083199Z", + "iopub.status.busy": "2024-05-03T22:21:56.082801Z", + "iopub.status.idle": "2024-05-03T22:22:31.914462Z", + "shell.execute_reply": "2024-05-03T22:22:31.913831Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7f6b3854caf54fcf8a42eddf163358c8", + "model_id": "1f7e26eec961476c924c356ba5473da7", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a7add3dc3ff74f47b0b4ff652d4269f6", + "model_id": "89a99af2f38c4428bb4f8c1b96803d77", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:39:15.394584Z", - "iopub.status.busy": "2024-05-02T13:39:15.394175Z", - "iopub.status.idle": "2024-05-02T13:39:16.061626Z", - "shell.execute_reply": "2024-05-02T13:39:16.061133Z" + "iopub.execute_input": "2024-05-03T22:22:31.917006Z", + "iopub.status.busy": "2024-05-03T22:22:31.916753Z", + "iopub.status.idle": "2024-05-03T22:22:32.610930Z", + "shell.execute_reply": "2024-05-03T22:22:32.610290Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:39:16.063966Z", - "iopub.status.busy": "2024-05-02T13:39:16.063499Z", - "iopub.status.idle": "2024-05-02T13:39:18.787389Z", - "shell.execute_reply": "2024-05-02T13:39:18.786894Z" + "iopub.execute_input": "2024-05-03T22:22:32.613538Z", + "iopub.status.busy": "2024-05-03T22:22:32.612996Z", + "iopub.status.idle": "2024-05-03T22:22:35.377896Z", + "shell.execute_reply": "2024-05-03T22:22:35.377269Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:39:18.789725Z", - "iopub.status.busy": "2024-05-02T13:39:18.789357Z", - "iopub.status.idle": "2024-05-02T13:39:51.060869Z", - "shell.execute_reply": "2024-05-02T13:39:51.060398Z" + "iopub.execute_input": "2024-05-03T22:22:35.380306Z", + "iopub.status.busy": "2024-05-03T22:22:35.379907Z", + "iopub.status.idle": "2024-05-03T22:23:08.297444Z", + "shell.execute_reply": "2024-05-03T22:23:08.296915Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3e925f9a098d4e4ab28b64e9572ec39f", + "model_id": "15b7e5ecfcd9415bb1577c1b5a9c71c6", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:39:51.063093Z", - "iopub.status.busy": "2024-05-02T13:39:51.062765Z", - "iopub.status.idle": "2024-05-02T13:40:05.397590Z", - "shell.execute_reply": "2024-05-02T13:40:05.397039Z" + "iopub.execute_input": "2024-05-03T22:23:08.299784Z", + "iopub.status.busy": "2024-05-03T22:23:08.299426Z", + "iopub.status.idle": "2024-05-03T22:23:22.891326Z", + "shell.execute_reply": "2024-05-03T22:23:22.890743Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:05.399978Z", - "iopub.status.busy": "2024-05-02T13:40:05.399692Z", - "iopub.status.idle": "2024-05-02T13:40:09.050190Z", - "shell.execute_reply": "2024-05-02T13:40:09.049662Z" + "iopub.execute_input": "2024-05-03T22:23:22.893861Z", + "iopub.status.busy": "2024-05-03T22:23:22.893547Z", + "iopub.status.idle": "2024-05-03T22:23:26.757959Z", + "shell.execute_reply": "2024-05-03T22:23:26.757325Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:09.052159Z", - "iopub.status.busy": "2024-05-02T13:40:09.051987Z", - "iopub.status.idle": "2024-05-02T13:40:10.421727Z", - "shell.execute_reply": "2024-05-02T13:40:10.421117Z" + "iopub.execute_input": "2024-05-03T22:23:26.760095Z", + "iopub.status.busy": "2024-05-03T22:23:26.759896Z", + "iopub.status.idle": "2024-05-03T22:23:28.260360Z", + "shell.execute_reply": "2024-05-03T22:23:28.259713Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9c6574ba645e4b8ea40ef1219c914288", + "model_id": "32c7adc2f9164138a04e8b6209de98df", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:10.423791Z", - "iopub.status.busy": "2024-05-02T13:40:10.423602Z", - "iopub.status.idle": "2024-05-02T13:40:10.451207Z", - "shell.execute_reply": "2024-05-02T13:40:10.450712Z" + "iopub.execute_input": "2024-05-03T22:23:28.262823Z", + "iopub.status.busy": "2024-05-03T22:23:28.262460Z", + "iopub.status.idle": "2024-05-03T22:23:28.296131Z", + "shell.execute_reply": "2024-05-03T22:23:28.295453Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:10.453574Z", - "iopub.status.busy": "2024-05-02T13:40:10.453381Z", - "iopub.status.idle": "2024-05-02T13:40:16.471802Z", - "shell.execute_reply": "2024-05-02T13:40:16.471236Z" + "iopub.execute_input": "2024-05-03T22:23:28.299108Z", + "iopub.status.busy": "2024-05-03T22:23:28.298591Z", + "iopub.status.idle": "2024-05-03T22:23:34.487863Z", + "shell.execute_reply": "2024-05-03T22:23:34.487313Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:16.474044Z", - "iopub.status.busy": "2024-05-02T13:40:16.473686Z", - "iopub.status.idle": "2024-05-02T13:40:16.530666Z", - "shell.execute_reply": "2024-05-02T13:40:16.530163Z" + "iopub.execute_input": "2024-05-03T22:23:34.490428Z", + "iopub.status.busy": "2024-05-03T22:23:34.489950Z", + "iopub.status.idle": "2024-05-03T22:23:34.546886Z", + "shell.execute_reply": "2024-05-03T22:23:34.546330Z" }, "nbsphinx": "hidden" }, @@ -1038,7 +1038,154 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "042e10c5ba034c929b49c9486b6ab066": { + "00a7484c68e7424b926fd945904927e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "00fa259f5c3e4b5791aa149f98221ace": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "034a2244415a41caa33e8ea418a9f6a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8f8c975a20db49d9a571e1c74cd0f9a3", + "placeholder": "​", + "style": "IPY_MODEL_ed7e4a61585744a49e606316dccc0b62", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 20.26it/s]" + } + }, + "15b7e5ecfcd9415bb1577c1b5a9c71c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_437e5db434794311869ca782c86bd18c", + "IPY_MODEL_74e12652d3334e29be959e7ae03f2173", + "IPY_MODEL_5f997321aea3406691803c0c509cb482" + ], + "layout": "IPY_MODEL_268ebaed9336425bb87320259e195260", + "tabbable": null, + "tooltip": null + } + }, + "1f7e26eec961476c924c356ba5473da7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a1e77ec1b90d4fe5a9c48a07b4b508ca", + "IPY_MODEL_f2fb0d48f28249c29369287b2265d162", + "IPY_MODEL_b04ebb07be02499aafefe9036afe7f5c" + ], + "layout": "IPY_MODEL_a59fe55f6b49495097476acd7cc97c0a", + "tabbable": null, + "tooltip": null + } + }, + "2128f699ffc84b23a0f4b345b242b0a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "266d6230d3b44c6699a62c30d4f96a99": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e6a5caa09ff841e18bd537fcc98e63ed", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_00fa259f5c3e4b5791aa149f98221ace", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "268ebaed9336425bb87320259e195260": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1091,53 +1238,31 @@ "width": null } }, - "0dc55df002254a049d64c0818e83dfec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5db9be08eb994df9bb2ee482ae743606", - "placeholder": "​", - "style": "IPY_MODEL_da50f30e588349e0baa0e12883949fc6", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 156631.25it/s]" - } - }, - "122af635c8124db98df8e27ed569191c": { + "32c7adc2f9164138a04e8b6209de98df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9df790df30534485bf022e589bc6f737", - "placeholder": "​", - "style": "IPY_MODEL_fb624f427e4448b3904eb9654441b85f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7f771dba0cf24e28b606dda5f4d75fb2", + "IPY_MODEL_266d6230d3b44c6699a62c30d4f96a99", + "IPY_MODEL_034a2244415a41caa33e8ea418a9f6a8" + ], + "layout": "IPY_MODEL_8b9c6c40fde941ec8cb633aeee2cf626", "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "tooltip": null } }, - "13e1e07aab8a4ead9926d4a411481bca": { + "3849e3f901e14e57a23e191b8d52d8f6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1190,7 +1315,7 @@ "width": null } }, - "1ba892c9e31c4a30a3d3cb9e453997df": { + "394107ba38d040fc95d5278513957ddc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1243,7 +1368,7 @@ "width": null } }, - "1cfd8cda1e104ad593c28fc637647da9": { + "437e5db434794311869ca782c86bd18c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1258,67 +1383,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9728914de97a400b9fe4c49e314519ea", + "layout": "IPY_MODEL_993290e717a34acb9226586e5b808bc7", "placeholder": "​", - "style": "IPY_MODEL_da499bfc9f0149d88c5b1e6481ff086c", + "style": "IPY_MODEL_00a7484c68e7424b926fd945904927e7", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:22<00:00,  1.41it/s]" - } - }, - "2739926b041e462da539d4629731c7db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2973434f8feb46808d370338ee0dfd70": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "100%" } }, - "2b33f9909421489d9ffdf3159e834d65": { + "4b02235d2b5740108ed433f067f327fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e85bc70d8cce49409f67932946e2cea0", + "placeholder": "​", + "style": "IPY_MODEL_8063c18cb2db42c58df60baaba760fb1", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:23<00:00,  1.32it/s]" } }, - "2d489e69a11348e4bf4ca48d63340020": { + "4c404e13453a4421abeb50cdd156cf51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1371,25 +1467,56 @@ "width": null } }, - "2da0bb04fc3d416daa0b0728c411431b": { + "4c56c6324a9345fda458ed6eeaf76c65": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b16fc49e5b80481d9ce7bcf7f3b40056", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c5703f4d5b1d4a2c98c14cc3e86af9b1", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "5f997321aea3406691803c0c509cb482": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d34241fe3d674ccab73ccf34277eb16f", + "placeholder": "​", + "style": "IPY_MODEL_61736df336154c538b66c71840035d3b", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:32<00:00, 152695.26it/s]" } }, - "2e5e2b8bfa4247428f673528ae90464a": { + "603e621ccd6d4488955ba2132be6894b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1442,31 +1569,25 @@ "width": null } }, - "3e925f9a098d4e4ab28b64e9572ec39f": { + "61736df336154c538b66c71840035d3b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_470d52366ad34bf68aa85c72b4bbb265", - "IPY_MODEL_552cd14f892e4370b81d6de1d16cb9b6", - "IPY_MODEL_0dc55df002254a049d64c0818e83dfec" - ], - "layout": "IPY_MODEL_1ba892c9e31c4a30a3d3cb9e453997df", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "470d52366ad34bf68aa85c72b4bbb265": { + "654ede02fb534318a290a183035398a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1481,15 +1602,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_55d2e0794a6c4d189bc5c90ded136d31", + "layout": "IPY_MODEL_3849e3f901e14e57a23e191b8d52d8f6", "placeholder": "​", - "style": "IPY_MODEL_69f1c703271b45cf9a65cd18fd6becde", + "style": "IPY_MODEL_d97528732a3f4f38b3cefa80e3d42a3f", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "number of examples processed for checking labels: 100%" } }, - "552cd14f892e4370b81d6de1d16cb9b6": { + "74e12652d3334e29be959e7ae03f2173": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1505,17 +1626,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_93169db257de43cba79968a23af14769", + "layout": "IPY_MODEL_4c404e13453a4421abeb50cdd156cf51", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_5bfbb1e9662b46dda0774c60eb40200b", + "style": "IPY_MODEL_d93d2bd201044535b71d5f65d46adc5c", "tabbable": null, "tooltip": null, "value": 4997683.0 } }, - "55d2e0794a6c4d189bc5c90ded136d31": { + "75d358124ff14cd79d51f3b3fe66cbdd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1568,7 +1689,7 @@ "width": null } }, - "58164694d8004ebb9705182691d7f80b": { + "7f771dba0cf24e28b606dda5f4d75fb2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1583,31 +1704,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2e5e2b8bfa4247428f673528ae90464a", + "layout": "IPY_MODEL_b58afabe32fb433098547918b433ba89", "placeholder": "​", - "style": "IPY_MODEL_2739926b041e462da539d4629731c7db", + "style": "IPY_MODEL_ce12e5810009489089586cbc343fa5ea", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 611.81it/s]" - } - }, - "5bfbb1e9662b46dda0774c60eb40200b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "images processed using softmin: 100%" } }, - "5db9be08eb994df9bb2ee482ae743606": { + "804b56b5e24a4e37a77b275cc294d902": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1660,60 +1765,49 @@ "width": null } }, - "62c5e3b2f5384279ad7514da28f8a03b": { - "model_module": "@jupyter-widgets/base", + "8063c18cb2db42c58df60baaba760fb1": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "89a99af2f38c4428bb4f8c1b96803d77": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_654ede02fb534318a290a183035398a6", + "IPY_MODEL_4c56c6324a9345fda458ed6eeaf76c65", + "IPY_MODEL_4b02235d2b5740108ed433f067f327fd" + ], + "layout": "IPY_MODEL_394107ba38d040fc95d5278513957ddc", + "tabbable": null, + "tooltip": null } }, - "6720f93603024e7cb73d36f73280c7e6": { + "8b9c6c40fde941ec8cb633aeee2cf626": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1766,100 +1860,7 @@ "width": null } }, - "69cb9245df324d32a0db29498439374e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2d489e69a11348e4bf4ca48d63340020", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2973434f8feb46808d370338ee0dfd70", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "69f1c703271b45cf9a65cd18fd6becde": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "74a0cacf989e4c0e9b76e3a953048a7b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_809e4271d9aa4d588e2f33a4f1053d50", - "placeholder": "​", - "style": "IPY_MODEL_2da0bb04fc3d416daa0b0728c411431b", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "78c4a72ddc944a8e8a5109452da16874": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b79be033e0a94f57bccef8f3a33a530b", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b8dc241375094b188768a05ac9ec580d", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "7a9ad25ed6c8443f81e9d354b111a6dc": { + "8f8c975a20db49d9a571e1c74cd0f9a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1897,46 +1898,22 @@ "justify_items": null, "left": null, "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7f6b3854caf54fcf8a42eddf163358c8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bf997ec2fc2b4e5f967bc0ca4cd87fd9", - "IPY_MODEL_78c4a72ddc944a8e8a5109452da16874", - "IPY_MODEL_58164694d8004ebb9705182691d7f80b" - ], - "layout": "IPY_MODEL_efbdcf1278be43a2bdc67aa224374ffd", - "tabbable": null, - "tooltip": null + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "809e4271d9aa4d588e2f33a4f1053d50": { + "993290e717a34acb9226586e5b808bc7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1989,7 +1966,48 @@ "width": null } }, - "93169db257de43cba79968a23af14769": { + "9e576a8acba249f98c4212116811834d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a1e77ec1b90d4fe5a9c48a07b4b508ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_603e621ccd6d4488955ba2132be6894b", + "placeholder": "​", + "style": "IPY_MODEL_bcf96128121b45859d82780e0e9a8742", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "a59fe55f6b49495097476acd7cc97c0a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2042,7 +2060,30 @@ "width": null } }, - "9728914de97a400b9fe4c49e314519ea": { + "b04ebb07be02499aafefe9036afe7f5c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_75d358124ff14cd79d51f3b3fe66cbdd", + "placeholder": "​", + "style": "IPY_MODEL_9e576a8acba249f98c4212116811834d", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 624.08it/s]" + } + }, + "b16fc49e5b80481d9ce7bcf7f3b40056": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2095,31 +2136,7 @@ "width": null } }, - "9c6574ba645e4b8ea40ef1219c914288": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_74a0cacf989e4c0e9b76e3a953048a7b", - "IPY_MODEL_69cb9245df324d32a0db29498439374e", - "IPY_MODEL_ec25cc60e790449baf1181faf78a4dc7" - ], - "layout": "IPY_MODEL_6720f93603024e7cb73d36f73280c7e6", - "tabbable": null, - "tooltip": null - } - }, - "9df790df30534485bf022e589bc6f737": { + "b58afabe32fb433098547918b433ba89": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2172,57 +2189,41 @@ "width": null } }, - "9feea4d03f374c7cb12231509e414971": { + "bcf96128121b45859d82780e0e9a8742": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_042e10c5ba034c929b49c9486b6ab066", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_de3a3da5e7ac4e6fbfe91d13babe05d4", - "tabbable": null, - "tooltip": null, - "value": 30.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a7add3dc3ff74f47b0b4ff652d4269f6": { + "c5703f4d5b1d4a2c98c14cc3e86af9b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_122af635c8124db98df8e27ed569191c", - "IPY_MODEL_9feea4d03f374c7cb12231509e414971", - "IPY_MODEL_1cfd8cda1e104ad593c28fc637647da9" - ], - "layout": "IPY_MODEL_62c5e3b2f5384279ad7514da28f8a03b", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "ad20dfcbd45c4df095bbf484c162e639": { + "ce12e5810009489089586cbc343fa5ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2240,7 +2241,7 @@ "text_color": null } }, - "b79be033e0a94f57bccef8f3a33a530b": { + "d34241fe3d674ccab73ccf34277eb16f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2293,7 +2294,7 @@ "width": null } }, - "b8dc241375094b188768a05ac9ec580d": { + "d93d2bd201044535b71d5f65d46adc5c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2309,48 +2310,7 @@ "description_width": "" } }, - "bf997ec2fc2b4e5f967bc0ca4cd87fd9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_13e1e07aab8a4ead9926d4a411481bca", - "placeholder": "​", - "style": "IPY_MODEL_2b33f9909421489d9ffdf3159e834d65", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "da499bfc9f0149d88c5b1e6481ff086c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "da50f30e588349e0baa0e12883949fc6": { + "d97528732a3f4f38b3cefa80e3d42a3f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2368,46 +2328,60 @@ "text_color": null } }, - "de3a3da5e7ac4e6fbfe91d13babe05d4": { - "model_module": "@jupyter-widgets/controls", + "e6a5caa09ff841e18bd537fcc98e63ed": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ec25cc60e790449baf1181faf78a4dc7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7a9ad25ed6c8443f81e9d354b111a6dc", - "placeholder": "​", - "style": "IPY_MODEL_ad20dfcbd45c4df095bbf484c162e639", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 22.12it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "efbdcf1278be43a2bdc67aa224374ffd": { + "e85bc70d8cce49409f67932946e2cea0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2460,7 +2434,7 @@ "width": null } }, - "fb624f427e4448b3904eb9654441b85f": { + "ed7e4a61585744a49e606316dccc0b62": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2477,6 +2451,32 @@ "font_size": null, "text_color": null } + }, + "f2fb0d48f28249c29369287b2265d162": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_804b56b5e24a4e37a77b275cc294d902", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2128f699ffc84b23a0f4b345b242b0a4", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index 5890cf2c4..fbe7fe68d 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:18.838890Z", - "iopub.status.busy": "2024-05-02T13:40:18.838736Z", - "iopub.status.idle": "2024-05-02T13:40:20.303449Z", - "shell.execute_reply": "2024-05-02T13:40:20.302883Z" + "iopub.execute_input": "2024-05-03T22:23:37.109560Z", + "iopub.status.busy": "2024-05-03T22:23:37.109386Z", + "iopub.status.idle": "2024-05-03T22:23:38.354224Z", + "shell.execute_reply": "2024-05-03T22:23:38.353645Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-05-02 13:40:18-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-05-03 22:23:37-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,14 +94,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "185.93.1.251, 2400:52e0:1a00::894:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.251|:443... connected.\r\n" + "185.93.1.251, 2400:52e0:1a00::1068:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.251|:443... " ] }, { "name": "stdout", "output_type": "stream", "text": [ + "connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -122,10 +123,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 90%[=================> ] 865.67K 4.10MB/s \r", - "conll2003.zip 100%[===================>] 959.94K 4.49MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-05-02 13:40:19 (4.49 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-05-03 22:23:37 (6.53 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -137,14 +137,7 @@ "Archive: conll2003.zip\r\n", " inflating: data/metadata \r\n", " inflating: data/test.txt \r\n", - " inflating: data/train.txt " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", + " inflating: data/train.txt \r\n", " inflating: data/valid.txt \r\n" ] }, @@ -152,9 +145,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-05-02 13:40:19-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 16.182.101.65, 3.5.28.252, 52.216.177.115, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|16.182.101.65|:443... connected.\r\n", + "--2024-05-03 22:23:37-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.230.89, 54.231.198.169, 3.5.20.164, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.230.89|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -177,7 +170,7 @@ "\r", "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.1s \r\n", "\r\n", - "2024-05-02 13:40:20 (120 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-05-03 22:23:38 (151 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -194,10 +187,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:20.305771Z", - "iopub.status.busy": "2024-05-02T13:40:20.305463Z", - "iopub.status.idle": "2024-05-02T13:40:21.515797Z", - "shell.execute_reply": "2024-05-02T13:40:21.515245Z" + "iopub.execute_input": "2024-05-03T22:23:38.356845Z", + "iopub.status.busy": "2024-05-03T22:23:38.356625Z", + "iopub.status.idle": "2024-05-03T22:23:39.676466Z", + "shell.execute_reply": "2024-05-03T22:23:39.675901Z" }, "nbsphinx": "hidden" }, @@ -208,7 +201,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -234,10 +227,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:21.518227Z", - "iopub.status.busy": "2024-05-02T13:40:21.517942Z", - "iopub.status.idle": "2024-05-02T13:40:21.521185Z", - "shell.execute_reply": "2024-05-02T13:40:21.520768Z" + "iopub.execute_input": "2024-05-03T22:23:39.678961Z", + "iopub.status.busy": "2024-05-03T22:23:39.678662Z", + "iopub.status.idle": "2024-05-03T22:23:39.682231Z", + "shell.execute_reply": "2024-05-03T22:23:39.681754Z" } }, "outputs": [], @@ -287,10 +280,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:21.523266Z", - "iopub.status.busy": "2024-05-02T13:40:21.522960Z", - "iopub.status.idle": "2024-05-02T13:40:21.526363Z", - "shell.execute_reply": "2024-05-02T13:40:21.525926Z" + "iopub.execute_input": "2024-05-03T22:23:39.684500Z", + "iopub.status.busy": "2024-05-03T22:23:39.684094Z", + "iopub.status.idle": "2024-05-03T22:23:39.687145Z", + "shell.execute_reply": "2024-05-03T22:23:39.686710Z" }, "nbsphinx": "hidden" }, @@ -308,10 +301,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:21.528351Z", - "iopub.status.busy": "2024-05-02T13:40:21.528032Z", - "iopub.status.idle": "2024-05-02T13:40:30.505208Z", - "shell.execute_reply": "2024-05-02T13:40:30.504621Z" + "iopub.execute_input": "2024-05-03T22:23:39.689097Z", + "iopub.status.busy": "2024-05-03T22:23:39.688919Z", + "iopub.status.idle": "2024-05-03T22:23:48.757440Z", + "shell.execute_reply": "2024-05-03T22:23:48.756894Z" } }, "outputs": [], @@ -385,10 +378,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:30.507896Z", - "iopub.status.busy": "2024-05-02T13:40:30.507445Z", - "iopub.status.idle": "2024-05-02T13:40:30.512858Z", - "shell.execute_reply": "2024-05-02T13:40:30.512422Z" + "iopub.execute_input": "2024-05-03T22:23:48.759866Z", + "iopub.status.busy": "2024-05-03T22:23:48.759658Z", + "iopub.status.idle": "2024-05-03T22:23:48.765417Z", + "shell.execute_reply": "2024-05-03T22:23:48.764899Z" }, "nbsphinx": "hidden" }, @@ -428,10 +421,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:30.514973Z", - "iopub.status.busy": "2024-05-02T13:40:30.514562Z", - "iopub.status.idle": "2024-05-02T13:40:30.847546Z", - "shell.execute_reply": "2024-05-02T13:40:30.847003Z" + "iopub.execute_input": "2024-05-03T22:23:48.767520Z", + "iopub.status.busy": "2024-05-03T22:23:48.767327Z", + "iopub.status.idle": "2024-05-03T22:23:49.131868Z", + "shell.execute_reply": "2024-05-03T22:23:49.131295Z" } }, "outputs": [], @@ -468,10 +461,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:30.849872Z", - "iopub.status.busy": "2024-05-02T13:40:30.849552Z", - "iopub.status.idle": "2024-05-02T13:40:30.853912Z", - "shell.execute_reply": "2024-05-02T13:40:30.853373Z" + "iopub.execute_input": "2024-05-03T22:23:49.134505Z", + "iopub.status.busy": "2024-05-03T22:23:49.134179Z", + "iopub.status.idle": "2024-05-03T22:23:49.138593Z", + "shell.execute_reply": "2024-05-03T22:23:49.138045Z" } }, "outputs": [ @@ -543,10 +536,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:30.855948Z", - "iopub.status.busy": "2024-05-02T13:40:30.855548Z", - "iopub.status.idle": "2024-05-02T13:40:33.093365Z", - "shell.execute_reply": "2024-05-02T13:40:33.092608Z" + "iopub.execute_input": "2024-05-03T22:23:49.140885Z", + "iopub.status.busy": "2024-05-03T22:23:49.140596Z", + "iopub.status.idle": "2024-05-03T22:23:51.622613Z", + "shell.execute_reply": "2024-05-03T22:23:51.621823Z" } }, "outputs": [], @@ -568,10 +561,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:33.096362Z", - "iopub.status.busy": "2024-05-02T13:40:33.095810Z", - "iopub.status.idle": "2024-05-02T13:40:33.099757Z", - "shell.execute_reply": "2024-05-02T13:40:33.099252Z" + "iopub.execute_input": "2024-05-03T22:23:51.625864Z", + "iopub.status.busy": "2024-05-03T22:23:51.625130Z", + "iopub.status.idle": "2024-05-03T22:23:51.629398Z", + "shell.execute_reply": "2024-05-03T22:23:51.628892Z" } }, "outputs": [ @@ -607,10 +600,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:33.101776Z", - "iopub.status.busy": "2024-05-02T13:40:33.101453Z", - "iopub.status.idle": "2024-05-02T13:40:33.106479Z", - "shell.execute_reply": "2024-05-02T13:40:33.105927Z" + "iopub.execute_input": "2024-05-03T22:23:51.631367Z", + "iopub.status.busy": "2024-05-03T22:23:51.631188Z", + "iopub.status.idle": "2024-05-03T22:23:51.636936Z", + "shell.execute_reply": "2024-05-03T22:23:51.636445Z" } }, "outputs": [ @@ -788,10 +781,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:33.108502Z", - "iopub.status.busy": "2024-05-02T13:40:33.108179Z", - "iopub.status.idle": "2024-05-02T13:40:33.133976Z", - "shell.execute_reply": "2024-05-02T13:40:33.133529Z" + "iopub.execute_input": "2024-05-03T22:23:51.638922Z", + "iopub.status.busy": "2024-05-03T22:23:51.638726Z", + "iopub.status.idle": "2024-05-03T22:23:51.667029Z", + "shell.execute_reply": "2024-05-03T22:23:51.666455Z" } }, "outputs": [ @@ -893,10 +886,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:33.135992Z", - "iopub.status.busy": "2024-05-02T13:40:33.135668Z", - "iopub.status.idle": "2024-05-02T13:40:33.139857Z", - "shell.execute_reply": "2024-05-02T13:40:33.139427Z" + "iopub.execute_input": "2024-05-03T22:23:51.669153Z", + "iopub.status.busy": "2024-05-03T22:23:51.668968Z", + "iopub.status.idle": "2024-05-03T22:23:51.674198Z", + "shell.execute_reply": "2024-05-03T22:23:51.673668Z" } }, "outputs": [ @@ -970,10 +963,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:33.141842Z", - "iopub.status.busy": "2024-05-02T13:40:33.141534Z", - "iopub.status.idle": "2024-05-02T13:40:34.486384Z", - "shell.execute_reply": "2024-05-02T13:40:34.485763Z" + "iopub.execute_input": "2024-05-03T22:23:51.676452Z", + "iopub.status.busy": "2024-05-03T22:23:51.676059Z", + "iopub.status.idle": "2024-05-03T22:23:53.102278Z", + "shell.execute_reply": "2024-05-03T22:23:53.101726Z" } }, "outputs": [ @@ -1145,10 +1138,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:34.488408Z", - "iopub.status.busy": "2024-05-02T13:40:34.488226Z", - "iopub.status.idle": "2024-05-02T13:40:34.492323Z", - "shell.execute_reply": "2024-05-02T13:40:34.491867Z" + "iopub.execute_input": "2024-05-03T22:23:53.104731Z", + "iopub.status.busy": "2024-05-03T22:23:53.104290Z", + "iopub.status.idle": "2024-05-03T22:23:53.108435Z", + "shell.execute_reply": "2024-05-03T22:23:53.107944Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index a56d1a9e7239a38bc92f36d574d0d4dfc9f7c1c2..5044cc07d3347e5325567760239a235e2c860bc5 100644 GIT binary patch delta 62 zcmX>tep-A(E~8;dUUptdVSJ^2iitsr1rVksCYo9#nI)Ttep-A(E~8;?VwFXjMQ*yjd5W=tagu?Vp_z$AYLbPK84wzq8X2XfS{kGnn-~}- Q85$&}B^z&^$EeE%09Dx$*8l(j diff --git a/master/.doctrees/tutorials/clean_learning/tabular.doctree b/master/.doctrees/tutorials/clean_learning/tabular.doctree index a8554efdaa756f1c45fc38f0112efe27989792f2..ad65a8edc8e0bef593d7870c1518de6d4c2617e9 100644 GIT binary patch delta 64 zcmcb6i}~&?<_%{!4NLN}^GXWiEA>-M3{otBFfB3B)FR0&*~}!_Jk>18+|0w% z_u6}{?_1wmYrc5jDfirW%Ap^hK=;nwFt>Nl>}M{Df<%Mw?3^@S1to$`%4@|4*D56{ zbfVO$!>^w3;-0}D4xBdl)V_^_-|lM$hxeU7`1igu2WsD@w)uE(^grv)Z{E9OcK1y?W^dlRdsmvz^@A_man0M^Xt46n_26Cm55W92 zCx)GF?)o%)<0t0^yAGZ?*miK^ARSmU_|^V122UJVH#p_s>H$BvZbfi&A?=#ody|{H zIj5Tj`wpnL@$thC96Wq}t-Y0+JMA2`f(q%hRY{m^Xf{#G!JfwsG=(*4K%PDQ@Og(` zIj#xZQJIqF%y1E9_Jjly9Z8-l7E>O)d~|<#QMcVI-~Ih@jW=9NWvwz^3kfqwPL|0m zn9)jwFxsxTsN3%0r?H)(QZvRfkx&4hyZ~%!;vf#YNqA*Zy?n@pUADYMKZO zLW`V}bH;khwF${s!v=pldZ4)Go~KtGzWmu&aaA6L!!Wih7X)n-O{Uh4AN&8B|!u!O>GoPIA(|qEU4UG^+W7^W9~oKYYJxQ z_FMN>+sYQWM|!q_;VEQGjNnpG_%Z~NwZLCBuITu1kLvH9*$_gK@Jr&jI1Sk+Z88E; z6U2g`?O9veYo~+dFRS)7lhH zeSAel+V?$FHI2|tQO89vcs$0f0m%lzBxjWP$k_0~yQ;aFI)|tvSK#5O1)&lbVh*9} z1y*y@z478TYzAioD#j`)wB$a>K$(nG<5ePSA8f1B+Fv}^n`z0r`zH*W%c}c(MKjtv zZ|jq$V1;OZd0St#A9}Pp=R&rH-Ei4OH($H)_S-i%8v%djDJ*sgtPlyJF#3RKkOowf zhi9#Wt4hQ+yzxlyYrXk`o9ITIcjZT}nccemgO`7Jwh)|R>FUDU*^Sq3ZXa6PUtKSM zAKG5^{{DG&K9NMtUD%z4(6pz~P-t`p}*GEk)em*9=Ej9`M0Y&ZsV z+6qOy0nNG~gfZSE3CK~Va6lsM(~tKSL02$Cx9gv*wl_r!0J@9X?>||cR8wm~CnA8W zq%hjMD6G~%A?H%lIKTI_|{h{Sm#am%h}yxS>9IP6LEmwjxsJgNR7i3}P(=;pK4Ubs*C9i4#krmCVD_Q5fe1v0gEr ztO)JV$9ty_kpRBgtF`4W1@1NR5R%ba%c*CAB%XrKqU}9Ut(i;{rSnIStHZMA^Ug1{ zUH@WrX04*oiY8?5oP;#gLo!ApxZ@-Xu-Ki?FUpcygB_q=ywk|i!Ew{641+g_5GEoG zVd{}yV}o>fA5EyG!bsQ~m{2)O?%+mYh9I3E^foMiZcCo2SW`GKj+5QoYrS(eGctiQ znI*w9GX)VSK#U&7N@|#G zYOo&6%yOs8lp%&uBnHKm$STPN3MIxxk0*g1)5sdady0IQP-Eho`%z|mU1Hwas|^IU zBSAsg37wV8+9d=CV33G2c?8S_iCMCsy<|mobzL&xx<`7X{c5kjqDc`lR>r8j(IQc0 zwXy^ps!#w&&G`66jb`w1SCVlifJx=35>`@0Bhp$lOR}ApN_x+U(;17oc8Jp)B`_B< zv$lQVk4sQj7fcvQ&awfcJooE0)yBFj>|%m(9oBF;FEi99k6GgnW=5%L*!;ZOF;hoq zW@Ik`86zk&HfL=$Xo5;qP+3jn@Ww;ta7$?bZ;BL%gE|3^fC#}@c!DwXn!@3BoV8Iy zEPwDwY5wJ`YSkt5++BO$OUT89Y~FDTBVb#;MQ(jVdxBN0%8pYhp|CY%J?cdTVWyKO zHjc}aap_YkBp2{l@E=)^Esic?c*0K~%SdVHPY!6P89SN%;}7};VcaF>*Fs96)D35o&%Mm(bq z?E&o>6mh357FrIamdlusuA8Yo-)lCMcE+g3$SK3+45Eh?Wc5 z5e|K;6eNLeV_h>Rdk@LMA_4`Gv#!5b{S~aR?JJk}w>AX>L_5OY-B%CDf=Ay$qt^tf9W+7^N<;ZWcx2QA(#qpYPvG;E&g6%QU` zuz2nWgTKkurY&j-IdLCf~t;{_dmXIckeV0Nbv!hBB3^!DF0e;K7 zN-u?9Axz%{zrvG=*Hd5NRtw!1l&FNL01m?J0$mu3K1fg;A{?CN)I{E|Jp>)6QL5Or z4wZ(p9K;-i0$^znfLr^gErB1x1zk~=q5q%)6KX?rK^U^8=-PBG8dZz%D_9}gZ{J#7 zRWxAKFWmO&>f{=tS!+r&LS}L3_-jqq&3SU>Ry3XQ9#;6 zyD{_0aD^^FPUVs*?*$YqxGLe%P`Cu7rDG*&$qf2TMVq1lBLx0uPk(J~(auaB`~VUY zoMCKW6W}jEf`lh{wCf>{MH+-PhyoKRco6`^r(m>j1PUbLYw}u6px`N74GI^Jq%4{M z;3P*+3kI7+sz`B^*{x7l$a-$EvGAheYC=p-eDYI-D-P`b!OVG-n* z8U@z)T6LkbKMBHuv)-gX^YX!}mO{4lVv8WGOIJh4Zfa-u_w~xJT=1`VjJ|drckP#V zuKd_^BrzRHOh*#`b6z$bN$BZFVmgwTjwH~@pN=G^BZ<){WIB>~V}`RRL8l{$=}2Na zk{Hk9rz45!Na8JKA=8n>bR;pFwoFG7Gfi#1JEiLnr)&gA>-*MPbN78G-F4qd2cKO|Z*X5X+1#*WvyPl_PZU+cByX6)UoIKT$&$zgp`H?# z13&!t<*)AUKe%UI|ERqykJ;FqyN=rn+XK6+mHk`yoZtV=p5Ax&tm?nKXMJDd+f{p- z{`Ng*_s`sW@&Eig_kQDd{iAQ|tqg8wNMF8s`z<%Qoj2!n(|H@4^V+RDsx$hp?K``_ z;kGl6yUy+0k*?mp>-wF2d)vDHWBWGr@7}kj|NOqQ>Z|v*yRWOx>3{pStKN@?^;i74 z*FWL*{rzVDnp4M)P5RY8wExUgccfcxxqj!4?KkgoH>K^t-4y#@xMR)ok&`1IciqwS zU*EsB|HSR9`={Qqy1#e7d_SLe_`y4Vetyq+9Yhq#i0lN7#wbTEC&Wk=IivmEkMC~^ zXH=gYS#|is2j4iRvBbu}J?Gg-5nT2ml9*NIfe@z&?Z5u??d3zm$G!2(KjLwLYEBhN z-YJnBF`O~!gHeL>z_T4bu2(qJ-+bis!;d_Jr!kSZ)6Ckyt;oXK%!M#s5=NY&#*CaR z9vV7#&2uY`Z461wdEq0G@JDe&0`)QxX&DzPiP7UqhYph?Cmh>LhAXQK^KeQ~K`nKH zvk(YE!=)Pqp>Sp#gwtMJcWh&IitvS`Up%gVb;;WR8qK*;npK) zoC_IMa@W{pQ&G{nu1-{{_NiR zijv*-(8)Dv4?J2O*C4a9q#mh>mrQa%cIvDJlY%-bGatNsX}xn6QqbH2t^|inIpe^1{_2VJ`k1KL%oHS?eAZxmJLp^ z^}|)sh4$`^3#9D9%Q)43>_>HP(P_$!2`qXRh2YvoMy1sf`3@|%FTYZ+8a&AAFD~op zL?{hTS_jnooQ;yWm~%!Ts)VjfjmSj{uDG-XW;({h0O z|Eg+cTjptem4a2%j;?ax%7vrb%O0!OZz7w-m$q!a`I@zR_ik*~DnX^s%y1f#&_X#P zxG+>1uVe6zjw4noXoFo(Rrgo>3bAr)VepbqU$y=6t)KkVW!p=MI(-^NVCFkpd(Fo7 zp6v@~^a>Yh-J{j|_N}uPj_LsvN*nEkK;cqRyBIR}j7XvpGCz#h%B9c}>WmJ+J57Qb z0FhZja@NDt%(MkSSGHTX)u#`dP4!o*hEblfNyvj3QF)k6%)@=Aa!3I`m;_eO3ct z7^$>HtwU8y$pb5>c9eN%4I^Zjoi{F9w9*AfeddOV9GOo*DC!E;OgZbuxEog!6mYHs zlfg*PR8CF<*@(OLIcZMbT}>8eJJ3G#dd-?R+x#Q||Mg<^p^cPJ;7>A#(xNid0dfT* zP%^@@Vbl=C7#}$_&cPzX4^Y^DSnVstY8qChM4diecztdN!u4;~XDk+Ob?u|oh7NpUma3t}d1(HfwNn`9t zPiTYs!l(di;SS7%1bTn~f$DP5|C6K#pz&bwHYl=`%it0+JY?b>_u!0QY^i@;7444E zRx~?8+v2PB*-)e&@=v5JQi5_ImNO20$iU^90q5OCl1>^@%0;LLp`GzOPzXpBy++JL zn!E^_8X7?+O5-AUEk0(7ZpN8lpf*|i(4F-ZdzV}o->K-qJCwKct!n)RR8Jrd#7u0` z0s;l~Q7RYFT{*6W)JR0Dx?2_muD$ZG!J41L0`sbz)Ig zvxV-|Iw!^~GKz^QzAL%Ve*EP6vqcZSd7$3VUUXl5eEWlH;p7HjN{UCQd+@8E+-8yp z(cn88lut{!%TZ$!ZWiG$)MPR?jRfN>Ne}4b_U| z!C0l0ERRyQS1>%*&@Zg6*ELxYFt;+0WvGA(q2VYa;24wxlfCXDL~=ytf(kQ~BvhuA zAhsZRKxm2aBSkWRF8(Q0zHp8^VH|~kO}Mn;nW}_e&M`G9|YaRz~NR-pNV`h=>4wh@{v^?S_dA^m6$z*@9bj6m_p?C?{_q$%i?47X3ydRwnx zcbu!&viigZT{-iJ9J(PYxS_@=Osce|32Ell(nY92yUJqLm|~#oL0_5(zF{(g8|b7! zYb2-va}KajLLq@JN>+xbLsobk+N&;CONPg}TCh7(W?LIbd35qRNQNl^2jIX~pzV}d zG#F)wju5z}084_uMhh2^wk+X*bO;61epfoi?Hw*j4Ejc}X-w!CgVs`DWbj_gXo znT8G&-OR+CK8+T6=1Y5<>`GUfz!?M=^BQ9k#7v;j4C@3YXv6jZ>V|ft&|?WY&tvq0 z86DJ{M7(IS-o;4KSL89ydJK~otz(voXu-2`0Vjh2AyVhT9B6@8c4L*2-PU}rzPx0% zi|oY<%Nw)>2pX3u<{=NGDsaOwjuPN8C485my}&st2u3i3c*rwqFg%JDqqG#z-^%Z8 zsaJPH6~(pm(MF7fC^}TM9@=<}1i6%;Hv1p4tmMELZUy_Q-L`e%^TWPVMob!%)R^#D zG{;^+3Su-0ksFQd;0D@8Ve|?@5tR>diBfZknX2OuY;LkWUBpX};FGK*#$n1q;?Uu+ zl|yTx;tfYMXLi$}lJTx?lx#0?+($O)O_ofEOVBXJaY+(8bQObJONI6{2%C~NbllFA zCX?MXr4S@Pjh{k#zDtPCeq%hnjkdyt>;&4-bz$PlG1Wp!LR2CO!eXkFfIig8r9KGi z%S%uU`k9R0hS~(QF_KJj==_8n_Hy@E%@DHa)nmZ0K{(|casx0$Tq!ez$;oD}WVwC( z)_Pl0GCaJ>=635>>k}6fs1~A$Nehvps5G8ot{uDwvl%sb@XmVovR;%(&6sTlDLcsl zIEDcWMc&~@G_+7v-4GL+E*LY+Z$284d&@CCAp{Hv`h-aC7-6%y$R#-NB5H5Oj<<-yO_%2cwCYDgXcg diff --git a/master/.doctrees/tutorials/datalab/audio.doctree b/master/.doctrees/tutorials/datalab/audio.doctree index 218976163a8fa3fe90399eb393e3e2eb62c5911d..b0db1620ce0dd732fccb2e7f5b31718771221f13 100644 GIT binary patch delta 8969 zcmeHM-HTmU75Da@v7|wh;57Q6bB-YuN}9=Dd$0ZF2Sw3BwI#7dY>+YTPg@ExwSDoS zNb#X4zQhU#U&JR%6|ACoK}ai<=0!pxSQ;Nhig{=Wg8d8X@7^<$&JA+Uqc3-cfy>Of zckQ*;`hBc57hl_a;kC`*{^QH7cQt(Z;c{(W%6qwMeX- zk7D-R+2%Vg);w>}rLUVo6jhw;tzx!@;x*Iuz=)0$zPq#q@qbidNR&p%S3C}_) zDk4T#+-!1Vo)1-y#?%^gaGaD2IXbD8GSZZ!&1`b1d3DlJ5>aZhE^}lTyic}D(jsP2 zg_Asc>T}H{9DjAl(qDUXD!P%7uJ5i-MgPFn=_gx@8mgR=5k|5l+;MQSTF05P5H#el zCA~x`d`-zkE`^`+F{&;2j%Sks9e#oa?9bWVo|J6``=K6H|q~RyOaO&xuW6wT&Uw2H)Y(gNCMH0KH zqfeSkl37K=D9G%uKW@%9Z77yx%9Vu(EOd6F7R}klpepWQapc+6_ohFZe1EJ;#}M_w zGiT2|eEN%Ddgz>7-Iikc>5-c&$9C@PzjnMi+Kr_(ukP{w<>So8w(jWF%G46;WD1 zu8L$*D8duR*rR7ZG85OEzfaoLClURLx2KPGBZpY@?Wz9C+tWiW$fqV7DJw3Fm@yWQ zR6E8xl@%V)Vq+XS7!dOw{E}IwFhAi(`~Q5i`S48qW%{#8OU_!&QR}F1 z72b!;cq4P7Ql&EeK-v%vS_-u1zNT+kc=~QH{r6Li{u2A+CkyNq4 zY8qH&EcTGg>d;`>U%c4tY9OmYL-2180D>cFEgBUN{O5FI zOGXiWFgkb+XjKy^Yo!Zh5E_;H!yrazp~T z<6^RPHtcF%I})?M`sS3nk%*!{yxDxcD?S9Kq@huPlPBC^0B{VPh-E{(s|Y?b3-Abp zQL^I#`bZYa0M`?|&HY=yM>{U`u8Wd&az2#mR6IgSA>Xp@6j*A#@Ssl1bZIIXNom zv;N3)=*3->jg)2?H)Aci{PftB?V+q4OAWGr&jMsEkQ3%Wh-e~a3&s?}k#oX24GS_9 zY!EsmUNS@rJ;@AWik6{?FgsZaDBeO7m+j>%TM4x^j7EiSvbP1$^wK$}R4QKg7e9l0 z8|>xCL3DrOWbA;6n6V1yig${K-)f1j2U~@2M6pPHxEG{3C|ylP>q5$S!iWbn;Jug`*b^MP@^VnR zR-uzEV`#+Xf{@`TMY6D@3jS3|H5l^&cO$`V|Etr@SG%#e1Ma?jruk5pE9hQVs8ulx z9f;a0mRYD`lJvaSt{B=#s~Dq&Btr;e&WwhY;00VjnSoL<+-2t_m^l++;^p9jjR^y@ zkJTh$#oll?7PG(h@rK&f5p93?Z1YH4l_bcL!F>^@07(L0gs6q&03KT+#0rO)tYJ6~ zltRuW4s$8_RI_%ww>%&Y^N_@;oiDJ@AdRR~_Lu|Vtl?Yi9^yuV>w!CXb=)%dleRy7 zXyf=cnQgxhZjnquALzgp{()*hH%n|1V3f!kJ2#aVn${OpI4h;IVK2M`HEKZ^&@r%B zE%$rMvHC1yXQVC5ZBLKf*&fp1U{+?e>nUG)qH%{`ntfpL_4u7TKYjejW9#+GdcCq< zuiU=%Td!AcEqd1Lm9Z7adcCqY_^sC~>-Eb1mCky-vRGAyN%+Z|G~+>y`C-<<|ca*6Wq|f6f2j>lHiu$I*>H-1T3@SqxbK delta 8917 zcmeHL%d4GN758|)tE4rwm)>S(&X*8HXde5q_TFm?qKFEmhP1{&hBa0okR z?X}nXJ=Xf+OIuI8wDsJt4#^c4c_`*Ymr3sSH~erD9!)V~&(mRZ;6Ioy@h2 zm)^JW&92wcNNY@%GBdH3F{l~?D<=|BRAmgWcTdjxpuCB(G8GXhSqh#LN2gPjIVDQt zk-NI9vu4oY`B&y=nlXnXk8~eh2fnMDie!$%6IZ&e@!=QdU+#LV zLh&gCEuEr_Eb&fcrM5~LLnV)!U+rF;EkaS0I0z#IlO_{__mpIbGE-4*xbN+5>z4;N zo}KlL*mbykM<<$Lhs~`{44?VS{74^a)|`w_tP?30k(jE!5S}!Ns=~4wi>kA?)>iGc zL6UB|F|!pRi-=2a-|)u=H@dO^PWSYzw<)_SwYMS@${W~vJX9{6Sx6i8ccXXEsM5^W9r`R)Vb-`|;Em|biX%N<4RyYGGA!P93x z_36((*y_){r(5rK^xW~`^RIP>`c`sNg^vx-9qTq0#&{CZ#FT{~V&k0>1zo1mmnwx3 z&GoJBu+3h?AhRNJcr(o*dMR)u%V@>0d8xZ|{P*SgU?O0jDiZZE z>+z{ybpM+5ji7G0>&pCWzkg6srz}nlf4VZit#?6dASg@aEU*r=$l{Cg4E8Br>J@9C z-SDqd3ByDOCRUlyvz4V20AgAJPE^u4Y3nLJp@+FRt695R6Z_)EH(vxSn=zMQYlU2b z?Uifu5A|_sG5mUGEIAKQ2wWe@kaMeMqfg; zSqJvDL@FjlMV={yB1wCcdkL~;&}A075p#Iz>F(SK$@26KgnMsh=rITp0bEg_JEPGOl9hwoX-rq3T3ID;wIi?%v-h=n zi$;Zrc(al-6NOZ&B(gwl3IYdERx#l*1S#c8&RRi-pWo7*>02?E@H%~Kck9BsBvX(? zrb5d@_CYu>L@o&}$Z5FthaF8@R3&WDnFE5 z$dwX;h^!S}3azTc`0bBPP;12Z%O-7v<|&~sEwm0Ga$GWLMa6rM@>D{n8X-BB@wLZ6 zcu;Yh2o>;6BoI;GJF zEr!eYcXF|RWHAZaxf4$B7PDXj2n(J=6-^1r-~!CW$cR3XdcZ60cn*!SNnvb`Ns>}B z0(sf^;sHQGTE1J*_OFoLi=kGB?mgXjwlX2^3vbL1^^FAWF2reKHF?0w)zM^`l1nIZ z0kecsTv}O{l2BR@QiPA1JQo|QYgXF&s6;H=mSvK(AIugyD;KKq%p@pU1;;B5JC`D5 z(CRjk4L^N(erSC4;qG@RbK?fX@e|$IzHtG!gx{Y}bhj-+vZ=5Ps8u0=&sQTouqWY7 z$nlaNKk>}Oq{>IQsi0ssDMlDYxG)_7#+s~8Bh2S-W(#k;M@Nec%_FD`-T;Y1p-YAh z@~dubMCA!|aKOJB`7UPz!18$<0V1*w${lD3J^x} zITV;L6QPI>{#kBq+&R2;soNaIALl z_K&Y7sdK~YAMZYVlHEz#C3x27ER6#6rj&4FSRoN~@=l_`+yL9KLgB&&$2LZEmIPTK zS0^N#qvN2^sc}S-PtGnj>QwfEsnMot@9D;~iR)t5$ck=2Zvn1Lxuyu0go(v#h!Q*H zN~#btQFcE7M^S~(5!MPcgo8N>4f@4rk<@BR+J;{bKVW5K&kO7+IoL(s8VDiMr(=r!iV$(6QF} z07sTRCQ}151CC`3N~=Mx_fWK;tdw41=Aeqk&WRm+S;&BUR+g+0cpG@4Z^axoALu@} za3nB)8hCF5M!*=3(X!Zy8p*E_!b znejc_Kj+_n?nmc0?_V!b)=QN266K~P-%TiNET68UaJ@uXFHu@6f%Otaua_wMEpC=m z+AD|9asXrg47Tv?L@JHP*9}eq!1s7oj4Hv_C5Fib8lMyjo|PSLI~M8Yd_Za zSYPtg%_C3UJo3}$5An+vzIfsCrSo4olZYjYAH{oRgN~Y_$vPM*&mrb{_`Og&8*Csyk{gtu`&hnMk}MF@z$@t*IZP;_vo)?@40tiNoOX5w#*ii zDmu;_mzME_0zOSgZ7!=wV|Kka%k%%9e`D4sE|aj>lnaK?mLYoQ zl?%a2rg9#y9mmqcpX*+n4UO7j{Okw1b3>zc9=~^`J2Rg6ZFi{GB{6HVDMES@J_T-) z5rPB&q>>wtywn|C{^p(CrxpWGg_EVigR-Orx!Qs$3uCj+r2Tm9Tz7nY>96y9mls9% zM_tHqAINE$tn)6$l$MVj>2A)3#s>KKkt-eR8@0#pUg`Mw`rmgS?X^*+ zU`wJTPLVkmc``a#rI<`{eeaAfKE3Fr#A&Qo8RxCMA#rLMDF+$37W(e<^co98!G^5| zxoGsKl%B~_IR2)w^{(Eyd^dGJ#HkM6MP8k1V67eCo%DG9)Z)}>t3QAF%$FZN`N$)u zhm#Q-M)w*j#!>Rjkt7Xxpq-VGWjXt0?Z5^Djh9}YA6@?E``zQSs|UYS;wMq`gAab< z{J9Um@BL@bH~KYfuWsBLKl$+K@uAz@8~Vnn#y>sZ-QS~unBpJ-gXU5;+Y)?Xl3bB8 zQ<}hc!e_8~0ikh^J~ik9GLBR5l8fxdi!aZQt+7{J4m<-^f;^!E@KIKD#4jR2Fs4hI zu-7Op#!G*kpX(2-tjq+x!w)Q8Hx%s3D-F?MpkW@YNL=V_wc|-7Wtac>_58x32P#=I z3i~t$%g6(3+LDV!6d&UF!fhb*;(d#s%z7w|k}8u4ifmCn@e~Eu-ayb~_DcZt*;%vh z)SHd6svd-W`@M^g^&*v=LKHdLx;tZq%UqkHYth7(pf7YI4hTKXPz5Q77ZWT{!@-CG zw4nHO(d^dz$Fmd6XA81WNq}X*(-0>aAP24#U-a_n7b|Zxs)p$ljjF5X_`-l|PXLn9 zqyv#sLGr>mwh3&5*J=F{4T)WX(y!01QsWi2(b4EXv%UJ@o6)p~rRIso7k)QCH5jc6 zE3zc*Bn5CGh|^dF3xvkWq11EZ>A*6|N+Qc(8LE(F1_jehMJ_;r%h}K7*Jr&10-0kv zIF`uQE{<4Vx!5Y^%y{e1pqmLvt-6znl}6n=DmFlWA_SaAehkgQ_zu-TTC47Kjz-y)jD6-Easy*j#}hbt&oSc#_)P6AV=&$z zdkh+TL(0LE+onZqy~{Re8ht6YSHrs=cvt%nYn)0<5W{={Fv+Zf!5~u^#bdsy>V^la z9Jex7Lu43WNCX=L)B=Abt<~sI+z>`iwg<5~MrcF|+2b{_P1x)JXX3L~xx}(LowW*2 zy4I?@p=*+*SiHb=STJHrZ-b{&ftBSGy0TH0uPow9%mxLxWN5BLtU}7ws>Nrp z1>BX4#;+Zgv@p0S72rt|a~2O$LbML93>wXs@DQ+m6a)os8GNoG%eB){LB7z~x`sV_ zKDSkKIz*$StA|)?7;WH7p{tO0AXt(Gj?Xv&vH)>tZeSF|`asPnV?)Cl&vVyQ)#%E* zR<~|!A7HIxO#l-F`prZ@4}3%saPbJy63Yyk)V|&7rAY$JkGI0C=4}dDC1eeFF@$n1 zOq0th0vU3|pQ9(VgETPAHxkKAO!x~hUV*3O({Jr=!}K=_uQlx8x~tLU%vfiz-auug zf<6($w>7#Ht`-V}pODbJ5r6c6NP)%5Nvc#&?yxN+3Kk8NV`duz%;1qZ2#j<1kjBE~ z35lISmtb9rWY-$jC_Y6WL!<7B`=>$7VlxSQ;}K>+=29~)fwWO&xO$e>u|R@F1mnT1 z8~93>E%XW4iJ`_LE^VBnXVp|2qklo| zSiaVMa+fpia>iZGct9?Gm&WaK#ybh;E@#~3jN2-;%NbuI-`wSl_y@B_)VIqSH+CGai&}?sCTcWOhFb+2xG8oU#7*qt$=-*yW6`9eQt1aR1+& LafzI9cF%tSfg66@ delta 11119 zcmeHMOUPYU73Mxfi={EpG-x5`7^v8qn*CV&u{si8P-wK$D)^}BeijS0DLS&0m^!kZ zG)O&EBvo{z4wOKzAU3oUJF&DvK~SW{iBMm~P8^7S=brn=|0eox1cx^nOof%{Intc8xkN=v>(uPlCRqf{*{vL+#;6rm=4@$c9C z`CadgQfK7~M>dM0^+sncgYia68M7><%brQm{Bxh?Z%0(SisX}PYWxZc>(YW8WG{5-H z&Pyk9R956nRIriCR=AWz)MP5HxAUz<<91JeZ2oNSqIQZoOPla{#5Sg!NX3M&mL}BI z?D@rm%PxxKf@Y@!Rs|m;nc#$pMtSsu8nEj6)#-oCAD{Kcr@}SJq$p5PIpF&kcSy;T zLEj!@VC}oNCs6?S;in!^t=1Zy%2RYH>~Pl4dq&Q(>5t!y|@(KRkYx z1^v2ubgnuj z#oFl0=W#Wez(H7tmdzrRY;d4b0ScAX)#oY9R;CchDk6{u8*c+1w*rnOlGvQ5Rep1x zR&|`m4i|1--h8X~U-s+k)H6QT z_0N2N@%7o+)-xSP)!Xm<^yyO{|L{ldINfU0?bWR-JATiJ;jY&gH}tJz4KKekzZvbH zY|={PgVEhgYpzK9g7;Hyz*a4|YZD=QPUEl||C$if!e zE0;E1+Ne%bmo}@9sQc!JmY?ipRqRz}t79df5(E2HD2+!D1T0Q{*@4V6{+^t+nOJB> z+a^GeG-Nre;oSR|M}{ZvSR5WXdEOoP#a|zBjACzBqqy+0^6x_-Z`JHewnLN!zP!<9_N3b(^_7o)B z;r!9%o~Xf}ur$)3^EBz8eHw4IP;ubhZ1+U1QFaow-XB~yPskbtt>fa9)h1Spu8A7D z%M#v$qmn8E|A$|N?!I*E;t6f#ZQnILbhV z82)2yYS;>E|rEHQ~$7fgXy)KvpcWFgKPvW6=RGK28t z3fGNxv_jzH6=w~57%FoBIe2t$)ZP>&uVM)}7oU`Y{}B~BuR}o@Wn8LCc|Y#E*5*d_ zJOQg&9l)Bj?1Y#5v?N0&!d z;<@<`XFcpCZUdJCgb_>`GrAf)oFSMAYPM<5M%hh!9$eO}nPV+t9ZN_P;ma*mVjziN z*9D7`L!#<84QY)Cq{-Ea!@^?voRq)B)hmF>@4eMt|>Ygx|;@!?pjL_@6Pp(AZp2c+7>E(19tF zjVd{NN5eyZ*t3d#@h(e@64~O}Es&ZR-OPB{60NmjGom$$oArp+H|oZHY8C=$88xN$ z2oADm@VPHgX4pn}t`$BJ3P6}dB8)Md6p=6`U`Qx2bAm((quiAW&|z>W8e^=C8V)N( zF2$i&a)IupZ1!nd-}r*KR)MbZ1;ck9UdU-c^AH=GYli#7iC8fPGekCu9kVl1?RiB9 zA(B)KOfNZ1!O2uKGim3Q)^%7rjWahbe>Cev2uK=OCkLZ}>oEx@ulOOB1n<9k?e^uf zv#wEg;}Q?9x@L>DnB8*1?ZX?KHhgx?zQCO$N(#;fQ$coBVm?cHbEZaQFn9$SKED<4viER2X9jaY<66wpeVc84nG0@HJ|^fn1|@ zS<6`mP#jqI->JxYJhRon4=D@DN|Zq!DF$?1WmA2nHG!U4c8CMuj?Cc?PnWDq_3LiVDbtg@~lGuke)w4w-CMqxMD=s8t-IFb!wW0UMFWk@b)% zM4sRdh^lZNUNOb>a0Yz_?}1!ZYROwE(gTI+MCBBC5TjfQ+7R!sn^ zL)4>7b>Lk)(dOC^_pRC!>iFQ=VdTU6I~Q@?wT5ExrSJ}slh+Am9a$!raRrNm*sYP{ zO$`Ra`1tH><2klb)9S|U)r~8Pz*s-rjqIa4_)vcIi|-jO+_f}A{o3L)yX~WVpUKs{&BW9O9UKx4rvd3Nac))*?@3O~T_V`~S&t3Mo%N}>x q<1TyLWshRpWYR8sygKvTWse8vf4l6lk%Vt!?EjlRu8=*>uKgE?KZWH0 diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index 6902492bcb138c8c93884da2660873dc0692a8cc..ee6d5fd46e2eb90650ac418e5904901aa458c562 100644 GIT binary patch delta 2191 zcmeHIJ7^U_6lKPMs1ZdZ0THr9LC|1kcJ9unuv0;wgiG=k1cR20G0!Y)j;!`*xCx#t{adZKfBqVxW=>q5T==5;<1vC>vL2~GuRl`NT1G6W7PaE|gSSzVLW91Z=_2t*(#mgQUD|9Ssp>+Uc!D>WX8dRbJbTN@fbYnd=Lr-=T$Rjs8 z2t=a+Bbc^ShI@?y0|cnI&(qtaN6N^3)LF$KAOc4)(J9M4j|dPJJEobpv@6~GM31LC z@99YUbD?M$#ipl^>A}V+627CRP|h$=JU9>;Ur4l!X$u0X=#_C$f1IYn9X+zrrnH%} zlMW;(171XQ1_IAB`z7`R&*(i;lmdigrC^q85JBo_vkz?q7ZhL>Qt^a#*Sp@+Nz#a( z*aBsZ-~;a{ODCSvJ%uWD<$cK*D=QGj+h|!>Ia6(`RlQ>xZA|HFB{@s@}e$ci-XT ztpkU4@7dpK@T>i`x?y>?_jF%+{(^Qj@@ns6YufyUs&ZC5_-E5d-F-vz*xw!NL@RD`KHUUS^dLqmrkMja#LKU6?|! zut*!bD;7~Ji!{Nc5;cinrG<^85%fM@qKM$tKHP5j=X~>@bN)L&(LF!W{bY6n9kVxd z(qk77sK5z#L{bSlI?ZJDalu%Mh6E0TI!bKv{4Uy9qK)Y4nM{Y#j%|%%Zyz@YuUx-& zX(Wy}TmH&;d3YFoMfpJ!-T$kmYhB++YpA($b*MSgYF&^0jiUeONxNE}8buHDVnmzE zg@n$cy!aS(<;xLG{{QX$xEN`z0{`H39$(=;puA-i-TEi(*6~6F!-Aqra2mic>%28m zTB{TVVVKSf@6erEReAe8ntM|iA0-LEs#**@*HszHXi7v_YB^Emmw9}7eL=M)f;g%P z2T+DuLtXOVY>2^ucICb${0J4Ai)0zmDe?$fI_rdiWR(Y&cs1Vg#dG`#)k5>kOMIf1 zne9hxir{4wk&6JJftjdfR8)ZUJO+}IUojA(7SdQrEp_0vcgmOu+%V;Y41$%#D?E(~ zqN!JwYi?D7>gCR9!4)%BOW}dAT*-RML!a>^swHQ#j7d=kZo4>;&(Gk&LR)1mp+p($ zt65MNK}pGlOdw o)$Yfhyz4twdEhNRUAy{gd0Wd{C+%x_`}MQ>&%BjY-kxsy0e1$IAOHXW diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index 3fd8586b78ed00c89bb87a876c34ea2b750260ec..7089512ae16e2bb5aaaa10b8fe6496ea24eee93e 100644 GIT binary patch delta 72 zcmbQ<$2q-^bHf!*!;-x0ypqEBO8pcQgA@xOOiN5OwMa5cHZw^!Pc=(2H#0IYHaAO6 aH8e3#H8e~#Yi8wYXXRqt&dS9kWD5X&9u+D8 delta 72 zcmbQ<$2q-^bHf!*!`#Fwi!_Vebba#_V*}$P12aQ26N}U&3nMciG&VIdN=vmgNHI1s aFibKuNK8vMZf50bXXRqt&dS9kWD5W*pc9n< diff --git a/master/.doctrees/tutorials/datalab/image.doctree b/master/.doctrees/tutorials/datalab/image.doctree index 588f9aa3653e233f6f0590b7b68ca1e5a4534d56..577d3c6627e5b6b8aaf9a7e52189e506d7e43f90 100644 GIT binary patch delta 24587 zcmeI4eXM0yS;ljE@3~B2q!j4TR=H=l(o#y9S!?aJ_FAi8X!-bqLZP*S^3}RN_D+z} zmM}(0#2Lho0DjO6W=DgNMg*iLij^D#NIN1BG$=Kx5u0e6nt+sO(Zs}r7=QchbLXBr z9nbpTobbd7tN*`RX?>{pvR_{o~J{FOT2x_B)Qh^S1XK%UWc||GE&2 zi%n{DvTYM>qeN|+ww2npQikTf$Irj_MYCFZCuJ>^lG@u8qs+F6MtGsE_3f#9{_Pj5 zTzcsG>o2tfP;~>ozGLbka?2a+7>3WLUhe^w53RU;ms#Rd6jIVe2{= zt!rPq5Jk?pv$d#MNnE_D_|WiW$8LDVp~^K%=eAQ_?WJyW8{3-qbs~7_t*h(B>xvHz zue;%vTQ9BJCbudn*+^Gw=VI)9r)4X-J=RzkcnxfAxY>U;6g>rylyN$5wuQ@zdXO+wt)B_Ks_-@fD9wC+|P? z?!UgS@XSm45C7%l{8R25pICWt@J-Znre(h7Xloaf5&E9&c#=Wh+eeIKfJnZZDmOp;s>V6LY*A3iks(es2JcJP^mP|xaEYSl>TIHQc6n08hj`zwe&E*0`~$b1 zcgq(mGS5pPQ=6KkMe1BKwe^i`b!WQTHS_oV*w&rfyS`0X1#MV>c3E)cbd%aFl(Ti} z`pe$1_3Zg?{@V0IlbLZ+&^?^bt<@>Xn5D{Ht(z!SbWI-~oIZR0$ji6BHJKGc_aAv| z`<5!N51sn=T`)b?H~+GI!7K{zoD6)Cl$u-YjidgD*!p0D%i~u*@U^WsZ_kvaV>G%o zj-o7*3w1J$A_bDKO&jNv|Jc5NGUI_DjL(&+h6K3mhf7k1_uB=>2+Df6kBGaSNPA6JsZM)iX%vlYGbI10K zp4oWLjI)SZxac~odBkuhlr(n!*{il#Ost*MG+jy}w?||;FE`t9I3gPv$AcLcQ;NG- zOjQW0hm#Tg0~b$s`j`LL_VbTvb=2PYvSaUh>*eo#?={us!3ZuuR7Trc8|AzN2t*OM z+Y$t@ym=+mF~9qJ(~nI~tUsvka^k(}rZ?Vp%~2Q|tbbw@ojaFD_~YHlmC9m=%d1 zlMJ<>HZ>%fr2>e0e$O9leT=M=Z3@vP`X6r@uu3Ngk~>Mp%G`4W7FqWXlWKiz8Tw0h zrawL_#O+TGXZ!h`>C-D`DI1A0sYsIGRP3Uqn8X%w91 zQVO7;+^P9#x%H(=bLSJ_no3GXb*-|wiw%&vzdLgdW0Do(%CTY;;tuB^ha7v+QKgQmmGn|g01h=x zEnKUCTEUAJtOc%h*#0k~fP2oQ3gHIQBEt6vXM}`b5 zEUKUU+4j}5w(Eq?Rw*NCyQEAA9s3X)n+62F+6IiLiP0()Q;eovIoWWFgQFfL6XpE$ zn|3}v^eL`notrKTn(t6RYc+JuBn(MgpJ{0%S0Q%lKYG>lHM2t4{^oaWFWSJ}s-r)$}H#e`QIRtSO#x>+V!2yN(0 zXvy1-zD5yRl;KWkI)YYeFUbl)$2L%kIkthT)bs^2GPri+L=D#0HEq@VI;!ZM5RGi~ zSf$1WJxp6EHCda~YE~PK?YczY%|lb}`U}6ZMTvaJ)@LR&%chX&t_y~f;g3`lXI<1? z<6_tK^zw`6Pke3rlas3O0eZ~2QtZ9sd1imzi>JKP9c{$hj-P34tyUr@t)pxk?S+g^ zd)GMTS`}K#!}6?{Pec>BRECmGW9O5NOo|aWN|&RWKl-WZ?@msX&gx($6|U-8t*x+g zZpgdOy?*CNRa(-1YpZDIf;vyt0V>Ae0ym0z!f=+kHGaAJ8PCX0Fb9jkCOHwbf_}&u zgszOzb6_Hw2N2+{Fc_-NX#VWH>*xoZwU1KdmCTzJ;`aAEuzhn?i0X%R9P9t+)ziaN zkvNocX362ZqKl#B5(Zk86&&y!>~|;7O97<>S2WNFl!wevkvbwwgoiNgh!F33XzO0? z9`8|BHXVpqH;iw_+cud2p}9!c8$fBAVl8*e8JFZsGb+kPu?{B)TBy4 zV{)!@+*s|Iyn``~H?+OfH4ALA=+%YbVJstsxC@-WM3Z-&+PSEI_~Pj^&!_&e%}0go zf8*rzIlEwtnA*-nLn{|h3aaCep#wFi+RX1hynWa9tUv_yj~<_1)W7ssribSbe0%G? zlM|(LJD7ll8+%p)mUeJRz=!hm$bg>KtgM#%2{@}G2TL*0^g9iC<*e!g{9I6x)N=C+ zAKSWXd$&_ z9<(fkcKyBYnBG)Df31tXm>Z7uH{3xIMwq}fbSaWcCvZ#R|3zQZ3~SXiBZy&aADF(> zDi3&OG6hz)iQ?Kx3r-GuU5^q3Z7CzXiPxImLy_Wk*hWxVS{@srWg(^+uWKphnG6&& zW-QTl4RgQFn%Tw)NnObyH@WNDZZ-MnJk$sVJi+h`hv`F2SF=I{<7=x%__!!1y8xG* zjrXlIS;I~^*W{*#7}6YKnm=-UdOuU?`q0bND@4uXS{8%cttY2f9kN0ie^mKJ(p3y4 zz5$MdjWh&7_Ni&50@Bgu6`+0oPBo=c7D&~h+cC!#j_6>n6>g?G`1JY>b8&BuyQsLL z{bZ{^gpC_2X4BCXI0U+#1Y%QPVbB;0#tFTV19$<%)!AvPKZ9D#aK1siGxtY0ik5o2nr@}w{WD%ox)owCdd0HmF~GtjWRb0Ckpfa=j^SR_ zOp(lL?b!2nQ?T%~#xq$8-O)c<)39E8dzXCZPyhGUCG$t7JD;BHwqT&xsXAnIkVl^`c(q`zL!$1n#=G&%g4Ad3}%kAHrObcPn zaxz^T^-0Zc>-VP5+-ZcdM}7b6C#M(B=w~@5W9%?(vc)l?%YZ3T2ZLAJ)fuNCEexly z-|v25a$^0Vot0FD+j`d1rm%&J6#V-P{mmsKVEQnw6N%_a;3bjFepX8tO!YGa26*Pclf}7?g@0 zF5pbBD}?P|_|Wvm8QR9Wu=|r>s$L{Zb)wb%ZA8b8!7PyRb;F?6?^Q83DJLMsnTMvd`C1iIYU!b&VEmh0B*9^3= zp{Q^St)xf(^n);BH(k2@hm&21AwVo+lYoeUif+6HZZfk6Xd^Lp(~)5*gdaKCYJFt7 z+&+!@rmsw&ca7I8vmSz|PbMk8!D)^P+6q=&pl)TjTR-mY5?HU7yoQwB&qHu$;n>bX zl7*Wq5B5U3)w)d#1MVCMm#VP7#pW#XaOX$p5x@Y@ha4zP8k}bf9Lh%uzCZcK>5=7t z;W;aYj|MDCC#(f`LN-n8pf)}Cu|NHMa%|BHs|cK9M6_gp(oB32LO->hX|zGyZJYVs zS5Cjjl(;6cAr}^zSPFaL>21;f?Mrr^x?6Wp>rAWB(z5EtwKfJYj_!Po@;zd(@km3E zoV)Aj<1HFE%!VDrBaxt$bT+Fb1@KjK<-yQ{Mom*kc!4+s2B1D9J3d-nwgaEBK7JlK zic;u3j^c2C@|U-twp*iGSq33M3h0As0XR; zNtPO8_)kY2p+XX`J!uE)J7__0iNGJ`U4SYN+A}bEeMm9F=t9U<4T0pl{Fpde+m-Z# zYaZwZa*!`(zK#h2f&R{bf&dC)S-`K|_3H0XR*$Sse1)?T2Xm=(Ne@0<+PyQGS6bRW z2%Q0`Gz414rQn&+BI(tD6;mc(V9o~E#>AI$fa>FLV;E>Y1_x+s7#EHXpf_@FBLr>X zSiBCvCwPW|Idz^n$u^;%5(NQgM`poQ8a3YLHHEIlnqsj+Usc=otYI!jG z>vr!9*EuUJYfxOSSg3e2QPbr~e@>*7w!#4Cjzipa4A z^qe6;*181~l4i6q@*`PkA&z9`K+SSoLZKXR@$i)_dLV;nu)c;Y#VoO>n^$<8a*gH^ zxEttw!CMso2k2=aaMZOW(^3ezU|Q63*9Ke}`aqmdn?-140SZp=C!}{wHqz@FwiLFc z-jhj&!5Xm0B(4pW6C@3zPgEED@AJKnDUt3@HXubgeKrD^8x?e#`c( zVCh*(3#DT^m~QLuW}OZ`y?*apJ@mN+vsqZxKEj;t!ksa-kuNB(NWwLoJcZIA3wI21 z^GE+_3cU-l7f`+sI!Q}3UB|eNDTHFtwGD1Lbk9Aj3c>>7g0X{4O4mUG1dF-|Ym6mA zE;n?MZnO2FU4QjM)7KV5qfU;p-Xi0w1p68sItFeI$^|YJiim2dr4V}3EZrSd7rC9t z>BvZkjRDhO#+t}Ygv}o|Z>i})SKuo`r9h;BW{^0P9#hrgXYqpwkP-)dLmx8J!DykyCi4}al={32C_7(%?-^MT+}IFGl>JzJ?GNm zx*0~C*2q2UO~DMdoJLP!V_YsWKMQmZtgCW zeJ#17Fo>A7>@dkaKG-_e2kjreWaqU=eQQImG&LA9NrPtc9#m(@OenG%XBw%bVy%`} zv`H3;gNux#j^@Yh<)qQf;SOQg;_4XZkV|l5wUDy(3fL2Td`Mrco9^%G@w}_MckacK zvo`d2OJ}9f`(xaKP@xr(JA&MX7*PX4>}aQKdyN$@_;EcI$T)CzDLC9>IJR+94L%eU zf5id#dj8<;JNHkXs{|wqL;yx2J+MN<@RSwP9r{6D?QVsr%cT^eo^h(|^aGfrxjDDe z+&Ye`#a|t8;DPhoAUittATL5%*>--}X9w-B;FX+TFLw|T)}K*0m}#Y(dGKk!cGDJZ zt?CB`b5>Z;XjMU*iy1Li4TPV^z|}HzArnYiki#he7cxjEjxmjD&x8}fmUMzaZN@NQ zA;*}@F%^9rttaB!v;iQ-oWrOQgMqsMb#<5#K)+{FY;DN66b;sgT#N=w(I93U4Vsez zbRfDS1~F5@pfk!~A9l+%v=ROfHU&&Jq;Co&V{YL|U}5?46}#Fxoi^q2oxEltPOyPG5{Q#leb-E~CzA0ow{eFHOt|`W#MjWJsQi zj>lJIqjB(Js)EHyXd}20po!}Kv;Q-_bSaGk^#z(DZemIbtq2hh^UmNl!IA~j@e)g}KQwbTIxO7PgGpD~%mGVIFT|!&Sk)3se&cs`Z2#qd+ z{Jb$gZ_LjJ{rP7h%Z>T@9H#4y`FUf0KIlq6*snI`=W`mbH|FP!`FW2v*qEO;=I4$1 znZLL&Dgzty^EvF}XC#7+`FUf0-k6`8gCKKbeqQgq-k6^^=4S+h_5b+F#{9f7KVzC0 zO&lBZ^VzoRjrn<1Z^%$&WT>O=wx!^AHC3)DM${mn zwpytQnKmmm^+F^q1rythW;cjs##)-HRWKn@G0FrJYB36$n3%MQ&$re-Gy5Ed_5C*4 z%s}9rb@scy%lp31^SsaS%(Le`^Xz$FeDZX9oBMf_&22xqUq?>3CyFXzk~d7@7nh9X zWJ%OYD^By`4qa3t37n&;K8@Xr^+5DBeCd9$j4(iX zA6wu zFCTdQm&?BX`{K)&ZP`!!Sht@)^{uN0zQ5SZOTYc->p#2f#<#VSsL};#k zCejm!`>DJZE-9WRlGtJK-GZwRl?DI!f4*gBqp5R&WiE_jLIv-bKwVHc5vxt+sr$I< zL*?VH{LYVI|EwwZvwdjC=xwLzZU=wmRA21wW&7uo(M!wUUAmcK!{W!WlV7bp&~IgX z;hRR-%h!kRZe@GbjuB4rRNuv=oWHnZgj=bM_lig13ATg9Y?D$V6A`TxA?1E6st;i+ z<~Qyf?br>=R<0;}CXW7Q6z44aI z_E4CdGk@_t&TQoq+S-|!(oBVwAUz4Xt4G$J2NjSwq6cRm&B}xQC zCLl!ObpFU6kN<2`joH#Or=+Qb6lD?bpK)%8F1of$D4;y zE);dzi@+qRUUbZ$Dj2jXNu`hTFI_Um8Ukuq^xkG-h48}QoH^P(T5QfLvduMA;>Lar zm5`>afwV{WPS@J^{Lkd#4aqmeb?@H)(GOp6@4c5d7jWlD!pl*ag&;9F6Hx49@P-FT zM0@;h+_W2BnA|j39|jRE*0#I7^5fH;^P?}1?;YJ&JE;p0{k=DQ;Fjxt=;|MQ-z}93 zs<%E}+rbMye0lq+N5^}b%JNj%owv75Go7w0PXL*Mk`V=*WahbJDRJzBw}j8#U2Atv z)*}-*es9V(7RqPGcw~e!oplI){^CcbkBnyAMqsFjj)@N<%nM$AgoFtEg1b6@_@e16 zqh>f>lI^)`(;sez1B&j7?r)!5o4&cR(v-K$NPaD%!%5u{cwQ%x`-1yhpPW88n&BR6P0{;Giv&Reay95`xXvn&++F6)zE%s~ ze)f{-`)0M+yN*rB#cYFg#glnNL8$sr5}Jsxk@;Zo zg;=tP;(MEoEpm+qP*qeEJSH!LRUt^K04&fF7mckFGA$b0aLBG|koFQbea8$yHG2m9 zgW@MxLgz)cI`xL^FyuN1YVO0!T#bH_IXliOIN!o+l=7R}2b-NBai(i8_lGxp~g~)%(W3 zj?Pv&s;wzhxuVx^w0P>&iT}Xa<32$Q>Ca-e&D2(rX!w5uc5u zR-y%il5uT4BoWWRC7g`b_D9-X+8L-WGxQPFnvSULUf)>dAi zhh?)`Y}CW9QS5B5{MqTQ_D_Cf+ROkck~O%O9-Y|-NHM`vWn9pdWN((1wofvX6$+eG z1VGeE;9#^BYI)F3w9ozZbkDqBSSHRw&w<#%0hH;Zr*EC1iYo3 zHt}>t9$Fkrmz0$glv|Usa)-CU&B`Y7l9bQK>7J&tv<~0&a1(R~l`%kIu?FNV5sRxv z2sObg<$D;m*oE~B`b#`R1p_yOFauT45~3O9*hAJH{VpmhQuC9eb#y|`jE_`s;V6f` zWoc0i4JcR&?OnIx7WXW#5}vnD+%~z+0e> z0%qb>=7^0xl4TN#N)DMP(u2|YehIS00RdNh+JcMK0=krke1=S>Fnr9=@A z`LFLbeKuCY+D|{cM%Rafo&arKE|SJTHkCmK7O55%c>;J$C=j%Fs5d83ia@92lu^xy zFdTHw7Od@v00`AxA=*2Cak}={Xq|^x)PSfpwg#|-XBZ9oLcPm_@7Sc zdL?qfDDBgGr*CR+zJGej4xt%i8&Y@K*Pt(ZR2T45TqO-fE_f|TA})gTfRis+LPc(E zAuDXQ!^&y-t(oVC@2K7SG#%bLyNN%m%UWuOqG;OSXHeE4BS!!lWK?8^D-PvX7b3e^ zf4K7s6;DFT#Jxq=B-k!gT4_Bfy`Mvefw&UTTvI4mjzSqg`KBHK6zxztz#!Ki`|gRf ztHd^4Lj-Fb4BJ7T{e3(1P6ugCDd`sU?T!Cnde#~ek8arZ zH}0SAoq=-8WHPw4WdeeuFT)2^bFFoO*~^!%GIeMngq`Gnzc{*Y_{6s1%gSAKThp(y ze+7*;?Ztv`!=Tp>{n@DkfNl1h404B^O=b4g}XkXoX$qDlat1&GIklU=z z7OJH&pn!xE9es~9dr&H%b|@S+a!x}mfCPeqoB@ZhJ3MX?I4kjed)f2T>zX(myF2my z?Hxy^r_Z201PcZW_G!TawbK;5Q1C=lHY6_eiVWfn@?C@>bT{B^t)LcyBo%%#rPd}n;dOsEtxgdU`cMh_1z zKvsuLD+qU*nZ-hIRM59TPK$t!ztPAr=3y9e#1K^IOGGCiH5{B5{5=AIKpRiaVnhiE z#IOMH;`2i3ti|o5m!=Z7!&VES^MhZTzWs7zmPnu^3L-2%)=TdwMOv5?L`|@EOkYEokDkOc)p(uCG8+yT`bzQpFHiY? zX*Y;mN-Y2)l>^i}K@|EnlrQK>s0%?$30T~h^L|!U8453OeMjf8)}f=>*46y*U5s0k zad6k7ISDE&OY3mhqNzC)%b-DR5>5kSA}1tNv<%4%0=8aImcGDP)N!N~*t;UovkL~x z*5g>Av;%uVa{I#gcSkcIbQCI~&>)?#sIgGPDQ4*&DhnV_k%2eKTqStd(XL+~4%^;e z=0v5RH3=68(+dMM4B;JZR{>1Il9EZrcx#gYL4g8R!&fr25=^`S#;}aSV=ZI}j2Gv} zDA3i6rwFMxCs`;4Ae#f2^e7kB33Ni$H}RhR)B<;8Za8X7o|<0KSj-Y-qyQP1B}T}V zK(7df?JQZ67bK@K@XaVl#~DZyk{9$I2t*h_Y8DLo#9{@F42}V(ML_=-;`!+K^JmnCFT;6L>oK*olI=O5eH&X)<;{Ks(OK2g` z{i%UYOBAI4UUkRdN1z^JsF^Uk!gfKnLt%1+(|}^y%g_txNFkw}R~+tKq5I2M5fHXG1O^dAf^z;-y)R%q;y1|SRo>7O&d z{}_g^`yzyE=$K$CP>Z0@bKGW_3MiFPv-Z%(Ao%q&JHxOaP+~wpxd5m}2j}3eff!32 zl?xraQ!*>zMSo#2ry2;&dDqpzfdRBJ)u9q-)vAPM1~|Zh2XIdoJG`q*e6bMR)s*M*KJAj*PC<17jnjY{eHvH$G{>4QOK zzko{64kVofju&ju4YCX!QNZ!OifUV&I5=Al1j{6sz>&D!3?~ZIVAqt>J)f zaI+Q*od-@(z)KHk477lm0bUFO7e#Bsi3EQ_=fRk+j5mPRK=h!*mj3{DL?J?d&ccfJ zwQo(%ErapT1BeVpwq26Vs*#J(1NTHD=JR<&ocCN8ZapK(MDBMZH*ui6db~94JO>z=PTnkDmf7 zR=mvD?)m}b(fv0}kw?XT2c;Q)?PQ_RVw0e+!VwKUFbTSt&h$XI7P|w&gMoPuGrB1N zaAfIf+%BaZrlA%%SHYYL;s$@6qwt`B%V(fl8|LSKX#%^`unV$KkS!3ha#Cb#XRF-O zZFyJOy%VHuR#{m)`tsz`8ITm@C)hNhVF=tz%tIh0z{-W11AxAy2hBiOFoZ%mlCYT+ zs|qaa5cfMbE*d~T189mpDHWFyMwS>$BP$D(!Nm^MMrH zTu2xW-ecfdHSS`JaaN0=_nvpFi*CL93PKJLa`{a^!+_r)IFb#y-1aPr9fv&-Q(bs_ zG4MgVgFc#2=HPZ!C(0z+-mt&;bv&+if?JcYc5k;nUE9=69@kWsw-|(f^S9S@`_+G( zd~juWUKyU@?H)E-uME#`Y#Be1cq_y6%J950Ja74v1uMhzsomBq!}H4UyfQqm49_dW z^C|7tE5q{}y2e+A=au1kWq8IPfjOl;ePwuFo|q4ttyhNUmEn1|GCZI7Gxo!#|o_mM&%JAG7WLJjgmEn11cwU&TSBB^9cJY-M3{otBFfB3B)FR0&*~}!_Jk>18+|0-M3{otBFfB3B)FR0&*~}!_Jk>18+|0S^Ai9q^Ove;ye6s^hUla(hYW{Xcw zOwpWtBE^kpwH|5bgwsgv5ip@%$jWXPnuah zrgn1RC9%o-FR)Lx&WNOkW%84EXEy6VeFgCp$WJLC*Og@!C&uR&#pfm#m!uZKM5lk0 zW)zwH5g2|dITBnDuYrAbK3i?_q-<$m&`M8!nk6||C)<=J1~>cXZ1>M$RC)&haFftB delta 455 zcmeykh4bSU&J8;_4RaH#EYd7;)Ah|$j17#F49pD8Oe|89ER4*6(Ad<-C@s~}AjR0k zz%a?sATcf3c=JonrIFJU8yLkW&rji*ye3(0a%zh5WYrY0$)}PPCR?XyO@5UuJ$ZGC z?BsvR>XZAD#V4OgaU)HGN7}i`iJ7vK_0lCKA4!+zPR>ZoOHYl7FUZWBd>})9y5liM z#mNWKStci@i%iOpnOu}EC!U^KQj(dM9ur?&kXQs%o19pbq8?K_Iq;I$u&bX+3ugisPqm1=TfNC diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index 90794fdccfeed32119882c599fe1296387415b4c..6cb835c0abfce998372651a4e50f076dae9610ad 100644 GIT binary patch delta 80 zcmbR9NqEjD;SGB@4NLN}^GXWiEA>-M3{otBFfB3B)FR0&*~}!_Jk>18+|0{-ZW$*l;+&;bKNPr5L#N7Hk5cjQHm+W7;sSp-MJ7X zi=hiquyi2=qFqc@b)~p+(UrK620;)Eb(2!43(w0-)1;K#weT1o%$vD0_x#WK{m+^0 zt?BKp>GhjO`SQ}`rRA%OAI&EP3F#=_YYZkD6>T=b8UfOpoVl`@b8l8396NRE!O@lL ztpruFbk2FsX|Y6;ebB-MjM0b?RzLsdlj@>daO2Ns+T@Zq24e9tE1*{b?TZ4mp+hLK z^Q!71xbfnrTWkH+T66XL0Seyxci6+`(b;cJ=Mq~R{q5++R)73m#+ucCzB|(WUf62~ zuCMGpb*JeTF0+>&z2r{QpM9ULK+9e5E@FyYXr;JEbS8rfSqjOel|8@DmZn4c8w`e(FuJ=NjCbqX%(sH1a6&sGQS7wvQ3{Web1r1yIqvH6I&&G6 zPr_P-BBSP1OoJ&!N`i)`>S{fgnQ)IjV^T&&1i&afM?@8Pz@4Xh%Eq@OtP;qMu(lcp zRct|m5L%x>^WO6O2bX5AT|3>*YGr~0!V0ujmh)h900%rN3WW$7>l{{mJ4WpIZT4C7 zaiwT{mUeyf!rP1I&cFV~*~JRG;o$08;$|hg>tV@uE)x4)}N7Ag-CdZ-yj8R!gLRv%zMI!wS@2PeC z&BCQKt}spq+&v zQ(RJrg26%=7)^1fN+(!Zq!J5B5Cp*?HY0&pxHI=noC)ap0lxQ&_jNwj+H0-7-_G{J z&i2CQm-AxPzh{eGeP!7s2{M2dnrsdhH9w_7EZISl1R@CVCCc?XhmT*oGrxAFi&h&| z5J96Nl)^^^p?DoBY2%An|M-g!s*A3{)n6a#0vct=MDHk4j_AReQb^h)qe|d+kE$+$ ztB-%Uy)kTWG;e)7(GmuKslD6mz5A)@U1~S(eeC&%?cvC)ZQHE>@y((B=h8lR;QO`v zyKXf7%IocudxzX;hSRI<8g$uX27|zb@+3)xghuF0SxXl&he7<=zA@Jc0TeVz1CEGf zawH3ChM5?@U?%l-A=+xgB!>vd65Mw`gk=oCrmrO7rsFGQY_%4AVsu`D?du|b%% z0A~R(DUCFe+Wf1X>p#2OK02H`I=Rwx!k~^NP)bIy$|ZPIe1*}fkg}|kS*R~&e_^RMFj3={j)!`M~BVB zla;xyI0*$M=j&e6Gi(aT21%PN96!=-8TN;hJr7n1klrMUku6UlBOgN!eDq?h+ZfIY z4j98(g>XNdi$)X-$z~l9NjPb<5)oCl?6LrExb&p7ljbC z86ox$W>Xsuv=Lb)(nP4O(;`JBi_;YRo`a{^{BIm`v~U&2UN)cUKYwC!yer&GA~zI^ zESs{*nUH`(ih+AeBAPlk=Tt&a#VhWr+(K+f1_J~krL#)uQL+c=v7kmNo=UQCkbzjY zoE4CT5)}t^)NQ0!12SzrH5^Ruyj0w|QJ+%#BO0JsuT(&#H3RV;Ly6iasl5{1VfOj6 zHtX1$Ol)~%C{HO#TvJpTkTW*!qXGepZ}$OsXD)=n$KqFY=+Ke=s$k} Y4~BC#LuWH|HbehkGj!k?`r9La1Mi`kDgXcg diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index e2fc25d7cba5802401069b51e5a2487822e4dcf3..bebe671a109e12e341cb49ef29b43eabe825df19 100644 GIT binary patch delta 76 zcmex-M3{otBFfB3B)FR0&*~}!_Jk>18+|0saadwQAfsVPUUptdVSJ^2iitsr1rVksCYo9#nI)TsaadwQAfsV!VwFXjMQ*yjd5W=tagu?Vp_z$AYLbPK84wzq8X2XfS{kGnn-~}- Q85$&}B^z&UVm!zN08IT7B>(^b diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index 7e62d67c4192027a2d65492de995d0686dca18a8..5e4495e6c17e969daaa0e672c429de5be84b67ff 100644 GIT binary patch delta 72 zcmeyif#cf-jtzS_4NLN}^GXWiEA>-M3{otBFfB3B)FR0&*~}!_Jk>18+|0-M3{otBFfB3B)FR0&*~}!_Jk>18+|0- diff --git a/master/.doctrees/tutorials/object_detection.doctree b/master/.doctrees/tutorials/object_detection.doctree index 017d5a0344fa15cb4a80e6ee073677ad8d457add..a13cf8432bce864d78a28440f0e9609658d2825d 100644 GIT binary patch delta 72 zcmbPyoMZBFjtvJm4NLN}^GXWiEA>-M3{otBFfB3B)FR0&*~}!_Jk>18+|0*1mUTzISE5cVVHAPByPM zCvS~UjRYh?=aZ}z+DR|bt0+QO4=;bI!pnb_RgflDT#@P z#1fa~z9#Hw4|#YDHSeQRgo>c0MQyExokqQo*w zA1G@#VEdXTCM0($F_oQ1&a{<8&=jLfg5<=Tbxl#e_S3sC4Kr2N z)iZ$;XD*F5P9HmdYP=%E`cHJ#2_mcQQE%Z%Pxe1baR2}S delta 2091 zcmeH|J8M-z6onZGfoK##jg8{*VrRUW+4I^XRvHV%iy}Ud7{WZGMU0>p3NeUSh!)B% z4#7$xRt6#$yp;&r2sZfzKK_9JAmZF;@QTP(cHvZ;vktSqwP$fwmj+jt2A7wI*o?i6 z31_Cqbl{Xbs+bZO9fHaamjEdm8n~d$F=~_Nov%YLE^LxYb1IQGvHirR{*kzETYkSa zS8lXFEmrN_{${`Esej);UJmE`#?FVZczCatItrnj11dBGR4Hh5*^Uapfwdn!yI0b5 zn$Hg{R30UBn1scMLK@{Lg#B=1Ps$LFKuY}vuvNwUA5 zZIR9O{b{nTvQ~QO9A!PPh}0ymE#=ZFRC$@HpAM5YEM%+E8vzCkO*zyUC1B2$LQlJ^ zu1=7x-D_va0;yyaG$<3faYk?^9Ls?T#lTX4AhDZ2c$1STdH6m{XjMFYovc~0oIhwI zIa&}whrB(lJO&}HQJJA1%7RbKA|#fmKpw3T$^%+1Ip-9@UrTtB!)4jcrIts`UCCmVBfqgBHysq@Bc3>pOE)`54*Q!TCa z5K{NmIGG)&M4<{j!X5Rcc{1F6e22`D`O?}N`RL=PFHW^ijUPKXRl3K2s!QoLCP(X) lb7Z6{u=zSC^RirujdE_3bEBO9{K@>sa!z#j+$CRj{s6mnN-zKb diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index 8fc5d760137994df0eb34619c800f3e8c6eac7d4..baec23d02e2c40751a8c227be4cc83eb483b160f 100644 GIT binary patch delta 64 zcmbQ&&N#1~af213VM$(gUP)nmrGAQuL5c+srX?ntS|phzo0%k=r-M3{otBFfB3B)FR0&*~}!_Jk>18+|0XTUXwCds|+<`1OmIU%hbUARCbbek!vK(Isb+FD`ngg!Zl!X?&5A-4718 ze{{G#fxQp*e%Kc51F#Rm?tvYHjb}atyBBsJ?0(pXVGqDQ0{bZJLD)mEU1V##&g_ThuJ3-oed^lz-4pZwJhS`G zu|5zJaaC1^WQ+9~*X0{cNUH@|=^ZB%P5uurLKxQG#-zkcVfl@BVOh_cL`Eqy61}_s>&( z5GEp9wkX4y)gaNq-R;Y zFJsLSO)X=w3^MH_k|jdoInMrJ(l`9Z;l|fG(Z`l!#BebDe6JQ&Le zF(vXz@G`PlgVMvbzjh~v8-MTao8Nk5dUf)8t6F<-{q(b6xp4N&U-;rP7g`uSdb*Xl zy_fcff4$M|^sU%Nq(1uSA`MZxnheqy!M-3frQ!h+k0Ki(?EJ>1?wf$C^+H#ZZIs!t zN+>YkkaP*C8pYw=$@KVe@a=AA{=g@uuT6TBEPAsBj|s%AnE~>W(HXg-Ejqi-y~YdN z$i1_D;{|d_J{=H>t|TOs0GMQ@izFFCwkn4@Mg#JZw`c@fF+xIPjXIUeV4u!r{M$NM zoi!x`s5M$`v<$3BFd!|o)fCvRz}oQZmgLJV$G6G%a$kat$wTW>D!`|p>O5)mL042N zELP|Y!s#SKiYiB=l7%oj5t$=+)Y8XYwh2|a;z$ij%4$f9IE zSgFbSoYU=q@2-dcL&sMAjuNZ|+xMJqWb_UlTd}Rt(IkWRC_x&{(0j?Tpv$M6B?wjR zf@t&pT=(KupGl*bS)rB&$D!>qqn+7o95fkybSZ-#*Fo`A)>@mQC>F9*JQomJNw3$b z*zhig-#$KlzUg>4^~vdHXEef96fZq%17V<1cY|9rnh;UXttlFd5bRAb$%O*hGdSfc zh7(J|kn&}$=ff)&J>5Jh3N* zcxtuGqD455#>dg?lq&uRX&xKc3Z4!Lb-8Noqy?DJTOgBO2DDO8PtRXHH~rJ3 zx0ML(M{+@GgmWY@%q5W^LMfV{R#a^HT!zwc85g09RJ>>S98EusDv&*`+#2;1k{`JM zPudxUv2g5-LIEX`ta7Vf)1DrY|Km$3Jp0u2yOY-&^*TzX7EF(xZexX~8(Vgg9 z!7aG=*g^`6W1E=KYilqNkPx%gzG5B-#p!Z;))AsIl7mS_7mQ$@B(q!$JqjgFWyL$? zTy{!}3?T)+F|V>y3EvGyKMeKjylZ)0NFca!SI2|=Whbt`&~5k82CnEF8nT5RFDPLD z0LaEKkpnHk+9x!Ig5gdGK_-yEs2VWTB?w(*TXxVMs3t1`=2IrN9+gSpU>22FuR2gX*U?Eu#MW7uiWeheTHWCHb7-I@P28POVSh26=c^OL6@gfwk@8s~07pD)N7DuTU zA|;2GU$HL%atTWAwB}Nv^3|#3^wl@kti`~xV%~BHZB^?inOaCadb*XqJF3@+%`KQW z9HglqzIU^GuDOG)O1;_sHrrp$3-)cczxBQO4)HeI-)8&UY=7fFV>a7gYphWyxB%-!G_vhT7V=yD4NFXyNS&WDY$^F%U(FsPv z2;-nxNV1zCd9E}IK~TZ0QX&Ww+)J{NxR`~@7KB;oR{W}}d+ds)@5W`(oTiJu_0By% z-}jyK_HJI;yLsic-yN6Fgzx+6pZUf)m$lGQSZT?Z=#|BfHcHjPB5M*dN)c+(FYF!v z@!s(X>^-pe!Zu*vg&o%zYY$r?v7STcp8FM&j?xZHhvV~9Q{MN&H>n4-OndepC~w$ zb7G?4iw{QPJaQML^^Qh7?B3b%eD{~hwBdK0KGa`mx*gxT)cL8@MHb;gh$w#vnOWIP zfutlaV;Y~m*q@jU7rVzdx~O$!#+?-Y$C+!*RZGLgYs%xTNxwOJ^^e`JCqu+BSCXnp zMJgzwMQTI}l(Kg<^X&SI-5(}H!*v*Me6tgSI?}B*^DxehFWucgFz!6neR`^jDJuF{ z(aq#g*J>Rw=L0ZDmJS6pb$T9c6eJ5-_=BC6$>liWnx|&3eYOAPWH25WwoKUz zK_y0Z!bkv`Wp>r0)XR_>&JRLrIbMWx{^{mE;Z(argc6R z(m~;qMe&p(4aC*FY`JLz+T-;TUwZgS z*J#z%)2-BPKe03Z9c1SX%Jv4DUyjnXiBU&5>QOuMjODlvo|*S%Nx@I zB%-Rtg+#^H2-=ld>KK4plWC5-pG^j?1yqoQu1H~WDN3c#)`AO3Vkd6{@9oLZ@M{;y zo93e(k8fV;c;H+eRG?~MG?6#43WfIZ9Fwh1yM6Mg(JD}>a)odzYBX_)Yz;oi=uJJ` zq_}vfR-5Fdq8ve-)fap-8}up5v~1F8!}IvpUvzS4`aOW%Q$0K7!JxUY1Eq?Hgi<0d zT9T1GUcLxoxOD{#G7ZEWYvL-9+3YzSqyH!lJdUo}+Y~=Db0$Win5P07LfvlzF9F=hy zM3iE1%#byuLzUz#@3$}7I-eo_T)r1N?RK+-^GfI1aFc<@G(ZU6vP_rwk3Zb{P%G_$a@2spSy9JI2p* z{~2Yimb=Ov(mxpkdIXabB$|R2Ab2z%s2bYMF4z6GYmbF5b|;nsc;UhR2a{_@md%<~ zJTei zMHaBi9H7AH#-b`_XQ~pSn9c1dKpPQb8aAa&(q?pP6cC*>pHj748Ppt_GzEYZ=|Q6w zj?O}k8S^;#;0^}0mgoK1v*mc98^3w1KR>tt4N#_Jn>>-O9;BDG!MrbJusQ7)1ZR-> z6f=kf@Dyw!O6Ms_tBTcph)V`c&?e2f5_19(M=+~|REFv>s^{dEa^Cd345jJ#Kmt#V zfBSlW&#u~)>JaX%Q=&2mL<>a)Ly`mV=5vbjBDpfBl{rx!y=*x4%9Dv(-Tx_Y{m zz5j^b(V;C!>Fjte^=|y(+uftsxPqi`Ss*t#7^c oz3axg-ul*C-#b>?_13rE`qo?DyS|%P9XtQOTi*;@-|z4IH;loq4*&oF diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index 5f16ffe577b58c17a642f859789e210e34d0528e..66c25629bc9bbbc66048ee769f74a99da571d467 100644 GIT binary patch delta 1158 zcmbRGglqN_t_>$R4NLN}^GXWiEA>-M3{otBFfB3B)FR0&*~}!_Jk>18+|0oB%?Bf`*x%sqth+_di?+!O8c1T_+br#%P)v=@}WC>lqmv z=vi3mD43c6nTC3XmKJ)3WeoN|jMSBGk0gl|B!{m^u_ f#pbOEf%7@17BMq2fWYL&W|3B9#;wXspEd#jU85(F delta 1307 zcmbRJglp;(t_>$R4RaH#EYd7;)Ah|$j17#F49pD8Oe|89ER4*6(Ad<-C@s~}AjR0k zz%a?sATcf3c=J!r-=^}WtPBh`1x2ZLT)MhO21X{j2Bx|OMhb?;Rwf2kh8B|*y+bFj za#dosur!&x(A#CQUHGQS$K3e!O!Q1FeVz1+6@VZ!Pr*RXsF;fj(*R2a4Uo#o2Oa-# z!A-TCY!JCn)6h)M(85U1(7;g7%v49gSkF|?$U@J^)JR9c)JV?=ByDc4XJ}|Td7^U! zFN*5P@lksxfA!SmhZ$*PprB!BWH8y#%VDy}Z9gn01|iA9T-2f)-#<3asX5Gy3?R@d&A3#WX%hgd CvqAv? diff --git a/master/_modules/cleanlab/dataset.html b/master/_modules/cleanlab/dataset.html index 1abcabe98..dd1fc0d7c 100644 --- a/master/_modules/cleanlab/dataset.html +++ b/master/_modules/cleanlab/dataset.html @@ -604,7 +604,9 @@

Source code for cleanlab.dataset

 from typing import Optional, cast
 import numpy as np
 import pandas as pd
+
 from cleanlab.count import estimate_joint, num_label_issues
+from cleanlab.internal.constants import EPSILON
 
 
 
[docs]def rank_classes_by_label_quality( @@ -680,8 +682,12 @@

Source code for cleanlab.dataset

         num_examples = _get_num_examples(labels=labels)
     given_label_noise = joint.sum(axis=1) - joint.diagonal()  # p(s=k) - p(s=k,y=k) = p(y!=k, s=k)
     true_label_noise = joint.sum(axis=0) - joint.diagonal()  # p(y=k) - p(s=k,y=k) = p(s!=k,y=k)
-    given_conditional_noise = given_label_noise / joint.sum(axis=1)  # p(y!=k, s=k) / p(s=k)
-    true_conditional_noise = true_label_noise / joint.sum(axis=0)  # p(s!=k, y=k) / p(y=k)
+    given_conditional_noise = given_label_noise / np.clip(
+        joint.sum(axis=1), a_min=EPSILON, a_max=None
+    )  # p(y!=k, s=k) / p(s=k) , avoiding division by 0
+    true_conditional_noise = true_label_noise / np.clip(
+        joint.sum(axis=0), a_min=EPSILON, a_max=None
+    )  # p(s!=k, y=k) / p(y=k) , avoiding division by 0
     df = pd.DataFrame(
         {
             "Class Index": np.arange(len(joint)),
diff --git a/master/_modules/cleanlab/internal/outlier.html b/master/_modules/cleanlab/internal/outlier.html
index f5a4abb17..bdf359d74 100644
--- a/master/_modules/cleanlab/internal/outlier.html
+++ b/master/_modules/cleanlab/internal/outlier.html
@@ -599,9 +599,10 @@ 

Source code for cleanlab.internal.outlier

 """
 
 from typing import Optional
-
 import numpy as np
 
+from cleanlab.internal.constants import EPSILON
+
 
 
[docs]def transform_distances_to_scores( avg_distances: np.ndarray, t: int, scaling_factor: float @@ -649,7 +650,7 @@

Source code for cleanlab.internal.outlier

     array([0.88988177, 0.80519832])
     """
     # Map ood_features_scores to range 0-1 with 0 = most concerning
-    return np.exp(-1 * avg_distances / scaling_factor * t)
+ return np.exp(-t * avg_distances / max(scaling_factor, EPSILON))
[docs]def correct_precision_errors( diff --git a/master/_modules/cleanlab/object_detection/rank.html b/master/_modules/cleanlab/object_detection/rank.html index 29ec56688..fc9e32ec4 100644 --- a/master/_modules/cleanlab/object_detection/rank.html +++ b/master/_modules/cleanlab/object_detection/rank.html @@ -597,13 +597,17 @@

Source code for cleanlab.object_detection.rank

"""Methods to rank and score images in an object detection dataset (object detection data), based on how likely they are to contain label errors. """ +from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, TypeVar import warnings +import copy +import numpy as np from cleanlab.internal.constants import ( ALPHA, CUSTOM_SCORE_WEIGHT_BADLOC, CUSTOM_SCORE_WEIGHT_OVERLOOKED, CUSTOM_SCORE_WEIGHT_SWAP, + EPSILON, EUC_FACTOR, HIGH_PROBABILITY_THRESHOLD, LOW_PROBABILITY_THRESHOLD, @@ -612,18 +616,13 @@

Source code for cleanlab.object_detection.rank

TEMPERATURE, LABEL_OVERLAP_THRESHOLD, ) - - -import copy -from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, TypeVar - -import numpy as np from cleanlab.internal.object_detection_utils import ( softmin1d, assert_valid_aggregation_weights, assert_valid_inputs, ) + if TYPE_CHECKING: # pragma: no cover from typing import TypedDict @@ -958,7 +957,9 @@

Source code for cleanlab.object_detection.rank

# compute the intersection over union by taking the intersection # area and dividing it by the sum of prediction + ground-truth # areas - the interesection area - iou = intersection_area / float(bb1_area + bb2_area - intersection_area) + iou = intersection_area / np.clip( + float(bb1_area + bb2_area - intersection_area), a_min=EPSILON, a_max=None + ) # avoid division by 0 # There are some hyper-parameters here like consider tile area/object area return iou diff --git a/master/_sources/tutorials/clean_learning/tabular.ipynb b/master/_sources/tutorials/clean_learning/tabular.ipynb index a5c09cbec..b3de2d406 100644 --- a/master/_sources/tutorials/clean_learning/tabular.ipynb +++ b/master/_sources/tutorials/clean_learning/tabular.ipynb @@ -120,7 +120,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/clean_learning/text.ipynb b/master/_sources/tutorials/clean_learning/text.ipynb index 7d7d0593d..9a95724c2 100644 --- a/master/_sources/tutorials/clean_learning/text.ipynb +++ b/master/_sources/tutorials/clean_learning/text.ipynb @@ -129,7 +129,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/audio.ipynb b/master/_sources/tutorials/datalab/audio.ipynb index 50c2925d8..1157ef346 100644 --- a/master/_sources/tutorials/datalab/audio.ipynb +++ b/master/_sources/tutorials/datalab/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/data_monitor.ipynb b/master/_sources/tutorials/datalab/data_monitor.ipynb index 325da7f8a..f9a14925d 100644 --- a/master/_sources/tutorials/datalab/data_monitor.ipynb +++ b/master/_sources/tutorials/datalab/data_monitor.ipynb @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index ce001d8b5..b29f75c07 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index bb3ea4551..857d8a3e2 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index 7b3061799..5cfb34f64 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -80,7 +80,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index bd1b28173..342228da8 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index 7a02c6ec2..92fb1a9d0 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index f1ed904af..e9d200666 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index d760243f2..cb2d80066 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 1985a563e..22c5f8449 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index bf5463b83..f03299c15 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index 51eccf8ff..dc3d4117a 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index 520d19641..775ec429e 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -110,7 +110,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 5d3ad5ba9..b604e8bc0 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index 378ffa94b..afe09a75f 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/searchindex.js b/master/searchindex.js index d225e7143..cb433166e 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/data_monitor", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/data_monitor.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "DataMonitor: Leverage statistics from Datalab to audit new data", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 80, 85, 86, 87, 94, 96, 97], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 85, 86, 87, 94, 96, 97], "generate_noise_matrix_from_trac": [0, 1, 85, 86, 87, 94, 96, 97], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 16, 40, 45, 47, 48, 49, 50, 51, 52, 64, 88, 92, 103], "method": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102, 103], "ar": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 26, 29, 30, 32, 34, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "us": [1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 79, 80, 86, 92, 100], "benchmark": [1, 37, 79, 80, 85, 86, 87, 94, 96, 97], "cleanlab": [1, 2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 85, 86, 87, 92, 95, 100], "": [1, 2, 3, 4, 10, 18, 32, 36, 37, 41, 45, 48, 50, 52, 57, 58, 62, 64, 65, 66, 67, 69, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "core": [1, 40, 43, 71, 73], "algorithm": [1, 2, 8, 10, 31, 38, 42, 50, 52, 57, 66, 75, 77, 79, 93, 94, 96, 103], "These": [1, 2, 3, 4, 5, 8, 10, 21, 37, 39, 41, 42, 43, 44, 55, 57, 58, 61, 65, 66, 70, 74, 75, 77, 78, 82, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "introduc": [1, 84, 93, 94], "synthet": [1, 96, 97, 102], "nois": [1, 2, 3, 36, 43, 46, 52, 58, 85, 86, 87, 92, 96, 101], "label": [1, 2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 20, 21, 22, 24, 29, 31, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 52, 53, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 86, 95, 99, 100], "classif": [1, 3, 4, 5, 7, 10, 12, 14, 16, 32, 34, 36, 40, 42, 43, 46, 48, 49, 52, 57, 58, 59, 60, 61, 66, 67, 75, 76, 77, 78, 79, 80, 81, 84, 85, 86, 87, 95, 96, 99, 100, 101, 102], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 25, 26, 27, 28, 30, 31, 39, 40, 41, 42, 43, 46, 48, 52, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 82, 86, 90, 95, 96, 100], "specif": [1, 3, 5, 9, 14, 15, 16, 27, 33, 34, 39, 55, 59, 62, 65, 74, 78, 88, 90, 91, 94, 98, 103], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "modul": [1, 3, 13, 14, 15, 16, 21, 24, 29, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 48, 50, 52, 55, 57, 62, 65, 66, 67, 79, 88, 93, 97], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 14, 16, 18, 23, 30, 34, 36, 37, 38, 40, 41, 43, 46, 50, 52, 56, 57, 58, 59, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103], "gener": [1, 2, 3, 7, 10, 18, 23, 25, 33, 36, 48, 52, 53, 66, 67, 69, 74, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 99, 100, 102, 103], "valid": [1, 2, 3, 5, 10, 12, 32, 34, 36, 43, 44, 46, 47, 48, 50, 52, 57, 59, 62, 65, 67, 69, 70, 78, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 97, 98, 101, 102, 103], "matric": [1, 3, 46, 93], "which": [1, 2, 3, 5, 7, 10, 12, 13, 14, 16, 18, 22, 26, 32, 33, 34, 36, 37, 41, 42, 43, 46, 48, 51, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 73, 74, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "learn": [1, 2, 3, 4, 5, 9, 10, 14, 16, 22, 30, 33, 38, 39, 40, 41, 43, 45, 47, 52, 55, 57, 59, 66, 68, 70, 73, 77, 79, 82, 83, 84, 86, 88, 90, 91, 92, 96, 97, 101], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101, 102, 103], "possibl": [1, 2, 3, 7, 10, 36, 37, 41, 43, 45, 46, 48, 59, 60, 61, 62, 64, 65, 66, 67, 69, 75, 77, 78, 85, 87, 93, 94, 96, 97, 98, 101, 102, 103], "noisi": [1, 2, 3, 10, 36, 38, 41, 43, 46, 52, 58, 59, 61, 67, 69, 70, 71, 73, 74, 80, 85, 86, 87, 90, 91, 93, 95, 96], "given": [1, 2, 3, 5, 10, 14, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 51, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "matrix": [1, 2, 3, 5, 10, 16, 18, 31, 36, 43, 45, 46, 49, 52, 53, 59, 62, 64, 65, 66, 67, 90, 98, 99], "trace": [1, 85, 86, 87, 94, 96, 97], "valu": [1, 2, 3, 4, 5, 10, 12, 13, 16, 18, 22, 26, 27, 32, 34, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 78, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "more": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 16, 18, 26, 36, 37, 40, 41, 42, 45, 48, 50, 52, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 73, 74, 75, 77, 79, 84, 86, 88, 90, 91, 92, 93, 96, 97, 98, 99, 102, 103], "function": [1, 2, 3, 4, 5, 7, 10, 13, 14, 16, 23, 26, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 102, 103], "noise_matrix": [1, 2, 3, 10, 46, 52, 85, 86, 87, 94, 96, 97], "py": [1, 3, 33, 37, 38, 43, 46, 48, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97], "verbos": [1, 2, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 40, 43, 57, 58, 59, 64, 66, 67, 69, 71, 73, 74, 78, 86, 94, 96], "fals": [1, 2, 3, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 47, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 98, 99, 101, 102], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 85], "prior": [1, 2, 3, 36, 43, 46, 48], "repres": [1, 2, 3, 7, 10, 12, 16, 18, 26, 32, 34, 36, 40, 43, 46, 49, 50, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103], "p": [1, 2, 3, 5, 10, 36, 43, 45, 46, 50, 52, 57, 65, 66, 67, 71, 90, 91, 94, 96, 103], "true_label": [1, 2, 3, 36, 46, 52, 94, 96], "k": [1, 2, 3, 4, 5, 8, 10, 12, 16, 18, 19, 23, 26, 28, 31, 36, 40, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 60, 61, 62, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 82, 84, 85, 86, 87, 93, 94, 96, 97, 98, 99, 102, 103], "check": [1, 2, 5, 6, 9, 10, 12, 16, 27, 34, 37, 40, 41, 47, 53, 56, 62, 65, 69, 79, 82, 83, 84, 85, 86, 87, 88, 93, 94, 96, 97, 101], "learnabl": 1, "mean": [1, 2, 7, 8, 12, 13, 22, 26, 38, 41, 46, 48, 50, 64, 69, 83, 87, 91, 93, 94, 96, 97, 98, 99, 101], "achiev": [1, 2, 37, 38, 41, 69, 93, 96, 103], "better": [1, 5, 10, 43, 57, 59, 67, 69, 70, 79, 83, 84, 87, 90, 91, 93, 94, 97, 98, 99, 103], "than": [1, 2, 3, 4, 7, 9, 10, 26, 28, 31, 36, 43, 52, 56, 57, 62, 64, 66, 67, 69, 73, 77, 82, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "random": [1, 2, 3, 7, 10, 18, 31, 40, 48, 57, 67, 69, 82, 84, 85, 86, 87, 88, 90, 93, 94, 96, 97, 99], "perform": [1, 2, 4, 7, 10, 26, 28, 31, 37, 41, 48, 65, 69, 79, 82, 83, 86, 93, 94, 96, 97, 100, 101], "averag": [1, 3, 5, 10, 22, 28, 36, 37, 41, 48, 50, 57, 58, 65, 66, 67, 93, 96, 99], "amount": [1, 3, 88], "paramet": [1, 2, 3, 4, 5, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 87, 88, 91], "np": [1, 2, 3, 4, 5, 7, 16, 18, 31, 36, 38, 40, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "ndarrai": [1, 2, 3, 4, 5, 16, 23, 25, 26, 30, 31, 32, 36, 38, 40, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 103], "an": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 79, 82, 83, 85, 86, 87, 90, 91, 92, 94, 96, 97, 98, 99, 100, 101, 102, 103], "arrai": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 26, 32, 36, 38, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "shape": [1, 2, 3, 4, 5, 16, 18, 36, 38, 40, 42, 43, 45, 46, 47, 48, 50, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 84, 92, 93, 94, 97, 98, 99, 102, 103], "condit": [1, 2, 3, 46, 51, 52, 67, 88, 94, 103], "probabl": [1, 2, 3, 5, 8, 10, 16, 23, 25, 28, 32, 36, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 92, 93, 94, 95, 97, 98, 99, 102, 103], "k_": [1, 2, 3, 46, 52], "k_y": [1, 2, 3, 46, 52], "contain": [1, 2, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 43, 45, 46, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 73, 74, 75, 77, 78, 80, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102], "fraction": [1, 2, 3, 10, 20, 38, 46, 52, 57, 69, 90, 93], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 96, 97, 98, 100, 101, 102, 103], "everi": [1, 2, 3, 4, 5, 16, 37, 41, 43, 46, 51, 52, 59, 67, 69, 70, 82, 84, 85, 86, 87, 88, 90, 91, 93, 96, 98, 100, 102, 103], "class": [1, 2, 3, 4, 5, 7, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103], "other": [1, 2, 3, 5, 10, 16, 22, 27, 36, 37, 39, 40, 41, 43, 46, 49, 52, 53, 55, 57, 58, 61, 65, 66, 67, 69, 74, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 99, 102, 103], "assum": [1, 2, 3, 12, 43, 46, 51, 52, 67, 71, 74, 93, 97, 99, 101, 102, 103], "column": [1, 2, 3, 5, 10, 12, 13, 30, 36, 40, 43, 46, 48, 49, 51, 52, 57, 58, 59, 61, 62, 65, 66, 67, 69, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 101, 102, 103], "sum": [1, 2, 3, 26, 31, 32, 36, 46, 48, 52, 58, 59, 61, 64, 69, 85, 86, 87, 88, 93, 94, 96, 97, 102, 103], "1": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 92, 93, 100], "each": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 14, 16, 20, 22, 23, 25, 26, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 50, 52, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "true": [1, 2, 3, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 48, 51, 52, 53, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "return": [1, 2, 3, 4, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "type": [1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 97, 98, 101, 102, 103], "bool": [1, 2, 3, 5, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 48, 51, 52, 57, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78], "is_valid": 1, "whether": [1, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 37, 40, 41, 43, 52, 57, 58, 59, 61, 62, 78, 83, 84, 87, 88, 90, 91, 92, 93, 94, 101, 103], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 27, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 46, 48, 49, 50, 51, 52, 57, 59, 61, 64, 65, 66, 67, 69, 70, 75, 77, 78, 79, 84, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 102, 103], "perfect": [1, 2, 36, 69, 94, 98], "exactli": [1, 3, 10, 36, 37, 41, 43, 60, 66, 86, 87, 88, 90, 91, 94], "yield": [1, 37, 41, 85], "between": [1, 5, 10, 15, 16, 21, 22, 24, 26, 29, 32, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 50, 55, 57, 58, 61, 64, 66, 67, 69, 70, 73, 77, 78, 80, 83, 84, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "below": [1, 3, 4, 5, 10, 36, 37, 40, 41, 43, 45, 48, 50, 57, 58, 59, 64, 65, 73, 77, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "we": [1, 2, 3, 5, 7, 10, 13, 22, 37, 40, 41, 43, 48, 52, 53, 56, 57, 64, 65, 67, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "loop": [1, 3, 46, 52, 88, 98], "implement": [1, 2, 3, 4, 9, 14, 22, 37, 38, 40, 41, 46, 52, 66, 69, 79, 82, 84, 86, 90, 99, 100], "what": [1, 5, 9, 10, 16, 33, 36, 38, 40, 43, 57, 58, 62, 64, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "doe": [1, 2, 3, 7, 10, 40, 41, 43, 48, 50, 53, 64, 65, 69, 71, 73, 77, 83, 84, 86, 87, 88, 90, 91, 92, 97, 101, 102], "do": [1, 2, 5, 9, 10, 36, 40, 41, 52, 53, 66, 67, 71, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "fast": 1, "explain": [1, 10], "python": [1, 2, 41, 56, 69, 83, 84, 86, 87, 88, 90, 91, 92, 94, 99], "pseudocod": [1, 100], "happen": [1, 10, 43, 59, 85, 91, 96, 102], "n": [1, 2, 3, 5, 7, 36, 37, 40, 41, 43, 45, 46, 47, 48, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 82, 83, 84, 85, 88, 91, 92, 93, 96, 97, 98, 101, 102, 103], "without": [1, 2, 5, 9, 10, 12, 14, 20, 37, 41, 61, 69, 79, 83, 84, 85, 91, 93, 94, 98, 99], "ani": [1, 2, 3, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 45, 47, 50, 51, 52, 56, 57, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102], "distinct": [1, 18, 52, 103], "natur": [1, 10, 96, 99], "number": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 80, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 102, 103], "0": [1, 2, 3, 4, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "count_joint": 1, "len": [1, 2, 3, 7, 36, 40, 46, 51, 52, 53, 66, 67, 69, 82, 83, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "y": [1, 2, 3, 5, 8, 18, 30, 31, 41, 46, 48, 52, 53, 56, 65, 69, 70, 83, 84, 85, 86, 87, 90, 93, 94, 96, 97, 99, 101], "round": [1, 40, 43, 52, 69, 93, 101], "astyp": [1, 96], "int": [1, 2, 3, 4, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 38, 40, 41, 43, 48, 49, 50, 51, 52, 53, 58, 59, 61, 65, 66, 67, 69, 71, 73, 74, 75, 78, 84, 86, 88, 98, 99], "rang": [1, 3, 5, 7, 12, 46, 48, 50, 52, 65, 69, 70, 85, 88, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 12, 13, 16, 22, 36, 40, 43, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "pragma": 1, "cover": [1, 3, 80, 92, 93], "choic": [1, 8, 43, 50, 88, 93, 97, 99], "replac": [1, 51, 56, 67, 82, 83, 85, 86, 87, 88, 91, 92, 93, 96, 99], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 67, 84, 85, 86, 87], "05": [1, 10, 26, 30, 51, 65, 69, 75, 77, 90, 92, 93, 94, 98, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 85, 86, 87, 94, 96, 97], "none": [1, 2, 3, 4, 5, 7, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 85, 86, 87, 88, 93, 94, 96, 97, 102], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 26, 39, 41, 48, 69, 82, 84, 85, 86, 87, 90, 92, 94, 96, 97], "max_it": [1, 83, 84, 91, 99], "10000": [1, 40, 92, 93], "x": [1, 2, 3, 5, 10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 37, 38, 41, 43, 45, 46, 48, 51, 52, 53, 56, 57, 59, 65, 66, 67, 69, 71, 82, 83, 84, 85, 86, 87, 88, 90, 92, 93, 94, 96, 97, 99, 101], "diagon": [1, 3, 5, 43, 46, 52], "equal": [1, 3, 10, 12, 59, 64, 74, 100], "creat": [1, 2, 9, 16, 18, 37, 40, 41, 43, 52, 69, 79, 83, 84, 88, 90, 91, 93, 102, 103], "impli": [1, 10, 36, 58, 65], "float": [1, 2, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 39, 40, 41, 43, 45, 47, 48, 50, 51, 52, 57, 58, 59, 61, 64, 65, 69, 73, 77, 84, 85, 86, 87, 94, 96, 97], "entri": [1, 3, 5, 36, 37, 41, 43, 45, 49, 50, 52, 57, 58, 59, 62, 82, 83, 90, 91, 94, 97, 98, 101], "maximum": [1, 10, 66, 74, 78, 102], "minimum": [1, 8, 10, 20, 43, 45, 59, 64, 77], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 16, 26, 37, 41, 43, 64, 69, 86, 93, 94, 96, 98, 99], "default": [1, 2, 3, 4, 5, 7, 10, 14, 16, 28, 30, 33, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 86, 88, 93, 101, 102], "If": [1, 2, 3, 4, 5, 10, 12, 13, 16, 26, 28, 34, 36, 37, 40, 41, 43, 45, 46, 48, 51, 52, 56, 57, 58, 59, 62, 64, 65, 66, 69, 70, 71, 73, 74, 77, 78, 79, 80, 82, 83, 84, 86, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "have": [1, 2, 3, 4, 5, 7, 9, 10, 16, 21, 24, 26, 29, 36, 37, 39, 40, 41, 43, 46, 48, 52, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 74, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "all": [1, 2, 3, 5, 7, 8, 9, 10, 13, 14, 16, 22, 33, 36, 37, 40, 41, 42, 43, 46, 48, 49, 51, 52, 56, 57, 58, 59, 60, 61, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "necessari": [1, 2, 3, 4, 7, 10, 12, 51, 85, 86], "In": [1, 2, 3, 5, 10, 36, 37, 40, 41, 56, 57, 58, 60, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 99, 100, 101, 102, 103], "particular": [1, 5, 6, 10, 13, 14, 16, 19, 20, 22, 26, 27, 28, 31, 37, 41, 52, 57, 61, 65, 69, 74, 78, 79, 82, 83, 84, 85, 87, 91, 93, 96, 97, 99, 101], "satisfi": [1, 3, 36], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 30, 35, 37, 38, 39, 40, 41, 43, 46, 52, 55, 56, 59, 66, 67, 69, 71, 79, 80, 84, 92, 93, 94, 100], "argument": [1, 2, 3, 5, 10, 16, 23, 27, 30, 31, 32, 37, 40, 41, 42, 43, 48, 53, 56, 57, 58, 59, 61, 64, 65, 66, 67, 69, 73, 74, 75, 77, 83, 85, 87, 88, 91, 92, 93, 97, 98, 101, 103], "when": [1, 2, 3, 4, 5, 10, 12, 14, 23, 26, 37, 41, 43, 46, 48, 50, 52, 56, 59, 61, 62, 64, 66, 67, 69, 70, 82, 83, 85, 86, 87, 88, 90, 91, 92, 96, 100, 101, 102, 103], "The": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 74, 75, 77, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 103], "rate": [1, 2, 3, 10, 38, 52, 84, 103], "set": [1, 2, 3, 5, 9, 10, 12, 13, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 40, 41, 43, 47, 48, 50, 52, 56, 57, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 82, 83, 85, 86, 87, 90, 91, 93, 96, 97, 99, 100, 101, 102, 103], "note": [1, 2, 3, 7, 8, 10, 12, 27, 31, 34, 37, 40, 41, 42, 43, 48, 52, 56, 57, 62, 64, 65, 66, 67, 69, 70, 74, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "you": [1, 2, 3, 5, 7, 9, 10, 14, 16, 36, 37, 39, 40, 41, 43, 48, 55, 56, 57, 59, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "high": [1, 2, 16, 40, 43, 52, 64, 67, 69, 82, 83, 85, 86, 87, 88, 92, 94, 98, 101, 102, 103], "mai": [1, 2, 3, 4, 5, 10, 13, 21, 22, 24, 29, 32, 36, 37, 39, 40, 41, 43, 46, 48, 52, 57, 58, 62, 64, 65, 66, 67, 69, 71, 74, 78, 80, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103], "imposs": [1, 10, 94], "also": [1, 2, 3, 5, 7, 9, 10, 22, 34, 36, 37, 40, 41, 43, 48, 51, 56, 57, 66, 69, 74, 77, 78, 79, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103], "low": [1, 10, 52, 57, 79, 85, 86, 87, 91, 94, 98, 102], "zero": [1, 3, 5, 37, 41, 45, 52, 53, 86, 88, 97, 98, 99], "forc": [1, 2, 3, 5, 41, 86, 103], "instead": [1, 2, 3, 10, 13, 16, 33, 36, 37, 40, 41, 43, 46, 52, 56, 57, 59, 61, 65, 66, 67, 69, 70, 73, 75, 77, 80, 82, 83, 84, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103], "onli": [1, 2, 3, 4, 5, 7, 10, 16, 23, 26, 30, 36, 37, 40, 41, 42, 43, 45, 46, 50, 51, 52, 53, 56, 57, 66, 67, 69, 71, 73, 77, 78, 79, 83, 84, 86, 87, 88, 91, 96, 97, 98, 99, 100, 101, 102, 103], "guarante": [1, 3, 5, 15, 21, 24, 29, 37, 39, 41, 44, 46, 55, 80], "produc": [1, 2, 5, 9, 10, 16, 48, 57, 67, 69, 71, 73, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 102, 103], "higher": [1, 5, 10, 36, 43, 45, 46, 48, 50, 56, 57, 58, 69, 87, 91, 93, 98], "opposit": [1, 103], "occur": [1, 3, 10, 36, 51, 64, 86, 87, 88, 93, 99], "small": [1, 3, 10, 36, 40, 48, 50, 52, 58, 65, 83, 88, 91, 92, 97, 99], "numpi": [1, 3, 4, 5, 7, 10, 12, 18, 31, 32, 40, 41, 42, 48, 50, 51, 53, 56, 61, 64, 69, 70, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "max": [1, 43, 66, 67, 87, 88, 99], "tri": [1, 37, 41, 100], "befor": [1, 2, 3, 37, 41, 50, 52, 66, 69, 74, 82, 83, 85, 91, 93, 94, 96, 99, 101], "option": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 23, 30, 36, 37, 40, 41, 43, 46, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 84, 86, 87, 88, 90, 93, 94, 97, 101, 102], "left": [1, 2, 43, 45, 50, 52, 59, 62, 65, 85, 86, 87, 97, 98, 99, 102], "stochast": 1, "exceed": 1, "m": [1, 5, 37, 41, 47, 48, 57, 62, 64, 65, 66, 85, 86, 87, 92, 96, 97, 98, 103], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 37, 41, 56, 93, 94, 102], "length": [1, 5, 12, 26, 27, 36, 38, 43, 52, 59, 62, 66, 67, 69, 71, 74, 78, 82, 84, 97, 99, 102, 103], "must": [1, 2, 3, 4, 5, 7, 16, 36, 37, 38, 39, 41, 43, 46, 48, 49, 50, 52, 55, 56, 57, 58, 59, 66, 67, 69, 71, 73, 74, 75, 77, 78, 84, 96, 100, 102, 103], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 12, 36, 40, 43, 49, 52, 53, 57, 59, 65, 71, 73, 74, 75, 77, 78, 82, 83, 84, 93, 96, 97, 98, 102, 103], "ball": [1, 92], "bin": [1, 3, 59, 85, 86, 87, 99], "ensur": [1, 2, 10, 37, 41, 50, 52, 53, 56, 64, 67, 69, 82, 83, 84, 86, 87, 88, 91, 93, 94, 99, 100, 101], "most": [1, 3, 5, 7, 10, 16, 36, 40, 43, 48, 56, 57, 58, 59, 62, 64, 65, 66, 67, 70, 73, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102], "least": [1, 4, 10, 18, 31, 36, 40, 57, 58, 64, 67, 77, 87, 88, 93, 96, 99, 102], "int_arrai": [1, 52], "can": [2, 3, 4, 5, 7, 8, 9, 13, 14, 16, 33, 34, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 78, 79, 80, 82, 83, 84, 86, 88, 90, 91, 97, 98, 99, 100, 101, 102, 103], "model": [2, 3, 4, 5, 9, 10, 16, 18, 30, 32, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 51, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 85, 86, 87, 92, 95, 100, 102, 103], "For": [2, 3, 5, 7, 9, 10, 11, 16, 22, 35, 36, 37, 40, 41, 43, 46, 48, 50, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 75, 77, 78, 79, 82, 83, 84, 85, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 100, 102, 103], "regular": [2, 3, 40, 56], "multi": [2, 3, 4, 10, 32, 36, 37, 40, 41, 43, 47, 48, 49, 52, 53, 58, 59, 60, 61, 66, 67, 79, 93, 94, 95], "task": [2, 5, 7, 10, 11, 12, 14, 15, 16, 25, 30, 33, 36, 40, 46, 48, 49, 50, 52, 57, 59, 67, 69, 79, 83, 84, 85, 91, 92, 93, 94, 97, 99, 101, 102, 103], "cleanlearn": [2, 3, 10, 23, 30, 37, 52, 56, 68, 69, 70, 79, 80, 82, 83, 101], "wrap": [2, 37, 41, 56, 66, 69, 79, 82, 83, 85, 86, 87, 90, 91, 94, 101], "instanc": [2, 3, 5, 6, 7, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 56, 65, 66, 69, 74, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 98], "sklearn": [2, 3, 4, 5, 8, 10, 18, 31, 36, 41, 48, 52, 56, 66, 69, 70, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 101], "classifi": [2, 3, 41, 48, 52, 57, 60, 66, 67, 79, 80, 82, 83, 84, 90, 91, 93, 96, 97, 99, 100, 102, 103], "adher": [2, 41, 69], "estim": [2, 3, 4, 5, 9, 13, 22, 36, 40, 41, 43, 46, 52, 57, 58, 59, 64, 66, 69, 71, 73, 77, 79, 80, 84, 85, 86, 87, 88, 90, 91, 93, 95, 98, 99, 100, 101, 102, 103], "api": [2, 3, 14, 56, 62, 65, 66, 69, 80, 93, 101], "defin": [2, 3, 5, 7, 10, 14, 22, 36, 37, 38, 40, 41, 43, 67, 69, 71, 84, 86, 87, 90, 92, 93, 96, 99, 103], "four": [2, 10, 92, 94, 103], "clf": [2, 3, 5, 48, 69, 79, 82, 90, 93, 94, 97], "fit": [2, 3, 5, 8, 10, 18, 39, 41, 55, 56, 66, 68, 69, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 101, 103], "sample_weight": [2, 41, 69, 94], "predict_proba": [2, 5, 36, 39, 41, 48, 55, 56, 82, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 99], "predict": [2, 3, 4, 5, 8, 9, 10, 16, 22, 23, 25, 28, 30, 32, 34, 36, 39, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 83, 92, 93, 94, 95, 99, 101, 102, 103], "score": [2, 3, 4, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 42, 43, 45, 48, 50, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 73, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 99, 101], "data": [2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 38, 39, 40, 41, 42, 43, 48, 49, 52, 55, 56, 57, 58, 59, 60, 64, 66, 67, 68, 69, 74, 75, 76, 77, 78, 80, 83, 88, 89, 95, 100], "e": [2, 3, 5, 10, 12, 22, 32, 36, 37, 40, 41, 43, 46, 48, 49, 52, 53, 57, 58, 59, 60, 62, 65, 66, 67, 69, 71, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101], "featur": [2, 3, 4, 5, 8, 10, 16, 18, 19, 23, 26, 27, 28, 30, 31, 48, 52, 66, 69, 79, 82, 85, 86, 87, 90, 91, 93, 94, 96, 97, 101], "element": [2, 3, 5, 36, 42, 43, 45, 52, 57, 59, 67, 74, 75, 77, 83, 84, 91, 93, 103], "first": [2, 5, 10, 17, 26, 27, 36, 40, 48, 52, 57, 58, 62, 65, 67, 69, 82, 83, 84, 86, 88, 90, 93, 96, 97, 98, 99, 101, 102, 103], "index": [2, 10, 26, 36, 43, 51, 52, 53, 58, 67, 69, 74, 77, 78, 83, 84, 86, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "should": [2, 3, 5, 7, 10, 14, 22, 26, 31, 32, 36, 37, 40, 41, 43, 45, 46, 48, 50, 51, 52, 56, 57, 58, 61, 62, 64, 65, 66, 67, 69, 70, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 100, 101, 102, 103], "correspond": [2, 3, 5, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 36, 37, 40, 41, 42, 43, 45, 46, 48, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "differ": [2, 5, 7, 10, 13, 15, 21, 24, 26, 27, 29, 36, 37, 39, 40, 41, 43, 44, 48, 50, 52, 53, 55, 57, 62, 64, 66, 69, 82, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 99, 100, 101], "sampl": [2, 3, 5, 8, 10, 16, 20, 43, 45, 48, 59, 62, 65, 67, 69, 70, 79, 80, 83, 92, 93, 94, 95, 97, 98, 101, 102, 103], "size": [2, 10, 31, 37, 40, 41, 43, 48, 59, 64, 65, 69, 71, 73, 83, 85, 88, 90, 93, 94, 96, 97, 98, 100, 102], "here": [2, 5, 7, 10, 14, 40, 43, 46, 56, 57, 58, 59, 61, 62, 65, 66, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "re": [2, 5, 37, 41, 51, 57, 69, 79, 82, 83, 84, 85, 86, 90, 91, 93, 101, 102, 103], "weight": [2, 10, 37, 38, 41, 48, 57, 64, 67, 69, 83, 84, 85, 86, 87, 91], "loss": [2, 38, 56, 67, 69, 88], "while": [2, 3, 10, 37, 40, 41, 47, 48, 52, 69, 79, 88, 93, 94, 96, 97, 101], "train": [2, 3, 4, 5, 9, 10, 16, 18, 32, 37, 38, 39, 41, 48, 52, 56, 57, 62, 65, 66, 69, 70, 80, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 100, 102, 103], "support": [2, 3, 4, 5, 12, 14, 33, 34, 40, 42, 48, 52, 53, 56, 66, 67, 77, 79, 80, 84, 85, 86, 87, 88, 93], "your": [2, 3, 5, 9, 10, 16, 36, 37, 39, 40, 41, 43, 48, 52, 55, 56, 57, 58, 59, 61, 66, 67, 69, 70, 71, 73, 74, 80, 82, 83, 84, 85, 88, 90, 92, 96, 97, 98, 99, 100, 101, 102, 103], "recommend": [2, 5, 7, 10, 13, 16, 40, 43, 57, 86, 87, 88, 93, 100, 101], "furthermor": 2, "correctli": [2, 3, 10, 36, 37, 41, 43, 46, 53, 58, 59, 64, 65, 69, 71, 83, 91, 93, 97, 98, 101, 102], "clonabl": [2, 69], "via": [2, 5, 7, 10, 13, 16, 18, 22, 36, 38, 40, 41, 48, 52, 57, 62, 65, 66, 67, 69, 70, 73, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 97, 98, 99, 100, 101, 102, 103], "base": [2, 3, 4, 5, 7, 10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 42, 43, 46, 47, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 64, 66, 67, 69, 70, 73, 75, 77, 82, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "clone": [2, 69, 97], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 40, 45, 46, 47, 48, 49, 50, 51, 52, 53, 61, 65, 69, 75, 80, 84, 86, 93, 94, 96, 97, 98, 99, 101, 103], "multipl": [2, 3, 5, 12, 13, 34, 36, 43, 50, 51, 57, 58, 59, 61, 64, 65, 69, 79, 86, 87, 88, 93, 95, 97, 98, 101], "g": [2, 3, 5, 10, 12, 22, 32, 36, 37, 41, 43, 49, 52, 59, 60, 62, 65, 66, 67, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101], "manual": [2, 69, 82, 83, 84, 93, 99, 100, 101, 103], "pytorch": [2, 37, 38, 41, 69, 79, 84, 88, 93, 95, 97, 102], "call": [2, 3, 5, 6, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 48, 52, 56, 66, 69, 83, 84, 85, 86, 87, 91, 93, 94, 97, 99, 100, 101, 102, 103], "__init__": [2, 38, 69, 88], "independ": [2, 3, 10, 58, 69, 91, 100, 101, 103], "compat": [2, 37, 40, 41, 56, 69, 70, 73, 77, 79, 82, 83, 93, 100, 101], "neural": [2, 38, 56, 66, 69, 84, 88, 93, 97, 99, 101], "network": [2, 37, 38, 41, 56, 66, 69, 83, 84, 88, 91, 93, 97, 99, 101], "typic": [2, 37, 41, 66, 69, 82, 83, 84, 87, 88, 90, 91, 99, 100], "initi": [2, 3, 13, 18, 37, 41, 57, 69, 82, 91, 93], "insid": [2, 41, 69, 93, 94], "There": [2, 3, 7, 79, 94, 96], "two": [2, 3, 10, 18, 26, 36, 37, 40, 41, 49, 52, 62, 64, 65, 80, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 101, 102, 103], "new": [2, 7, 9, 10, 14, 22, 37, 40, 41, 47, 51, 52, 57, 69, 83, 84, 86, 91, 92, 93, 99, 100, 103], "notion": 2, "confid": [2, 3, 10, 22, 36, 40, 43, 46, 48, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 73, 77, 79, 82, 88, 90, 91, 94, 96, 97, 98, 100, 102, 103], "packag": [2, 5, 7, 9, 10, 11, 15, 35, 39, 43, 44, 52, 55, 56, 62, 65, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "prune": [2, 3, 43, 59, 69, 80, 98], "everyth": [2, 65, 94], "els": [2, 65, 85, 86, 88, 92, 93, 96, 97, 98], "mathemat": [2, 3, 10, 46, 97], "keep": [2, 13, 14, 52, 79, 85, 86, 92, 93, 102], "belong": [2, 3, 10, 36, 43, 45, 46, 58, 59, 60, 61, 66, 67, 71, 75, 77, 78, 87, 88, 94, 97, 99, 102, 103], "2": [2, 3, 4, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 49, 50, 51, 52, 56, 58, 59, 61, 62, 65, 66, 67, 69, 70, 74, 75, 77, 78, 92, 93, 100], "error": [2, 3, 5, 10, 37, 41, 42, 43, 45, 46, 52, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 80, 82, 84, 85, 86, 87, 90, 91, 92, 95], "erron": [2, 3, 36, 43, 46, 52, 58, 59, 67, 69, 70, 71, 99, 101], "import": [2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 40, 42, 48, 50, 51, 57, 61, 64, 69, 70, 75, 77, 78, 79, 82, 83, 90, 91, 93, 97, 98, 99, 101, 102, 103], "linear_model": [2, 5, 36, 52, 69, 79, 83, 84, 85, 86, 87, 91, 93, 94, 96, 99], "logisticregress": [2, 3, 5, 36, 52, 79, 83, 84, 85, 86, 87, 91, 93, 94, 96, 99], "logreg": 2, "cl": [2, 14, 30, 69, 79, 82, 83, 93, 94, 101], "pass": [2, 3, 5, 8, 10, 12, 13, 14, 16, 23, 30, 33, 37, 40, 41, 43, 47, 48, 52, 56, 57, 59, 65, 66, 67, 69, 74, 75, 79, 83, 84, 85, 86, 87, 91, 92, 93, 94, 96, 98, 99, 101], "x_train": [2, 82, 85, 86, 87, 94, 96, 97, 101], "labels_maybe_with_error": 2, "had": [2, 3, 69, 98], "issu": [2, 3, 4, 5, 6, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 55, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 83, 89, 95, 96, 100, 101], "pred": [2, 43, 52, 82, 83, 100, 101], "x_test": [2, 82, 85, 86, 87, 94, 97, 101], "might": [2, 5, 10, 57, 69, 74, 82, 83, 86, 87, 88, 93, 98], "case": [2, 3, 10, 13, 36, 48, 57, 69, 82, 83, 84, 86, 87, 88, 90, 92, 93, 94, 99, 101, 103], "standard": [2, 3, 5, 30, 36, 43, 56, 58, 59, 61, 67, 69, 79, 82, 86, 87, 90, 92, 94, 98], "adapt": [2, 37, 39, 52, 55, 69, 99], "skorch": [2, 69, 79, 93], "kera": [2, 55, 62, 65, 69, 79, 93, 98], "scikera": [2, 56, 69, 93], "open": [2, 40, 92, 98, 103], "doesn": [2, 10, 69, 79], "t": [2, 3, 4, 7, 10, 17, 27, 37, 38, 40, 41, 42, 43, 48, 50, 51, 61, 66, 67, 69, 75, 77, 78, 79, 86, 87, 88, 90, 91, 92, 94, 97, 98, 101, 103], "alreadi": [2, 5, 10, 16, 37, 40, 41, 46, 56, 57, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101], "exist": [2, 5, 10, 12, 18, 37, 40, 41, 51, 56, 62, 64, 66, 69, 79, 80, 82, 83, 86, 87, 91, 96, 103], "made": [2, 5, 16, 37, 41, 69, 82, 83, 88, 91, 93, 96, 98, 100, 101], "easi": [2, 11, 46, 69, 86, 87, 92, 93, 94, 97], "inherit": [2, 7, 38, 69], "baseestim": [2, 41, 69], "yourmodel": [2, 69], "def": [2, 7, 14, 37, 41, 56, 69, 83, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "self": [2, 3, 5, 7, 10, 12, 13, 14, 16, 31, 37, 38, 40, 41, 43, 48, 66, 67, 69, 82, 83, 86, 88, 91, 92, 97, 102, 103], "refer": [2, 10, 16, 37, 41, 42, 58, 59, 61, 62, 64, 65, 66, 69, 73, 74, 86, 87, 88, 90, 91, 93, 94, 97, 100, 101], "origin": [2, 5, 10, 41, 42, 43, 51, 52, 56, 58, 59, 62, 65, 66, 69, 70, 73, 75, 77, 82, 83, 86, 88, 90, 91, 93, 94, 98, 99, 101, 103], "total": [2, 3, 4, 36, 40, 52, 58, 78, 85, 88, 93, 102], "state": [2, 3, 5, 37, 38, 41, 47, 69, 94, 97, 98, 103], "art": [2, 38, 94, 97], "northcutt": [2, 3, 36, 66, 67], "et": [2, 3, 36, 38, 66, 67], "al": [2, 3, 36, 38, 66, 67], "2021": [2, 3, 36, 66, 67], "weak": [2, 65], "supervis": [2, 10, 86, 87, 93, 96], "find": [2, 5, 9, 10, 13, 14, 16, 19, 20, 22, 23, 25, 26, 27, 28, 31, 32, 36, 37, 39, 40, 41, 42, 43, 47, 51, 52, 55, 62, 65, 66, 67, 69, 71, 75, 77, 80, 86, 95, 100], "uncertainti": [2, 10, 45, 66, 69, 93, 99, 101], "It": [2, 3, 5, 7, 10, 12, 13, 16, 22, 27, 30, 32, 33, 34, 37, 41, 43, 46, 48, 50, 57, 64, 65, 69, 79, 83, 86, 87, 88, 91, 93, 94, 97, 100], "work": [2, 3, 7, 10, 12, 30, 36, 37, 40, 41, 43, 46, 51, 52, 53, 56, 57, 67, 69, 79, 80, 83, 85, 86, 87, 92, 99, 101], "includ": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 37, 39, 40, 41, 51, 52, 55, 57, 58, 61, 62, 66, 67, 69, 73, 74, 75, 77, 79, 80, 86, 87, 88, 90, 91, 93, 94, 97, 98, 99, 103], "deep": [2, 39, 41, 55, 56, 69, 91], "see": [2, 3, 5, 7, 10, 13, 14, 33, 36, 37, 40, 41, 42, 43, 48, 52, 56, 58, 59, 61, 62, 65, 66, 67, 69, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "subfield": 2, "theori": [2, 94], "machin": [2, 4, 5, 9, 10, 14, 16, 33, 39, 50, 55, 69, 82, 83, 86, 87, 92, 96], "across": [2, 3, 5, 7, 10, 13, 22, 36, 40, 48, 58, 65, 66, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 100, 101], "varieti": [2, 82, 83, 93], "like": [2, 3, 5, 6, 7, 10, 14, 32, 36, 37, 40, 41, 43, 46, 52, 56, 57, 58, 61, 62, 64, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "pu": [2, 52], "input": [2, 3, 5, 10, 16, 26, 36, 37, 40, 41, 46, 48, 51, 52, 53, 56, 65, 69, 79, 80, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 101, 102, 103], "discret": [2, 34, 43, 46, 52, 66, 67, 71, 73, 74], "vector": [2, 3, 4, 5, 10, 16, 43, 46, 48, 49, 52, 66, 67, 79, 83, 84, 86, 87, 88, 90, 91, 94, 97, 98, 99, 102, 103], "would": [2, 3, 5, 37, 40, 41, 43, 52, 59, 69, 79, 83, 85, 86, 88, 93, 94, 99, 101, 103], "obtain": [2, 5, 8, 10, 16, 43, 57, 59, 62, 65, 67, 70, 84, 87, 91, 93, 96, 98, 100, 102, 103], "been": [2, 4, 36, 43, 46, 51, 52, 57, 58, 62, 64, 66, 67, 69, 84, 86, 90, 93, 94, 96, 97, 98, 99, 102, 103], "dure": [2, 10, 16, 66, 69, 82, 83, 84, 85, 90, 91, 93, 94, 97, 100, 101, 103], "denot": [2, 3, 46, 48, 52, 59, 66, 67, 77], "tild": 2, "paper": [2, 4, 10, 57, 66, 75, 77, 92, 94, 96, 99, 101, 103], "cv_n_fold": [2, 3, 69, 83], "5": [2, 3, 4, 5, 8, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 41, 43, 45, 47, 48, 52, 57, 58, 61, 62, 65, 69, 70, 77, 83, 86, 91, 92, 93, 97, 98, 99, 100, 102, 103], "converge_latent_estim": [2, 3], "pulearn": [2, 52], "find_label_issues_kwarg": [2, 10, 69, 80, 93, 94], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 59, 75, 93], "clean": [2, 64, 67, 69, 70, 79, 82, 83, 85, 86, 87, 92, 101], "even": [2, 3, 7, 9, 10, 36, 40, 45, 46, 52, 69, 84, 93, 94, 96, 97, 98], "messi": [2, 69, 94], "ridden": [2, 69], "autom": [2, 9, 10, 69, 79, 87, 92, 93], "robust": [2, 46, 69, 87, 93], "prone": [2, 69], "out": [2, 3, 5, 10, 16, 28, 37, 41, 43, 48, 56, 59, 60, 62, 65, 66, 67, 69, 70, 78, 79, 80, 83, 92, 93, 94, 95, 97, 98, 99, 101, 102, 103], "current": [2, 3, 5, 7, 10, 13, 14, 22, 37, 41, 42, 43, 48, 57, 64, 69, 85, 86, 87, 93, 96, 98], "intend": [2, 13, 14, 15, 16, 32, 33, 34, 44, 57, 73, 77, 84, 86, 87, 91, 94], "A": [2, 3, 4, 5, 7, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 38, 41, 43, 46, 47, 48, 49, 50, 51, 52, 56, 57, 58, 61, 64, 65, 66, 67, 69, 71, 73, 74, 78, 80, 82, 83, 84, 86, 88, 90, 91, 92, 93, 94, 96, 98, 100, 103], "follow": [2, 3, 10, 14, 30, 34, 36, 37, 40, 41, 48, 50, 57, 58, 62, 64, 65, 66, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "experiment": [2, 37, 38, 40, 41, 42, 59, 80, 85, 93], "wrapper": [2, 56, 82, 83, 84, 101], "around": [2, 64, 85, 86, 87, 98, 99, 103], "fasttext": [2, 55], "store": [2, 4, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 66, 69, 82, 83, 85, 90, 91, 92, 93, 102, 103], "along": [2, 48, 59, 77, 85, 86, 87, 88, 93, 99], "dimens": [2, 52, 71, 74, 88, 93, 99, 102], "select": [2, 9, 10, 26, 57, 67, 88, 93, 96, 99], "split": [2, 3, 5, 10, 12, 40, 48, 51, 52, 69, 82, 84, 85, 86, 87, 88, 90, 91, 92, 94, 97, 100, 103], "cross": [2, 3, 10, 36, 43, 46, 47, 48, 59, 62, 65, 67, 69, 70, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 97, 98, 101, 102, 103], "fold": [2, 3, 36, 43, 46, 69, 82, 84, 90, 92, 93, 98, 102], "By": [2, 36, 58, 59, 69, 86, 93, 102], "need": [2, 3, 10, 36, 37, 40, 41, 43, 58, 59, 61, 66, 69, 79, 83, 84, 86, 87, 91, 93, 94, 96, 97, 98, 102], "holdout": [2, 3, 69], "comput": [2, 3, 4, 5, 7, 8, 10, 19, 20, 22, 23, 26, 27, 28, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 52, 57, 58, 59, 61, 64, 65, 66, 67, 69, 70, 71, 73, 79, 80, 83, 86, 87, 92, 94, 95, 98, 99, 101, 102], "them": [2, 3, 5, 7, 9, 10, 11, 12, 27, 32, 35, 37, 39, 40, 41, 43, 55, 57, 66, 69, 80, 82, 83, 85, 86, 87, 88, 90, 91, 93, 96, 97, 99, 101, 102, 103], "numer": [2, 3, 4, 5, 10, 13, 22, 30, 34, 48, 64, 66, 69, 74, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 94, 96, 97, 99, 101], "consist": [2, 3, 37, 41, 52, 57, 102, 103], "latent": [2, 3, 46], "thei": [2, 3, 5, 15, 21, 24, 26, 29, 37, 38, 39, 41, 43, 44, 50, 52, 56, 59, 64, 67, 69, 70, 73, 77, 79, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101, 103], "relat": [2, 3, 13, 19, 20, 26, 27, 28, 31, 46, 52, 58, 69, 87, 91], "close": [2, 3, 10, 40, 46, 66, 84, 86, 87, 88, 90, 91, 93, 94, 98], "form": [2, 3, 10, 37, 38, 41, 46, 51, 52, 67, 69, 93], "equival": [2, 3, 37, 41, 46, 66, 99, 101], "iter": [2, 3, 36, 37, 41, 43, 52, 58, 59, 69, 85, 93, 96, 102], "enforc": [2, 37, 41, 52], "perfectli": [2, 36, 58, 94], "certain": [2, 3, 5, 37, 41, 56, 65, 69, 85, 86, 87, 92, 98, 99], "dict": [2, 3, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 47, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 77, 85, 86, 87, 88, 93, 103], "keyword": [2, 3, 5, 10, 16, 23, 27, 30, 37, 40, 41, 43, 45, 48, 51, 56, 57, 59, 65, 66, 67, 69, 74, 75, 77, 86], "filter": [2, 3, 10, 40, 42, 51, 58, 60, 61, 63, 65, 72, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 87, 88, 91, 92, 93, 97, 98, 101, 102, 103], "find_label_issu": [2, 3, 10, 30, 39, 40, 42, 43, 58, 59, 60, 61, 62, 63, 64, 65, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 93, 97, 98, 101, 102, 103], "particularli": [2, 79, 96, 99], "filter_bi": [2, 3, 40, 43, 59, 80, 93], "frac_nois": [2, 43, 59, 75, 93], "min_examples_per_class": [2, 43, 59, 87, 93, 94], "impact": [2, 4, 10, 86, 87, 88], "ml": [2, 4, 5, 9, 10, 15, 69, 79, 82, 83, 86, 87, 88, 90, 91, 96, 97, 101], "accuraci": [2, 38, 67, 82, 83, 84, 88, 93, 94, 96, 99, 101, 102], "n_job": [2, 40, 43, 59, 71, 73, 75, 93, 99, 102], "disabl": [2, 37, 41, 43, 99], "process": [2, 3, 7, 13, 16, 32, 37, 40, 41, 43, 51, 57, 59, 65, 71, 73, 75, 83, 84, 85, 86, 93, 96, 100], "caus": [2, 43, 48, 86, 87, 93], "rank": [2, 3, 10, 36, 40, 42, 43, 48, 58, 59, 60, 62, 63, 65, 66, 68, 72, 74, 75, 76, 78, 79, 80, 82, 83, 86, 87, 92, 93, 97, 98, 99, 102, 103], "get_label_quality_scor": [2, 39, 40, 42, 43, 44, 48, 57, 59, 60, 61, 62, 63, 64, 67, 68, 70, 72, 73, 75, 76, 77, 80, 93, 94, 97, 98, 102, 103], "adjust_pred_prob": [2, 10, 61, 66, 67, 94], "control": [2, 5, 9, 10, 16, 40, 43, 57, 65, 66, 69, 75, 77, 86, 87, 92, 93], "how": [2, 3, 5, 10, 12, 13, 14, 16, 22, 36, 37, 38, 40, 41, 46, 52, 57, 58, 61, 62, 64, 66, 67, 69, 73, 77, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 98, 99, 100, 101, 102], "much": [2, 10, 36, 40, 43, 69, 85, 92, 93, 94, 96, 99], "output": [2, 3, 5, 10, 16, 32, 37, 38, 41, 46, 52, 56, 57, 58, 62, 64, 65, 66, 69, 73, 74, 77, 78, 79, 80, 83, 84, 86, 88, 91, 92, 93, 98, 99, 100, 101], "print": [2, 5, 7, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 52, 57, 58, 59, 64, 66, 67, 69, 71, 73, 74, 78, 80, 82, 83, 84, 85, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "suppress": [2, 40, 57, 64, 66, 67, 69, 71, 73, 74, 102, 103], "statement": [2, 40, 57, 64, 66, 67, 69, 71, 73, 74], "big": [2, 40, 59, 65, 69, 94], "limit": [2, 5, 16, 40, 59, 85, 98, 102, 103], "memori": [2, 37, 40, 41, 59, 65, 71, 73, 85, 86, 102], "label_issues_batch": [2, 39, 59, 93], "find_label_issues_batch": [2, 39, 40, 59, 93], "pred_prob": [2, 3, 5, 8, 10, 16, 23, 25, 26, 28, 31, 32, 36, 40, 42, 43, 45, 46, 47, 48, 49, 52, 53, 57, 58, 59, 61, 62, 65, 66, 67, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 101], "threshold": [2, 3, 4, 7, 10, 18, 19, 20, 22, 28, 30, 31, 40, 50, 64, 65, 66, 67, 73, 77, 86, 98, 99, 102, 103], "inverse_noise_matrix": [2, 3, 10, 46, 52, 80, 94], "label_issu": [2, 40, 43, 59, 62, 69, 71, 80, 82, 83, 84, 88, 91, 93, 94, 97, 101], "clf_kwarg": [2, 3, 10, 69], "clf_final_kwarg": [2, 69], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 36, 40, 43, 45, 57, 58, 59, 61, 62, 64, 65, 67, 69, 70, 73, 77, 79, 84, 88, 90, 91, 94, 96, 98, 100, 101], "result": [2, 3, 9, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 40, 41, 43, 45, 50, 52, 59, 61, 62, 65, 67, 69, 70, 71, 73, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 101, 102, 103], "identifi": [2, 3, 5, 7, 9, 10, 12, 16, 27, 33, 36, 40, 42, 43, 59, 62, 65, 67, 69, 70, 71, 74, 75, 77, 78, 79, 82, 83, 84, 86, 87, 88, 90, 91, 92, 94, 97, 99, 101, 102, 103], "final": [2, 10, 69, 82, 90, 98, 100, 101], "remain": [2, 69, 80, 82, 83, 88, 97, 101, 103], "datasetlik": [2, 52, 69], "beyond": [2, 5, 7, 9, 10, 11, 35, 79, 82, 83, 101, 102], "pd": [2, 3, 5, 7, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 47, 56, 57, 58, 69, 77, 82, 83, 84, 86, 87, 90, 91, 93, 94, 96, 101, 103], "datafram": [2, 3, 5, 7, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 47, 52, 53, 56, 57, 58, 69, 74, 78, 80, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 101, 102, 103], "scipi": [2, 4, 5, 13, 52, 66], "spars": [2, 4, 5, 10, 13, 16, 18, 31, 52, 53, 87, 88, 90, 91, 94], "csr_matrix": [2, 4, 5, 13, 16, 18, 31], "torch": [2, 37, 38, 41, 83, 84, 88, 91, 92, 99], "util": [2, 5, 10, 16, 33, 37, 38, 41, 44, 56, 57, 62, 65, 69, 79, 80, 84, 86, 87, 88, 93, 94, 99], "tensorflow": [2, 52, 56, 79, 84, 93], "object": [2, 5, 10, 12, 13, 16, 32, 33, 37, 38, 40, 41, 48, 52, 53, 56, 59, 62, 63, 64, 65, 66, 69, 77, 79, 83, 84, 87, 88, 90, 93, 94, 95, 97, 101], "list": [2, 3, 5, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 42, 43, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 73, 74, 75, 77, 78, 80, 83, 84, 85, 86, 87, 88, 92, 93, 94, 97, 98, 101, 103], "index_list": 2, "subset": [2, 3, 5, 16, 36, 40, 43, 52, 67, 74, 78, 82, 83, 84, 88, 90, 91, 93, 97, 98, 99, 100, 101, 103], "wa": [2, 3, 12, 14, 40, 50, 52, 57, 58, 64, 66, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 100, 102, 103], "abl": [2, 3, 10, 69, 84, 93, 94, 96, 97], "format": [2, 3, 5, 10, 12, 32, 37, 40, 41, 43, 46, 47, 48, 49, 52, 53, 56, 57, 58, 59, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 82, 84, 86, 87, 88, 90, 92, 96, 101, 102, 103], "make": [2, 3, 5, 18, 37, 40, 41, 48, 56, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "sure": [2, 5, 40, 43, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101], "shuffl": [2, 10, 52, 84, 88, 91, 97, 99], "ha": [2, 3, 5, 6, 10, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 42, 46, 48, 51, 52, 57, 62, 64, 69, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 90, 91, 94, 96, 97, 98, 99, 100, 101, 103], "batch": [2, 40, 52, 56, 57, 71, 73, 85, 88, 93, 99], "order": [2, 5, 10, 34, 36, 37, 41, 42, 43, 46, 47, 48, 50, 52, 57, 58, 59, 62, 65, 66, 67, 71, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 101, 102, 103], "destroi": [2, 52], "oper": [2, 37, 40, 41, 52, 56, 67, 79, 82, 83, 91, 93, 99], "eg": [2, 5, 10, 52, 62, 65, 86, 87, 93], "repeat": [2, 52, 57, 96, 99], "appli": [2, 34, 37, 39, 41, 43, 48, 49, 51, 52, 61, 66, 75, 82, 83, 84, 85, 86, 87, 88, 90, 93, 96, 97, 99, 100, 101, 102], "array_lik": [2, 3, 36, 43, 52, 59, 66, 70], "some": [2, 3, 5, 10, 14, 22, 36, 37, 39, 41, 43, 46, 51, 52, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103], "seri": [2, 3, 40, 52, 53, 69, 77, 93], "row": [2, 3, 5, 10, 13, 27, 32, 36, 40, 43, 45, 46, 52, 57, 58, 59, 61, 66, 67, 69, 74, 75, 77, 78, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 99, 103], "rather": [2, 3, 5, 26, 36, 52, 56, 57, 64, 73, 77, 83, 92, 96, 100, 101, 102, 103], "leav": [2, 43], "per": [2, 3, 5, 7, 10, 13, 36, 40, 43, 48, 51, 57, 58, 59, 61, 64, 65, 67, 70, 71, 73, 77, 87, 93, 98, 103], "determin": [2, 3, 10, 12, 16, 22, 26, 30, 36, 40, 43, 48, 52, 57, 59, 62, 64, 67, 73, 77, 86, 93, 96, 98, 99, 101], "cutoff": [2, 3, 99], "consid": [2, 3, 4, 5, 10, 13, 16, 23, 26, 28, 31, 36, 37, 41, 43, 52, 57, 64, 66, 67, 70, 73, 77, 82, 83, 84, 88, 90, 91, 93, 94, 98, 99, 100, 101, 102], "section": [2, 3, 7, 10, 80, 88, 90, 93, 98], "3": [2, 3, 4, 5, 7, 10, 34, 36, 37, 41, 43, 46, 47, 48, 49, 50, 51, 52, 56, 59, 66, 67, 69, 70, 75, 77, 92, 93, 100], "equat": [2, 3, 46], "advanc": [2, 3, 5, 9, 10, 16, 64, 66, 77, 80, 87, 89, 93, 94], "user": [2, 3, 5, 9, 10, 14, 16, 27, 32, 33, 34, 37, 41, 43, 56, 64, 66, 67, 69, 73, 77, 85, 94], "specifi": [2, 3, 4, 5, 8, 10, 13, 14, 16, 18, 31, 33, 37, 40, 41, 43, 48, 51, 56, 57, 58, 59, 62, 64, 66, 67, 69, 70, 78, 80, 83, 84, 87, 88, 91, 96, 98, 101], "automat": [2, 3, 5, 26, 36, 79, 82, 83, 88, 90, 91, 92, 93, 96, 97, 98, 101, 102, 103], "greater": [2, 3, 4, 5, 7, 9, 10, 28, 40, 52, 64, 87, 92, 93, 103], "count": [2, 22, 26, 36, 40, 43, 46, 52, 58, 59, 65, 80, 88, 93, 98], "observ": [2, 3, 46, 84, 85, 86, 87, 96, 99, 101], "mislabel": [2, 10, 36, 40, 42, 43, 46, 57, 58, 59, 62, 64, 67, 73, 75, 77, 79, 82, 83, 84, 88, 90, 91, 93, 94, 98, 101], "one": [2, 3, 5, 7, 10, 26, 36, 37, 40, 41, 42, 43, 48, 50, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 99, 100, 101, 103], "get_label_issu": [2, 39, 40, 68, 69, 82, 83, 94, 101], "either": [2, 3, 4, 7, 10, 37, 40, 41, 43, 57, 59, 64, 66, 67, 71, 73, 85, 87, 93, 97, 98], "boolean": [2, 7, 10, 22, 40, 43, 51, 57, 59, 62, 67, 69, 71, 73, 74, 79, 83, 84, 87, 88, 91, 93, 98, 101, 102], "label_issues_mask": [2, 43, 67, 69, 80], "indic": [2, 3, 4, 5, 7, 10, 13, 22, 36, 40, 41, 42, 43, 45, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 73, 75, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "its": [2, 5, 7, 9, 10, 16, 37, 40, 41, 43, 50, 51, 59, 62, 65, 66, 67, 69, 71, 75, 77, 79, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 100, 101, 102, 103], "return_indices_ranked_bi": [2, 40, 43, 59, 75, 80, 82, 83, 93, 94], "significantli": [2, 88, 94, 96, 100], "reduc": [2, 40, 43, 52, 84, 93], "time": [2, 10, 37, 40, 41, 52, 57, 80, 82, 83, 85, 86, 88, 92, 93, 94, 98, 99, 101, 102, 103], "take": [2, 5, 10, 36, 37, 41, 47, 48, 52, 56, 67, 82, 85, 88, 90, 96, 97, 98, 103], "run": [2, 5, 6, 7, 9, 10, 11, 14, 16, 26, 27, 32, 35, 37, 40, 41, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 103], "skip": [2, 10, 37, 41, 69, 84, 93, 97, 103], "slow": [2, 3], "step": [2, 7, 26, 48, 65, 85, 88, 94, 96, 100], "caution": [2, 5, 93], "previous": [2, 5, 13, 52, 66, 69, 80, 82, 84, 86, 90, 91, 96, 100], "assign": [2, 7, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 37, 41, 47, 48, 52, 69, 82, 86, 88, 90, 93, 101, 102, 103], "individu": [2, 4, 7, 10, 13, 26, 37, 41, 42, 57, 61, 64, 67, 69, 75, 77, 80, 82, 87, 90, 92, 93, 96, 97, 98, 103], "still": [2, 40, 41, 52, 66, 82, 84, 88, 93, 99], "extra": [2, 37, 41, 52, 56, 57, 58, 69, 88, 91, 93, 96, 99], "receiv": [2, 10, 37, 41, 42, 58, 61, 62, 69, 71, 75, 87, 98], "overwritten": [2, 69], "callabl": [2, 3, 4, 10, 26, 37, 41, 48, 51, 56, 61, 93], "x_val": 2, "y_val": 2, "map": [2, 3, 12, 40, 41, 44, 47, 51, 52, 65, 67, 69, 74, 84, 85, 86, 87, 88, 93, 94, 97, 103], "appropri": [2, 10, 16, 34, 59, 67, 86, 90, 97, 98], "earli": [2, 88], "stop": [2, 88], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 22, 36, 52, 66, 82, 86, 88, 90, 97, 101, 103], "f": [2, 7, 82, 83, 84, 85, 86, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "ignor": [2, 37, 41, 51, 56, 69, 74, 78, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "allow": [2, 36, 37, 40, 41, 45, 52, 57, 65, 66, 69, 71, 73, 83, 84, 85, 88, 93, 100, 102], "access": [2, 10, 13, 37, 41, 69, 83, 87, 88, 91, 92, 97], "hyperparamet": [2, 61, 66, 88], "purpos": [2, 86, 87, 93, 97, 101], "want": [2, 5, 10, 36, 40, 53, 57, 59, 69, 83, 85, 86, 88, 91, 92, 96, 98, 99, 100, 102, 103], "explicitli": [2, 8, 10, 41, 69, 93], "yourself": [2, 5, 40, 87], "altern": [2, 7, 10, 48, 52, 56, 57, 67, 80, 83, 84, 88, 90, 91, 92, 93, 94, 96, 97, 99, 101], "same": [2, 3, 5, 7, 9, 10, 12, 14, 16, 26, 30, 37, 40, 41, 43, 52, 56, 57, 59, 66, 67, 69, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 97, 98, 99, 100, 101, 102], "effect": [2, 10, 27, 37, 41, 57, 66, 69, 88, 90, 91, 93, 99], "offer": [2, 5, 9, 10, 83, 84, 86, 87, 91, 93, 94, 97], "after": [2, 3, 5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 57, 69, 83, 86, 88, 91, 93, 94, 96, 98, 99, 100, 101, 102], "attribut": [2, 5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 48, 66, 69, 82, 86], "label_issues_df": [2, 69, 88], "similar": [2, 10, 36, 37, 41, 52, 57, 61, 62, 64, 66, 69, 73, 77, 85, 86, 87, 88, 90, 91, 93, 94, 98, 99, 102], "document": [2, 3, 5, 14, 16, 36, 37, 40, 41, 42, 43, 48, 51, 56, 58, 59, 61, 64, 65, 66, 69, 73, 74, 75, 77, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "descript": [2, 5, 7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 42, 52, 62, 69, 86, 87], "were": [2, 3, 5, 36, 41, 58, 64, 77, 82, 84, 90, 93, 94, 96, 98, 100, 102], "present": [2, 3, 5, 10, 12, 13, 20, 36, 52, 66, 74, 79, 88, 90, 93, 99], "actual": [2, 3, 5, 36, 57, 58, 67, 87, 93, 94, 103], "num_class": [2, 36, 40, 52, 56, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99], "uniqu": [2, 31, 52, 74, 86, 93, 97, 99], "given_label": [2, 5, 25, 30, 36, 46, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 94, 101, 102, 103], "normal": [2, 3, 18, 26, 31, 43, 45, 48, 50, 51, 52, 67, 93, 94, 99], "trick": [2, 93], "distribut": [2, 3, 5, 10, 26, 28, 36, 41, 43, 47, 50, 57, 65, 66, 67, 79, 85, 86, 87, 88, 90, 91, 98, 99], "account": [2, 36, 57, 61, 66, 67, 83, 91, 93, 94, 96, 97, 99, 101], "word": [2, 3, 51, 77, 78, 93], "remov": [2, 10, 31, 36, 37, 41, 43, 69, 79, 82, 83, 87, 88, 90, 91, 92, 93, 94, 97, 99, 101], "so": [2, 3, 5, 6, 7, 10, 14, 26, 34, 36, 37, 40, 41, 43, 52, 57, 58, 64, 67, 69, 73, 77, 84, 86, 87, 88, 91, 94, 97, 99, 102], "proportion": [2, 10, 43], "just": [2, 3, 5, 10, 13, 32, 36, 38, 40, 52, 56, 67, 69, 71, 79, 80, 82, 83, 84, 87, 88, 90, 91, 93, 94, 97, 98, 99, 100, 101, 102], "procedur": 2, "get": [2, 3, 5, 8, 13, 31, 37, 38, 41, 43, 48, 50, 51, 52, 57, 59, 61, 66, 67, 69, 70, 71, 79, 82, 83, 84, 88, 91, 92, 93, 94, 99, 100, 101], "detect": [2, 5, 7, 9, 13, 14, 16, 18, 22, 28, 42, 50, 60, 62, 63, 64, 65, 66, 67, 68, 69, 72, 76, 79, 82, 83, 85, 86, 89, 92, 95, 97, 101, 102, 103], "arg": [2, 12, 22, 27, 31, 37, 38, 41, 48, 52, 67, 69], "kwarg": [2, 7, 10, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 42, 48, 56, 65, 69, 71, 73, 74, 75, 93], "test": [2, 5, 10, 26, 41, 48, 56, 69, 79, 82, 83, 85, 86, 87, 88, 90, 91, 100, 101, 103], "expect": [2, 3, 37, 41, 43, 48, 57, 66, 67, 69, 82, 83, 93, 94, 96, 97, 98, 101, 103], "class_predict": 2, "evalu": [2, 10, 37, 38, 39, 40, 41, 65, 69, 82, 83, 84, 86, 87, 88, 93, 94, 96, 100, 101, 102], "simpli": [2, 10, 36, 67, 83, 86, 87, 90, 91, 93, 94, 97, 101, 102, 103], "quantifi": [2, 4, 5, 7, 10, 13, 43, 61, 66, 69, 79, 87, 88, 90, 91, 94, 98], "save_spac": [2, 10, 68, 69], "potenti": [2, 10, 36, 43, 51, 59, 62, 65, 67, 69, 71, 73, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 102, 103], "cach": [2, 83, 91], "panda": [2, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 52, 53, 56, 57, 58, 80, 82, 83, 84, 86, 87, 90, 91, 92, 93, 94, 96, 101, 102], "unlik": [2, 10, 43, 45, 48, 56, 58, 59, 61, 77, 86, 96, 97, 99, 101], "both": [2, 5, 10, 16, 26, 36, 37, 41, 43, 52, 57, 59, 67, 71, 73, 78, 79, 86, 88, 93, 94, 96, 103], "mask": [2, 40, 43, 51, 52, 59, 62, 67, 69, 71, 73, 74, 79, 85, 92, 93, 96, 98, 102, 103], "prefer": [2, 67, 75, 97], "plan": 2, "subsequ": [2, 3, 37, 41, 83, 91, 93, 94, 98], "invok": [2, 37, 41, 94, 100], "scratch": [2, 69], "To": [2, 5, 7, 9, 10, 11, 13, 16, 26, 35, 37, 40, 41, 42, 43, 56, 57, 59, 61, 65, 66, 67, 69, 70, 71, 73, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102, 103], "share": [2, 67, 69], "mostli": [2, 52, 64, 69, 97, 101], "longer": [2, 34, 47, 48, 51, 69, 80, 83, 91, 93, 98], "info": [2, 5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 58, 69, 77, 86, 87, 92, 103], "about": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 38, 40, 45, 57, 58, 61, 65, 69, 74, 77, 84, 86, 88, 90, 91, 92, 93, 94, 96, 99], "docstr": [2, 36, 37, 41, 52, 69, 92, 94], "unless": [2, 37, 41, 69, 93], "our": [2, 3, 10, 56, 57, 67, 69, 79, 82, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "is_label_issu": [2, 30, 69, 83, 84, 85, 86, 87, 88, 90, 91, 94, 97, 101], "entir": [2, 10, 26, 40, 43, 46, 58, 59, 64, 67, 69, 71, 73, 74, 79, 85, 86, 87, 93, 98, 99, 100, 102, 103], "accur": [2, 3, 5, 9, 10, 16, 36, 40, 43, 57, 58, 59, 62, 65, 67, 69, 70, 71, 73, 74, 80, 87, 88, 90, 91, 93, 96, 101], "label_qu": [2, 57, 69, 83, 94, 96, 101], "measur": [2, 5, 36, 57, 58, 69, 79, 82, 92, 93, 94, 96, 97, 101, 102, 103], "qualiti": [2, 3, 5, 7, 9, 10, 13, 30, 31, 36, 40, 42, 43, 45, 48, 57, 58, 59, 61, 62, 64, 67, 69, 70, 73, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 101], "lower": [2, 4, 5, 7, 10, 13, 28, 40, 48, 50, 57, 58, 61, 64, 65, 67, 69, 70, 73, 77, 83, 84, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "eas": 2, "comparison": [2, 37, 41, 65, 94, 96], "against": [2, 37, 41, 86, 90, 93, 96, 97], "predicted_label": [2, 5, 25, 30, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 94, 101, 102], "ad": [2, 37, 41, 85, 87, 96, 101], "precis": [2, 50, 59, 62, 65, 92, 93, 94, 102, 103], "definit": [2, 7, 34, 48, 69, 82, 90], "accessor": [2, 69], "describ": [2, 10, 18, 57, 66, 67, 69, 75, 77, 94, 96, 97, 98, 100, 103], "precomput": [2, 4, 5, 46, 69, 87, 88, 90, 91, 92, 94], "clear": [2, 37, 41, 69, 83, 91, 101], "save": [2, 5, 16, 37, 40, 41, 65, 69, 93, 98, 102, 103], "space": [2, 5, 10, 66, 69, 88, 90, 92], "place": [2, 37, 41, 52, 69, 82, 96], "larg": [2, 9, 10, 40, 69, 88, 90, 91, 93, 98, 99, 102, 103], "deploi": [2, 9, 10, 69, 88, 90, 91, 93], "care": [2, 10, 37, 41, 69, 91, 93, 94], "avail": [2, 4, 5, 7, 10, 12, 14, 33, 41, 69, 85, 93, 94, 96, 98, 101], "cannot": [2, 5, 12, 14, 52, 100, 103], "anymor": 2, "classmethod": [2, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 41, 48, 69], "__init_subclass__": [2, 39, 41, 68, 69], "set_": [2, 41, 69], "_request": [2, 41, 69], "pep": [2, 41, 69], "487": [2, 41, 69], "look": [2, 5, 7, 16, 37, 41, 52, 69, 74, 82, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 102, 103], "inform": [2, 5, 7, 10, 13, 16, 33, 37, 41, 52, 57, 58, 62, 65, 69, 74, 77, 78, 79, 84, 85, 86, 90, 91, 92, 94, 96, 99, 102, 103], "__metadata_request__": [2, 41, 69], "infer": [2, 41, 52, 69, 74, 78, 82, 83, 88, 96, 97], "signatur": [2, 37, 41, 69], "accept": [2, 37, 41, 50, 67, 69, 86, 87, 93], "metadata": [2, 41, 69, 88, 90, 91, 103], "through": [2, 5, 7, 41, 69, 83, 84, 85, 87, 91, 92, 93, 96, 98, 99], "develop": [2, 9, 41, 69, 93, 94, 103], "request": [2, 41, 69, 82, 83, 87, 91, 92, 97, 103], "those": [2, 3, 4, 10, 40, 41, 43, 56, 57, 59, 65, 69, 73, 77, 78, 79, 84, 88, 93, 98, 102], "http": [2, 4, 5, 7, 9, 10, 11, 18, 35, 37, 38, 40, 41, 45, 52, 62, 65, 66, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "www": [2, 41, 69, 99], "org": [2, 4, 18, 37, 38, 41, 52, 66, 69, 93, 94, 103], "dev": [2, 41, 69], "0487": [2, 41, 69], "get_metadata_rout": [2, 39, 41, 68, 69], "rout": [2, 41, 69], "pleas": [2, 37, 41, 56, 69, 79, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 99, 101, 103], "guid": [2, 7, 10, 41, 69, 80, 88, 89], "mechan": [2, 37, 41, 69], "metadatarequest": [2, 41, 69], "encapsul": [2, 16, 41, 64, 69], "get_param": [2, 39, 41, 55, 56, 68, 69], "subobject": [2, 41, 69], "param": [2, 10, 37, 41, 56, 66, 69, 93], "name": [2, 5, 6, 7, 10, 12, 13, 32, 34, 36, 37, 41, 47, 48, 52, 56, 57, 58, 65, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 101, 102, 103], "set_fit_request": [2, 39, 41, 68, 69], "str": [2, 3, 4, 5, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 46, 48, 50, 51, 52, 56, 57, 58, 62, 64, 65, 67, 69, 74, 78, 84, 85, 86, 93, 96, 97, 98, 103], "unchang": [2, 37, 41, 69, 103], "relev": [2, 16, 26, 41, 69, 88], "enable_metadata_rout": [2, 41, 69], "set_config": [2, 41, 69], "meta": [2, 41, 69], "rais": [2, 4, 5, 12, 13, 34, 37, 41, 45, 48, 50, 69, 84, 93], "alia": [2, 37, 41, 69], "metadata_rout": [2, 41, 69], "retain": [2, 41, 52, 69], "chang": [2, 32, 34, 37, 40, 41, 45, 69, 77, 82, 83, 84, 86, 91, 93, 98, 99, 103], "version": [2, 4, 5, 7, 9, 10, 11, 15, 21, 24, 29, 35, 37, 39, 41, 44, 45, 52, 55, 56, 67, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "sub": [2, 41, 64, 69], "pipelin": [2, 41, 69, 101], "otherwis": [2, 4, 7, 10, 34, 36, 37, 40, 41, 43, 49, 50, 51, 52, 59, 69, 71, 73, 74, 78, 83, 91, 93], "updat": [2, 13, 37, 40, 41, 56, 69, 80, 85, 86, 88], "set_param": [2, 39, 41, 55, 56, 68, 69], "simpl": [2, 37, 41, 43, 57, 67, 69, 82, 83, 85, 86, 87, 88, 90, 91, 96, 99, 101], "well": [2, 3, 9, 10, 37, 41, 45, 46, 57, 59, 65, 67, 69, 74, 77, 78, 80, 86, 87, 88, 90, 91, 93, 94, 96, 98, 99], "nest": [2, 37, 41, 42, 53, 69, 75, 77, 78, 103], "latter": [2, 37, 41, 69, 99], "compon": [2, 41, 69], "__": [2, 41, 69], "set_score_request": [2, 68, 69], "structur": [3, 66, 85, 90, 93], "unobserv": 3, "less": [3, 4, 5, 10, 31, 40, 48, 57, 66, 67, 71, 73, 77, 87, 88, 90, 92, 93, 94, 98, 103], "channel": [3, 84, 94], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 36, 46, 52, 58, 83, 87, 92], "inv": 3, "confident_joint": [3, 22, 36, 43, 52, 58, 59, 80, 93, 94], "un": 3, "under": [3, 10, 37, 41, 58, 65, 66, 87, 99], "joint": [3, 36, 43, 46, 52, 58, 59, 92], "num_label_issu": [3, 40, 43, 59, 74, 78, 80], "estimation_method": [3, 40], "off_diagon": 3, "multi_label": [3, 36, 43, 52, 53, 59, 97], "don": [3, 79, 87, 88, 90, 91, 94, 98, 101], "statis": 3, "compute_confident_joint": [3, 36, 43, 52, 59, 94], "off": [3, 43, 52, 64, 88, 94, 98, 99], "j": [3, 5, 36, 37, 41, 42, 43, 59, 62, 65, 66, 75, 77, 78, 85, 86, 87, 94, 102, 103], "confident_learn": [3, 43, 59, 94], "off_diagonal_calibr": 3, "calibr": [3, 4, 43, 52, 57, 96], "cj": [3, 46, 52], "axi": [3, 31, 46, 48, 50, 71, 74, 84, 85, 86, 87, 88, 93, 94, 96, 97, 99, 101, 102], "bincount": [3, 85, 86, 87, 94, 96, 97], "alwai": [3, 10, 37, 41, 52, 82, 83, 84, 94, 101], "estimate_issu": 3, "over": [3, 5, 10, 37, 40, 41, 64, 65, 71, 73, 82, 87, 88, 90, 92, 93, 94, 99, 101], "As": [3, 7, 79, 86, 87, 91, 94, 101, 103], "add": [3, 5, 7, 12, 13, 37, 41, 56, 65, 83, 84, 85, 86, 87, 88, 91, 93, 94, 97], "approach": [3, 36, 40, 43, 56, 82, 85, 90, 94, 97, 99, 101], "custom": [3, 7, 10, 11, 30, 37, 40, 41, 48, 51, 67, 83, 87, 91, 94, 101], "know": [3, 10, 86, 87, 88, 90, 91, 93, 94, 96, 101], "cut": [3, 64, 79, 94], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 32, 98, 99, 103], "underestim": 3, "few": [3, 9, 10, 65, 79, 87, 93, 96, 97, 98, 99, 103], "4": [3, 4, 5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 47, 48, 51, 61, 62, 64, 65, 67, 70, 77, 92, 93, 97, 102, 103], "detail": [3, 4, 5, 10, 14, 16, 33, 36, 37, 41, 42, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 73, 74, 75, 79, 80, 84, 93, 97, 99, 103], "num_issu": [3, 7, 40, 84, 85, 86, 87, 88, 90, 91, 94], "calibrate_confident_joint": 3, "up": [3, 7, 10, 17, 26, 27, 30, 43, 48, 56, 57, 83, 85, 92, 93, 98, 101, 103], "p_": [3, 36, 43], "pair": [3, 5, 10, 36, 43, 94], "v": [3, 10, 40, 58, 59, 61, 67, 85, 86, 87, 97, 98, 99, 100], "rest": [3, 5, 7, 9, 10, 11, 35, 58, 59, 61, 69, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94, 96, 101], "fashion": [3, 5, 71, 82], "2x2": 3, "incorrectli": [3, 36, 58, 59, 62, 90, 103], "calibrated_cj": 3, "c": [3, 10, 50, 51, 59, 67, 79, 82, 84, 86, 87, 90, 91, 93, 94, 97, 98, 99, 100, 101], "whose": [3, 4, 5, 10, 28, 37, 41, 46, 51, 57, 61, 64, 70, 73, 77, 78, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 99, 102, 103], "truli": [3, 99, 102], "estimate_joint": [3, 36, 94], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 59, 65, 94, 98, 100, 102, 103], "return_indices_of_off_diagon": 3, "frequenc": [3, 26, 57, 58, 65, 74, 98, 99], "done": [3, 10, 56, 69, 86, 93, 94, 97, 99, 100], "overfit": [3, 10, 62, 65, 82, 84, 85, 86, 87, 88, 90, 91, 100], "classifict": 3, "singl": [3, 5, 9, 10, 12, 26, 36, 37, 41, 42, 48, 49, 52, 57, 58, 64, 65, 66, 67, 77, 82, 84, 85, 86, 93, 94, 97, 98], "baselin": [3, 37, 43, 83, 99, 101], "proxi": 3, "union": [3, 5, 12, 26, 48, 52, 53, 59, 65, 69, 77, 93], "tupl": [3, 31, 37, 41, 42, 46, 47, 49, 51, 52, 57, 59, 65, 73, 75, 77, 78, 84, 103], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 40, 46, 57, 66, 71, 73, 79, 83, 85, 88, 93, 102], "practic": [3, 82, 83, 87, 88, 94, 99, 101], "complet": [3, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 101], "gist": 3, "cj_ish": 3, "guess": [3, 46, 94, 96], "8": [3, 5, 7, 8, 47, 48, 49, 51, 61, 75, 77, 82, 83, 84, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "parallel": [3, 43, 65, 75, 92], "again": [3, 56, 82, 93, 99], "simplifi": [3, 14, 93], "understand": [3, 9, 10, 36, 58, 65, 87, 94, 95, 101, 102, 103], "100": [3, 4, 37, 41, 50, 66, 67, 82, 83, 86, 87, 88, 90, 92, 93, 94, 97, 98, 99, 103], "optim": [3, 37, 38, 41, 56, 88, 96], "speed": [3, 43, 83, 92, 93, 101], "dtype": [3, 23, 25, 26, 31, 37, 41, 51, 52, 61, 77, 84, 98], "enumer": [3, 37, 41, 84, 85, 86, 87, 88, 103], "s_label": 3, "confident_bin": 3, "6": [3, 5, 41, 48, 52, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "num_confident_bin": 3, "argmax": [3, 43, 67, 71, 74, 84, 93, 94, 98, 99, 102], "elif": 3, "estimate_lat": 3, "py_method": [3, 46], "cnt": [3, 46], "1d": [3, 5, 12, 16, 32, 40, 43, 48, 49, 52, 53, 61, 70, 82, 84], "eqn": [3, 46], "margin": [3, 43, 46, 48, 67], "marginal_p": [3, 46], "shorthand": [3, 13], "proport": [3, 10, 36, 58, 94, 100], "poorli": [3, 46, 82], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 94], "variabl": [3, 7, 14, 27, 52, 69, 70, 84, 86, 90, 94, 97, 101], "exact": [3, 46, 82, 85, 86, 87, 88, 90], "within": [3, 4, 5, 10, 15, 32, 37, 38, 41, 42, 44, 59, 64, 73, 75, 77, 86, 87, 88, 93, 98, 102], "percent": 3, "often": [3, 36, 46, 58, 93, 94, 100, 102], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 52, 53, 65, 82, 83, 84, 85, 86, 88, 90, 91, 93, 97, 98, 99, 101], "wai": [3, 5, 56, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 100], "pro": 3, "con": 3, "pred_proba": [3, 100], "combin": [3, 36, 86, 88, 92, 93, 94, 100, 101], "becaus": [3, 46, 52, 64, 91, 93, 94, 96, 98], "littl": [3, 40, 92, 98, 103], "uniform": [3, 67, 92, 93, 94], "20": [3, 7, 42, 78, 84, 85, 88, 91, 92, 93, 94, 98, 101, 102, 103], "Such": [3, 88, 99], "bound": [3, 23, 25, 37, 41, 51, 61, 62, 64, 65, 98], "reason": [3, 22, 37, 41, 66], "comment": [3, 51, 103], "end": [3, 5, 37, 41, 65], "file": [3, 5, 12, 39, 40, 55, 65, 82, 84, 86, 90, 91, 92, 93, 98, 99, 102, 103], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 94], "handl": [3, 5, 7, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 80, 82, 83, 85, 86, 87, 88, 90, 91, 94, 102, 103], "five": [3, 62, 65, 94, 98], "estimate_cv_predicted_prob": [3, 94], "estimate_noise_matric": 3, "get_confident_threshold": [3, 39, 40], "amongst": [3, 10, 98], "confident_threshold": [3, 10, 22, 23, 40, 66], "point": [4, 5, 7, 9, 10, 18, 26, 37, 41, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96], "valuat": [4, 9, 18], "help": [4, 36, 37, 41, 65, 79, 80, 82, 83, 84, 86, 88, 90, 91, 92, 93, 96, 97, 101, 102, 103], "u": [4, 82, 83, 84, 86, 88, 90, 93, 94, 96, 97, 100, 101, 102, 103], "assess": [4, 98], "contribut": [4, 10, 18, 98], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 16, 18, 19, 26, 28, 31, 90], "metric": [4, 5, 10, 18, 19, 26, 31, 50, 52, 56, 65, 66, 82, 83, 84, 88, 90, 91, 94, 101], "10": [4, 10, 18, 19, 23, 26, 31, 37, 38, 65, 66, 67, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "shaplei": [4, 10, 18], "nearest": [4, 5, 10, 16, 23, 26, 28, 50, 66, 87, 91, 99], "neighbor": [4, 5, 10, 16, 18, 23, 26, 28, 50, 66, 86, 87, 88, 90, 91, 93, 94, 99], "knn": [4, 10, 13, 18, 26, 31, 50, 66, 90, 99], "graph": [4, 5, 10, 13, 16, 18, 26, 31], "calcul": [4, 10, 18, 26, 40, 48, 50, 57, 61, 62, 64, 65, 66, 69, 73, 88, 92], "directli": [4, 5, 14, 16, 33, 34, 40, 56, 57, 83, 87, 91, 93, 97, 98, 101], "lowest": [4, 10, 57, 65, 87, 88, 93, 96, 97, 98, 102], "fall": [4, 10, 64, 73, 77, 94, 99], "flag": [4, 10, 22, 26, 43, 48, 58, 59, 62, 69, 79, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 98, 99, 101, 102], "approxim": [4, 10, 18, 40, 66, 96], "top": [4, 5, 10, 36, 40, 42, 43, 52, 59, 62, 65, 67, 74, 78, 79, 83, 84, 86, 87, 90, 91, 92, 93, 94, 98, 99, 101, 103], "found": [4, 5, 7, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 97, 99, 101, 103], "arxiv": [4, 18, 94], "ab": [4, 18, 94, 98], "1908": 4, "08619": 4, "1911": [4, 18], "07128": [4, 18], "embed": [4, 5, 10, 16, 66, 79, 83, 84, 86, 87, 90, 91, 94, 97, 101], "represent": [4, 5, 10, 16, 34, 37, 41, 49, 59, 79, 83, 84, 86, 87, 88, 91, 93, 94, 99], "suppli": [4, 97, 98, 101], "2d": [4, 5, 16, 32, 40, 48, 49, 51, 52, 57, 82, 84, 97], "num_exampl": [4, 5, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 58, 84, 85, 86, 87, 88, 90, 91, 94], "num_featur": [4, 5, 16, 37, 41, 56], "distanc": [4, 5, 10, 16, 18, 26, 28, 31, 50, 64, 66, 90, 99], "construct": [4, 5, 7, 10, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 56], "nearestneighbor": [4, 5, 10, 18, 66, 90, 99], "cosin": [4, 10, 50, 66, 99], "dim": [4, 66, 88, 102], "euclidean": [4, 5, 10, 50, 64, 66, 90], "dimension": [4, 26, 52, 84, 94, 99], "scikit": [4, 41, 52, 66, 79, 82, 83, 84, 85, 86, 87, 90, 91, 93, 101], "fewer": [4, 10, 43, 52, 66, 98], "stabl": [4, 15, 21, 24, 29, 39, 44, 52, 55, 66, 80], "exce": [4, 85, 88], "transform": [4, 10, 32, 48, 50, 52, 66, 67, 82, 83, 87, 88, 91, 99, 103], "rel": [4, 10, 36, 57, 58, 66, 86, 87, 88, 90, 91, 94, 99], "adjust": [4, 38, 43, 61, 66, 67, 79, 94], "closer": [4, 10, 64, 98], "highli": [4, 87, 88], "influenti": 4, "posit": [4, 5, 37, 41, 50, 52, 65, 92, 99], "convers": 4, "neg": [4, 10, 64, 65, 86, 87, 92], "valueerror": [4, 5, 12, 13, 34, 45, 48, 50, 93], "neither": [4, 5, 10, 14, 98], "nor": [4, 5, 10, 14], "larger": [4, 18, 69, 71, 73, 85, 88, 91, 92, 93], "55": [4, 51, 92, 98, 101], "525": 4, "unifi": 5, "audit": [5, 9, 12, 13, 16, 84, 88, 89, 90, 91, 93, 94, 97, 98, 101], "kind": [5, 6, 7, 10, 84, 85, 86, 88, 90, 91, 92, 94], "addit": [5, 7, 9, 11, 13, 33, 35, 37, 41, 48, 53, 57, 65, 74, 75, 82, 83, 84, 86, 90, 91, 94, 96, 99, 100], "depend": [5, 7, 9, 11, 12, 13, 35, 39, 43, 45, 52, 55, 59, 66, 69, 70, 79], "instal": [5, 7, 9, 11, 35, 37, 39, 40, 41, 43, 55, 56, 71, 73], "pip": [5, 7, 9, 11, 35, 56, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "development": [5, 7, 9, 11, 35], "git": [5, 7, 9, 11, 35, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "github": [5, 7, 9, 11, 35, 37, 38, 52, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "com": [5, 7, 9, 11, 35, 37, 38, 40, 45, 52, 66, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "egg": [5, 7, 9, 11, 35, 79, 92], "label_nam": [5, 7, 8, 10, 12, 18, 31, 79, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 101], "image_kei": [5, 10, 88], "interfac": [5, 9, 10, 79, 93, 94], "librari": [5, 10, 41, 62, 65, 66, 79, 83, 86, 91, 92, 93], "goal": [5, 101], "track": [5, 7, 13, 14, 79, 85, 86, 92, 93, 94], "intermedi": [5, 9, 87], "statist": [5, 10, 13, 22, 26, 36, 57, 58, 65, 87, 90, 91, 94], "convert": [5, 10, 12, 34, 37, 41, 49, 50, 53, 57, 64, 73, 77, 80, 83, 84, 88, 91, 92, 93, 96, 97, 98], "hug": [5, 10, 12, 88], "face": [5, 10, 12, 16, 88, 92, 97], "kei": [5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 48, 57, 58, 64, 66, 85, 86, 87, 88, 91, 93, 94, 96, 98], "string": [5, 10, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 41, 52, 57, 58, 70, 74, 77, 78, 83, 90, 91, 93, 96, 97, 103], "dictionari": [5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 47, 52, 57, 58, 61, 62, 64, 65, 86, 87, 90, 91, 94, 96, 97, 98], "path": [5, 12, 37, 40, 41, 65, 84, 86, 93, 98], "local": [5, 7, 10, 12, 37, 38, 41, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "text": [5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 42, 48, 66, 75, 77, 78, 79, 81, 86, 87, 89, 92, 93, 94, 95, 96, 99], "txt": [5, 12, 103], "csv": [5, 12, 82, 83, 90, 91, 101], "json": [5, 12], "hub": [5, 12], "multiclass": [5, 12, 15, 48, 52, 57, 97], "regress": [5, 7, 10, 12, 14, 16, 21, 30, 32, 34, 83, 85, 86, 87, 91, 95, 96, 99], "multilabel": [5, 12, 14, 15, 21, 25, 32, 34, 49, 97], "imag": [5, 9, 36, 41, 62, 64, 65, 66, 71, 73, 74, 79, 86, 87, 89, 92, 93, 95, 96, 97, 98, 100, 102], "field": [5, 10, 37, 41], "themselv": [5, 82, 83, 101], "pil": [5, 88], "cleanvis": [5, 10], "level": [5, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 51, 75, 77, 87, 88, 93, 95, 97, 102], "load_dataset": [5, 12, 88], "glue": 5, "sst2": 5, "properti": [5, 12, 13, 34, 37, 41, 85], "has_label": [5, 12], "class_nam": [5, 12, 20, 36, 42, 58, 65, 74, 78, 79, 92, 94, 98, 102, 103], "empti": [5, 12, 46, 57, 87, 93, 97], "find_issu": [5, 6, 7, 8, 10, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 79, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 101], "issue_typ": [5, 6, 7, 8, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 101], "sort": [5, 16, 40, 43, 48, 57, 59, 62, 64, 65, 67, 73, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103], "common": [5, 13, 16, 87, 89, 92, 93, 94, 97, 98, 102], "real": [5, 16, 79, 86, 87, 93, 94, 96, 101, 102], "world": [5, 16, 79, 86, 87, 93, 94, 96, 101, 102], "interact": [5, 16, 91, 93], "thereof": [5, 16], "insight": [5, 16, 65, 96], "best": [5, 9, 10, 16, 47, 57, 67, 82, 83, 86, 87, 88, 90, 91, 93, 96, 97, 99, 101, 103], "properli": [5, 10, 40, 47, 52, 53, 71, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 99, 101, 102], "respect": [5, 37, 41, 62, 65, 84, 85, 86, 87, 88, 90, 91, 94, 97, 98], "lexicograph": [5, 47, 52, 84, 85, 86, 87, 88, 90, 91, 94, 97], "squar": [5, 52, 69, 92, 101], "csr": 5, "evenli": 5, "omit": [5, 64, 65, 88, 98], "itself": [5, 32, 37, 41, 98], "three": [5, 10, 36, 57, 58, 69, 74, 82, 84, 85, 86, 87, 90, 92, 94, 96, 100, 101, 102, 103], "indptr": 5, "wise": 5, "start": [5, 7, 10, 34, 37, 38, 41, 48, 79, 90, 97, 103], "th": [5, 42, 47, 51, 52, 57, 59, 62, 64, 65, 66, 75, 77, 78, 91, 97, 98, 103], "ascend": [5, 36, 58, 88, 94], "segment": [5, 71, 73, 74, 95], "reflect": [5, 82, 83, 90, 91, 96, 98, 99, 101], "maintain": [5, 56], "kneighbors_graph": [5, 18, 90], "illustr": 5, "todens": 5, "second": [5, 48, 52, 65, 67, 86, 93, 94, 103], "duplic": [5, 9, 21, 22, 37, 41, 79, 85, 86, 94, 101], "explicit": 5, "precend": 5, "collect": [5, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 57, 93, 96, 103], "unspecifi": [5, 16, 43, 59], "interest": [5, 16, 22, 74, 78, 82, 83, 91, 94, 101, 102, 103], "constructor": [5, 10, 16, 23, 30], "issuemanag": [5, 9, 13, 14, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 33], "respons": [5, 16, 22, 69, 70, 92, 101, 103], "random_st": [5, 82, 84, 85, 86, 87, 88, 94, 97, 99], "lab": [5, 6, 8, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 40, 79, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 101], "comprehens": [5, 79, 88, 97, 101], "nbr": 5, "n_neighbor": [5, 10, 18, 66], "mode": [5, 11, 18, 37, 40, 41, 99], "4x4": 5, "float64": [5, 26, 37, 41, 77], "compress": [5, 10, 52, 71, 73], "toarrai": 5, "NOT": [5, 40, 91], "23606798": 5, "41421356": 5, "configur": [5, 16, 48, 87], "suppos": [5, 10, 62, 82, 83, 99, 101], "who": [5, 64, 82, 90, 94, 103], "manag": [5, 8, 9, 10, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 56, 86, 93], "clean_learning_kwarg": [5, 10, 23, 30, 93, 101], "labelissuemanag": [5, 10, 14, 21, 23], "prune_method": [5, 80], "prune_by_noise_r": [5, 43, 59, 94], "report": [5, 7, 11, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 58, 78, 79, 84, 85, 86, 87, 90, 91, 93, 94, 97, 101, 103], "include_descript": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33], "show_summary_scor": [5, 33], "show_all_issu": [5, 33], "summari": [5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 42, 55, 56, 58, 63, 72, 73, 75, 76, 77, 80, 84, 85, 86, 87, 88, 90, 91, 92, 94, 98, 101, 102, 103], "show": [5, 7, 26, 37, 41, 47, 52, 65, 74, 78, 82, 85, 87, 88, 90, 91, 92, 93, 94, 96, 99, 101, 102, 103], "suffer": [5, 10, 13, 22, 59, 67, 78, 103], "onc": [5, 22, 36, 37, 41, 82, 85, 86, 93, 94, 97, 98], "familiar": 5, "overal": [5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 42, 48, 57, 58, 61, 64, 65, 69, 73, 74, 75, 77, 79, 80, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 98, 103], "sever": [5, 7, 10, 12, 13, 22, 37, 40, 41, 43, 61, 64, 66, 67, 73, 77, 79, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 98, 99, 103], "compar": [5, 57, 66, 77, 86, 87, 90, 94, 98], "issue_summari": [5, 7, 10, 13, 85, 86], "With": [5, 9, 10, 40, 83, 91, 93, 94, 96, 101, 102, 103], "usag": [5, 40, 56], "usual": [5, 12, 32, 33, 88, 96, 101], "ti": [5, 57], "exhibit": [5, 7, 10, 13, 74, 87, 88, 90, 91, 94, 98], "ie": [5, 69], "likelihood": [5, 10, 40, 42, 43, 59, 64, 66, 67, 71, 75], "wherea": [5, 52, 59, 82, 83, 100], "outlier": [5, 9, 14, 21, 22, 31, 44, 67, 79, 86, 87, 94, 95, 101], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 94, 101], "global": [5, 7, 22, 37, 41, 92], "non_iid": [5, 10, 14, 26, 87, 88, 90, 91, 94], "hypothesi": 5, "iid": [5, 7, 9, 26, 90, 94], "never": [5, 84, 94, 97, 99, 100], "someth": [5, 7, 10, 37, 41, 67, 98], "123": [5, 85, 86, 87], "456": [5, 82, 83, 84], "nearest_neighbor": 5, "7": [5, 48, 49, 56, 75, 77, 82, 83, 84, 86, 87, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "9": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 42, 48, 49, 61, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "distance_to_nearest_neighbor": [5, 86, 87, 88, 90, 91, 94], "789": 5, "get_issu": [5, 10, 13, 84, 85, 87, 88, 90, 91, 93, 97, 101], "issue_nam": [5, 6, 7, 10, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86, 87], "focu": [5, 10, 13, 91, 102, 103], "full": [5, 10, 13, 40, 56, 65, 85, 88, 103], "summar": [5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 58, 74, 78, 79, 102], "specific_issu": [5, 13], "lie": [5, 10, 66, 67, 83, 84, 86, 87, 88, 90, 91, 94], "get_issue_summari": [5, 13, 85, 87], "get_info": [5, 13, 87, 91, 92], "yet": [5, 17, 27, 56, 92, 96], "list_possible_issue_typ": [5, 14, 15], "regist": [5, 7, 14, 15, 17, 27, 37, 41, 86], "rtype": [5, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41], "registri": [5, 14, 15], "list_default_issue_typ": [5, 14, 15], "folder": [5, 84, 86, 88], "load": [5, 12, 40, 65, 88, 92, 93, 94, 98, 99, 102, 103], "futur": [5, 10, 22, 37, 41, 57, 79, 83, 84, 86, 91, 93], "overwrit": [5, 86], "separ": [5, 36, 48, 61, 86, 87, 88, 93, 98, 100], "static": 5, "rememb": [5, 91, 93, 94], "part": [5, 10, 37, 41, 43, 62, 64, 65, 84, 86, 92, 102, 103], "ident": [5, 10, 22, 52, 85, 91], "datalab": [6, 8, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 79, 82, 83, 92, 93, 96, 101], "walk": 7, "alongsid": [7, 37, 41, 86, 93], "pre": [7, 8, 10, 37, 41, 86, 87, 101], "runtim": [7, 37, 40, 41, 69, 71, 73, 84, 88, 93], "issue_manager_factori": [7, 14, 86], "myissuemanag": [7, 14], "myissuemanagerforregress": 7, "decor": [7, 14], "ll": [7, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "thing": [7, 41, 83, 94, 101], "next": [7, 57, 79, 82, 83, 84, 85, 90, 91, 93, 96, 98, 101, 103], "dummi": 7, "randint": [7, 31, 48, 85, 86, 87, 93], "mark": [7, 10, 80, 98, 99, 101], "regard": [7, 87, 94], "rand": [7, 48, 85, 86, 87], "is_": [7, 10, 86], "_issu": [7, 10, 86], "issue_score_kei": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86], "whole": [7, 26, 37, 41, 87], "make_summari": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86], "popul": [7, 87, 91], "verbosity_level": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "std": [7, 98], "raw_scor": 7, "bit": 7, "involv": [7, 40, 74, 78, 85, 93, 97], "intermediate_arg": 7, "min": [7, 48, 64, 77, 86, 93, 99], "sin_filt": 7, "sin": 7, "arang": 7, "kernel": 7, "affect": [7, 10, 37, 41, 71, 77, 91, 93], "easili": [7, 46, 80, 82, 83, 84, 85, 87, 90, 91, 94, 96, 97, 99, 100, 101, 102], "hard": [7, 41, 92, 99], "sai": [7, 10, 37, 41, 97, 102], "anoth": [7, 22, 36, 40, 51, 64, 67, 83, 90, 91, 93, 94, 96, 99], "try": [7, 9, 10, 40, 43, 56, 57, 71, 73, 79, 85, 87, 88, 90, 91, 93, 94, 102], "won": [7, 37, 41, 86, 87, 93, 97], "issue_manag": [7, 10, 11, 13, 15, 18, 19, 20, 23, 25, 26, 27, 28, 30, 31, 86], "instanti": [7, 16, 40, 56, 66, 83, 84, 87, 90], "477762": 7, "286455": 7, "term": [7, 10, 46, 52, 65, 84, 85, 86, 87, 88, 90, 91, 94], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 19, 28, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 98, 99, 101, 102, 103], "003042": 7, "058117": 7, "11": [7, 56, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "121908": 7, "15": [7, 50, 56, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "169312": 7, "17": [7, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 86, 87, 92, 94], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 31], "group": [8, 9, 26, 31, 92, 98, 103], "dbscan": [8, 10, 31, 93], "hdbscan": [8, 93], "etc": [8, 10, 22, 32, 37, 41, 46, 56, 57, 75, 79, 86, 87, 90, 91, 93, 94, 97, 101], "sensit": [8, 10, 50], "ep": [8, 31, 65], "radiu": 8, "min_sampl": [8, 31], "kmean": [8, 93], "your_data": 8, "get_pred_prob": [8, 85], "n_cluster": [8, 31, 93], "cluster_id": [8, 10, 31, 93], "labels_": 8, "underperforming_group": [8, 10, 14, 21, 87, 88, 90, 91, 93, 94], "search": [9, 10, 20, 26, 27, 51, 69, 93, 100], "nondefault": 9, "Near": [9, 93], "imbal": [9, 21, 61, 66, 67, 87], "null": [9, 14, 21, 87, 88, 91, 94], "togeth": [9, 10, 46, 83, 86, 87, 88, 90, 91, 94, 101, 103], "built": [9, 48], "own": [9, 37, 39, 41, 55, 61, 62, 65, 71, 75, 82, 83, 84, 87, 88, 90, 91, 93, 96, 97, 101, 102, 103], "prerequisit": 9, "basic": [9, 41, 56, 90, 91, 99], "fulli": [9, 10, 37, 41, 56, 93], "platform": [9, 10, 79, 88, 90, 91, 93], "write": [9, 10], "code": [9, 10, 37, 41, 46, 52, 56, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "being": [9, 10, 13, 36, 37, 41, 43, 48, 51, 52, 67, 82, 90, 93, 94, 101, 102], "100x": [9, 10], "faster": [9, 10, 40, 66, 69, 71, 73, 93, 94], "intellig": [9, 10], "quickli": [9, 10, 38, 82, 84, 88, 90, 91, 93, 97, 99, 102, 103], "fix": [9, 10, 57, 83, 85, 91, 94, 101], "scientist": [9, 10], "million": [9, 10, 103], "thank": [9, 10], "ai": [9, 10, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 96, 97, 99, 101, 103], "suggest": [9, 10, 36, 57, 58, 64, 83, 88, 91, 93, 101], "power": [9, 10, 88, 90, 91, 92, 94, 103], "automl": [9, 10, 79, 93], "system": [9, 10, 84, 85, 88, 90, 91, 102], "foundat": [9, 10, 79], "improv": [9, 10, 57, 82, 83, 87, 88, 92, 93, 94, 101, 102], "click": [9, 10, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "tune": [9, 10, 83, 84, 91, 92, 99], "serv": [9, 10, 13, 16, 96], "auto": [9, 10, 82, 83, 85, 87, 92, 93, 101], "free": [9, 10, 79, 84, 87, 88, 90, 91, 93, 94], "page": [10, 87, 93, 94], "variou": [10, 13, 30, 39, 53, 55, 79, 82, 86, 87, 90, 91, 92, 93, 94, 96, 98], "why": [10, 85, 91], "matter": [10, 36, 58, 83, 91], "didn": 10, "plu": [10, 101], "_score": 10, "badli": [10, 64, 82, 83, 103], "issue_scor": 10, "outlier_scor": [10, 28, 85, 86, 87, 88, 90, 91, 94, 99], "atyp": [10, 66, 86, 87, 88, 90, 91, 94, 99], "datapoint": [10, 31, 43, 48, 52, 67, 70, 79, 82, 83, 84, 86, 87, 90, 91, 93, 100, 101], "is_issu": [10, 22], "is_outlier_issu": [10, 85, 86, 87, 88, 90, 91, 94], "annot": [10, 36, 47, 57, 58, 59, 61, 62, 64, 65, 74, 77, 78, 79, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 98, 102], "dissimilar": [10, 90, 91], "preced": 10, "incorrect": [10, 64, 67, 70, 82, 84, 85, 86, 87, 88, 90, 91, 94, 98, 101], "due": [10, 40, 43, 67, 71, 73, 84, 85, 86, 87, 88, 90, 91, 94, 101], "appear": [10, 36, 47, 58, 59, 62, 70, 87, 88, 90, 91, 101, 102], "now": [10, 40, 80, 82, 83, 84, 85, 87, 96, 98, 99, 101, 103], "token": [10, 42, 51, 73, 74, 75, 76, 77, 78, 93, 94, 95], "hamper": [10, 88, 92], "analyt": [10, 79, 93, 96], "lead": [10, 64, 67, 88, 98], "draw": [10, 85, 86, 87], "conclus": [10, 91], "veri": [10, 36, 58, 62, 64, 83, 85, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101], "rare": [10, 43, 65, 85, 86, 87, 88, 90, 91, 93, 94], "anomal": [10, 67, 85, 86, 87, 88, 90, 91, 94], "articl": [10, 40, 93], "blog": 10, "unexpect": [10, 37, 41, 91], "consequ": 10, "inspect": [10, 83, 84, 85, 87, 88, 94, 98, 101], "extrem": [10, 86, 87, 88, 90, 91, 93, 94], "record": [10, 37, 41, 84, 90, 101], "abbrevi": 10, "misspel": 10, "typo": [10, 78], "resolut": 10, "video": [10, 92], "audio": [10, 86, 87, 89, 93], "minor": [10, 51], "variat": 10, "translat": 10, "d": [10, 50, 82, 90, 91, 93, 94, 97, 101, 103], "constant": [10, 31, 69], "median": [10, 30, 50], "question": [10, 22, 79, 94], "nearli": [10, 22, 87, 88, 90, 91], "awar": [10, 80, 94], "presenc": [10, 94], "near_dupl": [10, 14, 19, 85, 86, 87, 88, 90, 91, 93, 94], "signific": [10, 90, 91, 94], "violat": [10, 90, 91, 94], "assumpt": [10, 90, 91, 94], "changepoint": [10, 90, 91, 94], "shift": [10, 90, 91, 94], "drift": [10, 87, 90, 94], "autocorrel": [10, 90, 91, 94], "almost": [10, 90, 91, 94], "adjac": [10, 90, 91, 94], "tend": [10, 36, 46, 90, 91, 94, 102, 103], "sequenti": [10, 37, 41, 56, 88], "realli": [10, 83, 91, 96, 102], "mere": 10, "highlight": [10, 74, 78, 85, 86, 87, 90, 102], "necessarili": [10, 57, 65, 91, 94], "wrong": [10, 57, 62, 64, 80, 83, 85, 86, 87, 91, 93, 94, 98], "gap": 10, "b": [10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 51, 52, 77, 82, 90, 91, 92, 93, 94, 100, 103], "x1": [10, 62, 65, 98], "x2": [10, 62, 65, 98], "10th": 10, "100th": 10, "90": [10, 77, 82, 90, 94, 100, 101], "similarli": [10, 37, 41, 86, 88, 90, 93, 98], "math": [10, 88], "behind": [10, 66, 94], "proper": [10, 52, 57, 62, 65, 82, 88, 91, 93, 96, 98], "scenario": [10, 67, 85, 86, 87], "underli": [10, 42, 66, 75, 77, 103], "stem": [10, 66, 99], "evolv": 10, "influenc": 10, "act": [10, 64, 86], "accordingli": [10, 32], "emploi": [10, 97, 99], "partit": [10, 100], "ahead": 10, "good": [10, 37, 41, 50, 56, 58, 64, 67, 71, 73, 74, 79, 85, 88, 90, 91], "problem": [10, 32, 40, 48, 74, 79, 86, 87, 88, 91, 93], "deploy": [10, 82, 83, 94, 101], "overlook": [10, 64, 98], "fact": 10, "thu": [10, 36, 41, 58, 82, 84, 90, 91, 94, 100, 103], "diagnos": [10, 87, 93], "rarest": [10, 87], "q": [10, 98], "subpar": 10, "special": [10, 51], "techniqu": [10, 98], "smote": 10, "asymmetr": [10, 36], "class_imbal": [10, 14, 20, 87, 88, 90, 91, 94], "excess": [10, 88], "dark": [10, 102], "bright": [10, 103], "blurri": [10, 88], "lack": [10, 56], "unusu": [10, 98, 99], "cluster": [10, 18, 31], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 79, 87, 88, 90, 91, 95], "get_self_confidence_for_each_label": [10, 48, 67], "r": [10, 40, 69, 85, 86, 87, 101, 102], "tabular": [10, 79, 81, 86, 87, 89, 93, 96], "categor": [10, 66, 81, 82, 86, 87, 89, 93, 101], "encod": [10, 49, 65, 71, 74, 82, 83, 90, 91, 93, 101, 102], "miss": [10, 27, 37, 41, 52, 62, 64, 85, 90, 93, 98, 101], "pattern": 10, "isn": [10, 17, 27], "scalabl": 10, "sacrific": 10, "One": [10, 52, 66, 93], "quantif": 10, "data_valu": [10, 14, 21], "exert": [10, 87], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 21, 23, 30], "health_summari": [10, 23, 36, 79, 92], "health_summary_kwarg": 10, "tandem": [10, 92], "view": [10, 37, 41, 42, 43, 73, 75, 77, 79, 82, 83, 84, 85, 86, 87, 90, 91, 92, 94, 96, 97, 98, 99, 100, 101, 103], "ood_kwarg": 10, "outofdistribut": [10, 28, 66, 99], "outsid": [10, 93, 97], "outlierissuemanag": [10, 14, 21, 28, 86], "nearduplicateissuemanag": [10, 14, 19, 21], "noniidissuemanag": [10, 14, 21, 26], "num_permut": [10, 26], "permut": [10, 26], "significance_threshold": [10, 26], "signic": 10, "noniid": [10, 21], "classimbalanceissuemanag": [10, 14, 20, 21], "underperforminggroupissuemanag": [10, 14, 21, 31], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 31], "filter_cluster_id": [10, 21, 31], "clustering_kwarg": [10, 31], "nullissuemanag": [10, 14, 21, 27], "datavaluationissuemanag": [10, 14, 18, 21], "codeblock": 10, "demonstr": [10, 40, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 101, 102], "howev": [10, 37, 41, 52, 82, 83, 84, 88, 90, 91, 96, 100, 102], "mandatori": 10, "image_issue_types_kwarg": 10, "32": [10, 84, 86, 92, 96, 98], "vice": [10, 58], "versa": [10, 58], "light": [10, 88, 92, 98, 102], "29": [10, 85, 88, 92, 96, 97, 98, 102, 103], "low_inform": [10, 88], "odd_aspect_ratio": [10, 88], "35": [10, 85, 86, 92, 96, 97, 98], "odd_siz": [10, 88], "doc": [10, 37, 41, 66, 79, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "studio": [11, 79, 87, 88, 90, 91, 93], "data_issu": [11, 15, 16, 33, 86], "issue_find": [11, 15], "factori": [11, 15, 16], "model_output": [11, 15], "except": [12, 37, 41, 56, 67, 85, 86, 87, 88, 96], "dataformaterror": [12, 15], "add_not": 12, "with_traceback": 12, "tb": 12, "__traceback__": 12, "datasetdicterror": [12, 15], "datasetdict": 12, "datasetloaderror": [12, 15], "dataset_typ": 12, "fail": 12, "hold": 12, "associ": [12, 16, 32, 34, 37, 41, 65, 96], "sublist": 12, "map_to_int": 12, "abc": [12, 22, 32], "is_avail": [12, 88], "dataissu": [13, 15, 16, 33], "central": [13, 103], "repositori": 13, "strategi": [13, 48, 93], "_infostrategi": 13, "basi": 13, "collect_statist": 13, "reus": [13, 22], "avoid": [13, 37, 40, 41, 43, 52, 59, 62, 65, 69, 71, 73, 85, 86, 87, 93], "recomput": [13, 83], "weighted_knn_graph": 13, "issue_manager_that_computes_knn_graph": 13, "collect_issues_from_issue_manag": 13, "collect_issues_from_imagelab": 13, "imagelab": 13, "set_health_scor": 13, "health": [13, 23, 36, 58, 79], "get_data_statist": [13, 15], "concret": 14, "subclass": [14, 37, 41, 66, 86], "regressionlabelissuemanag": [14, 21, 29, 30], "multilabelissuemanag": [14, 21, 24, 25], "from_str": [14, 34, 44, 48], "my_issu": 14, "logic": [14, 34, 40, 43, 71, 73], "issuefind": [15, 16, 33], "modeloutput": [15, 32], "multiclasspredprob": [15, 32], "regressionpredict": [15, 32], "multilabelpredprob": [15, 32], "instati": 16, "public": [16, 94, 98, 102, 103], "creation": [16, 41], "execut": [16, 37, 41, 86, 93, 98], "coordin": [16, 62, 64, 65, 98, 103], "behavior": [16, 36, 37, 41, 65, 85, 93], "At": [16, 65, 93], "get_available_issue_typ": 16, "direct": [17, 27, 37, 41, 56], "valuabl": 18, "vstack": [18, 52, 88, 92, 93, 94, 96, 97], "25": [18, 26, 37, 48, 50, 85, 87, 88, 92, 94, 96, 97, 98, 103], "classvar": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "short": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 51, 52], "data_valuation_scor": 18, "item": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 85, 86, 87, 88, 93, 94, 96, 97], "some_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "additional_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "default_threshold": [18, 21, 28], "collect_info": [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "info_to_omit": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "compos": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 37, 41, 83, 91, 99], "is_x_issu": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "x_score": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_a": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b1": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b2": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "report_str": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33], "_": [19, 20, 22, 23, 25, 26, 27, 30, 31, 48, 51, 52, 82, 84, 86, 88, 92, 94, 97], "near_duplicate_set": [19, 21, 86, 87, 88, 90, 91, 93, 94], "occurr": [19, 20, 22, 26, 27, 28, 31, 51], "median_nn_dist": 19, "near_duplicate_scor": [19, 86, 87, 88, 90, 91, 93, 94], "class_imbalance_scor": [20, 87], "bleed": [21, 24, 29, 39], "edg": [21, 24, 29, 39, 64, 79, 94, 103], "sharp": [21, 24, 29, 39], "get_health_summari": [21, 23], "ood": [21, 28, 66, 67, 85, 86, 87, 88, 91, 94, 99], "simplified_kolmogorov_smirnov_test": [21, 26], "outlier_cluster_label": [21, 31], "no_underperforming_cluster_id": [21, 31], "set_knn_graph": [21, 31], "perform_clust": [21, 31], "get_worst_clust": [21, 31], "find_issues_with_predict": [21, 29, 30], "find_issues_with_featur": [21, 29, 30], "believ": [22, 102], "priori": [22, 94], "abstract": [22, 32], "applic": [23, 57, 93, 94, 96, 103], "typevar": [23, 25, 37, 41, 51, 61, 64, 65], "scalartyp": [23, 25], "covari": [23, 25, 69, 101], "summary_dict": 23, "label_scor": [23, 25, 30, 84, 85, 86, 87, 88, 90, 91, 94, 97, 101], "neighbor_histogram": 26, "non_neighbor_histogram": 26, "kolmogorov": 26, "smirnov": 26, "largest": [26, 40, 48, 67, 71, 73, 98, 102], "empir": [26, 47, 57], "cumul": 26, "ecdf": 26, "histogram": [26, 90, 101], "absolut": [26, 30], "trial": 26, "non_iid_scor": [26, 87, 90, 91, 94], "null_track": 27, "extend": [27, 49, 56, 88, 98, 99, 103], "superclass": 27, "arbitrari": [27, 36, 73, 77, 86, 99, 101], "prompt": 27, "address": [27, 83, 86, 87, 91, 93], "enabl": [27, 41], "null_scor": [27, 87], "37037": 28, "q3_avg_dist": 28, "iqr_avg_dist": 28, "median_outlier_scor": 28, "issue_threshold": 28, "multipli": [30, 50], "deleg": 30, "confus": [31, 32, 36, 37, 41, 43, 52, 65, 83, 103], "50": [31, 41, 85, 93, 94, 96, 98, 99, 101], "keepdim": [31, 93], "signifi": 31, "absenc": 31, "find_issues_kwarg": 31, "int64": [31, 84, 96], "npt": 31, "int_": 31, "id": [31, 57, 86, 88, 93, 96], "unique_cluster_id": 31, "_description_": 31, "performed_clust": 31, "worst_cluster_id": 31, "underperforming_group_scor": [31, 87], "convent": [32, 34], "subject": [32, 34], "meant": [32, 34], "Not": 32, "mainli": [32, 99, 103], "content": [32, 66, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "fetch": [32, 40, 84, 87, 93], "datset": 33, "exclud": [33, 42, 74, 78, 86, 93, 103], "get_report": 33, "enum": [34, 48], "qualnam": [34, 48], "boundari": [34, 48, 85, 86, 87], "continu": [34, 56, 82, 83, 88, 91, 93, 96, 98, 101, 103], "binari": [34, 48, 52, 59, 61, 94, 103], "simultan": [34, 101], "task_str": 34, "is_classif": 34, "__contains__": [34, 44, 48], "member": [34, 37, 41, 48, 86, 87], "typeerror": [34, 48], "12": [34, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "__getitem__": [34, 44, 48], "match": [34, 36, 37, 41, 43, 48, 57, 58, 67, 85, 86, 87, 88, 92, 98, 100, 102], "__iter__": [34, 44, 48], "__len__": [34, 44, 48], "alias": [34, 48], "is_regress": 34, "is_multilabel": 34, "overview": [36, 82, 83, 84, 87, 88, 90, 91, 96, 98, 99, 101, 103], "modifi": [36, 37, 40, 41, 52, 93, 94], "rank_classes_by_label_qu": [36, 87], "merg": [36, 51, 79, 92, 93, 103], "find_overlapping_class": [36, 93, 94], "problemat": [36, 58, 74, 78, 84, 98, 103], "unnorm": [36, 58, 94], "abov": [36, 37, 40, 41, 52, 57, 64, 65, 67, 73, 77, 82, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 100, 101, 102, 103], "model_select": [36, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101], "cross_val_predict": [36, 41, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 100, 101], "get_data_labels_from_dataset": 36, "yourfavoritemodel": [36, 94], "cv": [36, 48, 82, 84, 85, 86, 87, 90, 94, 96], "df": [36, 52, 78, 84, 93], "overall_label_qu": [36, 58], "col": 36, "prob": [36, 51, 94, 100], "divid": [36, 58, 67], "label_nois": [36, 58], "human": [36, 92, 102, 103], "clearli": [36, 67, 88, 98, 102], "num": [36, 58, 92, 94], "overlap": [36, 79, 92, 93, 94], "ontolog": 36, "publish": [36, 103], "therefor": [36, 67], "vehicl": [36, 92], "truck": [36, 92, 99, 102], "intuit": [36, 58, 85], "car": [36, 92, 98, 102], "frequent": [36, 57, 90, 93, 101], "characterist": 36, "l": [36, 37, 41, 62, 64, 65], "class1": 36, "class2": 36, "relationship": 36, "dog": [36, 52, 58, 60, 74, 92, 93, 99, 100, 103], "cat": [36, 52, 58, 60, 92, 93, 99, 100], "captur": [36, 84, 98, 99, 102], "co": [36, 37, 38], "noisy_label": [36, 85, 86, 87, 97], "overlapping_class": 36, "descend": [36, 37, 41, 48, 58, 65], "overall_label_health_scor": [36, 58, 94], "half": [36, 37, 39, 41, 58, 92, 103], "health_scor": [36, 58], "classes_by_label_qu": [36, 87], "cnn": [37, 39, 41, 88], "cifar": [37, 38, 92, 99], "teach": [37, 38], "bhanml": 37, "blob": 37, "master": [37, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "call_bn": [37, 39], "bn": 37, "input_channel": 37, "n_output": 37, "dropout_r": 37, "top_bn": 37, "architectur": [37, 41], "shown": [37, 65, 85, 86, 93, 96, 99, 100, 102, 103], "forward": [37, 38, 39, 41, 88, 96], "overridden": [37, 41], "although": [37, 41, 66, 82, 90], "recip": [37, 41], "afterward": [37, 41], "sinc": [37, 41, 45, 53, 58, 65, 73, 77, 93, 96, 97, 98, 100, 103], "former": [37, 41], "hook": [37, 41, 92], "silent": [37, 40, 41], "t_destin": [37, 39, 41], "__call__": [37, 39, 41, 44, 48], "add_modul": [37, 39, 41], "child": [37, 41], "fn": [37, 41, 65], "recurs": [37, 41, 48], "submodul": [37, 41], "children": [37, 39, 41, 103], "nn": [37, 38, 41, 88], "init": [37, 41, 94], "no_grad": [37, 41, 88, 99], "init_weight": [37, 41], "linear": [37, 41, 83, 88, 91], "fill_": [37, 41], "net": [37, 41, 84, 88, 92], "in_featur": [37, 41], "out_featur": [37, 41], "bia": [37, 41, 88], "tensor": [37, 38, 41, 83, 84, 88, 91, 99], "requires_grad": [37, 41], "bfloat16": [37, 39, 41], "cast": [37, 41, 84], "buffer": [37, 39, 41], "datatyp": [37, 41], "xdoctest": [37, 41], "undefin": [37, 41], "var": [37, 41], "buf": [37, 41], "20l": [37, 41], "1l": [37, 41], "5l": [37, 41], "call_super_init": [37, 39, 41], "immedi": [37, 41, 99], "compil": [37, 39, 41, 56], "cpu": [37, 39, 41, 43, 84, 88], "move": [37, 41, 48, 80, 92], "cuda": [37, 39, 41, 84, 88], "devic": [37, 41, 84, 88], "gpu": [37, 41, 83, 84, 91], "live": [37, 41], "copi": [37, 41, 69, 82, 84, 85, 86, 87, 90, 93, 97, 100, 101], "doubl": [37, 39, 41], "dump_patch": [37, 39, 41], "eval": [37, 39, 41, 88, 97, 99], "dropout": [37, 41], "batchnorm": [37, 41], "grad": [37, 41], "extra_repr": [37, 39, 41], "line": [37, 41, 79, 86, 92, 96, 99, 103], "get_buff": [37, 39, 41], "target": [37, 38, 41, 69, 70, 99, 101], "throw": [37, 41], "get_submodul": [37, 39, 41], "explan": [37, 41], "qualifi": [37, 41], "referenc": [37, 41], "attributeerror": [37, 41], "invalid": [37, 41, 91], "resolv": [37, 41, 85, 103], "get_extra_st": [37, 39, 41], "state_dict": [37, 39, 41], "set_extra_st": [37, 39, 41], "build": [37, 41, 88, 102], "picklabl": [37, 41], "serial": [37, 41], "backward": [37, 41, 88], "break": [37, 41, 88, 98], "pickl": [37, 41, 98], "get_paramet": [37, 39, 41], "let": [37, 41, 66, 67, 82, 83, 84, 85, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "net_b": [37, 41], "net_c": [37, 41], "conv": [37, 41], "conv2d": [37, 41, 88], "16": [37, 41, 48, 56, 73, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 102, 103], "33": [37, 41, 92, 98], "kernel_s": [37, 41], "stride": [37, 41], "200": [37, 41, 67, 85, 92, 98, 103], "diagram": [37, 41, 100], "degre": [37, 41], "queri": [37, 41, 87, 88, 93, 97], "named_modul": [37, 39, 41], "o": [37, 41, 50, 51, 84, 85, 86, 87, 92, 93, 94, 97, 98, 103], "transit": [37, 41], "ipu": [37, 39, 41], "load_state_dict": [37, 39, 41], "strict": [37, 41, 48], "persist": [37, 41], "strictli": [37, 41], "inplac": [37, 41, 96], "preserv": [37, 41, 52], "namedtupl": [37, 41], "missing_kei": [37, 41], "unexpected_kei": [37, 41], "runtimeerror": [37, 41], "idx": [37, 41, 52, 53, 65, 86, 88, 93, 94, 96, 98, 99], "named_buff": [37, 39, 41], "prefix": [37, 41, 84, 103], "remove_dupl": [37, 41], "prepend": [37, 41], "running_var": [37, 41], "named_children": [37, 39, 41], "conv4": [37, 41], "conv5": [37, 41], "memo": [37, 41], "named_paramet": [37, 39, 41], "register_backward_hook": [37, 39, 41], "deprec": [37, 41, 45, 83, 84, 91, 93], "favor": [37, 41], "register_full_backward_hook": [37, 39, 41], "removablehandl": [37, 41], "register_buff": [37, 39, 41], "running_mean": [37, 41], "register_forward_hook": [37, 39, 41], "with_kwarg": [37, 41], "always_cal": [37, 41], "possibli": [37, 41, 82, 90], "fire": [37, 41, 92], "register_module_forward_hook": [37, 41], "regardless": [37, 41, 86, 87], "register_forward_pre_hook": [37, 39, 41], "And": [37, 41], "forward_pr": [37, 41], "register_module_forward_pre_hook": [37, 41], "gradient": [37, 41, 88, 90, 101], "grad_input": [37, 41], "grad_output": [37, 41], "technic": [37, 41], "caller": [37, 41], "register_module_full_backward_hook": [37, 41], "register_full_backward_pre_hook": [37, 39, 41], "backward_pr": [37, 41], "register_module_full_backward_pre_hook": [37, 41], "register_load_state_dict_post_hook": [37, 39, 41], "post": [37, 41], "incompatible_kei": [37, 41], "modif": [37, 41], "thrown": [37, 41], "register_modul": [37, 39, 41], "register_paramet": [37, 39, 41], "register_state_dict_pre_hook": [37, 39, 41], "keep_var": [37, 41], "requires_grad_": [37, 39, 41], "autograd": [37, 41], "freez": [37, 41, 83, 84, 91], "finetun": [37, 41], "gan": [37, 41], "share_memori": [37, 39, 41], "share_memory_": [37, 41], "destin": [37, 41], "shallow": [37, 41], "releas": [37, 41, 56, 80, 84, 93], "design": [37, 41, 85], "ordereddict": [37, 41], "detach": [37, 41, 88], "non_block": [37, 41], "memory_format": [37, 41], "channels_last": [37, 41], "Its": [37, 41, 48, 58, 64], "complex": [37, 41, 84], "integr": [37, 41, 79, 93], "asynchron": [37, 41], "host": [37, 41], "pin": [37, 41, 83, 91, 92], "desir": [37, 41, 51, 65], "4d": [37, 41], "ignore_w": [37, 41], "determinist": [37, 41, 84], "1913": [37, 41], "3420": [37, 41], "5113": [37, 41], "2325": [37, 41], "env": [37, 41], "torch_doctest_cuda1": [37, 41], "gpu1": [37, 41], "1914": [37, 41], "5112": [37, 41], "2324": [37, 41], "float16": [37, 41], "cdoubl": [37, 41], "3741": [37, 41], "2382": [37, 41], "5593": [37, 41], "4443": [37, 41], "complex128": [37, 41], "6122": [37, 41], "1150": [37, 41], "to_empti": [37, 39, 41], "storag": [37, 41, 83, 91], "dst_type": [37, 41], "xpu": [37, 39, 41], "zero_grad": [37, 39, 41, 88], "set_to_non": [37, 41], "reset": [37, 41], "context": [37, 41, 98], "noisili": [38, 94], "han": 38, "2018": 38, "cifar_cnn": [38, 39], "loss_coteach": [38, 39], "y_1": 38, "y_2": 38, "forget_r": 38, "class_weight": 38, "logit": [38, 56, 88], "decim": [38, 52], "forget": [38, 48, 103], "rate_schedul": 38, "epoch": [38, 39, 41, 88, 93], "initialize_lr_schedul": [38, 39], "lr": [38, 39, 41], "001": [38, 67, 93], "250": [38, 86, 87, 94, 98], "epoch_decay_start": 38, "80": [38, 82, 90, 97, 101], "schedul": 38, "beta": 38, "adam": 38, "adjust_learning_r": [38, 39], "alpha_plan": 38, "beta1_plan": 38, "forget_rate_schedul": [38, 39], "num_gradu": 38, "expon": 38, "tell": [38, 83, 88, 91, 94], "train_load": [38, 41], "model1": [38, 94], "optimizer1": 38, "model2": [38, 94], "optimizer2": 38, "dataload": [38, 88, 99], "parser": 38, "parse_arg": 38, "num_iter_per_epoch": 38, "print_freq": 38, "topk": 38, "top1": 38, "top5": 38, "test_load": 38, "offici": [39, 55, 103], "wish": [39, 55, 99, 102, 103], "adj_confident_thresholds_shar": [39, 40], "labels_shar": [39, 40], "pred_probs_shar": [39, 40], "labelinspector": [39, 40, 93], "get_num_issu": [39, 40], "get_quality_scor": [39, 40], "update_confident_threshold": [39, 40], "score_label_qu": [39, 40], "split_arr": [39, 40], "span_classif": 39, "display_issu": [39, 42, 72, 73, 74, 75, 76, 77, 78, 102, 103], "mnist_pytorch": 39, "get_mnist_dataset": [39, 41], "get_sklearn_digits_dataset": [39, 41], "simplenet": [39, 41], "batch_siz": [39, 40, 41, 71, 73, 85, 88, 93, 99, 102], "log_interv": [39, 41], "momentum": [39, 41], "no_cuda": [39, 41], "test_batch_s": [39, 41, 88], "loader": [39, 41, 88], "set_predict_proba_request": [39, 41], "set_predict_request": [39, 41], "coteach": [39, 80], "mini": [40, 71, 73, 93], "low_self_confid": [40, 43, 59], "self_confid": [40, 43, 44, 48, 59, 61, 67, 75, 77, 82, 83, 93, 94], "conveni": [40, 82, 83, 84, 91], "script": 40, "labels_fil": [40, 93], "pred_probs_fil": [40, 93], "quality_score_kwarg": 40, "num_issue_kwarg": 40, "return_mask": 40, "variant": [40, 57, 102], "read": [40, 45, 87, 93, 94, 99, 103], "zarr": [40, 93], "memmap": [40, 102], "pythonspe": 40, "mmap": [40, 93], "hdf5": 40, "further": [40, 42, 58, 59, 61, 64, 65, 73, 74, 84, 93], "yourfil": 40, "npy": [40, 92, 93, 102], "mmap_mod": [40, 102], "tip": [40, 43, 56, 93], "save_arrai": 40, "your_arrai": 40, "disk": [40, 92, 93], "npz": [40, 103], "maxim": [40, 57, 71, 73, 102], "multiprocess": [40, 43, 59, 71, 73, 88, 93], "linux": [40, 71, 73], "physic": [40, 43, 71, 73, 98], "psutil": [40, 43, 71, 73], "labels_arrai": [40, 53], "predprob": 40, "pred_probs_arrai": 40, "back": [40, 65, 86, 93, 98, 99], "store_result": 40, "becom": [40, 99], "verifi": [40, 93, 96, 99], "long": [40, 57, 66, 96], "enough": [40, 52, 93], "chunk": [40, 100], "ram": [40, 92], "end_index": 40, "labels_batch": 40, "pred_probs_batch": 40, "batch_result": 40, "indices_of_examples_with_issu": [40, 93], "shortcut": 40, "encount": [40, 43, 71], "1000": [40, 84, 91, 93, 99], "aggreg": [40, 44, 48, 57, 61, 64, 67, 77, 93, 94, 96], "seen": [40, 85, 93, 99, 103], "far": [40, 57], "label_quality_scor": [40, 61, 64, 67, 70, 94, 98], "method1": 40, "method2": 40, "normalized_margin": [40, 43, 44, 48, 59, 61, 67, 75, 77], "low_normalized_margin": [40, 43, 59], "issue_indic": [40, 64, 88], "update_num_issu": 40, "arr": [40, 93], "chunksiz": 40, "convnet": 41, "bespok": [41, 56], "download": [41, 84, 93, 99], "mnist": [41, 79, 84, 92], "handwritten": 41, "digit": [41, 84, 92], "last": [41, 48, 62, 65, 85, 86, 87, 93, 96, 98, 103], "sklearn_digits_test_s": 41, "64": [41, 82, 88, 90, 94, 98], "01": [41, 67, 69, 84, 94, 97, 98], "templat": 41, "flexibli": 41, "among": [41, 57, 94], "test_set": 41, "Be": 41, "overrid": 41, "train_idx": [41, 52, 99], "train_label": [41, 83, 99], "span": 42, "sentenc": [42, 51, 75, 77, 78, 83, 91], "token_classif": [42, 51, 75, 77, 78, 93], "encourag": [43, 59, 67, 70], "multilabel_classif": [43, 58, 59, 61, 67, 93, 97], "pred_probs_by_class": 43, "prune_count_matrix_col": 43, "rank_by_kwarg": [43, 59, 67, 94], "num_to_remove_per_class": [43, 59], "bad": [43, 59, 64, 67, 91, 93], "seem": [43, 94, 97], "aren": 43, "confidence_weighted_entropi": [43, 44, 48, 59, 61, 67, 75, 77], "label_issues_idx": [43, 67], "entropi": [43, 45, 47, 48, 66, 67], "prune_by_class": [43, 59, 94], "predicted_neq_given": [43, 59, 94], "prune_counts_matrix": 43, "smallest": [43, 67], "unus": 43, "number_of_mislabeled_examples_in_class_k": 43, "delet": [43, 79, 83, 93], "too": [43, 48, 66, 87, 88, 93, 98], "thread": [43, 59], "window": [43, 84, 92], "shorter": [43, 62], "find_predicted_neq_given": 43, "find_label_issues_using_argmax_confusion_matrix": 43, "remove_noise_from_class": [44, 52], "clip_noise_r": [44, 52], "clip_valu": [44, 52], "value_count": [44, 52, 93], "value_counts_fill_missing_class": [44, 52], "get_missing_class": [44, 52], "round_preserving_sum": [44, 52], "round_preserving_row_tot": [44, 52], "estimate_pu_f1": [44, 52], "confusion_matrix": [44, 52], "print_square_matrix": [44, 52], "print_noise_matrix": [44, 52, 94], "print_inverse_noise_matrix": [44, 52], "print_joint_matrix": [44, 52, 94], "compress_int_arrai": [44, 52], "train_val_split": [44, 52], "subset_x_i": [44, 52], "subset_label": [44, 52], "subset_data": [44, 52], "extract_indices_tf": [44, 52], "unshuffle_tensorflow_dataset": [44, 52], "is_torch_dataset": [44, 52], "is_tensorflow_dataset": [44, 52], "csr_vstack": [44, 52], "append_extra_datapoint": [44, 52], "get_num_class": [44, 52], "num_unique_class": [44, 52], "get_unique_class": [44, 52], "format_label": [44, 52], "smart_display_datafram": [44, 52], "force_two_dimens": [44, 52], "latent_algebra": [44, 80], "compute_ps_py_inv_noise_matrix": [44, 46], "compute_py_inv_noise_matrix": [44, 46], "compute_inv_noise_matrix": [44, 46], "compute_noise_matrix_from_invers": [44, 46], "compute_pi": [44, 46], "compute_pyx": [44, 46], "label_quality_util": 44, "get_normalized_entropi": [44, 45], "multilabel_util": [44, 97], "stack_compl": [44, 49], "get_onehot_num_class": [44, 49], "int2onehot": [44, 49, 97], "onehot2int": [44, 49, 97], "multilabel_scor": [44, 61], "classlabelscor": [44, 48], "exponential_moving_averag": [44, 48, 61], "softmin": [44, 48, 61, 64, 73, 77], "possible_method": [44, 48], "multilabelscor": [44, 48], "get_class_label_quality_scor": [44, 48], "multilabel_pi": [44, 48], "get_cross_validated_multilabel_pred_prob": [44, 48], "transform_distances_to_scor": [44, 50], "correct_precision_error": [44, 50], "token_classification_util": [44, 103], "get_sent": [44, 51, 103], "filter_sent": [44, 51, 103], "process_token": [44, 51], "merge_prob": [44, 51], "color_sent": [44, 51], "assert_valid_input": [44, 53], "assert_valid_class_label": [44, 53], "assert_nonempty_input": [44, 53], "assert_indexing_work": [44, 53], "labels_to_arrai": [44, 53], "labels_to_list_multilabel": [44, 53], "min_allowed_prob": 45, "wikipedia": 45, "activ": [45, 47, 56, 57, 79, 96], "towardsdatasci": 45, "cheatsheet": 45, "ec57bc067c0b": 45, "clip": [45, 52, 84], "behav": 45, "unnecessari": [45, 93], "slightli": [45, 82, 83, 85], "interv": [45, 48, 99], "herein": 46, "inexact": 46, "cours": 46, "propag": 46, "throughout": [46, 52, 69, 84, 96, 102, 103], "increas": [46, 50, 64, 66, 67, 84, 86, 93, 96, 97, 103], "dot": [46, 77, 93], "true_labels_class_count": 46, "pyx": 46, "multiannot": 47, "assert_valid_inputs_multiannot": 47, "labels_multiannot": [47, 57], "ensembl": [47, 48, 57, 67, 82, 90, 93, 97, 99, 101], "allow_single_label": 47, "annotator_id": 47, "assert_valid_pred_prob": 47, "pred_probs_unlabel": [47, 57], "format_multiannotator_label": [47, 57, 96], "formatted_label": [47, 52], "old": [47, 52, 80, 84, 92], "check_consensus_label_class": 47, "consensus_label": [47, 57, 96], "consensus_method": [47, 57], "consensu": [47, 57, 79, 95, 103], "establish": [47, 56, 83, 101], "compute_soft_cross_entropi": 47, "soft": [47, 92], "find_best_temp_scal": 47, "coarse_search_rang": [47, 69, 93], "fine_search_s": [47, 69, 93], "temperatur": [47, 48, 64, 73, 77], "scale": [47, 50, 82, 92, 93, 99, 102], "factor": [47, 48, 50, 71, 73], "minim": [47, 64, 99], "temp_scale_pred_prob": 47, "temp": 47, "sharpen": [47, 92], "smoothen": 47, "get_normalized_margin_for_each_label": [48, 67], "get_confidence_weighted_entropy_for_each_label": [48, 67], "75": [48, 85, 86, 87, 92, 96, 97, 98, 101, 103], "scorer": 48, "alpha": [48, 61, 64, 85, 86, 87, 94, 97, 101], "exponenti": 48, "ema": 48, "s_1": 48, "s_k": 48, "ema_k": 48, "accord": [48, 59, 90, 91, 94, 103], "formula": [48, 50], "_t": 48, "cdot": 48, "s_t": 48, "qquad": 48, "leq": 48, "_1": 48, "give": [48, 67, 94, 96, 102], "recent": [48, 103], "success": 48, "previou": [48, 88, 93, 98], "discount": 48, "s_ema": 48, "175": [48, 88, 94, 98], "underflow": 48, "nan": [48, 57, 82, 90, 96, 101], "aggregated_scor": 48, "base_scor": 48, "base_scorer_kwarg": 48, "aggregator_kwarg": [48, 61], "n_sampl": 48, "n_label": 48, "worst": [48, 96], "class_label_quality_scor": 48, "42": [48, 91, 92, 98, 103], "452": 48, "new_scor": 48, "575": 48, "get_label_quality_scores_per_class": [48, 60, 61], "ml_scorer": 48, "binar": [48, 49], "reformat": [48, 84], "wider": 48, "splitter": 48, "kfold": [48, 88], "onevsrestclassifi": [48, 97], "randomforestclassifi": [48, 94, 97], "n_split": [48, 87, 88, 97], "pred_prob_slic": 49, "onehot": 49, "hot": [49, 59, 65, 71, 74, 82, 90, 92, 93, 101, 102], "onehot_matrix": 49, "avg_dist": 50, "scaling_factor": 50, "exp": [50, 66, 67, 86], "dt": 50, "right": [50, 62, 65, 83, 91, 97, 98, 99], "strength": [50, 65], "pronounc": 50, "differenti": 50, "ly": 50, "rule": [50, 51, 92], "thumb": 50, "ood_features_scor": [50, 66, 99], "88988177": 50, "80519832": 50, "toler": 50, "minkowski": 50, "noth": 50, "epsilon": 50, "sensibl": 50, "fixed_scor": 50, "readabl": 51, "lambda": [51, 84, 86, 93, 96], "long_sent": 51, "headlin": 51, "charact": [51, 52], "s1": 51, "s2": 51, "processed_token": 51, "alecnlcb": 51, "entiti": [51, 79, 93, 103], "mapped_ent": 51, "unique_ident": 51, "loc": [51, 85, 86, 87, 88, 103], "nbitbas": [51, 61], "probs_merg": 51, "0125": [51, 77], "0375": 51, "075": 51, "025": 51, "color": [51, 74, 85, 86, 87, 90, 94, 97, 99, 101, 102], "red": [51, 65, 85, 86, 87, 92, 94, 97, 98, 99, 102], "colored_sent": 51, "termcolor": 51, "31msentenc": 51, "0m": 51, "ancillari": 52, "class_without_nois": 52, "any_other_class": 52, "choos": [52, 67, 82, 90, 93, 94, 101], "tradition": 52, "new_sum": 52, "fill": 52, "come": [52, 85, 86, 87, 93, 102], "major": [52, 57, 80, 85, 88, 99], "versu": [52, 94], "obviou": 52, "cgdeboer": 52, "iteround": 52, "reach": 52, "prob_s_eq_1": 52, "claesen": 52, "f1": [52, 65, 91, 94], "BE": 52, "left_nam": 52, "top_nam": 52, "titl": [52, 85, 86, 87, 94, 97, 99], "short_titl": 52, "round_plac": 52, "pretti": [52, 85, 94], "joint_matrix": 52, "num_possible_valu": 52, "holdout_idx": 52, "extract": [52, 66, 83, 84, 91, 96, 99, 102], "allow_shuffl": 52, "turn": [52, 79, 98], "shuffledataset": 52, "histori": 52, "pre_x": 52, "buffer_s": 52, "csr_matric": 52, "append": [52, 84, 85, 88, 92, 93, 94, 96, 97, 98, 99, 103], "bottom": [52, 62, 65, 98], "to_data": 52, "from_data": 52, "taken": 52, "label_matrix": 52, "canon": 52, "displai": [52, 65, 74, 78, 83, 84, 85, 91, 94, 103], "jupyt": [52, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "notebook": [52, 57, 84, 85, 87, 92, 93, 94, 96, 97, 98, 102, 103], "consol": 52, "html": [52, 62, 65, 66, 90, 93, 94], "allow_missing_class": 53, "allow_one_class": 53, "length_x": 53, "labellik": 53, "labels_list": [53, 59], "keraswrappermodel": [55, 56, 79], "keraswrappersequenti": [55, 56], "tf": [56, 84], "legaci": 56, "newer": 56, "interim": 56, "advis": [56, 97], "stabil": [56, 66], "until": 56, "accommod": 56, "keraswrapp": 56, "huggingface_keras_imdb": 56, "unit": [56, 103], "model_kwarg": [56, 69], "compile_kwarg": 56, "sparsecategoricalcrossentropi": 56, "layer": [56, 83, 84, 91, 99], "dens": 56, "my_keras_model": 56, "from_logit": 56, "declar": 56, "apply_softmax": 56, "analysi": 57, "analyz": [57, 79, 94, 96, 97], "get_label_quality_multiannot": [57, 96], "vote": 57, "crowdsourc": [57, 79, 96], "dawid": [57, 96], "skene": [57, 96], "analog": [57, 85, 92, 96], "chosen": [57, 67, 93, 96], "crowdlab": [57, 96], "unlabel": [57, 88, 90, 91, 96, 99, 102], "decid": [57, 83, 91, 92, 96, 101, 103], "get_active_learning_scor": [57, 96], "activelab": [57, 96], "priorit": [57, 64, 98, 102, 103], "showcas": 57, "main": [57, 85], "best_qual": 57, "quality_method": 57, "calibrate_prob": 57, "return_detailed_qu": 57, "return_annotator_stat": 57, "return_weight": 57, "label_quality_score_kwarg": 57, "did": [57, 58, 82, 83, 84, 90, 94, 96, 101], "majority_vot": 57, "broken": [57, 65, 92, 101], "highest": [57, 65, 86, 88, 100], "0th": 57, "consensus_quality_scor": [57, 96], "annotator_agr": [57, 96], "reman": 57, "1st": 57, "2nd": [57, 71], "3rd": 57, "consensus_label_suffix": 57, "consensus_quality_score_suffix": 57, "suffix": 57, "emsembl": 57, "weigh": [57, 92], "agreement": [57, 96], "agre": 57, "prevent": [57, 93], "overconfid": [57, 100], "detailed_label_qu": [57, 96], "annotator_stat": [57, 96], "model_weight": 57, "annotator_weight": 57, "warn": [57, 86, 87, 88, 90, 91, 93, 94], "labels_info": 57, "num_annot": [57, 96], "deriv": [57, 96], "quality_annotator_1": 57, "quality_annotator_2": 57, "quality_annotator_m": 57, "annotator_qu": [57, 96], "num_examples_label": [57, 96], "agreement_with_consensu": [57, 96], "worst_class": [57, 96], "trustworthi": [57, 96, 101], "get_label_quality_multiannotator_ensembl": 57, "weigtht": 57, "budget": 57, "retrain": [57, 83, 101], "active_learning_scor": 57, "active_learning_scores_unlabel": 57, "get_active_learning_scores_ensembl": 57, "henc": [57, 84, 86, 96], "get_majority_vote_label": [57, 96], "event": 57, "lastli": [57, 90], "convert_long_to_wide_dataset": 57, "labels_multiannotator_long": 57, "wide": [57, 82, 83, 84], "suitabl": [57, 82, 90], "labels_multiannotator_wid": 57, "common_multilabel_issu": [58, 60], "mutual": [58, 97], "exclus": [58, 97], "rank_classes_by_multilabel_qu": [58, 60], "overall_multilabel_health_scor": [58, 60], "multilabel_health_summari": [58, 60], "classes_by_multilabel_qu": 58, "inner": [59, 73], "find_multilabel_issues_per_class": [59, 60], "per_class_label_issu": 59, "label_issues_list": 59, "pred_probs_list": [59, 67, 88, 94], "anim": [60, 99], "rat": 60, "predat": 60, "pet": 60, "reptil": 60, "manner": [61, 82, 83, 96, 101], "box": [62, 64, 65, 92, 98], "object_detect": [62, 64, 65, 98], "return_indices_ranked_by_scor": [62, 98], "overlapping_label_check": [62, 64], "suboptim": [62, 64], "locat": [62, 64, 98, 102, 103], "bbox": [62, 65, 98], "image_nam": [62, 65], "y1": [62, 65, 98], "y2": [62, 65, 98], "later": [62, 65, 66, 83, 103], "corner": [62, 65, 98], "xyxi": [62, 65, 98], "io": [62, 65, 84, 92], "keras_cv": [62, 65], "bounding_box": [62, 65, 98], "detectron": [62, 65, 98], "detectron2": [62, 65, 98], "readthedoc": [62, 65], "en": [62, 65], "latest": [62, 65], "visual": [62, 63, 65, 82, 85, 86, 87, 88, 101, 103], "draw_box": [62, 65], "mmdetect": [62, 65, 98], "swap": [62, 64, 74, 78], "penal": [62, 64], "concern": [62, 64, 79, 87], "issues_from_scor": [63, 64, 72, 73, 74, 76, 77, 78, 98, 102, 103], "compute_overlooked_box_scor": [63, 64], "compute_badloc_box_scor": [63, 64], "compute_swap_box_scor": [63, 64], "pool_box_scores_per_imag": [63, 64], "object_counts_per_imag": [63, 65, 98], "bounding_box_size_distribut": [63, 65, 98], "class_label_distribut": [63, 65, 98], "get_sorted_bbox_count_idx": [63, 65], "plot_class_size_distribut": [63, 65], "plot_class_distribut": [63, 65], "get_average_per_class_confusion_matrix": [63, 65], "calculate_per_class_metr": [63, 65], "aggregation_weight": 64, "imperfect": [64, 93], "chose": [64, 96, 98], "imperfectli": [64, 98], "dirti": [64, 67, 70, 101], "subtyp": 64, "badloc": 64, "nonneg": 64, "high_probability_threshold": 64, "auxiliary_input": [64, 65], "vari": [64, 87], "iou": [64, 65], "heavili": 64, "auxiliarytypesdict": 64, "pred_label": [64, 83], "pred_label_prob": 64, "pred_bbox": 64, "lab_label": 64, "lab_bbox": 64, "similarity_matrix": 64, "min_possible_similar": 64, "scores_overlook": 64, "low_probability_threshold": 64, "scores_badloc": 64, "accident": [64, 83, 90, 91, 93], "scores_swap": 64, "box_scor": 64, "image_scor": [64, 73, 102], "discov": [65, 87, 103], "abnorm": [65, 88, 98], "auxiliari": [65, 99, 102], "_get_valid_inputs_for_compute_scor": 65, "object_count": 65, "down": 65, "bbox_siz": 65, "class_distribut": 65, "plot": [65, 85, 86, 87, 94, 97, 99, 101, 102], "sorted_idx": [65, 99], "class_to_show": 65, "hidden": [65, 85, 99], "max_class_to_show": 65, "plt": [65, 74, 85, 86, 87, 88, 94, 97, 99, 101], "matplotlib": [65, 74, 85, 86, 87, 88, 94, 97, 98, 99, 101], "pyplot": [65, 74, 85, 86, 87, 88, 94, 97, 99, 101], "prediction_threshold": 65, "overlai": [65, 98], "figsiz": [65, 85, 86, 87, 88, 94, 97, 99], "save_path": [65, 98], "blue": [65, 92, 94, 98], "overlaid": 65, "side": [65, 92, 98], "figur": [65, 94, 97, 99, 101], "extens": [65, 94, 96], "png": [65, 98], "pdf": [65, 66], "svg": 65, "num_proc": [65, 88], "intersect": [65, 93], "tp": 65, "fp": 65, "ground": [65, 92, 94, 96, 101], "truth": [65, 94, 96, 101], "bias": 65, "avg_metr": 65, "distionari": 65, "95": [65, 75, 77, 90, 92, 94, 101], "per_class_metr": 65, "Of": 66, "li": 66, "smaller": [66, 85, 97, 98], "find_top_issu": [66, 67, 99], "reli": [66, 83, 84, 85, 86, 87, 91, 98, 99, 101], "dist_metr": 66, "spatial": 66, "pairwis": 66, "euclidean_dist": 66, "subtract": [66, 67], "renorm": [66, 67, 93], "least_confid": 66, "sum_": 66, "log": [66, 67, 80], "softmax": [66, 73, 77, 88], "literatur": 66, "gen": 66, "liu": 66, "lochman": 66, "zach": 66, "openaccess": 66, "thecvf": 66, "cvpr2023": 66, "liu_gen_pushing_the_limits_of_softmax": 66, "based_out": 66, "distribution_detection_cvpr_2023_pap": 66, "fit_scor": [66, 99], "ood_predictions_scor": 66, "pretrain": [66, 83, 84, 91, 99], "adjust_confident_threshold": 66, "probabilist": [66, 82, 84, 86, 87, 90, 91, 99, 100], "order_label_issu": [67, 80], "whichev": [67, 100], "argsort": [67, 83, 88, 91, 94, 98, 99, 101], "max_": 67, "get_label_quality_ensemble_scor": [67, 93, 94], "weight_ensemble_members_bi": 67, "custom_weight": 67, "log_loss_search_t_valu": 67, "0001": [67, 92], "scheme": 67, "log_loss_search": 67, "log_loss": [67, 91], "1e0": 67, "1e1": 67, "1e2": 67, "2e2": 67, "quality_scor": [67, 99], "forth": 67, "top_issue_indic": 67, "rank_bi": [67, 80], "weird": [67, 78], "minu": 67, "prob_label": 67, "max_prob_not_label": 67, "idea": [67, 85, 98], "AND": [67, 91], "get_epistemic_uncertainti": [68, 69], "get_aleatoric_uncertainti": [68, 69], "corrupt": [69, 101], "linearregress": [69, 93, 101], "y_with_nois": 69, "n_boot": [69, 93], "include_aleatoric_uncertainti": [69, 93], "sole": [69, 82, 86, 96, 99], "bootstrap": [69, 93, 101], "resampl": [69, 84, 93], "epistem": [69, 93, 99, 101], "aleator": [69, 93, 101], "model_final_kwarg": 69, "coars": 69, "thorough": [69, 93], "fine": [69, 83, 84, 91, 99], "grain": 69, "grid": 69, "varianc": [69, 94], "epistemic_uncertainti": 69, "residu": [69, 70, 93], "deviat": [69, 98, 101], "aleatoric_uncertainti": 69, "outr": 70, "contin": 70, "raw": [70, 79, 80, 87, 88, 92, 93, 96, 98, 99, 101], "aka": [70, 84, 94, 98, 101, 103], "00323821": 70, "33692597": 70, "00191686": 70, "semant": [71, 73, 74, 95], "pixel": [71, 73, 74, 88, 99, 102], "h": [71, 73, 74, 102], "height": [71, 73, 74, 102], "w": [71, 73, 74, 102], "width": [71, 73, 74, 102], "labels_one_hot": [71, 74, 102], "stream": [71, 85, 99, 103], "downsampl": [71, 73, 102], "shrink": [71, 73], "divis": [71, 73, 86], "common_label_issu": [72, 74, 76, 78, 102, 103], "filter_by_class": [72, 74, 102], "segmant": [73, 74], "num_pixel_issu": [73, 102], "product": [73, 88, 93], "pixel_scor": [73, 102], "enter": 74, "legend": [74, 85, 86, 87, 97, 98, 101, 102], "colormap": 74, "background": 74, "person": [74, 93, 98, 102, 103], "ambigu": [74, 78, 83, 84, 91, 92, 94, 103], "systemat": [74, 78, 96], "misunderstood": [74, 78], "issues_df": [74, 88], "class_index": 74, "issues_subset": [74, 78], "filter_by_token": [76, 78, 103], "token_score_method": 77, "sentence_score_method": 77, "sentence_score_kwarg": 77, "compris": [77, 78], "token_scor": [77, 103], "converg": 77, "toward": 77, "_softmin_sentence_scor": 77, "sentence_scor": [77, 103], "token_info": 77, "70": [77, 90], "02": [77, 86, 87, 94, 98, 103], "03": [77, 90, 92, 94, 98, 99, 103], "04": [77, 90, 98], "08": [77, 94, 98, 101, 103], "commonli": [78, 80, 86, 87, 97, 103], "But": [78, 91, 94, 101, 103], "restrict": [78, 93], "reliabl": [79, 82, 84, 93, 96, 102], "thousand": 79, "imagenet": [79, 92], "popular": [79, 96, 98], "centric": [79, 88, 90, 91, 95], "capabl": 79, "minut": [79, 82, 83, 84, 90, 91, 92, 96, 97, 98, 101, 102, 103], "conda": 79, "feature_embed": [79, 99], "Then": [79, 82, 83, 88, 93], "your_dataset": [79, 84, 86, 87, 88, 90, 91, 93], "column_name_of_label": [79, 84, 86, 87, 88, 90, 91], "plagu": [79, 87], "untrain": 79, "\u30c4": 79, "label_issues_info": [79, 87], "sklearn_compatible_model": 79, "framework": [79, 97, 98], "complianc": 79, "tag": [79, 97, 103], "sequenc": 79, "recognit": [79, 84, 93, 103], "train_data": [79, 82, 83, 99, 101], "gotten": 79, "test_data": [79, 82, 83, 85, 94, 97, 99, 101], "deal": [79, 87], "tutori": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "feel": [79, 84, 87, 93], "ask": [79, 93], "slack": [79, 93], "project": [79, 101], "welcom": 79, "commun": [79, 93], "guidelin": [79, 98], "piec": 79, "smart": [79, 88, 90, 91, 93], "edit": [79, 93], "easier": [79, 94], "unreli": [79, 82, 84, 90, 91], "link": [79, 84, 92, 98], "older": 80, "outlin": 80, "substitut": 80, "v2": [80, 82, 90], "get_noise_indic": 80, "psx": 80, "sorted_index_method": 80, "order_label_error": 80, "label_errors_bool": 80, "latent_estim": 80, "num_label_error": 80, "learningwithnoisylabel": 80, "neatli": 80, "organ": [80, 82, 90, 92, 103], "reorgan": 80, "baseline_method": 80, "incorpor": [80, 94], "research": [80, 94], "polyplex": 80, "terminologi": 80, "label_error": 80, "quickstart": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101, 102, 103], "sql": [82, 90], "databas": [82, 90], "excel": [82, 90], "parquet": [82, 90], "student": [82, 90, 101, 103], "grade": [82, 90, 101], "900": [82, 90, 101], "exam": [82, 90, 101], "letter": [82, 90, 103], "hundr": [82, 90], "mistak": [82, 83, 88, 90, 91], "No": [82, 83, 91, 93], "extratreesclassifi": 82, "extratre": 82, "ranked_label_issu": [82, 83], "branch": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "preprocess": [82, 83, 87, 90, 99, 101], "standardscal": [82, 90, 99], "labelencod": [82, 83], "train_test_split": [82, 83, 85, 86, 87, 99], "accuracy_scor": [82, 83, 84, 91, 94], "grades_data": [82, 90], "read_csv": [82, 83, 90, 91, 101], "demo": [82, 87, 90, 97], "head": [82, 83, 84, 87, 88, 90, 91, 92, 94, 96, 101], "stud_id": [82, 90], "exam_1": [82, 90, 101], "exam_2": [82, 90, 101], "exam_3": [82, 90, 101], "letter_grad": [82, 90], "f48f73": [82, 90], "53": [82, 85, 86, 87, 90, 92, 97, 98], "00": [82, 86, 87, 90, 92, 99], "77": [82, 86, 87, 90, 98], "0bd4e7": [82, 90], "81": [82, 90, 91, 98, 101, 103], "great": [82, 85, 90, 92], "particip": [82, 90], "cb9d7a": [82, 90], "61": [82, 90, 94, 98, 101], "94": [82, 90, 92, 94, 98, 101], "78": [82, 90, 92, 94, 98, 101], "9acca4": [82, 90], "48": [82, 90, 92, 94, 98], "x_raw": [82, 90], "labels_raw": 82, "interg": [82, 83], "categorical_featur": [82, 101], "x_encod": [82, 90], "get_dummi": [82, 90, 101], "drop_first": [82, 90], "numeric_featur": [82, 90], "scaler": [82, 90, 99], "x_process": [82, 90], "fit_transform": [82, 90], "bring": [82, 83, 88, 90, 91, 96, 101], "byod": [82, 83, 88, 90, 91, 96, 101], "decis": [82, 85, 86, 87], "tress": 82, "held": [82, 84, 90, 91, 92, 98, 99, 100], "straightforward": [82, 84, 90], "benefit": [82, 84, 100, 102], "num_crossval_fold": [82, 84, 90, 96], "tabl": [82, 90, 92, 96], "212": [82, 94], "review": [82, 83, 87, 90, 91, 92, 93, 94, 98, 101, 102, 103], "iloc": [82, 83, 84, 90, 91, 101], "58": [82, 87, 90, 92, 94, 98], "92": [82, 86, 94, 98], "93": [82, 92, 98, 101, 103], "827": 82, "99": [82, 92, 94], "86": [82, 87, 88, 90, 94, 98, 101], "74": [82, 98, 101], "637": [82, 90], "79": [82, 92, 98], "65": [82, 86, 98, 103], "cheat": 82, "0pt": 82, "120": [82, 86, 87, 103], "97": [82, 92, 93, 94, 98, 101, 103], "233": 82, "68": [82, 92, 94, 98], "83": [82, 94, 98, 101, 103], "76": [82, 85, 94, 97, 98, 101], "suspici": [82, 90], "carefulli": [82, 88, 90, 91], "examin": [82, 85, 86, 87, 90, 98], "labels_train": 82, "labels_test": 82, "test_siz": [82, 83, 85, 86, 87], "acc_og": [82, 83], "783068783068783": 82, "robustli": [82, 83, 101], "14": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "acc_cl": [82, 83], "8095238095238095": 82, "especi": [82, 83, 85, 88, 93, 101], "blindli": [82, 83, 84, 93, 101], "trust": [82, 83, 84, 93, 94, 96, 100, 101], "effort": [82, 83, 101], "intent": [83, 91], "servic": [83, 91, 93], "onlin": [83, 91], "bank": [83, 91, 92], "banking77": [83, 91], "oo": [83, 91], "000": [83, 88, 91, 92, 103], "categori": [83, 88, 91], "shortlist": [83, 91, 101], "scope": [83, 91], "logist": [83, 85, 86, 87, 91, 96, 99], "probabilit": [83, 84], "drop": [83, 93, 96, 101], "earlier": [83, 103], "sentence_transform": [83, 91], "sentencetransform": [83, 91], "payment": [83, 91], "cancel_transf": [83, 91], "transfer": [83, 91], "fund": [83, 91], "cancel": [83, 91], "transact": [83, 91], "my": [83, 91], "revert": [83, 91], "morn": [83, 91], "realis": [83, 91], "yesterdai": [83, 91], "rent": [83, 91], "tomorrow": [83, 91], "raw_text": [83, 91], "raw_label": 83, "raw_train_text": 83, "raw_test_text": 83, "raw_train_label": 83, "raw_test_label": 83, "39": [83, 84, 86, 88, 91, 92, 93, 98, 101, 102, 103], "apple_pay_or_google_pai": [83, 91], "card_about_to_expir": [83, 91], "getting_spare_card": [83, 91], "visa_or_mastercard": [83, 91], "change_pin": [83, 91], "card_payment_fee_charg": [83, 91], "supported_cards_and_curr": [83, 91], "lost_or_stolen_phon": [83, 91], "beneficiary_not_allow": [83, 91], "card": [83, 91, 92], "utter": [83, 91], "encond": 83, "test_label": [83, 94, 97, 99], "suit": [83, 91, 92, 93], "electra": [83, 91], "discrimin": [83, 91], "googl": [83, 85, 91], "train_text": 83, "test_text": 83, "home": [83, 86, 87, 91, 92], "runner": [83, 86, 87, 91], "google_electra": [83, 91], "pool": [83, 91, 93, 99], "opt": [83, 84, 87, 88, 90, 91, 94], "hostedtoolcach": [83, 84, 87, 88, 90, 91, 94], "x64": [83, 84, 87, 88, 90, 91, 94], "lib": [83, 84, 87, 88, 90, 91, 94], "python3": [83, 84, 87, 88, 90, 91, 94], "site": [83, 84, 87, 88, 90, 91, 94], "_util": [83, 91], "831": [83, 91], "userwarn": [83, 84, 86, 87, 91], "typedstorag": [83, 91], "untypedstorag": [83, 91], "untyped_storag": [83, 91], "fget": [83, 91], "__get__": [83, 91], "owner": [83, 91], "leverag": [83, 84, 91, 93, 94, 96], "computation": [83, 84, 91], "intens": [83, 84, 91], "400": [83, 85, 91], "858371": 83, "547274": 83, "826228": 83, "966008": 83, "792449": 83, "identified_issu": [83, 101], "lowest_quality_label": [83, 84, 91, 94, 101], "to_numpi": [83, 91, 93, 101], "44": [83, 92, 97, 98], "646": 83, "390": 83, "628": 83, "121": [83, 85, 94], "702": 83, "863": [83, 84], "135": 83, "337": [83, 98], "735": 83, "print_as_df": 83, "inverse_transform": 83, "charg": [83, 91], "cash": [83, 91], "holidai": [83, 91], "sent": [83, 91, 103], "mine": [83, 91], "expir": [83, 91], "fight": 83, "hors": [83, 92, 99], "duck": [83, 92], "me": [83, 91], "whoever": [83, 91], "consum": [83, 101], "18": [83, 84, 85, 91, 92, 93, 94, 98, 99, 101, 102, 103], "baseline_model": [83, 101], "87": [83, 87, 88, 98, 101], "acceler": [83, 101], "19": [83, 84, 85, 88, 91, 92, 93, 94, 98, 99, 101, 102, 103], "89": [83, 85, 86, 90, 98, 101], "spoken": 84, "500": [84, 99, 103], "english": [84, 92], "pronunci": 84, "wav": 84, "huggingfac": [84, 86, 87, 88, 93], "voxceleb": 84, "speech": [84, 103], "your_pred_prob": [84, 85, 86, 87, 90, 91], "tensorflow_io": 84, "huggingface_hub": 84, "reproduc": [84, 90, 94, 96], "command": 84, "wget": [84, 98, 102, 103], "navig": 84, "browser": 84, "jakobovski": 84, "archiv": [84, 103], "v1": 84, "tar": [84, 99], "gz": [84, 99], "mkdir": [84, 103], "spoken_digit": 84, "xf": 84, "6_nicolas_32": 84, "data_path": 84, "listdir": 84, "nondeterminist": 84, "file_nam": 84, "endswith": 84, "file_path": 84, "join": [84, 85, 88, 93], "7_george_26": 84, "0_nicolas_24": 84, "0_nicolas_6": 84, "listen": 84, "display_exampl": 84, "expand": [84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "pulldown": [84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "colab": [84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "tfio": 84, "pathlib": 84, "ipython": 84, "load_wav_16k_mono": 84, "filenam": 84, "khz": 84, "file_cont": 84, "read_fil": 84, "sample_r": 84, "decode_wav": 84, "desired_channel": 84, "squeez": 84, "rate_in": 84, "rate_out": 84, "16000": 84, "wav_file_nam": 84, "audio_r": 84, "wav_file_exampl": 84, "plai": [84, 92, 93], "button": 84, "wav_file_name_exampl": 84, "7_jackson_43": 84, "hear": 84, "extractor": 84, "encoderclassifi": 84, "spkrec": 84, "xvect": 84, "feature_extractor": 84, "from_hparam": 84, "run_opt": 84, "uncom": 84, "ffmpeg": 84, "backend": 84, "wav_audio_file_path": 84, "torchaudio": 84, "extract_audio_embed": 84, "emb": [84, 88], "signal": 84, "encode_batch": 84, "embeddings_list": [84, 88], "embeddings_arrai": 84, "650": 84, "stft": 84, "return_complex": 84, "view_as_r": 84, "recov": 84, "trigger": 84, "aten": 84, "src": 84, "nativ": 84, "spectralop": 84, "cpp": 84, "_vf": 84, "n_fft": 84, "hop_length": 84, "win_length": 84, "attr": 84, "512": [84, 88], "196311": 84, "319459": 84, "478975": 84, "2890875": 84, "8170238": 84, "89265": 84, "24": [84, 85, 92, 94, 96, 98, 101], "898056": 84, "256195": 84, "559641": 84, "559721": 84, "62067": 84, "285245": 84, "21": [84, 85, 86, 92, 93, 94, 98, 101, 103], "709627": 84, "5033693": 84, "913803": 84, "819831": 84, "1831515": 84, "208763": 84, "084257": 84, "3210397": 84, "005453": 84, "216152": 84, "478235": 84, "6821785": 84, "053807": 84, "242471": 84, "091424": 84, "78334856": 84, "03954": 84, "23": [84, 85, 88, 92, 94, 98, 101], "569176": 84, "761097": 84, "1258295": 84, "753237": 84, "3508866": 84, "598274": 84, "23712": 84, "2500": 84, "tol": 84, "decreas": [84, 93], "cv_accuraci": 84, "9708": 84, "9976": 84, "986": 84, "002161": 84, "176": [84, 92, 94, 97], "002483": 84, "2318": 84, "004411": 84, "1005": 84, "004857": 84, "1871": 84, "007494": 84, "investig": [84, 85], "040587": 84, "999207": 84, "999377": 84, "975220": 84, "999367": 84, "identified_label_issu": [84, 91], "sort_valu": [84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 101], "516": 84, "1946": 84, "469": 84, "2132": 84, "worth": [84, 94], "6_yweweler_25": 84, "7_nicolas_43": 84, "6_theo_27": 84, "6_yweweler_36": 84, "6_yweweler_14": 84, "6_yweweler_35": 84, "6_nicolas_8": 84, "sound": 84, "quit": [84, 99], "22": [84, 85, 86, 88, 92, 93, 94, 97, 98, 103], "load_ext": 85, "autoreload": 85, "ve": [85, 92, 93, 94, 96, 98], "prove": 85, "monitor": [85, 92], "ran": 85, "data_monitor": 85, "your_datalab": 85, "new_data_batch": 85, "your_label": 85, "get_your_label": 85, "your_featur": [85, 91], "get_featur": 85, "websit": [85, 92], "todo": 85, "get_ipython": 85, "b13d27e9b9524b6853d31a585111bd1eeedc173b": 85, "cmd": 85, "dep": 85, "dependencies_test": 85, "missing_depend": 85, "__import__": 85, "importerror": 85, "sep": [85, 103], "npleas": 85, "toi": [85, 86, 87, 88, 92, 94, 96], "mid": [85, 86, 87], "workflow": [85, 95, 101], "unseen": 85, "inf": [85, 86, 87], "bins_map": [85, 86, 87], "create_data": [85, 86, 87], "800": 85, "y_bin": [85, 86, 87], "y_i": [85, 86, 87], "y_bin_idx": [85, 86, 87], "y_train": [85, 86, 87, 94, 101], "y_test": [85, 86, 87, 94, 101], "y_train_idx": [85, 86, 87], "y_test_idx": [85, 86, 87], "slide": [85, 86, 87, 92], "frame": [85, 86, 87], "x_out": [85, 86, 87], "tini": [85, 86, 87], "concaten": [85, 86, 87, 93, 100], "y_out": [85, 86, 87], "y_out_bin": [85, 86, 87], "y_out_bin_idx": [85, 86, 87], "exact_duplicate_idx": [85, 86, 87], "x_duplic": [85, 86, 87], "y_duplic": [85, 86, 87], "y_duplicate_idx": [85, 86, 87], "noisy_labels_idx": [85, 86, 87, 97], "train_x": 85, "test_x": 85, "train_y_tru": 85, "test_y_tru": 85, "train_i": 85, "test_i": 85, "train_y_idx": 85, "test_y_idx": 85, "scatter": [85, 86, 87, 94, 97, 101], "black": [85, 86, 87, 92, 101], "cyan": [85, 86, 87], "plot_data": [85, 86, 87, 94, 97, 101], "fig": [85, 86, 87, 88, 92, 99, 101], "ax": [85, 86, 87, 88, 99, 101], "subplot": [85, 86, 87, 88, 99], "set_titl": [85, 86, 87, 88, 99], "set_xlabel": [85, 86, 87], "x_1": [85, 86, 87], "fontsiz": [85, 86, 87, 88, 94, 97], "set_ylabel": [85, 86, 87], "x_2": [85, 86, 87], "set_xlim": [85, 86, 87], "set_ylim": [85, 86, 87], "linestyl": [85, 86, 87], "circl": [85, 86, 87, 94, 97], "misclassifi": [85, 86, 87], "zip": [85, 86, 87, 88, 98, 103], "label_err": [85, 86, 87], "180": [85, 86, 87, 98], "marker": [85, 86, 87], "facecolor": [85, 86, 87], "edgecolor": [85, 86, 87], "linewidth": [85, 86, 87, 99], "title_fontproperti": [85, 86, 87], "semibold": [85, 86, 87], "first_legend": [85, 86, 87], "align": [85, 86, 87], "markerscal": 85, "second_legend": [85, 86, 87], "46": [85, 90, 92, 94, 98], "gca": [85, 86, 87], "add_artist": [85, 86, 87], "tight_layout": [85, 86, 87], "ideal": [85, 86, 87], "simplic": [85, 97], "327": [85, 98], "9297": 85, "000124": 85, "259": 85, "000725": 85, "269": 85, "000794": 85, "002061": 85, "125": [85, 86], "002908": 85, "fly": [85, 92], "feed": [85, 93], "simul": 85, "tqdm": [85, 88], "sleep": [85, 92], "generate_stream": 85, "sleep_tim": 85, "desc": 85, "singleton_stream": 85, "seamless": [85, 93], "singleton": 85, "batched_stream": 85, "processed_singleton": 85, "suggested_label": [85, 91], "250997": 85, "285757": 85, "43": [85, 86, 92, 94, 98], "120906": 85, "principl": 85, "processed_batch": 85, "51": [85, 86, 87, 90, 92, 94, 98], "002748": 85, "189996": 85, "093505": 85, "037250": 85, "149": [85, 98], "076397": 85, "154": 85, "294010": 85, "160": [85, 91, 101], "073622": 85, "166": [85, 88], "140832": 85, "167": [85, 92, 94, 98], "041743": 85, "181": 85, "169429": 85, "127304": 85, "235": [85, 98], "090310": 85, "254": [85, 92, 98], "183343": 85, "256": [85, 92, 93, 98], "048720": 85, "263": [85, 97, 98], "138820": 85, "292": 85, "239609": 85, "295": [85, 98], "022075": 85, "306": 85, "103040": 85, "343": 85, "234755": 85, "354": 85, "001612": 85, "359": 85, "068359": 85, "367": [85, 101], "015793": 85, "368": 85, "029022": 85, "391": 85, "106761": 85, "troublesom": 85, "623844": 85, "812647": 85, "816854": 85, "661968": 85, "632244": 85, "395": 85, "474599": 85, "396": 85, "653901": 85, "397": 85, "584554": 85, "398": 85, "817287": 85, "399": 85, "881545": 85, "183": [85, 88], "937927": 85, "309": 85, "939505": 85, "133": 85, "947290": 85, "177": [85, 103], "952187": 85, "314": [85, 98], "997293": 85, "27": [85, 90, 92, 94, 98, 103], "655501": 85, "3603": 85, "173": [85, 98], "000330": 85, "000626": 85, "296": 85, "002004": 85, "304": 85, "165496": 85, "275": [85, 97], "179811": 85, "001317": 85, "005943": 85, "001426": 85, "320": [85, 98], "186355": 85, "349": 85, "187305": 85, "393": 85, "169838": 85, "185770": 85, "369889": 85, "285297": 85, "406162": 85, "516543": 85, "440142": 85, "476283": 85, "382757": 85, "466786": 85, "522078": 85, "276298": 85, "328181": 85, "409633": 85, "281425": 85, "518102": 85, "360596": 85, "underneath": 86, "hood": [86, 93], "alert": 86, "introduct": 86, "mayb": [86, 87, 91], "your_feature_matrix": [86, 87], "dup": [86, 87], "45": [86, 87, 92, 94, 98], "remaind": 86, "modal": [86, 87, 93, 96], "132": [86, 87, 94, 98], "9318": 86, "006940": 86, "007830": 86, "40": [86, 87, 91, 92, 103], "014828": 86, "107": [86, 87, 94, 97], "021241": 86, "026407": 86, "notic": [86, 94, 96, 98], "3558": [86, 87], "126": [86, 87, 94, 98], "006636": [86, 87], "130": [86, 87], "012571": [86, 87], "129": [86, 87], "127": [86, 87], "014909": [86, 87], "128": [86, 87, 88], "017443": [86, 87], "6160": [86, 87], "is_near_duplicate_issu": [86, 87, 88, 90, 91, 93, 94], "131": [86, 87, 102], "000000e": [86, 87], "000002": [86, 87], "463180e": [86, 87], "07": [86, 87, 88, 90, 94, 98, 101], "161148": [86, 87], "859087e": [86, 87], "30": [86, 87, 88, 92, 93, 97, 102, 103], "3453": 86, "029542": 86, "031182": 86, "057961": 86, "058244": 86, "348": 86, "378": 86, "357": 86, "34": [86, 92, 94, 96, 98, 103], "54": [86, 92, 94, 98], "039122": 86, "044598": 86, "105": [86, 98], "105196": 86, "133654": 86, "168033": 86, "101107": 86, "37": [86, 92], "183382": 86, "109": [86, 92, 98], "209259": 86, "211042": 86, "221316": 86, "average_ood_scor": 86, "34530442089193386": 86, "52": [86, 92, 98, 103], "169820": 86, "087324e": 86, "259024": 86, "583757e": 86, "91": [86, 98], "346458": 86, "341292e": 86, "specfi": 86, "new_lab": 86, "scoring_funct": 86, "div": 86, "rem": 86, "inv_scal": 86, "49": [86, 92, 94, 98, 103], "superstitionissuemanag": 86, "unlucki": 86, "superstit": 86, "to_seri": 86, "issues_mask": 86, "summary_scor": 86, "9242": 86, "is_superstition_issu": 86, "superstition_scor": 86, "26": [86, 88, 92, 94, 96, 98], "047581": 86, "090635": 86, "129591": 86, "164840": 86, "lurk": [87, 88, 94], "_split": 87, "737": 87, "thoroughli": 87, "904": 87, "_base": [87, 88, 90, 91, 94], "246": [87, 88, 90, 91, 94, 98], "efficiencywarn": [87, 88, 90, 91, 94], "sort_graph_by_row_valu": [87, 88, 90, 91, 94], "warn_when_not_sort": [87, 88, 90, 91, 94], "8561": 87, "001908": 87, "003564": 87, "007331": 87, "008963": 87, "009664": 87, "0227": 87, "is_class_imbalance_issu": 87, "022727": 87, "conceptu": 87, "856061": 87, "355772": 87, "616034": 87, "821750": 87, "901562": 87, "betweeen": 87, "is_null_issu": 87, "is_non_iid_issu": [87, 90, 91, 94], "is_underperforming_group_issu": 87, "859131": 87, "417707": 87, "664083": 87, "970324": 87, "816953": 87, "375317": 87, "641516": 87, "890575": 87, "531021": 87, "460593": 87, "601188": 87, "826147": 87, "752808": 87, "321635": 87, "562539": 87, "948362": 87, "090243": 87, "472909": 87, "746763": 87, "878267": 87, "examples_w_issu": [87, 93], "013445": 87, "025184": 87, "026376": 87, "inde": [87, 91], "miscellan": [87, 103], "428571": 87, "111111": 87, "571429": 87, "407407": 87, "592593": 87, "337838": 87, "092593": 87, "662162": 87, "333333": [87, 92], "952381": 87, "666667": 87, "portion": 87, "huge": [87, 94], "worri": [87, 91], "critic": 87, "60": [88, 94, 101], "torchvis": [88, 99], "tensordataset": 88, "stratifiedkfold": [88, 97], "autonotebook": 88, "fashion_mnist": 88, "num_row": 88, "60000": 88, "transformed_dataset": 88, "with_format": 88, "255": [88, 92], "cpu_count": 88, "torch_dataset": 88, "quick": [88, 97, 99], "super": [88, 90, 91], "relu": 88, "batchnorm2d": 88, "maxpool2d": 88, "lazylinear": 88, "flatten": 88, "get_test_accuraci": 88, "testload": [88, 99], "energi": 88, "trainload": [88, 99], "n_epoch": 88, "patienc": 88, "criterion": 88, "crossentropyloss": 88, "adamw": 88, "best_test_accuraci": 88, "start_epoch": 88, "running_loss": 88, "best_epoch": 88, "end_epoch": 88, "3f": [88, 101], "acc": [88, 94], "time_taken": 88, "compute_embed": 88, "compute_pred_prob": 88, "train_batch_s": 88, "num_work": 88, "worker": [88, 103], "train_id_list": 88, "test_id_list": 88, "train_id": 88, "test_id": 88, "embeddings_model": 88, "ntrain": 88, "trainset": 88, "testset": 88, "pin_memori": 88, "fold_embed": 88, "fold_pred_prob": 88, "finish": 88, "482": 88, "720": 88, "424": 88, "329": [88, 98], "88": [88, 92, 93, 94, 97, 98, 101], "195": 88, "063": 88, "493": 88, "060": 88, "330": [88, 98], "505": 88, "010": 88, "476": 88, "340": 88, "198": [88, 94, 98], "328": [88, 98], "310": 88, "970": 88, "reorder": 88, "hstack": [88, 93, 94, 96], "vision": 88, "grayscal": 88, "max_preval": 88, "7714": 88, "3772": 88, "3585": 88, "3651": 88, "27080": 88, "873833e": 88, "40378": 88, "915575e": 88, "25316": 88, "390277e": 88, "06": [88, 94, 98, 103], "2090": 88, "751164e": 88, "14999": 88, "881301e": 88, "9569": 88, "11262": 88, "000003": 88, "coat": [88, 92], "shirt": [88, 92], "19228": 88, "000010": 88, "dress": 88, "32657": 88, "000013": 88, "bag": [88, 92, 99, 100], "21282": 88, "000016": 88, "53564": 88, "000018": 88, "pullov": 88, "6321": 88, "30968": 88, "001267": 88, "30659": 88, "000022": [88, 103], "47824": 88, "001454": 88, "3370": 88, "000026": 88, "54565": 88, "001854": 88, "9762": 88, "258": 88, "47139": 88, "000033": 88, "166980": 88, "986195": 88, "997205": 88, "sandal": [88, 92], "948781": 88, "999358": 88, "54078": 88, "17371": 88, "000025": 88, "plot_label_issue_exampl": 88, "ncol": [88, 99], "nrow": [88, 99], "ceil": 88, "axes_list": 88, "label_issue_indic": 88, "gl": 88, "sl": 88, "fontdict": 88, "imshow": [88, 99], "cmap": [88, 101], "grai": 88, "subplots_adjust": 88, "hspace": 88, "outsiz": 88, "outlier_issu": [88, 91], "outlier_issues_df": 88, "depict": [88, 97, 98, 99, 100, 102], "plot_outlier_issues_exampl": 88, "n_comparison_imag": 88, "sample_from_class": 88, "number_of_sampl": 88, "non_outlier_indic": 88, "isnul": 88, "non_outlier_indices_excluding_curr": 88, "sampled_indic": 88, "label_scores_of_sampl": 88, "top_score_indic": 88, "top_label_indic": 88, "sampled_imag": 88, "get_image_given_label_and_sampl": 88, "image_from_dataset": 88, "corresponding_label": 88, "comparison_imag": 88, "images_to_plot": 88, "idlist": 88, "iterrow": 88, "near_duplicate_issu": [88, 93], "closest": 88, "counterpart": 88, "near_duplicate_issues_df": 88, "plot_near_duplicate_issue_exampl": 88, "seen_id_pair": 88, "get_image_and_given_label_and_predicted_label": 88, "duplicate_imag": 88, "nd_set": 88, "challeng": 88, "dark_issu": 88, "reveal": [88, 98, 102], "dark_scor": 88, "dark_issues_df": 88, "is_dark_issu": 88, "34848": 88, "203922": 88, "50270": 88, "204588": 88, "3936": 88, "213098": 88, "733": 88, "217686": 88, "8094": 88, "230118": 88, "plot_image_issue_exampl": 88, "28": [88, 91, 92, 94, 96, 103], "difficult": 88, "disproportion": 88, "lowinfo_issu": 88, "low_information_scor": 88, "lowinfo_issues_df": 88, "is_low_information_issu": 88, "53050": 88, "067975": 88, "40875": 88, "089929": 88, "9594": 88, "092601": 88, "34825": 88, "107744": 88, "37530": 88, "108516": 88, "lot": 88, "histgradientboostingclassifi": 90, "cat_featur": 90, "boost": [90, 93, 96, 101], "xgboost": [90, 93, 101], "think": [90, 91, 93, 97, 102, 103], "nonzero": 90, "358": 90, "294": [90, 98], "941": 90, "7109": 90, "000005": [90, 91], "886": 90, "000059": 90, "709": 90, "000104": 90, "723": 90, "000169": 90, "689": 90, "000181": 90, "3590": 90, "051882e": 90, "683133e": 90, "536582e": 90, "406589e": 90, "324246e": 90, "6165": 90, "582": 90, "185": [90, 92, 98, 103], "187": [90, 92], "898": 90, "0014": [90, 92], "595": 90, "702427": 90, "147": [90, 94, 98], "711186": 90, "157": [90, 94], "721394": 90, "771": 90, "731979": 90, "740335": 90, "0014153602099278074": 90, "issue_result": 90, "000842": 90, "555944": 90, "004374": 90, "sorted_issu": 90, "73": [90, 92, 97, 98, 101], "deserv": 90, "outlier_result": 90, "sorted_outli": 90, "56": [90, 92, 101], "96": [90, 92, 94, 97, 98, 101], "lt": [90, 91, 92, 96, 99], "style": [90, 102], "font": 90, "18px": 90, "ff00ff": 90, "bac": 90, "unintend": [90, 91], "duplicate_result": 90, "690": 90, "perhap": [90, 94, 96], "twice": 90, "67": [90, 92, 98, 101], "wari": [90, 91, 93], "dive": 91, "text_embed": 91, "data_dict": [91, 94, 96], "85": [91, 98], "38": [91, 92, 98], "9710": 91, "981": 91, "974": 91, "000146": 91, "982": [91, 92], "000224": 91, "971": 91, "000507": 91, "980": [91, 92], "000960": 91, "3584": 91, "994": 91, "009642": 91, "999": 91, "013067": 91, "013841": 91, "433": 91, "014722": 91, "989": 91, "018224": 91, "6070": 91, "095724": 91, "148": 91, "006237": 91, "546": 91, "099341": 91, "514": 91, "006485": 91, "481": 91, "123418": 91, "008165": 91, "0000": [91, 92, 94], "313": [91, 98], "564102": 91, "572258": 91, "574915": 91, "31": [91, 92, 94, 96, 98], "575507": 91, "575874": 91, "792090": 91, "257611": 91, "698710": 91, "182121": 91, "771619": 91, "data_with_suggested_label": 91, "withdraw": 91, "monei": 91, "lowest_quality_outli": 91, "OR": 91, "636c65616e6c616220697320617765736f6d6521": 91, "phone": [91, 92], "gone": 91, "gt": [91, 96, 103], "samp": 91, "br": 91, "press": [91, 103], "nonsens": 91, "sens": 91, "detriment": 91, "duplicate_issu": 91, "fee": 91, "pai": 91, "go": [91, 92, 94], "strongli": 91, "p_valu": 91, "benign": 91, "curat": 91, "refin": 92, "instruct": 92, "studi": [92, 98], "mnist_test_set": 92, "imagenet_val_set": 92, "tench": 92, "goldfish": 92, "white": [92, 103], "shark": 92, "tiger": 92, "hammerhead": 92, "electr": 92, "rai": 92, "stingrai": 92, "cock": 92, "hen": 92, "ostrich": 92, "brambl": 92, "goldfinch": 92, "hous": 92, "finch": 92, "junco": 92, "indigo": 92, "bunt": 92, "american": [92, 103], "robin": 92, "bulbul": 92, "jai": 92, "magpi": 92, "chickade": 92, "dipper": 92, "kite": 92, "bald": 92, "eagl": 92, "vultur": 92, "grei": 92, "owl": 92, "salamand": 92, "smooth": 92, "newt": 92, "spot": [92, 93, 98], "axolotl": 92, "bullfrog": 92, "tree": 92, "frog": [92, 99], "tail": 92, "loggerhead": 92, "sea": 92, "turtl": 92, "leatherback": 92, "mud": 92, "terrapin": 92, "band": 92, "gecko": 92, "green": [92, 103], "iguana": 92, "carolina": 92, "anol": 92, "desert": 92, "grassland": 92, "whiptail": 92, "lizard": 92, "agama": 92, "frill": 92, "neck": 92, "allig": 92, "gila": 92, "monster": 92, "european": 92, "chameleon": 92, "komodo": 92, "dragon": 92, "nile": 92, "crocodil": 92, "triceratop": 92, "worm": 92, "snake": 92, "ring": 92, "eastern": 92, "hog": 92, "nose": 92, "kingsnak": 92, "garter": 92, "water": 92, "vine": 92, "night": 92, "boa": 92, "constrictor": 92, "african": 92, "rock": 92, "indian": 92, "cobra": 92, "mamba": 92, "saharan": 92, "horn": 92, "viper": 92, "diamondback": 92, "rattlesnak": 92, "sidewind": 92, "trilobit": 92, "harvestman": 92, "scorpion": 92, "yellow": 92, "garden": 92, "spider": 92, "barn": 92, "southern": 92, "widow": 92, "tarantula": 92, "wolf": 92, "tick": 92, "centiped": 92, "grous": 92, "ptarmigan": 92, "ruf": 92, "prairi": 92, "peacock": 92, "quail": 92, "partridg": 92, "parrot": 92, "macaw": 92, "sulphur": 92, "crest": 92, "cockatoo": 92, "lorikeet": 92, "coucal": 92, "bee": 92, "eater": 92, "hornbil": 92, "hummingbird": 92, "jacamar": 92, "toucan": 92, "breast": 92, "mergans": 92, "goos": 92, "swan": 92, "tusker": 92, "echidna": 92, "platypu": 92, "wallabi": 92, "koala": 92, "wombat": 92, "jellyfish": 92, "anemon": 92, "brain": 92, "coral": 92, "flatworm": 92, "nematod": 92, "conch": 92, "snail": 92, "slug": 92, "chiton": 92, "chamber": 92, "nautilu": 92, "dung": 92, "crab": 92, "fiddler": 92, "king": 92, "lobster": 92, "spini": 92, "crayfish": 92, "hermit": 92, "isopod": 92, "stork": 92, "spoonbil": 92, "flamingo": 92, "heron": 92, "egret": 92, "bittern": 92, "crane": 92, "bird": [92, 99], "limpkin": 92, "gallinul": 92, "coot": 92, "bustard": 92, "ruddi": 92, "turnston": 92, "dunlin": 92, "redshank": 92, "dowitch": 92, "oystercatch": 92, "pelican": 92, "penguin": 92, "albatross": 92, "whale": 92, "killer": 92, "dugong": 92, "lion": 92, "chihuahua": 92, "japanes": 92, "chin": 92, "maltes": 92, "pekinges": 92, "shih": 92, "tzu": 92, "charl": 92, "spaniel": 92, "papillon": 92, "terrier": 92, "rhodesian": 92, "ridgeback": 92, "afghan": [92, 103], "hound": 92, "basset": 92, "beagl": 92, "bloodhound": 92, "bluetick": 92, "coonhound": 92, "tan": 92, "walker": 92, "foxhound": 92, "redbon": 92, "borzoi": 92, "irish": 92, "wolfhound": 92, "italian": 92, "greyhound": 92, "whippet": 92, "ibizan": 92, "norwegian": 92, "elkhound": 92, "otterhound": 92, "saluki": 92, "scottish": 92, "deerhound": 92, "weimaran": 92, "staffordshir": 92, "bull": 92, "bedlington": 92, "border": 92, "kerri": 92, "norfolk": 92, "norwich": 92, "yorkshir": 92, "wire": 92, "fox": 92, "lakeland": 92, "sealyham": 92, "airedal": 92, "cairn": 92, "australian": 92, "dandi": 92, "dinmont": 92, "boston": 92, "miniatur": 92, "schnauzer": 92, "giant": 92, "tibetan": 92, "silki": 92, "wheaten": 92, "west": 92, "highland": 92, "lhasa": 92, "apso": 92, "flat": 92, "retriev": 92, "curli": 92, "golden": 92, "labrador": 92, "chesapeak": 92, "bai": 92, "german": [92, 103], "shorthair": 92, "pointer": 92, "vizsla": 92, "setter": 92, "gordon": 92, "brittani": 92, "clumber": 92, "springer": 92, "welsh": 92, "cocker": 92, "sussex": 92, "kuvasz": 92, "schipperk": 92, "groenendael": 92, "malinoi": 92, "briard": 92, "kelpi": 92, "komondor": 92, "sheepdog": 92, "shetland": 92, "colli": 92, "bouvier": 92, "de": 92, "flandr": 92, "rottweil": 92, "shepherd": 92, "dobermann": 92, "pinscher": 92, "swiss": [92, 103], "mountain": 92, "bernes": 92, "appenzel": 92, "sennenhund": 92, "entlebuch": 92, "boxer": 92, "bullmastiff": 92, "mastiff": 92, "french": 92, "bulldog": 92, "dane": 92, "st": 92, "bernard": 92, "huski": 92, "alaskan": 92, "malamut": 92, "siberian": 92, "dalmatian": 92, "affenpinsch": 92, "basenji": 92, "pug": 92, "leonberg": 92, "newfoundland": 92, "pyrenean": 92, "samoi": 92, "pomeranian": 92, "chow": 92, "keeshond": 92, "griffon": 92, "bruxelloi": 92, "pembrok": 92, "corgi": 92, "cardigan": 92, "poodl": 92, "mexican": 92, "hairless": 92, "tundra": 92, "coyot": 92, "dingo": 92, "dhole": 92, "wild": 92, "hyena": 92, "kit": 92, "arctic": 92, "tabbi": 92, "persian": 92, "siames": 92, "egyptian": 92, "mau": 92, "cougar": 92, "lynx": 92, "leopard": 92, "snow": 92, "jaguar": 92, "cheetah": 92, "brown": [92, 102], "bear": 92, "polar": 92, "sloth": 92, "mongoos": 92, "meerkat": 92, "beetl": 92, "ladybug": 92, "longhorn": 92, "leaf": 92, "rhinocero": 92, "weevil": 92, "ant": 92, "grasshopp": 92, "cricket": 92, "stick": 92, "insect": 92, "cockroach": 92, "manti": 92, "cicada": 92, "leafhopp": 92, "lacew": 92, "dragonfli": 92, "damselfli": 92, "admir": 92, "ringlet": 92, "monarch": 92, "butterfli": 92, "gossam": 92, "wing": 92, "starfish": 92, "urchin": 92, "cucumb": 92, "cottontail": 92, "rabbit": 92, "hare": 92, "angora": 92, "hamster": 92, "porcupin": 92, "squirrel": 92, "marmot": 92, "beaver": 92, "guinea": 92, "pig": 92, "sorrel": 92, "zebra": 92, "boar": 92, "warthog": 92, "hippopotamu": 92, "ox": 92, "buffalo": 92, "bison": 92, "bighorn": 92, "sheep": 92, "alpin": 92, "ibex": 92, "hartebeest": 92, "impala": 92, "gazel": 92, "dromedari": 92, "llama": 92, "weasel": 92, "mink": 92, "polecat": 92, "foot": 92, "ferret": 92, "otter": 92, "skunk": 92, "badger": 92, "armadillo": 92, "toed": 92, "orangutan": 92, "gorilla": 92, "chimpanze": 92, "gibbon": 92, "siamang": 92, "guenon": 92, "pata": 92, "monkei": 92, "baboon": 92, "macaqu": 92, "langur": 92, "colobu": 92, "probosci": 92, "marmoset": 92, "capuchin": 92, "howler": 92, "titi": 92, "geoffroi": 92, "lemur": 92, "indri": 92, "asian": 92, "eleph": 92, "bush": 92, "snoek": 92, "eel": 92, "coho": 92, "salmon": 92, "beauti": 92, "clownfish": 92, "sturgeon": 92, "garfish": 92, "lionfish": 92, "pufferfish": 92, "abacu": 92, "abaya": 92, "academ": 92, "gown": 92, "accordion": 92, "acoust": 92, "guitar": 92, "aircraft": 92, "carrier": 92, "airlin": 92, "airship": 92, "altar": 92, "ambul": 92, "amphibi": 92, "clock": [92, 103], "apiari": 92, "apron": 92, "wast": 92, "assault": 92, "rifl": 92, "backpack": 92, "bakeri": 92, "balanc": 92, "beam": 92, "balloon": 92, "ballpoint": 92, "pen": 92, "aid": 92, "banjo": 92, "balust": 92, "barbel": 92, "barber": 92, "chair": [92, 98], "barbershop": 92, "baromet": 92, "barrel": 92, "wheelbarrow": 92, "basebal": 92, "basketbal": 92, "bassinet": 92, "bassoon": 92, "swim": 92, "cap": 92, "bath": 92, "towel": 92, "bathtub": 92, "station": 92, "wagon": 92, "lighthous": 92, "beaker": 92, "militari": 92, "beer": 92, "bottl": 92, "glass": 92, "bell": 92, "cot": 92, "bib": 92, "bicycl": [92, 102], "bikini": 92, "binder": 92, "binocular": 92, "birdhous": 92, "boathous": 92, "bobsleigh": 92, "bolo": 92, "tie": 92, "poke": 92, "bonnet": 92, "bookcas": 92, "bookstor": 92, "bow": 92, "brass": 92, "bra": 92, "breakwat": 92, "breastplat": 92, "broom": 92, "bucket": 92, "buckl": 92, "bulletproof": 92, "vest": 92, "butcher": 92, "shop": 92, "taxicab": 92, "cauldron": 92, "candl": 92, "cannon": 92, "cano": 92, "mirror": [92, 98], "carousel": 92, "tool": [92, 94, 96], "carton": 92, "wheel": 92, "teller": 92, "cassett": 92, "player": 92, "castl": 92, "catamaran": 92, "cd": 92, "cello": 92, "mobil": [92, 103], "chain": 92, "fenc": [92, 102], "mail": 92, "chainsaw": 92, "chest": 92, "chiffoni": 92, "chime": 92, "china": 92, "cabinet": 92, "christma": 92, "stock": 92, "church": 92, "movi": 92, "theater": 92, "cleaver": 92, "cliff": 92, "dwell": 92, "cloak": 92, "clog": 92, "cocktail": 92, "shaker": 92, "coffe": 92, "mug": 92, "coffeemak": 92, "coil": 92, "lock": 92, "keyboard": 92, "confectioneri": 92, "ship": [92, 99], "corkscrew": 92, "cornet": 92, "cowboi": 92, "boot": 92, "hat": 92, "cradl": 92, "crash": 92, "helmet": 92, "crate": 92, "infant": 92, "bed": 92, "crock": 92, "pot": 92, "croquet": 92, "crutch": 92, "cuirass": 92, "dam": 92, "desk": 92, "desktop": 92, "rotari": 92, "dial": 92, "telephon": 92, "diaper": 92, "watch": 92, "dine": 92, "dishcloth": 92, "dishwash": 92, "disc": 92, "brake": 92, "dock": 92, "sled": 92, "dome": 92, "doormat": 92, "drill": 92, "rig": 92, "drum": 92, "drumstick": 92, "dumbbel": 92, "dutch": 92, "oven": 92, "fan": 92, "locomot": 92, "entertain": 92, "center": 92, "envelop": 92, "espresso": 92, "powder": 92, "feather": 92, "fireboat": 92, "engin": [92, 102], "screen": 92, "sheet": 92, "flagpol": 92, "flute": 92, "footbal": 92, "forklift": 92, "fountain": 92, "poster": 92, "freight": 92, "fry": 92, "pan": 92, "fur": 92, "garbag": 92, "ga": 92, "pump": 92, "goblet": 92, "kart": 92, "golf": 92, "cart": 92, "gondola": 92, "gong": 92, "grand": 92, "piano": 92, "greenhous": 92, "grill": 92, "groceri": 92, "guillotin": 92, "barrett": 92, "hair": 92, "sprai": 92, "hammer": 92, "dryer": 92, "hand": [92, 94], "handkerchief": 92, "drive": 92, "harmonica": 92, "harp": 92, "harvest": 92, "hatchet": 92, "holster": 92, "honeycomb": 92, "hoop": 92, "skirt": 92, "horizont": 92, "bar": 92, "drawn": 92, "hourglass": 92, "ipod": 92, "cloth": 92, "iron": 92, "jack": 92, "lantern": 92, "jean": 92, "jeep": 92, "jigsaw": 92, "puzzl": 92, "pull": 92, "rickshaw": 92, "joystick": 92, "kimono": 92, "knee": 92, "pad": 92, "knot": 92, "ladl": 92, "lampshad": 92, "laptop": 92, "lawn": 92, "mower": 92, "knife": 92, "lifeboat": 92, "lighter": 92, "limousin": 92, "ocean": 92, "liner": 92, "lipstick": 92, "slip": 92, "shoe": 92, "lotion": 92, "speaker": 92, "loup": 92, "sawmil": 92, "magnet": 92, "compass": 92, "mailbox": 92, "tight": 92, "tank": 92, "manhol": 92, "maraca": 92, "marimba": 92, "maypol": 92, "maze": 92, "cup": [92, 98], "medicin": 92, "megalith": 92, "microphon": 92, "microwav": 92, "milk": 92, "minibu": 92, "miniskirt": 92, "minivan": 92, "missil": 92, "mitten": [92, 93], "mix": 92, "bowl": 92, "modem": 92, "monasteri": 92, "mope": 92, "mortar": 92, "mosqu": 92, "mosquito": 92, "scooter": 92, "bike": 92, "tent": 92, "mous": [92, 93], "mousetrap": 92, "van": 92, "muzzl": 92, "nail": 92, "brace": 92, "necklac": 92, "nippl": 92, "obelisk": 92, "obo": 92, "ocarina": 92, "odomet": 92, "oil": 92, "oscilloscop": 92, "overskirt": 92, "bullock": 92, "oxygen": 92, "packet": 92, "paddl": 92, "padlock": 92, "paintbrush": 92, "pajama": 92, "palac": [92, 103], "parachut": 92, "park": 92, "bench": 92, "meter": 92, "passeng": 92, "patio": 92, "payphon": 92, "pedest": 92, "pencil": 92, "perfum": 92, "petri": 92, "dish": 92, "photocopi": 92, "plectrum": 92, "pickelhaub": 92, "picket": 92, "pickup": 92, "pier": 92, "piggi": 92, "pill": 92, "pillow": 92, "ping": 92, "pong": 92, "pinwheel": 92, "pirat": 92, "pitcher": 92, "plane": 92, "planetarium": 92, "plastic": 92, "plate": 92, "rack": 92, "plow": 92, "plunger": 92, "polaroid": 92, "camera": 92, "pole": [92, 102], "polic": 92, "poncho": 92, "billiard": 92, "soda": 92, "potter": 92, "prayer": 92, "rug": 92, "printer": 92, "prison": 92, "projectil": 92, "projector": 92, "hockei": 92, "puck": 92, "punch": 92, "purs": 92, "quill": 92, "quilt": 92, "race": 92, "racket": 92, "radiat": 92, "radio": 92, "telescop": 92, "rain": 92, "recreat": 92, "reel": 92, "reflex": 92, "refriger": 92, "remot": 92, "restaur": 92, "revolv": 92, "rotisseri": 92, "eras": 92, "rugbi": 92, "ruler": 92, "safe": 92, "safeti": 92, "salt": 92, "sarong": 92, "saxophon": 92, "scabbard": 92, "school": 92, "bu": [92, 102], "schooner": 92, "scoreboard": 92, "crt": 92, "screw": 92, "screwdriv": 92, "seat": 92, "belt": 92, "sew": 92, "shield": 92, "shoji": 92, "basket": 92, "shovel": 92, "shower": 92, "curtain": 92, "ski": 92, "door": 92, "slot": 92, "snorkel": 92, "snowmobil": 92, "snowplow": 92, "soap": 92, "dispens": 92, "soccer": [92, 103], "sock": [92, 93], "solar": 92, "thermal": 92, "collector": 92, "sombrero": 92, "soup": 92, "heater": 92, "shuttl": 92, "spatula": 92, "motorboat": 92, "web": 92, "spindl": 92, "sport": [92, 103], "spotlight": 92, "stage": 92, "steam": 92, "arch": 92, "bridg": 92, "steel": 92, "stethoscop": 92, "scarf": 92, "stone": 92, "wall": [92, 102], "stopwatch": 92, "stove": 92, "strainer": 92, "tram": 92, "stretcher": 92, "couch": 92, "stupa": 92, "submarin": 92, "sundial": 92, "sunglass": 92, "sunscreen": 92, "suspens": 92, "mop": 92, "sweatshirt": 92, "swimsuit": 92, "swing": 92, "switch": 92, "syring": 92, "lamp": 92, "tape": 92, "teapot": 92, "teddi": 92, "televis": [92, 103], "tenni": 92, "thatch": 92, "roof": 92, "front": 92, "thimbl": 92, "thresh": 92, "throne": 92, "tile": 92, "toaster": 92, "tobacco": 92, "toilet": 92, "totem": 92, "tow": 92, "tractor": 92, "semi": 92, "trailer": 92, "trai": 92, "trench": 92, "tricycl": 92, "trimaran": 92, "tripod": 92, "triumphal": 92, "trolleybu": 92, "trombon": 92, "tub": 92, "turnstil": 92, "typewrit": 92, "umbrella": 92, "unicycl": 92, "upright": 92, "vacuum": 92, "cleaner": 92, "vase": 92, "vault": 92, "velvet": 92, "vend": 92, "vestment": 92, "viaduct": 92, "violin": 92, "volleybal": 92, "waffl": 92, "wallet": 92, "wardrob": 92, "sink": 92, "wash": 92, "jug": 92, "tower": 92, "whiskei": 92, "whistl": 92, "wig": 92, "shade": [92, 102], "windsor": 92, "wine": 92, "wok": 92, "wooden": 92, "spoon": 92, "wool": 92, "rail": 92, "shipwreck": 92, "yawl": 92, "yurt": 92, "comic": 92, "book": 92, "crossword": 92, "traffic": [92, 98, 102], "sign": [92, 102, 103], "dust": 92, "jacket": [92, 98], "menu": 92, "guacamol": 92, "consomm": 92, "trifl": 92, "ic": 92, "cream": 92, "pop": 92, "baguett": 92, "bagel": 92, "pretzel": 92, "cheeseburg": 92, "mash": 92, "potato": 92, "cabbag": 92, "broccoli": 92, "cauliflow": 92, "zucchini": 92, "spaghetti": 92, "squash": 92, "acorn": 92, "butternut": 92, "artichok": 92, "pepper": [92, 93], "cardoon": 92, "mushroom": 92, "granni": 92, "smith": 92, "strawberri": 92, "orang": 92, "lemon": 92, "pineappl": 92, "banana": 92, "jackfruit": 92, "custard": 92, "appl": 92, "pomegran": 92, "hai": 92, "carbonara": 92, "chocol": 92, "syrup": 92, "dough": 92, "meatloaf": 92, "pizza": 92, "pie": 92, "burrito": 92, "eggnog": 92, "alp": 92, "bubbl": 92, "reef": 92, "geyser": 92, "lakeshor": 92, "promontori": 92, "shoal": 92, "seashor": 92, "vallei": 92, "volcano": 92, "bridegroom": 92, "scuba": 92, "diver": 92, "rapese": 92, "daisi": 92, "ladi": 92, "slipper": 92, "corn": 92, "rose": 92, "hip": 92, "chestnut": 92, "fungu": 92, "agar": 92, "gyromitra": 92, "stinkhorn": 92, "earth": 92, "star": 92, "wood": 92, "bolet": 92, "ear": 92, "cifar10_test_set": 92, "airplan": [92, 99], "automobil": [92, 99], "deer": [92, 99], "cifar100_test_set": 92, "aquarium_fish": 92, "babi": 92, "boi": 92, "camel": 92, "caterpillar": 92, "cattl": [92, 103], "cloud": 92, "dinosaur": 92, "dolphin": 92, "flatfish": 92, "forest": 92, "girl": 92, "kangaroo": 92, "lawn_mow": 92, "man": 92, "maple_tre": 92, "motorcycl": [92, 102], "oak_tre": 92, "orchid": 92, "palm_tre": 92, "pear": 92, "pickup_truck": 92, "pine_tre": 92, "plain": 92, "poppi": 92, "possum": 92, "raccoon": 92, "road": [92, 102], "rocket": 92, "seal": 92, "shrew": 92, "skyscrap": 92, "streetcar": 92, "sunflow": 92, "sweet_pepp": 92, "trout": 92, "tulip": 92, "willow_tre": 92, "woman": [92, 98], "caltech256": 92, "ak47": 92, "bat": 92, "glove": 92, "birdbath": 92, "blimp": 92, "bonsai": 92, "boom": 92, "breadmak": 92, "buddha": 92, "bulldoz": 92, "cactu": 92, "cake": 92, "tire": 92, "cartman": 92, "cereal": 92, "chandeli": 92, "chess": 92, "board": 92, "chimp": 92, "chopstick": 92, "coffin": 92, "coin": 92, "comet": 92, "cormor": 92, "globe": 92, "diamond": 92, "dice": 92, "doorknob": 92, "drink": 92, "straw": 92, "dumb": 92, "eiffel": 92, "elk": 92, "ewer": 92, "eyeglass": 92, "fern": 92, "fighter": 92, "jet": [92, 101], "extinguish": 92, "hydrant": 92, "firework": 92, "flashlight": 92, "floppi": 92, "fri": 92, "frisbe": 92, "galaxi": 92, "giraff": 92, "goat": 92, "gate": 92, "grape": 92, "pick": [92, 93], "hamburg": 92, "hammock": 92, "harpsichord": 92, "hawksbil": 92, "helicopt": 92, "hibiscu": 92, "homer": 92, "simpson": 92, "horsesho": 92, "air": 92, "skeleton": 92, "ibi": 92, "cone": 92, "iri": 92, "jesu": 92, "christ": 92, "joi": 92, "kayak": 92, "ketch": 92, "ladder": 92, "lath": 92, "licens": 92, "lightbulb": 92, "lightn": 92, "mandolin": 92, "mar": 92, "mattress": 92, "megaphon": 92, "menorah": 92, "microscop": 92, "minaret": 92, "minotaur": 92, "motorbik": 92, "mussel": 92, "neckti": 92, "octopu": 92, "palm": 92, "pilot": 92, "paperclip": 92, "shredder": 92, "pci": 92, "peopl": [92, 98], "pez": 92, "picnic": 92, "pram": 92, "prai": 92, "pyramid": 92, "rainbow": 92, "roulett": 92, "saddl": 92, "saturn": 92, "segwai": 92, "propel": 92, "sextant": 92, "music": 92, "skateboard": 92, "smokestack": 92, "sneaker": 92, "boat": 92, "stain": 92, "steer": 92, "stirrup": 92, "superman": 92, "sushi": 92, "armi": [92, 103], "sword": 92, "tambourin": 92, "teepe": 92, "court": 92, "theodolit": 92, "tomato": 92, "tombston": 92, "tour": 92, "pisa": 92, "treadmil": 92, "fork": 92, "tweezer": 92, "unicorn": 92, "vcr": 92, "waterfal": 92, "watermelon": 92, "weld": 92, "windmil": 92, "xylophon": 92, "yarmulk": 92, "yo": 92, "toad": 92, "twenty_news_test_set": 92, "alt": 92, "atheism": 92, "comp": 92, "graphic": [92, 102], "misc": [92, 103], "sy": 92, "ibm": 92, "pc": 92, "hardwar": 92, "mac": 92, "forsal": 92, "rec": 92, "sci": 92, "crypt": 92, "electron": 92, "med": 92, "soc": 92, "religion": 92, "christian": [92, 103], "talk": [92, 103], "polit": 92, "gun": 92, "mideast": 92, "amazon": 92, "neutral": 92, "imdb_test_set": 92, "all_class": 92, "20news_test_set": 92, "_load_classes_predprobs_label": 92, "dataset_nam": 92, "labelerror": 92, "url_bas": 92, "5392f6c71473055060be3044becdde1cbc18284d": 92, "url_label": 92, "original_test_label": 92, "_original_label": 92, "url_prob": 92, "cross_validated_predicted_prob": 92, "_pyx": 92, "num_part": 92, "datatset": 92, "bytesio": 92, "allow_pickl": 92, "pred_probs_part": 92, "url": 92, "_of_": 92, "nload": 92, "imdb": 92, "interpret": [92, 93, 94, 97, 101], "capit": 92, "29780": 92, "780": 92, "medic": [92, 103], "doctor": 92, "359223": 92, "640777": 92, "184": [92, 94], "258427": 92, "341176": 92, "263158": 92, "658824": 92, "337349": 92, "246575": 92, "662651": 92, "248": 92, "330000": 92, "355769": 92, "670000": 92, "251": [92, 98, 103], "252": [92, 103], "112": 92, "253": [92, 98], "022989": 92, "049505": 92, "190": [92, 94, 98], "66": 92, "002216": 92, "000974": 92, "59": [92, 98], "000873": 92, "000739": 92, "32635": 92, "32636": 92, "47": [92, 98], "32637": 92, "32638": 92, "32639": 92, "32640": 92, "051": 92, "002242": 92, "997758": 92, "002088": 92, "001045": 92, "997912": 92, "002053": 92, "997947": 92, "001980": 92, "000991": 92, "998020": 92, "001946": 92, "002915": 92, "998054": 92, "001938": 92, "002904": 92, "998062": 92, "001020": 92, "998980": 92, "001018": 92, "002035": 92, "998982": 92, "999009": 92, "0003": 92, "0002": 92, "36": [92, 103], "41": [92, 98, 101], "71": [92, 94, 98, 101], "071": 92, "067269": 92, "929": 92, "046": 92, "058243": 92, "954": 92, "035": 92, "032096": 92, "965": 92, "031": 92, "012232": 92, "969": 92, "022": 92, "025896": 92, "978": 92, "020": [92, 94], "013092": 92, "018": 92, "013065": 92, "016": 92, "030542": 92, "984": 92, "013": 92, "020833": 92, "987": 92, "012": 92, "010020": 92, "988": 92, "0073": 92, "0020": 92, "0016": 92, "0015": 92, "0013": 92, "0012": 92, "0010": 92, "0008": 92, "0007": 92, "0006": 92, "0005": 92, "0004": 92, "244": [92, 98], "98": [92, 93, 101], "452381": 92, "459770": 92, "72": [92, 94, 97, 101], "523364": 92, "460784": 92, "446602": 92, "57": [92, 94], "103774": 92, "030612": 92, "110092": 92, "049020": 92, "0034": 92, "0032": 92, "0026": 92, "0025": 92, "4945": 92, "4946": 92, "4947": 92, "4948": 92, "4949": 92, "4950": 92, "846": 92, "82": [92, 94, 98, 101], "7532": 92, "532": 92, "034483": 92, "009646": 92, "965517": 92, "030457": 92, "020513": 92, "969543": 92, "028061": 92, "035443": 92, "971939": 92, "025316": 92, "005168": 92, "974684": 92, "049751": 92, "979487": 92, "019920": 92, "042802": 92, "980080": 92, "017677": 92, "005115": 92, "982323": 92, "012987": 92, "005236": 92, "987013": 92, "012723": 92, "025126": 92, "987277": 92, "010989": 92, "008264": 92, "989011": 92, "010283": 92, "027778": 92, "989717": 92, "009677": 92, "990323": 92, "007614": 92, "010127": 92, "992386": 92, "005051": 92, "994949": 92, "005025": 92, "994975": 92, "005013": 92, "994987": 92, "001859": 92, "001328": 92, "000929": 92, "000664": 92, "186": [92, 94], "188": [92, 94, 97], "189": [92, 94], "snippet": 93, "nlp": [93, 103], "mind": [93, 94], "alphanumer": 93, "facilit": 93, "classlabel": 93, "guidanc": 93, "labels_str": 93, "datalab_str": 93, "labels_int": 93, "remap": 93, "datalab_int": 93, "my_dict": 93, "pet_nam": 93, "rover": 93, "rocki": 93, "speci": 93, "from_dict": 93, "datalab_dataset": 93, "number_of_class": 93, "total_number_of_data_point": 93, "alphabet": 93, "labels_proper_format": 93, "your_classifi": 93, "issues_datafram": 93, "class_predicted_for_flagged_exampl": 93, "class_predicted_for_all_exampl": 93, "grant": 93, "On": [93, 94, 98], "merged_dataset": 93, "label_column_nam": 93, "datataset": 93, "fair": [93, 94], "game": 93, "speedup": [93, 99], "flexibl": 93, "tempfil": 93, "mkdtemp": 93, "sped": 93, "anywai": 93, "pred_probs_merg": 93, "merge_rare_class": 93, "count_threshold": 93, "class_mapping_orig2new": 93, "heath_summari": 93, "num_examples_per_class": 93, "rare_class": 93, "num_classes_merg": 93, "other_class": 93, "labels_merg": 93, "new_c": 93, "merged_prob": 93, "new_class": 93, "original_class": 93, "num_check": 93, "ones_array_ref": 93, "isclos": 93, "though": [93, 94, 103], "successfulli": 93, "meaning": [93, 99], "virtuou": [93, 96], "cycl": [93, 96], "jointli": 93, "junk": 93, "clutter": 93, "unknown": 93, "caltech": 93, "combined_boolean_mask": 93, "mask1": 93, "mask2": 93, "gradientboostingclassifi": [93, 94], "true_error": [93, 94, 97], "101": [93, 98, 103], "102": [93, 97, 98], "104": [93, 94, 98], "model_to_find_error": 93, "model_to_return": 93, "cl0": 93, "randomizedsearchcv": 93, "expens": 93, "param_distribut": 93, "learning_r": [93, 94], "max_depth": [93, 94], "magnitud": 93, "coeffici": [93, 101], "optin": 93, "environ": [93, 94], "rerun": [93, 94], "cell": [93, 94], "unabl": [93, 94], "render": [93, 94], "nbviewer": [93, 94], "nbsp": [93, 94], "cleanlearninginot": [93, 94], "fittedcleanlearn": [93, 94], "linearregressionlinearregress": 93, "n_init": 93, "fit_predict": 93, "continuous_column": 93, "categorical_column": 93, "data_df": 93, "feature_a": 93, "feature_b": 93, "unexpectedli": 93, "emphas": 93, "crucial": 93, "merge_duplicate_set": 93, "merge_kei": 93, "construct_group_kei": 93, "merged_set": 93, "consolidate_set": 93, "tolist": [93, 97], "issubset": 93, "frozenset": 93, "sets_list": 93, "mutabl": 93, "new_set": 93, "current_set": 93, "intersecting_set": 93, "lowest_score_strategi": 93, "sub_df": 93, "idxmin": 93, "filter_near_dupl": 93, "strategy_fn": 93, "strategy_kwarg": 93, "duplicate_row": 93, "group_kei": 93, "to_keep_indic": 93, "groupbi": 93, "explod": 93, "to_remov": 93, "isin": [93, 99], "kept": 93, "ids_to_remove_seri": 93, "tmp": 93, "ipykernel_7630": 93, "1995098996": 93, "deprecationwarn": 93, "dataframegroupbi": 93, "include_group": 93, "silenc": 93, "assist": 93, "streamlin": 93, "ux": 93, "agpl": 93, "compani": 93, "commerci": 93, "alter": 93, "email": 93, "team": 93, "discuss": 93, "anywher": 93, "profession": 93, "expert": 93, "depth": 94, "survei": [94, 103], "focus": [94, 96, 97, 101], "scienc": 94, "multivariate_norm": [94, 96, 97], "make_data": [94, 96], "cov": [94, 96, 97], "avg_trac": [94, 97], "py_tru": 94, "noise_matrix_tru": 94, "noise_marix": 94, "s_test": 94, "noisy_test_label": 94, "purpl": 94, "val": 94, "namespac": 94, "exec": 94, "markerfacecolor": [94, 97], "markeredgecolor": [94, 97, 101], "markers": [94, 97, 101], "markeredgewidth": [94, 97, 101], "realist": 94, "7560": 94, "637318e": 94, "896262e": 94, "548391e": 94, "923417e": 94, "375075e": 94, "3454": 94, "014051": 94, "020451": 94, "249": [94, 98], "042594": 94, "043859": 94, "045954": 94, "6120": 94, "023714": 94, "007136": 94, "119": [94, 98], "107266": 94, "103": [94, 98], "033738": 94, "238": [94, 98], "119505": 94, "236": [94, 98], "037843": 94, "222": 94, "614915": 94, "122": [94, 98], "624422": 94, "625965": 94, "626079": 94, "118": 94, "627675": 94, "695223": 94, "323529": 94, "523015": 94, "013720": 94, "675727": 94, "646521": 94, "anyth": 94, "enhanc": [94, 96, 98], "magic": 94, "liter": 94, "identif": 94, "x27": 94, "logisticregressionlogisticregress": 94, "ever": 94, "092": 94, "040": 94, "024": 94, "004": 94, "surpris": 94, "1705": 94, "01936": 94, "ton": 94, "yourfavoritemodel1": 94, "merged_label": 94, "merged_test_label": 94, "newli": [94, 96], "yourfavoritemodel2": 94, "yourfavoritemodel3": 94, "cl3": 94, "takeawai": 94, "That": [94, 97], "randomli": 94, "my_test_pred_prob": 94, "my_test_pr": 94, "issues_test": 94, "corrected_test_label": 94, "pretend": 94, "cl_test_pr": 94, "69": [94, 101], "fairli": 94, "label_acc": 94, "percentag": 94, "offset": 94, "nquestion": 94, "overestim": 94, "answer": 94, "experienc": 94, "knowledg": 94, "prioiri": 94, "known": 94, "versatil": 94, "label_issues_indic": 94, "213": [94, 98], "218": [94, 98], "152": 94, "197": [94, 98], "196": [94, 98], "170": 94, "214": 94, "164": [94, 97], "191": [94, 98], "63": [94, 98, 101], "117": [94, 101], "62": [94, 98, 101], "206": [94, 98], "115": [94, 98, 103], "193": 94, "194": 94, "201": [94, 98], "174": 94, "163": 94, "150": [94, 96, 98], "169": 94, "151": [94, 98], "168": 94, "precision_scor": 94, "recall_scor": 94, "f1_score": 94, "true_label_issu": 94, "filter_by_list": 94, "718750": [94, 96], "807018": 94, "912": 94, "733333": 94, "800000": 94, "721311": 94, "792793": 94, "908": 94, "676923": 94, "765217": 94, "892": 94, "567901": 94, "702290": 94, "844": 94, "gaug": 94, "label_issues_count": 94, "155": [94, 98], "156": 94, "172": [94, 97], "easiest": 94, "modular": 94, "penalti": 94, "l2": 94, "model3": 94, "n_estim": 94, "cv_pred_probs_1": 94, "cv_pred_probs_2": 94, "cv_pred_probs_3": 94, "label_quality_scores_best": 94, "cv_pred_probs_ensembl": 94, "label_quality_scores_bett": 94, "superior": [94, 100], "timm": 95, "glad": 96, "multiannotator_label": 96, "300": [96, 103], "noisier": 96, "111": [96, 101], "local_data": [96, 97], "true_labels_train": [96, 97], "noise_matrix_bett": 96, "noise_matrix_wors": 96, "transpos": [96, 99], "dropna": 96, "zfill": 96, "row_na_check": 96, "notna": 96, "reset_index": 96, "a0001": 96, "a0002": 96, "a0003": 96, "a0004": 96, "a0005": 96, "a0006": 96, "a0007": 96, "a0008": 96, "a0009": 96, "a0010": 96, "a0041": 96, "a0042": 96, "a0043": 96, "a0044": 96, "a0045": 96, "a0046": 96, "a0047": 96, "a0048": 96, "a0049": 96, "a0050": 96, "na": 96, "60856743": 96, "41693214": 96, "40908785": 96, "87147629": 96, "64941785": 96, "10774851": 96, "0524466": 96, "71853246": 96, "37169848": 96, "66031048": 96, "multiannotator_util": 96, "crude": 96, "straight": 96, "majority_vote_label": 96, "736118": 96, "757751": 96, "782232": 96, "715565": 96, "824256": 96, "quality_annotator_a0001": 96, "quality_annotator_a0002": 96, "quality_annotator_a0003": 96, "quality_annotator_a0004": 96, "quality_annotator_a0005": 96, "quality_annotator_a0006": 96, "quality_annotator_a0007": 96, "quality_annotator_a0008": 96, "quality_annotator_a0009": 96, "quality_annotator_a0010": 96, "quality_annotator_a0041": 96, "quality_annotator_a0042": 96, "quality_annotator_a0043": 96, "quality_annotator_a0044": 96, "quality_annotator_a0045": 96, "quality_annotator_a0046": 96, "quality_annotator_a0047": 96, "quality_annotator_a0048": 96, "quality_annotator_a0049": 96, "quality_annotator_a0050": 96, "070564": 96, "216078": 96, "119188": 96, "alongisd": 96, "244981": 96, "208333": 96, "295979": 96, "294118": 96, "324197": 96, "310345": 96, "355316": 96, "346154": 96, "439732": 96, "480000": 96, "a0031": 96, "523205": 96, "580645": 96, "a0034": 96, "535313": 96, "607143": 96, "a0021": 96, "606999": 96, "a0015": 96, "609526": 96, "678571": 96, "a0011": 96, "621103": 96, "692308": 96, "wors": 96, "improved_consensus_label": 96, "majority_vote_accuraci": 96, "cleanlab_label_accuraci": 96, "8581081081081081": 96, "9797297297297297": 96, "besid": 96, "sorted_consensus_quality_scor": 96, "worst_qual": 96, "better_qu": 96, "worst_quality_accuraci": 96, "better_quality_accuraci": 96, "9893238434163701": 96, "improved_pred_prob": 96, "treat": [96, 97, 101, 103], "analzi": 96, "copyright": 97, "advertis": 97, "violenc": 97, "nsfw": 97, "celeba": 97, "make_multilabel_data": 97, "boxes_coordin": 97, "box_multilabel": 97, "make_multi": 97, "bx1": 97, "by1": 97, "bx2": 97, "by2": 97, "label_list": 97, "ur": 97, "upper": 97, "inidx": 97, "logical_and": 97, "inv_d": 97, "labels_idx": 97, "true_labels_test": 97, "dict_unique_label": 97, "get_color_arrai": 97, "dcolor": 97, "aa4400": 97, "55227f": 97, "55a100": 97, "00ff00": 97, "007f7f": 97, "386b55": 97, "0000ff": 97, "y_onehot": 97, "single_class_label": 97, "stratifi": [97, 100], "kf": 97, "train_index": 97, "test_index": 97, "clf_cv": 97, "x_train_cv": 97, "x_test_cv": 97, "y_train_cv": 97, "y_test_cv": 97, "y_pred_cv": 97, "saw": 97, "num_to_displai": 97, "09": [97, 98, 101], "267": 97, "225": 97, "171": 97, "234": 97, "165": 97, "227": [97, 98], "262": [97, 98], "266": [97, 98], "139": 97, "143": [97, 98], "216": [97, 98, 103], "265": 97, "159": [97, 98], "despit": [97, 103], "suspect": 97, "888": 97, "8224": 97, "9632": 97, "968": 97, "6512": 97, "0444": 97, "774": 97, "labels_binary_format": 97, "labels_list_format": 97, "surround": 98, "scene": 98, "coco": 98, "everydai": 98, "has_label_issu": 98, "insal": 98, "nc": [98, 102, 103], "s3": [98, 102, 103], "amazonaw": [98, 102, 103], "objectdetectionbenchmark": 98, "tutorial_obj": 98, "pkl": 98, "example_imag": 98, "unzip": [98, 103], "_separate_label": 98, "_separate_predict": 98, "begin": 98, "image_path": 98, "rb": 98, "image_to_visu": 98, "seg_map": 98, "334": 98, "float32": 98, "bboxes_ignor": 98, "290": 98, "286": 98, "285": 98, "224": 98, "231": 98, "293": 98, "289": 98, "282": 98, "281": 98, "271": 98, "280": 98, "277": 98, "279": 98, "287": 98, "299": 98, "276": 98, "307": 98, "321": 98, "326": 98, "333": 98, "261": 98, "319": 98, "257": 98, "283": 98, "243": 98, "303": 98, "316": 98, "247": 98, "323": 98, "226": 98, "228": 98, "232": 98, "219": 98, "239": 98, "240": 98, "209": 98, "242": 98, "202": 98, "230": 98, "215": 98, "220": 98, "229": 98, "217": 98, "237": 98, "207": 98, "204": 98, "84": [98, 101], "205": 98, "223": 98, "153": 98, "140": 98, "124": 98, "268": 98, "273": 98, "108": 98, "284": 98, "110": 98, "136": 98, "145": 98, "297": 98, "317": 98, "192": 98, "332": 98, "324": 98, "203": 98, "199": 98, "291": 98, "000000481413": 98, "jpg": 98, "42398": 98, "44503": 98, "29968": 98, "336": 98, "21005": 98, "9978472": 98, "forgot": 98, "drew": 98, "label_issue_idx": 98, "num_examples_to_show": 98, "138": 98, "candid": 98, "97489622": 98, "70610878": 98, "98764951": 98, "88899237": 98, "99085805": 98, "issue_idx": 98, "95569726e": 98, "03354841e": 98, "57510169e": 98, "58447666e": 98, "39755858e": 98, "issue_to_visu": 98, "000000009483": 98, "95569726168054e": 98, "addition": [98, 102], "visibl": 98, "missmatch": 98, "likelei": 98, "agnost": 98, "vaidat": 98, "inconsist": 98, "000000395701": 98, "033548411774308e": 98, "armchair": 98, "tv": 98, "000000154004": 98, "38300759625496356": 98, "foreground": 98, "000000448410": 98, "0008575101690203273": 98, "crowd": 98, "alon": 98, "explor": [98, 99], "resembl": [98, 99], "000000499768": 98, "9748962231208227": 98, "000000521141": 98, "8889923658893665": 98, "000000143931": 98, "9876495074395956": 98, "bonu": 98, "uncov": 98, "irregular": 98, "anomali": 98, "object_detection_util": 98, "calculate_bounding_box_area": 98, "num_imgs_to_show": 98, "lab_object_count": 98, "pred_object_count": 98, "000000430073": 98, "000000183709": 98, "000000189475": 98, "label_norm": 98, "pred_norm": 98, "area": [98, 102], "lab_area": 98, "pred_area": 98, "lab_area_mean": 98, "lab_area_std": 98, "max_deviation_valu": 98, "max_deviation_class": 98, "deviation_valu": 98, "deviation_class": 98, "mean_area": 98, "std_area": 98, "class_area": 98, "deviations_awai": 98, "max_deviation_index": 98, "num_imgs_to_show_per_class": 98, "class_num": 98, "sorted_indic": 98, "000000422886": 98, "000000341828": 98, "000000461009": 98, "train_feature_embed": 99, "ood_train_feature_scor": 99, "test_feature_embed": 99, "ood_test_feature_scor": 99, "ood_train_predictions_scor": 99, "train_pred_prob": 99, "ood_test_predictions_scor": 99, "test_pred_prob": 99, "pylab": 99, "rcparam": 99, "baggingclassifi": 99, "therebi": 99, "rescal": 99, "transform_norm": 99, "totensor": 99, "root": 99, "animal_class": 99, "non_animal_class": 99, "animal_idx": 99, "test_idx": 99, "toronto": 99, "edu": 99, "kriz": 99, "170498071": 99, "56730580": 99, "89it": 99, "5000": 99, "plot_imag": 99, "visualize_outli": 99, "txt_class": 99, "img": [99, 101], "npimg": 99, "show_label": 99, "data_subset": 99, "resnet50": 99, "corpu": 99, "2048": 99, "embed_imag": 99, "create_model": 99, "strang": 99, "odd": 99, "train_ood_features_scor": 99, "top_train_ood_features_idx": 99, "fun": 99, "negat": 99, "homogen": 99, "bottom_train_ood_features_idx": 99, "test_ood_features_scor": 99, "top_ood_features_idx": 99, "inevit": 99, "trade": 99, "5th": 99, "percentil": 99, "fifth_percentil": 99, "plt_rang": 99, "hist": 99, "train_outlier_scor": 99, "ylabel": 99, "axvlin": 99, "test_outlier_scor": 99, "ood_features_indic": 99, "revisit": 99, "return_invers": 99, "train_feature_embeddings_sc": 99, "test_feature_embeddings_sc": 99, "train_pred_label": 99, "9702": 99, "train_ood_predictions_scor": 99, "test_ood_predictions_scor": 99, "lost": 99, "unsuit": 100, "ok": [100, 103], "convention": 100, "aforement": 100, "hypothet": 100, "contrast": 100, "tradit": 100, "disjoint": 100, "out_of_sample_pred_probs_for_a": 100, "out_of_sample_pred_probs_for_b": 100, "out_of_sample_pred_probs_for_c": 100, "out_of_sample_pred_prob": 100, "price": 101, "incom": 101, "ag": 101, "sensor": 101, "histgradientboostingregressor": 101, "r2_score": 101, "student_grades_r": 101, "final_scor": 101, "true_final_scor": 101, "homework": 101, "3d": 101, "hue": 101, "mpl_toolkit": 101, "mplot3d": 101, "axes3d": 101, "errors_idx": 101, "add_subplot": 101, "z": 101, "colorbar": 101, "errors_mask": 101, "feature_column": 101, "predicted_column": 101, "x_train_raw": 101, "x_test_raw": 101, "randomforestregressor": 101, "385101": 101, "499503": 101, "698255": 101, "776647": 101, "109373": 101, "170547": 101, "481096": 101, "984759": 101, "645270": 101, "795928": 101, "141": 101, "659": 101, "318": 101, "305": 101, "560": 101, "657": 101, "688": 101, "view_datapoint": 101, "concat": 101, "preds_og": 101, "r2_og": 101, "838": 101, "found_label_issu": 101, "preds_cl": 101, "r2_cl": 101, "926": 101, "favorit": 101, "968627e": 101, "228799": 101, "646674e": 101, "402962": 101, "323818e": 101, "952758": 101, "422144e": 101, "456908": 101, "465815e": 101, "753968": 101, "791186e": 101, "110719": 101, "485156e": 101, "670640": 101, "225300e": 101, "749976": 101, "499679e": 101, "947007": 101, "067882e": 101, "648396": 101, "synthia": 102, "imagesegment": 102, "given_mask": 102, "predicted_mask": 102, "set_printopt": [102, 103], "sky": 102, "sidewalk": 102, "veget": 102, "terrain": 102, "rider": 102, "pred_probs_filepath": 102, "1088": 102, "1920": 102, "label_filepath": 102, "synthia_class": 102, "maunal": 102, "100000": 102, "244800": 102, "leftmost": 102, "middl": [102, 103], "infact": 102, "rightmost": 102, "discrep": 102, "3263230": 102, "783381": 102, "275110": 102, "255917": 102, "78225": 102, "55990": 102, "54315": 102, "33591": 102, "24645": 102, "21054": 102, "15045": 102, "14171": 102, "13832": 102, "13498": 102, "11490": 102, "9164": 102, "8769": 102, "6999": 102, "6031": 102, "5011": 102, "mistakenli": 102, "class_issu": 102, "aim": [102, 103], "domin": 102, "bunch": 103, "conll": 103, "2003": 103, "love": 103, "n_i": 103, "optional_list_of_ordered_class_nam": 103, "deepai": 103, "conll2003": 103, "rm": 103, "tokenclassif": 103, "2024": 103, "2400": 103, "52e0": 103, "1a00": 103, "894": 103, "connect": 103, "443": 103, "await": 103, "982975": 103, "960k": 103, "959": 103, "94k": 103, "49mb": 103, "mb": 103, "directori": 103, "inflat": 103, "182": 103, "17045998": 103, "16m": 103, "octet": 103, "26m": 103, "kb": 103, "bert": 103, "read_npz": 103, "filepath": 103, "corrsespond": 103, "iob2": 103, "given_ent": 103, "entity_map": 103, "readfil": 103, "startswith": 103, "docstart": 103, "isalpha": 103, "isupp": 103, "indices_to_preview": 103, "nsentenc": 103, "eu": 103, "reject": 103, "boycott": 103, "british": 103, "lamb": 103, "00030412": 103, "00023826": 103, "99936208": 103, "00007009": 103, "00002545": 103, "99998795": 103, "00000401": 103, "00000218": 103, "00000455": 103, "00000131": 103, "00000749": 103, "99996115": 103, "00001371": 103, "0000087": 103, "00000895": 103, "99998936": 103, "00000382": 103, "00000178": 103, "00000366": 103, "00000137": 103, "99999101": 103, "00000266": 103, "00000174": 103, "0000035": 103, "00000109": 103, "99998768": 103, "00000482": 103, "00000202": 103, "00000438": 103, "0000011": 103, "00000465": 103, "99996392": 103, "00001105": 103, "0000116": 103, "00000878": 103, "99998671": 103, "00000364": 103, "00000213": 103, "00000472": 103, "00000281": 103, "99999073": 103, "00000211": 103, "00000159": 103, "00000442": 103, "00000115": 103, "peter": 103, "blackburn": 103, "00000358": 103, "00000529": 103, "99995623": 103, "0000129": 103, "0000024": 103, "00001812": 103, "99994141": 103, "00001645": 103, "00002162": 103, "brussel": 103, "1996": 103, "00001172": 103, "00000821": 103, "00004661": 103, "0000618": 103, "99987167": 103, "99999061": 103, "00000201": 103, "00000195": 103, "00000408": 103, "00000135": 103, "2254": 103, "2907": 103, "19392": 103, "9962": 103, "8904": 103, "19303": 103, "12918": 103, "9256": 103, "11855": 103, "18392": 103, "20426": 103, "19402": 103, "14744": 103, "19371": 103, "4645": 103, "10331": 103, "9430": 103, "6143": 103, "18367": 103, "12914": 103, "todai": 103, "weather": 103, "march": 103, "scalfaro": 103, "northern": 103, "himself": 103, "said": 103, "germani": 103, "nastja": 103, "rysich": 103, "north": 103, "spla": 103, "fought": 103, "khartoum": 103, "govern": 103, "south": 103, "1983": 103, "autonomi": 103, "animist": 103, "region": 103, "moslem": 103, "arabis": 103, "mayor": 103, "antonio": 103, "gonzalez": 103, "garcia": 103, "revolutionari": 103, "parti": 103, "wednesdai": 103, "troop": 103, "raid": 103, "farm": 103, "stole": 103, "rape": 103, "women": 103, "spring": 103, "chg": 103, "hrw": 103, "12pct": 103, "princ": 103, "photo": 103, "moment": 103, "spokeswoman": 103, "rainier": 103, "told": 103, "reuter": 103, "danila": 103, "carib": 103, "w224": 103, "equip": 103, "radiomet": 103, "earn": 103, "19996": 103, "london": 103, "denom": 103, "sale": 103, "uk": 103, "jp": 103, "fr": 103, "maccabi": 103, "hapoel": 103, "haifa": 103, "tel": 103, "aviv": 103, "hospit": 103, "rever": 103, "roman": 103, "cathol": 103, "nun": 103, "admit": 103, "calcutta": 103, "week": 103, "ago": 103, "fever": 103, "vomit": 103, "allianc": 103, "embattl": 103, "kabul": 103, "salang": 103, "highwai": 103, "mondai": 103, "tuesdai": 103, "suprem": 103, "council": 103, "led": 103, "jumbish": 103, "milli": 103, "movement": 103, "warlord": 103, "abdul": 103, "rashid": 103, "dostum": 103, "dollar": 103, "exchang": 103, "3570": 103, "12049": 103, "born": 103, "1937": 103, "provinc": 103, "anhui": 103, "dai": 103, "came": 103, "shanghai": 103, "citi": 103, "prolif": 103, "author": 103, "teacher": 103, "chines": 103, "16764": 103, "1990": 103, "historian": 103, "alan": 103, "john": 103, "percival": 103, "taylor": 103, "di": 103, "20446": 103, "pace": 103, "bowler": 103, "ian": 103, "harvei": 103, "claim": 103, "victoria": 103, "15514": 103, "cotti": 103, "osc": 103, "foreign": 103, "minist": 103, "7525": 103, "sultan": 103, "specter": 103, "met": 103, "crown": 103, "abdullah": 103, "defenc": 103, "aviat": 103, "jeddah": 103, "saudi": 103, "agenc": 103, "2288": 103, "hi": 103, "customari": 103, "outfit": 103, "champion": 103, "damp": 103, "scalp": 103, "canada": 103, "reign": 103, "olymp": 103, "donovan": 103, "bailei": 103, "1992": 103, "linford": 103, "christi": 103, "britain": 103, "1984": 103, "1988": 103, "carl": 103, "lewi": 103, "ambigi": 103, "punctuat": 103, "chicago": 103, "digest": 103, "philadelphia": 103, "usda": 103, "york": 103, "token_issu": 103, "471": 103, "kean": 103, "year": 103, "contract": 103, "manchest": 103, "19072": 103, "societi": 103, "bite": 103, "deliv": 103, "19910": 103, "father": 103, "clarenc": 103, "woolmer": 103, "renam": 103, "uttar": 103, "pradesh": 103, "india": 103, "ranji": 103, "trophi": 103, "nation": 103, "championship": 103, "captain": 103, "1949": 103, "15658": 103, "19879": 103, "iii": 103, "brian": 103, "shimer": 103, "randi": 103, "jone": 103, "19104": 103}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [11, 0, 0, "-", "datalab"], [36, 0, 0, "-", "dataset"], [39, 0, 0, "-", "experimental"], [43, 0, 0, "-", "filter"], [44, 0, 0, "-", "internal"], [55, 0, 0, "-", "models"], [57, 0, 0, "-", "multiannotator"], [60, 0, 0, "-", "multilabel_classification"], [63, 0, 0, "-", "object_detection"], [66, 0, 0, "-", "outlier"], [67, 0, 0, "-", "rank"], [68, 0, 0, "-", "regression"], [72, 0, 0, "-", "segmentation"], [76, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [15, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[12, 0, 0, "-", "data"], [13, 0, 0, "-", "data_issues"], [16, 0, 0, "-", "issue_finder"], [14, 0, 0, "-", "issue_manager_factory"], [32, 0, 0, "-", "model_outputs"], [33, 0, 0, "-", "report"], [34, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[12, 2, 1, "", "Data"], [12, 5, 1, "", "DataFormatError"], [12, 5, 1, "", "DatasetDictError"], [12, 5, 1, "", "DatasetLoadError"], [12, 2, 1, "", "Label"], [12, 2, 1, "", "MultiClass"], [12, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[13, 2, 1, "", "DataIssues"], [13, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[13, 3, 1, "", "collect_issues_from_imagelab"], [13, 3, 1, "", "collect_issues_from_issue_manager"], [13, 3, 1, "", "collect_statistics"], [13, 3, 1, "", "get_info"], [13, 3, 1, "", "get_issue_summary"], [13, 3, 1, "", "get_issues"], [13, 6, 1, "", "info"], [13, 6, 1, "", "issue_summary"], [13, 6, 1, "", "issues"], [13, 3, 1, "", "set_health_score"], [13, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[16, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[16, 3, 1, "", "find_issues"], [16, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[18, 0, 0, "-", "data_valuation"], [19, 0, 0, "-", "duplicate"], [20, 0, 0, "-", "imbalance"], [22, 0, 0, "-", "issue_manager"], [23, 0, 0, "-", "label"], [26, 0, 0, "-", "noniid"], [27, 0, 0, "-", "null"], [28, 0, 0, "-", "outlier"], [31, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[18, 6, 1, "", "DEFAULT_THRESHOLD"], [18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 6, 1, "", "near_duplicate_sets"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[23, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 3, 1, "", "get_health_summary"], [23, 6, 1, "", "health_summary_parameters"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, 2, 1, "", "NonIIDIssueManager"], [26, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[27, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[28, 6, 1, "", "DEFAULT_THRESHOLDS"], [28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 6, 1, "", "ood"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[30, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, 2, 1, "", "RegressionLabelIssueManager"], [30, 1, 1, "", "find_issues_with_features"], [30, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[30, 3, 1, "", "collect_info"], [30, 6, 1, "", "description"], [30, 3, 1, "", "find_issues"], [30, 6, 1, "", "info"], [30, 6, 1, "", "issue_name"], [30, 6, 1, "", "issue_score_key"], [30, 6, 1, "", "issues"], [30, 3, 1, "", "make_summary"], [30, 3, 1, "", "report"], [30, 6, 1, "", "summary"], [30, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[31, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [31, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "filter_cluster_ids"], [31, 3, 1, "", "find_issues"], [31, 3, 1, "", "get_worst_cluster"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "perform_clustering"], [31, 3, 1, "", "report"], [31, 3, 1, "", "set_knn_graph"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, 7, 1, "", "REGISTRY"], [14, 1, 1, "", "list_default_issue_types"], [14, 1, 1, "", "list_possible_issue_types"], [14, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[32, 2, 1, "", "ModelOutput"], [32, 2, 1, "", "MultiClassPredProbs"], [32, 2, 1, "", "MultiLabelPredProbs"], [32, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[33, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[33, 3, 1, "", "get_report"], [33, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[34, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[34, 6, 1, "", "CLASSIFICATION"], [34, 6, 1, "", "MULTILABEL"], [34, 6, 1, "", "REGRESSION"], [34, 3, 1, "", "__contains__"], [34, 3, 1, "", "__getitem__"], [34, 3, 1, "", "__iter__"], [34, 3, 1, "", "__len__"], [34, 3, 1, "", "from_str"], [34, 4, 1, "", "is_classification"], [34, 4, 1, "", "is_multilabel"], [34, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[36, 1, 1, "", "find_overlapping_classes"], [36, 1, 1, "", "health_summary"], [36, 1, 1, "", "overall_label_health_score"], [36, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[37, 0, 0, "-", "cifar_cnn"], [38, 0, 0, "-", "coteaching"], [40, 0, 0, "-", "label_issues_batched"], [41, 0, 0, "-", "mnist_pytorch"], [42, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[37, 2, 1, "", "CNN"], [37, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[37, 6, 1, "", "T_destination"], [37, 3, 1, "", "__call__"], [37, 3, 1, "", "add_module"], [37, 3, 1, "", "apply"], [37, 3, 1, "", "bfloat16"], [37, 3, 1, "", "buffers"], [37, 6, 1, "", "call_super_init"], [37, 3, 1, "", "children"], [37, 3, 1, "", "compile"], [37, 3, 1, "", "cpu"], [37, 3, 1, "", "cuda"], [37, 3, 1, "", "double"], [37, 6, 1, "", "dump_patches"], [37, 3, 1, "", "eval"], [37, 3, 1, "", "extra_repr"], [37, 3, 1, "", "float"], [37, 3, 1, "id0", "forward"], [37, 3, 1, "", "get_buffer"], [37, 3, 1, "", "get_extra_state"], [37, 3, 1, "", "get_parameter"], [37, 3, 1, "", "get_submodule"], [37, 3, 1, "", "half"], [37, 3, 1, "", "ipu"], [37, 3, 1, "", "load_state_dict"], [37, 3, 1, "", "modules"], [37, 3, 1, "", "named_buffers"], [37, 3, 1, "", "named_children"], [37, 3, 1, "", "named_modules"], [37, 3, 1, "", "named_parameters"], [37, 3, 1, "", "parameters"], [37, 3, 1, "", "register_backward_hook"], [37, 3, 1, "", "register_buffer"], [37, 3, 1, "", "register_forward_hook"], [37, 3, 1, "", "register_forward_pre_hook"], [37, 3, 1, "", "register_full_backward_hook"], [37, 3, 1, "", "register_full_backward_pre_hook"], [37, 3, 1, "", "register_load_state_dict_post_hook"], [37, 3, 1, "", "register_module"], [37, 3, 1, "", "register_parameter"], [37, 3, 1, "", "register_state_dict_pre_hook"], [37, 3, 1, "", "requires_grad_"], [37, 3, 1, "", "set_extra_state"], [37, 3, 1, "", "share_memory"], [37, 3, 1, "", "state_dict"], [37, 3, 1, "", "to"], [37, 3, 1, "", "to_empty"], [37, 3, 1, "", "train"], [37, 6, 1, "", "training"], [37, 3, 1, "", "type"], [37, 3, 1, "", "xpu"], [37, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[38, 1, 1, "", "adjust_learning_rate"], [38, 1, 1, "", "evaluate"], [38, 1, 1, "", "forget_rate_scheduler"], [38, 1, 1, "", "initialize_lr_scheduler"], [38, 1, 1, "", "loss_coteaching"], [38, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[40, 2, 1, "", "LabelInspector"], [40, 7, 1, "", "adj_confident_thresholds_shared"], [40, 1, 1, "", "find_label_issues_batched"], [40, 7, 1, "", "labels_shared"], [40, 7, 1, "", "pred_probs_shared"], [40, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[40, 3, 1, "", "get_confident_thresholds"], [40, 3, 1, "", "get_label_issues"], [40, 3, 1, "", "get_num_issues"], [40, 3, 1, "", "get_quality_scores"], [40, 3, 1, "", "score_label_quality"], [40, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[41, 2, 1, "", "CNN"], [41, 2, 1, "", "SimpleNet"], [41, 1, 1, "", "get_mnist_dataset"], [41, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[41, 3, 1, "", "__init_subclass__"], [41, 6, 1, "", "batch_size"], [41, 6, 1, "", "dataset"], [41, 6, 1, "", "epochs"], [41, 3, 1, "id0", "fit"], [41, 3, 1, "", "get_metadata_routing"], [41, 3, 1, "", "get_params"], [41, 6, 1, "", "loader"], [41, 6, 1, "", "log_interval"], [41, 6, 1, "", "lr"], [41, 6, 1, "", "momentum"], [41, 6, 1, "", "no_cuda"], [41, 3, 1, "id1", "predict"], [41, 3, 1, "id4", "predict_proba"], [41, 6, 1, "", "seed"], [41, 3, 1, "", "set_fit_request"], [41, 3, 1, "", "set_params"], [41, 3, 1, "", "set_predict_proba_request"], [41, 3, 1, "", "set_predict_request"], [41, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[41, 6, 1, "", "T_destination"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "add_module"], [41, 3, 1, "", "apply"], [41, 3, 1, "", "bfloat16"], [41, 3, 1, "", "buffers"], [41, 6, 1, "", "call_super_init"], [41, 3, 1, "", "children"], [41, 3, 1, "", "compile"], [41, 3, 1, "", "cpu"], [41, 3, 1, "", "cuda"], [41, 3, 1, "", "double"], [41, 6, 1, "", "dump_patches"], [41, 3, 1, "", "eval"], [41, 3, 1, "", "extra_repr"], [41, 3, 1, "", "float"], [41, 3, 1, "", "forward"], [41, 3, 1, "", "get_buffer"], [41, 3, 1, "", "get_extra_state"], [41, 3, 1, "", "get_parameter"], [41, 3, 1, "", "get_submodule"], [41, 3, 1, "", "half"], [41, 3, 1, "", "ipu"], [41, 3, 1, "", "load_state_dict"], [41, 3, 1, "", "modules"], [41, 3, 1, "", "named_buffers"], [41, 3, 1, "", "named_children"], [41, 3, 1, "", "named_modules"], [41, 3, 1, "", "named_parameters"], [41, 3, 1, "", "parameters"], [41, 3, 1, "", "register_backward_hook"], [41, 3, 1, "", "register_buffer"], [41, 3, 1, "", "register_forward_hook"], [41, 3, 1, "", "register_forward_pre_hook"], [41, 3, 1, "", "register_full_backward_hook"], [41, 3, 1, "", "register_full_backward_pre_hook"], [41, 3, 1, "", "register_load_state_dict_post_hook"], [41, 3, 1, "", "register_module"], [41, 3, 1, "", "register_parameter"], [41, 3, 1, "", "register_state_dict_pre_hook"], [41, 3, 1, "", "requires_grad_"], [41, 3, 1, "", "set_extra_state"], [41, 3, 1, "", "share_memory"], [41, 3, 1, "", "state_dict"], [41, 3, 1, "", "to"], [41, 3, 1, "", "to_empty"], [41, 3, 1, "", "train"], [41, 6, 1, "", "training"], [41, 3, 1, "", "type"], [41, 3, 1, "", "xpu"], [41, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[42, 1, 1, "", "display_issues"], [42, 1, 1, "", "find_label_issues"], [42, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [43, 1, 1, "", "find_predicted_neq_given"], [43, 7, 1, "", "pred_probs_by_class"], [43, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[45, 0, 0, "-", "label_quality_utils"], [46, 0, 0, "-", "latent_algebra"], [47, 0, 0, "-", "multiannotator_utils"], [48, 0, 0, "-", "multilabel_scorer"], [49, 0, 0, "-", "multilabel_utils"], [50, 0, 0, "-", "outlier"], [51, 0, 0, "-", "token_classification_utils"], [52, 0, 0, "-", "util"], [53, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[45, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, 1, 1, "", "compute_inv_noise_matrix"], [46, 1, 1, "", "compute_noise_matrix_from_inverse"], [46, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [46, 1, 1, "", "compute_py"], [46, 1, 1, "", "compute_py_inv_noise_matrix"], [46, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[47, 1, 1, "", "assert_valid_inputs_multiannotator"], [47, 1, 1, "", "assert_valid_pred_probs"], [47, 1, 1, "", "check_consensus_label_classes"], [47, 1, 1, "", "compute_soft_cross_entropy"], [47, 1, 1, "", "find_best_temp_scaler"], [47, 1, 1, "", "format_multiannotator_labels"], [47, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[48, 2, 1, "", "Aggregator"], [48, 2, 1, "", "ClassLabelScorer"], [48, 2, 1, "", "MultilabelScorer"], [48, 1, 1, "", "exponential_moving_average"], [48, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [48, 1, 1, "", "get_label_quality_scores"], [48, 1, 1, "", "multilabel_py"], [48, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[48, 3, 1, "", "__call__"], [48, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[48, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [48, 6, 1, "", "NORMALIZED_MARGIN"], [48, 6, 1, "", "SELF_CONFIDENCE"], [48, 3, 1, "", "__call__"], [48, 3, 1, "", "__contains__"], [48, 3, 1, "", "__getitem__"], [48, 3, 1, "", "__iter__"], [48, 3, 1, "", "__len__"], [48, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[48, 3, 1, "", "__call__"], [48, 3, 1, "", "aggregate"], [48, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[49, 1, 1, "", "get_onehot_num_classes"], [49, 1, 1, "", "int2onehot"], [49, 1, 1, "", "onehot2int"], [49, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[50, 1, 1, "", "correct_precision_errors"], [50, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[51, 1, 1, "", "color_sentence"], [51, 1, 1, "", "filter_sentence"], [51, 1, 1, "", "get_sentence"], [51, 1, 1, "", "mapping"], [51, 1, 1, "", "merge_probs"], [51, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[52, 1, 1, "", "append_extra_datapoint"], [52, 1, 1, "", "clip_noise_rates"], [52, 1, 1, "", "clip_values"], [52, 1, 1, "", "compress_int_array"], [52, 1, 1, "", "confusion_matrix"], [52, 1, 1, "", "csr_vstack"], [52, 1, 1, "", "estimate_pu_f1"], [52, 1, 1, "", "extract_indices_tf"], [52, 1, 1, "", "force_two_dimensions"], [52, 1, 1, "", "format_labels"], [52, 1, 1, "", "get_missing_classes"], [52, 1, 1, "", "get_num_classes"], [52, 1, 1, "", "get_unique_classes"], [52, 1, 1, "", "is_tensorflow_dataset"], [52, 1, 1, "", "is_torch_dataset"], [52, 1, 1, "", "num_unique_classes"], [52, 1, 1, "", "print_inverse_noise_matrix"], [52, 1, 1, "", "print_joint_matrix"], [52, 1, 1, "", "print_noise_matrix"], [52, 1, 1, "", "print_square_matrix"], [52, 1, 1, "", "remove_noise_from_class"], [52, 1, 1, "", "round_preserving_row_totals"], [52, 1, 1, "", "round_preserving_sum"], [52, 1, 1, "", "smart_display_dataframe"], [52, 1, 1, "", "subset_X_y"], [52, 1, 1, "", "subset_data"], [52, 1, 1, "", "subset_labels"], [52, 1, 1, "", "train_val_split"], [52, 1, 1, "", "unshuffle_tensorflow_dataset"], [52, 1, 1, "", "value_counts"], [52, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[53, 1, 1, "", "assert_indexing_works"], [53, 1, 1, "", "assert_nonempty_input"], [53, 1, 1, "", "assert_valid_class_labels"], [53, 1, 1, "", "assert_valid_inputs"], [53, 1, 1, "", "labels_to_array"], [53, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[56, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[56, 2, 1, "", "KerasWrapperModel"], [56, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[56, 3, 1, "", "fit"], [56, 3, 1, "", "get_params"], [56, 3, 1, "", "predict"], [56, 3, 1, "", "predict_proba"], [56, 3, 1, "", "set_params"], [56, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[56, 3, 1, "", "fit"], [56, 3, 1, "", "get_params"], [56, 3, 1, "", "predict"], [56, 3, 1, "", "predict_proba"], [56, 3, 1, "", "set_params"], [56, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[57, 1, 1, "", "convert_long_to_wide_dataset"], [57, 1, 1, "", "get_active_learning_scores"], [57, 1, 1, "", "get_active_learning_scores_ensemble"], [57, 1, 1, "", "get_label_quality_multiannotator"], [57, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [57, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[58, 0, 0, "-", "dataset"], [59, 0, 0, "-", "filter"], [61, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[58, 1, 1, "", "common_multilabel_issues"], [58, 1, 1, "", "multilabel_health_summary"], [58, 1, 1, "", "overall_multilabel_health_score"], [58, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[59, 1, 1, "", "find_label_issues"], [59, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[61, 1, 1, "", "get_label_quality_scores"], [61, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[62, 0, 0, "-", "filter"], [64, 0, 0, "-", "rank"], [65, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[62, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[64, 1, 1, "", "compute_badloc_box_scores"], [64, 1, 1, "", "compute_overlooked_box_scores"], [64, 1, 1, "", "compute_swap_box_scores"], [64, 1, 1, "", "get_label_quality_scores"], [64, 1, 1, "", "issues_from_scores"], [64, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[65, 1, 1, "", "bounding_box_size_distribution"], [65, 1, 1, "", "calculate_per_class_metrics"], [65, 1, 1, "", "class_label_distribution"], [65, 1, 1, "", "get_average_per_class_confusion_matrix"], [65, 1, 1, "", "get_sorted_bbox_count_idxs"], [65, 1, 1, "", "object_counts_per_image"], [65, 1, 1, "", "plot_class_distribution"], [65, 1, 1, "", "plot_class_size_distributions"], [65, 1, 1, "", "visualize"]], "cleanlab.outlier": [[66, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[66, 3, 1, "", "fit"], [66, 3, 1, "", "fit_score"], [66, 3, 1, "", "score"]], "cleanlab.rank": [[67, 1, 1, "", "find_top_issues"], [67, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [67, 1, 1, "", "get_label_quality_ensemble_scores"], [67, 1, 1, "", "get_label_quality_scores"], [67, 1, 1, "", "get_normalized_margin_for_each_label"], [67, 1, 1, "", "get_self_confidence_for_each_label"], [67, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[69, 0, 0, "-", "learn"], [70, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[69, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[69, 3, 1, "", "__init_subclass__"], [69, 3, 1, "", "find_label_issues"], [69, 3, 1, "", "fit"], [69, 3, 1, "", "get_aleatoric_uncertainty"], [69, 3, 1, "", "get_epistemic_uncertainty"], [69, 3, 1, "", "get_label_issues"], [69, 3, 1, "", "get_metadata_routing"], [69, 3, 1, "", "get_params"], [69, 3, 1, "", "predict"], [69, 3, 1, "", "save_space"], [69, 3, 1, "", "score"], [69, 3, 1, "", "set_fit_request"], [69, 3, 1, "", "set_params"], [69, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[70, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[71, 0, 0, "-", "filter"], [73, 0, 0, "-", "rank"], [74, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[71, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[73, 1, 1, "", "get_label_quality_scores"], [73, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[74, 1, 1, "", "common_label_issues"], [74, 1, 1, "", "display_issues"], [74, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 82, 83, 88, 90, 91, 93, 94, 97, 103], "count": [3, 94], "data_valu": [4, 18], "datalab": [5, 7, 9, 10, 11, 84, 85, 86, 87, 88, 89, 90, 91, 94, 97], "creat": [7, 85, 86, 87, 94, 96], "your": [7, 79, 86, 87, 91, 93, 94], "own": 7, "issu": [7, 9, 10, 21, 30, 79, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 102, 103], "manag": [7, 21], "prerequisit": 7, "implement": 7, "issuemanag": [7, 86], "basic": 7, "check": 7, "intermedi": 7, "advanc": [7, 86], "us": [7, 82, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "gener": 8, "cluster": [8, 93], "id": 8, "guid": [9, 11], "type": [9, 10, 94], "custom": [9, 86], "cleanlab": [9, 10, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "studio": [9, 10], "easi": [9, 10, 79, 88, 90, 91], "mode": [9, 10, 79, 88, 90, 91], "can": [10, 85, 87, 92, 93, 94, 96], "detect": [10, 84, 87, 88, 90, 91, 93, 94, 98, 99], "estim": [10, 94, 96, 97], "each": 10, "label": [10, 23, 25, 30, 79, 82, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 101, 102, 103], "outlier": [10, 28, 50, 66, 85, 88, 90, 91, 97, 99], "Near": [10, 87, 88, 90, 91], "duplic": [10, 19, 87, 88, 90, 91, 93, 97], "non": [10, 91], "iid": [10, 91], "class": [10, 80, 94, 102], "imbal": [10, 20], "imag": [10, 88, 99], "specif": [10, 21, 102], "underperform": [10, 93], "group": [10, 93], "null": [10, 27], "data": [10, 12, 79, 82, 84, 85, 86, 87, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "valuat": 10, "option": 10, "paramet": [10, 94], "get": [11, 85, 86, 87, 96, 97, 98, 102, 103], "start": [11, 92], "api": 11, "refer": 11, "data_issu": 13, "factori": 14, "intern": [15, 44], "issue_find": 16, "issue_manag": [21, 22], "regist": 21, "ml": [21, 93, 94], "task": [21, 34], "multilabel": 24, "noniid": 26, "regress": [29, 68, 69, 70, 93, 101], "prioriti": 30, "order": 30, "find": [30, 79, 82, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "underperforming_group": 31, "model_output": 32, "report": [33, 88], "dataset": [36, 58, 79, 83, 84, 85, 87, 88, 91, 92, 93, 94, 97, 98, 99, 101, 102, 103], "cifar_cnn": 37, "coteach": 38, "experiment": 39, "label_issues_batch": 40, "mnist_pytorch": 41, "span_classif": 42, "filter": [43, 59, 62, 71, 75, 94], "label_quality_util": 45, "latent_algebra": 46, "multiannotator_util": 47, "multilabel_scor": 48, "multilabel_util": 49, "token_classification_util": 51, "util": 52, "valid": [53, 88, 100], "fasttext": 54, "model": [55, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101], "kera": 56, "multiannot": [57, 96], "multilabel_classif": 60, "rank": [61, 64, 67, 70, 73, 77, 94], "object_detect": 63, "summari": [65, 74, 78], "learn": [69, 85, 87, 93, 94], "segment": [72, 102], "token_classif": [76, 103], "open": [79, 93], "sourc": [79, 93], "document": 79, "quickstart": 79, "1": [79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "instal": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "2": [79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "common": [79, 80, 103], "3": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "handl": [79, 93], "error": [79, 83, 88, 93, 94, 96, 97, 98, 101, 102, 103], "train": [79, 82, 83, 84, 93, 99, 101], "robust": [79, 82, 83, 94, 101], "noisi": [79, 82, 83, 94, 101], "4": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 98, 99, 101], "curat": 79, "fix": [79, 93], "level": [79, 92, 94, 103], "5": [79, 82, 84, 85, 87, 88, 90, 94, 96, 101], "improv": [79, 96], "via": [79, 94, 96], "mani": [79, 94], "other": [79, 96, 98, 101], "techniqu": 79, "contribut": 79, "how": [80, 93, 94, 96, 97, 103], "migrat": 80, "version": 80, "0": 80, "from": [80, 82, 83, 85, 86, 87, 94, 101], "pre": [80, 84, 93, 99], "function": [80, 86], "name": 80, "chang": 80, "modul": [80, 94], "new": [80, 85], "remov": 80, "argument": [80, 86], "variabl": 80, "cleanlearn": [81, 93, 94], "tutori": [81, 89, 92, 95], "structur": 82, "tabular": [82, 90], "requir": [82, 83, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "depend": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "load": [82, 83, 84, 85, 86, 87, 90, 91, 101], "process": [82, 90, 99, 101], "select": [82, 90], "comput": [82, 84, 88, 90, 91, 93, 96, 100], "out": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "sampl": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "predict": [82, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 100], "probabl": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "more": [82, 83, 85, 87, 94, 101], "text": [83, 91, 103], "format": [83, 91, 93, 97, 98], "defin": [83, 88, 91, 101], "potenti": [83, 96, 101], "an": [84, 88, 93], "audio": 84, "import": [84, 85, 86, 87, 88, 92, 94, 96], "them": [84, 92, 94], "speechbrain": 84, "featur": [84, 88, 99], "fit": 84, "linear": 84, "datamonitor": 85, "leverag": 85, "statist": [85, 96], "audit": [85, 86, 87], "skip": [85, 87, 92, 94, 96], "detail": [85, 87, 92, 94, 96], "classifi": [85, 86, 87], "6": [85, 94], "about": [85, 87], "addit": [85, 87], "7": [85, 88, 94], "8": [85, 92, 94], "look": 85, "both": 85, "workflow": [86, 94], "instanti": 86, "object": [86, 98], "increment": 86, "search": 86, "specifi": [86, 93], "nondefault": 86, "save": 86, "ad": 86, "A": 87, "unifi": 87, "all": [87, 94], "kind": [87, 98], "inform": [87, 88], "fetch": [88, 92], "normal": 88, "fashion": 88, "mnist": 88, "prepar": 88, "k": [88, 90, 100], "fold": [88, 100], "cross": [88, 100], "embed": [88, 99], "view": 88, "most": [88, 103], "like": 88, "exampl": [88, 93, 94, 99], "sever": 88, "set": [88, 94], "dark": 88, "top": [88, 102], "low": 88, "numer": 90, "categor": 90, "column": 90, "construct": 90, "nearest": 90, "neighbour": 90, "graph": 90, "drift": [91, 97], "understand": 92, "evalu": 92, "health": [92, 94], "popular": 92, "faq": 93, "what": [93, 94, 100], "do": [93, 94], "i": [93, 94, 100], "infer": 93, "correct": 93, "ha": 93, "flag": 93, "should": 93, "v": 93, "test": [93, 94, 99], "big": 93, "limit": 93, "memori": 93, "why": 93, "isn": 93, "t": 93, "work": [93, 94, 96, 103], "me": 93, "differ": [93, 98], "clean": [93, 94], "final": 93, "hyperparamet": 93, "tune": 93, "onli": 93, "one": [93, 94, 97, 102], "doe": [93, 96, 103], "take": 93, "so": 93, "long": 93, "slice": 93, "when": [93, 94], "identifi": [93, 98], "run": 93, "licens": 93, "under": 93, "answer": 93, "question": 93, "The": 94, "centric": 94, "ai": 94, "machin": 94, "find_label_issu": 94, "line": 94, "code": 94, "visual": [94, 98, 99, 102], "twenti": 94, "lowest": 94, "qualiti": [94, 96, 97, 98, 102, 103], "see": 94, "now": 94, "let": 94, "": 94, "happen": 94, "we": 94, "merg": 94, "seafoam": 94, "green": 94, "yellow": 94, "too": 94, "you": 94, "re": 94, "One": 94, "score": [94, 96, 97, 98, 102, 103], "rule": 94, "overal": [94, 102], "accur": 94, "thi": 94, "directli": 94, "fulli": 94, "character": 94, "nois": 94, "matrix": [94, 97], "joint": 94, "prior": 94, "true": 94, "distribut": 94, "flip": 94, "rate": 94, "ani": 94, "again": 94, "support": 94, "lot": 94, "method": 94, "filter_bi": 94, "automat": 94, "everi": 94, "uniqu": 94, "num_label_issu": 94, "threshold": 94, "found": 94, "Not": 94, "sure": 94, "ensembl": 94, "multipl": [94, 96], "predictor": 94, "consensu": 96, "annot": 96, "initi": 96, "major": 96, "vote": 96, "better": 96, "compar": 96, "inspect": 96, "retrain": 96, "further": 96, "multi": 97, "beyond": 97, "mislabel": [97, 102, 103], "given": 97, "hot": 97, "binari": 97, "without": 97, "applic": 97, "real": 97, "download": [98, 102, 103], "objectlab": 98, "exploratori": 98, "analysi": 98, "pytorch": 99, "timm": 99, "cifar10": 99, "some": 99, "pred_prob": [99, 102, 103], "wai": 101, "semant": 102, "which": 102, "ar": 102, "commonli": 102, "focus": 102, "token": 103, "word": 103, "sentenc": 103, "contain": 103, "particular": 103}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [18, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Label Issue": [[10, "label-issue"]], "Outlier Issue": [[10, "outlier-issue"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "Non-IID Issue": [[10, "non-iid-issue"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "Null Issue": [[10, "null-issue"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[11, "getting-started"]], "Guides": [[11, "guides"]], "API Reference": [[11, "api-reference"]], "data": [[12, "module-cleanlab.datalab.internal.data"]], "data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[15, "internal"], [44, "internal"]], "issue_finder": [[16, "issue-finder"]], "duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[21, "issue-manager"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[21, "registered-issue-managers"]], "ML task-specific issue managers": [[21, "ml-task-specific-issue-managers"]], "label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[24, "multilabel"]], "noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[27, "null"]], "outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [50, "module-cleanlab.internal.outlier"], [66, "module-cleanlab.outlier"]], "regression": [[29, "regression"], [68, "regression"]], "Priority Order for finding issues:": [[30, null]], "underperforming_group": [[31, "underperforming-group"]], "model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[33, "report"]], "task": [[34, "task"]], "dataset": [[36, "module-cleanlab.dataset"], [58, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "experimental": [[39, "experimental"]], "label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "filter": [[43, "module-cleanlab.filter"], [59, "module-cleanlab.multilabel_classification.filter"], [62, "filter"], [71, "filter"], [75, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "token_classification_utils": [[51, "module-cleanlab.internal.token_classification_utils"]], "util": [[52, "module-cleanlab.internal.util"]], "validation": [[53, "module-cleanlab.internal.validation"]], "fasttext": [[54, "fasttext"]], "models": [[55, "models"]], "keras": [[56, "module-cleanlab.models.keras"]], "multiannotator": [[57, "module-cleanlab.multiannotator"]], "multilabel_classification": [[60, "multilabel-classification"]], "rank": [[61, "module-cleanlab.multilabel_classification.rank"], [64, "module-cleanlab.object_detection.rank"], [67, "module-cleanlab.rank"], [73, "module-cleanlab.segmentation.rank"], [77, "module-cleanlab.token_classification.rank"]], "object_detection": [[63, "object-detection"]], "summary": [[65, "summary"], [74, "module-cleanlab.segmentation.summary"], [78, "module-cleanlab.token_classification.summary"]], "regression.learn": [[69, "module-cleanlab.regression.learn"]], "regression.rank": [[70, "module-cleanlab.regression.rank"]], "segmentation": [[72, "segmentation"]], "token_classification": [[76, "token-classification"]], "cleanlab open-source documentation": [[79, "cleanlab-open-source-documentation"]], "Quickstart": [[79, "quickstart"]], "1. Install cleanlab": [[79, "install-cleanlab"]], "2. Find common issues in your data": [[79, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[79, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[79, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[79, "improve-your-data-via-many-other-techniques"]], "Contributing": [[79, "contributing"]], "Easy Mode": [[79, "easy-mode"], [88, "Easy-Mode"], [90, "Easy-Mode"], [91, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[80, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[80, "function-and-class-name-changes"]], "Module name changes": [[80, "module-name-changes"]], "New modules": [[80, "new-modules"]], "Removed modules": [[80, "removed-modules"]], "Common argument and variable name changes": [[80, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[81, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[82, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[82, "1.-Install-required-dependencies"], [83, "1.-Install-required-dependencies"], [90, "1.-Install-required-dependencies"], [91, "1.-Install-required-dependencies"], [101, "1.-Install-required-dependencies"]], "2. Load and process the data": [[82, "2.-Load-and-process-the-data"], [90, "2.-Load-and-process-the-data"], [101, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[82, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [90, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[82, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[82, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[83, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[83, "2.-Load-and-format-the-text-dataset"], [91, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[83, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[83, "4.-Train-a-more-robust-model-from-noisy-labels"], [101, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[84, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[84, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[84, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[84, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[84, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[84, "5.-Use-cleanlab-to-find-label-issues"], [90, "5.-Use-cleanlab-to-find-label-issues"]], "DataMonitor: Leverage statistics from Datalab to audit new data": [[85, "DataMonitor:-Leverage-statistics-from-Datalab-to-audit-new-data"]], "1. Install and import required dependencies": [[85, "1.-Install-and-import-required-dependencies"], [87, "1.-Install-and-import-required-dependencies"], [88, "1.-Install-and-import-required-dependencies"], [96, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[85, "2.-Create-and-load-the-data-(can-skip-these-details)"], [87, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[85, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"], [87, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[85, "4.-Use-Datalab-to-find-issues-in-the-dataset"], [87, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Use DataMonitor to find issues in new data": [[85, "5.-Use-DataMonitor-to-find-issues-in-new-data"]], "6. Learn more about the issues in the additional data": [[85, "6.-Learn-more-about-the-issues-in-the-additional-data"]], "7. Finding outliers in new data": [[85, "7.-Finding-outliers-in-new-data"]], "8. Looking for both label issues and outliers": [[85, "8.-Looking-for-both-label-issues-and-outliers"]], "Datalab: Advanced workflows to audit your data": [[86, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[86, "Install-and-import-required-dependencies"]], "Create and load the data": [[86, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[86, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[86, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[86, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[86, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[86, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[86, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[87, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "5. Learn more about the issues in your dataset": [[87, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[87, "Get-additional-information"]], "Near duplicate issues": [[87, "Near-duplicate-issues"], [88, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[88, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[88, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[88, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[88, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[88, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[88, "7.-Use-cleanlab-to-find-issues"]], "View report": [[88, "View-report"]], "Label issues": [[88, "Label-issues"], [90, "Label-issues"], [91, "Label-issues"]], "View most likely examples with label errors": [[88, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[88, "Outlier-issues"], [90, "Outlier-issues"], [91, "Outlier-issues"]], "View most severe outliers": [[88, "View-most-severe-outliers"]], "View sets of near duplicate images": [[88, "View-sets-of-near-duplicate-images"]], "Dark images": [[88, "Dark-images"]], "View top examples of dark images": [[88, "View-top-examples-of-dark-images"]], "Low information images": [[88, "Low-information-images"]], "Datalab Tutorials": [[89, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[90, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[90, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[91, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[91, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[91, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[91, "Non-IID-issues-(data-drift)"]], "Understanding Dataset-level Labeling Issues": [[92, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[92, "Install-dependencies-and-import-them"], [94, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[92, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[92, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[93, "FAQ"]], "What data can cleanlab detect issues in?": [[93, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[93, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[93, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[93, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[93, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[93, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[93, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[93, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[93, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[93, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[93, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[93, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[93, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[93, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[94, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[94, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[94, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[94, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[94, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[94, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[94, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[94, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[94, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[94, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[94, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[94, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[94, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[94, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[94, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[94, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[94, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[94, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[94, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[94, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[94, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[94, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[95, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[96, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[96, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[96, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[96, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[96, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[96, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[96, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[96, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[96, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[97, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[97, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[97, "2.-Format-data,-labels,-and-model-predictions"], [98, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[97, "3.-Use-cleanlab-to-find-label-issues"], [98, "3.-Use-cleanlab-to-find-label-issues"], [102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[97, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[97, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[97, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[97, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[97, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[98, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[98, "1.-Install-required-dependencies-and-download-data"], [102, "1.-Install-required-dependencies-and-download-data"], [103, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[98, "Get-label-quality-scores"], [102, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[98, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[98, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[98, "Other-uses-of-visualize"]], "Exploratory data analysis": [[98, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[99, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[99, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[99, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[99, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[99, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[99, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[100, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[100, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[100, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[101, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[101, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[101, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[102, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[102, "2.-Get-data,-labels,-and-pred_probs"], [103, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[102, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[102, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[102, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[103, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[103, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[103, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[103, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[103, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"], [12, "module-cleanlab.datalab.internal.data"], [13, "module-cleanlab.datalab.internal.data_issues"], [14, "module-cleanlab.datalab.internal.issue_manager_factory"], [15, "module-cleanlab.datalab.internal"], [16, "module-cleanlab.datalab.internal.issue_finder"], [18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [19, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [20, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [26, "module-cleanlab.datalab.internal.issue_manager.noniid"], [27, "module-cleanlab.datalab.internal.issue_manager.null"], [28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [32, "module-cleanlab.datalab.internal.model_outputs"], [33, "module-cleanlab.datalab.internal.report"], [34, "module-cleanlab.datalab.internal.task"], [36, "module-cleanlab.dataset"], [37, "module-cleanlab.experimental.cifar_cnn"], [38, "module-cleanlab.experimental.coteaching"], [39, "module-cleanlab.experimental"], [40, "module-cleanlab.experimental.label_issues_batched"], [41, "module-cleanlab.experimental.mnist_pytorch"], [42, "module-cleanlab.experimental.span_classification"], [43, "module-cleanlab.filter"], [44, "module-cleanlab.internal"], [45, "module-cleanlab.internal.label_quality_utils"], [46, "module-cleanlab.internal.latent_algebra"], [47, "module-cleanlab.internal.multiannotator_utils"], [48, "module-cleanlab.internal.multilabel_scorer"], [49, "module-cleanlab.internal.multilabel_utils"], [50, "module-cleanlab.internal.outlier"], [51, "module-cleanlab.internal.token_classification_utils"], [52, "module-cleanlab.internal.util"], [53, "module-cleanlab.internal.validation"], [55, "module-cleanlab.models"], [56, "module-cleanlab.models.keras"], [57, "module-cleanlab.multiannotator"], [58, "module-cleanlab.multilabel_classification.dataset"], [59, "module-cleanlab.multilabel_classification.filter"], [60, "module-cleanlab.multilabel_classification"], [61, "module-cleanlab.multilabel_classification.rank"], [62, "module-cleanlab.object_detection.filter"], [63, "module-cleanlab.object_detection"], [64, "module-cleanlab.object_detection.rank"], [65, "module-cleanlab.object_detection.summary"], [66, "module-cleanlab.outlier"], [67, "module-cleanlab.rank"], [68, "module-cleanlab.regression"], [69, "module-cleanlab.regression.learn"], [70, "module-cleanlab.regression.rank"], [71, "module-cleanlab.segmentation.filter"], [72, "module-cleanlab.segmentation"], [73, "module-cleanlab.segmentation.rank"], [74, "module-cleanlab.segmentation.summary"], [75, "module-cleanlab.token_classification.filter"], [76, "module-cleanlab.token_classification"], [77, "module-cleanlab.token_classification.rank"], [78, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[11, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[12, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[12, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[12, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[12, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[12, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[15, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[16, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[27, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[33, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[33, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[34, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[34, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[36, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.forward"], [37, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[39, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [41, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [41, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [41, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[43, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[43, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[43, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[44, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[45, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.outlier": [[50, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[50, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[50, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[51, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[52, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[53, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[55, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[56, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[56, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[56, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[57, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[58, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[59, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[59, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[59, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[60, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[61, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[61, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[61, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[62, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[62, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[63, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[64, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[65, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[66, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[66, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[67, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[67, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[67, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[68, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[69, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[69, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[69, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[70, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[70, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[71, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[71, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[72, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[73, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[73, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[73, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[74, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[75, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[75, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[76, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[77, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[77, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[77, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[78, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/data_monitor", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/data_monitor.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "DataMonitor: Leverage statistics from Datalab to audit new data", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 80, 85, 86, 87, 94, 96, 97], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 85, 86, 87, 94, 96, 97], "generate_noise_matrix_from_trac": [0, 1, 85, 86, 87, 94, 96, 97], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 16, 40, 45, 47, 48, 49, 50, 51, 52, 64, 88, 92, 103], "method": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102, 103], "ar": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 26, 29, 30, 32, 34, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "us": [1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 79, 80, 86, 92, 100], "benchmark": [1, 37, 79, 80, 85, 86, 87, 94, 96, 97], "cleanlab": [1, 2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 85, 86, 87, 92, 95, 100], "": [1, 2, 3, 4, 10, 18, 32, 36, 37, 41, 45, 48, 50, 52, 57, 58, 62, 64, 65, 66, 67, 69, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "core": [1, 40, 43, 71, 73], "algorithm": [1, 2, 8, 10, 31, 38, 42, 50, 52, 57, 66, 75, 77, 79, 93, 94, 96, 103], "These": [1, 2, 3, 4, 5, 8, 10, 21, 37, 39, 41, 42, 43, 44, 55, 57, 58, 61, 65, 66, 70, 74, 75, 77, 78, 82, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "introduc": [1, 84, 93, 94], "synthet": [1, 96, 97, 102], "nois": [1, 2, 3, 36, 43, 46, 52, 58, 85, 86, 87, 92, 96, 101], "label": [1, 2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 20, 21, 22, 24, 29, 31, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 52, 53, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 86, 95, 99, 100], "classif": [1, 3, 4, 5, 7, 10, 12, 14, 16, 32, 34, 36, 40, 42, 43, 46, 48, 49, 52, 57, 58, 59, 60, 61, 66, 67, 75, 76, 77, 78, 79, 80, 81, 84, 85, 86, 87, 95, 96, 99, 100, 101, 102], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 25, 26, 27, 28, 30, 31, 39, 40, 41, 42, 43, 46, 48, 52, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 82, 86, 90, 95, 96, 100], "specif": [1, 3, 5, 9, 14, 15, 16, 27, 33, 34, 39, 55, 59, 62, 65, 74, 78, 88, 90, 91, 94, 98, 103], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "modul": [1, 3, 13, 14, 15, 16, 21, 24, 29, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 48, 50, 52, 55, 57, 62, 65, 66, 67, 79, 88, 93, 97], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 14, 16, 18, 23, 30, 34, 36, 37, 38, 40, 41, 43, 46, 50, 52, 56, 57, 58, 59, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103], "gener": [1, 2, 3, 7, 10, 18, 23, 25, 33, 36, 48, 52, 53, 66, 67, 69, 74, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 99, 100, 102, 103], "valid": [1, 2, 3, 5, 10, 12, 32, 34, 36, 43, 44, 46, 47, 48, 50, 52, 57, 59, 62, 65, 67, 69, 70, 78, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 97, 98, 101, 102, 103], "matric": [1, 3, 46, 93], "which": [1, 2, 3, 5, 7, 10, 12, 13, 14, 16, 18, 22, 26, 32, 33, 34, 36, 37, 41, 42, 43, 46, 48, 51, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 73, 74, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "learn": [1, 2, 3, 4, 5, 9, 10, 14, 16, 22, 30, 33, 38, 39, 40, 41, 43, 45, 47, 52, 55, 57, 59, 66, 68, 70, 73, 77, 79, 82, 83, 84, 86, 88, 90, 91, 92, 96, 97, 101], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101, 102, 103], "possibl": [1, 2, 3, 7, 10, 36, 37, 41, 43, 45, 46, 48, 59, 60, 61, 62, 64, 65, 66, 67, 69, 75, 77, 78, 85, 87, 93, 94, 96, 97, 98, 101, 102, 103], "noisi": [1, 2, 3, 10, 36, 38, 41, 43, 46, 52, 58, 59, 61, 67, 69, 70, 71, 73, 74, 80, 85, 86, 87, 90, 91, 93, 95, 96], "given": [1, 2, 3, 5, 10, 14, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 51, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "matrix": [1, 2, 3, 5, 10, 16, 18, 31, 36, 43, 45, 46, 49, 52, 53, 59, 62, 64, 65, 66, 67, 90, 98, 99], "trace": [1, 85, 86, 87, 94, 96, 97], "valu": [1, 2, 3, 4, 5, 10, 12, 13, 16, 18, 22, 26, 27, 32, 34, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 78, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "more": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 16, 18, 26, 36, 37, 40, 41, 42, 45, 48, 50, 52, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 73, 74, 75, 77, 79, 84, 86, 88, 90, 91, 92, 93, 96, 97, 98, 99, 102, 103], "function": [1, 2, 3, 4, 5, 7, 10, 13, 14, 16, 23, 26, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 102, 103], "noise_matrix": [1, 2, 3, 10, 46, 52, 85, 86, 87, 94, 96, 97], "py": [1, 3, 33, 37, 38, 43, 46, 48, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97], "verbos": [1, 2, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 40, 43, 57, 58, 59, 64, 66, 67, 69, 71, 73, 74, 78, 86, 94, 96], "fals": [1, 2, 3, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 47, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 98, 99, 101, 102], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 85], "prior": [1, 2, 3, 36, 43, 46, 48], "repres": [1, 2, 3, 7, 10, 12, 16, 18, 26, 32, 34, 36, 40, 43, 46, 49, 50, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103], "p": [1, 2, 3, 5, 10, 36, 43, 45, 46, 50, 52, 57, 65, 66, 67, 71, 90, 91, 94, 96, 103], "true_label": [1, 2, 3, 36, 46, 52, 94, 96], "k": [1, 2, 3, 4, 5, 8, 10, 12, 16, 18, 19, 23, 26, 28, 31, 36, 40, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 60, 61, 62, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 82, 84, 85, 86, 87, 93, 94, 96, 97, 98, 99, 102, 103], "check": [1, 2, 5, 6, 9, 10, 12, 16, 27, 34, 37, 40, 41, 47, 53, 56, 62, 65, 69, 79, 82, 83, 84, 85, 86, 87, 88, 93, 94, 96, 97, 101], "learnabl": 1, "mean": [1, 2, 7, 8, 12, 13, 22, 26, 38, 41, 46, 48, 50, 64, 69, 83, 87, 91, 93, 94, 96, 97, 98, 99, 101], "achiev": [1, 2, 37, 38, 41, 69, 93, 96, 103], "better": [1, 5, 10, 43, 57, 59, 67, 69, 70, 79, 83, 84, 87, 90, 91, 93, 94, 97, 98, 99, 103], "than": [1, 2, 3, 4, 7, 9, 10, 26, 28, 31, 36, 43, 52, 56, 57, 62, 64, 66, 67, 69, 73, 77, 82, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "random": [1, 2, 3, 7, 10, 18, 31, 40, 48, 57, 67, 69, 82, 84, 85, 86, 87, 88, 90, 93, 94, 96, 97, 99], "perform": [1, 2, 4, 7, 10, 26, 28, 31, 37, 41, 48, 65, 69, 79, 82, 83, 86, 93, 94, 96, 97, 100, 101], "averag": [1, 3, 5, 10, 22, 28, 36, 37, 41, 48, 50, 57, 58, 65, 66, 67, 93, 96, 99], "amount": [1, 3, 88], "paramet": [1, 2, 3, 4, 5, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 87, 88, 91], "np": [1, 2, 3, 4, 5, 7, 16, 18, 31, 36, 38, 40, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "ndarrai": [1, 2, 3, 4, 5, 16, 23, 25, 26, 30, 31, 32, 36, 38, 40, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 103], "an": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 79, 82, 83, 85, 86, 87, 90, 91, 92, 94, 96, 97, 98, 99, 100, 101, 102, 103], "arrai": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 26, 32, 36, 38, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "shape": [1, 2, 3, 4, 5, 16, 18, 36, 38, 40, 42, 43, 45, 46, 47, 48, 50, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 84, 92, 93, 94, 97, 98, 99, 102, 103], "condit": [1, 2, 3, 46, 51, 52, 67, 88, 94, 103], "probabl": [1, 2, 3, 5, 8, 10, 16, 23, 25, 28, 32, 36, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 92, 93, 94, 95, 97, 98, 99, 102, 103], "k_": [1, 2, 3, 46, 52], "k_y": [1, 2, 3, 46, 52], "contain": [1, 2, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 43, 45, 46, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 73, 74, 75, 77, 78, 80, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102], "fraction": [1, 2, 3, 10, 20, 38, 46, 52, 57, 69, 90, 93], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 96, 97, 98, 100, 101, 102, 103], "everi": [1, 2, 3, 4, 5, 16, 37, 41, 43, 46, 51, 52, 59, 67, 69, 70, 82, 84, 85, 86, 87, 88, 90, 91, 93, 96, 98, 100, 102, 103], "class": [1, 2, 3, 4, 5, 7, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103], "other": [1, 2, 3, 5, 10, 16, 22, 27, 36, 37, 39, 40, 41, 43, 46, 49, 52, 53, 55, 57, 58, 61, 65, 66, 67, 69, 74, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 99, 102, 103], "assum": [1, 2, 3, 12, 43, 46, 51, 52, 67, 71, 74, 93, 97, 99, 101, 102, 103], "column": [1, 2, 3, 5, 10, 12, 13, 30, 36, 40, 43, 46, 48, 49, 51, 52, 57, 58, 59, 61, 62, 65, 66, 67, 69, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 101, 102, 103], "sum": [1, 2, 3, 26, 31, 32, 36, 46, 48, 52, 58, 59, 61, 64, 69, 85, 86, 87, 88, 93, 94, 96, 97, 102, 103], "1": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 92, 93, 100], "each": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 14, 16, 20, 22, 23, 25, 26, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 50, 52, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "true": [1, 2, 3, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 48, 51, 52, 53, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "return": [1, 2, 3, 4, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "type": [1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 97, 98, 101, 102, 103], "bool": [1, 2, 3, 5, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 48, 51, 52, 57, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78], "is_valid": 1, "whether": [1, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 37, 40, 41, 43, 52, 57, 58, 59, 61, 62, 78, 83, 84, 87, 88, 90, 91, 92, 93, 94, 101, 103], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 27, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 46, 48, 49, 50, 51, 52, 57, 59, 61, 64, 65, 66, 67, 69, 70, 75, 77, 78, 79, 84, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 102, 103], "perfect": [1, 2, 36, 69, 94, 98], "exactli": [1, 3, 10, 36, 37, 41, 43, 60, 66, 86, 87, 88, 90, 91, 94], "yield": [1, 37, 41, 85], "between": [1, 5, 10, 15, 16, 21, 22, 24, 26, 29, 32, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 50, 55, 57, 58, 61, 64, 66, 67, 69, 70, 73, 77, 78, 80, 83, 84, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "below": [1, 3, 4, 5, 10, 36, 37, 40, 41, 43, 45, 48, 50, 57, 58, 59, 64, 65, 73, 77, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "we": [1, 2, 3, 5, 7, 10, 13, 22, 37, 40, 41, 43, 48, 52, 53, 56, 57, 64, 65, 67, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "loop": [1, 3, 46, 52, 88, 98], "implement": [1, 2, 3, 4, 9, 14, 22, 37, 38, 40, 41, 46, 52, 66, 69, 79, 82, 84, 86, 90, 99, 100], "what": [1, 5, 9, 10, 16, 33, 36, 38, 40, 43, 57, 58, 62, 64, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "doe": [1, 2, 3, 7, 10, 40, 41, 43, 48, 50, 53, 64, 65, 69, 71, 73, 77, 83, 84, 86, 87, 88, 90, 91, 92, 97, 101, 102], "do": [1, 2, 5, 9, 10, 36, 40, 41, 52, 53, 66, 67, 71, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "fast": 1, "explain": [1, 10], "python": [1, 2, 41, 56, 69, 83, 84, 86, 87, 88, 90, 91, 92, 94, 99], "pseudocod": [1, 100], "happen": [1, 10, 43, 59, 85, 91, 96, 102], "n": [1, 2, 3, 5, 7, 36, 37, 40, 41, 43, 45, 46, 47, 48, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 82, 83, 84, 85, 88, 91, 92, 93, 96, 97, 98, 101, 102, 103], "without": [1, 2, 5, 9, 10, 12, 14, 20, 37, 41, 61, 69, 79, 83, 84, 85, 91, 93, 94, 98, 99], "ani": [1, 2, 3, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 45, 47, 50, 51, 52, 56, 57, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102], "distinct": [1, 18, 52, 103], "natur": [1, 10, 96, 99], "number": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 80, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 102, 103], "0": [1, 2, 3, 4, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "count_joint": 1, "len": [1, 2, 3, 7, 36, 40, 46, 51, 52, 53, 66, 67, 69, 82, 83, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "y": [1, 2, 3, 5, 8, 18, 30, 31, 41, 46, 48, 52, 53, 56, 65, 69, 70, 83, 84, 85, 86, 87, 90, 93, 94, 96, 97, 99, 101], "round": [1, 40, 43, 52, 69, 93, 101], "astyp": [1, 96], "int": [1, 2, 3, 4, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 38, 40, 41, 43, 48, 49, 50, 51, 52, 53, 58, 59, 61, 65, 66, 67, 69, 71, 73, 74, 75, 78, 84, 86, 88, 98, 99], "rang": [1, 3, 5, 7, 12, 46, 48, 50, 52, 65, 69, 70, 85, 88, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 12, 13, 16, 22, 36, 40, 43, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "pragma": 1, "cover": [1, 3, 80, 92, 93], "choic": [1, 8, 43, 50, 88, 93, 97, 99], "replac": [1, 51, 56, 67, 82, 83, 85, 86, 87, 88, 91, 92, 93, 96, 99], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 67, 84, 85, 86, 87], "05": [1, 10, 26, 30, 51, 65, 69, 75, 77, 90, 92, 93, 94, 98, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 85, 86, 87, 94, 96, 97], "none": [1, 2, 3, 4, 5, 7, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 85, 86, 87, 88, 93, 94, 96, 97, 102], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 26, 39, 41, 48, 69, 82, 84, 85, 86, 87, 90, 92, 94, 96, 97], "max_it": [1, 83, 84, 91, 99], "10000": [1, 40, 92, 93], "x": [1, 2, 3, 5, 10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 37, 38, 41, 43, 45, 46, 48, 51, 52, 53, 56, 57, 59, 65, 66, 67, 69, 71, 82, 83, 84, 85, 86, 87, 88, 90, 92, 93, 94, 96, 97, 99, 101], "diagon": [1, 3, 5, 43, 46, 52], "equal": [1, 3, 10, 12, 59, 64, 74, 100], "creat": [1, 2, 9, 16, 18, 37, 40, 41, 43, 52, 69, 79, 83, 84, 88, 90, 91, 93, 102, 103], "impli": [1, 10, 36, 58, 65], "float": [1, 2, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 39, 40, 41, 43, 45, 47, 48, 50, 51, 52, 57, 58, 59, 61, 64, 65, 69, 73, 77, 84, 85, 86, 87, 94, 96, 97], "entri": [1, 3, 5, 36, 37, 41, 43, 45, 49, 50, 52, 57, 58, 59, 62, 82, 83, 90, 91, 94, 97, 98, 101], "maximum": [1, 10, 66, 74, 78, 102], "minimum": [1, 8, 10, 20, 43, 45, 59, 64, 77], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 16, 26, 37, 41, 43, 64, 69, 86, 93, 94, 96, 98, 99], "default": [1, 2, 3, 4, 5, 7, 10, 14, 16, 28, 30, 33, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 86, 88, 93, 101, 102], "If": [1, 2, 3, 4, 5, 10, 12, 13, 16, 26, 28, 34, 36, 37, 40, 41, 43, 45, 46, 48, 51, 52, 56, 57, 58, 59, 62, 64, 65, 66, 69, 70, 71, 73, 74, 77, 78, 79, 80, 82, 83, 84, 86, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "have": [1, 2, 3, 4, 5, 7, 9, 10, 16, 21, 24, 26, 29, 36, 37, 39, 40, 41, 43, 46, 48, 52, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 74, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "all": [1, 2, 3, 5, 7, 8, 9, 10, 13, 14, 16, 22, 33, 36, 37, 40, 41, 42, 43, 46, 48, 49, 51, 52, 56, 57, 58, 59, 60, 61, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "necessari": [1, 2, 3, 4, 7, 10, 12, 51, 85, 86], "In": [1, 2, 3, 5, 10, 36, 37, 40, 41, 56, 57, 58, 60, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 99, 100, 101, 102, 103], "particular": [1, 5, 6, 10, 13, 14, 16, 19, 20, 22, 26, 27, 28, 31, 37, 41, 52, 57, 61, 65, 69, 74, 78, 79, 82, 83, 84, 85, 87, 91, 93, 96, 97, 99, 101], "satisfi": [1, 3, 36], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 30, 35, 37, 38, 39, 40, 41, 43, 46, 52, 55, 56, 59, 66, 67, 69, 71, 79, 80, 84, 92, 93, 94, 100], "argument": [1, 2, 3, 5, 10, 16, 23, 27, 30, 31, 32, 37, 40, 41, 42, 43, 48, 53, 56, 57, 58, 59, 61, 64, 65, 66, 67, 69, 73, 74, 75, 77, 83, 85, 87, 88, 91, 92, 93, 97, 98, 101, 103], "when": [1, 2, 3, 4, 5, 10, 12, 14, 23, 26, 37, 41, 43, 46, 48, 50, 52, 56, 59, 61, 62, 64, 66, 67, 69, 70, 82, 83, 85, 86, 87, 88, 90, 91, 92, 96, 100, 101, 102, 103], "The": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 74, 75, 77, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 103], "rate": [1, 2, 3, 10, 38, 52, 84, 103], "set": [1, 2, 3, 5, 9, 10, 12, 13, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 40, 41, 43, 47, 48, 50, 52, 56, 57, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 82, 83, 85, 86, 87, 90, 91, 93, 96, 97, 99, 100, 101, 102, 103], "note": [1, 2, 3, 7, 8, 10, 12, 27, 31, 34, 37, 40, 41, 42, 43, 48, 52, 56, 57, 62, 64, 65, 66, 67, 69, 70, 74, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "you": [1, 2, 3, 5, 7, 9, 10, 14, 16, 36, 37, 39, 40, 41, 43, 48, 55, 56, 57, 59, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "high": [1, 2, 16, 40, 43, 52, 64, 67, 69, 82, 83, 85, 86, 87, 88, 92, 94, 98, 101, 102, 103], "mai": [1, 2, 3, 4, 5, 10, 13, 21, 22, 24, 29, 32, 36, 37, 39, 40, 41, 43, 46, 48, 52, 57, 58, 62, 64, 65, 66, 67, 69, 71, 74, 78, 80, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103], "imposs": [1, 10, 94], "also": [1, 2, 3, 5, 7, 9, 10, 22, 34, 36, 37, 40, 41, 43, 48, 51, 56, 57, 66, 69, 74, 77, 78, 79, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103], "low": [1, 10, 52, 57, 79, 85, 86, 87, 91, 94, 98, 102], "zero": [1, 3, 5, 37, 41, 45, 52, 53, 86, 88, 97, 98, 99], "forc": [1, 2, 3, 5, 41, 86, 103], "instead": [1, 2, 3, 10, 13, 16, 33, 36, 37, 40, 41, 43, 46, 52, 56, 57, 59, 61, 65, 66, 67, 69, 70, 73, 75, 77, 80, 82, 83, 84, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103], "onli": [1, 2, 3, 4, 5, 7, 10, 16, 23, 26, 30, 36, 37, 40, 41, 42, 43, 45, 46, 50, 51, 52, 53, 56, 57, 66, 67, 69, 71, 73, 77, 78, 79, 83, 84, 86, 87, 88, 91, 96, 97, 98, 99, 100, 101, 102, 103], "guarante": [1, 3, 5, 15, 21, 24, 29, 37, 39, 41, 44, 46, 55, 80], "produc": [1, 2, 5, 9, 10, 16, 48, 57, 67, 69, 71, 73, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 102, 103], "higher": [1, 5, 10, 36, 43, 45, 46, 48, 50, 56, 57, 58, 69, 87, 91, 93, 98], "opposit": [1, 103], "occur": [1, 3, 10, 36, 51, 64, 86, 87, 88, 93, 99], "small": [1, 3, 10, 36, 40, 48, 50, 52, 58, 65, 83, 88, 91, 92, 97, 99], "numpi": [1, 3, 4, 5, 7, 10, 12, 18, 31, 32, 40, 41, 42, 48, 50, 51, 53, 56, 61, 64, 69, 70, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "max": [1, 43, 66, 67, 87, 88, 99], "tri": [1, 37, 41, 100], "befor": [1, 2, 3, 37, 41, 50, 52, 66, 69, 74, 82, 83, 85, 91, 93, 94, 96, 99, 101], "option": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 23, 30, 36, 37, 40, 41, 43, 46, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 84, 86, 87, 88, 90, 93, 94, 97, 101, 102], "left": [1, 2, 43, 45, 50, 52, 59, 62, 65, 85, 86, 87, 97, 98, 99, 102], "stochast": 1, "exceed": 1, "m": [1, 5, 37, 41, 47, 48, 57, 62, 64, 65, 66, 85, 86, 87, 92, 96, 97, 98, 103], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 37, 41, 56, 93, 94, 102], "length": [1, 5, 12, 26, 27, 36, 38, 43, 52, 59, 62, 66, 67, 69, 71, 74, 78, 82, 84, 97, 99, 102, 103], "must": [1, 2, 3, 4, 5, 7, 16, 36, 37, 38, 39, 41, 43, 46, 48, 49, 50, 52, 55, 56, 57, 58, 59, 66, 67, 69, 71, 73, 74, 75, 77, 78, 84, 96, 100, 102, 103], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 12, 36, 40, 43, 49, 52, 53, 57, 59, 65, 71, 73, 74, 75, 77, 78, 82, 83, 84, 93, 96, 97, 98, 102, 103], "ball": [1, 92], "bin": [1, 3, 59, 85, 86, 87, 99], "ensur": [1, 2, 10, 37, 41, 50, 52, 53, 56, 64, 67, 69, 82, 83, 84, 86, 87, 88, 91, 93, 94, 99, 100, 101], "most": [1, 3, 5, 7, 10, 16, 36, 40, 43, 48, 56, 57, 58, 59, 62, 64, 65, 66, 67, 70, 73, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102], "least": [1, 4, 10, 18, 31, 36, 40, 57, 58, 64, 67, 77, 87, 88, 93, 96, 99, 102], "int_arrai": [1, 52], "can": [2, 3, 4, 5, 7, 8, 9, 13, 14, 16, 33, 34, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 78, 79, 80, 82, 83, 84, 86, 88, 90, 91, 97, 98, 99, 100, 101, 102, 103], "model": [2, 3, 4, 5, 9, 10, 16, 18, 30, 32, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 51, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 85, 86, 87, 92, 95, 100, 102, 103], "For": [2, 3, 5, 7, 9, 10, 11, 16, 22, 35, 36, 37, 40, 41, 43, 46, 48, 50, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 75, 77, 78, 79, 82, 83, 84, 85, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 100, 102, 103], "regular": [2, 3, 40, 56], "multi": [2, 3, 4, 10, 32, 36, 37, 40, 41, 43, 47, 48, 49, 52, 53, 58, 59, 60, 61, 66, 67, 79, 93, 94, 95], "task": [2, 5, 7, 10, 11, 12, 14, 15, 16, 25, 30, 33, 36, 40, 46, 48, 49, 50, 52, 57, 59, 67, 69, 79, 83, 84, 85, 91, 92, 93, 94, 97, 99, 101, 102, 103], "cleanlearn": [2, 3, 10, 23, 30, 37, 52, 56, 68, 69, 70, 79, 80, 82, 83, 101], "wrap": [2, 37, 41, 56, 66, 69, 79, 82, 83, 85, 86, 87, 90, 91, 94, 101], "instanc": [2, 3, 5, 6, 7, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 56, 65, 66, 69, 74, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 98], "sklearn": [2, 3, 4, 5, 8, 10, 18, 31, 36, 41, 48, 52, 56, 66, 69, 70, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 101], "classifi": [2, 3, 41, 48, 52, 57, 60, 66, 67, 79, 80, 82, 83, 84, 90, 91, 93, 96, 97, 99, 100, 102, 103], "adher": [2, 41, 69], "estim": [2, 3, 4, 5, 9, 13, 22, 36, 40, 41, 43, 46, 52, 57, 58, 59, 64, 66, 69, 71, 73, 77, 79, 80, 84, 85, 86, 87, 88, 90, 91, 93, 95, 98, 99, 100, 101, 102, 103], "api": [2, 3, 14, 56, 62, 65, 66, 69, 80, 93, 101], "defin": [2, 3, 5, 7, 10, 14, 22, 36, 37, 38, 40, 41, 43, 67, 69, 71, 84, 86, 87, 90, 92, 93, 96, 99, 103], "four": [2, 10, 92, 94, 103], "clf": [2, 3, 5, 48, 69, 79, 82, 90, 93, 94, 97], "fit": [2, 3, 5, 8, 10, 18, 39, 41, 55, 56, 66, 68, 69, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 101, 103], "sample_weight": [2, 41, 69, 94], "predict_proba": [2, 5, 36, 39, 41, 48, 55, 56, 82, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 99], "predict": [2, 3, 4, 5, 8, 9, 10, 16, 22, 23, 25, 28, 30, 32, 34, 36, 39, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 83, 92, 93, 94, 95, 99, 101, 102, 103], "score": [2, 3, 4, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 42, 43, 45, 48, 50, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 73, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 99, 101], "data": [2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 38, 39, 40, 41, 42, 43, 48, 49, 52, 55, 56, 57, 58, 59, 60, 64, 66, 67, 68, 69, 74, 75, 76, 77, 78, 80, 83, 88, 89, 95, 100], "e": [2, 3, 5, 10, 12, 22, 32, 36, 37, 40, 41, 43, 46, 48, 49, 52, 53, 57, 58, 59, 60, 62, 65, 66, 67, 69, 71, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101], "featur": [2, 3, 4, 5, 8, 10, 16, 18, 19, 23, 26, 27, 28, 30, 31, 48, 52, 66, 69, 79, 82, 85, 86, 87, 90, 91, 93, 94, 96, 97, 101], "element": [2, 3, 5, 36, 42, 43, 45, 52, 57, 59, 67, 74, 75, 77, 83, 84, 91, 93, 103], "first": [2, 5, 10, 17, 26, 27, 36, 40, 48, 52, 57, 58, 62, 65, 67, 69, 82, 83, 84, 86, 88, 90, 93, 96, 97, 98, 99, 101, 102, 103], "index": [2, 10, 26, 36, 43, 51, 52, 53, 58, 67, 69, 74, 77, 78, 83, 84, 86, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "should": [2, 3, 5, 7, 10, 14, 22, 26, 31, 32, 36, 37, 40, 41, 43, 45, 46, 48, 50, 51, 52, 56, 57, 58, 61, 62, 64, 65, 66, 67, 69, 70, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 100, 101, 102, 103], "correspond": [2, 3, 5, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 36, 37, 40, 41, 42, 43, 45, 46, 48, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "differ": [2, 5, 7, 10, 13, 15, 21, 24, 26, 27, 29, 36, 37, 39, 40, 41, 43, 44, 48, 50, 52, 53, 55, 57, 62, 64, 66, 69, 82, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 99, 100, 101], "sampl": [2, 3, 5, 8, 10, 16, 20, 43, 45, 48, 59, 62, 65, 67, 69, 70, 79, 80, 83, 92, 93, 94, 95, 97, 98, 101, 102, 103], "size": [2, 10, 31, 37, 40, 41, 43, 48, 59, 64, 65, 69, 71, 73, 83, 85, 88, 90, 93, 94, 96, 97, 98, 100, 102], "here": [2, 5, 7, 10, 14, 40, 43, 46, 56, 57, 58, 59, 61, 62, 65, 66, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "re": [2, 5, 37, 41, 51, 57, 69, 79, 82, 83, 84, 85, 86, 90, 91, 93, 101, 102, 103], "weight": [2, 10, 37, 38, 41, 48, 57, 64, 67, 69, 83, 84, 85, 86, 87, 91], "loss": [2, 38, 56, 67, 69, 88], "while": [2, 3, 10, 37, 40, 41, 47, 48, 52, 69, 79, 88, 93, 94, 96, 97, 101], "train": [2, 3, 4, 5, 9, 10, 16, 18, 32, 37, 38, 39, 41, 48, 52, 56, 57, 62, 65, 66, 69, 70, 80, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 100, 102, 103], "support": [2, 3, 4, 5, 12, 14, 33, 34, 40, 42, 48, 52, 53, 56, 66, 67, 77, 79, 80, 84, 85, 86, 87, 88, 93], "your": [2, 3, 5, 9, 10, 16, 36, 37, 39, 40, 41, 43, 48, 52, 55, 56, 57, 58, 59, 61, 66, 67, 69, 70, 71, 73, 74, 80, 82, 83, 84, 85, 88, 90, 92, 96, 97, 98, 99, 100, 101, 102, 103], "recommend": [2, 5, 7, 10, 13, 16, 40, 43, 57, 86, 87, 88, 93, 100, 101], "furthermor": 2, "correctli": [2, 3, 10, 36, 37, 41, 43, 46, 53, 58, 59, 64, 65, 69, 71, 83, 91, 93, 97, 98, 101, 102], "clonabl": [2, 69], "via": [2, 5, 7, 10, 13, 16, 18, 22, 36, 38, 40, 41, 48, 52, 57, 62, 65, 66, 67, 69, 70, 73, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 97, 98, 99, 100, 101, 102, 103], "base": [2, 3, 4, 5, 7, 10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 42, 43, 46, 47, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 64, 66, 67, 69, 70, 73, 75, 77, 82, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "clone": [2, 69, 97], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 40, 45, 46, 47, 48, 49, 50, 51, 52, 53, 61, 65, 69, 75, 80, 84, 86, 93, 94, 96, 97, 98, 99, 101, 103], "multipl": [2, 3, 5, 12, 13, 34, 36, 43, 50, 51, 57, 58, 59, 61, 64, 65, 69, 79, 86, 87, 88, 93, 95, 97, 98, 101], "g": [2, 3, 5, 10, 12, 22, 32, 36, 37, 41, 43, 49, 52, 59, 60, 62, 65, 66, 67, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101], "manual": [2, 69, 82, 83, 84, 93, 99, 100, 101, 103], "pytorch": [2, 37, 38, 41, 69, 79, 84, 88, 93, 95, 97, 102], "call": [2, 3, 5, 6, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 48, 52, 56, 66, 69, 83, 84, 85, 86, 87, 91, 93, 94, 97, 99, 100, 101, 102, 103], "__init__": [2, 38, 69, 88], "independ": [2, 3, 10, 58, 69, 91, 100, 101, 103], "compat": [2, 37, 40, 41, 56, 69, 70, 73, 77, 79, 82, 83, 93, 100, 101], "neural": [2, 38, 56, 66, 69, 84, 88, 93, 97, 99, 101], "network": [2, 37, 38, 41, 56, 66, 69, 83, 84, 88, 91, 93, 97, 99, 101], "typic": [2, 37, 41, 66, 69, 82, 83, 84, 87, 88, 90, 91, 99, 100], "initi": [2, 3, 13, 18, 37, 41, 57, 69, 82, 91, 93], "insid": [2, 41, 69, 93, 94], "There": [2, 3, 7, 79, 94, 96], "two": [2, 3, 10, 18, 26, 36, 37, 40, 41, 49, 52, 62, 64, 65, 80, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 101, 102, 103], "new": [2, 7, 9, 10, 14, 22, 37, 40, 41, 47, 51, 52, 57, 69, 83, 84, 86, 91, 92, 93, 99, 100, 103], "notion": 2, "confid": [2, 3, 10, 22, 36, 40, 43, 46, 48, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 73, 77, 79, 82, 88, 90, 91, 94, 96, 97, 98, 100, 102, 103], "packag": [2, 5, 7, 9, 10, 11, 15, 35, 39, 43, 44, 52, 55, 56, 62, 65, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "prune": [2, 3, 43, 59, 69, 80, 98], "everyth": [2, 65, 94], "els": [2, 65, 85, 86, 88, 92, 93, 96, 97, 98], "mathemat": [2, 3, 10, 46, 97], "keep": [2, 13, 14, 52, 79, 85, 86, 92, 93, 102], "belong": [2, 3, 10, 36, 43, 45, 46, 58, 59, 60, 61, 66, 67, 71, 75, 77, 78, 87, 88, 94, 97, 99, 102, 103], "2": [2, 3, 4, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 49, 50, 51, 52, 56, 58, 59, 61, 62, 65, 66, 67, 69, 70, 74, 75, 77, 78, 92, 93, 100], "error": [2, 3, 5, 10, 37, 41, 42, 43, 45, 46, 52, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 80, 82, 84, 85, 86, 87, 90, 91, 92, 95], "erron": [2, 3, 36, 43, 46, 52, 58, 59, 67, 69, 70, 71, 99, 101], "import": [2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 40, 42, 48, 50, 51, 57, 61, 64, 69, 70, 75, 77, 78, 79, 82, 83, 90, 91, 93, 97, 98, 99, 101, 102, 103], "linear_model": [2, 5, 36, 52, 69, 79, 83, 84, 85, 86, 87, 91, 93, 94, 96, 99], "logisticregress": [2, 3, 5, 36, 52, 79, 83, 84, 85, 86, 87, 91, 93, 94, 96, 99], "logreg": 2, "cl": [2, 14, 30, 69, 79, 82, 83, 93, 94, 101], "pass": [2, 3, 5, 8, 10, 12, 13, 14, 16, 23, 30, 33, 37, 40, 41, 43, 47, 48, 52, 56, 57, 59, 65, 66, 67, 69, 74, 75, 79, 83, 84, 85, 86, 87, 91, 92, 93, 94, 96, 98, 99, 101], "x_train": [2, 82, 85, 86, 87, 94, 96, 97, 101], "labels_maybe_with_error": 2, "had": [2, 3, 69, 98], "issu": [2, 3, 4, 5, 6, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 55, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 83, 89, 95, 96, 100, 101], "pred": [2, 43, 52, 82, 83, 100, 101], "x_test": [2, 82, 85, 86, 87, 94, 97, 101], "might": [2, 5, 10, 57, 69, 74, 82, 83, 86, 87, 88, 93, 98], "case": [2, 3, 10, 13, 36, 48, 57, 69, 82, 83, 84, 86, 87, 88, 90, 92, 93, 94, 99, 101, 103], "standard": [2, 3, 5, 30, 36, 43, 56, 58, 59, 61, 67, 69, 79, 82, 86, 87, 90, 92, 94, 98], "adapt": [2, 37, 39, 52, 55, 69, 99], "skorch": [2, 69, 79, 93], "kera": [2, 55, 62, 65, 69, 79, 93, 98], "scikera": [2, 56, 69, 93], "open": [2, 40, 92, 98, 103], "doesn": [2, 10, 69, 79], "t": [2, 3, 4, 7, 10, 17, 27, 37, 38, 40, 41, 42, 43, 48, 50, 51, 61, 66, 67, 69, 75, 77, 78, 79, 86, 87, 88, 90, 91, 92, 94, 97, 98, 101, 103], "alreadi": [2, 5, 10, 16, 37, 40, 41, 46, 56, 57, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101], "exist": [2, 5, 10, 12, 18, 37, 40, 41, 51, 56, 62, 64, 66, 69, 79, 80, 82, 83, 86, 87, 91, 96, 103], "made": [2, 5, 16, 37, 41, 69, 82, 83, 88, 91, 93, 96, 98, 100, 101], "easi": [2, 11, 46, 69, 86, 87, 92, 93, 94, 97], "inherit": [2, 7, 38, 69], "baseestim": [2, 41, 69], "yourmodel": [2, 69], "def": [2, 7, 14, 37, 41, 56, 69, 83, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "self": [2, 3, 5, 7, 10, 12, 13, 14, 16, 31, 37, 38, 40, 41, 43, 48, 66, 67, 69, 82, 83, 86, 88, 91, 92, 97, 102, 103], "refer": [2, 10, 16, 37, 41, 42, 58, 59, 61, 62, 64, 65, 66, 69, 73, 74, 86, 87, 88, 90, 91, 93, 94, 97, 100, 101], "origin": [2, 5, 10, 41, 42, 43, 51, 52, 56, 58, 59, 62, 65, 66, 69, 70, 73, 75, 77, 82, 83, 86, 88, 90, 91, 93, 94, 98, 99, 101, 103], "total": [2, 3, 4, 36, 40, 52, 58, 78, 85, 88, 93, 102], "state": [2, 3, 5, 37, 38, 41, 47, 69, 94, 97, 98, 103], "art": [2, 38, 94, 97], "northcutt": [2, 3, 36, 66, 67], "et": [2, 3, 36, 38, 66, 67], "al": [2, 3, 36, 38, 66, 67], "2021": [2, 3, 36, 66, 67], "weak": [2, 65], "supervis": [2, 10, 86, 87, 93, 96], "find": [2, 5, 9, 10, 13, 14, 16, 19, 20, 22, 23, 25, 26, 27, 28, 31, 32, 36, 37, 39, 40, 41, 42, 43, 47, 51, 52, 55, 62, 65, 66, 67, 69, 71, 75, 77, 80, 86, 95, 100], "uncertainti": [2, 10, 45, 66, 69, 93, 99, 101], "It": [2, 3, 5, 7, 10, 12, 13, 16, 22, 27, 30, 32, 33, 34, 37, 41, 43, 46, 48, 50, 57, 64, 65, 69, 79, 83, 86, 87, 88, 91, 93, 94, 97, 100], "work": [2, 3, 7, 10, 12, 30, 36, 37, 40, 41, 43, 46, 51, 52, 53, 56, 57, 67, 69, 79, 80, 83, 85, 86, 87, 92, 99, 101], "includ": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 37, 39, 40, 41, 51, 52, 55, 57, 58, 61, 62, 66, 67, 69, 73, 74, 75, 77, 79, 80, 86, 87, 88, 90, 91, 93, 94, 97, 98, 99, 103], "deep": [2, 39, 41, 55, 56, 69, 91], "see": [2, 3, 5, 7, 10, 13, 14, 33, 36, 37, 40, 41, 42, 43, 48, 52, 56, 58, 59, 61, 62, 65, 66, 67, 69, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "subfield": 2, "theori": [2, 94], "machin": [2, 4, 5, 9, 10, 14, 16, 33, 39, 50, 55, 69, 82, 83, 86, 87, 92, 96], "across": [2, 3, 5, 7, 10, 13, 22, 36, 40, 48, 58, 65, 66, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 100, 101], "varieti": [2, 82, 83, 93], "like": [2, 3, 5, 6, 7, 10, 14, 32, 36, 37, 40, 41, 43, 46, 52, 56, 57, 58, 61, 62, 64, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "pu": [2, 52], "input": [2, 3, 5, 10, 16, 26, 36, 37, 40, 41, 46, 48, 51, 52, 53, 56, 65, 69, 79, 80, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 101, 102, 103], "discret": [2, 34, 43, 46, 52, 66, 67, 71, 73, 74], "vector": [2, 3, 4, 5, 10, 16, 43, 46, 48, 49, 52, 66, 67, 79, 83, 84, 86, 87, 88, 90, 91, 94, 97, 98, 99, 102, 103], "would": [2, 3, 5, 37, 40, 41, 43, 52, 59, 69, 79, 83, 85, 86, 88, 93, 94, 99, 101, 103], "obtain": [2, 5, 8, 10, 16, 43, 57, 59, 62, 65, 67, 70, 84, 87, 91, 93, 96, 98, 100, 102, 103], "been": [2, 4, 36, 43, 46, 51, 52, 57, 58, 62, 64, 66, 67, 69, 84, 86, 90, 93, 94, 96, 97, 98, 99, 102, 103], "dure": [2, 10, 16, 66, 69, 82, 83, 84, 85, 90, 91, 93, 94, 97, 100, 101, 103], "denot": [2, 3, 46, 48, 52, 59, 66, 67, 77], "tild": 2, "paper": [2, 4, 10, 57, 66, 75, 77, 92, 94, 96, 99, 101, 103], "cv_n_fold": [2, 3, 69, 83], "5": [2, 3, 4, 5, 8, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 41, 43, 45, 47, 48, 52, 57, 58, 61, 62, 65, 69, 70, 77, 83, 86, 91, 92, 93, 97, 98, 99, 100, 102, 103], "converge_latent_estim": [2, 3], "pulearn": [2, 52], "find_label_issues_kwarg": [2, 10, 69, 80, 93, 94], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 59, 75, 93], "clean": [2, 64, 67, 69, 70, 79, 82, 83, 85, 86, 87, 92, 101], "even": [2, 3, 7, 9, 10, 36, 40, 45, 46, 52, 69, 84, 93, 94, 96, 97, 98], "messi": [2, 69, 94], "ridden": [2, 69], "autom": [2, 9, 10, 69, 79, 87, 92, 93], "robust": [2, 46, 69, 87, 93], "prone": [2, 69], "out": [2, 3, 5, 10, 16, 28, 37, 41, 43, 48, 56, 59, 60, 62, 65, 66, 67, 69, 70, 78, 79, 80, 83, 92, 93, 94, 95, 97, 98, 99, 101, 102, 103], "current": [2, 3, 5, 7, 10, 13, 14, 22, 37, 41, 42, 43, 48, 57, 64, 69, 85, 86, 87, 93, 96, 98], "intend": [2, 13, 14, 15, 16, 32, 33, 34, 44, 57, 73, 77, 84, 86, 87, 91, 94], "A": [2, 3, 4, 5, 7, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 38, 41, 43, 46, 47, 48, 49, 50, 51, 52, 56, 57, 58, 61, 64, 65, 66, 67, 69, 71, 73, 74, 78, 80, 82, 83, 84, 86, 88, 90, 91, 92, 93, 94, 96, 98, 100, 103], "follow": [2, 3, 10, 14, 30, 34, 36, 37, 40, 41, 48, 50, 57, 58, 62, 64, 65, 66, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "experiment": [2, 37, 38, 40, 41, 42, 59, 80, 85, 93], "wrapper": [2, 56, 82, 83, 84, 101], "around": [2, 64, 85, 86, 87, 98, 99, 103], "fasttext": [2, 55], "store": [2, 4, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 66, 69, 82, 83, 85, 90, 91, 92, 93, 102, 103], "along": [2, 48, 59, 77, 85, 86, 87, 88, 93, 99], "dimens": [2, 52, 71, 74, 88, 93, 99, 102], "select": [2, 9, 10, 26, 57, 67, 88, 93, 96, 99], "split": [2, 3, 5, 10, 12, 40, 48, 51, 52, 69, 82, 84, 85, 86, 87, 88, 90, 91, 92, 94, 97, 100, 103], "cross": [2, 3, 10, 36, 43, 46, 47, 48, 59, 62, 65, 67, 69, 70, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 97, 98, 101, 102, 103], "fold": [2, 3, 36, 43, 46, 69, 82, 84, 90, 92, 93, 98, 102], "By": [2, 36, 58, 59, 69, 86, 93, 102], "need": [2, 3, 10, 36, 37, 40, 41, 43, 58, 59, 61, 66, 69, 79, 83, 84, 86, 87, 91, 93, 94, 96, 97, 98, 102], "holdout": [2, 3, 69], "comput": [2, 3, 4, 5, 7, 8, 10, 19, 20, 22, 23, 26, 27, 28, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 52, 57, 58, 59, 61, 64, 65, 66, 67, 69, 70, 71, 73, 79, 80, 83, 86, 87, 92, 94, 95, 98, 99, 101, 102], "them": [2, 3, 5, 7, 9, 10, 11, 12, 27, 32, 35, 37, 39, 40, 41, 43, 55, 57, 66, 69, 80, 82, 83, 85, 86, 87, 88, 90, 91, 93, 96, 97, 99, 101, 102, 103], "numer": [2, 3, 4, 5, 10, 13, 22, 30, 34, 48, 64, 66, 69, 74, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 94, 96, 97, 99, 101], "consist": [2, 3, 37, 41, 52, 57, 102, 103], "latent": [2, 3, 46], "thei": [2, 3, 5, 15, 21, 24, 26, 29, 37, 38, 39, 41, 43, 44, 50, 52, 56, 59, 64, 67, 69, 70, 73, 77, 79, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101, 103], "relat": [2, 3, 13, 19, 20, 26, 27, 28, 31, 46, 52, 58, 69, 87, 91], "close": [2, 3, 10, 40, 46, 66, 84, 86, 87, 88, 90, 91, 93, 94, 98], "form": [2, 3, 10, 37, 38, 41, 46, 51, 52, 67, 69, 93], "equival": [2, 3, 37, 41, 46, 66, 99, 101], "iter": [2, 3, 36, 37, 41, 43, 52, 58, 59, 69, 85, 93, 96, 102], "enforc": [2, 37, 41, 52], "perfectli": [2, 36, 58, 94], "certain": [2, 3, 5, 37, 41, 56, 65, 69, 85, 86, 87, 92, 98, 99], "dict": [2, 3, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 47, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 77, 85, 86, 87, 88, 93, 103], "keyword": [2, 3, 5, 10, 16, 23, 27, 30, 37, 40, 41, 43, 45, 48, 51, 56, 57, 59, 65, 66, 67, 69, 74, 75, 77, 86], "filter": [2, 3, 10, 40, 42, 51, 58, 60, 61, 63, 65, 72, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 87, 88, 91, 92, 93, 97, 98, 101, 102, 103], "find_label_issu": [2, 3, 10, 30, 39, 40, 42, 43, 58, 59, 60, 61, 62, 63, 64, 65, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 93, 97, 98, 101, 102, 103], "particularli": [2, 79, 96, 99], "filter_bi": [2, 3, 40, 43, 59, 80, 93], "frac_nois": [2, 43, 59, 75, 93], "min_examples_per_class": [2, 43, 59, 87, 93, 94], "impact": [2, 4, 10, 86, 87, 88], "ml": [2, 4, 5, 9, 10, 15, 69, 79, 82, 83, 86, 87, 88, 90, 91, 96, 97, 101], "accuraci": [2, 38, 67, 82, 83, 84, 88, 93, 94, 96, 99, 101, 102], "n_job": [2, 40, 43, 59, 71, 73, 75, 93, 99, 102], "disabl": [2, 37, 41, 43, 99], "process": [2, 3, 7, 13, 16, 32, 37, 40, 41, 43, 51, 57, 59, 65, 71, 73, 75, 83, 84, 85, 86, 93, 96, 100], "caus": [2, 43, 48, 86, 87, 93], "rank": [2, 3, 10, 36, 40, 42, 43, 48, 58, 59, 60, 62, 63, 65, 66, 68, 72, 74, 75, 76, 78, 79, 80, 82, 83, 86, 87, 92, 93, 97, 98, 99, 102, 103], "get_label_quality_scor": [2, 39, 40, 42, 43, 44, 48, 57, 59, 60, 61, 62, 63, 64, 67, 68, 70, 72, 73, 75, 76, 77, 80, 93, 94, 97, 98, 102, 103], "adjust_pred_prob": [2, 10, 61, 66, 67, 94], "control": [2, 5, 9, 10, 16, 40, 43, 57, 65, 66, 69, 75, 77, 86, 87, 92, 93], "how": [2, 3, 5, 10, 12, 13, 14, 16, 22, 36, 37, 38, 40, 41, 46, 52, 57, 58, 61, 62, 64, 66, 67, 69, 73, 77, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 98, 99, 100, 101, 102], "much": [2, 10, 36, 40, 43, 69, 85, 92, 93, 94, 96, 99], "output": [2, 3, 5, 10, 16, 32, 37, 38, 41, 46, 52, 56, 57, 58, 62, 64, 65, 66, 69, 73, 74, 77, 78, 79, 80, 83, 84, 86, 88, 91, 92, 93, 98, 99, 100, 101], "print": [2, 5, 7, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 52, 57, 58, 59, 64, 66, 67, 69, 71, 73, 74, 78, 80, 82, 83, 84, 85, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "suppress": [2, 40, 57, 64, 66, 67, 69, 71, 73, 74, 102, 103], "statement": [2, 40, 57, 64, 66, 67, 69, 71, 73, 74], "big": [2, 40, 59, 65, 69, 94], "limit": [2, 5, 16, 40, 59, 85, 98, 102, 103], "memori": [2, 37, 40, 41, 59, 65, 71, 73, 85, 86, 102], "label_issues_batch": [2, 39, 59, 93], "find_label_issues_batch": [2, 39, 40, 59, 93], "pred_prob": [2, 3, 5, 8, 10, 16, 23, 25, 26, 28, 31, 32, 36, 40, 42, 43, 45, 46, 47, 48, 49, 52, 53, 57, 58, 59, 61, 62, 65, 66, 67, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 101], "threshold": [2, 3, 4, 7, 10, 18, 19, 20, 22, 28, 30, 31, 40, 50, 64, 65, 66, 67, 73, 77, 86, 98, 99, 102, 103], "inverse_noise_matrix": [2, 3, 10, 46, 52, 80, 94], "label_issu": [2, 40, 43, 59, 62, 69, 71, 80, 82, 83, 84, 88, 91, 93, 94, 97, 101], "clf_kwarg": [2, 3, 10, 69], "clf_final_kwarg": [2, 69], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 36, 40, 43, 45, 57, 58, 59, 61, 62, 64, 65, 67, 69, 70, 73, 77, 79, 84, 88, 90, 91, 94, 96, 98, 100, 101], "result": [2, 3, 9, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 40, 41, 43, 45, 50, 52, 59, 61, 62, 65, 67, 69, 70, 71, 73, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 101, 102, 103], "identifi": [2, 3, 5, 7, 9, 10, 12, 16, 27, 33, 36, 40, 42, 43, 59, 62, 65, 67, 69, 70, 71, 74, 75, 77, 78, 79, 82, 83, 84, 86, 87, 88, 90, 91, 92, 94, 97, 99, 101, 102, 103], "final": [2, 10, 69, 82, 90, 98, 100, 101], "remain": [2, 69, 80, 82, 83, 88, 97, 101, 103], "datasetlik": [2, 52, 69], "beyond": [2, 5, 7, 9, 10, 11, 35, 79, 82, 83, 101, 102], "pd": [2, 3, 5, 7, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 47, 56, 57, 58, 69, 77, 82, 83, 84, 86, 87, 90, 91, 93, 94, 96, 101, 103], "datafram": [2, 3, 5, 7, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 47, 52, 53, 56, 57, 58, 69, 74, 78, 80, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 101, 102, 103], "scipi": [2, 4, 5, 13, 52, 66], "spars": [2, 4, 5, 10, 13, 16, 18, 31, 52, 53, 87, 88, 90, 91, 94], "csr_matrix": [2, 4, 5, 13, 16, 18, 31], "torch": [2, 37, 38, 41, 83, 84, 88, 91, 92, 99], "util": [2, 5, 10, 16, 33, 37, 38, 41, 44, 56, 57, 62, 65, 69, 79, 80, 84, 86, 87, 88, 93, 94, 99], "tensorflow": [2, 52, 56, 79, 84, 93], "object": [2, 5, 10, 12, 13, 16, 32, 33, 37, 38, 40, 41, 48, 52, 53, 56, 59, 62, 63, 64, 65, 66, 69, 77, 79, 83, 84, 87, 88, 90, 93, 94, 95, 97, 101], "list": [2, 3, 5, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 42, 43, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 73, 74, 75, 77, 78, 80, 83, 84, 85, 86, 87, 88, 92, 93, 94, 97, 98, 101, 103], "index_list": 2, "subset": [2, 3, 5, 16, 36, 40, 43, 52, 67, 74, 78, 82, 83, 84, 88, 90, 91, 93, 97, 98, 99, 100, 101, 103], "wa": [2, 3, 12, 14, 40, 50, 52, 57, 58, 64, 66, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 100, 102, 103], "abl": [2, 3, 10, 69, 84, 93, 94, 96, 97], "format": [2, 3, 5, 10, 12, 32, 37, 40, 41, 43, 46, 47, 48, 49, 52, 53, 56, 57, 58, 59, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 82, 84, 86, 87, 88, 90, 92, 96, 101, 102, 103], "make": [2, 3, 5, 18, 37, 40, 41, 48, 56, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "sure": [2, 5, 40, 43, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101], "shuffl": [2, 10, 52, 84, 88, 91, 97, 99], "ha": [2, 3, 5, 6, 10, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 42, 46, 48, 51, 52, 57, 62, 64, 69, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 90, 91, 94, 96, 97, 98, 99, 100, 101, 103], "batch": [2, 40, 52, 56, 57, 71, 73, 85, 88, 93, 99], "order": [2, 5, 10, 34, 36, 37, 41, 42, 43, 46, 47, 48, 50, 52, 57, 58, 59, 62, 65, 66, 67, 71, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 101, 102, 103], "destroi": [2, 52], "oper": [2, 37, 40, 41, 52, 56, 67, 79, 82, 83, 91, 93, 99], "eg": [2, 5, 10, 52, 62, 65, 86, 87, 93], "repeat": [2, 52, 57, 96, 99], "appli": [2, 34, 37, 39, 41, 43, 48, 49, 51, 52, 61, 66, 75, 82, 83, 84, 85, 86, 87, 88, 90, 93, 96, 97, 99, 100, 101, 102], "array_lik": [2, 3, 36, 43, 52, 59, 66, 70], "some": [2, 3, 5, 10, 14, 22, 36, 37, 39, 41, 43, 46, 51, 52, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103], "seri": [2, 3, 40, 52, 53, 69, 77, 93], "row": [2, 3, 5, 10, 13, 27, 32, 36, 40, 43, 45, 46, 52, 57, 58, 59, 61, 66, 67, 69, 74, 75, 77, 78, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 99, 103], "rather": [2, 3, 5, 26, 36, 52, 56, 57, 64, 73, 77, 83, 92, 96, 100, 101, 102, 103], "leav": [2, 43], "per": [2, 3, 5, 7, 10, 13, 36, 40, 43, 48, 51, 57, 58, 59, 61, 64, 65, 67, 70, 71, 73, 77, 87, 93, 98, 103], "determin": [2, 3, 10, 12, 16, 22, 26, 30, 36, 40, 43, 48, 52, 57, 59, 62, 64, 67, 73, 77, 86, 93, 96, 98, 99, 101], "cutoff": [2, 3, 99], "consid": [2, 3, 4, 5, 10, 13, 16, 23, 26, 28, 31, 36, 37, 41, 43, 52, 57, 64, 66, 67, 70, 73, 77, 82, 83, 84, 88, 90, 91, 93, 94, 98, 99, 100, 101, 102], "section": [2, 3, 7, 10, 80, 88, 90, 93, 98], "3": [2, 3, 4, 5, 7, 10, 34, 36, 37, 41, 43, 46, 47, 48, 49, 50, 51, 52, 56, 59, 66, 67, 69, 70, 75, 77, 92, 93, 100], "equat": [2, 3, 46], "advanc": [2, 3, 5, 9, 10, 16, 64, 66, 77, 80, 87, 89, 93, 94], "user": [2, 3, 5, 9, 10, 14, 16, 27, 32, 33, 34, 37, 41, 43, 56, 64, 66, 67, 69, 73, 77, 85, 94], "specifi": [2, 3, 4, 5, 8, 10, 13, 14, 16, 18, 31, 33, 37, 40, 41, 43, 48, 51, 56, 57, 58, 59, 62, 64, 66, 67, 69, 70, 78, 80, 83, 84, 87, 88, 91, 96, 98, 101], "automat": [2, 3, 5, 26, 36, 79, 82, 83, 88, 90, 91, 92, 93, 96, 97, 98, 101, 102, 103], "greater": [2, 3, 4, 5, 7, 9, 10, 28, 40, 52, 64, 87, 92, 93, 103], "count": [2, 22, 26, 36, 40, 43, 46, 52, 58, 59, 65, 80, 88, 93, 98], "observ": [2, 3, 46, 84, 85, 86, 87, 96, 99, 101], "mislabel": [2, 10, 36, 40, 42, 43, 46, 57, 58, 59, 62, 64, 67, 73, 75, 77, 79, 82, 83, 84, 88, 90, 91, 93, 94, 98, 101], "one": [2, 3, 5, 7, 10, 26, 36, 37, 40, 41, 42, 43, 48, 50, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 99, 100, 101, 103], "get_label_issu": [2, 39, 40, 68, 69, 82, 83, 94, 101], "either": [2, 3, 4, 7, 10, 37, 40, 41, 43, 57, 59, 64, 66, 67, 71, 73, 85, 87, 93, 97, 98], "boolean": [2, 7, 10, 22, 40, 43, 51, 57, 59, 62, 67, 69, 71, 73, 74, 79, 83, 84, 87, 88, 91, 93, 98, 101, 102], "label_issues_mask": [2, 43, 67, 69, 80], "indic": [2, 3, 4, 5, 7, 10, 13, 22, 36, 40, 41, 42, 43, 45, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 73, 75, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "its": [2, 5, 7, 9, 10, 16, 37, 40, 41, 43, 50, 51, 59, 62, 65, 66, 67, 69, 71, 75, 77, 79, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 100, 101, 102, 103], "return_indices_ranked_bi": [2, 40, 43, 59, 75, 80, 82, 83, 93, 94], "significantli": [2, 88, 94, 96, 100], "reduc": [2, 40, 43, 52, 84, 93], "time": [2, 10, 37, 40, 41, 52, 57, 80, 82, 83, 85, 86, 88, 92, 93, 94, 98, 99, 101, 102, 103], "take": [2, 5, 10, 36, 37, 41, 47, 48, 52, 56, 67, 82, 85, 88, 90, 96, 97, 98, 103], "run": [2, 5, 6, 7, 9, 10, 11, 14, 16, 26, 27, 32, 35, 37, 40, 41, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 103], "skip": [2, 10, 37, 41, 69, 84, 93, 97, 103], "slow": [2, 3], "step": [2, 7, 26, 48, 65, 85, 88, 94, 96, 100], "caution": [2, 5, 93], "previous": [2, 5, 13, 52, 66, 69, 80, 82, 84, 86, 90, 91, 96, 100], "assign": [2, 7, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 37, 41, 47, 48, 52, 69, 82, 86, 88, 90, 93, 101, 102, 103], "individu": [2, 4, 7, 10, 13, 26, 37, 41, 42, 57, 61, 64, 67, 69, 75, 77, 80, 82, 87, 90, 92, 93, 96, 97, 98, 103], "still": [2, 40, 41, 52, 66, 82, 84, 88, 93, 99], "extra": [2, 37, 41, 52, 56, 57, 58, 69, 88, 91, 93, 96, 99], "receiv": [2, 10, 37, 41, 42, 58, 61, 62, 69, 71, 75, 87, 98], "overwritten": [2, 69], "callabl": [2, 3, 4, 10, 26, 37, 41, 48, 51, 56, 61, 93], "x_val": 2, "y_val": 2, "map": [2, 3, 12, 40, 41, 44, 47, 51, 52, 65, 67, 69, 74, 84, 85, 86, 87, 88, 93, 94, 97, 103], "appropri": [2, 10, 16, 34, 59, 67, 86, 90, 97, 98], "earli": [2, 88], "stop": [2, 88], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 22, 36, 52, 66, 82, 86, 88, 90, 97, 101, 103], "f": [2, 7, 82, 83, 84, 85, 86, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "ignor": [2, 37, 41, 51, 56, 69, 74, 78, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "allow": [2, 36, 37, 40, 41, 45, 52, 57, 65, 66, 69, 71, 73, 83, 84, 85, 88, 93, 100, 102], "access": [2, 10, 13, 37, 41, 69, 83, 87, 88, 91, 92, 97], "hyperparamet": [2, 61, 66, 88], "purpos": [2, 86, 87, 93, 97, 101], "want": [2, 5, 10, 36, 40, 53, 57, 59, 69, 83, 85, 86, 88, 91, 92, 96, 98, 99, 100, 102, 103], "explicitli": [2, 8, 10, 41, 69, 93], "yourself": [2, 5, 40, 87], "altern": [2, 7, 10, 48, 52, 56, 57, 67, 80, 83, 84, 88, 90, 91, 92, 93, 94, 96, 97, 99, 101], "same": [2, 3, 5, 7, 9, 10, 12, 14, 16, 26, 30, 37, 40, 41, 43, 52, 56, 57, 59, 66, 67, 69, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 97, 98, 99, 100, 101, 102], "effect": [2, 10, 27, 37, 41, 57, 66, 69, 88, 90, 91, 93, 99], "offer": [2, 5, 9, 10, 83, 84, 86, 87, 91, 93, 94, 97], "after": [2, 3, 5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 57, 69, 83, 86, 88, 91, 93, 94, 96, 98, 99, 100, 101, 102], "attribut": [2, 5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 48, 66, 69, 82, 86], "label_issues_df": [2, 69, 88], "similar": [2, 10, 36, 37, 41, 52, 57, 61, 62, 64, 66, 69, 73, 77, 85, 86, 87, 88, 90, 91, 93, 94, 98, 99, 102], "document": [2, 3, 5, 14, 16, 36, 37, 40, 41, 42, 43, 48, 51, 56, 58, 59, 61, 64, 65, 66, 69, 73, 74, 75, 77, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "descript": [2, 5, 7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 42, 52, 62, 69, 86, 87], "were": [2, 3, 5, 36, 41, 58, 64, 77, 82, 84, 90, 93, 94, 96, 98, 100, 102], "present": [2, 3, 5, 10, 12, 13, 20, 36, 52, 66, 74, 79, 88, 90, 93, 99], "actual": [2, 3, 5, 36, 57, 58, 67, 87, 93, 94, 103], "num_class": [2, 36, 40, 52, 56, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99], "uniqu": [2, 31, 52, 74, 86, 93, 97, 99], "given_label": [2, 5, 25, 30, 36, 46, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 94, 101, 102, 103], "normal": [2, 3, 18, 26, 31, 43, 45, 48, 50, 51, 52, 67, 93, 94, 99], "trick": [2, 93], "distribut": [2, 3, 5, 10, 26, 28, 36, 41, 43, 47, 50, 57, 65, 66, 67, 79, 85, 86, 87, 88, 90, 91, 98, 99], "account": [2, 36, 57, 61, 66, 67, 83, 91, 93, 94, 96, 97, 99, 101], "word": [2, 3, 51, 77, 78, 93], "remov": [2, 10, 31, 36, 37, 41, 43, 69, 79, 82, 83, 87, 88, 90, 91, 92, 93, 94, 97, 99, 101], "so": [2, 3, 5, 6, 7, 10, 14, 26, 34, 36, 37, 40, 41, 43, 52, 57, 58, 64, 67, 69, 73, 77, 84, 86, 87, 88, 91, 94, 97, 99, 102], "proportion": [2, 10, 43], "just": [2, 3, 5, 10, 13, 32, 36, 38, 40, 52, 56, 67, 69, 71, 79, 80, 82, 83, 84, 87, 88, 90, 91, 93, 94, 97, 98, 99, 100, 101, 102], "procedur": 2, "get": [2, 3, 5, 8, 13, 31, 37, 38, 41, 43, 48, 50, 51, 52, 57, 59, 61, 66, 67, 69, 70, 71, 79, 82, 83, 84, 88, 91, 92, 93, 94, 99, 100, 101], "detect": [2, 5, 7, 9, 13, 14, 16, 18, 22, 28, 42, 50, 60, 62, 63, 64, 65, 66, 67, 68, 69, 72, 76, 79, 82, 83, 85, 86, 89, 92, 95, 97, 101, 102, 103], "arg": [2, 12, 22, 27, 31, 37, 38, 41, 48, 52, 67, 69], "kwarg": [2, 7, 10, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 42, 48, 56, 65, 69, 71, 73, 74, 75, 93], "test": [2, 5, 10, 26, 41, 48, 56, 69, 79, 82, 83, 85, 86, 87, 88, 90, 91, 100, 101, 103], "expect": [2, 3, 37, 41, 43, 48, 57, 66, 67, 69, 82, 83, 93, 94, 96, 97, 98, 101, 103], "class_predict": 2, "evalu": [2, 10, 37, 38, 39, 40, 41, 65, 69, 82, 83, 84, 86, 87, 88, 93, 94, 96, 100, 101, 102], "simpli": [2, 10, 36, 67, 83, 86, 87, 90, 91, 93, 94, 97, 101, 102, 103], "quantifi": [2, 4, 5, 7, 10, 13, 43, 61, 66, 69, 79, 87, 88, 90, 91, 94, 98], "save_spac": [2, 10, 68, 69], "potenti": [2, 10, 36, 43, 51, 59, 62, 65, 67, 69, 71, 73, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 102, 103], "cach": [2, 83, 91], "panda": [2, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 52, 53, 56, 57, 58, 80, 82, 83, 84, 86, 87, 90, 91, 92, 93, 94, 96, 101, 102], "unlik": [2, 10, 43, 45, 48, 56, 58, 59, 61, 77, 86, 96, 97, 99, 101], "both": [2, 5, 10, 16, 26, 36, 37, 41, 43, 52, 57, 59, 67, 71, 73, 78, 79, 86, 88, 93, 94, 96, 103], "mask": [2, 40, 43, 51, 52, 59, 62, 67, 69, 71, 73, 74, 79, 85, 92, 93, 96, 98, 102, 103], "prefer": [2, 67, 75, 97], "plan": 2, "subsequ": [2, 3, 37, 41, 83, 91, 93, 94, 98], "invok": [2, 37, 41, 94, 100], "scratch": [2, 69], "To": [2, 5, 7, 9, 10, 11, 13, 16, 26, 35, 37, 40, 41, 42, 43, 56, 57, 59, 61, 65, 66, 67, 69, 70, 71, 73, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102, 103], "share": [2, 67, 69], "mostli": [2, 52, 64, 69, 97, 101], "longer": [2, 34, 47, 48, 51, 69, 80, 83, 91, 93, 98], "info": [2, 5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 58, 69, 77, 86, 87, 92, 103], "about": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 38, 40, 45, 57, 58, 61, 65, 69, 74, 77, 84, 86, 88, 90, 91, 92, 93, 94, 96, 99], "docstr": [2, 36, 37, 41, 52, 69, 92, 94], "unless": [2, 37, 41, 69, 93], "our": [2, 3, 10, 56, 57, 67, 69, 79, 82, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "is_label_issu": [2, 30, 69, 83, 84, 85, 86, 87, 88, 90, 91, 94, 97, 101], "entir": [2, 10, 26, 40, 43, 46, 58, 59, 64, 67, 69, 71, 73, 74, 79, 85, 86, 87, 93, 98, 99, 100, 102, 103], "accur": [2, 3, 5, 9, 10, 16, 36, 40, 43, 57, 58, 59, 62, 65, 67, 69, 70, 71, 73, 74, 80, 87, 88, 90, 91, 93, 96, 101], "label_qu": [2, 57, 69, 83, 94, 96, 101], "measur": [2, 5, 36, 57, 58, 69, 79, 82, 92, 93, 94, 96, 97, 101, 102, 103], "qualiti": [2, 3, 5, 7, 9, 10, 13, 30, 31, 36, 40, 42, 43, 45, 48, 57, 58, 59, 61, 62, 64, 67, 69, 70, 73, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 101], "lower": [2, 4, 5, 7, 10, 13, 28, 40, 48, 50, 57, 58, 61, 64, 65, 67, 69, 70, 73, 77, 83, 84, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "eas": 2, "comparison": [2, 37, 41, 65, 94, 96], "against": [2, 37, 41, 86, 90, 93, 96, 97], "predicted_label": [2, 5, 25, 30, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 94, 101, 102], "ad": [2, 37, 41, 85, 87, 96, 101], "precis": [2, 50, 59, 62, 65, 92, 93, 94, 102, 103], "definit": [2, 7, 34, 48, 69, 82, 90], "accessor": [2, 69], "describ": [2, 10, 18, 57, 66, 67, 69, 75, 77, 94, 96, 97, 98, 100, 103], "precomput": [2, 4, 5, 46, 69, 87, 88, 90, 91, 92, 94], "clear": [2, 37, 41, 69, 83, 91, 101], "save": [2, 5, 16, 37, 40, 41, 65, 69, 93, 98, 102, 103], "space": [2, 5, 10, 66, 69, 88, 90, 92], "place": [2, 37, 41, 52, 69, 82, 96], "larg": [2, 9, 10, 40, 69, 88, 90, 91, 93, 98, 99, 102, 103], "deploi": [2, 9, 10, 69, 88, 90, 91, 93], "care": [2, 10, 37, 41, 69, 91, 93, 94], "avail": [2, 4, 5, 7, 10, 12, 14, 33, 41, 69, 85, 93, 94, 96, 98, 101], "cannot": [2, 5, 12, 14, 52, 100, 103], "anymor": 2, "classmethod": [2, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 41, 48, 69], "__init_subclass__": [2, 39, 41, 68, 69], "set_": [2, 41, 69], "_request": [2, 41, 69], "pep": [2, 41, 69], "487": [2, 41, 69], "look": [2, 5, 7, 16, 37, 41, 52, 69, 74, 82, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 102, 103], "inform": [2, 5, 7, 10, 13, 16, 33, 37, 41, 52, 57, 58, 62, 65, 69, 74, 77, 78, 79, 84, 85, 86, 90, 91, 92, 94, 96, 99, 102, 103], "__metadata_request__": [2, 41, 69], "infer": [2, 41, 52, 69, 74, 78, 82, 83, 88, 96, 97], "signatur": [2, 37, 41, 69], "accept": [2, 37, 41, 50, 67, 69, 86, 87, 93], "metadata": [2, 41, 69, 88, 90, 91, 103], "through": [2, 5, 7, 41, 69, 83, 84, 85, 87, 91, 92, 93, 96, 98, 99], "develop": [2, 9, 41, 69, 93, 94, 103], "request": [2, 41, 69, 82, 83, 87, 91, 92, 97, 103], "those": [2, 3, 4, 10, 40, 41, 43, 56, 57, 59, 65, 69, 73, 77, 78, 79, 84, 88, 93, 98, 102], "http": [2, 4, 5, 7, 9, 10, 11, 18, 35, 37, 38, 40, 41, 45, 52, 62, 65, 66, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "www": [2, 41, 69, 99], "org": [2, 4, 18, 37, 38, 41, 52, 66, 69, 93, 94, 103], "dev": [2, 41, 69], "0487": [2, 41, 69], "get_metadata_rout": [2, 39, 41, 68, 69], "rout": [2, 41, 69], "pleas": [2, 37, 41, 56, 69, 79, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 99, 101, 103], "guid": [2, 7, 10, 41, 69, 80, 88, 89], "mechan": [2, 37, 41, 69], "metadatarequest": [2, 41, 69], "encapsul": [2, 16, 41, 64, 69], "get_param": [2, 39, 41, 55, 56, 68, 69], "subobject": [2, 41, 69], "param": [2, 10, 37, 41, 56, 66, 69, 93], "name": [2, 5, 6, 7, 10, 12, 13, 32, 34, 36, 37, 41, 47, 48, 52, 56, 57, 58, 65, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 101, 102, 103], "set_fit_request": [2, 39, 41, 68, 69], "str": [2, 3, 4, 5, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 46, 48, 50, 51, 52, 56, 57, 58, 62, 64, 65, 67, 69, 74, 78, 84, 85, 86, 93, 96, 97, 98, 103], "unchang": [2, 37, 41, 69, 103], "relev": [2, 16, 26, 41, 69, 88], "enable_metadata_rout": [2, 41, 69], "set_config": [2, 41, 69], "meta": [2, 41, 69], "rais": [2, 4, 5, 12, 13, 34, 37, 41, 45, 48, 50, 69, 84, 93], "alia": [2, 37, 41, 69], "metadata_rout": [2, 41, 69], "retain": [2, 41, 52, 69], "chang": [2, 32, 34, 37, 40, 41, 45, 69, 77, 82, 83, 84, 86, 91, 93, 98, 99, 103], "version": [2, 4, 5, 7, 9, 10, 11, 15, 21, 24, 29, 35, 37, 39, 41, 44, 45, 52, 55, 56, 67, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "sub": [2, 41, 64, 69], "pipelin": [2, 41, 69, 101], "otherwis": [2, 4, 7, 10, 34, 36, 37, 40, 41, 43, 49, 50, 51, 52, 59, 69, 71, 73, 74, 78, 83, 91, 93], "updat": [2, 13, 37, 40, 41, 56, 69, 80, 85, 86, 88], "set_param": [2, 39, 41, 55, 56, 68, 69], "simpl": [2, 37, 41, 43, 57, 67, 69, 82, 83, 85, 86, 87, 88, 90, 91, 96, 99, 101], "well": [2, 3, 9, 10, 37, 41, 45, 46, 57, 59, 65, 67, 69, 74, 77, 78, 80, 86, 87, 88, 90, 91, 93, 94, 96, 98, 99], "nest": [2, 37, 41, 42, 53, 69, 75, 77, 78, 103], "latter": [2, 37, 41, 69, 99], "compon": [2, 41, 69], "__": [2, 41, 69], "set_score_request": [2, 68, 69], "structur": [3, 66, 85, 90, 93], "unobserv": 3, "less": [3, 4, 5, 10, 31, 40, 48, 57, 66, 67, 71, 73, 77, 87, 88, 90, 92, 93, 94, 98, 103], "channel": [3, 84, 94], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 36, 46, 52, 58, 83, 87, 92], "inv": 3, "confident_joint": [3, 22, 36, 43, 52, 58, 59, 80, 93, 94], "un": 3, "under": [3, 10, 37, 41, 58, 65, 66, 87, 99], "joint": [3, 36, 43, 46, 52, 58, 59, 92], "num_label_issu": [3, 40, 43, 59, 74, 78, 80], "estimation_method": [3, 40], "off_diagon": 3, "multi_label": [3, 36, 43, 52, 53, 59, 97], "don": [3, 79, 87, 88, 90, 91, 94, 98, 101], "statis": 3, "compute_confident_joint": [3, 36, 43, 52, 59, 94], "off": [3, 43, 52, 64, 88, 94, 98, 99], "j": [3, 5, 36, 37, 41, 42, 43, 59, 62, 65, 66, 75, 77, 78, 85, 86, 87, 94, 102, 103], "confident_learn": [3, 43, 59, 94], "off_diagonal_calibr": 3, "calibr": [3, 4, 43, 52, 57, 96], "cj": [3, 46, 52], "axi": [3, 31, 46, 48, 50, 71, 74, 84, 85, 86, 87, 88, 93, 94, 96, 97, 99, 101, 102], "bincount": [3, 85, 86, 87, 94, 96, 97], "alwai": [3, 10, 37, 41, 52, 82, 83, 84, 94, 101], "estimate_issu": 3, "over": [3, 5, 10, 37, 40, 41, 64, 65, 71, 73, 82, 87, 88, 90, 92, 93, 94, 99, 101], "As": [3, 7, 79, 86, 87, 91, 94, 101, 103], "add": [3, 5, 7, 12, 13, 37, 41, 56, 65, 83, 84, 85, 86, 87, 88, 91, 93, 94, 97], "approach": [3, 36, 40, 43, 56, 82, 85, 90, 94, 97, 99, 101], "custom": [3, 7, 10, 11, 30, 37, 40, 41, 48, 51, 67, 83, 87, 91, 94, 101], "know": [3, 10, 86, 87, 88, 90, 91, 93, 94, 96, 101], "cut": [3, 64, 79, 94], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 32, 98, 99, 103], "underestim": 3, "few": [3, 9, 10, 65, 79, 87, 93, 96, 97, 98, 99, 103], "4": [3, 4, 5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 47, 48, 51, 61, 62, 64, 65, 67, 70, 77, 92, 93, 97, 102, 103], "detail": [3, 4, 5, 10, 14, 16, 33, 36, 37, 41, 42, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 73, 74, 75, 79, 80, 84, 93, 97, 99, 103], "num_issu": [3, 7, 40, 84, 85, 86, 87, 88, 90, 91, 94], "calibrate_confident_joint": 3, "up": [3, 7, 10, 17, 26, 27, 30, 43, 48, 56, 57, 83, 85, 92, 93, 98, 101, 103], "p_": [3, 36, 43], "pair": [3, 5, 10, 36, 43, 94], "v": [3, 10, 40, 58, 59, 61, 67, 85, 86, 87, 97, 98, 99, 100], "rest": [3, 5, 7, 9, 10, 11, 35, 58, 59, 61, 69, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94, 96, 101], "fashion": [3, 5, 71, 82], "2x2": 3, "incorrectli": [3, 36, 58, 59, 62, 90, 103], "calibrated_cj": 3, "c": [3, 10, 50, 51, 59, 67, 79, 82, 84, 86, 87, 90, 91, 93, 94, 97, 98, 99, 100, 101], "whose": [3, 4, 5, 10, 28, 37, 41, 46, 51, 57, 61, 64, 70, 73, 77, 78, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 99, 102, 103], "truli": [3, 99, 102], "estimate_joint": [3, 36, 94], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 59, 65, 94, 98, 100, 102, 103], "return_indices_of_off_diagon": 3, "frequenc": [3, 26, 57, 58, 65, 74, 98, 99], "done": [3, 10, 56, 69, 86, 93, 94, 97, 99, 100], "overfit": [3, 10, 62, 65, 82, 84, 85, 86, 87, 88, 90, 91, 100], "classifict": 3, "singl": [3, 5, 9, 10, 12, 26, 36, 37, 41, 42, 48, 49, 52, 57, 58, 64, 65, 66, 67, 77, 82, 84, 85, 86, 93, 94, 97, 98], "baselin": [3, 37, 43, 83, 99, 101], "proxi": 3, "union": [3, 5, 12, 26, 48, 52, 53, 59, 65, 69, 77, 93], "tupl": [3, 31, 37, 41, 42, 46, 47, 49, 51, 52, 57, 59, 65, 73, 75, 77, 78, 84, 103], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 40, 46, 57, 66, 71, 73, 79, 83, 85, 88, 93, 102], "practic": [3, 82, 83, 87, 88, 94, 99, 101], "complet": [3, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 101], "gist": 3, "cj_ish": 3, "guess": [3, 46, 94, 96], "8": [3, 5, 7, 8, 47, 48, 49, 51, 61, 75, 77, 82, 83, 84, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "parallel": [3, 43, 65, 75, 92], "again": [3, 56, 82, 93, 99], "simplifi": [3, 14, 93], "understand": [3, 9, 10, 36, 58, 65, 87, 94, 95, 101, 102, 103], "100": [3, 4, 37, 41, 50, 66, 67, 82, 83, 86, 87, 88, 90, 92, 93, 94, 97, 98, 99, 103], "optim": [3, 37, 38, 41, 56, 88, 96], "speed": [3, 43, 83, 92, 93, 101], "dtype": [3, 23, 25, 26, 31, 37, 41, 51, 52, 61, 77, 84, 98], "enumer": [3, 37, 41, 84, 85, 86, 87, 88, 103], "s_label": 3, "confident_bin": 3, "6": [3, 5, 41, 48, 52, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "num_confident_bin": 3, "argmax": [3, 43, 67, 71, 74, 84, 93, 94, 98, 99, 102], "elif": 3, "estimate_lat": 3, "py_method": [3, 46], "cnt": [3, 46], "1d": [3, 5, 12, 16, 32, 40, 43, 48, 49, 52, 53, 61, 70, 82, 84], "eqn": [3, 46], "margin": [3, 43, 46, 48, 67], "marginal_p": [3, 46], "shorthand": [3, 13], "proport": [3, 10, 36, 58, 94, 100], "poorli": [3, 46, 82], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 94], "variabl": [3, 7, 14, 27, 52, 69, 70, 84, 86, 90, 94, 97, 101], "exact": [3, 46, 82, 85, 86, 87, 88, 90], "within": [3, 4, 5, 10, 15, 32, 37, 38, 41, 42, 44, 59, 64, 73, 75, 77, 86, 87, 88, 93, 98, 102], "percent": 3, "often": [3, 36, 46, 58, 93, 94, 100, 102], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 52, 53, 65, 82, 83, 84, 85, 86, 88, 90, 91, 93, 97, 98, 99, 101], "wai": [3, 5, 56, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 100], "pro": 3, "con": 3, "pred_proba": [3, 100], "combin": [3, 36, 86, 88, 92, 93, 94, 100, 101], "becaus": [3, 46, 52, 64, 91, 93, 94, 96, 98], "littl": [3, 40, 92, 98, 103], "uniform": [3, 67, 92, 93, 94], "20": [3, 7, 42, 78, 84, 85, 88, 91, 92, 93, 94, 98, 101, 102, 103], "Such": [3, 88, 99], "bound": [3, 23, 25, 37, 41, 51, 61, 62, 64, 65, 98], "reason": [3, 22, 37, 41, 66], "comment": [3, 51, 103], "end": [3, 5, 37, 41, 65], "file": [3, 5, 12, 39, 40, 55, 65, 82, 84, 86, 90, 91, 92, 93, 98, 99, 102, 103], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 94], "handl": [3, 5, 7, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 80, 82, 83, 85, 86, 87, 88, 90, 91, 94, 102, 103], "five": [3, 62, 65, 94, 98], "estimate_cv_predicted_prob": [3, 94], "estimate_noise_matric": 3, "get_confident_threshold": [3, 39, 40], "amongst": [3, 10, 98], "confident_threshold": [3, 10, 22, 23, 40, 66], "point": [4, 5, 7, 9, 10, 18, 26, 37, 41, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96], "valuat": [4, 9, 18], "help": [4, 36, 37, 41, 65, 79, 80, 82, 83, 84, 86, 88, 90, 91, 92, 93, 96, 97, 101, 102, 103], "u": [4, 82, 83, 84, 86, 88, 90, 93, 94, 96, 97, 100, 101, 102, 103], "assess": [4, 98], "contribut": [4, 10, 18, 98], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 16, 18, 19, 26, 28, 31, 90], "metric": [4, 5, 10, 18, 19, 26, 31, 50, 52, 56, 65, 66, 82, 83, 84, 88, 90, 91, 94, 101], "10": [4, 10, 18, 19, 23, 26, 31, 37, 38, 65, 66, 67, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "shaplei": [4, 10, 18], "nearest": [4, 5, 10, 16, 23, 26, 28, 50, 66, 87, 91, 99], "neighbor": [4, 5, 10, 16, 18, 23, 26, 28, 50, 66, 86, 87, 88, 90, 91, 93, 94, 99], "knn": [4, 10, 13, 18, 26, 31, 50, 66, 90, 99], "graph": [4, 5, 10, 13, 16, 18, 26, 31], "calcul": [4, 10, 18, 26, 40, 48, 50, 57, 61, 62, 64, 65, 66, 69, 73, 88, 92], "directli": [4, 5, 14, 16, 33, 34, 40, 56, 57, 83, 87, 91, 93, 97, 98, 101], "lowest": [4, 10, 57, 65, 87, 88, 93, 96, 97, 98, 102], "fall": [4, 10, 64, 73, 77, 94, 99], "flag": [4, 10, 22, 26, 43, 48, 58, 59, 62, 69, 79, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 98, 99, 101, 102], "approxim": [4, 10, 18, 40, 66, 96], "top": [4, 5, 10, 36, 40, 42, 43, 52, 59, 62, 65, 67, 74, 78, 79, 83, 84, 86, 87, 90, 91, 92, 93, 94, 98, 99, 101, 103], "found": [4, 5, 7, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 97, 99, 101, 103], "arxiv": [4, 18, 94], "ab": [4, 18, 94, 98], "1908": 4, "08619": 4, "1911": [4, 18], "07128": [4, 18], "embed": [4, 5, 10, 16, 66, 79, 83, 84, 86, 87, 90, 91, 94, 97, 101], "represent": [4, 5, 10, 16, 34, 37, 41, 49, 59, 79, 83, 84, 86, 87, 88, 91, 93, 94, 99], "suppli": [4, 97, 98, 101], "2d": [4, 5, 16, 32, 40, 48, 49, 51, 52, 57, 82, 84, 97], "num_exampl": [4, 5, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 58, 84, 85, 86, 87, 88, 90, 91, 94], "num_featur": [4, 5, 16, 37, 41, 56], "distanc": [4, 5, 10, 16, 18, 26, 28, 31, 50, 64, 66, 90, 99], "construct": [4, 5, 7, 10, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 56], "nearestneighbor": [4, 5, 10, 18, 66, 90, 99], "cosin": [4, 10, 50, 66, 99], "dim": [4, 66, 88, 102], "euclidean": [4, 5, 10, 50, 64, 66, 90], "dimension": [4, 26, 52, 84, 94, 99], "scikit": [4, 41, 52, 66, 79, 82, 83, 84, 85, 86, 87, 90, 91, 93, 101], "fewer": [4, 10, 43, 52, 66, 98], "stabl": [4, 15, 21, 24, 29, 39, 44, 52, 55, 66, 80], "exce": [4, 85, 88], "transform": [4, 10, 32, 48, 50, 52, 66, 67, 82, 83, 87, 88, 91, 99, 103], "rel": [4, 10, 36, 57, 58, 66, 86, 87, 88, 90, 91, 94, 99], "adjust": [4, 38, 43, 61, 66, 67, 79, 94], "closer": [4, 10, 64, 98], "highli": [4, 87, 88], "influenti": 4, "posit": [4, 5, 37, 41, 50, 52, 65, 92, 99], "convers": 4, "neg": [4, 10, 64, 65, 86, 87, 92], "valueerror": [4, 5, 12, 13, 34, 45, 48, 50, 93], "neither": [4, 5, 10, 14, 98], "nor": [4, 5, 10, 14], "larger": [4, 18, 69, 71, 73, 85, 88, 91, 92, 93], "55": [4, 51, 92, 98, 101], "525": 4, "unifi": 5, "audit": [5, 9, 12, 13, 16, 84, 88, 89, 90, 91, 93, 94, 97, 98, 101], "kind": [5, 6, 7, 10, 84, 85, 86, 88, 90, 91, 92, 94], "addit": [5, 7, 9, 11, 13, 33, 35, 37, 41, 48, 53, 57, 65, 74, 75, 82, 83, 84, 86, 90, 91, 94, 96, 99, 100], "depend": [5, 7, 9, 11, 12, 13, 35, 39, 43, 45, 52, 55, 59, 66, 69, 70, 79], "instal": [5, 7, 9, 11, 35, 37, 39, 40, 41, 43, 55, 56, 71, 73], "pip": [5, 7, 9, 11, 35, 56, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "development": [5, 7, 9, 11, 35], "git": [5, 7, 9, 11, 35, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "github": [5, 7, 9, 11, 35, 37, 38, 52, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "com": [5, 7, 9, 11, 35, 37, 38, 40, 45, 52, 66, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "egg": [5, 7, 9, 11, 35, 79, 92], "label_nam": [5, 7, 8, 10, 12, 18, 31, 79, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 101], "image_kei": [5, 10, 88], "interfac": [5, 9, 10, 79, 93, 94], "librari": [5, 10, 41, 62, 65, 66, 79, 83, 86, 91, 92, 93], "goal": [5, 101], "track": [5, 7, 13, 14, 79, 85, 86, 92, 93, 94], "intermedi": [5, 9, 87], "statist": [5, 10, 13, 22, 26, 36, 57, 58, 65, 87, 90, 91, 94], "convert": [5, 10, 12, 34, 37, 41, 49, 50, 53, 57, 64, 73, 77, 80, 83, 84, 88, 91, 92, 93, 96, 97, 98], "hug": [5, 10, 12, 88], "face": [5, 10, 12, 16, 88, 92, 97], "kei": [5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 48, 57, 58, 64, 66, 85, 86, 87, 88, 91, 93, 94, 96, 98], "string": [5, 10, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 41, 52, 57, 58, 70, 74, 77, 78, 83, 90, 91, 93, 96, 97, 103], "dictionari": [5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 47, 52, 57, 58, 61, 62, 64, 65, 86, 87, 90, 91, 94, 96, 97, 98], "path": [5, 12, 37, 40, 41, 65, 84, 86, 93, 98], "local": [5, 7, 10, 12, 37, 38, 41, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "text": [5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 42, 48, 66, 75, 77, 78, 79, 81, 86, 87, 89, 92, 93, 94, 95, 96, 99], "txt": [5, 12, 103], "csv": [5, 12, 82, 83, 90, 91, 101], "json": [5, 12], "hub": [5, 12], "multiclass": [5, 12, 15, 48, 52, 57, 97], "regress": [5, 7, 10, 12, 14, 16, 21, 30, 32, 34, 83, 85, 86, 87, 91, 95, 96, 99], "multilabel": [5, 12, 14, 15, 21, 25, 32, 34, 49, 97], "imag": [5, 9, 36, 41, 62, 64, 65, 66, 71, 73, 74, 79, 86, 87, 89, 92, 93, 95, 96, 97, 98, 100, 102], "field": [5, 10, 37, 41], "themselv": [5, 82, 83, 101], "pil": [5, 88], "cleanvis": [5, 10], "level": [5, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 51, 75, 77, 87, 88, 93, 95, 97, 102], "load_dataset": [5, 12, 88], "glue": 5, "sst2": 5, "properti": [5, 12, 13, 34, 37, 41, 85], "has_label": [5, 12], "class_nam": [5, 12, 20, 36, 42, 58, 65, 74, 78, 79, 92, 94, 98, 102, 103], "empti": [5, 12, 46, 57, 87, 93, 97], "find_issu": [5, 6, 7, 8, 10, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 79, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 101], "issue_typ": [5, 6, 7, 8, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 101], "sort": [5, 16, 40, 43, 48, 57, 59, 62, 64, 65, 67, 73, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103], "common": [5, 13, 16, 87, 89, 92, 93, 94, 97, 98, 102], "real": [5, 16, 79, 86, 87, 93, 94, 96, 101, 102], "world": [5, 16, 79, 86, 87, 93, 94, 96, 101, 102], "interact": [5, 16, 91, 93], "thereof": [5, 16], "insight": [5, 16, 65, 96], "best": [5, 9, 10, 16, 47, 57, 67, 82, 83, 86, 87, 88, 90, 91, 93, 96, 97, 99, 101, 103], "properli": [5, 10, 40, 47, 52, 53, 71, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 99, 101, 102], "respect": [5, 37, 41, 62, 65, 84, 85, 86, 87, 88, 90, 91, 94, 97, 98], "lexicograph": [5, 47, 52, 84, 85, 86, 87, 88, 90, 91, 94, 97], "squar": [5, 52, 69, 92, 101], "csr": 5, "evenli": 5, "omit": [5, 64, 65, 88, 98], "itself": [5, 32, 37, 41, 98], "three": [5, 10, 36, 57, 58, 69, 74, 82, 84, 85, 86, 87, 90, 92, 94, 96, 100, 101, 102, 103], "indptr": 5, "wise": 5, "start": [5, 7, 10, 34, 37, 38, 41, 48, 79, 90, 97, 103], "th": [5, 42, 47, 51, 52, 57, 59, 62, 64, 65, 66, 75, 77, 78, 91, 97, 98, 103], "ascend": [5, 36, 58, 88, 94], "segment": [5, 71, 73, 74, 95], "reflect": [5, 82, 83, 90, 91, 96, 98, 99, 101], "maintain": [5, 56], "kneighbors_graph": [5, 18, 90], "illustr": 5, "todens": 5, "second": [5, 48, 52, 65, 67, 86, 93, 94, 103], "duplic": [5, 9, 21, 22, 37, 41, 79, 85, 86, 94, 101], "explicit": 5, "precend": 5, "collect": [5, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 57, 93, 96, 103], "unspecifi": [5, 16, 43, 59], "interest": [5, 16, 22, 74, 78, 82, 83, 91, 94, 101, 102, 103], "constructor": [5, 10, 16, 23, 30], "issuemanag": [5, 9, 13, 14, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 33], "respons": [5, 16, 22, 69, 70, 92, 101, 103], "random_st": [5, 82, 84, 85, 86, 87, 88, 94, 97, 99], "lab": [5, 6, 8, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 40, 79, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 101], "comprehens": [5, 79, 88, 97, 101], "nbr": 5, "n_neighbor": [5, 10, 18, 66], "mode": [5, 11, 18, 37, 40, 41, 99], "4x4": 5, "float64": [5, 26, 37, 41, 77], "compress": [5, 10, 52, 71, 73], "toarrai": 5, "NOT": [5, 40, 91], "23606798": 5, "41421356": 5, "configur": [5, 16, 48, 87], "suppos": [5, 10, 62, 82, 83, 99, 101], "who": [5, 64, 82, 90, 94, 103], "manag": [5, 8, 9, 10, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 56, 86, 93], "clean_learning_kwarg": [5, 10, 23, 30, 93, 101], "labelissuemanag": [5, 10, 14, 21, 23], "prune_method": [5, 80], "prune_by_noise_r": [5, 43, 59, 94], "report": [5, 7, 11, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 58, 78, 79, 84, 85, 86, 87, 90, 91, 93, 94, 97, 101, 103], "include_descript": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33], "show_summary_scor": [5, 33], "show_all_issu": [5, 33], "summari": [5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 42, 55, 56, 58, 63, 72, 73, 75, 76, 77, 80, 84, 85, 86, 87, 88, 90, 91, 92, 94, 98, 101, 102, 103], "show": [5, 7, 26, 37, 41, 47, 52, 65, 74, 78, 82, 85, 87, 88, 90, 91, 92, 93, 94, 96, 99, 101, 102, 103], "suffer": [5, 10, 13, 22, 59, 67, 78, 103], "onc": [5, 22, 36, 37, 41, 82, 85, 86, 93, 94, 97, 98], "familiar": 5, "overal": [5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 42, 48, 57, 58, 61, 64, 65, 69, 73, 74, 75, 77, 79, 80, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 98, 103], "sever": [5, 7, 10, 12, 13, 22, 37, 40, 41, 43, 61, 64, 66, 67, 73, 77, 79, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 98, 99, 103], "compar": [5, 57, 66, 77, 86, 87, 90, 94, 98], "issue_summari": [5, 7, 10, 13, 85, 86], "With": [5, 9, 10, 40, 83, 91, 93, 94, 96, 101, 102, 103], "usag": [5, 40, 56], "usual": [5, 12, 32, 33, 88, 96, 101], "ti": [5, 57], "exhibit": [5, 7, 10, 13, 74, 87, 88, 90, 91, 94, 98], "ie": [5, 69], "likelihood": [5, 10, 40, 42, 43, 59, 64, 66, 67, 71, 75], "wherea": [5, 52, 59, 82, 83, 100], "outlier": [5, 9, 14, 21, 22, 31, 44, 67, 79, 86, 87, 94, 95, 101], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 94, 101], "global": [5, 7, 22, 37, 41, 92], "non_iid": [5, 10, 14, 26, 87, 88, 90, 91, 94], "hypothesi": 5, "iid": [5, 7, 9, 26, 90, 94], "never": [5, 84, 94, 97, 99, 100], "someth": [5, 7, 10, 37, 41, 67, 98], "123": [5, 85, 86, 87], "456": [5, 82, 83, 84], "nearest_neighbor": 5, "7": [5, 48, 49, 56, 75, 77, 82, 83, 84, 86, 87, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "9": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 42, 48, 49, 61, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "distance_to_nearest_neighbor": [5, 86, 87, 88, 90, 91, 94], "789": 5, "get_issu": [5, 10, 13, 84, 85, 87, 88, 90, 91, 93, 97, 101], "issue_nam": [5, 6, 7, 10, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86, 87], "focu": [5, 10, 13, 91, 102, 103], "full": [5, 10, 13, 40, 56, 65, 85, 88, 103], "summar": [5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 58, 74, 78, 79, 102], "specific_issu": [5, 13], "lie": [5, 10, 66, 67, 83, 84, 86, 87, 88, 90, 91, 94], "get_issue_summari": [5, 13, 85, 87], "get_info": [5, 13, 87, 91, 92], "yet": [5, 17, 27, 56, 92, 96], "list_possible_issue_typ": [5, 14, 15], "regist": [5, 7, 14, 15, 17, 27, 37, 41, 86], "rtype": [5, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41], "registri": [5, 14, 15], "list_default_issue_typ": [5, 14, 15], "folder": [5, 84, 86, 88], "load": [5, 12, 40, 65, 88, 92, 93, 94, 98, 99, 102, 103], "futur": [5, 10, 22, 37, 41, 57, 79, 83, 84, 86, 91, 93], "overwrit": [5, 86], "separ": [5, 36, 48, 61, 86, 87, 88, 93, 98, 100], "static": 5, "rememb": [5, 91, 93, 94], "part": [5, 10, 37, 41, 43, 62, 64, 65, 84, 86, 92, 102, 103], "ident": [5, 10, 22, 52, 85, 91], "datalab": [6, 8, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 79, 82, 83, 92, 93, 96, 101], "walk": 7, "alongsid": [7, 37, 41, 86, 93], "pre": [7, 8, 10, 37, 41, 86, 87, 101], "runtim": [7, 37, 40, 41, 69, 71, 73, 84, 88, 93], "issue_manager_factori": [7, 14, 86], "myissuemanag": [7, 14], "myissuemanagerforregress": 7, "decor": [7, 14], "ll": [7, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "thing": [7, 41, 83, 94, 101], "next": [7, 57, 79, 82, 83, 84, 85, 90, 91, 93, 96, 98, 101, 103], "dummi": 7, "randint": [7, 31, 48, 85, 86, 87, 93], "mark": [7, 10, 80, 98, 99, 101], "regard": [7, 87, 94], "rand": [7, 48, 85, 86, 87], "is_": [7, 10, 86], "_issu": [7, 10, 86], "issue_score_kei": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86], "whole": [7, 26, 37, 41, 87], "make_summari": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86], "popul": [7, 87, 91], "verbosity_level": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "std": [7, 98], "raw_scor": 7, "bit": 7, "involv": [7, 40, 74, 78, 85, 93, 97], "intermediate_arg": 7, "min": [7, 48, 64, 77, 86, 93, 99], "sin_filt": 7, "sin": 7, "arang": 7, "kernel": 7, "affect": [7, 10, 37, 41, 71, 77, 91, 93], "easili": [7, 46, 80, 82, 83, 84, 85, 87, 90, 91, 94, 96, 97, 99, 100, 101, 102], "hard": [7, 41, 92, 99], "sai": [7, 10, 37, 41, 97, 102], "anoth": [7, 22, 36, 40, 51, 64, 67, 83, 90, 91, 93, 94, 96, 99], "try": [7, 9, 10, 40, 43, 56, 57, 71, 73, 79, 85, 87, 88, 90, 91, 93, 94, 102], "won": [7, 37, 41, 86, 87, 93, 97], "issue_manag": [7, 10, 11, 13, 15, 18, 19, 20, 23, 25, 26, 27, 28, 30, 31, 86], "instanti": [7, 16, 40, 56, 66, 83, 84, 87, 90], "477762": 7, "286455": 7, "term": [7, 10, 46, 52, 65, 84, 85, 86, 87, 88, 90, 91, 94], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 19, 28, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 98, 99, 101, 102, 103], "003042": 7, "058117": 7, "11": [7, 56, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "121908": 7, "15": [7, 50, 56, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "169312": 7, "17": [7, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 86, 87, 92, 94], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 31], "group": [8, 9, 26, 31, 92, 98, 103], "dbscan": [8, 10, 31, 93], "hdbscan": [8, 93], "etc": [8, 10, 22, 32, 37, 41, 46, 56, 57, 75, 79, 86, 87, 90, 91, 93, 94, 97, 101], "sensit": [8, 10, 50], "ep": [8, 31, 65], "radiu": 8, "min_sampl": [8, 31], "kmean": [8, 93], "your_data": 8, "get_pred_prob": [8, 85], "n_cluster": [8, 31, 93], "cluster_id": [8, 10, 31, 93], "labels_": 8, "underperforming_group": [8, 10, 14, 21, 87, 88, 90, 91, 93, 94], "search": [9, 10, 20, 26, 27, 51, 69, 93, 100], "nondefault": 9, "Near": [9, 93], "imbal": [9, 21, 61, 66, 67, 87], "null": [9, 14, 21, 87, 88, 91, 94], "togeth": [9, 10, 46, 83, 86, 87, 88, 90, 91, 94, 101, 103], "built": [9, 48], "own": [9, 37, 39, 41, 55, 61, 62, 65, 71, 75, 82, 83, 84, 87, 88, 90, 91, 93, 96, 97, 101, 102, 103], "prerequisit": 9, "basic": [9, 41, 56, 90, 91, 99], "fulli": [9, 10, 37, 41, 56, 93], "platform": [9, 10, 79, 88, 90, 91, 93], "write": [9, 10], "code": [9, 10, 37, 41, 46, 52, 56, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "being": [9, 10, 13, 36, 37, 41, 43, 48, 51, 52, 67, 82, 90, 93, 94, 101, 102], "100x": [9, 10], "faster": [9, 10, 40, 66, 69, 71, 73, 93, 94], "intellig": [9, 10], "quickli": [9, 10, 38, 82, 84, 88, 90, 91, 93, 97, 99, 102, 103], "fix": [9, 10, 57, 83, 85, 91, 94, 101], "scientist": [9, 10], "million": [9, 10, 103], "thank": [9, 10], "ai": [9, 10, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 96, 97, 99, 101, 103], "suggest": [9, 10, 36, 57, 58, 64, 83, 88, 91, 93, 101], "power": [9, 10, 88, 90, 91, 92, 94, 103], "automl": [9, 10, 79, 93], "system": [9, 10, 84, 85, 88, 90, 91, 102], "foundat": [9, 10, 79], "improv": [9, 10, 57, 82, 83, 87, 88, 92, 93, 94, 101, 102], "click": [9, 10, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "tune": [9, 10, 83, 84, 91, 92, 99], "serv": [9, 10, 13, 16, 96], "auto": [9, 10, 82, 83, 85, 87, 92, 93, 101], "free": [9, 10, 79, 84, 87, 88, 90, 91, 93, 94], "page": [10, 87, 93, 94], "variou": [10, 13, 30, 39, 53, 55, 79, 82, 86, 87, 90, 91, 92, 93, 94, 96, 98], "why": [10, 85, 91], "matter": [10, 36, 58, 83, 91], "didn": 10, "plu": [10, 101], "_score": 10, "badli": [10, 64, 82, 83, 103], "issue_scor": 10, "outlier_scor": [10, 28, 85, 86, 87, 88, 90, 91, 94, 99], "atyp": [10, 66, 86, 87, 88, 90, 91, 94, 99], "datapoint": [10, 31, 43, 48, 52, 67, 70, 79, 82, 83, 84, 86, 87, 90, 91, 93, 100, 101], "is_issu": [10, 22], "is_outlier_issu": [10, 85, 86, 87, 88, 90, 91, 94], "annot": [10, 36, 47, 57, 58, 59, 61, 62, 64, 65, 74, 77, 78, 79, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 98, 102], "dissimilar": [10, 90, 91], "preced": 10, "incorrect": [10, 64, 67, 70, 82, 84, 85, 86, 87, 88, 90, 91, 94, 98, 101], "due": [10, 40, 43, 67, 71, 73, 84, 85, 86, 87, 88, 90, 91, 94, 101], "appear": [10, 36, 47, 58, 59, 62, 70, 87, 88, 90, 91, 101, 102], "now": [10, 40, 80, 82, 83, 84, 85, 87, 96, 98, 99, 101, 103], "token": [10, 42, 51, 73, 74, 75, 76, 77, 78, 93, 94, 95], "hamper": [10, 88, 92], "analyt": [10, 79, 93, 96], "lead": [10, 64, 67, 88, 98], "draw": [10, 85, 86, 87], "conclus": [10, 91], "veri": [10, 36, 58, 62, 64, 83, 85, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101], "rare": [10, 43, 65, 85, 86, 87, 88, 90, 91, 93, 94], "anomal": [10, 67, 85, 86, 87, 88, 90, 91, 94], "articl": [10, 40, 93], "blog": 10, "unexpect": [10, 37, 41, 91], "consequ": 10, "inspect": [10, 83, 84, 85, 87, 88, 94, 98, 101], "extrem": [10, 86, 87, 88, 90, 91, 93, 94], "record": [10, 37, 41, 84, 90, 101], "abbrevi": 10, "misspel": 10, "typo": [10, 78], "resolut": 10, "video": [10, 92], "audio": [10, 86, 87, 89, 93], "minor": [10, 51], "variat": 10, "translat": 10, "d": [10, 50, 82, 90, 91, 93, 94, 97, 101, 103], "constant": [10, 31, 69], "median": [10, 30, 50], "question": [10, 22, 79, 94], "nearli": [10, 22, 87, 88, 90, 91], "awar": [10, 80, 94], "presenc": [10, 94], "near_dupl": [10, 14, 19, 85, 86, 87, 88, 90, 91, 93, 94], "signific": [10, 90, 91, 94], "violat": [10, 90, 91, 94], "assumpt": [10, 90, 91, 94], "changepoint": [10, 90, 91, 94], "shift": [10, 90, 91, 94], "drift": [10, 87, 90, 94], "autocorrel": [10, 90, 91, 94], "almost": [10, 90, 91, 94], "adjac": [10, 90, 91, 94], "tend": [10, 36, 46, 90, 91, 94, 102, 103], "sequenti": [10, 37, 41, 56, 88], "realli": [10, 83, 91, 96, 102], "mere": 10, "highlight": [10, 74, 78, 85, 86, 87, 90, 102], "necessarili": [10, 57, 65, 91, 94], "wrong": [10, 57, 62, 64, 80, 83, 85, 86, 87, 91, 93, 94, 98], "gap": 10, "b": [10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 51, 52, 77, 82, 90, 91, 92, 93, 94, 100, 103], "x1": [10, 62, 65, 98], "x2": [10, 62, 65, 98], "10th": 10, "100th": 10, "90": [10, 77, 82, 90, 94, 100, 101], "similarli": [10, 37, 41, 86, 88, 90, 93, 98], "math": [10, 88], "behind": [10, 66, 94], "proper": [10, 52, 57, 62, 65, 82, 88, 91, 93, 96, 98], "scenario": [10, 67, 85, 86, 87], "underli": [10, 42, 66, 75, 77, 103], "stem": [10, 66, 99], "evolv": 10, "influenc": 10, "act": [10, 64, 86], "accordingli": [10, 32], "emploi": [10, 97, 99], "partit": [10, 100], "ahead": 10, "good": [10, 37, 41, 50, 56, 58, 64, 67, 71, 73, 74, 79, 85, 88, 90, 91], "problem": [10, 32, 40, 48, 74, 79, 86, 87, 88, 91, 93], "deploy": [10, 82, 83, 94, 101], "overlook": [10, 64, 98], "fact": 10, "thu": [10, 36, 41, 58, 82, 84, 90, 91, 94, 100, 103], "diagnos": [10, 87, 93], "rarest": [10, 87], "q": [10, 98], "subpar": 10, "special": [10, 51], "techniqu": [10, 98], "smote": 10, "asymmetr": [10, 36], "class_imbal": [10, 14, 20, 87, 88, 90, 91, 94], "excess": [10, 88], "dark": [10, 102], "bright": [10, 103], "blurri": [10, 88], "lack": [10, 56], "unusu": [10, 98, 99], "cluster": [10, 18, 31], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 79, 87, 88, 90, 91, 95], "get_self_confidence_for_each_label": [10, 48, 67], "r": [10, 40, 69, 85, 86, 87, 101, 102], "tabular": [10, 79, 81, 86, 87, 89, 93, 96], "categor": [10, 66, 81, 82, 86, 87, 89, 93, 101], "encod": [10, 49, 65, 71, 74, 82, 83, 90, 91, 93, 101, 102], "miss": [10, 27, 37, 41, 52, 62, 64, 85, 90, 93, 98, 101], "pattern": 10, "isn": [10, 17, 27], "scalabl": 10, "sacrific": 10, "One": [10, 52, 66, 93], "quantif": 10, "data_valu": [10, 14, 21], "exert": [10, 87], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 21, 23, 30], "health_summari": [10, 23, 36, 79, 92], "health_summary_kwarg": 10, "tandem": [10, 92], "view": [10, 37, 41, 42, 43, 73, 75, 77, 79, 82, 83, 84, 85, 86, 87, 90, 91, 92, 94, 96, 97, 98, 99, 100, 101, 103], "ood_kwarg": 10, "outofdistribut": [10, 28, 66, 99], "outsid": [10, 93, 97], "outlierissuemanag": [10, 14, 21, 28, 86], "nearduplicateissuemanag": [10, 14, 19, 21], "noniidissuemanag": [10, 14, 21, 26], "num_permut": [10, 26], "permut": [10, 26], "significance_threshold": [10, 26], "signic": 10, "noniid": [10, 21], "classimbalanceissuemanag": [10, 14, 20, 21], "underperforminggroupissuemanag": [10, 14, 21, 31], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 31], "filter_cluster_id": [10, 21, 31], "clustering_kwarg": [10, 31], "nullissuemanag": [10, 14, 21, 27], "datavaluationissuemanag": [10, 14, 18, 21], "codeblock": 10, "demonstr": [10, 40, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 101, 102], "howev": [10, 37, 41, 52, 82, 83, 84, 88, 90, 91, 96, 100, 102], "mandatori": 10, "image_issue_types_kwarg": 10, "32": [10, 84, 86, 92, 96, 98], "vice": [10, 58], "versa": [10, 58], "light": [10, 88, 92, 98, 102], "29": [10, 85, 88, 92, 96, 97, 98, 102, 103], "low_inform": [10, 88], "odd_aspect_ratio": [10, 88], "35": [10, 85, 86, 92, 96, 97, 98], "odd_siz": [10, 88], "doc": [10, 37, 41, 66, 79, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "studio": [11, 79, 87, 88, 90, 91, 93], "data_issu": [11, 15, 16, 33, 86], "issue_find": [11, 15], "factori": [11, 15, 16], "model_output": [11, 15], "except": [12, 37, 41, 56, 67, 85, 86, 87, 88, 96], "dataformaterror": [12, 15], "add_not": 12, "with_traceback": 12, "tb": 12, "__traceback__": 12, "datasetdicterror": [12, 15], "datasetdict": 12, "datasetloaderror": [12, 15], "dataset_typ": 12, "fail": 12, "hold": 12, "associ": [12, 16, 32, 34, 37, 41, 65, 96], "sublist": 12, "map_to_int": 12, "abc": [12, 22, 32], "is_avail": [12, 88], "dataissu": [13, 15, 16, 33], "central": [13, 103], "repositori": 13, "strategi": [13, 48, 93], "_infostrategi": 13, "basi": 13, "collect_statist": 13, "reus": [13, 22], "avoid": [13, 37, 40, 41, 43, 52, 59, 62, 65, 69, 71, 73, 85, 86, 87, 93], "recomput": [13, 83], "weighted_knn_graph": 13, "issue_manager_that_computes_knn_graph": 13, "collect_issues_from_issue_manag": 13, "collect_issues_from_imagelab": 13, "imagelab": 13, "set_health_scor": 13, "health": [13, 23, 36, 58, 79], "get_data_statist": [13, 15], "concret": 14, "subclass": [14, 37, 41, 66, 86], "regressionlabelissuemanag": [14, 21, 29, 30], "multilabelissuemanag": [14, 21, 24, 25], "from_str": [14, 34, 44, 48], "my_issu": 14, "logic": [14, 34, 40, 43, 71, 73], "issuefind": [15, 16, 33], "modeloutput": [15, 32], "multiclasspredprob": [15, 32], "regressionpredict": [15, 32], "multilabelpredprob": [15, 32], "instati": 16, "public": [16, 94, 98, 102, 103], "creation": [16, 41], "execut": [16, 37, 41, 86, 93, 98], "coordin": [16, 62, 64, 65, 98, 103], "behavior": [16, 36, 37, 41, 65, 85, 93], "At": [16, 65, 93], "get_available_issue_typ": 16, "direct": [17, 27, 37, 41, 56], "valuabl": 18, "vstack": [18, 52, 88, 92, 93, 94, 96, 97], "25": [18, 26, 37, 48, 50, 85, 87, 88, 92, 94, 96, 97, 98, 103], "classvar": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "short": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 51, 52], "data_valuation_scor": 18, "item": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 85, 86, 87, 88, 93, 94, 96, 97], "some_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "additional_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "default_threshold": [18, 21, 28], "collect_info": [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "info_to_omit": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "compos": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 37, 41, 83, 91, 99], "is_x_issu": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "x_score": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_a": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b1": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b2": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "report_str": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33], "_": [19, 20, 22, 23, 25, 26, 27, 30, 31, 48, 51, 52, 82, 84, 86, 88, 92, 94, 97], "near_duplicate_set": [19, 21, 86, 87, 88, 90, 91, 93, 94], "occurr": [19, 20, 22, 26, 27, 28, 31, 51], "median_nn_dist": 19, "near_duplicate_scor": [19, 86, 87, 88, 90, 91, 93, 94], "class_imbalance_scor": [20, 87], "bleed": [21, 24, 29, 39], "edg": [21, 24, 29, 39, 64, 79, 94, 103], "sharp": [21, 24, 29, 39], "get_health_summari": [21, 23], "ood": [21, 28, 66, 67, 85, 86, 87, 88, 91, 94, 99], "simplified_kolmogorov_smirnov_test": [21, 26], "outlier_cluster_label": [21, 31], "no_underperforming_cluster_id": [21, 31], "set_knn_graph": [21, 31], "perform_clust": [21, 31], "get_worst_clust": [21, 31], "find_issues_with_predict": [21, 29, 30], "find_issues_with_featur": [21, 29, 30], "believ": [22, 102], "priori": [22, 94], "abstract": [22, 32], "applic": [23, 57, 93, 94, 96, 103], "typevar": [23, 25, 37, 41, 51, 61, 64, 65], "scalartyp": [23, 25], "covari": [23, 25, 69, 101], "summary_dict": 23, "label_scor": [23, 25, 30, 84, 85, 86, 87, 88, 90, 91, 94, 97, 101], "neighbor_histogram": 26, "non_neighbor_histogram": 26, "kolmogorov": 26, "smirnov": 26, "largest": [26, 40, 48, 67, 71, 73, 98, 102], "empir": [26, 47, 57], "cumul": 26, "ecdf": 26, "histogram": [26, 90, 101], "absolut": [26, 30], "trial": 26, "non_iid_scor": [26, 87, 90, 91, 94], "null_track": 27, "extend": [27, 49, 56, 88, 98, 99, 103], "superclass": 27, "arbitrari": [27, 36, 73, 77, 86, 99, 101], "prompt": 27, "address": [27, 83, 86, 87, 91, 93], "enabl": [27, 41], "null_scor": [27, 87], "37037": 28, "q3_avg_dist": 28, "iqr_avg_dist": 28, "median_outlier_scor": 28, "issue_threshold": 28, "multipli": [30, 50], "deleg": 30, "confus": [31, 32, 36, 37, 41, 43, 52, 65, 83, 103], "50": [31, 41, 85, 93, 94, 96, 98, 99, 101], "keepdim": [31, 93], "signifi": 31, "absenc": 31, "find_issues_kwarg": 31, "int64": [31, 84, 96], "npt": 31, "int_": 31, "id": [31, 57, 86, 88, 93, 96], "unique_cluster_id": 31, "_description_": 31, "performed_clust": 31, "worst_cluster_id": 31, "underperforming_group_scor": [31, 87], "convent": [32, 34], "subject": [32, 34], "meant": [32, 34], "Not": 32, "mainli": [32, 99, 103], "content": [32, 66, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "fetch": [32, 40, 84, 87, 93], "datset": 33, "exclud": [33, 42, 74, 78, 86, 93, 103], "get_report": 33, "enum": [34, 48], "qualnam": [34, 48], "boundari": [34, 48, 85, 86, 87], "continu": [34, 56, 82, 83, 88, 91, 93, 96, 98, 101, 103], "binari": [34, 48, 52, 59, 61, 94, 103], "simultan": [34, 101], "task_str": 34, "is_classif": 34, "__contains__": [34, 44, 48], "member": [34, 37, 41, 48, 86, 87], "typeerror": [34, 48], "12": [34, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "__getitem__": [34, 44, 48], "match": [34, 36, 37, 41, 43, 48, 57, 58, 67, 85, 86, 87, 88, 92, 98, 100, 102], "__iter__": [34, 44, 48], "__len__": [34, 44, 48], "alias": [34, 48], "is_regress": 34, "is_multilabel": 34, "overview": [36, 82, 83, 84, 87, 88, 90, 91, 96, 98, 99, 101, 103], "modifi": [36, 37, 40, 41, 52, 93, 94], "rank_classes_by_label_qu": [36, 87], "merg": [36, 51, 79, 92, 93, 103], "find_overlapping_class": [36, 93, 94], "problemat": [36, 58, 74, 78, 84, 98, 103], "unnorm": [36, 58, 94], "abov": [36, 37, 40, 41, 52, 57, 64, 65, 67, 73, 77, 82, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 100, 101, 102, 103], "model_select": [36, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101], "cross_val_predict": [36, 41, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 100, 101], "get_data_labels_from_dataset": 36, "yourfavoritemodel": [36, 94], "cv": [36, 48, 82, 84, 85, 86, 87, 90, 94, 96], "df": [36, 52, 78, 84, 93], "overall_label_qu": [36, 58], "col": 36, "prob": [36, 51, 94, 100], "divid": [36, 58, 67], "label_nois": [36, 58], "human": [36, 92, 102, 103], "clearli": [36, 67, 88, 98, 102], "num": [36, 58, 92, 94], "overlap": [36, 79, 92, 93, 94], "ontolog": 36, "publish": [36, 103], "therefor": [36, 67], "vehicl": [36, 92], "truck": [36, 92, 99, 102], "intuit": [36, 58, 85], "car": [36, 92, 98, 102], "frequent": [36, 57, 90, 93, 101], "characterist": 36, "l": [36, 37, 41, 62, 64, 65], "class1": 36, "class2": 36, "relationship": 36, "dog": [36, 52, 58, 60, 74, 92, 93, 99, 100, 103], "cat": [36, 52, 58, 60, 92, 93, 99, 100], "captur": [36, 84, 98, 99, 102], "co": [36, 37, 38], "noisy_label": [36, 85, 86, 87, 97], "overlapping_class": 36, "descend": [36, 37, 41, 48, 58, 65], "overall_label_health_scor": [36, 58, 94], "half": [36, 37, 39, 41, 58, 92, 103], "health_scor": [36, 58], "classes_by_label_qu": [36, 87], "cnn": [37, 39, 41, 88], "cifar": [37, 38, 92, 99], "teach": [37, 38], "bhanml": 37, "blob": 37, "master": [37, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "call_bn": [37, 39], "bn": 37, "input_channel": 37, "n_output": 37, "dropout_r": 37, "top_bn": 37, "architectur": [37, 41], "shown": [37, 65, 85, 86, 93, 96, 99, 100, 102, 103], "forward": [37, 38, 39, 41, 88, 96], "overridden": [37, 41], "although": [37, 41, 66, 82, 90], "recip": [37, 41], "afterward": [37, 41], "sinc": [37, 41, 45, 53, 58, 65, 73, 77, 93, 96, 97, 98, 100, 103], "former": [37, 41], "hook": [37, 41, 92], "silent": [37, 40, 41], "t_destin": [37, 39, 41], "__call__": [37, 39, 41, 44, 48], "add_modul": [37, 39, 41], "child": [37, 41], "fn": [37, 41, 65], "recurs": [37, 41, 48], "submodul": [37, 41], "children": [37, 39, 41, 103], "nn": [37, 38, 41, 88], "init": [37, 41, 94], "no_grad": [37, 41, 88, 99], "init_weight": [37, 41], "linear": [37, 41, 83, 88, 91], "fill_": [37, 41], "net": [37, 41, 84, 88, 92], "in_featur": [37, 41], "out_featur": [37, 41], "bia": [37, 41, 88], "tensor": [37, 38, 41, 83, 84, 88, 91, 99], "requires_grad": [37, 41], "bfloat16": [37, 39, 41], "cast": [37, 41, 84], "buffer": [37, 39, 41], "datatyp": [37, 41], "xdoctest": [37, 41], "undefin": [37, 41], "var": [37, 41], "buf": [37, 41], "20l": [37, 41], "1l": [37, 41], "5l": [37, 41], "call_super_init": [37, 39, 41], "immedi": [37, 41, 99], "compil": [37, 39, 41, 56], "cpu": [37, 39, 41, 43, 84, 88], "move": [37, 41, 48, 80, 92], "cuda": [37, 39, 41, 84, 88], "devic": [37, 41, 84, 88], "gpu": [37, 41, 83, 84, 91], "live": [37, 41], "copi": [37, 41, 69, 82, 84, 85, 86, 87, 90, 93, 97, 100, 101], "doubl": [37, 39, 41], "dump_patch": [37, 39, 41], "eval": [37, 39, 41, 88, 97, 99], "dropout": [37, 41], "batchnorm": [37, 41], "grad": [37, 41], "extra_repr": [37, 39, 41], "line": [37, 41, 79, 86, 92, 96, 99, 103], "get_buff": [37, 39, 41], "target": [37, 38, 41, 69, 70, 99, 101], "throw": [37, 41], "get_submodul": [37, 39, 41], "explan": [37, 41], "qualifi": [37, 41], "referenc": [37, 41], "attributeerror": [37, 41], "invalid": [37, 41, 91], "resolv": [37, 41, 85, 103], "get_extra_st": [37, 39, 41], "state_dict": [37, 39, 41], "set_extra_st": [37, 39, 41], "build": [37, 41, 88, 102], "picklabl": [37, 41], "serial": [37, 41], "backward": [37, 41, 88], "break": [37, 41, 88, 98], "pickl": [37, 41, 98], "get_paramet": [37, 39, 41], "let": [37, 41, 66, 67, 82, 83, 84, 85, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "net_b": [37, 41], "net_c": [37, 41], "conv": [37, 41], "conv2d": [37, 41, 88], "16": [37, 41, 48, 56, 73, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 102, 103], "33": [37, 41, 92, 98], "kernel_s": [37, 41], "stride": [37, 41], "200": [37, 41, 67, 85, 92, 98, 103], "diagram": [37, 41, 100], "degre": [37, 41], "queri": [37, 41, 87, 88, 93, 97], "named_modul": [37, 39, 41], "o": [37, 41, 50, 51, 84, 85, 86, 87, 92, 93, 94, 97, 98, 103], "transit": [37, 41], "ipu": [37, 39, 41], "load_state_dict": [37, 39, 41], "strict": [37, 41, 48], "persist": [37, 41], "strictli": [37, 41], "inplac": [37, 41, 96], "preserv": [37, 41, 52], "namedtupl": [37, 41], "missing_kei": [37, 41], "unexpected_kei": [37, 41], "runtimeerror": [37, 41], "idx": [37, 41, 52, 53, 65, 86, 88, 93, 94, 96, 98, 99], "named_buff": [37, 39, 41], "prefix": [37, 41, 84, 103], "remove_dupl": [37, 41], "prepend": [37, 41], "running_var": [37, 41], "named_children": [37, 39, 41], "conv4": [37, 41], "conv5": [37, 41], "memo": [37, 41], "named_paramet": [37, 39, 41], "register_backward_hook": [37, 39, 41], "deprec": [37, 41, 45, 83, 84, 91, 93], "favor": [37, 41], "register_full_backward_hook": [37, 39, 41], "removablehandl": [37, 41], "register_buff": [37, 39, 41], "running_mean": [37, 41], "register_forward_hook": [37, 39, 41], "with_kwarg": [37, 41], "always_cal": [37, 41], "possibli": [37, 41, 82, 90], "fire": [37, 41, 92], "register_module_forward_hook": [37, 41], "regardless": [37, 41, 86, 87], "register_forward_pre_hook": [37, 39, 41], "And": [37, 41], "forward_pr": [37, 41], "register_module_forward_pre_hook": [37, 41], "gradient": [37, 41, 88, 90, 101], "grad_input": [37, 41], "grad_output": [37, 41], "technic": [37, 41], "caller": [37, 41], "register_module_full_backward_hook": [37, 41], "register_full_backward_pre_hook": [37, 39, 41], "backward_pr": [37, 41], "register_module_full_backward_pre_hook": [37, 41], "register_load_state_dict_post_hook": [37, 39, 41], "post": [37, 41], "incompatible_kei": [37, 41], "modif": [37, 41], "thrown": [37, 41], "register_modul": [37, 39, 41], "register_paramet": [37, 39, 41], "register_state_dict_pre_hook": [37, 39, 41], "keep_var": [37, 41], "requires_grad_": [37, 39, 41], "autograd": [37, 41], "freez": [37, 41, 83, 84, 91], "finetun": [37, 41], "gan": [37, 41], "share_memori": [37, 39, 41], "share_memory_": [37, 41], "destin": [37, 41], "shallow": [37, 41], "releas": [37, 41, 56, 80, 84, 93], "design": [37, 41, 85], "ordereddict": [37, 41], "detach": [37, 41, 88], "non_block": [37, 41], "memory_format": [37, 41], "channels_last": [37, 41], "Its": [37, 41, 48, 58, 64], "complex": [37, 41, 84], "integr": [37, 41, 79, 93], "asynchron": [37, 41], "host": [37, 41], "pin": [37, 41, 83, 91, 92], "desir": [37, 41, 51, 65], "4d": [37, 41], "ignore_w": [37, 41], "determinist": [37, 41, 84], "1913": [37, 41], "3420": [37, 41], "5113": [37, 41], "2325": [37, 41], "env": [37, 41], "torch_doctest_cuda1": [37, 41], "gpu1": [37, 41], "1914": [37, 41], "5112": [37, 41], "2324": [37, 41], "float16": [37, 41], "cdoubl": [37, 41], "3741": [37, 41], "2382": [37, 41], "5593": [37, 41], "4443": [37, 41], "complex128": [37, 41], "6122": [37, 41], "1150": [37, 41], "to_empti": [37, 39, 41], "storag": [37, 41, 83, 91], "dst_type": [37, 41], "xpu": [37, 39, 41], "zero_grad": [37, 39, 41, 88], "set_to_non": [37, 41], "reset": [37, 41], "context": [37, 41, 98], "noisili": [38, 94], "han": 38, "2018": 38, "cifar_cnn": [38, 39], "loss_coteach": [38, 39], "y_1": 38, "y_2": 38, "forget_r": 38, "class_weight": 38, "logit": [38, 56, 88], "decim": [38, 52], "forget": [38, 48, 103], "rate_schedul": 38, "epoch": [38, 39, 41, 88, 93], "initialize_lr_schedul": [38, 39], "lr": [38, 39, 41], "001": [38, 67, 93], "250": [38, 86, 87, 94, 98], "epoch_decay_start": 38, "80": [38, 82, 90, 97, 101], "schedul": 38, "beta": 38, "adam": 38, "adjust_learning_r": [38, 39], "alpha_plan": 38, "beta1_plan": 38, "forget_rate_schedul": [38, 39], "num_gradu": 38, "expon": 38, "tell": [38, 83, 88, 91, 94], "train_load": [38, 41], "model1": [38, 94], "optimizer1": 38, "model2": [38, 94], "optimizer2": 38, "dataload": [38, 88, 99], "parser": 38, "parse_arg": 38, "num_iter_per_epoch": 38, "print_freq": 38, "topk": 38, "top1": 38, "top5": 38, "test_load": 38, "offici": [39, 55, 103], "wish": [39, 55, 99, 102, 103], "adj_confident_thresholds_shar": [39, 40], "labels_shar": [39, 40], "pred_probs_shar": [39, 40], "labelinspector": [39, 40, 93], "get_num_issu": [39, 40], "get_quality_scor": [39, 40], "update_confident_threshold": [39, 40], "score_label_qu": [39, 40], "split_arr": [39, 40], "span_classif": 39, "display_issu": [39, 42, 72, 73, 74, 75, 76, 77, 78, 102, 103], "mnist_pytorch": 39, "get_mnist_dataset": [39, 41], "get_sklearn_digits_dataset": [39, 41], "simplenet": [39, 41], "batch_siz": [39, 40, 41, 71, 73, 85, 88, 93, 99, 102], "log_interv": [39, 41], "momentum": [39, 41], "no_cuda": [39, 41], "test_batch_s": [39, 41, 88], "loader": [39, 41, 88], "set_predict_proba_request": [39, 41], "set_predict_request": [39, 41], "coteach": [39, 80], "mini": [40, 71, 73, 93], "low_self_confid": [40, 43, 59], "self_confid": [40, 43, 44, 48, 59, 61, 67, 75, 77, 82, 83, 93, 94], "conveni": [40, 82, 83, 84, 91], "script": 40, "labels_fil": [40, 93], "pred_probs_fil": [40, 93], "quality_score_kwarg": 40, "num_issue_kwarg": 40, "return_mask": 40, "variant": [40, 57, 102], "read": [40, 45, 87, 93, 94, 99, 103], "zarr": [40, 93], "memmap": [40, 102], "pythonspe": 40, "mmap": [40, 93], "hdf5": 40, "further": [40, 42, 58, 59, 61, 64, 65, 73, 74, 84, 93], "yourfil": 40, "npy": [40, 92, 93, 102], "mmap_mod": [40, 102], "tip": [40, 43, 56, 93], "save_arrai": 40, "your_arrai": 40, "disk": [40, 92, 93], "npz": [40, 103], "maxim": [40, 57, 71, 73, 102], "multiprocess": [40, 43, 59, 71, 73, 88, 93], "linux": [40, 71, 73], "physic": [40, 43, 71, 73, 98], "psutil": [40, 43, 71, 73], "labels_arrai": [40, 53], "predprob": 40, "pred_probs_arrai": 40, "back": [40, 65, 86, 93, 98, 99], "store_result": 40, "becom": [40, 99], "verifi": [40, 93, 96, 99], "long": [40, 57, 66, 96], "enough": [40, 52, 93], "chunk": [40, 100], "ram": [40, 92], "end_index": 40, "labels_batch": 40, "pred_probs_batch": 40, "batch_result": 40, "indices_of_examples_with_issu": [40, 93], "shortcut": 40, "encount": [40, 43, 71], "1000": [40, 84, 91, 93, 99], "aggreg": [40, 44, 48, 57, 61, 64, 67, 77, 93, 94, 96], "seen": [40, 85, 93, 99, 103], "far": [40, 57], "label_quality_scor": [40, 61, 64, 67, 70, 94, 98], "method1": 40, "method2": 40, "normalized_margin": [40, 43, 44, 48, 59, 61, 67, 75, 77], "low_normalized_margin": [40, 43, 59], "issue_indic": [40, 64, 88], "update_num_issu": 40, "arr": [40, 93], "chunksiz": 40, "convnet": 41, "bespok": [41, 56], "download": [41, 84, 93, 99], "mnist": [41, 79, 84, 92], "handwritten": 41, "digit": [41, 84, 92], "last": [41, 48, 62, 65, 85, 86, 87, 93, 96, 98, 103], "sklearn_digits_test_s": 41, "64": [41, 82, 88, 90, 94, 98], "01": [41, 67, 69, 84, 94, 97, 98], "templat": 41, "flexibli": 41, "among": [41, 57, 94], "test_set": 41, "Be": 41, "overrid": 41, "train_idx": [41, 52, 99], "train_label": [41, 83, 99], "span": 42, "sentenc": [42, 51, 75, 77, 78, 83, 91], "token_classif": [42, 51, 75, 77, 78, 93], "encourag": [43, 59, 67, 70], "multilabel_classif": [43, 58, 59, 61, 67, 93, 97], "pred_probs_by_class": 43, "prune_count_matrix_col": 43, "rank_by_kwarg": [43, 59, 67, 94], "num_to_remove_per_class": [43, 59], "bad": [43, 59, 64, 67, 91, 93], "seem": [43, 94, 97], "aren": 43, "confidence_weighted_entropi": [43, 44, 48, 59, 61, 67, 75, 77], "label_issues_idx": [43, 67], "entropi": [43, 45, 47, 48, 66, 67], "prune_by_class": [43, 59, 94], "predicted_neq_given": [43, 59, 94], "prune_counts_matrix": 43, "smallest": [43, 67], "unus": 43, "number_of_mislabeled_examples_in_class_k": 43, "delet": [43, 79, 83, 93], "too": [43, 48, 66, 87, 88, 93, 98], "thread": [43, 59], "window": [43, 84, 92], "shorter": [43, 62], "find_predicted_neq_given": 43, "find_label_issues_using_argmax_confusion_matrix": 43, "remove_noise_from_class": [44, 52], "clip_noise_r": [44, 52], "clip_valu": [44, 52], "value_count": [44, 52, 93], "value_counts_fill_missing_class": [44, 52], "get_missing_class": [44, 52], "round_preserving_sum": [44, 52], "round_preserving_row_tot": [44, 52], "estimate_pu_f1": [44, 52], "confusion_matrix": [44, 52], "print_square_matrix": [44, 52], "print_noise_matrix": [44, 52, 94], "print_inverse_noise_matrix": [44, 52], "print_joint_matrix": [44, 52, 94], "compress_int_arrai": [44, 52], "train_val_split": [44, 52], "subset_x_i": [44, 52], "subset_label": [44, 52], "subset_data": [44, 52], "extract_indices_tf": [44, 52], "unshuffle_tensorflow_dataset": [44, 52], "is_torch_dataset": [44, 52], "is_tensorflow_dataset": [44, 52], "csr_vstack": [44, 52], "append_extra_datapoint": [44, 52], "get_num_class": [44, 52], "num_unique_class": [44, 52], "get_unique_class": [44, 52], "format_label": [44, 52], "smart_display_datafram": [44, 52], "force_two_dimens": [44, 52], "latent_algebra": [44, 80], "compute_ps_py_inv_noise_matrix": [44, 46], "compute_py_inv_noise_matrix": [44, 46], "compute_inv_noise_matrix": [44, 46], "compute_noise_matrix_from_invers": [44, 46], "compute_pi": [44, 46], "compute_pyx": [44, 46], "label_quality_util": 44, "get_normalized_entropi": [44, 45], "multilabel_util": [44, 97], "stack_compl": [44, 49], "get_onehot_num_class": [44, 49], "int2onehot": [44, 49, 97], "onehot2int": [44, 49, 97], "multilabel_scor": [44, 61], "classlabelscor": [44, 48], "exponential_moving_averag": [44, 48, 61], "softmin": [44, 48, 61, 64, 73, 77], "possible_method": [44, 48], "multilabelscor": [44, 48], "get_class_label_quality_scor": [44, 48], "multilabel_pi": [44, 48], "get_cross_validated_multilabel_pred_prob": [44, 48], "transform_distances_to_scor": [44, 50], "correct_precision_error": [44, 50], "token_classification_util": [44, 103], "get_sent": [44, 51, 103], "filter_sent": [44, 51, 103], "process_token": [44, 51], "merge_prob": [44, 51], "color_sent": [44, 51], "assert_valid_input": [44, 53], "assert_valid_class_label": [44, 53], "assert_nonempty_input": [44, 53], "assert_indexing_work": [44, 53], "labels_to_arrai": [44, 53], "labels_to_list_multilabel": [44, 53], "min_allowed_prob": 45, "wikipedia": 45, "activ": [45, 47, 56, 57, 79, 96], "towardsdatasci": 45, "cheatsheet": 45, "ec57bc067c0b": 45, "clip": [45, 52, 84], "behav": 45, "unnecessari": [45, 93], "slightli": [45, 82, 83, 85], "interv": [45, 48, 99], "herein": 46, "inexact": 46, "cours": 46, "propag": 46, "throughout": [46, 52, 69, 84, 96, 102, 103], "increas": [46, 50, 64, 66, 67, 84, 86, 93, 96, 97, 103], "dot": [46, 77, 93], "true_labels_class_count": 46, "pyx": 46, "multiannot": 47, "assert_valid_inputs_multiannot": 47, "labels_multiannot": [47, 57], "ensembl": [47, 48, 57, 67, 82, 90, 93, 97, 99, 101], "allow_single_label": 47, "annotator_id": 47, "assert_valid_pred_prob": 47, "pred_probs_unlabel": [47, 57], "format_multiannotator_label": [47, 57, 96], "formatted_label": [47, 52], "old": [47, 52, 80, 84, 92], "check_consensus_label_class": 47, "consensus_label": [47, 57, 96], "consensus_method": [47, 57], "consensu": [47, 57, 79, 95, 103], "establish": [47, 56, 83, 101], "compute_soft_cross_entropi": 47, "soft": [47, 92], "find_best_temp_scal": 47, "coarse_search_rang": [47, 69, 93], "fine_search_s": [47, 69, 93], "temperatur": [47, 48, 64, 73, 77], "scale": [47, 50, 82, 92, 93, 99, 102], "factor": [47, 48, 50, 71, 73], "minim": [47, 64, 99], "temp_scale_pred_prob": 47, "temp": 47, "sharpen": [47, 92], "smoothen": 47, "get_normalized_margin_for_each_label": [48, 67], "get_confidence_weighted_entropy_for_each_label": [48, 67], "75": [48, 85, 86, 87, 92, 96, 97, 98, 101, 103], "scorer": 48, "alpha": [48, 61, 64, 85, 86, 87, 94, 97, 101], "exponenti": 48, "ema": 48, "s_1": 48, "s_k": 48, "ema_k": 48, "accord": [48, 59, 90, 91, 94, 103], "formula": [48, 50], "_t": 48, "cdot": 48, "s_t": 48, "qquad": 48, "leq": 48, "_1": 48, "give": [48, 67, 94, 96, 102], "recent": [48, 103], "success": 48, "previou": [48, 88, 93, 98], "discount": 48, "s_ema": 48, "175": [48, 88, 94, 98], "underflow": 48, "nan": [48, 57, 82, 90, 96, 101], "aggregated_scor": 48, "base_scor": 48, "base_scorer_kwarg": 48, "aggregator_kwarg": [48, 61], "n_sampl": 48, "n_label": 48, "worst": [48, 96], "class_label_quality_scor": 48, "42": [48, 91, 92, 98, 103], "452": 48, "new_scor": 48, "575": 48, "get_label_quality_scores_per_class": [48, 60, 61], "ml_scorer": 48, "binar": [48, 49], "reformat": [48, 84], "wider": 48, "splitter": 48, "kfold": [48, 88], "onevsrestclassifi": [48, 97], "randomforestclassifi": [48, 94, 97], "n_split": [48, 87, 88, 97], "pred_prob_slic": 49, "onehot": 49, "hot": [49, 59, 65, 71, 74, 82, 90, 92, 93, 101, 102], "onehot_matrix": 49, "avg_dist": 50, "scaling_factor": 50, "exp": [50, 66, 67, 86], "dt": 50, "right": [50, 62, 65, 83, 91, 97, 98, 99], "strength": [50, 65], "pronounc": 50, "differenti": 50, "ly": 50, "rule": [50, 51, 92], "thumb": 50, "ood_features_scor": [50, 66, 99], "88988177": 50, "80519832": 50, "toler": 50, "minkowski": 50, "noth": 50, "epsilon": 50, "sensibl": 50, "fixed_scor": 50, "readabl": 51, "lambda": [51, 84, 86, 93, 96], "long_sent": 51, "headlin": 51, "charact": [51, 52], "s1": 51, "s2": 51, "processed_token": 51, "alecnlcb": 51, "entiti": [51, 79, 93, 103], "mapped_ent": 51, "unique_ident": 51, "loc": [51, 85, 86, 87, 88, 103], "nbitbas": [51, 61], "probs_merg": 51, "0125": [51, 77], "0375": 51, "075": 51, "025": 51, "color": [51, 74, 85, 86, 87, 90, 94, 97, 99, 101, 102], "red": [51, 65, 85, 86, 87, 92, 94, 97, 98, 99, 102], "colored_sent": 51, "termcolor": 51, "31msentenc": 51, "0m": 51, "ancillari": 52, "class_without_nois": 52, "any_other_class": 52, "choos": [52, 67, 82, 90, 93, 94, 101], "tradition": 52, "new_sum": 52, "fill": 52, "come": [52, 85, 86, 87, 93, 102], "major": [52, 57, 80, 85, 88, 99], "versu": [52, 94], "obviou": 52, "cgdeboer": 52, "iteround": 52, "reach": 52, "prob_s_eq_1": 52, "claesen": 52, "f1": [52, 65, 91, 94], "BE": 52, "left_nam": 52, "top_nam": 52, "titl": [52, 85, 86, 87, 94, 97, 99], "short_titl": 52, "round_plac": 52, "pretti": [52, 85, 94], "joint_matrix": 52, "num_possible_valu": 52, "holdout_idx": 52, "extract": [52, 66, 83, 84, 91, 96, 99, 102], "allow_shuffl": 52, "turn": [52, 79, 98], "shuffledataset": 52, "histori": 52, "pre_x": 52, "buffer_s": 52, "csr_matric": 52, "append": [52, 84, 85, 88, 92, 93, 94, 96, 97, 98, 99, 103], "bottom": [52, 62, 65, 98], "to_data": 52, "from_data": 52, "taken": 52, "label_matrix": 52, "canon": 52, "displai": [52, 65, 74, 78, 83, 84, 85, 91, 94, 103], "jupyt": [52, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "notebook": [52, 57, 84, 85, 87, 92, 93, 94, 96, 97, 98, 102, 103], "consol": 52, "html": [52, 62, 65, 66, 90, 93, 94], "allow_missing_class": 53, "allow_one_class": 53, "length_x": 53, "labellik": 53, "labels_list": [53, 59], "keraswrappermodel": [55, 56, 79], "keraswrappersequenti": [55, 56], "tf": [56, 84], "legaci": 56, "newer": 56, "interim": 56, "advis": [56, 97], "stabil": [56, 66], "until": 56, "accommod": 56, "keraswrapp": 56, "huggingface_keras_imdb": 56, "unit": [56, 103], "model_kwarg": [56, 69], "compile_kwarg": 56, "sparsecategoricalcrossentropi": 56, "layer": [56, 83, 84, 91, 99], "dens": 56, "my_keras_model": 56, "from_logit": 56, "declar": 56, "apply_softmax": 56, "analysi": 57, "analyz": [57, 79, 94, 96, 97], "get_label_quality_multiannot": [57, 96], "vote": 57, "crowdsourc": [57, 79, 96], "dawid": [57, 96], "skene": [57, 96], "analog": [57, 85, 92, 96], "chosen": [57, 67, 93, 96], "crowdlab": [57, 96], "unlabel": [57, 88, 90, 91, 96, 99, 102], "decid": [57, 83, 91, 92, 96, 101, 103], "get_active_learning_scor": [57, 96], "activelab": [57, 96], "priorit": [57, 64, 98, 102, 103], "showcas": 57, "main": [57, 85], "best_qual": 57, "quality_method": 57, "calibrate_prob": 57, "return_detailed_qu": 57, "return_annotator_stat": 57, "return_weight": 57, "label_quality_score_kwarg": 57, "did": [57, 58, 82, 83, 84, 90, 94, 96, 101], "majority_vot": 57, "broken": [57, 65, 92, 101], "highest": [57, 65, 86, 88, 100], "0th": 57, "consensus_quality_scor": [57, 96], "annotator_agr": [57, 96], "reman": 57, "1st": 57, "2nd": [57, 71], "3rd": 57, "consensus_label_suffix": 57, "consensus_quality_score_suffix": 57, "suffix": 57, "emsembl": 57, "weigh": [57, 92], "agreement": [57, 96], "agre": 57, "prevent": [57, 93], "overconfid": [57, 100], "detailed_label_qu": [57, 96], "annotator_stat": [57, 96], "model_weight": 57, "annotator_weight": 57, "warn": [57, 86, 87, 88, 90, 91, 93, 94], "labels_info": 57, "num_annot": [57, 96], "deriv": [57, 96], "quality_annotator_1": 57, "quality_annotator_2": 57, "quality_annotator_m": 57, "annotator_qu": [57, 96], "num_examples_label": [57, 96], "agreement_with_consensu": [57, 96], "worst_class": [57, 96], "trustworthi": [57, 96, 101], "get_label_quality_multiannotator_ensembl": 57, "weigtht": 57, "budget": 57, "retrain": [57, 83, 101], "active_learning_scor": 57, "active_learning_scores_unlabel": 57, "get_active_learning_scores_ensembl": 57, "henc": [57, 84, 86, 96], "get_majority_vote_label": [57, 96], "event": 57, "lastli": [57, 90], "convert_long_to_wide_dataset": 57, "labels_multiannotator_long": 57, "wide": [57, 82, 83, 84], "suitabl": [57, 82, 90], "labels_multiannotator_wid": 57, "common_multilabel_issu": [58, 60], "mutual": [58, 97], "exclus": [58, 97], "rank_classes_by_multilabel_qu": [58, 60], "overall_multilabel_health_scor": [58, 60], "multilabel_health_summari": [58, 60], "classes_by_multilabel_qu": 58, "inner": [59, 73], "find_multilabel_issues_per_class": [59, 60], "per_class_label_issu": 59, "label_issues_list": 59, "pred_probs_list": [59, 67, 88, 94], "anim": [60, 99], "rat": 60, "predat": 60, "pet": 60, "reptil": 60, "manner": [61, 82, 83, 96, 101], "box": [62, 64, 65, 92, 98], "object_detect": [62, 64, 65, 98], "return_indices_ranked_by_scor": [62, 98], "overlapping_label_check": [62, 64], "suboptim": [62, 64], "locat": [62, 64, 98, 102, 103], "bbox": [62, 65, 98], "image_nam": [62, 65], "y1": [62, 65, 98], "y2": [62, 65, 98], "later": [62, 65, 66, 83, 103], "corner": [62, 65, 98], "xyxi": [62, 65, 98], "io": [62, 65, 84, 92], "keras_cv": [62, 65], "bounding_box": [62, 65, 98], "detectron": [62, 65, 98], "detectron2": [62, 65, 98], "readthedoc": [62, 65], "en": [62, 65], "latest": [62, 65], "visual": [62, 63, 65, 82, 85, 86, 87, 88, 101, 103], "draw_box": [62, 65], "mmdetect": [62, 65, 98], "swap": [62, 64, 74, 78], "penal": [62, 64], "concern": [62, 64, 79, 87], "issues_from_scor": [63, 64, 72, 73, 74, 76, 77, 78, 98, 102, 103], "compute_overlooked_box_scor": [63, 64], "compute_badloc_box_scor": [63, 64], "compute_swap_box_scor": [63, 64], "pool_box_scores_per_imag": [63, 64], "object_counts_per_imag": [63, 65, 98], "bounding_box_size_distribut": [63, 65, 98], "class_label_distribut": [63, 65, 98], "get_sorted_bbox_count_idx": [63, 65], "plot_class_size_distribut": [63, 65], "plot_class_distribut": [63, 65], "get_average_per_class_confusion_matrix": [63, 65], "calculate_per_class_metr": [63, 65], "aggregation_weight": 64, "imperfect": [64, 93], "chose": [64, 96, 98], "imperfectli": [64, 98], "dirti": [64, 67, 70, 101], "subtyp": 64, "badloc": 64, "nonneg": 64, "high_probability_threshold": 64, "auxiliary_input": [64, 65], "vari": [64, 87], "iou": [64, 65], "heavili": 64, "auxiliarytypesdict": 64, "pred_label": [64, 83], "pred_label_prob": 64, "pred_bbox": 64, "lab_label": 64, "lab_bbox": 64, "similarity_matrix": 64, "min_possible_similar": 64, "scores_overlook": 64, "low_probability_threshold": 64, "scores_badloc": 64, "accident": [64, 83, 90, 91, 93], "scores_swap": 64, "box_scor": 64, "image_scor": [64, 73, 102], "discov": [65, 87, 103], "abnorm": [65, 88, 98], "auxiliari": [65, 99, 102], "_get_valid_inputs_for_compute_scor": 65, "object_count": 65, "down": 65, "bbox_siz": 65, "class_distribut": 65, "plot": [65, 85, 86, 87, 94, 97, 99, 101, 102], "sorted_idx": [65, 99], "class_to_show": 65, "hidden": [65, 85, 99], "max_class_to_show": 65, "plt": [65, 74, 85, 86, 87, 88, 94, 97, 99, 101], "matplotlib": [65, 74, 85, 86, 87, 88, 94, 97, 98, 99, 101], "pyplot": [65, 74, 85, 86, 87, 88, 94, 97, 99, 101], "prediction_threshold": 65, "overlai": [65, 98], "figsiz": [65, 85, 86, 87, 88, 94, 97, 99], "save_path": [65, 98], "blue": [65, 92, 94, 98], "overlaid": 65, "side": [65, 92, 98], "figur": [65, 94, 97, 99, 101], "extens": [65, 94, 96], "png": [65, 98], "pdf": [65, 66], "svg": 65, "num_proc": [65, 88], "intersect": [65, 93], "tp": 65, "fp": 65, "ground": [65, 92, 94, 96, 101], "truth": [65, 94, 96, 101], "bias": 65, "avg_metr": 65, "distionari": 65, "95": [65, 75, 77, 90, 92, 94, 101], "per_class_metr": 65, "Of": 66, "li": 66, "smaller": [66, 85, 97, 98], "find_top_issu": [66, 67, 99], "reli": [66, 83, 84, 85, 86, 87, 91, 98, 99, 101], "dist_metr": 66, "spatial": 66, "pairwis": 66, "euclidean_dist": 66, "subtract": [66, 67], "renorm": [66, 67, 93], "least_confid": 66, "sum_": 66, "log": [66, 67, 80], "softmax": [66, 73, 77, 88], "literatur": 66, "gen": 66, "liu": 66, "lochman": 66, "zach": 66, "openaccess": 66, "thecvf": 66, "cvpr2023": 66, "liu_gen_pushing_the_limits_of_softmax": 66, "based_out": 66, "distribution_detection_cvpr_2023_pap": 66, "fit_scor": [66, 99], "ood_predictions_scor": 66, "pretrain": [66, 83, 84, 91, 99], "adjust_confident_threshold": 66, "probabilist": [66, 82, 84, 86, 87, 90, 91, 99, 100], "order_label_issu": [67, 80], "whichev": [67, 100], "argsort": [67, 83, 88, 91, 94, 98, 99, 101], "max_": 67, "get_label_quality_ensemble_scor": [67, 93, 94], "weight_ensemble_members_bi": 67, "custom_weight": 67, "log_loss_search_t_valu": 67, "0001": [67, 92], "scheme": 67, "log_loss_search": 67, "log_loss": [67, 91], "1e0": 67, "1e1": 67, "1e2": 67, "2e2": 67, "quality_scor": [67, 99], "forth": 67, "top_issue_indic": 67, "rank_bi": [67, 80], "weird": [67, 78], "minu": 67, "prob_label": 67, "max_prob_not_label": 67, "idea": [67, 85, 98], "AND": [67, 91], "get_epistemic_uncertainti": [68, 69], "get_aleatoric_uncertainti": [68, 69], "corrupt": [69, 101], "linearregress": [69, 93, 101], "y_with_nois": 69, "n_boot": [69, 93], "include_aleatoric_uncertainti": [69, 93], "sole": [69, 82, 86, 96, 99], "bootstrap": [69, 93, 101], "resampl": [69, 84, 93], "epistem": [69, 93, 99, 101], "aleator": [69, 93, 101], "model_final_kwarg": 69, "coars": 69, "thorough": [69, 93], "fine": [69, 83, 84, 91, 99], "grain": 69, "grid": 69, "varianc": [69, 94], "epistemic_uncertainti": 69, "residu": [69, 70, 93], "deviat": [69, 98, 101], "aleatoric_uncertainti": 69, "outr": 70, "contin": 70, "raw": [70, 79, 80, 87, 88, 92, 93, 96, 98, 99, 101], "aka": [70, 84, 94, 98, 101, 103], "00323821": 70, "33692597": 70, "00191686": 70, "semant": [71, 73, 74, 95], "pixel": [71, 73, 74, 88, 99, 102], "h": [71, 73, 74, 102], "height": [71, 73, 74, 102], "w": [71, 73, 74, 102], "width": [71, 73, 74, 102], "labels_one_hot": [71, 74, 102], "stream": [71, 85, 99, 103], "downsampl": [71, 73, 102], "shrink": [71, 73], "divis": [71, 73, 86], "common_label_issu": [72, 74, 76, 78, 102, 103], "filter_by_class": [72, 74, 102], "segmant": [73, 74], "num_pixel_issu": [73, 102], "product": [73, 88, 93], "pixel_scor": [73, 102], "enter": 74, "legend": [74, 85, 86, 87, 97, 98, 101, 102], "colormap": 74, "background": 74, "person": [74, 93, 98, 102, 103], "ambigu": [74, 78, 83, 84, 91, 92, 94, 103], "systemat": [74, 78, 96], "misunderstood": [74, 78], "issues_df": [74, 88], "class_index": 74, "issues_subset": [74, 78], "filter_by_token": [76, 78, 103], "token_score_method": 77, "sentence_score_method": 77, "sentence_score_kwarg": 77, "compris": [77, 78], "token_scor": [77, 103], "converg": 77, "toward": 77, "_softmin_sentence_scor": 77, "sentence_scor": [77, 103], "token_info": 77, "70": [77, 90], "02": [77, 86, 87, 94, 98], "03": [77, 90, 92, 94, 98, 99, 103], "04": [77, 90, 98], "08": [77, 94, 98, 101, 103], "commonli": [78, 80, 86, 87, 97, 103], "But": [78, 91, 94, 101, 103], "restrict": [78, 93], "reliabl": [79, 82, 84, 93, 96, 102], "thousand": 79, "imagenet": [79, 92], "popular": [79, 96, 98], "centric": [79, 88, 90, 91, 95], "capabl": 79, "minut": [79, 82, 83, 84, 90, 91, 92, 96, 97, 98, 101, 102, 103], "conda": 79, "feature_embed": [79, 99], "Then": [79, 82, 83, 88, 93], "your_dataset": [79, 84, 86, 87, 88, 90, 91, 93], "column_name_of_label": [79, 84, 86, 87, 88, 90, 91], "plagu": [79, 87], "untrain": 79, "\u30c4": 79, "label_issues_info": [79, 87], "sklearn_compatible_model": 79, "framework": [79, 97, 98], "complianc": 79, "tag": [79, 97, 103], "sequenc": 79, "recognit": [79, 84, 93, 103], "train_data": [79, 82, 83, 99, 101], "gotten": 79, "test_data": [79, 82, 83, 85, 94, 97, 99, 101], "deal": [79, 87], "tutori": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "feel": [79, 84, 87, 93], "ask": [79, 93], "slack": [79, 93], "project": [79, 101], "welcom": 79, "commun": [79, 93], "guidelin": [79, 98], "piec": 79, "smart": [79, 88, 90, 91, 93], "edit": [79, 93], "easier": [79, 94], "unreli": [79, 82, 84, 90, 91], "link": [79, 84, 92, 98], "older": 80, "outlin": 80, "substitut": 80, "v2": [80, 82, 90], "get_noise_indic": 80, "psx": 80, "sorted_index_method": 80, "order_label_error": 80, "label_errors_bool": 80, "latent_estim": 80, "num_label_error": 80, "learningwithnoisylabel": 80, "neatli": 80, "organ": [80, 82, 90, 92, 103], "reorgan": 80, "baseline_method": 80, "incorpor": [80, 94], "research": [80, 94], "polyplex": 80, "terminologi": 80, "label_error": 80, "quickstart": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101, 102, 103], "sql": [82, 90], "databas": [82, 90], "excel": [82, 90], "parquet": [82, 90], "student": [82, 90, 101, 103], "grade": [82, 90, 101], "900": [82, 90, 101], "exam": [82, 90, 101], "letter": [82, 90, 103], "hundr": [82, 90], "mistak": [82, 83, 88, 90, 91], "No": [82, 83, 91, 93], "extratreesclassifi": 82, "extratre": 82, "ranked_label_issu": [82, 83], "branch": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "preprocess": [82, 83, 87, 90, 99, 101], "standardscal": [82, 90, 99], "labelencod": [82, 83], "train_test_split": [82, 83, 85, 86, 87, 99], "accuracy_scor": [82, 83, 84, 91, 94], "grades_data": [82, 90], "read_csv": [82, 83, 90, 91, 101], "demo": [82, 87, 90, 97], "head": [82, 83, 84, 87, 88, 90, 91, 92, 94, 96, 101], "stud_id": [82, 90], "exam_1": [82, 90, 101], "exam_2": [82, 90, 101], "exam_3": [82, 90, 101], "letter_grad": [82, 90], "f48f73": [82, 90], "53": [82, 85, 86, 87, 90, 92, 97, 98, 103], "00": [82, 86, 87, 90, 92, 99], "77": [82, 86, 87, 90, 98], "0bd4e7": [82, 90], "81": [82, 90, 91, 98, 101, 103], "great": [82, 85, 90, 92], "particip": [82, 90], "cb9d7a": [82, 90], "61": [82, 90, 94, 98, 101], "94": [82, 90, 92, 94, 98, 101], "78": [82, 90, 92, 94, 98, 101], "9acca4": [82, 90], "48": [82, 90, 92, 94, 98], "x_raw": [82, 90], "labels_raw": 82, "interg": [82, 83], "categorical_featur": [82, 101], "x_encod": [82, 90], "get_dummi": [82, 90, 101], "drop_first": [82, 90], "numeric_featur": [82, 90], "scaler": [82, 90, 99], "x_process": [82, 90], "fit_transform": [82, 90], "bring": [82, 83, 88, 90, 91, 96, 101], "byod": [82, 83, 88, 90, 91, 96, 101], "decis": [82, 85, 86, 87], "tress": 82, "held": [82, 84, 90, 91, 92, 98, 99, 100], "straightforward": [82, 84, 90], "benefit": [82, 84, 100, 102], "num_crossval_fold": [82, 84, 90, 96], "tabl": [82, 90, 92, 96], "212": [82, 94], "review": [82, 83, 87, 90, 91, 92, 93, 94, 98, 101, 102, 103], "iloc": [82, 83, 84, 90, 91, 101], "58": [82, 87, 90, 92, 94, 98], "92": [82, 86, 94, 98], "93": [82, 92, 98, 101, 103], "827": 82, "99": [82, 92, 94], "86": [82, 87, 88, 90, 94, 98, 101], "74": [82, 98, 101], "637": [82, 90], "79": [82, 92, 98], "65": [82, 86, 98], "cheat": 82, "0pt": 82, "120": [82, 86, 87], "97": [82, 92, 93, 94, 98, 101, 103], "233": 82, "68": [82, 92, 94, 98], "83": [82, 94, 98, 101, 103], "76": [82, 85, 94, 97, 98, 101], "suspici": [82, 90], "carefulli": [82, 88, 90, 91], "examin": [82, 85, 86, 87, 90, 98], "labels_train": 82, "labels_test": 82, "test_siz": [82, 83, 85, 86, 87], "acc_og": [82, 83], "783068783068783": 82, "robustli": [82, 83, 101], "14": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "acc_cl": [82, 83], "8095238095238095": 82, "especi": [82, 83, 85, 88, 93, 101], "blindli": [82, 83, 84, 93, 101], "trust": [82, 83, 84, 93, 94, 96, 100, 101], "effort": [82, 83, 101], "intent": [83, 91], "servic": [83, 91, 93], "onlin": [83, 91], "bank": [83, 91, 92], "banking77": [83, 91], "oo": [83, 91], "000": [83, 88, 91, 92, 103], "categori": [83, 88, 91], "shortlist": [83, 91, 101], "scope": [83, 91], "logist": [83, 85, 86, 87, 91, 96, 99], "probabilit": [83, 84], "drop": [83, 93, 96, 101], "earlier": [83, 103], "sentence_transform": [83, 91], "sentencetransform": [83, 91], "payment": [83, 91], "cancel_transf": [83, 91], "transfer": [83, 91], "fund": [83, 91], "cancel": [83, 91], "transact": [83, 91], "my": [83, 91], "revert": [83, 91], "morn": [83, 91], "realis": [83, 91], "yesterdai": [83, 91], "rent": [83, 91], "tomorrow": [83, 91], "raw_text": [83, 91], "raw_label": 83, "raw_train_text": 83, "raw_test_text": 83, "raw_train_label": 83, "raw_test_label": 83, "39": [83, 84, 86, 88, 91, 92, 93, 98, 101, 102, 103], "card_about_to_expir": [83, 91], "change_pin": [83, 91], "lost_or_stolen_phon": [83, 91], "supported_cards_and_curr": [83, 91], "beneficiary_not_allow": [83, 91], "getting_spare_card": [83, 91], "apple_pay_or_google_pai": [83, 91], "visa_or_mastercard": [83, 91], "card_payment_fee_charg": [83, 91], "card": [83, 91, 92], "utter": [83, 91], "encond": 83, "test_label": [83, 94, 97, 99], "suit": [83, 91, 92, 93], "electra": [83, 91], "discrimin": [83, 91], "googl": [83, 85, 91], "train_text": 83, "test_text": 83, "home": [83, 86, 87, 91, 92], "runner": [83, 86, 87, 91], "google_electra": [83, 91], "pool": [83, 91, 93, 99], "opt": [83, 84, 87, 88, 90, 91, 94], "hostedtoolcach": [83, 84, 87, 88, 90, 91, 94], "x64": [83, 84, 87, 88, 90, 91, 94], "lib": [83, 84, 87, 88, 90, 91, 94], "python3": [83, 84, 87, 88, 90, 91, 94], "site": [83, 84, 87, 88, 90, 91, 94], "_util": [83, 91], "831": [83, 91], "userwarn": [83, 84, 86, 87, 91], "typedstorag": [83, 91], "untypedstorag": [83, 91], "untyped_storag": [83, 91], "fget": [83, 91], "__get__": [83, 91], "owner": [83, 91], "leverag": [83, 84, 91, 93, 94, 96], "computation": [83, 84, 91], "intens": [83, 84, 91], "400": [83, 85, 91], "858371": 83, "547274": 83, "826228": 83, "966008": 83, "792449": 83, "identified_issu": [83, 101], "lowest_quality_label": [83, 84, 91, 94, 101], "to_numpi": [83, 91, 93, 101], "44": [83, 92, 97, 98], "646": 83, "390": 83, "628": 83, "121": [83, 85, 94], "702": 83, "863": [83, 84], "135": 83, "337": [83, 98], "735": 83, "print_as_df": 83, "inverse_transform": 83, "charg": [83, 91], "cash": [83, 91], "holidai": [83, 91], "sent": [83, 91, 103], "mine": [83, 91], "expir": [83, 91], "fight": 83, "hors": [83, 92, 99], "duck": [83, 92], "me": [83, 91], "whoever": [83, 91], "consum": [83, 101], "18": [83, 84, 85, 91, 92, 93, 94, 98, 99, 101, 102], "baseline_model": [83, 101], "87": [83, 87, 88, 98, 101], "acceler": [83, 101], "19": [83, 84, 85, 88, 91, 92, 93, 94, 98, 99, 101, 102], "89": [83, 85, 86, 90, 98, 101, 103], "spoken": 84, "500": [84, 99, 103], "english": [84, 92], "pronunci": 84, "wav": 84, "huggingfac": [84, 86, 87, 88, 93], "voxceleb": 84, "speech": [84, 103], "your_pred_prob": [84, 85, 86, 87, 90, 91], "tensorflow_io": 84, "huggingface_hub": 84, "reproduc": [84, 90, 94, 96], "command": 84, "wget": [84, 98, 102, 103], "navig": 84, "browser": 84, "jakobovski": 84, "archiv": [84, 103], "v1": 84, "tar": [84, 99], "gz": [84, 99], "mkdir": [84, 103], "spoken_digit": 84, "xf": 84, "6_nicolas_32": 84, "data_path": 84, "listdir": 84, "nondeterminist": 84, "file_nam": 84, "endswith": 84, "file_path": 84, "join": [84, 85, 88, 93], "7_george_26": 84, "0_nicolas_24": 84, "0_nicolas_6": 84, "listen": 84, "display_exampl": 84, "expand": [84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "pulldown": [84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "colab": [84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "tfio": 84, "pathlib": 84, "ipython": 84, "load_wav_16k_mono": 84, "filenam": 84, "khz": 84, "file_cont": 84, "read_fil": 84, "sample_r": 84, "decode_wav": 84, "desired_channel": 84, "squeez": 84, "rate_in": 84, "rate_out": 84, "16000": 84, "wav_file_nam": 84, "audio_r": 84, "wav_file_exampl": 84, "plai": [84, 92, 93], "button": 84, "wav_file_name_exampl": 84, "7_jackson_43": 84, "hear": 84, "extractor": 84, "encoderclassifi": 84, "spkrec": 84, "xvect": 84, "feature_extractor": 84, "from_hparam": 84, "run_opt": 84, "uncom": 84, "ffmpeg": 84, "backend": 84, "wav_audio_file_path": 84, "torchaudio": 84, "extract_audio_embed": 84, "emb": [84, 88], "signal": 84, "encode_batch": 84, "embeddings_list": [84, 88], "embeddings_arrai": 84, "650": 84, "stft": 84, "return_complex": 84, "view_as_r": 84, "recov": 84, "trigger": 84, "aten": 84, "src": 84, "nativ": 84, "spectralop": 84, "cpp": 84, "_vf": 84, "n_fft": 84, "hop_length": 84, "win_length": 84, "attr": 84, "512": [84, 88], "196311": 84, "319459": 84, "478975": 84, "2890875": 84, "8170238": 84, "89265": 84, "24": [84, 85, 92, 94, 96, 98, 101], "898056": 84, "256195": 84, "559641": 84, "559721": 84, "62067": 84, "285245": 84, "21": [84, 85, 86, 92, 93, 94, 98, 101, 103], "709627": 84, "5033693": 84, "913803": 84, "819831": 84, "1831515": 84, "208763": 84, "084257": 84, "3210397": 84, "005453": 84, "216152": 84, "478235": 84, "6821785": 84, "053807": 84, "242471": 84, "091424": 84, "78334856": 84, "03954": 84, "23": [84, 85, 88, 92, 94, 98, 101, 103], "569176": 84, "761097": 84, "1258295": 84, "753237": 84, "3508866": 84, "598274": 84, "23712": 84, "2500": 84, "tol": 84, "decreas": [84, 93], "cv_accuraci": 84, "9708": 84, "9976": 84, "986": 84, "002161": 84, "176": [84, 92, 94, 97], "002483": 84, "2318": 84, "004411": 84, "1005": 84, "004857": 84, "1871": 84, "007494": 84, "investig": [84, 85], "040587": 84, "999207": 84, "999377": 84, "975220": 84, "999367": 84, "identified_label_issu": [84, 91], "sort_valu": [84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 101], "516": 84, "1946": 84, "469": 84, "2132": 84, "worth": [84, 94], "6_yweweler_25": 84, "7_nicolas_43": 84, "6_theo_27": 84, "6_yweweler_36": 84, "6_yweweler_14": 84, "6_yweweler_35": 84, "6_nicolas_8": 84, "sound": 84, "quit": [84, 99], "22": [84, 85, 86, 88, 92, 93, 94, 97, 98, 103], "load_ext": 85, "autoreload": 85, "ve": [85, 92, 93, 94, 96, 98], "prove": 85, "monitor": [85, 92], "ran": 85, "data_monitor": 85, "your_datalab": 85, "new_data_batch": 85, "your_label": 85, "get_your_label": 85, "your_featur": [85, 91], "get_featur": 85, "websit": [85, 92], "todo": 85, "get_ipython": 85, "3c6c9a107ad0b56cc6b85476a11f22d7b27f9219": 85, "cmd": 85, "dep": 85, "dependencies_test": 85, "missing_depend": 85, "__import__": 85, "importerror": 85, "sep": [85, 103], "npleas": 85, "toi": [85, 86, 87, 88, 92, 94, 96], "mid": [85, 86, 87], "workflow": [85, 95, 101], "unseen": 85, "inf": [85, 86, 87], "bins_map": [85, 86, 87], "create_data": [85, 86, 87], "800": 85, "y_bin": [85, 86, 87], "y_i": [85, 86, 87], "y_bin_idx": [85, 86, 87], "y_train": [85, 86, 87, 94, 101], "y_test": [85, 86, 87, 94, 101], "y_train_idx": [85, 86, 87], "y_test_idx": [85, 86, 87], "slide": [85, 86, 87, 92], "frame": [85, 86, 87], "x_out": [85, 86, 87], "tini": [85, 86, 87], "concaten": [85, 86, 87, 93, 100], "y_out": [85, 86, 87], "y_out_bin": [85, 86, 87], "y_out_bin_idx": [85, 86, 87], "exact_duplicate_idx": [85, 86, 87], "x_duplic": [85, 86, 87], "y_duplic": [85, 86, 87], "y_duplicate_idx": [85, 86, 87], "noisy_labels_idx": [85, 86, 87, 97], "train_x": 85, "test_x": 85, "train_y_tru": 85, "test_y_tru": 85, "train_i": 85, "test_i": 85, "train_y_idx": 85, "test_y_idx": 85, "scatter": [85, 86, 87, 94, 97, 101], "black": [85, 86, 87, 92, 101], "cyan": [85, 86, 87], "plot_data": [85, 86, 87, 94, 97, 101], "fig": [85, 86, 87, 88, 92, 99, 101], "ax": [85, 86, 87, 88, 99, 101], "subplot": [85, 86, 87, 88, 99], "set_titl": [85, 86, 87, 88, 99], "set_xlabel": [85, 86, 87], "x_1": [85, 86, 87], "fontsiz": [85, 86, 87, 88, 94, 97], "set_ylabel": [85, 86, 87], "x_2": [85, 86, 87], "set_xlim": [85, 86, 87], "set_ylim": [85, 86, 87], "linestyl": [85, 86, 87], "circl": [85, 86, 87, 94, 97], "misclassifi": [85, 86, 87], "zip": [85, 86, 87, 88, 98, 103], "label_err": [85, 86, 87], "180": [85, 86, 87, 98], "marker": [85, 86, 87], "facecolor": [85, 86, 87], "edgecolor": [85, 86, 87], "linewidth": [85, 86, 87, 99], "title_fontproperti": [85, 86, 87], "semibold": [85, 86, 87], "first_legend": [85, 86, 87], "align": [85, 86, 87], "markerscal": 85, "second_legend": [85, 86, 87], "46": [85, 90, 92, 94, 98], "gca": [85, 86, 87], "add_artist": [85, 86, 87], "tight_layout": [85, 86, 87], "ideal": [85, 86, 87], "simplic": [85, 97], "327": [85, 98], "9297": 85, "000124": 85, "259": 85, "000725": 85, "269": 85, "000794": 85, "002061": 85, "125": [85, 86], "002908": 85, "fly": [85, 92], "feed": [85, 93], "simul": 85, "tqdm": [85, 88], "sleep": [85, 92], "generate_stream": 85, "sleep_tim": 85, "desc": 85, "singleton_stream": 85, "seamless": [85, 93], "singleton": 85, "batched_stream": 85, "processed_singleton": 85, "suggested_label": [85, 91], "250997": 85, "285757": 85, "43": [85, 86, 92, 94, 98], "120906": 85, "principl": 85, "processed_batch": 85, "51": [85, 86, 87, 90, 92, 94, 98], "002748": 85, "189996": 85, "093505": 85, "037250": 85, "149": [85, 98], "076397": 85, "154": 85, "294010": 85, "160": [85, 91, 101], "073622": 85, "166": [85, 88], "140832": 85, "167": [85, 92, 94, 98], "041743": 85, "181": 85, "169429": 85, "127304": 85, "235": [85, 98], "090310": 85, "254": [85, 92, 98], "183343": 85, "256": [85, 92, 93, 98], "048720": 85, "263": [85, 97, 98], "138820": 85, "292": 85, "239609": 85, "295": [85, 98], "022075": 85, "306": 85, "103040": 85, "343": 85, "234755": 85, "354": 85, "001612": 85, "359": 85, "068359": 85, "367": [85, 101], "015793": 85, "368": 85, "029022": 85, "391": 85, "106761": 85, "troublesom": 85, "623844": 85, "812647": 85, "816854": 85, "661968": 85, "632244": 85, "395": 85, "474599": 85, "396": 85, "653901": 85, "397": 85, "584554": 85, "398": 85, "817287": 85, "399": 85, "881545": 85, "183": 85, "937927": 85, "309": 85, "939505": 85, "133": 85, "947290": 85, "177": 85, "952187": 85, "314": [85, 98], "997293": 85, "27": [85, 90, 92, 94, 98, 103], "655501": 85, "3603": 85, "173": [85, 98], "000330": 85, "000626": 85, "296": 85, "002004": 85, "304": 85, "165496": 85, "275": [85, 97], "179811": 85, "001317": 85, "005943": 85, "001426": 85, "320": [85, 98], "186355": 85, "349": 85, "187305": 85, "393": 85, "169838": 85, "185770": 85, "369889": 85, "285297": 85, "406162": 85, "516543": 85, "440142": 85, "476283": 85, "382757": 85, "466786": 85, "522078": 85, "276298": 85, "328181": 85, "409633": 85, "281425": 85, "518102": 85, "360596": 85, "underneath": 86, "hood": [86, 93], "alert": 86, "introduct": 86, "mayb": [86, 87, 91], "your_feature_matrix": [86, 87], "dup": [86, 87], "45": [86, 87, 92, 94, 98], "remaind": 86, "modal": [86, 87, 93, 96], "132": [86, 87, 94, 98], "9318": 86, "006940": 86, "007830": 86, "40": [86, 87, 91, 92], "014828": 86, "107": [86, 87, 94, 97], "021241": 86, "026407": 86, "notic": [86, 94, 96, 98], "3558": [86, 87], "126": [86, 87, 94, 98], "006636": [86, 87], "130": [86, 87], "012571": [86, 87], "129": [86, 87], "127": [86, 87], "014909": [86, 87], "128": [86, 87, 88], "017443": [86, 87], "6160": [86, 87], "is_near_duplicate_issu": [86, 87, 88, 90, 91, 93, 94], "131": [86, 87, 102], "000000e": [86, 87], "000002": [86, 87], "463180e": [86, 87], "07": [86, 87, 88, 90, 94, 98, 101], "161148": [86, 87], "859087e": [86, 87], "30": [86, 87, 88, 92, 93, 97, 102, 103], "3453": 86, "029542": 86, "031182": 86, "057961": 86, "058244": 86, "348": 86, "378": 86, "357": 86, "34": [86, 92, 94, 96, 98, 103], "54": [86, 92, 94, 98, 103], "039122": 86, "044598": 86, "105": [86, 98], "105196": 86, "133654": 86, "168033": 86, "101107": 86, "37": [86, 92, 103], "183382": 86, "109": [86, 92, 98], "209259": 86, "211042": 86, "221316": 86, "average_ood_scor": 86, "34530442089193386": 86, "52": [86, 92, 98, 103], "169820": 86, "087324e": 86, "259024": 86, "583757e": 86, "91": [86, 98], "346458": 86, "341292e": 86, "specfi": 86, "new_lab": 86, "scoring_funct": 86, "div": 86, "rem": 86, "inv_scal": 86, "49": [86, 92, 94, 98], "superstitionissuemanag": 86, "unlucki": 86, "superstit": 86, "to_seri": 86, "issues_mask": 86, "summary_scor": 86, "9242": 86, "is_superstition_issu": 86, "superstition_scor": 86, "26": [86, 88, 92, 94, 96, 98], "047581": 86, "090635": 86, "129591": 86, "164840": 86, "lurk": [87, 88, 94], "_split": 87, "737": 87, "thoroughli": 87, "904": [87, 88], "_base": [87, 88, 90, 91, 94], "246": [87, 88, 90, 91, 94, 98], "efficiencywarn": [87, 88, 90, 91, 94], "sort_graph_by_row_valu": [87, 88, 90, 91, 94], "warn_when_not_sort": [87, 88, 90, 91, 94], "8561": 87, "001908": 87, "003564": 87, "007331": 87, "008963": 87, "009664": 87, "0227": 87, "is_class_imbalance_issu": 87, "022727": 87, "conceptu": 87, "856061": 87, "355772": 87, "616034": 87, "821750": 87, "901562": 87, "betweeen": 87, "is_null_issu": 87, "is_non_iid_issu": [87, 90, 91, 94], "is_underperforming_group_issu": 87, "859131": 87, "417707": 87, "664083": 87, "970324": 87, "816953": 87, "375317": 87, "641516": 87, "890575": 87, "531021": 87, "460593": 87, "601188": 87, "826147": 87, "752808": 87, "321635": 87, "562539": 87, "948362": 87, "090243": 87, "472909": 87, "746763": 87, "878267": 87, "examples_w_issu": [87, 93], "013445": 87, "025184": 87, "026376": 87, "inde": [87, 91], "miscellan": [87, 103], "428571": 87, "111111": 87, "571429": 87, "407407": 87, "592593": 87, "337838": 87, "092593": 87, "662162": 87, "333333": [87, 92], "952381": 87, "666667": 87, "portion": 87, "huge": [87, 94], "worri": [87, 91], "critic": 87, "60": [88, 94, 101], "torchvis": [88, 99], "tensordataset": 88, "stratifiedkfold": [88, 97], "autonotebook": 88, "fashion_mnist": 88, "num_row": 88, "60000": 88, "transformed_dataset": 88, "with_format": 88, "255": [88, 92], "cpu_count": 88, "torch_dataset": 88, "quick": [88, 97, 99], "super": [88, 90, 91], "relu": 88, "batchnorm2d": 88, "maxpool2d": 88, "lazylinear": 88, "flatten": 88, "get_test_accuraci": 88, "testload": [88, 99], "energi": 88, "trainload": [88, 99], "n_epoch": 88, "patienc": 88, "criterion": 88, "crossentropyloss": 88, "adamw": 88, "best_test_accuraci": 88, "start_epoch": 88, "running_loss": 88, "best_epoch": 88, "end_epoch": 88, "3f": [88, 101], "acc": [88, 94], "time_taken": 88, "compute_embed": 88, "compute_pred_prob": 88, "train_batch_s": 88, "num_work": 88, "worker": [88, 103], "train_id_list": 88, "test_id_list": 88, "train_id": 88, "test_id": 88, "embeddings_model": 88, "ntrain": 88, "trainset": 88, "testset": 88, "pin_memori": 88, "fold_embed": 88, "fold_pred_prob": 88, "finish": 88, "482": 88, "720": 88, "051": [88, 92], "329": [88, 98], "88": [88, 92, 93, 94, 97, 98, 101], "195": 88, "866": 88, "493": 88, "060": 88, "210": 88, "330": [88, 98], "505": 88, "912": [88, 94], "476": 88, "340": 88, "290": [88, 98], "328": [88, 98], "310": 88, "reorder": 88, "hstack": [88, 93, 94, 96], "vision": 88, "grayscal": 88, "max_preval": 88, "7714": 88, "3772": 88, "3585": 88, "3651": 88, "27080": 88, "873833e": 88, "40378": 88, "915575e": 88, "25316": 88, "390277e": 88, "06": [88, 94, 98, 103], "2090": 88, "751164e": 88, "14999": 88, "881301e": 88, "9569": 88, "11262": 88, "000003": 88, "coat": [88, 92], "shirt": [88, 92], "19228": 88, "000010": 88, "dress": 88, "32657": 88, "000013": 88, "bag": [88, 92, 99, 100], "21282": 88, "000016": 88, "53564": 88, "000018": 88, "pullov": 88, "6321": 88, "30968": 88, "001267": 88, "30659": 88, "000022": [88, 103], "47824": 88, "001454": 88, "3370": 88, "000026": 88, "54565": 88, "001854": 88, "9762": 88, "258": 88, "47139": 88, "000033": 88, "166980": 88, "986195": 88, "997205": 88, "sandal": [88, 92], "948781": 88, "999358": 88, "54078": 88, "17371": 88, "000025": 88, "plot_label_issue_exampl": 88, "ncol": [88, 99], "nrow": [88, 99], "ceil": 88, "axes_list": 88, "label_issue_indic": 88, "gl": 88, "sl": 88, "fontdict": 88, "imshow": [88, 99], "cmap": [88, 101], "grai": 88, "subplots_adjust": 88, "hspace": 88, "outsiz": 88, "outlier_issu": [88, 91], "outlier_issues_df": 88, "depict": [88, 97, 98, 99, 100, 102], "plot_outlier_issues_exampl": 88, "n_comparison_imag": 88, "sample_from_class": 88, "number_of_sampl": 88, "non_outlier_indic": 88, "isnul": 88, "non_outlier_indices_excluding_curr": 88, "sampled_indic": 88, "label_scores_of_sampl": 88, "top_score_indic": 88, "top_label_indic": 88, "sampled_imag": 88, "get_image_given_label_and_sampl": 88, "image_from_dataset": 88, "corresponding_label": 88, "comparison_imag": 88, "images_to_plot": 88, "idlist": 88, "iterrow": 88, "near_duplicate_issu": [88, 93], "closest": 88, "counterpart": 88, "near_duplicate_issues_df": 88, "plot_near_duplicate_issue_exampl": 88, "seen_id_pair": 88, "get_image_and_given_label_and_predicted_label": 88, "duplicate_imag": 88, "nd_set": 88, "challeng": 88, "dark_issu": 88, "reveal": [88, 98, 102], "dark_scor": 88, "dark_issues_df": 88, "is_dark_issu": 88, "34848": 88, "203922": 88, "50270": 88, "204588": 88, "3936": 88, "213098": 88, "733": 88, "217686": 88, "8094": 88, "230118": 88, "plot_image_issue_exampl": 88, "28": [88, 91, 92, 94, 96, 103], "difficult": 88, "disproportion": 88, "lowinfo_issu": 88, "low_information_scor": 88, "lowinfo_issues_df": 88, "is_low_information_issu": 88, "53050": 88, "067975": 88, "40875": 88, "089929": 88, "9594": 88, "092601": 88, "34825": 88, "107744": 88, "37530": 88, "108516": 88, "lot": 88, "histgradientboostingclassifi": 90, "cat_featur": 90, "boost": [90, 93, 96, 101], "xgboost": [90, 93, 101], "think": [90, 91, 93, 97, 102, 103], "nonzero": 90, "358": 90, "294": [90, 98], "941": 90, "7109": 90, "000005": [90, 91], "886": 90, "000059": 90, "709": 90, "000104": 90, "723": 90, "000169": 90, "689": 90, "000181": 90, "3590": 90, "051882e": 90, "683133e": 90, "536582e": 90, "406589e": 90, "324246e": 90, "6165": 90, "582": 90, "185": [90, 92, 98, 103], "187": [90, 92], "898": 90, "0014": [90, 92], "595": 90, "702427": 90, "147": [90, 94, 98], "711186": 90, "157": [90, 94], "721394": 90, "771": 90, "731979": 90, "740335": 90, "0014153602099278074": 90, "issue_result": 90, "000842": 90, "555944": 90, "004374": 90, "sorted_issu": 90, "73": [90, 92, 97, 98, 101], "deserv": 90, "outlier_result": 90, "sorted_outli": 90, "56": [90, 92, 101], "96": [90, 92, 94, 97, 98, 101], "lt": [90, 91, 92, 96, 99], "style": [90, 102], "font": 90, "18px": 90, "ff00ff": 90, "bac": 90, "unintend": [90, 91], "duplicate_result": 90, "690": 90, "perhap": [90, 94, 96], "twice": 90, "67": [90, 92, 98, 101], "wari": [90, 91, 93], "dive": 91, "text_embed": 91, "data_dict": [91, 94, 96], "85": [91, 98], "38": [91, 92, 98, 103], "9710": 91, "981": 91, "974": 91, "000146": 91, "982": [91, 92], "000224": 91, "971": 91, "000507": 91, "980": [91, 92], "000960": 91, "3584": 91, "994": 91, "009642": 91, "999": 91, "013067": 91, "013841": 91, "433": 91, "014722": 91, "989": 91, "018224": 91, "6070": 91, "095724": 91, "148": 91, "006237": 91, "546": 91, "099341": 91, "514": 91, "006485": 91, "481": 91, "123418": 91, "008165": 91, "0000": [91, 92, 94], "313": [91, 98], "564102": 91, "572258": 91, "574915": 91, "31": [91, 92, 94, 96, 98], "575507": 91, "575874": 91, "792090": 91, "257611": 91, "698710": 91, "182121": 91, "771619": 91, "data_with_suggested_label": 91, "withdraw": 91, "monei": 91, "lowest_quality_outli": 91, "OR": 91, "636c65616e6c616220697320617765736f6d6521": 91, "phone": [91, 92], "gone": 91, "gt": [91, 96, 103], "samp": 91, "br": 91, "press": [91, 103], "nonsens": 91, "sens": 91, "detriment": 91, "duplicate_issu": 91, "fee": 91, "pai": 91, "go": [91, 92, 94], "strongli": 91, "p_valu": 91, "benign": 91, "curat": 91, "refin": 92, "instruct": 92, "studi": [92, 98], "mnist_test_set": 92, "imagenet_val_set": 92, "tench": 92, "goldfish": 92, "white": [92, 103], "shark": 92, "tiger": 92, "hammerhead": 92, "electr": 92, "rai": 92, "stingrai": 92, "cock": 92, "hen": 92, "ostrich": 92, "brambl": 92, "goldfinch": 92, "hous": 92, "finch": 92, "junco": 92, "indigo": 92, "bunt": 92, "american": [92, 103], "robin": 92, "bulbul": 92, "jai": 92, "magpi": 92, "chickade": 92, "dipper": 92, "kite": 92, "bald": 92, "eagl": 92, "vultur": 92, "grei": 92, "owl": 92, "salamand": 92, "smooth": 92, "newt": 92, "spot": [92, 93, 98], "axolotl": 92, "bullfrog": 92, "tree": 92, "frog": [92, 99], "tail": 92, "loggerhead": 92, "sea": 92, "turtl": 92, "leatherback": 92, "mud": 92, "terrapin": 92, "band": 92, "gecko": 92, "green": [92, 103], "iguana": 92, "carolina": 92, "anol": 92, "desert": 92, "grassland": 92, "whiptail": 92, "lizard": 92, "agama": 92, "frill": 92, "neck": 92, "allig": 92, "gila": 92, "monster": 92, "european": 92, "chameleon": 92, "komodo": 92, "dragon": 92, "nile": 92, "crocodil": 92, "triceratop": 92, "worm": 92, "snake": 92, "ring": 92, "eastern": 92, "hog": 92, "nose": 92, "kingsnak": 92, "garter": 92, "water": 92, "vine": 92, "night": 92, "boa": 92, "constrictor": 92, "african": 92, "rock": 92, "indian": 92, "cobra": 92, "mamba": 92, "saharan": 92, "horn": 92, "viper": 92, "diamondback": 92, "rattlesnak": 92, "sidewind": 92, "trilobit": 92, "harvestman": 92, "scorpion": 92, "yellow": 92, "garden": 92, "spider": 92, "barn": 92, "southern": 92, "widow": 92, "tarantula": 92, "wolf": 92, "tick": 92, "centiped": 92, "grous": 92, "ptarmigan": 92, "ruf": 92, "prairi": 92, "peacock": 92, "quail": 92, "partridg": 92, "parrot": 92, "macaw": 92, "sulphur": 92, "crest": 92, "cockatoo": 92, "lorikeet": 92, "coucal": 92, "bee": 92, "eater": 92, "hornbil": 92, "hummingbird": 92, "jacamar": 92, "toucan": 92, "breast": 92, "mergans": 92, "goos": 92, "swan": 92, "tusker": 92, "echidna": 92, "platypu": 92, "wallabi": 92, "koala": 92, "wombat": 92, "jellyfish": 92, "anemon": 92, "brain": 92, "coral": 92, "flatworm": 92, "nematod": 92, "conch": 92, "snail": 92, "slug": 92, "chiton": 92, "chamber": 92, "nautilu": 92, "dung": 92, "crab": 92, "fiddler": 92, "king": 92, "lobster": 92, "spini": 92, "crayfish": 92, "hermit": 92, "isopod": 92, "stork": 92, "spoonbil": 92, "flamingo": 92, "heron": 92, "egret": 92, "bittern": 92, "crane": 92, "bird": [92, 99], "limpkin": 92, "gallinul": 92, "coot": 92, "bustard": 92, "ruddi": 92, "turnston": 92, "dunlin": 92, "redshank": 92, "dowitch": 92, "oystercatch": 92, "pelican": 92, "penguin": 92, "albatross": 92, "whale": 92, "killer": 92, "dugong": 92, "lion": 92, "chihuahua": 92, "japanes": 92, "chin": 92, "maltes": 92, "pekinges": 92, "shih": 92, "tzu": 92, "charl": 92, "spaniel": 92, "papillon": 92, "terrier": 92, "rhodesian": 92, "ridgeback": 92, "afghan": [92, 103], "hound": 92, "basset": 92, "beagl": 92, "bloodhound": 92, "bluetick": 92, "coonhound": 92, "tan": 92, "walker": 92, "foxhound": 92, "redbon": 92, "borzoi": 92, "irish": 92, "wolfhound": 92, "italian": 92, "greyhound": 92, "whippet": 92, "ibizan": 92, "norwegian": 92, "elkhound": 92, "otterhound": 92, "saluki": 92, "scottish": 92, "deerhound": 92, "weimaran": 92, "staffordshir": 92, "bull": 92, "bedlington": 92, "border": 92, "kerri": 92, "norfolk": 92, "norwich": 92, "yorkshir": 92, "wire": 92, "fox": 92, "lakeland": 92, "sealyham": 92, "airedal": 92, "cairn": 92, "australian": 92, "dandi": 92, "dinmont": 92, "boston": 92, "miniatur": 92, "schnauzer": 92, "giant": 92, "tibetan": 92, "silki": 92, "wheaten": 92, "west": 92, "highland": 92, "lhasa": 92, "apso": 92, "flat": 92, "retriev": 92, "curli": 92, "golden": 92, "labrador": 92, "chesapeak": 92, "bai": 92, "german": [92, 103], "shorthair": 92, "pointer": 92, "vizsla": 92, "setter": 92, "gordon": 92, "brittani": 92, "clumber": 92, "springer": 92, "welsh": 92, "cocker": 92, "sussex": 92, "kuvasz": 92, "schipperk": 92, "groenendael": 92, "malinoi": 92, "briard": 92, "kelpi": 92, "komondor": 92, "sheepdog": 92, "shetland": 92, "colli": 92, "bouvier": 92, "de": 92, "flandr": 92, "rottweil": 92, "shepherd": 92, "dobermann": 92, "pinscher": 92, "swiss": [92, 103], "mountain": 92, "bernes": 92, "appenzel": 92, "sennenhund": 92, "entlebuch": 92, "boxer": 92, "bullmastiff": 92, "mastiff": 92, "french": 92, "bulldog": 92, "dane": 92, "st": 92, "bernard": 92, "huski": 92, "alaskan": 92, "malamut": 92, "siberian": 92, "dalmatian": 92, "affenpinsch": 92, "basenji": 92, "pug": 92, "leonberg": 92, "newfoundland": 92, "pyrenean": 92, "samoi": 92, "pomeranian": 92, "chow": 92, "keeshond": 92, "griffon": 92, "bruxelloi": 92, "pembrok": 92, "corgi": 92, "cardigan": 92, "poodl": 92, "mexican": 92, "hairless": 92, "tundra": 92, "coyot": 92, "dingo": 92, "dhole": 92, "wild": 92, "hyena": 92, "kit": 92, "arctic": 92, "tabbi": 92, "persian": 92, "siames": 92, "egyptian": 92, "mau": 92, "cougar": 92, "lynx": 92, "leopard": 92, "snow": 92, "jaguar": 92, "cheetah": 92, "brown": [92, 102], "bear": 92, "polar": 92, "sloth": 92, "mongoos": 92, "meerkat": 92, "beetl": 92, "ladybug": 92, "longhorn": 92, "leaf": 92, "rhinocero": 92, "weevil": 92, "ant": 92, "grasshopp": 92, "cricket": 92, "stick": 92, "insect": 92, "cockroach": 92, "manti": 92, "cicada": 92, "leafhopp": 92, "lacew": 92, "dragonfli": 92, "damselfli": 92, "admir": 92, "ringlet": 92, "monarch": 92, "butterfli": 92, "gossam": 92, "wing": 92, "starfish": 92, "urchin": 92, "cucumb": 92, "cottontail": 92, "rabbit": 92, "hare": 92, "angora": 92, "hamster": 92, "porcupin": 92, "squirrel": 92, "marmot": 92, "beaver": 92, "guinea": 92, "pig": 92, "sorrel": 92, "zebra": 92, "boar": 92, "warthog": 92, "hippopotamu": 92, "ox": 92, "buffalo": 92, "bison": 92, "bighorn": 92, "sheep": 92, "alpin": 92, "ibex": 92, "hartebeest": 92, "impala": 92, "gazel": 92, "dromedari": 92, "llama": 92, "weasel": 92, "mink": 92, "polecat": 92, "foot": 92, "ferret": 92, "otter": 92, "skunk": 92, "badger": 92, "armadillo": 92, "toed": 92, "orangutan": 92, "gorilla": 92, "chimpanze": 92, "gibbon": 92, "siamang": 92, "guenon": 92, "pata": 92, "monkei": 92, "baboon": 92, "macaqu": 92, "langur": 92, "colobu": 92, "probosci": 92, "marmoset": 92, "capuchin": 92, "howler": 92, "titi": 92, "geoffroi": 92, "lemur": 92, "indri": 92, "asian": 92, "eleph": 92, "bush": 92, "snoek": 92, "eel": 92, "coho": 92, "salmon": 92, "beauti": 92, "clownfish": 92, "sturgeon": 92, "garfish": 92, "lionfish": 92, "pufferfish": 92, "abacu": 92, "abaya": 92, "academ": 92, "gown": 92, "accordion": 92, "acoust": 92, "guitar": 92, "aircraft": 92, "carrier": 92, "airlin": 92, "airship": 92, "altar": 92, "ambul": 92, "amphibi": 92, "clock": [92, 103], "apiari": 92, "apron": 92, "wast": 92, "assault": 92, "rifl": 92, "backpack": 92, "bakeri": 92, "balanc": 92, "beam": 92, "balloon": 92, "ballpoint": 92, "pen": 92, "aid": 92, "banjo": 92, "balust": 92, "barbel": 92, "barber": 92, "chair": [92, 98], "barbershop": 92, "baromet": 92, "barrel": 92, "wheelbarrow": 92, "basebal": 92, "basketbal": 92, "bassinet": 92, "bassoon": 92, "swim": 92, "cap": 92, "bath": 92, "towel": 92, "bathtub": 92, "station": 92, "wagon": 92, "lighthous": 92, "beaker": 92, "militari": 92, "beer": 92, "bottl": 92, "glass": 92, "bell": 92, "cot": 92, "bib": 92, "bicycl": [92, 102], "bikini": 92, "binder": 92, "binocular": 92, "birdhous": 92, "boathous": 92, "bobsleigh": 92, "bolo": 92, "tie": 92, "poke": 92, "bonnet": 92, "bookcas": 92, "bookstor": 92, "bow": 92, "brass": 92, "bra": 92, "breakwat": 92, "breastplat": 92, "broom": 92, "bucket": 92, "buckl": 92, "bulletproof": 92, "vest": 92, "butcher": 92, "shop": 92, "taxicab": 92, "cauldron": 92, "candl": 92, "cannon": 92, "cano": 92, "mirror": [92, 98], "carousel": 92, "tool": [92, 94, 96], "carton": 92, "wheel": 92, "teller": 92, "cassett": 92, "player": 92, "castl": 92, "catamaran": 92, "cd": 92, "cello": 92, "mobil": [92, 103], "chain": 92, "fenc": [92, 102], "mail": 92, "chainsaw": 92, "chest": 92, "chiffoni": 92, "chime": 92, "china": 92, "cabinet": 92, "christma": 92, "stock": 92, "church": 92, "movi": 92, "theater": 92, "cleaver": 92, "cliff": 92, "dwell": 92, "cloak": 92, "clog": 92, "cocktail": 92, "shaker": 92, "coffe": 92, "mug": 92, "coffeemak": 92, "coil": 92, "lock": 92, "keyboard": 92, "confectioneri": 92, "ship": [92, 99], "corkscrew": 92, "cornet": 92, "cowboi": 92, "boot": 92, "hat": 92, "cradl": 92, "crash": 92, "helmet": 92, "crate": 92, "infant": 92, "bed": 92, "crock": 92, "pot": 92, "croquet": 92, "crutch": 92, "cuirass": 92, "dam": 92, "desk": 92, "desktop": 92, "rotari": 92, "dial": 92, "telephon": 92, "diaper": 92, "watch": 92, "dine": 92, "dishcloth": 92, "dishwash": 92, "disc": 92, "brake": 92, "dock": 92, "sled": 92, "dome": 92, "doormat": 92, "drill": 92, "rig": 92, "drum": 92, "drumstick": 92, "dumbbel": 92, "dutch": 92, "oven": 92, "fan": 92, "locomot": 92, "entertain": 92, "center": 92, "envelop": 92, "espresso": 92, "powder": 92, "feather": 92, "fireboat": 92, "engin": [92, 102], "screen": 92, "sheet": 92, "flagpol": 92, "flute": 92, "footbal": 92, "forklift": 92, "fountain": 92, "poster": 92, "freight": 92, "fry": 92, "pan": 92, "fur": 92, "garbag": 92, "ga": 92, "pump": 92, "goblet": 92, "kart": 92, "golf": 92, "cart": 92, "gondola": 92, "gong": 92, "grand": 92, "piano": 92, "greenhous": 92, "grill": 92, "groceri": 92, "guillotin": 92, "barrett": 92, "hair": 92, "sprai": 92, "hammer": 92, "dryer": 92, "hand": [92, 94], "handkerchief": 92, "drive": 92, "harmonica": 92, "harp": 92, "harvest": 92, "hatchet": 92, "holster": 92, "honeycomb": 92, "hoop": 92, "skirt": 92, "horizont": 92, "bar": 92, "drawn": 92, "hourglass": 92, "ipod": 92, "cloth": 92, "iron": 92, "jack": 92, "lantern": 92, "jean": 92, "jeep": 92, "jigsaw": 92, "puzzl": 92, "pull": 92, "rickshaw": 92, "joystick": 92, "kimono": 92, "knee": 92, "pad": 92, "knot": 92, "ladl": 92, "lampshad": 92, "laptop": 92, "lawn": 92, "mower": 92, "knife": 92, "lifeboat": 92, "lighter": 92, "limousin": 92, "ocean": 92, "liner": 92, "lipstick": 92, "slip": 92, "shoe": 92, "lotion": 92, "speaker": 92, "loup": 92, "sawmil": 92, "magnet": 92, "compass": 92, "mailbox": 92, "tight": 92, "tank": 92, "manhol": 92, "maraca": 92, "marimba": 92, "maypol": 92, "maze": 92, "cup": [92, 98], "medicin": 92, "megalith": 92, "microphon": 92, "microwav": 92, "milk": 92, "minibu": 92, "miniskirt": 92, "minivan": 92, "missil": 92, "mitten": [92, 93], "mix": 92, "bowl": 92, "modem": 92, "monasteri": 92, "mope": 92, "mortar": 92, "mosqu": 92, "mosquito": 92, "scooter": 92, "bike": 92, "tent": 92, "mous": [92, 93], "mousetrap": 92, "van": 92, "muzzl": 92, "nail": 92, "brace": 92, "necklac": 92, "nippl": 92, "obelisk": 92, "obo": 92, "ocarina": 92, "odomet": 92, "oil": 92, "oscilloscop": 92, "overskirt": 92, "bullock": 92, "oxygen": 92, "packet": 92, "paddl": 92, "padlock": 92, "paintbrush": 92, "pajama": 92, "palac": [92, 103], "parachut": 92, "park": 92, "bench": 92, "meter": 92, "passeng": 92, "patio": 92, "payphon": 92, "pedest": 92, "pencil": 92, "perfum": 92, "petri": 92, "dish": 92, "photocopi": 92, "plectrum": 92, "pickelhaub": 92, "picket": 92, "pickup": 92, "pier": 92, "piggi": 92, "pill": 92, "pillow": 92, "ping": 92, "pong": 92, "pinwheel": 92, "pirat": 92, "pitcher": 92, "plane": 92, "planetarium": 92, "plastic": 92, "plate": 92, "rack": 92, "plow": 92, "plunger": 92, "polaroid": 92, "camera": 92, "pole": [92, 102], "polic": 92, "poncho": 92, "billiard": 92, "soda": 92, "potter": 92, "prayer": 92, "rug": 92, "printer": 92, "prison": 92, "projectil": 92, "projector": 92, "hockei": 92, "puck": 92, "punch": 92, "purs": 92, "quill": 92, "quilt": 92, "race": 92, "racket": 92, "radiat": 92, "radio": 92, "telescop": 92, "rain": 92, "recreat": 92, "reel": 92, "reflex": 92, "refriger": 92, "remot": 92, "restaur": 92, "revolv": 92, "rotisseri": 92, "eras": 92, "rugbi": 92, "ruler": 92, "safe": 92, "safeti": 92, "salt": 92, "sarong": 92, "saxophon": 92, "scabbard": 92, "school": 92, "bu": [92, 102], "schooner": 92, "scoreboard": 92, "crt": 92, "screw": 92, "screwdriv": 92, "seat": 92, "belt": 92, "sew": 92, "shield": 92, "shoji": 92, "basket": 92, "shovel": 92, "shower": 92, "curtain": 92, "ski": 92, "door": 92, "slot": 92, "snorkel": 92, "snowmobil": 92, "snowplow": 92, "soap": 92, "dispens": 92, "soccer": [92, 103], "sock": [92, 93], "solar": 92, "thermal": 92, "collector": 92, "sombrero": 92, "soup": 92, "heater": 92, "shuttl": 92, "spatula": 92, "motorboat": 92, "web": 92, "spindl": 92, "sport": [92, 103], "spotlight": 92, "stage": 92, "steam": 92, "arch": 92, "bridg": 92, "steel": 92, "stethoscop": 92, "scarf": 92, "stone": 92, "wall": [92, 102], "stopwatch": 92, "stove": 92, "strainer": 92, "tram": 92, "stretcher": 92, "couch": 92, "stupa": 92, "submarin": 92, "sundial": 92, "sunglass": 92, "sunscreen": 92, "suspens": 92, "mop": 92, "sweatshirt": 92, "swimsuit": 92, "swing": 92, "switch": 92, "syring": 92, "lamp": 92, "tape": 92, "teapot": 92, "teddi": 92, "televis": [92, 103], "tenni": 92, "thatch": 92, "roof": 92, "front": 92, "thimbl": 92, "thresh": 92, "throne": 92, "tile": 92, "toaster": 92, "tobacco": 92, "toilet": 92, "totem": 92, "tow": 92, "tractor": 92, "semi": 92, "trailer": 92, "trai": 92, "trench": 92, "tricycl": 92, "trimaran": 92, "tripod": 92, "triumphal": 92, "trolleybu": 92, "trombon": 92, "tub": 92, "turnstil": 92, "typewrit": 92, "umbrella": 92, "unicycl": 92, "upright": 92, "vacuum": 92, "cleaner": 92, "vase": 92, "vault": 92, "velvet": 92, "vend": 92, "vestment": 92, "viaduct": 92, "violin": 92, "volleybal": 92, "waffl": 92, "wallet": 92, "wardrob": 92, "sink": 92, "wash": 92, "jug": 92, "tower": 92, "whiskei": 92, "whistl": 92, "wig": 92, "shade": [92, 102], "windsor": 92, "wine": 92, "wok": 92, "wooden": 92, "spoon": 92, "wool": 92, "rail": 92, "shipwreck": 92, "yawl": 92, "yurt": 92, "comic": 92, "book": 92, "crossword": 92, "traffic": [92, 98, 102], "sign": [92, 102, 103], "dust": 92, "jacket": [92, 98], "menu": 92, "guacamol": 92, "consomm": 92, "trifl": 92, "ic": 92, "cream": 92, "pop": 92, "baguett": 92, "bagel": 92, "pretzel": 92, "cheeseburg": 92, "mash": 92, "potato": 92, "cabbag": 92, "broccoli": 92, "cauliflow": 92, "zucchini": 92, "spaghetti": 92, "squash": 92, "acorn": 92, "butternut": 92, "artichok": 92, "pepper": [92, 93], "cardoon": 92, "mushroom": 92, "granni": 92, "smith": 92, "strawberri": 92, "orang": 92, "lemon": 92, "pineappl": 92, "banana": 92, "jackfruit": 92, "custard": 92, "appl": 92, "pomegran": 92, "hai": 92, "carbonara": 92, "chocol": 92, "syrup": 92, "dough": 92, "meatloaf": 92, "pizza": 92, "pie": 92, "burrito": 92, "eggnog": 92, "alp": 92, "bubbl": 92, "reef": 92, "geyser": 92, "lakeshor": 92, "promontori": 92, "shoal": 92, "seashor": 92, "vallei": 92, "volcano": 92, "bridegroom": 92, "scuba": 92, "diver": 92, "rapese": 92, "daisi": 92, "ladi": 92, "slipper": 92, "corn": 92, "rose": 92, "hip": 92, "chestnut": 92, "fungu": 92, "agar": 92, "gyromitra": 92, "stinkhorn": 92, "earth": 92, "star": 92, "wood": 92, "bolet": 92, "ear": 92, "cifar10_test_set": 92, "airplan": [92, 99], "automobil": [92, 99], "deer": [92, 99], "cifar100_test_set": 92, "aquarium_fish": 92, "babi": 92, "boi": 92, "camel": 92, "caterpillar": 92, "cattl": [92, 103], "cloud": 92, "dinosaur": 92, "dolphin": 92, "flatfish": 92, "forest": 92, "girl": 92, "kangaroo": 92, "lawn_mow": 92, "man": 92, "maple_tre": 92, "motorcycl": [92, 102], "oak_tre": 92, "orchid": 92, "palm_tre": 92, "pear": 92, "pickup_truck": 92, "pine_tre": 92, "plain": 92, "poppi": 92, "possum": 92, "raccoon": 92, "road": [92, 102], "rocket": 92, "seal": 92, "shrew": 92, "skyscrap": 92, "streetcar": 92, "sunflow": 92, "sweet_pepp": 92, "trout": 92, "tulip": 92, "willow_tre": 92, "woman": [92, 98], "caltech256": 92, "ak47": 92, "bat": 92, "glove": 92, "birdbath": 92, "blimp": 92, "bonsai": 92, "boom": 92, "breadmak": 92, "buddha": 92, "bulldoz": 92, "cactu": 92, "cake": 92, "tire": 92, "cartman": 92, "cereal": 92, "chandeli": 92, "chess": 92, "board": 92, "chimp": 92, "chopstick": 92, "coffin": 92, "coin": 92, "comet": 92, "cormor": 92, "globe": 92, "diamond": 92, "dice": 92, "doorknob": 92, "drink": 92, "straw": 92, "dumb": 92, "eiffel": 92, "elk": 92, "ewer": 92, "eyeglass": 92, "fern": 92, "fighter": 92, "jet": [92, 101], "extinguish": 92, "hydrant": 92, "firework": 92, "flashlight": 92, "floppi": 92, "fri": 92, "frisbe": 92, "galaxi": 92, "giraff": 92, "goat": 92, "gate": 92, "grape": 92, "pick": [92, 93], "hamburg": 92, "hammock": 92, "harpsichord": 92, "hawksbil": 92, "helicopt": 92, "hibiscu": 92, "homer": 92, "simpson": 92, "horsesho": 92, "air": 92, "skeleton": 92, "ibi": 92, "cone": 92, "iri": 92, "jesu": 92, "christ": 92, "joi": 92, "kayak": 92, "ketch": 92, "ladder": 92, "lath": 92, "licens": 92, "lightbulb": 92, "lightn": 92, "mandolin": 92, "mar": 92, "mattress": 92, "megaphon": 92, "menorah": 92, "microscop": 92, "minaret": 92, "minotaur": 92, "motorbik": 92, "mussel": 92, "neckti": 92, "octopu": 92, "palm": 92, "pilot": 92, "paperclip": 92, "shredder": 92, "pci": 92, "peopl": [92, 98], "pez": 92, "picnic": 92, "pram": 92, "prai": 92, "pyramid": 92, "rainbow": 92, "roulett": 92, "saddl": 92, "saturn": 92, "segwai": 92, "propel": 92, "sextant": 92, "music": 92, "skateboard": 92, "smokestack": 92, "sneaker": 92, "boat": 92, "stain": 92, "steer": 92, "stirrup": 92, "superman": 92, "sushi": 92, "armi": [92, 103], "sword": 92, "tambourin": 92, "teepe": 92, "court": 92, "theodolit": 92, "tomato": 92, "tombston": 92, "tour": 92, "pisa": 92, "treadmil": 92, "fork": 92, "tweezer": 92, "unicorn": 92, "vcr": 92, "waterfal": 92, "watermelon": 92, "weld": 92, "windmil": 92, "xylophon": 92, "yarmulk": 92, "yo": 92, "toad": 92, "twenty_news_test_set": 92, "alt": 92, "atheism": 92, "comp": 92, "graphic": [92, 102], "misc": [92, 103], "sy": 92, "ibm": 92, "pc": 92, "hardwar": 92, "mac": 92, "forsal": 92, "rec": 92, "sci": 92, "crypt": 92, "electron": 92, "med": 92, "soc": 92, "religion": 92, "christian": [92, 103], "talk": [92, 103], "polit": 92, "gun": 92, "mideast": 92, "amazon": 92, "neutral": 92, "imdb_test_set": 92, "all_class": 92, "20news_test_set": 92, "_load_classes_predprobs_label": 92, "dataset_nam": 92, "labelerror": 92, "url_bas": 92, "5392f6c71473055060be3044becdde1cbc18284d": 92, "url_label": 92, "original_test_label": 92, "_original_label": 92, "url_prob": 92, "cross_validated_predicted_prob": 92, "_pyx": 92, "num_part": 92, "datatset": 92, "bytesio": 92, "allow_pickl": 92, "pred_probs_part": 92, "url": 92, "_of_": 92, "nload": 92, "imdb": 92, "interpret": [92, 93, 94, 97, 101], "capit": 92, "29780": 92, "780": 92, "medic": [92, 103], "doctor": 92, "359223": 92, "640777": 92, "184": [92, 94], "258427": 92, "341176": 92, "263158": 92, "658824": 92, "337349": 92, "246575": 92, "662651": 92, "248": 92, "330000": 92, "355769": 92, "670000": 92, "251": [92, 98, 103], "252": 92, "112": 92, "253": [92, 98], "022989": 92, "049505": 92, "190": [92, 94, 98], "66": 92, "002216": 92, "000974": 92, "59": [92, 98], "000873": 92, "000739": 92, "32635": 92, "32636": 92, "47": [92, 98], "32637": 92, "32638": 92, "32639": 92, "32640": 92, "002242": 92, "997758": 92, "002088": 92, "001045": 92, "997912": 92, "002053": 92, "997947": 92, "001980": 92, "000991": 92, "998020": 92, "001946": 92, "002915": 92, "998054": 92, "001938": 92, "002904": 92, "998062": 92, "001020": 92, "998980": 92, "001018": 92, "002035": 92, "998982": 92, "999009": 92, "0003": 92, "0002": 92, "36": [92, 103], "41": [92, 98, 101], "71": [92, 94, 98, 101], "071": 92, "067269": 92, "929": 92, "046": 92, "058243": 92, "954": 92, "035": 92, "032096": 92, "965": 92, "031": 92, "012232": 92, "969": 92, "022": 92, "025896": 92, "978": 92, "020": [92, 94], "013092": 92, "018": 92, "013065": 92, "016": 92, "030542": 92, "984": 92, "013": 92, "020833": 92, "987": 92, "012": 92, "010020": 92, "988": 92, "0073": 92, "0020": 92, "0016": 92, "0015": 92, "0013": 92, "0012": 92, "0010": 92, "0008": 92, "0007": 92, "0006": 92, "0005": 92, "0004": 92, "244": [92, 98], "98": [92, 93, 101], "452381": 92, "459770": 92, "72": [92, 94, 97, 101], "523364": 92, "460784": 92, "446602": 92, "57": [92, 94], "103774": 92, "030612": 92, "110092": 92, "049020": 92, "0034": 92, "0032": 92, "0026": 92, "0025": 92, "4945": 92, "4946": 92, "4947": 92, "4948": 92, "4949": 92, "4950": 92, "846": 92, "82": [92, 94, 98, 101], "7532": 92, "532": 92, "034483": 92, "009646": 92, "965517": 92, "030457": 92, "020513": 92, "969543": 92, "028061": 92, "035443": 92, "971939": 92, "025316": 92, "005168": 92, "974684": 92, "049751": 92, "979487": 92, "019920": 92, "042802": 92, "980080": 92, "017677": 92, "005115": 92, "982323": 92, "012987": 92, "005236": 92, "987013": 92, "012723": 92, "025126": 92, "987277": 92, "010989": 92, "008264": 92, "989011": 92, "010283": 92, "027778": 92, "989717": 92, "009677": 92, "990323": 92, "007614": 92, "010127": 92, "992386": 92, "005051": 92, "994949": 92, "005025": 92, "994975": 92, "005013": 92, "994987": 92, "001859": 92, "001328": 92, "000929": 92, "000664": 92, "186": [92, 94], "188": [92, 94, 97], "189": [92, 94], "snippet": 93, "nlp": [93, 103], "mind": [93, 94], "alphanumer": 93, "facilit": 93, "classlabel": 93, "guidanc": 93, "labels_str": 93, "datalab_str": 93, "labels_int": 93, "remap": 93, "datalab_int": 93, "my_dict": 93, "pet_nam": 93, "rover": 93, "rocki": 93, "speci": 93, "from_dict": 93, "datalab_dataset": 93, "number_of_class": 93, "total_number_of_data_point": 93, "alphabet": 93, "labels_proper_format": 93, "your_classifi": 93, "issues_datafram": 93, "class_predicted_for_flagged_exampl": 93, "class_predicted_for_all_exampl": 93, "grant": 93, "On": [93, 94, 98], "merged_dataset": 93, "label_column_nam": 93, "datataset": 93, "fair": [93, 94], "game": 93, "speedup": [93, 99], "flexibl": 93, "tempfil": 93, "mkdtemp": 93, "sped": 93, "anywai": 93, "pred_probs_merg": 93, "merge_rare_class": 93, "count_threshold": 93, "class_mapping_orig2new": 93, "heath_summari": 93, "num_examples_per_class": 93, "rare_class": 93, "num_classes_merg": 93, "other_class": 93, "labels_merg": 93, "new_c": 93, "merged_prob": 93, "new_class": 93, "original_class": 93, "num_check": 93, "ones_array_ref": 93, "isclos": 93, "though": [93, 94, 103], "successfulli": 93, "meaning": [93, 99], "virtuou": [93, 96], "cycl": [93, 96], "jointli": 93, "junk": 93, "clutter": 93, "unknown": 93, "caltech": 93, "combined_boolean_mask": 93, "mask1": 93, "mask2": 93, "gradientboostingclassifi": [93, 94], "true_error": [93, 94, 97], "101": [93, 98], "102": [93, 97, 98], "104": [93, 94, 98], "model_to_find_error": 93, "model_to_return": 93, "cl0": 93, "randomizedsearchcv": 93, "expens": 93, "param_distribut": 93, "learning_r": [93, 94], "max_depth": [93, 94], "magnitud": 93, "coeffici": [93, 101], "optin": 93, "environ": [93, 94], "rerun": [93, 94], "cell": [93, 94], "unabl": [93, 94], "render": [93, 94], "nbviewer": [93, 94], "nbsp": [93, 94], "cleanlearninginot": [93, 94], "fittedcleanlearn": [93, 94], "linearregressionlinearregress": 93, "n_init": 93, "fit_predict": 93, "continuous_column": 93, "categorical_column": 93, "data_df": 93, "feature_a": 93, "feature_b": 93, "unexpectedli": 93, "emphas": 93, "crucial": 93, "merge_duplicate_set": 93, "merge_kei": 93, "construct_group_kei": 93, "merged_set": 93, "consolidate_set": 93, "tolist": [93, 97], "issubset": 93, "frozenset": 93, "sets_list": 93, "mutabl": 93, "new_set": 93, "current_set": 93, "intersecting_set": 93, "lowest_score_strategi": 93, "sub_df": 93, "idxmin": 93, "filter_near_dupl": 93, "strategy_fn": 93, "strategy_kwarg": 93, "duplicate_row": 93, "group_kei": 93, "to_keep_indic": 93, "groupbi": 93, "explod": 93, "to_remov": 93, "isin": [93, 99], "kept": 93, "ids_to_remove_seri": 93, "tmp": 93, "ipykernel_7821": 93, "1995098996": 93, "deprecationwarn": 93, "dataframegroupbi": 93, "include_group": 93, "silenc": 93, "assist": 93, "streamlin": 93, "ux": 93, "agpl": 93, "compani": 93, "commerci": 93, "alter": 93, "email": 93, "team": 93, "discuss": 93, "anywher": 93, "profession": 93, "expert": 93, "depth": 94, "survei": [94, 103], "focus": [94, 96, 97, 101], "scienc": 94, "multivariate_norm": [94, 96, 97], "make_data": [94, 96], "cov": [94, 96, 97], "avg_trac": [94, 97], "py_tru": 94, "noise_matrix_tru": 94, "noise_marix": 94, "s_test": 94, "noisy_test_label": 94, "purpl": 94, "val": 94, "namespac": 94, "exec": 94, "markerfacecolor": [94, 97], "markeredgecolor": [94, 97, 101], "markers": [94, 97, 101], "markeredgewidth": [94, 97, 101], "realist": 94, "7560": 94, "637318e": 94, "896262e": 94, "548391e": 94, "923417e": 94, "375075e": 94, "3454": 94, "014051": 94, "020451": 94, "249": [94, 98], "042594": 94, "043859": 94, "045954": 94, "6120": 94, "023714": 94, "007136": 94, "119": [94, 98], "107266": 94, "103": [94, 98], "033738": 94, "238": [94, 98], "119505": 94, "236": [94, 98], "037843": 94, "222": 94, "614915": 94, "122": [94, 98], "624422": 94, "625965": 94, "626079": 94, "118": 94, "627675": 94, "695223": 94, "323529": 94, "523015": 94, "013720": 94, "675727": 94, "646521": 94, "anyth": 94, "enhanc": [94, 96, 98], "magic": 94, "liter": 94, "identif": 94, "x27": 94, "logisticregressionlogisticregress": 94, "ever": 94, "092": 94, "040": 94, "024": 94, "004": 94, "surpris": 94, "1705": 94, "01936": 94, "ton": 94, "yourfavoritemodel1": 94, "merged_label": 94, "merged_test_label": 94, "newli": [94, 96], "yourfavoritemodel2": 94, "yourfavoritemodel3": 94, "cl3": 94, "takeawai": 94, "That": [94, 97], "randomli": 94, "my_test_pred_prob": 94, "my_test_pr": 94, "issues_test": 94, "corrected_test_label": 94, "pretend": 94, "cl_test_pr": 94, "69": [94, 101], "fairli": 94, "label_acc": 94, "percentag": 94, "offset": 94, "nquestion": 94, "overestim": 94, "answer": 94, "experienc": 94, "knowledg": 94, "prioiri": 94, "known": 94, "versatil": 94, "label_issues_indic": 94, "213": [94, 98], "218": [94, 98], "152": 94, "197": [94, 98], "196": [94, 98], "170": 94, "214": 94, "164": [94, 97, 103], "198": [94, 98, 103], "191": [94, 98], "63": [94, 98, 101], "117": [94, 101], "62": [94, 98, 101], "206": [94, 98], "115": [94, 98], "193": 94, "194": 94, "201": [94, 98], "174": 94, "163": 94, "150": [94, 96, 98], "169": [94, 103], "151": [94, 98, 103], "168": 94, "precision_scor": 94, "recall_scor": 94, "f1_score": 94, "true_label_issu": 94, "filter_by_list": 94, "718750": [94, 96], "807018": 94, "733333": 94, "800000": 94, "721311": 94, "792793": 94, "908": 94, "676923": 94, "765217": 94, "892": 94, "567901": 94, "702290": 94, "844": 94, "gaug": 94, "label_issues_count": 94, "155": [94, 98], "156": 94, "172": [94, 97], "easiest": 94, "modular": 94, "penalti": 94, "l2": 94, "model3": 94, "n_estim": 94, "cv_pred_probs_1": 94, "cv_pred_probs_2": 94, "cv_pred_probs_3": 94, "label_quality_scores_best": 94, "cv_pred_probs_ensembl": 94, "label_quality_scores_bett": 94, "superior": [94, 100], "timm": 95, "glad": 96, "multiannotator_label": 96, "300": [96, 103], "noisier": 96, "111": [96, 101], "local_data": [96, 97], "true_labels_train": [96, 97], "noise_matrix_bett": 96, "noise_matrix_wors": 96, "transpos": [96, 99], "dropna": 96, "zfill": 96, "row_na_check": 96, "notna": 96, "reset_index": 96, "a0001": 96, "a0002": 96, "a0003": 96, "a0004": 96, "a0005": 96, "a0006": 96, "a0007": 96, "a0008": 96, "a0009": 96, "a0010": 96, "a0041": 96, "a0042": 96, "a0043": 96, "a0044": 96, "a0045": 96, "a0046": 96, "a0047": 96, "a0048": 96, "a0049": 96, "a0050": 96, "na": 96, "60856743": 96, "41693214": 96, "40908785": 96, "87147629": 96, "64941785": 96, "10774851": 96, "0524466": 96, "71853246": 96, "37169848": 96, "66031048": 96, "multiannotator_util": 96, "crude": 96, "straight": 96, "majority_vote_label": 96, "736118": 96, "757751": 96, "782232": 96, "715565": 96, "824256": 96, "quality_annotator_a0001": 96, "quality_annotator_a0002": 96, "quality_annotator_a0003": 96, "quality_annotator_a0004": 96, "quality_annotator_a0005": 96, "quality_annotator_a0006": 96, "quality_annotator_a0007": 96, "quality_annotator_a0008": 96, "quality_annotator_a0009": 96, "quality_annotator_a0010": 96, "quality_annotator_a0041": 96, "quality_annotator_a0042": 96, "quality_annotator_a0043": 96, "quality_annotator_a0044": 96, "quality_annotator_a0045": 96, "quality_annotator_a0046": 96, "quality_annotator_a0047": 96, "quality_annotator_a0048": 96, "quality_annotator_a0049": 96, "quality_annotator_a0050": 96, "070564": 96, "216078": 96, "119188": 96, "alongisd": 96, "244981": 96, "208333": 96, "295979": 96, "294118": 96, "324197": 96, "310345": 96, "355316": 96, "346154": 96, "439732": 96, "480000": 96, "a0031": 96, "523205": 96, "580645": 96, "a0034": 96, "535313": 96, "607143": 96, "a0021": 96, "606999": 96, "a0015": 96, "609526": 96, "678571": 96, "a0011": 96, "621103": 96, "692308": 96, "wors": 96, "improved_consensus_label": 96, "majority_vote_accuraci": 96, "cleanlab_label_accuraci": 96, "8581081081081081": 96, "9797297297297297": 96, "besid": 96, "sorted_consensus_quality_scor": 96, "worst_qual": 96, "better_qu": 96, "worst_quality_accuraci": 96, "better_quality_accuraci": 96, "9893238434163701": 96, "improved_pred_prob": 96, "treat": [96, 97, 101, 103], "analzi": 96, "copyright": 97, "advertis": 97, "violenc": 97, "nsfw": 97, "celeba": 97, "make_multilabel_data": 97, "boxes_coordin": 97, "box_multilabel": 97, "make_multi": 97, "bx1": 97, "by1": 97, "bx2": 97, "by2": 97, "label_list": 97, "ur": 97, "upper": 97, "inidx": 97, "logical_and": 97, "inv_d": 97, "labels_idx": 97, "true_labels_test": 97, "dict_unique_label": 97, "get_color_arrai": 97, "dcolor": 97, "aa4400": 97, "55227f": 97, "55a100": 97, "00ff00": 97, "007f7f": 97, "386b55": 97, "0000ff": 97, "y_onehot": 97, "single_class_label": 97, "stratifi": [97, 100], "kf": 97, "train_index": 97, "test_index": 97, "clf_cv": 97, "x_train_cv": 97, "x_test_cv": 97, "y_train_cv": 97, "y_test_cv": 97, "y_pred_cv": 97, "saw": 97, "num_to_displai": 97, "09": [97, 98, 101], "267": 97, "225": 97, "171": 97, "234": 97, "165": 97, "227": [97, 98], "262": [97, 98], "266": [97, 98], "139": 97, "143": [97, 98], "216": [97, 98], "265": 97, "159": [97, 98], "despit": [97, 103], "suspect": 97, "888": 97, "8224": 97, "9632": 97, "968": 97, "6512": 97, "0444": 97, "774": 97, "labels_binary_format": 97, "labels_list_format": 97, "surround": 98, "scene": 98, "coco": 98, "everydai": 98, "has_label_issu": 98, "insal": 98, "nc": [98, 102, 103], "s3": [98, 102, 103], "amazonaw": [98, 102, 103], "objectdetectionbenchmark": 98, "tutorial_obj": 98, "pkl": 98, "example_imag": 98, "unzip": [98, 103], "_separate_label": 98, "_separate_predict": 98, "begin": 98, "image_path": 98, "rb": 98, "image_to_visu": 98, "seg_map": 98, "334": 98, "float32": 98, "bboxes_ignor": 98, "286": 98, "285": 98, "224": 98, "231": [98, 103], "293": 98, "289": 98, "282": 98, "281": 98, "271": 98, "280": 98, "277": 98, "279": 98, "287": 98, "299": 98, "276": 98, "307": 98, "321": 98, "326": 98, "333": 98, "261": 98, "319": 98, "257": 98, "283": 98, "243": 98, "303": 98, "316": 98, "247": 98, "323": 98, "226": 98, "228": 98, "232": 98, "219": 98, "239": 98, "240": 98, "209": 98, "242": 98, "202": 98, "230": [98, 103], "215": 98, "220": 98, "229": 98, "217": [98, 103], "237": 98, "207": 98, "204": 98, "84": [98, 101], "205": 98, "223": 98, "153": 98, "140": 98, "124": 98, "268": 98, "273": 98, "108": 98, "284": 98, "110": 98, "136": 98, "145": 98, "297": 98, "317": 98, "192": 98, "332": 98, "324": 98, "203": 98, "199": 98, "291": 98, "000000481413": 98, "jpg": 98, "42398": 98, "44503": 98, "29968": 98, "336": 98, "21005": 98, "9978472": 98, "forgot": 98, "drew": 98, "label_issue_idx": 98, "num_examples_to_show": 98, "138": 98, "candid": 98, "97489622": 98, "70610878": 98, "98764951": 98, "88899237": 98, "99085805": 98, "issue_idx": 98, "95569726e": 98, "03354841e": 98, "57510169e": 98, "58447666e": 98, "39755858e": 98, "issue_to_visu": 98, "000000009483": 98, "95569726168054e": 98, "addition": [98, 102], "visibl": 98, "missmatch": 98, "likelei": 98, "agnost": 98, "vaidat": 98, "inconsist": 98, "000000395701": 98, "033548411774308e": 98, "armchair": 98, "tv": 98, "000000154004": 98, "38300759625496356": 98, "foreground": 98, "000000448410": 98, "0008575101690203273": 98, "crowd": 98, "alon": 98, "explor": [98, 99], "resembl": [98, 99], "000000499768": 98, "9748962231208227": 98, "000000521141": 98, "8889923658893665": 98, "000000143931": 98, "9876495074395956": 98, "bonu": 98, "uncov": 98, "irregular": 98, "anomali": 98, "object_detection_util": 98, "calculate_bounding_box_area": 98, "num_imgs_to_show": 98, "lab_object_count": 98, "pred_object_count": 98, "000000430073": 98, "000000183709": 98, "000000189475": 98, "label_norm": 98, "pred_norm": 98, "area": [98, 102], "lab_area": 98, "pred_area": 98, "lab_area_mean": 98, "lab_area_std": 98, "max_deviation_valu": 98, "max_deviation_class": 98, "deviation_valu": 98, "deviation_class": 98, "mean_area": 98, "std_area": 98, "class_area": 98, "deviations_awai": 98, "max_deviation_index": 98, "num_imgs_to_show_per_class": 98, "class_num": 98, "sorted_indic": 98, "000000422886": 98, "000000341828": 98, "000000461009": 98, "train_feature_embed": 99, "ood_train_feature_scor": 99, "test_feature_embed": 99, "ood_test_feature_scor": 99, "ood_train_predictions_scor": 99, "train_pred_prob": 99, "ood_test_predictions_scor": 99, "test_pred_prob": 99, "pylab": 99, "rcparam": 99, "baggingclassifi": 99, "therebi": 99, "rescal": 99, "transform_norm": 99, "totensor": 99, "root": 99, "animal_class": 99, "non_animal_class": 99, "animal_idx": 99, "test_idx": 99, "toronto": 99, "edu": 99, "kriz": 99, "170498071": 99, "48343794": 99, "19it": 99, "5000": 99, "plot_imag": 99, "visualize_outli": 99, "txt_class": 99, "img": [99, 101], "npimg": 99, "show_label": 99, "data_subset": 99, "resnet50": 99, "corpu": 99, "2048": 99, "embed_imag": 99, "create_model": 99, "strang": 99, "odd": 99, "train_ood_features_scor": 99, "top_train_ood_features_idx": 99, "fun": 99, "negat": 99, "homogen": 99, "bottom_train_ood_features_idx": 99, "test_ood_features_scor": 99, "top_ood_features_idx": 99, "inevit": 99, "trade": 99, "5th": 99, "percentil": 99, "fifth_percentil": 99, "plt_rang": 99, "hist": 99, "train_outlier_scor": 99, "ylabel": 99, "axvlin": 99, "test_outlier_scor": 99, "ood_features_indic": 99, "revisit": 99, "return_invers": 99, "train_feature_embeddings_sc": 99, "test_feature_embeddings_sc": 99, "train_pred_label": 99, "9702": 99, "train_ood_predictions_scor": 99, "test_ood_predictions_scor": 99, "lost": 99, "unsuit": 100, "ok": [100, 103], "convention": 100, "aforement": 100, "hypothet": 100, "contrast": 100, "tradit": 100, "disjoint": 100, "out_of_sample_pred_probs_for_a": 100, "out_of_sample_pred_probs_for_b": 100, "out_of_sample_pred_probs_for_c": 100, "out_of_sample_pred_prob": 100, "price": 101, "incom": 101, "ag": 101, "sensor": 101, "histgradientboostingregressor": 101, "r2_score": 101, "student_grades_r": 101, "final_scor": 101, "true_final_scor": 101, "homework": 101, "3d": 101, "hue": 101, "mpl_toolkit": 101, "mplot3d": 101, "axes3d": 101, "errors_idx": 101, "add_subplot": 101, "z": 101, "colorbar": 101, "errors_mask": 101, "feature_column": 101, "predicted_column": 101, "x_train_raw": 101, "x_test_raw": 101, "randomforestregressor": 101, "385101": 101, "499503": 101, "698255": 101, "776647": 101, "109373": 101, "170547": 101, "481096": 101, "984759": 101, "645270": 101, "795928": 101, "141": 101, "659": 101, "318": 101, "305": 101, "560": 101, "657": 101, "688": 101, "view_datapoint": 101, "concat": 101, "preds_og": 101, "r2_og": 101, "838": 101, "found_label_issu": 101, "preds_cl": 101, "r2_cl": 101, "926": 101, "favorit": 101, "968627e": 101, "228799": 101, "646674e": 101, "402962": 101, "323818e": 101, "952758": 101, "422144e": 101, "456908": 101, "465815e": 101, "753968": 101, "791186e": 101, "110719": 101, "485156e": 101, "670640": 101, "225300e": 101, "749976": 101, "499679e": 101, "947007": 101, "067882e": 101, "648396": 101, "synthia": 102, "imagesegment": 102, "given_mask": 102, "predicted_mask": 102, "set_printopt": [102, 103], "sky": 102, "sidewalk": 102, "veget": 102, "terrain": 102, "rider": 102, "pred_probs_filepath": 102, "1088": 102, "1920": 102, "label_filepath": 102, "synthia_class": 102, "maunal": 102, "100000": 102, "244800": 102, "leftmost": 102, "middl": [102, 103], "infact": 102, "rightmost": 102, "discrep": 102, "3263230": 102, "783381": 102, "275110": 102, "255917": 102, "78225": 102, "55990": 102, "54315": 102, "33591": 102, "24645": 102, "21054": 102, "15045": 102, "14171": 102, "13832": 102, "13498": 102, "11490": 102, "9164": 102, "8769": 102, "6999": 102, "6031": 102, "5011": 102, "mistakenli": 102, "class_issu": 102, "aim": [102, 103], "domin": 102, "bunch": 103, "conll": 103, "2003": 103, "love": 103, "n_i": 103, "optional_list_of_ordered_class_nam": 103, "deepai": 103, "conll2003": 103, "rm": 103, "tokenclassif": 103, "2024": 103, "2400": 103, "52e0": 103, "1a00": 103, "1068": 103, "connect": 103, "443": 103, "await": 103, "982975": 103, "960k": 103, "959": 103, "94k": 103, "kb": 103, "mb": 103, "directori": 103, "inflat": 103, "17045998": 103, "16m": 103, "octet": 103, "26m": 103, "bert": 103, "read_npz": 103, "filepath": 103, "corrsespond": 103, "iob2": 103, "given_ent": 103, "entity_map": 103, "readfil": 103, "startswith": 103, "docstart": 103, "isalpha": 103, "isupp": 103, "indices_to_preview": 103, "nsentenc": 103, "eu": 103, "reject": 103, "boycott": 103, "british": 103, "lamb": 103, "00030412": 103, "00023826": 103, "99936208": 103, "00007009": 103, "00002545": 103, "99998795": 103, "00000401": 103, "00000218": 103, "00000455": 103, "00000131": 103, "00000749": 103, "99996115": 103, "00001371": 103, "0000087": 103, "00000895": 103, "99998936": 103, "00000382": 103, "00000178": 103, "00000366": 103, "00000137": 103, "99999101": 103, "00000266": 103, "00000174": 103, "0000035": 103, "00000109": 103, "99998768": 103, "00000482": 103, "00000202": 103, "00000438": 103, "0000011": 103, "00000465": 103, "99996392": 103, "00001105": 103, "0000116": 103, "00000878": 103, "99998671": 103, "00000364": 103, "00000213": 103, "00000472": 103, "00000281": 103, "99999073": 103, "00000211": 103, "00000159": 103, "00000442": 103, "00000115": 103, "peter": 103, "blackburn": 103, "00000358": 103, "00000529": 103, "99995623": 103, "0000129": 103, "0000024": 103, "00001812": 103, "99994141": 103, "00001645": 103, "00002162": 103, "brussel": 103, "1996": 103, "00001172": 103, "00000821": 103, "00004661": 103, "0000618": 103, "99987167": 103, "99999061": 103, "00000201": 103, "00000195": 103, "00000408": 103, "00000135": 103, "2254": 103, "2907": 103, "19392": 103, "9962": 103, "8904": 103, "19303": 103, "12918": 103, "9256": 103, "11855": 103, "18392": 103, "20426": 103, "19402": 103, "14744": 103, "19371": 103, "4645": 103, "10331": 103, "9430": 103, "6143": 103, "18367": 103, "12914": 103, "todai": 103, "weather": 103, "march": 103, "scalfaro": 103, "northern": 103, "himself": 103, "said": 103, "germani": 103, "nastja": 103, "rysich": 103, "north": 103, "spla": 103, "fought": 103, "khartoum": 103, "govern": 103, "south": 103, "1983": 103, "autonomi": 103, "animist": 103, "region": 103, "moslem": 103, "arabis": 103, "mayor": 103, "antonio": 103, "gonzalez": 103, "garcia": 103, "revolutionari": 103, "parti": 103, "wednesdai": 103, "troop": 103, "raid": 103, "farm": 103, "stole": 103, "rape": 103, "women": 103, "spring": 103, "chg": 103, "hrw": 103, "12pct": 103, "princ": 103, "photo": 103, "moment": 103, "spokeswoman": 103, "rainier": 103, "told": 103, "reuter": 103, "danila": 103, "carib": 103, "w224": 103, "equip": 103, "radiomet": 103, "earn": 103, "19996": 103, "london": 103, "denom": 103, "sale": 103, "uk": 103, "jp": 103, "fr": 103, "maccabi": 103, "hapoel": 103, "haifa": 103, "tel": 103, "aviv": 103, "hospit": 103, "rever": 103, "roman": 103, "cathol": 103, "nun": 103, "admit": 103, "calcutta": 103, "week": 103, "ago": 103, "fever": 103, "vomit": 103, "allianc": 103, "embattl": 103, "kabul": 103, "salang": 103, "highwai": 103, "mondai": 103, "tuesdai": 103, "suprem": 103, "council": 103, "led": 103, "jumbish": 103, "milli": 103, "movement": 103, "warlord": 103, "abdul": 103, "rashid": 103, "dostum": 103, "dollar": 103, "exchang": 103, "3570": 103, "12049": 103, "born": 103, "1937": 103, "provinc": 103, "anhui": 103, "dai": 103, "came": 103, "shanghai": 103, "citi": 103, "prolif": 103, "author": 103, "teacher": 103, "chines": 103, "16764": 103, "1990": 103, "historian": 103, "alan": 103, "john": 103, "percival": 103, "taylor": 103, "di": 103, "20446": 103, "pace": 103, "bowler": 103, "ian": 103, "harvei": 103, "claim": 103, "victoria": 103, "15514": 103, "cotti": 103, "osc": 103, "foreign": 103, "minist": 103, "7525": 103, "sultan": 103, "specter": 103, "met": 103, "crown": 103, "abdullah": 103, "defenc": 103, "aviat": 103, "jeddah": 103, "saudi": 103, "agenc": 103, "2288": 103, "hi": 103, "customari": 103, "outfit": 103, "champion": 103, "damp": 103, "scalp": 103, "canada": 103, "reign": 103, "olymp": 103, "donovan": 103, "bailei": 103, "1992": 103, "linford": 103, "christi": 103, "britain": 103, "1984": 103, "1988": 103, "carl": 103, "lewi": 103, "ambigi": 103, "punctuat": 103, "chicago": 103, "digest": 103, "philadelphia": 103, "usda": 103, "york": 103, "token_issu": 103, "471": 103, "kean": 103, "year": 103, "contract": 103, "manchest": 103, "19072": 103, "societi": 103, "bite": 103, "deliv": 103, "19910": 103, "father": 103, "clarenc": 103, "woolmer": 103, "renam": 103, "uttar": 103, "pradesh": 103, "india": 103, "ranji": 103, "trophi": 103, "nation": 103, "championship": 103, "captain": 103, "1949": 103, "15658": 103, "19879": 103, "iii": 103, "brian": 103, "shimer": 103, "randi": 103, "jone": 103, "19104": 103}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [11, 0, 0, "-", "datalab"], [36, 0, 0, "-", "dataset"], [39, 0, 0, "-", "experimental"], [43, 0, 0, "-", "filter"], [44, 0, 0, "-", "internal"], [55, 0, 0, "-", "models"], [57, 0, 0, "-", "multiannotator"], [60, 0, 0, "-", "multilabel_classification"], [63, 0, 0, "-", "object_detection"], [66, 0, 0, "-", "outlier"], [67, 0, 0, "-", "rank"], [68, 0, 0, "-", "regression"], [72, 0, 0, "-", "segmentation"], [76, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [15, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[12, 0, 0, "-", "data"], [13, 0, 0, "-", "data_issues"], [16, 0, 0, "-", "issue_finder"], [14, 0, 0, "-", "issue_manager_factory"], [32, 0, 0, "-", "model_outputs"], [33, 0, 0, "-", "report"], [34, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[12, 2, 1, "", "Data"], [12, 5, 1, "", "DataFormatError"], [12, 5, 1, "", "DatasetDictError"], [12, 5, 1, "", "DatasetLoadError"], [12, 2, 1, "", "Label"], [12, 2, 1, "", "MultiClass"], [12, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[13, 2, 1, "", "DataIssues"], [13, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[13, 3, 1, "", "collect_issues_from_imagelab"], [13, 3, 1, "", "collect_issues_from_issue_manager"], [13, 3, 1, "", "collect_statistics"], [13, 3, 1, "", "get_info"], [13, 3, 1, "", "get_issue_summary"], [13, 3, 1, "", "get_issues"], [13, 6, 1, "", "info"], [13, 6, 1, "", "issue_summary"], [13, 6, 1, "", "issues"], [13, 3, 1, "", "set_health_score"], [13, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[16, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[16, 3, 1, "", "find_issues"], [16, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[18, 0, 0, "-", "data_valuation"], [19, 0, 0, "-", "duplicate"], [20, 0, 0, "-", "imbalance"], [22, 0, 0, "-", "issue_manager"], [23, 0, 0, "-", "label"], [26, 0, 0, "-", "noniid"], [27, 0, 0, "-", "null"], [28, 0, 0, "-", "outlier"], [31, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[18, 6, 1, "", "DEFAULT_THRESHOLD"], [18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 6, 1, "", "near_duplicate_sets"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[23, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 3, 1, "", "get_health_summary"], [23, 6, 1, "", "health_summary_parameters"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, 2, 1, "", "NonIIDIssueManager"], [26, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[27, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[28, 6, 1, "", "DEFAULT_THRESHOLDS"], [28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 6, 1, "", "ood"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[30, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, 2, 1, "", "RegressionLabelIssueManager"], [30, 1, 1, "", "find_issues_with_features"], [30, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[30, 3, 1, "", "collect_info"], [30, 6, 1, "", "description"], [30, 3, 1, "", "find_issues"], [30, 6, 1, "", "info"], [30, 6, 1, "", "issue_name"], [30, 6, 1, "", "issue_score_key"], [30, 6, 1, "", "issues"], [30, 3, 1, "", "make_summary"], [30, 3, 1, "", "report"], [30, 6, 1, "", "summary"], [30, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[31, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [31, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "filter_cluster_ids"], [31, 3, 1, "", "find_issues"], [31, 3, 1, "", "get_worst_cluster"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "perform_clustering"], [31, 3, 1, "", "report"], [31, 3, 1, "", "set_knn_graph"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, 7, 1, "", "REGISTRY"], [14, 1, 1, "", "list_default_issue_types"], [14, 1, 1, "", "list_possible_issue_types"], [14, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[32, 2, 1, "", "ModelOutput"], [32, 2, 1, "", "MultiClassPredProbs"], [32, 2, 1, "", "MultiLabelPredProbs"], [32, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[33, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[33, 3, 1, "", "get_report"], [33, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[34, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[34, 6, 1, "", "CLASSIFICATION"], [34, 6, 1, "", "MULTILABEL"], [34, 6, 1, "", "REGRESSION"], [34, 3, 1, "", "__contains__"], [34, 3, 1, "", "__getitem__"], [34, 3, 1, "", "__iter__"], [34, 3, 1, "", "__len__"], [34, 3, 1, "", "from_str"], [34, 4, 1, "", "is_classification"], [34, 4, 1, "", "is_multilabel"], [34, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[36, 1, 1, "", "find_overlapping_classes"], [36, 1, 1, "", "health_summary"], [36, 1, 1, "", "overall_label_health_score"], [36, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[37, 0, 0, "-", "cifar_cnn"], [38, 0, 0, "-", "coteaching"], [40, 0, 0, "-", "label_issues_batched"], [41, 0, 0, "-", "mnist_pytorch"], [42, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[37, 2, 1, "", "CNN"], [37, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[37, 6, 1, "", "T_destination"], [37, 3, 1, "", "__call__"], [37, 3, 1, "", "add_module"], [37, 3, 1, "", "apply"], [37, 3, 1, "", "bfloat16"], [37, 3, 1, "", "buffers"], [37, 6, 1, "", "call_super_init"], [37, 3, 1, "", "children"], [37, 3, 1, "", "compile"], [37, 3, 1, "", "cpu"], [37, 3, 1, "", "cuda"], [37, 3, 1, "", "double"], [37, 6, 1, "", "dump_patches"], [37, 3, 1, "", "eval"], [37, 3, 1, "", "extra_repr"], [37, 3, 1, "", "float"], [37, 3, 1, "id0", "forward"], [37, 3, 1, "", "get_buffer"], [37, 3, 1, "", "get_extra_state"], [37, 3, 1, "", "get_parameter"], [37, 3, 1, "", "get_submodule"], [37, 3, 1, "", "half"], [37, 3, 1, "", "ipu"], [37, 3, 1, "", "load_state_dict"], [37, 3, 1, "", "modules"], [37, 3, 1, "", "named_buffers"], [37, 3, 1, "", "named_children"], [37, 3, 1, "", "named_modules"], [37, 3, 1, "", "named_parameters"], [37, 3, 1, "", "parameters"], [37, 3, 1, "", "register_backward_hook"], [37, 3, 1, "", "register_buffer"], [37, 3, 1, "", "register_forward_hook"], [37, 3, 1, "", "register_forward_pre_hook"], [37, 3, 1, "", "register_full_backward_hook"], [37, 3, 1, "", "register_full_backward_pre_hook"], [37, 3, 1, "", "register_load_state_dict_post_hook"], [37, 3, 1, "", "register_module"], [37, 3, 1, "", "register_parameter"], [37, 3, 1, "", "register_state_dict_pre_hook"], [37, 3, 1, "", "requires_grad_"], [37, 3, 1, "", "set_extra_state"], [37, 3, 1, "", "share_memory"], [37, 3, 1, "", "state_dict"], [37, 3, 1, "", "to"], [37, 3, 1, "", "to_empty"], [37, 3, 1, "", "train"], [37, 6, 1, "", "training"], [37, 3, 1, "", "type"], [37, 3, 1, "", "xpu"], [37, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[38, 1, 1, "", "adjust_learning_rate"], [38, 1, 1, "", "evaluate"], [38, 1, 1, "", "forget_rate_scheduler"], [38, 1, 1, "", "initialize_lr_scheduler"], [38, 1, 1, "", "loss_coteaching"], [38, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[40, 2, 1, "", "LabelInspector"], [40, 7, 1, "", "adj_confident_thresholds_shared"], [40, 1, 1, "", "find_label_issues_batched"], [40, 7, 1, "", "labels_shared"], [40, 7, 1, "", "pred_probs_shared"], [40, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[40, 3, 1, "", "get_confident_thresholds"], [40, 3, 1, "", "get_label_issues"], [40, 3, 1, "", "get_num_issues"], [40, 3, 1, "", "get_quality_scores"], [40, 3, 1, "", "score_label_quality"], [40, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[41, 2, 1, "", "CNN"], [41, 2, 1, "", "SimpleNet"], [41, 1, 1, "", "get_mnist_dataset"], [41, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[41, 3, 1, "", "__init_subclass__"], [41, 6, 1, "", "batch_size"], [41, 6, 1, "", "dataset"], [41, 6, 1, "", "epochs"], [41, 3, 1, "id0", "fit"], [41, 3, 1, "", "get_metadata_routing"], [41, 3, 1, "", "get_params"], [41, 6, 1, "", "loader"], [41, 6, 1, "", "log_interval"], [41, 6, 1, "", "lr"], [41, 6, 1, "", "momentum"], [41, 6, 1, "", "no_cuda"], [41, 3, 1, "id1", "predict"], [41, 3, 1, "id4", "predict_proba"], [41, 6, 1, "", "seed"], [41, 3, 1, "", "set_fit_request"], [41, 3, 1, "", "set_params"], [41, 3, 1, "", "set_predict_proba_request"], [41, 3, 1, "", "set_predict_request"], [41, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[41, 6, 1, "", "T_destination"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "add_module"], [41, 3, 1, "", "apply"], [41, 3, 1, "", "bfloat16"], [41, 3, 1, "", "buffers"], [41, 6, 1, "", "call_super_init"], [41, 3, 1, "", "children"], [41, 3, 1, "", "compile"], [41, 3, 1, "", "cpu"], [41, 3, 1, "", "cuda"], [41, 3, 1, "", "double"], [41, 6, 1, "", "dump_patches"], [41, 3, 1, "", "eval"], [41, 3, 1, "", "extra_repr"], [41, 3, 1, "", "float"], [41, 3, 1, "", "forward"], [41, 3, 1, "", "get_buffer"], [41, 3, 1, "", "get_extra_state"], [41, 3, 1, "", "get_parameter"], [41, 3, 1, "", "get_submodule"], [41, 3, 1, "", "half"], [41, 3, 1, "", "ipu"], [41, 3, 1, "", "load_state_dict"], [41, 3, 1, "", "modules"], [41, 3, 1, "", "named_buffers"], [41, 3, 1, "", "named_children"], [41, 3, 1, "", "named_modules"], [41, 3, 1, "", "named_parameters"], [41, 3, 1, "", "parameters"], [41, 3, 1, "", "register_backward_hook"], [41, 3, 1, "", "register_buffer"], [41, 3, 1, "", "register_forward_hook"], [41, 3, 1, "", "register_forward_pre_hook"], [41, 3, 1, "", "register_full_backward_hook"], [41, 3, 1, "", "register_full_backward_pre_hook"], [41, 3, 1, "", "register_load_state_dict_post_hook"], [41, 3, 1, "", "register_module"], [41, 3, 1, "", "register_parameter"], [41, 3, 1, "", "register_state_dict_pre_hook"], [41, 3, 1, "", "requires_grad_"], [41, 3, 1, "", "set_extra_state"], [41, 3, 1, "", "share_memory"], [41, 3, 1, "", "state_dict"], [41, 3, 1, "", "to"], [41, 3, 1, "", "to_empty"], [41, 3, 1, "", "train"], [41, 6, 1, "", "training"], [41, 3, 1, "", "type"], [41, 3, 1, "", "xpu"], [41, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[42, 1, 1, "", "display_issues"], [42, 1, 1, "", "find_label_issues"], [42, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [43, 1, 1, "", "find_predicted_neq_given"], [43, 7, 1, "", "pred_probs_by_class"], [43, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[45, 0, 0, "-", "label_quality_utils"], [46, 0, 0, "-", "latent_algebra"], [47, 0, 0, "-", "multiannotator_utils"], [48, 0, 0, "-", "multilabel_scorer"], [49, 0, 0, "-", "multilabel_utils"], [50, 0, 0, "-", "outlier"], [51, 0, 0, "-", "token_classification_utils"], [52, 0, 0, "-", "util"], [53, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[45, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, 1, 1, "", "compute_inv_noise_matrix"], [46, 1, 1, "", "compute_noise_matrix_from_inverse"], [46, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [46, 1, 1, "", "compute_py"], [46, 1, 1, "", "compute_py_inv_noise_matrix"], [46, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[47, 1, 1, "", "assert_valid_inputs_multiannotator"], [47, 1, 1, "", "assert_valid_pred_probs"], [47, 1, 1, "", "check_consensus_label_classes"], [47, 1, 1, "", "compute_soft_cross_entropy"], [47, 1, 1, "", "find_best_temp_scaler"], [47, 1, 1, "", "format_multiannotator_labels"], [47, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[48, 2, 1, "", "Aggregator"], [48, 2, 1, "", "ClassLabelScorer"], [48, 2, 1, "", "MultilabelScorer"], [48, 1, 1, "", "exponential_moving_average"], [48, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [48, 1, 1, "", "get_label_quality_scores"], [48, 1, 1, "", "multilabel_py"], [48, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[48, 3, 1, "", "__call__"], [48, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[48, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [48, 6, 1, "", "NORMALIZED_MARGIN"], [48, 6, 1, "", "SELF_CONFIDENCE"], [48, 3, 1, "", "__call__"], [48, 3, 1, "", "__contains__"], [48, 3, 1, "", "__getitem__"], [48, 3, 1, "", "__iter__"], [48, 3, 1, "", "__len__"], [48, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[48, 3, 1, "", "__call__"], [48, 3, 1, "", "aggregate"], [48, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[49, 1, 1, "", "get_onehot_num_classes"], [49, 1, 1, "", "int2onehot"], [49, 1, 1, "", "onehot2int"], [49, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[50, 1, 1, "", "correct_precision_errors"], [50, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[51, 1, 1, "", "color_sentence"], [51, 1, 1, "", "filter_sentence"], [51, 1, 1, "", "get_sentence"], [51, 1, 1, "", "mapping"], [51, 1, 1, "", "merge_probs"], [51, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[52, 1, 1, "", "append_extra_datapoint"], [52, 1, 1, "", "clip_noise_rates"], [52, 1, 1, "", "clip_values"], [52, 1, 1, "", "compress_int_array"], [52, 1, 1, "", "confusion_matrix"], [52, 1, 1, "", "csr_vstack"], [52, 1, 1, "", "estimate_pu_f1"], [52, 1, 1, "", "extract_indices_tf"], [52, 1, 1, "", "force_two_dimensions"], [52, 1, 1, "", "format_labels"], [52, 1, 1, "", "get_missing_classes"], [52, 1, 1, "", "get_num_classes"], [52, 1, 1, "", "get_unique_classes"], [52, 1, 1, "", "is_tensorflow_dataset"], [52, 1, 1, "", "is_torch_dataset"], [52, 1, 1, "", "num_unique_classes"], [52, 1, 1, "", "print_inverse_noise_matrix"], [52, 1, 1, "", "print_joint_matrix"], [52, 1, 1, "", "print_noise_matrix"], [52, 1, 1, "", "print_square_matrix"], [52, 1, 1, "", "remove_noise_from_class"], [52, 1, 1, "", "round_preserving_row_totals"], [52, 1, 1, "", "round_preserving_sum"], [52, 1, 1, "", "smart_display_dataframe"], [52, 1, 1, "", "subset_X_y"], [52, 1, 1, "", "subset_data"], [52, 1, 1, "", "subset_labels"], [52, 1, 1, "", "train_val_split"], [52, 1, 1, "", "unshuffle_tensorflow_dataset"], [52, 1, 1, "", "value_counts"], [52, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[53, 1, 1, "", "assert_indexing_works"], [53, 1, 1, "", "assert_nonempty_input"], [53, 1, 1, "", "assert_valid_class_labels"], [53, 1, 1, "", "assert_valid_inputs"], [53, 1, 1, "", "labels_to_array"], [53, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[56, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[56, 2, 1, "", "KerasWrapperModel"], [56, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[56, 3, 1, "", "fit"], [56, 3, 1, "", "get_params"], [56, 3, 1, "", "predict"], [56, 3, 1, "", "predict_proba"], [56, 3, 1, "", "set_params"], [56, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[56, 3, 1, "", "fit"], [56, 3, 1, "", "get_params"], [56, 3, 1, "", "predict"], [56, 3, 1, "", "predict_proba"], [56, 3, 1, "", "set_params"], [56, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[57, 1, 1, "", "convert_long_to_wide_dataset"], [57, 1, 1, "", "get_active_learning_scores"], [57, 1, 1, "", "get_active_learning_scores_ensemble"], [57, 1, 1, "", "get_label_quality_multiannotator"], [57, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [57, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[58, 0, 0, "-", "dataset"], [59, 0, 0, "-", "filter"], [61, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[58, 1, 1, "", "common_multilabel_issues"], [58, 1, 1, "", "multilabel_health_summary"], [58, 1, 1, "", "overall_multilabel_health_score"], [58, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[59, 1, 1, "", "find_label_issues"], [59, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[61, 1, 1, "", "get_label_quality_scores"], [61, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[62, 0, 0, "-", "filter"], [64, 0, 0, "-", "rank"], [65, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[62, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[64, 1, 1, "", "compute_badloc_box_scores"], [64, 1, 1, "", "compute_overlooked_box_scores"], [64, 1, 1, "", "compute_swap_box_scores"], [64, 1, 1, "", "get_label_quality_scores"], [64, 1, 1, "", "issues_from_scores"], [64, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[65, 1, 1, "", "bounding_box_size_distribution"], [65, 1, 1, "", "calculate_per_class_metrics"], [65, 1, 1, "", "class_label_distribution"], [65, 1, 1, "", "get_average_per_class_confusion_matrix"], [65, 1, 1, "", "get_sorted_bbox_count_idxs"], [65, 1, 1, "", "object_counts_per_image"], [65, 1, 1, "", "plot_class_distribution"], [65, 1, 1, "", "plot_class_size_distributions"], [65, 1, 1, "", "visualize"]], "cleanlab.outlier": [[66, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[66, 3, 1, "", "fit"], [66, 3, 1, "", "fit_score"], [66, 3, 1, "", "score"]], "cleanlab.rank": [[67, 1, 1, "", "find_top_issues"], [67, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [67, 1, 1, "", "get_label_quality_ensemble_scores"], [67, 1, 1, "", "get_label_quality_scores"], [67, 1, 1, "", "get_normalized_margin_for_each_label"], [67, 1, 1, "", "get_self_confidence_for_each_label"], [67, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[69, 0, 0, "-", "learn"], [70, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[69, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[69, 3, 1, "", "__init_subclass__"], [69, 3, 1, "", "find_label_issues"], [69, 3, 1, "", "fit"], [69, 3, 1, "", "get_aleatoric_uncertainty"], [69, 3, 1, "", "get_epistemic_uncertainty"], [69, 3, 1, "", "get_label_issues"], [69, 3, 1, "", "get_metadata_routing"], [69, 3, 1, "", "get_params"], [69, 3, 1, "", "predict"], [69, 3, 1, "", "save_space"], [69, 3, 1, "", "score"], [69, 3, 1, "", "set_fit_request"], [69, 3, 1, "", "set_params"], [69, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[70, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[71, 0, 0, "-", "filter"], [73, 0, 0, "-", "rank"], [74, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[71, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[73, 1, 1, "", "get_label_quality_scores"], [73, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[74, 1, 1, "", "common_label_issues"], [74, 1, 1, "", "display_issues"], [74, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 82, 83, 88, 90, 91, 93, 94, 97, 103], "count": [3, 94], "data_valu": [4, 18], "datalab": [5, 7, 9, 10, 11, 84, 85, 86, 87, 88, 89, 90, 91, 94, 97], "creat": [7, 85, 86, 87, 94, 96], "your": [7, 79, 86, 87, 91, 93, 94], "own": 7, "issu": [7, 9, 10, 21, 30, 79, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 102, 103], "manag": [7, 21], "prerequisit": 7, "implement": 7, "issuemanag": [7, 86], "basic": 7, "check": 7, "intermedi": 7, "advanc": [7, 86], "us": [7, 82, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "gener": 8, "cluster": [8, 93], "id": 8, "guid": [9, 11], "type": [9, 10, 94], "custom": [9, 86], "cleanlab": [9, 10, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "studio": [9, 10], "easi": [9, 10, 79, 88, 90, 91], "mode": [9, 10, 79, 88, 90, 91], "can": [10, 85, 87, 92, 93, 94, 96], "detect": [10, 84, 87, 88, 90, 91, 93, 94, 98, 99], "estim": [10, 94, 96, 97], "each": 10, "label": [10, 23, 25, 30, 79, 82, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 101, 102, 103], "outlier": [10, 28, 50, 66, 85, 88, 90, 91, 97, 99], "Near": [10, 87, 88, 90, 91], "duplic": [10, 19, 87, 88, 90, 91, 93, 97], "non": [10, 91], "iid": [10, 91], "class": [10, 80, 94, 102], "imbal": [10, 20], "imag": [10, 88, 99], "specif": [10, 21, 102], "underperform": [10, 93], "group": [10, 93], "null": [10, 27], "data": [10, 12, 79, 82, 84, 85, 86, 87, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "valuat": 10, "option": 10, "paramet": [10, 94], "get": [11, 85, 86, 87, 96, 97, 98, 102, 103], "start": [11, 92], "api": 11, "refer": 11, "data_issu": 13, "factori": 14, "intern": [15, 44], "issue_find": 16, "issue_manag": [21, 22], "regist": 21, "ml": [21, 93, 94], "task": [21, 34], "multilabel": 24, "noniid": 26, "regress": [29, 68, 69, 70, 93, 101], "prioriti": 30, "order": 30, "find": [30, 79, 82, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "underperforming_group": 31, "model_output": 32, "report": [33, 88], "dataset": [36, 58, 79, 83, 84, 85, 87, 88, 91, 92, 93, 94, 97, 98, 99, 101, 102, 103], "cifar_cnn": 37, "coteach": 38, "experiment": 39, "label_issues_batch": 40, "mnist_pytorch": 41, "span_classif": 42, "filter": [43, 59, 62, 71, 75, 94], "label_quality_util": 45, "latent_algebra": 46, "multiannotator_util": 47, "multilabel_scor": 48, "multilabel_util": 49, "token_classification_util": 51, "util": 52, "valid": [53, 88, 100], "fasttext": 54, "model": [55, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101], "kera": 56, "multiannot": [57, 96], "multilabel_classif": 60, "rank": [61, 64, 67, 70, 73, 77, 94], "object_detect": 63, "summari": [65, 74, 78], "learn": [69, 85, 87, 93, 94], "segment": [72, 102], "token_classif": [76, 103], "open": [79, 93], "sourc": [79, 93], "document": 79, "quickstart": 79, "1": [79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "instal": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "2": [79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "common": [79, 80, 103], "3": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "handl": [79, 93], "error": [79, 83, 88, 93, 94, 96, 97, 98, 101, 102, 103], "train": [79, 82, 83, 84, 93, 99, 101], "robust": [79, 82, 83, 94, 101], "noisi": [79, 82, 83, 94, 101], "4": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 98, 99, 101], "curat": 79, "fix": [79, 93], "level": [79, 92, 94, 103], "5": [79, 82, 84, 85, 87, 88, 90, 94, 96, 101], "improv": [79, 96], "via": [79, 94, 96], "mani": [79, 94], "other": [79, 96, 98, 101], "techniqu": 79, "contribut": 79, "how": [80, 93, 94, 96, 97, 103], "migrat": 80, "version": 80, "0": 80, "from": [80, 82, 83, 85, 86, 87, 94, 101], "pre": [80, 84, 93, 99], "function": [80, 86], "name": 80, "chang": 80, "modul": [80, 94], "new": [80, 85], "remov": 80, "argument": [80, 86], "variabl": 80, "cleanlearn": [81, 93, 94], "tutori": [81, 89, 92, 95], "structur": 82, "tabular": [82, 90], "requir": [82, 83, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "depend": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "load": [82, 83, 84, 85, 86, 87, 90, 91, 101], "process": [82, 90, 99, 101], "select": [82, 90], "comput": [82, 84, 88, 90, 91, 93, 96, 100], "out": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "sampl": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "predict": [82, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 100], "probabl": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "more": [82, 83, 85, 87, 94, 101], "text": [83, 91, 103], "format": [83, 91, 93, 97, 98], "defin": [83, 88, 91, 101], "potenti": [83, 96, 101], "an": [84, 88, 93], "audio": 84, "import": [84, 85, 86, 87, 88, 92, 94, 96], "them": [84, 92, 94], "speechbrain": 84, "featur": [84, 88, 99], "fit": 84, "linear": 84, "datamonitor": 85, "leverag": 85, "statist": [85, 96], "audit": [85, 86, 87], "skip": [85, 87, 92, 94, 96], "detail": [85, 87, 92, 94, 96], "classifi": [85, 86, 87], "6": [85, 94], "about": [85, 87], "addit": [85, 87], "7": [85, 88, 94], "8": [85, 92, 94], "look": 85, "both": 85, "workflow": [86, 94], "instanti": 86, "object": [86, 98], "increment": 86, "search": 86, "specifi": [86, 93], "nondefault": 86, "save": 86, "ad": 86, "A": 87, "unifi": 87, "all": [87, 94], "kind": [87, 98], "inform": [87, 88], "fetch": [88, 92], "normal": 88, "fashion": 88, "mnist": 88, "prepar": 88, "k": [88, 90, 100], "fold": [88, 100], "cross": [88, 100], "embed": [88, 99], "view": 88, "most": [88, 103], "like": 88, "exampl": [88, 93, 94, 99], "sever": 88, "set": [88, 94], "dark": 88, "top": [88, 102], "low": 88, "numer": 90, "categor": 90, "column": 90, "construct": 90, "nearest": 90, "neighbour": 90, "graph": 90, "drift": [91, 97], "understand": 92, "evalu": 92, "health": [92, 94], "popular": 92, "faq": 93, "what": [93, 94, 100], "do": [93, 94], "i": [93, 94, 100], "infer": 93, "correct": 93, "ha": 93, "flag": 93, "should": 93, "v": 93, "test": [93, 94, 99], "big": 93, "limit": 93, "memori": 93, "why": 93, "isn": 93, "t": 93, "work": [93, 94, 96, 103], "me": 93, "differ": [93, 98], "clean": [93, 94], "final": 93, "hyperparamet": 93, "tune": 93, "onli": 93, "one": [93, 94, 97, 102], "doe": [93, 96, 103], "take": 93, "so": 93, "long": 93, "slice": 93, "when": [93, 94], "identifi": [93, 98], "run": 93, "licens": 93, "under": 93, "answer": 93, "question": 93, "The": 94, "centric": 94, "ai": 94, "machin": 94, "find_label_issu": 94, "line": 94, "code": 94, "visual": [94, 98, 99, 102], "twenti": 94, "lowest": 94, "qualiti": [94, 96, 97, 98, 102, 103], "see": 94, "now": 94, "let": 94, "": 94, "happen": 94, "we": 94, "merg": 94, "seafoam": 94, "green": 94, "yellow": 94, "too": 94, "you": 94, "re": 94, "One": 94, "score": [94, 96, 97, 98, 102, 103], "rule": 94, "overal": [94, 102], "accur": 94, "thi": 94, "directli": 94, "fulli": 94, "character": 94, "nois": 94, "matrix": [94, 97], "joint": 94, "prior": 94, "true": 94, "distribut": 94, "flip": 94, "rate": 94, "ani": 94, "again": 94, "support": 94, "lot": 94, "method": 94, "filter_bi": 94, "automat": 94, "everi": 94, "uniqu": 94, "num_label_issu": 94, "threshold": 94, "found": 94, "Not": 94, "sure": 94, "ensembl": 94, "multipl": [94, 96], "predictor": 94, "consensu": 96, "annot": 96, "initi": 96, "major": 96, "vote": 96, "better": 96, "compar": 96, "inspect": 96, "retrain": 96, "further": 96, "multi": 97, "beyond": 97, "mislabel": [97, 102, 103], "given": 97, "hot": 97, "binari": 97, "without": 97, "applic": 97, "real": 97, "download": [98, 102, 103], "objectlab": 98, "exploratori": 98, "analysi": 98, "pytorch": 99, "timm": 99, "cifar10": 99, "some": 99, "pred_prob": [99, 102, 103], "wai": 101, "semant": 102, "which": 102, "ar": 102, "commonli": 102, "focus": 102, "token": 103, "word": 103, "sentenc": 103, "contain": 103, "particular": 103}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [18, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Label Issue": [[10, "label-issue"]], "Outlier Issue": [[10, "outlier-issue"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "Non-IID Issue": [[10, "non-iid-issue"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "Null Issue": [[10, "null-issue"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[11, "getting-started"]], "Guides": [[11, "guides"]], "API Reference": [[11, "api-reference"]], "data": [[12, "module-cleanlab.datalab.internal.data"]], "data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[15, "internal"], [44, "internal"]], "issue_finder": [[16, "issue-finder"]], "duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[21, "issue-manager"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[21, "registered-issue-managers"]], "ML task-specific issue managers": [[21, "ml-task-specific-issue-managers"]], "label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[24, "multilabel"]], "noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[27, "null"]], "outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [50, "module-cleanlab.internal.outlier"], [66, "module-cleanlab.outlier"]], "regression": [[29, "regression"], [68, "regression"]], "Priority Order for finding issues:": [[30, null]], "underperforming_group": [[31, "underperforming-group"]], "model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[33, "report"]], "task": [[34, "task"]], "dataset": [[36, "module-cleanlab.dataset"], [58, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "experimental": [[39, "experimental"]], "label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "filter": [[43, "module-cleanlab.filter"], [59, "module-cleanlab.multilabel_classification.filter"], [62, "filter"], [71, "filter"], [75, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "token_classification_utils": [[51, "module-cleanlab.internal.token_classification_utils"]], "util": [[52, "module-cleanlab.internal.util"]], "validation": [[53, "module-cleanlab.internal.validation"]], "fasttext": [[54, "fasttext"]], "models": [[55, "models"]], "keras": [[56, "module-cleanlab.models.keras"]], "multiannotator": [[57, "module-cleanlab.multiannotator"]], "multilabel_classification": [[60, "multilabel-classification"]], "rank": [[61, "module-cleanlab.multilabel_classification.rank"], [64, "module-cleanlab.object_detection.rank"], [67, "module-cleanlab.rank"], [73, "module-cleanlab.segmentation.rank"], [77, "module-cleanlab.token_classification.rank"]], "object_detection": [[63, "object-detection"]], "summary": [[65, "summary"], [74, "module-cleanlab.segmentation.summary"], [78, "module-cleanlab.token_classification.summary"]], "regression.learn": [[69, "module-cleanlab.regression.learn"]], "regression.rank": [[70, "module-cleanlab.regression.rank"]], "segmentation": [[72, "segmentation"]], "token_classification": [[76, "token-classification"]], "cleanlab open-source documentation": [[79, "cleanlab-open-source-documentation"]], "Quickstart": [[79, "quickstart"]], "1. Install cleanlab": [[79, "install-cleanlab"]], "2. Find common issues in your data": [[79, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[79, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[79, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[79, "improve-your-data-via-many-other-techniques"]], "Contributing": [[79, "contributing"]], "Easy Mode": [[79, "easy-mode"], [88, "Easy-Mode"], [90, "Easy-Mode"], [91, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[80, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[80, "function-and-class-name-changes"]], "Module name changes": [[80, "module-name-changes"]], "New modules": [[80, "new-modules"]], "Removed modules": [[80, "removed-modules"]], "Common argument and variable name changes": [[80, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[81, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[82, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[82, "1.-Install-required-dependencies"], [83, "1.-Install-required-dependencies"], [90, "1.-Install-required-dependencies"], [91, "1.-Install-required-dependencies"], [101, "1.-Install-required-dependencies"]], "2. Load and process the data": [[82, "2.-Load-and-process-the-data"], [90, "2.-Load-and-process-the-data"], [101, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[82, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [90, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[82, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[82, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[83, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[83, "2.-Load-and-format-the-text-dataset"], [91, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[83, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[83, "4.-Train-a-more-robust-model-from-noisy-labels"], [101, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[84, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[84, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[84, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[84, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[84, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[84, "5.-Use-cleanlab-to-find-label-issues"], [90, "5.-Use-cleanlab-to-find-label-issues"]], "DataMonitor: Leverage statistics from Datalab to audit new data": [[85, "DataMonitor:-Leverage-statistics-from-Datalab-to-audit-new-data"]], "1. Install and import required dependencies": [[85, "1.-Install-and-import-required-dependencies"], [87, "1.-Install-and-import-required-dependencies"], [88, "1.-Install-and-import-required-dependencies"], [96, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[85, "2.-Create-and-load-the-data-(can-skip-these-details)"], [87, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[85, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"], [87, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[85, "4.-Use-Datalab-to-find-issues-in-the-dataset"], [87, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Use DataMonitor to find issues in new data": [[85, "5.-Use-DataMonitor-to-find-issues-in-new-data"]], "6. Learn more about the issues in the additional data": [[85, "6.-Learn-more-about-the-issues-in-the-additional-data"]], "7. Finding outliers in new data": [[85, "7.-Finding-outliers-in-new-data"]], "8. Looking for both label issues and outliers": [[85, "8.-Looking-for-both-label-issues-and-outliers"]], "Datalab: Advanced workflows to audit your data": [[86, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[86, "Install-and-import-required-dependencies"]], "Create and load the data": [[86, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[86, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[86, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[86, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[86, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[86, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[86, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[87, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "5. Learn more about the issues in your dataset": [[87, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[87, "Get-additional-information"]], "Near duplicate issues": [[87, "Near-duplicate-issues"], [88, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[88, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[88, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[88, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[88, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[88, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[88, "7.-Use-cleanlab-to-find-issues"]], "View report": [[88, "View-report"]], "Label issues": [[88, "Label-issues"], [90, "Label-issues"], [91, "Label-issues"]], "View most likely examples with label errors": [[88, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[88, "Outlier-issues"], [90, "Outlier-issues"], [91, "Outlier-issues"]], "View most severe outliers": [[88, "View-most-severe-outliers"]], "View sets of near duplicate images": [[88, "View-sets-of-near-duplicate-images"]], "Dark images": [[88, "Dark-images"]], "View top examples of dark images": [[88, "View-top-examples-of-dark-images"]], "Low information images": [[88, "Low-information-images"]], "Datalab Tutorials": [[89, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[90, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[90, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[91, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[91, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[91, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[91, "Non-IID-issues-(data-drift)"]], "Understanding Dataset-level Labeling Issues": [[92, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[92, "Install-dependencies-and-import-them"], [94, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[92, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[92, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[93, "FAQ"]], "What data can cleanlab detect issues in?": [[93, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[93, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[93, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[93, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[93, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[93, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[93, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[93, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[93, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[93, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[93, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[93, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[93, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[93, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[94, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[94, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[94, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[94, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[94, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[94, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[94, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[94, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[94, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[94, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[94, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[94, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[94, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[94, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[94, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[94, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[94, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[94, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[94, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[94, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[94, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[94, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[95, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[96, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[96, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[96, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[96, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[96, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[96, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[96, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[96, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[96, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[97, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[97, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[97, "2.-Format-data,-labels,-and-model-predictions"], [98, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[97, "3.-Use-cleanlab-to-find-label-issues"], [98, "3.-Use-cleanlab-to-find-label-issues"], [102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[97, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[97, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[97, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[97, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[97, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[98, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[98, "1.-Install-required-dependencies-and-download-data"], [102, "1.-Install-required-dependencies-and-download-data"], [103, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[98, "Get-label-quality-scores"], [102, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[98, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[98, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[98, "Other-uses-of-visualize"]], "Exploratory data analysis": [[98, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[99, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[99, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[99, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[99, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[99, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[99, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[100, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[100, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[100, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[101, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[101, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[101, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[102, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[102, "2.-Get-data,-labels,-and-pred_probs"], [103, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[102, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[102, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[102, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[103, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[103, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[103, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[103, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[103, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"], [12, "module-cleanlab.datalab.internal.data"], [13, "module-cleanlab.datalab.internal.data_issues"], [14, "module-cleanlab.datalab.internal.issue_manager_factory"], [15, "module-cleanlab.datalab.internal"], [16, "module-cleanlab.datalab.internal.issue_finder"], [18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [19, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [20, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [26, "module-cleanlab.datalab.internal.issue_manager.noniid"], [27, "module-cleanlab.datalab.internal.issue_manager.null"], [28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [32, "module-cleanlab.datalab.internal.model_outputs"], [33, "module-cleanlab.datalab.internal.report"], [34, "module-cleanlab.datalab.internal.task"], [36, "module-cleanlab.dataset"], [37, "module-cleanlab.experimental.cifar_cnn"], [38, "module-cleanlab.experimental.coteaching"], [39, "module-cleanlab.experimental"], [40, "module-cleanlab.experimental.label_issues_batched"], [41, "module-cleanlab.experimental.mnist_pytorch"], [42, "module-cleanlab.experimental.span_classification"], [43, "module-cleanlab.filter"], [44, "module-cleanlab.internal"], [45, "module-cleanlab.internal.label_quality_utils"], [46, "module-cleanlab.internal.latent_algebra"], [47, "module-cleanlab.internal.multiannotator_utils"], [48, "module-cleanlab.internal.multilabel_scorer"], [49, "module-cleanlab.internal.multilabel_utils"], [50, "module-cleanlab.internal.outlier"], [51, "module-cleanlab.internal.token_classification_utils"], [52, "module-cleanlab.internal.util"], [53, "module-cleanlab.internal.validation"], [55, "module-cleanlab.models"], [56, "module-cleanlab.models.keras"], [57, "module-cleanlab.multiannotator"], [58, "module-cleanlab.multilabel_classification.dataset"], [59, "module-cleanlab.multilabel_classification.filter"], [60, "module-cleanlab.multilabel_classification"], [61, "module-cleanlab.multilabel_classification.rank"], [62, "module-cleanlab.object_detection.filter"], [63, "module-cleanlab.object_detection"], [64, "module-cleanlab.object_detection.rank"], [65, "module-cleanlab.object_detection.summary"], [66, "module-cleanlab.outlier"], [67, "module-cleanlab.rank"], [68, "module-cleanlab.regression"], [69, "module-cleanlab.regression.learn"], [70, "module-cleanlab.regression.rank"], [71, "module-cleanlab.segmentation.filter"], [72, "module-cleanlab.segmentation"], [73, "module-cleanlab.segmentation.rank"], [74, "module-cleanlab.segmentation.summary"], [75, "module-cleanlab.token_classification.filter"], [76, "module-cleanlab.token_classification"], [77, "module-cleanlab.token_classification.rank"], [78, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[11, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[12, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[12, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[12, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[12, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[12, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[15, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[16, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[27, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[33, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[33, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[34, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[34, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[36, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.forward"], [37, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[39, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [41, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [41, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [41, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[43, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[43, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[43, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[44, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[45, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.outlier": [[50, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[50, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[50, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[51, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[52, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[53, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[55, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[56, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[56, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[56, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[57, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[58, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[59, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[59, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[59, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[60, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[61, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[61, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[61, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[62, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[62, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[63, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[64, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[65, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[66, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[66, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[67, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[67, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[67, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[68, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[69, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[69, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[69, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[70, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[70, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[71, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[71, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[72, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[73, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[73, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[73, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[74, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[75, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[75, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[76, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[77, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[77, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[77, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[78, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb index f989c8b29..d74c47e6b 100644 --- a/master/tutorials/clean_learning/tabular.ipynb +++ b/master/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:06.062330Z", - "iopub.status.busy": "2024-05-02T13:29:06.061839Z", - "iopub.status.idle": "2024-05-02T13:29:07.284109Z", - "shell.execute_reply": "2024-05-02T13:29:07.283537Z" + "iopub.execute_input": "2024-05-03T22:12:02.903369Z", + "iopub.status.busy": "2024-05-03T22:12:02.903188Z", + "iopub.status.idle": "2024-05-03T22:12:04.158635Z", + "shell.execute_reply": "2024-05-03T22:12:04.158072Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:07.286661Z", - "iopub.status.busy": "2024-05-02T13:29:07.286343Z", - "iopub.status.idle": "2024-05-02T13:29:07.306325Z", - "shell.execute_reply": "2024-05-02T13:29:07.305824Z" + "iopub.execute_input": "2024-05-03T22:12:04.161366Z", + "iopub.status.busy": "2024-05-03T22:12:04.161017Z", + "iopub.status.idle": "2024-05-03T22:12:04.183368Z", + "shell.execute_reply": "2024-05-03T22:12:04.182724Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:07.308781Z", - "iopub.status.busy": "2024-05-02T13:29:07.308494Z", - "iopub.status.idle": "2024-05-02T13:29:07.489147Z", - "shell.execute_reply": "2024-05-02T13:29:07.488577Z" + "iopub.execute_input": "2024-05-03T22:12:04.186099Z", + "iopub.status.busy": "2024-05-03T22:12:04.185796Z", + "iopub.status.idle": "2024-05-03T22:12:04.421059Z", + "shell.execute_reply": "2024-05-03T22:12:04.420441Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:07.520255Z", - "iopub.status.busy": "2024-05-02T13:29:07.519854Z", - "iopub.status.idle": "2024-05-02T13:29:07.523599Z", - "shell.execute_reply": "2024-05-02T13:29:07.523134Z" + "iopub.execute_input": "2024-05-03T22:12:04.452917Z", + "iopub.status.busy": "2024-05-03T22:12:04.452369Z", + "iopub.status.idle": "2024-05-03T22:12:04.456478Z", + "shell.execute_reply": "2024-05-03T22:12:04.455879Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:07.525838Z", - "iopub.status.busy": "2024-05-02T13:29:07.525467Z", - "iopub.status.idle": "2024-05-02T13:29:07.534237Z", - "shell.execute_reply": "2024-05-02T13:29:07.533771Z" + "iopub.execute_input": "2024-05-03T22:12:04.458916Z", + "iopub.status.busy": "2024-05-03T22:12:04.458523Z", + "iopub.status.idle": "2024-05-03T22:12:04.467652Z", + "shell.execute_reply": "2024-05-03T22:12:04.467062Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:07.536575Z", - "iopub.status.busy": "2024-05-02T13:29:07.536223Z", - "iopub.status.idle": "2024-05-02T13:29:07.538924Z", - "shell.execute_reply": "2024-05-02T13:29:07.538456Z" + "iopub.execute_input": "2024-05-03T22:12:04.470141Z", + "iopub.status.busy": "2024-05-03T22:12:04.469776Z", + "iopub.status.idle": "2024-05-03T22:12:04.472567Z", + "shell.execute_reply": "2024-05-03T22:12:04.472084Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:07.541019Z", - "iopub.status.busy": "2024-05-02T13:29:07.540701Z", - "iopub.status.idle": "2024-05-02T13:29:08.067374Z", - "shell.execute_reply": "2024-05-02T13:29:08.066797Z" + "iopub.execute_input": "2024-05-03T22:12:04.474697Z", + "iopub.status.busy": "2024-05-03T22:12:04.474385Z", + "iopub.status.idle": "2024-05-03T22:12:05.002425Z", + "shell.execute_reply": "2024-05-03T22:12:05.001797Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:08.069589Z", - "iopub.status.busy": "2024-05-02T13:29:08.069414Z", - "iopub.status.idle": "2024-05-02T13:29:09.769896Z", - "shell.execute_reply": "2024-05-02T13:29:09.769241Z" + "iopub.execute_input": "2024-05-03T22:12:05.004987Z", + "iopub.status.busy": "2024-05-03T22:12:05.004788Z", + "iopub.status.idle": "2024-05-03T22:12:06.774512Z", + "shell.execute_reply": "2024-05-03T22:12:06.773913Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:09.772548Z", - "iopub.status.busy": "2024-05-02T13:29:09.771914Z", - "iopub.status.idle": "2024-05-02T13:29:09.782165Z", - "shell.execute_reply": "2024-05-02T13:29:09.781613Z" + "iopub.execute_input": "2024-05-03T22:12:06.777316Z", + "iopub.status.busy": "2024-05-03T22:12:06.776523Z", + "iopub.status.idle": "2024-05-03T22:12:06.786796Z", + "shell.execute_reply": "2024-05-03T22:12:06.786306Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:09.784404Z", - "iopub.status.busy": "2024-05-02T13:29:09.784085Z", - "iopub.status.idle": "2024-05-02T13:29:09.788229Z", - "shell.execute_reply": "2024-05-02T13:29:09.787788Z" + "iopub.execute_input": "2024-05-03T22:12:06.789033Z", + "iopub.status.busy": "2024-05-03T22:12:06.788764Z", + "iopub.status.idle": "2024-05-03T22:12:06.793030Z", + "shell.execute_reply": "2024-05-03T22:12:06.792434Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:09.790328Z", - "iopub.status.busy": "2024-05-02T13:29:09.789979Z", - "iopub.status.idle": "2024-05-02T13:29:09.797205Z", - "shell.execute_reply": "2024-05-02T13:29:09.796641Z" + "iopub.execute_input": "2024-05-03T22:12:06.795161Z", + "iopub.status.busy": "2024-05-03T22:12:06.794845Z", + "iopub.status.idle": "2024-05-03T22:12:06.802119Z", + "shell.execute_reply": "2024-05-03T22:12:06.801639Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:09.799695Z", - "iopub.status.busy": "2024-05-02T13:29:09.799235Z", - "iopub.status.idle": "2024-05-02T13:29:09.912564Z", - "shell.execute_reply": "2024-05-02T13:29:09.911963Z" + "iopub.execute_input": "2024-05-03T22:12:06.804209Z", + "iopub.status.busy": "2024-05-03T22:12:06.803874Z", + "iopub.status.idle": "2024-05-03T22:12:06.917333Z", + "shell.execute_reply": "2024-05-03T22:12:06.916788Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:09.914826Z", - "iopub.status.busy": "2024-05-02T13:29:09.914422Z", - "iopub.status.idle": "2024-05-02T13:29:09.917411Z", - "shell.execute_reply": "2024-05-02T13:29:09.916870Z" + "iopub.execute_input": "2024-05-03T22:12:06.919603Z", + "iopub.status.busy": "2024-05-03T22:12:06.919249Z", + "iopub.status.idle": "2024-05-03T22:12:06.922103Z", + "shell.execute_reply": "2024-05-03T22:12:06.921616Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:09.919326Z", - "iopub.status.busy": "2024-05-02T13:29:09.919060Z", - "iopub.status.idle": "2024-05-02T13:29:11.948359Z", - "shell.execute_reply": "2024-05-02T13:29:11.947689Z" + "iopub.execute_input": "2024-05-03T22:12:06.924076Z", + "iopub.status.busy": "2024-05-03T22:12:06.923894Z", + "iopub.status.idle": "2024-05-03T22:12:08.975096Z", + "shell.execute_reply": "2024-05-03T22:12:08.974261Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:11.951492Z", - "iopub.status.busy": "2024-05-02T13:29:11.950732Z", - "iopub.status.idle": "2024-05-02T13:29:11.962551Z", - "shell.execute_reply": "2024-05-02T13:29:11.962050Z" + "iopub.execute_input": "2024-05-03T22:12:08.978181Z", + "iopub.status.busy": "2024-05-03T22:12:08.977436Z", + "iopub.status.idle": "2024-05-03T22:12:08.989333Z", + "shell.execute_reply": "2024-05-03T22:12:08.988846Z" } }, "outputs": [ @@ -771,10 +771,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:11.964636Z", - "iopub.status.busy": "2024-05-02T13:29:11.964443Z", - "iopub.status.idle": "2024-05-02T13:29:12.009791Z", - "shell.execute_reply": "2024-05-02T13:29:12.009308Z" + "iopub.execute_input": "2024-05-03T22:12:08.991513Z", + "iopub.status.busy": "2024-05-03T22:12:08.991091Z", + "iopub.status.idle": "2024-05-03T22:12:09.022498Z", + "shell.execute_reply": "2024-05-03T22:12:09.021908Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html index eac85e157..b41807348 100644 --- a/master/tutorials/clean_learning/text.html +++ b/master/tutorials/clean_learning/text.html @@ -783,7 +783,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'apple_pay_or_google_pay', 'cancel_transfer', 'card_about_to_expire', 'getting_spare_card', 'visa_or_mastercard', 'change_pin', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'beneficiary_not_allowed'}
+Classes: {'card_about_to_expire', 'change_pin', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'getting_spare_card', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'card_payment_fee_charged', 'cancel_transfer'}
 

Let’s print the first example in the train set.

@@ -846,43 +846,43 @@

2. Load and format the text dataset

-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1181,7 +1181,7 @@

4. Train a more robust model from noisy labels -{"state": {"fb0217862fb548f8ab3d5aec20197fc2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "029a1c26e6994839bbc83345d6d397e7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "de4688f24648490b911064542fd03459": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fb0217862fb548f8ab3d5aec20197fc2", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_029a1c26e6994839bbc83345d6d397e7", "tabbable": null, "tooltip": null, "value": 391.0}}, "c17f51b6f30c40fca707f742541a15f3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9fe4f6948fff42cda141fd670b67c9fd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8c54d8c461d04f399fbf9dc4fcbc06ea": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c17f51b6f30c40fca707f742541a15f3", "placeholder": "\u200b", "style": "IPY_MODEL_9fe4f6948fff42cda141fd670b67c9fd", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "a71388c2db2d44379d215975c39d323e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7e011ca59afa4bff865141aa84b54038": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b5ec2c4e269b42088973f291ef708275": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a71388c2db2d44379d215975c39d323e", "placeholder": "\u200b", "style": "IPY_MODEL_7e011ca59afa4bff865141aa84b54038", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200760.4kB/s]"}}, "6415bf2831ce4746a04348168b7dcba1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ab7c4d4e84fa41d886a19300852d3216": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8c54d8c461d04f399fbf9dc4fcbc06ea", "IPY_MODEL_de4688f24648490b911064542fd03459", "IPY_MODEL_b5ec2c4e269b42088973f291ef708275"], "layout": "IPY_MODEL_6415bf2831ce4746a04348168b7dcba1", "tabbable": null, "tooltip": null}}, "4546787b444f46d7adcf3b2050784bb8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "701a87cb9c1e41829a2900ff7d8c4f12": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "213ef8efa4dd41929e2bc2c26fcec419": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4546787b444f46d7adcf3b2050784bb8", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_701a87cb9c1e41829a2900ff7d8c4f12", "tabbable": null, "tooltip": null, "value": 2211.0}}, "ef79791b224d4cf9accbc7bcc5a99699": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "962488f3426f4d61a59ca7191c7f4c5d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c0294c660a044c7a9086ab88e7baaf34": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ef79791b224d4cf9accbc7bcc5a99699", "placeholder": "\u200b", "style": "IPY_MODEL_962488f3426f4d61a59ca7191c7f4c5d", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "8978567939be46eeb088d6d12ba98200": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d95aca1bf3824fd2be21542c1726a9a8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c1037c25c85344fea78c2adc7bfe730a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8978567939be46eeb088d6d12ba98200", "placeholder": "\u200b", "style": "IPY_MODEL_d95aca1bf3824fd2be21542c1726a9a8", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007313kB/s]"}}, "52ac2d6f930a4d03b5202f821806223a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "909dc3b33f854cafbcd0df6f3c00a701": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c0294c660a044c7a9086ab88e7baaf34", "IPY_MODEL_213ef8efa4dd41929e2bc2c26fcec419", "IPY_MODEL_c1037c25c85344fea78c2adc7bfe730a"], "layout": "IPY_MODEL_52ac2d6f930a4d03b5202f821806223a", "tabbable": null, "tooltip": null}}, "4296ccb88d284da69c026273942546d9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6a669054126e412194b7ca24541c1883": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "59ad8e80906748b9a39357935f7e6eb0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4296ccb88d284da69c026273942546d9", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6a669054126e412194b7ca24541c1883", "tabbable": null, "tooltip": null, "value": 665.0}}, "3b7062e869654114a0e3c74dc74951dd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "478dcf21406e41228ce514e8333cad30": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "60a3c9a69134435cae5accf0ba3b69b6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3b7062e869654114a0e3c74dc74951dd", "placeholder": "\u200b", "style": "IPY_MODEL_478dcf21406e41228ce514e8333cad30", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "abb3f94ef4ee49009323ea020c4f2aaf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e7e71a4adfb047a8b3c125b6db72544e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3b01d68b67344e3cbdf101ba8c84332b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_abb3f94ef4ee49009323ea020c4f2aaf", "placeholder": "\u200b", "style": "IPY_MODEL_e7e71a4adfb047a8b3c125b6db72544e", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007117kB/s]"}}, "bff09e74c4024d56ad1b1a37457ccb96": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9c173160eba64ea083225bc86433c3f9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_60a3c9a69134435cae5accf0ba3b69b6", "IPY_MODEL_59ad8e80906748b9a39357935f7e6eb0", "IPY_MODEL_3b01d68b67344e3cbdf101ba8c84332b"], "layout": "IPY_MODEL_bff09e74c4024d56ad1b1a37457ccb96", "tabbable": null, "tooltip": null}}, "f88fdb4590ac403593aff1c9dd2f6d6e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e55cae4051e34c6fb446392e47f0232b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5279173630944ff990b77fe2293f9249": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f88fdb4590ac403593aff1c9dd2f6d6e", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e55cae4051e34c6fb446392e47f0232b", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "ce5e63dcc0ec44139f0e0079961c6bef": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "34d0ecaed2794f3e89efd77ff610d217": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "eb44d03da4e741f180083d511bf1760f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ce5e63dcc0ec44139f0e0079961c6bef", "placeholder": "\u200b", "style": "IPY_MODEL_34d0ecaed2794f3e89efd77ff610d217", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "f60b22685bf5466c9d395195aa698fb7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0fdad1d12f2c441a9537cc53c59008b2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f4aa3a48a1d44e3e863f16e1d1fdc5b7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f60b22685bf5466c9d395195aa698fb7", "placeholder": "\u200b", "style": "IPY_MODEL_0fdad1d12f2c441a9537cc53c59008b2", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007141MB/s]"}}, "f8b039b4504c482791bf4f3a9a57a0b0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "24e3a7299c394f499f3448b5020a6188": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_eb44d03da4e741f180083d511bf1760f", "IPY_MODEL_5279173630944ff990b77fe2293f9249", "IPY_MODEL_f4aa3a48a1d44e3e863f16e1d1fdc5b7"], "layout": "IPY_MODEL_f8b039b4504c482791bf4f3a9a57a0b0", "tabbable": null, "tooltip": null}}, "53248f0ef84e4956bfe89b0b89e7e291": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c46b2fb4e41d4a94a1c1e48ef42c4707": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d28762e873ae49f69209ac5fa762ba99": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_53248f0ef84e4956bfe89b0b89e7e291", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c46b2fb4e41d4a94a1c1e48ef42c4707", "tabbable": null, "tooltip": null, "value": 466062.0}}, "5922b3a975c143818a6b10771ee3eb61": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "184832df7c3b4e2484e0f7c25dd681a8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5a8c3f894ee44f6f9e95cd7cf6b61011": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5922b3a975c143818a6b10771ee3eb61", "placeholder": "\u200b", "style": "IPY_MODEL_184832df7c3b4e2484e0f7c25dd681a8", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "a29d4b7c5241436c9b671ddef2d84484": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "371c5be81a874ac7912ed845a47013e7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b54e208713f94de79dc77a244c995fad": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a29d4b7c5241436c9b671ddef2d84484", "placeholder": "\u200b", "style": "IPY_MODEL_371c5be81a874ac7912ed845a47013e7", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u200714.0MB/s]"}}, "32affafe2fe24c90bc046f261e13b756": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "80e2ab4bd056436380c1b5e0592346e4": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5a8c3f894ee44f6f9e95cd7cf6b61011", "IPY_MODEL_d28762e873ae49f69209ac5fa762ba99", "IPY_MODEL_b54e208713f94de79dc77a244c995fad"], "layout": "IPY_MODEL_32affafe2fe24c90bc046f261e13b756", "tabbable": null, "tooltip": null}}, "8dc2b7bbc1a84279b44d54ce2150091f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2e6a6bfb51934a059dc1e9badd1acaf7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "297f77df560743f6ac059c87f01ab176": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8dc2b7bbc1a84279b44d54ce2150091f", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2e6a6bfb51934a059dc1e9badd1acaf7", "tabbable": null, "tooltip": null, "value": 48.0}}, "03b6f235edf44636b2383ed04ed264b4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c3389e17f00b4ad18197d9bd0ecf4656": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6375bd9dfd014dd0a478b1603551769b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_03b6f235edf44636b2383ed04ed264b4", "placeholder": "\u200b", "style": "IPY_MODEL_c3389e17f00b4ad18197d9bd0ecf4656", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "9625d7466576439192b6332852e5ad85": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1c656bb6c8494a34ad5735d4ea3d1bad": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2645b45f653346a88f130083d8e5323e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9625d7466576439192b6332852e5ad85", "placeholder": "\u200b", "style": "IPY_MODEL_1c656bb6c8494a34ad5735d4ea3d1bad", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20077.90kB/s]"}}, "a955d6e5095d4e9099147b1c49ee7819": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e8369682b499414191a432cc0c4d35a6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6375bd9dfd014dd0a478b1603551769b", "IPY_MODEL_297f77df560743f6ac059c87f01ab176", "IPY_MODEL_2645b45f653346a88f130083d8e5323e"], "layout": "IPY_MODEL_a955d6e5095d4e9099147b1c49ee7819", "tabbable": null, "tooltip": null}}, "0678363e264b4ff18f149ce4e1a8845d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "caeb5c46ccff43519ec1e20e8ea26245": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1a84037dca904a6aaad86a6300128025": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0678363e264b4ff18f149ce4e1a8845d", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_caeb5c46ccff43519ec1e20e8ea26245", "tabbable": null, "tooltip": null, "value": 231508.0}}, "ea1c4aa2595046158b29f3cbb71e866b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cd5849df9f1e4a53ad125a910839f11c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f6c882e5a34f499b936ab00c252b3229": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ea1c4aa2595046158b29f3cbb71e866b", "placeholder": "\u200b", "style": "IPY_MODEL_cd5849df9f1e4a53ad125a910839f11c", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "a23ad2a3f6e64a81838e754e378bb283": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "40238e58943a4547a51ab38df1923c3e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "baec2516b0604612913c9d709e4301b6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a23ad2a3f6e64a81838e754e378bb283", "placeholder": "\u200b", "style": "IPY_MODEL_40238e58943a4547a51ab38df1923c3e", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200732.9MB/s]"}}, "3e2b37936b0945d9ba4e7ad784352291": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "97ed0c10ec904d4f90ad4b9c5c63927d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f6c882e5a34f499b936ab00c252b3229", "IPY_MODEL_1a84037dca904a6aaad86a6300128025", "IPY_MODEL_baec2516b0604612913c9d709e4301b6"], "layout": "IPY_MODEL_3e2b37936b0945d9ba4e7ad784352291", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"c83783e3b850498d97bfc8589365ea27": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4e8717e2cf854277b1a641a2d0d1f92a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3dc5bfad508346719d464a2809c2c6f4": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c83783e3b850498d97bfc8589365ea27", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4e8717e2cf854277b1a641a2d0d1f92a", "tabbable": null, "tooltip": null, "value": 391.0}}, "65eecf90843541feacc0f748437049a3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8cce5eb5e35041cfbe78f66c70d0c41b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "04b847e4715a4f9d884319267d0bfd81": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_65eecf90843541feacc0f748437049a3", "placeholder": "\u200b", "style": "IPY_MODEL_8cce5eb5e35041cfbe78f66c70d0c41b", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "47a61a34c883423987e6c4253210bd22": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fcd6536b6cd74015b5e2a9b9b46c4384": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9fdfa7c789654753bc5c125d1749ad29": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_47a61a34c883423987e6c4253210bd22", "placeholder": "\u200b", "style": "IPY_MODEL_fcd6536b6cd74015b5e2a9b9b46c4384", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200762.2kB/s]"}}, "f422b12a9ae745d0850dbcc8358da0f1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7b9573a7aa194145a796e48f81f8d556": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_04b847e4715a4f9d884319267d0bfd81", "IPY_MODEL_3dc5bfad508346719d464a2809c2c6f4", "IPY_MODEL_9fdfa7c789654753bc5c125d1749ad29"], "layout": "IPY_MODEL_f422b12a9ae745d0850dbcc8358da0f1", "tabbable": null, "tooltip": null}}, "d3b0ea3ee99b4ba0a29e0d2afcf33f77": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bf4c37e338524284a9e850f5d4d0ce9c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "79460b868bac4488b8e5280126d2ae0e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d3b0ea3ee99b4ba0a29e0d2afcf33f77", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bf4c37e338524284a9e850f5d4d0ce9c", "tabbable": null, "tooltip": null, "value": 2211.0}}, "1998374c0c25487bad497735433571de": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "22fb76db66bd4a89b5878dd59e542b2a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e813f30083374abaa2580d7d16a86c09": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1998374c0c25487bad497735433571de", "placeholder": "\u200b", "style": "IPY_MODEL_22fb76db66bd4a89b5878dd59e542b2a", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "bcb98acfd4b746d3a045fae1b0135406": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "403482242df14c94b7bb7589bea84ac7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3d57c8fb79b742b1bfdf9bffe21c65d9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bcb98acfd4b746d3a045fae1b0135406", "placeholder": "\u200b", "style": "IPY_MODEL_403482242df14c94b7bb7589bea84ac7", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007367kB/s]"}}, "ece71898229e4b49977f7077d75d170e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c3a15ee732834d5fb00c0da0eb162def": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e813f30083374abaa2580d7d16a86c09", "IPY_MODEL_79460b868bac4488b8e5280126d2ae0e", "IPY_MODEL_3d57c8fb79b742b1bfdf9bffe21c65d9"], "layout": "IPY_MODEL_ece71898229e4b49977f7077d75d170e", "tabbable": null, "tooltip": null}}, "073b2d17682349df9ca0558b9c1e72b1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b63fff4461194b8db7988efd6ae9cab3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cf8036cb41514f38b1ac514b34ed2709": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_073b2d17682349df9ca0558b9c1e72b1", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b63fff4461194b8db7988efd6ae9cab3", "tabbable": null, "tooltip": null, "value": 665.0}}, "1beb31c34df94d1abc4de872eb1cc4b5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ce3090d952be4bd48ab409b623e94c3e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "793aec3b70b145d99931b240e3ec7f4d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1beb31c34df94d1abc4de872eb1cc4b5", "placeholder": "\u200b", "style": "IPY_MODEL_ce3090d952be4bd48ab409b623e94c3e", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "6d4761e1fefe4581b457d043a30f4e00": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7008b85ba7b84ca38d4648d1add0d4ed": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9c5a1c3701914851bec246ff53ad6a48": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6d4761e1fefe4581b457d043a30f4e00", "placeholder": "\u200b", "style": "IPY_MODEL_7008b85ba7b84ca38d4648d1add0d4ed", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007120kB/s]"}}, "5f5094c2684e4497bca3518271a40440": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b837569968b7457b90fe925f428766cc": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_793aec3b70b145d99931b240e3ec7f4d", "IPY_MODEL_cf8036cb41514f38b1ac514b34ed2709", "IPY_MODEL_9c5a1c3701914851bec246ff53ad6a48"], "layout": "IPY_MODEL_5f5094c2684e4497bca3518271a40440", "tabbable": null, "tooltip": null}}, "2f9c9b1992f84356808215436364f6e5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "08adb827cfb74334bb1e85e64c4c43b7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "58a49a0c670447f6af7aef4e4dfe0a8f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2f9c9b1992f84356808215436364f6e5", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_08adb827cfb74334bb1e85e64c4c43b7", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "ed9c25dd6b874e16976902296147d723": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "725187aa13244de6a16495161d300d8a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b565bb30a7f24437a51bfd53eccf2990": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ed9c25dd6b874e16976902296147d723", "placeholder": "\u200b", "style": "IPY_MODEL_725187aa13244de6a16495161d300d8a", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "162dde5167d04c25b5f8833df733d289": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9d41c42b4ea341289ff79799915c47f6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "be993911cdb74ec0ab86e3ed2731c0d8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_162dde5167d04c25b5f8833df733d289", "placeholder": "\u200b", "style": "IPY_MODEL_9d41c42b4ea341289ff79799915c47f6", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:01<00:00,\u200733.5MB/s]"}}, "81b96fa31553427d8881560ea7eb09d4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8157222f05a847c7bea2c30c0963294f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b565bb30a7f24437a51bfd53eccf2990", "IPY_MODEL_58a49a0c670447f6af7aef4e4dfe0a8f", "IPY_MODEL_be993911cdb74ec0ab86e3ed2731c0d8"], "layout": "IPY_MODEL_81b96fa31553427d8881560ea7eb09d4", "tabbable": null, "tooltip": null}}, "1c5bd33707624495ab832cec0d936cb3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f09be008848b41e69f1966e629cd1a5a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ac44a545c1ff4410892f4a52144f1fa1": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1c5bd33707624495ab832cec0d936cb3", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f09be008848b41e69f1966e629cd1a5a", "tabbable": null, "tooltip": null, "value": 466062.0}}, "4d5f0f7b08e0406e8d1ebe549098efca": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "52d36e85d95a44d59e3d6df0daf4dbd1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4c217c04a228472883ffc929dd440ae8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4d5f0f7b08e0406e8d1ebe549098efca", "placeholder": "\u200b", "style": "IPY_MODEL_52d36e85d95a44d59e3d6df0daf4dbd1", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "0e15be41182e4286b8e35feb1eb6ab77": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1aa1b202807544b5a700dd938d9c4bfc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "91cbea18bc9e45e7bea14f51dbcabc46": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0e15be41182e4286b8e35feb1eb6ab77", "placeholder": "\u200b", "style": "IPY_MODEL_1aa1b202807544b5a700dd938d9c4bfc", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u200720.9MB/s]"}}, "e66a653ee6924009b0b21a7197b2742d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d0c171e02c474ffeaa89b9378ce89829": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4c217c04a228472883ffc929dd440ae8", "IPY_MODEL_ac44a545c1ff4410892f4a52144f1fa1", "IPY_MODEL_91cbea18bc9e45e7bea14f51dbcabc46"], "layout": "IPY_MODEL_e66a653ee6924009b0b21a7197b2742d", "tabbable": null, "tooltip": null}}, "325d9f3bfbd44a1794a15fbe9f99d1c9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dcbb8b64869c4076ab5a08dd829dabf4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "fd8ab93ec5014527bfcfbb2682daa171": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_325d9f3bfbd44a1794a15fbe9f99d1c9", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_dcbb8b64869c4076ab5a08dd829dabf4", "tabbable": null, "tooltip": null, "value": 48.0}}, "5644bd52dee1404da038f918dd946d0e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "52270962cb1747fc89c1c7dbc9e5040a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4a7c321915454a2398e52f35cdba2577": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5644bd52dee1404da038f918dd946d0e", "placeholder": "\u200b", "style": "IPY_MODEL_52270962cb1747fc89c1c7dbc9e5040a", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "3c5ec35fa9cf43fda2865ac8704ae196": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2775d62e1f7a4bde845a6e75be37e00f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5418de43801a4683b407c89ee1f7d114": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3c5ec35fa9cf43fda2865ac8704ae196", "placeholder": "\u200b", "style": "IPY_MODEL_2775d62e1f7a4bde845a6e75be37e00f", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20076.36kB/s]"}}, "6cf7bf3166d64dbbb5ad4e3bba4161f1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b3d4a8b7f1ba49b3a9eb54d219a84ef1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4a7c321915454a2398e52f35cdba2577", "IPY_MODEL_fd8ab93ec5014527bfcfbb2682daa171", "IPY_MODEL_5418de43801a4683b407c89ee1f7d114"], "layout": "IPY_MODEL_6cf7bf3166d64dbbb5ad4e3bba4161f1", "tabbable": null, "tooltip": null}}, "e81006ca65c64a3e9d3bc63a401aaa64": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b02231d56d704967b40a87a881bb887b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f5ec1a62f72347deab37ba29f14d6536": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e81006ca65c64a3e9d3bc63a401aaa64", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b02231d56d704967b40a87a881bb887b", "tabbable": null, "tooltip": null, "value": 231508.0}}, "8277711fc47243babca344a8dbe404d0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f9f48062e628493d9df4448ce044c8f3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ab80f73526bb430094ae4a3351c6b890": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8277711fc47243babca344a8dbe404d0", "placeholder": "\u200b", "style": "IPY_MODEL_f9f48062e628493d9df4448ce044c8f3", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "9e2aeb7dbb26432b909ecdb408d03e14": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1641546eeaaa45aeb726b4a092fdddd3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c152db80b5f44a69b2d962d53d16e168": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9e2aeb7dbb26432b909ecdb408d03e14", "placeholder": "\u200b", "style": "IPY_MODEL_1641546eeaaa45aeb726b4a092fdddd3", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200733.0MB/s]"}}, "41ebb6d3e67f441089af75e180b2446b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c35e550c267e4d0a9044fa4e98d2f961": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ab80f73526bb430094ae4a3351c6b890", "IPY_MODEL_f5ec1a62f72347deab37ba29f14d6536", "IPY_MODEL_c152db80b5f44a69b2d962d53d16e168"], "layout": "IPY_MODEL_41ebb6d3e67f441089af75e180b2446b", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index 973493e91..5e7cd4efb 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:14.959004Z", - "iopub.status.busy": "2024-05-02T13:29:14.958522Z", - "iopub.status.idle": "2024-05-02T13:29:18.230067Z", - "shell.execute_reply": "2024-05-02T13:29:18.229458Z" + "iopub.execute_input": "2024-05-03T22:12:12.994064Z", + "iopub.status.busy": "2024-05-03T22:12:12.993799Z", + "iopub.status.idle": "2024-05-03T22:12:16.105416Z", + "shell.execute_reply": "2024-05-03T22:12:16.104839Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:18.232892Z", - "iopub.status.busy": "2024-05-02T13:29:18.232410Z", - "iopub.status.idle": "2024-05-02T13:29:18.235983Z", - "shell.execute_reply": "2024-05-02T13:29:18.235492Z" + "iopub.execute_input": "2024-05-03T22:12:16.108131Z", + "iopub.status.busy": "2024-05-03T22:12:16.107621Z", + "iopub.status.idle": "2024-05-03T22:12:16.111053Z", + "shell.execute_reply": "2024-05-03T22:12:16.110600Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:18.238174Z", - "iopub.status.busy": "2024-05-02T13:29:18.237734Z", - "iopub.status.idle": "2024-05-02T13:29:18.241017Z", - "shell.execute_reply": "2024-05-02T13:29:18.240460Z" + "iopub.execute_input": "2024-05-03T22:12:16.113105Z", + "iopub.status.busy": "2024-05-03T22:12:16.112757Z", + "iopub.status.idle": "2024-05-03T22:12:16.115858Z", + "shell.execute_reply": "2024-05-03T22:12:16.115408Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:18.243203Z", - "iopub.status.busy": "2024-05-02T13:29:18.242869Z", - "iopub.status.idle": "2024-05-02T13:29:18.300079Z", - "shell.execute_reply": "2024-05-02T13:29:18.299520Z" + "iopub.execute_input": "2024-05-03T22:12:16.117968Z", + "iopub.status.busy": "2024-05-03T22:12:16.117620Z", + "iopub.status.idle": "2024-05-03T22:12:16.149926Z", + "shell.execute_reply": "2024-05-03T22:12:16.149356Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:18.302419Z", - "iopub.status.busy": "2024-05-02T13:29:18.302063Z", - "iopub.status.idle": "2024-05-02T13:29:18.305669Z", - "shell.execute_reply": "2024-05-02T13:29:18.305198Z" + "iopub.execute_input": "2024-05-03T22:12:16.152165Z", + "iopub.status.busy": "2024-05-03T22:12:16.151785Z", + "iopub.status.idle": "2024-05-03T22:12:16.155533Z", + "shell.execute_reply": "2024-05-03T22:12:16.155075Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:18.307785Z", - "iopub.status.busy": "2024-05-02T13:29:18.307453Z", - "iopub.status.idle": "2024-05-02T13:29:18.311024Z", - "shell.execute_reply": "2024-05-02T13:29:18.310554Z" + "iopub.execute_input": "2024-05-03T22:12:16.157866Z", + "iopub.status.busy": "2024-05-03T22:12:16.157478Z", + "iopub.status.idle": "2024-05-03T22:12:16.160959Z", + "shell.execute_reply": "2024-05-03T22:12:16.160410Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'apple_pay_or_google_pay', 'cancel_transfer', 'card_about_to_expire', 'getting_spare_card', 'visa_or_mastercard', 'change_pin', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'beneficiary_not_allowed'}\n" + "Classes: {'card_about_to_expire', 'change_pin', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'getting_spare_card', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'card_payment_fee_charged', 'cancel_transfer'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:18.313057Z", - "iopub.status.busy": "2024-05-02T13:29:18.312749Z", - "iopub.status.idle": "2024-05-02T13:29:18.315876Z", - "shell.execute_reply": "2024-05-02T13:29:18.315352Z" + "iopub.execute_input": "2024-05-03T22:12:16.163177Z", + "iopub.status.busy": "2024-05-03T22:12:16.162815Z", + "iopub.status.idle": "2024-05-03T22:12:16.166010Z", + "shell.execute_reply": "2024-05-03T22:12:16.165484Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:18.318112Z", - "iopub.status.busy": "2024-05-02T13:29:18.317673Z", - "iopub.status.idle": "2024-05-02T13:29:18.321179Z", - "shell.execute_reply": "2024-05-02T13:29:18.320598Z" + "iopub.execute_input": "2024-05-03T22:12:16.168079Z", + "iopub.status.busy": "2024-05-03T22:12:16.167802Z", + "iopub.status.idle": "2024-05-03T22:12:16.171356Z", + "shell.execute_reply": "2024-05-03T22:12:16.170801Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:18.323360Z", - "iopub.status.busy": "2024-05-02T13:29:18.322968Z", - "iopub.status.idle": "2024-05-02T13:29:22.754541Z", - "shell.execute_reply": "2024-05-02T13:29:22.753946Z" + "iopub.execute_input": "2024-05-03T22:12:16.173653Z", + "iopub.status.busy": "2024-05-03T22:12:16.173314Z", + "iopub.status.idle": "2024-05-03T22:12:22.108066Z", + "shell.execute_reply": "2024-05-03T22:12:22.107385Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ab7c4d4e84fa41d886a19300852d3216", + "model_id": "7b9573a7aa194145a796e48f81f8d556", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "909dc3b33f854cafbcd0df6f3c00a701", + "model_id": "c3a15ee732834d5fb00c0da0eb162def", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9c173160eba64ea083225bc86433c3f9", + "model_id": "b837569968b7457b90fe925f428766cc", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "24e3a7299c394f499f3448b5020a6188", + "model_id": "8157222f05a847c7bea2c30c0963294f", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "80e2ab4bd056436380c1b5e0592346e4", + "model_id": "d0c171e02c474ffeaa89b9378ce89829", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e8369682b499414191a432cc0c4d35a6", + "model_id": "b3d4a8b7f1ba49b3a9eb54d219a84ef1", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "97ed0c10ec904d4f90ad4b9c5c63927d", + "model_id": "c35e550c267e4d0a9044fa4e98d2f961", "version_major": 2, "version_minor": 0 }, @@ -609,10 +609,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:22.757381Z", - "iopub.status.busy": "2024-05-02T13:29:22.756922Z", - "iopub.status.idle": "2024-05-02T13:29:22.760554Z", - "shell.execute_reply": "2024-05-02T13:29:22.759978Z" + "iopub.execute_input": "2024-05-03T22:12:22.110795Z", + "iopub.status.busy": "2024-05-03T22:12:22.110589Z", + "iopub.status.idle": "2024-05-03T22:12:22.113387Z", + "shell.execute_reply": "2024-05-03T22:12:22.112908Z" } }, "outputs": [], @@ -634,10 +634,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:22.762534Z", - "iopub.status.busy": "2024-05-02T13:29:22.762345Z", - "iopub.status.idle": "2024-05-02T13:29:22.765179Z", - "shell.execute_reply": "2024-05-02T13:29:22.764711Z" + "iopub.execute_input": "2024-05-03T22:12:22.115300Z", + "iopub.status.busy": "2024-05-03T22:12:22.115115Z", + "iopub.status.idle": "2024-05-03T22:12:22.117749Z", + "shell.execute_reply": "2024-05-03T22:12:22.117298Z" } }, "outputs": [], @@ -652,10 +652,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:22.767121Z", - "iopub.status.busy": "2024-05-02T13:29:22.766805Z", - "iopub.status.idle": "2024-05-02T13:29:25.036776Z", - "shell.execute_reply": "2024-05-02T13:29:25.036044Z" + "iopub.execute_input": "2024-05-03T22:12:22.119758Z", + "iopub.status.busy": "2024-05-03T22:12:22.119577Z", + "iopub.status.idle": "2024-05-03T22:12:24.416395Z", + "shell.execute_reply": "2024-05-03T22:12:24.415776Z" }, "scrolled": true }, @@ -678,10 +678,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:25.039848Z", - "iopub.status.busy": "2024-05-02T13:29:25.039217Z", - "iopub.status.idle": "2024-05-02T13:29:25.047233Z", - "shell.execute_reply": "2024-05-02T13:29:25.046781Z" + "iopub.execute_input": "2024-05-03T22:12:24.419388Z", + "iopub.status.busy": "2024-05-03T22:12:24.418702Z", + "iopub.status.idle": "2024-05-03T22:12:24.426617Z", + "shell.execute_reply": "2024-05-03T22:12:24.426094Z" } }, "outputs": [ @@ -782,10 +782,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:25.049246Z", - "iopub.status.busy": "2024-05-02T13:29:25.048912Z", - "iopub.status.idle": "2024-05-02T13:29:25.052715Z", - "shell.execute_reply": "2024-05-02T13:29:25.052248Z" + "iopub.execute_input": "2024-05-03T22:12:24.428778Z", + "iopub.status.busy": "2024-05-03T22:12:24.428423Z", + "iopub.status.idle": "2024-05-03T22:12:24.432266Z", + "shell.execute_reply": "2024-05-03T22:12:24.431825Z" } }, "outputs": [], @@ -799,10 +799,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:25.054780Z", - "iopub.status.busy": "2024-05-02T13:29:25.054373Z", - "iopub.status.idle": "2024-05-02T13:29:25.057669Z", - "shell.execute_reply": "2024-05-02T13:29:25.057216Z" + "iopub.execute_input": "2024-05-03T22:12:24.434358Z", + "iopub.status.busy": "2024-05-03T22:12:24.434037Z", + "iopub.status.idle": "2024-05-03T22:12:24.437211Z", + "shell.execute_reply": "2024-05-03T22:12:24.436655Z" } }, "outputs": [ @@ -837,10 +837,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:25.059738Z", - "iopub.status.busy": "2024-05-02T13:29:25.059432Z", - "iopub.status.idle": "2024-05-02T13:29:25.062490Z", - "shell.execute_reply": "2024-05-02T13:29:25.061933Z" + "iopub.execute_input": "2024-05-03T22:12:24.439263Z", + "iopub.status.busy": "2024-05-03T22:12:24.438915Z", + "iopub.status.idle": "2024-05-03T22:12:24.441972Z", + "shell.execute_reply": "2024-05-03T22:12:24.441500Z" } }, "outputs": [], @@ -860,10 +860,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:25.064465Z", - "iopub.status.busy": "2024-05-02T13:29:25.064073Z", - "iopub.status.idle": "2024-05-02T13:29:25.072331Z", - "shell.execute_reply": "2024-05-02T13:29:25.071773Z" + "iopub.execute_input": "2024-05-03T22:12:24.443897Z", + "iopub.status.busy": "2024-05-03T22:12:24.443597Z", + "iopub.status.idle": "2024-05-03T22:12:24.450907Z", + "shell.execute_reply": "2024-05-03T22:12:24.450366Z" } }, "outputs": [ @@ -988,10 +988,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:25.074364Z", - "iopub.status.busy": "2024-05-02T13:29:25.074068Z", - "iopub.status.idle": "2024-05-02T13:29:25.300522Z", - "shell.execute_reply": "2024-05-02T13:29:25.299985Z" + "iopub.execute_input": "2024-05-03T22:12:24.453073Z", + "iopub.status.busy": "2024-05-03T22:12:24.452765Z", + "iopub.status.idle": "2024-05-03T22:12:24.677736Z", + "shell.execute_reply": "2024-05-03T22:12:24.677170Z" }, "scrolled": true }, @@ -1030,10 +1030,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:25.304047Z", - "iopub.status.busy": "2024-05-02T13:29:25.302934Z", - "iopub.status.idle": "2024-05-02T13:29:25.481924Z", - "shell.execute_reply": "2024-05-02T13:29:25.481365Z" + "iopub.execute_input": "2024-05-03T22:12:24.680552Z", + "iopub.status.busy": "2024-05-03T22:12:24.680140Z", + "iopub.status.idle": "2024-05-03T22:12:24.857159Z", + "shell.execute_reply": "2024-05-03T22:12:24.856561Z" }, "scrolled": true }, @@ -1066,10 +1066,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:25.485856Z", - "iopub.status.busy": "2024-05-02T13:29:25.484879Z", - "iopub.status.idle": "2024-05-02T13:29:25.489930Z", - "shell.execute_reply": "2024-05-02T13:29:25.489412Z" + "iopub.execute_input": "2024-05-03T22:12:24.859896Z", + "iopub.status.busy": "2024-05-03T22:12:24.859474Z", + "iopub.status.idle": "2024-05-03T22:12:24.863517Z", + "shell.execute_reply": "2024-05-03T22:12:24.862992Z" }, "nbsphinx": "hidden" }, @@ -1113,23 +1113,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "029a1c26e6994839bbc83345d6d397e7": { + "04b847e4715a4f9d884319267d0bfd81": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_65eecf90843541feacc0f748437049a3", + "placeholder": "​", + "style": "IPY_MODEL_8cce5eb5e35041cfbe78f66c70d0c41b", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" } }, - "03b6f235edf44636b2383ed04ed264b4": { + "073b2d17682349df9ca0558b9c1e72b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1182,7 +1189,23 @@ "width": null } }, - "0678363e264b4ff18f149ce4e1a8845d": { + "08adb827cfb74334bb1e85e64c4c43b7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0e15be41182e4286b8e35feb1eb6ab77": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1235,69 +1258,60 @@ "width": null } }, - "0fdad1d12f2c441a9537cc53c59008b2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "184832df7c3b4e2484e0f7c25dd681a8": { - "model_module": "@jupyter-widgets/controls", + "162dde5167d04c25b5f8833df733d289": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1a84037dca904a6aaad86a6300128025": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0678363e264b4ff18f149ce4e1a8845d", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_caeb5c46ccff43519ec1e20e8ea26245", - "tabbable": null, - "tooltip": null, - "value": 231508.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1c656bb6c8494a34ad5735d4ea3d1bad": { + "1641546eeaaa45aeb726b4a092fdddd3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1315,122 +1329,7 @@ "text_color": null } }, - "213ef8efa4dd41929e2bc2c26fcec419": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4546787b444f46d7adcf3b2050784bb8", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_701a87cb9c1e41829a2900ff7d8c4f12", - "tabbable": null, - "tooltip": null, - "value": 2211.0 - } - }, - "24e3a7299c394f499f3448b5020a6188": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_eb44d03da4e741f180083d511bf1760f", - "IPY_MODEL_5279173630944ff990b77fe2293f9249", - "IPY_MODEL_f4aa3a48a1d44e3e863f16e1d1fdc5b7" - ], - "layout": "IPY_MODEL_f8b039b4504c482791bf4f3a9a57a0b0", - "tabbable": null, - "tooltip": null - } - }, - "2645b45f653346a88f130083d8e5323e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9625d7466576439192b6332852e5ad85", - "placeholder": "​", - "style": "IPY_MODEL_1c656bb6c8494a34ad5735d4ea3d1bad", - "tabbable": null, - "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 7.90kB/s]" - } - }, - "297f77df560743f6ac059c87f01ab176": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8dc2b7bbc1a84279b44d54ce2150091f", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2e6a6bfb51934a059dc1e9badd1acaf7", - "tabbable": null, - "tooltip": null, - "value": 48.0 - } - }, - "2e6a6bfb51934a059dc1e9badd1acaf7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "32affafe2fe24c90bc046f261e13b756": { + "1998374c0c25487bad497735433571de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1483,7 +1382,7 @@ "width": null } }, - "34d0ecaed2794f3e89efd77ff610d217": { + "1aa1b202807544b5a700dd938d9c4bfc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1501,48 +1400,7 @@ "text_color": null } }, - "371c5be81a874ac7912ed845a47013e7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3b01d68b67344e3cbdf101ba8c84332b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_abb3f94ef4ee49009323ea020c4f2aaf", - "placeholder": "​", - "style": "IPY_MODEL_e7e71a4adfb047a8b3c125b6db72544e", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 117kB/s]" - } - }, - "3b7062e869654114a0e3c74dc74951dd": { + "1beb31c34df94d1abc4de872eb1cc4b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1595,7 +1453,7 @@ "width": null } }, - "3e2b37936b0945d9ba4e7ad784352291": { + "1c5bd33707624495ab832cec0d936cb3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1648,7 +1506,25 @@ "width": null } }, - "40238e58943a4547a51ab38df1923c3e": { + "22fb76db66bd4a89b5878dd59e542b2a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2775d62e1f7a4bde845a6e75be37e00f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1666,7 +1542,7 @@ "text_color": null } }, - "4296ccb88d284da69c026273942546d9": { + "2f9c9b1992f84356808215436364f6e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1719,7 +1595,7 @@ "width": null } }, - "4546787b444f46d7adcf3b2050784bb8": { + "325d9f3bfbd44a1794a15fbe9f99d1c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1772,51 +1648,7 @@ "width": null } }, - "478dcf21406e41228ce514e8333cad30": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5279173630944ff990b77fe2293f9249": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f88fdb4590ac403593aff1c9dd2f6d6e", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e55cae4051e34c6fb446392e47f0232b", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 - } - }, - "52ac2d6f930a4d03b5202f821806223a": { + "3c5ec35fa9cf43fda2865ac8704ae196": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1869,7 +1701,74 @@ "width": null } }, - "53248f0ef84e4956bfe89b0b89e7e291": { + "3d57c8fb79b742b1bfdf9bffe21c65d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bcb98acfd4b746d3a045fae1b0135406", + "placeholder": "​", + "style": "IPY_MODEL_403482242df14c94b7bb7589bea84ac7", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 367kB/s]" + } + }, + "3dc5bfad508346719d464a2809c2c6f4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c83783e3b850498d97bfc8589365ea27", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4e8717e2cf854277b1a641a2d0d1f92a", + "tabbable": null, + "tooltip": null, + "value": 391.0 + } + }, + "403482242df14c94b7bb7589bea84ac7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "41ebb6d3e67f441089af75e180b2446b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1922,7 +1821,7 @@ "width": null } }, - "5922b3a975c143818a6b10771ee3eb61": { + "47a61a34c883423987e6c4253210bd22": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1975,56 +1874,7 @@ "width": null } }, - "59ad8e80906748b9a39357935f7e6eb0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4296ccb88d284da69c026273942546d9", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6a669054126e412194b7ca24541c1883", - "tabbable": null, - "tooltip": null, - "value": 665.0 - } - }, - "5a8c3f894ee44f6f9e95cd7cf6b61011": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5922b3a975c143818a6b10771ee3eb61", - "placeholder": "​", - "style": "IPY_MODEL_184832df7c3b4e2484e0f7c25dd681a8", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" - } - }, - "60a3c9a69134435cae5accf0ba3b69b6": { + "4a7c321915454a2398e52f35cdba2577": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2039,15 +1889,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3b7062e869654114a0e3c74dc74951dd", + "layout": "IPY_MODEL_5644bd52dee1404da038f918dd946d0e", "placeholder": "​", - "style": "IPY_MODEL_478dcf21406e41228ce514e8333cad30", + "style": "IPY_MODEL_52270962cb1747fc89c1c7dbc9e5040a", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": "tokenizer_config.json: 100%" } }, - "6375bd9dfd014dd0a478b1603551769b": { + "4c217c04a228472883ffc929dd440ae8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2062,15 +1912,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_03b6f235edf44636b2383ed04ed264b4", + "layout": "IPY_MODEL_4d5f0f7b08e0406e8d1ebe549098efca", "placeholder": "​", - "style": "IPY_MODEL_c3389e17f00b4ad18197d9bd0ecf4656", + "style": "IPY_MODEL_52d36e85d95a44d59e3d6df0daf4dbd1", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" + "value": "tokenizer.json: 100%" } }, - "6415bf2831ce4746a04348168b7dcba1": { + "4d5f0f7b08e0406e8d1ebe549098efca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2123,7 +1973,7 @@ "width": null } }, - "6a669054126e412194b7ca24541c1883": { + "4e8717e2cf854277b1a641a2d0d1f92a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2139,23 +1989,25 @@ "description_width": "" } }, - "701a87cb9c1e41829a2900ff7d8c4f12": { + "52270962cb1747fc89c1c7dbc9e5040a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7e011ca59afa4bff865141aa84b54038": { + "52d36e85d95a44d59e3d6df0daf4dbd1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2173,31 +2025,30 @@ "text_color": null } }, - "80e2ab4bd056436380c1b5e0592346e4": { + "5418de43801a4683b407c89ee1f7d114": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5a8c3f894ee44f6f9e95cd7cf6b61011", - "IPY_MODEL_d28762e873ae49f69209ac5fa762ba99", - "IPY_MODEL_b54e208713f94de79dc77a244c995fad" - ], - "layout": "IPY_MODEL_32affafe2fe24c90bc046f261e13b756", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3c5ec35fa9cf43fda2865ac8704ae196", + "placeholder": "​", + "style": "IPY_MODEL_2775d62e1f7a4bde845a6e75be37e00f", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 6.36kB/s]" } }, - "8978567939be46eeb088d6d12ba98200": { + "5644bd52dee1404da038f918dd946d0e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2250,30 +2101,33 @@ "width": null } }, - "8c54d8c461d04f399fbf9dc4fcbc06ea": { + "58a49a0c670447f6af7aef4e4dfe0a8f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c17f51b6f30c40fca707f742541a15f3", - "placeholder": "​", - "style": "IPY_MODEL_9fe4f6948fff42cda141fd670b67c9fd", + "layout": "IPY_MODEL_2f9c9b1992f84356808215436364f6e5", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_08adb827cfb74334bb1e85e64c4c43b7", "tabbable": null, "tooltip": null, - "value": ".gitattributes: 100%" + "value": 54245363.0 } }, - "8dc2b7bbc1a84279b44d54ce2150091f": { + "5f5094c2684e4497bca3518271a40440": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2326,49 +2180,7 @@ "width": null } }, - "909dc3b33f854cafbcd0df6f3c00a701": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c0294c660a044c7a9086ab88e7baaf34", - "IPY_MODEL_213ef8efa4dd41929e2bc2c26fcec419", - "IPY_MODEL_c1037c25c85344fea78c2adc7bfe730a" - ], - "layout": "IPY_MODEL_52ac2d6f930a4d03b5202f821806223a", - "tabbable": null, - "tooltip": null - } - }, - "962488f3426f4d61a59ca7191c7f4c5d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9625d7466576439192b6332852e5ad85": { + "65eecf90843541feacc0f748437049a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2421,73 +2233,60 @@ "width": null } }, - "97ed0c10ec904d4f90ad4b9c5c63927d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f6c882e5a34f499b936ab00c252b3229", - "IPY_MODEL_1a84037dca904a6aaad86a6300128025", - "IPY_MODEL_baec2516b0604612913c9d709e4301b6" - ], - "layout": "IPY_MODEL_3e2b37936b0945d9ba4e7ad784352291", - "tabbable": null, - "tooltip": null - } - }, - "9c173160eba64ea083225bc86433c3f9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_60a3c9a69134435cae5accf0ba3b69b6", - "IPY_MODEL_59ad8e80906748b9a39357935f7e6eb0", - "IPY_MODEL_3b01d68b67344e3cbdf101ba8c84332b" - ], - "layout": "IPY_MODEL_bff09e74c4024d56ad1b1a37457ccb96", - "tabbable": null, - "tooltip": null - } - }, - "9fe4f6948fff42cda141fd670b67c9fd": { - "model_module": "@jupyter-widgets/controls", + "6cf7bf3166d64dbbb5ad4e3bba4161f1": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a23ad2a3f6e64a81838e754e378bb283": { + "6d4761e1fefe4581b457d043a30f4e00": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2540,7 +2339,140 @@ "width": null } }, - "a29d4b7c5241436c9b671ddef2d84484": { + "7008b85ba7b84ca38d4648d1add0d4ed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "725187aa13244de6a16495161d300d8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "793aec3b70b145d99931b240e3ec7f4d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1beb31c34df94d1abc4de872eb1cc4b5", + "placeholder": "​", + "style": "IPY_MODEL_ce3090d952be4bd48ab409b623e94c3e", + "tabbable": null, + "tooltip": null, + "value": "config.json: 100%" + } + }, + "79460b868bac4488b8e5280126d2ae0e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d3b0ea3ee99b4ba0a29e0d2afcf33f77", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_bf4c37e338524284a9e850f5d4d0ce9c", + "tabbable": null, + "tooltip": null, + "value": 2211.0 + } + }, + "7b9573a7aa194145a796e48f81f8d556": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_04b847e4715a4f9d884319267d0bfd81", + "IPY_MODEL_3dc5bfad508346719d464a2809c2c6f4", + "IPY_MODEL_9fdfa7c789654753bc5c125d1749ad29" + ], + "layout": "IPY_MODEL_f422b12a9ae745d0850dbcc8358da0f1", + "tabbable": null, + "tooltip": null + } + }, + "8157222f05a847c7bea2c30c0963294f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b565bb30a7f24437a51bfd53eccf2990", + "IPY_MODEL_58a49a0c670447f6af7aef4e4dfe0a8f", + "IPY_MODEL_be993911cdb74ec0ab86e3ed2731c0d8" + ], + "layout": "IPY_MODEL_81b96fa31553427d8881560ea7eb09d4", + "tabbable": null, + "tooltip": null + } + }, + "81b96fa31553427d8881560ea7eb09d4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2593,7 +2525,7 @@ "width": null } }, - "a71388c2db2d44379d215975c39d323e": { + "8277711fc47243babca344a8dbe404d0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2646,84 +2578,89 @@ "width": null } }, - "a955d6e5095d4e9099147b1c49ee7819": { - "model_module": "@jupyter-widgets/base", + "8cce5eb5e35041cfbe78f66c70d0c41b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ab7c4d4e84fa41d886a19300852d3216": { + "91cbea18bc9e45e7bea14f51dbcabc46": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8c54d8c461d04f399fbf9dc4fcbc06ea", - "IPY_MODEL_de4688f24648490b911064542fd03459", - "IPY_MODEL_b5ec2c4e269b42088973f291ef708275" - ], - "layout": "IPY_MODEL_6415bf2831ce4746a04348168b7dcba1", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0e15be41182e4286b8e35feb1eb6ab77", + "placeholder": "​", + "style": "IPY_MODEL_1aa1b202807544b5a700dd938d9c4bfc", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 20.9MB/s]" + } + }, + "9c5a1c3701914851bec246ff53ad6a48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6d4761e1fefe4581b457d043a30f4e00", + "placeholder": "​", + "style": "IPY_MODEL_7008b85ba7b84ca38d4648d1add0d4ed", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 120kB/s]" + } + }, + "9d41c42b4ea341289ff79799915c47f6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "abb3f94ef4ee49009323ea020c4f2aaf": { + "9e2aeb7dbb26432b909ecdb408d03e14": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2776,7 +2713,7 @@ "width": null } }, - "b54e208713f94de79dc77a244c995fad": { + "9fdfa7c789654753bc5c125d1749ad29": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2791,15 +2728,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a29d4b7c5241436c9b671ddef2d84484", + "layout": "IPY_MODEL_47a61a34c883423987e6c4253210bd22", "placeholder": "​", - "style": "IPY_MODEL_371c5be81a874ac7912ed845a47013e7", + "style": "IPY_MODEL_fcd6536b6cd74015b5e2a9b9b46c4384", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 14.0MB/s]" + "value": " 391/391 [00:00<00:00, 62.2kB/s]" } }, - "b5ec2c4e269b42088973f291ef708275": { + "ab80f73526bb430094ae4a3351c6b890": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2814,114 +2751,81 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a71388c2db2d44379d215975c39d323e", + "layout": "IPY_MODEL_8277711fc47243babca344a8dbe404d0", "placeholder": "​", - "style": "IPY_MODEL_7e011ca59afa4bff865141aa84b54038", + "style": "IPY_MODEL_f9f48062e628493d9df4448ce044c8f3", "tabbable": null, "tooltip": null, - "value": " 391/391 [00:00<00:00, 60.4kB/s]" + "value": "vocab.txt: 100%" } }, - "baec2516b0604612913c9d709e4301b6": { + "ac44a545c1ff4410892f4a52144f1fa1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a23ad2a3f6e64a81838e754e378bb283", - "placeholder": "​", - "style": "IPY_MODEL_40238e58943a4547a51ab38df1923c3e", + "layout": "IPY_MODEL_1c5bd33707624495ab832cec0d936cb3", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f09be008848b41e69f1966e629cd1a5a", "tabbable": null, "tooltip": null, - "value": " 232k/232k [00:00<00:00, 32.9MB/s]" + "value": 466062.0 } }, - "bff09e74c4024d56ad1b1a37457ccb96": { - "model_module": "@jupyter-widgets/base", + "b02231d56d704967b40a87a881bb887b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "c0294c660a044c7a9086ab88e7baaf34": { + "b3d4a8b7f1ba49b3a9eb54d219a84ef1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ef79791b224d4cf9accbc7bcc5a99699", - "placeholder": "​", - "style": "IPY_MODEL_962488f3426f4d61a59ca7191c7f4c5d", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4a7c321915454a2398e52f35cdba2577", + "IPY_MODEL_fd8ab93ec5014527bfcfbb2682daa171", + "IPY_MODEL_5418de43801a4683b407c89ee1f7d114" + ], + "layout": "IPY_MODEL_6cf7bf3166d64dbbb5ad4e3bba4161f1", "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" + "tooltip": null } }, - "c1037c25c85344fea78c2adc7bfe730a": { + "b565bb30a7f24437a51bfd53eccf2990": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2936,15 +2840,55 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8978567939be46eeb088d6d12ba98200", + "layout": "IPY_MODEL_ed9c25dd6b874e16976902296147d723", "placeholder": "​", - "style": "IPY_MODEL_d95aca1bf3824fd2be21542c1726a9a8", + "style": "IPY_MODEL_725187aa13244de6a16495161d300d8a", "tabbable": null, "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 313kB/s]" + "value": "pytorch_model.bin: 100%" + } + }, + "b63fff4461194b8db7988efd6ae9cab3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b837569968b7457b90fe925f428766cc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_793aec3b70b145d99931b240e3ec7f4d", + "IPY_MODEL_cf8036cb41514f38b1ac514b34ed2709", + "IPY_MODEL_9c5a1c3701914851bec246ff53ad6a48" + ], + "layout": "IPY_MODEL_5f5094c2684e4497bca3518271a40440", + "tabbable": null, + "tooltip": null } }, - "c17f51b6f30c40fca707f742541a15f3": { + "bcb98acfd4b746d3a045fae1b0135406": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2997,75 +2941,117 @@ "width": null } }, - "c3389e17f00b4ad18197d9bd0ecf4656": { + "be993911cdb74ec0ab86e3ed2731c0d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_162dde5167d04c25b5f8833df733d289", + "placeholder": "​", + "style": "IPY_MODEL_9d41c42b4ea341289ff79799915c47f6", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:01<00:00, 33.5MB/s]" + } + }, + "bf4c37e338524284a9e850f5d4d0ce9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "c46b2fb4e41d4a94a1c1e48ef42c4707": { + "c152db80b5f44a69b2d962d53d16e168": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9e2aeb7dbb26432b909ecdb408d03e14", + "placeholder": "​", + "style": "IPY_MODEL_1641546eeaaa45aeb726b4a092fdddd3", + "tabbable": null, + "tooltip": null, + "value": " 232k/232k [00:00<00:00, 33.0MB/s]" } }, - "caeb5c46ccff43519ec1e20e8ea26245": { + "c35e550c267e4d0a9044fa4e98d2f961": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ab80f73526bb430094ae4a3351c6b890", + "IPY_MODEL_f5ec1a62f72347deab37ba29f14d6536", + "IPY_MODEL_c152db80b5f44a69b2d962d53d16e168" + ], + "layout": "IPY_MODEL_41ebb6d3e67f441089af75e180b2446b", + "tabbable": null, + "tooltip": null } }, - "cd5849df9f1e4a53ad125a910839f11c": { + "c3a15ee732834d5fb00c0da0eb162def": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e813f30083374abaa2580d7d16a86c09", + "IPY_MODEL_79460b868bac4488b8e5280126d2ae0e", + "IPY_MODEL_3d57c8fb79b742b1bfdf9bffe21c65d9" + ], + "layout": "IPY_MODEL_ece71898229e4b49977f7077d75d170e", + "tabbable": null, + "tooltip": null } }, - "ce5e63dcc0ec44139f0e0079961c6bef": { + "c83783e3b850498d97bfc8589365ea27": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3118,33 +3104,7 @@ "width": null } }, - "d28762e873ae49f69209ac5fa762ba99": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_53248f0ef84e4956bfe89b0b89e7e291", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c46b2fb4e41d4a94a1c1e48ef42c4707", - "tabbable": null, - "tooltip": null, - "value": 466062.0 - } - }, - "d95aca1bf3824fd2be21542c1726a9a8": { + "ce3090d952be4bd48ab409b623e94c3e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3162,7 +3122,7 @@ "text_color": null } }, - "de4688f24648490b911064542fd03459": { + "cf8036cb41514f38b1ac514b34ed2709": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3178,51 +3138,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fb0217862fb548f8ab3d5aec20197fc2", - "max": 391.0, + "layout": "IPY_MODEL_073b2d17682349df9ca0558b9c1e72b1", + "max": 665.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_029a1c26e6994839bbc83345d6d397e7", + "style": "IPY_MODEL_b63fff4461194b8db7988efd6ae9cab3", "tabbable": null, "tooltip": null, - "value": 391.0 - } - }, - "e55cae4051e34c6fb446392e47f0232b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e7e71a4adfb047a8b3c125b6db72544e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 665.0 } }, - "e8369682b499414191a432cc0c4d35a6": { + "d0c171e02c474ffeaa89b9378ce89829": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3237,16 +3163,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6375bd9dfd014dd0a478b1603551769b", - "IPY_MODEL_297f77df560743f6ac059c87f01ab176", - "IPY_MODEL_2645b45f653346a88f130083d8e5323e" + "IPY_MODEL_4c217c04a228472883ffc929dd440ae8", + "IPY_MODEL_ac44a545c1ff4410892f4a52144f1fa1", + "IPY_MODEL_91cbea18bc9e45e7bea14f51dbcabc46" ], - "layout": "IPY_MODEL_a955d6e5095d4e9099147b1c49ee7819", + "layout": "IPY_MODEL_e66a653ee6924009b0b21a7197b2742d", "tabbable": null, "tooltip": null } }, - "ea1c4aa2595046158b29f3cbb71e866b": { + "d3b0ea3ee99b4ba0a29e0d2afcf33f77": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3299,30 +3225,23 @@ "width": null } }, - "eb44d03da4e741f180083d511bf1760f": { + "dcbb8b64869c4076ab5a08dd829dabf4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ce5e63dcc0ec44139f0e0079961c6bef", - "placeholder": "​", - "style": "IPY_MODEL_34d0ecaed2794f3e89efd77ff610d217", - "tabbable": null, - "tooltip": null, - "value": "pytorch_model.bin: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "ef79791b224d4cf9accbc7bcc5a99699": { + "e66a653ee6924009b0b21a7197b2742d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3375,30 +3294,7 @@ "width": null } }, - "f4aa3a48a1d44e3e863f16e1d1fdc5b7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f60b22685bf5466c9d395195aa698fb7", - "placeholder": "​", - "style": "IPY_MODEL_0fdad1d12f2c441a9537cc53c59008b2", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 141MB/s]" - } - }, - "f60b22685bf5466c9d395195aa698fb7": { + "e81006ca65c64a3e9d3bc63a401aaa64": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3451,7 +3347,7 @@ "width": null } }, - "f6c882e5a34f499b936ab00c252b3229": { + "e813f30083374abaa2580d7d16a86c09": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3466,15 +3362,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ea1c4aa2595046158b29f3cbb71e866b", + "layout": "IPY_MODEL_1998374c0c25487bad497735433571de", "placeholder": "​", - "style": "IPY_MODEL_cd5849df9f1e4a53ad125a910839f11c", + "style": "IPY_MODEL_22fb76db66bd4a89b5878dd59e542b2a", "tabbable": null, "tooltip": null, - "value": "vocab.txt: 100%" + "value": "README.md: 100%" } }, - "f88fdb4590ac403593aff1c9dd2f6d6e": { + "ece71898229e4b49977f7077d75d170e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3527,7 +3423,7 @@ "width": null } }, - "f8b039b4504c482791bf4f3a9a57a0b0": { + "ed9c25dd6b874e16976902296147d723": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3580,7 +3476,23 @@ "width": null } }, - "fb0217862fb548f8ab3d5aec20197fc2": { + "f09be008848b41e69f1966e629cd1a5a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f422b12a9ae745d0850dbcc8358da0f1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3632,6 +3544,94 @@ "visibility": null, "width": null } + }, + "f5ec1a62f72347deab37ba29f14d6536": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e81006ca65c64a3e9d3bc63a401aaa64", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b02231d56d704967b40a87a881bb887b", + "tabbable": null, + "tooltip": null, + "value": 231508.0 + } + }, + "f9f48062e628493d9df4448ce044c8f3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fcd6536b6cd74015b5e2a9b9b46c4384": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fd8ab93ec5014527bfcfbb2682daa171": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_325d9f3bfbd44a1794a15fbe9f99d1c9", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_dcbb8b64869c4076ab5a08dd829dabf4", + "tabbable": null, + "tooltip": null, + "value": 48.0 + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index 9d4238245..b7d00bd4e 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1318,7 +1318,7 @@

5. Use cleanlab to find label issues -{"state": {"125867b1283f48bdb4c2f2b33f171dfe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3b51655d11d84831ba2fba8270c44b2e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a295bbf84e0a4c64a98c8b73cf1dcc4c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_125867b1283f48bdb4c2f2b33f171dfe", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3b51655d11d84831ba2fba8270c44b2e", "tabbable": null, "tooltip": null, "value": 2041.0}}, "017fb529a8ed426f885b3a7a10241dbf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "62ae9caa31724df2b4014613622554ed": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ae24c8a050084345aa994c1eb1d4e277": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_017fb529a8ed426f885b3a7a10241dbf", "placeholder": "\u200b", "style": "IPY_MODEL_62ae9caa31724df2b4014613622554ed", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "afd38c59c83c427bb522f9e4bf8c0f2a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f3d9666f393541d7ae248860ad0b0087": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6cd7f13960d44c2a86926fde8d8016b3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_afd38c59c83c427bb522f9e4bf8c0f2a", "placeholder": "\u200b", "style": "IPY_MODEL_f3d9666f393541d7ae248860ad0b0087", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007458kB/s]"}}, "419aab49f4e74c108e8874a4af7eda0e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d3d63e8fa4c54b71a1cfce54d179d573": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ae24c8a050084345aa994c1eb1d4e277", "IPY_MODEL_a295bbf84e0a4c64a98c8b73cf1dcc4c", "IPY_MODEL_6cd7f13960d44c2a86926fde8d8016b3"], "layout": "IPY_MODEL_419aab49f4e74c108e8874a4af7eda0e", "tabbable": null, "tooltip": null}}, "55940b5bcd0044859720e4343caa2ca7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6d90ba1d244749f38ab910caad1b600f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2525e92836834ac4a5bafccfa299bd3b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_55940b5bcd0044859720e4343caa2ca7", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6d90ba1d244749f38ab910caad1b600f", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "7a334dfd12764e0c8a1e9e29890de913": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d449e21cfcaa4c65bf1c393f81709cac": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0f43dc367f0f4ad08e763837ffc89e74": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7a334dfd12764e0c8a1e9e29890de913", "placeholder": "\u200b", "style": "IPY_MODEL_d449e21cfcaa4c65bf1c393f81709cac", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "bc54b54b9756479692090d0c84776f4d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "32c629e3150844629dee17335626b92a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "eaf6d3a89feb4e5cb24984aae1439bcd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bc54b54b9756479692090d0c84776f4d", "placeholder": "\u200b", "style": "IPY_MODEL_32c629e3150844629dee17335626b92a", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007181MB/s]"}}, "a8e9bebe6da2438983752702b67fa342": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e020d7b41f6e4bfe834f3176eb928968": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0f43dc367f0f4ad08e763837ffc89e74", "IPY_MODEL_2525e92836834ac4a5bafccfa299bd3b", "IPY_MODEL_eaf6d3a89feb4e5cb24984aae1439bcd"], "layout": "IPY_MODEL_a8e9bebe6da2438983752702b67fa342", "tabbable": null, "tooltip": null}}, "523dd93932954597b0e0cb53131bda73": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7e44bd2c963748fa8899ff96fcad4295": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5b0122ec46594ca096fb240f38aaa111": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_523dd93932954597b0e0cb53131bda73", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7e44bd2c963748fa8899ff96fcad4295", "tabbable": null, "tooltip": null, "value": 3201.0}}, "67c1ca1445f340ad9a0743cdec0848c9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f206e3d8a45b4a08b829d5313dbf4258": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "abfa60b3499447eeaa0b8325974aa3a6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_67c1ca1445f340ad9a0743cdec0848c9", "placeholder": "\u200b", "style": "IPY_MODEL_f206e3d8a45b4a08b829d5313dbf4258", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "33a4b706ec324e999d93f49be5018be0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "016c4ff99c0f4a858413cf5b66590ce0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ecb8f3287adc46948bc0b2bfea3510ae": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_33a4b706ec324e999d93f49be5018be0", "placeholder": "\u200b", "style": "IPY_MODEL_016c4ff99c0f4a858413cf5b66590ce0", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007738kB/s]"}}, "a6a3dc29a2e34c49b48b88e51b594136": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "33cd1056dbc14221b0d7d59e9d7b0431": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_abfa60b3499447eeaa0b8325974aa3a6", "IPY_MODEL_5b0122ec46594ca096fb240f38aaa111", "IPY_MODEL_ecb8f3287adc46948bc0b2bfea3510ae"], "layout": "IPY_MODEL_a6a3dc29a2e34c49b48b88e51b594136", "tabbable": null, "tooltip": null}}, "3482c44bf8f745008c7c99dee4baee7c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ec9c0752b1eb46138563fd2369b20be7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3d27af5988404b628f815877cb4dcb22": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3482c44bf8f745008c7c99dee4baee7c", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ec9c0752b1eb46138563fd2369b20be7", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "ac6ce81ab0de4d9a9f519ec01d634788": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b29b869a20244bba998603ba45fc69cf": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "95995840d9ca4920b1e236299ed8e89e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ac6ce81ab0de4d9a9f519ec01d634788", "placeholder": "\u200b", "style": "IPY_MODEL_b29b869a20244bba998603ba45fc69cf", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "7155fefc55684acbab864f43414e9aae": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fb926ff8d800425c9dae4c55b7967db2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9d91c5cd894c4950ab8aaf8f2f8d21e0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7155fefc55684acbab864f43414e9aae", "placeholder": "\u200b", "style": "IPY_MODEL_fb926ff8d800425c9dae4c55b7967db2", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u200787.4MB/s]"}}, "69dd1528b8414e55b25e0a3c97161374": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6a786bb3d219488d8701ae278a2deeb2": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_95995840d9ca4920b1e236299ed8e89e", "IPY_MODEL_3d27af5988404b628f815877cb4dcb22", "IPY_MODEL_9d91c5cd894c4950ab8aaf8f2f8d21e0"], "layout": "IPY_MODEL_69dd1528b8414e55b25e0a3c97161374", "tabbable": null, "tooltip": null}}, "351cdfcbc8924c93aaa8727ecf6fc0e4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8b0f09db8e7142aaadb038be42a0c2bf": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "fe861b857c22471aa29db92df96dc57e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_351cdfcbc8924c93aaa8727ecf6fc0e4", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8b0f09db8e7142aaadb038be42a0c2bf", "tabbable": null, "tooltip": null, "value": 128619.0}}, "c1e034d3cd1c47c1a72396b32178bfb8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3c64b006679a462d955d5f6ebc188c0d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9a3aa26119274c4fae4dc87891e45d23": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c1e034d3cd1c47c1a72396b32178bfb8", "placeholder": "\u200b", "style": "IPY_MODEL_3c64b006679a462d955d5f6ebc188c0d", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "74085b59bd524401b225e644bbc6f9c8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "72b484e52b824ee1b23c99e8b38ae62c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6246de7fedf8471b8a46692e529a0775": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_74085b59bd524401b225e644bbc6f9c8", "placeholder": "\u200b", "style": "IPY_MODEL_72b484e52b824ee1b23c99e8b38ae62c", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20077.87MB/s]"}}, "ddaf549e6c0f4993bc0663660ba70a73": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "11ded59de175425797de94add4c16811": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_9a3aa26119274c4fae4dc87891e45d23", "IPY_MODEL_fe861b857c22471aa29db92df96dc57e", "IPY_MODEL_6246de7fedf8471b8a46692e529a0775"], "layout": "IPY_MODEL_ddaf549e6c0f4993bc0663660ba70a73", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"a7fb305e6568467b83c49450c4389b08": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cc6ad65672b34f3f9c43953efaa5d5d0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2de3ad73ad244a5197c4822a372f3110": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a7fb305e6568467b83c49450c4389b08", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_cc6ad65672b34f3f9c43953efaa5d5d0", "tabbable": null, "tooltip": null, "value": 2041.0}}, "a3a63f418a724beb80940331e0bb8e8e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1f4b66ffa5a84c38adb82533626ec568": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1c0b25178d4b48a99c7f2150bd0f0824": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a3a63f418a724beb80940331e0bb8e8e", "placeholder": "\u200b", "style": "IPY_MODEL_1f4b66ffa5a84c38adb82533626ec568", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "70373ddc6062471aa5a82f784d1d001e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2924f39fcc8b4ee487bdf2e84bf4e50f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f81c62b999974aad9306a5a0b696be8e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_70373ddc6062471aa5a82f784d1d001e", "placeholder": "\u200b", "style": "IPY_MODEL_2924f39fcc8b4ee487bdf2e84bf4e50f", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007464kB/s]"}}, "52d6aa112e2148b5b9c54ec2d3b64ffa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ae712cdf400a405d80fe54d7ba3fd00e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1c0b25178d4b48a99c7f2150bd0f0824", "IPY_MODEL_2de3ad73ad244a5197c4822a372f3110", "IPY_MODEL_f81c62b999974aad9306a5a0b696be8e"], "layout": "IPY_MODEL_52d6aa112e2148b5b9c54ec2d3b64ffa", "tabbable": null, "tooltip": null}}, "3c95be60400e41b7bfa58ae28c906f00": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "28e735a14dbb41648da634cdd95386a8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "733d12b13e8b4b27822f0c6cae0914bb": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3c95be60400e41b7bfa58ae28c906f00", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_28e735a14dbb41648da634cdd95386a8", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "620fc7b1d34e4c6cbbe903778a96b918": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "391f7370925146689fc17899d65d42ca": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "187754b55b314d99ad414644c1ef236d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_620fc7b1d34e4c6cbbe903778a96b918", "placeholder": "\u200b", "style": "IPY_MODEL_391f7370925146689fc17899d65d42ca", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "e3f4d73139df4711864089b5532905a8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9326cb2da3c04a03938d82709dc54f11": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8085ce2dfefd41548e1d973f43e7a751": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e3f4d73139df4711864089b5532905a8", "placeholder": "\u200b", "style": "IPY_MODEL_9326cb2da3c04a03938d82709dc54f11", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u200798.3MB/s]"}}, "0fc5cbb3272548ad8367cb0601cbbab8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ba0727b2176a499fab9c0bfb06884f31": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_187754b55b314d99ad414644c1ef236d", "IPY_MODEL_733d12b13e8b4b27822f0c6cae0914bb", "IPY_MODEL_8085ce2dfefd41548e1d973f43e7a751"], "layout": "IPY_MODEL_0fc5cbb3272548ad8367cb0601cbbab8", "tabbable": null, "tooltip": null}}, "2b0b9a65a94a4e46a1d535e05ec48de0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2b7b6dfe806b4e2896366b49fbcfffe6": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "309c0f48be4644efa40e478204e4e05b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2b0b9a65a94a4e46a1d535e05ec48de0", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2b7b6dfe806b4e2896366b49fbcfffe6", "tabbable": null, "tooltip": null, "value": 3201.0}}, "57138d6211c94a348c23721dba96327a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b186bad6e51a4b198ee947c10dbcd610": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "107742eba71f406f811006bec4d787a4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_57138d6211c94a348c23721dba96327a", "placeholder": "\u200b", "style": "IPY_MODEL_b186bad6e51a4b198ee947c10dbcd610", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "e9aa41c51c6a4c91be4ac54683c74614": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9d44096b3dd2484e925c705de6ba97d5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b245c89aef9b450cb6319d5406fb9809": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e9aa41c51c6a4c91be4ac54683c74614", "placeholder": "\u200b", "style": "IPY_MODEL_9d44096b3dd2484e925c705de6ba97d5", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007694kB/s]"}}, "360b4004708943be876aef0fc3c3b47f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "50803ba0bb0a4b89bd157ff4c81eb497": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_107742eba71f406f811006bec4d787a4", "IPY_MODEL_309c0f48be4644efa40e478204e4e05b", "IPY_MODEL_b245c89aef9b450cb6319d5406fb9809"], "layout": "IPY_MODEL_360b4004708943be876aef0fc3c3b47f", "tabbable": null, "tooltip": null}}, "b7bafa40b6f84472900081880785d935": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4b8ed2b198e44b32b7458a1d0d206340": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cfb964ebac90497e8969288833ce95b2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b7bafa40b6f84472900081880785d935", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4b8ed2b198e44b32b7458a1d0d206340", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "cfccde0a28004f84b1fd67d83bd7b480": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e1e1603f4b064b3598ebd803ac5816c0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5402d42e373a4ba3bd2e43ff91d80161": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cfccde0a28004f84b1fd67d83bd7b480", "placeholder": "\u200b", "style": "IPY_MODEL_e1e1603f4b064b3598ebd803ac5816c0", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "227ec0ee48c54fa6a5b2fec8b07a15fb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3f8b3452773f404f99ed905cc867b93f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d1e65e027bf14ea29efc45935873d046": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_227ec0ee48c54fa6a5b2fec8b07a15fb", "placeholder": "\u200b", "style": "IPY_MODEL_3f8b3452773f404f99ed905cc867b93f", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u200771.6MB/s]"}}, "827db00086af49b7943ad370278ed0ff": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f7f114adf4c141d389c6fb41dbf3be0e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5402d42e373a4ba3bd2e43ff91d80161", "IPY_MODEL_cfb964ebac90497e8969288833ce95b2", "IPY_MODEL_d1e65e027bf14ea29efc45935873d046"], "layout": "IPY_MODEL_827db00086af49b7943ad370278ed0ff", "tabbable": null, "tooltip": null}}, "de311282f67b4d799d7c99a849b340c7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fc655e1369134f4b8de32b94912d6392": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "34b0747fbdb04404bb0c7cdd38c9323e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_de311282f67b4d799d7c99a849b340c7", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fc655e1369134f4b8de32b94912d6392", "tabbable": null, "tooltip": null, "value": 128619.0}}, "df5de5fcd6e643ddb57342d03e6c294b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0b2153bbb70f4721bdd4ed92ce999de7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d892be8d113c44a9a7bc1a69bf6c0704": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_df5de5fcd6e643ddb57342d03e6c294b", "placeholder": "\u200b", "style": "IPY_MODEL_0b2153bbb70f4721bdd4ed92ce999de7", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "f321c896c7c14ca19dbd7ab5024aeba5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4fce2c7642894b82ba97c5619cfd583e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3fd269b89e5d443fb5cd9f2e668dfe76": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f321c896c7c14ca19dbd7ab5024aeba5", "placeholder": "\u200b", "style": "IPY_MODEL_4fce2c7642894b82ba97c5619cfd583e", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u200716.9MB/s]"}}, "b16e7cd5a4f7421fad1e2494fbc19678": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "79e3e4d335d649098603501403b13752": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d892be8d113c44a9a7bc1a69bf6c0704", "IPY_MODEL_34b0747fbdb04404bb0c7cdd38c9323e", "IPY_MODEL_3fd269b89e5d443fb5cd9f2e668dfe76"], "layout": "IPY_MODEL_b16e7cd5a4f7421fad1e2494fbc19678", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index 4b3011c4b..ceec1180a 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:28.661262Z", - "iopub.status.busy": "2024-05-02T13:29:28.660899Z", - "iopub.status.idle": "2024-05-02T13:29:33.829066Z", - "shell.execute_reply": "2024-05-02T13:29:33.828505Z" + "iopub.execute_input": "2024-05-03T22:12:28.966803Z", + "iopub.status.busy": "2024-05-03T22:12:28.966626Z", + "iopub.status.idle": "2024-05-03T22:12:33.710567Z", + "shell.execute_reply": "2024-05-03T22:12:33.710000Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:33.831726Z", - "iopub.status.busy": "2024-05-02T13:29:33.831342Z", - "iopub.status.idle": "2024-05-02T13:29:33.834711Z", - "shell.execute_reply": "2024-05-02T13:29:33.834268Z" + "iopub.execute_input": "2024-05-03T22:12:33.713559Z", + "iopub.status.busy": "2024-05-03T22:12:33.712818Z", + "iopub.status.idle": "2024-05-03T22:12:33.716438Z", + "shell.execute_reply": "2024-05-03T22:12:33.715858Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:33.836717Z", - "iopub.status.busy": "2024-05-02T13:29:33.836397Z", - "iopub.status.idle": "2024-05-02T13:29:33.841206Z", - "shell.execute_reply": "2024-05-02T13:29:33.840665Z" + "iopub.execute_input": "2024-05-03T22:12:33.718588Z", + "iopub.status.busy": "2024-05-03T22:12:33.718252Z", + "iopub.status.idle": "2024-05-03T22:12:33.723001Z", + "shell.execute_reply": "2024-05-03T22:12:33.722439Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-02T13:29:33.843487Z", - "iopub.status.busy": "2024-05-02T13:29:33.843079Z", - "iopub.status.idle": "2024-05-02T13:29:35.476731Z", - "shell.execute_reply": "2024-05-02T13:29:35.475945Z" + "iopub.execute_input": "2024-05-03T22:12:33.725366Z", + "iopub.status.busy": "2024-05-03T22:12:33.725036Z", + "iopub.status.idle": "2024-05-03T22:12:35.207006Z", + "shell.execute_reply": "2024-05-03T22:12:35.206383Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-02T13:29:35.479519Z", - "iopub.status.busy": "2024-05-02T13:29:35.479159Z", - "iopub.status.idle": "2024-05-02T13:29:35.489722Z", - "shell.execute_reply": "2024-05-02T13:29:35.489190Z" + "iopub.execute_input": "2024-05-03T22:12:35.209709Z", + "iopub.status.busy": "2024-05-03T22:12:35.209321Z", + "iopub.status.idle": "2024-05-03T22:12:35.220147Z", + "shell.execute_reply": "2024-05-03T22:12:35.219664Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:35.492228Z", - "iopub.status.busy": "2024-05-02T13:29:35.491786Z", - "iopub.status.idle": "2024-05-02T13:29:35.497492Z", - "shell.execute_reply": "2024-05-02T13:29:35.496950Z" + "iopub.execute_input": "2024-05-03T22:12:35.222357Z", + "iopub.status.busy": "2024-05-03T22:12:35.222039Z", + "iopub.status.idle": "2024-05-03T22:12:35.227717Z", + "shell.execute_reply": "2024-05-03T22:12:35.227150Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-02T13:29:35.499568Z", - "iopub.status.busy": "2024-05-02T13:29:35.499261Z", - "iopub.status.idle": "2024-05-02T13:29:35.975715Z", - "shell.execute_reply": "2024-05-02T13:29:35.975122Z" + "iopub.execute_input": "2024-05-03T22:12:35.229818Z", + "iopub.status.busy": "2024-05-03T22:12:35.229492Z", + "iopub.status.idle": "2024-05-03T22:12:35.710657Z", + "shell.execute_reply": "2024-05-03T22:12:35.710131Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:35.978081Z", - "iopub.status.busy": "2024-05-02T13:29:35.977695Z", - "iopub.status.idle": "2024-05-02T13:29:37.103971Z", - "shell.execute_reply": "2024-05-02T13:29:37.103474Z" + "iopub.execute_input": "2024-05-03T22:12:35.712897Z", + "iopub.status.busy": "2024-05-03T22:12:35.712574Z", + "iopub.status.idle": "2024-05-03T22:12:37.213776Z", + "shell.execute_reply": "2024-05-03T22:12:37.213155Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-05-02T13:29:37.106454Z", - "iopub.status.busy": "2024-05-02T13:29:37.106160Z", - "iopub.status.idle": "2024-05-02T13:29:37.125425Z", - "shell.execute_reply": "2024-05-02T13:29:37.124942Z" + "iopub.execute_input": "2024-05-03T22:12:37.216214Z", + "iopub.status.busy": "2024-05-03T22:12:37.215986Z", + "iopub.status.idle": "2024-05-03T22:12:37.235204Z", + "shell.execute_reply": "2024-05-03T22:12:37.234619Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:37.127581Z", - "iopub.status.busy": "2024-05-02T13:29:37.127221Z", - "iopub.status.idle": "2024-05-02T13:29:37.130454Z", - "shell.execute_reply": "2024-05-02T13:29:37.129997Z" + "iopub.execute_input": "2024-05-03T22:12:37.237414Z", + "iopub.status.busy": "2024-05-03T22:12:37.237008Z", + "iopub.status.idle": "2024-05-03T22:12:37.240342Z", + "shell.execute_reply": "2024-05-03T22:12:37.239772Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:37.132398Z", - "iopub.status.busy": "2024-05-02T13:29:37.132025Z", - "iopub.status.idle": "2024-05-02T13:29:51.331545Z", - "shell.execute_reply": "2024-05-02T13:29:51.330927Z" + "iopub.execute_input": "2024-05-03T22:12:37.242542Z", + "iopub.status.busy": "2024-05-03T22:12:37.242138Z", + "iopub.status.idle": "2024-05-03T22:12:52.929337Z", + "shell.execute_reply": "2024-05-03T22:12:52.928708Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-02T13:29:51.334609Z", - "iopub.status.busy": "2024-05-02T13:29:51.334115Z", - "iopub.status.idle": "2024-05-02T13:29:51.338019Z", - "shell.execute_reply": "2024-05-02T13:29:51.337442Z" + "iopub.execute_input": "2024-05-03T22:12:52.932499Z", + "iopub.status.busy": "2024-05-03T22:12:52.932067Z", + "iopub.status.idle": "2024-05-03T22:12:52.936366Z", + "shell.execute_reply": "2024-05-03T22:12:52.935789Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:51.340201Z", - "iopub.status.busy": "2024-05-02T13:29:51.339786Z", - "iopub.status.idle": "2024-05-02T13:29:52.054419Z", - "shell.execute_reply": "2024-05-02T13:29:52.053821Z" + "iopub.execute_input": "2024-05-03T22:12:52.938779Z", + "iopub.status.busy": "2024-05-03T22:12:52.938419Z", + "iopub.status.idle": "2024-05-03T22:12:53.656169Z", + "shell.execute_reply": "2024-05-03T22:12:53.655551Z" }, "id": "i_drkY9YOcw4" }, @@ -727,10 +727,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-02T13:29:52.057290Z", - "iopub.status.busy": "2024-05-02T13:29:52.056914Z", - "iopub.status.idle": "2024-05-02T13:29:52.061887Z", - "shell.execute_reply": "2024-05-02T13:29:52.061401Z" + "iopub.execute_input": "2024-05-03T22:12:53.660407Z", + "iopub.status.busy": "2024-05-03T22:12:53.659250Z", + "iopub.status.idle": "2024-05-03T22:12:53.666396Z", + "shell.execute_reply": "2024-05-03T22:12:53.665877Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -777,10 +777,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:52.064413Z", - "iopub.status.busy": "2024-05-02T13:29:52.064051Z", - "iopub.status.idle": "2024-05-02T13:29:52.162230Z", - "shell.execute_reply": "2024-05-02T13:29:52.161645Z" + "iopub.execute_input": "2024-05-03T22:12:53.670030Z", + "iopub.status.busy": "2024-05-03T22:12:53.669107Z", + "iopub.status.idle": "2024-05-03T22:12:53.787825Z", + "shell.execute_reply": "2024-05-03T22:12:53.787193Z" } }, "outputs": [ @@ -817,10 +817,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:52.164579Z", - "iopub.status.busy": "2024-05-02T13:29:52.164206Z", - "iopub.status.idle": "2024-05-02T13:29:52.176504Z", - "shell.execute_reply": "2024-05-02T13:29:52.175930Z" + "iopub.execute_input": "2024-05-03T22:12:53.790230Z", + "iopub.status.busy": "2024-05-03T22:12:53.789982Z", + "iopub.status.idle": "2024-05-03T22:12:53.803317Z", + "shell.execute_reply": "2024-05-03T22:12:53.802783Z" }, "scrolled": true }, @@ -875,10 +875,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:52.178665Z", - "iopub.status.busy": "2024-05-02T13:29:52.178393Z", - "iopub.status.idle": "2024-05-02T13:29:52.187628Z", - "shell.execute_reply": "2024-05-02T13:29:52.187164Z" + "iopub.execute_input": "2024-05-03T22:12:53.805650Z", + "iopub.status.busy": "2024-05-03T22:12:53.805327Z", + "iopub.status.idle": "2024-05-03T22:12:53.814052Z", + "shell.execute_reply": "2024-05-03T22:12:53.813485Z" } }, "outputs": [ @@ -982,10 +982,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:52.189822Z", - "iopub.status.busy": "2024-05-02T13:29:52.189375Z", - "iopub.status.idle": "2024-05-02T13:29:52.193621Z", - "shell.execute_reply": "2024-05-02T13:29:52.193175Z" + "iopub.execute_input": "2024-05-03T22:12:53.816633Z", + "iopub.status.busy": "2024-05-03T22:12:53.816144Z", + "iopub.status.idle": "2024-05-03T22:12:53.820940Z", + "shell.execute_reply": "2024-05-03T22:12:53.820407Z" } }, "outputs": [ @@ -1023,10 +1023,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-05-02T13:29:52.195848Z", - "iopub.status.busy": "2024-05-02T13:29:52.195409Z", - "iopub.status.idle": "2024-05-02T13:29:52.201148Z", - "shell.execute_reply": "2024-05-02T13:29:52.200617Z" + "iopub.execute_input": "2024-05-03T22:12:53.822926Z", + "iopub.status.busy": "2024-05-03T22:12:53.822735Z", + "iopub.status.idle": "2024-05-03T22:12:53.828914Z", + "shell.execute_reply": "2024-05-03T22:12:53.828429Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1153,10 +1153,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-02T13:29:52.203221Z", - "iopub.status.busy": "2024-05-02T13:29:52.202922Z", - "iopub.status.idle": "2024-05-02T13:29:52.315810Z", - "shell.execute_reply": "2024-05-02T13:29:52.315232Z" + "iopub.execute_input": "2024-05-03T22:12:53.831066Z", + "iopub.status.busy": "2024-05-03T22:12:53.830871Z", + "iopub.status.idle": "2024-05-03T22:12:53.948101Z", + "shell.execute_reply": "2024-05-03T22:12:53.947535Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1210,10 +1210,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-02T13:29:52.317857Z", - "iopub.status.busy": "2024-05-02T13:29:52.317632Z", - "iopub.status.idle": "2024-05-02T13:29:52.425187Z", - "shell.execute_reply": "2024-05-02T13:29:52.424624Z" + "iopub.execute_input": "2024-05-03T22:12:53.950639Z", + "iopub.status.busy": "2024-05-03T22:12:53.950251Z", + "iopub.status.idle": "2024-05-03T22:12:54.059378Z", + "shell.execute_reply": "2024-05-03T22:12:54.058855Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1258,10 +1258,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-02T13:29:52.427291Z", - "iopub.status.busy": "2024-05-02T13:29:52.427064Z", - "iopub.status.idle": "2024-05-02T13:29:52.531263Z", - "shell.execute_reply": "2024-05-02T13:29:52.530776Z" + "iopub.execute_input": "2024-05-03T22:12:54.061517Z", + "iopub.status.busy": "2024-05-03T22:12:54.061300Z", + "iopub.status.idle": "2024-05-03T22:12:54.168151Z", + "shell.execute_reply": "2024-05-03T22:12:54.167611Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1302,10 +1302,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:52.533347Z", - "iopub.status.busy": "2024-05-02T13:29:52.533008Z", - "iopub.status.idle": "2024-05-02T13:29:52.645779Z", - "shell.execute_reply": "2024-05-02T13:29:52.645210Z" + "iopub.execute_input": "2024-05-03T22:12:54.170376Z", + "iopub.status.busy": "2024-05-03T22:12:54.170058Z", + "iopub.status.idle": "2024-05-03T22:12:54.278000Z", + "shell.execute_reply": "2024-05-03T22:12:54.277496Z" } }, "outputs": [ @@ -1353,10 +1353,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:52.647907Z", - "iopub.status.busy": "2024-05-02T13:29:52.647678Z", - "iopub.status.idle": "2024-05-02T13:29:52.650975Z", - "shell.execute_reply": "2024-05-02T13:29:52.650444Z" + "iopub.execute_input": "2024-05-03T22:12:54.280180Z", + "iopub.status.busy": "2024-05-03T22:12:54.279820Z", + "iopub.status.idle": "2024-05-03T22:12:54.283174Z", + "shell.execute_reply": "2024-05-03T22:12:54.282610Z" }, "nbsphinx": "hidden" }, @@ -1397,7 +1397,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "016c4ff99c0f4a858413cf5b66590ce0": { + "0b2153bbb70f4721bdd4ed92ce999de7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1415,7 +1415,7 @@ "text_color": null } }, - "017fb529a8ed426f885b3a7a10241dbf": { + "0fc5cbb3272548ad8367cb0601cbbab8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1468,7 +1468,7 @@ "width": null } }, - "0f43dc367f0f4ad08e763837ffc89e74": { + "107742eba71f406f811006bec4d787a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1483,39 +1483,79 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7a334dfd12764e0c8a1e9e29890de913", + "layout": "IPY_MODEL_57138d6211c94a348c23721dba96327a", "placeholder": "​", - "style": "IPY_MODEL_d449e21cfcaa4c65bf1c393f81709cac", + "style": "IPY_MODEL_b186bad6e51a4b198ee947c10dbcd610", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "187754b55b314d99ad414644c1ef236d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_620fc7b1d34e4c6cbbe903778a96b918", + "placeholder": "​", + "style": "IPY_MODEL_391f7370925146689fc17899d65d42ca", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt: 100%" } }, - "11ded59de175425797de94add4c16811": { + "1c0b25178d4b48a99c7f2150bd0f0824": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9a3aa26119274c4fae4dc87891e45d23", - "IPY_MODEL_fe861b857c22471aa29db92df96dc57e", - "IPY_MODEL_6246de7fedf8471b8a46692e529a0775" - ], - "layout": "IPY_MODEL_ddaf549e6c0f4993bc0663660ba70a73", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a3a63f418a724beb80940331e0bb8e8e", + "placeholder": "​", + "style": "IPY_MODEL_1f4b66ffa5a84c38adb82533626ec568", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "hyperparams.yaml: 100%" } }, - "125867b1283f48bdb4c2f2b33f171dfe": { + "1f4b66ffa5a84c38adb82533626ec568": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "227ec0ee48c54fa6a5b2fec8b07a15fb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1568,33 +1608,23 @@ "width": null } }, - "2525e92836834ac4a5bafccfa299bd3b": { + "28e735a14dbb41648da634cdd95386a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_55940b5bcd0044859720e4343caa2ca7", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6d90ba1d244749f38ab910caad1b600f", - "tabbable": null, - "tooltip": null, - "value": 16887676.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "32c629e3150844629dee17335626b92a": { + "2924f39fcc8b4ee487bdf2e84bf4e50f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1612,7 +1642,7 @@ "text_color": null } }, - "33a4b706ec324e999d93f49be5018be0": { + "2b0b9a65a94a4e46a1d535e05ec48de0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1665,31 +1695,101 @@ "width": null } }, - "33cd1056dbc14221b0d7d59e9d7b0431": { + "2b7b6dfe806b4e2896366b49fbcfffe6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2de3ad73ad244a5197c4822a372f3110": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_abfa60b3499447eeaa0b8325974aa3a6", - "IPY_MODEL_5b0122ec46594ca096fb240f38aaa111", - "IPY_MODEL_ecb8f3287adc46948bc0b2bfea3510ae" - ], - "layout": "IPY_MODEL_a6a3dc29a2e34c49b48b88e51b594136", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a7fb305e6568467b83c49450c4389b08", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cc6ad65672b34f3f9c43953efaa5d5d0", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 2041.0 } }, - "3482c44bf8f745008c7c99dee4baee7c": { + "309c0f48be4644efa40e478204e4e05b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2b0b9a65a94a4e46a1d535e05ec48de0", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2b7b6dfe806b4e2896366b49fbcfffe6", + "tabbable": null, + "tooltip": null, + "value": 3201.0 + } + }, + "34b0747fbdb04404bb0c7cdd38c9323e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_de311282f67b4d799d7c99a849b340c7", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fc655e1369134f4b8de32b94912d6392", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "360b4004708943be876aef0fc3c3b47f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1742,7 +1842,25 @@ "width": null } }, - "351cdfcbc8924c93aaa8727ecf6fc0e4": { + "391f7370925146689fc17899d65d42ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3c95be60400e41b7bfa58ae28c906f00": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1795,7 +1913,48 @@ "width": null } }, - "3b51655d11d84831ba2fba8270c44b2e": { + "3f8b3452773f404f99ed905cc867b93f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3fd269b89e5d443fb5cd9f2e668dfe76": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f321c896c7c14ca19dbd7ab5024aeba5", + "placeholder": "​", + "style": "IPY_MODEL_4fce2c7642894b82ba97c5619cfd583e", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 16.9MB/s]" + } + }, + "4b8ed2b198e44b32b7458a1d0d206340": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1811,7 +1970,7 @@ "description_width": "" } }, - "3c64b006679a462d955d5f6ebc188c0d": { + "4fce2c7642894b82ba97c5619cfd583e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1829,33 +1988,31 @@ "text_color": null } }, - "3d27af5988404b628f815877cb4dcb22": { + "50803ba0bb0a4b89bd157ff4c81eb497": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3482c44bf8f745008c7c99dee4baee7c", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ec9c0752b1eb46138563fd2369b20be7", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_107742eba71f406f811006bec4d787a4", + "IPY_MODEL_309c0f48be4644efa40e478204e4e05b", + "IPY_MODEL_b245c89aef9b450cb6319d5406fb9809" + ], + "layout": "IPY_MODEL_360b4004708943be876aef0fc3c3b47f", "tabbable": null, - "tooltip": null, - "value": 15856877.0 + "tooltip": null } }, - "419aab49f4e74c108e8874a4af7eda0e": { + "52d6aa112e2148b5b9c54ec2d3b64ffa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1908,60 +2065,30 @@ "width": null } }, - "523dd93932954597b0e0cb53131bda73": { - "model_module": "@jupyter-widgets/base", + "5402d42e373a4ba3bd2e43ff91d80161": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cfccde0a28004f84b1fd67d83bd7b480", + "placeholder": "​", + "style": "IPY_MODEL_e1e1603f4b064b3598ebd803ac5816c0", + "tabbable": null, + "tooltip": null, + "value": "classifier.ckpt: 100%" } }, - "55940b5bcd0044859720e4343caa2ca7": { + "57138d6211c94a348c23721dba96327a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2014,74 +2141,7 @@ "width": null } }, - "5b0122ec46594ca096fb240f38aaa111": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_523dd93932954597b0e0cb53131bda73", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7e44bd2c963748fa8899ff96fcad4295", - "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "6246de7fedf8471b8a46692e529a0775": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_74085b59bd524401b225e644bbc6f9c8", - "placeholder": "​", - "style": "IPY_MODEL_72b484e52b824ee1b23c99e8b38ae62c", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 7.87MB/s]" - } - }, - "62ae9caa31724df2b4014613622554ed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "67c1ca1445f340ad9a0743cdec0848c9": { + "620fc7b1d34e4c6cbbe903778a96b918": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2134,7 +2194,7 @@ "width": null } }, - "69dd1528b8414e55b25e0a3c97161374": { + "70373ddc6062471aa5a82f784d1d001e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2187,7 +2247,33 @@ "width": null } }, - "6a786bb3d219488d8701ae278a2deeb2": { + "733d12b13e8b4b27822f0c6cae0914bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3c95be60400e41b7bfa58ae28c906f00", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_28e735a14dbb41648da634cdd95386a8", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 + } + }, + "79e3e4d335d649098603501403b13752": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2202,16 +2288,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_95995840d9ca4920b1e236299ed8e89e", - "IPY_MODEL_3d27af5988404b628f815877cb4dcb22", - "IPY_MODEL_9d91c5cd894c4950ab8aaf8f2f8d21e0" + "IPY_MODEL_d892be8d113c44a9a7bc1a69bf6c0704", + "IPY_MODEL_34b0747fbdb04404bb0c7cdd38c9323e", + "IPY_MODEL_3fd269b89e5d443fb5cd9f2e668dfe76" ], - "layout": "IPY_MODEL_69dd1528b8414e55b25e0a3c97161374", + "layout": "IPY_MODEL_b16e7cd5a4f7421fad1e2494fbc19678", "tabbable": null, "tooltip": null } }, - "6cd7f13960d44c2a86926fde8d8016b3": { + "8085ce2dfefd41548e1d973f43e7a751": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2226,31 +2312,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_afd38c59c83c427bb522f9e4bf8c0f2a", + "layout": "IPY_MODEL_e3f4d73139df4711864089b5532905a8", "placeholder": "​", - "style": "IPY_MODEL_f3d9666f393541d7ae248860ad0b0087", + "style": "IPY_MODEL_9326cb2da3c04a03938d82709dc54f11", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 458kB/s]" + "value": " 16.9M/16.9M [00:00<00:00, 98.3MB/s]" } }, - "6d90ba1d244749f38ab910caad1b600f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7155fefc55684acbab864f43414e9aae": { + "827db00086af49b7943ad370278ed0ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2303,7 +2373,7 @@ "width": null } }, - "72b484e52b824ee1b23c99e8b38ae62c": { + "9326cb2da3c04a03938d82709dc54f11": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2321,7 +2391,25 @@ "text_color": null } }, - "74085b59bd524401b225e644bbc6f9c8": { + "9d44096b3dd2484e925c705de6ba97d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a3a63f418a724beb80940331e0bb8e8e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2374,7 +2462,7 @@ "width": null } }, - "7a334dfd12764e0c8a1e9e29890de913": { + "a7fb305e6568467b83c49450c4389b08": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2427,134 +2515,125 @@ "width": null } }, - "7e44bd2c963748fa8899ff96fcad4295": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8b0f09db8e7142aaadb038be42a0c2bf": { + "ae712cdf400a405d80fe54d7ba3fd00e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "95995840d9ca4920b1e236299ed8e89e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ac6ce81ab0de4d9a9f519ec01d634788", - "placeholder": "​", - "style": "IPY_MODEL_b29b869a20244bba998603ba45fc69cf", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1c0b25178d4b48a99c7f2150bd0f0824", + "IPY_MODEL_2de3ad73ad244a5197c4822a372f3110", + "IPY_MODEL_f81c62b999974aad9306a5a0b696be8e" + ], + "layout": "IPY_MODEL_52d6aa112e2148b5b9c54ec2d3b64ffa", "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" + "tooltip": null } }, - "9a3aa26119274c4fae4dc87891e45d23": { - "model_module": "@jupyter-widgets/controls", + "b16e7cd5a4f7421fad1e2494fbc19678": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c1e034d3cd1c47c1a72396b32178bfb8", - "placeholder": "​", - "style": "IPY_MODEL_3c64b006679a462d955d5f6ebc188c0d", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "9d91c5cd894c4950ab8aaf8f2f8d21e0": { + "b186bad6e51a4b198ee947c10dbcd610": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7155fefc55684acbab864f43414e9aae", - "placeholder": "​", - "style": "IPY_MODEL_fb926ff8d800425c9dae4c55b7967db2", - "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 87.4MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a295bbf84e0a4c64a98c8b73cf1dcc4c": { + "b245c89aef9b450cb6319d5406fb9809": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_125867b1283f48bdb4c2f2b33f171dfe", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3b51655d11d84831ba2fba8270c44b2e", + "layout": "IPY_MODEL_e9aa41c51c6a4c91be4ac54683c74614", + "placeholder": "​", + "style": "IPY_MODEL_9d44096b3dd2484e925c705de6ba97d5", "tabbable": null, "tooltip": null, - "value": 2041.0 + "value": " 3.20k/3.20k [00:00<00:00, 694kB/s]" } }, - "a6a3dc29a2e34c49b48b88e51b594136": { + "b7bafa40b6f84472900081880785d935": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2607,7 +2686,73 @@ "width": null } }, - "a8e9bebe6da2438983752702b67fa342": { + "ba0727b2176a499fab9c0bfb06884f31": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_187754b55b314d99ad414644c1ef236d", + "IPY_MODEL_733d12b13e8b4b27822f0c6cae0914bb", + "IPY_MODEL_8085ce2dfefd41548e1d973f43e7a751" + ], + "layout": "IPY_MODEL_0fc5cbb3272548ad8367cb0601cbbab8", + "tabbable": null, + "tooltip": null + } + }, + "cc6ad65672b34f3f9c43953efaa5d5d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "cfb964ebac90497e8969288833ce95b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b7bafa40b6f84472900081880785d935", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4b8ed2b198e44b32b7458a1d0d206340", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 + } + }, + "cfccde0a28004f84b1fd67d83bd7b480": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2660,7 +2805,7 @@ "width": null } }, - "abfa60b3499447eeaa0b8325974aa3a6": { + "d1e65e027bf14ea29efc45935873d046": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2675,15 +2820,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_67c1ca1445f340ad9a0743cdec0848c9", + "layout": "IPY_MODEL_227ec0ee48c54fa6a5b2fec8b07a15fb", "placeholder": "​", - "style": "IPY_MODEL_f206e3d8a45b4a08b829d5313dbf4258", + "style": "IPY_MODEL_3f8b3452773f404f99ed905cc867b93f", "tabbable": null, "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "value": " 15.9M/15.9M [00:00<00:00, 71.6MB/s]" + } + }, + "d892be8d113c44a9a7bc1a69bf6c0704": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_df5de5fcd6e643ddb57342d03e6c294b", + "placeholder": "​", + "style": "IPY_MODEL_0b2153bbb70f4721bdd4ed92ce999de7", + "tabbable": null, + "tooltip": null, + "value": "label_encoder.txt: 100%" } }, - "ac6ce81ab0de4d9a9f519ec01d634788": { + "de311282f67b4d799d7c99a849b340c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2736,30 +2904,7 @@ "width": null } }, - "ae24c8a050084345aa994c1eb1d4e277": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_017fb529a8ed426f885b3a7a10241dbf", - "placeholder": "​", - "style": "IPY_MODEL_62ae9caa31724df2b4014613622554ed", - "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" - } - }, - "afd38c59c83c427bb522f9e4bf8c0f2a": { + "df5de5fcd6e643ddb57342d03e6c294b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2812,7 +2957,7 @@ "width": null } }, - "b29b869a20244bba998603ba45fc69cf": { + "e1e1603f4b064b3598ebd803ac5816c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2830,7 +2975,7 @@ "text_color": null } }, - "bc54b54b9756479692090d0c84776f4d": { + "e3f4d73139df4711864089b5532905a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2883,7 +3028,7 @@ "width": null } }, - "c1e034d3cd1c47c1a72396b32178bfb8": { + "e9aa41c51c6a4c91be4ac54683c74614": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2936,49 +3081,7 @@ "width": null } }, - "d3d63e8fa4c54b71a1cfce54d179d573": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ae24c8a050084345aa994c1eb1d4e277", - "IPY_MODEL_a295bbf84e0a4c64a98c8b73cf1dcc4c", - "IPY_MODEL_6cd7f13960d44c2a86926fde8d8016b3" - ], - "layout": "IPY_MODEL_419aab49f4e74c108e8874a4af7eda0e", - "tabbable": null, - "tooltip": null - } - }, - "d449e21cfcaa4c65bf1c393f81709cac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ddaf549e6c0f4993bc0663660ba70a73": { + "f321c896c7c14ca19dbd7ab5024aeba5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3031,7 +3134,7 @@ "width": null } }, - "e020d7b41f6e4bfe834f3176eb928968": { + "f7f114adf4c141d389c6fb41dbf3be0e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3046,16 +3149,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0f43dc367f0f4ad08e763837ffc89e74", - "IPY_MODEL_2525e92836834ac4a5bafccfa299bd3b", - "IPY_MODEL_eaf6d3a89feb4e5cb24984aae1439bcd" + "IPY_MODEL_5402d42e373a4ba3bd2e43ff91d80161", + "IPY_MODEL_cfb964ebac90497e8969288833ce95b2", + "IPY_MODEL_d1e65e027bf14ea29efc45935873d046" ], - "layout": "IPY_MODEL_a8e9bebe6da2438983752702b67fa342", + "layout": "IPY_MODEL_827db00086af49b7943ad370278ed0ff", "tabbable": null, "tooltip": null } }, - "eaf6d3a89feb4e5cb24984aae1439bcd": { + "f81c62b999974aad9306a5a0b696be8e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3070,15 +3173,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bc54b54b9756479692090d0c84776f4d", + "layout": "IPY_MODEL_70373ddc6062471aa5a82f784d1d001e", "placeholder": "​", - "style": "IPY_MODEL_32c629e3150844629dee17335626b92a", + "style": "IPY_MODEL_2924f39fcc8b4ee487bdf2e84bf4e50f", "tabbable": null, "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 181MB/s]" + "value": " 2.04k/2.04k [00:00<00:00, 464kB/s]" } }, - "ec9c0752b1eb46138563fd2369b20be7": { + "fc655e1369134f4b8de32b94912d6392": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3093,109 +3196,6 @@ "bar_color": null, "description_width": "" } - }, - "ecb8f3287adc46948bc0b2bfea3510ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_33a4b706ec324e999d93f49be5018be0", - "placeholder": "​", - "style": "IPY_MODEL_016c4ff99c0f4a858413cf5b66590ce0", - "tabbable": null, - "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 738kB/s]" - } - }, - "f206e3d8a45b4a08b829d5313dbf4258": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f3d9666f393541d7ae248860ad0b0087": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "fb926ff8d800425c9dae4c55b7967db2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "fe861b857c22471aa29db92df96dc57e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_351cdfcbc8924c93aaa8727ecf6fc0e4", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8b0f09db8e7142aaadb038be42a0c2bf", - "tabbable": null, - "tooltip": null, - "value": 128619.0 - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/data_monitor.html b/master/tutorials/datalab/data_monitor.html index 991e05795..320dc052c 100644 --- a/master/tutorials/datalab/data_monitor.html +++ b/master/tutorials/datalab/data_monitor.html @@ -671,7 +671,7 @@

1. Install and import required dependenciesdependencies = ["cleanlab", "matplotlib", "datasets"] # TODO: make sure this list is updated if "google.colab" in str(get_ipython()): # Check if it's running in Google Colab - %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b + %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219 cmd = ' '.join([dep for dep in dependencies if dep != "cleanlab"]) %pip install $cmd else: @@ -1154,7 +1154,7 @@

5. Use DataMonitor to find issues in new data

-
+
@@ -1893,7 +1893,7 @@

8. Looking for both label issues and outliers -{"state": {"b37299d16c914496bcdc42bccea15af4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b0c7a3973a914a8bb45a705b52894324": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "58ce9fa1c24a4e2da2d697a14c8479a7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b37299d16c914496bcdc42bccea15af4", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b0c7a3973a914a8bb45a705b52894324", "tabbable": null, "tooltip": null, "value": 50.0}}, "7c3995c4b059427698aa27684271e419": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0e844d31365c411a8db7edf724f7cdb0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d2ae35480a8049f6b4ac87bbb52f2016": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7c3995c4b059427698aa27684271e419", "placeholder": "\u200b", "style": "IPY_MODEL_0e844d31365c411a8db7edf724f7cdb0", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "bd2a7ac5755145319faa3df3cc293539": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "07fc5a9a067c4ed0aed57edefdaa2d20": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e9961caa46244b959586a73afbc8eb40": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bd2a7ac5755145319faa3df3cc293539", "placeholder": "\u200b", "style": "IPY_MODEL_07fc5a9a067c4ed0aed57edefdaa2d20", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.88it/s]"}}, "845c54dc0e7c4bcfa95ac1b1626adf61": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fb22d0c4b8294355ba4c419934662f2c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d2ae35480a8049f6b4ac87bbb52f2016", "IPY_MODEL_58ce9fa1c24a4e2da2d697a14c8479a7", "IPY_MODEL_e9961caa46244b959586a73afbc8eb40"], "layout": "IPY_MODEL_845c54dc0e7c4bcfa95ac1b1626adf61", "tabbable": null, "tooltip": null}}, "b3c6c320dc704839980bca9cbce097f9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a66b4b0f59f640cfa7130324564a8d05": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2cf13aa7f659462a8b89715fb629e6a4": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b3c6c320dc704839980bca9cbce097f9", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a66b4b0f59f640cfa7130324564a8d05", "tabbable": null, "tooltip": null, "value": 7.0}}, "fb80f2f64380499f92519811729b5624": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b88cd0a7ce13448b9fe5a6408e0cbf09": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d58393db61f949b9a4b3de1e9651927c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fb80f2f64380499f92519811729b5624", "placeholder": "\u200b", "style": "IPY_MODEL_b88cd0a7ce13448b9fe5a6408e0cbf09", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "1f2982d963bf48cc9ae3f023f5904c57": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "147d3f04736d4903926aca0643fc3d2f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "677b945f649645719ff0170d0bea9f09": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1f2982d963bf48cc9ae3f023f5904c57", "placeholder": "\u200b", "style": "IPY_MODEL_147d3f04736d4903926aca0643fc3d2f", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.32it/s]"}}, "54be76fa213b48f39f6459da3e4d165c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "73e5430004ad4dbc8fdb91dfc1fd9163": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d58393db61f949b9a4b3de1e9651927c", "IPY_MODEL_2cf13aa7f659462a8b89715fb629e6a4", "IPY_MODEL_677b945f649645719ff0170d0bea9f09"], "layout": "IPY_MODEL_54be76fa213b48f39f6459da3e4d165c", "tabbable": null, "tooltip": null}}, "aaa0763d4f9a4ddabf31221beaaeae84": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "888a0607c8894c2fb80f6623bfca196d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1df91515651343a38ca213e4e75a9d67": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_aaa0763d4f9a4ddabf31221beaaeae84", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_888a0607c8894c2fb80f6623bfca196d", "tabbable": null, "tooltip": null, "value": 50.0}}, "9e72635bf6964b3bb491b519b212dd0e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fe15744b545a415d81ef667958f73de5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3af729eb8a45493395904db2dda1ed64": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9e72635bf6964b3bb491b519b212dd0e", "placeholder": "\u200b", "style": "IPY_MODEL_fe15744b545a415d81ef667958f73de5", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "a5e62f3f3e3f467693755e4ea1d6ad1d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "60015d29d3ad4af99acbf88f3b385e21": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "16c8c25c0b0f4273aee62257cf2288d1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a5e62f3f3e3f467693755e4ea1d6ad1d", "placeholder": "\u200b", "style": "IPY_MODEL_60015d29d3ad4af99acbf88f3b385e21", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.81it/s]"}}, "bf65598e59ad4bdf8a1fe83ff83b21ed": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "78fce4adaae247cdbfcbc05371109a2a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3af729eb8a45493395904db2dda1ed64", "IPY_MODEL_1df91515651343a38ca213e4e75a9d67", "IPY_MODEL_16c8c25c0b0f4273aee62257cf2288d1"], "layout": "IPY_MODEL_bf65598e59ad4bdf8a1fe83ff83b21ed", "tabbable": null, "tooltip": null}}, "d7ca6b28144e44308159315e94c1e725": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e2464960105d4d3fb52137c068e08da2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3e498887223c4a869dcafc4733e236a8": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d7ca6b28144e44308159315e94c1e725", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e2464960105d4d3fb52137c068e08da2", "tabbable": null, "tooltip": null, "value": 7.0}}, "093d0fd45c1d489ca09ec3c1778e836d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9a58c78f678e45f283df5d06cce1e45d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "11a931814dda47ed994af645df2fcde1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_093d0fd45c1d489ca09ec3c1778e836d", "placeholder": "\u200b", "style": "IPY_MODEL_9a58c78f678e45f283df5d06cce1e45d", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "91f044ec364f49d4a4705090edac4f8d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "650a4347ff1d45148dc20ac40287b17e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4b53a3ed78b94b73ac7a362523f8d016": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_91f044ec364f49d4a4705090edac4f8d", "placeholder": "\u200b", "style": "IPY_MODEL_650a4347ff1d45148dc20ac40287b17e", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.33it/s]"}}, "8000547bc9f948629d0c429313f4211d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b51af869891c4eeea7a188b683aaaa69": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_11a931814dda47ed994af645df2fcde1", "IPY_MODEL_3e498887223c4a869dcafc4733e236a8", "IPY_MODEL_4b53a3ed78b94b73ac7a362523f8d016"], "layout": "IPY_MODEL_8000547bc9f948629d0c429313f4211d", "tabbable": null, "tooltip": null}}, "9400697a79044ace854ed076b039d215": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9724494afb084e3ba4e085d52edd874b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e87d1faad61d465e9c98c793aceb6660": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9400697a79044ace854ed076b039d215", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9724494afb084e3ba4e085d52edd874b", "tabbable": null, "tooltip": null, "value": 50.0}}, "aa57c61d138346d89e218e312804298b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4a73b0dc6434405ea54debd9cda10527": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a95e33721b3945cb9ee79f9de73dcd54": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_aa57c61d138346d89e218e312804298b", "placeholder": "\u200b", "style": "IPY_MODEL_4a73b0dc6434405ea54debd9cda10527", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "8ee66dfd392346929c29164297997512": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "178d114e5b9f4779ac5ff944378233fd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "40aa83a93c73432185cd9cf218bec130": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8ee66dfd392346929c29164297997512", "placeholder": "\u200b", "style": "IPY_MODEL_178d114e5b9f4779ac5ff944378233fd", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.77it/s]"}}, "9b9b3dfd8ea64853a76a5f78ff1ac1c3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ecead3c00791476fbe27b3a2ef00339e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a95e33721b3945cb9ee79f9de73dcd54", "IPY_MODEL_e87d1faad61d465e9c98c793aceb6660", "IPY_MODEL_40aa83a93c73432185cd9cf218bec130"], "layout": "IPY_MODEL_9b9b3dfd8ea64853a76a5f78ff1ac1c3", "tabbable": null, "tooltip": null}}, "dc000dedfbc14e9ab8dc9ee4e25342ce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "05eb876df74d442b906cab302f672794": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "12b614528c2d45c6b8d3983a1a98fb33": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dc000dedfbc14e9ab8dc9ee4e25342ce", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_05eb876df74d442b906cab302f672794", "tabbable": null, "tooltip": null, "value": 7.0}}, "6f52572658cc4d76bcba33ff95f8f41d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4caaeaa65821400e9e60573f7cc74350": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "69eccfdfcd924efaa900b42d8f549460": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6f52572658cc4d76bcba33ff95f8f41d", "placeholder": "\u200b", "style": "IPY_MODEL_4caaeaa65821400e9e60573f7cc74350", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "47b6b188468c407e9280ed9078af9cb7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "95d546dad9c1485489bda48b1f7c5fda": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2bac8614391f401c8d173543ef797a6b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_47b6b188468c407e9280ed9078af9cb7", "placeholder": "\u200b", "style": "IPY_MODEL_95d546dad9c1485489bda48b1f7c5fda", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.32it/s]"}}, "7baaeffae6d54df5b9c83c958ce46d88": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "88170db260dd44e3a22d607cc0b345f4": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_69eccfdfcd924efaa900b42d8f549460", "IPY_MODEL_12b614528c2d45c6b8d3983a1a98fb33", "IPY_MODEL_2bac8614391f401c8d173543ef797a6b"], "layout": "IPY_MODEL_7baaeffae6d54df5b9c83c958ce46d88", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"98aa7bee57284d04877e41bedfb601e2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "09bda7ec597d4252aaa39f1ed681201e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d13d287da9b746c9bca9a59bb8305eeb": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_98aa7bee57284d04877e41bedfb601e2", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_09bda7ec597d4252aaa39f1ed681201e", "tabbable": null, "tooltip": null, "value": 50.0}}, "6fd087e7f23a42adb17d722426c65d91": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1df1484f1b584624939fade278e6e46a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6aa4bdd5ac6f491ab4963d89a9ccddd1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6fd087e7f23a42adb17d722426c65d91", "placeholder": "\u200b", "style": "IPY_MODEL_1df1484f1b584624939fade278e6e46a", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "6757f78e2fd14c099c1d76d85503dc1e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "03384f8a5e2248dfa34263c4eb3c1626": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6e22bf6fd8a64c619a33a03ff1342781": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6757f78e2fd14c099c1d76d85503dc1e", "placeholder": "\u200b", "style": "IPY_MODEL_03384f8a5e2248dfa34263c4eb3c1626", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.86it/s]"}}, "c22407474f794da094346894b32573fc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "99dcec0d20b64392b3419a4d8ac05477": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6aa4bdd5ac6f491ab4963d89a9ccddd1", "IPY_MODEL_d13d287da9b746c9bca9a59bb8305eeb", "IPY_MODEL_6e22bf6fd8a64c619a33a03ff1342781"], "layout": "IPY_MODEL_c22407474f794da094346894b32573fc", "tabbable": null, "tooltip": null}}, "63d0517bf7aa458e8fbaf0349f33e4d2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aeb85f6571a249709947914ba312e957": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f9eb1e98a24a4a34a450f6ca452d47e7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_63d0517bf7aa458e8fbaf0349f33e4d2", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_aeb85f6571a249709947914ba312e957", "tabbable": null, "tooltip": null, "value": 7.0}}, "f994a5647600421b82d126e8691d2d58": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "42a0d759eb774214ae466849cf2fabc5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4b64535e47b548f5ad1dc216a72d73ea": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f994a5647600421b82d126e8691d2d58", "placeholder": "\u200b", "style": "IPY_MODEL_42a0d759eb774214ae466849cf2fabc5", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "2dfedbc2ec814ae7829e167f6d73ed0b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "21b921e8013241f7b813419f12b49517": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0ae8ab45d2624ca0b4a3b0199ffaf664": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2dfedbc2ec814ae7829e167f6d73ed0b", "placeholder": "\u200b", "style": "IPY_MODEL_21b921e8013241f7b813419f12b49517", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.32it/s]"}}, "126d94d7646b4455b31f112413ffbed4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "81ace9b9dff64dc69e61339fa55e12be": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4b64535e47b548f5ad1dc216a72d73ea", "IPY_MODEL_f9eb1e98a24a4a34a450f6ca452d47e7", "IPY_MODEL_0ae8ab45d2624ca0b4a3b0199ffaf664"], "layout": "IPY_MODEL_126d94d7646b4455b31f112413ffbed4", "tabbable": null, "tooltip": null}}, "766f0f3fd6934b4f8f7878511f1dcebf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ff795834480e4a2aaae0201605c12a33": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3f330906b90d4a8691c0e47f78850979": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_766f0f3fd6934b4f8f7878511f1dcebf", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ff795834480e4a2aaae0201605c12a33", "tabbable": null, "tooltip": null, "value": 50.0}}, "6e4c423ec318426795c4254189571a36": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "64ee7ba07dfc470480cae0ae4a6b97c6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "528f3065f6664dc58ec7e3ab6f4f65f0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6e4c423ec318426795c4254189571a36", "placeholder": "\u200b", "style": "IPY_MODEL_64ee7ba07dfc470480cae0ae4a6b97c6", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "c95f27999518454e9198375c95ae537b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "512fd0f0f340450a8653ae7e6e8ad88e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e1f7ce3254b74ad18f64441fe00b3bdd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c95f27999518454e9198375c95ae537b", "placeholder": "\u200b", "style": "IPY_MODEL_512fd0f0f340450a8653ae7e6e8ad88e", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.78it/s]"}}, "7a6959c4b5c34ed8abe7b56c249ea7a8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cf6083ee4aa0422f83db4a7657537a8a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_528f3065f6664dc58ec7e3ab6f4f65f0", "IPY_MODEL_3f330906b90d4a8691c0e47f78850979", "IPY_MODEL_e1f7ce3254b74ad18f64441fe00b3bdd"], "layout": "IPY_MODEL_7a6959c4b5c34ed8abe7b56c249ea7a8", "tabbable": null, "tooltip": null}}, "cd5b17a08ebd403ea2f73ea34567d5f8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "393419334a394468aee05bc1870bda66": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a676f613dec142f8a39e7d3dbf545632": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cd5b17a08ebd403ea2f73ea34567d5f8", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_393419334a394468aee05bc1870bda66", "tabbable": null, "tooltip": null, "value": 7.0}}, "3e1b99e038954d55936a2e63ee2a1445": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ce764fff312d4cef9221dd04cf14f08e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "990fd0bfef2b46389f8dce2a52653843": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3e1b99e038954d55936a2e63ee2a1445", "placeholder": "\u200b", "style": "IPY_MODEL_ce764fff312d4cef9221dd04cf14f08e", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "6f6c136e3af54527bdb03cb1a88d57d8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5268acfd20eb431195c81b120ebf6d37": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "689f2b34719d46f58d4a3e8be34b0fdd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6f6c136e3af54527bdb03cb1a88d57d8", "placeholder": "\u200b", "style": "IPY_MODEL_5268acfd20eb431195c81b120ebf6d37", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.33it/s]"}}, "4e572d72a1a04b338698009ccfd6da92": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0d6e03b6808f435c910913801daa0ad7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_990fd0bfef2b46389f8dce2a52653843", "IPY_MODEL_a676f613dec142f8a39e7d3dbf545632", "IPY_MODEL_689f2b34719d46f58d4a3e8be34b0fdd"], "layout": "IPY_MODEL_4e572d72a1a04b338698009ccfd6da92", "tabbable": null, "tooltip": null}}, "a9c5673e5b7242a7a8a7f2f8f7119bdd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c039f42b8cbc421193886ceffd6b8a06": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d14c6a58eab34f2b94bbd26ae65efcfb": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a9c5673e5b7242a7a8a7f2f8f7119bdd", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c039f42b8cbc421193886ceffd6b8a06", "tabbable": null, "tooltip": null, "value": 50.0}}, "30dcfa2d28fe413a8ba4fcd5bea93c5d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4d0b87bb15554dfea23859cf91bf2f51": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e79153b8895c4ef18f8326a5590822fb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_30dcfa2d28fe413a8ba4fcd5bea93c5d", "placeholder": "\u200b", "style": "IPY_MODEL_4d0b87bb15554dfea23859cf91bf2f51", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "5eb4ec47327f4596a55fae2e6ed43c7a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "38214ddf20e64098886fbc89b444a619": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4b24b18047b7481696c500bd6d66203a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5eb4ec47327f4596a55fae2e6ed43c7a", "placeholder": "\u200b", "style": "IPY_MODEL_38214ddf20e64098886fbc89b444a619", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.74it/s]"}}, "57a880876e3f4b6792cb14526174dc2a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "299ba2019a7a40cb8a1381a8944907bf": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e79153b8895c4ef18f8326a5590822fb", "IPY_MODEL_d14c6a58eab34f2b94bbd26ae65efcfb", "IPY_MODEL_4b24b18047b7481696c500bd6d66203a"], "layout": "IPY_MODEL_57a880876e3f4b6792cb14526174dc2a", "tabbable": null, "tooltip": null}}, "243e1e44f4254bf29f10b5d0e0fa5a36": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "37d2fff4b1aa4a8dbe5d87e8167629b5": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "eca8d55f69d0406683329cde5d664b1d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_243e1e44f4254bf29f10b5d0e0fa5a36", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_37d2fff4b1aa4a8dbe5d87e8167629b5", "tabbable": null, "tooltip": null, "value": 7.0}}, "7341354ff402436eb405c90fc90bf5e1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "22ff045ed35d4f429b1d3dc8382ece07": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ac1d282d90f6429da4e617b67ce0dc48": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7341354ff402436eb405c90fc90bf5e1", "placeholder": "\u200b", "style": "IPY_MODEL_22ff045ed35d4f429b1d3dc8382ece07", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "8c83dd4f1cc143ef815e2c055e8780dc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d865cbc33078459e89d4bd6cb3dc19d7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0c423708f12e4df598b3aa07ccfc9569": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8c83dd4f1cc143ef815e2c055e8780dc", "placeholder": "\u200b", "style": "IPY_MODEL_d865cbc33078459e89d4bd6cb3dc19d7", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.32it/s]"}}, "90a4922d1e30420f8f90dc0dea9cd858": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "815e6ada51f24c99be7da7ca074b329a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ac1d282d90f6429da4e617b67ce0dc48", "IPY_MODEL_eca8d55f69d0406683329cde5d664b1d", "IPY_MODEL_0c423708f12e4df598b3aa07ccfc9569"], "layout": "IPY_MODEL_90a4922d1e30420f8f90dc0dea9cd858", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/data_monitor.ipynb b/master/tutorials/datalab/data_monitor.ipynb index 2765c25bb..d81061bf7 100644 --- a/master/tutorials/datalab/data_monitor.ipynb +++ b/master/tutorials/datalab/data_monitor.ipynb @@ -5,10 +5,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:55.986486Z", - "iopub.status.busy": "2024-05-02T13:29:55.986079Z", - "iopub.status.idle": "2024-05-02T13:29:55.996835Z", - "shell.execute_reply": "2024-05-02T13:29:55.996413Z" + "iopub.execute_input": "2024-05-03T22:12:57.745893Z", + "iopub.status.busy": "2024-05-03T22:12:57.745543Z", + "iopub.status.idle": "2024-05-03T22:12:57.756222Z", + "shell.execute_reply": "2024-05-03T22:12:57.755688Z" } }, "outputs": [], @@ -85,10 +85,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:55.999014Z", - "iopub.status.busy": "2024-05-02T13:29:55.998704Z", - "iopub.status.idle": "2024-05-02T13:29:57.135034Z", - "shell.execute_reply": "2024-05-02T13:29:57.134480Z" + "iopub.execute_input": "2024-05-03T22:12:57.758767Z", + "iopub.status.busy": "2024-05-03T22:12:57.758427Z", + "iopub.status.idle": "2024-05-03T22:12:58.950128Z", + "shell.execute_reply": "2024-05-03T22:12:58.949568Z" } }, "outputs": [], @@ -97,7 +97,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -122,10 +122,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:57.137731Z", - "iopub.status.busy": "2024-05-02T13:29:57.137283Z", - "iopub.status.idle": "2024-05-02T13:29:57.155860Z", - "shell.execute_reply": "2024-05-02T13:29:57.155404Z" + "iopub.execute_input": "2024-05-03T22:12:58.952798Z", + "iopub.status.busy": "2024-05-03T22:12:58.952315Z", + "iopub.status.idle": "2024-05-03T22:12:58.970675Z", + "shell.execute_reply": "2024-05-03T22:12:58.970194Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:57.157948Z", - "iopub.status.busy": "2024-05-02T13:29:57.157639Z", - "iopub.status.idle": "2024-05-02T13:29:57.177589Z", - "shell.execute_reply": "2024-05-02T13:29:57.177050Z" + "iopub.execute_input": "2024-05-03T22:12:58.973068Z", + "iopub.status.busy": "2024-05-03T22:12:58.972699Z", + "iopub.status.idle": "2024-05-03T22:12:58.994342Z", + "shell.execute_reply": "2024-05-03T22:12:58.993714Z" } }, "outputs": [], @@ -353,10 +353,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:57.179763Z", - "iopub.status.busy": "2024-05-02T13:29:57.179475Z", - "iopub.status.idle": "2024-05-02T13:29:57.194323Z", - "shell.execute_reply": "2024-05-02T13:29:57.193876Z" + "iopub.execute_input": "2024-05-03T22:12:58.997047Z", + "iopub.status.busy": "2024-05-03T22:12:58.996512Z", + "iopub.status.idle": "2024-05-03T22:12:59.013775Z", + "shell.execute_reply": "2024-05-03T22:12:59.013309Z" } }, "outputs": [], @@ -369,10 +369,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:57.196312Z", - "iopub.status.busy": "2024-05-02T13:29:57.196005Z", - "iopub.status.idle": "2024-05-02T13:29:57.209139Z", - "shell.execute_reply": "2024-05-02T13:29:57.208581Z" + "iopub.execute_input": "2024-05-03T22:12:59.016239Z", + "iopub.status.busy": "2024-05-03T22:12:59.015763Z", + "iopub.status.idle": "2024-05-03T22:12:59.031928Z", + "shell.execute_reply": "2024-05-03T22:12:59.031349Z" } }, "outputs": [], @@ -450,10 +450,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:57.211235Z", - "iopub.status.busy": "2024-05-02T13:29:57.210932Z", - "iopub.status.idle": "2024-05-02T13:29:57.402349Z", - "shell.execute_reply": "2024-05-02T13:29:57.401779Z" + "iopub.execute_input": "2024-05-03T22:12:59.034386Z", + "iopub.status.busy": "2024-05-03T22:12:59.033993Z", + "iopub.status.idle": "2024-05-03T22:12:59.234172Z", + "shell.execute_reply": "2024-05-03T22:12:59.233687Z" } }, "outputs": [], @@ -507,10 +507,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:57.404722Z", - "iopub.status.busy": "2024-05-02T13:29:57.404343Z", - "iopub.status.idle": "2024-05-02T13:29:57.762216Z", - "shell.execute_reply": "2024-05-02T13:29:57.761640Z" + "iopub.execute_input": "2024-05-03T22:12:59.236560Z", + "iopub.status.busy": "2024-05-03T22:12:59.236228Z", + "iopub.status.idle": "2024-05-03T22:12:59.545463Z", + "shell.execute_reply": "2024-05-03T22:12:59.544896Z" } }, "outputs": [ @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:57.764437Z", - "iopub.status.busy": "2024-05-02T13:29:57.764103Z", - "iopub.status.idle": "2024-05-02T13:29:57.800553Z", - "shell.execute_reply": "2024-05-02T13:29:57.800135Z" + "iopub.execute_input": "2024-05-03T22:12:59.547580Z", + "iopub.status.busy": "2024-05-03T22:12:59.547396Z", + "iopub.status.idle": "2024-05-03T22:12:59.585458Z", + "shell.execute_reply": "2024-05-03T22:12:59.584987Z" } }, "outputs": [], @@ -581,10 +581,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:57.802542Z", - "iopub.status.busy": "2024-05-02T13:29:57.802239Z", - "iopub.status.idle": "2024-05-02T13:29:59.411961Z", - "shell.execute_reply": "2024-05-02T13:29:59.411375Z" + "iopub.execute_input": "2024-05-03T22:12:59.587931Z", + "iopub.status.busy": "2024-05-03T22:12:59.587601Z", + "iopub.status.idle": "2024-05-03T22:13:01.338488Z", + "shell.execute_reply": "2024-05-03T22:13:01.337923Z" } }, "outputs": [ @@ -667,10 +667,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:59.414528Z", - "iopub.status.busy": "2024-05-02T13:29:59.414061Z", - "iopub.status.idle": "2024-05-02T13:29:59.441498Z", - "shell.execute_reply": "2024-05-02T13:29:59.441030Z" + "iopub.execute_input": "2024-05-03T22:13:01.341018Z", + "iopub.status.busy": "2024-05-03T22:13:01.340483Z", + "iopub.status.idle": "2024-05-03T22:13:01.369849Z", + "shell.execute_reply": "2024-05-03T22:13:01.369381Z" } }, "outputs": [], @@ -701,10 +701,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:59.443703Z", - "iopub.status.busy": "2024-05-02T13:29:59.443314Z", - "iopub.status.idle": "2024-05-02T13:29:59.474203Z", - "shell.execute_reply": "2024-05-02T13:29:59.473699Z" + "iopub.execute_input": "2024-05-03T22:13:01.372131Z", + "iopub.status.busy": "2024-05-03T22:13:01.371910Z", + "iopub.status.idle": "2024-05-03T22:13:01.412479Z", + "shell.execute_reply": "2024-05-03T22:13:01.411992Z" } }, "outputs": [], @@ -741,17 +741,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:29:59.476263Z", - "iopub.status.busy": "2024-05-02T13:29:59.475934Z", - "iopub.status.idle": "2024-05-02T13:30:04.569737Z", - "shell.execute_reply": "2024-05-02T13:30:04.569132Z" + "iopub.execute_input": "2024-05-03T22:13:01.414921Z", + "iopub.status.busy": "2024-05-03T22:13:01.414555Z", + "iopub.status.idle": "2024-05-03T22:13:06.524626Z", + "shell.execute_reply": "2024-05-03T22:13:06.524041Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fb22d0c4b8294355ba4c419934662f2c", + "model_id": "99dcec0d20b64392b3419a4d8ac05477", "version_major": 2, "version_minor": 0 }, @@ -811,17 +811,17 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:04.572100Z", - "iopub.status.busy": "2024-05-02T13:30:04.571771Z", - "iopub.status.idle": "2024-05-02T13:30:09.891827Z", - "shell.execute_reply": "2024-05-02T13:30:09.891225Z" + "iopub.execute_input": "2024-05-03T22:13:06.526891Z", + "iopub.status.busy": "2024-05-03T22:13:06.526707Z", + "iopub.status.idle": "2024-05-03T22:13:11.849098Z", + "shell.execute_reply": "2024-05-03T22:13:11.848488Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "73e5430004ad4dbc8fdb91dfc1fd9163", + "model_id": "81ace9b9dff64dc69e61339fa55e12be", "version_major": 2, "version_minor": 0 }, @@ -949,10 +949,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:09.894070Z", - "iopub.status.busy": "2024-05-02T13:30:09.893753Z", - "iopub.status.idle": "2024-05-02T13:30:09.928376Z", - "shell.execute_reply": "2024-05-02T13:30:09.927936Z" + "iopub.execute_input": "2024-05-03T22:13:11.851187Z", + "iopub.status.busy": "2024-05-03T22:13:11.851009Z", + "iopub.status.idle": "2024-05-03T22:13:11.886546Z", + "shell.execute_reply": "2024-05-03T22:13:11.885970Z" } }, "outputs": [ @@ -1185,10 +1185,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:09.930364Z", - "iopub.status.busy": "2024-05-02T13:30:09.930037Z", - "iopub.status.idle": "2024-05-02T13:30:09.956439Z", - "shell.execute_reply": "2024-05-02T13:30:09.955901Z" + "iopub.execute_input": "2024-05-03T22:13:11.888808Z", + "iopub.status.busy": "2024-05-03T22:13:11.888442Z", + "iopub.status.idle": "2024-05-03T22:13:11.918070Z", + "shell.execute_reply": "2024-05-03T22:13:11.917562Z" } }, "outputs": [ @@ -1258,10 +1258,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:09.958638Z", - "iopub.status.busy": "2024-05-02T13:30:09.958242Z", - "iopub.status.idle": "2024-05-02T13:30:09.996679Z", - "shell.execute_reply": "2024-05-02T13:30:09.996254Z" + "iopub.execute_input": "2024-05-03T22:13:11.920293Z", + "iopub.status.busy": "2024-05-03T22:13:11.919934Z", + "iopub.status.idle": "2024-05-03T22:13:11.964630Z", + "shell.execute_reply": "2024-05-03T22:13:11.964014Z" } }, "outputs": [ @@ -1314,10 +1314,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:09.998633Z", - "iopub.status.busy": "2024-05-02T13:30:09.998328Z", - "iopub.status.idle": "2024-05-02T13:30:10.020426Z", - "shell.execute_reply": "2024-05-02T13:30:10.019875Z" + "iopub.execute_input": "2024-05-03T22:13:11.966782Z", + "iopub.status.busy": "2024-05-03T22:13:11.966587Z", + "iopub.status.idle": "2024-05-03T22:13:11.997461Z", + "shell.execute_reply": "2024-05-03T22:13:11.996934Z" } }, "outputs": [], @@ -1331,10 +1331,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:10.022627Z", - "iopub.status.busy": "2024-05-02T13:30:10.022313Z", - "iopub.status.idle": "2024-05-02T13:30:10.045264Z", - "shell.execute_reply": "2024-05-02T13:30:10.044711Z" + "iopub.execute_input": "2024-05-03T22:13:12.000152Z", + "iopub.status.busy": "2024-05-03T22:13:11.999580Z", + "iopub.status.idle": "2024-05-03T22:13:12.027158Z", + "shell.execute_reply": "2024-05-03T22:13:12.026696Z" } }, "outputs": [], @@ -1363,17 +1363,17 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:10.047238Z", - "iopub.status.busy": "2024-05-02T13:30:10.046927Z", - "iopub.status.idle": "2024-05-02T13:30:20.456799Z", - "shell.execute_reply": "2024-05-02T13:30:20.456186Z" + "iopub.execute_input": "2024-05-03T22:13:12.029289Z", + "iopub.status.busy": "2024-05-03T22:13:12.029103Z", + "iopub.status.idle": "2024-05-03T22:13:22.462772Z", + "shell.execute_reply": "2024-05-03T22:13:22.462192Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "78fce4adaae247cdbfcbc05371109a2a", + "model_id": "cf6083ee4aa0422f83db4a7657537a8a", "version_major": 2, "version_minor": 0 }, @@ -1397,7 +1397,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b51af869891c4eeea7a188b683aaaa69", + "model_id": "0d6e03b6808f435c910913801daa0ad7", "version_major": 2, "version_minor": 0 }, @@ -1463,10 +1463,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:20.459186Z", - "iopub.status.busy": "2024-05-02T13:30:20.458846Z", - "iopub.status.idle": "2024-05-02T13:30:20.541228Z", - "shell.execute_reply": "2024-05-02T13:30:20.540650Z" + "iopub.execute_input": "2024-05-03T22:13:22.464883Z", + "iopub.status.busy": "2024-05-03T22:13:22.464697Z", + "iopub.status.idle": "2024-05-03T22:13:22.554428Z", + "shell.execute_reply": "2024-05-03T22:13:22.553781Z" } }, "outputs": [ @@ -1546,10 +1546,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:20.543571Z", - "iopub.status.busy": "2024-05-02T13:30:20.543283Z", - "iopub.status.idle": "2024-05-02T13:30:20.573580Z", - "shell.execute_reply": "2024-05-02T13:30:20.573133Z" + "iopub.execute_input": "2024-05-03T22:13:22.556811Z", + "iopub.status.busy": "2024-05-03T22:13:22.556534Z", + "iopub.status.idle": "2024-05-03T22:13:22.588875Z", + "shell.execute_reply": "2024-05-03T22:13:22.588228Z" } }, "outputs": [], @@ -1562,10 +1562,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:20.575732Z", - "iopub.status.busy": "2024-05-02T13:30:20.575558Z", - "iopub.status.idle": "2024-05-02T13:30:20.603594Z", - "shell.execute_reply": "2024-05-02T13:30:20.603020Z" + "iopub.execute_input": "2024-05-03T22:13:22.591259Z", + "iopub.status.busy": "2024-05-03T22:13:22.590930Z", + "iopub.status.idle": "2024-05-03T22:13:22.621598Z", + "shell.execute_reply": "2024-05-03T22:13:22.621064Z" } }, "outputs": [], @@ -1594,17 +1594,17 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:20.606010Z", - "iopub.status.busy": "2024-05-02T13:30:20.605652Z", - "iopub.status.idle": "2024-05-02T13:30:31.070527Z", - "shell.execute_reply": "2024-05-02T13:30:31.069950Z" + "iopub.execute_input": "2024-05-03T22:13:22.624516Z", + "iopub.status.busy": "2024-05-03T22:13:22.623901Z", + "iopub.status.idle": "2024-05-03T22:13:33.108999Z", + "shell.execute_reply": "2024-05-03T22:13:33.108396Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ecead3c00791476fbe27b3a2ef00339e", + "model_id": "299ba2019a7a40cb8a1381a8944907bf", "version_major": 2, "version_minor": 0 }, @@ -1658,7 +1658,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "88170db260dd44e3a22d607cc0b345f4", + "model_id": "815e6ada51f24c99be7da7ca074b329a", "version_major": 2, "version_minor": 0 }, @@ -1776,10 +1776,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:31.073352Z", - "iopub.status.busy": "2024-05-02T13:30:31.072986Z", - "iopub.status.idle": "2024-05-02T13:30:31.103519Z", - "shell.execute_reply": "2024-05-02T13:30:31.102986Z" + "iopub.execute_input": "2024-05-03T22:13:33.111783Z", + "iopub.status.busy": "2024-05-03T22:13:33.111414Z", + "iopub.status.idle": "2024-05-03T22:13:33.142445Z", + "shell.execute_reply": "2024-05-03T22:13:33.141897Z" } }, "outputs": [ @@ -1863,7 +1863,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "05eb876df74d442b906cab302f672794": { + "03384f8a5e2248dfa34263c4eb3c1626": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "09bda7ec597d4252aaa39f1ed681201e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1879,25 +1897,77 @@ "description_width": "" } }, - "07fc5a9a067c4ed0aed57edefdaa2d20": { + "0ae8ab45d2624ca0b4a3b0199ffaf664": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2dfedbc2ec814ae7829e167f6d73ed0b", + "placeholder": "​", + "style": "IPY_MODEL_21b921e8013241f7b813419f12b49517", + "tabbable": null, + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.32it/s]" } }, - "093d0fd45c1d489ca09ec3c1778e836d": { + "0c423708f12e4df598b3aa07ccfc9569": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8c83dd4f1cc143ef815e2c055e8780dc", + "placeholder": "​", + "style": "IPY_MODEL_d865cbc33078459e89d4bd6cb3dc19d7", + "tabbable": null, + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.32it/s]" + } + }, + "0d6e03b6808f435c910913801daa0ad7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_990fd0bfef2b46389f8dce2a52653843", + "IPY_MODEL_a676f613dec142f8a39e7d3dbf545632", + "IPY_MODEL_689f2b34719d46f58d4a3e8be34b0fdd" + ], + "layout": "IPY_MODEL_4e572d72a1a04b338698009ccfd6da92", + "tabbable": null, + "tooltip": null + } + }, + "126d94d7646b4455b31f112413ffbed4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1950,7 +2020,7 @@ "width": null } }, - "0e844d31365c411a8db7edf724f7cdb0": { + "1df1484f1b584624939fade278e6e46a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1968,56 +2038,7 @@ "text_color": null } }, - "11a931814dda47ed994af645df2fcde1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_093d0fd45c1d489ca09ec3c1778e836d", - "placeholder": "​", - "style": "IPY_MODEL_9a58c78f678e45f283df5d06cce1e45d", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" - } - }, - "12b614528c2d45c6b8d3983a1a98fb33": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dc000dedfbc14e9ab8dc9ee4e25342ce", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_05eb876df74d442b906cab302f672794", - "tabbable": null, - "tooltip": null, - "value": 7.0 - } - }, - "147d3f04736d4903926aca0643fc3d2f": { + "21b921e8013241f7b813419f12b49517": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2035,30 +2056,7 @@ "text_color": null } }, - "16c8c25c0b0f4273aee62257cf2288d1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a5e62f3f3e3f467693755e4ea1d6ad1d", - "placeholder": "​", - "style": "IPY_MODEL_60015d29d3ad4af99acbf88f3b385e21", - "tabbable": null, - "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.81it/s]" - } - }, - "178d114e5b9f4779ac5ff944378233fd": { + "22ff045ed35d4f429b1d3dc8382ece07": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2076,33 +2074,7 @@ "text_color": null } }, - "1df91515651343a38ca213e4e75a9d67": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aaa0763d4f9a4ddabf31221beaaeae84", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_888a0607c8894c2fb80f6623bfca196d", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "1f2982d963bf48cc9ae3f023f5904c57": { + "243e1e44f4254bf29f10b5d0e0fa5a36": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2155,128 +2127,84 @@ "width": null } }, - "2bac8614391f401c8d173543ef797a6b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_47b6b188468c407e9280ed9078af9cb7", - "placeholder": "​", - "style": "IPY_MODEL_95d546dad9c1485489bda48b1f7c5fda", - "tabbable": null, - "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.32it/s]" - } - }, - "2cf13aa7f659462a8b89715fb629e6a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b3c6c320dc704839980bca9cbce097f9", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a66b4b0f59f640cfa7130324564a8d05", - "tabbable": null, - "tooltip": null, - "value": 7.0 - } - }, - "3af729eb8a45493395904db2dda1ed64": { + "299ba2019a7a40cb8a1381a8944907bf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9e72635bf6964b3bb491b519b212dd0e", - "placeholder": "​", - "style": "IPY_MODEL_fe15744b545a415d81ef667958f73de5", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" - } - }, - "3e498887223c4a869dcafc4733e236a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d7ca6b28144e44308159315e94c1e725", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e2464960105d4d3fb52137c068e08da2", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e79153b8895c4ef18f8326a5590822fb", + "IPY_MODEL_d14c6a58eab34f2b94bbd26ae65efcfb", + "IPY_MODEL_4b24b18047b7481696c500bd6d66203a" + ], + "layout": "IPY_MODEL_57a880876e3f4b6792cb14526174dc2a", "tabbable": null, - "tooltip": null, - "value": 7.0 + "tooltip": null } }, - "40aa83a93c73432185cd9cf218bec130": { - "model_module": "@jupyter-widgets/controls", + "2dfedbc2ec814ae7829e167f6d73ed0b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8ee66dfd392346929c29164297997512", - "placeholder": "​", - "style": "IPY_MODEL_178d114e5b9f4779ac5ff944378233fd", - "tabbable": null, - "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.77it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "47b6b188468c407e9280ed9078af9cb7": { + "30dcfa2d28fe413a8ba4fcd5bea93c5d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2329,66 +2257,57 @@ "width": null } }, - "4a73b0dc6434405ea54debd9cda10527": { + "37d2fff4b1aa4a8dbe5d87e8167629b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "4b53a3ed78b94b73ac7a362523f8d016": { + "38214ddf20e64098886fbc89b444a619": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_91f044ec364f49d4a4705090edac4f8d", - "placeholder": "​", - "style": "IPY_MODEL_650a4347ff1d45148dc20ac40287b17e", - "tabbable": null, - "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.33it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4caaeaa65821400e9e60573f7cc74350": { + "393419334a394468aee05bc1870bda66": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "54be76fa213b48f39f6459da3e4d165c": { + "3e1b99e038954d55936a2e63ee2a1445": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2441,7 +2360,7 @@ "width": null } }, - "58ce9fa1c24a4e2da2d697a14c8479a7": { + "3f330906b90d4a8691c0e47f78850979": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2457,35 +2376,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b37299d16c914496bcdc42bccea15af4", + "layout": "IPY_MODEL_766f0f3fd6934b4f8f7878511f1dcebf", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_b0c7a3973a914a8bb45a705b52894324", + "style": "IPY_MODEL_ff795834480e4a2aaae0201605c12a33", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "60015d29d3ad4af99acbf88f3b385e21": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "650a4347ff1d45148dc20ac40287b17e": { + "42a0d759eb774214ae466849cf2fabc5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2503,7 +2404,7 @@ "text_color": null } }, - "677b945f649645719ff0170d0bea9f09": { + "4b24b18047b7481696c500bd6d66203a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2518,15 +2419,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1f2982d963bf48cc9ae3f023f5904c57", + "layout": "IPY_MODEL_5eb4ec47327f4596a55fae2e6ed43c7a", "placeholder": "​", - "style": "IPY_MODEL_147d3f04736d4903926aca0643fc3d2f", + "style": "IPY_MODEL_38214ddf20e64098886fbc89b444a619", "tabbable": null, "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.32it/s]" + "value": " 50/50 [00:05<00:00,  9.74it/s]" } }, - "69eccfdfcd924efaa900b42d8f549460": { + "4b64535e47b548f5ad1dc216a72d73ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2541,15 +2442,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6f52572658cc4d76bcba33ff95f8f41d", + "layout": "IPY_MODEL_f994a5647600421b82d126e8691d2d58", "placeholder": "​", - "style": "IPY_MODEL_4caaeaa65821400e9e60573f7cc74350", + "style": "IPY_MODEL_42a0d759eb774214ae466849cf2fabc5", "tabbable": null, "tooltip": null, "value": "Streaming data, 50 sample(s) at a time: 100%" } }, - "6f52572658cc4d76bcba33ff95f8f41d": { + "4d0b87bb15554dfea23859cf91bf2f51": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4e572d72a1a04b338698009ccfd6da92": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2602,55 +2521,66 @@ "width": null } }, - "73e5430004ad4dbc8fdb91dfc1fd9163": { + "512fd0f0f340450a8653ae7e6e8ad88e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5268acfd20eb431195c81b120ebf6d37": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d58393db61f949b9a4b3de1e9651927c", - "IPY_MODEL_2cf13aa7f659462a8b89715fb629e6a4", - "IPY_MODEL_677b945f649645719ff0170d0bea9f09" - ], - "layout": "IPY_MODEL_54be76fa213b48f39f6459da3e4d165c", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "78fce4adaae247cdbfcbc05371109a2a": { + "528f3065f6664dc58ec7e3ab6f4f65f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3af729eb8a45493395904db2dda1ed64", - "IPY_MODEL_1df91515651343a38ca213e4e75a9d67", - "IPY_MODEL_16c8c25c0b0f4273aee62257cf2288d1" - ], - "layout": "IPY_MODEL_bf65598e59ad4bdf8a1fe83ff83b21ed", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6e4c423ec318426795c4254189571a36", + "placeholder": "​", + "style": "IPY_MODEL_64ee7ba07dfc470480cae0ae4a6b97c6", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Streaming data, 1 sample(s) at a time: 100%" } }, - "7baaeffae6d54df5b9c83c958ce46d88": { + "57a880876e3f4b6792cb14526174dc2a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2703,7 +2633,7 @@ "width": null } }, - "7c3995c4b059427698aa27684271e419": { + "5eb4ec47327f4596a55fae2e6ed43c7a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2756,7 +2686,7 @@ "width": null } }, - "8000547bc9f948629d0c429313f4211d": { + "63d0517bf7aa458e8fbaf0349f33e4d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2809,7 +2739,25 @@ "width": null } }, - "845c54dc0e7c4bcfa95ac1b1626adf61": { + "64ee7ba07dfc470480cae0ae4a6b97c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6757f78e2fd14c099c1d76d85503dc1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2862,47 +2810,76 @@ "width": null } }, - "88170db260dd44e3a22d607cc0b345f4": { + "689f2b34719d46f58d4a3e8be34b0fdd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_69eccfdfcd924efaa900b42d8f549460", - "IPY_MODEL_12b614528c2d45c6b8d3983a1a98fb33", - "IPY_MODEL_2bac8614391f401c8d173543ef797a6b" - ], - "layout": "IPY_MODEL_7baaeffae6d54df5b9c83c958ce46d88", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6f6c136e3af54527bdb03cb1a88d57d8", + "placeholder": "​", + "style": "IPY_MODEL_5268acfd20eb431195c81b120ebf6d37", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.33it/s]" } }, - "888a0607c8894c2fb80f6623bfca196d": { + "6aa4bdd5ac6f491ab4963d89a9ccddd1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6fd087e7f23a42adb17d722426c65d91", + "placeholder": "​", + "style": "IPY_MODEL_1df1484f1b584624939fade278e6e46a", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 1 sample(s) at a time: 100%" + } + }, + "6e22bf6fd8a64c619a33a03ff1342781": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6757f78e2fd14c099c1d76d85503dc1e", + "placeholder": "​", + "style": "IPY_MODEL_03384f8a5e2248dfa34263c4eb3c1626", + "tabbable": null, + "tooltip": null, + "value": " 50/50 [00:05<00:00,  9.86it/s]" } }, - "8ee66dfd392346929c29164297997512": { + "6e4c423ec318426795c4254189571a36": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2955,7 +2932,7 @@ "width": null } }, - "91f044ec364f49d4a4705090edac4f8d": { + "6f6c136e3af54527bdb03cb1a88d57d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3008,7 +2985,7 @@ "width": null } }, - "9400697a79044ace854ed076b039d215": { + "6fd087e7f23a42adb17d722426c65d91": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3061,59 +3038,7 @@ "width": null } }, - "95d546dad9c1485489bda48b1f7c5fda": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9724494afb084e3ba4e085d52edd874b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9a58c78f678e45f283df5d06cce1e45d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9b9b3dfd8ea64853a76a5f78ff1ac1c3": { + "7341354ff402436eb405c90fc90bf5e1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3166,7 +3091,7 @@ "width": null } }, - "9e72635bf6964b3bb491b519b212dd0e": { + "766f0f3fd6934b4f8f7878511f1dcebf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3219,7 +3144,7 @@ "width": null } }, - "a5e62f3f3e3f467693755e4ea1d6ad1d": { + "7a6959c4b5c34ed8abe7b56c249ea7a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3272,46 +3197,55 @@ "width": null } }, - "a66b4b0f59f640cfa7130324564a8d05": { + "815e6ada51f24c99be7da7ca074b329a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ac1d282d90f6429da4e617b67ce0dc48", + "IPY_MODEL_eca8d55f69d0406683329cde5d664b1d", + "IPY_MODEL_0c423708f12e4df598b3aa07ccfc9569" + ], + "layout": "IPY_MODEL_90a4922d1e30420f8f90dc0dea9cd858", + "tabbable": null, + "tooltip": null } }, - "a95e33721b3945cb9ee79f9de73dcd54": { + "81ace9b9dff64dc69e61339fa55e12be": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aa57c61d138346d89e218e312804298b", - "placeholder": "​", - "style": "IPY_MODEL_4a73b0dc6434405ea54debd9cda10527", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4b64535e47b548f5ad1dc216a72d73ea", + "IPY_MODEL_f9eb1e98a24a4a34a450f6ca452d47e7", + "IPY_MODEL_0ae8ab45d2624ca0b4a3b0199ffaf664" + ], + "layout": "IPY_MODEL_126d94d7646b4455b31f112413ffbed4", "tabbable": null, - "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" + "tooltip": null } }, - "aa57c61d138346d89e218e312804298b": { + "8c83dd4f1cc143ef815e2c055e8780dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3364,7 +3298,7 @@ "width": null } }, - "aaa0763d4f9a4ddabf31221beaaeae84": { + "90a4922d1e30420f8f90dc0dea9cd858": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3417,23 +3351,7 @@ "width": null } }, - "b0c7a3973a914a8bb45a705b52894324": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b37299d16c914496bcdc42bccea15af4": { + "98aa7bee57284d04877e41bedfb601e2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3486,7 +3404,80 @@ "width": null } }, - "b3c6c320dc704839980bca9cbce097f9": { + "990fd0bfef2b46389f8dce2a52653843": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3e1b99e038954d55936a2e63ee2a1445", + "placeholder": "​", + "style": "IPY_MODEL_ce764fff312d4cef9221dd04cf14f08e", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 50 sample(s) at a time: 100%" + } + }, + "99dcec0d20b64392b3419a4d8ac05477": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6aa4bdd5ac6f491ab4963d89a9ccddd1", + "IPY_MODEL_d13d287da9b746c9bca9a59bb8305eeb", + "IPY_MODEL_6e22bf6fd8a64c619a33a03ff1342781" + ], + "layout": "IPY_MODEL_c22407474f794da094346894b32573fc", + "tabbable": null, + "tooltip": null + } + }, + "a676f613dec142f8a39e7d3dbf545632": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cd5b17a08ebd403ea2f73ea34567d5f8", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_393419334a394468aee05bc1870bda66", + "tabbable": null, + "tooltip": null, + "value": 7.0 + } + }, + "a9c5673e5b7242a7a8a7f2f8f7119bdd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3539,102 +3530,62 @@ "width": null } }, - "b51af869891c4eeea7a188b683aaaa69": { + "ac1d282d90f6429da4e617b67ce0dc48": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_11a931814dda47ed994af645df2fcde1", - "IPY_MODEL_3e498887223c4a869dcafc4733e236a8", - "IPY_MODEL_4b53a3ed78b94b73ac7a362523f8d016" - ], - "layout": "IPY_MODEL_8000547bc9f948629d0c429313f4211d", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7341354ff402436eb405c90fc90bf5e1", + "placeholder": "​", + "style": "IPY_MODEL_22ff045ed35d4f429b1d3dc8382ece07", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Streaming data, 50 sample(s) at a time: 100%" } }, - "b88cd0a7ce13448b9fe5a6408e0cbf09": { + "aeb85f6571a249709947914ba312e957": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "bd2a7ac5755145319faa3df3cc293539": { - "model_module": "@jupyter-widgets/base", + "c039f42b8cbc421193886ceffd6b8a06": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "bf65598e59ad4bdf8a1fe83ff83b21ed": { + "c22407474f794da094346894b32573fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3687,53 +3638,7 @@ "width": null } }, - "d2ae35480a8049f6b4ac87bbb52f2016": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7c3995c4b059427698aa27684271e419", - "placeholder": "​", - "style": "IPY_MODEL_0e844d31365c411a8db7edf724f7cdb0", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" - } - }, - "d58393db61f949b9a4b3de1e9651927c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fb80f2f64380499f92519811729b5624", - "placeholder": "​", - "style": "IPY_MODEL_b88cd0a7ce13448b9fe5a6408e0cbf09", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" - } - }, - "d7ca6b28144e44308159315e94c1e725": { + "c95f27999518454e9198375c95ae537b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3786,7 +3691,7 @@ "width": null } }, - "dc000dedfbc14e9ab8dc9ee4e25342ce": { + "cd5b17a08ebd403ea2f73ea34567d5f8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3839,23 +3744,75 @@ "width": null } }, - "e2464960105d4d3fb52137c068e08da2": { + "ce764fff312d4cef9221dd04cf14f08e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "cf6083ee4aa0422f83db4a7657537a8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_528f3065f6664dc58ec7e3ab6f4f65f0", + "IPY_MODEL_3f330906b90d4a8691c0e47f78850979", + "IPY_MODEL_e1f7ce3254b74ad18f64441fe00b3bdd" + ], + "layout": "IPY_MODEL_7a6959c4b5c34ed8abe7b56c249ea7a8", + "tabbable": null, + "tooltip": null + } + }, + "d13d287da9b746c9bca9a59bb8305eeb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_98aa7bee57284d04877e41bedfb601e2", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_09bda7ec597d4252aaa39f1ed681201e", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "e87d1faad61d465e9c98c793aceb6660": { + "d14c6a58eab34f2b94bbd26ae65efcfb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3871,17 +3828,35 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9400697a79044ace854ed076b039d215", + "layout": "IPY_MODEL_a9c5673e5b7242a7a8a7f2f8f7119bdd", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9724494afb084e3ba4e085d52edd874b", + "style": "IPY_MODEL_c039f42b8cbc421193886ceffd6b8a06", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "e9961caa46244b959586a73afbc8eb40": { + "d865cbc33078459e89d4bd6cb3dc19d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e1f7ce3254b74ad18f64441fe00b3bdd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3896,63 +3871,64 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bd2a7ac5755145319faa3df3cc293539", + "layout": "IPY_MODEL_c95f27999518454e9198375c95ae537b", "placeholder": "​", - "style": "IPY_MODEL_07fc5a9a067c4ed0aed57edefdaa2d20", + "style": "IPY_MODEL_512fd0f0f340450a8653ae7e6e8ad88e", "tabbable": null, "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.88it/s]" + "value": " 50/50 [00:05<00:00,  9.78it/s]" } }, - "ecead3c00791476fbe27b3a2ef00339e": { + "e79153b8895c4ef18f8326a5590822fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a95e33721b3945cb9ee79f9de73dcd54", - "IPY_MODEL_e87d1faad61d465e9c98c793aceb6660", - "IPY_MODEL_40aa83a93c73432185cd9cf218bec130" - ], - "layout": "IPY_MODEL_9b9b3dfd8ea64853a76a5f78ff1ac1c3", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_30dcfa2d28fe413a8ba4fcd5bea93c5d", + "placeholder": "​", + "style": "IPY_MODEL_4d0b87bb15554dfea23859cf91bf2f51", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Streaming data, 1 sample(s) at a time: 100%" } }, - "fb22d0c4b8294355ba4c419934662f2c": { + "eca8d55f69d0406683329cde5d664b1d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d2ae35480a8049f6b4ac87bbb52f2016", - "IPY_MODEL_58ce9fa1c24a4e2da2d697a14c8479a7", - "IPY_MODEL_e9961caa46244b959586a73afbc8eb40" - ], - "layout": "IPY_MODEL_845c54dc0e7c4bcfa95ac1b1626adf61", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_243e1e44f4254bf29f10b5d0e0fa5a36", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_37d2fff4b1aa4a8dbe5d87e8167629b5", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 7.0 } }, - "fb80f2f64380499f92519811729b5624": { + "f994a5647600421b82d126e8691d2d58": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4005,22 +3981,46 @@ "width": null } }, - "fe15744b545a415d81ef667958f73de5": { + "f9eb1e98a24a4a34a450f6ca452d47e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_63d0517bf7aa458e8fbaf0349f33e4d2", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_aeb85f6571a249709947914ba312e957", + "tabbable": null, + "tooltip": null, + "value": 7.0 + } + }, + "ff795834480e4a2aaae0201605c12a33": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } } }, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 68b7496be..85ee43d1a 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1121,7 +1121,7 @@

Functionality 2: Specifying nondefault arguments
-
+

@@ -1517,7 +1517,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"9ce60d4231d24c38aa7121ff05a1a307": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "18a050b180344791a91bfc4badedb48b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "835fa208fe3e486bab594fa7c42f3235": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9ce60d4231d24c38aa7121ff05a1a307", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_18a050b180344791a91bfc4badedb48b", "tabbable": null, "tooltip": null, "value": 132.0}}, "dc6e5e35d448429e86e71546c3ed0ffc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "de8569a61a1b4c8cb799e43927b56d52": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "081c7a383a7f44fabb853729a865c402": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dc6e5e35d448429e86e71546c3ed0ffc", "placeholder": "\u200b", "style": "IPY_MODEL_de8569a61a1b4c8cb799e43927b56d52", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "8a7aa01079ac4c31be4766356f46ee39": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "97a080b0440c451e824a7bdc84e9d5e3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4bc12c880aa64a9fabb67cb0f9ee6b14": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8a7aa01079ac4c31be4766356f46ee39", "placeholder": "\u200b", "style": "IPY_MODEL_97a080b0440c451e824a7bdc84e9d5e3", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200712960.84\u2007examples/s]"}}, "af2378661d9c49f3a562e3fcc03ead37": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5d92d712531d492abca966aa77145928": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_081c7a383a7f44fabb853729a865c402", "IPY_MODEL_835fa208fe3e486bab594fa7c42f3235", "IPY_MODEL_4bc12c880aa64a9fabb67cb0f9ee6b14"], "layout": "IPY_MODEL_af2378661d9c49f3a562e3fcc03ead37", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"6f5ac0f8388e4a0eb8aab29a7354acfb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a1f198e3aa984af49d40d91d8a3ae4e4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "66f1df80d8e34f41a49fc7b1d1fa44eb": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6f5ac0f8388e4a0eb8aab29a7354acfb", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a1f198e3aa984af49d40d91d8a3ae4e4", "tabbable": null, "tooltip": null, "value": 132.0}}, "7c90471ec43a4936ab008b4345fd79c4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "65892bb8ac6c464794d3fac94e1fc7db": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "234360230b1843e68fbe11bf4ce74a5e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7c90471ec43a4936ab008b4345fd79c4", "placeholder": "\u200b", "style": "IPY_MODEL_65892bb8ac6c464794d3fac94e1fc7db", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "7285dd200025439dbfb0aa92dca410c3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2057b1aca18b41a0841dea8da6c3d77e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9c3bfc8f43754356997b99bdcaa3992b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7285dd200025439dbfb0aa92dca410c3", "placeholder": "\u200b", "style": "IPY_MODEL_2057b1aca18b41a0841dea8da6c3d77e", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200710451.91\u2007examples/s]"}}, "153dbcf914074d24aa74cfa4e57da590": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "405477c8fcea4ada962131da2dc3926a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_234360230b1843e68fbe11bf4ce74a5e", "IPY_MODEL_66f1df80d8e34f41a49fc7b1d1fa44eb", "IPY_MODEL_9c3bfc8f43754356997b99bdcaa3992b"], "layout": "IPY_MODEL_153dbcf914074d24aa74cfa4e57da590", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index b7fc47d4d..b5a83caf8 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:33.659327Z", - "iopub.status.busy": "2024-05-02T13:30:33.659160Z", - "iopub.status.idle": "2024-05-02T13:30:34.814742Z", - "shell.execute_reply": "2024-05-02T13:30:34.814188Z" + "iopub.execute_input": "2024-05-03T22:13:35.683756Z", + "iopub.status.busy": "2024-05-03T22:13:35.683268Z", + "iopub.status.idle": "2024-05-03T22:13:36.884885Z", + "shell.execute_reply": "2024-05-03T22:13:36.884275Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:34.817322Z", - "iopub.status.busy": "2024-05-02T13:30:34.816830Z", - "iopub.status.idle": "2024-05-02T13:30:34.820055Z", - "shell.execute_reply": "2024-05-02T13:30:34.819567Z" + "iopub.execute_input": "2024-05-03T22:13:36.887519Z", + "iopub.status.busy": "2024-05-03T22:13:36.887046Z", + "iopub.status.idle": "2024-05-03T22:13:36.890172Z", + "shell.execute_reply": "2024-05-03T22:13:36.889722Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:34.822292Z", - "iopub.status.busy": "2024-05-02T13:30:34.821923Z", - "iopub.status.idle": "2024-05-02T13:30:34.830961Z", - "shell.execute_reply": "2024-05-02T13:30:34.830393Z" + "iopub.execute_input": "2024-05-03T22:13:36.892309Z", + "iopub.status.busy": "2024-05-03T22:13:36.891981Z", + "iopub.status.idle": "2024-05-03T22:13:36.901183Z", + "shell.execute_reply": "2024-05-03T22:13:36.900720Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:34.832995Z", - "iopub.status.busy": "2024-05-02T13:30:34.832662Z", - "iopub.status.idle": "2024-05-02T13:30:34.837643Z", - "shell.execute_reply": "2024-05-02T13:30:34.837097Z" + "iopub.execute_input": "2024-05-03T22:13:36.903368Z", + "iopub.status.busy": "2024-05-03T22:13:36.902935Z", + "iopub.status.idle": "2024-05-03T22:13:36.907913Z", + "shell.execute_reply": "2024-05-03T22:13:36.907474Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:34.839764Z", - "iopub.status.busy": "2024-05-02T13:30:34.839584Z", - "iopub.status.idle": "2024-05-02T13:30:35.024974Z", - "shell.execute_reply": "2024-05-02T13:30:35.024373Z" + "iopub.execute_input": "2024-05-03T22:13:36.909999Z", + "iopub.status.busy": "2024-05-03T22:13:36.909706Z", + "iopub.status.idle": "2024-05-03T22:13:37.105159Z", + "shell.execute_reply": "2024-05-03T22:13:37.104641Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:35.027498Z", - "iopub.status.busy": "2024-05-02T13:30:35.027314Z", - "iopub.status.idle": "2024-05-02T13:30:35.399865Z", - "shell.execute_reply": "2024-05-02T13:30:35.399289Z" + "iopub.execute_input": "2024-05-03T22:13:37.107446Z", + "iopub.status.busy": "2024-05-03T22:13:37.107225Z", + "iopub.status.idle": "2024-05-03T22:13:37.484941Z", + "shell.execute_reply": "2024-05-03T22:13:37.484335Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:35.402064Z", - "iopub.status.busy": "2024-05-02T13:30:35.401724Z", - "iopub.status.idle": "2024-05-02T13:30:35.425193Z", - "shell.execute_reply": "2024-05-02T13:30:35.424642Z" + "iopub.execute_input": "2024-05-03T22:13:37.487394Z", + "iopub.status.busy": "2024-05-03T22:13:37.486971Z", + "iopub.status.idle": "2024-05-03T22:13:37.510888Z", + "shell.execute_reply": "2024-05-03T22:13:37.510289Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:35.427279Z", - "iopub.status.busy": "2024-05-02T13:30:35.426976Z", - "iopub.status.idle": "2024-05-02T13:30:35.438077Z", - "shell.execute_reply": "2024-05-02T13:30:35.437510Z" + "iopub.execute_input": "2024-05-03T22:13:37.513415Z", + "iopub.status.busy": "2024-05-03T22:13:37.513066Z", + "iopub.status.idle": "2024-05-03T22:13:37.524577Z", + "shell.execute_reply": "2024-05-03T22:13:37.524061Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:35.440185Z", - "iopub.status.busy": "2024-05-02T13:30:35.439855Z", - "iopub.status.idle": "2024-05-02T13:30:37.170231Z", - "shell.execute_reply": "2024-05-02T13:30:37.169639Z" + "iopub.execute_input": "2024-05-03T22:13:37.527049Z", + "iopub.status.busy": "2024-05-03T22:13:37.526607Z", + "iopub.status.idle": "2024-05-03T22:13:39.210761Z", + "shell.execute_reply": "2024-05-03T22:13:39.210122Z" } }, "outputs": [ @@ -709,10 +709,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:37.172571Z", - "iopub.status.busy": "2024-05-02T13:30:37.172183Z", - "iopub.status.idle": "2024-05-02T13:30:37.193412Z", - "shell.execute_reply": "2024-05-02T13:30:37.192936Z" + "iopub.execute_input": "2024-05-03T22:13:39.213396Z", + "iopub.status.busy": "2024-05-03T22:13:39.212797Z", + "iopub.status.idle": "2024-05-03T22:13:39.235402Z", + "shell.execute_reply": "2024-05-03T22:13:39.234828Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:37.195529Z", - "iopub.status.busy": "2024-05-02T13:30:37.195201Z", - "iopub.status.idle": "2024-05-02T13:30:37.215026Z", - "shell.execute_reply": "2024-05-02T13:30:37.214417Z" + "iopub.execute_input": "2024-05-03T22:13:39.237838Z", + "iopub.status.busy": "2024-05-03T22:13:39.237475Z", + "iopub.status.idle": "2024-05-03T22:13:39.258999Z", + "shell.execute_reply": "2024-05-03T22:13:39.258403Z" } }, "outputs": [ @@ -910,7 +910,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:378: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -936,10 +936,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:37.217075Z", - "iopub.status.busy": "2024-05-02T13:30:37.216892Z", - "iopub.status.idle": "2024-05-02T13:30:37.232220Z", - "shell.execute_reply": "2024-05-02T13:30:37.231729Z" + "iopub.execute_input": "2024-05-03T22:13:39.261201Z", + "iopub.status.busy": "2024-05-03T22:13:39.261010Z", + "iopub.status.idle": "2024-05-03T22:13:39.276618Z", + "shell.execute_reply": "2024-05-03T22:13:39.276099Z" } }, "outputs": [ @@ -1069,17 +1069,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:37.234499Z", - "iopub.status.busy": "2024-05-02T13:30:37.234057Z", - "iopub.status.idle": "2024-05-02T13:30:37.254241Z", - "shell.execute_reply": "2024-05-02T13:30:37.253614Z" + "iopub.execute_input": "2024-05-03T22:13:39.278670Z", + "iopub.status.busy": "2024-05-03T22:13:39.278485Z", + "iopub.status.idle": "2024-05-03T22:13:39.301320Z", + "shell.execute_reply": "2024-05-03T22:13:39.300700Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5d92d712531d492abca966aa77145928", + "model_id": "405477c8fcea4ada962131da2dc3926a", "version_major": 2, "version_minor": 0 }, @@ -1115,10 +1115,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:37.256338Z", - "iopub.status.busy": "2024-05-02T13:30:37.256064Z", - "iopub.status.idle": "2024-05-02T13:30:37.271047Z", - "shell.execute_reply": "2024-05-02T13:30:37.270591Z" + "iopub.execute_input": "2024-05-03T22:13:39.303442Z", + "iopub.status.busy": "2024-05-03T22:13:39.303105Z", + "iopub.status.idle": "2024-05-03T22:13:39.318419Z", + "shell.execute_reply": "2024-05-03T22:13:39.317966Z" } }, "outputs": [ @@ -1236,10 +1236,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:37.273062Z", - "iopub.status.busy": "2024-05-02T13:30:37.272803Z", - "iopub.status.idle": "2024-05-02T13:30:37.278474Z", - "shell.execute_reply": "2024-05-02T13:30:37.278026Z" + "iopub.execute_input": "2024-05-03T22:13:39.320600Z", + "iopub.status.busy": "2024-05-03T22:13:39.320274Z", + "iopub.status.idle": "2024-05-03T22:13:39.326128Z", + "shell.execute_reply": "2024-05-03T22:13:39.325682Z" } }, "outputs": [], @@ -1296,10 +1296,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:37.280581Z", - "iopub.status.busy": "2024-05-02T13:30:37.280259Z", - "iopub.status.idle": "2024-05-02T13:30:37.297560Z", - "shell.execute_reply": "2024-05-02T13:30:37.297118Z" + "iopub.execute_input": "2024-05-03T22:13:39.328248Z", + "iopub.status.busy": "2024-05-03T22:13:39.327852Z", + "iopub.status.idle": "2024-05-03T22:13:39.346042Z", + "shell.execute_reply": "2024-05-03T22:13:39.345457Z" } }, "outputs": [ @@ -1431,46 +1431,78 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "081c7a383a7f44fabb853729a865c402": { - "model_module": "@jupyter-widgets/controls", + "153dbcf914074d24aa74cfa4e57da590": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dc6e5e35d448429e86e71546c3ed0ffc", - "placeholder": "​", - "style": "IPY_MODEL_de8569a61a1b4c8cb799e43927b56d52", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "18a050b180344791a91bfc4badedb48b": { + "2057b1aca18b41a0841dea8da6c3d77e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4bc12c880aa64a9fabb67cb0f9ee6b14": { + "234360230b1843e68fbe11bf4ce74a5e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1485,15 +1517,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8a7aa01079ac4c31be4766356f46ee39", + "layout": "IPY_MODEL_7c90471ec43a4936ab008b4345fd79c4", "placeholder": "​", - "style": "IPY_MODEL_97a080b0440c451e824a7bdc84e9d5e3", + "style": "IPY_MODEL_65892bb8ac6c464794d3fac94e1fc7db", "tabbable": null, "tooltip": null, - "value": " 132/132 [00:00<00:00, 12960.84 examples/s]" + "value": "Saving the dataset (1/1 shards): 100%" } }, - "5d92d712531d492abca966aa77145928": { + "405477c8fcea4ada962131da2dc3926a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1508,16 +1540,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_081c7a383a7f44fabb853729a865c402", - "IPY_MODEL_835fa208fe3e486bab594fa7c42f3235", - "IPY_MODEL_4bc12c880aa64a9fabb67cb0f9ee6b14" + "IPY_MODEL_234360230b1843e68fbe11bf4ce74a5e", + "IPY_MODEL_66f1df80d8e34f41a49fc7b1d1fa44eb", + "IPY_MODEL_9c3bfc8f43754356997b99bdcaa3992b" ], - "layout": "IPY_MODEL_af2378661d9c49f3a562e3fcc03ead37", + "layout": "IPY_MODEL_153dbcf914074d24aa74cfa4e57da590", "tabbable": null, "tooltip": null } }, - "835fa208fe3e486bab594fa7c42f3235": { + "65892bb8ac6c464794d3fac94e1fc7db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "66f1df80d8e34f41a49fc7b1d1fa44eb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1533,17 +1583,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9ce60d4231d24c38aa7121ff05a1a307", + "layout": "IPY_MODEL_6f5ac0f8388e4a0eb8aab29a7354acfb", "max": 132.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_18a050b180344791a91bfc4badedb48b", + "style": "IPY_MODEL_a1f198e3aa984af49d40d91d8a3ae4e4", "tabbable": null, "tooltip": null, "value": 132.0 } }, - "8a7aa01079ac4c31be4766356f46ee39": { + "6f5ac0f8388e4a0eb8aab29a7354acfb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1596,25 +1646,7 @@ "width": null } }, - "97a080b0440c451e824a7bdc84e9d5e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9ce60d4231d24c38aa7121ff05a1a307": { + "7285dd200025439dbfb0aa92dca410c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1667,7 +1699,7 @@ "width": null } }, - "af2378661d9c49f3a562e3fcc03ead37": { + "7c90471ec43a4936ab008b4345fd79c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1720,75 +1752,43 @@ "width": null } }, - "dc6e5e35d448429e86e71546c3ed0ffc": { - "model_module": "@jupyter-widgets/base", + "9c3bfc8f43754356997b99bdcaa3992b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7285dd200025439dbfb0aa92dca410c3", + "placeholder": "​", + "style": "IPY_MODEL_2057b1aca18b41a0841dea8da6c3d77e", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 10451.91 examples/s]" } }, - "de8569a61a1b4c8cb799e43927b56d52": { + "a1f198e3aa984af49d40d91d8a3ae4e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } } }, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index 558bc7cb5..9f7d1a639 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:40.396346Z", - "iopub.status.busy": "2024-05-02T13:30:40.396169Z", - "iopub.status.idle": "2024-05-02T13:30:41.552811Z", - "shell.execute_reply": "2024-05-02T13:30:41.552214Z" + "iopub.execute_input": "2024-05-03T22:13:42.159190Z", + "iopub.status.busy": "2024-05-03T22:13:42.159030Z", + "iopub.status.idle": "2024-05-03T22:13:43.372881Z", + "shell.execute_reply": "2024-05-03T22:13:43.372247Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:41.555688Z", - "iopub.status.busy": "2024-05-02T13:30:41.555253Z", - "iopub.status.idle": "2024-05-02T13:30:41.558191Z", - "shell.execute_reply": "2024-05-02T13:30:41.557735Z" + "iopub.execute_input": "2024-05-03T22:13:43.375571Z", + "iopub.status.busy": "2024-05-03T22:13:43.375153Z", + "iopub.status.idle": "2024-05-03T22:13:43.378364Z", + "shell.execute_reply": "2024-05-03T22:13:43.377899Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:41.560267Z", - "iopub.status.busy": "2024-05-02T13:30:41.560011Z", - "iopub.status.idle": "2024-05-02T13:30:41.569438Z", - "shell.execute_reply": "2024-05-02T13:30:41.568924Z" + "iopub.execute_input": "2024-05-03T22:13:43.380593Z", + "iopub.status.busy": "2024-05-03T22:13:43.380248Z", + "iopub.status.idle": "2024-05-03T22:13:43.390435Z", + "shell.execute_reply": "2024-05-03T22:13:43.389937Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:41.571432Z", - "iopub.status.busy": "2024-05-02T13:30:41.571138Z", - "iopub.status.idle": "2024-05-02T13:30:41.575850Z", - "shell.execute_reply": "2024-05-02T13:30:41.575447Z" + "iopub.execute_input": "2024-05-03T22:13:43.392535Z", + "iopub.status.busy": "2024-05-03T22:13:43.392332Z", + "iopub.status.idle": "2024-05-03T22:13:43.397278Z", + "shell.execute_reply": "2024-05-03T22:13:43.396693Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:41.578008Z", - "iopub.status.busy": "2024-05-02T13:30:41.577600Z", - "iopub.status.idle": "2024-05-02T13:30:41.759726Z", - "shell.execute_reply": "2024-05-02T13:30:41.759110Z" + "iopub.execute_input": "2024-05-03T22:13:43.399728Z", + "iopub.status.busy": "2024-05-03T22:13:43.399406Z", + "iopub.status.idle": "2024-05-03T22:13:43.591087Z", + "shell.execute_reply": "2024-05-03T22:13:43.590496Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:41.762092Z", - "iopub.status.busy": "2024-05-02T13:30:41.761877Z", - "iopub.status.idle": "2024-05-02T13:30:42.134415Z", - "shell.execute_reply": "2024-05-02T13:30:42.133783Z" + "iopub.execute_input": "2024-05-03T22:13:43.593686Z", + "iopub.status.busy": "2024-05-03T22:13:43.593359Z", + "iopub.status.idle": "2024-05-03T22:13:43.974277Z", + "shell.execute_reply": "2024-05-03T22:13:43.973669Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:42.136801Z", - "iopub.status.busy": "2024-05-02T13:30:42.136385Z", - "iopub.status.idle": "2024-05-02T13:30:42.139247Z", - "shell.execute_reply": "2024-05-02T13:30:42.138786Z" + "iopub.execute_input": "2024-05-03T22:13:43.976649Z", + "iopub.status.busy": "2024-05-03T22:13:43.976176Z", + "iopub.status.idle": "2024-05-03T22:13:43.979025Z", + "shell.execute_reply": "2024-05-03T22:13:43.978582Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:42.141211Z", - "iopub.status.busy": "2024-05-02T13:30:42.140908Z", - "iopub.status.idle": "2024-05-02T13:30:42.177094Z", - "shell.execute_reply": "2024-05-02T13:30:42.176488Z" + "iopub.execute_input": "2024-05-03T22:13:43.981223Z", + "iopub.status.busy": "2024-05-03T22:13:43.980831Z", + "iopub.status.idle": "2024-05-03T22:13:44.018110Z", + "shell.execute_reply": "2024-05-03T22:13:44.017433Z" } }, "outputs": [ @@ -647,10 +647,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:42.179348Z", - "iopub.status.busy": "2024-05-02T13:30:42.178966Z", - "iopub.status.idle": "2024-05-02T13:30:43.845842Z", - "shell.execute_reply": "2024-05-02T13:30:43.845214Z" + "iopub.execute_input": "2024-05-03T22:13:44.020362Z", + "iopub.status.busy": "2024-05-03T22:13:44.020024Z", + "iopub.status.idle": "2024-05-03T22:13:45.797484Z", + "shell.execute_reply": "2024-05-03T22:13:45.796749Z" } }, "outputs": [ @@ -711,10 +711,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:43.848207Z", - "iopub.status.busy": "2024-05-02T13:30:43.847811Z", - "iopub.status.idle": "2024-05-02T13:30:43.866539Z", - "shell.execute_reply": "2024-05-02T13:30:43.865996Z" + "iopub.execute_input": "2024-05-03T22:13:45.799975Z", + "iopub.status.busy": "2024-05-03T22:13:45.799550Z", + "iopub.status.idle": "2024-05-03T22:13:45.819430Z", + "shell.execute_reply": "2024-05-03T22:13:45.818870Z" } }, "outputs": [ @@ -842,10 +842,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:43.868706Z", - "iopub.status.busy": "2024-05-02T13:30:43.868401Z", - "iopub.status.idle": "2024-05-02T13:30:43.874878Z", - "shell.execute_reply": "2024-05-02T13:30:43.874430Z" + "iopub.execute_input": "2024-05-03T22:13:45.821745Z", + "iopub.status.busy": "2024-05-03T22:13:45.821391Z", + "iopub.status.idle": "2024-05-03T22:13:45.829079Z", + "shell.execute_reply": "2024-05-03T22:13:45.828588Z" } }, "outputs": [ @@ -956,10 +956,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:43.876944Z", - "iopub.status.busy": "2024-05-02T13:30:43.876606Z", - "iopub.status.idle": "2024-05-02T13:30:43.882380Z", - "shell.execute_reply": "2024-05-02T13:30:43.881827Z" + "iopub.execute_input": "2024-05-03T22:13:45.831249Z", + "iopub.status.busy": "2024-05-03T22:13:45.830883Z", + "iopub.status.idle": "2024-05-03T22:13:45.837158Z", + "shell.execute_reply": "2024-05-03T22:13:45.836691Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:43.884669Z", - "iopub.status.busy": "2024-05-02T13:30:43.884236Z", - "iopub.status.idle": "2024-05-02T13:30:43.894796Z", - "shell.execute_reply": "2024-05-02T13:30:43.894319Z" + "iopub.execute_input": "2024-05-03T22:13:45.839290Z", + "iopub.status.busy": "2024-05-03T22:13:45.838952Z", + "iopub.status.idle": "2024-05-03T22:13:45.849793Z", + "shell.execute_reply": "2024-05-03T22:13:45.849319Z" } }, "outputs": [ @@ -1221,10 +1221,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:43.896940Z", - "iopub.status.busy": "2024-05-02T13:30:43.896520Z", - "iopub.status.idle": "2024-05-02T13:30:43.905889Z", - "shell.execute_reply": "2024-05-02T13:30:43.905341Z" + "iopub.execute_input": "2024-05-03T22:13:45.851948Z", + "iopub.status.busy": "2024-05-03T22:13:45.851621Z", + "iopub.status.idle": "2024-05-03T22:13:45.860761Z", + "shell.execute_reply": "2024-05-03T22:13:45.860249Z" } }, "outputs": [ @@ -1340,10 +1340,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:43.908062Z", - "iopub.status.busy": "2024-05-02T13:30:43.907682Z", - "iopub.status.idle": "2024-05-02T13:30:43.914529Z", - "shell.execute_reply": "2024-05-02T13:30:43.913996Z" + "iopub.execute_input": "2024-05-03T22:13:45.862844Z", + "iopub.status.busy": "2024-05-03T22:13:45.862509Z", + "iopub.status.idle": "2024-05-03T22:13:45.869557Z", + "shell.execute_reply": "2024-05-03T22:13:45.868991Z" }, "scrolled": true }, @@ -1468,10 +1468,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:43.916476Z", - "iopub.status.busy": "2024-05-02T13:30:43.916205Z", - "iopub.status.idle": "2024-05-02T13:30:43.925505Z", - "shell.execute_reply": "2024-05-02T13:30:43.925064Z" + "iopub.execute_input": "2024-05-03T22:13:45.871677Z", + "iopub.status.busy": "2024-05-03T22:13:45.871352Z", + "iopub.status.idle": "2024-05-03T22:13:45.880934Z", + "shell.execute_reply": "2024-05-03T22:13:45.880344Z" } }, "outputs": [ diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index 88d70f0d4..40bf813c7 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -693,25 +693,25 @@

2. Fetch and normalize the Fashion-MNIST dataset

-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1024,7 +1024,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1056,7 +1056,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1088,7 +1088,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -2062,7 +2062,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index 0717c3bf8..e7f705656 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:46.614969Z", - "iopub.status.busy": "2024-05-02T13:30:46.614501Z", - "iopub.status.idle": "2024-05-02T13:30:49.589754Z", - "shell.execute_reply": "2024-05-02T13:30:49.589185Z" + "iopub.execute_input": "2024-05-03T22:13:48.807091Z", + "iopub.status.busy": "2024-05-03T22:13:48.806909Z", + "iopub.status.idle": "2024-05-03T22:13:51.824622Z", + "shell.execute_reply": "2024-05-03T22:13:51.824036Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:49.592547Z", - "iopub.status.busy": "2024-05-02T13:30:49.592039Z", - "iopub.status.idle": "2024-05-02T13:30:49.595654Z", - "shell.execute_reply": "2024-05-02T13:30:49.595210Z" + "iopub.execute_input": "2024-05-03T22:13:51.827572Z", + "iopub.status.busy": "2024-05-03T22:13:51.826951Z", + "iopub.status.idle": "2024-05-03T22:13:51.830830Z", + "shell.execute_reply": "2024-05-03T22:13:51.830275Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:49.597602Z", - "iopub.status.busy": "2024-05-02T13:30:49.597414Z", - "iopub.status.idle": "2024-05-02T13:30:51.576760Z", - "shell.execute_reply": "2024-05-02T13:30:51.576255Z" + "iopub.execute_input": "2024-05-03T22:13:51.833240Z", + "iopub.status.busy": "2024-05-03T22:13:51.832814Z", + "iopub.status.idle": "2024-05-03T22:13:53.852142Z", + "shell.execute_reply": "2024-05-03T22:13:53.851572Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dfc89fc7fc4d4d86b2ba5eeb2c973868", + "model_id": "d31981130221497cbb1d76b50904779e", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6d901677af154369baf845188fc2abec", + "model_id": "12a11d4b9bc94ec29a4c4635d6c9e01a", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bde28428ead04314bc1eafb4f6911475", + "model_id": "a8e090733a5443938ab0dddf7303203b", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d1b676b40e8843c4a55fd5d6aab589a0", + "model_id": "8624def2f3914edebe3b0df0a9197833", "version_major": 2, "version_minor": 0 }, @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:51.579186Z", - "iopub.status.busy": "2024-05-02T13:30:51.578693Z", - "iopub.status.idle": "2024-05-02T13:30:51.582755Z", - "shell.execute_reply": "2024-05-02T13:30:51.582177Z" + "iopub.execute_input": "2024-05-03T22:13:53.854543Z", + "iopub.status.busy": "2024-05-03T22:13:53.854166Z", + "iopub.status.idle": "2024-05-03T22:13:53.858146Z", + "shell.execute_reply": "2024-05-03T22:13:53.857640Z" } }, "outputs": [ @@ -274,17 +274,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:30:51.584846Z", - "iopub.status.busy": "2024-05-02T13:30:51.584523Z", - "iopub.status.idle": "2024-05-02T13:31:03.216128Z", - "shell.execute_reply": "2024-05-02T13:31:03.215570Z" + "iopub.execute_input": "2024-05-03T22:13:53.860306Z", + "iopub.status.busy": "2024-05-03T22:13:53.859964Z", + "iopub.status.idle": "2024-05-03T22:14:05.434733Z", + "shell.execute_reply": "2024-05-03T22:14:05.434201Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "90697b7a34fa4cf3a5f142da0006eeb4", + "model_id": "e6de2c216183488bbf9f27cd5d5a8e98", "version_major": 2, "version_minor": 0 }, @@ -322,10 +322,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:31:03.218705Z", - "iopub.status.busy": "2024-05-02T13:31:03.218461Z", - "iopub.status.idle": "2024-05-02T13:31:22.891153Z", - "shell.execute_reply": "2024-05-02T13:31:22.890592Z" + "iopub.execute_input": "2024-05-03T22:14:05.437196Z", + "iopub.status.busy": "2024-05-03T22:14:05.436968Z", + "iopub.status.idle": "2024-05-03T22:14:23.738759Z", + "shell.execute_reply": "2024-05-03T22:14:23.738130Z" } }, "outputs": [], @@ -358,10 +358,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:31:22.893902Z", - "iopub.status.busy": "2024-05-02T13:31:22.893482Z", - "iopub.status.idle": "2024-05-02T13:31:22.899665Z", - "shell.execute_reply": "2024-05-02T13:31:22.899163Z" + "iopub.execute_input": "2024-05-03T22:14:23.741480Z", + "iopub.status.busy": "2024-05-03T22:14:23.741237Z", + "iopub.status.idle": "2024-05-03T22:14:23.746242Z", + "shell.execute_reply": "2024-05-03T22:14:23.745775Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:31:22.901785Z", - "iopub.status.busy": "2024-05-02T13:31:22.901421Z", - "iopub.status.idle": "2024-05-02T13:31:22.905536Z", - "shell.execute_reply": "2024-05-02T13:31:22.905079Z" + "iopub.execute_input": "2024-05-03T22:14:23.748235Z", + "iopub.status.busy": "2024-05-03T22:14:23.748043Z", + "iopub.status.idle": "2024-05-03T22:14:23.752308Z", + "shell.execute_reply": "2024-05-03T22:14:23.751869Z" }, "nbsphinx": "hidden" }, @@ -539,10 +539,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:31:22.907828Z", - "iopub.status.busy": "2024-05-02T13:31:22.907495Z", - "iopub.status.idle": "2024-05-02T13:31:22.916613Z", - "shell.execute_reply": "2024-05-02T13:31:22.916053Z" + "iopub.execute_input": "2024-05-03T22:14:23.754384Z", + "iopub.status.busy": "2024-05-03T22:14:23.754206Z", + "iopub.status.idle": "2024-05-03T22:14:23.763110Z", + "shell.execute_reply": "2024-05-03T22:14:23.762596Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:31:22.918829Z", - "iopub.status.busy": "2024-05-02T13:31:22.918470Z", - "iopub.status.idle": "2024-05-02T13:31:22.945762Z", - "shell.execute_reply": "2024-05-02T13:31:22.945263Z" + "iopub.execute_input": "2024-05-03T22:14:23.765283Z", + "iopub.status.busy": "2024-05-03T22:14:23.765096Z", + "iopub.status.idle": "2024-05-03T22:14:23.793620Z", + "shell.execute_reply": "2024-05-03T22:14:23.793110Z" } }, "outputs": [], @@ -707,10 +707,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:31:22.948317Z", - "iopub.status.busy": "2024-05-02T13:31:22.947957Z", - "iopub.status.idle": "2024-05-02T13:31:58.295904Z", - "shell.execute_reply": "2024-05-02T13:31:58.295292Z" + "iopub.execute_input": "2024-05-03T22:14:23.796002Z", + "iopub.status.busy": "2024-05-03T22:14:23.795655Z", + "iopub.status.idle": "2024-05-03T22:14:58.448850Z", + "shell.execute_reply": "2024-05-03T22:14:58.448223Z" } }, "outputs": [ @@ -726,21 +726,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.424\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.051\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 5.063\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.866\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5eda0fa7acfc4c69a6fd64aa21f86942", + "model_id": "6a2d1ebc02264b968f697dc18c196fec", "version_major": 2, "version_minor": 0 }, @@ -761,7 +761,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b18e7ba801a446028a5665b805c3092b", + "model_id": "1f4438897a134a15846e3092728a96b4", "version_major": 2, "version_minor": 0 }, @@ -784,21 +784,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.183\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 5.210\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 5.010\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.912\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "04737bf05b0a43c6b74ae63f548eaa56", + "model_id": "a7cc9fa9b61245d1adbfe33c6319db71", "version_major": 2, "version_minor": 0 }, @@ -819,7 +819,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "71aac2f3486246cba247d36a6f978f3e", + "model_id": "d77233602e2e46e0889971aa7e93d2d7", "version_major": 2, "version_minor": 0 }, @@ -842,21 +842,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.198\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.290\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.970\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.904\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "68bb63d4b0f342df9e664f04d954cefe", + "model_id": "e8a29fe7f9744ecc8675be3fb062865a", "version_major": 2, "version_minor": 0 }, @@ -877,7 +877,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "89c09267bf344dc0a3e1732a646a814c", + "model_id": "8e8e9146905941b1ae5a9f3dae938d16", "version_major": 2, "version_minor": 0 }, @@ -956,10 +956,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:31:58.298499Z", - "iopub.status.busy": "2024-05-02T13:31:58.298205Z", - "iopub.status.idle": "2024-05-02T13:31:58.314972Z", - "shell.execute_reply": "2024-05-02T13:31:58.314450Z" + "iopub.execute_input": "2024-05-03T22:14:58.451304Z", + "iopub.status.busy": "2024-05-03T22:14:58.451038Z", + "iopub.status.idle": "2024-05-03T22:14:58.468360Z", + "shell.execute_reply": "2024-05-03T22:14:58.467847Z" } }, "outputs": [], @@ -984,10 +984,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:31:58.317631Z", - "iopub.status.busy": "2024-05-02T13:31:58.317194Z", - "iopub.status.idle": "2024-05-02T13:31:58.823647Z", - "shell.execute_reply": "2024-05-02T13:31:58.822999Z" + "iopub.execute_input": "2024-05-03T22:14:58.475586Z", + "iopub.status.busy": "2024-05-03T22:14:58.475089Z", + "iopub.status.idle": "2024-05-03T22:14:58.955524Z", + "shell.execute_reply": "2024-05-03T22:14:58.954967Z" } }, "outputs": [], @@ -1007,10 +1007,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:31:58.826501Z", - "iopub.status.busy": "2024-05-02T13:31:58.826024Z", - "iopub.status.idle": "2024-05-02T13:35:33.898870Z", - "shell.execute_reply": "2024-05-02T13:35:33.898269Z" + "iopub.execute_input": "2024-05-03T22:14:58.957980Z", + "iopub.status.busy": "2024-05-03T22:14:58.957653Z", + "iopub.status.idle": "2024-05-03T22:18:35.947940Z", + "shell.execute_reply": "2024-05-03T22:18:35.947296Z" } }, "outputs": [ @@ -1058,7 +1058,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6e13650f14a8455391c6e536e8029de6", + "model_id": "31e95bb459fa4fa1a8c73383d5b787d7", "version_major": 2, "version_minor": 0 }, @@ -1097,10 +1097,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:33.901200Z", - "iopub.status.busy": "2024-05-02T13:35:33.900849Z", - "iopub.status.idle": "2024-05-02T13:35:34.345824Z", - "shell.execute_reply": "2024-05-02T13:35:34.345291Z" + "iopub.execute_input": "2024-05-03T22:18:35.950225Z", + "iopub.status.busy": "2024-05-03T22:18:35.949838Z", + "iopub.status.idle": "2024-05-03T22:18:36.413457Z", + "shell.execute_reply": "2024-05-03T22:18:36.412888Z" } }, "outputs": [ @@ -1241,10 +1241,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:34.348623Z", - "iopub.status.busy": "2024-05-02T13:35:34.348101Z", - "iopub.status.idle": "2024-05-02T13:35:34.410398Z", - "shell.execute_reply": "2024-05-02T13:35:34.409847Z" + "iopub.execute_input": "2024-05-03T22:18:36.415760Z", + "iopub.status.busy": "2024-05-03T22:18:36.415398Z", + "iopub.status.idle": "2024-05-03T22:18:36.478939Z", + "shell.execute_reply": "2024-05-03T22:18:36.478367Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:34.412624Z", - "iopub.status.busy": "2024-05-02T13:35:34.412297Z", - "iopub.status.idle": "2024-05-02T13:35:34.420537Z", - "shell.execute_reply": "2024-05-02T13:35:34.420092Z" + "iopub.execute_input": "2024-05-03T22:18:36.481121Z", + "iopub.status.busy": "2024-05-03T22:18:36.480807Z", + "iopub.status.idle": "2024-05-03T22:18:36.489650Z", + "shell.execute_reply": "2024-05-03T22:18:36.489082Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:34.422631Z", - "iopub.status.busy": "2024-05-02T13:35:34.422172Z", - "iopub.status.idle": "2024-05-02T13:35:34.427909Z", - "shell.execute_reply": "2024-05-02T13:35:34.427351Z" + "iopub.execute_input": "2024-05-03T22:18:36.491604Z", + "iopub.status.busy": "2024-05-03T22:18:36.491310Z", + "iopub.status.idle": "2024-05-03T22:18:36.495968Z", + "shell.execute_reply": "2024-05-03T22:18:36.495389Z" }, "nbsphinx": "hidden" }, @@ -1530,10 +1530,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:34.429903Z", - "iopub.status.busy": "2024-05-02T13:35:34.429513Z", - "iopub.status.idle": "2024-05-02T13:35:34.929890Z", - "shell.execute_reply": "2024-05-02T13:35:34.929343Z" + "iopub.execute_input": "2024-05-03T22:18:36.498160Z", + "iopub.status.busy": "2024-05-03T22:18:36.497776Z", + "iopub.status.idle": "2024-05-03T22:18:37.017541Z", + "shell.execute_reply": "2024-05-03T22:18:37.016937Z" } }, "outputs": [ @@ -1568,10 +1568,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:34.932064Z", - "iopub.status.busy": "2024-05-02T13:35:34.931755Z", - "iopub.status.idle": "2024-05-02T13:35:34.940068Z", - "shell.execute_reply": "2024-05-02T13:35:34.939616Z" + "iopub.execute_input": "2024-05-03T22:18:37.019891Z", + "iopub.status.busy": "2024-05-03T22:18:37.019553Z", + "iopub.status.idle": "2024-05-03T22:18:37.027896Z", + "shell.execute_reply": "2024-05-03T22:18:37.027396Z" } }, "outputs": [ @@ -1738,10 +1738,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:34.942162Z", - "iopub.status.busy": "2024-05-02T13:35:34.941850Z", - "iopub.status.idle": "2024-05-02T13:35:34.948886Z", - "shell.execute_reply": "2024-05-02T13:35:34.948446Z" + "iopub.execute_input": "2024-05-03T22:18:37.030138Z", + "iopub.status.busy": "2024-05-03T22:18:37.029792Z", + "iopub.status.idle": "2024-05-03T22:18:37.037008Z", + "shell.execute_reply": "2024-05-03T22:18:37.036530Z" }, "nbsphinx": "hidden" }, @@ -1817,10 +1817,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:34.950900Z", - "iopub.status.busy": "2024-05-02T13:35:34.950586Z", - "iopub.status.idle": "2024-05-02T13:35:35.383164Z", - "shell.execute_reply": "2024-05-02T13:35:35.382592Z" + "iopub.execute_input": "2024-05-03T22:18:37.039153Z", + "iopub.status.busy": "2024-05-03T22:18:37.038701Z", + "iopub.status.idle": "2024-05-03T22:18:37.522347Z", + "shell.execute_reply": "2024-05-03T22:18:37.521760Z" } }, "outputs": [ @@ -1857,10 +1857,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:35.385811Z", - "iopub.status.busy": "2024-05-02T13:35:35.385434Z", - "iopub.status.idle": "2024-05-02T13:35:35.400944Z", - "shell.execute_reply": "2024-05-02T13:35:35.400380Z" + "iopub.execute_input": "2024-05-03T22:18:37.524936Z", + "iopub.status.busy": "2024-05-03T22:18:37.524558Z", + "iopub.status.idle": "2024-05-03T22:18:37.540327Z", + "shell.execute_reply": "2024-05-03T22:18:37.539751Z" } }, "outputs": [ @@ -2017,10 +2017,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:35.403101Z", - "iopub.status.busy": "2024-05-02T13:35:35.402768Z", - "iopub.status.idle": "2024-05-02T13:35:35.408327Z", - "shell.execute_reply": "2024-05-02T13:35:35.407768Z" + "iopub.execute_input": "2024-05-03T22:18:37.542768Z", + "iopub.status.busy": "2024-05-03T22:18:37.542327Z", + "iopub.status.idle": "2024-05-03T22:18:37.548048Z", + "shell.execute_reply": "2024-05-03T22:18:37.547605Z" }, "nbsphinx": "hidden" }, @@ -2065,10 +2065,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:35.410595Z", - "iopub.status.busy": "2024-05-02T13:35:35.410279Z", - "iopub.status.idle": "2024-05-02T13:35:35.867212Z", - "shell.execute_reply": "2024-05-02T13:35:35.866444Z" + "iopub.execute_input": "2024-05-03T22:18:37.550113Z", + "iopub.status.busy": "2024-05-03T22:18:37.549725Z", + "iopub.status.idle": "2024-05-03T22:18:38.017099Z", + "shell.execute_reply": "2024-05-03T22:18:38.016510Z" } }, "outputs": [ @@ -2150,10 +2150,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:35.869845Z", - "iopub.status.busy": "2024-05-02T13:35:35.869643Z", - "iopub.status.idle": "2024-05-02T13:35:35.878725Z", - "shell.execute_reply": "2024-05-02T13:35:35.878152Z" + "iopub.execute_input": "2024-05-03T22:18:38.019657Z", + "iopub.status.busy": "2024-05-03T22:18:38.019457Z", + "iopub.status.idle": "2024-05-03T22:18:38.028709Z", + "shell.execute_reply": "2024-05-03T22:18:38.028123Z" } }, "outputs": [ @@ -2281,10 +2281,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:35.881107Z", - "iopub.status.busy": "2024-05-02T13:35:35.880913Z", - "iopub.status.idle": "2024-05-02T13:35:35.886603Z", - "shell.execute_reply": "2024-05-02T13:35:35.886027Z" + "iopub.execute_input": "2024-05-03T22:18:38.031221Z", + "iopub.status.busy": "2024-05-03T22:18:38.031025Z", + "iopub.status.idle": "2024-05-03T22:18:38.036782Z", + "shell.execute_reply": "2024-05-03T22:18:38.036198Z" }, "nbsphinx": "hidden" }, @@ -2321,10 +2321,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:35.888999Z", - "iopub.status.busy": "2024-05-02T13:35:35.888807Z", - "iopub.status.idle": "2024-05-02T13:35:36.088264Z", - "shell.execute_reply": "2024-05-02T13:35:36.087809Z" + "iopub.execute_input": "2024-05-03T22:18:38.039163Z", + "iopub.status.busy": "2024-05-03T22:18:38.038973Z", + "iopub.status.idle": "2024-05-03T22:18:38.243026Z", + "shell.execute_reply": "2024-05-03T22:18:38.242536Z" } }, "outputs": [ @@ -2366,10 +2366,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:36.090184Z", - "iopub.status.busy": "2024-05-02T13:35:36.090027Z", - "iopub.status.idle": "2024-05-02T13:35:36.097173Z", - "shell.execute_reply": "2024-05-02T13:35:36.096724Z" + "iopub.execute_input": "2024-05-03T22:18:38.245207Z", + "iopub.status.busy": "2024-05-03T22:18:38.245030Z", + "iopub.status.idle": "2024-05-03T22:18:38.252964Z", + "shell.execute_reply": "2024-05-03T22:18:38.252494Z" } }, "outputs": [ @@ -2455,10 +2455,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:36.099078Z", - "iopub.status.busy": "2024-05-02T13:35:36.098760Z", - "iopub.status.idle": "2024-05-02T13:35:36.289898Z", - "shell.execute_reply": "2024-05-02T13:35:36.289447Z" + "iopub.execute_input": "2024-05-03T22:18:38.254992Z", + "iopub.status.busy": "2024-05-03T22:18:38.254671Z", + "iopub.status.idle": "2024-05-03T22:18:38.458217Z", + "shell.execute_reply": "2024-05-03T22:18:38.457667Z" } }, "outputs": [ @@ -2498,10 +2498,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:36.292130Z", - "iopub.status.busy": "2024-05-02T13:35:36.291595Z", - "iopub.status.idle": "2024-05-02T13:35:36.296050Z", - "shell.execute_reply": "2024-05-02T13:35:36.295619Z" + "iopub.execute_input": "2024-05-03T22:18:38.460429Z", + "iopub.status.busy": "2024-05-03T22:18:38.460076Z", + "iopub.status.idle": "2024-05-03T22:18:38.464549Z", + "shell.execute_reply": "2024-05-03T22:18:38.463979Z" }, "nbsphinx": "hidden" }, @@ -2538,31 +2538,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "04737bf05b0a43c6b74ae63f548eaa56": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3ed07cfe50ad4feba77cb8d89a4d6f67", - "IPY_MODEL_254e13468daa49b98f421446b3c60b3c", - "IPY_MODEL_5ca2777d05c2485699bf8b003477a3b2" - ], - "layout": "IPY_MODEL_7810c969ff9d492dac4285f783cd60d9", - "tabbable": null, - "tooltip": null - } - }, - "04db128d1b9f47a08925e7c7dbba3c50": { + "02c1f027c0a64980a42c64dd29025249": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2578,89 +2554,7 @@ "description_width": "" } }, - "05d9f71ec9874d91b638463d0aaa4325": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0bf8519502ba43379b738b263da5d99e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "132cb25d49f846228794ddc57d9bc891": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c615fc470dd54bd8b14bbc3750c49734", - "placeholder": "​", - "style": "IPY_MODEL_4df9331b7ed04d6ca49d9e5bcd1ff055", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:46<00:00, 1390.51it/s]" - } - }, - "13cde802d7754ff1812210ab9a81ca49": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_88685c7c2d1749f19e2d01d5ebac3f32", - "placeholder": "​", - "style": "IPY_MODEL_748943121720483b9f94c6aa0465a79d", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 247222.57 examples/s]" - } - }, - "1438c6958e1d4f8db113509a5b9a8a44": { + "03ddcb34b74343edaf72e7ce4d3146ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2713,7 +2607,7 @@ "width": null } }, - "1670ebb573234edfa2513e5f3ea512fe": { + "059fd4e89358444f919d9ad5627b7863": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2766,7 +2660,7 @@ "width": null } }, - "184e9899db5d4bcd90cb168ac710fb8d": { + "078c270fd80140b3b65215bdce6d12e0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2819,7 +2713,30 @@ "width": null } }, - "18dc887e6c2b407ca848a8a85bb0d532": { + "07df2db4f11849bdb834a333b246b25c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bd7b558a277240f196dd5264cfbd2d8b", + "placeholder": "​", + "style": "IPY_MODEL_eb211b369bb54c9caf98de9ce093bb7c", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "07e38794397d434ba993b2b980061644": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2872,57 +2789,84 @@ "width": null } }, - "1935ce7d5f7f41e4ae2b4af6881ce2a3": { + "0a91cc6d45ce4998b57ffc0c4d64eaf0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0a942737f0e740dd9a3fa5700a59372d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0c642716fbd146a9b597ec521578b077": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ce3249c1c4fc443ca84c1cb882271dac", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e9002f2961c742bd9d59306ad89a3360", + "layout": "IPY_MODEL_efb23676e3c64db8bae8b5aedf70420f", + "placeholder": "​", + "style": "IPY_MODEL_524f00ce4a6a4299bc2b74c05b3935ef", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "Generating train split: 100%" } }, - "1af8fbb0b3e2418d8185b287a21d7f4e": { + "0ffb24d54e9341ed96cf158f93683f67": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3d377428466d43deb5c96cc51614ae22", - "IPY_MODEL_fe8771cb4ea44fe9acf8dd7da36c0f83", - "IPY_MODEL_f9054812eb014e3aae9703c447938eed" - ], - "layout": "IPY_MODEL_f23c059d381641f6bf38244e99d6d9bf", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1d5496fdb2304667914c255fc415555f": { + "115067045818446cab9dcc8594ca95a4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2975,7 +2919,31 @@ "width": null } }, - "1f136c6075f047e18dc938ba1f71b052": { + "12a11d4b9bc94ec29a4c4635d6c9e01a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_50772d179f06439ea28ad4d7e8307e13", + "IPY_MODEL_51ecab8ca15440f0a9f0853df15a91d4", + "IPY_MODEL_7a23674df9cd4037946e8e27dfb6376d" + ], + "layout": "IPY_MODEL_26a34a66308e41eba90e264ef28d7a45", + "tabbable": null, + "tooltip": null + } + }, + "13fed26ddb754b368e7bac194f93214d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3028,51 +2996,30 @@ "width": null } }, - "254e13468daa49b98f421446b3c60b3c": { + "1621bb1b748b49049e68d061dbe50cc8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_acacc7615e054b41a45a8eff93d3678b", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_908072b0f8604420aaaf9bd39aad4542", + "layout": "IPY_MODEL_d5fb2d645a224f079d3a936f25c64329", + "placeholder": "​", + "style": "IPY_MODEL_9a1a2705ae0f4ccfb124ff2e16eb7e5d", "tabbable": null, "tooltip": null, - "value": 40.0 - } - }, - "2630c5ee678947239fa620181d3979cc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 40/40 [00:00<00:00, 60.39it/s]" } }, - "2b6c00f20a3444848fc2ac5a56187e4e": { + "17857f087e3d426eb7f0f70643d02a95": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3125,7 +3072,33 @@ "width": null } }, - "2bebf1e53ed245bfb253ead20bc0c7f6": { + "19e3977dc2f549e3898f8add8f9b10d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_54702cc08ea94ba8afb49715c6dde596", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_02c1f027c0a64980a42c64dd29025249", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "1a168d94fe3f4cbfaa0f78c56777c451": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3178,60 +3151,47 @@ "width": null } }, - "2ebbd4b2544c475b8cb750e0ad40fa1f": { - "model_module": "@jupyter-widgets/base", + "1cade2697ae445099181cc29af4b47c6": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1f4438897a134a15846e3092728a96b4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_24c4d8dc3154438d968f4dcabd0c8c70", + "IPY_MODEL_b34d27c7786249b1b583ce9e426f73e6", + "IPY_MODEL_4ed390a60cf948d7a4d105b3fa599f76" + ], + "layout": "IPY_MODEL_bfb470219cc14c64bcb0aaedc90a7cee", + "tabbable": null, + "tooltip": null } }, - "3380742da70b410abfc41d04b51e9fad": { + "21ea9e7a90e14c50b5c45c0e50db57f5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3284,41 +3244,7 @@ "width": null } }, - "3478eca785424da6a6a97a601509b7e5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "353d1696cf344f34ab98012aa5dcc6c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3799e7268ea2409eba1a51403f99b9c5": { + "23c34e04354a47e09cc717a791d62755": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3371,7 +3297,7 @@ "width": null } }, - "37d83acd211745e0bf3bed1fc82ea57d": { + "24c4d8dc3154438d968f4dcabd0c8c70": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3386,31 +3312,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ce862dad477b44ac8b11e4410a41b54e", + "layout": "IPY_MODEL_13fed26ddb754b368e7bac194f93214d", "placeholder": "​", - "style": "IPY_MODEL_f651105cfeb74510b311fb747c385737", + "style": "IPY_MODEL_aa14c88fda0e4777947e7f90c9ce4d50", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 4721.99 examples/s]" + "value": "100%" } }, - "38dfbca4cb464635ae01482a0df2f130": { + "2690eea29fa842f2a5723ba134188c42": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_078c270fd80140b3b65215bdce6d12e0", + "placeholder": "​", + "style": "IPY_MODEL_0ffb24d54e9341ed96cf158f93683f67", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:48<00:00, 1297.62it/s]" } }, - "3aa0e51515f440dca8c1f8dcb83c5046": { + "26a34a66308e41eba90e264ef28d7a45": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3463,46 +3396,67 @@ "width": null } }, - "3ab652858e7e460bb08cb2b559b5f5bb": { + "2709064e588340c8a3c5622e2c935eb8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3c9d644a62cd452ab2e104271a6c6e31": { + "2f21820f8c0948f2833757f79adc70ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "31e95bb459fa4fa1a8c73383d5b787d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1f136c6075f047e18dc938ba1f71b052", - "placeholder": "​", - "style": "IPY_MODEL_ccfa46c1de224a839616932ce1329eb4", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_07df2db4f11849bdb834a333b246b25c", + "IPY_MODEL_bb7967abc85f436fba568e677fdc4162", + "IPY_MODEL_2690eea29fa842f2a5723ba134188c42" + ], + "layout": "IPY_MODEL_59c204e3077a4390bd38a58e152d88a9", "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "tooltip": null } }, - "3d377428466d43deb5c96cc51614ae22": { + "337ae9baeb5a43d387e1ef886eefa3c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3517,15 +3471,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2b6c00f20a3444848fc2ac5a56187e4e", + "layout": "IPY_MODEL_c6f3a8b1037346ee9a43e2e844d42152", "placeholder": "​", - "style": "IPY_MODEL_ce5d0354e74249d2bc85d0d38de1ce54", + "style": "IPY_MODEL_fba34cbeb84843a5a8d2f3ee4a62c6ce", "tabbable": null, "tooltip": null, - "value": "Computing checksums: 100%" + "value": "100%" } }, - "3d3cbe6179624664b370e25357516100": { + "35fe2662455340358caabbaaae1dbe87": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3578,53 +3532,25 @@ "width": null } }, - "3e74a38d18f845ea94d870e82c213bf1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_46ecf4f8bf374fbcac68b1f7403a7287", - "placeholder": "​", - "style": "IPY_MODEL_353d1696cf344f34ab98012aa5dcc6c3", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.88it/s]" - } - }, - "3ed07cfe50ad4feba77cb8d89a4d6f67": { + "3a026622e4c14212854395c799f5fc04": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e7abd698eeb9417f96b6703bf0fdc132", - "placeholder": "​", - "style": "IPY_MODEL_f262dfdcf06643ceb7f9b09f5985632f", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "405d2e492baf4fc7af106b1de5ae28a0": { + "3beb4878467c4ebe872fa79ea2b02588": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3677,51 +3603,7 @@ "width": null } }, - "405fafe8255d4c939f4e2da331d1f383": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "41007d5b16b147e0bf78566f4f4b2d6a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_498e7cd0f26d415b90e9a1821d06d7de", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a64babf44ef2469fa427fba031c239ed", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "43d8df0229654fb5b2c1438d855da139": { + "4047835ff7424d269bc125d064054a17": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3774,7 +3656,7 @@ "width": null } }, - "44dc1a7b4c25460da28737855f515bd8": { + "40a4addeacf7430a875a493efbc86eb8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3792,7 +3674,7 @@ "text_color": null } }, - "46ecf4f8bf374fbcac68b1f7403a7287": { + "419590b475a04d738baf2e57e1fab481": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3845,33 +3727,23 @@ "width": null } }, - "48c46d8335a74152a7b9ff3c79c43d57": { + "4a9a31f4efb74fe388ad81aef8fe6665": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6191ec91cfee458da1dfa3533f10ee1b", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_deda9792bcd0497f9a3288e0f0307db7", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "498e7cd0f26d415b90e9a1821d06d7de": { + "4b2c1041bce7439bbc7b9a66fa7ddd37": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3924,10 +3796,118 @@ "width": null } }, - "4af8467d862c4ad5b4c8ed28363eeb78": { - "model_module": "@jupyter-widgets/base", + "4b99d72bddf24d61a59093ab44cdfb10": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4e866fe5d3eb42f7a9c27fb604333d89": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5aa7e4621a944e118e90e78618b3b0b4", + "placeholder": "​", + "style": "IPY_MODEL_797aad7399f842c39a425c41bb28da4f", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "4ed390a60cf948d7a4d105b3fa599f76": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b3e8a7afc04246839a6f1ca5c952e460", + "placeholder": "​", + "style": "IPY_MODEL_3a026622e4c14212854395c799f5fc04", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 60.37it/s]" + } + }, + "50646c2ea8ad47d79e6f65df3c080c03": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_53f00d133d284635a76b90b07aed1e75", + "placeholder": "​", + "style": "IPY_MODEL_b7652c0b78464f6d962cd264f3337f6c", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 6057.97 examples/s]" + } + }, + "50772d179f06439ea28ad4d7e8307e13": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_870cfcbe32b64a82bfb7c6cbe5d555d7", + "placeholder": "​", + "style": "IPY_MODEL_b78d2cc541834fe1a7b0be5ccaa8edf2", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "508996d0d70e4c7cbdf98863f150beef": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -3977,7 +3957,33 @@ "width": null } }, - "4b2a371afe6b459e95e6f65af557329c": { + "51ecab8ca15440f0a9f0853df15a91d4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_853659eedf8844658523c8440ae6341a", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_94ea969bd2bb4bc1a3074468107fa103", + "tabbable": null, + "tooltip": null, + "value": 5175617.0 + } + }, + "524f00ce4a6a4299bc2b74c05b3935ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3995,25 +4001,208 @@ "text_color": null } }, - "4df9331b7ed04d6ca49d9e5bcd1ff055": { + "53f00d133d284635a76b90b07aed1e75": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "54702cc08ea94ba8afb49715c6dde596": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "581003789de74cc1bd12df346b12b869": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_68f9101cec6c40cf8c537961e4f5f386", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d9ecd2a455a948d0adb46ced02873cfc", + "tabbable": null, + "tooltip": null, + "value": 30931277.0 + } + }, + "59c204e3077a4390bd38a58e152d88a9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "59ced4892509474c8162b6a8452c5b10": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "50655ffa75104e1395b6c7307dbc8656": { + "5aa7e4621a944e118e90e78618b3b0b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4066,7 +4255,30 @@ "width": null } }, - "528f60f856004b95ab2b57193c7a45a4": { + "5c697c1bb61944a99c0853a76049eea6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_be01ccfcfa424cd7acccfb9342132665", + "placeholder": "​", + "style": "IPY_MODEL_e87303ce29634db4be5ec806f17810a6", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" + } + }, + "5d669961873b408b8f74f37587d21574": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4084,7 +4296,7 @@ "text_color": null } }, - "58f4a62c05c94b1fab8f5c51060be88b": { + "5e4b1bf23ad74354b0331ed82756d1a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4099,15 +4311,57 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_43d8df0229654fb5b2c1438d855da139", + "layout": "IPY_MODEL_508996d0d70e4c7cbdf98863f150beef", "placeholder": "​", - "style": "IPY_MODEL_f5e46156c7e24824a1ef89a2e8b3e15c", + "style": "IPY_MODEL_ca718c595a904f46be5632d596fc9a08", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" + "value": "Map (num_proc=4): 100%" + } + }, + "61ffc08243d841468cabde6da07b31cf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "59c454e96f2a4ed6be235677c66d0e73": { + "62ee6412948d42e4a873317e104f1147": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_87620eadf30343db84407b2688ae1496", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a54c9679b35e40648256fbe7de234586", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "64ea0504bab641d38374833ba0c4abdf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4122,41 +4376,126 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ba7c5981b0f645079dc408744b677629", + "layout": "IPY_MODEL_b09881a73c114899958320abe9a7a8dc", "placeholder": "​", - "style": "IPY_MODEL_05d9f71ec9874d91b638463d0aaa4325", + "style": "IPY_MODEL_2709064e588340c8a3c5622e2c935eb8", "tabbable": null, "tooltip": null, - "value": "Map (num_proc=4): 100%" + "value": "Downloading data: 100%" } }, - "59dde6053bde4c36ad135061af836c3f": { + "684dda62de6b4d3eb8a6a418774e1c0d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "68f9101cec6c40cf8c537961e4f5f386": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6a2d1ebc02264b968f697dc18c196fec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4e866fe5d3eb42f7a9c27fb604333d89", + "IPY_MODEL_9a511863353d4add9462b9db1e552261", + "IPY_MODEL_6f06e44fd50442d0a694cf6a84ad170a" + ], + "layout": "IPY_MODEL_8119c5c294c840e79f0ed00a2ddcc499", + "tabbable": null, + "tooltip": null + } + }, + "6c78217a91a84a4db5e73489133557b0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2bebf1e53ed245bfb253ead20bc0c7f6", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ba794b0365cb485bbb4f3927d36ae29b", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5a0e7e546a384798ac1c58827dd94858": { + "6cd109056f10475d9afdf09f483a8dcc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4174,7 +4513,7 @@ "text_color": null } }, - "5ca2777d05c2485699bf8b003477a3b2": { + "6f06e44fd50442d0a694cf6a84ad170a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4189,15 +4528,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9cfa5d1c91224d09966dd6f13441baff", + "layout": "IPY_MODEL_af8c81036f6a42119a0729cf8e9dd8dc", "placeholder": "​", - "style": "IPY_MODEL_8c7f64eafac84da2917381de72c8104f", + "style": "IPY_MODEL_e3f1073412ee4961bd1532d3d4e1ef29", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 54.70it/s]" + "value": " 40/40 [00:00<00:00, 63.94it/s]" } }, - "5eda0fa7acfc4c69a6fd64aa21f86942": { + "72806b6fd55444c187851c2635b18db2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4212,145 +4551,96 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6792f30d84c04be89c928640e8500808", - "IPY_MODEL_48c46d8335a74152a7b9ff3c79c43d57", - "IPY_MODEL_3e74a38d18f845ea94d870e82c213bf1" + "IPY_MODEL_aaeaf5aecfcf41df88b2547f243fb422", + "IPY_MODEL_8f72d3d6fd0b4516b432f910c05c8439", + "IPY_MODEL_7b4a78d8fa5b43a78aa8878b4f68bff8" ], - "layout": "IPY_MODEL_50655ffa75104e1395b6c7307dbc8656", + "layout": "IPY_MODEL_e420dc44b1e64901b8498686c92ae236", "tabbable": null, "tooltip": null } }, - "6191ec91cfee458da1dfa3533f10ee1b": { - "model_module": "@jupyter-widgets/base", + "7417d17414454067aa34289b734f08f7": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "619a78236d894f02a3fd1b01d982ea41": { + "77d977574a66478094a078b92ff0d189": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_405d2e492baf4fc7af106b1de5ae28a0", - "placeholder": "​", - "style": "IPY_MODEL_de2356ffca9343a1a8b9ab1f7b4f837a", + "layout": "IPY_MODEL_419590b475a04d738baf2e57e1fab481", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4a9a31f4efb74fe388ad81aef8fe6665", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 40.0 } }, - "61caee58487a44ccad06513a6059fe31": { - "model_module": "@jupyter-widgets/base", + "797aad7399f842c39a425c41bb28da4f": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7a1a20eca81d41139e0946ef5a229493": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "620aa7c4ac1d41b5b53c1e4826295ea3": { + "7a23674df9cd4037946e8e27dfb6376d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4365,15 +4655,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c4a2f3cce01a43eabd4fc642d238d967", + "layout": "IPY_MODEL_1a168d94fe3f4cbfaa0f78c56777c451", "placeholder": "​", - "style": "IPY_MODEL_5a0e7e546a384798ac1c58827dd94858", + "style": "IPY_MODEL_8aa4ac957d244279a985a0516a44dc63", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 5.18M/5.18M [00:00<00:00, 22.2MB/s]" } }, - "62adc09a018145fea122d62356d66789": { + "7b4a78d8fa5b43a78aa8878b4f68bff8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4388,15 +4678,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c09c42b41586496ebe43373dfcf9d935", + "layout": "IPY_MODEL_07e38794397d434ba993b2b980061644", "placeholder": "​", - "style": "IPY_MODEL_dee5b7dcbe174b1e9dce43a7bfedc4b6", + "style": "IPY_MODEL_0a91cc6d45ce4998b57ffc0c4d64eaf0", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.08it/s]" + "value": " 2/2 [00:00<00:00, 578.60it/s]" } }, - "6435983653474a06b45a725d036bc0d8": { + "8119c5c294c840e79f0ed00a2ddcc499": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4449,77 +4739,7 @@ "width": null } }, - "6629771374e246629b7558eebaf494b8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b24f2d5e16564f13aaa3aa3519df7749", - "placeholder": "​", - "style": "IPY_MODEL_9fcb8fbe018f40fb9dead51da27a0cb5", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.11it/s]" - } - }, - "6792f30d84c04be89c928640e8500808": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9e9c9b0d9ac94847a716c043e06f80d7", - "placeholder": "​", - "style": "IPY_MODEL_f39dd3967d6f4aa78764dcb017ce663c", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "68bb63d4b0f342df9e664f04d954cefe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a89ede290c0b49deb8c5254d5bac848d", - "IPY_MODEL_a327e179920e4c47935dc177fe56a513", - "IPY_MODEL_6629771374e246629b7558eebaf494b8" - ], - "layout": "IPY_MODEL_6435983653474a06b45a725d036bc0d8", - "tabbable": null, - "tooltip": null - } - }, - "6b0973c65d0a40f2b3a2ee383cb903e5": { + "82421923b4a44fb69983349291380897": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4572,7 +4792,30 @@ "width": null } }, - "6b7fb232a97342e4a894a8e164efd320": { + "83b4921ed9334f3d88d1491648daf83a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c551b34a2d7943f98a9b39de8482b325", + "placeholder": "​", + "style": "IPY_MODEL_6c78217a91a84a4db5e73489133557b0", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "853659eedf8844658523c8440ae6341a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4618,38 +4861,14 @@ "object_position": null, "order": null, "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6d901677af154369baf845188fc2abec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ed2eaaad27f24f8d98b822038dec55b3", - "IPY_MODEL_d39d167d694a4002b43fcb80cd76b042", - "IPY_MODEL_ca67435a60534912bd65ffc4b318543c" - ], - "layout": "IPY_MODEL_1670ebb573234edfa2513e5f3ea512fe", - "tabbable": null, - "tooltip": null + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6e13650f14a8455391c6e536e8029de6": { + "8624def2f3914edebe3b0df0a9197833": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4664,16 +4883,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_619a78236d894f02a3fd1b01d982ea41", - "IPY_MODEL_59dde6053bde4c36ad135061af836c3f", - "IPY_MODEL_132cb25d49f846228794ddc57d9bc891" + "IPY_MODEL_5c697c1bb61944a99c0853a76049eea6", + "IPY_MODEL_d28212bb9c31450a87cc907df5cdd168", + "IPY_MODEL_ceddd599e15d4286886d63c9f458ac8b" ], - "layout": "IPY_MODEL_99893a402d34493ab36bea9ec0629e63", + "layout": "IPY_MODEL_bc19670c0b44455d9c6e127a24392307", "tabbable": null, "tooltip": null } }, - "6fe002cb066244fc850bb83cc8d03d3c": { + "870cfcbe32b64a82bfb7c6cbe5d555d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4726,65 +4945,7 @@ "width": null } }, - "71aac2f3486246cba247d36a6f978f3e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8290e8dfa39345339913bb0c0891a15e", - "IPY_MODEL_41007d5b16b147e0bf78566f4f4b2d6a", - "IPY_MODEL_62adc09a018145fea122d62356d66789" - ], - "layout": "IPY_MODEL_3d3cbe6179624664b370e25357516100", - "tabbable": null, - "tooltip": null - } - }, - "748943121720483b9f94c6aa0465a79d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7601e75f183d46a38b347b2eca87e0fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7810c969ff9d492dac4285f783cd60d9": { + "872bda3221a949ab8ef0082412ff836b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4837,7 +4998,7 @@ "width": null } }, - "784e8bbccaa340f29557123195bfaf03": { + "87620eadf30343db84407b2688ae1496": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4890,53 +5051,25 @@ "width": null } }, - "8290e8dfa39345339913bb0c0891a15e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1438c6958e1d4f8db113509a5b9a8a44", - "placeholder": "​", - "style": "IPY_MODEL_edf6b02be86a4c94a36f16e1115d7233", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "876f4805412341bab754397ab18ccd89": { + "8aa4ac957d244279a985a0516a44dc63": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b8f394c8a20e4af193a06160cbe4e081", - "placeholder": "​", - "style": "IPY_MODEL_2630c5ee678947239fa620181d3979cc", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 59.05it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "88685c7c2d1749f19e2d01d5ebac3f32": { + "8cc4710292124b2484c1d437f3731ed2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4989,7 +5122,7 @@ "width": null } }, - "89c09267bf344dc0a3e1732a646a814c": { + "8e8e9146905941b1ae5a9f3dae938d16": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5004,34 +5137,123 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_f062d7c061f5401c9ed552990cb13fc0", - "IPY_MODEL_1935ce7d5f7f41e4ae2b4af6881ce2a3", - "IPY_MODEL_9bedc8ec89e94088bbed6afb24ee41c9" + "IPY_MODEL_83b4921ed9334f3d88d1491648daf83a", + "IPY_MODEL_62ee6412948d42e4a873317e104f1147", + "IPY_MODEL_920bd1f067fa4f7a9bcb0d2ed38acd83" ], - "layout": "IPY_MODEL_3799e7268ea2409eba1a51403f99b9c5", + "layout": "IPY_MODEL_fc55e197a2c94a1ea1fddd4a5beb47e5", "tabbable": null, "tooltip": null } }, - "8c7f64eafac84da2917381de72c8104f": { + "8f72d3d6fd0b4516b432f910c05c8439": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_eff09d72251941c1aaaf663b67c8348c", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_59ced4892509474c8162b6a8452c5b10", + "tabbable": null, + "tooltip": null, + "value": 2.0 + } + }, + "920bd1f067fa4f7a9bcb0d2ed38acd83": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_17857f087e3d426eb7f0f70643d02a95", + "placeholder": "​", + "style": "IPY_MODEL_7a1a20eca81d41139e0946ef5a229493", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 65.88it/s]" + } + }, + "92eacfa7a5244f60aa7f9b6d6a00ac3c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_03ddcb34b74343edaf72e7ce4d3146ed", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1cade2697ae445099181cc29af4b47c6", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "94ea969bd2bb4bc1a3074468107fa103": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "96a8dde625814630a07166bf1a3933db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8d225f933a5b4b09938cfdbad545c37b": { + "9a1a2705ae0f4ccfb124ff2e16eb7e5d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5049,31 +5271,33 @@ "text_color": null } }, - "90697b7a34fa4cf3a5f142da0006eeb4": { + "9a511863353d4add9462b9db1e552261": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_59c454e96f2a4ed6be235677c66d0e73", - "IPY_MODEL_c02cec1ce51c419db1bda39235a12eaa", - "IPY_MODEL_37d83acd211745e0bf3bed1fc82ea57d" - ], - "layout": "IPY_MODEL_faf5e8fad2924e17b7b7a64c777fd328", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_35fe2662455340358caabbaaae1dbe87", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4b99d72bddf24d61a59093ab44cdfb10", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 40.0 } }, - "908072b0f8604420aaaf9bd39aad4542": { + "9f2e62d6f33b48f5914df2a58a1b5144": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5089,7 +5313,7 @@ "description_width": "" } }, - "95824bff82a74daa8c4da74c6a87d5ef": { + "a00191fa62e44c2ea32ddeb450046b4a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5142,7 +5366,25 @@ "width": null } }, - "964225a3727c480ea449c2ca5c5e189b": { + "a472370f2c7e431f9240d35489062a46": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a508f9b25473452891c94b0afa419e06": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5195,60 +5437,89 @@ "width": null } }, - "99893a402d34493ab36bea9ec0629e63": { - "model_module": "@jupyter-widgets/base", + "a54c9679b35e40648256fbe7de234586": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a7cc9fa9b61245d1adbfe33c6319db71": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e0338cf0845f4499a1816b09c839b73d", + "IPY_MODEL_ef8a94af00524663b8953a8552860711", + "IPY_MODEL_1621bb1b748b49049e68d061dbe50cc8" + ], + "layout": "IPY_MODEL_059fd4e89358444f919d9ad5627b7863", + "tabbable": null, + "tooltip": null + } + }, + "a8e090733a5443938ab0dddf7303203b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0c642716fbd146a9b597ec521578b077", + "IPY_MODEL_19e3977dc2f549e3898f8add8f9b10d9", + "IPY_MODEL_c504a5bf85b149158a55695037cf6103" + ], + "layout": "IPY_MODEL_b78bcef5b53f40f692fb53afc1dc3531", + "tabbable": null, + "tooltip": null + } + }, + "aa14c88fda0e4777947e7f90c9ce4d50": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9a65fd13f5fe47e6b0666291f581d615": { + "aa935b0a0c2544db867d2c2cdb126126": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5263,15 +5534,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a426f65a19e44c3fba5f7439f7a5249d", + "layout": "IPY_MODEL_21ea9e7a90e14c50b5c45c0e50db57f5", "placeholder": "​", - "style": "IPY_MODEL_0bf8519502ba43379b738b263da5d99e", + "style": "IPY_MODEL_2f21820f8c0948f2833757f79adc70ba", "tabbable": null, "tooltip": null, - "value": "Generating train split: 100%" + "value": " 40/40 [00:00<00:00, 60.59it/s]" } }, - "9bedc8ec89e94088bbed6afb24ee41c9": { + "aaeaf5aecfcf41df88b2547f243fb422": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5286,15 +5557,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f5bd8576e5aa4c01a7691feb1937b12f", + "layout": "IPY_MODEL_82421923b4a44fb69983349291380897", "placeholder": "​", - "style": "IPY_MODEL_fa2ea21c1086477790b857440633483d", + "style": "IPY_MODEL_a472370f2c7e431f9240d35489062a46", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.39it/s]" + "value": "Computing checksums: 100%" } }, - "9cfa5d1c91224d09966dd6f13441baff": { + "aafb3cf293944bd09e84e7316704e512": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5347,7 +5618,7 @@ "width": null } }, - "9e9c9b0d9ac94847a716c043e06f80d7": { + "af8c81036f6a42119a0729cf8e9dd8dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5400,7 +5671,7 @@ "width": null } }, - "9eee7a6631c04ed3997c44145e473825": { + "b09881a73c114899958320abe9a7a8dc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5453,51 +5724,56 @@ "width": null } }, - "9fcb8fbe018f40fb9dead51da27a0cb5": { + "b34d27c7786249b1b583ce9e426f73e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_115067045818446cab9dcc8594ca95a4", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_96a8dde625814630a07166bf1a3933db", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "a327e179920e4c47935dc177fe56a513": { + "b38142a16b4a4f0db9b3fb82df0d51b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9eee7a6631c04ed3997c44145e473825", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_04db128d1b9f47a08925e7c7dbba3c50", + "layout": "IPY_MODEL_8cc4710292124b2484c1d437f3731ed2", + "placeholder": "​", + "style": "IPY_MODEL_5d669961873b408b8f74f37587d21574", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 30.9M/30.9M [00:00<00:00, 42.7MB/s]" } }, - "a426f65a19e44c3fba5f7439f7a5249d": { + "b3e8a7afc04246839a6f1ca5c952e460": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5550,23 +5826,51 @@ "width": null } }, - "a64babf44ef2469fa427fba031c239ed": { + "b4e3931aed6741708d9384cbc8ae5048": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d0b68cd106f042688fb41f2832daa763", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_61ffc08243d841468cabde6da07b31cf", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "b7652c0b78464f6d962cd264f3337f6c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a87661aa3364482bab72951fdddcd123": { + "b78bcef5b53f40f692fb53afc1dc3531": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5619,30 +5923,25 @@ "width": null } }, - "a89ede290c0b49deb8c5254d5bac848d": { + "b78d2cc541834fe1a7b0be5ccaa8edf2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1d5496fdb2304667914c255fc415555f", - "placeholder": "​", - "style": "IPY_MODEL_b40f1a4434b143cc929c55c55e3d8042", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "acacc7615e054b41a45a8eff93d3678b": { + "b820ff63da4d4419801676dad6dffefa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5695,31 +5994,30 @@ "width": null } }, - "b18e7ba801a446028a5665b805c3092b": { + "b9301b017861490eb6ee4d958fc9f583": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_620aa7c4ac1d41b5b53c1e4826295ea3", - "IPY_MODEL_b5ed23944035478d82337dfcd478c5bd", - "IPY_MODEL_876f4805412341bab754397ab18ccd89" - ], - "layout": "IPY_MODEL_cb26fc532406477187fb24f3c75583bb", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4b2c1041bce7439bbc7b9a66fa7ddd37", + "placeholder": "​", + "style": "IPY_MODEL_7417d17414454067aa34289b734f08f7", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 40/40 [00:00<00:00, 65.52it/s]" } }, - "b1cb328bd1434a13b7a9134018f13ec9": { + "bb7967abc85f436fba568e677fdc4162": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5735,114 +6033,40 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ccaaec6fd98a4ce09f580018cb66b383", - "max": 10000.0, + "layout": "IPY_MODEL_872bda3221a949ab8ef0082412ff836b", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_fb630b2d38964c4c8eb9007213a3321a", + "style": "IPY_MODEL_684dda62de6b4d3eb8a6a418774e1c0d", "tabbable": null, "tooltip": null, - "value": 10000.0 - } - }, - "b24f2d5e16564f13aaa3aa3519df7749": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b40f1a4434b143cc929c55c55e3d8042": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 60000.0 } }, - "b5ed23944035478d82337dfcd478c5bd": { + "bbfd3f66a893418a972a06777c72b0f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_61caee58487a44ccad06513a6059fe31", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_df743260c9a549d9911272b9ead79229", + "layout": "IPY_MODEL_23c34e04354a47e09cc717a791d62755", + "placeholder": "​", + "style": "IPY_MODEL_40a4addeacf7430a875a493efbc86eb8", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "100%" } }, - "b8f394c8a20e4af193a06160cbe4e081": { + "bc19670c0b44455d9c6e127a24392307": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5895,23 +6119,7 @@ "width": null } }, - "ba794b0365cb485bbb4f3927d36ae29b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ba7c5981b0f645079dc408744b677629": { + "bd7b558a277240f196dd5264cfbd2d8b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5964,80 +6172,7 @@ "width": null } }, - "bde28428ead04314bc1eafb4f6911475": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9a65fd13f5fe47e6b0666291f581d615", - "IPY_MODEL_e8c1bc05012d4f92842c6efe923c66e7", - "IPY_MODEL_f0a967769736448086c27c1b0f193483" - ], - "layout": "IPY_MODEL_a87661aa3364482bab72951fdddcd123", - "tabbable": null, - "tooltip": null - } - }, - "c010dbb9f0944b48a373061fc2ff6d21": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3380742da70b410abfc41d04b51e9fad", - "placeholder": "​", - "style": "IPY_MODEL_44dc1a7b4c25460da28737855f515bd8", - "tabbable": null, - "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 53.4MB/s]" - } - }, - "c02cec1ce51c419db1bda39235a12eaa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4af8467d862c4ad5b4c8ed28363eeb78", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3ab652858e7e460bb08cb2b559b5f5bb", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "c09c42b41586496ebe43373dfcf9d935": { + "be01ccfcfa424cd7acccfb9342132665": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6090,7 +6225,7 @@ "width": null } }, - "c4a2f3cce01a43eabd4fc642d238d967": { + "bfb470219cc14c64bcb0aaedc90a7cee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6143,7 +6278,30 @@ "width": null } }, - "c615fc470dd54bd8b14bbc3750c49734": { + "c504a5bf85b149158a55695037cf6103": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a00191fa62e44c2ea32ddeb450046b4a", + "placeholder": "​", + "style": "IPY_MODEL_6cd109056f10475d9afdf09f483a8dcc", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:00<00:00, 291935.01 examples/s]" + } + }, + "c551b34a2d7943f98a9b39de8482b325": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6196,30 +6354,7 @@ "width": null } }, - "ca67435a60534912bd65ffc4b318543c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d4bf62ff3f424d36b994159ddae44297", - "placeholder": "​", - "style": "IPY_MODEL_4b2a371afe6b459e95e6f65af557329c", - "tabbable": null, - "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 16.1MB/s]" - } - }, - "cb26fc532406477187fb24f3c75583bb": { + "c6ce9633a04c4a25a500445932ad4489": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6272,7 +6407,7 @@ "width": null } }, - "ccaaec6fd98a4ce09f580018cb66b383": { + "c6f3a8b1037346ee9a43e2e844d42152": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6325,7 +6460,7 @@ "width": null } }, - "ccfa46c1de224a839616932ce1329eb4": { + "ca718c595a904f46be5632d596fc9a08": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6343,25 +6478,30 @@ "text_color": null } }, - "cd421034f8814636989d9458d76cab42": { + "ceddd599e15d4286886d63c9f458ac8b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b820ff63da4d4419801676dad6dffefa", + "placeholder": "​", + "style": "IPY_MODEL_0a942737f0e740dd9a3fa5700a59372d", + "tabbable": null, + "tooltip": null, + "value": " 10000/10000 [00:00<00:00, 270159.29 examples/s]" } }, - "ce3249c1c4fc443ca84c1cb882271dac": { + "d0b68cd106f042688fb41f2832daa763": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6414,25 +6554,57 @@ "width": null } }, - "ce5d0354e74249d2bc85d0d38de1ce54": { + "d28212bb9c31450a87cc907df5cdd168": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3beb4878467c4ebe872fa79ea2b02588", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9f2e62d6f33b48f5914df2a58a1b5144", + "tabbable": null, + "tooltip": null, + "value": 10000.0 + } + }, + "d31981130221497cbb1d76b50904779e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_64ea0504bab641d38374833ba0c4abdf", + "IPY_MODEL_581003789de74cc1bd12df346b12b869", + "IPY_MODEL_b38142a16b4a4f0db9b3fb82df0d51b9" + ], + "layout": "IPY_MODEL_a508f9b25473452891c94b0afa419e06", + "tabbable": null, + "tooltip": null } }, - "ce862dad477b44ac8b11e4410a41b54e": { + "d5fb2d645a224f079d3a936f25c64329": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6485,7 +6657,7 @@ "width": null } }, - "d1b676b40e8843c4a55fd5d6aab589a0": { + "d77233602e2e46e0889971aa7e93d2d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6500,16 +6672,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_58f4a62c05c94b1fab8f5c51060be88b", - "IPY_MODEL_b1cb328bd1434a13b7a9134018f13ec9", - "IPY_MODEL_13cde802d7754ff1812210ab9a81ca49" + "IPY_MODEL_bbfd3f66a893418a972a06777c72b0f7", + "IPY_MODEL_92eacfa7a5244f60aa7f9b6d6a00ac3c", + "IPY_MODEL_b9301b017861490eb6ee4d958fc9f583" ], - "layout": "IPY_MODEL_2ebbd4b2544c475b8cb750e0ad40fa1f", + "layout": "IPY_MODEL_c6ce9633a04c4a25a500445932ad4489", "tabbable": null, "tooltip": null } }, - "d24bfcb87e1846bfa23d20127f7ccb44": { + "d9ecd2a455a948d0adb46ced02873cfc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6525,33 +6697,101 @@ "description_width": "" } }, - "d39d167d694a4002b43fcb80cd76b042": { + "dc3dbc5573674bf2bb302a9bcff8c37c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e0338cf0845f4499a1816b09c839b73d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6b0973c65d0a40f2b3a2ee383cb903e5", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d24bfcb87e1846bfa23d20127f7ccb44", + "layout": "IPY_MODEL_4047835ff7424d269bc125d064054a17", + "placeholder": "​", + "style": "IPY_MODEL_f6b7a1656367452eb70de6887a338c71", "tabbable": null, "tooltip": null, - "value": 5175617.0 + "value": "100%" + } + }, + "e3f1073412ee4961bd1532d3d4e1ef29": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d4bf62ff3f424d36b994159ddae44297": { + "e420dc44b1e64901b8498686c92ae236": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6604,33 +6844,31 @@ "width": null } }, - "d4e3a9bed3274630aa32f9dd7b8b9357": { + "e6de2c216183488bbf9f27cd5d5a8e98": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_964225a3727c480ea449c2ca5c5e189b", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_38dfbca4cb464635ae01482a0df2f130", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5e4b1bf23ad74354b0331ed82756d1a8", + "IPY_MODEL_b4e3931aed6741708d9384cbc8ae5048", + "IPY_MODEL_50646c2ea8ad47d79e6f65df3c080c03" + ], + "layout": "IPY_MODEL_dc3dbc5573674bf2bb302a9bcff8c37c", "tabbable": null, - "tooltip": null, - "value": 30931277.0 + "tooltip": null } }, - "de2356ffca9343a1a8b9ab1f7b4f837a": { + "e87303ce29634db4be5ec806f17810a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6648,23 +6886,31 @@ "text_color": null } }, - "deda9792bcd0497f9a3288e0f0307db7": { + "e8a29fe7f9744ecc8675be3fb062865a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_337ae9baeb5a43d387e1ef886eefa3c7", + "IPY_MODEL_77d977574a66478094a078b92ff0d189", + "IPY_MODEL_aa935b0a0c2544db867d2c2cdb126126" + ], + "layout": "IPY_MODEL_aafb3cf293944bd09e84e7316704e512", + "tabbable": null, + "tooltip": null } }, - "dee5b7dcbe174b1e9dce43a7bfedc4b6": { + "eb211b369bb54c9caf98de9ce093bb7c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6682,47 +6928,7 @@ "text_color": null } }, - "df743260c9a549d9911272b9ead79229": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "dfc89fc7fc4d4d86b2ba5eeb2c973868": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3c9d644a62cd452ab2e104271a6c6e31", - "IPY_MODEL_d4e3a9bed3274630aa32f9dd7b8b9357", - "IPY_MODEL_c010dbb9f0944b48a373061fc2ff6d21" - ], - "layout": "IPY_MODEL_3aa0e51515f440dca8c1f8dcb83c5046", - "tabbable": null, - "tooltip": null - } - }, - "e7abd698eeb9417f96b6703bf0fdc132": { + "ed84061db0d9450b8dd6e50cdb5898bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6775,7 +6981,7 @@ "width": null } }, - "e8c1bc05012d4f92842c6efe923c66e7": { + "ef8a94af00524663b8953a8552860711": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -6791,120 +6997,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6fe002cb066244fc850bb83cc8d03d3c", - "max": 60000.0, + "layout": "IPY_MODEL_ed84061db0d9450b8dd6e50cdb5898bf", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_3478eca785424da6a6a97a601509b7e5", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "e9002f2961c742bd9d59306ad89a3360": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ed2eaaad27f24f8d98b822038dec55b3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_95824bff82a74daa8c4da74c6a87d5ef", - "placeholder": "​", - "style": "IPY_MODEL_405fafe8255d4c939f4e2da331d1f383", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "edf6b02be86a4c94a36f16e1115d7233": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f062d7c061f5401c9ed552990cb13fc0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_784e8bbccaa340f29557123195bfaf03", - "placeholder": "​", - "style": "IPY_MODEL_cd421034f8814636989d9458d76cab42", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "f0a967769736448086c27c1b0f193483": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_184e9899db5d4bcd90cb168ac710fb8d", - "placeholder": "​", - "style": "IPY_MODEL_528f60f856004b95ab2b57193c7a45a4", + "style": "IPY_MODEL_fcda1df2e4ba43fb9e1c634dd5b3cbd4", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 284095.16 examples/s]" + "value": 40.0 } }, - "f23c059d381641f6bf38244e99d6d9bf": { + "efb23676e3c64db8bae8b5aedf70420f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6957,43 +7060,7 @@ "width": null } }, - "f262dfdcf06643ceb7f9b09f5985632f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f39dd3967d6f4aa78764dcb017ce663c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f5bd8576e5aa4c01a7691feb1937b12f": { + "eff09d72251941c1aaaf663b67c8348c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7046,25 +7113,7 @@ "width": null } }, - "f5e46156c7e24824a1ef89a2e8b3e15c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f651105cfeb74510b311fb747c385737": { + "f6b7a1656367452eb70de6887a338c71": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7082,30 +7131,7 @@ "text_color": null } }, - "f9054812eb014e3aae9703c447938eed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6b7fb232a97342e4a894a8e164efd320", - "placeholder": "​", - "style": "IPY_MODEL_8d225f933a5b4b09938cfdbad545c37b", - "tabbable": null, - "tooltip": null, - "value": " 2/2 [00:00<00:00, 520.42it/s]" - } - }, - "fa2ea21c1086477790b857440633483d": { + "fba34cbeb84843a5a8d2f3ee4a62c6ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7123,7 +7149,7 @@ "text_color": null } }, - "faf5e8fad2924e17b7b7a64c777fd328": { + "fc55e197a2c94a1ea1fddd4a5beb47e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7176,7 +7202,7 @@ "width": null } }, - "fb630b2d38964c4c8eb9007213a3321a": { + "fcda1df2e4ba43fb9e1c634dd5b3cbd4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -7191,32 +7217,6 @@ "bar_color": null, "description_width": "" } - }, - "fe8771cb4ea44fe9acf8dd7da36c0f83": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_18dc887e6c2b407ca848a8a85bb0d532", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7601e75f183d46a38b347b2eca87e0fd", - "tabbable": null, - "tooltip": null, - "value": 2.0 - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index a63e13eea..6dcc4bed4 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:39.449204Z", - "iopub.status.busy": "2024-05-02T13:35:39.448756Z", - "iopub.status.idle": "2024-05-02T13:35:40.518573Z", - "shell.execute_reply": "2024-05-02T13:35:40.518025Z" + "iopub.execute_input": "2024-05-03T22:18:41.865540Z", + "iopub.status.busy": "2024-05-03T22:18:41.865189Z", + "iopub.status.idle": "2024-05-03T22:18:42.992072Z", + "shell.execute_reply": "2024-05-03T22:18:42.991446Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:40.521066Z", - "iopub.status.busy": "2024-05-02T13:35:40.520696Z", - "iopub.status.idle": "2024-05-02T13:35:40.538736Z", - "shell.execute_reply": "2024-05-02T13:35:40.538189Z" + "iopub.execute_input": "2024-05-03T22:18:42.994591Z", + "iopub.status.busy": "2024-05-03T22:18:42.994289Z", + "iopub.status.idle": "2024-05-03T22:18:43.013474Z", + "shell.execute_reply": "2024-05-03T22:18:43.012867Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:40.541010Z", - "iopub.status.busy": "2024-05-02T13:35:40.540537Z", - "iopub.status.idle": "2024-05-02T13:35:40.578774Z", - "shell.execute_reply": "2024-05-02T13:35:40.578218Z" + "iopub.execute_input": "2024-05-03T22:18:43.016275Z", + "iopub.status.busy": "2024-05-03T22:18:43.015700Z", + "iopub.status.idle": "2024-05-03T22:18:43.040335Z", + "shell.execute_reply": "2024-05-03T22:18:43.039749Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:40.580884Z", - "iopub.status.busy": "2024-05-02T13:35:40.580498Z", - "iopub.status.idle": "2024-05-02T13:35:40.583828Z", - "shell.execute_reply": "2024-05-02T13:35:40.583391Z" + "iopub.execute_input": "2024-05-03T22:18:43.042722Z", + "iopub.status.busy": "2024-05-03T22:18:43.042166Z", + "iopub.status.idle": "2024-05-03T22:18:43.045793Z", + "shell.execute_reply": "2024-05-03T22:18:43.045339Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:40.585735Z", - "iopub.status.busy": "2024-05-02T13:35:40.585558Z", - "iopub.status.idle": "2024-05-02T13:35:40.592841Z", - "shell.execute_reply": "2024-05-02T13:35:40.592434Z" + "iopub.execute_input": "2024-05-03T22:18:43.047929Z", + "iopub.status.busy": "2024-05-03T22:18:43.047540Z", + "iopub.status.idle": "2024-05-03T22:18:43.055302Z", + "shell.execute_reply": "2024-05-03T22:18:43.054867Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:40.594914Z", - "iopub.status.busy": "2024-05-02T13:35:40.594736Z", - "iopub.status.idle": "2024-05-02T13:35:40.597217Z", - "shell.execute_reply": "2024-05-02T13:35:40.596783Z" + "iopub.execute_input": "2024-05-03T22:18:43.057460Z", + "iopub.status.busy": "2024-05-03T22:18:43.057131Z", + "iopub.status.idle": "2024-05-03T22:18:43.059612Z", + "shell.execute_reply": "2024-05-03T22:18:43.059181Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:40.599186Z", - "iopub.status.busy": "2024-05-02T13:35:40.598893Z", - "iopub.status.idle": "2024-05-02T13:35:43.570531Z", - "shell.execute_reply": "2024-05-02T13:35:43.569904Z" + "iopub.execute_input": "2024-05-03T22:18:43.061675Z", + "iopub.status.busy": "2024-05-03T22:18:43.061355Z", + "iopub.status.idle": "2024-05-03T22:18:46.014180Z", + "shell.execute_reply": "2024-05-03T22:18:46.013613Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:43.572963Z", - "iopub.status.busy": "2024-05-02T13:35:43.572781Z", - "iopub.status.idle": "2024-05-02T13:35:43.582115Z", - "shell.execute_reply": "2024-05-02T13:35:43.581685Z" + "iopub.execute_input": "2024-05-03T22:18:46.016871Z", + "iopub.status.busy": "2024-05-03T22:18:46.016446Z", + "iopub.status.idle": "2024-05-03T22:18:46.026654Z", + "shell.execute_reply": "2024-05-03T22:18:46.026174Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:43.584040Z", - "iopub.status.busy": "2024-05-02T13:35:43.583870Z", - "iopub.status.idle": "2024-05-02T13:35:45.260343Z", - "shell.execute_reply": "2024-05-02T13:35:45.259730Z" + "iopub.execute_input": "2024-05-03T22:18:46.028995Z", + "iopub.status.busy": "2024-05-03T22:18:46.028625Z", + "iopub.status.idle": "2024-05-03T22:18:47.840477Z", + "shell.execute_reply": "2024-05-03T22:18:47.839694Z" } }, "outputs": [ @@ -484,10 +484,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:45.263214Z", - "iopub.status.busy": "2024-05-02T13:35:45.262626Z", - "iopub.status.idle": "2024-05-02T13:35:45.285315Z", - "shell.execute_reply": "2024-05-02T13:35:45.284826Z" + "iopub.execute_input": "2024-05-03T22:18:47.844321Z", + "iopub.status.busy": "2024-05-03T22:18:47.842999Z", + "iopub.status.idle": "2024-05-03T22:18:47.868606Z", + "shell.execute_reply": "2024-05-03T22:18:47.868063Z" }, "scrolled": true }, @@ -612,10 +612,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:45.287685Z", - "iopub.status.busy": "2024-05-02T13:35:45.287311Z", - "iopub.status.idle": "2024-05-02T13:35:45.296344Z", - "shell.execute_reply": "2024-05-02T13:35:45.295866Z" + "iopub.execute_input": "2024-05-03T22:18:47.872292Z", + "iopub.status.busy": "2024-05-03T22:18:47.871375Z", + "iopub.status.idle": "2024-05-03T22:18:47.883588Z", + "shell.execute_reply": "2024-05-03T22:18:47.883034Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:45.298687Z", - "iopub.status.busy": "2024-05-02T13:35:45.298311Z", - "iopub.status.idle": "2024-05-02T13:35:45.308915Z", - "shell.execute_reply": "2024-05-02T13:35:45.308445Z" + "iopub.execute_input": "2024-05-03T22:18:47.887185Z", + "iopub.status.busy": "2024-05-03T22:18:47.886282Z", + "iopub.status.idle": "2024-05-03T22:18:47.899925Z", + "shell.execute_reply": "2024-05-03T22:18:47.899389Z" } }, "outputs": [ @@ -851,10 +851,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:45.312021Z", - "iopub.status.busy": "2024-05-02T13:35:45.311106Z", - "iopub.status.idle": "2024-05-02T13:35:45.322390Z", - "shell.execute_reply": "2024-05-02T13:35:45.321889Z" + "iopub.execute_input": "2024-05-03T22:18:47.903517Z", + "iopub.status.busy": "2024-05-03T22:18:47.902629Z", + "iopub.status.idle": "2024-05-03T22:18:47.914690Z", + "shell.execute_reply": "2024-05-03T22:18:47.914167Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:45.325852Z", - "iopub.status.busy": "2024-05-02T13:35:45.324944Z", - "iopub.status.idle": "2024-05-02T13:35:45.337323Z", - "shell.execute_reply": "2024-05-02T13:35:45.336844Z" + "iopub.execute_input": "2024-05-03T22:18:47.918342Z", + "iopub.status.busy": "2024-05-03T22:18:47.917433Z", + "iopub.status.idle": "2024-05-03T22:18:47.928330Z", + "shell.execute_reply": "2024-05-03T22:18:47.927918Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:45.340755Z", - "iopub.status.busy": "2024-05-02T13:35:45.339849Z", - "iopub.status.idle": "2024-05-02T13:35:45.347650Z", - "shell.execute_reply": "2024-05-02T13:35:45.347202Z" + "iopub.execute_input": "2024-05-03T22:18:47.930411Z", + "iopub.status.busy": "2024-05-03T22:18:47.930226Z", + "iopub.status.idle": "2024-05-03T22:18:47.936854Z", + "shell.execute_reply": "2024-05-03T22:18:47.936282Z" } }, "outputs": [ @@ -1169,10 +1169,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:45.349802Z", - "iopub.status.busy": "2024-05-02T13:35:45.349485Z", - "iopub.status.idle": "2024-05-02T13:35:45.355932Z", - "shell.execute_reply": "2024-05-02T13:35:45.355430Z" + "iopub.execute_input": "2024-05-03T22:18:47.938796Z", + "iopub.status.busy": "2024-05-03T22:18:47.938616Z", + "iopub.status.idle": "2024-05-03T22:18:47.945319Z", + "shell.execute_reply": "2024-05-03T22:18:47.944704Z" } }, "outputs": [ @@ -1265,10 +1265,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:45.357944Z", - "iopub.status.busy": "2024-05-02T13:35:45.357626Z", - "iopub.status.idle": "2024-05-02T13:35:45.364133Z", - "shell.execute_reply": "2024-05-02T13:35:45.363705Z" + "iopub.execute_input": "2024-05-03T22:18:47.947381Z", + "iopub.status.busy": "2024-05-03T22:18:47.947195Z", + "iopub.status.idle": "2024-05-03T22:18:47.954553Z", + "shell.execute_reply": "2024-05-03T22:18:47.953973Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index 680a1d4e9..cb4782a94 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -757,7 +757,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'beneficiary_not_allowed', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'change_pin', 'card_about_to_expire', 'supported_cards_and_currencies', 'cancel_transfer', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'getting_spare_card'}
+Classes: {'getting_spare_card', 'visa_or_mastercard', 'card_about_to_expire', 'cancel_transfer', 'lost_or_stolen_phone', 'change_pin', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'card_payment_fee_charged'}
 

Let’s view the i-th example in the dataset:

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 41e265f67..78ee5bb2f 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:47.838605Z", - "iopub.status.busy": "2024-05-02T13:35:47.838104Z", - "iopub.status.idle": "2024-05-02T13:35:50.401091Z", - "shell.execute_reply": "2024-05-02T13:35:50.400550Z" + "iopub.execute_input": "2024-05-03T22:18:51.256411Z", + "iopub.status.busy": "2024-05-03T22:18:51.255992Z", + "iopub.status.idle": "2024-05-03T22:18:54.011020Z", + "shell.execute_reply": "2024-05-03T22:18:54.010318Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:50.403683Z", - "iopub.status.busy": "2024-05-02T13:35:50.403220Z", - "iopub.status.idle": "2024-05-02T13:35:50.406478Z", - "shell.execute_reply": "2024-05-02T13:35:50.406005Z" + "iopub.execute_input": "2024-05-03T22:18:54.013954Z", + "iopub.status.busy": "2024-05-03T22:18:54.013577Z", + "iopub.status.idle": "2024-05-03T22:18:54.017174Z", + "shell.execute_reply": "2024-05-03T22:18:54.016602Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:50.408507Z", - "iopub.status.busy": "2024-05-02T13:35:50.408111Z", - "iopub.status.idle": "2024-05-02T13:35:50.411229Z", - "shell.execute_reply": "2024-05-02T13:35:50.410785Z" + "iopub.execute_input": "2024-05-03T22:18:54.019217Z", + "iopub.status.busy": "2024-05-03T22:18:54.018946Z", + "iopub.status.idle": "2024-05-03T22:18:54.022038Z", + "shell.execute_reply": "2024-05-03T22:18:54.021589Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:50.413221Z", - "iopub.status.busy": "2024-05-02T13:35:50.412825Z", - "iopub.status.idle": "2024-05-02T13:35:50.451997Z", - "shell.execute_reply": "2024-05-02T13:35:50.451480Z" + "iopub.execute_input": "2024-05-03T22:18:54.024007Z", + "iopub.status.busy": "2024-05-03T22:18:54.023695Z", + "iopub.status.idle": "2024-05-03T22:18:54.048811Z", + "shell.execute_reply": "2024-05-03T22:18:54.048286Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:50.454081Z", - "iopub.status.busy": "2024-05-02T13:35:50.453649Z", - "iopub.status.idle": "2024-05-02T13:35:50.457334Z", - "shell.execute_reply": "2024-05-02T13:35:50.456813Z" + "iopub.execute_input": "2024-05-03T22:18:54.051314Z", + "iopub.status.busy": "2024-05-03T22:18:54.050743Z", + "iopub.status.idle": "2024-05-03T22:18:54.054516Z", + "shell.execute_reply": "2024-05-03T22:18:54.054065Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'beneficiary_not_allowed', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'change_pin', 'card_about_to_expire', 'supported_cards_and_currencies', 'cancel_transfer', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'getting_spare_card'}\n" + "Classes: {'getting_spare_card', 'visa_or_mastercard', 'card_about_to_expire', 'cancel_transfer', 'lost_or_stolen_phone', 'change_pin', 'supported_cards_and_currencies', 'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'card_payment_fee_charged'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:50.459362Z", - "iopub.status.busy": "2024-05-02T13:35:50.459043Z", - "iopub.status.idle": "2024-05-02T13:35:50.462114Z", - "shell.execute_reply": "2024-05-02T13:35:50.461557Z" + "iopub.execute_input": "2024-05-03T22:18:54.056487Z", + "iopub.status.busy": "2024-05-03T22:18:54.056308Z", + "iopub.status.idle": "2024-05-03T22:18:54.059349Z", + "shell.execute_reply": "2024-05-03T22:18:54.058809Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:50.464052Z", - "iopub.status.busy": "2024-05-02T13:35:50.463782Z", - "iopub.status.idle": "2024-05-02T13:35:54.076801Z", - "shell.execute_reply": "2024-05-02T13:35:54.076161Z" + "iopub.execute_input": "2024-05-03T22:18:54.061466Z", + "iopub.status.busy": "2024-05-03T22:18:54.061137Z", + "iopub.status.idle": "2024-05-03T22:18:57.706188Z", + "shell.execute_reply": "2024-05-03T22:18:57.705631Z" } }, "outputs": [ @@ -424,10 +424,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:54.079516Z", - "iopub.status.busy": "2024-05-02T13:35:54.079310Z", - "iopub.status.idle": "2024-05-02T13:35:54.969276Z", - "shell.execute_reply": "2024-05-02T13:35:54.968700Z" + "iopub.execute_input": "2024-05-03T22:18:57.708836Z", + "iopub.status.busy": "2024-05-03T22:18:57.708571Z", + "iopub.status.idle": "2024-05-03T22:18:58.566923Z", + "shell.execute_reply": "2024-05-03T22:18:58.566334Z" }, "scrolled": true }, @@ -459,10 +459,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:54.972281Z", - "iopub.status.busy": "2024-05-02T13:35:54.971874Z", - "iopub.status.idle": "2024-05-02T13:35:54.974799Z", - "shell.execute_reply": "2024-05-02T13:35:54.974304Z" + "iopub.execute_input": "2024-05-03T22:18:58.570713Z", + "iopub.status.busy": "2024-05-03T22:18:58.569608Z", + "iopub.status.idle": "2024-05-03T22:18:58.573844Z", + "shell.execute_reply": "2024-05-03T22:18:58.573346Z" } }, "outputs": [], @@ -482,10 +482,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:54.977235Z", - "iopub.status.busy": "2024-05-02T13:35:54.976847Z", - "iopub.status.idle": "2024-05-02T13:35:56.472356Z", - "shell.execute_reply": "2024-05-02T13:35:56.471709Z" + "iopub.execute_input": "2024-05-03T22:18:58.577414Z", + "iopub.status.busy": "2024-05-03T22:18:58.576460Z", + "iopub.status.idle": "2024-05-03T22:19:00.174840Z", + "shell.execute_reply": "2024-05-03T22:19:00.174008Z" }, "scrolled": true }, @@ -538,10 +538,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:56.475867Z", - "iopub.status.busy": "2024-05-02T13:35:56.475451Z", - "iopub.status.idle": "2024-05-02T13:35:56.500868Z", - "shell.execute_reply": "2024-05-02T13:35:56.500384Z" + "iopub.execute_input": "2024-05-03T22:19:00.178010Z", + "iopub.status.busy": "2024-05-03T22:19:00.177194Z", + "iopub.status.idle": "2024-05-03T22:19:00.201123Z", + "shell.execute_reply": "2024-05-03T22:19:00.200568Z" }, "scrolled": true }, @@ -666,10 +666,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:56.504367Z", - "iopub.status.busy": "2024-05-02T13:35:56.503438Z", - "iopub.status.idle": "2024-05-02T13:35:56.514997Z", - "shell.execute_reply": "2024-05-02T13:35:56.514493Z" + "iopub.execute_input": "2024-05-03T22:19:00.204542Z", + "iopub.status.busy": "2024-05-03T22:19:00.203466Z", + "iopub.status.idle": "2024-05-03T22:19:00.215441Z", + "shell.execute_reply": "2024-05-03T22:19:00.214954Z" }, "scrolled": true }, @@ -779,10 +779,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:56.518488Z", - "iopub.status.busy": "2024-05-02T13:35:56.517551Z", - "iopub.status.idle": "2024-05-02T13:35:56.524044Z", - "shell.execute_reply": "2024-05-02T13:35:56.523521Z" + "iopub.execute_input": "2024-05-03T22:19:00.219081Z", + "iopub.status.busy": "2024-05-03T22:19:00.218012Z", + "iopub.status.idle": "2024-05-03T22:19:00.224835Z", + "shell.execute_reply": "2024-05-03T22:19:00.224292Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:56.526263Z", - "iopub.status.busy": "2024-05-02T13:35:56.526088Z", - "iopub.status.idle": "2024-05-02T13:35:56.533124Z", - "shell.execute_reply": "2024-05-02T13:35:56.532490Z" + "iopub.execute_input": "2024-05-03T22:19:00.227048Z", + "iopub.status.busy": "2024-05-03T22:19:00.226749Z", + "iopub.status.idle": "2024-05-03T22:19:00.233483Z", + "shell.execute_reply": "2024-05-03T22:19:00.232989Z" } }, "outputs": [ @@ -940,10 +940,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:56.535246Z", - "iopub.status.busy": "2024-05-02T13:35:56.535071Z", - "iopub.status.idle": "2024-05-02T13:35:56.543216Z", - "shell.execute_reply": "2024-05-02T13:35:56.542787Z" + "iopub.execute_input": "2024-05-03T22:19:00.236235Z", + "iopub.status.busy": "2024-05-03T22:19:00.235388Z", + "iopub.status.idle": "2024-05-03T22:19:00.244560Z", + "shell.execute_reply": "2024-05-03T22:19:00.244065Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:56.545190Z", - "iopub.status.busy": "2024-05-02T13:35:56.544874Z", - "iopub.status.idle": "2024-05-02T13:35:56.550575Z", - "shell.execute_reply": "2024-05-02T13:35:56.550112Z" + "iopub.execute_input": "2024-05-03T22:19:00.246732Z", + "iopub.status.busy": "2024-05-03T22:19:00.246410Z", + "iopub.status.idle": "2024-05-03T22:19:00.252339Z", + "shell.execute_reply": "2024-05-03T22:19:00.251782Z" } }, "outputs": [ @@ -1137,10 +1137,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:56.552555Z", - "iopub.status.busy": "2024-05-02T13:35:56.552231Z", - "iopub.status.idle": "2024-05-02T13:35:56.560232Z", - "shell.execute_reply": "2024-05-02T13:35:56.559799Z" + "iopub.execute_input": "2024-05-03T22:19:00.254313Z", + "iopub.status.busy": "2024-05-03T22:19:00.254016Z", + "iopub.status.idle": "2024-05-03T22:19:00.262432Z", + "shell.execute_reply": "2024-05-03T22:19:00.261993Z" } }, "outputs": [ @@ -1251,10 +1251,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:56.562062Z", - "iopub.status.busy": "2024-05-02T13:35:56.561875Z", - "iopub.status.idle": "2024-05-02T13:35:56.567294Z", - "shell.execute_reply": "2024-05-02T13:35:56.566845Z" + "iopub.execute_input": "2024-05-03T22:19:00.264497Z", + "iopub.status.busy": "2024-05-03T22:19:00.264190Z", + "iopub.status.idle": "2024-05-03T22:19:00.269570Z", + "shell.execute_reply": "2024-05-03T22:19:00.269010Z" } }, "outputs": [ @@ -1322,10 +1322,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:56.569061Z", - "iopub.status.busy": "2024-05-02T13:35:56.568891Z", - "iopub.status.idle": "2024-05-02T13:35:56.574180Z", - "shell.execute_reply": "2024-05-02T13:35:56.573675Z" + "iopub.execute_input": "2024-05-03T22:19:00.271631Z", + "iopub.status.busy": "2024-05-03T22:19:00.271227Z", + "iopub.status.idle": "2024-05-03T22:19:00.276569Z", + "shell.execute_reply": "2024-05-03T22:19:00.276122Z" } }, "outputs": [ @@ -1404,10 +1404,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:56.576075Z", - "iopub.status.busy": "2024-05-02T13:35:56.575901Z", - "iopub.status.idle": "2024-05-02T13:35:56.579311Z", - "shell.execute_reply": "2024-05-02T13:35:56.578839Z" + "iopub.execute_input": "2024-05-03T22:19:00.278681Z", + "iopub.status.busy": "2024-05-03T22:19:00.278267Z", + "iopub.status.idle": "2024-05-03T22:19:00.281840Z", + "shell.execute_reply": "2024-05-03T22:19:00.281378Z" } }, "outputs": [ @@ -1455,10 +1455,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:56.581207Z", - "iopub.status.busy": "2024-05-02T13:35:56.581037Z", - "iopub.status.idle": "2024-05-02T13:35:56.586171Z", - "shell.execute_reply": "2024-05-02T13:35:56.585696Z" + "iopub.execute_input": "2024-05-03T22:19:00.283954Z", + "iopub.status.busy": "2024-05-03T22:19:00.283568Z", + "iopub.status.idle": "2024-05-03T22:19:00.288853Z", + "shell.execute_reply": "2024-05-03T22:19:00.288377Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index e6574de09..55b5c8e27 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:35:59.559173Z", - "iopub.status.busy": "2024-05-02T13:35:59.559002Z", - "iopub.status.idle": "2024-05-02T13:36:00.630827Z", - "shell.execute_reply": "2024-05-02T13:36:00.630210Z" + "iopub.execute_input": "2024-05-03T22:19:03.531541Z", + "iopub.status.busy": "2024-05-03T22:19:03.531342Z", + "iopub.status.idle": "2024-05-03T22:19:04.683579Z", + "shell.execute_reply": "2024-05-03T22:19:04.682951Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:00.633359Z", - "iopub.status.busy": "2024-05-02T13:36:00.633049Z", - "iopub.status.idle": "2024-05-02T13:36:00.635941Z", - "shell.execute_reply": "2024-05-02T13:36:00.635417Z" + "iopub.execute_input": "2024-05-03T22:19:04.686260Z", + "iopub.status.busy": "2024-05-03T22:19:04.685950Z", + "iopub.status.idle": "2024-05-03T22:19:04.688925Z", + "shell.execute_reply": "2024-05-03T22:19:04.688463Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:00.637996Z", - "iopub.status.busy": "2024-05-02T13:36:00.637812Z", - "iopub.status.idle": "2024-05-02T13:36:00.649479Z", - "shell.execute_reply": "2024-05-02T13:36:00.648965Z" + "iopub.execute_input": "2024-05-03T22:19:04.691132Z", + "iopub.status.busy": "2024-05-03T22:19:04.690809Z", + "iopub.status.idle": "2024-05-03T22:19:04.703045Z", + "shell.execute_reply": "2024-05-03T22:19:04.702563Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:00.651655Z", - "iopub.status.busy": "2024-05-02T13:36:00.651353Z", - "iopub.status.idle": "2024-05-02T13:36:05.782571Z", - "shell.execute_reply": "2024-05-02T13:36:05.781956Z" + "iopub.execute_input": "2024-05-03T22:19:04.705298Z", + "iopub.status.busy": "2024-05-03T22:19:04.704971Z", + "iopub.status.idle": "2024-05-03T22:19:08.788660Z", + "shell.execute_reply": "2024-05-03T22:19:08.787999Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index dbf5fb015..ffc531f5e 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -797,13 +797,13 @@

How can I find label issues in big datasets with limited memory?
-
+
-
+
@@ -1748,7 +1748,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index f301725b8..4aa52a47a 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:07.874118Z", - "iopub.status.busy": "2024-05-02T13:36:07.873936Z", - "iopub.status.idle": "2024-05-02T13:36:08.941713Z", - "shell.execute_reply": "2024-05-02T13:36:08.941106Z" + "iopub.execute_input": "2024-05-03T22:19:10.893983Z", + "iopub.status.busy": "2024-05-03T22:19:10.893582Z", + "iopub.status.idle": "2024-05-03T22:19:12.064021Z", + "shell.execute_reply": "2024-05-03T22:19:12.063409Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:08.944769Z", - "iopub.status.busy": "2024-05-02T13:36:08.944303Z", - "iopub.status.idle": "2024-05-02T13:36:08.948166Z", - "shell.execute_reply": "2024-05-02T13:36:08.947647Z" + "iopub.execute_input": "2024-05-03T22:19:12.067106Z", + "iopub.status.busy": "2024-05-03T22:19:12.066459Z", + "iopub.status.idle": "2024-05-03T22:19:12.070230Z", + "shell.execute_reply": "2024-05-03T22:19:12.069765Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:08.950206Z", - "iopub.status.busy": "2024-05-02T13:36:08.950025Z", - "iopub.status.idle": "2024-05-02T13:36:11.819547Z", - "shell.execute_reply": "2024-05-02T13:36:11.818962Z" + "iopub.execute_input": "2024-05-03T22:19:12.072440Z", + "iopub.status.busy": "2024-05-03T22:19:12.072092Z", + "iopub.status.idle": "2024-05-03T22:19:15.260750Z", + "shell.execute_reply": "2024-05-03T22:19:15.260065Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:11.822329Z", - "iopub.status.busy": "2024-05-02T13:36:11.821753Z", - "iopub.status.idle": "2024-05-02T13:36:11.850237Z", - "shell.execute_reply": "2024-05-02T13:36:11.849584Z" + "iopub.execute_input": "2024-05-03T22:19:15.263892Z", + "iopub.status.busy": "2024-05-03T22:19:15.263099Z", + "iopub.status.idle": "2024-05-03T22:19:15.302101Z", + "shell.execute_reply": "2024-05-03T22:19:15.301480Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:11.852881Z", - "iopub.status.busy": "2024-05-02T13:36:11.852508Z", - "iopub.status.idle": "2024-05-02T13:36:11.874844Z", - "shell.execute_reply": "2024-05-02T13:36:11.874250Z" + "iopub.execute_input": "2024-05-03T22:19:15.304888Z", + "iopub.status.busy": "2024-05-03T22:19:15.304531Z", + "iopub.status.idle": "2024-05-03T22:19:15.341360Z", + "shell.execute_reply": "2024-05-03T22:19:15.340592Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:11.877259Z", - "iopub.status.busy": "2024-05-02T13:36:11.876900Z", - "iopub.status.idle": "2024-05-02T13:36:11.879766Z", - "shell.execute_reply": "2024-05-02T13:36:11.879340Z" + "iopub.execute_input": "2024-05-03T22:19:15.344087Z", + "iopub.status.busy": "2024-05-03T22:19:15.343833Z", + "iopub.status.idle": "2024-05-03T22:19:15.347106Z", + "shell.execute_reply": "2024-05-03T22:19:15.346615Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:11.881759Z", - "iopub.status.busy": "2024-05-02T13:36:11.881347Z", - "iopub.status.idle": "2024-05-02T13:36:11.884049Z", - "shell.execute_reply": "2024-05-02T13:36:11.883520Z" + "iopub.execute_input": "2024-05-03T22:19:15.349298Z", + "iopub.status.busy": "2024-05-03T22:19:15.348893Z", + "iopub.status.idle": "2024-05-03T22:19:15.351710Z", + "shell.execute_reply": "2024-05-03T22:19:15.351155Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:11.886130Z", - "iopub.status.busy": "2024-05-02T13:36:11.885737Z", - "iopub.status.idle": "2024-05-02T13:36:11.908622Z", - "shell.execute_reply": "2024-05-02T13:36:11.908088Z" + "iopub.execute_input": "2024-05-03T22:19:15.354043Z", + "iopub.status.busy": "2024-05-03T22:19:15.353734Z", + "iopub.status.idle": "2024-05-03T22:19:15.381052Z", + "shell.execute_reply": "2024-05-03T22:19:15.380464Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c8675f2206254231ac50bfa6c4d67af1", + "model_id": "304fe3999a114c7386eab529b8cc62bb", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b275747ca94c4ec2a097ff438d3c5d0a", + "model_id": "d9da660cfa3e40999076282056565242", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:11.914849Z", - "iopub.status.busy": "2024-05-02T13:36:11.914510Z", - "iopub.status.idle": "2024-05-02T13:36:11.920965Z", - "shell.execute_reply": "2024-05-02T13:36:11.920520Z" + "iopub.execute_input": "2024-05-03T22:19:15.384883Z", + "iopub.status.busy": "2024-05-03T22:19:15.384623Z", + "iopub.status.idle": "2024-05-03T22:19:15.391640Z", + "shell.execute_reply": "2024-05-03T22:19:15.391158Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:11.922990Z", - "iopub.status.busy": "2024-05-02T13:36:11.922683Z", - "iopub.status.idle": "2024-05-02T13:36:11.925910Z", - "shell.execute_reply": "2024-05-02T13:36:11.925489Z" + "iopub.execute_input": "2024-05-03T22:19:15.393858Z", + "iopub.status.busy": "2024-05-03T22:19:15.393512Z", + "iopub.status.idle": "2024-05-03T22:19:15.397055Z", + "shell.execute_reply": "2024-05-03T22:19:15.396580Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:11.927865Z", - "iopub.status.busy": "2024-05-02T13:36:11.927567Z", - "iopub.status.idle": "2024-05-02T13:36:11.933624Z", - "shell.execute_reply": "2024-05-02T13:36:11.933194Z" + "iopub.execute_input": "2024-05-03T22:19:15.399203Z", + "iopub.status.busy": "2024-05-03T22:19:15.398863Z", + "iopub.status.idle": "2024-05-03T22:19:15.405425Z", + "shell.execute_reply": "2024-05-03T22:19:15.404953Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:11.935538Z", - "iopub.status.busy": "2024-05-02T13:36:11.935275Z", - "iopub.status.idle": "2024-05-02T13:36:11.964757Z", - "shell.execute_reply": "2024-05-02T13:36:11.964200Z" + "iopub.execute_input": "2024-05-03T22:19:15.407477Z", + "iopub.status.busy": "2024-05-03T22:19:15.407126Z", + "iopub.status.idle": "2024-05-03T22:19:15.446301Z", + "shell.execute_reply": "2024-05-03T22:19:15.445595Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:11.967259Z", - "iopub.status.busy": "2024-05-02T13:36:11.966896Z", - "iopub.status.idle": "2024-05-02T13:36:12.000283Z", - "shell.execute_reply": "2024-05-02T13:36:11.999719Z" + "iopub.execute_input": "2024-05-03T22:19:15.448991Z", + "iopub.status.busy": "2024-05-03T22:19:15.448778Z", + "iopub.status.idle": "2024-05-03T22:19:15.487571Z", + "shell.execute_reply": "2024-05-03T22:19:15.486867Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:12.003034Z", - "iopub.status.busy": "2024-05-02T13:36:12.002594Z", - "iopub.status.idle": "2024-05-02T13:36:12.120082Z", - "shell.execute_reply": "2024-05-02T13:36:12.119479Z" + "iopub.execute_input": "2024-05-03T22:19:15.490610Z", + "iopub.status.busy": "2024-05-03T22:19:15.490142Z", + "iopub.status.idle": "2024-05-03T22:19:15.619708Z", + "shell.execute_reply": "2024-05-03T22:19:15.619043Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:12.122776Z", - "iopub.status.busy": "2024-05-02T13:36:12.122149Z", - "iopub.status.idle": "2024-05-02T13:36:15.201901Z", - "shell.execute_reply": "2024-05-02T13:36:15.201267Z" + "iopub.execute_input": "2024-05-03T22:19:15.622594Z", + "iopub.status.busy": "2024-05-03T22:19:15.621811Z", + "iopub.status.idle": "2024-05-03T22:19:18.700075Z", + "shell.execute_reply": "2024-05-03T22:19:18.699415Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:15.204393Z", - "iopub.status.busy": "2024-05-02T13:36:15.204032Z", - "iopub.status.idle": "2024-05-02T13:36:15.261373Z", - "shell.execute_reply": "2024-05-02T13:36:15.260878Z" + "iopub.execute_input": "2024-05-03T22:19:18.702925Z", + "iopub.status.busy": "2024-05-03T22:19:18.702435Z", + "iopub.status.idle": "2024-05-03T22:19:18.763276Z", + "shell.execute_reply": "2024-05-03T22:19:18.762641Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:15.263516Z", - "iopub.status.busy": "2024-05-02T13:36:15.263189Z", - "iopub.status.idle": "2024-05-02T13:36:15.300554Z", - "shell.execute_reply": "2024-05-02T13:36:15.300009Z" + "iopub.execute_input": "2024-05-03T22:19:18.765675Z", + "iopub.status.busy": "2024-05-03T22:19:18.765245Z", + "iopub.status.idle": "2024-05-03T22:19:18.806693Z", + "shell.execute_reply": "2024-05-03T22:19:18.806106Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "95f5d735", + "id": "35f77967", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "42e61293", + "id": "d393b093", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1340,13 +1340,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "5992f1fe", + "id": "7abfae8f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:15.302734Z", - "iopub.status.busy": "2024-05-02T13:36:15.302335Z", - "iopub.status.idle": "2024-05-02T13:36:15.411141Z", - "shell.execute_reply": "2024-05-02T13:36:15.410571Z" + "iopub.execute_input": "2024-05-03T22:19:18.808902Z", + "iopub.status.busy": "2024-05-03T22:19:18.808707Z", + "iopub.status.idle": "2024-05-03T22:19:18.913787Z", + "shell.execute_reply": "2024-05-03T22:19:18.913199Z" } }, "outputs": [ @@ -1354,7 +1354,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Finding underperforming_group issues ...\n", + "Finding underperforming_group issues ..." + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", "\n", "Audit complete. 0 issues found in the dataset.\n" ] @@ -1387,7 +1394,7 @@ }, { "cell_type": "markdown", - "id": "e8754b76", + "id": "0278748e", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1396,13 +1403,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "f5f28bd3", + "id": "55f84d7c", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:15.413620Z", - "iopub.status.busy": "2024-05-02T13:36:15.413380Z", - "iopub.status.idle": "2024-05-02T13:36:15.480227Z", - "shell.execute_reply": "2024-05-02T13:36:15.479652Z" + "iopub.execute_input": "2024-05-03T22:19:18.916879Z", + "iopub.status.busy": "2024-05-03T22:19:18.916484Z", + "iopub.status.idle": "2024-05-03T22:19:18.983796Z", + "shell.execute_reply": "2024-05-03T22:19:18.983255Z" } }, "outputs": [ @@ -1410,14 +1417,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Finding underperforming_group issues ..." - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", + "Finding underperforming_group issues ...\n", "\n", "Audit complete. 0 issues found in the dataset.\n" ] @@ -1445,7 +1445,7 @@ }, { "cell_type": "markdown", - "id": "dc916c1f", + "id": "066461e0", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -1456,13 +1456,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "166ac0a2", + "id": "7c609c21", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:15.482569Z", - "iopub.status.busy": "2024-05-02T13:36:15.482397Z", - "iopub.status.idle": "2024-05-02T13:36:15.489778Z", - "shell.execute_reply": "2024-05-02T13:36:15.489353Z" + "iopub.execute_input": "2024-05-03T22:19:18.986901Z", + "iopub.status.busy": "2024-05-03T22:19:18.986353Z", + "iopub.status.idle": "2024-05-03T22:19:18.996382Z", + "shell.execute_reply": "2024-05-03T22:19:18.995879Z" } }, "outputs": [], @@ -1564,7 +1564,7 @@ }, { "cell_type": "markdown", - "id": "22dde99e", + "id": "74aefacf", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1579,13 +1579,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "8ade84f7", + "id": "d5170d86", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:15.491920Z", - "iopub.status.busy": "2024-05-02T13:36:15.491577Z", - "iopub.status.idle": "2024-05-02T13:36:15.510549Z", - "shell.execute_reply": "2024-05-02T13:36:15.509911Z" + "iopub.execute_input": "2024-05-03T22:19:18.998762Z", + "iopub.status.busy": "2024-05-03T22:19:18.998394Z", + "iopub.status.idle": "2024-05-03T22:19:19.018760Z", + "shell.execute_reply": "2024-05-03T22:19:19.018136Z" } }, "outputs": [ @@ -1602,7 +1602,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_7630/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_7821/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1636,13 +1636,13 @@ { "cell_type": "code", "execution_count": 22, - "id": "6c72ae6d", + "id": "4b5f30cf", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:15.512465Z", - "iopub.status.busy": "2024-05-02T13:36:15.512294Z", - "iopub.status.idle": "2024-05-02T13:36:15.515444Z", - "shell.execute_reply": "2024-05-02T13:36:15.514922Z" + "iopub.execute_input": "2024-05-03T22:19:19.021063Z", + "iopub.status.busy": "2024-05-03T22:19:19.020625Z", + "iopub.status.idle": "2024-05-03T22:19:19.024304Z", + "shell.execute_reply": "2024-05-03T22:19:19.023730Z" } }, "outputs": [ @@ -1737,7 +1737,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "022b5650239c4616a88276c18d5076c5": { + "19ba9c8dc125441a8896e09be3231373": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1790,7 +1790,7 @@ "width": null } }, - "1104b6437094443d943f266305d107aa": { + "1a7c02b326ce44f7aa1aaacc5b9a51a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1806,97 +1806,7 @@ "description_width": "" } }, - "1726cfb4dd714c4fba258c9765f458df": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7c8a6f533c8d478c95433a37e8e9a11e", - "placeholder": "​", - "style": "IPY_MODEL_e48212f831a044fe94e61098002d5624", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "1ef2dadebfda4544b3dfc7f42ac15bf2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_473ae8d4fd264d889248df36f249d6ff", - "placeholder": "​", - "style": "IPY_MODEL_830a6f28f12c42a8b5de118f5e447584", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1143267.10it/s]" - } - }, - "2a8cc180041744009c87875af520b671": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2f8085103a7d4cc0984be2f93490aca1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f6be39fdc7d748fa82eee88f4f1b3520", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f930f23a98164878920e72467e19999d", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "473ae8d4fd264d889248df36f249d6ff": { + "23e28705e4a24dd7a653777cf64bd968": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1949,30 +1859,7 @@ "width": null } }, - "6721271e5d4644268961dc53f964baf2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_71f2bd8e6c2241938e51c25e8ac1b093", - "placeholder": "​", - "style": "IPY_MODEL_2a8cc180041744009c87875af520b671", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "71f2bd8e6c2241938e51c25e8ac1b093": { + "29c02ab7818d40dea0015e4770d8c8be": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2025,7 +1912,7 @@ "width": null } }, - "7c8a6f533c8d478c95433a37e8e9a11e": { + "2d7a1d8dc8e14952ac32a8311123b1ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2078,48 +1965,47 @@ "width": null } }, - "7e1755d673fe4404984ee50480fc57f4": { + "304fe3999a114c7386eab529b8cc62bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f1a0c31a82d7458597bd02482be61d44", - "placeholder": "​", - "style": "IPY_MODEL_eedfbb5fa5b64fba8bd72b0b13398556", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a1f7fffbd05841a4bf9805edeee48e21", + "IPY_MODEL_85858d6f20024272853d6a7b62fb085b", + "IPY_MODEL_a13ec62cae8d463c8008c2a18884b1b8" + ], + "layout": "IPY_MODEL_546b9051a0554711b7eb0901d484bb62", "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1598926.50it/s]" + "tooltip": null } }, - "830a6f28f12c42a8b5de118f5e447584": { + "3a3f7032a7aa42d08ae9f60e1159d232": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "b0f8a55b2566498aa2bfc6ad36a51840": { + "3e3dbe6f7bc14a35a9a83044a3e669bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2172,99 +2058,7 @@ "width": null } }, - "b275747ca94c4ec2a097ff438d3c5d0a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6721271e5d4644268961dc53f964baf2", - "IPY_MODEL_2f8085103a7d4cc0984be2f93490aca1", - "IPY_MODEL_7e1755d673fe4404984ee50480fc57f4" - ], - "layout": "IPY_MODEL_b0f8a55b2566498aa2bfc6ad36a51840", - "tabbable": null, - "tooltip": null - } - }, - "c8675f2206254231ac50bfa6c4d67af1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1726cfb4dd714c4fba258c9765f458df", - "IPY_MODEL_d8711b2719a04a0f9cfa989186902799", - "IPY_MODEL_1ef2dadebfda4544b3dfc7f42ac15bf2" - ], - "layout": "IPY_MODEL_022b5650239c4616a88276c18d5076c5", - "tabbable": null, - "tooltip": null - } - }, - "d8711b2719a04a0f9cfa989186902799": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ea2e0720826a4345bd2716e4e639c2eb", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1104b6437094443d943f266305d107aa", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "e48212f831a044fe94e61098002d5624": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ea2e0720826a4345bd2716e4e639c2eb": { + "4829fb16f57e427bb657cd79d0e2751b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2317,25 +2111,7 @@ "width": null } }, - "eedfbb5fa5b64fba8bd72b0b13398556": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f1a0c31a82d7458597bd02482be61d44": { + "546b9051a0554711b7eb0901d484bb62": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2388,7 +2164,110 @@ "width": null } }, - "f6be39fdc7d748fa82eee88f4f1b3520": { + "5fd48f3167684aba90f858a3563deac1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4829fb16f57e427bb657cd79d0e2751b", + "placeholder": "​", + "style": "IPY_MODEL_7756ecf500664e239012c90f380f3611", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1044138.41it/s]" + } + }, + "7756ecf500664e239012c90f380f3611": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7b227e97368a408bbce4f5fc53879944": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "82950c282c8b4f7c924f3471fa7f4fd0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "85858d6f20024272853d6a7b62fb085b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_19ba9c8dc125441a8896e09be3231373", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1a7c02b326ce44f7aa1aaacc5b9a51a7", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "9ea68fabcb704630ab862ae45a029ca1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2441,20 +2320,141 @@ "width": null } }, - "f930f23a98164878920e72467e19999d": { + "a13ec62cae8d463c8008c2a18884b1b8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2d7a1d8dc8e14952ac32a8311123b1ec", + "placeholder": "​", + "style": "IPY_MODEL_a5e13b4ad277482e85132368ddc77c50", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1102255.86it/s]" + } + }, + "a1f7fffbd05841a4bf9805edeee48e21": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_23e28705e4a24dd7a653777cf64bd968", + "placeholder": "​", + "style": "IPY_MODEL_7b227e97368a408bbce4f5fc53879944", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "a32b511588bc419bb9819eb79ce3c94b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_29c02ab7818d40dea0015e4770d8c8be", + "placeholder": "​", + "style": "IPY_MODEL_82950c282c8b4f7c924f3471fa7f4fd0", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "a5e13b4ad277482e85132368ddc77c50": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c8687b307fd448c89db2b274b86072de": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3e3dbe6f7bc14a35a9a83044a3e669bf", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3a3f7032a7aa42d08ae9f60e1159d232", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "d9da660cfa3e40999076282056565242": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a32b511588bc419bb9819eb79ce3c94b", + "IPY_MODEL_c8687b307fd448c89db2b274b86072de", + "IPY_MODEL_5fd48f3167684aba90f858a3563deac1" + ], + "layout": "IPY_MODEL_9ea68fabcb704630ab862ae45a029ca1", + "tabbable": null, + "tooltip": null } } }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 8898f4329..5a5d0102a 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:18.700799Z", - "iopub.status.busy": "2024-05-02T13:36:18.700630Z", - "iopub.status.idle": "2024-05-02T13:36:19.828373Z", - "shell.execute_reply": "2024-05-02T13:36:19.827832Z" + "iopub.execute_input": "2024-05-03T22:19:23.368183Z", + "iopub.status.busy": "2024-05-03T22:19:23.367680Z", + "iopub.status.idle": "2024-05-03T22:19:24.606690Z", + "shell.execute_reply": "2024-05-03T22:19:24.606125Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:19.830709Z", - "iopub.status.busy": "2024-05-02T13:36:19.830440Z", - "iopub.status.idle": "2024-05-02T13:36:20.007015Z", - "shell.execute_reply": "2024-05-02T13:36:20.006472Z" + "iopub.execute_input": "2024-05-03T22:19:24.609540Z", + "iopub.status.busy": "2024-05-03T22:19:24.608977Z", + "iopub.status.idle": "2024-05-03T22:19:24.794847Z", + "shell.execute_reply": "2024-05-03T22:19:24.794231Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:20.009475Z", - "iopub.status.busy": "2024-05-02T13:36:20.009281Z", - "iopub.status.idle": "2024-05-02T13:36:20.021539Z", - "shell.execute_reply": "2024-05-02T13:36:20.020986Z" + "iopub.execute_input": "2024-05-03T22:19:24.797519Z", + "iopub.status.busy": "2024-05-03T22:19:24.797321Z", + "iopub.status.idle": "2024-05-03T22:19:24.811209Z", + "shell.execute_reply": "2024-05-03T22:19:24.810711Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:20.023874Z", - "iopub.status.busy": "2024-05-02T13:36:20.023467Z", - "iopub.status.idle": "2024-05-02T13:36:20.256262Z", - "shell.execute_reply": "2024-05-02T13:36:20.255682Z" + "iopub.execute_input": "2024-05-03T22:19:24.813257Z", + "iopub.status.busy": "2024-05-03T22:19:24.813062Z", + "iopub.status.idle": "2024-05-03T22:19:25.027133Z", + "shell.execute_reply": "2024-05-03T22:19:25.026435Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:20.258611Z", - "iopub.status.busy": "2024-05-02T13:36:20.258255Z", - "iopub.status.idle": "2024-05-02T13:36:20.284132Z", - "shell.execute_reply": "2024-05-02T13:36:20.283699Z" + "iopub.execute_input": "2024-05-03T22:19:25.030035Z", + "iopub.status.busy": "2024-05-03T22:19:25.029596Z", + "iopub.status.idle": "2024-05-03T22:19:25.057694Z", + "shell.execute_reply": "2024-05-03T22:19:25.057185Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:20.286143Z", - "iopub.status.busy": "2024-05-02T13:36:20.285799Z", - "iopub.status.idle": "2024-05-02T13:36:21.901046Z", - "shell.execute_reply": "2024-05-02T13:36:21.900412Z" + "iopub.execute_input": "2024-05-03T22:19:25.060175Z", + "iopub.status.busy": "2024-05-03T22:19:25.059939Z", + "iopub.status.idle": "2024-05-03T22:19:26.863299Z", + "shell.execute_reply": "2024-05-03T22:19:26.862604Z" } }, "outputs": [ @@ -483,10 +483,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:21.903420Z", - "iopub.status.busy": "2024-05-02T13:36:21.903029Z", - "iopub.status.idle": "2024-05-02T13:36:21.921042Z", - "shell.execute_reply": "2024-05-02T13:36:21.920562Z" + "iopub.execute_input": "2024-05-03T22:19:26.866152Z", + "iopub.status.busy": "2024-05-03T22:19:26.865573Z", + "iopub.status.idle": "2024-05-03T22:19:26.885297Z", + "shell.execute_reply": "2024-05-03T22:19:26.884768Z" }, "scrolled": true }, @@ -611,10 +611,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:21.923128Z", - "iopub.status.busy": "2024-05-02T13:36:21.922807Z", - "iopub.status.idle": "2024-05-02T13:36:23.304206Z", - "shell.execute_reply": "2024-05-02T13:36:23.303576Z" + "iopub.execute_input": "2024-05-03T22:19:26.887574Z", + "iopub.status.busy": "2024-05-03T22:19:26.887208Z", + "iopub.status.idle": "2024-05-03T22:19:28.369219Z", + "shell.execute_reply": "2024-05-03T22:19:28.368537Z" }, "id": "AaHC5MRKjruT" }, @@ -733,10 +733,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:23.306871Z", - "iopub.status.busy": "2024-05-02T13:36:23.306240Z", - "iopub.status.idle": "2024-05-02T13:36:23.320385Z", - "shell.execute_reply": "2024-05-02T13:36:23.319799Z" + "iopub.execute_input": "2024-05-03T22:19:28.371936Z", + "iopub.status.busy": "2024-05-03T22:19:28.371282Z", + "iopub.status.idle": "2024-05-03T22:19:28.385746Z", + "shell.execute_reply": "2024-05-03T22:19:28.385216Z" }, "id": "Wy27rvyhjruU" }, @@ -785,10 +785,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:23.322704Z", - "iopub.status.busy": "2024-05-02T13:36:23.322233Z", - "iopub.status.idle": "2024-05-02T13:36:23.399782Z", - "shell.execute_reply": "2024-05-02T13:36:23.399168Z" + "iopub.execute_input": "2024-05-03T22:19:28.387918Z", + "iopub.status.busy": "2024-05-03T22:19:28.387729Z", + "iopub.status.idle": "2024-05-03T22:19:28.466268Z", + "shell.execute_reply": "2024-05-03T22:19:28.465661Z" }, "id": "Db8YHnyVjruU" }, @@ -895,10 +895,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:23.401938Z", - "iopub.status.busy": "2024-05-02T13:36:23.401715Z", - "iopub.status.idle": "2024-05-02T13:36:23.613354Z", - "shell.execute_reply": "2024-05-02T13:36:23.612789Z" + "iopub.execute_input": "2024-05-03T22:19:28.468609Z", + "iopub.status.busy": "2024-05-03T22:19:28.468297Z", + "iopub.status.idle": "2024-05-03T22:19:28.685899Z", + "shell.execute_reply": "2024-05-03T22:19:28.685330Z" }, "id": "iJqAHuS2jruV" }, @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:23.615594Z", - "iopub.status.busy": "2024-05-02T13:36:23.615241Z", - "iopub.status.idle": "2024-05-02T13:36:23.632047Z", - "shell.execute_reply": "2024-05-02T13:36:23.631621Z" + "iopub.execute_input": "2024-05-03T22:19:28.688012Z", + "iopub.status.busy": "2024-05-03T22:19:28.687826Z", + "iopub.status.idle": "2024-05-03T22:19:28.705194Z", + "shell.execute_reply": "2024-05-03T22:19:28.704639Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1404,10 +1404,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:23.634225Z", - "iopub.status.busy": "2024-05-02T13:36:23.633812Z", - "iopub.status.idle": "2024-05-02T13:36:23.643243Z", - "shell.execute_reply": "2024-05-02T13:36:23.642818Z" + "iopub.execute_input": "2024-05-03T22:19:28.707321Z", + "iopub.status.busy": "2024-05-03T22:19:28.707139Z", + "iopub.status.idle": "2024-05-03T22:19:28.717632Z", + "shell.execute_reply": "2024-05-03T22:19:28.717176Z" }, "id": "0lonvOYvjruV" }, @@ -1554,10 +1554,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:23.645223Z", - "iopub.status.busy": "2024-05-02T13:36:23.644896Z", - "iopub.status.idle": "2024-05-02T13:36:23.730756Z", - "shell.execute_reply": "2024-05-02T13:36:23.730145Z" + "iopub.execute_input": "2024-05-03T22:19:28.719766Z", + "iopub.status.busy": "2024-05-03T22:19:28.719421Z", + "iopub.status.idle": "2024-05-03T22:19:28.807828Z", + "shell.execute_reply": "2024-05-03T22:19:28.807250Z" }, "id": "MfqTCa3kjruV" }, @@ -1638,10 +1638,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:23.733278Z", - "iopub.status.busy": "2024-05-02T13:36:23.732849Z", - "iopub.status.idle": "2024-05-02T13:36:23.851838Z", - "shell.execute_reply": "2024-05-02T13:36:23.851296Z" + "iopub.execute_input": "2024-05-03T22:19:28.810286Z", + "iopub.status.busy": "2024-05-03T22:19:28.809967Z", + "iopub.status.idle": "2024-05-03T22:19:28.944035Z", + "shell.execute_reply": "2024-05-03T22:19:28.943379Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1701,10 +1701,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:23.854028Z", - "iopub.status.busy": "2024-05-02T13:36:23.853781Z", - "iopub.status.idle": "2024-05-02T13:36:23.857894Z", - "shell.execute_reply": "2024-05-02T13:36:23.857434Z" + "iopub.execute_input": "2024-05-03T22:19:28.946444Z", + "iopub.status.busy": "2024-05-03T22:19:28.946230Z", + "iopub.status.idle": "2024-05-03T22:19:28.950639Z", + "shell.execute_reply": "2024-05-03T22:19:28.950052Z" }, "id": "0rXP3ZPWjruW" }, @@ -1742,10 +1742,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:23.859781Z", - "iopub.status.busy": "2024-05-02T13:36:23.859612Z", - "iopub.status.idle": "2024-05-02T13:36:23.863892Z", - "shell.execute_reply": "2024-05-02T13:36:23.863430Z" + "iopub.execute_input": "2024-05-03T22:19:28.953043Z", + "iopub.status.busy": "2024-05-03T22:19:28.952690Z", + "iopub.status.idle": "2024-05-03T22:19:28.957019Z", + "shell.execute_reply": "2024-05-03T22:19:28.956502Z" }, "id": "-iRPe8KXjruW" }, @@ -1800,10 +1800,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:23.865717Z", - "iopub.status.busy": "2024-05-02T13:36:23.865547Z", - "iopub.status.idle": "2024-05-02T13:36:23.903395Z", - "shell.execute_reply": "2024-05-02T13:36:23.902843Z" + "iopub.execute_input": "2024-05-03T22:19:28.959348Z", + "iopub.status.busy": "2024-05-03T22:19:28.958987Z", + "iopub.status.idle": "2024-05-03T22:19:28.998889Z", + "shell.execute_reply": "2024-05-03T22:19:28.998382Z" }, "id": "ZpipUliyjruW" }, @@ -1854,10 +1854,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:23.905478Z", - "iopub.status.busy": "2024-05-02T13:36:23.905143Z", - "iopub.status.idle": "2024-05-02T13:36:23.947849Z", - "shell.execute_reply": "2024-05-02T13:36:23.947281Z" + "iopub.execute_input": "2024-05-03T22:19:29.001159Z", + "iopub.status.busy": "2024-05-03T22:19:29.000797Z", + "iopub.status.idle": "2024-05-03T22:19:29.046238Z", + "shell.execute_reply": "2024-05-03T22:19:29.045646Z" }, "id": "SLq-3q4xjruX" }, @@ -1926,10 +1926,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:23.949870Z", - "iopub.status.busy": "2024-05-02T13:36:23.949694Z", - "iopub.status.idle": "2024-05-02T13:36:24.041914Z", - "shell.execute_reply": "2024-05-02T13:36:24.041234Z" + "iopub.execute_input": "2024-05-03T22:19:29.048601Z", + "iopub.status.busy": "2024-05-03T22:19:29.048233Z", + "iopub.status.idle": "2024-05-03T22:19:29.177741Z", + "shell.execute_reply": "2024-05-03T22:19:29.177039Z" }, "id": "g5LHhhuqFbXK" }, @@ -1961,10 +1961,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:24.044396Z", - "iopub.status.busy": "2024-05-02T13:36:24.044212Z", - "iopub.status.idle": "2024-05-02T13:36:24.131406Z", - "shell.execute_reply": "2024-05-02T13:36:24.130779Z" + "iopub.execute_input": "2024-05-03T22:19:29.180557Z", + "iopub.status.busy": "2024-05-03T22:19:29.180130Z", + "iopub.status.idle": "2024-05-03T22:19:29.276547Z", + "shell.execute_reply": "2024-05-03T22:19:29.275894Z" }, "id": "p7w8F8ezBcet" }, @@ -2021,10 +2021,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:24.133971Z", - "iopub.status.busy": "2024-05-02T13:36:24.133729Z", - "iopub.status.idle": "2024-05-02T13:36:24.344137Z", - "shell.execute_reply": "2024-05-02T13:36:24.343671Z" + "iopub.execute_input": "2024-05-03T22:19:29.279105Z", + "iopub.status.busy": "2024-05-03T22:19:29.278640Z", + "iopub.status.idle": "2024-05-03T22:19:29.491295Z", + "shell.execute_reply": "2024-05-03T22:19:29.490718Z" }, "id": "WETRL74tE_sU" }, @@ -2059,10 +2059,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:24.346181Z", - "iopub.status.busy": "2024-05-02T13:36:24.345982Z", - "iopub.status.idle": "2024-05-02T13:36:24.504052Z", - "shell.execute_reply": "2024-05-02T13:36:24.503461Z" + "iopub.execute_input": "2024-05-03T22:19:29.493583Z", + "iopub.status.busy": "2024-05-03T22:19:29.493249Z", + "iopub.status.idle": "2024-05-03T22:19:29.694090Z", + "shell.execute_reply": "2024-05-03T22:19:29.693575Z" }, "id": "kCfdx2gOLmXS" }, @@ -2224,10 +2224,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:24.506248Z", - "iopub.status.busy": "2024-05-02T13:36:24.506027Z", - "iopub.status.idle": "2024-05-02T13:36:24.512493Z", - "shell.execute_reply": "2024-05-02T13:36:24.512084Z" + "iopub.execute_input": "2024-05-03T22:19:29.696465Z", + "iopub.status.busy": "2024-05-03T22:19:29.696095Z", + "iopub.status.idle": "2024-05-03T22:19:29.702623Z", + "shell.execute_reply": "2024-05-03T22:19:29.702164Z" }, "id": "-uogYRWFYnuu" }, @@ -2281,10 +2281,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:24.514380Z", - "iopub.status.busy": "2024-05-02T13:36:24.514206Z", - "iopub.status.idle": "2024-05-02T13:36:24.724430Z", - "shell.execute_reply": "2024-05-02T13:36:24.723873Z" + "iopub.execute_input": "2024-05-03T22:19:29.704623Z", + "iopub.status.busy": "2024-05-03T22:19:29.704442Z", + "iopub.status.idle": "2024-05-03T22:19:29.925663Z", + "shell.execute_reply": "2024-05-03T22:19:29.925083Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2331,10 +2331,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:24.726409Z", - "iopub.status.busy": "2024-05-02T13:36:24.726237Z", - "iopub.status.idle": "2024-05-02T13:36:25.766200Z", - "shell.execute_reply": "2024-05-02T13:36:25.765597Z" + "iopub.execute_input": "2024-05-03T22:19:29.928101Z", + "iopub.status.busy": "2024-05-03T22:19:29.927654Z", + "iopub.status.idle": "2024-05-03T22:19:30.994814Z", + "shell.execute_reply": "2024-05-03T22:19:30.994167Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index 42caa0563..c2b6abb31 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:29.082951Z", - "iopub.status.busy": "2024-05-02T13:36:29.082791Z", - "iopub.status.idle": "2024-05-02T13:36:30.155007Z", - "shell.execute_reply": "2024-05-02T13:36:30.154400Z" + "iopub.execute_input": "2024-05-03T22:19:34.702387Z", + "iopub.status.busy": "2024-05-03T22:19:34.702212Z", + "iopub.status.idle": "2024-05-03T22:19:35.881530Z", + "shell.execute_reply": "2024-05-03T22:19:35.880968Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:30.157586Z", - "iopub.status.busy": "2024-05-02T13:36:30.157321Z", - "iopub.status.idle": "2024-05-02T13:36:30.160318Z", - "shell.execute_reply": "2024-05-02T13:36:30.159888Z" + "iopub.execute_input": "2024-05-03T22:19:35.884020Z", + "iopub.status.busy": "2024-05-03T22:19:35.883707Z", + "iopub.status.idle": "2024-05-03T22:19:35.886885Z", + "shell.execute_reply": "2024-05-03T22:19:35.886419Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:30.162381Z", - "iopub.status.busy": "2024-05-02T13:36:30.162209Z", - "iopub.status.idle": "2024-05-02T13:36:30.169630Z", - "shell.execute_reply": "2024-05-02T13:36:30.169193Z" + "iopub.execute_input": "2024-05-03T22:19:35.889106Z", + "iopub.status.busy": "2024-05-03T22:19:35.888779Z", + "iopub.status.idle": "2024-05-03T22:19:35.896526Z", + "shell.execute_reply": "2024-05-03T22:19:35.896060Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:30.171688Z", - "iopub.status.busy": "2024-05-02T13:36:30.171246Z", - "iopub.status.idle": "2024-05-02T13:36:30.222459Z", - "shell.execute_reply": "2024-05-02T13:36:30.221895Z" + "iopub.execute_input": "2024-05-03T22:19:35.898451Z", + "iopub.status.busy": "2024-05-03T22:19:35.898188Z", + "iopub.status.idle": "2024-05-03T22:19:35.946045Z", + "shell.execute_reply": "2024-05-03T22:19:35.945413Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:30.224658Z", - "iopub.status.busy": "2024-05-02T13:36:30.224391Z", - "iopub.status.idle": "2024-05-02T13:36:30.240758Z", - "shell.execute_reply": "2024-05-02T13:36:30.240331Z" + "iopub.execute_input": "2024-05-03T22:19:35.949007Z", + "iopub.status.busy": "2024-05-03T22:19:35.948534Z", + "iopub.status.idle": "2024-05-03T22:19:35.966043Z", + "shell.execute_reply": "2024-05-03T22:19:35.965461Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:30.242817Z", - "iopub.status.busy": "2024-05-02T13:36:30.242504Z", - "iopub.status.idle": "2024-05-02T13:36:30.246151Z", - "shell.execute_reply": "2024-05-02T13:36:30.245645Z" + "iopub.execute_input": "2024-05-03T22:19:35.968449Z", + "iopub.status.busy": "2024-05-03T22:19:35.968084Z", + "iopub.status.idle": "2024-05-03T22:19:35.972464Z", + "shell.execute_reply": "2024-05-03T22:19:35.971968Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:30.248171Z", - "iopub.status.busy": "2024-05-02T13:36:30.247919Z", - "iopub.status.idle": "2024-05-02T13:36:30.275796Z", - "shell.execute_reply": "2024-05-02T13:36:30.275382Z" + "iopub.execute_input": "2024-05-03T22:19:35.974705Z", + "iopub.status.busy": "2024-05-03T22:19:35.974318Z", + "iopub.status.idle": "2024-05-03T22:19:36.002803Z", + "shell.execute_reply": "2024-05-03T22:19:36.002286Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:30.277880Z", - "iopub.status.busy": "2024-05-02T13:36:30.277566Z", - "iopub.status.idle": "2024-05-02T13:36:30.303710Z", - "shell.execute_reply": "2024-05-02T13:36:30.303297Z" + "iopub.execute_input": "2024-05-03T22:19:36.005429Z", + "iopub.status.busy": "2024-05-03T22:19:36.005053Z", + "iopub.status.idle": "2024-05-03T22:19:36.032937Z", + "shell.execute_reply": "2024-05-03T22:19:36.032401Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:30.305712Z", - "iopub.status.busy": "2024-05-02T13:36:30.305461Z", - "iopub.status.idle": "2024-05-02T13:36:31.964467Z", - "shell.execute_reply": "2024-05-02T13:36:31.963916Z" + "iopub.execute_input": "2024-05-03T22:19:36.035492Z", + "iopub.status.busy": "2024-05-03T22:19:36.035101Z", + "iopub.status.idle": "2024-05-03T22:19:37.888002Z", + "shell.execute_reply": "2024-05-03T22:19:37.887422Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:31.967014Z", - "iopub.status.busy": "2024-05-02T13:36:31.966572Z", - "iopub.status.idle": "2024-05-02T13:36:31.973204Z", - "shell.execute_reply": "2024-05-02T13:36:31.972653Z" + "iopub.execute_input": "2024-05-03T22:19:37.890783Z", + "iopub.status.busy": "2024-05-03T22:19:37.890273Z", + "iopub.status.idle": "2024-05-03T22:19:37.897153Z", + "shell.execute_reply": "2024-05-03T22:19:37.896653Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:31.975482Z", - "iopub.status.busy": "2024-05-02T13:36:31.974960Z", - "iopub.status.idle": "2024-05-02T13:36:31.987465Z", - "shell.execute_reply": "2024-05-02T13:36:31.987039Z" + "iopub.execute_input": "2024-05-03T22:19:37.899314Z", + "iopub.status.busy": "2024-05-03T22:19:37.898979Z", + "iopub.status.idle": "2024-05-03T22:19:37.911963Z", + "shell.execute_reply": "2024-05-03T22:19:37.911488Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:31.989359Z", - "iopub.status.busy": "2024-05-02T13:36:31.989057Z", - "iopub.status.idle": "2024-05-02T13:36:31.995381Z", - "shell.execute_reply": "2024-05-02T13:36:31.994934Z" + "iopub.execute_input": "2024-05-03T22:19:37.914201Z", + "iopub.status.busy": "2024-05-03T22:19:37.913862Z", + "iopub.status.idle": "2024-05-03T22:19:37.920421Z", + "shell.execute_reply": "2024-05-03T22:19:37.919890Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:31.997421Z", - "iopub.status.busy": "2024-05-02T13:36:31.997098Z", - "iopub.status.idle": "2024-05-02T13:36:31.999758Z", - "shell.execute_reply": "2024-05-02T13:36:31.999316Z" + "iopub.execute_input": "2024-05-03T22:19:37.922672Z", + "iopub.status.busy": "2024-05-03T22:19:37.922327Z", + "iopub.status.idle": "2024-05-03T22:19:37.925015Z", + "shell.execute_reply": "2024-05-03T22:19:37.924564Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:32.001730Z", - "iopub.status.busy": "2024-05-02T13:36:32.001419Z", - "iopub.status.idle": "2024-05-02T13:36:32.004755Z", - "shell.execute_reply": "2024-05-02T13:36:32.004254Z" + "iopub.execute_input": "2024-05-03T22:19:37.927118Z", + "iopub.status.busy": "2024-05-03T22:19:37.926800Z", + "iopub.status.idle": "2024-05-03T22:19:37.930332Z", + "shell.execute_reply": "2024-05-03T22:19:37.929815Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:32.006858Z", - "iopub.status.busy": "2024-05-02T13:36:32.006546Z", - "iopub.status.idle": "2024-05-02T13:36:32.009014Z", - "shell.execute_reply": "2024-05-02T13:36:32.008591Z" + "iopub.execute_input": "2024-05-03T22:19:37.932451Z", + "iopub.status.busy": "2024-05-03T22:19:37.932131Z", + "iopub.status.idle": "2024-05-03T22:19:37.934862Z", + "shell.execute_reply": "2024-05-03T22:19:37.934400Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:32.010947Z", - "iopub.status.busy": "2024-05-02T13:36:32.010640Z", - "iopub.status.idle": "2024-05-02T13:36:32.014748Z", - "shell.execute_reply": "2024-05-02T13:36:32.014209Z" + "iopub.execute_input": "2024-05-03T22:19:37.936907Z", + "iopub.status.busy": "2024-05-03T22:19:37.936585Z", + "iopub.status.idle": "2024-05-03T22:19:37.940874Z", + "shell.execute_reply": "2024-05-03T22:19:37.940413Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:32.016779Z", - "iopub.status.busy": "2024-05-02T13:36:32.016461Z", - "iopub.status.idle": "2024-05-02T13:36:32.044499Z", - "shell.execute_reply": "2024-05-02T13:36:32.044083Z" + "iopub.execute_input": "2024-05-03T22:19:37.942998Z", + "iopub.status.busy": "2024-05-03T22:19:37.942696Z", + "iopub.status.idle": "2024-05-03T22:19:37.972803Z", + "shell.execute_reply": "2024-05-03T22:19:37.972148Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:32.046470Z", - "iopub.status.busy": "2024-05-02T13:36:32.046149Z", - "iopub.status.idle": "2024-05-02T13:36:32.050403Z", - "shell.execute_reply": "2024-05-02T13:36:32.049965Z" + "iopub.execute_input": "2024-05-03T22:19:37.975429Z", + "iopub.status.busy": "2024-05-03T22:19:37.975034Z", + "iopub.status.idle": "2024-05-03T22:19:37.979976Z", + "shell.execute_reply": "2024-05-03T22:19:37.979532Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 68699cd66..443caf0c0 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:34.743170Z", - "iopub.status.busy": "2024-05-02T13:36:34.742710Z", - "iopub.status.idle": "2024-05-02T13:36:35.858397Z", - "shell.execute_reply": "2024-05-02T13:36:35.857798Z" + "iopub.execute_input": "2024-05-03T22:19:40.777858Z", + "iopub.status.busy": "2024-05-03T22:19:40.777685Z", + "iopub.status.idle": "2024-05-03T22:19:41.969311Z", + "shell.execute_reply": "2024-05-03T22:19:41.968706Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:35.860964Z", - "iopub.status.busy": "2024-05-02T13:36:35.860730Z", - "iopub.status.idle": "2024-05-02T13:36:36.048660Z", - "shell.execute_reply": "2024-05-02T13:36:36.048212Z" + "iopub.execute_input": "2024-05-03T22:19:41.972099Z", + "iopub.status.busy": "2024-05-03T22:19:41.971631Z", + "iopub.status.idle": "2024-05-03T22:19:42.177815Z", + "shell.execute_reply": "2024-05-03T22:19:42.177228Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:36.051095Z", - "iopub.status.busy": "2024-05-02T13:36:36.050717Z", - "iopub.status.idle": "2024-05-02T13:36:36.063514Z", - "shell.execute_reply": "2024-05-02T13:36:36.062962Z" + "iopub.execute_input": "2024-05-03T22:19:42.180792Z", + "iopub.status.busy": "2024-05-03T22:19:42.180236Z", + "iopub.status.idle": "2024-05-03T22:19:42.193344Z", + "shell.execute_reply": "2024-05-03T22:19:42.192775Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:36.065445Z", - "iopub.status.busy": "2024-05-02T13:36:36.065139Z", - "iopub.status.idle": "2024-05-02T13:36:38.651951Z", - "shell.execute_reply": "2024-05-02T13:36:38.651304Z" + "iopub.execute_input": "2024-05-03T22:19:42.195563Z", + "iopub.status.busy": "2024-05-03T22:19:42.195284Z", + "iopub.status.idle": "2024-05-03T22:19:44.910593Z", + "shell.execute_reply": "2024-05-03T22:19:44.909959Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:38.654079Z", - "iopub.status.busy": "2024-05-02T13:36:38.653891Z", - "iopub.status.idle": "2024-05-02T13:36:39.973292Z", - "shell.execute_reply": "2024-05-02T13:36:39.972745Z" + "iopub.execute_input": "2024-05-03T22:19:44.913028Z", + "iopub.status.busy": "2024-05-03T22:19:44.912632Z", + "iopub.status.idle": "2024-05-03T22:19:46.271016Z", + "shell.execute_reply": "2024-05-03T22:19:46.270412Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:39.975705Z", - "iopub.status.busy": "2024-05-02T13:36:39.975198Z", - "iopub.status.idle": "2024-05-02T13:36:39.979273Z", - "shell.execute_reply": "2024-05-02T13:36:39.978818Z" + "iopub.execute_input": "2024-05-03T22:19:46.273709Z", + "iopub.status.busy": "2024-05-03T22:19:46.273339Z", + "iopub.status.idle": "2024-05-03T22:19:46.277188Z", + "shell.execute_reply": "2024-05-03T22:19:46.276615Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:39.981261Z", - "iopub.status.busy": "2024-05-02T13:36:39.980961Z", - "iopub.status.idle": "2024-05-02T13:36:41.664453Z", - "shell.execute_reply": "2024-05-02T13:36:41.663902Z" + "iopub.execute_input": "2024-05-03T22:19:46.279331Z", + "iopub.status.busy": "2024-05-03T22:19:46.278922Z", + "iopub.status.idle": "2024-05-03T22:19:48.183448Z", + "shell.execute_reply": "2024-05-03T22:19:48.182756Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:41.667004Z", - "iopub.status.busy": "2024-05-02T13:36:41.666583Z", - "iopub.status.idle": "2024-05-02T13:36:41.674063Z", - "shell.execute_reply": "2024-05-02T13:36:41.673550Z" + "iopub.execute_input": "2024-05-03T22:19:48.185901Z", + "iopub.status.busy": "2024-05-03T22:19:48.185464Z", + "iopub.status.idle": "2024-05-03T22:19:48.194394Z", + "shell.execute_reply": "2024-05-03T22:19:48.193903Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:41.676072Z", - "iopub.status.busy": "2024-05-02T13:36:41.675749Z", - "iopub.status.idle": "2024-05-02T13:36:44.192611Z", - "shell.execute_reply": "2024-05-02T13:36:44.192085Z" + "iopub.execute_input": "2024-05-03T22:19:48.196754Z", + "iopub.status.busy": "2024-05-03T22:19:48.196317Z", + "iopub.status.idle": "2024-05-03T22:19:50.824127Z", + "shell.execute_reply": "2024-05-03T22:19:50.823594Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:44.194825Z", - "iopub.status.busy": "2024-05-02T13:36:44.194481Z", - "iopub.status.idle": "2024-05-02T13:36:44.198019Z", - "shell.execute_reply": "2024-05-02T13:36:44.197544Z" + "iopub.execute_input": "2024-05-03T22:19:50.826368Z", + "iopub.status.busy": "2024-05-03T22:19:50.826027Z", + "iopub.status.idle": "2024-05-03T22:19:50.829861Z", + "shell.execute_reply": "2024-05-03T22:19:50.829308Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:44.200056Z", - "iopub.status.busy": "2024-05-02T13:36:44.199753Z", - "iopub.status.idle": "2024-05-02T13:36:44.203246Z", - "shell.execute_reply": "2024-05-02T13:36:44.202802Z" + "iopub.execute_input": "2024-05-03T22:19:50.831982Z", + "iopub.status.busy": "2024-05-03T22:19:50.831669Z", + "iopub.status.idle": "2024-05-03T22:19:50.835425Z", + "shell.execute_reply": "2024-05-03T22:19:50.834842Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:44.205369Z", - "iopub.status.busy": "2024-05-02T13:36:44.204945Z", - "iopub.status.idle": "2024-05-02T13:36:44.208384Z", - "shell.execute_reply": "2024-05-02T13:36:44.207938Z" + "iopub.execute_input": "2024-05-03T22:19:50.837747Z", + "iopub.status.busy": "2024-05-03T22:19:50.837292Z", + "iopub.status.idle": "2024-05-03T22:19:50.840742Z", + "shell.execute_reply": "2024-05-03T22:19:50.840148Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index 7e0ba987c..0e4351328 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:46.490371Z", - "iopub.status.busy": "2024-05-02T13:36:46.489940Z", - "iopub.status.idle": "2024-05-02T13:36:47.606767Z", - "shell.execute_reply": "2024-05-02T13:36:47.606165Z" + "iopub.execute_input": "2024-05-03T22:19:53.386145Z", + "iopub.status.busy": "2024-05-03T22:19:53.385852Z", + "iopub.status.idle": "2024-05-03T22:19:54.629141Z", + "shell.execute_reply": "2024-05-03T22:19:54.628444Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:47.609364Z", - "iopub.status.busy": "2024-05-02T13:36:47.608951Z", - "iopub.status.idle": "2024-05-02T13:36:48.724475Z", - "shell.execute_reply": "2024-05-02T13:36:48.723828Z" + "iopub.execute_input": "2024-05-03T22:19:54.631719Z", + "iopub.status.busy": "2024-05-03T22:19:54.631402Z", + "iopub.status.idle": "2024-05-03T22:19:55.595584Z", + "shell.execute_reply": "2024-05-03T22:19:55.594885Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:48.726957Z", - "iopub.status.busy": "2024-05-02T13:36:48.726584Z", - "iopub.status.idle": "2024-05-02T13:36:48.729582Z", - "shell.execute_reply": "2024-05-02T13:36:48.729150Z" + "iopub.execute_input": "2024-05-03T22:19:55.598432Z", + "iopub.status.busy": "2024-05-03T22:19:55.598001Z", + "iopub.status.idle": "2024-05-03T22:19:55.601431Z", + "shell.execute_reply": "2024-05-03T22:19:55.600967Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:48.731563Z", - "iopub.status.busy": "2024-05-02T13:36:48.731232Z", - "iopub.status.idle": "2024-05-02T13:36:48.737841Z", - "shell.execute_reply": "2024-05-02T13:36:48.737333Z" + "iopub.execute_input": "2024-05-03T22:19:55.603576Z", + "iopub.status.busy": "2024-05-03T22:19:55.603220Z", + "iopub.status.idle": "2024-05-03T22:19:55.610681Z", + "shell.execute_reply": "2024-05-03T22:19:55.610169Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:48.739973Z", - "iopub.status.busy": "2024-05-02T13:36:48.739790Z", - "iopub.status.idle": "2024-05-02T13:36:49.221678Z", - "shell.execute_reply": "2024-05-02T13:36:49.221140Z" + "iopub.execute_input": "2024-05-03T22:19:55.613161Z", + "iopub.status.busy": "2024-05-03T22:19:55.612798Z", + "iopub.status.idle": "2024-05-03T22:19:56.115462Z", + "shell.execute_reply": "2024-05-03T22:19:56.114850Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:49.224137Z", - "iopub.status.busy": "2024-05-02T13:36:49.223951Z", - "iopub.status.idle": "2024-05-02T13:36:49.229180Z", - "shell.execute_reply": "2024-05-02T13:36:49.228631Z" + "iopub.execute_input": "2024-05-03T22:19:56.118471Z", + "iopub.status.busy": "2024-05-03T22:19:56.118104Z", + "iopub.status.idle": "2024-05-03T22:19:56.123646Z", + "shell.execute_reply": "2024-05-03T22:19:56.123077Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:49.231247Z", - "iopub.status.busy": "2024-05-02T13:36:49.230876Z", - "iopub.status.idle": "2024-05-02T13:36:49.235048Z", - "shell.execute_reply": "2024-05-02T13:36:49.234504Z" + "iopub.execute_input": "2024-05-03T22:19:56.125789Z", + "iopub.status.busy": "2024-05-03T22:19:56.125595Z", + "iopub.status.idle": "2024-05-03T22:19:56.130027Z", + "shell.execute_reply": "2024-05-03T22:19:56.129442Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:49.237142Z", - "iopub.status.busy": "2024-05-02T13:36:49.236752Z", - "iopub.status.idle": "2024-05-02T13:36:49.906512Z", - "shell.execute_reply": "2024-05-02T13:36:49.905963Z" + "iopub.execute_input": "2024-05-03T22:19:56.132407Z", + "iopub.status.busy": "2024-05-03T22:19:56.131987Z", + "iopub.status.idle": "2024-05-03T22:19:57.018056Z", + "shell.execute_reply": "2024-05-03T22:19:57.017391Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:49.909072Z", - "iopub.status.busy": "2024-05-02T13:36:49.908591Z", - "iopub.status.idle": "2024-05-02T13:36:50.074366Z", - "shell.execute_reply": "2024-05-02T13:36:50.073905Z" + "iopub.execute_input": "2024-05-03T22:19:57.020760Z", + "iopub.status.busy": "2024-05-03T22:19:57.020286Z", + "iopub.status.idle": "2024-05-03T22:19:57.317293Z", + "shell.execute_reply": "2024-05-03T22:19:57.316682Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:50.076221Z", - "iopub.status.busy": "2024-05-02T13:36:50.076049Z", - "iopub.status.idle": "2024-05-02T13:36:50.080344Z", - "shell.execute_reply": "2024-05-02T13:36:50.079907Z" + "iopub.execute_input": "2024-05-03T22:19:57.319615Z", + "iopub.status.busy": "2024-05-03T22:19:57.319422Z", + "iopub.status.idle": "2024-05-03T22:19:57.324280Z", + "shell.execute_reply": "2024-05-03T22:19:57.323813Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:50.082361Z", - "iopub.status.busy": "2024-05-02T13:36:50.081939Z", - "iopub.status.idle": "2024-05-02T13:36:50.521896Z", - "shell.execute_reply": "2024-05-02T13:36:50.521284Z" + "iopub.execute_input": "2024-05-03T22:19:57.326563Z", + "iopub.status.busy": "2024-05-03T22:19:57.326163Z", + "iopub.status.idle": "2024-05-03T22:19:57.790000Z", + "shell.execute_reply": "2024-05-03T22:19:57.789406Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:50.524440Z", - "iopub.status.busy": "2024-05-02T13:36:50.524016Z", - "iopub.status.idle": "2024-05-02T13:36:50.853407Z", - "shell.execute_reply": "2024-05-02T13:36:50.852892Z" + "iopub.execute_input": "2024-05-03T22:19:57.792617Z", + "iopub.status.busy": "2024-05-03T22:19:57.792164Z", + "iopub.status.idle": "2024-05-03T22:19:58.126696Z", + "shell.execute_reply": "2024-05-03T22:19:58.126086Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:50.855883Z", - "iopub.status.busy": "2024-05-02T13:36:50.855692Z", - "iopub.status.idle": "2024-05-02T13:36:51.186221Z", - "shell.execute_reply": "2024-05-02T13:36:51.185615Z" + "iopub.execute_input": "2024-05-03T22:19:58.129230Z", + "iopub.status.busy": "2024-05-03T22:19:58.128886Z", + "iopub.status.idle": "2024-05-03T22:19:58.494502Z", + "shell.execute_reply": "2024-05-03T22:19:58.493877Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:51.189094Z", - "iopub.status.busy": "2024-05-02T13:36:51.188769Z", - "iopub.status.idle": "2024-05-02T13:36:51.604267Z", - "shell.execute_reply": "2024-05-02T13:36:51.603688Z" + "iopub.execute_input": "2024-05-03T22:19:58.497799Z", + "iopub.status.busy": "2024-05-03T22:19:58.497402Z", + "iopub.status.idle": "2024-05-03T22:19:58.944543Z", + "shell.execute_reply": "2024-05-03T22:19:58.943931Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:51.608298Z", - "iopub.status.busy": "2024-05-02T13:36:51.607881Z", - "iopub.status.idle": "2024-05-02T13:36:52.052673Z", - "shell.execute_reply": "2024-05-02T13:36:52.052099Z" + "iopub.execute_input": "2024-05-03T22:19:58.948805Z", + "iopub.status.busy": "2024-05-03T22:19:58.948406Z", + "iopub.status.idle": "2024-05-03T22:19:59.406414Z", + "shell.execute_reply": "2024-05-03T22:19:59.405781Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:52.055364Z", - "iopub.status.busy": "2024-05-02T13:36:52.055180Z", - "iopub.status.idle": "2024-05-02T13:36:52.268258Z", - "shell.execute_reply": "2024-05-02T13:36:52.267710Z" + "iopub.execute_input": "2024-05-03T22:19:59.409810Z", + "iopub.status.busy": "2024-05-03T22:19:59.409434Z", + "iopub.status.idle": "2024-05-03T22:19:59.632557Z", + "shell.execute_reply": "2024-05-03T22:19:59.631966Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:52.270337Z", - "iopub.status.busy": "2024-05-02T13:36:52.270155Z", - "iopub.status.idle": "2024-05-02T13:36:52.450557Z", - "shell.execute_reply": "2024-05-02T13:36:52.449952Z" + "iopub.execute_input": "2024-05-03T22:19:59.634616Z", + "iopub.status.busy": "2024-05-03T22:19:59.634433Z", + "iopub.status.idle": "2024-05-03T22:19:59.818687Z", + "shell.execute_reply": "2024-05-03T22:19:59.818144Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:52.453372Z", - "iopub.status.busy": "2024-05-02T13:36:52.452969Z", - "iopub.status.idle": "2024-05-02T13:36:52.456400Z", - "shell.execute_reply": "2024-05-02T13:36:52.455934Z" + "iopub.execute_input": "2024-05-03T22:19:59.821321Z", + "iopub.status.busy": "2024-05-03T22:19:59.820996Z", + "iopub.status.idle": "2024-05-03T22:19:59.824043Z", + "shell.execute_reply": "2024-05-03T22:19:59.823484Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:52.458352Z", - "iopub.status.busy": "2024-05-02T13:36:52.458031Z", - "iopub.status.idle": "2024-05-02T13:36:53.360646Z", - "shell.execute_reply": "2024-05-02T13:36:53.360143Z" + "iopub.execute_input": "2024-05-03T22:19:59.826097Z", + "iopub.status.busy": "2024-05-03T22:19:59.825763Z", + "iopub.status.idle": "2024-05-03T22:20:00.739334Z", + "shell.execute_reply": "2024-05-03T22:20:00.738782Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:53.363249Z", - "iopub.status.busy": "2024-05-02T13:36:53.362917Z", - "iopub.status.idle": "2024-05-02T13:36:53.462904Z", - "shell.execute_reply": "2024-05-02T13:36:53.462386Z" + "iopub.execute_input": "2024-05-03T22:20:00.742156Z", + "iopub.status.busy": "2024-05-03T22:20:00.741821Z", + "iopub.status.idle": "2024-05-03T22:20:00.881567Z", + "shell.execute_reply": "2024-05-03T22:20:00.880972Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:53.465197Z", - "iopub.status.busy": "2024-05-02T13:36:53.464795Z", - "iopub.status.idle": "2024-05-02T13:36:53.590425Z", - "shell.execute_reply": "2024-05-02T13:36:53.589883Z" + "iopub.execute_input": "2024-05-03T22:20:00.883974Z", + "iopub.status.busy": "2024-05-03T22:20:00.883588Z", + "iopub.status.idle": "2024-05-03T22:20:01.028874Z", + "shell.execute_reply": "2024-05-03T22:20:01.028241Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:53.592696Z", - "iopub.status.busy": "2024-05-02T13:36:53.592317Z", - "iopub.status.idle": "2024-05-02T13:36:54.251258Z", - "shell.execute_reply": "2024-05-02T13:36:54.250800Z" + "iopub.execute_input": "2024-05-03T22:20:01.031353Z", + "iopub.status.busy": "2024-05-03T22:20:01.030985Z", + "iopub.status.idle": "2024-05-03T22:20:01.757491Z", + "shell.execute_reply": "2024-05-03T22:20:01.756902Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:54.253425Z", - "iopub.status.busy": "2024-05-02T13:36:54.253122Z", - "iopub.status.idle": "2024-05-02T13:36:54.256657Z", - "shell.execute_reply": "2024-05-02T13:36:54.256211Z" + "iopub.execute_input": "2024-05-03T22:20:01.759901Z", + "iopub.status.busy": "2024-05-03T22:20:01.759536Z", + "iopub.status.idle": "2024-05-03T22:20:01.763213Z", + "shell.execute_reply": "2024-05-03T22:20:01.762783Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 1ecfb5959..2b394b006 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -746,7 +746,7 @@

2. Pre-process the Cifar10 dataset
-100%|██████████| 170498071/170498071 [00:03<00:00, 56730580.89it/s]
+100%|██████████| 170498071/170498071 [00:03<00:00, 48343794.19it/s]
 
-
+
@@ -1090,7 +1090,7 @@

4. Use cleanlab and here.

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index bb18682e7..b06b1ffdb 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:56.448299Z", - "iopub.status.busy": "2024-05-02T13:36:56.448130Z", - "iopub.status.idle": "2024-05-02T13:36:59.064651Z", - "shell.execute_reply": "2024-05-02T13:36:59.064124Z" + "iopub.execute_input": "2024-05-03T22:20:04.046894Z", + "iopub.status.busy": "2024-05-03T22:20:04.046717Z", + "iopub.status.idle": "2024-05-03T22:20:06.957423Z", + "shell.execute_reply": "2024-05-03T22:20:06.956836Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:59.067352Z", - "iopub.status.busy": "2024-05-02T13:36:59.066810Z", - "iopub.status.idle": "2024-05-02T13:36:59.369727Z", - "shell.execute_reply": "2024-05-02T13:36:59.369194Z" + "iopub.execute_input": "2024-05-03T22:20:06.960089Z", + "iopub.status.busy": "2024-05-03T22:20:06.959699Z", + "iopub.status.idle": "2024-05-03T22:20:07.303685Z", + "shell.execute_reply": "2024-05-03T22:20:07.303127Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:59.372344Z", - "iopub.status.busy": "2024-05-02T13:36:59.371803Z", - "iopub.status.idle": "2024-05-02T13:36:59.375981Z", - "shell.execute_reply": "2024-05-02T13:36:59.375460Z" + "iopub.execute_input": "2024-05-03T22:20:07.306550Z", + "iopub.status.busy": "2024-05-03T22:20:07.305875Z", + "iopub.status.idle": "2024-05-03T22:20:07.310484Z", + "shell.execute_reply": "2024-05-03T22:20:07.309928Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:36:59.378081Z", - "iopub.status.busy": "2024-05-02T13:36:59.377765Z", - "iopub.status.idle": "2024-05-02T13:37:05.143239Z", - "shell.execute_reply": "2024-05-02T13:37:05.142645Z" + "iopub.execute_input": "2024-05-03T22:20:07.312459Z", + "iopub.status.busy": "2024-05-03T22:20:07.312280Z", + "iopub.status.idle": "2024-05-03T22:20:13.609662Z", + "shell.execute_reply": "2024-05-03T22:20:13.609031Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 491520/170498071 [00:00<00:34, 4891112.38it/s]" + " 1%| | 1179648/170498071 [00:00<00:14, 11620315.05it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 2686976/170498071 [00:00<00:11, 14775958.90it/s]" + " 3%|▎ | 5668864/170498071 [00:00<00:05, 31050768.78it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 3%|▎ | 5242880/170498071 [00:00<00:08, 19568044.73it/s]" + " 6%|▋ | 10977280/170498071 [00:00<00:03, 40875098.79it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 8650752/170498071 [00:00<00:06, 25134238.43it/s]" + " 9%|▉ | 15597568/170498071 [00:00<00:03, 42810917.51it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 11862016/170498071 [00:00<00:05, 27590234.10it/s]" + " 12%|█▏ | 20971520/170498071 [00:00<00:03, 46565398.72it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 15106048/170498071 [00:00<00:05, 29083768.39it/s]" + " 15%|█▌ | 25657344/170498071 [00:00<00:03, 46233384.08it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 18284544/170498071 [00:00<00:05, 29938152.51it/s]" + " 18%|█▊ | 31227904/170498071 [00:00<00:02, 49193242.38it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 21299200/170498071 [00:00<00:05, 29772916.60it/s]" + " 21%|██ | 36175872/170498071 [00:00<00:02, 48113592.36it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 24543232/170498071 [00:00<00:04, 30418781.55it/s]" + " 24%|██▍ | 41418752/170498071 [00:00<00:02, 49339436.95it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 27590656/170498071 [00:01<00:04, 30184449.60it/s]" + " 27%|██▋ | 46366720/170498071 [00:01<00:02, 49096139.28it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 18%|█▊ | 30638080/170498071 [00:01<00:04, 29977843.08it/s]" + " 30%|███ | 51380224/170498071 [00:01<00:02, 49372204.83it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 33914880/170498071 [00:01<00:04, 30797349.99it/s]" + " 33%|███▎ | 56328192/170498071 [00:01<00:02, 48647676.26it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37027840/170498071 [00:01<00:04, 30176756.22it/s]" + " 36%|███▌ | 61407232/170498071 [00:01<00:02, 49200922.98it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▎ | 40206336/170498071 [00:01<00:04, 30609722.01it/s]" + " 39%|███▉ | 66355200/170498071 [00:01<00:02, 49223482.99it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 44072960/170498071 [00:01<00:03, 32977075.63it/s]" + " 42%|████▏ | 71335936/170498071 [00:01<00:02, 49284385.85it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 49872896/170498071 [00:01<00:02, 40394119.02it/s]" + " 45%|████▍ | 76316672/170498071 [00:01<00:01, 49425496.18it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 57114624/170498071 [00:01<00:02, 49886217.97it/s]" + " 48%|████▊ | 81264640/170498071 [00:01<00:01, 48959814.78it/s]" ] }, { @@ -388,7 +388,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 65830912/170498071 [00:01<00:01, 60942019.98it/s]" + " 51%|█████ | 86179840/170498071 [00:01<00:01, 48511791.39it/s]" ] }, { @@ -396,7 +396,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 73760768/170498071 [00:01<00:01, 66370945.08it/s]" + " 53%|█████▎ | 91062272/170498071 [00:01<00:01, 47470243.86it/s]" ] }, { @@ -404,7 +404,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 83132416/170498071 [00:02<00:01, 74393443.95it/s]" + " 56%|█████▌ | 95846400/170498071 [00:02<00:01, 46957506.86it/s]" ] }, { @@ -412,7 +412,7 @@ "output_type": "stream", "text": [ "\r", - " 54%|█████▍ | 92372992/170498071 [00:02<00:00, 79719952.84it/s]" + " 59%|█████▉ | 101023744/170498071 [00:02<00:01, 48361134.10it/s]" ] }, { @@ -420,7 +420,7 @@ "output_type": "stream", "text": [ "\r", - " 59%|█████▉ | 100368384/170498071 [00:02<00:00, 79671570.63it/s]" + " 62%|██████▏ | 105873408/170498071 [00:02<00:01, 47874896.05it/s]" ] }, { @@ -428,7 +428,7 @@ "output_type": "stream", "text": [ "\r", - " 65%|██████▍ | 110067712/170498071 [00:02<00:00, 84835453.81it/s]" + " 65%|██████▌ | 111345664/170498071 [00:02<00:01, 49693085.96it/s]" ] }, { @@ -436,7 +436,7 @@ "output_type": "stream", "text": [ "\r", - " 70%|██████▉ | 118587392/170498071 [00:02<00:00, 84217583.17it/s]" + " 68%|██████▊ | 116326400/170498071 [00:02<00:01, 48775251.39it/s]" ] }, { @@ -444,7 +444,7 @@ "output_type": "stream", "text": [ "\r", - " 75%|███████▍ | 127598592/170498071 [00:02<00:00, 84857598.53it/s]" + " 71%|███████▏ | 121896960/170498071 [00:02<00:00, 50749503.21it/s]" ] }, { @@ -452,7 +452,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 137494528/170498071 [00:02<00:00, 88992313.79it/s]" + " 74%|███████▍ | 127008768/170498071 [00:02<00:00, 49673076.19it/s]" ] }, { @@ -460,7 +460,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 146407424/170498071 [00:02<00:00, 87763992.01it/s]" + " 78%|███████▊ | 132677632/170498071 [00:02<00:00, 51679454.32it/s]" ] }, { @@ -468,7 +468,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████▏| 155746304/170498071 [00:02<00:00, 89380312.79it/s]" + " 81%|████████ | 137887744/170498071 [00:02<00:00, 49281888.47it/s]" ] }, { @@ -476,7 +476,7 @@ "output_type": "stream", "text": [ "\r", - " 97%|█████████▋| 164724736/170498071 [00:02<00:00, 89107925.34it/s]" + " 85%|████████▍ | 144605184/170498071 [00:02<00:00, 54178799.93it/s]" ] }, { @@ -484,7 +484,39 @@ "output_type": "stream", "text": [ "\r", - "100%|██████████| 170498071/170498071 [00:03<00:00, 56730580.89it/s]" + " 88%|████████▊ | 150077440/170498071 [00:03<00:00, 47693690.48it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 92%|█████████▏| 156827648/170498071 [00:03<00:00, 52784689.04it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 95%|█████████▌| 162299904/170498071 [00:03<00:00, 50437995.61it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 98%|█████████▊| 167903232/170498071 [00:03<00:00, 51939944.06it/s]" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + "100%|██████████| 170498071/170498071 [00:03<00:00, 48343794.19it/s]" ] }, { @@ -602,10 +634,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:05.145551Z", - "iopub.status.busy": "2024-05-02T13:37:05.145358Z", - "iopub.status.idle": "2024-05-02T13:37:05.150147Z", - "shell.execute_reply": "2024-05-02T13:37:05.149683Z" + "iopub.execute_input": "2024-05-03T22:20:13.612031Z", + "iopub.status.busy": "2024-05-03T22:20:13.611790Z", + "iopub.status.idle": "2024-05-03T22:20:13.616806Z", + "shell.execute_reply": "2024-05-03T22:20:13.616230Z" }, "nbsphinx": "hidden" }, @@ -656,10 +688,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:05.152088Z", - "iopub.status.busy": "2024-05-02T13:37:05.151769Z", - "iopub.status.idle": "2024-05-02T13:37:05.665171Z", - "shell.execute_reply": "2024-05-02T13:37:05.664622Z" + "iopub.execute_input": "2024-05-03T22:20:13.619644Z", + "iopub.status.busy": "2024-05-03T22:20:13.619251Z", + "iopub.status.idle": "2024-05-03T22:20:14.195173Z", + "shell.execute_reply": "2024-05-03T22:20:14.194627Z" } }, "outputs": [ @@ -692,10 +724,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:05.667517Z", - "iopub.status.busy": "2024-05-02T13:37:05.667085Z", - "iopub.status.idle": "2024-05-02T13:37:06.175687Z", - "shell.execute_reply": "2024-05-02T13:37:06.175184Z" + "iopub.execute_input": "2024-05-03T22:20:14.197510Z", + "iopub.status.busy": "2024-05-03T22:20:14.197148Z", + "iopub.status.idle": "2024-05-03T22:20:14.739422Z", + "shell.execute_reply": "2024-05-03T22:20:14.738840Z" } }, "outputs": [ @@ -733,10 +765,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:06.177884Z", - "iopub.status.busy": "2024-05-02T13:37:06.177552Z", - "iopub.status.idle": "2024-05-02T13:37:06.180979Z", - "shell.execute_reply": "2024-05-02T13:37:06.180523Z" + "iopub.execute_input": "2024-05-03T22:20:14.741850Z", + "iopub.status.busy": "2024-05-03T22:20:14.741482Z", + "iopub.status.idle": "2024-05-03T22:20:14.745572Z", + "shell.execute_reply": "2024-05-03T22:20:14.745131Z" } }, "outputs": [], @@ -759,17 +791,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:06.182972Z", - "iopub.status.busy": "2024-05-02T13:37:06.182565Z", - "iopub.status.idle": "2024-05-02T13:37:18.649497Z", - "shell.execute_reply": "2024-05-02T13:37:18.648901Z" + "iopub.execute_input": "2024-05-03T22:20:14.747484Z", + "iopub.status.busy": "2024-05-03T22:20:14.747282Z", + "iopub.status.idle": "2024-05-03T22:20:27.646179Z", + "shell.execute_reply": "2024-05-03T22:20:27.645545Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4757e446bb20472d86fd78b2fe6d2321", + "model_id": "4f3fc25b54b74ff1aca63e802f46a3da", "version_major": 2, "version_minor": 0 }, @@ -828,10 +860,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:18.651843Z", - "iopub.status.busy": "2024-05-02T13:37:18.651650Z", - "iopub.status.idle": "2024-05-02T13:37:20.378740Z", - "shell.execute_reply": "2024-05-02T13:37:20.378113Z" + "iopub.execute_input": "2024-05-03T22:20:27.648808Z", + "iopub.status.busy": "2024-05-03T22:20:27.648377Z", + "iopub.status.idle": "2024-05-03T22:20:29.466503Z", + "shell.execute_reply": "2024-05-03T22:20:29.465807Z" } }, "outputs": [ @@ -875,10 +907,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:20.381414Z", - "iopub.status.busy": "2024-05-02T13:37:20.381208Z", - "iopub.status.idle": "2024-05-02T13:37:20.634754Z", - "shell.execute_reply": "2024-05-02T13:37:20.633703Z" + "iopub.execute_input": "2024-05-03T22:20:29.469636Z", + "iopub.status.busy": "2024-05-03T22:20:29.469080Z", + "iopub.status.idle": "2024-05-03T22:20:29.737462Z", + "shell.execute_reply": "2024-05-03T22:20:29.736861Z" } }, "outputs": [ @@ -914,10 +946,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:20.637291Z", - "iopub.status.busy": "2024-05-02T13:37:20.636993Z", - "iopub.status.idle": "2024-05-02T13:37:21.302071Z", - "shell.execute_reply": "2024-05-02T13:37:21.301503Z" + "iopub.execute_input": "2024-05-03T22:20:29.740228Z", + "iopub.status.busy": "2024-05-03T22:20:29.739891Z", + "iopub.status.idle": "2024-05-03T22:20:30.450048Z", + "shell.execute_reply": "2024-05-03T22:20:30.449444Z" } }, "outputs": [ @@ -967,10 +999,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:21.305055Z", - "iopub.status.busy": "2024-05-02T13:37:21.304753Z", - "iopub.status.idle": "2024-05-02T13:37:21.644315Z", - "shell.execute_reply": "2024-05-02T13:37:21.643688Z" + "iopub.execute_input": "2024-05-03T22:20:30.453100Z", + "iopub.status.busy": "2024-05-03T22:20:30.452760Z", + "iopub.status.idle": "2024-05-03T22:20:30.805759Z", + "shell.execute_reply": "2024-05-03T22:20:30.805153Z" } }, "outputs": [ @@ -1018,10 +1050,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:21.646466Z", - "iopub.status.busy": "2024-05-02T13:37:21.646295Z", - "iopub.status.idle": "2024-05-02T13:37:21.887961Z", - "shell.execute_reply": "2024-05-02T13:37:21.887345Z" + "iopub.execute_input": "2024-05-03T22:20:30.808440Z", + "iopub.status.busy": "2024-05-03T22:20:30.807933Z", + "iopub.status.idle": "2024-05-03T22:20:31.057047Z", + "shell.execute_reply": "2024-05-03T22:20:31.053824Z" } }, "outputs": [ @@ -1077,10 +1109,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:21.890359Z", - "iopub.status.busy": "2024-05-02T13:37:21.889966Z", - "iopub.status.idle": "2024-05-02T13:37:21.979477Z", - "shell.execute_reply": "2024-05-02T13:37:21.978979Z" + "iopub.execute_input": "2024-05-03T22:20:31.061487Z", + "iopub.status.busy": "2024-05-03T22:20:31.060228Z", + "iopub.status.idle": "2024-05-03T22:20:31.147111Z", + "shell.execute_reply": "2024-05-03T22:20:31.146594Z" } }, "outputs": [], @@ -1101,10 +1133,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:21.981920Z", - "iopub.status.busy": "2024-05-02T13:37:21.981565Z", - "iopub.status.idle": "2024-05-02T13:37:32.265006Z", - "shell.execute_reply": "2024-05-02T13:37:32.264313Z" + "iopub.execute_input": "2024-05-03T22:20:31.149755Z", + "iopub.status.busy": "2024-05-03T22:20:31.149204Z", + "iopub.status.idle": "2024-05-03T22:20:41.830172Z", + "shell.execute_reply": "2024-05-03T22:20:41.829430Z" } }, "outputs": [ @@ -1141,10 +1173,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:32.267511Z", - "iopub.status.busy": "2024-05-02T13:37:32.267273Z", - "iopub.status.idle": "2024-05-02T13:37:33.936870Z", - "shell.execute_reply": "2024-05-02T13:37:33.936306Z" + "iopub.execute_input": "2024-05-03T22:20:41.833285Z", + "iopub.status.busy": "2024-05-03T22:20:41.832737Z", + "iopub.status.idle": "2024-05-03T22:20:43.812867Z", + "shell.execute_reply": "2024-05-03T22:20:43.812242Z" } }, "outputs": [ @@ -1175,10 +1207,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:33.940031Z", - "iopub.status.busy": "2024-05-02T13:37:33.939386Z", - "iopub.status.idle": "2024-05-02T13:37:34.165026Z", - "shell.execute_reply": "2024-05-02T13:37:34.164435Z" + "iopub.execute_input": "2024-05-03T22:20:43.815841Z", + "iopub.status.busy": "2024-05-03T22:20:43.815246Z", + "iopub.status.idle": "2024-05-03T22:20:44.027709Z", + "shell.execute_reply": "2024-05-03T22:20:44.027192Z" } }, "outputs": [], @@ -1192,10 +1224,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:34.167413Z", - "iopub.status.busy": "2024-05-02T13:37:34.167202Z", - "iopub.status.idle": "2024-05-02T13:37:34.170340Z", - "shell.execute_reply": "2024-05-02T13:37:34.169798Z" + "iopub.execute_input": "2024-05-03T22:20:44.030318Z", + "iopub.status.busy": "2024-05-03T22:20:44.029931Z", + "iopub.status.idle": "2024-05-03T22:20:44.033283Z", + "shell.execute_reply": "2024-05-03T22:20:44.032806Z" } }, "outputs": [], @@ -1217,10 +1249,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:34.172240Z", - "iopub.status.busy": "2024-05-02T13:37:34.172066Z", - "iopub.status.idle": "2024-05-02T13:37:34.180093Z", - "shell.execute_reply": "2024-05-02T13:37:34.179570Z" + "iopub.execute_input": "2024-05-03T22:20:44.035684Z", + "iopub.status.busy": "2024-05-03T22:20:44.035289Z", + "iopub.status.idle": "2024-05-03T22:20:44.044384Z", + "shell.execute_reply": "2024-05-03T22:20:44.043878Z" }, "nbsphinx": "hidden" }, @@ -1265,7 +1297,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1b93279538a24d7d8f476c8d45a96791": { + "2563bff270474328a6051feebf50aa59": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_271d2352db214d30a03e5f6c80b5de76", + "placeholder": "​", + "style": "IPY_MODEL_3c4d790cb94e492cb30b3a8eda54464c", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 188MB/s]" + } + }, + "271d2352db214d30a03e5f6c80b5de76": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1318,116 +1373,7 @@ "width": null } }, - "4757e446bb20472d86fd78b2fe6d2321": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5e40d69e39b94314b12b04612a022d58", - "IPY_MODEL_a294cff84f9343ff9c3b613b25776593", - "IPY_MODEL_f48bce1ffd7748ceb5c434f51fb7fb9a" - ], - "layout": "IPY_MODEL_a65709faed72413ab2cb6c075aac2dfc", - "tabbable": null, - "tooltip": null - } - }, - "5e40d69e39b94314b12b04612a022d58": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aa5c5bb0179c48809f37a035b686061f", - "placeholder": "​", - "style": "IPY_MODEL_8f791d3ffec9429290ffd7ee528d7802", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" - } - }, - "8f791d3ffec9429290ffd7ee528d7802": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a294cff84f9343ff9c3b613b25776593": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c851b8f4a8e84596b002f22072102b09", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a7c921cdb93c43579c45ed42ec83f250", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "a2cf1a82f1f0483ea946c28a3533302d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a65709faed72413ab2cb6c075aac2dfc": { + "29d797d1953545218c9727279fba17bc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1480,23 +1426,25 @@ "width": null } }, - "a7c921cdb93c43579c45ed42ec83f250": { + "3c4d790cb94e492cb30b3a8eda54464c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "aa5c5bb0179c48809f37a035b686061f": { + "4b09cbd457df497cb6281047d268c158": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1549,7 +1497,49 @@ "width": null } }, - "c851b8f4a8e84596b002f22072102b09": { + "4f3fc25b54b74ff1aca63e802f46a3da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8f5419bed6884707b66f49a553ba178e", + "IPY_MODEL_cce77015d86a48aab6450e8797d31368", + "IPY_MODEL_2563bff270474328a6051feebf50aa59" + ], + "layout": "IPY_MODEL_80d161b8b4c04a7eb547718411050c65", + "tabbable": null, + "tooltip": null + } + }, + "6d2321df32c64002b412fb6497a4095d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "80d161b8b4c04a7eb547718411050c65": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1602,7 +1592,7 @@ "width": null } }, - "f48bce1ffd7748ceb5c434f51fb7fb9a": { + "8f5419bed6884707b66f49a553ba178e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1617,12 +1607,54 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1b93279538a24d7d8f476c8d45a96791", + "layout": "IPY_MODEL_29d797d1953545218c9727279fba17bc", "placeholder": "​", - "style": "IPY_MODEL_a2cf1a82f1f0483ea946c28a3533302d", + "style": "IPY_MODEL_6d2321df32c64002b412fb6497a4095d", "tabbable": null, "tooltip": null, - "value": " 102M/102M [00:00<00:00, 238MB/s]" + "value": "model.safetensors: 100%" + } + }, + "cce77015d86a48aab6450e8797d31368": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4b09cbd457df497cb6281047d268c158", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d76a147ab4fd4b8cb9ff310ef3df2f36", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "d76a147ab4fd4b8cb9ff310ef3df2f36": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } } }, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index e5fd1c6ee..9201e4661 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:38.430277Z", - "iopub.status.busy": "2024-05-02T13:37:38.429864Z", - "iopub.status.idle": "2024-05-02T13:37:39.544158Z", - "shell.execute_reply": "2024-05-02T13:37:39.543678Z" + "iopub.execute_input": "2024-05-03T22:20:48.457300Z", + "iopub.status.busy": "2024-05-03T22:20:48.456794Z", + "iopub.status.idle": "2024-05-03T22:20:49.718031Z", + "shell.execute_reply": "2024-05-03T22:20:49.717462Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:39.546763Z", - "iopub.status.busy": "2024-05-02T13:37:39.546284Z", - "iopub.status.idle": "2024-05-02T13:37:39.564144Z", - "shell.execute_reply": "2024-05-02T13:37:39.563693Z" + "iopub.execute_input": "2024-05-03T22:20:49.720716Z", + "iopub.status.busy": "2024-05-03T22:20:49.720228Z", + "iopub.status.idle": "2024-05-03T22:20:49.739927Z", + "shell.execute_reply": "2024-05-03T22:20:49.739408Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:39.566210Z", - "iopub.status.busy": "2024-05-02T13:37:39.565866Z", - "iopub.status.idle": "2024-05-02T13:37:39.568803Z", - "shell.execute_reply": "2024-05-02T13:37:39.568375Z" + "iopub.execute_input": "2024-05-03T22:20:49.742704Z", + "iopub.status.busy": "2024-05-03T22:20:49.742139Z", + "iopub.status.idle": "2024-05-03T22:20:49.745441Z", + "shell.execute_reply": "2024-05-03T22:20:49.744874Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:39.570761Z", - "iopub.status.busy": "2024-05-02T13:37:39.570457Z", - "iopub.status.idle": "2024-05-02T13:37:39.659272Z", - "shell.execute_reply": "2024-05-02T13:37:39.658831Z" + "iopub.execute_input": "2024-05-03T22:20:49.747634Z", + "iopub.status.busy": "2024-05-03T22:20:49.747320Z", + "iopub.status.idle": "2024-05-03T22:20:49.806186Z", + "shell.execute_reply": "2024-05-03T22:20:49.805597Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:39.661380Z", - "iopub.status.busy": "2024-05-02T13:37:39.661046Z", - "iopub.status.idle": "2024-05-02T13:37:39.837557Z", - "shell.execute_reply": "2024-05-02T13:37:39.837059Z" + "iopub.execute_input": "2024-05-03T22:20:49.808922Z", + "iopub.status.busy": "2024-05-03T22:20:49.808402Z", + "iopub.status.idle": "2024-05-03T22:20:49.999289Z", + "shell.execute_reply": "2024-05-03T22:20:49.998695Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:39.839579Z", - "iopub.status.busy": "2024-05-02T13:37:39.839400Z", - "iopub.status.idle": "2024-05-02T13:37:40.080704Z", - "shell.execute_reply": "2024-05-02T13:37:40.080115Z" + "iopub.execute_input": "2024-05-03T22:20:50.001853Z", + "iopub.status.busy": "2024-05-03T22:20:50.001474Z", + "iopub.status.idle": "2024-05-03T22:20:50.256968Z", + "shell.execute_reply": "2024-05-03T22:20:50.256329Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:40.083030Z", - "iopub.status.busy": "2024-05-02T13:37:40.082712Z", - "iopub.status.idle": "2024-05-02T13:37:40.087047Z", - "shell.execute_reply": "2024-05-02T13:37:40.086575Z" + "iopub.execute_input": "2024-05-03T22:20:50.259220Z", + "iopub.status.busy": "2024-05-03T22:20:50.258872Z", + "iopub.status.idle": "2024-05-03T22:20:50.263472Z", + "shell.execute_reply": "2024-05-03T22:20:50.262965Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:40.089042Z", - "iopub.status.busy": "2024-05-02T13:37:40.088636Z", - "iopub.status.idle": "2024-05-02T13:37:40.094738Z", - "shell.execute_reply": "2024-05-02T13:37:40.094308Z" + "iopub.execute_input": "2024-05-03T22:20:50.265646Z", + "iopub.status.busy": "2024-05-03T22:20:50.265295Z", + "iopub.status.idle": "2024-05-03T22:20:50.271613Z", + "shell.execute_reply": "2024-05-03T22:20:50.271155Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:40.096709Z", - "iopub.status.busy": "2024-05-02T13:37:40.096404Z", - "iopub.status.idle": "2024-05-02T13:37:40.098892Z", - "shell.execute_reply": "2024-05-02T13:37:40.098467Z" + "iopub.execute_input": "2024-05-03T22:20:50.273894Z", + "iopub.status.busy": "2024-05-03T22:20:50.273553Z", + "iopub.status.idle": "2024-05-03T22:20:50.276357Z", + "shell.execute_reply": "2024-05-03T22:20:50.275889Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:40.100883Z", - "iopub.status.busy": "2024-05-02T13:37:40.100570Z", - "iopub.status.idle": "2024-05-02T13:37:48.280445Z", - "shell.execute_reply": "2024-05-02T13:37:48.279822Z" + "iopub.execute_input": "2024-05-03T22:20:50.278464Z", + "iopub.status.busy": "2024-05-03T22:20:50.278132Z", + "iopub.status.idle": "2024-05-03T22:20:58.837552Z", + "shell.execute_reply": "2024-05-03T22:20:58.836915Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:48.283163Z", - "iopub.status.busy": "2024-05-02T13:37:48.282636Z", - "iopub.status.idle": "2024-05-02T13:37:48.289498Z", - "shell.execute_reply": "2024-05-02T13:37:48.288979Z" + "iopub.execute_input": "2024-05-03T22:20:58.840267Z", + "iopub.status.busy": "2024-05-03T22:20:58.839876Z", + "iopub.status.idle": "2024-05-03T22:20:58.847049Z", + "shell.execute_reply": "2024-05-03T22:20:58.846527Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:48.291518Z", - "iopub.status.busy": "2024-05-02T13:37:48.291340Z", - "iopub.status.idle": "2024-05-02T13:37:48.295047Z", - "shell.execute_reply": "2024-05-02T13:37:48.294605Z" + "iopub.execute_input": "2024-05-03T22:20:58.849050Z", + "iopub.status.busy": "2024-05-03T22:20:58.848866Z", + "iopub.status.idle": "2024-05-03T22:20:58.852924Z", + "shell.execute_reply": "2024-05-03T22:20:58.852358Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:48.296793Z", - "iopub.status.busy": "2024-05-02T13:37:48.296621Z", - "iopub.status.idle": "2024-05-02T13:37:48.300060Z", - "shell.execute_reply": "2024-05-02T13:37:48.299610Z" + "iopub.execute_input": "2024-05-03T22:20:58.855016Z", + "iopub.status.busy": "2024-05-03T22:20:58.854711Z", + "iopub.status.idle": "2024-05-03T22:20:58.858006Z", + "shell.execute_reply": "2024-05-03T22:20:58.857501Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:48.301880Z", - "iopub.status.busy": "2024-05-02T13:37:48.301712Z", - "iopub.status.idle": "2024-05-02T13:37:48.304699Z", - "shell.execute_reply": "2024-05-02T13:37:48.304258Z" + "iopub.execute_input": "2024-05-03T22:20:58.860256Z", + "iopub.status.busy": "2024-05-03T22:20:58.859804Z", + "iopub.status.idle": "2024-05-03T22:20:58.863171Z", + "shell.execute_reply": "2024-05-03T22:20:58.862732Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:48.306442Z", - "iopub.status.busy": "2024-05-02T13:37:48.306271Z", - "iopub.status.idle": "2024-05-02T13:37:48.314058Z", - "shell.execute_reply": "2024-05-02T13:37:48.313603Z" + "iopub.execute_input": "2024-05-03T22:20:58.865244Z", + "iopub.status.busy": "2024-05-03T22:20:58.864931Z", + "iopub.status.idle": "2024-05-03T22:20:58.873645Z", + "shell.execute_reply": "2024-05-03T22:20:58.873063Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:48.315848Z", - "iopub.status.busy": "2024-05-02T13:37:48.315678Z", - "iopub.status.idle": "2024-05-02T13:37:48.318297Z", - "shell.execute_reply": "2024-05-02T13:37:48.317836Z" + "iopub.execute_input": "2024-05-03T22:20:58.875848Z", + "iopub.status.busy": "2024-05-03T22:20:58.875637Z", + "iopub.status.idle": "2024-05-03T22:20:58.878803Z", + "shell.execute_reply": "2024-05-03T22:20:58.878298Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:48.320093Z", - "iopub.status.busy": "2024-05-02T13:37:48.319925Z", - "iopub.status.idle": "2024-05-02T13:37:48.441214Z", - "shell.execute_reply": "2024-05-02T13:37:48.440667Z" + "iopub.execute_input": "2024-05-03T22:20:58.881152Z", + "iopub.status.busy": "2024-05-03T22:20:58.880794Z", + "iopub.status.idle": "2024-05-03T22:20:59.014729Z", + "shell.execute_reply": "2024-05-03T22:20:59.014156Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:48.443331Z", - "iopub.status.busy": "2024-05-02T13:37:48.443015Z", - "iopub.status.idle": "2024-05-02T13:37:48.545728Z", - "shell.execute_reply": "2024-05-02T13:37:48.545193Z" + "iopub.execute_input": "2024-05-03T22:20:59.017194Z", + "iopub.status.busy": "2024-05-03T22:20:59.016781Z", + "iopub.status.idle": "2024-05-03T22:20:59.123045Z", + "shell.execute_reply": "2024-05-03T22:20:59.122411Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:48.548016Z", - "iopub.status.busy": "2024-05-02T13:37:48.547588Z", - "iopub.status.idle": "2024-05-02T13:37:49.040465Z", - "shell.execute_reply": "2024-05-02T13:37:49.039932Z" + "iopub.execute_input": "2024-05-03T22:20:59.125601Z", + "iopub.status.busy": "2024-05-03T22:20:59.125265Z", + "iopub.status.idle": "2024-05-03T22:20:59.623879Z", + "shell.execute_reply": "2024-05-03T22:20:59.623233Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:49.043117Z", - "iopub.status.busy": "2024-05-02T13:37:49.042657Z", - "iopub.status.idle": "2024-05-02T13:37:49.131459Z", - "shell.execute_reply": "2024-05-02T13:37:49.130787Z" + "iopub.execute_input": "2024-05-03T22:20:59.626604Z", + "iopub.status.busy": "2024-05-03T22:20:59.626200Z", + "iopub.status.idle": "2024-05-03T22:20:59.735511Z", + "shell.execute_reply": "2024-05-03T22:20:59.734904Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:49.133661Z", - "iopub.status.busy": "2024-05-02T13:37:49.133339Z", - "iopub.status.idle": "2024-05-02T13:37:49.141955Z", - "shell.execute_reply": "2024-05-02T13:37:49.141411Z" + "iopub.execute_input": "2024-05-03T22:20:59.737975Z", + "iopub.status.busy": "2024-05-03T22:20:59.737507Z", + "iopub.status.idle": "2024-05-03T22:20:59.746497Z", + "shell.execute_reply": "2024-05-03T22:20:59.746018Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:49.143844Z", - "iopub.status.busy": "2024-05-02T13:37:49.143670Z", - "iopub.status.idle": "2024-05-02T13:37:49.146220Z", - "shell.execute_reply": "2024-05-02T13:37:49.145783Z" + "iopub.execute_input": "2024-05-03T22:20:59.748549Z", + "iopub.status.busy": "2024-05-03T22:20:59.748357Z", + "iopub.status.idle": "2024-05-03T22:20:59.751198Z", + "shell.execute_reply": "2024-05-03T22:20:59.750759Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:49.148144Z", - "iopub.status.busy": "2024-05-02T13:37:49.147850Z", - "iopub.status.idle": "2024-05-02T13:37:54.645951Z", - "shell.execute_reply": "2024-05-02T13:37:54.645348Z" + "iopub.execute_input": "2024-05-03T22:20:59.753223Z", + "iopub.status.busy": "2024-05-03T22:20:59.753038Z", + "iopub.status.idle": "2024-05-03T22:21:05.304818Z", + "shell.execute_reply": "2024-05-03T22:21:05.304193Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:54.648455Z", - "iopub.status.busy": "2024-05-02T13:37:54.648005Z", - "iopub.status.idle": "2024-05-02T13:37:54.656640Z", - "shell.execute_reply": "2024-05-02T13:37:54.656181Z" + "iopub.execute_input": "2024-05-03T22:21:05.307121Z", + "iopub.status.busy": "2024-05-03T22:21:05.306897Z", + "iopub.status.idle": "2024-05-03T22:21:05.316181Z", + "shell.execute_reply": "2024-05-03T22:21:05.315729Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:54.658648Z", - "iopub.status.busy": "2024-05-02T13:37:54.658337Z", - "iopub.status.idle": "2024-05-02T13:37:54.723492Z", - "shell.execute_reply": "2024-05-02T13:37:54.722863Z" + "iopub.execute_input": "2024-05-03T22:21:05.318230Z", + "iopub.status.busy": "2024-05-03T22:21:05.318047Z", + "iopub.status.idle": "2024-05-03T22:21:05.387573Z", + "shell.execute_reply": "2024-05-03T22:21:05.387062Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 0e4a87141..4f94e61e0 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -766,13 +766,13 @@

3. Use cleanlab to find label issues

-
+
-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -1162,7 +1162,7 @@

Get label quality scores -{"state": {"b79be033e0a94f57bccef8f3a33a530b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b8dc241375094b188768a05ac9ec580d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "78c4a72ddc944a8e8a5109452da16874": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b79be033e0a94f57bccef8f3a33a530b", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b8dc241375094b188768a05ac9ec580d", "tabbable": null, "tooltip": null, "value": 30.0}}, "13e1e07aab8a4ead9926d4a411481bca": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2b33f9909421489d9ffdf3159e834d65": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bf997ec2fc2b4e5f967bc0ca4cd87fd9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_13e1e07aab8a4ead9926d4a411481bca", "placeholder": "\u200b", "style": "IPY_MODEL_2b33f9909421489d9ffdf3159e834d65", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "2e5e2b8bfa4247428f673528ae90464a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2739926b041e462da539d4629731c7db": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "58164694d8004ebb9705182691d7f80b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2e5e2b8bfa4247428f673528ae90464a", "placeholder": "\u200b", "style": "IPY_MODEL_2739926b041e462da539d4629731c7db", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007611.81it/s]"}}, "efbdcf1278be43a2bdc67aa224374ffd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7f6b3854caf54fcf8a42eddf163358c8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_bf997ec2fc2b4e5f967bc0ca4cd87fd9", "IPY_MODEL_78c4a72ddc944a8e8a5109452da16874", "IPY_MODEL_58164694d8004ebb9705182691d7f80b"], "layout": "IPY_MODEL_efbdcf1278be43a2bdc67aa224374ffd", "tabbable": null, "tooltip": null}}, "042e10c5ba034c929b49c9486b6ab066": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "de3a3da5e7ac4e6fbfe91d13babe05d4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9feea4d03f374c7cb12231509e414971": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_042e10c5ba034c929b49c9486b6ab066", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_de3a3da5e7ac4e6fbfe91d13babe05d4", "tabbable": null, "tooltip": null, "value": 30.0}}, "9df790df30534485bf022e589bc6f737": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fb624f427e4448b3904eb9654441b85f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "122af635c8124db98df8e27ed569191c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9df790df30534485bf022e589bc6f737", "placeholder": "\u200b", "style": "IPY_MODEL_fb624f427e4448b3904eb9654441b85f", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "9728914de97a400b9fe4c49e314519ea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "da499bfc9f0149d88c5b1e6481ff086c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1cfd8cda1e104ad593c28fc637647da9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9728914de97a400b9fe4c49e314519ea", "placeholder": "\u200b", "style": "IPY_MODEL_da499bfc9f0149d88c5b1e6481ff086c", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:22<00:00,\u2007\u20071.41it/s]"}}, "62c5e3b2f5384279ad7514da28f8a03b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a7add3dc3ff74f47b0b4ff652d4269f6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_122af635c8124db98df8e27ed569191c", "IPY_MODEL_9feea4d03f374c7cb12231509e414971", "IPY_MODEL_1cfd8cda1e104ad593c28fc637647da9"], "layout": "IPY_MODEL_62c5e3b2f5384279ad7514da28f8a03b", "tabbable": null, "tooltip": null}}, "93169db257de43cba79968a23af14769": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5bfbb1e9662b46dda0774c60eb40200b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "552cd14f892e4370b81d6de1d16cb9b6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_93169db257de43cba79968a23af14769", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5bfbb1e9662b46dda0774c60eb40200b", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "55d2e0794a6c4d189bc5c90ded136d31": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "69f1c703271b45cf9a65cd18fd6becde": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "470d52366ad34bf68aa85c72b4bbb265": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_55d2e0794a6c4d189bc5c90ded136d31", "placeholder": "\u200b", "style": "IPY_MODEL_69f1c703271b45cf9a65cd18fd6becde", "tabbable": null, "tooltip": null, "value": "100%"}}, "5db9be08eb994df9bb2ee482ae743606": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "da50f30e588349e0baa0e12883949fc6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0dc55df002254a049d64c0818e83dfec": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5db9be08eb994df9bb2ee482ae743606", "placeholder": "\u200b", "style": "IPY_MODEL_da50f30e588349e0baa0e12883949fc6", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007156631.25it/s]"}}, "1ba892c9e31c4a30a3d3cb9e453997df": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3e925f9a098d4e4ab28b64e9572ec39f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_470d52366ad34bf68aa85c72b4bbb265", "IPY_MODEL_552cd14f892e4370b81d6de1d16cb9b6", "IPY_MODEL_0dc55df002254a049d64c0818e83dfec"], "layout": "IPY_MODEL_1ba892c9e31c4a30a3d3cb9e453997df", "tabbable": null, "tooltip": null}}, "2d489e69a11348e4bf4ca48d63340020": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2973434f8feb46808d370338ee0dfd70": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "69cb9245df324d32a0db29498439374e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2d489e69a11348e4bf4ca48d63340020", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2973434f8feb46808d370338ee0dfd70", "tabbable": null, "tooltip": null, "value": 30.0}}, "809e4271d9aa4d588e2f33a4f1053d50": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2da0bb04fc3d416daa0b0728c411431b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "74a0cacf989e4c0e9b76e3a953048a7b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_809e4271d9aa4d588e2f33a4f1053d50", "placeholder": "\u200b", "style": "IPY_MODEL_2da0bb04fc3d416daa0b0728c411431b", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "7a9ad25ed6c8443f81e9d354b111a6dc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ad20dfcbd45c4df095bbf484c162e639": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ec25cc60e790449baf1181faf78a4dc7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7a9ad25ed6c8443f81e9d354b111a6dc", "placeholder": "\u200b", "style": "IPY_MODEL_ad20dfcbd45c4df095bbf484c162e639", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200722.12it/s]"}}, "6720f93603024e7cb73d36f73280c7e6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9c6574ba645e4b8ea40ef1219c914288": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_74a0cacf989e4c0e9b76e3a953048a7b", "IPY_MODEL_69cb9245df324d32a0db29498439374e", "IPY_MODEL_ec25cc60e790449baf1181faf78a4dc7"], "layout": "IPY_MODEL_6720f93603024e7cb73d36f73280c7e6", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"804b56b5e24a4e37a77b275cc294d902": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2128f699ffc84b23a0f4b345b242b0a4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f2fb0d48f28249c29369287b2265d162": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_804b56b5e24a4e37a77b275cc294d902", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2128f699ffc84b23a0f4b345b242b0a4", "tabbable": null, "tooltip": null, "value": 30.0}}, "603e621ccd6d4488955ba2132be6894b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bcf96128121b45859d82780e0e9a8742": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a1e77ec1b90d4fe5a9c48a07b4b508ca": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_603e621ccd6d4488955ba2132be6894b", "placeholder": "\u200b", "style": "IPY_MODEL_bcf96128121b45859d82780e0e9a8742", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "75d358124ff14cd79d51f3b3fe66cbdd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9e576a8acba249f98c4212116811834d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b04ebb07be02499aafefe9036afe7f5c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_75d358124ff14cd79d51f3b3fe66cbdd", "placeholder": "\u200b", "style": "IPY_MODEL_9e576a8acba249f98c4212116811834d", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007624.08it/s]"}}, "a59fe55f6b49495097476acd7cc97c0a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1f7e26eec961476c924c356ba5473da7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a1e77ec1b90d4fe5a9c48a07b4b508ca", "IPY_MODEL_f2fb0d48f28249c29369287b2265d162", "IPY_MODEL_b04ebb07be02499aafefe9036afe7f5c"], "layout": "IPY_MODEL_a59fe55f6b49495097476acd7cc97c0a", "tabbable": null, "tooltip": null}}, "b16fc49e5b80481d9ce7bcf7f3b40056": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c5703f4d5b1d4a2c98c14cc3e86af9b1": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4c56c6324a9345fda458ed6eeaf76c65": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b16fc49e5b80481d9ce7bcf7f3b40056", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c5703f4d5b1d4a2c98c14cc3e86af9b1", "tabbable": null, "tooltip": null, "value": 30.0}}, "3849e3f901e14e57a23e191b8d52d8f6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d97528732a3f4f38b3cefa80e3d42a3f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "654ede02fb534318a290a183035398a6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3849e3f901e14e57a23e191b8d52d8f6", "placeholder": "\u200b", "style": "IPY_MODEL_d97528732a3f4f38b3cefa80e3d42a3f", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "e85bc70d8cce49409f67932946e2cea0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8063c18cb2db42c58df60baaba760fb1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4b02235d2b5740108ed433f067f327fd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e85bc70d8cce49409f67932946e2cea0", "placeholder": "\u200b", "style": "IPY_MODEL_8063c18cb2db42c58df60baaba760fb1", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:23<00:00,\u2007\u20071.32it/s]"}}, "394107ba38d040fc95d5278513957ddc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "89a99af2f38c4428bb4f8c1b96803d77": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_654ede02fb534318a290a183035398a6", "IPY_MODEL_4c56c6324a9345fda458ed6eeaf76c65", "IPY_MODEL_4b02235d2b5740108ed433f067f327fd"], "layout": "IPY_MODEL_394107ba38d040fc95d5278513957ddc", "tabbable": null, "tooltip": null}}, "4c404e13453a4421abeb50cdd156cf51": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d93d2bd201044535b71d5f65d46adc5c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "74e12652d3334e29be959e7ae03f2173": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4c404e13453a4421abeb50cdd156cf51", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d93d2bd201044535b71d5f65d46adc5c", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "993290e717a34acb9226586e5b808bc7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "00a7484c68e7424b926fd945904927e7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "437e5db434794311869ca782c86bd18c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_993290e717a34acb9226586e5b808bc7", "placeholder": "\u200b", "style": "IPY_MODEL_00a7484c68e7424b926fd945904927e7", "tabbable": null, "tooltip": null, "value": "100%"}}, "d34241fe3d674ccab73ccf34277eb16f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "61736df336154c538b66c71840035d3b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5f997321aea3406691803c0c509cb482": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d34241fe3d674ccab73ccf34277eb16f", "placeholder": "\u200b", "style": "IPY_MODEL_61736df336154c538b66c71840035d3b", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007152695.26it/s]"}}, "268ebaed9336425bb87320259e195260": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "15b7e5ecfcd9415bb1577c1b5a9c71c6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_437e5db434794311869ca782c86bd18c", "IPY_MODEL_74e12652d3334e29be959e7ae03f2173", "IPY_MODEL_5f997321aea3406691803c0c509cb482"], "layout": "IPY_MODEL_268ebaed9336425bb87320259e195260", "tabbable": null, "tooltip": null}}, "e6a5caa09ff841e18bd537fcc98e63ed": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "00fa259f5c3e4b5791aa149f98221ace": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "266d6230d3b44c6699a62c30d4f96a99": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e6a5caa09ff841e18bd537fcc98e63ed", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_00fa259f5c3e4b5791aa149f98221ace", "tabbable": null, "tooltip": null, "value": 30.0}}, "b58afabe32fb433098547918b433ba89": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ce12e5810009489089586cbc343fa5ea": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7f771dba0cf24e28b606dda5f4d75fb2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b58afabe32fb433098547918b433ba89", "placeholder": "\u200b", "style": "IPY_MODEL_ce12e5810009489089586cbc343fa5ea", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "8f8c975a20db49d9a571e1c74cd0f9a3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ed7e4a61585744a49e606316dccc0b62": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "034a2244415a41caa33e8ea418a9f6a8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8f8c975a20db49d9a571e1c74cd0f9a3", "placeholder": "\u200b", "style": "IPY_MODEL_ed7e4a61585744a49e606316dccc0b62", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200720.26it/s]"}}, "8b9c6c40fde941ec8cb633aeee2cf626": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "32c7adc2f9164138a04e8b6209de98df": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7f771dba0cf24e28b606dda5f4d75fb2", "IPY_MODEL_266d6230d3b44c6699a62c30d4f96a99", "IPY_MODEL_034a2244415a41caa33e8ea418a9f6a8"], "layout": "IPY_MODEL_8b9c6c40fde941ec8cb633aeee2cf626", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 58774a79b..caa3f2c41 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:57.804859Z", - "iopub.status.busy": "2024-05-02T13:37:57.804392Z", - "iopub.status.idle": "2024-05-02T13:37:59.142610Z", - "shell.execute_reply": "2024-05-02T13:37:59.141972Z" + "iopub.execute_input": "2024-05-03T22:21:09.354623Z", + "iopub.status.busy": "2024-05-03T22:21:09.354237Z", + "iopub.status.idle": "2024-05-03T22:21:10.777441Z", + "shell.execute_reply": "2024-05-03T22:21:10.776744Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:37:59.144920Z", - "iopub.status.busy": "2024-05-02T13:37:59.144750Z", - "iopub.status.idle": "2024-05-02T13:38:40.069504Z", - "shell.execute_reply": "2024-05-02T13:38:40.068821Z" + "iopub.execute_input": "2024-05-03T22:21:10.780051Z", + "iopub.status.busy": "2024-05-03T22:21:10.779824Z", + "iopub.status.idle": "2024-05-03T22:21:54.904003Z", + "shell.execute_reply": "2024-05-03T22:21:54.903350Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:38:40.072006Z", - "iopub.status.busy": "2024-05-02T13:38:40.071649Z", - "iopub.status.idle": "2024-05-02T13:38:41.144536Z", - "shell.execute_reply": "2024-05-02T13:38:41.143998Z" + "iopub.execute_input": "2024-05-03T22:21:54.906583Z", + "iopub.status.busy": "2024-05-03T22:21:54.906244Z", + "iopub.status.idle": "2024-05-03T22:21:56.059453Z", + "shell.execute_reply": "2024-05-03T22:21:56.058793Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:38:41.147135Z", - "iopub.status.busy": "2024-05-02T13:38:41.146624Z", - "iopub.status.idle": "2024-05-02T13:38:41.149860Z", - "shell.execute_reply": "2024-05-02T13:38:41.149339Z" + "iopub.execute_input": "2024-05-03T22:21:56.062349Z", + "iopub.status.busy": "2024-05-03T22:21:56.061885Z", + "iopub.status.idle": "2024-05-03T22:21:56.065288Z", + "shell.execute_reply": "2024-05-03T22:21:56.064811Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:38:41.151955Z", - "iopub.status.busy": "2024-05-02T13:38:41.151564Z", - "iopub.status.idle": "2024-05-02T13:38:41.155359Z", - "shell.execute_reply": "2024-05-02T13:38:41.154844Z" + "iopub.execute_input": "2024-05-03T22:21:56.067491Z", + "iopub.status.busy": "2024-05-03T22:21:56.067170Z", + "iopub.status.idle": "2024-05-03T22:21:56.071116Z", + "shell.execute_reply": "2024-05-03T22:21:56.070663Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:38:41.157350Z", - "iopub.status.busy": "2024-05-02T13:38:41.157037Z", - "iopub.status.idle": "2024-05-02T13:38:41.160371Z", - "shell.execute_reply": "2024-05-02T13:38:41.159859Z" + "iopub.execute_input": "2024-05-03T22:21:56.073204Z", + "iopub.status.busy": "2024-05-03T22:21:56.072874Z", + "iopub.status.idle": "2024-05-03T22:21:56.076491Z", + "shell.execute_reply": "2024-05-03T22:21:56.076037Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:38:41.162419Z", - "iopub.status.busy": "2024-05-02T13:38:41.162107Z", - "iopub.status.idle": "2024-05-02T13:38:41.164772Z", - "shell.execute_reply": "2024-05-02T13:38:41.164346Z" + "iopub.execute_input": "2024-05-03T22:21:56.078540Z", + "iopub.status.busy": "2024-05-03T22:21:56.078228Z", + "iopub.status.idle": "2024-05-03T22:21:56.081127Z", + "shell.execute_reply": "2024-05-03T22:21:56.080608Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:38:41.166771Z", - "iopub.status.busy": "2024-05-02T13:38:41.166367Z", - "iopub.status.idle": "2024-05-02T13:39:15.391652Z", - "shell.execute_reply": "2024-05-02T13:39:15.390969Z" + "iopub.execute_input": "2024-05-03T22:21:56.083199Z", + "iopub.status.busy": "2024-05-03T22:21:56.082801Z", + "iopub.status.idle": "2024-05-03T22:22:31.914462Z", + "shell.execute_reply": "2024-05-03T22:22:31.913831Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7f6b3854caf54fcf8a42eddf163358c8", + "model_id": "1f7e26eec961476c924c356ba5473da7", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a7add3dc3ff74f47b0b4ff652d4269f6", + "model_id": "89a99af2f38c4428bb4f8c1b96803d77", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:39:15.394584Z", - "iopub.status.busy": "2024-05-02T13:39:15.394175Z", - "iopub.status.idle": "2024-05-02T13:39:16.061626Z", - "shell.execute_reply": "2024-05-02T13:39:16.061133Z" + "iopub.execute_input": "2024-05-03T22:22:31.917006Z", + "iopub.status.busy": "2024-05-03T22:22:31.916753Z", + "iopub.status.idle": "2024-05-03T22:22:32.610930Z", + "shell.execute_reply": "2024-05-03T22:22:32.610290Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:39:16.063966Z", - "iopub.status.busy": "2024-05-02T13:39:16.063499Z", - "iopub.status.idle": "2024-05-02T13:39:18.787389Z", - "shell.execute_reply": "2024-05-02T13:39:18.786894Z" + "iopub.execute_input": "2024-05-03T22:22:32.613538Z", + "iopub.status.busy": "2024-05-03T22:22:32.612996Z", + "iopub.status.idle": "2024-05-03T22:22:35.377896Z", + "shell.execute_reply": "2024-05-03T22:22:35.377269Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:39:18.789725Z", - "iopub.status.busy": "2024-05-02T13:39:18.789357Z", - "iopub.status.idle": "2024-05-02T13:39:51.060869Z", - "shell.execute_reply": "2024-05-02T13:39:51.060398Z" + "iopub.execute_input": "2024-05-03T22:22:35.380306Z", + "iopub.status.busy": "2024-05-03T22:22:35.379907Z", + "iopub.status.idle": "2024-05-03T22:23:08.297444Z", + "shell.execute_reply": "2024-05-03T22:23:08.296915Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3e925f9a098d4e4ab28b64e9572ec39f", + "model_id": "15b7e5ecfcd9415bb1577c1b5a9c71c6", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:39:51.063093Z", - "iopub.status.busy": "2024-05-02T13:39:51.062765Z", - "iopub.status.idle": "2024-05-02T13:40:05.397590Z", - "shell.execute_reply": "2024-05-02T13:40:05.397039Z" + "iopub.execute_input": "2024-05-03T22:23:08.299784Z", + "iopub.status.busy": "2024-05-03T22:23:08.299426Z", + "iopub.status.idle": "2024-05-03T22:23:22.891326Z", + "shell.execute_reply": "2024-05-03T22:23:22.890743Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:05.399978Z", - "iopub.status.busy": "2024-05-02T13:40:05.399692Z", - "iopub.status.idle": "2024-05-02T13:40:09.050190Z", - "shell.execute_reply": "2024-05-02T13:40:09.049662Z" + "iopub.execute_input": "2024-05-03T22:23:22.893861Z", + "iopub.status.busy": "2024-05-03T22:23:22.893547Z", + "iopub.status.idle": "2024-05-03T22:23:26.757959Z", + "shell.execute_reply": "2024-05-03T22:23:26.757325Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:09.052159Z", - "iopub.status.busy": "2024-05-02T13:40:09.051987Z", - "iopub.status.idle": "2024-05-02T13:40:10.421727Z", - "shell.execute_reply": "2024-05-02T13:40:10.421117Z" + "iopub.execute_input": "2024-05-03T22:23:26.760095Z", + "iopub.status.busy": "2024-05-03T22:23:26.759896Z", + "iopub.status.idle": "2024-05-03T22:23:28.260360Z", + "shell.execute_reply": "2024-05-03T22:23:28.259713Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9c6574ba645e4b8ea40ef1219c914288", + "model_id": "32c7adc2f9164138a04e8b6209de98df", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:10.423791Z", - "iopub.status.busy": "2024-05-02T13:40:10.423602Z", - "iopub.status.idle": "2024-05-02T13:40:10.451207Z", - "shell.execute_reply": "2024-05-02T13:40:10.450712Z" + "iopub.execute_input": "2024-05-03T22:23:28.262823Z", + "iopub.status.busy": "2024-05-03T22:23:28.262460Z", + "iopub.status.idle": "2024-05-03T22:23:28.296131Z", + "shell.execute_reply": "2024-05-03T22:23:28.295453Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:10.453574Z", - "iopub.status.busy": "2024-05-02T13:40:10.453381Z", - "iopub.status.idle": "2024-05-02T13:40:16.471802Z", - "shell.execute_reply": "2024-05-02T13:40:16.471236Z" + "iopub.execute_input": "2024-05-03T22:23:28.299108Z", + "iopub.status.busy": "2024-05-03T22:23:28.298591Z", + "iopub.status.idle": "2024-05-03T22:23:34.487863Z", + "shell.execute_reply": "2024-05-03T22:23:34.487313Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:16.474044Z", - "iopub.status.busy": "2024-05-02T13:40:16.473686Z", - "iopub.status.idle": "2024-05-02T13:40:16.530666Z", - "shell.execute_reply": "2024-05-02T13:40:16.530163Z" + "iopub.execute_input": "2024-05-03T22:23:34.490428Z", + "iopub.status.busy": "2024-05-03T22:23:34.489950Z", + "iopub.status.idle": "2024-05-03T22:23:34.546886Z", + "shell.execute_reply": "2024-05-03T22:23:34.546330Z" }, "nbsphinx": "hidden" }, @@ -1038,7 +1038,154 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "042e10c5ba034c929b49c9486b6ab066": { + "00a7484c68e7424b926fd945904927e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "00fa259f5c3e4b5791aa149f98221ace": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "034a2244415a41caa33e8ea418a9f6a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8f8c975a20db49d9a571e1c74cd0f9a3", + "placeholder": "​", + "style": "IPY_MODEL_ed7e4a61585744a49e606316dccc0b62", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 20.26it/s]" + } + }, + "15b7e5ecfcd9415bb1577c1b5a9c71c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_437e5db434794311869ca782c86bd18c", + "IPY_MODEL_74e12652d3334e29be959e7ae03f2173", + "IPY_MODEL_5f997321aea3406691803c0c509cb482" + ], + "layout": "IPY_MODEL_268ebaed9336425bb87320259e195260", + "tabbable": null, + "tooltip": null + } + }, + "1f7e26eec961476c924c356ba5473da7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a1e77ec1b90d4fe5a9c48a07b4b508ca", + "IPY_MODEL_f2fb0d48f28249c29369287b2265d162", + "IPY_MODEL_b04ebb07be02499aafefe9036afe7f5c" + ], + "layout": "IPY_MODEL_a59fe55f6b49495097476acd7cc97c0a", + "tabbable": null, + "tooltip": null + } + }, + "2128f699ffc84b23a0f4b345b242b0a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "266d6230d3b44c6699a62c30d4f96a99": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e6a5caa09ff841e18bd537fcc98e63ed", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_00fa259f5c3e4b5791aa149f98221ace", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "268ebaed9336425bb87320259e195260": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1091,53 +1238,31 @@ "width": null } }, - "0dc55df002254a049d64c0818e83dfec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5db9be08eb994df9bb2ee482ae743606", - "placeholder": "​", - "style": "IPY_MODEL_da50f30e588349e0baa0e12883949fc6", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 156631.25it/s]" - } - }, - "122af635c8124db98df8e27ed569191c": { + "32c7adc2f9164138a04e8b6209de98df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9df790df30534485bf022e589bc6f737", - "placeholder": "​", - "style": "IPY_MODEL_fb624f427e4448b3904eb9654441b85f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7f771dba0cf24e28b606dda5f4d75fb2", + "IPY_MODEL_266d6230d3b44c6699a62c30d4f96a99", + "IPY_MODEL_034a2244415a41caa33e8ea418a9f6a8" + ], + "layout": "IPY_MODEL_8b9c6c40fde941ec8cb633aeee2cf626", "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "tooltip": null } }, - "13e1e07aab8a4ead9926d4a411481bca": { + "3849e3f901e14e57a23e191b8d52d8f6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1190,7 +1315,7 @@ "width": null } }, - "1ba892c9e31c4a30a3d3cb9e453997df": { + "394107ba38d040fc95d5278513957ddc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1243,7 +1368,7 @@ "width": null } }, - "1cfd8cda1e104ad593c28fc637647da9": { + "437e5db434794311869ca782c86bd18c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1258,67 +1383,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9728914de97a400b9fe4c49e314519ea", + "layout": "IPY_MODEL_993290e717a34acb9226586e5b808bc7", "placeholder": "​", - "style": "IPY_MODEL_da499bfc9f0149d88c5b1e6481ff086c", + "style": "IPY_MODEL_00a7484c68e7424b926fd945904927e7", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:22<00:00,  1.41it/s]" - } - }, - "2739926b041e462da539d4629731c7db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2973434f8feb46808d370338ee0dfd70": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "100%" } }, - "2b33f9909421489d9ffdf3159e834d65": { + "4b02235d2b5740108ed433f067f327fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e85bc70d8cce49409f67932946e2cea0", + "placeholder": "​", + "style": "IPY_MODEL_8063c18cb2db42c58df60baaba760fb1", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:23<00:00,  1.32it/s]" } }, - "2d489e69a11348e4bf4ca48d63340020": { + "4c404e13453a4421abeb50cdd156cf51": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1371,25 +1467,56 @@ "width": null } }, - "2da0bb04fc3d416daa0b0728c411431b": { + "4c56c6324a9345fda458ed6eeaf76c65": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b16fc49e5b80481d9ce7bcf7f3b40056", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c5703f4d5b1d4a2c98c14cc3e86af9b1", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "5f997321aea3406691803c0c509cb482": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d34241fe3d674ccab73ccf34277eb16f", + "placeholder": "​", + "style": "IPY_MODEL_61736df336154c538b66c71840035d3b", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:32<00:00, 152695.26it/s]" } }, - "2e5e2b8bfa4247428f673528ae90464a": { + "603e621ccd6d4488955ba2132be6894b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1442,31 +1569,25 @@ "width": null } }, - "3e925f9a098d4e4ab28b64e9572ec39f": { + "61736df336154c538b66c71840035d3b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_470d52366ad34bf68aa85c72b4bbb265", - "IPY_MODEL_552cd14f892e4370b81d6de1d16cb9b6", - "IPY_MODEL_0dc55df002254a049d64c0818e83dfec" - ], - "layout": "IPY_MODEL_1ba892c9e31c4a30a3d3cb9e453997df", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "470d52366ad34bf68aa85c72b4bbb265": { + "654ede02fb534318a290a183035398a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1481,15 +1602,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_55d2e0794a6c4d189bc5c90ded136d31", + "layout": "IPY_MODEL_3849e3f901e14e57a23e191b8d52d8f6", "placeholder": "​", - "style": "IPY_MODEL_69f1c703271b45cf9a65cd18fd6becde", + "style": "IPY_MODEL_d97528732a3f4f38b3cefa80e3d42a3f", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "number of examples processed for checking labels: 100%" } }, - "552cd14f892e4370b81d6de1d16cb9b6": { + "74e12652d3334e29be959e7ae03f2173": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1505,17 +1626,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_93169db257de43cba79968a23af14769", + "layout": "IPY_MODEL_4c404e13453a4421abeb50cdd156cf51", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_5bfbb1e9662b46dda0774c60eb40200b", + "style": "IPY_MODEL_d93d2bd201044535b71d5f65d46adc5c", "tabbable": null, "tooltip": null, "value": 4997683.0 } }, - "55d2e0794a6c4d189bc5c90ded136d31": { + "75d358124ff14cd79d51f3b3fe66cbdd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1568,7 +1689,7 @@ "width": null } }, - "58164694d8004ebb9705182691d7f80b": { + "7f771dba0cf24e28b606dda5f4d75fb2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1583,31 +1704,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2e5e2b8bfa4247428f673528ae90464a", + "layout": "IPY_MODEL_b58afabe32fb433098547918b433ba89", "placeholder": "​", - "style": "IPY_MODEL_2739926b041e462da539d4629731c7db", + "style": "IPY_MODEL_ce12e5810009489089586cbc343fa5ea", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 611.81it/s]" - } - }, - "5bfbb1e9662b46dda0774c60eb40200b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "images processed using softmin: 100%" } }, - "5db9be08eb994df9bb2ee482ae743606": { + "804b56b5e24a4e37a77b275cc294d902": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1660,60 +1765,49 @@ "width": null } }, - "62c5e3b2f5384279ad7514da28f8a03b": { - "model_module": "@jupyter-widgets/base", + "8063c18cb2db42c58df60baaba760fb1": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "89a99af2f38c4428bb4f8c1b96803d77": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_654ede02fb534318a290a183035398a6", + "IPY_MODEL_4c56c6324a9345fda458ed6eeaf76c65", + "IPY_MODEL_4b02235d2b5740108ed433f067f327fd" + ], + "layout": "IPY_MODEL_394107ba38d040fc95d5278513957ddc", + "tabbable": null, + "tooltip": null } }, - "6720f93603024e7cb73d36f73280c7e6": { + "8b9c6c40fde941ec8cb633aeee2cf626": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1766,100 +1860,7 @@ "width": null } }, - "69cb9245df324d32a0db29498439374e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2d489e69a11348e4bf4ca48d63340020", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2973434f8feb46808d370338ee0dfd70", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "69f1c703271b45cf9a65cd18fd6becde": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "74a0cacf989e4c0e9b76e3a953048a7b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_809e4271d9aa4d588e2f33a4f1053d50", - "placeholder": "​", - "style": "IPY_MODEL_2da0bb04fc3d416daa0b0728c411431b", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "78c4a72ddc944a8e8a5109452da16874": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b79be033e0a94f57bccef8f3a33a530b", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b8dc241375094b188768a05ac9ec580d", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "7a9ad25ed6c8443f81e9d354b111a6dc": { + "8f8c975a20db49d9a571e1c74cd0f9a3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1897,46 +1898,22 @@ "justify_items": null, "left": null, "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7f6b3854caf54fcf8a42eddf163358c8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bf997ec2fc2b4e5f967bc0ca4cd87fd9", - "IPY_MODEL_78c4a72ddc944a8e8a5109452da16874", - "IPY_MODEL_58164694d8004ebb9705182691d7f80b" - ], - "layout": "IPY_MODEL_efbdcf1278be43a2bdc67aa224374ffd", - "tabbable": null, - "tooltip": null + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "809e4271d9aa4d588e2f33a4f1053d50": { + "993290e717a34acb9226586e5b808bc7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1989,7 +1966,48 @@ "width": null } }, - "93169db257de43cba79968a23af14769": { + "9e576a8acba249f98c4212116811834d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a1e77ec1b90d4fe5a9c48a07b4b508ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_603e621ccd6d4488955ba2132be6894b", + "placeholder": "​", + "style": "IPY_MODEL_bcf96128121b45859d82780e0e9a8742", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "a59fe55f6b49495097476acd7cc97c0a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2042,7 +2060,30 @@ "width": null } }, - "9728914de97a400b9fe4c49e314519ea": { + "b04ebb07be02499aafefe9036afe7f5c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_75d358124ff14cd79d51f3b3fe66cbdd", + "placeholder": "​", + "style": "IPY_MODEL_9e576a8acba249f98c4212116811834d", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 624.08it/s]" + } + }, + "b16fc49e5b80481d9ce7bcf7f3b40056": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2095,31 +2136,7 @@ "width": null } }, - "9c6574ba645e4b8ea40ef1219c914288": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_74a0cacf989e4c0e9b76e3a953048a7b", - "IPY_MODEL_69cb9245df324d32a0db29498439374e", - "IPY_MODEL_ec25cc60e790449baf1181faf78a4dc7" - ], - "layout": "IPY_MODEL_6720f93603024e7cb73d36f73280c7e6", - "tabbable": null, - "tooltip": null - } - }, - "9df790df30534485bf022e589bc6f737": { + "b58afabe32fb433098547918b433ba89": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2172,57 +2189,41 @@ "width": null } }, - "9feea4d03f374c7cb12231509e414971": { + "bcf96128121b45859d82780e0e9a8742": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_042e10c5ba034c929b49c9486b6ab066", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_de3a3da5e7ac4e6fbfe91d13babe05d4", - "tabbable": null, - "tooltip": null, - "value": 30.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a7add3dc3ff74f47b0b4ff652d4269f6": { + "c5703f4d5b1d4a2c98c14cc3e86af9b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_122af635c8124db98df8e27ed569191c", - "IPY_MODEL_9feea4d03f374c7cb12231509e414971", - "IPY_MODEL_1cfd8cda1e104ad593c28fc637647da9" - ], - "layout": "IPY_MODEL_62c5e3b2f5384279ad7514da28f8a03b", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "ad20dfcbd45c4df095bbf484c162e639": { + "ce12e5810009489089586cbc343fa5ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2240,7 +2241,7 @@ "text_color": null } }, - "b79be033e0a94f57bccef8f3a33a530b": { + "d34241fe3d674ccab73ccf34277eb16f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2293,7 +2294,7 @@ "width": null } }, - "b8dc241375094b188768a05ac9ec580d": { + "d93d2bd201044535b71d5f65d46adc5c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2309,48 +2310,7 @@ "description_width": "" } }, - "bf997ec2fc2b4e5f967bc0ca4cd87fd9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_13e1e07aab8a4ead9926d4a411481bca", - "placeholder": "​", - "style": "IPY_MODEL_2b33f9909421489d9ffdf3159e834d65", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "da499bfc9f0149d88c5b1e6481ff086c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "da50f30e588349e0baa0e12883949fc6": { + "d97528732a3f4f38b3cefa80e3d42a3f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2368,46 +2328,60 @@ "text_color": null } }, - "de3a3da5e7ac4e6fbfe91d13babe05d4": { - "model_module": "@jupyter-widgets/controls", + "e6a5caa09ff841e18bd537fcc98e63ed": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ec25cc60e790449baf1181faf78a4dc7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7a9ad25ed6c8443f81e9d354b111a6dc", - "placeholder": "​", - "style": "IPY_MODEL_ad20dfcbd45c4df095bbf484c162e639", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 22.12it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "efbdcf1278be43a2bdc67aa224374ffd": { + "e85bc70d8cce49409f67932946e2cea0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2460,7 +2434,7 @@ "width": null } }, - "fb624f427e4448b3904eb9654441b85f": { + "ed7e4a61585744a49e606316dccc0b62": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2477,6 +2451,32 @@ "font_size": null, "text_color": null } + }, + "f2fb0d48f28249c29369287b2265d162": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_804b56b5e24a4e37a77b275cc294d902", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2128f699ffc84b23a0f4b345b242b0a4", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } } }, "version_major": 2, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 2756941d9..3d503564a 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -676,16 +676,16 @@

1. Install required dependencies and download data

diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index 5890cf2c4..fbe7fe68d 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:18.838890Z", - "iopub.status.busy": "2024-05-02T13:40:18.838736Z", - "iopub.status.idle": "2024-05-02T13:40:20.303449Z", - "shell.execute_reply": "2024-05-02T13:40:20.302883Z" + "iopub.execute_input": "2024-05-03T22:23:37.109560Z", + "iopub.status.busy": "2024-05-03T22:23:37.109386Z", + "iopub.status.idle": "2024-05-03T22:23:38.354224Z", + "shell.execute_reply": "2024-05-03T22:23:38.353645Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-05-02 13:40:18-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-05-03 22:23:37-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,14 +94,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "185.93.1.251, 2400:52e0:1a00::894:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.251|:443... connected.\r\n" + "185.93.1.251, 2400:52e0:1a00::1068:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.251|:443... " ] }, { "name": "stdout", "output_type": "stream", "text": [ + "connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -122,10 +123,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 90%[=================> ] 865.67K 4.10MB/s \r", - "conll2003.zip 100%[===================>] 959.94K 4.49MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-05-02 13:40:19 (4.49 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-05-03 22:23:37 (6.53 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -137,14 +137,7 @@ "Archive: conll2003.zip\r\n", " inflating: data/metadata \r\n", " inflating: data/test.txt \r\n", - " inflating: data/train.txt " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r\n", + " inflating: data/train.txt \r\n", " inflating: data/valid.txt \r\n" ] }, @@ -152,9 +145,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-05-02 13:40:19-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 16.182.101.65, 3.5.28.252, 52.216.177.115, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|16.182.101.65|:443... connected.\r\n", + "--2024-05-03 22:23:37-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.230.89, 54.231.198.169, 3.5.20.164, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.230.89|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -177,7 +170,7 @@ "\r", "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.1s \r\n", "\r\n", - "2024-05-02 13:40:20 (120 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-05-03 22:23:38 (151 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -194,10 +187,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:20.305771Z", - "iopub.status.busy": "2024-05-02T13:40:20.305463Z", - "iopub.status.idle": "2024-05-02T13:40:21.515797Z", - "shell.execute_reply": "2024-05-02T13:40:21.515245Z" + "iopub.execute_input": "2024-05-03T22:23:38.356845Z", + "iopub.status.busy": "2024-05-03T22:23:38.356625Z", + "iopub.status.idle": "2024-05-03T22:23:39.676466Z", + "shell.execute_reply": "2024-05-03T22:23:39.675901Z" }, "nbsphinx": "hidden" }, @@ -208,7 +201,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@b13d27e9b9524b6853d31a585111bd1eeedc173b\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@3c6c9a107ad0b56cc6b85476a11f22d7b27f9219\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -234,10 +227,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:21.518227Z", - "iopub.status.busy": "2024-05-02T13:40:21.517942Z", - "iopub.status.idle": "2024-05-02T13:40:21.521185Z", - "shell.execute_reply": "2024-05-02T13:40:21.520768Z" + "iopub.execute_input": "2024-05-03T22:23:39.678961Z", + "iopub.status.busy": "2024-05-03T22:23:39.678662Z", + "iopub.status.idle": "2024-05-03T22:23:39.682231Z", + "shell.execute_reply": "2024-05-03T22:23:39.681754Z" } }, "outputs": [], @@ -287,10 +280,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:21.523266Z", - "iopub.status.busy": "2024-05-02T13:40:21.522960Z", - "iopub.status.idle": "2024-05-02T13:40:21.526363Z", - "shell.execute_reply": "2024-05-02T13:40:21.525926Z" + "iopub.execute_input": "2024-05-03T22:23:39.684500Z", + "iopub.status.busy": "2024-05-03T22:23:39.684094Z", + "iopub.status.idle": "2024-05-03T22:23:39.687145Z", + "shell.execute_reply": "2024-05-03T22:23:39.686710Z" }, "nbsphinx": "hidden" }, @@ -308,10 +301,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:21.528351Z", - "iopub.status.busy": "2024-05-02T13:40:21.528032Z", - "iopub.status.idle": "2024-05-02T13:40:30.505208Z", - "shell.execute_reply": "2024-05-02T13:40:30.504621Z" + "iopub.execute_input": "2024-05-03T22:23:39.689097Z", + "iopub.status.busy": "2024-05-03T22:23:39.688919Z", + "iopub.status.idle": "2024-05-03T22:23:48.757440Z", + "shell.execute_reply": "2024-05-03T22:23:48.756894Z" } }, "outputs": [], @@ -385,10 +378,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:30.507896Z", - "iopub.status.busy": "2024-05-02T13:40:30.507445Z", - "iopub.status.idle": "2024-05-02T13:40:30.512858Z", - "shell.execute_reply": "2024-05-02T13:40:30.512422Z" + "iopub.execute_input": "2024-05-03T22:23:48.759866Z", + "iopub.status.busy": "2024-05-03T22:23:48.759658Z", + "iopub.status.idle": "2024-05-03T22:23:48.765417Z", + "shell.execute_reply": "2024-05-03T22:23:48.764899Z" }, "nbsphinx": "hidden" }, @@ -428,10 +421,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:30.514973Z", - "iopub.status.busy": "2024-05-02T13:40:30.514562Z", - "iopub.status.idle": "2024-05-02T13:40:30.847546Z", - "shell.execute_reply": "2024-05-02T13:40:30.847003Z" + "iopub.execute_input": "2024-05-03T22:23:48.767520Z", + "iopub.status.busy": "2024-05-03T22:23:48.767327Z", + "iopub.status.idle": "2024-05-03T22:23:49.131868Z", + "shell.execute_reply": "2024-05-03T22:23:49.131295Z" } }, "outputs": [], @@ -468,10 +461,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:30.849872Z", - "iopub.status.busy": "2024-05-02T13:40:30.849552Z", - "iopub.status.idle": "2024-05-02T13:40:30.853912Z", - "shell.execute_reply": "2024-05-02T13:40:30.853373Z" + "iopub.execute_input": "2024-05-03T22:23:49.134505Z", + "iopub.status.busy": "2024-05-03T22:23:49.134179Z", + "iopub.status.idle": "2024-05-03T22:23:49.138593Z", + "shell.execute_reply": "2024-05-03T22:23:49.138045Z" } }, "outputs": [ @@ -543,10 +536,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:30.855948Z", - "iopub.status.busy": "2024-05-02T13:40:30.855548Z", - "iopub.status.idle": "2024-05-02T13:40:33.093365Z", - "shell.execute_reply": "2024-05-02T13:40:33.092608Z" + "iopub.execute_input": "2024-05-03T22:23:49.140885Z", + "iopub.status.busy": "2024-05-03T22:23:49.140596Z", + "iopub.status.idle": "2024-05-03T22:23:51.622613Z", + "shell.execute_reply": "2024-05-03T22:23:51.621823Z" } }, "outputs": [], @@ -568,10 +561,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:33.096362Z", - "iopub.status.busy": "2024-05-02T13:40:33.095810Z", - "iopub.status.idle": "2024-05-02T13:40:33.099757Z", - "shell.execute_reply": "2024-05-02T13:40:33.099252Z" + "iopub.execute_input": "2024-05-03T22:23:51.625864Z", + "iopub.status.busy": "2024-05-03T22:23:51.625130Z", + "iopub.status.idle": "2024-05-03T22:23:51.629398Z", + "shell.execute_reply": "2024-05-03T22:23:51.628892Z" } }, "outputs": [ @@ -607,10 +600,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:33.101776Z", - "iopub.status.busy": "2024-05-02T13:40:33.101453Z", - "iopub.status.idle": "2024-05-02T13:40:33.106479Z", - "shell.execute_reply": "2024-05-02T13:40:33.105927Z" + "iopub.execute_input": "2024-05-03T22:23:51.631367Z", + "iopub.status.busy": "2024-05-03T22:23:51.631188Z", + "iopub.status.idle": "2024-05-03T22:23:51.636936Z", + "shell.execute_reply": "2024-05-03T22:23:51.636445Z" } }, "outputs": [ @@ -788,10 +781,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:33.108502Z", - "iopub.status.busy": "2024-05-02T13:40:33.108179Z", - "iopub.status.idle": "2024-05-02T13:40:33.133976Z", - "shell.execute_reply": "2024-05-02T13:40:33.133529Z" + "iopub.execute_input": "2024-05-03T22:23:51.638922Z", + "iopub.status.busy": "2024-05-03T22:23:51.638726Z", + "iopub.status.idle": "2024-05-03T22:23:51.667029Z", + "shell.execute_reply": "2024-05-03T22:23:51.666455Z" } }, "outputs": [ @@ -893,10 +886,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:33.135992Z", - "iopub.status.busy": "2024-05-02T13:40:33.135668Z", - "iopub.status.idle": "2024-05-02T13:40:33.139857Z", - "shell.execute_reply": "2024-05-02T13:40:33.139427Z" + "iopub.execute_input": "2024-05-03T22:23:51.669153Z", + "iopub.status.busy": "2024-05-03T22:23:51.668968Z", + "iopub.status.idle": "2024-05-03T22:23:51.674198Z", + "shell.execute_reply": "2024-05-03T22:23:51.673668Z" } }, "outputs": [ @@ -970,10 +963,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:33.141842Z", - "iopub.status.busy": "2024-05-02T13:40:33.141534Z", - "iopub.status.idle": "2024-05-02T13:40:34.486384Z", - "shell.execute_reply": "2024-05-02T13:40:34.485763Z" + "iopub.execute_input": "2024-05-03T22:23:51.676452Z", + "iopub.status.busy": "2024-05-03T22:23:51.676059Z", + "iopub.status.idle": "2024-05-03T22:23:53.102278Z", + "shell.execute_reply": "2024-05-03T22:23:53.101726Z" } }, "outputs": [ @@ -1145,10 +1138,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-05-02T13:40:34.488408Z", - "iopub.status.busy": "2024-05-02T13:40:34.488226Z", - "iopub.status.idle": "2024-05-02T13:40:34.492323Z", - "shell.execute_reply": "2024-05-02T13:40:34.491867Z" + "iopub.execute_input": "2024-05-03T22:23:53.104731Z", + "iopub.status.busy": "2024-05-03T22:23:53.104290Z", + "iopub.status.idle": "2024-05-03T22:23:53.108435Z", + "shell.execute_reply": "2024-05-03T22:23:53.107944Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index c6194524a..21eae59c1 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.6.3", - commit_hash: "b13d27e9b9524b6853d31a585111bd1eeedc173b", + commit_hash: "3c6c9a107ad0b56cc6b85476a11f22d7b27f9219", }; \ No newline at end of file