diff --git a/master/.buildinfo b/master/.buildinfo
index fb34d3623..278c68cc7 100644
--- a/master/.buildinfo
+++ b/master/.buildinfo
@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
-config: 8c225318e6cf8d2ee6cecc1cde9d9d90
+config: c1f0863980e8370a7afca0a268b5ef38
tags: 645f666f9bcd5a90fca523b33c5a78b7
diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree
index f2c285d69..c9fc5e393 100644
Binary files a/master/.doctrees/cleanlab/benchmarking/index.doctree and b/master/.doctrees/cleanlab/benchmarking/index.doctree differ
diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree
index ddfd3d886..b391482a4 100644
Binary files a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree and b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree differ
diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree
index 7efe300a3..d8f6df2ef 100644
Binary files a/master/.doctrees/cleanlab/classification.doctree and b/master/.doctrees/cleanlab/classification.doctree differ
diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree
index 62d024e11..8dd690d2a 100644
Binary files a/master/.doctrees/cleanlab/count.doctree and b/master/.doctrees/cleanlab/count.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree
index 305d59825..db59af217 100644
Binary files a/master/.doctrees/cleanlab/datalab/datalab.doctree and b/master/.doctrees/cleanlab/datalab/datalab.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree
index 58887c9c5..5d8e8e1c8 100644
Binary files a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree
index a1ee4ee06..77d5c641b 100644
Binary files a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree and b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree
index 7c475ce89..ff641dc3c 100644
Binary files a/master/.doctrees/cleanlab/datalab/guide/index.doctree and b/master/.doctrees/cleanlab/datalab/guide/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree
index 1f2144197..073994e9c 100644
Binary files a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree and b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree
index 2a623560c..5c530bf47 100644
Binary files a/master/.doctrees/cleanlab/datalab/index.doctree and b/master/.doctrees/cleanlab/datalab/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree
index 5f6c35fd6..d3edc8a48 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/data.doctree and b/master/.doctrees/cleanlab/datalab/internal/data.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree
index 46459d890..0dd580924 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree and b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree
index e3a6e5e46..f9c1c3752 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/factory.doctree and b/master/.doctrees/cleanlab/datalab/internal/factory.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree
index 2e570b6e4..a33f28aa6 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree
index b1c1ab36d..806a8ce6d 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree
index 687b09a38..373e89bae 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree
index 47fd1c2d0..dbec5f571 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree
index d78ea6a85..102ae3cb8 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree
index 52ff2b8f4..22e373244 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree
index cfe04c79c..1e043a6af 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree
index f01bb1a22..90836a46d 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree
index 80a9a0f58..9ed0562e6 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree
index 95101a072..99249db29 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree
index 74983b4d2..eacaa933e 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree
index 2e9d36b0b..0423a98e6 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree
index 8d51817d0..022518f30 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree
index c0a31b509..750838d91 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree
index c532ad412..982690183 100644
Binary files a/master/.doctrees/cleanlab/datalab/internal/report.doctree and b/master/.doctrees/cleanlab/datalab/internal/report.doctree differ
diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree
index 07a660564..02a4bbcea 100644
Binary files a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree and b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree differ
diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree
index 350be1012..6401c813b 100644
Binary files a/master/.doctrees/cleanlab/dataset.doctree and b/master/.doctrees/cleanlab/dataset.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree
index acf117593..15e93c81e 100644
Binary files a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree and b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree
index 5cf794a29..a9c8bf6a2 100644
Binary files a/master/.doctrees/cleanlab/experimental/coteaching.doctree and b/master/.doctrees/cleanlab/experimental/coteaching.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree
index 62ba3f688..7bd553057 100644
Binary files a/master/.doctrees/cleanlab/experimental/index.doctree and b/master/.doctrees/cleanlab/experimental/index.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree
index 19e275352..9f009ba37 100644
Binary files a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree and b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree differ
diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree
index f920bb8d7..356cb344c 100644
Binary files a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree and b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree differ
diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree
index 90742966e..b0053af03 100644
Binary files a/master/.doctrees/cleanlab/filter.doctree and b/master/.doctrees/cleanlab/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree
index 414d62d07..e9adfb799 100644
Binary files a/master/.doctrees/cleanlab/internal/index.doctree and b/master/.doctrees/cleanlab/internal/index.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree
index f762892d0..0432aaf48 100644
Binary files a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree and b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree
index 1347576d2..55b3637f6 100644
Binary files a/master/.doctrees/cleanlab/internal/latent_algebra.doctree and b/master/.doctrees/cleanlab/internal/latent_algebra.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree
index cfab3480d..7eda4eb91 100644
Binary files a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree and b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree
index c55943515..7d384240c 100644
Binary files a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree and b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree
index 32dad457b..2422772f7 100644
Binary files a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree and b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree
index 60d87ea9d..ff0243c83 100644
Binary files a/master/.doctrees/cleanlab/internal/outlier.doctree and b/master/.doctrees/cleanlab/internal/outlier.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree
index ce3576a9b..95b3187a9 100644
Binary files a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree and b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree
index 592528ece..eb73dcf41 100644
Binary files a/master/.doctrees/cleanlab/internal/util.doctree and b/master/.doctrees/cleanlab/internal/util.doctree differ
diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree
index c173ad26d..41ac93e52 100644
Binary files a/master/.doctrees/cleanlab/internal/validation.doctree and b/master/.doctrees/cleanlab/internal/validation.doctree differ
diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree
index b284da156..323feb4b4 100644
Binary files a/master/.doctrees/cleanlab/models/fasttext.doctree and b/master/.doctrees/cleanlab/models/fasttext.doctree differ
diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree
index fc54e65b1..fb57092d4 100644
Binary files a/master/.doctrees/cleanlab/models/index.doctree and b/master/.doctrees/cleanlab/models/index.doctree differ
diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree
index 3c17147bd..a31bc130e 100644
Binary files a/master/.doctrees/cleanlab/models/keras.doctree and b/master/.doctrees/cleanlab/models/keras.doctree differ
diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree
index e3e617662..e2aeae83b 100644
Binary files a/master/.doctrees/cleanlab/multiannotator.doctree and b/master/.doctrees/cleanlab/multiannotator.doctree differ
diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree
index 3dd611935..d1e67843b 100644
Binary files a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree and b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree differ
diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree
index c2426b10f..bc36a192a 100644
Binary files a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree and b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree
index 2f87e8cc8..f9b6c78e7 100644
Binary files a/master/.doctrees/cleanlab/multilabel_classification/index.doctree and b/master/.doctrees/cleanlab/multilabel_classification/index.doctree differ
diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree
index 039c3d9b9..2f39e8d6c 100644
Binary files a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree and b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree
index 4cba3b4ac..6bc5e983b 100644
Binary files a/master/.doctrees/cleanlab/object_detection/filter.doctree and b/master/.doctrees/cleanlab/object_detection/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree
index 1d1ef2959..14e4307b8 100644
Binary files a/master/.doctrees/cleanlab/object_detection/index.doctree and b/master/.doctrees/cleanlab/object_detection/index.doctree differ
diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree
index 5d582ce21..2ca5b61cc 100644
Binary files a/master/.doctrees/cleanlab/object_detection/rank.doctree and b/master/.doctrees/cleanlab/object_detection/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree
index e71d7decf..cde07bec0 100644
Binary files a/master/.doctrees/cleanlab/object_detection/summary.doctree and b/master/.doctrees/cleanlab/object_detection/summary.doctree differ
diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree
index 352ce4ff6..267c3538a 100644
Binary files a/master/.doctrees/cleanlab/outlier.doctree and b/master/.doctrees/cleanlab/outlier.doctree differ
diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree
index fe830871b..71400def1 100644
Binary files a/master/.doctrees/cleanlab/rank.doctree and b/master/.doctrees/cleanlab/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree
index 5e656340f..c156caa5d 100644
Binary files a/master/.doctrees/cleanlab/regression/index.doctree and b/master/.doctrees/cleanlab/regression/index.doctree differ
diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree
index 157b66577..f974636f6 100644
Binary files a/master/.doctrees/cleanlab/regression/learn.doctree and b/master/.doctrees/cleanlab/regression/learn.doctree differ
diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree
index b130c40fa..0731e7aab 100644
Binary files a/master/.doctrees/cleanlab/regression/rank.doctree and b/master/.doctrees/cleanlab/regression/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree
index 2680a634d..e12538fc0 100644
Binary files a/master/.doctrees/cleanlab/segmentation/filter.doctree and b/master/.doctrees/cleanlab/segmentation/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree
index d46759751..119b17fcf 100644
Binary files a/master/.doctrees/cleanlab/segmentation/index.doctree and b/master/.doctrees/cleanlab/segmentation/index.doctree differ
diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree
index f88a050e4..fe7c648d1 100644
Binary files a/master/.doctrees/cleanlab/segmentation/rank.doctree and b/master/.doctrees/cleanlab/segmentation/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree
index 62f1888da..47d3dd2cf 100644
Binary files a/master/.doctrees/cleanlab/segmentation/summary.doctree and b/master/.doctrees/cleanlab/segmentation/summary.doctree differ
diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree
index ec48a4545..6144fd830 100644
Binary files a/master/.doctrees/cleanlab/token_classification/filter.doctree and b/master/.doctrees/cleanlab/token_classification/filter.doctree differ
diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree
index 3a25a9c40..30f7876bf 100644
Binary files a/master/.doctrees/cleanlab/token_classification/index.doctree and b/master/.doctrees/cleanlab/token_classification/index.doctree differ
diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree
index aee202c57..7621deda2 100644
Binary files a/master/.doctrees/cleanlab/token_classification/rank.doctree and b/master/.doctrees/cleanlab/token_classification/rank.doctree differ
diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree
index c116620b8..a933f159d 100644
Binary files a/master/.doctrees/cleanlab/token_classification/summary.doctree and b/master/.doctrees/cleanlab/token_classification/summary.doctree differ
diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle
index ccb7fecf6..15fedb24c 100644
Binary files a/master/.doctrees/environment.pickle and b/master/.doctrees/environment.pickle differ
diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree
index 5bb6ae35e..393d6fc13 100644
Binary files a/master/.doctrees/index.doctree and b/master/.doctrees/index.doctree differ
diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree
index 5266464b8..248edd7ca 100644
Binary files a/master/.doctrees/migrating/migrate_v2.doctree and b/master/.doctrees/migrating/migrate_v2.doctree differ
diff --git a/master/.doctrees/nbsphinx/tutorials/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/audio.ipynb
index 22d86d2d5..26b787814 100644
--- a/master/.doctrees/nbsphinx/tutorials/audio.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/audio.ipynb
@@ -78,10 +78,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:12:41.259375Z",
- "iopub.status.busy": "2024-01-10T06:12:41.259181Z",
- "iopub.status.idle": "2024-01-10T06:12:44.627929Z",
- "shell.execute_reply": "2024-01-10T06:12:44.627193Z"
+ "iopub.execute_input": "2024-01-10T14:58:18.668950Z",
+ "iopub.status.busy": "2024-01-10T14:58:18.668761Z",
+ "iopub.status.idle": "2024-01-10T14:58:21.901115Z",
+ "shell.execute_reply": "2024-01-10T14:58:21.900497Z"
},
"nbsphinx": "hidden"
},
@@ -97,7 +97,7 @@
"os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -131,10 +131,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:12:44.631157Z",
- "iopub.status.busy": "2024-01-10T06:12:44.630753Z",
- "iopub.status.idle": "2024-01-10T06:12:44.634288Z",
- "shell.execute_reply": "2024-01-10T06:12:44.633678Z"
+ "iopub.execute_input": "2024-01-10T14:58:21.904331Z",
+ "iopub.status.busy": "2024-01-10T14:58:21.903708Z",
+ "iopub.status.idle": "2024-01-10T14:58:21.907185Z",
+ "shell.execute_reply": "2024-01-10T14:58:21.906573Z"
},
"id": "LaEiwXUiVHCS"
},
@@ -157,10 +157,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:12:44.636787Z",
- "iopub.status.busy": "2024-01-10T06:12:44.636307Z",
- "iopub.status.idle": "2024-01-10T06:12:44.641333Z",
- "shell.execute_reply": "2024-01-10T06:12:44.640736Z"
+ "iopub.execute_input": "2024-01-10T14:58:21.909522Z",
+ "iopub.status.busy": "2024-01-10T14:58:21.909178Z",
+ "iopub.status.idle": "2024-01-10T14:58:21.913887Z",
+ "shell.execute_reply": "2024-01-10T14:58:21.913417Z"
},
"nbsphinx": "hidden"
},
@@ -208,10 +208,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2024-01-10T06:12:44.643861Z",
- "iopub.status.busy": "2024-01-10T06:12:44.643521Z",
- "iopub.status.idle": "2024-01-10T06:12:46.354519Z",
- "shell.execute_reply": "2024-01-10T06:12:46.353792Z"
+ "iopub.execute_input": "2024-01-10T14:58:21.916187Z",
+ "iopub.status.busy": "2024-01-10T14:58:21.915888Z",
+ "iopub.status.idle": "2024-01-10T14:58:23.515233Z",
+ "shell.execute_reply": "2024-01-10T14:58:23.514352Z"
},
"id": "GRDPEg7-VOQe",
"outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6"
@@ -242,10 +242,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2024-01-10T06:12:46.357667Z",
- "iopub.status.busy": "2024-01-10T06:12:46.357425Z",
- "iopub.status.idle": "2024-01-10T06:12:46.370136Z",
- "shell.execute_reply": "2024-01-10T06:12:46.369486Z"
+ "iopub.execute_input": "2024-01-10T14:58:23.518555Z",
+ "iopub.status.busy": "2024-01-10T14:58:23.518070Z",
+ "iopub.status.idle": "2024-01-10T14:58:23.530275Z",
+ "shell.execute_reply": "2024-01-10T14:58:23.529672Z"
},
"id": "FDA5sGZwUSur",
"outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895"
@@ -329,10 +329,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:12:46.403886Z",
- "iopub.status.busy": "2024-01-10T06:12:46.403279Z",
- "iopub.status.idle": "2024-01-10T06:12:46.409469Z",
- "shell.execute_reply": "2024-01-10T06:12:46.408796Z"
+ "iopub.execute_input": "2024-01-10T14:58:23.562754Z",
+ "iopub.status.busy": "2024-01-10T14:58:23.562321Z",
+ "iopub.status.idle": "2024-01-10T14:58:23.568030Z",
+ "shell.execute_reply": "2024-01-10T14:58:23.567462Z"
},
"nbsphinx": "hidden"
},
@@ -380,10 +380,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2024-01-10T06:12:46.412199Z",
- "iopub.status.busy": "2024-01-10T06:12:46.411701Z",
- "iopub.status.idle": "2024-01-10T06:12:47.129236Z",
- "shell.execute_reply": "2024-01-10T06:12:47.128626Z"
+ "iopub.execute_input": "2024-01-10T14:58:23.570490Z",
+ "iopub.status.busy": "2024-01-10T14:58:23.570110Z",
+ "iopub.status.idle": "2024-01-10T14:58:24.284389Z",
+ "shell.execute_reply": "2024-01-10T14:58:24.283694Z"
},
"id": "dLBvUZLlII5w",
"outputId": "c6a4917f-4a82-4a89-9193-415072e45550"
@@ -435,10 +435,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:12:47.131854Z",
- "iopub.status.busy": "2024-01-10T06:12:47.131458Z",
- "iopub.status.idle": "2024-01-10T06:12:48.015833Z",
- "shell.execute_reply": "2024-01-10T06:12:48.015271Z"
+ "iopub.execute_input": "2024-01-10T14:58:24.287313Z",
+ "iopub.status.busy": "2024-01-10T14:58:24.286844Z",
+ "iopub.status.idle": "2024-01-10T14:58:24.969714Z",
+ "shell.execute_reply": "2024-01-10T14:58:24.969125Z"
},
"id": "vL9lkiKsHvKr"
},
@@ -472,10 +472,10 @@
"height": 143
},
"execution": {
- "iopub.execute_input": "2024-01-10T06:12:48.018530Z",
- "iopub.status.busy": "2024-01-10T06:12:48.018300Z",
- "iopub.status.idle": "2024-01-10T06:12:48.041148Z",
- "shell.execute_reply": "2024-01-10T06:12:48.040614Z"
+ "iopub.execute_input": "2024-01-10T14:58:24.972731Z",
+ "iopub.status.busy": "2024-01-10T14:58:24.972359Z",
+ "iopub.status.idle": "2024-01-10T14:58:24.995317Z",
+ "shell.execute_reply": "2024-01-10T14:58:24.994716Z"
},
"id": "obQYDKdLiUU6",
"outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4"
@@ -555,10 +555,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:12:48.043328Z",
- "iopub.status.busy": "2024-01-10T06:12:48.043129Z",
- "iopub.status.idle": "2024-01-10T06:12:48.046599Z",
- "shell.execute_reply": "2024-01-10T06:12:48.046087Z"
+ "iopub.execute_input": "2024-01-10T14:58:24.997904Z",
+ "iopub.status.busy": "2024-01-10T14:58:24.997492Z",
+ "iopub.status.idle": "2024-01-10T14:58:25.000793Z",
+ "shell.execute_reply": "2024-01-10T14:58:25.000227Z"
},
"id": "I8JqhOZgi94g"
},
@@ -580,10 +580,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:12:48.048804Z",
- "iopub.status.busy": "2024-01-10T06:12:48.048609Z",
- "iopub.status.idle": "2024-01-10T06:13:07.565893Z",
- "shell.execute_reply": "2024-01-10T06:13:07.565174Z"
+ "iopub.execute_input": "2024-01-10T14:58:25.003088Z",
+ "iopub.status.busy": "2024-01-10T14:58:25.002801Z",
+ "iopub.status.idle": "2024-01-10T14:58:43.774968Z",
+ "shell.execute_reply": "2024-01-10T14:58:43.774333Z"
},
"id": "2FSQ2GR9R_YA"
},
@@ -615,10 +615,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:07.569479Z",
- "iopub.status.busy": "2024-01-10T06:13:07.568916Z",
- "iopub.status.idle": "2024-01-10T06:13:07.573445Z",
- "shell.execute_reply": "2024-01-10T06:13:07.572829Z"
+ "iopub.execute_input": "2024-01-10T14:58:43.777939Z",
+ "iopub.status.busy": "2024-01-10T14:58:43.777521Z",
+ "iopub.status.idle": "2024-01-10T14:58:43.781566Z",
+ "shell.execute_reply": "2024-01-10T14:58:43.780933Z"
},
"id": "kAkY31IVXyr8",
"outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632"
@@ -677,10 +677,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:07.576084Z",
- "iopub.status.busy": "2024-01-10T06:13:07.575635Z",
- "iopub.status.idle": "2024-01-10T06:13:13.160325Z",
- "shell.execute_reply": "2024-01-10T06:13:13.159580Z"
+ "iopub.execute_input": "2024-01-10T14:58:43.784229Z",
+ "iopub.status.busy": "2024-01-10T14:58:43.783774Z",
+ "iopub.status.idle": "2024-01-10T14:58:49.268183Z",
+ "shell.execute_reply": "2024-01-10T14:58:49.267513Z"
},
"id": "i_drkY9YOcw4"
},
@@ -714,10 +714,10 @@
"base_uri": "https://localhost:8080/"
},
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:13.163818Z",
- "iopub.status.busy": "2024-01-10T06:13:13.163341Z",
- "iopub.status.idle": "2024-01-10T06:13:13.169098Z",
- "shell.execute_reply": "2024-01-10T06:13:13.168477Z"
+ "iopub.execute_input": "2024-01-10T14:58:49.271363Z",
+ "iopub.status.busy": "2024-01-10T14:58:49.270946Z",
+ "iopub.status.idle": "2024-01-10T14:58:49.276508Z",
+ "shell.execute_reply": "2024-01-10T14:58:49.275890Z"
},
"id": "_b-AQeoXOc7q",
"outputId": "15ae534a-f517-4906-b177-ca91931a8954"
@@ -764,10 +764,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:13.173106Z",
- "iopub.status.busy": "2024-01-10T06:13:13.171931Z",
- "iopub.status.idle": "2024-01-10T06:13:13.286084Z",
- "shell.execute_reply": "2024-01-10T06:13:13.285356Z"
+ "iopub.execute_input": "2024-01-10T14:58:49.279388Z",
+ "iopub.status.busy": "2024-01-10T14:58:49.278949Z",
+ "iopub.status.idle": "2024-01-10T14:58:49.393691Z",
+ "shell.execute_reply": "2024-01-10T14:58:49.392953Z"
}
},
"outputs": [
@@ -804,10 +804,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:13.289090Z",
- "iopub.status.busy": "2024-01-10T06:13:13.288656Z",
- "iopub.status.idle": "2024-01-10T06:13:13.298785Z",
- "shell.execute_reply": "2024-01-10T06:13:13.298212Z"
+ "iopub.execute_input": "2024-01-10T14:58:49.396661Z",
+ "iopub.status.busy": "2024-01-10T14:58:49.396256Z",
+ "iopub.status.idle": "2024-01-10T14:58:49.406585Z",
+ "shell.execute_reply": "2024-01-10T14:58:49.406016Z"
},
"scrolled": true
},
@@ -862,10 +862,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:13.301337Z",
- "iopub.status.busy": "2024-01-10T06:13:13.300949Z",
- "iopub.status.idle": "2024-01-10T06:13:13.309539Z",
- "shell.execute_reply": "2024-01-10T06:13:13.308933Z"
+ "iopub.execute_input": "2024-01-10T14:58:49.409138Z",
+ "iopub.status.busy": "2024-01-10T14:58:49.408770Z",
+ "iopub.status.idle": "2024-01-10T14:58:49.417093Z",
+ "shell.execute_reply": "2024-01-10T14:58:49.416454Z"
}
},
"outputs": [
@@ -969,10 +969,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:13.312077Z",
- "iopub.status.busy": "2024-01-10T06:13:13.311693Z",
- "iopub.status.idle": "2024-01-10T06:13:13.316598Z",
- "shell.execute_reply": "2024-01-10T06:13:13.316047Z"
+ "iopub.execute_input": "2024-01-10T14:58:49.419692Z",
+ "iopub.status.busy": "2024-01-10T14:58:49.419308Z",
+ "iopub.status.idle": "2024-01-10T14:58:49.423888Z",
+ "shell.execute_reply": "2024-01-10T14:58:49.423233Z"
}
},
"outputs": [
@@ -1010,10 +1010,10 @@
"height": 237
},
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:13.319161Z",
- "iopub.status.busy": "2024-01-10T06:13:13.318787Z",
- "iopub.status.idle": "2024-01-10T06:13:13.325198Z",
- "shell.execute_reply": "2024-01-10T06:13:13.324553Z"
+ "iopub.execute_input": "2024-01-10T14:58:49.426320Z",
+ "iopub.status.busy": "2024-01-10T14:58:49.426003Z",
+ "iopub.status.idle": "2024-01-10T14:58:49.432389Z",
+ "shell.execute_reply": "2024-01-10T14:58:49.431778Z"
},
"id": "FQwRHgbclpsO",
"outputId": "fee5c335-c00e-4fcc-f22b-718705e93182"
@@ -1133,10 +1133,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:13.327754Z",
- "iopub.status.busy": "2024-01-10T06:13:13.327373Z",
- "iopub.status.idle": "2024-01-10T06:13:13.443959Z",
- "shell.execute_reply": "2024-01-10T06:13:13.443366Z"
+ "iopub.execute_input": "2024-01-10T14:58:49.434787Z",
+ "iopub.status.busy": "2024-01-10T14:58:49.434428Z",
+ "iopub.status.idle": "2024-01-10T14:58:49.548812Z",
+ "shell.execute_reply": "2024-01-10T14:58:49.548145Z"
},
"id": "ff1NFVlDoysO",
"outputId": "8141a036-44c1-4349-c338-880432513e37"
@@ -1190,10 +1190,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:13.446679Z",
- "iopub.status.busy": "2024-01-10T06:13:13.446417Z",
- "iopub.status.idle": "2024-01-10T06:13:13.557900Z",
- "shell.execute_reply": "2024-01-10T06:13:13.557249Z"
+ "iopub.execute_input": "2024-01-10T14:58:49.551386Z",
+ "iopub.status.busy": "2024-01-10T14:58:49.551035Z",
+ "iopub.status.idle": "2024-01-10T14:58:49.660719Z",
+ "shell.execute_reply": "2024-01-10T14:58:49.660055Z"
},
"id": "GZgovGkdiaiP",
"outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7"
@@ -1238,10 +1238,10 @@
"height": 92
},
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:13.560589Z",
- "iopub.status.busy": "2024-01-10T06:13:13.560140Z",
- "iopub.status.idle": "2024-01-10T06:13:13.670534Z",
- "shell.execute_reply": "2024-01-10T06:13:13.669855Z"
+ "iopub.execute_input": "2024-01-10T14:58:49.663182Z",
+ "iopub.status.busy": "2024-01-10T14:58:49.662969Z",
+ "iopub.status.idle": "2024-01-10T14:58:49.770975Z",
+ "shell.execute_reply": "2024-01-10T14:58:49.770314Z"
},
"id": "lfa2eHbMwG8R",
"outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c"
@@ -1282,10 +1282,10 @@
"execution_count": 23,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:13.673234Z",
- "iopub.status.busy": "2024-01-10T06:13:13.672760Z",
- "iopub.status.idle": "2024-01-10T06:13:13.783675Z",
- "shell.execute_reply": "2024-01-10T06:13:13.783105Z"
+ "iopub.execute_input": "2024-01-10T14:58:49.773379Z",
+ "iopub.status.busy": "2024-01-10T14:58:49.773175Z",
+ "iopub.status.idle": "2024-01-10T14:58:49.882826Z",
+ "shell.execute_reply": "2024-01-10T14:58:49.882220Z"
}
},
"outputs": [
@@ -1333,10 +1333,10 @@
"execution_count": 24,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:13.786289Z",
- "iopub.status.busy": "2024-01-10T06:13:13.785901Z",
- "iopub.status.idle": "2024-01-10T06:13:13.789366Z",
- "shell.execute_reply": "2024-01-10T06:13:13.788812Z"
+ "iopub.execute_input": "2024-01-10T14:58:49.885292Z",
+ "iopub.status.busy": "2024-01-10T14:58:49.885088Z",
+ "iopub.status.idle": "2024-01-10T14:58:49.888620Z",
+ "shell.execute_reply": "2024-01-10T14:58:49.888080Z"
},
"nbsphinx": "hidden"
},
@@ -1377,70 +1377,7 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "06ab656526714167a212ab573f39a6e8": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_c41a3321793d4d608d8a59946471fbcc",
- "placeholder": "",
- "style": "IPY_MODEL_172b44924b8b475cb3b836b0f901ac71",
- "value": " 129k/129k [00:00<00:00, 6.45MB/s]"
- }
- },
- "0834d56d62714c28b3aeb79b3ddc680d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_228b6665d63741019e33f90d71f5f3f9",
- "placeholder": "",
- "style": "IPY_MODEL_cd45f60e3ff442c6a9dd8562909119d3",
- "value": " 16.9M/16.9M [00:00<00:00, 254MB/s]"
- }
- },
- "0fce71ef080443ad95ba0ab7ab1fde8c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_202693369eef41eeb079e15b2dca6fa5",
- "placeholder": "",
- "style": "IPY_MODEL_111a40f2a0704b5cb8269c337a9d4501",
- "value": " 3.20k/3.20k [00:00<00:00, 537kB/s]"
- }
- },
- "111a40f2a0704b5cb8269c337a9d4501": {
+ "0074814fbf264ac4a04bdeb51abcaab2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -1455,22 +1392,29 @@
"description_width": ""
}
},
- "172b44924b8b475cb3b836b0f901ac71": {
+ "02d54a93c71f4717b776780ee1334673": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_df30265328c142b1849ba3ca47b68fe7",
+ "IPY_MODEL_6bbd465e2f4046028edaa5e0082d76af",
+ "IPY_MODEL_e2aba32a91bf4f9dabd9e25f75f60e37"
+ ],
+ "layout": "IPY_MODEL_bdf1d068064c4e37bf3b0a036bd0710a"
}
},
- "202693369eef41eeb079e15b2dca6fa5": {
+ "05a419d84fc2472b8d03ecb51099197a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1522,7 +1466,7 @@
"width": null
}
},
- "228b6665d63741019e33f90d71f5f3f9": {
+ "1881dfe59f184d4ab3ce997d6b71097d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1574,59 +1518,206 @@
"width": null
}
},
- "2498f913b927410bb9ae4dcefb918991": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
+ "2177d9eef2d14179bdab4a9fd9c1b915": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "284824c022eb47e9a33898e1ecf7dda3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c5a3fe8fa0d848ec9ec188729948a377",
+ "max": 16887676.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_3454223caf744f1fbf4c19967e38db8f",
+ "value": 16887676.0
+ }
+ },
+ "294a8ffab7f44974b28a07ffbb94882f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f781d9e0307c483fb140677b5258e2d6",
+ "placeholder": "",
+ "style": "IPY_MODEL_460394fe32074436800a43db6ccac64e",
+ "value": " 2.04k/2.04k [00:00<00:00, 324kB/s]"
+ }
+ },
+ "2c5bb790c5544dc296857be6357fbe27": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_b7b112df9d2e4aec93edbbc0d3c2d932",
+ "IPY_MODEL_6ea830a76c164f35aa74845442e1a10d",
+ "IPY_MODEL_fc5e50b0328147c4ab04b99bb3f04a3b"
+ ],
+ "layout": "IPY_MODEL_1881dfe59f184d4ab3ce997d6b71097d"
}
},
- "25c64fccecfb4812882e32cd62028cda": {
+ "3454223caf744f1fbf4c19967e38db8f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "34b1268d4de040f2a5a31699ef1ede5c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "3c821907cbd14c19a78c25554493358d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_df669b30fcd04ee4974fd952553f376e",
+ "max": 2041.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_9b2afdf832394f58976ee58105fc9ac4",
+ "value": 2041.0
+ }
+ },
+ "41828383ccc742919bc29139a2ba5bd6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "447ff7ecb3fc411ea934e0d55e5af3d8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "460394fe32074436800a43db6ccac64e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "48fb5229f100484292916171f30a77b5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "4ec51dfd68c34f43aec5b39ee7b3b771": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1678,7 +1769,107 @@
"width": null
}
},
- "28125c9aef0d4dc093ba42b225b7c7ef": {
+ "541e0c9185044d10b9df997de483919d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_9b85abadb14148da809553593daf41d5",
+ "placeholder": "",
+ "style": "IPY_MODEL_a82707d6cf75449fa0bcd2b98e10b3a2",
+ "value": "classifier.ckpt: 100%"
+ }
+ },
+ "5d6a6ab20b864187a3b7662c9dc5a7ff": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_8e622334e195432cbba4e4d65e702507",
+ "placeholder": "",
+ "style": "IPY_MODEL_41828383ccc742919bc29139a2ba5bd6",
+ "value": " 15.9M/15.9M [00:00<00:00, 296MB/s]"
+ }
+ },
+ "65d244fefe2e4b09a600a1d3a970a2e6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "68fc1f991eb44edba2fc5bfe6e6edfd6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c2ce8e57fdb04b0798a6c4c16ae3467f",
+ "placeholder": "",
+ "style": "IPY_MODEL_34b1268d4de040f2a5a31699ef1ede5c",
+ "value": "embedding_model.ckpt: 100%"
+ }
+ },
+ "6902ffa71e7d475d9583c90ce2b2f911": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_68fc1f991eb44edba2fc5bfe6e6edfd6",
+ "IPY_MODEL_284824c022eb47e9a33898e1ecf7dda3",
+ "IPY_MODEL_93ffb5dd7879400f9e7f477b93c509d0"
+ ],
+ "layout": "IPY_MODEL_d905e22f02584b999d73cc80ffee0110"
+ }
+ },
+ "6bbd465e2f4046028edaa5e0082d76af": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
@@ -1694,15 +1885,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_25c64fccecfb4812882e32cd62028cda",
- "max": 128619.0,
+ "layout": "IPY_MODEL_c0dfa3473ed64fa7a0044c0f437a6ff5",
+ "max": 3201.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_fcee34ed095e4db6a88e4559efaff29f",
- "value": 128619.0
+ "style": "IPY_MODEL_2177d9eef2d14179bdab4a9fd9c1b915",
+ "value": 3201.0
}
},
- "2ca02285df6a43f6900cce3b23ad30aa": {
+ "6c17a0abb12f4f9a9c6a52271fe66768": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1754,89 +1945,46 @@
"width": null
}
},
- "3223b85e60f248499b88202f60b03b49": {
+ "6ea830a76c164f35aa74845442e1a10d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_ffa606c5f25748859eb966e69110de72",
- "IPY_MODEL_28125c9aef0d4dc093ba42b225b7c7ef",
- "IPY_MODEL_06ab656526714167a212ab573f39a6e8"
- ],
- "layout": "IPY_MODEL_531bd00fa5ad4184b070387d6f1fcf62"
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_4ec51dfd68c34f43aec5b39ee7b3b771",
+ "max": 128619.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_e2059403b3c141c78b7dea525b593b9c",
+ "value": 128619.0
}
},
- "34bc9fad69fc44a9ab325fff185f11f9": {
+ "8626655c6a774bc6a315f1cad23adca2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
- "bar_color": null,
"description_width": ""
}
},
- "4162f5fe77e74a6482908480569b3dd0": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_ed5b9304939b4878afcb87cc1e060aae",
- "IPY_MODEL_fa64a22ea146494ca2914d3484db6765",
- "IPY_MODEL_0fce71ef080443ad95ba0ab7ab1fde8c"
- ],
- "layout": "IPY_MODEL_f99279c3718c4390825bb04cca778044"
- }
- },
- "5133c28de8264b41a420172eca319163": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_8f7fda0a4e234263a3618a65ccc48db1",
- "IPY_MODEL_5d33a6963baa4b95bba45ab0b9e33c8a",
- "IPY_MODEL_0834d56d62714c28b3aeb79b3ddc680d"
- ],
- "layout": "IPY_MODEL_2ca02285df6a43f6900cce3b23ad30aa"
- }
- },
- "520a1c7807ef42ee92526b78323c1d3b": {
+ "8c44830cf4a14c1bbbf2a49980b485d8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -1851,7 +1999,7 @@
"description_width": ""
}
},
- "531bd00fa5ad4184b070387d6f1fcf62": {
+ "8e622334e195432cbba4e4d65e702507": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1903,7 +2051,7 @@
"width": null
}
},
- "557b8d9ac1ca4cf68a90a2259b2a61dd": {
+ "920a9387b971454687a4403592f0c76e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1955,31 +2103,7 @@
"width": null
}
},
- "5d33a6963baa4b95bba45ab0b9e33c8a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_d003c7d9dffe4306a34d02339a448a43",
- "max": 16887676.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_6960472d0e964654a68f2ad54c93a2b4",
- "value": 16887676.0
- }
- },
- "60d401f5c6c74a328a80e74f9ba2de83": {
+ "938e795c39e94f739123942e85645be6": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2015,234 +2139,60 @@
"left": null,
"margin": null,
"max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "6960472d0e964654a68f2ad54c93a2b4": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "6d27aad7fad246ef8d47399f2e4310da": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "72aa3b5eca7d46d3a61ae6039af64c8c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_b970971e982644df933a6fc215f217f9",
- "placeholder": "",
- "style": "IPY_MODEL_998226c5bbfd44e3a06638c497e2daa1",
- "value": " 2.04k/2.04k [00:00<00:00, 328kB/s]"
- }
- },
- "850228d498cd4b3e87f32f1257313d81": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "86951f39c00e4109b4ca60ffcc939b40": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "8f7fda0a4e234263a3618a65ccc48db1": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ebe77964da2d45548943f4419f211879",
- "placeholder": "",
- "style": "IPY_MODEL_fdeba1c93e6747be9c5211333d0768bc",
- "value": "embedding_model.ckpt: 100%"
- }
- },
- "93b351e64c634bd99c642a728e59c557": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_f6fd30592fee4f22ba0d241c0e2862e2",
- "max": 2041.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_850228d498cd4b3e87f32f1257313d81",
- "value": 2041.0
- }
- },
- "990db9ddb0344d739ad0a89adcc4197e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_eeb9be4c886941159edec7fc558e7a5a",
- "IPY_MODEL_a4d57cf88a0e4fb6a5afe457b792d93e",
- "IPY_MODEL_dbe436d691f14d889ecb1e75dee91ee6"
- ],
- "layout": "IPY_MODEL_e5513548b6dc4815a177c264a29d47eb"
- }
- },
- "998226c5bbfd44e3a06638c497e2daa1": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "a4d57cf88a0e4fb6a5afe457b792d93e": {
+ "93ffb5dd7879400f9e7f477b93c509d0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_c6e0bbd765f348708cf3b1437c7cb9a8",
- "max": 15856877.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_6d27aad7fad246ef8d47399f2e4310da",
- "value": 15856877.0
+ "layout": "IPY_MODEL_e454c1f736c9495aa3bedadf94b43954",
+ "placeholder": "",
+ "style": "IPY_MODEL_48fb5229f100484292916171f30a77b5",
+ "value": " 16.9M/16.9M [00:00<00:00, 177MB/s]"
}
},
- "a4ffd871ac9d43fc97f1519c2af296fa": {
+ "9b2afdf832394f58976ee58105fc9ac4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_a6b20f82cfa9402a8c7fd2cf43db10f8",
- "placeholder": "",
- "style": "IPY_MODEL_86951f39c00e4109b4ca60ffcc939b40",
- "value": "hyperparams.yaml: 100%"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "a6b20f82cfa9402a8c7fd2cf43db10f8": {
+ "9b85abadb14148da809553593daf41d5": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2294,7 +2244,7 @@
"width": null
}
},
- "b970971e982644df933a6fc215f217f9": {
+ "a452c26c8935444495eef8eccd537821": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2346,7 +2296,22 @@
"width": null
}
},
- "b990bf93a73a48fa96ef81a45ecc7cf8": {
+ "a82707d6cf75449fa0bcd2b98e10b3a2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "ab34cc856bad403f9cdba111f873a306": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2398,37 +2363,28 @@
"width": null
}
},
- "bb8670831c2e4347bf8ee34b069cb5ac": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "c169e87cf101414c8b083a4b20e420ca": {
+ "b7b112df9d2e4aec93edbbc0d3c2d932": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ab34cc856bad403f9cdba111f873a306",
+ "placeholder": "",
+ "style": "IPY_MODEL_8626655c6a774bc6a315f1cad23adca2",
+ "value": "label_encoder.txt: 100%"
}
},
- "c41a3321793d4d608d8a59946471fbcc": {
+ "bdf1d068064c4e37bf3b0a036bd0710a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2480,7 +2436,7 @@
"width": null
}
},
- "c6e0bbd765f348708cf3b1437c7cb9a8": {
+ "c0dfa3473ed64fa7a0044c0f437a6ff5": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2532,22 +2488,7 @@
"width": null
}
},
- "cd45f60e3ff442c6a9dd8562909119d3": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "d003c7d9dffe4306a34d02339a448a43": {
+ "c0f64d3aebb64bf3bb3d4db1e1c95af2": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2599,28 +2540,29 @@
"width": null
}
},
- "dbe436d691f14d889ecb1e75dee91ee6": {
+ "c17f3317dc9f4e41b15f0c9f0afcb7f9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_60d401f5c6c74a328a80e74f9ba2de83",
- "placeholder": "",
- "style": "IPY_MODEL_520a1c7807ef42ee92526b78323c1d3b",
- "value": " 15.9M/15.9M [00:00<00:00, 347MB/s]"
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_fb7be2fc3b524b408dacb3a4ba1dfb8f",
+ "IPY_MODEL_3c821907cbd14c19a78c25554493358d",
+ "IPY_MODEL_294a8ffab7f44974b28a07ffbb94882f"
+ ],
+ "layout": "IPY_MODEL_920a9387b971454687a4403592f0c76e"
}
},
- "e420c8493f574d69aef12450cf0a9a14": {
+ "c2ce8e57fdb04b0798a6c4c16ae3467f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2672,7 +2614,7 @@
"width": null
}
},
- "e5513548b6dc4815a177c264a29d47eb": {
+ "c5a3fe8fa0d848ec9ec188729948a377": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2724,7 +2666,29 @@
"width": null
}
},
- "ebe77964da2d45548943f4419f211879": {
+ "cadb95e2bbdd4166b848cf44e71b2139": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_541e0c9185044d10b9df997de483919d",
+ "IPY_MODEL_f234f92a2ce2467bbaad67f8d5d7ec2b",
+ "IPY_MODEL_5d6a6ab20b864187a3b7662c9dc5a7ff"
+ ],
+ "layout": "IPY_MODEL_05a419d84fc2472b8d03ecb51099197a"
+ }
+ },
+ "d905e22f02584b999d73cc80ffee0110": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2776,7 +2740,7 @@
"width": null
}
},
- "ed5b9304939b4878afcb87cc1e060aae": {
+ "df30265328c142b1849ba3ca47b68fe7": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -2791,13 +2755,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_b990bf93a73a48fa96ef81a45ecc7cf8",
+ "layout": "IPY_MODEL_a452c26c8935444495eef8eccd537821",
"placeholder": "",
- "style": "IPY_MODEL_f9c3e8763ecb425aa275ed93f80ef66a",
+ "style": "IPY_MODEL_0074814fbf264ac4a04bdeb51abcaab2",
"value": "mean_var_norm_emb.ckpt: 100%"
}
},
- "ee59111c59fe4214a106ea7b4d3bd396": {
+ "df669b30fcd04ee4974fd952553f376e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2849,7 +2813,23 @@
"width": null
}
},
- "eeb9be4c886941159edec7fc558e7a5a": {
+ "e2059403b3c141c78b7dea525b593b9c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "e2aba32a91bf4f9dabd9e25f75f60e37": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -2864,35 +2844,89 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_2498f913b927410bb9ae4dcefb918991",
+ "layout": "IPY_MODEL_6c17a0abb12f4f9a9c6a52271fe66768",
"placeholder": "",
- "style": "IPY_MODEL_bb8670831c2e4347bf8ee34b069cb5ac",
- "value": "classifier.ckpt: 100%"
+ "style": "IPY_MODEL_fb2c0bd27a2c4c5ba243a7e72cb1d8aa",
+ "value": " 3.20k/3.20k [00:00<00:00, 575kB/s]"
+ }
+ },
+ "e454c1f736c9495aa3bedadf94b43954": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "f544c0ca919a47c6a4bfa1f492857422": {
+ "f234f92a2ce2467bbaad67f8d5d7ec2b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_a4ffd871ac9d43fc97f1519c2af296fa",
- "IPY_MODEL_93b351e64c634bd99c642a728e59c557",
- "IPY_MODEL_72aa3b5eca7d46d3a61ae6039af64c8c"
- ],
- "layout": "IPY_MODEL_ee59111c59fe4214a106ea7b4d3bd396"
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_938e795c39e94f739123942e85645be6",
+ "max": 15856877.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_447ff7ecb3fc411ea934e0d55e5af3d8",
+ "value": 15856877.0
}
},
- "f6fd30592fee4f22ba0d241c0e2862e2": {
+ "f3bc5d140a7b4411a598d2ef76421a6a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2944,7 +2978,7 @@
"width": null
}
},
- "f99279c3718c4390825bb04cca778044": {
+ "f781d9e0307c483fb140677b5258e2d6": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2996,7 +3030,7 @@
"width": null
}
},
- "f9c3e8763ecb425aa275ed93f80ef66a": {
+ "fb2c0bd27a2c4c5ba243a7e72cb1d8aa": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -3011,62 +3045,28 @@
"description_width": ""
}
},
- "fa64a22ea146494ca2914d3484db6765": {
+ "fb7be2fc3b524b408dacb3a4ba1dfb8f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_557b8d9ac1ca4cf68a90a2259b2a61dd",
- "max": 3201.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_34bc9fad69fc44a9ab325fff185f11f9",
- "value": 3201.0
- }
- },
- "fcee34ed095e4db6a88e4559efaff29f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "fdeba1c93e6747be9c5211333d0768bc": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "layout": "IPY_MODEL_f3bc5d140a7b4411a598d2ef76421a6a",
+ "placeholder": "",
+ "style": "IPY_MODEL_8c44830cf4a14c1bbbf2a49980b485d8",
+ "value": "hyperparams.yaml: 100%"
}
},
- "ffa606c5f25748859eb966e69110de72": {
+ "fc5e50b0328147c4ab04b99bb3f04a3b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -3081,10 +3081,10 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_e420c8493f574d69aef12450cf0a9a14",
+ "layout": "IPY_MODEL_c0f64d3aebb64bf3bb3d4db1e1c95af2",
"placeholder": "",
- "style": "IPY_MODEL_c169e87cf101414c8b083a4b20e420ca",
- "value": "label_encoder.txt: 100%"
+ "style": "IPY_MODEL_65d244fefe2e4b09a600a1d3a970a2e6",
+ "value": " 129k/129k [00:00<00:00, 7.08MB/s]"
}
}
},
diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb
index 80ed64de9..02c5ba811 100644
--- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb
@@ -80,10 +80,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:18.391900Z",
- "iopub.status.busy": "2024-01-10T06:13:18.391450Z",
- "iopub.status.idle": "2024-01-10T06:13:19.482980Z",
- "shell.execute_reply": "2024-01-10T06:13:19.482325Z"
+ "iopub.execute_input": "2024-01-10T14:58:54.767356Z",
+ "iopub.status.busy": "2024-01-10T14:58:54.767167Z",
+ "iopub.status.idle": "2024-01-10T14:58:55.838400Z",
+ "shell.execute_reply": "2024-01-10T14:58:55.837772Z"
},
"nbsphinx": "hidden"
},
@@ -93,7 +93,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -118,10 +118,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:19.486136Z",
- "iopub.status.busy": "2024-01-10T06:13:19.485670Z",
- "iopub.status.idle": "2024-01-10T06:13:19.488975Z",
- "shell.execute_reply": "2024-01-10T06:13:19.488407Z"
+ "iopub.execute_input": "2024-01-10T14:58:55.841278Z",
+ "iopub.status.busy": "2024-01-10T14:58:55.840800Z",
+ "iopub.status.idle": "2024-01-10T14:58:55.843995Z",
+ "shell.execute_reply": "2024-01-10T14:58:55.843493Z"
}
},
"outputs": [],
@@ -252,10 +252,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:19.491624Z",
- "iopub.status.busy": "2024-01-10T06:13:19.491166Z",
- "iopub.status.idle": "2024-01-10T06:13:19.500559Z",
- "shell.execute_reply": "2024-01-10T06:13:19.499968Z"
+ "iopub.execute_input": "2024-01-10T14:58:55.846449Z",
+ "iopub.status.busy": "2024-01-10T14:58:55.846072Z",
+ "iopub.status.idle": "2024-01-10T14:58:55.855516Z",
+ "shell.execute_reply": "2024-01-10T14:58:55.854990Z"
},
"nbsphinx": "hidden"
},
@@ -353,10 +353,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:19.503166Z",
- "iopub.status.busy": "2024-01-10T06:13:19.502771Z",
- "iopub.status.idle": "2024-01-10T06:13:19.507585Z",
- "shell.execute_reply": "2024-01-10T06:13:19.507087Z"
+ "iopub.execute_input": "2024-01-10T14:58:55.857837Z",
+ "iopub.status.busy": "2024-01-10T14:58:55.857473Z",
+ "iopub.status.idle": "2024-01-10T14:58:55.862243Z",
+ "shell.execute_reply": "2024-01-10T14:58:55.861728Z"
}
},
"outputs": [],
@@ -445,10 +445,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:19.510043Z",
- "iopub.status.busy": "2024-01-10T06:13:19.509670Z",
- "iopub.status.idle": "2024-01-10T06:13:19.797634Z",
- "shell.execute_reply": "2024-01-10T06:13:19.797007Z"
+ "iopub.execute_input": "2024-01-10T14:58:55.864825Z",
+ "iopub.status.busy": "2024-01-10T14:58:55.864431Z",
+ "iopub.status.idle": "2024-01-10T14:58:56.142843Z",
+ "shell.execute_reply": "2024-01-10T14:58:56.142195Z"
},
"nbsphinx": "hidden"
},
@@ -517,10 +517,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:19.800537Z",
- "iopub.status.busy": "2024-01-10T06:13:19.800126Z",
- "iopub.status.idle": "2024-01-10T06:13:20.113225Z",
- "shell.execute_reply": "2024-01-10T06:13:20.112562Z"
+ "iopub.execute_input": "2024-01-10T14:58:56.145686Z",
+ "iopub.status.busy": "2024-01-10T14:58:56.145335Z",
+ "iopub.status.idle": "2024-01-10T14:58:56.519923Z",
+ "shell.execute_reply": "2024-01-10T14:58:56.519255Z"
}
},
"outputs": [
@@ -568,10 +568,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:20.116093Z",
- "iopub.status.busy": "2024-01-10T06:13:20.115570Z",
- "iopub.status.idle": "2024-01-10T06:13:20.140762Z",
- "shell.execute_reply": "2024-01-10T06:13:20.140077Z"
+ "iopub.execute_input": "2024-01-10T14:58:56.522457Z",
+ "iopub.status.busy": "2024-01-10T14:58:56.522228Z",
+ "iopub.status.idle": "2024-01-10T14:58:56.547157Z",
+ "shell.execute_reply": "2024-01-10T14:58:56.546599Z"
}
},
"outputs": [],
@@ -607,10 +607,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:20.143786Z",
- "iopub.status.busy": "2024-01-10T06:13:20.143411Z",
- "iopub.status.idle": "2024-01-10T06:13:20.155764Z",
- "shell.execute_reply": "2024-01-10T06:13:20.155189Z"
+ "iopub.execute_input": "2024-01-10T14:58:56.549825Z",
+ "iopub.status.busy": "2024-01-10T14:58:56.549607Z",
+ "iopub.status.idle": "2024-01-10T14:58:56.561436Z",
+ "shell.execute_reply": "2024-01-10T14:58:56.560895Z"
}
},
"outputs": [],
@@ -641,10 +641,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:20.158588Z",
- "iopub.status.busy": "2024-01-10T06:13:20.158210Z",
- "iopub.status.idle": "2024-01-10T06:13:21.490758Z",
- "shell.execute_reply": "2024-01-10T06:13:21.490064Z"
+ "iopub.execute_input": "2024-01-10T14:58:56.564157Z",
+ "iopub.status.busy": "2024-01-10T14:58:56.563818Z",
+ "iopub.status.idle": "2024-01-10T14:58:57.836813Z",
+ "shell.execute_reply": "2024-01-10T14:58:57.836183Z"
}
},
"outputs": [
@@ -708,10 +708,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:21.493933Z",
- "iopub.status.busy": "2024-01-10T06:13:21.493289Z",
- "iopub.status.idle": "2024-01-10T06:13:21.516427Z",
- "shell.execute_reply": "2024-01-10T06:13:21.515797Z"
+ "iopub.execute_input": "2024-01-10T14:58:57.839904Z",
+ "iopub.status.busy": "2024-01-10T14:58:57.839426Z",
+ "iopub.status.idle": "2024-01-10T14:58:57.861805Z",
+ "shell.execute_reply": "2024-01-10T14:58:57.861265Z"
}
},
"outputs": [
@@ -820,10 +820,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:21.519110Z",
- "iopub.status.busy": "2024-01-10T06:13:21.518726Z",
- "iopub.status.idle": "2024-01-10T06:13:21.542421Z",
- "shell.execute_reply": "2024-01-10T06:13:21.541682Z"
+ "iopub.execute_input": "2024-01-10T14:58:57.864465Z",
+ "iopub.status.busy": "2024-01-10T14:58:57.864101Z",
+ "iopub.status.idle": "2024-01-10T14:58:57.885138Z",
+ "shell.execute_reply": "2024-01-10T14:58:57.884495Z"
}
},
"outputs": [
@@ -935,10 +935,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:21.545363Z",
- "iopub.status.busy": "2024-01-10T06:13:21.544862Z",
- "iopub.status.idle": "2024-01-10T06:13:21.560354Z",
- "shell.execute_reply": "2024-01-10T06:13:21.559667Z"
+ "iopub.execute_input": "2024-01-10T14:58:57.887770Z",
+ "iopub.status.busy": "2024-01-10T14:58:57.887374Z",
+ "iopub.status.idle": "2024-01-10T14:58:57.901817Z",
+ "shell.execute_reply": "2024-01-10T14:58:57.901299Z"
}
},
"outputs": [
@@ -1068,17 +1068,17 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:21.563179Z",
- "iopub.status.busy": "2024-01-10T06:13:21.562695Z",
- "iopub.status.idle": "2024-01-10T06:13:21.585983Z",
- "shell.execute_reply": "2024-01-10T06:13:21.585340Z"
+ "iopub.execute_input": "2024-01-10T14:58:57.904415Z",
+ "iopub.status.busy": "2024-01-10T14:58:57.904050Z",
+ "iopub.status.idle": "2024-01-10T14:58:57.926963Z",
+ "shell.execute_reply": "2024-01-10T14:58:57.926322Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "fea3d5c35ae9493f8a9be8704822e8fd",
+ "model_id": "72fad40a86864766b299b987b88cfd8a",
"version_major": 2,
"version_minor": 0
},
@@ -1114,10 +1114,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:21.588659Z",
- "iopub.status.busy": "2024-01-10T06:13:21.588249Z",
- "iopub.status.idle": "2024-01-10T06:13:21.604290Z",
- "shell.execute_reply": "2024-01-10T06:13:21.603671Z"
+ "iopub.execute_input": "2024-01-10T14:58:57.931079Z",
+ "iopub.status.busy": "2024-01-10T14:58:57.930776Z",
+ "iopub.status.idle": "2024-01-10T14:58:57.945658Z",
+ "shell.execute_reply": "2024-01-10T14:58:57.945144Z"
}
},
"outputs": [
@@ -1235,10 +1235,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:21.606904Z",
- "iopub.status.busy": "2024-01-10T06:13:21.606491Z",
- "iopub.status.idle": "2024-01-10T06:13:21.612922Z",
- "shell.execute_reply": "2024-01-10T06:13:21.612309Z"
+ "iopub.execute_input": "2024-01-10T14:58:57.948048Z",
+ "iopub.status.busy": "2024-01-10T14:58:57.947845Z",
+ "iopub.status.idle": "2024-01-10T14:58:57.954175Z",
+ "shell.execute_reply": "2024-01-10T14:58:57.953612Z"
}
},
"outputs": [],
@@ -1295,10 +1295,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:21.615569Z",
- "iopub.status.busy": "2024-01-10T06:13:21.615193Z",
- "iopub.status.idle": "2024-01-10T06:13:21.634604Z",
- "shell.execute_reply": "2024-01-10T06:13:21.634038Z"
+ "iopub.execute_input": "2024-01-10T14:58:57.956636Z",
+ "iopub.status.busy": "2024-01-10T14:58:57.956195Z",
+ "iopub.status.idle": "2024-01-10T14:58:57.975702Z",
+ "shell.execute_reply": "2024-01-10T14:58:57.975158Z"
}
},
"outputs": [
@@ -1430,7 +1430,7 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "07ce684158734aa2ad7d27dfdc5022e9": {
+ "1dd56a26d69048f6a3cafad4385d2b8a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -1445,13 +1445,81 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_0fff0021442e4b26a3ef037cd77b53b9",
+ "layout": "IPY_MODEL_8443c9e833384832ac73d9d1c16736c9",
"placeholder": "",
- "style": "IPY_MODEL_1c6e36c143374b619efebd1763224d51",
- "value": " 132/132 [00:00<00:00, 10237.77 examples/s]"
+ "style": "IPY_MODEL_2cd88230aa32404fa9f821d2f7e73ee1",
+ "value": " 132/132 [00:00<00:00, 10218.87 examples/s]"
}
},
- "0fff0021442e4b26a3ef037cd77b53b9": {
+ "2cd88230aa32404fa9f821d2f7e73ee1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "4cb5a201e40a4148abe3078a636afcdd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "6e69f1518dbd4f5f98b28e61ae5741e7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "72fad40a86864766b299b987b88cfd8a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_eb0687177d3042cf8f0901f75f604e85",
+ "IPY_MODEL_a4e15f916f304af6a621a3edd208fbde",
+ "IPY_MODEL_1dd56a26d69048f6a3cafad4385d2b8a"
+ ],
+ "layout": "IPY_MODEL_761d6c7068ef43eab994d1e5d21d994c"
+ }
+ },
+ "761d6c7068ef43eab994d1e5d21d994c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1503,7 +1571,7 @@
"width": null
}
},
- "13d483977eca497389f4722102d836b9": {
+ "7bcc3f1d4e8f4561af6fefcdbfa57573": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1555,82 +1623,7 @@
"width": null
}
},
- "1c6e36c143374b619efebd1763224d51": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "4666b6ad60954d5887cfd7eebc497a5e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "777abd15d2bc4f3dbbcd901eb1bfa3d7": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_13d483977eca497389f4722102d836b9",
- "placeholder": "",
- "style": "IPY_MODEL_4666b6ad60954d5887cfd7eebc497a5e",
- "value": "Saving the dataset (1/1 shards): 100%"
- }
- },
- "822795f0acf14d819bd90d6ea63181ec": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_bfd4faf7258443a39bd2fcd278bc83ac",
- "max": 132.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_dac1e3e656dd43008dc2870d6342af0e",
- "value": 132.0
- }
- },
- "bfd4faf7258443a39bd2fcd278bc83ac": {
+ "8443c9e833384832ac73d9d1c16736c9": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1682,23 +1675,31 @@
"width": null
}
},
- "dac1e3e656dd43008dc2870d6342af0e": {
+ "a4e15f916f304af6a621a3edd208fbde": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "FloatProgressModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_7bcc3f1d4e8f4561af6fefcdbfa57573",
+ "max": 132.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_6e69f1518dbd4f5f98b28e61ae5741e7",
+ "value": 132.0
}
},
- "e6c108b6484046cdb7acc0ffe213b8ef": {
+ "cc4cc2f72a704431ba1a4a0b3aefb072": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1750,26 +1751,25 @@
"width": null
}
},
- "fea3d5c35ae9493f8a9be8704822e8fd": {
+ "eb0687177d3042cf8f0901f75f604e85": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_777abd15d2bc4f3dbbcd901eb1bfa3d7",
- "IPY_MODEL_822795f0acf14d819bd90d6ea63181ec",
- "IPY_MODEL_07ce684158734aa2ad7d27dfdc5022e9"
- ],
- "layout": "IPY_MODEL_e6c108b6484046cdb7acc0ffe213b8ef"
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_cc4cc2f72a704431ba1a4a0b3aefb072",
+ "placeholder": "",
+ "style": "IPY_MODEL_4cb5a201e40a4148abe3078a636afcdd",
+ "value": "Saving the dataset (1/1 shards): 100%"
}
}
},
diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb
index 286e31e35..a87b1fc5a 100644
--- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb
@@ -78,10 +78,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:26.619683Z",
- "iopub.status.busy": "2024-01-10T06:13:26.619488Z",
- "iopub.status.idle": "2024-01-10T06:13:27.745801Z",
- "shell.execute_reply": "2024-01-10T06:13:27.745151Z"
+ "iopub.execute_input": "2024-01-10T14:59:03.000059Z",
+ "iopub.status.busy": "2024-01-10T14:59:02.999862Z",
+ "iopub.status.idle": "2024-01-10T14:59:04.078943Z",
+ "shell.execute_reply": "2024-01-10T14:59:04.078330Z"
},
"nbsphinx": "hidden"
},
@@ -91,7 +91,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -116,10 +116,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:27.748654Z",
- "iopub.status.busy": "2024-01-10T06:13:27.748325Z",
- "iopub.status.idle": "2024-01-10T06:13:27.751770Z",
- "shell.execute_reply": "2024-01-10T06:13:27.751229Z"
+ "iopub.execute_input": "2024-01-10T14:59:04.081752Z",
+ "iopub.status.busy": "2024-01-10T14:59:04.081300Z",
+ "iopub.status.idle": "2024-01-10T14:59:04.084518Z",
+ "shell.execute_reply": "2024-01-10T14:59:04.083930Z"
}
},
"outputs": [],
@@ -250,10 +250,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:27.754354Z",
- "iopub.status.busy": "2024-01-10T06:13:27.753974Z",
- "iopub.status.idle": "2024-01-10T06:13:27.763975Z",
- "shell.execute_reply": "2024-01-10T06:13:27.763377Z"
+ "iopub.execute_input": "2024-01-10T14:59:04.087061Z",
+ "iopub.status.busy": "2024-01-10T14:59:04.086706Z",
+ "iopub.status.idle": "2024-01-10T14:59:04.096607Z",
+ "shell.execute_reply": "2024-01-10T14:59:04.096118Z"
},
"nbsphinx": "hidden"
},
@@ -356,10 +356,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:27.766552Z",
- "iopub.status.busy": "2024-01-10T06:13:27.766172Z",
- "iopub.status.idle": "2024-01-10T06:13:27.771201Z",
- "shell.execute_reply": "2024-01-10T06:13:27.770666Z"
+ "iopub.execute_input": "2024-01-10T14:59:04.098985Z",
+ "iopub.status.busy": "2024-01-10T14:59:04.098491Z",
+ "iopub.status.idle": "2024-01-10T14:59:04.103421Z",
+ "shell.execute_reply": "2024-01-10T14:59:04.102829Z"
}
},
"outputs": [],
@@ -448,10 +448,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:27.773953Z",
- "iopub.status.busy": "2024-01-10T06:13:27.773555Z",
- "iopub.status.idle": "2024-01-10T06:13:28.061463Z",
- "shell.execute_reply": "2024-01-10T06:13:28.060825Z"
+ "iopub.execute_input": "2024-01-10T14:59:04.105879Z",
+ "iopub.status.busy": "2024-01-10T14:59:04.105439Z",
+ "iopub.status.idle": "2024-01-10T14:59:04.393020Z",
+ "shell.execute_reply": "2024-01-10T14:59:04.392350Z"
},
"nbsphinx": "hidden"
},
@@ -520,10 +520,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:28.064511Z",
- "iopub.status.busy": "2024-01-10T06:13:28.064106Z",
- "iopub.status.idle": "2024-01-10T06:13:28.444087Z",
- "shell.execute_reply": "2024-01-10T06:13:28.443404Z"
+ "iopub.execute_input": "2024-01-10T14:59:04.395826Z",
+ "iopub.status.busy": "2024-01-10T14:59:04.395600Z",
+ "iopub.status.idle": "2024-01-10T14:59:04.765815Z",
+ "shell.execute_reply": "2024-01-10T14:59:04.765164Z"
}
},
"outputs": [
@@ -559,10 +559,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:28.446987Z",
- "iopub.status.busy": "2024-01-10T06:13:28.446714Z",
- "iopub.status.idle": "2024-01-10T06:13:28.449701Z",
- "shell.execute_reply": "2024-01-10T06:13:28.449201Z"
+ "iopub.execute_input": "2024-01-10T14:59:04.768430Z",
+ "iopub.status.busy": "2024-01-10T14:59:04.767972Z",
+ "iopub.status.idle": "2024-01-10T14:59:04.770856Z",
+ "shell.execute_reply": "2024-01-10T14:59:04.770335Z"
}
},
"outputs": [],
@@ -601,10 +601,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:28.452290Z",
- "iopub.status.busy": "2024-01-10T06:13:28.451933Z",
- "iopub.status.idle": "2024-01-10T06:13:28.490839Z",
- "shell.execute_reply": "2024-01-10T06:13:28.490127Z"
+ "iopub.execute_input": "2024-01-10T14:59:04.773132Z",
+ "iopub.status.busy": "2024-01-10T14:59:04.772933Z",
+ "iopub.status.idle": "2024-01-10T14:59:04.811324Z",
+ "shell.execute_reply": "2024-01-10T14:59:04.810695Z"
}
},
"outputs": [
@@ -646,10 +646,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:28.493623Z",
- "iopub.status.busy": "2024-01-10T06:13:28.493214Z",
- "iopub.status.idle": "2024-01-10T06:13:29.876381Z",
- "shell.execute_reply": "2024-01-10T06:13:29.875700Z"
+ "iopub.execute_input": "2024-01-10T14:59:04.813573Z",
+ "iopub.status.busy": "2024-01-10T14:59:04.813373Z",
+ "iopub.status.idle": "2024-01-10T14:59:06.133380Z",
+ "shell.execute_reply": "2024-01-10T14:59:06.132660Z"
}
},
"outputs": [
@@ -701,10 +701,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:29.879396Z",
- "iopub.status.busy": "2024-01-10T06:13:29.878867Z",
- "iopub.status.idle": "2024-01-10T06:13:29.905840Z",
- "shell.execute_reply": "2024-01-10T06:13:29.905222Z"
+ "iopub.execute_input": "2024-01-10T14:59:06.136341Z",
+ "iopub.status.busy": "2024-01-10T14:59:06.135744Z",
+ "iopub.status.idle": "2024-01-10T14:59:06.161385Z",
+ "shell.execute_reply": "2024-01-10T14:59:06.160754Z"
}
},
"outputs": [
@@ -878,10 +878,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:29.908674Z",
- "iopub.status.busy": "2024-01-10T06:13:29.908246Z",
- "iopub.status.idle": "2024-01-10T06:13:29.915341Z",
- "shell.execute_reply": "2024-01-10T06:13:29.914800Z"
+ "iopub.execute_input": "2024-01-10T14:59:06.164094Z",
+ "iopub.status.busy": "2024-01-10T14:59:06.163709Z",
+ "iopub.status.idle": "2024-01-10T14:59:06.170693Z",
+ "shell.execute_reply": "2024-01-10T14:59:06.170040Z"
}
},
"outputs": [
@@ -985,10 +985,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:29.917753Z",
- "iopub.status.busy": "2024-01-10T06:13:29.917379Z",
- "iopub.status.idle": "2024-01-10T06:13:29.923844Z",
- "shell.execute_reply": "2024-01-10T06:13:29.923288Z"
+ "iopub.execute_input": "2024-01-10T14:59:06.173531Z",
+ "iopub.status.busy": "2024-01-10T14:59:06.172899Z",
+ "iopub.status.idle": "2024-01-10T14:59:06.179680Z",
+ "shell.execute_reply": "2024-01-10T14:59:06.179158Z"
}
},
"outputs": [
@@ -1055,10 +1055,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:29.926169Z",
- "iopub.status.busy": "2024-01-10T06:13:29.925829Z",
- "iopub.status.idle": "2024-01-10T06:13:29.936668Z",
- "shell.execute_reply": "2024-01-10T06:13:29.936027Z"
+ "iopub.execute_input": "2024-01-10T14:59:06.182064Z",
+ "iopub.status.busy": "2024-01-10T14:59:06.181860Z",
+ "iopub.status.idle": "2024-01-10T14:59:06.192735Z",
+ "shell.execute_reply": "2024-01-10T14:59:06.192198Z"
}
},
"outputs": [
@@ -1231,10 +1231,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:29.939259Z",
- "iopub.status.busy": "2024-01-10T06:13:29.938858Z",
- "iopub.status.idle": "2024-01-10T06:13:29.949031Z",
- "shell.execute_reply": "2024-01-10T06:13:29.948457Z"
+ "iopub.execute_input": "2024-01-10T14:59:06.195091Z",
+ "iopub.status.busy": "2024-01-10T14:59:06.194847Z",
+ "iopub.status.idle": "2024-01-10T14:59:06.205008Z",
+ "shell.execute_reply": "2024-01-10T14:59:06.204451Z"
}
},
"outputs": [
@@ -1350,10 +1350,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:29.951601Z",
- "iopub.status.busy": "2024-01-10T06:13:29.951195Z",
- "iopub.status.idle": "2024-01-10T06:13:29.959192Z",
- "shell.execute_reply": "2024-01-10T06:13:29.958517Z"
+ "iopub.execute_input": "2024-01-10T14:59:06.207787Z",
+ "iopub.status.busy": "2024-01-10T14:59:06.207584Z",
+ "iopub.status.idle": "2024-01-10T14:59:06.215303Z",
+ "shell.execute_reply": "2024-01-10T14:59:06.214681Z"
},
"scrolled": true
},
@@ -1478,10 +1478,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:29.961669Z",
- "iopub.status.busy": "2024-01-10T06:13:29.961294Z",
- "iopub.status.idle": "2024-01-10T06:13:29.971591Z",
- "shell.execute_reply": "2024-01-10T06:13:29.970943Z"
+ "iopub.execute_input": "2024-01-10T14:59:06.217692Z",
+ "iopub.status.busy": "2024-01-10T14:59:06.217484Z",
+ "iopub.status.idle": "2024-01-10T14:59:06.227879Z",
+ "shell.execute_reply": "2024-01-10T14:59:06.227251Z"
}
},
"outputs": [
diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb
index 05c0fc6d0..ababc3071 100644
--- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb
@@ -74,10 +74,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:34.642782Z",
- "iopub.status.busy": "2024-01-10T06:13:34.642338Z",
- "iopub.status.idle": "2024-01-10T06:13:35.711028Z",
- "shell.execute_reply": "2024-01-10T06:13:35.710358Z"
+ "iopub.execute_input": "2024-01-10T14:59:10.981665Z",
+ "iopub.status.busy": "2024-01-10T14:59:10.981463Z",
+ "iopub.status.idle": "2024-01-10T14:59:12.008038Z",
+ "shell.execute_reply": "2024-01-10T14:59:12.007342Z"
},
"nbsphinx": "hidden"
},
@@ -87,7 +87,7 @@
"dependencies = [\"cleanlab\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -112,10 +112,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:35.714280Z",
- "iopub.status.busy": "2024-01-10T06:13:35.713776Z",
- "iopub.status.idle": "2024-01-10T06:13:35.731031Z",
- "shell.execute_reply": "2024-01-10T06:13:35.730464Z"
+ "iopub.execute_input": "2024-01-10T14:59:12.010994Z",
+ "iopub.status.busy": "2024-01-10T14:59:12.010677Z",
+ "iopub.status.idle": "2024-01-10T14:59:12.027240Z",
+ "shell.execute_reply": "2024-01-10T14:59:12.026590Z"
}
},
"outputs": [],
@@ -155,10 +155,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:35.733700Z",
- "iopub.status.busy": "2024-01-10T06:13:35.733480Z",
- "iopub.status.idle": "2024-01-10T06:13:35.919903Z",
- "shell.execute_reply": "2024-01-10T06:13:35.919256Z"
+ "iopub.execute_input": "2024-01-10T14:59:12.030319Z",
+ "iopub.status.busy": "2024-01-10T14:59:12.029725Z",
+ "iopub.status.idle": "2024-01-10T14:59:12.179406Z",
+ "shell.execute_reply": "2024-01-10T14:59:12.178766Z"
}
},
"outputs": [
@@ -265,10 +265,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:35.922543Z",
- "iopub.status.busy": "2024-01-10T06:13:35.922146Z",
- "iopub.status.idle": "2024-01-10T06:13:35.926047Z",
- "shell.execute_reply": "2024-01-10T06:13:35.925541Z"
+ "iopub.execute_input": "2024-01-10T14:59:12.182187Z",
+ "iopub.status.busy": "2024-01-10T14:59:12.181713Z",
+ "iopub.status.idle": "2024-01-10T14:59:12.185520Z",
+ "shell.execute_reply": "2024-01-10T14:59:12.184931Z"
}
},
"outputs": [],
@@ -289,10 +289,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:35.928442Z",
- "iopub.status.busy": "2024-01-10T06:13:35.928230Z",
- "iopub.status.idle": "2024-01-10T06:13:35.936664Z",
- "shell.execute_reply": "2024-01-10T06:13:35.935983Z"
+ "iopub.execute_input": "2024-01-10T14:59:12.187959Z",
+ "iopub.status.busy": "2024-01-10T14:59:12.187588Z",
+ "iopub.status.idle": "2024-01-10T14:59:12.195249Z",
+ "shell.execute_reply": "2024-01-10T14:59:12.194761Z"
}
},
"outputs": [],
@@ -337,10 +337,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:35.939625Z",
- "iopub.status.busy": "2024-01-10T06:13:35.939226Z",
- "iopub.status.idle": "2024-01-10T06:13:35.942101Z",
- "shell.execute_reply": "2024-01-10T06:13:35.941546Z"
+ "iopub.execute_input": "2024-01-10T14:59:12.197697Z",
+ "iopub.status.busy": "2024-01-10T14:59:12.197262Z",
+ "iopub.status.idle": "2024-01-10T14:59:12.199985Z",
+ "shell.execute_reply": "2024-01-10T14:59:12.199461Z"
}
},
"outputs": [],
@@ -362,10 +362,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:35.944554Z",
- "iopub.status.busy": "2024-01-10T06:13:35.944192Z",
- "iopub.status.idle": "2024-01-10T06:13:39.637594Z",
- "shell.execute_reply": "2024-01-10T06:13:39.636942Z"
+ "iopub.execute_input": "2024-01-10T14:59:12.202218Z",
+ "iopub.status.busy": "2024-01-10T14:59:12.202019Z",
+ "iopub.status.idle": "2024-01-10T14:59:15.789515Z",
+ "shell.execute_reply": "2024-01-10T14:59:15.788880Z"
}
},
"outputs": [],
@@ -401,10 +401,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:39.640668Z",
- "iopub.status.busy": "2024-01-10T06:13:39.640285Z",
- "iopub.status.idle": "2024-01-10T06:13:39.650224Z",
- "shell.execute_reply": "2024-01-10T06:13:39.649592Z"
+ "iopub.execute_input": "2024-01-10T14:59:15.792602Z",
+ "iopub.status.busy": "2024-01-10T14:59:15.792171Z",
+ "iopub.status.idle": "2024-01-10T14:59:15.802081Z",
+ "shell.execute_reply": "2024-01-10T14:59:15.801589Z"
}
},
"outputs": [],
@@ -436,10 +436,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:39.653012Z",
- "iopub.status.busy": "2024-01-10T06:13:39.652527Z",
- "iopub.status.idle": "2024-01-10T06:13:41.067365Z",
- "shell.execute_reply": "2024-01-10T06:13:41.066639Z"
+ "iopub.execute_input": "2024-01-10T14:59:15.804589Z",
+ "iopub.status.busy": "2024-01-10T14:59:15.804228Z",
+ "iopub.status.idle": "2024-01-10T14:59:17.180350Z",
+ "shell.execute_reply": "2024-01-10T14:59:17.179602Z"
}
},
"outputs": [
@@ -475,10 +475,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:41.070894Z",
- "iopub.status.busy": "2024-01-10T06:13:41.070181Z",
- "iopub.status.idle": "2024-01-10T06:13:41.096554Z",
- "shell.execute_reply": "2024-01-10T06:13:41.095923Z"
+ "iopub.execute_input": "2024-01-10T14:59:17.184988Z",
+ "iopub.status.busy": "2024-01-10T14:59:17.183614Z",
+ "iopub.status.idle": "2024-01-10T14:59:17.212346Z",
+ "shell.execute_reply": "2024-01-10T14:59:17.211645Z"
},
"scrolled": true
},
@@ -624,10 +624,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:41.099706Z",
- "iopub.status.busy": "2024-01-10T06:13:41.099250Z",
- "iopub.status.idle": "2024-01-10T06:13:41.109639Z",
- "shell.execute_reply": "2024-01-10T06:13:41.109017Z"
+ "iopub.execute_input": "2024-01-10T14:59:17.216992Z",
+ "iopub.status.busy": "2024-01-10T14:59:17.215793Z",
+ "iopub.status.idle": "2024-01-10T14:59:17.229530Z",
+ "shell.execute_reply": "2024-01-10T14:59:17.228867Z"
}
},
"outputs": [
@@ -731,10 +731,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:41.113653Z",
- "iopub.status.busy": "2024-01-10T06:13:41.112495Z",
- "iopub.status.idle": "2024-01-10T06:13:41.128314Z",
- "shell.execute_reply": "2024-01-10T06:13:41.127671Z"
+ "iopub.execute_input": "2024-01-10T14:59:17.234257Z",
+ "iopub.status.busy": "2024-01-10T14:59:17.233091Z",
+ "iopub.status.idle": "2024-01-10T14:59:17.248521Z",
+ "shell.execute_reply": "2024-01-10T14:59:17.247893Z"
}
},
"outputs": [
@@ -863,10 +863,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:41.132950Z",
- "iopub.status.busy": "2024-01-10T06:13:41.131794Z",
- "iopub.status.idle": "2024-01-10T06:13:41.145507Z",
- "shell.execute_reply": "2024-01-10T06:13:41.144878Z"
+ "iopub.execute_input": "2024-01-10T14:59:17.253033Z",
+ "iopub.status.busy": "2024-01-10T14:59:17.251892Z",
+ "iopub.status.idle": "2024-01-10T14:59:17.264947Z",
+ "shell.execute_reply": "2024-01-10T14:59:17.264349Z"
}
},
"outputs": [
@@ -980,10 +980,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:41.150079Z",
- "iopub.status.busy": "2024-01-10T06:13:41.148942Z",
- "iopub.status.idle": "2024-01-10T06:13:41.163497Z",
- "shell.execute_reply": "2024-01-10T06:13:41.162983Z"
+ "iopub.execute_input": "2024-01-10T14:59:17.269322Z",
+ "iopub.status.busy": "2024-01-10T14:59:17.268190Z",
+ "iopub.status.idle": "2024-01-10T14:59:17.279638Z",
+ "shell.execute_reply": "2024-01-10T14:59:17.279028Z"
}
},
"outputs": [
@@ -1094,10 +1094,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:41.166435Z",
- "iopub.status.busy": "2024-01-10T06:13:41.166050Z",
- "iopub.status.idle": "2024-01-10T06:13:41.173457Z",
- "shell.execute_reply": "2024-01-10T06:13:41.172926Z"
+ "iopub.execute_input": "2024-01-10T14:59:17.282394Z",
+ "iopub.status.busy": "2024-01-10T14:59:17.281813Z",
+ "iopub.status.idle": "2024-01-10T14:59:17.288968Z",
+ "shell.execute_reply": "2024-01-10T14:59:17.288435Z"
}
},
"outputs": [
@@ -1181,10 +1181,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:41.175909Z",
- "iopub.status.busy": "2024-01-10T06:13:41.175694Z",
- "iopub.status.idle": "2024-01-10T06:13:41.183057Z",
- "shell.execute_reply": "2024-01-10T06:13:41.182383Z"
+ "iopub.execute_input": "2024-01-10T14:59:17.291408Z",
+ "iopub.status.busy": "2024-01-10T14:59:17.291060Z",
+ "iopub.status.idle": "2024-01-10T14:59:17.297989Z",
+ "shell.execute_reply": "2024-01-10T14:59:17.297472Z"
}
},
"outputs": [
@@ -1277,10 +1277,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:41.185507Z",
- "iopub.status.busy": "2024-01-10T06:13:41.185293Z",
- "iopub.status.idle": "2024-01-10T06:13:41.192997Z",
- "shell.execute_reply": "2024-01-10T06:13:41.192302Z"
+ "iopub.execute_input": "2024-01-10T14:59:17.300419Z",
+ "iopub.status.busy": "2024-01-10T14:59:17.300054Z",
+ "iopub.status.idle": "2024-01-10T14:59:17.306917Z",
+ "shell.execute_reply": "2024-01-10T14:59:17.306349Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb
index 316bee9cd..ca326d89b 100644
--- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb
@@ -75,10 +75,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:45.711059Z",
- "iopub.status.busy": "2024-01-10T06:13:45.710475Z",
- "iopub.status.idle": "2024-01-10T06:13:48.261537Z",
- "shell.execute_reply": "2024-01-10T06:13:48.260841Z"
+ "iopub.execute_input": "2024-01-10T14:59:22.092445Z",
+ "iopub.status.busy": "2024-01-10T14:59:22.092236Z",
+ "iopub.status.idle": "2024-01-10T14:59:24.403879Z",
+ "shell.execute_reply": "2024-01-10T14:59:24.403193Z"
},
"nbsphinx": "hidden"
},
@@ -93,7 +93,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "ecde268159ad4b6c9238a02d8a130669",
+ "model_id": "862dcffe2cde478e97ab974c75c6ea32",
"version_major": 2,
"version_minor": 0
},
@@ -118,7 +118,7 @@
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -143,10 +143,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:48.264527Z",
- "iopub.status.busy": "2024-01-10T06:13:48.264176Z",
- "iopub.status.idle": "2024-01-10T06:13:48.267728Z",
- "shell.execute_reply": "2024-01-10T06:13:48.267130Z"
+ "iopub.execute_input": "2024-01-10T14:59:24.407066Z",
+ "iopub.status.busy": "2024-01-10T14:59:24.406465Z",
+ "iopub.status.idle": "2024-01-10T14:59:24.410103Z",
+ "shell.execute_reply": "2024-01-10T14:59:24.409519Z"
}
},
"outputs": [],
@@ -167,10 +167,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:48.270213Z",
- "iopub.status.busy": "2024-01-10T06:13:48.269855Z",
- "iopub.status.idle": "2024-01-10T06:13:48.273267Z",
- "shell.execute_reply": "2024-01-10T06:13:48.272653Z"
+ "iopub.execute_input": "2024-01-10T14:59:24.412607Z",
+ "iopub.status.busy": "2024-01-10T14:59:24.412258Z",
+ "iopub.status.idle": "2024-01-10T14:59:24.415950Z",
+ "shell.execute_reply": "2024-01-10T14:59:24.415466Z"
},
"nbsphinx": "hidden"
},
@@ -200,10 +200,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:48.275463Z",
- "iopub.status.busy": "2024-01-10T06:13:48.275268Z",
- "iopub.status.idle": "2024-01-10T06:13:48.347672Z",
- "shell.execute_reply": "2024-01-10T06:13:48.346991Z"
+ "iopub.execute_input": "2024-01-10T14:59:24.418446Z",
+ "iopub.status.busy": "2024-01-10T14:59:24.417979Z",
+ "iopub.status.idle": "2024-01-10T14:59:24.476477Z",
+ "shell.execute_reply": "2024-01-10T14:59:24.475884Z"
}
},
"outputs": [
@@ -293,10 +293,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:48.350279Z",
- "iopub.status.busy": "2024-01-10T06:13:48.350052Z",
- "iopub.status.idle": "2024-01-10T06:13:48.354861Z",
- "shell.execute_reply": "2024-01-10T06:13:48.354307Z"
+ "iopub.execute_input": "2024-01-10T14:59:24.479032Z",
+ "iopub.status.busy": "2024-01-10T14:59:24.478651Z",
+ "iopub.status.idle": "2024-01-10T14:59:24.482763Z",
+ "shell.execute_reply": "2024-01-10T14:59:24.482154Z"
}
},
"outputs": [
@@ -305,7 +305,7 @@
"output_type": "stream",
"text": [
"This dataset has 10 classes.\n",
- "Classes: {'change_pin', 'card_payment_fee_charged', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'cancel_transfer', 'getting_spare_card', 'card_about_to_expire', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'beneficiary_not_allowed'}\n"
+ "Classes: {'getting_spare_card', 'card_payment_fee_charged', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'card_about_to_expire', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'cancel_transfer', 'change_pin', 'supported_cards_and_currencies'}\n"
]
}
],
@@ -329,10 +329,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:48.357102Z",
- "iopub.status.busy": "2024-01-10T06:13:48.356899Z",
- "iopub.status.idle": "2024-01-10T06:13:48.360744Z",
- "shell.execute_reply": "2024-01-10T06:13:48.360210Z"
+ "iopub.execute_input": "2024-01-10T14:59:24.485240Z",
+ "iopub.status.busy": "2024-01-10T14:59:24.484873Z",
+ "iopub.status.idle": "2024-01-10T14:59:24.488318Z",
+ "shell.execute_reply": "2024-01-10T14:59:24.487706Z"
}
},
"outputs": [
@@ -387,17 +387,17 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:48.363321Z",
- "iopub.status.busy": "2024-01-10T06:13:48.363090Z",
- "iopub.status.idle": "2024-01-10T06:13:57.704452Z",
- "shell.execute_reply": "2024-01-10T06:13:57.703719Z"
+ "iopub.execute_input": "2024-01-10T14:59:24.490800Z",
+ "iopub.status.busy": "2024-01-10T14:59:24.490451Z",
+ "iopub.status.idle": "2024-01-10T14:59:33.672418Z",
+ "shell.execute_reply": "2024-01-10T14:59:33.671786Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "a8ffa81464b747aabcd524f5b6004746",
+ "model_id": "f2e849e51c874b17a848ea3fa7185a74",
"version_major": 2,
"version_minor": 0
},
@@ -411,7 +411,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "5216ca84d3a1452cbddcd5994453d513",
+ "model_id": "94c85eae08a741ef81e270f9647311bf",
"version_major": 2,
"version_minor": 0
},
@@ -425,7 +425,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "e3fe28eb102c4226a6521a5c52251366",
+ "model_id": "f8fc9626652544dba8ec78fd1f4ae9d7",
"version_major": 2,
"version_minor": 0
},
@@ -439,7 +439,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "9205d83347e448338bc7a0902cba4636",
+ "model_id": "84f0c6c7b270459db0855f5d976763e0",
"version_major": 2,
"version_minor": 0
},
@@ -453,7 +453,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "0e1ed050fd3e40b1a25a47dc3dc51056",
+ "model_id": "8935bc181d264ffc8db415b422beb496",
"version_major": 2,
"version_minor": 0
},
@@ -467,7 +467,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "a2f4fdacb911421b921cb9244d7615bb",
+ "model_id": "bc2109a4e2f84d67bbb8ab6cba21fab9",
"version_major": 2,
"version_minor": 0
},
@@ -481,7 +481,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "a83cf26330f24f4ba5ef6fd1ad5505fe",
+ "model_id": "9b94f541e59245eda011ea6c11772a07",
"version_major": 2,
"version_minor": 0
},
@@ -535,10 +535,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:57.707843Z",
- "iopub.status.busy": "2024-01-10T06:13:57.707437Z",
- "iopub.status.idle": "2024-01-10T06:13:58.886455Z",
- "shell.execute_reply": "2024-01-10T06:13:58.885773Z"
+ "iopub.execute_input": "2024-01-10T14:59:33.675731Z",
+ "iopub.status.busy": "2024-01-10T14:59:33.675246Z",
+ "iopub.status.idle": "2024-01-10T14:59:34.841910Z",
+ "shell.execute_reply": "2024-01-10T14:59:34.841238Z"
},
"scrolled": true
},
@@ -570,10 +570,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:58.890144Z",
- "iopub.status.busy": "2024-01-10T06:13:58.889698Z",
- "iopub.status.idle": "2024-01-10T06:13:58.892840Z",
- "shell.execute_reply": "2024-01-10T06:13:58.892280Z"
+ "iopub.execute_input": "2024-01-10T14:59:34.845385Z",
+ "iopub.status.busy": "2024-01-10T14:59:34.844983Z",
+ "iopub.status.idle": "2024-01-10T14:59:34.848001Z",
+ "shell.execute_reply": "2024-01-10T14:59:34.847447Z"
}
},
"outputs": [],
@@ -593,10 +593,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:13:58.895717Z",
- "iopub.status.busy": "2024-01-10T06:13:58.895295Z",
- "iopub.status.idle": "2024-01-10T06:14:00.257372Z",
- "shell.execute_reply": "2024-01-10T06:14:00.256547Z"
+ "iopub.execute_input": "2024-01-10T14:59:34.850802Z",
+ "iopub.status.busy": "2024-01-10T14:59:34.850433Z",
+ "iopub.status.idle": "2024-01-10T14:59:36.210865Z",
+ "shell.execute_reply": "2024-01-10T14:59:36.209994Z"
},
"scrolled": true
},
@@ -640,10 +640,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:00.261200Z",
- "iopub.status.busy": "2024-01-10T06:14:00.260285Z",
- "iopub.status.idle": "2024-01-10T06:14:00.295159Z",
- "shell.execute_reply": "2024-01-10T06:14:00.294488Z"
+ "iopub.execute_input": "2024-01-10T14:59:36.214452Z",
+ "iopub.status.busy": "2024-01-10T14:59:36.213504Z",
+ "iopub.status.idle": "2024-01-10T14:59:36.247942Z",
+ "shell.execute_reply": "2024-01-10T14:59:36.247228Z"
},
"scrolled": true
},
@@ -808,10 +808,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:00.299424Z",
- "iopub.status.busy": "2024-01-10T06:14:00.298094Z",
- "iopub.status.idle": "2024-01-10T06:14:00.311396Z",
- "shell.execute_reply": "2024-01-10T06:14:00.310797Z"
+ "iopub.execute_input": "2024-01-10T14:59:36.251096Z",
+ "iopub.status.busy": "2024-01-10T14:59:36.250420Z",
+ "iopub.status.idle": "2024-01-10T14:59:36.261728Z",
+ "shell.execute_reply": "2024-01-10T14:59:36.261092Z"
},
"scrolled": true
},
@@ -921,10 +921,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:00.315625Z",
- "iopub.status.busy": "2024-01-10T06:14:00.314540Z",
- "iopub.status.idle": "2024-01-10T06:14:00.320884Z",
- "shell.execute_reply": "2024-01-10T06:14:00.320096Z"
+ "iopub.execute_input": "2024-01-10T14:59:36.264768Z",
+ "iopub.status.busy": "2024-01-10T14:59:36.264298Z",
+ "iopub.status.idle": "2024-01-10T14:59:36.269449Z",
+ "shell.execute_reply": "2024-01-10T14:59:36.268960Z"
}
},
"outputs": [
@@ -962,10 +962,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:00.323848Z",
- "iopub.status.busy": "2024-01-10T06:14:00.323481Z",
- "iopub.status.idle": "2024-01-10T06:14:00.332079Z",
- "shell.execute_reply": "2024-01-10T06:14:00.331155Z"
+ "iopub.execute_input": "2024-01-10T14:59:36.272221Z",
+ "iopub.status.busy": "2024-01-10T14:59:36.271614Z",
+ "iopub.status.idle": "2024-01-10T14:59:36.279936Z",
+ "shell.execute_reply": "2024-01-10T14:59:36.279356Z"
}
},
"outputs": [
@@ -1082,10 +1082,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:00.334887Z",
- "iopub.status.busy": "2024-01-10T06:14:00.334512Z",
- "iopub.status.idle": "2024-01-10T06:14:00.341819Z",
- "shell.execute_reply": "2024-01-10T06:14:00.341196Z"
+ "iopub.execute_input": "2024-01-10T14:59:36.282599Z",
+ "iopub.status.busy": "2024-01-10T14:59:36.282081Z",
+ "iopub.status.idle": "2024-01-10T14:59:36.289576Z",
+ "shell.execute_reply": "2024-01-10T14:59:36.288966Z"
}
},
"outputs": [
@@ -1168,10 +1168,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:00.344333Z",
- "iopub.status.busy": "2024-01-10T06:14:00.343964Z",
- "iopub.status.idle": "2024-01-10T06:14:00.350787Z",
- "shell.execute_reply": "2024-01-10T06:14:00.350197Z"
+ "iopub.execute_input": "2024-01-10T14:59:36.291990Z",
+ "iopub.status.busy": "2024-01-10T14:59:36.291624Z",
+ "iopub.status.idle": "2024-01-10T14:59:36.297899Z",
+ "shell.execute_reply": "2024-01-10T14:59:36.297301Z"
}
},
"outputs": [
@@ -1279,10 +1279,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:00.353100Z",
- "iopub.status.busy": "2024-01-10T06:14:00.352897Z",
- "iopub.status.idle": "2024-01-10T06:14:00.362475Z",
- "shell.execute_reply": "2024-01-10T06:14:00.361847Z"
+ "iopub.execute_input": "2024-01-10T14:59:36.300330Z",
+ "iopub.status.busy": "2024-01-10T14:59:36.299984Z",
+ "iopub.status.idle": "2024-01-10T14:59:36.309346Z",
+ "shell.execute_reply": "2024-01-10T14:59:36.308790Z"
}
},
"outputs": [
@@ -1393,10 +1393,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:00.364896Z",
- "iopub.status.busy": "2024-01-10T06:14:00.364520Z",
- "iopub.status.idle": "2024-01-10T06:14:00.370683Z",
- "shell.execute_reply": "2024-01-10T06:14:00.370027Z"
+ "iopub.execute_input": "2024-01-10T14:59:36.311803Z",
+ "iopub.status.busy": "2024-01-10T14:59:36.311415Z",
+ "iopub.status.idle": "2024-01-10T14:59:36.317270Z",
+ "shell.execute_reply": "2024-01-10T14:59:36.316743Z"
}
},
"outputs": [
@@ -1464,10 +1464,10 @@
"execution_count": 19,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:00.373237Z",
- "iopub.status.busy": "2024-01-10T06:14:00.372863Z",
- "iopub.status.idle": "2024-01-10T06:14:00.555773Z",
- "shell.execute_reply": "2024-01-10T06:14:00.555089Z"
+ "iopub.execute_input": "2024-01-10T14:59:36.319529Z",
+ "iopub.status.busy": "2024-01-10T14:59:36.319327Z",
+ "iopub.status.idle": "2024-01-10T14:59:36.325099Z",
+ "shell.execute_reply": "2024-01-10T14:59:36.324498Z"
}
},
"outputs": [
@@ -1546,10 +1546,10 @@
"execution_count": 20,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:00.558702Z",
- "iopub.status.busy": "2024-01-10T06:14:00.558311Z",
- "iopub.status.idle": "2024-01-10T06:14:00.562319Z",
- "shell.execute_reply": "2024-01-10T06:14:00.561767Z"
+ "iopub.execute_input": "2024-01-10T14:59:36.327483Z",
+ "iopub.status.busy": "2024-01-10T14:59:36.327281Z",
+ "iopub.status.idle": "2024-01-10T14:59:36.331149Z",
+ "shell.execute_reply": "2024-01-10T14:59:36.330531Z"
}
},
"outputs": [
@@ -1597,10 +1597,10 @@
"execution_count": 21,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:00.564637Z",
- "iopub.status.busy": "2024-01-10T06:14:00.564438Z",
- "iopub.status.idle": "2024-01-10T06:14:00.570104Z",
- "shell.execute_reply": "2024-01-10T06:14:00.569531Z"
+ "iopub.execute_input": "2024-01-10T14:59:36.333455Z",
+ "iopub.status.busy": "2024-01-10T14:59:36.333256Z",
+ "iopub.status.idle": "2024-01-10T14:59:36.517964Z",
+ "shell.execute_reply": "2024-01-10T14:59:36.517303Z"
},
"nbsphinx": "hidden"
},
@@ -1650,75 +1650,28 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "00aeb2f30e6344248d19643ed798bbc4": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "07295e89cb4b472d930107e8be8c3829": {
+ "00917c17081843f6a5a5d44b91e6acd9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_fd69eddaeade4dfbbc190d9d0f7cef92",
+ "placeholder": "",
+ "style": "IPY_MODEL_fae8a5b5019e44ecad743866c942cf00",
+ "value": " 54.2M/54.2M [00:00<00:00, 266MB/s]"
}
},
- "0bcbb8b6b2d4472c93f1b70d408cd3ae": {
+ "01554e29f7bb4ab3bf4b0b53e7e8f147": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
@@ -1734,22 +1687,7 @@
"description_width": ""
}
},
- "0bdd3c5d23d740bcbecf41f59a191232": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "0cf1ac3dd226438bb8f2183f94973f95": {
+ "06c7f99c4f4d4c98b56c80428fe227a9": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1798,48 +1736,10 @@
"right": null,
"top": null,
"visibility": null,
- "width": null
- }
- },
- "0e1ed050fd3e40b1a25a47dc3dc51056": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_cc7b20aac74d43c4b6cd6b12d0aac738",
- "IPY_MODEL_716710cbdfca4c36ad130987a4499373",
- "IPY_MODEL_8ec5def0730d432096e2d85bcfac23b7"
- ],
- "layout": "IPY_MODEL_548c8271d3b54e1b9f45689a0af4ccba"
- }
- },
- "107c4fe3b4a3466da18c28dc8cee707d": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "width": "20px"
}
},
- "1470e51bfd5741a397860a52aab1d71d": {
+ "075c0a2ff8984472a2407cb65c1af308": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1891,23 +1791,7 @@
"width": null
}
},
- "1712941961e44a459dbba5626cad267a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "1aa2f8588c6444898d007a076c585e62": {
+ "0a601d68ed194795a8e3e30f9636b988": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1959,7 +1843,28 @@
"width": null
}
},
- "1d7fc981d1054225be5aceac76877fb0": {
+ "0dd83adc06cc448dbb45c8d5b083b1b3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d88203f29b6041b9b084fcbe564b744c",
+ "placeholder": "",
+ "style": "IPY_MODEL_97e3a9449c1045cf96051bf240fb3d86",
+ "value": " 232k/232k [00:00<00:00, 26.2MB/s]"
+ }
+ },
+ "0f07dbed86ee4dedb4230e294d563b70": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -1974,7 +1879,7 @@
"description_width": ""
}
},
- "22324387e5b743e681be79d036fe31d6": {
+ "12cb6377a008434fb126f7a20059d295": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2026,59 +1931,165 @@
"width": null
}
},
- "2288246d5a4d4b4bb1a1f8e73a2b12b0": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
+ "1d0bb365cef642bf9aa028dfaf2da8bf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_06c7f99c4f4d4c98b56c80428fe227a9",
+ "max": 1.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_a321f57989f746d79202da624285ed2c",
+ "value": 0.0
+ }
+ },
+ "2042be878078403c96190c096097d90d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c76748ec8a42450ba7223d8b626ba091",
+ "placeholder": "",
+ "style": "IPY_MODEL_4274375b0fc249138d9065f3d789e378",
+ "value": " 2.21k/2.21k [00:00<00:00, 298kB/s]"
+ }
+ },
+ "2459388b6cbd42c2a4d43684c4b9afdf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_9eee4112141543a9a4224b8b25ab2e5d",
+ "placeholder": "",
+ "style": "IPY_MODEL_bb4e1551497a4ce4be301f4368f81676",
+ "value": " 466k/466k [00:00<00:00, 13.9MB/s]"
+ }
+ },
+ "2886de46d9fd4702ab6e1c5b72e49072": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f7f728bec002499ab7823a03e95a2bf5",
+ "max": 665.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_2b0612da6bf14497ab00ac2fcd669247",
+ "value": 665.0
+ }
+ },
+ "2b0612da6bf14497ab00ac2fcd669247": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "26520c10c4674e25ad89fb718b9068ce": {
+ "2c57a2dce6844d669534d4a56c9b289e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "31cbafcf7296451f8eafa376459fce42": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c3a89d32580e43a5abcb986b0342b26b",
+ "placeholder": "",
+ "style": "IPY_MODEL_5d198168a65943669c64ed11ea145d06",
+ "value": " 391/391 [00:00<00:00, 51.0kB/s]"
+ }
+ },
+ "33b12887dbb64274a7777cd6a46751fd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "3f6a155e08b14f70bd139c25bbfc97ee": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -2093,13 +2104,28 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_63924927f0884276833e034800f11bb7",
+ "layout": "IPY_MODEL_54b1991278ba46e2b8bbd15c62221efa",
"placeholder": "",
- "style": "IPY_MODEL_96700a76a0d44e99acf09ab0d477e8d4",
- "value": " 665/665 [00:00<00:00, 79.8kB/s]"
+ "style": "IPY_MODEL_469e1113de45470581ebc31ed32169a1",
+ "value": "tokenizer.json: 100%"
}
},
- "2689e33ba4f945b7ac5af43480cf3280": {
+ "4274375b0fc249138d9065f3d789e378": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "43604c5ccc2f48e084d21528eff3c15d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2151,22 +2177,7 @@
"width": null
}
},
- "29250c8e90c943acb40ea406ff6da5fa": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "299ed4dc9db74c09a4b3e505aac77bff": {
+ "469e1113de45470581ebc31ed32169a1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -2181,49 +2192,31 @@
"description_width": ""
}
},
- "2b86d2d875af44f2b3a146159c86ec2f": {
+ "4791eeb7baf64c8d9fac236bf5132592": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_5cf0f1b890b0431f9d2784e18231784a",
- "placeholder": "",
- "style": "IPY_MODEL_29250c8e90c943acb40ea406ff6da5fa",
- "value": " 2.21k/2.21k [00:00<00:00, 271kB/s]"
- }
- },
- "2d32842e064e40b0a1541bfad497928a": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_34c788bf54c24aa5949787bb0eff94b7",
- "placeholder": "",
- "style": "IPY_MODEL_1d7fc981d1054225be5aceac76877fb0",
- "value": "README.md: 100%"
+ "layout": "IPY_MODEL_9faaecaae1734c61ae18e834186c1666",
+ "max": 2211.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_01554e29f7bb4ab3bf4b0b53e7e8f147",
+ "value": 2211.0
}
},
- "2e093e53552c4e41afeabb5b2a3769ad": {
+ "4880191d3d0547f39e1ae04216c88b71": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2275,7 +2268,28 @@
"width": null
}
},
- "2fdc481b5a9c4ec0ad0aaa7fa7cb3307": {
+ "4abeacb8c56a488785fb5b9d0945caed": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_52125d88b94b46f69d248404f8994683",
+ "placeholder": "",
+ "style": "IPY_MODEL_6fe3adcc4a4041eabca98b1d60af84fd",
+ "value": " 665/665 [00:00<00:00, 81.4kB/s]"
+ }
+ },
+ "52125d88b94b46f69d248404f8994683": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2327,7 +2341,7 @@
"width": null
}
},
- "34ac7447b3444f598b53edbda4e5eb49": {
+ "54b1991278ba46e2b8bbd15c62221efa": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2379,7 +2393,22 @@
"width": null
}
},
- "34c788bf54c24aa5949787bb0eff94b7": {
+ "56636f85cdc9488bbcde50e0f31e8e05": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "583b1f186cc546f4a39bdfdd40349e0d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2431,7 +2460,28 @@
"width": null
}
},
- "3f584acf4fc44c58936eed00bb2fbd84": {
+ "5986e501975345c18931a5f0b9321683": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_bad367d7aefa4a2b986452a5deea268f",
+ "placeholder": "",
+ "style": "IPY_MODEL_56636f85cdc9488bbcde50e0f31e8e05",
+ "value": ".gitattributes: 100%"
+ }
+ },
+ "5d198168a65943669c64ed11ea145d06": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -2446,22 +2496,23 @@
"description_width": ""
}
},
- "3f5be0ecc2ee4433a4c0d5fd1d44050d": {
+ "5eb8c83858cd483bafc5a9248fad2a68": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
+ "bar_color": null,
"description_width": ""
}
},
- "448413c257e146d0938329daabce12f7": {
+ "609217f73fbb420caa14bc522c18b15d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2513,7 +2564,7 @@
"width": null
}
},
- "45ab12896d8d462491cd97cbbe6e0de9": {
+ "614552c5e5f3422a9e39ded35cce6f7e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2565,28 +2616,86 @@
"width": null
}
},
- "4bb63de4770d456d913a1961bcf657cb": {
+ "623fe1d3ad6e46fdb758928ae51160b2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "692cd1c543c44d1f9a54e10a308abc35": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_1aa2f8588c6444898d007a076c585e62",
- "placeholder": "",
- "style": "IPY_MODEL_dc10e1dfa7e84e1295522909b4df112e",
- "value": "tokenizer_config.json: 100%"
+ "layout": "IPY_MODEL_ea99b5f99229433c84ef7bc51a9c130f",
+ "max": 391.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_fcdce2bba18d4262a99e80746cd7ed8b",
+ "value": 391.0
+ }
+ },
+ "699ecc7a765d443aa11b0205425189a3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0a601d68ed194795a8e3e30f9636b988",
+ "max": 29.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_5eb8c83858cd483bafc5a9248fad2a68",
+ "value": 29.0
+ }
+ },
+ "6a41a8086ed2471099f0596d310b417b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "4bba66e3d211422d85ee43a076d810c6": {
+ "6befdc46f5d241a995ca903cc10cef7b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2638,28 +2747,46 @@
"width": null
}
},
- "4d45f78561ad4e2dab7952457334e52f": {
+ "6fe3adcc4a4041eabca98b1d60af84fd": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "7a6f92e7c9954a008ddc389e56a80eb1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_5ea866887ad340808b148446c2959147",
- "placeholder": "",
- "style": "IPY_MODEL_611e0881e57549d683be88bce77f5e93",
- "value": " 54.2M/54.2M [00:00<00:00, 300MB/s]"
+ "layout": "IPY_MODEL_7b994861070847fea1d4a823b3a35d09",
+ "max": 231508.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_623fe1d3ad6e46fdb758928ae51160b2",
+ "value": 231508.0
}
},
- "4e23b67da06044dba971afb2dd4d1aa0": {
+ "7b994861070847fea1d4a823b3a35d09": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2711,52 +2838,44 @@
"width": null
}
},
- "4f56a289968f46b29b61725fc61088a3": {
+ "81591ea42d154551991b09bc36ec0ace": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_0cf1ac3dd226438bb8f2183f94973f95",
- "placeholder": "",
- "style": "IPY_MODEL_0bdd3c5d23d740bcbecf41f59a191232",
- "value": " 391/391 [00:00<00:00, 50.7kB/s]"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "4f910b3893a04fd9bcdf56fca9550818": {
+ "84f0c6c7b270459db0855f5d976763e0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_8091370fb4e0431db0c9c95eb345ad39",
- "max": 1.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_0bcbb8b6b2d4472c93f1b70d408cd3ae",
- "value": 0.0
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_f67b595c6d6840bb837ed3c0bac5d0c8",
+ "IPY_MODEL_ddea88fc65ed4f6dae2c94fb28fe25d2",
+ "IPY_MODEL_00917c17081843f6a5a5d44b91e6acd9"
+ ],
+ "layout": "IPY_MODEL_6befdc46f5d241a995ca903cc10cef7b"
}
},
- "5216ca84d3a1452cbddcd5994453d513": {
+ "862dcffe2cde478e97ab974c75c6ea32": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
@@ -2771,102 +2890,60 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_2d32842e064e40b0a1541bfad497928a",
- "IPY_MODEL_f0f5cf6ee8c24c67aa14f8cf08fe4995",
- "IPY_MODEL_2b86d2d875af44f2b3a146159c86ec2f"
+ "IPY_MODEL_996f676633b94db4ab7ceea5a92391f5",
+ "IPY_MODEL_1d0bb365cef642bf9aa028dfaf2da8bf",
+ "IPY_MODEL_d318a49900f244a4acf9106cb605f223"
],
- "layout": "IPY_MODEL_9727413214ed4e8f9466aeffdafda413"
+ "layout": "IPY_MODEL_614552c5e5f3422a9e39ded35cce6f7e"
}
},
- "548c53d229894551afc50feabf6d6b61": {
+ "890f4eb716014024a5979fa13eb74d7c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "FloatProgressModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "548c8271d3b54e1b9f45689a0af4ccba": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_e6580715c12f4b788ec83b2fb386a5ee",
+ "max": 466062.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_33b12887dbb64274a7777cd6a46751fd",
+ "value": 466062.0
}
},
- "5490d628713d40f9a89e63379c65fad1": {
+ "8935bc181d264ffc8db415b422beb496": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ed1fe01152fa4642ad138486a2634cc1",
- "placeholder": "",
- "style": "IPY_MODEL_5b42a34f8c9842c387f1f19cb3ff7e41",
- "value": " 0/0 [00:00<?, ?it/s]"
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_3f6a155e08b14f70bd139c25bbfc97ee",
+ "IPY_MODEL_890f4eb716014024a5979fa13eb74d7c",
+ "IPY_MODEL_2459388b6cbd42c2a4d43684c4b9afdf"
+ ],
+ "layout": "IPY_MODEL_c31984e520ca42ca88ae7a5abd092a51"
}
},
- "5673c01340384e06bafc786376498d98": {
+ "926b0337f538498182c5aa19264b1a8d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2918,7 +2995,29 @@
"width": null
}
},
- "5b42a34f8c9842c387f1f19cb3ff7e41": {
+ "94c85eae08a741ef81e270f9647311bf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_be2b666b3d804f36913f6c87815b978c",
+ "IPY_MODEL_4791eeb7baf64c8d9fac236bf5132592",
+ "IPY_MODEL_2042be878078403c96190c096097d90d"
+ ],
+ "layout": "IPY_MODEL_583b1f186cc546f4a39bdfdd40349e0d"
+ }
+ },
+ "97e3a9449c1045cf96051bf240fb3d86": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -2933,7 +3032,50 @@
"description_width": ""
}
},
- "5b5556e01ebd4822b2fb6d01833df8b3": {
+ "996f676633b94db4ab7ceea5a92391f5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_075c0a2ff8984472a2407cb65c1af308",
+ "placeholder": "",
+ "style": "IPY_MODEL_aa56e96131494666bf4ac89b82a1e4e5",
+ "value": ""
+ }
+ },
+ "9b94f541e59245eda011ea6c11772a07": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_ffd34fdfbd9448afb84dbd6818b15c8d",
+ "IPY_MODEL_7a6f92e7c9954a008ddc389e56a80eb1",
+ "IPY_MODEL_0dd83adc06cc448dbb45c8d5b083b1b3"
+ ],
+ "layout": "IPY_MODEL_12cb6377a008434fb126f7a20059d295"
+ }
+ },
+ "9eee4112141543a9a4224b8b25ab2e5d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2985,7 +3127,7 @@
"width": null
}
},
- "5cf0f1b890b0431f9d2784e18231784a": {
+ "9faaecaae1734c61ae18e834186c1666": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3037,7 +3179,69 @@
"width": null
}
},
- "5ea866887ad340808b148446c2959147": {
+ "a321f57989f746d79202da624285ed2c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "a6b4b7c9957e4b819305afab73204cf6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "a956344db7a545cd957824d3ff7a2138": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "aa56e96131494666bf4ac89b82a1e4e5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "b2c45c794eca4d8ea4aab4e4a2858c77": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3089,43 +3293,7 @@
"width": null
}
},
- "5f836f718e46477f9c5d4c1f0b77124b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_bee13efee5384807a5acf80366bb301c",
- "placeholder": "",
- "style": "IPY_MODEL_299ed4dc9db74c09a4b3e505aac77bff",
- "value": " 232k/232k [00:00<00:00, 22.1MB/s]"
- }
- },
- "611e0881e57549d683be88bce77f5e93": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "63924927f0884276833e034800f11bb7": {
+ "bad367d7aefa4a2b986452a5deea268f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3177,147 +3345,169 @@
"width": null
}
},
- "64a2b9e3be0f4e9abe6e46ced115eba4": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "65ece1a93a484e9aac2d3dcb5fdc3536": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_8a08d94d414a4bcdae4627a725465dbb",
- "max": 54245363.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_107c4fe3b4a3466da18c28dc8cee707d",
- "value": 54245363.0
- }
- },
- "6df5afad53374d6d8ab0eaa9b99fae57": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_00aeb2f30e6344248d19643ed798bbc4",
- "placeholder": "",
- "style": "IPY_MODEL_75440754a86442628eeaec421c0a38f4",
- "value": ".gitattributes: 100%"
- }
- },
- "713082df2a4347929fd826c21024138e": {
+ "bb4e1551497a4ce4be301f4368f81676": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
- "bar_color": null,
"description_width": ""
}
},
- "716710cbdfca4c36ad130987a4499373": {
+ "bc2109a4e2f84d67bbb8ab6cba21fab9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_2fdc481b5a9c4ec0ad0aaa7fa7cb3307",
- "max": 466062.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_802d1cbe83234ba281ed3371ace74923",
- "value": 466062.0
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_c75aeff00b944db28a3423a3e33e24b4",
+ "IPY_MODEL_699ecc7a765d443aa11b0205425189a3",
+ "IPY_MODEL_f7f48121963b4ec7b6aa45f44f292c52"
+ ],
+ "layout": "IPY_MODEL_e1baa1f8f2054d8eab2aa13d0120b795"
}
},
- "75440754a86442628eeaec421c0a38f4": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "bded0c71aa4d4ae0923501e8367e757e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "79f717794c4a4d7782524bbabf970864": {
+ "be2b666b3d804f36913f6c87815b978c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_22324387e5b743e681be79d036fe31d6",
- "max": 391.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_07295e89cb4b472d930107e8be8c3829",
- "value": 391.0
+ "layout": "IPY_MODEL_d83d11da89f7403db61c0c0c22942732",
+ "placeholder": "",
+ "style": "IPY_MODEL_2c57a2dce6844d669534d4a56c9b289e",
+ "value": "README.md: 100%"
+ }
+ },
+ "c31984e520ca42ca88ae7a5abd092a51": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "7edb79c30d4044b7a47c715c2672cfbc": {
+ "c3a89d32580e43a5abcb986b0342b26b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3369,23 +3559,28 @@
"width": null
}
},
- "802d1cbe83234ba281ed3371ace74923": {
+ "c75aeff00b944db28a3423a3e33e24b4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_926b0337f538498182c5aa19264b1a8d",
+ "placeholder": "",
+ "style": "IPY_MODEL_fbb188a1c26343dba4a64537799f492c",
+ "value": "tokenizer_config.json: 100%"
}
},
- "8091370fb4e0431db0c9c95eb345ad39": {
+ "c76748ec8a42450ba7223d8b626ba091": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3434,10 +3629,10 @@
"right": null,
"top": null,
"visibility": null,
- "width": "20px"
+ "width": null
}
},
- "83e38a4d06ee41978d13c8bc0fc7f05b": {
+ "d318a49900f244a4acf9106cb605f223": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -3452,37 +3647,28 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_34ac7447b3444f598b53edbda4e5eb49",
+ "layout": "IPY_MODEL_dd4c5afca32949129c9e6f43b9b1413e",
"placeholder": "",
- "style": "IPY_MODEL_3f584acf4fc44c58936eed00bb2fbd84",
- "value": "config.json: 100%"
+ "style": "IPY_MODEL_81591ea42d154551991b09bc36ec0ace",
+ "value": " 0/0 [00:00<?, ?it/s]"
}
},
- "83f4027e79e14315afd20df28b9abfdf": {
+ "d4a4587430474d8fb2e2e40550998d40": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_84c39cc7a1444d2a9a639d6f61385d0c",
- "max": 231508.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_1712941961e44a459dbba5626cad267a",
- "value": 231508.0
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "84c39cc7a1444d2a9a639d6f61385d0c": {
+ "d83d11da89f7403db61c0c0c22942732": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3534,7 +3720,7 @@
"width": null
}
},
- "8a08d94d414a4bcdae4627a725465dbb": {
+ "d88203f29b6041b9b084fcbe564b744c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3586,44 +3772,7 @@
"width": null
}
},
- "8a93b8a27e874ab58e3e844b2a4af451": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "8bf51f93ea06457590d4b3262c7f7f95": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_a8e84cb8a6a14048bd15044652da2df5",
- "placeholder": "",
- "style": "IPY_MODEL_d292cfd1afb542c782847708fc78ffed",
- "value": ""
- }
- },
- "8ec5def0730d432096e2d85bcfac23b7": {
+ "dc47d97b3b07452a9c03cbe07c75252c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -3638,50 +3787,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_448413c257e146d0938329daabce12f7",
+ "layout": "IPY_MODEL_43604c5ccc2f48e084d21528eff3c15d",
"placeholder": "",
- "style": "IPY_MODEL_ae74085e8acf4192a5c6377c3f74f4aa",
- "value": " 466k/466k [00:00<00:00, 12.5MB/s]"
- }
- },
- "9205d83347e448338bc7a0902cba4636": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_d7190d315d09402f9308e2aa2d0abebb",
- "IPY_MODEL_65ece1a93a484e9aac2d3dcb5fdc3536",
- "IPY_MODEL_4d45f78561ad4e2dab7952457334e52f"
- ],
- "layout": "IPY_MODEL_a1355e0db37f4778b5ec8f1a709f24fa"
- }
- },
- "96700a76a0d44e99acf09ab0d477e8d4": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "style": "IPY_MODEL_0f07dbed86ee4dedb4230e294d563b70",
+ "value": "config.json: 100%"
}
},
- "9727413214ed4e8f9466aeffdafda413": {
+ "dd4c5afca32949129c9e6f43b9b1413e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3733,7 +3845,31 @@
"width": null
}
},
- "a1355e0db37f4778b5ec8f1a709f24fa": {
+ "ddea88fc65ed4f6dae2c94fb28fe25d2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_609217f73fbb420caa14bc522c18b15d",
+ "max": 54245363.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_a956344db7a545cd957824d3ff7a2138",
+ "value": 54245363.0
+ }
+ },
+ "e1baa1f8f2054d8eab2aa13d0120b795": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3785,51 +3921,59 @@
"width": null
}
},
- "a2f4fdacb911421b921cb9244d7615bb": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_4bb63de4770d456d913a1961bcf657cb",
- "IPY_MODEL_bb9d4da501f6429484245a533c3f046b",
- "IPY_MODEL_baf7e1b71fe4454d80981120c3297e64"
- ],
- "layout": "IPY_MODEL_d13975def1d44bfa9f8441616c936a6d"
- }
- },
- "a83cf26330f24f4ba5ef6fd1ad5505fe": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "e6580715c12f4b788ec83b2fb386a5ee": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_d6a918d748714014855bbe6352ff3a56",
- "IPY_MODEL_83f4027e79e14315afd20df28b9abfdf",
- "IPY_MODEL_5f836f718e46477f9c5d4c1f0b77124b"
- ],
- "layout": "IPY_MODEL_1470e51bfd5741a397860a52aab1d71d"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "a8e84cb8a6a14048bd15044652da2df5": {
+ "ea99b5f99229433c84ef7bc51a9c130f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3881,7 +4025,7 @@
"width": null
}
},
- "a8ffa81464b747aabcd524f5b6004746": {
+ "f2e849e51c874b17a848ea3fa7185a74": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
@@ -3896,83 +4040,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_6df5afad53374d6d8ab0eaa9b99fae57",
- "IPY_MODEL_79f717794c4a4d7782524bbabf970864",
- "IPY_MODEL_4f56a289968f46b29b61725fc61088a3"
+ "IPY_MODEL_5986e501975345c18931a5f0b9321683",
+ "IPY_MODEL_692cd1c543c44d1f9a54e10a308abc35",
+ "IPY_MODEL_31cbafcf7296451f8eafa376459fce42"
],
- "layout": "IPY_MODEL_2689e33ba4f945b7ac5af43480cf3280"
- }
- },
- "ae74085e8acf4192a5c6377c3f74f4aa": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "b9e2ca9c7f43440a89be28ce852168f3": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "ba1e2472b2594b9ea818d15f3c3d11bb": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "baac3a399e3843b58fa1e6dd697a4ef3": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_45ab12896d8d462491cd97cbbe6e0de9",
- "max": 665.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_713082df2a4347929fd826c21024138e",
- "value": 665.0
+ "layout": "IPY_MODEL_bded0c71aa4d4ae0923501e8367e757e"
}
},
- "baf7e1b71fe4454d80981120c3297e64": {
+ "f67b595c6d6840bb837ed3c0bac5d0c8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -3987,37 +4062,34 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_5673c01340384e06bafc786376498d98",
+ "layout": "IPY_MODEL_b2c45c794eca4d8ea4aab4e4a2858c77",
"placeholder": "",
- "style": "IPY_MODEL_3f5be0ecc2ee4433a4c0d5fd1d44050d",
- "value": " 29.0/29.0 [00:00<00:00, 3.62kB/s]"
+ "style": "IPY_MODEL_6a41a8086ed2471099f0596d310b417b",
+ "value": "pytorch_model.bin: 100%"
}
},
- "bb9d4da501f6429484245a533c3f046b": {
+ "f7f48121963b4ec7b6aa45f44f292c52": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_4bba66e3d211422d85ee43a076d810c6",
- "max": 29.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_8a93b8a27e874ab58e3e844b2a4af451",
- "value": 29.0
+ "layout": "IPY_MODEL_f9e7c4cce0aa4b9aaff09fc9b622d605",
+ "placeholder": "",
+ "style": "IPY_MODEL_a6b4b7c9957e4b819305afab73204cf6",
+ "value": " 29.0/29.0 [00:00<00:00, 3.64kB/s]"
}
},
- "bee13efee5384807a5acf80366bb301c": {
+ "f7f728bec002499ab7823a03e95a2bf5": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4069,7 +4141,29 @@
"width": null
}
},
- "c2ee2fac0caf41bcb4e8a14a0536f3bf": {
+ "f8fc9626652544dba8ec78fd1f4ae9d7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_dc47d97b3b07452a9c03cbe07c75252c",
+ "IPY_MODEL_2886de46d9fd4702ab6e1c5b72e49072",
+ "IPY_MODEL_4abeacb8c56a488785fb5b9d0945caed"
+ ],
+ "layout": "IPY_MODEL_4880191d3d0547f39e1ae04216c88b71"
+ }
+ },
+ "f9e7c4cce0aa4b9aaff09fc9b622d605": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4121,28 +4215,37 @@
"width": null
}
},
- "cc7b20aac74d43c4b6cd6b12d0aac738": {
+ "fae8a5b5019e44ecad743866c942cf00": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_7edb79c30d4044b7a47c715c2672cfbc",
- "placeholder": "",
- "style": "IPY_MODEL_548c53d229894551afc50feabf6d6b61",
- "value": "tokenizer.json: 100%"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "fbb188a1c26343dba4a64537799f492c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "d13975def1d44bfa9f8441616c936a6d": {
+ "fbd8f018fee147b9a856a836508c2d32": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4194,123 +4297,23 @@
"width": null
}
},
- "d292cfd1afb542c782847708fc78ffed": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "d6a918d748714014855bbe6352ff3a56": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_2e093e53552c4e41afeabb5b2a3769ad",
- "placeholder": "",
- "style": "IPY_MODEL_ba1e2472b2594b9ea818d15f3c3d11bb",
- "value": "vocab.txt: 100%"
- }
- },
- "d7190d315d09402f9308e2aa2d0abebb": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_2288246d5a4d4b4bb1a1f8e73a2b12b0",
- "placeholder": "",
- "style": "IPY_MODEL_b9e2ca9c7f43440a89be28ce852168f3",
- "value": "pytorch_model.bin: 100%"
- }
- },
- "dc10e1dfa7e84e1295522909b4df112e": {
+ "fcdce2bba18d4262a99e80746cd7ed8b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
+ "bar_color": null,
"description_width": ""
}
},
- "e3fe28eb102c4226a6521a5c52251366": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_83e38a4d06ee41978d13c8bc0fc7f05b",
- "IPY_MODEL_baac3a399e3843b58fa1e6dd697a4ef3",
- "IPY_MODEL_26520c10c4674e25ad89fb718b9068ce"
- ],
- "layout": "IPY_MODEL_c2ee2fac0caf41bcb4e8a14a0536f3bf"
- }
- },
- "ecde268159ad4b6c9238a02d8a130669": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_8bf51f93ea06457590d4b3262c7f7f95",
- "IPY_MODEL_4f910b3893a04fd9bcdf56fca9550818",
- "IPY_MODEL_5490d628713d40f9a89e63379c65fad1"
- ],
- "layout": "IPY_MODEL_5b5556e01ebd4822b2fb6d01833df8b3"
- }
- },
- "ed1fe01152fa4642ad138486a2634cc1": {
+ "fd69eddaeade4dfbbc190d9d0f7cef92": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4362,28 +4365,25 @@
"width": null
}
},
- "f0f5cf6ee8c24c67aa14f8cf08fe4995": {
+ "ffd34fdfbd9448afb84dbd6818b15c8d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_4e23b67da06044dba971afb2dd4d1aa0",
- "max": 2211.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_64a2b9e3be0f4e9abe6e46ced115eba4",
- "value": 2211.0
+ "layout": "IPY_MODEL_fbd8f018fee147b9a856a836508c2d32",
+ "placeholder": "",
+ "style": "IPY_MODEL_d4a4587430474d8fb2e2e40550998d40",
+ "value": "vocab.txt: 100%"
}
}
},
diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb
index 7b01efb69..44bd6d80e 100644
--- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb
@@ -68,10 +68,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:06.083796Z",
- "iopub.status.busy": "2024-01-10T06:14:06.083596Z",
- "iopub.status.idle": "2024-01-10T06:14:07.138995Z",
- "shell.execute_reply": "2024-01-10T06:14:07.138339Z"
+ "iopub.execute_input": "2024-01-10T14:59:41.334420Z",
+ "iopub.status.busy": "2024-01-10T14:59:41.333949Z",
+ "iopub.status.idle": "2024-01-10T14:59:42.355922Z",
+ "shell.execute_reply": "2024-01-10T14:59:42.355241Z"
},
"nbsphinx": "hidden"
},
@@ -83,7 +83,7 @@
"dependencies = [\"cleanlab\", \"requests\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -108,10 +108,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:07.141966Z",
- "iopub.status.busy": "2024-01-10T06:14:07.141624Z",
- "iopub.status.idle": "2024-01-10T06:14:07.144683Z",
- "shell.execute_reply": "2024-01-10T06:14:07.144141Z"
+ "iopub.execute_input": "2024-01-10T14:59:42.359064Z",
+ "iopub.status.busy": "2024-01-10T14:59:42.358534Z",
+ "iopub.status.idle": "2024-01-10T14:59:42.361625Z",
+ "shell.execute_reply": "2024-01-10T14:59:42.361111Z"
},
"id": "_UvI80l42iyi"
},
@@ -201,10 +201,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:07.147109Z",
- "iopub.status.busy": "2024-01-10T06:14:07.146900Z",
- "iopub.status.idle": "2024-01-10T06:14:07.160356Z",
- "shell.execute_reply": "2024-01-10T06:14:07.159857Z"
+ "iopub.execute_input": "2024-01-10T14:59:42.364150Z",
+ "iopub.status.busy": "2024-01-10T14:59:42.363702Z",
+ "iopub.status.idle": "2024-01-10T14:59:42.376325Z",
+ "shell.execute_reply": "2024-01-10T14:59:42.375739Z"
},
"nbsphinx": "hidden"
},
@@ -283,10 +283,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:07.162918Z",
- "iopub.status.busy": "2024-01-10T06:14:07.162487Z",
- "iopub.status.idle": "2024-01-10T06:14:12.103424Z",
- "shell.execute_reply": "2024-01-10T06:14:12.102793Z"
+ "iopub.execute_input": "2024-01-10T14:59:42.378959Z",
+ "iopub.status.busy": "2024-01-10T14:59:42.378603Z",
+ "iopub.status.idle": "2024-01-10T14:59:46.491752Z",
+ "shell.execute_reply": "2024-01-10T14:59:46.491163Z"
},
"id": "dhTHOg8Pyv5G"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb
index b59c84e7b..5bfa51262 100644
--- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb
@@ -18,10 +18,10 @@
"id": "2a4efdde",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:16.607280Z",
- "iopub.status.busy": "2024-01-10T06:14:16.607078Z",
- "iopub.status.idle": "2024-01-10T06:14:17.657250Z",
- "shell.execute_reply": "2024-01-10T06:14:17.656618Z"
+ "iopub.execute_input": "2024-01-10T14:59:50.893165Z",
+ "iopub.status.busy": "2024-01-10T14:59:50.892970Z",
+ "iopub.status.idle": "2024-01-10T14:59:51.939588Z",
+ "shell.execute_reply": "2024-01-10T14:59:51.938934Z"
},
"nbsphinx": "hidden"
},
@@ -97,10 +97,10 @@
"id": "239d5ee7",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:17.660564Z",
- "iopub.status.busy": "2024-01-10T06:14:17.659972Z",
- "iopub.status.idle": "2024-01-10T06:14:17.663681Z",
- "shell.execute_reply": "2024-01-10T06:14:17.663061Z"
+ "iopub.execute_input": "2024-01-10T14:59:51.943002Z",
+ "iopub.status.busy": "2024-01-10T14:59:51.942447Z",
+ "iopub.status.idle": "2024-01-10T14:59:51.946140Z",
+ "shell.execute_reply": "2024-01-10T14:59:51.945634Z"
}
},
"outputs": [],
@@ -136,10 +136,10 @@
"id": "28b324aa",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:17.666105Z",
- "iopub.status.busy": "2024-01-10T06:14:17.665680Z",
- "iopub.status.idle": "2024-01-10T06:14:19.736489Z",
- "shell.execute_reply": "2024-01-10T06:14:19.735788Z"
+ "iopub.execute_input": "2024-01-10T14:59:51.948844Z",
+ "iopub.status.busy": "2024-01-10T14:59:51.948364Z",
+ "iopub.status.idle": "2024-01-10T14:59:53.958972Z",
+ "shell.execute_reply": "2024-01-10T14:59:53.958235Z"
}
},
"outputs": [],
@@ -162,10 +162,10 @@
"id": "28b324ab",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:19.740030Z",
- "iopub.status.busy": "2024-01-10T06:14:19.739173Z",
- "iopub.status.idle": "2024-01-10T06:14:19.787352Z",
- "shell.execute_reply": "2024-01-10T06:14:19.786521Z"
+ "iopub.execute_input": "2024-01-10T14:59:53.962418Z",
+ "iopub.status.busy": "2024-01-10T14:59:53.961685Z",
+ "iopub.status.idle": "2024-01-10T14:59:53.998347Z",
+ "shell.execute_reply": "2024-01-10T14:59:53.997661Z"
}
},
"outputs": [],
@@ -188,10 +188,10 @@
"id": "90c10e18",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:19.790338Z",
- "iopub.status.busy": "2024-01-10T06:14:19.790052Z",
- "iopub.status.idle": "2024-01-10T06:14:19.829158Z",
- "shell.execute_reply": "2024-01-10T06:14:19.828462Z"
+ "iopub.execute_input": "2024-01-10T14:59:54.001353Z",
+ "iopub.status.busy": "2024-01-10T14:59:54.000979Z",
+ "iopub.status.idle": "2024-01-10T14:59:54.037345Z",
+ "shell.execute_reply": "2024-01-10T14:59:54.036554Z"
}
},
"outputs": [],
@@ -213,10 +213,10 @@
"id": "88839519",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:19.832420Z",
- "iopub.status.busy": "2024-01-10T06:14:19.831982Z",
- "iopub.status.idle": "2024-01-10T06:14:19.835284Z",
- "shell.execute_reply": "2024-01-10T06:14:19.834658Z"
+ "iopub.execute_input": "2024-01-10T14:59:54.040406Z",
+ "iopub.status.busy": "2024-01-10T14:59:54.040062Z",
+ "iopub.status.idle": "2024-01-10T14:59:54.043268Z",
+ "shell.execute_reply": "2024-01-10T14:59:54.042728Z"
}
},
"outputs": [],
@@ -238,10 +238,10 @@
"id": "558490c2",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:19.837757Z",
- "iopub.status.busy": "2024-01-10T06:14:19.837304Z",
- "iopub.status.idle": "2024-01-10T06:14:19.840314Z",
- "shell.execute_reply": "2024-01-10T06:14:19.839702Z"
+ "iopub.execute_input": "2024-01-10T14:59:54.045714Z",
+ "iopub.status.busy": "2024-01-10T14:59:54.045356Z",
+ "iopub.status.idle": "2024-01-10T14:59:54.048133Z",
+ "shell.execute_reply": "2024-01-10T14:59:54.047607Z"
}
},
"outputs": [],
@@ -298,10 +298,10 @@
"id": "41714b51",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:19.843019Z",
- "iopub.status.busy": "2024-01-10T06:14:19.842419Z",
- "iopub.status.idle": "2024-01-10T06:14:19.870315Z",
- "shell.execute_reply": "2024-01-10T06:14:19.869647Z"
+ "iopub.execute_input": "2024-01-10T14:59:54.050733Z",
+ "iopub.status.busy": "2024-01-10T14:59:54.050248Z",
+ "iopub.status.idle": "2024-01-10T14:59:54.078354Z",
+ "shell.execute_reply": "2024-01-10T14:59:54.077694Z"
}
},
"outputs": [
@@ -315,7 +315,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "8cfd59fe33214a6cacbf9a0ac8550cc0",
+ "model_id": "075f00108c9143bb95de45ad3e1b32a1",
"version_major": 2,
"version_minor": 0
},
@@ -329,7 +329,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "9e9c54ccd4dc4b5f967bcea2a3fdb025",
+ "model_id": "187b0fc246824442903879754666f9fb",
"version_major": 2,
"version_minor": 0
},
@@ -387,10 +387,10 @@
"id": "20476c70",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:19.878259Z",
- "iopub.status.busy": "2024-01-10T06:14:19.877780Z",
- "iopub.status.idle": "2024-01-10T06:14:19.885221Z",
- "shell.execute_reply": "2024-01-10T06:14:19.884563Z"
+ "iopub.execute_input": "2024-01-10T14:59:54.085049Z",
+ "iopub.status.busy": "2024-01-10T14:59:54.084695Z",
+ "iopub.status.idle": "2024-01-10T14:59:54.092109Z",
+ "shell.execute_reply": "2024-01-10T14:59:54.091490Z"
},
"nbsphinx": "hidden"
},
@@ -421,10 +421,10 @@
"id": "6983cdad",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:19.888245Z",
- "iopub.status.busy": "2024-01-10T06:14:19.887801Z",
- "iopub.status.idle": "2024-01-10T06:14:19.891951Z",
- "shell.execute_reply": "2024-01-10T06:14:19.891387Z"
+ "iopub.execute_input": "2024-01-10T14:59:54.094651Z",
+ "iopub.status.busy": "2024-01-10T14:59:54.094271Z",
+ "iopub.status.idle": "2024-01-10T14:59:54.098035Z",
+ "shell.execute_reply": "2024-01-10T14:59:54.097434Z"
},
"nbsphinx": "hidden"
},
@@ -447,10 +447,10 @@
"id": "9092b8a0",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:19.894543Z",
- "iopub.status.busy": "2024-01-10T06:14:19.894157Z",
- "iopub.status.idle": "2024-01-10T06:14:19.901425Z",
- "shell.execute_reply": "2024-01-10T06:14:19.900807Z"
+ "iopub.execute_input": "2024-01-10T14:59:54.100245Z",
+ "iopub.status.busy": "2024-01-10T14:59:54.099912Z",
+ "iopub.status.idle": "2024-01-10T14:59:54.106735Z",
+ "shell.execute_reply": "2024-01-10T14:59:54.106126Z"
}
},
"outputs": [],
@@ -500,10 +500,10 @@
"id": "b0a01109",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:19.904233Z",
- "iopub.status.busy": "2024-01-10T06:14:19.903763Z",
- "iopub.status.idle": "2024-01-10T06:14:19.946997Z",
- "shell.execute_reply": "2024-01-10T06:14:19.946238Z"
+ "iopub.execute_input": "2024-01-10T14:59:54.108937Z",
+ "iopub.status.busy": "2024-01-10T14:59:54.108729Z",
+ "iopub.status.idle": "2024-01-10T14:59:54.146363Z",
+ "shell.execute_reply": "2024-01-10T14:59:54.145668Z"
}
},
"outputs": [],
@@ -520,10 +520,10 @@
"id": "8b1da032",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:19.950396Z",
- "iopub.status.busy": "2024-01-10T06:14:19.949775Z",
- "iopub.status.idle": "2024-01-10T06:14:19.997923Z",
- "shell.execute_reply": "2024-01-10T06:14:19.997218Z"
+ "iopub.execute_input": "2024-01-10T14:59:54.149318Z",
+ "iopub.status.busy": "2024-01-10T14:59:54.148912Z",
+ "iopub.status.idle": "2024-01-10T14:59:54.185413Z",
+ "shell.execute_reply": "2024-01-10T14:59:54.184745Z"
},
"nbsphinx": "hidden"
},
@@ -602,10 +602,10 @@
"id": "4c9e9030",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:20.001469Z",
- "iopub.status.busy": "2024-01-10T06:14:20.000877Z",
- "iopub.status.idle": "2024-01-10T06:14:20.125778Z",
- "shell.execute_reply": "2024-01-10T06:14:20.125022Z"
+ "iopub.execute_input": "2024-01-10T14:59:54.188595Z",
+ "iopub.status.busy": "2024-01-10T14:59:54.188185Z",
+ "iopub.status.idle": "2024-01-10T14:59:54.302578Z",
+ "shell.execute_reply": "2024-01-10T14:59:54.301896Z"
}
},
"outputs": [
@@ -672,10 +672,10 @@
"id": "8751619e",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:20.128815Z",
- "iopub.status.busy": "2024-01-10T06:14:20.128382Z",
- "iopub.status.idle": "2024-01-10T06:14:22.666460Z",
- "shell.execute_reply": "2024-01-10T06:14:22.665723Z"
+ "iopub.execute_input": "2024-01-10T14:59:54.305610Z",
+ "iopub.status.busy": "2024-01-10T14:59:54.305065Z",
+ "iopub.status.idle": "2024-01-10T14:59:56.793121Z",
+ "shell.execute_reply": "2024-01-10T14:59:56.792360Z"
}
},
"outputs": [
@@ -761,10 +761,10 @@
"id": "623df36d",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:22.669156Z",
- "iopub.status.busy": "2024-01-10T06:14:22.668916Z",
- "iopub.status.idle": "2024-01-10T06:14:22.729466Z",
- "shell.execute_reply": "2024-01-10T06:14:22.728793Z"
+ "iopub.execute_input": "2024-01-10T14:59:56.796100Z",
+ "iopub.status.busy": "2024-01-10T14:59:56.795869Z",
+ "iopub.status.idle": "2024-01-10T14:59:56.854518Z",
+ "shell.execute_reply": "2024-01-10T14:59:56.853835Z"
}
},
"outputs": [
@@ -802,7 +802,7 @@
},
{
"cell_type": "markdown",
- "id": "55d634cf",
+ "id": "79abd091",
"metadata": {},
"source": [
"### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?"
@@ -810,7 +810,7 @@
},
{
"cell_type": "markdown",
- "id": "94584059",
+ "id": "6d19c12e",
"metadata": {},
"source": [
"When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n",
@@ -823,13 +823,13 @@
{
"cell_type": "code",
"execution_count": 17,
- "id": "b9628b75",
+ "id": "8e189dcb",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:22.732231Z",
- "iopub.status.busy": "2024-01-10T06:14:22.731955Z",
- "iopub.status.idle": "2024-01-10T06:14:22.846588Z",
- "shell.execute_reply": "2024-01-10T06:14:22.845700Z"
+ "iopub.execute_input": "2024-01-10T14:59:56.857079Z",
+ "iopub.status.busy": "2024-01-10T14:59:56.856723Z",
+ "iopub.status.idle": "2024-01-10T14:59:56.966714Z",
+ "shell.execute_reply": "2024-01-10T14:59:56.965883Z"
}
},
"outputs": [
@@ -870,7 +870,7 @@
},
{
"cell_type": "markdown",
- "id": "c5fd2f4f",
+ "id": "96869909",
"metadata": {},
"source": [
"For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:"
@@ -879,13 +879,13 @@
{
"cell_type": "code",
"execution_count": 18,
- "id": "cfb1a98d",
+ "id": "79a16416",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:22.850451Z",
- "iopub.status.busy": "2024-01-10T06:14:22.849579Z",
- "iopub.status.idle": "2024-01-10T06:14:22.926903Z",
- "shell.execute_reply": "2024-01-10T06:14:22.926034Z"
+ "iopub.execute_input": "2024-01-10T14:59:56.970421Z",
+ "iopub.status.busy": "2024-01-10T14:59:56.969410Z",
+ "iopub.status.idle": "2024-01-10T14:59:57.046615Z",
+ "shell.execute_reply": "2024-01-10T14:59:57.045885Z"
}
},
"outputs": [
@@ -921,7 +921,7 @@
},
{
"cell_type": "markdown",
- "id": "c797b51e",
+ "id": "3d459566",
"metadata": {},
"source": [
"### How to handle near-duplicate data identified by cleanlab?\n",
@@ -932,13 +932,13 @@
{
"cell_type": "code",
"execution_count": 19,
- "id": "8e4b5314",
+ "id": "afc2b0b9",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:22.930016Z",
- "iopub.status.busy": "2024-01-10T06:14:22.929774Z",
- "iopub.status.idle": "2024-01-10T06:14:22.938891Z",
- "shell.execute_reply": "2024-01-10T06:14:22.938159Z"
+ "iopub.execute_input": "2024-01-10T14:59:57.049298Z",
+ "iopub.status.busy": "2024-01-10T14:59:57.048916Z",
+ "iopub.status.idle": "2024-01-10T14:59:57.057177Z",
+ "shell.execute_reply": "2024-01-10T14:59:57.056582Z"
}
},
"outputs": [],
@@ -1040,7 +1040,7 @@
},
{
"cell_type": "markdown",
- "id": "f2ecdef4",
+ "id": "82dbd54f",
"metadata": {},
"source": [
"The functions above collect sets of near-duplicate examples. Within each\n",
@@ -1055,13 +1055,13 @@
{
"cell_type": "code",
"execution_count": 20,
- "id": "6fd6d9e2",
+ "id": "4a747a25",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:22.941671Z",
- "iopub.status.busy": "2024-01-10T06:14:22.941170Z",
- "iopub.status.idle": "2024-01-10T06:14:22.960867Z",
- "shell.execute_reply": "2024-01-10T06:14:22.960198Z"
+ "iopub.execute_input": "2024-01-10T14:59:57.059676Z",
+ "iopub.status.busy": "2024-01-10T14:59:57.059243Z",
+ "iopub.status.idle": "2024-01-10T14:59:57.079299Z",
+ "shell.execute_reply": "2024-01-10T14:59:57.078739Z"
}
},
"outputs": [
@@ -1104,13 +1104,13 @@
{
"cell_type": "code",
"execution_count": 21,
- "id": "5f4f4b91",
+ "id": "cc8f3506",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:22.963415Z",
- "iopub.status.busy": "2024-01-10T06:14:22.963144Z",
- "iopub.status.idle": "2024-01-10T06:14:22.967965Z",
- "shell.execute_reply": "2024-01-10T06:14:22.967414Z"
+ "iopub.execute_input": "2024-01-10T14:59:57.081812Z",
+ "iopub.status.busy": "2024-01-10T14:59:57.081393Z",
+ "iopub.status.idle": "2024-01-10T14:59:57.085818Z",
+ "shell.execute_reply": "2024-01-10T14:59:57.085202Z"
}
},
"outputs": [
@@ -1205,132 +1205,45 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "02873622a71341419941aef0bea6e764": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "0fe2c8dcc89d4a6b876606303720da8f": {
+ "075f00108c9143bb95de45ad3e1b32a1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_19c69f8250174c15836a73a9013c308f",
+ "IPY_MODEL_f2b1f15303b14f7280a65bf9226d7ae6",
+ "IPY_MODEL_180f325c4b8f41009bec369623aca77c"
+ ],
+ "layout": "IPY_MODEL_19738babb8c6474796f43941b0b5da8d"
}
},
- "1fa28da4022f49c4a420ea8bb4ec2b8a": {
+ "1557598dc31c495a9d7519e96caf3ae6": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
+ "bar_color": null,
"description_width": ""
}
},
- "2713f998e4784419837d175595e938da": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_a763fb86bc604616a2bccb416889f17e",
- "placeholder": "",
- "style": "IPY_MODEL_3bf08f79e11044c8ae9e3d01b165f5f4",
- "value": " 10000/? [00:00<00:00, 914329.56it/s]"
- }
- },
- "29567219cce744c894901fc5fc7153d6": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_78a360b742ee4bfdbe43f36a0804f07c",
- "placeholder": "",
- "style": "IPY_MODEL_72e10f0daba942d680242edaf7b639de",
- "value": "number of examples processed for estimating thresholds: "
- }
- },
- "3185b489256446899fe0eb2000abd99c": {
+ "180f325c4b8f41009bec369623aca77c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -1345,52 +1258,35 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_d72fa4dce6994dca8b4d202761dbdea7",
+ "layout": "IPY_MODEL_18d28aa507ef43beac8a8d3a63d2ea79",
"placeholder": "",
- "style": "IPY_MODEL_1fa28da4022f49c4a420ea8bb4ec2b8a",
- "value": " 10000/? [00:00<00:00, 1247859.10it/s]"
- }
- },
- "3bf08f79e11044c8ae9e3d01b165f5f4": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "style": "IPY_MODEL_2cd086b6d25b4143bc2ae32f4459db0b",
+ "value": " 10000/? [00:00<00:00, 935894.32it/s]"
}
},
- "6b53e6a747e74d2e95f8918385b84461": {
+ "187b0fc246824442903879754666f9fb": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_71e12b2915714163a8efb7d8d2520038",
- "max": 50.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_864de33388604a6eb55ee4141e8cc2d4",
- "value": 50.0
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_f59299d4afbb4249a61046c3a5e522aa",
+ "IPY_MODEL_f54e0ed2cc28430f8285ca5079656137",
+ "IPY_MODEL_c8b1b9260a22401c90b72c62787c2226"
+ ],
+ "layout": "IPY_MODEL_31070f1577a7498799ff2eec91b6441d"
}
},
- "71e12b2915714163a8efb7d8d2520038": {
+ "18d28aa507ef43beac8a8d3a63d2ea79": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1442,22 +1338,7 @@
"width": null
}
},
- "72e10f0daba942d680242edaf7b639de": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "78a360b742ee4bfdbe43f36a0804f07c": {
+ "19738babb8c6474796f43941b0b5da8d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1509,127 +1390,95 @@
"width": null
}
},
- "79c3f1111ee84f5193cd4e4f09142b4d": {
+ "19c69f8250174c15836a73a9013c308f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "8248c43ab0a54ea49dace7b985c9d289": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_e8af98ac12044b6db8b480e52844de57",
- "max": 50.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_0fe2c8dcc89d4a6b876606303720da8f",
- "value": 50.0
+ "layout": "IPY_MODEL_637100a896df4d849534b2f362654c96",
+ "placeholder": "",
+ "style": "IPY_MODEL_ec80fece88d644bfa5c589b0ba25b5c0",
+ "value": "number of examples processed for estimating thresholds: "
}
},
- "864de33388604a6eb55ee4141e8cc2d4": {
+ "2cd086b6d25b4143bc2ae32f4459db0b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
- "bar_color": null,
"description_width": ""
}
},
- "8cfd59fe33214a6cacbf9a0ac8550cc0": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_29567219cce744c894901fc5fc7153d6",
- "IPY_MODEL_6b53e6a747e74d2e95f8918385b84461",
- "IPY_MODEL_2713f998e4784419837d175595e938da"
- ],
- "layout": "IPY_MODEL_fbe38660da0047debe95399554068fe2"
- }
- },
- "9e9c54ccd4dc4b5f967bcea2a3fdb025": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_a6a5c473500a4e26903882a3f7500cf3",
- "IPY_MODEL_8248c43ab0a54ea49dace7b985c9d289",
- "IPY_MODEL_3185b489256446899fe0eb2000abd99c"
- ],
- "layout": "IPY_MODEL_bb2b6a662d9f4040851f3df8c7115e9a"
- }
- },
- "a6a5c473500a4e26903882a3f7500cf3": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "31070f1577a7498799ff2eec91b6441d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_02873622a71341419941aef0bea6e764",
- "placeholder": "",
- "style": "IPY_MODEL_79c3f1111ee84f5193cd4e4f09142b4d",
- "value": "number of examples processed for checking labels: "
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "a763fb86bc604616a2bccb416889f17e": {
+ "52b366eb36b54b419859bfa0171b9e16": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1681,7 +1530,7 @@
"width": null
}
},
- "bb2b6a662d9f4040851f3df8c7115e9a": {
+ "637100a896df4d849534b2f362654c96": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1733,7 +1582,37 @@
"width": null
}
},
- "d72fa4dce6994dca8b4d202761dbdea7": {
+ "76f8f56743414c94bc06877a3304fa61": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "7dafcc1ce8304bc6bce2f0a04f82ebd9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "a152270654af43649f1664b7ece96dc4": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1785,7 +1664,7 @@
"width": null
}
},
- "e8af98ac12044b6db8b480e52844de57": {
+ "a45ae2e5caff44cdb39d49840213da69": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1837,7 +1716,44 @@
"width": null
}
},
- "fbe38660da0047debe95399554068fe2": {
+ "aa30ead3d6c2441584d3767f851fb6f0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "c8b1b9260a22401c90b72c62787c2226": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_e28a697de62c4e99a866def110006b3b",
+ "placeholder": "",
+ "style": "IPY_MODEL_76f8f56743414c94bc06877a3304fa61",
+ "value": " 10000/? [00:00<00:00, 1136729.36it/s]"
+ }
+ },
+ "e28a697de62c4e99a866def110006b3b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1888,6 +1804,90 @@
"visibility": null,
"width": null
}
+ },
+ "ec80fece88d644bfa5c589b0ba25b5c0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "f2b1f15303b14f7280a65bf9226d7ae6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_a152270654af43649f1664b7ece96dc4",
+ "max": 50.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_1557598dc31c495a9d7519e96caf3ae6",
+ "value": 50.0
+ }
+ },
+ "f54e0ed2cc28430f8285ca5079656137": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_a45ae2e5caff44cdb39d49840213da69",
+ "max": 50.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_aa30ead3d6c2441584d3767f851fb6f0",
+ "value": 50.0
+ }
+ },
+ "f59299d4afbb4249a61046c3a5e522aa": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_52b366eb36b54b419859bfa0171b9e16",
+ "placeholder": "",
+ "style": "IPY_MODEL_7dafcc1ce8304bc6bce2f0a04f82ebd9",
+ "value": "number of examples processed for checking labels: "
+ }
}
},
"version_major": 2,
diff --git a/master/.doctrees/nbsphinx/tutorials/image.ipynb b/master/.doctrees/nbsphinx/tutorials/image.ipynb
index ac230171a..a7f7a4707 100644
--- a/master/.doctrees/nbsphinx/tutorials/image.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/image.ipynb
@@ -71,10 +71,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:27.983735Z",
- "iopub.status.busy": "2024-01-10T06:14:27.983198Z",
- "iopub.status.idle": "2024-01-10T06:14:30.187037Z",
- "shell.execute_reply": "2024-01-10T06:14:30.186416Z"
+ "iopub.execute_input": "2024-01-10T15:00:02.259860Z",
+ "iopub.status.busy": "2024-01-10T15:00:02.259344Z",
+ "iopub.status.idle": "2024-01-10T15:00:04.424050Z",
+ "shell.execute_reply": "2024-01-10T15:00:04.423416Z"
},
"nbsphinx": "hidden"
},
@@ -112,10 +112,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:30.189697Z",
- "iopub.status.busy": "2024-01-10T06:14:30.189376Z",
- "iopub.status.idle": "2024-01-10T06:14:30.193168Z",
- "shell.execute_reply": "2024-01-10T06:14:30.192626Z"
+ "iopub.execute_input": "2024-01-10T15:00:04.427155Z",
+ "iopub.status.busy": "2024-01-10T15:00:04.426599Z",
+ "iopub.status.idle": "2024-01-10T15:00:04.430600Z",
+ "shell.execute_reply": "2024-01-10T15:00:04.430047Z"
}
},
"outputs": [],
@@ -152,17 +152,17 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:30.195644Z",
- "iopub.status.busy": "2024-01-10T06:14:30.195302Z",
- "iopub.status.idle": "2024-01-10T06:14:32.296992Z",
- "shell.execute_reply": "2024-01-10T06:14:32.296276Z"
+ "iopub.execute_input": "2024-01-10T15:00:04.433104Z",
+ "iopub.status.busy": "2024-01-10T15:00:04.432703Z",
+ "iopub.status.idle": "2024-01-10T15:00:06.135847Z",
+ "shell.execute_reply": "2024-01-10T15:00:06.135301Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "a3915e0b726a46b79cb5df0f0080b054",
+ "model_id": "b9f8b67a42cd4066aaa973e62b8ca794",
"version_major": 2,
"version_minor": 0
},
@@ -176,7 +176,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "a6b5a69bbd21481db358d145d9702e00",
+ "model_id": "f290500824dc4995bf9dfe5f9f2b3425",
"version_major": 2,
"version_minor": 0
},
@@ -190,7 +190,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "4aaf228d5dec484e9d76a93af99b330d",
+ "model_id": "ca3a18d2bf4b4fa68ed448ca06ccc823",
"version_major": 2,
"version_minor": 0
},
@@ -204,7 +204,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "c98028da20994c76be789f56278cced6",
+ "model_id": "f0d31b197fe7409d990c55b1452c3705",
"version_major": 2,
"version_minor": 0
},
@@ -246,10 +246,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:32.299905Z",
- "iopub.status.busy": "2024-01-10T06:14:32.299545Z",
- "iopub.status.idle": "2024-01-10T06:14:32.303682Z",
- "shell.execute_reply": "2024-01-10T06:14:32.303114Z"
+ "iopub.execute_input": "2024-01-10T15:00:06.138494Z",
+ "iopub.status.busy": "2024-01-10T15:00:06.138100Z",
+ "iopub.status.idle": "2024-01-10T15:00:06.142256Z",
+ "shell.execute_reply": "2024-01-10T15:00:06.141635Z"
}
},
"outputs": [
@@ -274,17 +274,17 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:32.306297Z",
- "iopub.status.busy": "2024-01-10T06:14:32.305739Z",
- "iopub.status.idle": "2024-01-10T06:14:45.017686Z",
- "shell.execute_reply": "2024-01-10T06:14:45.017075Z"
+ "iopub.execute_input": "2024-01-10T15:00:06.144792Z",
+ "iopub.status.busy": "2024-01-10T15:00:06.144285Z",
+ "iopub.status.idle": "2024-01-10T15:00:18.301514Z",
+ "shell.execute_reply": "2024-01-10T15:00:18.300790Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "49e601fd38364edaac3c9d83a3b91d37",
+ "model_id": "8a7ea3a7486345b3b0576e7ea7232743",
"version_major": 2,
"version_minor": 0
},
@@ -322,10 +322,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:14:45.020665Z",
- "iopub.status.busy": "2024-01-10T06:14:45.020391Z",
- "iopub.status.idle": "2024-01-10T06:15:07.261960Z",
- "shell.execute_reply": "2024-01-10T06:15:07.261322Z"
+ "iopub.execute_input": "2024-01-10T15:00:18.305070Z",
+ "iopub.status.busy": "2024-01-10T15:00:18.304465Z",
+ "iopub.status.idle": "2024-01-10T15:00:39.413459Z",
+ "shell.execute_reply": "2024-01-10T15:00:39.412837Z"
}
},
"outputs": [],
@@ -358,10 +358,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:15:07.265138Z",
- "iopub.status.busy": "2024-01-10T06:15:07.264694Z",
- "iopub.status.idle": "2024-01-10T06:15:07.270905Z",
- "shell.execute_reply": "2024-01-10T06:15:07.270259Z"
+ "iopub.execute_input": "2024-01-10T15:00:39.416560Z",
+ "iopub.status.busy": "2024-01-10T15:00:39.416130Z",
+ "iopub.status.idle": "2024-01-10T15:00:39.422080Z",
+ "shell.execute_reply": "2024-01-10T15:00:39.421556Z"
}
},
"outputs": [],
@@ -399,10 +399,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:15:07.273540Z",
- "iopub.status.busy": "2024-01-10T06:15:07.273150Z",
- "iopub.status.idle": "2024-01-10T06:15:07.277723Z",
- "shell.execute_reply": "2024-01-10T06:15:07.277189Z"
+ "iopub.execute_input": "2024-01-10T15:00:39.424414Z",
+ "iopub.status.busy": "2024-01-10T15:00:39.424051Z",
+ "iopub.status.idle": "2024-01-10T15:00:39.428093Z",
+ "shell.execute_reply": "2024-01-10T15:00:39.427614Z"
},
"nbsphinx": "hidden"
},
@@ -539,10 +539,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:15:07.280348Z",
- "iopub.status.busy": "2024-01-10T06:15:07.279953Z",
- "iopub.status.idle": "2024-01-10T06:15:07.292535Z",
- "shell.execute_reply": "2024-01-10T06:15:07.291681Z"
+ "iopub.execute_input": "2024-01-10T15:00:39.430452Z",
+ "iopub.status.busy": "2024-01-10T15:00:39.430093Z",
+ "iopub.status.idle": "2024-01-10T15:00:39.439781Z",
+ "shell.execute_reply": "2024-01-10T15:00:39.439252Z"
},
"nbsphinx": "hidden"
},
@@ -667,10 +667,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:15:07.295504Z",
- "iopub.status.busy": "2024-01-10T06:15:07.294946Z",
- "iopub.status.idle": "2024-01-10T06:15:07.327125Z",
- "shell.execute_reply": "2024-01-10T06:15:07.326463Z"
+ "iopub.execute_input": "2024-01-10T15:00:39.442271Z",
+ "iopub.status.busy": "2024-01-10T15:00:39.441782Z",
+ "iopub.status.idle": "2024-01-10T15:00:39.469753Z",
+ "shell.execute_reply": "2024-01-10T15:00:39.469234Z"
}
},
"outputs": [],
@@ -707,10 +707,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:15:07.330122Z",
- "iopub.status.busy": "2024-01-10T06:15:07.329678Z",
- "iopub.status.idle": "2024-01-10T06:15:40.131617Z",
- "shell.execute_reply": "2024-01-10T06:15:40.130564Z"
+ "iopub.execute_input": "2024-01-10T15:00:39.472447Z",
+ "iopub.status.busy": "2024-01-10T15:00:39.472049Z",
+ "iopub.status.idle": "2024-01-10T15:01:10.318115Z",
+ "shell.execute_reply": "2024-01-10T15:01:10.317294Z"
}
},
"outputs": [
@@ -726,14 +726,14 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.995\n"
+ "epoch: 1 loss: 0.483 test acc: 86.835 time_taken: 4.674\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.856\n",
+ "epoch: 2 loss: 0.331 test acc: 88.310 time_taken: 4.384\n",
"Computing feature embeddings ...\n"
]
},
@@ -750,7 +750,7 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▌ | 2/40 [00:00<00:02, 18.60it/s]"
+ " 2%|▎ | 1/40 [00:00<00:04, 8.84it/s]"
]
},
{
@@ -758,7 +758,7 @@
"output_type": "stream",
"text": [
"\r",
- " 25%|██▌ | 10/40 [00:00<00:00, 49.93it/s]"
+ " 22%|██▎ | 9/40 [00:00<00:00, 45.55it/s]"
]
},
{
@@ -766,7 +766,7 @@
"output_type": "stream",
"text": [
"\r",
- " 45%|████▌ | 18/40 [00:00<00:00, 60.30it/s]"
+ " 42%|████▎ | 17/40 [00:00<00:00, 58.60it/s]"
]
},
{
@@ -774,7 +774,7 @@
"output_type": "stream",
"text": [
"\r",
- " 62%|██████▎ | 25/40 [00:00<00:00, 63.41it/s]"
+ " 60%|██████ | 24/40 [00:00<00:00, 61.59it/s]"
]
},
{
@@ -782,7 +782,7 @@
"output_type": "stream",
"text": [
"\r",
- " 82%|████████▎ | 33/40 [00:00<00:00, 67.49it/s]"
+ " 80%|████████ | 32/40 [00:00<00:00, 65.91it/s]"
]
},
{
@@ -790,7 +790,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 63.40it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 61.51it/s]"
]
},
{
@@ -820,7 +820,7 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▌ | 2/40 [00:00<00:02, 18.04it/s]"
+ " 5%|▌ | 2/40 [00:00<00:02, 17.92it/s]"
]
},
{
@@ -828,7 +828,7 @@
"output_type": "stream",
"text": [
"\r",
- " 25%|██▌ | 10/40 [00:00<00:00, 49.32it/s]"
+ " 25%|██▌ | 10/40 [00:00<00:00, 50.75it/s]"
]
},
{
@@ -836,7 +836,7 @@
"output_type": "stream",
"text": [
"\r",
- " 45%|████▌ | 18/40 [00:00<00:00, 59.28it/s]"
+ " 45%|████▌ | 18/40 [00:00<00:00, 60.96it/s]"
]
},
{
@@ -844,7 +844,7 @@
"output_type": "stream",
"text": [
"\r",
- " 65%|██████▌ | 26/40 [00:00<00:00, 65.13it/s]"
+ " 65%|██████▌ | 26/40 [00:00<00:00, 65.98it/s]"
]
},
{
@@ -852,7 +852,7 @@
"output_type": "stream",
"text": [
"\r",
- " 85%|████████▌ | 34/40 [00:00<00:00, 69.37it/s]"
+ " 85%|████████▌ | 34/40 [00:00<00:00, 69.76it/s]"
]
},
{
@@ -860,7 +860,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 63.82it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 64.52it/s]"
]
},
{
@@ -882,14 +882,14 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.786\n"
+ "epoch: 1 loss: 0.492 test acc: 87.085 time_taken: 4.606\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.727\n",
+ "epoch: 2 loss: 0.330 test acc: 88.290 time_taken: 4.416\n",
"Computing feature embeddings ...\n"
]
},
@@ -906,7 +906,7 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▌ | 2/40 [00:00<00:02, 18.26it/s]"
+ " 2%|▎ | 1/40 [00:00<00:04, 9.40it/s]"
]
},
{
@@ -914,7 +914,7 @@
"output_type": "stream",
"text": [
"\r",
- " 25%|██▌ | 10/40 [00:00<00:00, 50.49it/s]"
+ " 22%|██▎ | 9/40 [00:00<00:00, 47.46it/s]"
]
},
{
@@ -922,7 +922,7 @@
"output_type": "stream",
"text": [
"\r",
- " 45%|████▌ | 18/40 [00:00<00:00, 61.21it/s]"
+ " 42%|████▎ | 17/40 [00:00<00:00, 58.29it/s]"
]
},
{
@@ -930,7 +930,7 @@
"output_type": "stream",
"text": [
"\r",
- " 65%|██████▌ | 26/40 [00:00<00:00, 65.51it/s]"
+ " 62%|██████▎ | 25/40 [00:00<00:00, 63.62it/s]"
]
},
{
@@ -938,7 +938,7 @@
"output_type": "stream",
"text": [
"\r",
- " 85%|████████▌ | 34/40 [00:00<00:00, 69.51it/s]"
+ " 80%|████████ | 32/40 [00:00<00:00, 63.01it/s]"
]
},
{
@@ -946,7 +946,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 64.37it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 60.37it/s]"
]
},
{
@@ -976,7 +976,7 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▌ | 2/40 [00:00<00:02, 17.70it/s]"
+ " 2%|▎ | 1/40 [00:00<00:04, 8.72it/s]"
]
},
{
@@ -984,7 +984,7 @@
"output_type": "stream",
"text": [
"\r",
- " 22%|██▎ | 9/40 [00:00<00:00, 46.88it/s]"
+ " 22%|██▎ | 9/40 [00:00<00:00, 46.03it/s]"
]
},
{
@@ -992,7 +992,7 @@
"output_type": "stream",
"text": [
"\r",
- " 42%|████▎ | 17/40 [00:00<00:00, 59.35it/s]"
+ " 42%|████▎ | 17/40 [00:00<00:00, 59.40it/s]"
]
},
{
@@ -1000,7 +1000,7 @@
"output_type": "stream",
"text": [
"\r",
- " 62%|██████▎ | 25/40 [00:00<00:00, 65.20it/s]"
+ " 62%|██████▎ | 25/40 [00:00<00:00, 66.19it/s]"
]
},
{
@@ -1008,7 +1008,7 @@
"output_type": "stream",
"text": [
"\r",
- " 82%|████████▎ | 33/40 [00:00<00:00, 69.31it/s]"
+ " 82%|████████▎ | 33/40 [00:00<00:00, 70.35it/s]"
]
},
{
@@ -1016,7 +1016,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 63.89it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 63.14it/s]"
]
},
{
@@ -1038,14 +1038,14 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 5.020\n"
+ "epoch: 1 loss: 0.476 test acc: 86.305 time_taken: 4.563\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.627\n",
+ "epoch: 2 loss: 0.328 test acc: 86.335 time_taken: 4.317\n",
"Computing feature embeddings ...\n"
]
},
@@ -1062,7 +1062,7 @@
"output_type": "stream",
"text": [
"\r",
- " 2%|▎ | 1/40 [00:00<00:04, 9.29it/s]"
+ " 2%|▎ | 1/40 [00:00<00:04, 9.06it/s]"
]
},
{
@@ -1070,7 +1070,7 @@
"output_type": "stream",
"text": [
"\r",
- " 20%|██ | 8/40 [00:00<00:00, 43.17it/s]"
+ " 22%|██▎ | 9/40 [00:00<00:00, 47.03it/s]"
]
},
{
@@ -1078,7 +1078,7 @@
"output_type": "stream",
"text": [
"\r",
- " 40%|████ | 16/40 [00:00<00:00, 57.22it/s]"
+ " 42%|████▎ | 17/40 [00:00<00:00, 58.50it/s]"
]
},
{
@@ -1086,7 +1086,7 @@
"output_type": "stream",
"text": [
"\r",
- " 60%|██████ | 24/40 [00:00<00:00, 62.89it/s]"
+ " 62%|██████▎ | 25/40 [00:00<00:00, 63.48it/s]"
]
},
{
@@ -1094,7 +1094,7 @@
"output_type": "stream",
"text": [
"\r",
- " 80%|████████ | 32/40 [00:00<00:00, 66.74it/s]"
+ " 82%|████████▎ | 33/40 [00:00<00:00, 68.14it/s]"
]
},
{
@@ -1102,7 +1102,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 62.35it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 62.80it/s]"
]
},
{
@@ -1132,7 +1132,7 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▌ | 2/40 [00:00<00:01, 19.28it/s]"
+ " 5%|▌ | 2/40 [00:00<00:02, 18.53it/s]"
]
},
{
@@ -1140,7 +1140,7 @@
"output_type": "stream",
"text": [
"\r",
- " 25%|██▌ | 10/40 [00:00<00:00, 53.09it/s]"
+ " 22%|██▎ | 9/40 [00:00<00:00, 45.64it/s]"
]
},
{
@@ -1148,7 +1148,7 @@
"output_type": "stream",
"text": [
"\r",
- " 45%|████▌ | 18/40 [00:00<00:00, 63.84it/s]"
+ " 40%|████ | 16/40 [00:00<00:00, 53.87it/s]"
]
},
{
@@ -1156,7 +1156,7 @@
"output_type": "stream",
"text": [
"\r",
- " 65%|██████▌ | 26/40 [00:00<00:00, 68.71it/s]"
+ " 57%|█████▊ | 23/40 [00:00<00:00, 59.73it/s]"
]
},
{
@@ -1164,7 +1164,7 @@
"output_type": "stream",
"text": [
"\r",
- " 85%|████████▌ | 34/40 [00:00<00:00, 72.01it/s]"
+ " 78%|███████▊ | 31/40 [00:00<00:00, 65.87it/s]"
]
},
{
@@ -1172,7 +1172,7 @@
"output_type": "stream",
"text": [
"\r",
- "100%|██████████| 40/40 [00:00<00:00, 66.60it/s]"
+ "100%|██████████| 40/40 [00:00<00:00, 62.44it/s]"
]
},
{
@@ -1249,10 +1249,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:15:40.134484Z",
- "iopub.status.busy": "2024-01-10T06:15:40.134046Z",
- "iopub.status.idle": "2024-01-10T06:15:40.150308Z",
- "shell.execute_reply": "2024-01-10T06:15:40.149745Z"
+ "iopub.execute_input": "2024-01-10T15:01:10.320887Z",
+ "iopub.status.busy": "2024-01-10T15:01:10.320635Z",
+ "iopub.status.idle": "2024-01-10T15:01:10.336127Z",
+ "shell.execute_reply": "2024-01-10T15:01:10.335651Z"
}
},
"outputs": [],
@@ -1277,10 +1277,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:15:40.153062Z",
- "iopub.status.busy": "2024-01-10T06:15:40.152743Z",
- "iopub.status.idle": "2024-01-10T06:15:40.614160Z",
- "shell.execute_reply": "2024-01-10T06:15:40.613451Z"
+ "iopub.execute_input": "2024-01-10T15:01:10.338583Z",
+ "iopub.status.busy": "2024-01-10T15:01:10.338209Z",
+ "iopub.status.idle": "2024-01-10T15:01:10.777774Z",
+ "shell.execute_reply": "2024-01-10T15:01:10.777077Z"
}
},
"outputs": [],
@@ -1300,10 +1300,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:15:40.617172Z",
- "iopub.status.busy": "2024-01-10T06:15:40.616955Z",
- "iopub.status.idle": "2024-01-10T06:19:01.674604Z",
- "shell.execute_reply": "2024-01-10T06:19:01.673956Z"
+ "iopub.execute_input": "2024-01-10T15:01:10.780594Z",
+ "iopub.status.busy": "2024-01-10T15:01:10.780378Z",
+ "iopub.status.idle": "2024-01-10T15:04:30.975742Z",
+ "shell.execute_reply": "2024-01-10T15:04:30.975036Z"
}
},
"outputs": [
@@ -1342,7 +1342,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "dfe013943ca04be693b072c950762919",
+ "model_id": "eb174494cec7449c80000967dbef9224",
"version_major": 2,
"version_minor": 0
},
@@ -1381,10 +1381,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:01.677701Z",
- "iopub.status.busy": "2024-01-10T06:19:01.676946Z",
- "iopub.status.idle": "2024-01-10T06:19:02.197889Z",
- "shell.execute_reply": "2024-01-10T06:19:02.197157Z"
+ "iopub.execute_input": "2024-01-10T15:04:30.978426Z",
+ "iopub.status.busy": "2024-01-10T15:04:30.977955Z",
+ "iopub.status.idle": "2024-01-10T15:04:31.496719Z",
+ "shell.execute_reply": "2024-01-10T15:04:31.496061Z"
}
},
"outputs": [
@@ -1596,10 +1596,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:02.201016Z",
- "iopub.status.busy": "2024-01-10T06:19:02.200424Z",
- "iopub.status.idle": "2024-01-10T06:19:02.240523Z",
- "shell.execute_reply": "2024-01-10T06:19:02.239757Z"
+ "iopub.execute_input": "2024-01-10T15:04:31.499862Z",
+ "iopub.status.busy": "2024-01-10T15:04:31.499425Z",
+ "iopub.status.idle": "2024-01-10T15:04:31.562545Z",
+ "shell.execute_reply": "2024-01-10T15:04:31.561969Z"
}
},
"outputs": [
@@ -1703,10 +1703,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:02.243308Z",
- "iopub.status.busy": "2024-01-10T06:19:02.243099Z",
- "iopub.status.idle": "2024-01-10T06:19:02.253144Z",
- "shell.execute_reply": "2024-01-10T06:19:02.252390Z"
+ "iopub.execute_input": "2024-01-10T15:04:31.565111Z",
+ "iopub.status.busy": "2024-01-10T15:04:31.564641Z",
+ "iopub.status.idle": "2024-01-10T15:04:31.573832Z",
+ "shell.execute_reply": "2024-01-10T15:04:31.573204Z"
}
},
"outputs": [
@@ -1836,10 +1836,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:02.255838Z",
- "iopub.status.busy": "2024-01-10T06:19:02.255628Z",
- "iopub.status.idle": "2024-01-10T06:19:02.261037Z",
- "shell.execute_reply": "2024-01-10T06:19:02.260283Z"
+ "iopub.execute_input": "2024-01-10T15:04:31.576230Z",
+ "iopub.status.busy": "2024-01-10T15:04:31.575858Z",
+ "iopub.status.idle": "2024-01-10T15:04:31.580823Z",
+ "shell.execute_reply": "2024-01-10T15:04:31.580322Z"
},
"nbsphinx": "hidden"
},
@@ -1885,10 +1885,10 @@
"execution_count": 19,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:02.263582Z",
- "iopub.status.busy": "2024-01-10T06:19:02.263372Z",
- "iopub.status.idle": "2024-01-10T06:19:02.747505Z",
- "shell.execute_reply": "2024-01-10T06:19:02.746806Z"
+ "iopub.execute_input": "2024-01-10T15:04:31.583353Z",
+ "iopub.status.busy": "2024-01-10T15:04:31.582863Z",
+ "iopub.status.idle": "2024-01-10T15:04:32.078729Z",
+ "shell.execute_reply": "2024-01-10T15:04:32.077999Z"
}
},
"outputs": [
@@ -1923,10 +1923,10 @@
"execution_count": 20,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:02.749994Z",
- "iopub.status.busy": "2024-01-10T06:19:02.749785Z",
- "iopub.status.idle": "2024-01-10T06:19:02.760052Z",
- "shell.execute_reply": "2024-01-10T06:19:02.759451Z"
+ "iopub.execute_input": "2024-01-10T15:04:32.081461Z",
+ "iopub.status.busy": "2024-01-10T15:04:32.081063Z",
+ "iopub.status.idle": "2024-01-10T15:04:32.089988Z",
+ "shell.execute_reply": "2024-01-10T15:04:32.089379Z"
}
},
"outputs": [
@@ -2093,10 +2093,10 @@
"execution_count": 21,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:02.762581Z",
- "iopub.status.busy": "2024-01-10T06:19:02.762116Z",
- "iopub.status.idle": "2024-01-10T06:19:02.771043Z",
- "shell.execute_reply": "2024-01-10T06:19:02.770414Z"
+ "iopub.execute_input": "2024-01-10T15:04:32.092549Z",
+ "iopub.status.busy": "2024-01-10T15:04:32.092192Z",
+ "iopub.status.idle": "2024-01-10T15:04:32.099974Z",
+ "shell.execute_reply": "2024-01-10T15:04:32.099484Z"
},
"nbsphinx": "hidden"
},
@@ -2172,10 +2172,10 @@
"execution_count": 22,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:02.773686Z",
- "iopub.status.busy": "2024-01-10T06:19:02.773202Z",
- "iopub.status.idle": "2024-01-10T06:19:03.493718Z",
- "shell.execute_reply": "2024-01-10T06:19:03.493061Z"
+ "iopub.execute_input": "2024-01-10T15:04:32.102387Z",
+ "iopub.status.busy": "2024-01-10T15:04:32.101960Z",
+ "iopub.status.idle": "2024-01-10T15:04:32.570065Z",
+ "shell.execute_reply": "2024-01-10T15:04:32.569399Z"
}
},
"outputs": [
@@ -2212,10 +2212,10 @@
"execution_count": 23,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:03.496501Z",
- "iopub.status.busy": "2024-01-10T06:19:03.496107Z",
- "iopub.status.idle": "2024-01-10T06:19:03.513465Z",
- "shell.execute_reply": "2024-01-10T06:19:03.512805Z"
+ "iopub.execute_input": "2024-01-10T15:04:32.572742Z",
+ "iopub.status.busy": "2024-01-10T15:04:32.572268Z",
+ "iopub.status.idle": "2024-01-10T15:04:32.588234Z",
+ "shell.execute_reply": "2024-01-10T15:04:32.587703Z"
}
},
"outputs": [
@@ -2372,10 +2372,10 @@
"execution_count": 24,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:03.516337Z",
- "iopub.status.busy": "2024-01-10T06:19:03.515917Z",
- "iopub.status.idle": "2024-01-10T06:19:03.521933Z",
- "shell.execute_reply": "2024-01-10T06:19:03.521410Z"
+ "iopub.execute_input": "2024-01-10T15:04:32.590676Z",
+ "iopub.status.busy": "2024-01-10T15:04:32.590298Z",
+ "iopub.status.idle": "2024-01-10T15:04:32.596305Z",
+ "shell.execute_reply": "2024-01-10T15:04:32.595803Z"
},
"nbsphinx": "hidden"
},
@@ -2420,10 +2420,10 @@
"execution_count": 25,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:03.524251Z",
- "iopub.status.busy": "2024-01-10T06:19:03.523892Z",
- "iopub.status.idle": "2024-01-10T06:19:03.912280Z",
- "shell.execute_reply": "2024-01-10T06:19:03.911576Z"
+ "iopub.execute_input": "2024-01-10T15:04:32.598706Z",
+ "iopub.status.busy": "2024-01-10T15:04:32.598338Z",
+ "iopub.status.idle": "2024-01-10T15:04:33.262834Z",
+ "shell.execute_reply": "2024-01-10T15:04:33.262161Z"
}
},
"outputs": [
@@ -2505,10 +2505,10 @@
"execution_count": 26,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:03.915329Z",
- "iopub.status.busy": "2024-01-10T06:19:03.915107Z",
- "iopub.status.idle": "2024-01-10T06:19:03.925635Z",
- "shell.execute_reply": "2024-01-10T06:19:03.925000Z"
+ "iopub.execute_input": "2024-01-10T15:04:33.265775Z",
+ "iopub.status.busy": "2024-01-10T15:04:33.265530Z",
+ "iopub.status.idle": "2024-01-10T15:04:33.276077Z",
+ "shell.execute_reply": "2024-01-10T15:04:33.275421Z"
}
},
"outputs": [
@@ -2533,47 +2533,47 @@
" \n",
" \n",
" | \n",
- " is_dark_issue | \n",
" dark_score | \n",
+ " is_dark_issue | \n",
"
\n",
" \n",
"
\n",
" \n",
" 34848 | \n",
- " True | \n",
" 0.203922 | \n",
+ " True | \n",
"
\n",
" \n",
" 50270 | \n",
- " True | \n",
" 0.204588 | \n",
+ " True | \n",
"
\n",
" \n",
" 3936 | \n",
- " True | \n",
" 0.213098 | \n",
+ " True | \n",
"
\n",
" \n",
" 733 | \n",
- " True | \n",
" 0.217686 | \n",
+ " True | \n",
"
\n",
" \n",
" 8094 | \n",
- " True | \n",
" 0.230118 | \n",
+ " True | \n",
"
\n",
" \n",
"\n",
""
],
"text/plain": [
- " is_dark_issue dark_score\n",
- "34848 True 0.203922\n",
- "50270 True 0.204588\n",
- "3936 True 0.213098\n",
- "733 True 0.217686\n",
- "8094 True 0.230118"
+ " dark_score is_dark_issue\n",
+ "34848 0.203922 True\n",
+ "50270 0.204588 True\n",
+ "3936 0.213098 True\n",
+ "733 0.217686 True\n",
+ "8094 0.230118 True"
]
},
"execution_count": 26,
@@ -2636,10 +2636,10 @@
"execution_count": 27,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:03.928193Z",
- "iopub.status.busy": "2024-01-10T06:19:03.927986Z",
- "iopub.status.idle": "2024-01-10T06:19:03.933195Z",
- "shell.execute_reply": "2024-01-10T06:19:03.932669Z"
+ "iopub.execute_input": "2024-01-10T15:04:33.278895Z",
+ "iopub.status.busy": "2024-01-10T15:04:33.278657Z",
+ "iopub.status.idle": "2024-01-10T15:04:33.285169Z",
+ "shell.execute_reply": "2024-01-10T15:04:33.284523Z"
},
"nbsphinx": "hidden"
},
@@ -2676,10 +2676,10 @@
"execution_count": 28,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:03.935880Z",
- "iopub.status.busy": "2024-01-10T06:19:03.935309Z",
- "iopub.status.idle": "2024-01-10T06:19:04.104020Z",
- "shell.execute_reply": "2024-01-10T06:19:04.103402Z"
+ "iopub.execute_input": "2024-01-10T15:04:33.287965Z",
+ "iopub.status.busy": "2024-01-10T15:04:33.287730Z",
+ "iopub.status.idle": "2024-01-10T15:04:33.487758Z",
+ "shell.execute_reply": "2024-01-10T15:04:33.487083Z"
}
},
"outputs": [
@@ -2721,10 +2721,10 @@
"execution_count": 29,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:04.106941Z",
- "iopub.status.busy": "2024-01-10T06:19:04.106499Z",
- "iopub.status.idle": "2024-01-10T06:19:04.115435Z",
- "shell.execute_reply": "2024-01-10T06:19:04.114817Z"
+ "iopub.execute_input": "2024-01-10T15:04:33.490235Z",
+ "iopub.status.busy": "2024-01-10T15:04:33.490031Z",
+ "iopub.status.idle": "2024-01-10T15:04:33.498679Z",
+ "shell.execute_reply": "2024-01-10T15:04:33.498144Z"
}
},
"outputs": [
@@ -2810,10 +2810,10 @@
"execution_count": 30,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:04.117761Z",
- "iopub.status.busy": "2024-01-10T06:19:04.117385Z",
- "iopub.status.idle": "2024-01-10T06:19:04.309531Z",
- "shell.execute_reply": "2024-01-10T06:19:04.308840Z"
+ "iopub.execute_input": "2024-01-10T15:04:33.501115Z",
+ "iopub.status.busy": "2024-01-10T15:04:33.500732Z",
+ "iopub.status.idle": "2024-01-10T15:04:33.699560Z",
+ "shell.execute_reply": "2024-01-10T15:04:33.698929Z"
}
},
"outputs": [
@@ -2853,10 +2853,10 @@
"execution_count": 31,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:04.312289Z",
- "iopub.status.busy": "2024-01-10T06:19:04.311799Z",
- "iopub.status.idle": "2024-01-10T06:19:04.316705Z",
- "shell.execute_reply": "2024-01-10T06:19:04.316103Z"
+ "iopub.execute_input": "2024-01-10T15:04:33.702317Z",
+ "iopub.status.busy": "2024-01-10T15:04:33.701919Z",
+ "iopub.status.idle": "2024-01-10T15:04:33.706633Z",
+ "shell.execute_reply": "2024-01-10T15:04:33.706092Z"
},
"nbsphinx": "hidden"
},
@@ -2893,7 +2893,23 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "013214df95b64291a68080a23b498d9c": {
+ "04e4ae2e9732443b82af37f831ad18a1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "112b9edaa54c411fa05ff60e3db9703c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -2908,28 +2924,65 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_bcf1b5301fd64b32aaf6b5bc496014ac",
+ "layout": "IPY_MODEL_4119165ce1a0454396504339dc2936a3",
"placeholder": "",
- "style": "IPY_MODEL_0de47076f12f425aaf23ccfbd50f919d",
- "value": " 2/2 [00:00<00:00, 310.86it/s]"
+ "style": "IPY_MODEL_81f0fab4dcf943af9f8f853b13f0b4a4",
+ "value": " 5.18M/5.18M [00:00<00:00, 15.8MB/s]"
}
},
- "0a79a261be2c484e94796f9d62c31f87": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "1b00bb94c97b48db81ef550d08db758e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "0cda3634af9749aa8e66efb500ef558a": {
+ "20d56237eaae4fc6b1a35901cd2d7a70": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -2981,7 +3034,7 @@
"width": null
}
},
- "0d03cfe2e87e462c9a9b5432ae2d2024": {
+ "22fd5c8feced44949969236ff8c8f8c5": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3033,7 +3086,65 @@
"width": null
}
},
- "0de47076f12f425aaf23ccfbd50f919d": {
+ "241cbe4a6e3e4d4d9d6e9d22f4f3385b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "2a3b1109435a4736b03db0b1724a1442": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c86e818f0a9148bd95537441fe27026c",
+ "placeholder": "",
+ "style": "IPY_MODEL_fa46b30146734cf0a97ec7dff997556d",
+ "value": "Downloading data: 100%"
+ }
+ },
+ "2f2d629210df44a1954ce512820b9974": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_6cd5b6a6a0d34bbebe021beb8ff9a555",
+ "placeholder": "",
+ "style": "IPY_MODEL_fbc7b405c321481196b289cba2b9602a",
+ "value": " 2/2 [00:00<00:00, 326.20it/s]"
+ }
+ },
+ "30d262d335e4455cb26fa6ae8786ea57": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -3048,7 +3159,7 @@
"description_width": ""
}
},
- "0de5c1f9f47b48ec9f04d1bf5d3ad773": {
+ "31e88f00396f4838aa6fbf279617afea": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3100,7 +3211,7 @@
"width": "20px"
}
},
- "0e160c96ba624dc8b6cea376b8066800": {
+ "32a4eedc1f8b44299bda1cb0f6abd26d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3152,7 +3263,7 @@
"width": null
}
},
- "10bb4e9e540347b6adf4e3fedbe1cc0e": {
+ "3863766608144d4bbae2dc8c00366428": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
@@ -3168,7 +3279,7 @@
"description_width": ""
}
},
- "190459aade984ef2aea0d2515ff57cda": {
+ "3ccfadc694714dd88df84fa423c2c545": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3220,7 +3331,31 @@
"width": null
}
},
- "1b3b170418ce4c9ab3f8a55b5a6eabc9": {
+ "40f90b8814ba414e817c21d71281dd99": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c5f12e66dcc34cd894aa2fb362979871",
+ "max": 2.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_b312b11fc08244acb5c89f76e88653ff",
+ "value": 2.0
+ }
+ },
+ "4119165ce1a0454396504339dc2936a3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3272,7 +3407,7 @@
"width": null
}
},
- "1bd85ee9e5b94936a4a0ca8c939715dd": {
+ "44e342404a6a44a69061b8bb99059003": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3324,28 +3459,7 @@
"width": null
}
},
- "1d21a5d038eb47648eec87e4e6006fd2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_0d03cfe2e87e462c9a9b5432ae2d2024",
- "placeholder": "",
- "style": "IPY_MODEL_2ed35715096140afab738d789e6ea0ae",
- "value": "Map (num_proc=4): 100%"
- }
- },
- "1f2895dbb9ee4dbeaa2353e1d22f7797": {
+ "45ab4026e1ff4814b9f2f20c4ffefbdb": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3397,7 +3511,7 @@
"width": null
}
},
- "200254c8d04f40b599b27cab58c62c23": {
+ "4b348afa95f54ad58600dc4f73a66315": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3449,31 +3563,95 @@
"width": null
}
},
- "2077df6b881c41f397694543602c3b21": {
+ "4f710dcf1dd545e5b2a12c8b5d0ebb77": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "531306c3d4224ff59e7d053b01e9d583": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "53fade93864d442b9cdba0679cd70a5b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_190459aade984ef2aea0d2515ff57cda",
- "max": 30931277.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_5ead0d8a08ab4a72a56b1bcf53e7b043",
- "value": 30931277.0
+ "layout": "IPY_MODEL_c273ef269f6b4139b28b78dd748d40a9",
+ "placeholder": "",
+ "style": "IPY_MODEL_6e64b79aae00417680bd46c4ae245378",
+ "value": " 60000/0 [00:00<00:00, 908159.42 examples/s]"
+ }
+ },
+ "55665cf5f5644591876a1ab6b8cf98a9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_57cf6506fa2242dc96fcb0b457a2206a",
+ "placeholder": "",
+ "style": "IPY_MODEL_62d37e620d8b4d3d8e23a6f9446c0f30",
+ "value": " 30.9M/30.9M [00:00<00:00, 84.4MB/s]"
+ }
+ },
+ "56c95b5861374f539f8547df31e62298": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "22110adf8fbd44dc907195aa03315f8f": {
+ "57cf6506fa2242dc96fcb0b457a2206a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3525,68 +3703,59 @@
"width": null
}
},
- "2695bb154afc4c0ca3e73976aa6b1557": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "58b405bc9cc348dc929d12e142bb0650": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_cf1ffd0a959c4b1b98e9116cbd853f84",
- "placeholder": "",
- "style": "IPY_MODEL_0a79a261be2c484e94796f9d62c31f87",
- "value": "Computing checksums: 100%"
- }
- },
- "26d3dec3ea8a42e78a9a1f322d8be9c3": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_ea0795aea16d4e3ca4a1917ca4866577",
- "max": 2.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_10bb4e9e540347b6adf4e3fedbe1cc0e",
- "value": 2.0
- }
- },
- "2cc8abc90f014a1cae1e929a856c504c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "2ed35715096140afab738d789e6ea0ae": {
+ "62d37e620d8b4d3d8e23a6f9446c0f30": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -3601,7 +3770,7 @@
"description_width": ""
}
},
- "312e7e414ea44c0cb196a98ae42a3820": {
+ "642e927f44e546abb691317a37cb9c45": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -3616,7 +3785,7 @@
"description_width": ""
}
},
- "38d235ba304a40398a6b2133d5d914d3": {
+ "6cd5b6a6a0d34bbebe021beb8ff9a555": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3668,71 +3837,22 @@
"width": null
}
},
- "398eb4cd325f46478a8fa7d7374a5549": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_eb5828f6121341f8b9392cbdc9416b5f",
- "placeholder": "",
- "style": "IPY_MODEL_4ec21615f55d49f283bd0e6b2f5440a7",
- "value": "Generating test split: "
- }
- },
- "3a2cf689648147339884bf21e41e0117": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_8508ed2c71b941dd88b8226f584dd39f",
- "placeholder": "",
- "style": "IPY_MODEL_ffc7d069ba3342649b031d7e4fc2b1e9",
- "value": " 60000/60000 [00:12<00:00, 4348.01 examples/s]"
- }
- },
- "49e601fd38364edaac3c9d83a3b91d37": {
+ "6e64b79aae00417680bd46c4ae245378": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_1d21a5d038eb47648eec87e4e6006fd2",
- "IPY_MODEL_7354bbbddf5c490c9aef5c8baf007d83",
- "IPY_MODEL_3a2cf689648147339884bf21e41e0117"
- ],
- "layout": "IPY_MODEL_1f2895dbb9ee4dbeaa2353e1d22f7797"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "4aaf228d5dec484e9d76a93af99b330d": {
+ "6eb966bbd7c140f893c9852a659a12b7": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
@@ -3747,50 +3867,14 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_e69939aec370403db4aa8a60e3dd20e3",
- "IPY_MODEL_6ec843e6a46940dba4f1613a2e697ff3",
- "IPY_MODEL_e8532a073a86434db3784fb380727e9f"
+ "IPY_MODEL_def7d8c7aa354f3087d6be14e2d005af",
+ "IPY_MODEL_40f90b8814ba414e817c21d71281dd99",
+ "IPY_MODEL_2f2d629210df44a1954ce512820b9974"
],
- "layout": "IPY_MODEL_ec15ac2ff1a445bd9ca4553a52d53b2f"
- }
- },
- "4be66381fb204b84afdc2415136fb407": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_0e160c96ba624dc8b6cea376b8066800",
- "placeholder": "",
- "style": "IPY_MODEL_55739e7c4da544cbb13ae2f33cc14e5c",
- "value": "100%"
- }
- },
- "4ec21615f55d49f283bd0e6b2f5440a7": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "layout": "IPY_MODEL_7fe60cd2bb9944088c770c6054b969f0"
}
},
- "4f1471abf2d545c7bf0b67cd9327b5b1": {
+ "73224719d91b43aea20d1947b20b9fae": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3842,43 +3926,7 @@
"width": null
}
},
- "531d284991c7410f8db880db73019fac": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_1b3b170418ce4c9ab3f8a55b5a6eabc9",
- "placeholder": "",
- "style": "IPY_MODEL_bc6ecce06e14491c86ba5776deecab56",
- "value": " 60000/60000 [00:34<00:00, 1699.40it/s]"
- }
- },
- "55739e7c4da544cbb13ae2f33cc14e5c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "56284ddcfc6f45b1ab26d5b2d7960182": {
+ "747917059fd846f3bab65dc46259cdd9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
@@ -3894,82 +3942,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_0de5c1f9f47b48ec9f04d1bf5d3ad773",
- "max": 1.0,
+ "layout": "IPY_MODEL_f936491928e643d991be5593f5ce8e2e",
+ "max": 60000.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_dda99bdff9404fdfb5828d3010b9f8a1",
- "value": 1.0
- }
- },
- "5dd680e3231f43718c6308a8e45e1da2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "5ead0d8a08ab4a72a56b1bcf53e7b043": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "65858abaeaa64069a1e42170696ed7d5": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_4f1471abf2d545c7bf0b67cd9327b5b1",
- "placeholder": "",
- "style": "IPY_MODEL_65d9f41155d24ab983b2225422ae636e",
- "value": " 30.9M/30.9M [00:00<00:00, 76.8MB/s]"
- }
- },
- "65d9f41155d24ab983b2225422ae636e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "style": "IPY_MODEL_3863766608144d4bbae2dc8c00366428",
+ "value": 60000.0
}
},
- "6ec843e6a46940dba4f1613a2e697ff3": {
+ "7aabea0e51b14aa0a344f519dace41d4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
@@ -3985,76 +3966,15 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_d7e4b9ab15f94205a4b550065dc49563",
+ "layout": "IPY_MODEL_fc957e7fcc8a4257b589cb24f6c097ed",
"max": 1.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_2cc8abc90f014a1cae1e929a856c504c",
+ "style": "IPY_MODEL_241cbe4a6e3e4d4d9d6e9d22f4f3385b",
"value": 1.0
}
},
- "7354bbbddf5c490c9aef5c8baf007d83": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_e6d905af2f524d45905c52a4563e3b9f",
- "max": 60000.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_c804c3d8105c4289a60d0a1dff6d3cfe",
- "value": 60000.0
- }
- },
- "78249ca6d2e148269fee22730149bfc7": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_38d235ba304a40398a6b2133d5d914d3",
- "placeholder": "",
- "style": "IPY_MODEL_5dd680e3231f43718c6308a8e45e1da2",
- "value": "Downloading data: 100%"
- }
- },
- "7c26ccdbd7a74a0f83ab2ec3744b92d4": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "8508ed2c71b941dd88b8226f584dd39f": {
+ "7fe60cd2bb9944088c770c6054b969f0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4106,59 +4026,43 @@
"width": null
}
},
- "899e58d8a40a465297f40aeada991389": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
+ "8166aa3799774caf8b87e0123a21d7a8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_32a4eedc1f8b44299bda1cb0f6abd26d",
+ "placeholder": "",
+ "style": "IPY_MODEL_f479288994bb480f93a2890ac8b9689a",
+ "value": " 60000/60000 [00:12<00:00, 3528.13 examples/s]"
+ }
+ },
+ "81f0fab4dcf943af9f8f853b13f0b4a4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "89e68bddf9384821a6b84d7f2d4e482e": {
+ "84bcdef9932046f0930340bd8f083f61": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
@@ -4174,15 +4078,37 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_c603b29c641542a68e01cfc8bcc23136",
+ "layout": "IPY_MODEL_df11331f35ed4acab017a87d9c99f632",
"max": 60000.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_7c26ccdbd7a74a0f83ab2ec3744b92d4",
+ "style": "IPY_MODEL_04e4ae2e9732443b82af37f831ad18a1",
"value": 60000.0
}
},
- "9f23a3a591a44348963c1d972f09eea0": {
+ "8a7ea3a7486345b3b0576e7ea7232743": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_f6c40051e8f24228bbec72cf3feba8a2",
+ "IPY_MODEL_747917059fd846f3bab65dc46259cdd9",
+ "IPY_MODEL_8166aa3799774caf8b87e0123a21d7a8"
+ ],
+ "layout": "IPY_MODEL_94105893d93745368f80f8601af838d5"
+ }
+ },
+ "8f6b26b7119741c5b0e69e2bb959c0d0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4234,29 +4160,23 @@
"width": null
}
},
- "a3915e0b726a46b79cb5df0f0080b054": {
+ "8fefc0d74ba54974b442c6b71acfca3f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "ProgressStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_e0717ef2b1f241a585bab71f798c07aa",
- "IPY_MODEL_2077df6b881c41f397694543602c3b21",
- "IPY_MODEL_65858abaeaa64069a1e42170696ed7d5"
- ],
- "layout": "IPY_MODEL_200254c8d04f40b599b27cab58c62c23"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "a6744175fe1842fe96c1f9105ae47256": {
+ "94105893d93745368f80f8601af838d5": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4308,45 +4228,49 @@
"width": null
}
},
- "a6b5a69bbd21481db358d145d9702e00": {
+ "975d8ea39a014452958aa146cb2be35e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_78249ca6d2e148269fee22730149bfc7",
- "IPY_MODEL_df7c93e26eda4e248394e2244cfded4c",
- "IPY_MODEL_d446110cb3c24b66987a4e37de6ccd06"
- ],
- "layout": "IPY_MODEL_22110adf8fbd44dc907195aa03315f8f"
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_4b348afa95f54ad58600dc4f73a66315",
+ "placeholder": "",
+ "style": "IPY_MODEL_642e927f44e546abb691317a37cb9c45",
+ "value": " 10000/0 [00:00<00:00, 533266.88 examples/s]"
}
},
- "afb50312cbe743948bbafaebb013b144": {
+ "99030e7333314a1aab3d9d361a77c853": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "HTMLModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_8f6b26b7119741c5b0e69e2bb959c0d0",
+ "placeholder": "",
+ "style": "IPY_MODEL_f6c6eedc2b8040ef8b8f49905f4d1693",
+ "value": "100%"
}
},
- "b2ae5f58b0c44998937c4fd1e2f2054a": {
+ "9bb84796b7394d3785201ca53696b02a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -4361,13 +4285,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_e2e288cbd8d54b37921c3c1a587bb313",
+ "layout": "IPY_MODEL_58b405bc9cc348dc929d12e142bb0650",
"placeholder": "",
- "style": "IPY_MODEL_312e7e414ea44c0cb196a98ae42a3820",
- "value": " 10000/0 [00:00<00:00, 522062.71 examples/s]"
+ "style": "IPY_MODEL_56c95b5861374f539f8547df31e62298",
+ "value": " 60000/60000 [00:34<00:00, 1701.51it/s]"
}
},
- "bbdfd655d6b2431895de761767dbe4eb": {
+ "a43ef6625dea4b75a7bd60e2ad355251": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -4382,7 +4306,7 @@
"description_width": ""
}
},
- "bc6ecce06e14491c86ba5776deecab56": {
+ "af56049c25a04736a48db4358cc9df58": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -4397,59 +4321,45 @@
"description_width": ""
}
},
- "bcf1b5301fd64b32aaf6b5bc496014ac": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
+ "b312b11fc08244acb5c89f76e88653ff": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
"state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "b9f8b67a42cd4066aaa973e62b8ca794": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_d92c2abcd7884d97888881358b3cd238",
+ "IPY_MODEL_db44e5262c4c49de8c97bca5ac255894",
+ "IPY_MODEL_55665cf5f5644591876a1ab6b8cf98a9"
+ ],
+ "layout": "IPY_MODEL_3ccfadc694714dd88df84fa423c2c545"
}
},
- "c0f6e3e01f79409296a19f5fac62b3aa": {
+ "bbc89641d4084f42bd9460c0e97e2df2": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4501,7 +4411,28 @@
"width": null
}
},
- "c603b29c641542a68e01cfc8bcc23136": {
+ "bee57b4377fb4ff8b1a8962934c0ad90": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_73224719d91b43aea20d1947b20b9fae",
+ "placeholder": "",
+ "style": "IPY_MODEL_af56049c25a04736a48db4358cc9df58",
+ "value": "Generating train split: "
+ }
+ },
+ "bf53f28b041a4ed9a94303a3b2af0104": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4553,45 +4484,7 @@
"width": null
}
},
- "c804c3d8105c4289a60d0a1dff6d3cfe": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "c98028da20994c76be789f56278cced6": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_398eb4cd325f46478a8fa7d7374a5549",
- "IPY_MODEL_56284ddcfc6f45b1ab26d5b2d7960182",
- "IPY_MODEL_b2ae5f58b0c44998937c4fd1e2f2054a"
- ],
- "layout": "IPY_MODEL_1bd85ee9e5b94936a4a0ca8c939715dd"
- }
- },
- "cf1ffd0a959c4b1b98e9116cbd853f84": {
+ "c273ef269f6b4139b28b78dd748d40a9": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4643,28 +4536,31 @@
"width": null
}
},
- "d446110cb3c24b66987a4e37de6ccd06": {
+ "c5d6f7de1ab84a849a8e3bc128b311f1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_a6744175fe1842fe96c1f9105ae47256",
- "placeholder": "",
- "style": "IPY_MODEL_f6100e7965f840b397c807782f4eacd6",
- "value": " 5.18M/5.18M [00:00<00:00, 72.4MB/s]"
+ "layout": "IPY_MODEL_31e88f00396f4838aa6fbf279617afea",
+ "max": 1.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_d614f19d9865459793b1f30c2fa79913",
+ "value": 1.0
}
},
- "d7e4b9ab15f94205a4b550065dc49563": {
+ "c5f12e66dcc34cd894aa2fb362979871": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4709,112 +4605,14 @@
"overflow": null,
"overflow_x": null,
"overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": "20px"
- }
- },
- "d8935bf4844d43b294f1960ef9619de7": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "dda99bdff9404fdfb5828d3010b9f8a1": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "df7c93e26eda4e248394e2244cfded4c": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_c0f6e3e01f79409296a19f5fac62b3aa",
- "max": 5175617.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_afb50312cbe743948bbafaebb013b144",
- "value": 5175617.0
- }
- },
- "dfe013943ca04be693b072c950762919": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_4be66381fb204b84afdc2415136fb407",
- "IPY_MODEL_89e68bddf9384821a6b84d7f2d4e482e",
- "IPY_MODEL_531d284991c7410f8db880db73019fac"
- ],
- "layout": "IPY_MODEL_899e58d8a40a465297f40aeada991389"
- }
- },
- "e0717ef2b1f241a585bab71f798c07aa": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_9f23a3a591a44348963c1d972f09eea0",
- "placeholder": "",
- "style": "IPY_MODEL_efb859ce22df4aedb5cd3bffda0adc5f",
- "value": "Downloading data: 100%"
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "e2e288cbd8d54b37921c3c1a587bb313": {
+ "c86e818f0a9148bd95537441fe27026c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4866,7 +4664,7 @@
"width": null
}
},
- "e36aa52b0d1c430cb96f1bdb16e44c82": {
+ "ca3a18d2bf4b4fa68ed448ca06ccc823": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
@@ -4881,35 +4679,45 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_2695bb154afc4c0ca3e73976aa6b1557",
- "IPY_MODEL_26d3dec3ea8a42e78a9a1f322d8be9c3",
- "IPY_MODEL_013214df95b64291a68080a23b498d9c"
+ "IPY_MODEL_bee57b4377fb4ff8b1a8962934c0ad90",
+ "IPY_MODEL_c5d6f7de1ab84a849a8e3bc128b311f1",
+ "IPY_MODEL_53fade93864d442b9cdba0679cd70a5b"
],
- "layout": "IPY_MODEL_f20a65a9ab814f7e990cc1d89679131a"
+ "layout": "IPY_MODEL_45ab4026e1ff4814b9f2f20c4ffefbdb"
}
},
- "e69939aec370403db4aa8a60e3dd20e3": {
+ "cfe37b5719f04fd29e805d7127de5338": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_0cda3634af9749aa8e66efb500ef558a",
- "placeholder": "",
- "style": "IPY_MODEL_d8935bf4844d43b294f1960ef9619de7",
- "value": "Generating train split: "
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "d614f19d9865459793b1f30c2fa79913": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
}
},
- "e6d905af2f524d45905c52a4563e3b9f": {
+ "d7f3a96589a84783a117d707db05a5d7": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4961,7 +4769,52 @@
"width": null
}
},
- "e8532a073a86434db3784fb380727e9f": {
+ "d92c2abcd7884d97888881358b3cd238": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_44e342404a6a44a69061b8bb99059003",
+ "placeholder": "",
+ "style": "IPY_MODEL_30d262d335e4455cb26fa6ae8786ea57",
+ "value": "Downloading data: 100%"
+ }
+ },
+ "db44e5262c4c49de8c97bca5ac255894": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_22fd5c8feced44949969236ff8c8f8c5",
+ "max": 30931277.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_4f710dcf1dd545e5b2a12c8b5d0ebb77",
+ "value": 30931277.0
+ }
+ },
+ "def7d8c7aa354f3087d6be14e2d005af": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -4976,13 +4829,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_eb9ca05ae5c842308439407a0dabc84b",
+ "layout": "IPY_MODEL_1b00bb94c97b48db81ef550d08db758e",
"placeholder": "",
- "style": "IPY_MODEL_bbdfd655d6b2431895de761767dbe4eb",
- "value": " 60000/0 [00:00<00:00, 804572.60 examples/s]"
+ "style": "IPY_MODEL_531306c3d4224ff59e7d053b01e9d583",
+ "value": "Computing checksums: 100%"
}
},
- "ea0795aea16d4e3ca4a1917ca4866577": {
+ "df11331f35ed4acab017a87d9c99f632": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -5034,7 +4887,52 @@
"width": null
}
},
- "eb5828f6121341f8b9392cbdc9416b5f": {
+ "dfcc60c7ce4d427d9db728d1111175d5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_bf53f28b041a4ed9a94303a3b2af0104",
+ "placeholder": "",
+ "style": "IPY_MODEL_a43ef6625dea4b75a7bd60e2ad355251",
+ "value": "Generating test split: "
+ }
+ },
+ "e36ce1e2b4ac46b89919510d19d88e00": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_20d56237eaae4fc6b1a35901cd2d7a70",
+ "max": 5175617.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_8fefc0d74ba54974b442c6b71acfca3f",
+ "value": 5175617.0
+ }
+ },
+ "e3a451c639764ba4a7e218a0a80bb64f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -5086,7 +4984,73 @@
"width": null
}
},
- "eb9ca05ae5c842308439407a0dabc84b": {
+ "eb174494cec7449c80000967dbef9224": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_99030e7333314a1aab3d9d361a77c853",
+ "IPY_MODEL_84bcdef9932046f0930340bd8f083f61",
+ "IPY_MODEL_9bb84796b7394d3785201ca53696b02a"
+ ],
+ "layout": "IPY_MODEL_bbc89641d4084f42bd9460c0e97e2df2"
+ }
+ },
+ "f0d31b197fe7409d990c55b1452c3705": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_dfcc60c7ce4d427d9db728d1111175d5",
+ "IPY_MODEL_7aabea0e51b14aa0a344f519dace41d4",
+ "IPY_MODEL_975d8ea39a014452958aa146cb2be35e"
+ ],
+ "layout": "IPY_MODEL_e3a451c639764ba4a7e218a0a80bb64f"
+ }
+ },
+ "f290500824dc4995bf9dfe5f9f2b3425": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_2a3b1109435a4736b03db0b1724a1442",
+ "IPY_MODEL_e36ce1e2b4ac46b89919510d19d88e00",
+ "IPY_MODEL_112b9edaa54c411fa05ff60e3db9703c"
+ ],
+ "layout": "IPY_MODEL_f46d4bf4f0a14643be3fbdc4e3420fc1"
+ }
+ },
+ "f46d4bf4f0a14643be3fbdc4e3420fc1": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -5138,7 +5102,58 @@
"width": null
}
},
- "ec15ac2ff1a445bd9ca4553a52d53b2f": {
+ "f479288994bb480f93a2890ac8b9689a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "f6c40051e8f24228bbec72cf3feba8a2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d7f3a96589a84783a117d707db05a5d7",
+ "placeholder": "",
+ "style": "IPY_MODEL_cfe37b5719f04fd29e805d7127de5338",
+ "value": "Map (num_proc=4): 100%"
+ }
+ },
+ "f6c6eedc2b8040ef8b8f49905f4d1693": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "f936491928e643d991be5593f5ce8e2e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -5190,7 +5205,22 @@
"width": null
}
},
- "efb859ce22df4aedb5cd3bffda0adc5f": {
+ "fa46b30146734cf0a97ec7dff997556d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "fbc7b405c321481196b289cba2b9602a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -5205,7 +5235,7 @@
"description_width": ""
}
},
- "f20a65a9ab814f7e990cc1d89679131a": {
+ "fc957e7fcc8a4257b589cb24f6c097ed": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -5254,37 +5284,7 @@
"right": null,
"top": null,
"visibility": null,
- "width": null
- }
- },
- "f6100e7965f840b397c807782f4eacd6": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "ffc7d069ba3342649b031d7e4fc2b1e9": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "width": "20px"
}
}
},
diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb
index 3fb385f45..e4512dc87 100644
--- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb
@@ -53,10 +53,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:10.230756Z",
- "iopub.status.busy": "2024-01-10T06:19:10.230131Z",
- "iopub.status.idle": "2024-01-10T06:19:11.356341Z",
- "shell.execute_reply": "2024-01-10T06:19:11.355670Z"
+ "iopub.execute_input": "2024-01-10T15:04:39.321427Z",
+ "iopub.status.busy": "2024-01-10T15:04:39.321210Z",
+ "iopub.status.idle": "2024-01-10T15:04:40.398173Z",
+ "shell.execute_reply": "2024-01-10T15:04:40.397563Z"
},
"nbsphinx": "hidden"
},
@@ -68,7 +68,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -95,10 +95,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:11.359495Z",
- "iopub.status.busy": "2024-01-10T06:19:11.358950Z",
- "iopub.status.idle": "2024-01-10T06:19:11.645037Z",
- "shell.execute_reply": "2024-01-10T06:19:11.644365Z"
+ "iopub.execute_input": "2024-01-10T15:04:40.401187Z",
+ "iopub.status.busy": "2024-01-10T15:04:40.400737Z",
+ "iopub.status.idle": "2024-01-10T15:04:40.669725Z",
+ "shell.execute_reply": "2024-01-10T15:04:40.669115Z"
},
"id": "avXlHJcXjruP"
},
@@ -234,10 +234,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:11.648431Z",
- "iopub.status.busy": "2024-01-10T06:19:11.647953Z",
- "iopub.status.idle": "2024-01-10T06:19:11.660400Z",
- "shell.execute_reply": "2024-01-10T06:19:11.659834Z"
+ "iopub.execute_input": "2024-01-10T15:04:40.672962Z",
+ "iopub.status.busy": "2024-01-10T15:04:40.672388Z",
+ "iopub.status.idle": "2024-01-10T15:04:40.684649Z",
+ "shell.execute_reply": "2024-01-10T15:04:40.684028Z"
},
"nbsphinx": "hidden"
},
@@ -340,10 +340,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:11.662953Z",
- "iopub.status.busy": "2024-01-10T06:19:11.662542Z",
- "iopub.status.idle": "2024-01-10T06:19:11.900160Z",
- "shell.execute_reply": "2024-01-10T06:19:11.899470Z"
+ "iopub.execute_input": "2024-01-10T15:04:40.687271Z",
+ "iopub.status.busy": "2024-01-10T15:04:40.686818Z",
+ "iopub.status.idle": "2024-01-10T15:04:40.921516Z",
+ "shell.execute_reply": "2024-01-10T15:04:40.920869Z"
}
},
"outputs": [
@@ -393,10 +393,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:11.903126Z",
- "iopub.status.busy": "2024-01-10T06:19:11.902693Z",
- "iopub.status.idle": "2024-01-10T06:19:11.929149Z",
- "shell.execute_reply": "2024-01-10T06:19:11.928601Z"
+ "iopub.execute_input": "2024-01-10T15:04:40.924511Z",
+ "iopub.status.busy": "2024-01-10T15:04:40.924050Z",
+ "iopub.status.idle": "2024-01-10T15:04:40.951356Z",
+ "shell.execute_reply": "2024-01-10T15:04:40.950828Z"
}
},
"outputs": [],
@@ -427,10 +427,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:11.931771Z",
- "iopub.status.busy": "2024-01-10T06:19:11.931369Z",
- "iopub.status.idle": "2024-01-10T06:19:13.340850Z",
- "shell.execute_reply": "2024-01-10T06:19:13.340122Z"
+ "iopub.execute_input": "2024-01-10T15:04:40.953852Z",
+ "iopub.status.busy": "2024-01-10T15:04:40.953477Z",
+ "iopub.status.idle": "2024-01-10T15:04:42.309859Z",
+ "shell.execute_reply": "2024-01-10T15:04:42.309107Z"
}
},
"outputs": [
@@ -473,10 +473,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:13.343983Z",
- "iopub.status.busy": "2024-01-10T06:19:13.343269Z",
- "iopub.status.idle": "2024-01-10T06:19:13.368528Z",
- "shell.execute_reply": "2024-01-10T06:19:13.367864Z"
+ "iopub.execute_input": "2024-01-10T15:04:42.312942Z",
+ "iopub.status.busy": "2024-01-10T15:04:42.312275Z",
+ "iopub.status.idle": "2024-01-10T15:04:42.337983Z",
+ "shell.execute_reply": "2024-01-10T15:04:42.337407Z"
},
"scrolled": true
},
@@ -641,10 +641,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:13.370923Z",
- "iopub.status.busy": "2024-01-10T06:19:13.370715Z",
- "iopub.status.idle": "2024-01-10T06:19:14.287348Z",
- "shell.execute_reply": "2024-01-10T06:19:14.286696Z"
+ "iopub.execute_input": "2024-01-10T15:04:42.340434Z",
+ "iopub.status.busy": "2024-01-10T15:04:42.340211Z",
+ "iopub.status.idle": "2024-01-10T15:04:43.216594Z",
+ "shell.execute_reply": "2024-01-10T15:04:43.215893Z"
},
"id": "AaHC5MRKjruT"
},
@@ -763,10 +763,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:14.290089Z",
- "iopub.status.busy": "2024-01-10T06:19:14.289653Z",
- "iopub.status.idle": "2024-01-10T06:19:14.304321Z",
- "shell.execute_reply": "2024-01-10T06:19:14.303795Z"
+ "iopub.execute_input": "2024-01-10T15:04:43.219465Z",
+ "iopub.status.busy": "2024-01-10T15:04:43.219248Z",
+ "iopub.status.idle": "2024-01-10T15:04:43.234139Z",
+ "shell.execute_reply": "2024-01-10T15:04:43.233465Z"
},
"id": "Wy27rvyhjruU"
},
@@ -815,10 +815,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:14.306556Z",
- "iopub.status.busy": "2024-01-10T06:19:14.306353Z",
- "iopub.status.idle": "2024-01-10T06:19:14.395464Z",
- "shell.execute_reply": "2024-01-10T06:19:14.394757Z"
+ "iopub.execute_input": "2024-01-10T15:04:43.236729Z",
+ "iopub.status.busy": "2024-01-10T15:04:43.236367Z",
+ "iopub.status.idle": "2024-01-10T15:04:43.322460Z",
+ "shell.execute_reply": "2024-01-10T15:04:43.321810Z"
},
"id": "Db8YHnyVjruU"
},
@@ -925,10 +925,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:14.398081Z",
- "iopub.status.busy": "2024-01-10T06:19:14.397790Z",
- "iopub.status.idle": "2024-01-10T06:19:14.605263Z",
- "shell.execute_reply": "2024-01-10T06:19:14.604556Z"
+ "iopub.execute_input": "2024-01-10T15:04:43.324966Z",
+ "iopub.status.busy": "2024-01-10T15:04:43.324713Z",
+ "iopub.status.idle": "2024-01-10T15:04:43.529247Z",
+ "shell.execute_reply": "2024-01-10T15:04:43.528571Z"
},
"id": "iJqAHuS2jruV"
},
@@ -965,10 +965,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:14.608187Z",
- "iopub.status.busy": "2024-01-10T06:19:14.607708Z",
- "iopub.status.idle": "2024-01-10T06:19:14.625986Z",
- "shell.execute_reply": "2024-01-10T06:19:14.625325Z"
+ "iopub.execute_input": "2024-01-10T15:04:43.532132Z",
+ "iopub.status.busy": "2024-01-10T15:04:43.531690Z",
+ "iopub.status.idle": "2024-01-10T15:04:43.549245Z",
+ "shell.execute_reply": "2024-01-10T15:04:43.548725Z"
},
"id": "PcPTZ_JJG3Cx"
},
@@ -1030,10 +1030,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:14.628765Z",
- "iopub.status.busy": "2024-01-10T06:19:14.628360Z",
- "iopub.status.idle": "2024-01-10T06:19:14.639216Z",
- "shell.execute_reply": "2024-01-10T06:19:14.638680Z"
+ "iopub.execute_input": "2024-01-10T15:04:43.551560Z",
+ "iopub.status.busy": "2024-01-10T15:04:43.551356Z",
+ "iopub.status.idle": "2024-01-10T15:04:43.561686Z",
+ "shell.execute_reply": "2024-01-10T15:04:43.561157Z"
},
"id": "0lonvOYvjruV"
},
@@ -1180,10 +1180,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:14.641682Z",
- "iopub.status.busy": "2024-01-10T06:19:14.641288Z",
- "iopub.status.idle": "2024-01-10T06:19:14.743511Z",
- "shell.execute_reply": "2024-01-10T06:19:14.742754Z"
+ "iopub.execute_input": "2024-01-10T15:04:43.563888Z",
+ "iopub.status.busy": "2024-01-10T15:04:43.563685Z",
+ "iopub.status.idle": "2024-01-10T15:04:43.660140Z",
+ "shell.execute_reply": "2024-01-10T15:04:43.659441Z"
},
"id": "MfqTCa3kjruV"
},
@@ -1264,10 +1264,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:14.747035Z",
- "iopub.status.busy": "2024-01-10T06:19:14.746126Z",
- "iopub.status.idle": "2024-01-10T06:19:14.909743Z",
- "shell.execute_reply": "2024-01-10T06:19:14.909013Z"
+ "iopub.execute_input": "2024-01-10T15:04:43.662836Z",
+ "iopub.status.busy": "2024-01-10T15:04:43.662578Z",
+ "iopub.status.idle": "2024-01-10T15:04:43.805417Z",
+ "shell.execute_reply": "2024-01-10T15:04:43.804781Z"
},
"id": "9ZtWAYXqMAPL"
},
@@ -1327,10 +1327,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:14.912509Z",
- "iopub.status.busy": "2024-01-10T06:19:14.912249Z",
- "iopub.status.idle": "2024-01-10T06:19:14.916421Z",
- "shell.execute_reply": "2024-01-10T06:19:14.915806Z"
+ "iopub.execute_input": "2024-01-10T15:04:43.808245Z",
+ "iopub.status.busy": "2024-01-10T15:04:43.807852Z",
+ "iopub.status.idle": "2024-01-10T15:04:43.812212Z",
+ "shell.execute_reply": "2024-01-10T15:04:43.811667Z"
},
"id": "0rXP3ZPWjruW"
},
@@ -1368,10 +1368,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:14.918795Z",
- "iopub.status.busy": "2024-01-10T06:19:14.918435Z",
- "iopub.status.idle": "2024-01-10T06:19:14.923066Z",
- "shell.execute_reply": "2024-01-10T06:19:14.922436Z"
+ "iopub.execute_input": "2024-01-10T15:04:43.814450Z",
+ "iopub.status.busy": "2024-01-10T15:04:43.814232Z",
+ "iopub.status.idle": "2024-01-10T15:04:43.818838Z",
+ "shell.execute_reply": "2024-01-10T15:04:43.818307Z"
},
"id": "-iRPe8KXjruW"
},
@@ -1426,10 +1426,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:14.925674Z",
- "iopub.status.busy": "2024-01-10T06:19:14.925282Z",
- "iopub.status.idle": "2024-01-10T06:19:14.965643Z",
- "shell.execute_reply": "2024-01-10T06:19:14.964962Z"
+ "iopub.execute_input": "2024-01-10T15:04:43.821246Z",
+ "iopub.status.busy": "2024-01-10T15:04:43.820961Z",
+ "iopub.status.idle": "2024-01-10T15:04:43.860597Z",
+ "shell.execute_reply": "2024-01-10T15:04:43.860082Z"
},
"id": "ZpipUliyjruW"
},
@@ -1480,10 +1480,10 @@
"execution_count": 19,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:14.968405Z",
- "iopub.status.busy": "2024-01-10T06:19:14.968011Z",
- "iopub.status.idle": "2024-01-10T06:19:15.015701Z",
- "shell.execute_reply": "2024-01-10T06:19:15.015056Z"
+ "iopub.execute_input": "2024-01-10T15:04:43.863024Z",
+ "iopub.status.busy": "2024-01-10T15:04:43.862665Z",
+ "iopub.status.idle": "2024-01-10T15:04:43.907937Z",
+ "shell.execute_reply": "2024-01-10T15:04:43.907422Z"
},
"id": "SLq-3q4xjruX"
},
@@ -1552,10 +1552,10 @@
"execution_count": 20,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:15.018378Z",
- "iopub.status.busy": "2024-01-10T06:19:15.017908Z",
- "iopub.status.idle": "2024-01-10T06:19:15.125330Z",
- "shell.execute_reply": "2024-01-10T06:19:15.124654Z"
+ "iopub.execute_input": "2024-01-10T15:04:43.910314Z",
+ "iopub.status.busy": "2024-01-10T15:04:43.910006Z",
+ "iopub.status.idle": "2024-01-10T15:04:44.013322Z",
+ "shell.execute_reply": "2024-01-10T15:04:44.012666Z"
},
"id": "g5LHhhuqFbXK"
},
@@ -1587,10 +1587,10 @@
"execution_count": 21,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:15.128752Z",
- "iopub.status.busy": "2024-01-10T06:19:15.128227Z",
- "iopub.status.idle": "2024-01-10T06:19:15.234835Z",
- "shell.execute_reply": "2024-01-10T06:19:15.234115Z"
+ "iopub.execute_input": "2024-01-10T15:04:44.016380Z",
+ "iopub.status.busy": "2024-01-10T15:04:44.015987Z",
+ "iopub.status.idle": "2024-01-10T15:04:44.118865Z",
+ "shell.execute_reply": "2024-01-10T15:04:44.118170Z"
},
"id": "p7w8F8ezBcet"
},
@@ -1647,10 +1647,10 @@
"execution_count": 22,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:15.237722Z",
- "iopub.status.busy": "2024-01-10T06:19:15.237193Z",
- "iopub.status.idle": "2024-01-10T06:19:15.449470Z",
- "shell.execute_reply": "2024-01-10T06:19:15.448775Z"
+ "iopub.execute_input": "2024-01-10T15:04:44.121545Z",
+ "iopub.status.busy": "2024-01-10T15:04:44.121287Z",
+ "iopub.status.idle": "2024-01-10T15:04:44.325172Z",
+ "shell.execute_reply": "2024-01-10T15:04:44.324514Z"
},
"id": "WETRL74tE_sU"
},
@@ -1685,10 +1685,10 @@
"execution_count": 23,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:15.452306Z",
- "iopub.status.busy": "2024-01-10T06:19:15.451848Z",
- "iopub.status.idle": "2024-01-10T06:19:15.710564Z",
- "shell.execute_reply": "2024-01-10T06:19:15.709859Z"
+ "iopub.execute_input": "2024-01-10T15:04:44.327830Z",
+ "iopub.status.busy": "2024-01-10T15:04:44.327618Z",
+ "iopub.status.idle": "2024-01-10T15:04:44.538647Z",
+ "shell.execute_reply": "2024-01-10T15:04:44.537948Z"
},
"id": "kCfdx2gOLmXS"
},
@@ -1850,10 +1850,10 @@
"execution_count": 24,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:15.713390Z",
- "iopub.status.busy": "2024-01-10T06:19:15.712976Z",
- "iopub.status.idle": "2024-01-10T06:19:15.719738Z",
- "shell.execute_reply": "2024-01-10T06:19:15.719219Z"
+ "iopub.execute_input": "2024-01-10T15:04:44.541174Z",
+ "iopub.status.busy": "2024-01-10T15:04:44.540920Z",
+ "iopub.status.idle": "2024-01-10T15:04:44.547632Z",
+ "shell.execute_reply": "2024-01-10T15:04:44.547125Z"
},
"id": "-uogYRWFYnuu"
},
@@ -1907,10 +1907,10 @@
"execution_count": 25,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:15.722264Z",
- "iopub.status.busy": "2024-01-10T06:19:15.721862Z",
- "iopub.status.idle": "2024-01-10T06:19:15.932373Z",
- "shell.execute_reply": "2024-01-10T06:19:15.931673Z"
+ "iopub.execute_input": "2024-01-10T15:04:44.550054Z",
+ "iopub.status.busy": "2024-01-10T15:04:44.549609Z",
+ "iopub.status.idle": "2024-01-10T15:04:44.759728Z",
+ "shell.execute_reply": "2024-01-10T15:04:44.759057Z"
},
"id": "pG-ljrmcYp9Q"
},
@@ -1957,10 +1957,10 @@
"execution_count": 26,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:15.935084Z",
- "iopub.status.busy": "2024-01-10T06:19:15.934687Z",
- "iopub.status.idle": "2024-01-10T06:19:17.019541Z",
- "shell.execute_reply": "2024-01-10T06:19:17.018918Z"
+ "iopub.execute_input": "2024-01-10T15:04:44.762443Z",
+ "iopub.status.busy": "2024-01-10T15:04:44.762199Z",
+ "iopub.status.idle": "2024-01-10T15:04:45.836039Z",
+ "shell.execute_reply": "2024-01-10T15:04:45.835321Z"
},
"id": "wL3ngCnuLEWd"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb
index 7cb50be92..8180291e1 100644
--- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb
@@ -89,10 +89,10 @@
"id": "a3ddc95f",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:22.603434Z",
- "iopub.status.busy": "2024-01-10T06:19:22.602873Z",
- "iopub.status.idle": "2024-01-10T06:19:23.665537Z",
- "shell.execute_reply": "2024-01-10T06:19:23.664891Z"
+ "iopub.execute_input": "2024-01-10T15:04:50.783329Z",
+ "iopub.status.busy": "2024-01-10T15:04:50.783126Z",
+ "iopub.status.idle": "2024-01-10T15:04:51.826636Z",
+ "shell.execute_reply": "2024-01-10T15:04:51.825904Z"
},
"nbsphinx": "hidden"
},
@@ -102,7 +102,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -136,10 +136,10 @@
"id": "c4efd119",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:23.668685Z",
- "iopub.status.busy": "2024-01-10T06:19:23.668141Z",
- "iopub.status.idle": "2024-01-10T06:19:23.671557Z",
- "shell.execute_reply": "2024-01-10T06:19:23.671020Z"
+ "iopub.execute_input": "2024-01-10T15:04:51.829702Z",
+ "iopub.status.busy": "2024-01-10T15:04:51.829194Z",
+ "iopub.status.idle": "2024-01-10T15:04:51.832552Z",
+ "shell.execute_reply": "2024-01-10T15:04:51.832031Z"
}
},
"outputs": [],
@@ -264,10 +264,10 @@
"id": "c37c0a69",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:23.674086Z",
- "iopub.status.busy": "2024-01-10T06:19:23.673671Z",
- "iopub.status.idle": "2024-01-10T06:19:23.682706Z",
- "shell.execute_reply": "2024-01-10T06:19:23.682135Z"
+ "iopub.execute_input": "2024-01-10T15:04:51.835101Z",
+ "iopub.status.busy": "2024-01-10T15:04:51.834739Z",
+ "iopub.status.idle": "2024-01-10T15:04:51.843086Z",
+ "shell.execute_reply": "2024-01-10T15:04:51.842467Z"
},
"nbsphinx": "hidden"
},
@@ -351,10 +351,10 @@
"id": "99f69523",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:23.685247Z",
- "iopub.status.busy": "2024-01-10T06:19:23.684914Z",
- "iopub.status.idle": "2024-01-10T06:19:23.734906Z",
- "shell.execute_reply": "2024-01-10T06:19:23.734183Z"
+ "iopub.execute_input": "2024-01-10T15:04:51.845548Z",
+ "iopub.status.busy": "2024-01-10T15:04:51.845151Z",
+ "iopub.status.idle": "2024-01-10T15:04:51.893885Z",
+ "shell.execute_reply": "2024-01-10T15:04:51.893321Z"
}
},
"outputs": [],
@@ -380,10 +380,10 @@
"id": "8f241c16",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:23.737938Z",
- "iopub.status.busy": "2024-01-10T06:19:23.737532Z",
- "iopub.status.idle": "2024-01-10T06:19:23.757560Z",
- "shell.execute_reply": "2024-01-10T06:19:23.757012Z"
+ "iopub.execute_input": "2024-01-10T15:04:51.896881Z",
+ "iopub.status.busy": "2024-01-10T15:04:51.896499Z",
+ "iopub.status.idle": "2024-01-10T15:04:51.916606Z",
+ "shell.execute_reply": "2024-01-10T15:04:51.915938Z"
}
},
"outputs": [
@@ -598,10 +598,10 @@
"id": "4f0819ba",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:23.760066Z",
- "iopub.status.busy": "2024-01-10T06:19:23.759679Z",
- "iopub.status.idle": "2024-01-10T06:19:23.763929Z",
- "shell.execute_reply": "2024-01-10T06:19:23.763417Z"
+ "iopub.execute_input": "2024-01-10T15:04:51.919078Z",
+ "iopub.status.busy": "2024-01-10T15:04:51.918771Z",
+ "iopub.status.idle": "2024-01-10T15:04:51.922997Z",
+ "shell.execute_reply": "2024-01-10T15:04:51.922404Z"
}
},
"outputs": [
@@ -672,10 +672,10 @@
"id": "d009f347",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:23.766305Z",
- "iopub.status.busy": "2024-01-10T06:19:23.766011Z",
- "iopub.status.idle": "2024-01-10T06:19:23.794834Z",
- "shell.execute_reply": "2024-01-10T06:19:23.794302Z"
+ "iopub.execute_input": "2024-01-10T15:04:51.925555Z",
+ "iopub.status.busy": "2024-01-10T15:04:51.925142Z",
+ "iopub.status.idle": "2024-01-10T15:04:51.952755Z",
+ "shell.execute_reply": "2024-01-10T15:04:51.952205Z"
}
},
"outputs": [],
@@ -699,10 +699,10 @@
"id": "cbd1e415",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:23.797382Z",
- "iopub.status.busy": "2024-01-10T06:19:23.796952Z",
- "iopub.status.idle": "2024-01-10T06:19:23.825002Z",
- "shell.execute_reply": "2024-01-10T06:19:23.824392Z"
+ "iopub.execute_input": "2024-01-10T15:04:51.955378Z",
+ "iopub.status.busy": "2024-01-10T15:04:51.955021Z",
+ "iopub.status.idle": "2024-01-10T15:04:51.982908Z",
+ "shell.execute_reply": "2024-01-10T15:04:51.982212Z"
}
},
"outputs": [],
@@ -739,10 +739,10 @@
"id": "6ca92617",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:23.827645Z",
- "iopub.status.busy": "2024-01-10T06:19:23.827204Z",
- "iopub.status.idle": "2024-01-10T06:19:25.187592Z",
- "shell.execute_reply": "2024-01-10T06:19:25.186950Z"
+ "iopub.execute_input": "2024-01-10T15:04:51.985756Z",
+ "iopub.status.busy": "2024-01-10T15:04:51.985347Z",
+ "iopub.status.idle": "2024-01-10T15:04:53.313475Z",
+ "shell.execute_reply": "2024-01-10T15:04:53.312740Z"
}
},
"outputs": [],
@@ -772,10 +772,10 @@
"id": "bf945113",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:25.190794Z",
- "iopub.status.busy": "2024-01-10T06:19:25.190198Z",
- "iopub.status.idle": "2024-01-10T06:19:25.197978Z",
- "shell.execute_reply": "2024-01-10T06:19:25.197424Z"
+ "iopub.execute_input": "2024-01-10T15:04:53.316625Z",
+ "iopub.status.busy": "2024-01-10T15:04:53.316007Z",
+ "iopub.status.idle": "2024-01-10T15:04:53.323561Z",
+ "shell.execute_reply": "2024-01-10T15:04:53.322982Z"
},
"scrolled": true
},
@@ -886,10 +886,10 @@
"id": "14251ee0",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:25.200289Z",
- "iopub.status.busy": "2024-01-10T06:19:25.200085Z",
- "iopub.status.idle": "2024-01-10T06:19:25.214416Z",
- "shell.execute_reply": "2024-01-10T06:19:25.213870Z"
+ "iopub.execute_input": "2024-01-10T15:04:53.325875Z",
+ "iopub.status.busy": "2024-01-10T15:04:53.325667Z",
+ "iopub.status.idle": "2024-01-10T15:04:53.340152Z",
+ "shell.execute_reply": "2024-01-10T15:04:53.339548Z"
}
},
"outputs": [
@@ -1139,10 +1139,10 @@
"id": "efe16638",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:25.216891Z",
- "iopub.status.busy": "2024-01-10T06:19:25.216535Z",
- "iopub.status.idle": "2024-01-10T06:19:25.223577Z",
- "shell.execute_reply": "2024-01-10T06:19:25.223059Z"
+ "iopub.execute_input": "2024-01-10T15:04:53.342762Z",
+ "iopub.status.busy": "2024-01-10T15:04:53.342417Z",
+ "iopub.status.idle": "2024-01-10T15:04:53.349564Z",
+ "shell.execute_reply": "2024-01-10T15:04:53.349025Z"
},
"scrolled": true
},
@@ -1316,10 +1316,10 @@
"id": "abd0fb0b",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:25.225967Z",
- "iopub.status.busy": "2024-01-10T06:19:25.225725Z",
- "iopub.status.idle": "2024-01-10T06:19:25.228713Z",
- "shell.execute_reply": "2024-01-10T06:19:25.228156Z"
+ "iopub.execute_input": "2024-01-10T15:04:53.352271Z",
+ "iopub.status.busy": "2024-01-10T15:04:53.351762Z",
+ "iopub.status.idle": "2024-01-10T15:04:53.355076Z",
+ "shell.execute_reply": "2024-01-10T15:04:53.354457Z"
}
},
"outputs": [],
@@ -1341,10 +1341,10 @@
"id": "cdf061df",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:25.231173Z",
- "iopub.status.busy": "2024-01-10T06:19:25.230771Z",
- "iopub.status.idle": "2024-01-10T06:19:25.234695Z",
- "shell.execute_reply": "2024-01-10T06:19:25.234060Z"
+ "iopub.execute_input": "2024-01-10T15:04:53.357254Z",
+ "iopub.status.busy": "2024-01-10T15:04:53.357058Z",
+ "iopub.status.idle": "2024-01-10T15:04:53.361396Z",
+ "shell.execute_reply": "2024-01-10T15:04:53.360858Z"
},
"scrolled": true
},
@@ -1396,10 +1396,10 @@
"id": "08949890",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:25.237168Z",
- "iopub.status.busy": "2024-01-10T06:19:25.236804Z",
- "iopub.status.idle": "2024-01-10T06:19:25.239581Z",
- "shell.execute_reply": "2024-01-10T06:19:25.239043Z"
+ "iopub.execute_input": "2024-01-10T15:04:53.363765Z",
+ "iopub.status.busy": "2024-01-10T15:04:53.363566Z",
+ "iopub.status.idle": "2024-01-10T15:04:53.366344Z",
+ "shell.execute_reply": "2024-01-10T15:04:53.365793Z"
}
},
"outputs": [],
@@ -1423,10 +1423,10 @@
"id": "6948b073",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:25.241971Z",
- "iopub.status.busy": "2024-01-10T06:19:25.241612Z",
- "iopub.status.idle": "2024-01-10T06:19:25.246328Z",
- "shell.execute_reply": "2024-01-10T06:19:25.245820Z"
+ "iopub.execute_input": "2024-01-10T15:04:53.368515Z",
+ "iopub.status.busy": "2024-01-10T15:04:53.368321Z",
+ "iopub.status.idle": "2024-01-10T15:04:53.373186Z",
+ "shell.execute_reply": "2024-01-10T15:04:53.372649Z"
}
},
"outputs": [
@@ -1481,10 +1481,10 @@
"id": "6f8e6914",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:25.248797Z",
- "iopub.status.busy": "2024-01-10T06:19:25.248447Z",
- "iopub.status.idle": "2024-01-10T06:19:25.282644Z",
- "shell.execute_reply": "2024-01-10T06:19:25.282066Z"
+ "iopub.execute_input": "2024-01-10T15:04:53.375385Z",
+ "iopub.status.busy": "2024-01-10T15:04:53.375190Z",
+ "iopub.status.idle": "2024-01-10T15:04:53.408376Z",
+ "shell.execute_reply": "2024-01-10T15:04:53.407826Z"
}
},
"outputs": [],
@@ -1527,10 +1527,10 @@
"id": "b806d2ea",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:25.285678Z",
- "iopub.status.busy": "2024-01-10T06:19:25.285230Z",
- "iopub.status.idle": "2024-01-10T06:19:25.290437Z",
- "shell.execute_reply": "2024-01-10T06:19:25.289851Z"
+ "iopub.execute_input": "2024-01-10T15:04:53.410874Z",
+ "iopub.status.busy": "2024-01-10T15:04:53.410653Z",
+ "iopub.status.idle": "2024-01-10T15:04:53.415959Z",
+ "shell.execute_reply": "2024-01-10T15:04:53.415316Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb
index 7b346383f..883facccf 100644
--- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb
@@ -63,10 +63,10 @@
"id": "7383d024-8273-4039-bccd-aab3020d331f",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:30.967895Z",
- "iopub.status.busy": "2024-01-10T06:19:30.967699Z",
- "iopub.status.idle": "2024-01-10T06:19:32.111090Z",
- "shell.execute_reply": "2024-01-10T06:19:32.110423Z"
+ "iopub.execute_input": "2024-01-10T15:04:57.995421Z",
+ "iopub.status.busy": "2024-01-10T15:04:57.994869Z",
+ "iopub.status.idle": "2024-01-10T15:04:59.063658Z",
+ "shell.execute_reply": "2024-01-10T15:04:59.063044Z"
},
"nbsphinx": "hidden"
},
@@ -78,7 +78,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -104,10 +104,10 @@
"id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:32.114057Z",
- "iopub.status.busy": "2024-01-10T06:19:32.113591Z",
- "iopub.status.idle": "2024-01-10T06:19:32.424380Z",
- "shell.execute_reply": "2024-01-10T06:19:32.423712Z"
+ "iopub.execute_input": "2024-01-10T15:04:59.066519Z",
+ "iopub.status.busy": "2024-01-10T15:04:59.066032Z",
+ "iopub.status.idle": "2024-01-10T15:04:59.351331Z",
+ "shell.execute_reply": "2024-01-10T15:04:59.350714Z"
}
},
"outputs": [],
@@ -269,10 +269,10 @@
"id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:32.427902Z",
- "iopub.status.busy": "2024-01-10T06:19:32.427455Z",
- "iopub.status.idle": "2024-01-10T06:19:32.442273Z",
- "shell.execute_reply": "2024-01-10T06:19:32.441703Z"
+ "iopub.execute_input": "2024-01-10T15:04:59.354669Z",
+ "iopub.status.busy": "2024-01-10T15:04:59.353939Z",
+ "iopub.status.idle": "2024-01-10T15:04:59.368315Z",
+ "shell.execute_reply": "2024-01-10T15:04:59.367767Z"
},
"nbsphinx": "hidden"
},
@@ -408,10 +408,10 @@
"id": "dac65d3b-51e8-4682-b829-beab610b56d6",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:32.445046Z",
- "iopub.status.busy": "2024-01-10T06:19:32.444637Z",
- "iopub.status.idle": "2024-01-10T06:19:35.158086Z",
- "shell.execute_reply": "2024-01-10T06:19:35.157420Z"
+ "iopub.execute_input": "2024-01-10T15:04:59.371031Z",
+ "iopub.status.busy": "2024-01-10T15:04:59.370527Z",
+ "iopub.status.idle": "2024-01-10T15:05:02.017065Z",
+ "shell.execute_reply": "2024-01-10T15:05:02.016392Z"
}
},
"outputs": [
@@ -453,10 +453,10 @@
"id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:35.160758Z",
- "iopub.status.busy": "2024-01-10T06:19:35.160383Z",
- "iopub.status.idle": "2024-01-10T06:19:36.735870Z",
- "shell.execute_reply": "2024-01-10T06:19:36.735258Z"
+ "iopub.execute_input": "2024-01-10T15:05:02.019842Z",
+ "iopub.status.busy": "2024-01-10T15:05:02.019353Z",
+ "iopub.status.idle": "2024-01-10T15:05:03.569470Z",
+ "shell.execute_reply": "2024-01-10T15:05:03.568744Z"
}
},
"outputs": [],
@@ -498,10 +498,10 @@
"id": "ac1a60df",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:36.738886Z",
- "iopub.status.busy": "2024-01-10T06:19:36.738441Z",
- "iopub.status.idle": "2024-01-10T06:19:36.743531Z",
- "shell.execute_reply": "2024-01-10T06:19:36.742994Z"
+ "iopub.execute_input": "2024-01-10T15:05:03.572548Z",
+ "iopub.status.busy": "2024-01-10T15:05:03.572275Z",
+ "iopub.status.idle": "2024-01-10T15:05:03.577674Z",
+ "shell.execute_reply": "2024-01-10T15:05:03.577121Z"
}
},
"outputs": [
@@ -543,10 +543,10 @@
"id": "d09115b6-ad44-474f-9c8a-85a459586439",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:36.745916Z",
- "iopub.status.busy": "2024-01-10T06:19:36.745544Z",
- "iopub.status.idle": "2024-01-10T06:19:38.110520Z",
- "shell.execute_reply": "2024-01-10T06:19:38.109746Z"
+ "iopub.execute_input": "2024-01-10T15:05:03.579952Z",
+ "iopub.status.busy": "2024-01-10T15:05:03.579756Z",
+ "iopub.status.idle": "2024-01-10T15:05:04.913128Z",
+ "shell.execute_reply": "2024-01-10T15:05:04.912391Z"
}
},
"outputs": [
@@ -584,10 +584,10 @@
"id": "fffa88f6-84d7-45fe-8214-0e22079a06d1",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:38.113635Z",
- "iopub.status.busy": "2024-01-10T06:19:38.112981Z",
- "iopub.status.idle": "2024-01-10T06:19:40.958055Z",
- "shell.execute_reply": "2024-01-10T06:19:40.957384Z"
+ "iopub.execute_input": "2024-01-10T15:05:04.916164Z",
+ "iopub.status.busy": "2024-01-10T15:05:04.915585Z",
+ "iopub.status.idle": "2024-01-10T15:05:07.716474Z",
+ "shell.execute_reply": "2024-01-10T15:05:07.715777Z"
}
},
"outputs": [
@@ -622,10 +622,10 @@
"id": "c1198575",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:40.960715Z",
- "iopub.status.busy": "2024-01-10T06:19:40.960355Z",
- "iopub.status.idle": "2024-01-10T06:19:40.965359Z",
- "shell.execute_reply": "2024-01-10T06:19:40.964831Z"
+ "iopub.execute_input": "2024-01-10T15:05:07.719265Z",
+ "iopub.status.busy": "2024-01-10T15:05:07.718870Z",
+ "iopub.status.idle": "2024-01-10T15:05:07.723863Z",
+ "shell.execute_reply": "2024-01-10T15:05:07.723278Z"
}
},
"outputs": [
@@ -662,10 +662,10 @@
"id": "49161b19-7625-4fb7-add9-607d91a7eca1",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:40.967914Z",
- "iopub.status.busy": "2024-01-10T06:19:40.967542Z",
- "iopub.status.idle": "2024-01-10T06:19:40.971564Z",
- "shell.execute_reply": "2024-01-10T06:19:40.971006Z"
+ "iopub.execute_input": "2024-01-10T15:05:07.726393Z",
+ "iopub.status.busy": "2024-01-10T15:05:07.725965Z",
+ "iopub.status.idle": "2024-01-10T15:05:07.730416Z",
+ "shell.execute_reply": "2024-01-10T15:05:07.729818Z"
}
},
"outputs": [],
@@ -688,10 +688,10 @@
"id": "d1a2c008",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:40.973986Z",
- "iopub.status.busy": "2024-01-10T06:19:40.973628Z",
- "iopub.status.idle": "2024-01-10T06:19:40.976974Z",
- "shell.execute_reply": "2024-01-10T06:19:40.976437Z"
+ "iopub.execute_input": "2024-01-10T15:05:07.733070Z",
+ "iopub.status.busy": "2024-01-10T15:05:07.732646Z",
+ "iopub.status.idle": "2024-01-10T15:05:07.736463Z",
+ "shell.execute_reply": "2024-01-10T15:05:07.735937Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb
index c7c6f8441..0edcfe438 100644
--- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb
@@ -70,10 +70,10 @@
"id": "0ba0dc70",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:45.560642Z",
- "iopub.status.busy": "2024-01-10T06:19:45.560184Z",
- "iopub.status.idle": "2024-01-10T06:19:46.672378Z",
- "shell.execute_reply": "2024-01-10T06:19:46.671781Z"
+ "iopub.execute_input": "2024-01-10T15:05:12.798585Z",
+ "iopub.status.busy": "2024-01-10T15:05:12.798073Z",
+ "iopub.status.idle": "2024-01-10T15:05:13.866039Z",
+ "shell.execute_reply": "2024-01-10T15:05:13.865443Z"
},
"nbsphinx": "hidden"
},
@@ -83,7 +83,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -109,10 +109,10 @@
"id": "c90449c8",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:46.675636Z",
- "iopub.status.busy": "2024-01-10T06:19:46.674959Z",
- "iopub.status.idle": "2024-01-10T06:19:48.039619Z",
- "shell.execute_reply": "2024-01-10T06:19:48.038865Z"
+ "iopub.execute_input": "2024-01-10T15:05:13.868940Z",
+ "iopub.status.busy": "2024-01-10T15:05:13.868454Z",
+ "iopub.status.idle": "2024-01-10T15:05:14.949563Z",
+ "shell.execute_reply": "2024-01-10T15:05:14.948721Z"
}
},
"outputs": [],
@@ -130,10 +130,10 @@
"id": "df8be4c6",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:48.042749Z",
- "iopub.status.busy": "2024-01-10T06:19:48.042298Z",
- "iopub.status.idle": "2024-01-10T06:19:48.045718Z",
- "shell.execute_reply": "2024-01-10T06:19:48.045190Z"
+ "iopub.execute_input": "2024-01-10T15:05:14.952677Z",
+ "iopub.status.busy": "2024-01-10T15:05:14.952191Z",
+ "iopub.status.idle": "2024-01-10T15:05:14.955616Z",
+ "shell.execute_reply": "2024-01-10T15:05:14.955008Z"
}
},
"outputs": [],
@@ -165,10 +165,10 @@
"id": "2e9ffd6f",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:48.048076Z",
- "iopub.status.busy": "2024-01-10T06:19:48.047707Z",
- "iopub.status.idle": "2024-01-10T06:19:48.053658Z",
- "shell.execute_reply": "2024-01-10T06:19:48.053131Z"
+ "iopub.execute_input": "2024-01-10T15:05:14.957997Z",
+ "iopub.status.busy": "2024-01-10T15:05:14.957548Z",
+ "iopub.status.idle": "2024-01-10T15:05:14.963154Z",
+ "shell.execute_reply": "2024-01-10T15:05:14.962555Z"
}
},
"outputs": [],
@@ -194,10 +194,10 @@
"id": "56705562",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:48.056002Z",
- "iopub.status.busy": "2024-01-10T06:19:48.055627Z",
- "iopub.status.idle": "2024-01-10T06:19:48.667461Z",
- "shell.execute_reply": "2024-01-10T06:19:48.666800Z"
+ "iopub.execute_input": "2024-01-10T15:05:14.965462Z",
+ "iopub.status.busy": "2024-01-10T15:05:14.965123Z",
+ "iopub.status.idle": "2024-01-10T15:05:15.556137Z",
+ "shell.execute_reply": "2024-01-10T15:05:15.555454Z"
},
"scrolled": true
},
@@ -237,10 +237,10 @@
"id": "b08144d7",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:48.670652Z",
- "iopub.status.busy": "2024-01-10T06:19:48.670174Z",
- "iopub.status.idle": "2024-01-10T06:19:48.676467Z",
- "shell.execute_reply": "2024-01-10T06:19:48.675874Z"
+ "iopub.execute_input": "2024-01-10T15:05:15.558867Z",
+ "iopub.status.busy": "2024-01-10T15:05:15.558399Z",
+ "iopub.status.idle": "2024-01-10T15:05:15.564398Z",
+ "shell.execute_reply": "2024-01-10T15:05:15.563798Z"
}
},
"outputs": [
@@ -492,10 +492,10 @@
"id": "3d70bec6",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:48.678861Z",
- "iopub.status.busy": "2024-01-10T06:19:48.678516Z",
- "iopub.status.idle": "2024-01-10T06:19:48.682696Z",
- "shell.execute_reply": "2024-01-10T06:19:48.682085Z"
+ "iopub.execute_input": "2024-01-10T15:05:15.566741Z",
+ "iopub.status.busy": "2024-01-10T15:05:15.566311Z",
+ "iopub.status.idle": "2024-01-10T15:05:15.570332Z",
+ "shell.execute_reply": "2024-01-10T15:05:15.569792Z"
}
},
"outputs": [
@@ -552,10 +552,10 @@
"id": "4caa635d",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:48.685095Z",
- "iopub.status.busy": "2024-01-10T06:19:48.684751Z",
- "iopub.status.idle": "2024-01-10T06:19:49.298576Z",
- "shell.execute_reply": "2024-01-10T06:19:49.297851Z"
+ "iopub.execute_input": "2024-01-10T15:05:15.572792Z",
+ "iopub.status.busy": "2024-01-10T15:05:15.572353Z",
+ "iopub.status.idle": "2024-01-10T15:05:16.202060Z",
+ "shell.execute_reply": "2024-01-10T15:05:16.201337Z"
}
},
"outputs": [
@@ -611,10 +611,10 @@
"id": "a9b4c590",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:49.301316Z",
- "iopub.status.busy": "2024-01-10T06:19:49.301086Z",
- "iopub.status.idle": "2024-01-10T06:19:49.403290Z",
- "shell.execute_reply": "2024-01-10T06:19:49.402577Z"
+ "iopub.execute_input": "2024-01-10T15:05:16.204642Z",
+ "iopub.status.busy": "2024-01-10T15:05:16.204383Z",
+ "iopub.status.idle": "2024-01-10T15:05:16.306469Z",
+ "shell.execute_reply": "2024-01-10T15:05:16.305762Z"
}
},
"outputs": [
@@ -655,10 +655,10 @@
"id": "ffd9ebcc",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:49.406087Z",
- "iopub.status.busy": "2024-01-10T06:19:49.405678Z",
- "iopub.status.idle": "2024-01-10T06:19:49.410408Z",
- "shell.execute_reply": "2024-01-10T06:19:49.409813Z"
+ "iopub.execute_input": "2024-01-10T15:05:16.309130Z",
+ "iopub.status.busy": "2024-01-10T15:05:16.308732Z",
+ "iopub.status.idle": "2024-01-10T15:05:16.313357Z",
+ "shell.execute_reply": "2024-01-10T15:05:16.312853Z"
}
},
"outputs": [
@@ -695,10 +695,10 @@
"id": "4dd46d67",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:49.412718Z",
- "iopub.status.busy": "2024-01-10T06:19:49.412513Z",
- "iopub.status.idle": "2024-01-10T06:19:49.802789Z",
- "shell.execute_reply": "2024-01-10T06:19:49.802086Z"
+ "iopub.execute_input": "2024-01-10T15:05:16.315806Z",
+ "iopub.status.busy": "2024-01-10T15:05:16.315435Z",
+ "iopub.status.idle": "2024-01-10T15:05:16.693878Z",
+ "shell.execute_reply": "2024-01-10T15:05:16.693255Z"
}
},
"outputs": [
@@ -757,10 +757,10 @@
"id": "ceec2394",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:49.805807Z",
- "iopub.status.busy": "2024-01-10T06:19:49.805357Z",
- "iopub.status.idle": "2024-01-10T06:19:50.143112Z",
- "shell.execute_reply": "2024-01-10T06:19:50.142432Z"
+ "iopub.execute_input": "2024-01-10T15:05:16.696815Z",
+ "iopub.status.busy": "2024-01-10T15:05:16.696424Z",
+ "iopub.status.idle": "2024-01-10T15:05:17.035024Z",
+ "shell.execute_reply": "2024-01-10T15:05:17.034337Z"
}
},
"outputs": [
@@ -807,10 +807,10 @@
"id": "94f82b0d",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:50.146573Z",
- "iopub.status.busy": "2024-01-10T06:19:50.146168Z",
- "iopub.status.idle": "2024-01-10T06:19:50.502588Z",
- "shell.execute_reply": "2024-01-10T06:19:50.501862Z"
+ "iopub.execute_input": "2024-01-10T15:05:17.037837Z",
+ "iopub.status.busy": "2024-01-10T15:05:17.037417Z",
+ "iopub.status.idle": "2024-01-10T15:05:17.422882Z",
+ "shell.execute_reply": "2024-01-10T15:05:17.422145Z"
}
},
"outputs": [
@@ -857,10 +857,10 @@
"id": "1ea18c5d",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:50.506244Z",
- "iopub.status.busy": "2024-01-10T06:19:50.505804Z",
- "iopub.status.idle": "2024-01-10T06:19:50.969893Z",
- "shell.execute_reply": "2024-01-10T06:19:50.969270Z"
+ "iopub.execute_input": "2024-01-10T15:05:17.426253Z",
+ "iopub.status.busy": "2024-01-10T15:05:17.426038Z",
+ "iopub.status.idle": "2024-01-10T15:05:17.886876Z",
+ "shell.execute_reply": "2024-01-10T15:05:17.886152Z"
}
},
"outputs": [
@@ -920,10 +920,10 @@
"id": "7e770d23",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:50.974645Z",
- "iopub.status.busy": "2024-01-10T06:19:50.974221Z",
- "iopub.status.idle": "2024-01-10T06:19:51.430649Z",
- "shell.execute_reply": "2024-01-10T06:19:51.429876Z"
+ "iopub.execute_input": "2024-01-10T15:05:17.891350Z",
+ "iopub.status.busy": "2024-01-10T15:05:17.890881Z",
+ "iopub.status.idle": "2024-01-10T15:05:18.343030Z",
+ "shell.execute_reply": "2024-01-10T15:05:18.342340Z"
}
},
"outputs": [
@@ -966,10 +966,10 @@
"id": "57e84a27",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:51.434311Z",
- "iopub.status.busy": "2024-01-10T06:19:51.433913Z",
- "iopub.status.idle": "2024-01-10T06:19:51.777065Z",
- "shell.execute_reply": "2024-01-10T06:19:51.776398Z"
+ "iopub.execute_input": "2024-01-10T15:05:18.346622Z",
+ "iopub.status.busy": "2024-01-10T15:05:18.346403Z",
+ "iopub.status.idle": "2024-01-10T15:05:18.651727Z",
+ "shell.execute_reply": "2024-01-10T15:05:18.651095Z"
}
},
"outputs": [
@@ -1012,10 +1012,10 @@
"id": "0302818a",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:51.779898Z",
- "iopub.status.busy": "2024-01-10T06:19:51.779494Z",
- "iopub.status.idle": "2024-01-10T06:19:51.980612Z",
- "shell.execute_reply": "2024-01-10T06:19:51.979893Z"
+ "iopub.execute_input": "2024-01-10T15:05:18.654753Z",
+ "iopub.status.busy": "2024-01-10T15:05:18.654541Z",
+ "iopub.status.idle": "2024-01-10T15:05:18.834710Z",
+ "shell.execute_reply": "2024-01-10T15:05:18.834079Z"
}
},
"outputs": [
@@ -1050,10 +1050,10 @@
"id": "8ce74938",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:51.983380Z",
- "iopub.status.busy": "2024-01-10T06:19:51.982885Z",
- "iopub.status.idle": "2024-01-10T06:19:51.986852Z",
- "shell.execute_reply": "2024-01-10T06:19:51.986244Z"
+ "iopub.execute_input": "2024-01-10T15:05:18.837502Z",
+ "iopub.status.busy": "2024-01-10T15:05:18.837116Z",
+ "iopub.status.idle": "2024-01-10T15:05:18.840846Z",
+ "shell.execute_reply": "2024-01-10T15:05:18.840288Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb
index 7da4b0e12..b7951f2ed 100644
--- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb
@@ -109,10 +109,10 @@
"id": "2bbebfc8",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:54.392516Z",
- "iopub.status.busy": "2024-01-10T06:19:54.392326Z",
- "iopub.status.idle": "2024-01-10T06:19:56.392552Z",
- "shell.execute_reply": "2024-01-10T06:19:56.391830Z"
+ "iopub.execute_input": "2024-01-10T15:05:21.209538Z",
+ "iopub.status.busy": "2024-01-10T15:05:21.209083Z",
+ "iopub.status.idle": "2024-01-10T15:05:23.168339Z",
+ "shell.execute_reply": "2024-01-10T15:05:23.167738Z"
},
"nbsphinx": "hidden"
},
@@ -125,7 +125,7 @@
"dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -159,10 +159,10 @@
"id": "4396f544",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:56.395661Z",
- "iopub.status.busy": "2024-01-10T06:19:56.395318Z",
- "iopub.status.idle": "2024-01-10T06:19:56.729764Z",
- "shell.execute_reply": "2024-01-10T06:19:56.729033Z"
+ "iopub.execute_input": "2024-01-10T15:05:23.171269Z",
+ "iopub.status.busy": "2024-01-10T15:05:23.170786Z",
+ "iopub.status.idle": "2024-01-10T15:05:23.484028Z",
+ "shell.execute_reply": "2024-01-10T15:05:23.483358Z"
}
},
"outputs": [],
@@ -188,10 +188,10 @@
"id": "3792f82e",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:56.732778Z",
- "iopub.status.busy": "2024-01-10T06:19:56.732256Z",
- "iopub.status.idle": "2024-01-10T06:19:56.736298Z",
- "shell.execute_reply": "2024-01-10T06:19:56.735811Z"
+ "iopub.execute_input": "2024-01-10T15:05:23.486930Z",
+ "iopub.status.busy": "2024-01-10T15:05:23.486490Z",
+ "iopub.status.idle": "2024-01-10T15:05:23.490918Z",
+ "shell.execute_reply": "2024-01-10T15:05:23.490318Z"
},
"nbsphinx": "hidden"
},
@@ -225,10 +225,10 @@
"id": "fd853a54",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:19:56.738602Z",
- "iopub.status.busy": "2024-01-10T06:19:56.738240Z",
- "iopub.status.idle": "2024-01-10T06:20:01.246797Z",
- "shell.execute_reply": "2024-01-10T06:20:01.246106Z"
+ "iopub.execute_input": "2024-01-10T15:05:23.493502Z",
+ "iopub.status.busy": "2024-01-10T15:05:23.493138Z",
+ "iopub.status.idle": "2024-01-10T15:05:28.442075Z",
+ "shell.execute_reply": "2024-01-10T15:05:28.441402Z"
}
},
"outputs": [
@@ -242,7 +242,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "d9eb539b8c1f4f97a89e8db15123410e",
+ "model_id": "12b5dc69acf9453bb2a2322dbaea9e6c",
"version_major": 2,
"version_minor": 0
},
@@ -361,10 +361,10 @@
"id": "9b64e0aa",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:20:01.249671Z",
- "iopub.status.busy": "2024-01-10T06:20:01.249198Z",
- "iopub.status.idle": "2024-01-10T06:20:01.254431Z",
- "shell.execute_reply": "2024-01-10T06:20:01.253797Z"
+ "iopub.execute_input": "2024-01-10T15:05:28.444744Z",
+ "iopub.status.busy": "2024-01-10T15:05:28.444438Z",
+ "iopub.status.idle": "2024-01-10T15:05:28.449732Z",
+ "shell.execute_reply": "2024-01-10T15:05:28.449104Z"
},
"nbsphinx": "hidden"
},
@@ -415,10 +415,10 @@
"id": "a00aa3ed",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:20:01.256861Z",
- "iopub.status.busy": "2024-01-10T06:20:01.256438Z",
- "iopub.status.idle": "2024-01-10T06:20:01.804589Z",
- "shell.execute_reply": "2024-01-10T06:20:01.803886Z"
+ "iopub.execute_input": "2024-01-10T15:05:28.451896Z",
+ "iopub.status.busy": "2024-01-10T15:05:28.451699Z",
+ "iopub.status.idle": "2024-01-10T15:05:28.992331Z",
+ "shell.execute_reply": "2024-01-10T15:05:28.991675Z"
}
},
"outputs": [
@@ -451,10 +451,10 @@
"id": "41e5cb6b",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:20:01.807206Z",
- "iopub.status.busy": "2024-01-10T06:20:01.806947Z",
- "iopub.status.idle": "2024-01-10T06:20:02.469451Z",
- "shell.execute_reply": "2024-01-10T06:20:02.468760Z"
+ "iopub.execute_input": "2024-01-10T15:05:28.994883Z",
+ "iopub.status.busy": "2024-01-10T15:05:28.994563Z",
+ "iopub.status.idle": "2024-01-10T15:05:29.632591Z",
+ "shell.execute_reply": "2024-01-10T15:05:29.631923Z"
}
},
"outputs": [
@@ -492,10 +492,10 @@
"id": "1cf25354",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:20:02.472091Z",
- "iopub.status.busy": "2024-01-10T06:20:02.471875Z",
- "iopub.status.idle": "2024-01-10T06:20:02.475815Z",
- "shell.execute_reply": "2024-01-10T06:20:02.475238Z"
+ "iopub.execute_input": "2024-01-10T15:05:29.635020Z",
+ "iopub.status.busy": "2024-01-10T15:05:29.634812Z",
+ "iopub.status.idle": "2024-01-10T15:05:29.638498Z",
+ "shell.execute_reply": "2024-01-10T15:05:29.637971Z"
}
},
"outputs": [],
@@ -518,10 +518,10 @@
"id": "85a58d41",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:20:02.478426Z",
- "iopub.status.busy": "2024-01-10T06:20:02.478197Z",
- "iopub.status.idle": "2024-01-10T06:20:14.823323Z",
- "shell.execute_reply": "2024-01-10T06:20:14.822587Z"
+ "iopub.execute_input": "2024-01-10T15:05:29.640771Z",
+ "iopub.status.busy": "2024-01-10T15:05:29.640568Z",
+ "iopub.status.idle": "2024-01-10T15:05:41.708773Z",
+ "shell.execute_reply": "2024-01-10T15:05:41.708043Z"
}
},
"outputs": [
@@ -580,10 +580,10 @@
"id": "feb0f519",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:20:14.826047Z",
- "iopub.status.busy": "2024-01-10T06:20:14.825621Z",
- "iopub.status.idle": "2024-01-10T06:20:16.419516Z",
- "shell.execute_reply": "2024-01-10T06:20:16.418738Z"
+ "iopub.execute_input": "2024-01-10T15:05:41.711626Z",
+ "iopub.status.busy": "2024-01-10T15:05:41.711383Z",
+ "iopub.status.idle": "2024-01-10T15:05:43.253756Z",
+ "shell.execute_reply": "2024-01-10T15:05:43.253067Z"
}
},
"outputs": [
@@ -627,10 +627,10 @@
"id": "089d5860",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:20:16.422525Z",
- "iopub.status.busy": "2024-01-10T06:20:16.421993Z",
- "iopub.status.idle": "2024-01-10T06:20:16.690358Z",
- "shell.execute_reply": "2024-01-10T06:20:16.689659Z"
+ "iopub.execute_input": "2024-01-10T15:05:43.256773Z",
+ "iopub.status.busy": "2024-01-10T15:05:43.256277Z",
+ "iopub.status.idle": "2024-01-10T15:05:43.490070Z",
+ "shell.execute_reply": "2024-01-10T15:05:43.489306Z"
}
},
"outputs": [
@@ -666,10 +666,10 @@
"id": "78b1951c",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:20:16.694052Z",
- "iopub.status.busy": "2024-01-10T06:20:16.693495Z",
- "iopub.status.idle": "2024-01-10T06:20:17.376849Z",
- "shell.execute_reply": "2024-01-10T06:20:17.376222Z"
+ "iopub.execute_input": "2024-01-10T15:05:43.492964Z",
+ "iopub.status.busy": "2024-01-10T15:05:43.492754Z",
+ "iopub.status.idle": "2024-01-10T15:05:44.153715Z",
+ "shell.execute_reply": "2024-01-10T15:05:44.153035Z"
}
},
"outputs": [
@@ -719,10 +719,10 @@
"id": "e9dff81b",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:20:17.379909Z",
- "iopub.status.busy": "2024-01-10T06:20:17.379542Z",
- "iopub.status.idle": "2024-01-10T06:20:17.889849Z",
- "shell.execute_reply": "2024-01-10T06:20:17.889143Z"
+ "iopub.execute_input": "2024-01-10T15:05:44.156860Z",
+ "iopub.status.busy": "2024-01-10T15:05:44.156265Z",
+ "iopub.status.idle": "2024-01-10T15:05:44.600989Z",
+ "shell.execute_reply": "2024-01-10T15:05:44.600344Z"
}
},
"outputs": [
@@ -770,10 +770,10 @@
"id": "616769f8",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:20:17.892718Z",
- "iopub.status.busy": "2024-01-10T06:20:17.892281Z",
- "iopub.status.idle": "2024-01-10T06:20:18.146698Z",
- "shell.execute_reply": "2024-01-10T06:20:18.145918Z"
+ "iopub.execute_input": "2024-01-10T15:05:44.603532Z",
+ "iopub.status.busy": "2024-01-10T15:05:44.603285Z",
+ "iopub.status.idle": "2024-01-10T15:05:44.834017Z",
+ "shell.execute_reply": "2024-01-10T15:05:44.833363Z"
}
},
"outputs": [
@@ -829,10 +829,10 @@
"id": "40fed4ef",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:20:18.150320Z",
- "iopub.status.busy": "2024-01-10T06:20:18.149921Z",
- "iopub.status.idle": "2024-01-10T06:20:18.235461Z",
- "shell.execute_reply": "2024-01-10T06:20:18.234877Z"
+ "iopub.execute_input": "2024-01-10T15:05:44.836783Z",
+ "iopub.status.busy": "2024-01-10T15:05:44.836577Z",
+ "iopub.status.idle": "2024-01-10T15:05:44.906830Z",
+ "shell.execute_reply": "2024-01-10T15:05:44.906100Z"
}
},
"outputs": [],
@@ -853,10 +853,10 @@
"id": "89f9db72",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:20:18.238296Z",
- "iopub.status.busy": "2024-01-10T06:20:18.238059Z",
- "iopub.status.idle": "2024-01-10T06:20:56.606997Z",
- "shell.execute_reply": "2024-01-10T06:20:56.606212Z"
+ "iopub.execute_input": "2024-01-10T15:05:44.909479Z",
+ "iopub.status.busy": "2024-01-10T15:05:44.909272Z",
+ "iopub.status.idle": "2024-01-10T15:06:22.582521Z",
+ "shell.execute_reply": "2024-01-10T15:06:22.581741Z"
}
},
"outputs": [
@@ -893,10 +893,10 @@
"id": "874c885a",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:20:56.609877Z",
- "iopub.status.busy": "2024-01-10T06:20:56.609373Z",
- "iopub.status.idle": "2024-01-10T06:20:57.846657Z",
- "shell.execute_reply": "2024-01-10T06:20:57.845936Z"
+ "iopub.execute_input": "2024-01-10T15:06:22.585549Z",
+ "iopub.status.busy": "2024-01-10T15:06:22.585031Z",
+ "iopub.status.idle": "2024-01-10T15:06:23.781983Z",
+ "shell.execute_reply": "2024-01-10T15:06:23.781235Z"
}
},
"outputs": [
@@ -927,10 +927,10 @@
"id": "e110fc4b",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:20:57.850038Z",
- "iopub.status.busy": "2024-01-10T06:20:57.849349Z",
- "iopub.status.idle": "2024-01-10T06:20:58.037779Z",
- "shell.execute_reply": "2024-01-10T06:20:58.037164Z"
+ "iopub.execute_input": "2024-01-10T15:06:23.785275Z",
+ "iopub.status.busy": "2024-01-10T15:06:23.784715Z",
+ "iopub.status.idle": "2024-01-10T15:06:23.971240Z",
+ "shell.execute_reply": "2024-01-10T15:06:23.970521Z"
}
},
"outputs": [],
@@ -944,10 +944,10 @@
"id": "85b60cbf",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:20:58.040792Z",
- "iopub.status.busy": "2024-01-10T06:20:58.040310Z",
- "iopub.status.idle": "2024-01-10T06:20:58.043677Z",
- "shell.execute_reply": "2024-01-10T06:20:58.043170Z"
+ "iopub.execute_input": "2024-01-10T15:06:23.974385Z",
+ "iopub.status.busy": "2024-01-10T15:06:23.973877Z",
+ "iopub.status.idle": "2024-01-10T15:06:23.977333Z",
+ "shell.execute_reply": "2024-01-10T15:06:23.976741Z"
}
},
"outputs": [],
@@ -969,10 +969,10 @@
"id": "17f96fa6",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:20:58.045942Z",
- "iopub.status.busy": "2024-01-10T06:20:58.045737Z",
- "iopub.status.idle": "2024-01-10T06:20:58.054356Z",
- "shell.execute_reply": "2024-01-10T06:20:58.053867Z"
+ "iopub.execute_input": "2024-01-10T15:06:23.980026Z",
+ "iopub.status.busy": "2024-01-10T15:06:23.979554Z",
+ "iopub.status.idle": "2024-01-10T15:06:23.988254Z",
+ "shell.execute_reply": "2024-01-10T15:06:23.987626Z"
},
"nbsphinx": "hidden"
},
@@ -1017,38 +1017,29 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "327a08e1d5534ee99c966c84c3365801": {
+ "12b5dc69acf9453bb2a2322dbaea9e6c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "409c38572c3f42069bdd6f978250bae9": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_63007a6fc93b49709da9d544e853c969",
+ "IPY_MODEL_d7964db947004dd4847db06986c2782f",
+ "IPY_MODEL_7c7aa399fdf6477b9c5cd4ed997af3de"
+ ],
+ "layout": "IPY_MODEL_4c40bcb3b3dc4ef3b2ae47f5a41e9edb"
}
},
- "5424c6f35faa4960b53ddef1c4ec0405": {
+ "3c990076fa7e41c9b75fb0558cd2796a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1100,7 +1091,7 @@
"width": null
}
},
- "5ba665ca475147dd93b0e931cb42babc": {
+ "4c40bcb3b3dc4ef3b2ae47f5a41e9edb": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1152,7 +1143,7 @@
"width": null
}
},
- "6c1729328c1842ab8fbe77faf7094fc4": {
+ "57ce946020574bf0a08e97d7b957ddcc": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -1167,7 +1158,28 @@
"description_width": ""
}
},
- "831d732aa1314d0fb6bdef874bcd5787": {
+ "63007a6fc93b49709da9d544e853c969": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_74345e7936394989952187bbc936b1ea",
+ "placeholder": "",
+ "style": "IPY_MODEL_57ce946020574bf0a08e97d7b957ddcc",
+ "value": "100%"
+ }
+ },
+ "74345e7936394989952187bbc936b1ea": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1219,52 +1231,7 @@
"width": null
}
},
- "9f7917b60d274c8d9aff9ccbf9989105": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_5424c6f35faa4960b53ddef1c4ec0405",
- "placeholder": "",
- "style": "IPY_MODEL_409c38572c3f42069bdd6f978250bae9",
- "value": " 170498071/170498071 [00:01<00:00, 109601673.05it/s]"
- }
- },
- "b47353d08b504eda93deb2aba25e51a2": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_831d732aa1314d0fb6bdef874bcd5787",
- "max": 170498071.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_327a08e1d5534ee99c966c84c3365801",
- "value": 170498071.0
- }
- },
- "ceb5d255b6e1467bbf644bfe84de536e": {
+ "7c7aa399fdf6477b9c5cd4ed997af3de": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -1279,35 +1246,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_fcb1d9c928d4414fa8045d1040339642",
+ "layout": "IPY_MODEL_80ec456e29c04104985c3f1eb9345bbb",
"placeholder": "",
- "style": "IPY_MODEL_6c1729328c1842ab8fbe77faf7094fc4",
- "value": "100%"
+ "style": "IPY_MODEL_c5920de7f42947c2b7985c7a2976cf6d",
+ "value": " 170498071/170498071 [00:02<00:00, 77009113.30it/s]"
}
},
- "d9eb539b8c1f4f97a89e8db15123410e": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_ceb5d255b6e1467bbf644bfe84de536e",
- "IPY_MODEL_b47353d08b504eda93deb2aba25e51a2",
- "IPY_MODEL_9f7917b60d274c8d9aff9ccbf9989105"
- ],
- "layout": "IPY_MODEL_5ba665ca475147dd93b0e931cb42babc"
- }
- },
- "fcb1d9c928d4414fa8045d1040339642": {
+ "80ec456e29c04104985c3f1eb9345bbb": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -1358,6 +1303,61 @@
"visibility": null,
"width": null
}
+ },
+ "acf564a6e0f34550a5d77cb082e2e4a5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "c5920de7f42947c2b7985c7a2976cf6d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "d7964db947004dd4847db06986c2782f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_3c990076fa7e41c9b75fb0558cd2796a",
+ "max": 170498071.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_acf564a6e0f34550a5d77cb082e2e4a5",
+ "value": 170498071.0
+ }
}
},
"version_major": 2,
diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb
index e4f71e4a3..4a2dadcf3 100644
--- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb
@@ -94,10 +94,10 @@
"id": "2e1af7d8",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:21:03.429780Z",
- "iopub.status.busy": "2024-01-10T06:21:03.429318Z",
- "iopub.status.idle": "2024-01-10T06:21:04.536960Z",
- "shell.execute_reply": "2024-01-10T06:21:04.536343Z"
+ "iopub.execute_input": "2024-01-10T15:06:29.103769Z",
+ "iopub.status.busy": "2024-01-10T15:06:29.103575Z",
+ "iopub.status.idle": "2024-01-10T15:06:30.201917Z",
+ "shell.execute_reply": "2024-01-10T15:06:30.201295Z"
},
"nbsphinx": "hidden"
},
@@ -109,7 +109,7 @@
"dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -135,10 +135,10 @@
"id": "4fb10b8f",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:21:04.539950Z",
- "iopub.status.busy": "2024-01-10T06:21:04.539416Z",
- "iopub.status.idle": "2024-01-10T06:21:04.555703Z",
- "shell.execute_reply": "2024-01-10T06:21:04.555171Z"
+ "iopub.execute_input": "2024-01-10T15:06:30.204907Z",
+ "iopub.status.busy": "2024-01-10T15:06:30.204366Z",
+ "iopub.status.idle": "2024-01-10T15:06:30.220770Z",
+ "shell.execute_reply": "2024-01-10T15:06:30.220132Z"
}
},
"outputs": [],
@@ -157,10 +157,10 @@
"id": "284dc264",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:21:04.558355Z",
- "iopub.status.busy": "2024-01-10T06:21:04.557984Z",
- "iopub.status.idle": "2024-01-10T06:21:04.561236Z",
- "shell.execute_reply": "2024-01-10T06:21:04.560643Z"
+ "iopub.execute_input": "2024-01-10T15:06:30.223523Z",
+ "iopub.status.busy": "2024-01-10T15:06:30.223104Z",
+ "iopub.status.idle": "2024-01-10T15:06:30.226245Z",
+ "shell.execute_reply": "2024-01-10T15:06:30.225690Z"
},
"nbsphinx": "hidden"
},
@@ -191,10 +191,10 @@
"id": "0f7450db",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:21:04.563519Z",
- "iopub.status.busy": "2024-01-10T06:21:04.563180Z",
- "iopub.status.idle": "2024-01-10T06:21:04.709969Z",
- "shell.execute_reply": "2024-01-10T06:21:04.709340Z"
+ "iopub.execute_input": "2024-01-10T15:06:30.228543Z",
+ "iopub.status.busy": "2024-01-10T15:06:30.228257Z",
+ "iopub.status.idle": "2024-01-10T15:06:30.317626Z",
+ "shell.execute_reply": "2024-01-10T15:06:30.316982Z"
}
},
"outputs": [
@@ -367,10 +367,10 @@
"id": "55513fed",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:21:04.712608Z",
- "iopub.status.busy": "2024-01-10T06:21:04.712301Z",
- "iopub.status.idle": "2024-01-10T06:21:04.987624Z",
- "shell.execute_reply": "2024-01-10T06:21:04.986929Z"
+ "iopub.execute_input": "2024-01-10T15:06:30.320512Z",
+ "iopub.status.busy": "2024-01-10T15:06:30.319930Z",
+ "iopub.status.idle": "2024-01-10T15:06:30.587833Z",
+ "shell.execute_reply": "2024-01-10T15:06:30.587097Z"
},
"nbsphinx": "hidden"
},
@@ -410,10 +410,10 @@
"id": "df5a0f59",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:21:04.990511Z",
- "iopub.status.busy": "2024-01-10T06:21:04.990062Z",
- "iopub.status.idle": "2024-01-10T06:21:05.250260Z",
- "shell.execute_reply": "2024-01-10T06:21:05.249551Z"
+ "iopub.execute_input": "2024-01-10T15:06:30.590520Z",
+ "iopub.status.busy": "2024-01-10T15:06:30.590253Z",
+ "iopub.status.idle": "2024-01-10T15:06:30.846918Z",
+ "shell.execute_reply": "2024-01-10T15:06:30.846204Z"
}
},
"outputs": [
@@ -449,10 +449,10 @@
"id": "7af78a8a",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:21:05.252808Z",
- "iopub.status.busy": "2024-01-10T06:21:05.252554Z",
- "iopub.status.idle": "2024-01-10T06:21:05.257434Z",
- "shell.execute_reply": "2024-01-10T06:21:05.256897Z"
+ "iopub.execute_input": "2024-01-10T15:06:30.849576Z",
+ "iopub.status.busy": "2024-01-10T15:06:30.849180Z",
+ "iopub.status.idle": "2024-01-10T15:06:30.854014Z",
+ "shell.execute_reply": "2024-01-10T15:06:30.853474Z"
}
},
"outputs": [],
@@ -470,10 +470,10 @@
"id": "9556c624",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:21:05.259727Z",
- "iopub.status.busy": "2024-01-10T06:21:05.259513Z",
- "iopub.status.idle": "2024-01-10T06:21:05.266109Z",
- "shell.execute_reply": "2024-01-10T06:21:05.265624Z"
+ "iopub.execute_input": "2024-01-10T15:06:30.856453Z",
+ "iopub.status.busy": "2024-01-10T15:06:30.856086Z",
+ "iopub.status.idle": "2024-01-10T15:06:30.862321Z",
+ "shell.execute_reply": "2024-01-10T15:06:30.861851Z"
}
},
"outputs": [],
@@ -520,10 +520,10 @@
"id": "3c2f1ccc",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:21:05.268611Z",
- "iopub.status.busy": "2024-01-10T06:21:05.268134Z",
- "iopub.status.idle": "2024-01-10T06:21:05.271485Z",
- "shell.execute_reply": "2024-01-10T06:21:05.270856Z"
+ "iopub.execute_input": "2024-01-10T15:06:30.864795Z",
+ "iopub.status.busy": "2024-01-10T15:06:30.864430Z",
+ "iopub.status.idle": "2024-01-10T15:06:30.867161Z",
+ "shell.execute_reply": "2024-01-10T15:06:30.866611Z"
}
},
"outputs": [],
@@ -538,10 +538,10 @@
"id": "7e1b7860",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:21:05.273934Z",
- "iopub.status.busy": "2024-01-10T06:21:05.273375Z",
- "iopub.status.idle": "2024-01-10T06:21:15.493411Z",
- "shell.execute_reply": "2024-01-10T06:21:15.492743Z"
+ "iopub.execute_input": "2024-01-10T15:06:30.869425Z",
+ "iopub.status.busy": "2024-01-10T15:06:30.869055Z",
+ "iopub.status.idle": "2024-01-10T15:06:41.017037Z",
+ "shell.execute_reply": "2024-01-10T15:06:41.016307Z"
}
},
"outputs": [],
@@ -565,10 +565,10 @@
"id": "f407bd69",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:21:15.496814Z",
- "iopub.status.busy": "2024-01-10T06:21:15.496375Z",
- "iopub.status.idle": "2024-01-10T06:21:15.504366Z",
- "shell.execute_reply": "2024-01-10T06:21:15.503841Z"
+ "iopub.execute_input": "2024-01-10T15:06:41.020063Z",
+ "iopub.status.busy": "2024-01-10T15:06:41.019675Z",
+ "iopub.status.idle": "2024-01-10T15:06:41.027115Z",
+ "shell.execute_reply": "2024-01-10T15:06:41.026544Z"
}
},
"outputs": [
@@ -671,10 +671,10 @@
"id": "f7385336",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:21:15.506693Z",
- "iopub.status.busy": "2024-01-10T06:21:15.506461Z",
- "iopub.status.idle": "2024-01-10T06:21:15.510803Z",
- "shell.execute_reply": "2024-01-10T06:21:15.510172Z"
+ "iopub.execute_input": "2024-01-10T15:06:41.029405Z",
+ "iopub.status.busy": "2024-01-10T15:06:41.029205Z",
+ "iopub.status.idle": "2024-01-10T15:06:41.033215Z",
+ "shell.execute_reply": "2024-01-10T15:06:41.032594Z"
}
},
"outputs": [],
@@ -689,10 +689,10 @@
"id": "59fc3091",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:21:15.513231Z",
- "iopub.status.busy": "2024-01-10T06:21:15.512862Z",
- "iopub.status.idle": "2024-01-10T06:21:15.516362Z",
- "shell.execute_reply": "2024-01-10T06:21:15.515734Z"
+ "iopub.execute_input": "2024-01-10T15:06:41.035823Z",
+ "iopub.status.busy": "2024-01-10T15:06:41.035383Z",
+ "iopub.status.idle": "2024-01-10T15:06:41.039101Z",
+ "shell.execute_reply": "2024-01-10T15:06:41.038455Z"
}
},
"outputs": [
@@ -727,10 +727,10 @@
"id": "00949977",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:21:15.518807Z",
- "iopub.status.busy": "2024-01-10T06:21:15.518425Z",
- "iopub.status.idle": "2024-01-10T06:21:15.521733Z",
- "shell.execute_reply": "2024-01-10T06:21:15.521168Z"
+ "iopub.execute_input": "2024-01-10T15:06:41.041445Z",
+ "iopub.status.busy": "2024-01-10T15:06:41.041078Z",
+ "iopub.status.idle": "2024-01-10T15:06:41.044279Z",
+ "shell.execute_reply": "2024-01-10T15:06:41.043724Z"
}
},
"outputs": [],
@@ -749,10 +749,10 @@
"id": "b6c1ae3a",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:21:15.524184Z",
- "iopub.status.busy": "2024-01-10T06:21:15.523785Z",
- "iopub.status.idle": "2024-01-10T06:21:15.533773Z",
- "shell.execute_reply": "2024-01-10T06:21:15.532950Z"
+ "iopub.execute_input": "2024-01-10T15:06:41.046671Z",
+ "iopub.status.busy": "2024-01-10T15:06:41.046309Z",
+ "iopub.status.idle": "2024-01-10T15:06:41.054894Z",
+ "shell.execute_reply": "2024-01-10T15:06:41.054326Z"
}
},
"outputs": [
@@ -894,10 +894,10 @@
"id": "31c704e7",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:21:15.536364Z",
- "iopub.status.busy": "2024-01-10T06:21:15.536012Z",
- "iopub.status.idle": "2024-01-10T06:21:15.684972Z",
- "shell.execute_reply": "2024-01-10T06:21:15.684237Z"
+ "iopub.execute_input": "2024-01-10T15:06:41.057327Z",
+ "iopub.status.busy": "2024-01-10T15:06:41.056960Z",
+ "iopub.status.idle": "2024-01-10T15:06:41.205394Z",
+ "shell.execute_reply": "2024-01-10T15:06:41.204692Z"
}
},
"outputs": [
@@ -936,10 +936,10 @@
"id": "0bcc43db",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:21:15.688080Z",
- "iopub.status.busy": "2024-01-10T06:21:15.687659Z",
- "iopub.status.idle": "2024-01-10T06:21:15.819421Z",
- "shell.execute_reply": "2024-01-10T06:21:15.818612Z"
+ "iopub.execute_input": "2024-01-10T15:06:41.208175Z",
+ "iopub.status.busy": "2024-01-10T15:06:41.207750Z",
+ "iopub.status.idle": "2024-01-10T15:06:41.341273Z",
+ "shell.execute_reply": "2024-01-10T15:06:41.340668Z"
}
},
"outputs": [
@@ -995,10 +995,10 @@
"id": "7021bd68",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:21:15.822502Z",
- "iopub.status.busy": "2024-01-10T06:21:15.822274Z",
- "iopub.status.idle": "2024-01-10T06:21:16.418907Z",
- "shell.execute_reply": "2024-01-10T06:21:16.418233Z"
+ "iopub.execute_input": "2024-01-10T15:06:41.344029Z",
+ "iopub.status.busy": "2024-01-10T15:06:41.343669Z",
+ "iopub.status.idle": "2024-01-10T15:06:41.924486Z",
+ "shell.execute_reply": "2024-01-10T15:06:41.923868Z"
}
},
"outputs": [],
@@ -1014,10 +1014,10 @@
"id": "d49c990b",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:21:16.422520Z",
- "iopub.status.busy": "2024-01-10T06:21:16.421868Z",
- "iopub.status.idle": "2024-01-10T06:21:16.505313Z",
- "shell.execute_reply": "2024-01-10T06:21:16.504636Z"
+ "iopub.execute_input": "2024-01-10T15:06:41.927461Z",
+ "iopub.status.busy": "2024-01-10T15:06:41.927030Z",
+ "iopub.status.idle": "2024-01-10T15:06:42.019961Z",
+ "shell.execute_reply": "2024-01-10T15:06:42.019298Z"
}
},
"outputs": [
@@ -1056,10 +1056,10 @@
"id": "95531cda",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:21:16.508240Z",
- "iopub.status.busy": "2024-01-10T06:21:16.507734Z",
- "iopub.status.idle": "2024-01-10T06:21:16.517478Z",
- "shell.execute_reply": "2024-01-10T06:21:16.517004Z"
+ "iopub.execute_input": "2024-01-10T15:06:42.023210Z",
+ "iopub.status.busy": "2024-01-10T15:06:42.022968Z",
+ "iopub.status.idle": "2024-01-10T15:06:42.033293Z",
+ "shell.execute_reply": "2024-01-10T15:06:42.032670Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb
index 0b819b0e6..eece6be9f 100644
--- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb
@@ -61,10 +61,10 @@
"id": "ae8a08e0",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:21:21.347024Z",
- "iopub.status.busy": "2024-01-10T06:21:21.346437Z",
- "iopub.status.idle": "2024-01-10T06:21:23.189285Z",
- "shell.execute_reply": "2024-01-10T06:21:23.188541Z"
+ "iopub.execute_input": "2024-01-10T15:06:47.292158Z",
+ "iopub.status.busy": "2024-01-10T15:06:47.291962Z",
+ "iopub.status.idle": "2024-01-10T15:06:48.758411Z",
+ "shell.execute_reply": "2024-01-10T15:06:48.757602Z"
}
},
"outputs": [],
@@ -79,10 +79,10 @@
"id": "58fd4c55",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:21:23.192088Z",
- "iopub.status.busy": "2024-01-10T06:21:23.191880Z",
- "iopub.status.idle": "2024-01-10T06:22:22.377569Z",
- "shell.execute_reply": "2024-01-10T06:22:22.376808Z"
+ "iopub.execute_input": "2024-01-10T15:06:48.761354Z",
+ "iopub.status.busy": "2024-01-10T15:06:48.761148Z",
+ "iopub.status.idle": "2024-01-10T15:07:46.996636Z",
+ "shell.execute_reply": "2024-01-10T15:07:46.995933Z"
}
},
"outputs": [],
@@ -97,10 +97,10 @@
"id": "439b0305",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:22:22.380517Z",
- "iopub.status.busy": "2024-01-10T06:22:22.380259Z",
- "iopub.status.idle": "2024-01-10T06:22:23.450564Z",
- "shell.execute_reply": "2024-01-10T06:22:23.449819Z"
+ "iopub.execute_input": "2024-01-10T15:07:46.999673Z",
+ "iopub.status.busy": "2024-01-10T15:07:46.999269Z",
+ "iopub.status.idle": "2024-01-10T15:07:48.026262Z",
+ "shell.execute_reply": "2024-01-10T15:07:48.025653Z"
},
"nbsphinx": "hidden"
},
@@ -111,7 +111,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -137,10 +137,10 @@
"id": "a1349304",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:22:23.453830Z",
- "iopub.status.busy": "2024-01-10T06:22:23.453429Z",
- "iopub.status.idle": "2024-01-10T06:22:23.457253Z",
- "shell.execute_reply": "2024-01-10T06:22:23.456696Z"
+ "iopub.execute_input": "2024-01-10T15:07:48.029294Z",
+ "iopub.status.busy": "2024-01-10T15:07:48.028808Z",
+ "iopub.status.idle": "2024-01-10T15:07:48.032207Z",
+ "shell.execute_reply": "2024-01-10T15:07:48.031670Z"
}
},
"outputs": [],
@@ -203,10 +203,10 @@
"id": "07dc5678",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:22:23.459910Z",
- "iopub.status.busy": "2024-01-10T06:22:23.459513Z",
- "iopub.status.idle": "2024-01-10T06:22:23.463699Z",
- "shell.execute_reply": "2024-01-10T06:22:23.463158Z"
+ "iopub.execute_input": "2024-01-10T15:07:48.034648Z",
+ "iopub.status.busy": "2024-01-10T15:07:48.034350Z",
+ "iopub.status.idle": "2024-01-10T15:07:48.038691Z",
+ "shell.execute_reply": "2024-01-10T15:07:48.038183Z"
}
},
"outputs": [
@@ -247,10 +247,10 @@
"id": "25ebe22a",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:22:23.466289Z",
- "iopub.status.busy": "2024-01-10T06:22:23.465906Z",
- "iopub.status.idle": "2024-01-10T06:22:23.469976Z",
- "shell.execute_reply": "2024-01-10T06:22:23.469453Z"
+ "iopub.execute_input": "2024-01-10T15:07:48.041106Z",
+ "iopub.status.busy": "2024-01-10T15:07:48.040752Z",
+ "iopub.status.idle": "2024-01-10T15:07:48.044635Z",
+ "shell.execute_reply": "2024-01-10T15:07:48.044122Z"
}
},
"outputs": [
@@ -290,10 +290,10 @@
"id": "3faedea9",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:22:23.472455Z",
- "iopub.status.busy": "2024-01-10T06:22:23.472097Z",
- "iopub.status.idle": "2024-01-10T06:22:23.475073Z",
- "shell.execute_reply": "2024-01-10T06:22:23.474523Z"
+ "iopub.execute_input": "2024-01-10T15:07:48.047132Z",
+ "iopub.status.busy": "2024-01-10T15:07:48.046640Z",
+ "iopub.status.idle": "2024-01-10T15:07:48.049918Z",
+ "shell.execute_reply": "2024-01-10T15:07:48.049426Z"
}
},
"outputs": [],
@@ -333,10 +333,10 @@
"id": "2c2ad9ad",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:22:23.477540Z",
- "iopub.status.busy": "2024-01-10T06:22:23.477156Z",
- "iopub.status.idle": "2024-01-10T06:23:49.090785Z",
- "shell.execute_reply": "2024-01-10T06:23:49.089964Z"
+ "iopub.execute_input": "2024-01-10T15:07:48.052275Z",
+ "iopub.status.busy": "2024-01-10T15:07:48.051926Z",
+ "iopub.status.idle": "2024-01-10T15:09:13.774763Z",
+ "shell.execute_reply": "2024-01-10T15:09:13.774061Z"
}
},
"outputs": [
@@ -350,7 +350,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "7834e62875da4394bdfc03b1501fa4a9",
+ "model_id": "f6f7d2e0db9b4e23bd565eeb1ebe8323",
"version_major": 2,
"version_minor": 0
},
@@ -364,7 +364,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "2e3415f4577c42cb941753dfe0086640",
+ "model_id": "ea68cf0375d04b00803fe43e815130fb",
"version_major": 2,
"version_minor": 0
},
@@ -407,10 +407,10 @@
"id": "95dc7268",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:23:49.094028Z",
- "iopub.status.busy": "2024-01-10T06:23:49.093573Z",
- "iopub.status.idle": "2024-01-10T06:23:49.874024Z",
- "shell.execute_reply": "2024-01-10T06:23:49.873433Z"
+ "iopub.execute_input": "2024-01-10T15:09:13.777691Z",
+ "iopub.status.busy": "2024-01-10T15:09:13.777270Z",
+ "iopub.status.idle": "2024-01-10T15:09:14.581171Z",
+ "shell.execute_reply": "2024-01-10T15:09:14.580511Z"
}
},
"outputs": [
@@ -453,10 +453,10 @@
"id": "57fed473",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:23:49.876789Z",
- "iopub.status.busy": "2024-01-10T06:23:49.876371Z",
- "iopub.status.idle": "2024-01-10T06:23:52.004759Z",
- "shell.execute_reply": "2024-01-10T06:23:52.004056Z"
+ "iopub.execute_input": "2024-01-10T15:09:14.583844Z",
+ "iopub.status.busy": "2024-01-10T15:09:14.583393Z",
+ "iopub.status.idle": "2024-01-10T15:09:16.702396Z",
+ "shell.execute_reply": "2024-01-10T15:09:16.701727Z"
}
},
"outputs": [
@@ -526,10 +526,10 @@
"id": "e4a006bd",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:23:52.007358Z",
- "iopub.status.busy": "2024-01-10T06:23:52.007130Z",
- "iopub.status.idle": "2024-01-10T06:24:21.670500Z",
- "shell.execute_reply": "2024-01-10T06:24:21.669841Z"
+ "iopub.execute_input": "2024-01-10T15:09:16.705033Z",
+ "iopub.status.busy": "2024-01-10T15:09:16.704641Z",
+ "iopub.status.idle": "2024-01-10T15:09:45.984596Z",
+ "shell.execute_reply": "2024-01-10T15:09:45.984026Z"
}
},
"outputs": [
@@ -546,7 +546,7 @@
"output_type": "stream",
"text": [
"\r",
- " 0%| | 17062/4997817 [00:00<00:29, 170604.30it/s]"
+ " 0%| | 17030/4997817 [00:00<00:29, 170283.11it/s]"
]
},
{
@@ -554,7 +554,7 @@
"output_type": "stream",
"text": [
"\r",
- " 1%| | 34285/4997817 [00:00<00:28, 171551.99it/s]"
+ " 1%| | 34264/4997817 [00:00<00:28, 171485.88it/s]"
]
},
{
@@ -562,7 +562,7 @@
"output_type": "stream",
"text": [
"\r",
- " 1%| | 51456/4997817 [00:00<00:28, 171618.24it/s]"
+ " 1%| | 51459/4997817 [00:00<00:28, 171690.77it/s]"
]
},
{
@@ -570,7 +570,7 @@
"output_type": "stream",
"text": [
"\r",
- " 1%|▏ | 68618/4997817 [00:00<00:28, 170859.63it/s]"
+ " 1%|▏ | 68798/4997817 [00:00<00:28, 172355.31it/s]"
]
},
{
@@ -578,7 +578,7 @@
"output_type": "stream",
"text": [
"\r",
- " 2%|▏ | 85805/4997817 [00:00<00:28, 171220.50it/s]"
+ " 2%|▏ | 86035/4997817 [00:00<00:28, 172354.29it/s]"
]
},
{
@@ -586,7 +586,7 @@
"output_type": "stream",
"text": [
"\r",
- " 2%|▏ | 102949/4997817 [00:00<00:28, 171291.99it/s]"
+ " 2%|▏ | 103290/4997817 [00:00<00:28, 172417.11it/s]"
]
},
{
@@ -594,7 +594,7 @@
"output_type": "stream",
"text": [
"\r",
- " 2%|▏ | 120095/4997817 [00:00<00:28, 171343.43it/s]"
+ " 2%|▏ | 120703/4997817 [00:00<00:28, 172972.80it/s]"
]
},
{
@@ -602,7 +602,7 @@
"output_type": "stream",
"text": [
"\r",
- " 3%|▎ | 137230/4997817 [00:00<00:28, 170491.36it/s]"
+ " 3%|▎ | 138001/4997817 [00:00<00:28, 172728.16it/s]"
]
},
{
@@ -610,7 +610,7 @@
"output_type": "stream",
"text": [
"\r",
- " 3%|▎ | 154281/4997817 [00:00<00:28, 169872.65it/s]"
+ " 3%|▎ | 155274/4997817 [00:00<00:28, 172330.12it/s]"
]
},
{
@@ -618,7 +618,7 @@
"output_type": "stream",
"text": [
"\r",
- " 3%|▎ | 171280/4997817 [00:01<00:28, 169905.50it/s]"
+ " 3%|▎ | 172583/4997817 [00:01<00:27, 172560.55it/s]"
]
},
{
@@ -626,7 +626,7 @@
"output_type": "stream",
"text": [
"\r",
- " 4%|▍ | 188272/4997817 [00:01<00:28, 169777.04it/s]"
+ " 4%|▍ | 189950/4997817 [00:01<00:27, 172896.33it/s]"
]
},
{
@@ -634,7 +634,7 @@
"output_type": "stream",
"text": [
"\r",
- " 4%|▍ | 205575/4997817 [00:01<00:28, 170760.61it/s]"
+ " 4%|▍ | 207377/4997817 [00:01<00:27, 173308.14it/s]"
]
},
{
@@ -642,7 +642,7 @@
"output_type": "stream",
"text": [
"\r",
- " 4%|▍ | 222652/4997817 [00:01<00:27, 170740.73it/s]"
+ " 4%|▍ | 224727/4997817 [00:01<00:27, 173361.26it/s]"
]
},
{
@@ -650,7 +650,7 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▍ | 240083/4997817 [00:01<00:27, 171811.81it/s]"
+ " 5%|▍ | 242162/4997817 [00:01<00:27, 173656.66it/s]"
]
},
{
@@ -658,7 +658,7 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▌ | 257360/4997817 [00:01<00:27, 172096.03it/s]"
+ " 5%|▌ | 259598/4997817 [00:01<00:27, 173865.50it/s]"
]
},
{
@@ -666,7 +666,7 @@
"output_type": "stream",
"text": [
"\r",
- " 5%|▌ | 274605/4997817 [00:01<00:27, 172199.32it/s]"
+ " 6%|▌ | 277065/4997817 [00:01<00:27, 174102.51it/s]"
]
},
{
@@ -674,7 +674,7 @@
"output_type": "stream",
"text": [
"\r",
- " 6%|▌ | 291886/4997817 [00:01<00:27, 172379.81it/s]"
+ " 6%|▌ | 294502/4997817 [00:01<00:27, 174179.23it/s]"
]
},
{
@@ -682,7 +682,7 @@
"output_type": "stream",
"text": [
"\r",
- " 6%|▌ | 309125/4997817 [00:01<00:27, 172152.38it/s]"
+ " 6%|▌ | 311920/4997817 [00:01<00:27, 173530.42it/s]"
]
},
{
@@ -690,7 +690,7 @@
"output_type": "stream",
"text": [
"\r",
- " 7%|▋ | 326341/4997817 [00:01<00:27, 171949.71it/s]"
+ " 7%|▋ | 329316/4997817 [00:01<00:26, 173655.30it/s]"
]
},
{
@@ -698,7 +698,7 @@
"output_type": "stream",
"text": [
"\r",
- " 7%|▋ | 343537/4997817 [00:02<00:27, 171568.72it/s]"
+ " 7%|▋ | 346687/4997817 [00:02<00:26, 173667.15it/s]"
]
},
{
@@ -706,7 +706,7 @@
"output_type": "stream",
"text": [
"\r",
- " 7%|▋ | 360817/4997817 [00:02<00:26, 171933.30it/s]"
+ " 7%|▋ | 364055/4997817 [00:02<00:26, 173627.62it/s]"
]
},
{
@@ -714,7 +714,7 @@
"output_type": "stream",
"text": [
"\r",
- " 8%|▊ | 378023/4997817 [00:02<00:26, 171967.12it/s]"
+ " 8%|▊ | 381423/4997817 [00:02<00:26, 173638.78it/s]"
]
},
{
@@ -722,7 +722,7 @@
"output_type": "stream",
"text": [
"\r",
- " 8%|▊ | 395220/4997817 [00:02<00:26, 171770.69it/s]"
+ " 8%|▊ | 398834/4997817 [00:02<00:26, 173775.03it/s]"
]
},
{
@@ -730,7 +730,7 @@
"output_type": "stream",
"text": [
"\r",
- " 8%|▊ | 412518/4997817 [00:02<00:26, 172129.64it/s]"
+ " 8%|▊ | 416212/4997817 [00:02<00:26, 173771.72it/s]"
]
},
{
@@ -738,7 +738,7 @@
"output_type": "stream",
"text": [
"\r",
- " 9%|▊ | 429746/4997817 [00:02<00:26, 172171.06it/s]"
+ " 9%|▊ | 433590/4997817 [00:02<00:26, 173442.63it/s]"
]
},
{
@@ -746,7 +746,7 @@
"output_type": "stream",
"text": [
"\r",
- " 9%|▉ | 446964/4997817 [00:02<00:26, 171908.29it/s]"
+ " 9%|▉ | 451024/4997817 [00:02<00:26, 173705.52it/s]"
]
},
{
@@ -754,7 +754,7 @@
"output_type": "stream",
"text": [
"\r",
- " 9%|▉ | 464155/4997817 [00:02<00:26, 171900.62it/s]"
+ " 9%|▉ | 468446/4997817 [00:02<00:26, 173855.02it/s]"
]
},
{
@@ -762,7 +762,7 @@
"output_type": "stream",
"text": [
"\r",
- " 10%|▉ | 481346/4997817 [00:02<00:26, 171355.90it/s]"
+ " 10%|▉ | 485832/4997817 [00:02<00:25, 173762.18it/s]"
]
},
{
@@ -770,7 +770,7 @@
"output_type": "stream",
"text": [
"\r",
- " 10%|▉ | 498619/4997817 [00:02<00:26, 171763.37it/s]"
+ " 10%|█ | 503243/4997817 [00:02<00:25, 173861.88it/s]"
]
},
{
@@ -778,7 +778,7 @@
"output_type": "stream",
"text": [
"\r",
- " 10%|█ | 515796/4997817 [00:03<00:26, 171727.53it/s]"
+ " 10%|█ | 520727/4997817 [00:03<00:25, 174151.56it/s]"
]
},
{
@@ -786,7 +786,7 @@
"output_type": "stream",
"text": [
"\r",
- " 11%|█ | 532984/4997817 [00:03<00:25, 171768.71it/s]"
+ " 11%|█ | 538143/4997817 [00:03<00:25, 173998.03it/s]"
]
},
{
@@ -794,7 +794,7 @@
"output_type": "stream",
"text": [
"\r",
- " 11%|█ | 550240/4997817 [00:03<00:25, 172001.07it/s]"
+ " 11%|█ | 555543/4997817 [00:03<00:25, 173843.76it/s]"
]
},
{
@@ -802,7 +802,7 @@
"output_type": "stream",
"text": [
"\r",
- " 11%|█▏ | 567441/4997817 [00:03<00:25, 171961.52it/s]"
+ " 11%|█▏ | 572928/4997817 [00:03<00:25, 173780.39it/s]"
]
},
{
@@ -810,7 +810,7 @@
"output_type": "stream",
"text": [
"\r",
- " 12%|█▏ | 584638/4997817 [00:03<00:25, 171920.86it/s]"
+ " 12%|█▏ | 590307/4997817 [00:03<00:25, 173705.63it/s]"
]
},
{
@@ -818,7 +818,7 @@
"output_type": "stream",
"text": [
"\r",
- " 12%|█▏ | 601962/4997817 [00:03<00:25, 172313.17it/s]"
+ " 12%|█▏ | 607678/4997817 [00:03<00:25, 173383.06it/s]"
]
},
{
@@ -826,7 +826,7 @@
"output_type": "stream",
"text": [
"\r",
- " 12%|█▏ | 619303/4997817 [00:03<00:25, 172639.01it/s]"
+ " 13%|█▎ | 625113/4997817 [00:03<00:25, 173668.62it/s]"
]
},
{
@@ -834,7 +834,7 @@
"output_type": "stream",
"text": [
"\r",
- " 13%|█▎ | 636567/4997817 [00:03<00:25, 172200.43it/s]"
+ " 13%|█▎ | 642500/4997817 [00:03<00:25, 173724.53it/s]"
]
},
{
@@ -842,7 +842,7 @@
"output_type": "stream",
"text": [
"\r",
- " 13%|█▎ | 653788/4997817 [00:03<00:25, 171788.02it/s]"
+ " 13%|█▎ | 659873/4997817 [00:03<00:25, 173457.40it/s]"
]
},
{
@@ -850,7 +850,7 @@
"output_type": "stream",
"text": [
"\r",
- " 13%|█▎ | 670968/4997817 [00:03<00:25, 171514.66it/s]"
+ " 14%|█▎ | 677219/4997817 [00:03<00:24, 172924.88it/s]"
]
},
{
@@ -858,7 +858,7 @@
"output_type": "stream",
"text": [
"\r",
- " 14%|█▍ | 688120/4997817 [00:04<00:25, 170996.88it/s]"
+ " 14%|█▍ | 694526/4997817 [00:04<00:24, 172965.24it/s]"
]
},
{
@@ -866,7 +866,7 @@
"output_type": "stream",
"text": [
"\r",
- " 14%|█▍ | 705275/4997817 [00:04<00:25, 171158.72it/s]"
+ " 14%|█▍ | 711823/4997817 [00:04<00:24, 172894.79it/s]"
]
},
{
@@ -874,7 +874,7 @@
"output_type": "stream",
"text": [
"\r",
- " 14%|█▍ | 722435/4997817 [00:04<00:24, 171285.85it/s]"
+ " 15%|█▍ | 729176/4997817 [00:04<00:24, 173080.82it/s]"
]
},
{
@@ -882,7 +882,7 @@
"output_type": "stream",
"text": [
"\r",
- " 15%|█▍ | 739806/4997817 [00:04<00:24, 172008.35it/s]"
+ " 15%|█▍ | 746485/4997817 [00:04<00:24, 173034.68it/s]"
]
},
{
@@ -890,7 +890,7 @@
"output_type": "stream",
"text": [
"\r",
- " 15%|█▌ | 757008/4997817 [00:04<00:24, 171692.60it/s]"
+ " 15%|█▌ | 763789/4997817 [00:04<00:24, 172857.88it/s]"
]
},
{
@@ -898,7 +898,7 @@
"output_type": "stream",
"text": [
"\r",
- " 15%|█▌ | 774255/4997817 [00:04<00:24, 171920.65it/s]"
+ " 16%|█▌ | 781271/4997817 [00:04<00:24, 173443.18it/s]"
]
},
{
@@ -906,7 +906,7 @@
"output_type": "stream",
"text": [
"\r",
- " 16%|█▌ | 791671/4997817 [00:04<00:24, 172588.53it/s]"
+ " 16%|█▌ | 798719/4997817 [00:04<00:24, 173750.95it/s]"
]
},
{
@@ -914,7 +914,7 @@
"output_type": "stream",
"text": [
"\r",
- " 16%|█▌ | 809012/4997817 [00:04<00:24, 172830.16it/s]"
+ " 16%|█▋ | 816121/4997817 [00:04<00:24, 173827.43it/s]"
]
},
{
@@ -922,7 +922,7 @@
"output_type": "stream",
"text": [
"\r",
- " 17%|█▋ | 826296/4997817 [00:04<00:24, 171982.40it/s]"
+ " 17%|█▋ | 833504/4997817 [00:04<00:24, 173400.72it/s]"
]
},
{
@@ -930,7 +930,7 @@
"output_type": "stream",
"text": [
"\r",
- " 17%|█▋ | 843496/4997817 [00:04<00:24, 171799.85it/s]"
+ " 17%|█▋ | 850845/4997817 [00:04<00:24, 167499.61it/s]"
]
},
{
@@ -938,7 +938,7 @@
"output_type": "stream",
"text": [
"\r",
- " 17%|█▋ | 860677/4997817 [00:05<00:24, 171324.91it/s]"
+ " 17%|█▋ | 868055/4997817 [00:05<00:24, 168840.64it/s]"
]
},
{
@@ -946,7 +946,7 @@
"output_type": "stream",
"text": [
"\r",
- " 18%|█▊ | 877842/4997817 [00:05<00:24, 171418.27it/s]"
+ " 18%|█▊ | 885319/4997817 [00:05<00:24, 169955.77it/s]"
]
},
{
@@ -954,7 +954,7 @@
"output_type": "stream",
"text": [
"\r",
- " 18%|█▊ | 894985/4997817 [00:05<00:23, 171219.42it/s]"
+ " 18%|█▊ | 902466/4997817 [00:05<00:24, 170400.94it/s]"
]
},
{
@@ -962,7 +962,7 @@
"output_type": "stream",
"text": [
"\r",
- " 18%|█▊ | 912146/4997817 [00:05<00:23, 171332.99it/s]"
+ " 18%|█▊ | 919525/4997817 [00:05<00:24, 169551.46it/s]"
]
},
{
@@ -970,7 +970,7 @@
"output_type": "stream",
"text": [
"\r",
- " 19%|█▊ | 929303/4997817 [00:05<00:23, 171399.71it/s]"
+ " 19%|█▊ | 936548/4997817 [00:05<00:23, 169750.27it/s]"
]
},
{
@@ -978,7 +978,7 @@
"output_type": "stream",
"text": [
"\r",
- " 19%|█▉ | 946444/4997817 [00:05<00:23, 171377.87it/s]"
+ " 19%|█▉ | 953712/4997817 [00:05<00:23, 170310.11it/s]"
]
},
{
@@ -986,7 +986,7 @@
"output_type": "stream",
"text": [
"\r",
- " 19%|█▉ | 963692/4997817 [00:05<00:23, 171703.39it/s]"
+ " 19%|█▉ | 970942/4997817 [00:05<00:23, 170900.53it/s]"
]
},
{
@@ -994,7 +994,7 @@
"output_type": "stream",
"text": [
"\r",
- " 20%|█▉ | 981048/4997817 [00:05<00:23, 172255.53it/s]"
+ " 20%|█▉ | 988152/4997817 [00:05<00:23, 171255.63it/s]"
]
},
{
@@ -1002,7 +1002,7 @@
"output_type": "stream",
"text": [
"\r",
- " 20%|█▉ | 998359/4997817 [00:05<00:23, 172508.56it/s]"
+ " 20%|██ | 1005330/4997817 [00:05<00:23, 171410.52it/s]"
]
},
{
@@ -1010,7 +1010,7 @@
"output_type": "stream",
"text": [
"\r",
- " 20%|██ | 1015635/4997817 [00:05<00:23, 172579.19it/s]"
+ " 20%|██ | 1022474/4997817 [00:05<00:23, 171375.10it/s]"
]
},
{
@@ -1018,7 +1018,7 @@
"output_type": "stream",
"text": [
"\r",
- " 21%|██ | 1032893/4997817 [00:06<00:23, 171418.64it/s]"
+ " 21%|██ | 1039638/4997817 [00:06<00:23, 171449.37it/s]"
]
},
{
@@ -1026,7 +1026,7 @@
"output_type": "stream",
"text": [
"\r",
- " 21%|██ | 1050039/4997817 [00:06<00:23, 171426.89it/s]"
+ " 21%|██ | 1056785/4997817 [00:06<00:23, 170869.67it/s]"
]
},
{
@@ -1034,7 +1034,7 @@
"output_type": "stream",
"text": [
"\r",
- " 21%|██▏ | 1067207/4997817 [00:06<00:22, 171496.74it/s]"
+ " 21%|██▏ | 1073989/4997817 [00:06<00:22, 171215.58it/s]"
]
},
{
@@ -1042,7 +1042,7 @@
"output_type": "stream",
"text": [
"\r",
- " 22%|██▏ | 1084358/4997817 [00:06<00:22, 171268.82it/s]"
+ " 22%|██▏ | 1091214/4997817 [00:06<00:22, 171520.75it/s]"
]
},
{
@@ -1050,7 +1050,7 @@
"output_type": "stream",
"text": [
"\r",
- " 22%|██▏ | 1101486/4997817 [00:06<00:22, 171044.54it/s]"
+ " 22%|██▏ | 1108873/4997817 [00:06<00:22, 173035.02it/s]"
]
},
{
@@ -1058,7 +1058,7 @@
"output_type": "stream",
"text": [
"\r",
- " 22%|██▏ | 1118591/4997817 [00:06<00:22, 170922.72it/s]"
+ " 23%|██▎ | 1126178/4997817 [00:06<00:22, 173017.19it/s]"
]
},
{
@@ -1066,7 +1066,7 @@
"output_type": "stream",
"text": [
"\r",
- " 23%|██▎ | 1135684/4997817 [00:06<00:22, 170420.58it/s]"
+ " 23%|██▎ | 1143481/4997817 [00:06<00:22, 172777.34it/s]"
]
},
{
@@ -1074,7 +1074,7 @@
"output_type": "stream",
"text": [
"\r",
- " 23%|██▎ | 1152727/4997817 [00:06<00:22, 170051.09it/s]"
+ " 23%|██▎ | 1160760/4997817 [00:06<00:22, 172497.49it/s]"
]
},
{
@@ -1082,7 +1082,7 @@
"output_type": "stream",
"text": [
"\r",
- " 23%|██▎ | 1169733/4997817 [00:06<00:22, 169752.62it/s]"
+ " 24%|██▎ | 1178011/4997817 [00:06<00:22, 172168.93it/s]"
]
},
{
@@ -1090,7 +1090,7 @@
"output_type": "stream",
"text": [
"\r",
- " 24%|██▎ | 1186709/4997817 [00:06<00:22, 169681.27it/s]"
+ " 24%|██▍ | 1195229/4997817 [00:06<00:22, 171842.38it/s]"
]
},
{
@@ -1098,7 +1098,7 @@
"output_type": "stream",
"text": [
"\r",
- " 24%|██▍ | 1203678/4997817 [00:07<00:22, 168904.33it/s]"
+ " 24%|██▍ | 1212414/4997817 [00:07<00:22, 171680.48it/s]"
]
},
{
@@ -1106,7 +1106,7 @@
"output_type": "stream",
"text": [
"\r",
- " 24%|██▍ | 1220652/4997817 [00:07<00:22, 169150.94it/s]"
+ " 25%|██▍ | 1229583/4997817 [00:07<00:21, 171672.23it/s]"
]
},
{
@@ -1114,7 +1114,7 @@
"output_type": "stream",
"text": [
"\r",
- " 25%|██▍ | 1237634/4997817 [00:07<00:22, 169345.74it/s]"
+ " 25%|██▍ | 1246751/4997817 [00:07<00:21, 171577.38it/s]"
]
},
{
@@ -1122,7 +1122,7 @@
"output_type": "stream",
"text": [
"\r",
- " 25%|██▌ | 1254570/4997817 [00:07<00:22, 168349.15it/s]"
+ " 25%|██▌ | 1263909/4997817 [00:07<00:21, 170978.78it/s]"
]
},
{
@@ -1130,7 +1130,7 @@
"output_type": "stream",
"text": [
"\r",
- " 25%|██▌ | 1271732/4997817 [00:07<00:22, 169320.67it/s]"
+ " 26%|██▌ | 1281008/4997817 [00:07<00:21, 170704.98it/s]"
]
},
{
@@ -1138,7 +1138,7 @@
"output_type": "stream",
"text": [
"\r",
- " 26%|██▌ | 1288750/4997817 [00:07<00:21, 169571.98it/s]"
+ " 26%|██▌ | 1298079/4997817 [00:07<00:21, 170500.85it/s]"
]
},
{
@@ -1146,7 +1146,7 @@
"output_type": "stream",
"text": [
"\r",
- " 26%|██▌ | 1305766/4997817 [00:07<00:21, 169742.82it/s]"
+ " 26%|██▋ | 1315214/4997817 [00:07<00:21, 170750.49it/s]"
]
},
{
@@ -1154,7 +1154,7 @@
"output_type": "stream",
"text": [
"\r",
- " 26%|██▋ | 1322775/4997817 [00:07<00:21, 169844.98it/s]"
+ " 27%|██▋ | 1332308/4997817 [00:07<00:21, 170803.96it/s]"
]
},
{
@@ -1162,7 +1162,7 @@
"output_type": "stream",
"text": [
"\r",
- " 27%|██▋ | 1339793/4997817 [00:07<00:21, 169941.26it/s]"
+ " 27%|██▋ | 1349517/4997817 [00:07<00:21, 171186.09it/s]"
]
},
{
@@ -1170,7 +1170,7 @@
"output_type": "stream",
"text": [
"\r",
- " 27%|██▋ | 1356788/4997817 [00:07<00:21, 169935.91it/s]"
+ " 27%|██▋ | 1366636/4997817 [00:07<00:21, 166974.62it/s]"
]
},
{
@@ -1178,7 +1178,7 @@
"output_type": "stream",
"text": [
"\r",
- " 27%|██▋ | 1373885/4997817 [00:08<00:21, 170242.78it/s]"
+ " 28%|██▊ | 1383357/4997817 [00:08<00:21, 165352.54it/s]"
]
},
{
@@ -1186,7 +1186,7 @@
"output_type": "stream",
"text": [
"\r",
- " 28%|██▊ | 1390910/4997817 [00:08<00:21, 169776.77it/s]"
+ " 28%|██▊ | 1400601/4997817 [00:08<00:21, 167432.22it/s]"
]
},
{
@@ -1194,7 +1194,7 @@
"output_type": "stream",
"text": [
"\r",
- " 28%|██▊ | 1407889/4997817 [00:08<00:21, 169776.41it/s]"
+ " 28%|██▊ | 1417755/4997817 [00:08<00:21, 168644.72it/s]"
]
},
{
@@ -1202,7 +1202,7 @@
"output_type": "stream",
"text": [
"\r",
- " 29%|██▊ | 1424867/4997817 [00:08<00:21, 169328.10it/s]"
+ " 29%|██▊ | 1434981/4997817 [00:08<00:20, 169716.13it/s]"
]
},
{
@@ -1210,7 +1210,7 @@
"output_type": "stream",
"text": [
"\r",
- " 29%|██▉ | 1441920/4997817 [00:08<00:20, 169683.76it/s]"
+ " 29%|██▉ | 1452216/4997817 [00:08<00:20, 170497.47it/s]"
]
},
{
@@ -1218,7 +1218,7 @@
"output_type": "stream",
"text": [
"\r",
- " 29%|██▉ | 1458889/4997817 [00:08<00:20, 169554.49it/s]"
+ " 29%|██▉ | 1469393/4997817 [00:08<00:20, 170873.77it/s]"
]
},
{
@@ -1226,7 +1226,7 @@
"output_type": "stream",
"text": [
"\r",
- " 30%|██▉ | 1475845/4997817 [00:08<00:20, 169207.98it/s]"
+ " 30%|██▉ | 1486659/4997817 [00:08<00:20, 171405.04it/s]"
]
},
{
@@ -1234,7 +1234,7 @@
"output_type": "stream",
"text": [
"\r",
- " 30%|██▉ | 1492767/4997817 [00:08<00:20, 169207.52it/s]"
+ " 30%|███ | 1503878/4997817 [00:08<00:20, 171636.21it/s]"
]
},
{
@@ -1242,7 +1242,7 @@
"output_type": "stream",
"text": [
"\r",
- " 30%|███ | 1509688/4997817 [00:08<00:20, 169069.76it/s]"
+ " 30%|███ | 1521101/4997817 [00:08<00:20, 171810.78it/s]"
]
},
{
@@ -1250,7 +1250,7 @@
"output_type": "stream",
"text": [
"\r",
- " 31%|███ | 1526596/4997817 [00:08<00:20, 168995.55it/s]"
+ " 31%|███ | 1538285/4997817 [00:08<00:20, 171554.86it/s]"
]
},
{
@@ -1258,7 +1258,7 @@
"output_type": "stream",
"text": [
"\r",
- " 31%|███ | 1543496/4997817 [00:09<00:20, 168767.01it/s]"
+ " 31%|███ | 1555442/4997817 [00:09<00:20, 171482.32it/s]"
]
},
{
@@ -1266,7 +1266,7 @@
"output_type": "stream",
"text": [
"\r",
- " 31%|███ | 1560373/4997817 [00:09<00:20, 168411.56it/s]"
+ " 31%|███▏ | 1572592/4997817 [00:09<00:19, 171358.69it/s]"
]
},
{
@@ -1274,7 +1274,7 @@
"output_type": "stream",
"text": [
"\r",
- " 32%|███▏ | 1577215/4997817 [00:09<00:20, 168093.60it/s]"
+ " 32%|███▏ | 1589729/4997817 [00:09<00:19, 171312.10it/s]"
]
},
{
@@ -1282,7 +1282,7 @@
"output_type": "stream",
"text": [
"\r",
- " 32%|███▏ | 1594025/4997817 [00:09<00:20, 167736.99it/s]"
+ " 32%|███▏ | 1606861/4997817 [00:09<00:19, 171261.67it/s]"
]
},
{
@@ -1290,7 +1290,7 @@
"output_type": "stream",
"text": [
"\r",
- " 32%|███▏ | 1610799/4997817 [00:09<00:20, 167579.26it/s]"
+ " 32%|███▏ | 1623988/4997817 [00:09<00:19, 170981.92it/s]"
]
},
{
@@ -1298,7 +1298,7 @@
"output_type": "stream",
"text": [
"\r",
- " 33%|███▎ | 1627581/4997817 [00:09<00:20, 167648.89it/s]"
+ " 33%|███▎ | 1641087/4997817 [00:09<00:19, 170445.03it/s]"
]
},
{
@@ -1306,7 +1306,7 @@
"output_type": "stream",
"text": [
"\r",
- " 33%|███▎ | 1644346/4997817 [00:09<00:20, 167601.44it/s]"
+ " 33%|███▎ | 1658133/4997817 [00:09<00:19, 170120.99it/s]"
]
},
{
@@ -1314,7 +1314,7 @@
"output_type": "stream",
"text": [
"\r",
- " 33%|███▎ | 1661107/4997817 [00:09<00:19, 167408.64it/s]"
+ " 34%|███▎ | 1675146/4997817 [00:09<00:19, 170047.88it/s]"
]
},
{
@@ -1322,7 +1322,7 @@
"output_type": "stream",
"text": [
"\r",
- " 34%|███▎ | 1678158/4997817 [00:09<00:19, 168332.79it/s]"
+ " 34%|███▍ | 1692384/4997817 [00:09<00:19, 170742.41it/s]"
]
},
{
@@ -1330,7 +1330,7 @@
"output_type": "stream",
"text": [
"\r",
- " 34%|███▍ | 1695148/4997817 [00:09<00:19, 168799.16it/s]"
+ " 34%|███▍ | 1709536/4997817 [00:09<00:19, 170970.11it/s]"
]
},
{
@@ -1338,7 +1338,7 @@
"output_type": "stream",
"text": [
"\r",
- " 34%|███▍ | 1712162/4997817 [00:10<00:19, 169197.65it/s]"
+ " 35%|███▍ | 1726634/4997817 [00:10<00:19, 167250.12it/s]"
]
},
{
@@ -1346,7 +1346,7 @@
"output_type": "stream",
"text": [
"\r",
- " 35%|███▍ | 1729082/4997817 [00:10<00:19, 169086.37it/s]"
+ " 35%|███▍ | 1743827/4997817 [00:10<00:19, 168626.61it/s]"
]
},
{
@@ -1354,7 +1354,7 @@
"output_type": "stream",
"text": [
"\r",
- " 35%|███▍ | 1746091/4997817 [00:10<00:19, 169383.58it/s]"
+ " 35%|███▌ | 1761126/4997817 [00:10<00:19, 169916.59it/s]"
]
},
{
@@ -1362,7 +1362,7 @@
"output_type": "stream",
"text": [
"\r",
- " 35%|███▌ | 1763030/4997817 [00:10<00:19, 169294.56it/s]"
+ " 36%|███▌ | 1778432/4997817 [00:10<00:18, 170847.39it/s]"
]
},
{
@@ -1370,7 +1370,7 @@
"output_type": "stream",
"text": [
"\r",
- " 36%|███▌ | 1779986/4997817 [00:10<00:18, 169370.78it/s]"
+ " 36%|███▌ | 1795743/4997817 [00:10<00:18, 171517.21it/s]"
]
},
{
@@ -1378,7 +1378,7 @@
"output_type": "stream",
"text": [
"\r",
- " 36%|███▌ | 1796940/4997817 [00:10<00:18, 169415.99it/s]"
+ " 36%|███▋ | 1813098/4997817 [00:10<00:18, 172119.98it/s]"
]
},
{
@@ -1386,7 +1386,7 @@
"output_type": "stream",
"text": [
"\r",
- " 36%|███▋ | 1813941/4997817 [00:10<00:18, 169588.95it/s]"
+ " 37%|███▋ | 1830442/4997817 [00:10<00:18, 172511.96it/s]"
]
},
{
@@ -1394,7 +1394,7 @@
"output_type": "stream",
"text": [
"\r",
- " 37%|███▋ | 1830917/4997817 [00:10<00:18, 169635.93it/s]"
+ " 37%|███▋ | 1847697/4997817 [00:10<00:18, 172177.79it/s]"
]
},
{
@@ -1402,7 +1402,7 @@
"output_type": "stream",
"text": [
"\r",
- " 37%|███▋ | 1847932/4997817 [00:10<00:18, 169786.39it/s]"
+ " 37%|███▋ | 1864918/4997817 [00:10<00:18, 171675.77it/s]"
]
},
{
@@ -1410,7 +1410,7 @@
"output_type": "stream",
"text": [
"\r",
- " 37%|███▋ | 1864911/4997817 [00:10<00:18, 169662.56it/s]"
+ " 38%|███▊ | 1882375/4997817 [00:10<00:18, 172536.76it/s]"
]
},
{
@@ -1418,7 +1418,7 @@
"output_type": "stream",
"text": [
"\r",
- " 38%|███▊ | 1881878/4997817 [00:11<00:18, 169612.46it/s]"
+ " 38%|███▊ | 1899650/4997817 [00:11<00:17, 172598.14it/s]"
]
},
{
@@ -1426,7 +1426,7 @@
"output_type": "stream",
"text": [
"\r",
- " 38%|███▊ | 1898840/4997817 [00:11<00:18, 169466.51it/s]"
+ " 38%|███▊ | 1916965/4997817 [00:11<00:17, 172759.47it/s]"
]
},
{
@@ -1434,7 +1434,7 @@
"output_type": "stream",
"text": [
"\r",
- " 38%|███▊ | 1915967/4997817 [00:11<00:18, 170001.55it/s]"
+ " 39%|███▊ | 1934403/4997817 [00:11<00:17, 173239.67it/s]"
]
},
{
@@ -1442,7 +1442,7 @@
"output_type": "stream",
"text": [
"\r",
- " 39%|███▊ | 1932968/4997817 [00:11<00:18, 169939.64it/s]"
+ " 39%|███▉ | 1951857/4997817 [00:11<00:17, 173625.82it/s]"
]
},
{
@@ -1450,7 +1450,7 @@
"output_type": "stream",
"text": [
"\r",
- " 39%|███▉ | 1949963/4997817 [00:11<00:17, 169565.43it/s]"
+ " 39%|███▉ | 1969233/4997817 [00:11<00:17, 173662.00it/s]"
]
},
{
@@ -1458,7 +1458,7 @@
"output_type": "stream",
"text": [
"\r",
- " 39%|███▉ | 1966920/4997817 [00:11<00:17, 168922.06it/s]"
+ " 40%|███▉ | 1986600/4997817 [00:11<00:17, 173510.89it/s]"
]
},
{
@@ -1466,7 +1466,7 @@
"output_type": "stream",
"text": [
"\r",
- " 40%|███▉ | 1983850/4997817 [00:11<00:17, 169030.80it/s]"
+ " 40%|████ | 2003989/4997817 [00:11<00:17, 173620.71it/s]"
]
},
{
@@ -1474,7 +1474,7 @@
"output_type": "stream",
"text": [
"\r",
- " 40%|████ | 2000770/4997817 [00:11<00:17, 169076.88it/s]"
+ " 40%|████ | 2021352/4997817 [00:11<00:17, 172889.28it/s]"
]
},
{
@@ -1482,7 +1482,7 @@
"output_type": "stream",
"text": [
"\r",
- " 40%|████ | 2017733/4997817 [00:11<00:17, 169238.17it/s]"
+ " 41%|████ | 2038726/4997817 [00:11<00:17, 173140.08it/s]"
]
},
{
@@ -1490,7 +1490,7 @@
"output_type": "stream",
"text": [
"\r",
- " 41%|████ | 2034658/4997817 [00:11<00:17, 168730.09it/s]"
+ " 41%|████ | 2056041/4997817 [00:11<00:16, 173049.75it/s]"
]
},
{
@@ -1498,7 +1498,7 @@
"output_type": "stream",
"text": [
"\r",
- " 41%|████ | 2051532/4997817 [00:12<00:17, 168386.60it/s]"
+ " 41%|████▏ | 2073347/4997817 [00:12<00:16, 172756.93it/s]"
]
},
{
@@ -1506,7 +1506,7 @@
"output_type": "stream",
"text": [
"\r",
- " 41%|████▏ | 2068372/4997817 [00:12<00:17, 168018.51it/s]"
+ " 42%|████▏ | 2090709/4997817 [00:12<00:16, 173011.88it/s]"
]
},
{
@@ -1514,7 +1514,7 @@
"output_type": "stream",
"text": [
"\r",
- " 42%|████▏ | 2085260/4997817 [00:12<00:17, 168270.79it/s]"
+ " 42%|████▏ | 2108068/4997817 [00:12<00:16, 173181.70it/s]"
]
},
{
@@ -1522,7 +1522,7 @@
"output_type": "stream",
"text": [
"\r",
- " 42%|████▏ | 2102088/4997817 [00:12<00:17, 168030.44it/s]"
+ " 43%|████▎ | 2125387/4997817 [00:12<00:16, 172719.24it/s]"
]
},
{
@@ -1530,7 +1530,7 @@
"output_type": "stream",
"text": [
"\r",
- " 42%|████▏ | 2118962/4997817 [00:12<00:17, 168240.31it/s]"
+ " 43%|████▎ | 2142660/4997817 [00:12<00:16, 172428.08it/s]"
]
},
{
@@ -1538,7 +1538,7 @@
"output_type": "stream",
"text": [
"\r",
- " 43%|████▎ | 2135787/4997817 [00:12<00:17, 168132.74it/s]"
+ " 43%|████▎ | 2159948/4997817 [00:12<00:16, 172559.96it/s]"
]
},
{
@@ -1546,7 +1546,7 @@
"output_type": "stream",
"text": [
"\r",
- " 43%|████▎ | 2152601/4997817 [00:12<00:16, 167646.09it/s]"
+ " 44%|████▎ | 2177205/4997817 [00:12<00:16, 172309.45it/s]"
]
},
{
@@ -1554,7 +1554,7 @@
"output_type": "stream",
"text": [
"\r",
- " 43%|████▎ | 2169423/4997817 [00:12<00:16, 167813.54it/s]"
+ " 44%|████▍ | 2194525/4997817 [00:12<00:16, 172572.65it/s]"
]
},
{
@@ -1562,7 +1562,7 @@
"output_type": "stream",
"text": [
"\r",
- " 44%|████▎ | 2186297/4997817 [00:12<00:16, 168085.58it/s]"
+ " 44%|████▍ | 2211921/4997817 [00:12<00:16, 172984.81it/s]"
]
},
{
@@ -1570,7 +1570,7 @@
"output_type": "stream",
"text": [
"\r",
- " 44%|████▍ | 2203175/4997817 [00:12<00:16, 168289.27it/s]"
+ " 45%|████▍ | 2229384/4997817 [00:12<00:15, 173474.18it/s]"
]
},
{
@@ -1578,7 +1578,7 @@
"output_type": "stream",
"text": [
"\r",
- " 44%|████▍ | 2220005/4997817 [00:13<00:16, 168276.19it/s]"
+ " 45%|████▍ | 2246736/4997817 [00:13<00:15, 173484.62it/s]"
]
},
{
@@ -1586,7 +1586,7 @@
"output_type": "stream",
"text": [
"\r",
- " 45%|████▍ | 2236833/4997817 [00:13<00:16, 168121.20it/s]"
+ " 45%|████▌ | 2264085/4997817 [00:13<00:15, 173437.68it/s]"
]
},
{
@@ -1594,7 +1594,7 @@
"output_type": "stream",
"text": [
"\r",
- " 45%|████▌ | 2253646/4997817 [00:13<00:16, 168054.37it/s]"
+ " 46%|████▌ | 2281429/4997817 [00:13<00:15, 173352.81it/s]"
]
},
{
@@ -1602,7 +1602,7 @@
"output_type": "stream",
"text": [
"\r",
- " 45%|████▌ | 2270452/4997817 [00:13<00:16, 167426.00it/s]"
+ " 46%|████▌ | 2298765/4997817 [00:13<00:15, 173188.91it/s]"
]
},
{
@@ -1610,7 +1610,7 @@
"output_type": "stream",
"text": [
"\r",
- " 46%|████▌ | 2287196/4997817 [00:13<00:16, 167340.06it/s]"
+ " 46%|████▋ | 2316084/4997817 [00:13<00:15, 172913.95it/s]"
]
},
{
@@ -1618,7 +1618,7 @@
"output_type": "stream",
"text": [
"\r",
- " 46%|████▌ | 2303931/4997817 [00:13<00:16, 167280.92it/s]"
+ " 47%|████▋ | 2333554/4997817 [00:13<00:15, 173444.79it/s]"
]
},
{
@@ -1626,7 +1626,7 @@
"output_type": "stream",
"text": [
"\r",
- " 46%|████▋ | 2320696/4997817 [00:13<00:15, 167387.15it/s]"
+ " 47%|████▋ | 2351018/4997817 [00:13<00:15, 173801.16it/s]"
]
},
{
@@ -1634,7 +1634,7 @@
"output_type": "stream",
"text": [
"\r",
- " 47%|████▋ | 2337572/4997817 [00:13<00:15, 167794.33it/s]"
+ " 47%|████▋ | 2368666/4997817 [00:13<00:15, 174599.08it/s]"
]
},
{
@@ -1642,7 +1642,7 @@
"output_type": "stream",
"text": [
"\r",
- " 47%|████▋ | 2354510/4997817 [00:13<00:15, 168265.82it/s]"
+ " 48%|████▊ | 2386153/4997817 [00:13<00:14, 174676.73it/s]"
]
},
{
@@ -1650,7 +1650,7 @@
"output_type": "stream",
"text": [
"\r",
- " 47%|████▋ | 2371337/4997817 [00:13<00:15, 168146.95it/s]"
+ " 48%|████▊ | 2403645/4997817 [00:13<00:14, 174745.85it/s]"
]
},
{
@@ -1658,7 +1658,7 @@
"output_type": "stream",
"text": [
"\r",
- " 48%|████▊ | 2388246/4997817 [00:14<00:15, 168426.12it/s]"
+ " 48%|████▊ | 2421181/4997817 [00:14<00:14, 174925.70it/s]"
]
},
{
@@ -1666,7 +1666,7 @@
"output_type": "stream",
"text": [
"\r",
- " 48%|████▊ | 2405089/4997817 [00:14<00:15, 167971.38it/s]"
+ " 49%|████▉ | 2438674/4997817 [00:14<00:14, 174394.81it/s]"
]
},
{
@@ -1674,7 +1674,7 @@
"output_type": "stream",
"text": [
"\r",
- " 48%|████▊ | 2421887/4997817 [00:14<00:15, 167875.18it/s]"
+ " 49%|████▉ | 2456114/4997817 [00:14<00:14, 174173.81it/s]"
]
},
{
@@ -1682,7 +1682,7 @@
"output_type": "stream",
"text": [
"\r",
- " 49%|████▉ | 2438756/4997817 [00:14<00:15, 168116.52it/s]"
+ " 49%|████▉ | 2473532/4997817 [00:14<00:14, 174114.97it/s]"
]
},
{
@@ -1690,7 +1690,7 @@
"output_type": "stream",
"text": [
"\r",
- " 49%|████▉ | 2455622/4997817 [00:14<00:15, 168275.76it/s]"
+ " 50%|████▉ | 2490944/4997817 [00:14<00:14, 173861.74it/s]"
]
},
{
@@ -1698,7 +1698,7 @@
"output_type": "stream",
"text": [
"\r",
- " 49%|████▉ | 2472450/4997817 [00:14<00:15, 168246.55it/s]"
+ " 50%|█████ | 2508369/4997817 [00:14<00:14, 173973.76it/s]"
]
},
{
@@ -1706,7 +1706,7 @@
"output_type": "stream",
"text": [
"\r",
- " 50%|████▉ | 2489275/4997817 [00:14<00:14, 168100.11it/s]"
+ " 51%|█████ | 2525845/4997817 [00:14<00:14, 174206.42it/s]"
]
},
{
@@ -1714,7 +1714,7 @@
"output_type": "stream",
"text": [
"\r",
- " 50%|█████ | 2506165/4997817 [00:14<00:14, 168336.59it/s]"
+ " 51%|█████ | 2543266/4997817 [00:14<00:14, 174161.75it/s]"
]
},
{
@@ -1722,7 +1722,7 @@
"output_type": "stream",
"text": [
"\r",
- " 50%|█████ | 2523041/4997817 [00:14<00:14, 168459.70it/s]"
+ " 51%|█████ | 2560683/4997817 [00:14<00:14, 174022.77it/s]"
]
},
{
@@ -1730,7 +1730,7 @@
"output_type": "stream",
"text": [
"\r",
- " 51%|█████ | 2539888/4997817 [00:14<00:14, 168363.19it/s]"
+ " 52%|█████▏ | 2578111/4997817 [00:14<00:13, 174097.16it/s]"
]
},
{
@@ -1738,7 +1738,7 @@
"output_type": "stream",
"text": [
"\r",
- " 51%|█████ | 2556725/4997817 [00:15<00:14, 168317.16it/s]"
+ " 52%|█████▏ | 2595521/4997817 [00:15<00:13, 173869.07it/s]"
]
},
{
@@ -1746,7 +1746,7 @@
"output_type": "stream",
"text": [
"\r",
- " 51%|█████▏ | 2573557/4997817 [00:15<00:14, 168314.33it/s]"
+ " 52%|█████▏ | 2612909/4997817 [00:15<00:13, 173294.82it/s]"
]
},
{
@@ -1754,7 +1754,7 @@
"output_type": "stream",
"text": [
"\r",
- " 52%|█████▏ | 2590389/4997817 [00:15<00:14, 168159.93it/s]"
+ " 53%|█████▎ | 2630242/4997817 [00:15<00:13, 173299.46it/s]"
]
},
{
@@ -1762,7 +1762,7 @@
"output_type": "stream",
"text": [
"\r",
- " 52%|█████▏ | 2607206/4997817 [00:15<00:14, 168024.45it/s]"
+ " 53%|█████▎ | 2647637/4997817 [00:15<00:13, 173488.50it/s]"
]
},
{
@@ -1770,7 +1770,7 @@
"output_type": "stream",
"text": [
"\r",
- " 53%|█████▎ | 2624021/4997817 [00:15<00:14, 168057.67it/s]"
+ " 53%|█████▎ | 2664987/4997817 [00:15<00:13, 173398.27it/s]"
]
},
{
@@ -1778,7 +1778,7 @@
"output_type": "stream",
"text": [
"\r",
- " 53%|█████▎ | 2640827/4997817 [00:15<00:14, 167450.44it/s]"
+ " 54%|█████▎ | 2682372/4997817 [00:15<00:13, 173528.92it/s]"
]
},
{
@@ -1786,7 +1786,7 @@
"output_type": "stream",
"text": [
"\r",
- " 53%|█████▎ | 2657654/4997817 [00:15<00:13, 167690.91it/s]"
+ " 54%|█████▍ | 2699726/4997817 [00:15<00:13, 173257.12it/s]"
]
},
{
@@ -1794,7 +1794,7 @@
"output_type": "stream",
"text": [
"\r",
- " 54%|█████▎ | 2674611/4997817 [00:15<00:13, 168247.89it/s]"
+ " 54%|█████▍ | 2717059/4997817 [00:15<00:13, 173274.78it/s]"
]
},
{
@@ -1802,7 +1802,7 @@
"output_type": "stream",
"text": [
"\r",
- " 54%|█████▍ | 2691437/4997817 [00:15<00:13, 168060.02it/s]"
+ " 55%|█████▍ | 2734428/4997817 [00:15<00:13, 173396.38it/s]"
]
},
{
@@ -1810,7 +1810,7 @@
"output_type": "stream",
"text": [
"\r",
- " 54%|█████▍ | 2708244/4997817 [00:15<00:13, 167385.05it/s]"
+ " 55%|█████▌ | 2751845/4997817 [00:15<00:12, 173625.32it/s]"
]
},
{
@@ -1818,7 +1818,7 @@
"output_type": "stream",
"text": [
"\r",
- " 55%|█████▍ | 2725000/4997817 [00:16<00:13, 167432.83it/s]"
+ " 55%|█████▌ | 2769208/4997817 [00:16<00:12, 173567.59it/s]"
]
},
{
@@ -1826,7 +1826,7 @@
"output_type": "stream",
"text": [
"\r",
- " 55%|█████▍ | 2741821/4997817 [00:16<00:13, 167661.64it/s]"
+ " 56%|█████▌ | 2786565/4997817 [00:16<00:12, 173300.07it/s]"
]
},
{
@@ -1834,7 +1834,7 @@
"output_type": "stream",
"text": [
"\r",
- " 55%|█████▌ | 2758588/4997817 [00:16<00:13, 167266.26it/s]"
+ " 56%|█████▌ | 2803896/4997817 [00:16<00:12, 173040.50it/s]"
]
},
{
@@ -1842,7 +1842,7 @@
"output_type": "stream",
"text": [
"\r",
- " 56%|█████▌ | 2775352/4997817 [00:16<00:13, 167374.50it/s]"
+ " 56%|█████▋ | 2821321/4997817 [00:16<00:12, 173399.89it/s]"
]
},
{
@@ -1850,7 +1850,7 @@
"output_type": "stream",
"text": [
"\r",
- " 56%|█████▌ | 2792090/4997817 [00:16<00:13, 167063.45it/s]"
+ " 57%|█████▋ | 2838662/4997817 [00:16<00:12, 172859.42it/s]"
]
},
{
@@ -1858,7 +1858,7 @@
"output_type": "stream",
"text": [
"\r",
- " 56%|█████▌ | 2808802/4997817 [00:16<00:13, 167076.13it/s]"
+ " 57%|█████▋ | 2855949/4997817 [00:16<00:12, 172569.83it/s]"
]
},
{
@@ -1866,7 +1866,7 @@
"output_type": "stream",
"text": [
"\r",
- " 57%|█████▋ | 2825510/4997817 [00:16<00:13, 167042.04it/s]"
+ " 57%|█████▋ | 2873207/4997817 [00:16<00:12, 172224.29it/s]"
]
},
{
@@ -1874,7 +1874,7 @@
"output_type": "stream",
"text": [
"\r",
- " 57%|█████▋ | 2842215/4997817 [00:16<00:12, 166910.37it/s]"
+ " 58%|█████▊ | 2890430/4997817 [00:16<00:12, 172181.39it/s]"
]
},
{
@@ -1882,7 +1882,7 @@
"output_type": "stream",
"text": [
"\r",
- " 57%|█████▋ | 2858913/4997817 [00:16<00:12, 166926.75it/s]"
+ " 58%|█████▊ | 2907649/4997817 [00:16<00:12, 171902.40it/s]"
]
},
{
@@ -1890,7 +1890,7 @@
"output_type": "stream",
"text": [
"\r",
- " 58%|█████▊ | 2875624/4997817 [00:16<00:12, 166976.93it/s]"
+ " 59%|█████▊ | 2924840/4997817 [00:16<00:12, 171671.79it/s]"
]
},
{
@@ -1898,7 +1898,7 @@
"output_type": "stream",
"text": [
"\r",
- " 58%|█████▊ | 2892322/4997817 [00:17<00:12, 166542.29it/s]"
+ " 59%|█████▉ | 2942008/4997817 [00:17<00:11, 171384.08it/s]"
]
},
{
@@ -1906,7 +1906,7 @@
"output_type": "stream",
"text": [
"\r",
- " 58%|█████▊ | 2909084/4997817 [00:17<00:12, 166860.46it/s]"
+ " 59%|█████▉ | 2959147/4997817 [00:17<00:11, 170767.52it/s]"
]
},
{
@@ -1914,7 +1914,7 @@
"output_type": "stream",
"text": [
"\r",
- " 59%|█████▊ | 2925771/4997817 [00:17<00:12, 166846.81it/s]"
+ " 60%|█████▉ | 2976284/4997817 [00:17<00:11, 170944.14it/s]"
]
},
{
@@ -1922,7 +1922,7 @@
"output_type": "stream",
"text": [
"\r",
- " 59%|█████▉ | 2942500/4997817 [00:17<00:12, 166975.59it/s]"
+ " 60%|█████▉ | 2993383/4997817 [00:17<00:11, 170955.10it/s]"
]
},
{
@@ -1930,7 +1930,7 @@
"output_type": "stream",
"text": [
"\r",
- " 59%|█████▉ | 2959198/4997817 [00:17<00:12, 166708.79it/s]"
+ " 60%|██████ | 3010479/4997817 [00:17<00:11, 170751.69it/s]"
]
},
{
@@ -1938,7 +1938,7 @@
"output_type": "stream",
"text": [
"\r",
- " 60%|█████▉ | 2975877/4997817 [00:17<00:12, 166728.16it/s]"
+ " 61%|██████ | 3027555/4997817 [00:17<00:11, 169701.03it/s]"
]
},
{
@@ -1946,7 +1946,7 @@
"output_type": "stream",
"text": [
"\r",
- " 60%|█████▉ | 2992600/4997817 [00:17<00:12, 166874.28it/s]"
+ " 61%|██████ | 3044709/4997817 [00:17<00:11, 170245.53it/s]"
]
},
{
@@ -1954,7 +1954,7 @@
"output_type": "stream",
"text": [
"\r",
- " 60%|██████ | 3009402/4997817 [00:17<00:11, 167212.72it/s]"
+ " 61%|██████▏ | 3061914/4997817 [00:17<00:11, 170780.70it/s]"
]
},
{
@@ -1962,7 +1962,7 @@
"output_type": "stream",
"text": [
"\r",
- " 61%|██████ | 3026124/4997817 [00:17<00:11, 166887.50it/s]"
+ " 62%|██████▏ | 3079054/4997817 [00:17<00:11, 170963.30it/s]"
]
},
{
@@ -1970,7 +1970,7 @@
"output_type": "stream",
"text": [
"\r",
- " 61%|██████ | 3042813/4997817 [00:17<00:11, 166464.96it/s]"
+ " 62%|██████▏ | 3096212/4997817 [00:17<00:11, 171145.64it/s]"
]
},
{
@@ -1978,7 +1978,7 @@
"output_type": "stream",
"text": [
"\r",
- " 61%|██████ | 3059512/4997817 [00:18<00:11, 166617.29it/s]"
+ " 62%|██████▏ | 3113415/4997817 [00:18<00:10, 171405.70it/s]"
]
},
{
@@ -1986,7 +1986,7 @@
"output_type": "stream",
"text": [
"\r",
- " 62%|██████▏ | 3076399/4997817 [00:18<00:11, 167287.27it/s]"
+ " 63%|██████▎ | 3130557/4997817 [00:18<00:11, 163730.19it/s]"
]
},
{
@@ -1994,7 +1994,7 @@
"output_type": "stream",
"text": [
"\r",
- " 62%|██████▏ | 3093129/4997817 [00:18<00:11, 167242.52it/s]"
+ " 63%|██████▎ | 3147711/4997817 [00:18<00:11, 165993.75it/s]"
]
},
{
@@ -2002,7 +2002,7 @@
"output_type": "stream",
"text": [
"\r",
- " 62%|██████▏ | 3109854/4997817 [00:18<00:11, 164570.09it/s]"
+ " 63%|██████▎ | 3164858/4997817 [00:18<00:10, 167595.36it/s]"
]
},
{
@@ -2010,7 +2010,7 @@
"output_type": "stream",
"text": [
"\r",
- " 63%|██████▎ | 3127061/4997817 [00:18<00:11, 166789.86it/s]"
+ " 64%|██████▎ | 3182091/4997817 [00:18<00:10, 168989.18it/s]"
]
},
{
@@ -2018,7 +2018,7 @@
"output_type": "stream",
"text": [
"\r",
- " 63%|██████▎ | 3144295/4997817 [00:18<00:11, 168437.03it/s]"
+ " 64%|██████▍ | 3199280/4997817 [00:18<00:10, 169848.21it/s]"
]
},
{
@@ -2026,7 +2026,7 @@
"output_type": "stream",
"text": [
"\r",
- " 63%|██████▎ | 3161147/4997817 [00:18<00:10, 168085.75it/s]"
+ " 64%|██████▍ | 3216488/4997817 [00:18<00:10, 170509.03it/s]"
]
},
{
@@ -2034,7 +2034,7 @@
"output_type": "stream",
"text": [
"\r",
- " 64%|██████▎ | 3178372/4997817 [00:18<00:10, 169324.97it/s]"
+ " 65%|██████▍ | 3233615/4997817 [00:18<00:10, 170733.77it/s]"
]
},
{
@@ -2042,7 +2042,7 @@
"output_type": "stream",
"text": [
"\r",
- " 64%|██████▍ | 3195555/4997817 [00:18<00:10, 170071.05it/s]"
+ " 65%|██████▌ | 3250701/4997817 [00:18<00:10, 170719.85it/s]"
]
},
{
@@ -2050,7 +2050,7 @@
"output_type": "stream",
"text": [
"\r",
- " 64%|██████▍ | 3212860/4997817 [00:18<00:10, 170957.60it/s]"
+ " 65%|██████▌ | 3267782/4997817 [00:18<00:10, 170590.66it/s]"
]
},
{
@@ -2058,7 +2058,7 @@
"output_type": "stream",
"text": [
"\r",
- " 65%|██████▍ | 3230096/4997817 [00:19<00:10, 171374.10it/s]"
+ " 66%|██████▌ | 3284892/4997817 [00:19<00:10, 170740.17it/s]"
]
},
{
@@ -2066,7 +2066,7 @@
"output_type": "stream",
"text": [
"\r",
- " 65%|██████▍ | 3247326/4997817 [00:19<00:10, 171646.00it/s]"
+ " 66%|██████▌ | 3301991/4997817 [00:19<00:09, 170812.71it/s]"
]
},
{
@@ -2074,7 +2074,7 @@
"output_type": "stream",
"text": [
"\r",
- " 65%|██████▌ | 3264493/4997817 [00:19<00:10, 171542.68it/s]"
+ " 66%|██████▋ | 3319326/4997817 [00:19<00:09, 171568.86it/s]"
]
},
{
@@ -2082,7 +2082,7 @@
"output_type": "stream",
"text": [
"\r",
- " 66%|██████▌ | 3281649/4997817 [00:19<00:10, 171525.74it/s]"
+ " 67%|██████▋ | 3336579/4997817 [00:19<00:09, 171854.27it/s]"
]
},
{
@@ -2090,7 +2090,7 @@
"output_type": "stream",
"text": [
"\r",
- " 66%|██████▌ | 3298803/4997817 [00:19<00:09, 171132.61it/s]"
+ " 67%|██████▋ | 3353840/4997817 [00:19<00:09, 172075.47it/s]"
]
},
{
@@ -2098,7 +2098,7 @@
"output_type": "stream",
"text": [
"\r",
- " 66%|██████▋ | 3315917/4997817 [00:19<00:09, 170861.86it/s]"
+ " 67%|██████▋ | 3371135/4997817 [00:19<00:09, 172332.57it/s]"
]
},
{
@@ -2106,7 +2106,7 @@
"output_type": "stream",
"text": [
"\r",
- " 67%|██████▋ | 3333004/4997817 [00:19<00:09, 170374.69it/s]"
+ " 68%|██████▊ | 3388521/4997817 [00:19<00:09, 172784.75it/s]"
]
},
{
@@ -2114,7 +2114,7 @@
"output_type": "stream",
"text": [
"\r",
- " 67%|██████▋ | 3350043/4997817 [00:19<00:09, 170335.87it/s]"
+ " 68%|██████▊ | 3405882/4997817 [00:19<00:09, 173027.35it/s]"
]
},
{
@@ -2122,7 +2122,7 @@
"output_type": "stream",
"text": [
"\r",
- " 67%|██████▋ | 3367100/4997817 [00:19<00:09, 170400.36it/s]"
+ " 68%|██████▊ | 3423271/4997817 [00:19<00:09, 173281.06it/s]"
]
},
{
@@ -2130,7 +2130,7 @@
"output_type": "stream",
"text": [
"\r",
- " 68%|██████▊ | 3384218/4997817 [00:19<00:09, 170631.02it/s]"
+ " 69%|██████▉ | 3440656/4997817 [00:19<00:08, 173448.16it/s]"
]
},
{
@@ -2138,7 +2138,7 @@
"output_type": "stream",
"text": [
"\r",
- " 68%|██████▊ | 3401284/4997817 [00:20<00:09, 170636.34it/s]"
+ " 69%|██████▉ | 3458002/4997817 [00:20<00:08, 173131.70it/s]"
]
},
{
@@ -2146,7 +2146,7 @@
"output_type": "stream",
"text": [
"\r",
- " 68%|██████▊ | 3418357/4997817 [00:20<00:09, 170658.72it/s]"
+ " 70%|██████▉ | 3475316/4997817 [00:20<00:08, 173016.71it/s]"
]
},
{
@@ -2154,7 +2154,7 @@
"output_type": "stream",
"text": [
"\r",
- " 69%|██████▊ | 3435515/4997817 [00:20<00:09, 170931.41it/s]"
+ " 70%|██████▉ | 3492618/4997817 [00:20<00:09, 165765.34it/s]"
]
},
{
@@ -2162,7 +2162,7 @@
"output_type": "stream",
"text": [
"\r",
- " 69%|██████▉ | 3452609/4997817 [00:20<00:09, 163949.22it/s]"
+ " 70%|███████ | 3509821/4997817 [00:20<00:08, 167583.58it/s]"
]
},
{
@@ -2170,7 +2170,7 @@
"output_type": "stream",
"text": [
"\r",
- " 69%|██████▉ | 3469894/4997817 [00:20<00:09, 166538.18it/s]"
+ " 71%|███████ | 3527050/4997817 [00:20<00:08, 168961.35it/s]"
]
},
{
@@ -2178,7 +2178,7 @@
"output_type": "stream",
"text": [
"\r",
- " 70%|██████▉ | 3486928/4997817 [00:20<00:09, 167650.09it/s]"
+ " 71%|███████ | 3544520/4997817 [00:20<00:08, 170652.18it/s]"
]
},
{
@@ -2186,7 +2186,7 @@
"output_type": "stream",
"text": [
"\r",
- " 70%|███████ | 3503919/4997817 [00:20<00:08, 168314.40it/s]"
+ " 71%|███████▏ | 3561999/4997817 [00:20<00:08, 171875.08it/s]"
]
},
{
@@ -2194,7 +2194,7 @@
"output_type": "stream",
"text": [
"\r",
- " 70%|███████ | 3520963/4997817 [00:20<00:08, 168940.54it/s]"
+ " 72%|███████▏ | 3579426/4997817 [00:20<00:08, 172585.21it/s]"
]
},
{
@@ -2202,7 +2202,7 @@
"output_type": "stream",
"text": [
"\r",
- " 71%|███████ | 3538111/4997817 [00:20<00:08, 169693.53it/s]"
+ " 72%|███████▏ | 3596925/4997817 [00:20<00:08, 173300.62it/s]"
]
},
{
@@ -2210,7 +2210,7 @@
"output_type": "stream",
"text": [
"\r",
- " 71%|███████ | 3555434/4997817 [00:20<00:08, 170745.59it/s]"
+ " 72%|███████▏ | 3614455/4997817 [00:21<00:07, 173894.52it/s]"
]
},
{
@@ -2218,7 +2218,7 @@
"output_type": "stream",
"text": [
"\r",
- " 71%|███████▏ | 3572660/4997817 [00:21<00:08, 171192.35it/s]"
+ " 73%|███████▎ | 3632081/4997817 [00:21<00:07, 174596.73it/s]"
]
},
{
@@ -2226,7 +2226,7 @@
"output_type": "stream",
"text": [
"\r",
- " 72%|███████▏ | 3590030/4997817 [00:21<00:08, 171938.61it/s]"
+ " 73%|███████▎ | 3649547/4997817 [00:21<00:07, 174498.75it/s]"
]
},
{
@@ -2234,7 +2234,7 @@
"output_type": "stream",
"text": [
"\r",
- " 72%|███████▏ | 3607303/4997817 [00:21<00:08, 172172.46it/s]"
+ " 73%|███████▎ | 3667092/4997817 [00:21<00:07, 174781.42it/s]"
]
},
{
@@ -2242,7 +2242,7 @@
"output_type": "stream",
"text": [
"\r",
- " 73%|███████▎ | 3624594/4997817 [00:21<00:07, 172387.33it/s]"
+ " 74%|███████▎ | 3684574/4997817 [00:21<00:07, 174323.55it/s]"
]
},
{
@@ -2250,7 +2250,7 @@
"output_type": "stream",
"text": [
"\r",
- " 73%|███████▎ | 3641836/4997817 [00:21<00:07, 171859.14it/s]"
+ " 74%|███████▍ | 3702009/4997817 [00:21<00:07, 174312.24it/s]"
]
},
{
@@ -2258,7 +2258,7 @@
"output_type": "stream",
"text": [
"\r",
- " 73%|███████▎ | 3659025/4997817 [00:21<00:07, 171633.99it/s]"
+ " 74%|███████▍ | 3719522/4997817 [00:21<00:07, 174553.76it/s]"
]
},
{
@@ -2266,7 +2266,7 @@
"output_type": "stream",
"text": [
"\r",
- " 74%|███████▎ | 3676190/4997817 [00:21<00:07, 171400.84it/s]"
+ " 75%|███████▍ | 3736979/4997817 [00:21<00:07, 174483.40it/s]"
]
},
{
@@ -2274,7 +2274,7 @@
"output_type": "stream",
"text": [
"\r",
- " 74%|███████▍ | 3693332/4997817 [00:21<00:07, 171243.48it/s]"
+ " 75%|███████▌ | 3754510/4997817 [00:21<00:07, 174726.49it/s]"
]
},
{
@@ -2282,7 +2282,7 @@
"output_type": "stream",
"text": [
"\r",
- " 74%|███████▍ | 3710458/4997817 [00:21<00:07, 171013.54it/s]"
+ " 75%|███████▌ | 3772090/4997817 [00:21<00:07, 175044.92it/s]"
]
},
{
@@ -2290,7 +2290,7 @@
"output_type": "stream",
"text": [
"\r",
- " 75%|███████▍ | 3727633/4997817 [00:21<00:07, 171229.98it/s]"
+ " 76%|███████▌ | 3789595/4997817 [00:22<00:06, 174949.83it/s]"
]
},
{
@@ -2298,7 +2298,7 @@
"output_type": "stream",
"text": [
"\r",
- " 75%|███████▍ | 3744757/4997817 [00:22<00:07, 171012.21it/s]"
+ " 76%|███████▌ | 3807095/4997817 [00:22<00:06, 174961.17it/s]"
]
},
{
@@ -2306,7 +2306,7 @@
"output_type": "stream",
"text": [
"\r",
- " 75%|███████▌ | 3761899/4997817 [00:22<00:07, 171129.30it/s]"
+ " 77%|███████▋ | 3824592/4997817 [00:22<00:06, 174435.55it/s]"
]
},
{
@@ -2314,7 +2314,7 @@
"output_type": "stream",
"text": [
"\r",
- " 76%|███████▌ | 3779084/4997817 [00:22<00:07, 171340.31it/s]"
+ " 77%|███████▋ | 3842037/4997817 [00:22<00:06, 166864.23it/s]"
]
},
{
@@ -2322,7 +2322,7 @@
"output_type": "stream",
"text": [
"\r",
- " 76%|███████▌ | 3796219/4997817 [00:22<00:07, 167422.50it/s]"
+ " 77%|███████▋ | 3859405/4997817 [00:22<00:06, 168839.77it/s]"
]
},
{
@@ -2330,7 +2330,7 @@
"output_type": "stream",
"text": [
"\r",
- " 76%|███████▋ | 3813525/4997817 [00:22<00:07, 169081.57it/s]"
+ " 78%|███████▊ | 3876822/4997817 [00:22<00:06, 170399.10it/s]"
]
},
{
@@ -2338,7 +2338,7 @@
"output_type": "stream",
"text": [
"\r",
- " 77%|███████▋ | 3830826/4997817 [00:22<00:06, 170242.46it/s]"
+ " 78%|███████▊ | 3894424/4997817 [00:22<00:06, 172056.34it/s]"
]
},
{
@@ -2346,7 +2346,7 @@
"output_type": "stream",
"text": [
"\r",
- " 77%|███████▋ | 3847923/4997817 [00:22<00:06, 170454.10it/s]"
+ " 78%|███████▊ | 3911949/4997817 [00:22<00:06, 172999.62it/s]"
]
},
{
@@ -2354,7 +2354,7 @@
"output_type": "stream",
"text": [
"\r",
- " 77%|███████▋ | 3865103/4997817 [00:22<00:06, 170852.37it/s]"
+ " 79%|███████▊ | 3929356/4997817 [00:22<00:06, 173315.74it/s]"
]
},
{
@@ -2362,7 +2362,7 @@
"output_type": "stream",
"text": [
"\r",
- " 78%|███████▊ | 3882263/4997817 [00:22<00:06, 171072.12it/s]"
+ " 79%|███████▉ | 3946836/4997817 [00:22<00:06, 173753.24it/s]"
]
},
{
@@ -2370,7 +2370,7 @@
"output_type": "stream",
"text": [
"\r",
- " 78%|███████▊ | 3899433/4997817 [00:22<00:06, 171255.46it/s]"
+ " 79%|███████▉ | 3964224/4997817 [00:23<00:05, 173621.71it/s]"
]
},
{
@@ -2378,7 +2378,7 @@
"output_type": "stream",
"text": [
"\r",
- " 78%|███████▊ | 3916562/4997817 [00:23<00:06, 170928.63it/s]"
+ " 80%|███████▉ | 3981595/4997817 [00:23<00:05, 173277.02it/s]"
]
},
{
@@ -2386,7 +2386,7 @@
"output_type": "stream",
"text": [
"\r",
- " 79%|███████▊ | 3933884/4997817 [00:23<00:06, 171610.47it/s]"
+ " 80%|████████ | 3998970/4997817 [00:23<00:05, 173415.32it/s]"
]
},
{
@@ -2394,7 +2394,7 @@
"output_type": "stream",
"text": [
"\r",
- " 79%|███████▉ | 3951103/4997817 [00:23<00:06, 171779.99it/s]"
+ " 80%|████████ | 4016316/4997817 [00:23<00:05, 172667.73it/s]"
]
},
{
@@ -2402,7 +2402,7 @@
"output_type": "stream",
"text": [
"\r",
- " 79%|███████▉ | 3968283/4997817 [00:23<00:05, 171759.78it/s]"
+ " 81%|████████ | 4033587/4997817 [00:23<00:05, 172523.73it/s]"
]
},
{
@@ -2410,7 +2410,7 @@
"output_type": "stream",
"text": [
"\r",
- " 80%|███████▉ | 3985460/4997817 [00:23<00:05, 171748.29it/s]"
+ " 81%|████████ | 4050842/4997817 [00:23<00:05, 172384.77it/s]"
]
},
{
@@ -2418,7 +2418,7 @@
"output_type": "stream",
"text": [
"\r",
- " 80%|████████ | 4002799/4997817 [00:23<00:05, 172236.63it/s]"
+ " 81%|████████▏ | 4068083/4997817 [00:23<00:05, 171361.88it/s]"
]
},
{
@@ -2426,7 +2426,7 @@
"output_type": "stream",
"text": [
"\r",
- " 80%|████████ | 4020024/4997817 [00:23<00:05, 172120.48it/s]"
+ " 82%|████████▏ | 4085389/4997817 [00:23<00:05, 171865.91it/s]"
]
},
{
@@ -2434,7 +2434,7 @@
"output_type": "stream",
"text": [
"\r",
- " 81%|████████ | 4037255/4997817 [00:23<00:05, 172171.92it/s]"
+ " 82%|████████▏ | 4102681/4997817 [00:23<00:05, 172176.42it/s]"
]
},
{
@@ -2442,7 +2442,7 @@
"output_type": "stream",
"text": [
"\r",
- " 81%|████████ | 4054562/4997817 [00:23<00:05, 172438.26it/s]"
+ " 82%|████████▏ | 4120022/4997817 [00:23<00:05, 172542.13it/s]"
]
},
{
@@ -2450,7 +2450,7 @@
"output_type": "stream",
"text": [
"\r",
- " 81%|████████▏ | 4071846/4997817 [00:23<00:05, 172553.59it/s]"
+ " 83%|████████▎ | 4137278/4997817 [00:24<00:04, 172439.36it/s]"
]
},
{
@@ -2458,7 +2458,7 @@
"output_type": "stream",
"text": [
"\r",
- " 82%|████████▏ | 4089102/4997817 [00:24<00:05, 172236.48it/s]"
+ " 83%|████████▎ | 4154574/4997817 [00:24<00:04, 172592.57it/s]"
]
},
{
@@ -2466,7 +2466,7 @@
"output_type": "stream",
"text": [
"\r",
- " 82%|████████▏ | 4106326/4997817 [00:24<00:05, 172177.95it/s]"
+ " 83%|████████▎ | 4171871/4997817 [00:24<00:04, 172702.85it/s]"
]
},
{
@@ -2474,7 +2474,7 @@
"output_type": "stream",
"text": [
"\r",
- " 83%|████████▎ | 4123603/4997817 [00:24<00:05, 172350.70it/s]"
+ " 84%|████████▍ | 4189189/4997817 [00:24<00:04, 172841.82it/s]"
]
},
{
@@ -2482,7 +2482,7 @@
"output_type": "stream",
"text": [
"\r",
- " 83%|████████▎ | 4140839/4997817 [00:24<00:04, 171954.68it/s]"
+ " 84%|████████▍ | 4206509/4997817 [00:24<00:04, 172945.78it/s]"
]
},
{
@@ -2490,7 +2490,7 @@
"output_type": "stream",
"text": [
"\r",
- " 83%|████████▎ | 4158035/4997817 [00:24<00:04, 168862.02it/s]"
+ " 85%|████████▍ | 4223872/4997817 [00:24<00:04, 173149.38it/s]"
]
},
{
@@ -2498,7 +2498,7 @@
"output_type": "stream",
"text": [
"\r",
- " 84%|████████▎ | 4175226/4997817 [00:24<00:04, 169758.76it/s]"
+ " 85%|████████▍ | 4241236/4997817 [00:24<00:04, 173293.34it/s]"
]
},
{
@@ -2506,7 +2506,7 @@
"output_type": "stream",
"text": [
"\r",
- " 84%|████████▍ | 4192212/4997817 [00:24<00:04, 168849.98it/s]"
+ " 85%|████████▌ | 4258566/4997817 [00:24<00:04, 172867.69it/s]"
]
},
{
@@ -2514,7 +2514,7 @@
"output_type": "stream",
"text": [
"\r",
- " 84%|████████▍ | 4209250/4997817 [00:24<00:04, 169300.67it/s]"
+ " 86%|████████▌ | 4275854/4997817 [00:24<00:04, 172857.11it/s]"
]
},
{
@@ -2522,7 +2522,7 @@
"output_type": "stream",
"text": [
"\r",
- " 85%|████████▍ | 4226465/4997817 [00:24<00:04, 170143.89it/s]"
+ " 86%|████████▌ | 4293140/4997817 [00:24<00:04, 172477.24it/s]"
]
},
{
@@ -2530,7 +2530,7 @@
"output_type": "stream",
"text": [
"\r",
- " 85%|████████▍ | 4243806/4997817 [00:24<00:04, 171114.46it/s]"
+ " 86%|████████▌ | 4310389/4997817 [00:25<00:03, 172149.13it/s]"
]
},
{
@@ -2538,7 +2538,7 @@
"output_type": "stream",
"text": [
"\r",
- " 85%|████████▌ | 4261227/4997817 [00:25<00:04, 172034.61it/s]"
+ " 87%|████████▋ | 4327605/4997817 [00:25<00:03, 172139.17it/s]"
]
},
{
@@ -2546,7 +2546,7 @@
"output_type": "stream",
"text": [
"\r",
- " 86%|████████▌ | 4278528/4997817 [00:25<00:04, 172320.83it/s]"
+ " 87%|████████▋ | 4344830/4997817 [00:25<00:03, 172169.08it/s]"
]
},
{
@@ -2554,7 +2554,7 @@
"output_type": "stream",
"text": [
"\r",
- " 86%|████████▌ | 4295937/4997817 [00:25<00:04, 172845.19it/s]"
+ " 87%|████████▋ | 4362076/4997817 [00:25<00:03, 172251.35it/s]"
]
},
{
@@ -2562,7 +2562,7 @@
"output_type": "stream",
"text": [
"\r",
- " 86%|████████▋ | 4313308/4997817 [00:25<00:03, 173100.25it/s]"
+ " 88%|████████▊ | 4379302/4997817 [00:25<00:03, 171900.04it/s]"
]
},
{
@@ -2570,7 +2570,7 @@
"output_type": "stream",
"text": [
"\r",
- " 87%|████████▋ | 4330658/4997817 [00:25<00:03, 173214.54it/s]"
+ " 88%|████████▊ | 4396523/4997817 [00:25<00:03, 171990.54it/s]"
]
},
{
@@ -2578,7 +2578,7 @@
"output_type": "stream",
"text": [
"\r",
- " 87%|████████▋ | 4347981/4997817 [00:25<00:03, 173208.95it/s]"
+ " 88%|████████▊ | 4413723/4997817 [00:25<00:03, 171969.84it/s]"
]
},
{
@@ -2586,7 +2586,7 @@
"output_type": "stream",
"text": [
"\r",
- " 87%|████████▋ | 4365307/4997817 [00:25<00:03, 173218.73it/s]"
+ " 89%|████████▊ | 4430938/4997817 [00:25<00:03, 172020.80it/s]"
]
},
{
@@ -2594,7 +2594,7 @@
"output_type": "stream",
"text": [
"\r",
- " 88%|████████▊ | 4382688/4997817 [00:25<00:03, 173390.64it/s]"
+ " 89%|████████▉ | 4448169/4997817 [00:25<00:03, 172104.71it/s]"
]
},
{
@@ -2602,7 +2602,7 @@
"output_type": "stream",
"text": [
"\r",
- " 88%|████████▊ | 4400068/4997817 [00:25<00:03, 173507.38it/s]"
+ " 89%|████████▉ | 4465473/4997817 [00:25<00:03, 172382.22it/s]"
]
},
{
@@ -2610,7 +2610,7 @@
"output_type": "stream",
"text": [
"\r",
- " 88%|████████▊ | 4417419/4997817 [00:25<00:03, 173309.43it/s]"
+ " 90%|████████▉ | 4482712/4997817 [00:26<00:02, 172378.44it/s]"
]
},
{
@@ -2618,7 +2618,7 @@
"output_type": "stream",
"text": [
"\r",
- " 89%|████████▊ | 4434751/4997817 [00:26<00:03, 172930.69it/s]"
+ " 90%|█████████ | 4499970/4997817 [00:26<00:02, 172434.62it/s]"
]
},
{
@@ -2626,7 +2626,7 @@
"output_type": "stream",
"text": [
"\r",
- " 89%|████████▉ | 4452045/4997817 [00:26<00:03, 172511.48it/s]"
+ " 90%|█████████ | 4517217/4997817 [00:26<00:02, 172442.45it/s]"
]
},
{
@@ -2634,7 +2634,7 @@
"output_type": "stream",
"text": [
"\r",
- " 89%|████████▉ | 4469335/4997817 [00:26<00:03, 172622.79it/s]"
+ " 91%|█████████ | 4534462/4997817 [00:26<00:02, 172125.34it/s]"
]
},
{
@@ -2642,7 +2642,7 @@
"output_type": "stream",
"text": [
"\r",
- " 90%|████████▉ | 4486598/4997817 [00:26<00:02, 171589.70it/s]"
+ " 91%|█████████ | 4551698/4997817 [00:26<00:02, 172191.75it/s]"
]
},
{
@@ -2650,7 +2650,7 @@
"output_type": "stream",
"text": [
"\r",
- " 90%|█████████ | 4503759/4997817 [00:26<00:02, 171412.36it/s]"
+ " 91%|█████████▏| 4568918/4997817 [00:26<00:02, 172049.70it/s]"
]
},
{
@@ -2658,7 +2658,7 @@
"output_type": "stream",
"text": [
"\r",
- " 90%|█████████ | 4520902/4997817 [00:26<00:02, 171343.15it/s]"
+ " 92%|█████████▏| 4586146/4997817 [00:26<00:02, 172115.18it/s]"
]
},
{
@@ -2666,7 +2666,7 @@
"output_type": "stream",
"text": [
"\r",
- " 91%|█████████ | 4538037/4997817 [00:26<00:02, 171239.33it/s]"
+ " 92%|█████████▏| 4603359/4997817 [00:26<00:02, 172117.83it/s]"
]
},
{
@@ -2674,7 +2674,7 @@
"output_type": "stream",
"text": [
"\r",
- " 91%|█████████ | 4555162/4997817 [00:26<00:02, 170876.40it/s]"
+ " 92%|█████████▏| 4620571/4997817 [00:26<00:02, 172059.99it/s]"
]
},
{
@@ -2682,7 +2682,7 @@
"output_type": "stream",
"text": [
"\r",
- " 91%|█████████▏| 4572250/4997817 [00:26<00:02, 170565.73it/s]"
+ " 93%|█████████▎| 4637778/4997817 [00:26<00:02, 171793.76it/s]"
]
},
{
@@ -2690,7 +2690,7 @@
"output_type": "stream",
"text": [
"\r",
- " 92%|█████████▏| 4589307/4997817 [00:27<00:02, 170097.89it/s]"
+ " 93%|█████████▎| 4654966/4997817 [00:27<00:01, 171816.57it/s]"
]
},
{
@@ -2698,7 +2698,7 @@
"output_type": "stream",
"text": [
"\r",
- " 92%|█████████▏| 4606318/4997817 [00:27<00:02, 169865.84it/s]"
+ " 93%|█████████▎| 4672149/4997817 [00:27<00:01, 171816.10it/s]"
]
},
{
@@ -2706,7 +2706,7 @@
"output_type": "stream",
"text": [
"\r",
- " 93%|█████████▎| 4623305/4997817 [00:27<00:02, 169631.05it/s]"
+ " 94%|█████████▍| 4689331/4997817 [00:27<00:01, 171560.20it/s]"
]
},
{
@@ -2714,7 +2714,7 @@
"output_type": "stream",
"text": [
"\r",
- " 93%|█████████▎| 4640269/4997817 [00:27<00:02, 168872.65it/s]"
+ " 94%|█████████▍| 4706520/4997817 [00:27<00:01, 171657.19it/s]"
]
},
{
@@ -2722,7 +2722,7 @@
"output_type": "stream",
"text": [
"\r",
- " 93%|█████████▎| 4657235/4997817 [00:27<00:02, 169105.83it/s]"
+ " 95%|█████████▍| 4723686/4997817 [00:27<00:01, 167919.96it/s]"
]
},
{
@@ -2730,7 +2730,7 @@
"output_type": "stream",
"text": [
"\r",
- " 94%|█████████▎| 4674147/4997817 [00:27<00:01, 168226.74it/s]"
+ " 95%|█████████▍| 4740781/4997817 [00:27<00:01, 168811.86it/s]"
]
},
{
@@ -2738,7 +2738,7 @@
"output_type": "stream",
"text": [
"\r",
- " 94%|█████████▍| 4690976/4997817 [00:27<00:01, 168242.05it/s]"
+ " 95%|█████████▌| 4757868/4997817 [00:27<00:01, 169418.38it/s]"
]
},
{
@@ -2746,7 +2746,7 @@
"output_type": "stream",
"text": [
"\r",
- " 94%|█████████▍| 4707801/4997817 [00:27<00:01, 168102.89it/s]"
+ " 96%|█████████▌| 4774923/4997817 [00:27<00:01, 169750.75it/s]"
]
},
{
@@ -2754,7 +2754,7 @@
"output_type": "stream",
"text": [
"\r",
- " 95%|█████████▍| 4724647/4997817 [00:27<00:01, 168205.59it/s]"
+ " 96%|█████████▌| 4791930/4997817 [00:27<00:01, 169843.37it/s]"
]
},
{
@@ -2762,7 +2762,7 @@
"output_type": "stream",
"text": [
"\r",
- " 95%|█████████▍| 4741468/4997817 [00:27<00:01, 167808.58it/s]"
+ " 96%|█████████▌| 4809039/4997817 [00:27<00:01, 170212.17it/s]"
]
},
{
@@ -2770,7 +2770,7 @@
"output_type": "stream",
"text": [
"\r",
- " 95%|█████████▌| 4758250/4997817 [00:28<00:01, 167370.08it/s]"
+ " 97%|█████████▋| 4826135/4997817 [00:28<00:01, 170433.15it/s]"
]
},
{
@@ -2778,7 +2778,7 @@
"output_type": "stream",
"text": [
"\r",
- " 96%|█████████▌| 4774988/4997817 [00:28<00:01, 167262.31it/s]"
+ " 97%|█████████▋| 4843326/4997817 [00:28<00:00, 170871.60it/s]"
]
},
{
@@ -2786,7 +2786,7 @@
"output_type": "stream",
"text": [
"\r",
- " 96%|█████████▌| 4791806/4997817 [00:28<00:01, 167533.12it/s]"
+ " 97%|█████████▋| 4860458/4997817 [00:28<00:00, 171002.81it/s]"
]
},
{
@@ -2794,7 +2794,7 @@
"output_type": "stream",
"text": [
"\r",
- " 96%|█████████▌| 4808560/4997817 [00:28<00:01, 167179.89it/s]"
+ " 98%|█████████▊| 4877647/4997817 [00:28<00:00, 171266.30it/s]"
]
},
{
@@ -2802,7 +2802,7 @@
"output_type": "stream",
"text": [
"\r",
- " 97%|█████████▋| 4825279/4997817 [00:28<00:01, 167129.34it/s]"
+ " 98%|█████████▊| 4894775/4997817 [00:28<00:00, 170862.07it/s]"
]
},
{
@@ -2810,7 +2810,7 @@
"output_type": "stream",
"text": [
"\r",
- " 97%|█████████▋| 4842096/4997817 [00:28<00:00, 167436.03it/s]"
+ " 98%|█████████▊| 4911923/4997817 [00:28<00:00, 171043.44it/s]"
]
},
{
@@ -2818,7 +2818,7 @@
"output_type": "stream",
"text": [
"\r",
- " 97%|█████████▋| 4859300/4997817 [00:28<00:00, 168811.84it/s]"
+ " 99%|█████████▊| 4929176/4997817 [00:28<00:00, 171486.81it/s]"
]
},
{
@@ -2826,7 +2826,7 @@
"output_type": "stream",
"text": [
"\r",
- " 98%|█████████▊| 4876497/4997817 [00:28<00:00, 169752.70it/s]"
+ " 99%|█████████▉| 4946356/4997817 [00:28<00:00, 171577.53it/s]"
]
},
{
@@ -2834,7 +2834,7 @@
"output_type": "stream",
"text": [
"\r",
- " 98%|█████████▊| 4893694/4997817 [00:28<00:00, 170413.45it/s]"
+ " 99%|█████████▉| 4963515/4997817 [00:28<00:00, 171205.67it/s]"
]
},
{
@@ -2842,7 +2842,7 @@
"output_type": "stream",
"text": [
"\r",
- " 98%|█████████▊| 4910769/4997817 [00:28<00:00, 170510.26it/s]"
+ "100%|█████████▉| 4980923/4997817 [00:28<00:00, 172063.53it/s]"
]
},
{
@@ -2850,47 +2850,14 @@
"output_type": "stream",
"text": [
"\r",
- " 99%|█████████▊| 4927821/4997817 [00:29<00:00, 170169.42it/s]"
+ "100%|██████████| 4997817/4997817 [00:29<00:00, 172102.99it/s]"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
- "\r",
- " 99%|█████████▉| 4944989/4997817 [00:29<00:00, 170616.62it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 99%|█████████▉| 4962051/4997817 [00:29<00:00, 169773.92it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- "100%|█████████▉| 4979093/4997817 [00:29<00:00, 169963.20it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- "100%|█████████▉| 4996091/4997817 [00:29<00:00, 169052.24it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- "100%|██████████| 4997817/4997817 [00:29<00:00, 169841.26it/s]"
+ "\n"
]
},
{
@@ -2919,13 +2886,6 @@
"Class 'traffic sign' is potentially mislabeled as class for 'building' 5011 pixels in the dataset\n"
]
},
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
{
"data": {
"text/html": [
@@ -3129,10 +3089,10 @@
"id": "c8f4e163",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:21.672999Z",
- "iopub.status.busy": "2024-01-10T06:24:21.672753Z",
- "iopub.status.idle": "2024-01-10T06:24:28.676821Z",
- "shell.execute_reply": "2024-01-10T06:24:28.676174Z"
+ "iopub.execute_input": "2024-01-10T15:09:45.987247Z",
+ "iopub.status.busy": "2024-01-10T15:09:45.986790Z",
+ "iopub.status.idle": "2024-01-10T15:09:53.045750Z",
+ "shell.execute_reply": "2024-01-10T15:09:53.045106Z"
}
},
"outputs": [],
@@ -3146,10 +3106,10 @@
"id": "716c74f3",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:28.679808Z",
- "iopub.status.busy": "2024-01-10T06:24:28.679561Z",
- "iopub.status.idle": "2024-01-10T06:24:31.714840Z",
- "shell.execute_reply": "2024-01-10T06:24:31.714156Z"
+ "iopub.execute_input": "2024-01-10T15:09:53.048843Z",
+ "iopub.status.busy": "2024-01-10T15:09:53.048334Z",
+ "iopub.status.idle": "2024-01-10T15:09:56.152244Z",
+ "shell.execute_reply": "2024-01-10T15:09:56.151592Z"
}
},
"outputs": [
@@ -3218,17 +3178,17 @@
"id": "db0b5179",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:31.717634Z",
- "iopub.status.busy": "2024-01-10T06:24:31.717196Z",
- "iopub.status.idle": "2024-01-10T06:24:33.061235Z",
- "shell.execute_reply": "2024-01-10T06:24:33.060598Z"
+ "iopub.execute_input": "2024-01-10T15:09:56.155042Z",
+ "iopub.status.busy": "2024-01-10T15:09:56.154624Z",
+ "iopub.status.idle": "2024-01-10T15:09:57.461482Z",
+ "shell.execute_reply": "2024-01-10T15:09:57.460863Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "df32bb08ce9040a1b285945a0db7765e",
+ "model_id": "10262fae8e7241aaa83534e155136cc8",
"version_major": 2,
"version_minor": 0
},
@@ -3258,10 +3218,10 @@
"id": "390780a1",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:33.064302Z",
- "iopub.status.busy": "2024-01-10T06:24:33.063926Z",
- "iopub.status.idle": "2024-01-10T06:24:33.282005Z",
- "shell.execute_reply": "2024-01-10T06:24:33.281307Z"
+ "iopub.execute_input": "2024-01-10T15:09:57.464475Z",
+ "iopub.status.busy": "2024-01-10T15:09:57.464040Z",
+ "iopub.status.idle": "2024-01-10T15:09:57.681100Z",
+ "shell.execute_reply": "2024-01-10T15:09:57.680532Z"
}
},
"outputs": [],
@@ -3275,10 +3235,10 @@
"id": "933d6ef0",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:33.285032Z",
- "iopub.status.busy": "2024-01-10T06:24:33.284637Z",
- "iopub.status.idle": "2024-01-10T06:24:38.039867Z",
- "shell.execute_reply": "2024-01-10T06:24:38.039183Z"
+ "iopub.execute_input": "2024-01-10T15:09:57.684107Z",
+ "iopub.status.busy": "2024-01-10T15:09:57.683636Z",
+ "iopub.status.idle": "2024-01-10T15:10:02.403620Z",
+ "shell.execute_reply": "2024-01-10T15:10:02.403082Z"
}
},
"outputs": [
@@ -3351,10 +3311,10 @@
"id": "86bac686",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:38.042406Z",
- "iopub.status.busy": "2024-01-10T06:24:38.042157Z",
- "iopub.status.idle": "2024-01-10T06:24:38.099615Z",
- "shell.execute_reply": "2024-01-10T06:24:38.099002Z"
+ "iopub.execute_input": "2024-01-10T15:10:02.406244Z",
+ "iopub.status.busy": "2024-01-10T15:10:02.405893Z",
+ "iopub.status.idle": "2024-01-10T15:10:02.462753Z",
+ "shell.execute_reply": "2024-01-10T15:10:02.462023Z"
},
"nbsphinx": "hidden"
},
@@ -3398,67 +3358,102 @@
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
- "0193408c614a4e7ba4873c78a9a9bb6f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "0cabd023fdf0459dade56fdbdab8a722": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
"state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_56cad0e7c51f49fbb45538b279800284",
- "placeholder": "",
- "style": "IPY_MODEL_bf748ca37ab847a08123be51451437cc",
- "value": "number of examples processed for estimating thresholds: 100%"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
}
},
- "06974f46f32c4476932bd765003f434a": {
+ "10262fae8e7241aaa83534e155136cc8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_20604eb91f914901b8cd049fe40aed0c",
+ "IPY_MODEL_a4ad64cf3b8e42cbbd156ea3ad023cf0",
+ "IPY_MODEL_c021c3820ba740b698720b87aaae46aa"
+ ],
+ "layout": "IPY_MODEL_7884f1c305fa4100a3bb6774296775e3"
}
},
- "0870fef1c46e4952a7824e05fc431a34": {
+ "20604eb91f914901b8cd049fe40aed0c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
+ "model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
+ "_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
+ "_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_66b6aaa2007c4b1496649534471df1db",
- "max": 30.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_639ef487ed3b42848922bc4d9bae0928",
- "value": 30.0
+ "layout": "IPY_MODEL_0cabd023fdf0459dade56fdbdab8a722",
+ "placeholder": "",
+ "style": "IPY_MODEL_a398413dd01349efb0e6af391f0dd506",
+ "value": "images processed using softmin: 100%"
}
},
- "0fa1181f8e9b40ffb9c9c728c90621b5": {
+ "327d4e33d6c34e26aa9b7dc644a5a780": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3510,7 +3505,7 @@
"width": null
}
},
- "10f6d3dbf30f4eb9b246516eea1577b6": {
+ "3b176614773d47b69402c245a311bef1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -3525,37 +3520,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_bb9aed613f8f4289816e5ab5039366fb",
+ "layout": "IPY_MODEL_5ba9455423fc49b9afd09dd55a76d451",
"placeholder": "",
- "style": "IPY_MODEL_ffbaaada2c4e444c92e4121cd1a4d331",
- "value": "images processed using softmin: 100%"
+ "style": "IPY_MODEL_ea9c235a65204d95915e6252ce4849a9",
+ "value": " 30/30 [00:00<00:00, 405.15it/s]"
}
},
- "11aed75ad6be4af3af712b1b7648058f": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "FloatProgressModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_2f0f6f38ef674c39b106ff3aea167574",
- "max": 30.0,
- "min": 0.0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_4e02709833da447092b32b34e9cd7eea",
- "value": 30.0
- }
- },
- "228f616c7eff4a4fbdd71be5df385c68": {
+ "41785dfc20e04971b132df33fa7c9385": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3607,22 +3578,7 @@
"width": null
}
},
- "230fb679cc3c47188ee2b769167c7d0b": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "24f1f455503e4ea1905214c2491c6a8f": {
+ "59d122979e00418d9d2b44a0649e9c99": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3674,7 +3630,7 @@
"width": null
}
},
- "29a7642e497c4e9b96745b11371f32ef": {
+ "5b31e79b52f449bbb8406036a81145c5": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -3689,35 +3645,37 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_7d8733a782dc4953accc99a9a8b481c9",
+ "layout": "IPY_MODEL_327d4e33d6c34e26aa9b7dc644a5a780",
"placeholder": "",
- "style": "IPY_MODEL_230fb679cc3c47188ee2b769167c7d0b",
- "value": "number of examples processed for checking labels: 100%"
+ "style": "IPY_MODEL_e9ce6ea46e8e4c9fabad8b42c3aeb9f3",
+ "value": " 30/30 [00:36<00:00, 1.25s/it]"
}
},
- "2e3415f4577c42cb941753dfe0086640": {
+ "5b945b8979b1403c81a800af34b66e03": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HBoxModel",
+ "model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
+ "_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_29a7642e497c4e9b96745b11371f32ef",
- "IPY_MODEL_11aed75ad6be4af3af712b1b7648058f",
- "IPY_MODEL_512a68cdbfd0462688ff6b886482cf94"
- ],
- "layout": "IPY_MODEL_228f616c7eff4a4fbdd71be5df385c68"
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d4f8b63ff55f44d0806b2c2907aefec4",
+ "max": 30.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_c6113d8dbfe84dd9b62fdc3abc1bb77f",
+ "value": 30.0
}
},
- "2f0f6f38ef674c39b106ff3aea167574": {
+ "5ba9455423fc49b9afd09dd55a76d451": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3769,22 +3727,7 @@
"width": null
}
},
- "43b3b5ba40fa4150ac9fe67bc77e7088": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "4b2548e688284560a51e01b3a7d4b30a": {
+ "7884f1c305fa4100a3bb6774296775e3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3836,23 +3779,7 @@
"width": null
}
},
- "4e02709833da447092b32b34e9cd7eea": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "512a68cdbfd0462688ff6b886482cf94": {
+ "79d27e5270204d64987b0e80dd9182ed": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -3867,13 +3794,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_4b2548e688284560a51e01b3a7d4b30a",
+ "layout": "IPY_MODEL_a63ee572a83d4d56897761721e4b9463",
"placeholder": "",
- "style": "IPY_MODEL_737617a1f83a4f60aacfbd1431505249",
- "value": " 30/30 [00:36<00:00, 1.22s/it]"
+ "style": "IPY_MODEL_da1005f0226e4c098b0ba80da39e5dde",
+ "value": "number of examples processed for estimating thresholds: 100%"
}
},
- "56cad0e7c51f49fbb45538b279800284": {
+ "7a602a978fd545f79286c9665c899a5f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3925,23 +3852,7 @@
"width": null
}
},
- "639ef487ed3b42848922bc4d9bae0928": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "66b6aaa2007c4b1496649534471df1db": {
+ "7c23cb9954844791b103ca64e83fc5b3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -3993,7 +3904,23 @@
"width": null
}
},
- "737617a1f83a4f60aacfbd1431505249": {
+ "85e8dd09ec894b74b87290c37be9fa4d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "8745eabd766a4561977991454dbae104": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
@@ -4008,7 +3935,77 @@
"description_width": ""
}
},
- "7655e393baf14941a470099ab54010ed": {
+ "9eaf86d2100845cf89b90fbec4d83ff0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "9f5aabf00d6c4045899a995a8dbacb97": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "a398413dd01349efb0e6af391f0dd506": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "a4ad64cf3b8e42cbbd156ea3ad023cf0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_7a602a978fd545f79286c9665c899a5f",
+ "max": 30.0,
+ "min": 0.0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_85e8dd09ec894b74b87290c37be9fa4d",
+ "value": 30.0
+ }
+ },
+ "a63ee572a83d4d56897761721e4b9463": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4060,29 +4057,7 @@
"width": null
}
},
- "7834e62875da4394bdfc03b1501fa4a9": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "HBoxModel",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_0193408c614a4e7ba4873c78a9a9bb6f",
- "IPY_MODEL_0870fef1c46e4952a7824e05fc431a34",
- "IPY_MODEL_8e940a4d278d48d5bb2e566940734bee"
- ],
- "layout": "IPY_MODEL_f9ed9bb79eea437e994e4b439e1c1812"
- }
- },
- "7d8733a782dc4953accc99a9a8b481c9": {
+ "b9a8cc73eed24f51a6f043294d33fa58": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4134,7 +4109,28 @@
"width": null
}
},
- "8e940a4d278d48d5bb2e566940734bee": {
+ "c021c3820ba740b698720b87aaae46aa": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d805351f37ea4bda8b93d3028d6b823b",
+ "placeholder": "",
+ "style": "IPY_MODEL_8745eabd766a4561977991454dbae104",
+ "value": " 30/30 [00:01<00:00, 23.52it/s]"
+ }
+ },
+ "c1b440b00f9f47e78b555fe6d71caf22": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
@@ -4149,13 +4145,13 @@
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_0fa1181f8e9b40ffb9c9c728c90621b5",
+ "layout": "IPY_MODEL_7c23cb9954844791b103ca64e83fc5b3",
"placeholder": "",
- "style": "IPY_MODEL_43b3b5ba40fa4150ac9fe67bc77e7088",
- "value": " 30/30 [00:00<00:00, 426.95it/s]"
+ "style": "IPY_MODEL_9f5aabf00d6c4045899a995a8dbacb97",
+ "value": "number of examples processed for checking labels: 100%"
}
},
- "97e851aacf72467a845502595d456b40": {
+ "c369934d7c86476eb48d4583e720e228": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
@@ -4171,15 +4167,31 @@
"bar_style": "success",
"description": "",
"description_tooltip": null,
- "layout": "IPY_MODEL_24f1f455503e4ea1905214c2491c6a8f",
+ "layout": "IPY_MODEL_59d122979e00418d9d2b44a0649e9c99",
"max": 30.0,
"min": 0.0,
"orientation": "horizontal",
- "style": "IPY_MODEL_edcc710314394fceac64a53876ee634d",
+ "style": "IPY_MODEL_9eaf86d2100845cf89b90fbec4d83ff0",
"value": 30.0
}
},
- "bb9aed613f8f4289816e5ab5039366fb": {
+ "c6113d8dbfe84dd9b62fdc3abc1bb77f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "d4f8b63ff55f44d0806b2c2907aefec4": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4231,22 +4243,7 @@
"width": null
}
},
- "bf748ca37ab847a08123be51451437cc": {
- "model_module": "@jupyter-widgets/controls",
- "model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "c5ba6d8db93145e486d14e332442a993": {
+ "d805351f37ea4bda8b93d3028d6b823b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
@@ -4298,28 +4295,37 @@
"width": null
}
},
- "cb6f5dbf185a4cbca65ae3e7c593eede": {
+ "da1005f0226e4c098b0ba80da39e5dde": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "HTMLModel",
+ "model_name": "DescriptionStyleModel",
"state": {
- "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_c5ba6d8db93145e486d14e332442a993",
- "placeholder": "",
- "style": "IPY_MODEL_06974f46f32c4476932bd765003f434a",
- "value": " 30/30 [00:01<00:00, 22.49it/s]"
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
}
},
- "df32bb08ce9040a1b285945a0db7765e": {
+ "e9ce6ea46e8e4c9fabad8b42c3aeb9f3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "ea68cf0375d04b00803fe43e815130fb": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
@@ -4334,94 +4340,48 @@
"_view_name": "HBoxView",
"box_style": "",
"children": [
- "IPY_MODEL_10f6d3dbf30f4eb9b246516eea1577b6",
- "IPY_MODEL_97e851aacf72467a845502595d456b40",
- "IPY_MODEL_cb6f5dbf185a4cbca65ae3e7c593eede"
+ "IPY_MODEL_c1b440b00f9f47e78b555fe6d71caf22",
+ "IPY_MODEL_c369934d7c86476eb48d4583e720e228",
+ "IPY_MODEL_5b31e79b52f449bbb8406036a81145c5"
],
- "layout": "IPY_MODEL_7655e393baf14941a470099ab54010ed"
+ "layout": "IPY_MODEL_41785dfc20e04971b132df33fa7c9385"
}
},
- "edcc710314394fceac64a53876ee634d": {
+ "ea9c235a65204d95915e6252ce4849a9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "ProgressStyleModel",
+ "model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
+ "_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
- "bar_color": null,
"description_width": ""
}
},
- "f9ed9bb79eea437e994e4b439e1c1812": {
- "model_module": "@jupyter-widgets/base",
- "model_module_version": "1.2.0",
- "model_name": "LayoutModel",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "ffbaaada2c4e444c92e4121cd1a4d331": {
+ "f6f7d2e0db9b4e23bd565eeb1ebe8323": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
- "model_name": "DescriptionStyleModel",
+ "model_name": "HBoxModel",
"state": {
+ "_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
+ "_model_name": "HBoxModel",
"_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_79d27e5270204d64987b0e80dd9182ed",
+ "IPY_MODEL_5b945b8979b1403c81a800af34b66e03",
+ "IPY_MODEL_3b176614773d47b69402c245a311bef1"
+ ],
+ "layout": "IPY_MODEL_b9a8cc73eed24f51a6f043294d33fa58"
}
}
},
diff --git a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb
index 14b0c1a72..cc587dc77 100644
--- a/master/.doctrees/nbsphinx/tutorials/tabular.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/tabular.ipynb
@@ -112,10 +112,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:42.729158Z",
- "iopub.status.busy": "2024-01-10T06:24:42.728964Z",
- "iopub.status.idle": "2024-01-10T06:24:43.794701Z",
- "shell.execute_reply": "2024-01-10T06:24:43.793968Z"
+ "iopub.execute_input": "2024-01-10T15:10:06.731555Z",
+ "iopub.status.busy": "2024-01-10T15:10:06.731098Z",
+ "iopub.status.idle": "2024-01-10T15:10:07.811523Z",
+ "shell.execute_reply": "2024-01-10T15:10:07.810902Z"
},
"nbsphinx": "hidden"
},
@@ -125,7 +125,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -150,10 +150,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:43.797884Z",
- "iopub.status.busy": "2024-01-10T06:24:43.797509Z",
- "iopub.status.idle": "2024-01-10T06:24:43.814538Z",
- "shell.execute_reply": "2024-01-10T06:24:43.814038Z"
+ "iopub.execute_input": "2024-01-10T15:10:07.814997Z",
+ "iopub.status.busy": "2024-01-10T15:10:07.814188Z",
+ "iopub.status.idle": "2024-01-10T15:10:07.833169Z",
+ "shell.execute_reply": "2024-01-10T15:10:07.832624Z"
}
},
"outputs": [],
@@ -194,10 +194,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:43.817105Z",
- "iopub.status.busy": "2024-01-10T06:24:43.816655Z",
- "iopub.status.idle": "2024-01-10T06:24:43.872030Z",
- "shell.execute_reply": "2024-01-10T06:24:43.871363Z"
+ "iopub.execute_input": "2024-01-10T15:10:07.836050Z",
+ "iopub.status.busy": "2024-01-10T15:10:07.835668Z",
+ "iopub.status.idle": "2024-01-10T15:10:07.885520Z",
+ "shell.execute_reply": "2024-01-10T15:10:07.884971Z"
}
},
"outputs": [
@@ -304,10 +304,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:43.874729Z",
- "iopub.status.busy": "2024-01-10T06:24:43.874284Z",
- "iopub.status.idle": "2024-01-10T06:24:43.878216Z",
- "shell.execute_reply": "2024-01-10T06:24:43.877614Z"
+ "iopub.execute_input": "2024-01-10T15:10:07.888062Z",
+ "iopub.status.busy": "2024-01-10T15:10:07.887689Z",
+ "iopub.status.idle": "2024-01-10T15:10:07.891398Z",
+ "shell.execute_reply": "2024-01-10T15:10:07.890891Z"
}
},
"outputs": [],
@@ -328,10 +328,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:43.880614Z",
- "iopub.status.busy": "2024-01-10T06:24:43.880280Z",
- "iopub.status.idle": "2024-01-10T06:24:43.889118Z",
- "shell.execute_reply": "2024-01-10T06:24:43.888491Z"
+ "iopub.execute_input": "2024-01-10T15:10:07.893720Z",
+ "iopub.status.busy": "2024-01-10T15:10:07.893356Z",
+ "iopub.status.idle": "2024-01-10T15:10:07.902385Z",
+ "shell.execute_reply": "2024-01-10T15:10:07.901725Z"
}
},
"outputs": [],
@@ -383,10 +383,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:43.891570Z",
- "iopub.status.busy": "2024-01-10T06:24:43.891224Z",
- "iopub.status.idle": "2024-01-10T06:24:43.894040Z",
- "shell.execute_reply": "2024-01-10T06:24:43.893453Z"
+ "iopub.execute_input": "2024-01-10T15:10:07.904892Z",
+ "iopub.status.busy": "2024-01-10T15:10:07.904653Z",
+ "iopub.status.idle": "2024-01-10T15:10:07.907458Z",
+ "shell.execute_reply": "2024-01-10T15:10:07.906901Z"
}
},
"outputs": [],
@@ -408,10 +408,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:43.896323Z",
- "iopub.status.busy": "2024-01-10T06:24:43.895979Z",
- "iopub.status.idle": "2024-01-10T06:24:44.485147Z",
- "shell.execute_reply": "2024-01-10T06:24:44.484416Z"
+ "iopub.execute_input": "2024-01-10T15:10:07.909680Z",
+ "iopub.status.busy": "2024-01-10T15:10:07.909473Z",
+ "iopub.status.idle": "2024-01-10T15:10:08.495611Z",
+ "shell.execute_reply": "2024-01-10T15:10:08.494992Z"
}
},
"outputs": [],
@@ -445,10 +445,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:44.488107Z",
- "iopub.status.busy": "2024-01-10T06:24:44.487864Z",
- "iopub.status.idle": "2024-01-10T06:24:45.798377Z",
- "shell.execute_reply": "2024-01-10T06:24:45.797616Z"
+ "iopub.execute_input": "2024-01-10T15:10:08.498344Z",
+ "iopub.status.busy": "2024-01-10T15:10:08.498125Z",
+ "iopub.status.idle": "2024-01-10T15:10:09.775405Z",
+ "shell.execute_reply": "2024-01-10T15:10:09.774608Z"
}
},
"outputs": [
@@ -480,10 +480,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:45.801399Z",
- "iopub.status.busy": "2024-01-10T06:24:45.800854Z",
- "iopub.status.idle": "2024-01-10T06:24:45.811242Z",
- "shell.execute_reply": "2024-01-10T06:24:45.810638Z"
+ "iopub.execute_input": "2024-01-10T15:10:09.778762Z",
+ "iopub.status.busy": "2024-01-10T15:10:09.778133Z",
+ "iopub.status.idle": "2024-01-10T15:10:09.788828Z",
+ "shell.execute_reply": "2024-01-10T15:10:09.788286Z"
}
},
"outputs": [
@@ -604,10 +604,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:45.813764Z",
- "iopub.status.busy": "2024-01-10T06:24:45.813278Z",
- "iopub.status.idle": "2024-01-10T06:24:45.817782Z",
- "shell.execute_reply": "2024-01-10T06:24:45.817299Z"
+ "iopub.execute_input": "2024-01-10T15:10:09.791421Z",
+ "iopub.status.busy": "2024-01-10T15:10:09.791212Z",
+ "iopub.status.idle": "2024-01-10T15:10:09.795823Z",
+ "shell.execute_reply": "2024-01-10T15:10:09.795276Z"
}
},
"outputs": [],
@@ -632,10 +632,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:45.820268Z",
- "iopub.status.busy": "2024-01-10T06:24:45.819907Z",
- "iopub.status.idle": "2024-01-10T06:24:45.827154Z",
- "shell.execute_reply": "2024-01-10T06:24:45.826654Z"
+ "iopub.execute_input": "2024-01-10T15:10:09.798077Z",
+ "iopub.status.busy": "2024-01-10T15:10:09.797879Z",
+ "iopub.status.idle": "2024-01-10T15:10:09.805698Z",
+ "shell.execute_reply": "2024-01-10T15:10:09.805152Z"
}
},
"outputs": [],
@@ -657,10 +657,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:45.829331Z",
- "iopub.status.busy": "2024-01-10T06:24:45.829134Z",
- "iopub.status.idle": "2024-01-10T06:24:45.955067Z",
- "shell.execute_reply": "2024-01-10T06:24:45.954445Z"
+ "iopub.execute_input": "2024-01-10T15:10:09.808315Z",
+ "iopub.status.busy": "2024-01-10T15:10:09.807943Z",
+ "iopub.status.idle": "2024-01-10T15:10:09.933595Z",
+ "shell.execute_reply": "2024-01-10T15:10:09.932999Z"
}
},
"outputs": [
@@ -690,10 +690,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:45.957778Z",
- "iopub.status.busy": "2024-01-10T06:24:45.957338Z",
- "iopub.status.idle": "2024-01-10T06:24:45.960533Z",
- "shell.execute_reply": "2024-01-10T06:24:45.960010Z"
+ "iopub.execute_input": "2024-01-10T15:10:09.936259Z",
+ "iopub.status.busy": "2024-01-10T15:10:09.935880Z",
+ "iopub.status.idle": "2024-01-10T15:10:09.938920Z",
+ "shell.execute_reply": "2024-01-10T15:10:09.938378Z"
}
},
"outputs": [],
@@ -714,10 +714,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:45.962889Z",
- "iopub.status.busy": "2024-01-10T06:24:45.962509Z",
- "iopub.status.idle": "2024-01-10T06:24:47.449565Z",
- "shell.execute_reply": "2024-01-10T06:24:47.448717Z"
+ "iopub.execute_input": "2024-01-10T15:10:09.941355Z",
+ "iopub.status.busy": "2024-01-10T15:10:09.940977Z",
+ "iopub.status.idle": "2024-01-10T15:10:11.374923Z",
+ "shell.execute_reply": "2024-01-10T15:10:11.374140Z"
}
},
"outputs": [],
@@ -737,10 +737,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:47.452855Z",
- "iopub.status.busy": "2024-01-10T06:24:47.452615Z",
- "iopub.status.idle": "2024-01-10T06:24:47.467433Z",
- "shell.execute_reply": "2024-01-10T06:24:47.466813Z"
+ "iopub.execute_input": "2024-01-10T15:10:11.377786Z",
+ "iopub.status.busy": "2024-01-10T15:10:11.377568Z",
+ "iopub.status.idle": "2024-01-10T15:10:11.391936Z",
+ "shell.execute_reply": "2024-01-10T15:10:11.391279Z"
}
},
"outputs": [
@@ -770,10 +770,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:47.469992Z",
- "iopub.status.busy": "2024-01-10T06:24:47.469772Z",
- "iopub.status.idle": "2024-01-10T06:24:47.521859Z",
- "shell.execute_reply": "2024-01-10T06:24:47.521269Z"
+ "iopub.execute_input": "2024-01-10T15:10:11.394770Z",
+ "iopub.status.busy": "2024-01-10T15:10:11.394348Z",
+ "iopub.status.idle": "2024-01-10T15:10:11.437897Z",
+ "shell.execute_reply": "2024-01-10T15:10:11.437359Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/text.ipynb b/master/.doctrees/nbsphinx/tutorials/text.ipynb
index dd78280b5..806779347 100644
--- a/master/.doctrees/nbsphinx/tutorials/text.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/text.ipynb
@@ -114,10 +114,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:52.618988Z",
- "iopub.status.busy": "2024-01-10T06:24:52.618787Z",
- "iopub.status.idle": "2024-01-10T06:24:54.768251Z",
- "shell.execute_reply": "2024-01-10T06:24:54.767619Z"
+ "iopub.execute_input": "2024-01-10T15:10:16.790552Z",
+ "iopub.status.busy": "2024-01-10T15:10:16.790082Z",
+ "iopub.status.idle": "2024-01-10T15:10:18.889335Z",
+ "shell.execute_reply": "2024-01-10T15:10:18.888712Z"
},
"nbsphinx": "hidden"
},
@@ -134,7 +134,7 @@
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -159,10 +159,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:54.771423Z",
- "iopub.status.busy": "2024-01-10T06:24:54.770954Z",
- "iopub.status.idle": "2024-01-10T06:24:54.774574Z",
- "shell.execute_reply": "2024-01-10T06:24:54.774036Z"
+ "iopub.execute_input": "2024-01-10T15:10:18.892121Z",
+ "iopub.status.busy": "2024-01-10T15:10:18.891795Z",
+ "iopub.status.idle": "2024-01-10T15:10:18.895297Z",
+ "shell.execute_reply": "2024-01-10T15:10:18.894789Z"
}
},
"outputs": [],
@@ -184,10 +184,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:54.777223Z",
- "iopub.status.busy": "2024-01-10T06:24:54.776831Z",
- "iopub.status.idle": "2024-01-10T06:24:54.780144Z",
- "shell.execute_reply": "2024-01-10T06:24:54.779593Z"
+ "iopub.execute_input": "2024-01-10T15:10:18.897631Z",
+ "iopub.status.busy": "2024-01-10T15:10:18.897294Z",
+ "iopub.status.idle": "2024-01-10T15:10:18.900472Z",
+ "shell.execute_reply": "2024-01-10T15:10:18.899942Z"
},
"nbsphinx": "hidden"
},
@@ -218,10 +218,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:54.782533Z",
- "iopub.status.busy": "2024-01-10T06:24:54.782227Z",
- "iopub.status.idle": "2024-01-10T06:24:54.838961Z",
- "shell.execute_reply": "2024-01-10T06:24:54.838278Z"
+ "iopub.execute_input": "2024-01-10T15:10:18.902850Z",
+ "iopub.status.busy": "2024-01-10T15:10:18.902503Z",
+ "iopub.status.idle": "2024-01-10T15:10:18.950825Z",
+ "shell.execute_reply": "2024-01-10T15:10:18.950198Z"
}
},
"outputs": [
@@ -311,10 +311,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:54.841750Z",
- "iopub.status.busy": "2024-01-10T06:24:54.841341Z",
- "iopub.status.idle": "2024-01-10T06:24:54.845275Z",
- "shell.execute_reply": "2024-01-10T06:24:54.844697Z"
+ "iopub.execute_input": "2024-01-10T15:10:18.953409Z",
+ "iopub.status.busy": "2024-01-10T15:10:18.953034Z",
+ "iopub.status.idle": "2024-01-10T15:10:18.956975Z",
+ "shell.execute_reply": "2024-01-10T15:10:18.956461Z"
}
},
"outputs": [],
@@ -329,10 +329,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:54.847786Z",
- "iopub.status.busy": "2024-01-10T06:24:54.847407Z",
- "iopub.status.idle": "2024-01-10T06:24:54.851172Z",
- "shell.execute_reply": "2024-01-10T06:24:54.850541Z"
+ "iopub.execute_input": "2024-01-10T15:10:18.959537Z",
+ "iopub.status.busy": "2024-01-10T15:10:18.959163Z",
+ "iopub.status.idle": "2024-01-10T15:10:18.962874Z",
+ "shell.execute_reply": "2024-01-10T15:10:18.962229Z"
}
},
"outputs": [
@@ -341,7 +341,7 @@
"output_type": "stream",
"text": [
"This dataset has 10 classes.\n",
- "Classes: {'getting_spare_card', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'change_pin', 'card_about_to_expire', 'beneficiary_not_allowed', 'cancel_transfer', 'supported_cards_and_currencies', 'card_payment_fee_charged'}\n"
+ "Classes: {'card_payment_fee_charged', 'getting_spare_card', 'beneficiary_not_allowed', 'card_about_to_expire', 'cancel_transfer', 'visa_or_mastercard', 'change_pin', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'apple_pay_or_google_pay'}\n"
]
}
],
@@ -364,10 +364,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:54.853595Z",
- "iopub.status.busy": "2024-01-10T06:24:54.853213Z",
- "iopub.status.idle": "2024-01-10T06:24:54.856682Z",
- "shell.execute_reply": "2024-01-10T06:24:54.856054Z"
+ "iopub.execute_input": "2024-01-10T15:10:18.965276Z",
+ "iopub.status.busy": "2024-01-10T15:10:18.964930Z",
+ "iopub.status.idle": "2024-01-10T15:10:18.968315Z",
+ "shell.execute_reply": "2024-01-10T15:10:18.967709Z"
}
},
"outputs": [
@@ -408,10 +408,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:54.858931Z",
- "iopub.status.busy": "2024-01-10T06:24:54.858734Z",
- "iopub.status.idle": "2024-01-10T06:24:54.862328Z",
- "shell.execute_reply": "2024-01-10T06:24:54.861802Z"
+ "iopub.execute_input": "2024-01-10T15:10:18.970723Z",
+ "iopub.status.busy": "2024-01-10T15:10:18.970346Z",
+ "iopub.status.idle": "2024-01-10T15:10:18.973815Z",
+ "shell.execute_reply": "2024-01-10T15:10:18.973276Z"
}
},
"outputs": [],
@@ -452,10 +452,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:24:54.864650Z",
- "iopub.status.busy": "2024-01-10T06:24:54.864455Z",
- "iopub.status.idle": "2024-01-10T06:25:03.694998Z",
- "shell.execute_reply": "2024-01-10T06:25:03.694259Z"
+ "iopub.execute_input": "2024-01-10T15:10:18.976281Z",
+ "iopub.status.busy": "2024-01-10T15:10:18.975813Z",
+ "iopub.status.idle": "2024-01-10T15:10:27.589830Z",
+ "shell.execute_reply": "2024-01-10T15:10:27.589082Z"
}
},
"outputs": [
@@ -502,10 +502,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:25:03.698230Z",
- "iopub.status.busy": "2024-01-10T06:25:03.697870Z",
- "iopub.status.idle": "2024-01-10T06:25:03.701022Z",
- "shell.execute_reply": "2024-01-10T06:25:03.700397Z"
+ "iopub.execute_input": "2024-01-10T15:10:27.593536Z",
+ "iopub.status.busy": "2024-01-10T15:10:27.592977Z",
+ "iopub.status.idle": "2024-01-10T15:10:27.596244Z",
+ "shell.execute_reply": "2024-01-10T15:10:27.595606Z"
}
},
"outputs": [],
@@ -527,10 +527,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:25:03.703600Z",
- "iopub.status.busy": "2024-01-10T06:25:03.703134Z",
- "iopub.status.idle": "2024-01-10T06:25:03.706162Z",
- "shell.execute_reply": "2024-01-10T06:25:03.705544Z"
+ "iopub.execute_input": "2024-01-10T15:10:27.598714Z",
+ "iopub.status.busy": "2024-01-10T15:10:27.598260Z",
+ "iopub.status.idle": "2024-01-10T15:10:27.601298Z",
+ "shell.execute_reply": "2024-01-10T15:10:27.600678Z"
}
},
"outputs": [],
@@ -545,10 +545,10 @@
"execution_count": 12,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:25:03.708555Z",
- "iopub.status.busy": "2024-01-10T06:25:03.708183Z",
- "iopub.status.idle": "2024-01-10T06:25:05.979551Z",
- "shell.execute_reply": "2024-01-10T06:25:05.978797Z"
+ "iopub.execute_input": "2024-01-10T15:10:27.603699Z",
+ "iopub.status.busy": "2024-01-10T15:10:27.603332Z",
+ "iopub.status.idle": "2024-01-10T15:10:29.839909Z",
+ "shell.execute_reply": "2024-01-10T15:10:29.839076Z"
},
"scrolled": true
},
@@ -571,10 +571,10 @@
"execution_count": 13,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:25:05.983253Z",
- "iopub.status.busy": "2024-01-10T06:25:05.982458Z",
- "iopub.status.idle": "2024-01-10T06:25:05.990517Z",
- "shell.execute_reply": "2024-01-10T06:25:05.989921Z"
+ "iopub.execute_input": "2024-01-10T15:10:29.843986Z",
+ "iopub.status.busy": "2024-01-10T15:10:29.842887Z",
+ "iopub.status.idle": "2024-01-10T15:10:29.851253Z",
+ "shell.execute_reply": "2024-01-10T15:10:29.850730Z"
}
},
"outputs": [
@@ -675,10 +675,10 @@
"execution_count": 14,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:25:05.993149Z",
- "iopub.status.busy": "2024-01-10T06:25:05.992845Z",
- "iopub.status.idle": "2024-01-10T06:25:05.996822Z",
- "shell.execute_reply": "2024-01-10T06:25:05.996286Z"
+ "iopub.execute_input": "2024-01-10T15:10:29.853752Z",
+ "iopub.status.busy": "2024-01-10T15:10:29.853315Z",
+ "iopub.status.idle": "2024-01-10T15:10:29.857532Z",
+ "shell.execute_reply": "2024-01-10T15:10:29.856980Z"
}
},
"outputs": [],
@@ -692,10 +692,10 @@
"execution_count": 15,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:25:05.999247Z",
- "iopub.status.busy": "2024-01-10T06:25:05.998879Z",
- "iopub.status.idle": "2024-01-10T06:25:06.002319Z",
- "shell.execute_reply": "2024-01-10T06:25:06.001677Z"
+ "iopub.execute_input": "2024-01-10T15:10:29.859922Z",
+ "iopub.status.busy": "2024-01-10T15:10:29.859552Z",
+ "iopub.status.idle": "2024-01-10T15:10:29.862975Z",
+ "shell.execute_reply": "2024-01-10T15:10:29.862318Z"
}
},
"outputs": [
@@ -730,10 +730,10 @@
"execution_count": 16,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:25:06.004793Z",
- "iopub.status.busy": "2024-01-10T06:25:06.004424Z",
- "iopub.status.idle": "2024-01-10T06:25:06.007616Z",
- "shell.execute_reply": "2024-01-10T06:25:06.007047Z"
+ "iopub.execute_input": "2024-01-10T15:10:29.865590Z",
+ "iopub.status.busy": "2024-01-10T15:10:29.865060Z",
+ "iopub.status.idle": "2024-01-10T15:10:29.868486Z",
+ "shell.execute_reply": "2024-01-10T15:10:29.867944Z"
}
},
"outputs": [],
@@ -753,10 +753,10 @@
"execution_count": 17,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:25:06.009917Z",
- "iopub.status.busy": "2024-01-10T06:25:06.009623Z",
- "iopub.status.idle": "2024-01-10T06:25:06.017029Z",
- "shell.execute_reply": "2024-01-10T06:25:06.016419Z"
+ "iopub.execute_input": "2024-01-10T15:10:29.870591Z",
+ "iopub.status.busy": "2024-01-10T15:10:29.870397Z",
+ "iopub.status.idle": "2024-01-10T15:10:29.877780Z",
+ "shell.execute_reply": "2024-01-10T15:10:29.877252Z"
}
},
"outputs": [
@@ -881,10 +881,10 @@
"execution_count": 18,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:25:06.019636Z",
- "iopub.status.busy": "2024-01-10T06:25:06.019266Z",
- "iopub.status.idle": "2024-01-10T06:25:06.263328Z",
- "shell.execute_reply": "2024-01-10T06:25:06.262591Z"
+ "iopub.execute_input": "2024-01-10T15:10:29.880219Z",
+ "iopub.status.busy": "2024-01-10T15:10:29.880022Z",
+ "iopub.status.idle": "2024-01-10T15:10:30.144805Z",
+ "shell.execute_reply": "2024-01-10T15:10:30.144168Z"
},
"scrolled": true
},
@@ -923,10 +923,10 @@
"execution_count": 19,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:25:06.266421Z",
- "iopub.status.busy": "2024-01-10T06:25:06.265949Z",
- "iopub.status.idle": "2024-01-10T06:25:06.566167Z",
- "shell.execute_reply": "2024-01-10T06:25:06.565453Z"
+ "iopub.execute_input": "2024-01-10T15:10:30.148970Z",
+ "iopub.status.busy": "2024-01-10T15:10:30.147638Z",
+ "iopub.status.idle": "2024-01-10T15:10:30.428192Z",
+ "shell.execute_reply": "2024-01-10T15:10:30.427509Z"
},
"scrolled": true
},
@@ -959,10 +959,10 @@
"execution_count": 20,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:25:06.569388Z",
- "iopub.status.busy": "2024-01-10T06:25:06.568888Z",
- "iopub.status.idle": "2024-01-10T06:25:06.573451Z",
- "shell.execute_reply": "2024-01-10T06:25:06.572835Z"
+ "iopub.execute_input": "2024-01-10T15:10:30.432036Z",
+ "iopub.status.busy": "2024-01-10T15:10:30.431584Z",
+ "iopub.status.idle": "2024-01-10T15:10:30.437238Z",
+ "shell.execute_reply": "2024-01-10T15:10:30.436640Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb
index 02e4c67c0..c750e759e 100644
--- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb
+++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb
@@ -75,10 +75,10 @@
"id": "ae8a08e0",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:25:11.829123Z",
- "iopub.status.busy": "2024-01-10T06:25:11.828927Z",
- "iopub.status.idle": "2024-01-10T06:25:13.287001Z",
- "shell.execute_reply": "2024-01-10T06:25:13.286300Z"
+ "iopub.execute_input": "2024-01-10T15:10:35.984210Z",
+ "iopub.status.busy": "2024-01-10T15:10:35.984011Z",
+ "iopub.status.idle": "2024-01-10T15:10:37.320142Z",
+ "shell.execute_reply": "2024-01-10T15:10:37.319429Z"
}
},
"outputs": [
@@ -86,7 +86,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "--2024-01-10 06:25:11-- https://data.deepai.org/conll2003.zip\r\n",
+ "--2024-01-10 15:10:36-- https://data.deepai.org/conll2003.zip\r\n",
"Resolving data.deepai.org (data.deepai.org)... "
]
},
@@ -94,9 +94,23 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "185.93.1.247, 2400:52e0:1a00::1070:1\r\n",
- "Connecting to data.deepai.org (data.deepai.org)|185.93.1.247|:443... connected.\r\n",
- "HTTP request sent, awaiting response... 200 OK\r\n",
+ "185.93.1.247, 2400:52e0:1a00::1069:1\r\n",
+ "Connecting to data.deepai.org (data.deepai.org)|185.93.1.247|:443... "
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "connected.\r\n",
+ "HTTP request sent, awaiting response... "
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "200 OK\r\n",
"Length: 982975 (960K) [application/zip]\r\n",
"Saving to: ‘conll2003.zip’\r\n",
"\r\n",
@@ -109,9 +123,9 @@
"output_type": "stream",
"text": [
"\r",
- "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.01s \r\n",
+ "conll2003.zip 100%[===================>] 959.94K 6.19MB/s in 0.2s \r\n",
"\r\n",
- "2024-01-10 06:25:12 (93.5 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
+ "2024-01-10 15:10:36 (6.19 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n",
"\r\n",
"mkdir: cannot create directory ‘data’: File exists\r\n"
]
@@ -123,23 +137,24 @@
"Archive: conll2003.zip\r\n",
" inflating: data/metadata \r\n",
" inflating: data/test.txt \r\n",
- " inflating: data/train.txt \r\n",
- " inflating: data/valid.txt \r\n"
+ " inflating: data/train.txt "
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "--2024-01-10 06:25:12-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
- "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.203.65, 3.5.25.47, 54.231.172.185, ...\r\n",
- "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.203.65|:443... connected.\r\n"
+ "\r\n",
+ " inflating: data/valid.txt \r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
+ "--2024-01-10 15:10:36-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n",
+ "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.241.84, 3.5.25.164, 3.5.25.202, ...\r\n",
+ "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.241.84|:443... connected.\r\n",
"HTTP request sent, awaiting response... "
]
},
@@ -160,17 +175,9 @@
"output_type": "stream",
"text": [
"\r",
- "pred_probs.npz 64%[===========> ] 10.46M 52.3MB/s "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "pred_probs.npz 100%[===================>] 16.26M 53.8MB/s in 0.3s \r\n",
+ "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.1s \r\n",
"\r\n",
- "2024-01-10 06:25:13 (53.8 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
+ "2024-01-10 15:10:37 (115 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n",
"\r\n"
]
}
@@ -187,10 +194,10 @@
"id": "439b0305",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:25:13.289925Z",
- "iopub.status.busy": "2024-01-10T06:25:13.289508Z",
- "iopub.status.idle": "2024-01-10T06:25:14.320211Z",
- "shell.execute_reply": "2024-01-10T06:25:14.319499Z"
+ "iopub.execute_input": "2024-01-10T15:10:37.323300Z",
+ "iopub.status.busy": "2024-01-10T15:10:37.322818Z",
+ "iopub.status.idle": "2024-01-10T15:10:38.382549Z",
+ "shell.execute_reply": "2024-01-10T15:10:38.381846Z"
},
"nbsphinx": "hidden"
},
@@ -201,7 +208,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
@@ -227,10 +234,10 @@
"id": "a1349304",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:25:14.323244Z",
- "iopub.status.busy": "2024-01-10T06:25:14.322862Z",
- "iopub.status.idle": "2024-01-10T06:25:14.326575Z",
- "shell.execute_reply": "2024-01-10T06:25:14.326063Z"
+ "iopub.execute_input": "2024-01-10T15:10:38.385611Z",
+ "iopub.status.busy": "2024-01-10T15:10:38.385072Z",
+ "iopub.status.idle": "2024-01-10T15:10:38.388744Z",
+ "shell.execute_reply": "2024-01-10T15:10:38.388204Z"
}
},
"outputs": [],
@@ -280,10 +287,10 @@
"id": "ab9d59a0",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:25:14.329189Z",
- "iopub.status.busy": "2024-01-10T06:25:14.328717Z",
- "iopub.status.idle": "2024-01-10T06:25:14.332104Z",
- "shell.execute_reply": "2024-01-10T06:25:14.331612Z"
+ "iopub.execute_input": "2024-01-10T15:10:38.391232Z",
+ "iopub.status.busy": "2024-01-10T15:10:38.390763Z",
+ "iopub.status.idle": "2024-01-10T15:10:38.394013Z",
+ "shell.execute_reply": "2024-01-10T15:10:38.393407Z"
},
"nbsphinx": "hidden"
},
@@ -301,10 +308,10 @@
"id": "519cb80c",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:25:14.334506Z",
- "iopub.status.busy": "2024-01-10T06:25:14.334060Z",
- "iopub.status.idle": "2024-01-10T06:25:22.328376Z",
- "shell.execute_reply": "2024-01-10T06:25:22.327664Z"
+ "iopub.execute_input": "2024-01-10T15:10:38.396403Z",
+ "iopub.status.busy": "2024-01-10T15:10:38.395914Z",
+ "iopub.status.idle": "2024-01-10T15:10:46.275104Z",
+ "shell.execute_reply": "2024-01-10T15:10:46.274509Z"
}
},
"outputs": [],
@@ -378,10 +385,10 @@
"id": "202f1526",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:25:22.331443Z",
- "iopub.status.busy": "2024-01-10T06:25:22.331210Z",
- "iopub.status.idle": "2024-01-10T06:25:22.337488Z",
- "shell.execute_reply": "2024-01-10T06:25:22.336872Z"
+ "iopub.execute_input": "2024-01-10T15:10:46.278341Z",
+ "iopub.status.busy": "2024-01-10T15:10:46.277773Z",
+ "iopub.status.idle": "2024-01-10T15:10:46.283971Z",
+ "shell.execute_reply": "2024-01-10T15:10:46.283371Z"
},
"nbsphinx": "hidden"
},
@@ -421,10 +428,10 @@
"id": "a4381f03",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:25:22.339951Z",
- "iopub.status.busy": "2024-01-10T06:25:22.339480Z",
- "iopub.status.idle": "2024-01-10T06:25:22.800732Z",
- "shell.execute_reply": "2024-01-10T06:25:22.799973Z"
+ "iopub.execute_input": "2024-01-10T15:10:46.286389Z",
+ "iopub.status.busy": "2024-01-10T15:10:46.286016Z",
+ "iopub.status.idle": "2024-01-10T15:10:46.716858Z",
+ "shell.execute_reply": "2024-01-10T15:10:46.716253Z"
}
},
"outputs": [],
@@ -461,10 +468,10 @@
"id": "7842e4a3",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:25:22.803694Z",
- "iopub.status.busy": "2024-01-10T06:25:22.803441Z",
- "iopub.status.idle": "2024-01-10T06:25:22.809754Z",
- "shell.execute_reply": "2024-01-10T06:25:22.809121Z"
+ "iopub.execute_input": "2024-01-10T15:10:46.719903Z",
+ "iopub.status.busy": "2024-01-10T15:10:46.719490Z",
+ "iopub.status.idle": "2024-01-10T15:10:46.725601Z",
+ "shell.execute_reply": "2024-01-10T15:10:46.724970Z"
}
},
"outputs": [
@@ -536,10 +543,10 @@
"id": "2c2ad9ad",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:25:22.812247Z",
- "iopub.status.busy": "2024-01-10T06:25:22.811889Z",
- "iopub.status.idle": "2024-01-10T06:25:24.829457Z",
- "shell.execute_reply": "2024-01-10T06:25:24.828653Z"
+ "iopub.execute_input": "2024-01-10T15:10:46.728384Z",
+ "iopub.status.busy": "2024-01-10T15:10:46.727907Z",
+ "iopub.status.idle": "2024-01-10T15:10:48.714011Z",
+ "shell.execute_reply": "2024-01-10T15:10:48.713188Z"
}
},
"outputs": [],
@@ -561,10 +568,10 @@
"id": "95dc7268",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:25:24.833068Z",
- "iopub.status.busy": "2024-01-10T06:25:24.832222Z",
- "iopub.status.idle": "2024-01-10T06:25:24.839537Z",
- "shell.execute_reply": "2024-01-10T06:25:24.838871Z"
+ "iopub.execute_input": "2024-01-10T15:10:48.717702Z",
+ "iopub.status.busy": "2024-01-10T15:10:48.716931Z",
+ "iopub.status.idle": "2024-01-10T15:10:48.724053Z",
+ "shell.execute_reply": "2024-01-10T15:10:48.723390Z"
}
},
"outputs": [
@@ -600,10 +607,10 @@
"id": "e13de188",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:25:24.842146Z",
- "iopub.status.busy": "2024-01-10T06:25:24.841643Z",
- "iopub.status.idle": "2024-01-10T06:25:24.866755Z",
- "shell.execute_reply": "2024-01-10T06:25:24.866053Z"
+ "iopub.execute_input": "2024-01-10T15:10:48.726479Z",
+ "iopub.status.busy": "2024-01-10T15:10:48.726260Z",
+ "iopub.status.idle": "2024-01-10T15:10:48.744195Z",
+ "shell.execute_reply": "2024-01-10T15:10:48.743625Z"
}
},
"outputs": [
@@ -781,10 +788,10 @@
"id": "e4a006bd",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:25:24.869362Z",
- "iopub.status.busy": "2024-01-10T06:25:24.869006Z",
- "iopub.status.idle": "2024-01-10T06:25:24.901803Z",
- "shell.execute_reply": "2024-01-10T06:25:24.901116Z"
+ "iopub.execute_input": "2024-01-10T15:10:48.746569Z",
+ "iopub.status.busy": "2024-01-10T15:10:48.746363Z",
+ "iopub.status.idle": "2024-01-10T15:10:48.779493Z",
+ "shell.execute_reply": "2024-01-10T15:10:48.778801Z"
}
},
"outputs": [
@@ -886,10 +893,10 @@
"id": "c8f4e163",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:25:24.904601Z",
- "iopub.status.busy": "2024-01-10T06:25:24.904369Z",
- "iopub.status.idle": "2024-01-10T06:25:24.912699Z",
- "shell.execute_reply": "2024-01-10T06:25:24.912132Z"
+ "iopub.execute_input": "2024-01-10T15:10:48.782066Z",
+ "iopub.status.busy": "2024-01-10T15:10:48.781813Z",
+ "iopub.status.idle": "2024-01-10T15:10:48.790722Z",
+ "shell.execute_reply": "2024-01-10T15:10:48.790178Z"
}
},
"outputs": [
@@ -963,10 +970,10 @@
"id": "db0b5179",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:25:24.915153Z",
- "iopub.status.busy": "2024-01-10T06:25:24.914932Z",
- "iopub.status.idle": "2024-01-10T06:25:26.819403Z",
- "shell.execute_reply": "2024-01-10T06:25:26.818778Z"
+ "iopub.execute_input": "2024-01-10T15:10:48.793202Z",
+ "iopub.status.busy": "2024-01-10T15:10:48.792863Z",
+ "iopub.status.idle": "2024-01-10T15:10:50.628648Z",
+ "shell.execute_reply": "2024-01-10T15:10:50.628005Z"
}
},
"outputs": [
@@ -1138,10 +1145,10 @@
"id": "a18795eb",
"metadata": {
"execution": {
- "iopub.execute_input": "2024-01-10T06:25:26.821955Z",
- "iopub.status.busy": "2024-01-10T06:25:26.821736Z",
- "iopub.status.idle": "2024-01-10T06:25:26.826080Z",
- "shell.execute_reply": "2024-01-10T06:25:26.825582Z"
+ "iopub.execute_input": "2024-01-10T15:10:50.631396Z",
+ "iopub.status.busy": "2024-01-10T15:10:50.630923Z",
+ "iopub.status.idle": "2024-01-10T15:10:50.635324Z",
+ "shell.execute_reply": "2024-01-10T15:10:50.634741Z"
},
"nbsphinx": "hidden"
},
diff --git a/master/.doctrees/tutorials/audio.doctree b/master/.doctrees/tutorials/audio.doctree
index 4741172b9..b1794ab7f 100644
Binary files a/master/.doctrees/tutorials/audio.doctree and b/master/.doctrees/tutorials/audio.doctree differ
diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree
index d8c5fc111..d1de850df 100644
Binary files a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree and b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree differ
diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree
index 6521938d2..3a1cbc113 100644
Binary files a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree and b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree differ
diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree
index baf5b1b06..9086c7554 100644
Binary files a/master/.doctrees/tutorials/datalab/index.doctree and b/master/.doctrees/tutorials/datalab/index.doctree differ
diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree
index 956200ca7..65c550ca4 100644
Binary files a/master/.doctrees/tutorials/datalab/tabular.doctree and b/master/.doctrees/tutorials/datalab/tabular.doctree differ
diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree
index 769e8e3e3..c39250611 100644
Binary files a/master/.doctrees/tutorials/datalab/text.doctree and b/master/.doctrees/tutorials/datalab/text.doctree differ
diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree
index 7fad30364..f01281abd 100644
Binary files a/master/.doctrees/tutorials/dataset_health.doctree and b/master/.doctrees/tutorials/dataset_health.doctree differ
diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree
index 61f8a96d5..70fd685c8 100644
Binary files a/master/.doctrees/tutorials/faq.doctree and b/master/.doctrees/tutorials/faq.doctree differ
diff --git a/master/.doctrees/tutorials/image.doctree b/master/.doctrees/tutorials/image.doctree
index 39739e8c9..c23e7b265 100644
Binary files a/master/.doctrees/tutorials/image.doctree and b/master/.doctrees/tutorials/image.doctree differ
diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree
index bd48d39c3..cb96da588 100644
Binary files a/master/.doctrees/tutorials/indepth_overview.doctree and b/master/.doctrees/tutorials/indepth_overview.doctree differ
diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree
index fe41afd8f..0de3f89ac 100644
Binary files a/master/.doctrees/tutorials/index.doctree and b/master/.doctrees/tutorials/index.doctree differ
diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree
index 31e89bb8b..6bb179c72 100644
Binary files a/master/.doctrees/tutorials/multiannotator.doctree and b/master/.doctrees/tutorials/multiannotator.doctree differ
diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree
index 45d517721..0bc1cf2b1 100644
Binary files a/master/.doctrees/tutorials/multilabel_classification.doctree and b/master/.doctrees/tutorials/multilabel_classification.doctree differ
diff --git a/master/.doctrees/tutorials/object_detection.doctree b/master/.doctrees/tutorials/object_detection.doctree
index 8adf5a8fb..52e86bff5 100644
Binary files a/master/.doctrees/tutorials/object_detection.doctree and b/master/.doctrees/tutorials/object_detection.doctree differ
diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree
index fbbac4dc2..2db8a7393 100644
Binary files a/master/.doctrees/tutorials/outliers.doctree and b/master/.doctrees/tutorials/outliers.doctree differ
diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree
index b052e4363..dc000447b 100644
Binary files a/master/.doctrees/tutorials/pred_probs_cross_val.doctree and b/master/.doctrees/tutorials/pred_probs_cross_val.doctree differ
diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree
index 3a586d1dc..2b91d9e84 100644
Binary files a/master/.doctrees/tutorials/regression.doctree and b/master/.doctrees/tutorials/regression.doctree differ
diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree
index 8ecff6aa1..f0380a59f 100644
Binary files a/master/.doctrees/tutorials/segmentation.doctree and b/master/.doctrees/tutorials/segmentation.doctree differ
diff --git a/master/.doctrees/tutorials/tabular.doctree b/master/.doctrees/tutorials/tabular.doctree
index 544d5c041..c0ce8123b 100644
Binary files a/master/.doctrees/tutorials/tabular.doctree and b/master/.doctrees/tutorials/tabular.doctree differ
diff --git a/master/.doctrees/tutorials/text.doctree b/master/.doctrees/tutorials/text.doctree
index adb335a6e..b0cbcfbe5 100644
Binary files a/master/.doctrees/tutorials/text.doctree and b/master/.doctrees/tutorials/text.doctree differ
diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree
index e58d2cfa6..9cdd0b2d2 100644
Binary files a/master/.doctrees/tutorials/token_classification.doctree and b/master/.doctrees/tutorials/token_classification.doctree differ
diff --git a/master/_sources/tutorials/audio.ipynb b/master/_sources/tutorials/audio.ipynb
index 78bcabc0a..d9ab1c6c3 100644
--- a/master/_sources/tutorials/audio.ipynb
+++ b/master/_sources/tutorials/audio.ipynb
@@ -91,7 +91,7 @@
"os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb
index 873924016..e115c5ace 100644
--- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb
+++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb
@@ -87,7 +87,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
index cdd9591b7..556c44fbc 100644
--- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
+++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
@@ -85,7 +85,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb
index 8b5de05e2..0e79f0d34 100644
--- a/master/_sources/tutorials/datalab/tabular.ipynb
+++ b/master/_sources/tutorials/datalab/tabular.ipynb
@@ -81,7 +81,7 @@
"dependencies = [\"cleanlab\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb
index 0564cdc9b..6c795d6bb 100644
--- a/master/_sources/tutorials/datalab/text.ipynb
+++ b/master/_sources/tutorials/datalab/text.ipynb
@@ -90,7 +90,7 @@
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb
index c6c80e9ab..a3b02f334 100644
--- a/master/_sources/tutorials/dataset_health.ipynb
+++ b/master/_sources/tutorials/dataset_health.ipynb
@@ -77,7 +77,7 @@
"dependencies = [\"cleanlab\", \"requests\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb
index c4902b61d..8ee2a8950 100644
--- a/master/_sources/tutorials/indepth_overview.ipynb
+++ b/master/_sources/tutorials/indepth_overview.ipynb
@@ -62,7 +62,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb
index 87c720199..fc1d97f22 100644
--- a/master/_sources/tutorials/multiannotator.ipynb
+++ b/master/_sources/tutorials/multiannotator.ipynb
@@ -96,7 +96,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb
index 47d015b46..23450f927 100644
--- a/master/_sources/tutorials/multilabel_classification.ipynb
+++ b/master/_sources/tutorials/multilabel_classification.ipynb
@@ -72,7 +72,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb
index eb416a0f5..5467949e5 100644
--- a/master/_sources/tutorials/object_detection.ipynb
+++ b/master/_sources/tutorials/object_detection.ipynb
@@ -77,7 +77,7 @@
"dependencies = [\"cleanlab\", \"matplotlib\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb
index 205c8a7e4..8233fda47 100644
--- a/master/_sources/tutorials/outliers.ipynb
+++ b/master/_sources/tutorials/outliers.ipynb
@@ -119,7 +119,7 @@
"dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb
index 0e51ee787..4b914bd5f 100644
--- a/master/_sources/tutorials/regression.ipynb
+++ b/master/_sources/tutorials/regression.ipynb
@@ -103,7 +103,7 @@
"dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb
index 284494365..ce974e38c 100644
--- a/master/_sources/tutorials/segmentation.ipynb
+++ b/master/_sources/tutorials/segmentation.ipynb
@@ -91,7 +91,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/tabular.ipynb b/master/_sources/tutorials/tabular.ipynb
index cba87f74e..71b3bb363 100644
--- a/master/_sources/tutorials/tabular.ipynb
+++ b/master/_sources/tutorials/tabular.ipynb
@@ -119,7 +119,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/text.ipynb b/master/_sources/tutorials/text.ipynb
index da8832d68..8b5988838 100644
--- a/master/_sources/tutorials/text.ipynb
+++ b/master/_sources/tutorials/text.ipynb
@@ -128,7 +128,7 @@
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb
index 78b871e9a..cb1b95cae 100644
--- a/master/_sources/tutorials/token_classification.ipynb
+++ b/master/_sources/tutorials/token_classification.ipynb
@@ -95,7 +95,7 @@
"dependencies = [\"cleanlab\"]\n",
"\n",
"if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n",
- " %pip install git+https://github.com/cleanlab/cleanlab.git@ae085b45b538e73a059d6a9ef10d747e590ce755\n",
+ " %pip install git+https://github.com/cleanlab/cleanlab.git@b2de6bbefb660b6545cc1ec5020d5b910c25ad73\n",
" cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
" %pip install $cmd\n",
"else:\n",
diff --git a/master/searchindex.js b/master/searchindex.js
index 5aae23d45..34bb1f0e1 100644
--- a/master/searchindex.js
+++ b/master/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 72, 74, 75, 82, 84, 85], "helper": [1, 14, 33, 37, 39, 40, 41, 42, 43, 44, 56, 79, 81, 93], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 24, 25, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "us": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 71, 72, 74, 79, 83, 88], "benchmark": [1, 30, 71, 72, 74, 75, 82, 84, 85], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88], "": [1, 2, 3, 8, 29, 30, 34, 37, 40, 42, 44, 49, 50, 54, 56, 57, 58, 59, 61, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "core": [1, 4, 33, 35, 63, 65, 90], "algorithm": [1, 2, 6, 8, 26, 31, 44, 49, 58, 67, 69, 71, 80, 82, 84, 93], "These": [1, 2, 3, 6, 8, 18, 32, 35, 36, 47, 49, 50, 53, 57, 58, 62, 66, 67, 69, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "introduc": [1, 73, 80, 82], "synthet": [1, 84, 85, 90], "nois": [1, 2, 3, 29, 35, 38, 44, 50, 74, 75, 79, 84], "label": [1, 2, 3, 4, 5, 6, 7, 10, 14, 17, 18, 19, 24, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 74, 79, 83, 87, 88], "classif": [1, 3, 4, 5, 8, 12, 14, 27, 29, 33, 35, 38, 40, 41, 44, 49, 50, 51, 52, 53, 58, 59, 67, 68, 69, 70, 71, 72, 74, 75, 83, 84, 87, 88, 89, 90], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 21, 22, 23, 25, 26, 33, 34, 35, 38, 40, 44, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 77, 83, 84, 88, 91], "specif": [1, 3, 4, 7, 12, 13, 14, 22, 27, 32, 47, 51, 54, 57, 66, 70, 75, 77, 78, 81, 82, 93], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "modul": [1, 3, 11, 12, 13, 14, 18, 24, 27, 29, 30, 31, 32, 33, 34, 35, 44, 47, 49, 58, 59, 71, 80, 81, 85], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 20, 25, 29, 30, 31, 33, 34, 35, 38, 44, 48, 49, 50, 51, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 87, 88, 89, 90, 91, 92, 93], "gener": [1, 2, 3, 5, 8, 20, 27, 29, 40, 44, 45, 58, 59, 61, 66, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 88, 89, 90, 92, 93], "valid": [1, 2, 3, 4, 8, 10, 29, 35, 36, 38, 39, 40, 44, 49, 51, 54, 57, 59, 61, 62, 70, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "matric": [1, 3, 38, 80], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 19, 21, 27, 29, 30, 34, 35, 38, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "learn": [1, 2, 3, 4, 8, 12, 14, 19, 25, 27, 31, 32, 33, 34, 35, 37, 39, 44, 47, 49, 51, 58, 60, 62, 65, 69, 71, 73, 74, 77, 78, 79, 81, 83, 84, 89, 92], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "possibl": [1, 2, 3, 8, 29, 30, 34, 35, 37, 38, 40, 51, 52, 53, 54, 56, 57, 58, 59, 61, 67, 69, 70, 75, 80, 82, 84, 85, 86, 89, 90, 93], "noisi": [1, 2, 3, 8, 29, 31, 34, 35, 38, 44, 50, 51, 53, 59, 61, 62, 63, 65, 66, 72, 74, 75, 77, 78, 80, 83, 84], "given": [1, 2, 3, 8, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "matrix": [1, 2, 3, 4, 8, 14, 26, 29, 35, 37, 38, 41, 44, 45, 51, 56, 57, 58, 59, 77, 87], "trace": [1, 74, 75, 82, 84, 85], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 19, 21, 22, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "more": [1, 2, 3, 4, 5, 8, 11, 14, 21, 29, 30, 33, 34, 37, 40, 44, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 90, 93], "function": [1, 2, 3, 4, 5, 11, 12, 14, 20, 21, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 79, 80, 82, 84, 85, 86, 90, 91, 92, 93], "noise_matrix_is_valid": 1, "noise_matrix": [1, 2, 3, 8, 38, 44, 74, 75, 82, 84, 85], "py": [1, 3, 27, 30, 31, 35, 38, 40, 74, 75, 82, 84, 85], "verbos": [1, 2, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 33, 35, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 74, 82, 84], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 73, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87, 89, 90, 92], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70], "prior": [1, 2, 3, 29, 35, 38, 40], "repres": [1, 2, 3, 5, 8, 10, 14, 21, 29, 33, 35, 38, 41, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "p": [1, 2, 3, 8, 29, 35, 37, 38, 44, 49, 57, 58, 59, 63, 75, 77, 78, 81, 82, 84, 93], "true_label": [1, 2, 3, 29, 38, 44, 82, 84], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 74, 75, 80, 82, 84, 85, 86, 87, 90, 91, 93], "check": [1, 2, 4, 7, 8, 10, 14, 22, 30, 33, 34, 39, 45, 48, 54, 57, 61, 71, 73, 74, 75, 80, 81, 82, 84, 85, 89, 91, 92], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 19, 21, 31, 34, 38, 40, 56, 61, 75, 78, 80, 82, 84, 85, 87, 89, 92], "achiev": [1, 2, 30, 31, 34, 61, 80, 84, 93], "better": [1, 4, 35, 49, 51, 59, 61, 62, 71, 73, 75, 77, 78, 80, 82, 85, 86, 87, 92, 93], "than": [1, 2, 3, 5, 8, 21, 23, 26, 29, 35, 44, 48, 49, 54, 56, 58, 59, 61, 65, 69, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93], "random": [1, 2, 3, 5, 8, 26, 33, 40, 49, 59, 61, 73, 74, 75, 77, 80, 81, 82, 84, 85, 87, 91], "perform": [1, 2, 5, 8, 21, 23, 26, 30, 34, 40, 57, 61, 71, 74, 80, 82, 84, 85, 88, 89, 91, 92], "averag": [1, 3, 8, 19, 23, 29, 30, 34, 40, 42, 49, 50, 57, 58, 59, 80, 84, 87], "amount": [1, 3, 81], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 78, 81, 91, 92], "np": [1, 2, 3, 4, 5, 14, 26, 29, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 90, 91, 92, 93], "ndarrai": [1, 2, 3, 4, 14, 20, 21, 25, 26, 29, 31, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 93], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 21, 29, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "shape": [1, 2, 3, 4, 14, 29, 31, 33, 35, 37, 38, 39, 40, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 79, 80, 82, 85, 86, 87, 90, 93], "condit": [1, 2, 3, 38, 43, 44, 59, 81, 82, 93], "probabl": [1, 2, 3, 4, 6, 8, 14, 20, 23, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 90, 93], "k_": [1, 2, 3, 38, 44], "k_y": [1, 2, 3, 38, 44], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92], "fraction": [1, 2, 3, 8, 17, 31, 38, 44, 49, 61, 77, 80], "exampl": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 84, 85, 86, 88, 89, 90, 91, 92, 93], "everi": [1, 2, 3, 4, 14, 30, 34, 35, 38, 43, 44, 51, 59, 61, 62, 73, 74, 75, 77, 78, 80, 81, 84, 86, 88, 90, 91, 93], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 91, 92, 93], "other": [1, 2, 3, 4, 8, 14, 19, 22, 29, 30, 32, 33, 34, 35, 38, 41, 44, 45, 47, 49, 50, 53, 57, 58, 59, 61, 66, 73, 74, 75, 77, 78, 80, 81, 82, 85, 87, 90, 93], "assum": [1, 2, 3, 10, 35, 38, 42, 43, 44, 59, 63, 66, 80, 87, 90, 93], "column": [1, 2, 3, 4, 8, 10, 11, 25, 29, 33, 35, 38, 40, 41, 43, 44, 49, 50, 51, 53, 54, 57, 58, 59, 61, 66, 67, 69, 70, 73, 74, 75, 78, 79, 80, 81, 82, 84, 86, 89, 90, 91, 92, 93], "sum": [1, 2, 3, 21, 26, 29, 38, 40, 44, 50, 51, 53, 56, 61, 74, 75, 80, 81, 82, 84, 85, 90, 93], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 79, 80, 88], "each": [1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 17, 19, 20, 21, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 85, 86, 90, 91, 93], "bool": [1, 2, 3, 4, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 33, 34, 35, 40, 43, 44, 49, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 23, 25, 26, 27, 30, 33, 34, 35, 44, 49, 50, 51, 53, 54, 70, 73, 75, 77, 78, 79, 80, 81, 82, 89, 92, 93], "generate_noisy_label": [1, 74, 75, 82, 84, 85], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 19, 20, 22, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 38, 40, 41, 42, 43, 44, 49, 51, 53, 56, 57, 58, 59, 61, 62, 67, 69, 70, 71, 73, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 90, 93], "perfect": [1, 2, 29, 61, 82, 86], "exactli": [1, 3, 8, 29, 30, 34, 35, 52, 58, 74, 75, 77, 78, 81, 82], "yield": [1, 30, 34], "between": [1, 4, 8, 13, 14, 18, 19, 21, 24, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 42, 47, 49, 50, 53, 56, 58, 59, 61, 62, 65, 69, 70, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "below": [1, 3, 4, 8, 29, 30, 33, 34, 35, 37, 40, 49, 50, 51, 56, 57, 65, 69, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "we": [1, 2, 3, 4, 5, 8, 11, 19, 30, 33, 34, 35, 40, 44, 45, 49, 56, 57, 59, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "loop": [1, 3, 38, 44, 81], "implement": [1, 2, 3, 4, 7, 12, 19, 30, 31, 33, 34, 38, 44, 61, 71, 73, 74, 77, 87, 88, 91], "what": [1, 4, 7, 8, 14, 27, 29, 31, 33, 35, 49, 50, 54, 56, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "doe": [1, 2, 3, 8, 33, 34, 35, 40, 45, 56, 57, 61, 63, 65, 69, 73, 74, 75, 77, 78, 81, 85, 89, 90, 92], "do": [1, 2, 4, 8, 29, 33, 34, 44, 45, 58, 59, 63, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "fast": 1, "explain": [1, 8], "python": [1, 2, 34, 48, 61, 74, 75, 79, 87], "pseudocod": [1, 88], "happen": [1, 8, 35, 51, 78, 84, 90], "n": [1, 2, 3, 4, 5, 29, 30, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 73, 78, 79, 80, 81, 84, 85, 89, 90, 91, 92, 93], "without": [1, 2, 4, 8, 10, 12, 17, 30, 34, 53, 61, 71, 73, 78, 82, 86, 87, 92], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 39, 43, 44, 48, 49, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92], "distinct": [1, 44, 93], "natur": [1, 8, 84, 87], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 90, 93], "0": [1, 2, 3, 4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "count_joint": 1, "len": [1, 2, 3, 5, 29, 33, 38, 43, 44, 45, 58, 59, 61, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92, 93], "y": [1, 2, 3, 4, 6, 25, 26, 34, 38, 40, 44, 45, 48, 57, 61, 62, 73, 74, 75, 77, 80, 82, 84, 85, 87, 89, 92], "round": [1, 33, 35, 44, 61, 80, 89], "astyp": [1, 84], "int": [1, 2, 3, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 40, 41, 42, 43, 44, 50, 51, 53, 57, 58, 59, 61, 63, 65, 66, 67, 70, 73, 74, 81, 87], "rang": [1, 3, 4, 5, 10, 38, 40, 42, 44, 57, 61, 62, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 93], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 19, 29, 33, 35, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93], "pragma": 1, "cover": [1, 3, 72, 79], "choic": [1, 6, 35, 80, 81, 85, 87], "replac": [1, 43, 48, 59, 74, 75, 78, 79, 80, 81, 84, 87, 91, 92], "generate_noise_matrix_from_trac": [1, 74, 75, 82, 84, 85], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 59, 73, 74, 75], "05": [1, 8, 21, 43, 57, 61, 67, 69, 79, 80, 82, 86, 90], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 74, 75, 82, 84, 85], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 80, 81, 82, 84, 85, 90], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 21, 34, 40, 61, 73, 74, 75, 77, 79, 82, 84, 85, 91], "max_it": [1, 73, 78, 87, 92], "10000": [1, 33, 79, 80], "x": [1, 2, 3, 4, 8, 16, 17, 19, 20, 21, 23, 25, 26, 29, 30, 31, 34, 35, 37, 38, 40, 43, 44, 45, 48, 49, 51, 57, 58, 59, 61, 63, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "diagon": [1, 3, 4, 35, 38, 44], "equal": [1, 3, 8, 10, 51, 56, 66, 88], "creat": [1, 2, 7, 14, 30, 33, 34, 35, 44, 61, 71, 73, 77, 78, 80, 81, 90, 92, 93], "impli": [1, 8, 29, 50, 57], "float": [1, 2, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 39, 40, 43, 44, 49, 50, 51, 53, 56, 57, 61, 65, 69, 73, 74, 75, 82, 84, 85], "entri": [1, 3, 4, 29, 30, 34, 35, 37, 41, 44, 49, 50, 51, 54, 77, 78, 82, 85, 86, 91, 92], "maximum": [1, 8, 58, 66, 70, 90], "minimum": [1, 6, 8, 17, 35, 37, 51, 56, 69], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 21, 30, 34, 35, 56, 61, 74, 80, 82, 84, 86, 87], "default": [1, 2, 3, 4, 5, 8, 12, 14, 23, 25, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 74, 80, 81, 90], "If": [1, 2, 3, 4, 8, 10, 11, 14, 21, 23, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 51, 54, 56, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 72, 73, 74, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "have": [1, 2, 3, 4, 8, 14, 18, 21, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 19, 27, 29, 30, 33, 34, 35, 38, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "necessari": [1, 2, 3, 5, 8, 10, 43, 74], "In": [1, 2, 3, 8, 29, 30, 33, 34, 49, 50, 52, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93], "particular": [1, 4, 8, 11, 12, 14, 16, 17, 19, 21, 22, 23, 26, 30, 34, 44, 49, 53, 57, 61, 66, 70, 71, 73, 75, 78, 80, 84, 85, 87, 89, 91, 92], "satisfi": [1, 3, 29], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 25, 28, 30, 31, 32, 33, 34, 35, 38, 44, 47, 48, 51, 58, 59, 61, 63, 71, 72, 73, 79, 80, 82, 88], "argument": [1, 2, 3, 4, 8, 14, 20, 22, 25, 26, 30, 33, 34, 35, 40, 45, 48, 49, 50, 51, 53, 56, 57, 58, 59, 61, 65, 66, 67, 69, 75, 78, 79, 80, 81, 86, 89, 92, 93], "when": [1, 2, 3, 4, 8, 10, 12, 20, 21, 30, 34, 35, 38, 40, 44, 48, 51, 53, 54, 56, 58, 59, 61, 62, 74, 75, 77, 78, 81, 84, 88, 89, 90, 91, 92, 93], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "rate": [1, 2, 3, 8, 31, 44, 73, 93], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 74, 75, 77, 78, 80, 84, 85, 87, 88, 89, 90, 91, 92, 93], "note": [1, 2, 3, 5, 6, 8, 22, 26, 30, 33, 34, 35, 40, 44, 49, 54, 56, 57, 58, 59, 61, 62, 66, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "you": [1, 2, 3, 4, 5, 8, 12, 14, 29, 30, 32, 33, 34, 35, 40, 47, 48, 49, 51, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "high": [1, 2, 14, 33, 35, 44, 56, 59, 61, 74, 75, 79, 81, 82, 86, 89, 90, 91, 92, 93], "mai": [1, 2, 3, 4, 8, 11, 18, 19, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 49, 50, 54, 56, 57, 58, 59, 61, 63, 66, 70, 72, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93], "imposs": [1, 8, 82], "also": [1, 2, 3, 4, 5, 8, 19, 29, 30, 33, 34, 35, 43, 48, 49, 58, 61, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "low": [1, 8, 44, 49, 71, 74, 75, 78, 82, 86, 90], "zero": [1, 3, 4, 30, 34, 37, 44, 45, 74, 81, 85, 86, 87], "forc": [1, 2, 3, 4, 34, 74, 93], "instead": [1, 2, 3, 8, 11, 14, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 51, 53, 57, 58, 59, 61, 62, 65, 67, 69, 72, 73, 77, 78, 80, 81, 82, 85, 86, 87, 89, 90, 91, 92, 93], "onli": [1, 2, 3, 4, 5, 8, 14, 20, 21, 25, 29, 30, 33, 34, 35, 37, 38, 43, 44, 48, 49, 58, 59, 61, 63, 65, 69, 70, 71, 73, 74, 75, 78, 81, 84, 85, 86, 87, 88, 89, 90, 92, 93], "guarante": [1, 3, 4, 13, 18, 24, 30, 32, 34, 36, 38, 47, 72], "produc": [1, 2, 4, 8, 14, 40, 49, 59, 61, 63, 65, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "higher": [1, 4, 8, 29, 35, 37, 38, 40, 49, 50, 61, 75, 78, 80, 86], "opposit": [1, 93], "occur": [1, 3, 8, 29, 43, 56, 74, 75, 80, 81, 87], "small": [1, 3, 8, 29, 33, 40, 44, 50, 57, 78, 79, 81, 85, 87, 92], "numpi": [1, 3, 4, 5, 8, 10, 26, 33, 34, 40, 42, 43, 45, 48, 53, 56, 61, 62, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "max": [1, 35, 58, 59, 75, 81, 87], "tri": [1, 30, 34, 88], "befor": [1, 2, 3, 30, 34, 44, 58, 61, 66, 78, 80, 82, 84, 87, 89, 91, 92], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 20, 21, 25, 29, 30, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 77, 80, 81, 82, 89, 90, 91], "left": [1, 2, 35, 37, 42, 44, 51, 54, 57, 74, 75, 85, 86, 87, 90], "stochast": 1, "exceed": 1, "generate_n_rand_probabilities_that_sum_to_m": 1, "m": [1, 4, 30, 34, 39, 40, 49, 54, 56, 57, 58, 74, 75, 79, 84, 85, 86, 93], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 30, 34, 48, 80, 82, 90], "length": [1, 4, 10, 21, 22, 29, 31, 35, 44, 51, 54, 58, 59, 61, 63, 66, 70, 73, 85, 87, 90, 91, 93], "must": [1, 2, 3, 4, 14, 29, 30, 31, 32, 34, 35, 38, 40, 41, 44, 47, 48, 49, 50, 51, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 84, 88, 90, 93], "randomly_distribute_n_balls_into_k_bin": 1, "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 29, 33, 35, 41, 44, 45, 49, 51, 57, 63, 65, 66, 67, 69, 70, 73, 80, 84, 85, 86, 90, 91, 92, 93], "ball": [1, 79], "bin": [1, 3, 51, 74, 75, 87], "ensur": [1, 2, 8, 30, 34, 44, 45, 56, 59, 61, 73, 74, 75, 78, 80, 81, 82, 87, 88, 89, 91, 92], "most": [1, 3, 4, 5, 8, 14, 29, 33, 35, 40, 48, 49, 50, 51, 54, 56, 57, 58, 59, 62, 65, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92], "least": [1, 8, 26, 29, 33, 49, 50, 56, 59, 69, 75, 80, 81, 84, 87, 90], "int_arrai": [1, 44], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 27, 29, 30, 31, 32, 33, 34, 35, 39, 40, 41, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 77, 78, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "model": [2, 3, 4, 8, 14, 25, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 43, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88, 90, 93], "For": [2, 3, 4, 5, 7, 8, 9, 14, 19, 28, 29, 30, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 67, 69, 70, 71, 73, 75, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "regular": [2, 3, 33, 48], "multi": [2, 3, 8, 29, 30, 33, 34, 35, 39, 40, 41, 44, 45, 50, 51, 52, 53, 58, 59, 71, 80, 82, 83], "task": [2, 4, 5, 10, 12, 13, 14, 25, 27, 29, 33, 38, 40, 41, 42, 44, 49, 51, 59, 61, 71, 73, 78, 79, 80, 82, 85, 87, 90, 92, 93], "cleanlearn": [2, 3, 8, 20, 25, 30, 44, 48, 61, 62, 71, 72, 89, 91, 92], "wrap": [2, 30, 34, 48, 58, 61, 71, 74, 75, 77, 78, 82, 89, 91, 92], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48, 57, 58, 61, 66, 73, 74, 75, 77, 78, 81, 82, 91], "sklearn": [2, 3, 4, 6, 8, 26, 29, 34, 40, 44, 48, 58, 61, 62, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92], "classifi": [2, 3, 34, 40, 44, 49, 52, 58, 59, 71, 72, 73, 77, 78, 80, 84, 85, 87, 88, 90, 91, 92, 93], "adher": [2, 34, 61], "estim": [2, 3, 4, 7, 11, 19, 29, 33, 34, 35, 38, 44, 49, 50, 51, 56, 58, 61, 63, 65, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 83, 85, 86, 87, 88, 89, 90, 93], "api": [2, 3, 12, 48, 58, 61, 72, 80, 89], "defin": [2, 3, 4, 5, 8, 12, 19, 29, 30, 31, 33, 34, 35, 59, 61, 63, 74, 75, 77, 80, 84, 87, 93], "four": [2, 8, 79, 82, 93], "clf": [2, 3, 4, 40, 61, 71, 77, 80, 82, 85, 91], "fit": [2, 3, 4, 6, 8, 34, 48, 58, 61, 71, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92, 93], "sample_weight": [2, 34, 61, 82], "predict_proba": [2, 4, 29, 34, 40, 48, 73, 74, 75, 77, 78, 80, 82, 84, 85, 87, 91], "predict": [2, 3, 4, 6, 8, 14, 19, 20, 23, 25, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 87, 89, 90, 92, 93], "score": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 35, 37, 40, 42, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 87, 89, 91, 92], "data": [2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 40, 41, 44, 47, 48, 49, 50, 51, 52, 56, 58, 59, 60, 61, 66, 67, 68, 69, 70, 72, 76, 81, 83, 88, 92], "e": [2, 3, 4, 8, 10, 19, 29, 30, 33, 34, 35, 38, 40, 41, 44, 45, 49, 50, 51, 52, 58, 59, 61, 63, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "featur": [2, 3, 4, 6, 8, 14, 16, 20, 21, 22, 23, 25, 26, 40, 44, 58, 61, 71, 74, 75, 77, 78, 80, 82, 84, 89, 91], "element": [2, 3, 4, 29, 35, 37, 44, 49, 51, 59, 66, 67, 69, 73, 78, 80, 92, 93], "first": [2, 4, 8, 15, 21, 22, 29, 33, 40, 44, 49, 50, 54, 57, 59, 61, 73, 74, 77, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "index": [2, 8, 21, 29, 35, 42, 43, 44, 45, 50, 59, 61, 66, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "should": [2, 3, 4, 5, 8, 12, 19, 21, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 53, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "differ": [2, 4, 5, 8, 11, 13, 18, 21, 22, 24, 29, 30, 32, 33, 34, 35, 36, 40, 44, 45, 47, 49, 54, 56, 58, 61, 73, 74, 75, 77, 78, 81, 82, 84, 87, 88, 91], "sampl": [2, 3, 4, 6, 8, 14, 17, 35, 37, 40, 51, 54, 57, 59, 61, 62, 71, 72, 79, 80, 82, 83, 85, 86, 89, 90, 92, 93], "size": [2, 8, 26, 30, 33, 34, 35, 40, 51, 56, 57, 61, 63, 65, 77, 80, 81, 82, 84, 85, 88, 90, 92], "here": [2, 4, 5, 8, 12, 33, 35, 38, 48, 49, 50, 51, 53, 54, 57, 58, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "re": [2, 4, 30, 34, 43, 49, 61, 71, 73, 74, 77, 78, 80, 89, 90, 91, 92, 93], "weight": [2, 8, 30, 31, 34, 40, 49, 56, 59, 61, 73, 74, 75, 78, 87, 92], "loss": [2, 31, 48, 59, 61, 81], "while": [2, 3, 8, 30, 33, 34, 39, 40, 44, 54, 57, 61, 71, 80, 81, 82, 84, 89], "train": [2, 3, 4, 8, 14, 30, 31, 34, 40, 44, 48, 49, 54, 57, 58, 61, 62, 72, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 90, 93], "support": [2, 3, 4, 10, 33, 40, 44, 45, 58, 59, 69, 71, 72, 73, 74, 75, 80, 81], "your": [2, 3, 4, 7, 8, 14, 29, 30, 32, 33, 34, 35, 40, 44, 47, 48, 49, 50, 51, 53, 58, 59, 61, 62, 63, 65, 66, 72, 73, 77, 79, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "recommend": [2, 4, 8, 11, 14, 33, 35, 49, 74, 75, 80, 81, 88, 89], "furthermor": 2, "correctli": [2, 3, 8, 29, 30, 34, 35, 38, 45, 50, 51, 56, 57, 61, 63, 78, 80, 85, 86, 89, 90, 92], "clonabl": [2, 61], "via": [2, 4, 8, 11, 14, 19, 29, 31, 33, 34, 40, 44, 49, 54, 57, 58, 59, 61, 62, 65, 69, 73, 74, 75, 77, 78, 79, 80, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 35, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 56, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 93], "clone": [2, 61, 85], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 33, 37, 38, 39, 40, 41, 42, 43, 44, 45, 53, 57, 61, 67, 72, 74, 80, 82, 84, 85, 87, 93], "multipl": [2, 3, 4, 10, 11, 29, 35, 43, 49, 50, 51, 53, 56, 57, 61, 71, 74, 75, 80, 81, 83, 85, 86, 89], "g": [2, 3, 4, 8, 10, 19, 29, 30, 34, 35, 41, 44, 51, 52, 58, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "manual": [2, 61, 73, 80, 87, 88, 89, 91, 92, 93], "pytorch": [2, 30, 31, 34, 61, 71, 73, 80, 83, 85, 90], "call": [2, 3, 4, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 40, 44, 48, 58, 61, 73, 74, 75, 78, 80, 82, 87, 88, 90, 92, 93], "__init__": [2, 31, 61, 81], "independ": [2, 3, 8, 50, 61, 78, 88, 93], "compat": [2, 30, 33, 34, 48, 61, 62, 65, 69, 71, 80, 88, 89, 91, 92], "neural": [2, 31, 48, 58, 61, 73, 80, 81, 85, 87], "network": [2, 30, 31, 34, 48, 58, 61, 73, 78, 80, 81, 85, 87, 92], "typic": [2, 30, 34, 58, 61, 73, 75, 77, 78, 81, 87, 88, 91, 92], "initi": [2, 3, 11, 30, 34, 49, 61, 78, 80, 91], "insid": [2, 34, 61, 80, 82], "There": [2, 3, 71, 82, 84, 85], "two": [2, 3, 8, 21, 29, 30, 33, 34, 41, 44, 54, 56, 57, 72, 74, 75, 77, 78, 80, 81, 82, 85, 89, 90, 92, 93], "new": [2, 5, 12, 19, 30, 33, 34, 39, 43, 44, 49, 61, 73, 74, 78, 79, 80, 87, 88, 92, 93], "notion": 2, "confid": [2, 3, 8, 19, 29, 33, 35, 38, 40, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 65, 69, 71, 77, 78, 81, 82, 84, 85, 86, 88, 90, 91, 93], "packag": [2, 4, 5, 7, 8, 9, 13, 28, 32, 35, 36, 44, 47, 54, 57, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "prune": [2, 3, 35, 51, 61, 72, 86], "everyth": [2, 57, 82], "els": [2, 57, 74, 79, 80, 81, 84, 85], "mathemat": [2, 3, 8, 38], "keep": [2, 11, 12, 44, 71, 74, 79, 80, 90], "belong": [2, 3, 8, 29, 35, 37, 38, 50, 51, 52, 53, 58, 59, 63, 67, 69, 70, 75, 77, 78, 81, 82, 85, 87, 90, 93], "2": [2, 3, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 48, 50, 51, 53, 58, 59, 61, 62, 66, 67, 69, 70, 79, 80, 88], "error": [2, 3, 4, 8, 30, 34, 35, 37, 38, 42, 44, 50, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 69, 72, 73, 74, 75, 77, 78, 79, 83, 91], "erron": [2, 3, 29, 35, 38, 44, 50, 51, 59, 61, 62, 63, 87, 89], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 33, 40, 42, 43, 49, 53, 56, 61, 62, 67, 69, 70, 71, 77, 78, 80, 85, 86, 87, 89, 90, 91, 92, 93], "linear_model": [2, 4, 29, 44, 61, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logisticregress": [2, 3, 4, 29, 44, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logreg": 2, "cl": [2, 12, 25, 61, 71, 80, 82, 89, 91, 92], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 20, 25, 27, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 58, 59, 61, 67, 71, 73, 74, 75, 78, 79, 80, 82, 84, 86, 87, 89, 92], "x_train": [2, 74, 75, 82, 84, 85, 89, 91], "labels_maybe_with_error": 2, "had": [2, 3, 61, 86], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 32, 33, 34, 35, 47, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 76, 83, 84, 88, 89, 92], "pred": [2, 35, 44, 88, 89, 91, 92], "x_test": [2, 74, 75, 82, 85, 89, 91], "might": [2, 49, 61, 66, 74, 75, 80, 81, 91, 92], "case": [2, 3, 11, 29, 40, 49, 61, 73, 74, 75, 77, 79, 80, 81, 82, 87, 89, 91, 92, 93], "standard": [2, 3, 4, 25, 29, 35, 48, 50, 51, 53, 59, 61, 71, 74, 75, 77, 79, 82, 91], "adapt": [2, 30, 32, 44, 47, 61, 87], "skorch": [2, 61, 71, 80], "kera": [2, 47, 61, 71, 80], "scikera": [2, 48, 61, 80], "open": [2, 33, 79, 86, 93], "doesn": [2, 61, 71], "t": [2, 3, 8, 15, 22, 30, 31, 33, 34, 35, 40, 42, 43, 53, 58, 59, 61, 67, 69, 70, 71, 74, 75, 77, 78, 79, 81, 82, 85, 86, 93], "alreadi": [2, 4, 14, 30, 33, 34, 38, 48, 49, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 91, 92], "exist": [2, 4, 8, 10, 30, 33, 34, 43, 48, 54, 56, 58, 61, 71, 72, 74, 75, 78, 84, 85, 92, 93], "made": [2, 4, 14, 61, 78, 80, 81, 84, 86, 88, 89, 91, 92], "easi": [2, 38, 61, 74, 75, 79, 80, 82, 85], "inherit": [2, 5, 31, 61], "baseestim": [2, 34, 61], "yourmodel": [2, 61], "def": [2, 5, 12, 30, 34, 48, 61, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 26, 30, 31, 33, 34, 35, 40, 58, 59, 61, 74, 79, 81, 85, 90, 91, 93], "refer": [2, 8, 14, 30, 34, 50, 51, 53, 54, 56, 57, 61, 65, 66, 74, 75, 77, 78, 80, 81, 82, 88, 89], "origin": [2, 4, 8, 34, 35, 43, 44, 48, 50, 51, 54, 57, 58, 61, 62, 65, 67, 69, 74, 77, 78, 80, 81, 82, 86, 87, 89, 91, 92, 93], "total": [2, 3, 29, 33, 44, 50, 70, 80, 81, 90], "state": [2, 3, 4, 30, 31, 34, 39, 61, 82, 85, 86, 93], "art": [2, 31, 82, 85], "northcutt": [2, 3, 29, 58, 59], "et": [2, 3, 29, 31, 58, 59], "al": [2, 3, 29, 31, 58, 59], "2021": [2, 3, 29, 58, 59], "weak": [2, 57], "supervis": [2, 8, 74, 75, 80, 84], "find": [2, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 32, 33, 34, 35, 39, 43, 44, 47, 54, 57, 58, 59, 61, 63, 67, 69, 72, 74, 83, 88], "uncertainti": [2, 8, 37, 58, 61, 80, 87, 89], "It": [2, 3, 4, 5, 8, 10, 11, 14, 19, 22, 25, 27, 30, 34, 35, 38, 40, 42, 49, 56, 57, 61, 71, 74, 75, 80, 81, 82, 85, 88], "work": [2, 3, 4, 5, 8, 10, 25, 29, 30, 33, 34, 35, 38, 43, 44, 45, 48, 49, 59, 61, 71, 72, 74, 75, 79, 87, 89, 92], "includ": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 32, 33, 34, 43, 44, 47, 49, 50, 53, 54, 58, 59, 61, 65, 66, 67, 69, 71, 72, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 93], "deep": [2, 32, 34, 47, 48, 61, 78], "see": [2, 3, 4, 11, 29, 30, 33, 34, 35, 40, 44, 48, 50, 51, 53, 54, 57, 58, 59, 61, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "subfield": 2, "theori": [2, 82], "machin": [2, 4, 12, 14, 27, 32, 47, 61, 74, 75, 79, 84], "across": [2, 3, 4, 5, 8, 11, 19, 29, 33, 40, 50, 57, 58, 74, 75, 77, 78, 79, 80, 81, 82, 86, 88], "varieti": [2, 80, 91, 92], "like": [2, 3, 4, 5, 8, 12, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 50, 53, 54, 56, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "pu": [2, 44], "input": [2, 3, 4, 8, 14, 21, 29, 30, 33, 34, 38, 40, 43, 44, 45, 48, 57, 61, 71, 72, 75, 78, 79, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "discret": [2, 35, 38, 44, 58, 59, 63, 65, 66], "vector": [2, 3, 4, 8, 14, 35, 38, 40, 41, 44, 58, 59, 71, 73, 74, 75, 77, 78, 81, 82, 85, 86, 87, 90, 92, 93], "would": [2, 3, 4, 30, 33, 34, 35, 44, 51, 61, 71, 74, 80, 81, 82, 87, 89, 92, 93], "obtain": [2, 4, 6, 8, 14, 35, 49, 51, 54, 57, 59, 62, 73, 75, 78, 80, 84, 86, 88, 90, 93], "been": [2, 29, 35, 38, 43, 44, 49, 50, 54, 56, 58, 59, 61, 73, 74, 77, 80, 82, 84, 85, 86, 87, 90, 93], "dure": [2, 14, 58, 61, 73, 77, 78, 80, 82, 85, 88, 89, 91, 92, 93], "denot": [2, 3, 38, 40, 44, 51, 58, 59, 69], "tild": 2, "paper": [2, 8, 49, 58, 67, 69, 79, 82, 84, 87, 89, 93], "cv_n_fold": [2, 3, 61, 92], "5": [2, 3, 4, 6, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 34, 35, 37, 39, 40, 44, 49, 50, 53, 54, 57, 61, 62, 69, 74, 78, 79, 80, 85, 86, 87, 88, 90, 92, 93], "converge_latent_estim": [2, 3], "pulearn": [2, 44], "find_label_issues_kwarg": [2, 8, 61, 72, 80, 82], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 51, 67, 80], "clean": [2, 56, 59, 61, 62, 71, 74, 75, 79, 89, 91, 92], "even": [2, 3, 29, 33, 37, 38, 44, 61, 73, 80, 82, 84, 85, 86], "messi": [2, 61, 82], "ridden": [2, 61], "autom": [2, 61, 71, 75, 79, 80], "robust": [2, 38, 61, 75, 80], "prone": [2, 61], "out": [2, 3, 4, 8, 14, 23, 30, 34, 35, 40, 48, 51, 52, 54, 57, 58, 59, 61, 62, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 89, 90, 92, 93], "current": [2, 3, 5, 8, 11, 12, 19, 30, 34, 35, 40, 49, 56, 61, 74, 75, 80, 84], "intend": [2, 11, 12, 13, 14, 27, 36, 49, 65, 69, 73, 74, 75, 78, 82], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 34, 35, 38, 39, 40, 41, 43, 44, 48, 49, 50, 53, 56, 57, 58, 59, 61, 63, 65, 66, 70, 72, 73, 74, 77, 78, 79, 80, 81, 82, 84, 86, 88, 91, 92, 93], "follow": [2, 3, 8, 12, 25, 29, 30, 33, 34, 40, 42, 49, 50, 54, 56, 57, 58, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "experiment": [2, 30, 31, 33, 34, 51, 72, 80], "wrapper": [2, 4, 48, 73, 89, 91, 92], "around": [2, 4, 56, 74, 75, 86, 87, 93], "fasttext": [2, 47], "store": [2, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 58, 61, 77, 78, 79, 80, 90, 91, 92, 93], "along": [2, 40, 51, 69, 74, 75, 80, 81, 87], "dimens": [2, 42, 44, 63, 66, 80, 81, 87, 90], "select": [2, 7, 8, 21, 49, 59, 81, 84, 87], "split": [2, 3, 4, 8, 10, 33, 40, 43, 44, 61, 73, 74, 75, 77, 78, 79, 81, 82, 85, 88, 91, 93], "cross": [2, 3, 8, 29, 35, 38, 39, 40, 51, 54, 57, 59, 61, 62, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "fold": [2, 3, 29, 35, 38, 61, 73, 77, 79, 80, 86, 90, 91], "By": [2, 4, 29, 50, 51, 61, 74, 80, 90], "need": [2, 3, 8, 29, 30, 33, 34, 35, 50, 51, 53, 58, 61, 71, 73, 74, 75, 78, 80, 82, 84, 85, 86, 90, 92], "holdout": [2, 3, 61], "comput": [2, 3, 4, 5, 6, 8, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 49, 50, 51, 53, 56, 57, 58, 59, 61, 62, 63, 65, 71, 72, 74, 75, 79, 82, 83, 85, 86, 87, 89, 90, 92], "them": [2, 3, 4, 5, 7, 8, 9, 10, 22, 28, 30, 32, 33, 34, 35, 47, 49, 58, 61, 72, 74, 75, 77, 78, 80, 81, 84, 85, 87, 89, 90, 91, 92, 93], "numer": [2, 3, 4, 8, 11, 19, 25, 40, 56, 58, 61, 66, 71, 72, 73, 74, 75, 76, 78, 81, 82, 84, 87, 89, 91, 92], "consist": [2, 3, 30, 34, 44, 49, 90, 93], "latent": [2, 3, 38], "thei": [2, 3, 4, 13, 18, 21, 24, 30, 31, 32, 34, 35, 36, 44, 48, 51, 56, 59, 61, 62, 65, 69, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92, 93], "relat": [2, 3, 11, 16, 17, 21, 22, 23, 26, 38, 44, 50, 61, 75, 78], "close": [2, 3, 8, 33, 38, 58, 73, 74, 75, 77, 78, 80, 81, 82, 86], "form": [2, 3, 8, 30, 31, 34, 38, 43, 44, 59, 61, 80], "equival": [2, 3, 30, 34, 38, 58, 87], "iter": [2, 3, 29, 30, 34, 35, 44, 50, 51, 61, 80, 84, 90], "enforc": [2, 30, 34, 44], "perfectli": [2, 29, 50, 82], "certain": [2, 3, 4, 30, 34, 48, 57, 61, 74, 75, 79, 87], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 69, 74, 75, 80, 81, 93], "keyword": [2, 3, 4, 8, 14, 20, 22, 25, 30, 33, 34, 35, 37, 40, 43, 48, 49, 51, 58, 59, 61, 67, 69, 74], "filter": [2, 3, 8, 33, 43, 50, 52, 53, 55, 57, 64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 78, 79, 80, 81, 85, 86, 89, 90, 91, 92, 93], "find_label_issu": [2, 3, 8, 25, 33, 35, 50, 51, 53, 54, 56, 57, 61, 63, 65, 66, 67, 69, 70, 71, 72, 80, 85, 86, 89, 90, 91, 92, 93], "particularli": [2, 71, 84, 87], "filter_bi": [2, 3, 33, 35, 51, 72, 80], "frac_nois": [2, 35, 51, 67, 80], "min_examples_per_class": [2, 35, 51, 75, 80, 82], "impact": [2, 8, 74, 75, 81], "ml": [2, 4, 8, 13, 61, 71, 74, 75, 77, 78, 81, 84, 91, 92], "accuraci": [2, 31, 59, 73, 80, 81, 82, 84, 87, 89, 90, 91, 92], "n_job": [2, 33, 35, 51, 63, 65, 67, 80, 87, 90], "disabl": [2, 30, 34, 35, 87], "process": [2, 3, 5, 11, 14, 33, 35, 43, 49, 51, 57, 63, 65, 67, 73, 74, 80, 84, 88, 92], "caus": [2, 35, 40, 74, 75, 80], "rank": [2, 3, 8, 29, 33, 35, 40, 50, 51, 52, 54, 55, 57, 58, 60, 64, 66, 67, 68, 70, 71, 72, 74, 75, 79, 80, 85, 86, 87, 89, 90, 91, 92, 93], "get_label_quality_scor": [2, 33, 35, 40, 49, 51, 53, 54, 56, 59, 62, 65, 67, 69, 72, 82, 85, 86, 89, 90, 93], "adjust_pred_prob": [2, 8, 53, 58, 59, 82], "control": [2, 4, 7, 8, 14, 33, 35, 42, 49, 57, 58, 61, 67, 69, 74, 75, 79, 80], "how": [2, 3, 4, 8, 11, 12, 14, 19, 29, 30, 31, 33, 34, 38, 44, 49, 50, 53, 54, 56, 58, 59, 61, 65, 69, 71, 74, 75, 77, 78, 79, 81, 86, 87, 88, 89, 90, 91, 92], "much": [2, 8, 29, 33, 35, 61, 80, 82, 84, 87], "output": [2, 3, 4, 8, 14, 30, 31, 34, 38, 44, 48, 49, 50, 54, 56, 57, 58, 61, 65, 66, 69, 70, 71, 72, 73, 74, 78, 79, 80, 81, 86, 87, 88, 89, 92], "print": [2, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 44, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 72, 73, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "suppress": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66, 90, 93], "statement": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66], "big": [2, 33, 51, 57, 61, 82], "limit": [2, 4, 14, 33, 51, 86, 90, 93], "memori": [2, 30, 33, 34, 51, 57, 63, 65, 74, 90], "label_issues_batch": [2, 32, 51, 80], "find_label_issues_batch": [2, 33, 51, 80], "pred_prob": [2, 3, 4, 6, 8, 14, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 44, 45, 49, 50, 51, 53, 54, 57, 58, 59, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 91, 92], "threshold": [2, 3, 5, 8, 16, 17, 19, 23, 25, 26, 33, 56, 57, 58, 59, 65, 69, 74, 86, 87, 90, 93], "inverse_noise_matrix": [2, 3, 8, 38, 44, 72, 82], "label_issu": [2, 33, 35, 51, 54, 61, 63, 72, 73, 78, 80, 81, 82, 89, 91, 92], "clf_kwarg": [2, 3, 8, 61], "clf_final_kwarg": [2, 61], "validation_func": [2, 3, 8], "correct": [2, 4, 8, 29, 33, 35, 37, 49, 50, 51, 53, 54, 56, 57, 59, 61, 62, 65, 69, 71, 73, 77, 78, 81, 82, 84, 86, 88, 89], "result": [2, 3, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 33, 34, 35, 37, 44, 51, 53, 54, 57, 59, 61, 62, 63, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 91, 92, 93], "identifi": [2, 3, 4, 5, 8, 10, 14, 22, 27, 29, 33, 35, 51, 54, 57, 59, 61, 62, 63, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 85, 87, 89, 90, 91, 92, 93], "final": [2, 8, 61, 77, 86, 88, 89, 91], "remain": [2, 61, 72, 81, 89, 91, 92, 93], "datasetlik": [2, 44, 61], "beyond": [2, 4, 5, 7, 9, 28, 71, 90], "pd": [2, 3, 4, 5, 11, 16, 17, 19, 20, 21, 23, 25, 26, 29, 39, 48, 49, 50, 61, 69, 73, 74, 75, 77, 78, 80, 82, 84, 89, 91, 92, 93], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 39, 44, 45, 48, 49, 50, 61, 66, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 92, 93], "scipi": [2, 4, 11, 44], "spars": [2, 4, 8, 11, 14, 26, 44, 45, 77], "csr_matrix": [2, 4, 11, 14, 26], "torch": [2, 30, 31, 34, 73, 78, 79, 81, 87, 92], "util": [2, 4, 14, 27, 30, 31, 34, 36, 49, 61, 71, 72, 73, 74, 75, 80, 81, 82, 87], "tensorflow": [2, 44, 48, 71, 73, 80], "object": [2, 4, 10, 11, 14, 27, 30, 31, 33, 34, 40, 44, 45, 48, 51, 54, 55, 56, 57, 58, 61, 69, 71, 73, 75, 77, 81, 82, 83, 89, 92], "list": [2, 3, 4, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 41, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 65, 66, 67, 69, 70, 72, 73, 74, 75, 79, 80, 81, 82, 85, 86, 89, 92, 93], "index_list": 2, "subset": [2, 3, 4, 14, 29, 33, 35, 44, 59, 66, 70, 73, 77, 78, 80, 81, 85, 86, 87, 88, 89, 91, 92, 93], "wa": [2, 3, 10, 12, 33, 44, 49, 50, 56, 58, 70, 73, 74, 75, 77, 78, 80, 82, 85, 86, 88, 90, 91, 92, 93], "abl": [2, 3, 8, 61, 73, 80, 82, 84, 85], "format": [2, 3, 4, 8, 10, 30, 33, 34, 35, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 54, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 77, 79, 81, 84, 89, 90, 91, 93], "make": [2, 3, 30, 33, 34, 40, 48, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "sure": [2, 33, 35, 40, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 91, 92], "shuffl": [2, 8, 44, 73, 78, 81, 85, 87], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 30, 34, 38, 40, 43, 44, 49, 54, 56, 61, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "batch": [2, 33, 44, 48, 49, 63, 65, 80, 81, 87], "order": [2, 4, 8, 29, 30, 34, 35, 38, 39, 40, 42, 44, 49, 50, 51, 54, 57, 58, 59, 63, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 86, 89, 90, 92, 93], "destroi": [2, 44], "oper": [2, 30, 33, 34, 44, 48, 59, 71, 78, 87, 91, 92], "eg": [2, 8, 44, 54, 57, 74, 75, 80], "repeat": [2, 44, 49, 84, 87], "appli": [2, 30, 34, 35, 40, 41, 43, 44, 53, 58, 67, 73, 74, 75, 77, 80, 81, 84, 85, 87, 88, 89, 90, 91, 92], "array_lik": [2, 3, 29, 35, 44, 51, 58, 62], "some": [2, 3, 4, 8, 12, 19, 29, 30, 32, 34, 35, 38, 43, 44, 47, 49, 50, 51, 53, 54, 57, 58, 59, 61, 63, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "seri": [2, 3, 33, 44, 45, 61, 69, 80], "row": [2, 3, 4, 8, 11, 22, 29, 33, 35, 37, 38, 42, 44, 49, 50, 51, 53, 58, 59, 61, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 87, 91, 93], "rather": [2, 3, 21, 29, 44, 48, 49, 56, 65, 69, 84, 88, 90, 92, 93], "leav": [2, 35], "per": [2, 3, 11, 29, 33, 35, 40, 43, 49, 50, 51, 53, 56, 57, 59, 62, 63, 65, 69, 75, 80, 86, 93], "determin": [2, 3, 8, 14, 19, 21, 25, 29, 33, 35, 40, 44, 49, 51, 54, 56, 59, 65, 69, 74, 80, 84, 87, 89], "cutoff": [2, 3, 87], "consid": [2, 3, 4, 8, 11, 14, 20, 21, 23, 26, 29, 30, 34, 35, 44, 49, 56, 58, 59, 62, 65, 69, 73, 75, 77, 78, 80, 81, 82, 86, 87, 88, 89, 90, 91, 92], "section": [2, 3, 5, 8, 72, 77, 81], "3": [2, 3, 4, 5, 8, 29, 30, 34, 35, 38, 39, 40, 41, 42, 43, 44, 48, 51, 58, 59, 61, 62, 67, 69, 79, 80, 88], "equat": [2, 3, 38], "advanc": [2, 3, 4, 7, 8, 14, 56, 58, 69, 72, 75, 76, 82], "user": [2, 3, 4, 8, 12, 14, 22, 27, 30, 34, 35, 56, 58, 59, 61, 65, 69, 82], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 26, 27, 30, 33, 34, 35, 40, 43, 49, 50, 51, 54, 56, 58, 59, 61, 62, 70, 72, 73, 75, 78, 81, 84, 86, 89, 92], "automat": [2, 3, 4, 21, 29, 71, 77, 78, 79, 80, 81, 84, 86, 89, 90, 91, 92, 93], "greater": [2, 3, 4, 7, 8, 23, 33, 42, 44, 56, 75, 79, 80, 93], "count": [2, 19, 21, 29, 33, 35, 38, 44, 50, 51, 57, 72, 80, 81], "observ": [2, 3, 38, 73, 74, 75, 84, 87, 89], "mislabel": [2, 8, 29, 33, 35, 38, 49, 50, 51, 54, 56, 59, 65, 67, 69, 71, 73, 77, 78, 80, 81, 82, 85, 86, 89, 91, 92], "one": [2, 3, 4, 8, 21, 29, 30, 33, 34, 35, 40, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 81, 84, 87, 88, 89, 91, 92, 93], "get_label_issu": [2, 33, 61, 82, 89, 91, 92], "either": [2, 3, 5, 8, 30, 33, 34, 35, 49, 51, 56, 58, 59, 63, 65, 75, 85, 86], "boolean": [2, 5, 8, 19, 33, 35, 43, 49, 51, 54, 59, 61, 63, 65, 66, 71, 73, 75, 78, 80, 81, 86, 89, 90, 92], "label_issues_mask": [2, 35, 59, 61, 72], "indic": [2, 3, 4, 5, 8, 11, 19, 29, 33, 34, 35, 37, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "its": [2, 4, 7, 8, 14, 30, 33, 34, 35, 42, 43, 51, 54, 57, 58, 59, 61, 63, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92, 93], "return_indices_ranked_bi": [2, 33, 35, 51, 67, 72, 80, 82, 85, 91, 92], "significantli": [2, 81, 82, 84, 88], "reduc": [2, 33, 35, 44, 73, 80], "time": [2, 8, 30, 33, 34, 44, 49, 72, 74, 79, 80, 81, 82, 86, 87, 89, 90, 91, 92, 93], "take": [2, 4, 8, 29, 30, 34, 39, 40, 44, 48, 59, 77, 81, 84, 91, 93], "run": [2, 4, 5, 7, 9, 12, 14, 21, 22, 28, 30, 33, 34, 61, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "skip": [2, 8, 30, 34, 61, 73, 80, 85, 93], "slow": [2, 3], "step": [2, 5, 21, 40, 57, 80, 81, 82, 84, 88], "caution": [2, 4, 80], "previous": [2, 4, 11, 44, 58, 61, 72, 73, 74, 77, 78, 84, 88, 91], "assign": [2, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 39, 40, 44, 61, 74, 77, 80, 81, 89, 90, 91, 93], "individu": [2, 8, 11, 21, 30, 34, 49, 53, 56, 59, 61, 67, 69, 72, 75, 77, 80, 84, 85, 86, 91, 93], "still": [2, 33, 34, 44, 58, 80, 81, 87, 91], "extra": [2, 30, 34, 44, 48, 49, 50, 61, 78, 80, 81, 84, 87], "receiv": [2, 8, 30, 34, 50, 53, 54, 61, 63, 67, 75, 86], "overwritten": [2, 61], "callabl": [2, 3, 40, 43, 48, 53, 80], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 33, 34, 39, 43, 44, 57, 59, 61, 66, 73, 74, 75, 80, 81, 82, 85, 93], "appropri": [2, 8, 14, 51, 59, 74, 77, 85, 86], "earli": [2, 81], "stop": [2, 81], "x_valid": 2, "y_valid": 2, "could": [2, 19, 29, 44, 58, 74, 77, 81, 85, 89, 91, 93], "f": [2, 5, 73, 74, 77, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "ignor": [2, 30, 34, 43, 48, 61, 66, 70, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "allow": [2, 29, 30, 33, 34, 37, 44, 49, 57, 58, 61, 63, 65, 73, 80, 81, 88, 90, 92], "access": [2, 8, 11, 30, 34, 61, 75, 81, 85], "hyperparamet": [2, 53, 58, 81], "purpos": [2, 74, 75, 80, 85, 89], "want": [2, 4, 8, 29, 33, 45, 49, 51, 61, 74, 78, 79, 81, 84, 86, 87, 88, 90, 92, 93], "explicitli": [2, 6, 8, 34, 61], "yourself": [2, 4, 33, 75], "altern": [2, 5, 8, 40, 44, 48, 49, 59, 72, 73, 77, 78, 80, 81, 82, 84, 85, 87, 89, 92], "same": [2, 3, 4, 5, 8, 10, 12, 14, 21, 25, 30, 33, 34, 35, 44, 48, 49, 51, 58, 59, 61, 65, 66, 69, 70, 71, 74, 75, 77, 78, 80, 81, 86, 87, 88, 89, 90, 91, 92], "effect": [2, 8, 22, 30, 34, 49, 58, 61, 77, 78, 80, 81, 87], "offer": [2, 4, 73, 74, 75, 78, 80, 82, 85, 92], "after": [2, 3, 4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 49, 61, 74, 78, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 58, 61, 74, 91], "label_issues_df": [2, 61, 81], "similar": [2, 8, 29, 30, 34, 42, 44, 49, 53, 54, 56, 58, 61, 65, 69, 74, 75, 77, 78, 80, 81, 82, 86, 87, 90], "document": [2, 3, 4, 8, 12, 14, 29, 30, 33, 34, 35, 40, 43, 48, 50, 51, 53, 56, 57, 58, 61, 65, 66, 67, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "descript": [2, 4, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 44, 54, 61, 74, 75], "were": [2, 3, 4, 29, 34, 50, 56, 69, 73, 77, 80, 82, 84, 86, 88, 90, 91], "present": [2, 3, 4, 8, 10, 11, 17, 29, 44, 58, 66, 71, 77, 80, 81, 87], "actual": [2, 3, 4, 29, 49, 50, 59, 75, 80, 82, 93], "num_class": [2, 29, 33, 44, 48, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 91, 92], "uniqu": [2, 26, 44, 66, 74, 80, 85, 87], "given_label": [2, 4, 25, 29, 38, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92, 93], "normal": [2, 3, 21, 26, 35, 37, 40, 43, 44, 59, 80, 82, 87], "trick": [2, 80], "distribut": [2, 3, 4, 8, 21, 23, 29, 34, 35, 39, 49, 57, 58, 59, 71, 74, 75, 77, 78, 81, 87], "account": [2, 29, 49, 53, 58, 59, 78, 80, 82, 84, 85, 87, 89, 92], "word": [2, 3, 43, 69, 70, 80], "remov": [2, 8, 26, 29, 30, 34, 35, 61, 71, 78, 79, 80, 81, 87, 89, 91, 92], "so": [2, 3, 4, 5, 8, 12, 21, 29, 30, 33, 34, 35, 44, 49, 50, 56, 59, 61, 65, 69, 73, 74, 75, 78, 81, 82, 87, 90], "proportion": [2, 8, 35], "just": [2, 3, 4, 8, 11, 29, 31, 33, 44, 48, 59, 61, 63, 71, 72, 73, 75, 77, 78, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92], "procedur": 2, "get": [2, 3, 4, 6, 11, 26, 30, 31, 34, 35, 40, 43, 44, 49, 51, 53, 58, 59, 61, 62, 63, 71, 73, 78, 79, 80, 81, 82, 87, 88, 89, 91, 92], "detect": [2, 4, 5, 7, 11, 12, 14, 19, 23, 42, 52, 54, 55, 56, 57, 58, 59, 60, 61, 64, 68, 71, 74, 76, 81, 83, 85, 89, 90, 91, 92, 93], "arg": [2, 10, 19, 22, 26, 30, 31, 34, 40, 44, 59, 61], "kwarg": [2, 5, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 48, 61, 63, 65, 67, 80], "test": [2, 8, 21, 34, 40, 48, 61, 71, 74, 75, 77, 78, 81, 88, 89, 91, 92, 93], "expect": [2, 3, 30, 34, 35, 40, 49, 58, 59, 61, 80, 82, 84, 85, 86, 89, 91, 92, 93], "class_predict": 2, "evalu": [2, 8, 30, 31, 33, 34, 57, 61, 73, 74, 75, 80, 81, 82, 84, 88, 89, 90, 91, 92], "simpli": [2, 29, 59, 74, 75, 77, 78, 80, 82, 89, 90, 92, 93], "quantifi": [2, 4, 5, 8, 11, 35, 53, 58, 61, 71, 75, 77, 78, 81, 82, 86], "save_spac": [2, 8, 61], "potenti": [2, 8, 29, 35, 43, 51, 54, 57, 59, 61, 63, 65, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "cach": [2, 78, 87, 92], "panda": [2, 4, 5, 10, 16, 17, 19, 20, 21, 23, 25, 26, 29, 44, 45, 48, 49, 50, 72, 73, 74, 75, 77, 78, 79, 80, 82, 84, 89, 90, 91, 92], "unlik": [2, 8, 35, 37, 40, 48, 50, 51, 53, 69, 74, 84, 85, 87, 89], "both": [2, 4, 8, 14, 21, 29, 30, 34, 35, 44, 49, 51, 59, 63, 65, 70, 71, 74, 80, 81, 82, 84, 93], "mask": [2, 33, 35, 43, 44, 51, 54, 59, 61, 63, 65, 66, 71, 79, 80, 84, 86, 90, 93], "prefer": [2, 59, 67], "plan": 2, "subsequ": [2, 3, 30, 34, 78, 80, 82, 86, 92], "invok": [2, 30, 34, 82, 88], "scratch": [2, 61], "To": [2, 4, 5, 7, 8, 9, 11, 14, 21, 28, 30, 33, 34, 35, 48, 49, 51, 53, 57, 58, 59, 61, 62, 63, 65, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "share": [2, 59, 61], "mostli": [2, 44, 56, 61], "longer": [2, 39, 43, 61, 72, 78, 80, 86, 92], "info": [2, 4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 61, 69, 74, 75, 79, 80, 93], "about": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 33, 37, 49, 50, 53, 57, 61, 66, 69, 73, 74, 77, 78, 79, 80, 81, 82, 84, 87], "docstr": [2, 29, 30, 34, 44, 61, 79, 82], "unless": [2, 30, 34, 61, 80], "our": [2, 3, 8, 48, 49, 59, 61, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "is_label_issu": [2, 25, 61, 73, 74, 75, 77, 78, 81, 82, 89, 92], "entir": [2, 8, 21, 33, 35, 38, 50, 51, 56, 59, 61, 63, 65, 66, 71, 74, 75, 78, 80, 81, 82, 86, 87, 88, 90, 93], "accur": [2, 3, 4, 8, 14, 29, 33, 35, 49, 50, 51, 54, 57, 59, 61, 62, 63, 65, 66, 72, 75, 77, 78, 80, 81, 84, 89], "label_qu": [2, 49, 61, 82, 84, 89, 92], "measur": [2, 29, 49, 50, 61, 71, 79, 80, 82, 84, 85, 90, 91, 93], "qualiti": [2, 3, 4, 5, 8, 11, 25, 26, 29, 33, 35, 37, 40, 49, 50, 51, 53, 54, 56, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 83, 89, 91, 92], "lower": [2, 4, 5, 8, 11, 23, 33, 40, 49, 50, 53, 56, 57, 59, 61, 62, 65, 69, 73, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 92, 93], "eas": 2, "comparison": [2, 30, 34, 57, 82, 84, 89], "against": [2, 30, 34, 74, 77, 80, 84, 85], "predicted_label": [2, 4, 25, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92], "ad": [2, 30, 34, 75, 84, 89], "precis": [2, 51, 54, 57, 80, 82, 90, 93], "definit": [2, 5, 61, 77, 91], "accessor": [2, 61], "describ": [2, 8, 49, 58, 59, 61, 67, 69, 82, 84, 85, 86, 88, 93], "precomput": [2, 4, 38, 61, 79], "clear": [2, 61, 78, 89, 92], "save": [2, 4, 14, 30, 33, 34, 57, 61, 80, 86, 90, 93], "space": [2, 8, 58, 61, 77, 79, 81], "place": [2, 30, 34, 44, 61, 84, 91], "larg": [2, 33, 61, 77, 78, 80, 81, 87, 90, 93], "deploi": [2, 61, 77, 78, 80, 81], "care": [2, 8, 30, 34, 61, 78, 80, 82], "avail": [2, 4, 5, 10, 12, 27, 34, 61, 80, 82, 84, 86, 89], "cannot": [2, 4, 10, 12, 44, 88, 93], "anymor": 2, "classmethod": [2, 16, 17, 19, 20, 21, 22, 23, 25, 26, 34, 40, 61], "__init_subclass__": [2, 34, 61], "set_": [2, 34, 61], "_request": [2, 34, 61], "pep": [2, 34, 61], "487": [2, 34, 61], "look": [2, 4, 5, 14, 30, 34, 44, 61, 66, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 90, 91, 93], "inform": [2, 4, 5, 8, 11, 14, 27, 30, 34, 44, 49, 50, 54, 57, 61, 66, 69, 70, 71, 73, 74, 77, 78, 82, 84, 87, 90, 93], "__metadata_request__": [2, 34, 61], "infer": [2, 34, 44, 61, 66, 70, 81, 84, 85, 89, 91, 92], "signatur": [2, 30, 34, 61], "accept": [2, 30, 34, 59, 61, 74, 75], "metadata": [2, 34, 61, 77, 78, 81, 93], "through": [2, 4, 5, 34, 61, 73, 75, 78, 79, 80, 84, 87, 89, 92], "develop": [2, 7, 34, 61, 80, 82, 93], "request": [2, 34, 61, 75, 78, 79, 85, 91, 92, 93], "those": [2, 3, 8, 33, 34, 35, 48, 49, 51, 57, 61, 65, 69, 70, 71, 73, 80, 81, 86, 90], "http": [2, 4, 5, 7, 8, 9, 28, 30, 31, 33, 34, 37, 44, 58, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "www": [2, 34, 61, 87], "org": [2, 30, 31, 34, 44, 58, 61, 80, 82, 93], "dev": [2, 34, 61], "0487": [2, 34, 61], "get_metadata_rout": [2, 34, 61], "rout": [2, 34, 61], "pleas": [2, 30, 34, 48, 61, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "guid": [2, 5, 34, 61, 72, 81], "mechan": [2, 30, 34, 61], "metadatarequest": [2, 34, 61], "encapsul": [2, 14, 34, 56, 61], "get_param": [2, 34, 48, 61], "subobject": [2, 34, 61], "param": [2, 8, 30, 34, 48, 58, 61, 80], "name": [2, 4, 5, 8, 10, 11, 29, 30, 34, 39, 40, 44, 48, 49, 50, 57, 61, 66, 70, 73, 75, 78, 79, 80, 81, 82, 85, 90, 92, 93], "set_fit_request": [2, 34, 61], "union": [2, 3, 4, 10, 33, 34, 40, 44, 45, 51, 57, 61, 65, 69, 80], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 38, 40, 43, 44, 48, 49, 50, 54, 56, 57, 59, 61, 66, 70, 73, 74, 80, 84, 85, 93], "unchang": [2, 30, 34, 61, 93], "relev": [2, 14, 21, 34, 61, 81], "enable_metadata_rout": [2, 34, 61], "set_config": [2, 34, 61], "meta": [2, 34, 61], "rais": [2, 4, 10, 11, 30, 34, 37, 40, 61, 80], "alia": [2, 30, 34, 61], "metadata_rout": [2, 34, 61], "retain": [2, 34, 44, 61], "chang": [2, 30, 33, 34, 37, 61, 69, 73, 74, 78, 80, 86, 87, 92, 93], "version": [2, 4, 5, 7, 8, 9, 13, 18, 24, 28, 30, 32, 34, 36, 37, 44, 47, 48, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "sub": [2, 34, 56, 61], "pipelin": [2, 34, 61], "otherwis": [2, 8, 29, 30, 33, 34, 35, 41, 43, 44, 51, 58, 61, 63, 65, 66, 70, 78, 80, 92], "updat": [2, 11, 30, 33, 34, 61, 72, 74, 81], "set_param": [2, 34, 48, 61], "simpl": [2, 30, 34, 35, 49, 59, 61, 74, 75, 77, 78, 81, 84, 87, 89, 91, 92], "well": [2, 3, 8, 30, 34, 37, 38, 49, 51, 57, 59, 61, 66, 69, 70, 72, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87], "nest": [2, 30, 34, 61, 67, 69, 70, 93], "latter": [2, 30, 34, 61, 87], "compon": [2, 34, 61], "__": [2, 34, 61], "set_score_request": [2, 61], "structur": [3, 58, 77, 91], "unobserv": 3, "less": [3, 4, 8, 26, 33, 40, 49, 58, 59, 63, 65, 69, 75, 77, 79, 80, 81, 82, 86, 93], "channel": [3, 73, 82], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 29, 38, 44, 50, 75, 79, 92], "inv": 3, "confident_joint": [3, 19, 29, 35, 44, 50, 51, 72, 80, 82], "un": 3, "under": [3, 8, 30, 34, 50, 57, 58, 75, 77, 78, 81, 82, 87], "joint": [3, 29, 35, 38, 44, 50, 51, 79], "num_label_issu": [3, 33, 35, 51, 66, 70, 72], "estimation_method": [3, 33], "off_diagon": 3, "multi_label": [3, 29, 35, 44, 45, 51, 85], "don": [3, 71, 75, 77, 78, 81, 82, 86], "statis": 3, "compute_confident_joint": [3, 29, 35, 44, 51, 82], "off": [3, 35, 44, 56, 81, 82, 86, 87], "j": [3, 4, 29, 30, 34, 35, 51, 54, 57, 58, 67, 69, 70, 74, 75, 82, 90, 93], "confident_learn": [3, 35, 51, 82], "off_diagonal_calibr": 3, "calibr": [3, 35, 44, 49, 84], "cj": [3, 38, 44], "axi": [3, 26, 38, 40, 63, 66, 73, 74, 75, 80, 81, 82, 84, 85, 87, 89, 90], "bincount": [3, 74, 75, 82, 84, 85], "alwai": [3, 8, 30, 34, 44, 73, 82, 89, 91, 92], "estimate_issu": 3, "over": [3, 8, 30, 33, 34, 56, 57, 63, 65, 75, 77, 79, 80, 81, 82, 87, 89, 91], "As": [3, 5, 71, 74, 75, 78, 82, 89, 93], "add": [3, 4, 5, 11, 30, 34, 48, 57, 73, 74, 75, 78, 80, 81, 82, 85, 92], "approach": [3, 29, 33, 35, 77, 82, 85, 87, 89, 91], "custom": [3, 5, 8, 9, 25, 30, 33, 34, 40, 43, 59, 75, 78, 82, 92], "know": [3, 74, 75, 77, 78, 80, 81, 82, 84], "cut": [3, 56, 71, 82], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 87, 93], "underestim": 3, "few": [3, 57, 71, 75, 80, 84, 85, 86, 87, 93], "4": [3, 4, 16, 17, 19, 20, 21, 23, 25, 26, 39, 40, 43, 53, 54, 56, 57, 59, 62, 69, 79, 80, 85, 90, 93], "detail": [3, 4, 12, 14, 29, 30, 34, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 65, 66, 67, 71, 72, 73, 85, 87, 93], "num_issu": [3, 5, 33, 73, 74, 75, 77, 78, 81, 82], "calibrate_confident_joint": 3, "up": [3, 8, 15, 21, 22, 25, 35, 40, 49, 79, 80, 86, 89, 92, 93], "p_": [3, 29, 35], "pair": [3, 4, 8, 29, 35, 82], "v": [3, 8, 33, 50, 51, 53, 59, 74, 75, 85, 87, 88], "rest": [3, 4, 5, 7, 8, 9, 28, 50, 51, 53, 61, 74, 75, 77, 78, 80, 81, 82, 84, 89, 91, 92], "fashion": [3, 4, 63, 91], "2x2": 3, "incorrectli": [3, 29, 50, 51, 54, 77, 93], "calibrated_cj": 3, "c": [3, 8, 43, 51, 59, 71, 73, 74, 75, 77, 78, 80, 82, 85, 87, 88, 89, 91], "whose": [3, 4, 8, 23, 30, 34, 38, 43, 49, 53, 56, 62, 65, 69, 70, 73, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 90, 93], "truli": [3, 87, 90], "estimate_joint": [3, 29, 82], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 51, 57, 82, 86, 88, 90, 93], "return_indices_of_off_diagon": 3, "frequenc": [3, 21, 49, 50, 57, 66, 87], "done": [3, 8, 61, 74, 80, 82, 85, 87, 88], "overfit": [3, 8, 54, 57, 73, 74, 75, 77, 78, 81, 88, 91], "classifict": 3, "singl": [3, 4, 21, 29, 30, 34, 40, 41, 44, 49, 50, 56, 57, 58, 59, 69, 73, 74, 80, 82, 85, 86, 91], "baselin": [3, 30, 35, 87, 89, 92], "proxi": 3, "tupl": [3, 26, 30, 34, 38, 39, 41, 43, 44, 49, 51, 57, 65, 67, 69, 70, 73, 93], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 33, 38, 49, 63, 65, 71, 80, 81, 90, 92], "practic": [3, 75, 81, 82, 87, 89, 91, 92], "complet": [3, 73, 74, 75, 77, 78, 80, 81, 82, 86], "gist": 3, "cj_ish": 3, "guess": [3, 38, 82, 84], "8": [3, 4, 5, 6, 39, 40, 41, 43, 53, 67, 69, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "parallel": [3, 35, 57, 67, 79], "again": [3, 48, 80, 87, 91], "simplifi": [3, 12], "understand": [3, 7, 29, 50, 57, 75, 82, 89, 90, 93], "100": [3, 30, 34, 59, 74, 75, 77, 79, 80, 81, 82, 85, 90, 91, 92, 93], "optim": [3, 30, 31, 34, 48, 81, 84], "speed": [3, 35, 79, 80, 89, 92], "dtype": [3, 20, 21, 26, 30, 34, 43, 44, 53, 69, 73, 86], "enumer": [3, 30, 34, 73, 74, 75, 81, 93], "s_label": 3, "confident_bin": 3, "6": [3, 4, 34, 40, 44, 69, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "num_confident_bin": 3, "argmax": [3, 35, 59, 63, 66, 73, 80, 82, 87, 90], "elif": 3, "estimate_lat": 3, "py_method": [3, 38], "cnt": [3, 38], "1d": [3, 4, 14, 33, 35, 40, 41, 44, 45, 53, 62, 73, 91], "eqn": [3, 38], "margin": [3, 35, 38, 40, 59], "marginal_p": [3, 38], "shorthand": [3, 11], "proport": [3, 8, 29, 50, 82, 88], "poorli": [3, 38, 91], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 82], "variabl": [3, 5, 12, 22, 44, 61, 62, 73, 74, 77, 82, 85, 89], "exact": [3, 38, 74, 75, 77, 81, 91], "within": [3, 4, 8, 13, 30, 31, 34, 36, 51, 56, 65, 67, 69, 74, 75, 80, 81, 86, 90], "percent": 3, "often": [3, 29, 38, 50, 80, 82, 88, 90], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 44, 45, 57, 73, 74, 77, 78, 80, 81, 86, 87, 92], "wai": [3, 4, 48, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 88, 91, 92], "pro": 3, "con": 3, "pred_proba": [3, 88], "combin": [3, 29, 74, 79, 80, 81, 82, 88, 89], "becaus": [3, 38, 44, 56, 78, 80, 82, 84, 86], "littl": [3, 33, 79, 86, 93], "uniform": [3, 59, 79, 80, 82], "20": [3, 5, 70, 73, 75, 78, 79, 80, 81, 82, 90, 93], "Such": [3, 81, 87], "bound": [3, 20, 30, 34, 54, 56, 57, 86], "reason": [3, 19, 30, 34], "comment": [3, 43, 93], "end": [3, 4, 30, 34, 57, 81, 90, 93], "file": [3, 4, 10, 32, 33, 47, 57, 73, 74, 77, 78, 79, 80, 86, 87, 90, 91, 93], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 82], "handl": [3, 4, 5, 8, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 72, 74, 75, 77, 78, 81, 82, 90, 91, 93], "five": [3, 54, 57, 82, 86], "estimate_cv_predicted_prob": [3, 82], "estimate_noise_matric": 3, "get_confident_threshold": [3, 33], "amongst": [3, 8], "confident_threshold": [3, 8, 19, 33, 58], "unifi": 4, "audit": [4, 7, 10, 11, 14, 73, 76, 77, 78, 80, 81, 82, 86], "kind": [4, 5, 73, 74, 77, 78, 79, 81, 82], "addit": [4, 5, 7, 8, 9, 11, 27, 28, 30, 34, 40, 45, 49, 57, 67, 73, 74, 77, 78, 81, 82, 84, 87, 88, 91, 92], "depend": [4, 5, 7, 8, 9, 10, 11, 28, 32, 35, 37, 44, 47, 51, 58, 61, 62, 71], "instal": [4, 5, 7, 8, 9, 28, 30, 32, 33, 34, 35, 47, 48, 63, 65], "pip": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "development": [4, 5, 7, 9, 28], "git": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "github": [4, 5, 7, 9, 28, 30, 31, 44, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "com": [4, 5, 7, 9, 28, 30, 31, 33, 37, 44, 58, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "egg": [4, 5, 7, 9, 28, 71, 79], "label_nam": [4, 5, 6, 8, 10, 26, 71, 73, 74, 75, 77, 78, 80, 81, 82], "image_kei": [4, 81], "interfac": [4, 71, 80, 82], "librari": [4, 8, 34, 54, 57, 58, 71, 74, 78, 79, 80, 92], "goal": 4, "track": [4, 11, 12, 71, 74, 79, 80, 82], "intermedi": [4, 7, 75], "statist": [4, 8, 11, 19, 21, 29, 49, 50, 57, 75, 77, 78, 81, 82], "convert": [4, 10, 30, 34, 41, 45, 49, 56, 65, 69, 72, 73, 78, 79, 80, 81, 84, 85, 86, 92], "hug": [4, 10, 81], "face": [4, 10, 14, 79, 81, 85], "kei": [4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 40, 49, 50, 56, 58, 74, 75, 78, 80, 81, 82, 84, 86], "string": [4, 8, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 34, 44, 49, 50, 62, 66, 69, 70, 77, 78, 80, 84, 85, 92, 93], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 39, 44, 49, 50, 53, 54, 56, 57, 74, 75, 77, 78, 82, 84, 85, 86], "path": [4, 10, 30, 33, 34, 57, 73, 74, 80, 86], "local": [4, 10, 30, 31, 34, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "text": [4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 40, 58, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 83, 84, 87], "txt": [4, 10, 93], "csv": [4, 10, 77, 78, 89, 91, 92], "json": [4, 10], "hub": [4, 10, 87], "regress": [4, 5, 10, 12, 14, 18, 25, 27, 74, 75, 78, 83, 84, 87, 92], "imag": [4, 7, 29, 34, 54, 56, 57, 58, 63, 65, 66, 71, 74, 75, 79, 80, 83, 84, 85, 86, 88, 90], "point": [4, 5, 8, 21, 30, 34, 74, 75, 77, 78, 80, 81, 82, 84], "field": [4, 8, 30, 34], "themselv": [4, 89, 91, 92], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 43, 67, 69, 75, 81, 83, 90], "load_dataset": [4, 10, 81], "glue": 4, "sst2": 4, "properti": [4, 10, 11], "has_label": [4, 10], "class_nam": [4, 10, 17, 29, 50, 57, 66, 70, 71, 79, 82, 86, 90, 93], "empti": [4, 10, 38, 49, 75, 80, 85], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 71, 73, 74, 75, 77, 78, 80, 81, 82], "knn_graph": [4, 8, 14, 16, 21, 23, 26, 77], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 23, 25, 26, 73, 74, 75, 77, 78, 80, 81, 82], "sort": [4, 14, 33, 35, 40, 42, 49, 51, 54, 56, 57, 59, 65, 67, 69, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "common": [4, 11, 14, 75, 76, 79, 80, 82, 85, 86, 90], "real": [4, 14, 71, 74, 75, 80, 82, 84, 85, 89, 90], "world": [4, 14, 71, 74, 75, 80, 82, 84, 89, 90], "interact": [4, 14, 78, 80], "embed": [4, 8, 14, 58, 71, 73, 74, 75, 77, 78, 82, 92], "thereof": [4, 14], "insight": [4, 14, 57, 84], "act": [4, 8, 56, 74], "issuefind": [4, 14, 27], "logic": [4, 12, 33, 35, 63, 65, 90], "best": [4, 14, 39, 49, 59, 74, 75, 77, 78, 80, 81, 84, 85, 87, 89, 91, 92, 93], "2d": [4, 14, 33, 40, 41, 43, 44, 49, 73, 85, 91], "num_exampl": [4, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 50, 73, 74, 75, 77, 78, 81, 82], "represent": [4, 8, 14, 30, 34, 41, 51, 71, 73, 74, 75, 78, 80, 81, 82, 87, 92], "num_featur": [4, 14, 30, 34, 48], "distanc": [4, 8, 14, 21, 23, 26, 42, 56, 58, 77, 87], "nearest": [4, 8, 14, 20, 21, 23, 42, 58, 75, 78, 87], "neighbor": [4, 8, 14, 20, 21, 23, 42, 58, 74, 75, 77, 78, 80, 81, 87], "graph": [4, 8, 11, 14, 21, 26], "squar": [4, 44, 61, 79, 89], "csr": 4, "evenli": 4, "omit": [4, 56, 57, 81, 86], "itself": [4, 30, 34, 86], "three": [4, 8, 29, 49, 50, 61, 66, 73, 74, 75, 77, 79, 82, 84, 88, 89, 90, 91, 93], "indptr": 4, "wise": 4, "start": [4, 5, 8, 30, 31, 34, 71, 77, 85, 93], "th": [4, 39, 43, 44, 49, 51, 54, 56, 57, 58, 67, 69, 70, 78, 85, 86, 93], "ascend": [4, 29, 42, 50, 81, 82], "segment": [4, 63, 65, 66, 83], "reflect": [4, 77, 78, 84, 86, 87, 89, 91, 92], "maintain": 4, "posit": [4, 30, 34, 44, 57, 79, 87], "nearestneighbor": [4, 8, 58, 77, 87], "kneighbors_graph": [4, 77], "illustr": 4, "todens": 4, "second": [4, 40, 42, 44, 57, 59, 74, 80, 82, 93], "duplic": [4, 7, 18, 19, 30, 34, 71, 74, 82], "explicit": 4, "precend": 4, "construct": [4, 5, 8, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48], "neither": [4, 8, 12, 86], "nor": [4, 8, 12], "collect": [4, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 49, 80, 84, 93], "unspecifi": [4, 14, 35, 51], "interest": [4, 14, 19, 66, 70, 78, 82, 90, 91, 92, 93], "constructor": [4, 8, 14, 20, 25], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "respons": [4, 14, 19, 61, 62, 79, 89, 93], "random_st": [4, 73, 74, 75, 81, 82, 85, 87, 91], "lab": [4, 6, 16, 17, 19, 20, 21, 22, 23, 25, 26, 33, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85], "comprehens": [4, 71, 81], "nbr": 4, "n_neighbor": [4, 8, 58], "metric": [4, 8, 16, 21, 26, 44, 48, 57, 58, 73, 77, 78, 81, 82, 89, 91, 92], "euclidean": [4, 8, 56, 58, 77], "mode": [4, 30, 33, 34, 87], "4x4": 4, "float64": [4, 21, 30, 34, 69], "compress": [4, 8, 44, 63, 65], "toarrai": 4, "NOT": [4, 33, 78], "23606798": 4, "41421356": 4, "configur": [4, 14, 40, 75], "suppos": [4, 8, 54, 87, 89, 91, 92], "who": [4, 56, 77, 82, 91, 93], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "clean_learning_kwarg": [4, 8, 20, 25], "labelissuemanag": [4, 8, 20], "prune_method": [4, 72], "prune_by_noise_r": [4, 35, 51, 82], "report": [4, 5, 9, 13, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 70, 71, 73, 74, 75, 77, 78, 82, 93], "include_descript": [4, 16, 17, 19, 20, 21, 23, 25, 26, 27], "show_summary_scor": [4, 27], "summari": [4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 48, 50, 55, 64, 65, 67, 68, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 86, 90, 93], "show": [4, 21, 30, 34, 39, 44, 57, 66, 70, 75, 77, 78, 79, 80, 81, 82, 84, 87, 89, 90, 91, 93], "top": [4, 29, 33, 35, 44, 51, 54, 57, 59, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 89, 92, 93], "suffer": [4, 8, 11, 19, 51, 59, 70, 93], "onc": [4, 19, 29, 30, 34, 74, 80, 82, 85, 86, 91], "familiar": 4, "usag": [4, 33, 48], "found": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 71, 73, 74, 75, 77, 78, 80, 81, 87, 89, 91, 92, 93], "issue_summari": [4, 8, 11, 74], "overal": [4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 40, 49, 50, 53, 56, 57, 61, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 86, 93], "sever": [4, 5, 8, 10, 11, 19, 30, 33, 34, 35, 53, 56, 58, 59, 65, 69, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 91, 92, 93], "dataissu": [4, 11, 14, 27], "outlier": [4, 7, 12, 18, 19, 26, 36, 59, 71, 74, 75, 82, 83], "someth": [4, 5, 30, 34, 59], "123": [4, 74, 75], "456": [4, 73, 78, 91, 92], "nearest_neighbor": 4, "7": [4, 40, 41, 48, 67, 69, 73, 74, 75, 77, 78, 79, 80, 84, 85, 86, 87, 89, 90, 91, 92, 93], "9": [4, 16, 17, 19, 20, 21, 23, 25, 26, 40, 41, 53, 67, 69, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "distance_to_nearest_neighbor": [4, 74, 75, 77, 78, 81, 82], "789": 4, "get_issu": [4, 8, 11, 73, 75, 77, 78, 80, 81], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74, 75], "focu": [4, 11, 78, 90, 93], "full": [4, 8, 11, 33, 57, 81, 93], "summar": [4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 66, 70, 71, 90], "valueerror": [4, 10, 11, 37, 40, 80], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 66, 75, 77, 78, 81, 82, 86], "lie": [4, 8, 42, 58, 59, 73, 74, 75, 77, 78, 81, 82, 92], "directli": [4, 12, 14, 27, 33, 48, 49, 75, 78, 85, 86, 89, 92], "compar": [4, 49, 58, 69, 74, 75, 77, 82], "get_issue_summari": [4, 11, 75], "get_info": [4, 11, 75, 78], "yet": [4, 15, 18, 22, 79, 84], "list_possible_issue_typ": [4, 12], "regist": [4, 5, 12, 13, 15, 22, 30, 34, 74], "registri": [4, 12], "list_default_issue_typ": [4, 12], "folder": [4, 73, 74, 81], "load": [4, 10, 33, 57, 79, 80, 81, 82, 86, 87, 90, 93], "futur": [4, 8, 19, 30, 34, 49, 71, 74, 78], "overwrit": [4, 74], "separ": [4, 29, 40, 53, 74, 75, 80, 81, 86, 88], "static": 4, "rememb": [4, 78, 80, 82], "part": [4, 8, 30, 34, 35, 54, 56, 57, 73, 74, 79, 90, 93], "ident": [4, 8, 19, 44, 78], "walk": 5, "alongsid": [5, 30, 34, 74, 80], "pre": [5, 6, 8, 30, 34, 74, 75, 81, 90, 93], "runtim": [5, 30, 33, 34, 61, 63, 65, 73, 80, 81], "issue_manager_factori": [5, 12, 74], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "ll": [5, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "thing": [5, 34, 82, 89, 92], "next": [5, 49, 71, 73, 77, 78, 80, 84, 86, 89, 91, 92, 93], "dummi": 5, "randint": [5, 26, 40, 74, 75, 80], "mark": [5, 8, 72, 86, 87, 89], "regard": [5, 75, 82], "rand": [5, 40, 74, 75], "is_": [5, 8, 74], "_issu": [5, 8, 74], "issue_score_kei": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "whole": [5, 21, 30, 34, 75], "make_summari": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "popul": [5, 75, 78], "verbosity_level": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 33, 66, 70, 80, 85], "intermediate_arg": 5, "min": [5, 40, 56, 69, 74, 80, 87], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 20, 21, 22, 23, 25, 26, 74], "instanti": [5, 14, 33, 48, 58, 73, 75, 77, 92], "477762": 5, "286455": 5, "term": [5, 8, 38, 44, 57, 73, 74, 75, 77, 78, 81, 82], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 16, 23, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "003042": 5, "058117": 5, "11": [5, 48, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "121908": 5, "15": [5, 42, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "169312": 5, "17": [5, 73, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 74, 75, 79, 82], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 26], "group": [6, 7, 21, 26, 79, 86, 93], "dbscan": [6, 8, 26, 80], "hdbscan": [6, 80], "etc": [6, 8, 19, 30, 34, 38, 48, 49, 67, 71, 74, 75, 77, 78, 80, 81, 82], "sensit": [6, 8], "ep": [6, 26, 57], "radiu": 6, "min_sampl": [6, 26], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 71, 73, 80, 81, 84, 91, 92], "kmean": [6, 80], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 26, 80], "cluster_id": [6, 8, 26, 80], "labels_": 6, "underperforming_group": [6, 8, 18, 80], "search": [7, 8, 17, 21, 22, 43, 61, 80, 88], "nondefault": 7, "Near": [7, 80], "iid": [7, 21, 75, 77, 81, 82], "imbal": [7, 18, 53, 58, 59, 75], "null": [7, 18, 75, 78, 81, 82], "togeth": [7, 8, 38, 74, 75, 77, 78, 81, 82, 89, 92, 93], "built": [7, 40], "own": [7, 30, 32, 34, 47, 53, 54, 57, 63, 67, 73, 75, 77, 78, 80, 81, 84, 85, 89, 90, 91, 92, 93], "prerequisit": 7, "basic": [7, 34, 48, 77, 78, 87], "page": [8, 75, 80, 82], "variou": [8, 11, 25, 32, 45, 47, 71, 74, 75, 77, 78, 79, 82, 84, 86, 91], "sai": [8, 30, 34, 85, 90], "why": [8, 78], "matter": [8, 29, 50], "_score": 8, "flag": [8, 19, 21, 35, 40, 50, 51, 54, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 89, 90, 92], "badli": [8, 56, 93], "code": [8, 30, 34, 38, 44, 48, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "issue_scor": 8, "outlier_scor": [8, 23, 74, 75, 77, 78, 81, 82, 87], "atyp": [8, 58, 74, 75, 77, 78, 81, 82, 87], "datapoint": [8, 26, 35, 40, 44, 59, 62, 71, 73, 74, 75, 77, 78, 80, 88, 89, 91, 92], "is_issu": [8, 19], "is_outlier_issu": [8, 74, 75, 77, 78, 81, 82], "annot": [8, 29, 39, 49, 50, 51, 53, 54, 56, 57, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 86, 90], "transform": [8, 40, 42, 44, 58, 59, 75, 78, 81, 87, 91, 92, 93], "dissimilar": [8, 77, 78], "preced": 8, "cosin": [8, 58, 87], "incorrect": [8, 56, 59, 62, 73, 74, 75, 77, 78, 81, 82, 86, 89, 91], "due": [8, 33, 35, 59, 63, 65, 73, 74, 75, 77, 78, 81, 82], "appear": [8, 29, 39, 50, 51, 54, 62, 75, 77, 78, 81, 89, 90], "likelihood": [8, 33, 35, 51, 56, 58, 59, 63, 67], "now": [8, 33, 72, 73, 75, 84, 86, 87, 89, 91, 92, 93], "u": [8, 73, 74, 77, 80, 81, 82, 84, 85, 88, 89, 90, 91, 92, 93], "token": [8, 43, 65, 66, 67, 68, 69, 70, 80, 82, 83], "calcul": [8, 21, 33, 40, 49, 53, 54, 56, 57, 58, 61, 65, 79, 81], "hamper": [8, 79, 81], "analyt": [8, 71, 80, 84], "lead": [8, 56, 59, 81, 86], "draw": [8, 74, 75], "conclus": [8, 78], "try": [8, 33, 35, 48, 49, 63, 65, 71, 75, 77, 78, 80, 81, 82, 90], "veri": [8, 29, 50, 54, 56, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92], "rare": [8, 35, 57, 74, 75, 77, 78, 80, 81, 82], "anomal": [8, 59, 74, 75, 77, 78, 81, 82], "articl": [8, 33, 80], "ai": [8, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 87, 89, 91, 92, 93], "blog": 8, "unexpect": [8, 30, 34, 78], "consequ": 8, "inspect": [8, 73, 75, 81, 82, 86, 89, 92], "neg": [8, 56, 57, 74, 75, 79], "affect": [8, 30, 34, 63, 69, 78, 80], "extrem": [8, 74, 75, 77, 78, 80, 81, 82], "rel": [8, 29, 49, 50, 58, 74, 75, 77, 78, 81, 82, 87], "record": [8, 30, 34, 73, 77, 89], "abbrevi": 8, "misspel": 8, "typo": [8, 70], "resolut": 8, "video": [8, 79], "audio": [8, 74, 75, 80, 83], "minor": [8, 43], "variat": 8, "translat": 8, "d": [8, 42, 77, 78, 82, 85, 91, 93], "constant": [8, 26, 61], "median": [8, 25], "question": [8, 19, 71, 82], "nearli": [8, 19, 75, 77, 78, 81], "awar": [8, 72, 82], "presenc": [8, 82], "signific": [8, 75, 77, 78, 81, 82], "violat": [8, 75, 77, 78, 81, 82], "assumpt": [8, 75, 77, 78, 81, 82], "changepoint": [8, 75, 77, 78, 81, 82], "shift": [8, 75, 77, 78, 81, 82], "drift": [8, 75, 77, 81, 82], "autocorrel": [8, 75, 77, 78, 81, 82], "almost": [8, 75, 77, 78, 81, 82], "adjac": [8, 75, 77, 78, 81, 82], "tend": [8, 29, 38, 75, 77, 78, 81, 82, 90, 93], "sequenti": [8, 30, 34, 48, 81], "gap": 8, "b": [8, 16, 17, 19, 20, 21, 23, 25, 26, 29, 43, 44, 69, 77, 78, 79, 82, 88, 91, 93], "x1": [8, 54, 57, 86], "x2": [8, 54, 57, 86], "10th": 8, "100th": 8, "90": [8, 69, 77, 82, 88, 90, 91], "similarli": [8, 30, 34, 74, 77, 80, 81, 86], "math": [8, 81], "behind": [8, 58, 82], "fundament": 8, "proper": [8, 44, 49, 54, 57, 78, 81, 84, 86, 91], "closer": [8, 56, 86], "scenario": [8, 59, 74, 75], "underli": [8, 58, 67, 69, 93], "stem": [8, 58, 87], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 85, 87], "partit": [8, 88], "ahead": 8, "good": [8, 30, 34, 48, 50, 56, 59, 63, 65, 66, 71, 77, 78, 81], "fix": [8, 49, 78, 82, 89, 92], "problem": [8, 33, 40, 66, 71, 74, 75, 78, 80, 81], "deploy": [8, 82, 89, 91, 92], "overlook": [8, 56, 86], "fact": 8, "thu": [8, 29, 34, 50, 73, 77, 78, 82, 88, 91, 93], "diagnos": [8, 75, 80], "rarest": [8, 75, 77, 78, 81, 82], "q": [8, 86], "fall": [8, 56, 65, 69, 82, 87], "subpar": 8, "special": [8, 43], "techniqu": 8, "smote": 8, "asymmetr": [8, 29], "properli": [8, 33, 39, 44, 45, 63, 80, 85, 87, 89, 90], "too": [8, 35, 40, 58, 75, 80, 81, 86], "dark": [8, 90], "bright": [8, 93], "blurri": [8, 81], "abnorm": [8, 57, 81], "cluster": [8, 26], "slice": [8, 42], "poor": 8, "subpopul": 8, "lowest": [8, 49, 57, 75, 80, 81, 84, 85, 86, 90], "get_self_confidence_for_each_label": [8, 40, 59], "power": [8, 77, 78, 79, 81, 82, 93], "r": [8, 33, 61, 74, 75, 89, 90], "tabular": [8, 71, 74, 75, 76, 80, 83, 84], "categor": [8, 58, 74, 75, 76, 80, 89, 91], "encod": [8, 41, 57, 63, 66, 77, 78, 80, 89, 90, 91, 92], "miss": [8, 22, 30, 34, 44, 54, 56, 75, 77, 78, 80, 81, 82, 86, 89], "pattern": 8, "exert": [8, 75], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 16, 74, 75, 77, 78, 80, 81, 82], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 21, 75, 77, 78, 81, 82], "non_iid_kwarg": 8, "class_imbal": [8, 17, 75, 77, 78, 81, 82], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "null_kwarg": 8, "health_summary_paramet": [8, 20, 25], "health_summari": [8, 20, 29, 71, 79], "health_summary_kwarg": 8, "tandem": [8, 79], "view": [8, 30, 34, 35, 65, 67, 69, 71, 73, 74, 75, 77, 78, 79, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "ood_kwarg": 8, "outofdistribut": [8, 23, 58, 87], "outsid": 8, "knn": [8, 11, 21, 26, 58, 77, 87], "outlierissuemanag": [8, 12, 23, 74], "nearduplicateissuemanag": [8, 12, 16], "noniidissuemanag": [8, 12, 21], "num_permut": [8, 21], "permut": [8, 21], "significance_threshold": [8, 21], "signic": 8, "noniid": [8, 18], "classimbalanceissuemanag": [8, 17], "underperforminggroupissuemanag": [8, 26], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 26], "filter_cluster_id": [8, 26], "clustering_kwarg": [8, 26], "faq": [8, 71, 75, 77, 78, 81, 83], "nullissuemanag": [8, 22], "codeblock": 8, "demonstr": [8, 33, 74, 75, 78, 80, 81, 82, 84, 85, 86, 89, 90], "howev": [8, 30, 34, 44, 73, 77, 78, 81, 84, 88, 90, 91, 92], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 74, 79, 81, 84, 86, 90], "fewer": [8, 35, 44, 86], "vice": [8, 50], "versa": [8, 50], "light": [8, 79, 81, 86, 90], "29": [8, 79, 81, 84, 85, 86, 90, 93], "low_inform": [8, 81], "odd_aspect_ratio": [8, 81], "35": [8, 74, 79, 84, 85, 86, 90], "odd_siz": [8, 81], "10": [8, 16, 20, 21, 26, 30, 31, 57, 58, 59, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "doc": [8, 30, 34, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "data_issu": [9, 13, 14, 27, 74], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 48, 59, 74, 75, 81, 84], "dataformaterror": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": 10, "datasetdict": 10, "usual": [10, 27, 81, 84, 89], "datasetloaderror": 10, "dataset_typ": 10, "fail": 10, "map_to_int": 10, "hold": 10, "is_avail": [10, 81], "serv": [11, 14, 84], "central": [11, 93], "repositori": 11, "strategi": [11, 40, 80], "being": [11, 29, 30, 34, 35, 40, 43, 44, 59, 77, 80, 82, 89, 90, 91], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 19], "avoid": [11, 30, 33, 34, 35, 42, 44, 51, 54, 57, 61, 63, 65, 74, 75, 80], "recomput": [11, 92], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 20, 29, 50, 71], "get_data_statist": 11, "concret": 12, "subclass": [12, 30, 34, 58, 74], "my_issu": 12, "stabl": [13, 18, 24, 32, 36, 44, 47, 58, 72], "unregist": 13, "instati": 14, "public": [14, 82, 86, 90, 93], "creation": [14, 34], "execut": [14, 30, 34, 74, 80, 86], "coordin": [14, 54, 56, 57, 86, 93], "behavior": [14, 29, 30, 34, 57], "At": [14, 57, 80], "associ": [14, 30, 34, 57, 84], "get_available_issue_typ": 14, "isn": [15, 22], "direct": [15, 22, 30, 34], "_": [16, 19, 20, 21, 22, 25, 26, 40, 43, 44, 73, 74, 79, 81, 82, 85, 91], "classvar": [16, 17, 19, 20, 21, 22, 23, 25, 26], "short": [16, 17, 19, 20, 21, 22, 23, 25, 26, 43, 44], "item": [16, 17, 19, 20, 21, 22, 23, 25, 26, 44, 74, 75, 80, 81, 82, 84, 85], "some_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "additional_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "near_duplicate_set": [16, 74, 75, 77, 78, 80, 81, 82], "occurr": [16, 17, 19, 21, 22, 23, 26, 43], "collect_info": [16, 17, 19, 20, 21, 22, 23, 25, 26], "median_nn_dist": 16, "near_duplicate_scor": [16, 74, 75, 77, 78, 80, 81, 82], "info_to_omit": [16, 17, 19, 20, 21, 23, 25, 26], "compos": [16, 17, 19, 20, 21, 23, 25, 26, 30, 34, 78, 87, 92], "is_x_issu": [16, 17, 19, 20, 21, 23, 25, 26], "x_score": [16, 17, 19, 20, 21, 23, 25, 26], "val_a": [16, 17, 19, 20, 21, 23, 25, 26], "val_b1": [16, 17, 19, 20, 21, 23, 25, 26], "val_b2": [16, 17, 19, 20, 21, 23, 25, 26], "report_str": [16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "class_imbalance_scor": [17, 75, 77, 78, 81, 82], "bleed": [18, 24, 32], "edg": [18, 24, 32, 56, 71, 82, 93], "sharp": [18, 24, 32], "abc": 19, "believ": [19, 90], "priori": [19, 82], "global": 19, "anoth": [19, 29, 33, 43, 56, 59, 77, 78, 80, 82, 84, 87, 92], "abstract": 19, "applic": [20, 49, 80, 82, 84, 85, 93], "typevar": [20, 30, 34, 56, 57], "_scalartype_co": 20, "covari": [20, 61, 89], "get_health_summari": 20, "summary_dict": 20, "label_scor": [20, 25, 73, 74, 75, 77, 78, 81, 82], "simplified_kolmogorov_smirnov_test": 21, "neighbor_histogram": 21, "non_neighbor_histogram": 21, "kolmogorov": 21, "smirnov": 21, "largest": [21, 33, 40, 59, 63, 65, 90], "empir": [21, 39, 49], "cumul": 21, "ecdf": 21, "histogram": [21, 77, 89], "absolut": [21, 25], "25": [21, 30, 40, 42, 75, 79, 81, 82, 84, 85, 86, 90, 93], "dimension": [21, 44, 73, 82, 87], "trial": 21, "non_iid_scor": [21, 75, 77, 78, 81, 82], "null_track": 22, "extend": [22, 41, 81, 87, 93], "superclass": 22, "arbitrari": [22, 29, 65, 69, 74, 87, 89], "prompt": 22, "address": [22, 74, 75, 78, 80, 92], "enabl": [22, 34], "null_scor": [22, 75, 78, 81, 82], "default_threshold": 23, "37037": 23, "q3_avg_dist": 23, "iqr_avg_dist": 23, "median_outlier_scor": 23, "ood": [23, 58, 59, 74, 75, 78, 81, 82, 87], "regressionlabelissuemanag": 25, "multipli": 25, "find_issues_with_predict": 25, "find_issues_with_featur": 25, "deleg": 25, "confus": [26, 29, 30, 34, 35, 44, 57, 92, 93], "50": [26, 34, 80, 81, 82, 84, 86, 87, 90], "keepdim": [26, 80], "outlier_cluster_label": 26, "no_underperforming_cluster_id": 26, "signifi": 26, "absenc": 26, "set_knn_graph": 26, "find_issues_kwarg": 26, "perform_clust": 26, "npt": 26, "int_": 26, "id": [26, 49, 74, 80, 81, 84], "int64": [26, 73, 84], "unique_cluster_id": 26, "get_worst_clust": 26, "_description_": 26, "performed_clust": 26, "worst_cluster_id": 26, "underperforming_group_scor": 26, "exclud": [27, 66, 70, 74, 93], "get_report": 27, "overview": [29, 73, 75, 77, 78, 81, 84, 86, 87, 89, 91, 92, 93], "modifi": [29, 30, 33, 34, 44, 80, 82], "help": [29, 30, 34, 57, 71, 72, 73, 74, 77, 78, 79, 80, 81, 84, 85, 89, 90, 91, 92, 93], "rank_classes_by_label_qu": [29, 75], "merg": [29, 43, 71, 79, 80, 93], "find_overlapping_class": [29, 80, 82], "problemat": [29, 50, 66, 70, 73, 86, 93], "unnorm": [29, 50, 82], "abov": [29, 30, 33, 34, 44, 49, 56, 57, 59, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "model_select": [29, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 89, 91, 92], "cross_val_predict": [29, 34, 73, 74, 75, 77, 78, 80, 82, 84, 88, 89, 91, 92], "get_data_labels_from_dataset": 29, "yourfavoritemodel": [29, 82], "cv": [29, 40, 73, 74, 75, 77, 82, 84, 91], "df": [29, 44, 70, 73, 80], "overall_label_qu": [29, 50], "col": 29, "prob": [29, 43, 82, 88], "divid": [29, 50, 59], "label_nois": [29, 50], "human": [29, 79, 90, 93], "clearli": [29, 59, 81, 86, 90], "num": [29, 50, 79, 82], "overlap": [29, 71, 79, 80, 82], "ontolog": 29, "publish": [29, 93], "therefor": [29, 59], "vehicl": [29, 79], "truck": [29, 79, 87, 90], "intuit": [29, 50], "car": [29, 79, 86, 90], "frequent": [29, 49, 77, 80, 89], "characterist": 29, "l": [29, 30, 34, 54, 56, 57], "class1": 29, "class2": 29, "relationship": 29, "match": [29, 30, 34, 35, 49, 50, 59, 74, 75, 79, 81, 86, 88, 90], "dog": [29, 44, 50, 52, 66, 79, 80, 87, 88, 93], "cat": [29, 44, 50, 52, 79, 80, 87, 88], "captur": [29, 73, 86, 87, 90], "co": [29, 30, 31], "noisy_label": [29, 74, 75, 85], "overlapping_class": 29, "descend": [29, 30, 34, 40, 50, 57], "overall_label_health_scor": [29, 50, 82], "suggest": [29, 49, 50, 56, 78, 80, 81, 89, 92], "half": [29, 30, 34, 50, 79, 93], "health_scor": [29, 50], "classes_by_label_qu": [29, 75], "cnn": [30, 34, 81], "cifar": [30, 31, 79, 87], "teach": [30, 31], "bhanml": 30, "blob": 30, "master": [30, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "call_bn": 30, "bn": 30, "input_channel": 30, "n_output": 30, "dropout_r": 30, "top_bn": 30, "architectur": [30, 34], "shown": [30, 57, 74, 80, 84, 87, 88, 90, 93], "forward": [30, 31, 34, 81, 84], "overridden": [30, 34], "although": [30, 34, 58, 77, 91], "recip": [30, 34], "afterward": [30, 34], "sinc": [30, 34, 37, 45, 50, 57, 65, 69, 80, 84, 85, 86, 88, 93], "former": [30, 34], "hook": [30, 34, 79], "silent": [30, 33, 34], "t_destin": [30, 34], "__call__": [30, 34, 40], "add_modul": [30, 34], "child": [30, 34], "fn": [30, 34, 57], "recurs": [30, 34, 40], "submodul": [30, 34], "children": [30, 34, 93], "nn": [30, 31, 34, 81], "init": [30, 34, 82], "no_grad": [30, 34, 81, 87], "init_weight": [30, 34], "linear": [30, 34, 78, 81, 92], "fill_": [30, 34], "net": [30, 34, 73, 79, 81], "in_featur": [30, 34], "out_featur": [30, 34], "bia": [30, 34, 81], "tensor": [30, 31, 34, 73, 81, 87], "requires_grad": [30, 34], "bfloat16": [30, 34], "cast": [30, 34, 73], "buffer": [30, 34], "datatyp": [30, 34], "member": [30, 34, 74, 75], "xdoctest": [30, 34], "undefin": [30, 34], "var": [30, 34], "buf": [30, 34], "20l": [30, 34], "1l": [30, 34], "5l": [30, 34], "immedi": [30, 34, 87], "cpu": [30, 34, 35, 73, 81], "move": [30, 34, 40, 72, 79], "cuda": [30, 34, 73, 81], "devic": [30, 34, 73, 81], "gpu": [30, 34, 73, 78, 92], "live": [30, 34], "copi": [30, 34, 61, 73, 74, 75, 77, 80, 85, 88, 89, 91], "doubl": [30, 34], "dump_patch": [30, 34], "eval": [30, 34, 81, 85, 87], "dropout": [30, 34], "batchnorm": [30, 34], "grad": [30, 34], "extra_repr": [30, 34], "line": [30, 34, 71, 74, 79, 84, 87, 93], "get_buff": [30, 34], "target": [30, 31, 34, 61, 62, 87, 89], "throw": [30, 34], "get_submodul": [30, 34], "explan": [30, 34], "fulli": [30, 34, 48, 80], "qualifi": [30, 34], "referenc": [30, 34], "attributeerror": [30, 34], "invalid": [30, 34, 78], "resolv": [30, 34, 93], "get_extra_st": [30, 34], "state_dict": [30, 34], "set_extra_st": [30, 34], "build": [30, 34, 81, 90], "pickleabl": [30, 34], "serial": [30, 34], "backward": [30, 34, 81], "break": [30, 34, 81], "pickl": [30, 34, 86], "get_paramet": [30, 34], "let": [30, 34, 58, 59, 73, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "net_b": [30, 34], "net_c": [30, 34], "conv": [30, 34], "conv2d": [30, 34, 81], "16": [30, 34, 40, 65, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "33": [30, 34, 79, 81, 86, 90], "kernel_s": [30, 34], "stride": [30, 34], "200": [30, 34, 59, 79, 86, 93], "diagram": [30, 34, 88], "degre": [30, 34, 89], "queri": [30, 34, 75, 80, 81], "named_modul": [30, 34], "o": [30, 34, 42, 43, 73, 74, 75, 79, 80, 82, 85, 86, 93], "transit": [30, 34], "ipu": [30, 34], "load_state_dict": [30, 34], "strict": [30, 34, 40], "persist": [30, 34], "strictli": [30, 34], "namedtupl": [30, 34], "missing_kei": [30, 34], "unexpected_kei": [30, 34], "runtimeerror": [30, 34], "idx": [30, 34, 44, 45, 57, 74, 80, 81, 82, 84, 86, 87], "named_buff": [30, 34], "prefix": [30, 34, 73, 93], "prepend": [30, 34], "running_var": [30, 34], "named_children": [30, 34], "conv4": [30, 34], "conv5": [30, 34], "memo": [30, 34], "remove_dupl": [30, 34], "named_paramet": [30, 34], "register_backward_hook": [30, 34], "deprec": [30, 34, 37], "favor": [30, 34], "register_full_backward_hook": [30, 34], "removablehandl": [30, 34], "register_buff": [30, 34], "running_mean": [30, 34], "register_forward_hook": [30, 34], "won": [30, 34, 74, 75, 80, 85], "inplac": [30, 34, 84], "register_forward_pre_hook": [30, 34], "gradient": [30, 34, 77, 81, 89], "respect": [30, 34, 57, 82], "grad_input": [30, 34], "grad_output": [30, 34], "technic": [30, 34], "caller": [30, 34], "register_load_state_dict_post_hook": [30, 34], "post": [30, 34], "incompatible_kei": [30, 34], "modif": [30, 34], "thrown": [30, 34], "clearn": [30, 34], "register_modul": [30, 34], "register_paramet": [30, 34], "requires_grad_": [30, 34], "autograd": [30, 34], "freez": [30, 34, 73, 78, 92], "finetun": [30, 34], "gan": [30, 34], "share_memori": [30, 34], "share_memory_": [30, 34], "destin": [30, 34], "keep_var": [30, 34], "shallow": [30, 34], "releas": [30, 34, 72, 80, 87], "design": [30, 34], "ordereddict": [30, 34], "detach": [30, 34, 81], "non_block": [30, 34], "memory_format": [30, 34], "channels_last": [30, 34], "Its": [30, 34, 40, 50, 56], "complex": [30, 34], "integr": [30, 34, 71], "asynchron": [30, 34], "host": [30, 34], "pin": [30, 34, 78, 79, 92], "desir": [30, 34, 43, 57], "4d": [30, 34], "ignore_w": [30, 34], "determinist": [30, 34, 73], "1913": [30, 34], "3420": [30, 34], "5113": [30, 34], "2325": [30, 34], "env": [30, 34], "torch_doctest_cuda1": [30, 34], "gpu1": [30, 34], "1914": [30, 34], "5112": [30, 34], "2324": [30, 34], "float16": [30, 34], "cdoubl": [30, 34], "3741": [30, 34], "2382": [30, 34], "5593": [30, 34], "4443": [30, 34], "complex128": [30, 34], "6122": [30, 34], "1150": [30, 34], "to_empti": [30, 34], "storag": [30, 34], "dst_type": [30, 34], "xpu": [30, 34], "zero_grad": [30, 34, 81], "set_to_non": [30, 34], "context": [30, 34, 86], "noisili": [31, 82], "han": 31, "2018": 31, "cifar_cnn": [31, 32], "loss_coteach": 31, "y_1": 31, "y_2": 31, "forget_r": 31, "class_weight": 31, "logit": [31, 48, 81], "decim": [31, 44], "quickli": [31, 73, 77, 78, 80, 81, 85, 87, 90, 91, 93], "forget": [31, 40, 93], "rate_schedul": 31, "epoch": [31, 34, 80, 81], "initialize_lr_schedul": 31, "lr": [31, 34], "001": [31, 59, 80], "250": [31, 74, 75, 82, 86], "epoch_decay_start": 31, "80": [31, 77, 81, 85, 89, 90, 91], "schedul": 31, "adjust": [31, 35, 53, 58, 59, 71, 82], "beta": 31, "adam": 31, "adjust_learning_r": 31, "alpha_plan": 31, "beta1_plan": 31, "forget_rate_schedul": 31, "num_gradu": 31, "expon": 31, "tell": [31, 78, 81, 82, 92], "train_load": [31, 34], "model1": [31, 82], "optimizer1": 31, "model2": [31, 82], "optimizer2": 31, "dataload": [31, 81, 87], "parser": 31, "parse_arg": 31, "num_iter_per_epoch": 31, "print_freq": 31, "topk": 31, "top1": 31, "top5": 31, "test_load": 31, "offici": [32, 47, 93], "wish": [32, 47, 87, 90, 93], "mnist_pytorch": 32, "coteach": [32, 72], "mini": [33, 63, 65, 80], "With": [33, 78, 82, 84, 89, 90, 92, 93], "approxim": [33, 58, 84], "low_self_confid": [33, 35, 51], "self_confid": [33, 35, 40, 51, 53, 59, 67, 69, 80, 82, 85, 91, 92], "conveni": [33, 73, 78, 92], "script": 33, "labelinspector": [33, 80], "adj_confident_thresholds_shar": 33, "labels_shar": 33, "pred_probs_shar": 33, "labels_fil": [33, 80], "pred_probs_fil": [33, 80], "batch_siz": [33, 34, 63, 65, 80, 81, 87, 90], "quality_score_kwarg": 33, "num_issue_kwarg": 33, "return_mask": 33, "variant": [33, 49, 90], "read": [33, 37, 75, 80, 82, 87, 93], "zarr": [33, 80], "memmap": [33, 90], "pythonspe": 33, "mmap": [33, 80], "hdf5": 33, "further": [33, 50, 51, 53, 56, 57, 65, 66, 73, 80], "yourfil": 33, "npy": [33, 79, 80, 90], "mmap_mod": [33, 90], "tip": [33, 35, 48, 80], "save_arrai": 33, "your_arrai": 33, "disk": [33, 79, 80], "npz": [33, 93], "maxim": [33, 49, 63, 65, 90], "multiprocess": [33, 35, 51, 63, 65, 80, 81, 90], "linux": [33, 63, 65], "physic": [33, 35, 63, 65, 86, 90], "psutil": [33, 35, 63, 65, 90], "labels_arrai": [33, 45], "predprob": 33, "pred_probs_arrai": 33, "back": [33, 57, 74, 80, 86, 87], "store_result": 33, "becom": [33, 87], "verifi": [33, 80, 84, 87], "long": [33, 49, 58, 84], "enough": [33, 44, 80], "chunk": [33, 88], "ram": [33, 79], "faster": [33, 58, 61, 63, 65, 80, 82], "end_index": 33, "labels_batch": 33, "pred_probs_batch": 33, "update_confident_threshold": 33, "batch_result": 33, "score_label_qu": 33, "indices_of_examples_with_issu": [33, 80], "shortcut": 33, "encount": [33, 35, 63], "1000": [33, 73, 78, 80, 81, 87], "aggreg": [33, 40, 49, 53, 56, 59, 69, 80, 82, 84], "get_num_issu": 33, "fetch": [33, 73, 75], "seen": [33, 80, 87, 93], "far": [33, 49], "get_quality_scor": 33, "label_quality_scor": [33, 53, 56, 59, 62, 82, 86, 89], "method1": 33, "method2": 33, "normalized_margin": [33, 35, 40, 51, 53, 59, 67, 69], "low_normalized_margin": [33, 35, 51], "issue_indic": [33, 56, 81], "update_num_issu": 33, "split_arr": 33, "arr": [33, 80], "chunksiz": 33, "convnet": 34, "bespok": [34, 48], "get_mnist_dataset": 34, "loader": [34, 81], "download": [34, 73, 80, 87], "mnist": [34, 71, 73, 79], "get_sklearn_digits_dataset": 34, "handwritten": 34, "digit": [34, 73, 79], "last": [34, 40, 54, 57, 74, 75, 80, 84, 93], "sklearn_digits_test_s": 34, "hard": [34, 79, 87], "simplenet": 34, "64": [34, 77, 81, 82, 86, 90, 91, 93], "log_interv": 34, "01": [34, 59, 61, 73, 81, 82, 85, 86, 89, 90, 93], "momentum": 34, "no_cuda": 34, "test_batch_s": [34, 81], "templat": 34, "flexibli": 34, "among": [34, 49, 82], "test_set": 34, "Be": 34, "overrid": 34, "train_idx": [34, 44, 87], "train_label": [34, 87, 92], "scikit": [34, 44, 58, 71, 73, 74, 75, 77, 78, 80, 83, 89, 92], "set_predict_proba_request": 34, "set_predict_request": 34, "encourag": [35, 51, 59, 62], "multilabel_classif": [35, 50, 51, 53, 59, 80, 85], "pred_probs_by_class": 35, "prune_count_matrix_col": 35, "rank_by_kwarg": [35, 51, 59, 82], "num_to_remove_per_class": [35, 51], "bad": [35, 51, 56, 59, 78, 80, 92], "seem": [35, 82, 85], "aren": 35, "confidence_weighted_entropi": [35, 40, 51, 53, 59, 67, 69], "label_issues_idx": [35, 59], "entropi": [35, 37, 39, 40, 58, 59], "prune_by_class": [35, 51, 82], "predicted_neq_given": [35, 51, 82], "prune_counts_matrix": 35, "smallest": [35, 59], "unus": 35, "number_of_mislabeled_examples_in_class_k": 35, "delet": [35, 71, 80, 92], "thread": [35, 51], "window": [35, 79], "shorter": [35, 54], "find_predicted_neq_given": 35, "find_label_issues_using_argmax_confusion_matrix": 35, "latent_algebra": [36, 72], "label_quality_util": 36, "multilabel_util": [36, 85], "multilabel_scor": [36, 53], "token_classification_util": [36, 93], "get_normalized_entropi": 37, "min_allowed_prob": 37, "wikipedia": 37, "activ": [37, 39, 49, 71, 84], "towardsdatasci": 37, "cheatsheet": 37, "ec57bc067c0b": 37, "clip": [37, 44, 73], "behav": 37, "unnecessari": [37, 80], "slightli": [37, 91, 92], "interv": [37, 40, 87], "herein": 38, "inexact": 38, "cours": 38, "propag": 38, "throughout": [38, 44, 61, 73, 84, 90, 93], "compute_ps_py_inv_noise_matrix": 38, "compute_py_inv_noise_matrix": 38, "compute_inv_noise_matrix": 38, "easili": [38, 72, 73, 75, 77, 78, 82, 84, 85, 87, 88, 89, 90, 91, 92], "increas": [38, 56, 58, 59, 73, 74, 80, 84, 85, 93], "dot": [38, 69, 80], "compute_noise_matrix_from_invers": 38, "compute_pi": 38, "true_labels_class_count": 38, "compute_pyx": 38, "pyx": 38, "multiannot": 39, "assert_valid_inputs_multiannot": 39, "labels_multiannot": [39, 49], "ensembl": [39, 40, 49, 59, 77, 80, 85, 87, 89, 91], "allow_single_label": 39, "annotator_id": 39, "assert_valid_pred_prob": 39, "pred_probs_unlabel": [39, 49], "format_multiannotator_label": [39, 49, 84], "lexicograph": [39, 44], "formatted_label": [39, 44], "old": [39, 44, 72, 79], "check_consensus_label_class": 39, "consensus_label": [39, 49, 84], "consensus_method": [39, 49], "consensu": [39, 49, 71, 83, 93], "establish": [39, 89, 92], "compute_soft_cross_entropi": 39, "soft": [39, 79], "find_best_temp_scal": 39, "coarse_search_rang": [39, 61, 80], "fine_search_s": [39, 61, 80], "temperatur": [39, 40, 56, 65, 69], "scale": [39, 42, 79, 80, 87, 90, 91], "factor": [39, 40, 63, 65], "minim": [39, 56, 87], "temp_scale_pred_prob": 39, "temp": 39, "sharpen": [39, 79], "smoothen": 39, "classlabelscor": 40, "enum": 40, "get_normalized_margin_for_each_label": [40, 59], "get_confidence_weighted_entropy_for_each_label": [40, 59], "75": [40, 74, 75, 79, 84, 85, 86, 89, 90, 93], "from_str": 40, "scorer": 40, "exponential_moving_averag": [40, 53], "alpha": [40, 53, 56, 74, 75, 82, 85, 89], "exponenti": 40, "ema": 40, "s_1": 40, "s_k": 40, "ema_k": 40, "accord": [40, 51, 77, 78, 82, 93], "formula": [40, 42], "_t": 40, "cdot": 40, "s_t": 40, "qquad": 40, "leq": 40, "_1": 40, "give": [40, 59, 82, 84, 90], "recent": [40, 93], "success": 40, "previou": [40, 80, 81, 86], "discount": 40, "s_ema": 40, "175": [40, 82, 86], "softmin": [40, 53, 56, 65, 69], "underflow": 40, "nan": [40, 49, 77, 84, 89, 91], "possible_method": 40, "aggregated_scor": 40, "multilabelscor": 40, "base_scor": 40, "base_scorer_kwarg": 40, "aggregator_kwarg": [40, 53], "n_sampl": 40, "n_label": 40, "binari": [40, 44, 51, 53, 82, 93], "worst": [40, 84], "class_label_quality_scor": 40, "get_class_label_quality_scor": 40, "42": [40, 79, 81, 86, 90, 93], "452": [40, 78], "new_scor": 40, "575": 40, "get_label_quality_scores_per_class": [40, 53], "ml_scorer": 40, "multilabel_pi": 40, "binar": [40, 41], "get_cross_validated_multilabel_pred_prob": 40, "reformat": [40, 73], "wider": 40, "splitter": 40, "kfold": [40, 81], "multiclass": [40, 44, 49, 85], "onevsrestclassifi": [40, 85], "randomforestclassifi": [40, 82, 85], "n_split": [40, 75, 81, 85], "stack_compl": 41, "pred_prob_slic": 41, "get_onehot_num_class": 41, "onehot": 41, "multilabel": [41, 85], "int2onehot": [41, 85], "hot": [41, 51, 57, 63, 66, 77, 79, 80, 89, 90, 91], "onehot2int": [41, 85], "onehot_matrix": 41, "transform_distances_to_scor": 42, "exp": [42, 58, 59, 74], "dt": 42, "right": [42, 54, 57, 78, 85, 86, 87, 92], "num_neighbor": 42, "ood_features_scor": [42, 58, 87], "95122942": 42, "83945702": 42, "token_classif": [43, 67, 69, 70, 80], "get_sent": [43, 93], "sentenc": [43, 67, 69, 70, 78, 92], "readabl": 43, "filter_sent": [43, 93], "lambda": [43, 73, 74, 80, 84], "long_sent": 43, "headlin": 43, "process_token": 43, "charact": [43, 44], "s1": 43, "s2": 43, "processed_token": 43, "rule": [43, 79], "alecnlcb": 43, "entiti": [43, 71, 80, 93], "mapped_ent": 43, "unique_ident": 43, "loc": [43, 74, 75, 81, 93], "merge_prob": 43, "probs_merg": 43, "55": [43, 79, 86, 89, 90], "0125": [43, 69], "0375": 43, "075": 43, "025": 43, "color_sent": 43, "color": [43, 66, 74, 75, 77, 82, 85, 87, 89, 90], "red": [43, 57, 74, 75, 79, 82, 85, 86, 87, 90], "colored_sent": 43, "termcolor": 43, "31msentenc": 43, "0m": 43, "ancillari": 44, "remove_noise_from_class": 44, "class_without_nois": 44, "any_other_class": 44, "choos": [44, 59, 77, 80, 82, 89, 91], "tradition": 44, "clip_noise_r": 44, "clip_valu": 44, "new_sum": 44, "preserv": 44, "value_count": [44, 80], "fill": 44, "wherea": [44, 51, 88], "come": [44, 74, 75, 80, 81, 90], "major": [44, 49, 72, 81, 87], "versu": [44, 82], "value_counts_fill_missing_class": 44, "get_missing_class": 44, "round_preserving_sum": 44, "obviou": 44, "cgdeboer": 44, "iteround": 44, "round_preserving_row_tot": 44, "reach": 44, "estimate_pu_f1": 44, "prob_s_eq_1": 44, "claesen": 44, "f1": [44, 57, 78, 82], "confusion_matrix": 44, "BE": 44, "print_square_matrix": 44, "left_nam": 44, "top_nam": 44, "titl": [44, 74, 75, 82, 85, 87], "short_titl": 44, "round_plac": 44, "pretti": [44, 82], "print_noise_matrix": [44, 82], "print_inverse_noise_matrix": 44, "print_joint_matrix": [44, 82], "joint_matrix": 44, "compress_int_arrai": 44, "num_possible_valu": 44, "train_val_split": 44, "holdout_idx": 44, "subset_x_i": 44, "extract": [44, 58, 73, 78, 84, 87, 90, 92], "subset_label": 44, "subset_data": 44, "extract_indices_tf": 44, "allow_shuffl": 44, "turn": [44, 71, 86], "unshuffle_tensorflow_dataset": 44, "shuffledataset": 44, "histori": 44, "pre_x": 44, "buffer_s": 44, "is_torch_dataset": 44, "is_tensorflow_dataset": 44, "csr_vstack": 44, "csr_matric": 44, "append": [44, 73, 79, 80, 81, 82, 84, 85, 87, 93], "bottom": [44, 54, 57, 86], "vstack": [44, 79, 80, 81, 82, 84, 85], "append_extra_datapoint": 44, "to_data": 44, "from_data": 44, "taken": 44, "One": [44, 58, 80], "get_num_class": 44, "label_matrix": 44, "canon": 44, "num_unique_class": 44, "get_unique_class": 44, "format_label": 44, "smart_display_datafram": 44, "displai": [44, 57, 66, 70, 73, 78, 82, 92, 93], "jupyt": [44, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "notebook": [44, 49, 73, 75, 79, 80, 82, 84, 85, 86, 90, 93], "consol": 44, "force_two_dimens": 44, "html": [44, 58, 77, 80, 82], "assert_valid_input": 45, "allow_missing_class": 45, "allow_one_class": 45, "assert_valid_class_label": 45, "assert_nonempty_input": 45, "assert_indexing_work": 45, "length_x": 45, "labels_to_arrai": 45, "labellik": 45, "keraswrappermodel": [48, 71], "keraswrappersequenti": 48, "tf": [48, 73], "legaci": 48, "lack": 48, "keraswrapp": 48, "huggingface_keras_imdb": 48, "unit": [48, 93], "model_kwarg": [48, 61], "compile_kwarg": 48, "sparsecategoricalcrossentropi": 48, "layer": [48, 73, 78, 87, 92], "dens": 48, "my_keras_model": 48, "from_logit": 48, "compil": 48, "declar": 48, "apply_softmax": 48, "analysi": 49, "analyz": [49, 71, 82, 84, 85], "get_label_quality_multiannot": [49, 84], "vote": 49, "crowdsourc": [49, 71, 84], "dawid": [49, 84], "skene": [49, 84], "analog": [49, 79, 84], "chosen": [49, 59, 80, 84], "crowdlab": [49, 84], "unlabel": [49, 77, 78, 81, 84, 87, 90], "decid": [49, 78, 79, 84, 89, 92, 93], "get_active_learning_scor": [49, 84], "activelab": [49, 84], "priorit": [49, 56, 86, 90, 93], "showcas": 49, "main": 49, "best_qual": 49, "quality_method": 49, "calibrate_prob": 49, "return_detailed_qu": 49, "return_annotator_stat": 49, "return_weight": 49, "label_quality_score_kwarg": 49, "necessarili": [49, 57, 78, 82], "did": [49, 50, 73, 77, 82, 84, 89, 91, 92], "majority_vot": 49, "ti": 49, "broken": [49, 57, 79], "highest": [49, 57, 74, 81, 88], "0th": 49, "consensus_quality_scor": [49, 84], "annotator_agr": [49, 84], "reman": 49, "1st": 49, "2nd": [49, 63], "3rd": 49, "consensus_label_suffix": 49, "consensus_quality_score_suffix": 49, "suffix": 49, "emsembl": 49, "weigh": [49, 79], "agreement": [49, 84], "agre": 49, "prevent": [49, 80], "overconfid": [49, 88], "wrong": [49, 54, 56, 72, 74, 75, 78, 80, 82, 86, 92], "detailed_label_qu": [49, 84], "annotator_stat": [49, 84], "model_weight": 49, "annotator_weight": 49, "warn": [49, 74, 75], "labels_info": 49, "num_annot": [49, 84], "deriv": [49, 84], "quality_annotator_1": 49, "quality_annotator_2": 49, "quality_annotator_m": 49, "annotator_qu": [49, 84], "num_examples_label": [49, 84], "agreement_with_consensu": [49, 84], "worst_class": [49, 84], "trustworthi": [49, 84, 89], "get_label_quality_multiannotator_ensembl": 49, "weigtht": 49, "budget": 49, "retrain": [49, 89, 92], "active_learning_scor": 49, "improv": [49, 75, 79, 80, 81, 82, 89, 90, 91, 92], "active_learning_scores_unlabel": 49, "get_active_learning_scores_ensembl": 49, "henc": [49, 73, 74, 84], "get_majority_vote_label": [49, 84], "event": 49, "lastli": [49, 77], "convert_long_to_wide_dataset": 49, "labels_multiannotator_long": 49, "wide": [49, 73, 91, 92], "suitabl": [49, 77, 91], "labels_multiannotator_wid": 49, "common_multilabel_issu": 50, "mutual": [50, 85], "exclus": [50, 85], "rank_classes_by_multilabel_qu": 50, "overall_multilabel_health_scor": 50, "multilabel_health_summari": 50, "classes_by_multilabel_qu": 50, "inner": [51, 65], "find_multilabel_issues_per_class": 51, "per_class_label_issu": 51, "label_issues_list": 51, "labels_list": 51, "pred_probs_list": [51, 59, 81, 82], "anim": [52, 87], "rat": 52, "predat": 52, "pet": 52, "reptil": 52, "manner": [53, 84, 89, 91, 92], "box": [54, 56, 57, 79, 86], "object_detect": [54, 56, 57, 86], "return_indices_ranked_by_scor": [54, 86], "overlapping_label_check": [54, 56], "suboptim": [54, 56], "locat": [54, 56, 86, 90, 93], "bbox": [54, 57, 86], "image_nam": [54, 57], "y1": [54, 57, 86], "y2": [54, 57, 86], "later": [54, 57, 58, 92, 93], "mmdetect": [54, 57, 86], "corner": [54, 57, 86], "swap": [54, 56, 66, 70], "penal": [54, 56], "concern": [54, 56, 71, 75], "aggregation_weight": 56, "imperfect": [56, 80], "chose": [56, 84, 86], "imperfectli": [56, 86], "dirti": [56, 59, 62, 89], "subtyp": 56, "badloc": 56, "nonneg": 56, "issues_from_scor": [56, 65, 66, 69, 70, 86, 90, 93], "compute_overlooked_box_scor": 56, "high_probability_threshold": 56, "auxiliary_input": [56, 57], "vari": [56, 75], "iou": [56, 57], "heavili": 56, "auxiliarytypesdict": 56, "pred_label": [56, 92], "pred_label_prob": 56, "pred_bbox": 56, "lab_label": 56, "lab_bbox": 56, "similarity_matrix": 56, "min_possible_similar": 56, "scores_overlook": 56, "compute_badloc_box_scor": 56, "low_probability_threshold": 56, "scores_badloc": 56, "compute_swap_box_scor": 56, "accident": [56, 77, 78, 80, 92], "scores_swap": 56, "pool_box_scores_per_imag": 56, "box_scor": 56, "image_scor": [56, 65, 90], "object_counts_per_imag": 57, "discov": [57, 75, 93], "auxiliari": [57, 87, 90], "_get_valid_inputs_for_compute_scor": 57, "object_count": 57, "bounding_box_size_distribut": 57, "down": 57, "bbox_siz": 57, "class_label_distribut": 57, "class_distribut": 57, "get_sorted_bbox_count_idx": 57, "plot": [57, 74, 75, 82, 85, 87, 89, 90], "sorted_idx": [57, 87], "plot_class_size_distribut": 57, "class_to_show": 57, "hidden": [57, 87], "max_class_to_show": 57, "plot_class_distribut": 57, "visual": [57, 74, 75, 81, 89, 91, 93], "prediction_threshold": 57, "overlai": [57, 86], "figsiz": [57, 74, 75, 81, 82, 85, 87], "save_path": [57, 86], "blue": [57, 79, 82, 86], "overlaid": 57, "side": [57, 79, 86], "figur": [57, 82, 85, 87, 89], "extens": [57, 82, 84], "png": [57, 86], "pdf": [57, 58], "svg": 57, "matplotlib": [57, 74, 75, 81, 82, 85, 86, 87, 89], "get_average_per_class_confusion_matrix": 57, "num_proc": [57, 81], "intersect": [57, 80], "tp": 57, "fp": 57, "ground": [57, 79, 82, 84, 89], "truth": [57, 82, 84, 89], "strength": 57, "bias": 57, "avg_metr": 57, "distionari": 57, "95": [57, 67, 69, 75, 77, 79, 82, 89, 90], "calculate_per_class_metr": 57, "per_class_metr": 57, "Of": 58, "li": 58, "smaller": [58, 85, 86], "find_top_issu": [58, 59, 87], "reli": [58, 73, 74, 75, 78, 86, 87, 92], "dist_metr": 58, "dim": [58, 81, 90], "subtract": [58, 59], "renorm": [58, 59, 80], "least_confid": 58, "sum_": 58, "log": [58, 59, 72], "softmax": [58, 65, 69, 81], "literatur": 58, "gen": 58, "liu": 58, "lochman": 58, "zach": 58, "openaccess": 58, "thecvf": 58, "content": [58, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "cvpr2023": 58, "liu_gen_pushing_the_limits_of_softmax": 58, "based_out": 58, "distribution_detection_cvpr_2023_pap": 58, "fit_scor": [58, 87], "ood_predictions_scor": 58, "pretrain": [58, 73, 78, 87, 92], "adjust_confident_threshold": 58, "probabilist": [58, 73, 74, 75, 77, 78, 87, 88, 91], "order_label_issu": [59, 72], "whichev": [59, 88], "argsort": [59, 78, 81, 82, 87, 89, 92], "max_": 59, "get_label_quality_ensemble_scor": [59, 80, 82], "weight_ensemble_members_bi": 59, "custom_weight": 59, "log_loss_search_t_valu": 59, "0001": [59, 79], "scheme": 59, "log_loss_search": 59, "log_loss": [59, 78], "1e0": 59, "1e1": 59, "1e2": 59, "2e2": 59, "quality_scor": [59, 87], "forth": 59, "top_issue_indic": 59, "rank_bi": [59, 72], "weird": [59, 70], "minu": 59, "prob_label": 59, "max_prob_not_label": 59, "idea": 59, "AND": [59, 78], "corrupt": [61, 89], "linearregress": [61, 80, 89], "y_with_nois": 61, "n_boot": [61, 80], "include_aleatoric_uncertainti": [61, 80], "sole": [61, 74, 84, 87, 91], "larger": [61, 63, 65, 78, 79, 80, 81], "bootstrap": [61, 80, 89], "resampl": [61, 73, 80], "epistem": [61, 80, 87, 89], "aleator": [61, 80, 89], "model_final_kwarg": 61, "coars": 61, "thorough": [61, 80], "fine": [61, 73, 78, 87, 92], "grain": 61, "grid": 61, "get_epistemic_uncertainti": 61, "varianc": [61, 82], "epistemic_uncertainti": 61, "get_aleatoric_uncertainti": 61, "residu": [61, 62, 80], "deviat": [61, 89], "ie": 61, "aleatoric_uncertainti": 61, "outr": 62, "contin": 62, "raw": [62, 71, 72, 75, 79, 81, 84, 86, 87], "aka": [62, 73, 82, 93], "00323821": 62, "33692597": 62, "00191686": 62, "semant": [63, 65, 66, 83], "pixel": [63, 65, 66, 87, 90], "h": [63, 65, 66, 90], "height": [63, 65, 66, 90], "w": [63, 65, 66, 90], "width": [63, 65, 66, 90], "labels_one_hot": [63, 66, 90], "stream": [63, 87, 93], "downsampl": [63, 65, 90], "shrink": [63, 65], "divis": [63, 65, 74], "segmant": [65, 66], "num_pixel_issu": [65, 90], "product": [65, 80, 81], "pixel_scor": [65, 90], "display_issu": [65, 66, 67, 69, 70, 90, 93], "highlight": [66, 70, 74, 75, 77, 90], "enter": 66, "legend": [66, 74, 75, 85, 86, 89, 90], "colormap": 66, "background": 66, "person": [66, 80, 86, 90, 93], "common_label_issu": [66, 70, 90, 93], "ambigu": [66, 70, 73, 78, 79, 82, 92, 93], "systemat": [66, 70, 84], "misunderstood": [66, 70], "issues_df": [66, 81], "filter_by_class": [66, 90], "class_index": 66, "issues_subset": [66, 70], "token_score_method": 69, "sentence_score_method": 69, "sentence_score_kwarg": 69, "compris": [69, 70], "token_scor": [69, 93], "converg": 69, "toward": 69, "_softmin_sentence_scor": 69, "sentence_scor": [69, 93], "token_info": 69, "70": [69, 77, 89, 90], "02": [69, 74, 75, 81, 82, 86, 89, 90], "03": [69, 79, 82, 86, 90, 93], "04": [69, 81, 86, 89, 90], "08": [69, 78, 82, 86, 90, 93], "commonli": [70, 72, 74, 75, 85, 93], "filter_by_token": [70, 93], "But": [70, 78, 82, 93], "restrict": [70, 80], "reliabl": [71, 73, 80, 84, 90, 91], "thousand": 71, "imagenet": [71, 79], "popular": [71, 84, 86], "centric": [71, 77, 78, 81, 83], "capabl": 71, "minut": [71, 73, 77, 78, 79, 84, 85, 86, 89, 90, 91, 92, 93], "conda": 71, "feature_embed": [71, 87], "Then": [71, 80, 81, 89, 91, 92], "your_dataset": [71, 73, 74, 75, 77, 78, 80, 81], "column_name_of_label": [71, 73, 74, 75, 77, 78, 81], "plagu": [71, 75], "untrain": 71, "\u30c4": 71, "label_issues_info": [71, 75], "sklearn_compatible_model": 71, "framework": [71, 85, 86], "complianc": 71, "tag": [71, 85, 93], "sequenc": 71, "recognit": [71, 73, 80, 93], "train_data": [71, 87, 89, 91, 92], "gotten": 71, "test_data": [71, 82, 85, 87, 89, 91, 92], "deal": [71, 75], "tutori": [71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "feel": [71, 73, 75, 80], "free": [71, 73, 75, 77, 78, 80, 81, 82], "ask": [71, 80], "slack": [71, 80], "project": [71, 89], "welcom": 71, "commun": [71, 80], "guidelin": [71, 86], "piec": 71, "studio": [71, 75, 77, 78, 80, 81], "platform": [71, 77, 78, 80, 81], "automl": [71, 80], "foundat": 71, "smart": [71, 77, 78, 80, 81], "edit": [71, 80], "easier": [71, 82], "unreli": [71, 73, 77, 78, 91], "older": 72, "outlin": 72, "substitut": 72, "v2": [72, 77, 91], "get_noise_indic": 72, "psx": 72, "sorted_index_method": 72, "order_label_error": 72, "label_errors_bool": 72, "latent_estim": 72, "num_label_error": 72, "learningwithnoisylabel": 72, "neatli": 72, "organ": [72, 77, 79, 91, 93], "reorgan": 72, "baseline_method": 72, "incorpor": [72, 82], "research": [72, 82], "polyplex": 72, "terminologi": 72, "label_error": 72, "quickstart": [73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "spoken": 73, "500": [73, 87, 93], "english": [73, 79], "pronunci": 73, "wav": 73, "huggingfac": [73, 74, 75, 81], "voxceleb": 73, "speech": [73, 93], "your_pred_prob": [73, 74, 75, 77, 78], "tensorflow_io": 73, "26": [73, 74, 79, 81, 82, 84, 86, 90], "huggingface_hub": 73, "12": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "branch": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "reproduc": [73, 77, 82, 84], "command": 73, "wget": [73, 86, 90, 93], "navig": 73, "link": [73, 79, 86], "browser": 73, "jakobovski": 73, "archiv": [73, 93], "v1": 73, "tar": [73, 87], "gz": [73, 87], "mkdir": [73, 93], "spoken_digit": 73, "xf": 73, "6_nicolas_32": 73, "data_path": 73, "listdir": 73, "nondeterminist": 73, "file_nam": 73, "endswith": 73, "file_path": 73, "join": [73, 80, 81], "39": [73, 74, 78, 79, 80, 81, 86, 89, 90, 92, 93], "7_george_26": 73, "0_nicolas_24": 73, "0_nicolas_6": 73, "listen": 73, "display_exampl": 73, "click": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "expand": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "pulldown": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "colab": [73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "tfio": 73, "pathlib": 73, "ipython": 73, "load_wav_16k_mono": 73, "filenam": 73, "khz": 73, "file_cont": 73, "io": [73, 79], "read_fil": 73, "sample_r": 73, "decode_wav": 73, "desired_channel": 73, "squeez": 73, "rate_in": 73, "rate_out": 73, "16000": 73, "wav_file_nam": 73, "audio_r": 73, "wav_file_exampl": 73, "plai": [73, 79, 80], "button": 73, "wav_file_name_exampl": 73, "7_jackson_43": 73, "hear": 73, "extractor": 73, "encoderclassifi": 73, "spkrec": 73, "xvect": 73, "feature_extractor": 73, "from_hparam": 73, "run_opt": 73, "uncom": 73, "wav_audio_file_path": 73, "head": [73, 75, 77, 78, 79, 81, 82, 84, 89, 91, 92], "torchaudio": 73, "extract_audio_embed": 73, "emb": [73, 81], "signal": 73, "encode_batch": 73, "embeddings_list": [73, 81], "embeddings_arrai": 73, "512": [73, 81], "14": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "196315": 73, "3194594": 73, "478977": 73, "2890828": 73, "8170278": 73, "892647": 73, "24": [73, 79, 81, 82, 84, 86, 90], "898054": 73, "256194": 73, "559642": 73, "559715": 73, "620667": 73, "285246": 73, "21": [73, 74, 79, 80, 82, 86, 90, 93], "709623": 73, "5033712": 73, "913803": 73, "8198366": 73, "1831512": 73, "208761": 73, "08426": 73, "3210406": 73, "005453": 73, "2161605": 73, "478239": 73, "682179": 73, "0538025": 73, "242471": 73, "0914207": 73, "7833488": 73, "039538": 73, "23": [73, 79, 81, 82, 86, 90], "56918": 73, "19": [73, 78, 79, 80, 81, 82, 87, 89, 90, 92], "761095": 73, "1258287": 73, "753235": 73, "3508894": 73, "598273": 73, "237122": 73, "2500": 73, "leverag": [73, 78, 80, 82, 84, 92], "tune": [73, 78, 79, 87, 92], "computation": [73, 78, 92], "intens": [73, 78, 92], "held": [73, 77, 78, 79, 86, 87, 88, 91], "straightforward": [73, 77, 91], "benefit": [73, 88, 90, 91], "tol": 73, "num_crossval_fold": [73, 77, 84, 91], "decreas": [73, 80], "never": [73, 82, 85, 87, 88], "accuracy_scor": [73, 78, 82, 91, 92], "cv_accuraci": 73, "9772": 73, "probabilit": [73, 92], "9980": 73, "176": [73, 79, 82, 85], "006488": 73, "2318": 73, "008269": 73, "986": 73, "010354": 73, "469": 73, "013459": 73, "516": 73, "013478": 73, "investig": 73, "100541": 73, "998729": 73, "998768": 73, "980980": 73, "998217": 73, "18": [73, 78, 79, 80, 81, 82, 86, 87, 89, 90, 92], "identified_label_issu": [73, 78], "lowest_quality_label": [73, 78, 82, 89, 92], "sort_valu": [73, 75, 77, 78, 80, 81, 82, 84], "1946": 73, "1871": 73, "1955": 73, "2132": 73, "worth": [73, 82], "iloc": [73, 77, 78, 89, 91, 92], "6_yweweler_35": 73, "6_yweweler_36": 73, "6_yweweler_14": 73, "6_theo_27": 73, "4_george_31": 73, "6_nicolas_8": 73, "sound": 73, "quit": [73, 87], "22": [73, 74, 79, 81, 82, 85, 86, 90, 93], "blindli": [73, 80, 89, 91, 92], "trust": [73, 80, 82, 84, 88, 89, 91, 92], "underneath": 74, "hood": 74, "alert": 74, "introduct": 74, "mayb": [74, 75, 78], "examin": [74, 75, 77, 91], "your_feature_matrix": [74, 75], "toi": [74, 75, 79, 81, 82, 84], "train_test_split": [74, 75, 87, 91, 92], "inf": [74, 75], "mid": [74, 75], "bins_map": [74, 75], "create_data": [74, 75], "y_bin": [74, 75], "y_i": [74, 75], "y_bin_idx": [74, 75], "y_train": [74, 75, 82, 89], "y_test": [74, 75, 82, 89], "y_train_idx": [74, 75], "y_test_idx": [74, 75], "test_siz": [74, 75, 91, 92], "slide": [74, 75, 79], "decis": [74, 75, 91], "boundari": [74, 75], "frame": [74, 75], "x_out": [74, 75], "tini": [74, 75], "concaten": [74, 75, 80, 88], "y_out": [74, 75], "y_out_bin": [74, 75], "y_out_bin_idx": [74, 75], "exact_duplicate_idx": [74, 75], "x_duplic": [74, 75], "y_duplic": [74, 75], "y_duplicate_idx": [74, 75], "noisy_labels_idx": [74, 75, 85], "scatter": [74, 75, 82, 85, 89], "black": [74, 75, 79, 89], "cyan": [74, 75], "pyplot": [74, 75, 81, 82, 85, 87, 89], "plt": [74, 75, 81, 82, 85, 87, 89], "plot_data": [74, 75, 82, 85, 89], "fig": [74, 75, 79, 81, 87, 89], "ax": [74, 75, 81, 87, 89], "subplot": [74, 75, 81, 87], "set_titl": [74, 75, 81, 87], "set_xlabel": [74, 75], "x_1": [74, 75], "fontsiz": [74, 75, 81, 82, 85], "set_ylabel": [74, 75], "x_2": [74, 75], "set_xlim": [74, 75], "set_ylim": [74, 75], "linestyl": [74, 75], "circl": [74, 75, 82, 85], "misclassifi": [74, 75], "zip": [74, 75, 81, 86, 93], "label_err": [74, 75], "180": [74, 75, 86], "marker": [74, 75], "facecolor": [74, 75], "edgecolor": [74, 75], "linewidth": [74, 75, 87], "dup": [74, 75], "first_legend": [74, 75], "align": [74, 75], "title_fontproperti": [74, 75], "semibold": [74, 75], "second_legend": [74, 75], "45": [74, 75, 79, 81, 82, 86, 90], "gca": [74, 75], "add_artist": [74, 75], "tight_layout": [74, 75], "ideal": [74, 75], "logist": [74, 75, 78, 84, 87, 92], "remaind": 74, "modal": [74, 75, 80, 84], "regardless": [74, 75], "132": [74, 75, 82, 86], "9318": 74, "77": [74, 75, 77, 86, 90, 91], "006939": 74, "007830": 74, "40": [74, 75, 78, 79, 81, 90], "014826": 74, "107": [74, 75, 82, 85], "021220": 74, "120": [74, 75, 91], "026403": 74, "notic": [74, 82, 84, 86], "5221": [74, 75], "126": [74, 75, 82, 86], "046465": [74, 75], "130": [74, 75], "068695": [74, 75], "129": [74, 75], "127": [74, 75], "076251": [74, 75], "128": [74, 75, 81], "083941": [74, 75], "6160": [74, 75], "is_near_duplicate_issu": [74, 75, 77, 78, 80, 81, 82], "131": [74, 75, 90], "000000e": [74, 75], "00": [74, 75, 77, 79, 81, 90, 91], "000002": [74, 75], "463180e": [74, 75], "07": [74, 75, 82, 86, 90], "51": [74, 75, 77, 79, 82, 86, 90], "161148": [74, 75], "859087e": [74, 75], "30": [74, 75, 79, 80, 81, 85, 90, 93], "3293": 74, "025076": 74, "026534": 74, "050766": 74, "051025": 74, "home": [74, 75, 78, 79, 87, 92], "runner": [74, 75, 78, 87, 92], "300": [74, 84, 93], "userwarn": [74, 75], "330": [74, 81, 86], "309": 74, "34": [74, 79, 81, 82, 84, 86, 87, 90, 93], "54": [74, 79, 82, 86, 90, 93], "039117": 74, "53": [74, 75, 77, 79, 81, 85, 86, 90, 91, 93], "044594": 74, "105": 74, "105121": 74, "133588": 74, "43": [74, 79, 81, 82, 86, 90, 92], "168035": 74, "125": 74, "090878": 74, "37": [74, 79, 90], "169462": 74, "109": [74, 79, 86], "194566": 74, "196302": 74, "206314": 74, "average_ood_scor": 74, "32933380816554325": 74, "52": [74, 79, 86, 90, 93], "169820": 74, "087324e": 74, "89": [74, 77, 86, 89, 90], "92": [74, 82, 86, 90, 91], "259024": 74, "583757e": 74, "91": [74, 86, 90, 92], "346458": 74, "341292e": 74, "specfi": 74, "new_lab": 74, "scoring_funct": 74, "div": 74, "rem": 74, "inv_scal": 74, "49": [74, 79, 81, 82, 86, 90], "superstitionissuemanag": 74, "unlucki": 74, "superstit": 74, "to_seri": 74, "issues_mask": 74, "summary_scor": 74, "9242": 74, "is_superstition_issu": 74, "superstition_scor": 74, "047581": 74, "090635": 74, "129591": 74, "65": [74, 81, 86, 90, 91, 93], "164840": 74, "demo": [75, 77, 85, 91], "lurk": [75, 81, 82], "opt": 75, "hostedtoolcach": 75, "x64": 75, "lib": 75, "python3": 75, "site": 75, "_split": 75, "737": 75, "thoroughli": 75, "preprocess": [75, 77, 87, 89, 91, 92], "904": 75, "review": [75, 77, 78, 79, 80, 82, 86, 89, 90, 91, 92, 93], "8561": 75, "001894": 75, "58": [75, 77, 79, 82, 86, 90, 91], "003565": 75, "007326": 75, "008974": 75, "009699": 75, "0227": 75, "is_class_imbalance_issu": [75, 77, 78, 81, 82], "022727": 75, "86": [75, 77, 81, 82, 86, 89, 90, 91], "87": [75, 81, 86, 89, 90, 92], "0000": [75, 78, 79, 81, 82], "is_null_issu": [75, 78, 81, 82], "96": [75, 77, 79, 82, 85, 86, 89, 90], "94": [75, 77, 79, 82, 86, 89, 90, 91], "93": [75, 79, 86, 89, 90, 91, 93], "8218": 75, "is_non_iid_issu": [75, 77, 78, 81, 82], "810274": 75, "826147": 75, "849587": 75, "855359": 75, "855485": 75, "821750488732925": 75, "auto": [75, 79, 80, 89, 91, 92], "conceptu": 75, "856061": 75, "522080": 75, "616034": 75, "821750": 75, "betweeen": 75, "859109": 75, "586131": 75, "664083": 75, "970324": 75, "816965": 75, "548979": 75, "641516": 75, "890575": 75, "530924": 75, "622256": 75, "601188": 75, "752776": 75, "499498": 75, "562539": 75, "948362": 75, "090224": 75, "632385": 75, "746763": 75, "878267": 75, "examples_w_issu": [75, 80], "013444": 75, "025173": 75, "026416": 75, "inde": [75, 78], "miscellan": [75, 93], "428571": 75, "111111": 75, "571429": 75, "407407": 75, "592593": 75, "337838": 75, "092593": 75, "662162": 75, "333333": [75, 79], "952381": 75, "666667": 75, "portion": 75, "huge": [75, 82], "worri": [75, 78], "critic": 75, "highli": [75, 81], "sql": [77, 91], "databas": [77, 91], "excel": [77, 91], "parquet": [77, 91], "student": [77, 89, 91, 93], "grade": [77, 89, 91], "900": [77, 89, 91], "exam": [77, 89, 91], "letter": [77, 91, 93], "hundr": [77, 91], "histgradientboostingclassifi": 77, "standardscal": [77, 87, 91], "possibli": [77, 91], "grades_data": [77, 91], "read_csv": [77, 78, 89, 91, 92], "stud_id": [77, 91], "exam_1": [77, 89, 91], "exam_2": [77, 89, 91], "exam_3": [77, 89, 91], "letter_grad": [77, 91], "f48f73": [77, 91], "0bd4e7": [77, 91], "81": [77, 78, 86, 89, 90, 91, 93], "great": [77, 79, 91], "particip": [77, 91], "cb9d7a": [77, 91], "61": [77, 81, 82, 86, 90, 91], "78": [77, 79, 82, 86, 89, 90, 91], "9acca4": [77, 91], "48": [77, 79, 82, 86, 90, 91], "x_raw": [77, 91], "cat_featur": 77, "x_encod": [77, 91], "get_dummi": [77, 89, 91], "drop_first": [77, 91], "numeric_featur": [77, 91], "scaler": [77, 87, 91], "x_process": [77, 91], "fit_transform": [77, 91], "bring": [77, 78, 81, 84, 89, 91, 92], "byod": [77, 78, 81, 84, 89, 91, 92], "boost": [77, 80, 84, 89], "xgboost": [77, 80, 89], "think": [77, 78, 80, 85, 90, 93], "carefulli": [77, 78, 81, 91], "nonzero": 77, "suspici": [77, 91], "tabl": [77, 79, 84, 91], "358": 77, "294": [77, 86], "46": [77, 79, 81, 82, 86, 90], "941": 77, "7109": 77, "000005": [77, 78, 81], "886": 77, "000059": 77, "709": 77, "000104": 77, "723": 77, "000169": 77, "689": 77, "000181": 77, "7154": 77, "012085": 77, "061510": 77, "115512": 77, "124391": 77, "214163": 77, "6165": 77, "582": 77, "185": [77, 79, 86, 93], "187": [77, 79], "27": [77, 79, 82, 86, 90, 93], "898": 77, "637": [77, 91], "0014": [77, 79], "595": 77, "702427": 77, "147": [77, 82, 86], "711186": 77, "157": [77, 82], "721394": 77, "771": 77, "731979": 77, "740335": 77, "0014153602099278074": 77, "1562": 77, "393": 77, "156217": 77, "391": 77, "806": 77, "805": 77, "156": [77, 82], "na": [77, 78, 81, 82, 84], "issue_result": 77, "000842": 77, "555944": 77, "004374": 77, "sorted_issu": 77, "73": [77, 79, 85, 86, 89, 90], "deserv": 77, "outlier_result": 77, "sorted_outli": 77, "56": [77, 79, 89, 90], "lt": [77, 78, 79, 81, 84, 90], "style": [77, 90], "font": 77, "18px": 77, "ff00ff": 77, "bac": 77, "unintend": [77, 78], "mistak": [77, 78, 81, 91, 92], "duplicate_result": 77, "690": 77, "246": [77, 86], "perhap": [77, 82, 84], "twice": 77, "67": [77, 79, 81, 86, 89, 90], "wari": [77, 78, 80], "super": [77, 78, 81], "system": [77, 78, 81, 90], "intent": [78, 92], "servic": [78, 80, 92], "onlin": [78, 92], "bank": [78, 79, 92], "banking77": [78, 92], "oo": [78, 92], "000": [78, 79, 81, 92, 93], "categori": [78, 81, 92], "scope": [78, 92], "dive": 78, "your_featur": 78, "sentence_transform": [78, 92], "sentencetransform": [78, 92], "payment": [78, 92], "cancel_transf": [78, 92], "transfer": [78, 92], "fund": [78, 92], "cancel": [78, 92], "transact": [78, 92], "my": [78, 92], "revert": [78, 92], "morn": [78, 92], "realis": [78, 92], "yesterdai": [78, 92], "rent": [78, 92], "realli": [78, 84, 90, 92], "tomorrow": [78, 92], "raw_text": [78, 92], "change_pin": [78, 92], "card_payment_fee_charg": [78, 92], "apple_pay_or_google_pai": [78, 92], "visa_or_mastercard": [78, 92], "getting_spare_card": [78, 92], "card_about_to_expir": [78, 92], "lost_or_stolen_phon": [78, 92], "supported_cards_and_curr": [78, 92], "beneficiary_not_allow": [78, 92], "utter": [78, 92], "continu": [78, 80, 81, 84, 89, 91, 92, 93], "suit": [78, 79, 80, 92], "electra": [78, 92], "discrimin": [78, 92], "googl": [78, 92], "text_embed": 78, "No": [78, 80, 92], "google_electra": [78, 92], "pool": [78, 80, 87, 92], "400": [78, 92], "data_dict": [78, 82, 84], "84": [78, 86, 90], "41": [78, 79, 86, 89, 90], "38": [78, 79, 86, 90], "9720": 78, "981": 78, "974": 78, "000150": 78, "982": [78, 79], "000218": 78, "971": 78, "000512": 78, "980": [78, 79], "000947": 78, "9122": 78, "994": 78, "676322": 78, "999": 78, "693868": 78, "697240": 78, "433": 78, "700874": 78, "989": 78, "713590": 78, "6070": 78, "160": [78, 82], "095724": 78, "148": 78, "006237": 78, "546": 78, "099340": 78, "514": 78, "006485": 78, "481": 78, "123416": 78, "008165": 78, "313": [78, 86], "564102": 78, "572258": 78, "28": [78, 79, 81, 82, 84, 90, 93], "574915": 78, "31": [78, 79, 82, 84, 86, 90], "575507": 78, "575874": 78, "658": 78, "659": [78, 89], "660": 78, "661": 78, "0800": 78, "454": 78, "453": 78, "455": 78, "791961": 78, "258508": 78, "699010": 78, "183136": 78, "771112": 78, "to_numpi": [78, 80, 89, 92], "data_with_suggested_label": 78, "suggested_label": 78, "charg": [78, 92], "cash": [78, 92], "holidai": [78, 92], "sent": [78, 92, 93], "card": [78, 79, 92], "mine": [78, 92], "expir": [78, 92], "me": [78, 92], "withdraw": 78, "monei": 78, "whoever": [78, 92], "outlier_issu": [78, 81], "lowest_quality_outli": 78, "OR": 78, "636c65616e6c616220697320617765736f6d6521": 78, "phone": [78, 79], "gone": 78, "gt": [78, 84, 93], "samp": 78, "br": 78, "press": [78, 93], "nonsens": 78, "sens": 78, "detriment": 78, "duplicate_issu": 78, "fee": 78, "pai": 78, "go": [78, 79, 82], "strongli": 78, "p_valu": 78, "benign": 78, "shortlist": [78, 89, 92], "curat": [78, 83], "mnist_test_set": 79, "imagenet_val_set": 79, "tench": 79, "goldfish": 79, "white": [79, 93], "shark": 79, "tiger": 79, "hammerhead": 79, "electr": 79, "rai": 79, "stingrai": 79, "cock": 79, "hen": 79, "ostrich": 79, "brambl": 79, "goldfinch": 79, "hous": 79, "finch": 79, "junco": 79, "indigo": 79, "bunt": 79, "american": [79, 93], "robin": 79, "bulbul": 79, "jai": 79, "magpi": 79, "chickade": 79, "dipper": 79, "kite": 79, "bald": 79, "eagl": 79, "vultur": 79, "grei": 79, "owl": 79, "fire": 79, "salamand": 79, "smooth": 79, "newt": 79, "spot": [79, 86], "axolotl": 79, "bullfrog": 79, "tree": 79, "frog": [79, 87], "tail": 79, "loggerhead": 79, "sea": 79, "turtl": 79, "leatherback": 79, "mud": 79, "terrapin": 79, "band": 79, "gecko": 79, "green": [79, 93], "iguana": 79, "carolina": 79, "anol": 79, "desert": 79, "grassland": 79, "whiptail": 79, "lizard": 79, "agama": 79, "frill": 79, "neck": 79, "allig": 79, "gila": 79, "monster": 79, "european": 79, "chameleon": 79, "komodo": 79, "dragon": 79, "nile": 79, "crocodil": 79, "triceratop": 79, "worm": 79, "snake": 79, "ring": 79, "eastern": 79, "hog": 79, "nose": 79, "kingsnak": 79, "garter": 79, "water": 79, "vine": 79, "night": 79, "boa": 79, "constrictor": 79, "african": 79, "rock": 79, "indian": 79, "cobra": 79, "mamba": 79, "saharan": 79, "horn": 79, "viper": 79, "diamondback": 79, "rattlesnak": 79, "sidewind": 79, "trilobit": 79, "harvestman": 79, "scorpion": 79, "yellow": 79, "garden": 79, "spider": 79, "barn": 79, "southern": 79, "widow": 79, "tarantula": 79, "wolf": 79, "tick": 79, "centiped": 79, "grous": 79, "ptarmigan": 79, "ruf": 79, "prairi": 79, "peacock": 79, "quail": 79, "partridg": 79, "parrot": 79, "macaw": 79, "sulphur": 79, "crest": 79, "cockatoo": 79, "lorikeet": 79, "coucal": 79, "bee": 79, "eater": 79, "hornbil": 79, "hummingbird": 79, "jacamar": 79, "toucan": 79, "duck": [79, 92], "breast": 79, "mergans": 79, "goos": 79, "swan": 79, "tusker": 79, "echidna": 79, "platypu": 79, "wallabi": 79, "koala": 79, "wombat": 79, "jellyfish": 79, "anemon": 79, "brain": 79, "coral": 79, "flatworm": 79, "nematod": 79, "conch": 79, "snail": 79, "slug": 79, "chiton": 79, "chamber": 79, "nautilu": 79, "dung": 79, "crab": 79, "fiddler": 79, "king": 79, "lobster": 79, "spini": 79, "crayfish": 79, "hermit": 79, "isopod": 79, "stork": 79, "spoonbil": 79, "flamingo": 79, "heron": 79, "egret": 79, "bittern": 79, "crane": 79, "bird": [79, 87], "limpkin": 79, "gallinul": 79, "coot": 79, "bustard": 79, "ruddi": 79, "turnston": 79, "dunlin": 79, "redshank": 79, "dowitch": 79, "oystercatch": 79, "pelican": 79, "penguin": 79, "albatross": 79, "whale": 79, "killer": 79, "dugong": 79, "lion": 79, "chihuahua": 79, "japanes": 79, "chin": 79, "maltes": 79, "pekinges": 79, "shih": 79, "tzu": 79, "charl": 79, "spaniel": 79, "papillon": 79, "terrier": 79, "rhodesian": 79, "ridgeback": 79, "afghan": [79, 93], "hound": 79, "basset": 79, "beagl": 79, "bloodhound": 79, "bluetick": 79, "coonhound": 79, "tan": 79, "walker": 79, "foxhound": 79, "redbon": 79, "borzoi": 79, "irish": 79, "wolfhound": 79, "italian": 79, "greyhound": 79, "whippet": 79, "ibizan": 79, "norwegian": 79, "elkhound": 79, "otterhound": 79, "saluki": 79, "scottish": 79, "deerhound": 79, "weimaran": 79, "staffordshir": 79, "bull": 79, "bedlington": 79, "border": 79, "kerri": 79, "norfolk": 79, "norwich": 79, "yorkshir": 79, "wire": 79, "fox": 79, "lakeland": 79, "sealyham": 79, "airedal": 79, "cairn": 79, "australian": 79, "dandi": 79, "dinmont": 79, "boston": 79, "miniatur": 79, "schnauzer": 79, "giant": 79, "tibetan": 79, "silki": 79, "coat": [79, 81], "wheaten": 79, "west": 79, "highland": 79, "lhasa": 79, "apso": 79, "flat": 79, "retriev": 79, "curli": 79, "golden": 79, "labrador": 79, "chesapeak": 79, "bai": 79, "german": [79, 93], "shorthair": 79, "pointer": 79, "vizsla": 79, "setter": 79, "gordon": 79, "brittani": 79, "clumber": 79, "springer": 79, "welsh": 79, "cocker": 79, "sussex": 79, "kuvasz": 79, "schipperk": 79, "groenendael": 79, "malinoi": 79, "briard": 79, "kelpi": 79, "komondor": 79, "sheepdog": 79, "shetland": 79, "colli": 79, "bouvier": 79, "de": 79, "flandr": 79, "rottweil": 79, "shepherd": 79, "dobermann": 79, "pinscher": 79, "swiss": [79, 93], "mountain": 79, "bernes": 79, "appenzel": 79, "sennenhund": 79, "entlebuch": 79, "boxer": 79, "bullmastiff": 79, "mastiff": 79, "french": 79, "bulldog": 79, "dane": 79, "st": 79, "bernard": 79, "huski": 79, "alaskan": 79, "malamut": 79, "siberian": 79, "dalmatian": 79, "affenpinsch": 79, "basenji": 79, "pug": 79, "leonberg": 79, "newfoundland": 79, "pyrenean": 79, "samoi": 79, "pomeranian": 79, "chow": 79, "keeshond": 79, "griffon": 79, "bruxelloi": 79, "pembrok": 79, "corgi": 79, "cardigan": 79, "poodl": 79, "mexican": 79, "hairless": 79, "tundra": 79, "coyot": 79, "dingo": 79, "dhole": 79, "wild": 79, "hyena": 79, "kit": 79, "arctic": 79, "tabbi": 79, "persian": 79, "siames": 79, "egyptian": 79, "mau": 79, "cougar": 79, "lynx": 79, "leopard": 79, "snow": 79, "jaguar": 79, "cheetah": 79, "brown": [79, 90], "bear": 79, "polar": 79, "sloth": 79, "mongoos": 79, "meerkat": 79, "beetl": 79, "ladybug": 79, "longhorn": 79, "leaf": 79, "rhinocero": 79, "weevil": 79, "fly": 79, "ant": 79, "grasshopp": 79, "cricket": 79, "stick": 79, "insect": 79, "cockroach": 79, "manti": 79, "cicada": 79, "leafhopp": 79, "lacew": 79, "dragonfli": 79, "damselfli": 79, "admir": 79, "ringlet": 79, "monarch": 79, "butterfli": 79, "gossam": 79, "wing": 79, "starfish": 79, "urchin": 79, "cucumb": 79, "cottontail": 79, "rabbit": 79, "hare": 79, "angora": 79, "hamster": 79, "porcupin": 79, "squirrel": 79, "marmot": 79, "beaver": 79, "guinea": 79, "pig": 79, "sorrel": 79, "zebra": 79, "boar": 79, "warthog": 79, "hippopotamu": 79, "ox": 79, "buffalo": 79, "bison": 79, "bighorn": 79, "sheep": 79, "alpin": 79, "ibex": 79, "hartebeest": 79, "impala": 79, "gazel": 79, "dromedari": 79, "llama": 79, "weasel": 79, "mink": 79, "polecat": 79, "foot": 79, "ferret": 79, "otter": 79, "skunk": 79, "badger": 79, "armadillo": 79, "toed": 79, "orangutan": 79, "gorilla": 79, "chimpanze": 79, "gibbon": 79, "siamang": 79, "guenon": 79, "pata": 79, "monkei": 79, "baboon": 79, "macaqu": 79, "langur": 79, "colobu": 79, "probosci": 79, "marmoset": 79, "capuchin": 79, "howler": 79, "titi": 79, "geoffroi": 79, "lemur": 79, "indri": 79, "asian": 79, "eleph": 79, "bush": 79, "snoek": 79, "eel": 79, "coho": 79, "salmon": 79, "beauti": 79, "clownfish": 79, "sturgeon": 79, "garfish": 79, "lionfish": 79, "pufferfish": 79, "abacu": 79, "abaya": 79, "academ": 79, "gown": 79, "accordion": 79, "acoust": 79, "guitar": 79, "aircraft": 79, "carrier": 79, "airlin": 79, "airship": 79, "altar": 79, "ambul": 79, "amphibi": 79, "clock": [79, 93], "apiari": 79, "apron": 79, "wast": 79, "assault": 79, "rifl": 79, "backpack": 79, "bakeri": 79, "balanc": 79, "beam": 79, "balloon": 79, "ballpoint": 79, "pen": 79, "aid": 79, "banjo": 79, "balust": 79, "barbel": 79, "barber": 79, "chair": [79, 86], "barbershop": 79, "baromet": 79, "barrel": 79, "wheelbarrow": 79, "basebal": 79, "basketbal": 79, "bassinet": 79, "bassoon": 79, "swim": 79, "cap": 79, "bath": 79, "towel": 79, "bathtub": 79, "station": 79, "wagon": 79, "lighthous": 79, "beaker": 79, "militari": 79, "beer": 79, "bottl": 79, "glass": 79, "bell": 79, "cot": 79, "bib": 79, "bicycl": [79, 90], "bikini": 79, "binder": 79, "binocular": 79, "birdhous": 79, "boathous": 79, "bobsleigh": 79, "bolo": 79, "tie": 79, "poke": 79, "bonnet": 79, "bookcas": 79, "bookstor": 79, "bow": 79, "brass": 79, "bra": 79, "breakwat": 79, "breastplat": 79, "broom": 79, "bucket": 79, "buckl": 79, "bulletproof": 79, "vest": 79, "butcher": 79, "shop": 79, "taxicab": 79, "cauldron": 79, "candl": 79, "cannon": 79, "cano": 79, "mirror": [79, 86], "carousel": 79, "tool": [79, 82, 84], "carton": 79, "wheel": 79, "teller": 79, "cassett": 79, "player": 79, "castl": 79, "catamaran": 79, "cd": 79, "cello": 79, "mobil": [79, 93], "chain": 79, "fenc": [79, 90], "mail": 79, "chainsaw": 79, "chest": 79, "chiffoni": 79, "chime": 79, "china": 79, "cabinet": 79, "christma": 79, "stock": 79, "church": 79, "movi": 79, "theater": 79, "cleaver": 79, "cliff": 79, "dwell": 79, "cloak": 79, "clog": 79, "cocktail": 79, "shaker": 79, "coffe": 79, "mug": 79, "coffeemak": 79, "coil": 79, "lock": 79, "keyboard": 79, "confectioneri": 79, "ship": [79, 87], "corkscrew": 79, "cornet": 79, "cowboi": 79, "boot": 79, "hat": 79, "cradl": 79, "crash": 79, "helmet": 79, "crate": 79, "infant": 79, "bed": 79, "crock": 79, "pot": 79, "croquet": 79, "crutch": 79, "cuirass": 79, "dam": 79, "desk": 79, "desktop": 79, "rotari": 79, "dial": 79, "telephon": 79, "diaper": 79, "watch": 79, "dine": 79, "dishcloth": 79, "dishwash": 79, "disc": 79, "brake": 79, "dock": 79, "sled": 79, "dome": 79, "doormat": 79, "drill": 79, "rig": 79, "drum": 79, "drumstick": 79, "dumbbel": 79, "dutch": 79, "oven": 79, "fan": 79, "locomot": 79, "entertain": 79, "center": 79, "envelop": 79, "espresso": 79, "powder": 79, "feather": 79, "fireboat": 79, "engin": [79, 90], "screen": 79, "sheet": 79, "flagpol": 79, "flute": 79, "footbal": 79, "forklift": 79, "fountain": 79, "poster": 79, "freight": 79, "fry": 79, "pan": 79, "fur": 79, "garbag": 79, "ga": 79, "pump": 79, "goblet": 79, "kart": 79, "golf": 79, "cart": 79, "gondola": 79, "gong": 79, "grand": 79, "piano": 79, "greenhous": 79, "grill": 79, "groceri": 79, "guillotin": 79, "barrett": 79, "hair": 79, "sprai": 79, "hammer": 79, "dryer": 79, "hand": [79, 82], "handkerchief": 79, "drive": 79, "harmonica": 79, "harp": 79, "harvest": 79, "hatchet": 79, "holster": 79, "honeycomb": 79, "hoop": 79, "skirt": 79, "horizont": 79, "bar": 79, "hors": [79, 87, 92], "drawn": 79, "hourglass": 79, "ipod": 79, "cloth": 79, "iron": 79, "jack": 79, "lantern": 79, "jean": 79, "jeep": 79, "shirt": [79, 81], "jigsaw": 79, "puzzl": 79, "pull": 79, "rickshaw": 79, "joystick": 79, "kimono": 79, "knee": 79, "pad": 79, "knot": 79, "ladl": 79, "lampshad": 79, "laptop": 79, "lawn": 79, "mower": 79, "knife": 79, "lifeboat": 79, "lighter": 79, "limousin": 79, "ocean": 79, "liner": 79, "lipstick": 79, "slip": 79, "shoe": 79, "lotion": 79, "speaker": 79, "loup": 79, "sawmil": 79, "magnet": 79, "compass": 79, "bag": [79, 81, 87, 88], "mailbox": 79, "tight": 79, "tank": 79, "manhol": 79, "maraca": 79, "marimba": 79, "maypol": 79, "maze": 79, "cup": [79, 86], "medicin": 79, "megalith": 79, "microphon": 79, "microwav": 79, "milk": 79, "minibu": 79, "miniskirt": 79, "minivan": 79, "missil": 79, "mitten": 79, "mix": 79, "bowl": 79, "modem": 79, "monasteri": 79, "monitor": 79, "mope": 79, "mortar": 79, "mosqu": 79, "mosquito": 79, "scooter": 79, "bike": 79, "tent": 79, "mous": [79, 80], "mousetrap": 79, "van": 79, "muzzl": 79, "nail": 79, "brace": 79, "necklac": 79, "nippl": 79, "obelisk": 79, "obo": 79, "ocarina": 79, "odomet": 79, "oil": 79, "oscilloscop": 79, "overskirt": 79, "bullock": 79, "oxygen": 79, "packet": 79, "paddl": 79, "padlock": 79, "paintbrush": 79, "pajama": 79, "palac": [79, 93], "parachut": 79, "park": 79, "bench": 79, "meter": 79, "passeng": 79, "patio": 79, "payphon": 79, "pedest": 79, "pencil": 79, "perfum": 79, "petri": 79, "dish": 79, "photocopi": 79, "plectrum": 79, "pickelhaub": 79, "picket": 79, "pickup": 79, "pier": 79, "piggi": 79, "pill": 79, "pillow": 79, "ping": 79, "pong": 79, "pinwheel": 79, "pirat": 79, "pitcher": 79, "plane": 79, "planetarium": 79, "plastic": 79, "plate": 79, "rack": 79, "plow": 79, "plunger": 79, "polaroid": 79, "camera": 79, "pole": [79, 90], "polic": 79, "poncho": 79, "billiard": 79, "soda": 79, "potter": 79, "prayer": 79, "rug": 79, "printer": 79, "prison": 79, "projectil": 79, "projector": 79, "hockei": 79, "puck": 79, "punch": 79, "purs": 79, "quill": 79, "quilt": 79, "race": 79, "racket": 79, "radiat": 79, "radio": 79, "telescop": 79, "rain": 79, "recreat": 79, "reel": 79, "reflex": 79, "refriger": 79, "remot": 79, "restaur": 79, "revolv": 79, "rotisseri": 79, "eras": 79, "rugbi": 79, "ruler": 79, "safe": 79, "safeti": 79, "salt": 79, "sandal": [79, 81], "sarong": 79, "saxophon": 79, "scabbard": 79, "school": 79, "bu": [79, 90], "schooner": 79, "scoreboard": 79, "crt": 79, "screw": 79, "screwdriv": 79, "seat": 79, "belt": 79, "sew": 79, "shield": 79, "shoji": 79, "basket": 79, "shovel": 79, "shower": 79, "curtain": 79, "ski": 79, "sleep": 79, "door": 79, "slot": 79, "snorkel": 79, "snowmobil": 79, "snowplow": 79, "soap": 79, "dispens": 79, "soccer": [79, 93], "sock": 79, "solar": 79, "thermal": 79, "collector": 79, "sombrero": 79, "soup": 79, "heater": 79, "shuttl": 79, "spatula": 79, "motorboat": 79, "web": 79, "spindl": 79, "sport": [79, 93], "spotlight": 79, "stage": 79, "steam": 79, "arch": 79, "bridg": 79, "steel": 79, "stethoscop": 79, "scarf": 79, "stone": 79, "wall": [79, 90], "stopwatch": 79, "stove": 79, "strainer": 79, "tram": 79, "stretcher": 79, "couch": 79, "stupa": 79, "submarin": 79, "sundial": 79, "sunglass": 79, "sunscreen": 79, "suspens": 79, "mop": 79, "sweatshirt": 79, "swimsuit": 79, "swing": 79, "switch": 79, "syring": 79, "lamp": 79, "tape": 79, "teapot": 79, "teddi": 79, "televis": [79, 93], "tenni": 79, "thatch": 79, "roof": 79, "front": 79, "thimbl": 79, "thresh": 79, "throne": 79, "tile": 79, "toaster": 79, "tobacco": 79, "toilet": 79, "totem": 79, "tow": 79, "tractor": 79, "semi": 79, "trailer": 79, "trai": 79, "trench": 79, "tricycl": 79, "trimaran": 79, "tripod": 79, "triumphal": 79, "trolleybu": 79, "trombon": 79, "tub": 79, "turnstil": 79, "typewrit": 79, "umbrella": 79, "unicycl": 79, "upright": 79, "vacuum": 79, "cleaner": 79, "vase": 79, "vault": 79, "velvet": 79, "vend": 79, "vestment": 79, "viaduct": 79, "violin": 79, "volleybal": 79, "waffl": 79, "wallet": 79, "wardrob": 79, "sink": 79, "wash": 79, "jug": 79, "tower": 79, "whiskei": 79, "whistl": 79, "wig": 79, "shade": [79, 90], "windsor": 79, "wine": 79, "wok": 79, "wooden": 79, "spoon": 79, "wool": 79, "rail": 79, "shipwreck": 79, "yawl": 79, "yurt": 79, "websit": 79, "comic": 79, "book": 79, "crossword": 79, "traffic": [79, 86, 90], "sign": [79, 90, 93], "dust": 79, "jacket": [79, 86], "menu": 79, "guacamol": 79, "consomm": 79, "trifl": 79, "ic": 79, "cream": 79, "pop": 79, "baguett": 79, "bagel": 79, "pretzel": 79, "cheeseburg": 79, "mash": 79, "potato": 79, "cabbag": 79, "broccoli": 79, "cauliflow": 79, "zucchini": 79, "spaghetti": 79, "squash": 79, "acorn": 79, "butternut": 79, "artichok": 79, "pepper": 79, "cardoon": 79, "mushroom": 79, "granni": 79, "smith": 79, "strawberri": 79, "orang": 79, "lemon": 79, "pineappl": 79, "banana": 79, "jackfruit": 79, "custard": 79, "appl": 79, "pomegran": 79, "hai": 79, "carbonara": 79, "chocol": 79, "syrup": 79, "dough": 79, "meatloaf": 79, "pizza": 79, "pie": 79, "burrito": 79, "eggnog": 79, "alp": 79, "bubbl": 79, "reef": 79, "geyser": 79, "lakeshor": 79, "promontori": 79, "shoal": 79, "seashor": 79, "vallei": 79, "volcano": 79, "bridegroom": 79, "scuba": 79, "diver": 79, "rapese": 79, "daisi": 79, "ladi": 79, "slipper": 79, "corn": 79, "rose": 79, "hip": 79, "chestnut": 79, "fungu": 79, "agar": 79, "gyromitra": 79, "stinkhorn": 79, "earth": 79, "star": 79, "wood": 79, "bolet": 79, "ear": 79, "cifar10_test_set": 79, "airplan": [79, 87], "automobil": [79, 87], "deer": [79, 87], "cifar100_test_set": 79, "aquarium_fish": 79, "babi": 79, "boi": 79, "camel": 79, "caterpillar": 79, "cattl": [79, 93], "cloud": 79, "dinosaur": 79, "dolphin": 79, "flatfish": 79, "forest": 79, "girl": 79, "kangaroo": 79, "lawn_mow": 79, "man": 79, "maple_tre": 79, "motorcycl": [79, 90], "oak_tre": 79, "orchid": 79, "palm_tre": 79, "pear": 79, "pickup_truck": 79, "pine_tre": 79, "plain": 79, "poppi": 79, "possum": 79, "raccoon": 79, "road": [79, 90], "rocket": 79, "seal": 79, "shrew": 79, "skyscrap": 79, "streetcar": 79, "sunflow": 79, "sweet_pepp": 79, "trout": 79, "tulip": 79, "willow_tre": 79, "woman": [79, 86], "caltech256": 79, "ak47": 79, "bat": 79, "glove": 79, "birdbath": 79, "blimp": 79, "bonsai": 79, "boom": 79, "breadmak": 79, "buddha": 79, "bulldoz": 79, "cactu": 79, "cake": 79, "tire": 79, "cartman": 79, "cereal": 79, "chandeli": 79, "chess": 79, "board": 79, "chimp": 79, "chopstick": 79, "coffin": 79, "coin": 79, "comet": 79, "cormor": 79, "globe": 79, "diamond": 79, "dice": 79, "doorknob": 79, "drink": 79, "straw": 79, "dumb": 79, "eiffel": 79, "elk": 79, "ewer": 79, "eyeglass": 79, "fern": 79, "fighter": 79, "jet": [79, 89], "extinguish": 79, "hydrant": 79, "firework": 79, "flashlight": 79, "floppi": 79, "fri": 79, "frisbe": 79, "galaxi": 79, "giraff": 79, "goat": 79, "gate": 79, "grape": 79, "pick": [79, 80], "hamburg": 79, "hammock": 79, "harpsichord": 79, "hawksbil": 79, "helicopt": 79, "hibiscu": 79, "homer": 79, "simpson": 79, "horsesho": 79, "air": 79, "skeleton": 79, "ibi": 79, "cone": 79, "iri": 79, "jesu": 79, "christ": 79, "joi": 79, "kayak": 79, "ketch": 79, "ladder": 79, "lath": 79, "licens": 79, "lightbulb": 79, "lightn": 79, "mandolin": 79, "mar": 79, "mattress": 79, "megaphon": 79, "menorah": 79, "microscop": 79, "minaret": 79, "minotaur": 79, "motorbik": 79, "mussel": 79, "neckti": 79, "octopu": 79, "palm": 79, "pilot": 79, "paperclip": 79, "shredder": 79, "pci": 79, "peopl": [79, 86], "pez": 79, "picnic": 79, "pram": 79, "prai": 79, "pyramid": 79, "rainbow": 79, "roulett": 79, "saddl": 79, "saturn": 79, "segwai": 79, "propel": 79, "sextant": 79, "music": 79, "skateboard": 79, "smokestack": 79, "sneaker": 79, "boat": 79, "stain": 79, "steer": 79, "stirrup": 79, "superman": 79, "sushi": 79, "armi": [79, 93], "sword": 79, "tambourin": 79, "teepe": 79, "court": 79, "theodolit": 79, "tomato": 79, "tombston": 79, "tour": 79, "pisa": 79, "treadmil": 79, "fork": 79, "tweezer": 79, "unicorn": 79, "vcr": 79, "waterfal": 79, "watermelon": 79, "weld": 79, "windmil": 79, "xylophon": 79, "yarmulk": 79, "yo": 79, "toad": 79, "twenty_news_test_set": 79, "alt": 79, "atheism": 79, "comp": 79, "graphic": [79, 90], "misc": [79, 93], "sy": 79, "ibm": 79, "pc": 79, "hardwar": 79, "mac": 79, "forsal": 79, "rec": 79, "sci": 79, "crypt": 79, "electron": 79, "med": 79, "soc": 79, "religion": 79, "christian": [79, 93], "talk": [79, 93], "polit": 79, "gun": 79, "mideast": 79, "amazon": 79, "neutral": 79, "imdb_test_set": 79, "all_class": 79, "20news_test_set": 79, "_load_classes_predprobs_label": 79, "dataset_nam": 79, "labelerror": 79, "url_bas": 79, "5392f6c71473055060be3044becdde1cbc18284d": 79, "url_label": 79, "original_test_label": 79, "_original_label": 79, "url_prob": 79, "cross_validated_predicted_prob": 79, "_pyx": 79, "num_part": 79, "datatset": 79, "bytesio": 79, "allow_pickl": 79, "pred_probs_part": 79, "url": 79, "_of_": 79, "nload": 79, "imdb": 79, "ve": [79, 80, 82, 84, 86], "interpret": [79, 80, 82], "capit": 79, "29780": 79, "256": [79, 80, 86], "780": 79, "medic": [79, 93], "doctor": 79, "254": [79, 86], "359223": 79, "640777": 79, "184": [79, 82], "258427": 79, "341176": 79, "263158": 79, "658824": 79, "337349": 79, "246575": 79, "662651": 79, "248": 79, "330000": 79, "355769": 79, "670000": 79, "251": [79, 86], "167": [79, 82, 86], "252": 79, "112": 79, "253": [79, 86], "022989": 79, "255": [79, 81], "049505": 79, "190": [79, 82, 86], "66": [79, 81, 90], "002216": 79, "000974": 79, "59": [79, 81, 86, 90], "88": [79, 81, 82, 85, 86, 89, 90], "000873": 79, "000739": 79, "79": [79, 86, 90, 91], "32635": 79, "32636": 79, "47": [79, 86, 90, 93], "32637": 79, "32638": 79, "32639": 79, "32640": 79, "051": 79, "002242": 79, "997758": 79, "002088": 79, "001045": 79, "997912": 79, "002053": 79, "997947": 79, "001980": 79, "000991": 79, "998020": 79, "001946": 79, "002915": 79, "998054": 79, "001938": 79, "002904": 79, "998062": 79, "001020": 79, "998980": 79, "001018": 79, "002035": 79, "998982": 79, "999009": 79, "0003": 79, "0002": 79, "36": [79, 90, 93], "44": [79, 85, 86, 90], "71": [79, 82, 86, 90], "071": 79, "067269": 79, "929": 79, "046": 79, "058243": 79, "954": 79, "035": 79, "032096": 79, "965": 79, "031": 79, "012232": 79, "969": 79, "022": 79, "025896": 79, "978": 79, "020": [79, 81, 82], "013092": 79, "018": 79, "013065": 79, "016": 79, "030542": 79, "984": 79, "013": 79, "020833": 79, "987": 79, "012": 79, "010020": 79, "988": 79, "0073": 79, "0020": 79, "0016": 79, "0015": 79, "0013": 79, "0012": 79, "0010": 79, "0008": 79, "0007": 79, "0006": 79, "0005": 79, "0004": 79, "244": [79, 86], "98": [79, 80, 89, 90], "452381": 79, "459770": 79, "72": [79, 81, 82, 85, 89, 90], "523364": 79, "460784": 79, "446602": 79, "57": [79, 81, 82, 90], "68": [79, 81, 82, 86, 90, 91], "103774": 79, "030612": 79, "97": [79, 80, 82, 86, 89, 90, 91, 93], "110092": 79, "049020": 79, "99": [79, 82, 90, 91], "0034": 79, "0032": 79, "0026": 79, "0025": 79, "4945": 79, "4946": 79, "4947": 79, "4948": 79, "4949": 79, "4950": 79, "846": 79, "82": [79, 81, 82, 86, 90], "7532": 79, "532": 79, "034483": 79, "009646": 79, "965517": 79, "030457": 79, "020513": 79, "969543": 79, "028061": 79, "035443": 79, "971939": 79, "025316": 79, "005168": 79, "974684": 79, "049751": 79, "979487": 79, "019920": 79, "042802": 79, "980080": 79, "017677": 79, "005115": 79, "982323": 79, "012987": 79, "005236": 79, "987013": 79, "012723": 79, "025126": 79, "987277": 79, "010989": 79, "008264": 79, "989011": 79, "010283": 79, "027778": 79, "989717": 79, "009677": 79, "990323": 79, "007614": 79, "010127": 79, "992386": 79, "005051": 79, "994949": 79, "005025": 79, "994975": 79, "005013": 79, "994987": 79, "001859": 79, "001328": 79, "000929": 79, "000664": 79, "186": [79, 82], "188": [79, 82, 85], "189": [79, 82], "snippet": 80, "nlp": [80, 93], "mind": [80, 82], "number_of_class": 80, "total_number_of_data_point": 80, "drop": [80, 84, 89, 92], "feed": 80, "alphabet": 80, "labels_proper_format": 80, "your_classifi": 80, "issues_datafram": 80, "class_predicted_for_flagged_exampl": 80, "class_predicted_for_all_exampl": 80, "grant": 80, "datataset": 80, "fair": [80, 82], "game": 80, "speedup": [80, 87], "flexibl": 80, "tempfil": 80, "mkdtemp": 80, "sped": 80, "anywai": 80, "pred_probs_merg": 80, "merge_rare_class": 80, "count_threshold": 80, "class_mapping_orig2new": 80, "heath_summari": 80, "num_examples_per_class": 80, "rare_class": 80, "num_classes_merg": 80, "other_class": 80, "labels_merg": 80, "new_c": 80, "merged_prob": 80, "hstack": [80, 81, 82, 84], "new_class": 80, "original_class": 80, "num_check": 80, "ones_array_ref": 80, "isclos": 80, "though": [80, 82, 93], "successfulli": 80, "meaning": [80, 87], "virtuou": [80, 84], "cycl": [80, 84], "jointli": 80, "junk": 80, "clutter": 80, "unknown": 80, "caltech": 80, "combined_boolean_mask": 80, "mask1": 80, "mask2": 80, "gradientboostingclassifi": [80, 82], "true_error": [80, 82, 85], "101": [80, 86], "102": [80, 85, 86], "104": [80, 82, 86], "model_to_find_error": 80, "model_to_return": 80, "cl0": 80, "randomizedsearchcv": 80, "expens": 80, "param_distribut": 80, "learning_r": [80, 82], "max_depth": [80, 82], "magnitud": 80, "coeffici": [80, 89], "optin": 80, "environ": [80, 82], "rerun": [80, 82], "cell": [80, 82], "On": [80, 82, 86], "unabl": [80, 82], "render": [80, 82], "nbviewer": [80, 82], "cleanlearningcleanlearn": [80, 82], "linearregressionlinearregress": 80, "n_init": 80, "fit_predict": 80, "continuous_column": 80, "categorical_column": 80, "data_df": 80, "feature_a": 80, "feature_b": 80, "unexpectedli": 80, "emphas": 80, "especi": [80, 81, 89, 91, 92], "crucial": 80, "merge_duplicate_set": 80, "merge_kei": 80, "construct_group_kei": 80, "merged_set": 80, "consolidate_set": 80, "tolist": [80, 85], "issubset": 80, "frozenset": 80, "sets_list": 80, "mutabl": 80, "new_set": 80, "current_set": 80, "intersecting_set": 80, "lowest_score_strategi": 80, "sub_df": 80, "idxmin": 80, "filter_near_dupl": 80, "strategy_fn": 80, "strategy_kwarg": 80, "duplicate_row": 80, "group_kei": 80, "to_keep_indic": 80, "groupbi": 80, "explod": 80, "to_remov": 80, "isin": [80, 87], "kept": 80, "near_duplicate_issu": [80, 81], "ids_to_remove_seri": 80, "assist": 80, "streamlin": 80, "ux": 80, "agpl": 80, "compani": 80, "commerci": 80, "alter": 80, "email": 80, "discuss": 80, "anywher": 80, "profession": 80, "expert": 80, "60": [81, 82, 90], "excess": 81, "torchvis": [81, 87], "tensordataset": 81, "stratifiedkfold": [81, 85], "tqdm": 81, "fashion_mnist": 81, "num_row": 81, "60000": 81, "pil": 81, "transformed_dataset": 81, "with_format": 81, "unsqueez": 81, "cpu_count": 81, "torch_dataset": 81, "quick": [81, 85], "relu": 81, "batchnorm2d": 81, "maxpool2d": 81, "lazylinear": 81, "flatten": 81, "get_test_accuraci": 81, "testload": [81, 87], "energi": 81, "trainload": [81, 87], "n_epoch": 81, "patienc": 81, "criterion": 81, "crossentropyloss": 81, "adamw": 81, "best_test_accuraci": 81, "start_epoch": 81, "running_loss": 81, "best_epoch": 81, "end_epoch": 81, "3f": [81, 89], "acc": [81, 82], "time_taken": 81, "compute_embed": 81, "compute_pred_prob": 81, "train_batch_s": 81, "num_work": 81, "worker": [81, 93], "train_id_list": 81, "test_id_list": 81, "train_id": 81, "test_id": 81, "embeddings_model": 81, "ntrain": 81, "trainset": 81, "testset": 81, "pin_memori": 81, "fold_embed": 81, "fold_pred_prob": 81, "finish": 81, "483": 81, "835": 81, "995": 81, "331": 81, "310": 81, "856": 81, "stderr": [81, 90], "sphinxverbatim": [81, 90, 93], "60it": [81, 90], "93it": [81, 90], "30it": [81, 90], "62": [81, 82, 86, 89, 90], "63": [81, 82, 86, 90], "41it": [81, 90], "49it": [81, 90], "40it": [81, 90], "04it": [81, 90], "32it": [81, 90], "28it": [81, 90], "13it": [81, 90], "85": [81, 86, 89, 90], "69": [81, 82, 89, 90], "37it": [81, 90], "82it": [81, 90], "492": 81, "085": 81, "786": 81, "290": [81, 86], "727": 81, "26it": [81, 90], "21it": [81, 90], "51it": [81, 90], "70it": [81, 90], "88it": [81, 90], "35it": [81, 90], "20it": [81, 90], "31it": [81, 90], "89it": [81, 90], "476": 81, "305": [81, 89], "328": [81, 86], "335": 81, "627": 81, "29it": [81, 90], "17it": [81, 90], "22it": [81, 90], "74it": [81, 90], "09it": [81, 90], "84it": [81, 90], "71it": [81, 90], "01it": [81, 90], "reorder": 81, "vision": 81, "grayscal": 81, "exce": 81, "max_preval": 81, "7620": 81, "3692": 81, "3521": 81, "225": [81, 85], "166": 81, "9661": 81, "40378": 81, "687452": 81, "54473": 81, "705050": 81, "29412": 81, "715470": 81, "25316": 81, "716273": 81, "52247": 81, "725283": 81, "9581": 81, "19228": 81, "dress": 81, "54078": 81, "000010": 81, "pullov": 81, "32657": 81, "21282": 81, "000011": 81, "11262": 81, "000014": 81, "6294": 81, "30659": 81, "000798": 81, "30968": 81, "000015": 81, "258": 81, "000907": 81, "9762": 81, "54565": 81, "47139": 81, "000017": 81, "001423": 81, "000026": 81, "39992": 81, "39993": 81, "39994": 81, "39995": 81, "7834": 81, "42819": 81, "629362": 81, "51431": 81, "654330": 81, "55548": 81, "658364": 81, "51191": 81, "668572": 81, "50081": 81, "669703": 81, "7834321613629787": 81, "13732": 81, "13733": 81, "13734": 81, "47635": 81, "110901": 81, "974390": 81, "998733": 81, "937117": 81, "998755": 81, "53564": 81, "5473": 81, "trouser": 81, "plot_label_issue_exampl": 81, "ncol": [81, 87], "nrow": [81, 87], "ceil": 81, "axes_list": 81, "label_issue_indic": 81, "gl": 81, "sl": 81, "fontdict": 81, "imshow": [81, 87], "cmap": [81, 89], "grai": 81, "subplots_adjust": 81, "hspace": 81, "outsiz": 81, "outlier_issues_df": 81, "depict": [81, 85, 86, 87, 88, 90], "plot_outlier_issues_exampl": 81, "n_comparison_imag": 81, "sample_from_class": 81, "number_of_sampl": 81, "non_outlier_indic": 81, "isnul": 81, "non_outlier_indices_excluding_curr": 81, "sampled_indic": 81, "label_scores_of_sampl": 81, "top_score_indic": 81, "top_label_indic": 81, "sampled_imag": 81, "get_image_given_label_and_sampl": 81, "image_from_dataset": 81, "corresponding_label": 81, "comparison_imag": 81, "images_to_plot": 81, "idlist": 81, "iterrow": 81, "closest": 81, "counterpart": 81, "near_duplicate_issues_df": 81, "plot_near_duplicate_issue_exampl": 81, "seen_id_pair": 81, "get_image_and_given_label_and_predicted_label": 81, "duplicate_imag": 81, "nd_set": 81, "challeng": 81, "dark_issu": 81, "reveal": [81, 90], "dark_scor": 81, "dark_issues_df": 81, "is_dark_issu": 81, "34848": 81, "203922": 81, "50270": 81, "204588": 81, "3936": 81, "213098": 81, "733": 81, "217686": 81, "8094": 81, "230118": 81, "plot_image_issue_exampl": 81, "difficult": 81, "disproportion": 81, "lowinfo_issu": 81, "low_information_scor": 81, "lowinfo_issues_df": 81, "is_low_information_issu": 81, "53050": 81, "067975": 81, "40875": 81, "089929": 81, "9594": 81, "092601": 81, "34825": 81, "107744": 81, "37530": 81, "108516": 81, "lot": 81, "depth": 82, "survei": [82, 93], "focus": [82, 84], "scienc": 82, "multivariate_norm": [82, 84, 85], "make_data": [82, 84], "cov": [82, 84, 85], "avg_trac": [82, 85], "test_label": [82, 85, 87, 92], "py_tru": 82, "noise_matrix_tru": 82, "noise_marix": 82, "s_test": 82, "noisy_test_label": 82, "purpl": 82, "val": 82, "namespac": 82, "exec": 82, "markerfacecolor": [82, 85], "markeredgecolor": [82, 85, 89], "markers": [82, 85, 89], "markeredgewidth": [82, 85, 89], "realist": 82, "7560": 82, "638483e": 82, "897052e": 82, "548986e": 82, "924634e": 82, "374580e": 82, "4643": 82, "050286": 82, "065420": 82, "249": [82, 86], "109420": 82, "111687": 82, "115403": 82, "6120": 82, "023714": 82, "007136": 82, "119": [82, 86], "107266": 82, "103": [82, 86], "033738": 82, "238": [82, 86], "119505": 82, "236": [82, 86], "037843": 82, "222": 82, "614915": 82, "122": [82, 86], "624422": 82, "625965": 82, "626079": 82, "118": 82, "627675": 82, "158": 82, "159": [82, 85, 86], "161": 82, "1960": 82, "196": [82, 86], "223": [82, 86], "221": 82, "219": [82, 86], "695174": 82, "323529": 82, "522929": 82, "013722": 82, "675606": 82, "646438": 82, "anyth": 82, "enhanc": [82, 84, 86], "magic": 82, "83": [82, 86, 89, 90, 91, 93], "liter": 82, "identif": 82, "x27": 82, "logisticregressionlogisticregress": 82, "ever": 82, "092": 82, "040": 82, "024": 82, "004": 82, "surpris": 82, "arxiv": 82, "ab": 82, "1705": 82, "01936": 82, "ton": 82, "yourfavoritemodel1": 82, "merged_label": 82, "merged_test_label": 82, "newli": [82, 84], "yourfavoritemodel2": 82, "yourfavoritemodel3": 82, "cl3": 82, "takeawai": 82, "That": [82, 85], "randomli": 82, "my_test_pred_prob": 82, "my_test_pr": 82, "issues_test": 82, "corrected_test_label": 82, "pretend": 82, "cl_test_pr": 82, "fairli": 82, "label_acc": 82, "percentag": 82, "offset": 82, "nquestion": 82, "overestim": 82, "answer": 82, "experienc": 82, "06": [82, 86, 90, 93], "76": [82, 85, 86, 89, 90, 91], "knowledg": 82, "quantiti": [82, 89], "prioiri": 82, "known": 82, "versatil": 82, "label_issues_indic": 82, "213": [82, 86], "212": [82, 91], "218": [82, 86], "152": 82, "197": [82, 86], "170": 82, "214": 82, "164": [82, 85], "198": [82, 86], "191": [82, 86], "121": [82, 92], "117": [82, 89], "206": [82, 86], "115": [82, 86], "193": 82, "194": 82, "201": [82, 86], "174": 82, "163": 82, "150": [82, 84, 86], "169": 82, "151": [82, 86], "168": 82, "precision_scor": 82, "recall_scor": 82, "f1_score": 82, "true_label_issu": 82, "filter_by_list": 82, "718750": [82, 84], "807018": 82, "912": 82, "733333": 82, "800000": 82, "721311": 82, "792793": 82, "908": 82, "676923": 82, "765217": 82, "892": 82, "567901": 82, "702290": 82, "844": 82, "gaug": 82, "label_issues_count": 82, "155": [82, 86], "172": [82, 85, 93], "easiest": 82, "modular": 82, "penalti": 82, "l2": 82, "model3": 82, "n_estim": 82, "cv_pred_probs_1": 82, "cv_pred_probs_2": 82, "cv_pred_probs_3": 82, "label_quality_scores_best": 82, "cv_pred_probs_ensembl": 82, "label_quality_scores_bett": 82, "superior": [82, 88], "workflow": [83, 89], "speechbrain": 83, "timm": 83, "glad": 84, "multiannotator_label": 84, "noisier": 84, "111": [84, 89], "local_data": [84, 85], "true_labels_train": [84, 85], "noise_matrix_bett": 84, "noise_matrix_wors": 84, "transpos": [84, 87], "dropna": 84, "zfill": 84, "row_na_check": 84, "notna": 84, "reset_index": 84, "a0001": 84, "a0002": 84, "a0003": 84, "a0004": 84, "a0005": 84, "a0006": 84, "a0007": 84, "a0008": 84, "a0009": 84, "a0010": 84, "a0041": 84, "a0042": 84, "a0043": 84, "a0044": 84, "a0045": 84, "a0046": 84, "a0047": 84, "a0048": 84, "a0049": 84, "a0050": 84, "60856743": 84, "41693214": 84, "40908785": 84, "87147629": 84, "64941785": 84, "10774851": 84, "0524466": 84, "71853246": 84, "37169848": 84, "66031048": 84, "multiannotator_util": 84, "crude": 84, "straight": 84, "majority_vote_label": 84, "736157": 84, "757738": 84, "782255": 84, "715585": 84, "824273": 84, "quality_annotator_a0001": 84, "quality_annotator_a0002": 84, "quality_annotator_a0003": 84, "quality_annotator_a0004": 84, "quality_annotator_a0005": 84, "quality_annotator_a0006": 84, "quality_annotator_a0007": 84, "quality_annotator_a0008": 84, "quality_annotator_a0009": 84, "quality_annotator_a0010": 84, "quality_annotator_a0041": 84, "quality_annotator_a0042": 84, "quality_annotator_a0043": 84, "quality_annotator_a0044": 84, "quality_annotator_a0045": 84, "quality_annotator_a0046": 84, "quality_annotator_a0047": 84, "quality_annotator_a0048": 84, "quality_annotator_a0049": 84, "quality_annotator_a0050": 84, "070551": 84, "216064": 84, "119178": 84, "alongisd": 84, "244982": 84, "208333": 84, "295978": 84, "294118": 84, "324194": 84, "310345": 84, "355315": 84, "346154": 84, "439728": 84, "480000": 84, "a0031": 84, "523205": 84, "580645": 84, "a0034": 84, "535313": 84, "607143": 84, "a0021": 84, "607002": 84, "a0015": 84, "609527": 84, "678571": 84, "a0011": 84, "621101": 84, "692308": 84, "wors": 84, "improved_consensus_label": 84, "majority_vote_accuraci": 84, "cleanlab_label_accuraci": 84, "8581081081081081": 84, "9797297297297297": 84, "besid": 84, "sorted_consensus_quality_scor": 84, "worst_qual": 84, "better_qu": 84, "worst_quality_accuraci": 84, "better_quality_accuraci": 84, "9893238434163701": 84, "improved_pred_prob": 84, "treat": [84, 85, 89, 93], "analzi": 84, "copyright": 85, "advertis": 85, "violenc": 85, "nsfw": 85, "ranked_label_issu": [85, 91, 92], "multioutput": 85, "multioutputclassifi": 85, "celeba": 85, "make_multilabel_data": 85, "boxes_coordin": 85, "box_multilabel": 85, "make_multi": 85, "bx1": 85, "by1": 85, "bx2": 85, "by2": 85, "label_list": 85, "ur": 85, "upper": 85, "inidx": 85, "logical_and": 85, "inv_d": 85, "labels_idx": 85, "true_labels_test": 85, "dict_unique_label": 85, "get_color_arrai": 85, "dcolor": 85, "aa4400": 85, "55227f": 85, "55a100": 85, "00ff00": 85, "007f7f": 85, "386b55": 85, "0000ff": 85, "simplic": 85, "advis": 85, "y_onehot": 85, "single_class_label": 85, "stratifi": [85, 88], "kf": 85, "train_index": 85, "test_index": 85, "clf_cv": 85, "x_train_cv": 85, "x_test_cv": 85, "y_train_cv": 85, "y_test_cv": 85, "y_pred_cv": 85, "saw": 85, "num_to_displai": 85, "09": [85, 86, 90], "275": 85, "267": 85, "171": 85, "234": 85, "165": 85, "227": [85, 86], "262": [85, 86], "263": [85, 86], "266": [85, 86], "139": 85, "143": [85, 86], "216": [85, 86], "265": 85, "despit": [85, 93], "suspect": 85, "888": 85, "8224": 85, "9632": 85, "968": 85, "6512": 85, "0444": 85, "774": 85, "labels_binary_format": 85, "labels_list_format": 85, "surround": 86, "scene": 86, "coco": 86, "everydai": 86, "has_label_issu": 86, "insal": 86, "nc": [86, 90, 93], "s3": [86, 90, 93], "amazonaw": [86, 90, 93], "objectdetectionbenchmark": 86, "tutorial_obj": 86, "pkl": 86, "example_imag": 86, "unzip": [86, 93], "begin": 86, "detectron2": 86, "image_path": 86, "rb": 86, "image_to_visu": 86, "seg_map": 86, "334": 86, "float32": 86, "bboxes_ignor": 86, "286": 86, "285": 86, "224": 86, "231": [86, 93], "293": 86, "235": 86, "289": [86, 89], "282": 86, "74": [86, 89, 90, 91], "281": 86, "271": 86, "280": 86, "277": 86, "279": 86, "287": 86, "299": 86, "276": 86, "307": 86, "321": 86, "326": 86, "333": 86, "261": 86, "319": 86, "257": 86, "295": 86, "283": 86, "243": 86, "303": 86, "316": 86, "247": [86, 93], "323": 86, "327": 86, "226": 86, "228": 86, "232": 86, "239": 86, "240": 86, "209": 86, "242": 86, "202": 86, "230": 86, "215": 86, "220": 86, "229": 86, "217": 86, "237": 86, "207": 86, "204": 86, "205": 86, "153": 86, "149": 86, "140": 86, "124": 86, "268": 86, "273": 86, "108": 86, "284": 86, "110": 86, "136": 86, "145": 86, "173": 86, "297": 86, "317": 86, "192": 86, "329": 86, "332": 86, "324": 86, "203": [86, 93], "320": 86, "314": 86, "199": 86, "291": 86, "000000481413": 86, "jpg": 86, "42398": 86, "44503": 86, "337": [86, 92], "29968": 86, "336": 86, "21005": 86, "9978472": 86, "forgot": 86, "drew": 86, "label_issue_idx": 86, "num_examples_to_show": 86, "113": [86, 89], "candid": 86, "97489622": 86, "70610878": 86, "98764951": 86, "88899237": 86, "99085805": 86, "issue_idx": 86, "95569726e": 86, "03354841e": 86, "57510169e": 86, "58447666e": 86, "39755858e": 86, "suppli": 86, "issue_to_visu": 86, "000000009483": 86, "95569726168054e": 86, "addition": [86, 90], "visibl": 86, "missmatch": 86, "likelei": 86, "agnost": 86, "vaidat": 86, "inconsist": 86, "000000395701": 86, "033548411774308e": 86, "armchair": 86, "tv": 86, "000000154004": 86, "38300759625496356": 86, "foreground": 86, "000000448410": 86, "0008575101690203273": 86, "crowd": 86, "alon": 86, "explor": [86, 87], "resembl": [86, 87], "contribut": 86, "000000499768": 86, "9748962231208227": 86, "000000521141": 86, "8889923658893665": 86, "000000143931": 86, "9876495074395956": 86, "train_feature_embed": 87, "ood_train_feature_scor": 87, "test_feature_embed": 87, "ood_test_feature_scor": 87, "ood_train_predictions_scor": 87, "train_pred_prob": 87, "ood_test_predictions_scor": 87, "test_pred_prob": 87, "pylab": 87, "rcparam": 87, "baggingclassifi": 87, "therebi": 87, "rescal": 87, "transform_norm": 87, "totensor": 87, "root": 87, "animal_class": 87, "non_animal_class": 87, "animal_idx": 87, "test_idx": 87, "toronto": 87, "edu": 87, "kriz": 87, "5000": 87, "plot_imag": 87, "visualize_outli": 87, "txt_class": 87, "img": [87, 89], "npimg": 87, "show_label": 87, "data_subset": 87, "resnet50": 87, "corpu": 87, "2048": 87, "embed_imag": 87, "create_model": 87, "rwightman": 87, "v0": 87, "rsb": 87, "resnet50_a1_0": 87, "14fe96d1": 87, "pth": 87, "checkpoint": 87, "strang": 87, "odd": 87, "train_ood_features_scor": 87, "top_train_ood_features_idx": 87, "fun": 87, "negat": 87, "homogen": 87, "bottom_train_ood_features_idx": 87, "test_ood_features_scor": 87, "top_ood_features_idx": 87, "inevit": 87, "trade": 87, "5th": 87, "percentil": 87, "fifth_percentil": 87, "plt_rang": 87, "hist": 87, "train_outlier_scor": 87, "ylabel": 87, "axvlin": 87, "test_outlier_scor": 87, "ood_features_indic": 87, "revisit": 87, "unusu": 87, "return_invers": 87, "train_feature_embeddings_sc": 87, "test_feature_embeddings_sc": 87, "train_pred_label": 87, "9702": 87, "train_ood_predictions_scor": 87, "test_ood_predictions_scor": 87, "mainli": [87, 93], "lost": 87, "unsuit": 88, "ok": [88, 93], "convention": 88, "aforement": 88, "hypothet": 88, "contrast": 88, "tradit": 88, "disjoint": 88, "out_of_sample_pred_probs_for_a": 88, "out_of_sample_pred_probs_for_b": 88, "out_of_sample_pred_probs_for_c": 88, "out_of_sample_pred_prob": 88, "price": 89, "incom": 89, "ag": 89, "histgradientboostingregressor": 89, "r2_score": 89, "student_grades_r": 89, "final_scor": 89, "true_final_scor": 89, "homework": 89, "3d": 89, "hue": 89, "mpl_toolkit": 89, "mplot3d": 89, "axes3d": 89, "errors_idx": 89, "add_subplot": 89, "z": 89, "colorbar": 89, "errors_mask": 89, "feature_column": 89, "predicted_column": 89, "x_train_raw": 89, "x_test_raw": 89, "categorical_featur": [89, 91], "randomforestregressor": 89, "629763": 89, "521450": 89, "954607": 89, "547234": 89, "338296": 89, "754531": 89, "619090": 89, "312295": 89, "806626": 89, "784048": 89, "identified_issu": [89, 92], "367": 89, "560": 89, "318": 89, "688": 89, "657": 89, "view_datapoint": 89, "concat": 89, "consum": [89, 92], "baseline_model": [89, 92], "preds_og": 89, "r2_og": 89, "838": 89, "robustli": [89, 91, 92], "acceler": [89, 92], "found_label_issu": 89, "preds_cl": 89, "r2_cl": 89, "925": 89, "effort": [89, 91, 92], "favorit": 89, "64404888e": 89, "06755306e": 89, "05302732e": 89, "66635743e": 89, "53166364e": 89, "synthia": 90, "imagesegment": 90, "given_mask": 90, "predicted_mask": 90, "set_printopt": [90, 93], "sky": 90, "sidewalk": 90, "veget": 90, "terrain": 90, "rider": 90, "pred_probs_filepath": 90, "1088": 90, "1920": 90, "label_filepath": 90, "synthia_class": 90, "maunal": 90, "100000": 90, "244800": 90, "leftmost": 90, "area": 90, "middl": [90, 93], "infact": 90, "rightmost": 90, "discrep": 90, "4997817": 90, "17062": 90, "170604": 90, "34285": 90, "171551": 90, "99it": 90, "51456": 90, "171618": 90, "24it": 90, "68618": 90, "170859": 90, "63it": 90, "85805": 90, "171220": 90, "50it": 90, "102949": 90, "171291": 90, "120095": 90, "171343": 90, "43it": 90, "137230": 90, "170491": 90, "36it": 90, "154281": 90, "169872": 90, "65it": 90, "171280": 90, "169905": 90, "188272": 90, "169777": 90, "205575": 90, "170760": 90, "61it": 90, "222652": 90, "170740": 90, "73it": 90, "240083": 90, "171811": 90, "81it": 90, "257360": 90, "172096": 90, "03it": 90, "274605": 90, "172199": 90, "291886": 90, "172379": 90, "309125": 90, "172152": 90, "38it": 90, "326341": 90, "171949": 90, "343537": 90, "171568": 90, "72it": 90, "360817": 90, "171933": 90, "378023": 90, "171967": 90, "12it": 90, "395220": 90, "171770": 90, "69it": 90, "412518": 90, "172129": 90, "64it": 90, "429746": 90, "172171": 90, "06it": 90, "446964": 90, "171908": 90, "464155": 90, "171900": 90, "62it": 90, "481346": 90, "171355": 90, "90it": 90, "498619": 90, "171763": 90, "515796": 90, "171727": 90, "53it": 90, "532984": 90, "171768": 90, "550240": 90, "172001": 90, "07it": 90, "567441": 90, "171961": 90, "52it": 90, "584638": 90, "171920": 90, "86it": 90, "601962": 90, "172313": 90, "619303": 90, "172639": 90, "636567": 90, "172200": 90, "653788": 90, "171788": 90, "02it": 90, "670968": 90, "171514": 90, "66it": 90, "688120": 90, "170996": 90, "705275": 90, "171158": 90, "722435": 90, "171285": 90, "85it": 90, "739806": 90, "172008": 90, "757008": 90, "171692": 90, "774255": 90, "791671": 90, "172588": 90, "809012": 90, "172830": 90, "16it": 90, "826296": 90, "171982": 90, "843496": 90, "171799": 90, "860677": 90, "171324": 90, "91it": 90, "877842": 90, "171418": 90, "27it": 90, "894985": 90, "171219": 90, "42it": 90, "912146": 90, "171332": 90, "929303": 90, "171399": 90, "946444": 90, "171377": 90, "87it": 90, "963692": 90, "171703": 90, "39it": 90, "981048": 90, "172255": 90, "998359": 90, "172508": 90, "56it": 90, "1015635": 90, "172579": 90, "19it": 90, "1032893": 90, "1050039": 90, "171426": 90, "1067207": 90, "171496": 90, "1084358": 90, "171268": 90, "1101486": 90, "171044": 90, "54it": 90, "1118591": 90, "170922": 90, "1135684": 90, "170420": 90, "58it": 90, "1152727": 90, "170051": 90, "1169733": 90, "169752": 90, "1186709": 90, "169681": 90, "1203678": 90, "168904": 90, "33it": 90, "1220652": 90, "169150": 90, "94it": 90, "1237634": 90, "169345": 90, "1254570": 90, "168349": 90, "15it": 90, "1271732": 90, "169320": 90, "67it": 90, "1288750": 90, "169571": 90, "98it": 90, "1305766": 90, "169742": 90, "1322775": 90, "169844": 90, "1339793": 90, "169941": 90, "1356788": 90, "169935": 90, "1373885": 90, "170242": 90, "78it": 90, "1390910": 90, "169776": 90, "77it": 90, "1407889": 90, "1424867": 90, "169328": 90, "10it": 90, "1441920": 90, "169683": 90, "76it": 90, "1458889": 90, "169554": 90, "1475845": 90, "169207": 90, "1492767": 90, "1509688": 90, "169069": 90, "1526596": 90, "168995": 90, "55it": 90, "1543496": 90, "168767": 90, "1560373": 90, "168411": 90, "1577215": 90, "168093": 90, "1594025": 90, "167736": 90, "1610799": 90, "167579": 90, "1627581": 90, "167648": 90, "1644346": 90, "167601": 90, "44it": 90, "1661107": 90, "167408": 90, "1678158": 90, "168332": 90, "79it": 90, "1695148": 90, "168799": 90, "1712162": 90, "169197": 90, "1729082": 90, "169086": 90, "1746091": 90, "169383": 90, "1763030": 90, "169294": 90, "1779986": 90, "169370": 90, "1796940": 90, "169415": 90, "1813941": 90, "169588": 90, "95it": 90, "1830917": 90, "169635": 90, "1847932": 90, "169786": 90, "1864911": 90, "169662": 90, "1881878": 90, "169612": 90, "46it": 90, "1898840": 90, "169466": 90, "1915967": 90, "170001": 90, "1932968": 90, "169939": 90, "1949963": 90, "169565": 90, "1966920": 90, "168922": 90, "1983850": 90, "169030": 90, "80it": 90, "2000770": 90, "169076": 90, "2017733": 90, "169238": 90, "2034658": 90, "168730": 90, "2051532": 90, "168386": 90, "2068372": 90, "168018": 90, "2085260": 90, "168270": 90, "2102088": 90, "168030": 90, "2118962": 90, "168240": 90, "2135787": 90, "168132": 90, "2152601": 90, "167646": 90, "2169423": 90, "167813": 90, "2186297": 90, "168085": 90, "2203175": 90, "168289": 90, "2220005": 90, "168276": 90, "2236833": 90, "168121": 90, "2253646": 90, "168054": 90, "2270452": 90, "167426": 90, "00it": 90, "2287196": 90, "167340": 90, "2303931": 90, "167280": 90, "92it": 90, "2320696": 90, "167387": 90, "2337572": 90, "167794": 90, "2354510": 90, "168265": 90, "2371337": 90, "168146": 90, "2388246": 90, "168426": 90, "2405089": 90, "167971": 90, "2421887": 90, "167875": 90, "18it": 90, "2438756": 90, "168116": 90, "2455622": 90, "168275": 90, "2472450": 90, "168246": 90, "2489275": 90, "168100": 90, "11it": 90, "2506165": 90, "168336": 90, "59it": 90, "2523041": 90, "168459": 90, "2539888": 90, "168363": 90, "2556725": 90, "168317": 90, "2573557": 90, "168314": 90, "2590389": 90, "168159": 90, "2607206": 90, "168024": 90, "45it": 90, "2624021": 90, "168057": 90, "2640827": 90, "167450": 90, "2657654": 90, "167690": 90, "2674611": 90, "168247": 90, "2691437": 90, "168060": 90, "2708244": 90, "167385": 90, "05it": 90, "2725000": 90, "167432": 90, "83it": 90, "2741821": 90, "167661": 90, "2758588": 90, "167266": 90, "2775352": 90, "167374": 90, "2792090": 90, "167063": 90, "2808802": 90, "167076": 90, "2825510": 90, "167042": 90, "2842215": 90, "166910": 90, "2858913": 90, "166926": 90, "75it": 90, "2875624": 90, "166976": 90, "2892322": 90, "166542": 90, "2909084": 90, "166860": 90, "2925771": 90, "166846": 90, "2942500": 90, "166975": 90, "2959198": 90, "166708": 90, "2975877": 90, "166728": 90, "2992600": 90, "166874": 90, "3009402": 90, "167212": 90, "3026124": 90, "166887": 90, "3042813": 90, "166464": 90, "96it": 90, "3059512": 90, "166617": 90, "3076399": 90, "167287": 90, "3093129": 90, "167242": 90, "3109854": 90, "164570": 90, "3127061": 90, "166789": 90, "3144295": 90, "168437": 90, "3161147": 90, "3178372": 90, "169324": 90, "97it": 90, "3195555": 90, "170071": 90, "3212860": 90, "170957": 90, "3230096": 90, "171374": 90, "3247326": 90, "171646": 90, "3264493": 90, "171542": 90, "68it": 90, "3281649": 90, "171525": 90, "3298803": 90, "171132": 90, "3315917": 90, "170861": 90, "3333004": 90, "170374": 90, "3350043": 90, "170335": 90, "3367100": 90, "170400": 90, "3384218": 90, "170631": 90, "3401284": 90, "170636": 90, "34it": 90, "3418357": 90, "170658": 90, "3435515": 90, "170931": 90, "3452609": 90, "163949": 90, "3469894": 90, "166538": 90, "3486928": 90, "167650": 90, "3503919": 90, "3520963": 90, "168940": 90, "3538111": 90, "169693": 90, "3555434": 90, "170745": 90, "3572660": 90, "171192": 90, "3590030": 90, "171938": 90, "3607303": 90, "172172": 90, "3624594": 90, "172387": 90, "3641836": 90, "171859": 90, "14it": 90, "3659025": 90, "171633": 90, "3676190": 90, "171400": 90, "3693332": 90, "171243": 90, "48it": 90, "3710458": 90, "171013": 90, "3727633": 90, "171229": 90, "3744757": 90, "171012": 90, "3761899": 90, "171129": 90, "3779084": 90, "171340": 90, "3796219": 90, "167422": 90, "3813525": 90, "169081": 90, "57it": 90, "3830826": 90, "3847923": 90, "170454": 90, "3865103": 90, "170852": 90, "3882263": 90, "171072": 90, "3899433": 90, "171255": 90, "3916562": 90, "170928": 90, "3933884": 90, "171610": 90, "47it": 90, "3951103": 90, "171779": 90, "3968283": 90, "171759": 90, "3985460": 90, "171748": 90, "4002799": 90, "172236": 90, "4020024": 90, "172120": 90, "4037255": 90, "4054562": 90, "172438": 90, "4071846": 90, "172553": 90, "4089102": 90, "4106326": 90, "172177": 90, "4123603": 90, "172350": 90, "4140839": 90, "171954": 90, "4158035": 90, "168862": 90, "4175226": 90, "169758": 90, "4192212": 90, "168849": 90, "4209250": 90, "169300": 90, "4226465": 90, "170143": 90, "4243806": 90, "171114": 90, "4261227": 90, "172034": 90, "4278528": 90, "172320": 90, "4295937": 90, "172845": 90, "4313308": 90, "173100": 90, "25it": 90, "4330658": 90, "173214": 90, "4347981": 90, "173208": 90, "4365307": 90, "173218": 90, "4382688": 90, "173390": 90, "4400068": 90, "173507": 90, "4417419": 90, "173309": 90, "4434751": 90, "172930": 90, "4452045": 90, "172511": 90, "4469335": 90, "172622": 90, "4486598": 90, "171589": 90, "4503759": 90, "171412": 90, "4520902": 90, "4538037": 90, "171239": 90, "4555162": 90, "170876": 90, "4572250": 90, "170565": 90, "4589307": 90, "170097": 90, "4606318": 90, "169865": 90, "4623305": 90, "169631": 90, "4640269": 90, "168872": 90, "4657235": 90, "169105": 90, "4674147": 90, "168226": 90, "4690976": 90, "168242": 90, "4707801": 90, "168102": 90, "4724647": 90, "168205": 90, "4741468": 90, "167808": 90, "4758250": 90, "167370": 90, "08it": 90, "4774988": 90, "167262": 90, "4791806": 90, "167533": 90, "4808560": 90, "167179": 90, "4825279": 90, "167129": 90, "4842096": 90, "167436": 90, "4859300": 90, "168811": 90, "4876497": 90, "4893694": 90, "170413": 90, "4910769": 90, "170510": 90, "4927821": 90, "170169": 90, "4944989": 90, "170616": 90, "4962051": 90, "169773": 90, "4979093": 90, "169963": 90, "4996091": 90, "169052": 90, "169841": 90, "3263230": 90, "783379": 90, "275110": 90, "255792": 90, "78225": 90, "55990": 90, "54427": 90, "33591": 90, "24645": 90, "21308": 90, "15045": 90, "14171": 90, "13832": 90, "13498": 90, "11490": 90, "9164": 90, "8769": 90, "6999": 90, "6031": 90, "5011": 90, "mistakenli": 90, "class_issu": 90, "aim": [90, 93], "domin": 90, "extratreesclassifi": 91, "extratre": 91, "labelencod": [91, 92], "labels_raw": 91, "interg": [91, 92], "tress": 91, "827": 91, "cheat": 91, "0pt": 91, "233": 91, "labels_train": 91, "labels_test": 91, "acc_og": [91, 92], "783068783068783": 91, "acc_cl": [91, 92], "8095238095238095": 91, "earlier": [92, 93], "raw_label": 92, "raw_train_text": 92, "raw_test_text": 92, "raw_train_label": 92, "raw_test_label": 92, "encond": 92, "train_text": 92, "test_text": 92, "858050": 92, "545854": 92, "826194": 92, "965814": 92, "791923": 92, "646": 92, "390": 92, "628": 92, "702": 92, "863": 92, "135": 92, "735": 92, "print_as_df": 92, "inverse_transform": 92, "fight": 92, "bunch": 93, "conll": 93, "2003": 93, "love": 93, "n_i": 93, "optional_list_of_ordered_class_nam": 93, "deepai": 93, "conll2003": 93, "rm": 93, "tokenclassif": 93, "2024": 93, "2400": 93, "52e0": 93, "1a00": 93, "1070": 93, "connect": 93, "443": 93, "await": 93, "982975": 93, "960k": 93, "kb": 93, "959": 93, "94k": 93, "mb": 93, "directori": 93, "inflat": 93, "17045998": 93, "16m": 93, "octet": 93, "46m": 93, "3mb": 93, "26m": 93, "8mb": 93, "bert": 93, "read_npz": 93, "filepath": 93, "corrsespond": 93, "iob2": 93, "given_ent": 93, "entity_map": 93, "readfil": 93, "sep": 93, "startswith": 93, "docstart": 93, "isalpha": 93, "isupp": 93, "indices_to_preview": 93, "nsentenc": 93, "eu": 93, "reject": 93, "boycott": 93, "british": 93, "lamb": 93, "00030412": 93, "00023826": 93, "99936208": 93, "00007009": 93, "00002545": 93, "99998795": 93, "00000401": 93, "00000218": 93, "00000455": 93, "00000131": 93, "00000749": 93, "99996115": 93, "00001371": 93, "0000087": 93, "00000895": 93, "99998936": 93, "00000382": 93, "00000178": 93, "00000366": 93, "00000137": 93, "99999101": 93, "00000266": 93, "00000174": 93, "0000035": 93, "00000109": 93, "99998768": 93, "00000482": 93, "00000202": 93, "00000438": 93, "0000011": 93, "00000465": 93, "99996392": 93, "00001105": 93, "0000116": 93, "00000878": 93, "99998671": 93, "00000364": 93, "00000213": 93, "00000472": 93, "00000281": 93, "99999073": 93, "00000211": 93, "00000159": 93, "00000442": 93, "00000115": 93, "peter": 93, "blackburn": 93, "00000358": 93, "00000529": 93, "99995623": 93, "000022": 93, "0000129": 93, "0000024": 93, "00001812": 93, "99994141": 93, "00001645": 93, "00002162": 93, "brussel": 93, "1996": 93, "00001172": 93, "00000821": 93, "00004661": 93, "0000618": 93, "99987167": 93, "99999061": 93, "00000201": 93, "00000195": 93, "00000408": 93, "00000135": 93, "2254": 93, "2907": 93, "19392": 93, "9962": 93, "8904": 93, "19303": 93, "12918": 93, "9256": 93, "11855": 93, "18392": 93, "20426": 93, "19402": 93, "14744": 93, "19371": 93, "4645": 93, "10331": 93, "9430": 93, "6143": 93, "18367": 93, "12914": 93, "todai": 93, "weather": 93, "march": 93, "scalfaro": 93, "northern": 93, "himself": 93, "said": 93, "germani": 93, "nastja": 93, "rysich": 93, "north": 93, "spla": 93, "fought": 93, "khartoum": 93, "govern": 93, "south": 93, "1983": 93, "autonomi": 93, "animist": 93, "region": 93, "moslem": 93, "arabis": 93, "mayor": 93, "antonio": 93, "gonzalez": 93, "garcia": 93, "revolutionari": 93, "parti": 93, "wednesdai": 93, "troop": 93, "raid": 93, "farm": 93, "stole": 93, "rape": 93, "women": 93, "spring": 93, "chg": 93, "hrw": 93, "12pct": 93, "princ": 93, "photo": 93, "moment": 93, "spokeswoman": 93, "rainier": 93, "told": 93, "reuter": 93, "danila": 93, "carib": 93, "w224": 93, "equip": 93, "radiomet": 93, "earn": 93, "19996": 93, "london": 93, "denom": 93, "sale": 93, "uk": 93, "jp": 93, "fr": 93, "maccabi": 93, "hapoel": 93, "haifa": 93, "tel": 93, "aviv": 93, "hospit": 93, "rever": 93, "roman": 93, "cathol": 93, "nun": 93, "admit": 93, "calcutta": 93, "week": 93, "ago": 93, "fever": 93, "vomit": 93, "allianc": 93, "embattl": 93, "kabul": 93, "salang": 93, "highwai": 93, "mondai": 93, "tuesdai": 93, "suprem": 93, "council": 93, "led": 93, "jumbish": 93, "milli": 93, "movement": 93, "warlord": 93, "abdul": 93, "rashid": 93, "dostum": 93, "dollar": 93, "exchang": 93, "3570": 93, "12049": 93, "born": 93, "1937": 93, "provinc": 93, "anhui": 93, "dai": 93, "came": 93, "shanghai": 93, "citi": 93, "prolif": 93, "author": 93, "teacher": 93, "chines": 93, "16764": 93, "1990": 93, "historian": 93, "alan": 93, "john": 93, "percival": 93, "taylor": 93, "di": 93, "20446": 93, "pace": 93, "bowler": 93, "ian": 93, "harvei": 93, "claim": 93, "victoria": 93, "15514": 93, "cotti": 93, "osc": 93, "foreign": 93, "minist": 93, "7525": 93, "sultan": 93, "specter": 93, "met": 93, "crown": 93, "abdullah": 93, "defenc": 93, "aviat": 93, "jeddah": 93, "saudi": 93, "agenc": 93, "2288": 93, "hi": 93, "customari": 93, "outfit": 93, "champion": 93, "damp": 93, "scalp": 93, "canada": 93, "reign": 93, "olymp": 93, "donovan": 93, "bailei": 93, "1992": 93, "linford": 93, "christi": 93, "britain": 93, "1984": 93, "1988": 93, "carl": 93, "lewi": 93, "ambigi": 93, "punctuat": 93, "chicago": 93, "digest": 93, "philadelphia": 93, "usda": 93, "york": 93, "token_issu": 93, "471": 93, "kean": 93, "year": 93, "contract": 93, "manchest": 93, "19072": 93, "societi": 93, "million": 93, "bite": 93, "deliv": 93, "19910": 93, "father": 93, "clarenc": 93, "woolmer": 93, "renam": 93, "uttar": 93, "pradesh": 93, "india": 93, "ranji": 93, "trophi": 93, "nation": 93, "championship": 93, "captain": 93, "1949": 93, "15658": 93, "19879": 93, "iii": 93, "brian": 93, "shimer": 93, "randi": 93, "jone": 93, "19104": 93}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [29, 0, 0, "-", "dataset"], [32, 0, 0, "-", "experimental"], [35, 0, 0, "-", "filter"], [36, 0, 0, "-", "internal"], [47, 0, 0, "-", "models"], [49, 0, 0, "-", "multiannotator"], [52, 0, 0, "-", "multilabel_classification"], [55, 0, 0, "-", "object_detection"], [58, 0, 0, "-", "outlier"], [59, 0, 0, "-", "rank"], [60, 0, 0, "-", "regression"], [64, 0, 0, "-", "segmentation"], [68, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [27, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "duplicate"], [17, 0, 0, "-", "imbalance"], [19, 0, 0, "-", "issue_manager"], [20, 0, 0, "-", "label"], [21, 0, 0, "-", "noniid"], [22, 0, 0, "-", "null"], [23, 0, 0, "-", "outlier"], [26, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[16, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 6, 1, "", "near_duplicate_sets"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[17, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[19, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[20, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 3, 1, "", "get_health_summary"], [20, 6, 1, "", "health_summary_parameters"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[21, 2, 1, "", "NonIIDIssueManager"], [21, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[22, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[23, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[23, 6, 1, "", "DEFAULT_THRESHOLDS"], [23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 6, 1, "", "ood"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[25, 2, 1, "", "RegressionLabelIssueManager"], [25, 1, 1, "", "find_issues_with_features"], [25, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[26, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[26, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [26, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "filter_cluster_ids"], [26, 3, 1, "", "find_issues"], [26, 3, 1, "", "get_worst_cluster"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "perform_clustering"], [26, 3, 1, "", "report"], [26, 3, 1, "", "set_knn_graph"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[27, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[27, 3, 1, "", "get_report"], [27, 3, 1, "", "report"]], "cleanlab.dataset": [[29, 1, 1, "", "find_overlapping_classes"], [29, 1, 1, "", "health_summary"], [29, 1, 1, "", "overall_label_health_score"], [29, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[30, 0, 0, "-", "cifar_cnn"], [31, 0, 0, "-", "coteaching"], [33, 0, 0, "-", "label_issues_batched"], [34, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[30, 2, 1, "", "CNN"], [30, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[30, 6, 1, "", "T_destination"], [30, 3, 1, "", "__call__"], [30, 3, 1, "", "add_module"], [30, 3, 1, "", "apply"], [30, 3, 1, "", "bfloat16"], [30, 3, 1, "", "buffers"], [30, 3, 1, "", "children"], [30, 3, 1, "", "cpu"], [30, 3, 1, "", "cuda"], [30, 3, 1, "", "double"], [30, 6, 1, "", "dump_patches"], [30, 3, 1, "", "eval"], [30, 3, 1, "", "extra_repr"], [30, 3, 1, "", "float"], [30, 3, 1, "id0", "forward"], [30, 3, 1, "", "get_buffer"], [30, 3, 1, "", "get_extra_state"], [30, 3, 1, "", "get_parameter"], [30, 3, 1, "", "get_submodule"], [30, 3, 1, "", "half"], [30, 3, 1, "", "ipu"], [30, 3, 1, "", "load_state_dict"], [30, 3, 1, "", "modules"], [30, 3, 1, "", "named_buffers"], [30, 3, 1, "", "named_children"], [30, 3, 1, "", "named_modules"], [30, 3, 1, "", "named_parameters"], [30, 3, 1, "", "parameters"], [30, 3, 1, "", "register_backward_hook"], [30, 3, 1, "", "register_buffer"], [30, 3, 1, "", "register_forward_hook"], [30, 3, 1, "", "register_forward_pre_hook"], [30, 3, 1, "", "register_full_backward_hook"], [30, 3, 1, "", "register_load_state_dict_post_hook"], [30, 3, 1, "", "register_module"], [30, 3, 1, "", "register_parameter"], [30, 3, 1, "", "requires_grad_"], [30, 3, 1, "", "set_extra_state"], [30, 3, 1, "", "share_memory"], [30, 3, 1, "", "state_dict"], [30, 3, 1, "", "to"], [30, 3, 1, "", "to_empty"], [30, 3, 1, "", "train"], [30, 6, 1, "", "training"], [30, 3, 1, "", "type"], [30, 3, 1, "", "xpu"], [30, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[31, 1, 1, "", "adjust_learning_rate"], [31, 1, 1, "", "evaluate"], [31, 1, 1, "", "forget_rate_scheduler"], [31, 1, 1, "", "initialize_lr_scheduler"], [31, 1, 1, "", "loss_coteaching"], [31, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[33, 2, 1, "", "LabelInspector"], [33, 7, 1, "", "adj_confident_thresholds_shared"], [33, 1, 1, "", "find_label_issues_batched"], [33, 7, 1, "", "labels_shared"], [33, 7, 1, "", "pred_probs_shared"], [33, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[33, 3, 1, "", "get_confident_thresholds"], [33, 3, 1, "", "get_label_issues"], [33, 3, 1, "", "get_num_issues"], [33, 3, 1, "", "get_quality_scores"], [33, 3, 1, "", "score_label_quality"], [33, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[34, 2, 1, "", "CNN"], [34, 2, 1, "", "SimpleNet"], [34, 1, 1, "", "get_mnist_dataset"], [34, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[34, 3, 1, "", "__init_subclass__"], [34, 6, 1, "", "batch_size"], [34, 6, 1, "", "dataset"], [34, 6, 1, "", "epochs"], [34, 3, 1, "id0", "fit"], [34, 3, 1, "", "get_metadata_routing"], [34, 3, 1, "", "get_params"], [34, 6, 1, "", "loader"], [34, 6, 1, "", "log_interval"], [34, 6, 1, "", "lr"], [34, 6, 1, "", "momentum"], [34, 6, 1, "", "no_cuda"], [34, 3, 1, "id1", "predict"], [34, 3, 1, "id4", "predict_proba"], [34, 6, 1, "", "seed"], [34, 3, 1, "", "set_fit_request"], [34, 3, 1, "", "set_params"], [34, 3, 1, "", "set_predict_proba_request"], [34, 3, 1, "", "set_predict_request"], [34, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[34, 6, 1, "", "T_destination"], [34, 3, 1, "", "__call__"], [34, 3, 1, "", "add_module"], [34, 3, 1, "", "apply"], [34, 3, 1, "", "bfloat16"], [34, 3, 1, "", "buffers"], [34, 3, 1, "", "children"], [34, 3, 1, "", "cpu"], [34, 3, 1, "", "cuda"], [34, 3, 1, "", "double"], [34, 6, 1, "", "dump_patches"], [34, 3, 1, "", "eval"], [34, 3, 1, "", "extra_repr"], [34, 3, 1, "", "float"], [34, 3, 1, "", "forward"], [34, 3, 1, "", "get_buffer"], [34, 3, 1, "", "get_extra_state"], [34, 3, 1, "", "get_parameter"], [34, 3, 1, "", "get_submodule"], [34, 3, 1, "", "half"], [34, 3, 1, "", "ipu"], [34, 3, 1, "", "load_state_dict"], [34, 3, 1, "", "modules"], [34, 3, 1, "", "named_buffers"], [34, 3, 1, "", "named_children"], [34, 3, 1, "", "named_modules"], [34, 3, 1, "", "named_parameters"], [34, 3, 1, "", "parameters"], [34, 3, 1, "", "register_backward_hook"], [34, 3, 1, "", "register_buffer"], [34, 3, 1, "", "register_forward_hook"], [34, 3, 1, "", "register_forward_pre_hook"], [34, 3, 1, "", "register_full_backward_hook"], [34, 3, 1, "", "register_load_state_dict_post_hook"], [34, 3, 1, "", "register_module"], [34, 3, 1, "", "register_parameter"], [34, 3, 1, "", "requires_grad_"], [34, 3, 1, "", "set_extra_state"], [34, 3, 1, "", "share_memory"], [34, 3, 1, "", "state_dict"], [34, 3, 1, "", "to"], [34, 3, 1, "", "to_empty"], [34, 3, 1, "", "train"], [34, 6, 1, "", "training"], [34, 3, 1, "", "type"], [34, 3, 1, "", "xpu"], [34, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[35, 1, 1, "", "find_label_issues"], [35, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [35, 1, 1, "", "find_predicted_neq_given"], [35, 7, 1, "", "pred_probs_by_class"], [35, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[37, 0, 0, "-", "label_quality_utils"], [38, 0, 0, "-", "latent_algebra"], [39, 0, 0, "-", "multiannotator_utils"], [40, 0, 0, "-", "multilabel_scorer"], [41, 0, 0, "-", "multilabel_utils"], [42, 0, 0, "-", "outlier"], [43, 0, 0, "-", "token_classification_utils"], [44, 0, 0, "-", "util"], [45, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[37, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[38, 1, 1, "", "compute_inv_noise_matrix"], [38, 1, 1, "", "compute_noise_matrix_from_inverse"], [38, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [38, 1, 1, "", "compute_py"], [38, 1, 1, "", "compute_py_inv_noise_matrix"], [38, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[39, 1, 1, "", "assert_valid_inputs_multiannotator"], [39, 1, 1, "", "assert_valid_pred_probs"], [39, 1, 1, "", "check_consensus_label_classes"], [39, 1, 1, "", "compute_soft_cross_entropy"], [39, 1, 1, "", "find_best_temp_scaler"], [39, 1, 1, "", "format_multiannotator_labels"], [39, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[40, 2, 1, "", "Aggregator"], [40, 2, 1, "", "ClassLabelScorer"], [40, 2, 1, "", "MultilabelScorer"], [40, 1, 1, "", "exponential_moving_average"], [40, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [40, 1, 1, "", "get_label_quality_scores"], [40, 1, 1, "", "multilabel_py"], [40, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[40, 3, 1, "", "__call__"], [40, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[40, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [40, 6, 1, "", "NORMALIZED_MARGIN"], [40, 6, 1, "", "SELF_CONFIDENCE"], [40, 3, 1, "", "__call__"], [40, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[40, 3, 1, "", "__call__"], [40, 3, 1, "", "aggregate"], [40, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[41, 1, 1, "", "get_onehot_num_classes"], [41, 1, 1, "", "int2onehot"], [41, 1, 1, "", "onehot2int"], [41, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[42, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[43, 1, 1, "", "color_sentence"], [43, 1, 1, "", "filter_sentence"], [43, 1, 1, "", "get_sentence"], [43, 1, 1, "", "mapping"], [43, 1, 1, "", "merge_probs"], [43, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[44, 1, 1, "", "append_extra_datapoint"], [44, 1, 1, "", "clip_noise_rates"], [44, 1, 1, "", "clip_values"], [44, 1, 1, "", "compress_int_array"], [44, 1, 1, "", "confusion_matrix"], [44, 1, 1, "", "csr_vstack"], [44, 1, 1, "", "estimate_pu_f1"], [44, 1, 1, "", "extract_indices_tf"], [44, 1, 1, "", "force_two_dimensions"], [44, 1, 1, "", "format_labels"], [44, 1, 1, "", "get_missing_classes"], [44, 1, 1, "", "get_num_classes"], [44, 1, 1, "", "get_unique_classes"], [44, 1, 1, "", "is_tensorflow_dataset"], [44, 1, 1, "", "is_torch_dataset"], [44, 1, 1, "", "num_unique_classes"], [44, 1, 1, "", "print_inverse_noise_matrix"], [44, 1, 1, "", "print_joint_matrix"], [44, 1, 1, "", "print_noise_matrix"], [44, 1, 1, "", "print_square_matrix"], [44, 1, 1, "", "remove_noise_from_class"], [44, 1, 1, "", "round_preserving_row_totals"], [44, 1, 1, "", "round_preserving_sum"], [44, 1, 1, "", "smart_display_dataframe"], [44, 1, 1, "", "subset_X_y"], [44, 1, 1, "", "subset_data"], [44, 1, 1, "", "subset_labels"], [44, 1, 1, "", "train_val_split"], [44, 1, 1, "", "unshuffle_tensorflow_dataset"], [44, 1, 1, "", "value_counts"], [44, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[45, 1, 1, "", "assert_indexing_works"], [45, 1, 1, "", "assert_nonempty_input"], [45, 1, 1, "", "assert_valid_class_labels"], [45, 1, 1, "", "assert_valid_inputs"], [45, 1, 1, "", "labels_to_array"]], "cleanlab.models": [[48, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[48, 2, 1, "", "KerasWrapperModel"], [48, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[49, 1, 1, "", "convert_long_to_wide_dataset"], [49, 1, 1, "", "get_active_learning_scores"], [49, 1, 1, "", "get_active_learning_scores_ensemble"], [49, 1, 1, "", "get_label_quality_multiannotator"], [49, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [49, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[50, 0, 0, "-", "dataset"], [51, 0, 0, "-", "filter"], [53, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[50, 1, 1, "", "common_multilabel_issues"], [50, 1, 1, "", "multilabel_health_summary"], [50, 1, 1, "", "overall_multilabel_health_score"], [50, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[51, 1, 1, "", "find_label_issues"], [51, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[53, 1, 1, "", "get_label_quality_scores"], [53, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[54, 0, 0, "-", "filter"], [56, 0, 0, "-", "rank"], [57, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[54, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[56, 1, 1, "", "compute_badloc_box_scores"], [56, 1, 1, "", "compute_overlooked_box_scores"], [56, 1, 1, "", "compute_swap_box_scores"], [56, 1, 1, "", "get_label_quality_scores"], [56, 1, 1, "", "issues_from_scores"], [56, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[57, 1, 1, "", "bounding_box_size_distribution"], [57, 1, 1, "", "calculate_per_class_metrics"], [57, 1, 1, "", "class_label_distribution"], [57, 1, 1, "", "get_average_per_class_confusion_matrix"], [57, 1, 1, "", "get_sorted_bbox_count_idxs"], [57, 1, 1, "", "object_counts_per_image"], [57, 1, 1, "", "plot_class_distribution"], [57, 1, 1, "", "plot_class_size_distributions"], [57, 1, 1, "", "visualize"]], "cleanlab.outlier": [[58, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[58, 3, 1, "", "fit"], [58, 3, 1, "", "fit_score"], [58, 3, 1, "", "score"]], "cleanlab.rank": [[59, 1, 1, "", "find_top_issues"], [59, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [59, 1, 1, "", "get_label_quality_ensemble_scores"], [59, 1, 1, "", "get_label_quality_scores"], [59, 1, 1, "", "get_normalized_margin_for_each_label"], [59, 1, 1, "", "get_self_confidence_for_each_label"], [59, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[61, 0, 0, "-", "learn"], [62, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[61, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[61, 3, 1, "", "__init_subclass__"], [61, 3, 1, "", "find_label_issues"], [61, 3, 1, "", "fit"], [61, 3, 1, "", "get_aleatoric_uncertainty"], [61, 3, 1, "", "get_epistemic_uncertainty"], [61, 3, 1, "", "get_label_issues"], [61, 3, 1, "", "get_metadata_routing"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "save_space"], [61, 3, 1, "", "score"], [61, 3, 1, "", "set_fit_request"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[62, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"], [66, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[63, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[66, 1, 1, "", "common_label_issues"], [66, 1, 1, "", "display_issues"], [66, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[70, 1, 1, "", "common_label_issues"], [70, 1, 1, "", "display_issues"], [70, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 73, 77, 78, 80, 81, 82, 85, 91, 92, 93], "count": [3, 82], "datalab": [4, 5, 7, 8, 9, 74, 75, 76, 77, 78, 82], "creat": [5, 74, 75, 82, 84], "your": [5, 71, 74, 75, 78, 80, 82], "own": 5, "issu": [5, 7, 8, 18, 25, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "manag": [5, 18], "prerequisit": 5, "implement": 5, "issuemanag": [5, 74], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 74], "us": [5, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "gener": 6, "cluster": [6, 80], "id": 6, "guid": [7, 9], "type": [7, 8, 82], "custom": [7, 74], "can": [8, 75, 79, 80, 82, 84], "detect": [8, 75, 77, 78, 80, 82, 86, 87], "estim": [8, 82, 84], "each": 8, "label": [8, 20, 25, 71, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "outlier": [8, 23, 42, 58, 77, 78, 81, 87], "Near": [8, 75, 77, 78, 81], "duplic": [8, 16, 75, 77, 78, 80, 81], "non": [8, 78], "iid": [8, 78], "class": [8, 72, 82, 90], "imbal": [8, 17], "imag": [8, 81, 87], "specif": [8, 18, 90], "underperform": [8, 80], "group": [8, 80], "null": [8, 22], "option": 8, "paramet": [8, 82], "get": [9, 74, 75, 84, 85, 86, 90, 93], "start": [9, 79], "api": 9, "refer": 9, "data": [10, 71, 73, 74, 75, 77, 78, 79, 80, 82, 84, 85, 86, 87, 89, 90, 91, 93], "data_issu": 11, "factori": 12, "intern": [13, 36], "issue_find": 14, "issue_manag": [18, 19], "regist": 18, "unregist": 18, "ml": [18, 80, 82], "task": 18, "noniid": 21, "regress": [24, 60, 61, 62, 80, 89], "prioriti": 25, "order": 25, "find": [25, 71, 73, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "underperforming_group": 26, "report": [27, 81], "dataset": [29, 50, 71, 75, 78, 79, 80, 81, 82, 85, 86, 87, 89, 90, 92, 93], "cifar_cnn": 30, "coteach": 31, "experiment": 32, "label_issues_batch": 33, "mnist_pytorch": 34, "filter": [35, 51, 54, 63, 67, 82], "label_quality_util": 37, "latent_algebra": 38, "multiannotator_util": 39, "multilabel_scor": 40, "multilabel_util": 41, "token_classification_util": 43, "util": 44, "valid": [45, 81, 88], "fasttext": 46, "model": [47, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "kera": 48, "multiannot": [49, 84], "multilabel_classif": 52, "rank": [53, 56, 59, 62, 65, 69, 82], "object_detect": 55, "summari": [57, 66, 70], "learn": [61, 75, 80, 82, 91], "segment": [64, 90], "token_classif": [68, 93], "cleanlab": [71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "open": [71, 80], "sourc": [71, 80], "document": 71, "quickstart": 71, "1": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "instal": [71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "2": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "common": [71, 72, 93], "3": [71, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "handl": [71, 80], "error": [71, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "train": [71, 73, 80, 87, 89, 91, 92], "robust": [71, 82, 89, 91, 92], "noisi": [71, 82, 89, 91, 92], "4": [71, 73, 74, 75, 77, 78, 81, 82, 84, 86, 87, 89, 91, 92], "curat": [71, 79], "fix": [71, 80], "level": [71, 79, 82, 93], "5": [71, 73, 75, 77, 81, 82, 84, 89, 91], "improv": [71, 84], "via": [71, 82, 84], "mani": [71, 82], "other": [71, 84, 86, 89], "techniqu": 71, "contribut": 71, "easi": [71, 77, 78, 81], "mode": [71, 77, 78, 81], "how": [72, 80, 82, 84, 85, 93], "migrat": 72, "version": 72, "0": 72, "from": [72, 74, 75, 82, 89, 91, 92], "pre": [72, 73, 80, 87], "function": [72, 74], "name": 72, "chang": 72, "modul": [72, 82], "new": 72, "remov": 72, "argument": [72, 74], "variabl": 72, "audio": 73, "speechbrain": 73, "depend": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "import": [73, 74, 75, 79, 81, 82, 84], "them": [73, 79, 82], "load": [73, 74, 75, 77, 78, 89, 91, 92], "featur": [73, 81, 87], "fit": 73, "linear": 73, "comput": [73, 77, 78, 80, 81, 84, 88, 91], "out": [73, 74, 75, 77, 78, 81, 84, 88, 91], "sampl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "predict": [73, 74, 75, 77, 78, 81, 84, 85, 86, 88, 91], "probabl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "workflow": [74, 82], "audit": [74, 75], "requir": [74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "classifi": [74, 75], "instanti": 74, "object": [74, 86], "increment": 74, "search": 74, "specifi": [74, 80], "nondefault": 74, "save": 74, "ad": 74, "A": 75, "unifi": 75, "all": [75, 82], "kind": [75, 86], "skip": [75, 79, 82, 84], "detail": [75, 79, 82, 84], "more": [75, 82, 89, 91, 92], "about": 75, "addit": 75, "inform": [75, 81], "tutori": [76, 79, 83], "tabular": [77, 91], "numer": 77, "categor": 77, "column": 77, "process": [77, 87, 89, 91], "select": [77, 91], "construct": 77, "k": [77, 81, 88], "nearest": 77, "neighbour": 77, "graph": 77, "text": [78, 92, 93], "format": [78, 80, 85, 86, 92], "defin": [78, 81, 89, 92], "drift": 78, "fetch": [79, 81], "evalu": 79, "health": [79, 82], "8": [79, 82], "popular": 79, "faq": 80, "what": [80, 82, 88], "do": [80, 82], "i": [80, 82, 88], "infer": 80, "correct": 80, "exampl": [80, 81, 82, 87], "ha": 80, "flag": 80, "should": 80, "v": 80, "test": [80, 82, 87], "big": 80, "limit": 80, "memori": 80, "why": 80, "isn": 80, "t": 80, "cleanlearn": [80, 82], "work": [80, 82, 84, 93], "me": 80, "differ": [80, 86], "clean": [80, 82], "final": 80, "hyperparamet": 80, "tune": 80, "onli": 80, "one": [80, 82, 85, 90], "doe": [80, 84, 93], "take": 80, "so": 80, "long": 80, "slice": 80, "when": [80, 82], "identifi": [80, 86], "run": 80, "licens": 80, "under": 80, "an": 80, "answer": 80, "question": 80, "pytorch": [81, 87], "normal": 81, "fashion": 81, "mnist": 81, "prepar": 81, "fold": [81, 88], "cross": [81, 88], "embed": [81, 87], "7": [81, 82], "view": 81, "most": [81, 93], "like": 81, "sever": 81, "set": [81, 82], "dark": 81, "top": [81, 90], "low": 81, "The": 82, "centric": 82, "ai": 82, "machin": 82, "find_label_issu": 82, "line": 82, "code": 82, "visual": [82, 86, 87, 90], "twenti": 82, "lowest": 82, "qualiti": [82, 84, 85, 86, 90, 93], "see": 82, "now": 82, "let": 82, "": 82, "happen": 82, "we": 82, "merg": 82, "seafoam": 82, "green": 82, "yellow": 82, "too": 82, "you": 82, "re": 82, "6": 82, "One": 82, "score": [82, 84, 85, 86, 90, 93], "rule": 82, "overal": [82, 90], "accur": 82, "thi": 82, "directli": 82, "fulli": 82, "character": 82, "nois": 82, "matrix": [82, 85], "joint": 82, "prior": 82, "true": 82, "distribut": 82, "flip": 82, "rate": 82, "ani": 82, "again": 82, "support": 82, "lot": 82, "method": 82, "filter_bi": 82, "automat": 82, "everi": 82, "uniqu": 82, "num_label_issu": 82, "threshold": 82, "found": 82, "Not": 82, "sure": 82, "ensembl": 82, "multipl": [82, 84], "predictor": 82, "consensu": 84, "annot": 84, "initi": 84, "major": 84, "vote": 84, "better": 84, "statist": 84, "compar": 84, "inspect": 84, "potenti": [84, 89, 92], "retrain": 84, "further": 84, "multi": 85, "given": 85, "hot": 85, "binari": 85, "download": [86, 90, 93], "objectlab": 86, "timm": 87, "cifar10": 87, "some": 87, "pred_prob": [87, 90, 93], "wai": 89, "semant": 90, "which": 90, "ar": 90, "commonli": 90, "mislabel": [90, 93], "focus": 90, "scikit": 91, "token": 93, "word": 93, "sentenc": 93, "contain": 93, "particular": 93}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 56}})
\ No newline at end of file
+Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/report", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/image", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/tabular", "tutorials/text", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/image.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/tabular.ipynb", "tutorials/text.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "datalab", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "report", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "Audio Classification with SpeechBrain and Cleanlab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "Image Classification with PyTorch and Cleanlab", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 72, 74, 75, 82, 84, 85], "helper": [1, 14, 33, 37, 39, 40, 41, 42, 43, 44, 56, 79, 81, 93], "method": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "ar": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 24, 25, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "us": [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 71, 72, 74, 79, 83, 88], "benchmark": [1, 30, 71, 72, 74, 75, 82, 84, 85], "cleanlab": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88], "": [1, 2, 3, 8, 29, 30, 34, 37, 40, 42, 44, 49, 50, 54, 56, 57, 58, 59, 61, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "core": [1, 4, 33, 35, 63, 65, 90], "algorithm": [1, 2, 6, 8, 26, 31, 44, 49, 58, 67, 69, 71, 80, 82, 84, 93], "These": [1, 2, 3, 6, 8, 18, 32, 35, 36, 47, 49, 50, 53, 57, 58, 62, 66, 67, 69, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "introduc": [1, 73, 80, 82], "synthet": [1, 84, 85, 90], "nois": [1, 2, 3, 29, 35, 38, 44, 50, 74, 75, 79, 84], "label": [1, 2, 3, 4, 5, 6, 7, 10, 14, 17, 18, 19, 24, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 74, 79, 83, 87, 88], "classif": [1, 3, 4, 5, 8, 12, 14, 27, 29, 33, 35, 38, 40, 41, 44, 49, 50, 51, 52, 53, 58, 59, 67, 68, 69, 70, 71, 72, 74, 75, 83, 84, 87, 88, 89, 90], "dataset": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 21, 22, 23, 25, 26, 33, 34, 35, 38, 40, 44, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 77, 83, 84, 88, 91], "specif": [1, 3, 4, 7, 12, 13, 14, 22, 27, 32, 47, 51, 54, 57, 66, 70, 75, 77, 78, 81, 82, 93], "thi": [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "modul": [1, 3, 11, 12, 13, 14, 18, 24, 27, 29, 30, 31, 32, 33, 34, 35, 44, 47, 49, 58, 59, 71, 80, 81, 85], "provid": [1, 2, 3, 4, 5, 6, 8, 12, 14, 20, 25, 29, 30, 31, 33, 34, 35, 38, 44, 48, 49, 50, 51, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 87, 88, 89, 90, 91, 92, 93], "gener": [1, 2, 3, 5, 8, 20, 27, 29, 40, 44, 45, 58, 59, 61, 66, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 88, 89, 90, 92, 93], "valid": [1, 2, 3, 4, 8, 10, 29, 35, 36, 38, 39, 40, 44, 49, 51, 54, 57, 59, 61, 62, 70, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "matric": [1, 3, 38, 80], "which": [1, 2, 3, 4, 8, 10, 11, 12, 14, 19, 21, 27, 29, 30, 34, 35, 38, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "learn": [1, 2, 3, 4, 8, 12, 14, 19, 25, 27, 31, 32, 33, 34, 35, 37, 39, 44, 47, 49, 51, 58, 60, 62, 65, 69, 71, 73, 74, 77, 78, 79, 81, 83, 84, 89, 92], "i": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "possibl": [1, 2, 3, 8, 29, 30, 34, 35, 37, 38, 40, 51, 52, 53, 54, 56, 57, 58, 59, 61, 67, 69, 70, 75, 80, 82, 84, 85, 86, 89, 90, 93], "noisi": [1, 2, 3, 8, 29, 31, 34, 35, 38, 44, 50, 51, 53, 59, 61, 62, 63, 65, 66, 72, 74, 75, 77, 78, 80, 83, 84], "given": [1, 2, 3, 8, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 43, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "matrix": [1, 2, 3, 4, 8, 14, 26, 29, 35, 37, 38, 41, 44, 45, 51, 56, 57, 58, 59, 77, 87], "trace": [1, 74, 75, 82, 84, 85], "valu": [1, 2, 3, 4, 8, 10, 11, 14, 19, 21, 22, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 70, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "more": [1, 2, 3, 4, 5, 8, 11, 14, 21, 29, 30, 33, 34, 37, 40, 44, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 90, 93], "function": [1, 2, 3, 4, 5, 11, 12, 14, 20, 21, 25, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 79, 80, 82, 84, 85, 86, 90, 91, 92, 93], "noise_matrix_is_valid": 1, "noise_matrix": [1, 2, 3, 8, 38, 44, 74, 75, 82, 84, 85], "py": [1, 3, 27, 30, 31, 35, 38, 40, 74, 75, 82, 84, 85], "verbos": [1, 2, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 33, 35, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 74, 82, 84], "fals": [1, 2, 3, 4, 5, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 73, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87, 89, 90, 92], "sourc": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70], "prior": [1, 2, 3, 29, 35, 38, 40], "repres": [1, 2, 3, 5, 8, 10, 14, 21, 29, 33, 35, 38, 41, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "p": [1, 2, 3, 8, 29, 35, 37, 38, 44, 49, 57, 58, 59, 63, 75, 77, 78, 81, 82, 84, 93], "true_label": [1, 2, 3, 29, 38, 44, 82, 84], "k": [1, 2, 3, 4, 6, 8, 10, 14, 16, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 74, 75, 80, 82, 84, 85, 86, 87, 90, 91, 93], "check": [1, 2, 4, 7, 8, 10, 14, 22, 30, 33, 34, 39, 45, 48, 54, 57, 61, 71, 73, 74, 75, 80, 81, 82, 84, 85, 89, 91, 92], "learnabl": 1, "mean": [1, 2, 5, 6, 10, 11, 19, 21, 31, 34, 38, 40, 56, 61, 75, 78, 80, 82, 84, 85, 87, 89, 92], "achiev": [1, 2, 30, 31, 34, 61, 80, 84, 93], "better": [1, 4, 35, 49, 51, 59, 61, 62, 71, 73, 75, 77, 78, 80, 82, 85, 86, 87, 92, 93], "than": [1, 2, 3, 5, 8, 21, 23, 26, 29, 35, 44, 48, 49, 54, 56, 58, 59, 61, 65, 69, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93], "random": [1, 2, 3, 5, 8, 26, 33, 40, 49, 59, 61, 73, 74, 75, 77, 80, 81, 82, 84, 85, 87, 91], "perform": [1, 2, 5, 8, 21, 23, 26, 30, 34, 40, 57, 61, 71, 74, 80, 82, 84, 85, 88, 89, 91, 92], "averag": [1, 3, 8, 19, 23, 29, 30, 34, 40, 42, 49, 50, 57, 58, 59, 80, 84, 87], "amount": [1, 3, 81], "paramet": [1, 2, 3, 4, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 75, 78, 81, 91, 92], "np": [1, 2, 3, 4, 5, 14, 26, 29, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 90, 91, 92, 93], "ndarrai": [1, 2, 3, 4, 14, 20, 21, 25, 26, 29, 31, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 93], "an": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "arrai": [1, 2, 3, 4, 5, 8, 10, 14, 21, 29, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "shape": [1, 2, 3, 4, 14, 29, 31, 33, 35, 37, 38, 39, 40, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 79, 80, 82, 85, 86, 87, 90, 93], "condit": [1, 2, 3, 38, 43, 44, 59, 81, 82, 93], "probabl": [1, 2, 3, 4, 6, 8, 14, 20, 23, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 90, 93], "k_": [1, 2, 3, 38, 44], "k_y": [1, 2, 3, 38, 44], "contain": [1, 2, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 42, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92], "fraction": [1, 2, 3, 8, 17, 31, 38, 44, 49, 61, 77, 80], "exampl": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 84, 85, 86, 88, 89, 90, 91, 92, 93], "everi": [1, 2, 3, 4, 14, 30, 34, 35, 38, 43, 44, 51, 59, 61, 62, 73, 74, 75, 77, 78, 80, 81, 84, 86, 88, 90, 91, 93], "class": [1, 2, 3, 4, 5, 7, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 91, 92, 93], "other": [1, 2, 3, 4, 8, 14, 19, 22, 29, 30, 32, 33, 34, 35, 38, 41, 44, 45, 47, 49, 50, 53, 57, 58, 59, 61, 66, 73, 74, 75, 77, 78, 80, 81, 82, 85, 87, 90, 93], "assum": [1, 2, 3, 10, 35, 38, 42, 43, 44, 59, 63, 66, 80, 87, 90, 93], "column": [1, 2, 3, 4, 8, 10, 11, 25, 29, 33, 35, 38, 40, 41, 43, 44, 49, 50, 51, 53, 54, 57, 58, 59, 61, 66, 67, 69, 70, 73, 74, 75, 78, 79, 80, 81, 82, 84, 86, 89, 90, 91, 92, 93], "sum": [1, 2, 3, 21, 26, 29, 38, 40, 44, 50, 51, 53, 56, 61, 74, 75, 80, 81, 82, 84, 85, 90, 93], "1": [1, 2, 3, 4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 79, 80, 88], "each": [1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 17, 19, 20, 21, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 44, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "true": [1, 2, 3, 4, 5, 8, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "return": [1, 2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "type": [1, 2, 3, 4, 5, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 85, 86, 90, 91, 93], "bool": [1, 2, 3, 4, 10, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 33, 34, 35, 40, 43, 44, 49, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 70], "is_valid": 1, "whether": [1, 3, 4, 8, 10, 11, 16, 17, 19, 20, 21, 23, 25, 26, 27, 30, 33, 34, 35, 44, 49, 50, 51, 53, 54, 70, 73, 75, 77, 78, 79, 80, 81, 82, 89, 92, 93], "generate_noisy_label": [1, 74, 75, 82, 84, 85], "from": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 19, 20, 22, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 38, 40, 41, 42, 43, 44, 49, 51, 53, 56, 57, 58, 59, 61, 62, 67, 69, 70, 71, 73, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 90, 93], "perfect": [1, 2, 29, 61, 82, 86], "exactli": [1, 3, 8, 29, 30, 34, 35, 52, 58, 74, 75, 77, 78, 81, 82], "yield": [1, 30, 34], "between": [1, 4, 8, 13, 14, 18, 19, 21, 24, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 42, 47, 49, 50, 53, 56, 58, 59, 61, 62, 65, 69, 70, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 92, 93], "below": [1, 3, 4, 8, 29, 30, 33, 34, 35, 37, 40, 49, 50, 51, 56, 57, 65, 69, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "we": [1, 2, 3, 4, 5, 8, 11, 19, 30, 33, 34, 35, 40, 44, 45, 49, 56, 57, 59, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "loop": [1, 3, 38, 44, 81], "implement": [1, 2, 3, 4, 7, 12, 19, 30, 31, 33, 34, 38, 44, 61, 71, 73, 74, 77, 87, 88, 91], "what": [1, 4, 7, 8, 14, 27, 29, 31, 33, 35, 49, 50, 54, 56, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "doe": [1, 2, 3, 8, 33, 34, 35, 40, 45, 56, 57, 61, 63, 65, 69, 73, 74, 75, 77, 78, 81, 85, 89, 90, 92], "do": [1, 2, 4, 8, 29, 33, 34, 44, 45, 58, 59, 63, 73, 74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "fast": 1, "explain": [1, 8], "python": [1, 2, 34, 48, 61, 74, 75, 79, 87], "pseudocod": [1, 88], "happen": [1, 8, 35, 51, 78, 84, 90], "n": [1, 2, 3, 4, 5, 29, 30, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 73, 78, 79, 80, 81, 84, 85, 89, 90, 91, 92, 93], "without": [1, 2, 4, 8, 10, 12, 17, 30, 34, 53, 61, 71, 73, 78, 82, 86, 87, 92], "ani": [1, 2, 3, 4, 5, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 39, 43, 44, 48, 49, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92], "distinct": [1, 44, 93], "natur": [1, 8, 84, 87], "number": [1, 2, 3, 4, 5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 90, 93], "0": [1, 2, 3, 4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "count_joint": 1, "len": [1, 2, 3, 5, 29, 33, 38, 43, 44, 45, 58, 59, 61, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92, 93], "y": [1, 2, 3, 4, 6, 25, 26, 34, 38, 40, 44, 45, 48, 57, 61, 62, 73, 74, 75, 77, 80, 82, 84, 85, 87, 89, 92], "round": [1, 33, 35, 44, 61, 80, 89], "astyp": [1, 84], "int": [1, 2, 3, 4, 5, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 40, 41, 42, 43, 44, 50, 51, 53, 57, 58, 59, 61, 63, 65, 66, 67, 70, 73, 74, 81, 87], "rang": [1, 3, 4, 5, 10, 38, 40, 42, 44, 57, 61, 62, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 93], "idx_flip": 1, "where": [1, 2, 3, 4, 5, 8, 10, 11, 14, 19, 29, 33, 35, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93], "pragma": 1, "cover": [1, 3, 72, 79], "choic": [1, 6, 35, 80, 81, 85, 87], "replac": [1, 43, 48, 59, 74, 75, 78, 79, 80, 81, 84, 87, 91, 92], "generate_noise_matrix_from_trac": [1, 74, 75, 82, 84, 85], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 59, 73, 74, 75], "05": [1, 8, 21, 43, 57, 61, 67, 69, 79, 80, 82, 86, 90], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 74, 75, 82, 84, 85], "none": [1, 2, 3, 4, 5, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 80, 81, 82, 84, 85, 90], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 8, 21, 34, 40, 61, 73, 74, 75, 77, 79, 82, 84, 85, 91], "max_it": [1, 73, 78, 87, 92], "10000": [1, 33, 79, 80], "x": [1, 2, 3, 4, 8, 16, 17, 19, 20, 21, 23, 25, 26, 29, 30, 31, 34, 35, 37, 38, 40, 43, 44, 45, 48, 49, 51, 57, 58, 59, 61, 63, 73, 74, 75, 77, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "diagon": [1, 3, 4, 35, 38, 44], "equal": [1, 3, 8, 10, 51, 56, 66, 88], "creat": [1, 2, 7, 14, 30, 33, 34, 35, 44, 61, 71, 73, 77, 78, 80, 81, 90, 92, 93], "impli": [1, 8, 29, 50, 57], "float": [1, 2, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 39, 40, 43, 44, 49, 50, 51, 53, 56, 57, 61, 65, 69, 73, 74, 75, 82, 84, 85], "entri": [1, 3, 4, 29, 30, 34, 35, 37, 41, 44, 49, 50, 51, 54, 77, 78, 82, 85, 86, 91, 92], "maximum": [1, 8, 58, 66, 70, 90], "minimum": [1, 6, 8, 17, 35, 37, 51, 56, 69], "noise_r": 1, "non": [1, 2, 3, 4, 7, 14, 21, 30, 34, 35, 56, 61, 74, 80, 82, 84, 86, 87], "default": [1, 2, 3, 4, 5, 8, 12, 14, 23, 25, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 74, 80, 81, 90], "If": [1, 2, 3, 4, 8, 10, 11, 14, 21, 23, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 51, 54, 56, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 72, 73, 74, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "have": [1, 2, 3, 4, 8, 14, 18, 21, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 62, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "all": [1, 2, 3, 4, 5, 6, 8, 11, 12, 14, 19, 27, 29, 30, 33, 34, 35, 38, 40, 41, 43, 44, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "necessari": [1, 2, 3, 5, 8, 10, 43, 74], "In": [1, 2, 3, 8, 29, 30, 33, 34, 49, 50, 52, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93], "particular": [1, 4, 8, 11, 12, 14, 16, 17, 19, 21, 22, 23, 26, 30, 34, 44, 49, 53, 57, 61, 66, 70, 71, 73, 75, 78, 80, 84, 85, 87, 89, 91, 92], "satisfi": [1, 3, 29], "requir": [1, 2, 4, 5, 6, 7, 8, 9, 10, 25, 28, 30, 31, 32, 33, 34, 35, 38, 44, 47, 48, 51, 58, 59, 61, 63, 71, 72, 73, 79, 80, 82, 88], "argument": [1, 2, 3, 4, 8, 14, 20, 22, 25, 26, 30, 33, 34, 35, 40, 45, 48, 49, 50, 51, 53, 56, 57, 58, 59, 61, 65, 66, 67, 69, 75, 78, 79, 80, 81, 86, 89, 92, 93], "when": [1, 2, 3, 4, 8, 10, 12, 20, 21, 30, 34, 35, 38, 40, 44, 48, 51, 53, 54, 56, 58, 59, 61, 62, 74, 75, 77, 78, 81, 84, 88, 89, 90, 91, 92, 93], "The": [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 51, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "rate": [1, 2, 3, 8, 31, 44, 73, 93], "set": [1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 54, 56, 57, 58, 59, 61, 63, 65, 66, 74, 75, 77, 78, 80, 84, 85, 87, 88, 89, 90, 91, 92, 93], "note": [1, 2, 3, 5, 6, 8, 22, 26, 30, 33, 34, 35, 40, 44, 49, 54, 56, 57, 58, 59, 61, 62, 66, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "you": [1, 2, 3, 4, 5, 8, 12, 14, 29, 30, 32, 33, 34, 35, 40, 47, 48, 49, 51, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "high": [1, 2, 14, 33, 35, 44, 56, 59, 61, 74, 75, 79, 81, 82, 86, 89, 90, 91, 92, 93], "mai": [1, 2, 3, 4, 8, 11, 18, 19, 24, 29, 30, 32, 33, 34, 35, 38, 40, 44, 49, 50, 54, 56, 57, 58, 59, 61, 63, 66, 70, 72, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93], "imposs": [1, 8, 82], "also": [1, 2, 3, 4, 5, 8, 19, 29, 30, 33, 34, 35, 43, 48, 49, 58, 61, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "low": [1, 8, 44, 49, 71, 74, 75, 78, 82, 86, 90], "zero": [1, 3, 4, 30, 34, 37, 44, 45, 74, 81, 85, 86, 87], "forc": [1, 2, 3, 4, 34, 74, 93], "instead": [1, 2, 3, 8, 11, 14, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 51, 53, 57, 58, 59, 61, 62, 65, 67, 69, 72, 73, 77, 78, 80, 81, 82, 85, 86, 87, 89, 90, 91, 92, 93], "onli": [1, 2, 3, 4, 5, 8, 14, 20, 21, 25, 29, 30, 33, 34, 35, 37, 38, 43, 44, 48, 49, 58, 59, 61, 63, 65, 69, 70, 71, 73, 74, 75, 78, 81, 84, 85, 86, 87, 88, 89, 90, 92, 93], "guarante": [1, 3, 4, 13, 18, 24, 30, 32, 34, 36, 38, 47, 72], "produc": [1, 2, 4, 8, 14, 40, 49, 59, 61, 63, 65, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "higher": [1, 4, 8, 29, 35, 37, 38, 40, 49, 50, 61, 75, 78, 80, 86], "opposit": [1, 93], "occur": [1, 3, 8, 29, 43, 56, 74, 75, 80, 81, 87], "small": [1, 3, 8, 29, 33, 40, 44, 50, 57, 78, 79, 81, 85, 87, 92], "numpi": [1, 3, 4, 5, 8, 10, 26, 33, 34, 40, 42, 43, 45, 48, 53, 56, 61, 62, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "max": [1, 35, 58, 59, 75, 81, 87], "tri": [1, 30, 34, 88], "befor": [1, 2, 3, 30, 34, 44, 58, 61, 66, 78, 80, 82, 84, 87, 89, 91, 92], "option": [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 20, 21, 25, 29, 30, 33, 34, 35, 38, 40, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 66, 69, 70, 71, 73, 74, 75, 77, 80, 81, 82, 89, 90, 91], "left": [1, 2, 35, 37, 42, 44, 51, 54, 57, 74, 75, 85, 86, 87, 90], "stochast": 1, "exceed": 1, "generate_n_rand_probabilities_that_sum_to_m": 1, "m": [1, 4, 30, 34, 39, 40, 49, 54, 56, 57, 58, 74, 75, 79, 84, 85, 86, 93], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 30, 34, 48, 80, 82, 90], "length": [1, 4, 10, 21, 22, 29, 31, 35, 44, 51, 54, 58, 59, 61, 63, 66, 70, 73, 85, 87, 90, 91, 93], "must": [1, 2, 3, 4, 14, 29, 30, 31, 32, 34, 35, 38, 40, 41, 44, 47, 48, 49, 50, 51, 58, 59, 61, 63, 65, 66, 67, 69, 70, 73, 84, 88, 90, 93], "randomly_distribute_n_balls_into_k_bin": 1, "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 8, 10, 29, 33, 35, 41, 44, 45, 49, 51, 57, 63, 65, 66, 67, 69, 70, 73, 80, 84, 85, 86, 90, 91, 92, 93], "ball": [1, 79], "bin": [1, 3, 51, 74, 75, 87], "ensur": [1, 2, 8, 30, 34, 44, 45, 56, 59, 61, 73, 74, 75, 78, 80, 81, 82, 87, 88, 89, 91, 92], "most": [1, 3, 4, 5, 8, 14, 29, 33, 35, 40, 48, 49, 50, 51, 54, 56, 57, 58, 59, 62, 65, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92], "least": [1, 8, 26, 29, 33, 49, 50, 56, 59, 69, 75, 80, 81, 84, 87, 90], "int_arrai": [1, 44], "can": [2, 3, 4, 5, 6, 7, 11, 12, 14, 27, 29, 30, 31, 32, 33, 34, 35, 39, 40, 41, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 77, 78, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "model": [2, 3, 4, 8, 14, 25, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 43, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 72, 74, 75, 79, 83, 88, 90, 93], "For": [2, 3, 4, 5, 7, 8, 9, 14, 19, 28, 29, 30, 33, 34, 35, 38, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 65, 67, 69, 70, 71, 73, 75, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93], "regular": [2, 3, 33, 48], "multi": [2, 3, 8, 29, 30, 33, 34, 35, 39, 40, 41, 44, 45, 50, 51, 52, 53, 58, 59, 71, 80, 82, 83], "task": [2, 4, 5, 10, 12, 13, 14, 25, 27, 29, 33, 38, 40, 41, 42, 44, 49, 51, 59, 61, 71, 73, 78, 79, 80, 82, 85, 87, 90, 92, 93], "cleanlearn": [2, 3, 8, 20, 25, 30, 44, 48, 61, 62, 71, 72, 89, 91, 92], "wrap": [2, 30, 34, 48, 58, 61, 71, 74, 75, 77, 78, 82, 89, 91, 92], "instanc": [2, 3, 4, 5, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48, 57, 58, 61, 66, 73, 74, 75, 77, 78, 81, 82, 91], "sklearn": [2, 3, 4, 6, 8, 26, 29, 34, 40, 44, 48, 58, 61, 62, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92], "classifi": [2, 3, 34, 40, 44, 49, 52, 58, 59, 71, 72, 73, 77, 78, 80, 84, 85, 87, 88, 90, 91, 92, 93], "adher": [2, 34, 61], "estim": [2, 3, 4, 7, 11, 19, 29, 33, 34, 35, 38, 44, 49, 50, 51, 56, 58, 61, 63, 65, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 83, 85, 86, 87, 88, 89, 90, 93], "api": [2, 3, 12, 48, 58, 61, 72, 80, 89], "defin": [2, 3, 4, 5, 8, 12, 19, 29, 30, 31, 33, 34, 35, 59, 61, 63, 74, 75, 77, 80, 84, 87, 93], "four": [2, 8, 79, 82, 93], "clf": [2, 3, 4, 40, 61, 71, 77, 80, 82, 85, 91], "fit": [2, 3, 4, 6, 8, 34, 48, 58, 61, 71, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91, 92, 93], "sample_weight": [2, 34, 61, 82], "predict_proba": [2, 4, 29, 34, 40, 48, 73, 74, 75, 77, 78, 80, 82, 84, 85, 87, 91], "predict": [2, 3, 4, 6, 8, 14, 19, 20, 23, 25, 29, 33, 34, 35, 37, 38, 40, 41, 43, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 79, 80, 82, 83, 87, 89, 90, 92, 93], "score": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 35, 37, 40, 42, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 87, 89, 91, 92], "data": [2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 40, 41, 44, 47, 48, 49, 50, 51, 52, 56, 58, 59, 60, 61, 66, 67, 68, 69, 70, 72, 76, 81, 83, 88, 92], "e": [2, 3, 4, 8, 10, 19, 29, 30, 33, 34, 35, 38, 40, 41, 44, 45, 49, 50, 51, 52, 58, 59, 61, 63, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "featur": [2, 3, 4, 6, 8, 14, 16, 20, 21, 22, 23, 25, 26, 40, 44, 58, 61, 71, 74, 75, 77, 78, 80, 82, 84, 89, 91], "element": [2, 3, 4, 29, 35, 37, 44, 49, 51, 59, 66, 67, 69, 73, 78, 80, 92, 93], "first": [2, 4, 8, 15, 21, 22, 29, 33, 40, 44, 49, 50, 54, 57, 59, 61, 73, 74, 77, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "index": [2, 8, 21, 29, 35, 42, 43, 44, 45, 50, 59, 61, 66, 69, 70, 73, 74, 75, 77, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "should": [2, 3, 4, 5, 8, 12, 19, 21, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 48, 49, 50, 53, 54, 56, 57, 58, 59, 61, 62, 66, 67, 69, 70, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "correspond": [2, 3, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 37, 38, 40, 43, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 63, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "differ": [2, 4, 5, 8, 11, 13, 18, 21, 22, 24, 29, 30, 32, 33, 34, 35, 36, 40, 44, 45, 47, 49, 54, 56, 58, 61, 73, 74, 75, 77, 78, 81, 82, 84, 87, 88, 91], "sampl": [2, 3, 4, 6, 8, 14, 17, 35, 37, 40, 51, 54, 57, 59, 61, 62, 71, 72, 79, 80, 82, 83, 85, 86, 89, 90, 92, 93], "size": [2, 8, 26, 30, 33, 34, 35, 40, 51, 56, 57, 61, 63, 65, 77, 80, 81, 82, 84, 85, 88, 90, 92], "here": [2, 4, 5, 8, 12, 33, 35, 38, 48, 49, 50, 51, 53, 54, 57, 58, 69, 71, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "re": [2, 4, 30, 34, 43, 49, 61, 71, 73, 74, 77, 78, 80, 89, 90, 91, 92, 93], "weight": [2, 8, 30, 31, 34, 40, 49, 56, 59, 61, 73, 74, 75, 78, 87, 92], "loss": [2, 31, 48, 59, 61, 81], "while": [2, 3, 8, 30, 33, 34, 39, 40, 44, 54, 57, 61, 71, 80, 81, 82, 84, 89], "train": [2, 3, 4, 8, 14, 30, 31, 34, 40, 44, 48, 49, 54, 57, 58, 61, 62, 72, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 90, 93], "support": [2, 3, 4, 10, 33, 40, 44, 45, 58, 59, 69, 71, 72, 73, 74, 75, 80, 81], "your": [2, 3, 4, 7, 8, 14, 29, 30, 32, 33, 34, 35, 40, 44, 47, 48, 49, 50, 51, 53, 58, 59, 61, 62, 63, 65, 66, 72, 73, 77, 79, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "recommend": [2, 4, 8, 11, 14, 33, 35, 49, 74, 75, 80, 81, 88, 89], "furthermor": 2, "correctli": [2, 3, 8, 29, 30, 34, 35, 38, 45, 50, 51, 56, 57, 61, 63, 78, 80, 85, 86, 89, 90, 92], "clonabl": [2, 61], "via": [2, 4, 8, 11, 14, 19, 29, 31, 33, 34, 40, 44, 49, 54, 57, 58, 59, 61, 62, 65, 69, 73, 74, 75, 77, 78, 79, 80, 81, 85, 86, 87, 88, 89, 90, 91, 92, 93], "base": [2, 3, 4, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 35, 38, 39, 40, 42, 43, 44, 45, 48, 49, 50, 51, 53, 56, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 93], "clone": [2, 61, 85], "intern": [2, 3, 5, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 33, 37, 38, 39, 40, 41, 42, 43, 44, 45, 53, 57, 61, 67, 72, 74, 80, 82, 84, 85, 87, 93], "multipl": [2, 3, 4, 10, 11, 29, 35, 43, 49, 50, 51, 53, 56, 57, 61, 71, 74, 75, 80, 81, 83, 85, 86, 89], "g": [2, 3, 4, 8, 10, 19, 29, 30, 34, 35, 41, 44, 51, 52, 58, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92], "manual": [2, 61, 73, 80, 87, 88, 89, 91, 92, 93], "pytorch": [2, 30, 31, 34, 61, 71, 73, 80, 83, 85, 90], "call": [2, 3, 4, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 40, 44, 48, 58, 61, 73, 74, 75, 78, 80, 82, 87, 88, 90, 92, 93], "__init__": [2, 31, 61, 81], "independ": [2, 3, 8, 50, 61, 78, 88, 93], "compat": [2, 30, 33, 34, 48, 61, 62, 65, 69, 71, 80, 88, 89, 91, 92], "neural": [2, 31, 48, 58, 61, 73, 80, 81, 85, 87], "network": [2, 30, 31, 34, 48, 58, 61, 73, 78, 80, 81, 85, 87, 92], "typic": [2, 30, 34, 58, 61, 73, 75, 77, 78, 81, 87, 88, 91, 92], "initi": [2, 3, 11, 30, 34, 49, 61, 78, 80, 91], "insid": [2, 34, 61, 80, 82], "There": [2, 3, 71, 82, 84, 85], "two": [2, 3, 8, 21, 29, 30, 33, 34, 41, 44, 54, 56, 57, 72, 74, 75, 77, 78, 80, 81, 82, 85, 89, 90, 92, 93], "new": [2, 5, 12, 19, 30, 33, 34, 39, 43, 44, 49, 61, 73, 74, 78, 79, 80, 87, 88, 92, 93], "notion": 2, "confid": [2, 3, 8, 19, 29, 33, 35, 38, 40, 44, 49, 50, 51, 54, 56, 57, 58, 59, 61, 65, 69, 71, 77, 78, 81, 82, 84, 85, 86, 88, 90, 91, 93], "packag": [2, 4, 5, 7, 8, 9, 13, 28, 32, 35, 36, 44, 47, 54, 57, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "prune": [2, 3, 35, 51, 61, 72, 86], "everyth": [2, 57, 82], "els": [2, 57, 74, 79, 80, 81, 84, 85], "mathemat": [2, 3, 8, 38], "keep": [2, 11, 12, 44, 71, 74, 79, 80, 90], "belong": [2, 3, 8, 29, 35, 37, 38, 50, 51, 52, 53, 58, 59, 63, 67, 69, 70, 75, 77, 78, 81, 82, 85, 87, 90, 93], "2": [2, 3, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 48, 50, 51, 53, 58, 59, 61, 62, 66, 67, 69, 70, 79, 80, 88], "error": [2, 3, 4, 8, 30, 34, 35, 37, 38, 42, 44, 50, 51, 53, 54, 56, 57, 59, 61, 63, 65, 66, 69, 72, 73, 74, 75, 77, 78, 79, 83, 91], "erron": [2, 3, 29, 35, 38, 44, 50, 51, 59, 61, 62, 63, 87, 89], "import": [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 33, 40, 42, 43, 49, 53, 56, 61, 62, 67, 69, 70, 71, 77, 78, 80, 85, 86, 87, 89, 90, 91, 92, 93], "linear_model": [2, 4, 29, 44, 61, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logisticregress": [2, 3, 4, 29, 44, 71, 73, 74, 75, 78, 80, 82, 84, 87, 92], "logreg": 2, "cl": [2, 12, 25, 61, 71, 80, 82, 89, 91, 92], "pass": [2, 3, 4, 6, 8, 10, 11, 12, 14, 20, 25, 27, 30, 33, 34, 35, 39, 40, 44, 48, 49, 51, 58, 59, 61, 67, 71, 73, 74, 75, 78, 79, 80, 82, 84, 86, 87, 89, 92], "x_train": [2, 74, 75, 82, 84, 85, 89, 91], "labels_maybe_with_error": 2, "had": [2, 3, 61, 86], "issu": [2, 3, 4, 6, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 32, 33, 34, 35, 47, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 76, 83, 84, 88, 89, 92], "pred": [2, 35, 44, 88, 89, 91, 92], "x_test": [2, 74, 75, 82, 85, 89, 91], "might": [2, 49, 61, 66, 74, 75, 80, 81, 91, 92], "case": [2, 3, 11, 29, 40, 49, 61, 73, 74, 75, 77, 79, 80, 81, 82, 87, 89, 91, 92, 93], "standard": [2, 3, 4, 25, 29, 35, 48, 50, 51, 53, 59, 61, 71, 74, 75, 77, 79, 82, 91], "adapt": [2, 30, 32, 44, 47, 61, 87], "skorch": [2, 61, 71, 80], "kera": [2, 47, 61, 71, 80], "scikera": [2, 48, 61, 80], "open": [2, 33, 79, 86, 93], "doesn": [2, 61, 71], "t": [2, 3, 8, 15, 22, 30, 31, 33, 34, 35, 40, 42, 43, 53, 58, 59, 61, 67, 69, 70, 71, 74, 75, 77, 78, 79, 81, 82, 85, 86, 93], "alreadi": [2, 4, 14, 30, 33, 34, 38, 48, 49, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 91, 92], "exist": [2, 4, 8, 10, 30, 33, 34, 43, 48, 54, 56, 58, 61, 71, 72, 74, 75, 78, 84, 85, 92, 93], "made": [2, 4, 14, 61, 78, 80, 81, 84, 86, 88, 89, 91, 92], "easi": [2, 38, 61, 74, 75, 79, 80, 82, 85], "inherit": [2, 5, 31, 61], "baseestim": [2, 34, 61], "yourmodel": [2, 61], "def": [2, 5, 12, 30, 34, 48, 61, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "self": [2, 3, 4, 5, 8, 10, 11, 12, 14, 26, 30, 31, 33, 34, 35, 40, 58, 59, 61, 74, 79, 81, 85, 90, 91, 93], "refer": [2, 8, 14, 30, 34, 50, 51, 53, 54, 56, 57, 61, 65, 66, 74, 75, 77, 78, 80, 81, 82, 88, 89], "origin": [2, 4, 8, 34, 35, 43, 44, 48, 50, 51, 54, 57, 58, 61, 62, 65, 67, 69, 74, 77, 78, 80, 81, 82, 86, 87, 89, 91, 92, 93], "total": [2, 3, 29, 33, 44, 50, 70, 80, 81, 90], "state": [2, 3, 4, 30, 31, 34, 39, 61, 82, 85, 86, 93], "art": [2, 31, 82, 85], "northcutt": [2, 3, 29, 58, 59], "et": [2, 3, 29, 31, 58, 59], "al": [2, 3, 29, 31, 58, 59], "2021": [2, 3, 29, 58, 59], "weak": [2, 57], "supervis": [2, 8, 74, 75, 80, 84], "find": [2, 4, 8, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 32, 33, 34, 35, 39, 43, 44, 47, 54, 57, 58, 59, 61, 63, 67, 69, 72, 74, 83, 88], "uncertainti": [2, 8, 37, 58, 61, 80, 87, 89], "It": [2, 3, 4, 5, 8, 10, 11, 14, 19, 22, 25, 27, 30, 34, 35, 38, 40, 42, 49, 56, 57, 61, 71, 74, 75, 80, 81, 82, 85, 88], "work": [2, 3, 4, 5, 8, 10, 25, 29, 30, 33, 34, 35, 38, 43, 44, 45, 48, 49, 59, 61, 71, 72, 74, 75, 79, 87, 89, 92], "includ": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 30, 32, 33, 34, 43, 44, 47, 49, 50, 53, 54, 58, 59, 61, 65, 66, 67, 69, 71, 72, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 93], "deep": [2, 32, 34, 47, 48, 61, 78], "see": [2, 3, 4, 11, 29, 30, 33, 34, 35, 40, 44, 48, 50, 51, 53, 54, 57, 58, 59, 61, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "subfield": 2, "theori": [2, 82], "machin": [2, 4, 12, 14, 27, 32, 47, 61, 74, 75, 79, 84], "across": [2, 3, 4, 5, 8, 11, 19, 29, 33, 40, 50, 57, 58, 74, 75, 77, 78, 79, 80, 81, 82, 86, 88], "varieti": [2, 80, 91, 92], "like": [2, 3, 4, 5, 8, 12, 27, 29, 30, 33, 34, 35, 38, 44, 48, 49, 50, 53, 54, 56, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "pu": [2, 44], "input": [2, 3, 4, 8, 14, 21, 29, 30, 33, 34, 38, 40, 43, 44, 45, 48, 57, 61, 71, 72, 75, 78, 79, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "discret": [2, 35, 38, 44, 58, 59, 63, 65, 66], "vector": [2, 3, 4, 8, 14, 35, 38, 40, 41, 44, 58, 59, 71, 73, 74, 75, 77, 78, 81, 82, 85, 86, 87, 90, 92, 93], "would": [2, 3, 4, 30, 33, 34, 35, 44, 51, 61, 71, 74, 80, 81, 82, 87, 89, 92, 93], "obtain": [2, 4, 6, 8, 14, 35, 49, 51, 54, 57, 59, 62, 73, 75, 78, 80, 84, 86, 88, 90, 93], "been": [2, 29, 35, 38, 43, 44, 49, 50, 54, 56, 58, 59, 61, 73, 74, 77, 80, 82, 84, 85, 86, 87, 90, 93], "dure": [2, 14, 58, 61, 73, 77, 78, 80, 82, 85, 88, 89, 91, 92, 93], "denot": [2, 3, 38, 40, 44, 51, 58, 59, 69], "tild": 2, "paper": [2, 8, 49, 58, 67, 69, 79, 82, 84, 87, 89, 93], "cv_n_fold": [2, 3, 61, 92], "5": [2, 3, 4, 6, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 34, 35, 37, 39, 40, 44, 49, 50, 53, 54, 57, 61, 62, 69, 74, 78, 79, 80, 85, 86, 87, 88, 90, 92, 93], "converge_latent_estim": [2, 3], "pulearn": [2, 44], "find_label_issues_kwarg": [2, 8, 61, 72, 80, 82], "label_quality_scores_kwarg": [2, 8], "low_memori": [2, 51, 67, 80], "clean": [2, 56, 59, 61, 62, 71, 74, 75, 79, 89, 91, 92], "even": [2, 3, 29, 33, 37, 38, 44, 61, 73, 80, 82, 84, 85, 86], "messi": [2, 61, 82], "ridden": [2, 61], "autom": [2, 61, 71, 75, 79, 80], "robust": [2, 38, 61, 75, 80], "prone": [2, 61], "out": [2, 3, 4, 8, 14, 23, 30, 34, 35, 40, 48, 51, 52, 54, 57, 58, 59, 61, 62, 70, 71, 72, 79, 80, 82, 83, 85, 86, 87, 89, 90, 92, 93], "current": [2, 3, 5, 8, 11, 12, 19, 30, 34, 35, 40, 49, 56, 61, 74, 75, 80, 84], "intend": [2, 11, 12, 13, 14, 27, 36, 49, 65, 69, 73, 74, 75, 78, 82], "A": [2, 3, 4, 5, 8, 10, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 34, 35, 38, 39, 40, 41, 43, 44, 48, 49, 50, 53, 56, 57, 58, 59, 61, 63, 65, 66, 70, 72, 73, 74, 77, 78, 79, 80, 81, 82, 84, 86, 88, 91, 92, 93], "follow": [2, 3, 8, 12, 25, 29, 30, 33, 34, 40, 42, 49, 50, 54, 56, 57, 58, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "experiment": [2, 30, 31, 33, 34, 51, 72, 80], "wrapper": [2, 4, 48, 73, 89, 91, 92], "around": [2, 4, 56, 74, 75, 86, 87, 93], "fasttext": [2, 47], "store": [2, 4, 8, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 58, 61, 77, 78, 79, 80, 90, 91, 92, 93], "along": [2, 40, 51, 69, 74, 75, 80, 81, 87], "dimens": [2, 42, 44, 63, 66, 80, 81, 87, 90], "select": [2, 7, 8, 21, 49, 59, 81, 84, 87], "split": [2, 3, 4, 8, 10, 33, 40, 43, 44, 61, 73, 74, 75, 77, 78, 79, 81, 82, 85, 88, 91, 93], "cross": [2, 3, 8, 29, 35, 38, 39, 40, 51, 54, 57, 59, 61, 62, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 89, 90, 91, 92, 93], "fold": [2, 3, 29, 35, 38, 61, 73, 77, 79, 80, 86, 90, 91], "By": [2, 4, 29, 50, 51, 61, 74, 80, 90], "need": [2, 3, 8, 29, 30, 33, 34, 35, 50, 51, 53, 58, 61, 71, 73, 74, 75, 78, 80, 82, 84, 85, 86, 90, 92], "holdout": [2, 3, 61], "comput": [2, 3, 4, 5, 6, 8, 16, 17, 19, 20, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 44, 49, 50, 51, 53, 56, 57, 58, 59, 61, 62, 63, 65, 71, 72, 74, 75, 79, 82, 83, 85, 86, 87, 89, 90, 92], "them": [2, 3, 4, 5, 7, 8, 9, 10, 22, 28, 30, 32, 33, 34, 35, 47, 49, 58, 61, 72, 74, 75, 77, 78, 80, 81, 84, 85, 87, 89, 90, 91, 92, 93], "numer": [2, 3, 4, 8, 11, 19, 25, 40, 56, 58, 61, 66, 71, 72, 73, 74, 75, 76, 78, 81, 82, 84, 87, 89, 91, 92], "consist": [2, 3, 30, 34, 44, 49, 90, 93], "latent": [2, 3, 38], "thei": [2, 3, 4, 13, 18, 21, 24, 30, 31, 32, 34, 35, 36, 44, 48, 51, 56, 59, 61, 62, 65, 69, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92, 93], "relat": [2, 3, 11, 16, 17, 21, 22, 23, 26, 38, 44, 50, 61, 75, 78], "close": [2, 3, 8, 33, 38, 58, 73, 74, 75, 77, 78, 80, 81, 82, 86], "form": [2, 3, 8, 30, 31, 34, 38, 43, 44, 59, 61, 80], "equival": [2, 3, 30, 34, 38, 58, 87], "iter": [2, 3, 29, 30, 34, 35, 44, 50, 51, 61, 80, 84, 90], "enforc": [2, 30, 34, 44], "perfectli": [2, 29, 50, 82], "certain": [2, 3, 4, 30, 34, 48, 57, 61, 74, 75, 79, 87], "dict": [2, 3, 4, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 33, 34, 35, 39, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 69, 74, 75, 80, 81, 93], "keyword": [2, 3, 4, 8, 14, 20, 22, 25, 30, 33, 34, 35, 37, 40, 43, 48, 49, 51, 58, 59, 61, 67, 69, 74], "filter": [2, 3, 8, 33, 43, 50, 52, 53, 55, 57, 64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 78, 79, 80, 81, 85, 86, 89, 90, 91, 92, 93], "find_label_issu": [2, 3, 8, 25, 33, 35, 50, 51, 53, 54, 56, 57, 61, 63, 65, 66, 67, 69, 70, 71, 72, 80, 85, 86, 89, 90, 91, 92, 93], "particularli": [2, 71, 84, 87], "filter_bi": [2, 3, 33, 35, 51, 72, 80], "frac_nois": [2, 35, 51, 67, 80], "min_examples_per_class": [2, 35, 51, 75, 80, 82], "impact": [2, 8, 74, 75, 81], "ml": [2, 4, 8, 13, 61, 71, 74, 75, 77, 78, 81, 84, 91, 92], "accuraci": [2, 31, 59, 73, 80, 81, 82, 84, 87, 89, 90, 91, 92], "n_job": [2, 33, 35, 51, 63, 65, 67, 80, 87, 90], "disabl": [2, 30, 34, 35, 87], "process": [2, 3, 5, 11, 14, 33, 35, 43, 49, 51, 57, 63, 65, 67, 73, 74, 80, 84, 88, 92], "caus": [2, 35, 40, 74, 75, 80], "rank": [2, 3, 8, 29, 33, 35, 40, 50, 51, 52, 54, 55, 57, 58, 60, 64, 66, 67, 68, 70, 71, 72, 74, 75, 79, 80, 85, 86, 87, 89, 90, 91, 92, 93], "get_label_quality_scor": [2, 33, 35, 40, 49, 51, 53, 54, 56, 59, 62, 65, 67, 69, 72, 82, 85, 86, 89, 90, 93], "adjust_pred_prob": [2, 8, 53, 58, 59, 82], "control": [2, 4, 7, 8, 14, 33, 35, 42, 49, 57, 58, 61, 67, 69, 74, 75, 79, 80], "how": [2, 3, 4, 8, 11, 12, 14, 19, 29, 30, 31, 33, 34, 38, 44, 49, 50, 53, 54, 56, 58, 59, 61, 65, 69, 71, 74, 75, 77, 78, 79, 81, 86, 87, 88, 89, 90, 91, 92], "much": [2, 8, 29, 33, 35, 61, 80, 82, 84, 87], "output": [2, 3, 4, 8, 14, 30, 31, 34, 38, 44, 48, 49, 50, 54, 56, 57, 58, 61, 65, 66, 69, 70, 71, 72, 73, 74, 78, 79, 80, 81, 86, 87, 88, 89, 92], "print": [2, 4, 5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 44, 49, 50, 51, 56, 58, 59, 61, 63, 65, 66, 70, 72, 73, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "suppress": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66, 90, 93], "statement": [2, 33, 49, 56, 58, 59, 61, 63, 65, 66], "big": [2, 33, 51, 57, 61, 82], "limit": [2, 4, 14, 33, 51, 86, 90, 93], "memori": [2, 30, 33, 34, 51, 57, 63, 65, 74, 90], "label_issues_batch": [2, 32, 51, 80], "find_label_issues_batch": [2, 33, 51, 80], "pred_prob": [2, 3, 4, 6, 8, 14, 20, 21, 23, 26, 29, 33, 35, 37, 38, 39, 40, 41, 44, 45, 49, 50, 51, 53, 54, 57, 58, 59, 63, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 91, 92], "threshold": [2, 3, 5, 8, 16, 17, 19, 23, 25, 26, 33, 56, 57, 58, 59, 65, 69, 74, 86, 87, 90, 93], "inverse_noise_matrix": [2, 3, 8, 38, 44, 72, 82], "label_issu": [2, 33, 35, 51, 54, 61, 63, 72, 73, 78, 80, 81, 82, 89, 91, 92], "clf_kwarg": [2, 3, 8, 61], "clf_final_kwarg": [2, 61], "validation_func": [2, 3, 8], "correct": [2, 4, 8, 29, 33, 35, 37, 49, 50, 51, 53, 54, 56, 57, 59, 61, 62, 65, 69, 71, 73, 77, 78, 81, 82, 84, 86, 88, 89], "result": [2, 3, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 33, 34, 35, 37, 44, 51, 53, 54, 57, 59, 61, 62, 63, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 91, 92, 93], "identifi": [2, 3, 4, 5, 8, 10, 14, 22, 27, 29, 33, 35, 51, 54, 57, 59, 61, 62, 63, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 85, 87, 89, 90, 91, 92, 93], "final": [2, 8, 61, 77, 86, 88, 89, 91], "remain": [2, 61, 72, 81, 89, 91, 92, 93], "datasetlik": [2, 44, 61], "beyond": [2, 4, 5, 7, 9, 28, 71, 90], "pd": [2, 3, 4, 5, 11, 16, 17, 19, 20, 21, 23, 25, 26, 29, 39, 48, 49, 50, 61, 69, 73, 74, 75, 77, 78, 80, 82, 84, 89, 91, 92, 93], "datafram": [2, 3, 4, 5, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 33, 39, 44, 45, 48, 49, 50, 61, 66, 70, 72, 73, 74, 75, 77, 78, 80, 81, 82, 84, 89, 90, 92, 93], "scipi": [2, 4, 11, 44], "spars": [2, 4, 8, 11, 14, 26, 44, 45, 77], "csr_matrix": [2, 4, 11, 14, 26], "torch": [2, 30, 31, 34, 73, 78, 79, 81, 87, 92], "util": [2, 4, 14, 27, 30, 31, 34, 36, 49, 61, 71, 72, 73, 74, 75, 80, 81, 82, 87], "tensorflow": [2, 44, 48, 71, 73, 80], "object": [2, 4, 10, 11, 14, 27, 30, 31, 33, 34, 40, 44, 45, 48, 51, 54, 55, 56, 57, 58, 61, 69, 71, 73, 75, 77, 81, 82, 83, 89, 92], "list": [2, 3, 4, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 41, 43, 44, 45, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 65, 66, 67, 69, 70, 72, 73, 74, 75, 79, 80, 81, 82, 85, 86, 89, 92, 93], "index_list": 2, "subset": [2, 3, 4, 14, 29, 33, 35, 44, 59, 66, 70, 73, 77, 78, 80, 81, 85, 86, 87, 88, 89, 91, 92, 93], "wa": [2, 3, 10, 12, 33, 44, 49, 50, 56, 58, 70, 73, 74, 75, 77, 78, 80, 82, 85, 86, 88, 90, 91, 92, 93], "abl": [2, 3, 8, 61, 73, 80, 82, 84, 85], "format": [2, 3, 4, 8, 10, 30, 33, 34, 35, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 54, 57, 58, 59, 61, 63, 65, 66, 69, 70, 74, 75, 77, 79, 81, 84, 89, 90, 91, 93], "make": [2, 3, 30, 33, 34, 40, 48, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "sure": [2, 33, 35, 40, 73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 91, 92], "shuffl": [2, 8, 44, 73, 78, 81, 85, 87], "ha": [2, 3, 4, 8, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 30, 34, 38, 40, 43, 44, 49, 54, 56, 61, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "batch": [2, 33, 44, 48, 49, 63, 65, 80, 81, 87], "order": [2, 4, 8, 29, 30, 34, 35, 38, 39, 40, 42, 44, 49, 50, 51, 54, 57, 58, 59, 63, 66, 67, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 86, 89, 90, 92, 93], "destroi": [2, 44], "oper": [2, 30, 33, 34, 44, 48, 59, 71, 78, 87, 91, 92], "eg": [2, 8, 44, 54, 57, 74, 75, 80], "repeat": [2, 44, 49, 84, 87], "appli": [2, 30, 34, 35, 40, 41, 43, 44, 53, 58, 67, 73, 74, 75, 77, 80, 81, 84, 85, 87, 88, 89, 90, 91, 92], "array_lik": [2, 3, 29, 35, 44, 51, 58, 62], "some": [2, 3, 4, 8, 12, 19, 29, 30, 32, 34, 35, 38, 43, 44, 47, 49, 50, 51, 53, 54, 57, 58, 59, 61, 63, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "seri": [2, 3, 33, 44, 45, 61, 69, 80], "row": [2, 3, 4, 8, 11, 22, 29, 33, 35, 37, 38, 42, 44, 49, 50, 51, 53, 58, 59, 61, 66, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 87, 91, 93], "rather": [2, 3, 21, 29, 44, 48, 49, 56, 65, 69, 84, 88, 90, 92, 93], "leav": [2, 35], "per": [2, 3, 11, 29, 33, 35, 40, 43, 49, 50, 51, 53, 56, 57, 59, 62, 63, 65, 69, 75, 80, 86, 93], "determin": [2, 3, 8, 14, 19, 21, 25, 29, 33, 35, 40, 44, 49, 51, 54, 56, 59, 65, 69, 74, 80, 84, 87, 89], "cutoff": [2, 3, 87], "consid": [2, 3, 4, 8, 11, 14, 20, 21, 23, 26, 29, 30, 34, 35, 44, 49, 56, 58, 59, 62, 65, 69, 73, 75, 77, 78, 80, 81, 82, 86, 87, 88, 89, 90, 91, 92], "section": [2, 3, 5, 8, 72, 77, 81], "3": [2, 3, 4, 5, 8, 29, 30, 34, 35, 38, 39, 40, 41, 42, 43, 44, 48, 51, 58, 59, 61, 62, 67, 69, 79, 80, 88], "equat": [2, 3, 38], "advanc": [2, 3, 4, 7, 8, 14, 56, 58, 69, 72, 75, 76, 82], "user": [2, 3, 4, 8, 12, 14, 22, 27, 30, 34, 35, 56, 58, 59, 61, 65, 69, 82], "specifi": [2, 3, 4, 6, 8, 11, 12, 14, 26, 27, 30, 33, 34, 35, 40, 43, 49, 50, 51, 54, 56, 58, 59, 61, 62, 70, 72, 73, 75, 78, 81, 84, 86, 89, 92], "automat": [2, 3, 4, 21, 29, 71, 77, 78, 79, 80, 81, 84, 86, 89, 90, 91, 92, 93], "greater": [2, 3, 4, 7, 8, 23, 33, 42, 44, 56, 75, 79, 80, 93], "count": [2, 19, 21, 29, 33, 35, 38, 44, 50, 51, 57, 72, 80, 81], "observ": [2, 3, 38, 73, 74, 75, 84, 87, 89], "mislabel": [2, 8, 29, 33, 35, 38, 49, 50, 51, 54, 56, 59, 65, 67, 69, 71, 73, 77, 78, 80, 81, 82, 85, 86, 89, 91, 92], "one": [2, 3, 4, 8, 21, 29, 30, 33, 34, 35, 40, 44, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 81, 84, 87, 88, 89, 91, 92, 93], "get_label_issu": [2, 33, 61, 82, 89, 91, 92], "either": [2, 3, 5, 8, 30, 33, 34, 35, 49, 51, 56, 58, 59, 63, 65, 75, 85, 86], "boolean": [2, 5, 8, 19, 33, 35, 43, 49, 51, 54, 59, 61, 63, 65, 66, 71, 73, 75, 78, 80, 81, 86, 89, 90, 92], "label_issues_mask": [2, 35, 59, 61, 72], "indic": [2, 3, 4, 5, 8, 11, 19, 29, 33, 34, 35, 37, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 61, 62, 65, 67, 69, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "its": [2, 4, 7, 8, 14, 30, 33, 34, 35, 42, 43, 51, 54, 57, 58, 59, 61, 63, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92, 93], "return_indices_ranked_bi": [2, 33, 35, 51, 67, 72, 80, 82, 85, 91, 92], "significantli": [2, 81, 82, 84, 88], "reduc": [2, 33, 35, 44, 73, 80], "time": [2, 8, 30, 33, 34, 44, 49, 72, 74, 79, 80, 81, 82, 86, 87, 89, 90, 91, 92, 93], "take": [2, 4, 8, 29, 30, 34, 39, 40, 44, 48, 59, 77, 81, 84, 91, 93], "run": [2, 4, 5, 7, 9, 12, 14, 21, 22, 28, 30, 33, 34, 61, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "skip": [2, 8, 30, 34, 61, 73, 80, 85, 93], "slow": [2, 3], "step": [2, 5, 21, 40, 57, 80, 81, 82, 84, 88], "caution": [2, 4, 80], "previous": [2, 4, 11, 44, 58, 61, 72, 73, 74, 77, 78, 84, 88, 91], "assign": [2, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 39, 40, 44, 61, 74, 77, 80, 81, 89, 90, 91, 93], "individu": [2, 8, 11, 21, 30, 34, 49, 53, 56, 59, 61, 67, 69, 72, 75, 77, 80, 84, 85, 86, 91, 93], "still": [2, 33, 34, 44, 58, 80, 81, 87, 91], "extra": [2, 30, 34, 44, 48, 49, 50, 61, 78, 80, 81, 84, 87], "receiv": [2, 8, 30, 34, 50, 53, 54, 61, 63, 67, 75, 86], "overwritten": [2, 61], "callabl": [2, 3, 40, 43, 48, 53, 80], "x_val": 2, "y_val": 2, "map": [2, 3, 10, 33, 34, 39, 43, 44, 57, 59, 61, 66, 73, 74, 75, 80, 81, 82, 85, 93], "appropri": [2, 8, 14, 51, 59, 74, 77, 85, 86], "earli": [2, 81], "stop": [2, 81], "x_valid": 2, "y_valid": 2, "could": [2, 19, 29, 44, 58, 74, 77, 81, 85, 89, 91, 93], "f": [2, 5, 73, 74, 77, 78, 79, 80, 81, 82, 84, 85, 87, 89, 91, 92], "ignor": [2, 30, 34, 43, 48, 61, 66, 70, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "allow": [2, 29, 30, 33, 34, 37, 44, 49, 57, 58, 61, 63, 65, 73, 80, 81, 88, 90, 92], "access": [2, 8, 11, 30, 34, 61, 75, 81, 85], "hyperparamet": [2, 53, 58, 81], "purpos": [2, 74, 75, 80, 85, 89], "want": [2, 4, 8, 29, 33, 45, 49, 51, 61, 74, 78, 79, 81, 84, 86, 87, 88, 90, 92, 93], "explicitli": [2, 6, 8, 34, 61], "yourself": [2, 4, 33, 75], "altern": [2, 5, 8, 40, 44, 48, 49, 59, 72, 73, 77, 78, 80, 81, 82, 84, 85, 87, 89, 92], "same": [2, 3, 4, 5, 8, 10, 12, 14, 21, 25, 30, 33, 34, 35, 44, 48, 49, 51, 58, 59, 61, 65, 66, 69, 70, 71, 74, 75, 77, 78, 80, 81, 86, 87, 88, 89, 90, 91, 92], "effect": [2, 8, 22, 30, 34, 49, 58, 61, 77, 78, 80, 81, 87], "offer": [2, 4, 73, 74, 75, 78, 80, 82, 85, 92], "after": [2, 3, 4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 49, 61, 74, 78, 80, 81, 82, 84, 86, 87, 88, 89, 90, 92], "attribut": [2, 4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 58, 61, 74, 91], "label_issues_df": [2, 61, 81], "similar": [2, 8, 29, 30, 34, 42, 44, 49, 53, 54, 56, 58, 61, 65, 69, 74, 75, 77, 78, 80, 81, 82, 86, 87, 90], "document": [2, 3, 4, 8, 12, 14, 29, 30, 33, 34, 35, 40, 43, 48, 50, 51, 53, 56, 57, 58, 61, 65, 66, 67, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "descript": [2, 4, 5, 8, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 44, 54, 61, 74, 75], "were": [2, 3, 4, 29, 34, 50, 56, 69, 73, 77, 80, 82, 84, 86, 88, 90, 91], "present": [2, 3, 4, 8, 10, 11, 17, 29, 44, 58, 66, 71, 77, 80, 81, 87], "actual": [2, 3, 4, 29, 49, 50, 59, 75, 80, 82, 93], "num_class": [2, 29, 33, 44, 48, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 91, 92], "uniqu": [2, 26, 44, 66, 74, 80, 85, 87], "given_label": [2, 4, 25, 29, 38, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92, 93], "normal": [2, 3, 21, 26, 35, 37, 40, 43, 44, 59, 80, 82, 87], "trick": [2, 80], "distribut": [2, 3, 4, 8, 21, 23, 29, 34, 35, 39, 49, 57, 58, 59, 71, 74, 75, 77, 78, 81, 87], "account": [2, 29, 49, 53, 58, 59, 78, 80, 82, 84, 85, 87, 89, 92], "word": [2, 3, 43, 69, 70, 80], "remov": [2, 8, 26, 29, 30, 34, 35, 61, 71, 78, 79, 80, 81, 87, 89, 91, 92], "so": [2, 3, 4, 5, 8, 12, 21, 29, 30, 33, 34, 35, 44, 49, 50, 56, 59, 61, 65, 69, 73, 74, 75, 78, 81, 82, 87, 90], "proportion": [2, 8, 35], "just": [2, 3, 4, 8, 11, 29, 31, 33, 44, 48, 59, 61, 63, 71, 72, 73, 75, 77, 78, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92], "procedur": 2, "get": [2, 3, 4, 6, 11, 26, 30, 31, 34, 35, 40, 43, 44, 49, 51, 53, 58, 59, 61, 62, 63, 71, 73, 78, 79, 80, 81, 82, 87, 88, 89, 91, 92], "detect": [2, 4, 5, 7, 11, 12, 14, 19, 23, 42, 52, 54, 55, 56, 57, 58, 59, 60, 61, 64, 68, 71, 74, 76, 81, 83, 85, 89, 90, 91, 92, 93], "arg": [2, 10, 19, 22, 26, 30, 31, 34, 40, 44, 59, 61], "kwarg": [2, 5, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 40, 48, 61, 63, 65, 67, 80], "test": [2, 8, 21, 34, 40, 48, 61, 71, 74, 75, 77, 78, 81, 88, 89, 91, 92, 93], "expect": [2, 3, 30, 34, 35, 40, 49, 58, 59, 61, 80, 82, 84, 85, 86, 89, 91, 92, 93], "class_predict": 2, "evalu": [2, 8, 30, 31, 33, 34, 57, 61, 73, 74, 75, 80, 81, 82, 84, 88, 89, 90, 91, 92], "simpli": [2, 29, 59, 74, 75, 77, 78, 80, 82, 89, 90, 92, 93], "quantifi": [2, 4, 5, 8, 11, 35, 53, 58, 61, 71, 75, 77, 78, 81, 82, 86], "save_spac": [2, 8, 61], "potenti": [2, 8, 29, 35, 43, 51, 54, 57, 59, 61, 63, 65, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "cach": [2, 78, 87, 92], "panda": [2, 4, 5, 10, 16, 17, 19, 20, 21, 23, 25, 26, 29, 44, 45, 48, 49, 50, 72, 73, 74, 75, 77, 78, 79, 80, 82, 84, 89, 90, 91, 92], "unlik": [2, 8, 35, 37, 40, 48, 50, 51, 53, 69, 74, 84, 85, 87, 89], "both": [2, 4, 8, 14, 21, 29, 30, 34, 35, 44, 49, 51, 59, 63, 65, 70, 71, 74, 80, 81, 82, 84, 93], "mask": [2, 33, 35, 43, 44, 51, 54, 59, 61, 63, 65, 66, 71, 79, 80, 84, 86, 90, 93], "prefer": [2, 59, 67], "plan": 2, "subsequ": [2, 3, 30, 34, 78, 80, 82, 86, 92], "invok": [2, 30, 34, 82, 88], "scratch": [2, 61], "To": [2, 4, 5, 7, 8, 9, 11, 14, 21, 28, 30, 33, 34, 35, 48, 49, 51, 53, 57, 58, 59, 61, 62, 63, 65, 71, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "share": [2, 59, 61], "mostli": [2, 44, 56, 61], "longer": [2, 39, 43, 61, 72, 78, 80, 86, 92], "info": [2, 4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 61, 69, 74, 75, 79, 80, 93], "about": [2, 3, 4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 33, 37, 49, 50, 53, 57, 61, 66, 69, 73, 74, 77, 78, 79, 80, 81, 82, 84, 87], "docstr": [2, 29, 30, 34, 44, 61, 79, 82], "unless": [2, 30, 34, 61, 80], "our": [2, 3, 8, 48, 49, 59, 61, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "is_label_issu": [2, 25, 61, 73, 74, 75, 77, 78, 81, 82, 89, 92], "entir": [2, 8, 21, 33, 35, 38, 50, 51, 56, 59, 61, 63, 65, 66, 71, 74, 75, 78, 80, 81, 82, 86, 87, 88, 90, 93], "accur": [2, 3, 4, 8, 14, 29, 33, 35, 49, 50, 51, 54, 57, 59, 61, 62, 63, 65, 66, 72, 75, 77, 78, 80, 81, 84, 89], "label_qu": [2, 49, 61, 82, 84, 89, 92], "measur": [2, 29, 49, 50, 61, 71, 79, 80, 82, 84, 85, 90, 91, 93], "qualiti": [2, 3, 4, 5, 8, 11, 25, 26, 29, 33, 35, 37, 40, 49, 50, 51, 53, 54, 56, 59, 61, 62, 65, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 83, 89, 91, 92], "lower": [2, 4, 5, 8, 11, 23, 33, 40, 49, 50, 53, 56, 57, 59, 61, 62, 65, 69, 73, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 92, 93], "eas": 2, "comparison": [2, 30, 34, 57, 82, 84, 89], "against": [2, 30, 34, 74, 77, 80, 84, 85], "predicted_label": [2, 4, 25, 61, 66, 70, 73, 74, 75, 77, 78, 81, 82, 89, 90, 92], "ad": [2, 30, 34, 75, 84, 89], "precis": [2, 51, 54, 57, 80, 82, 90, 93], "definit": [2, 5, 61, 77, 91], "accessor": [2, 61], "describ": [2, 8, 49, 58, 59, 61, 67, 69, 82, 84, 85, 86, 88, 93], "precomput": [2, 4, 38, 61, 79], "clear": [2, 61, 78, 89, 92], "save": [2, 4, 14, 30, 33, 34, 57, 61, 80, 86, 90, 93], "space": [2, 8, 58, 61, 77, 79, 81], "place": [2, 30, 34, 44, 61, 84, 91], "larg": [2, 33, 61, 77, 78, 80, 81, 87, 90, 93], "deploi": [2, 61, 77, 78, 80, 81], "care": [2, 8, 30, 34, 61, 78, 80, 82], "avail": [2, 4, 5, 10, 12, 27, 34, 61, 80, 82, 84, 86, 89], "cannot": [2, 4, 10, 12, 44, 88, 93], "anymor": 2, "classmethod": [2, 16, 17, 19, 20, 21, 22, 23, 25, 26, 34, 40, 61], "__init_subclass__": [2, 34, 61], "set_": [2, 34, 61], "_request": [2, 34, 61], "pep": [2, 34, 61], "487": [2, 34, 61], "look": [2, 4, 5, 14, 30, 34, 44, 61, 66, 74, 75, 77, 78, 80, 82, 84, 85, 86, 87, 90, 91, 93], "inform": [2, 4, 5, 8, 11, 14, 27, 30, 34, 44, 49, 50, 54, 57, 61, 66, 69, 70, 71, 73, 74, 77, 78, 82, 84, 87, 90, 93], "__metadata_request__": [2, 34, 61], "infer": [2, 34, 44, 61, 66, 70, 81, 84, 85, 89, 91, 92], "signatur": [2, 30, 34, 61], "accept": [2, 30, 34, 59, 61, 74, 75], "metadata": [2, 34, 61, 77, 78, 81, 93], "through": [2, 4, 5, 34, 61, 73, 75, 78, 79, 80, 84, 87, 89, 92], "develop": [2, 7, 34, 61, 80, 82, 93], "request": [2, 34, 61, 75, 78, 79, 85, 91, 92, 93], "those": [2, 3, 8, 33, 34, 35, 48, 49, 51, 57, 61, 65, 69, 70, 71, 73, 80, 81, 86, 90], "http": [2, 4, 5, 7, 8, 9, 28, 30, 31, 33, 34, 37, 44, 58, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "www": [2, 34, 61, 87], "org": [2, 30, 31, 34, 44, 58, 61, 80, 82, 93], "dev": [2, 34, 61], "0487": [2, 34, 61], "get_metadata_rout": [2, 34, 61], "rout": [2, 34, 61], "pleas": [2, 30, 34, 48, 61, 71, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 87, 89, 92, 93], "guid": [2, 5, 34, 61, 72, 81], "mechan": [2, 30, 34, 61], "metadatarequest": [2, 34, 61], "encapsul": [2, 14, 34, 56, 61], "get_param": [2, 34, 48, 61], "subobject": [2, 34, 61], "param": [2, 8, 30, 34, 48, 58, 61, 80], "name": [2, 4, 5, 8, 10, 11, 29, 30, 34, 39, 40, 44, 48, 49, 50, 57, 61, 66, 70, 73, 75, 78, 79, 80, 81, 82, 85, 90, 92, 93], "set_fit_request": [2, 34, 61], "union": [2, 3, 4, 10, 33, 34, 40, 44, 45, 51, 57, 61, 65, 69, 80], "str": [2, 3, 4, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 33, 34, 35, 38, 40, 43, 44, 48, 49, 50, 54, 56, 57, 59, 61, 66, 70, 73, 74, 80, 84, 85, 93], "unchang": [2, 30, 34, 61, 93], "relev": [2, 14, 21, 34, 61, 81], "enable_metadata_rout": [2, 34, 61], "set_config": [2, 34, 61], "meta": [2, 34, 61], "rais": [2, 4, 10, 11, 30, 34, 37, 40, 61, 80], "alia": [2, 30, 34, 61], "metadata_rout": [2, 34, 61], "retain": [2, 34, 44, 61], "chang": [2, 30, 33, 34, 37, 61, 69, 73, 74, 78, 80, 86, 87, 92, 93], "version": [2, 4, 5, 7, 8, 9, 13, 18, 24, 28, 30, 32, 34, 36, 37, 44, 47, 48, 59, 61, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92, 93], "sub": [2, 34, 56, 61], "pipelin": [2, 34, 61], "otherwis": [2, 8, 29, 30, 33, 34, 35, 41, 43, 44, 51, 58, 61, 63, 65, 66, 70, 78, 80, 92], "updat": [2, 11, 30, 33, 34, 61, 72, 74, 81], "set_param": [2, 34, 48, 61], "simpl": [2, 30, 34, 35, 49, 59, 61, 74, 75, 77, 78, 81, 84, 87, 89, 91, 92], "well": [2, 3, 8, 30, 34, 37, 38, 49, 51, 57, 59, 61, 66, 69, 70, 72, 74, 75, 77, 78, 80, 81, 82, 84, 86, 87], "nest": [2, 30, 34, 61, 67, 69, 70, 93], "latter": [2, 30, 34, 61, 87], "compon": [2, 34, 61], "__": [2, 34, 61], "set_score_request": [2, 61], "structur": [3, 58, 77, 91], "unobserv": 3, "less": [3, 4, 8, 26, 33, 40, 49, 58, 59, 63, 65, 69, 75, 77, 79, 80, 81, 82, 86, 93], "channel": [3, 73, 82], "character": 3, "flip": 3, "nm": 3, "invers": [3, 8, 29, 38, 44, 50, 75, 79, 92], "inv": 3, "confident_joint": [3, 19, 29, 35, 44, 50, 51, 72, 80, 82], "un": 3, "under": [3, 8, 30, 34, 50, 57, 58, 75, 77, 78, 81, 82, 87], "joint": [3, 29, 35, 38, 44, 50, 51, 79], "num_label_issu": [3, 33, 35, 51, 66, 70, 72], "estimation_method": [3, 33], "off_diagon": 3, "multi_label": [3, 29, 35, 44, 45, 51, 85], "don": [3, 71, 75, 77, 78, 81, 82, 86], "statis": 3, "compute_confident_joint": [3, 29, 35, 44, 51, 82], "off": [3, 35, 44, 56, 81, 82, 86, 87], "j": [3, 4, 29, 30, 34, 35, 51, 54, 57, 58, 67, 69, 70, 74, 75, 82, 90, 93], "confident_learn": [3, 35, 51, 82], "off_diagonal_calibr": 3, "calibr": [3, 35, 44, 49, 84], "cj": [3, 38, 44], "axi": [3, 26, 38, 40, 63, 66, 73, 74, 75, 80, 81, 82, 84, 85, 87, 89, 90], "bincount": [3, 74, 75, 82, 84, 85], "alwai": [3, 8, 30, 34, 44, 73, 82, 89, 91, 92], "estimate_issu": 3, "over": [3, 8, 30, 33, 34, 56, 57, 63, 65, 75, 77, 79, 80, 81, 82, 87, 89, 91], "As": [3, 5, 71, 74, 75, 78, 82, 89, 93], "add": [3, 4, 5, 11, 30, 34, 48, 57, 73, 74, 75, 78, 80, 81, 82, 85, 92], "approach": [3, 29, 33, 35, 77, 82, 85, 87, 89, 91], "custom": [3, 5, 8, 9, 25, 30, 33, 34, 40, 43, 59, 75, 78, 82, 92], "know": [3, 74, 75, 77, 78, 80, 81, 82, 84], "cut": [3, 56, 71, 82], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 87, 93], "underestim": 3, "few": [3, 57, 71, 75, 80, 84, 85, 86, 87, 93], "4": [3, 4, 16, 17, 19, 20, 21, 23, 25, 26, 39, 40, 43, 53, 54, 56, 57, 59, 62, 69, 79, 80, 85, 90, 93], "detail": [3, 4, 12, 14, 29, 30, 34, 40, 44, 48, 49, 50, 51, 53, 54, 56, 57, 58, 65, 66, 67, 71, 72, 73, 85, 87, 93], "num_issu": [3, 5, 33, 73, 74, 75, 77, 78, 81, 82], "calibrate_confident_joint": 3, "up": [3, 8, 15, 21, 22, 25, 35, 40, 49, 79, 80, 86, 89, 92, 93], "p_": [3, 29, 35], "pair": [3, 4, 8, 29, 35, 82], "v": [3, 8, 33, 50, 51, 53, 59, 74, 75, 85, 87, 88], "rest": [3, 4, 5, 7, 8, 9, 28, 50, 51, 53, 61, 74, 75, 77, 78, 80, 81, 82, 84, 89, 91, 92], "fashion": [3, 4, 63, 91], "2x2": 3, "incorrectli": [3, 29, 50, 51, 54, 77, 93], "calibrated_cj": 3, "c": [3, 8, 43, 51, 59, 71, 73, 74, 75, 77, 78, 80, 82, 85, 87, 88, 89, 91], "whose": [3, 4, 8, 23, 30, 34, 38, 43, 49, 53, 56, 62, 65, 69, 70, 73, 74, 75, 77, 78, 80, 81, 82, 85, 86, 87, 90, 93], "truli": [3, 87, 90], "estimate_joint": [3, 29, 82], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 51, 57, 82, 86, 88, 90, 93], "return_indices_of_off_diagon": 3, "frequenc": [3, 21, 49, 50, 57, 66, 87], "done": [3, 8, 61, 74, 80, 82, 85, 87, 88], "overfit": [3, 8, 54, 57, 73, 74, 75, 77, 78, 81, 88, 91], "classifict": 3, "singl": [3, 4, 21, 29, 30, 34, 40, 41, 44, 49, 50, 56, 57, 58, 59, 69, 73, 74, 80, 82, 85, 86, 91], "baselin": [3, 30, 35, 87, 89, 92], "proxi": 3, "tupl": [3, 26, 30, 34, 38, 39, 41, 43, 44, 49, 51, 57, 65, 67, 69, 70, 73, 93], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 33, 38, 49, 63, 65, 71, 80, 81, 90, 92], "practic": [3, 75, 81, 82, 87, 89, 91, 92], "complet": [3, 73, 74, 75, 77, 78, 80, 81, 82, 86], "gist": 3, "cj_ish": 3, "guess": [3, 38, 82, 84], "8": [3, 4, 5, 6, 39, 40, 41, 43, 53, 67, 69, 73, 74, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "parallel": [3, 35, 57, 67, 79], "again": [3, 48, 80, 87, 91], "simplifi": [3, 12], "understand": [3, 7, 29, 50, 57, 75, 82, 89, 90, 93], "100": [3, 30, 34, 59, 74, 75, 77, 79, 80, 81, 82, 85, 90, 91, 92, 93], "optim": [3, 30, 31, 34, 48, 81, 84], "speed": [3, 35, 79, 80, 89, 92], "dtype": [3, 20, 21, 26, 30, 34, 43, 44, 53, 69, 73, 86], "enumer": [3, 30, 34, 73, 74, 75, 81, 93], "s_label": 3, "confident_bin": 3, "6": [3, 4, 34, 40, 44, 69, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "num_confident_bin": 3, "argmax": [3, 35, 59, 63, 66, 73, 80, 82, 87, 90], "elif": 3, "estimate_lat": 3, "py_method": [3, 38], "cnt": [3, 38], "1d": [3, 4, 14, 33, 35, 40, 41, 44, 45, 53, 62, 73, 91], "eqn": [3, 38], "margin": [3, 35, 38, 40, 59], "marginal_p": [3, 38], "shorthand": [3, 11], "proport": [3, 8, 29, 50, 82, 88], "poorli": [3, 38, 91], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 82], "variabl": [3, 5, 12, 22, 44, 61, 62, 73, 74, 77, 82, 85, 89], "exact": [3, 38, 74, 75, 77, 81, 91], "within": [3, 4, 8, 13, 30, 31, 34, 36, 51, 56, 65, 67, 69, 74, 75, 80, 81, 86, 90], "percent": 3, "often": [3, 29, 38, 50, 80, 82, 88, 90], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 8, 44, 45, 57, 73, 74, 77, 78, 80, 81, 86, 87, 92], "wai": [3, 4, 48, 71, 72, 73, 74, 75, 77, 78, 80, 82, 84, 85, 86, 88, 91, 92], "pro": 3, "con": 3, "pred_proba": [3, 88], "combin": [3, 29, 74, 79, 80, 81, 82, 88, 89], "becaus": [3, 38, 44, 56, 78, 80, 82, 84, 86], "littl": [3, 33, 79, 86, 93], "uniform": [3, 59, 79, 80, 82], "20": [3, 5, 70, 73, 75, 78, 79, 80, 81, 82, 90, 93], "Such": [3, 81, 87], "bound": [3, 20, 30, 34, 54, 56, 57, 86], "reason": [3, 19, 30, 34], "comment": [3, 43, 93], "end": [3, 4, 30, 34, 57, 81, 90, 93], "file": [3, 4, 10, 32, 33, 47, 57, 73, 74, 77, 78, 79, 80, 86, 87, 90, 91, 93], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 82], "handl": [3, 4, 5, 8, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 33, 34, 72, 74, 75, 77, 78, 81, 82, 90, 91, 93], "five": [3, 54, 57, 82, 86], "estimate_cv_predicted_prob": [3, 82], "estimate_noise_matric": 3, "get_confident_threshold": [3, 33], "amongst": [3, 8], "confident_threshold": [3, 8, 19, 33, 58], "unifi": 4, "audit": [4, 7, 10, 11, 14, 73, 76, 77, 78, 80, 81, 82, 86], "kind": [4, 5, 73, 74, 77, 78, 79, 81, 82], "addit": [4, 5, 7, 8, 9, 11, 27, 28, 30, 34, 40, 45, 49, 57, 67, 73, 74, 77, 78, 81, 82, 84, 87, 88, 91, 92], "depend": [4, 5, 7, 8, 9, 10, 11, 28, 32, 35, 37, 44, 47, 51, 58, 61, 62, 71], "instal": [4, 5, 7, 8, 9, 28, 30, 32, 33, 34, 35, 47, 48, 63, 65], "pip": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "development": [4, 5, 7, 9, 28], "git": [4, 5, 7, 9, 28, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "github": [4, 5, 7, 9, 28, 30, 31, 44, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "com": [4, 5, 7, 9, 28, 30, 31, 33, 37, 44, 58, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "egg": [4, 5, 7, 9, 28, 71, 79], "label_nam": [4, 5, 6, 8, 10, 26, 71, 73, 74, 75, 77, 78, 80, 81, 82], "image_kei": [4, 81], "interfac": [4, 71, 80, 82], "librari": [4, 8, 34, 54, 57, 58, 71, 74, 78, 79, 80, 92], "goal": 4, "track": [4, 11, 12, 71, 74, 79, 80, 82], "intermedi": [4, 7, 75], "statist": [4, 8, 11, 19, 21, 29, 49, 50, 57, 75, 77, 78, 81, 82], "convert": [4, 10, 30, 34, 41, 45, 49, 56, 65, 69, 72, 73, 78, 79, 80, 81, 84, 85, 86, 92], "hug": [4, 10, 81], "face": [4, 10, 14, 79, 81, 85], "kei": [4, 5, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 40, 49, 50, 56, 58, 74, 75, 78, 80, 81, 82, 84, 86], "string": [4, 8, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 34, 44, 49, 50, 62, 66, 69, 70, 77, 78, 80, 84, 85, 92, 93], "dictionari": [4, 5, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 30, 34, 39, 44, 49, 50, 53, 54, 56, 57, 74, 75, 77, 78, 82, 84, 85, 86], "path": [4, 10, 30, 33, 34, 57, 73, 74, 80, 86], "local": [4, 10, 30, 31, 34, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "text": [4, 5, 8, 10, 16, 17, 19, 20, 21, 22, 23, 25, 26, 40, 58, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 83, 84, 87], "txt": [4, 10, 93], "csv": [4, 10, 77, 78, 89, 91, 92], "json": [4, 10], "hub": [4, 10, 87], "regress": [4, 5, 10, 12, 14, 18, 25, 27, 74, 75, 78, 83, 84, 87, 92], "imag": [4, 7, 29, 34, 54, 56, 57, 58, 63, 65, 66, 71, 74, 75, 79, 80, 83, 84, 85, 86, 88, 90], "point": [4, 5, 8, 21, 30, 34, 74, 75, 77, 78, 80, 81, 82, 84], "field": [4, 8, 30, 34], "themselv": [4, 89, 91, 92], "cleanvis": [4, 8], "level": [4, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 43, 67, 69, 75, 81, 83, 90], "load_dataset": [4, 10, 81], "glue": 4, "sst2": 4, "properti": [4, 10, 11], "has_label": [4, 10], "class_nam": [4, 10, 17, 29, 50, 57, 66, 70, 71, 79, 82, 86, 90, 93], "empti": [4, 10, 38, 49, 75, 80, 85], "find_issu": [4, 5, 6, 8, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 71, 73, 74, 75, 77, 78, 80, 81, 82], "knn_graph": [4, 8, 14, 16, 21, 23, 26, 77], "issue_typ": [4, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 23, 25, 26, 73, 74, 75, 77, 78, 80, 81, 82], "sort": [4, 14, 33, 35, 40, 42, 49, 51, 54, 56, 57, 59, 65, 67, 69, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "common": [4, 11, 14, 75, 76, 79, 80, 82, 85, 86, 90], "real": [4, 14, 71, 74, 75, 80, 82, 84, 85, 89, 90], "world": [4, 14, 71, 74, 75, 80, 82, 84, 89, 90], "interact": [4, 14, 78, 80], "embed": [4, 8, 14, 58, 71, 73, 74, 75, 77, 78, 82, 92], "thereof": [4, 14], "insight": [4, 14, 57, 84], "act": [4, 8, 56, 74], "issuefind": [4, 14, 27], "logic": [4, 12, 33, 35, 63, 65, 90], "best": [4, 14, 39, 49, 59, 74, 75, 77, 78, 80, 81, 84, 85, 87, 89, 91, 92, 93], "2d": [4, 14, 33, 40, 41, 43, 44, 49, 73, 85, 91], "num_exampl": [4, 14, 16, 17, 19, 20, 21, 23, 25, 26, 27, 29, 50, 73, 74, 75, 77, 78, 81, 82], "represent": [4, 8, 14, 30, 34, 41, 51, 71, 73, 74, 75, 78, 80, 81, 82, 87, 92], "num_featur": [4, 14, 30, 34, 48], "distanc": [4, 8, 14, 21, 23, 26, 42, 56, 58, 77, 87], "nearest": [4, 8, 14, 20, 21, 23, 42, 58, 75, 78, 87], "neighbor": [4, 8, 14, 20, 21, 23, 42, 58, 74, 75, 77, 78, 80, 81, 87], "graph": [4, 8, 11, 14, 21, 26], "squar": [4, 44, 61, 79, 89], "csr": 4, "evenli": 4, "omit": [4, 56, 57, 81, 86], "itself": [4, 30, 34, 86], "three": [4, 8, 29, 49, 50, 61, 66, 73, 74, 75, 77, 79, 82, 84, 88, 89, 90, 91, 93], "indptr": 4, "wise": 4, "start": [4, 5, 8, 30, 31, 34, 71, 77, 85, 93], "th": [4, 39, 43, 44, 49, 51, 54, 56, 57, 58, 67, 69, 70, 78, 85, 86, 93], "ascend": [4, 29, 42, 50, 81, 82], "segment": [4, 63, 65, 66, 83], "reflect": [4, 77, 78, 84, 86, 87, 89, 91, 92], "maintain": 4, "posit": [4, 30, 34, 44, 57, 79, 87], "nearestneighbor": [4, 8, 58, 77, 87], "kneighbors_graph": [4, 77], "illustr": 4, "todens": 4, "second": [4, 40, 42, 44, 57, 59, 74, 80, 82, 93], "duplic": [4, 7, 18, 19, 30, 34, 71, 74, 82], "explicit": 4, "precend": 4, "construct": [4, 5, 8, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 34, 40, 48], "neither": [4, 8, 12, 86], "nor": [4, 8, 12], "collect": [4, 8, 11, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 49, 80, 84, 93], "unspecifi": [4, 14, 35, 51], "interest": [4, 14, 19, 66, 70, 78, 82, 90, 91, 92, 93], "constructor": [4, 8, 14, 20, 25], "issuemanag": [4, 7, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "respons": [4, 14, 19, 61, 62, 79, 89, 93], "random_st": [4, 73, 74, 75, 81, 82, 85, 87, 91], "lab": [4, 6, 16, 17, 19, 20, 21, 22, 23, 25, 26, 33, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85], "comprehens": [4, 71, 81], "nbr": 4, "n_neighbor": [4, 8, 58], "metric": [4, 8, 16, 21, 26, 44, 48, 57, 58, 73, 77, 78, 81, 82, 89, 91, 92], "euclidean": [4, 8, 56, 58, 77], "mode": [4, 30, 33, 34, 87], "4x4": 4, "float64": [4, 21, 30, 34, 69], "compress": [4, 8, 44, 63, 65], "toarrai": 4, "NOT": [4, 33, 78], "23606798": 4, "41421356": 4, "configur": [4, 14, 40, 75], "suppos": [4, 8, 54, 87, 89, 91, 92], "who": [4, 56, 77, 82, 91, 93], "manag": [4, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "clean_learning_kwarg": [4, 8, 20, 25], "labelissuemanag": [4, 8, 20], "prune_method": [4, 72], "prune_by_noise_r": [4, 35, 51, 82], "report": [4, 5, 9, 13, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 70, 71, 73, 74, 75, 77, 78, 82, 93], "include_descript": [4, 16, 17, 19, 20, 21, 23, 25, 26, 27], "show_summary_scor": [4, 27], "summari": [4, 5, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 48, 50, 55, 64, 65, 67, 68, 69, 72, 73, 74, 75, 77, 78, 79, 81, 82, 86, 90, 93], "show": [4, 21, 30, 34, 39, 44, 57, 66, 70, 75, 77, 78, 79, 80, 81, 82, 84, 87, 89, 90, 91, 93], "top": [4, 29, 33, 35, 44, 51, 54, 57, 59, 66, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 89, 92, 93], "suffer": [4, 8, 11, 19, 51, 59, 70, 93], "onc": [4, 19, 29, 30, 34, 74, 80, 82, 85, 86, 91], "familiar": 4, "usag": [4, 33, 48], "found": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 30, 34, 44, 71, 73, 74, 75, 77, 78, 80, 81, 87, 89, 91, 92, 93], "issue_summari": [4, 8, 11, 74], "overal": [4, 5, 8, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 40, 49, 50, 53, 56, 57, 61, 65, 66, 67, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 86, 93], "sever": [4, 5, 8, 10, 11, 19, 30, 33, 34, 35, 53, 56, 58, 59, 65, 69, 71, 73, 74, 75, 77, 78, 79, 80, 82, 86, 87, 91, 92, 93], "dataissu": [4, 11, 14, 27], "outlier": [4, 7, 12, 18, 19, 26, 36, 59, 71, 74, 75, 82, 83], "someth": [4, 5, 30, 34, 59], "123": [4, 74, 75], "456": [4, 73, 78, 91, 92], "nearest_neighbor": 4, "7": [4, 40, 41, 48, 67, 69, 73, 74, 75, 77, 78, 79, 80, 84, 85, 86, 87, 89, 90, 91, 92, 93], "9": [4, 16, 17, 19, 20, 21, 23, 25, 26, 40, 41, 53, 67, 69, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "distance_to_nearest_neighbor": [4, 74, 75, 77, 78, 81, 82], "789": 4, "get_issu": [4, 8, 11, 73, 75, 77, 78, 80, 81], "issue_nam": [4, 5, 8, 11, 12, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74, 75], "focu": [4, 11, 78, 90, 93], "full": [4, 8, 11, 33, 57, 81, 93], "summar": [4, 11, 16, 17, 19, 20, 21, 22, 23, 25, 26, 29, 50, 66, 70, 71, 90], "valueerror": [4, 10, 11, 37, 40, 80], "specific_issu": [4, 11], "exhibit": [4, 8, 11, 66, 75, 77, 78, 81, 82, 86], "lie": [4, 8, 42, 58, 59, 73, 74, 75, 77, 78, 81, 82, 92], "directli": [4, 12, 14, 27, 33, 48, 49, 75, 78, 85, 86, 89, 92], "compar": [4, 49, 58, 69, 74, 75, 77, 82], "get_issue_summari": [4, 11, 75], "get_info": [4, 11, 75, 78], "yet": [4, 15, 18, 22, 79, 84], "list_possible_issue_typ": [4, 12], "regist": [4, 5, 12, 13, 15, 22, 30, 34, 74], "registri": [4, 12], "list_default_issue_typ": [4, 12], "folder": [4, 73, 74, 81], "load": [4, 10, 33, 57, 79, 80, 81, 82, 86, 87, 90, 93], "futur": [4, 8, 19, 30, 34, 49, 71, 74, 78], "overwrit": [4, 74], "separ": [4, 29, 40, 53, 74, 75, 80, 81, 86, 88], "static": 4, "rememb": [4, 78, 80, 82], "part": [4, 8, 30, 34, 35, 54, 56, 57, 73, 74, 79, 90, 93], "ident": [4, 8, 19, 44, 78], "walk": 5, "alongsid": [5, 30, 34, 74, 80], "pre": [5, 6, 8, 30, 34, 74, 75, 81, 90, 93], "runtim": [5, 30, 33, 34, 61, 63, 65, 73, 80, 81], "issue_manager_factori": [5, 12, 74], "myissuemanag": [5, 12], "myissuemanagerforregress": 5, "decor": [5, 12], "ll": [5, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "thing": [5, 34, 82, 89, 92], "next": [5, 49, 71, 73, 77, 78, 80, 84, 86, 89, 91, 92, 93], "dummi": 5, "randint": [5, 26, 40, 74, 75, 80], "mark": [5, 8, 72, 86, 87, 89], "regard": [5, 75, 82], "rand": [5, 40, 74, 75], "is_": [5, 8, 74], "_issu": [5, 8, 74], "issue_score_kei": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "whole": [5, 21, 30, 34, 75], "make_summari": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26, 74], "popul": [5, 75, 78], "verbosity_level": [5, 16, 17, 19, 20, 21, 22, 23, 25, 26], "std": 5, "raw_scor": 5, "bit": 5, "involv": [5, 33, 66, 70, 80, 85], "intermediate_arg": 5, "min": [5, 40, 56, 69, 74, 80, 87], "sin_filt": 5, "sin": 5, "arang": 5, "kernel": 5, "wip": 5, "progress": 5, "issue_manag": [5, 8, 9, 11, 13, 16, 17, 20, 21, 22, 23, 25, 26, 74], "instanti": [5, 14, 33, 48, 58, 73, 75, 77, 92], "477762": 5, "286455": 5, "term": [5, 8, 38, 44, 57, 73, 74, 75, 77, 78, 81, 82], "4778": 5, "is_basic_issu": 5, "basic_scor": 5, "13": [5, 16, 23, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "003042": 5, "058117": 5, "11": [5, 48, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "121908": 5, "15": [5, 42, 61, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "169312": 5, "17": [5, 73, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "229044": 5, "2865": 5, "is_intermediate_issu": 5, "intermediate_scor": 5, "000000": [5, 74, 75, 79, 82], "007059": 5, "009967": 5, "010995": 5, "087332": 5, "016296": 5, "03947": 5, "019459": 5, "794251": 5, "underperform": [6, 7, 26], "group": [6, 7, 21, 26, 79, 86, 93], "dbscan": [6, 8, 26, 80], "hdbscan": [6, 80], "etc": [6, 8, 19, 30, 34, 38, 48, 49, 67, 71, 74, 75, 77, 78, 80, 81, 82], "sensit": [6, 8], "ep": [6, 26, 57], "radiu": 6, "min_sampl": [6, 26], "datalab": [6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 71, 73, 80, 81, 84, 91, 92], "kmean": [6, 80], "your_data": 6, "get_pred_prob": 6, "n_cluster": [6, 26, 80], "cluster_id": [6, 8, 26, 80], "labels_": 6, "underperforming_group": [6, 8, 18, 80], "search": [7, 8, 17, 21, 22, 43, 61, 80, 88], "nondefault": 7, "Near": [7, 80], "iid": [7, 21, 75, 77, 81, 82], "imbal": [7, 18, 53, 58, 59, 75], "null": [7, 18, 75, 78, 81, 82], "togeth": [7, 8, 38, 74, 75, 77, 78, 81, 82, 89, 92, 93], "built": [7, 40], "own": [7, 30, 32, 34, 47, 53, 54, 57, 63, 67, 73, 75, 77, 78, 80, 81, 84, 85, 89, 90, 91, 92, 93], "prerequisit": 7, "basic": [7, 34, 48, 77, 78, 87], "page": [8, 75, 80, 82], "variou": [8, 11, 25, 32, 45, 47, 71, 74, 75, 77, 78, 79, 82, 84, 86, 91], "sai": [8, 30, 34, 85, 90], "why": [8, 78], "matter": [8, 29, 50], "_score": 8, "flag": [8, 19, 21, 35, 40, 50, 51, 54, 61, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 89, 90, 92], "badli": [8, 56, 93], "code": [8, 30, 34, 38, 44, 48, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "issue_scor": 8, "outlier_scor": [8, 23, 74, 75, 77, 78, 81, 82, 87], "atyp": [8, 58, 74, 75, 77, 78, 81, 82, 87], "datapoint": [8, 26, 35, 40, 44, 59, 62, 71, 73, 74, 75, 77, 78, 80, 88, 89, 91, 92], "is_issu": [8, 19], "is_outlier_issu": [8, 74, 75, 77, 78, 81, 82], "annot": [8, 29, 39, 49, 50, 51, 53, 54, 56, 57, 66, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 86, 90], "transform": [8, 40, 42, 44, 58, 59, 75, 78, 81, 87, 91, 92, 93], "dissimilar": [8, 77, 78], "preced": 8, "cosin": [8, 58, 87], "incorrect": [8, 56, 59, 62, 73, 74, 75, 77, 78, 81, 82, 86, 89, 91], "due": [8, 33, 35, 59, 63, 65, 73, 74, 75, 77, 78, 81, 82], "appear": [8, 29, 39, 50, 51, 54, 62, 75, 77, 78, 81, 89, 90], "likelihood": [8, 33, 35, 51, 56, 58, 59, 63, 67], "now": [8, 33, 72, 73, 75, 84, 86, 87, 89, 91, 92, 93], "u": [8, 73, 74, 77, 80, 81, 82, 84, 85, 88, 89, 90, 91, 92, 93], "token": [8, 43, 65, 66, 67, 68, 69, 70, 80, 82, 83], "calcul": [8, 21, 33, 40, 49, 53, 54, 56, 57, 58, 61, 65, 79, 81], "hamper": [8, 79, 81], "analyt": [8, 71, 80, 84], "lead": [8, 56, 59, 81, 86], "draw": [8, 74, 75], "conclus": [8, 78], "try": [8, 33, 35, 48, 49, 63, 65, 71, 75, 77, 78, 80, 81, 82, 90], "veri": [8, 29, 50, 54, 56, 74, 75, 77, 78, 80, 81, 82, 84, 87, 89, 92], "rare": [8, 35, 57, 74, 75, 77, 78, 80, 81, 82], "anomal": [8, 59, 74, 75, 77, 78, 81, 82], "articl": [8, 33, 80], "ai": [8, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 87, 89, 91, 92, 93], "blog": 8, "unexpect": [8, 30, 34, 78], "consequ": 8, "inspect": [8, 73, 75, 81, 82, 86, 89, 92], "neg": [8, 56, 57, 74, 75, 79], "affect": [8, 30, 34, 63, 69, 78, 80], "extrem": [8, 74, 75, 77, 78, 80, 81, 82], "rel": [8, 29, 49, 50, 58, 74, 75, 77, 78, 81, 82, 87], "record": [8, 30, 34, 73, 77, 89], "abbrevi": 8, "misspel": 8, "typo": [8, 70], "resolut": 8, "video": [8, 79], "audio": [8, 74, 75, 80, 83], "minor": [8, 43], "variat": 8, "translat": 8, "d": [8, 42, 77, 78, 82, 85, 91, 93], "constant": [8, 26, 61], "median": [8, 25], "question": [8, 19, 71, 82], "nearli": [8, 19, 75, 77, 78, 81], "awar": [8, 72, 82], "presenc": [8, 82], "signific": [8, 75, 77, 78, 81, 82], "violat": [8, 75, 77, 78, 81, 82], "assumpt": [8, 75, 77, 78, 81, 82], "changepoint": [8, 75, 77, 78, 81, 82], "shift": [8, 75, 77, 78, 81, 82], "drift": [8, 75, 77, 81, 82], "autocorrel": [8, 75, 77, 78, 81, 82], "almost": [8, 75, 77, 78, 81, 82], "adjac": [8, 75, 77, 78, 81, 82], "tend": [8, 29, 38, 75, 77, 78, 81, 82, 90, 93], "sequenti": [8, 30, 34, 48, 81], "gap": 8, "b": [8, 16, 17, 19, 20, 21, 23, 25, 26, 29, 43, 44, 69, 77, 78, 79, 82, 88, 91, 93], "x1": [8, 54, 57, 86], "x2": [8, 54, 57, 86], "10th": 8, "100th": 8, "90": [8, 69, 77, 82, 88, 90, 91], "similarli": [8, 30, 34, 74, 77, 80, 81, 86], "math": [8, 81], "behind": [8, 58, 82], "fundament": 8, "proper": [8, 44, 49, 54, 57, 78, 81, 84, 86, 91], "closer": [8, 56, 86], "scenario": [8, 59, 74, 75], "underli": [8, 58, 67, 69, 93], "stem": [8, 58, 87], "evolv": 8, "influenc": 8, "accordingli": 8, "emploi": [8, 85, 87], "partit": [8, 88], "ahead": 8, "good": [8, 30, 34, 48, 50, 56, 59, 63, 65, 66, 71, 77, 78, 81], "fix": [8, 49, 78, 82, 89, 92], "problem": [8, 33, 40, 66, 71, 74, 75, 78, 80, 81], "deploy": [8, 82, 89, 91, 92], "overlook": [8, 56, 86], "fact": 8, "thu": [8, 29, 34, 50, 73, 77, 78, 82, 88, 91, 93], "diagnos": [8, 75, 80], "rarest": [8, 75, 77, 78, 81, 82], "q": [8, 86], "fall": [8, 56, 65, 69, 82, 87], "subpar": 8, "special": [8, 43], "techniqu": 8, "smote": 8, "asymmetr": [8, 29], "properli": [8, 33, 39, 44, 45, 63, 80, 85, 87, 89, 90], "too": [8, 35, 40, 58, 75, 80, 81, 86], "dark": [8, 90], "bright": [8, 93], "blurri": [8, 81], "abnorm": [8, 57, 81], "cluster": [8, 26], "slice": [8, 42], "poor": 8, "subpopul": 8, "lowest": [8, 49, 57, 75, 80, 81, 84, 85, 86, 90], "get_self_confidence_for_each_label": [8, 40, 59], "power": [8, 77, 78, 79, 81, 82, 93], "r": [8, 33, 61, 74, 75, 89, 90], "tabular": [8, 71, 74, 75, 76, 80, 83, 84], "categor": [8, 58, 74, 75, 76, 80, 89, 91], "encod": [8, 41, 57, 63, 66, 77, 78, 80, 89, 90, 91, 92], "miss": [8, 22, 30, 34, 44, 54, 56, 75, 77, 78, 80, 81, 82, 86, 89], "pattern": 8, "exert": [8, 75], "possible_issue_typ": 8, "label_kwarg": 8, "outlier_kwarg": 8, "near_dupl": [8, 12, 16, 74, 75, 77, 78, 80, 81, 82], "near_duplicate_kwarg": 8, "non_iid": [8, 12, 21, 75, 77, 78, 81, 82], "non_iid_kwarg": 8, "class_imbal": [8, 17, 75, 77, 78, 81, 82], "class_imbalance_kwarg": 8, "underperforming_group_kwarg": 8, "null_kwarg": 8, "health_summary_paramet": [8, 20, 25], "health_summari": [8, 20, 29, 71, 79], "health_summary_kwarg": 8, "tandem": [8, 79], "view": [8, 30, 34, 35, 65, 67, 69, 71, 73, 74, 75, 77, 78, 79, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93], "ood_kwarg": 8, "outofdistribut": [8, 23, 58, 87], "outsid": 8, "knn": [8, 11, 21, 26, 58, 77, 87], "outlierissuemanag": [8, 12, 23, 74], "nearduplicateissuemanag": [8, 12, 16], "noniidissuemanag": [8, 12, 21], "num_permut": [8, 21], "permut": [8, 21], "significance_threshold": [8, 21], "signic": 8, "noniid": [8, 18], "classimbalanceissuemanag": [8, 17], "underperforminggroupissuemanag": [8, 26], "determinin": 8, "neighbour": 8, "min_cluster_sampl": [8, 26], "filter_cluster_id": [8, 26], "clustering_kwarg": [8, 26], "faq": [8, 71, 75, 77, 78, 81, 83], "nullissuemanag": [8, 22], "codeblock": 8, "demonstr": [8, 33, 74, 75, 78, 80, 81, 82, 84, 85, 86, 89, 90], "howev": [8, 30, 34, 44, 73, 77, 78, 81, 84, 88, 90, 91, 92], "mandatori": 8, "image_issue_types_kwarg": 8, "32": [8, 74, 79, 81, 84, 86, 90], "fewer": [8, 35, 44, 86], "vice": [8, 50], "versa": [8, 50], "light": [8, 79, 81, 86, 90], "29": [8, 79, 81, 84, 85, 86, 90, 93], "low_inform": [8, 81], "odd_aspect_ratio": [8, 81], "35": [8, 74, 79, 84, 85, 86, 90], "odd_siz": [8, 81], "10": [8, 16, 20, 21, 26, 30, 31, 57, 58, 59, 70, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93], "doc": [8, 30, 34, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "data_issu": [9, 13, 14, 27, 74], "issue_find": [9, 13], "factori": [9, 13, 14], "except": [10, 48, 59, 74, 75, 81, 84], "dataformaterror": 10, "with_traceback": 10, "tb": 10, "__traceback__": 10, "datasetdicterror": 10, "datasetdict": 10, "usual": [10, 27, 81, 84, 89], "datasetloaderror": 10, "dataset_typ": 10, "fail": 10, "map_to_int": 10, "hold": 10, "is_avail": [10, 81], "serv": [11, 14, 84], "central": [11, 93], "repositori": 11, "strategi": [11, 40, 80], "being": [11, 29, 30, 34, 35, 40, 43, 44, 59, 77, 80, 82, 89, 90, 91], "_infostrategi": 11, "basi": 11, "collect_statist": 11, "reus": [11, 19], "avoid": [11, 30, 33, 34, 35, 42, 44, 51, 54, 57, 61, 63, 65, 74, 75, 80], "recomput": [11, 92], "weighted_knn_graph": 11, "issue_manager_that_computes_knn_graph": 11, "collect_issues_from_issue_manag": 11, "collect_issues_from_imagelab": 11, "imagelab": 11, "set_health_scor": 11, "health": [11, 20, 29, 50, 71], "get_data_statist": 11, "concret": 12, "subclass": [12, 30, 34, 58, 74], "my_issu": 12, "stabl": [13, 18, 24, 32, 36, 44, 47, 58, 72], "unregist": 13, "instati": 14, "public": [14, 82, 86, 90, 93], "creation": [14, 34], "execut": [14, 30, 34, 74, 80, 86], "coordin": [14, 54, 56, 57, 86, 93], "behavior": [14, 29, 30, 34, 57], "At": [14, 57, 80], "associ": [14, 30, 34, 57, 84], "get_available_issue_typ": 14, "isn": [15, 22], "direct": [15, 22, 30, 34], "_": [16, 19, 20, 21, 22, 25, 26, 40, 43, 44, 73, 74, 79, 81, 82, 85, 91], "classvar": [16, 17, 19, 20, 21, 22, 23, 25, 26], "short": [16, 17, 19, 20, 21, 22, 23, 25, 26, 43, 44], "item": [16, 17, 19, 20, 21, 22, 23, 25, 26, 44, 74, 75, 80, 81, 82, 84, 85], "some_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "additional_info_kei": [16, 17, 19, 20, 21, 22, 23, 25, 26], "near_duplicate_set": [16, 74, 75, 77, 78, 80, 81, 82], "occurr": [16, 17, 19, 21, 22, 23, 26, 43], "collect_info": [16, 17, 19, 20, 21, 22, 23, 25, 26], "median_nn_dist": 16, "near_duplicate_scor": [16, 74, 75, 77, 78, 80, 81, 82], "info_to_omit": [16, 17, 19, 20, 21, 23, 25, 26], "compos": [16, 17, 19, 20, 21, 23, 25, 26, 30, 34, 78, 87, 92], "is_x_issu": [16, 17, 19, 20, 21, 23, 25, 26], "x_score": [16, 17, 19, 20, 21, 23, 25, 26], "val_a": [16, 17, 19, 20, 21, 23, 25, 26], "val_b1": [16, 17, 19, 20, 21, 23, 25, 26], "val_b2": [16, 17, 19, 20, 21, 23, 25, 26], "report_str": [16, 17, 19, 20, 21, 22, 23, 25, 26, 27], "class_imbalance_scor": [17, 75, 77, 78, 81, 82], "bleed": [18, 24, 32], "edg": [18, 24, 32, 56, 71, 82, 93], "sharp": [18, 24, 32], "abc": 19, "believ": [19, 90], "priori": [19, 82], "global": 19, "anoth": [19, 29, 33, 43, 56, 59, 77, 78, 80, 82, 84, 87, 92], "abstract": 19, "applic": [20, 49, 80, 82, 84, 85, 93], "typevar": [20, 30, 34, 56, 57], "_scalartype_co": 20, "covari": [20, 61, 89], "get_health_summari": 20, "summary_dict": 20, "label_scor": [20, 25, 73, 74, 75, 77, 78, 81, 82], "simplified_kolmogorov_smirnov_test": 21, "neighbor_histogram": 21, "non_neighbor_histogram": 21, "kolmogorov": 21, "smirnov": 21, "largest": [21, 33, 40, 59, 63, 65, 90], "empir": [21, 39, 49], "cumul": 21, "ecdf": 21, "histogram": [21, 77, 89], "absolut": [21, 25], "25": [21, 30, 40, 42, 75, 79, 81, 82, 84, 85, 86, 90, 93], "dimension": [21, 44, 73, 82, 87], "trial": 21, "non_iid_scor": [21, 75, 77, 78, 81, 82], "null_track": 22, "extend": [22, 41, 81, 87, 93], "superclass": 22, "arbitrari": [22, 29, 65, 69, 74, 87, 89], "prompt": 22, "address": [22, 74, 75, 78, 80, 92], "enabl": [22, 34], "null_scor": [22, 75, 78, 81, 82], "default_threshold": 23, "37037": 23, "q3_avg_dist": 23, "iqr_avg_dist": 23, "median_outlier_scor": 23, "ood": [23, 58, 59, 74, 75, 78, 81, 82, 87], "regressionlabelissuemanag": 25, "multipli": 25, "find_issues_with_predict": 25, "find_issues_with_featur": 25, "deleg": 25, "confus": [26, 29, 30, 34, 35, 44, 57, 92, 93], "50": [26, 34, 80, 81, 82, 84, 86, 87, 90], "keepdim": [26, 80], "outlier_cluster_label": 26, "no_underperforming_cluster_id": 26, "signifi": 26, "absenc": 26, "set_knn_graph": 26, "find_issues_kwarg": 26, "perform_clust": 26, "npt": 26, "int_": 26, "id": [26, 49, 74, 80, 81, 84], "int64": [26, 73, 84], "unique_cluster_id": 26, "get_worst_clust": 26, "_description_": 26, "performed_clust": 26, "worst_cluster_id": 26, "underperforming_group_scor": 26, "exclud": [27, 66, 70, 74, 93], "get_report": 27, "overview": [29, 73, 75, 77, 78, 81, 84, 86, 87, 89, 91, 92, 93], "modifi": [29, 30, 33, 34, 44, 80, 82], "help": [29, 30, 34, 57, 71, 72, 73, 74, 77, 78, 79, 80, 81, 84, 85, 89, 90, 91, 92, 93], "rank_classes_by_label_qu": [29, 75], "merg": [29, 43, 71, 79, 80, 93], "find_overlapping_class": [29, 80, 82], "problemat": [29, 50, 66, 70, 73, 86, 93], "unnorm": [29, 50, 82], "abov": [29, 30, 33, 34, 44, 49, 56, 57, 59, 65, 69, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 91, 92, 93], "model_select": [29, 40, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 89, 91, 92], "cross_val_predict": [29, 34, 73, 74, 75, 77, 78, 80, 82, 84, 88, 89, 91, 92], "get_data_labels_from_dataset": 29, "yourfavoritemodel": [29, 82], "cv": [29, 40, 73, 74, 75, 77, 82, 84, 91], "df": [29, 44, 70, 73, 80], "overall_label_qu": [29, 50], "col": 29, "prob": [29, 43, 82, 88], "divid": [29, 50, 59], "label_nois": [29, 50], "human": [29, 79, 90, 93], "clearli": [29, 59, 81, 86, 90], "num": [29, 50, 79, 82], "overlap": [29, 71, 79, 80, 82], "ontolog": 29, "publish": [29, 93], "therefor": [29, 59], "vehicl": [29, 79], "truck": [29, 79, 87, 90], "intuit": [29, 50], "car": [29, 79, 86, 90], "frequent": [29, 49, 77, 80, 89], "characterist": 29, "l": [29, 30, 34, 54, 56, 57], "class1": 29, "class2": 29, "relationship": 29, "match": [29, 30, 34, 35, 49, 50, 59, 74, 75, 79, 81, 86, 88, 90], "dog": [29, 44, 50, 52, 66, 79, 80, 87, 88, 93], "cat": [29, 44, 50, 52, 79, 80, 87, 88], "captur": [29, 73, 86, 87, 90], "co": [29, 30, 31], "noisy_label": [29, 74, 75, 85], "overlapping_class": 29, "descend": [29, 30, 34, 40, 50, 57], "overall_label_health_scor": [29, 50, 82], "suggest": [29, 49, 50, 56, 78, 80, 81, 89, 92], "half": [29, 30, 34, 50, 79, 93], "health_scor": [29, 50], "classes_by_label_qu": [29, 75], "cnn": [30, 34, 81], "cifar": [30, 31, 79, 87], "teach": [30, 31], "bhanml": 30, "blob": 30, "master": [30, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "call_bn": 30, "bn": 30, "input_channel": 30, "n_output": 30, "dropout_r": 30, "top_bn": 30, "architectur": [30, 34], "shown": [30, 57, 74, 80, 84, 87, 88, 90, 93], "forward": [30, 31, 34, 81, 84], "overridden": [30, 34], "although": [30, 34, 58, 77, 91], "recip": [30, 34], "afterward": [30, 34], "sinc": [30, 34, 37, 45, 50, 57, 65, 69, 80, 84, 85, 86, 88, 93], "former": [30, 34], "hook": [30, 34, 79], "silent": [30, 33, 34], "t_destin": [30, 34], "__call__": [30, 34, 40], "add_modul": [30, 34], "child": [30, 34], "fn": [30, 34, 57], "recurs": [30, 34, 40], "submodul": [30, 34], "children": [30, 34, 93], "nn": [30, 31, 34, 81], "init": [30, 34, 82], "no_grad": [30, 34, 81, 87], "init_weight": [30, 34], "linear": [30, 34, 78, 81, 92], "fill_": [30, 34], "net": [30, 34, 73, 79, 81], "in_featur": [30, 34], "out_featur": [30, 34], "bia": [30, 34, 81], "tensor": [30, 31, 34, 73, 81, 87], "requires_grad": [30, 34], "bfloat16": [30, 34], "cast": [30, 34, 73], "buffer": [30, 34], "datatyp": [30, 34], "member": [30, 34, 74, 75], "xdoctest": [30, 34], "undefin": [30, 34], "var": [30, 34], "buf": [30, 34], "20l": [30, 34], "1l": [30, 34], "5l": [30, 34], "immedi": [30, 34, 87], "cpu": [30, 34, 35, 73, 81], "move": [30, 34, 40, 72, 79], "cuda": [30, 34, 73, 81], "devic": [30, 34, 73, 81], "gpu": [30, 34, 73, 78, 92], "live": [30, 34], "copi": [30, 34, 61, 73, 74, 75, 77, 80, 85, 88, 89, 91], "doubl": [30, 34], "dump_patch": [30, 34], "eval": [30, 34, 81, 85, 87], "dropout": [30, 34], "batchnorm": [30, 34], "grad": [30, 34], "extra_repr": [30, 34], "line": [30, 34, 71, 74, 79, 84, 87, 93], "get_buff": [30, 34], "target": [30, 31, 34, 61, 62, 87, 89], "throw": [30, 34], "get_submodul": [30, 34], "explan": [30, 34], "fulli": [30, 34, 48, 80], "qualifi": [30, 34], "referenc": [30, 34], "attributeerror": [30, 34], "invalid": [30, 34, 78], "resolv": [30, 34, 93], "get_extra_st": [30, 34], "state_dict": [30, 34], "set_extra_st": [30, 34], "build": [30, 34, 81, 90], "pickleabl": [30, 34], "serial": [30, 34], "backward": [30, 34, 81], "break": [30, 34, 81], "pickl": [30, 34, 86], "get_paramet": [30, 34], "let": [30, 34, 58, 59, 73, 75, 77, 78, 80, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "net_b": [30, 34], "net_c": [30, 34], "conv": [30, 34], "conv2d": [30, 34, 81], "16": [30, 34, 40, 65, 73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 92, 93], "33": [30, 34, 79, 81, 86, 90], "kernel_s": [30, 34], "stride": [30, 34], "200": [30, 34, 59, 79, 86, 93], "diagram": [30, 34, 88], "degre": [30, 34, 89], "queri": [30, 34, 75, 80, 81], "named_modul": [30, 34], "o": [30, 34, 42, 43, 73, 74, 75, 79, 80, 82, 85, 86, 93], "transit": [30, 34], "ipu": [30, 34], "load_state_dict": [30, 34], "strict": [30, 34, 40], "persist": [30, 34], "strictli": [30, 34], "namedtupl": [30, 34], "missing_kei": [30, 34], "unexpected_kei": [30, 34], "runtimeerror": [30, 34], "idx": [30, 34, 44, 45, 57, 74, 80, 81, 82, 84, 86, 87], "named_buff": [30, 34], "prefix": [30, 34, 73, 93], "prepend": [30, 34], "running_var": [30, 34], "named_children": [30, 34], "conv4": [30, 34], "conv5": [30, 34], "memo": [30, 34], "remove_dupl": [30, 34], "named_paramet": [30, 34], "register_backward_hook": [30, 34], "deprec": [30, 34, 37], "favor": [30, 34], "register_full_backward_hook": [30, 34], "removablehandl": [30, 34], "register_buff": [30, 34], "running_mean": [30, 34], "register_forward_hook": [30, 34], "won": [30, 34, 74, 75, 80, 85], "inplac": [30, 34, 84], "register_forward_pre_hook": [30, 34], "gradient": [30, 34, 77, 81, 89], "respect": [30, 34, 57, 82], "grad_input": [30, 34], "grad_output": [30, 34], "technic": [30, 34], "caller": [30, 34], "register_load_state_dict_post_hook": [30, 34], "post": [30, 34], "incompatible_kei": [30, 34], "modif": [30, 34], "thrown": [30, 34], "clearn": [30, 34], "register_modul": [30, 34], "register_paramet": [30, 34], "requires_grad_": [30, 34], "autograd": [30, 34], "freez": [30, 34, 73, 78, 92], "finetun": [30, 34], "gan": [30, 34], "share_memori": [30, 34], "share_memory_": [30, 34], "destin": [30, 34], "keep_var": [30, 34], "shallow": [30, 34], "releas": [30, 34, 72, 80, 87], "design": [30, 34], "ordereddict": [30, 34], "detach": [30, 34, 81], "non_block": [30, 34], "memory_format": [30, 34], "channels_last": [30, 34], "Its": [30, 34, 40, 50, 56], "complex": [30, 34], "integr": [30, 34, 71], "asynchron": [30, 34], "host": [30, 34], "pin": [30, 34, 78, 79, 92], "desir": [30, 34, 43, 57], "4d": [30, 34], "ignore_w": [30, 34], "determinist": [30, 34, 73], "1913": [30, 34], "3420": [30, 34], "5113": [30, 34], "2325": [30, 34], "env": [30, 34], "torch_doctest_cuda1": [30, 34], "gpu1": [30, 34], "1914": [30, 34], "5112": [30, 34], "2324": [30, 34], "float16": [30, 34], "cdoubl": [30, 34], "3741": [30, 34], "2382": [30, 34], "5593": [30, 34], "4443": [30, 34], "complex128": [30, 34], "6122": [30, 34], "1150": [30, 34], "to_empti": [30, 34], "storag": [30, 34], "dst_type": [30, 34], "xpu": [30, 34], "zero_grad": [30, 34, 81], "set_to_non": [30, 34], "context": [30, 34, 86], "noisili": [31, 82], "han": 31, "2018": 31, "cifar_cnn": [31, 32], "loss_coteach": 31, "y_1": 31, "y_2": 31, "forget_r": 31, "class_weight": 31, "logit": [31, 48, 81], "decim": [31, 44], "quickli": [31, 73, 77, 78, 80, 81, 85, 87, 90, 91, 93], "forget": [31, 40, 93], "rate_schedul": 31, "epoch": [31, 34, 80, 81], "initialize_lr_schedul": 31, "lr": [31, 34], "001": [31, 59, 80], "250": [31, 74, 75, 82, 86], "epoch_decay_start": 31, "80": [31, 77, 81, 85, 89, 90, 91], "schedul": 31, "adjust": [31, 35, 53, 58, 59, 71, 82], "beta": 31, "adam": 31, "adjust_learning_r": 31, "alpha_plan": 31, "beta1_plan": 31, "forget_rate_schedul": 31, "num_gradu": 31, "expon": 31, "tell": [31, 78, 81, 82, 92], "train_load": [31, 34], "model1": [31, 82], "optimizer1": 31, "model2": [31, 82], "optimizer2": 31, "dataload": [31, 81, 87], "parser": 31, "parse_arg": 31, "num_iter_per_epoch": 31, "print_freq": 31, "topk": 31, "top1": 31, "top5": 31, "test_load": 31, "offici": [32, 47, 93], "wish": [32, 47, 87, 90, 93], "mnist_pytorch": 32, "coteach": [32, 72], "mini": [33, 63, 65, 80], "With": [33, 78, 82, 84, 89, 90, 92, 93], "approxim": [33, 58, 84], "low_self_confid": [33, 35, 51], "self_confid": [33, 35, 40, 51, 53, 59, 67, 69, 80, 82, 85, 91, 92], "conveni": [33, 73, 78, 92], "script": 33, "labelinspector": [33, 80], "adj_confident_thresholds_shar": 33, "labels_shar": 33, "pred_probs_shar": 33, "labels_fil": [33, 80], "pred_probs_fil": [33, 80], "batch_siz": [33, 34, 63, 65, 80, 81, 87, 90], "quality_score_kwarg": 33, "num_issue_kwarg": 33, "return_mask": 33, "variant": [33, 49, 90], "read": [33, 37, 75, 80, 82, 87, 93], "zarr": [33, 80], "memmap": [33, 90], "pythonspe": 33, "mmap": [33, 80], "hdf5": 33, "further": [33, 50, 51, 53, 56, 57, 65, 66, 73, 80], "yourfil": 33, "npy": [33, 79, 80, 90], "mmap_mod": [33, 90], "tip": [33, 35, 48, 80], "save_arrai": 33, "your_arrai": 33, "disk": [33, 79, 80], "npz": [33, 93], "maxim": [33, 49, 63, 65, 90], "multiprocess": [33, 35, 51, 63, 65, 80, 81, 90], "linux": [33, 63, 65], "physic": [33, 35, 63, 65, 86, 90], "psutil": [33, 35, 63, 65, 90], "labels_arrai": [33, 45], "predprob": 33, "pred_probs_arrai": 33, "back": [33, 57, 74, 80, 86, 87], "store_result": 33, "becom": [33, 87], "verifi": [33, 80, 84, 87], "long": [33, 49, 58, 84], "enough": [33, 44, 80], "chunk": [33, 88], "ram": [33, 79], "faster": [33, 58, 61, 63, 65, 80, 82], "end_index": 33, "labels_batch": 33, "pred_probs_batch": 33, "update_confident_threshold": 33, "batch_result": 33, "score_label_qu": 33, "indices_of_examples_with_issu": [33, 80], "shortcut": 33, "encount": [33, 35, 63], "1000": [33, 73, 78, 80, 81, 87], "aggreg": [33, 40, 49, 53, 56, 59, 69, 80, 82, 84], "get_num_issu": 33, "fetch": [33, 73, 75], "seen": [33, 80, 87, 93], "far": [33, 49], "get_quality_scor": 33, "label_quality_scor": [33, 53, 56, 59, 62, 82, 86, 89], "method1": 33, "method2": 33, "normalized_margin": [33, 35, 40, 51, 53, 59, 67, 69], "low_normalized_margin": [33, 35, 51], "issue_indic": [33, 56, 81], "update_num_issu": 33, "split_arr": 33, "arr": [33, 80], "chunksiz": 33, "convnet": 34, "bespok": [34, 48], "get_mnist_dataset": 34, "loader": [34, 81], "download": [34, 73, 80, 87], "mnist": [34, 71, 73, 79], "get_sklearn_digits_dataset": 34, "handwritten": 34, "digit": [34, 73, 79], "last": [34, 40, 54, 57, 74, 75, 80, 84, 93], "sklearn_digits_test_s": 34, "hard": [34, 79, 87], "simplenet": 34, "64": [34, 77, 81, 82, 86, 90, 91], "log_interv": 34, "01": [34, 59, 61, 73, 82, 85, 86, 89, 90, 93], "momentum": 34, "no_cuda": 34, "test_batch_s": [34, 81], "templat": 34, "flexibli": 34, "among": [34, 49, 82], "test_set": 34, "Be": 34, "overrid": 34, "train_idx": [34, 44, 87], "train_label": [34, 87, 92], "scikit": [34, 44, 58, 71, 73, 74, 75, 77, 78, 80, 83, 89, 92], "set_predict_proba_request": 34, "set_predict_request": 34, "encourag": [35, 51, 59, 62], "multilabel_classif": [35, 50, 51, 53, 59, 80, 85], "pred_probs_by_class": 35, "prune_count_matrix_col": 35, "rank_by_kwarg": [35, 51, 59, 82], "num_to_remove_per_class": [35, 51], "bad": [35, 51, 56, 59, 78, 80, 92], "seem": [35, 82, 85], "aren": 35, "confidence_weighted_entropi": [35, 40, 51, 53, 59, 67, 69], "label_issues_idx": [35, 59], "entropi": [35, 37, 39, 40, 58, 59], "prune_by_class": [35, 51, 82], "predicted_neq_given": [35, 51, 82], "prune_counts_matrix": 35, "smallest": [35, 59], "unus": 35, "number_of_mislabeled_examples_in_class_k": 35, "delet": [35, 71, 80, 92], "thread": [35, 51], "window": [35, 79], "shorter": [35, 54], "find_predicted_neq_given": 35, "find_label_issues_using_argmax_confusion_matrix": 35, "latent_algebra": [36, 72], "label_quality_util": 36, "multilabel_util": [36, 85], "multilabel_scor": [36, 53], "token_classification_util": [36, 93], "get_normalized_entropi": 37, "min_allowed_prob": 37, "wikipedia": 37, "activ": [37, 39, 49, 71, 84], "towardsdatasci": 37, "cheatsheet": 37, "ec57bc067c0b": 37, "clip": [37, 44, 73], "behav": 37, "unnecessari": [37, 80], "slightli": [37, 91, 92], "interv": [37, 40, 87], "herein": 38, "inexact": 38, "cours": 38, "propag": 38, "throughout": [38, 44, 61, 73, 84, 90, 93], "compute_ps_py_inv_noise_matrix": 38, "compute_py_inv_noise_matrix": 38, "compute_inv_noise_matrix": 38, "easili": [38, 72, 73, 75, 77, 78, 82, 84, 85, 87, 88, 89, 90, 91, 92], "increas": [38, 56, 58, 59, 73, 74, 80, 84, 85, 93], "dot": [38, 69, 80], "compute_noise_matrix_from_invers": 38, "compute_pi": 38, "true_labels_class_count": 38, "compute_pyx": 38, "pyx": 38, "multiannot": 39, "assert_valid_inputs_multiannot": 39, "labels_multiannot": [39, 49], "ensembl": [39, 40, 49, 59, 77, 80, 85, 87, 89, 91], "allow_single_label": 39, "annotator_id": 39, "assert_valid_pred_prob": 39, "pred_probs_unlabel": [39, 49], "format_multiannotator_label": [39, 49, 84], "lexicograph": [39, 44], "formatted_label": [39, 44], "old": [39, 44, 72, 79], "check_consensus_label_class": 39, "consensus_label": [39, 49, 84], "consensus_method": [39, 49], "consensu": [39, 49, 71, 83, 93], "establish": [39, 89, 92], "compute_soft_cross_entropi": 39, "soft": [39, 79], "find_best_temp_scal": 39, "coarse_search_rang": [39, 61, 80], "fine_search_s": [39, 61, 80], "temperatur": [39, 40, 56, 65, 69], "scale": [39, 42, 79, 80, 87, 90, 91], "factor": [39, 40, 63, 65], "minim": [39, 56, 87], "temp_scale_pred_prob": 39, "temp": 39, "sharpen": [39, 79], "smoothen": 39, "classlabelscor": 40, "enum": 40, "get_normalized_margin_for_each_label": [40, 59], "get_confidence_weighted_entropy_for_each_label": [40, 59], "75": [40, 74, 75, 79, 84, 85, 86, 89, 90, 93], "from_str": 40, "scorer": 40, "exponential_moving_averag": [40, 53], "alpha": [40, 53, 56, 74, 75, 82, 85, 89], "exponenti": 40, "ema": 40, "s_1": 40, "s_k": 40, "ema_k": 40, "accord": [40, 51, 77, 78, 82, 93], "formula": [40, 42], "_t": 40, "cdot": 40, "s_t": 40, "qquad": 40, "leq": 40, "_1": 40, "give": [40, 59, 82, 84, 90], "recent": [40, 93], "success": 40, "previou": [40, 80, 81, 86], "discount": 40, "s_ema": 40, "175": [40, 82, 86], "softmin": [40, 53, 56, 65, 69], "underflow": 40, "nan": [40, 49, 77, 84, 89, 91], "possible_method": 40, "aggregated_scor": 40, "multilabelscor": 40, "base_scor": 40, "base_scorer_kwarg": 40, "aggregator_kwarg": [40, 53], "n_sampl": 40, "n_label": 40, "binari": [40, 44, 51, 53, 82, 93], "worst": [40, 84], "class_label_quality_scor": 40, "get_class_label_quality_scor": 40, "42": [40, 79, 81, 86, 90, 93], "452": [40, 78], "new_scor": 40, "575": 40, "get_label_quality_scores_per_class": [40, 53], "ml_scorer": 40, "multilabel_pi": 40, "binar": [40, 41], "get_cross_validated_multilabel_pred_prob": 40, "reformat": [40, 73], "wider": 40, "splitter": 40, "kfold": [40, 81], "multiclass": [40, 44, 49, 85], "onevsrestclassifi": [40, 85], "randomforestclassifi": [40, 82, 85], "n_split": [40, 75, 81, 85], "stack_compl": 41, "pred_prob_slic": 41, "get_onehot_num_class": 41, "onehot": 41, "multilabel": [41, 85], "int2onehot": [41, 85], "hot": [41, 51, 57, 63, 66, 77, 79, 80, 89, 90, 91], "onehot2int": [41, 85], "onehot_matrix": 41, "transform_distances_to_scor": 42, "exp": [42, 58, 59, 74], "dt": 42, "right": [42, 54, 57, 78, 85, 86, 87, 92], "num_neighbor": 42, "ood_features_scor": [42, 58, 87], "95122942": 42, "83945702": 42, "token_classif": [43, 67, 69, 70, 80], "get_sent": [43, 93], "sentenc": [43, 67, 69, 70, 78, 92], "readabl": 43, "filter_sent": [43, 93], "lambda": [43, 73, 74, 80, 84], "long_sent": 43, "headlin": 43, "process_token": 43, "charact": [43, 44], "s1": 43, "s2": 43, "processed_token": 43, "rule": [43, 79], "alecnlcb": 43, "entiti": [43, 71, 80, 93], "mapped_ent": 43, "unique_ident": 43, "loc": [43, 74, 75, 81, 93], "merge_prob": 43, "probs_merg": 43, "55": [43, 79, 86, 89, 90], "0125": [43, 69], "0375": 43, "075": 43, "025": 43, "color_sent": 43, "color": [43, 66, 74, 75, 77, 82, 85, 87, 89, 90], "red": [43, 57, 74, 75, 79, 82, 85, 86, 87, 90], "colored_sent": 43, "termcolor": 43, "31msentenc": 43, "0m": 43, "ancillari": 44, "remove_noise_from_class": 44, "class_without_nois": 44, "any_other_class": 44, "choos": [44, 59, 77, 80, 82, 89, 91], "tradition": 44, "clip_noise_r": 44, "clip_valu": 44, "new_sum": 44, "preserv": 44, "value_count": [44, 80], "fill": 44, "wherea": [44, 51, 88], "come": [44, 74, 75, 80, 81, 90], "major": [44, 49, 72, 81, 87], "versu": [44, 82], "value_counts_fill_missing_class": 44, "get_missing_class": 44, "round_preserving_sum": 44, "obviou": 44, "cgdeboer": 44, "iteround": 44, "round_preserving_row_tot": 44, "reach": 44, "estimate_pu_f1": 44, "prob_s_eq_1": 44, "claesen": 44, "f1": [44, 57, 78, 82], "confusion_matrix": 44, "BE": 44, "print_square_matrix": 44, "left_nam": 44, "top_nam": 44, "titl": [44, 74, 75, 82, 85, 87], "short_titl": 44, "round_plac": 44, "pretti": [44, 82], "print_noise_matrix": [44, 82], "print_inverse_noise_matrix": 44, "print_joint_matrix": [44, 82], "joint_matrix": 44, "compress_int_arrai": 44, "num_possible_valu": 44, "train_val_split": 44, "holdout_idx": 44, "subset_x_i": 44, "extract": [44, 58, 73, 78, 84, 87, 90, 92], "subset_label": 44, "subset_data": 44, "extract_indices_tf": 44, "allow_shuffl": 44, "turn": [44, 71, 86], "unshuffle_tensorflow_dataset": 44, "shuffledataset": 44, "histori": 44, "pre_x": 44, "buffer_s": 44, "is_torch_dataset": 44, "is_tensorflow_dataset": 44, "csr_vstack": 44, "csr_matric": 44, "append": [44, 73, 79, 80, 81, 82, 84, 85, 87, 93], "bottom": [44, 54, 57, 86], "vstack": [44, 79, 80, 81, 82, 84, 85], "append_extra_datapoint": 44, "to_data": 44, "from_data": 44, "taken": 44, "One": [44, 58, 80], "get_num_class": 44, "label_matrix": 44, "canon": 44, "num_unique_class": 44, "get_unique_class": 44, "format_label": 44, "smart_display_datafram": 44, "displai": [44, 57, 66, 70, 73, 78, 82, 92, 93], "jupyt": [44, 73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "notebook": [44, 49, 73, 75, 79, 80, 82, 84, 85, 86, 90, 93], "consol": 44, "force_two_dimens": 44, "html": [44, 58, 77, 80, 82], "assert_valid_input": 45, "allow_missing_class": 45, "allow_one_class": 45, "assert_valid_class_label": 45, "assert_nonempty_input": 45, "assert_indexing_work": 45, "length_x": 45, "labels_to_arrai": 45, "labellik": 45, "keraswrappermodel": [48, 71], "keraswrappersequenti": 48, "tf": [48, 73], "legaci": 48, "lack": 48, "keraswrapp": 48, "huggingface_keras_imdb": 48, "unit": [48, 93], "model_kwarg": [48, 61], "compile_kwarg": 48, "sparsecategoricalcrossentropi": 48, "layer": [48, 73, 78, 87, 92], "dens": 48, "my_keras_model": 48, "from_logit": 48, "compil": 48, "declar": 48, "apply_softmax": 48, "analysi": 49, "analyz": [49, 71, 82, 84, 85], "get_label_quality_multiannot": [49, 84], "vote": 49, "crowdsourc": [49, 71, 84], "dawid": [49, 84], "skene": [49, 84], "analog": [49, 79, 84], "chosen": [49, 59, 80, 84], "crowdlab": [49, 84], "unlabel": [49, 77, 78, 81, 84, 87, 90], "decid": [49, 78, 79, 84, 89, 92, 93], "get_active_learning_scor": [49, 84], "activelab": [49, 84], "priorit": [49, 56, 86, 90, 93], "showcas": 49, "main": 49, "best_qual": 49, "quality_method": 49, "calibrate_prob": 49, "return_detailed_qu": 49, "return_annotator_stat": 49, "return_weight": 49, "label_quality_score_kwarg": 49, "necessarili": [49, 57, 78, 82], "did": [49, 50, 73, 77, 82, 84, 89, 91, 92], "majority_vot": 49, "ti": 49, "broken": [49, 57, 79], "highest": [49, 57, 74, 81, 88], "0th": 49, "consensus_quality_scor": [49, 84], "annotator_agr": [49, 84], "reman": 49, "1st": 49, "2nd": [49, 63], "3rd": 49, "consensus_label_suffix": 49, "consensus_quality_score_suffix": 49, "suffix": 49, "emsembl": 49, "weigh": [49, 79], "agreement": [49, 84], "agre": 49, "prevent": [49, 80], "overconfid": [49, 88], "wrong": [49, 54, 56, 72, 74, 75, 78, 80, 82, 86, 92], "detailed_label_qu": [49, 84], "annotator_stat": [49, 84], "model_weight": 49, "annotator_weight": 49, "warn": [49, 74, 75], "labels_info": 49, "num_annot": [49, 84], "deriv": [49, 84], "quality_annotator_1": 49, "quality_annotator_2": 49, "quality_annotator_m": 49, "annotator_qu": [49, 84], "num_examples_label": [49, 84], "agreement_with_consensu": [49, 84], "worst_class": [49, 84], "trustworthi": [49, 84, 89], "get_label_quality_multiannotator_ensembl": 49, "weigtht": 49, "budget": 49, "retrain": [49, 89, 92], "active_learning_scor": 49, "improv": [49, 75, 79, 80, 81, 82, 89, 90, 91, 92], "active_learning_scores_unlabel": 49, "get_active_learning_scores_ensembl": 49, "henc": [49, 73, 74, 84], "get_majority_vote_label": [49, 84], "event": 49, "lastli": [49, 77], "convert_long_to_wide_dataset": 49, "labels_multiannotator_long": 49, "wide": [49, 73, 91, 92], "suitabl": [49, 77, 91], "labels_multiannotator_wid": 49, "common_multilabel_issu": 50, "mutual": [50, 85], "exclus": [50, 85], "rank_classes_by_multilabel_qu": 50, "overall_multilabel_health_scor": 50, "multilabel_health_summari": 50, "classes_by_multilabel_qu": 50, "inner": [51, 65], "find_multilabel_issues_per_class": 51, "per_class_label_issu": 51, "label_issues_list": 51, "labels_list": 51, "pred_probs_list": [51, 59, 81, 82], "anim": [52, 87], "rat": 52, "predat": 52, "pet": 52, "reptil": 52, "manner": [53, 84, 89, 91, 92], "box": [54, 56, 57, 79, 86], "object_detect": [54, 56, 57, 86], "return_indices_ranked_by_scor": [54, 86], "overlapping_label_check": [54, 56], "suboptim": [54, 56], "locat": [54, 56, 86, 90, 93], "bbox": [54, 57, 86], "image_nam": [54, 57], "y1": [54, 57, 86], "y2": [54, 57, 86], "later": [54, 57, 58, 92, 93], "mmdetect": [54, 57, 86], "corner": [54, 57, 86], "swap": [54, 56, 66, 70], "penal": [54, 56], "concern": [54, 56, 71, 75], "aggregation_weight": 56, "imperfect": [56, 80], "chose": [56, 84, 86], "imperfectli": [56, 86], "dirti": [56, 59, 62, 89], "subtyp": 56, "badloc": 56, "nonneg": 56, "issues_from_scor": [56, 65, 66, 69, 70, 86, 90, 93], "compute_overlooked_box_scor": 56, "high_probability_threshold": 56, "auxiliary_input": [56, 57], "vari": [56, 75], "iou": [56, 57], "heavili": 56, "auxiliarytypesdict": 56, "pred_label": [56, 92], "pred_label_prob": 56, "pred_bbox": 56, "lab_label": 56, "lab_bbox": 56, "similarity_matrix": 56, "min_possible_similar": 56, "scores_overlook": 56, "compute_badloc_box_scor": 56, "low_probability_threshold": 56, "scores_badloc": 56, "compute_swap_box_scor": 56, "accident": [56, 77, 78, 80, 92], "scores_swap": 56, "pool_box_scores_per_imag": 56, "box_scor": 56, "image_scor": [56, 65, 90], "object_counts_per_imag": 57, "discov": [57, 75, 93], "auxiliari": [57, 87, 90], "_get_valid_inputs_for_compute_scor": 57, "object_count": 57, "bounding_box_size_distribut": 57, "down": 57, "bbox_siz": 57, "class_label_distribut": 57, "class_distribut": 57, "get_sorted_bbox_count_idx": 57, "plot": [57, 74, 75, 82, 85, 87, 89, 90], "sorted_idx": [57, 87], "plot_class_size_distribut": 57, "class_to_show": 57, "hidden": [57, 87], "max_class_to_show": 57, "plot_class_distribut": 57, "visual": [57, 74, 75, 81, 89, 91, 93], "prediction_threshold": 57, "overlai": [57, 86], "figsiz": [57, 74, 75, 81, 82, 85, 87], "save_path": [57, 86], "blue": [57, 79, 82, 86], "overlaid": 57, "side": [57, 79, 86], "figur": [57, 82, 85, 87, 89], "extens": [57, 82, 84], "png": [57, 86], "pdf": [57, 58], "svg": 57, "matplotlib": [57, 74, 75, 81, 82, 85, 86, 87, 89], "get_average_per_class_confusion_matrix": 57, "num_proc": [57, 81], "intersect": [57, 80], "tp": 57, "fp": 57, "ground": [57, 79, 82, 84, 89], "truth": [57, 82, 84, 89], "strength": 57, "bias": 57, "avg_metr": 57, "distionari": 57, "95": [57, 67, 69, 75, 77, 79, 82, 89, 90], "calculate_per_class_metr": 57, "per_class_metr": 57, "Of": 58, "li": 58, "smaller": [58, 85, 86], "find_top_issu": [58, 59, 87], "reli": [58, 73, 74, 75, 78, 86, 87, 92], "dist_metr": 58, "dim": [58, 81, 90], "subtract": [58, 59], "renorm": [58, 59, 80], "least_confid": 58, "sum_": 58, "log": [58, 59, 72], "softmax": [58, 65, 69, 81], "literatur": 58, "gen": 58, "liu": 58, "lochman": 58, "zach": 58, "openaccess": 58, "thecvf": 58, "content": [58, 73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "cvpr2023": 58, "liu_gen_pushing_the_limits_of_softmax": 58, "based_out": 58, "distribution_detection_cvpr_2023_pap": 58, "fit_scor": [58, 87], "ood_predictions_scor": 58, "pretrain": [58, 73, 78, 87, 92], "adjust_confident_threshold": 58, "probabilist": [58, 73, 74, 75, 77, 78, 87, 88, 91], "order_label_issu": [59, 72], "whichev": [59, 88], "argsort": [59, 78, 81, 82, 87, 89, 92], "max_": 59, "get_label_quality_ensemble_scor": [59, 80, 82], "weight_ensemble_members_bi": 59, "custom_weight": 59, "log_loss_search_t_valu": 59, "0001": [59, 79], "scheme": 59, "log_loss_search": 59, "log_loss": [59, 78], "1e0": 59, "1e1": 59, "1e2": 59, "2e2": 59, "quality_scor": [59, 87], "forth": 59, "top_issue_indic": 59, "rank_bi": [59, 72], "weird": [59, 70], "minu": 59, "prob_label": 59, "max_prob_not_label": 59, "idea": 59, "AND": [59, 78], "corrupt": [61, 89], "linearregress": [61, 80, 89], "y_with_nois": 61, "n_boot": [61, 80], "include_aleatoric_uncertainti": [61, 80], "sole": [61, 74, 84, 87, 91], "larger": [61, 63, 65, 78, 79, 80, 81], "bootstrap": [61, 80, 89], "resampl": [61, 73, 80], "epistem": [61, 80, 87, 89], "aleator": [61, 80, 89], "model_final_kwarg": 61, "coars": 61, "thorough": [61, 80], "fine": [61, 73, 78, 87, 92], "grain": 61, "grid": 61, "get_epistemic_uncertainti": 61, "varianc": [61, 82], "epistemic_uncertainti": 61, "get_aleatoric_uncertainti": 61, "residu": [61, 62, 80], "deviat": [61, 89], "ie": 61, "aleatoric_uncertainti": 61, "outr": 62, "contin": 62, "raw": [62, 71, 72, 75, 79, 81, 84, 86, 87], "aka": [62, 73, 82, 93], "00323821": 62, "33692597": 62, "00191686": 62, "semant": [63, 65, 66, 83], "pixel": [63, 65, 66, 87, 90], "h": [63, 65, 66, 90], "height": [63, 65, 66, 90], "w": [63, 65, 66, 90], "width": [63, 65, 66, 90], "labels_one_hot": [63, 66, 90], "stream": [63, 87, 93], "downsampl": [63, 65, 90], "shrink": [63, 65], "divis": [63, 65, 74], "segmant": [65, 66], "num_pixel_issu": [65, 90], "product": [65, 80, 81], "pixel_scor": [65, 90], "display_issu": [65, 66, 67, 69, 70, 90, 93], "highlight": [66, 70, 74, 75, 77, 90], "enter": 66, "legend": [66, 74, 75, 85, 86, 89, 90], "colormap": 66, "background": 66, "person": [66, 80, 86, 90, 93], "common_label_issu": [66, 70, 90, 93], "ambigu": [66, 70, 73, 78, 79, 82, 92, 93], "systemat": [66, 70, 84], "misunderstood": [66, 70], "issues_df": [66, 81], "filter_by_class": [66, 90], "class_index": 66, "issues_subset": [66, 70], "token_score_method": 69, "sentence_score_method": 69, "sentence_score_kwarg": 69, "compris": [69, 70], "token_scor": [69, 93], "converg": 69, "toward": 69, "_softmin_sentence_scor": 69, "sentence_scor": [69, 93], "token_info": 69, "70": [69, 77, 81, 89, 90], "02": [69, 74, 75, 81, 82, 86, 89, 90], "03": [69, 79, 82, 86, 90, 93], "04": [69, 81, 86, 89, 90], "08": [69, 78, 82, 86, 90, 93], "commonli": [70, 72, 74, 75, 85, 93], "filter_by_token": [70, 93], "But": [70, 78, 82, 93], "restrict": [70, 80], "reliabl": [71, 73, 80, 84, 90, 91], "thousand": 71, "imagenet": [71, 79], "popular": [71, 84, 86], "centric": [71, 77, 78, 81, 83], "capabl": 71, "minut": [71, 73, 77, 78, 79, 84, 85, 86, 89, 90, 91, 92, 93], "conda": 71, "feature_embed": [71, 87], "Then": [71, 80, 81, 89, 91, 92], "your_dataset": [71, 73, 74, 75, 77, 78, 80, 81], "column_name_of_label": [71, 73, 74, 75, 77, 78, 81], "plagu": [71, 75], "untrain": 71, "\u30c4": 71, "label_issues_info": [71, 75], "sklearn_compatible_model": 71, "framework": [71, 85, 86], "complianc": 71, "tag": [71, 85, 93], "sequenc": 71, "recognit": [71, 73, 80, 93], "train_data": [71, 87, 89, 91, 92], "gotten": 71, "test_data": [71, 82, 85, 87, 89, 91, 92], "deal": [71, 75], "tutori": [71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "feel": [71, 73, 75, 80], "free": [71, 73, 75, 77, 78, 80, 81, 82], "ask": [71, 80], "slack": [71, 80], "project": [71, 89], "welcom": 71, "commun": [71, 80], "guidelin": [71, 86], "piec": 71, "studio": [71, 75, 77, 78, 80, 81], "platform": [71, 77, 78, 80, 81], "automl": [71, 80], "foundat": 71, "smart": [71, 77, 78, 80, 81], "edit": [71, 80], "easier": [71, 82], "unreli": [71, 73, 77, 78, 91], "older": 72, "outlin": 72, "substitut": 72, "v2": [72, 77, 91], "get_noise_indic": 72, "psx": 72, "sorted_index_method": 72, "order_label_error": 72, "label_errors_bool": 72, "latent_estim": 72, "num_label_error": 72, "learningwithnoisylabel": 72, "neatli": 72, "organ": [72, 77, 79, 91, 93], "reorgan": 72, "baseline_method": 72, "incorpor": [72, 82], "research": [72, 82], "polyplex": 72, "terminologi": 72, "label_error": 72, "quickstart": [73, 74, 75, 77, 78, 79, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "spoken": 73, "500": [73, 87, 93], "english": [73, 79], "pronunci": 73, "wav": 73, "huggingfac": [73, 74, 75, 81], "voxceleb": 73, "speech": [73, 93], "your_pred_prob": [73, 74, 75, 77, 78], "tensorflow_io": 73, "26": [73, 74, 79, 81, 82, 84, 86, 90], "huggingface_hub": 73, "12": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 86, 87, 89, 90, 91, 92, 93], "branch": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 91, 92], "reproduc": [73, 77, 82, 84], "command": 73, "wget": [73, 86, 90, 93], "navig": 73, "link": [73, 79, 86], "browser": 73, "jakobovski": 73, "archiv": [73, 93], "v1": 73, "tar": [73, 87], "gz": [73, 87], "mkdir": [73, 93], "spoken_digit": 73, "xf": 73, "6_nicolas_32": 73, "data_path": 73, "listdir": 73, "nondeterminist": 73, "file_nam": 73, "endswith": 73, "file_path": 73, "join": [73, 80, 81], "39": [73, 74, 78, 79, 80, 81, 86, 89, 90, 92, 93], "7_george_26": 73, "0_nicolas_24": 73, "0_nicolas_6": 73, "listen": 73, "display_exampl": 73, "click": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "expand": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "pulldown": [73, 74, 75, 79, 81, 82, 84, 85, 87, 89, 93], "colab": [73, 74, 75, 79, 80, 81, 82, 84, 85, 87, 89, 93], "tfio": 73, "pathlib": 73, "ipython": 73, "load_wav_16k_mono": 73, "filenam": 73, "khz": 73, "file_cont": 73, "io": [73, 79], "read_fil": 73, "sample_r": 73, "decode_wav": 73, "desired_channel": 73, "squeez": 73, "rate_in": 73, "rate_out": 73, "16000": 73, "wav_file_nam": 73, "audio_r": 73, "wav_file_exampl": 73, "plai": [73, 79, 80], "button": 73, "wav_file_name_exampl": 73, "7_jackson_43": 73, "hear": 73, "extractor": 73, "encoderclassifi": 73, "spkrec": 73, "xvect": 73, "feature_extractor": 73, "from_hparam": 73, "run_opt": 73, "uncom": 73, "wav_audio_file_path": 73, "head": [73, 75, 77, 78, 79, 81, 82, 84, 89, 91, 92], "torchaudio": 73, "extract_audio_embed": 73, "emb": [73, 81], "signal": 73, "encode_batch": 73, "embeddings_list": [73, 81], "embeddings_arrai": 73, "512": [73, 81], "14": [73, 74, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "196315": 73, "3194594": 73, "478977": 73, "2890828": 73, "8170278": 73, "892647": 73, "24": [73, 79, 81, 82, 84, 86, 90], "898054": 73, "256194": 73, "559642": 73, "559715": 73, "620667": 73, "285246": 73, "21": [73, 74, 79, 80, 82, 86, 90, 93], "709623": 73, "5033712": 73, "913803": 73, "8198366": 73, "1831512": 73, "208761": 73, "08426": 73, "3210406": 73, "005453": 73, "2161605": 73, "478239": 73, "682179": 73, "0538025": 73, "242471": 73, "0914207": 73, "7833488": 73, "039538": 73, "23": [73, 79, 81, 82, 86, 90], "56918": 73, "19": [73, 78, 79, 80, 81, 82, 87, 89, 90, 92, 93], "761095": 73, "1258287": 73, "753235": 73, "3508894": 73, "598273": 73, "237122": 73, "2500": 73, "leverag": [73, 78, 80, 82, 84, 92], "tune": [73, 78, 79, 87, 92], "computation": [73, 78, 92], "intens": [73, 78, 92], "held": [73, 77, 78, 79, 86, 87, 88, 91], "straightforward": [73, 77, 91], "benefit": [73, 88, 90, 91], "tol": 73, "num_crossval_fold": [73, 77, 84, 91], "decreas": [73, 80], "never": [73, 82, 85, 87, 88], "accuracy_scor": [73, 78, 82, 91, 92], "cv_accuraci": 73, "9772": 73, "probabilit": [73, 92], "9980": 73, "176": [73, 79, 82, 85], "006488": 73, "2318": 73, "008269": 73, "986": 73, "010354": 73, "469": 73, "013459": 73, "516": 73, "013478": 73, "investig": 73, "100541": 73, "998729": 73, "998768": 73, "980980": 73, "998217": 73, "18": [73, 78, 79, 80, 81, 82, 86, 87, 89, 90, 92], "identified_label_issu": [73, 78], "lowest_quality_label": [73, 78, 82, 89, 92], "sort_valu": [73, 75, 77, 78, 80, 81, 82, 84], "1946": 73, "1871": 73, "1955": 73, "2132": 73, "worth": [73, 82], "iloc": [73, 77, 78, 89, 91, 92], "6_yweweler_35": 73, "6_yweweler_36": 73, "6_yweweler_14": 73, "6_theo_27": 73, "4_george_31": 73, "6_nicolas_8": 73, "sound": 73, "quit": [73, 87], "22": [73, 74, 79, 81, 82, 85, 86, 90, 93], "blindli": [73, 80, 89, 91, 92], "trust": [73, 80, 82, 84, 88, 89, 91, 92], "underneath": 74, "hood": 74, "alert": 74, "introduct": 74, "mayb": [74, 75, 78], "examin": [74, 75, 77, 91], "your_feature_matrix": [74, 75], "toi": [74, 75, 79, 81, 82, 84], "train_test_split": [74, 75, 87, 91, 92], "inf": [74, 75], "mid": [74, 75], "bins_map": [74, 75], "create_data": [74, 75], "y_bin": [74, 75], "y_i": [74, 75], "y_bin_idx": [74, 75], "y_train": [74, 75, 82, 89], "y_test": [74, 75, 82, 89], "y_train_idx": [74, 75], "y_test_idx": [74, 75], "test_siz": [74, 75, 91, 92], "slide": [74, 75, 79], "decis": [74, 75, 91], "boundari": [74, 75], "frame": [74, 75], "x_out": [74, 75], "tini": [74, 75], "concaten": [74, 75, 80, 88], "y_out": [74, 75], "y_out_bin": [74, 75], "y_out_bin_idx": [74, 75], "exact_duplicate_idx": [74, 75], "x_duplic": [74, 75], "y_duplic": [74, 75], "y_duplicate_idx": [74, 75], "noisy_labels_idx": [74, 75, 85], "scatter": [74, 75, 82, 85, 89], "black": [74, 75, 79, 89], "cyan": [74, 75], "pyplot": [74, 75, 81, 82, 85, 87, 89], "plt": [74, 75, 81, 82, 85, 87, 89], "plot_data": [74, 75, 82, 85, 89], "fig": [74, 75, 79, 81, 87, 89], "ax": [74, 75, 81, 87, 89], "subplot": [74, 75, 81, 87], "set_titl": [74, 75, 81, 87], "set_xlabel": [74, 75], "x_1": [74, 75], "fontsiz": [74, 75, 81, 82, 85], "set_ylabel": [74, 75], "x_2": [74, 75], "set_xlim": [74, 75], "set_ylim": [74, 75], "linestyl": [74, 75], "circl": [74, 75, 82, 85], "misclassifi": [74, 75], "zip": [74, 75, 81, 86, 93], "label_err": [74, 75], "180": [74, 75, 86], "marker": [74, 75], "facecolor": [74, 75], "edgecolor": [74, 75], "linewidth": [74, 75, 87], "dup": [74, 75], "first_legend": [74, 75], "align": [74, 75], "title_fontproperti": [74, 75], "semibold": [74, 75], "second_legend": [74, 75], "45": [74, 75, 79, 81, 82, 86, 90], "gca": [74, 75], "add_artist": [74, 75], "tight_layout": [74, 75], "ideal": [74, 75], "logist": [74, 75, 78, 84, 87, 92], "remaind": 74, "modal": [74, 75, 80, 84], "regardless": [74, 75], "132": [74, 75, 82, 86], "9318": 74, "77": [74, 75, 77, 86, 90, 91], "006939": 74, "007830": 74, "40": [74, 75, 78, 79, 81, 90], "014826": 74, "107": [74, 75, 82, 85], "021220": 74, "120": [74, 75, 91], "026403": 74, "notic": [74, 82, 84, 86], "5221": [74, 75], "126": [74, 75, 82, 86], "046465": [74, 75], "130": [74, 75], "068695": [74, 75], "129": [74, 75], "127": [74, 75], "076251": [74, 75], "128": [74, 75, 81], "083941": [74, 75], "6160": [74, 75], "is_near_duplicate_issu": [74, 75, 77, 78, 80, 81, 82], "131": [74, 75, 90], "000000e": [74, 75], "00": [74, 75, 77, 79, 81, 90, 91], "000002": [74, 75], "463180e": [74, 75], "07": [74, 75, 82, 86, 90], "51": [74, 75, 77, 79, 82, 86, 90], "161148": [74, 75], "859087e": [74, 75], "30": [74, 75, 79, 80, 81, 85, 90, 93], "3293": 74, "025076": 74, "026534": 74, "050766": 74, "051025": 74, "home": [74, 75, 78, 79, 87, 92], "runner": [74, 75, 78, 87, 92], "300": [74, 84, 93], "userwarn": [74, 75], "330": [74, 81, 86], "309": 74, "34": [74, 79, 81, 82, 84, 86, 87, 90, 93], "54": [74, 79, 82, 86, 90], "039117": 74, "53": [74, 75, 77, 79, 81, 85, 86, 90, 91], "044594": 74, "105": 74, "105121": 74, "133588": 74, "43": [74, 79, 82, 86, 90, 92], "168035": 74, "125": 74, "090878": 74, "37": [74, 79, 90, 93], "169462": 74, "109": [74, 79, 86], "194566": 74, "196302": 74, "206314": 74, "average_ood_scor": 74, "32933380816554325": 74, "52": [74, 79, 86, 90, 93], "169820": 74, "087324e": 74, "89": [74, 77, 86, 89, 90], "92": [74, 82, 86, 90, 91], "259024": 74, "583757e": 74, "91": [74, 86, 90, 92], "346458": 74, "341292e": 74, "specfi": 74, "new_lab": 74, "scoring_funct": 74, "div": 74, "rem": 74, "inv_scal": 74, "49": [74, 79, 82, 86, 90], "superstitionissuemanag": 74, "unlucki": 74, "superstit": 74, "to_seri": 74, "issues_mask": 74, "summary_scor": 74, "9242": 74, "is_superstition_issu": 74, "superstition_scor": 74, "047581": 74, "090635": 74, "129591": 74, "65": [74, 81, 86, 90, 91], "164840": 74, "demo": [75, 77, 85, 91], "lurk": [75, 81, 82], "opt": 75, "hostedtoolcach": 75, "x64": 75, "lib": 75, "python3": 75, "site": 75, "_split": 75, "737": 75, "thoroughli": 75, "preprocess": [75, 77, 87, 89, 91, 92], "904": 75, "review": [75, 77, 78, 79, 80, 82, 86, 89, 90, 91, 92, 93], "8561": 75, "001894": 75, "58": [75, 77, 79, 81, 82, 86, 90, 91], "003565": 75, "007326": 75, "008974": 75, "009699": 75, "0227": 75, "is_class_imbalance_issu": [75, 77, 78, 81, 82], "022727": 75, "86": [75, 77, 81, 82, 86, 89, 90, 91], "87": [75, 81, 86, 89, 90, 92], "0000": [75, 78, 79, 81, 82], "is_null_issu": [75, 78, 81, 82], "96": [75, 77, 79, 82, 85, 86, 89, 90], "94": [75, 77, 79, 82, 86, 89, 90, 91], "93": [75, 79, 86, 89, 90, 91, 93], "8218": 75, "is_non_iid_issu": [75, 77, 78, 81, 82], "810274": 75, "826147": 75, "849587": 75, "855359": 75, "855485": 75, "821750488732925": 75, "auto": [75, 79, 80, 89, 91, 92], "conceptu": 75, "856061": 75, "522080": 75, "616034": 75, "821750": 75, "betweeen": 75, "859109": 75, "586131": 75, "664083": 75, "970324": 75, "816965": 75, "548979": 75, "641516": 75, "890575": 75, "530924": 75, "622256": 75, "601188": 75, "752776": 75, "499498": 75, "562539": 75, "948362": 75, "090224": 75, "632385": 75, "746763": 75, "878267": 75, "examples_w_issu": [75, 80], "013444": 75, "025173": 75, "026416": 75, "inde": [75, 78], "miscellan": [75, 93], "428571": 75, "111111": 75, "571429": 75, "407407": 75, "592593": 75, "337838": 75, "092593": 75, "662162": 75, "333333": [75, 79], "952381": 75, "666667": 75, "portion": 75, "huge": [75, 82], "worri": [75, 78], "critic": 75, "highli": [75, 81], "sql": [77, 91], "databas": [77, 91], "excel": [77, 91], "parquet": [77, 91], "student": [77, 89, 91, 93], "grade": [77, 89, 91], "900": [77, 89, 91], "exam": [77, 89, 91], "letter": [77, 91, 93], "hundr": [77, 91], "histgradientboostingclassifi": 77, "standardscal": [77, 87, 91], "possibli": [77, 91], "grades_data": [77, 91], "read_csv": [77, 78, 89, 91, 92], "stud_id": [77, 91], "exam_1": [77, 89, 91], "exam_2": [77, 89, 91], "exam_3": [77, 89, 91], "letter_grad": [77, 91], "f48f73": [77, 91], "0bd4e7": [77, 91], "81": [77, 78, 86, 89, 90, 91, 93], "great": [77, 79, 91], "particip": [77, 91], "cb9d7a": [77, 91], "61": [77, 81, 82, 86, 90, 91], "78": [77, 79, 81, 82, 86, 89, 90, 91], "9acca4": [77, 91], "48": [77, 79, 82, 86, 90, 91], "x_raw": [77, 91], "cat_featur": 77, "x_encod": [77, 91], "get_dummi": [77, 89, 91], "drop_first": [77, 91], "numeric_featur": [77, 91], "scaler": [77, 87, 91], "x_process": [77, 91], "fit_transform": [77, 91], "bring": [77, 78, 81, 84, 89, 91, 92], "byod": [77, 78, 81, 84, 89, 91, 92], "boost": [77, 80, 84, 89], "xgboost": [77, 80, 89], "think": [77, 78, 80, 85, 90, 93], "carefulli": [77, 78, 81, 91], "nonzero": 77, "suspici": [77, 91], "tabl": [77, 79, 84, 91], "358": 77, "294": [77, 86], "46": [77, 79, 81, 82, 86, 90], "941": 77, "7109": 77, "000005": [77, 78, 81], "886": 77, "000059": 77, "709": 77, "000104": 77, "723": 77, "000169": 77, "689": 77, "000181": 77, "7154": 77, "012085": 77, "061510": 77, "115512": 77, "124391": 77, "214163": 77, "6165": 77, "582": 77, "185": [77, 79, 86, 93], "187": [77, 79], "27": [77, 79, 82, 86, 90, 93], "898": 77, "637": [77, 91], "0014": [77, 79], "595": 77, "702427": 77, "147": [77, 82, 86], "711186": 77, "157": [77, 82], "721394": 77, "771": 77, "731979": 77, "740335": 77, "0014153602099278074": 77, "1562": 77, "393": 77, "156217": 77, "391": 77, "806": 77, "805": 77, "156": [77, 82], "na": [77, 78, 81, 82, 84], "issue_result": 77, "000842": 77, "555944": 77, "004374": 77, "sorted_issu": 77, "73": [77, 79, 85, 86, 89, 90], "deserv": 77, "outlier_result": 77, "sorted_outli": 77, "56": [77, 79, 89, 90], "lt": [77, 78, 79, 81, 84, 90], "style": [77, 90], "font": 77, "18px": 77, "ff00ff": 77, "bac": 77, "unintend": [77, 78], "mistak": [77, 78, 81, 91, 92], "duplicate_result": 77, "690": 77, "246": [77, 86], "perhap": [77, 82, 84], "twice": 77, "67": [77, 79, 86, 89, 90], "wari": [77, 78, 80], "super": [77, 78, 81], "system": [77, 78, 81, 90], "intent": [78, 92], "servic": [78, 80, 92], "onlin": [78, 92], "bank": [78, 79, 92], "banking77": [78, 92], "oo": [78, 92], "000": [78, 79, 81, 92, 93], "categori": [78, 81, 92], "scope": [78, 92], "dive": 78, "your_featur": 78, "sentence_transform": [78, 92], "sentencetransform": [78, 92], "payment": [78, 92], "cancel_transf": [78, 92], "transfer": [78, 92], "fund": [78, 92], "cancel": [78, 92], "transact": [78, 92], "my": [78, 92], "revert": [78, 92], "morn": [78, 92], "realis": [78, 92], "yesterdai": [78, 92], "rent": [78, 92], "realli": [78, 84, 90, 92], "tomorrow": [78, 92], "raw_text": [78, 92], "getting_spare_card": [78, 92], "card_payment_fee_charg": [78, 92], "visa_or_mastercard": [78, 92], "apple_pay_or_google_pai": [78, 92], "card_about_to_expir": [78, 92], "lost_or_stolen_phon": [78, 92], "beneficiary_not_allow": [78, 92], "change_pin": [78, 92], "supported_cards_and_curr": [78, 92], "utter": [78, 92], "continu": [78, 80, 81, 84, 89, 91, 92, 93], "suit": [78, 79, 80, 92], "electra": [78, 92], "discrimin": [78, 92], "googl": [78, 92], "text_embed": 78, "No": [78, 80, 92], "google_electra": [78, 92], "pool": [78, 80, 87, 92], "400": [78, 92], "data_dict": [78, 82, 84], "84": [78, 86, 90, 93], "41": [78, 79, 86, 89, 90], "38": [78, 79, 86, 90], "9720": 78, "981": 78, "974": 78, "000150": 78, "982": [78, 79], "000218": 78, "971": 78, "000512": 78, "980": [78, 79], "000947": 78, "9122": 78, "994": 78, "676322": 78, "999": 78, "693868": 78, "697240": 78, "433": 78, "700874": 78, "989": 78, "713590": 78, "6070": 78, "160": [78, 82], "095724": 78, "148": 78, "006237": 78, "546": 78, "099340": 78, "514": 78, "006485": 78, "481": 78, "123416": 78, "008165": 78, "313": [78, 86], "564102": 78, "572258": 78, "28": [78, 79, 81, 82, 84, 90, 93], "574915": 78, "31": [78, 79, 81, 82, 84, 86, 90], "575507": 78, "575874": 78, "658": 78, "659": [78, 89], "660": 78, "661": 78, "0800": 78, "454": 78, "453": 78, "455": 78, "791961": 78, "258508": 78, "699010": 78, "183136": 78, "771112": 78, "to_numpi": [78, 80, 89, 92], "data_with_suggested_label": 78, "suggested_label": 78, "charg": [78, 92], "cash": [78, 92], "holidai": [78, 92], "sent": [78, 92, 93], "card": [78, 79, 92], "mine": [78, 92], "expir": [78, 92], "me": [78, 92], "withdraw": 78, "monei": 78, "whoever": [78, 92], "outlier_issu": [78, 81], "lowest_quality_outli": 78, "OR": 78, "636c65616e6c616220697320617765736f6d6521": 78, "phone": [78, 79], "gone": 78, "gt": [78, 84, 93], "samp": 78, "br": 78, "press": [78, 93], "nonsens": 78, "sens": 78, "detriment": 78, "duplicate_issu": 78, "fee": 78, "pai": 78, "go": [78, 79, 82], "strongli": 78, "p_valu": 78, "benign": 78, "shortlist": [78, 89, 92], "curat": [78, 83], "mnist_test_set": 79, "imagenet_val_set": 79, "tench": 79, "goldfish": 79, "white": [79, 93], "shark": 79, "tiger": 79, "hammerhead": 79, "electr": 79, "rai": 79, "stingrai": 79, "cock": 79, "hen": 79, "ostrich": 79, "brambl": 79, "goldfinch": 79, "hous": 79, "finch": 79, "junco": 79, "indigo": 79, "bunt": 79, "american": [79, 93], "robin": 79, "bulbul": 79, "jai": 79, "magpi": 79, "chickade": 79, "dipper": 79, "kite": 79, "bald": 79, "eagl": 79, "vultur": 79, "grei": 79, "owl": 79, "fire": 79, "salamand": 79, "smooth": 79, "newt": 79, "spot": [79, 86], "axolotl": 79, "bullfrog": 79, "tree": 79, "frog": [79, 87], "tail": 79, "loggerhead": 79, "sea": 79, "turtl": 79, "leatherback": 79, "mud": 79, "terrapin": 79, "band": 79, "gecko": 79, "green": [79, 93], "iguana": 79, "carolina": 79, "anol": 79, "desert": 79, "grassland": 79, "whiptail": 79, "lizard": 79, "agama": 79, "frill": 79, "neck": 79, "allig": 79, "gila": 79, "monster": 79, "european": 79, "chameleon": 79, "komodo": 79, "dragon": 79, "nile": 79, "crocodil": 79, "triceratop": 79, "worm": 79, "snake": 79, "ring": 79, "eastern": 79, "hog": 79, "nose": 79, "kingsnak": 79, "garter": 79, "water": 79, "vine": 79, "night": 79, "boa": 79, "constrictor": 79, "african": 79, "rock": 79, "indian": 79, "cobra": 79, "mamba": 79, "saharan": 79, "horn": 79, "viper": 79, "diamondback": 79, "rattlesnak": 79, "sidewind": 79, "trilobit": 79, "harvestman": 79, "scorpion": 79, "yellow": 79, "garden": 79, "spider": 79, "barn": 79, "southern": 79, "widow": 79, "tarantula": 79, "wolf": 79, "tick": 79, "centiped": 79, "grous": 79, "ptarmigan": 79, "ruf": 79, "prairi": 79, "peacock": 79, "quail": 79, "partridg": 79, "parrot": 79, "macaw": 79, "sulphur": 79, "crest": 79, "cockatoo": 79, "lorikeet": 79, "coucal": 79, "bee": 79, "eater": 79, "hornbil": 79, "hummingbird": 79, "jacamar": 79, "toucan": 79, "duck": [79, 92], "breast": 79, "mergans": 79, "goos": 79, "swan": 79, "tusker": 79, "echidna": 79, "platypu": 79, "wallabi": 79, "koala": 79, "wombat": 79, "jellyfish": 79, "anemon": 79, "brain": 79, "coral": 79, "flatworm": 79, "nematod": 79, "conch": 79, "snail": 79, "slug": 79, "chiton": 79, "chamber": 79, "nautilu": 79, "dung": 79, "crab": 79, "fiddler": 79, "king": 79, "lobster": 79, "spini": 79, "crayfish": 79, "hermit": 79, "isopod": 79, "stork": 79, "spoonbil": 79, "flamingo": 79, "heron": 79, "egret": 79, "bittern": 79, "crane": 79, "bird": [79, 87], "limpkin": 79, "gallinul": 79, "coot": 79, "bustard": 79, "ruddi": 79, "turnston": 79, "dunlin": 79, "redshank": 79, "dowitch": 79, "oystercatch": 79, "pelican": 79, "penguin": 79, "albatross": 79, "whale": 79, "killer": 79, "dugong": 79, "lion": 79, "chihuahua": 79, "japanes": 79, "chin": 79, "maltes": 79, "pekinges": 79, "shih": 79, "tzu": 79, "charl": 79, "spaniel": 79, "papillon": 79, "terrier": 79, "rhodesian": 79, "ridgeback": 79, "afghan": [79, 93], "hound": 79, "basset": 79, "beagl": 79, "bloodhound": 79, "bluetick": 79, "coonhound": 79, "tan": 79, "walker": 79, "foxhound": 79, "redbon": 79, "borzoi": 79, "irish": 79, "wolfhound": 79, "italian": 79, "greyhound": 79, "whippet": 79, "ibizan": 79, "norwegian": 79, "elkhound": 79, "otterhound": 79, "saluki": 79, "scottish": 79, "deerhound": 79, "weimaran": 79, "staffordshir": 79, "bull": 79, "bedlington": 79, "border": 79, "kerri": 79, "norfolk": 79, "norwich": 79, "yorkshir": 79, "wire": 79, "fox": 79, "lakeland": 79, "sealyham": 79, "airedal": 79, "cairn": 79, "australian": 79, "dandi": 79, "dinmont": 79, "boston": 79, "miniatur": 79, "schnauzer": 79, "giant": 79, "tibetan": 79, "silki": 79, "coat": [79, 81], "wheaten": 79, "west": 79, "highland": 79, "lhasa": 79, "apso": 79, "flat": 79, "retriev": 79, "curli": 79, "golden": 79, "labrador": 79, "chesapeak": 79, "bai": 79, "german": [79, 93], "shorthair": 79, "pointer": 79, "vizsla": 79, "setter": 79, "gordon": 79, "brittani": 79, "clumber": 79, "springer": 79, "welsh": 79, "cocker": 79, "sussex": 79, "kuvasz": 79, "schipperk": 79, "groenendael": 79, "malinoi": 79, "briard": 79, "kelpi": 79, "komondor": 79, "sheepdog": 79, "shetland": 79, "colli": 79, "bouvier": 79, "de": 79, "flandr": 79, "rottweil": 79, "shepherd": 79, "dobermann": 79, "pinscher": 79, "swiss": [79, 93], "mountain": 79, "bernes": 79, "appenzel": 79, "sennenhund": 79, "entlebuch": 79, "boxer": 79, "bullmastiff": 79, "mastiff": 79, "french": 79, "bulldog": 79, "dane": 79, "st": 79, "bernard": 79, "huski": 79, "alaskan": 79, "malamut": 79, "siberian": 79, "dalmatian": 79, "affenpinsch": 79, "basenji": 79, "pug": 79, "leonberg": 79, "newfoundland": 79, "pyrenean": 79, "samoi": 79, "pomeranian": 79, "chow": 79, "keeshond": 79, "griffon": 79, "bruxelloi": 79, "pembrok": 79, "corgi": 79, "cardigan": 79, "poodl": 79, "mexican": 79, "hairless": 79, "tundra": 79, "coyot": 79, "dingo": 79, "dhole": 79, "wild": 79, "hyena": 79, "kit": 79, "arctic": 79, "tabbi": 79, "persian": 79, "siames": 79, "egyptian": 79, "mau": 79, "cougar": 79, "lynx": 79, "leopard": 79, "snow": 79, "jaguar": 79, "cheetah": 79, "brown": [79, 90], "bear": 79, "polar": 79, "sloth": 79, "mongoos": 79, "meerkat": 79, "beetl": 79, "ladybug": 79, "longhorn": 79, "leaf": 79, "rhinocero": 79, "weevil": 79, "fly": 79, "ant": 79, "grasshopp": 79, "cricket": 79, "stick": 79, "insect": 79, "cockroach": 79, "manti": 79, "cicada": 79, "leafhopp": 79, "lacew": 79, "dragonfli": 79, "damselfli": 79, "admir": 79, "ringlet": 79, "monarch": 79, "butterfli": 79, "gossam": 79, "wing": 79, "starfish": 79, "urchin": 79, "cucumb": 79, "cottontail": 79, "rabbit": 79, "hare": 79, "angora": 79, "hamster": 79, "porcupin": 79, "squirrel": 79, "marmot": 79, "beaver": 79, "guinea": 79, "pig": 79, "sorrel": 79, "zebra": 79, "boar": 79, "warthog": 79, "hippopotamu": 79, "ox": 79, "buffalo": 79, "bison": 79, "bighorn": 79, "sheep": 79, "alpin": 79, "ibex": 79, "hartebeest": 79, "impala": 79, "gazel": 79, "dromedari": 79, "llama": 79, "weasel": 79, "mink": 79, "polecat": 79, "foot": 79, "ferret": 79, "otter": 79, "skunk": 79, "badger": 79, "armadillo": 79, "toed": 79, "orangutan": 79, "gorilla": 79, "chimpanze": 79, "gibbon": 79, "siamang": 79, "guenon": 79, "pata": 79, "monkei": 79, "baboon": 79, "macaqu": 79, "langur": 79, "colobu": 79, "probosci": 79, "marmoset": 79, "capuchin": 79, "howler": 79, "titi": 79, "geoffroi": 79, "lemur": 79, "indri": 79, "asian": 79, "eleph": 79, "bush": 79, "snoek": 79, "eel": 79, "coho": 79, "salmon": 79, "beauti": 79, "clownfish": 79, "sturgeon": 79, "garfish": 79, "lionfish": 79, "pufferfish": 79, "abacu": 79, "abaya": 79, "academ": 79, "gown": 79, "accordion": 79, "acoust": 79, "guitar": 79, "aircraft": 79, "carrier": 79, "airlin": 79, "airship": 79, "altar": 79, "ambul": 79, "amphibi": 79, "clock": [79, 93], "apiari": 79, "apron": 79, "wast": 79, "assault": 79, "rifl": 79, "backpack": 79, "bakeri": 79, "balanc": 79, "beam": 79, "balloon": 79, "ballpoint": 79, "pen": 79, "aid": 79, "banjo": 79, "balust": 79, "barbel": 79, "barber": 79, "chair": [79, 86], "barbershop": 79, "baromet": 79, "barrel": 79, "wheelbarrow": 79, "basebal": 79, "basketbal": 79, "bassinet": 79, "bassoon": 79, "swim": 79, "cap": 79, "bath": 79, "towel": 79, "bathtub": 79, "station": 79, "wagon": 79, "lighthous": 79, "beaker": 79, "militari": 79, "beer": 79, "bottl": 79, "glass": 79, "bell": 79, "cot": 79, "bib": 79, "bicycl": [79, 90], "bikini": 79, "binder": 79, "binocular": 79, "birdhous": 79, "boathous": 79, "bobsleigh": 79, "bolo": 79, "tie": 79, "poke": 79, "bonnet": 79, "bookcas": 79, "bookstor": 79, "bow": 79, "brass": 79, "bra": 79, "breakwat": 79, "breastplat": 79, "broom": 79, "bucket": 79, "buckl": 79, "bulletproof": 79, "vest": 79, "butcher": 79, "shop": 79, "taxicab": 79, "cauldron": 79, "candl": 79, "cannon": 79, "cano": 79, "mirror": [79, 86], "carousel": 79, "tool": [79, 82, 84], "carton": 79, "wheel": 79, "teller": 79, "cassett": 79, "player": 79, "castl": 79, "catamaran": 79, "cd": 79, "cello": 79, "mobil": [79, 93], "chain": 79, "fenc": [79, 90], "mail": 79, "chainsaw": 79, "chest": 79, "chiffoni": 79, "chime": 79, "china": 79, "cabinet": 79, "christma": 79, "stock": 79, "church": 79, "movi": 79, "theater": 79, "cleaver": 79, "cliff": 79, "dwell": 79, "cloak": 79, "clog": 79, "cocktail": 79, "shaker": 79, "coffe": 79, "mug": 79, "coffeemak": 79, "coil": 79, "lock": 79, "keyboard": 79, "confectioneri": 79, "ship": [79, 87], "corkscrew": 79, "cornet": 79, "cowboi": 79, "boot": 79, "hat": 79, "cradl": 79, "crash": 79, "helmet": 79, "crate": 79, "infant": 79, "bed": 79, "crock": 79, "pot": 79, "croquet": 79, "crutch": 79, "cuirass": 79, "dam": 79, "desk": 79, "desktop": 79, "rotari": 79, "dial": 79, "telephon": 79, "diaper": 79, "watch": 79, "dine": 79, "dishcloth": 79, "dishwash": 79, "disc": 79, "brake": 79, "dock": 79, "sled": 79, "dome": 79, "doormat": 79, "drill": 79, "rig": 79, "drum": 79, "drumstick": 79, "dumbbel": 79, "dutch": 79, "oven": 79, "fan": 79, "locomot": 79, "entertain": 79, "center": 79, "envelop": 79, "espresso": 79, "powder": 79, "feather": 79, "fireboat": 79, "engin": [79, 90], "screen": 79, "sheet": 79, "flagpol": 79, "flute": 79, "footbal": 79, "forklift": 79, "fountain": 79, "poster": 79, "freight": 79, "fry": 79, "pan": 79, "fur": 79, "garbag": 79, "ga": 79, "pump": 79, "goblet": 79, "kart": 79, "golf": 79, "cart": 79, "gondola": 79, "gong": 79, "grand": 79, "piano": 79, "greenhous": 79, "grill": 79, "groceri": 79, "guillotin": 79, "barrett": 79, "hair": 79, "sprai": 79, "hammer": 79, "dryer": 79, "hand": [79, 82], "handkerchief": 79, "drive": 79, "harmonica": 79, "harp": 79, "harvest": 79, "hatchet": 79, "holster": 79, "honeycomb": 79, "hoop": 79, "skirt": 79, "horizont": 79, "bar": 79, "hors": [79, 87, 92], "drawn": 79, "hourglass": 79, "ipod": 79, "cloth": 79, "iron": 79, "jack": 79, "lantern": 79, "jean": 79, "jeep": 79, "shirt": [79, 81], "jigsaw": 79, "puzzl": 79, "pull": 79, "rickshaw": 79, "joystick": 79, "kimono": 79, "knee": 79, "pad": 79, "knot": 79, "ladl": 79, "lampshad": 79, "laptop": 79, "lawn": 79, "mower": 79, "knife": 79, "lifeboat": 79, "lighter": 79, "limousin": 79, "ocean": 79, "liner": 79, "lipstick": 79, "slip": 79, "shoe": 79, "lotion": 79, "speaker": 79, "loup": 79, "sawmil": 79, "magnet": 79, "compass": 79, "bag": [79, 81, 87, 88], "mailbox": 79, "tight": 79, "tank": 79, "manhol": 79, "maraca": 79, "marimba": 79, "maypol": 79, "maze": 79, "cup": [79, 86], "medicin": 79, "megalith": 79, "microphon": 79, "microwav": 79, "milk": 79, "minibu": 79, "miniskirt": 79, "minivan": 79, "missil": 79, "mitten": 79, "mix": 79, "bowl": 79, "modem": 79, "monasteri": 79, "monitor": 79, "mope": 79, "mortar": 79, "mosqu": 79, "mosquito": 79, "scooter": 79, "bike": 79, "tent": 79, "mous": [79, 80], "mousetrap": 79, "van": 79, "muzzl": 79, "nail": 79, "brace": 79, "necklac": 79, "nippl": 79, "obelisk": 79, "obo": 79, "ocarina": 79, "odomet": 79, "oil": 79, "oscilloscop": 79, "overskirt": 79, "bullock": 79, "oxygen": 79, "packet": 79, "paddl": 79, "padlock": 79, "paintbrush": 79, "pajama": 79, "palac": [79, 93], "parachut": 79, "park": 79, "bench": 79, "meter": 79, "passeng": 79, "patio": 79, "payphon": 79, "pedest": 79, "pencil": 79, "perfum": 79, "petri": 79, "dish": 79, "photocopi": 79, "plectrum": 79, "pickelhaub": 79, "picket": 79, "pickup": 79, "pier": 79, "piggi": 79, "pill": 79, "pillow": 79, "ping": 79, "pong": 79, "pinwheel": 79, "pirat": 79, "pitcher": 79, "plane": 79, "planetarium": 79, "plastic": 79, "plate": 79, "rack": 79, "plow": 79, "plunger": 79, "polaroid": 79, "camera": 79, "pole": [79, 90], "polic": 79, "poncho": 79, "billiard": 79, "soda": 79, "potter": 79, "prayer": 79, "rug": 79, "printer": 79, "prison": 79, "projectil": 79, "projector": 79, "hockei": 79, "puck": 79, "punch": 79, "purs": 79, "quill": 79, "quilt": 79, "race": 79, "racket": 79, "radiat": 79, "radio": 79, "telescop": 79, "rain": 79, "recreat": 79, "reel": 79, "reflex": 79, "refriger": 79, "remot": 79, "restaur": 79, "revolv": 79, "rotisseri": 79, "eras": 79, "rugbi": 79, "ruler": 79, "safe": 79, "safeti": 79, "salt": 79, "sandal": [79, 81], "sarong": 79, "saxophon": 79, "scabbard": 79, "school": 79, "bu": [79, 90], "schooner": 79, "scoreboard": 79, "crt": 79, "screw": 79, "screwdriv": 79, "seat": 79, "belt": 79, "sew": 79, "shield": 79, "shoji": 79, "basket": 79, "shovel": 79, "shower": 79, "curtain": 79, "ski": 79, "sleep": 79, "door": 79, "slot": 79, "snorkel": 79, "snowmobil": 79, "snowplow": 79, "soap": 79, "dispens": 79, "soccer": [79, 93], "sock": 79, "solar": 79, "thermal": 79, "collector": 79, "sombrero": 79, "soup": 79, "heater": 79, "shuttl": 79, "spatula": 79, "motorboat": 79, "web": 79, "spindl": 79, "sport": [79, 93], "spotlight": 79, "stage": 79, "steam": 79, "arch": 79, "bridg": 79, "steel": 79, "stethoscop": 79, "scarf": 79, "stone": 79, "wall": [79, 90], "stopwatch": 79, "stove": 79, "strainer": 79, "tram": 79, "stretcher": 79, "couch": 79, "stupa": 79, "submarin": 79, "sundial": 79, "sunglass": 79, "sunscreen": 79, "suspens": 79, "mop": 79, "sweatshirt": 79, "swimsuit": 79, "swing": 79, "switch": 79, "syring": 79, "lamp": 79, "tape": 79, "teapot": 79, "teddi": 79, "televis": [79, 93], "tenni": 79, "thatch": 79, "roof": 79, "front": 79, "thimbl": 79, "thresh": 79, "throne": 79, "tile": 79, "toaster": 79, "tobacco": 79, "toilet": 79, "totem": 79, "tow": 79, "tractor": 79, "semi": 79, "trailer": 79, "trai": 79, "trench": 79, "tricycl": 79, "trimaran": 79, "tripod": 79, "triumphal": 79, "trolleybu": 79, "trombon": 79, "tub": 79, "turnstil": 79, "typewrit": 79, "umbrella": 79, "unicycl": 79, "upright": 79, "vacuum": 79, "cleaner": 79, "vase": 79, "vault": 79, "velvet": 79, "vend": 79, "vestment": 79, "viaduct": 79, "violin": 79, "volleybal": 79, "waffl": 79, "wallet": 79, "wardrob": 79, "sink": 79, "wash": 79, "jug": 79, "tower": 79, "whiskei": 79, "whistl": 79, "wig": 79, "shade": [79, 90], "windsor": 79, "wine": 79, "wok": 79, "wooden": 79, "spoon": 79, "wool": 79, "rail": 79, "shipwreck": 79, "yawl": 79, "yurt": 79, "websit": 79, "comic": 79, "book": 79, "crossword": 79, "traffic": [79, 86, 90], "sign": [79, 90, 93], "dust": 79, "jacket": [79, 86], "menu": 79, "guacamol": 79, "consomm": 79, "trifl": 79, "ic": 79, "cream": 79, "pop": 79, "baguett": 79, "bagel": 79, "pretzel": 79, "cheeseburg": 79, "mash": 79, "potato": 79, "cabbag": 79, "broccoli": 79, "cauliflow": 79, "zucchini": 79, "spaghetti": 79, "squash": 79, "acorn": 79, "butternut": 79, "artichok": 79, "pepper": 79, "cardoon": 79, "mushroom": 79, "granni": 79, "smith": 79, "strawberri": 79, "orang": 79, "lemon": 79, "pineappl": 79, "banana": 79, "jackfruit": 79, "custard": 79, "appl": 79, "pomegran": 79, "hai": 79, "carbonara": 79, "chocol": 79, "syrup": 79, "dough": 79, "meatloaf": 79, "pizza": 79, "pie": 79, "burrito": 79, "eggnog": 79, "alp": 79, "bubbl": 79, "reef": 79, "geyser": 79, "lakeshor": 79, "promontori": 79, "shoal": 79, "seashor": 79, "vallei": 79, "volcano": 79, "bridegroom": 79, "scuba": 79, "diver": 79, "rapese": 79, "daisi": 79, "ladi": 79, "slipper": 79, "corn": 79, "rose": 79, "hip": 79, "chestnut": 79, "fungu": 79, "agar": 79, "gyromitra": 79, "stinkhorn": 79, "earth": 79, "star": 79, "wood": 79, "bolet": 79, "ear": 79, "cifar10_test_set": 79, "airplan": [79, 87], "automobil": [79, 87], "deer": [79, 87], "cifar100_test_set": 79, "aquarium_fish": 79, "babi": 79, "boi": 79, "camel": 79, "caterpillar": 79, "cattl": [79, 93], "cloud": 79, "dinosaur": 79, "dolphin": 79, "flatfish": 79, "forest": 79, "girl": 79, "kangaroo": 79, "lawn_mow": 79, "man": 79, "maple_tre": 79, "motorcycl": [79, 90], "oak_tre": 79, "orchid": 79, "palm_tre": 79, "pear": 79, "pickup_truck": 79, "pine_tre": 79, "plain": 79, "poppi": 79, "possum": 79, "raccoon": 79, "road": [79, 90], "rocket": 79, "seal": 79, "shrew": 79, "skyscrap": 79, "streetcar": 79, "sunflow": 79, "sweet_pepp": 79, "trout": 79, "tulip": 79, "willow_tre": 79, "woman": [79, 86], "caltech256": 79, "ak47": 79, "bat": 79, "glove": 79, "birdbath": 79, "blimp": 79, "bonsai": 79, "boom": 79, "breadmak": 79, "buddha": 79, "bulldoz": 79, "cactu": 79, "cake": 79, "tire": 79, "cartman": 79, "cereal": 79, "chandeli": 79, "chess": 79, "board": 79, "chimp": 79, "chopstick": 79, "coffin": 79, "coin": 79, "comet": 79, "cormor": 79, "globe": 79, "diamond": 79, "dice": 79, "doorknob": 79, "drink": 79, "straw": 79, "dumb": 79, "eiffel": 79, "elk": 79, "ewer": 79, "eyeglass": 79, "fern": 79, "fighter": 79, "jet": [79, 89], "extinguish": 79, "hydrant": 79, "firework": 79, "flashlight": 79, "floppi": 79, "fri": 79, "frisbe": 79, "galaxi": 79, "giraff": 79, "goat": 79, "gate": 79, "grape": 79, "pick": [79, 80], "hamburg": 79, "hammock": 79, "harpsichord": 79, "hawksbil": 79, "helicopt": 79, "hibiscu": 79, "homer": 79, "simpson": 79, "horsesho": 79, "air": 79, "skeleton": 79, "ibi": 79, "cone": 79, "iri": 79, "jesu": 79, "christ": 79, "joi": 79, "kayak": 79, "ketch": 79, "ladder": 79, "lath": 79, "licens": 79, "lightbulb": 79, "lightn": 79, "mandolin": 79, "mar": 79, "mattress": 79, "megaphon": 79, "menorah": 79, "microscop": 79, "minaret": 79, "minotaur": 79, "motorbik": 79, "mussel": 79, "neckti": 79, "octopu": 79, "palm": 79, "pilot": 79, "paperclip": 79, "shredder": 79, "pci": 79, "peopl": [79, 86], "pez": 79, "picnic": 79, "pram": 79, "prai": 79, "pyramid": 79, "rainbow": 79, "roulett": 79, "saddl": 79, "saturn": 79, "segwai": 79, "propel": 79, "sextant": 79, "music": 79, "skateboard": 79, "smokestack": 79, "sneaker": 79, "boat": 79, "stain": 79, "steer": 79, "stirrup": 79, "superman": 79, "sushi": 79, "armi": [79, 93], "sword": 79, "tambourin": 79, "teepe": 79, "court": 79, "theodolit": 79, "tomato": 79, "tombston": 79, "tour": 79, "pisa": 79, "treadmil": 79, "fork": 79, "tweezer": 79, "unicorn": 79, "vcr": 79, "waterfal": 79, "watermelon": 79, "weld": 79, "windmil": 79, "xylophon": 79, "yarmulk": 79, "yo": 79, "toad": 79, "twenty_news_test_set": 79, "alt": 79, "atheism": 79, "comp": 79, "graphic": [79, 90], "misc": [79, 93], "sy": 79, "ibm": 79, "pc": 79, "hardwar": 79, "mac": 79, "forsal": 79, "rec": 79, "sci": 79, "crypt": 79, "electron": 79, "med": 79, "soc": 79, "religion": 79, "christian": [79, 93], "talk": [79, 93], "polit": 79, "gun": 79, "mideast": 79, "amazon": 79, "neutral": 79, "imdb_test_set": 79, "all_class": 79, "20news_test_set": 79, "_load_classes_predprobs_label": 79, "dataset_nam": 79, "labelerror": 79, "url_bas": 79, "5392f6c71473055060be3044becdde1cbc18284d": 79, "url_label": 79, "original_test_label": 79, "_original_label": 79, "url_prob": 79, "cross_validated_predicted_prob": 79, "_pyx": 79, "num_part": 79, "datatset": 79, "bytesio": 79, "allow_pickl": 79, "pred_probs_part": 79, "url": 79, "_of_": 79, "nload": 79, "imdb": 79, "ve": [79, 80, 82, 84, 86], "interpret": [79, 80, 82], "capit": 79, "29780": 79, "256": [79, 80, 86], "780": 79, "medic": [79, 93], "doctor": 79, "254": [79, 86], "359223": 79, "640777": 79, "184": [79, 82], "258427": 79, "341176": 79, "263158": 79, "658824": 79, "337349": 79, "246575": 79, "662651": 79, "248": 79, "330000": 79, "355769": 79, "670000": 79, "251": [79, 86], "167": [79, 82, 86], "252": 79, "112": 79, "253": [79, 86], "022989": 79, "255": [79, 81], "049505": 79, "190": [79, 82, 86], "66": [79, 81, 90], "002216": 79, "000974": 79, "59": [79, 81, 86, 90], "88": [79, 81, 82, 85, 86, 89, 90], "000873": 79, "000739": 79, "79": [79, 86, 90, 91], "32635": 79, "32636": 79, "47": [79, 81, 86, 90], "32637": 79, "32638": 79, "32639": 79, "32640": 79, "051": 79, "002242": 79, "997758": 79, "002088": 79, "001045": 79, "997912": 79, "002053": 79, "997947": 79, "001980": 79, "000991": 79, "998020": 79, "001946": 79, "002915": 79, "998054": 79, "001938": 79, "002904": 79, "998062": 79, "001020": 79, "998980": 79, "001018": 79, "002035": 79, "998982": 79, "999009": 79, "0003": 79, "0002": 79, "36": [79, 90, 93], "44": [79, 85, 86, 90], "71": [79, 82, 86, 90], "071": 79, "067269": 79, "929": 79, "046": 79, "058243": 79, "954": 79, "035": 79, "032096": 79, "965": 79, "031": 79, "012232": 79, "969": 79, "022": 79, "025896": 79, "978": 79, "020": [79, 82], "013092": 79, "018": 79, "013065": 79, "016": 79, "030542": 79, "984": 79, "013": 79, "020833": 79, "987": 79, "012": 79, "010020": 79, "988": 79, "0073": 79, "0020": 79, "0016": 79, "0015": 79, "0013": 79, "0012": 79, "0010": 79, "0008": 79, "0007": 79, "0006": 79, "0005": 79, "0004": 79, "244": [79, 86], "98": [79, 80, 89, 90], "452381": 79, "459770": 79, "72": [79, 82, 85, 89, 90], "523364": 79, "460784": 79, "446602": 79, "57": [79, 81, 82, 90], "68": [79, 81, 82, 86, 90, 91], "103774": 79, "030612": 79, "97": [79, 80, 82, 86, 89, 90, 91, 93], "110092": 79, "049020": 79, "99": [79, 82, 90, 91], "0034": 79, "0032": 79, "0026": 79, "0025": 79, "4945": 79, "4946": 79, "4947": 79, "4948": 79, "4949": 79, "4950": 79, "846": 79, "82": [79, 81, 82, 86, 90], "7532": 79, "532": 79, "034483": 79, "009646": 79, "965517": 79, "030457": 79, "020513": 79, "969543": 79, "028061": 79, "035443": 79, "971939": 79, "025316": 79, "005168": 79, "974684": 79, "049751": 79, "979487": 79, "019920": 79, "042802": 79, "980080": 79, "017677": 79, "005115": 79, "982323": 79, "012987": 79, "005236": 79, "987013": 79, "012723": 79, "025126": 79, "987277": 79, "010989": 79, "008264": 79, "989011": 79, "010283": 79, "027778": 79, "989717": 79, "009677": 79, "990323": 79, "007614": 79, "010127": 79, "992386": 79, "005051": 79, "994949": 79, "005025": 79, "994975": 79, "005013": 79, "994987": 79, "001859": 79, "001328": 79, "000929": 79, "000664": 79, "186": [79, 82], "188": [79, 82, 85], "189": [79, 82], "snippet": 80, "nlp": [80, 93], "mind": [80, 82], "number_of_class": 80, "total_number_of_data_point": 80, "drop": [80, 84, 89, 92], "feed": 80, "alphabet": 80, "labels_proper_format": 80, "your_classifi": 80, "issues_datafram": 80, "class_predicted_for_flagged_exampl": 80, "class_predicted_for_all_exampl": 80, "grant": 80, "datataset": 80, "fair": [80, 82], "game": 80, "speedup": [80, 87], "flexibl": 80, "tempfil": 80, "mkdtemp": 80, "sped": 80, "anywai": 80, "pred_probs_merg": 80, "merge_rare_class": 80, "count_threshold": 80, "class_mapping_orig2new": 80, "heath_summari": 80, "num_examples_per_class": 80, "rare_class": 80, "num_classes_merg": 80, "other_class": 80, "labels_merg": 80, "new_c": 80, "merged_prob": 80, "hstack": [80, 81, 82, 84], "new_class": 80, "original_class": 80, "num_check": 80, "ones_array_ref": 80, "isclos": 80, "though": [80, 82, 93], "successfulli": 80, "meaning": [80, 87], "virtuou": [80, 84], "cycl": [80, 84], "jointli": 80, "junk": 80, "clutter": 80, "unknown": 80, "caltech": 80, "combined_boolean_mask": 80, "mask1": 80, "mask2": 80, "gradientboostingclassifi": [80, 82], "true_error": [80, 82, 85], "101": [80, 86], "102": [80, 85, 86], "104": [80, 82, 86], "model_to_find_error": 80, "model_to_return": 80, "cl0": 80, "randomizedsearchcv": 80, "expens": 80, "param_distribut": 80, "learning_r": [80, 82], "max_depth": [80, 82], "magnitud": 80, "coeffici": [80, 89], "optin": 80, "environ": [80, 82], "rerun": [80, 82], "cell": [80, 82], "On": [80, 82, 86], "unabl": [80, 82], "render": [80, 82], "nbviewer": [80, 82], "cleanlearningcleanlearn": [80, 82], "linearregressionlinearregress": 80, "n_init": 80, "fit_predict": 80, "continuous_column": 80, "categorical_column": 80, "data_df": 80, "feature_a": 80, "feature_b": 80, "unexpectedli": 80, "emphas": 80, "especi": [80, 81, 89, 91, 92], "crucial": 80, "merge_duplicate_set": 80, "merge_kei": 80, "construct_group_kei": 80, "merged_set": 80, "consolidate_set": 80, "tolist": [80, 85], "issubset": 80, "frozenset": 80, "sets_list": 80, "mutabl": 80, "new_set": 80, "current_set": 80, "intersecting_set": 80, "lowest_score_strategi": 80, "sub_df": 80, "idxmin": 80, "filter_near_dupl": 80, "strategy_fn": 80, "strategy_kwarg": 80, "duplicate_row": 80, "group_kei": 80, "to_keep_indic": 80, "groupbi": 80, "explod": 80, "to_remov": 80, "isin": [80, 87], "kept": 80, "near_duplicate_issu": [80, 81], "ids_to_remove_seri": 80, "assist": 80, "streamlin": 80, "ux": 80, "agpl": 80, "compani": 80, "commerci": 80, "alter": 80, "email": 80, "discuss": 80, "anywher": 80, "profession": 80, "expert": 80, "60": [81, 82, 90], "excess": 81, "torchvis": [81, 87], "tensordataset": 81, "stratifiedkfold": [81, 85], "tqdm": 81, "fashion_mnist": 81, "num_row": 81, "60000": 81, "pil": 81, "transformed_dataset": 81, "with_format": 81, "unsqueez": 81, "cpu_count": 81, "torch_dataset": 81, "quick": [81, 85], "relu": 81, "batchnorm2d": 81, "maxpool2d": 81, "lazylinear": 81, "flatten": 81, "get_test_accuraci": 81, "testload": [81, 87], "energi": 81, "trainload": [81, 87], "n_epoch": 81, "patienc": 81, "criterion": 81, "crossentropyloss": 81, "adamw": 81, "best_test_accuraci": 81, "start_epoch": 81, "running_loss": 81, "best_epoch": 81, "end_epoch": 81, "3f": [81, 89], "acc": [81, 82], "time_taken": 81, "compute_embed": 81, "compute_pred_prob": 81, "train_batch_s": 81, "num_work": 81, "worker": [81, 93], "train_id_list": 81, "test_id_list": 81, "train_id": 81, "test_id": 81, "embeddings_model": 81, "ntrain": 81, "trainset": 81, "testset": 81, "pin_memori": 81, "fold_embed": 81, "fold_pred_prob": 81, "finish": 81, "483": 81, "835": 81, "674": 81, "331": 81, "310": 81, "384": 81, "stderr": [81, 90], "sphinxverbatim": [81, 90, 93], "84it": [81, 90], "55it": [81, 90], "60it": [81, 90], "59it": [81, 90], "91it": [81, 90], "51it": [81, 90], "92it": [81, 90], "75it": [81, 90], "96it": [81, 90], "98it": [81, 90], "85": [81, 86, 89, 90], "69": [81, 82, 89, 90], "76it": [81, 90], "52it": [81, 90], "492": 81, "085": 81, "606": 81, "290": [81, 86], "416": 81, "40it": [81, 90], "46it": [81, 90], "29it": [81, 90], "62": [81, 82, 86, 89, 90], "63": [81, 82, 86, 90], "62it": [81, 90], "01it": 81, "37it": [81, 90], "72it": [81, 90], "03it": [81, 90], "19it": [81, 90], "35it": [81, 90], "14it": [81, 90], "476": 81, "305": [81, 89], "563": 81, "328": [81, 86], "335": 81, "317": [81, 86], "06it": [81, 90], "50it": [81, 90], "48it": [81, 90], "80it": [81, 90], "53it": [81, 90], "64it": [81, 90], "87it": 81, "73it": [81, 90], "44it": [81, 90], "reorder": 81, "vision": 81, "grayscal": 81, "exce": 81, "max_preval": 81, "7620": 81, "3692": 81, "3521": 81, "225": [81, 85], "166": 81, "9661": 81, "40378": 81, "687452": 81, "54473": 81, "705050": 81, "29412": 81, "715470": 81, "25316": 81, "716273": 81, "52247": 81, "725283": 81, "9581": 81, "19228": 81, "dress": 81, "54078": 81, "000010": 81, "pullov": 81, "32657": 81, "21282": 81, "000011": 81, "11262": 81, "000014": 81, "6294": 81, "30659": 81, "000798": 81, "30968": 81, "000015": 81, "258": 81, "000907": 81, "9762": 81, "54565": 81, "47139": 81, "000017": 81, "001423": 81, "000026": 81, "39992": 81, "39993": 81, "39994": 81, "39995": 81, "7834": 81, "42819": 81, "629362": 81, "51431": 81, "654330": 81, "55548": 81, "658364": 81, "51191": 81, "668572": 81, "50081": 81, "669703": 81, "7834321613629787": 81, "13732": 81, "13733": 81, "13734": 81, "47635": 81, "110901": 81, "974390": 81, "998733": 81, "937117": 81, "998755": 81, "53564": 81, "5473": 81, "trouser": 81, "plot_label_issue_exampl": 81, "ncol": [81, 87], "nrow": [81, 87], "ceil": 81, "axes_list": 81, "label_issue_indic": 81, "gl": 81, "sl": 81, "fontdict": 81, "imshow": [81, 87], "cmap": [81, 89], "grai": 81, "subplots_adjust": 81, "hspace": 81, "outsiz": 81, "outlier_issues_df": 81, "depict": [81, 85, 86, 87, 88, 90], "plot_outlier_issues_exampl": 81, "n_comparison_imag": 81, "sample_from_class": 81, "number_of_sampl": 81, "non_outlier_indic": 81, "isnul": 81, "non_outlier_indices_excluding_curr": 81, "sampled_indic": 81, "label_scores_of_sampl": 81, "top_score_indic": 81, "top_label_indic": 81, "sampled_imag": 81, "get_image_given_label_and_sampl": 81, "image_from_dataset": 81, "corresponding_label": 81, "comparison_imag": 81, "images_to_plot": 81, "idlist": 81, "iterrow": 81, "closest": 81, "counterpart": 81, "near_duplicate_issues_df": 81, "plot_near_duplicate_issue_exampl": 81, "seen_id_pair": 81, "get_image_and_given_label_and_predicted_label": 81, "duplicate_imag": 81, "nd_set": 81, "challeng": 81, "dark_issu": 81, "reveal": [81, 90], "dark_scor": 81, "dark_issues_df": 81, "is_dark_issu": 81, "34848": 81, "203922": 81, "50270": 81, "204588": 81, "3936": 81, "213098": 81, "733": 81, "217686": 81, "8094": 81, "230118": 81, "plot_image_issue_exampl": 81, "difficult": 81, "disproportion": 81, "lowinfo_issu": 81, "low_information_scor": 81, "lowinfo_issues_df": 81, "is_low_information_issu": 81, "53050": 81, "067975": 81, "40875": 81, "089929": 81, "9594": 81, "092601": 81, "34825": 81, "107744": 81, "37530": 81, "108516": 81, "lot": 81, "depth": 82, "survei": [82, 93], "focus": [82, 84], "scienc": 82, "multivariate_norm": [82, 84, 85], "make_data": [82, 84], "cov": [82, 84, 85], "avg_trac": [82, 85], "test_label": [82, 85, 87, 92], "py_tru": 82, "noise_matrix_tru": 82, "noise_marix": 82, "s_test": 82, "noisy_test_label": 82, "purpl": 82, "val": 82, "namespac": 82, "exec": 82, "markerfacecolor": [82, 85], "markeredgecolor": [82, 85, 89], "markers": [82, 85, 89], "markeredgewidth": [82, 85, 89], "realist": 82, "7560": 82, "638483e": 82, "897052e": 82, "548986e": 82, "924634e": 82, "374580e": 82, "4643": 82, "050286": 82, "065420": 82, "249": [82, 86], "109420": 82, "111687": 82, "115403": 82, "6120": 82, "023714": 82, "007136": 82, "119": [82, 86], "107266": 82, "103": [82, 86], "033738": 82, "238": [82, 86], "119505": 82, "236": [82, 86], "037843": 82, "222": 82, "614915": 82, "122": [82, 86], "624422": 82, "625965": 82, "626079": 82, "118": 82, "627675": 82, "158": 82, "159": [82, 85, 86], "161": 82, "1960": 82, "196": [82, 86], "223": [82, 86], "221": 82, "219": [82, 86], "695174": 82, "323529": 82, "522929": 82, "013722": 82, "675606": 82, "646438": 82, "anyth": 82, "enhanc": [82, 84, 86], "magic": 82, "83": [82, 86, 89, 90, 91, 93], "liter": 82, "identif": 82, "x27": 82, "logisticregressionlogisticregress": 82, "ever": 82, "092": 82, "040": 82, "024": 82, "004": 82, "surpris": 82, "arxiv": 82, "ab": 82, "1705": 82, "01936": 82, "ton": 82, "yourfavoritemodel1": 82, "merged_label": 82, "merged_test_label": 82, "newli": [82, 84], "yourfavoritemodel2": 82, "yourfavoritemodel3": 82, "cl3": 82, "takeawai": 82, "That": [82, 85], "randomli": 82, "my_test_pred_prob": 82, "my_test_pr": 82, "issues_test": 82, "corrected_test_label": 82, "pretend": 82, "cl_test_pr": 82, "fairli": 82, "label_acc": 82, "percentag": 82, "offset": 82, "nquestion": 82, "overestim": 82, "answer": 82, "experienc": 82, "06": [82, 86, 90, 93], "76": [82, 85, 86, 89, 90, 91], "knowledg": 82, "quantiti": [82, 89], "prioiri": 82, "known": 82, "versatil": 82, "label_issues_indic": 82, "213": [82, 86], "212": [82, 91], "218": [82, 86], "152": 82, "197": [82, 86], "170": 82, "214": 82, "164": [82, 85, 93], "198": [82, 86], "191": [82, 86], "121": [82, 92], "117": [82, 89], "206": [82, 86], "115": [82, 86, 93], "193": 82, "194": 82, "201": [82, 86], "174": 82, "163": 82, "150": [82, 84, 86], "169": 82, "151": [82, 86], "168": 82, "precision_scor": 82, "recall_scor": 82, "f1_score": 82, "true_label_issu": 82, "filter_by_list": 82, "718750": [82, 84], "807018": 82, "912": 82, "733333": 82, "800000": 82, "721311": 82, "792793": 82, "908": 82, "676923": 82, "765217": 82, "892": 82, "567901": 82, "702290": 82, "844": 82, "gaug": 82, "label_issues_count": 82, "155": [82, 86], "172": [82, 85], "easiest": 82, "modular": 82, "penalti": 82, "l2": 82, "model3": 82, "n_estim": 82, "cv_pred_probs_1": 82, "cv_pred_probs_2": 82, "cv_pred_probs_3": 82, "label_quality_scores_best": 82, "cv_pred_probs_ensembl": 82, "label_quality_scores_bett": 82, "superior": [82, 88], "workflow": [83, 89], "speechbrain": 83, "timm": 83, "glad": 84, "multiannotator_label": 84, "noisier": 84, "111": [84, 89], "local_data": [84, 85], "true_labels_train": [84, 85], "noise_matrix_bett": 84, "noise_matrix_wors": 84, "transpos": [84, 87], "dropna": 84, "zfill": 84, "row_na_check": 84, "notna": 84, "reset_index": 84, "a0001": 84, "a0002": 84, "a0003": 84, "a0004": 84, "a0005": 84, "a0006": 84, "a0007": 84, "a0008": 84, "a0009": 84, "a0010": 84, "a0041": 84, "a0042": 84, "a0043": 84, "a0044": 84, "a0045": 84, "a0046": 84, "a0047": 84, "a0048": 84, "a0049": 84, "a0050": 84, "60856743": 84, "41693214": 84, "40908785": 84, "87147629": 84, "64941785": 84, "10774851": 84, "0524466": 84, "71853246": 84, "37169848": 84, "66031048": 84, "multiannotator_util": 84, "crude": 84, "straight": 84, "majority_vote_label": 84, "736157": 84, "757738": 84, "782255": 84, "715585": 84, "824273": 84, "quality_annotator_a0001": 84, "quality_annotator_a0002": 84, "quality_annotator_a0003": 84, "quality_annotator_a0004": 84, "quality_annotator_a0005": 84, "quality_annotator_a0006": 84, "quality_annotator_a0007": 84, "quality_annotator_a0008": 84, "quality_annotator_a0009": 84, "quality_annotator_a0010": 84, "quality_annotator_a0041": 84, "quality_annotator_a0042": 84, "quality_annotator_a0043": 84, "quality_annotator_a0044": 84, "quality_annotator_a0045": 84, "quality_annotator_a0046": 84, "quality_annotator_a0047": 84, "quality_annotator_a0048": 84, "quality_annotator_a0049": 84, "quality_annotator_a0050": 84, "070551": 84, "216064": 84, "119178": 84, "alongisd": 84, "244982": 84, "208333": 84, "295978": 84, "294118": 84, "324194": 84, "310345": 84, "355315": 84, "346154": 84, "439728": 84, "480000": 84, "a0031": 84, "523205": 84, "580645": 84, "a0034": 84, "535313": 84, "607143": 84, "a0021": 84, "607002": 84, "a0015": 84, "609527": 84, "678571": 84, "a0011": 84, "621101": 84, "692308": 84, "wors": 84, "improved_consensus_label": 84, "majority_vote_accuraci": 84, "cleanlab_label_accuraci": 84, "8581081081081081": 84, "9797297297297297": 84, "besid": 84, "sorted_consensus_quality_scor": 84, "worst_qual": 84, "better_qu": 84, "worst_quality_accuraci": 84, "better_quality_accuraci": 84, "9893238434163701": 84, "improved_pred_prob": 84, "treat": [84, 85, 89, 93], "analzi": 84, "copyright": 85, "advertis": 85, "violenc": 85, "nsfw": 85, "ranked_label_issu": [85, 91, 92], "multioutput": 85, "multioutputclassifi": 85, "celeba": 85, "make_multilabel_data": 85, "boxes_coordin": 85, "box_multilabel": 85, "make_multi": 85, "bx1": 85, "by1": 85, "bx2": 85, "by2": 85, "label_list": 85, "ur": 85, "upper": 85, "inidx": 85, "logical_and": 85, "inv_d": 85, "labels_idx": 85, "true_labels_test": 85, "dict_unique_label": 85, "get_color_arrai": 85, "dcolor": 85, "aa4400": 85, "55227f": 85, "55a100": 85, "00ff00": 85, "007f7f": 85, "386b55": 85, "0000ff": 85, "simplic": 85, "advis": 85, "y_onehot": 85, "single_class_label": 85, "stratifi": [85, 88], "kf": 85, "train_index": 85, "test_index": 85, "clf_cv": 85, "x_train_cv": 85, "x_test_cv": 85, "y_train_cv": 85, "y_test_cv": 85, "y_pred_cv": 85, "saw": 85, "num_to_displai": 85, "09": [85, 86, 90], "275": 85, "267": 85, "171": 85, "234": 85, "165": 85, "227": [85, 86], "262": [85, 86], "263": [85, 86], "266": [85, 86], "139": 85, "143": [85, 86], "216": [85, 86, 93], "265": 85, "despit": [85, 93], "suspect": 85, "888": 85, "8224": 85, "9632": 85, "968": 85, "6512": 85, "0444": 85, "774": 85, "labels_binary_format": 85, "labels_list_format": 85, "surround": 86, "scene": 86, "coco": 86, "everydai": 86, "has_label_issu": 86, "insal": 86, "nc": [86, 90, 93], "s3": [86, 90, 93], "amazonaw": [86, 90, 93], "objectdetectionbenchmark": 86, "tutorial_obj": 86, "pkl": 86, "example_imag": 86, "unzip": [86, 93], "begin": 86, "detectron2": 86, "image_path": 86, "rb": 86, "image_to_visu": 86, "seg_map": 86, "334": 86, "float32": 86, "bboxes_ignor": 86, "286": 86, "285": 86, "224": 86, "231": 86, "293": 86, "235": 86, "289": [86, 89], "282": 86, "74": [86, 89, 90, 91], "281": 86, "271": 86, "280": 86, "277": 86, "279": 86, "287": 86, "299": 86, "276": 86, "307": 86, "321": 86, "326": 86, "333": 86, "261": 86, "319": 86, "257": 86, "295": 86, "283": 86, "243": 86, "303": 86, "316": 86, "247": [86, 93], "323": 86, "327": 86, "226": 86, "228": 86, "232": 86, "239": 86, "240": 86, "209": 86, "242": 86, "202": [86, 93], "230": 86, "215": 86, "220": 86, "229": 86, "217": 86, "237": 86, "207": 86, "204": 86, "205": 86, "153": 86, "149": 86, "140": 86, "124": 86, "268": 86, "273": 86, "108": 86, "284": 86, "110": 86, "136": 86, "145": 86, "173": 86, "297": 86, "192": 86, "329": 86, "332": 86, "324": 86, "203": 86, "320": 86, "314": 86, "199": 86, "291": 86, "000000481413": 86, "jpg": 86, "42398": 86, "44503": 86, "337": [86, 92], "29968": 86, "336": 86, "21005": 86, "9978472": 86, "forgot": 86, "drew": 86, "label_issue_idx": 86, "num_examples_to_show": 86, "113": [86, 89], "candid": 86, "97489622": 86, "70610878": 86, "98764951": 86, "88899237": 86, "99085805": 86, "issue_idx": 86, "95569726e": 86, "03354841e": 86, "57510169e": 86, "58447666e": 86, "39755858e": 86, "suppli": 86, "issue_to_visu": 86, "000000009483": 86, "95569726168054e": 86, "addition": [86, 90], "visibl": 86, "missmatch": 86, "likelei": 86, "agnost": 86, "vaidat": 86, "inconsist": 86, "000000395701": 86, "033548411774308e": 86, "armchair": 86, "tv": 86, "000000154004": 86, "38300759625496356": 86, "foreground": 86, "000000448410": 86, "0008575101690203273": 86, "crowd": 86, "alon": 86, "explor": [86, 87], "resembl": [86, 87], "contribut": 86, "000000499768": 86, "9748962231208227": 86, "000000521141": 86, "8889923658893665": 86, "000000143931": 86, "9876495074395956": 86, "train_feature_embed": 87, "ood_train_feature_scor": 87, "test_feature_embed": 87, "ood_test_feature_scor": 87, "ood_train_predictions_scor": 87, "train_pred_prob": 87, "ood_test_predictions_scor": 87, "test_pred_prob": 87, "pylab": 87, "rcparam": 87, "baggingclassifi": 87, "therebi": 87, "rescal": 87, "transform_norm": 87, "totensor": 87, "root": 87, "animal_class": 87, "non_animal_class": 87, "animal_idx": 87, "test_idx": 87, "toronto": 87, "edu": 87, "kriz": 87, "5000": 87, "plot_imag": 87, "visualize_outli": 87, "txt_class": 87, "img": [87, 89], "npimg": 87, "show_label": 87, "data_subset": 87, "resnet50": 87, "corpu": 87, "2048": 87, "embed_imag": 87, "create_model": 87, "rwightman": 87, "v0": 87, "rsb": 87, "resnet50_a1_0": 87, "14fe96d1": 87, "pth": 87, "checkpoint": 87, "strang": 87, "odd": 87, "train_ood_features_scor": 87, "top_train_ood_features_idx": 87, "fun": 87, "negat": 87, "homogen": 87, "bottom_train_ood_features_idx": 87, "test_ood_features_scor": 87, "top_ood_features_idx": 87, "inevit": 87, "trade": 87, "5th": 87, "percentil": 87, "fifth_percentil": 87, "plt_rang": 87, "hist": 87, "train_outlier_scor": 87, "ylabel": 87, "axvlin": 87, "test_outlier_scor": 87, "ood_features_indic": 87, "revisit": 87, "unusu": 87, "return_invers": 87, "train_feature_embeddings_sc": 87, "test_feature_embeddings_sc": 87, "train_pred_label": 87, "9702": 87, "train_ood_predictions_scor": 87, "test_ood_predictions_scor": 87, "mainli": [87, 93], "lost": 87, "unsuit": 88, "ok": [88, 93], "convention": 88, "aforement": 88, "hypothet": 88, "contrast": 88, "tradit": 88, "disjoint": 88, "out_of_sample_pred_probs_for_a": 88, "out_of_sample_pred_probs_for_b": 88, "out_of_sample_pred_probs_for_c": 88, "out_of_sample_pred_prob": 88, "price": 89, "incom": 89, "ag": 89, "histgradientboostingregressor": 89, "r2_score": 89, "student_grades_r": 89, "final_scor": 89, "true_final_scor": 89, "homework": 89, "3d": 89, "hue": 89, "mpl_toolkit": 89, "mplot3d": 89, "axes3d": 89, "errors_idx": 89, "add_subplot": 89, "z": 89, "colorbar": 89, "errors_mask": 89, "feature_column": 89, "predicted_column": 89, "x_train_raw": 89, "x_test_raw": 89, "categorical_featur": [89, 91], "randomforestregressor": 89, "629763": 89, "521450": 89, "954607": 89, "547234": 89, "338296": 89, "754531": 89, "619090": 89, "312295": 89, "806626": 89, "784048": 89, "identified_issu": [89, 92], "367": 89, "560": 89, "318": 89, "688": 89, "657": 89, "view_datapoint": 89, "concat": 89, "consum": [89, 92], "baseline_model": [89, 92], "preds_og": 89, "r2_og": 89, "838": 89, "robustli": [89, 91, 92], "acceler": [89, 92], "found_label_issu": 89, "preds_cl": 89, "r2_cl": 89, "925": 89, "effort": [89, 91, 92], "favorit": 89, "64404888e": 89, "06755306e": 89, "05302732e": 89, "66635743e": 89, "53166364e": 89, "synthia": 90, "imagesegment": 90, "given_mask": 90, "predicted_mask": 90, "set_printopt": [90, 93], "sky": 90, "sidewalk": 90, "veget": 90, "terrain": 90, "rider": 90, "pred_probs_filepath": 90, "1088": 90, "1920": 90, "label_filepath": 90, "synthia_class": 90, "maunal": 90, "100000": 90, "244800": 90, "leftmost": 90, "area": 90, "middl": [90, 93], "infact": 90, "rightmost": 90, "discrep": 90, "4997817": 90, "17030": 90, "170283": 90, "11it": 90, "34264": 90, "171485": 90, "88it": 90, "51459": 90, "171690": 90, "77it": 90, "68798": 90, "172355": 90, "31it": 90, "86035": 90, "172354": 90, "103290": 90, "172417": 90, "120703": 90, "172972": 90, "138001": 90, "172728": 90, "16it": 90, "155274": 90, "172330": 90, "12it": 90, "172583": 90, "172560": 90, "189950": 90, "172896": 90, "33it": 90, "207377": 90, "173308": 90, "224727": 90, "173361": 90, "26it": 90, "242162": 90, "173656": 90, "66it": 90, "259598": 90, "173865": 90, "277065": 90, "174102": 90, "294502": 90, "174179": 90, "23it": 90, "311920": 90, "173530": 90, "42it": 90, "329316": 90, "173655": 90, "30it": 90, "346687": 90, "173667": 90, "15it": 90, "364055": 90, "173627": 90, "381423": 90, "173638": 90, "78it": 90, "398834": 90, "173775": 90, "416212": 90, "173771": 90, "433590": 90, "173442": 90, "63it": 90, "451024": 90, "173705": 90, "468446": 90, "173855": 90, "02it": 90, "485832": 90, "173762": 90, "18it": 90, "503243": 90, "173861": 90, "520727": 90, "174151": 90, "56it": 90, "538143": 90, "173998": 90, "555543": 90, "173843": 90, "572928": 90, "173780": 90, "39it": 90, "590307": 90, "607678": 90, "173383": 90, "625113": 90, "173668": 90, "642500": 90, "173724": 90, "659873": 90, "173457": 90, "677219": 90, "172924": 90, "694526": 90, "172965": 90, "24it": 90, "711823": 90, "172894": 90, "79it": 90, "729176": 90, "173080": 90, "82it": 90, "746485": 90, "173034": 90, "68it": 90, "763789": 90, "172857": 90, "781271": 90, "173443": 90, "798719": 90, "173750": 90, "95it": 90, "816121": 90, "173827": 90, "43it": 90, "833504": 90, "173400": 90, "850845": 90, "167499": 90, "61it": 90, "868055": 90, "168840": 90, "885319": 90, "169955": 90, "902466": 90, "170400": 90, "94it": 90, "919525": 90, "169551": 90, "936548": 90, "169750": 90, "27it": 90, "953712": 90, "170310": 90, "970942": 90, "170900": 90, "988152": 90, "171255": 90, "1005330": 90, "171410": 90, "1022474": 90, "171375": 90, "10it": 90, "1039638": 90, "171449": 90, "1056785": 90, "170869": 90, "67it": 90, "1073989": 90, "171215": 90, "58it": 90, "1091214": 90, "171520": 90, "1108873": 90, "173035": 90, "1126178": 90, "173017": 90, "1143481": 90, "172777": 90, "34it": 90, "1160760": 90, "172497": 90, "49it": 90, "1178011": 90, "172168": 90, "93it": 90, "1195229": 90, "171842": 90, "38it": 90, "1212414": 90, "171680": 90, "1229583": 90, "171672": 90, "1246751": 90, "171577": 90, "1263909": 90, "170978": 90, "1281008": 90, "170704": 90, "1298079": 90, "170500": 90, "85it": 90, "1315214": 90, "170750": 90, "1332308": 90, "170803": 90, "1349517": 90, "171186": 90, "09it": 90, "1366636": 90, "166974": 90, "1383357": 90, "165352": 90, "54it": 90, "1400601": 90, "167432": 90, "22it": 90, "1417755": 90, "168644": 90, "1434981": 90, "169716": 90, "13it": 90, "1452216": 90, "170497": 90, "47it": 90, "1469393": 90, "170873": 90, "1486659": 90, "171405": 90, "04it": 90, "1503878": 90, "171636": 90, "21it": 90, "1521101": 90, "171810": 90, "1538285": 90, "171554": 90, "86it": 90, "1555442": 90, "171482": 90, "32it": 90, "1572592": 90, "171358": 90, "69it": 90, "1589729": 90, "171312": 90, "1606861": 90, "171261": 90, "1623988": 90, "170981": 90, "1641087": 90, "170445": 90, "1658133": 90, "170120": 90, "99it": 90, "1675146": 90, "170047": 90, "1692384": 90, "170742": 90, "41it": 90, "1709536": 90, "170970": 90, "1726634": 90, "167250": 90, "1743827": 90, "168626": 90, "1761126": 90, "169916": 90, "1778432": 90, "170847": 90, "1795743": 90, "171517": 90, "1813098": 90, "172119": 90, "1830442": 90, "172511": 90, "1847697": 90, "172177": 90, "1864918": 90, "171675": 90, "1882375": 90, "172536": 90, "1899650": 90, "172598": 90, "1916965": 90, "172759": 90, "1934403": 90, "173239": 90, "1951857": 90, "173625": 90, "1969233": 90, "173662": 90, "00it": 90, "1986600": 90, "173510": 90, "89it": 90, "2003989": 90, "173620": 90, "71it": 90, "2021352": 90, "172889": 90, "28it": 90, "2038726": 90, "173140": 90, "08it": 90, "2056041": 90, "173049": 90, "2073347": 90, "172756": 90, "2090709": 90, "173011": 90, "2108068": 90, "173181": 90, "70it": 90, "2125387": 90, "172719": 90, "2142660": 90, "172428": 90, "2159948": 90, "172559": 90, "2177205": 90, "172309": 90, "45it": 90, "2194525": 90, "172572": 90, "65it": 90, "2211921": 90, "172984": 90, "81it": 90, "2229384": 90, "173474": 90, "2246736": 90, "173484": 90, "2264085": 90, "173437": 90, "2281429": 90, "173352": 90, "2298765": 90, "173188": 90, "2316084": 90, "172913": 90, "2333554": 90, "173444": 90, "2351018": 90, "173801": 90, "2368666": 90, "174599": 90, "2386153": 90, "174676": 90, "2403645": 90, "174745": 90, "2421181": 90, "174925": 90, "2438674": 90, "174394": 90, "2456114": 90, "174173": 90, "2473532": 90, "174114": 90, "97it": 90, "2490944": 90, "74it": 90, "2508369": 90, "173973": 90, "2525845": 90, "174206": 90, "2543266": 90, "174161": 90, "2560683": 90, "174022": 90, "2578111": 90, "174097": 90, "2595521": 90, "173869": 90, "07it": 90, "2612909": 90, "173294": 90, "2630242": 90, "173299": 90, "2647637": 90, "173488": 90, "2664987": 90, "173398": 90, "2682372": 90, "173528": 90, "2699726": 90, "173257": 90, "2717059": 90, "173274": 90, "2734428": 90, "173396": 90, "2751845": 90, "2769208": 90, "173567": 90, "2786565": 90, "173300": 90, "2803896": 90, "173040": 90, "2821321": 90, "173399": 90, "2838662": 90, "172859": 90, "2855949": 90, "172569": 90, "83it": 90, "2873207": 90, "172224": 90, "2890430": 90, "172181": 90, "2907649": 90, "171902": 90, "2924840": 90, "171671": 90, "2942008": 90, "171384": 90, "2959147": 90, "170767": 90, "2976284": 90, "170944": 90, "2993383": 90, "170955": 90, "3010479": 90, "170751": 90, "3027555": 90, "169701": 90, "3044709": 90, "170245": 90, "3061914": 90, "170780": 90, "3079054": 90, "170963": 90, "3096212": 90, "171145": 90, "3113415": 90, "3130557": 90, "163730": 90, "3147711": 90, "165993": 90, "3164858": 90, "167595": 90, "36it": 90, "3182091": 90, "168989": 90, "3199280": 90, "169848": 90, "3216488": 90, "170509": 90, "3233615": 90, "170733": 90, "3250701": 90, "170719": 90, "3267782": 90, "170590": 90, "3284892": 90, "170740": 90, "17it": 90, "3301991": 90, "170812": 90, "3319326": 90, "171568": 90, "3336579": 90, "171854": 90, "3353840": 90, "172075": 90, "3371135": 90, "172332": 90, "57it": 90, "3388521": 90, "172784": 90, "3405882": 90, "173027": 90, "3423271": 90, "173281": 90, "3440656": 90, "173448": 90, "3458002": 90, "173131": 90, "3475316": 90, "173016": 90, "3492618": 90, "165765": 90, "3509821": 90, "167583": 90, "3527050": 90, "168961": 90, "3544520": 90, "170652": 90, "3561999": 90, "171875": 90, "3579426": 90, "172585": 90, "3596925": 90, "3614455": 90, "173894": 90, "3632081": 90, "174596": 90, "3649547": 90, "174498": 90, "3667092": 90, "174781": 90, "3684574": 90, "174323": 90, "3702009": 90, "174312": 90, "3719522": 90, "174553": 90, "3736979": 90, "174483": 90, "3754510": 90, "174726": 90, "3772090": 90, "175044": 90, "3789595": 90, "174949": 90, "3807095": 90, "174961": 90, "3824592": 90, "174435": 90, "3842037": 90, "166864": 90, "3859405": 90, "168839": 90, "3876822": 90, "170399": 90, "3894424": 90, "172056": 90, "3911949": 90, "172999": 90, "3929356": 90, "173315": 90, "3946836": 90, "173753": 90, "3964224": 90, "173621": 90, "3981595": 90, "173277": 90, "3998970": 90, "173415": 90, "4016316": 90, "172667": 90, "4033587": 90, "172523": 90, "4050842": 90, "172384": 90, "4068083": 90, "171361": 90, "4085389": 90, "171865": 90, "4102681": 90, "172176": 90, "4120022": 90, "172542": 90, "4137278": 90, "172439": 90, "4154574": 90, "172592": 90, "4171871": 90, "172702": 90, "4189189": 90, "172841": 90, "4206509": 90, "172945": 90, "4223872": 90, "173149": 90, "4241236": 90, "173293": 90, "4258566": 90, "172867": 90, "4275854": 90, "4293140": 90, "172477": 90, "4310389": 90, "172149": 90, "4327605": 90, "172139": 90, "4344830": 90, "172169": 90, "4362076": 90, "172251": 90, "4379302": 90, "171900": 90, "4396523": 90, "171990": 90, "4413723": 90, "171969": 90, "4430938": 90, "172020": 90, "4448169": 90, "172104": 90, "4465473": 90, "172382": 90, "4482712": 90, "172378": 90, "4499970": 90, "172434": 90, "4517217": 90, "172442": 90, "4534462": 90, "172125": 90, "4551698": 90, "172191": 90, "4568918": 90, "172049": 90, "4586146": 90, "172115": 90, "4603359": 90, "172117": 90, "4620571": 90, "172059": 90, "4637778": 90, "171793": 90, "4654966": 90, "171816": 90, "4672149": 90, "4689331": 90, "171560": 90, "20it": 90, "4706520": 90, "171657": 90, "4723686": 90, "167919": 90, "4740781": 90, "168811": 90, "4757868": 90, "169418": 90, "4774923": 90, "4791930": 90, "169843": 90, "4809039": 90, "170212": 90, "4826135": 90, "170433": 90, "4843326": 90, "170871": 90, "4860458": 90, "171002": 90, "4877647": 90, "171266": 90, "4894775": 90, "170862": 90, "4911923": 90, "171043": 90, "4929176": 90, "171486": 90, "4946356": 90, "4963515": 90, "171205": 90, "4980923": 90, "172063": 90, "172102": 90, "3263230": 90, "783379": 90, "275110": 90, "255792": 90, "78225": 90, "55990": 90, "54427": 90, "33591": 90, "24645": 90, "21308": 90, "15045": 90, "14171": 90, "13832": 90, "13498": 90, "11490": 90, "9164": 90, "8769": 90, "6999": 90, "6031": 90, "5011": 90, "mistakenli": 90, "class_issu": 90, "aim": [90, 93], "domin": 90, "extratreesclassifi": 91, "extratre": 91, "labelencod": [91, 92], "labels_raw": 91, "interg": [91, 92], "tress": 91, "827": 91, "cheat": 91, "0pt": 91, "233": 91, "labels_train": 91, "labels_test": 91, "acc_og": [91, 92], "783068783068783": 91, "acc_cl": [91, 92], "8095238095238095": 91, "earlier": [92, 93], "raw_label": 92, "raw_train_text": 92, "raw_test_text": 92, "raw_train_label": 92, "raw_test_label": 92, "encond": 92, "train_text": 92, "test_text": 92, "858050": 92, "545854": 92, "826194": 92, "965814": 92, "791923": 92, "646": 92, "390": 92, "628": 92, "702": 92, "863": 92, "135": 92, "735": 92, "print_as_df": 92, "inverse_transform": 92, "fight": 92, "bunch": 93, "conll": 93, "2003": 93, "love": 93, "n_i": 93, "optional_list_of_ordered_class_nam": 93, "deepai": 93, "conll2003": 93, "rm": 93, "tokenclassif": 93, "2024": 93, "2400": 93, "52e0": 93, "1a00": 93, "1069": 93, "connect": 93, "443": 93, "await": 93, "982975": 93, "960k": 93, "kb": 93, "959": 93, "94k": 93, "19mb": 93, "mb": 93, "directori": 93, "inflat": 93, "241": 93, "17045998": 93, "16m": 93, "octet": 93, "26m": 93, "bert": 93, "read_npz": 93, "filepath": 93, "corrsespond": 93, "iob2": 93, "given_ent": 93, "entity_map": 93, "readfil": 93, "sep": 93, "startswith": 93, "docstart": 93, "isalpha": 93, "isupp": 93, "indices_to_preview": 93, "nsentenc": 93, "eu": 93, "reject": 93, "boycott": 93, "british": 93, "lamb": 93, "00030412": 93, "00023826": 93, "99936208": 93, "00007009": 93, "00002545": 93, "99998795": 93, "00000401": 93, "00000218": 93, "00000455": 93, "00000131": 93, "00000749": 93, "99996115": 93, "00001371": 93, "0000087": 93, "00000895": 93, "99998936": 93, "00000382": 93, "00000178": 93, "00000366": 93, "00000137": 93, "99999101": 93, "00000266": 93, "00000174": 93, "0000035": 93, "00000109": 93, "99998768": 93, "00000482": 93, "00000202": 93, "00000438": 93, "0000011": 93, "00000465": 93, "99996392": 93, "00001105": 93, "0000116": 93, "00000878": 93, "99998671": 93, "00000364": 93, "00000213": 93, "00000472": 93, "00000281": 93, "99999073": 93, "00000211": 93, "00000159": 93, "00000442": 93, "00000115": 93, "peter": 93, "blackburn": 93, "00000358": 93, "00000529": 93, "99995623": 93, "000022": 93, "0000129": 93, "0000024": 93, "00001812": 93, "99994141": 93, "00001645": 93, "00002162": 93, "brussel": 93, "1996": 93, "00001172": 93, "00000821": 93, "00004661": 93, "0000618": 93, "99987167": 93, "99999061": 93, "00000201": 93, "00000195": 93, "00000408": 93, "00000135": 93, "2254": 93, "2907": 93, "19392": 93, "9962": 93, "8904": 93, "19303": 93, "12918": 93, "9256": 93, "11855": 93, "18392": 93, "20426": 93, "19402": 93, "14744": 93, "19371": 93, "4645": 93, "10331": 93, "9430": 93, "6143": 93, "18367": 93, "12914": 93, "todai": 93, "weather": 93, "march": 93, "scalfaro": 93, "northern": 93, "himself": 93, "said": 93, "germani": 93, "nastja": 93, "rysich": 93, "north": 93, "spla": 93, "fought": 93, "khartoum": 93, "govern": 93, "south": 93, "1983": 93, "autonomi": 93, "animist": 93, "region": 93, "moslem": 93, "arabis": 93, "mayor": 93, "antonio": 93, "gonzalez": 93, "garcia": 93, "revolutionari": 93, "parti": 93, "wednesdai": 93, "troop": 93, "raid": 93, "farm": 93, "stole": 93, "rape": 93, "women": 93, "spring": 93, "chg": 93, "hrw": 93, "12pct": 93, "princ": 93, "photo": 93, "moment": 93, "spokeswoman": 93, "rainier": 93, "told": 93, "reuter": 93, "danila": 93, "carib": 93, "w224": 93, "equip": 93, "radiomet": 93, "earn": 93, "19996": 93, "london": 93, "denom": 93, "sale": 93, "uk": 93, "jp": 93, "fr": 93, "maccabi": 93, "hapoel": 93, "haifa": 93, "tel": 93, "aviv": 93, "hospit": 93, "rever": 93, "roman": 93, "cathol": 93, "nun": 93, "admit": 93, "calcutta": 93, "week": 93, "ago": 93, "fever": 93, "vomit": 93, "allianc": 93, "embattl": 93, "kabul": 93, "salang": 93, "highwai": 93, "mondai": 93, "tuesdai": 93, "suprem": 93, "council": 93, "led": 93, "jumbish": 93, "milli": 93, "movement": 93, "warlord": 93, "abdul": 93, "rashid": 93, "dostum": 93, "dollar": 93, "exchang": 93, "3570": 93, "12049": 93, "born": 93, "1937": 93, "provinc": 93, "anhui": 93, "dai": 93, "came": 93, "shanghai": 93, "citi": 93, "prolif": 93, "author": 93, "teacher": 93, "chines": 93, "16764": 93, "1990": 93, "historian": 93, "alan": 93, "john": 93, "percival": 93, "taylor": 93, "di": 93, "20446": 93, "pace": 93, "bowler": 93, "ian": 93, "harvei": 93, "claim": 93, "victoria": 93, "15514": 93, "cotti": 93, "osc": 93, "foreign": 93, "minist": 93, "7525": 93, "sultan": 93, "specter": 93, "met": 93, "crown": 93, "abdullah": 93, "defenc": 93, "aviat": 93, "jeddah": 93, "saudi": 93, "agenc": 93, "2288": 93, "hi": 93, "customari": 93, "outfit": 93, "champion": 93, "damp": 93, "scalp": 93, "canada": 93, "reign": 93, "olymp": 93, "donovan": 93, "bailei": 93, "1992": 93, "linford": 93, "christi": 93, "britain": 93, "1984": 93, "1988": 93, "carl": 93, "lewi": 93, "ambigi": 93, "punctuat": 93, "chicago": 93, "digest": 93, "philadelphia": 93, "usda": 93, "york": 93, "token_issu": 93, "471": 93, "kean": 93, "year": 93, "contract": 93, "manchest": 93, "19072": 93, "societi": 93, "million": 93, "bite": 93, "deliv": 93, "19910": 93, "father": 93, "clarenc": 93, "woolmer": 93, "renam": 93, "uttar": 93, "pradesh": 93, "india": 93, "ranji": 93, "trophi": 93, "nation": 93, "championship": 93, "captain": 93, "1949": 93, "15658": 93, "19879": 93, "iii": 93, "brian": 93, "shimer": 93, "randi": 93, "jone": 93, "19104": 93}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [9, 0, 0, "-", "datalab"], [29, 0, 0, "-", "dataset"], [32, 0, 0, "-", "experimental"], [35, 0, 0, "-", "filter"], [36, 0, 0, "-", "internal"], [47, 0, 0, "-", "models"], [49, 0, 0, "-", "multiannotator"], [52, 0, 0, "-", "multilabel_classification"], [55, 0, 0, "-", "object_detection"], [58, 0, 0, "-", "outlier"], [59, 0, 0, "-", "rank"], [60, 0, 0, "-", "regression"], [64, 0, 0, "-", "segmentation"], [68, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.datalab": [[4, 0, 0, "-", "datalab"], [13, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[4, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[4, 4, 1, "", "class_names"], [4, 3, 1, "", "find_issues"], [4, 3, 1, "", "get_info"], [4, 3, 1, "", "get_issue_summary"], [4, 3, 1, "", "get_issues"], [4, 4, 1, "", "has_labels"], [4, 4, 1, "", "info"], [4, 4, 1, "", "issue_summary"], [4, 4, 1, "", "issues"], [4, 4, 1, "", "labels"], [4, 3, 1, "", "list_default_issue_types"], [4, 3, 1, "", "list_possible_issue_types"], [4, 3, 1, "", "load"], [4, 3, 1, "", "report"], [4, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[10, 0, 0, "-", "data"], [11, 0, 0, "-", "data_issues"], [14, 0, 0, "-", "issue_finder"], [12, 0, 0, "-", "issue_manager_factory"], [27, 0, 0, "-", "report"]], "cleanlab.datalab.internal.data": [[10, 2, 1, "", "Data"], [10, 5, 1, "", "DataFormatError"], [10, 5, 1, "", "DatasetDictError"], [10, 5, 1, "", "DatasetLoadError"], [10, 2, 1, "", "Label"]], "cleanlab.datalab.internal.data.Data": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[10, 6, 1, "", "args"], [10, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[10, 4, 1, "", "class_names"], [10, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[11, 2, 1, "", "DataIssues"], [11, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[11, 3, 1, "", "collect_issues_from_imagelab"], [11, 3, 1, "", "collect_issues_from_issue_manager"], [11, 3, 1, "", "collect_statistics"], [11, 3, 1, "", "get_info"], [11, 3, 1, "", "get_issue_summary"], [11, 3, 1, "", "get_issues"], [11, 6, 1, "", "info"], [11, 6, 1, "", "issue_summary"], [11, 6, 1, "", "issues"], [11, 3, 1, "", "set_health_score"], [11, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[14, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[14, 3, 1, "", "find_issues"], [14, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[16, 0, 0, "-", "duplicate"], [17, 0, 0, "-", "imbalance"], [19, 0, 0, "-", "issue_manager"], [20, 0, 0, "-", "label"], [21, 0, 0, "-", "noniid"], [22, 0, 0, "-", "null"], [23, 0, 0, "-", "outlier"], [26, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[16, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[16, 3, 1, "", "collect_info"], [16, 6, 1, "", "description"], [16, 3, 1, "", "find_issues"], [16, 6, 1, "", "info"], [16, 6, 1, "", "issue_name"], [16, 6, 1, "", "issue_score_key"], [16, 6, 1, "", "issues"], [16, 3, 1, "", "make_summary"], [16, 6, 1, "", "near_duplicate_sets"], [16, 3, 1, "", "report"], [16, 6, 1, "", "summary"], [16, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[17, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[17, 3, 1, "", "collect_info"], [17, 6, 1, "", "description"], [17, 3, 1, "", "find_issues"], [17, 6, 1, "", "info"], [17, 6, 1, "", "issue_name"], [17, 6, 1, "", "issue_score_key"], [17, 6, 1, "", "issues"], [17, 3, 1, "", "make_summary"], [17, 3, 1, "", "report"], [17, 6, 1, "", "summary"], [17, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[19, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[20, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 3, 1, "", "get_health_summary"], [20, 6, 1, "", "health_summary_parameters"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[21, 2, 1, "", "NonIIDIssueManager"], [21, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[22, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[23, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[23, 6, 1, "", "DEFAULT_THRESHOLDS"], [23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 6, 1, "", "ood"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[25, 2, 1, "", "RegressionLabelIssueManager"], [25, 1, 1, "", "find_issues_with_features"], [25, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[26, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[26, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [26, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "filter_cluster_ids"], [26, 3, 1, "", "find_issues"], [26, 3, 1, "", "get_worst_cluster"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "perform_clustering"], [26, 3, 1, "", "report"], [26, 3, 1, "", "set_knn_graph"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[12, 7, 1, "", "REGISTRY"], [12, 1, 1, "", "list_default_issue_types"], [12, 1, 1, "", "list_possible_issue_types"], [12, 1, 1, "", "register"]], "cleanlab.datalab.internal.report": [[27, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[27, 3, 1, "", "get_report"], [27, 3, 1, "", "report"]], "cleanlab.dataset": [[29, 1, 1, "", "find_overlapping_classes"], [29, 1, 1, "", "health_summary"], [29, 1, 1, "", "overall_label_health_score"], [29, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[30, 0, 0, "-", "cifar_cnn"], [31, 0, 0, "-", "coteaching"], [33, 0, 0, "-", "label_issues_batched"], [34, 0, 0, "-", "mnist_pytorch"]], "cleanlab.experimental.cifar_cnn": [[30, 2, 1, "", "CNN"], [30, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[30, 6, 1, "", "T_destination"], [30, 3, 1, "", "__call__"], [30, 3, 1, "", "add_module"], [30, 3, 1, "", "apply"], [30, 3, 1, "", "bfloat16"], [30, 3, 1, "", "buffers"], [30, 3, 1, "", "children"], [30, 3, 1, "", "cpu"], [30, 3, 1, "", "cuda"], [30, 3, 1, "", "double"], [30, 6, 1, "", "dump_patches"], [30, 3, 1, "", "eval"], [30, 3, 1, "", "extra_repr"], [30, 3, 1, "", "float"], [30, 3, 1, "id0", "forward"], [30, 3, 1, "", "get_buffer"], [30, 3, 1, "", "get_extra_state"], [30, 3, 1, "", "get_parameter"], [30, 3, 1, "", "get_submodule"], [30, 3, 1, "", "half"], [30, 3, 1, "", "ipu"], [30, 3, 1, "", "load_state_dict"], [30, 3, 1, "", "modules"], [30, 3, 1, "", "named_buffers"], [30, 3, 1, "", "named_children"], [30, 3, 1, "", "named_modules"], [30, 3, 1, "", "named_parameters"], [30, 3, 1, "", "parameters"], [30, 3, 1, "", "register_backward_hook"], [30, 3, 1, "", "register_buffer"], [30, 3, 1, "", "register_forward_hook"], [30, 3, 1, "", "register_forward_pre_hook"], [30, 3, 1, "", "register_full_backward_hook"], [30, 3, 1, "", "register_load_state_dict_post_hook"], [30, 3, 1, "", "register_module"], [30, 3, 1, "", "register_parameter"], [30, 3, 1, "", "requires_grad_"], [30, 3, 1, "", "set_extra_state"], [30, 3, 1, "", "share_memory"], [30, 3, 1, "", "state_dict"], [30, 3, 1, "", "to"], [30, 3, 1, "", "to_empty"], [30, 3, 1, "", "train"], [30, 6, 1, "", "training"], [30, 3, 1, "", "type"], [30, 3, 1, "", "xpu"], [30, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[31, 1, 1, "", "adjust_learning_rate"], [31, 1, 1, "", "evaluate"], [31, 1, 1, "", "forget_rate_scheduler"], [31, 1, 1, "", "initialize_lr_scheduler"], [31, 1, 1, "", "loss_coteaching"], [31, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[33, 2, 1, "", "LabelInspector"], [33, 7, 1, "", "adj_confident_thresholds_shared"], [33, 1, 1, "", "find_label_issues_batched"], [33, 7, 1, "", "labels_shared"], [33, 7, 1, "", "pred_probs_shared"], [33, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[33, 3, 1, "", "get_confident_thresholds"], [33, 3, 1, "", "get_label_issues"], [33, 3, 1, "", "get_num_issues"], [33, 3, 1, "", "get_quality_scores"], [33, 3, 1, "", "score_label_quality"], [33, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[34, 2, 1, "", "CNN"], [34, 2, 1, "", "SimpleNet"], [34, 1, 1, "", "get_mnist_dataset"], [34, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[34, 3, 1, "", "__init_subclass__"], [34, 6, 1, "", "batch_size"], [34, 6, 1, "", "dataset"], [34, 6, 1, "", "epochs"], [34, 3, 1, "id0", "fit"], [34, 3, 1, "", "get_metadata_routing"], [34, 3, 1, "", "get_params"], [34, 6, 1, "", "loader"], [34, 6, 1, "", "log_interval"], [34, 6, 1, "", "lr"], [34, 6, 1, "", "momentum"], [34, 6, 1, "", "no_cuda"], [34, 3, 1, "id1", "predict"], [34, 3, 1, "id4", "predict_proba"], [34, 6, 1, "", "seed"], [34, 3, 1, "", "set_fit_request"], [34, 3, 1, "", "set_params"], [34, 3, 1, "", "set_predict_proba_request"], [34, 3, 1, "", "set_predict_request"], [34, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[34, 6, 1, "", "T_destination"], [34, 3, 1, "", "__call__"], [34, 3, 1, "", "add_module"], [34, 3, 1, "", "apply"], [34, 3, 1, "", "bfloat16"], [34, 3, 1, "", "buffers"], [34, 3, 1, "", "children"], [34, 3, 1, "", "cpu"], [34, 3, 1, "", "cuda"], [34, 3, 1, "", "double"], [34, 6, 1, "", "dump_patches"], [34, 3, 1, "", "eval"], [34, 3, 1, "", "extra_repr"], [34, 3, 1, "", "float"], [34, 3, 1, "", "forward"], [34, 3, 1, "", "get_buffer"], [34, 3, 1, "", "get_extra_state"], [34, 3, 1, "", "get_parameter"], [34, 3, 1, "", "get_submodule"], [34, 3, 1, "", "half"], [34, 3, 1, "", "ipu"], [34, 3, 1, "", "load_state_dict"], [34, 3, 1, "", "modules"], [34, 3, 1, "", "named_buffers"], [34, 3, 1, "", "named_children"], [34, 3, 1, "", "named_modules"], [34, 3, 1, "", "named_parameters"], [34, 3, 1, "", "parameters"], [34, 3, 1, "", "register_backward_hook"], [34, 3, 1, "", "register_buffer"], [34, 3, 1, "", "register_forward_hook"], [34, 3, 1, "", "register_forward_pre_hook"], [34, 3, 1, "", "register_full_backward_hook"], [34, 3, 1, "", "register_load_state_dict_post_hook"], [34, 3, 1, "", "register_module"], [34, 3, 1, "", "register_parameter"], [34, 3, 1, "", "requires_grad_"], [34, 3, 1, "", "set_extra_state"], [34, 3, 1, "", "share_memory"], [34, 3, 1, "", "state_dict"], [34, 3, 1, "", "to"], [34, 3, 1, "", "to_empty"], [34, 3, 1, "", "train"], [34, 6, 1, "", "training"], [34, 3, 1, "", "type"], [34, 3, 1, "", "xpu"], [34, 3, 1, "", "zero_grad"]], "cleanlab.filter": [[35, 1, 1, "", "find_label_issues"], [35, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [35, 1, 1, "", "find_predicted_neq_given"], [35, 7, 1, "", "pred_probs_by_class"], [35, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[37, 0, 0, "-", "label_quality_utils"], [38, 0, 0, "-", "latent_algebra"], [39, 0, 0, "-", "multiannotator_utils"], [40, 0, 0, "-", "multilabel_scorer"], [41, 0, 0, "-", "multilabel_utils"], [42, 0, 0, "-", "outlier"], [43, 0, 0, "-", "token_classification_utils"], [44, 0, 0, "-", "util"], [45, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[37, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[38, 1, 1, "", "compute_inv_noise_matrix"], [38, 1, 1, "", "compute_noise_matrix_from_inverse"], [38, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [38, 1, 1, "", "compute_py"], [38, 1, 1, "", "compute_py_inv_noise_matrix"], [38, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[39, 1, 1, "", "assert_valid_inputs_multiannotator"], [39, 1, 1, "", "assert_valid_pred_probs"], [39, 1, 1, "", "check_consensus_label_classes"], [39, 1, 1, "", "compute_soft_cross_entropy"], [39, 1, 1, "", "find_best_temp_scaler"], [39, 1, 1, "", "format_multiannotator_labels"], [39, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[40, 2, 1, "", "Aggregator"], [40, 2, 1, "", "ClassLabelScorer"], [40, 2, 1, "", "MultilabelScorer"], [40, 1, 1, "", "exponential_moving_average"], [40, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [40, 1, 1, "", "get_label_quality_scores"], [40, 1, 1, "", "multilabel_py"], [40, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[40, 3, 1, "", "__call__"], [40, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[40, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [40, 6, 1, "", "NORMALIZED_MARGIN"], [40, 6, 1, "", "SELF_CONFIDENCE"], [40, 3, 1, "", "__call__"], [40, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[40, 3, 1, "", "__call__"], [40, 3, 1, "", "aggregate"], [40, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[41, 1, 1, "", "get_onehot_num_classes"], [41, 1, 1, "", "int2onehot"], [41, 1, 1, "", "onehot2int"], [41, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[42, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[43, 1, 1, "", "color_sentence"], [43, 1, 1, "", "filter_sentence"], [43, 1, 1, "", "get_sentence"], [43, 1, 1, "", "mapping"], [43, 1, 1, "", "merge_probs"], [43, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[44, 1, 1, "", "append_extra_datapoint"], [44, 1, 1, "", "clip_noise_rates"], [44, 1, 1, "", "clip_values"], [44, 1, 1, "", "compress_int_array"], [44, 1, 1, "", "confusion_matrix"], [44, 1, 1, "", "csr_vstack"], [44, 1, 1, "", "estimate_pu_f1"], [44, 1, 1, "", "extract_indices_tf"], [44, 1, 1, "", "force_two_dimensions"], [44, 1, 1, "", "format_labels"], [44, 1, 1, "", "get_missing_classes"], [44, 1, 1, "", "get_num_classes"], [44, 1, 1, "", "get_unique_classes"], [44, 1, 1, "", "is_tensorflow_dataset"], [44, 1, 1, "", "is_torch_dataset"], [44, 1, 1, "", "num_unique_classes"], [44, 1, 1, "", "print_inverse_noise_matrix"], [44, 1, 1, "", "print_joint_matrix"], [44, 1, 1, "", "print_noise_matrix"], [44, 1, 1, "", "print_square_matrix"], [44, 1, 1, "", "remove_noise_from_class"], [44, 1, 1, "", "round_preserving_row_totals"], [44, 1, 1, "", "round_preserving_sum"], [44, 1, 1, "", "smart_display_dataframe"], [44, 1, 1, "", "subset_X_y"], [44, 1, 1, "", "subset_data"], [44, 1, 1, "", "subset_labels"], [44, 1, 1, "", "train_val_split"], [44, 1, 1, "", "unshuffle_tensorflow_dataset"], [44, 1, 1, "", "value_counts"], [44, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[45, 1, 1, "", "assert_indexing_works"], [45, 1, 1, "", "assert_nonempty_input"], [45, 1, 1, "", "assert_valid_class_labels"], [45, 1, 1, "", "assert_valid_inputs"], [45, 1, 1, "", "labels_to_array"]], "cleanlab.models": [[48, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[48, 2, 1, "", "KerasWrapperModel"], [48, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[48, 3, 1, "", "fit"], [48, 3, 1, "", "get_params"], [48, 3, 1, "", "predict"], [48, 3, 1, "", "predict_proba"], [48, 3, 1, "", "set_params"], [48, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[49, 1, 1, "", "convert_long_to_wide_dataset"], [49, 1, 1, "", "get_active_learning_scores"], [49, 1, 1, "", "get_active_learning_scores_ensemble"], [49, 1, 1, "", "get_label_quality_multiannotator"], [49, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [49, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[50, 0, 0, "-", "dataset"], [51, 0, 0, "-", "filter"], [53, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[50, 1, 1, "", "common_multilabel_issues"], [50, 1, 1, "", "multilabel_health_summary"], [50, 1, 1, "", "overall_multilabel_health_score"], [50, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[51, 1, 1, "", "find_label_issues"], [51, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[53, 1, 1, "", "get_label_quality_scores"], [53, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[54, 0, 0, "-", "filter"], [56, 0, 0, "-", "rank"], [57, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[54, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[56, 1, 1, "", "compute_badloc_box_scores"], [56, 1, 1, "", "compute_overlooked_box_scores"], [56, 1, 1, "", "compute_swap_box_scores"], [56, 1, 1, "", "get_label_quality_scores"], [56, 1, 1, "", "issues_from_scores"], [56, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[57, 1, 1, "", "bounding_box_size_distribution"], [57, 1, 1, "", "calculate_per_class_metrics"], [57, 1, 1, "", "class_label_distribution"], [57, 1, 1, "", "get_average_per_class_confusion_matrix"], [57, 1, 1, "", "get_sorted_bbox_count_idxs"], [57, 1, 1, "", "object_counts_per_image"], [57, 1, 1, "", "plot_class_distribution"], [57, 1, 1, "", "plot_class_size_distributions"], [57, 1, 1, "", "visualize"]], "cleanlab.outlier": [[58, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[58, 3, 1, "", "fit"], [58, 3, 1, "", "fit_score"], [58, 3, 1, "", "score"]], "cleanlab.rank": [[59, 1, 1, "", "find_top_issues"], [59, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [59, 1, 1, "", "get_label_quality_ensemble_scores"], [59, 1, 1, "", "get_label_quality_scores"], [59, 1, 1, "", "get_normalized_margin_for_each_label"], [59, 1, 1, "", "get_self_confidence_for_each_label"], [59, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[61, 0, 0, "-", "learn"], [62, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[61, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[61, 3, 1, "", "__init_subclass__"], [61, 3, 1, "", "find_label_issues"], [61, 3, 1, "", "fit"], [61, 3, 1, "", "get_aleatoric_uncertainty"], [61, 3, 1, "", "get_epistemic_uncertainty"], [61, 3, 1, "", "get_label_issues"], [61, 3, 1, "", "get_metadata_routing"], [61, 3, 1, "", "get_params"], [61, 3, 1, "", "predict"], [61, 3, 1, "", "save_space"], [61, 3, 1, "", "score"], [61, 3, 1, "", "set_fit_request"], [61, 3, 1, "", "set_params"], [61, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[62, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"], [66, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[63, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[66, 1, 1, "", "common_label_issues"], [66, 1, 1, "", "display_issues"], [66, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[67, 0, 0, "-", "filter"], [69, 0, 0, "-", "rank"], [70, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[67, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[69, 1, 1, "", "get_label_quality_scores"], [69, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[70, 1, 1, "", "common_label_issues"], [70, 1, 1, "", "display_issues"], [70, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 73, 77, 78, 80, 81, 82, 85, 91, 92, 93], "count": [3, 82], "datalab": [4, 5, 7, 8, 9, 74, 75, 76, 77, 78, 82], "creat": [5, 74, 75, 82, 84], "your": [5, 71, 74, 75, 78, 80, 82], "own": 5, "issu": [5, 7, 8, 18, 25, 71, 73, 74, 75, 77, 78, 79, 80, 81, 82, 85, 86, 90, 91, 93], "manag": [5, 18], "prerequisit": 5, "implement": 5, "issuemanag": [5, 74], "basic": 5, "check": 5, "intermedi": 5, "advanc": [5, 74], "us": [5, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "gener": 6, "cluster": [6, 80], "id": 6, "guid": [7, 9], "type": [7, 8, 82], "custom": [7, 74], "can": [8, 75, 79, 80, 82, 84], "detect": [8, 75, 77, 78, 80, 82, 86, 87], "estim": [8, 82, 84], "each": 8, "label": [8, 20, 25, 71, 73, 75, 77, 78, 80, 81, 82, 84, 85, 86, 89, 90, 91, 92, 93], "outlier": [8, 23, 42, 58, 77, 78, 81, 87], "Near": [8, 75, 77, 78, 81], "duplic": [8, 16, 75, 77, 78, 80, 81], "non": [8, 78], "iid": [8, 78], "class": [8, 72, 82, 90], "imbal": [8, 17], "imag": [8, 81, 87], "specif": [8, 18, 90], "underperform": [8, 80], "group": [8, 80], "null": [8, 22], "option": 8, "paramet": [8, 82], "get": [9, 74, 75, 84, 85, 86, 90, 93], "start": [9, 79], "api": 9, "refer": 9, "data": [10, 71, 73, 74, 75, 77, 78, 79, 80, 82, 84, 85, 86, 87, 89, 90, 91, 93], "data_issu": 11, "factori": 12, "intern": [13, 36], "issue_find": 14, "issue_manag": [18, 19], "regist": 18, "unregist": 18, "ml": [18, 80, 82], "task": 18, "noniid": 21, "regress": [24, 60, 61, 62, 80, 89], "prioriti": 25, "order": 25, "find": [25, 71, 73, 75, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "underperforming_group": 26, "report": [27, 81], "dataset": [29, 50, 71, 75, 78, 79, 80, 81, 82, 85, 86, 87, 89, 90, 92, 93], "cifar_cnn": 30, "coteach": 31, "experiment": 32, "label_issues_batch": 33, "mnist_pytorch": 34, "filter": [35, 51, 54, 63, 67, 82], "label_quality_util": 37, "latent_algebra": 38, "multiannotator_util": 39, "multilabel_scor": 40, "multilabel_util": 41, "token_classification_util": 43, "util": 44, "valid": [45, 81, 88], "fasttext": 46, "model": [47, 71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 91, 92], "kera": 48, "multiannot": [49, 84], "multilabel_classif": 52, "rank": [53, 56, 59, 62, 65, 69, 82], "object_detect": 55, "summari": [57, 66, 70], "learn": [61, 75, 80, 82, 91], "segment": [64, 90], "token_classif": [68, 93], "cleanlab": [71, 73, 77, 78, 80, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "open": [71, 80], "sourc": [71, 80], "document": 71, "quickstart": 71, "1": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "instal": [71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "2": [71, 72, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "common": [71, 72, 93], "3": [71, 73, 74, 75, 77, 78, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "handl": [71, 80], "error": [71, 80, 81, 82, 84, 85, 86, 89, 90, 92, 93], "train": [71, 73, 80, 87, 89, 91, 92], "robust": [71, 82, 89, 91, 92], "noisi": [71, 82, 89, 91, 92], "4": [71, 73, 74, 75, 77, 78, 81, 82, 84, 86, 87, 89, 91, 92], "curat": [71, 79], "fix": [71, 80], "level": [71, 79, 82, 93], "5": [71, 73, 75, 77, 81, 82, 84, 89, 91], "improv": [71, 84], "via": [71, 82, 84], "mani": [71, 82], "other": [71, 84, 86, 89], "techniqu": 71, "contribut": 71, "easi": [71, 77, 78, 81], "mode": [71, 77, 78, 81], "how": [72, 80, 82, 84, 85, 93], "migrat": 72, "version": 72, "0": 72, "from": [72, 74, 75, 82, 89, 91, 92], "pre": [72, 73, 80, 87], "function": [72, 74], "name": 72, "chang": 72, "modul": [72, 82], "new": 72, "remov": 72, "argument": [72, 74], "variabl": 72, "audio": 73, "speechbrain": 73, "depend": [73, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 87, 89, 90, 91, 92, 93], "import": [73, 74, 75, 79, 81, 82, 84], "them": [73, 79, 82], "load": [73, 74, 75, 77, 78, 89, 91, 92], "featur": [73, 81, 87], "fit": 73, "linear": 73, "comput": [73, 77, 78, 80, 81, 84, 88, 91], "out": [73, 74, 75, 77, 78, 81, 84, 88, 91], "sampl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "predict": [73, 74, 75, 77, 78, 81, 84, 85, 86, 88, 91], "probabl": [73, 74, 75, 77, 78, 81, 84, 88, 91], "workflow": [74, 82], "audit": [74, 75], "requir": [74, 75, 77, 78, 81, 84, 85, 86, 87, 89, 90, 91, 92, 93], "classifi": [74, 75], "instanti": 74, "object": [74, 86], "increment": 74, "search": 74, "specifi": [74, 80], "nondefault": 74, "save": 74, "ad": 74, "A": 75, "unifi": 75, "all": [75, 82], "kind": [75, 86], "skip": [75, 79, 82, 84], "detail": [75, 79, 82, 84], "more": [75, 82, 89, 91, 92], "about": 75, "addit": 75, "inform": [75, 81], "tutori": [76, 79, 83], "tabular": [77, 91], "numer": 77, "categor": 77, "column": 77, "process": [77, 87, 89, 91], "select": [77, 91], "construct": 77, "k": [77, 81, 88], "nearest": 77, "neighbour": 77, "graph": 77, "text": [78, 92, 93], "format": [78, 80, 85, 86, 92], "defin": [78, 81, 89, 92], "drift": 78, "fetch": [79, 81], "evalu": 79, "health": [79, 82], "8": [79, 82], "popular": 79, "faq": 80, "what": [80, 82, 88], "do": [80, 82], "i": [80, 82, 88], "infer": 80, "correct": 80, "exampl": [80, 81, 82, 87], "ha": 80, "flag": 80, "should": 80, "v": 80, "test": [80, 82, 87], "big": 80, "limit": 80, "memori": 80, "why": 80, "isn": 80, "t": 80, "cleanlearn": [80, 82], "work": [80, 82, 84, 93], "me": 80, "differ": [80, 86], "clean": [80, 82], "final": 80, "hyperparamet": 80, "tune": 80, "onli": 80, "one": [80, 82, 85, 90], "doe": [80, 84, 93], "take": 80, "so": 80, "long": 80, "slice": 80, "when": [80, 82], "identifi": [80, 86], "run": 80, "licens": 80, "under": 80, "an": 80, "answer": 80, "question": 80, "pytorch": [81, 87], "normal": 81, "fashion": 81, "mnist": 81, "prepar": 81, "fold": [81, 88], "cross": [81, 88], "embed": [81, 87], "7": [81, 82], "view": 81, "most": [81, 93], "like": 81, "sever": 81, "set": [81, 82], "dark": 81, "top": [81, 90], "low": 81, "The": 82, "centric": 82, "ai": 82, "machin": 82, "find_label_issu": 82, "line": 82, "code": 82, "visual": [82, 86, 87, 90], "twenti": 82, "lowest": 82, "qualiti": [82, 84, 85, 86, 90, 93], "see": 82, "now": 82, "let": 82, "": 82, "happen": 82, "we": 82, "merg": 82, "seafoam": 82, "green": 82, "yellow": 82, "too": 82, "you": 82, "re": 82, "6": 82, "One": 82, "score": [82, 84, 85, 86, 90, 93], "rule": 82, "overal": [82, 90], "accur": 82, "thi": 82, "directli": 82, "fulli": 82, "character": 82, "nois": 82, "matrix": [82, 85], "joint": 82, "prior": 82, "true": 82, "distribut": 82, "flip": 82, "rate": 82, "ani": 82, "again": 82, "support": 82, "lot": 82, "method": 82, "filter_bi": 82, "automat": 82, "everi": 82, "uniqu": 82, "num_label_issu": 82, "threshold": 82, "found": 82, "Not": 82, "sure": 82, "ensembl": 82, "multipl": [82, 84], "predictor": 82, "consensu": 84, "annot": 84, "initi": 84, "major": 84, "vote": 84, "better": 84, "statist": 84, "compar": 84, "inspect": 84, "potenti": [84, 89, 92], "retrain": 84, "further": 84, "multi": 85, "given": 85, "hot": 85, "binari": 85, "download": [86, 90, 93], "objectlab": 86, "timm": 87, "cifar10": 87, "some": 87, "pred_prob": [87, 90, 93], "wai": 89, "semant": 90, "which": 90, "ar": 90, "commonli": 90, "mislabel": [90, 93], "focus": 90, "scikit": 91, "token": 93, "word": 93, "sentenc": 93, "contain": 93, "particular": 93}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 56}})
\ No newline at end of file
diff --git a/master/tutorials/audio.html b/master/tutorials/audio.html
index 239f5b844..bf1e91e57 100644
--- a/master/tutorials/audio.html
+++ b/master/tutorials/audio.html
@@ -1495,7 +1495,7 @@ 5. Use cleanlab to find label issues